Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City

Final Report

Volume VI

Sewerage and Drainage System Mater Plan

Appendix

Appendix

Table of Contents

A.	WATER QUALITY INVESTIGATION	. A-1
B.	COST ESTIMATION OF SEWERAGE WORKS	B-1
C.	FINANCIAL SIMULATION	C-1
D.	DRAINAGE FACILITIES PLAN	. D-1
E.	COST ESTIMATION OF DRAINAGE WORKS	E-1
F.	WASTEWATER GENERATION BY TOWNSHIPS AND SEWERAGE ZONES	F-1
G.	HOUSEHOLDS INTERVIEW SURVEY	. G-1
H.	FLOW CALCULATION OF TRUNK MAINS	. H-1
I.	DESIGN CALCULATION OF WWTP	I-1
J.	WATER PURIFICATION DEMONSTRATION EXPERIMENT AT KANDAWGYI LAKE	J-1
K.	CHANGE OF SITES FOR WWTPS	. K-1

A. WATER QUALITY INVESTIGATION

1. OUTLINE OF WATER QUALITY INVESTIGATION

This water quality investigation consists of following 4 investigations;

- Water quality of Kandawgyi Lake and its pollution source
 Sampling and water quality investigation of Kandawgyi Lake water and wastewater of restaurant and drainage around Kandawgyi Lake are implemented.
- Water quality of YCDC public water bodies
 Sampling and water quality investigation of public water body which is managed by YCDC (i.e. drainage and river) are implemented.
- Functional assessment of existing WWTP
 Through the measurement of water quality (Inflow pit, Primary sedimentation tank, Aeration tank and Final settling tank) and characteristic of activated sludge, existing condition of WWTP is assessed.
- Water quality of industrial / hospital wastewater
 Sampling and water quality investigation of industrial wastewater (3 factories) and hospital wastewater (3 hospitals) are implemented.

2. SAMPLING POINT AND ANALYSIS ITEM

(1) Sampling point

Sampling point is listed below. Kandawgyi Lake (Lake water: 3 samples, Drainage: 3 samples and Restaurant: 3 samples), YCDC urban drainage: 6 samples, River: 8 samples, Factory: 3 samples, Hospital: 3 samples and WWTP (4 sampling points in WWTP), Total 34 sampling points.

Through this investigation, characteristic of water quality of Kandawgyi Lake, Drainage, River, Industrial / Hospital wastewater and WWTP are investigated.

This investigation is implemented 2 times, i.e. rainy season: 1 time and dry season: 1 time.

Table A.1 Sampling Point

No. of sample	Classification	Name of sampling point	Number of sample
WW - 1~3	Restaurants	Restaurant-A, B, C and D Rainy season: Restaurant- A, B and C Dry season: Restaurant- B, C and D	4
WW - 4~6	Factory	Factory-A, B and C	3
WW - 7~9	Hospital	Yangon General Hospital (Department of plastic, manila facial and oral surgery) Yangon General Hospital Yangon New General Hospital	3
WW - 10~21	WWTP	Inflow pit Primary sedimentation tank Aeration tank Final settling tank	12 (4 point× 3 times)
WW - 22~24	Kandawgyi Lake	Kandawgyi Lake (3 points)	3
WW - 25~27	Drainage	3 Drainage discharging into Kandawgyi Lake	3
WW - 28~35	River	Hlaing River Yangon River Bago River Nga Moe Yeik Creek Pu Zun Taung Creek	8
WW - 36~41	Drainage	Pauk Tar Chaung Yoe Gyi Chaung Thamaing Chaung Padauk Chaung Tbebyu Chaung Nat Chaung	6
	Total (3	4 Sampling points)	42

(2) Analysis item

Analysis item is shown below. Water quality is to be analyzed with respect to 10 parameters, in case of WWTP (aeration tank) assessment is to be made for 7 items.

Table A.2 Analysis Item

Sample	Analysis item
Lake, Drainage, River	Water temperature, pH, Suspended solid, COD _{Cr} , BOD, T-N, Ammonium nitrogen,
and Waste water	Kjeldahl nitrogen, T-P and Electrical conductivity (EC)
Aeration tank	Water temperature, pH, Mixed liquor suspended solids (MLSS), Sludge volume
	(SV), Sludge volume index (SVI), Mixed liquor dissolved oxygen (MLDO), and EC

(3) Modification of investigation plan

From the preparatory investigation of sampling point, investigation plan was modified. Modification is described in following table.

Table A.3 List of Modification of Investigation Plan

Modification point	Initial plan	After modification	Reason of modification
Sampling point in WWTP	Side streams from sludge treatment plant	Cancelled	Sampling of side streams from sludge treatment plant is very difficult
Sampling point in Kandawgyi Lake	Restaurant and Hotel near Kandawgyi Lake	Sampling of Hotel discharge was canceled	There are 2 hotels near Kandawgyi Lake. However, one hotel was closed down. The other hotel discharges its wastewater to drainage, and doesn't discharge into Kandawgyi Lake. Therefore, sampling of hotel wastewater was cancelled.
Septic tank sampling	Inflow and outflow of septic tank	Cancelled	Human excreta in the investigation area are treated with septic tank. However, in many cases septic tank are buried (usually, can't access) and effluent is infiltrated with leaching cesspool. Therefore, it is assumed that septic tank effluent does not affect surface water quality.
Analysis item	13 items	14 items Addition of EC	River and drainage flow in Yangon city is strongly influenced by tidal fluctuation. To confirm the effect of tidal fluctuation, EC is added.
Sampling point		Addition of sampling point	Instead of the cancelled sampling point (WWTP and septic tank), river and drain (total 9 points) were added.

3. DETAIL INFORMATION OF SAMPLING POINT

Coordinates of sampling point and sampling date / time are shown below.

Table A.4 Information of Sampling Point

C1- N-	Compling Doint	Positional	Sampling	
Sample No.	Sampling Point	Information	Date	Time
WW - 1	Restaurant -A (Dolphin) Rainy season	47 Q 197560E 1859594N	2012/9/13	12:00
WW - 2	Destaurant D (Dessal senden)	47 O 107050E 1950546N	2012/9/13	15:05
W W - 2	Restaurant -B (Royal garden)	47 Q 197959E 1859546N	2013/3/22	14:23
WW 2	Doctorment C (Donoltolt Vitahan)	47 O 100160E 1950512N	2012/9/13	18:00
WW - 3	Restaurant -C (Bangkok Kitchen)	47 Q 198168E 1859512N	2013/3/22	16:58
WW - 1	Restaurant –D (White Rice) Dry season	47 Q 198332E 1859379N	2013/3/21	14:00
WWW A	Factory -A (PINYA MANUFACTURING	47 O 197552E 1977155N	2012/9/19	12:25
WW - 4	Co., Ltd., Soft drink)	47 Q 187553E 1866155N	2013/3/12	11:14
WW 5	Factory -B (FAME Pharmaceuticals,	47 O 197090E 1966569N	2012/9/19	12:55
WW - 5	Medicine)	47 Q 187282E 1866568N	2013/3/12	12:30
WW C	Fortonic C (Cood Marriage Co. Ltd. Dolory)	47 O 19502CE 19770N	2012/9/19	13:15
WW - 6	Factory -C (Good Morning Co., Ltd. Bakery)	47 Q 185926E 1866878N	2013/3/12	12:04
WW - 7	Hospital-1 (Yangon General Hospital,	47 Q 196351E 1857378N	2012/9/18	11:35
VV VV - /	Department of plastic, facial and oral surgery)	4/ Q 190331E 183/3/8N	2013/3/6	11:15
WW - 8	Hearital 2 (Vancon Conoral Hearital)	47 O 106045E 1957220N	2012/9/18	11:55
W W - 8	Hospital-2 (Yangon General Hospital)	47 Q 196245E 1857320N	2013/3/6	10:42
WW - 9	Hospital-3 (Yangon New General Hospital	47 O 105725E 1957490N	2012/9/18	12:15
VV VV - 9	(Japan Hospital))	47 Q 195735E 1857489N	2013/3/6	10:20
WW - 10	WWTD (Influent 1)		2012/9/14	10:54
w w - 10	WWTP (Influent-1)		2013/3/22	11:19
WW - 11	WWTP (Influent -2)	47 Q 200426E 1856019N	2012/9/14	14:08

WW - 13	Sampling Point WWTP (Influent -3)	Information (WWTP Office)	Date 2013/3/22	Time 16:16
WW - 13		(WWTP Office)	2013/3/22	16:16
WW - 13				10.10
WW - 13			2012/9/18	16:00
WW - 13 T	MANAGE (ECG) (CD) C 1: (4)		2013/3/22	18:00
WW - 14 T	WWTP (Effluent of Primary Sedimentation		2012/9/14	11:00
WW - 14 T	Γank -1)		2013/3/22	11:27
1	WWTP (Effluent of Primary Sedimentation		2012/9/14	14:14
	Γank -2)		2013/3/22	16:20
WW - 15	WWTP (Effluent of Primary Sedimentation		2012/9/18	16:10
W W - 13	Γank -3)		2013/3/22	18:15
WW - 16 V	WW/TD (Agration Tople 1)		2012/9/14	11:15
W W - 10 V	WWTP (Aeration Tank-1)		2013/3/22	11:34
WW 17 V	VV/TD (A		2012/9/14	14:33
WW - 17	WWTP (Aeration Tank-2)		2013/3/22	16:40
WW 10 V	VV/TD (A		2012/9/18	16:35
WW - 18 V	WWTP (Aeration Tank-3)		2013/3/22	18:30
WWW 10	WWTP (Effluent of Final Sedimentation		2012/9/14	11:10
WW - 19 T	Γank -1)		2013/3/22	11:47
WW 20 V	WWTP (Effluent of Final Sedimentation		2012/9/14	14:20
WW - 20 T	Γank -2)		2013/3/22	16:25
WWW 21	WWTP (Effluent of Final Sedimentation		2012/9/18	16:20
WW - 21	Γank -3)		2013/3/22	18:20
WW 22 I	z 1 'T 1 1	47 O 100010F 1070207N	2012/9/13	16:05
WW - 22	Kandawgyi Lake -1	47 Q 198010E 1859227N	2013/3/22	16:27
WWW 22 I		45 O 105 COE 1050050M	2012/9/13	16:15
WW - 23	Kandawgyi Lake -2	47 Q 197660E 1859050N	2013/3/22	16:17
		47.0.10720 (F.1070201)	2012/9/13	16:35
WW - 24	Kandawgyi Lake -3	47 Q 197396E 1859201N	2013/3/22	16:08
		45 O 105 (555 1050 505)	2012/9/13	11:45
WW - 25	Kandawgyi Lake –Drainage canal	47 Q 197657E 1859587N	2013/3/22	15:41
WWW 26 I		45 0 1051245 1050 (52)	2012/9/18	8:30
WW - 26	Kandawgyi Lake -Drainage canal	47 Q 197134E 1859652N	2013/3/22	15:18
		45 O 100120F 105050111	2012/9/18	8:45
WW - 27	Kandawgyi Lake -Drainage canal	47 Q 198120E 1859581N	2013/3/22	14:42
R	River -1 (Hlaing River, Wartayar Village,	45 O 104600F 1050500N	2012/9/20	12:00
WW - 28	ipstream)	47 Q 184689E 1879702N	2013/3/7	11:46
		15.0.105.1105.10.105.	2012/9/20	14:20
WW - 29	River -2 (Hlaing River, midstream)	47 Q 192410E 1863250N	2013/3/7	10:22
R	River -3 (Hlaing River, downstream,	1-01010-0-10-1	2012/9/20	15:10
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Myanmar Industrial Port)	47 Q 194073E 1856740N	2013/3/7	09:51
R	River -4 (Yangon River, Near Bo Ta Htaung		2012/9/20	15:50
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Pagoda)	47 Q 198562E 1855824N	2013/3/6	14:52
	-		2012/9/17	18:20
WW - 32	River -5 (Bago River, upstream)	47 Q 216735E 1871825N	2013/3/7	14:31
R	River -6 (Bago River, downstream, Near		2012/9/20	16:50
I W/W/ _ 33 I	Гhanlyin - Yangon Bridge)	47 Q 205651E 1859927N	2013/3/6	13:59
			2012/9/19	8:35
WW - 34	River -7 (Nga Moe Yeik Creek)	47 Q 206632E 1877475N	2013/3/7	14:02
			2013/9/20	17:25
WW - 35	River -8 (Pu Zun Taung Creek)	47 Q 199242E 1857450N	2013/3/6	14:35
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	YCDC Drainage Canal -1		2013/3/0	13:10
M/ M/ - 36	Pauk Tar Chaung)	47 Q 190860E 1868852N	2013/3/12	14:43
V	YCDC Drainage Canal -2		2012/9/20	13:45
WW - 1/	Yoe Gyi Chaung)	47 Q 191584E 1867124N	2013/3/12	14:21

Comple No	Compline Daint	Positional	Samp	ling
Sample No.	Sampling Point	Information	Date	Time
WW 20	YCDC Drainage Canal -3	47 O 101750E 1975900N	2012/9/19	14:15
WW - 38	(Thamaing change)	47 Q 191759E 1865890N	2013/3/12	13:15
WW - 39	YCDC Drainage Canal -4 (Padauk Chaung)	47 Q 192248E 1864571N	2012/9/19	14:30
			2013/3/12	13:26
WW 40	VCDC During a Court 5 (Thehen Channe)	47 O 100124E 1050000N	2012/9/18	15:10
WW - 40	YCDC Drainage Canal -5 (Tbebyu Chaung)	47 Q 198134E 1858082N	2013/3/6	11:31
WW 41	VCDC Drainage Conel 6 (Not Chauna)	47 O 100227E 1960942N	2012/9/18	15:30
WW - 41	YCDC Drainage Canal -6 (Nat Chaung)	47 Q 199327E 1860842N	2013/3/6	12:03

(1) Sampling point of Kandawgyi Lake

Detailed location of Kandawgyi Lake sampling point is shown below;

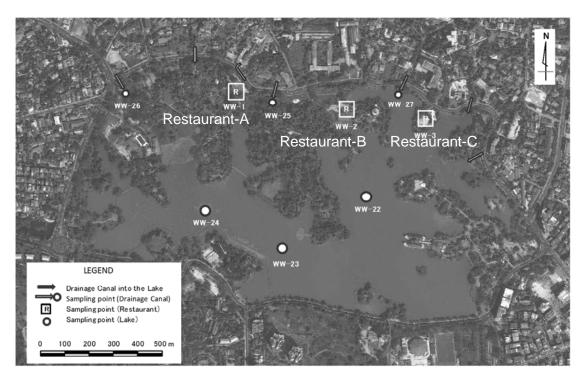


Figure A.1 Sampling Point of Kandawgyi Lake

Table A.5 Detailed Information of Restaurant Sampling Point

Name	General Description	
WW-1 (Rainy	Address: Nat Mouk Road, Bahan T/S, Tel: 01-542893, 01-546924	
season)	Respondent: U Paw San	
Restaurant-A	Number of Seats: 1,000 seats (maximum), 136 seats (daily average)	
	Customers: number of customers per day is from 30 in June to September	
Dolphin	(minimum)	
(Myanmar and	to 1,000 in October to May (maximum)	
Chinese food)	Business hour: from 6:00 to 22:00	
	Water Consumption: around 600 m ³ /month (for July 2012)	
	Treatment facilities: 2 chambers for filtration	
	Sampling point: at chamber of filtration	
WW-1 (Dry	Address: Opposite of Eye Special Hospital, Kandawgyi Park, Natmauk	
season)	Rd.,01-556837	

Name	General Description
Restaurant-D	Respondent: Daw Yin Thida Win
	Number of Seats: Hall: 300 / Outside: 60 / Room: 50, Total: 410 seats
White Rice	Business hour: from 6:00 to 22:00
(Myanmar and	Water Consumption: 102m ³ / month (March 2013)
Chinese food)	Treatment facilities: Septic tank
	Sampling point: at drainage into lake
WW-2	Address: Kan Pat Road, Bo Cho (2) Quarter, Bahan T/S, Tel: 01-546923,
Restaurant-B	01-546202
Troswaran 2	Respondent: U Htay Yin (G.M.)
Royal Garden	Number of Seats: 450 seats (maximum) for Receptions, and 260 seats for regular
(Chinese food)	situation
	Customers: number of customers per day is from 40 to 50 customers in rainy
	season
	Business hour: from 6:30 to 14:15 and from 18:00 to 22:15
	Water Consumption: around 1,000 m ³ /month (for May and June 2012) and
	1,200 m ³ /month (for July 2012)
	Treatment facilities: Filtration
	Sampling point: at drainage into lake
WW-3	Address: Nat Mauk Road, Bahan T/S, Tel: 09-73013792, 01-548844
Restaurant-C	Respondent: U Aung Kyaw Lat (Supervisor)
	Number of Seats: 150 seats
Bangkok Kitchen	Customers: number of customers per day is from 50 to 100 customers
(Thai food)	Business hour: from 11:00 to 21:30
	Water Consumption: 191 m ³ /month (for August 2012)
	Treatment facilities: Septic Tank
	Sampling point: at drainage into lake

(2) Sampling point of hospital wastewater

Detailed information of hospital wastewater sampling point is shown below;

Table A.6 Detailed Information of Hospital Wastewater Sampling Point

100101110	Detailed information of Hospital Waste Water Sampling I ont	
WW-7	Yangon General Hospital, Department of plastic, manila facial and	
Hospital - A	oral surgery	
WW-8	Vancan Canani Hamital	
Hospital - B	Yangon General Hospital	
WW-9	Vancar Nam Canadal Hamital (Janar Hamital)	
Hospital - C	Yangon New General Hospital (Japan Hospital)	

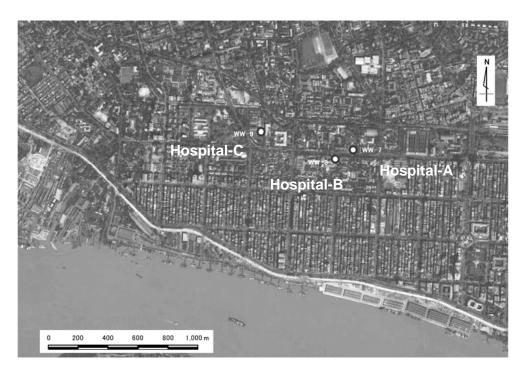


Figure A.2 Sampling Point of Hospital Wastewater

(3) Sampling point of industrial wastewater

Detailed information of industrial wastewater sampling point is shown below;

Table A.7 Detailed Information of Industrial Wastewater Sampling Point

Table A.7	betaned information of industrial wastewater painping I ont
Sample No. and	General Description
Company name	
WW-4	Address: No. 37/38, Ba Maw Ah Twin Wun Street, Zone (3), City of Industry,
Factory-A	Hlaing Tharyar T/S, Tel: 01-685252, 09-5127988
	Respondent: U Win Thein (Senior Plant Manager)
PINYA	Main products: Soft drink
MANUFACTURING	Number of workers: 150 person
Co., Ltd.	Working hours: from 8:00 to 17;00
	Water consumption: 1,000 m ³ /month from YCDC, and Six tube wells (with no
	record)
	Wastewater: roughly 35% of 1,000 m ³ /month discharged
	Treatment facilities: No facilities
WW-5	Address: No. 20, Mingyi Maha Gaung Road, Zone (3), City of Industry, Hlaing
Factory-B	Tharyar T/S Tel: 01-685083, 09-5003724
	Respondent: U Tin Maung Aye (Director)
FAME Pharmaceuticals	Main products: Medicine (72 items)
	Number of workers: 323 person
	Working hours: from 8:00 to 17;00
	Water consumption: 6,000 gallons/day from YCDC, and Six tube wells (with no
	record)
	Wastewater: wastewater is used for irrigation.
	Treatment facilities: Coagulation process and filtration
WW-6	No reply
Factory-C	Main products: Bakery
Good Morning	

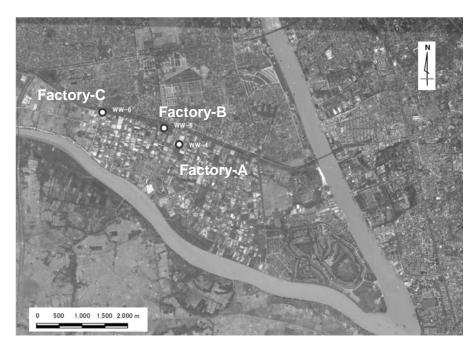


Figure A.3 Sampling Point of Industrial Wastewater

(4) Sampling point of river and drainage

Detailed information of river and drainage sampling point is shown below;

Table A.8 Detailed Information of River and Drainage Sampling Point

140101110	Detailed information of the crame Brainage Sampling I only
Sample No.	Location of Sampling Point
WW - 28	River -1 (Hlaing River, Wartayar Village, upstream)
WW - 29	River -2 (Hlaing River, midstream)
WW - 30	River -3 (Hlaing River, downstream, Myanmar Industrial Port)
WW - 31	River -4 (Yangon River, Near Bo Ta Htaung Pagoda)
WW - 32	River -5 (Bago River, upstream)
WW - 33	River -6 (Bago River, downstream, Near Thanlyin - Yangon Bridge)
WW - 34	River -7 (Nga Moe Yeik Creek)
WW - 35	River -8 (Pu Zun Taung Creek)
WW - 36	Drainage Canal -1 (Pauk Tar Chaung)
WW - 37	Drainage Canal -2 (Yoe Gyi Chaung)
WW - 38	Drainage Canal -3 (Thamaing Chaung)
WW - 39	Drainage Canal -4 (Padauk Chaung)
WW - 40	Drainage Canal -5 (Tbebyu Chaung)
WW - 41	Drainage Canal -6 (Nat Chaung)

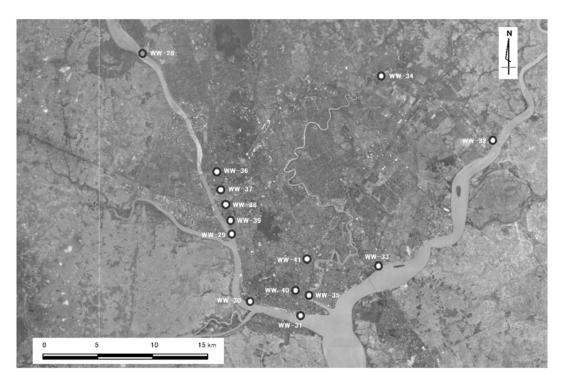
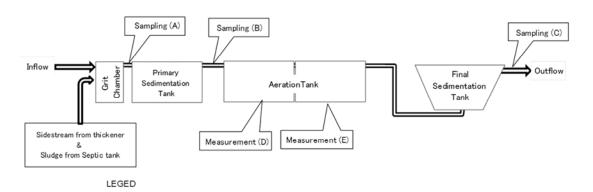



Figure A.4 Sampling Point of River and Drainage

(5) Sampling point of WWTP

Sampling point of WWTP is shown below.

Sampling (A): Sampling point of "Inflow"

Sampling (B): Sampling point of "Outflow of the Primary Sedimentation Tank"

Sampling (C): Sampling point of "Treated water"

Measurement (D): Measurement point of MLDO (A)

Measurement (E): Measurement point of MLDO (B) and Sampling point of "MLSS" and "SV"

Figure A.5 Sampling Point of WWTP (1)

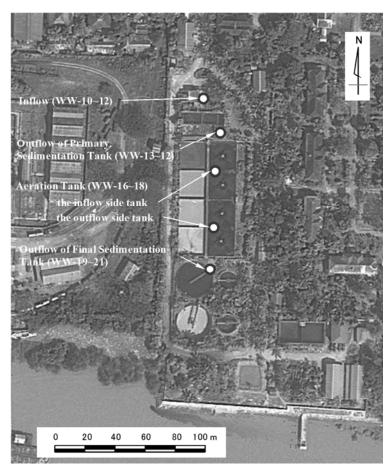


Figure A.6 Sampling Point of WWTP (2)

4. RESULT OF WATER QUALITY INVESTIGATION

Result of water quality analysis is shown below in table, and assessment of WWTP is shown in Figure A.7 and A.8.

Table A.9 Result of Water Quality Analysis, Rainy Season (1) Factory and Hospital

		tter Quarity	Factory	J	Hospital			
Parameter	Unit	WW - 4	WW - 5	WW - 6	WW - 7	WW - 8	WW - 9	
Air Temperature	°C	36	34	36	33	33	33	
Water Temperature	°C	41.1	30.3	30.7	28.9	28.7	19.1	
pН	-	11.5	7.7	7.0	8.4	6.8	7.5	
Electrical Conductivity	μS/cm	4,100	950	500	720	230	600	
Suspended Solid (SS)	mg/l	75	200	220	280	110	60	
COD_{Cr}	mg/l	968	620	640	96	96	96	
BOD	mg/l	630	510	510	21	60	12	
T-N	mg/l	10.3	21.5	14.9	43.8	21.1	52.8	
NH ₄ -N	mg/l	1.92	1.15	0.96	N.D.	N.D.	N.D.	
TKN	mg/l	0.82	12.9	12.0	17.8	11.1	31.6	
T-P	mg/l	0.17	1.19	0.29	0.61	0.19	1.23	

	, , , , , , , , , , , , , , , , , , ,	Table A.1	0 Resu	lt of Wat		<u> </u>		Season	(2) WW	ГР	ı		
Parameter	Unit		Inflow		1 st sec	limentatio effluent	n tank	A	eration tar	nk	Final sedimentation tank effluent		
2 11.11.11.11		WW - 10	WW - 11	WW - 12	WW - 13	WW - 14	WW - 15	WW - 16	WW - 17	WW - 18	WW - 19	WW - 20	WW - 21
Air Temperature	°C	31	28.5	31	30	28.5	31	30	28	31	30	28	31
Water Temperature	°C	28.7	28.5	29.0	28.7	28.3	29.2	28.5	28.2	29.4	28.2	28.0	29.2
pН	-	7.2	7.3	7.4	7.1	7.2	7.2	7.3	7.3	7.1	7.1	7.1	7.1
Electrical Conductivity	μS/cm	800	810	1,410	880	840	1,380	560	560	560	450	430	570
Suspended Solid (SS)	mg/l	1,180	1,652	1,820	998	1,468	1,200	-	-	-	160	142	295
COD_{Cr}	mg/l	1,280	2,560	960	480	960	640	-	-	-	32	32	32
BOD	mg/l	600	900	540	270	435	420	-	-	-	18	23	15
T-N	mg/l	131	97.0	214	122	84.6	370	-	-	-	15.2	16.4	17.4
NH ₄ -N	mg/l	2.50	2.69	2.88	2.88	2.69	2.30	-	-	-	0.96	0.77	1.34
TKN	mg/l	127	93.1	207	118	80.6	364	-	-	-	2.37	2.47	1.64
T-P	mg/l	8.48	12.5	13.1	9.68	12.5	12.3	-	-	-	8.31	8.44	8.21
MLSS	mg/l	-	-	-	-	-	-	6,400	5,450	6,250	-	-	-
SV	%	-	-	-	-	-	-	28.0	25.0	36.5	-	-	-
SVI	-	-	-	-	-	-	-	43.8	45.9	58.4	-	-	-
MLDO (First Tank)	mg/l	-	-	-	-	-	-	2.1	0.7	0.7	_	-	-
MLDO (Second Tank)	mg/l	-	-	-	-	-	-	3.4	1.8	1.8		-	-

Table A.11 Result of Water Quality Analysis, Rainy Season (3) Kandawgyi Lake												
Donomatan	Ilmit		Restaurant			Lake water			Drainage			
Parameter	Unit	WW - 1*	WW - 2	WW - 3	WW - 22	WW - 23	WW - 24	WW - 25	WW - 26	WW - 27		
Air Temperature	°C	31	31	30	31	31	31	35	31	32		
Water Temperature	°C	28.2	29.5	27.7	31.6	30.6	30.0	28.7	27.7	31.6		
рН	-	6.0	7.5	6.9	9.5	9.2	9.2	6.7	7.3	7.1		
Electrical Conductivity	μS/cm	250	570	124	132	129	143	195	240	125		
Suspended Solid (SS)	mg/l	89	59	52	62	68	64	36	68	25		
COD_{Cr}	mg/l	620	1280	928	96	160	160	192	64	160		
BOD	mg/l	540	750	360	60	48	60	42	24	48		
T-N	mg/l	68.8	13.9	13.0	2.17	1.98	1.69	4.53	4.03	3.03		
NH ₄ -N	mg/l	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	0.19	0.13		
TKN	mg/l	57.8	13.4	8.64	1.33	1.09	0.81	3.43	3.03	2.47		
T-P	mg/l	10.2	1.67	0.94	0.13	0.13	0.14	0.35	0.13	0.19		

^{*}Restaurant-A (Dolphin)

A-14

	Table A.12 Result of Water Quality Analysis, Rainy Season (4) River								
Parameter	Unit		Hlaing River		Yangon River	- I Bago River			Pu Zun Taung Creek
		WW - 28	WW - 29	WW - 30	WW - 31	WW - 32	WW - 33	WW - 34	WW - 35
Air Temperature	°C	32	36	33	32	28	30	33	29
Water Temperature	°C	29.6	29.6	29.6	29.3	29.1	29.7	29.0	28.9
pH	-	7.6	7.7	7.6	7.6	7.3	7.5	7.0	7.7
Electrical Conductivity	μS/cm	124	133	130	128	70	135	68	135
Suspended Solid (SS)	mg/l	105	128	116	136	370	142	310	160
COD_{Cr}	mg/l	1280	2560	960	480	960	640	96	128
BOD	mg/l	600	900	540	270	435	420	27	50
T-N	mg/l	0.98	1.34	1.16	1.06	0.98	1.49	0.84	1.37
NH ₄ -N	mg/l	0.10	0.10	0.10	0.10	0.19	0.1	0.19	0.10
TKN	mg/l	0.48	0.50	0.50	0.44	0.48	0.69	0.33	0.66
T-P	mg/l	0.13	0.20	0.14	0.20	0.25	0.59	0.05	0.33

A-15

Table A.13 Result of Water Quality Analysis, Rainy Season (5) Drain										
Parameter	Unit	Pauk Tar Chaung	Yoe Gyi Chaung	Thamaing Chaung	Padauk Chaung	Tbebyu Chaung	Nat Chaung			
2 0.00.002		WW - 36	WW - 37	WW - 38	WW - 39	WW - 40	WW - 41			
Air Temperature	°C	34	33.5	34.5	34	30	28.5			
Water Temperature	°C	29.0	29.9	30.1	29.9	28.8	28.0			
рН	-	7.3	6.9	7.2	7.1	7.2	7.1			
Electrical Conductivity	μS/cm	500	330	310	340	330	420			
Suspended Solid (SS)	mg/l	480	510	130	186	58	44			
COD_{Cr}	mg/l	192	128	96	160	224	224			
BOD	mg/l	60	35	6	12	39	62			
T-N	mg/l	17.8	22.5	8.73	5.42	19.3	10.8			
NH ₄ -N	mg/l	2.69	2.50	0.38	0.57	0.28	0.19			
TKN	mg/l	15.5	17.4	6.36	3.37	15.5	8.14			
T-P	mg/l	1.41	1.78	0.30	0.54	1.22	1.03			

Table A.14 Result of Water Quality Analysis, Dry Season (1) Factory and Hospital									
Damanatan	:4		Factory		Hospital				
Parameter	unit	WW - 4	WW - 5	WW - 6	WW - 7	WW - 8	WW - 9		
Air Temperature	°C	40.5	36.5	36.5	34.5	34.5	35.5		
Water Temperature	°C	42.5	29.0	31.0	33.0	30.0	30.0		
рН	-	7.81	6.94	5.61	5.4	7.00	7.33		
Electrical Conductivity	μS/cm	7,740	1,200	2,370	270	240	1,290		
Suspended Solid (SS)	mg/l	216	264	488	5	22	78		
COD_{Cr}	mg/l	989	700	422	84	90	96		
BOD	mg/l	540	492	200	18	36	21		
T-N	mg/l	7.17	27.1	71.2	4.99	10.1	186		
NH ₄ -N	mg/l	1.20	1.32	1.20	N.D.	N.D.	0.21		
TKN	mg/l	1.27	24.6	62.6	1.67	6.45	176		
T-P	mg/l	2.88	2.53	0.74	0.07	0.39	3.08		

Table A.15 Result of Water Quality Analysis, Dry Season (2) WWTP 1st sedimentation tank Final sedimentation tank Inflow Aeration tank effluent effluent Parameter unit WW - 13 | WW - 14 | WW - 15 | WW - 17 WW - 21 WW - 11 WW - 12 WW - 16 WW - 18 WW - 20 WW - 10 WW - 19 $^{\mathrm{o}}\mathrm{C}$ Air Temperature 36.5 37.0 37.0 36.5 37.0 35.0 35.0 36.5 35.0 36.5 37.0 34.0 $^{\circ}C$ Water Temperature 30.7 30.9 30.7 32.0 31.3 30.7 30.1 29.3 27.7 29.2 29.7 28.0 рН 7.28 7.55 7.37 7.35 7.24 7.15 7.33 7.40 7.44 7.19 7.18 7.20 EC 1,980 1,810 μS/cm 1,740 1.850 1.640 1,780 1,040 1.000 940 750 770 740 Suspended Solid (SS) mg/l 936 1010 880 885 728 922 116 80 132 COD_{Cr} mg/l 188 172 168 80 68 164 38 36 33 _ BOD 82 64 90 30 30 20 20 mg/l76 16 T-N 13.9 mg/l 276 191 197 453 367 354 15.2 11.0 NH₄-N mg/l 0.29 0.80 0.32 0.33 0.26 0.25 0.11 0.40 0.11 TKN 273 187 195 451 366 7.74 351 7.46 4.16 mg/l T-P mg/l 9.32 0.87 1.11 21.3 1.50 2.20 21.9 24.8 9.48 _ MLSS mg/l 9,920 4.870 12,880 SV 90 % 89 91 SVI 90 71 185 MLDO 0.45 0.00 0.32 mg/l

