REPUBLIC OF THE UNION OF MYANMAR MINISTRY OF CONSTRUCTION PUBLIC WORKS

# THE PREPARATORY SURVEY FOR THE PROJECT FOR CONSTRUCTION OF BAGO RIVER BRIDGE

**FINAL REPORT** 

AUGUST 2014

JAPAN INTERNATIONAL COOPERATION AGENCY

ALMEC CORPORATION ORIENTAL CONSULTANTS CO., LTD NIPPON KOEI CO., LTD.



REPUBLIC OF THE UNION OF MYANMAR MINISTRY OF CONSTRUCTION PUBLIC WORKS

# THE PREPARATORY SURVEY FOR THE PROJECT FOR CONSTRUCTION OF BAGO RIVER BRIDGE

FINAL REPORT

AUGUST 2014

JAPAN INTERNATIONAL COOPERATION AGENCY

ALMEC CORPORATION ORIENTAL CONSULTANTS CO., LTD NIPPON KOEI CO., LTD.



## The Preparatory Survey for The Project for Construction of Bago River Bridge

#### **Final Report**

#### **Table of Contents**

## Project Location Map

| 1.<br>1.1<br>1.2<br>1.3<br>1.4                                                  | Introduction<br>Project Background<br>Project Objective<br>Related Studies<br>Previously Proposed Three Bridge Locations                                                                                                                                   | 1<br>3<br>3                                                                      |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 2.<br>2.1<br>2.2<br>2.3                                                         | Schedule of the Preparatory Survey<br>Time Schedule of the Preparatory Survey<br>Members of the JICA Survey Team<br>Progress of the Preparatory Survey                                                                                                     | 6<br>7<br>7                                                                      |
| 3.                                                                              | Organization of Public Works (PW)                                                                                                                                                                                                                          | 10                                                                               |
| 4.<br>4.1<br>4.1<br>4.2<br>4.3                                                  | <ul> <li>Design Criteria Applied to the Project Design</li> <li>Design Criteria for Structural Design</li> <li>1 Structural Guidelines</li> <li>2 Design Criteria</li> <li>Design Criteria for Road Design</li> <li>Design Navigation Clearance</li> </ul> | 13<br>13<br>13<br>13<br>15<br>16                                                 |
| 5.<br>5.1<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2<br>5.2 | <ul> <li>Study of Three Alternative Locations for Bago River Bridge</li></ul>                                                                                                                                                                              | 18<br>21<br>21<br>22<br>23<br>26<br>29<br>30<br>31<br>32<br>32<br>33<br>33<br>36 |
| 6.<br>6.1<br>6.2<br>6.2<br>6.2                                                  | <ul> <li>Preliminary Design of Bago River Bridge</li> <li>Alignment Design</li></ul>                                                                                                                                                                       | 37<br>37<br>38<br>38<br>39                                                       |

| <ul> <li>6.2.3 Evaluation Results and Recommendation</li> <li>6.3 Study of Substructure</li> <li>6.3.1 Study on Foundation Type</li> <li>6.3.2 Adverse Effect of New Bridge Foundation on Existing Bridge Foundation</li> <li>6.3.3 Study on Substructure Type</li> <li>6.3.4 Study on Abutment Type</li> </ul>                                                                           | 40<br>47<br>53<br>53<br>54                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| <ul> <li>7. Natural Condition Surveys</li></ul>                                                                                                                                                                                                                                                                                                                                           | 55<br>55<br>56<br>60<br>61                                  |
| <ul> <li>7.2.2 Geological Survey</li> <li>7.2.3 Geotechnical Design Parameters</li> <li>7.2.4 Summary of Soil Investigation</li> </ul>                                                                                                                                                                                                                                                    | 62<br>70<br>72                                              |
| <ul> <li>8. Hydrological Assessment of the Bago River</li></ul>                                                                                                                                                                                                                                                                                                                           | 73<br>74<br>74<br>74<br>74<br>75<br>75                      |
| <ul> <li>8.2 Hydrological and Hydraulic Conditions</li></ul>                                                                                                                                                                                                                                                                                                                              | 80<br>80<br>90<br>91<br>92<br>95<br>95                      |
| <ul> <li>8.3.1 Probable Floods at Gauging Stations</li> <li>8.3.2 Probable Floods from River Flow for Design</li> <li>8.3.3 Probable High Water Level at Tidal Gauging Station</li> <li>8.3.4 Hydraulic Calculation</li> <li>8.4 Hydrological Assessment of the Proposed Bridge Sites</li> <li>8.4.1 Hydraulic Design Criteria of Bridge</li> <li>8.4.2 Assessment of Scouring</li> </ul> | 95<br>96<br>98<br>98<br>107<br>107<br>107                   |
| <ul> <li>8.4.3 Assessment of the Proposed Bridge</li> <li>9. Design for Feasibility Study</li></ul>                                                                                                                                                                                                                                                                                       | 113<br>114<br>114<br>115<br>117<br>117<br>127<br>128<br>129 |
| <ul> <li>9.4.1 Alignment Design</li></ul>                                                                                                                                                                                                                                                                                                                                                 | 130<br>130<br>131<br>132<br>134                             |

| 9.5 (         | Construction Planning                                                           | 136 |
|---------------|---------------------------------------------------------------------------------|-----|
| 9.5.1         | Site Conditions                                                                 | 136 |
| 9.5.2         | Construction Packaging Plan                                                     | 138 |
| 9.5.3         | Temporary Facilities                                                            | 140 |
| 9.5.4         | Construction Procedures                                                         | 141 |
| 9.5.5         | Construction Period                                                             | 147 |
| 10. Pro       | iect Cost Estimates                                                             | 148 |
| 10.1 0        | General Conditions                                                              | 148 |
| 10.2 H        | Procurement                                                                     | 148 |
| 10.3 <b>C</b> | Construction Work Quantities                                                    | 150 |
| 10.4 <b>C</b> | Construction Cost                                                               | 152 |
| 10.4.1        | Unit Costs of Construction Works                                                | 152 |
| 10.5 I        | Land Acquisition and Resettlement Cost                                          | 155 |
| 10.5.1        | Demolition Cost and Land Acquisition Cost                                       | 155 |
| 10.5.2        | Resettlement Cost                                                               | 155 |
| 10.5.3        | Total Cost of Land Acquisition and Resettlement                                 | 155 |
| 10.6 H        | Estimated Project Cost                                                          | 155 |
| 11 Dei        | mand Forecast and Economic Evaluation of the Project                            | 157 |
| 111 Del       | ntroduction                                                                     | 157 |
| 11.1          | Socio-Economic Framework and Future Transport Demand                            | 157 |
| 11.2          | Socio-Economic Framework                                                        | 157 |
| 11.2.2        | Transport Demand Forecast (Do-Nothing Case).                                    | 158 |
| 11.2.3        | Base Case Demand Forecast (Do Master Plan)                                      | 164 |
| 11.3 H        | Economic Evaluation                                                             | 165 |
| 11.3.1        | Methodology and Assumptions                                                     | 165 |
| 11.3.2        | Economic Cost of the Project                                                    | 167 |
| 11.3.3        | Economic Benefits of the Project                                                | 167 |
| 11.3.4        | Evaluation Result                                                               | 168 |
| 11.3.5        | Establishment of Operation and Effect Indicators                                | 171 |
| 12 Env        | vironmental and Social Considerations                                           | 172 |
| 12.1 F        | Policy Legislative and Institutional Framework                                  | 172 |
| 12.1.1        | Legislation related to Environmental and Social Considerations                  | 172 |
| 12.1.2        | Environmental Conservation Law. 2012                                            | 172 |
| 12.1.3        | Regulations for Environmental Impact Assessment (EIA)                           | 173 |
| 12.1.4        | Environmental quality standards                                                 | 183 |
| 12.1.5        | Institutional Framework                                                         | 186 |
| 12.2 H        | Existing Environmental Conditions around the Proposed Route                     | 186 |
| 12.2.1        | Location and Route                                                              | 187 |
| 12.2.2        | Social Environment                                                              | 189 |
| 12.2.3        | Natural Environment                                                             | 193 |
| 12.2.4        | Environmental Pollution                                                         | 196 |
| 12.3 H        | Results of the Initial Environmental Examination (IEE) of the Project           | 203 |
| 12.3.1        | Outline of the Project and its Components                                       | 203 |
| 12.3.2        | Comparison of Alternatives                                                      | 205 |
| 12.3.3        | Procedures of IEE Level Study of the Project Plan                               | 206 |
| 12.3.4        | Identification and Evaluation of Possible Impacts                               | 209 |
| 12.3.5        | Mitigation Measures against Negative Impacts and Environmental Management Plan. | 218 |
| 12.3.6        | Environmental Monitoring Plan (EMP)                                             | 222 |
| 12.4 A        | Abbreviated Resettlement Plan (ARP)                                             | 226 |
| 12.4.1        | Necessity of Land Acquisition and Resettlement                                  | 226 |
| 12.4.2        | Legal and Policy Framework for Land Acquisition and Resettlement in Myanmar     | 226 |
| 12.4.3        | Features and Expected Land Acquisition and Resettlement of the Project          | 233 |

| 12.4 | 4.4 Policy for Land Acquisition and Resettelement                                | 237 |
|------|----------------------------------------------------------------------------------|-----|
| 12.4 | 4.5 Estimation of Compensation and Resettlement Assistance                       | 238 |
| 12.4 | 4.6 Specific Procedures for Loss of Structures and Resettlement for the Project  | 239 |
| 12.5 | Results of the Stakeholder Meetings                                              | 240 |
| 12.6 | Confirmation of Environmental and Social Consideration by the JICA Environmental |     |
|      | Checklist                                                                        | 242 |
| 13.  | Proposed Implementation Programme                                                | 243 |
| 13.1 | Implementation Structure                                                         | 243 |
| 13.2 | Implementation Schedule                                                          | 243 |
| 14.  | Conclusions and Recommendations                                                  | 245 |
| 14.1 | Conclusions                                                                      | 245 |
| 14.2 | Recommendations                                                                  | 248 |
|      |                                                                                  |     |

- Appendix 1 Minutes of Meeting on the Presentation of Inception Report
- Appendix 2 Technical Notes on the Presentation of the Study of Three Alternative Locations for Bago River Bridge
- Appendix 3 Technical Notes on the Selection of the Bridge Type of Bago River Bridge
- Appendix 4 Public Works Equipment List
- Appendix 5 Plan and Profile Designs for Study of Three Alternative Locations for Bago River Bridge
- Appendix 6 Possible Superstructure Type for Study of Three Alternative Locations for Bago River Bridge
- Appendix 7 Preliminary Cost Estimate for Study of Three Alternative Locations for Bago River Bridge
- Appendix 8 Six (6) Alternative Bridge Types for Superstructure Type Selection
- Appendix 9 Drawings

#### Appendix 10

- Appendix 10.1 Results of Actual Environmental Survey
- Appendix 10.2 Participants List of Stakeholder Meeting
- Appendix 10.3 Results of Survey for Preparation of ARP

Appendix 10.4 Confirmation of Environmental and Social Considerations for the Proposed Project by JICA Environmental Checklist

Appendix 11 Breakdown of the Cost Estimation

#### List of Abbreviations

| AASHTO   | American Association of State Highway and Transportation Officials |
|----------|--------------------------------------------------------------------|
| ADB      | Asia Development Bank                                              |
| ARP      | Abbreviated Resettlement Plan                                      |
| ASEAN    | Association of Southeast Asian Nations                             |
| B/C      | Cost Benefit Ratio                                                 |
| BOD      | Biological Oxygen Demand                                           |
| BOT      | Build-Operate-Transfer                                             |
| BRT      | Bus rapid transit                                                  |
| BSW      | Bo Aung Kyaw Wharf                                                 |
| CBD      | Central business district                                          |
| CBR      | California Bearing Ratio                                           |
| CDL      | Chart Datum Level                                                  |
| CNG      | Compressed natural gas                                             |
| СО       | Carbon Monoxide                                                    |
| COD      | Chemical Oxygen Demand                                             |
| CPLAD    | City Planning and Land Administration Department                   |
| CS       | Consultant Service                                                 |
| СТ       | Contractor                                                         |
| D/D      | Detailed Design                                                    |
| DF/R     | Final Report                                                       |
| DMH      | Department of Meteorology and Hydrology, Ministry of Transport     |
| DWIR     | Department of Water Resources and Improvement of River System      |
| DWT      | Dead weight tonnage                                                |
| ECD      | Environmental Conservation Department                              |
| EIA      | Environmental impact assessment                                    |
| EIRR     | Equity internal rate of return                                     |
| EMP      | Environmental Management Plan                                      |
| E/S      | Engineering Service                                                |
| ESAL     | Equivalent Single Axle Loads                                       |
| FERD     | Foreign Economic Relations Department                              |
| FHWA     | Federal Highway Administration                                     |
| F/R      | Final Report                                                       |
| GAD      | General Administration Department                                  |
| GDP      | Gross Domestic Product                                             |
| GIS      | Geographic Information System                                      |
| GOM      | Government of Myanmar                                              |
| HEC      | Hydraulic Engineering Circular                                     |
| HEC-RAS  | Hydrologic Engineering Center – River Analysis System              |
| HHWL     | The highest high water level                                       |
| HWL      | High Water Level                                                   |
| IC/R     | Inception report                                                   |
| ID, MOAI | Irrigation Department, Ministry of Agriculture and Irrigation      |
| IEE      | Initial environmental examination                                  |
| I/P      | Implementation Program                                             |
| IT/R     | Interim Report                                                     |
|          |                                                                    |

| ITS       | Intelligent Transport Systems                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------|
| IUCN      | International Union for Conservation of Nature                                                             |
| IWT       | Inland Water Transport                                                                                     |
| JICA      | Japan International Cooperation Agency                                                                     |
| JICAGL    | JICA Guideline                                                                                             |
| JICA-SUDP | Project for Strategic Urban Development Plan of the Greater Yangon                                         |
| JPY       | Japanese Yen                                                                                               |
| JSHB      | Japanese Standard for Highway Bridge                                                                       |
| LARAP     | Land Acquisition and Resettlement Action Plan                                                              |
| LLWL      | Lowest Low Water Level                                                                                     |
| LOA       | Length Overall                                                                                             |
| MEPE      | Myanmar Electric Power Enterprise                                                                          |
| MES       | Myanmar Engineering Society                                                                                |
| MFSL      | Myanmar Five Star Line                                                                                     |
| MGS       | Myanmar Geosciences Society                                                                                |
| MITT      | Myanmar International Terminal Thilawa                                                                     |
| MMK       | Myanmar Kyats                                                                                              |
| MN        | Myanmar Navy                                                                                               |
| MNPED     | Ministry of National Planning and Economic Development                                                     |
| MOC       | Ministry of Construction                                                                                   |
| MOE       | Ministry of Energy                                                                                         |
| MOECF     | Ministry of Environment Conservation and Forestry                                                          |
| MOF       | Ministry of Fishery                                                                                        |
| MOGE      | Myanmar Oil and Gas Enterprise                                                                             |
| MOH       | Ministry of Health                                                                                         |
| MOHA      | Ministry of Home Affairs                                                                                   |
| MOI       | Ministry of Industry                                                                                       |
| МОТ       | Ministry of Transport                                                                                      |
| MPA       | Myanmar Port Authority                                                                                     |
| MPPE      | Myanmar Petroleum Product Enterprise                                                                       |
| MR        | Myanma Railways                                                                                            |
| MSL       | Mean Sea Level                                                                                             |
| MWL       | Mean Water Level                                                                                           |
| MYT-Plan  | The Survey Program for the National Transporation Development Plan in the Republic of the Union of Myanmar |
| NGO       | Non-Governmental Organization                                                                              |
| NO2       | Nitrogen Dioxides                                                                                          |
| NPV       | Net Present Value                                                                                          |
| NTU       | Unit of Turbidty                                                                                           |
| ODA       | Official Development Assistance                                                                            |
| O&M       | Operation and Maintenance                                                                                  |
| PAPRD     | Project Appraisal and Program Reporting Department                                                         |
| PAPs      | Project Affected Persons                                                                                   |
| PCD       | Pollution and Cleaning Department                                                                          |
| PCU       | Passenger Car Unit                                                                                         |
| PD        | Planning Department                                                                                        |
| PG/R      | Progress Report                                                                                            |
| PM        | Particulate Matter                                                                                         |

| PPGD  | Playgrounds, Parks and Gardening Department                             |
|-------|-------------------------------------------------------------------------|
| PVD   | Prefabricated Vertical Drain                                            |
| PW    | Public Works                                                            |
| ROW   | Right of Way                                                            |
| S/C   | Steering Committee                                                      |
| SCF   | Standard Conversion Factor                                              |
| SEZ   | Special Economic Zone                                                   |
| SIA   | Social Impact Assessment                                                |
| SLRD  | Settlement and Land Record Department                                   |
| SO2   | Sulfer Dioxides                                                         |
| SPT   | Standard Penetration Test                                               |
| STDs  | Sexually Transmitted Diseases                                           |
| SUDP  | The Strategic Urban Development Plan of the Greater Yangon, JICA (2013) |
| TEU   | Twenty-foot equivalent units                                            |
| T-N   | Total Nitrogen                                                          |
| T-P   | Total Phosphorus                                                        |
| TOD   | Transit Oriented Development                                            |
| TS    | Township                                                                |
| TTC   | Travel Time Costs                                                       |
| UMRT  | Urban Mass Rapid Transit                                                |
| USD   | US Dollar                                                               |
| V/C   | Volume to Capacity                                                      |
| VOC   | Vehicle Operation Cost                                                  |
| VOT   | Value of Time                                                           |
| WB    | World Bank                                                              |
| WHO   | World Health Organization                                               |
| YCDC  | Yangon City Development Committee                                       |
| YRDC  | Yangon Region Development Committee                                     |
| YUTRA | Project for Comprehensive Urban Transport Plan of the Greater Yangon    |

Chapter 1

Introduction

## 1. Introduction

#### 1.1 Project Background

Myanmar is a country of abundant natural resources, and has a great potential to attain rapid economic growth in the coming years. Yangon is the former capital, the main center of Myanmar's economic activities, and the largest city of Myanmar having about 5 million populations, which is 12% of the national population (2010). The Port of Yangon, the largest international port of Myanmar, is located on the left bank of the Yangon River, next to Yangon downtown area.

During the fiscal year of 2010~2011, the scale of the economy of Yangon Region was 23% of the national gross domestic product (GDP). The Myanmar government is now undertaking the fifth five-year plan for 2011~2012 to 2015~2016 fiscal years, which sets a GDP growth target of 6.7% for the 2012~2013 fiscal year. Due to the recent rapid growth of economy, Yangon shows excessive centralization of daily economic activities which generates transport demands that are larger than ever, and which reveals the insufficient capacity of the present transport infrastructure to cope with further economic growth/development.

At the same time, the Greater Yangon Region is expanding outward, including Thanlyin area and Dala area. Both areas are separated from Yangon by the Yangon River and the Bago River, respectively. At the moment, there is no bridge between Yangon and Dala area, and Dala Bridge is proposed to be constructed soon. Between Yangon and Thanlyin area, there are two bridges, namely, Thanlyin Bridge and Dagon Bridge, as shown in Figure 1.1. Thanlyin Bridge, completed in 1993, is a road cum rail bridge. It has a dual 1-lane roadway section. Thanlyin Bridge prohibits heavy vehicle traffic over 32 t. Dagon Bridge, completed in 2007, is a dual 3-lane bridge, and therefore has enough traffic capacity. However, Dagon Bridge is located distant from Yangon Central Area (around 14 km) and around 6.4 km upstream of Thanlyin Bridge. Due to this distance from Yangon central area, Dagon Bridge seems to be underutilized for daily traffic, in spite of its ample traffic capacity.

Thanlyin area is a developing area. The further development of Myanmar International Terminals Thilawa (MITT) is planned with Japanese assistance under the Project for Development of Yangon Port (Thilawa area). MITT is intended to share cargo handling with the Port of Yangon, and to be the backbone of Myanmar's future development. The further development of MITT is also expected to ease the traffic congestion caused by Yangon Port activities in Yangon central area. Next to MITT, Thilawa Special Export Zone (SEZ) is planned to provide the industrial area and to be implemented soon. Private developments such as the construction of commercial and residential areas and the construction of recreation center are also quite active. Due to these developments, it is anticipated that Thilawa area will have around 500,000 daytime population in the near future. Consequently, it is believed that the traffic between Yangon area and Thanlyin area will increase. The current traffic capacity of the two existing bridges cannot accommodate the future traffic demand generated in the area, and will soon become a serious bottleneck.



Source: JICA Survey Team

Figure 1.1 Two Existing Bridges on the Bago River

Therefore, the construction of a new bridge, i.e., Bago River Bridge, is urgently required.

At the moment, the Project for the Strategic Urban Development Plan of the Greater Yangon (SUDP) and the Project for Comprehensive Urban Transport Plan of the Greater Yangon (YUTRA) are conducted under Japanese assistance. These projects already pointed out the insufficient transport infrastructure between Yangon area and Thanlyin area. Being aware of the necessity of bridge between these two areas, the SUDP proposed a bridge at Bago Point as an integral part of the future transport network of Greater Yangon. YUTRA is still in its early stage and not able to identify the future traffic demand or the required additional number of lanes between the two areas. However, YUTRA is anticipating the requirement of more lanes to cope with the future traffic demand, which would result in the construction of one or more bridges.

The existing Thanlyin Bridge was constructed as a bridge for freight train with road section attachments. When the role of Dagon Bridge is understood as a bridge for freight transport of the region, then it can be said that there is no commuter purpose infrastructure in terms of road transport and railway transport between Yangon area and Thanlyin area. To cope with the increased traffic demand (mainly commuter traffic) between Yangon area and Thanlyin area, it is believed essential to take into consideration the construction of commuter train system, in order to avoid the excessive burden to roadway transport system.

In case of deploying the commuter railway system between Yangon area and Thanlyin area, it would be advisable to adopt the double-decked road cum rail bridge with the shortest length, from the transport engineering viewpoint. Instead of two separate bridge constructions, one for road and the other for railway, the application of double-decked bridge will reduce the construction cost.

Apart from the bridge type selection between road bridge and road cum rail bridge, the construction of Bago River Bridge will surely guarantee the expected economic growth in Thanlyin area, accelerate Thilawa SEZ development, and greatly contribute to the economic development of Myanmar.

Hence, Bago River Bridge needs to be constructed urgently.

## **1.2 Project Objective**

As stated in the Minutes of the Meeting between Public Works (PW), Ministry of Construction (MOC), and Japan International Cooperation Agency (JICA), signed on May 15, 2013, the objective of this Preparatory Survey is to conduct a feasibility study on the new construction of Bago River Bridge and approach road to the bridge.

#### 1.3 Related Studies

The first phase of SUDP was conducted under Japanese assistance. The Final Report I was submitted in April 2013. In this report, SUDP reported the forecasted cross sectional traffic demand on the Bago River in 2040 as four times of the current volume, which would require a traffic capacity equivalent to 20 traffic lanes. It is noted that the current number of lanes is eight, of which Thanlyin Bridge has two lanes and Dagon Bridge has six lanes. Then, SUDP proposed the construction of Bago River Bridge to cope with the forecasted cross sectional traffic demand on the Bago River.

At the moment, YUTRA is conducted under Japanese assistance. YUTRA already pointed out the insufficient transport infrastructure between Yangon area and Thanlyin area. YUTRA is still in its early stage and not able to identify the future traffic demand or the required additional number of lanes between the two areas. However, YUTRA is anticipating the requirement of more lanes to cope with the future traffic demand, which would result in the construction of one or more bridges.



Remarks: SUDP proposed Bago River Bridge at Bago Point with the following reasons:

- 1. SUDP proposed the waterfront development along the Yangon River.
- 2. SUDP anticipated the serious traffic congestion in the downtown area of Yangon by Bago River Bridge at Monkey Point, which is not suitable for the waterfront development.

Source: SUDP Study Team (Figure 3.4.14)



### 1.4 Previously Proposed Three Bridge Locations

In the Preparatory Study for Urban Development Programme in the Greater Yangon under Japanese assistance, the initial study on Bago River Bridge was conducted. This initial study proposed three alternative locations for Bago River Bridge, which were selected considering the existing road at the Yangon side which has a possibility to form the link with the proposed approach road to Bago River Bridge. The three locations and the assumed existing roads at Yangon side which will link with the proposed approach road to the bridge are as follows:

| Alternative Route                                              | Yangon Side Existing Road |
|----------------------------------------------------------------|---------------------------|
| Alternative 1: Monkey Point Route                              | Strand Road               |
| Alternative 2: Bago Point Route                                | Yamonnar Road             |
| Alternative 3: Proximity to the Existing Thanlyin Bridge Route | Shukhinthar-Mayopat Road  |

Figure 1.3 shows the three alternative locations for Bago River Bridge.



Source: JICA Survey Team

Figure 1.3 Three Alternative Locations for Bago River Bridge

Chapter 2

Schedule of Preparatory Survey

## 2. Schedule of the Preparatory Survey

#### 2.1 Time Schedule of the Preparatory Survey

Table 2.1 shows the proposed time schedule of the Preparatory Survey. It was planned that this Preparatory Survey is to be carried out in two phases as follows:

- 1st Phase: To conduct the alternative study and propose the most appropriate project scheme covering the bridge location and bridge type.
- 2nd Phase: To carry out the feasibility study of the Project, upon mutual agreement on the proposed project scheme.

As shown in the "Report" row in Table 2.1, the inception report was submitted in early July and the progress report was submitted in the end of August. During the 2nd Phase, the interim report, Final report, and then the final report will be submitted.

| Year                                                            |            |          |           | 2013  |     |           |     | 2014 |     |     |     |     |     |     |     |
|-----------------------------------------------------------------|------------|----------|-----------|-------|-----|-----------|-----|------|-----|-----|-----|-----|-----|-----|-----|
| Month                                                           | Jun        | Jul      | Aug       | Sep   | Oct | Nov       | Dec | Jan  | Feb | Mar | Apr | May | Jun | Jul | Aug |
| First Site Survey in Myanmar                                    |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-1] Presentation and Descussion of the Inception report       |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-2] Collection and Review of Existing Information             |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-3] Study on Highway/Bridges Operation and Maintenance System | 1 <b>–</b> |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-4] Site Reconnaissance                                       |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-5] Environmental and Social Considerations (IEE)             |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-6] Alternative Study of the Project                          |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-7] Design Conditions of Approach Road Design                 |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-8] Preliminary Design of Approach Road Alternatives          |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-9] Preliminary Design of Bridge Alternatives                 |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-10] Preliminary Project Cost Estimates                       |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-11] Presentation of Proposed Project Scheme                  |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [1-12] Preparation of Progress Report                           |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
|                                                                 | Second Si  | ite Surv | ey in My  | anmar |     |           |     |      |     |     |     |     |     |     |     |
| [2-1] Implementation of Site Survey                             |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-2] Schematic Design of the Project                           |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-3] Survey of Construction Materials                          |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-4] Construction Plan and Project Cost Estimates/             |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-5] Study on Operation and Maintenance Programme              |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-6] Environmental and Social Considerations (EIA)             |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-7] Traffic Demand Forecast                                   |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-8] Economic/Financial Analysis                               |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| [2-9] Preparation of Final Report                               |            |          |           |       |     |           |     |      |     |     |     |     |     |     |     |
| Report                                                          | IC/R       |          | A<br>PG/R |       |     | A<br>IT/R |     |      |     |     | DF  | /R  |     |     | F/R |
| Steering Committee                                              |            | Δ        |           |       |     |           |     |      |     |     |     | r · |     |     | .,  |

 Table 2.1
 Time Schedule of the Preparatory Survey

Source: JICA Survey Team

### 2.2 Members of the JICA Survey Team

The JICA Survey Team is composed of 11 members, as shown in Table 2.2:

| No. | Name              | Position/Assignment                            |
|-----|-------------------|------------------------------------------------|
| 1.  | Takashi Shoyama   | Team Leader/Comprehensive Urban Transport Plan |
| 2.  | Eiichi Yokota     | Road Planning/Road Design                      |
| 3.  | Toshio Ichikawa   | Bridge Planning/Bridge Design 1                |
| 4.  | Tomoyuki Konishi  | Bridge Planning/Bridge Design 2                |
| 5.  | Ryo Tanahashi     | Construction Planning/Cost Estimation 1        |
| 6.  | Tomokuni Hayakawa | Construction Planning/Cost Estimation 2        |
| 7.  | Hironobu Kuroe    | Hydrologic Characteristic Analysis             |
| 8.  | Takeshi Maeda     | Geological Condition Data                      |
| 9.  | Mazhar Iqubal     | Traffic Demand Forecast                        |
| 10. | Rie Tajima        | Economic and Financial Analysis                |
| 11. | Testujiro Tanaka  | Social and Environmental Considerations        |

Table 2.2List of JICA Survey Team Members for the Preparatory Survey

Source: JICA Survey Team

#### 2.3 **Progress of the Preparatory Survey**

The major milestones of the Preparatory Survey are as follows:

(1) Presentation of Inception Report (IC/R) and Discussion on the Contents of IC/R

On July 2, 2013, the JICA Survey Team visited the Ministry of Construction (MOC), Nay Pyi Taw and made the presentation of IC/R to the concerned personnel of PW. IC/R introduced the time schedule of the Preparatory Survey, work items to be carried out in Myanmar, and proposed design considerations, such as design criteria, typical cross sections, and navigation clearance, for Bago River Bridge and approach road design.

In the course of the presentation of the time schedule, the JICA Survey Team said that the bridge location, among the three alternatives shown in Figure 1.3, shall be finalized by at least mid-August. PW agreed to this and requested for the JICA Survey Team to provide the materials for the comparison and final selection of the bridge location. The JICA Survey Team agreed to PW's request. The minutes of the meeting is attached in Appendix 1.

(2) Presentation of Study of Three Alternative Locations for Bago River Bridge and Discussion on the Contents

Following the presentation of IC/R, the JICA Survey Team carried out the preliminary design of Bago River Bridge and approach roads to the bridge, along with the initial environmental examination (IEE). The working results were prepared as the report of the Study of Three Alternative Locations for Bago River Bridge.

On August 6, 2013, the JICA Survey Team visited MOC, Nay Pyi Taw, and made the presentation of the report. In this meeting, PW invited representatives of concerned organizations. After the presentation of the report by the JICA Survey Team, each representative including PW provided comment on the bridge location. Taking into consideration the various comments given by the representatives of concerned organizations, PW selected Alternative 3, i.e., Proximity of the Existing Thanlyin Bridge Route, as the location of Bago River Bridge.

The JICA Survey Team proposed the bridge type of continuous steel box girder with steel plate deck for Alternative 3 route from the viewpoint of construction cost. PW requested for the JICA

Survey Team to make further study on the bridge type which may include the application of longer span bridge, taking into account the safety requirement for vessel operating route, and the importance of technology transfer of bridge construction into Myanmar. The JICA Survey Team agreed to do so. The Technical Notes for the meeting is attached in Appendix 2.

(3) Presentation of Alternative Study of Bridge Type for Bago River Bridge

The JICA Survey Team prepared the alternative study report of the bridge type which includes the comparison of the following six alternative bridge types:

- Alternative-A: Continuous Steel Box Girder with Steel Plate Deck Girder + Continuous Steel I-Girder with Precast PC Deck Slab
- Alternative-B: Nielsen Arch Bridge + Continuous Steel I-Girder with Precast PC Deck Slab
- Alternative-C: Continuous PC Box Girder + Continuous Precast PC Box Girder (Span by Span)
- Alternative-D: Extradozed Bridge + Continuous Precast PC Box Girder (Span by Span)
- Alternative-E: Steel Cable Stayed Bridge + Continuous Steel Box Girder with Steel Deck Slab + Continuous Precast PC Box Girder (Span by Span)
- Alternative-F: Extradozed Bridge + Continuous Steel Box Girder with Steel Deck Slab + Continuous Precast PC Box Girder (Span by Span)

This alternative study report evaluated each alternative bridge type applying the scoring system stated in the report. Alternative-E bridge type attained the highest score.

On the occasion of the 3rd Steering Committee Meeting of YUTRA held on August 16, 2013 in Yangon, the JICA Survey Team submitted the report to PW and recommended to apply the Alternative-E bridge type, which was evaluated with the highest score. PW verbally agreed to adopt the bridge type of Alternative-E for Bago River Bridge. This verbal agreement was confirmed through the MOC's formal decision in Nay Pyi Taw. The Technical Notes for the selection of bridge type is attached in Appendix 3.

The alternative study of bridge type is introduced in Subchapter 6.2.

(4) Natural Condition Surveys

Upon the final decision on the bridge location and bridge (superstructure) type of Bago River Bridge, the following natural condition surveys were conducted:

- Topographic Survey
- Geological Survey

Topographic survey and geological survey were contracted with local contractors at the end of August. However, due to the delay of permission to conduct the survey, both topographic survey and geological survey were completed at the beginning of November.

(5) Environmental and Social Considerations Survey

Environmental and social considerations surveys were conducted from October 2013. The following natural condition surveys were conducted:

- Ecosystem Survey
  - Terrestrial component
  - Aquatic component
  - Fish resources
- Water Quality Survey
- Sediment Quality Survey
- River Velocity Survey
- Air Quality Survey
- Ambient Noise Survey

The stakeholder meeting was conducted on 24 January 2014 with concerned personnel of PW, related organization and PAPs.

(6) Design for Feasibility Study, Cost Estimation, Traffic Demand Forecast and Economic Evaluation

Based on the natural condition survey, the JICA Survey Team conducted the preliminary design of the Bago River Bridge and its approach roads. Cost estimation was conducted for the purpose of the economic evaluation based on the traffic demand forecast carried out in the YUTRA Project.

(7) Presentation of the Draft Final Report and Discussion on the Contents

On July 31, 2013, the JICA Survey Team visited MOC, Nay Pyi Taw, and made the presentation of the Draft Final Report to the concerned personnel of PW staff headed Managing Director U Kyaw Linn. The contents of the report were mainly approved without some description of the report.

Chapter 3

Organization of Public Works

# 3. Organization of Public Works (PW)

The executing agency of the Bago River Bridge is PW which belongs to MOC Figure 3.1 shows the organization of PW.



Source: PW

Figure 3.1 Organization of Public Works

As seen in Figure 3.1, PW consists of four departments under the Managing Director. The Department of Works has four divisions, namely: Building, Airfield, Road, and Bridge. Figure 3.2 shows the organizational chart of the Road Division.



Source: PW

Figure 3.2 Organizational Chart of the Road Division, PW

The PW's counterpart division of the Project for Construction of Bago River Bridge is the Bridge Division. Although the organizational information of the Bridge Division was not obtained, it is anticipated that the Bridge Division also has the organization structure similar to that of the Road Division. Table 3.1 shows the staff number of the Road Division and Bridge Division. The Bridge Division has 106 officials and 854 employees as of August 2013.

| Name of Department   | Government<br>Official | Government<br>Employee | Total |
|----------------------|------------------------|------------------------|-------|
| Road (Site)          | 189                    | 1,220                  | 1,409 |
| Road (Head Office)   | 36                     | 193                    | 229   |
| Bridge (Site)        | 83                     | 790                    | 873   |
| Bridge (Head Office) | 23                     | 64                     | 87    |
| Total                | 331                    | 2,267                  | 2,598 |

Table 3.1List of Employees in MOC as of August 2013

Source: MOC

Table 3.2 shows the summary of equipment and the number of equipment possessed by PW. These huge numbers of equipment are deployed to various states and regions. Table 3.3 shows the equipment distribution status.

| No. | Name of Equipment      | Total Units | Remarks |
|-----|------------------------|-------------|---------|
| 1   | Bulldozer              | 243         |         |
| 2   | Motor Grader           | 147         |         |
| 3   | Excavator              | 146         |         |
| 4   | Loader                 | 155         |         |
| 5   | Road Roller            | 727         |         |
| 6   | Soil Compactor         | 29          |         |
| 7   | Vibratory Roller       | 135         |         |
| 8   | Crane                  | 125         |         |
| 9   | Drilling Rig           | 22          |         |
| 10  | Vibro Hammer           | 23          |         |
| 11  | Rock Drill             | 22          |         |
| 12  | Asphalt Concrete Plant | 16          |         |
| 13  | Air Compressor         | 129         |         |
| 14  | Generator              | 141         |         |
| 15  | Dump Truck             | 908         |         |
| 16  | Truck                  | 272         |         |
| 17  | Tyre Roller            | 30          |         |
| 18  | Asphalt Concrete Paver | 9           |         |
| 19  | Agitator Truck         | 47          |         |
| 20  | Stone Crusher          | 116         |         |
|     | Grand Total            | 3,442       |         |

Table 3.2Summary of Equipment in PW, as of August 2013

Source: PW

| Sr.        | Type of Equipment                     | Kackin State | Kayar State | Kayin State | Chin State | Sagaing Division | Tanantharyi Division | Bago Division | Magwe Division | Mandalay Division | Mon State | Rakhaing State | Yangon Division | Shan State (South) | Shan State (North) | Shan State (East) | Ayarwadi Division | Mechanical Department | Total     | Remark |
|------------|---------------------------------------|--------------|-------------|-------------|------------|------------------|----------------------|---------------|----------------|-------------------|-----------|----------------|-----------------|--------------------|--------------------|-------------------|-------------------|-----------------------|-----------|--------|
| 1          | Bull Dozer (Large)                    | 11           | 2           | 5           | 6          | 26               | 5                    | 7             | 10             | 12                |           | 10             | 3               | 1                  | 4                  | 11                | 6                 | 12                    | 131       |        |
| 2          | Bull Dozer (Median)                   | 4            | 1           | 2           | 5          | 13               | 5                    | 2             | 6              | 5                 |           | 4              | 1               | 9                  | 2                  | 10                | 6                 | 10                    | 85        |        |
| 3          | Bull Dozer (Small)                    | 3            | 1           |             | 2          | 3                | 1                    | 3             | 1              | 2                 |           |                | 2               | 4                  | 1                  |                   | 1                 | 3                     | 27        |        |
| 4          | Motor Grader                          | 12           | 2           | 4           | 8          | 24               | 10                   | 5             | 10             | 11                | 2         | 8              | 3               | 8                  | 7                  | 11                | 9                 | 13                    | 147       |        |
| 5          | Excavator                             | 8            | 2           | 4           | 5          | 14               | 7                    | 5             | 10             | 10                | 1         | 9              | 9               | 7                  | 7                  | 13                | 21                | 14                    | 146       |        |
| 6          | Loader                                | 14           | 2           | 4           | 11         | 13               | 9                    | 7             | 10             | 11                |           | 13             | 2               | 8                  | 5                  | 14                | 8                 | 24                    | 155       |        |
| 7          | Scraper                               |              |             |             |            |                  |                      |               |                |                   |           |                |                 |                    |                    |                   |                   | 1                     | 1         |        |
| 8          | Road Roller                           | 41           | 12          | 26          | 31         | 86               | 40                   | 48            | 57             | 63                | 17        | 65             | 31              | 48                 | 35                 | 35                | 73                | 19                    | 727       |        |
| 9          | Tyre Roller                           | 1            |             |             |            | 2                |                      | 4             | 3              | 4                 |           | 1              | 1               | 1                  |                    | 1                 | 4                 | 8                     | 30        |        |
| 10         | Sheep Foot Roller                     | 1            |             |             |            | 3                | 1                    | 5             |                | 1                 |           |                | 5               |                    |                    |                   | 5                 | 1                     | 22        |        |
| 11         | Vibrating Roller                      | 6            | 2           | 1           | 2          | 16               | 6                    | 6             | 8              | 14                |           | 5              | 4               | 6                  | 8                  | 5                 | 13                | 33                    | 135       |        |
| 12         | Compactor                             |              |             | 2           |            | 7                |                      | 3             | 4              | 5                 |           | 1              | 3               | 1                  |                    |                   | 1                 | 2                     | 29        |        |
| 13         | Crane                                 | 6            | 3           | 1           |            | 11               | 1                    | 5             | 19             | 6                 | 1         | 7              | 19              | 4                  | 1                  | 6                 | 10                | 25                    | 125       |        |
| 14         | Bored Pile Drilling Rig               | 1            | 3           |             |            | 1                | 1                    | 1             | 1              |                   |           | 2              | 5               | 1                  |                    | 2                 | 1                 | 3                     | 22        |        |
| 15         | Vibro Hammer                          | 1            | 1           |             |            | 2                | 1                    | 2             | 2              |                   |           | 3              | 5               | 1                  |                    | 1                 | 1                 | 4                     | 24        |        |
| 16         | Reversed Circulation Drill            |              |             |             |            |                  |                      |               |                |                   |           | 2              | 2               |                    |                    |                   |                   | 2                     | 6         |        |
| 17         | Desander                              |              |             |             |            |                  |                      |               |                |                   |           |                |                 |                    |                    |                   |                   | 4                     | 4         |        |
| 18         | Pile Driving Machine                  |              |             |             |            | 1                |                      |               | 1              | 1                 |           | 2              |                 |                    |                    |                   | 1                 | 19                    | 25        |        |
| 19         | Asphalt Concrete Plant                |              |             |             |            |                  |                      | 3             | 1              |                   |           |                | 4               |                    |                    |                   |                   | 8                     | 16        |        |
| 20         | Asphalt Concrete Paver                |              |             |             |            |                  |                      | 1             |                | 1                 |           |                | 1               |                    |                    |                   |                   | 6                     | 9         |        |
| 21         | Decander                              |              |             |             |            |                  |                      | 5             |                | 1                 |           |                | 2               |                    |                    |                   | 1                 | 2                     | 11        |        |
| 22         | Distributor                           |              |             |             | 1          | 2                | 2                    |               | 2              |                   | 1         | 4              | 2               | 2                  | 1                  | 1                 | 3                 | 10                    | 31        |        |
| 23         | Concrete Batching Plant               |              |             |             |            |                  |                      | 3             | 5              | 6                 |           | 2              | 4               |                    |                    | 2                 | 1                 | 3                     | 26        |        |
| 24         | Concrete Mixer                        | 15           |             |             | 3          | 13               | 2                    | 19            | 20             | 2                 | 1         | 10             | 19              | 1                  |                    |                   | 17                | 29                    | 151       |        |
| 25         | Concrete Cutter                       |              |             |             |            |                  |                      | 3             |                |                   |           |                |                 |                    |                    |                   |                   | 3                     | 6         |        |
| 26         | Concrete Agitator Truck               |              |             |             |            | 1                |                      | 5             | 8              | 9                 |           | 2              | 14              |                    |                    | 4                 | 3                 | 1                     | 47        |        |
| 27         | Concrete Pump and Pump Truck          |              |             |             |            |                  |                      |               |                | 1                 |           |                | 2               |                    |                    |                   |                   | 11                    | 14        |        |
| 28         | Concrete Paver                        |              |             |             |            |                  |                      |               |                | 2                 |           |                |                 |                    |                    |                   |                   | 2                     | 4         |        |
| 29         | Concrete Texturing M/C                |              |             |             |            |                  |                      |               |                | 2                 |           |                |                 |                    |                    |                   |                   | 1                     | 3         |        |
| 30         | Concrete Breaker Gun                  |              |             |             |            | 2                |                      | 1             | 2              |                   |           |                |                 |                    |                    |                   | 1                 | 3                     | 9         |        |
| 31         | Stone Crusher                         | 9            | 1           |             | 3          | 5                | 1                    | 7             | 7              | 4                 | 2         | 7              | 7               | 2                  | 2                  | 3                 | 4                 | 52                    | 116       |        |
| 32         | Rock Drill                            |              |             |             |            | 1                |                      |               | 1              |                   |           |                |                 |                    |                    |                   |                   | 20                    | 22        |        |
| 33         | Screening & Washing M/C               |              |             |             |            |                  |                      | 2             |                |                   |           | 2              | 1               |                    |                    |                   |                   | 1                     | 6         |        |
| 34         | Air Compressor                        | 3            | 2           | 1           | 1          | 4                |                      | 3             | 5              | 7                 |           | 12             | 9               | 6                  | 1                  | 2                 | 2                 | 71                    | 129       |        |
| 35         | Electric Generator                    | 8            | 2           | 2           | 1          | 8                | 1                    | 8             | 18             | 6                 |           | 5              | 16              | 1                  | 2                  | 4                 | 15                | 44                    | 141       |        |
| 36         |                                       | 6            |             |             | 1          | 2                |                      | 3             | 2              |                   | 2         | 1              | 2               |                    |                    | 2                 | 1                 | 25                    | 45        |        |
| 3/         | Stressing Jack                        |              |             |             |            |                  |                      | ~             |                |                   | Z         |                | 0               |                    |                    |                   | 1                 | 3                     | 12        |        |
| 38         | Cement Pump                           |              |             |             |            |                  |                      | 3             |                | 1                 |           |                |                 |                    |                    |                   |                   |                       |           |        |
| 39         | Tipper                                | 72           | <u></u>     | 22          | 15         | 100              | 20                   | 64            | 71             | 66                | 7         | 64             | 27              | 10                 | 47                 | 57                | 62                | 2<br>01               | 4         |        |
| 40         | Truck                                 | 21           |             | 23          | 43         | 22               | 29                   | 15            | 12             | 22                | 6         | 04             | 27              | 40                 | 4/                 | 37                | 12                | 91                    | 908       |        |
| 41         | Water Bowzer                          | <br>         | 4           | 2           | 10         | 23<br>8          | 4                    | 13<br>5       | 12             | 23<br>14          | 1         | 9<br>1         | <br>            | 2                  | 1                  | 7                 | 13                | //<br>8               | 212<br>76 |        |
| 42         | A A A A A A A A A A A A A A A A A A A | 4            |             | 3           | 2          |                  | 4                    | 2             | 5              | 6                 | 1         | 4<br>1         | 4               | 1                  | 2                  |                   | - )<br>- )        | 0                     | 36        |        |
| 45         | Wheel Tractor                         | 7            |             |             | <u> </u>   | 1                |                      | 5             | 4              | 0                 | 1         | 1              | 5               | ···· ·             | 4                  | <u> </u>          | <u> </u>          | 13                    | 33        |        |
| 44         | Transporter                           | /            |             |             |            | 1                | <u> </u>             | 1             | 4              |                   | 1         | 1              |                 |                    |                    |                   |                   | 15                    | 19        |        |
| 43         | Service Truck                         |              |             |             | 2          |                  | <u> </u>             | 1             | 1              |                   |           |                | 2               | 1                  |                    |                   | 1                 | 10                    | 7         |        |
| 40         | Barge                                 |              |             |             | <u>_</u>   | 1                | <u> </u>             | 1             | 6              | 2                 |           | 3              | 10              | 1                  |                    |                   | 9                 | 4                     | 35        |        |
| -+/<br>_/2 | Tug Boat                              |              |             |             |            | 1                | <u> </u>             |               | 2              | ∠                 |           |                | 10              |                    |                    |                   | 2                 | +                     | <br>      |        |
| 40         | 7. Craft                              |              |             |             |            | 1                | <u> </u>             |               | 2              |                   |           | 1              | 1               |                    |                    |                   | 1                 |                       | 2         |        |
| 50         | Anchor Boat                           |              |             |             |            | 1                |                      |               | 1              |                   |           |                |                 |                    |                    |                   | 1                 |                       |           |        |
| 50         | Total                                 | 255          | 42          | 80          | 140        | 407              | 138                  | 269           | 321            | 298               | 42        | 263            | 263             | 180                | 133                | 202               | 303               | 704                   | 4040      |        |
|            |                                       | 255          | -12         | 00          | 1 10       | 107              | 150                  | 207           | 541            | 270               |           | 205            | 200             | 100                | 155                | 202               | 505               | ,0-                   | 1010      |        |

#### Table 3.3 Distribution of Existing Equipment in PW (State and Region)

Source: PW

Detailed equipment list, including model number, capacity, procured year, and maker name, is presented in Appendix 4.

Judging from the number of staff in the Road/Bridge Division and wide variation of equipment owned by PW, it is believed that PW has ample experience and capacity to carry out the appropriate maintenance activities for the completed infrastructures. However, in case of infrastructures built with technology that is new to Myanmar, such as steel cable-stayed bridge and/or steel box girder bridge with steel deck slab, it would be necessary to transfer the maintenance know-how to Myanmar.

Chapter 4

Design Criteria applied to the Project Design

# 4. Design Criteria Applied to the Project Design

In order to carry out the Project design of Bago River Bridge and its approach roads, design criteria shall be established. The current considerations regarding bridge design, road design, and navigation clearance are discussed in the following subchapters.

#### 4.1 Design Criteria for Structural Design

#### 4.1.1 Structural Guidelines

With respect to the structural guidelines, specialized structural design criteria associated with complex bridge types are compiled with the Japanese Standard for Highway Bridge (JSHB-2002) associated with developing preliminary bridge concepts. The only cords related to the application of live loading system are applied from AASHTO standard and other design loads such as earthquake, temperature, and wind are studied and applied or modified with JSHB considering local conditions. The general structural limitations and restrictions for Bago River Bridge such as span length restrictions, typical bridge cross sections, location of abutment, and restrictions on distance to adjacent structures on land or water are individually identified and verified.

#### 4.1.2 Design Criteria

(1) Live Loading System (AASHTO Standard)



Note: V =Variable spacing from 4.267 m to 9.144 m to be used is that which produces maximum stresses Source: JICA Survey Team

#### Figure 4.1 Standard Highway Bridge Loading (HS20-44)

AASHTO standard also specifies the track as a single concentrated load and a uniform load as follows:

- Concentrated Load 8.16 T (104 kN) for Moment
  - 11.80 T (116 kN) for Shear
- Uniform Load 0.95 T/m (9.38 kN)

#### (2) Seismic Design

The Sagaing Fault is seismically active and running as a north-south trending fault extending to the Sagaing Hill. Along the Sagaing Fault, major earthquakes had occurred in the past as shown in Figure 4.1.

| No. | Date          | Epicenter<br>(Lat. N, Long. E)          | Richter<br>Magnitude | Remarks                                               |
|-----|---------------|-----------------------------------------|----------------------|-------------------------------------------------------|
| 1.  | March 6, 1913 | $17^{\circ} \ 00' \ , 96^{\circ} \ 50'$ | 7.0                  | Near Bago                                             |
| 2.  | July 5, 1917  | $17^{\circ} \ 00' \ , 96^{\circ} \ 50'$ | 7.0                  | Near Bago                                             |
| 3.  | May 5, 1930   | $17^{\circ} \ 00' \ , 96^{\circ} \ 50'$ | 7.3                  | Near Bago, 500 people killed in Bago and 50 in Yangon |
| 4.  | Dec. 5, 1930  | $18^{\circ} \ 00' \ , 96^{\circ} \ 50'$ | 7.3                  | Near Pyu                                              |

Table 4.1List of Major Earthquakes near Yangon along the Sagaing Fault

Source: JICA Survey Team

The proposed bridge site, which is located near the south end of the Sagaing Fault, will be affected by earthquakes. Myanmar Geosciences Society (MGS) has prepared the earthquake zoning map of the Yangon area as shown in Figure 4.2 based on the characteristic earthquake of 7.3 Mw on firm rock that occurred on May 5, 1930. According to the zoning map, ground motion near the bridge site is around 0.135~0.145 gal (maximum: 0.15) which is rather lower than a Level-1 earthquake with ground motion of 200 gal (0.20) in JSHB.

Seismic design for this study is carried out using acceleration response spectra for Level-1 earthquake ground motion in JSHB. The verification of Level-1 seismic design is carried out through the seismic coefficient method in Japan. When plastic behaviour of a reinforced concrete column is expected in the seismic design, structure details shall conform with JSHB (Part-V Seismic Design) in order to ensure the plastic deformation performance.

