APPENDIX C.3

Seismic Refraction Survey

- Calculation Sheet

- T-X Graph

Calculation Sheet

PROJECT : LOCATION : LINE :	WARSA SITE D SA	MSON		SPREAD	··· • • •	r .						APPENDD	(: 4.4	•
	•	KM/S KM/S		T1 A-B		MS		V1 B = V2 B =		KM/S KM/S		ГI А-В =		MS
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	32,50	35,00	40,00	45,00	50,00	55,0
PEG	0		1	2	3	. 4	5	6		7	8	9	10	1
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	SHT B	GP8	GP9	GP10	GP11	GPI
(TAP) (TBP)			Cross Li	neS+D										
TD		3,00							3,00					
TAP' TBP														
VI EFF Zl	1,04	1,04 3,12		0,82	0,71	0,59	0,43	0,37	0,31 0,94	0,32	0,32	0,33	0,34	0,3
	3,60	KM/S	•••••					V3 A =	3,60	KM/S				
T2 A-E =	58,00	MS						T2 A-E	58,00	MS				
(TAP)	10,00	14,00	18,00	18,50	20,00	22,00	24,00	25,00	26,00	27,00	31,00	36,00	40,00	41,0
(TBP)	58,00	57,00	56,00	51,00	50,00	53,00	55,00	56,00	55,50	55,00	52,00	50,00	49,00	48.0
`ϫ	5,00	6,50	8,00	5,75	6,00	8,50	10,50	11,50	11,75	12,00	12,50	14,00	15,50	15,5
TAP'	5,00	7,50	10,00	12,75	14,00	13,50	13,50	13,50	14,25	15,00	18,50	22,00	24,50	25,5
TBP	53,00	50,50	48,00	45,25	44,00	44,50	44,50	44,50	43,75	43,00	39,50	36,00	33,50	32,5
V2 EFF	1,04	1,04	0,99	0,95	0,90	0,86	0,81	0,76	0,76	0,77	0,80	0,82	0,84	0,0
DEPTH	5,20	6,77		5,45	5,41	7,27	8,50	8,78	8,97	9,29	9,96	11,47	13,04	13.3

				V1 D =	0,35	KM/S						V1 E =	0,35	KM/S
				V2 D =	1,00	KM/S		T1 AE		MS		V2 E ==	1,20	KM/5
DISTANCE (m)	60,00	65,00	70.00	75,00	77.50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,00
PEG	12	13	14	15		16	17	18	19	20	21	22		2
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	GP22	SHT D	GP2
(TAP)														
(TBP)														
TD					2,00	·							2,00	
TAP"														
TBP														
V1 EFF	0,35	0,36	0,36	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,3
Z 1					0,75								0,73	
			•	V3 D =	3,60	KM/S						V3 D =	3,00	KM/S
				T2 A-E	58,00	MS						T2 A-E =	58,00	MS
(TAP)	44,00	47,50	50,00	52,00	53,50	55,00	58,50	57,00	50,00	53,00	54,00	56,00	57,00	58,0
(TBP)	49,00	48,00	47,00	45,00	42,50	41,00	41,50	38,00	35,00	30,00	26,00	24,50	25,00	26,0
TD	17,50	18,75	19,50	19,50	19,00	19.00	21.00	18,50	13,50	12,50	11,00	11,25	12,00	13,0
TAP*	26,50	28,75	30,50	32,50	34,50	36,00	37,50	38,50	36,50	40,50	43,00	44,75	45,00	45,0
TBP	31,50	29,25	27,50	25,50	23,50	22,00	20,50	. 19,50	21,50	17,50	15,00	13,25	13,00	13,0
V2 EFF	0,89	0,91	0,93	0,95	0,96	0,98	1,00	1,03	1,05	1,08	1,11	1,13	1,14	1,
DEPTH	15,50	17,03	18,14	18,58	18,31	18,56	21.05	19,02	14,23	13,49	12,16	12,72	13,72	15,

LOCATION:	WARSAMS SITE D SA	on he		SPREAT): 1						4	APPENDIX	- 4.1.	2
	V1A = V2A =	-	KM/S KM/S						V1 B = V2 B =		KM/S KM/S		_	
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEO	0		1	2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP) TD TAP TBP		2,00					Cross lin	eS∺D:	:	2,00				
VI EFF Z1	0,68	0,68 1,35	0,66	0,64	0,62	0,60	0,59	0,57	0,55	0,55 1,11	0,56	0,56	0,57	0,57
	T2A-D=		KM/S MS						V3 B = T2 B-D	3,20	KM/S MS			
(TAP)	12,50	10,00	10,00	12,00	16,00	19,00	23.00	21,00	23,00	25,00	27,00	30,00	30,00	34,00
(TBP)	57,00	55,00	54,00	52,00	50,00	48,00	49,00	51,00	50,00	49,00	48,00	46,00	43,00	44,00
тр́	6,25	4,00	3,50	3,50	4,50	5,00		7,50	8,00	8,50	9,00	9,50	8,00	10,50
TAP	6,25	6,00	6,50	8,50	11,50	14,00	15,50	13,50	15,00	16,50	18,00	20,50	22,00	23,50
TBP	50,75	51,00	50,50	48.50	45,50	43,00	:41,50:	43,50	42,00	40,50	39,00	36,50	35,00	33,50
V2 EFF	0,96	0,97	0,93	1,00	1,02	1,04	1.06	1,07	1,09	1,09	1,05	1,00	0,95	0,91
DEPTH	6,03	3,89	3,44	3,50	4,58	5,19	7.92	8,05	8,73	9,28	9,41	9,49	7.62	9,51

				V1 C =	0,48	KM/S					•	V1 D =	0,55	KM/S
				V2 C ≃	0,80	KM/S		Г1 С –Е	- 	MS		V2 D =	0,80	KM/S
DISTANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	_115,00
PEG	12	13	14	15		16	17	18	19	20	21	22	•	2
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	_GP21	GP22	GP23	SHT D	GP2
(TAP) (TBP)														
TD TAP					3,00								4,00	
TBP														
V1 EFF	0,58	0,59	0,59	0,60	0,60	0,61	0,63	0,66	0,68	0,70	0,72	0,75	0,76	
Z1					1,80								3,03	
	• •	<u> </u>		V3 D = T2 A-E	3,20 57,00	KM/S MS						V3 D = T2 A-D =	3,20 57,00	KM/S MS
(TAP)	37,00	40,00	44,00	43,00	42,00	40,00	37,50	44,00	45,00	54,00	56,00	55,00	52,00	57,0
(TBP)	43,00	42,00	40,00	36,00	34,50	33,00	30,00	29,00	27,00	25,00	22,50	20,00	20,00	22,5
TD	11,50	12,50	13,50	11,00	9,75	8,00	5,25	8,00	7,50	11,00	10,75	9,00	7,50	11,2
TAP	25,50	27,50	30,50	32,00	32,25	32,00	32,25	36,00	37,50	43,00	45,25	46,00	44,50	45,7
TEP	31,50	29,50	26,50	25,00	24,75	25,00	24,75	21,00	19,50	14,00	11.75	11,00	12,50	11,2
V2 EFF	0,86	0,81	0,77	0,72	0,70	0,69	0,68	0,67	D,66	0,66	0,65	0,64	0,63	0,0
DEPTH	9,88	10,16	10,35	7,92	6,79	5,54	3,59	5,39	4,98	7,21	6,95	5,73	4,74	7,0

LOCATION:	VARSA SITE D SB	mson he		SPREAD :	: 1	Ľ					e 19 7. A	PPENDIX	4.1.	3
VIA =	0,40	KM/S						V1 B ≈	0,40	KM/S				
V2A =	0,65	KM/S	•	T1 A-B =		MS		V2 B =	0,60	KM/S				
DISTANCE (m)	0	5,00	7,50	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0	1		2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	GP2	SHT A	GP3	GP4	GP5	<u>GP6</u>	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP) TD TAP			3,00		Cross Lii	ie S-D				3,00				
TBP* V1 EFF Z1	0,38	0,40	0,40 1,20	0,42	0,44	0,46	0,48	0,51	0,53	0,54 1,61	0,52	0,50	0,48	0,46
	-	V3 A = [2 A-D =	3,00 69,00	KM/S MS			·		V3 B = F2 B-D		KM/S MS			
(TAP)	17,50	17,50	18,00	20,00	27,00	30,00	38,00	38,00	36,00	34,00	32,00	33,00	35,00	37,00
(TBP)	70,00	67,00	66,50	66,00	67,00	69,00	71,00	67,00	63,00	61,50	60,00	57,00	54,50	55,00
TD	9,25	7,75	7,75	8,50	12,30	15,00	20,00	18,00	15,00	12,25	12,00	11,50	11.25	11,50
TAP"	8,25	9,75	10,25	11,50	14,50	15,00	18,00	20,00	21,00	21,75	20,00	21,50	23,75	25,50
TBP	60,75	59,25	58,75	-	51,50	54,00	51,00	49,00	48,00	49,25	48,00	45,50	43,25	43,50
V2 EFF	0,55	0,57	0,57	-	0,60	0,62	0,64	0,66	0,67	0,67	0,65	0,63	0,61	0,59
DEPTH	5,06	4,38	4,45	4,96	7.53	9,29	12,75	11,80	10,11	8,26	7,85	7,29	6,91	6,84

•				V1 C =	0,30	KM/S						V1 D =	0,60	KM/
				V2 C ≃	0,50	KM/S		T1 A-E		MS		V1 D =	0,90	KM,
DISTANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95.00	100,00	105,00	110.00	112,50	1150
PEG	12	13	14	15		16	17	18	19	20	21	22		
GEOPHONE		GP14	GP15		SHT C	GP17	GP18	GP19	GP20	GP21	GP22		SHT D	GP
(TAP) (TBP)														
TDÍ					2,00								4,00	
TAP														
TBP														
V1 EFF	0,44	0,42	0,40	0,38	0,38	0,41	0,47	0,53	0,59	0,65	0,71	0,77	0,80	
Z1					0,00								3,22	
u				V3C = T2A-D =		-						V3D = T2A-D =		KM MS
(TAP)	39,00	41,00	43,00	47,00	46,50		46,00	61,00	62,00	67,00	70,00	69,00		· 69
(TBP)	57,00	59,00	61,00	59,00	58,50		55,00	56,00	55,00	41,00	26,00	25,00		25
'n	13,50	15,50	17,50	18,50			16.00	24,00	24,00	19,50	13,50			12
TAP	25,50	25,50	25,50	28,50		-	30,00	37,00	38,00	47,50	56,50		-	56
TBP	43,50	43,50	43,50	40,50		-	39,00	32,00	31,00	21,50	12,50		-	
V2 EFF	0,57	0,56	0,54	0,52			0,57	0,61	0,65		0,73			0
DEPTH	7,76	8,60	9,37	9,53		-	9,05	14,53	15,49	13,36	9,79	-		10

LOCATION:	WARSA SITE D SB	MSON :		PREAD		II						APPENDIX	4.1.4	4
V1A =	0,40	KM/S							V1 B =	0,50	KM/S			
V2A =	1,40	KM/S	1	[1A−B =		MS			V2 B =	1,20	KM/S			
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	. 5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP) TD		3,00				÷	C e	ist Line S	-D	3,00				
TAP TBP			• ••			• ••								
V1 EFF Z1	0,39	0,40 1,20	0,41	0,43	0,45	0,43	0,50	0,32	0,54	0,55 1,65	0,57	0,58	0,60	0,63
T2 A-D =	3,60 62,00	KM/S MS						1	V3 B = 2 B-D =	3,60 62,00	KM/S, MS			
(TAP)	15,00	12,50	15,00	14,00	17,00	19,00	22,00	24,50	28,00	31,00	34,00	37,00	41,00	42,00
(TBP)	62,00	60,00	59,00	55,00	53,00	51,00	50,00	55.00	52,00	51,00	50,00	47,00	48,00	48,00
τD	7,50	5,25	6,00	3,50	4,00	4,00	5,00	8,75	9,00	11,50	12,50	13,00	14,00	14,00
TAP [*]	7,50	7,25	9,00	10,50	13,00	15,00	17,00	15,75	19,00	19,50	21,50	24,00	27,00	28,00
TBP	54,50	54,75	53,00	51,50	49,00	47,00	45,00	46,25	43,00	39,50	37,50	34,00	34,00	34,00
V2 EFF	0,89	0,89	0,88	0,86	0,84	0,83	0,81	0,79	0,78	0,78	0,90	1,02	1,14	1,2
DEPTH	6.70	4.65	5.26	3.01	3.38	3,31	4.05	6,95	7.00	8,95	11,22	13,23	15,93	17,61

	\sim					•						•			
					V1 C =	0,65	KM/S						V1 D =	0,40	KM/S
					V2C=	1,80	KM/S		T1 A-E		MS		V2 D =	1,20	KM/S
DI	STANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,00
	PEG	· 12	13	14	15		16	17	18	19	20	21	22		23
	GEOPHONE	GP13	GP14	GP15	GP16	SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP24
	(TAP)														
ŀ	(TBP)					_									
I.	ĩD					3,00								3,00	
	TAP'														
i i	TBP														
L	V1 EFF	0,64	0,65	0,67	0,69	0,70		0,64	0,60	0,56	0,52	0,48	0,44	0,42	
1.1	Z1					2,09								1,27	
					V3 C =	3,60	KM/S	- · .					V3 D =	3,60	KM/S
				1	2A-D =	62,00	MS	• •			•		T2 A - D =	62,00	MS
	(TAP)	44,00	46,00	49,00	51,00	53,00	55,00	59,00	55,00	51,00	54,00	57,00	58,00	59,50	62,00
	(TBP)	46,00	44,00	42,00	40,00	39,00	38,00	34,00	26,00	21,00	15,00	12,00	12,50	10,00	12,50
	TD	14,00	14,00	14,50	14,50	16,00	15,50	15,50	9,50	5,00	3,50	3,50	4,25	3,75	6,25
1	TAP'	30,00	32,00	34,50	36,50	37,00	39,50	43,50	45,50	46,00	50,50	53,50	53,75	55,75	55,75
	TBP	32,00	30,00	27,50	25,50	23,00	22,50	18,50	16,50	16,00	11,50	8,50	8,25	6,25	6,25
1	V2 EFF	1,38	1,50	1,62	1,74	1,80	1,71	1,53	1,35	1,17	0,99	0,81	0,63	0,54	0,45
1	DEPTH	19,29	20,97	23,46	25,20	28,77	26.48	23,69	12,81	5,84	3,46	2,83	2,67	2,02	2.81

LOCATION:	WARSA SITE D SC	MSON		SPREAD :		r.					•	APPENDD	K: 4.1.5	i
V1A = V2A =	0,50	KM/S KM/S		TI A - B =		MS			V1 B = V2 B =		KM/S KM/S	T1 A-B =		MS
DISTANCE (m)	Ø	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEO	0		1	2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP) TD TAP' TBP VI EFF	0,50	2,00 0,50	0,49	0,49	0,43	0,43	0,47	0,47	0,45	3,00	0,47	0,48	0,49	0,50
Z1		1.00								1,39				
T2	V3B = 49,00	4,00 I MS	KM/S					T2:	V3 B = 49,00	3,00 <u>MS</u>	KM/S			
(TAP)	12,50	10,00	12,50	14,00	16.00	17,00	15,00	20,00	24,00	25,00	27,00		35,00	37,50
(TBP)	49,00	46,00	45.00	44,00	40,00	38,00	38,00	39,00	44,00	45,50	48,00		42,00	44,00
TD	6,25	3,50	4,25	4,50	3,50	3,00	2,00	5,00	9,50	10,75	13,00		14,00	16,25
TAP	6,25	6,50	8,25	9,50	12,50	14,00	13,00	15,00	14,50	14,25	14,00		21,00	21,25
TBP	42,75	42,50	40,75	39,50	36,50	35,00	36,00	34,00	34,50	34,75	35,00		28,00	27,75
V2 EFF DEPTH	0,96 6,02	0,93 3,27	0,58	0,82 3,68	0,76 2.66	0,70	0,65 1,29	0,59 2,94	0,53 5.04	0,53 5,04	0,54 6,97		0,55 7,67	0,55 8,99