Table A.16 Result of Water Quality Analysis, Dry Season (3) Kandawgyi Lake

Demonstra		Restaurant				Lake water	Tulluu ((g)	Drainage			
Parameter	unit	WW - 1*	WW - 2	WW - 3	WW - 22	WW - 23	WW - 24	WW - 25	WW - 26	WW - 27	
Air Temperature	°C	36.5	35.5	34.0	35.0	35.0	34.0	34.0	34.0	37.0	
Water Temperature	°C	31.5	30.5	28.7	32.2	23.9	33.9	30.0	29.7	31.0	
pН	-	5.42	6.69	8.00	11.09	11.06	10.96	7.06	7.12	7.19	
Electrical Conductivity	μS/cm	480	810	210	270	230	290	290	610	350	
Suspended Solid (SS)	mg/l	242	310	165	58	78	82	55	36	68	
COD_{Cr}	mg/l	680	882	388	93	155	158	222	73	150	
BOD	mg/l	270	372	184	52	50	68	88	30	44	
T-N	mg/l	36.3	87.6	5.2	19.9	11.3	7.74	5.65	59.7	31.1	
NH ₄ -N	mg/l	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
TKN	mg/l	25.1	25.1	4.96	19.5	10.9	7.46	4.81	55.6	28.5	
T-P	mg/l	2.88	2.88	2.88	0.19	0.17	0.03	0.31	2.52	0.28	

^{*}Restaurant-D (White Rice)

A-19

Table A.17 Result of Water Quality Analysis, Dry Season (4) River									
Parameter	unit		Hlaing river		Yangon River	Bago	river	Nga Moe Yeik Creek	Pu Zun Taung Creek
		WW - 28	WW - 29	WW - 30	WW - 31	WW - 32	WW - 33	WW - 34	WW - 35
Air Temperature	°C	36.5	34.0	33.0	31.5	32.5	33.5	38.0	31.0
Water Temperature	°C	31.5	31.5	30.5	31.0	31.5	31.5	36.0	31.0
pН	-	7.93	7.90	7.74	7.58	7.59	7.58	7.16	7.54
Electrical Conductivity	μS/cm	890	3,330	6,640	163,100	8,990	14,580	160	14,450
Suspended Solid (SS)	mg/l	400	562	400	325	335	330	202	418
COD_{Cr}	mg/l	932	980	960	562	985	520	110	216
BOD	mg/l	520	520	436	280	362	364	50	88
T-N	mg/l	3.65	5.94	9.80	16.4	11.9	14.1	0.58	11.9
NH ₄ -N	mg/l	0.09	0.10	0.08	0.10	0.10	0.10	N.D.	0.10
TKN	mg/l	0.83	0.53	0.89	0.42	0.47	1.90	0.23	0.45
T-P	mg/l	0.54	0.08	0.18	0.10	0.17	2.82	0.03	0.05

A-20

Table A.18 Result of Water Quality Analysis, Dry Season (5) Drain									
Parameter	unit	Pauk Tar Chaung	Yoe Gyi Chaung	Thamaing Chaung	Padauk Chaung	Tbebyu Chaung	Nat Chaung		
T drumeter	GIII	WW - 36	WW - 37	WW - 38	WW - 39	WW - 40	WW - 41		
Air Temperature	°C	34.5	38.1	35.0	34.5	36.5	35.5		
Water Temperature	°C	28.5	33.5	29.5	30.5	31.0	32.0		
рН	-	7.18	6.68	7.09	7.17	6.85	6.89		
Electrical Conductivity	μS/cm	920	1,250	520	1,450	460	550		
Suspended Solid (SS)	mg/l	303	208	110	160	294	210		
COD_{Cr}	mg/l	190	128	100	182	320	322		
BOD	mg/l	60	40	28	52	96	58		
T-N	mg/l	54.1	64.8	21.9	66.2	20.9	24.3		
NH ₄ -N	mg/l	3.30	1.20	0.46	1.20	0.22	0.14		
TKN	mg/l	46.6	57.4	16.7	50.5	18.4	22.9		
T-P	mg/l	2.64	4.93	1.81	2.53	2.64	3.13		

Kandawgyi Lake

Water quality data of Kandawgyi Lake water are shown below;

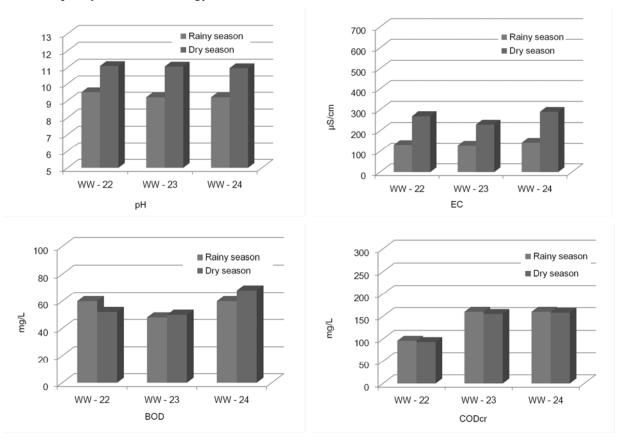


Figure A.7 Water Quality of Kandawgyi Lake Water (pH, EC, BOD, CODcr)

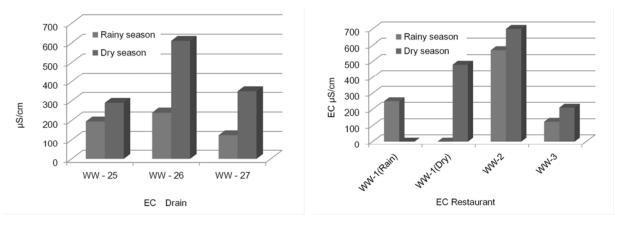


Figure A.8 Water Quality of Drain and Restaurant around Kandawgyi Lake (EC)

In Kandawgyi Lake water, both pH and EC of dry season are higher than those of rainy season. For the reason of high pH value in dry season, it is estimated that the photosynthesis of blue-green algae becomes more active than rainy season.

On the other hand, the reason of high pH in dry season is estimated to be the effect of drain and restaurant drainage which contain high EC substance.

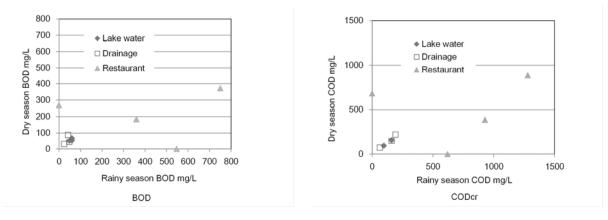


Figure A.9 Water Quality of Drain and Restaurant around Kandawgyi Lake (EC)

BOD of lake water in rainy season and dry season are similar. CODcr shows same tendency. However, both BOD and CODcr of lake water in the western part (WW-23 and WW-24) are higher than those of the eastern part (WW-22). Therefore, pollution of western part of the lake is progressing faster than eastern part.

Relationship of BOD of lake water, drain and restaurant drainage is shown in above figure. BOD values of drain and restaurant drainage are higher than lake water. Therefore, BOD pollution of lake water is effected by drain and restaurant drainage. Same tendency is observed in terms of CODcr.

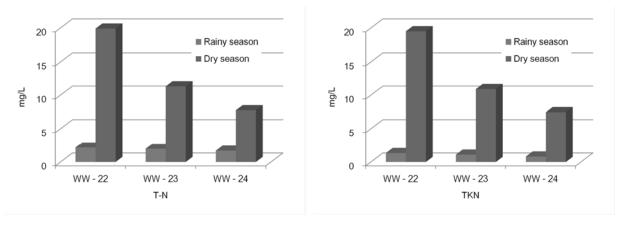
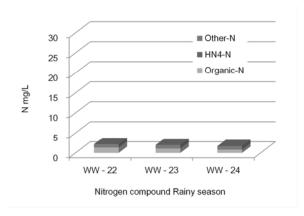



Figure A.10 Water Quality of Kandawgyi Lake Water (T-N, TKN)

T-N in dry season is higher than rainy season. The reason of this increase may be due to the progress of pollution or seasonal change. Major ingredient of T-N is TKN.

Relationship of T-N of lake water, drain and restaurant drainage shows that T-N in drain and restaurant drainage is higher than that in lake water.

Both T-N and TKN in eastern part of lake are higher than western part. There are many restaurants and cafes on the west bank of the lake. Therefore, the major source of this nitrogen pollution is attributed to the wastewater discharge from restaurant and café.

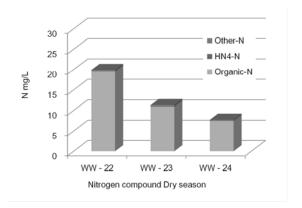
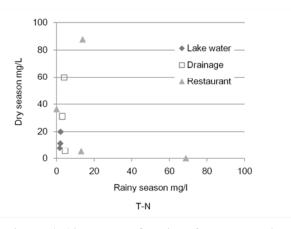



Figure A.11 Nitrogen Ingredients of Kandawgyi Lake Water

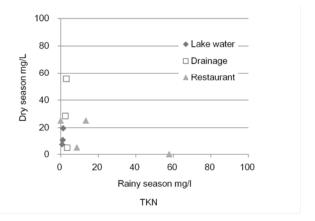


Figure A.12 Water Quality of Kandawgyi Lake Water, Drain and Restaurant Drainage (T-N, TKN)

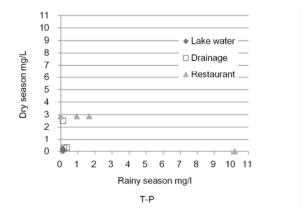


Figure A.13 Water Quality of Kandawgyi Lake Water (T-P)

In rainy season, T-P in lake water is near uniformity. However, in dry season, east part of lake water shows higher T-P. The reason of this difference may be due to the effect of lake water agitation by strong rainfall or release of lake water.

T-P in restaurant drainage shows higher value than that of lake water and drain. Therefore, major source of T-P is discharge from restaurant.

N/P ratio of Kandawgyi Lake water is shown below. N/P ratio in rainy season is 13 - 14, and in dry season it is 5 - 20.

Generally, N/P ratio > 16 means phosphorus is limiting factor for blue-algae growth. On the contrary, N/P ratio < 16 means nitrogen is limiting factor.

In Kandawgyi Lake, nitrogen is limiting factor of blue-algae growth. However, it is possible that phosphorus becomes limiting factor by seasonal change or location.

Table A.19 N/P Ratio in Kandawgyi Lake Water

Location	Rainy season	Dry season
East	14	5
Central	15	5
West	13	20

Factory and Hospital

Water quality of Factory and Hospital drain is shown below;

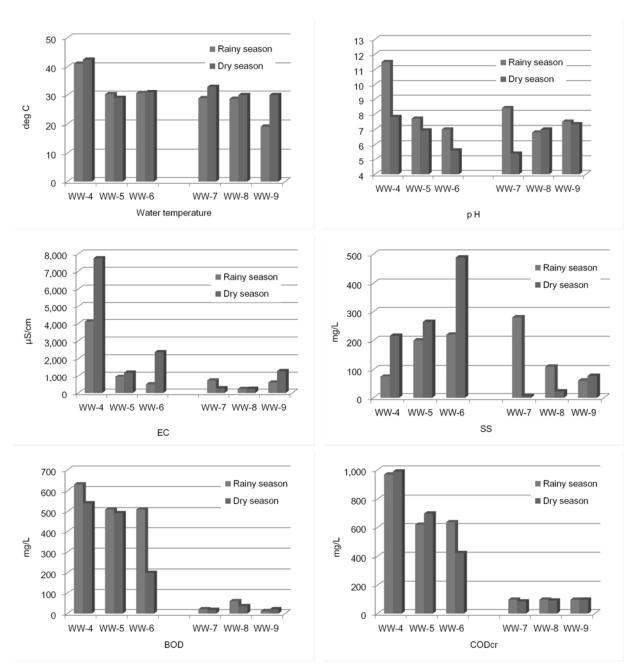


Figure A.14 Water Quality of Factory and Hospital Effluent (Water Temperature, pH, EC, SS, BOD, CODcr)

Water temperature of Beverage factory (WW-4) shows higher temperature than other wastewater. This wastewater shows higher pH in rainy season. Possible explanation of this difference is the difference in manufactured item.

WW-7 in dry season shows low pH. When water sampling was done, this hospital implemented surgical operation. Therefore, possible explanation of this pH decrease is due to discharge of medical material after surgical operation.

Industrial wastewater shows higher organic pollution (BOD and CODcr) than hospital wastewater.

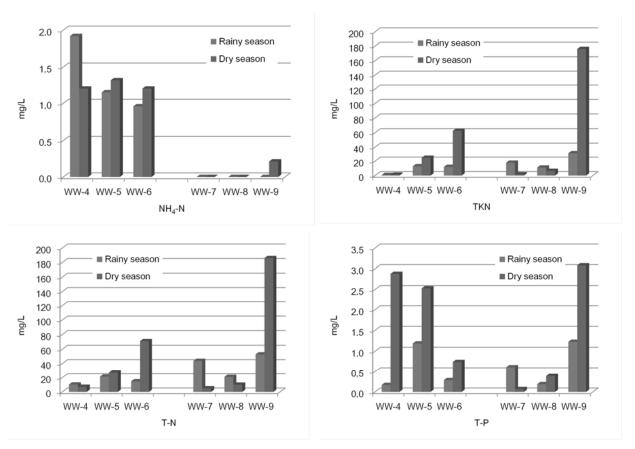


Figure A.15 Water Quality of Factory and Hospital Effluent (NH₄-N, TKN, T-N, T-P)

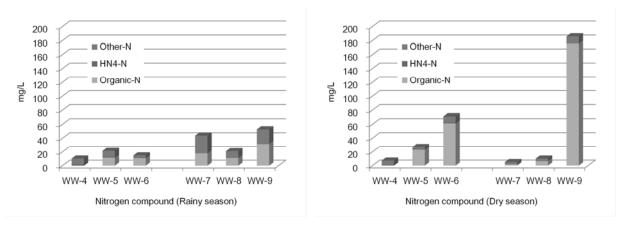


Figure A.16 Nitrogen Ingredients in Factory and Hospital Wastewater

Major nitrogen ingredient of beverage factory is other-nitrogen which is assumed inorganic nitrogen

compound. On the contrary, other factory (Pharmaceutical and Bread-making) and hospital wastewater contains organic-nitrogen.

Beverage factory and pharmaceutical factory show higher T-P than bread-making factory. In the beverage factory, usage of phosphorus containing sour agent is a possible reason. In the same way, usage of phosphorus containing agent may be possible reason of T-P in pharmaceutical wastewater.

Table A.20 Assessment of Wastewater Quality

Rainy season

Item	Limitation Value (Myanmar)	Factory A	Factory B	Factory C	Hospital A	Hospital B	Hospital C	Effluent standard (Japan)
pН	6 - 9.5	11.5	7.7	7	8.4	6.8	7.5	5.8-8.6
SS	200 mg/L	75	200	220	280	110	60	200 mg/L
BOD_5	20 - 60 mg/L	630	510	510	21	60	12	200 mg/L
CODcr	200 mg/L	968	620	640	96	96	96	160 mg/L (COD _{Mn})
T-N	Not decided	10.3	21.5	14.9	43.8	21.1	52.8	120 mg/L
T-P	Not decided	0.17	1.19	0.29	0.61	0.19	1.23	16 mg/L

Dry season

Item	Limitation Value (Myanmar)	Factory A	Factory B	Factory C	Hospital A	Hospital B	Hospital C	Effluent standard (Japan)
pН	6 - 9.5	7.81	6.94	5.61	5.4	7.0	7.33	5.8-8.6
SS	200 mg/L	216	264	488	5	22	78	200 mg/L
BOD ₅	20 - 60 mg/L	540	492	200	18	36	21	200 mg/L
CODcr	200 mg/L	989	700	422	84	90	96	160 mg/L (COD _{Mn})
T-N	Not decided	7.17	27.1	71.2	4.99	10.1	186	120 mg/L
T-P	Not decided	2.88	2.53	0.74	0.07	0.39	3.08	16 mg/L

Wastewater quality is assessed on pH, SS, BOD, CODcr, T-N and T-P.

Both BOD and CODcr of Factory-A, -B and -C exceed limitation value of Myanmar. Among these 3 factories, Factory-A and Factory-C discharge their wastewater into river. Therefore, it is necessary to control these wastewater discharges via administrative guidance.

Limitation value of T-N and T-P is not decided in Myanmar. At present, T-N and T-P in factory wastewater does not exceed effluent standard of Japan.

Wastewater of hospital largely satisfies the limitation value of Myanmar. However, pH and SS of Hospital-A and T-N of Hospital-C exceed Japanese effluent standard.

However, when dialysis treatment and other high quality specialized medical treatment become popular in future, attention should be paid to characteristics of hospital wastewater.

River and Drainage

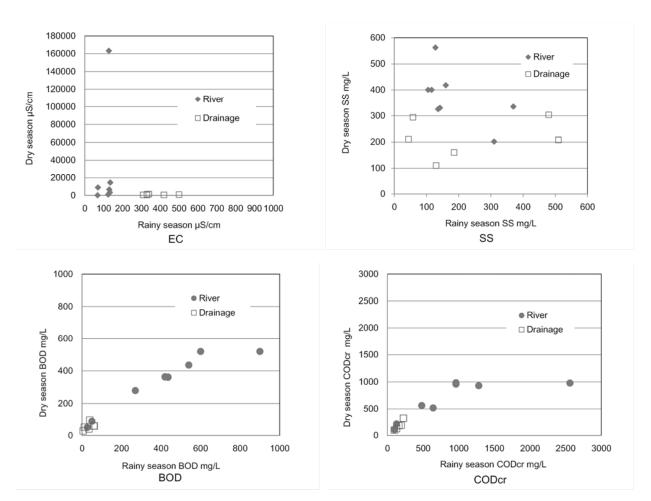


Figure A.17 Water Quality of River and Drainage (EC, SS, BOD, CODcr)

River water in dry season shows high EC value. Especially, downstream area shows higher EC value because of the effect of salt water intrusion. In the southern part of Yangon city, EC of Yangon River is: $163,000\mu\text{S/cm}$, Downstream of Bago River the value is: $14,580\mu\text{S/cm}$ and Pu Zun Taung Creek, EC is: $14,450\mu\text{S/cm}$.

On the other hand, EC and SS of drainage increase in rainy season. The possible explanation of this increase is the washout of deposit from branch drainage or road surface during rainy season.

BOD and CODcr in river are higher than those of drainage. Moreover, BOD and CODcr in rainy season are higher than dry season.

The reason of this increase is not clear, however, washout of deposit in drainage is considered as possible reason.

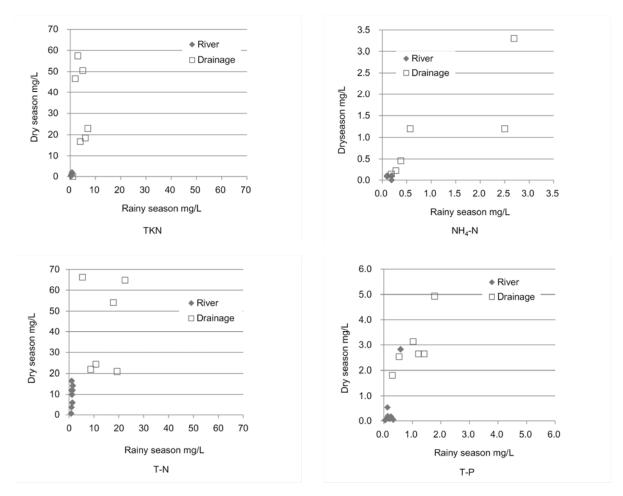
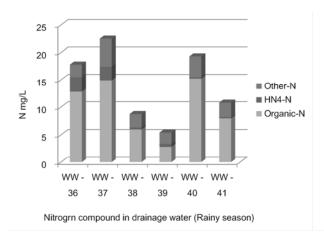



Figure A.18 Water Quality of River and Drainage (NH₄-N, TKN, T-N, T-P)

Drainage shows higher NH₄-N, TKN and T-N than river. Especially, Pauk Tar Chaung and Yoe Gyi Chaung show high NH₄-N concentration both in rainy season and dry season.

T-P shows same tendency, that is, drainage shows higher T-P than river. Similar to the observation of NH_4 -N, Pauk Tar Chaung and Yoe Gyi Chaung show high T-P concentration.

From these observations, it is said that pollution of Pauk Tar Chaung and Yoe Gyi Chaung is serious compared to other drainage.

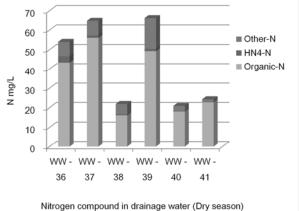
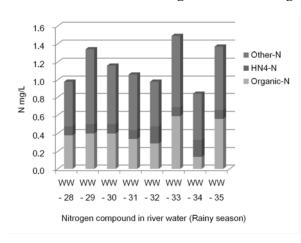



Figure A.19 Nitrogen Ingredients in Drainage

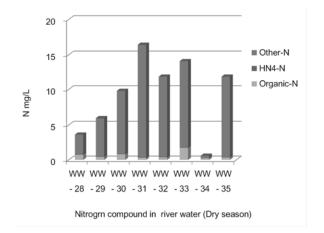


Figure A.20 Nitrogen Ingredients in Drainage

Above figures show the different of nitrogen ingredient of drainage water and river water. In drainage, major ingredient is Organic-N. Possible reason of this is that the major nitrogen source of drainage is domestic wastewater.

In river water, major ingredient of nitrogen is different in rainy season and dry season. In rainy season, major ingredient is organic-N and other-N. On the contrary, in dry season, other-N becomes dominant ingredient and NH₄-N is decreased.

In dry season, water temperature of river was 30.5 - 36.0 deg C (rainy season: 28.9 - 29.7 deg C). That is, it is assumed that this high water temperature in dry season activates nitrogen compound degradation (mineralization) in river water.

WWTP

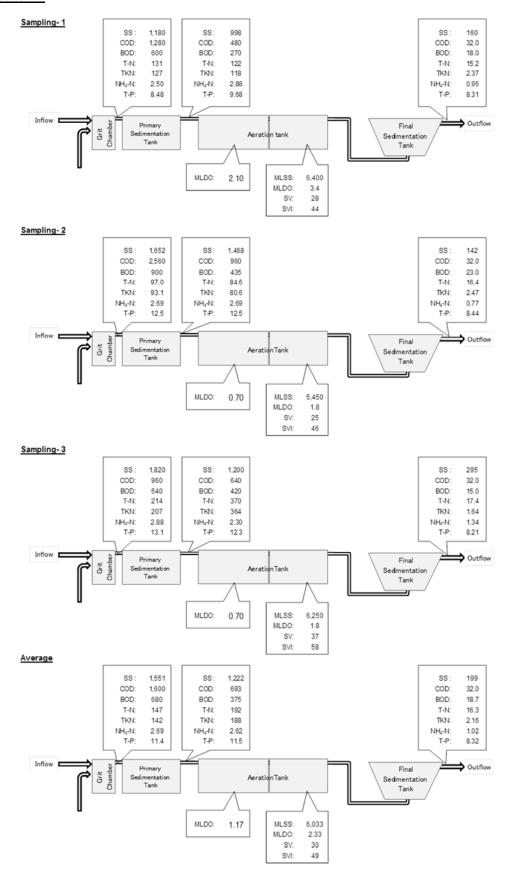


Figure A.21 Water Quality in WWTP Treatment Process (Rainy Season)

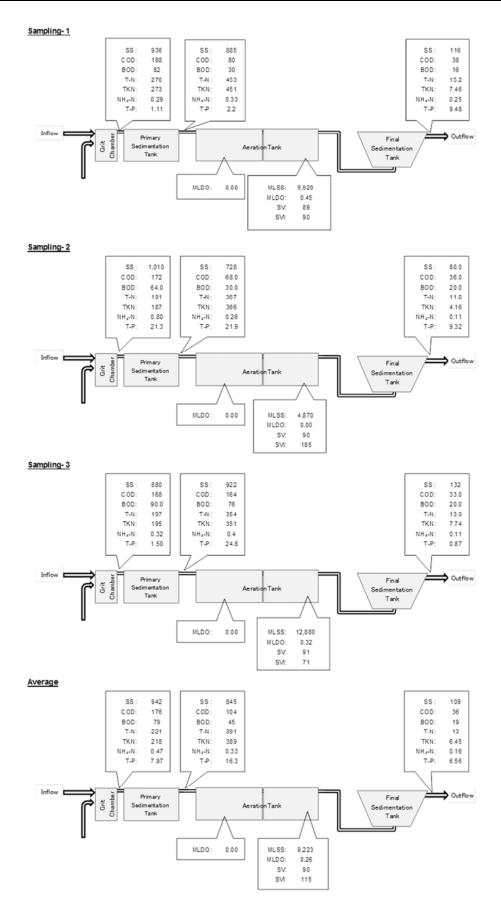


Figure A.22 Water Quality in WWTP Treatment Process (Dry Season)

Water quality changes in WWTP treatment process is shown below;

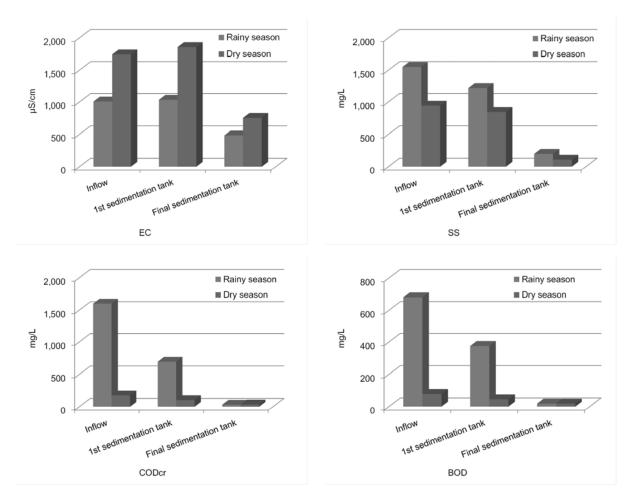


Figure A.23 Change of Water Quality in Treatment Process (EC, SS, CODcr, BOD)

BOD, CODcr and SS are removed in 1st sedimentation tank, and many of them are removed through aerobic tank and final sedimentation tank.

EC is reduced after aeration process and in final sedimentation tank.

BOD and CODcr in dry season is very low, however, trend of removal is same as in rainy season.

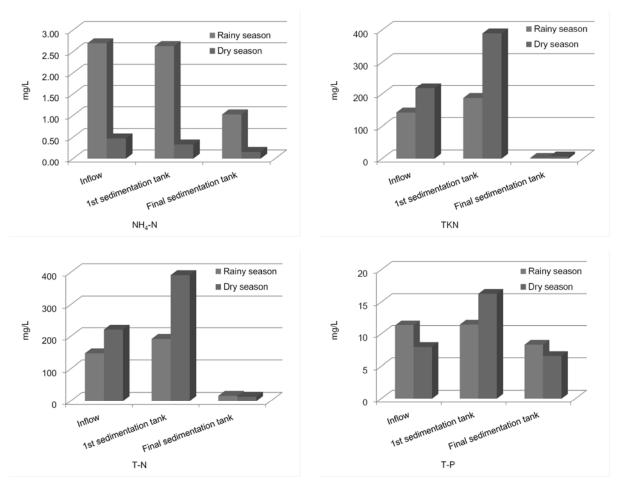


Figure A.24 Change of Water Quality in Treatment Process (HN₄-N, TKN, T-N, T-P)

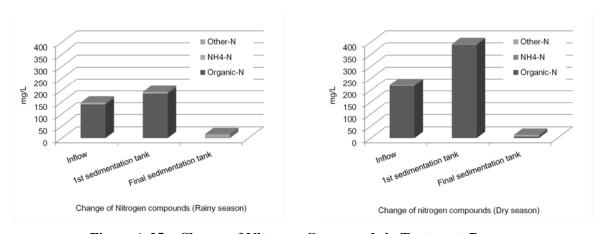


Figure A.25 Change of Nitrogen Compounds in Treatment Process

Change of HN4-N, TKN, T-N, T-P and nitrogen compounds in treatment process are shown above.

Major component of nitrogen compound in inflow water is organic-N. Many of these nitrogen compounds are removed through aerobic tank and final sedimentation tank.

T-P is removed through aerobic tank and final sedimentation tank. However, degree of T-P removal is smaller than nitrogen compounds.

Operating condition of WWTP

Operation condition of WWTP is as follows;

- Operating time of WWTP: 8 hours / day
- Operating time of aeration: Intermittent 2 hours (i.e. total aeration time is 4 hours / day)
- Capacity of WWTP: 14,775^{m3}/day
- Wastewater inflow: 2,300m³/day

In spite of 4 hours / day of aeration time, rejection ratio of pollutants is high. Pollution removal ratio is shown in figure below.

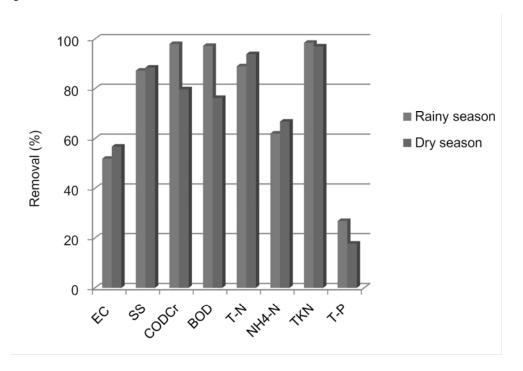


Figure A.26 Removal Ratio of Each Water Quality Items

Removal ratio of CODcr and BOD reduces in dry season. However, removal ratio of these items surpasses 70%.

T-N and TKN is removed more than 80%, and removal ratio of NH₄-N is around 60%. However, removal ratio of T-P remains around 20%.

In spite of insufficient condition of aerator operation, removal ratios of each water quality items are relatively high.

Possible explanations are as follows;

- The small volume of wastewater inflow below WWTP capacity causes longer retention time.
- Removal of BOD, COD and SS is accelerated by precipitation because of this longer retention time.
- Removal of T-N and T-P is accelerated by the intermittent aeration, because this operating condition has possibilities to bring anaerobic anoxic aerobic condition in aeration tank.

The table below shows condition of activated sludge.

Table A.21 Condition of Activated Sludge

Item	Rainy season	Dry season
MLSS (mg/L)	6,033	9,223
MLDO (mg/L)	2.33	0.26
SV ₃₀	30	90
SVI	49	115

MLDO of dry season is very low (around 0.2mg/L) and aeration tank is nearly in anoxic condition. This anoxic condition is not intentionally created. Probably, this anoxic condition is created by long time discontinuation of aerator operation due to electricity supply failure.

MLSS is very high. Generally, MLSS of aeration tank is around 2,000 mg/L. According to the hearing survey, sludge withdraw pump of this WWTP is not working.

SV₃₀ shows that sedimentation property of activated sludge becomes worse in dry season.

From these observations, it is assessed that this WWTP has a problem about activated sludge management.

To improve the condition of WWTP, following reform measures are necessary.

- Refurbishment of sludge withdraw pump
- Installation of power generator to maintain continuous aeration
- Enhancement of laboratory in WWTP

At least, MLSS, MLDO, SV30 and effluent quality (BOD, SS and CODcr) have to be monitored.

- Improvement of skills of water quality analyst
 - At least, water quality analyst has to obtain necessary water quality data using adequate analysis method.
- Improvement of skills of WWTP operator

At least, WWTP operator has to understand water quality change, and reflect them in WWTP operation.

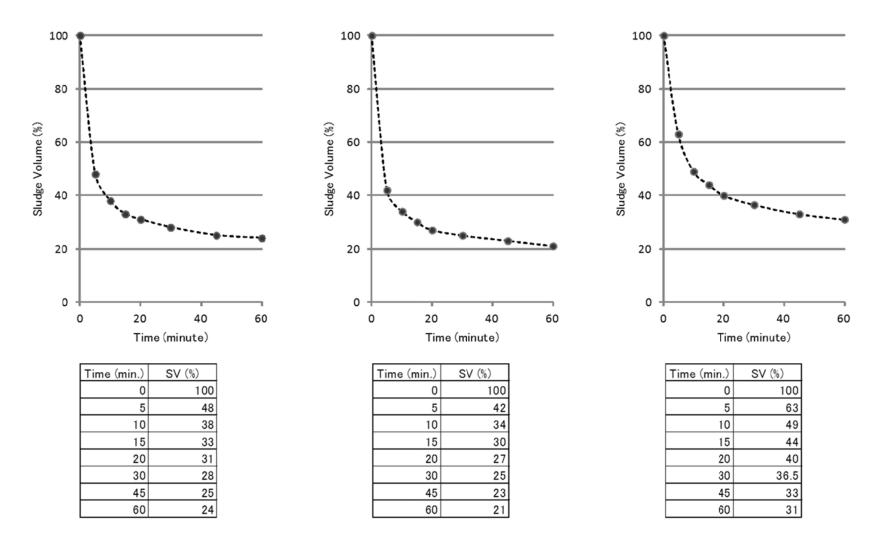


Figure A.27 Sludge Settling Property (Rainy season)

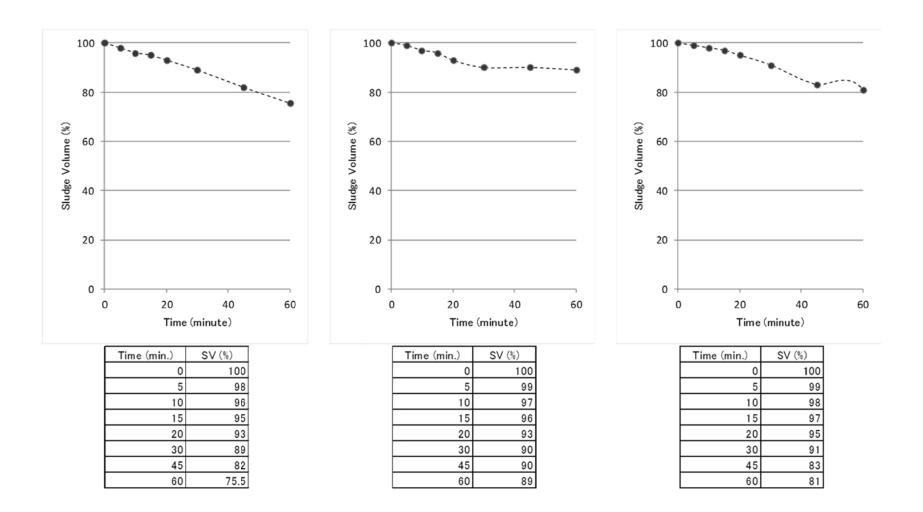


Figure A.28 Sludge Settling Property (Rainy season)

B. COST ESTIMATION OF SEWERAGE WORKS

The project cost, implementation plan and the detailed operation and maintenance cost regarding sewerage works are shown in the following pages.

