Continuous Steel I-Girder with PC Deck Slab

CROSS SECTION

Continuous Steel I-Girder with PC Deck Slab
Continuous Steel Box Girder with Steel Plate Deck
\square

Continuous Steel I-Girder with PC Deck Slab
Continuous Steel I-Girder with PC Deck Slab
jíCA JAPAN INTERNATIONAL COOPERATION AGENCY

PUBLIC WORKS, MINISTRY OF CONSTRUCTION \square $\underbrace{\text { REMARKS }}$

CROSS SECTION

Precast Continuous PC Box Girder

Center
At Pier

Continuous PC Box Girder

\square

CROSS SECTION

Extradozed Bridge (At Pylon)
jich Japan international cooperation agency
\square

Appendix 11

Drawings

DRAWING LIST

SHEET NO.	DRAWING TITLE	DRAWING NO.
1	DRAWING LIST	GE-01
2	PLAN AND PROFILE (1/2)	RD-01
3	PLAN AND PROFILE (2/2)	RD-02
4	TYPICAL CROSS SECTION OF EARTHWORK SECTION	RD-03
5	GENERAL VIEW	BG-GP-01
6	STEEL CABLE STAYED BRIDGE	BG-SP-01
7	CONTINUOUS STEEL BOX GIRDER	BG-SP-02
8	CONTINUOUS PC BOX GIRDER (YANGON SIDE)	BG-SP-03
9	CONTINUOUS PC BOX GIRDER (THANLYIN SIDE)	BG-SP-04
10	SUBSTRUCTURE AND FOUNDATION (1/2)	BG-SP-05
11	SUBSTRUCTURE AND FOUNDATION (2/2)	BG-SP-06
12	ERECTION PROCEDURE (1/2)	BG-EP-01
13	ERECTION PROCEDURE (2/2)	BG-EP-02

3	JAPAN INTERNATIONAL COOPERATION AGENCY	AIMICYial almec corporation ORIENTAL CONSULTANTS CO., LTD NIPPON KOEI CO., LTD	REMARKS	THE PROJECT FOR CONSTRUCTION OF BAGO RIVER BRIDGE		
)	REPUBLIC OF THE UNION OF MYANMAR PUBLIC WORKS, MINISTRY OF CONSTRUCTION			DRAWING TTTLE	Drawing List	
						GE-01

\square

THE PROJECT FOR CONSTRUCTION OF BAGO RIVER BRIDGE			
DRAWING TITLE		SCALE	
	Plan and Profile (1/2)	DRAWING NO.	RD-01

jica	JAPAN INTERNATIONAL COOPERATION AGENCY	ALMEC CORPORATION oriental consultants co., LTD NIPPON KOEI CO., LTD	REMARKS	THE PROJECT FOR CONSTRUCTION OF BAGO RIVER BRIDGE			
				DRAWING TITLE		SCALE	
(1)	REPUBLIC OF THE UNION OF MYANMAR PUBLIC WORKS, MINISTRY OF CONSTRUCTION				Plan and Profile (2/2)	DRAWING NO.	RD-02

TYPICAL CROSS SECTION OF EARTHWORK SECTION

jica	JAPAN INTERNATIONAL COOPERATION AGENCY	AIMICY: ALMEC CORPORATION ORIENTAL CONSULTANTS CO., LTD NIPPON KOEI CO., LTD	REMARKS	THE PROJECT FOR CONSTRUCTION OF BAGO RIVER BRIDGE		
	REPUBLIC OF THE UNION OF MYANMAR PUBLIC WORKS, MINISTRY OF CONSTRUCTION			DRAWING TITLE	SCALE	1:200
(1)				Typical Cross Section of Earthwork Section	DRAWING NO. SHEET NO.	RD-03

P7

- Provide steel brackets to support steel girder blocks on the pier top.
- The girder blocks on the pier top are erected by barge mounted crane
- Cantilever steel girder blocks are erected by TEG crane which is facilitated on the top of girder.

- Girder blocks are transported on the barge from the fabrication yard.
- The girder block is lifted up to their correct position and jointed by TEG Crane.
- These girder blocks are repeatedly erected with balanced cantilever method.

- Closure block at the center is carefully lifted up and set at the center portion by TEG Crane.

P3

- All segments are adjusted on the truss girder and then partial post-tensining force is exerted - Adjacent spans of PC box girders are jointed
with closure joint space
- Closure joints are cast.
- Continuity presstressing cables are installed and tensioned to connect all spans as a continuous box girder.

Appendix 12

Appendix 12.1 Results of Actual Environmental Survey
Appendix 12.2 Participants List of Stakeholder Meeting
Appendix 12.3 Results of Survey for Preparation of ARP
Appendix 12.4 Confirmation of Environmental and Social Considerations for the Proposed Project by JICA Environmental Checklist

Appendix 12.1 Results of Actual Environmental Survey

Table A12.1.1 List of Terrestrial Plant Species in Bago River Bridge Area

No.	Scientific Name	Family Name	Family Name	Vanicular Name	Habit*
1	Acacia auriculiformis A. Cunn.	Mimosaceae	Mimosaceae	Malaysia-padauk	ST
2	Acacia mangium Willd	Mimosaceae	Mimosaceae	Malaysia padauk-aphyu	T
3	Acacia megaladena Desv.	Mimosaceae	Mimosaceae	Subok	ST
4	Achyranthes aspera L.	Amaranthaceae	Amaranthaceae	Kyet-mauk-pyan, Kyet-mauk-sue-pyan, Naukpo	H
5	Acmella calva (DC.) R.K. Jansen	Asteraceae	Asteraceae	Shadon-po, Sein-nagat	H
6	Aeschynomene indica L .	Fabaceae	Fabaceae	Nay-bin	H
7	Ageratum conyzoides L.	Asteraceae	Asteraceae	Khwe-thay-pan	H
8	Allamanda cathartica L.	Apocynaceae	Apocynaceae	Shwewa pan	Cl, Cr
9	Alternanthera nodiflora R. Br.	Amaranthaceae	Amaranthaceae	Kanaphaw	H
10	Alternanthera sessilis (L.) R. Br .	Amaranthaceae	Amaranthaceae	Pazun-sar	H
11	Amaranthus spinosus L.	Amaranthaceae	Amaranthaceae	Hin-nu-nwe-subauk	H
12	Ammannia baccifera L.	Lythraceae	Lythraceae	-	S
13	Ammannia sp.	Lythraceae	Lythraceae	-	H
14	Annona squamosa L .	Annonaceae	Annonaceae	Awza	ST
15	Artocarpus heterophyllus Lam.	Moraceae	Moraceae	Pein -hne	T
16	Axonopus compressus (Sw.) P. Beauv.	Poaceae	Poaceae	-	G
17	Azadirachta indica A. Juss.	Meliaceae	Meliaceae	Tama, Tama-ga	T
18	Bauhinia purpurea L.	Caesalpiniaceae	Caesalpiniaceae	Swedaw	ST
19	Bauhinia sp.	Caesalpiniaceae	Caesalpiniaceae	Swedaw	ST
20	Blumea hieracifolia (D. Don) DC.	Asteraceae	Asteraceae	-	H
21	Blumea sp.	Asteraceae	Asteraceae	Kadu	S
22	Bombax ceiba L.	Bombacaceae	Bombacaceae	Let-pan	T
23	Borassus flabellifer L.	Arecaceae		Htan	T
24	Bougainvillea spectabilis Willd.	Nyctaginaceae		Sekku pan	S, Cl
25	Bridelia sp.	Euphorbiaceae		Seik-chay	ST
26	Caesalpinia pulcherrima (L.) Sw.	Caesalpiniaceae		Seinban-gale	S
27	Canavalia sp.	Fabaceae		-	Cl, Cr
28	Capparis tenera Dalzell	Capparaceae		Alo-lay	S