				V1 C =	0,45	KM/S						V1 D =	0,40	KM/
				V2 C =	0,80	KM/S		T1 A-D =		MS		Vi D =	1,10	KM/
DISTANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,0
PEG	12	13	14	15		16	17	18	19	20	21	22		2
GEOPHONE	GP13	GP14	GP15	GP16	SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP2
(TAP) (TBP)	_							r						
TD					8,00								2,00	
TAP														
TBP														
V1 EFF	0,5L	0,52	0,53	0,54	0,54		0,52	0,50	0,49	0,47	0,45	0,44	0,43	
Z1					4,35								0,86	
~				V3 D =	4,00	KM/S	•	-				V3 D =	4,00	KM/
				T2 A-D =	49,00	MS						T2 A-D =	49,00	MS
(TAP)	43,00	45,00	45,00	42,00	44,00	45,00	46,00	42,00	46,00	48,00	49,00	47,00	48,00	49,
(TAB)	41,00	39,00	38,00	34,00	34,50	35,00	36,00	29,00	26,00	22,00	17,50	12,00	11,00	15,
ับบั	17,50	17,50	17,00	13,50	14,75	15,50	16,50	11,00	11,50	10,50	8,75	5,00	5,00	7,
TAP	25,50	27,50	28,00	28,50	29,25	30,50	25,50	35,00	34,50	37,50	40,25	42,00	43,00	41,
TBP	23,50	21,50	21,00	20,50	19,75	19,50	19,50	18,00	14,50	11,50	8,75	7,00	6,00	7,
V2 EFF	0,56	0,56	0,57	0,58	0,58	0,60	0,63	0,67	0,70	0,74	0,77	0,81	0,83	0,
DEPTH	9,78	9,89	9,70	7,78	8,55	9,26	10,44	7,35	8,09	7,76	6,77	4,05	4,14	6,

LOCATION:	WARSA SITE D SC	MSON .		SPREAD	: J	II						APPENDE	(; 4.1.(5.
V1A = V2A =	-	KM/S KM/S	-	TI A-B =		M5			V1B = V2B =	•	KM/S KM/S	TIA-B=		MS
									<u> </u>					
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP)				- ····										
ÌП		3,00					Cross line	s-D		3,00				
TAP' TBP														
V1 EFF Z1	0,50	0,50 1,50	0,49	0,49	0,43	0,43	0,47	0,47	0,46	0,46 1,39	0,47	0,43	0,49	0,50
	V3B =		KM/S				т	2 B-D =	V3 B == 54,00	3,10 MS	KM/S			
(TAP)	15,00	12,50	12,50	13.00	16.00	20,00	25,50	31.00	34,00	35,00	35,00	40,00	42,00	46,00
(TBP)	55,00		51.00	53,00	55,00	52,00	55,00	54,00	53,00	47,50	44,00	48,00	49,00	48,00
TD	8,00		4,75	6,00	8,50	9,00	:13,25:	15,50	16,50	14,25	12,50	17,00	18,50	20,00
TAP	7,00		7,75	7.00	7,50	11,00	:12,25	15,50	17,50	20,75	22,50	23,00	23,50	26,00
TBP	47,00	47,25	46,25	47,00	46,50	43,00	41 75	38,50	36,50	33,25	31,50	.31,00	30,50	28,00
V2 EFF	1,05	1,02	0,97	0,92	0,87	0,81	D 76	0,71	0,66	0,66	0,67	0,68	0,69	0,70
DEPTH	8.40		4.61	5,50	7.35	7.31	10.07	10,97	10.82	10.82	8,33	11.51	12,73	13,97

								-		· · · ·		14 D	0.60	100 4/8
·				V1 C =		KM/S						V1 D ==	0,50	
				V2 C =	0,80	KM/S		T1 A-D =		MS		V2 D =	0,80	KM/S
DISTANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,00
PEG	12	13	14	15		16	17	18	19	20	21	22		23
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP24
(TAP)														
(TBP)														
TD					3,00								3,00	
TAP														
TBP												-		
V1 EFF		0,52	0,53	- 0,54	0,54		0,56	0,58	0,59	0,61	0,62	0,63		
Z 1					1,63								1,92	
				V3 D =	3,10	KM/S						V3 D =	-	KM/S
				T2 A-D =	54,00	MS						T2 A-D =		
(TAP)	42,00	45,00	48,00	49,00	50,00	51,00	52,00	54,00	57,00	60,00	53,00	51,00	· · ·	-
(TAB)	42,00	43,00	42,00	39,00	37,00	35,00	32,00	29,00	23,00	19,00	15,00	15,00		•
TD	15,00	17,00	18,00	17,00	16,50	16,00	15,00	14,50	13,00	12,50	7,00	6,00		7,50
TAP'	27,00	28,00	30,00	32,00	33,50	36,00	39,00	42,50	44,00			45,00		46,50
TBP	27,00	26,00	24,00	22,00	20,50	19,00	17,00	-	10,00	-		9,00		
V2 EFF	0,71	0,72	0,73	0,74	0,75	0,74	0,72		0,68			0,63	-	
DEPTH	10,64	12,24	13,15	12,61	12,32	11,80	10,78	10,15	, 8,86	8,28	4,51	3,75	3,54	4,55

LOCATION:	WARSA SITE D SD	MSON		SPREAD :	1	t .	•				•	APPENI	D X: 4	. ,
V1A = V2A =	•	KM/S KM/S]	[i A-B =		MS			VI B = V2 B =	• • •	KM/S KM/S	TI A-B		MS
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP) TD TAP' TBP VI EFF	0,30	2,00 0,30	0,31	0,32	0,33	0,34	0,34	0,35	0,36	3,00 0,36	0,36	xs Line S 0.56		0,36
Z1		0.60								1,09		<u></u>		
T2 A-D =	V3B = 50,00	4,50 MS	KM/S					T2 B-D =	V3 B = 50,00	4,30 MS	KM/S			
(TAP)	13,00	15,00	16,00	18,00	19,00	18,00	20,00	22,00	26,00	25,00	25,00	29.00	33,00	35,00
(TBP)	50,00	47,50	46,00	45,00	48,00	46,00	39,00	38,00	38,00	36,50	34,00	36,00	40,00	43,00
ับกั	6,50	6,25	6,00	6,50	8,50	7,00	4,50	5,00	7,00	5,75	4,50	7.50	11,50	14,00
1AP	6,50	8,75	10,00	11,50	10,50	11,00	15,50	17,00	19,00	19,25	20,50	21,50	21,50	21,00
TBP	43,50	41,25	40,00	33,50	39,50	39,00	34,50	33,00	31,00	30,75	29,50	28,50	28,50	29,00
V2 EFF	0,51	0,51	0,50	0,49	0,48	0,46	0,45	0,44	0,43	0,43				0,56
DEPTH	3,34	3,18	2,98	3,16	4,04	3,25	2,04	2,22	3,03	3,03	2,09	3,72	6,07	7,84

				V1C =	0,33	KM/S						V1 D =	0,33	KM/
				V2 C ≓	0,90	KM/S		T1 A-D =	50,00	MS		V1 D =	1,00	KM /
DISTANCE (m)	60,00	65,00	70.00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,0
PEG	12	13	14	15		16	17	18	· 19	20	21	22		2
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP2
(TAP) (TBP)	-				-								Ċross Li	ne 5
ับว่					3,00								3,00	
TAP" TBP				• •										
V1 EFF	0,36	0,36	0,36	0,36	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0.35	0,35	
Z 1				·	1,06	-	-						1,05	
				V3 D =	4,30	KM/S MS						V3D = T2A-I		KM/S MS
(TAB)	36,00	38,00	32,00	<u>T2 A-D =</u> 36,00	50,00 38,00	41,00	44,00	45,00	42,00	40,00	44,00			_
(TAP)	35,00	34,00	28,00	30,00	29,50	29,00	27,50	27,00	24,00	23,00	24,00	-	25.00	
(TAB) TD	10,50	11.00	5,00	8,00	8,75	10,00	10,75	11,00	8,00	6,50	9,00		11,25	
TAP"	25,50	27,00	27.00	28,00	29,25	31,00	33.25	34,00	34,00	33.50	35,00	-	36,25	
TBP	24.50	23.00	23.00	22,00	20,75	19,00	16,75	16,00	16.00	16,50	15.00		13,75	
V2 EFF	0,59	0,62	0,66	0,69	0,70	-	0,73	0,75	0,77	0,79	0,80	-	0,83	
DEPTH	6,22	6,86	3,28	5,50	6,16		7,86	8,24	6,14	5,11	7,24		, -	. 10,

LOCATION:	WARSA SITE D SD	MSON		SPREAD :	lt							APPENDO	S: 4.j.;	ß
V1A = V2A =		KM/S KM/S		TI A-B =		MS			V1 B = V2 B =		KM/S KM/S	T1 A-B =		MS
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	5	6	7		8		10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9			GP12
(TAP) (TBP) TD TAP' TBP V1 EFF	0.44	3,00 0,44	0.44	0.44	0,44	0,44	0,44	ss line S 0,44		3,50	0.44	0,43	0,43	0,43
Z1	-,	1.31	.,	-,	-,	-,	-,			1,53				41.5
T2 A-D =	V3B = 62,00	3,10 MS	KM/S					72 B-C		3,10 MS	KM/S			
(TAP) (TBP)	16,00 62,00	17,50 60,00	19,00 59,00	21,00 59,00	19,00 55,00	22,00 51,00	24,00 52,00	26,00 57,00	29,00 54,00	30,00 52,50	31,00 52,00		37,00 48,00	37,50 46,00
ີຫ໌	8,00	7,75	8,00	9,00	6,00	5,50	7,00	10,50	10,50	10,25	10,50	10,50	11,50	10,75
TAP"	8,00	9,75	11,00	12,00	13,00	16,50	17,00		18,50	19,75	20,50	23,50	25,50	26,75
TBP	54,00	52,25	51,00	50,00	49,00	45,50	45,00	46,50	43,50	42.25	41,50	38,50	36,50	35,25
V2 EFF DEPTH	0,79 6,33	0,73 6.07	0,77 6.14	0,75 6,77_	0,74 4,42	0,72 3,97	0,71 4,94	0,69 7,25		0,63 7.09	0,72 7,55		0,81 9,29	0,85 9,15

				V1C=	0,40	KM/S						V1 D =	0,30	KM/S
				V2 C =	1,20	KM/S		T1 A-E)=	MS		V1 D ≖	1,50	KM/S
DISTANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00		112,50	115,00
PEG	12	13	14	15		16	17	18	19	20	21	22		23
GEOPHONE	GP13	GP14	GP15	GP16	SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP24
(TAP) (TBP) TD	Cross ba				4,00		Cross lin					ľ	2,00	
	BH-2	¢ 19, -, 1, 1, 1, 1			4,00			м.ч ^{.,} м.,					200	
V1 EFF Z1	0,43	0,43	0,43	0,42	0,42 1,70	0,42	0,40	0,38	0,37	0,35	0,33	0,31	0,31 0,61	0,30
				V3 D = T2 A-D =	3,10 62,00	KM/S MS		_				V3 D = T2 A-D =		KM/S MS
(TAP)	37,50	41,50	46,00	49,00	51,00	53,00	57,50	51,00	49,00	55,00	58,00	59,00	60,00	61,00
(TAB)	45,00	44,00	43,00	42,00	41,00	40,00	36,00	28,00	26,00	28,00	29,00	25,00	25,50	26,50
TD	10,25	11,75	13,50	14,50	15,00	15,50	:15,75:	8,50	6,50	10,50	12,50	11,00	11,75	12,75
TAP	27,25.	29,75	32.50	34,50	36,00	37,50		42,50	42,50	44,50	45,50	48,00	48,25	48,25
TBP	34,75	32,25	29,50	27,50	26,00	24,50	20,25	19,50	19,50	17,50	16,50	14,00	13,75	13,75
V2 EFF	0,90	0,94	0,98	1,03	1,05	1,08	1,14	1,20	1,26	1,32	1,38	1,44	1,47	1,50
DEPTH	9,18	11,04	13,28	14,90	15,74	16,73	17,95	10,20	8,19	13,86	17,25	15,84	17,27	19,12

LOCATION:	WARSA SITE D SE	MSON		READ :	1	1	-					APPENDIX	C: 4.1.9	€
VIA #	0,40	KM/S							V1 B =	0,40	KM/S	<u></u>		
• V2A =	1,10	KM/S	TI	A-B =		MS			V2 B =	1,10	KM/S			
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GPL
(TAP)														
(TBP)														
TD		3,00								2,00				
TAP'														
TBP														
V1 EFF	0,40	0,40	0,40	0,41	0,41	0,41	0,42	0,42	0,43	0,43	0,33	0,33	0,25	0,22
<u>Z1</u>		1,20								0,86				
	3,00	KM/S							V3 B =		KM/S			
T2 A-D =	52,00	MS			•				2B-D =	52,00	MS			
(TAP)	12,00	12,50	13,00	15,00	18,00	23,00	25,00	22,00	24,00	25,00	26,00	28,00	30,00	34,00
(TBP)	50,00	51,50	52,50	49,00	46,00	42,00	39,00	35,00	36,00	36,00	36,00	33,00	31,00	30,00
TD	5,00	6,00	6,75	6,00	6,00	6,50	6,00	2,50	4,00	5,00	6,00	5,50	. 6,50	6,00
TAP	7,00	6,50	6,25	9,00	12,00	16,50	19,00	19,50	20,00	20,00	20,00	22,50	23,50	28,00
TBP	45,00	45,50	45,75	43,00	40,00	35,50	33,00	32,50	32,00	31,00	30,00	27,50	24,50	24,00
V2 EFF	0,81	0,80	0,78	0,75	0,73	0,70	0.67	0,64	0,61	0,61	0,67	0,72	0,77	0,82
DEPTH	4.05	4,78	5,28	4,53	4.36	4.54	4.02	1.61	2,46	3.07	4,00	3,96	5.02	4.9

				V1C =		KM/S			\sim			V1 D =	0,50	KM/
				V2 C =	1,00	KM/S		Ti A-D =		MS		V1 D =	1,50	KM/
DISTANCE (m)	60,00	65,00	70,00	75,00	77.50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,0
PEG	12	13	14	15		16	17	18	19	20	21	22		2
GEOPHONE	GP13	GP14	GP15	GP16	SHTC	GP17	GP18	GP19	GP20	GP21	_GP22	GP23	SHT D	GP/
(TAP)													•	
(TBP)														
TD													2,00	
TAP										•				
TEP														
V1 EFF													0,53	
Z 1													1,06	
				V3 C =	3,00	KM/S				• •		V3 D =	.3,00	KM/
			7	12 A-D =	52,00	MS	•					T2A-D =	52,00	MS
(TAP)	37,00	40,00	38,00	39,00	39,50	40,00	42,00	45,00	47,00	49,00	50,00	51,00	52,00	52.(
(TBP)	29,00	24,00	21,00	20,00	21,50	22,00	24,00	20,00	17,50	16,00	15,00	13,00	12,50	12,
TD	7,00	6,00	3,50	3,50	4,75	5,00	7,00	6,50	6,25	6,50	6,50	6,00	6,25	6,
TAP	30,00	34,00	34,50	35,50	34,75	35,00	35,00	38,50	40,75	42,50	43,50	45,00	45,75	46,
TBP	22,00	13,00	17,50	16,50	16,75	17,00	17,00	13,50	11,25	9,50	8,50	7,00	6,25	б,
V2 EFF	0,88	0,93	0,98	1,03	1,06	1,08	1,12	1,15	1,19	1,23	1,27	1,30	1,32	1,
DEPTH	6,14	5,58	3,44	3,62	5,04	5,40	7,82	7,50	7,45	7,99	8,23	7,82	8,26	8,