B-2

 Table B.1
 Implementation Plan of Sewerage works

Sewerage	Com	ponents															Year														
Zone	Colli	polients	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
	F/S																													\neg	
	Preparation of	of Fund																													
C1	WWTP	DD																													
Cı	W W II	Construction																													
	Sewer	DD																													
	Network	Construction																													
	F/S																														
	Preparation of																														
W1	WWTP	DD																								L					
,,,,		Construction																													
	Sewer	DD																													
	Network	Construction																													
	F/S																														<u> </u>
	Preparation of																														
C2+E1	WWTP	DD																													
		Construction																			ļ										
	Sewer	DD									ļ						ļ				ļ										<u> </u>
	Network F/S	Construction												_																	
	Preparation of	- 6 E 1																													
	rieparation	DD						-					-				-	-					-			-					-
W2	WWTP	Construction																	ļ		ļ				ļ						
	Sewer	DD																-				-			-	-					
	Network	Construction		-	-									-			-			-			-	-		-				-	
	F/S	Construction			_	\vdash			_								_					_	-			-	_	_	-		-
	Preparation of	of Fund										-		<u> </u>			-					<u> </u>			-						
		DD																												$\overline{}$	
N1	WWTP	Construction																													
	Sewer	DD												_																	
	Network	Construction									<u> </u>	-		 				 				ļ						<u> </u>			
<u> </u>	F/S	_ SHST decion																												-	
	Preparation of	of Fund																							-						
		DD												<u> </u>						 											
E3	WWTP	Construction																													
	Sewer	DD																													
	Network	Construction																		 											

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

Implementation period

Table B.2	Project Cost of Sewerage Works (Case That Separate System is Adopted in All Sewerage Zones)
	Non-disclosure Information
Table B.3	Unit Cost of Waste Water Treatment Plant (Case That Separate System is Adopted
	in All Sewerage Zones)
	Non-disclosure Information

Table B.4 Project Cost of Ser System is Adopted in C1, W1	werage Works (Cost for Each Sewerage Zone (Case That Separate and a Part of C2, and Interceptor System with Primary Treatment is Adopted in the Others)
	Non-disclosure Information
Table B.5 Unit Cost of Wa That Separate System is A	ste Water Treatment Plant (Cost for Each Sewerage Zone (Case Adopted in C1, W1 and a Part of C2, and Interceptor System is Adopted in the Others)
	Adopted in the Others)
	Non-disclosure Information
	1 TOR-GISCROSTIC HIROTHAGUI

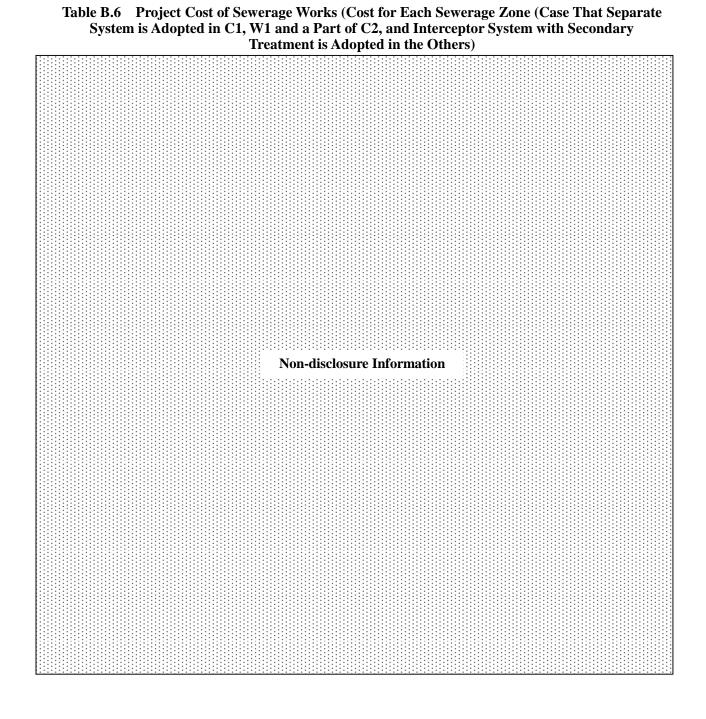


 Table B.7
 Calculation of No. of Apartments by Each Township

	Area	C1		C2		E1		W1		W2		N1		E3	
Township	(ha)	% of served township in C1	area (ha)		area (ha)	% of served township in E1	area (ha)	% of served township in W1	area (ha)	% of served township in W2	area (ha)	% of served township in N2	area (ha)	% of served township in E3	area (ha)
Pabe dan .	62	100.0%	62												
Kyauktada	70	100.0%	70												1
Botahtaung	260	100.0%	260												
Pazundaung	107	100.0%	107										<u> </u>		
Bahan	847			83.2%	705			16.8%	142						
Tarmwe	499			100.0%	499										
Mingalar Taung Nyunt	494			100.0%	494										
Yankin	479			100.0%	479								ļ		
Thingangyun	1,312			100.0%	1312										
Mayangone	2,588			69.2%	1791					30.8%	797				
South Okkalapa	822			100.0%	822										
Latha	60							100.0%	60				ļ		
Lanmadaw	131							100.0%	131						
Ahlone	338							100.0%	338				ļ		
Kyee Myin Daing	457							39.8%	182						
Sanchaung	240							100.0%	240				ļ		
Dagon	489 647							100.0%	489						
Kamaryut								11.1%	72	88.9%	575				
Hlaing	984									100.0%	984		ļ		1
Insein	3,163											100.0%	3163		
North Okkalapa	2,766					100.0%	2766								
North Dagon	2,418					100.0%	2418								
Dawbon	311												<u> </u>	100.09	
Thaketa	1,356												l	100.09	1356
South Dagon	3,751													100.09	3751
Total (ha)	24,651	Total area of C1	499	Total area of C2	6102	Total area of E2	5184	Total area of W1	1654	Total area of W2	2356	Total area of N1	3163	Total area of E3	5418
			178,000	Total area of C2 and E1	11286				483,000		350.000		377.000		001000
Design pop. No. of households (all)			28,254		163,231		138.674		76,667		55,556		59.841		921,000
Total No. of household in		2.0.1.1		11.0.1		00 N - 11 O11 1		11.0.1		20.14			59,841		
each township	n	3 Pabedan 4 Kyauktada	3511 3963	11 Bahan 12 Tarmwe	18859	23 North Okkalapa 30 North Dagon	73992 64682	11 Bahan 1 Latha	6582 2781		13559	21 Insein	59,84	15 Dawbon 25 Thaketa	8391 36588
each township	ŀ	5 Botahtaung	14722	13 Mingalar Taung Nyunt	13215	30 North Dagon	04002	2 Lanmadaw	6072	17 Hlaing	23203			31 South Dagon	101211
	- 1	6 Pazundaung	6058	18 Yankin	12813			7 Ahlone	15667	17 Haing	23203			31 South Dagon	101211
	ŀ	6 Pazuridaurig	0000	19 Thingangyun	35097			8 Kyee Myin Daing	8436						
	ŀ			20 Mayangone	47910			9 Sanchaung	11125						
	ŀ			24 South Okkalapa	21989			10 Dagon	22666						
	ŀ			24 South Okkalapa	21303			16 Kamaryut	3338						
	ŀ	Total	28,254	Total	163,231	Total	138,674	Total	76,667	Total	55,556	Total	59,841	Total	146,190
% of apartment in each	township	3 Pabedan	95.5%	11 Bahan		23 North Okkalapa	1.2%	11 Bahan	44.2%	20 Mayangone		21 Insein		15 Dawbon	3.7%
Source: result of socio-econ		4 Kyauktada	94.6%	12 Tarmwe	76.6%		7.8%	1 Latha	88.1%	16 Kamaryut	59.9%	21 119CIII	1./7	25 Thaketa	3.9%
Source, result of socio ecol	ionnic survey	5 Botahtaung	72.8%	13 Mingalar Taung Nyunt	73.8%	30 North Dagon	/.0%	2 Lanmadaw	74.0%		33.0%			31 South Dagon	0.7%
	ŀ	6 Pazundaung	79.4%	18 Yankin	39.6%			7 Ahlone	83.5%	17 Inding	33.0%			01 Coutii Dagoii	0.7%
	ŀ	0 Fazundaung	75.44	19 Thingangyun	13.6%			8 Kyee Myin Daing	27.7%						
	ŀ			20 Mayangone	13.0%			9 Sanchaung	67.6%						
	ŀ			24 South Okkalapa	0.0%			10 Dagon	48.7%						
	ŀ			27 Gouti Onnaiapa	0.0%			16 Kamaryut	59.9%						
No. of househols in apar	tment	3 Pabedan	3,351	11 Bahan	8,330	23 North Okkalapa	905	11 Bahan	2,907	20 Mayangone	2621	21 Insein	1.015	15 Dawbon	308
or nousenois in apar		4 Kyauktada	3,749	12 Tarmwe	10,223		5.070	1 Latha	2,449		8.116	2. 1.3011	1,012	25 Thaketa	1,443
1	ŀ	5 Botahtaung	10,720	13 Mingalar Taung Nyunt	9,757	OO INJIHI DAKUII	3,070	2 Lanmadaw	4,491		7,645			31 South Dagon	682
1	ŀ	6 Pazundaung	4,812	18 Yankin	5,070			7 Ahlone	13.085	.,ag	7,040			5. Couti Dagoii	
	ŀ	0 Fazundaung	4,012	19 Thingangyun	4,772			8 Kyee Myin Daing	2,339						
	ŀ			20 Mayangone	6,682			9 Sanchaung	7,521						
	ŀ			24 South Okkalapa	0,002			10 Dagon	11.042						
	ŀ			24 Journ Okkalapa	0			16 Kamaryut	1,998						
								TO Rumaryac	1,000						
	L														
		Sub total	22,632	Sub total	44,834	Sub total	5,975	Sub total	45,832	Sub total	18,382	Sub total	1,012		2,433
No. of HC for apartment		Sub total	22,632 754	Sub total	44,834 1494	Sub total	5,975 199	Sub total	45,832 1528	Sub total	18,382 613		1,012 34		2,433 81
30 households/apartmer	nt	Sub total	754	Sub total	1494	Sub total	199	Sub total	1528	Sub total	613		34		81
	nt	Sub total		Sub total		Sub total		Sub total		Sub total					

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

Table B.8 Operation and Maintenance Cost for Each Sewerage Zone (Case That Separate System is Adopted in all Sewerage Zones)

(Unit: Mil. JPY/vear)

						(0111111 1112	ii. 31 1/year)
Items	C1	C2&E1	W1	W2	E3	N1	Total
Salary	3.5	7.1	5.9	5.9	5.9	4.6	32.9
Electricity	24.4	260.5	64.3	44.5	92.6	49.2	535.5
Maintenance(Spare parts)	20.5	202.5	52.7	43.4	68.6	43.4	431.1
Sludge cake	7.5	80.5	19.9	13.7	28.6	15.2	165.4
Chemical	28.4	302.4	74.6	51.6	107.6	57.2	621.8
Sewer	4.3	24.0	7.5	10.6	21.0	12.9	80.3
Other cost	1.7	17.1	4.3	3.2	6.1	3.4	35.8
Total	90.3	894	229	173	330	186	1,902.8

^{*:} The total OM cost of C1 with the capacity of 70,200m³/d

Table B.9 Operation and Maintenance (Cost for Each Sewerage Zone (Case That Separate System is Adopted in C1, W1 and a Part of C2, and Interceptor System with Primary Treatment is Adopted in the Others)

(Unit: Mil. JPY/year)

						(11. 31 1/ y car)
Items	C1	C2&E1	W1	W2	E3	N1	Total
Salary	3.5	6.6	5.9	5.4	5.4	4.2	31.0
Electricity	24.4	161.6	64.3	19.3	40.1	21.3	331.0
Maintenance(Spare parts)	20.5	83.7	52.7	19.2	28.8	19.2	224.1
Sludge cake	7.5	56.2	19.9	7.6	15.7	8.4	115.3
Chemical	28.4	230.1	74.6	18.2	38.0	20.2	409.5
Sewer	4.3	7.4	7.5	0.0	0.0	0.0	19.2
Other cost	1.7	10.8	4.3	1.4	2.6	1.5	22.3
Total	90.3	556	229	71	131	75	1,152.4

Table B.10 Operation and Maintenance (Cost for Each Sewerage Zone (Case That Separate System is Adopted in C1, W1 and a Part of C2, and Interceptor System with Secondary Treatment is Adopted in the Others)

Items	C1	C2&E1	W1	W2	E3	N1	Total
Salary	3.5	6.6	5.9	5.4	5.4	4.2	31.0
Electricity	24.4	260.5	64.3	44.5	92.6	49.2	535.5
Maintenance(Spare parts)	20.5	202.5	52.7	43.4	68.6	43.4	431.1
Sludge cake	7.5	80.5	19.9	13.7	28.6	15.2	165.4
Chemical	28.4	302.4	74.6	51.6	107.6	57.2	621.8
Sewer	4.3	7.4	7.5	0.0	0.0	0.0	19.2
Other cost	1.7	17.1	4.3	3.2	6.1	3.4	35.8
Total	90.3	877	229	162	309	173	1,839.8

C. FINANCIAL SIMULATION

Table C.1 Sewerage Financial Simulation 1 Separate/Secondary Treatment (Capital Subsidy 80% Annual Tariff Increase 3.9%)

clo	
n :::	

Table C.2 Sewerage Financial Simulation 2 Interceptor/Secondary Treatment (Capital Subsidy 80% Annual Tariff Increase 2.7%)

		N			
		or			
		1-0			
		lis			
		scl			
		los			
		su			
		re			
		I			
		nf			
		or			
		m			
		at			
		io			
		n			

Table C.3 Sewerage Financial Simulation 3 Interceptor/Primary Treatment (Capital Subsidy 80% Annual Tariff Increase 1.7%)

Info	

Table C.4 Sewerage Financial Simulation 4 Separate/Secondary Treatment (Capital Subsidy 60% Annual Tariff Increase 5.0%)

Non-disclosure Information	
Non-disclosure Information	

Table C.5 Sewerage Financial Simulation 5 Interceptor/Secondary Treatment (Capital Subsidy 60% Annual Tariff Increase 3.9%)

Non-disclosure Information

Table C.6 Sewerage Financial Simulation 6 Interceptor/Primary Treatment (Capital Subsidy 60% Annual Tariff Increase 3.0%)

	1111111														:::::	:::::	10111	-:-:-:		-:::::	
																	:::::		:::::		:::::
																	:::::				
				::::																	:::::
				::::										::::			:::::				:::::
				::::							:::::			::::							:::::
				::::				:::::													
										•		•								.:.:::	
				:	No	n-d	isclo	osur	e In	tori	mat	ion	: :	:::::	:::::	-:::::	111111	: : : : : :	:::::		1:1:1:
								osur				ion									
								osur				ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									
												ion									

Table C.7 Sewerage Financial Simulation 7 Separate/Secondary Treatment (Capital Subsidy 40% Annual Tariff Increase 5.9%)

100000000000000000000000000000000000000							111111111	
		Non	disclosur	e Infor	mation			
[::::::::::::::::::::::::::::::::::::::	 	14011-						
		11011-						
		-11011						
		Non-						
		NOII-						
		14011-						
		11011-						
		14011-						
		11011-						
		14011-						
		14011-						
		1401-						
		1401-						
		1401-						
		1401-						
		1401-						
		1401-						
		1401-						
		1						
		1401-						
		1401-						
		1401-						
		1401-						
		1401-						

Table C.8 Sewerage Financial Simulation 8 Interceptor/Secondary Treatment (Capital Subsidy 40% Annual Tariff Increase 4.9%)

10:00	 	 	1 - 1 - 1 - 1	111111	:::::				:::::	:::::		11111		 		 	
														 	• • • • • •		
					No	n di	icolo	CILEO	Info	rm	tion						
					No	n-di	isclo	sure	Info	rma	atio	1					
					No			sure			ation	1 ::::::					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						ation	1					
					No						atio	1					
					No						atio	1					

Table C.9 Sewerage Financial Simulation 9 Interceptor/Primary Treatment (Capital Subsidy 40% Annual Tariff Increase 4.0%)

		No	n-disclo	sure Info	ormation			

Table C.10 Sewerage Financial Simulation 10 Separate/Secondary Treatment (Capital Subsidy 0% Annual Tariff Increase 7.3%)

	*1*1*1*1*		1111111111111	0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	10111
	Non-c	disclosure Inform	ation		
	Non-c		ation		
	Non-c	lisclosure Inform	ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		
	Non-c		ation		

Table C.11 Sewerage Financial Simulation 11 Interceptor/Secondary Treatment (Capital Subsidy 0% Annual Tariff Increase 6.3%)

No			

Table C.12 Sewerage Financial Simulation 12 Interceptor/Primary Treatment (Capital Subsidy 0% Annual Tariff Increase 5.4%)

	: • : • : • : • : • : • : • : •	.:.:.:.:.:.:	 0 - 0 - 0 - 0 - 0 - 0 -	: • : • : • : • : • : • : • : •	 	: - : - : - : - : - : - :	-:-:-:-:-:-:-	 *.*.*.*.*.*.
[::::::::								
			Non-		ation			
			Non-	disclosur	ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			
			Non-		ation			

D-1

Table D.1 Evaluation of Flow Capacity for Existing Major Drainage Channels

	Design Flow				Capaci	ty Check			
	(5 year Return	Slope	Target channel	Section a	t Bridge	Section at	Channel	Evaluation	Remarks
	Period) (m3/s)	(%)	for Evaluation	Capacity (m3/s)	Check	Capacity (m3/s)	Check	Evaluation	Remarks
ine-1 B	35.433	3.700	No1-4	57.858	OK	56.506	OK	OK	
ine-2_B	47.298	2.540	No2-2	12.136	NG	15.933	NG	NG	
ine-2_C	51.643	2.290	No2-3	6.213	NG	3.813	NG	NG	
ine-3_B	16.377	3.970	No3-1	2.417	NG	2.332	NG	NG	
ine-3_C	22.924	2.540	No3-2	32.559	OK	-	-	Confirmation of height at either bank is necessary	Height of either bank is low
ine-4_D	45.641	0.110	No4-3	17.897	NG	17.897	NG	NG	Sueveyed at only Channel sectio
ine-5_B	92.000	2.330	No5-3	47.492	NG	-	-	NG	Height of right side bank is low
Line-5_C	91.840	1.380		29.189	NG	17.421	NG	NG	
ine-8_B	40.456	3.180	No8-4	84.404	OK	46.328	OK	OK	
ine-9_B	34.023	3.260	No9-4	14.120	NG	26.280	NG	NG	
ine-10_B	43.459	4.070	No10-5	41.264	NG	51.325	OK	Modification of the bridge is	
ine-11_B	89.348	2.180	No11-4	21.926	NG	-	-	NG	Sueveyed at only Section at brid
ine-11_A	89.348	3.230	No11-4	72.518	NG	-	-	NG	Height of left side bank is low
ine-12_B	17.985	-0.030	No12-3	#NUM!	OK?	#NUM!	OK?	OK?	
ine-12_C	21.457	2.430	No12-4	37.669	OK	20.121	NG	NG	
ine-15_B	53.835	1.590	No15-4	6.291	NG	3.989	NG	NG	
ine-15_C	53.835	2.060	No15-4	29.176	NG	-	-	NG	Height of right side bank is low
ine-15_D	61.887	1.220	No15-5	47.932	NG	41.870	NG	NG	
ine-16_B	31.037	0.370	No16-1	1.749	NG	2.009	NG	NG	
Line-16_C	67.790	0.580	No16-3	23.755	NG	-		NG	Height of right side bank is low
Line-16_D	74.681	0.930	No16-4	22.212	NG	30.584	NG	NG	
ine-18_B	115.412	3.960	No18-3	83.424	NG	44.279	NG	NG	
ine-18_C	115.412	2.010	No18-3	291.745	OK	488.918	OK	OK	
ine-19_D	25.782	3.710	No19-4	105.657	OK	53.370	OK	OK	
ine-20_B	35.013	0.500	No20-2	19.015	NG	5.059	NG	NG	
ine-21_C	55.810	1.130	No21-6	27.914	NG	-		NG	Height of right side bank is low
Line-22_B	36.869	-0.750	No22-3	#NUM!	OK?	-	-	Confirmation of height at right side bank is necessary	Height of right side bank is low

Note: Capacity check is based on the cross section survey.

ratio over Flow Total A ti t2 Т Ι Discharge Dimension Velocity total Slope Capacity catchment (m) (ha) (min) (min) (min) (mm/h) (ha) (m3/s)(-)(m/s)(m3/s)inlet traveling total (1) (2) (3) (6) (7) (8) (9) (10)(4) (5) 600 20 No1-1 318.5 5.0 25.0 117.1 0.5 0.3 95.6 15.5 4.50 x 2.25 0.00050 1.795 16.354 No1-2 640 318.5 5.3 30.3 102.4 0.5 0.5 159.3 22.6 5.50 x 2.75 0.00040 1.835 24.979 No1-3 770 318.5 6.4 36.7 89.5 0.5 0.7 223.0 27.7 6.00 x 3.00 0.00037 1.870 30.298 No1-4 760 318.5 6.3 43.0 80.1 0.5 1.0 318.5 35.4 6.50 x 3.25 0.00034 1.891 35.954 2.770 No2-1 800 517.0 25 6.7 31.7 99.2 0.5 0.5 258.5 35.6 6.50 x 3.25 0.00034 1.891 35.954 No2-2 300 517.0 2.5 0.5 0.7 361.9 47.3 7.50 x 3.75 0.00030 1.954 49.465 34.2 94.1 No2-3 280 517.0 2.3 36.5 89.9 0.5 8.0 413.6 51.6 8.00 x 4.00 0.00028 1.971 56.762 No2-4 1,230 517.0 10.3 46.8 75.5 0.5 1.0 517.0 54.2 8.00 x 4.00 0.00028 1.971 56.762 2,610 Total 560 213.0 19.7 0.4 85.2 16.4 4.50 x 2.25 1.882 No3-1 15 4.7 138.4 0.5 0.00055 17.152 No3-2 890 213.0 7.4 27.1 110.7 0.5 0.7 149.1 22.9 5.50 x 2.75 0.00050 2.052 27.927 213.0 8.4 35.5 91.6 0.5 1.0 213.0 5.50 x 2.75 0.00050 2.052 27.927 No3-3 1,010 27.1 Total 2.460 No4-1 260 404.7 25 2.2 27.2 0.5 202.4 31.0 6.00 x 3.00 0.00040 1.945 31.502 110.4 0.5 404.7 0.5 6.50 x 3.25 0.00040 No4-2 800 6.7 94.7 0.7 283.3 37.3 2.051 38.998 990 404.7 8.3 42.2 0.5 1.0 404.7 45.6 7.00 x 3.50 0.00040 2.155 47.519 No4-3 81.2 2,050 Total 290 1151.6 30 2.4 32.4 97.7 0.5 0.4 460.6 62.5 8.50 x 4.25 0.00025 1.939 63.047 No6-1 No6-2 420 1151.6 3.5 35.9 90.9 0.5 0.5 575.8 72.7 9.00 x 4.50 0.00025 2.014 73.427 No6-3 540 1151.6 4.5 40.4 83.7 0.5 0.6 691.0 80.3 9.50 x 4.75 0.00025 2.088 84.815 Total 1,250 No5-1 470 1151.6 20 3.9 23.9 120.9 0.1 115.2 19.3 5.00 x 2.50 0.00040 1.722 19.373 0.5 5.50 x 2.75 No5-2 930 1151.6 7.8 31.7 99.2 0.5 0.2 172.7 23.8 0.00040 1.835 24.979 No5-3 1,170 1151.6 9.8 50.2 71.9 0.5 8.0 921.3 92.0 9.50 x 4.75 0.00030 2.288 92.911 780 1151.6 0.5 0.9 978.9 9.50 x 4.75 No5-4 6.5 56.7 66.0 89.7 0.00030 2.288 92.911 No5-5 340 1151.6 2.8 59.5 0.5 0.9 1,036.4 91.8 9.50 x 4.75 0.00030 92.911 63.8 2.288 No.5-6 720 1151.6 6.0 65.5 59.7 0.5 1.0 1,151.6 95.5 10.00 x 5.00 0.00030 2.367 106.529 Total 4.410 No7-1 180 317.9 20 1.5 21.5 130.2 0.5 0.4 127.2 23.0 5.50 x 2.75 0.00035 1.716 23.366 27.6 No 7-2 317.9 1.3 159.0 6.00 x 3.00 0.00035 160 22.8 124.9 0.5 0.5 1.819 29.468 No7-3 620 317.9 5.2 28.0 108.2 0.5 0.8 254.3 38.2 7.00 x 3.50 0.00030 1.866 41.153 7.50 x 317.9 4.4 32.4 97.7 0.5 1.0 317.9 3.75 1.954 No7-4 530 43.1 0.00030 49.465 ,490 Total 860 343.9 20 7.2 27.2 103.2 4.50 x 2.25 0.00050 16.354 No8-1 110.4 320 343.9 2.7 103.3 172.0 24.7 5.50 x 2.75 0.00040 24.979 No8-2 29.9 0.5 0.5 1.835 No8-3 360 343.9 3.0 32.9 96.7 0.5 0.7 240.7 32.3 6.50 x 3.25 0.00034 1.891 35.954 343.9 0.5 1.0 343.9 7.00 x 3.50 42.502 No8-4 820 6.8 39.7 84.7 40.5 0.00032 1.928 Total 2,360 No9-1 520 316.9 30 4.3 34.3 93.9 0.5 0.65 206.0 26.9 5.50 x 2.75 0.00050 2.052 27.927 2.75 No9-2 370 316.9 3.1 37.4 88.4 0.5 0.7 221.8 27.2 5.50 x 0.00050 2.052 27.927 8.0 253.5 6.00 x 3.00 0.00050 No9-3 490 316.9 4.1 41.5 82.2 0.5 28.9 2.174 35.221 460 316.9 3.8 45.3 77.3 0.5 1.0 316.9 34.0 6.00 x 3.00 0.00050 2.174 35.221 No9-4 Total 1,840

Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City
Vol VI Sewerage and Drainage System Master Plan, Appendix

Table D.2 Flow Calculation Sheets for Improvement of Major Drainage Channels (1/3)

Table D.3 Flow Calculation Sheets for Improvement of Major Drainage Channels (2/3)

	L	Total A	ti	t2	т	I	С	ratio over total catchment	Α	Discharge	Dimensi	ion	Slope	Velocity	Flow Capacity
	(m)	(ha)	(min) inlet	(min) traveling	(min) total	(mm/h)			(ha)	(m3/s)			(-)	(m/s)	(m3/s)
1	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		1	I		
-	(1)	(2)	(0)	(1)	(0)	(0)	(//	(0)	(0)	(10)					
No10-1	300	273.9	20	2.5	22.5	126.1	0.6	0.2	54.8	11.5	4.00 x	2.00	0.00050	1.659	11.946
No10-2	300	273.9		2.5	25.0	117.1	0.6	0.4	109.6	21.4	5.00 x	2.50	0.00050	1.925	21.659
No10-3	290	273.9		2.4	27.4	109.9	0.6	0.5	137.0	25.1	5.50 x	2.75	0.00045	1.946	26.494
No10-4	240	273.9		2.0	29.4	104.6	0.6	0.6	164.3	28.6	6.00 x	3.00	0.00045	2.063	33.413
No10-5	500	273.9		4.2	33.6	95.2	0.6	1.0	273.9	43.5	7.00 x	3.50	0.00040	2.155	47.519
Total	1,630														
No11-1	580	779.2	25		29.8	103.6	0.6	0.5	389.6	67.3	8.50 x	4.25	0.00030	2.124	69.064
No11-2	910	779.2		7.6	37.4	88.4	0.6	0.7	545.4	80.4	9.00 x	4.50	0.00030	2.207	80.436
No11-3	700	779.2		5.8	43.2	79.9	0.6	0.8	623.4	83.0	9.50 x	4.75	0.00030	2.288	92.911
No11-4	1,230	779.2		10.3	53.5	68.8	0.6	1.0	779.2	89.3	9.50 x	4.75	0.00030	2.288	92.911
11 10 1	3,420	1001	20	0.0	00.0	1010	0.0	0.4	F1.0	100	0.50	4 75	0.00005	4.070	10.000
No12-1	360	128.1	20	3.0	23.0	124.2	0.6	0.4	51.2	10.6	3.50 x	1.75	0.00085	1.979	10.909
No12-2	400	128.1		3.3	26.3	113.1	0.6	0.6	76.9	14.5	4.00 x	2.00	0.00075	2.032	14.631
No12-3 No12-4	330 240	128.1 128.1		2.8	29.1 31.1	105.3 100.5	0.6 0.6	0.8 1.0	102.5 128.1	18.0 21.5	4.50 x 5.00 x	2.25	0.00065 0.00060	2.046 2.109	18.647 23.727
Total	1,330	120.1		2.0	31.1	100.5	0.0	1.0	120.1	21.0	3.00 X	2.50	0.00000	2.109	23.727
No14-1	510	466.1	30	4.3	34.3	93.9	0.6	0.4	186.4	29.2	5.50 x	2.75	0.00055	2.152	29.290
No14-1	510	466.1	30	4.3	38.6	86.4	0.6	0.4	233.1	33.6	6.00 x	3.00	0.00050	2.174	35.221
No14-3	320	466.1		2.7	41.3	82.4	0.6	0.6	279.7	38.4	6.50 x	3.25	0.00035	2.174	41.363
11011 0	1.340	100.1		2.7	11.0	02.1	0.0	0.0	270.7	00.1	0.00 X	0.20	0.00010	2.170	11.000
No13-1	360	466.1	20	3.0	23.0	124.2	0.6	0.2	93.2	19.3	5.00 x	2.50	0.00040	1.722	19.373
No13-2	560	466.1		4.7	27.7	109.0	0.6	0.3	116.5	21.2	5.50 x	2.75	0.00040	1.835	24.979
No13-3	480	466.1		4.0	31.7	99.2	0.6	0.3	139.8	23.1	5.50 x	2.75	0.00040	1.835	24.979
No13-4	400	466.1		3.3	44.6	78.1	0.6	1.0	466.1	60.7	8.00 x	4.00	0.00035	2.204	63.462
Total	1,800														
No15-1	470	698.1	30	3.9	33.9	94.7	0.6	0.4	279.2	44.1	7.00 x	3.50	0.00035	2.016	44.450
No15-2	640	698.1		5.3	39.2	85.5	0.6	0.5	349.1	49.7	8.00 x	4.00	0.00030	2.040	58.755
No15-3	730	698.1		6.1	45.3	77.3	0.6	0.6	418.9	54.0	8.00 x	4.00	0.00030	2.040	58.755
No15-4	1,350	698.1		11.3	56.6	66.1	0.6	0.7	488.7	53.8	8.00 x	4.00	0.00030	2.040	58.755
No15-5	1,180	698.1		9.8	66.4	59.1	0.6	0.9	628.3	61.9	8.50 x	4.25	0.00030	2.124	69.064
No15-6	370	698.1		3.1	69.5	57.3	0.6	1.0	698.1	66.7	8.50 x	4.25	0.00030	2.124	69.064
Total	4,740														
No16-1	630	801.3	20	5.3	25.3	116.2	0.6	0.2	160.3	31.0	6.00 x	3.00	0.00040	1.945	31.502
No16-2	690	801.3		5.8	31.1	100.5	0.6	0.4	320.5	53.7	8.00 x	4.00	0.00030	2.040	58.755
No16-3	1,040	801.3		8.7	39.8	84.6	0.6	0.6	480.8	67.8	8.50 x	4.25	0.00030	2.124	69.064
No16-4	1,500	801.3		12.5	52.3	69.9	0.6	0.8	641.0	74.7	9.00 x	4.50	0.00030	2.207	80.436
No16-5	510	801.3		4.3	56.6	66.1	0.6	1.0	801.3	88.3	9.50 x	4.75	0.00030	2.288	92.911
Total	4,370														

D-4

 Table D.4
 Flow Calculation Sheets for Improvement of Major Drainage Channels (3/3)