(3) Temperature

Maximum temperature in Yangon was recorded at 37.6 °C and the minimum was 16.6 °C based on the data of Kaba-Aya Observatory Station from 1999 to 2008. Temperature range for design shall be 15 °C to 40 °C with a mean temperature of about 25 °C (temperature rise of 10 °C, temperature fall of 15 °C) for ordinary bridge and from 15 °C to 50 °C with a mean temperature of about 25 °C (temperature rise of 10 °C, temperature fall of 25 °C) for steel plate deck.

(4) Wind

The biggest cyclone Nargis with winds up to 54 m/s swept through the neighbouring bridge location on May 2, 2008. There is a wind record with maximum wind speed of 49 m/s in Yangon, which is almost equal to the scale of the large typhoon in Japan. Therefore, wind load acting on the superstructure can be applied with the cord of JSHB. Design reference wind speed is set as 40 m/s at a height of 10 m in JSHB. If suspension bridge, cable-stayed bridge, and other flexible bridges are applied for the main bridge, more detailed study such as wind tunnel test is necessary to examine the stability due to wind in the detailed design.



Source: Tint Lwin Swe, Earth Sciences and its Applications

Figure 4.2 Earthquake Zoning Map of Yangon Area (Tint Lwin Swe, 2004)

### 4.2 Design Criteria for Road Design

Road design shall be carried out based on the appropriate geometric design criteria for horizontal/vertical alignment design. Also, the geometric design criteria for horizontal/vertical alignments are governed by the design speed. It is understood that Asian Highway and ASEAN Highway are planned to traverse in Myanmar. Table 4.2 shows the extract of ASEAN Highway Standards which is based on the Asian Highway Standards by ESCAP 1995.

| Highway classification      |                         | Primary<br>(co | (4 or more<br>ntrol access | lanes)<br>) | Class I (4 or more lanes)   |             |          |  |
|-----------------------------|-------------------------|----------------|----------------------------|-------------|-----------------------------|-------------|----------|--|
| Terr                        | ain classification      | L              | R                          | М           | L                           | R           | М        |  |
| Desi                        | ign speed (km/h)        | 100-120        | 80-100                     | 60-80       | 80-110                      | 60-80       | 50-70    |  |
| Width                       | Right of way            | (50-           | 70) ((40-60                | ))          | (5                          | 0-70) ((40- | 60))     |  |
| (m)                         | Lane                    |                | 3.75                       |             |                             | 3.50        |          |  |
|                             | Shoulder                | 3.0            | 0                          | 2.50        | 3.0                         | 0           | 2.50     |  |
| Min. horiz                  | contal curve radius (m) | 390            | 230                        | 120         | 220                         | 120         | 80       |  |
| Ty                          | pe of pavement          | Asphalt        | /cement con                | crete       | Aspha                       | oncrete     |          |  |
| Max. s                      | superelevation (%)      |                | (7) ((6))                  |             | (8) ((6))                   |             |          |  |
| Max.                        | vertical grade(%)       | 4              | 5                          | 6           | 5                           | 6           | 7        |  |
| Min. ve                     | ertical clearance (m)   | 4              | 1.50 [5.00]                |             | 4.50 [5.00]                 |             |          |  |
| Structure loading (minimum) |                         |                | HS20-44                    |             | HS20-44                     |             |          |  |
| Highy                       | way classification      | Clas           | s II (2 lane               | s)          | Class III (2 lanes)         |             |          |  |
| Terr                        | ain classification      | L              | R                          | М           | L                           | R           | М        |  |
| Desi                        | ign speed (km/h)        | 80-100         | 60-80                      | 40-60       | 60-80                       | 50-70       | 40-60    |  |
| Width                       | Right of way            | (40-           | 60) ((30-40                | ))          | 30-40                       |             |          |  |
| (m)                         | Lane                    |                | 3.50                       |             |                             | 3.00[3.25]  |          |  |
| 1                           | Shoulder                | 2.5            | 0                          | 2.00        | 1.50                        | [2]         | 1.0[1.5] |  |
| Min. horiz                  | contal curve radius (m) | 200            | 110                        | 50          | 110                         | 75          | 50       |  |
| Ty                          | pe of pavement          | Asphalt        | /cement con                | crete       | Double bituminous treatment |             |          |  |
| Max. s                      | superelevation (%)      |                | (10) ((6))                 |             | (10) ((6))                  |             |          |  |
| Max.                        | vertical grade(%)       | 6              | 7                          | 8           | 6                           | 7           | 8        |  |
| Min. ve                     | ertical clearance (m)   | 4.50           |                            |             | 4.50                        |             |          |  |
| Structure                   | e loading (minimum)     |                | HS20-44                    |             | HS20-44                     |             |          |  |

| Table 4.2 | Extract of | ASEAN | Highway | <b>Standards</b> |
|-----------|------------|-------|---------|------------------|
|           |            |       |         |                  |

Note:

1. Abbreviation: L = Level Terrain M = Mountainous Terrain R = Rolling Terrain

2.() = Rural(()) = Urban

3. [] = Desirable Values

4. The right of way width, lane width, shoulder width and max. superelevation rate in urban or metropolitan area can

be varied if necessary to conform with the member countries design standards.

Source: The Association of Southeast Asian Nations

(http://www.asean.org/communities/asean-economic-community/item/annex-b-asean-highway-standards)

Referring to Table 4.2, it is proposed to apply the "Class I" classification to the Project, with the terrain classification of "L" and the design speed of 80 km/h. The number of carriageway shall be determined by the traffic demand. However, considering the crowded traffic condition of the existing Thanlyin Bridge and the estimated future traffic demand forecasted by relevant studies, it is believed that the application of dual 2-lane bridge would be reasonable.

#### 4.3 Design Navigation Clearance

The design height of the bridge is controlled by the design vessels navigating on the Bago River. According to the obtained information, it is clear that Yangon Port is accessible to vessels of 167 m LOA, 9 m draft, and 15,000 DWT. However, the maximum scale of vessel which may navigate on the Bago River is not known.

According to the Study on Ship Height by Statistical Analysis (November 2006) by the National Institute for Land and Infrastructure Management, Ministry of Land, Infrastructure and Transport, Japan, it was reported that the navigation clearance for cargo vessels of around 15,000 DWT is about 30 m or more, as shown in Table 4.3.

|         | Coverage   |      |      |  |  |  |  |
|---------|------------|------|------|--|--|--|--|
| DWT     | 50%        | 75%  | 95%  |  |  |  |  |
|         | Height (m) |      |      |  |  |  |  |
| 1,000   | 18.8       | 20.9 | 23.9 |  |  |  |  |
| 2,000   | 21.4       | 23.5 | 26.6 |  |  |  |  |
| 3,000   | 22.9       | 25.0 | 28.1 |  |  |  |  |
| 5,000   | 24.8       | 27.0 | 30.0 |  |  |  |  |
| 10,000  | 27.5       | 29.6 | 32.6 |  |  |  |  |
| 12,000  | 28.1       | 30.3 | 33.3 |  |  |  |  |
| 18,000  | 29.7       | 31.8 | 34.9 |  |  |  |  |
| 30,000  | 31.6       | 33.7 | 36.8 |  |  |  |  |
| 40,000  | 32.7       | 34.8 | 37.9 |  |  |  |  |
| 55,000  | 33.9       | 36.0 | 39.1 |  |  |  |  |
| 70,000  | 34.8       | 36.9 | 40.0 |  |  |  |  |
| 90,000  | 35.8       | 37.9 | 40.9 |  |  |  |  |
| 120,000 | 36.8       | 39.0 | 42.0 |  |  |  |  |
| 150,000 | 37.7       | 39.8 | 42.9 |  |  |  |  |

#### Table 4.3Height above Water Level: Cargo Vessel

Where: Number of analyzed cargo vessel is 568. Coverage is the applicable ratio against the population (568).

Source: JICA Survey Team

It is believed that a 15,000 DWT vessel will not navigate through the Bago River. However, considering an emergency case when an out-of-control vessel drifts from the Yangon River to the Bago River under a storm, the proposed height of the new bridge, which may be located near the confluence of the Yangon River and the Bago River, shall have enough vertical clearance.

In case the new bridge location is proposed nearby the existing Thanlyin Bridge, the minimum requirement of navigation clearance shall be the same with that of the existing bridge.

Taking into consideration the above, the design navigation clearance for Bago River Bridge at each alternative route was proposed as shown in Table 4.4.

| Alternative Route                        | Navigation Clearance                   |
|------------------------------------------|----------------------------------------|
| Alternative 1: Monkey Point Route        | 35 m                                   |
| Alternative 2: Bago Point Route          | 35 m                                   |
| Alternative 3: Proximity to the Existing | Same with the existing Thanlyin Bridge |
| Thanlyin Bridge Route                    | (around 10.2 m)                        |

 Table 4.4
 Proposed Navigation Clearance for Each Alternative Route

Source: JICA Survey Team

Chapter 5

Study of Three Alternative Locations for Bago River Bridge

# 5. Study of Three Alternative Locations for Bago River Bridge

As aforementioned, three locations were proposed for Bago River Bridge. In order to select the most appropriate location for the Project, the preliminary design for the bridge and approach roads at each alternative location was carried out in order to compare the advantages and disadvantages between each alternative route.

#### 5.1 Design Conditions for Alternative Study

This alternative study was carried out under the following conditions:

- 1. The objective of preliminary design is as stated in Subchapter 1.2.
- 2. The proposed approach road is to be connected to the existing road.

In Thanlyin side, the existing road linked to the proposed approach road is expected to be improved/upgraded as dual 2-lane road from the link point with approach road up to Thilawa SEZ area.

- 3. Design speed for the bridge and approach roads is 80 km/h. Design criteria follows the ASEAN Highway Standards. However, the maximum vertical grade of i = 4.0% was applied, referring to the Japanese Road Structure Ordinance, taking into consideration the presence of low power vehicles.
- 4. The proposed Bago River Bridge at Alternative 1 (Monkey Point Route) was assumed as a road cum railway bridge. The maximum vertical grade of the railway section is controlled by the design criteria of railways, i.e.,  $i_{max} = 10\%$  (1.0%).
- 5. Assumed navigation clearance of Bago River Bridge was:
  - 35 m for Alternative 1 and Alternative 2
  - The same height (around 10.2 m) as with the existing Thanlyin Bridge for Alternative 3
- 6. The Yangon side route of Alternative 1 and Alternative 2 will traverse the built-up area. In order to minimize the social environmental impacts on the area, there would be several variations in the horizontal alignment as shown in Figure 5.1.

For Alternative 1, Northern Route along Pazundaung Creek and Southern Route along the Yangon River are considered as variations. For Alternative 2, the loop type ramp is considered to minimize the adverse social environmental impacts along Yamonnar Road.

However, for the purpose of this study, simplified alignments as shown in Figure 5.3 were applied as the preliminary design.

7. Typical cross sections applied in this study are given in Figure 5.2. It was judged as appropriate to have dual 2-lane of 3.5 m wide carriageway with inner/outer shoulder. For cost savings purpose, the width of the outer shoulder of the bridge section was reduced to 0.50 m from the 1.50 m of the earthwork section.



Source: JICA Survey Team

#### Figure 5.1 Several Route Arrangements for Alternative 1 and Alternative 2

8. The Preparatory Survey for the Project for Construction of Bago River Bridge scheduled the conduct of the investigation of natural conditions, such as topographic survey and geological survey, after the selection of bridge location. Therefore, the preliminary design for this alternative study was carried out utilizing aerial photography and 3D terrain data provided by Google Earth. It is noted that there is a certain limitation in the accuracy of the ground elevation. It must be understood that the profile alignment design shows only the design concept, and the work quantity calculations related especially to earthwork would not have a significant meaning.



(a) Earthwork Section

(b) Bridge Section

Note: Superstructure type is for illustration purposes only. Source: JICA Survey Team





Source: JICA Survey Team



#### 5.2 Comparison of Three Alternative Locations for Bago River Bridge

#### 5.2.1 Outline of Project Route

The Project consists of approach road + Bago River Bridge + approach road. Since the Project road is proposed as a dual 2-lane road, if the existing road, links to the Project approach road, is a dual 1-lane road, it is expected that the existing road will be improved to a dual 2-lane road under another project.

|                                     | Alternative 1                                       | Alternative 2                                       | Alternative 3 Proximity to the Existing            |  |
|-------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------------|--|
|                                     | Monkey Point Route                                  | Bago Point Route                                    | Thanlyin Bridge Route                              |  |
| Existing road linked to the Project |                                                     |                                                     |                                                    |  |
| Right bank                          | Strand Road                                         | Yamonnar Road                                       | Shukhinthar-Mayopat Road<br>Thanlyin Chin Kat Road |  |
| Left bank                           | Local road running outskirts of<br>Bo Gyoke Village | Local road running outskirts of<br>Bo Gyoke Village | Kyaik Khauk Pagoda Road                            |  |
|                                     |                                                     |                                                     |                                                    |  |
| Total Length                        | 11,330 m                                            | 10,178 m                                            | 2,974 m                                            |  |
|                                     |                                                     |                                                     |                                                    |  |
| Total Project Length                | 7,120 m                                             | 5,968 m                                             | 2,974 m                                            |  |
| Approach Road (Right bank)          | 190 m                                               | 458 m                                               | 419 m                                              |  |
| Bridge                              | 5,650 m                                             | 3,081 m                                             | 1,909 m                                            |  |
| Approach Road (Left bank)           | 1,280 m                                             | 2,429 m                                             | 646 m                                              |  |
|                                     |                                                     |                                                     |                                                    |  |
| Improvement of Existing Road        | 4,210 m                                             | 4,210 m                                             | -                                                  |  |

#### Table 5.1 Project Route Outline of Three Alternatives

Remark: Information of Monkey Point Route gives the road section length of road cum railway bridge.

Source: JICA Survey Team

21

In Alternative 1 and Alternative 2, the improvement of existing road would be required from the link point with the Project approach road up to the outskirts road of Thilawa SEZ.

As it was informed that Kyaik Khauk Pagoda Road will be improved to a dual 2-lane road under Thilawa SEZ Project (northern half by MOC and southern half by Thilawa SEZ Project), the improvement of the existing road is not considered in Alternative 3.

Plan and profile designs of each alternative route for this study are given in Appendix 5.
#### 5.2.2 Land Use Condition along the Project Route

The JICA Survey Team has started the initial inventory survey regarding the land use and assessment of the scale of involuntary resettlement for each of the three alternatives. However, it would not be appropriate to conduct the detailed inventory survey at this stage in order not to give the unnecessary adverse impact on the related communities.

Hence, the following descriptions were not yet confirmed by valid evidence, and may contain wrong information. In case the descriptions are not appropriate, the correct/right information shall be provided to the JICA Survey Team.

| Dequired L and for the Project | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alternative 3 Proximity to the Existing                                                                                                                                                                                                                                                    |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Required Land for the Project  | Monkey Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bago Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thanlyin Bridge Route                                                                                                                                                                                                                                                                      |
| Right Bank of the Bago River   | The project route starts from Strand Road,<br>and crosses over the Navy land. When the<br>southern route is applied, the project route<br>will pass the south of Than Lyet Soon Road,<br>cross over the Ministry of Energy land,<br>YCDC Sewage Treatment Plant area and<br>Navy land. When the northern route is<br>applied, then the project route will pass over<br>the existing railways area, built-up area along<br>Lower Pazundaung Road and jetty area of<br>Navy land.                          | The project route starts from Yamonnar Road<br>and crosses over the Asian Bowling Club, or<br>fringe of Shu Khin Tar Amusement Park. In<br>order to provide the project approach road, it<br>is necessary to widen the existing Yamonnar<br>Road, which has continuous and dense<br>private premises on both sides. In order to<br>minimize the social and environmental<br>impact, it would be possible to deploy the<br>loop type approach road. In case of loop type<br>approach road, it is noted that the length of<br>around 800 m shall be provide in the loop<br>section, due to the high elevation of the Bago<br>River Bridge. | The project route starts from the intersection<br>between Shukhinthar-Mayopat Road and<br>Thanlyin Chin Kat Road. From this starting<br>point to the Bago River, the project road<br>traverses Myanmar Railways land, touching<br>to the existing narrow road beside the PW's<br>compound. |
| Left Bank of the Bago River    | The project route lands on the fringe of Star<br>City land and passes the land of the Ministry<br>of Energy (MOE) or old oil refinery plant<br>area. The land of MOE is large and the<br>southern area seems to be used for<br>cultivation. After traversing MOE land, the<br>project route links to the existing local road.<br>The proposed railways alignment diverts<br>from the road alignment, and traverses MOE<br>land and then Navy land up to the merging<br>point with the existing railways. | The alignment of Alternative 2 is the same as<br>the alignment of Alternative 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The proposed Bago River Bridge and its<br>approach road runs on Myanmar Railways<br>land parallel to the border of private<br>developer's land, having Excel River View<br>Hotel inside, and then links to Kyaik Khauk<br>Pagoda Road.                                                     |

#### Table 5.2 Land Use Condition along the Project Route

Source: JICA Survey Team

22

## 5.2.3 Foreseen Natural/Social Environmental Impact

The following environmental impacts are the outputs of preliminary site reconnaissance and assessment of available aerial photography. Therefore, the descriptions below are neither the final conclusion nor the results of definitive field assessment. Environmental impacts are evaluated by using the following components:

- (1) Social environment: involuntary resettlement (land acquisition, resettlement, etc.), cultural heritage and/or religious sites, fishery activities.
- (2) Natural environment: endangered/valuable plants and animals, protected area, row of trees along the road.
- (3) Environmental pollution: air pollution and noise.

| Item                                                                                            | Alternative 1<br>Monkey Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Alternative 2<br>Bago Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alternative 3 Proximity to the Existing<br>Thanlyin Bridge Route                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Right Bank of the Bago River<br>Administration                                                  | Botahtaung Township, Pazundaung Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Thaketa Township, Dawbon Township                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Thaketa Township                                                                                                                                                                                                                                                                                                                                                       |
| Social Environment<br>a) Involuntary resettlement<br>(land acquisition /<br>resettlement, etc.) | Assuming the elevated approach road to the<br>bridge, ROW for piers should be secured<br>under the road structure. Thus, number of<br>Project Affected Persons (PAPs) is expected<br>from more than 200 to less than 50,<br>depending on the alignment. However,<br>estimation of the number of PAPs is difficult<br>at present because the road alignment is not<br>yet finalized.<br>(1) The route passes the Than Lyet Soon<br>Road and Strand Road<br>The expected number of PAPs is more<br>than 200. In addition, mostly affected<br>land and structures are those of<br>government properties. | Number of PAPs is expected to be more than<br>200 in order to secure the necessary land for<br>ROW of at-grade road along Yamonnar<br>Road. However, estimation of the number of<br>PAPs is difficult at present because the road<br>alignment is not yet clear. Land and<br>structures (plots, commercial buildings,<br>shops, houses, government offices, etc.)<br>belonging to Dawbon Township (southern<br>side of the road) are expected to be more<br>affected. By contrast, those that belong to<br>Thaketa Township (northern side of the road)<br>are expected to be less affected. | Number of PAPs are expected to be less than<br>10 in order to secure the necessary land<br>around the intersection of Thanlyin Chin Kat<br>Road and Shukhinthar Myo Pat Road and<br>along the approach road to the proposed<br>Bago River Bridge. However, estimation of<br>the number of PAPs is difficult at present<br>because the road alignment is not yet clear. |

#### Table 5.3 Foreseen Social and Environmental Impact

23

| Item                                                                 | Alternative 1<br>Monkey Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alternative 2<br>Bago Point Route                                                                                                           | Alternative 3 Proximity to the Existing<br>Thanlyin Bridge Route                                  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                                      | <ul> <li>(2) Southern route: pass along the Yangon<br/>River bank<br/>The alignment passes through<br/>compounds of Navy, Sewage Treatment<br/>Plant, Ministry of Energy and jetty, and<br/>connected to Strand Road. The expected<br/>number of PAPs is less than 50.</li> <li>(3) Northern route: pass along the river bank<br/>of Pazundaung Creek<br/>The alignment crosses the existing<br/>railway line, traverses built-up areas,<br/>and connects to Strand Road. The<br/>number of PAPs is more than 200.</li> </ul> |                                                                                                                                             |                                                                                                   |
| <ul> <li>b) Cultural, heritage and/or<br/>religious sites</li> </ul> | No cultural or heritage sites. One monastery<br>and mosque distributed along Than Lyet<br>Soon Road.                                                                                                                                                                                                                                                                                                                                                                                                                          | No cultural heritage or religious sites.                                                                                                    | No cultural heritage or religious sites.                                                          |
| Natural Environment<br>a) Endangered/valuable<br>plants and animals  | No species are found at present.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No species are found at present.                                                                                                            | No species are found at present.                                                                  |
| b) Row of trees along the roads                                      | Cutting and/or replanting 30 to 100 trees<br>including Indian Almond and Ashok species<br>is required depending on the alignment.                                                                                                                                                                                                                                                                                                                                                                                             | Cutting and/or replanting about 100 trees<br>including Indian Teak, Almond, and Ashok<br>species is required depending on the<br>alignment. | Cutting and/or replanting about 20 trees is required depending on the alignment.                  |
| c) Protected area                                                    | No protected areas such as designated park and natural reserves are found.                                                                                                                                                                                                                                                                                                                                                                                                                                                    | No protected areas such as designated park and natural reserves are found.                                                                  | No protected areas such as designated park and natural reserves are found.                        |
| Environmental pollution<br>a) Air pollution                          | Considerable impact on air quality is<br>expected because the route is located in a<br>densely urban built-up area.                                                                                                                                                                                                                                                                                                                                                                                                           | Some impact on air quality is expected<br>because the route is located in an urban built-<br>up area.                                       | Little impact on air quality is expected<br>because the route is located in a suburban<br>area.   |
| b) Noise pollution                                                   | Considerable impact on ambient noise is<br>expected because the route is located in a<br>densely urban built-up area.                                                                                                                                                                                                                                                                                                                                                                                                         | Some impact on ambient noise is expected<br>because the route is located in an urban built-<br>up area.                                     | Little impact on ambient noise is expected<br>because the route is located in a suburban<br>area. |

| Item                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alternative 1<br>Monkey Point Route                                                              | Alternative 2<br>Bago Point Route                                                                                                                                                                                                                                                               | Alternative 3 Proximity to the Existing<br>Thanlyin Bridge Route                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Left Bank of Bago River<br>Administration                                                                                                                                                                                                                                                                                                                                                                                                      | Left Bank of Bago River<br>Administration Thanlyin Township                                      |                                                                                                                                                                                                                                                                                                 | Thanlyin Township                                                                                 |
| Social Environment<br>a) Involuntary resettlement<br>(land acquisition /<br>resettlement, etc.)Necessary land to secure ROW is mostly<br>distributed in the compound of the Ministry<br>of Energy and in a farmland. Number of<br>PAPs is expected to be less than 50.<br>However, estimation of the number of PAPs<br>is difficult at present because the road<br>alignment is not yet clear.Necessary land to secure ROW is mostly<br>N<br>d |                                                                                                  | Necessary land to secure ROW is mostly<br>distributed in the compound of the Ministry<br>of Energy and in a farmland. Number of<br>PAPs is expected to be less than 50.<br>However, estimation of the number of PAPs<br>is difficult at present because the road<br>alignment is not yet clear. | No PAPs are expected because land for<br>ROW is within the compound of the railway<br>department. |
| b) Cultural, heritage and/or religious sites                                                                                                                                                                                                                                                                                                                                                                                                   | No cultural, heritage or religious sites.                                                        | No cultural heritage or religious sites.                                                                                                                                                                                                                                                        | No cultural heritage or religious sites.                                                          |
| Natural Environment<br>a) Endangered/valuable<br>plants and animals                                                                                                                                                                                                                                                                                                                                                                            | No species are found at present.                                                                 | No species are found at present.                                                                                                                                                                                                                                                                | No species are found at present.                                                                  |
| b) Row of trees along the roads                                                                                                                                                                                                                                                                                                                                                                                                                | Cutting and/or replanting of about 30 trees is required depending on the alignment.              | Cutting and/or replanting of about 30 trees is required depending on the alignment.                                                                                                                                                                                                             | Cutting and/or replanting of about ten trees is required depending on the alignment.              |
| c) Protected area                                                                                                                                                                                                                                                                                                                                                                                                                              | No protected areas such as designated park and natural reserves are found.                       | No protected areas such as designated park and natural reserves are found.                                                                                                                                                                                                                      | No protected areas such as designated park and natural reserves are found.                        |
| Environmental pollution<br>a) Air pollution                                                                                                                                                                                                                                                                                                                                                                                                    | Negligible impact on air quality is expected because the route is located in rural area.         | Negligible impact on air quality is expected because the route is located in rural area.                                                                                                                                                                                                        | Some impact on air quality is expected because the route is located in residential area.          |
| b) Noise pollution                                                                                                                                                                                                                                                                                                                                                                                                                             | Negligible impact on ambient noise is<br>expected because the route is located in rural<br>area. | Negligible impact on ambient noise is<br>expected because the route is located in rural<br>area.                                                                                                                                                                                                | Some impact on ambient noise is expected because the route is located in residential area.        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                                                                                                                                                                                                                                 |                                                                                                   |
| Fishery Activities in the River                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |                                                                                                                                                                                                                                                                                                 |                                                                                                   |
| Fishery activities                                                                                                                                                                                                                                                                                                                                                                                                                             | Impact on fishery activities is expected to be small, but not clear.                             | Impact on fishery activities is expected to be small, but not clear.                                                                                                                                                                                                                            | Impact on fishery activities is expected to be small, but not clear.                              |

Source: JICA Survey Team

#### 5.2.4 Influence on the Adjacent Road Network/Traffic Environment

Along with the development of Thanlyin area/Thilawa area, when Bago River Bridge is completed and starts its operation, almost all traffic between Yangon area and Thanlyin area will use Bago River Bridge. Traffic volume is anticipated to increase, keeping pace with the regional activity and growth. Hence, the implementation of Bago River Bridge will incur serious traffic problem especially in Yangon area if there is no improvement in the existing road and road network, traffic management/control, or improvement of traffic mode and other countermeasures to realize the desirable transport system in Yangon area.

It is understood that, at the moment, YUTRA and SUDP are conducted under Japanese assistance. These projects are aiming to realize the well-balanced future Yangon, avoiding the excessive centralization of every activity in Yangon central area, and providing the appropriate road network and appropriate countermeasures of traffic management, with the provision of medium-/long-term plan proposal.

Therefore, it is believed that the magnitude of contribution or adverse influence of Bago River Bridge over the regional transport environment shall be evaluated in line with the abovementioned two projects' analysis. However, for example, YUTRA is now carrying out the traffic survey to collect the current traffic information. After finishing the data collection/data arrangement and data calibration, YUTRA will start the future traffic demand forecast and future traffic distribution analysis over the planned road network. YUTRA is scheduling these future traffic demand forecast and future traffic analysis in late autumn 2013. At present, it is not possible to address the influence on the adjacent road network/traffic environment by the Bago River Bridge construction in the medium/long term.

The descriptions in Table 5.4 give the anticipated influence of Bago River Bridge implementation over the current traffic environment in the short term.

|                              | Alternative 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Alternative 3 Proximity to the Existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Monkey Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bago Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thanlyin Bridge Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Right Bank of the Bago River | Increased traffic by Bago River Bridge<br>implementation will cause serious traffic<br>problems. Due to the convenience of Bago<br>River Bridge route up to Thilawa area,<br>almost all car drivers intending to move<br>between Yangon area and Thilawa area will<br>use Bago River Bridge. Hence, the traffic<br>volume in Yangon downtown area will<br>increase and generate serious traffic jam.<br>However, heavy vehicles bringing goods<br>into/out of Yangon Port may also use Bago<br>River Bridge, instead of passing through<br>Yangon downtown area. It is judged that this<br>detouring manoeuvre of heavy vehicles in<br>Yangon Port area will relieve the current<br>crowded traffic conditions in Yangon<br>downtown area. Heavy vehicle's freight route<br>is expected as: Yangon Port⇔Bago River<br>Bridge⇔Thanlyin area⇔Dagon Bridge.<br>Although it is a long distance, heavy vehicle<br>drivers may prefer this route due to time<br>saving. It would be also possible to enforce<br>this detour route to heavy vehicles by<br>providing administrative regulations. | From the traffic engineering viewpoint, this<br>Bago Point Route would be the best route if<br>the related road network has ample traffic<br>capacity and traffic management is operated<br>desirably. However, Yamonnar Road, to<br>which Bago River Bridge approach road will<br>link, is already a busy road. It seems<br>Yamonnar Road is now receiving saturated<br>traffic volume. Yamonnar Road has an<br>intersection with Maha Bandula Road - Min<br>Nandar Road. During peak time, this<br>intersection shows serious traffic congestion<br>now. When Bago River Bridge is completed<br>and traffic volume is increased in this area,<br>the traffic conditions would be worsened. In<br>order to avoid such situation, providing an<br>independent road, from Bago River Bridge to<br>Yangon area, would be one of the options.<br>However, this independent road construction<br>will need an additional bridge over<br>Pazundaung Creek, and will result in shifting<br>the traffic congestion into Yangon downtown<br>area. | The Bago River Bridge approach road is<br>proposed to connect with the intersection<br>with Shukhinthar-Mayopat Road and<br>Thanlyin Chin Kat Road. The intersection<br>would be a 5-leg irregular shape. The<br>appropriate traffic control by traffic signal<br>shall be provided in this intersection.<br>Increased traffic by Bago River Bridge<br>implementation will use Shukhinthar-<br>Mayopat Road or Thanlyin Chin Kat Road<br>which links to Ayer Wun Main Road. In<br>between Bago River Bridge and Yangon<br>central area, there is a certain extent of road<br>network. It is anticipated that the increased<br>traffic would be distributed among this road<br>network, and would not cause excessive<br>traffic problems in Yangon central area in a<br>concentrated manner. |

## Table 5.4 Influence on the Adjacent Road Network/Traffic Environment

|                         | Alternative 1<br>Monkey Point Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alternative 2<br>Bago Point Route       | Alternative 3 Proximity to the Existing<br>Thanlyin Bridge Route                                                                                                                                                                                                                                     |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Left Bank of Bago River | As the road network in this area is not<br>developed yet, no serious influence would be<br>incurred over the area. The existing narrow<br>local road shall be upgraded to a dual 2-lane<br>road, in order to connect Bago River Bridge<br>traffic to Thilawa SEZ area. If the local road<br>is upgraded, the dual 2-lane Bago River<br>Bridge and dual 2-lane local road will link to<br>Thilawa SEZ area. It is believed that the<br>traffic condition in this area will be<br>improved. It is essential to provide the traffic<br>safety measures to local communities, as<br>local people may not have enough living<br>experience with high speed vehicle traffic.                                                                                        | Same as the situation in Alternative 1. | As mentioned before, it is expected that<br>Kyaik Khauk Pagoda Road will be upgraded<br>to a dual 2-lane road. Connecting the dual 2-<br>lane Bago River Bridge and dual 2-lane<br>Kyaik Khauk Pagoda Road, it is expected<br>that the traffic condition up to Thilawa SEZ<br>area will be improved. |
| Railways                | Bago River Bridge at Alternative 1 route<br>would be constructed as a road cum railway<br>bridge. The railways will apply a commuter<br>train system. As Thilawa SEZ is forecasting<br>200,000 to 400,000 daytime population, it is<br>judged as an appropriate plan to construct the<br>new railways between Yangon area and<br>Thilawa area. The deployment of railway<br>system will prevent the concentration of<br>vehicle transportation and contribute to the<br>harmonized transport modal development.<br>The construction of new railways shall be<br>justified with its feasibility. However, at this<br>moment, it is not possible to confirm the<br>sound feasibility of railway system. YUTRA<br>will conduct the analysis in autumn this year. | No railways.                            | No railways.                                                                                                                                                                                                                                                                                         |

Source: JICA Survey Team

28

## 5.2.5 Possible Superstructure Type

Possible superstructure types for each alternative route were provided for study purpose as given in Table 5.5. Considering its economical construction cost, the continuous box girder with steel plate deck was adopted for the Alternative 3 route. Elevation plans and typical cross sections of each bridge type are provided in Appendix 6.

| Possible Superstructure Type | Alternative 1<br>Monkey Point Route                                                                                                                                                                                                                                                           | Alternative 2<br>Bago Point Route                                                            | Alternative 3 Proximity to the Existing<br>Thanlyin Bridge Route                                                                  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Road cum Railway Bridge      | Steel Plate Girder Bridge +<br>Double-decked Truss Bridge +<br>Double-decked Cable-stayed Bridge                                                                                                                                                                                              | -                                                                                            | -                                                                                                                                 |
| Road Bridge                  | Case – 1: No structure for railways except<br>the section over the Bago River<br>Steel Plate Girder Bridge +<br>Double-decked Truss Bridge +<br>Double-decked Cable-stayed Bridge<br>Case - 2<br>Steel Plate Girder +<br>Continuous Box Girder with Steel Plate Deck +<br>Cable Stayed Bridge | Steel Plate Girder +<br>Continuous Box Girder with Steel Plate Deck +<br>Cable Stayed Bridge | Continuous Box Girder with Steel Plate Deck<br>or<br>Nielsen Arch Bridge<br>or<br>Extradozed Bridge<br>or<br>PC Box Girder Bridge |

| Table 5.5 | Possible Superstructure Types for Each Alternative Route |
|-----------|----------------------------------------------------------|
|-----------|----------------------------------------------------------|

Source: JICA Survey Team

29

#### 5.2.6 Cost Estimates

This alternative study was prepared based on the preliminary design of bridge and approach roads. Therefore, work quantities were not estimated properly. Further, as the JICA Survey Team is still in the early stages of the survey period in Myanmar, reasonable construction cost inventory was not obtained yet. However, in order to know the project scale in terms of the construction cost, the cost estimates of the main bridge was conducted. Reference was made to unit construction costs in Japan in 2010 and unit construction costs of Hinthata Bridge, as given in Appendix 7.

|                                                                                | Alternative 1<br>Monkey Point Route                                                                                                                                                                                                              | Alternative 2<br>Bago Point Route                                                            | Alternative 3 Proximity to the Existing<br>Thanlyin Bridge Route |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Bridge Length                                                                  | 8,550 m/5,650 m                                                                                                                                                                                                                                  | 3,081 m                                                                                      | 1,909 m                                                          |
| Assumed Bridge Type                                                            |                                                                                                                                                                                                                                                  |                                                                                              |                                                                  |
| Road cum Railway Bridge                                                        | Steel Plate Girder Bridge +                                                                                                                                                                                                                      | -                                                                                            | -                                                                |
|                                                                                | Double-decked Truss Bridge +                                                                                                                                                                                                                     |                                                                                              |                                                                  |
|                                                                                | Double-decked Cable-stayed Bridge                                                                                                                                                                                                                |                                                                                              |                                                                  |
|                                                                                | Case – 1 (No structure for railways except                                                                                                                                                                                                       |                                                                                              |                                                                  |
| Road Bridge                                                                    | the section over the Bago River)<br>Steel Plate Girder Bridge +<br>Double-decked Truss Bridge +<br>Double-decked Cable-stayed Bridge<br>Case - 2<br>Steel Plate Girder +<br>Continuous Box Girder with Steel Plate Deck +<br>Cable Stayed Bridge | Steel Plate Girder +<br>Continuous Box Girder with Steel Plate Deck +<br>Cable Stayed Bridge | Continuous Box Girder with Steel Plate Deck                      |
| Approximate Construction Cost                                                  |                                                                                                                                                                                                                                                  |                                                                                              |                                                                  |
| Road cum Railway Bridge                                                        | JPY 40,010,000,000                                                                                                                                                                                                                               | -                                                                                            | -                                                                |
| Road Bridge                                                                    | Case – 1 JPY 31,500,000,000                                                                                                                                                                                                                      | JPY 18,000,000,000                                                                           | JPY 10,200,000,000                                               |
|                                                                                | Case – 2 JPY 22,000,000,000                                                                                                                                                                                                                      |                                                                                              |                                                                  |
| In addition to the bridge construction cost, the following works are required. |                                                                                                                                                                                                                                                  |                                                                                              |                                                                  |
| Approach roads                                                                 | L = 1,470 m                                                                                                                                                                                                                                      | L = 2,887 m                                                                                  | L = 1,065  m<br>and Improvement of Intersection                  |
| Improvement of existing road                                                   | L = 4,210 m                                                                                                                                                                                                                                      | L = 4,210 m                                                                                  | -                                                                |

| Table 5.6 | Preliminary Cost | Estimates |
|-----------|------------------|-----------|
|-----------|------------------|-----------|

Source: JICA Survey Team

30

#### **Comparison of Alternative Routes from the Transport Planning Point of View** 5.2.7

When comparing alternative routes from purely transport planning point of view, advantages/disadvantages of each route will be described as given in Table 5.7.

Alternative 3 Proximity to the Existing Alternative 1 Alternative 2 Aspect Monkey Point Route Bago Point Route Thanlyin Bridge Route Capacity to Transport Demand Enough (to be examined) Enough (to be examined) Enough (to be examined) Consistent with the network planned by Road Network Shortest distance between Yangon central - Not changed business district (CBD) and Thilawa **SUDP** Consistent with the planned reconstruction of Thaketa Bridge Railway Network Possible new line connecting Yangon New line proposed by SUDP Utilize existing railway system CBD and Thilawa Traffic Congestion May worsen traffic congestion in Yangon - May worsen traffic congestion in Yamonnar Road and adjacent road CBD network Urban Development May hinder waterfront development planned by SUDP

| Table 5.7 | Comparison of | Alternative Routes | from the | Transport | <b>Planning Point</b> | of View |
|-----------|---------------|--------------------|----------|-----------|-----------------------|---------|
|-----------|---------------|--------------------|----------|-----------|-----------------------|---------|

Note: Green - Advantage Red

- Disadvantage

Source: JICA Survey Team

 $\underline{31}$ 

#### 5.3 Other Information Related to the Project

#### 5.3.1 Port Limit

Myanma Port Authority (MPA) defines the "port limit" on the Yangon River, the Bago River, and Pazundaung Creek as shown in Figure 5.4. The downstream area from these port limits is under the jurisdiction of MPA. It is noted that, on the Bago River, the location of the existing Thanlyin Bridge is assigned as the port limit. Hence, the design of Bago River Bridge for Alternative 1/Alternative 2 routes shall follow MPA's design control.



## 5.3.2 Vessel Operating Route at the Existing Thanlyin Bridge Area

The Inland Water Transport (IWT) was informed about the facilities (jetty and dockyard) along the Bago River at the meeting with the JICA Survey Team on July 5, 2013, as follows:

- (a) Dockyard of IWT for small boats (200 ft) upstream of the existing Thanlyin Bridge;
- (b) Jetty for Myanma Five Star Line (MFSL), and
- (c) Jetty for the Navy between the existing Thanlyin Bridge and the Bago River mouth.

Further, IWT specified the vessel operating route under the existing Thanlyin Bridge to the dockyard of IWT as shown in Figure 5.5.



Source: JICA Survey Team

Figure 5.5 Vessel Operating Route at the Existing Thanlyin Bridge Area

In case the Alternative 3 location is selected for Bago River Bridge, the pier arrangement shall be carefully studied taking into consideration the vessel operating route, in consultation with IWT.

## 5.3.3 Comment of Myanma Port Authority

The JICA Survey Team visited MPA on July 5, 2013 to consult on the design controls of Bago River Bridge. Mr. Cho Than Maung, Managing Director of MPA, attended the meeting and gave his comment as given in the scanned copy of the meeting record in Figure 5.6.

| Date & Time                         |                        | 5 <sup>th</sup> July, 2013. 11:30-12:30                               |  |
|-------------------------------------|------------------------|-----------------------------------------------------------------------|--|
| Visit Details                       | Organization           | Myanma Port Authority (MPA)                                           |  |
|                                     | Participants           | Mr. Cho Than Maung (MPA, Managing Director)                           |  |
|                                     |                        | Daw San Phyu Phyu Sue (Public Works)                                  |  |
|                                     | Location of the        | Myanma Port Authority                                                 |  |
|                                     | Meeting                | No.10, Pansodan Street, Yangon                                        |  |
|                                     | TEL                    | 951-391269                                                            |  |
|                                     | E-mail                 | mpamd@mptmail.net.mm                                                  |  |
| Participants from JICA Project Team |                        | Toshio ICHIKAWA, Tomokuni HAYAKAWA, Hiroaki UEYAMA,                   |  |
|                                     |                        | Ryo TANAHASHI (NK), Tomoyuki KONISHI(OC)                              |  |
| Main Topics                         |                        | 1. Navigation Clearance                                               |  |
|                                     |                        | 2. Operating Route by MPA                                             |  |
|                                     |                        | 3. Considerations of Alternatives                                     |  |
| Results of D                        | viscussion (Agreement, | Alternative 1 and 2 is not acceptable by MPA.                         |  |
| Request, Need to be investigated)   |                        | Navigation clearance for 2 <sup>nd</sup> Thanlyin Bridge Plan and New |  |
|                                     |                        | Thaketa Bridge can be same as existing bridge.                        |  |
| Documents                           | Submitted              | •                                                                     |  |
| Obtained                            |                        | •                                                                     |  |

Note: Please fill in the table above in English.

#### Highlights

#### • Navigation Clearance for 2<sup>nd</sup> Thanlyin Bridge Plan

Navigation clearance for Alternative 3 (2<sup>nd</sup> Thanlyin Bridge plan) can be same as existing Thanlyin Bridge.

• Operating Route by MPA

Operating route by MPA is shown in Figure 1. The vessels are operated along the deeper area, and now the Area \*1 which is shallow and prone to deposit sediment has been dredged by MPA to maintain the route. Without the maintenance of work, vessels entering Yangon Port will be very limited.

#### • Considerations of Alternatives (comments by MPA)

The location of Alternative 1 (Monkey Point Plan) is exactly on the operating route by MPA. Hence, it is surely impossible to accept the plan by MPA.

The location of Alternative 2 (Bago Point Plan) is not constrained by the operating route by MPA. But the Bridge at Bago Point surely will affect the river flow and make the current speed less than before, and it causes to deposit more sediment downstream. It is also big problem for the operating route maintenance work. Hence, it is also impossible to accept the plan by MPA. It is required to have detailed hydraulic analysis for feasibility study.

#### • Navigation Clearance along the Operation Route by MPA

Regulation for maximum ship operated by MPA is "167 LOA", "15,000t".

Navigation Clearance is officially required 60m from High Water Level (H.W.L) for the future plan.

#### • Navigation Clearance for New Thaketa Bridge

Pazun Daung Creek is not river, and there is no big vessel crossing the existing Thaketa Bridge. Navigation clearance for New Thaketa Bridge can be same as existing Thaketa Bridge. But it is required to consider the location of piers for safety of small boat operating under the bridge.

#### Comments by MPA

MPA requested that the important decision shall also be reported to MPA beforehand.

Source: JICA Survey Team

#### Figure 5.6 Scanned Copy of Meeting Record with MPA (1/2)



Source: JICA Survey Team

Figure 5.7 Scanned Copy of Meeting Record with MPA (2/2)

As indicated in Figure 5.8, it would be worth to propose the curved bridge alignment over the Bago River in order to avoid traversing just above the vessel operation route.



Source: JICA Survey Team

## Figure 5.8 Proposed Alignment of Curved Bridge at Monkey Point Route

## 5.4 Selection of Bago River Bridge Location

As reported in Subchapter 2.3 (2), a meeting was held on August 6, 2013 at the conference room of the Ministry of Construction, Nay Pyi Taw to present the Study of Three Alternative Locations for Bago River Bridge given in Subchapter 4.2 of this report.

As a conclusion of the meeting, the location of Alternative 3, Proximity to the Existing Thanlyin Bridge Route, was selected for Bago River Bridge.

Chapter 6

Preliminary Design of Bago River Bridge

# 6. Preliminary Design of Bago River Bridge

## 6.1 Alignment Design

The Bago River Bridge at Alternative 3 (Proximity to the Existing Thanlyin Bridge Route) was proposed to run parallel to the existing Thanlyin Bridge at the downstream side due to land availability and desirable connection arrangement to the existing roads. If the straight alignment, parallel to the existing bridge, is applied from the beginning point, the project road will start from Shukhinthar-Mayopat Road nearby the existing intersection, as shown with the red arrow in Figure 6.1. This is not recommended from the viewpoint of traffic safety. It is believed that the project road shall be designed along with the remodelling of the existing intersection as given in the yellow line of Figure 6.1. In the course of the intersection design, it is required to secure the access to the National Races Village.



Source: JICA Survey Team

Figure 6.1 Plan at Yangon Side

The alignment at Thanlyin side is relatively simple. In between the existing Thanlyin Bridge and private development land, the project road will traverse and link to the existing Kyaik Khauk Pagoda Road. Intersections with the existing approach roads to the Thanlyin Bridge would be required.



Source: JICA Survey Team

Figure 6.2 Plan at Thanlyin Side

The vertical grade of the approach road section is 2.50% in the preliminary design. It is noted that a grade steeper than 2.50%, up to 4.00%, is still allowable referring to the design standards.

## 6.2 Study of Superstructure Type

#### 6.2.1 Selection of Superstructure Type

The bridge in this feasibility study is mainly composed of a main bridge and approach bridge on both sides as shown in Figure 6.3. The main bridge maintains the navigational requirement and the approach bridge is a connection to the main bridge from the highway. The types of the main bridge are each evaluated based on the engineering criteria such as span length, navigation requirement, structural stability, constructability, construction cost, maintenance, new technology, and aesthetic point. The key criteria to examine the viability among them are span length, structural stability, and new technology. Other items such as construction cost, constructability, maintenance, aesthetic point, and navigation are also comprehensively examined for the selection of bridge type. Regarding new technology of bridge, the PW strongly requested the JICA Survey Team to add alternative types of bridges with combination of various bridge types such as long-span steel cable bridge and continuous box girder with steel deck plate in the meeting held in the MOC on August 6, 2013.



Source: JICA Survey Team



(1) Main Span

The span of the main bridge is determined as the same span of the existing Thanlyin Bridge in the above meeting held on August 6, 2013 in consideration of the navigational requirements including the adjacent existing bridge and river conditions. The span arrangement is 104 m + 10@112 m + 104 m, with total length of 1,328 m. IWT also proposed that the navigation span used at present should be wider at the existing navigation channel because the river boat pilots use the channel to pass diagonally under the bridge. PW requested the JICA Survey Team to add the alternative bridge type with 224 m span at the navigation channel that may be a new type of bridge and contribute to the development of Myanmar bridge construction.

Six alternative types are comprehensively selected based on the engineering criteria, and requests of PW and IWT, as follows:

- 1) Alternative-A: Continuous Steel Box Girder with Steel Deck
- 2) Alternative-B: Continuous PC Box Girder
- 3) Alternative-C: Nielsen Arch
- 4) Alternative-D: Extradozed Bridge
- 5) Alternative-E: Combination with Steel Cable Stayed and Continuous Steel Box Girder with Steel Deck
- 6) Alternative-F: Combination with Extradozed Bridge and Continuous Steel Box Girder with Steel Deck

Drawings of the alternative bridge (superstructure) types of the main bridge are presented in Appendix 8 (Six (6) Alternative Bridge Types for Superstructure Type Selection).

(2) Approach Bridge

The cross section of the approach bridge is adopted in the outline of the cross section from the main bridge to keep a consistent depth of the main bridge. Therefore, span length of the approach bridge is  $40 \text{ m} \sim 60 \text{ m}$  applied in consideration of girder depth restriction and economical viewpoint. The length of the approach bridge may be different for every superstructure type of the main bridge. The following two bridge types for the approach bridge are selected in matching with the main bridge and new bridge technology in Myanmar.

- 1) Precast Continuous PC Box Girder (Span by Span)
- 2) Steel I-Girder with Precast PC Slab

Drawings of approach bridge (superstructure) types are presented together with the main bridge in Appendix 8 (Drawings of Alternative Bridge Type).

#### 6.2.2 Evaluation Criteria

For the selection of the most appropriate bridge type, the JICA Survey Team has prepared the evaluation criteria as shown in Table 6.1 and Table 6.2, using score (point) ranking to evaluate priority of each category.

| -  |                             |                      |                  |
|----|-----------------------------|----------------------|------------------|
| Ν  | Category                    | Evaluation Criteria  | Maximum<br>Score |
| 0. | Category                    | Evaluation Chiena    | Score            |
|    |                             |                      | (Point)          |
| 1  | Technical Viability (30     | Structural Stability | 20               |
| 2  | points)                     | Constructability     | 10               |
| 3  | Economic Viability (25      | Construction Cost    | 20               |
| 4  | point)                      | Maintenance          | 5                |
| 5  |                             | New Technology       | 20               |
| 6  | Other Wishility (15 points) | Landscape            | 10               |
| 7  | Other viability (45 points) | Navigation           | 10               |
| 8  |                             | Environment          | 5                |
|    |                             | Total Points         | 100              |

 Table 6.1
 Evaluation Criteria of Alternative Study

Source: JICA Survey Team

| 1 able 6.2 coring System for Evaluation of Alternative Bridge 1 y | coring System for Ev | luation of Alternativ | e Bridge Ty | pe |
|-------------------------------------------------------------------|----------------------|-----------------------|-------------|----|
|-------------------------------------------------------------------|----------------------|-----------------------|-------------|----|

| Desc  | ription | Structura<br>1<br>Stability | Construct-<br>ability | Con  | struction Cost   | Maintenance | New<br>Technology | Landscape | Navigation | Environment |
|-------|---------|-----------------------------|-----------------------|------|------------------|-------------|-------------------|-----------|------------|-------------|
| Grade | Rate    | (20)                        | (10)                  | (20) | Ratio            | (5)         | (20)              | (10)      | (10)       | (5)         |
| Good  | 100%    | 20                          | 10                    | 20   | 1.00 ~ 1.10      | 5           | 20                | 10        | 10         | 5           |
| Fair  | 50%     | 10                          | 5                     | 10   | $1.10 \sim 1.20$ | 3           | 10                | 5         | 5          | 3           |
| Poor  | 30%     | 6                           | 3                     | 6    | $1.20 \sim 1.30$ | 2           | 6                 | 3         | 3          | 2           |
| Bad   | 0%      | 0                           | 0                     | 0    | Over 1.30        | 0           | 0                 | 0         | 0          | 0           |

Source: JICA Survey Team

## 6.2.3 Evaluation Results and Recommendation

Evaluation for each alternative bridge type is presented in Table 6.4 to Table 6.9, and the results of the selection are shown in Table 6.3.

Final Report

| Category             |      | Alternative |    |    |    |    |    |  |  |
|----------------------|------|-------------|----|----|----|----|----|--|--|
|                      |      | Α           | В  | С  | D  | Е  | F  |  |  |
| Structural Stability | (20) | 20          | 10 | 10 | 10 | 20 | 10 |  |  |
| Constructability     | (10) | 10          | 5  | 5  | 5  | 5  | 3  |  |  |
| Construction Cost    | (20) | 20          | 6  | 20 | 10 | 6  | 6  |  |  |
| Maintenance          | (5)  | 3           | 3  | 3  | 3  | 3  | 3  |  |  |
| New Technology       | (20) | 6           | 10 | 6  | 10 | 20 | 20 |  |  |
| Landscape            | (10) | 3           | 5  | 3  | 5  | 10 | 10 |  |  |
| Navigation           | (10) | 5           | 5  | 5  | 5  | 10 | 10 |  |  |
| Environment          | (5)  | 5           | 5  | 5  | 5  | 5  | 5  |  |  |
| Total Score          |      | 72          | 49 | 57 | 53 | 79 | 67 |  |  |
| Priority Order       |      | 2           | 6  | 4  | 5  | 1  | 3  |  |  |

Table 6.3Results of Selection of Bridge Type

Note: Figure in ( ) shows the maximum score.