LOCATION:	WARSA SITE A SB	MSON		SPREAD :		I			- <u>0-11-1</u>			APPENDIX	: 4,1.	10
V1A ==		KM/S KM/S		T1 A-B =		MS		V1B = V2B =	0,50 1.80	KM/S KM/S		1A-B=		MS
V24 =	1,00	KN/J		114-04		tv12		¥4 D 4	1,00	, KIVIJO		IA-5-		MS
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	5	6	7		8	9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP)														
(TBP)	ļ						· ·	•						
TD		2,50								3,00	Cre	as Lio c S≓	D	
TAP*											÷			
TBP"									•		:			
V1 EFF	0,43	0,44	0,44	0,45	0,46	0,48	0,49	0,50	0,51	0,52	0,53	0,53	0,54	0,55
Z1	l	1,09					<u></u>			1,53		······		
		KM/S						V3 B =		KM/S	:			
T2 A-E =	68,00	MS						T2 B-D	68,00	MS				
(TAP)	12,50	9,00	10,00	12,00	14,00	12,50	15,00	20,00	27,00	29,00	31,00	29.00	27,00	30,00
(TBP)	68,00	67,50	66,00	70,00	67,00	65,00	62,00	60,00	57,00	59,00	61,00	58,00	53,00	57,00
TD	6,25	4,25	4,00	7,00	6,50	4,75	4,50	6,00	8,00	10,00	12,00	9,50	6,00	9,50
TAP	6,25	4,75	6,00	5,00	7,50	7,75	10,50	14,00	19,00	19,00	19,00		21,00	20,50
TBP	61,75	63,25	62,00	63,00	60,50	60,25	57,50	54,00	49,00	49,00	49,00		47,00	47,50
V2 EFF	1,14	1,13	1,13	1,12	1,12	1.11	1,10	1,10	1,09	1,03	1,09		1,10	1,10
DEPTH	7,11	4,82	4,52	7,87	7,26	5,27	4,96	6,57	8,71	10,85	13.07	10,40	6,60	10,49

				V1C =	0,38	KM/S						V1 D =	0,40	KM/S
				V2 C =	1,40	KM/S	•	T1 A~E		MS		V2 D ≃	1,50	KM/S
DISTANCE (III)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112.50	115,00
PEG	12	13	14	15		16	17	18	19	20	21	22		23
GEOPHONE	GP13	GP14	GP15		SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP24
(TAP)											<u>.</u>			
(TBP)		· · .												
TD					5,00								4,00	
TAP'														
TBP														
V1 EFF	0,44	0,43	0,42	0,40	0,39	0,40	0,40	0,40	0,40	0,41	0,41	0,41	0,42	
Z1					1,97								1,66	
				V3 D =	3,20	KM/S						V3 D =	3,20	KM/S
· .				T2 A-D =	69,00	MS				-		T2A-D =	69,00	MS
(TAP)	34,00	32,00	35,00	41,00	45,00	49,00	54,00	55,00	56,00	61,00	61,00	65,00	67,00	69,00
(TBP)	52,00	48,00	47,00	50,00	52,00	53,00	48,00	43,00	40,00	38,00	37,00	35,00	34,00	33,00
TD	8,50	5,50	6,50	11,00	14,00	16,50	16,50	14,50	13,50	15,00	14,50	15,50	16,00	16,50
TAP*	25 <i>,5</i> 0	26,50	28,50	30,00	31,00	32,50	37, <i>5</i> 0	40,50	42,50	46,00	46,50	49,50	51,00	52,50
TBP	43,50	42,50	40,50	39,00	38,00	36,50	31,50	28,50	26,50	23,00	22,50	19,50	-	16,50
V2 EFF	1,11	1,12	L12	1,13	1,12	1,14	1,18	1,21	1,24	1,28	1,31	1,35		
DEPTH	9,44	6,13	7,28	12,38	15,74	18,83	19,40	17,55	16,80	19,18	19,04	20,89	21,84	22,80

INE :	SB			SPREAD	:	II						PPENDD	(: 4)	-11
V1A = V2A =	= 0,60 = 1,00	KM/S KM/S		T1 A−B =		MS		V1 B = V2 B =		KM/S KM/S	1	1A-B=		MS
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40.00	45,00		
PEG	0		1	2	3	4	5	6	7			· · · ·		55,
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	_	SHT B	· GP9	9 GP10	10	
(TAP) (TBP) TD TAP		3,00					Cros	s Line S			. 017	0	GP11	_GF
TBP VI EFF Z1	0,75	0,75 2,25 KM/S	0,75	0,74	0,73	0,72	0,71	0,70	0,69	0,63 1,37	0,67	0,67	0,66	0,
<u>T2 A-E</u> =	•	MS_						VSB = 128-D	3,30 48.00	KM/S MS		······		
(TAP) (TBP) TD TAP ⁴ TBP ⁴ V2 ETF	15,00 48,00 7,50 7,50 40,50 0,81	16,00 47,00 7,50 8,50 39,50 0,83	17,00 46,00 7,50 9,50 38,50 0,86	17.00 45.50 7,25 9,75 38,25 0,92	19,00 45,00 8,00 11,00 37,00 0,97	21,00 44,00 8,50 12,50 35,50 1,03	43,00 8,50 13,50	26,00 42,00 10,00 16,00 32,00	28,00 38,00 9,00 19,00 29,00	27,00 37,00 8,00 19,00 29,00	29,00 36,00 8,50 20,50 27,50	30,00 33,00 7,50 22,50 25,50	31,00 34,00 8,50 22,50 25,50	30,0 32,0 7,0 23,0 25,0

	,			V1 C = V2 C =		KM/S KM/S		TI A-I		MS		V1 D = V2 D =	-,	KM/ KM/
DISTANCE (m)	60.00	65.00	70.00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110.00	112,50	
PEG	12	13	14	15		16	17	18	19	20	21		11,20	
GEOPHONE	GP13	GP14	_GP15	G₽16	SHTC	GP17	GP18	GP19	GP20	GP21	GP22			2
(TAP)								0117	_0120	Or21	GP22	GPZ3	SHT D	_GP2
(TBP)														
TD					2,00									
TAP										•			5,25	
TBP														
V1 EFF	0,63	0,68	0,68	0,65	0,68	0,68	0,67	0.00						
Z 1		-	• •	•,••	1,37	0,00	0,07	0,66	0,65	0,64	0,63	0,62	0,61	0,60
				V3 D =							_		3,20	
				$T_2 A - D =$		KM/S						V3 D =	3,30	KM/S
(TAP)	31,00	33,00	35,00		48,00	MS					·	T2A-D =	48,00	MS
(TBP)	29,00	26,00	23,00	36,00	36,50	37,00	38,00	36,00	39,00	44,00	46,00	47,00	47,50	48,00
'n	6,00	5,50		23,00	22,00	21,00	20,00	18,00	19,00	18,00	17,00	15,00	14,50	14.00
TAP	25,00		5,00	5,50	5,25	5,00	5,00	3,00	5,00	7,00	7,50	7,00	7,00	7,00
TBP	23,00	27,50	30,00	30,50	31,25	32,00	33,00	33,00	34,00	37,00	38,50	40,00	40,50	41,00
V2 EFF		20,50	18,00	17,50	16,75	16,00	15,00	15,00	14,00	11,00	9,50	8,00	7,50	7,00
DEPTH	1,10	1,08	1,06	1,04	1,03	0,99	0,91	0,83	0,75	0,67	0,59	0,51	0.47	0,43
DEFIN.	6,60	5,95	5,31	5,74	5,43	4,97	4,57	2,50	3,76	4,71	4,44	3,58	3,30	3,02

	ITEA	MSON HE	-	PREAD :		[APPENDIX	:: 4,].	12
. V1A =	0,50	KM/S							V1 B =	0,40	KM/S			
V2A =	1,50	KM/S			~ • •			•	V2 B =	1,00	KM/S			
DISTANCE (m)			0.00		<u> 11 A-B</u>		MS							
		0	2,50	5,00	10,00	15,00	20,00	25,00	· · ·	32,50	35,00		45,00	50,00
PEG	0	1		2	3	4	5	6			8	9	10	11
GEOPHONE		GP2	SHT A	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP)			1											
(TBP)			-		····									
TD			7,50	:	Ctos	stine 8-	÷n			8,00				
TAP"					:									
TBP					-								-	
V1 EFF		0,53	0,53	0,52	0,50 ;	0,49	0,47	0,46	0,44	0,44	0,45	0,46	0,43	0,49
<u>Z1</u>			3,98		:					3,49				
			2,80 K	-					V3 B =	,	KM/S			
	T	2A-D =	66,00 M	S				-	T2B-D =	66,00	MS			
: (TAP)		32,00	32,00	35,00	36,00	43.00	44,00	42,00	43,00	43,00	43,00	45,00	47.00	49,00
(TBP)		66,00	65,00	64,00	63,00 :	62.00	59,00	57,00	53,00	52,50	51,00	49,00	47,00	45.00
TD		16,00	15,50	16,50	16,50	19.50	18,50	16,50	15,00	14,75	15,00	15,00	15,00	14.00
TAP		16,00	16,50	18,50	19,50	23.50	25,50	25,50	28,00	28,25	28,00	30,00	32,00	35.00
TBP		50,00	49,50	47,50	46,50	42,50	40,50	40,50	38,00	37,75	36,00	34,00	32,00	31,00
V2 EFF		0,76	0,75	0,75	0,74	0.73	0,72	0,71	0,70	0,70	0,74	0,79	0.83	0,83
DEPTH		12,15	11.69	12,36	12.19	14,21	13,30	11.69		10,30	11,15	11,82	12,49	12.28

				V1 C =	0,50	KM/S						V1 D =	0,41	KM/S
				V2 C =	1,20	KM/S		TI A-D		MS		V2 D =		KM/S
DISTANCE (m)	55,00	60,00	65,00	70,00	72,50	75,00	80,00	85,00	90,00	95,00	100,00	105,00	107,50	110,00
PEG	12	13	. 14	15		16	17	18	19	20	21	22		23
GEOPHONE	GP13	GP14	GP15	GP16	SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP24
(TAP) (TBP)														
TD TAP' TBP					4,50								17,00	
V1 EFF Z1	0,50	0,52	0,53	0,54	0,55 2,48	0,54	0,52	0,50	0,48	0,46	0,44	0,42	0,41 7,05	0,40
				V3 C = T2 A - D =	2,80 66,00	KM/S MS						V3D = T2A-D =	2,80 66,00	KM/S MS
(TAP)	51,00	52,00	56,00	58,00	58,50	59,00	59,00	56,00	57,00	59,00	61,00	64,00	65,00	66,00
(TBP)	44,00	43,00	41,00	40,00	39,00	38,50	36,00	33,50	32,00	32,00	33,00	35,00	35.00	36,00
TD	14,50	14,50	15,50	16,00	16,00	15,75	14,50	11,75	11,50	12,50	14,00	16,50	17,00	18.00
TAP'	36,50	37,50	40,50	42,00	42,50	43,25	44,50	44,25	45,50	46,50	47,00	47,50	48,00	48,00
TBP	29,50	28,50	25,50	24,00	23,00	22,75	21,50	21,75	20,50	19,50	19,00	18,50	18,00	18,00
V2 EFF	0,92	0,97	1,01	1,06	1,08	1,03	0,94	0,84	0,75	0,65	0,56	0,46	0,41	0.37
DEPTH	13,37	14,02	15,68	16,90	17,26	16.24	13,58	9,89	8,58	8,15	7,79	7,62	7,05	6,61

				SEISMIC	DAT	а слі	LCUL	ATIO	n siire	Г]		
LOCATION:	WARSAM SITE A SC	SON HE		SPREAD :			<u></u>	<u></u>	<u> </u>			i Appeni	DIX: 4	.1.13
V1A =	= 0,60	KM/S						V1 B =	0,60	KM/S				
V2A =	• 1,20	KM/S	. 1	Г1 А−В ₩		MS		V2 B =	1,00	KM/S				
DISTANCE (m)	0	2,50	5,00	7,50	12,50	17,50	22,50	27,50	32,50	35,00	37,50	42,50	47_50	52.5
PEG	0		1	2	.3	4	5	6	7		8	9	10	1
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP
(TAP) (TBP) TD TAP'		4,00			:	Croc	s Line S	Ð		4,00				
TBP V1 EFF Z1	0,69	0,69 2,77	0,70	0,70	0,71	0,72	0,73	0,74	0,75	0,75 3,00	0,75	0,74	0,74	0,
	V3 A = T2 A - D =	3,50 1 49,00 1							V3 B = T2 B-D =	3,50 49,00	KM/S MS			• :
(TAP)	12,00	13,00	14,00	18,00	22,00	24,00	26,00	28,00	30,00	31,50	32.00	35.00	36.00	38.0
(TBP)	49,00	49,00	49,00	46,00	45,00	43,00	44.00	41,00	39,00	38.00	37.00	36.00	35.00	35.0
TD	6,00	6,50	7,00	7,50	9,00	9,00	10.50	10,00	10,00	10,50	11,50	11.50	12.00	12.0
TAP'	6,00	6,50	7,00	10,50	13,00	15,00	15,50	18,00	20,00	21,00	20,50	23,50	24,00	26.0
TBP	43,00	42,50	42,00	38,50	36,00	34,00	33,50	31,00	29,00	27,50	25,50	24.50	23,00	23,0
V2 EFF	0,81	0,81	0,81	0,81	0,80	0,80	0,80	0,79	0,79	0,79	0,81	0,83	0,84	0,
DEPTH	4,87	5,26	5,66	6,05	7,23	7.20	8.36	7.93	7.90	8,29	9,29	9.50	10.13	10

				V1 C =	0,60	KM/S						V1D =	0,60	KM
				V2 C =	1,10	KM/S		TI A-Ľ		MS		V2 D =	•	-
DISTANCE (m)	57,50	62,50	67,50	72,50	75,00	77,50	82,50	87,50	92,50	97,50	102,50	107,50	110,00	112.5
PEG	12	13	14	15	•	16	17	18	19	20	21	22		
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	<u> </u>	SHT D	
(TAP)			-											
(TBP)														
TD					4,00								3,00	
TAP'													2,00	
TBP														
V1 EFF	0,73	0,73	0,72	0,72	0,72	0,71	0,70	0,69	0,69	0,68	0,67	0,66	0,65	
Z1					2,86				-				1,96	
				V3 C =	3,50	KM/S	<u> </u>		•	_		V3 D =	3.50	KM/
*				$\Gamma 2 A - D =$	49,00	_MS						12 A-C	49,00	MS
(TAP)	40,00	38,00	41,00	44,00	45,00	46,00	48,00	40,00	40,00	42,00	44,00	46,00	47,50	49,0
(TBP)	35,00	31,00	31,00	29,00	27,00	26,00	25,00	20,00	16,00	14,00	13,00	13,00	12,00	11.0
TD	13,00	10,00	11,50	12,00	12,00	11,50	12,00	5,50	3,50	3,50	4,00	5,00	5,25	5,
TAP"	27,00	28,00	29,50	32,00	33,00	34,50	36,00	34,50	36,50	38,50	40,00	41,00	42,25	43,
TBP'	22,00	21,00	19,50	17,00	15,00	14,50	13,00	14,50	12,50	10,50	9,00	8,00	6,75	5,
V2 EFF	0,88	0,90	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1,00	1,01	1,01	1,
DEPTH	11,44	8,98	10,54	11,21	11,32	10,91	11,50	5,33	3,43	3,46	4,00	5,05	5,33	5,0