	L	Total A	ti	t2	Т	I	С	ratio over total catchment	Α	Discharge	Dimensio	on	Slope	Velocity	Flow Capacity
	(m)	(ha)	(min)	(min)	(min)	(mm/h)			(ha)	(m3/s)			(-)	(m/s)	(m3/s)
I	(1)	(2)	inlet (3)	traveling (4)	total (5)	(6)	(7)	(8)	(9)	(10)		1	1		1
	(1)	(2)	(3)	(4)	(3)	(0)	(1)	(6)	(9)	(10)					
No17-1	1,120	1433.1	30	9.3	39.3	85.3	0.6	0.3	429.9	61.1	8.00 x	4.00	0.00035	2.204	63.462
Total	1,120					00.0				• • • • • • • • • • • • • • • • • • • •	5.55 X		0.0000		3352
No18-1	900	1433.1	25	7.5	46.8	75.5	0.6	0.3	429.9	54.1	8.00 x	4.00	0.00028	1.971	56.762
No18-2	450	1433.1		3.8	50.6	71.5	0.6	0.4	573.2	68.3		4.50	0.00025	2.014	73.427
No18-3	1,660	1433.1		13.8	64.4	60.4	0.6	0.8	1,146.5	115.4		5.75	0.00020	2.122	126.265
No18-4	220	1433.1		1.8	66.2	59.2	0.6	1.0	1,433.1	141.4	12.00 x	6.00	0.00020	2.183	141.440
Total	3,230														
No19-1	360	230.2	20	3.0	23.0	124.2	0.4	0.3	69.1	9.5	3.50 x	1.75	0.00065	1.731	9.540
No19-2	410	230.2		3.4	26.4	112.8	0.4	0.4	92.1	11.5		2.00	0.00055	1.740	12.529
No19-3	400	230.2		3.3	29.7	103.8	0.4	8.0	184.2	21.2	5.00 x	2.50	0.00050	1.925	21.659
No19-4	150	230.2		1.3	31.0	100.8	0.4	1.0	230.2	25.8	5.50 x	2.75	0.00045	1.946	26.494
Total	1,320														
No20-1	540	620.8	30	4.5	34.5	93.5	0.4	0.2	124.2	12.9		2.00	0.00060	1.818	13.086
No20-2	640	620.8		5.3	39.8	84.6	0.4	0.6	372.5	35.0		3.25	0.00035	1.919	36.479
No20-3	810	620.8		6.8	46.6	75.8	0.4	1.0	620.8	52.3	7.50 x	3.75	0.00035	2.111	53.428
Total	1,990														
No21-1	1,040	759.9	30	8.7	38.7	86.3	0.4	0.3	228.0	21.9		2.50	0.00055	2.019	22.717
No21-2	670	759.9		5.6	44.3	78.5	0.4	0.4	266.0	23.2		2.75	0.00050	2.052	27.927
No21-3	960	759.9	30	8.0	38.0	87.4	0.4	0.2	152.0	14.8		2.25	0.00050	1.795	16.354
No21-4	330	759.9		2.8	40.8	83.1	0.4	0.3	228.0	21.0		2.50	0.00050	1.925	21.659
No21-5	1,180	759.9		9.8	54.1	68.2	0.4	0.8	607.9	46.1		3.50	0.00040	2.155	47.519
No21-6	300	759.9		2.5	56.6	66.1	0.4	1.0	759.9	55.8	7.50 x	3.75	0.00040	2.256	57.117
Total	4,480														
(No22-1)	2,800	1525.6	50	23.3	73.3	55.2	0.4	0.4	610.2	37.4		3.25	0.00045	2.176	41.363
No22-2	1,710	1525.6		14.3	87.6	48.7	0.4	0.5	686.5	37.1		3.25	0.00045	2.176	41.363
No22-3	1,830	1525.6		15.3	102.9	43.5	0.4	0.5	762.8	36.9		3.25	0.00045	2.176	41.363
No22-4	1,670	1525.6	30	13.9	43.9	79.0	0.4	0.3	457.7	40.2		3.25	0.00045	2.176	41.363
No22-4	550	1525.6		4.6	107.5	42.2	0.4	0.9	1,373.0	64.4		4.25	0.00035	2.294	74.598
No22-4	450	1525.6		3.8	111.3	41.2	0.4	1.0	1,525.6	69.8	8.50 x	4.25	0.00035	2.294	74.598
	9,010														

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

Table D.5 Flow Calculation Sheets for Improvement of Major Drainage Channels in CBD

	L	Total A	ti	t2	Т	I	С	ratio over total catchment	Α	Discharge	Dimension		Slope	Velocity	Flow Capacity
	(m)	(ha)	(min)	(min)	(min)	(mm/h)			(ha)	(m3/s)			(-)	(m/s)	(m3/s)
			inlet	traveling	total								1		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)					
G-1	295.2	14.2			7.5	272.1	8.0	1.0	14.2	8.6	2.20 x	2.20	0.00105	1.978	8.618
G-2	348.5	15.9			7.9	262.4	0.8	1.0	15.9	9.3	2.40 x	2.40	0.00095	1.994	10.338
G-3	386.9	18.6		3.2	8.2	255.6	8.0	1.0	18.6	10.6	2.60 x	2.60	0.00085	1.990	12.106
G-4	637.0	37.6		5.3	10.3	217.9	8.0	1.0	37.6	18.2	3.20 x	3.20	0.00065	1.998	18.417
G-5	889.3	41.8	5	7.4	12.4	191.4	0.8	1.0	41.8	17.8	3.20 x	3.20	0.00065	1.998	18.417
G-6	1,220.1	48.4	5	10.2	15.2	166.0	0.8	1.0	48.4	17.9	3.20 x	3.20	0.00065	1.998	18.417
G-7	984.1	19.9	5	8.2	13.2	183.2	0.8	1.0	19.9	8.1	2.20 x	2.20	0.00105	1.978	8.618
G-8	1,009.9	34.7	5	8.4	13.4	181.3	0.8	1.0	34.7	14.0	2.80 x	2.80	0.00080	2.028	14.311
G-9	1,164.2	29.0	5	9.7	14.7	169.9	8.0	1.0	29.0	10.9	2.60 x	2.60	0.00085	1.990	12.106
G-10	1,223.1	54.1	5	10.2	15.2	166.0	8.0	1.0	54.1	20.0	3.40 x	3.40	0.00060	1.999	20.799
G-11	1,134.2	40.4	5	9.5	14.5	171.5	8.0	1.0	40.4	15.4	3.00 x	3.00	0.00070	1.986	16.090
G-12	1,209.6	38.9	5	10.1	15.1	166.7	0.8	1.0	38.9	14.4	3.00 x	3.00	0.00070	1.986	16.090
G-13	1,033.5	75.0	5	8.6	13.6	179.4	0.8	1.0	75.0	29.9	4.40 x	4.40	0.00045	2.056	35.824
G-14	520.0	49.5	5	4.3	9.3	234.1	8.0	1.0	49.5	25.8	4.40 x	4.40	0.00045	2.056	35.824
G-15	632.3	37.5	5	5.3	10.3	217.9	0.8	1.0	37.5	18.2	3.20 x	3.20	0.00065	1.998	18.417
Total	12,688														

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

Average velocity: 2.0m/s(assumption)

Table D.6 Flow Calculation Sheets for Storage Pipe (Inlet to Pumping Station) in CBD (1/2)

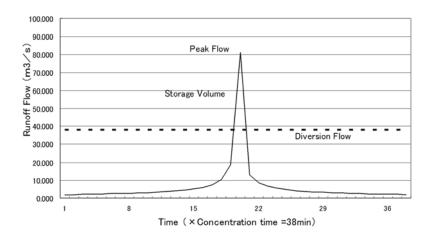
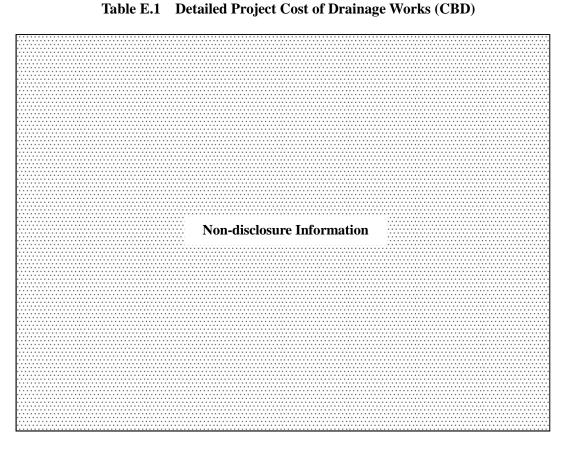

		Drai Dist	nage rict	Trea Dist	tment trict	R	ainfall	Intensity	7	Run Coeff	off icient	Inle	Time									Un	it sewage Design Flow per ha
						L	I=1, 11	5/(e ^{0.7})			0. 80			5									(Hourly Maximum (m3/sec·ha
		ÁZ	93.	A	erted rea	Ler	ngth				De	sign Flow					Desi	gn Serre	r				
Pipe No.	Inlet Pipe	- 0			×C)			Concentr ation Time	Rweeff Coeffici		Stormwater	Snitary Others		Total	Section	Slope	Velocity	Flow		t Level	G.L.	Earth Cover	Remarks
	'	Each	Total	Each	Total	Each	Total		(C)	Per ha	Flow	Serage							Start	End	Start End	Start End	
		ha	ha	ha	ha	-		min		m3/sec	m3/sec	m3/sec	m3/sec	m3/sec	m	%	m/sec	m3/sec			-	-	Gate Pump:200m3/min
G-1		14. 20	14.20	11. 36	11.36	295	298	7.8	0. 80	0.6047	8.587			0.00	2,200 × 2,200	1.08	1.978	8. 616					= 3.30 m3/s
		14.20	14.20	0.00		236		9.5							O 3,000	1.00	1	14. 195					
B-1 to B-2			14.20	0.00	11.00	200	001	9.0	0.00	0.0120	1,210			1.210	0 3,000	1.00	2.000	14. 190					
G-2		15.90	15.90	12. 72	12.72	349	349	7.9	0.80	0.5831	9.271			9.271	□ 2,400 × 2,400	0.98	1.994	10.337					
B-2	B-1		30.10	0.00	24.08	384		12.7	0.80	0.4182	12.588			12.888	O 3,000	1.00	2.008	14. 195					
to B-3																							
G-3		18.60	18.60	14.88	14.88	387	387	8.2	0.80	0.5681	10.567			10.567	2,600 × 2,600	0.88	1.990	12. 107					
B-3	B-2		48.70	0.00	38.96	468	1383	16.4	0.80	0.3497	17.030			17.030	O 3, 250	1.00	2.118	17. 571					
to B⊸4																					_		
G-4		37. 60	37.60	30.08	30.08	637	637	10.3	0.80	0.4843	18.210			18.210	3,200 × 3,200	0.68	1.998	18. 414			<u> </u>	_	Gate Pump 6.80 ha
B-4 to B-5	B-3		79.50	0.00	63.64	425	1808	19.4	0.80	0.3111	24.732			24.732	O 3, 750	1.00	2.330	25, 735			_		Cut off 6.80 ha
to 8-0														_			_			_	<u> </u>	_	Gate Pump
G-5		41.80	41.80	33, 44	33.44	889	889	12.4	0.80	0.4253	17, 778			17, 778	3, 200 × 3, 200	0.68	1.998	18, 414		-	-	-	7, 80 ha
B-5 to B-6	B-4		113.50	0.00	90.88	332	2140	21.7	0.80	0.2877	32, 654			32, 654	O 4, 250	0.90	2.403	34, 089			-		7, 80 ha
														-			-		_	-	-	-	Gate Pump
G-6	_	48.40	48.40	38, 72	38.72	1220	1220	15.2	0.80	0.3688	17.850			17.850	3,200 × 3,200	0.68	1.998	18. 414		-	-	-	8,90 ha
B-6 to B-7	B-5	-	153.00	0.00	122.50	356	2496	24.1	0.80	0.2673	40.897			40.897	O 4, 750	0.80	2.440	43, 239		-	-	-	8. 90 ha
						_															-		Gate Pump
G-7		19.90	19.90	15.92	15.92	984		13.3	0.80						2, 200 × 2, 200	1.08	1.978		-	-	\vdash	-	8. 10 ha Out off
B-7 to B-8	B-6		164.80	0.00	131.92	265	2761	25.9	0.80	0.2541	41.876			41.876	O 4, 750	0.80	2.440	43, 239			\vdash		8. 10 ha
		34, 70		27. 76	27.76																\vdash		
G-8 B-8	B-7	34. 70	34.70 199.50	0, 00	159, 68	1010	1010 3057	13.3 27.9						14.050	2,800 × 2,800	0.80	2,525	49, 578			\vdash		
to B-9	B-1		199.00	0.00	109.00	250	3007	21.8	0.00	0.2412	40.115			40.113	0 8,000	0.00	2.020	48,070					
G-9		29.00	29.00	23, 20	23.20	1164	1164	14.8	0. 80	0.3787	10.898			10, 898	2,600 × 2,600	0.88	1.990	12. 107					
B-9	B-8		228.50	0.00				29.7							O 5, 250	0.80		56. 458					
to B-10																							
G-10		54. 10	54.10	43. 28	43.28	1223	1223	15.2	0.80	0.3688	19.952			19.952	3,400 × 3,400	0.60	1.999	20. 798					Gate Pump 8,90 ha
B-10	B-9		273.70	0.00	219.06	304	3649	31.6	0.80	0.2210	60.488			60.488	O 5, 500	0.80	2.690	63, 909					Out off 8,90 ha
to B-11																				_	<u> </u>	_	
G-11		40. 40	40.40	32, 32	32, 32	1134	1134	14. 5	0, 80	0.3812	15, 400			15.400	3,000 × 3,000	0.70	1.986	16, 087			_		Gate Pump 8,70 ha
B-11 to B-12	B-10		305.40	0.00	244.38	294	3943	33.4	0.80	0.2126	64, 928			64, 928	O 5, 750	0.80	2.771	71. 955		_	_		Cut off 8.70 ha
₩ B-12																					-		
G-12		38, 90	38.90				1210	15.2	0.80	0.3688	14.346			14.346	3,000 × 3,000			16.087		-			
B-12 to B-13	B-11		344.30	0.00	275.50	293	4236	35.2	0.80	0.2049	70, 547			70,847	O 5, 750	0.80	2,771	71, 955					
6-10				40.00	40.00						20.00												
G=13 B=13	B=12	75.00	75.00 419.30	0.00	335.50	1034		13. 4 38. 0	0. 80		30.210 81.428				4,400 × 4,400	0.48		35. 824 89. 892					Area storaged by Pipe 223.63 ha
to Pump	ing St.		419.30	0.00	335.50	800	4736	38.0	0.80	0.1942	51.428			81.428	O 6, 250	0.80	2.930	89. 892					223. 83 ha
Pumping	St.						1				-/			38.00									
						4,441				r storage	ı				is 68,000m3.								

Table D.7 Flow Calculation Sheets for Storage Pipe (Inlet to Pumping Station) in CBD (2/2)

■Capacity calculation of Storage Pipe (Considering Gate Pump Capacity)


5 Return Period-year			Who	le CBD	Point
Concentration time 38.00 min			31.42143 m3/s	=	4,885 m3/min
Time Mesh 38.00 min	Drainage A	Area	419. 300 ha		
Downstream Flow Capacity 38.00 m3/s(Coapacit					
Runoff Coefficient 0.8	Required Storage Vol	lume	65, 733 m3	<	68, 000 m3

2												
Time					hyoto		hyeto on	central	hydro		Divorcio	Storago
	NO.		Time			Order						
1 38 0 00 38 00 87 38 87 38 38 2 07 2 07 1 932 38 000 0 000 0 0 0 0 0 0 0 0 0 16 00 0 16 00 53 79 20 20 36 2 15 2 15 2 008 38 000 0 000 0 0 0 0 0 0 0 0 0 0 0 0						or der						
2	1	38 0	- (,			38						0.00
3 114, 0 01:54:00 40:50 13:92 34 2.24 2.24 2.091 38:000 0.000 0.0 0 0 15:10:00 28:32 0 33:11 0.95 32 2.34 2.34 2.183 38:000 0.000 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	- '											0.00
4 152 0 02:32:00 33:11 10.95 32 2.34 2.45 2.286 38:000 0.000 0.0 5 190 0 03:10:00 28:32 9:17 30 2.45 2.45 2.286 38:000 0.000 0.0 7 266 0 04:26:00 22:38 7.98 26 2.72 2.72 2.72 2.531 38:000 0.000 0.0 8 304 0 05:04:00 20:38 6.40 24 2.88 2.88 2.88 2.80 38:000 0.000 0.0 9 342 0 05:42:00 18:77 5.86 22 3.06 3.06 2.852 38:000 0.000 0.0 10 380 0 06:20:00 17.44 5.42 20 3.28 3.28 3.28 3.054 38:000 0.000 0.0 11 418 0 06:58:00 16:31 5.06 18 3.54 3.54 3.295 38:000 0.000 0.0 12 456 0 07:36:00 15:35 4.74 16 3.85 3.85 3.85 3.587 38:000 0.000 0.0 13 494 0 08:14:00 14:51 4.48 14 4.24 4.24 4.24 3.951 38:000 0.000 0.0 14 532 0 08:52:00 13:78 4.24 12 4.74 4.74 4.421 38:000 0.000 0.0 15 570 0 09:30:00 13:13 4.03 10 5.42 5.42 5.055 38:000 0.000 0.0 16 608 0 10:08:00 12:55 3.85 8.6 6.40 6.40 5.966 38:000 0.000 0.0 18 684 0 11:24:00 11:55 3.54 4.4 10.95 10.95 10.204 38:000 0.000 0.0 19 722 0 12:02:00 11:12 3.40 2.20 2.02 2.02 2.02 2.02 38:000 0.000 0.0 22 386 0 13:18:00 10:03 3.68 6 7.96 7.96 7.96 38:000 0.000 0.0 18 684 0 11:24:00 11:55 3.54 4 10.95 10.95 10.204 38:000 0.000 0.0 19 722 0 12:02:00 11:12 3.40 2.20 2.												0.00
S												0.00
6 228.0 03:48:00 24.93 7.96 28 2.58 2.58 2.401 38.000 0.000 0.00 0.0 7 266.0 04:26:00 22:38 7.08 26 2.72 2.72 2.531 38.000 0.000 0.0 0.0 0.0 9.342.0 05:42:00 23.8 6.40 24 2.88 2.88 2.88 2.86 2.80 38.000 0.000 0.0 0.0 9.342.0 05:42:00 18.77 5.86 22 3.06 3.06 3.06 2.852 38.000 0.000 0.0 0.0 10 380.0 06:20:00 17.44 5.42 20 3.28 3.28 3.28 3.054 38.000 0.000 0.0 0.0 11 418.0 06:58:00 16.31 5.06 18 3.54 3.54 3.54 3.295 38.000 0.000 0.0 0.0 12 456.0 07:36:00 15.35 4.74 116 3.85 3.85 3.85 3.857 38.000 0.000 0.0 0.0 13 494.0 08:14:00 14.51 4.48 14 4.24 4.24 3.951 38.000 0.000 0.0 0.0 15 570.0 09:30:00 13.78 4.24 12 4.74 4.74 4.74 4.421 3.951 38.000 0.000 0.0 0.0 15 570.0 09:30:00 13.13 4.03 110 5.42 5.42 5.055 38.000 0.000 0.0 0.0 16 608.0 10:08:00 12.55 3.85 86 6.40 6.40 5.966 38.000 0.000 0.0 0.0 17 646.0 10:08:00 12.55 3.85 86 6.40 6.40 5.966 38.000 0.000 0.0 0.0 19 722.0 12:02:00 11.155 3.54 4 10.95 10.95 10.204 38.000 0.000 0.0 0.0 19 722.0 12:02:00 11.155 3.54 4 10.95 10.95 10.204 38.000 0.000 0.0 0.0 19 722.0 12:02:00 11.152 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334 4 20 760.0 12:40:00 10.73 3.28 1 8.73 8 87.38 81.421 38.000 0.000 0.0 0.2 28 836.0 13:56:00 10.04 3.06 5 9.17 9.17 9.17 8.544 38.000 0.000 0.0 0.2 28 836.0 13:56:00 10.04 3.06 5 9.17 9.17 9.17 8.544 38.000 0.000 0.0 0.0 22 836.0 13:56:00 10.04 3.06 5 9.17 9.17 9.17 8.544 38.000 0.000 0.0 0.0 22 836.0 13:56:00 10.74:00 9.18 2.79 11 5.06 5.06 5.06 4.712 38.000 0.000 0.0 0.0 22 81.064 0.74:40 0.97 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.0 0.0 22 18.70 0.15:50:00 9.18 2.79 11 5.06 5.06 5.06 4.712 38.000 0.000 0.0 0.0 22 18.70 0.15:50:00 9.18 2.79 11 5.06 5.06 5.06 4.712 38.000 0.000 0.0 0.0 22 11.02 0.0 15:50:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.0 0.0 0.0 22 11.02 0.0 15:20:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.0 0.0 0.0 31 1.178.0 19:38:00 7.70 0.70 0.70 38.000 0.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5			28. 32		30						0.00
B 304 0 05:04:00 20 38 6.40 24 2.88 2.88 2.680 38.000 0.000 0.0 9 342.0 05:42:00 18.77 5.86 22 3.06 3.06 2.852 38.000 0.000 0.0 10 380.0 06:20:00 17.44 5.42 20 3.28 3.28 3.54 38.000 0.000 0.0 11 418.0 06:58:00 16.31 5.06 18 3.54 3.54 3.295 38.000 0.000 0.0 12 456.0 07:36:00 15.35 4.74 16 3.85 3.85 3.85 3.80 38.00 0.000 0.0 13 494.0 08:14:00 14.51 4.48 14 4.24 4.24 3.951 38.000 0.000 0.0 14 532.0 08:52:00 13.78 4.24 12 4.74 4.74 4.421 38.000 0.000 0.0 15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.0 16 608.0 10:08:00 12.55 3.85 8 6.40 6.40 5.966 38.000 0.000 0.0 17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.0 18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.0 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334 4.20 760.0 12:03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.0 22 836.0 13:56:00 10.37 3.17 3 13.92 13.92 12.966 38.000 0.000 34.334 4.20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 0.000 34.314 39.2 22.836 38.000 38.000 38.000 38.000 38.000 39.	6	228. 0	03:48:00	24. 93	7. 96	28	2. 58	2. 58	2. 401	38.000	0.000	0.00
9 342.0 05:42:00 18.77 5.86 22 3.06 3.06 2.852 38.000 0.000 0.0 10 380.0 06:20:00 17.44 5.42 20 3.28 3.28 3.28 3.054 38.000 0.000 0.0 0.0 11 418.0 06:58:00 16.31 5.06 18 3.54 3.54 3.28 3.054 38.000 0.000 0.0 0.0 12 456.0 07:36:00 15:35 4.74 16 3.85 3.85 3.85 3.857 38.000 0.000 0.0 0.0 13 494.0 08:14:00 14.51 4.48 14 4.24 4.24 3.951 38.000 0.000 0.0 0.0 14 532 0.0 38:52:00 13.78 4.24 12 4.74 4.74 4.421 38.000 0.000 0.0 0.0 15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.0 0.0 16 608.0 10:08:00 12.55 3.85 86 6.40 6.40 5.966 38.000 0.000 0.0 0.0 17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.00 18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.00 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334 4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 87.38 81.421 38.000 0.000 34.334 4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 87.38 81.421 38.000 0.000 0.0 0.2 3 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.0 0.0 23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 22 8874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 22 8874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 27 1,026.0 17.06:00 8.79 2.51 19 3.40 3.40 3.40 3.40 3.40 3.40 3.40 3.40	7	266. 0	04:26:00	22. 38	7. 08	26	2. 72	2. 72	2. 531	38.000	0.000	0.00
10	8	304.0		20. 38			2. 88	2. 88		38.000	0.000	0.00
11 418.0 06:58:00 16.31 5.06 18 3.54 3.54 3.295 38.000 0.000 0.0 12 456.0 07:36:00 15.35 4.74 16 3.85 3.85 3.85 38.000 0.000 0.00 0.00 13 494.0 08:14:00 14.51 4.48 14 4.24 4.24 3.951 38.000 0.000 0.00 14 532.0 08:52:00 13.78 4.24 12 4.74 4.74 4.421 38.000 0.000 0.00 15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.0 16 608.0 10:08:00 12.55 3.85 8 6.40 6.40 5.965 38.000 0.000 0.0 17 646.0 10:46:00 11.55 3.54 4 10.95 10.94 38.000 0.000 0.0 18 <td></td> <td></td> <td></td> <td></td> <td>5. 86</td> <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td>					5. 86	22						0.00
12 456.0 07:36:00 15.35 4.74 16 3.85 3.85 3.587 38.000 0.000 0.00 13 494.0 08:14:00 14.51 4.48 14 4.24 4.24 3.951 38.000 0.000 0.00 0.00 14 532.0 08:52:00 13.78 4.24 12 4.74 4.74 4.421 38.000 0.000 0.00 15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.00 16 608.0 10:08:00 12.55 3.85 8 6.40 6.40 5.966 38.000 0.000 0.00 17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.00 18 684.0 11:24:00 11.55 3.54 4 10.95 10.94 38.000 0.000 0.00 19												0.00
13 494.0 08:14:00 14.51 4.48 14 4.24 4.24 3.951 38.000 0.000 0.0 14 532.0 08:52:00 13.78 4.24 12 4.74 4.74 4.421 38.000 0.000 0.00 15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.0 16 608.0 10:08:00 12.55 3.85 8 6.40 6.40 5.966 38.000 0.000 0.0 17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.0 18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.0 0.0 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.20 38.000 0.000 34.33 4												0.00
14 532.0 08:52:00 13.78 4.24 12 4.74 4.74 4.421 38.000 0.000 0.00 15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.0 16 608.0 10:08:00 12.55 3.85 8 6.40 6.40 5.966 38.000 0.000 0.00 17 646.0 10:46:00 12.03 3.68 6 7.96 7.419 38.000 0.000 0.0 18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.00 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334.4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 0.000 34.334.4 21												0.00
15 570.0 09:30:00 13.13 4.03 10 5.42 5.42 5.055 38.000 0.000 0.00 16 608.0 10:08:00 12.55 3.85 8 6.40 6.40 5.966 38.000 0.000 0.00 17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.00 18 684.0 11:24:00 11.55 3.54 4 4 10.95 10.95 10.204 38.000 0.000 0.00 19 722.0 12:02:00 11.12 3.40 2 20.20 10.820 38.000 0.000 34.334 4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 0.000 34.334.4 20 760.0 12:40:00 10.37 3.17 3 13.92 13.92 12.966 38.000 0.000 0.00												
16 608.0 10:08:00 12:55 3.85 8 6.40 6.40 5.966 38.000 0.000 0.00 17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.0 18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.00 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334.4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 43.421 31.398.2 21 798.0 13:18:00 10.37 3.17 3 13.92 13.92 12.966 38.000 43.421 31.398.2 21 798.0 13:56:00 10.04 3.06 5 9.17 9.17 8.544 38.000 0.000 0.0												0.00
17 646.0 10:46:00 12.03 3.68 6 7.96 7.96 7.419 38.000 0.000 0.0 18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.00 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334.4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 0.000 34.334.4 21 798.0 13:18:00 10.37 3.17 3 13.92 12.966 38.000 0.000 0.00 22 836.0 13:56:00 10.04 3.06 5 9.17 9.17 8.544 38.000 0.000 0.0 23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.0 24												
18 684.0 11:24:00 11.55 3.54 4 10.95 10.95 10.204 38.000 0.000 0.00 19 722.0 12:02:00 11.12 3.40 2 20.20 20.20 18.820 38.000 0.000 34.334.4 20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 43.421 31.398.2 21 798.0 13:18:00 10.37 3.17 3 13.92 12.966 38.000 0.000 0.00 22 836.0 13:56:00 10.04 3.06 5 9.17 9.17 8.544 38.000 0.000 0.00 23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 24 912.0 15:12:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.0 25												
19 722. 0 12:02:00 11. 12 3. 40 2 20. 20 20. 20 18. 820 38. 000 0. 000 34. 334. 4 20 760. 0 12:40:00 10. 73 3. 28 1 87. 38 87. 38 81. 421 38. 000 43. 421 31. 398. 2 21 798. 0 13:18:00 10. 37 3. 17 3 13. 92 12. 966 38. 000 0. 000 0. 00 22 836. 0 13:56:00 10. 04 3.06 5 9. 17 9. 17 8. 544 38. 000 0. 000 0. 0 23 874. 0 14:34:00 9. 73 2. 97 7 7. 08 6. 597 38. 000 0. 000 0. 00 24 912. 0 15:12:00 9. 45 2. 88 9 5. 86 5. 465 38. 000 0. 000 0. 00 25 950. 0 15:50:00 9. 18 2. 79 11 5. 06 5. 06 4. 712 38. 000 0. 000 0. 00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
20 760.0 12:40:00 10.73 3.28 1 87.38 87.38 81.421 38.000 43.421 31.398.2 21 798.0 13:18:00 10.37 3.17 3 13.92 12.966 38.000 0.000 0.00 22 836.0 13:56:00 10.04 3.06 5 9.17 9.17 8.544 38.000 0.000 0.00 23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 24 912.0 15:12:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.00 25 950.0 15:50:00 9.18 2.79 11 5.06 5.06 4.712 38.000 0.000 0.00 26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.0 27 1,												
21 798.0 13:18:00 10.37 3.17 3 13.92 13.92 12.966 38.000 0.000 0.00 22 836.0 13:56:00 10.04 3.06 5 9.17 9.17 8.544 38.000 0.000 0.00 23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 24 912.0 15:12:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.00 25 950.0 15:50:00 9.18 2.79 11 5.06 5.06 4.712 38.000 0.000 0.00 26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.00 27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.00 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3												
22 836.0 13:56:00 10.04 3.06 5 9.17 9.17 8.544 38.000 0.000 0.00 23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 24 912.0 15:12:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.00 25 950.0 15:50:00 9.18 2.79 11 5.06 5.06 4.712 38.000 0.000 0.00 26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.0 27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.0 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3.433 38.000 0.000 0.0 29 1,102.0 18:22:00 8.27 2.51 19 3.40 3.40 3.169												,
23 874.0 14:34:00 9.73 2.97 7 7.08 7.08 6.597 38.000 0.000 0.00 24 912.0 15:12:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.00 25 950.0 15:50:00 9.18 2.79 11 5.06 5.06 4.712 38.000 0.000 0.00 26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.00 27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.00 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3.433 38.000 0.000 0.0 29 1,102.0 18:22:00 8.27 2.51 19 3.40 3.40 3.169 38.000 0.000 0.00 30 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						3						
24 912.0 15:12:00 9.45 2.88 9 5.86 5.86 5.465 38.000 0.000 0.00 25 950.0 15:50:00 9.18 2.79 11 5.06 5.06 4.712 38.000 0.000 0.00 26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.00 27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.00 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3.433 38.000 0.000 0.0 29 1,102.0 18:22:00 8.27 2.51 19 3.40 3.40 3.169 38.000 0.000 0.0 30 1,140.0 19:00:00 8.08 2.45 21 3.17 3.17 2.949 38.000 0.000 0.0 31<												
25 950.0 15:50:00 9.18 2.79 11 5.06 5.06 4.712 38.000 0.000 0.00 26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.00 27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.0 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3.433 38.000 0.000 0.0 29 1,102.0 18:22:00 8.27 2.51 19 3.40 3.40 3.169 38.000 0.000 0.0 30 1,140.0 19:00:00 8.08 2.45 21 3.17 3.17 2.949 38.000 0.000 0.0 31 1,178.0 19:38:00 7.90 2.40 23 2.97 2.97 2.763 38.000 0.000 0.0 32	23											
26 988.0 16:28:00 8.93 2.72 13 4.48 4.48 4.170 38.000 0.000 0.00 27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.00 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3.433 38.000 0.000 0.0 29 1,102.0 18:22:00 8.27 2.51 19 3.40 3.40 3.169 38.000 0.000 0.0 30 1,140.0 19:00:00 8.08 2.45 21 3.17 3.17 2.949 38.000 0.000 0.0 31 1,778.0 19:38:00 7.90 2.40 23 2.97 2.97 2.763 38.000 0.000 0.0 32 1,216.0 20:16:00 7.72 2.34 25 2.79 2.79 2.603 38.000 0.000 0.0												
27 1,026.0 17:06:00 8.70 2.64 15 4.03 4.03 3.758 38.000 0.000 0.00 28 1,064.0 17:44:00 8.48 2.58 17 3.68 3.68 3.433 38.000 0.000 0.00 29 1,102.0 18:22:00 8.27 2.51 19 3.40 3.40 3.169 38.000 0.000 0.0 30 1,140.0 19:00:00 8.08 2.45 21 3.17 3.17 2.949 38.000 0.000 0.0 31 1,78.0 19:38:00 7.90 2.40 23 2.97 2.97 2.763 38.000 0.000 0.0 32 1,216.0 20:16:00 7.72 2.34 25 2.79 2.79 2.603 38.000 0.000 0.0 33 1,254.0 20:54:00 7.56 2.29 27 2.64 2.64 2.64 38.000 0.000 0.0 34 1,292.0 21:32:00 7.40 2.24 29 2.51 2.51 <					2. 79							
28 1, 064.0 17:44:00 8. 48 2. 58 17 3. 68 3. 68 3. 433 38. 000 0. 000 0. 000 0. 00 29 1, 102.0 18:22:00 8. 27 2. 51 19 3. 40 3. 40 3. 169 38. 000 0. 000 0. 00 30 1, 140.0 19:00:00 8. 08 2. 45 21 3. 17 2. 949 38. 000 0. 000 0. 00 31 1, 178.0 19:38:00 7. 90 2. 40 23 2. 97 2. 97 2. 763 38. 000 0. 000 0. 00 32 1, 216.0 20:16:00 7. 72 2. 34 25 2. 79 2. 79 2. 603 38. 000 0. 000 0. 00 33 1, 254.0 20:54:00 7. 56 2. 29 27 2. 64 2. 64 2. 64 38. 000 0. 000 0. 00 34 1, 292.0 21:32:00 7. 40 2. 24 29 2.51 2. 51 2. 341 38. 000 0. 000 0. 00 35 1, 330.0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38. 000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
29 1, 102.0 18:22:00 8. 27 2. 51 19 3. 40 3. 40 3. 169 38. 000 0. 000 0. 00 30 1, 140.0 19:00:00 8. 08 2. 45 21 3. 17 3. 17 2. 949 38. 000 0. 000 0. 00 31 1, 178.0 19:38:00 7. 90 2. 40 23 2. 97 2. 97 2. 763 38. 000 0. 000 0. 00 32 1, 216.0 20:16:00 7. 72 2. 34 25 2. 79 2. 79 2. 603 38. 000 0. 000 0. 00 33 1, 254.0 20:54:00 7. 56 2. 29 27 2. 64 2. 64 2. 464 38. 000 0. 000 0. 00 34 1, 292.0 21:32:00 7. 40 2. 24 29 2. 51 2. 51 2. 341 38. 000 0. 000 0. 00 35 1, 330.0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38. 000 0. 000 0. 00 36 1, 368.0 22:48:00 7. 11 2.					2.58							
30 1, 140.0 19:00:00 8.08 2.45 21 3.17 3.17 2.949 38.000 0.000 0.00 31 1, 178.0 19:38:00 7.90 2.40 23 2.97 2.97 2.763 38.000 0.000 0.00 32 1, 216.0 20:16:00 7.72 2.34 25 2.79 2.79 2.603 38.000 0.000 0.0 33 1, 254.0 20:54:00 7.56 2.29 27 2.64 2.64 2.464 38.000 0.000 0.0 34 1, 292.0 21:32:00 7.40 2.24 29 2.51 2.51 2.341 38.000 0.000 0.00 35 1, 330.0 22:10:00 7.25 2.20 31 2.40 2.40 2.233 38.000 0.000 0.00 36 1, 368.0 22:48:00 7.11 2.15 33 2.29 2.29 2.136 38.000 0.000 0.00 37 1, 406.0 23:26:00 6.98 2.11 35 2.20 2.20			18:22:00		2.51							0.00
31 1, 178.0 19:38:00 7. 90 2. 40 23 2. 97 2. 97 2. 763 38.000 0.000 0.00 32 1, 216.0 20:16:00 7. 72 2. 34 25 2. 79 2. 79 2. 603 38.000 0.000 0.00 33 1, 254.0 20:54:00 7. 56 2. 29 27 2. 64 2. 64 2. 464 38.000 0.000 0.00 34 1, 292.0 21:32:00 7. 40 2. 24 29 2. 51 2. 51 2. 341 38.000 0.000 0.00 35 1, 330.0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38.000 0.000 0.00 36 1, 368.0 22:48:00 7. 11 2. 15 33 2. 29 2. 29 2. 136 38.000 0.000 0.00 37 1, 406.0 23:26:00 6. 98 2. 11 35 2. 20 2. 20 2. 048 38.000 0.000 0.00		.,										0.00
32 1, 216.0 20:16:00 7. 72 2. 34 25 2. 79 2. 79 2. 603 38.000 0.000 0.00 33 1, 254.0 20:54:00 7. 56 2. 29 27 2. 64 2. 64 2. 464 38.000 0.000 0.00 34 1, 292.0 21:32:00 7. 40 2. 24 29 2. 51 2. 51 2. 341 38.000 0.000 0.00 35 1, 330.0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38.000 0.000 0.00 36 1, 368.0 22:48:00 7. 11 2. 15 33 2. 29 2. 29 2. 136 38.000 0.000 0.00 37 1, 406.0 23:26:00 6. 98 2. 11 35 2. 20 2. 20 2. 048 38.000 0.000 0.00		. ,										0.00
33 1, 254.0 20:54:00 7. 56 2. 29 27 2. 64 2. 64 2. 464 38.000 0.000 0.00 34 1, 292.0 21:32:00 7. 40 2. 24 29 2. 51 2. 51 2. 341 38.000 0.000 0.00 35 1, 330.0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38.000 0.000 0.00 36 1, 368.0 22:48:00 7. 11 2. 15 33 2. 29 2. 29 2. 136 38.000 0.000 0.00 37 1, 406.0 23:26:00 6. 98 2. 11 35 2. 20 2. 20 2. 048 38.000 0.000 0.00												0.00
34 1, 292.0 21:32:00 7. 40 2. 24 29 2. 51 2. 51 2. 341 38.000 0.000 0.00 35 1, 330.0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38.000 0.000 0.00 36 1, 368.0 22:48:00 7. 11 2. 15 33 2. 29 2. 29 2. 136 38.000 0.000 0.00 37 1, 406.0 23:26:00 6. 98 2. 11 35 2. 20 2. 20 2. 048 38.000 0.000 0.00			20:54:00									0.00
35 1, 330. 0 22:10:00 7. 25 2. 20 31 2. 40 2. 40 2. 233 38. 000 0. 000 0. 0 36 1, 368. 0 22:48:00 7. 11 2. 15 33 2. 29 2. 29 2. 136 38. 000 0. 000 0. 0 37 1, 406. 0 23:26:00 6. 98 2. 11 35 2. 20 2. 20 2. 048 38. 000 0. 000 0. 0												0.00
36 1, 368. 0 22:48:00 7. 11 2. 15 33 2. 29 2. 29 2. 136 38. 000 0. 000 0. 0 37 1, 406. 0 23:26:00 6. 98 2. 11 35 2. 20 2. 20 2. 048 38. 000 0. 000 0. 0	35					31					0.000	0.00
	36	1, 368. 0	22:48:00	7. 11			2. 29	2. 29	2. 136	38.000	0.000	0.00
		1, 406. 0	23:26:00	6. 98		35				38.000		0.00
	38	1, 444. 0	00:04:00		2. 07	37	2. 11	2. 11	1.969	38.000	0.000	0.00