Source: JICA Survey Team

The above table shows the results of bridge type selection among the six alternatives. Alternative-A is the lowest cost type of bridge but Alternative-E has the highest score in the comprehensive engineering assessment considering the preferences of PW, IWT, MPA, and other relative authorities. In consideration of the compilation of new bridge technologies in Myanmar, opinions of river boat pilots, and aesthetic viewpoint, Alternative-E (Combination with Cable-Stayed Bridge and Continuous Steel Box Girder with Steel Plate Deck) is also recommended as the most suitable bridge type.













| Category     | Evaluation Criteria  | Max.<br>Point | Description                                                                                                          | Evalua | tion |
|--------------|----------------------|---------------|----------------------------------------------------------------------------------------------------------------------|--------|------|
| Technical    | Structural Stability | 20            | Extradozed bridge alternated with steel bridges is applied for this span arrangement but not suitable.               | Fair   | 10   |
| Viability    | Constructability     | 10            | Extradozed bridge with long span (224 m) is technically the most difficult option. Construction period is 32 months. | Poor   | 3    |
| Economic     | Construction Cost    | 20            | $\mu$ =1.28 Extradozed bridge is costly because center span of 224 m is out of the economical span (120 m~200 m).    | Poor   | 6    |
| Viability    | Maintenance          | 5             | Periodical maintenance for painting on steel part is required.                                                       | Fair   | 3    |
|              | New Technology       | 20            | Extradozed, precast PC box girder (span by span) and steel box girder with steel deck slab are new technologies.     | Good   | 20   |
| Other        | Landscape            | 10            | Extradozed bridge has excellent view but inferior to cable-stayed bridge as a symbolic structure due to low pylons.  | Good   | 10   |
| Viability    | Navigation           | 10            | Wide navigation clearance is secured when sailing from and toward the adjacent existing Thanlyin Bridge.             | Good   | 10   |
|              | Environment          | 5             | Almost no impact.                                                                                                    | Good   | 5    |
| Evaluation   |                      |               | Not recommended                                                                                                      |        | 67   |
| Source: IICA | Survey Team          |               |                                                                                                                      |        |      |

Source: JICA Survey Tear

### 6.3 Study of Substructure

#### 6.3.1 Study on Foundation Type

The geological investigation conducted at five locations (three locations in the river and two locations on the land). According to the investigation results, it is assumed that the dense sand supporting layer is existing at around  $EL=-40\sim-50$  m.





The study of foundation type is conducted in two patterns, i.e., one in the river and another on the land, as the general condition is greatly different.



Source: JICA Survey Team



a) Foundation In the Bago River

The following is a summary of conditions to be studied for the foundation of the river crossing bridge:

- The maximum water depth for proposed bridge sites is more than 10 m.
- Sufficient attention must be paid to scouring in the vicinity of the foundation.
- The foundation must be able to support a large vertical load.
- The supporting layer will be at relatively deep location (EL -40~-50 m).

Table 6.10 shows the selection table of foundation type (from Japan Road Bridge Specifications).

|       | Applicable Condition          | Foundation Type              | Cast- in-place Concrete Pile | PHC / SC Pile | Steel Pipe Pile  | Diaphragm wall | Steel Pipe Sheet Pile | Caisson     |
|-------|-------------------------------|------------------------------|------------------------------|---------------|------------------|----------------|-----------------------|-------------|
| -     | m tu                          | Depth < 5 m                  | $\triangle$                  | 0             | 0                | $\times$       | 0                     | $\triangle$ |
| ofion | Temporary Jetty               | Depth $> 5 \text{ m}$        | $\triangle$                  | $\triangle$   | 0                | ×              | 0                     | $\triangle$ |
| ion   |                               | Vibration Noise              | 0                            | ×             | ×                | 0              | $\triangle$           | 0           |
| ndit  | Environment                   | Impact on Adjacent Structure | 0                            | ×             | $\triangle$      | 0              | $\triangle$           | $\triangle$ |
| C C   | I                             | Normal                       | 0                            | 0             | 0                | 0              | 0                     | 0           |
|       | Loading                       | Large                        | 0                            | ×             | 0                | 0              | 0                     | 0           |
|       |                               | < 5 m                        | $\bigtriangleup$             | ×             | $\times$         | $\times$       | $\times$              | $\times$    |
| uo    |                               | 5~15 m                       | 0                            | 0             | 0                | $\triangle$    | $\bigtriangleup$      | 0           |
| diti  | Denth of Second entire Larger | 15~25 m                      | 0                            | 0             | 0                | 0              | 0                     | 0           |
| Con   | Depth of Supporting Layer     | 25~40 m                      | 0                            | 0             | 0                | 0              | 0                     | 0           |
| ) pr  |                               | 40~60 m                      | 0                            | $\triangle$   | 0                | 0              | 0                     | 0           |
| ino   |                               | >= 60 m                      | $\bigtriangleup$             | $\times$      | $\bigtriangleup$ | $\triangle$    | $\triangle$           | $\triangle$ |
| ū     | Soil Condition                | Clay (20 =< N)               | 0                            | 0             | 0                | 0              | 0                     | 0           |
|       |                               | Sand/Gravel (30 =< N)        | 0                            | 0             | 0                | 0              | 0                     | 0           |

 Table 6.10
 Applicability Criteria of Foundation Types for Main Bridge

Note:  $\bigcirc$ : Suitable,  $\triangle$ : Possible,  $\times$ : Impossible Source: Japan Bridge Standard

According to the above table, four foundation types (cast-in-place concrete pile, steel pipe pile, steel pipe sheet pile, and caisson) can be applied to the bridge over the river. However, the steel pipe pile will require temporary cofferdam. Thus, steel pipe sheet pile will be cheaper and more reasonable than steel pipe pile. Accordingly, three foundation types (cast-in-place concrete pile, steel pipe sheet pile, and caisson) can be considered as the foundation type of the bridge over the river.

When the foundation is to be constructed more than 10 m deep from the water surface, in accordance with the above conditions, the size of the temporary cofferdam would be large. Therefore, a foundation that allows the use of a temporary cofferdam also for the main part of the bridge or that omits the temporary cofferdam is considered advantageous.

According to the present result of river crossing survey at Thanlyin Bridge in February 2012 and January 2013, maximum 2 m scouring can be seen at the pier location in only a year (see Figure 6.6). Therefore, it is necessary to pay close attention to scouring.



Source: DWIR

Figure 6.6 River Crossing Survey Results at Thanlyin Bridge

Cast-in-place concrete pile will be a multi-pile type since the depth of the water is very deep. Therefore, it is greatly easy to receive influence of scouring.

Table 6.11 shows the foundation type alternatives in the river. In addition, the three piers (P12, P14, and P18) which are representatives in each type of superstructure, a comparison between cast-in-place concrete pile and steel pipe sheet pile was carried out (refer to Table 6.12~Table 6.14).



Photo 6.1 Scouring around Castin-place Pile Foundation

As a result of the comparison mentioned above, steel pipe sheet pile foundation is considered the optimal solution in terms of its applicability to deep-water construction and anti-scouring properties.

As illustrated in Figure 6.7, steel pipe sheet pile foundations can be categorized into three types based on construction method, i.e.: (1) temporary cofferdam-combined method, (2) build-up method, and (3) cofferdam method. Because the temporary cofferdam-combined method is commonly used for general bridges, it was applied to the project site based on economic, construction timeframe, and safety considerations.

In addition, as for the foundation shape, round shape or oval shape will be adopted in consideration of the river flow (refer to Figure 6.8).

Foundation Type

Workability on Water

Against Ship Collision

Against Scouring

Safety of Works

Experience in Myanmar

Cost

Evaluation

Temporary cofferdam is

Superior

Many

Although the construction cost

alternatives, it is inferior for

ship collision and scouring.

"Not Recommendable"

separately required

No new technology

is cheapest among the

Work Period

| ble 6.11 Foundation Ty                                                                                                         | pe Alternatives for the Mai                                                                                                                                                                                              | n Bridge                                                                                                                                                                                                                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Cast-in-place Concrete Pile                                                                                                    | Steel Pipe Sheet Pile                                                                                                                                                                                                    | Concrete Caisson                                                                                                                                                                                                              |  |  |  |
| Water                                                                                                                          | Water                                                                                                                                                                                                                    | Water                                                                                                                                                                                                                         |  |  |  |
| Inferior                                                                                                                       | Superior                                                                                                                                                                                                                 | Moderate                                                                                                                                                                                                                      |  |  |  |
| Temporary cofferdam is                                                                                                         | - Temporary cofferdam is not                                                                                                                                                                                             | - Temporary cofferdam is not                                                                                                                                                                                                  |  |  |  |
| separately required.                                                                                                           | separately required.                                                                                                                                                                                                     | separately required.                                                                                                                                                                                                          |  |  |  |
| Permanent casing is required.                                                                                                  | - Loading test is not required.                                                                                                                                                                                          | <ul> <li>Loading test is not required.</li> </ul>                                                                                                                                                                             |  |  |  |
| Loading test is required.                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |  |  |  |
| Moderate                                                                                                                       | Superior                                                                                                                                                                                                                 | Moderate                                                                                                                                                                                                                      |  |  |  |
| <b>D</b> · · · · · · · · · · ·                                                                                                 |                                                                                                                                                                                                                          | - It takes time for excavation.                                                                                                                                                                                               |  |  |  |
| Driving of many piles takes                                                                                                    | <ul> <li>After driving steel pipe,</li> </ul>                                                                                                                                                                            | - It takes time for excavation.                                                                                                                                                                                               |  |  |  |
| Driving of many piles takes time.                                                                                              | - After driving steel pipe,<br>construction is fast and safe.                                                                                                                                                            | - It takes time for excavation.                                                                                                                                                                                               |  |  |  |
| Driving of many piles takes<br>time.<br>Inferior                                                                               | After driving steel pipe,<br>construction is fast and safe.     Superior                                                                                                                                                 | - It takes time for excavation. Superior                                                                                                                                                                                      |  |  |  |
| Driving of many piles takes<br>time.<br>Inferior<br>Because multi-pile structure.                                              | <ul> <li>After driving steel pipe,<br/>construction is fast and safe.</li> <li>Superior</li> <li>Because rigid and massive</li> </ul>                                                                                    | <ul> <li>It takes time for excavation.</li> <li>Superior</li> <li>Because rigid and massive</li> </ul>                                                                                                                        |  |  |  |
| Driving of many piles takes<br>time.<br>Inferior<br>Because multi-pile structure.                                              | <ul> <li>After driving steel pipe,<br/>construction is fast and safe.</li> <li>Superior</li> <li>Because rigid and massive<br/>structure.</li> </ul>                                                                     | <ul> <li>It takes time for excavation.</li> <li>Superior         <ul> <li>Because rigid and massive structure.</li> </ul> </li> </ul>                                                                                         |  |  |  |
| Driving of many piles takes<br>time.<br>Inferior<br>Because multi-pile structure.<br>Inferior                                  | <ul> <li>After driving steel pipe,<br/>construction is fast and safe.</li> <li>Superior</li> <li>Because rigid and massive<br/>structure.</li> <li>Superior</li> </ul>                                                   | <ul> <li>It takes time for excavation.</li> <li>Superior</li> <li>Because rigid and massive structure.</li> <li>Superior</li> </ul>                                                                                           |  |  |  |
| Driving of many piles takes<br>time.<br>Inferior<br>Because multi-pile structure.<br>Inferior<br>Because multi-pile structure. | <ul> <li>After driving steel pipe,<br/>construction is fast and safe.</li> <li>Superior</li> <li>Because rigid and massive<br/>structure.</li> <li>Superior</li> <li>Because rigid and massive</li> </ul>                | <ul> <li>It takes time for excavation.</li> <li>Superior         <ul> <li>Because rigid and massive structure.</li> <li>Superior             <ul> <li>Because rigid and massive</li> </ul> </li> </ul> </li> </ul>            |  |  |  |
| Driving of many piles takes<br>time.<br>Inferior<br>Because multi-pile structure.<br>Inferior<br>Because multi-pile structure. | <ul> <li>After driving steel pipe,<br/>construction is fast and safe.</li> <li>Superior</li> <li>Because rigid and massive<br/>structure.</li> <li>Superior</li> <li>Because rigid and massive<br/>structure.</li> </ul> | <ul> <li>It takes time for excavation.</li> <li>Superior         <ul> <li>Because rigid and massive structure.</li> <li>Superior             <ul> <li>Because rigid and massive structure.</li> </ul> </li> </ul> </li> </ul> |  |  |  |

Temporary cofferdam is not

Moderate

None

New technology and technical

Although the construction cost

concrete pile, it is superior in

Also, technical transfer will be

experience yet with this type in

"Recommendable"

is inferior to cast-in-place

separately required.

transfer can be done

done since there is no

other aspects.

Myanmar.



Source: JICA Survey Team



Source: Japanese Association for Steel Pipe Piles



Temporary cofferdam is not

Moderate

Some

Although the construction cost

concrete pile, it is superior in

Some aspects are inferior to

"Not Recommendable"

is inferior to cast-in-place

separately required.

No new technology.

steel pipe sheet pile.

some aspects.





Source: JICA Survey Team





Source: JICA Survey Team



# Table 6.14Comparison of Foundation Type In the River<br/>(P18: PC Box Girder Section)

Source: JICA Survey Team

As for the foundation shape, round shape or oval shape will be adopted in consideration of the river flow.

Generally, the smallest shape of steel pile sheet pile foundation is decided by the shape of piers. In case of concrete piers, the distance between the inside of the sheet pile and pier shall be kept more than 1.5 m in consideration of the size of falsework, thickness of inter-filling concrete, working space, and formwork of pier.



Figure 6.8 Possible Shape of Steel Pipe Sheet Pile Foundation

b) Foundations on Land

As for the foundation type on land, piers and abutment are constructed on existing ground surfaces. A multi cast-in-place pile foundation using bored piles will be selected for its easy constructability and procurement of materials/equipment as well as the availability of experience in Myanmar.

Although several construction methods for the cast-in-place pile foundation (e.g., all casing, reverse, earth drilling method, etc.) could be considered, the reverse method using casing pipe, which is widely used in Myanmar, will be adopted.





Source: JICA Survey Team

#### 6.3.2 Adverse Effect of New Bridge Foundation on Existing Bridge Foundation

When the new bridge is constructed in the neighbourhood of the existing bridge, the construction sometimes gives some adverse effects on the existing bridge due to ground movement.

However, it can be judged that the adverse effects to the existing Thanlyin Bridge by the construction of the new bridge will not occur at all since the new bridge is approximately 140 m away from the existing Thanlyin Bridge.

#### 6.3.3 Study on Substructure Type

The substructure would be constructed by reinforced concrete.

As for the substructure shape, round shape or oval shape will be adopted in consideration of the river flow. Besides, the direction of substructure should be the same direction as the river flow.



Substructure Type Alternatives for Main Bridge **Table 6.16** 

Source: JICA Survey Team

#### 6.3.4 Study on Abutment Type

Although few abutment types can be considered, reverse T shape will be applied in consideration of cost and constructability.



#### **Table 6.17 Abutment Type Alternatives**

Source: JICA Survey Team

Chapter 7

Natural Condition Surveys

# 7. Natural Condition Surveys

## 7.1 Topographic Survey

#### 7.1.1 Summary of the Yangon Urban Area

The Yangon urban area is situated between latitudes  $17^{\circ}06'$  N and  $16^{\circ}35'$  N, and between longitudes  $95^{\circ}58'$  E and  $96^{\circ}24'$  E, and is located in the east side of the Aveyarwaddy River delta area. There is a range of mountains and hills about 25-30 m above sea level called the Bago Yoma that stretches from north to south in the central delta. The altitude of the low-lying area is very low and parts of this area often experience flood during the rainy season. A map of Yangon City is shown in Figure 7.1.



Source: Japan International Cooperation Agency (JICA) and Survey Department Ministry of Forestry in the Union of Myanmar, 2004

Figure 7.1 Map of Yangon City
#### 7.1.2 Topographic Survey

The topographic survey commenced on August 29, 2013 and was completed on November 30, 2013.

The topographic survey is divided into the following nine subcomponents:

- 1) Mobilization and demobilization,
- 2) Benchmark installation,
- 3) Control point installation,
- 4) Plane survey by total station,
- 5) Profile leveling survey for road centerline,
- 6) Profile leveling survey for road cross section,
- 7) Profile leveling survey for river axial direction,
- 8) Profile leveling survey for river cross section, and
- 9) Mapping and reporting.

All these surveys were carried out on the Kyak Khauk Pagoda Road for the design of Bago River Bridge including its approach road. The areas where the topographic survey was conducted are shown in Figures 7.2 to 7.7.















Figure 7.5 Area of Profile and Cross Section Survey for Road (2/3)







Figure 7.7 Area of Cross Section Survey for the River

#### 7.1.3 Survey Result



Figure 7.8 shows the result of the plane survey.

Figure 7.8 Plane Survey Result

#### 7.2 Geological Survey

#### 7.2.1 Summary of Geological Condition

The geological condition of the surface in Yangon is divided in three categories, as follows (refer to Figure 7.9):

- Alluvium,
- Irrawaddy formation, and
- Pegu group.

Generally, the Yangon area is covered by alluvium. The Irrawaddy Formation comprises the bedrock along the Bago Yoma, the Arzamigone Sandstone in the north of the Shwedagon Pagoda, and Danyingone Clay in the east of the Arzamigone Sandstone. The Pegu Group comprises the Besapet Alternation, Thadugan Sandstone, and Hlawga Shale distributed in the north of the Yangon area.

(a) Alluvium

#### **Recent Alluvium**

Top soil has been covered with river deposits in recent years, which blankets all over the project area. It has brown to gray, mottled brown, and yellow colors, and the main constituents frequently found are clay and organic matters, which come from decayed plant roots and wood. The formation of these materials is caused by flood action and yields moderate to high water content.

#### Older Alluvium

The older alluvial deposits consist of medium to very dense and poorly graded sand with silt, mainly yellowish brown in color,. In all borehole locations, trace amounts of gravel were found. Moreover, water content is low to moderate in those layers.

(b) Irrawaddy Formation

This formation is composed of yellowish fine sand of the Irrawaddian Group. The outcropping areas can be seen in Danyingone, Arzarnigone, Southern Twin Te, and the left bank of Yangon-Than Hlyn across the Pegu River.

(c) Pegu Group

This formation is mainly composed of sand and shale interbeds. Outcropping areas are found along the anticlinal ridges of the Danyingone and Than Hlyn areas. Most of them are composed of reddish brown oxidized lateritic soil.



Source: Geology of Burma, 1983, Dr. Friedrich Bender

Figure 7.9 Geological Structure

### 7.2.2 Geological Survey

The geological survey commenced on August 29, 2013 and was completed on November 30, 2013.

This survey is divided into five subcomponents:

- 1) Mobilization and demobilization,
- 2) Borehole drilling on land and in the river,
- 3) Standard penetration test (SPT),
- 4) Laboratory test, and
- 5) Reporting.

The locations where the survey was conducted are shown in Figure 7.10.



Source: JICA Survey Team

Figure 7.10 Position of Survey

The contents of the laboratory test are the following:

- Natural moisture content test,
- Specific gravity test,
- Particle size analysis,
- Atterberg limit test,
- Unit weight, and
- Unconfined compression test.

Figure 7.11 shows the soil profile of the Project area based on the boring logs of BH-01 to BH-05 (samples logs are shown in Figures 7.12 to 7.16).



64

Source: JICA Survey Team



| вс         | REH      | OLE N              | io. B      | H-01             |                         |                  |                     | <u>B C</u>                                                                  | RING                    | LOC                       | ]           |                |              |                    |                               |                  |                    | Job N                     | io. 11<br>She        | KYB-2(<br>set No. | 13-01            | I<br>OF 3       | ,             |
|------------|----------|--------------------|------------|------------------|-------------------------|------------------|---------------------|-----------------------------------------------------------------------------|-------------------------|---------------------------|-------------|----------------|--------------|--------------------|-------------------------------|------------------|--------------------|---------------------------|----------------------|-------------------|------------------|-----------------|---------------|
| PR         | OJECT    | NAME               | : <u>s</u> | oil Investiga    | ition for Ba            | 10 River B       | ridge Project       |                                                                             | BORING EQ               | UIPMEN                    | r           | : <u>TOI</u>   | 10 "Di"      |                    | _                             | DA               | TTE                | : <u>F</u> n              | om 12.10             | 20131             | a 18.1           | 0.2013          |               |
| 1.0        | CATIO    | N                  | : <u>T</u> | hanlyin Tov      | vnship, Yan;            | zon Regio        | 1.                  |                                                                             | BORING MI               | THOD                      |             | : <u>Rot</u>   | ary Direc    | t Circulatio       |                               | ENT              |                    |                           |                      |                   |                  |                 | ┥             |
| GI         | OUND     | LEVEL              | . : 4      | .506m            |                         |                  |                     |                                                                             | ORIENTATI               | ON                        |             | : <u>Ver</u>   | tical        |                    | _   _                         |                  | Л                  | A Sti                     | ıdy Te               | am                |                  |                 |               |
| C          | ORDIN    | IATE               | : _        | i 205420 ; N     | 1857575                 |                  | DEPTII :            | 62.00m                                                                      | GROUND W                | ATER LE                   | VEL         | : <u>1.5</u> 0 | )m           |                    | _                             |                  |                    |                           |                      |                   |                  |                 |               |
|            |          |                    |            |                  |                         | ≿≿               |                     |                                                                             |                         | ÷                         | (n) &       | -              | 3            | TANDARD<br>TEST M  | PENETRAT<br>ETHOD ( A         | ION TES<br>SIM ) | т                  |                           | SAM                  | PLING             |                  |                 |               |
|            | 1001     | (m)                | Ű.         |                  |                         | STENC            |                     |                                                                             |                         | TH (I                     | EPTH (      | m) I I 'm      | Ê            | (H                 | CURVEO                        | F BLOW           | •                  |                           | (u)                  |                   |                  |                 |               |
| (m)        | ATION    | 1 GL - (           | CNESS      | RAM              | ß                       | UNE (            | AMAK<br>NAME        | SOIL DESCRIPTION                                                            |                         | & DR                      | IG (DI      | IN DEI         | 1610         | Value<br>s / 30cr  | N                             | Value            |                    | MPLE<br>0. & Vo           | - TO E               | (%)               | (0)              | \$              | Ê             |
| SCALF      | CLEV/    | DEFTH              | THE K      | DIAGE            | COLO                    | KHLA'I<br>(or) C | : TIOS              |                                                                             |                         | DATE                      | DIA         | WATE           | DEPTH        | Elows              | (Blow                         | s/30em)<br>₹0_40 | 50                 | .se<br>Gys                | EFTH                 | N (S              | SCR O            | RQD (           | SCALE         |
| <i>J</i> . | _        | -                  |            |                  |                         | _                |                     |                                                                             |                         | -                         | <u> </u>    | -              | _            | - 0                |                               | 50 40            | 4                  | A 1                       | 0.50                 | -                 |                  | -               | _             |
| 1          |          |                    |            |                  | brown                   |                  | Silty<br>SAND       | brown, moist, fine to medium g<br>SAND, with trace of mica minerals         | grained, Silty          |                           |             |                | 1.00         |                    |                               |                  |                    | A-2                       | 1.00                 |                   |                  | Ę               | 1             |
| 2          | 2.51     | 2.00               | 2.00       |                  |                         |                  |                     | Filled Materials                                                            |                         |                           |             | ¥              | 2.00         |                    |                               |                  |                    | A-3                       | 1.50                 |                   |                  | ŀ               | 2             |
| _          |          | La rentr           | 2100       |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 2.00         | 1730               |                               |                  |                    | P-1                       | 2.45                 |                   |                  | Ē               | -             |
| 3          |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 3.00         |                    |                               |                  |                    | U<br>D T-1                | 3.00                 |                   |                  | ŀ               | 3             |
| 4          |          |                    |            |                  | light                   | Very             | CLAY-I              | Very soft to soft, light gray to g                                          | rray, moist to          |                           |             |                | 4.00         | 0/42               |                               |                  |                    | P-2                       | 3.80<br>4.00         |                   |                  | t               | 4             |
| Ę          |          |                    |            |                  | gray<br>to              | soft<br>to       |                     | wet, low to medium plastic CLA<br>of fine sand                              | Y, with trace           |                           | 5.00        |                | 5.00         | N                  |                               |                  |                    |                           | 4.45                 |                   |                  | ŀ               | _             |
| _          |          |                    |            |                  | gray                    | soft             |                     | GL-(10.010.5)m. line grained.                                               | Siluy SAND              |                           | Ø112        | 1              | 3.00         | 2/30               |                               |                  |                    | P-3                       | 5.45                 |                   |                  | t               | 2             |
| 6          |          |                    |            |                  |                         |                  |                     | layer are observed as interclated lay                                       | yer                     |                           |             |                | 6.00         | I                  |                               |                  |                    | 10<br>10<br>10<br>10<br>2 | 6.00                 |                   |                  | ╞               | 6             |
| 7          |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 7.00         | 1/30               |                               |                  |                    | P-4                       | 6.80<br>7.00         |                   |                  | ŀ               | 7             |
| ]          |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                |              |                    |                               |                  |                    | 6 v-1                     | 7.45                 |                   |                  | F               |               |
| 8          |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 8.00         | 2/30               |                               |                  |                    | Р-5                       | 8.00<br>8.45         |                   |                  | ŀ               | -8            |
| 9          |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 9.00         | 1                  |                               |                  |                    | E roj                     | 9.00                 |                   |                  | F               | 9             |
| 10         |          |                    |            |                  |                         |                  |                     |                                                                             |                         | 12.10.13                  |             |                | 10.00        | 7/20               | L                             |                  |                    |                           | 9.80                 |                   |                  | ł               | 10            |
| -          |          |                    |            |                  |                         |                  |                     |                                                                             |                         | 10.00                     | 1           |                |              | //30               |                               |                  |                    | 12-0                      | 10.45                |                   |                  | Ē               |               |
| 11         | -6.49    | 11.00              | 9.00       |                  |                         |                  |                     |                                                                             |                         | -                         |             |                | 11.00        | 2/30               |                               |                  |                    | P-7                       | 11.00                |                   |                  | ŀ               | 11            |
| 12         |          |                    |            | 202              |                         |                  |                     |                                                                             |                         |                           |             |                | 12.00        | 3/30               |                               |                  |                    | P-8                       | 12.00                |                   |                  | ţ               | 12            |
| 13         |          |                    |            |                  | gray                    | Soft             | Sandy<br>CLAY-I     | Soft to firm, gray, moist to wet, lo<br>plasticity, fine grained, Sandy CLA | w to medium             |                           |             |                | 13.00        |                    |                               |                  |                    |                           | 12.45                |                   |                  | ŀ               | 13            |
| 13         |          |                    |            |                  |                         | tirm             | CL.11-1             | plasterty, the graned, sandy entry                                          |                         |                           |             |                | 13.00        | 5/30               |                               |                  |                    | P-9                       | 13.00                |                   |                  | ľ               |               |
| 14         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 14.00        | 6/30               | •                             |                  |                    | P-10                      | 14.00                |                   |                  | ŀ               | 14            |
| 15         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 15.00        | 5/30               |                               |                  |                    | P-11                      | 15.00                |                   |                  | t               | 15            |
| 3          |          | 16.00              |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                |              | 2/2/2              |                               |                  |                    |                           | 15.45                |                   |                  | F               |               |
| 0          | 11.49    | 16.00              | 5.00       |                  |                         |                  |                     |                                                                             |                         | -                         |             |                | 16.00        | 14/30              | <b> </b>                      |                  |                    | P-12                      | 16.00<br>16.45       |                   |                  | H               | 10            |
| 17         |          |                    |            |                  | gray                    | Medium           | Silty               | Medium dense, gray, moist to wet,                                           | , fine grained,         |                           |             |                | 17.00        | 12/30              | 4                             |                  |                    | P-13                      | 17.00                |                   |                  | F               | 17            |
| 18         |          |                    |            |                  |                         | dense            | SAND                | Silty SAND, with trace of mica mi                                           | neral                   |                           |             |                | 18.00        | 11/20              | 1                             |                  |                    | D-14                      | 17,45                |                   |                  | ŀ               | 18            |
|            |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                |              | 11/30              | I.I.                          |                  |                    | 1-14                      | 18.45                |                   |                  | F               |               |
| 19         | 14.49    | 19.00              | 3.00       |                  |                         |                  |                     |                                                                             |                         | -                         |             |                | 19.00        | 14/30              | 141                           |                  |                    | P-15                      | 19.00<br>19.45       |                   |                  | H               | 19            |
| 20         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 20.00        | 18/30              |                               |                  |                    | P-16                      | 20.00                |                   |                  | Ē               | 20            |
| 21         |          |                    |            |                  | gray                    | l0               | CLAY-II             | nedium plasticity, line grained, Sa                                         | indy CLAY               |                           |             |                | 21.00        | 100                | XL                            |                  |                    | 0.12                      | 20.45<br>21.00       |                   |                  | ŀ               | 21            |
| -          |          |                    |            |                  |                         | very<br>stiff    |                     |                                                                             |                         |                           |             |                |              | 0/30               |                               |                  |                    | E-17                      | 21.45                |                   |                  | F               |               |
| 2 <u>2</u> |          |                    |            | 888 B            |                         |                  |                     |                                                                             |                         |                           |             |                | 22.00        | 5/30               |                               |                  |                    | P-18                      | 22.00                |                   |                  | ÷               | 22            |
| 23         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 23.00        | 4/30               |                               |                  |                    | P-19                      | 23.00                |                   |                  | Ē               | 23            |
| 24         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 24.00        |                    |                               |                  |                    | D. 20                     | 23.45<br>24.00       |                   |                  | ŀ               | 24            |
|            |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                |              | 6/30               | XI.                           |                  |                    | P-20                      | 24.45                |                   |                  | ļ               |               |
| 25         | 20.49    | 25.00              | 6.00       |                  |                         |                  |                     |                                                                             |                         | -                         |             |                | 25.00        | 17/30              |                               |                  |                    | P-21                      | 25.00<br>25.45       |                   |                  | ŀ               | 25            |
| 26         |          |                    |            |                  | gtay                    | Medium           | Clayey              | Medium dense, gray, moist, low p                                            | plasticity, fine        |                           |             |                | 26.00        | 15/30              | 4                             |                  |                    | P-22                      | 26.00                |                   |                  | Ę               | 26            |
| 27         | .22.40   | 27.00              | 2.00       |                  |                         | uctise           | 3/13/0-1            | gramen, Claycy SALND                                                        |                         |                           |             |                | 27 00        |                    |                               |                  |                    |                           | 26.45                |                   |                  | ╞               | <sub>27</sub> |
|            |          | 27.00              | 2.00       |                  |                         |                  |                     |                                                                             |                         | 1                         |             |                |              | 14/30              |                               |                  |                    | 12-23                     | 27.00                |                   |                  | Ľ               |               |
| 28         |          |                    |            |                  | gray                    | Soft<br>to       | CLAY-II             | Soft to very stiff, gray, moist, me<br>plastic CLAY, with trace of silt and | edium to high<br>d mica |                           |             |                | 28.00        | 4/30               | 11                            |                  |                    | P-24                      | 28.00                |                   |                  | ŀ               | 28            |
| 29         |          |                    |            |                  |                         | very<br>still    |                     |                                                                             |                         |                           |             |                | 29.00        | 5/30               |                               |                  |                    | P-25                      | 29.00                |                   |                  | Ŀ               | 29            |
| 10         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 20.00        |                    |                               |                  |                    |                           | 29.45                |                   |                  | ŀ               | 20            |
| 50         |          |                    |            |                  |                         |                  |                     |                                                                             |                         |                           |             |                | 50.00        | 5/30               |                               |                  |                    | P-26                      | 30.00                |                   |                  | È               | 20            |
| 31         | NOT      | ES                 |            |                  |                         |                  |                     | Continue to next sheet<br>Sample key                                        |                         | Pl                        | anner sto.  | ienire         | 31.00        |                    | Discou                        | inuities         |                    |                           |                      |                   |                  |                 | 31            |
|            | Re       | lative den         | sity dese  | ription          | Consis                  | tency descrip    | tion                | Disturbed sample     IN (SPT sample)     IN (Core loss)                     | re sample               | Ferm<br>Very thief        |             | Spocing<br>>   | (mm)<br>2009 | Vorv w             | Term<br>idely spaced          |                  | pacing (m<br>> 200 | n)                        |                      | FUKK              | EN CO            | ۸, LTD          |               |
|            | Relativ  | ve density         | SP1        | N-Value<br>(No.  | Consistent<br>Verse and | y Sp             | N=Value<br>and at 2 | Undisturbed Sample Water sa                                                 | im;ile                  | Thick                     |             | 600 -<br>200   | 2000         | Wid                | ely spaced                    |                  | 600 - 200          | 0                         | FG=Y                 | (Yango            | n Bran<br>www.cn | ;h)<br>h 26662- |               |
|            | Ver<br>I | 0050               | +          | 4 - 10           | Soft                    |                  | 2 - 1               | L Undisturbed Sample RQD (%                                                 | e lem                   | Thin                      |             | 60 -           | 200          | Clas               | ely spaced                    |                  | 60 - 200           | ╡╏                        | e exer<br>Revision - | MRT - 89/80-      | reservan<br>Rev  | dant son<br>(0) | -             |
|            | Media    | im deuse<br>ien se | 3          | 0 - 30<br>0 - 50 | Firm<br>Stiff           |                  | 5 = 8<br>4 = 15     | Ruck core sample<br>(Single core tube) 25 - 50                              | Poor '                  | Very thir<br>Thickly lami | n<br>nateci | 20 -           | 60<br>20     | Very d<br>Extramel | onely spaced<br>y closely spa | ced              | 20 - 60<br>< 20    |                           | Revision D           | aw                | 29.1             | 0 2013          |               |
|            | Ver      | y dense            | 6          | iver 50          | Very stiff<br>Hard      |                  | 6 - 30<br>wer.30    | Ruck core sample<br>(Double core tube) 75 - 90                              | Fair<br>Good            | Thinly lamin              | ated        | <              | 6            | Remarks            |                               |                  |                    |                           |                      |                   | _                |                 | וך            |
|            |          |                    |            |                  |                         |                  |                     | 90 - 10                                                                     | 0 Excellent             |                           |             |                |              |                    |                               |                  |                    |                           |                      |                   |                  |                 |               |

Figure 7.12 Boring Log (BH-01) 1/3

| во         | RE H            | OLE N           | 0. <b>B</b>       | H-01                                                                                                                                                                                                                                                                                                                                                |                    |                |                   | <u>B (</u>                                                                                                   | RING           | LOG                      | <u>i</u>   |                   |            |                    |                        |                     |                |                     | Job N           | lo. F.<br>Sh   | KYB-20<br>cet No.  | 13-02             | 1<br>OF 3      | -          |
|------------|-----------------|-----------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------------|--------------------------------------------------------------------------------------------------------------|----------------|--------------------------|------------|-------------------|------------|--------------------|------------------------|---------------------|----------------|---------------------|-----------------|----------------|--------------------|-------------------|----------------|------------|
| PF         | OJECT           | NAME            | : <u>S</u>        | oil Investiga                                                                                                                                                                                                                                                                                                                                       | ation for Bag      | go River B     | ridge Project     |                                                                                                              | BORING EQU     | IPMENT                   |            | : <u>TOF</u>      | 10 "D1"    |                    |                        |                     | DAT            | Ŀ                   | : <u>F</u> re   | om 12.10       | .2013 J            | 18.1              | 0.2013         | -          |
| ro         | CATIO           | N               | : <u>n</u>        | anlyin Toy                                                                                                                                                                                                                                                                                                                                          | vuship, Yauj       | zon Regio      | 1.                |                                                                                                              | BORING ME      | THOD                     |            | : <u>Rot</u>      | ry Direc   | Circula            | tion                   | CLIE                | ٧T             |                     |                 |                |                    |                   |                | ٦          |
| G          | NOUND           | LEVEL           | . : <u>4.</u><br> | 506m                                                                                                                                                                                                                                                                                                                                                | - 1007070          |                | DEPTH             | 43.00m                                                                                                       | ORIENTATIO     | N TER LET                | UTIT       | : <u>Vert</u>     | ical       |                    |                        |                     |                | JIC                 | A Sti           | dy Tc          | am                 |                   |                |            |
|            | ЛОКІЛІЧ         | oa ne           | : _1;             | 2054201;1                                                                                                                                                                                                                                                                                                                                           | 1637373            |                | DOPTO :           | 02.000                                                                                                       | GROUND W       | так сс                   | v1a.       | : <u>1.3</u>      | an s       |                    | D PENI                 | TPATIC              | NTEST          |                     |                 |                |                    |                   |                | _          |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    | SHY<br>KCY     |                   |                                                                                                              |                | Ē                        | \$ (m) F   | (iii)             |            | TEST               | METHO                  | D ( AST             | M )            |                     |                 | \$AM           | PLING              |                   | _              |            |
| ~          | ON (III)        | E               | (m) SS            |                                                                                                                                                                                                                                                                                                                                                     |                    | E DHN<br>SISTE | 륏                 | SOIL DESCRIPTION                                                                                             |                | HT410                    | DEP D      | HLLL              | (0)-       | eng.               | CU                     | RVE OF I            | BLOW           | •                   | E (P            | (III) - \      |                    |                   |                | _          |
| ALF (m     | ITATI           | TH GL           | KKNI-             | (GRA)                                                                                                                                                                                                                                                                                                                                               | LOUR               | VIIV           | F NY              |                                                                                                              |                | TFL&T                    | NAME (     | THR U             | mer        | N-Valu<br>ows / 31 |                        | N-V:<br>(Blows)     | aluo<br>(30em) |                     | SAMPI<br>Syne & | TH GL          | (0;6) ł            | ( (%)             | (%) L          | ALE (m     |
| 3          | 3               | RO              | EI.               | ΠC                                                                                                                                                                                                                                                                                                                                                  | 8                  | RE<br>(0       | ĝ                 |                                                                                                              |                | DA                       | 2          | W/                | DE         | ē,                 | ) 10                   | 20 3                | 0 40           | 50                  |                 | DEI            | D.I.               | 8                 | RQ             | ŝ          |
| 31         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                | 14.10.13                 |            |                   | 31.00      | 7/20               |                        |                     |                |                     | P-27            | 31.00          |                    |                   | ŀ              | 31         |
| -          |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     | gray               | Soft           | CLAY-II           | Soft to very stiff, gray, moist, m                                                                           | edium to high  | 31.00                    |            |                   |            | 150                | T                      |                     |                |                     | 1-27            | 31.45          |                    |                   | E              |            |
| 32         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    | to<br>very     |                   | plastic CLAY, with trace of silt an                                                                          | d mica         |                          |            |                   | 32.00      | 6/30               | •                      |                     |                |                     | P-28            | 32.00<br>32.45 |                    |                   | Ē              | 32         |
| 33         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    | stiff          |                   |                                                                                                              |                |                          |            |                   | 33.00      | 5/30               | 4                      |                     |                |                     | P-29            | 33.00          |                    |                   | F              | 33         |
| 34         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 34.00      | 7/30               | I                      |                     |                |                     | P-30            | 34.00          |                    |                   |                | 34         |
| 35         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 35.00      |                    | T                      |                     |                |                     |                 | 34.45          |                    |                   | ŀ              | 35         |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   |            | 7/30               | 1                      |                     |                |                     | P-31            | 35.45          |                    |                   | F              |            |
| 3 <u>6</u> |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 36.00      | 5/30               | •                      |                     |                |                     | P-32            | 36.00<br>36.45 |                    |                   | ŀ              | 36         |
| 37         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 37.00      | 6/30               | 4                      |                     |                |                     | P-33            | 37.00          |                    |                   | Ē              | 37         |
| 38         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 38.00      | 6/20               |                        |                     |                |                     | P-34            | 37.45<br>38.00 |                    |                   | ŀ              | 38         |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   |            | 0/30               | T                      |                     |                |                     | 1.34            | 38,45          |                    |                   | E              |            |
| 39         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | .39.00     | 7/30               | 1                      |                     |                |                     | P-35            | 39.00<br>39.45 |                    |                   | ľ              | 39         |
| 4 <u>0</u> |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 40.00      | 9/30               | ¥                      |                     |                |                     | Р-36            | 40.00          |                    |                   | ŀ              | 40         |
| 41         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 41.00      | 7/30               |                        |                     |                |                     | P-37            | 41.00          |                    |                   | Ŀ              | 41         |
| 42         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                | 15 10 13                 |            |                   | 42.00      | 7/20               |                        |                     |                |                     | D 30            | 41.45<br>42.00 |                    |                   | ŀ.             | 42         |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                | 42.00                    | 1          |                   |            | //30               | 1                      |                     |                |                     | 1-20            | 42.45          |                    |                   | F              |            |
| 43         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 43.00      | 6/30               | •                      |                     |                |                     | P-39            | 43.00<br>43.45 |                    |                   | ŕ              | 43         |
| 44         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 44.00      | 9/30               | ¥                      |                     |                |                     | P-40            | 44.00          |                    |                   | F              | 44         |
| 45         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 45.00      | 7/30               | 1                      |                     |                |                     | P-41            | 45.00          |                    |                   | Ļ              | 45         |
| 46         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 46.00      |                    | $\uparrow$             | $\downarrow$        |                |                     |                 | 45.45<br>46.00 |                    |                   | Ł              | 46         |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   |            | 28/30              |                        | $\mathbf{r}$        |                |                     | P-42            | 46.45          |                    |                   | F              |            |
| 47         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 47.00      | 9/30               | 1                      |                     |                |                     | P-43            | 47.00<br>47.45 |                    |                   | ľ              | 47         |
| 48         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 48.00      | 15/30              |                        | ,                   |                |                     | P-44            | 48.00          |                    |                   | 4              | 48         |
| 49         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 49.00      | 12/30              | Ľ                      |                     |                |                     | P-45            | 49.00          |                    |                   | Ŀ              | 49         |
| 50         | 45 49           | 50.00           | 23.00             |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                | 16 10 13                 |            |                   | 50.00      |                    | ľ                      |                     |                |                     |                 | 49.45          |                    |                   | F.             | 50         |
| Ĩ          |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                | 50.00                    |            |                   |            | 8/30               | ٦                      |                     |                |                     | P-40            | 50.45          |                    |                   | F              |            |
| 51         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     | gray               | Firm<br>to     | Sandy<br>CLAY-II  | Firm to very stiff, gray, moist, le<br>plastic Sandy CLAY                                                    | w to medium    |                          |            |                   | 51.00      | 13/30              | ł                      |                     |                |                     | P-47            | 51.00<br>51.45 |                    |                   | ŀ              | 51         |
| 52         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    | very<br>stiff  |                   | The grained size of sand is fine gr                                                                          | uined          |                          |            |                   | 52.00      | 16/30              |                        |                     |                |                     | P-48            | 52.00          |                    |                   | F              | <u>5</u> 2 |
| 53         |                 |                 |                   | на, на на селото на<br>Селото на селото на с<br>Селото на селото на с |                    |                |                   | GL-(56.056.5)m; gray, high pl                                                                                | asticity, Clay |                          |            |                   | 53.00      | 13/30              | 1                      |                     |                |                     | P-49            | 53.00          |                    |                   | Ŀ              | 53         |
| 54         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   | layer is observed as interclated lay                                                                         | er             |                          |            |                   | 54.00      |                    |                        | $\langle   \rangle$ |                |                     | D 50            | 53.45<br>54.00 |                    |                   | Ŀ              | 54         |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   |            | 22/30              |                        |                     |                |                     | P-50            | 54,45          |                    |                   | F              |            |
| 55         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 55.00      | 30/30              |                        | $\mathcal{V}$       |                |                     | P-51            | 55.00<br>55.45 |                    |                   | E              | 25         |
| 56         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 56.00      | 11/30              | K                      | 11                  |                |                     | P-52            | 56.00          |                    |                   | É              | 56         |
| 57         | -52,49          | 57.00           | 7.00              |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 57.00      | 50/16              |                        |                     | -              | 4                   | P-53            | 57.00          |                    |                   | ļ              | 57         |
| 58         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     | light              | Very           | Clayey            | Very dense, light yellow to y                                                                                | lowish gray,   |                          |            |                   | 58.00      | 50/20              |                        |                     |                |                     | D-54            | 58.00          |                    |                   | -              | 58         |
|            |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     | yellow<br>to       | dense          | SAND-II           | moist, low plasticity, line gri<br>SAND                                                                      | uned, Clayey   |                          |            |                   | -          | 50/30              |                        |                     |                | Ĩ                   | r-54            | 58.45          |                    |                   | Ē              | ]          |
| 59         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     | ycllowish<br>gray  |                |                   |                                                                                                              |                | 17.10.13<br>59.00        |            |                   | 59.00      | 50/25              |                        |                     |                | •                   | P-55            | 59.00<br>59.40 |                    |                   | ľ              | 29         |
| 60         |                 |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   |                                                                                                              |                |                          |            |                   | 60.00      | 50/20              |                        |                     |                | •                   | P-56            | 60.00          |                    |                   | 4              | <u>6</u> 0 |
| 61         | Nor             |                 |                   |                                                                                                                                                                                                                                                                                                                                                     |                    |                |                   | Continue to next sheet                                                                                       |                |                          |            |                   | 61.00      |                    |                        |                     |                |                     |                 |                |                    |                   |                | 61         |
|            | Re <sup>T</sup> | atrve den:      | sity desci        | iption                                                                                                                                                                                                                                                                                                                                              | Consist            | tency descrip  | stion             | Sample key                                                                                                   | re sample      | <u>Ph</u><br>Jenn        | inner stru | seture<br>Spacing | (mm)       |                    | Term                   | Jiscontin           | untics<br>Sp   | ocing (me           | n)              |                | FUKKE              | N CO              | L, LTD.        | ٦l         |
|            | Relativ         | e density       | SPI               | N-Value<br>Impg                                                                                                                                                                                                                                                                                                                                     | Consistenc         | y SP           | N-Value<br>and    | (SPT sample)     (Core la     (Core la     (Core la     (T-, Undisturbed Sample, Waters     (Piston sampler) | am;ile         | very thick<br>Thick      | $\pm$      | > 600 -           | 2009       | Ver                | y widely<br>Videly sp  | spaced<br>acod      | 66             | > 200<br>00 - 200   | 0               |                | Consult<br>(Yangor | ng Eng<br>Branc   | jineers<br>;h) |            |
|            | Ver<br>L        | y loose<br>oose |                   | 9 - 4<br>4 - 10                                                                                                                                                                                                                                                                                                                                     | Very soft<br>Soft  |                | inder 2<br>2 - 1  | Undisturbed Sample RQD (9                                                                                    | a tem          | Medium<br>Thin           |            | 200 -<br>60 -     | 600<br>200 |                    | ledium sp<br>lusely sp | aced<br>aced        | 20             | 0 - 600<br>60 - 200 | ╡╠              | Creation N     |                    | esperant<br>Retri | derim.         | -          |
|            | Media<br>D      | en dense        | 3                 | 0 - 50                                                                                                                                                                                                                                                                                                                                              | Firm               |                | 5 - 8             | Rock core sample<br>(Single core tube)                                                                       | Peor II        | very thin<br>ickly lamin | ated       | 20 - 6 -          | 00<br>20   | Ver<br>Extra       | y closely<br>nely clos | spaced<br>ely space | d              | 20 • 60<br>< 20     |                 | Revision D     | late               | 29.1              | 0.2013         | 비          |
|            | Veŋ             | , dense         | 0                 | ver 50                                                                                                                                                                                                                                                                                                                                              | Very still<br>Hard | - 1            | 9 - 30<br>iver 30 | Rock core sample<br>(Double core tube)<br>50 - 75<br>75 - 90                                                 | Fair F<br>Geod | unty famine              | 1000       | < 1               |            | Remar              | ks                     |                     |                |                     |                 |                |                    |                   |                | 1          |