LOCATION:	SITE A	MSON I		PREAD :		[7	V1 B =	0.40	KM/S		APPENDD	(: 4.],	!4
•		KM/S	'n	1A-B=		MS		$V_{2B} =$		KM/S		T1 A-B =		MS
	1,40	PCMD 0	. •	17-9-				120-	1,00	20141/10		117-9-		MG
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,00
PEG	0		1	2	3	4	5	6		7		9	10	11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP12
(TAP) (TBP) TD TAP' TBP'		3,00				·		Crosa Lu	i€\$÷B	2,00			Cross Li Bare Ho	ne S-A de 6
V1 EFF Z1	0,42	0,42 1,25	0,42	0,42	0,41	0,41	0,41	0 11	0,41	0,43 0.82	0,45	0,48	0,52	0,33
T2 A-D =		KM/S							V3 A = F2 A-D =		KM/S MS	······································		
(TAP) (TBP)	19,00 68.00	19,50 67.00	20,00 65,00	22,00 62,00	23,50 57,50	25,50 57,00		29,50	33,00 53,00	34,00 56.00	35,00 55,50	38,00 54,00	40,00 56,00	43,00
TD	9,50	9,25	8.50	8,00	6,50	7,25	10,00	. 8 23	9,00	11.00	11,25		14,00	14.75
TAP	9,50	10.25	11.50	14,00	17.00	18,25	18,00	21.25	24,00	23,00	23,75	-	26,00	28,25
TBP	58,50	57,75	56,50	54,00	51,00	49,75	50,00	46,75	44,00	45,00	44,25	42,00	42,00	39,75
V2 EFF	1,16	1,18	1,19	1,23	1,26	1,30	1,33	1,37	1,40	1,40	1,39	1,38	1,36	1,35
DEPTH	11,03	10,90	10,16	9,83	8.21	9,41	13.32	11.27	12,60	15,40	15.61	16,51	19,09	19,93

		•		V1C =	0,65	KM/S			-	-		Vi D =	0,64	KM/S
· .				V2 C =	1,60	KM/S		T1 A-E		MS		V2 D =	1,80	KM/S
DISTANCE (m)	60,00	65,00	70.00	75,00	77.50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	112,50	115,00
PEG	12	13	14	15		16	17	18	19	20	21	22		23
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP24
(TAP)								•						
(TBP)														
าว					5,00	Cross Lb	ueS→C						7,00	
TAP*														
TBP'														
V1 EFF	0,59	0,62	0,66	0,69	0,71	0,71	0,71	0,70	0,70	0,69	0,69	0,69	0,68	
Z1					3,56								4,79	
				V3 C ==	3,10	KM/S						V3 D =	3,10	KM/S
				12 A-D =	68,00	MS						<u>T2 A−D ≃</u>	68,00	MS
(TAP)	43,50	40,50	44,00	46,00	47,50	48 00	49,00	53,50	61,00	58,50	59,50	64,00	66,00	68,00
(TBP)	52,00	48,00	46,00	44,00	43,00	40.00	39,00	44,00	45,00	38,00	39,00	41,00	42,50	41,00
TD	13,75	10,25	11,00	11,00	11,25	10,00	10,00	14,75	19,00	14,25	15,25	18,50	20,25	20,50
TAP'	29,75	30,25	33,00	. 35,00	36,25	38,00	39,00	38,75	42,00	44,25	44,25	45,50	45,75	47,50
TBP*	38,25	37,75	35,00	33,00	31,75	30,00	29,00	29,25	26,00	23,75	23,75	22,50	22,25	20,50
V2 EFF	1,34	1,33	1,31	1,30	1,30	1.32	1,37	1,42	1,47	1,52	1,57	1,62	1,65	1,67
DEPTH	18,41	13,60	14,46	14,32	14,58	. 13,21.	13,71	20,97	27,96	21,69	23,98	30,01	33,36	34,29

				EISMIC	DAT	A CAI	CUL	ATION	SHEET					• •
LOCATION:	WARSAM: SITE A SD	SON HE		SPREAD	<u>. </u>	<u></u>	<u></u>		<u> </u>	<u></u>	<u></u>	Appeni)X:4	.1.15
VIA =	0,60	KM/S					· · · · · ·	VIB ==	0,60	KM/S	اخ پر در در د			
V2A =	1,00	KM/S	1	[1 A−B =		MS		V2 B ≕	1,10	KM/S				
DISTANCE (m)	0	2,50	5,00	7,50	12,50	17,50	22,50	27,50	32,50	35,00	37,50	42,50	47,50	52,5
PEG	0		1	2	3	4	5	6	7		8	9	10	1
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	GP7	GP8	SHT B	GP9	GP10	GP11	GP1
(TAP) (TBP) TD		3,00						Cross Lin	e S-B	4,00				
TAP TBP														
V1 EFF	0,75	0,75	0,75	0,74	0,74	0,73	0,73	0,72	0,72	0,72	0,74	0,76	0,78	0,8
Z1	I	2,25								2,86				
	V3 A = T2 A-D =	3,50 I 50,00 I							V3 B == 8-D =	3,50 50,00				
(TAP)	17,00	18,00	19,00	23,00	27,00	28,00	32,00	33,00	34,00	34,00	34,00	36,00	38,00	40,0
(TBP)	49,00	48,00	48,00	46,00	45,00	43,00	43,00	42,00	40,00	39,00	38,00	37,00	36,00	35,0
TD	8,00	8,00	8,50	9,50	11,00	10,50	12,50	12,50	12,00	11,50	12,00	12,50	13,00	12,
TAP'	9,00	10,00	10,50	13,50	16,00	17,50	19,50	20,50	22,00	22,50	22,00	23,50	25,00	27
TBP	41,00	40,00	39,50	36,50	34,00	32,50	30,50	29,50	23,00	27,50	26,00	24,50	23,00	22,
V2 EFF	0,24	0,29	0,35	0,41	0,52	0,64	0,75	0,87	0,98	0,98	0,95	0,92	0,89	0,8
DEPTH	1,89	2,35	2,99	3,88	5,76	6,71	9,43	10,87	11:81	11,32	11,44	11.53	11.59	10,1

				V1C =	0,60	KM/S						V1 D =	0,60	KM/
				V2 C =	0,80	KM/S		T1 A-E		MS		V2 D =	0,90	KM,
DISTANCE (m)	57,50	62,50	67,50	72,50	75,00	77,50	82,50	87,50	92,50	97,50	102,50	107,50	110,00	112,
PEG	12	13	14	15		16	17		19	20	21	22		2
GEOPHONE	GP13	GP14	GP15	GP16	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT D	GP
(TAP) (TBP)														
	Cross Line S	÷A			4,00	Cro	s Line S	÷C					3,00	
TAP"														
TBP'														
V1 EFF	···· 0,83:	0,85	0,87	0,90	0,91	0,90	. D.89	0,87	0,86	0,84	. 0,83	0,81	0,80	
· Z1					3,63								2,41	
				V3 C = T2 A - D =	3,50 50,00	KM/S MS					• •	V3 D = T2 A-E		KM/ MS
(TAP)		41,00	44,00	45,00	46,00	47.00	48.00	40.00	41,00	42,00	45,00		47,00	50,
(TBP)	35,00	32,00	32,00	30,00	28.00	•	25.00	20,00	17.00	17.00	17.00		16.00	15,
. 10	11,50.	11,50	13.00	12,50	12,50	· ·	11.50	5,00	4.00	4,50	6,00		6,50	
TAP'	26,50	29,50	31,00	32,50	33,50		36,50	35,00	37,00	37,50	39,00	-	40,50	42
TBP	23.50	20,50	19.00	17,50	15.50		13.50	15.00	13.00	12,50	11,00	-	9,50	
V2 EFF	0.83	0,80	0.77	0,74	0,72				0,73	0,73	0,73		0,73	
DEPTH	9,53.	9,18	9,97	9,20	9,00		8,32	-	2,91	3,28	4,39	•	4,78	5,

LOCATION:	WARSAMS BH-13 PENSTOK	- ,		SPREAD): 1	[174 PL	A 20				APPEN	DIX: 4.1.		10.00
	V1A ==		KM/S KM/S	11 A-B		MS	V1B= V2B=		KM/S KM/S				V1C = V2C =		KM/S KM/S
	1211-	140									<u></u>			-,	
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	27,50	30,00	35,00	40,00	45,00	50,00	52,50	52,50
PEG	0		1	2	3	4	5		6	7	8	9	10		11
GEOPHONE	GP1	SHT A	GP2	GP3	GP4	GP5	GP6	SHT B	GP7	GP8	GP9	GP10	GP11	SHTC	GP12
(TAP) (TBP) TD		6.00						9.00	Bore Ha	61400				9.00	
TAP' TBP		0,00						,,,,,		· · · · · ·					
VI EFF Z1	1,47	1,38 8,25	1,27	1,06	0,54	0,63	0,42	0,31 2,79		0,29	0,28	0,23	0,27	0,36 3,28	0,59
	•	3,00	KM/S		-		V3 B =	3,00	KM/S				V3 C =	3,00	KM/S
·	T2 A-C =	53,00	MS				T2A-C =	53,00	<u>.: MS:</u>				T2 A-C =	53,00	MS
(TAP)	22,50	23,50	24,50	29,00	32,00	34,00	37,50	39,00	41,00	43,50	46,00	48,00	52,50	51,50	51,00
(TBP)	53,00	51,00	50,00	52,50	50,00	49,00	49,00	48,50	47.50	45,50	43,50	40,50	38,00	37,00	36,50
ີຫົ	11,25	10,75	10,75	14,25	14,50	15,00	16,75	17,25	17,75	18,00	18,25	17,75	18,75	17,75	17,25
TAP'	11,25	12,75	13,75	14,75	17,50	19,00	20,75	21,75	23,25	25,50	27,75	30,25	33,75	33,75	33,75
TBP	41,75	40,25	39,25	38,25	35,50	34,00	32,25	31,25	29,75	27,50	25,25	22,75	19,25	19,25	19,25
V2 EFF	2,03	2,02	1,95	1,83	1,71	1,58	1,46	1,40	1,4Q	1,42	1,44	1,46	1,47	1,48	1,48
DEPTH	23.37	21.67	21.00	26.07	24,73	23,72	24,41	24,07	24.92	25,59	26.27	25,86	27.64	26,32	25,58

•			SE	ISMIC	DATA	CAL	ULAI	ION	SHEE'	r					
PROJECT : LOCATION : LINE :	WARSAN BH BH 10 TC			PREAD	:	I						•	APPENI	DIX: 4,1	1-17
· · · · · · · · · · · · · · · · · · ·	·VIA =	J	KM/S		V1 B =		KM/S		V1 C =	1	KM/S				
I	V2A *	1,80	7	[1 A−B =	V2 B =	1,80 MS			V2 C = T1 B-C	1,80	KM/S MS				
DISTANCE (m)	0	2.50	5,00	10.00	15,00	17,50	20,00	25,00	30,00	32,50	35,00	40.00	45,00	50,00	50,00
PEG	0 O			2	3		4	5	6		7	8	9	10	11
GEOPHONE		SHT 1	GP2	GP3	_	SHT B	GP5	GP6		SHTC	GP8	GP9		GP11	GP12
(TAP) (TBP) TD TAP' TBP' V1 EFF				· · ·											
Z1															
	V3 A = T2 A-E	3,60) 45,00)			V3 B = T2 B-D		KM/S MS		V3 C ≖ T2 C – D		KM/S MS	÷			
(TAP)	10,00	8,50	8,00	10,00	12,00	12,50	13,00	15,00	16,00	17,50	20,00	20,00	19,00	20,00	21,00
(TBP)	45,00	43,00	41,00	40,00	37,00	36,50	36,00	34,00	33,00	32,00	31,00	30,00	30,00	30,00	27,50
TD	5,00	3,25	2,00	2,50	2,00	2,00	2,00	2,00	2,00	2,25	3,00	2,50	2,00	2,50	1,75
TAP'	5,00	5,25	6,00	7,50	10,00	10,50	11,00	13,00	14,00	15,25	17.00	17,50	17,00	17,50	19,25
TBP	40,00	39,75	39,00	. 37,50	35,00	34,50	34,00	32,00	31,00	29,75	28,00	27,50	•	27,50	25,75
V2 EFF	1.80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,78	1,73	1,69	1,64	1,64

3,60

DEPTH

9,01

5,85

3,60

4,50

3,60

3.60

3.60

3,60

5,34

4,05

4,34

3,38

.

1,64 4,11

2,88

				V1 D ¤		KM/S			· .			V1 E ≈	0,50 1	KM/S
				V2 D ==	1,30	KM/S	•	Г1 А-С		MS		V2 E ≈	1,00]	KM/S
DISTANCE (m)	55,00	60,00	65,00	70,00	72,50	75,00	80,00	85,00	90,00	95,00	100,00	105,00	107,50	107,50
PEG	12	13	14	15		16	17	18	19	20	21	22		23
GEOPHONE	GP13	GP14	GP15	GP16 3	SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT E	GP24
(TAP) (TBP)			Cross Lis	ie BH 18 -	BH 13								· .	
TD		•				•				· .			2,00	
TAP						•								
TBP														
V1 EFF													0,58	
Z1													1.15	
· · ·				V3C=								V3 D =	3,00	KM/S
				<u> 12 みーひ = </u>		MS						$\frac{T2A-D}{T2A-D} =$		MS
(TAP)	25,00	27,00	29,00	30,00		31,00	32,00	34,00	36,00	40,00	40,00	43,00	44,00	45,00
(TBP)	26,00	24,00	22,00	20,00	20,00	20,00	18,50	17,00	16,00	17,00	17,00	15,00	13,00	12,00
TD	3,00	3,00	3,00		3,00	3,00	2,75	3,00	3,50	6,00	6,00	6,50	6,00	6,00
TAP	22,00	24,00	26,00	27,50	28,00	28,00	29,25	31,00	32,50	34,00	34,00	36,50	38,00	39,00
TBP	23,00	21,00	19,00	17,50	17,00	17,00	15,75	14,00	12,50	11,00	11,00	8,50	7,00	6,00
V2 EFF	1,60	1,55	1,51	1,46	1,44	1,40	1,32	1,23	1,15	1,06	0,98	0,89	0,85	0,85
DEPTH	4.80	4,66	4,53	3,66	4,33	4,20	3,62	3.69	4,01	6,37	5,86	5,80	5,10	5,10