E. COST ESTIMATION OF DRAINAGE WORKS

The project cost and the detailed operation and maintenance cost regarding drainage works are shown in the following pages.

Table E.2 Summary of Project Cost of Drainage Works

Non-disclosure Information

Table E.4 Operation and Maintenance Cost of Drainage Works

Unit: USD/year

	ii. ODD/year
Items	Total
Salary	276,408
Electricity	2,380,572
Maintenance(Spare parts)	5,151,560
Other cost	156,171
Total	7,964,711
Total (Except for electricity)	

Unit: Mil. JPY/year

Items	Total
Salary	23.4
Electricity	201.5
Maintenance(Spare parts)	436.0
Other cost	13.2
Total	674.1
Total (Except for electricity)	459.4

F. WASTEWATER GENERATION BY TOWNSHIPS AND SEWERAGE ZONES

Code	Township	Wastewater							Seweraş	ge Zone							Out of S.Z.
Code	Township	wastewater	CI	C2	W1	W2	W3	W4	N1	N2	N3	E1	E2	E3	E4	S1	Out of B.Z.
1	Latha	11,975			11,975												l
2	Lanmadaw	15,688			15,688												l
3	Pabedan	13,127	13,127														l
4	Kyauktada	12,268	12,268														l
5	Botahtaung	18,958	18,958														l
6	Pazundaung	19,922	19,922														
7	Ahlone	26,127			26,127												
8	Kyee Myin Daing	44,210			44,210		0										<u> </u>
9	Sanchaung	38,458			38,458												<u> </u>
10	Dagon	20,803			20,803												<u> </u>
11	Bahan	44,235		36,045	8,190												
12	Tarmwe	70,695		70,695	, i												
13	Mingalar Taung Nyunt	59,702		59,702	, and the second												
14	Seikkan	971															971
15	Dawbon	27,025												27,025			<u> </u>
16	Kamaryut	33,815			3,763	30,052											1
17	Hlaing	47,287				47,287											1
18	Yankin	46,750		46,750													1
19	Thingangy un	93,297		93,297													1
20	M ay angone	111,963		72,303		39,660											1
21	Insein	129,633							129,633								1
22	Mingalardon	294,693								294,693							1
23	North Okkalapa	167,617										167,617					1
24	South Okkalapa	73,755		73,755													1
25	Thaketa	82,670												82,670			1
26	Dala	127,409														127,409	1
27	Seikgy ikhanaungto	14,512					14,512										1
28	Shwe Pyi Thar	100,416									100,416						1
29	Hlaing Thary ar	191,809						191,809									
30	North Dagon	65,335										65,335					
31	South Dagon	134,154												134,154			
32	East Dagon	269,207											269,207				
33	Dagon Seikkan	77,827													77,827		
YCDC S	Sub-total	2,486,312	64,275	452,548	169,214	116,999	14,512	191,809	129,633	294,693	100,416	232,952	269,207	243,849	77,827	127,409	971
34	Kyauktan	19,949															19,949
35	Thanlyin	161,690															161,690
36	Hlaegu	69,381															69,381
37	Hmawbi	71,712															71,712
38	Htantapin	51,632															51,632
39	Twantay	43,014															43,014
Out of Y	CDC Sub-total	417,378	0	0	0	0	0	0	0	0	0	0	0	0	0	0	417,378
Total		2,903,690	64,275	452,548	169,214	116,999	14,512	191,809	129,633	294,693	100,416	232,952	269,207	243,849	77,827	127,409	418,349

Code	aximum Wastewater (m³/day) Township	Wastewater	,						Sewerage Zone								Out of S.Z.
Code	Township	Wastewater	CI	C2	W1	W2	W3	W4	N1	N2	N3	E1	E2	E3	E4	S1	Out of S.Z.
1	Latha	13,113			13,113												
2	Lanmadaw	17,126			17,126												
3	Pabedan	14,379	14,379														
4	Ky aukt ada	13,428	13,428														
5	Botahtaung	20,596	20,596														
6	Pazundaung	21,810	21,810														
7	Ahlone	28,411			28,411												
8	Kyee Myin Daing	48,179			0		0										
9	Sanchaung	42,065			42,065												
10	Dagon	22,419			22,419												
11	Bahan	47,892		0	0												
12	Tarmwe	77,266		77,266													
13	Mingalar Taung Nyunt	65,194		65,194													
14	Seikkan	1,046															1,046
15	Dawbon	29,433												29,433			
16	Kamaryut	36,559			0	0											
17	Hlaing	51,091				51,091											
18	Yankin	50,947		50,947													
19	Thingangyun	101,418		101,418													
20	Mayangone	120,909		0		0											
21	Insein	139,691							139,691								
22	Mingalardon	317,362								317,362							
23	North Okkalapa	181,733										181,733					
24	South Okkalapa	80,335		80,335													
25	Thaketa	89,677												89,677			
26	Dala	137,210														137,210	
27	Seikgyikhanaungto	15,628					15,628										
28	Shwe Py i Thar	108,140									108,140						
29	Hlaing Thary ar	206,563						206,563									
30	North Dagon	70,361										70,361					
31	South Dagon	144,473												144,473			
32	East Dagon	289,915											289,915				
33	Dagon Seikkan	83,814													83,814		
YCDC S	Sub-t ot al	2,688,179	70,213	375,159	123,133	51,091	15,628	206,563	139,691	317,362	108,140	252,094	289,915	263,583	83,814	137,210	1,046
34	Ky aukt an	21,483															21,483
35	Thanlyin	174,128															174,128
36	Hlaegu	74,718															74,718
37	Hmawbi	77,228															77,228
38	Htantapin	55,604															55,604
39	Twantay	46,323															46,323
Out of Y	CDC Sub-total	449,484	0	0	0	0	0	0	0	0	0	0	0	0	0	0	449,484
Total		3,137,663	70,213	375,159	123,133	51,091	15,628	206,563	139,691	317,362	108,140	252,094	289,915	263,583	83,814	137,210	450,530

Code	Township	Wastewater							Sewera	ge Zone							Out of S.Z
Code	Township	wastewater	CI	C2	W1	W2	W3	W4	N1	N2	N3	E1	E2	E3	E4	S1	Out of b.
1	Latha	19,369			19,369												
2	Lanmadaw	25,034			25,034												
3	Pabedan	21,263	21,263														
4	Kyauktada	19,807	19,807														
5	Botahtaung	29,604	29,604														
6	Pazundaung	32,195	32,195														
7	Ahlone	40,971			40,971												
8	Kyee Myin Daing	70,009			70,009		0										
9	Sanchaung	61,902			61,902												
10	Dagon	31,309			31,309												
11	Bahan	68,002		55,413	12,590												
	Tarmwe	113,403		113,403													
13	Mingalar Taung Nyunt	95,401		95,401													
14	Seikkan	1,457															1,4:
15	Dawbon	42,674												42,674			
16	Kamaryut	51,648			5,748	45,900											
17	Hlaing	72,011				72,011											
18	Yankin	74,031		74,031													
19	Thingangyun	146,082		146,082													
20	M ay angone	170,114		109,856		60,258											
21	Insein	195,012							195,012								
22	M ingalardon	442,040								442,040							
23	North Okkalapa	259,369										259,369					
24	South Okkalapa	116,522		116,522													
25	Thaketa	128,216												128,216			
26	Dala	191,114														191,114	
27	Seikgy ikhanaungto	21,768					21,768										
28	Shwe Pyi Thar	150,624									150,624						
29	Hlaing Thary ar	287,713						287,713									
	North Dagon	98,003										98,003					
31	South Dagon	201,230												201,230			
	East Dagon	403,810											403,810				
	Dagon Seikkan	116,741													116,741		
CDC S	Sub-total	3,798,444	102,869	710,707	266,931	178,169	21,768	287,713	195,012	442,040	150,624	357,372	403,810	372,120	116,741	191,114	1,4
34	Kyauktan	29,923															29,9
	Thanly in	242,535															242,5
	Hlaegu	104,072															104,0
	Hmawbi	107,568															107,5
	Htantapin	77,448															77,4
	Twantay	64,522															64,5
	CDC Sub-total	626,067	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
otal		4,424,511	102,869	710,707	266,931	178,169	21,768	287,713	195,012	442,040	150,624	357,372	403,810	372,120	116,741	191,114	627,5

	on (m³/day), 2040	I Cile+:							Seweraş	ge Zone							Out of C.7
Code	Township	Infiltration -	CI	C2	W1	W2	W3	W4	N1	N2	N3	E1	E2	E3	E4	S1	Out of S.Z.
1	Latha	600			600												
2	Lanmadaw	1,310			1,310												
3	Pabedan	610	610														
4	Kyauktada	670	670														
5	Botahtaung	2,580	2,580														
6	Pazundaung	1,040	1,040														
7	Ahlone	3,290			3,290												
8	Kyee Myin Daing	4,520			4,520		0										
9	Sanchaung	2,390			2,390												
10	Dagon	4,640			4,640												
11	Bahan	7,670		6,250	1,420												
12	Tarmwe	4,990		4,990	, -												
13	Mingalar Taung Nyunt	4,780		4,780													
14	Seikkan	224		,													224
15	Dawbon	2,950												2,950			
16	Kamaryut	6,380			710	5,670								,,,,,			
17	Hlaing	9,250				9,250											
18	Yankin	4,780		4,780		>,200											
19	Thingangyun	12,090		12,090													
20	M ay angone	22,500		14,530		7,970											
21	Insein	29,050		11,550		7,570			29,050								
22	Mingalardon	68,006			1				27,050	68,006							
23	North Okkalapa	26,460								00,000		26,460					
24	South Okkalapa	7,960		7,960								20,400					
25	Thaketa	12,600		7,700										12,600			
26	Dala	29,402												12,000		29,402	
27	Seikgy ikhanaungto	3,349					3,349									27,402	
28	Shwe Pyi Thar	23,173					3,347				23,173						
29	Hlaing Thary ar	44,264						44,264			23,173						
30	North Dagon	15,077			+			44,204				15,077					-
31	South Dagon	30,959										13,077		30,959			
32	East Dagon	62,125											62,125	30,939			
33		17,960											02,123		17.060		
	Dagon Seikkan		4.000	55 200	10.000	22 000	2.240	44.064	20.050	60.006	22 172	41.527	62.125	46.500	17,960	20, 402	22.
	Sub-total	467,648	4,900	55,380	18,880	22,890	3,349	44,264	29,050	68,006	23,173	41,537	62,125	46,509	17,960	29,402	224
34	Kyauktan	4,604															4,604
35	Thanly in	37,313															37,313
36	Hlaegu	16,011															16,011
37	Hmawbi	16,549															16,549
38	Htantapin	11,915															11,915
39	Twantay	9,926															9,926
	CDC Sub-total	96,318	0	0	0	0	0	0	0	0	0	0	0	0	0	0	96,318
Total		563,966	4,900	55,380	18,880	22,890	3,349	44,264	29,050	68,006	23,173	41,537	62,125	46,509	17,960	29,402	96,542

G. HOUSEHOLDS INTERVIEW SURVEY

Table G.1 O55 Access to Toilet Facility

		Access to Toilet Facility										
	No Toilet	Pit Latrine	Pour-flush	Flush Toilet	No	Total						
			Toilet		Answer							
No.	64	1,105	8,315	584	1	10,069						
%	0.6%	11.0%	82.6%	5.8%	0.0%	100.0%						

Table G.2 Q56 Sanitation Treatment by Type of Water

	1210 CI= QU	0 2000000000000000000000000000000000000			0 02 11000	-
		San	itation Tr	eatment by Ty	pe of Wate	r
		Sewerage	Septic	No	No	Total
		System	Tank	Treatment	Answer	
Number	Black Water	938	4,344	4,786	1	10,069
	Gray Water	1,359	2,705	6,001	4	10,069
% of	Black Water	9.3%	43.1%	47.5%	0.0%	100.0%
Total	Gray Water	13.5%	26.9%	59.6%	0.0%	100.0%

 Table G.3
 Q57 Assessment on Sanitary Condition

		Assessment on Sanitary Condition											
	Very Bad	Bad	So-so	Good	Very Good	No Answer	Total						
No.	155	1,759	1,495	6,565	93	2	10,069						
%	1.5%	17.5%	14.8%	65.2%	0.9%	0.0%	100.0%						

Table G.4 Q58 Frequency of Problem, for responses answered "Very Bad" or "Bad" or "So-so" in Q57

			Free	quency of Prob	lem	
		Always	Sometimes	No Problem	No Answer	Total
Number	Offensive Odor (Bad Smell)	758	2,147	489	15	3,409
	Pipe Clogging	346	1,250	1,795	18	3,409
	Overflow of Wastewater	516	1,510	1,366	17	3,409
% of	Offensive Odor (Bad Smell)	22.2%	63.0%	14.3%	0.4%	100.0%
Total	Pipe Clogging	10.1%	36.7%	52.7%	0.5%	100.0%
	Overflow of Wastewater	15.1%	44.3%	40.1%	0.5%	100.0%

Table G.5 O59 Acceptance of Black Water Use

	Tuble Gie Qualiteceptunee of Black Water Che											
		Acceptance of Black Water Use										
	Direct Use is	Utilization with Composting	Hard to	No	Total							
	Acceptable	(Appropriate Non-bacterial	Accept	Answer								
		Treatment) is Acceptable										
No.	646	6,604	2,817	2	10,069							
%	6.4%	65.6%	28.0%	0.0%	100.0%							

Table G.6 Q60 Willingness to Pay for Sanitation

	2001 010 Q 00 11 11111 3111 000 10 2 00 1011 0011											
	Willingness to Pay for Sanitation											
	Less than	501 ~	1,001 ~	2,001 ~	3,001 ~	5,001 ~	More than	No	Total			
	500	1,000	2,000	3,000	5,000	7,000	7,000	Answer				
No.	4,378	2,687	990	585	403	65	960	1	10,069			
%	43.5%	26.7%	9.8%	5.8%	4.0%	0.6%	9.5%	0.0%	100.0%			

Table G.7 Q61a Access to Drainage

	Access to Drainage									
	Yes	No	No Answer	Total						
No.	8,590	1,478	1	10,069						
%	85.3%	14.7%	0.0%	100.0%						

Table G.8 Q61b Assessment on Drainage Control, for Responses Answered "Yes" in Q61a

	Assessment on Drainage Condition										
	Very Bad	Bad	So-so	Good	Very Good	No Answer	Total				
No.	316	2,283	1,658	4,292	30	11	8,590				
%	3.7%	26.6%	19.3%	50.0%	0.3%	0.1%	100.0%				

Table G.9 Q62 Assessment on Odor of Drainage

	Assessment on Odor of Drainage										
	Very Bad	Bad	So-so	Good	Very Good	No Answer	Total				
No.	268	2,250	1,640	5,749	42	120	10,069				
%	2.7%	22.3%	16.3%	57.1%	0.4%	1.2%	100.0%				

Table G.10 Q63 Frequency of Odor of Drainage, for Responses Answered "Very Bad" or "Bad" or "So-so" in Q62

	Y Y											
		Frequency of Odor of Drainage										
	1 Time per	1 Time per	1 Time per	Every Time	Rarely	Never	No	Total				
	Month	3 Month	Half Year	when It Floods			Answer					
No.	775	162	178	2,037	970	15	21	4,158				
%	18.6%	3.9%	4.3%	49.0%	23.3%	0.4%	0.5%	100.0%				

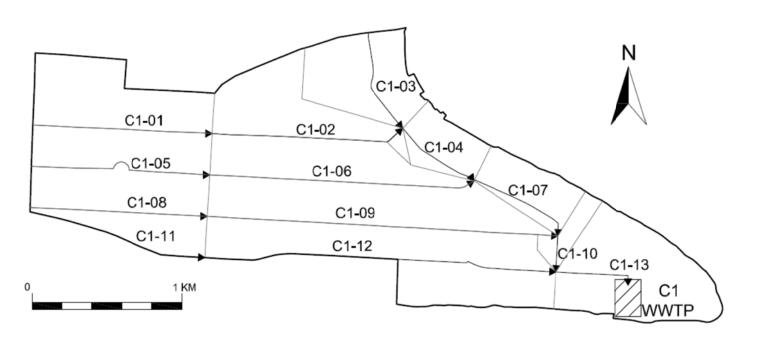
Table G.11 Q64 Organization in Charge for Cleaning

	Organization in Charge for Cleaning											
	Cleaning	Cleaning Crew	Residents in	None	No	Total						
	Crew from	Hired by	Your		Answer							
	YCDC	Yourself	Community									
No.	1,033	781	6,421	1,823	11	10,069						
%	10.3%	7.8%	63.8%	18.1%	0.1%	100.0%						

Table G.12 Q65 Frequency of Flooding of Drainage

		Frequency of Flooding of Drainage											
	Every Every 2 Every 10 More than Never No Tot												
	Month	Year	Years	Years	10 Years	Experienced	Answer						
No.	124	4,191	234	48	47	5,422	3	10,069					
%	1.2%	41.6%	2.3%	0.5%	0.5%	53.8%	0.0%	100.0%					

Table G.13 Q66 Level of Flooding, Except for responses Answered "Never" in Q65


	Table G.13	Quu	<u> Lever</u>	<i>J</i> 1 100	, am 5,	Excep	t IOI I	copons	CBTXIIB	werea	1101		Que	
		Level of Flooding												
				Water	Level			Duration of the Flood						
		Up to	Up to	Up to	More	No	Total	Less	Half	More	More	More	No	Total
		Ankles	Knees	Waist	than	Answer		than	Day ~ 1	than 1	than 3	than 6	Answer	
					Waist			Half	Day	~ 3	~ 5	Days		
								Day		Days	Days			
No.	Normal	2,421	1,904	175	23	121	4,644	2,722	805	462	215	315	125	4,644
	Flooding													
	The most	165	363	136	43	3,937	4,644	283	170	86	35	129	3,941	4,644
	serious flooding													
	in the past													
%	Normal	52.1%	41.0%	3.8%	0.5%	2.6%	100.0%	58.6%	17.3%	9.9%	4.6%	6.8%	2.7%	100.0%
	Flooding													
	The most	3.6%	7.8%	2.9%	0.9%	84.8%	100.0%	6.1%	3.7%	1.9%	0.8%	2.8%	84.9%	100.0%
	serious flooding													
	in the past													

						Le	evel of Flo	ooding					
			I	nundatio	1 Speed	l		Flow Velocity					
		Very Fast	Fast	Slow	Very	No	Total	Very	Fast	Slow	Very	No	Total
		(Within a	(Within	(Within a	Slow	Answer		Fast			Slow	Answer	
		Few	One	Few									
		Minutes)	Hour)	Hours)									
No.	Normal	692	2,791	968	70	123	4,644	469	1,696	2,023	329	127	4,644
	Flooding												
	The most	110	408	167	16	3,943	4,644	52	211	340	99	3,942	4,644
	serious flooding												
	in the past												
%	Normal	14.9%	60.1%	20.8%	1.5%	2.6%	100.0%	10.1%	36.5%	43.6%	7.1%	2.7%	100.0%
	Flooding												
	The most	2.4%	8.8%	3.6%	0.3%	84.9%	100.0%	1.1%	4.5%	7.3%	2.1%	84.9%	100.0%
	serious flooding												
	in the past												

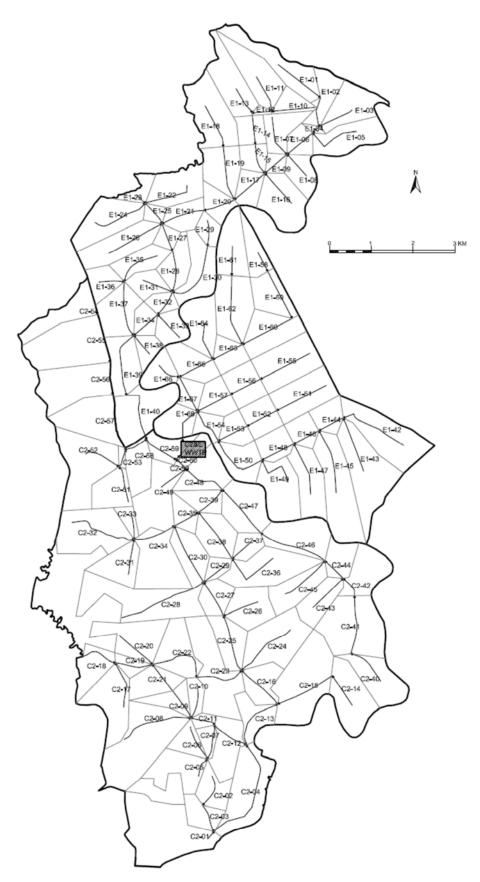
Table G.14 Q67 Willingness to Pay for Drainage

_						0		- 0					
Ī			Willingness to Pay for Drainage										
		Less	501 ~	1,001 ~	2,001 ~	3,001 ~	5,001 ~	More than	No	Total			
		than 500	1,000	2,000	3,000	5,000	7,000	7,000	Answer				
	No.	4,627	2,801	936	490	277	39	898	1	10,069			
ſ	%	46.0%	27.8%	9.3%	4.9%	2.8%	0.4%	8.9%	0.0%	100.0%			

H. FLOW CALCULATION OF TRUNK MAINS

Source: JICA Study Team

Figure H.1 Layout Plan of Trunk Main, C1 Sewerage Zone


Table H.1 Flo	w Calculation (of Trunk Main.	.C1	Sewerage	Zone ((1/2)	١
---------------	-----------------	----------------	-----	----------	--------	-------	---

Flow Calculation C1	p 1

		Drainag	e Area	Len	gth		Stormwater I	Runoff		Sanitar	y Wastew	nter	Other	¥			Des	sign Sew	er Pipe				
	Lower		W. 1			Rainfall per ha	Cove	rsion Area			Population			*****	TOTAL	P1	Gra-		PLUM		ALC: N	Cove-	Remarks
ipe No	Pipe No.	Each	Total	Each	Longest	perma	Each	Total	Stormwate	Ea	ch Total	Wastewa	ettach	Total		Dia.	ulcin	Velocity	Flow	G.L.	Invert	ring	Name of
		ha	ha	m	m	m3/sec/ha	ba	fin	m3/see			m3/sec	m3/sec	m3/sec	m3/sec	mm	96a	m/sec	m3/sec	М	М	m	_
CI-I		4530	4530	1200	1201							01107			01107	⊙ 600	160	0869	02456		-011	496	
CJ-2	C1-4	4030	8560	1308	2509				1			02092		1	02092	· 700	140	d900	03465	350 420			
Н																							
C1-3		3870	3870	709	709							00946			00946	⊙ 600	160	d869	02456	420	6374	318	
CI-4	C1-7	1820	14250	602	3111							03482			(3482	900	1 10	q944	06004	420			
Ш		1																				++1	
C1-5		3250	3250	1249	1250				4			00794			00794	⊙ 500	200	d860	d1689	460	-1179	\$24	
C1-6		4030	7280	1778	3028							01779		1	01779	⊙ 700	140	0900	03465	460	-420	775	
C1-7	f-10	2160	23690	724	3836							05788			05788	⊙ 1100	090	0976	09274	430 360			
C1-8		3390	3390	1185	1186							00828			00828	⊙ 500	200	0860	01689	420 500	-1438	590	
C1-9		5970	9360	2346	3532		11		1			02287			02287	⊙ 700	140	d900	03465	500 360	-5384	823	
C 1-10	C 1-13	800	33850	241	4077			1	-			08271			08271	⊙ 1350	q80	2 055	15096	360	-6034 -6248		
																	-	1		430	286	100	
I-11		2010	2010	1218	1219							00491			(0491	⊙ 400	260	d845	d1062	\$20	-461	7 538	
C 1-12		8160	10170	2362	3581							02485			02485	800	120	0911	04581	390	-4310		

Table H.1 Flow Calculation of Trunk Main, C1 Sewerage Zone (2/2)

Na	No. Core Pipe No. Pipe No. Find Each Total Each Each Total Each		Draina	ge Area	Len	gth		Sto	mwater R	unoff		Sanis	ary Was	water	Other	s			Des	sign Sew	er Pipe				
Na	Dia Dia	pe No. Lower	Each	Total	Each	Longest				1	Stormwat	a		Wastew	te:Each	Total	TOTAL	Dia		Velocity	Flow	GL	Invert	Cove-	Remarks
C	C	Pipe No	-	0.9			m70m	ho	-	-		1	ach To	al		112	m/2 (500 a	1						100	
		C.		1			ma/sec	na i	l l	Tial	m3/sec			1	m3/sec	m3/sec	1		1	1	i		-6398	869	
			3860	49350	549	4020		1						1			12187	1500	1	8038	18702	330	-0842		
																	Ħ		T					1	
															1										
								1			1						1								
								1						-							-				
								1			1			-			1								
																								+	
											Li.											#		1	
								1	Î		1		4	1								1			
								1																	

Source: JICA Study Team

Figure H.2 Layout Plan of Trunk Main, C2+E1 Sewerage Zone

Flow Calculation C2&E1

1

Wastewater unit flow per ha: 0.00146080m3 carlon Drainage Area Length Stormwater Runoff Sanitary Wastewater Others Design Sewer Pipe Rainfall Coversion Area TOTAL. Pipe No. Lower dient Velocity Flow Remarks per ha Each Total Each WastewsterEach Total Dia. Invert Longest ring Pipe No Each Total Each Total m3/sec/ha m3/vec M M ha ha m3/sec m/sec 4650 300 2-02 780 3176 397 6020 6020 00879 00879 02456 823 823 160 0869 600 3076 2-03 2-04 5340 11360 1526 01659 700 \$40 d900 d3465 (942 300 -0975 -1085 481 2-01 24860 24860 100 03632 £10 d944 06004 470 900 -1535 478 2-13 2-04 17250 53470 2722 4248 07811 07811 080 1055 710 -(079 973 1350 1600 11/712 331 4425 300 2-08 2-11 23890 23890 1778 03490 900 \$10 d944 d6004 9158 300 C 2-11 2-09 3458 440 4980 4980 780 781 00727 00727 200 0860 01689 840 500 6565 840 3120 3120 756 260 0845 400 2958 2-12 1640 33630 615 2394 04913 04913 too d965 07582 430 d218 300 1000 2012 C 2-07 4740 357 2-06 4430 4430 893 00647 330 0860 01367 880 450 8299 364 3042 300 1270 C 2-05 9510 9910 490 491 01389

Table H.2 Flow Calculation of Trunk Main, C2+E1 Sewerage Zone (2/12)

		Drainag	ge Area	Ler	igth		Ston	nwater Re	moff		Sanitary	Wastewa	ater	Other	ns.	TE		Des	sign Sev	ver Pipe				
	Lower					Rainfall		Cover	sion Area			Population		Ų,		TOTAL		Gm-					Cove-	Same of the last o
ipe No	Lower Pipe No	Each	Total	Each	Longest	per ha		Each	Total	Stormwater	Eac	h Total	Wastewa	teiEach	Total		Dia.	dient	Velocity	Flow	61.	Invert	ring.	Remarks
		ha	ha	m	m	m3/sec/ha		ha	tia	m3/sec	31		m3/sec	m3/sec	m3/sec	m3/sec	mm	960	m/sec	m3/sec	М	M	m	
C 2-07		2570	16510	849	1743								02412			02412	800	120	0911	04581	430		300	
C 2-12		9070	59210	914	3308	i	-						08649			08649	1350	180	t055	l¦5096	430		300 665	
C 2-13	C 2-16	6680	119360	1429	5678								17436			17436	⊕ 1650	070	128	34115	710 540	-4379 -3519		
														1										
C 2-14		13370	13370	864	864	i	-						01953			d1953	⊙ 700	140	d900	03465	640 660			
C 2-15		21380	34750	1486	2351								05076			05076	⊙ 1100	090	0976	09274	660 540		44 4 4	
C 2-16	C 2-25	7200	161310	1196	6875	İ							23564			23564	© 1800	d70	(195	30412	540 490			
							1																	
C 2-17	C 2-19	12600	12600	1149	1149		-						01841			01841	⊙ 700	40	0900	03465	2500 1480			
							-		1														++-	
C 2-18		7250	7250	868	869		1						01059			01059	⊙ 600	160	0869	02456	1430	9103	305	
C 2-19	C 2-22	2660	22510	905	2054								03288			03288	⊙ 900	110	d944	d6004	1480 770			
		1					-											1	-					
C 2-20	C 2-22	12020	12020	1056	1057								01756			01756	⊙ 700	140	0900	03465	1260 170	8531 3942		
2.7							-												1		day	40.50	300	
C 2-21	-	7140	71940	786	786		-		1				01043	1	1	01043	⊙ 600	160	0869	02456	870 770	\$050 3654		