Figure 7.13 Boring Log (BH-01) 2/3

| в          | RE H      | OLE N              | o. B         | H-01                 |                   |              |                   | <u>B (</u>                                                                | RING           | LOG                       | 1       |                   |              |                   |                           |                    |           |                    | Job N          | io. Fr<br>Shi         | KYB-2<br>cet No.   | 913-02                         | 1<br>OF                  | 3        |
|------------|-----------|--------------------|--------------|----------------------|-------------------|--------------|-------------------|---------------------------------------------------------------------------|----------------|---------------------------|---------|-------------------|--------------|-------------------|---------------------------|--------------------|-----------|--------------------|----------------|-----------------------|--------------------|--------------------------------|--------------------------|----------|
| Pł         | OJECT     | NAME               | : <u>S</u> e | il <b>In</b> vestiga | tion for Bas      | zo River B   | ridge Project     |                                                                           | BORING EQ      | UIPMENT                   |         | : <u>TOH</u>      | IO "D1"      |                   | _                         |                    | DATI      | Ŀ                  | : <u>Fr</u>    | om 12.10              | 2013               | to 18.1                        | .0.201                   | 3        |
| LO         | CATIO     | N                  | : <u>T</u> ł | anlyin Tov           | vuship, Yau;      | 20n Regio    | n.                |                                                                           | BORING ME      | THOD                      |         | : <u>Rota</u>     | iry Direc    | t Circulation     | <u> </u>                  | CLIENT             |           |                    |                |                       |                    |                                |                          | _        |
| G          | ROUND     | LEVEL              | · : <u>4</u> | 506m                 | - 1057575         |              | DERTU             | 61.00m                                                                    | ORIENTATI      | DN<br>ATER LEY            | 171     | : <u>Vert</u>     | ical         |                   | -                         |                    |           | Л                  | CA Sn          | ıdy Te                | am                 |                                |                          |          |
|            | KORDIP    | ATI:               | : 1          | 205420 ( P           | 185/3/5           |              | DEPTH :           | 62.00m                                                                    | GROUND W       | ATBR 551                  | VIL     | : 1.30            | im .         | TANDARD           |                           | DATION             | TEST      |                    |                |                       |                    |                                |                          | _        |
|            |           |                    |              |                      |                   | ALC A        |                   |                                                                           |                | Ē                         | 4 (m) & | (ui)              |              | TESI M            | eutop                     | LCAS IM            | )         |                    | <del></del>    | SAM                   | PLING              |                                |                          |          |
|            | (m) AC    | (m) - (            | (m) SS       | -                    |                   | E DEN        | 井                 | SOIL DESCRIPTION                                                          |                | нтал                      | DEP 13  | HL LA             | (11)         | (iii)             | CURV                      | E OF BL            | OW.       | •                  | E P            | (m)                   |                    |                                |                          | -        |
| MLP. (IN   | IVATD     | TIH GE             | ICKNI        | (CRA)                | LOUR              | LATIV<br>CON | T NV              |                                                                           |                | TL&T                      | SING (  | ULER D            | PTIC GI      | N-Valu<br>ows / 3 | Û                         | N•Valu<br>Blows/30 | e<br>Kem) |                    | SAMPI<br>Jpe & | TH GI                 | t (55)             | ¥ (22)                         | D (%)                    | ALE (no  |
| SC.        | BLI       | RO                 | ш.           | ĉ                    | 8                 | 4 °          | ŝ                 |                                                                           |                | <sup>2</sup>              | 5_      | w/                | DE           | Ξ O               | 10 2                      | 0 30               | 40        | 50                 |                | DE                    | .) I.              | 55                             | 5                        | SC.      |
| 61         |           |                    |              |                      | light<br>yellow   | Very         | Clayey            | Very dense, light yellow to ye                                            | ellowish gray, |                           |         |                   | 61.00        | 50/16             |                           |                    |           |                    | P-57           | 61.00                 |                    |                                |                          | 61       |
|            |           |                    |              |                      | to<br>yellowish   | dense        | SAND-II           | moist, low plasticity, line gra<br>SAND                                   | sined, Clayey  |                           |         |                   | -            | 50/10             |                           |                    |           | Ĭ                  | 1.57           | 61.31                 |                    |                                |                          | F.       |
| 62         | -57.83    | 62.34              | 5.34         |                      | gray              |              |                   |                                                                           |                | 62.00                     |         |                   | 62.00        | 50/19             |                           |                    |           | •                  | P-58           | 62.00<br>62.34        |                    |                                |                          | 62       |
| 6 <u>3</u> |           |                    |              |                      |                   |              |                   | This borehole is terminated a<br>after confirmation.                      | u 62.00m,      |                           |         |                   | 63.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 63       |
| 64         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | <br>64.00    |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 64       |
| 65         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 65       |
| -          |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | -            |                   |                           |                    |           |                    |                |                       |                    |                                |                          | F        |
| 6 <u>6</u> |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 66.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 66       |
| 67         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 67.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 67       |
| 68         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 68.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 68       |
| 60         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 69.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 60       |
|            |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | -            |                   |                           |                    |           |                    |                |                       |                    |                                |                          | Ē        |
| 70         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 70.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 70       |
| 71         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 71.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 71       |
| 72         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 72.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 72       |
| 73         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | -        |
| 9          |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | Ē        |
| 7 <u>4</u> |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 74.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 74       |
| 75         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 75.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 75       |
| 76         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 76.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 76       |
| 77         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | L        |
|            |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 77.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | Ę        |
| 78         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 78.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 78       |
| 79         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 79.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 79       |
| 80         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | -<br>80.00   |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 80       |
|            |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | F.,      |
| - CI       |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | Ē        |
| 82         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 82.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 82       |
| 83         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 83.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 83       |
| 84         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 84.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 84       |
| 85         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 85.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | -        |
|            |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   |              |                   |                           |                    |           |                    |                |                       |                    |                                |                          | -        |
| 86         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 86.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 86       |
| 87         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 87.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 87       |
| 88         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 88.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 88       |
|            |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 20.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | -<br>len |
|            |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 67.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          |          |
| 90         |           |                    |              |                      |                   |              |                   |                                                                           |                |                           |         |                   | 90.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 20       |
| 91         | NOT       | rs.                |              |                      |                   |              |                   | 0                                                                         |                |                           |         |                   | 91.00        |                   |                           |                    |           |                    |                |                       |                    |                                |                          | 91       |
|            | Re        | lative den         | sity deser   | iption               | Consist           | teney descri | ption             | Disturbed sample     Disturbed sample     ASPT surrols                    | re sample      | Term<br>Verwiki 2         | ana sul | Specing           | (mm)<br>2000 | Vous              | Loin<br>Form<br>whetherer | aval               | Spe       | cing (m            | m)             |                       | FUKK               | EN CO                          | )., LTI                  | 5.       |
|            | Relation  | ve density         | SPI          | N-Value<br>(num      | Consistenc        | y SP         | l'N+Value         | Undisturbed Simple Water st                                               | umple          | Thick                     | $\pm$   | ><br>600 -<br>200 | 2000         | Witk              | ily space                 | ed<br>ed           | 60        | - 200<br>10 - 200  |                |                       | Consul<br>(Yango   | ting En<br>in Bran<br>Mizzo s. | gineer<br>ch)<br>/ :4352 | 5        |
|            | I I       | 0080               |              | 7 = -1<br>4 - 10     | very soft<br>Soft |              | ander 2<br>2 - 1  | D-1 Undisturbed Semple RQD (%                                             | i) Ierm        | Thin                      |         | 200 -<br>60 -     | 200          | Close             | a n spac<br>sly space     | ed .               | 2(*       | v - 600<br>0 - 200 | <u></u> ∐¦     | e con s<br>Receivan N | ••••> 1,991<br>10. | Rev                            | - 01                     | 4        |
|            | Media<br> | nti dense<br>lense | 34           | ) - 30<br>) - 50     | Firm              |              | 0 - 8<br>9 - 15   | Rock core sample<br>(Single core tube)                                    | Pour           | very thin<br>hickly lamin | ated    | 20 -<br>6 -       | 20           | Extremely         | osery sp<br>r closely     | spaced<br>spaced   | 2         | e = 60             | <u> </u>       | Rentsion D            | lak.               | 29-1                           | 0.2013                   |          |
|            | L ver     | y excitse          | 0            | rer 34               | Filand            |              | o + 30<br>aver 30 | (Double core tube)<br>(Double core tube)<br>30 - 75<br>75 - 90<br>30 - 75 | Good           | amory families            | 000     | < (               | a            | Remarks           |                           |                    |           |                    |                |                       |                    |                                |                          |          |

Figure 7.14 Boring Log (BH-01) 3/3

| BORE HOLE NO. BH-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      |                                                                            | RING                            | LOG                      | ł                 |                                        |                    |                       |                      |                           |                                   | Job N              | a. FI<br>Sha                | CYB-20<br>et No. | /3-02  | I<br>OF 2         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|-----------------------|----------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|---------------------------------|--------------------------|-------------------|----------------------------------------|--------------------|-----------------------|----------------------|---------------------------|-----------------------------------|--------------------|-----------------------------|------------------|--------|-------------------|
| PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OTECT                                                                                                                                                                                                                                                                                                                                             | NAME        | : <u>8</u>          | oil Investiga         | lion for Bag               | o River Br                                   | idge Project                         |                                                                            | BORING EQ                       | JIPMENT                  |                   | : <u>TO</u>                            | IO "D2"            |                       | _                    | DATE                      |                                   | 26.                | 10.2013                     | To 01.           | 11.201 | 3                 |
| GI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CA'IIO<br>ROUND                                                                                                                                                                                                                                                                                                                                   | IN<br>LEVEL | : <u>Tl</u><br>: -5 | haketa Town<br>.904 m | iship, Yang                | on Region                                    |                                      |                                                                            | BORING ME                       | THOD                     |                   | : <u>Rot</u><br>: Ven                  | ary Direc<br>tical | t Circulation         | - <u>CLL</u>         | ENT                       |                                   |                    |                             |                  |        |                   |
| ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OORDIN                                                                                                                                                                                                                                                                                                                                            | IATE        | : Е                 | 204651,368            | l : N 18588                | 145.87 <u>9</u> 1                            | DEPTH :                              | 45.00m                                                                     | GROUND W.                       | ATER LE                  | VEL.              | : Un                                   | der Rive           | r Bed                 | _                    | $A^{\prime}$              | SIA N                             | IETA               | <i>L CO</i> .               | , LTI            | ),     |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            | کہ                                           |                                      |                                                                            |                                 | -                        | m).()             | _                                      |                    | STANDARD I<br>TEST ME | ENBIRAT<br>THOD I AS | ION TEST<br>TM 1          |                                   |                    | SAM                         | PLING            |        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (iu) N                                                                                                                                                                                                                                                                                                                                            | Ē           | S (m)               |                       |                            | DENSI                                        | ч                                    | SOIL DESCRIPTION                                                           |                                 | a) III (ii               | HTH (             | m) ILLd:                               | (ui)-              | in.                   | CURVEO               | BLOW                      | •                                 | н.)<br>40.)        | (m)-                        |                  |        |                   |
| VLE (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OLLVA                                                                                                                                                                                                                                                                                                                                             | - ID H L    | ICKNES              | KRIAM                 | LOUR                       | ATIVE.                                       | r NAM                                |                                                                            |                                 | EC & DL                  | SING (T           | TTR DI                                 | *111 GL -          | N-Value<br>2ws / 30   | N-<br>(Blow          | Value<br>s 3ttem)         |                                   | SAMPL<br>SPE & P   | THOL                        | (%)              | 5 (%)  | 0 (%)<br>M.J.((m) |
| SC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ē                                                                                                                                                                                                                                                                                                                                                 | DER         | Ē                   | ŝ                     | g                          | R.F.                                         | 105                                  |                                                                            |                                 | νq                       | S a               | ×.M                                    | EC                 | <u></u><br><u> </u> 0 | 0 20                 | 30 40 :                   | 50                                | ~ ¢                | DEP                         | 50.              | 50     | RQI<br>802        |
| Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * )<br>* * )        | brownish                   | Very                                         | Silty                                | Very loose to loose, brownish g                                            | ray, wet, low                   |                          |                   |                                        | <br>1.00           | 3/30                  |                      |                           |                                   | P-1                | 1.00                        |                  |        | Ŀ                 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * ><br>* * >        | gray                       | 10050<br>10                                  | SAND                                 | plasticity, fine grained, Silty SA<br>mica mineral                         | ND, trace of                    |                          |                   |                                        | 2.00               | 4/30                  |                      |                           |                                   | P.7                | 1.45<br>2.00                |                  |        | 2                 |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     | × × × ×               |                            | loose                                        |                                      | River deposit                                                              |                                 |                          |                   |                                        | 3.00               |                       |                      |                           |                                   |                    | 2.45                        |                  |        | - ,               |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     | × × )                 |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        |                    | 3/30                  |                      |                           |                                   | P-5                | 3.45                        |                  |        | -                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -9.90                                                                                                                                                                                                                                                                                                                                             | 4.00        | 4.00                |                       |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 4.00               | 4/30                  |                      |                           |                                   | P-4                | 4.00                        |                  |        | 4                 |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       | dark<br>gray               | Soft<br>to                                   | Sandy<br>CLAY                        | soll to very shift, dark gray, moist<br>medium plasticity, fine grained, S | io wel, low to<br>Sandy CLAY,   |                          |                   |                                        | 5.00               | 2/30 🔶                |                      |                           |                                   | P-5                | 5.00                        |                  |        | _5                |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            | very<br>stiff                                |                                      | with trace of mica numeral                                                 |                                 |                          |                   |                                        | 6.00               | 3/30                  |                      |                           |                                   | P-6                | 6.00                        |                  |        | _6                |
| Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 7.00               | 2/30                  |                      |                           |                                   | P-7                | 7.00                        |                  |        | _7                |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      |                                                                            |                                 | 26.10.13                 |                   |                                        | 8.00               | 16/30                 |                      |                           |                                   | Р-8                | 7.45                        |                  |        | _8                |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      |                                                                            |                                 | 8.00                     |                   |                                        | 9.00               | 10/20                 |                      |                           |                                   | <b>n</b> _0        | 8.45<br>9.00                |                  |        | - 9               |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -15.40                                                                                                                                                                                                                                                                                                                                            | 9.50        | 5.50                | × × · ×               |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 10.00              | 17.50                 |                      |                           |                                   |                    | 9.45                        |                  |        | 10                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   |             |                     | × × ><br>× × >        | dark                       | Medium                                       | Silty                                | Medium dense to dense, dark g                                              | ray, moist to                   |                          |                   |                                        |                    | 24/30                 | *                    |                           |                                   | P-10               | 10.00                       |                  |        | -                 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | × × ×                 | gray                       | dense<br>to                                  | SAND                                 | wet, low plasticity, fine grained,<br>trace of mica mineral                | Silty SAND,                     |                          |                   |                                        | 11.00              | 36/30                 |                      | $\left \right\rangle$     |                                   | P-11               | 11.00<br>11.45              |                  |        | - 11              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * )                 |                            | dense                                        |                                      | GL-(12.00~12.50) m; observed sa                                            | und grained is                  |                          |                   |                                        | 12.00              | 30/30                 |                      | 4                         |                                   | P-12               | 12.00                       |                  |        | 12                |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | ×.×.                  |                            |                                              |                                      | GL-(13.00~16.50) m; clay patche<br>at that denth                           | s are oberved                   |                          |                   |                                        | 13.00              | 11/30                 |                      |                           |                                   | P-13               | 13.00                       |                  |        | <u> </u>          |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | ŶŶ                    |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 14.00              | 15/30                 | 1                    |                           |                                   | P-14               | 14.00                       |                  |        | 14                |
| 1 <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *                 |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 15.00              | 26/30                 |                      |                           |                                   | P-15               | 14.45                       |                  |        | 15                |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -21.90                                                                                                                                                                                                                                                                                                                                            | 16.00       | 6.50                | × × )<br>× × )        |                            |                                              |                                      |                                                                            |                                 |                          | 16.00             |                                        | 16.00              | 20/30                 | 17                   |                           |                                   | P-16               | 15.45<br>16.00              |                  |        | 16                |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      |                                                                            |                                 |                          | Ø112              |                                        | 17.00              | 1670                  | 1                    |                           |                                   | P-17               | 16.45                       |                  |        | 17                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       | dark<br>gray               | Very<br>stiff                                | Sandy<br>CLAY-II                     | Very stiff to hard, dark gray,<br>plasticity, fine grained. Sandy          | , moist, low<br>CLAY, with      |                          |                   |                                        | 18.00              | 10/50                 |                      |                           |                                   |                    | 17.45                       |                  |        | 18                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            | to<br>hard                                   |                                      | traced of mica mineral                                                     |                                 |                          |                   |                                        |                    | 32/30                 |                      | 1                         |                                   | 110                | 18.45                       |                  |        | -                 |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      | interclated layer                                                          | e observed as                   |                          |                   |                                        | 19.00              | 17/30                 |                      |                           |                                   | P-19               | 19.00                       |                  |        | -                 |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            |                                              |                                      |                                                                            |                                 | 28.10.13                 |                   |                                        | 20.00              | 10/30                 | K                    |                           |                                   | P-20               | 20.00<br>20.45              |                  |        | 20                |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.60                                                                                                                                                                                                                                                                                                                                             | 21.70       | 6 70                |                       |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 21.00              | 16/30                 |                      |                           |                                   | P-21               | 21.00<br>21.45              |                  |        | 21                |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -27.00                                                                                                                                                                                                                                                                                                                                            | 21.70       | 5.70                | * * *                 |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 22.00              | 36/30                 |                      | $\geq$                    |                                   | P-22               | 22.00                       |                  |        | 22                |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *<br>* * *        | dark                       | Medium                                       | Silty                                | Medium dense to verv dense, dar                                            | k grav, moist                   |                          |                   |                                        | 23.00              | 20/30                 |                      | 1                         |                                   | P-23               | 23.00                       |                  |        | 23                |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *                 | gray                       | dense<br>10                                  | SAND                                 | to wet, fine to medium grained,<br>with traced of mica mineral and cla     | Silty SAND,<br>ay patches are   |                          |                   |                                        | 24.00              | 22/30                 |                      |                           |                                   | P-24               | 24.00                       |                  |        | 24                |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *<br>* * *        |                            | very<br>dense                                |                                      | observed in this layer                                                     |                                 |                          |                   |                                        | 25.00              | 18/30                 | 1                    |                           |                                   | P-25               | 24.45<br>25.00              |                  |        | 25                |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | x x x<br>x x x        |                            |                                              |                                      | GL-(26.00~26.50) m; dark gray.<br>medium plastic Clayey SAND an            | time grained ,<br>c observed at |                          |                   |                                        | 26.00              | 12/20                 |                      |                           |                                   | P-26               | 25.45<br>26.00              |                  |        | 26                |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *<br>* * *        |                            |                                              |                                      | that depth                                                                 |                                 |                          |                   |                                        |                    | 13430                 | $\mathbb{N}$         |                           |                                   |                    | 26.45                       |                  |        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *<br>* * *        |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 27.00              | 51/30                 |                      |                           |                                   | r-21               | 27.45                       |                  |        |                   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *<br>* * *        |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 28.00              | 32/30                 |                      |                           |                                   | P-28               | 28.00<br>28.45              |                  |        | 28                |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *                 |                            |                                              |                                      |                                                                            |                                 |                          |                   |                                        | 29.00              | 27/30                 | •                    | $\mathbb{N}$              |                                   | P-29               | 29.00<br>29.45              |                  |        | 29                |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                   |             |                     | * * *                 |                            |                                              |                                      |                                                                            |                                 | <u>29.10.13</u><br>30.00 |                   |                                        | 30.00              | 50/30                 |                      | $  \rangle$               |                                   | P-30               | 30.00<br>30.45              |                  |        | <u>3</u> 0        |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTI                                                                                                                                                                                                                                                                                                                                              | ES          |                     | * * *                 |                            |                                              |                                      | Continue to next sheet<br>Sample key                                       |                                 | Ph                       | inner stri        | iciure                                 | 31.00              |                       | Discoul              | incidies                  |                                   |                    | 2.0.40                      |                  |        | 31                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Relative density doe rpsion         Consistency description           Relative density         SPT N-Value         Consistency           SPT N-Value         Consistency         SPT N-Value                                                                                                                                                      |             |                     |                       |                            | re sample<br>it)                             | Term<br>Very thick                   |                                                                            | Spacing                         | (1101)<br>2009           | T<br>Very wi      | erni<br>Iely spacoil                   | Space              | ing (anad)<br>> 2000  |                      |                           | FUKKE<br>Consulti                 | N CO               | ., LTD.                     |                  |        |                   |
| Instantion of the second sec |                                                                                                                                                                                                                                                                                                                                                   |             |                     |                       |                            | mple                                         | Thick<br>Medium                      |                                                                            | 600 -<br>200 -                  | 2000                     | Wide              | y spaced<br>in spaced                  | 600<br>200         | - 2000<br>- 600       | ╧╢                   | œχ                        | (Yangor<br>2011/07-0<br>Alar 1950 | Branc<br>Mast. 361 | h)<br>1 starce<br>enterrece |                  |        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Losse         4         10         Soft         2         - 1           Mediana drass         10         - 30         Firm         5         8           Drasse         10         - 50         Still         9         15         Rock sor sample           Binde core using         30         50         Still         9         15         15 |             |                     |                       |                            | Very poor Poor Poor Poor Poor Poor Poor Poor | Thin<br>Very thin<br>rick by barrier | ates                                                                       | 60 -<br>20 -                    | 200<br>60<br>20          | Cluse<br>Very ele | y spaced<br>adly spaced<br>closels see | 60<br>20           | - 200<br>- 60<br>< 20 |                      | levision Ne<br>evision De | 7.<br>17C                         | Rev:<br>04.1       | 00                          |                  |        |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D<br>Verj                                                                                                                                                                                                                                                                                                                                         | e dense     | 3                   | ver 50                | Suil<br>Very still<br>Hard |                                              | ver 30                               | (Single core table)<br>Rock core sample<br>(Double core table)<br>75 - 90  | Fair T<br>Good                  | hinly lumin              | iled              | - <del>0</del>                         | 20<br>6            | Remarks               | - nrecty S[füt       |                           | - 20                              | <u></u>            |                             |                  |        | $\exists$         |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                   |             |                     | L                     | - 141 4                    |                                              |                                      | 90 - 100                                                                   | 9 Excellent                     |                          |                   |                                        |                    |                       |                      |                           |                                   |                    |                             |                  |        |                   |

Figure 7.15 Boring Log (BH-04) 1/2

| вс         | RE H       | OLE N                     | o. B               | H-04                 |                            |                  |                   | <u>B C</u>                                                                          | RING                          | LOG                                      | į                |                   |                   |                      |                                |               |                    | Job N          | n. Fi<br>Shi   | KY8-20<br>oot No    | 3-02            | OF 2                  |
|------------|------------|---------------------------|--------------------|----------------------|----------------------------|------------------|-------------------|-------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|------------------|-------------------|-------------------|----------------------|--------------------------------|---------------|--------------------|----------------|----------------|---------------------|-----------------|-----------------------|
| PR         | OJECT      | NAME                      | : <u>Se</u>        | vil Investiga        | tion for Bag               | to River B       | idge Project      |                                                                                     | BORING EQ                     | JIPMENT                                  |                  | : <u>TOI</u>      | IO "D1"           |                      | _                              | DATE          | 2                  | : 26           | 10.2013        | To 01.1             | 1.201           | 3                     |
| 1.0        | CATIO      | N                         | : <u>T</u> ł       | aketa Tow            | nship, Yang                | on Region        |                   |                                                                                     | BORING ME                     | THÓD                                     |                  | : <u>Rota</u>     | ry Direc          | t Circulation        | CLIE                           | NT            |                    |                |                |                     |                 |                       |
| GI         | ROUND      | LEVEL                     | : <u>-5</u><br>: E | .904 m<br>204651 36  | 8   - N 1858               | 845.870          | DEPTU -           | 45.00m                                                                              | ORIENTATIO                    | ON<br>A TEP I F                          | VIT              | : <u>Ver</u>      | ical<br>Les River | Mad                  | -                              |               | ЛCА                | 4 STU          | DYTI           | ZAM                 |                 |                       |
|            | A NEIZH    | 1                         |                    | 2040.1.0             | or , r <b>i</b> m.a        | <u></u>          |                   |                                                                                     | (incol. ii) ii.               | instra:                                  | стэр.<br>Гор     | . <u>c.n.</u>     |                   | STANDARD             | ENEIRATIC                      | NIESI         |                    |                |                |                     |                 | $\neg \neg$           |
|            | -          |                           | _                  |                      |                            | 1SHTV<br>INCY    |                   |                                                                                     |                               | <u>e</u>                                 | H(m))            | (m)               |                   | TEST MI              | THODLAST                       | M )           |                    |                | SAM            | PLING               | -               | -                     |
| (1         | ION (JI    | (iii) - (iii)             | LSS (m             | Z                    |                            | VF DFN           | ME                | SOIL DESCRIPTION                                                                    |                               | 11,2510                                  | (DEPT<br>LITER ( | ILL.d. (          | (m) - (m)         | lue<br>30cm          | CURVE OF                       | BLOW          | •                  | PLE.<br>& No.) | (m) - 11       |                     |                 | 3                     |
| CALE (     | TEVAI      | DHLAH                     | IIICKN             | N CHEV               | IDOTO.                     | .ELATI<br>(n) CO | N TO              |                                                                                     |                               | WIL &                                    | NVID<br>NVID     | ATTR              | 11145             | h-Va<br>Blows/       | N-V<br>(Blows                  | aloe<br>30cm) | 50                 | \$AM<br>(Type) | CIPTUL         | CR (36)             | CR (%)          | on 65<br>CALLEC       |
| \$         | 4          | -                         | -                  | -                    | 0                          | ~~~              | 8                 |                                                                                     |                               |                                          | 0                | ~                 | -                 | ~ 0                  | 10 20 3                        | 0 40          | 50                 |                | 2              | -                   | ~               | ~ 2                   |
| 31         |            |                           |                    | < × ×                |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 31.00             | 34/30                |                                | •             |                    | P-31           | 31.00          |                     |                 | 31                    |
| 32         |            |                           |                    | к: ж. ж.<br>к. ж. ж. | dark                       | Medium           | Silty<br>SAND     | Medium dense to very dense, dar<br>to wet, fine to medium grained                   | c gray, moist<br>Silty SAND   |                                          |                  |                   | 32.00             | 28/30                | _                              | /             |                    | P-32           | 32,00          |                     |                 | 32                    |
| 11         |            |                           |                    | ( x x<br>( x x       | 8-13                       | to<br>verv       |                   | with traced of mica mineral and cli<br>observed in this layer                       | y patches are                 |                                          |                  |                   | 33.00             |                      |                                | $\mathbb{N}$  |                    |                | 32.45          |                     |                 | - 11                  |
| -          |            |                           |                    | с ж. ж.              |                            | dense            |                   | GL-(26.00-26.50) m: dark grav                                                       | ine grained                   |                                          |                  |                   |                   | 42/30                |                                | 1             |                    | P-33           | 33.45          |                     |                 | Ē                     |
| 34         |            |                           |                    | (                    |                            |                  |                   | medium plastic Clayey SAND ar-                                                      | e observed at                 |                                          |                  |                   | 34.00             | 44/30                |                                | ł             |                    | P-34           | 34.00<br>34.45 |                     |                 | 34                    |
| 35         |            |                           |                    | ( X X<br>( X X       |                            |                  |                   | ulat deput                                                                          |                               |                                          |                  |                   | 35.00             | 50/30                |                                |               | \                  | P-35           | 35.00          |                     |                 | 35                    |
| 36         |            |                           |                    | < × ×                |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 36.00             | 50/22                |                                |               |                    | D-36           | 35.45<br>36.00 |                     |                 | 36                    |
|            |            |                           |                    | < × ×                |                            |                  |                   |                                                                                     |                               |                                          |                  |                   |                   | 50.25                |                                |               | Ī.                 | 1 50           | 36.38          |                     |                 | E.,                   |
| 3/         |            |                           |                    | < * *<br>< * *       |                            |                  |                   |                                                                                     |                               | 30,10,13                                 | 1                |                   | 37.00             | 50/15                |                                |               | •                  | P-37           | 37.30          |                     |                 | 5                     |
| 38         |            |                           |                    | * * *<br>* * *       |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 38.00             | 50/30                |                                |               | •                  | P-38           | 38.00<br>38.45 |                     |                 | 38                    |
| 39         |            |                           |                    | c x x                |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 39.00             | 43/30                |                                | 4             | 1                  | P-39           | 39.00          |                     |                 | 39                    |
| 40         | -45.90     | 40.00                     | 18.30              | k x x                |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 40.00             | 50/22                |                                |               | $\mathbf{V}$       | P-40           | 39.45<br>40.00 |                     |                 | 40                    |
| ] ]        |            |                           |                    |                      | dark                       | Verv             | Clavey            | Very dense, dark gray, moist to                                                     | wet. low to                   | ]                                        |                  |                   |                   | 50025                |                                |               | Ĭ.                 |                | 40.38          |                     |                 | E                     |
| 41         |            |                           |                    |                      | gray                       | dense            | SAND              | medium plasticity, line to med<br>Clavey SAND, with trace of line s                 | ium grained,                  |                                          |                  |                   | 41.00             | 50/20                |                                |               | •                  | P-41           | 41.00          |                     |                 | -41                   |
| 4 <u>2</u> |            |                           |                    |                      |                            |                  |                   | to sub-angular shape                                                                |                               |                                          |                  |                   | 42.00             | 50/20                |                                |               | •                  | P-42           | 42.00<br>42.35 |                     |                 | 42                    |
| 43         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               | 31.10.13                                 |                  |                   | 43.00             | 50/17                |                                |               | •                  | P-43           | 43.00          |                     |                 | 43                    |
| 44         | 49.90      | 44.00                     | 4.00               |                      |                            |                  |                   |                                                                                     |                               | 45.00                                    |                  |                   | 44.00             | 50/22                |                                |               |                    | P-44           | 44.00          |                     |                 | 44                    |
| 45         |            |                           |                    |                      | brownish<br>grav           | Very<br>dense    | SAND              | Very dense, brownish gray, m<br>medium to coarse grained, SAND                      | oist to wet,<br>trace of fine | 01.11.12                                 |                  |                   | 45.00             |                      |                                |               | T                  |                | 44.37<br>45.00 |                     |                 | 45                    |
| -          | -51.21     | 45.31                     | 1.31               |                      |                            |                  |                   | gravel                                                                              |                               | 45.00                                    |                  |                   | +0.00             | 50/16                |                                |               | 1                  | P-45           | 45.31          |                     |                 | Ē                     |
| 46         |            |                           |                    |                      |                            |                  |                   | This borehole is terminated a                                                       | t 45.00m,                     |                                          |                  |                   | 46.00             |                      |                                |               |                    |                |                |                     |                 | 46                    |
| 47         |            |                           |                    |                      |                            |                  |                   | aner commination.                                                                   |                               |                                          |                  |                   | 47.00             |                      |                                |               |                    |                |                |                     |                 | 47                    |
| 48         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 48.00             |                      |                                |               |                    |                |                |                     |                 | 48                    |
| 49         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 49.00             |                      |                                |               |                    |                |                |                     |                 | 49                    |
| -          |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   |                   |                      |                                |               |                    |                |                |                     |                 | F                     |
| 20         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 50.00             |                      |                                |               |                    |                |                |                     |                 | 50                    |
| 5 <u>1</u> |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 51.00             |                      |                                |               |                    |                |                |                     |                 | _51                   |
| 5 <u>2</u> |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 52.00             |                      |                                |               |                    |                |                |                     |                 | 52                    |
| 53         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 53.00             |                      |                                |               |                    |                |                |                     |                 | 53                    |
| _          |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   |                   |                      |                                |               |                    |                |                |                     |                 | Ę                     |
| , <u>"</u> |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 54.00             |                      |                                |               |                    |                |                |                     |                 | Ľ,                    |
| 5 <u>5</u> |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 55.00             |                      |                                |               |                    |                |                |                     |                 | 55                    |
| 56         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 56.00             |                      |                                |               |                    |                |                |                     |                 | <u>5</u> 6            |
| 57         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 57.00             |                      |                                |               |                    |                |                |                     |                 | 57                    |
| 58         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 58.00             |                      |                                |               |                    |                |                |                     |                 | 5.8                   |
|            |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | -                 |                      |                                |               |                    |                |                |                     |                 | F                     |
| <u>59</u>  |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 59.00             |                      |                                |               |                    |                |                |                     |                 | 59                    |
| 60         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 60.00             |                      |                                |               |                    |                |                |                     |                 | <u>6</u> 0            |
| 61         |            |                           |                    |                      |                            |                  |                   |                                                                                     |                               |                                          |                  |                   | 61.00             |                      |                                | ЩШ            |                    |                |                |                     |                 | 61                    |
|            | Re         | <u>n.5</u><br>lative dens | ity descr          | iption               | Consist                    | ency descrip     | tion              | Disturbed sample                                                                    | e sample                      | Ph<br>Term                               | inner stri       | icture<br>Specing | (000)             |                      | <u>Discontin</u><br>ferm       | Spa           | cing (100          |                |                | FUKKE               | N CO.           | , LTD.                |
|            | Relativ    | re density                | SPT                | N-v alne             | Consistene                 | y SPI            | N-Value           | (SPT sample) (Core los<br>L T-1 Undistructed Sample Water sa<br>(Piston sampler) w. | nple                          | very thick<br>Thick                      |                  | ><br>600 -        | 2008              | Very w<br>Wiele      | orry spaced<br>ly spaced       | 60            | > 2000<br>0 - 2000 |                |                | Consulti<br>(Yangon | ng Eng<br>Brand | neers<br>1)<br>8/8501 |
|            | L          | ouse                      |                    | u - 4<br>1 - 10      | Soft                       |                  | ndor 2<br>2 - 1   | Undisturbed Sample RQD (85<br>(Denison sampler)                                     | 1 cm                          | Thin                                     |                  | 200 -<br>60 -     | 200               | Cluse                | in spaced<br>ly spaced         | 200           | r = 680<br>0 - 200 | ╡╠             | Levision N     | ARAF NOVENN         | Rev:            | 1011 CCC<br>00        |
|            | Media<br>D | im dense<br>ense          | 31                 | 0 - 50<br>0 - 50     | Fina<br>Stiff<br>Vereneity | <u> </u>         | 9 - 15<br>6 - 24) | Rock core sample<br>(Single core tube)                                              | Poor TI                       | very thin<br>rickly lamin<br>hints tom?~ | ated             | 20 -<br>6 -       | 20                | Very cl<br>Extremely | iedry spieced<br>closely space | 1<br>i        | v • 60<br>< 20     | <u> </u>       | evision D      | ane                 | 04.11           | .20/3                 |
|            | ver        | , JUBSC                   | 1 0                | ser 90               | + ery sull<br>Hard         |                  | ver 30            | (Dixible core table)<br>(Dixible core table)<br>90 - 100                            | Good                          | and and a second                         |                  | s.(               |                   | Remarks              |                                |               |                    |                |                |                     |                 |                       |

Figure 7.16 Boring Log (BH-04) 2/2

#### 7.2.3 Geotechnical Design Parameters

Geotechnical parameters can be directly evaluated in many ways such as in situ and laboratory tests. Some of the design parameters could not be evaluated directly from field tests or laboratory tests due to the unfavorable nature of deposits or investigation methods. However, some parameters would be derived from other instrumental testing of past events, and some mechanical and physical properties obtained from field and laboratory tests. In evaluating ground stability, shear strength parameters are significant. The geotechnical design parameters required for foundation design analysis are listed in Table 7.1.

| So               | il Type                    | Condit         | ion of Soil            | Bulk<br>Density<br>γt (tf/m <sup>3</sup> ) | Internal Friction<br>Angle φ (°) | Cohesion<br>Cu (tf/m <sup>2</sup> ) | Remarks<br>(Soil Name)          |
|------------------|----------------------------|----------------|------------------------|--------------------------------------------|----------------------------------|-------------------------------------|---------------------------------|
| Fill<br>Material | Gravel<br>Gravelly<br>Sand | Cor            | npacted                | 2.0                                        | 40                               | 0                                   | (GW), (GP)                      |
|                  | C I                        | Compacted      | Well graded            | 2.0                                        | 35                               | 0                                   |                                 |
|                  | Sand                       | _              | Poorly graded          | 1.9                                        | 30                               | 0                                   | (5W), (5P)                      |
|                  | Silty Sand<br>Clayey Sand  | Cor            | npacted                | 1.9                                        | 25                               | Less than 3                         | (SM), (SC)                      |
|                  | Silt, Clay                 | Cor            | npacted                | 1.8                                        | 15                               | Less than 5                         | (ML), (CL)<br>(MH), (CJ)        |
|                  | Kanto Loam                 | Cor            | npacted                | 1.4                                        | 20                               | Less than 1                         | (VH)                            |
| Natural          |                            | Densely o      | r well graded          | 2.0                                        | 40                               | 0                                   |                                 |
| Ground           | Gravel                     | Less dens<br>g | se and poorly<br>raded | 1.8                                        | 35                               | 0                                   | (GW), (GP)                      |
|                  | Gravelly                   | Der            | se one.                | 2.1                                        | 40                               | 0                                   | $(\mathbf{CW})$ $(\mathbf{CD})$ |
|                  | Sand                       | Les            | s dense                | 1.9                                        | 35                               | 0                                   | $(\mathbf{GW}), (\mathbf{GP})$  |
|                  |                            | Densely o      | r well graded          | 2.0                                        | 35                               | 0                                   |                                 |
|                  | Sand                       | Less dens<br>g | se and poorly<br>raded | 1.8                                        | 30                               | 0                                   | (SW), (SP)                      |
|                  | Silty Sand                 | Ľ              | Dense                  | 1.9                                        | 30                               | Less than 3                         | $(\mathbf{SM})$ $(\mathbf{SC})$ |
|                  | Clayey Sand                | Les            | s dense                | 1.7                                        | 25                               | 0                                   | (3141), (3C)                    |
|                  | Sandy Cilt                 |                | Stiff                  | 1.8                                        | 25                               | Less than 5                         |                                 |
|                  | Sandy Clay                 | 1              | Firm                   | 1.7                                        | 20                               | Less than 3                         | (ML), (CL)                      |
|                  | Sandy Clay                 |                | Soft                   | 1.6                                        | 15                               | Less than 1.5                       |                                 |
|                  | Silt                       |                | Stiff                  | 1.7                                        | 20                               | Less than 5                         | (CH)                            |
|                  | Silt Firm                  |                |                        | 1.6                                        | 15                               | Less than 3                         | $(\mathbf{U}\mathbf{H})$        |
|                  | Ciay                       |                | Soft                   | 1.4                                        | 10                               | Less than 1.5                       | (WIL)                           |
|                  | Kanto Loam                 |                |                        | 1.4                                        | 5                                | Less than 3                         | (VH)                            |

| Fable 7.1 | Soil Parameters Recon | nmended by J.H.C |
|-----------|-----------------------|------------------|
|-----------|-----------------------|------------------|

Table 7.2 shows the soil parameters extracted from several correlations and formulas proposed. The geotechnical design parameters recommended for future analysis are described in Table 7.3.

| No   | Soil Name                   | N-value   | Co        | hesion            | (Cu)      | Ar        | ngle of Fi | riction   | Soil U         |      | t Weig         | ht  |                                 |           |
|------|-----------------------------|-----------|-----------|-------------------|-----------|-----------|------------|-----------|----------------|------|----------------|-----|---------------------------------|-----------|
| 110. | bon runic                   | (Average) |           | kN/m <sup>2</sup> |           |           | (degree)   |           | $\gamma_{sat}$ | γ    | $\gamma_{sat}$ | γ   | Modulus of                      | Poisson's |
|      |                             | Ν         | by<br>SPT | by<br>Lab         | by<br>JHC | by<br>SPT | by Lab     | by<br>JHC | Lab            | Test | by J           | IHC | Elasticity (kN/m <sup>2</sup> ) | Ratio     |
| 1    | Silty Sand-Filled Materials | 2         | 0         | N/A               | <30       | 21        | N/A        | 19        | 20             | 10   | 19             | 9   | 1400                            | 0.4       |
| 2    | Clay-Filled Materials       | 3         | 20        | N/A               | N/A       | 0         | N/A        | N/A       | 19             | 9    | N/A            | N/A | 2000                            | 0.4       |
| 3    | Silty Sand-River Deposit    | 4         | 0         | N/A               | 0         | 24        | N/A        | 25        | 19             | 9    | 17             | 7   | 2800                            | 0.5       |
| 4    | Clay-I                      | 1         | 7         | 18                | <15       | 0         | 19         | 10        | 17             | 7    | 14             | 4   | 1800                            | 0.5       |
| 5    | Sandy Clay-I                | 5         | 33        | 25                | <30       | 0         | N/A        | 20        | 18             | 8    | 17             | 7   | 2500                            | 0.4       |
| 6    | Silty Sand-I                | 14        | 0         | N/A               | 0         | 32        | N/A        | 25        | 20             | 10   | 17             | 7   | 9800                            | 0.4       |
| 7    | Sand-I                      | 19        | 0         | N/A               | 0         | 34        | N/A        | 30        | 19             | 9    | 18             | 8   | 13300                           | 0.4       |
| 8    | Silty Clay-I                | 6         | 40        | N/A               | <30       | 0         | N/A        | 15        | 18             | 8    | 16             | 6   | 4000                            | 0.4       |
| 9    | Clayey Sand-I               | 8         | 0         | N/A               | 0         | 28        | N/A        | 25        | 19             | 9    | 17             | 7   | 5600                            | 0.5       |
| 10   | Clay-II                     | 8         | 53        | N/A               | <30       | 0         | N/A        | 15        | 19             | 9    | 16             | 6   | 5333                            | 0.5       |
| 11   | Silty Clay-II               | 27        | 180       | N/A               | <50       | 0         | N/A        | 20        | 18             | 8    | 17             | 7   | 18000                           | 0.4       |
| 12   | Sandy Clay-II               | 14        | 93        | N/A               | <50       | 0         | N/A        | 25        | 19             | 9    | 18             | 8   | 9333                            | 0.4       |
| 13   | Silty Sand-II               | 30        | 0         | N/A               | 0         | 39        | N/A        | 25        | 20             | 10   | 17             | 7   | 21000                           | 0.3       |
| 14   | Clayey Sand-II              | 48        | 0         | N/A               | <30       | 46        | N/A        | 30        | 20             | 10   | 19             | 9   | 33600                           | 0.2       |
| 15   | Sand-II                     | 50        | 0         | N/A               | 0         | 47        | N/A        | 35        | 21             | 11   | 20             | 10  | 35000                           | 0.2       |

 Table 7.2
 Soil Parameters for Geotechnical Analysis Extracted from Several Formulas

Source: JICA Survey Team

|     |                             | N-Value   | Cohesion          | Angle of Friction | Soil U | nit weight       |                                               |                    |
|-----|-----------------------------|-----------|-------------------|-------------------|--------|------------------|-----------------------------------------------|--------------------|
| No. | Soil Name                   | (Average) | Cu                | φ                 | k      | N/m <sup>3</sup> | Modulus of<br>Elasticity (kN/m <sup>2</sup> ) | Poisson's<br>Ratio |
|     |                             | Ν         | kN/m <sup>2</sup> | (degree)          | γsat   | γ'               | 2                                             | Tutto              |
| 1   | Silty Sand-Filled Materials | 2         | 0                 | 20                | 20     | 10               | 1400                                          | 0.4                |
| 2   | Clay-Filled Materials       | 3         | 20                | 0                 | 19     | 9                | 2000                                          | 0.4                |
| 3   | Silty Sand-River Deposit    | 4         | 0                 | 20                | 19     | 9                | 2800                                          | 0.5                |
| 4   | Clay-I                      | 1         | 15                | 0                 | 17     | 7                | 1800                                          | 0.5                |
| 5   | Sandy Clay-I                | 5         | 30                | 0                 | 18     | 8                | 2500                                          | 0.4                |
| 6   | Silty Sand-I                | 14        | 0                 | 30                | 20     | 10               | 9800                                          | 0.4                |
| 7   | Sand-I                      | 19        | 0                 | 30                | 19     | 9                | 13300                                         | 0.4                |
| 8   | Silty Clay-I                | 6         | 40                | 0                 | 18     | 8                | 4000                                          | 0.4                |
| 9   | Clayey Sand-I               | 8         | 0                 | 25                | 19     | 9                | 5600                                          | 0.5                |
| 10  | Clay-II                     | 8         | 50                | 0                 | 19     | 9                | 5333                                          | 0.5                |
| 11  | Silty Clay-II               | 27        | 180               | 0                 | 18     | 8                | 18000                                         | 0.4                |
| 12  | Sandy Clay-II               | 14        | 90                | 0                 | 19     | 9                | 9333                                          | 0.4                |
| 13  | Silty Sand-II               | 30        | 0                 | 40                | 20     | 10               | 21000                                         | 0.2                |
| 14  | Clayey Sand-II              | 48        | 0                 | 45                | 20     | 10               | 33600                                         | 0.2                |
| 15  | Sand-II                     | 50        | 0                 | 45                | 21     | 11               | 35000                                         | 0.2                |

#### Table 7.3 Geotechnical Design Parameters Recommended for Future Analysis

In this chapter, the geotechnical design parameters are determined only for shallow footing. For bridge construction, pile foundation will be applied, and the geotechnical design parameters will be directly applied from standard penetration test results. Moreover, the geotechnical design parameters identified from SPT will be directly applied for liquefaction potential analysis.

#### 7.2.4 Summary of Soil Investigation

According to the investigation results, the left side of the Bago River (BH-01 and BH-02) and the right side of the Bago River (BH-04 and BH-05) have different soil conditions because of river dynamism. Clayey soil layers are well observed in the left side of the river, while granular soil layers are more observed in the right side of the river. Although there is a difference in soil deposition, the top soil layer (Clay-I) and reliable bearing layer (Clayey Sand-II) of BH-01 and BH-02 are the same.

In the left side boreholes (BH-01 and BH-02), clayey soil layers are deposited from ground surface to EL -50 m to EL -55 m. Among the clayey soil, the Clayey Sand and Silty Sand layers are observed as intercalated layers.

As for the right side boreholes (BH-04 and BH-05), the top soil layer of BH-05 is of clayey soil with a thickness of 14 m. The top soil layer of BH-04 is of silty sand (river bed), which is 4.0 m thick, and is underlain by a sandy clay layer. The frictional soil layer, which is 30.0 m thick, is underlying the clayey soil layer. Moreover, clayey soil layers are observed as lens forms within the silty sand layer. The reliable bearing layer (Clayey Sand-II) is underlying the Silty Sand-II layer. According to the investigation results, the Sand-II layer is observed under the Clayey Sand-II layer. This Sand-II layer is only observed in BH-04.

The borehole in the center of the river (BH-03) has the same soil conditions with the right side boreholes, except for the absence of upper clayey soil layer and thick clayey soil lens forms. However, the reliable bearing layer in BH-03 is deeper than those of the other boreholes. In Figure 7.17, the reliable bearing layer, which has an SPT N-value of more than 50, for the proposed Bago River Bridge is indicated with a red line.



Figure 7.17 Ground Condition and Reliable Bearing Layer

Chapter 8

Hydrological Assessment of Bago River

### **8.** Hydrological Assessment of the Bago River

In order to design the new bridge, it is necessary to collect and correlate all the basic meteorological and hydraulic data.

#### 8.1 Meteorological Conditions

Yangon City has a tropical monsoon climate. Rainfall is highly seasonal, being concentrated in the hot humid months of the southwest monsoon (May to October). By contrast, the northwest monsoon (December to March) is relatively cool and dry. In some occasions, severe cyclones cross the Myanmar coast in the months of April to May.

There are three meteorological stations in and around Greater Yangon, which were installed and have since been operated by the Department of Meteorology and Hydrology (DMH) of MoT, as shown in Table 8.1. The locations of meteorological and hydrological stations are shown in Figure 8.1.

|                        |       |          |           |        | v                |                      | 0         |           |                  |       |         |
|------------------------|-------|----------|-----------|--------|------------------|----------------------|-----------|-----------|------------------|-------|---------|
|                        | Codo  | Coord    | linates   | Unight |                  |                      | Period of | f Records |                  |       |         |
| Meteorological Station | (WMO) | Latitude | Longitude | (m)    | Tempera-<br>ture | Relative<br>Humidity | Rainfall  | Sunshine  | Evapora-<br>tion | Wind  | Remarks |
| 1. Kaba Aye (Yangon)   | 48097 | 16-54    | 96-10     | 20     | 1968~            | 1968~                | 1968~     | 1977~     | 1975~            | 1968~ |         |
| 2. Bago                | 48093 | 17-20    | 96-30     | 9      | 1965~            | 1965~                | 1965~     | -         | -                | 1965~ |         |
| 3. Tharrawady          | 48088 | 17-38    | 95-48     | 15     | 1965~            | 1965~                | 1965~     | -         | -                | 1965~ |         |

Table 8.1Inventory of Meteorological Stations

Source: DMH



Source: DMH, MPA, ID (Google Earth)



#### 8.1.1 Temperature

The monthly mean temperature ranges between 24.8 °C and 30.3 °C in and around Yangon City. According to the collected data for the past 18 years, the mean monthly maximum temperature is 37.6 °C (April) while the mean minimum temperature is 16.4 °C (January) within the Yangon region.



Figure 8.2 Mean Monthly Maximum and Minimum Temperatures at Kaba-aye Station (1991-2008)

#### 8.1.2 Relative Humidity

Relative humidity is observed twice a day (at 9:30 and 18:30). As seen in Figure 8.3, difference in humidity between the morning and evening is quite small. Mean monthly relative humidity in Yangon City ranges between 51 and 91%.



Source: JICA Library (The Study on Improvement of Water Supply System in Yangon City in the Union of Myanmar, 2002), DMH

### Figure 8.3 Mean Monthly Maximum and Minimum Relative Humidity at Kaba-aye Station (1991-2008)

#### 8.1.3 Wind Speed and Direction

The mean monthly wind speed is stable at 1.0-1.2 m/s throughout a year. Wind condition in Yangon area depends on the influence of the southwest monsoon during the rainy season. The highest maximum wind speed of 42.9 m/s was recorded during the passage of Cyclone Nargis in May 2008.



Source: JICA Survey Team based on the data from DMH

Figure 8.4 Maximum Wind Speed and Mean Monthly Wind Speed recorded at Kaba-aye Station (1999-2008)

#### 8.1.4 Evaporation



The annual mean evapotranspiration in Yangon area is 1,349 mm, which is 50% of the annual rainfall.

Source: JICA Survey Team based on the data from DMH



#### 8.1.5 Sunshine Hours

The annual mean sunshine hours are about 6.5 hours/day in Yangon area. Sunshine hours during the rainy season are shorter than the other seasons, showing different patterns of fluctuation.



Source: JICA Survey Team based on the data from DMH



#### 8.1.6 Rainfall

(1) Annual Rainfall and Seasonal Fluctuation

Seasonal variation of monthly total is similar in Yangon City (Kaba-aye) and Bago City. Regarding seasonal fluctuation of rainfall, about 96% of annual rainfall is brought by the rainy season from May to October, with the highest amount of rainfall in July or August.

The annual mean rainfall is 2,745 mm in Yangon City and 3,288mm in Bago City. Annual rainfall in Yangon City fluctuates between 3,592 mm and 2,127 mm. According to the collected data/documents, the following characteristics in Yangon area can be observed:

- ✓ Bago, located in the eastern side of Yangon area, has the highest annual rainfall volume; and
- ✓ Tharrawady, located in the northwestern side of Yangon area, has the lowest annual rainfall. Annual rainfall gets progressively smaller towards the north (upstream) side of the Hlaing River.



Source: JICA Survey Team based on the data from DMH



(2) Long-term Fluctuation of Annual Rainfall

Figure 8.8 shows the long-term fluctuation of annual rainfall by using a five-year running mean at Kaba-aye. Although the cycle of wet and dry periods is not clear, the aforementioned figure gives a clear presentation of such periods. It is indicated that a limited rising trend of annual rainfall is going on in recent years.



Source: JICA Survey Team based on the data from DMH

## Figure 8.8 Annual Rainfall and Five-Year Running Mean Rainfall at Kaba-aye Station (1968-2008)

(3) Exceedance Probability and Intensity Curve of Rainfall

Kaba-aye, Bago, and Tharrawady Stations have been measuring the annual maximum daily rainfall data (extreme value) for over 40 years. The 24-hour rainfalls of 2- to 500-year probabilities are calculated by using the extreme values measured from the three stations. Also, the correlation between intensity of short-time rainfall duration and 24-hour rainfall is estimated using Mononobe's equation.