>

LOCATION:	WARSAN POWER I BH 10-11	HOUSE	ļ	PRFAT) :	T						APPENDIX	·~4.1.	18
•		<u></u>]	TIA-B		V1 A = V2 A =		KM/S KM/S			•	T1 A-B =		MS
DISTANCE (m)	0	5,00	10,00	15,00	20,00	25,00	27,50	30,00	35,00	40,00	45,00	50,00	55,00	60,00
PEG	2	3	4	5	6	7		8	9	10	11	12	13	14
GEOFIIONE	GP2	GP3	GP4	GP5	GP6	GP7	SIIT B	GP8	GP9	GP10	CP11	GP12	GP13	GP14
(/	Cross Lin BH + 10	e BH 10 0,97	6-BH 9 0,93	0,89	0,85	0,51	3,00 0,79	0.77	0,73	0,69	0,65	0,61	0.57	0,53
Z1	1.01	0,97	0,95	0,59	0,00	0,31	2,36	0,77	0,75	0,07	0,00		0,07	
· · · · · · · · · · · · · · · · · · ·						V3 A = T2 A-E =	3,20 60,00	KM/S MS				• • • •		
(TAP)	5.00	7,00	10,00	13,00	15,00	23,00	20,00	18,00	27,00	29,00	32,00	38,00	42,00	44,0
(TBP)	60.00	57,00	54,00	51,00	48,00	57,00	53,50	52,00	57,00	57,00	55,00	53,00	50,00	49,0
ัก	2.50	2,00	2,00	2,00	1,50	10,00	6,75	5,00	12,00	13,00	13,50	15,50	16,00	16,5
TAP	2.50	5,00	8,00	11,00	13,50	13,00	13,25	13,00	15,00	16,00	18,50	22,50	26,00	. 27,5
TBP	57,50	55,00	52,00	49,00	46,50	47,00	46,75	47,00	45,00	44,00	41,50	37,50	34,00	
V21311	1 01	0,99	0,97	0,95	0,93	0,90	0,89	0,88	0,86	0,84	0,82	0,30		0,7
DEPTH	2.55	1.98	1,94	1.89	1.39	9,04	6.03	4,42	10,35	10,93	11.07	12,38	12,44	12,4

		124 10	0.40	10115		****				V1C =	0,40	KM/S	
		V1 B =		KM/S				T1 A 17			1.00	KM/S	
		V2 B =	1,10	KM/S				T1 A-E		V20=	1,00	MMO	
DISTANCE (m)	65,00	70,00	72,50	75,00	80,00	85,00	90,00	95,00	100,00	105,00	107,50	110,00	
PEG	15	16		17	18	19	20	21	22	23		24	
GEOPHONE	GP15	GP16	SHTC	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT C	GP24	
(TAP)													
(TBP)													
TD			8,00						• *		8,00		
TAP'													
TBP									1				
V1 EFF	0,49	0,45	0,43	0,43	0,43	0,43	0,43	0,43	0,43	0,44	0,44	0,44	
Z 1			3,44								3,49		
		V3 B =	3,20	KM/S			1			V3 C =	3,20	KM/S	
		T2 A-E	60,00	MS						T2 A-E	60,00	MS	
(TAP)	46,00	45,50	47,00	48,00	50,00	52,50	54,50	57,00	59,50	62,00	61,50	60,00	
(TBP)	44,00	42,00	41,00	41,00	39,00	38,00	36,00		30,50		25,00	24,00	
TD	15,00	13,75	14,00	14,50	14,50	15,25	15,25	15,50	15,00		12,25	13,00	
TAP'	31,00	31,75	33,00	33,50	35,50	37,25	39,25	41,50	44,50		49,25	47,00	
TBP*	29,00	28,25	27,00	26,50	24,50	22,75	20,75	-	15,50		12,75	11,00	
V2 EFF	0,74	0,71	0,70	0,70	0,68	0,66	0,65	0,63	0,62	-	0,59	0,59	
DEPTH	11,03	9,82	9,85	10,09	9,86	10,13	9,89	9,81	9,26	8,72	7,27	7,61	

•			SE.	ISMIC	DAT	A CAI	LCUL	ATIO!	V SHE	ET				
PROJECT : LOCATION : LINE :	WARSAM BH – 11 SADDLE I			SPREAI):	1					-	APPENI	DIX: 4	. 1.19
	V1A =	0,20	KM/S									V1 B =	0,20	KM/S
	V2A =	0,30	KM/S	T1 A - B		MS						V2 B =	0,30	KM/S
DISTANCE (m)	0	2,50	5,00	7,50	12,50	17,50	22,50	27,50	32,50	37,50	42,50	47,50	52,50	55,0
PEG	. 0		1	2	3	4	5	6	7	8	-9	10	11	
GEOPHON	GP1	SHTA	GP2	GP3	GP4	GP5	GP6	GP7	GP8	GP9	GP10	_GP11	GP12	SHT
(TAP)														
(TBP)														
TD		7,00												7,5
TAP'														
TBP'														
V1 EFF	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,2
Z1	<u> </u>	1,88				•								2,0
	V3 A =	1,30	KM/S									V3 B =	•	KM/S
	T2 A-D =	142,00	MS	• •·								T2 B-D	142,00	MS
(TAP)	45,00	45,00	47,00	48,00	58,00	68,00	60,00	64,00	70,00	74,00	80,00	80,00	84,00	85,0
(TBP)	142,00	140,00	138,00	132,00	138,00	126,00	120,00	116,00	112,00	108,00	102,00	98,00	94,00	92,0
TD	22,50	21,50	21,50	19,00	27,00	26,00	19,00	19,00	20,00	23,00	20,00	20,00	18,50	17,
TAP'	22,50	23,50	25,50	29,00	31,00	42,00	41,00	45,00	50,00	51,00	60,00	60,00	65,50	67,5
TBP'	119,50	118,50	116,50	113,00	111,00	100,00	101,00	97,00	92,00	85,00	82,00	78,00	75,50	74,
V2 EFF	0,27	0,26	0,26	0,25	0,23	0,22	0,20	0,19	0,18	0,16	0,15	0,13	0,31	0,1
DEPTH	6,10	5,65	5,49	4,71	6,31	5,70	3,89	3,61	3,51	3,70	2,93	2,64	5,70	1,9

			·									V1 C =	0,20	KM/S
								TI A-C		MS		V2 C =	0,40	KM/S
DISTANCE (m)	57,50	62,50	67,50	72,50	77,50	82,50	87,50	92,50	97,50	102,50	107,50		110,00	112,50
PEG	12	13	14	15	16	17	18	19	20	21	22			23
GEOPHONE	GP13	GP14	GP15	GP16	GP17	GP18	GP19	GP20	GP21	GP22	GP23/1		SHT D	GP24/2
(TAP) (TBP)														
TD			•										11,50	
TAP										•				
TBP'														
V1 EFF	0,26	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27		0,23	
Z1													2,66	
¥_					145							V3 B =	1,30	
				<u>T2 A - C</u>								T2 B-D	_	
(TAP)	86,00	92,00	96,00	102,00	112,00	118,00	114,00	125,00	128,00	136,00	136,00		138,00	140,00
(TBP)	90,00	88,00	80,00	74,00	80,00	70,00	67,00	64,00	60,00	50,00	47,00		43,00	40,00
TD	17,00	19,00	17,00	17,00	25,00	23,00	19,50	23,50	23,00	22,00	20,50		19,50	19,00
TAP	69,00	73,00	79,00	85,00	87,00	95,00	94,50	101,50	105,00	114,00	115,50		118,50	121,00
TBP'	73,00	69,00	63,00	57,00	55,00	47,00	47,50	40,50	37,00	28,00	26,50		23,50	21,00
V2 EFF	0,30	0,14	0,15	0,17	0,18	0,20	0,21	0,23	0,24	0,26	0,27		0,27	0,25
DEPTH	5,17	2,66	2,63	2,88	4,61	4,59	4,18	5,38	5,61	5,69	5,61		5,34	5,48

•]		
			5	EISMI	CDA	TA C/	LCU	ΑΠΟ	N SHE	BL				
PROJECT :	WARSA	MSON	HEPP											
	BH - 11		•	SPREAI	、 .							APPEN	DIX: 4	11.20
	SADDL	E DAM		SPREAD	····	11				<u> </u>				
											V1 A =		KM/S	•
				TI A-E		MS					V2 A =	0,30	KM/S	
DISTANCE (m)	117,50	122,50	127,50	132,50	137,50	142,50	147,50	152,50	157,50	162,50	167,50	170,00	172,50	177,50
PEG	0	1	2	3	4	5	6	7	8 .	9	10		11	12
GEOPHONE	GP2	GP3	GP4	GP5	GP6	GP7	GP8	GP9	GP10	GP11	GP12	SHT B	GP13	GP14
(TAP)														
(TBP)												-		
TD												11,50		
TAP'					•									
TBP*														
V1 EFF	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27
Z1	L										V3 A =	3,09	KM/S	
												1,50 164,00		
(TAP)	45,00	45,00	45,00	50,00	60,00	62,00	73,00	78.00	80,00	86,00	100.00	108,00	118.00	128.00
(TBP)	1 [·]	130,00	134,00	•	•	110,00	100,00	94,00	92,00	86,00	92,00	93,00	96,00	•
ົຫົ	7,50	5,50	7,50	5,50	5,50	4,00	4,50	4,00	4,00	4.00	14,00	34,50	41,00	43,00
TAP'	37,50	39,50	37,50	44,50	54,50	58,00	68,50	74,00	76,00	82,00	86,00	73,50	77,00	85,00
TBP'	126,50	124,50	126,50	119,50	109,50	106,00	- 95,50	90,00	88,00	82,00	78,00	58,50	55,00	57,00
V2 EFF	0,40	0,39	0,37	0,36	0,35	0,33	0,32	0,31	0,29	0,28	0,27	0,26	0,25	0.24
DEPTH	3,00	2,13	2,80	1,98	1,91	1,33	1,44	1,23	1,17	1,12	3,73	8,97	10,38	10,3

			·				• •		V1 B =	0,20	KM/S			
				T1 A - E		MS			V2 B =	0,30	KM/S	÷ .		
DISTANCE (m)	182,50	187,50	192,50	197,50	202,50	207,50	212,50	217,50	222,50	225,00	227,50			
PEG	12	13	14	15	16	17	18	19		21	22			
GEOPHONE	GP15	GP16	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHT B	GP24			
(TAP)														
(TBP)														
TD										12,50				
· TAP														
TBP'														
V1 EFF	0,18	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27			
Z1										3,35		_		
5			نا مند د د م				•		V3 B =	1,50	KM/S			
									T2 A-Ľ	164,00	MS			
(TAP)	138,00	152,00	112,00	164,00	144,00	140,00	130,00	134,00	138,00	142,00	146,00			
(TBP)	104,00	110,00	112,00	90,00	62,00	50,00	45,00	40,00	38,00	40,00	35,00	`		
TD	39,00	49,00	30,00	45,00	21,00	13,00	5,50	5,00	6,00	9,00	8,50			
TAP'	99,00	103,00	82,00	119,00	123,00	127,00	124,50	129,00	132,00	133,00	137,50		•	
TBP	65,00	61,00	82,00	45,00	41,00	37,00	39,50	35,00	32,00	31,00	26,50			
V2 EFF	0,27	0,27	0,27	0,27	0,27	0,27	-0,27	0,27	0,27	0,11	0,27		•	
DEPTH	10,46	13,15	8,05	12,07	5,63	3,49	1,48	1,34	1,61	1,02	2,28			

ROJECT : OCATION :	WARSAMS	- · ·	æp				·					APPENI)IX:4.	1.21
INE :	BH - 12			SPREAD): 1	Ι,								
	V1A =	0,50	KM/S						V1 B =	0,50	KM/S			
	V2A =	1,00	KM/S	T1 A-B		MS			V2 B =	1,00	KM/S			
DISTANCE (m)	0	2,50	5,00	10,00	15,00	20,00	25,00	30,00	35,00	37,50	40,00	45,00	50,00	55,
PEG	0		1	2	3	4	5	6	7		8	9	10	
GEOPHONE	GP1	SHTA	GP2	GP3	GP4	GP5	GP6	GP7	GP8 S	HT B	GP9	GP10	GP11	GF
(TAP) (TBP) TD TAP'		6,00								7,50		. '		
TBP' V1 EFF Z1	0,58	0,58 3,46	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58 4,33	0,57	0,55	0,53	0
	V3 A = T2 A - D =	2,10 67,00	KM/S MS						V3 B = T2 B - D		KM/S MS	•		
(TAP)	20,00	22,00	23,00	26,00	27,00	30,00	33,00	36,00	38,00	40,00	42,00	45,00	46,00	47
(TBP)	68,00	67,00	66,00	63,00	61,00	59,00	56,00	55,00	54,00	51,00	49,00	48,00	46,00	44
TD	10,50	11,00	11,00	11,00	10,50	11,00	11,00	12,00	12,50	13,00	•	13,50	13,00	12
TAP'	9,50	11,00	12,00	15,00	16,50	19,00	22,00	24,00	25,50	27,00	28,50	31,50	33,00	35
· TBP'	57,50	56,00	,	•	50,50	48,00	45,00	43,00	•	38,00	- · •	34,50	33,00	32
V2 EFF	0,76		•	•	0,75	0,75	0,74	0,74	0,74	. 0,73	0,75	0,77	0,79	0
DEPTH	7,96	8,32	8,30	8,27	7,86	8,20	8,17	8,87	9,20	9,55	10,07	10,39	10,30	9

.

				V1 C = V2 C =	0,40 1.00	KM/S KM/S		1 A - C		MS		V1 D = V2 D =	0,30 0,70	KM/S KM/S
DISTANCE (m)	60,00	65,00	70,00	75,00	77,50	80,00	85,00	90,00	95,00	100,00	105,00	110,00	107,50	
PEG	12	13	14	15		16	17	18	19	20	21	22		
GEOPHONE	GP13	GP14	GP15	GP16 S	SHT C	GP17	GP18	GP19	GP20	GP21	GP22	GP23/1	SHT D	
(TAP)			•											
(TBP)						· .			·					
TD					2,50								2,00	
TAP'													BH-12	
TBP'														
V1 EFF	0,66	0,67	0,69	0,71	0,44	0,45	0,46	0,48	0,50	0,51	0,53	0,55	0,33	
Z1					1,09		•						0.66	
				V3 B =	2,10	KM/S							2 30	
				T2 C-D	67,00	MS						T2 D - I		-
(TAP)	49,00	52,00	53,00	55,00	54,00	55,00	57,00	61,00	61,00	62,00	63,00		67,00	
(TBP)	43,00	39,00	36,00	33,00	31,00	29,00	27,00	26,00	25,00	23,00	21,00		18.00	
TD	12,50	12,00	11,00	10,50	9,00	8,50	8,50	10,00	9,50	9,00	8,50			•
TAP	36,50	40,00	42,00	44,50	45,00	46,50	48,50	51,00	51,50					
TBP'	30,50	27,00	25,00	22,50	22,00	20,50	18,50	16,00	15,50		12,50	•		
V2 EFF	0,84	0,86	0,89	0,91	0,92	0,90	0,85	0,80	0,75	-	•			
DEPTH	10,49	10,35	9,74	9,54	8,28	7,61	7,20	7,99	7,13	6,32	5,56	5 5,14		