Flow Calculation C2&E1

P

Wastewater unit flow per ha: 0.00146080m3/ma/hu

		Drainag	ge Area	Len	igth		Ston	nwater R	unoff		Sani	tary V	Vastewa	ter	Other	y.	1		Des	ign Sew	er Pipe				
ina Na	Lower	Each	Total	Each	Longest	Rainfall per ha		Cover	sion Area	Stormwater		Pop	ulation	Wastewa	ed Each	Total	TOTAL	Dia.	Gra- dient	Velocity	Flore	G.L.	Invert	Cove-	Remarks
ipe No	Lower Pipe No.	Each	Total	Each	r,ungest	400.000		Each	Total	Summan		Each	Total	Wastewa	eicacii	total		Dia.	8.546	vencity	Flow	O.L.	inven	ring	1000-00
		ba	ha	m	m	m3/sec/ha	_	ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	960	m/sec	m3/sec	М	M	m	
C 2-22		10250	51920	1510	3565				į	i				07584			07584	1200	090	1034	11696	900	1490	622	
C 2-23	C 2-25	18030	69950	1183	4749		-							10218			10218	1500	d70	1058	18702	490			
							1																		
C 2-24		15280	15280	1552	1553									02232			02232	700	140	d900	03465	490	0957	319	
C 2-25	C 2-27	7980	254520	1394	8269		-							37180			37180	2200	970	ţ366	\$1934	490		955 1094	
			1				-								1				1	1	1				
C 2-26		9380	9380	890	890									01370			01370	O 700	\$40	d900	d3465	\$60 \$20	0439	400	
C 2-27	C 2-30	5660	269560	935	9205									39377			39377	⊙ 2200	070	1366	51934	330		1096 980	
																			-		1			+	
C 2-28	C 2-30	20740	20740	2166	2167					i				03030			¢3030	800	120	d911	Q4581	1360			
							1																	+	
C 2-29		2590	2590	722	723			1					Ш	00378			00378	⊙ 350	280	d802	00772	350	-0081	300	
C 2-30	C 2-35	8170	301060	1535	10740	1	-							43979			43979	⊙ 2400	970	ţ448	65497	350			
			1				1										1					1			
C 2-32	C 2-34	16410	16410	1656	1657					1				02397			02397	© 800	120	d911	d4581	2130			
											Ш										1				

Table H.2 Flow Calculation of Trunk Main, C2+E1 Sewerage Zone (4/12)

Flow Calculation	C2&E1			P	4

		Drainag	e Area	Len	gth		Ston	nwater R	unoff		Sanita	ry Wastew	nter	Other	5			Des	sign Sew	ver Pipe				
ipe No.	Lower	Each	Total	Each	Longest	Rainfull per ha		Cover	sion Area	Stormwater		Population	Wastewa	t: Æach	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove-	Remarks
	Pipe No.	ha	hā	m	m	m3/sec/ha		Each	Total	m3/sec	E	ich Total	m3/sac	m3/sec	m3/sec	m3/sec	mm			m3/sec	М	М	m	
		394	1			III.3/SCC216L	1	1	- 1	m3/sec	-	+	In 3/sec	1	HD/SCC	III.S/Sec	tina	1	III/sec	III 3/36C	930	-		
C 2-31	C 2-34	8030	8030	855	855	1	1		1	1			01173	1		01173	⊙ 600	60	0869	02456	830			
												111	1				i Y							
c											1			1							1580			
2-33	-	2380	2380	624	624	-1-	1	1	-	-1-	-	-	00348	1	-	00348	⊙ 350	380	9802	00772	830	1		
C 2-34		14410	41260	1043	2700		i	1					06027			06027	1100	d90	d976	d9274	350	-0688		
C	С				1,41		1														350	-10289	1 121	
2-35	2-39	3960	346280	660	11401		1	l i			_	_	50585			50585	2400	Q70	‡ 448	65497	330	-10813	1 \$54	
							1																+++	
C	C		1			1	1	1	1	18				1		1		1			450			
2-36	2-38	14460	14460	1427	1427		1	H	1	1	-	-	02112	1	-	02112	⊙ 700	£40	d900	03465	320	-1532	397	
							1	1		b b						1		- 1	1	1			11	
C 2-37		3960	3960	(2)	677		111	1		i i			00578			00578	450	230	0860	01367	470 320			
c		3960	3960	571	572		+	++-			-		00578	+		005/8	450	1	0860	01367	320	-		
2-38		8420	26840	1384	2812		1	1-1		1			03921			¢3921	900	¢10	0944	06004	330			
C	C				100																330			
2-39	2-48	4990	378110	805	12207		+	- 1	-		-	-	56234		-	56234	⊙ 2600	070	527	81081	460	-11658	1347	
							1									1							111	
C 2-40		10900	10920	1000	1000		1						01581	1		meo.	O 700	1	dom	0246	480 750	3042		
C		10820	10820	1008	1008		1		1		-		01581	1		01581	⊙ 700	£40	d900	03465	750			
2-41		19330	30150	1418	2426		1			1		-	04404	1	-	04404	O 1000	100	0965	07582	570	-0562	518	
C 2-42	C 2-44	9790	39940	210	2959		1						05834	i		dept	0 1100	des	dor	d9274	\$70 630		631	
- 14	-34	97,90	39940	532	2959		+	1	+	1	-	+	05834	+	+	Up834	⊙ 1100	d90	d976	U9274	q30	-1202	931	
			1				1	1	13	3-1		114	1	1		11		1	1	1			+	

Wastewater unit flow per ha: 0.00146080m3/sm /bar

		Drainag	e Area	Len	igth		Ston	nwater R	unoff		Sanitar	Wastew	ater	Other	5			Des	ign Sew	er Pipe				
	Lower		W			Rainfall per ha		Cover	sion Area			Population			War de	TOTAL	Par.	Gra-	Velocity	Plan		67.70	Cove-	Remarks
ipe No	Lower Pipe No.	Each	Total	Each	Longest	jet iii		Each	Total	Stormwater	Eac	h Total	Wastewa	lensach	Total		Dia.	uiciii	Velocity	Flow	G.L.	Invert	ring	yearing 63
		ha	ha	m	m	m3/sec/ha	_	ha	ha	m3/sec	11		m3/sec	m3/sec	m3/sec	m3/sec	mm	Yes	m/sec	m3/sec	М	М	m	
C 2-43		7310	7310	1015	1016		-833						01068		100	01068	⊙ 600	160	0869	02456	630			
C 2-44	C 2-46	5650	52900	607	3566								07728			07728	⊙ 1200	090	034	11696	630			
																-							++-	
C 2-45		8650	8650	1251	1252								01264			01264	700	140	d900	03465	630	1843		
C 2-46		12450	74000	1700	5266	1							10810		-	10810	1500	070	(0.58	18702	470			
C 2-47		11930	85930	1400	6666		-						12553			12553	⊙ 1650	070	128	24115	470			
C 2-48	C 2-50	9070	4731/10	1060	13267								69112			d0112	⊙ 2800	d70	1604	98797	360			
							4											1					+	
C 2-49		13170	13170	738	739		-						01924			01924	⊙ 700	640	d900	03465	360			
C 2-50	C 2-60	3380	4896 60	322	13590		-						7,1530			71530	2800	070	t604	98797	400		1332	
							- Andrew									1								
Et-I		11800	11800	1283	1284			-					01035			01035	⊙ 600	160	d869	02456	490			
E1-2	E1-4	6130	17930	738	2022	1	2444						01573			01.573	⊙ 700	E40	d900	03465	490			
						-	-			5								1					+-	
E1-3		10010	10010	875	876								00878			00878	⊙ 600	160	d869	02456	410			
E1-4	E1-6	650	28590	228	2251								02508		. š -	02508	⊙ 800	120	0911	04581	470 320			

Table H.2 Flow Calculation of Trunk Main, C2+E1 Sewerage Zone (6/12)

		District		-	at = 1 =				· · · · ·				0.775.0	.6	Out			-		_		ant non-pe	r ha: 0.001	Tostolis	
	1.6	Drainas	e Area	Len	gth	Rainfall	Ston	nwater Ru			San	_	Vastewa	ler	Other	1			Gra-	ign Sev	ver Pipe				
ipe No	Lower Pipe No.	Ench	Total	Each	Longest	per ha		Covers	Total	Stormwate	,		ulation Total	Wastewa	eÆach	Total	TOTAL	Dia.		Velocit	Flow	G.L.	Inven	Cove- ring	Remarks
		ha	ha	m	m	m3/sec/ha		ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	%	m/sec	m3/sec	М	М	m	
										į				1					1	-	1				
E1-5		10780	10780	1317	1318		-	1						00946			00946	⊙ 600	160	d869	02456	540		300 517	
E1-6	E1-9	3870		806			-							03794			03794	1				\$20	-3/631	786	
		38/0	43240	auc	3037		1							1			105794	900	110	1	00009	360	-4682	931	
E1-7	E1-9	6800	6800	1013	1013				-			Ħ	T	00597			00597	450	230	d860	01367	460			
		davo	Uquu	1013	1013		-			Ħ				1	Ì		9337	430	430	i	i i				
E1-8	111	5590	5590	698	699		-					ī		00490		1	00490	400	260	d845	d1062	620	4765 2766	100	
E1-9	E. 1-17	2230	57860	699			1		T					05077			05077	© 1100				\$60 \$60	-4882	929	
			37400	457	260		-							1			1	1100	1		1				
E J-10	E 1-12		-				1											0.00		dom		490			
1-10	1712	3980	3980	1043	1043		-							00349			00349	⊙ 350	280	d802	00772	460	(332	489	
E 1-11		11370	11370	918	919		-							00998			00998	⊙ 600	\$60	d869	02456	430			_
E 1-12	E 1-14	750	- 1	469			-							00413			01413	700		1		460	-1099	494	
				100	1.0		-					П					3,412	7.00	1		1			1	
E 1-13		11300	11300	711	712		-							00991			00991	⊙ 600	160	d869	02456	590 460	2230 0950	302 300	
E 1-14		4540	31940	755								T		02802			02802	800				460		467	

Flow Calculation C2&E1

P

7

Wastewater unit flow per ha: 0.00146080m3/sec/fine

		Drainag	ge Area	Len	igth		Ston	nwater R	unofT		Sani	tary V	Vastewa	ter	Other				Des	sign Sew	er Pipe				
ipe No	Lower Pipe No.	Each	Total	Each	Longest	Rainfall per ha			sion Area	Stormwater			Total	Wastewa	eEach	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	GL.	Invert	Cove-	Remarks
	1 pc 1 vo.	ha	ha	m	m	m3/sec/ha		Each	Total	m3/sec	- 1	Each	Total	m3/sec	m3/sec	m3/sec	m3/sec	mm	Shiri	m/sec	m3/sec	М	M	m	
E	Е					1	1		1	1				1	1	1			1		1	430	-	640	_
1-15	1-17	4110	36050	764	3032		1		1	1				03163	1	1	03163	⊙ 900	110	0944	06004	560	-4058	868	
									1	1							1		- 1				+		
E 1-16		12110	12 10	0.00					1					01063	1		01063	⊙ 600	160	0869	02456	380	2150		
E.		12010	12110	962	962		+	+		+++	-		-	01003	+	+	01063	⊙ 600	100	i i	02436	360			5
1-17	1-20	4770	110790	962	4719									09721			09721	O 1350	dso	1055	15096	440	-6732	968	
	- 1																		i						
E. 1-18		14530	14530	1002	1092		i							01275			01275	⊙ 700	140	0900	03465	460			
E		14,50	14350	1092	1092	1	1	1	1		-			1	1	+	i i	0 700	1	1	1.	490			
1-19		9050	23580	1309	2402		1		1					02069	1	-	02069	⊙ 700	140	d900	03465	440	-3000	664	
E 1-20		4910	139280	781	5500									12220			12220	⊙ 1500	070	1058	18702	440		1132	
E	E						1		i						1		1		1			340	-7678	1131	
1-21	1-27	5600	144880	1068	6569		1			- 1	-	\vdash		12712	1	H	12712	1650	070	1128	24115	540	-8528	1316	
		1	1						-	1				1	1				-	1			++-	++-	
E 1-24	E 1-25	1							1					1	1		1		1		1	900			
1.24	1543	12580	12580	1387	1388		+			++	\dashv			01104			01104	⊙ 600	160	0869	02456	390	-1136	639	
							1							1	i_				- 1	i					
E 1-22	E 1-25	10130	10130	1213	1213									00889			00889	⊙ 600	Į60	q869	02456	390			
							1				1						1	550						1	
E						- 1	+		1		+			1	1				1	i	1	390	459)	100	
1-23		31/40	31/40	292	293	- 1	1							00276	1		00276	⊙ 300	300	Q974	d0689	\$90		_	
E 1-25	E 1-27	2000	27850	645	2033				-					02444		1	02444	⊙ 1100	090	0976	09274	340			
1,75	1	2000	210,50	104.	2033	-	1	-	<u> i </u>	i	-1		_	172-mark	-1-	i i	102444	1100	950	45.0	92.14	140	-5/00	1 500	

H-1

Table H.2 Flow Calculation of Trunk Main, C2+E1 Sewerage Zone (8/12)

		Drainag	ge Area	Len	gth		Ston	nwater R	moff		San	tary W	astewat	ter	Other	s			Des	ign Sev	ver Pipe				
	Lower					Rainfall		Cover	sion Area			Pope	ulation			U.	TOTAL	L I	Gm-			U.L.		Cove-	Same de
ipe No.	Lower Pipe No.	Each	Total	Each	Longest	perha		Each	Total	Stormwate	,	Each	Total	Wastewal	eEach	Total		Dia.	dient	Velocit	Flow	G.L.	Inven	ring	Remarks
-		ha	ha	m	m	m3/sec/ha		ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	%a	m/sec	m3/sec	М	М	m	
								1	i									177	1					++-	
E			1				1	1				7		1	1				1	1	1	560	1950		
1-26		11550	11550	1462	1462		1	-1-		+1		-		01013	1	+	d1013	⊙ 600	160	d869	02456	\$40 \$40	_	542 1218	
E 1-27		2570	186850	699	7269		ì	l i						16394	1		16394	1650	970	1128	24115	440	-9096	1273	
E 1-28	E 1-32	6650	193500	996	8265			i						16978	1		16978	1650	d70	128	24115	540 470		1275	
		1	1		9400		1	1						1	1		1	2 1000	1	1	1				
E		1		H			H	+		+	-	+		H	+	H				H	+	340	4091	100	
1-29		3360	3360	626	627		1							00295	1		00295	⊙ 300	300	0974	00689	510	2051		
E 1-30	E 1-32	10560	13920	1612	2240		1							01221	1		di 221	600	160	d869	02456	470	1450 -1453		
E		1					1		1			\exists		1	1	+	ĺ		Ħ	Ť	1	340		100	
1-31		4820	4820	763	763		1	\perp	- 1	+i		-		00423	1	+	00423	⊙ 400	260	0845	61062	470		1284	
E 1-32	E 1-34	3040	215280	665	8930		1		1					18889	i		18889	1650	Q70	1 128	24115			1277	
						-				1								-							
Ē							1					\exists		1	1				1	1		380	2365	100	
1-33		5080	5080	763	763		-					-	_	00446	1	1	00446	⊙ 400	360	d845	01062	410	0185		
E 1-34	1-39	3580	223940	756	9687		1	1	Ì					19648	1		19648	⊙ 1800	q70	É195	30412				
								i i	1																
E	E						1		1			Ħ			1					1	1	410	2612	de ete el	
1-35	1-37	6480	6480	1081	1081			1	1	1				00569	1		00569	⊙ 450	230	(860	(1367	480	-0158	447	

Wastewater unit flow per has	0.00146080m3/scc@∈

		Draining	e Area	Len	gth		Ston	mwater R	unoff		Sanitar	y Wa	stewat	ter	Other	S .			Des	sign Sew	er Pipe				
	Lower		V.15			Rainfall		Cove	sion Area			Popu	lation			li,	TOTAL		Gm-					Cove-	Comple
ipe No	Lower Pipe No.	Each	Total	Each	Longest	per ha		Each	Total	Stormwate	Eas	ch 1	Total.	Wastewat	erEach	Total	12.00	Dia.	dient	Velocity	Flow	G.L.	Invert	ring	Remark
-		ba	ha	m	m	m3/sec/ha		ha	hit	m3/sec			= 2	m3/sec	m3/sec	m3/sec	m3/sec	mm	%0	m/sec	m3/sec	М	М	m	
E 1-36		4980	4980	616	617									00437			00437	400	260	0845	01062	340 480		416	
E 1-37	E 1-39	9660	21120	1349	2431									01853			d1853	⊙ 700	140	d900	03465	480 390		445	
							-																		
E 1-38		3700	3700	589	590		-							00325			00325	⊙ 300	300	d974	00689	440 390	1183	341	
E 1-39	2.2	9610	258370	1604	11291		1							22669	i		22669		d70	t195	30412	390 420	-12479	1475	
E 1-40	C 2-59	14400	272770	1400	12692		-							28933			23933	1800	070	1195	30412	420			
			-				-																		
C 2-54		9050	9050	175	175									01322			01322	· 700	140	0900	03465	720 670	2942	300	
C 2-55		19140	28190	1185	1360		1							04118			04118	⊙ 1000	100	0965	07582	670 670	(21)	441	
C 2-56		15350	43540	785	2145	1	1					1		06360			06360	1200	090	1034	11696	670 490	0203	440	
C 2-57	C 2-58	12810	56350	1408	3554						-	1		08232			08232	1350	080	1055	15096	190 480			
C 2-52	C 2-53	17940	17940	902	903						+			02621			02621	⊕ 800	120	0911	04581	1880		aller and an in-	
																		300							
C 2-51		7470	7470	897	897									0,1091			d1091	⊙ 600	160	d869	(2456	1530 1380		311	
C 2-53		830	26240	447	1350									09833			03833	900	\$10	0944	06004	1380			

Table H.2 Flow Calculation of Trunk Main, C2+E1 Sewerage Zone (10/12)

Flow Calculation C2&E1	P 10

		Drainag	ge Area	Len	gth	Ste	omwater R	unoff		Sanitary '	Wastewa	ter	Others				Des	ign Sew	er Pipe				
	Lower			G		Rainfall	Cove	sion Area			pulation		17.7		TOTAL		Gm-				L. p.	Cove-	Deliteration
ipe No.	Lower Pipe No.	Each	Total	Each	Longest	per ha	Each	Total	Stormwale		Total	Wasteway	e/Each	Total	7	Dia.	dient	Velocity	Flow	G.L.	Invert	ring	Remarks
-		ha	ha	m	m	m3/sec/ha	ba	ha	m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	mm	%	m/sec	m3/sec	М	М	m	
C 2-58		6980	89570	567	4121							13084			13084	⊙ 1650	070	128	24115	480			
C 2-59		5510	367850	870	13562							37822			37822	⊙ 2200	d70	1366	51934	400			
C 2-60	C2-W WTP		857510	150	13740							109352			109352	⊙ 3200	970	754	141055	400		and sergion on	
E 1-42	E 1-44	16860	16860	1709	1710							01479			Q1479	⊙ 700	ţ40	d900	@3465	₫70 ₫00			
												1					1					++	
E 1-43		18710	18710	1357	1358				1			01642	+		01642	700	\$40	d900	d3465	680	0879	436	
E 1-44	E 1-46	4910	40480	657	2367							03552	1		03552	900	ž10	q944	06004	400 250			
															1		1		1				
E 1-45		18410	18410	1582	1582							0(1615	†		d1615	⊙ 700	ţ40	d900	¢3465	500 500	-0266	301	
E 1-46	E 1-48	4590	63480	682	3050							06570			05570	⊙ 1100	090	0976	09274	500	-2033 -2728		
E 1-47		10820	10820	1304	1304							00949			00949	⊙ 600	160	Q869	02456	600			
E 1-48	E 1-50	5400	79700	861								06993	-		06993	1200	090	8.	11696	500 530	-2828	653	
																			1				
E 1-49		12150	12150	11)4	1115							01066			01066	⊙ 600	160	0869	02456	530			

11

Flow Calculation C2&E1

Wastewater unit flow per ha: 0.00146080m3/sex ha

		Drainag	ge Area	Ler	ngth		Ston	nwater R	unoff		San	itary V	Vastewa	ter	Other	5			Des	ign Sew	er Pipe			a-1	
ipe No	Lower Pipe No.	Each	Total	Each	Longest	Rainfall per ha		Cover	rsion Area	Stormwater	r	Pop Each	oulation Total	Wistewii	edach	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove-	Remarks
		ha	ha	m	m	m3/sec/ha	-	ha	Turc	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	%0	m/sec	m3/sec	М	М	m	
E 1-50	E 1-54	7900	99750	1454	5366									08752			08752	⊙ 1350	080	1055	15096	930 450			
E 1-51		12370	12370	1342	1343		-							01085			01085	⊙ 600	160	0869	02456	\$60	-0452	500	
E 1-52		6600	18970	800	2144								ĿĘ,	01664			d1664	⊙ 700	140	d900	03465	920 480	-0552 -1836		
E 1-53		4730	23700	781	2925								U	02079			02079	⊙ 700	140	d900	Ø3465	480			
E 1-54	E 1-68	3630	127080	895	6262		-							11150			11150	1500	070	1058	18702	450 390			
																				-					
E 1-58		5590	5590	518	518		1						U	00490			00490	→ 400	260	0845	01062	490		297	
E 1-59		8170	13760	1270	1788								Ш	01207			01207	⊙ 600	160	0869	02456	490			
E 1-60	E 1-63	10560	24320	1342	3131					1				02134			¢2134	⊙ 700	140	d900	¢3465	490 350			
E 1-61		9650	9650	708	708									00847			00847	⊙ 600	160	d869	02456	460			
E 1-62		12750	22400	1719	2428		1							01965	1		q1965	700	140	9900	03465	460 350		492	
E 1-63	E 1-65	5380	52100	80	3932									04571			04571	⊙ 1000	100	0965	07582	350 350			
E							-						Ш									450	(850	300	
1-64		9870	9870	926	927									00866			00866	⊙ 600	160	0869	02456	350			

Table H.2 Flow Calculation of Trunk Main, C2+E1 Sewerage Zone (12/12)

		Drainag	e Area	Len	gth		Ston	mwater R	unoff		Sar	itary '	Vastewa	ter	Other	5			Des	sign Sew	er Pipe				
	Lower	L_		7.7		Rainfall		Cover	sion Area			Po	pulation				TOTAL		Gra-			15.11		Cove-	
ipe No	Lower Pipe No.	Each	Total	Each	f.ongest	per ha		Each	Total	Stormwat	er	Each	Total	Wastewat	etEach	Total		Dia.	diebi	Velocity	Flow	G.L.		ring	Remarks
		ha	ba	m	m.	m3/sec/ha	-	ha	ha	m3/sec	-			m3/sec	m3/sec	m3/sec	m3/sec	mm	900	m/sec	m3/sec	М	M	m	
E 1-65	E 1-67	7740	69710	905	4838		-							06116			06)16	⊙ 1100	090	0976	09274	350 400			
E 1-66		5670	5670	590	590				-					00497			00497	⊙ 400	260	9845	01062	460	3165 1490	208	
E 1-67	E 1-68	3800	79180	944	5782									06947			06947	⊙ 1200	d90	6034	11696	400 390	-5572 -6540	ber educated	
							-																		
E 1-55		13960	13960	1340	1341		-							01225	-		01225	⊙ 600	160	0869	02456	340 390	1750 -0652		
B 1-56		7390	21350	801	2143		-							01873	1		01873	700	140	d900	03465	390 390	-2036	518	
E 1-57		6080	27430	901	3044									02407			02407	⊙ 800	(20	q911	04581	390 390	-2136 -3396	643	
E 1-68		6480	240170	800	7062		7							21073			21073	⊙ 1800	070	1195	30412	390 400			
							-	1																	
		3					-																		
							-								-		1								
							-									1	-			5555					
							-												-						
															1					1					
							1								1							1			

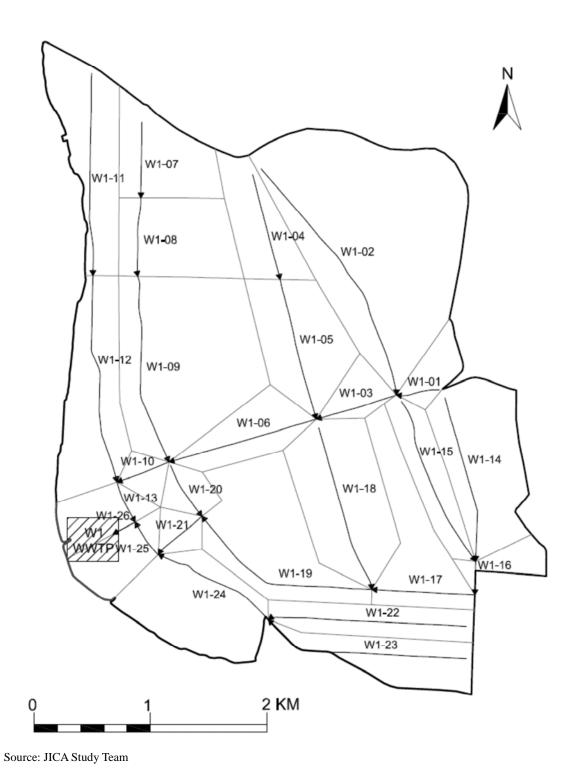
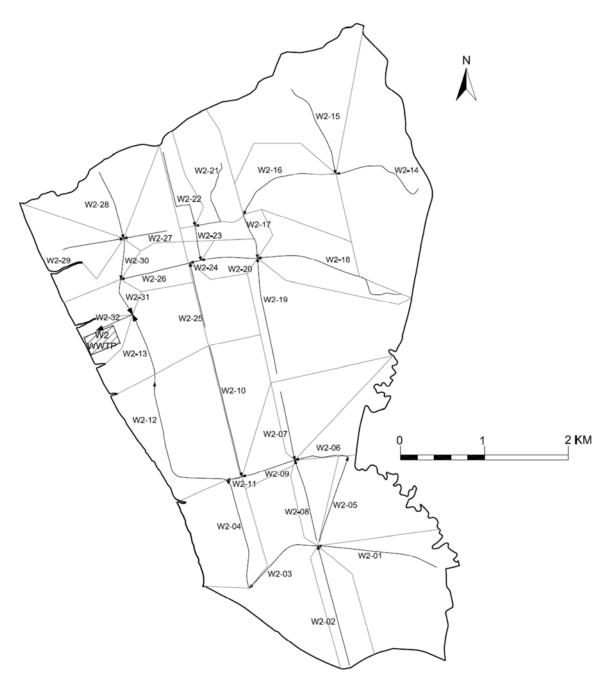


Figure H.3 Layout Plan of Trunk Main, W1 Sewerage Zone

Table H.3 Flow Calculation of Trunk Main, W1 Sewerage Zone (1/3)

				_		-													Wa	sewater t	mit flow po	r ta: 0.001	81620m3/	600-10 a
		Draina	ge Area	Ler	gth		Ston	nwater R	nnoff		Sanitary	Wastewa	iter	Other	S			Des	sign Sew	er Pipe	_			
Sine No	Lower Pine No.	Each	Total	Each	Longest	Rainfall per ha		Cover	sion Area	Storrowater		pulation	Wastewa	edEuch	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove-	Remark
1pc 230	Pipe No.	Calcin	700	taten	1.00(80-0	1 1		Each	Total		Each	Total		1777	Y		Dia.		7 (10-0)	7 10.00		1207.07	ring	
		ha	ha	m	m	m3/sec/ha		ha	hā	m3/sec			m3/sec	n3/sec	m3/sec	m3/sec	mm	%a	m/sec	m3/sec	M	М	m	
W 1-15	W 1-16	4190	4190	1534	1534		-			1			00761	1		00761	⊙ 500	200	0860	01689	2 110 1000			
									1	i i	3411			1		1		1	-	1				
w									1					1		+		+	+		2380		379	
1-14		9350	9350	1446	1.447		1	1					01698	1		01698	⊙ 700	140	900	03465	1000	6242	300	
W 1-16		17/20	15260	286	1820		1		Ì				02772	1		02772	⊙ 800	120	den	04581	1000			
W I+17	W 1-19	6990	22250	886	2707		1	i					00041			01041	① 1000	t00	d965	07582	750			
									Ì									-	1					
W 1-18		9810	9810	1468	1468		-						01782			d1782	700	440	d900	d3465	1580			
W 1-19	W 1-21	10610	42670		4413				İ				07750				⊙ 1200			P1696	950	2176	603	
		100.0	42070	1700	4413				Î				00 (30	1		07730	1200	1	1034	1090	400	-0293	300	
W			1				+	H		Ħ	+			1				+	H		610	4713	the self-residence	
1-20		1630	1630	518	518		1		- 1	11	_		00296	1	-	00296	300	300	Q974	d0689	1			
W 1-21	W 1-25	1280	45580	499	4912				1				08278	5		08278	1350	080	1055	15096	400		No. 20, 40, 40	
														30		1							++	
W 1-23	W 1-24	5220	5220	1807	1808		-						00948			00948	⊙ 600	160	qs69	02456	260 370			
			-					i	į.					1										
W 1-22		4750	4750	1705	1705		1						00863	1		00863	⊙ 600	160	d869	12456	340	-0250 -3327	300 638	
w		1,50	1,000	1.0.	1105		i		1		_		1			1	000	1	1	1	370			
1-24		8720	18690	1112	2923		4	1	1	1			03394	3		03394	⊙ 900	110	0944	06004	410	+6045	917	

Flow Calculation W1


Vastewater unit flow per har 0.00181620m3/am/l/a

		Drainag	e Area	Len	igth		Ston	mwater R	unoff		Sanita	ary W	Vastewa	ter	Other	8			Des	ign Sew	er Pipe				
	Lower		1,0			Rainfall		Cove	sion Area			Pop	ulation	2.5			TOTAL		Gra-					Cove-	No. of
pe No.	Lower Pipe No.	Each	Total	Each	Longest	per ha		Each	Total	Stormwate	E	ach	Total	Wastewal	etEach	Total		Dia.	dient	Velocity	Flow	G.L.	Invert	ring	Remarks
		hà	ha	m	m	m3/sec/ha		ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	Nan	m/sec	m3/sec	М	М	m	
W 1-25	W 1-26	3380	67650	343	5256		-							12287			12287	⊙ 1500	070	10.58	18702	410 520	-6645 -6925	913 1051	
				, !			1				4			1	-		ļ.		1		-	2360	19518	300	
V1-2	W1-3	26210	26210	2304	2305	- į		i.	1	-i-	+	-		04760	-		04760	⊙ 1000	100	0965	07582	2460			
									-			-		1			1		+	-	-	2860	26727	149	
V1-1	80.2	2090	2090	376	376		+				+			00380	1		00380	⊙ 350	280	d802	00772	2460 2460	23218	(00 676	
V1-3	W1-6	2000	30300	718	3023		1		- 1		+	+	-	05503	1		05503	⊙ £100	090	0976	09274	1650	12312	300	
V1-4				7			-				+		H		-				+			2260			
V1-5		4970 7580	12550	929			-				\dagger			00903			00903	⊙ 600⊙ 700	140	0900	03465	1230	8542	300	
V1-6	W I-10	4440	47290	1317							T		ī	08589				1350	1	1055	15096	1650	5911	914	
							-						T		37		-								
V1-7		5820	5820	648	649		-							01057			d1057	⊙ 600	160	d869	02456	1420	9394	406	
V1-8		6910	12730	678	1328		-							02312	1		02312	⊙ 800	Ę20	də11	04581	810	4234	300	_
V1-9		16560	29290	1647	2975		-							06320	1		05320	⊙ [100	d90	0976	09274	610	1912	300	
W I-10	W 1-13	1330	77910	477	4818		-							14150			14150	1650	070	(128	24115	430			

Table H.3 Flow Calculation of Trunk Main, W1 Sewerage Zone (3/3)

Flow Calculation W1	р 3
	_

				er Pipe	ign Sew	Des				Others	ter	Vastewa	sanitary \			unoff	mwater R	Stom		gth	Len	e Area	Drainag		
Remarks	Cove-		01	r.i.	Velocity	Gra-	mr.	TOTAL	***	F 1	0/24/2	oulation	Po		67	rsion Area	Cove		Rainfall per ha		60.0	m242	F . 1	Lower Pine No.	C. 60
Kemarks	ring	Invert	G.L.	Flow	Velocity	uicii	Dia.		Total	ettach	Wastewat	Total	Each	nwater	Storm	Total	Each		perma	Longesi	Each	Total	Each	Pipe No.	ipe No.
	m	M	М	m3/sec	m/sec	%	mm	m3/sec	m3/sec	m3/sec	m3/sec			iec	m3/se	ha	ha		m3/sec/ha	m	m	ha	ha		
	300 857	-0529	600 880	03465	0900	140	⊙ 700	01442		446	01442					-				1738	1737	7940	7940		W 1-11
	856	-0629	430	04581	d911	f20	800	(B015	2000	-	03015					1				3547	1808	16600	8660		W 1-12
	454 772	-4005 -4291	430 520	24115	F128	070	1650	17748		1	17748									5199	380	97720	3210		W 1-13
	1048	-7425 -7597	920 410	40278	1282	T.	⊙ 2000				30034							-		5472	216	165370			W 1-26
											1			T					1 1						
	+-										1					-									
															1										
	1				1										l										
										+												-			
																		-							
											i														
															1			1							
															1			1							

Source: JICA Study Team

Figure H.4 Layout Plan of Trunk Main, W2 Sewerage Zone

Table H.4 Flow Calculation of Trunk Main, W2 Sewerage Zone (1/3)