Probable rainfalls and intensity curve are shown in Table 8.2 to Table 8.4 and Figure 8.9 to Figure 8.11.

| Returi<br>(Prob                                        | n Period<br>ability) | Daily Rainfall<br>R <sub>24</sub> (mm/day) | Ra    | infall Ir | ntensity | of each | Rainfal | l Durati | on (mm | /hr): It | = R <sub>24</sub> /2 | 4*(24/t | ) <sup>m</sup> , m=2 | 2/3   | Remarks |
|--------------------------------------------------------|----------------------|--------------------------------------------|-------|-----------|----------|---------|---------|----------|--------|----------|----------------------|---------|----------------------|-------|---------|
| (Ye                                                    | ar, %)               | 24 hour                                    | 24    | 12        | 8        | 6       | 3       | 2        | 1.5    | 1        | 0.75                 | 0.5     | 0.333                | 0.167 |         |
| Kaba-ay                                                | ye Station           | 1,440 min.                                 | 1,440 | 720       | 480      | 360     | 180     | 120      | 90     | 60       | 45                   | 30      | 20                   | 10    |         |
| 2                                                      | 50.0%                | 115.5                                      | 4.8   | 7.6       | 10.0     | 12.1    | 19.3    | 25.2     | 30.6   | 40.0     | 48.5                 | 63.6    | 83.3                 | 132.2 |         |
| 3                                                      | 33.3%                | 134.2                                      | 5.6   | 8.9       | 11.6     | 14.1    | 22.4    | 29.3     | 35.5   | 46.5     | 56.4                 | 73.9    | 96.8                 | 153.6 |         |
| 5                                                      | 20.0%                | 156.0                                      | 6.5   | 10.3      | 13.5     | 16.4    | 26.0    | 34.1     | 41.3   | 54.1     | 65.5                 | 85.9    | 112.5                | 178.6 |         |
| 10                                                     | 10.0%                | 184.6                                      | 7.7   | 12.2      | 16.0     | 19.4    | 30.8    | 40.3     | 48.8   | 64.0     | 77.5                 | 101.6   | 133.1                | 211.3 |         |
| 20                                                     | 5.0%                 | 213.2                                      | 8.9   | 14.1      | 18.5     | 22.4    | 35.5    | 46.6     | 56.4   | 73.9     | 89.5                 | 117.3   | 153.7                | 244.1 |         |
| 25                                                     | 4.0%                 | 222.5                                      | 9.3   | 14.7      | 19.3     | 23.4    | 37.1    | 48.6     | 58.9   | 77.1     | 93.4                 | 122.4   | 160.5                | 254.7 |         |
| 30                                                     | 3.33%                | 230.2                                      | 9.6   | 15.2      | 20.0     | 24.2    | 38.4    | 50.3     | 60.9   | 79.8     | 96.7                 | 126.7   | 166.0                | 263.5 |         |
| 50                                                     | 2.0%                 | 252.0                                      | 10.5  | 16.7      | 21.8     | 26.5    | 42.0    | 55.0     | 66.7   | 87.4     | 105.8                | 138.7   | 181.7                | 288.5 |         |
| 80                                                     | 1.25%                | 272.5                                      | 11.4  | 18.0      | 23.6     | 28.6    | 45.4    | 59.5     | 72.1   | 94.5     | 114.4                | 150.0   | 196.5                | 311.9 |         |
| 100                                                    | 1.0%                 | 282.3                                      | 11.8  | 18.7      | 24.5     | 29.6    | 47.1    | 61.7     | 74.7   | 97.9     | 118.6                | 155.4   | 203.6                | 323.2 |         |
| 150                                                    | 0.667%               | 300.6                                      | 12.5  | 19.9      | 26.1     | 31.6    | 50.1    | 65.6     | 79.5   | 104.2    | 126.2                | 165.4   | 216.8                | 344.1 |         |
| 200                                                    | 0.5%                 | 313.8                                      | 13.1  | 20.8      | 27.2     | 32.9    | 52.3    | 68.5     | 83.0   | 108.8    | 131.8                | 172.7   | 226.3                | 359.2 |         |
| 300                                                    | 0.33%                | 332.8                                      | 13.9  | 22.0      | 28.8     | 34.9    | 55.5    | 72.7     | 88.0   | 115.4    | 139.8                | 183.1   | 240.0                | 381.0 |         |
| 400                                                    | 0.25%                | 346.6                                      | 14.4  | 22.9      | 30.0     | 36.4    | 57.8    | 75.7     | 91.7   | 120.2    | 145.6                | 190.7   | 249.9                | 396.8 |         |
| 500                                                    | 0.2%                 | 357.4                                      | 14.9  | 23.6      | 31.0     | 37.5    | 59.6    | 78.1     | 94.6   | 123.9    | 150.1                | 196.7   | 257.7                | 409.1 |         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                      |                                            |       |           |          |         |         |          |        |          |                      |         |                      |       |         |

# Table 8.2Correlation between intensity of short-time rainfall duration and 24-hour rainfall<br/>at Kaba-aye Station (Mononobe's equation, 1968-2012)

Source: JICA Survey Team based on the data from DMH

| Table 8.3 | Correlation between intensity of short-time rainfall duration and 24-hour rainfall |
|-----------|------------------------------------------------------------------------------------|
|           | at Bago Station (Mononobe's equation, 1965-2012)                                   |

| Return<br>(Prob | Return Period Daily Ra<br>(Probability) (Year %) 24 ha |            | Ra    | Rainfall Intensity of each Rainfall Duration (mm/hr): It = $R_{24}/24*(24/t)^m$ , m=2/3 |         |          |          |           |          |         |         |       |       | Remarks |  |
|-----------------|--------------------------------------------------------|------------|-------|-----------------------------------------------------------------------------------------|---------|----------|----------|-----------|----------|---------|---------|-------|-------|---------|--|
| (Ye             | ar, %)                                                 | 24 hour    | 24    | 12                                                                                      | 8       | 6        | 3        | 2         | 1.5      | 1       | 0.75    | 0.5   | 0.333 | 0.167   |  |
| Bago            | Station                                                | 1,440 min. | 1,440 | 720                                                                                     | 480     | 360      | 180      | 120       | 90       | 60      | 45      | 30    | 20    | 10      |  |
| 2               | 50.0%                                                  | 129.7      | 5.4   | 8.6                                                                                     | 11.2    | 13.6     | 21.6     | 28.3      | 34.3     | 45.0    | 54.5    | 71.4  | 93.5  | 148.5   |  |
| 3               | 33.3%                                                  | 146.8      | 6.1   | 9.7                                                                                     | 12.7    | 15.4     | 24.5     | 32.1      | 38.8     | 50.9    | 61.7    | 80.8  | 105.9 | 168.0   |  |
| 5               | 20.0%                                                  | 166.5      | 6.9   | 11.0                                                                                    | 14.4    | 17.5     | 27.8     | 36.4      | 44.1     | 57.7    | 69.9    | 91.6  | 120.1 | 190.6   |  |
| 10              | 10.0%                                                  | 192.1      | 8.0   | 12.7                                                                                    | 16.6    | 20.2     | 32.0     | 42.0      | 50.8     | 66.6    | 80.7    | 105.7 | 138.5 | 219.9   |  |
| 20              | 5.0%                                                   | 217.4      | 9.1   | 14.4                                                                                    | 18.8    | 22.8     | 36.2     | 47.5      | 57.5     | 75.4    | 91.3    | 119.6 | 156.8 | 248.9   |  |
| 25              | 4.0%                                                   | 225.6      | 9.4   | 14.9                                                                                    | 19.6    | 23.7     | 37.6     | 49.3      | 59.7     | 78.2    | 94.7    | 124.2 | 162.7 | 258.2   |  |
| 30              | 3.33%                                                  | 232.3      | 9.7   | 15.4                                                                                    | 20.1    | 24.4     | 38.7     | 50.7      | 61.5     | 80.5    | 97.6    | 127.8 | 167.5 | 265.9   |  |
| 50              | 2.0%                                                   | 251.4      | 10.5  | 16.6                                                                                    | 21.8    | 26.4     | 41.9     | 54.9      | 66.5     | 87.2    | 105.6   | 138.4 | 181.3 | 287.8   |  |
| 80              | 1.25%                                                  | 269.2      | 11.2  | 17.8                                                                                    | 23.3    | 28.3     | 44.9     | 58.8      | 71.2     | 93.3    | 113.1   | 148.1 | 194.1 | 308.2   |  |
| 100             | 1.0%                                                   | 277.8      | 11.6  | 18.4                                                                                    | 24.1    | 29.2     | 46.3     | 60.7      | 73.5     | 96.3    | 116.7   | 152.9 | 200.3 | 318.0   |  |
| 150             | 0.667%                                                 | 293.7      | 12.2  | 19.4                                                                                    | 25.5    | 30.8     | 49.0     | 64.1      | 77.7     | 101.8   | 123.3   | 161.6 | 211.8 | 336.2   |  |
| 200             | 0.5%                                                   | 305.1      | 12.7  | 20.2                                                                                    | 26.4    | 32.0     | 50.9     | 66.6      | 80.7     | 105.8   | 128.1   | 167.9 | 220.0 | 349.3   |  |
| 300             | 0.33%                                                  | 321.4      | 13.4  | 21.3                                                                                    | 27.9    | 33.7     | 53.6     | 70.2      | 85.0     | 111.4   | 135.0   | 176.9 | 231.8 | 367.9   |  |
| 400             | 0.25%                                                  | 333.2      | 13.9  | 22.0                                                                                    | 28.9    | 35.0     | 55.5     | 72.8      | 88.2     | 115.5   | 139.9   | 183.4 | 240.3 | 381.4   |  |
| 500             | 0.2%                                                   | 342.5      | 14.3  | 22.7                                                                                    | 29.7    | 36.0     | 57.1     | 74.8      | 90.6     | 118.7   | 143.8   | 188.5 | 247.0 | 392.1   |  |
|                 |                                                        |            | Ca    | lculatio                                                                                | n formu | la of pr | obable r | ainfall = | = Iwai's | quantil | e metho | d     |       |         |  |

Source: JICA Survey Team based on the data from DMH

| Return<br>(Proba | Period<br>bility) | Daily Rainfall<br>R <sub>24</sub> (mm/day) | Ra                                                                | infall Ir | ntensity | of each | Rainfal | l Durati | on (mn | /hr): It | $= R_{24}/2$ | 24*(24/t | ) <sup>m</sup> , m=2 | 2/3   | Remarks |
|------------------|-------------------|--------------------------------------------|-------------------------------------------------------------------|-----------|----------|---------|---------|----------|--------|----------|--------------|----------|----------------------|-------|---------|
| (Year            | r, %)             | 24 hour                                    | 24                                                                | 12        | 8        | 6       | 3       | 2        | 1.5    | 1        | 0.75         | 0.5      | 0.333                | 0.167 |         |
| Tharrawa         | dy Station        | 1,440 min.                                 | 1,440                                                             | 720       | 480      | 360     | 180     | 120      | 90     | 60       | 45           | 30       | 20                   | 10    |         |
| 2                | 50.0%             | 105.6                                      | 4.4                                                               | 7.0       | 9.2      | 11.1    | 17.6    | 23.1     | 27.9   | 36.6     | 44.3         | 58.1     | 76.2                 | 120.9 |         |
| 3                | 33.3%             | 121.5                                      | 5.1                                                               | 8.0       | 10.5     | 12.8    | 20.3    | 26.5     | 32.1   | 42.1     | 51.0         | 66.9     | 87.6                 | 139.1 |         |
| 5                | 20.0%             | 140.3                                      | 5.8                                                               | 9.3       | 12.2     | 14.7    | 23.4    | 30.6     | 37.1   | 48.6     | 58.9         | 77.2     | 101.2                | 160.6 |         |
| 10               | 10.0%             | 165.4                                      | 6.9                                                               | 10.9      | 14.3     | 17.4    | 27.6    | 36.1     | 43.8   | 57.3     | 69.5         | 91.0     | 119.3                | 189.3 |         |
| 20               | 5.0%              | 190.8                                      | 8.0                                                               | 12.6      | 16.5     | 20.0    | 31.8    | 41.7     | 50.5   | 66.1     | 80.1         | 105.0    | 137.6                | 218.4 |         |
| 25               | 4.0%              | 199.2                                      | 8.3                                                               | 13.2      | 17.3     | 20.9    | 33.2    | 43.5     | 52.7   | 69.1     | 83.7         | 109.6    | 143.6                | 228.0 |         |
| 30               | 3.33%             | 206.1                                      | 8.6                                                               | 13.6      | 17.9     | 21.6    | 34.4    | 45.0     | 54.5   | 71.5     | 86.6         | 113.4    | 148.6                | 235.9 |         |
| 50               | 2.0%              | 225.7                                      | 9.4                                                               | 14.9      | 19.6     | 23.7    | 37.6    | 49.3     | 59.7   | 78.2     | 94.8         | 124.2    | 162.8                | 258.4 |         |
| 80               | 1.25%             | 244.4                                      | 10.2                                                              | 16.2      | 21.2     | 25.7    | 40.7    | 53.4     | 64.7   | 84.7     | 102.6        | 134.5    | 176.2                | 279.8 |         |
| 100              | 1.0%              | 253.4                                      | 10.6                                                              | 16.8      | 22.0     | 26.6    | 42.2    | 55.3     | 67.0   | 87.8     | 106.4        | 139.5    | 182.7                | 290.1 |         |
| 150              | 0.667%            | 270.2                                      | 11.3                                                              | 17.9      | 23.4     | 28.4    | 45.0    | 59.0     | 71.5   | 93.7     | 113.5        | 148.7    | 194.8                | 309.3 |         |
| 200              | 0.5%              | 282.4                                      | 11.8                                                              | 18.7      | 24.5     | 29.7    | 47.1    | 61.7     | 74.7   | 97.9     | 118.6        | 155.4    | 203.6                | 323.3 |         |
| 300              | 0.33%             | 300.0                                      | 12.5                                                              | 19.8      | 26.0     | 31.5    | 50.0    | 65.5     | 79.4   | 104.0    | 126.0        | 165.1    | 216.3                | 343.4 |         |
| 400              | 0.25%             | 312.8                                      | 13.0                                                              | 20.7      | 27.1     | 32.8    | 52.1    | 68.3     | 82.8   | 108.4    | 131.4        | 172.1    | 225.6                | 358.1 |         |
| 500              | 0.2%              | 322.9                                      | 13.5                                                              | 21.4      | 28.0     | 33.9    | 53.8    | 70.5     | 85.4   | 111.9    | 135.6        | 177.7    | 232.9                | 369.6 |         |
|                  |                   |                                            | Calculation formula of probable rainfall = Iwai's quantile method |           |          |         |         |          |        |          |              |          |                      |       |         |

## Table 8.4Correlation between intensity of short-time rainfall duration and 24-hour rainfall<br/>at Tharrawady Station (Mononobe's equation, 1965-2012)

Source: JICA Survey Team based on the data from DMH



Source: JICA Survey Team based on the data from DMH





Figure 8.10 ainfall Intensity Curve at Bago Station



Figure 8.11 Rainfall Intensity Curve at Tharrawady Station

On the other hand, the short intensity rainfall data prepared by the Irrigation Department of MoAI is shown in Table 8.5. There are differences in the values shown between Table 8.2 and Table 8.5 due to differences in data/theory used. These differences shall be clarified by collecting and studying the annual maximum rainfall data for short periods again.

| Return Period<br>Rainfall Intensity | 5 year | 10 year | 20 year | 50 year |
|-------------------------------------|--------|---------|---------|---------|
| 60 min. rainfall                    | 63.5   | 71.1    | 78.7    | 104.6   |
| 75 min. rainfall                    | 52.1   | 63.9    | 69.9    | 77.5    |
| 120 min. rainfall                   | 40.6   | 45.7    | 49.5    | 55.9    |

 Table 8.5
 Short Intensity Rainfall Data at Kaba-aye Station

Source: Study on Drainage System of Mingalar Taung Nyunt Area, Nov. 2002, Fukken Co. Ltd.

#### 8.2 Hydrological and Hydraulic Conditions

In order to predict the flow rate and water level during flood season, it is necessary to collect and correlate the hydrological and hydraulic conditions of the Yangon (Hlaing) River, the Bago River, and the Pazundaung Creek surrounding Yangon City. This survey was examined in reference to previous reports (e.g., JICA report) with the collected information from relevant organizations in Myanmar.

Six existing gauging stations (water level/discharge) are managed by the Department of Meteorology and Hydrology (DMH) and Myanma Port Authority (MPA) in the Hlaing, Bago, and Yangon River basins. Of these stations, three stations of MPA do not record discharge measurements. Also, Bago Station of DMH is influenced by tidal levels during the dry season (October to May); therefore, discharge records during this period are not available. However, discharge records at Bago Station during the rainy season can be utilized for flood probability calculation.

DMH has its own discharge rating tables, which have been changed several times by use of discharge measurement records taking into account the flow conditions. The inventory of river/tidal gauge stations is shown in Table 8.6.

|                                  |       |             |                                              | -                       |        |             | -         | -            |           |          |                     |
|----------------------------------|-------|-------------|----------------------------------------------|-------------------------|--------|-------------|-----------|--------------|-----------|----------|---------------------|
| River/Gauging Station            | Code  | Coordinates |                                              | Catchment               | Height | Type of     | Period of | Water        | Discharge | Observed | Remarks             |
|                                  |       | Latitude    | Longitude                                    | Area (km <sup>2</sup> ) | (m)    | Gauge       | Record    | (Tide) level |           | by       |                     |
| 1. Hlaing River/Khamonseik       | 6020  | 16-35       | 95-30                                        | 5,840                   | 14.465 | Pile Gauge  | 1987~     | 0            | 0         | DMH      |                     |
| 2. Bago River/Zaungutu           | 6220  | 17-38       | 96-14                                        | 1,927                   | 9.8    | Pile Gauge  | 1987~     | 0            | 0         | DMH      |                     |
| 3. Bago River/Bago (Pegu)        | 48093 | 17-20       | 96-30                                        | 2,580                   | 9      | Pile Gauge  | 1970~     | 0            | 0         | DMH      |                     |
| 4. Hlaing River/Yangon Port      | 210   | 16-46       | 96-11                                        | _                       | -      | Steel Plate | _         | 0            | _         | MPA      | Other 2 stations at |
|                                  | 210   | 10 10       | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |        | (Automatic) |           | 0            |           |          | Yangon port         |
| 5. Yangon River/Thilawa Point    | _     | 16-40       | 96-15                                        | _                       | _      | Steel Plate |           | 0            |           | MPA      |                     |
|                                  |       | 10 40       | 20 15                                        |                         |        | (Automatic) |           | 0            |           | 1011 7 1 |                     |
| 6. Yangon River / Elephant Point | -     | 16-28       | 96-19                                        | _                       | -      | Steel Plate | -         | 0            | _         | MPA      |                     |
|                                  | 1     | 10 20       | ,01)                                         |                         |        | (Manual)    | 1         | $\smile$     |           |          | 1                   |

Table 8.6Inventory of River/Tidal Gauging Stations

Source: DMH, MPA

#### 8.2.1 Rivers and Characteristics of River Flow

The Yangon Riverine system is located at the eastern end of Ayeyarwady (Irrawaddy) Delta as shown in Figure 8.12.

In Yangon City, the Yangon River is formed by the junction of the Panhaling and Hlaing rivers at a point about 13 km (8 miles) upstream of Monkey Point. The Panhlaing River is a distributary of the Ayeyarwady River, while the Hlaing River is a true river rising in the Bago Yomas and having a drainage area of about 12,950 km<sup>2</sup> (5,000 mi<sup>2</sup>). The Pazundaung Creek, named the Ngamoyeik Creek in the northern part of the city, joins the Yangon River at Monkey Point, the southeastern extremity of the city. The Pazundaung Creek has a drainage area of about 1,487 km<sup>2</sup> (574 mi<sup>2</sup>). The Bago River, with a drainage area of 5,180 km<sup>2</sup> (2,000 mi<sup>2</sup>), also joins the Yangon River just east of the city, the point where the Yangon River flows south some 45 km (28 mi) into the Gulf of Bengal. The catchment area at the mouth of the Yangon River is 25,640 km<sup>2</sup> (9,900 mi<sup>2</sup>).



Source: A one dimensional analysis of the tidal hydraulics of deltas (Nicholas Odd, Report OD 44, July 1982, Hydraulics Research Station, UK), from the MoAI Library

#### Figure 8.12 Ayeyarwady (Irrawaddy) Delta and Yangon River

#### (1) Hlaing/Yangon River

The Hlaing River, also known as Myitmakha River, has its source near Paunk Kaung. It flows from north to south approximately parallel to the Ayeyawady River; first joining the Bawle River in Taikkyi Township, then the Kotekowa River in Hmawbi Township, and finally the Penhlaing River near Hsinmalaik. When it reaches Yangon, it flows into the sea as the Yangon River.

At Schwelaung Village, the Hlaing River meets the Thenet River, a branch of the Ayeyarwaddy (Irrawaddy) River. The inflow of water from the Ayeyarwaddy River goes into the Hlaing River through the Thenet River during high water level period during the rainy season.

The total length from its source to its mouth at the confluence of the Yangon River is about 330 km (205 miles). As it flows directly into the sea, tidal flow affects a distance of about 100 km (62 miles) upstream (around Tharrawaddy of the Myitmaka River).

(2) Bago River

The Bago River has its source near Thikkyi in the Bago Yoma. It flows down the east-facing slope of the Bago Yoma from north to south approximately parallel to the Sittang River. When it reaches Bago, it turns to the southwest and flows into the sea as the Yangon River.

The total length from its source to its mouth at the confluence of the Yangon River is about 260 km (162 miles). The Bago River at the Bago Gauging Station is clearly influenced by tidal level during the low-flow period.

- (3) Characteristics of River Flow
  - 1) Characteristics of Upstream Part in Related River (Freshwater Area)

The discharge-duration curve, which is often used in Japan, was examined in order to understand the potential surface water characteristics of the river throughout the year. The flow regime shows the annual flow condition using the daily discharge at each hydrological station, and is indicated by the daily discharge and the number of exceeded days. The annual flow regime shows the following:

- ✓ High discharge (95th daily discharge from the greatest),
- ✓ Normal discharge (185th daily discharge from the greatest),
- $\checkmark$  Low discharge (275th daily discharge from the greatest), and
- ✓ Drought discharge (355th daily discharge from the greatest).

The flow regime that was computed at Zaungtu and Khamonseik stations for a period of 14 years (1987-2000) is summarized in Table 8.7 and Figure 8.13. As seen in the aforementioned table and figure, the coefficient of river regime differs extremely by river. Although the low flow of the Hlaing River at Khamonseik and the flow of the Bago River at Zaungtu are not steady, their coefficients of river regime are very large. Moreover, it was found that the flow regime of the Bago River at Zaungtu does not have a sustainable quantity of base flow. Also, the magnitude of coefficient of river regime indicates that the flow fluctuation is large; and a large value indicates that the full year water intake is difficult and flood damage can easily occur.

| River: | Bago Sta | tion: Zaun        | gtu                 |                  |                      |      |      |             |         |
|--------|----------|-------------------|---------------------|------------------|----------------------|------|------|-------------|---------|
|        |          |                   | Daily               | Discharge (      | $(m^{3/s})$          |      |      | Coofficient |         |
| Year   | Max.     | High<br>Discharge | Normal<br>Discharge | Low<br>Discharge | Drought<br>Discharge | Min. | Mean | of River    | Remarks |
|        |          | 95th day          | 185th day           | 275th day        | 355th day            |      |      | Kegime      |         |
| 1987   | 741      | 89                | 11                  | 1                | 1                    | 1    | 72   | 741.0       |         |
| 1988   | 538      | 59                | 14                  | 1                | 1                    | 1    | 56   | 538.0       |         |
| 1989   | 623      | 80                | 23                  | 5                | 1                    | 1    | 64   | 623.0       |         |
| 1990   | 1,108    | 183               | 6                   | 1                | 1                    | 1    | 122  | 1,108.0     |         |
| 1991   | 708      | 49                | 2                   | 1                | 1                    | 1    | 59   | 708.0       |         |
| 1992   | 1,069    | 66                | 7                   | 1                | 1                    | 0    | 67   | -           |         |
| 1993   | 752      | 44                | 1                   | 0                | 0                    | 0    | 54   | -           |         |
| 1994   | 1,237    | 64                | 3                   | 1                | 0                    | 0    | 71   | -           |         |
| 1995   | 790      | 31                | 3                   | 0                | 0                    | 0    | 60   | -           |         |
| 1996   | 933      | 65                | 6                   | 1                | 0                    | 0    | 64   | -           |         |
| 1997   | 1,034    | 74                | 2                   | 1                | 1                    | 1    | 73   | 1,034.0     |         |
| 1998   | 510      | 75                | 31                  | 1                | 0                    | 0    | 63   | -           |         |
| 1999   | 722      | 133               | 15                  | 1                | 0                    | 0    | 82   | -           |         |
| 2000   | 951      | 141               | 69                  | 22               | 1                    | 1    | 103  | 951.0       |         |
| Mean   | 837      | 82                | 14                  | 3                | 1                    | 1    | 72   | 837.0       |         |

#### Table 8.7 Flow Regime (1987-2000) of the Hlaing and Bago Rivers

#### River: Hlaing Station: Khamonseik

|      |        |           | Daily     | Discharge ( | $(m^{3/s})$ |         |       | Coefficient   |  |
|------|--------|-----------|-----------|-------------|-------------|---------|-------|---------------|--|
| Year | Max    | High      | Normal    | Low         | Drought     | Min     | Mean  | Mean of River |  |
|      | iviux. | Discharge | Discharge | Discharge   | Discharge   | iviiii. | wiedh | Regime        |  |
|      |        | 95th day  | 185th day | 275th day   | 355th day   |         |       | regime        |  |
| 1987 | 2,577  | 1,366     | 24        | 11          | 8           | 8       | 612   | 322.1         |  |
| 1988 | -      | -         | -         | -           | -           | -       | -     | -             |  |
| 1989 | 2,260  | 1,177     | 33        | 20          | 17          | 17      | 520   | 132.9         |  |
| 1990 | 2,570  | 1,460     | 46        | 15          | 11          | 10      | 687   | 257.0         |  |
| 1991 | 2,652  | 1,238     | 51        | 16          | 13          | 13      | 656   | 204.0         |  |
| 1992 | 1,680  | 869       | 22        | 17          | 14          | 13      | 426   | 129.2         |  |
| 1993 | -      | -         | -         | -           | -           | -       | -     | -             |  |
| 1994 | -      | -         | -         | -           | -           | -       | -     | -             |  |
| 1995 | 2,390  | 1,452     | 228       | 5           | 3           | 3       | 703   | 796.7         |  |
| 1996 | 2,330  | 1,290     | 172       | 22          | 9           | 9       | 602   | 258.9         |  |
| 1997 | 2,752  | 1,214     | 22        | 11          | 9           | 8       | 609   | 344.0         |  |
| 1998 | 2,133  | 932       | 57        | 36          | 20          | 11      | 574   | 193.9         |  |
| 1999 | 2,026  | 1,161     | 356       | 34          | 27          | 27      | 656   | 75.0          |  |
| 2000 | 1,842  | 1,332     | 77        | 28          | 23          | 21      | 573   | 87.7          |  |
| Mean | 2,292  | 1,226     | 99        | 20          | 14          | 13      | 602   | 176.3         |  |

Source: JICA Library (The Study on Improvement of Water Supply System in Yangon City in the Union of Myanmar, 2002), DMH



Source: JICA Library (The Study on Improvement of Water Supply System in Yangon City in the Union of Myanmar, 2002), DMH

#### Figure 8.13 Flow Regime (1987~2000) of the Hlaing and Bago Rivers

In reference to the previous JICA report (recorded in 1987-2000), the mean monthly flow pattern at Khamonseik and Zaungtu stations are shown in Table 8.8 and Figure 8.14. As seen in Figure 8.14, the monthly discharge shows an increase during the rainy season, with the peak runoff occurring in August.

#### **Table 8.8** Mean Monthly Flow Pattern at Khamonseik and Zaungtu Stations (1987-2000)

| Hlaing River | r at Kh | amonse | eik (C. | A.=584 | 40 km <sup>2</sup> ) | )   |      |      |      |      |     | (Unit | t: m³/s) |
|--------------|---------|--------|---------|--------|----------------------|-----|------|------|------|------|-----|-------|----------|
| Year         | Jan     | Feb    | Mar     | Apr    | May                  | Jun | Jul  | Aug  | Sep  | Oct  | Nov | Dec   | Total    |
| 1987         | 13      | 11     | 10      | 9      | 12                   | 374 | 1177 | 2071 | 2039 | 1460 | 88  | 24    | 7287     |
| 1988         | 16      | 15     | -       | 44     | -                    | 448 | 1156 | 1661 | 1930 | 871  | 305 | 87    | -        |
| 1989         | 28      | 21     | 20      | 18     | 18                   | 144 | 1022 | 1722 | 1174 | 1413 | 569 | 32    | 6183     |
| 1990         | 22      | 15     | 12      | 11     | 59                   | 777 | 2155 | 2148 | 1420 | 1405 | 118 | 24    | 8166     |
| 1991         | 19      | 16     | 15      | 13     | 68                   | 348 | 1738 | 2323 | 1419 | 1314 | 495 | 34    | 7801     |
| 1992         | 23      | 20     | 18      | 19     | 17                   | 32  | 1195 | 1461 | 887  | 1016 | 365 | 14    | 5068     |
| 1993         | 13      | 11     | 13      | 16     | 17                   | 451 | 1625 | 1902 | 2211 | -    | -   | -     |          |
| 1994         | -       | -      | -       | -      | 5                    | 260 | 1245 | 1352 | 1228 | 641  | 49  | 9     | -        |
| 1995         | 7       | 5      | 4       | 3      | 126                  | 552 | 2129 | 1978 | 1534 | 1538 | 330 | 151   | 8358     |
| 1996         | 37      | 13     | 13      | 34     | 130                  | 239 | 1608 | 2059 | 1656 | 1027 | 313 | 50    | 7179     |
| 1997         | 11      | 10     | 9       | 10     | 16                   | 238 | 1599 | 2109 | 1470 | 1650 | 83  | 22    | 7228     |
| 1998         | 36      | 34     | 39      | 24     | 69                   | 520 | 1584 | 1837 | 1789 | 630  | 240 | 38    | 6842     |
| 1999         | 35      | 33     | 29      | 28     | 65                   | 602 | 1409 | 1796 | 1806 | 1014 | 834 | 186   | 7837     |
| 2000         | 39      | 29     | 26      | 23     | 61                   | 664 | 1588 | 1499 | 1610 | 1073 | 184 | 48    | 6844     |
| Average      | 23      | 18     | 17      | 19     | 51                   | 404 | 1516 | 1851 | 1584 | 1158 | 306 | 55    | 7003     |

| Bago River a | ar Zaur | ngtu (C | .A.=19 | 927 km | <sup>2</sup> ) |     |     |     |     |     |     | (Unit | :: m³/s) |
|--------------|---------|---------|--------|--------|----------------|-----|-----|-----|-----|-----|-----|-------|----------|
| Year         | Jan     | Feb     | Mar    | Apr    | May            | Jun | Jul | Aug | Sep | Oct | Nov | Dec   | Total    |
| 1987         | 2       | 1       | 1      | 3      | 3              | 90  | 253 | 213 | 193 | 54  | 47  | 3     | 863      |
| 1988         | 1       | 1       | 1      | 2      | 6              | 96  | 173 | 179 | 61  | 82  | 53  | 15    | 670      |
| 1989         | 12      | 17      | 23     | 1      | 19             | 82  | 144 | 247 | 157 | 56  | 6   | 2     | 766      |
| 1990         | 1       | 1       | 1      | 1      | 110            | 275 | 352 | 361 | 263 | 75  | 13  | 3     | 1456     |
| 1991         | 1       | 1       | 1      | 1      | 1              | 42  | 213 | 306 | 78  | 34  | 14  | 3     | 695      |
| 1992         | 1       | 1       | 1      | 2      | 8              | 37  | 174 | 283 | 203 | 78  | 11  | 2     | 800      |
| 1993         | 1       | 0       | 0      | 0      | 3              | 109 | 96  | 257 | 160 | 14  | 2   | 1     | 644      |
| 1994         | 1       | 1       | 3      | 1      | 14             | 168 | 287 | 208 | 116 | 16  | 0   | 32    | 846      |
| 1995         | 0       | 0       | 0      | 0      | 16             | 128 | 229 | 146 | 182 | 7   | 11  | 2     | 721      |
| 1996         | 1       | 3       | 1      | 1      | 12             | 93  | 209 | 214 | 160 | 50  | 12  | 2     | 759      |
| 1997         | 1       | 1       | 1      | 1      | 4              | 106 | 219 | 327 | 157 | 46  | 4   | 2     | 868      |
| 1998         | 1       | 1       | 1      | 0      | 9              | 63  | 180 | 166 | 144 | 109 | 44  | 30    | 747      |
| 1999         | 7       | 1       | 1      | 1      | 40             | 112 | 162 | 324 | 236 | 84  | 10  | 1     | 979      |
| 2000         | 1       | 2       | 11     | 28     | 37             | 134 | 233 | 157 | 323 | 139 | 91  | 75    | 1231     |
| Average      | 2       | 2       | 3      | 3      | 20             | 110 | 209 | 242 | 174 | 60  | 23  | 12    | 860      |

Source: JICA Library (The Study on Improvement of Water Supply System in Yangon City in the Union of Myanmar, 2002), DMH



Source: JICA Library (The Study on Improvement of Water Supply System in Yangon City in the Union of Myanmar, 2002), DMH

Figure 8.14 Mean Monthly Flow Pattern at Khamonseik and Zaungtu Stations (1987-2000)

#### 2) Characteristics of Related Tidal River (Tidal Area of Mixed Tide)

As mentioned above, the lower reaches of the Yangon Riverine system are tidal rivers that are affected by tidal variability more than 100 km from the estuary.

The tidal range around Yangon Port is about 5.1 m and 2.5 m at spring tide and neap tide, respectively. The spring tide from the estuaries to Yangon Port is accompanied by a flow of up to 3.0 m/s. Velocities around Yangon Port according to the nautical chart are about 1.6-1.8 m/s.

In addition to "upland flow (river's own flow) arising from the catchment area" and "tidal flow based on tidal motion", there are "density current at the river mouth due to the difference in salinity between seawater and river water", "density flow by difference in concentration of suspended solids", "heat convection" and "wind-driven current", among others, in the river tidal compartment. The scale of these flows varies greatly in both time and space, and as it shows a complex phenomenon, its prediction is difficult. However, because these flows are assumed as a well-mixed type tide under great tidal variability, it is considered that the effects of stratified flow and density flow under actual streaming motion are smaller at the time of rising tide and ebb tide. Thus, in this survey, the hydraulic analysis is performed only by simulating the river flow (upland flow) and tidal flow.

In addition, tide is based on celestial motion, it is represented as the sum of many periodic components, and tidal flow (rising tide and falling tide) in tidal rivers also shows periodic fluctuations. Furthermore, the average velocity in one tidal cycle at one point in a tidal compartment is not zero. The average flow associated with oscillatory tidal motion like this is defined as the tide-induced residual current resulting from the asymmetry of tidal motion.

Therefore, the simulation period desired is the relatively long period from the neap tide to the spring tide, and not only a one tidal cycle. Also, all riverine systems which affect tidal motion are desirable as the simulation range.

On the other hand, a large amount of sediments has been flowing out of the vast basin of the Yangon Riverine system. Sediments are deposited on the estuarine regions from Yangon Port. Hence, the river channel and bed of the tidal reach in the Yangon River have not changed much. According to Myanmar Rivers Reference (1996, DWIR of MoT), the estimated annual sediment transport is 37 million tons for the Yangon River based on the size and character of its drainage area. In the vicinity of Yangon Port, MPA has been dredging the sediment deposits in order to secure the navigation channel.

3) Aggradations and Degradations of Rivers

The collected bathymetric survey data are listed in Table 8.9. From these data, cross-sectional data of related rivers were prepared by the JICA Survey Team. These cross section data are useful in checking and understanding the change in cross-sectional and longitudinal profiles, such as aggradations and degradations of rivers.

| Organization                                                         | Reach                                                                                  | Survey Date                             | Remarks      |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|--------------|
| MPA - nautical chart                                                 | Yangon River mouth –Bago<br>River, Pazundaung Creek,<br>Hlaing River to the Port limit | Sep. 2007                               |              |
| MPA - bathymetric survey                                             | Inner bar (Monkey Point)                                                               | Feb. 2010,<br>Feb., Jun., and Jul. 2013 | Partial data |
| MPA - bathymetric survey                                             | Liffy reach of the Yangon River                                                        | Apr. 2011                               | Partial data |
| MPA - bathymetric survey                                             | Monkey Point to Bo Aung<br>Kyaw Wharves of the Hlaing<br>River                         | Feb. 2010                               |              |
| DWIR - bathymetric survey                                            | Upstream of Thanlyin to upstream of Dagon Bridge                                       | Jan. 2013                               |              |
| DWIR - bathymetric survey                                            | Confluence of Hlaing to Thanlyin Bridge                                                | May 2007                                |              |
| Thanlyin Estate Development Ltd.<br>(Star City) – bathymetric survey | Monkey Point to Thanlyin<br>Bridge of the Bago River                                   | Jul. 2012                               |              |
| JICA Survey Team                                                     | Confluence of Hlaing to<br>upstream of Thanlyin Bridge,<br>Pazundaung Creek            | Aug. 2013                               | This Survey  |

| Table 8.9 | <b>Bathymetric</b> | Survey  | Data | List |
|-----------|--------------------|---------|------|------|
|           | Dutiny meet it     | Sul vey | Dutu | LIDU |

The fluctuations of cross-sectional profiles of rivers in recent years are shown in Figure 8.15 and 8.16.

- ✓ At Station No. 7534 and No. 5910, the profiles indicate a trend toward increasing erosion to the outer bending part of the Bago River caused by washout.
- ✓ At Station No. 8336 at Thanlyin Bridge of the Bago River and 8334 at Thaketa Bridge of the Pazundaung Creek, local scouring of bridges is progressing, and its depths are fluctuating on a large scale.
- ✓ At station No. 5082 at Bago Point, riverbed depth seems to be almost stable in recent years.
- ✓ At station No. 4148 at Monkey Point, riverbed height seems to be unstable due to the sedimentation of sand from the Hlaing River and Pazudaung Creek.



Source: JICA Survey Team based on the data collected from MPA, DWIR, Star City

Figure 8.15 Change of Cross-sectional Profiles of Rivers (1)



Source: JICA Survey Team based on the data collected from MPA, DWIR, Star City

Figure 8.16 Change of Cross-sectional Profiles of Rivers (2)

#### 8.2.2 Tidal Level around Yangon Area

Hourly calculated data of astronomical tide at Yangon Port (located 36 km upstream from the mouth of the Yangon River) and at Elephant Point (located at the river mouth) are available from the website. Both station's astronomical tide level records in March 2005 are shown in Figure 8.17, while the tide chart diagram of Yangon Port is shown in Figure 8.18 (ground elevation of land survey is normally indicated as zero from the MWL+3.121m at Bo Aung Kyaw Street Whalf Station of MPA.) From the tide chart diagram, observed fluctuations of spring, average, and neap tides are 5.13 m, 4.00 m, and 2.84 m, respectively. According to MPA, the maximum storm surge (namely, the sea level departure from normal or the difference between astronomical tide and observed tide) at Yangon Port is reported to be 2.13 m. During the passage of Cyclone Nargis on May 3, 2008, MPA measured 2.13 m from flood mark after the storm. For comparison, the probable surge amplitudes (or sea level departure from normal) at Elephant Point as calculated by the Hydrology Branch of the Irrigation Department are shown in Table 8.10. Comparing with probable surge amplitude, it can be said that the storm surge during the passage of Cyclone Nargis at Yangon port is very high. In addition, the calculated tides in four and eight major constituent tides at Elephant Point are shown in Table 8.11 based on the existing study.



Source: Earthquake Research Institute, the University of Tokyo




Source: MPA

Figure 8.18 Tide Level at Yangon Port

| <b>Table 8.10</b> | Return Period and Surge Amplitude at Elephant Point |
|-------------------|-----------------------------------------------------|
|-------------------|-----------------------------------------------------|

| Return Period (year) | 5     | 10    | 20    | 25    | 50    | 100   | 200   |
|----------------------|-------|-------|-------|-------|-------|-------|-------|
| Surge (m)            | 0.889 | 1.046 | 1.196 | 1.244 | 1.391 | 1.537 | 1.682 |

Source: JICA Library (The Project for Preservation of Farming Area for Urgent Rehabilitation of Agricultural Production and Rural Life in Areas affected by Cyclone Nargis, 2011), MoAI,

# Table 8.11Amplitude of Major Tidal Constituents Actual Measurement<br/>in 1978-79 at Elephant Point (Past Computation<br/>Result of Harmonic Decomposition)

| Latitude | : | 16 | 30' |
|----------|---|----|-----|
| Latitude | • | 96 | 18' |

|                             |         |            | Ampli   | tude H | Phase G |
|-----------------------------|---------|------------|---------|--------|---------|
|                             |         |            | ft      | m      | degree  |
|                             | Maian 4 | M2         | 5.743   | 1.750  | 99.18   |
|                             | 8 ents  | K1         | 0.673   | 0.205  | 20.53   |
|                             |         | <b>S</b> 2 | 2.299   | 0.701  | 141.96  |
| Major 8                     |         | 01         | 0.305   | 0.093  | 40.86   |
| Constitu-                   |         | N2         | 1.097   | 0.334  | 90.91   |
| ents                        |         | K2         | 0.625   | 0.191  | 141.96  |
|                             |         | P1         | 0ss.223 | 0.068  | 20.53   |
|                             | Q1      | 0.049      | 0.015   | 307.42 |         |
| Sum of Major 4 Constituents |         |            |         | 2 749  |         |

Source: Irrawaddy Delta Hydrological Investigations and Delta Survey, Volume 3 – Analysis, Sir William Halcrow & Partners, January 1982, MoAI,

Note: In the abovementioned document, 32 major constituents were calculated by harmonic analysis.

# 8.2.3 Flood Conditions including Storm Surge

According to the Hazard Profile of Myanmar, 2009, flooding has always been one of the major hazards in Myanmar, accounting for 11% of all disasters and second only to fire. Floods around Yangon area can be classified into three types as follows:

- $\checkmark$  Riverine floods in the river delta;
- ✓ Localized floods in urban areas due to a combination of factors, such as cloudburst, saturated soil, poor infiltration rates, and inadequate or poorly-built infrastructure (e.g., blocked drains); and
- $\checkmark$  Flooding due to cyclone and storm surge in the coastal areas.

Floods that have caused the largest damage are due to cyclones and storm surges Figure 8.19 shows the flood inundation areas resulting from Cyclone Nargis, taken by satellite imagery on May 5, 2008. The Hazard Profile of Myanmar described that the damage brought by Cyclone Nargis caused 138,373 people dead or missing, killed 300,000 cattle, and destroyed over 4,000 houses and schools in more than 6,000 villages, with a total damage cost of MMK 13 trillion, including those in Ayeyarwady and Yangon areas.



Source: UNOSAT (www.unosat.org)



# 8.2.4 Inland Water Transportation Condition

The Port of Yangon is a river port having 18 wharves and is the premier international port of Myanmar. The port lies along the Yangon Riverbank at the Yangon City side. General cargoes handled at the Port of Yangon are as follows:

- ✓ Main Export Commodities timber, pulses, rice and rice products, yellow maize, and fishery products; and
- ✓ Main Import Commodities construction materials, machinery and equipment, fertilizer, crude oil, palm oil, wheat grain, and cement.

General cargo handled at the Yangon Port in 2011-2012 was 20,408 thousand metric tons (imports at 12,590 and exports at 7,818), volume of handled container is 408,043 twenty-foot equivalent unit (TEU: imports at 207,540 and exports at 200,503).

Most of the abovementioned comes from the trading volume in the inner harbor of the Port of Yangon. In the proposed bridge sites of the Bago River and Pazundaung Creek, ships owned by some organizations only sail around the Tharkata Jetty at a rate of about once a day except for small ships and fishing boats. Also, there is a small shipyard upstream of the existing Thanlyin and Thaketa bridges, where some small ships crosses under them. Among the organizations that own vessels are Myanmar Five Star Line (MFSL), Myanmar Port Authority (MPA), Myanmar Navy (MN), Myanmar Oil and Gas Enterprise (MOGE) and Yuzana Company Limited. The largest ship, owned by MFSL, is as follows:

| ✓ Ship's name : M.V. Mongl |
|----------------------------|
|----------------------------|

- ✓ Length Overall (LOA)/Beam : 92.45 m/15.8 m
- ✓ Depth : 7.8 m
- ✓ GRT/NRT : 3388 t/1421 t
- ✓ Hatches : 2
- $\checkmark$  Draft : 5.3 m
- ✓ DWT : 3.309 t
- ✓ Ship Height above Sea Level : 28 m (light draft)

On the other hand, the list of navigation channel limitation of related existing bridges is shown in Table 8.12.

| Dridee Nome                             | Divor Nomo       | Clearance(m) |        |  |
|-----------------------------------------|------------------|--------------|--------|--|
| Bridge Name                             | River manie      | Width        | Height |  |
| Maha Bandoola Bridge (Thaketa Township) | Pazundaung Creek | 120.0        | 16.8   |  |
| Thanlyin Bridge (Thanlyin Township)     | Bago             | 106.1        | 10.2   |  |

 Table 8.12
 Navigation Channel Limitation of Related Existing Bridges

Source: IWT

From the above, in the navigation channel of this proposed bridge site up to the Thaketa Jetty, the largest allowable ship weight is 3,309 t and necessary navigation channel height is 28 m at present. Navigation channel height for the Pazundaung Creek and the upstream part from Thaketa Jetty is about 10 m for small ships.

Based on an interview with MPA and IWT, the navigation fairways at Monkey Point and the Thanlyin Bridge are commonly navigated as shown in Figure 8.20 and Figure 8.21.



Figure 8.21 Navigation Fairway at Thanlyin Bridge

# 8.2.5 Dredging Condition of Inner Bar of Yangon Port

MPA has conducted a bathymetric survey at the inner bar (Monkey Point) of their navigation channel every week. Based on the results, MP has dredged using its self-propelled suction hopper dredger (800- $1,000 \text{ m}^3$ , three ships), conducted during low tide. It takes about 30 min until the dredger is full. The dredging cycle includes a one-hour trip to the dumpsite that is 3.6 km (2.2 mi) away.

Dredging of mud and sand at the inner bar is performed by one ship during the rainy season. As sand increases during the dry season, dredging is then performed by two or three ships. Annual dredging soil volume for maintenance is 1.5-2.0 million m<sup>3</sup> per year, annual budget for dredging is secured at USD 950,000. Records of dredging volume and number of trips of dredgers are shown in Figure 8.22.



Source: JICA Survey Team based on the data from MPA



# 8.3 Estimation of Probable Floods and Water Levels

# **8.3.1** Probable Floods at Gauging Stations

Past annual maximum discharges (extremal values) of Zaungtu, Bago, and Khamonseik gauging stations collected for the calculation of design discharges are shown in Table 8.13.

|              |               |                                      |                     |                    | 8                          |
|--------------|---------------|--------------------------------------|---------------------|--------------------|----------------------------|
| Station Name | River<br>Name | Catchment<br>Area (km <sup>2</sup> ) | Period of<br>Record | Collected Data No. | Remarks                    |
| Zaungtu      | Bago          | 1,927                                | 1987~               | 25 (1987-2011)     |                            |
| Bago         | Bago          | 2,580                                | 1970~               | 43 (1970-2012)     |                            |
| Khamonseik   | Hlaing        | 5,840                                | 1987~               | 22 (1987-2011)     | 3-year missing observation |

Table 8.13Collected Data List for Annual Maximum Discharge

Source: DMH

Probable discharges are calculated according to the following:

- ✓ To select the appropriate model for probability distribution from the three methods: Gumbel distribution, Iwai distribution and Lognormal distribution. In this survey, Iwai distribution of most common method is adopted.
- ✓ Calculations are for 2, 3, 5, 10, 20, 25, 30, 50, 80, 100, 150, 200, 300, 400 and 500 year return periods.

The results of probable discharge at Zaungtu, Bago, and Khamonseik gauging stations are shown in Table 8.14.

| D (          | р · 1    | Pro                   | bable Discha             | rge                   |            |             |           |                     |
|--------------|----------|-----------------------|--------------------------|-----------------------|------------|-------------|-----------|---------------------|
| (Drok        | n Period |                       | Qmax (m <sup>3</sup> /s) | l.                    | 3,500 +    |             |           |                     |
| (PI00<br>(Vo | ar %)    | Bago                  | Zaungtu                  | Khamonseik            | -          |             |           | _                   |
| (10          | ai, 70)  | 2,580 km <sup>2</sup> | 1,927 km <sup>2</sup>    | 5,840 km <sup>2</sup> | 3,000      |             | -         |                     |
| 2            | 50.0%    | 1,024                 | 855                      | 2,227                 |            |             |           |                     |
| 3            | 33.3%    | 1,114                 | 942                      | 2,374                 | 2,500      |             |           |                     |
| 5            | 20.0%    | 1,211                 | 1,030                    | 2,517                 |            |             |           |                     |
| 10           | 10.0%    | 1,329                 | 1,127                    | 2,671                 | € 2,000 }  |             |           |                     |
| 20           | 5.0%     | 1,437                 | 1,210                    | 2,800                 | e (m       |             |           |                     |
| 25           | 4.0%     | 1,471                 | 1,235                    | 2,838                 | in 1,500 + |             |           |                     |
| 30           | 3.33%    | 1,498                 | 1,255                    | 2,868                 | Disc       |             |           |                     |
| 50           | 2.0%     | 1,574                 | 1,308                    | 2,947                 | 1,000      |             |           | Zaungtu             |
| 80           | 1.25%    | 1,642                 | 1,354                    | 3,015                 |            |             |           | (1,927km2)          |
| 100          | 1.0%     | 1,674                 | 1,375                    | 3,046                 | 500        |             |           | Bago (2,580<br>km2) |
| 150          | 0.667%   | 1,732                 | 1,412                    | 3,101                 | -          |             |           | -Khamonseik         |
| 200          | 0.5%     | 1,773                 | 1,438                    | 3,138                 | 0          |             |           | (5,840 km2)         |
| 300          | 0.33%    | 1,830                 | 1,473                    | 3,188                 | 1          | 10          | 100       | 1,000               |
| 400          | 0.25%    | 1,871                 | 1,498                    | 3,223                 |            | Return Peri | od (year) |                     |
| 500          | 0.2%     | 1,902                 | 1,516                    | 3,249                 |            |             |           |                     |

 Table 8.14
 Probable Flood Calculation at Zaungtu, Bago, and Khamonseik Gauging Stations

Source: JICA Survey Team based on the data from

# 8.3.2 Probable Floods from River Flow for Design

The discharge at the proposed bridge sites are calculated by multiplying the proportion of of each catchment area to the probable discharges of each gauging stations upstream (or "specific discharge" method).