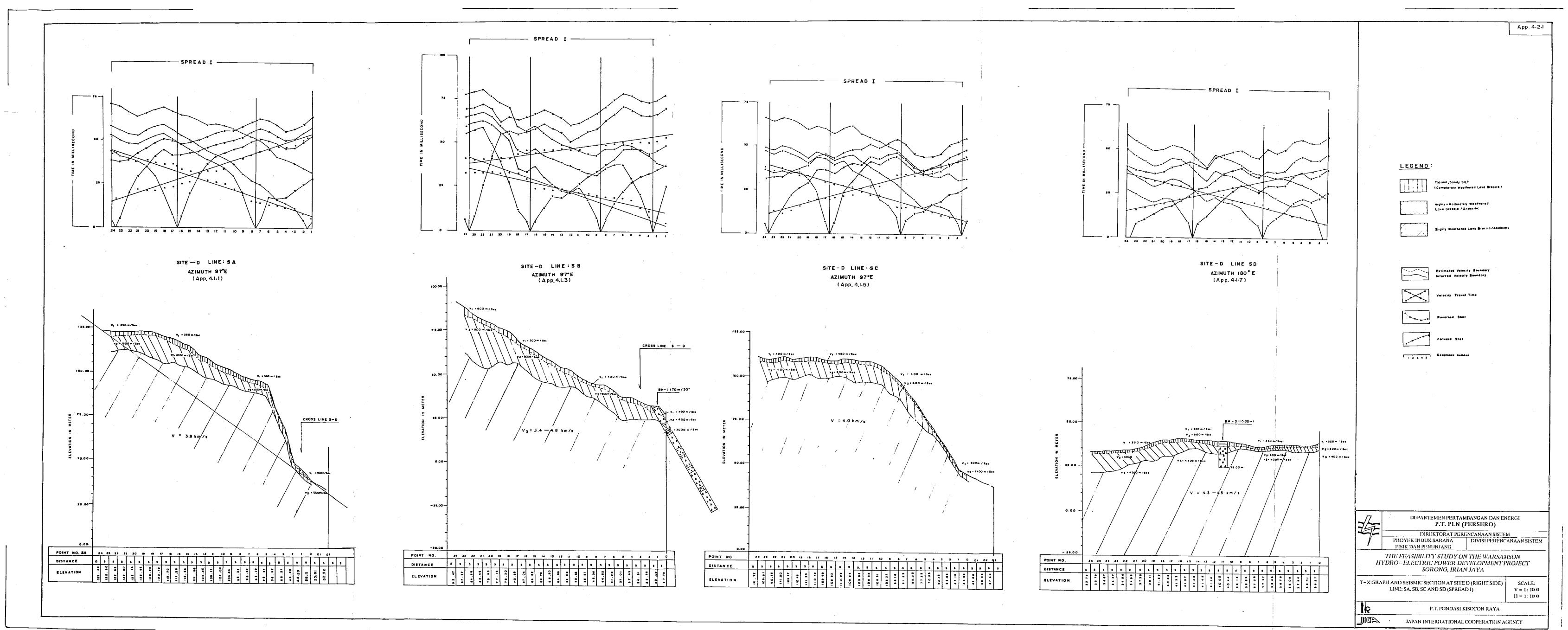
C.81

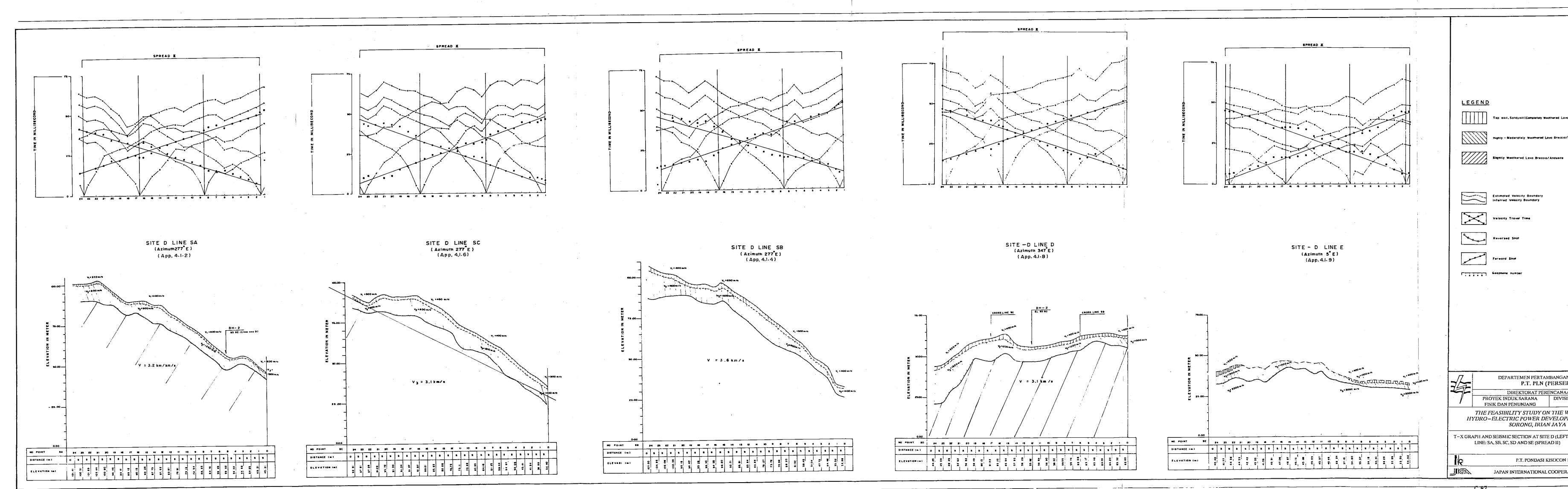
. مرد الارتيانية

				S	LISMI	C DA		LCUI	AIIC	N SIU	SE 1				
RC	JECT :	WARSA	MSON	HEPP		·				•					. •
.OC		BORRO BH-12	WARE		SPREAL):	п						APPENI	DIX: 4	1.22
									$V1\Lambda =$	0,50	KM/S				
					Т1 А-Е		MS		V2 A =	1,00	KM/S				
DI	STANCE (m)	110,00	115,00	120,00	125,00	130,00	135,00	140,00	145,00	147,50	150,00	155,00	160,00	165,00	170,00
	PEG	0	1	2	3	4	5	6	7		8	9	10	11	12
	GEOPHONE	GP24/2	GP3	GP4	GP5	GP6	GP7	GP8	GP9	SHT A	GP10	GP11	GP12	GP13	GP14
÷	(TAP)														
	(TBP)			•											
	TD	1								2,00					
	TAP'														
÷	TBP'									0.50		• (•			0.72
	V1 EFF	0,35	0,38	0,41	0,44	. 0,47	0,50	0,53	0,56	0,58 1,15	0,59	0,62	0,65	0,68	0,72
	ZI								V3 A =	2.60	MS				
									T2 A - E						
	(TAP)	20,00	21,00	23,00	24,00	26,00	26,00	27,00	28,00	29,00	31,00	34,00	37,00	42,00	44,00
÷	(TBP)	63,00	62,00	60,00	58,00	56,00	54,00	52,00	49,00	49,00	50,00	46,00	44,00	42,00	41,00
: .	TD	9,50	9,50	9,50	9,00	9,00	8,00	7,50	6,50	7,00	8,50	8,00	8,50	10,00	10,50
1	TAP'	10,50	11,50	13,50	15,00	17,00	18,00	19,50	21,50	22,00	22,50	26,00	28,50	32,00	33,50
	TBP'	53,50	52,50	50,50	49,00	47,00	46,00	44,50	42,50	42,00	41,50	38,00	35,50	32,00	30,50
	V2 EFF	0,65	0,68	0,71	0,75	0,78	0,81	0,85	0,88	0,90	0,92	0,96	1,00	1,03	1,07
	DEPTH	6,14	6,46	6,78	6,72	7,02	6,51	6,35	5,73	6,28	7,80	7,65	8,46	10,34	11,27

	V1 B =	0,40	KM/S					V1 C =	0,50	KM/S	
	V2 B =	1,00	KM/S	MS				V2 C =	1,00	KM/S	
5,00 177,5	0 180,00	185,00	190,00	195,00	200,00	205,00	210,00	215,00	217,50	220,00	····
13 1	4 15		16	17	18	19	20	21	22	23	······
P15 GP1	6 GP17	SHT B	GP18	GP19	GP20	GP21	GP22	GP23	SHTC	GP24	
		3,50							2,50		
0,47 0,4	6 0,46	0,44	0,72	0,74	0,76	0,79	0,81	0,83	0,58	0,85	
		1,53							1,44		
	V3 B =	2,60	KM/S		-			V3 B =	2,60	KM/S	
	T2 A - E	64,00	MS					T2 A - D =	64,00	MS	
6,00 47,0	0 48,00	49,00	50,00	53,00	56,00	58,00	60,00	62,00	63,00	64,00	
8,00 34,0	0 35,00	33,00	32,00	30,00	28,00	26,00	25,00	23,00	22,00	20,00	
0,00 8,5	0 9,50	9,00	9,00	9,50	10,00	10,00	10,50	10,50	10,50	10,00	
6,00 38,5	0 38,50	40,00	41,00	43,50	46,00	48,00	49,50	51,50	52,50	54,00	
8,00 25,5	0 25,50	24,00	23,00	20,50	18,00	16,00	14,50	12,50	11,50	10,00	
1,13 1,1	.3 1,13	0,80	0,82	0,84	0,86	0,88	0,90	0,92	0,93	0,94	
1,32 9,6	2 10,75	7,19	7,37	7,97	8,59	8,79	9,44	9,64	9,75	9,38	
	13 1 P15 GP1 0,47 0,4 6,00 47,0 8,00 34,0 0,00 8,5 6,00 38,5 8,00 25,5 1,13 1,1	$V2 B = \frac{5,00}{13} \frac{177,50}{14} \frac{180,00}{13} \frac{14}{15} \frac{15}{15} \frac{15}{0} \frac{15}{0} \frac{16}{0} \frac{0}{0} \frac{17}{1} \frac{1}{12} \frac{1}{12$	V2 B = 1,00 $5,00 177,50 180,00 185,00$ $13 14 15$ $P15 GP16 GP17 SHT B$ $3,50$ $0,47 0,46 0,46 0,44$ $1,53$ $V3 B = 2,60$ $T2 A - E 64,00$ $6,00 47,00 48,00 49,00$ $8,00 34,00 35,00 33,00$ $0,00 8,50 9,50 9,00$ $6,00 38,50 38,50 40,00$ $8,00 25,50 25,50 24,00$ $1,13 1,13 1,13 0,80$	$V2 B = 1,00 \text{ KM/S}$ $\frac{5,00 \ 177,50 \ 180,00 \ 185,00 \ 190,00}{13 \ 14 \ 15 \ 16}$ $\frac{13 \ 14 \ 15 \ 16}{715 \ \text{GP16} \ \text{GP17 SHT B} \ \text{GP18}}$ $3,50$ $3,50$ $0,47 \ 0,46 \ 0,46 \ 0,44 \ 0,72 \ 1,53$ $V3 B = 2,60 \ \text{KM/S}$ $\frac{V3 B = 2,60 \ \text{KM/S}}{12 \ \text{A} - \text{C} \ 64,00 \ \text{MS}}$ $6,00 \ 47,00 \ 48,00 \ 49,00 \ 50,00 \ 8,00 \ 34,00 \ 35,00 \ 33,00 \ 32,00 \ 0,00 \ 8,50 \ 9,50 \ 9,00 \ 9,00 \ 5,00 \ 38,50 \ 38,50 \ 40,00 \ 41,00 \ 8,00 \ 25,50 \ 25,50 \ 24,00 \ 23,00 \ 1,13 \ 1,13 \ 1,13 \ 0,80 \ 0,82$	$V2 B = 1,00 \text{ KM/S} \text{ MS}$ $\frac{5,00}{13} \frac{177,50}{14} \frac{180,00}{185,00} \frac{185,00}{190,00} \frac{195,00}{195,00}$ $\frac{13}{14} \frac{15}{16} \frac{17}{17}$ $\frac{16}{7} \frac{17}{15} \text{ GP16} \frac{\text{GP17} \text{ SHT B}}{3,50} \frac{\text{GP18}}{3,50}$ $\frac{3,50}{72 \text{ A} - \text{E}} \frac{64,00}{49,00} \frac{\text{MS}}{50,00} \frac{53,00}{35,00}$ $\frac{34,00}{35,00} \frac{35,00}{33,00} \frac{32,00}{32,00} \frac{30,00}{30,00}$ $\frac{36,50}{38,50} \frac{38,50}{38,50} \frac{40,00}{41,00} \frac{41,00}{43,50}$ $\frac{41,13}{1,13} \frac{1,13}{1,13} \frac{3,80}{80} \frac{82}{82} \frac{0,84}{8}$	V2 B = 1,00 KM/S MS $5,00 177,50 160,00 185,00 190,00 195,00 200,00$ $13 14 15 16 17 18$ $P15 GP16 GP17 SHT B GP18 GP19 GP20$ $3,50$ $3,50$ $3,50$ $V3 B = 2,60 KM/S$ $T2 A - E 64,00 MS$ $6,00 47,00 48,00 49,00 50,00 53,00 56,00$ $8,00 34,00 35,00 33,00 32,00 30,00 28,00$ $0,00 8,50 9,50 9,00 9,00 9,50 10,00$ $6,00 38,50 38,50 40,00 41,00 43,50 46,00$ $8,00 25,50 25,50 24,00 23,00 20,50 18,00$ $1,13 1,13 1,13 0,80 0,82 0,84 0,86$	V2 B = 1,00 KM/S MS $5,00 177,50 180,00 185,00 190,00 195,00 200,00 205,00$ $13 14 15 16 17 18 19$ $P15 GP16 GP17 SHT B GP18 GP19 GP20 GP21$ $3,50$ $3,50$ $3,50$ $V3 B = 2,60 KM/S$ $T2 A - E 64,00 MS$ $6,00 47,00 48,00 49,00 50,00 53,00 56,00 58,00$ $8,00 34,00 35,00 33,00 32,00 30,00 28,00 26,00$ $0,00 8,50 9,50 9,00 9,00 9,50 10,00 10,00$ $6,00 38,50 38,50 40,00 41,00 43,50 46,00 48,00$ $8,00 25,50 25,50 24,00 23,00 20,50 18,00 16,00$ $1,13 1,13 1,13 0,80 0,82 0,84 0,86 0,88$	$V2 B = 1,00 \text{ KM/S} \text{ MS}$ $\frac{5,00 \ 177,50 \ 180,00 \ 185,00 \ 190,00 \ 195,00 \ 200,00 \ 205,00 \ 210,00}{13 \ 14 \ 15 \ 16 \ 17 \ 18 \ 19 \ 20}$ $\frac{7}{15} \ GP16 \ GP17 \ SHT B \ GP18 \ GP19 \ GP20 \ GP21 \ GP22$ $3,50$ $3,50$ $3,50$ $V3 B = 2,60 \ KM/S$ $\frac{72 \ A - E \ 64,00 \ MS}{1,53}$ $V3 B = 2,60 \ KM/S$ $\frac{72 \ A - E \ 64,00 \ MS}{5,00 \ 35,00 \ 53,00 \ 56,00 \ 58,00 \ 60,00}$ $8,00 \ 34,00 \ 35,00 \ 33,00 \ 32,00 \ 30,00 \ 28,00 \ 26,00 \ 25,00$ $0,00 \ 8,50 \ 9,50 \ 9,00 \ 9,00 \ 9,50 \ 10,00 \ 10,00 \ 10,50$ $6,00 \ 38,50 \ 38,50 \ 40,00 \ 41,00 \ 43,50 \ 46,00 \ 48,00 \ 49,50$ $8,00 \ 25,50 \ 25,50 \ 24,00 \ 23,00 \ 20,50 \ 18,00 \ 16,00 \ 14,50$ $1,13 \ 1,13 \ 1,13 \ 0,80 \ 0,82 \ 0,84 \ 0,86 \ 0,88 \ 0,90$	V2 B = 1,00 KM/S MS V2 C = $5,00$ 177,50 180,00 185,00 190,00 195,00 200,00 205,00 210,00 215,00 13 14 15 16 17 18 19 20 21 P15 GP16 GP17 SHT B GP18 GP19 GP20 GP21 GP22 GP23 3,50 V3 B = 2,60 KM/S V3 B = 7 0,74 0,76 0,79 0,81 0,83 T2 A - E 64,00 MS T2 A - D = 6,00 47,00 48,00 49,00 50,00 53,00 56,00 58,00 60,00 62,00 8,00 34,00 35,00 33,00 32,00 30,00 28,00 26,00 25,00 23,00 0,00 8,50 9,50 9,00 9,50 10,00 10,00 10,50 10,50 6,00 47,00 48,00 49,00 50,00 53,00 26,00 25,00 23,00 0,00 8,50 9,50<	$V2 B = 1,00 \text{ KM/S} \text{ MS} \qquad V2 C = 1,00$ $V2 C = 1,00 \text{ KM/S} \text{ MS} \qquad V2 C = 1,00$ $V2 C = 1,00 \text{ KM/S} \text{ MS} \qquad V2 C = 1,00$ $V2 C = 1,00 \text{ KM/S} \text{ MS} \qquad V2 C = 1,00$ $V2 C = 1,00 \text{ KM/S} \text{ C} 200,00 205,00 210,00 215,00 217,50 210,50 2,50 23,50 25,50 24,00 23,00 25,50 25,50 24,00 23,00 20,50 18,00 16,00 14,50 12,50 11,50 1,13 1,13 1,13 0,80 0,82 0,84 0,86 0,88 0,90 0,92 0,93 $	$V2 B = 1,00 \text{ KM/S} \text{ MS} \qquad V2 C = 1,00 \text{ KM/S}$ $V2 C = 1,00 \text{ KM/S}$ $V3 B = 2,00 \text{ KM/S}$ $V2 C = 1,00 \text{ KM/S}$ $V2 C = 1,00 \text{ KM/S}$ $V3 B = 2,00 \text{ KM/S}$ $V2 C = 1,00 \text{ KM/S}$ $V2 C = 1,00 \text{ KM/S}$ $V2 C = 1,00 \text{ KM/S}$ $V3 B = 2,00 \text$