Flow Calculation	n W2	P 1

		Drainag	e Area	Len	gth		Ston	nwater R	moff		Sanli	tary W	/astewa	ter	Other				Des	sign Sew	er Pipe				
Nos No	Lower	Engle	Total	Each	Longest	Rainfall per ha		Cover	sion Area	Stormwate		Pop	ulation	Wastewat	a Cuch	Total	TOTAL	Dia.	Gra- dient	Velocity	Flour	GL	Invert	Cove-	Remarks
ape No	Lower Pipe No.	Each	Total	Each	Longest	Įa. m		Each	Total	Storiuwaik	E	Each	Total	Wastewar	eleach	Total		Dia.	3333	Vetocity	Flow	Q.L.	Inven	ring	11511100 115
		ha	ha	m	m	m3/sec/ha	- 1	ha	- bis -	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	960	m/sec	m3/sec	М	М	m	
W2-2	W2-3	5750	5750	1478	1478		1	1		1				00585	-		00585	450	230	0860	01367	2350 1560		123	
							1								-										
W2-1								H					Ħ						+			1920	15338		
W 4-1		15950	15950	1457	1457		i	1	- 1					01622	1		01622	⊙ 700	140	0900	03465	1360			
W2-3		14740	36440	1029	2507									03705			03705	900	110	0944	06004	1560 530			
W2-4	W 2-11	9620	46060	1343	3850								П	0 1683	1		04683	⊙ 1000	100	0965	07582	450			
		3420	40000	4343	36311		-	H						11003	1		1	1000	-	4940	17302			400	
		-	- 1				1	1	-	1	-	-	ш	+	+	+	1		-	1	1	1530	11214	344	
W2-5		9120	9120	1068	1068		1	1						00927			00927	⊙ 600	160	d869	02456	880			
W2-6	W2-9		- 1				1		1	1				17							10	\$80			
		4380	13500	648	1716	+1-	1	+		1	\dashv	\dashv		01373	+	H	01373	⊙ 700	140	0900	03465	450	0742	300	
		1				1	i		- }-					1	1				- 6			1			
W2-8	W2-9	3850	3850	997	997									00391	+++		00391	400	260	Q845	q1062	1440 450		1	
						- 1								4											
W2-7							1				-	1			+				-			870			
11.427		7730	7730	830	830		1	1		1		_		00786	-!-		00786	⊙ 500	300	d860	01689	450		-	
W2+9	W 2-11	3.970	28650	663	2379		-			1				02913			02913	800	1 20	d911	04581	450			
														3											
W 2-10		7090	2000	1500	1600	- 3 - 1	-							obaa.			(1)77	0 60	100	deca	dices	470	-2343		
		7000	70(90	1599	1599		+	1	+	1	+	+	-	00721	-		00721	⊙ 500	200	d860	d1689	450		-	
2-11			81800	192	4042		3							08318	1	-	08318	1350	080	1055	15096	450			

2

Flow Calculation W2

Wastewater unit flow per ha: 0.00101682m3/sec fra-

		Drainag	e Area	Len	gth		Ston	nwater Re	unoff		San	itary W	astewat	er	Others		117		Des	ign Sew	er Pipe				
ipe No	Lower Pipe No.	Each	Total	Each	Longest	Rainfall per ha		Cover	Total	Stormwate	r	Pop	ulation Total	Wastewar	eÆach	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove- ring	Remarks
		ba	ha	m	m	m3/sec/ha		ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	960	m/sec	m3/sec	М	М	m	
W 2-12		16400	98200	1759	5801									09985			09985	1350	080	055	15096	450 500			
W 2-13	W 2-32	9860	108060	862	6663									10988			10988	⊙ 1500	(70	\$058	18702	500 540			
W 2-15	W 2-16	17360	17360	1185	1185									01765			01765	① 700	640	d900	03465	1040	6642 4767		
																		7,40							
W 2-14		22360	22360	1164	1164									02274			02274	⊙ 700	140	0900	03465	2220 960	5842	300	
W 2-16		10470	50190	1320	2505									05103			05103	1100	d90	d976	09274	960 130		309	
W 2-17	W 2-20	1010	51200	556	3061									05206			05206	⊙ 1100	090	0976	09274	730 670	2999 2439		
263																						1590	11924	333	
W 2-18	W 2-20	8620	8620	1881	1881				-					00876			0876	⊙ 600	160	d869	¢2456	670			
W 2-19		17240	17240	1402	1402									01753			01753	© 700	(40	d900	d3465	790 670	4142		
W 2-20	W 2-24	2730	79790		3736									08113				7001350	080	-	15096	670 560	1248	400	
										i									1	-					
W 2-22	W 2-23	2730	2730	1096	1096									00278			00278	⊙ 300	300	d974	d0689	660 540	5291 1727		
				_		4				1									1						

W 2-28

W 2-29

W 2-27

2-30

W 2-31

W 2-32 W 2-30

W 2-30

8270

5600

4450

3060

3060

2500

8270

5600

4450

21.780

125060

235620

849 849

735 735

523 523

468 5191

492 1341

470 7133

 α 1 1.4. 670

																			Wa	stewater u	mit flow pe	rha: 0,001	01682m3	mc/lo
Pipe No.	Lower Pipe No.	Drainage Area		Length		Stormwater Runoff					Sanitary Wastewater			Others			Design Sewer Pipe							
		Each ha	Total ha	Each m	Longest	Rainfa per ha	1	Coversion Area			Population				Sec. 3.3	TOTAL		Gra-			-		Cove-	Kennirks
						jer in		Each	Total	m3/sec		Total	m3/sec		Total m3/sec	m3/sec	Dia.	dient	Velocity m/sec	m3/sec	G.L.	Invert	ring	Walling S
						m3/sec/ha	131	ba	ha									%					m	
W 2-21	-	6780	6780	1073	1073			1			11		00689			00689	⊙ 500	200	0860	01689	1230 540			
W 2-23													-	1							540	0927	329	
w	w	1690	11200	416	1512	-		11		H			01139			Q1139	⊙ 1100	d90	d976	09274	\$60 \$60			
2-24	2-26	670	91660	135	3875	++		+			-	-	09320			09320	○ 1350	080	1055	15096	500	0151	340	
w		-	-				H	+	1					1		1		+	+	1	490	3412	100	
2-25		5330	5330	787	787	- 1			1				00542			00542	450	230	d860	d1367	500	1,406	311	
W 2-26	W 2-31	3630	100620	848	4723								10231		-	10231	1500	070	3058	18702	450			

00841

00569

00452

02174

12716

23958

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

450 450

450

00841 ① 500

00569 3 450

00452 ① 400

Ø2174 ⊙ 700

12716 ① 1650

23958 ① 1800

200

230

260

140

070

070

0860 01689

q860 q1367

d845 d1062

q900 q3465

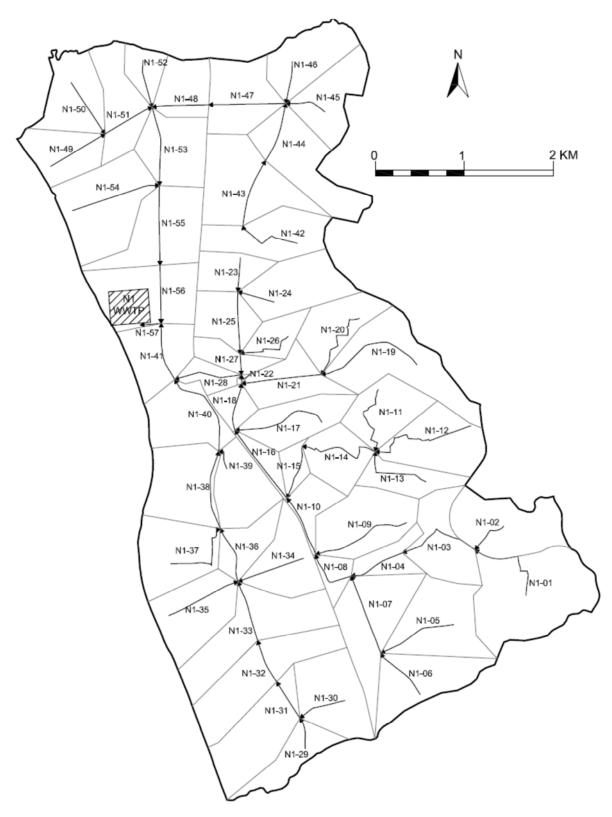
1128 24115

£195 30412

0958 -0903 300

3312 1442 100

3865 2387 -1,103 -1873 -2823 -3190 -6166 -6536


486

257

100

68

485

Source: JICA Study Team

Figure H.5 Layout Plan of Trunk Main, N1 Sewerage Zone

Table H.5 Flow Calculation of Trunk Main, N1 Sewerage Zone (1/6)

Flow Cal	culation N1					<u>p</u> 1
					Wastewater unit flow per fu	u 0.00058181m3/sap his
Pholosopy Ages	Laureth	Standard Barrett	Series West and	Others	Desire Same No.	

		Drainag	ge Area	Len	gth		Ston	nwater R	unoff		Sanita	ry Was	stewati	er	Other	5			Des	ign Sew	er Pipe				
	Lower	Just 1				Rainfall		Cover	sion Area		T. L	Popula					TOTAL	Lin	Gra-					Cove-	Reminks
ipe No	Lower Pipe No.	Each	Total	Each	Longest .	per ha		Each	Total	Stormwater		ich Te	otal	Wastewat	etEach	Total		Dia.	dient	Velocity	Flow	GL	Invert	ring	Kemaks
		ha	ha	m	m	m3/sec/ha		ha	hrt	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	%	m/sec	m3/sec	М	М	m	
NI-I	N1-3	12940	12940	1035	1036									00753			00753	⊙ 500	200	0860	01689	1460 1820			
N1-2		8010	8010	445	446		-	1						00466			00466	⊙ 400	360	0845	01062	1640 1820	13708	406	
N1-3		5860	26810	981	2018		-							01560			01560	⊙ 700	40	d900	03465	1820 1330	7040	550	
NI-4		2560	29370	645	2663	İ	1							01709		-	01709	⊙ 700	140	d900	03465	1330 980	9997	305	
N1-5	NI+7	8040	37410	901	3565		1							02177			02177	⊙ 700	140	0900	03465	980 880	3977 4537		
												4				1								++	
N1-6		6680	6680	651	651			1			4			00389		ļį.	00389	⊙ 400	260	0845	01062	1750 880	7365	100	
N1-7		8400	52490	934	4499		-							03054			03054	⊙ 800	120	6911	04581	1460	3137	1060	
N1-8	N 1-10	1630	54120	603	5103	+1-		H						03149			03149	⊙ 900	1 10	0944	06004	1480		857	
N1-9		7590	7590	1125	1126									00442			00442	⊙ 400	160	d845	d1062	1610	h		
N 1-10	N 1-16	2640	64350	719	7.77									03744		1	03744	⊙ 900			06004	1480	2232	859	
N 1-12	N 1-14	6970	6970	1296	1296					1				00406			00406	⊙ 400	260	Q845	01062	1690			
							-		- {	1				1	1	į	1					4		++-	

Table H.5 Flow Calculation of Trunk Main, N1 Sewerage Zone (2/6)

		Drainag	e Area	Lei	igth	-	Ston	nwater Re	anoff		San	itary V	Vastewa	ter	Other	s			Des	sign Sew	er Pipe				
ina Na	Lower Pipe No.	Each	Total	Each	Longest	Rainfall per ha		Cover	sion Area	Stormwate		Pop	ulation	Wastewat	nd ach	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove-	Remarks
ipe No.	Pipe No.					1/1		Each	Total			liach	Total					200					1000	ring	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		ha	ha	m	m	m3/sec/ha	-	ha !	hii	m3/sec		_		m3/sec	m3/sec	m3/sec	m3/sec	mm	%0	m/sec	m3/sec	M	M	m L	
N 1-11	N 1-14	5360	5360	900	903	1 1	1		1					00312		1	00312	300	300	0974	00689	1600			
							-														1				
N							1												1			1750	15897		
1-13		3.980	3580	829	830	1	1	1	1					00208	1	1	00208	② 250	320	0891	00437	1070			
N 1-14		i	1	1071		1 1	1		1	1				1		1	1	~ 714	1	done	1	1070			
		4420	20330	1027	2324		+	-	-	1	-	-		01183	1	1	01183	⊙ 1100	d90	d976	09274	1470	-	1	-
N 1-15		1490	21820	623	2946		1							01270			01270	© 1100	990	0976	09274	1010		-ll	
N.	N					4	1		1					1		1			1		1	1010	g100		
1-16	1-18	1600	87770	963	6785	1	1							05107		1	05107	1100	090	0976	09274	770	0112	640	
		1					-												1					++-	
N 1-17		5360	5360	1082	1082		-							00312			00312	300	300	0974	00689	1d60 270			
N	Ň				- 1		Ť														1	270			
1-18	1-22	1860	94990	543	7328	1	1		- 1	1				05527		1	05527	1100	d90	6976	09274	430	-0456		
									1						1	1				1				+	
N-	N		1				1		1	1					1					1	1	1630	14632	118	
1-19	1-21	10160	10160	1283	1283	1	1	4	1	1-1				00591	1	1	00591	450	230	0860	01367	1010	8612	100	
		į	1				-		1	1						1					1				
N.					17.1		-														1	1410			
1-20		5130	5130	954	954		+	1	1	1				00298	1	1	00298	⊙ 300	300	Q974	00689	1010	-		
N 1-21		4720	20010	901	2185	1	1	1	1					01164	1		01164	1100	090	6976	09274	1010		328 300	
N.	N	-					1			1						1	1				1	130			
1-22	1-28	1,00	115100	-98	7426		-		- 1	1				06697	1	1	06697	① 1200	d90	(034	1,1696	420	-0645	655	

P

Wastewater unit flow per ha: 0.00058181m3/soc/ba

		Drainag	ge Area	Ler	ogth		Ston	nwater R	unoff		Sanit	ary W	Vastewa	ter	Others				Des	ign Sew	er Pipe				
ipe No	Lower Pipe No.	Each	Total	Each	Longest	Rainfall per ha		1000	rsion Area	Stormwater		- î	ulation	Wastewa	e/Each	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove-	Renurks
	Pipe No.					21 6		Each	Total	46.0	E	ach	Total	25-	366		25								
	1	ha	ha	m	-00.	m3/sec/ha	-	ha	ha	m3/sec	-			m3/sec	m3/sec	m3/sec	m3/sec	mm	Min	m/sec	m3/sec	М	M	m	
N 1-24	N 1-25	6710	6710	423	423					1				00390			00390	⊙ 400	360	0845	01062	1670		10000	
							1												1		1				
N		1	+				+	1		+	\pm			+	1				+	1	+	1070		(00)	
1-23		3290	3290	385	386	1 32	1	l i	- 1	i		_		00191	1	10	00191	250	320	0891	00437	960			
N 1-25	N 1-27	4060	14060	700	1124									00818	1		00818	⊙ 700	140	900	03465	960	Land Land		
							1								1				1						
N							i				1				1				1	1	1	1730	h	172	
1-26		2580	2580	675	676	1	1	- 1	- 1	1 1	-	-		00150	1	1	00150	250	320	0891	00437	790			
N 1-27		22/80	18920	236	1361		1							0,101			di 101	⊕ 700	\$40	d900	d3465	190			
N	N	- 1												45.					-1			120	-0795	654	
1-28	1-41	1820	135840	770	8197	-	+	+			+	+		07903	1	-	07903	⊕ 1350	q80	₹0.55	15096	970	-1513	976	
		1					Li.	Li.			4	-		1	1				1		1			100	
N 1-30	N 1-31	7060	7060	553	553			1						00411			00411	400	260	q845	d1062	620			
		1	1	249	223		İ											400	-	100	1				
N		+	-		-	++-	+	1			+	-		1	1	1	1		-		+	580	4491	100	
1-29		3850	3850	356	356		1	1						00224		1	00224	⊙ 300	300	d974	00689	670	3341	305	
N 1-31		77/60	18670	486	1040									01086			Q1086	⊙ 1100	090	0976	09274	670	2486	303 352	
N 1-32		8990												01609					1			760	1970	354	
-	77	8990	27660	515	1555		+	1	- 1	+++	-	-		01609	1	1	01609	① 1100	690	0976	09274	160		1 1	
N 1-33	N 1-36	95,90	37250	703	2259	4								02167			¢2167	⊙ 1100	d90	d976	09274	800		610	
		1					1													1	1			++-	

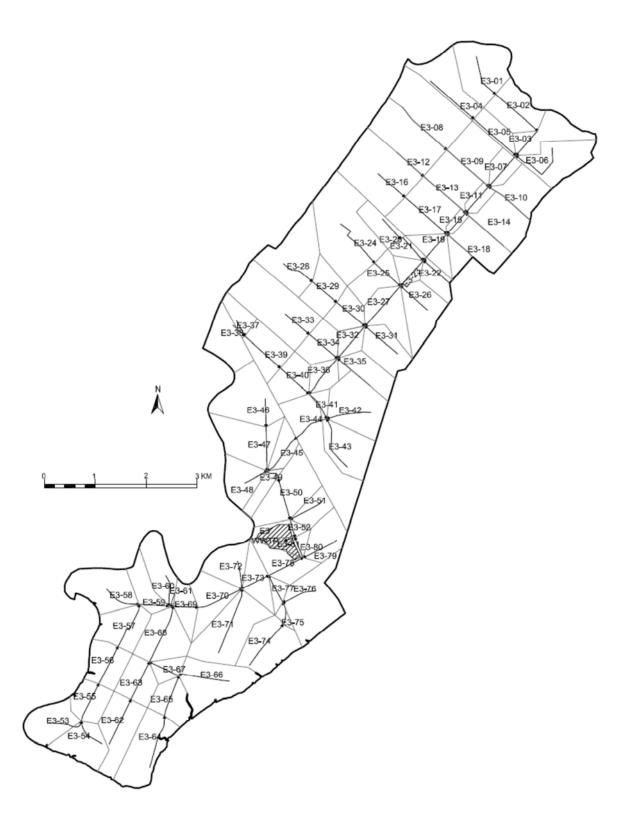
Table H.5 Flow Calculation of Trunk Main, N1 Sewerage Zone (4/6)

Flow Calculation N1	P 4

		Drainag	e Area	Len	gth			Ston	nwater R	moff		San	itary V	Vastewa	ter	Other				Des	sign Sew	er Pipe				
San No	Lower	Each	Total	Each	Longest		Rainfall per ha		Cover	sion Area	Stormwalk		Pop	ulation	Wastewa	u-Each	Total	TOTAL	Dia.	Gra- dient	Velocity	Flour	G.L.	Invert	Cove-	Remarks
ipe No	Lower Pipe No.	Each	Total	Each	Longest		151.100		Each	Total	Stutinwak		Each	Total	Wasicwa	ereacn	Total		137a.		Velocity	Flow	G.L.	inven	ring	1,000
		ha	ha	m	m	- 1	m3/sec/ha	_	ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	960	m/sec	m3/sec	М	М	m	
N 1-35	N 1-36	7050	7050	869	870			-							00410			00410	⊙ 400	260	0845	01062	620 800		528	
											1								-7.	i					++-	
N 1-34		5690	5690	779	780			-							00331			00331	⊙ 300	300	0974	00689	1040 800	6543	ţ01	
N 1-36	N 1-38	3490	53480	651	2910			1							03112			03112	1100	d90	d976	09274	910		612	
								1	1																	
N 1-37		7050	7050	953	954										00410			00410	400	260	0845	01062	910	4665 1943	672	
N 1-38	N 1-10	7130	67660	907	3817			-							03937			d3937	⊙ 1100	d90	d976	09274	910 690	-0932	191 664	
																					-					
N 1-39		5480	5480	258	259				16						00319			00319	⊙ 300	300	6974	00689	790 690	6535 5591		
N 1-40		5950	79090	1071	4888			-	1						04602		1	Q1602	⊙. 1100	d90	d976	09274	690 570	-2060	666	
N 1-41	N 1-57	5430	220360	668	8865										12821			12821	1650	070	1128	34115	170 480	-2610 -3138	d=	
							1	7																		
N 1-42		6950	6.950	743	743			1							00381			00381	⊙ 350	280	q802	00772	2d80 930	7918		
N 1-43		9370	15820	783	1527										00920			00920	⊙ 600	160	0869	02456	930 620		300	
N 1-44	N 1-17	7780	23600	692	2220					1					01373			¢1373	⊙ 700	(40	d900	¢3465	620			
							1	1		1																

Table H.5 Flow Calculation of Trunk Main, N1 Sewerage Zone (5/6)

Flow Calculation N1


5

		Drainag	e Area	Ler	igth		Ston	mwater R	unoff		Sanita	y Waste	water	Other	5			Des	ign Sew	er Pipe				
	Lower		1			Rainfall		Cover	sion Area			Populatie				TOTAL		Gra-					Cove-	no.
ipe No	Lower Pipe No.	Each	Total	Each	Longest	per ha		Each	Total	Storowake	Ea	ch Tota	Wastesva	terEach	Total	I I I	Dia.	dient	Velocity	Flow	G.L.	Invert	ring	Remarks
		ba	ha	m	m	m3/sec/ha		ba	ha	m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	mm	960	m/sec	m3/sec	М	М	m	
N 1-46	N 1-47	5750	5750	480	481								00335			00335	⊙ 300	300	0974	00689	630			
					12.1						11													
N 1-45		5970	5970	475	475		1						00324			00324	⊙ 300	300	0974	00689	870			
N 1-47		6320	41240	866			1						02399			02399	① 1100			09274	630	0950	416	
N 1-48	N 1-53	4080	45320	638			1						02637			02637	1100	1		09274	410	-0108	302	
															44444									
N 1-49	N 1-51	47,40	4740	713	713								00276			00276	⊙ 300	300	d974	00689	400 490			
-											4	-									200	1591	P00	
N 1-50		5860	5860	693	694		1		1				00341			00341	⊙ 300	300	0974	00689	290 390	-0668	326	
N 1-51	N 1-53	5620	16220	610	1323		1						00944			00944	⊕ 600	t60	d869	02456	390 350			
N 1-52		2320	2320	545	549								00135			00135	250	320	d891	00437	340 350	0243	300	
N 1-53	N 1-55	6050	69910	893	4619		1						04067			04067	1100	q90	976	09274	350 370			
							-												1	-				
N 1-54		9770	9770	1023	1023		1						00568			00568	450	230	d860	q1367	430	0200	301	
N 1-55		7890	87970	899	5519		1						05095		1	05095	1100	090	0976	09274	400	A		

Table H.5 Flow Calculation of Trunk Main, N1 Sewerage Zone (6/6)

Flow Calculation N1	P 6

Wastewater unit flow per ha: 0.00058181m3/acatrls Drainage Area Length Stormwater Runoff Sanitary Wastewater Others Design Sewer Pipe Rainfall Coversion Area TOTAL per ha Total dient Velocity Flow Remarks Each Total Each WastewaterEach G.L. Invert Longest Each Total Each Total m3/sec/ha m3/sec m3/sec m3/sec m3/sec m/sec m3/sec M ha m m 400 480 480 400 723 870 867 805 -4416 -5086 8370 95940 655 6174 06582 05582 ① 1100 -5636 N. 1-57 -5820 316300 235 9101 18403 18403 t128 24115 € 1650 **d70**

Source: JICA Study Team

Figure H.6 Layout Plan of Trunk Main, E3 Sewerage Zone

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (1/8)

Flow Calculation E3

Wastewater unit flow per ha: 0.00084595m3/soc/ha Drainage Area Stormwater Runoff Sanitary Wastewater Length Design Sewer Pipe Rainfall Coversion Area TOTAL Pipe No. Lower dient Velocity Flow Remarks per ha Dia. Each WastewaterEach Total Each Total Longest Invert ring Each Total Each Total m3/sec/ha m3/sec m3/sec m3/sec m3/sec m/sec m3/sec M 770 4050 E3-1 770 770 730 10920 10920 00924 00924 ① 600 2496 869 0869 02456 2396 455 E3-2 7550 18470 01562 d1562 (700 d900 d3465 0666 730 690 0646 590 E3-3 E3-7 6800 25370 02138 -0405 664 2627 140 0900 03465 790 730 6412 E3-4 7850 7850 1137 1138 00664 00664 · 450 230 0860 01367 3488 332 3338 331 E3-7 E3-5 11220 1095 2234 00949 1388 160 0869 02456 d90 3358 300 8850 8850 1239 1239 00749 00749 (F) 500 0635 200 0860 690 650 -0705 3-11 709 3080 48420 808 3435 04096 04096 🕤 1000 100 0965 07582 -1675 790 630 4250 300 E3-8 12650 2072 12650 1210 1211 01070 01070 💿 600 0869 650 7040 19690 1096 2307 01666 d1666 🕥 700 \$40 d900 d3465 0242 550 4412 430 6290 6290 1050 00532 ① 450 1717 230 0860 01367 -1875 540 3-15 668 1980 76380 688 4124 06461 06461 ① 1200 090 (034 1,1696 -2575

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (2/8)

		Drainag	a Arad	Len	orth			nwater Ri	make .		Pani	itary Wa		i dia	Other				Des	lan Con	as Dias				
	- " P	Drainag	e Area	Lei	igui	Rainfall	Ston				San			ier	Other	1			Gra-	agn Sew	er Pipe				
ipe No	Lower Pipe No.	Each	Total	Each	Longest	per ha		Each	Total	Stomware		Each 7	fation Fotal	Wastewat	eÆach	Total	TOTAL	Dia.		Velocity	Flow	G.L.	Invert	Cove- ring	Remuchs
		ha	ha	m	m	m3/sec/ha		ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	%0	m/sec	m3/sec	М	М	m	
E 3-12	- 1.	11070	11070	706	706				- 1			T		00936	-		00936	⊙ 600	160	0869	02456	750 630		301 308	
E 3-13	E 3-15	7060	181/30	1096								T		01534	1	1	Ø1534	O 700	1	1	¢3465	630	3473		
		7460	10.00	1000	7002		1					\forall		1			1	2 700		1	1				
E 3-14		7820	7820	997	997							T		00662			00662	⊙ 450	130	d860	d1367	650	5012 2455		
E 3-15	E 3-19	1120	103450	556								T		08751				4301350		1	15096	\$40 \$70	-2725	667	
							İ					1						7,500			1				
E 3-16		15800	15800	707	7 708		1		1					0(1337			di 337	⊙ 700	140	d900	03465	150	3716	303	
E. 3-17	E 3-19	10600	26400	1094						П		T		02233			02233	⊙ 700			03465	d30	2522	302	
												T													
E 3-18		6540	6540	994	994									00553			00553	⊙ 450	230	q860	(1367	680 570			
E 3-19	E 3-23	4050	140440	692								T	Ī	11881				O 1500			18702	170 120	-3379	7,47	
												T													
E 3-20		3880	3880	541	541		1						T	09328			00328	⊙ 300	300	0974	00689	630 560			
E 3-21	E 3-23	1960	5840	541	1082		1000		1					00494			00494	⊙ 400			d1062	360 520	3128	204	
Ξ							-																		
E 3-22	- 1.	3220	3220	683	683		-							00272			00272	300	300	0974	00689	320 320	2891 1660	100 323	

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (3/8)

Flow Calculation	E3	P 3
------------------	----	-----

		Drainag	ge Area	Len	igth		Stom	water R	unoff		Sanitar	Wastewa	iter	Other	s			Des	ign Sew	er Pipe				
	Lower	16[Rainful)		Cover	sion Area			opulation				TOTAL		Gm-					Cove-	6.0
ipe No.	Lower Pipe No.	Each	Total	Each	Longest	per ha		Each	Total	Stormwater		h Total	Wistewn	erEach	Total	M. T	Dia.	dient	Velocity	Flow	G1.	Invert	ring	Remark
		ha	ha	m	m	m3/sec/ha		ha	ha	m3/sec			m3/sec	m3/sec	m3/sec	m3/sec	mm	%	m/sec	m3/sec	М	М	m	
E 3-23	E 3-27	260	10000		7010	-		1				1	, have		1	lanc)	~	1	1.00	Inc	320 580			
2-62	2561	2560	152060	677	6049		+	1	-	+++	-	+	12864	+	+	12864	⊙ 1650	070	1128	24115	380	-4629	866	
							1	-1							1					1				
E 3-24	-							1								11				İ	600	2542	300 448	
E	E	19530	19930	1118	1119	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	+	-	-	+++	-	+	01652	+	1	01652	⊙ 700	140	0900	03465	600	_		
3-25	3-27	5550	25080	683	1803		3		1				02122	1	11	02122	O 700	140	0900	d3465	580		538	
							1		- 1				-	1										
E 3-26		8020	8020	708	708								00678		Ħ	00678	⊙ -450	230	0860	01367	300			
E	E	5020	1	100	100		1			1			1	1		1	0. 450	1	1	1	380			
3-27	3-32	7050	1922 10	1053	7103		1	1		1	_	_	16260	+		16260	① 1650	d70	1128	24115	640	-5487	1012	
						1	7004									1								
E 3-28	1	12310	12310	689	690								01041			01041	⊙ 600	160	0869	02456	690	2650 1424		
E									1						1						690			
3-29		6040	18350	625	1315		+	-1				-	01552	1	-	Q1552	⊙ 700	t40	(900)	03465	620 620			
E 3-30	3-32	4510	22860	725	2040								01934			01934	· 700	140	0900	03465	640		513 649	
															1	1				1				
E 3-31		6390	6390	844	845								00541		1	00541	450	230	9860	01367	730 640	5812		
E 3-32	E 3-36	2570	224030	832	7935		-						18952			18952	⊙ 1650	070	1128	24115	940	-9507	1014	
				0,72			1									1	1000	-		1				
E 3-33		15600	15600	619	619		İ						01320	1		01320	⊙ 700	-	0900		620	2842 1854	300	

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (4/8)

Flow Calculation E3

Wastewater unit flow per ha: 0.00084595m3/mm/h. Drainage Area Sanitary Wastewater Length Stormwater Runoff Others Design Sewer Pipe Rainfall Coversion Area TOTAL Coveper ha dient Velocity Flow Remarks Total Pipe No. Each Total Each Longest WastewalerEach Invert Each Total Each Total m3/sec m3/sec m3/sec m3/sec m/sec m3/sec M m ha ha m m m3/sec/ha ha tus m3/sec War. M 1834 3-36 01751 0670 497 20700 729 1349 140 0900 650 5065 100 3-35 5490 2651 844 00464 00464 0845 01062 5490 400 260 -6322 1080 3-41 3-36 -7032 1141 3220 253440 898 8834 21440 21440 1800 070 (195 30412 630 4991 100 3-39 2850 352 00241 3856 2850 00241 300 0974 00689 650 680 5012 3-38 6960 6960 323 323 00589 230 0860 01367 4187 450 2612 3-39 6690 16500 931 1284 01396 1100 0976 650 1652 1632 630 5850 0976 0854 426 22350 755 2040 01891 C[1891 090 C19274 630 -7052 1143 E 3-44 3-41 1320 612 9447 -7540 1291 277110 26442 23442 ① 1800 1195 070 30412 730 3-43 3-44 8,210 1230 8110 1102 1102 00686 200 0860 610 730 2450 0885 577 3-42 10920 10920 878 00924 00924 d869 (2456 600 160 -7740 1290 3-44 14640 310780 26290 1282 -8336 1299 764 10211 26290 070 ⊙ 2000

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (5/8)

Flow Calculation	E3		p 5

		Drainag	ge Area	Ler	gth		Stormw	ater Run	off		Sanit	ary W	astewa	ter	Other	s			Des	ign Sew	er Pipe				
	Lower					Rainfall		Coversio	on Area			Pop	ulation		5.1		TOTAL		Gm-					Cove-	43-4
ipe No	Lower Pipe No.	Each	Total	Each	1.ongest	per ha	fü	ach	Total	Stormwate		ach	Total	Wastewar	etEach	Total		Dia.	dient	Velocity	Flow	G.L.	Invert	ring	Remarks
		ha	ha	m	m	m3/sec/ha		ha	ha	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	%0	m/sec	m3/sec	M	М	m	
E 3-45	E 3-49	3400	314180	846	11058									26578			26578	⊙ 2000	070	1282	40278	480 760		1301 1449	
											21														
8 3-46		11310	11310	564	565									00957			00957	⊙ 600	160	q869	02456		1845	431	
E 3-47	E 3-49	9550	20860	865	1430			-						01765			01765	700	140	d900	03465	680 760			
			19			i	i							1											
E 3-48		5720	5720	498	499									00484		1	00484	400	260	0845	01062	1		212	
E 3-49		2550	343310	376	11434		1							29042	1	1	29042	2000	d70	1282	40278	-	-9335	1451	
E 3-50	E 3-52	10990	354300	773	12208			1	1					29972	-		29972	⊙ 2000	070	1282	40278	700	-9355 -9955	1441	
E 3-51		3530	3530	75)	751									00299			00299	⊙ 300	300	d974	00689	700			
E 3-52	E 3-81	3050	360880	358	12567									30529			30529	⊙ 2000	070	1282	40278	700			
																1			1					-1-	
B 3-53	E 3-55	6800	6800	726	721		1		-					00575			00575	⊙ 450	230	q860	01367	\$80 \$80			
							1												-			660	\$112	600	
E 3-54		6960	6960	645	645				-					00589			00589	⊙ 450	230	d860	d1367	\$80	3468	\$84	
E 3-55		6340	20100	812	1533									01700	-		01700	⊙ 700	140	0900	03465	480 390	2042 0748		

2560

9290

3-62

29400

9290

644 2169

975

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (6/8)

Flow Calculation E3

Wastewater unit flow per ha: 0.00084595m3/sex.ba-

-0081 612 -0977

1558 300

-0472 553

631

Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City
Vol VI Sewerage and Drainage System Master Plan, Appendix