29	Carica papaya L.	Caricaceae	Thin baw	ST
30	Cassia alata L.	Caesalpiniaceae	Pwe-se-mezali	T
31	Cassia fistula L.	Caesalpiniaceae	Ngu	T
32	Casuarina equisetifolia Forst.	Casuarinaceae	Pinle-kabwe	T
33	Ceiba pentandra (L.) Gaertn.	Bombacaceae	Hmo Pin	T
34	Centratherum punctatum	Asteraceae	-	H
35	Cephalandra indica Naud.	Cucurbitaceae	Kinmon	Cl, Cr
36	Chloris barbata Sw.	Poaceae	Myet-kha	
37	Chromolaena odorata (L.) R. M. King \& H. Robinson	Asteraceae	Bizat	S
38	Cleome burmanii Wight \& Arn	Capparaceae	Taw hingala	H
39	Clitoria macrophylla Wall.	Fabaceae	Taw-pe	Cl, Cr
40	Cocos nucifera L .	Arecaceae	Ohn-pin	T
41	Codiaeum variegatum (L.) Blume	Euphorbiaceae	Ywet-hla	S
42	Coix lacryma-jobi L.	Poaceae	Kyeik	G
43	Colocasia esculenta (L.) Schott	Araceae	Pein	H
44	Commelina diffusa Burm. F.	Commelinaceae	Myet kyut	H
45	Commelina sp.	Commelinaceae	Wet-kyut	H
46	Corchorus sp.	Tiliaceae	Taw-pilaw	S
47	Cordia dichotoma Forst.	Boraginaceae	Thanat	T
48	Cordyline fruticosa (L.) A. Chev.	Agavaceae	Zaw-ma	S
49	Costus speciosus Sm.	Costaceae	Phalan taung hmwe	H
50	Crotalaria retusa L.	Fabaceae	Taw-peiksan	H
51	Cyperus iria L.	Cyperaceae	-	G
52	Cyperus sp. (1)	Cyperaceae	-	G
53	Cyperus sp. (2)	Cyperaceae	-	G
54	Delonix regia (Bojer ex Hook.) Raf.	Caesalpiniaceae	Sein pan	T
55	Desmodium triflorum (L.) DC.	Fabaceae	Pe yaing	H
56	Dichanthium caricosum (L.) A. Camus	Poaceae	Myet-kha, Padaw	G
57	Digitaria sp.	Poaceae	-	G
58	Diospyros sp.	Ebenaceae	-	T
59	Dracaena fragrans (L.) Ker Gawl.	Dracaenaceae	Zawgi taunghway	S
60	Echinochloa sp.	Poaceae	-	G
61	Eclipta alba (L.) Hassk.	Asteraceae	Kyeik-hman	H
62	Eleusine indica L.	Poaceae	Sinngo-myet	G

63	Erythrina sp.	Fabaceae	Kathit	T
64	Euphorbia hirta L.	Euphorbiaceae	Kywekyaung hmin say	H
65	Ficus glomerata Roxb.	Moraceae	Ye thaphan	T
66	Ficus hispida L. f.	Moraceae	Kha-aung	ST
67	Ficus religiosa L.	Moraceae	Bawdi-nyaung	T
68	Ficus rumphii Blume	Moraceae	Nyaung	T
69	$F l e m i n g i a$ sp.	Fabaceae	Kye-mi	S
70	Flueggea leucopyrus Willd.	Euphorbiaceae	Chinya-pyu, Kon-chinya	S
71	Gardenia jasminoides Ellis	Rubiaceae	Zizawa	S
72	Hedyotis corymbosa (L.) Lam	Rubiaceae	-	H
73	Heliotropium indicum L.	Boraginaceae	Sin-hnamaung-gyi	H
74	Hibiscus rosa-sinensis L.	Malvaceae	Khaung yan	S
75	Hygrophila phlomoides Nees	Acanthaceae	Migyaung kunbat	H
76	Hyptis rhomboidea Marts \& Gal	Lamiaceae	-	S
77	Ipomoea aquatica Forssk.	Convolvulaceae	Kazun-ywet	Cl, Cr
78	Ipomoea pilosaSweet.	Convolvulaceae	Kone-kazun-lay	Cl
79	Ipomoea sagittata Poir	Convolvulaceae	Kone-kazun	Cl
80	Ipomoea sp.	Convolvulaceae	-	Cl
81	Ischaemum rugosum Salisb.	Poaceae	-	G
82	Ixora sp.	Rubiaceae	Ponna-yeik	S
83	Jatropha curcas L.	Euphorbiaceae	Chan-siyo-kyetsu	ST
84	Justicia gendarussa Burm. f.	Acanthaceae	Pha-wa-net	S
85	Kyllinga monocephala Rottb.	Cyperaceae	-	G
86	Lagerstroemia macrocarpa Kurz	Lythraceae	Pyinma ywet kyi	T
87	Lagerstroemia speciosa (L.) Pers.	Lythraceae	Pyinma	T
88	Leucaena leucocephala (Lam.) De Wit	Mimosaceae	Baw-sa-gaing	T
89	Lindernia crustacea F. Muell.	Scorphulariaceae	-	H
90	Ludwigia prostrata Roxb.	Onagraceae	Lay-hnin	S
91	Mangifera indica L .	Anacardiaceae	Tha-yet	T
92	Mariscus compactus (Retz.) Druce	Cyperaceae	-	G
93	Melochia corchorifolia L.	Sterculiaceae	Pilaw-akyi	S
94	Merremia gemella (Burm. f.) Hallier f.	Convolvulaceae	-	Cl, Cr
95	Mikania micrantha HBK	Asteraceae	Bizat-new, Yokekhama-shokehtwe	Cl, Cr
96	Mimosa pudica L .	Mimosaceae	Hti-ka-yone	H
97	Mimosa rubicaulis Lam.	Mimosaceae	Biat-hli-ka-yone	H

98	Mimusops elengi L.	Sapotaceae	Khaye	T
99	Morinda citrifolia L.	Rubiaceae	Yeyo	ST
100	Moringa oleifera Lam.	Moringaceae	Dantalon	T
101	Mucuna pruriens (L.) DC.	Fabaceae	Khwe-la-ya	Cl, Cr
102	Muntingia calabura L .	Tiliaceae	Tha gya thi	ST
103	Musa sp.	Musaceae	Nget-pyaw	T
104	Nauclea sp.	Rubiaceae	Ma-u	T
105	Nerium oleander L.	Apocynaceae	Nwethagee	S
106	Operculina turpethum (L.) Silva Manso	Convolvulaceae	Kyahin-bin	Cl, Cr
107	Oroxylum indicum (L.) Kurz	Bignoniaceae	Kyaung-sha	T
108	Passiflora foetida L .	Passifloraceae	Taw-suka	Cl
109	Pedilanthus latifolius Millsp. \& Britton	Euphorbiaceae	Gongaman	H
110	Pennisetum pedicellatum Trin.	Poaceae	Bottle-brush	G
111	Phaulopsis parviflora Willd	Acanthaceae	-	H
112	Phyllanthus reticulatus Poir.	Euphorbiaceae	Ye-chiya	S
113	Phyllanthus urinaria L.	Euphorbiaceae	Mye-zi-phyu	H
114	Physalis minima L.	Solanaceae	Bauk-pin	H
115	Pithecellobium dulce (Roxb) Benth.	Mimosaceae	Kala-magyi	T
116	Plumeria obtusa L.	Apocynaceae	Akyaw	ST
117	Plumeria rubra L.	Apocynaceae	Tayoke-saga	ST
118	Polyathia longifolia (Lam.) Benth.\& Hook.f.	Annonaceae	Ye-tama	T
119	Polygonum sp.	Polygonaceae	-	S
120	Psidium guajava L.	Myrtaceae	Malaka	ST
121	Pterocarpus indicus Willd.	Fabaceae	Padauk	T
122	Samanea saman (Jacq.) Merr.	Mimosaceae	Kokko	T
123	Scirpus sp.	Cyperaceae	-	G
124	Scoparia dulcis L.	Scorphulariaceae	Darna-thu-kha	H
125	Senna siamea (Lam.) Irwin \& Barneby	Caesalpiniaceae	Mazali	T
126	Sida acuta Burm. f.	Malvaceae	Wet-chay-pane	S
127	Solanum indicum L.	Solanaceae	Khayan-kazaw	S
128	Spathodea campanulata P. Beauv.	Bignoniaceae	Ye-pyut, African tulip	T
129	Sphaeranthus indicus L.	Asteraceae	Mwe soke	H
130	Streblus asper Lour.	Moraceae	Okhne	T
131	Swietenia macrophylla King	Meliaceae	Mahogani	T
132	Synedrella nodiflora (L.) Gaertn.	Asteraceae	Bizat-hpo	H