Probable discharges used for the hydraulic calculation are shown in Table 8.15. Incidentally, these discharges are runoff volumes from the river's own flow, but excluding additional flow rates from the influence of the falling tide.

| Riverine System Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             | Yangon Rive          | r                 | 0                 |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------------------|-------------------|-------------------|------------------|
| River Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Page Diver         |             | Hlaing               | River             | Pazundaung        |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dago Niver         |             |                      |                   | Creek             | Remarks          |
| Gauging Station Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 580              | .go         | 5 840                |                   | (Bago)            | Remarks          |
| Catchment Area at Station (km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,500              | 5 180       | 5,040                | 12 950            | 1 490             |                  |
| Catchment Area at Construction Site (km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>Dach ab 11:44 | 5,100       | -<br>Duch al: 11:4-1 | 12,750            | 1,470             |                  |
| Return period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | value              | Discharge   | value                | Discharge         | Discharge         |                  |
| 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,024              | 2,056       | 2,227                | 4,938             | 591               |                  |
| 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,114              | 2,237       | 2,374                | 5,264             | 643               |                  |
| 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,211              | 2,431       | 2,517                | 5,581             | 699               |                  |
| 1/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,329              | 2,668       | 2,671                | 5,923             | 768               |                  |
| 1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,437              | 2,885       | 2,800                | 6,209             | 830               |                  |
| 1/25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,471              | 2,953       | 2,838                | 6,293             | 850               |                  |
| 1/30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,498              | 3,008       | 2,868                | 6,360             | 865               |                  |
| 1/50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,574              | 3,100       | 2,947                | 0,333             | 909               |                  |
| 1/80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,042              | 3,297       | 3,015                | 6 754             | 940               |                  |
| 1/100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,074              | 3 477       | 3,040                | 6 876             | 1 000             |                  |
| 1/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,732              | 3,560       | 3,138                | 6,958             | 1,000             |                  |
| 1/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,830              | 3,674       | 3,188                | 7.069             | 1,027             |                  |
| 1/400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,871              | 3,757       | 3,223                | 7,147             | 1,081             |                  |
| 1/500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,902              | 3,819       | 3,249                | 7,205             | 1,098             |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | Q1          |                      | Q3                | Q2                |                  |
| 100 year discharge per unit drainage area (m <sup>3</sup> /sec/km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.64884            |             | 0.52158              |                   | =spe              | ecific discharge |
| The Mine     Heyergang<br>Description     Oxecutor local<br>Control       Oxkyin     Charlow<br>Charlow<br>Law Hulli     South Oxikalapa<br>Township       Sin Yay Twin<br>Township     Cold-mpRed a S<br>Township     Cold-mpRed a S<br>Township       Township     Cold-mpRed a S<br>Township     Thingangyin<br>Township       Township     Cold-mpRed a S<br>Township     National<br>Township       Township     Cold-mpRed a S<br>Township     New Bago Option 3<br>Township       Township     Cold-mpRed a S<br>Township     New Bago Option 1<br>Township       Township     South Okasa<br>Township     Cold-mpRed a S<br>Township       Township     South Okasa<br>Township     Cold-mpRed a S<br>Township       Township     Cold-mpRed a S<br>Township     Cold-mpRed a S<br>Township       Township     Cold-mpRed a S<br>Township     Cold-mpRed a S<br>Township |                    |             |                      |                   |                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bago               | Pazundaung  | Hlaing               | Yangon<br>River   | Yangon            | Remarks          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | River<br>O1        | Creek<br>O2 | River<br>O3          | (Monkey P.)<br>O4 | Kiver-mouth<br>O5 |                  |
| Catchment Area (km <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,180              | 1,490       | 12,950               | 19,620            | (25,640)          |                  |
| 10 year flood (m $^{3}/s$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,668              | 768         | 5,923                | 9,359             | (12,112)          |                  |
| 30 year flood (m <sup>3</sup> /s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,008              | 865         | 6,360                | 10,232            | (13,189)          |                  |
| 50 year flood ( $m^{3/s}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3,160              | 909         | 6,535                | 10,604            | (13,642)          |                  |
| 100 year flood (m <sup>3</sup> /s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,361              | 967         | 6,754                | 11,082            | (14,222)          | Design Discharge |
| 500 year flood (m <sup>3</sup> /s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,819              | 1,098       | 7,205                | 12,122            | (15,471)          |                  |

| Table 8.15 | <b>Probable Flo</b> | ods from Riv | er Flows for | r this Design |
|------------|---------------------|--------------|--------------|---------------|
|            | I I ODUDIC I IO     |              |              |               |

Source: JICA Survey Team based on the data from DMH

# 8.3.3 Probable High Water Level at Tidal Gauging Station

Past annual maximum high water level records (extremal values) at Yangon Port stations for the calculation of design high water level are as shown in Table 8.16. From these values, probable high water levels are calculated as shown at the right side of the same table.

|                                        |          |                              |                                | 8                  |                     | v    | /                       |         |
|----------------------------------------|----------|------------------------------|--------------------------------|--------------------|---------------------|------|-------------------------|---------|
| Probable High Water Level<br>(HWL) (m) |          | Domorko                      |                                |                    | Observed<br>Maximum |      |                         |         |
| (Prob                                  | ability) | Yango                        | on Port                        | Remarks            | Year                |      | Level<br>(m, MPA-based) | Remarks |
| (10                                    | ai, 70)  | 13 years (1<br>(1998-2001 wa | 1997-2013)<br>is not observed) | Collected Data No. |                     |      | Yangon Port             |         |
|                                        |          | MPA                          | Land Survey                    | Benchmark          |                     |      |                         |         |
| 2                                      | 50.0%    | 7.0                          | 3.9                            |                    |                     | 1997 | 7.04                    |         |
| 3                                      | 33.3%    | 7.1                          | 4.0                            |                    |                     | 1998 | Not observed            |         |
| 5                                      | 20.0%    | 7.2                          | 4.1                            |                    |                     | 1999 | Not observed            |         |
| 10                                     | 10.0%    | 7.4                          | 4.3                            |                    |                     | 2000 | Not observed            |         |
| 20                                     | 5.0%     | 7.4                          | 4.3                            |                    |                     | 2001 | Not observed            |         |
| 25                                     | 4.0%     | 7.5                          | 4.4                            |                    |                     | 2002 | 7.00                    |         |
| 30                                     | 3.33%    | 7.5                          | 4.4                            |                    |                     | 2003 | 6.80                    |         |
| 50                                     | 2.0%     | 7.6                          | 4.5                            |                    |                     | 2004 | 7.30                    |         |
| 80                                     | 1.25%    | 7.7                          | 4.6                            |                    |                     | 2005 | 7.20                    |         |
| 100                                    | 1.0%     | 7.7                          | 4.6                            |                    |                     | 2006 | 7.20                    |         |
| 150                                    | 0.667%   | 7.8                          | 4.7                            |                    |                     | 2007 | 7.20                    |         |
| 200                                    | 0.5%     | 7.8                          | 4.7                            |                    |                     | 2008 | 6.80                    |         |
| 300                                    | 0.33%    | 7.9                          | 4.8                            |                    |                     | 2009 | 6.70                    |         |
| 400                                    | 0.25%    | 7.9                          | 4.8                            |                    |                     | 2010 | 6.61                    |         |
| 500                                    | 0.2%     | 8.0                          | 4.9                            |                    |                     | 2011 | 6.90                    |         |
|                                        |          |                              |                                |                    | -                   | 2012 | 7.00                    |         |
|                                        |          |                              |                                |                    |                     | 2013 | 7.30                    |         |

| Table 8.16 | Probable High Water Level and Observed High Water Level (1997-2013) |
|------------|---------------------------------------------------------------------|
|            | at Yangon Port (Monkey Point)                                       |

Note: Adopted probability distribution is the Gumbel distribution.

Source: JICA Survey Team based on the data from MPA

# 8.3.4 Hydraulic Calculation

Hydraulic phenomena (rising tide, falling tide, etc. in addition to the river's own flood) at tidal compartments of the river are needed for simulating all of the tidal reaches. Therefore, the range of numerical calculation shall target all tidal areas of the Yangon Riverine system together with its tributaries such as the Bago River and Pazundaung Creek. The downstream boundary is assumed to be at Elephant Point (located at the river mouth of the Yangon River). The upstream boundary of tributaries is assumed in reference to past documents (Figure 8.24), river length is measured from the river route on the topographic map, and river cross section at the upstream end is assumed as the virtual cross-section. Distance from the river mouth to the upstream boundary is measured at 100 km or more.

The hydraulic calculation model of the Yangon Riverine system is shown in Figure 8.23.







Note: High Water Level around Yangon on the figure above is estimated at 6.23 m (=2.73 m+3.5 m). (Tide level on the figure above is based on Amherst station chart. Difference between Amherst and Yangon station chart is 2.73 m.)

Source: A One Dimensional Analysis of the Tidal Hydraulics of Deltas (Nicholas Odd, Report OD 44, July 1982, Hydraulics Research Station, UK), from MoAI Library

# Figure 8.24 Past Simulation Example of High Water and Low Water Profiles at the Yangon River (during the wet season in August 1980)

1) Analysis Software

Hydraulic analysis was carried out to simulate the tidal and flood phenomena in the Yangon River using HEC-RAS (Hydrologic Engineering Center - River Analysis System), a software developed by the US Army Corps of Engineers, USA.

HEC-RAS has the capability to compute one-dimensional water surface profiles for both steady and unsteady flows. Sub-critical, supercritical, and mixed flow regime profiles can be calculated.

Water surface profiles are computed from one cross section to the next by solving the energy equation using the standard-step method. Energy losses are evaluated by friction (Manning's equation) and contraction/expansion coefficients. HEC-RAS requires inputs for boundary conditions of upstream discharge and either downstream water level or known energy gradient.

Also, tidal waves are very dynamic. According to the user manual of this software, in order for the solution to be able to accurately model a tidal surge, the theta implicit weighting factor must be close to 0.6.

2) Hydraulic Analyses and Precondition

Hydraulic analyses were conducted through the following procedure:

- ➤ The roughness coefficient of the river channel is estimated by using the existing astronomical tide levels at two places during the dry season. The upstream water level of Yangon Port, which is calculated from the downstream astronomical tide for Elephant Point, is approximated as the astronomical tide waveform of Yangon Port by changing the roughness coefficient of tidal reaches. The 2005 tide table at Elephant Point and Yangon Port are given as known water level data.
- ➤ The calculation case at the time of flood (rainy season) was conducted by using the abovementioned roughness coefficient calculated from real tide level.

Also, preconditions of the calculation case are as follows:

- The cross sections for hydraulic calculation are given by using the bathymetric survey results (MPA Datum), nautical charts, and other data in reference to the above hydraulic model.
- The dry season downstream boundary for hydraulic calculation is given based on the tide level (from February 2 to 24, 2005, neap tide-spring tide-neap tide) at Elephant Point which varies from hour to hour; hence, the flow becomes unsteady. The dry season upstream boundary is given based on the steady low water runoff (275<sup>th</sup> day discharge).
- The rainy season downstream boundary for hydraulic calculation is given based on the tide level (from October 17 to 21, 2005, spring tide) at Elephant Point. The rainy season upstream boundary is given based on the 100-year flood as steady flow in each river.
- > The flow rate to the upstream end is given as the proportional distribution of the catchment area at the upstream end with the total area. The flow rate of remaining catchment area is given as the uniform lateral inflow against the stream length.
- 3) Hydraulic Analyses and the Result

Two cases of hydraulic analysis were performed as shown in Table 8.17.

| Case<br>No. | Upstream Boun       | dary Cor | dition | (m <sup>3</sup> /s) | Downstream Boundary Condition<br>of (Elephant Point)                   | Remarks                                        |  |
|-------------|---------------------|----------|--------|---------------------|------------------------------------------------------------------------|------------------------------------------------|--|
|             | Discharge Hlaing H  |          | Bago   | Pazun-<br>daung     | Period of Tidal Waveform                                               | (Objectives)                                   |  |
| 1           | Low water<br>runoff | 44       | 8      | 5                   | Feb 4– 24, 2005<br>(Annual minimum tide, Neap -<br>Spring – Neap tide) | (For the calibration of roughness coefficient) |  |
| 2           | 100-year flood      | 6,754    | 3,361  | 967                 | Oct 17 to 21, 2005 (Annual<br>Maximum Tide, Spring tide)               | (For the calculation of HWL)                   |  |

Table 8.17Cases of Hydraulic Analysis

Source: JICA Survey Team

Note: Discharge is indicated as the value at confluence of Hlaing, Bago and Pazundaung.

If the riverbed material is very small and the riverbed slope is very gentle such as those in the delta area, the roughness coefficient of river channel is generally very small and its coefficient is estimated to be about 0.015 according to past literatures1. From the results of the geotechnical survey in this study, the mean grain size of riverbed material in the Thaketa/Bago Bridge site is very small at 0.015-0.15 mm.

The roughness coefficients for Case 1 were set at 0.010, 0.015, 0.020, and 0.025. From the results of hydraulic calculation, the calculation case of surge amplitude that was properly synchronized with astronomical tide, where a roughness coefficient of 0.015 is applied, with a maximum margin of error of about 40 cm as shown in Figure 8.25.



Source: JICA Survey Team

# Figure 8.25 Synchronization between Astronomical Tide and Calculated Tide at Yangon Port by Hydraulic Calculation (Roughness Coefficient: 0.015, Case 1)

From the results of low discharge calculation during the dry season, hydraulic calculation of high water level is calculated by using a roughness coefficient of 0.015. The results of hydraulic calculation for Cases 1 and 2 are shown in Table 8.18 and in Figure 8.26 to Figure 8.32.

Moreover, the estimation of high water level made an allowance for the elevation of water surface due to a decrease in atmospheric pressure caused by cyclones. The increment by waves is not considered in this survey. The elevation of water surface due to a decrease in atmospheric pressure is estimated through the following equation:

- Rising value of static water level by barometric depression;

 $\eta_{\rm PS} = 0.991 \cdot (1013 - p) = 0.991 \cdot (1013 - 962) = 50.54 \text{ cm} = 0.505 \text{ m}$ 

where;  $\eta_{\rm PS}$ : Rising value of static water level by barometric depression (hPa)

p: Atmospheric pressure value which is decreased due to cyclone (hPa)

(2008 Cyclone Nargis: 962 hPa)

<sup>&</sup>lt;sup>1</sup> Bed Form and Bed Variation During Floods of the TONE River Mouth, Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering) Vol. 54(2010), Japan

|                                   |                   | Ne                              | ew Bago Bridg | ge         | New            |                       |  |
|-----------------------------------|-------------------|---------------------------------|---------------|------------|----------------|-----------------------|--|
| I4                                | T I               | Option 1                        | Option 2      | Option 3   | Thaketa        | Dementer              |  |
| Item                              | Unit              | -                               | -             | -          | Bridge         | Remarks               |  |
|                                   |                   | +4,148.6                        | +5,082.2      | +8,144.4   | +8,404.1       |                       |  |
| < Hydraulic Calculation Results > |                   |                                 |               | Cas        | se 1: Annual M | Inimum Tide and Flood |  |
| High Water Level                  | m                 | 5.86                            | 5.86          | 5.88       | 5.87           | at Low Discharge      |  |
| Maximum Discharge                 | m <sup>3</sup> /s | 12,269.11                       | 10,379.84     | 9,298.12   | 1,705.62       |                       |  |
| Low Discharge                     | m <sup>3</sup> /s | 13.17                           | 8.06          | 8.06       | 5.10           |                       |  |
| Tidal flow                        | m <sup>3</sup> /s | 12,255.94                       | 10,371.78     | 9,290.06   | 1,700.52       | falling tide          |  |
| Minimum Discharge                 | m <sup>3</sup> /s | -18,511.03                      | -15,870.22    | -14,428.05 | -2,405.57      |                       |  |
| 100-year Flood                    | m <sup>3</sup> /s | 13.17                           | 8.06          | 8.06       | 5.10           |                       |  |
| Tidal flow                        | m <sup>3</sup> /s | -18,524.20                      | -15,878.28    | -14,436.11 | -2,410.67      | rising tide           |  |
| < Hydraulic Calculation Results > |                   | Case 2: Annual Maximum Tide and |               |            |                |                       |  |
| High Water Level: (1)             | m                 | 6.74                            | 6.74          | 6.79       | 6.81           | at 100 year Flood     |  |
| Water Level Departure from        | m                 | 0 505                           | 0 505         | 0 505      | 0 505          | Cyclone Nargis:       |  |
| Normal by Cyclone: (2)            | m                 | 0.505                           | 0.505         | 0.505      | 0.505          | 962 hPa               |  |
| High Water Level: (1)+(2)         | m                 | 7.25                            | 7.25          | 7.30       | 7.32           |                       |  |
| Maximum Discharge                 | m <sup>3</sup> /s | 18,291.25                       | 15,502.38     | 14,397.53  | 2,556.37       |                       |  |
| 100-year Flood                    | m <sup>3</sup> /s | 4,327.74                        | 3,360.98      | 3,360.98   | 966.77         |                       |  |
| Tidal flow                        | m <sup>3</sup> /s | 13,963.51                       | 12,141.40     | 11,036.55  | 1,589.60       | falling tide          |  |
| Minimum Discharge                 | m <sup>3</sup> /s | -17,421.38                      | -15,468.58    | -13,942.54 | -1,657.47      |                       |  |
| 100-year Flood                    | m <sup>3</sup> /s | 4,327.74                        | 3,360.98      | 3,360.98   | 966.77         |                       |  |
| Tidal flow                        | m <sup>3</sup> /s | -21,749.12                      | -18,829.56    | -17,303.52 | -2,624.24      | rising tide           |  |
| < Probability Calculation >       |                   |                                 |               |            |                |                       |  |
| Probable H.W.L.                   | m                 | 7.7                             | 7.7           | 7.7        | 7.7            |                       |  |
| < Planned Value >                 |                   |                                 |               |            |                |                       |  |
| Design Discharge                  | m <sup>3</sup> /s | 18,292                          | 15,503        | 14,398     | 2,557          |                       |  |
| Design H.W.L. (MPA-based)         | m                 | 7.7                             | 7.7           | 7.7        | 7.7            |                       |  |
| Design H.W.L. (Land Survey)       | m                 | 4.579                           | 4.579         | 4.579      | 4.579          | ∆3.121 m              |  |

| Table 8. | 18 Res | sults of <b>H</b> | <b>Iydraulic</b> | Analyses    |
|----------|--------|-------------------|------------------|-------------|
|          |        |                   | •/ ··· ··· ··    | • • • • • • |







Figure 8.27 Tidally Dominated Water Level and Discharge Fluctuation (Rising and Falling Tide) at the New Bago Bridge (Option 1) - Case 2



Figure 8.28 Tidally-dominated Water Level and Discharge Fluctuation (Rising and Falling Tide) at the New Bago Bridge (Option 2) - Case 2



Source: JICA Survey Team

Figure 8.29 Tidally Dominated Water Level and Discharge Fluctuation (Rising and Falling Tide) at the New Bago Bridge (Option 3) – Case 2



Source: JICA Survey Team

Figure 8.30 Tidally Dominated Water Level and Discharge Fluctuation (Rising and Falling Tide) at the Yangon River Mouth – Case 2



Source: JICA Survey Team

Figure 8.31 Longitudinal Profile of the Bago River to the Yangon River Reach – Case 2



# Figure 8.32 Longitudinal Profile of the Pazundaung Creek to the Yangon River Reach – Case 2

(5) Design High Water Level and Discharge

From the above hydraulic analyses, the design high water level and discharge are determined as shown in the Table 8.20. As for discharge, most of the total discharge is decided by the component of tidal flow other than the river's own flow (upland flow) from the catchment area for large tidal variations. For the determination of the design high water level and discharge, the following aspects are left as future challenges:

The number of data for observed annual maximum high water level at Yangon Port is just 13 years, which somewhat lacks reliability (i.e., problem on statistics analysis).

- ➤ The flows of rising and falling tide during the dry season were restaged well by using unsteady flow simulation. However, the observed data on past storm surge tide level and discharge during the rainy season is difficult to obtain as most of the data format are not organized in a manual. Hence, the calculation result of hydraulic analysis is difficult to calibrate against the observed data at the time of storm surge.
- The bathymetric survey data of tidal section is much less. However, all survey data of tidal area for the Yangon Riverine system, including all its tributaries, is difficult to obtain. Also, hydraulic analysis for the tidal area of the Yangon River, including all its tributaries, is difficult to perform for a road project as the workload required is enormous (e.g., problem on hydraulic analysis).

In view of the above issues, various studies and surveys shall be performed in the detailed design stage.

# 8.4 Hydrological Assessment of the Proposed Bridge Sites

# 8.4.1 Hydraulic Design Criteria of Bridge

In designing the opening of the bridge waterway, the following design criteria for hydraulics are required:

- Backwater shall not significantly increase flood damage to properties upstream of the bridge;
- Velocity through the bridge shall not damage the road facility or increase the damages to downstream properties:
- > The existing flow distribution shall be maintained to the most practicable extent;
- > The pier and abutment shall be designed to minimize the flow disruption;
- > Potential local scour shall be within acceptable limits; and
- Clearance at the structure shall be adequately designed in order to provide safety for falling debris (the elevation of bottom of bridge girder must be higher than the highest high water level plus the navigation channel height.)

The design return period and the clearance from the bridge girder to the high water level shall be compliant with standards authorized by the organizations concerned.

In this survey, the design return period is 100 yearss. Also, the design standard is based on the HEC series of FHWA<sup>2</sup> as well-used international standards.

## 8.4.2 Assessment of Scouring

(1) Basic concept

Scour at bridge occurs due to the erosion caused by flowing water, excavation, and carrying away of materials from the riverbed and its banks. Scour process is cyclic in nature which complicates the determination of its magnitude. Scour can be deepest near flood peak; however, it is hardly visible as scour holes are covered with sediments during the receding stage of flood. In general, several floods may be needed in order to attain maximum scour under typical flow conditions at bridge crossings.

<sup>&</sup>lt;sup>2</sup> Hydraulic Engineering Circular, Federal Highway Administration, USA

(2) Methodology of scour computation

In designing the bridge substructure, it is very important to evaluate the scour potential at piers and abutments and carefully studying site-specific subsurface information. Total scour at a bridge crossing is comprised of three components:

- 1. Long-term aggradation or degradation
- 2. Contraction scour
- 3. Local scour
- 1) Aggradation and Degradation

Aggradation and degradation are long-term changes in streambed elevation due to natural or man-induced causes. Aggradation involves the deposition of material eroded from the stream or watershed upstream of the bridge; whereas, degradation involves the lowering of streambed due to lack of sediment supply from upstream. Both are evaluated independently in the hydraulic model. Generally, streams are considered to have stable and balance of sediment transport if the configuration is not changed in the long term. In this survey, the river bed/course fluctuation analysis is not conducted. In the detailed design stage, this analysis shall be conducted and their results will be studied after surveying the past and current topographic data of rivers.

2) Contraction Scour

Contraction scour at a bridge crossing involves the removal of material from the streambed and banks across the channel width, resulting from a contraction of the flow area and an increase in discharge at the bridge.

In case of constructing a new bridge, common causes for contraction of flows are constriction (encroachment) of road embankment onto the floodplain and/or into the main channel or piers blocking a portion of flow. As a result, flow area decreases velocity and bed shear stress increase. Hence, more bed material is removed from the contracted reach than those transported into the reach. As bed elevation lowers, flow area increases while velocity reduces, reaching a state of relative equilibrium.

3) Local Scour

Local scour at piers or abutments involves the removal of bed material as a result of formation of vortices known as the horseshoe vortex and wake vortex at their base. The horseshoe vortex results from the pileup of water on the upstream surface of the obstruction and subsequent acceleration of the flow around the nose of the pier or abutment. The action of the vortex removes bed material around the base of the obstruction. In addition to the horseshoe vortex around the base of a pier, there are vertical vortices downstream of the pier, called the wake vortex. Both the horseshoe and wake vortices remove material from the pier base region. The intensity of wake vortices diminishes rapidly as the distance downstream of the pier increases. As a result, there is often deposition of material immediately downstream of a long pier.

Factors that affect the magnitude of local scour depth at piers and abutments are:

- ① Velocity of the approach flow,
- ② Depth of flow,

- ③ Width of the pier,
- ④ Discharge intercepted by the abutment and returned to the main channel at the abutment,
- <sup>⑤</sup> Length of the pier if skewed to flow,
- © Size and gradation of bed material,
- $\odot$  Angle of attack of the approach flow to a pier or abutment,
- <sup>®</sup> Shape of a pier or abutment,
- Bed configuration, and
- <sup>®</sup> Ice formation or jams and debris.

A sample illustration of scour at a cylindrical pier is shown in Figure 8.33.



Source: Evaluating Scour at Bridges (2012 Fifth Edition), Hydraulic Engineering Circular No. 18 (HEC 18), FHWA, USA

## Figure 8.33 Simple Schematic Representation of Scour at a Cylindrical Pier

(3) Scour Estimation

All major streams intercepted by the proposed bridge alignment were modelled using HEC-RAS developed by Hydrologic Engineering Center, USA. The model reach covered a sufficient length from upstream to downstream of the bridge location. These models were simulated for 100-year return period discharges under existing conditions (or without the bridge) and incorporating the bridge. In Geometric Data window of HECRAS, all bridge data including deck/roadway and piers are given and the schematic diagram of the bridge are shown in Figure 8.34 to Figure 8.37.

Scour estimation by steady flow analysis of HEC-RAS was conducted based on Hydrologic Engineering Circular No. 18 (HEC 18) of the Federal Highway Administration (FHWA), USA, by using the value of maximum discharge and high water level resulting from unsteady flow analysis.

The results of scour estimation are shown in Table 8.19.



Source: JICA Survey Team

Figure 8.34 Scouring Computation Result at the New Bago Bridge (Option 3)







Source: JICA Survey Team

Figure 8.36 Scouring Computation Result at the New Thaketa Bridge



Figure 8.37 Scouring Computation Result at the Existing Thaketa Bridge

| Pier | New       | Bago Br   | idge        | Existing  | g Thanlyir | n Bridge    | New       | Thaketa B | Bridge      | Existin   | g Thaketa | Bridge      |
|------|-----------|-----------|-------------|-----------|------------|-------------|-----------|-----------|-------------|-----------|-----------|-------------|
| No   | Total     | Local     | Contraction | Total     | Local      | Contraction | Total     | Local     | Contraction | Total     | Local     | Contraction |
| INO. | Scour (m) | Scour (m) | Scour (m)   | Scour (m) | Scour (m)  | Scour (m)   | Scour (m) | Scour (m) | Scour (m)   | Scour (m) | Scour (m) | Scour (m)   |
| P1   | 2.08      | 1.88      | 0.2         | 3.31      | 3.31       | 0           | 0         | 0         | 0           | 3.25      | 3.25      | 0           |
| P2   | 5.38      | 5.18      | 0.2         | 11.46     | 11.46      | 0           | 3.32      | 3.32      | 0           | 6.08      | 4.38      | 1.7         |
| P3   | 5.81      | 5.61      | 0.2         | 11.64     | 11.64      | 0           | 4.38      | 4.38      | 0           | 6.08      | 4.38      | 1.7         |
| P4   | 2.8       | 2.61      | 0.2         | 12.6      | 12.6       | 0           | -         | -         | -           | 9.62      | 7.91      | 1.7         |
| P5   | 3.08      | 2.88      | 0.2         | 12.81     | 12.81      | 0           | -         | -         | -           | 9.62      | 7.91      | 1.7         |
| P6   | 3.1       | 2.91      | 0.2         | 12.32     | 12.32      | 0           | -         | -         | -           | 6.08      | 4.38      | 1.7         |
| P7   | 3.1       | 2.9       | 0.2         | 12.39     | 12.39      | 0           | -         | -         | -           | 6.08      | 4.38      | 1.7         |
| P8   | 3.98      | 3.78      | 0.2         | 11.61     | 11.61      | 0           | -         | -         | -           | 3.25      | 3.25      | 0           |
| P9   | 6.4       | 6.2       | 0.2         | 11.1      | 11.1       | 0           | -         | -         | -           | -         | -         | -           |
| P10  | 6.27      | 6.08      | 0.2         | 10.93     | 10.93      | 0           | -         | -         | -           | -         | -         | -           |
| P11  | 3.95      | 3.75      | 0.2         | 11.73     | 11.73      | 0           | -         | -         | -           | -         | -         | -           |
| P12  | 3.59      | 3.4       | 0.2         | 11.91     | 11.91      | 0           | -         | -         | -           | -         | -         | -           |
| P13  | 3.74      | 3.54      | 0.2         | 12.51     | 12.51      | 0           | -         | -         | -           | -         | -         | -           |
| P14  | 3.81      | 3.61      | 0.2         | 12.25     | 12.25      | 0           | -         | -         | -           | -         | -         | -           |
| P15  | 3.96      | 3.76      | 0.2         | 11.64     | 11.64      | 0           | -         | -         | -           | -         | -         | -           |
| P16  | 3.95      | 3.75      | 0.2         | 11.55     | 11.55      | 0           | -         | -         | -           | -         | -         | -           |
| P17  | 3.67      | 3.47      | 0.2         | 3.17      | 3.17       | 0           | -         | -         | -           | -         | -         | -           |
| P18  | 3.55      | 3.36      | 0.2         | -         | -          | -           | -         | -         | -           | -         | -         | -           |
| P19  | 2.16      | 1.97      | 0.2         | -         | -          | -           | -         | -         | -           | -         | -         | -           |
| P20  | 0.32      | 0.32      | 0           | -         | -          | -           | -         | -         | -           | -         | -         | -           |
| P21  | 0.28      | 0.28      | 0           | -         | -          | -           | -         | -         | -           | -         | -         | -           |
| P22  | 0.25      | 0.25      | 0           | -         | -          | -           | -         | -         | -           | -         | -         | -           |
| P23  | 0         | 0         | 0           | -         | -          | -           | -         | -         | -           | -         | -         | -           |

 Table 8.19
 Results of Scouring Computation

Pier No. is indicated as the pier number on calculation.

Source: JICA Survey Team

From the above scouring computations, the scouring depths at each pier were estimated. As for hydraulic issues of the new and existing bridges, the following aspects are left as future challenges:

- ✓ Contraction scour occurs at the existing Thaketa and Thanlyin bridges. Particularly in the existing Thaketa Bridge, contraction scour of 1.7 m will occur due to the decrease of water flow area for the main channel and the pier section. Water flow area at the existing bridge decreases by 18% compared to the upstream cross-section. Regarding the bridge length of the new Bago Bridge, the value of contraction scour is small, and it may not cause any problem.
- ✓ Based on the results of computation, local scouring occurs at all bridges, and is more pronounced at the existing Thanlyin and Thaketa bridges. The riverbed around the piers of both existing bridges is not provided with bed protection works. Therefore, bed protection and refilling works using appropriate materials shall be immediately conducted for the existing piers.
- ✓ Also, for the two new bridges, the study of appropriate bed protection and revetment works shall be conducted during the detailed design stage. In addition, estimation of scouring is necessary to be further studied using other prediction formula including that of HEC during the detailed design stage.

Hydraulic and navigation channel conditions at each proposed bridge site from above study are shown in Table 8.20.

| Item                                      |                                 | Unit              | Bago<br>(Option<br>1)            | Bago<br>(Option<br>2)                         | Bago<br>(Option<br>3)                                                                                         | Thaketa     | Remarks                    |
|-------------------------------------------|---------------------------------|-------------------|----------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|----------------------------|
|                                           | Highest High Water Level (HHWL) | m                 | 7.70                             | 7.70                                          | 7.70                                                                                                          | 7.70        | From probable H.W.L.       |
|                                           | Mean High Water Springs (HWL)   | m                 | 5.80                             | 5.80                                          | 5.80                                                                                                          | 5.80        | From MPA (observed W.L.)   |
| Design Water Level                        | Mean Water Level (MWL)          | m                 | 3.121                            | 3.121                                         | 3.121                                                                                                         | 3.121       | From MPA (observed W.L.)   |
|                                           | Mean Low Water Springs (LWL)    | m                 | 0.67                             | 0.67                                          | 0.67                                                                                                          | 0.67        | From MPA (observed W.L.)   |
|                                           | Chart Datum Level (CDL)         | m                 | 0.00                             | 0.00                                          | 0.00                                                                                                          | 0.00        | From MPA (observed W.L.)   |
|                                           | (1)+(2)                         | $m^{3/s}$         | 18,291                           | 15,502                                        | 14,398                                                                                                        | 2,556       | From hydraulic calculation |
| Design Discharge                          | Upland Flow (River's Own Flow)  |                   | 4,328                            | 3,361                                         | 3,361                                                                                                         | 967         | Falling tide               |
|                                           | (1)<br>100 V Et 1(2)            | 2                 | 12.064                           | 10 1 4 1                                      | 11.027                                                                                                        | 1.500       | 11.1.1.0                   |
|                                           | 100-Year Flood (2)              | m <sup>3</sup> /s | 13,964                           | 12,141                                        | 11,037                                                                                                        | 1,590       | Upland flow                |
|                                           | Maximum Ship Size               |                   | DWT 15,000                       |                                               | Ships crossing the                                                                                            |             |                            |
| Navigation Channel                        | Height                          |                   | 351)                             |                                               | bridges are small                                                                                             |             |                            |
| Limitation<br>(Assuming Future Ships)     | Width                           |                   | 28<br>m(=1.5×<br>in case o<br>wa | 88<br>LOA <sup>2)</sup> ),<br>of Both-<br>ay) | and there is no plan<br>to expand. Hence,<br>these conditions are<br>the same as existing<br>bridge condition |             |                            |
|                                           | Maximum Ship Size               | DWT               | 3,309                            |                                               | (Refer to )                                                                                                   | Table 8 12) |                            |
| Navigation Channel                        | Height                          | m                 | 283)                             |                                               | (                                                                                                             | ,           |                            |
| Limitation<br>(Assuming Current<br>Ships) | Width                           |                   | 139<br>m(=1.5×L                  | .OA <sup>4)</sup> ),                          |                                                                                                               |             |                            |
| S.mpo)                                    |                                 |                   | in case of Both-<br>way)         |                                               |                                                                                                               |             |                            |

 Table 8.20
 Assessment of Proposed Bridges

Source: JICA Survey Team

Note. 1) Determine the height with reference to "Study on Ship Height by Statistical Analysis - Standard of Ship Height of Design Ship (Draft) (National Institute for Land Infrastructure Management, Japan, 2006)".

2) Assumed as "Length overall (of a ro-ro ship) = 192.0 m ". Determine the height with reference to "Technical Standards for Port (Ports & Harbours Association of Japan, 1999)".

3) Height above water level (of a current ship) = 28 m. From an interview with MFSL.

4) Length overall (of a current ship) = 92.45 m. From an interview with MFSL.

Chapter 9

Design for Feasibility Study

# 9. Design for Feasibility Study

# 9.1 Study of Bridge Location and its Proximity to the existing Thanlyin Bridge

The proposed bridge location was selected downstream of the existing Thanlyin Bridge. The alignment of the bridge section is parallel to the existing bridge with a center to center offset of 140 m. This location was selected from three possible locations as illustrated in Figure 9.1.

These three locations were proposed under the following conditions:

- Approach roads of Bago River Bridge shall be connected with existing roads by the shortest length.
- No involuntary resettlement or minimum involuntary resettlement due to project implementation.
- No land acquisition or minimal acquisition of private lands.

It is noted that there are limited road networks in this area. The major roads are Shukhinthar-Mayopat Road and Thanlyin Chin Kat Road on the right bank of the Bago River, and Kyaik Khauk Pagoda Road on the left bank. Furthermore, National Races Village is located upstream of the existing bridge on the right bank of the Bago River, while two private development areas, including Star City, are located downstream of the existing bridge on the left bank side. Having these situations, three routes, namely Route A and Route B in the upstream and Route C in the downstream of the existing bridge, were studied. The horizontal alignment outlines of these routes are given in Table 9.1.



Source: JICA Survey Team

Figure 9.1 Three Possible Bridge Locations

|                              | Route A                                                      | Route B                                                                                                                         | Route C                                                                               |
|------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Location                     | 950 m upstream                                               | 140 m upstream                                                                                                                  | 140 m downstream                                                                      |
| Length                       | 3,440 m                                                      | 2,730 m                                                                                                                         | 2,830 m                                                                               |
| Exiting road to be connected |                                                              |                                                                                                                                 |                                                                                       |
| Right bank                   | Local road traversing the north of<br>National Races Village | Approach road of the existing<br>Thanlyin Bridge                                                                                | Intersection of Shukhinthar-<br>Mayopat Road and Thanlyin<br>Chin Kat Road            |
| Left bank                    | Kyaik Khauk Pagoda Road                                      | Kyaik Khauk Pagoda Road                                                                                                         | Kyaik Khauk Pagoda Road                                                               |
| Outline of Alignment         |                                                              |                                                                                                                                 |                                                                                       |
| Right bank                   | Running the east fringe of National Races Village.           | Starts from the approach road of<br>the existing Thanlyin Bridge and<br>traverses the west fringe of<br>National Races Village. | Starts from the intersection, and traverses the Myanmar Railways-<br>owned land.      |
| Left bank                    | Approach road uses the existing<br>Bogyoke Road alignment.   | Traverses the west fringe of a private land and connects with the existing road.                                                | Traverses a land owned by<br>Myanmar Railways and connects<br>with the existing road. |

 Table 9.1
 Brief Aspects of the Three Studied Routes

Features of these three routes are described as follows:

- Route A On the right bank, the route connects to a local road at a T-shaped intersection. This is not appropriate for the Bago River Bridge Project which is expected to form a major road network.
  - On the right bank, the route traverses a small dock area. In case Route A is selected, the operation of this small dock shall be abandoned.
  - On the left bank, the route will utilize the existing Bogyoke Road alignment up to the link point with Kyaik Khauk Pagoda Road in a T-shaped intersection. This existing road is around 10 m wide, and runs through the center of the township area. In order to accommodate the dual two-lane approach road for Bago River Bridge, the widening of existing road is inevitable. Consequently, land acquisitions and involuntary resettlement would be generated.
- Route B On the right bank, the route crosses under the existing railway and traverses the green space at the fringe of National Races Village. In case Route B is selected, it will be necessary to cut down many trees.
  - On the left bank, the route passes through the western fringe of a private land, and connects to Kyaik Khauk Pagoda Road after it crosses under the existing railway.
  - Thus, the route will cross under the existing railway twice. Although the railway crossing points are in the approach road section and the actual running speed at these points will not be fast, it is considered inappropriate to have two rather sharp bending portions when the design speed of the Project is 80 km/h.
- Route C On the right bank, the route starts from the intersection between Shukhinthar-Mayopat Road and Thanlyin Chin Kat Road, and traverses a land owned by Myanmar Railways, which has no permanent houses or assets at the moment.
  - On the left bank, the route also passes through a land owned by Myanmar Railways, which is empty at the moment, and connects to Kyaik Khauk Pagoda Road smoothly.
  - Among the three routes, it was judged that Route C has smoothest horizontal alignment and is appropriate for the project design speed of 80 km/h.

Based on the above considerations, Route C was adopted as the bridge location adjacent to the existing Thanlyin Bridge.

# 9.2 Continuity with Thilawa SEZ Access Road

The existing Kyaik Khauk Pagoda Road will be upgraded to a dual two-lane road similar to Thilawa SEZ Access Road that starts from a point near the existing Thanlyin Bridge to the proposed Thilawa SEZ Area. Figure 9.2 shows the proposed horizontal alignment for Thilawa SEZ Access Road. It is believed that the new Bago River Bridge along with its approach roads shall be connected to Thilawa SEZ Access Road and form one continuous trunk road.

Figure 9.3 shows the horizontal alignment elements and coordinates of SEZ Access Road end section. Figure 9.4 shows the vertical alignment and proposed height of the same section.

Based on these data, the data summary of the point to which the approach road for Bago Bridge connects is as follows:

 $\checkmark$ Station on SEZ Access Road: End Point Coordinates:

8 + 700.000(205789.549518, 1857219.291051)

- Horizontal Alignment Element: ✓
  - Straight Line
- Proposed Height:  $\checkmark$

✓

✓

- 5.380 m -0.04%
- Vertical grade:







#### Figure 9.3 **SEZ Access Road Horizontal Alignment**

As shown in Figure 9.5, SEZ Access Road was proposed to have two typical cross sections for two different ROW width sections. It is noted that the outer shoulder and median widths are different from the proposed crosssectional arrangement of the Project. It is required to provide a transition section in order to adjust these width differences.



Source: JICA Survey Team

Horizontal Alignment of Figure 9.2 Thilawa SEZ Access Road





Figure 9.4 **SEZ Access Road Profile** 





# 9.3 Structural Design

# 9.3.1 Design of Superstructures

The design of the superstructure is preliminarily performed for the recommended bridge from among the alternatives. The purpose of the preliminary design is to define the structural element sizes so that better estimates of cost and constructability could be obtained. The refinement of alternative study also allows the preliminary design to have a more efficient structure and to more accurately show those member sizes which are reflected in the drawing. Structural analysis are initially carried out for each of the recommended types of superstructure in order to assess the vertical reaction loads from the superstructure for the design of substructure and foundation and structural stability considering site specific loadings such as temperature, stream flow, wind and seismic loads. Types of superstructure applied for Bago River Bridge are a cable-stayed bridge and a continuous steel box girder with steel plate deck for the main bridge, and continuous PC box girder for the approach bridge as shown in Figure 9.6.

# **Steel Cable-stayed Bridge**

Steel cable-stayed bridge having a total length of 448 m consists of the main channel bridge with a center span of 224 m and side span of 112 m on both sides of the main bridge as shown in Figure 9.6 and Figure 9.7. Configurations of the cable-stayed bridge are determined in the following studies:



Source: JICA Survey Team







The Preparatory Survey for The Project for Construction of Bago River Bridge

Final Report

# (1) Arrangement of Stay Cables

From the various longitudinal cable arrangements of steel cable-stayed bridges, two basic systems, namely parallel and fan-shaped systems as shown in Figure 9.8, are recommended. The parallel-shaped system may be preferred from an aesthetic point of view. However, it has a tendency to cause bending moment in the tower as it requires a higher tower than for a fan-shaped system. In addition, the lower cables are fixed at the lower part of the tower leg that do not function properly as stay cables. The quantity of steel and cable required for a parallel-shaped cable arrangement is slightly higher than for a fan-shaped arrangement. Therefore, the fan-shaped system is applied for Bago River Bridge in consideration of technical and economical points.



**Parallel System** 

Source: JICA Survey Team

- Figure 9.8 Stay Cable Arrangements
- (2) Position of Stay Cables

There are two alternative layouts that may be adopted when using the fan-shaped system: the cable anchorages may be situated outside the deck structure (double plane system), or they may be built inside the main girder (single plane system) as shown in Figure 9.9. The single plain system is better than the double plain system for small cable-stayed bridges and will be applied for Bago River Bridge due to the following reasons:





- 1) Single plane of stay cables along the longitudinal axis located in the wide central median of superstructure will not be affected by any traffic limit even in a curve alignment.
- 2) Single plane system creates a lane separation so that there can be a smooth natural continuation of the approach bridge to the cable-stayed bridge.
- 3) It is an economical and aesthetically acceptable solution, providing an unobstructed view from the bridge.
- 4) In addition, this system also offers the advantage of requiring relatively small piers, because pier size is determined by the width of the main girder.

In the case of a single plane system, the towers are generally fixed to one main box girder. With this arrangement, it is necessary not only to reinforce the box girder but also to provide strong bearings for the towers. The supports should also resist the horizontal forces caused by the increased friction forces in the bearings due to temperature.

(3) Taper Length

For the bridge is adopted the single plane system, the center strip shall be wider than the standard cross section and the taper shall be introduced to the carriageways. The shift length to lateral direction is 0.85m to each side. Application of the Japanese Road Specifications, the taper length is calculated as 34.0m.

L=VxdW/2=80x0.85/2=34.0

Here, L: taper length (m)

V: design speed (km/h)

dW: shift length to lateral direction

# Continuous Steel Box Girder with Steel Plate Deck

Continuous steel box girder bridge, having a total length of 776 m, consists of five main spans of 112 m each, a side span of 112 m in the Thanlyin side, and a side span of 104 m in the Yangon side as shown in Figure 9.6 and Figure 9.10. Configuration of the steel box girder with steel plate deck reinforced by ribs and its wearing surface are determined in the following studies:

(1) Continuous Steel Box Girder with Steel Plate Deck

For relatively small spans in the 60-90 m range, it is convenient to use a reinforced concrete deck with steel box girder acting as a composite section as the main girder. On the other hand, for spans over 100 m, steel plate deck systems with crossbeams and longitudinal ribs have been widely used to reduce the weight and depth of girders. In the design of long-span bridges, dead load of steel plate deck is 30-40% lower than concrete deck slab. For the main spans of Bago River Bridge, three types of steel box girders with steel plate deck are considered as shown in Table 9.2. Twin narrow width rectangular box girder is applied for this type of main bridge in consideration of the fabrication capacity and welding techniques of Myanmar companies and transportation route to the site. In addition, small box girders will require smaller erection equipment and simplified fabrication steps.



122

Figure Figure 9.10 Configuration of Continuous Steel Box Girder with Steel Plate

| Arrangement                                                      | Deck Cross Section |     |       |  |     | Comments                                                                                                                             |  |  |
|------------------------------------------------------------------|--------------------|-----|-------|--|-----|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. Single Rectangular Box Girder                                 | 900/               |     | 00000 |  | 000 | Fabrication and transportation of box girders are difficult and erection will require larger equipment.                              |  |  |
| 2. Twin Rectangular Box Girder                                   | 4                  |     |       |  |     | Since interval of box girder is narrow, it is<br>reasonable for reinforced concrete slab but not<br>economical for steel plate deck. |  |  |
| <ol> <li>Twin Narrow Width Rectangular<br/>Box Girder</li> </ol> |                    | 000 | 00000 |  |     | Fabrication and transportation of box girder are<br>relatively easy and erection will requiresmaller<br>equipment.                   |  |  |

 Table 9.2
 Type of Main Girder of Steel Box Girder

(2) Rib

The open- and closed-rib systems are the basic types of ribs. Ribs are normally welded to the transverse floor beams and steel deck plate as shown in Figure 9.11. The trapezoidal rib (called U-Rib in Japan) has been widely used and is the most practical for steel plate deck of long span steel box girders and cable-stayed bridges in Japan.



Source: JICA Survey Team

# Figure 9.11 Details of Trapezoidal Rib connected to Steel Plate Deck and Floor Beam

(3) Wearing Surface on Steel Plate Deck

Typical structures of wearing surface on steel plate deck are: 1) guss asphalt and 2) epoxy asphalt concrete, which are commonly applied on base course to function as waterproofing layer, as shown in Figure 9.12. The structure of wearing surface used in Japan is 35 mm for guss asphalt and 25 mm for densely graded asphalt concrete.





Figure 9.12 Typical Structures of Wearing Surface on Steel Deck

The performances of both wearing surfaces on steel plate decks vary from poor to excellent depending largely on local climate, deck plate flexibility, and volume of heavy truck traffic. In general, comparing between guss asphalt and epoxy asphalt concrete, the performance and condition of the latter is better but the cost is higher. On the other hand, the application of guss asphalt is economical and simple using penetration asphalt as a binder heated to a high temperature of over 200°C and applied, usually by pouring and leveling by guss asphalt finisher or by hand. Moreover, it has been used widely and successfully for steel plate deck of long span bridges in Japan.

In this feasibility study, it is recommended that guss asphalt be applied over the base course of wearing surface on continuous steel box girder and steel cable-stayed bridge. However, further laboratory studies and field tests are necessary in order to determine the most appropriate wearing surface on steel deck bridge considering local climate and its cost.

# Continuous PC Box Girder with Precast Segmental and Span by Span Method

Continuous PC box girder bridge, having a total length of 704 m, consists of the approach bridge, six spans of 50 m each in the Yangon side and two spans of 52 m and six spans of 50 m each in the Thanlyin side, as shown in Figures 9.6, 9.13, and 9.14.

Continuous PC box girder for the approach bridge uses precast segmental construction, which is widely used in the world. The segmental method has the following advantages:

- 1) Concrete segments are produced under high quality control standards using a casting machine.
- 2) Site works can be minimized and construction period can be greatly shortened in comparison with cast in situ construction method.
- 3) This precast segment method is still new in Myanmar but possible to be applied widely not only for river bridges but also for viaducts in urban areas.



125


Figure 9.14 Configuration of Continuous PC Box Girder (2/2)

Single-cell box girder, which is used for the approach bridge in this design, provides the most efficient section for precast segment construction and its inclined webs improve aesthetics. Span-to-depth ratio for constant-depth PC box girders is between 16 and 20. However, box girders shallower than 2 m in depth has practical difficulties for stressing operations inside the box. As girder depth at the connection between cable-stayed bridge and continuous steel box girder is 3.0 m, girders of with a constant depth of 3.0 m is used for continuous PC box girder in order to maintain a constant horizontal line through the whole bridge length, and its span length of 50 m is in the economical range in this feasibility study. Span-by-span erection is selected for the segmental PC box girders because the erection equipment is widely used for spans shorter than 50 m and easily procured in neighbouring countries.

### 9.3.2 Design of Substructure and Foundations

As described above, geological investigation was carried out at five locations. The layer supporting the foundation is assumed as shown in Figure 9.15 based on the geological investigation results.



Figure 9.15 Assumed Supporting Layer

The outline design of foundation is carried out for the following four types in consideration of location (in and out the river) and type of superstructure:

- Type 1: In the River (Section of Steel Stay Cable)
- Type 2: In the River (Section of Steel Box Girder with Steel Plate Deck)
- Type 3: In the River (Section of PC Box Girder)
- Type 4: On the Land (Section of PC Box Girder)

As described in Section 6.3.1, Study on Foundation Type, steel pipe sheet pile foundation is used for foundations in the rivers in consideration of deep-water construction, scouring, and technical transfer from Japan. Cast-in-place concrete pile is used for foundations on land.

### 9.3.3 Design of Substructures

An oval or round shape for the substructure can be applied as described in Section 6.3.3, Study on Substructure Type. This bridge has a relatively wide width with four lanes; and in consideration of smooth river flow, oval-shaped piers shall be used.

The shapes of substructure and foundation based on the outline design are shown in Figure 9.16.





Steel Cable-stayed Bridge Section In the River

Steel Box Girder with Steel Plate Deck Section In the River

Variou

6000

2000

2144





PC Box Girder Section In the River Source: JICA Survey Team



Figure 9.16 Substructure and Foundation Shapes

#### 9.3.4 **Design of Abutments**

Inverted T shape is applied to the abutments in consideration of cost and constructability as described in Section, 6.3.4 Study on Abutment Type.

The shapes of abutment based on the outline design are shown in Figure 9.17.



Figure 9.17 Abutment Shapes

### 9.4 Highway Design

### 9.4.1 Alignment Design

The horizontal and vertical alignments were reviewed, adjusted, and finalized based on the draft output of the topographic survey. On the right bank, the route starts from the intersection between Shukhinthar-Mayopat Road and Thanlyin Chin Kat Road and traverses a land owned by Myanmar Railways. The horizontal alignment was adjusted so as not to affect the local road running along the western side of the Myanmar Railways-owned land. On the left bank, the route also traverses the Myanmar Railways-owned land and connects smoothly to Kyaik Khauk Pagoda Road. The end point of the alignment is the starting point of Thilawa SEZ Access Road.

Taking into consideration the drainage efficiency, the main bridge section has 0.30% vertical grade with a crest at the centre of the main bridge section. Vertical grades at both sides of this 0.30% section, approach bridges, and approach roads, were proposed at 2.50%.

The plan and profile of Bago River Bridge are given in Appendix 9.

#### 9.4.2 Cross Sectional Arrangement

The cross sectional elements are as follows:

| Sectional Element | Width             |
|-------------------|-------------------|
| Carriageway       | 2@3.50 m = 7.00 m |
| Inner shoulder    | 0.50 m            |
| Outer shoulder    | 1.50 m            |
| Median            | 0.60 m            |
| Sidewalk          | 2.00 m            |

According to the information from the geological investigation, the existence of soft ground layer was confirmed at the riverbank area. Therefore, it is required to implement soft ground treatment works. As it is difficult to know the extent of the soft ground area in this Preparatory Survey stage, a concrete structure with concrete pile was proposed as shown in Figure 9.18.



Source: JICA Survey Team

Figure 9.18 Typical Earthwork Cross Section

In the bridge section, the width of outer shoulder was reduced to 0.50 m as shown in Figure 9.19.





Figure 9.19 Typical Bridge Cross Section (Steel Box Girder)

### 9.4.3 Necessity of Soft Ground Treatment

The geological investigations found the soft soils, with N-Value ranging from 0 to 5, exist at both the right and left banks of the Bago River. Therefore, it is needed to provide soft ground treatment for the construction of the approach road. Figure 9.20 shows the data extracted from the boring logs of BH-01 and BH-05, which were conducted on the land side. According to the geological investigation, the left bank of the Bago River has thicker soft soil layers of around 10-20 m.

For soft ground treatment, the following methods are usually applied:

- ✓ Soil Replacement with Preloading
- ✓ Vertical Drain with Preloading

The vertical drain system would be sand drain or prefabricated vertical drain (PVD).

- ✓ Vacuum Consolidation with Preloading
- ✓ Soil Cement Columns
- ✓ Piled Foundation System (piles and a concrete slab)

The method shall be selected based upon the characteristics of soil, soft soil depth, soft soil areal extent, and others such as constraints of construction period and available budget. In this Preparatory Survey, it is not possible to select the improvement method as the details of spreading situation of soft soil layers are not available.