Drainage Area Length Stormwater Runoff Sanitary Wastewater Others Design Sewer Pipe Rainfall Population Coversion Area TOTAL Pipe No. Lower Covedient Velocity Flow Remarks Dia. Each Total Each Wasteware/Each Total G.L. Inven Longest Each Total m3/sec/ha ha m3/sec m3/sec m3/sec m3/sec m/sec m3/sec m m 0728 441 7110 27210 829 2362 02302 02302 ① 700 0900 03465 -0594 634 -0694 3-59 3-57 -2064 800 7110 34320 988 3351 02903 800 \$20 d911 d4581 3758 300 9640 9640 00815 ① 500 2130 413 743 743 00815 200 0860 01689 -2264 798 -2952 847 3-59 3-61 01100 ① 1000 4510 48470 586 3937 01100 100 0965 07582 4712 600 3111 300 6430 6430 626 627 00544 00544 ① 450 230 d860 d1367 -2972 849 -3288 861 3-69 3-61 050 54950 276 4213 04648 04648 ① 1000 100 0965 07582 2750 300 0834 492 10450 10-250 1071 1072 00884 00884 600 **Q869** 640 0734 491 3-65 3-67 5450 15900 01345 ① 700 0900 03465 0019 612 453 1525 01345 140 4150 300 10940 2323 10940 1016 1016 00925 600 0869 02456

02487

00786

02487 ③ 800

120

0911 04581

0860

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (7/8)

Flow Calculation E3

Wastewater unit flow per ha: 0.00084595m3/sachia

		Drainag	e Area	Len	igth		Stor	mwater R	unoff		Sau	itary V	Vastewa	ter	Others	5			Des	ign Sew	er Pipe				
ipe No.	Lower Pipe No.	Each	Total	Each	Longest	Rainfall per ha		Cover	Total	Stormwater	r	Pop Each	Total	Wastewa	e/Each	Total	TOTAL	Dia.	Gra- dient	Velocity	Flow	G.L.	Invert	Cove-	Remarks
		ha	ha	m	tti	m3/sec/ha		ha	ha	m3/sec			47	m3/sec	m3/sec	m3/sec	m3/sec	mm	%0	m/sec	m3/sec	М	M	m	
E 3-63		5700	14990	827	1802		1							01268			01268	⊙ 700	140	0900	03465	560 620	-0672 -1993	\$51 344	
E 3-68		8450	52850	1202	3372						Ш			04471			04471	1000	100	0965	07582	620 640	-3293 -3742	741 906	
E 3-69		3670	111470	484	4697		-							09430	-		09430	⊙ 1350	080	1055	15096	640 710	-4540	1019	
E 3-70	E 3-73	6900	1183/70	943	5641									10014			10014	1350	dso	1055	15096	710 170	-9560 -5436	1021	
			1				01000	li	1	1									1	-					
E 3-71	E 3-73	12760	12760	1352	1352									01079			01079	600	160	0869	02456	400 770	2350 -0079		
							-														1				
E 3-72		5740	57,40	556	556		-			1				00486			00486	400	260	0845	01062	490 770	5465 3877	339	
E 3-73	E 3-78	4830	141700	587	6229									1987			11987	1500	070	1058	18702	770 710	-9586 -6058	1167	
							1																		
E 3-74		9560	9960	1047	1047									00809			00809	⊙ 500	300	0860	01689	720 800	3658 1367	300	
E 3-75	E. 3-77	860	10420	453	(50)									00881			0088	600	160	d869	02456	800 670	1267 0462	608 359	
							1													*****					
E 3-76		12640	12640	702	702									01069			01069	600	160	0869	02456	720 670	3550 2290		
E 3-77		1660	24720	600	2101		1							02091		7	(209)	⊙ 700	140	d900	¢3465	670 710	-0598		
E 3-78	E 3-80	5830	172250	759	5988		-							14571			1457	· 1650	070	1128	24115	710 750	-6208 -6800		

Table H.6 Flow Calculation of Trunk Main, E3 Sewerage Zone (8/8)

		Drainag	e Area	Len	gth		Ston	nwater R	moff		San	itary \	Vastewa	ter	Others	k			Des	ign Sev	ver Pipe				
	Lower	i.ai	2000			Rainfall		Cover	sion Area			Pop	oulation		277		TOTAL		Gra-		5-			Cove-	Remarks
ipe No	Lower Pipe No.	Each	Total	Each	Longest.	per ha		Each	Total	Stormwat	cr	Each	Total	Wastewa	eEach	Total		Dia.	dient	Velocit	Flow	GL	Invert	ring	Kemarka
		ha	bπ	m	m	m3/sec/ha		ha	Ìια	m3/sec				m3/sec	m3/sec	m3/sec	m3/sec	mm	Sec	m/sec	m3/sec	М	М	m	
			1				4													1					
L 3-79		5920	59/20	743	743									00501			00501	400	260	Q845	d1062	700 750	5565 3454		
E 3-80		2750	180920	437	7426									15305			15305	1650	-	1	1	750	-6820 -7166	1255 1260	
E 3-81			541800	216	12783									45834	77.77		45834	⊇ 2400	1	1448		720	-10647 -10819	1527	
							*****										1	21	-						
							1			111				-										++-	
							-				-														
							-																		
			i											7							1				
							-																		
									1	1									1	1					

The Project for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City Vol VI Sewerage and Drainage System Master Plan, Appendix

I. DESIGN CALCULATION OF WWTP

Table I.1 Design Calculation of C1 WWTP (1/16)

1 BASIC CONDITIONS

1-1 Basic Items

(1) Name : C1 WWTP

(2) Land Area : Approximately xxxx ha

(3) Ground Level (Elevation: + 4.50 m

(4) Inlet Pipe Invert Level : - 6.80 m

(5) Pipe Diameter : 1,500 mm

(6) Land Use : -

(7) Collection System : Combined System

Separate System

(8) Treatment Process : Conventional Activated Sludge Process

(9) Effluent Point : Yangon River

(10) Water Level at the Effluent Poir:

High water leve = 3.70 m Low water leve = - m

(11) Target Year : 2020 (F/S Stage)

2040 (M/P Stage)

1-2 Service Area and Design Population

(1) Service Area : 499 ha

(2) Design Population

Item		Year 2020	Year 2040
Design Population	person	-	178,000

Table I.1 Design Calculation of C1 WWTP (2/16)

1-3 Design Sewage Flow

(Year 2020)

Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec
Maximum Daily Flow		0.0	0.00	0.000
Maximum Hourly Flow	0	0.0	0.00	0.000
(Year 2040)				
Item	m ³ /day	m ³ /hr	m ³ /min	m ³ /sec
Maximum Daily Flow	70,200	2,925.0	48.75	0.813
Maximum Hourly Flow	102,900	4,287.5	71.46	1.191

1-4 Design Sewage Quality

Item	BOD	SS	T-N	Coli-group	Oil&Greese
пеш	(mg/l)	(mg/l)	(mg/l)	(MPN/cm ³)	(mg/l)
Influent	200	180	-	-	-
Effluent	20	30	-	3,000	5

1-5 Process Flow Diagram

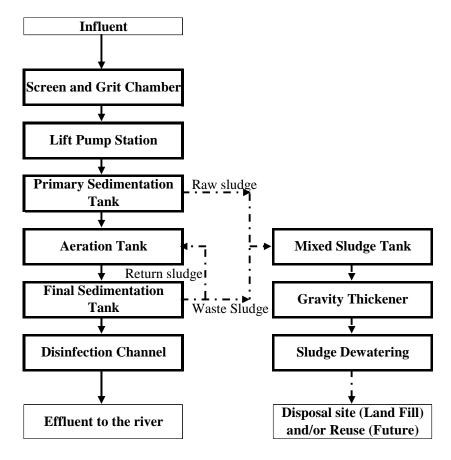


Table I.1 Design Calculation of C1 WWTP (3/16)

1.6 Design Criteria

	ITEMS	UNIT	Formula or Value	Application
1	Grit Chamber (For Maximum Hourly Fl	ow)		
(1)	Hydraulic Load	$m^3/m^2/day$	1,800	1,800
(2)	Average Velocity	m/sec	0.3	0.3
2	Primary Sedimentation Tank (For Maxin	num Daily Flo	ow)	
(1)	Hydraulic Load	$m^3/m^2/day$	35.0-70.0	50
(2)	Settling Time (Ref.)	hour	1.5	1.5
(3)	Water Depth	m	2.5-4.0	3.5
(4)	Weir Loading	m ³ /m/day	250	250
3	Aeration Tank (For Maximum Daily Flo	ow)		
(1)	Hydraulic Retention Time (HRT)	hour	6 - 8	6.0
(2)	MLSS Concentration	mg/l	1,500 -2,000	2,000
(3)	BOD-SS Load (Reference only)	kg/kg/day	0.2 - 0.4	-
4	Final Sedimentation Tank (For Maximus	m Daily Flow)		
(1)	Hydraulic Load	$m^3/m^2/day$	20.0-30.0	25
(2)	Settling Time (Ref.)	hour	3.0-4.0	-
(3)	Water Depth	m	2.5-4.0	3.5
(4)	Weir Loading	m ³ /m/day	150	150
5	Disinfection Tank (For Maximum Daily	Flow)		
(1)	Retention (Chlorination) Time	min	15	15
6	Gravity Thickener (For Maximum Daily			
(1)	Solids Loading	kg/m ² /day	60-90	75
(2)	Water Depth	m		4.0

Table I.1 Design Calculation of C1 WWTP (4/16)

2 CAPACITY CALCULATION

2-1 Grit Chamber

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Parallel Flow Type		
Design Sewage Flow	Q1	m³/day			102,900
(Maximum Hourly Flow)	Q2	m ³ /sec			1.191
Water Surface Load	WSL	m ³ /m ² /day			1,800
Required Surface Area	RSA	m ²	Q1/WSL		57.17
Basin Number	BN	basin			4
Average Velocity	AV	m/sec			0.3
Depth	Н	m			0.9
Width	W1	m	Q2/(AV×H×BN)		1.10
Therefore	W2	m			1.1
Length	L1	m	RSA/(W2×BN)		12.99
Therefore	L2	m			13.0
Dimension (Width)	W	m			1.1
(Jength)	L	m	L2		13.0
(Depth)	Н	m	Н		0.90
(Basin Number)	N	basin			4
(Check)					
Water Surface Load		m ³ /m ² /day	Q1/(W×L×N)		1,799
Average Velocity		m/sec	Q2/(W×H×N)		0.301

2-2 Lift Pump Station

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Vertical shaft Volute ty	pe mixed flo	ow pump
Design Sewage Flow	Q1	m ³ /min	Peak Flow		71.46
Pump Unit -1 Number	UN1	unit	including 1 stand-by		4
Discharge per Unit	DU1	m³/min	Q1/UN1		23.82
Pump Diameter(V=1.5~3.0m/s	D1	mm	$146 \times (DU1/1.5 \sim 3.0)^{0.5}$		411 ~582
Therefore	D1	mm			500

Table I.1 Design Calculation of C1 WWTP (5/16)

2-3 Primary Sedimentation Tank

(1) Existing

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Parallel Flow Type	1/5	141/1
Design Sewage Flow	Q1	m³/day	1 maior 1 10 to 1 1 pc		20,000
(Maximum Daily Flow)	Q1 Q2	m ³ /hr			833.3
Basin Number	BN	basin			2
Hydraulic Load	HL	m ³ /m ² /day			50.0
Required Surface Area	Al	m ²	Q1/HL		400
required Surface Trica	A2	m²/basin	A1/BN		200
Width	W1	m	3.0m~4.0m, Max5.0m		7.3
Length	L1	m	A2/W1		27.40
Therefore	L2	m	**************************************		27.4
Water Depth	WD	m			3.7
water 2 op ar	2	***			517
Overflow Weir Load	OWL	m³/m/day			250
Required Weir Length	WL1	m/basin	Q1/(BN×OWL)		40.00
Therefore	WL2	m/basin	,		40.0
Dimension (Width)	W	m			7.3
(Depth)	D	m			3.7
(Length)	L	m			27.4
(Basin Number)	N	basin			2
(Check)					
Hydraulic Load	HL	m³/m²/day	Q1/(N×W×L)		50.00
Retention(Settling) Time	T	hour	(N×W×D×L)/Q2		1.75
Overflow Weir Load	OWL	m³/m/day	Q1/(N×WL2)		250.00

Table I.1 Design Calculation of C1 WWTP (6/16)

Continuing Primary Sedimentation Tank

(2) Proposed-1

Item		Sign	Unit	Calculation	F/S	M/P
Туре		-	-	Parallel Flow Type		
Design Sewage Flow		Q1	m ³ /day			25,400
(Maximum Daily Flow)		Q2	m³/hr			1,058.3
Basin Number		BN	basin			6
Hydraulic Load		HL	m ³ /m ² /day			50.0
Required Surface Are	a	A1	m^2	Q1/HL		508
		A2	m²/basin	A1/BN		85
Width		W1	m	3.0m~4.0m, Max5.0m		3.5
Length		L1	m	A2/W1		24.19
The	erefore	L2	m			24.0
Water Depth		WD	m			3.0
Overflow Weir Load		OWL	m³/m/day			250
Required Weir Length		WL1	m/basin	Q1/(BN×OWL)		16.93
The	erefore	WL2	m/basin			17.0
	Width)	W	m			3.5
	Depth)	D	m			3.0
	ength)	L	m			24.0
(Basin Nu	ımber)	N	basin			6
(Check)			17			
Hydraulic Load		HL		Q1/(N×W×L)		50.40
Retention(Settling) Tim	ie	T	hour	(N×W×D×L)/Q2		1.43
Overflow Weir Load		OWL	m³/m/day	Q1/(N×WL2)		249.02

Table I.1 Design Calculation of C1 WWTP (7/16)

Continuing Primary Sedimentation Tank

(3) Proposed-2

Item	Sign	Unit	Calculation	F/S	M/P
Туре		-	Parallel Flow Type	1,0	1,2,2
Design Sewage Flow	Q1	m³/day			24,800
(Maximum Daily Flow)	Q2	m³/hr		_	1,033.3
Basin Number	BN	basin			4
Hydraulic Load	HL	m ³ /m ² /day			50.0
Required Surface Area	Al	m ²	Q1/HL		496
required surface Thea	A2	m²/basin	A1/BN		124
Width	W1	m	3.0m~4.0m, Max5.0m		5.8
Length	L1	m	A2/W1		21.38
Therefore	L2	m			21.5
Water Depth	WD	m			3.0
· · · · · · · · · · · · · · · · · · ·	2				2.0
Overflow Weir Load	OWL	m³/m/day			250
Required Weir Length	WL1	m/basin	Q1/(BN×OWL)		24.80
Therefore		m/basin	,		25.0
V					
Dimension (Width)	W	m			5.8
(Depth)		m			3.0
(Length)	L	m			21.5
(Basin Number)		basin			4
(Check)					
Hydraulic Load	HL	m³/m²/day	Q1/(N×W×L)		49.72
Retention(Settling) Time	T	hour	(N×W×D×L)/Q2		1.45
Overflow Weir Load	OWL	m³/m/day	Q1/(N×WL2)		248.00

Table I.1 Design Calculation of C1 WWTP (8/16)

2-4 Aeration Tank

(1) Existing

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Multi-tank Complete mixing		1,2,1
Design Sewage Flow	Q1	m³/day			45,400
(Maximum Daily Flow)	Q2	m ³ /hr			1,891.7
Hydraulic Retention Time	HRT	hr			6.0
Basin Number	BN	basin			2
Required Volume per basin	RV	m³/basin	Q2×RT/BN		5,675
Width	W	m	1~2H		18.6
Water Depth					
Length	L1	m	RV/(W×H)		4.1 74.4
Therefore		m			74.4
Dimension (Width		m			18.6
(Depth	4	m			4.1
(Length	_	m			74.4
(Basin Number	_	basin			2
(= ::::== : :::== ::	1				
(Check)					
Hydraulic Retention Time	HRT	hour	W×H×L×N/Q2		6.0
BOD-SS load	BSS _L		(Q1×BODin)/(W×H×L×N×Xa)		0.24
BOD _{in} : Inflow BOD C	Concentrati		l	Rate in PST	: 40%)
Xa : MLSS Concer			2,000 mg/L		,
Aerobic Sludge Retention Tin	ne ASRT	day	HRT/24×Xa / (a×S-BODin + b×	SSin - c×HR	Γ/24×Xa) =
		'			4.738
S-BOD _{ir} : Inflow S-BOD	Concentr	ation	80 mg/L (S-BOD[S	olved BOD]=	BODin×0.6
SS _{in} : Inflow SS Cor			_	Rate in PST	
a : Sludge conver	ting ratio	of solved BO	0.5 mgMLSS/mgBOD	$(0.4 \sim 0.6)$	
b : Sludge conver	ting ratio	of SS	0.95 mgMLSS/mgSS	(0.9~1.0)	
	_			(1/day)(0.03	~0.05)
Effluent Quality (C-BOD)	EQ	mg/L	10.42×A-SRT ^(-0.519) (15~20°C)		4.648
Water Tempera		<u> </u>	20 ℃		
Effluent Water Quality (C=BOD N	(aximum	EQ \times 3 20mg/l $>$		14
					-OK-
	Τ				
	1				
	1				
	1				
	1				
	1				
	1				
	+				
	1				
	+				
	+				

Table I.1 Design Calculation of C1 WWTP (9/16)

Continuing Aeration Tank (2) Proposed

Ţ:	I 0'	** *.	0.1.1.1	77./0	3.670
Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	- 3	Multi-tank Complete mixing	l ype	
Design Sewage Flow	Q1	m³/day			24,800
(Maximum Daily Flow)	Q2	m³/hr			1,033.3
Hydraulic Retention Time	HRT	hr			6.0
Basin Number	BN	basin			2
Required Volume per basin	RV	m³/basin	Q2×RT/BN		3,100
Width	W	m	1~2H		12.0
Water Depth	Н	m	4.0m~6.0m		5.5
Length	L1	m	RV/(W×H)		47.0
Therefore	L2	m			48.2
Dimension (Width)	W	m			12.0
(Depth)	Н	m			5.5
(Length)	L	m			48.2
(Basin Number)		basin			2
(Check)					
Hydraulic Retention Time	HRT	hour	W×H×L×N/Q2		6.2
BOD-SS load	BSS_L		(Q1×BODin)/(W×H×L×N×Xa)		0.23
BOD _{in} : Inflow BOD C		<u> </u>	l	Rate in PST	: 40%)
Xa : MLSS Concen			2,000 mg/L		,
Aerobic Sludge Retention Tim		day	HRT/24×Xa / (a×S-BODin + b×	SSin - c×HR	Γ/24×Xa) =
					4.888
S-BOD _{ir} : Inflow S-BOD	Concentr	J ation	80 mg/L (S-BOD[S	olved BOD]=	
SS _{in} : Inflow SS Con-			0	Rate in PST:	
a : Sludge convert				(0.4~0.6)	,
b : Sludge convert	-			(0.9~1.0)	
_	_			$(0.9 \sim 1.0)$ $(1/\text{day})(0.03)$. 0.05)
Effluent Quality (C-BOD)	EQ	mg/L	$10.42 \times A - SRT^{(-0.519)} (15 \sim 20^{\circ}C)$	(1/day)(0.03	4.573
Water Temperat		J IIIg/L	20 °C		4.373
Effluent Water Quality ((avimum)	EQ \times 3 20mg/l $>$		14
Emacht Water Quanty (-BOD IV	iaxiiiaii)	LQ × 3 Zollig/1 >		
	1	1			-OK-
			1 . 15 . 15 . 225		
Destities of Asseties Test			1 : 1.5 : 1.5 : 2.25		
Partition of Aeration Tank			Nn1 Nn2 Nn3 Nn4		
Total Length of Tank	TL	m			48.2
No.1 Tank Length	L1	m	TL×1/(1+1.5+1.5+2.25)		7.7
No.2 Tank Length	L2		TL×1.5/(1+1.5+1.5+2.25)		11.6
No.3 Tank Length	L3	m	TL×1.5/(1+1.5+1.5+2.25)		11.6
-	L3	m	, , , , , , , , , , , , , , , , , , , ,		17.4
No.4 Tank Length	L4	m	TL×2.25/(1+1.5+1.5+2.25)		
			Total		48.3

Table I.1 Design Calculation of C1 WWTP (10/16)

2-5 Final Sedimentation Tank

(1) Existing

Item	Sign	Unit	Calculation	F/S	M/P
Type	-	-	Radial flow circular type		
Design Sewage Flow	Q1	m³/day			20,600
(Maximum Daily Flow)	Q2	m³/hr			858.3
Basin Number	BN	basin			2
Hydraulic Load	HL	m ³ /m ² /day			25.0
Required Surface Area	A1	m ²	Q1/HL		824
	A2	m²/basin	A1/BN		412
Water Depth	WD	m			3.5
Diameter	D1	m	$(4\times A2/3.14)^{0.5}$		22.91
Therefore	D2	m			22.9
Overflow Weir Load	OWL	m³/m/day			150
Required Weir Length	WL1	m/basin	Q1/(BN×OWL)		68.67
Therefore	WL2	m/basin			69.0
Dimension (Diameter)		m	D2		22.9
(Depth)		m	WD		3.5
(Basin Number)	N	basin	BN		2
(Check)					
Hydraulic Load	HL		$4\times Q1/(D^2\times 3.14\times N)$		25.02
Retention(Settling) Time	T	hour	$D^2 \times \pi \times H \times N/(4 \times Q2)$		3.36
Overflow Weir Load	OWL	m³/m/day	Q1/(N×WL2)		149.28

Table I.1 Design Calculation of C1 WWTP (11/16)

Continuing Final Sedimentation Tank

(2) Proposed-1

Sion	Unit	Calculation	F/S	M/P
-	-		270	1.2.1
01	m³/day	radia non enema type		24,800
				1,033.3
				2
				25.0
		O1/HL		992
				496
	m			4
	m	$(4\times A2/3.14)^{0.5}$		25.14
D2	m	(*		25.5
OWL	m³/m/day			150
WL1	m/basin	Q1/(BN×OWL)		82.67
WL2	m/basin	,		83.0
D	m	D2		25.5
Н	m	WD		4.0
N	basin	BN		2
HL	m³/m²/day	$4\times Q1/(D^2\times 3.14\times N)$		24.29
T	hour	$D^2 \times \pi \times H \times N/(4 \times Q2)$		3.95
OWL	m³/m/day	Q1/(N×WL2)		149.40
	OWL WL1 WL2 D H N HL T	Q1 m³/day Q2 m³/hr BN basin HL m³/m²/day A1 m² A2 m²/basin WD m D1 m D2 m OWL m³/m/day WL1 m/basin WL2 m/basin HL m³/m²/day D m H m N basin HL m³/m²/day	- Radial flow circular type Q1 m³/day Q2 m³/hr BN basin HL m³/m²/day A1 m² Q1/HL A2 m²/basin A1/BN WD m D1 m (4×A2/3.14) ^{0.5} D2 m OWL m³/m/day WL1 m/basin Q1/(BN×OWL) WL2 m/basin D m D2 H m WD N basin BN HL m³/m²/day 4×Q1/(D²×3.14×N) T hour D²×π×H×N/(4×Q2)	- Radial flow circular type Q1 m³/day Q2 m³/hr BN basin HL m³/m²/day A1 m² Q1/HL A2 m²/basin A1/BN WD m D1 m (4×A2/3.14) ^{0.5} D2 m OWL m³/m/day WL1 m/basin Q1/(BN×OWL) WL2 m/basin D m D2 H m WD N basin BN HL m³/m²/day 4×Q1/(D²×3.14×N) T hour D²×π×H×N/(4×Q2)

 Table I.1
 Design Calculation of C1 WWTP (12/16)

Continuing Final Sedimentation Tank

(3) Proposed-2

Item	Sign	Unit	Calculation	F/S	M/P
Type	-	-	Parallel Flow Type		
Design Sewage Flow	Q1	m³/day			24,800
(Maximum Daily Flow)	Q2	m³/hr			1,033.3
Basin Number	BN	basin			4
Hydraulic Load	HL	m ³ /m ² /day			25.0
Required Surface Area	A1	m ²	Q1/HL		992
	A2	m²/basin	A1/BN		248
Width	W1	m	3.0m~4.0m, Max5.0m		5.8
Length	L1	m	A2/W1		42.76
Therefore	L2	m			43.5
Water Depth	WD	m			3.5
Overflow Weir Load	OWL	m³/m/day			150
Required Weir Length	WL1	m/basin	Q1/(BN×OWL)		41.33
Therefore	WL2	m/basin			41.5
Dimension (Width)		m			5.8
(Depth)		m			3.5
(Length)		m			43.5
(Basin Number)	N	basin			4
(Check)		4. 7			
Hydraulic Load	HL		Q1/(N×W×L)		24.57
Retention(Settling) Time	T	hour	(N×W×D×L)/Q2		3.42
Overflow Weir Load	OWL	m³/m/day	Q1/(N×WL2)		149.40

Table I.1 Design Calculation of C1 WWTP (13/16)

2-6 Disinfection Channel

(1) Proposed

Item	Sign	Unit	Calculation	F/S	M/P
Туре	-	-	Chlorination		
Design Sewage Flow	Q1	m³/day			70,200
(Maximum Daily Flow)	Q2	m³/min			48.75
Retention(Chlorination) Time	RT	min			15.0
Required Volume	RV	m^3	Q2×RT		731
Width of channel	W	m			2.5
Depth of channel	Н	m			2.0
Pass Number	PN	pass			6
Length of channel	L1	m/pass	RV/(W×H×PN)		24.4
Therefore	L2	m/pass			24.5
Dimension (Width)	W	m			2.5
(Depth)	Н	m			2.0
(Length)	L	m/pass			24.5
(Pass Number)	N	pass			6
(Check)					
Retention(Chlorination) Time	RT	min	(W×H×L×PN)/Q2		15.1

Table~I.1~Design~Calculation~of~C1~WWTP~(14/16)

2-7 Sludge Thickening Tank

Item	Sign	Unit	Calculation	F/S	M/P
Type	-	-	- Gravity Thickener (Radial Flow		Type)
Generated Sludge Solids	GS	t-DS/day	Refer to Mass Balance Cal.		12.32
Generated Sludge Volume	GSV	m³/day	Refer to Mass Balance Cal.		1,503
Solid Matter Load	SML	kg/m²/day			75
Required Surface Area	SA	m ²	(GS×10 ³)/SML		164.3
Water Depth	Н	m			4.1
Basin Number	BN	basin			2
Required Tank Diameter	TD1	m	$(SA\times4/(3.14\times BN))^{0.5}$		10.23
Therefore	TD2	m			10.5
Dimension (Diameter)	D	m/basin			10.5
(Depth)	Н	m			4.1
(Basin Number)	BN	basin			2
(Check)					
Solid Matter Load	SML	kg/m²/day	GS×10 ³ /(3.14×D ² /4)×BN		71.2
Sludge Thickened Time	T	hr	$(3.14 \times D^2/4) \times H \times BN \times 24/GSV$		11.3

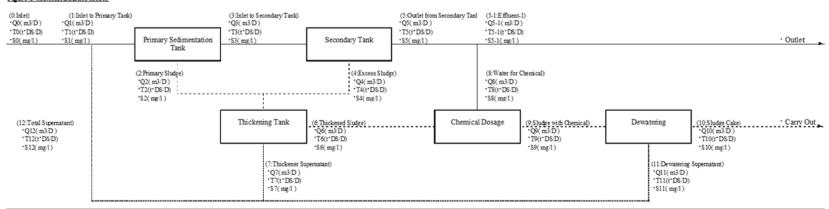
2-8 Sludge Dewatering

Item	Sign	Unit	Calculation	F/S	M/P
Type	-	-	Mechanical Dewatering (Scre	ne)	
Thickened Sludge Solids	TS	t-DS/day	Refer to Material Balance		11.201
Unit Number	UN	Unit			4
Operating Day	OD	day(/week)			5.0
Operating Time	OT	hr/day			10.0
Required Dewatering Capacity	DC	kg/hr/unit	$TS \times 10^3 \times 7/(OD \times OT \times UN)$		392.0
Solids Loading	Q ₁₀₀	kg-ds/hr/φ100			3.0
Screnn Diameter	SD1	mm	100×(DC/Q ₁₀₀)^(1/2.2)		916.0
Therefore	SD2	mm			800
Dimension (unit)	UN	Unit			4
(Screen Diameter)	SD	mm			800
(Check)					
Dewatering Capacity	DC	kg/hr/unit	(SD/100)^2.2×Q ₁₀₀		291.0
Operating Time	OT	hour/day	TS×10 ³ /(DC×(UN-1))*(7/OT)		13.5
					·
					_

Table I.1 Design Calculation of C1 WWTP (15/16)

Material Balance Calculation (Primary and Secondary Sedimentation Tank + Thickening Tank + Mechanical Dewatering)

Table-1 Input Data		
Calculation Manner		 Premise that the quality of supernatants are same level removed with inlet sewage
		2:Premise that the entire supernatants are removed at treatment process
2. Selection of Treatment Effic	iency	2 1:Total Removal Ratio 2:Outlet Water Quality (input 1or2)
In case of 1 : input data		90 (%)
In case of 2 : input data		30 (mg/l)
3. Excess Sludge Generation		1]1:Consideration of Solid Matter Only 2:Consideration of Converting of Solved BOD (input 1or2)
In case of 1:Input data (Sludge ge	neration)	100 Sludge generation ratio per removal SS(%)
In case of 2:Input data	a b c SBOD XA θ	T2=Q2 *S2=(a *Saco+b*S1-c* 6* XA)*Q1/10*6* *(Excess sludge generation formula) a.*Converting ratio of solved BOD(mphLS8*imgBCD) b.*Conventing ratio of \$S(mphLS8*imgS5) c.*Sludge reduction ratio caused by andog enous respiration of activated sludge(1/day) Saco-Solved BOD quality at fine to reactor XA-NLS8 concentration(mg/1) b.*Hydrau is: retention times(day)

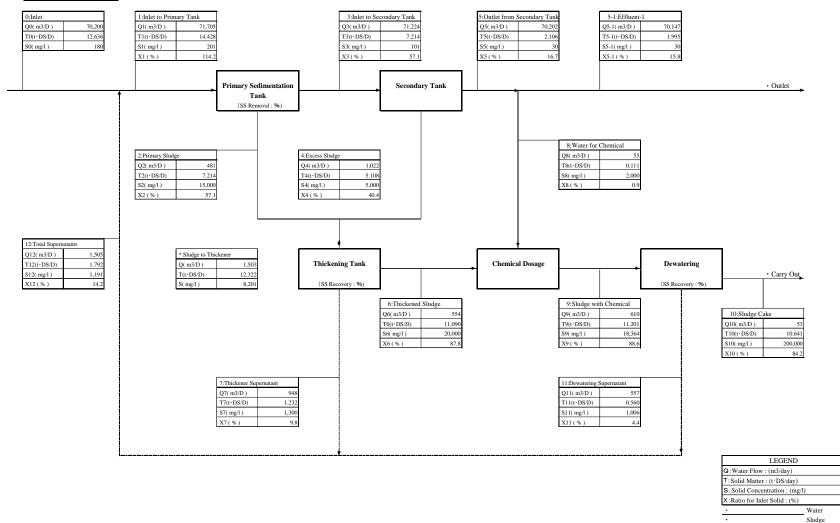

Tabl			

Water Flow and Quality	Sludge Moisture and Recovery Ratio		Chemical Conditions for Dewatering					
*Inlet flow: Q0(m3/D)	70200	Primary sludge moisture ratio : W1(%)	98.5	*Removal ratio in primary tank : A2(%)	50.0	*Chemical dosage : A5(%)	1.0	
*Inlet quality: \$0(mg/l)	180	Excess sludge moisture ratio : W2(%)	99.5	*Recovery ratio in sludge thickener: A3(%)	90.0	*Chemical dissolve concentration : A6(%)	0.2	
*Total removal ratio : A1(%)		Thickened sludge moisture ratio : W3(%)	98.0	*Recovery ratio in dewatering : A4(%)	95.0			
*Effluent quality: St(mg/I)	30.0	*Dewa tered sludge moisture ratio : W4(%)	80.0					
*Sludge generation ratio per removal SS: Si(%	6) 100.0							

Table-3 Material Balance Calculation

	0	1	2	3	4	5	6	7	8	9	10	11	12		5-1	
Q(m3/day)	70,200	71,705	481	71,224	1,022	70,202	554	948	55	610	53	557	1,505		70,147	
T(t*DS/dav)	12.636	14.428	7.214	7.214	5.108	2.106	11.090	1.232	0.111	11.201	10.641	0.560	1.792		1.995	
S(mg/l)	180	201	15,000	101	5,000	30	20,000	1.300	2.000	18.364	200,000	1.006	1.191		30	
X(Ti/T0*100)	100	1142	57.1	57.1	40.4	16.7	87.8	9.8	0.9	88.6	84.2	4.4	14.2		15.8	

Figure-1 Material Balance Model



		С	alculation Formula		
*QO=Input Data *T0=Q0*S0*10*(-6) *S0=Input Data	*O3=Q1-Q2 *T3=T1*(100-A2)*100 *S3=T3*10*6/Q3	*O6=T4*100(100-W3) *T6=(T2+T4)*A3/100 *\$6=10^6*(100-W3)/100	*O9=O6+O8 *T9=T6+T8 *S9=T9*10^6(Q)	*O12=07+O11 *T12=T7+T11 *S11=T11*10*6Q11	· O5-1=O5-Q8 · T5-1=T5-T8 · S5-1=S5
·QI=Q0+Q13 ·T1=T0+T13 ·S1=T1*10^6/O1	*Q4=(Q3*ST-T3*10*6)(ST-S4)*T4*(T3-T5) *T4={(T1-T5)*Si/100}-T2 *S4=10*6*(100-W2)/100	· Q7=(Q2+Q4)-Q6 · T7=(T2+T4)-T6 · S7=T7*10'6\Q7	*Q10=T10*100'(100-W4) *T10=T9*A4/100 *S10=10*6*(100-W4)/100		
*Q2=T2*100((100-W1) *T2=T1-T3 *S2=10^6*(100-W1)/100	*Q5=(T3*10*6-Q3*S4)/(ST-S4) *T5=Q5*ST/10*6 *S5=St	*Q8=T6*A5/A6 *T8=Q8*\$8:10^6 *\$8=10^4*A6	.211=111.10.e011 .211=23-010		

Supernatant

 Table I.1
 Design Calculation of C1 WWTP (16/16)

Material Balance Sheet