133	Syngonium podophyllum Schott	Araceae	-	H
134	Tamarindus indica L.	Caesalpiniaceae	Magyi	T
135	Tectona grandis L. f.	Verbenaceae	Kyun	T
136	Terminalia catappa L.	Combretaceae	Banda	T
137	Tridax procumbens L.	Asteraceae	Hmwezok-negya	H
138	Urena lobata L.	Malvaceae	Katsene	S
139	Vernonia cinerea Less.	Asteraceae	Kadu-pyan	H
140	Vigna marina (Burm.) Merr.	Fabaceae	Pe-dalat-yaing	Cl, Cr
141	Ziziphus jujuba Lam.	Rhamnaceae	Zee	ST

Source: JICA Survey Team
Table A12.1.2 List of mangrove species in study area

No.	Scientific Name	Family Name	Vanicular Name	Habit*
1	Acanthus ilicifolius L.	Acanthaceae	Khaya	S
2	Avicennia officinalis L.	Avicenniaceae	Thame	S / T
3	Caesalpinia crista L.	Caesalpiniaceae	Alo-lay	Cl
4	Clerodendrum inerme Gaertn.	Verbenaceae	Pinle-kyauk-pan	T
5	Derris trifoliata Lour.	Fabaceae	New-net	Cl
6	Flagellaria indica L.	Flagellariaceae	Myauk kyein	Cl
7	Hibiscus tiliaceus L.	Malvaceae	Thinban, Ye-ngan-shaw	ST
8	Nypa fruticans Wurmb	Arecaceae	Dani	ST
9	Phragmites karka Roxb.	Poaceae	Kyu	G
10	Pluchea indica (L.) Less.	Asteraceae	Khayu, Wabalu	S
11	Pongamia pinnata Pierre	Fabaceae	Thinn wun phyu	T
12	Sonneratia apetala Buch.- Ham.	Sonneratiaceae	-	T
13	Sonneratia caseolaris (L.) Engl.	Sonneratiaceae	Lamu	T
14	Vitex trifolia L.	Verbenaceae	Kyaung pan lay	ST
15	Wedelia biflora (L.) DC.	Asteraceae	-	S

Source: JICA Survey Team
Table A12.1.3 List of Identified Animal Species 1 - Butterfly Species

No.	Scientific name	Common name	Family	Siting place
1	Phalacrocorax niger	Little Cormorant	Phalacrocoracidae	aerial
2	Egretta garzetta	Little Egret	Ardeidae	river,grassland
3	Bubulcus ibis	Cattle Egret		river
4	Ardeola grayii	Indian Pond-Heron		river
5	Actitis hypoleucos	Common Sandpiper	Scolopacidae	river
6	Milvus migrans	Black Kite	Accipitridae	aerial
7	Spilopelia chinensis	Spotted Dove	Columbidae	tree,shrub land,building

8	Columba livia	Rock Pigeon		grassland
9	Apus nipalensis	House Swift	Apodidae	aerial
10	Halcyon smyrnensis	White-throated Kingfisher	Alcedinidae	mangrove
11	Merops orientalis	Green Bee-eater	Meropidae	mangrove
12	Merops philippinus	Blue-tailed Bee-eater		mangrove
13	Aegithina tiphia	Common Iora	Aegithinidae	mangrove
14	Hirundo rustica	Barn Swallow	Hirundinidae	aerial
15	Pycnonotus blanfordi	Streak-eared Bulbul	Pycnonotidae	mangrove
16	Pycnonotus cafer	Red-vented Bulbul		mangrove
17	Pycnonotus jocosus	Red-whiskered Bulbul		mangrove
18	Orthotomus sutorius	Common Tailorbird	Cisticolidae	mangrove
19	Prinia inornata	Plain Prinia		reedbed
20	Copsychus saularis	Oriental Magpie-Robin	Muscicapidae	mangrove
21	Saxicola caprata	Pied Bushchat		shrubland
22	Acridotheres tristis	Common Myna	Sturnida	ground
23	Passer flaveolus	Plain-backed Sparrow	Passeridae	shrubland
24	Passer montanus	Eurasian Tree Sparrow		ground,grassland

Source: JICA Survey Team

Table A12.1.4 List of Identified Animal Species 2 - Bird Species

Sr. No	Scientific Name	Common name	Family	Remark
1	Euploea core godartii	Crow	Danaidae	Common
2	Danaus chrysippus	Plain Tiger	Danaidae	Very Common
3	Danaus genutia	Common Tiger or Striped Tiger	Danaidae	Very Common
4	Catopsilia pomona	Emigrant	Peridae	Very Common
5	Appias lyncida vasava	Chocolates Albatross	Peridae	Common
6	Ixias pyrene verna	Whight Orange Tip	Pieridae	Common
7	Catopsilia pyranthe pyranthe	Mottled Emigrant	Pieridae	Common
8	Catopsilia scylla comelius	Orange Emigrant	Pieridae	Common
9	Appias lyncida vasava	Chocolates Albatross	Peridae	Common
10	Hebomoia glaucippe	Great Orange Tip	Pieridae	Common
11	Eurema hecabe	Common Grass Yellow	Pieridae	Very Common
12	Leptosia nina nina	Psyche	Peridae	Common
13	Cathosia cyane euanthes	Leopard Lacewing	Nyamphalidae	Common
14	Hypolimnas misippus	Danaid Eggfly	Nyamphalidae	Common
15	Argyronome laodice	Pallas's Fritlary	Nyamphalidae	Common
16	Jamides cunilda nisanca	Jamides	Lycaenidae	Common

Source: JICA Survey Team

Table A12.1.5 List of Identified Animal Species 3 - Amphibian Species

Sr. No.	Scientific name	Common name	Family	IUCN, 2013	Source
1	Rana limnocharis	Paddy frog	Ranidae	Least concern	Observed
2	Polypedates leucomystax	Common Tree frog	Rhacophoridae	Least concern	Interview
3	Bufo melanosticttus	Common toad	Bufonidae	Least concern	Observed
4	Kaloula pulchra	Painted bull frog	Microhylidae	Least concern	Observed

Source: JICA Survey Team
Table A12.1.6 List of Identified Animal Species 4-Reptile Species

Sr. No.	Scientific name	Common name	Family	IUCN, 2009 CITES, 2009	Source
1	Ptyas korros	Indo-chinese rat snake	Colubridae	Least Concern	Interview
2	Ptyas mucosa	Indian rat snake	Colubridae	Least Concern	Interview
3	Xenochrophis piscator	Checkered keelback	Colubridae	Least Concern	Interview
4	Eutropis carinatus	Common skink	Scincidae	Least Concern	Observed
5	Calotes versicolor	Garden fence lizard	Agamidae	Least Concern	Observed
6	Calotes emma	Tree dwelling lizard	Agamidae	Least Concern	Observed

Source: JICA Survey Team
Table A12.1.7 List of Identified Animal Species 5 - Fish Species

Sr. No.	Scientific Name	Common Name	Family
1	Notopterus notopterus	Grey featherback	Notopteridae
2	Puntius spp	Barb	Cyprinidae
3	Amblypharyngodon mola	Mola carplet	Cyprinidae
4	Labeo calbasu	Carp	Cyprinidae
5	Cirrhinus mrigala	Carp	Cyprinidae
6	Clarias batrachus	Walking catfish	Claridae
7	Heteropneustes fossilis	Stinging catfish	Heteropneustidae
8	Anabas testudineus	Climbing perch	Anabantidae
9	Late calcarifer	Giant sea perch	Centropomidae
10	Mystus montanus	Striped dwarf catfish	Bagridae
11	Mystus vittatus	Catfish	Bagridae
12	Mystus bleekeri	Catfish	Bagridae
13	Mystus leucophasis	Catfish	Bagridae
14	Neotropius acutriostris	Dwarf cat-fish	Schilbeidae
15	Channa striatus	Striped snake head	Channidae
16	Channa orientalis	Brown snakehead	Channidae
17	Channa panaw	Green snakehead	Channidae