· · ·			SI	ISMIC	DAT	A CAI	CUL	ATIO	I SHE	ET				
LOCATION :	WARSAMS BORROW BH - 14		epp	SPREAL););	L			·		•	APPENI	DIX: 4	. .23
	V1A =	0,50	KM/S					V1 B ≠	0,50	KM/S				
	V2A =	1,00	KM/S	T1 A-B		MS		V2 B ≠	1,00	KM/S		•		
DISTANCE (m)	•0	2,50	5,00	7,50	12,50	17,50	22,50	27,50	32,50	37,50	42,50	47,50	52,50	55,00
PEG	0		1	2	3	4	5	6		7	8	9	10	11
GEOPHONE	GP1	SHTA	GP2	GP3	GP4	GPS	GP6	GP1	SHT B	GP8	GP9	GP10	GP11	GP12
(TAP)													:	
(TBP)														
TD		2,00							8,00					
TAP'														
TBP'								•					•	
V1 EFF	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,56	0,55	0,53	0,51	0,51
Z1		1,15						114.0	4,62	22.60				····-
	V3 A =		KM/S					V3 B = T2 B - D		KM/S				
	$\frac{T2 A - D}{T2 A - D} =$	68,00	MS					····					•	
(TAP)	10,00	11,00	13,00	14,00	17,00	23,00	29,00	33,00	30,00	28,00	29,00	37,00	40,00	35,00
(TBP)	68,00	67,00	65,00	60,00	65,00	67,00	68,00	67,00	62,00	56,00	53,00	58,00	56,00	50,00
TD	5,00	5,00	5,00		7,00	11,00	14,50	16,00	12,00	8,50	11,00	15,00	11,50	8,50
TAP'	5,00	6,00	8,00		10,00	12,00	14,50	17,00	18,00	19,50	18,00	22,00	28,50	26,50
TBP	63,00	62,00	60,00			56,00	53,50	51,00	50,00	47,50	42,00	43,00	44,50	41,50
V2 EFF	0,89	0,87	0,85	0,84	0,81	0,77	0,74	0,71	0,68	0,69	0,70	0,71	0,73	0,73
DEPTH	4,43	4,35	4,27	2,51	5,64	8,51	10,76	11,37	8,15	5,87	7,73	10.72	8,36	6,23


				V1C =	0,40	KM/S						V1 D =	0,30	KM/S
				V2 C =	1,00	KMS		ľ1 A-C		MS		V2 D =	0,80	KM/S
DISTANCE (m)	57,50	62,50	67,50	72,50	77,50	82,50	87,50	92,50	97,50	102,50	107,50	112,50	110.00	••
PEG	12	13	14			16	17	18	19	20	21	22		
GEOPHONE	GP13	GP14	GP15	GP16 S	нтс	GP17	GP18	GP19	GP20	GP21	GP22	GP23/1	SHT D	
(TAP) (TBP)														
TD					3,00								3,00	
TAP' TBP'														
V1 EFF	0,66	0,67	0,69	0,70	0,44	0,45	0,47	0,49	0,51	0,52	0,54	0,56	0,32	
Z1	-	-	-		1,31								0,97	
1		<u> </u>		V3 B = T2 C-D		KM/S MS						V3 B = T2 D-D	-	KM/S MS
(TAP)	37,00	40,00	43,00		45,00	47,00	48,00	52,00	55,00	56,00	61,00	66,00	68,00	
(TBP)	48,00	45,00	38,00	37,00	36,00	34,00	31,00	28,00	25,00	23,00	21,00	20,00	18,00	
TD	8,50	8,50	6,50	6,50	6,50	6,50	5,50	6,00	6,00	5,50	7,00	9,00	9,00	
TAP'	28,50	31,50	36,50	37,50	38,50	40,50	42,50	46,00	49,00	50,50	54,00	57,00	59,00	
TBP'	39,50	36,50	31,50	30,50	29,50	27,50	25,50	22,00	19,00	17,50	14,00	11,00	9,00	
V2 EFF	0,68	0,68	0,68	0,68	0,79	0,71	0,70	0,69	0,69	0,68	0,67	0,67	0,67	
DEPTH	5,77	5,77	4,41	4,41	5,11	4,61	3,86	4,17	4,13	3,74	4,72	6,00	6,03	


•			.	eismi	CDA	TA CA	LCUI	ATIO	N SHI	SIET				
LOCATION :	WARSA BORRO BH-14		A	SPREAD):	11						APPEN	DIX: 4	1.24
								V1 A =	0,30	KM/S				
				T1 A≃E		MS		V2 A =	1,00	KM/S				
DISTANCE (m)	115,00	120,00	125,00	130,00	135,00	140,00	145,00	150,00	152,50	155,00	160,00	165,00	170,00	175,00
PEG	0	1	2	3	4	5	6	7		. 8	9	10	<u>11</u>	12
GEOPHONE	GP2	GP3	GP4	GP5	GP6	GP7	GP8	GP9	SHTA	GP10	GP11	GP12	GP13	GP14
(TAP)													•	
(TBP)														
TD	Į –								2,00					
TAP	1													
TBP'	1													
V1 EFF	0,32	0,32	0,32	0,32	0,32	0,32	0,32	0,32	0,31	0,32	0,34	0,37	0,39	0,41
Z1	ļ								0,63					
								V3 A = T2 A - E	1,50 1 1 89,00 1	-				
	1												<u> </u>	
(TAP)	20,00	21,00	23,00		27,00	28,00	34,00	37,00	38,00	41,00	45,00	48,00	52,00	56,00
(TBP)	87,00	83,00	81,00		78,00	74,00	70,00	66,00	64,00	63,00	59,00	55,00	51,00	47,00
TD	9,00	7,50	7,50		8,00	6,50	7,50	7,00	6,50	7,50	7,50	7,00	7,00	7,00
TAP'	11,00	13,50	15,50		19,00	21,50	26,50	30,00	31,50	33,50	37,50	41,00		49,00
TBP'	78,00	73,50	73,50		70,00	67,50	62,50	59,00	57,50	55,50	51,50	48,00		40,00
V2 EFF	0,65	0,64	0,62	-	0,59	0,58	0,56	0,54		1,01	0,99	0,97	0,96	0,94
DEPTH	\$,89	4,79	4,67	5,16	4,73	3,74	4,20	3,81	6,59	7,55	7,42	6,81	6,70	6,58

E

	V1 B = V2 B =	•	KM/S KM/S	TI A-E		MS				V1C = V2C =		KM/S KM/S	
DISTANCE (m)	180,00	182,50	185,00	190,00	195,00	200,00	205,00	210,00	215,00	220,00	222,50	225,00	
PEG	13		14	15	16	17	18	19	20	21	22	23	
GEOPHONE	GP15 5	SHT B	GP16	GP17	GP18	GP19	GP20	GP21	GP22	GP23	SHTC	GP24	
(TAP) (TBP) TD TAP		3,50									2,50		
TBP VI EFF Z1	0,43	0,44 1,53	0,55	0,57	0,59	0,60	0,62	0,64	0,66	0,67	0,58 1,44		•
	¥3B = 12A-⊑	- •	•				• .			V3 B = T2 A-D =		KM/S MS	
(TAP)	61,00	63,00	65,00	68,00	73,00	78,00	82,00	\$4,00	85,00	87,00	\$8,00	89,00	
(TBP)	47,00	42,00	40,00	37,00	34,00	30,00	28,00	26,00	23,00	22,00	22,00	21,00	
้าบ้	9,50	8.00	8,00	8,00	9,00	9,50	10,50	10,50	9,50	10,00	10,50	10,50	
TAP	51,50	55,00	57,00	60,00	64,00	68,50	71,50	73,50	75,50	77,00	77,50	78,50	
TBP'	37,50	34,00	32,00	29,00	25,00	20,50	17,50	15,50	13,50	12,00	11,50	10,50	
V2 EFF	0,58	0,92	0,92	0,93	0,94	0,95	0,95	ii 0,96	0,97	0,98	0,98	0,99	÷
DEPTH	5,49	7,32	7,36	7,43	8,43	8,98	10,02	10,11	9,23	9,80	10,34	10,39	

T-X Graph

App. 4.2.2

Tap. soil, Sandysill (Completely Weathered Lova Breccia)