As shown in Figure 9.18, an inverted T-shaped retaining wall with continuous footing with piles was used for the design of the approach road section, which will require minimal land area for construction in the urban area and give safer stability against soft ground behaviour.

| в     | ORE H            | OLE N              | io. B                                  | H-01                              |                            |                      |                                                                                                                                                                                                                                  | В                                                                                   | ORING                            | LOG        | ł                   |             |                 |                             |                    |                             |    | Job N             | lo. F                        | KYB-20 | 713-02  | el<br>OF | _     |
|-------|------------------|--------------------|----------------------------------------|-----------------------------------|----------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------|------------|---------------------|-------------|-----------------|-----------------------------|--------------------|-----------------------------|----|-------------------|------------------------------|--------|---------|----------|-------|
| F     | ROJECT           | NAME               | : <u>s</u>                             | oil Investiga                     | tion for Bas               | go River B           | ridge Project                                                                                                                                                                                                                    |                                                                                     | BORING EQU                       | JIPMENT    |                     | : TOHO "D1" |                 |                             |                    | DATE : 12.10.2013 1         |    | To 18.            | 10.20                        | 13     | -       |          |       |
|       | OCATIC<br>BROUND | N<br>LEVEL<br>NATE | : <u>T</u><br>: <u>4</u><br>: <u>E</u> | hanlyin Tow<br>.506m<br>205414.38 | nship, Yanj<br>4 ; N 18575 | gon Region<br>87.742 | n Region.         BORING METHOD         : Rotary Direct Circulation         CLIENT           ORIENTATION         : Vertical         J           //742DEPTH         : 62.00m         GROUND WATER LEVEL         : 1.50m         J |                                                                                     |                                  |            |                     | JIC         | JICA STUDY TEAM |                             |                    |                             |    |                   |                              |        |         |          |       |
| F     |                  |                    |                                        |                                   |                            | 22                   |                                                                                                                                                                                                                                  |                                                                                     |                                  | ÷          | *                   |             |                 | STANDA<br>TES               | RD PENI<br>I METHO | ETRATION TES<br>DD ( ASTM ) | т  |                   | SAM                          | PLING  |         | Γ        | П     |
| Î     | (m) NOL          | 3L - (m)           | (III) SSE(III)                         | 3                                 | 2                          | VE DENSI<br>NSISTENC | AMB                                                                                                                                                                                                                              | SOIL DESCRIPTION                                                                    |                                  | t DEPTH (e | (DEPTH (            | DEPTH (m    | (m)10           | due<br>30cm)                | CU                 | RVE OF BLOW                 | •  | PLE<br>& No.)     | 3L - (m)                     |        |         |          | Ê     |
| SCALE | ELEVA'           | DEPTH              | THICK                                  | DIAGR                             | COLOU                      | RELATI<br>(or) CC    | SOIL N                                                                                                                                                                                                                           |                                                                                     |                                  | DATE&      | CASING              | WATER       | HLAND           | N-V <sub>1</sub><br>(Blows/ | 0 10               | (Blows / 30cm)<br>20 30 40  | 50 | SAN<br>Gype       | DEFTH                        | TCR (% | SCR (%) | RQD (%   | SCALE |
| 1     | 2.51             | 2.00               | 2.00                                   |                                   | brown                      |                      | Silty<br>SAND                                                                                                                                                                                                                    | brown, moist, fine to medium<br>SAND, with trace of mica minera<br>Filled Materials | grained, Silty<br>ls             |            |                     | ¥           | 1.00            | 1/20                        |                    |                             |    | A-1<br>A-2<br>A-3 | 0.50<br>1.00<br>1.50<br>2.00 |        |         |          | 1     |
| 3     | -                |                    |                                        |                                   |                            |                      |                                                                                                                                                                                                                                  |                                                                                     |                                  |            |                     |             | 3.00            | 1/30                        |                    |                             |    | Р-1<br>0т-1       | 2.45<br>3.00                 |        |         |          | - 3   |
| 4     |                  |                    |                                        |                                   | light<br>gray<br>to        | Very<br>soft         | CLAY-I                                                                                                                                                                                                                           | Very soft to soft, light gray to<br>wet, low to medium plastic CL.                  | gray, moist to<br>AY, with trace |            |                     |             | 4.00            | 0/42 (                      |                    |                             |    | P-2               | 3.80<br>4.00<br>4.45         |        |         |          | 4     |
| 1     |                  |                    |                                        |                                   | gray                       | soft                 |                                                                                                                                                                                                                                  | GL-(10.0~10.5)m, fine grained                                                       | , Silty SAND                     |            | <u>5.00</u><br>Ø112 |             | 5.00            | 2/30                        |                    |                             |    | P-3               | 5.00<br>5.45                 |        |         |          | 5     |
|       |                  |                    |                                        |                                   |                            |                      |                                                                                                                                                                                                                                  | layer are observed as interclated l                                                 | ayer                             |            |                     |             | 6.00            |                             |                    |                             |    | U<br>П            | 6.00<br>(#)cm<br>6.80        |        |         |          | _6    |
|       |                  |                    |                                        |                                   |                            |                      |                                                                                                                                                                                                                                  |                                                                                     |                                  |            |                     |             | 8.00            | 1/30                        | 1                  |                             |    | P-4               | 7.00                         |        |         |          | É     |
|       |                  |                    |                                        |                                   |                            |                      |                                                                                                                                                                                                                                  |                                                                                     |                                  |            |                     |             | 9.00            | 2/30                        | 1                  |                             |    | P-5               | 8.45                         |        |         |          | -     |
|       |                  |                    |                                        |                                   |                            |                      |                                                                                                                                                                                                                                  |                                                                                     |                                  | 12 10 13   |                     |             | 10.00           |                             | Ň                  |                             |    | 610<br>10         | 9.80                         |        |         |          | 10    |
| 1     | -6.49            | 11.00              | 9.00                                   |                                   |                            |                      |                                                                                                                                                                                                                                  |                                                                                     |                                  | 10.00      | 1                   |             | 11.00           | 7/30                        | /                  |                             |    | P-6               | 10.45<br>11.00               |        |         |          | 11    |

BH-01 Boring Log: Left Bank

| в                 | ORE H    | OLE N                 | io. B                       | H-05                               |                             |                             |                                                                                                                                                                                                                                           | <u>B</u>                                                                                                                                                       | ORING                                             | LOG     | ł                   |                                                                                             |                      |                        |                  |                       |                         |         | Job N              | 6. F.<br>Sh                                                          | KYB-20<br>eet No. | 13-02   | 21<br>OF | 2         |
|-------------------|----------|-----------------------|-----------------------------|------------------------------------|-----------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------|---------------------|---------------------------------------------------------------------------------------------|----------------------|------------------------|------------------|-----------------------|-------------------------|---------|--------------------|----------------------------------------------------------------------|-------------------|---------|----------|-----------|
| Р                 | ROJECT   | NAME                  | : <u>s</u>                  | oil Investiga                      | tion for Bas                | to River B                  | ridge Project                                                                                                                                                                                                                             |                                                                                                                                                                | BORING EQU                                        | JIPMENT |                     | : <u>TO</u>                                                                                 | łO "D1"              |                        |                  | DATE : 23.10          |                         | 10.2013 | To 29              | .10.20                                                               | 13                |         |          |           |
| L<br>G<br>C       | ROUNE    | DN<br>D LEVEI<br>NATE | <u>יד</u> :<br>4-: 4<br>1-: | haketa Tow<br>.962m<br>3 204429.64 | nship, Yang<br>0 ; N 18592  | on Region                   | Region.         BORING METHOD         : Rotary Direct Circulation         CLIENT           ORIENTATION         : Vertical         JIC           371         DEPTH         : 50.00m         GROUND WATER LEVEL         : 3.50m         JIC |                                                                                                                                                                |                                                   |         |                     | ЛC                                                                                          | CA STUDY TEAM        |                        |                  |                       |                         |         |                    |                                                                      |                   |         |          |           |
|                   |          |                       |                             |                                    |                             | Èà                          |                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                   | î       | *<br>1000           | 1                                                                                           |                      | STANDA<br>TES          | RD PEN<br>I METH | ETRATIC<br>OD ( ASI   | ON TEST                 |         |                    | SAM                                                                  | PLING             |         |          |           |
|                   | (m)<br>N | ĵ.                    | )<br>S                      |                                    |                             | DENSI                       |                                                                                                                                                                                                                                           | SOIL DESCRIPTION                                                                                                                                               |                                                   | I) HL43 | DEPTH<br>TER (mr    | EPTH (a                                                                                     | Ĵ.                   | . 8                    | α                | RVE OF                | BLOW                    | •       | Ra)                | (m)<br>-                                                             |                   |         |          |           |
| SCALE (m)         | ELEVATIC | DEFTH GL              | THICKNES                    | DIAGRAM                            | COLOUR                      | RELATIVE<br>(of) CONS       | NVN TIOS                                                                                                                                                                                                                                  |                                                                                                                                                                |                                                   | DATE&D  | CASING ()<br>DIAMET | WATER DI                                                                                    | DEFTH GL             | N-Value<br>(Blows / 30 | 0 10             | N-V<br>(Blows<br>20 3 | 'aluc<br>/30cm)<br>0 40 | 50      | SAMPL<br>(Type & ] | DEPTH GL                                                             | TCR (%)           | SCR (%) | RQD (%)  | SCALE (m) |
| 1                 | 1.07     | 2.00                  | 2.00                        |                                    | brown                       | Soft                        | CLAY                                                                                                                                                                                                                                      | Soft, brown, moist, low to r<br>CLAY with silt, with trace of<br>fragments, and brick fragments<br>Filled Materials                                            | nedium plastic<br>decayed wood                    |         |                     |                                                                                             | 1.00                 | 3/30<br>3/30           | Ţ                |                       |                         |         | P-1<br>P-2         | 1.00<br>1.45<br>2.00<br>2.45                                         |                   |         |          | . 1 . 2   |
| 31 . 41 . 51 . 61 | 1.96     | 3.00                  | 3.00                        |                                    | light<br>gray<br>to<br>gray | Very<br>soft<br>to<br>soft  | CLAY-I                                                                                                                                                                                                                                    | Very soft to soft, light gray to g<br>to medium plastic CLAY, with<br>sand                                                                                     | ray, moist, low<br>h trace of fine                |         | <u>5.00</u><br>Ø112 | ¥                                                                                           | 3.00<br>4.00<br>5.00 | 1/30<br>2/30           | ł                |                       |                         |         | р-3<br>Р-4<br>рта  | 3.00<br>3.00<br>4.00<br>4.45<br>5.00<br>5.45<br>6.00<br>5.45         |                   |         |          | 1 4 N 0   |
| 7 .8 .91 .10      | -2.04    | 7.00                  | 4.00                        |                                    | дтяу                        | Very<br>soft<br>to<br>stiff | Sandy<br>CLAY-I                                                                                                                                                                                                                           | Very soft to stiff, gray, moist,<br>plasticity, fine grained, Sandy Cl<br>of micra minerals<br>GL-(8.0-8.5)m and GL-(12.0-<br>clav with all lawrs are observed | low to medium<br>AY, with trace<br>-12.5)m; gray, |         |                     | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 7.00<br>8.00<br>9.00 | 10/30<br>5/30          | ł                |                       |                         |         | P-5<br>••-3<br>P-6 | 2700<br>7,45<br>8,00<br>8,45<br>9,00<br>8,45<br>9,00<br>8,45<br>9,00 |                   |         |          | 7 8 9 10  |

BH-05 Boring Log: Right Bank

Figure 9.20 Extraction of Boring Log at Land Side

### 9.4.4 Study on Pavement Structure

The pavement structure of approach road section was studied using the AASHTO Guide for Design of Pavement Structures, 1993. In this guide, the pavement structure is designed by taking the vehicle's cumulative axle load in terms of equivalent single axle load (ESAL) during the design period. In this study, a design period of 20 years was used Table 9.3 shows the forecasted traffic volumes in 2018, 2025, and 2035 at Bago River Bridge conducted by YUTRA. The traffic volume given in the said table is the total sectional traffic volume on Bago River Bridge in passenger car unit (pcu) per day.

| _    |                          |            |        |           | Uni       | t: pcu/day | у      |
|------|--------------------------|------------|--------|-----------|-----------|------------|--------|
| Year | Crossing Section         | Motorcycle | Car    | Taxi      | Bus       | Truck      | Total  |
| 2019 | Existing Thanlyin Bridge | 841        | 12,446 | 9,195     | 534       | 4,583      | 27,600 |
| 2016 | Bago River Bridge        |            | ١      | Not const | ructed ye | t          |        |
| 2025 | Existing Thanlyin Bridge |            |        | Occupied  | l by BRT  |            |        |
| 2025 | Bago River Bridge        | 1,089      | 19,103 | 9,319     | 2,530     | 4,610      | 36,651 |
| 2035 | Existing Thanlyin Bridge |            |        | Occupied  | l by BRT  |            |        |
|      | Bago River Bridge        | 1,352      | 27,593 | 12,874    | 1,106     | 6,578      | 49,503 |

 Table 9.3
 Traffic Demand Forecast at Bago River Bridge Section

Source: JICA Survey Team

If the bridge construction is assumed to commence in late 2017, Bago River Bridge will be opened to the public in late 2019. Therefore, ESAL shall be estimated based on the traffic volume in 2020 to 2039. Table 9.4 shows the traffic volume in pcu from 2018 to 2039, applying interpolation and extrapolation of given values in Table 9.3, with total traffic volume from 2020 to 2039 in pcu/day.

|                                    |            |         |         |        | Unit    | : pcu/day |
|------------------------------------|------------|---------|---------|--------|---------|-----------|
| Year                               | Motorcycle | Car     | Taxi    | Bus    | Truck   | Total     |
| 2018                               | 841        | 12,446  | 9,195   | 534    | 4,583   | 27,600    |
| 2019                               | 873        | 13,232  | 9,213   | 667    | 4,587   | 28,741    |
| 2020                               | 906        | 14,067  | 9,231   | 833    | 4,591   | 29,929    |
| 2021                               | 940        | 14,955  | 9,249   | 1,040  | 4,595   | 31,167    |
| 2022                               | 975        | 15,899  | 9,267   | 1,299  | 4,599   | 32,456    |
| 2023                               | 1,012      | 16,903  | 9,285   | 1,622  | 4,603   | 33,798    |
| 2024                               | 1,050      | 17,970  | 9,303   | 2,026  | 4,607   | 35,196    |
| 2025                               | 1,089      | 19,103  | 9,319   | 2,530  | 4,610   | 36,651    |
| 2026                               | 1,113      | 19,819  | 9,625   | 2,329  | 4,777   | 37,769    |
| 2027                               | 1,137      | 20,561  | 9,941   | 2,144  | 4,950   | 38,922    |
| 2028                               | 1,162      | 21,331  | 10,267  | 1,974  | 5,129   | 40,110    |
| 2029                               | 1,187      | 22,130  | 10,604  | 1,817  | 5,315   | 41,334    |
| 2030                               | 1,213      | 22,959  | 10,952  | 1,673  | 5,507   | 42,595    |
| 2031                               | 1,240      | 23,819  | 11,312  | 1,540  | 5,706   | 43,895    |
| 2032                               | 1,267      | 24,711  | 11,684  | 1,418  | 5,912   | 45,234    |
| 2033                               | 1,295      | 25,637  | 12,068  | 1,305  | 6,126   | 46,614    |
| 2034                               | 1,323      | 26,597  | 12,464  | 1,201  | 6,348   | 48,036    |
| 2035                               | 1,352      | 27,593  | 12,874  | 1,106  | 6,578   | 49,503    |
| 2036                               | 1,382      | 28,627  | 13,297  | 1,018  | 6,816   | 51,014    |
| 2037                               | 1,412      | 29,699  | 13,734  | 937    | 7,063   | 52,571    |
| 2038                               | 1,443      | 30,811  | 14,185  | 863    | 7,319   | 54,175    |
| 2039                               | 1,475      | 31,965  | 14,651  | 794    | 7,584   | 55,828    |
| Total pcu/day<br>from 2020 to 2039 | 23,973     | 455,156 | 223,312 | 29,469 | 112,735 | 846,797   |

Table 9.4Traffic Volume from 2018 to 2039

PCU conversion rates of YUTRA are given in Table 9.5. Applying these rates, the total traffic volume in vehicles/day from 2020 to 2039 was calculated as shown in Table 9.6.

| Vehicle Type           | Motor Cycle | Car  | Taxi | Bus  | Truck |
|------------------------|-------------|------|------|------|-------|
| PCU<br>Conversion Rate | 0.25        | 1.00 | 1.00 | 1.75 | 1.75  |

| Table 9.5 | PCU | <b>Conversion Rate</b> |
|-----------|-----|------------------------|
|-----------|-----|------------------------|

Source: JICA Survey Team

#### Table 9.6Total Traffic Volume from 2020 to 2039 (in vehicles/day)

| Vehicle Type                            | Motor Cycle | Car     | Taxi    | Bus    | Truck  |
|-----------------------------------------|-------------|---------|---------|--------|--------|
| Total vehicles/day<br>from 2020 to 2039 | 95,892      | 455,156 | 223,312 | 16,839 | 64,420 |

Source: JICA Survey Team

A unit of ESAL is 18 kip, where kip stands for 1,000 pounds-force, which is equivalent to 4.4482216 kN. Therefore, 18 kips is equivalent to 80 kN, or 8.157 tonne-force. Table 9.7 shows equivalency factors (or load equivalency values) for converting axle load of each vehicle class into ESAL numbers.

| Table 9.7Equivalency | Factor of Vehicles |
|----------------------|--------------------|
|----------------------|--------------------|

| Type of Vehicle      | Equivalency Factor |
|----------------------|--------------------|
| Passenger Car        | 0.001              |
| Bus                  | 0.87               |
| Rigid trucks 2-axles | 0.98               |

Source: JICA Survey Team

As seen in Table 9.7, the equivalency factor for a passenger car is small; hence, the value for motorcycles is negligible. Therefore, motorcycles are excluded in the traffic volume for the estimation of ESAL.

ESAL number is calculated using the following formula:

 $ESAL = D_D \times D_L \times \hat{w}_{18}$ 

where,  $D_D$  : a directional distribution factor = 0.5

 $D_L$  : a lane distribution factor = 0.8

 $\hat{w}_{18}$  : the cumulative two-directional 18 kip ESAL units

=  $\Sigma$  (cumulative two-directional traffic volume/day of each vehicle class × 365 days × equivalency factor)

Applying the traffic volumes in Table 9.4, ESAL number was calculated in Table 9.8 as 11,455,160.

| Vehicle Type                                                      | Car                                                                                           | Taxi       | Bus       | Truck      | Total                       |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|-----------|------------|-----------------------------|--|--|--|
| Total vehicles/day<br>from 2020 to 2039                           | 455,156                                                                                       | 223,312    | 16,839    | 64,420     |                             |  |  |  |
| Total vehicles<br>from 2020 to 2039<br>(vehicles/day×365<br>days) | 166,131,940                                                                                   | 81,508,880 | 6,146,235 | 23,513,300 |                             |  |  |  |
| Equivalency Factor                                                | 0.001                                                                                         | 0.001      | 0.87      | 0.98       |                             |  |  |  |
| ŵ18                                                               | 166,132                                                                                       | 81,509     | 5,347,224 | 23,043,034 | $\hat{w}_{18} = 28,637,899$ |  |  |  |
|                                                                   | $ESAL = D_D \times D_L \times \hat{w}_{18} = 0.5 \times 0.8 \times \hat{w}_{18} = 11.455.160$ |            |           |            |                             |  |  |  |

| Table 9.8 | Calculation of $\hat{w}_{18}$ |
|-----------|-------------------------------|
|-----------|-------------------------------|

Based on this obtained ESAL number, the following pavement structure was estimated:

| Asphalt concrete surface course: | 4 cm  |
|----------------------------------|-------|
| Asphalt concrete binder course:  | 6 cm  |
| Base course:                     | 30 cm |
| Subbase course:                  | 35 cm |

Assumptions in major input values for estimating the layer thickness of pavement structure were given in Table 9.9. Including an assumed CBR of 7% for subgrade, there are many uncertain variables at this stage. The pavement structure must be reviewed in the detailed design stage by utilizing the laboratory test results of available materials for the Project.

|                          | input value rissumptions                                         |                    |
|--------------------------|------------------------------------------------------------------|--------------------|
|                          | Design Input Requirements                                        | Value              |
| Design Variables         | Performance Period (years)                                       | 20                 |
|                          | Reliability                                                      | 90                 |
| Performance Criteria     | Design Serviceability Loss, APSI                                 | 1.7                |
| Material Properties      | Roadbed Soil CBR                                                 | 7%                 |
| _                        | Effective Roadbed Soil Resilient Modulus, MR (psi)               | $1,500 \times CBR$ |
|                          | Subbase Course Resilient Modulus, MR (psi)                       | 15,000             |
|                          | Base Course Resilient Modulus, MR (psi)                          | 28,400             |
|                          | Asphalt Concrete Surface Course Resilient Modulus, MR (psi)      | 300,000            |
|                          | Asphalt Concrete Binder Course Resilient Modulus, MR (psi)       | 300,000            |
| Pavement Characteristics | Drainage Coefficients for Base Course and Subbase Course, m2, m3 | 1.0                |

Table 9.9Input Value Assumptions

Source: JICA Survey Team

### 9.5 Construction Planning

### 9.5.1 Site Conditions

#### (1) Basic Construction Conditions

The location of the Bago River Bridge site is about 4 km upstream of the confluence of the Bago and Yangon rivers. The Yangon River flows into the Gulf of Martaban in the Andaman Sea (a part of the Indian Ocean) at 40 km downstream of the confluence.

Most construction materials and machines will be transported by water. The Bago River is relatively shallow (about 6.5 m at MSFL Port), but freights can be reshipped by small barges at Thilawa Port near the location. Freights will be unloaded at the temporary jetty on the each bank of the Bago River.

Most of the construction site lies on public land, which has an ample space for construction and accommodating the precast segment fabrication yard. The major facilities of the construction yard is as shown in Table 9.10.

|                        | Thaketa Side                                                                                                                     | Thanlyin Side                                                               |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|
| Facilities             | Concrete and Asphalt Plant, Precast Segment<br>Fabrication, Steel Box Girder Assembly,<br>Stockyard, Office, Accommodation, etc. | Concrete and Asphalt Plant, Precast Segment<br>Fabrication, Stockyard, etc. |  |
| Area (m <sup>2</sup> ) | 100,000                                                                                                                          | 70,000                                                                      |  |

| Table 9.10 Major Facilities of the | <b>Construction Yard</b> |
|------------------------------------|--------------------------|
|------------------------------------|--------------------------|



Source: JICA Survey Team

Figure 9.21 Proposed Construction Yard in Thaketa Side (Right Bank)





#### (2) Work Content

The works contain the following major items:

- 1) Temporary Works
- (a) Temporary jetties
- (b) Construction yard
- (c) Office and accommodation
- (d) Concrete and asphalt plant
- 2) Road Works
- (a) Soft soil treatment works (piled slab)
- (b) Embankment works
- (c) Retaining wall
- (d) Pavement works
- (e) Ancillary works
- 3) Bridge Works
- (a) Foundation works
- (b) Substructure works
- (c) Superstructure works
- (d) Surface works
- (e) Ancillary works

#### 9.5.2 Construction Packaging Plan

In order to select the optimal construction package, the alternatives as shown in Figure 9.23 were studied and discussed in the sections below.



Source: JICA Survey Team

#### Figure 9.23 Plan of Construction Packaging Alternatives

| <b>Table 9.11</b> | <b>Construction Packaging Alternatives</b> |
|-------------------|--------------------------------------------|
|-------------------|--------------------------------------------|

|                           | Alternative No.1 | Alternative No.2                                                                           |                                                                                         |  |
|---------------------------|------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| One Package Package No. 1 |                  | Package No. 2                                                                              |                                                                                         |  |
| Location                  | All Sections     | Right Bank Side:<br>West Approach Road (L=539 m)<br>Bridge (L=1,076 m, PC Box & Steel Box) | Left Bank Side:<br>East Approach Road (L=647 m)<br>Bridge (L=852 m, Cable Stay& PC Box) |  |

(1) Alternative No.1: One Package

Another proposed alternative is to incorporate all construction works into one package.

#### Advantages:

- a) Construction schedule can be managed comprehensively, which is good in terms of overall project implementation.
- b) Problems concerning interference can be solved as part of the scope of one contractor.
- c) The number of necessary temporary facilities such as offices and plants can be minimized.

#### Disadvantages:

- a) As the contract amount is too large, many construction companies cannot afford to bid. There is a risk where no companies would intend to apply to bid.
- (2) Alternative No.2: Two Packages

Another proposed alternative of construction contract packaging are as follows:

Package 1: Right Bank from KM 0 to KM 1+500, Pier P13 Package 2: Left Bank from KM 1+500 to KM 2+826, Project End.

#### Advantages:

- a) Both packages have reasonable contract amounts in terms of road and bridge works.
- b) The boundary of the packages at the west end of the cable-stayed bridge; hence, no major interference to the construction works is anticipated.

### Disadvantages:

- a) It is difficult to control the overall construction schedule as the completion of each package varies.
- b) Some temporary facilities such as offices and plants should be duplicated.
- c) Construction of P13 by Package 2 is critical for the construction of the end span of the steel box girder of Package 1.
- (3) Recommendation

As shown in the comparison in Table 9.12, Alternative No. 1 with a single package is recommended than Alternative No. 2 with two packages.

| Evaluation<br>Item                  | Alternative No. 1                                                                                                                                                                                                                 |   | Alternative No. 2                                                                                                                                                                                                                       |                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Schematic Plan<br>View              | In All Sections                                                                                                                                                                                                                   |   | Package1 Package2                                                                                                                                                                                                                       |                  |
| No. of Packages                     | One (1)                                                                                                                                                                                                                           |   | Two (2)                                                                                                                                                                                                                                 |                  |
| Manageability                       | Construction schedule can be managed<br>comprehensively, which is good for overall<br>project implementation.                                                                                                                     | 0 | It is difficult to control the overall construction<br>schedule as the completion of each package<br>varies.                                                                                                                            | $\bigtriangleup$ |
| Interference<br>between<br>packages | Problems concerning interference can be solved<br>as part of the scope of one contractor.                                                                                                                                         | 0 | The boundary of the packages is at the west end<br>of the cable-stayed bridge; hence, there will be<br>no major interference to the construction works<br>although adjustment in construction schedule is<br>necessary at the boundary. | $\bigtriangleup$ |
| Construction<br>Cost                | No major differences even if a few temporary facilities will be reduced.                                                                                                                                                          | 0 | No major differences even if a few temporary facilities will be duplicated.                                                                                                                                                             | 0                |
| Qualification of<br>Bidders         | The contract amount is larger and the length of<br>the bridge is longer than many construction<br>companies have accomplished. The<br>requirements for pre-qualification should be<br>decided after discussion with MOT and JICA. |   | No major problem in qualification of bidders as<br>there are many construction companies having<br>experience in similar works.                                                                                                         | 0                |
| Attractiveness of packages          | Attractive only for big general contractors because of the large contract amount.                                                                                                                                                 | 0 | Both packages have reasonable contract amounts in terms of road and bridge works.                                                                                                                                                       | 0                |
| Evaluation                          | Recommended                                                                                                                                                                                                                       |   | -                                                                                                                                                                                                                                       |                  |

 Table 9.12
 Comparison among Alternatives in Construction Packaging Plan

Remarks: ○:Good, △:Fair Source: JICA Survey Team

### 9.5.3 Temporary Facilities

Temporary facilities contain the following major items:

- 1) Temporary offices and plant yard
  - (a) Temporary office for contractor with contractors' accommodation.
  - (b) Concrete batching plant
  - (c) Asphalt plant
  - (d) PC segment fabrication yard
  - (e) Steel girder fabrication yard
  - (f) Material stockyard
  - (g) Machinery work shop
- 2) Temporary jetties
  - (a) Loading and unloading jetty
- 3) Temporary access
  - (a) Entrance access road from public road
  - (b) Temporary bridges

#### 4) Navigation safety measures

Summary of temporary facilities are shown on the table below.

| Description      | Location      | Quantity              | Remark |
|------------------|---------------|-----------------------|--------|
| Femporary Yard   | Thaketa Side  | $100,000 \text{ m}^2$ |        |
|                  | Thanlyin Side | $70,000 \text{ m}^2$  |        |
| Femporary Jetty  | Thaketa Side  | $1,300 \text{ m}^2$   |        |
|                  | Thanlyin Side | $1,300 \text{ m}^2$   |        |
| Femporary Access | Thaketa Side  | $4,016 \text{ m}^2$   |        |
|                  | Thanlyin Side | 5,191 m <sup>2</sup>  |        |

 Table 9.13
 Summary of Temporary Facilities

Source: JICA Survey Team

#### 9.5.4 Construction Procedures

### **Construction of Substructure**

A construction plan of the substructure is developed for each bridge type and commented in the following subsection.

(1) Abutment

۰ ۲

۰ ۲

Construction of the abutments starts with foundation work utilizing a temporary casing, a boring machine, etc., followed by pile cap concreting. After installation of scaffoldings and temporary support for the formworks, reinforcing work, and concrete casting for the abutment wall and its wing walls follow. A series of construction procedures is shown in Figure 9.24.



Figure 9.24 Construction Procedures for Abutment

### (2) Pier on Land

Construction of the piers on land starts with foundation work utilizing a temporary casing, a boring machine, etc., followed by pile cap concreting. After installation of scaffoldings and temporary support for the formworks, reinforcing work, and concrete casting for the pier follow. A series of construction procedures is shown in Figure 9.25.



Source: JICA Survey Team

Figure 9.25 Construction Procedures for Pier on Land

(3) Pier in the River

Construction of the piers in the river starts with driving steel pipe sheet piles utilizing a silent pile driver with locating piles and a temporary guide frame, followed by excavation inside the cofferdam with temporary bracings. After casting the concrete pile cap, reinforcing work, and concrete casting for the pier follow. A series of construction procedures is shown in Figure 9.26.



Figure 9.26 Construction Procedures for Pier on River

### **Erection of Superstructure**

In consideration of general constructability relating to the erection of superstructure, it is important to maintain the main navigational channel free from any obstruction during construction, and minimize the number and period required for temporary bents in the Bago River. An erection plan of the superstructure was developed for each bridge type and commented in the following subsection.

It is anticipated that materials and equipment for erection of the superstructure will have to be loaded on barges and transported to the erection site on the river. There are a number of areas downstream of the site that would permit the loading and storage area for erection equipment and fabricated steel girder blocks. Consequently, temporary jetties are provided for loading and unloading on both river banks.

The major erection works for the superstructures will be performed using the balanced cantilever method by barge-mounted cranes or erection equipment, or using the span-by-span method by erection truss girder.

(1) Cable-stayed Bridge

Cable-stayed bridge erection is performed utilizing a permanent tower and stay cable that will support all loads during the assembly of the superstructure. After the majority of the tower construction is completed, the first steel girder blocks will be connected directly to the tower using temporary supports attached to the tower pier. Additional steel girder blocks will be erected on the temporary support and will extend alternately up to the installation of the first permanent stay cable. Then, alternating cantilever erection of steel girder blocks continues along with stay cable installation until the mid-span is reached. When two adjacent cantilever end steel girder blocks are completed, the closure block will be installed and the erection will be complete. A series of construction procedures is shown in Figure 9.27.





#### (2) Continuous Steel Box Girders

The cantilever method of erection for continuous steel box girder starts with assembling the sections over a pier top using pier brackets. Once the initial steel box girder blocks are assembled on the pier top, new blocks are added to each end and erected by cantilever method using TEG erection equipment or travelling derrick in an alternating process until mid-span is reached. Cantilever erection will proceed simultaneously with the adjacent pier. When the two adjacent cantilever end steel girder blocks are completed, the closure block will be installed and the erection will be completed. A series of construction procedures is shown in Figure 9.28.

### (3) Continuous PC Box Girder

All of the segments are precast at the casting yard and transported by trailer or barge to the site. All segments that make up one span are positioned and adjusted on the assembly truss girders, and then partial post-tensioning force is exerted. The adjacent spans of continuous box girders are adjusted and joined together with a closure space that avoids the short-line segmental match-casting geometric tolerances. The closure joint is then casted. After the closure concrete has hardened, continuous prestressing cables are installed in the box girder and tensioned to connect all spans as a continuous box girder. A series of construction procedures is shown Figure 9.29.



146



#### Figure 9.29 Construction Procedure of Continuous Steel Box Girder with Steel Deck Slab

Source: JICA Survey Team



Final Report

### 9.5.5 Construction Period

The total construction period is 28 months. The construction time schedule with overall construction sequence and major critical activities is shown in Figure 9.30.



Source: JICA Survey Team



Chapter 10

**Project Cost Estimates** 

# **10. Project Cost Estimates**

### **10.1 General Conditions**

(1) Method of Cost Estimation

The estimation of project cost for the construction of Bago River Bridge is based on the results of the preliminary design of this Preparatory Survey and rough quantity estimation of work items.

Financing for the 100% of eligible portion of the Project is assumed to be funded through the JICA loan scheme. As for the non-eligible portion, it is assumed that the state budget of the Government of Myanmar (GOM) will be allocated.

(2) Conditions of Cost Estimation

The conditions of cost estimation as instructed by JICA are shown in Table 10.1.

| Item                         | Condition                                                                                       | Note             |
|------------------------------|-------------------------------------------------------------------------------------------------|------------------|
| Date of Estimate             | December 2013                                                                                   |                  |
| Currency                     | Foreign Currency :<br>US dollar (USD), Japanese yen (JPY)<br>Local Currency: Myanmar kyat (MMK) |                  |
| Exchange Rate                | USD 1=JPY 99.7                                                                                  | 3 months average |
|                              | USD 1= MMK 975.0                                                                                | rate             |
| Price Escalation Rate        | Foreign Currency Portion: 1.3%,<br>Local Currency Portion: 3.7%                                 |                  |
| Physical Contingency         | 5%                                                                                              |                  |
| Interest During Construction | Construction Cost: 0.01%<br>Consultant Fee: 0.01%                                               |                  |
| Commitment Charge            | 0%                                                                                              |                  |

#### Table 10.1 Conditions of Cost Estimation

Source: JICA Survey Team

#### 10.2 Procurement

- (1) Procurement Conditions
  - 1) Labor

Major bridge projects in Myanmar have been executed by the Public Works itself. Design, construction, and supervision are conducted by the staff of Public Works. On the other hand, private construction companies in Myanmar have conducted the road construction works through the BOT scheme. Some of the companies probably have their own construction machineries and plants by now. They have the potential to be the subcontractors of the Project and they would have some experiences in the construction of large bridges gradually. By these conditions, special skilled labor for bridge works shall be procured in other ASEAN countries.

2) Materials

There are few construction materials produced in Myanmar such as stone, aggregate, and sand. Cement can also be procured, but the quality is said to be not stable then most of the cement used for construction is imported from Thailand. Ready-mixed concrete can be procured around Yangon.

Among the imported materials, petroleum products will be for local procurement because supply is stable in Myanmar.

| Matarials                 | Procured from |        | Nota                 |
|---------------------------|---------------|--------|----------------------|
| Wraterrais                | Local         | Import | Note                 |
| Concrete Works            |               |        |                      |
| Cement                    | 0             |        |                      |
| Aggregate                 | 0             |        |                      |
| Sand                      | 0             |        |                      |
| Ready-mixed concrete      | 0             |        |                      |
| Reinforcement bar (rebar) |               | 0      |                      |
| PC cable                  |               | 0      |                      |
| Formwork                  |               | 0      |                      |
|                           |               |        |                      |
| Steel Works               |               |        |                      |
| Steel plate               |               | 0      |                      |
| Mould steel               |               | 0      |                      |
| Steel pipe sheet pile     |               | 0      |                      |
| Paint (heavy duty)        |               | 0      |                      |
| Bolt, Nut                 |               | 0      |                      |
| Welding material          |               | 0      |                      |
| Sheet pile                |               | 0      |                      |
|                           |               |        |                      |
| Petroleum Products        |               |        |                      |
| Fuel (gasoline, diesel)   | 0             |        |                      |
| Asphalt                   | 0             |        |                      |
| Guss asphalt              | 0             |        | For steel deck plate |
|                           |               |        |                      |

Source: JICA Survey Team

3) Equipment

Most of the construction equipment and machineries for bridge erection shall be procured from other countries, except the general construction machineries (e.g., bulldozer and backhoe) and barge mounted crane.

| Construction Machines               | Procured from |        | Nota |  |
|-------------------------------------|---------------|--------|------|--|
| Construction Machines               | Local         | Import | Note |  |
| Backhoe                             | 0             |        |      |  |
| Bulldozer                           | 0             |        |      |  |
| Truck Crane                         |               | 0      |      |  |
| Crawler Crane                       |               | 0      |      |  |
| Tower Crane                         |               | 0      |      |  |
| TEG Crane                           |               | 0      |      |  |
| Barge Mounted Crane                 | 0             |        |      |  |
| Pile Driving Equipment              |               | 0      |      |  |
| Equipment for Steel Pipe Sheet Pile |               | 0      |      |  |
| Equipment for Prestressed Concrete  |               | 0      |      |  |
|                                     |               |        |      |  |

### **10.3** Construction Work Quantities

The construction work quantities are summarized and shown from Table 10.4 to Table 10.7.

| ltem | Description                             | Specification                                      | Unit           | Qty     |
|------|-----------------------------------------|----------------------------------------------------|----------------|---------|
| 1    | Substructure (Reverse T-shaped Abutment | )                                                  |                |         |
|      | Bored pile                              | D=1500, Laverage=50m                               | nos            | 30      |
|      | Footing                                 |                                                    |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                     | m <sup>3</sup> | 936.6   |
|      | Re-bar                                  | SD345 or equivalent                                | t              | 112.4   |
|      | Formwork                                |                                                    | m <sup>2</sup> | 262.4   |
|      | Wall, parapet                           |                                                    |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                     | m <sup>3</sup> | 638.9   |
|      | Re-bar                                  | SD345 or equivalent                                | t              | 95.8    |
|      | Formwork                                |                                                    | m <sup>2</sup> | 793.2   |
|      |                                         |                                                    |                |         |
| 2    | Substructure (Pier on land)             |                                                    |                |         |
|      | Bored pile                              | D=1500, Laverage=50m                               | nos            | 65      |
|      | Footing                                 |                                                    |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                     | m <sup>3</sup> | 1,890.0 |
|      | Re-bar                                  | SD345 or equivalent                                | t              | 226.8   |
|      | Formwork                                |                                                    | m <sup>2</sup> | 570.0   |
|      | Pier column                             |                                                    |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                     | m <sup>3</sup> | 1,327.3 |
|      | Re-bar                                  | SD345 or equivalent                                | t              | 199.1   |
|      | Formwork                                |                                                    | m <sup>2</sup> | 1,363.3 |
|      |                                         |                                                    |                |         |
| 3    | Substructure (Pier on river)            |                                                    |                |         |
|      | Steel sheet pipe pile foundation        |                                                    |                |         |
|      | Steel sheet pipe pile                   | D=1000, Laverage=50m, with joints for interlocking | nos            | 396     |
|      | Pile driving                            | L=50m                                              | nos            | 396     |
|      | Connection treatment                    |                                                    | nos            | 396     |
|      | Excavation inside of the well           |                                                    | m <sup>3</sup> | 25,966  |
|      | Welding of the dowel                    |                                                    | nos            | 396     |
|      | Cut-off the pipe                        |                                                    | nos            | 396     |
|      | Footing                                 |                                                    |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                     | m <sup>3</sup> | 4,694   |
|      | Re-bar                                  | SD345 or equivalent                                | t              | 563.3   |
|      | Pier column                             |                                                    |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                     | m <sup>3</sup> | 30,094  |
|      | Re-bar                                  | SD345 or equivalent                                | t              | 4,514.1 |
|      | Formwork                                |                                                    | m <sup>2</sup> | 16,058  |
|      |                                         |                                                    |                |         |

| Item | Description                                | Specification                                            | Unit           | Qty   |
|------|--------------------------------------------|----------------------------------------------------------|----------------|-------|
| 4    | Steel cable stayed bridge (superstructure) | including fabrication and erection                       |                |       |
|      | Steel Plate                                |                                                          |                |       |
|      | Tower                                      | SM490, SM400                                             | t              | 578   |
|      | Main girder (single box)                   | SM490, SM400                                             | t              | 5,775 |
|      | Stay cable                                 | Parallel wire strand                                     | t              | 357   |
|      | Bearing                                    |                                                          |                |       |
|      | 300t                                       | Rubber bearing                                           | nos            | 4     |
|      | 500t                                       | Rubber bearing                                           | nos            | 4     |
|      | 5,000t                                     | Steel pivot bearing                                      | nos            | 2     |
|      | Anchor frame                               | for steel pivot bearing, W=60t                           | t              | 120   |
|      | Expansion joint                            | Steel finger type, W=24m, Unit weight W=15t/nos          | nos            | 4     |
|      | Fairing                                    | L=448m, Unit weight W=0.05t/m                            | nos            | 45    |
|      | Handrail                                   | Steel pipe, H=500mm (on the top of the concrete barrier) | m              | 896   |
|      | Drain Pit                                  | FC                                                       | nos            | 178   |
|      | Concrete barrier                           |                                                          |                |       |
|      | Concrete                                   | Class A (30N/mm²)                                        | m <sup>3</sup> | 188   |
|      | Re-bar                                     | SD345 or equivalent                                      | t              | 18.8  |
|      | Formwork                                   |                                                          | m <sup>2</sup> | 1,478 |
|      | Pavement (carriageway)                     | Guess asphalt, t=80mm                                    | m <sup>2</sup> | 1,344 |
|      | Pavement (pedestrian)                      | Gravel/asphalt, t=40mm                                   | m <sup>2</sup> | 7,168 |
|      |                                            |                                                          |                |       |
| 5    | Steel box girder bridge (superstructure)   | including fabrication and erection                       |                |       |
|      | Steel Plate (box girder)                   | SM490, SM400                                             | t              | 7,123 |
|      | Bearing                                    |                                                          |                |       |
|      | 50t                                        | Rubber bearing                                           | nos            | 8     |
|      | 120t                                       | Rubber bearing                                           | nos            | 12    |
|      | 150t                                       | Rubber bearing                                           | nos            | 12    |
|      | Expansion joint                            |                                                          | nos            | -     |
|      | Handrail                                   | Steel pipe, H=500mm (on the top of the concrete barrier) | m              | 1,104 |
|      | Drain Pit                                  | FC                                                       | nos            | 220   |
|      | Concrete barrier                           |                                                          |                |       |
|      | Concrete                                   | Class A (30N/mm²)                                        | m <sup>3</sup> | 232   |
|      | Re-bar                                     | SD345 or equivalent                                      | t              | 23    |
|      | Formwork                                   |                                                          | m <sup>2</sup> | 1,822 |
|      | Pavement (carriageway)                     | Guess asphalt                                            | m <sup>2</sup> | 1,656 |
|      | Pavement (pedestrian)                      | Gravel/asphalt                                           | m <sup>2</sup> | 8,832 |
|      |                                            |                                                          |                |       |

| Tabla 1  | 0.5  | Construction | Quantities for | - Suparstruatura | (Stool) |
|----------|------|--------------|----------------|------------------|---------|
| I able I | 10.5 | Construction | Quantities for | r Superstructure | (Steel) |

| Item | Description                             | Specification                                            | Unit           | Qty     |
|------|-----------------------------------------|----------------------------------------------------------|----------------|---------|
| 6    | PC Precast Box Girder (Superstructure)  | including fabrication and erection                       |                |         |
|      | Concrete class P (40N/mm <sup>2</sup> ) | for precast block (span by span erection method)         | m <sup>3</sup> | 12,496  |
|      | Re-bar                                  | SD345 or equivalent                                      | t              | 1,499.5 |
|      | Formwork                                |                                                          | m <sup>2</sup> | 44,692  |
|      | PC cable                                |                                                          |                |         |
|      | 19T15.2                                 | for main girder (outer cable)                            | t              | 249.9   |
|      | 12T15.2                                 | for main girder (inner cable)                            | t              | 224.9   |
|      | 1T28.6                                  | for floor slab                                           | t              | 150.0   |
|      | Bearing                                 |                                                          |                |         |
|      | 500t                                    | Rubber bearing                                           | nos            | 16      |
|      | 1,000t                                  | Rubber bearing                                           | nos            | 52      |
|      | Expansion joint                         | Steel finger type, W=10m, Unit weight W=5t/nos           | nos            | 8       |
|      | Handrail                                | Steel pipe, H=500mm (on the top of the concrete barrier) | m              | 1,408   |
|      | Drain Pit                               | FC                                                       | nos            | 134     |
|      | Concrete barrier                        |                                                          |                |         |
|      | Concrete                                | Class A (30N/mm <sup>2</sup> )                           | m <sup>3</sup> | 296     |
|      | Re-bar                                  | SD345 or equivalent                                      | t              | 30      |
|      | Formwork                                |                                                          | m <sup>2</sup> | 2,323   |
|      | Pavement (carriageway)                  | Asphalt                                                  | m <sup>2</sup> | 2,112   |
|      | Pavement (pedestrian)                   | Gravel/asphalt                                           | m <sup>2</sup> | 11,264  |
|      |                                         |                                                          |                |         |

| Table 10.6 Construction ( | Juantities for Su | nerstructure (I | PC Precast   | (Cirder)  |
|---------------------------|-------------------|-----------------|--------------|-----------|
|                           | Juanunes for Su   | persu acture (r | l C I lecasi | Gii uei ) |

| Item | Description     | Specification                    | Unit           | Qty    |
|------|-----------------|----------------------------------|----------------|--------|
| 7    | Approach road   |                                  |                |        |
|      | Pavement        |                                  |                |        |
|      | Subgrade course | t=300mm                          | m <sup>2</sup> | 27,488 |
|      | Subbase course  | Aggregate, t=100mm               | m²             | 27,488 |
|      | Base course     | Aggregate, t=100mm               | m²             | 27,488 |
|      | Binder course   | Coarse asphalt concrete, t=100mm | m <sup>2</sup> | 27,488 |
|      | Surface course  | Fine asphalt concrete, t=50mm    | m²             | 27,488 |
|      | Retaining wall  |                                  |                |        |
|      | Concrete        | Class B (24N/mm <sup>2</sup> )   | m <sup>3</sup> | 12,249 |
|      | Re-bar          | SD345 or equivalent              | t              | 980    |
|      | Formwork        |                                  | m²             | 6,858  |
|      | Bored pile      | D=1000, Laverage=50m             | nos            | 444    |
|      | Embankment      |                                  |                |        |
|      | Filling         | Bulldozer                        | m <sup>3</sup> | 46,998 |
|      | Cutting         | Bulldozer                        | m <sup>3</sup> | 41,231 |
|      |                 |                                  |                |        |

| <b>Table 10.7</b> | Construction | Quantities | for | Roads |
|-------------------|--------------|------------|-----|-------|
|-------------------|--------------|------------|-----|-------|

Source: JICA Survey Team

#### **10.4** Construction Cost

#### **10.4.1** Unit Costs of Construction Works

The unit cost of major construction items as established by the JICA Survey Team are shown in Table 10.8. Unit costs were formulated based on the quotations from the Japanese association of construction companies and actual achievements of nearby country, as there is little achievement of similar construction projects in Myanmar.

| Item No. | Item                                     | Description                                               | Unit           | Unit Cost<br>(USD) |
|----------|------------------------------------------|-----------------------------------------------------------|----------------|--------------------|
| 1        | Substructure (Reverse T-shaped abutment) |                                                           |                |                    |
|          | Bored pile                               | D=1.500. L average=50 m                                   | nos            | 20.000             |
|          | Footing                                  |                                                           |                | 20,000             |
|          | Concrete                                 | Class A (30 N/mm <sup>2</sup> )                           | m <sup>3</sup> | 150                |
|          | Re-bar                                   | SD345 or equivalent                                       | t              | 1,800              |
|          | Formwork                                 | •                                                         | $m^2$          | 68                 |
|          | Wall, parapet                            |                                                           |                |                    |
|          | Concrete                                 | Class A (30 N/mm <sup>2</sup> )                           | m <sup>3</sup> | 150                |
|          | Re-bar                                   | SD345 or equivalent                                       | t              | 1,800              |
|          | Formwork                                 | -                                                         | $m^2$          | 68                 |
| 2        | Substructure (Pier on land)              |                                                           |                |                    |
|          | Bored pile                               | D=1,500, L average=50 m                                   | nos            | 20,000             |
|          | Footing                                  |                                                           |                | · · · ·            |
|          | Concrete                                 | Class A (30 N/mm <sup>2</sup> )                           | $m^3$          | 150                |
|          | Re-bar                                   | SD345 or equivalent                                       | t              | 1,800              |
|          | Formwork                                 | ·                                                         | $m^2$          | 68                 |
|          | Pier column                              |                                                           |                |                    |
|          | Concrete                                 | Class A (30 N/mm <sup>2</sup> )                           | m <sup>3</sup> | 150                |
|          | Re-bar                                   | SD345 or equivalent                                       | t              | 1,800              |
|          | Formwork                                 |                                                           | $m^2$          | 68                 |
| 3        | Substructure (Pier in the river)         |                                                           |                |                    |
|          | Steel sheet pipe pile foundation         |                                                           |                |                    |
|          | Falsework                                | H-400                                                     | ton            | 1.600              |
|          |                                          | D=1,000, L average=50 m,                                  |                | 22,000             |
|          | Steel sheet pipe pile (pile driving)     | P3-P6, P16-P20                                            | nos            | 32,000             |
|          |                                          | D=1,000, L average=50 m,<br>P7-P15                        | nos            | 33,600             |
| -        | Connection treatment                     |                                                           | nos            | 200                |
|          | Excavation inside of the well            |                                                           | m <sup>3</sup> | 4                  |
|          | Excavation inside of the pipe pile       |                                                           | m <sup>3</sup> | 11                 |
|          | Welding of the dowel                     |                                                           | nos            | 1,200              |
|          | Cut-off the pipe                         |                                                           | nos            | 100                |
|          | Footing                                  |                                                           |                |                    |
|          | Concrete                                 | Class A (30 N/mm <sup>2</sup> )                           | $m^3$          | 150                |
|          | Re-bar                                   | SD345 or equivalent                                       | t              | 1,800              |
|          | Pier column                              |                                                           |                |                    |
|          | Concrete                                 | Class A (30 N/mm <sup>2</sup> )                           | m <sup>3</sup> | 150                |
|          | Re-bar                                   | SD345 or equivalent                                       | t              | 1,800              |
|          | Formwork                                 |                                                           | $m^2$          | 68                 |
| 4        | Steel cable stayed bridge                | including fabrication and                                 |                |                    |
| 4        | (superstructure)                         | erection                                                  |                |                    |
|          | Steel plate                              |                                                           |                |                    |
|          | Tower                                    | SM490, SM400                                              | t              | 6,720              |
|          | Main girder (single box)                 | SM490, SM400                                              | t              | 4,800              |
|          | Stay cable                               | Parallel wire strand                                      | t              | 11,200             |
|          | Field painting                           | Class C-5                                                 | L.S.           | 200,000            |
|          | Bearing                                  |                                                           |                |                    |
|          | 300 t                                    | Rubber bearing                                            | nos            | 17,500             |
|          | 500 t                                    | Rubber bearing                                            | nos            | 50,000             |
|          | 5,000 t                                  | Steel pivot bearing                                       | nos            | 475,000            |
|          | Anchor frame                             | for steel pivot bearing, W=60 t                           | nos            | 210,000            |
|          | Expansion joint                          | Steel finger type, W=24 m,<br>Unit weight W=15 t/nos      | nos            | 187,500            |
|          | Fairing                                  | L=448 m, Unit weight<br>W=0.05t/ m                        | nos            | 4,000              |
|          | Handrail                                 | Steel pipe, H=500 mm (on the top of the concrete barrier) | m              | 500                |
|          | Drain pit                                | FC                                                        | nos            | 500                |

| Table 10.8 Unit Cost of Construction | Works |
|--------------------------------------|-------|
|--------------------------------------|-------|

|   | Concrete barrier                                      |                                           |                 |           |
|---|-------------------------------------------------------|-------------------------------------------|-----------------|-----------|
|   | Concrete                                              | Class A (30 N/mm <sup>2</sup> )           | m <sup>3</sup>  | 150       |
|   | Re-bar                                                | SD345 or equivalent                       | t               | 1,800     |
|   | Formwork                                              | •                                         | m <sup>2</sup>  | 66        |
|   | Pavement (carriageway)                                | Guss asphalt, t=80 mm                     | m <sup>2</sup>  | 110       |
|   | Pavement (pedestrian)                                 | Gravel/asphalt, t=40 mm                   | m <sup>2</sup>  | 40        |
| _ | Steel box girder bridge                               | including fabrication and                 |                 |           |
| 5 | (superstructure)                                      | erection                                  |                 |           |
|   | Steel plate (box girder)                              | SM490, SM400                              | t               | 4,400     |
|   | Field painting                                        | Class C-5                                 | L.S.            | 50,000    |
|   | Bearing                                               |                                           |                 | ,         |
|   | 50 t                                                  | Rubber bearing                            | nos             | 5,000     |
|   | 120 t                                                 | Rubber bearing                            | nos             | 12,000    |
|   | 150 t                                                 | Rubber bearing                            | nos             | 14,000    |
|   |                                                       | Steel finger type, W=10 m,                |                 | 50,000    |
|   | Expansion joint                                       | Unit weight W=5 t/nos                     | nos             | 50,000    |
|   | TT 1 '1                                               | Steel pipe, H=500 mm (on the              |                 | 500       |
|   | Handrall                                              | top of the concrete barrier)              | m               | 500       |
|   | Drain pit                                             | FC                                        | nos             | 500       |
|   | Concrete barrier                                      |                                           |                 |           |
|   | Concrete                                              | Class A (30 N/mm <sup>2</sup> )           | m <sup>3</sup>  | 150       |
|   | Re-bar                                                | SD345 or equivalent                       | t               | 1,800     |
|   | Formwork                                              |                                           | m <sup>2</sup>  | 68        |
|   | Pavement (carriageway)                                | Guss asphalt                              | m <sup>2</sup>  | 110       |
|   | Pavement (pedestrian)                                 | Gravel/asphalt                            | m <sup>2</sup>  | 40        |
| 6 | PC precast box girder (Superstructure)                |                                           |                 |           |
|   | Fabrication vard construction                         |                                           | L.S.            | 1.880.000 |
|   | Girder erection                                       |                                           | L.S.            | 9,000,000 |
|   | Precast segment                                       |                                           | nos             | 5,000     |
|   | Bearing                                               |                                           |                 | ,         |
|   | 500 t                                                 | Rubber bearing                            | nos             | 50,000    |
|   | 1,000 t                                               | Rubber bearing                            | nos             | 100,000   |
|   | Expansion joint                                       | Steel finger type, W=10 m,                | nos             | 50,000    |
|   |                                                       | Unit weight $w=5 t/nos$                   |                 |           |
|   | Handrail                                              | Steel pipe, H=500 mm (on the              | m               | 500       |
|   | Drain nit                                             | top of the concrete barrier)              |                 | 500       |
|   | Congrete herrier                                      | гс                                        | 1108            | 500       |
|   |                                                       | $C \log_{10} \Lambda (20 \text{ N/mm}^2)$ |                 | 170       |
|   | Do hor                                                | Class A (50 N/IIIII )                     | 111<br>t        | 2 000     |
|   | Formwork                                              | SD345 of equivalent                       | $\frac{1}{m^2}$ | 2,000     |
|   | FOIIIWOIK Payamant (aamia aaway)                      | Asphalt                                   | m <sup>2</sup>  | 73        |
|   | Pavement (redestrien)                                 | Aspirati<br>Gravel/asphalt                | $m^2$           | 40        |
|   | Pavement (pedestrian)                                 | Gravel/asphan                             | 111             | 40        |
|   | Approach road                                         |                                           |                 |           |
|   | Pavement<br>Sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-s | t 1.000 m                                 | 2               |           |
|   | Subgrade course                                       | t=1,000 mm                                |                 | 60        |
|   | Subbase course                                        | Aggregate, t=400 mm                       | 2               | 6/        |
|   | Base course                                           | Aggregate, t=350 mm                       | <sup>m−</sup>   | /0        |
|   | Binder course                                         | mm                                        | $m^2$           | 16        |
|   | Surface course                                        | Fine asphalt concrete, t=40               | m <sup>2</sup>  | 16        |
|   | Detaining well                                        | m                                         |                 |           |
|   | Concerts                                              | $C \log D (24 N/m^2)$                     | m- <sup>3</sup> | 170       |
|   | Concrete                                              | Class B (24 N/mm)                         | m               | 170       |
|   | Formwork                                              | 50545 or equivalent                       | $\frac{t}{m^2}$ | 2,000     |
|   | PC pile                                               | D-500 L avarage-50 m                      | 111<br>200      | /3        |
|   | Embankmant                                            | D=300, L average=30 m                     | nos             | 8,000     |
|   | Eilling                                               | Pulldozor                                 | 3               | <u> </u>  |
|   |                                                       | Duildozer                                 | m <sup>3</sup>  | 0U<br>41  |
| 0 | Missellanes                                           | Buildozei                                 | 111             | 41        |
| 8 | Temporery viewle                                      |                                           |                 |           |
|   | Temporary work                                        |                                           |                 | 1 200     |
|   | Clearing and leveling of construction                 |                                           | $m^2$           | 1,200     |
| 1 | Creating and revening of construction                 |                                           | 111             | 20        |

| yard                           |   |     |
|--------------------------------|---|-----|
| Lighting and electrical wiring | m | 450 |

#### **10.5 Land Acquisition and Resettlement Cost**

#### **10.5.1 Demolition Cost and Land Acquisition Cost**

Almost all the areas in the project site are public land. And there is no demolition and land acquisition needed in the project site, no cost will be spent.