18	Macrognathus aral	Lesser spiny eel	Mastacembelidae
19	Macrognathus zebrinus	Burmese spiny eel	Mastacembelidae
20	Monopterus albus	Asian swamp eel	Synbranchidae
21	Monopterus cuchia	Cuchia	Synbranchidae
22	Oreochromic spp	Mozambic cichlid	Cichlidae
23	Boleophthalmus boddarti	Boddart's goddle eye goby	Gobiidae
24	Glossogobius giuris	Gobifish	Gobiidae
25	Polynemus paradiseus	Mangoes fish	Polynemidae
26	Cynoglossus lingua	Long tonguesole	Cynoglossidae

Source: JICA Survey Team
Table A12.1.8 Benthos species recorded in the Project site

Sr.No	Species	Common Name	Family	Status
1	Ocypoda routandas	Crab	Ocypodidae	Common
2	Scarteloas tenius	Slender mudskipper	Gobiidae	Common
3	Leptocarpus fluminicola	Delta prawn	Palaemonidae	Common

Source: JICA Survey Team

Appendix 12.3 Results of Survey for Preparation of Abbreviated Resettlement Plan (ARP)

Table A12.3.1 Affected trees within ROW of Approach Roads

Sr. No.	$\begin{aligned} & \text { WP } \\ & \text { No. } \end{aligned}$	Coordination X			Coordination Y			Species of trees*	height (m)	diameter at breast height	shape of tree	$\begin{gathered} \text { living } \\ \text { condition** } \end{gathered}$
		De.	Mi.	Se.	De.	Mi.	Se.					
(1) Thaketa Township												
1	006	16	48	2.4	96	13	31.6	Swietenia macrophylla	10	0.8	V	Δ
2	007	16	48	2.1	96	13	31.3	Swietenia macrophylla	10	0.8	V	Δ
3	008	16	48	2.0	96	13	31.2	Swietenia macrophylla	10	0.8	V	Δ
4	009	16	48	1.9	96	13	31.1	Swietenia macrophylla	10	0.6	C	Δ
5	010	16	48	1.9	96	13	31.1	Acacia auriculiformis A. Cunn.	10	0.8	V	Δ
6	011	16	48	1.9	96	13	30.9	Swietenia macrophylla	4	0.5	C	Δ
7	012	16	48	1.8	96	13	30.9	Swietenia macrophylla	7	0.6	C	Δ
8	016	16	48	1.2	96	13	30.5	Swietenia macrophylla	7	0.5	C	Δ
9	020	16	48	1.4	96	13	31.7	Swietenia macrophylla	6	1	O	Δ
10	021	16	48	1.4	96	13	31.7	Swietenia macrophylla	5	0.5	C	Δ
11	022	16	48	1.4	96	13	31.8	Swietenia macrophylla	4	1	C	Δ
12	023	16	48	1.7	96	13	32.3	Samanea saman (Jacq.) Merr.	7	0.5	C	Δ
13	024	16	48	1.7	96	13	32.3	Samanea saman (Jacq.) Merr.	4	0.5	C	Δ
14	025	16	48	1.1	96	13	33.0	Cocos nucifera	8	1	C	Δ
15	026	16	48	1.1	96	13	33.0	Mangifera indica (Mango)	6	0.6	O	Δ
16	027	16	48	1.0	96	13	33.2	Casuarina equisetifolia	12	0.8	V	Δ
17	028	16	48	0.8	96	13	33.3	Casuarina equisetifolia	11	0.8	V	Δ
18	029	16	48	0.5	96	13	33.3	Samanea saman (Jacq.) Merr.	6	0.3	V	Δ
19	030	16	48	0.4	96	13	33.2	Terminalia catappa L.	10	0.8	O	Δ
20	031	16	48	0.4	96	13	33.1	Pterocarpus macrocarpus	6	0.3	V	Δ
21	032	16	48	0.0	96	13	32.7	Samanea saman (Jacq.) Merr.	6.5	0.4	V	Δ
22	034	16	48	0.1	96	13	33.4	Samanea saman (Jacq.) Merr.	5	1	O	Δ
23	038	16	47	55.9	96	13	34.8	Acacia auriculiformis A. Cunn.	6.8	0.5	V	Δ
24	039	16	47	55.1	96	13	35.2	Acacia auriculiformis A. Cunn.	11	0.6	V	Δ
25	040	16	47	54.9	96	13	35.5	Acacia auriculiformis A. Cunn.	7	0.6	V	Δ
26	041	16	47	54.5	96	13	35.6	Acacia auriculiformis A. Cunn.	8	0.6	V	Δ
27	042	16	47	54.4	96	13	35.7	Acacia auriculiformis A. Cunn.	7	0.8	V	Δ
28	043	16	47	54.5	96	13	35.5	Terminalia catappa L.	4	0.5	O	Δ
29	044	16	47	52.7	96	13	36.8	Terminalia catappa L.	11	0.7	C	Δ
30	045	16	47	52.8	96	13	36.8	Terminalia catappa L.	11	0.8	C	Δ
31	046	16	47	52.6	96	13	36.8	Ficus glomerata (Country Fig)	9	0.4	V	Δ

32	047	16	47	52.6	96	13	36.9	Terminalia catappa L.	9	0.5	V	Δ
33	048	16	47	52.1	96	13	37.2	Terminalia catappa L.	12	1	O	Δ
34	070	16	47	51.2	96	13	37.7	Terminalia catappa L.	5	0.8	V	Δ
35	071	16	47	48.4	96	13	39.4	Bonbax ceiba	7	0.3	V	Δ
36		Around N 1647 47.9, E 9613 39.8; swampy area						Mangrove	5	0.5	V	-
37								Mangrove	5	0.5	V	-
38								Mangrove	8	0.5	V	-
39								Mangrove	8	0.5	V	-
40								Mangrove	7	0.6	V	-
41								Mangrove	5	0.4	O	\bigcirc
42								Mangrove	10	0.6	O	-
43	072	16	47	47.5	96	13	39.8	Mangrove	10	1	O	-
44	073	16	47	47.3	96	13	40.1	Bonbax ceiba	5	0.3	C	x
45	074	16	47	46.2	96	13	40.6	Mangrove	5	0.5	O	\bigcirc
46		16	47	46.2	96	13	41.2	Mangrove	5	0.5	O	-

(2) Thanlyin Township

47	078	Around N 1647 1.9, E 9614 9.3; swampy area						Mangrove	4.5	0.5	O	\bigcirc
48								Mangrove	5	1	O	-
49								Mangrove	6	0.5	O	-
50		16	47	0.1	96	14	11.2	Samanea saman (Jacq.) Merr.	7	1.5	O	Δ
51		16	46	59.8	96	14	10.9	Albizia procera	8	0.9	V	Δ
52		Around N 1646 57.4, E 9614 13.4; swampy area						Samanea saman (Jacq.) Merr.	15	1	O	Δ
53								Albizia procera	17	0.9	V	Δ
54								Terminalia catappa L.	7	0.3	C	Δ
55	097	16	46	52.9	96	14	17.3	Samanea saman (Jacq.) Merr	3	0.2	C	x
56	098	16	46	53.3	96	14	17.0	Samanea saman (Jacq.) Merr	4	0.5	O	Δ
57	099	16	46	53.7	96	14	16.7	Albizia procera	4	0.3	Y	Δ
58	100	16	46	53.6	96	14	16.6	Albizia procera	4	0.4	Y	Δ
59	101	16	46	53.6	96	14	16.5	Samanea saman (Jacq.) Merr	5	0.5	Y	Δ
60	102	16	46	53.8	96	14	16.4	Albizia procera	7	0.3	C	Δ
61	103	16	46	54.0	96	14	16.8	Ficus rumphii Blume	6	2.6	O	Δ
62	104	16	46	54.1	96	14	16.7	Ficus rumphii Blume	7	1	Y	Δ
63	105	16	46	54.4	96	14	16.1	Ficus glomerata/Ficus racemosa	8	1.2	O	Δ
64	106	16	46	54.3	96	14	16.0	Samanea saman (Jacq.) Merr.	6	0.8	O	Δ
65	107	16	46	54.4	96	14	16.0	Samanea saman (Jacq.) Merr.	6	0.9	Y	Δ
66	108	16	46	54.7	96	14	15.9	Samanea saman (Jacq.) Merr.	7	1.2	Y	Δ
67	109	16	46	54.8	96	14	15.9	Samanea saman (Jacq.) Merr.	10	3	Y	Δ
68	110	16	46	54.9	96	14	15.9	Samanea saman (Jacq.) Merr.	12	1.2	Y	Δ

69	117	16	46	52.7	96	14	17.2	leucaenna leucocephala	7	0.2	C	Δ
70	118	16	46	52.4	96	14	17.2	Samanea saman (Jacq.) Merr.	7	0.8	V	Δ
71	119	16	46	52.1	96	14	17.4	Terminalia catappa L.	7	0.8	C	Δ
72	120	16	46	52.1	96	14	17.5	Ficus rumphii Blume	6	0.9	V	Δ
73	121	16	46	52.1	96	14	17.7	Mimusops elengi L.	4	0.3	O	Δ
74	122	16	46	52.1	96	14	17.8	Terminalia catappa L.	6	0.3	O	Δ
75	123	16	46	52.0	96	14	18.0	Swietenia macrophylla	8	0.5	C	Δ
76	124	16	46	51.8	96	14	18.2	casuarina equisetifolia	10	0.8	V	Δ
77	125	16	46	51.8	96	14	18.3	Samanea saman (Jacq.) Merr.	9	2.5	O	Δ
78	126	16	46	52.1	96	14	18.5	Ziziphus jujuba Lam.	5	0.5	O	Δ
79	127	16	46	52.0	96	14	18.4	Ziziphus jujuba Lam.	4	0.2	O	Δ
80	128	16	46	52.6	96	14	18.0	Cocos nucifera	3	0.2	C	Δ
81	131	16	46	51.9	96	14	17.5	Terminalia catappa L.	7	0.4	C	Δ
82	176	16	46	49.1	96	14	20.3	Polyathia longifolia (Lam.) Benth.\& Hook.f.	7	0.3	O	Δ
83	177	16	46	49.1	96	14	20.2	leucaenna leucocephala	8	0.3	V	Δ
84	178	16	46	49.7	96	14	19.9	Cocos nucifera	10	0.8	C	Δ
85	179	16	46	50.3	96	14	19.7	Samanea saman (Jacq.) Merr.	15	1	O	O
86	180	16	46	50.3	96	14	19.4	Samanea saman (Jacq.) Merr.	7	0.8	O	Δ
87	184	16	46	51.3	96	14	18.7	Ficus rumphii Blume	10	1.5	V	Δ
88	185	16	46	51.4	96	14	18.8	Mangifera indica (Mango)	6	0.6	O	Δ
89	186	16	46	51.6	96	14	18.6	casuarina equisetifolia	12	1	V	Δ
90	187	16	46	49.2	96	14	20.6	Delonix regia	10	1	V	Δ
91	188	16	46	49.2	96	14	20.7	Lagerstroemia reginae	6	0.5	V	Δ
92	189	16	46	48.9	96	14	20.8	Acacia auriculiformis A. Cunn.	7	0.5	V	Δ
93	190	16	46	48.6	96	14	20.9	Acacia auriculiformis A. Cunn.	7	0.9	V	Δ
94	191	16	46	47.7	96	14	22.1	Acacia auriculiformis A. Cunn.	7	0.6	V	Δ
95	192	16	46	47.6	96	14	22.2	Acacia auriculiformis A. Cunn.	6	0.7	V	Δ
96	193	16	46	47.5	96	14	22.3	Acacia auriculiformis A. Cunn.	6	0.5	V	Δ
97	194	16	46	47.4	96	14	22.6	Bauhinia monandra	6	0.5	V	Δ
98	195	16	46	47.4	96	14	22.8	Bauhinia monandra	5	0.3	C	Δ
99	196	16	46	47.3	96	14	22.9	Bauhinia monandra	5	0.3	V	Δ
100	197	16	46	47.3	96	14	22.9	Samanea saman (Jacq.) Merr.	10	1	O	Δ
101	198	16	46	47.2	96	14	22.9	Acacia auriculiformis A. Cunn.	7	0.3	V	Δ
102	199	16	46	47.1	96	14	23.0	Bauhinia monandra	8	0.3	V	Δ
103	200	16	46	47.2	96	14	23.2	Bauhinia monandra	8	0.4	V	Δ
104	201	16	46	47.1	96	14	23.2	Acacia auriculiformis A. Cunn.	9	0.3	V	Δ
105	202	16	46	47.0	96	14	23.4	Acacia auriculiformis A. Cunn	7	0.5	C	Δ
106	203	16	46	47.3	96	14	23.4	Areca catechu (Area Nut Palm, Betel Nut)	4	1.7	C	Δ

107	204	16	46	47.5	96	14	23.2	Areca catechu (Area Nut Palm, Betel Nut)	4	1.7	C	Δ
108	205	16	46	47.2	96	14	23.7	Areca catechu (Area Nut Palm, Betel Nut)	2.5	1.5	C	Δ
109	206	16	46	47.9	96	14	23.7	Areca catechu (Area Nut Palm, Betel Nut)	4.5	1.7	C	Δ
110	207	16	46	47.6	96	14	23.6	Areca catechu (Area Nut Palm, Betel Nut)	4	1.7	C	Δ
111	208	16	46	47.0	96	14	23.8	Areca catechu (Area Nut Palm, Betel Nut)	3	0.7	C	Δ
112	209	16	46	46.1	96	14	24.5	Hedera helix	2	0.1	O	Δ
113	212	16	46	46.5	96	14	23.6	Elaeis guineensis	4	1.5	O	Δ
114	213	16	46	46.7	96	14	23.8	Areca catechu (Area Nut Palm, Betel Nut)	3	0.5	C	Δ
115	214	16	46	46.7	96	14	23.7	Areca catechu (Area Nut Palm, Betel Nut)	3	0.4	C	Δ
116	215	16	46	46.3	96	14	25.1	Areca catechu (Area Nut Palm, Betel Nut)	3.5	0.1	C	Δ
117	216	16	46	46.4	96	14	24.9	Areca catechu (Area Nut Palm, Betel Nut)	3.5	0.1	C	Δ
118	217	16	46	46.5	96	14	24.8	Areca catechu (Area Nut Palm, Betel Nut)	3.5	0.1	C	Δ
119	218	16	46	46.6	96	14	24.7	Areca catechu (Area Nut Palm, Betel Nut)	3.5	0.1	C	Δ
120	219	16	46	46.7	96	14	24.5	Areca catechu (Area Nut Palm, Betel Nut)	3.5	0.1	C	Δ
121	220	16	46	46.8	96	14	24.4	Areca catechu (Area Nut Palm, Betel Nut)	2	0.1	C	Δ
122	230	16	46	45.7	96	14	25.3	Polyathia longifolia (Lam.) Benth.\& Hook.f	7	0.3	P	Δ
123	231	16	46	45.6	96	14	25.2	Areca catechu (Area Nut Palm, Betel Nut)	7	1	C	Δ
124	233	16	46	45.0	96	14	26.0	Acacia auriculiformis A. Cunn	8	0.5	O	Δ
125	234	16	46	44.9	96	14	26.1	Ficus rumphii Blume	4	1	O	Δ
126	235	16	46	44.9	96	14	26.4	Acacia auriculiformis A. Cunn	8	1	V	Δ
127	236	16	46	44.3	96	14	27.2	Samanea saman (Jacq.) Merr.	7	0.5	V	Δ
128	237	16	46	45.0	96	14	25.9	Samanea saman (Jacq.) Merr.	8	0.5	V	Δ
129	240	16	46	44.7	96	14	26.3	Terminalia catappa L.	7	0.5	C	Δ
130	242	16	46	43.8	96	14	27.8	Samanea saman (Jacq.) Merr.	6	0.3	V	Δ
131	243	16	46	43.8	96	14	28.0	Delonix regia	10	0.9	V	Δ
132	244	16	46	43.5	96	14	28.3	Delonix regia	11	0.4	V	Δ
133	245	16	46	43.5	96	14	28.5	Delonix regia	11	0.5	V	Δ
134	246	16	46	43.4	96	14	28.6	Delonix regia	12	0.6	V	Δ
135	247	16	46	43.3	96	14	28.7	Delonix regia	10	0.8	V	Δ
136	248	16	46	43.2	96	14	28.7	Lagerstroemia reginae	7	0.4	O	Δ
137	249	16	46	43.2	96	14	28.9	Delonix regia	11	0.3	O	Δ
138	250	16	46	43.2	96	14	29.0	Delonix regia	11	0.3	V	Δ
139	251	16	46	43.5	96	14	29.2	Areca catechu (Area Nut Palm, Betel Nut)	3	0.1	C	Δ
140	252	16	46	43.6	96	14	29.1	Areca catechu (Area Nut Palm, Betel Nut)	3	0.1	C	Δ
141	253	16	46	43.7	96	14	28.7	Areca catechu (Area Nut Palm, Betel Nut)	1	0.01	C	Δ
142	254	16	46	43.8	96	14	28.6	Areca catechu (Area Nut Palm, Betel Nut)	1	0.01	C	Δ
143	255	16	46	44.1	96	14	28.3	Areca catechu (Area Nut Palm, Betel Nut)	1	0.01	C	Δ
144	256	16	46	44.3	96	14	28.1	Areca catechu (Area Nut Palm, Betel Nut)	1	0.01	C	Δ