#### **10.5.2 Resettlement Cost**

There are one stall and four houses in the project site. All the buildings are on public land and lent from the owner of the land. The cost of compensation and resettlement assistance is calculated at USD 6,708.

And there are about 160 trees in the project site. Myanmar's law prohibits cutting of trees and requires replanting. The cost for the compensation of trees shall be calculated at USD 32,000.

### 10.5.3 Total Cost of Land Acquisition and Resettlement

The total cost of land acquisition and resettlement is calculated at about USD 40,000.

#### **10.6 Estimated Project Cost**

Table 10.9 shows the estimated project cost at present value. The breakdown of quantities and costs is attached in Appendix 11.

Table 10.10 shows the annual fund requirement of the Project.

| Item<br>No. | Item                                       | Cost<br>LCB (USD) | Cost<br>ICB (USD) | Total Cost<br>(USD) |
|-------------|--------------------------------------------|-------------------|-------------------|---------------------|
| 1           | Substructure (Reverse T-shaped Abutment)   | 582,102           | 700,813           | 1,282,915           |
| 2           | Substructure (Pier on land)                | 1,196,710         | 1,442,080         | 2,638,790           |
| 3           | Substructure (Pier in the river)           | 7,045,358         | 37,930,787        | 44,976,145          |
| 4           | Steel cable stayed bridge (Superstructure) | 752,049           | 38,373,365        | 39,125,414          |
| 5           | Steel box girder bridge (Superstructure)   | 818,675           | 32,422,795        | 33,241,470          |
| 6           | PC precast box girder (Superstructure)     | 1,666,802         | 19,327,501        | 20,994,303          |
| 7           | Approach road                              | 14,916,674        | 4,003,967         | 18,920,641          |
| 8           | Miscellaneous work                         | 10,264,200        | 7,544,200         | 17,808,400          |
| 9           | Indirect cost {sum $(1 \sim 8)$ *20% }     | 7,448,514         | 28,349,102        | 35,797,616          |
| Total Con   | struction Cost                             | 44,691,084        | 170,094,610       | 214,785,694         |

#### Table 10.9 Estimated Construction Cost

## Table 10.10 Annual Fund Requirement

#### Annual Fund Requirement

| <u>/ u</u> |                                        |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
|------------|----------------------------------------|---------|--------|---------|-------|-------|-------|-----|------|-------|--------|--------|---------|--------|--------|--------|--------|--------|--------|-------|-------------|---------|
|            | Base Year for Cost Estimation:         | 1,      | 2014   |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
|            | Price Escalation:                      | FC:     | 1.3%   |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
|            |                                        | LC:     | 3.7%   |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
|            | Physical Contingency                   | 5.0%    |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
|            | Physical Contingency for Consultant    | 5.0%    |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        | ι     | Jnit: thous | and USD |
|            | Item                                   |         | Total  |         |       | 2015  |       |     | 2016 |       |        | 2017   |         |        | 2018   |        |        | 2019   |        |       | 2020        |         |
|            |                                        | FC      | LC     | Total   | FC    | LC    | Total | FC  | LC   | Total | FC     | LC     | Total   | FC     | LC     | Total  | FC     | LC     | Total  | FC    | LC          | Total   |
| A. I       | ELIGIBLE PORTION                       |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
| I )        | Procurement / Construction             | 187,839 | 54,098 | 241,938 | 0     | 0     | 0     | 0   | 0    | 0     | 76,914 | 21,679 | 98,594  | 60,451 | 17,443 | 77,893 | 40,824 | 12,059 | 52,883 | 9,650 | 2,918       | 12,567  |
|            | Construction                           | 170,095 | 44,691 | 214,786 | 0     | 0     | 0     | 0   | 0    | 0     | 70,468 | 18,515 | 88,983  | 54,673 | 14,365 | 69,038 | 36,449 | 9,577  | 46,026 | 8,505 | 2,235       | 10,739  |
|            | Base cost for JICA financing           | 170,095 | 44,691 | 214,786 | 0     | 0     | 0     | 0   | 0    | 0     | 70,468 | 18,515 | 88,983  | 54,673 | 14,365 | 69,038 | 36,449 | 9,577  | 46,026 | 8,505 | 2,235       | 10,739  |
|            | Price escalation                       | 8,800   | 6,831  | 15,631  | 0     | 0     | 0     | 0   | 0    | 0     | 2,784  | 2,132  | 4,916   | 2,899  | 2,247  | 5,146  | 2,432  | 1,908  | 4,339  | 685   | 544         | 1,230   |
|            | Physical contingency                   | 8,945   | 2,576  | 11,521  | 0     | 0     | 0     | 0   | 0    | 0     | 3,663  | 1,032  | 4,695   | 2,879  | 831    | 3,709  | 1,944  | 574    | 2,518  | 460   | 139         | 598     |
| Ⅱ)         | Consulting services                    | 9,268   | 2,329  | 11,598  | 4,357 | 965   | 5,322 | 951 | 241  | 1,192 | 1,217  | 335    | 1,553   | 1,399  | 420    | 1,818  | 1,295  | 346    | 1,642  | 49    | 23          | 72      |
|            | Base cost                              | 8,546   | 2,018  | 10,564  | 4,096 | 886   | 4,982 | 882 | 213  | 1,096 | 1,115  | 286    | 1,402   | 1,265  | 346    | 1,610  | 1,157  | 275    | 1,431  | 43    | 18          | 61      |
|            | Price escalation                       | 268     | 195    | 463     | 53    | 33    | 86    | 23  | 16   | 39    | 44     | 33     | 77      | 67     | 54     | 121    | 77     | 55     | 132    | 3     | 4           | 8       |
|            | Physical contingency                   | 441     | 111    | 552     | 207   | 46    | 253   | 45  | 11   | 57    | 58     | 16     | 74      | 67     | 20     | 87     | 62     | 16     | 78     | 2     | 1           | 3       |
| Tot        | tal (I + II )                          | 197,108 | 56,428 | 253,535 | 4,357 | 965   | 5,322 | 951 | 241  | 1,192 | 78,132 | 22,015 | 100,147 | 61,849 | 17,862 | 79,712 | 42,120 | 12,405 | 54,525 | 9,699 | 2,941       | 12,639  |
| B. I       | NON ELIGIBLE PORTION                   |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
| а          | Procurement / Construction             | 0       | 0      | 0       | 0     | 0     | 0     | 0   | 0    | 0     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
|            |                                        |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
|            | Base cost for JICA financing           | 0       | 0      | 0       | 0     | 0     | 0     | 0   | 0    | 0     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
|            | Price escalation                       | 0       | 0      | 0       | 0     | 0     | 0     | 0   | 0    | 0     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
|            | Physical contingency                   | 0       | 0      | 0       | 0     | 0     | 0     | 0   | 0    | 0     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
| b          | Land Acquisition                       | 0       | 15     | 15      | 0     | 0     | 0     | 0   | 15   | 15    | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
|            | Base cost                              | 0       | 13     | 13      | 0     | 0     | 0     | 0   | 13   | 13    | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
|            | Price escalation                       | 0       | 1      | 1       | 0     | 0     | 0     | 0   | 1    | 1     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
|            | Physical contingency                   | 0       | 1      | 1       | 0     | 0     | 0     | 0   | 1    | 1     | 0      | 0      | 0       | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0           | 0       |
| С          | Administration cost                    | 0       | 12,677 | 12,677  | 0     | 266   | 266   | 0   | 60   | 60    | 0      | 5,007  | 5,007   | 0      | 3,986  | 3,986  | 0      | 2,726  | 2,726  | 0     | 632         | 632     |
| d          | Commercial Tax                         | 0       | 12,677 | 12,677  | 0     | 266   | 266   | 0   | 60   | 60    | 0      | 5,007  | 5,007   | 0      | 3,986  | 3,986  | 0      | 2,726  | 2,726  | 0     | 632         | 632     |
| е          | Import Tax                             | 0       | 9,392  | 9,392   | 0     | 0     | 0     | 0   | 0    | 0     | 0      | 3,846  | 3,846   | 0      | 3,023  | 3,023  | 0      | 2,041  | 2,041  | 0     | 482         | 482     |
| Tot        | tal (a+b+c+d+e)                        | 0       | 34,761 | 34,761  | 0     | 532   | 532   | 0   | 135  | 135   | 0      | 13,860 | 13,860  | 0      | 10,994 | 10,994 | 0      | 7,494  | 7,494  | 0     | 1,746       | 1,746   |
| то         | DTAL (A+B)                             | 197,108 | 91,189 | 288,296 | 4,357 | 1,497 | 5,854 | 951 | 375  | 1,326 | 78,132 | 35,875 | 114,007 | 61,849 | 28,856 | 90,705 | 42,120 | 19,898 | 62,018 | 9,699 | 4,687       | 14,386  |
|            |                                        |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
| C.         | Interest during Construction           | 55      | 0      | 55      | 1     | 0     | 1     | 1   | 0    | 1     | 11     | 0      | 11      | 19     | 0      | 19     | 24     | 0      | 24     | 0     | 0           | 0       |
|            | Interest during Construction(Const.)   | 50      | 0      | 50      | 0     | 0     | 0     | 0   | 0    | 0     | 10     | 0      | 10      | 18     | 0      | 18     | 23     | 0      | 23     | 0     | 0           | 0       |
|            | Interest during Construction (Consul.) | 4       | 0      | 4       | 1     | 0     | 1     | 1   | 0    | 1     | 1      | 0      | 1       | 1      | 0      | 1      | 1      | 0      | 1      | 0     | 0           | 0       |
| GR         | RAND TOTAL (A+B+C+D)                   | 197,162 | 91,189 | 288,351 | 4,357 | 1,497 | 5,854 | 952 | 375  | 1,327 | 78,143 | 35,875 | 114,018 | 61,868 | 28,856 | 90,724 | 42,144 | 19,898 | 62,042 | 9,699 | 4,687       | 14,386  |
|            |                                        |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |
| D.         | JICA finance portion (A)               | 197,108 | 56,428 | 253,535 | 4,357 | 965   | 5,322 | 951 | 241  | 1,192 | 78,132 | 22,015 | 100,147 | 61,849 | 17,862 | 79,712 | 42,120 | 12,405 | 54,525 | 9,699 | 2,941       | 12,639  |
|            |                                        |         |        |         |       |       |       |     |      |       |        |        |         |        |        |        |        |        |        |       |             |         |

Chapter 11

Demand Forecast and Economic Evaluation of the Project

# **11. Demand Forecast and Economic Evaluation of the Project**

### 11.1 Introduction

As described in previous chapters, it is anticipated that the traffic between Yangon area and Thanlyin area will increase in the near future because Thanlyin area is developing and many development projects are planned such as the commercial area in Thilawa SEZ. The current traffic capacity of the two existing bridges cannot accommodate the future traffic demand generated in the area, and will soon become a serious bottleneck. Therefore, the new Bago River Bridge is highly expected to respond to the increased traffic demand and prevent traffic congestion in the area.

Implementation of the Bago River Bridge Construction Project should be evaluated considering of the national economy (income) due to the large amount of capital cost required. Comparative advantage and absolute value (contribution) of the Project to the national economy should be measured in a numerical manner as much as possible to see the feasibility of the Project prior to the decision for actual implementation.

This chapter presents the results of demand forecast analysis and evaluation of the Project from a viewpoint of the national economy based on future demand forecast. For this Project, financial analysis is not conducted since the bridge is not assumed to be a toll bridge.

#### **11.2 Socio-Economic Framework and Future Transport Demand**

This section provides results of the travel demand forecast for the YUTRA study area (the Greater Yangon including Yangon City and part of the six adjacent townships i.e., Thalyin, Hmawbi, Helgu, Htantabin, Twantay, and Kyauktan) for the master plan development3 horizon years of 2025 and 2035. The inputs to the travel demand forecast are the future years of the socio-economic framework and the data for the forecast years, 2018, 2025, and 2035. Subsection 11.2.1 shows the socio-economic framework, Subsection 11.2.2 presents the future transport demand without the Project (do-nothing case), and Subsection 11.2.3 provides the demand forecast of the base case with the Project.

#### **11.2.1** Socio-Economic Framework

The future socio-economic framework was prepared by YUTRA based on past trends, future land use planned by SUDP, national framework estimated by MYT-Plan, and a series of GIS analyses. It covers the following indicators by traffic zone:

- Population (night-time and day-time);
- Employment by sector (night-time and day-time);
- Number of students (night-time and day-time);
- Household income; and
- Ratio of car-owning households.
- Table 11.1 summarizes the socio-economic framework for Greater Yangon estimated by YUTRA.

<sup>&</sup>lt;sup>3</sup> As for the details in the master plan projects proposed by YUTRA, please refer to the Final report of YUTRA. Subsection 11.2.3 of this chapter also mentions the master plan projects.

|                                         |                |                     |       |       |       | Annual Growth Rate |               |               |               |                          |  |  |
|-----------------------------------------|----------------|---------------------|-------|-------|-------|--------------------|---------------|---------------|---------------|--------------------------|--|--|
|                                         |                |                     | 2013  | 2018  | 2025  | 2035               | 2013-<br>2018 | 2018-<br>2025 | 2025-<br>2035 | Average<br>2013-<br>2035 |  |  |
|                                         |                | Primary             | 58    | 58    | 58    | 58                 | 0.0%          | 0.0%          | 0.0%          | 0.0%                     |  |  |
|                                         |                | Secondary           | 219   | 263   | 350   | 562                | 3.7%          | 4.2%          | 4.8%          | 4.4%                     |  |  |
| Ni she tina s                           | Workers        | Tertiary            | 2,263 | 2,601 | 3,214 | 4,470              | 2.8%          | 3.1%          | 3.4%          | 3.1%                     |  |  |
| Night-time<br>Population<br>('000) Stud |                | Total<br>Workers    | 2,540 | 2,921 | 3,622 | 5,089              | 2.8%          | 3.1%          | 3.5%          | 3.2%                     |  |  |
|                                         | Student at     | Residence           | 1,164 | 1,303 | 1,532 | 1,938              | 2.3%          | 2.3%          | 2.4%          | 2.3%                     |  |  |
|                                         | Others         |                     | 2,013 | 2,212 | 2,462 | 2,685              | 1.9%          | 1.5%          | 0.9%          | 1.3%                     |  |  |
|                                         | Total Night-ti | 5,716               | 6,437 | 7,615 | 9,712 | 2.4%               | 2.4%          | 2.5%          | 2.4%          |                          |  |  |
|                                         | Employment     | Primary             | 58    | 58    | 58    | 58                 | 0.0%          | 0.0%          | 0.0%          | 0.0%                     |  |  |
|                                         |                | Secondary           | 244   | 289   | 378   | 595                | 3.4%          | 3.9%          | 4.6%          | 4.1%                     |  |  |
|                                         |                | Tertiary            | 2,263 | 2,610 | 3,242 | 4,547              | 2.9%          | 3.1%          | 3.4%          | 3.2%                     |  |  |
| Day-time<br>Population                  |                | Total<br>Employment | 2,565 | 2,956 | 3,678 | 5,200              | 2.9%          | 3.2%          | 3.5%          | 3.3%                     |  |  |
| (000)                                   | Student at S   | 1,164               | 1,303 | 1,532 | 1,938 | 2.3%               | 2.3%          | 2.4%          | 2.3%          |                          |  |  |
|                                         | Oth            | 2,013               | 2,212 | 2,462 | 2,685 | 1.9%               | 1.5%          | 0.9%          | 1.3%          |                          |  |  |
|                                         | Total Day-tin  | 5,741               | 6,472 | 7,672 | 9,823 | 2.4%               | 2.5%          | 2.5%          | 2.5%          |                          |  |  |
| Household Income ('000 MMK/month)       |                | 240.6               | 340.5 | 522.2 | 954.7 | 7.2%               | 6.3%          | 6.2%          | 6.5%          |                          |  |  |
| Household Car Ownership Ratio (%)       |                | 11.6                | 16.8  | 23.2  | 32.3  | 7.8%               | 4.7%          | 3.4%          | 4.8%          |                          |  |  |

 Table 11.1
 Summary Socio-economic Framework for Greater Yangon

### **11.2.2** Transport Demand Forecast (Do-Nothing Case)

This subsection analyzes the future traffic condition of the present road network within YUTRA study area, for which no projects will be implemented (do-nothing case) by the master plan development horizon years of 2018 (short term), 2025 (medium term), and 2035 (long term).

Travel demand estimates were made for a single urban development scenario as stipulated by the JICA SUDP study. The travel demand estimates for three years are summarized in Table 11.2. It compares the demand growth for each of the forecasted years.

The table reflects the rapid growth in travel demand with almost constant population growth rate of just over 2.4% per annum. The demand forecast growth in trip rate is reflective of the rapid growth in mechanized trips. The high growth in mechanized trips is caused by the increase in vehicle-owning households from some 12% of the population to over 34% of all households by 2035. The pace of growth is rather rapid in earlier years than in the later years due to higher growth of car ownership in earlier years.

The mechanized person trips are forecasted to almost double from 4.9 million trips in 2013 to 9.5 million trips by 2035. The share of walk trips and by bicycle would also grow steadily, albeit at slower pace as vehicle-ownership grows. There is a tendency for all members of the household to use the vehicle for all trips, once the vehicle is available. This is a common phenomenon in developing countries, wherein the purchase of a vehicle is a major step towards a 'status' in a society, and then its maximum use is inevitable as there is limitations or restraints (parking availability/charges, no road user charges).

| Description  | 2013                                  | 2018              | 2025    | 2035    |  |  |  |
|--------------|---------------------------------------|-------------------|---------|---------|--|--|--|
| Walk         | 4,778                                 | 5,238             | 6,072   | 7,403   |  |  |  |
| Bicycle      | 1,472                                 | 1,661             | 1,981   | 2,704   |  |  |  |
| Mechanised   | 4,935                                 | 5,862             | 7,185   | 9,477   |  |  |  |
| %mechanised  | 44.1                                  | 45.9              | 47.2    | 48.4    |  |  |  |
| Total Trips  | 11,185                                | 12,761            | 15,238  | 19,584  |  |  |  |
| Population   | 5,716                                 | 6,437             | 7,616   | 9,712   |  |  |  |
| Trip Rate    | 1.96                                  | 1.98              | 2.00    | 2.02    |  |  |  |
| Crowdb India |                                       | Growth Rate %p.a. |         |         |  |  |  |
| Growthindic  |                                       | 2013-18           | 2018-25 | 2025-35 |  |  |  |
| Walk         |                                       | 1.86              | 2.13    | 2.00    |  |  |  |
| Bicycle      |                                       | 2.45              | 2.55    | 3.16    |  |  |  |
| Mechanise    | bd                                    | 3.50              | 2.95    | 2.81    |  |  |  |
| Total Trips  | s                                     | 2.67              | 2.57    | 2.54    |  |  |  |
| Populatio    | n                                     | 2.40              | 2.43    | 2.46    |  |  |  |
| Trip Rate    | · · · · · · · · · · · · · · · · · · · | 0.26              | 0.13    | 0.08    |  |  |  |

| Table 11 2  | Growth in Total Travel by All Modes Person Trins ('000) |
|-------------|---------------------------------------------------------|
| 1 auto 11.2 | Growth in Fotal Fravel by An Modes, Ferson Trips (000)  |

The next stage in the demand forecast process is the distribution of estimated trip ends between origins and destinations. Results of the trip distribution patterns are illustrated by the desire-line diagrams for base and forecast years in Figure 11.1. It is evident that the demand for travel from the new town centers that spread around the central core of Yangon City would considerably grow.

Travel demand to and from areas outside the YUTRA area (external trips) was exogenously estimated, and added to the above described estimated demand. The external travel demand forecast was then compared with the MYT-Plan, and controlled by the MYT-Plan travel demand to/from Yangon and those that pass through the YUTRA area by private and public modes as well as for the goods vehicles. Table 11.3 summarizes the total travel demand in the study area by mode of travel and commercial vehicles.


Source: JICA Survey Team

Figure 11.1 Current and Forecasted Trip Distribution Patterns in YUTRA Areas

| Summary of Trip Totals by Mode (Inter-zonal) |           |           |           |            | % Grow th     |               | % Growth p.a. |               |               |               |
|----------------------------------------------|-----------|-----------|-----------|------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Total Trips                                  | 2013      | 2018      | 2025      | 2035       | 2013-<br>2018 | 2018-<br>2025 | 2025-<br>2035 | 2013-<br>2018 | 2018-<br>2025 | 2025-<br>2035 |
| Bicycle                                      | 598,500   | 422,900   | 504,200   | 688,900    | -29.3         | 19.2          | 36.6          | -6.7          | 2.5           | 3.2           |
| Motorcycle                                   | 304,500   | 208,200   | 246.100   | 320,300    | -31.6         | 18.2          | 30.2          | -7.3          | 2.4           | 2.7           |
| Car & Van                                    | 628,400   | 1,201,300 | 1,771.300 | 2,728,000  | 91.2          | 47.4          | 54.0          | 13.8          | 5.7           | 4.4           |
| Taxi                                         | 595,000   | 756,200   | 909,200   | 1,173,100  | 27.1          | 20.2          | 29.0          | 4.9           | 2.7           | 2.6           |
| Bus / Train/Ferry                            | 3,065,900 | 3,915,400 | 4,560,400 | 5,672,600  | 27.7          | 16.5          | 24.4          | 5.0           | 2.2           | 2.2           |
| Total Person Trips                           | 5,192,300 | 6,504,000 | 7,991,200 | 10,582,900 | 25.3          | 22.9          | 32.4          | 4.6           | 3.0           | 2.8           |
| % by Public<br>(Taxi, Bus, Ferry & Train)    | 70.5      | 71.8      | 68.4      | 64.7       |               |               |               |               |               |               |
| Goods Vehicle PCU                            | 110,900   | 151,200   | 205,200   | 301,600    | 36.3          | 35.7          | 47.0          | 6.4           | 4.5           | 3.9           |

| Table 11.3  | <b>Total Travel</b> | Demand in the | e YUTRA | Study Area   |
|-------------|---------------------|---------------|---------|--------------|
| I upic IIIc | I oful IIu of       | Demana m m    |         | Study III cu |

Source: JICA Survey Team

The impact of traffic assignment is measured in terms of volume (assigned traffic) capacity (road capacity of each section of road in the network) ratio commonly called as "V/C Ratio". This section outlines the impact of future traffic demand on the current network. Figure 11.2 shows the current traffic volumes on the current road network in 2013 with the V/C ratios that are illustrated by color.

Figure 11.2 also shows that most of the network is congestion free (i.e., green links with V/C Ratio <0.75) and there are only limited number of road sections which are above capacity. This network also reflects the impact of the current rampant on-street parking, which is the main reason of traffic congestion in the CBD area. There are some key links outside the CBD area that are at near capacity (blue links with V/C Ratio between  $0.75 \sim 1.0$ ). Some bottlenecks are also illustrated by the brown color links.

Figure 11.3 shows the assigned traffic volumes on the current road network in 2018 with the V/C ratios illustrated by color. The figure clearly illustrates that if the current transport infrastructure is not improved, congestion would worsen. The most severe impact would be the rapidly growing urban areas in the west and south of the Yangon River, where the V/C Ratio exceeds 2.0 at the only arterial road in the area. Congestion on bridges from the west and from the Bago area would be operating almost at its capacity most of the day. This illustrates the immediate need for additional Yangon and Bago River crossings.



Source: JICA Survey Team

Figure 11.2 2013 Assigned Traffic Volume on the Current Transport Network



Source: JICA Survey Team



Figure 11.4 shows the assigned traffic volume on the current road network in 2025 with the V/C ratios are illustrated by color.

The figure demonstrates that considerable road network capacity would be required to accommodate almost 80% increase in road traffic volume (see Table 11.3 above). The need for a comprehensive arterial and secondary road network would be required in the townships at the west of the Yangon River, as indicated by the black color wherein the only current north-south road reached the V/C Ratio of over 4. Additional river crossings would be required as shown in the 2018 V/C Ratio figures. By 2025, the whole of the Yangon area road network would be required to almost double its road network capacity, or carry out some traffic restraint and use of the charges system would need to be in place. The demand for public transport would also require more efficient systems other than the regular bus services to alleviate congestion. The stress on the outer area highway network is also evident in the V/C Ratio between 1~2 (brown) and over 2.0 indicated by the red color. By 2025, the internal external traffic would also require arterial or expressway network to be in place to meet the demand efficiently.



Source: JICA Survey Team

Figure 11.4 2025 Assigned Traffic Volume on the Current Transport Network

The impact on the road network by 2035 under the stress of increase in the total passenger car unit (PCU) to 2.3 million would be unthinkable if the city will grow and the transport infrastructure remains at the current 2013 level. The need for additional capacity is illustrated below in Figure 11.5, which shows the projected 2035 traffic volume and illustrates the likely V/C ratios on the network. It can be seen that on most of the networks the V/C ratios exceeds 1.0, and the brown, red, and black colors show the intensity of the poor level of service. In fact the red and black colors imply the need to further double the current road capacity and the need for an efficient mass transit system by 2035. A corridor based supply demand analysis is presented in the next section.



Source: JICA Survey Team



In summary, these figures above show that V/C of the existing Thanlyin Bridge is expected to rapidly increase between 2013 and 2018. In addition, V/C will reach over 2.0 in 2025, which means that under the current road network there will be severe congestion on the existing Thanlyin Bridge after 2025.

## 11.2.3 Base Case Demand Forecast (Do Master Plan)

In this subsection, future travel demand of the targeted area (existing Thanlyin Bridge and the new Bago Bridge) of this Survey in Base Case is presented. YUTRA proposed some prioritized projects4 for the master plan of the urban transport in Greater Yangon and the Base Case in this chapter is defined as "Do Master Plan Scenario." The Do Master Plan Scenario assumes the following transport facilities to be developed on the condition that the major road network, the urban railways including two lines of the Urban Mass Rapid Transit (UMRT), and four routes of the Bus Rapid Transport (BRT) will be conducted as scheduled.

Road Network: Road Projects are composed of three types of projects: i) arterial roads, ii) expressways, and iii) traffic control and the Intelligent Transport Systems (ITS). A total of 27 projects were proposed by YUTRA. The Bago Bridge construction project is also included in the project list.

Public Transport: Urban Railway Projects and BRT Projects are also included. The Urban Railway Projects are composed of three types of projects: i) Urban sections of the existing Myanmar Railways, ii) UMRT, and iii) Transit Oriented Development (TOD). A total of 29 projects were proposed. A BRT line is planned to be developed on Thanlyin Bridge. After the new Bago Bridge is constructed, roads of the existing bridge will occupied by BRT.

Traffic Management: The purposes of the Traffic Management Projects are to manage traffic congestion and keep traffic safety. Six short-term projects were proposed.

<sup>&</sup>lt;sup>4</sup> The projects are divided into three categories by implementation schedule: short-term (2014-2018), medium-term (2019-2025), and long-term (2026-2035).

Freight Transport: Two truck terminal projects (medium term) were proposed.

On the assumption that the prioritized projects will be conducted as scheduled, the future travel demand in PCU on the existing Thanlyin Bridge and the new Bago Bridge was calculated through a benchmark year. Table 11.4 presents the travel demand in PCU by mode of transport in two cases: with and without project (new Bago Bridge construction).

| Case              | Mode       | 2013  | 2018   | 2025   | 2035   |
|-------------------|------------|-------|--------|--------|--------|
|                   | Motorcycle | 232   | 1,150  | 1,089  | 1,352  |
|                   | Car        | 5,022 | 16,895 | 19,103 | 27,593 |
| With              | Taxi       | 4,805 | 12,539 | 9,319  | 12,874 |
|                   | Bus        | 4,406 | 5,199  | 3,069  | 3,645  |
|                   | Truck      | 4,485 | 6,181  | 4,610  | 6,578  |
|                   | Motorcycle | 232   | 1,150  | 1,039  | 1,305  |
|                   | Car        | 5,022 | 16,895 | 12,916 | 17,115 |
| Without           | Taxi       | 4,805 | 12,539 | 8,084  | 9,767  |
|                   | Bus        | 4,406 | 5,199  | 3,346  | 4,043  |
|                   | Truck      | 4,485 | 6,181  | 1,364  | 1,934  |
|                   | Motorcycle | -     | -      | 50     | 47     |
| ** ** 4           | Car        | -     | -      | 6,187  | 10,478 |
| With -<br>Without | Taxi       | -     | -      | 1,235  | 3,107  |
| uiout             | Bus        | -     | -      | -277   | -398   |
|                   | Truck      | -     | -      | 3,246  | 4,644  |

 Table 11.4 Total Travel Demand in PCU on Thanlyin Bridge and new Bago Bridge

Source: JICA Survey Team

The result of the demand forecast also shows that travel speed at each bridge will increase and the V/C Ratio will be improved by the construction of the new bridge. The travel speed and V/C Ratio by each benchmark year are summarized in Table 11.4. Table 11.5 reveals that travel speed on the existing Thanlyin Bridge will increase by 27.41 km/h in 2025 and 36.59 km/h in 2035, respectively.

 Table 11.5
 Travel Speed on Thanlyin Bridge and new Bago Bridge (km/hour)

| Case           | Bridge                   | 2013  | 2018 | 2025  | 2035  |
|----------------|--------------------------|-------|------|-------|-------|
| W/:41          | Existing Thanlyin Bridge | 27.00 | 4.97 | 45.00 | 45.00 |
| vv Iuli        | New Bago Bridge          | NA    | NA   | 56.43 | 36.09 |
| Without        | Existing Thanlyin Bridge | 27.00 | 4.97 | 17.59 | 8.41  |
| With - Without | Existing Thanlyin Bridge | NA    | NA   | 27.41 | 36.59 |

Note: As for without case, buses of BRT are assumed to run on the existing bridge except that the lane is not exclusive. Source: JICA Survey Team

# **11.3 Economic Evaluation**

## **11.3.1** Methodology and Assumptions

The economic analysis is to determine whether a proposed public infrastructure project deserves investment of public fund. The concept is to analyze whether the return on a project is worth the investment from the viewpoint of the national economy as a standpoint of the government. The rationality of the investment in the project is evaluated by comparing the economic costs and benefits over the life of the project.

In general, the economic benefit of the transportation development project is defined as the savings in vehicle operation costs (VOC) and travel time costs (TTC) of users attributable to the project. The benefit is comparatively easy to quantify and is estimated through a "with-and without" comparison of traffic demand analysis, that is, comparison of traffic assignment results on a network with the Project and without the Project.

Economic analysis of this Project was conducted based on the following assumptions and standardizations:

1) Construction Period

Construction period for this Project is about six years from 2015 to 2020. The construction period is composed of two years for detailed design/tender period and three years for construction period.

2) Period of Analysis

Period of analysis is 30 years which includes the construction period from 2014 to 2020 and the operation period from 2021 to 2043.

3) Project Life

Fifty years after starting operation. Evaluation period does not cover project life and therefore, residual value was considered.

4) Traffic Assignment:

Traffic assignment was conducted for year 2025 and year 2035, and the economic benefits were estimated for the two years and an interpolation was done for the intermediate years. The economic benefits have been calculated from the results of traffic assignment. After 2035, the economic benefit was assumed to be increased by the same trend.

5) Indicators of Economic Viability

The following three indicators were calculated for economic evaluation of this Project:

- + Benefit/Cost Ratio (B/C)
- + Net Present Value (NPV)
- + Economic Internal Rate of Return (EIRR)
- 6) Social Discount Rate:

A 10% per annum was assumed as the social discount rate.

7) Annual Maintenance Cost

A 3% of construction cost of the Project was assumed.

8) Standard Conversion Factor (SCF)

In this analysis, all the costs are classified into the following items: 1) traded goods, 2) non-traded goods, and 3) transfer item. It is assumed that traded goods are equivalent to the foreign currency portion, and aggregation of non-traded goods stands for the local

currency portion. Transfer item means the portion of taxes, which should be excluded from the economic price.

Items such as import duties cause price differential between the domestic market and international market. The standard conversion factor is an index which converts domestic prices to border prices by adjustment of the distortion of domestic prices. The economic prices of the whole portion of non-trade goods are assumed to be obtained by applying the standard conversion factor (SCF).

The standard conversion factor is estimated based on the value of import, export, and taxes. According to the statistical data regarding foreign trade and governmental revenues in Myanmar and to compensate unclear figures on trading such as custom rates, conversion factors in neighboring countries are also referred, such as 0.85 of SCF in Indonesia and in the Philippines. The SCF for this Project is assumed to be 0.85 as the conservative figure which is the same as SCF of YUTRA.

9) Exchange Rate

USD 1.00 = MKK 1,000 in December 2013 was applied.

## **11.3.2** Economic Cost of the Project

Project cost stated in Chapter "10.6 Estimated Project Cost", is presented in the financial price. The portion of contingency and taxes is excluded from the economic project costs. Using a standard conversion factor (SCF) set at 0.85 above, the economic prices of the Project is estimated. The economic and financial costs, which are the basis of the economic prices are shown in Table 11.6.

|                     |                | Unit: USD in '000 |
|---------------------|----------------|-------------------|
| Item                | Financial Cost | Economic Cost     |
| Construction Cost   | 214,786        | 208,082           |
| Engineering Cost    | 10,564         | 10,279            |
| (Subtotal)          | 225,350        | 218,361           |
| Land Acquisition    | 13             | 11                |
| Administration Cost | 12,677         | 11,671            |
| Taxes               | 22,069         | 0                 |
| Contingency         | 12,092         | 0                 |
| Price Escalation    | 16,095         | 15,041            |
| Total               | 288,296        | 245,084           |

Table11.6.Financial and Economic Costs for the Project

Source: JICA Survey Team

## **11.3.3** Economic Benefits of the Project

As savings in VOC and TTC were selected as the economic benefits of the project, unit costs of VOC and TTC were required to estimate those benefits. The unit costs were estimated in 2013.

(1) Vehicle Operation Cost (VOC)

The savings in VOC is one of the major sources of economic benefits in transport projects. Most important is that the VOC should be a function of vehicle speed so that the improvement of road conditions would be duly reflected as an economic benefit. The unit cost by mode of transport is shown in Table 11.7.

|        |       |     |         |          |          | Unit: US       | SD-km in '000 |
|--------|-------|-----|---------|----------|----------|----------------|---------------|
| Speed  | Motor | Car | HOV/Van | Mini Bus | Standard | Small<br>Truck | Big Truck     |
| (km/h) | cycle |     |         |          | Dus      | TTUCK          |               |
| 5      | 58    | 447 | 633     | 662      | 743      | 840            | 1,152         |
| 10     | 34    | 258 | 374     | 437      | 483      | 611            | 795           |
| 20     | 22    | 158 | 233     | 304      | 333      | 451            | 568           |
| 30     | 17    | 122 | 177     | 246      | 270      | 367            | 458           |
| 40     | 15    | 103 | 144     | 212      | 235      | 313            | 391           |
| 50     | 14    | 92  | 129     | 193      | 215      | 279            | 354           |
| 60     | 14    | 87  | 124     | 184      | 204      | 261            | 335           |
| 70     | 14    | 85  | 124     | 182      | 202      | 257            | 332           |
| 80     | 14    | 86  | 129     | 189      | 209      | 268            | 349           |
| 90     | 15    | 90  | 136     | 203      | 224      | 293            | 382           |

| <b>Table 11.7</b> | VOC by Vehicle Type | (Economic Price) |
|-------------------|---------------------|------------------|
|-------------------|---------------------|------------------|

Source: JICA Survey Team

(2) Value of Time (VOT)

The savings in passenger time cost is another major source of economic benefit of transport projects. Table 11.8 below presents the unit of VOT by mode of transport calculated from the personal income data which was collected by the Household Interview Survey conducted by YUTRA. This value is assumed to be increased at the same growth rate as per-capita gross regional domestic product (GRDP) used in this study.

| No | Mode       | 2013<br>(Current) | 2018 | 2025 | 2035 |
|----|------------|-------------------|------|------|------|
| 1  | Motorcycle | 0.5               | 0.7  | 1.1  | 2.1  |
| 2  | Car        | 1.3               | 1.8  | 2.8  | 5.1  |
| 3  | Taxi       | 1.0               | 1.4  | 2.2  | 4.0  |
| 4  | Bus/Truck  | 0.7               | 0.9  | 1.4  | 2.6  |

 Table 11.8 VOT by Travel Mode (USD/hour)

Source: JICA Survey Team

(3) Estimation of Economic Benefits: Saving VOC and TTC

By applying the above unit costs to the results of traffic demand and summing VOC and TTC, aggregated transportation cost was estimated. Economic benefit is the difference of the aggregated costs between "with project" and "without project" cases. Table 11.9 shows the estimated economic benefits of benchmark years, 2025 and 2035.

| Table 11.9 | Estimated | Economic | <b>Benefits</b> | of Be | enchmark | Years |
|------------|-----------|----------|-----------------|-------|----------|-------|
|------------|-----------|----------|-----------------|-------|----------|-------|

|      | Economic Benefit (USD in millions) |        |       |  |  |  |  |  |
|------|------------------------------------|--------|-------|--|--|--|--|--|
| Year | TTC VOC                            |        | Total |  |  |  |  |  |
|      | Saving                             | Saving | Total |  |  |  |  |  |
| 2025 | 2.7                                | 8.7    | 11.4  |  |  |  |  |  |
| 2035 | 67                                 | 65     | 132   |  |  |  |  |  |
|      |                                    |        |       |  |  |  |  |  |

Source: JICA Survey Team

## **11.3.4 Evaluation Result**

(1) Base Case

Evaluation result of the economic analysis for this Project is summarized in Table 11.10. As explained above, three indicators of the cost-benefit analysis, i) B/C, ii) NPV, and iii) EIRR were computed based on the assumptions mentioned in the foregoing section.

The evaluation result clearly shows that the Project is assessed as economically feasible, as the threshold of EIRR is 12%.

| Indicator                                       | Value |
|-------------------------------------------------|-------|
| EIRR                                            | 13.5% |
| B/C (at discounted rate of 10%)                 | 1.29  |
| NPV (USD in millions at discounted rate of 10%) | 54    |
|                                                 |       |

## Table 11.10 Summary of Cost-Benefit Analysis

Source: JICA Survey Team

## Table 11.11 Benefit-Cost Stream

Unit: USD Mil.

| Year |      | Cost               |          |        |             |            |       |               |
|------|------|--------------------|----------|--------|-------------|------------|-------|---------------|
|      |      | Investment<br>Cost | O&M Cost | Total  | Time Saving | VOC Saving | Total | Net Cash Flow |
|      | 2015 | 5.2                | 0        | 5.2    | 0           | 0          | 0     | -5.2          |
|      | 2016 | 1.2                | 0        | 1.2    | 0           | 0          | 0     | -1.2          |
|      | 2017 | 96.9               | 0        | 96.9   | 0           | 0          | 0     | -96.9         |
|      | 2018 | 77.0               | 0        | 77.0   | 0           | 0          | 0     | -77.0         |
|      | 2019 | 52.7               | 0        | 52.7   | 0           | 0          | 0     | -52.7         |
|      | 2020 | 12.2               | 0        | 12.2   | 0           | 0          | 0     | -12.2         |
| 1    | 2021 | 0                  | 7.4      | 7.4    | 0           | 0          | 0     | -7.4          |
| 2    | 2022 | 0                  | 7.4      | 7.4    | 0           | 0          | 0.0   | -7.4          |
| 3    | 2023 | 0                  | 7.4      | 7.4    | 1.3         | 4.2        | 5.5   | -1.9          |
| 4    | 2024 | 0                  | 7.4      | 7.4    | 1.7         | 5.3        | 7.0   | -0.4          |
| 5    | 2025 | 0                  | 7.4      | 7.4    | 2.1         | 6.8        | 8.9   | 1.6           |
| 6    | 2026 | 0                  | 7.4      | 7.4    | 2.7         | 8.7        | 11.4  | 4.0           |
| 7    | 2027 | 0                  | 7.4      | 7.4    | 3.7         | 10.6       | 14.4  | 7.0           |
| 8    | 2028 | 0                  | 7.4      | 7.4    | 5.1         | 13.0       | 18.1  | 10.8          |
| 9    | 2029 | 0                  | 7.4      | 7.4    | 7.1         | 15.9       | 23.0  | 15.6          |
| 10   | 2030 | 0                  | 7.4      | 7.4    | 9.8         | 19.5       | 29.2  | 21.9          |
| 11   | 2031 | 0                  | 7.4      | 7.4    | 13.5        | 23.8       | 37.3  | 29.9          |
| 12   | 2032 | 0                  | 7.4      | 7.4    | 18.6        | 29.1       | 47.7  | 40.3          |
| 13   | 2033 | 0                  | 7.4      | 7.4    | 25.6        | 35.6       | 61.2  | 53.9          |
| 14   | 2034 | 0                  | 7.4      | 7.4    | 35.3        | 43.5       | 78.9  | 71.5          |
| 15   | 2035 | 0                  | 7.4      | 7.4    | 48.7        | 53.2       | 102.0 | 94.6          |
| 16   | 2036 | 0                  | 7.4      | 7.4    | 67.2        | 65.1       | 132.3 | 124.9         |
| 17   | 2037 | 0                  | 7.4      | 7.4    | 85.9        | 83.2       | 169.1 | 161.7         |
| 18   | 2038 | 0                  | 7.4      | 7.4    | 109.7       | 106.3      | 216.0 | 208.7         |
| 19   | 2039 | 0                  | 7.4      | 7.4    | 140.2       | 135.8      | 276.0 | 268.7         |
| 20   | 2040 | 0                  | 7.4      | 7.4    | 179.2       | 173.6      | 352.7 | 345.4         |
| 21   | 2041 | 0                  | 7.4      | 7.4    | 228.9       | 221.8      | 450.7 | 443.3         |
| 22   | 2042 | 0                  | 7.4      | 7.4    | 292.5       | 283.4      | 575.9 | 568.6         |
| 23   | 2043 | 0                  | 7.4      | 7.4    | 373.8       | 362.1      | 735.9 | 728.5         |
| 24   | 2044 | -127.46            | 7.4      | -120.1 | 477.6       | 462.7      | 940.3 | 1,060.4       |
| T    | otal | 118                | 176      | 294    | 2,130       | 2,163      | 4,293 | 3,999         |
| PV@  | ₽12% | 155                | 29       | 184    | 112         | 126        | 239   | 54            |

Source: JICA Survey Team

### Table 11.12 Discounted Cash Flow for Cost-Benefit Analysis

| Discount Rate: | 12    | %       |                |
|----------------|-------|---------|----------------|
|                |       |         | Unit: USD Mil. |
| Year           | Cost  | Benefit | Net Cash Flow  |
| 2015           | 4.6   | 0.0     | -4.6           |
| 2016           | 0.9   | 0.0     | -0.9           |
| 2017           | 68.9  | 0.0     | -68.9          |
| 2018           | 49.0  | 0.0     | -49.0          |
| 2019           | 29.9  | 0.0     | -29.9          |
| 2020           | 6.2   | 0.0     | -6.2           |
| 2021           | 3.3   | 0.0     | -3.3           |
| 2022           | 3.0   | 0.0     | -3.0           |
| 2023           | 2.7   | 2.0     | -0.7           |
| 2024           | 2.4   | 2.2     | -0.1           |
| 2025           | 2.1   | 2.6     | 0.5            |
| 2026           | 1.9   | 2.9     | 1.0            |
| 2027           | 1.7   | 3.3     | 1.6            |
| 2028           | 1.5   | 3.7     | 2.2            |
| 2029           | 1.3   | 4.2     | 2.9            |
| 2030           | 1.2   | 4.8     | 3.6            |
| 2031           | 1.1   | 5.4     | 4.4            |
| 2032           | 1.0   | 6.2     | 5.2            |
| 2033           | 0.9   | 7.1     | 6.3            |
| 2034           | 0.8   | 8.2     | 7.4            |
| 2035           | 0.7   | 9.4     | 8.8            |
| 2036           | 0.6   | 10.9    | 10.3           |
| 2037           | 0.5   | 12.5    | 11.9           |
| 2038           | 0.5   | 14.2    | 13.7           |
| 2039           | 0.4   | 16.2    | 15.8           |
| 2040           | 0.4   | 18.5    | 18.1           |
| 2041           | 0.3   | 21.1    | 20.8           |
| 2042           | 0.3   | 24.1    | 23.8           |
| 2043           | 0.3   | 27.5    | 27.2           |
| 2044           | -4.0  | 31.4    | 35.4           |
| NPV=           | 54    |         |                |
| EIRR=          | 13.5% |         |                |
| B/C=           | 1.29  |         |                |
|                |       |         |                |

Source: JICA Survey Team

#### (2) Sensitivity Analysis

The sensitivity analysis was made by changing the projected cost upward and benefit downward. The elasticity of EIRRs against the project cost is at the range of 1.0 and 1.2 and against benefit in the range of 0.8 and 1.0.

Table 11.13 shows the result of the sensitivity analysis by changing cost and benefit. EIRR is still kept at 12% in case cost does not increase but EIRR is below 12% in cases that the cost increases by 10% and the benefit decreases by 20% or the cost increases by 20% and the benefit decreases by 20%.

|                     |           | Project Cost Increase |        |        |  |
|---------------------|-----------|-----------------------|--------|--------|--|
|                     |           | Base (0%)             | 10% up | 20% up |  |
| D (1                | Base (0%) | 13.5%                 | 12.9%  | 12.4%  |  |
| Benefit<br>Decrease | 10% down  | 12.9%                 | 12.3%  | 11.8%  |  |
| Deereuse            | 20% down  | 12.2%                 | 11.7%  | 11.2%  |  |

#### Table11.13 Sensitivity Analysis by Changing Cost and Benefit

Source: JICA Survey Team

#### **11.3.5** Establishment of Operation and Effect Indicators

In order to evaluate how the study contributes to the various expected benefits in its ex-ante and expost stages, operation and effect indicators are set. Operation indicators quantitatively measure the operational status of a project, while effect indicators measure qualitatively the effects generated by the study. In case of the road project, operation indicators include increase in traffic volume (vehicles/day), etc. and effect indicators are time cost saving, traffic smoothness, and so on.

In the case of Bago Bridge, the following operation and effect indicators are set, taking into account the collection of baseline and post-project implementation data. The indicators and target figures are summarized in Table 11.14

Construction of the new Bago Bridge is expected to improve the traffic condition on the existing Thanlyn Bridge. Therefore, target figures of the operation and effect indicators of Thanlyn Bridge are also presented in the table.

| Indicator  |                                                 | Direction   | Baseline<br>(2013) | Target (2022)            |                               |
|------------|-------------------------------------------------|-------------|--------------------|--------------------------|-------------------------------|
|            |                                                 |             | Thanlyin<br>Bridge | With                     | Without                       |
|            |                                                 |             |                    | New Bago River<br>Bridge | (existing<br>Thanlyin Bridge) |
| Operation  | Increase in traffic<br>volume<br>(PCU/day/1way) | South Bound | 9,254              | 26,069                   | 24,770                        |
| Indicators |                                                 | North Bound | 9,696              | 24,254                   | 21,888                        |
|            | Increase in travel speed (km/h)                 | South Bound | 28.0               | 29.1                     | 4.5                           |
| Effect     |                                                 | North Bound | 26.0               | 33.5                     | 4.8                           |
| Indicators | Alleviation of<br>traffic congestion<br>(V/C)   | South Bound | 0.67               | 0.87                     | 1.79                          |
|            |                                                 | North Bound | 0.70               | 0.80                     | 1.59                          |

**Table 11.14 Operation and Effect Indicators** 

Source: JICA Survey Team