145	257	16	46	45.5	96	14	26.2	Areca catechu (Area Nut Palm, Betel Nut)	2	0.02	C	Δ
146	258	16	46	45.4	96	14	26.2	Areca catechu (Area Nut Palm, Betel Nut)	2	0.02	C	Δ
147	259	16	46	45.3	96	14	26.4	Areca catechu (Area Nut Palm, Betel Nut)	2	0.02	C	Δ
148	260	16	46	45.1	96	14	26.5	Areca catechu (Area Nut Palm, Betel Nut)	2	0.02	C	Δ
149	261	16	46	45.0	96	14	26.6	Areca catechu (Area Nut Palm, Betel Nut)	2	0.02	C	Δ
150	264	16	46	45.6	96	14	26.6	Delonix regia	7	0.4	V	Δ
151	268	16	46	44.4	96	14	28.3	Acacia auriculiformis A. Cunn.	6	0.6	V	Δ
152	269	16	46	44.1	96	14	28.8	Swietenia macrophylla	6	0.4	V	Δ
153	270	16	46	43.9	96	14	29.1	Delonix regia	4	0.1	V	Δ
154	272	16	48	0.3	96	13	34.9	casuarina equisetifolia	15	0.4	V	Δ
155	273	16	48	0.5	96	13	34.9	Swietenia macrophylla	8	0.3	C	Δ
156	274	16	48	0.6	96	13	34.8	Swietenia macrophylla	6	0.4	0	Δ
157	276	16	48	0.5	96	13	34.7	casuarina equisetifolia	12	0.5	V	Δ
158	277	16	48	0.8	96	13	34.7	Samanea saman (Jacq.) Merr.	10	0.2	O	Δ
159	278	16	48	0.9	96	13	34.6	Samanea saman (Jacq.) Merr.	10	0.3	V	Δ
160	279	16	48	0.8	96	13	34.5	Terminalia catappa L.	7	0.07	V	Δ

Note 1: Shape of tree. V - V-shaped, C - Columnar, P - Pyramidal, O - Oval

Pyramidal

Source: JICA Survey Team

Appendix 12.4 Confirmation of Environmental and Social Considerations for the Proposed Project by JICA Environmental Checklist

Table A12.4.1 Confirmation of JICA Checklist for bridge and road construction

Category	Environmental Item	Main Check Items	$\begin{aligned} & \text { Yes: Y } \\ & \text { No: } \end{aligned}$	Confirmation of Environmental Considerations (Example)
	(1) EIA and Environmental permits	(a) Have EIA reports been already prepared in official process?	(a) N	(a) 1) In Myanmar Environmental Conservation Law (2012) was enacted. However, legislation regarding EIA is not established at present. Environmental Impact Assessment Procedures (draft, 2013) proposed by MOECAF stipulates EIA in detail. However, at present it is under discussion with concerned ministries and organizations. 2) Through hearing MOECAF officer, at present, in the case of official development scheme by the foreign public sector including foreign donors, the approval for the project implementation is attained through several processes (i) At first, the project proponent shall submit project proposal documents together with a feasibility study report including the results of Environmental Impact Assessment (EIA)/Social Impact Assessment (SIA) to the Foreign Economic Relations Department (FERD) of Ministry of National Planning and Economic Development (MNPED). EIA report should be prepared by third parties including foreign consultants. Thus, the IEE report prepared by JICA consultants team is applicable to submission of PW to FERD for obtaining Environmental Clearance Certificate (ECC).
		(b) Have EIA reports been approved by authorities of the host country's government?	(b) N	(b) At present, EIA report was not submitted to obtain approval from MOECAF. In the case of official development scheme by the foreign public sector including foreign donors, (i) At first, the project proponent shall submit project proposal documents together with a feasibility study report including the results of Environmental Impact Assessment (EIA)/Social Impact Assessment (SIA) to the Foreign Economic Relations Department (FERD) of Ministry of National Planning and Economic Development (MNPED).
		(c) Have EIA reports been unconditionally approved? conditions are imposed on the approval of EIA reports, are the conditions satisfied?	(c)	(c) When the project proponent (Public Works) submit applications to FERD for approval of the project implementation together with environmental approval, there is some possibility that incidental conditions are imposed by concerned organizations.

		(d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government?	(d) N	(d)1) Environmental Clearance Certificate given by MOECAF does not cover matters of land acquisition and resettlement, and protection of indigenous peoples. 2) Land acquisition and resettlement is under the control of responsible organizations such as YCDC City Planning and Land Administration Department, Award Committee, District Administrator. 3) As for protection of indigenous peoples is under 4) As for removal, relocation or replanting of trees including mangroves, it is firstly required to obtain permission from Forest Department of MOECAF. After then the relevant trees can be treated by YCDC Playgrounds, Parks and Gardening Department by paying necessary charges.
	(2) Explanation to the Public	(a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders?	(a) Y	(a) 1) Through Steering Committee and stakeholder meeting on January 24th, 2014 contents and the potential impacts have been adequately explained to the local stakeholders including Project Affected persons (PAPs) and understanding is obtained. In the stakeholder meeting following questions and comments were proposed: (i) selection of three options for river crossing routes and (ii) location of the bridge site toward existing Thanlyin Bridge, (iii) To cope with installed utilities. Corresponding answers were given to them at the meeting and through individual consultation. 2) In addition, through Steering Committee and stakeholder meeting of YUTRA scope and outline of the project were explained several times.
		(b) Have the comments from the stakeholders (such as local residents) been reflected to the project design?	(b) Y	(b)The comments were reflected to design of bridge and approach roads and plan of countermeasures for construction work.
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental considerations?	(a) Y	(a) Following alternatives were examined.1) Comparison among three options of river crossing routes. 2) Comparison of bridge site locations upstream and downstream side toward existing Thanlyin Bridge. 3) Comparison with zero option.
$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(1) Air Quality	(a) Is there a possibility that air pollutants emitted from the project related sources, such as vehicles traffic will affect ambient air quality? Does ambient air quality comply with the country's air quality standards? Are any mitigation measures taken?	(a) Y	(a) 1) Air quality standards are not established in Myanmar. According to result of actual air quality measurement values of air quality near the approach roads are within the range of the environmental standard of Japan and WHO Guidelines.. 2) Improvement of traffic congestion may give rise to an increase in the number of vehicles traveling. This may also result in an increase in emission load of air pollutants such as PM, NOx, etc. 2) Poor emission control of many vehicles due to lack of maintenance and inspection may accelerate to spew out air pollutants (PM, NOx, etc.) along the road. Thus, following measures will be taken: (i) Proper management for control of vehicle exhaust emission and establish inspection system of exhaust gas emission. (ii) To make green belt with trees and/or vegetation covers. (iii)) Air quality monitoring along the road

		(b) If air quality already exceed country's standards near the route, is there a possibility that the project will make air pollution worse?	(b) Y	(b) 1) According to air quality measurements, observed values of air pollutants are rather lower level and indicate that air pollution is not progressing. 2) Improvement of traffic congestion may give rise to an increase in the number of vehicles traveling. However, this may also result in an increase in emission load of air pollutants such as $\mathrm{PM}, \mathrm{NOx}$, etc. 3) Poor emission control of many vehicles due to lack of maintenance and inspection may accelerate to spew out air pollutants (PM, NOx, etc.) along the road.
	(2) Water Quality	(a) Is there a possibility that soil runoff from the bare lands resulting from earthmoving activities, such as cutting and filling will cause water quality degradation in downstream water areas?	(a) N	(a) 1) At present ambient water quality standards are not established in Myanmar. 2) According to the project plan, following measures are prepared: (i) Proper management for control of vehicle exhaust emission and establish inspection system of exhaust gas emission. (ii) To make green belt with trees and/or vegetation covers in order to shelter vehicle exhaust emissions. (III) Air quality monitoring along the road. 3) Thus, expected impacts on water pollution will be minimized.
		(b) Is there a possibility that surface runoff from roads will contaminate water sources, such as groundwater?	(b) N	(b) Surface runoff from roads will be discharged through gutter and/or drainage and flown into the river. Thus, there is little possibility to contaminate groundwater.
			(c) N	Facilities such as parking area/service areas are not included in the project plan.

	(3) Noise and Vibration	(a) Do noise and vibrations from vehicle and train traffic comply with the country's standards?	(a) Y	(a) 1) Noise and vibration standards from vehicle and train traffic are not established in Myanmar. However, according to the actual measurement result, measurement values of noise near the access roads are within the range of the environmental standard of Japan and WHO Guidelines. 2) Increase in generation of noise and vibration due to increase in traffic volume is expected. Thus, following measures will be prepared: (i) Preventive measures for noise pollution (avoiding abuse of horn, good maintenance of vehicles, regulation of over-loading. (ii) To make green belt with trees and/or vegetation covers in order to shelter vehicle noise. (iii) Noise monitoring along roads.
		(b) Do low frequency sound from the vehicle and train traffic comply with the country's standards?	(a) Y	There is no standard for low frequency sound in Myanmar. However, measures to reduce generation of low frequency sound will be incorporated in the project plan. It is assumed that the impact of low frequency sound by vehicle traffic is small as of the noise, but the actual measurement data does not exist at all. There is no standard for low frequency sound in Myanmar. A new measurement is also technically difficult in Myanmar.
	(4) Waste	(a) Are wastes generated from the project facilities, such as parking areas/service areas, properly treated and disposed of in accordance with the country's regulations?	(b) N	Facilities such as parking area/service areas are not included in the project plan.
		(a) In the case of that large volumes of excavated/dredged materials are generated, are the excavated/dredged materials properly treated and disposed of in accordance with the country's standards?	(c) Y	1) According to construction plan, considerable volume of excavated/dredged materials are expected to generate from construction work of bridge section. Waste management plan of these materials are as follows: will be stored and transported in bridge Thus, impact due to waste will be minimized.
	(6) Odor	(a) Are there any odor sources? Are adequate odor control measures taken?	(d) N	There are no odor sources.
	(1) Protected Areas	(a) Is the project site located in protected areas designated by the	(e) N	(a) There are no protected areas in and around the project area.

		country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?		
	(2) Ecosystem and biota	(a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)?	(a) Y	(a) No. There are neither primeval forests nor tropical rain forests. Some mangrove communities and tidal flat are distributed near bridge site. However, they are with a small scale and are scattered in comparison with mangrove communities distributed along river bank of upper stream.
		(b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions?	(a) Y	(a) \sim (c) 1) In the project site there are following two plant species which categorized as threatened plant species in IUCN Red List. (i) Delonix regia (Bojer ex Hook) Raf.- Seinban tree and (ii) Swieteniamacrophylla King - Mahogany tree 2) However, both species are sub-categorized as vulnerable ones, which means in the condition of less threatened than critically endangered or endangered species in the Red List. In
		(c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem?	(b) Y	fact two tree species are planted and found commonly at parks, greenery area and along the roads in Yangon City. 3) According to instruction from Forest Department, MOECAF, removal and/or relocation or replanting trees including these two species, at first to submit application letter including data of tree species, location and numbers of trees, to the Department for obtaining permission. In the
		(d) Are adequate protection measures taken to prevent impacts, such as disruption of migration routes, habitat fragmentation, and traffic accident of wildlife and livestock?	(c) Y	as much as possible. If cutting is unavoidable, it is required to replant twice numbers of trees with paying necessary charge to YCDC-PPGD.
		(e) Is there a possibility that installation of bridge and access roads will cause impacts, such as destruction of forest, poaching, desertification, reduction in wetland areas, and disturbance of	(a) N	There are neither natural forest nor wetland. Desertification is unlikely considering located in tropical monsoon area. In addition, project area is urbanized and developed area and some exotic species have already been introduced.

		ecosystems due to introduction of exotic (non-native invasive) species and pests? Are adequate measures for preventing such impacts considered? (f) In cases where the project site is located undeveloped areas, is there a possibility that the new development will result in extensive loss of natural environments?	(b) N	
	(3) Hydrology	(a) Is there a possibility that hydrologic changes due to the installation of structures will adversely affect surface water and groundwater flows?	(a) Y	(a) 1) There is some awareness of river scouring at the bridge site. Scour action will be especially strong during rainy season. In order to avoid or minimize it, preventive measures against souring such as Steel Pipe Sheet Pile Foundation is prepared in the project plan. For it is considered the optimal solution for the mainstream of the foundation type in terms of its applicability to deep-water construction and anti-scouring properties. 2) Monitoring of scouring.
		(b) Is there a possibility that alteration of topographic features and installation of structures, such as tunnels will adversely affect surface water and groundwater flows?	(b) Y	(b) There is a possibility that bridge piers may change somewhat the flow of the Bago River. However, span length is sufficiently secured as a route of inland transportation by water. The impacts for the flow are assumed to be minor.
	(4) Topography and Geology	(a) Is there a soft ground on the route that may cause slope failures or landslides? Are adequate measures considered to prevent slope failures or landslides, where needed?	(a)	(a) No. There is flat land except for the river. Bank roads were constructed on the embankment. It is quite low possibility of landslides.
		(b) Is there a possibility that civil works, such as cutting and filling will cause slope	(b) Y	(b) No. It is considered that soil embankment works are performed properly without collapse. The EIA report to be conducted will propose concrete measures to prevent collapse.

		failures or landslides? Are adequate measures considered to prevent slope failures or landslides?		
		(c) Is there a possibility that soil runoff will result from cut and fill areas, waste soil disposal sites, and borrow sites? Are adequate measures taken to prevent soil runoff?	(c) Y	(c) The EIA report to be conducted will propose counter measures to prevent soil runoff from fill areas and borrow sites.
	(1) Resettlement	(a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement?	(a) Y	(a) 1) All the Right of Way (ROW) for planned bridge and approach roads are public land and owned by government such as Myanmar Railway Authority, Ministry of Construction, YCDC and YRDC). Thus, displacement of houses and people is not expected. 2) However, encroachment of a few stalls and two small religious praying facilities on ROW is found. Therefore, the above structures are required to removal, relocation, filling of income and/or assistance to restoration of existing living condition. 3) About 160 trees within ROW of approach roads will be affected. 4) Some land for construction related facilities (construction office, worker's camp, storage of construction materials and waste) will be affected. 5) Abbreviated Resettlement Plan (ARP) according to JICA Guidelines will be prepared, although with a small scale.
		(b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement?	(b) Y	(b) According to ARP necessary compensation and resettlement assistance will be given.
		(c) Is the resettlement plan, including proper compensation, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement?	(c) Y	(c) ARP will be developed based on socioeconomic studies on resettlement.

	(d) Is the compensations going to be paid prior to the resettlement? compensation policies prepared in document?		(d) N	(d) According to ARP compensations will be paid prior to the resettlement.
			(e) Y	(e) Compensation and assistance policies will be prepared in document.
		(f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, below the line, minorities, indigenous peoples?	(f) N	(f) The resettlement plan will pay particular attention to vulnerable groups, although ethnic minorities and indigenous peoples are not found in the project area.
		(g) Are agreements with the affected people obtained prior to resettlement?	(g) N	If Public Works decide the implementation of the proposed project in future, agreement with affected people should be obtained prior to resettlement by referring to results of the Preparatory Survey.
		(h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan?	(h) N	If Public Works decide the implementation of the proposed project in future, the organizational framework to properly implement the resettlement should be established by referring to results of the Preparatory Survey.
		(i) Are any plans developed to monitor the impacts of resettlement?	(i) N	If Public Works decide the implementation of the proposed project in future, monitoring plans to examine the impacts of resettlement should be established by referring to results of the Preparatory Survey.
		(j) Is the grievance redress mechanism established?	(j) Y	If Public Works decide the implementation of the proposed project in future, grievance redress mechanism should be established by referring to results of the Preparatory Survey.
	(2) Living and Livelihood	(a) Where bridges and access roads are newly installed, is there a possibility that the project will affect the existing means of transportation and the associated workers? Is there a possibility that the	(a) Y	(a) Improvement of Traffic condition between Yangon City area, and Thanlyin Township and Thilawa SEZ will greatly enhance economic and industrial development of Greater Yangon as well as improvement of people's access to social services.

		project will cause significant impacts, such as extensive alteration of existing land uses, changes in sources of livelihood, or unemployment? Are adequate measures considered for preventing these impacts?		
		(b) Is there a possibility that the project will adversely affect the living conditions of inhabitants other than the affected inhabitants? Are adequate measures considered to reduce the impacts, if necessary?	(b) Y	(b) The project route is linked to future transport network plan to improve traffic and living condition of people, which were proposed by Greater Yangon Urban Transport Master Plan Study (YUTRA). Thus, the project may not cause adverse impacts to inhabitants of surrounding areas.
		(c) Is there a possibility that diseases, including communicable diseases, such as HIV will be brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary?	(c) Y	(c)1) Road construction workers and truck drivers are considered as having high potential for the spread of sexually transmitted diseases (STDs) and HIV/AIDS due to their mobility. It was reported infection with HIV/AIDS and venereal disease at worker's camp during road construction stage in other developing countries. 2) (i) Education of and campaign of prevention and cure of HIV/AIDS to residents and construction workers. (ii) Monitoring of cases of HIV/AIDS before, during and after the construction stage, if necessary.
		(d) Is there a possibility that the project will adversely affect road traffic in the surrounding areas (e.g., by causing increases in traffic congestion and traffic accidents)?	(b) N	(d) The project route is linked to future transport network plan to improve traffic and living condition of people, which were proposed by Greater Yangon Urban Transport Master Plan Study (YUTRA). Thus, the project may not cause adverse impacts to inhabitants of surrounding areas.
		(e) Is there a possibility that bridge and access roads will impede the movement of	(c) N	(e) 1) Bago River Bridge is planned for passenger use and not for freight use. Therefore, traffic condition between Yangon City area and Thanlyin will be greatly improved. 2) Sidewalks with 2 m width will be installed in both side of bridge and approach roads. Thus, non-mechanized transport

	(6) Working Conditions	(a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project?	(b) Y	(a) Mitigation measures to abide Law on labor and the proposed Law on Occupational Health and safety will be taken.
		(b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials?	(c) Y	b) (i) Any worker and personnel who enter into construction sites have to bear safety shoes and hats for construction works. (ii) Site manager of the contractor must conduct morning assembly every day by collecting all the laborers and give instructions to them on safety control of construction site and thoroughly conduct safety management of the site. (iii) In the construction site where heavy machines for construction are operated, intrusiveness except concerned parties should be banned. (iv) Consider safety handling and storage in airtight containers of hazardous and dangerous materials.
		(c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.?	(d) Y	(c) Preparation of environmental and safety management plan, and conducting education of traffic safety and public and occupational health to workers and staff. (d) Proper management and education of guards and/or relevant personnel not to infringe safety and security of residents and staff and workers
		(d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents?	(a) Y	In the project plan measures to control security guards not to violate safety of project site and residents, is incorporated, if any.

(1)	(1) Impacts during Construction	(a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)?	(b) Y	1) Air pollution : (i) Use construction machines and vehicles equipped with good exhaust emission system and filled with good quality fuel and oil. (ii) Safety driving and control of vehicle speed (iii) Enlightenment and education of construction workers for prevention or minimize air pollutants generation. (iv) Monitoring of air quality. 2) Water pollution: 1) Proper treatment of water pollutants generated from construction work to comply with wastewater regulation by YCDC. 2) Surface run-off from the construction site shall be directed to silt traps or sedimentation basin before reuse or discharge with help of channels. 3) To shelter scattering river mud from dredging work by using submerged fence in order to avoid increase in turbidity. 3) Soil contamination: (i)To keep clean storage sites of construction equipment, (ii) To install storage tank for preventing spill and leakage of lubricating oil and asphalt emulsifier etc. (iii) Training of workers for proper handling of toxic materials. 4) Bottom sediment pollution: (1) To shelter scattering river mud from dredging work by using submerged fence. 2) Monitoring of bottom sediment pollution. Following measures will be taken: (i) Blowers and pumps should be installed in buildings. (ii) Working during sensitive hours and locating construction machines close to sensitive receptors shall be avoided. (iii) Use equipment with low-noise and vibration. (iv) Installation of soundproof walls/acoustic enclosures and provision of buffer zones. 5) (i) Consider ways to minimize waste generation in the construction work plan. (ii) Enlightenment and education of construction workers for waste management based on 3R principle (reduce, reuse, recycle). (iii) Construction waste and waste from worker's camp will be carried out by proper segregation, collection, treatment, reuse and recycle. Then remained waste will be transferred to designated dumping site for final disposal. 6) (i) Working during sensitive hours and locating construction machines close to sensitive receptors shall be avoided. (ii) Use equipment with low-noise and vibration. (iii) Installation of soundproof walls/acoustic enclosures and provision of buffer zones. (iv) Setting staff in charge of complaints. 7) (i) To use construction vehicles and machines with good maintenance. (ii) To shelter scattering river mud from dredging work by using submerged fence made of plastics.
		(b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts?	(a) Y	1) Terrestrial ecosystem - (i) To avoid places where valuable two plant species are distributed. If it is unavoidable, prior consultation with YCDC-PPGD and MOECAF and permission to replanting. (ii) planted trees along the road contribute to the greenery and visual amenity providing relaxation and recreation area to local residents. Thus, cutting or removal of trees along the roads may spoil greenery environment and amenity. (iii) To make green belt with trees and/or vegetation covers. 2) Mangrove communities - 1) If removal of mangrove trees are unavoidable, obtain permission of relocation or replanting from YCDC-PPGD. 2) Monitoring change in

		proponent to the regulatory authorities?		
6 Note	Reference to Checklist of Other Sectors	(a) Where necessary, pertinent items described in the Roads, Railways and Forestry Projects checklist should also be checked (e.g., projects including large areas of deforestation).	(a)	(a) Not necessary
		(b) Where necessary, pertinent items described in the Power Transmission and Distribution Lines checklist should also be checked (e.g., projects including installation of power transmission lines and/or electric distribution facilities).	(b)	(b) Not necessary
	Note on Using Environmental Checklist	(a) If necessary, the impacts to transboundary or global issues should be confirmed (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a)	(a) Not necessary

Source: JICA Survey Team

Appendix 13

Breakdown of the Cost Estimation