Nighty - Mederately Weathered Lova Brezzla/Andesit

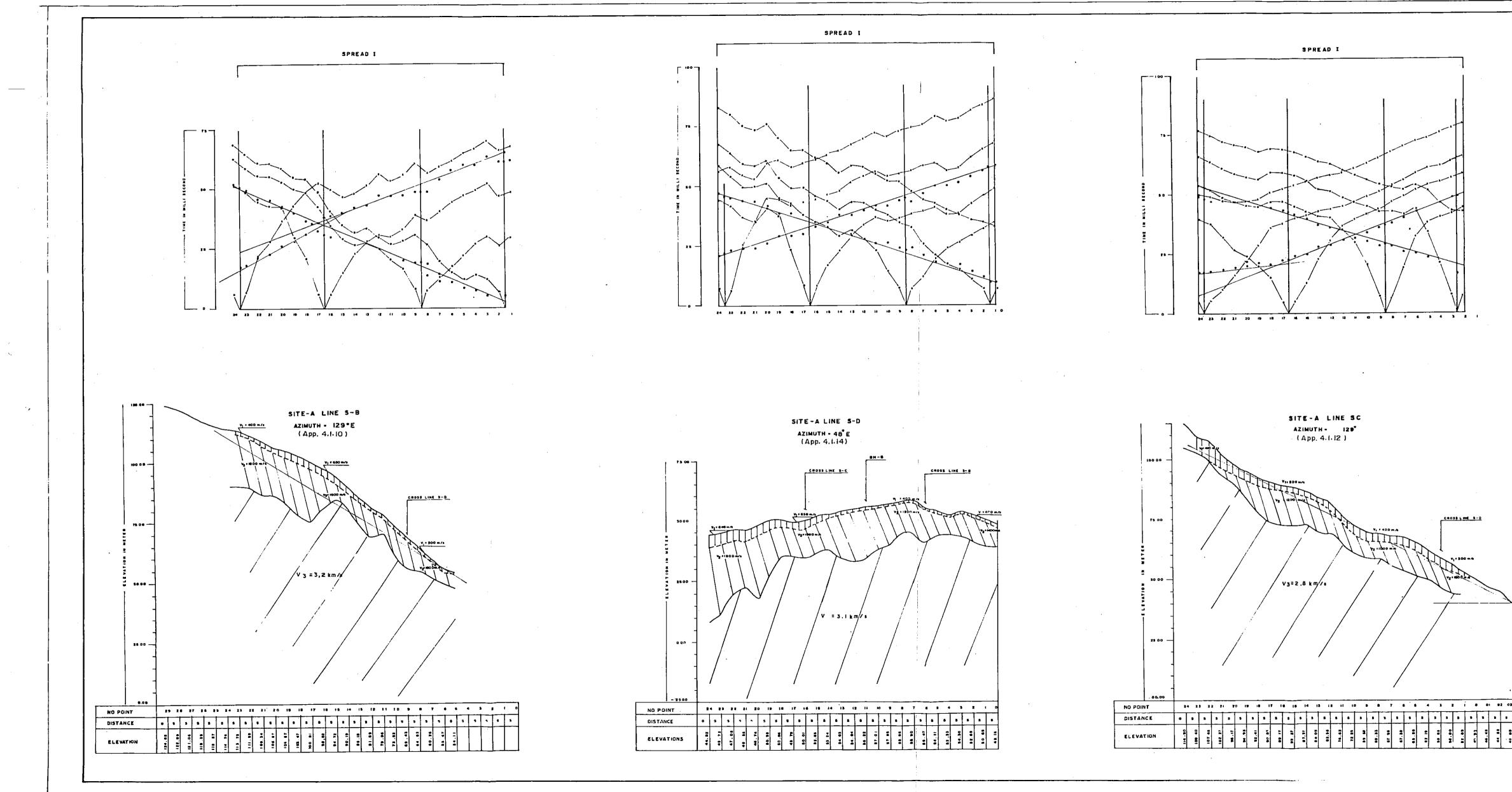
Velocity Travel Time

Reversed Shot

Ferward Sha

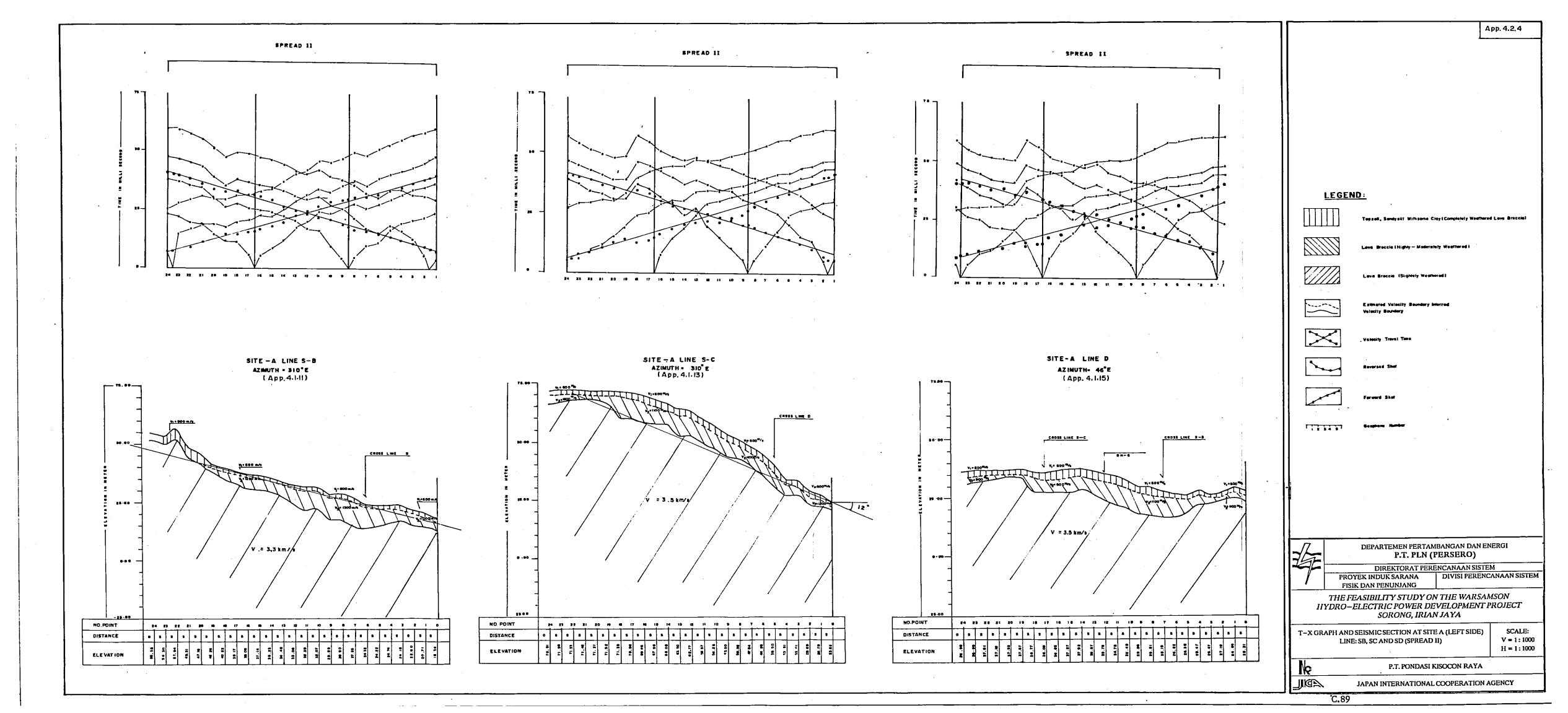
DEPARTEMEN PERTAMBANGAN DAN ENERGI	
P.T. PLN (PERSERO)	
· · ·	

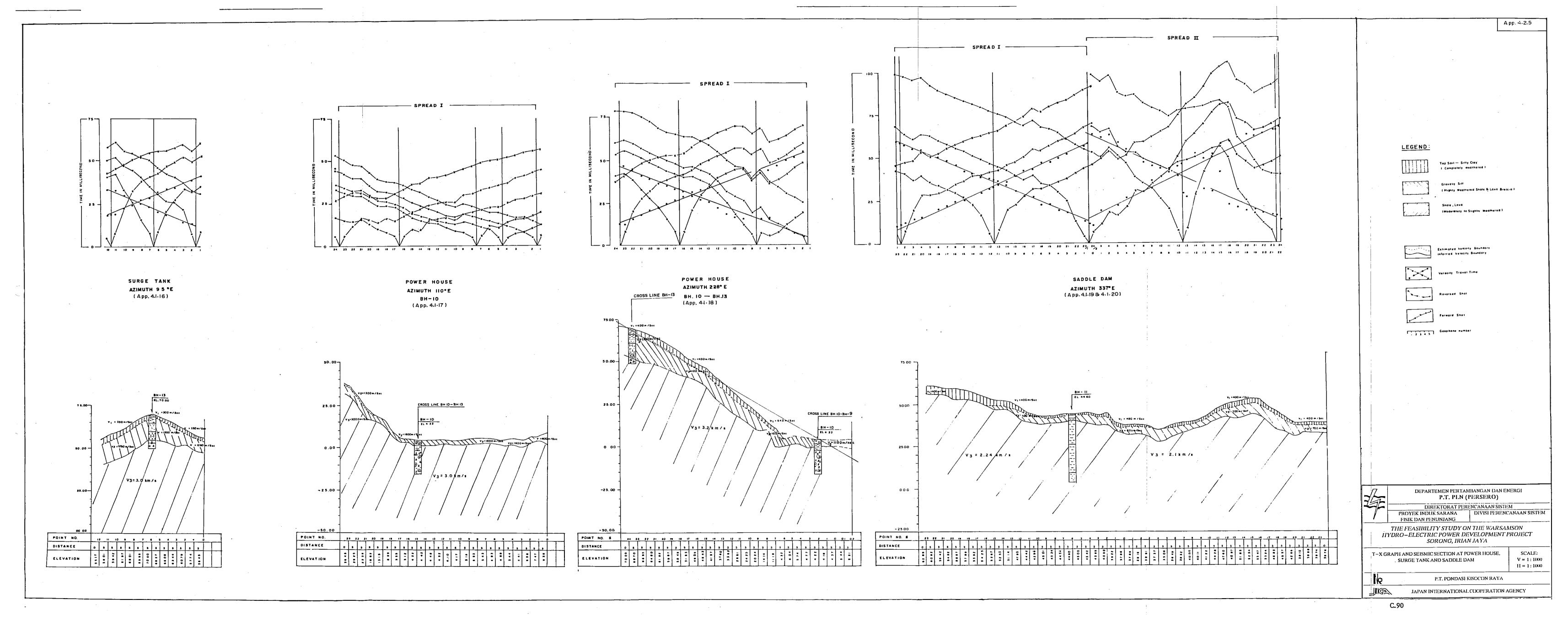
DIREKTORAT PERENCANAAN SISTEM
PROYEK INDUK SARANA DIVISI PERENCANAAN SISTEM FISIK DAN PENUNJANG

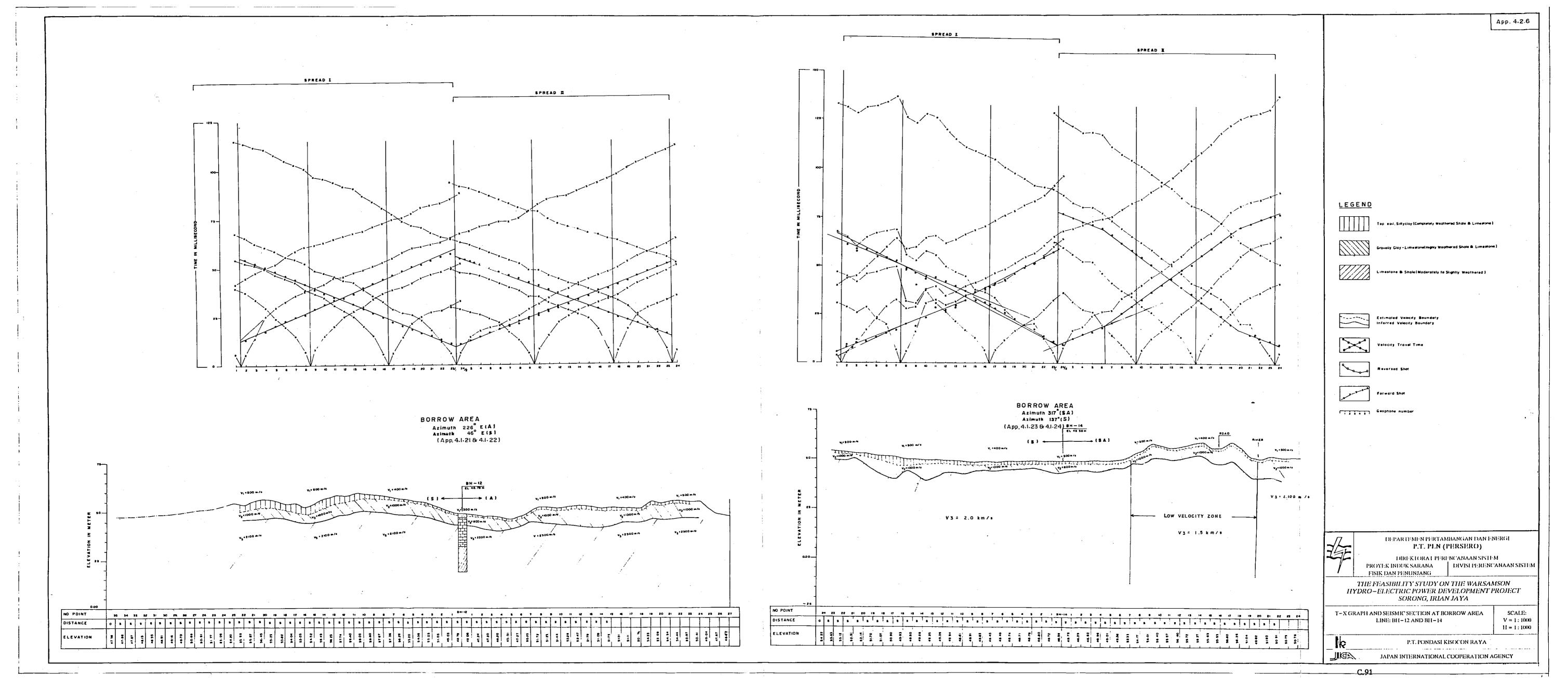

THE FEASIBILITY STUDY ON THE WARSAMSON HYDRO–ELECTRIC POWER DEVELOPMENT PROJECT SORONG, IRIAN JAYA

T – X GRAPH AND SEISMIC SECTION AT SITE D (LEFT SIDE) SCALE: LINE: SA, SB, SC, SD AND SE (SPREAD II)

V = 1:1000H = 1:1000


P.T. PONDASI KISOCON RAYA


JAPAN INTERNATIONAL COOPERATION AGENCY



_____.<u>_</u>.._.

		App. 4.2.3
	i	
		1
	· · · ·	
I		
i . rarn	D.	
LEGEN	<u>D:</u>	
	' Top soil – Sondycky (Completely Weathered ∟avs Brecc	ng)
	Cloygrey Graves Frighty to Moderately Weathered Lava B	9C 25G)
	Slightly Weathered Lava Braccia	
	Estimated Velocity Boundory Interned Velocity Boundary	
	Valecity Travel Ťime	
	Reversed Shat	
	Forward Shat	
	Geophene Humber	
:		
!		
I		
	DEPARTEMEN PERTAMBANGAN DAN EN	IERGI
坦二	P.T. PLN (PERSERO) DIREKTORAT PERENCANAAN SISTE	
f 1	YEK INDUK SARANA DIVISI PERENC IK DAN PENUNJANG	ANAAN SISTEM
	EASIBILITY STUDY ON THE WARSAN ELECTRIC POWER DEVELOPMENT F SORONG, IRIAN JAYA	
	SEISMIĆ SECTION AT SITE A (RIGHT SIDE) E: SB, SC AND SD (SPREAD I)	SCALE: V = 1 : 1000 H = 1 : 1000
Ne	P.T. PONDASI KISOCON RAYA	l
	JAPAN INTERNATIONAL COOPERATION A	CENCY

APPENDIX D

Results of Laboratory Tests

D.1 Rock Core Samples

D.2 Disturbed Soil Samples

D.3 Concrete Aggregate Samples

APPENDIX D.1

Rock Core Samples

- Specific Gravity and Absorption

- Ultrasonic Velocity Test

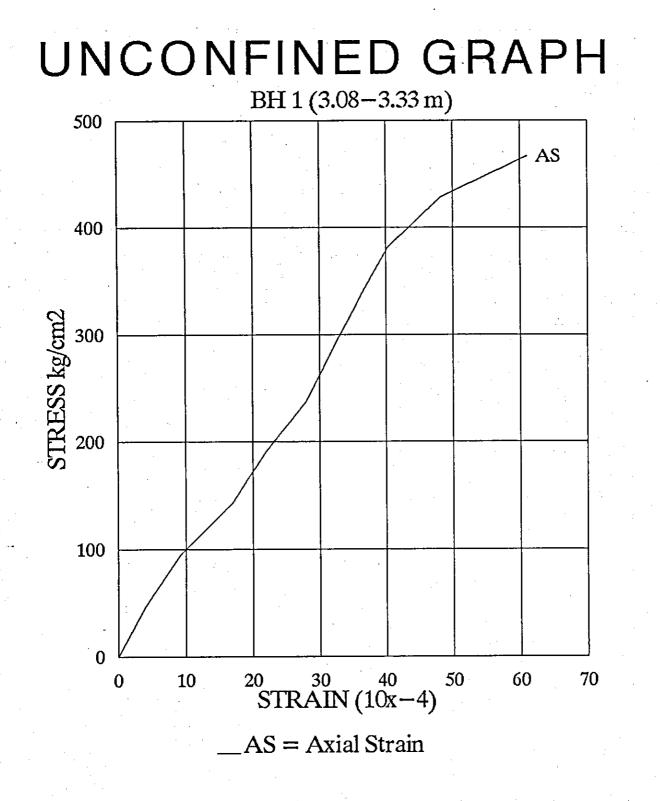
- Unconfined Compression Test

- Indirect Tensile Strength Test

D.1

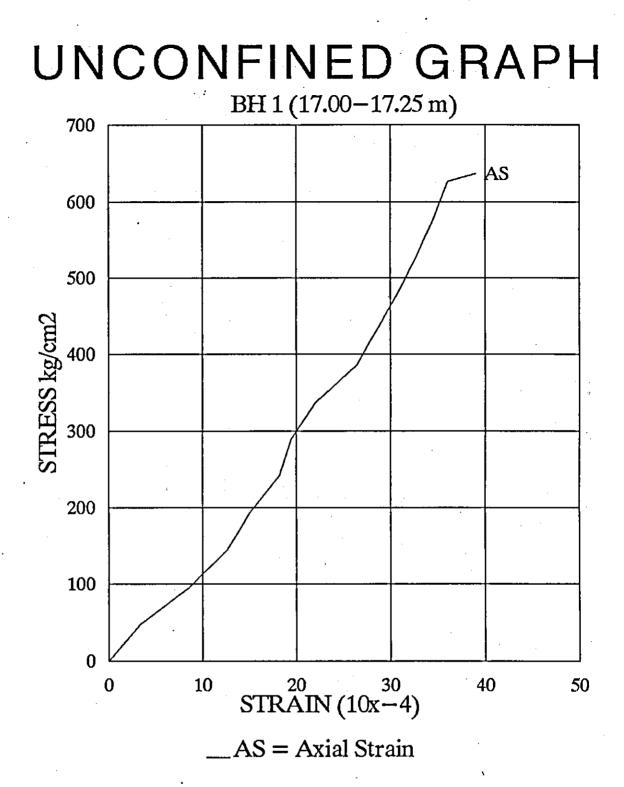
FEQUEST PY FOLICT LOCATE LOC						KOPERIES DELEMINALION							
SAMPLE NATURAL BH-1 NATURAL CONTENT grand NATURAL SAMPLE NATURAL DENSITY grand SATURAT SAMPLE DRV SAUTA grand DES (C SC) SAUTA TRUE SAUTA NATURAL SCORETY grand SAUTA SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY grand ASSORPT SCORETY SCORETY grand ASSORPT SCORETY SCORETY SCORETY grand ASSORPT SCORETY SC		REQUEST I PROJECT LOCATION DATE RECE	BY EIVED		PT GEO ACE WARSAMSON SORONG, IRIA	N JAYA		RECEIVED I TEST DATE TESTED BY APPROVED	BY BY		FEBRUARY 5	1395	
Image: field of the state of the s	2	S	AMPLE	NATURAL DENSITY	NATURAL WATER CONTENT	SATURAT. Density s	ABSORPT. ST. WTR. CONTENT	DRY DENSITY	DEG. OF SATURAT. S	POROSITY n	AP. SPEC. GRAVITY	TRUE SPEC. GRAVITY	VOID RATIO
Hi-1 (3.06 - 3.33 m) 2.370 0.43 2.397 1.56 2.506 2.4502 2.606 2.4502 2.606				gr/cm3	%	gr/cm3	%	gr/cm3	%	%	•	٠	•
Bit-1 (1/00-17.25m) 2.574 2.80 3.65 2.508 7192 9.15 2.5078 2.700 2.701 2.601 2.701 2.601 2.701 2.601 2.601 2.701 2.601 2.701	-	BH - 1	(3.08 - 3.33 m)	2.370		2.397	1.56	2.360	27.23	3.69	2.3599	2.4502	0.038
BH-2 (460-430m) 27/13 1.18 2.724 1.60 2.602 7.391 4.28 2.6616 2.860 BH-2 (7.70-7.55m) 2.803 0.38 2.772 2.601 2.660 2.419 2.7151 BH-4 (7.70-7.55m) 2.506 1.35 2.516 6.107 2.34 2.203 44.93 2.3340 2.7670 BH-4 (7.70-7.55m) 2.366 1.35 2.516 1.35 2.516 2.360 2.7778 2.8630 BH-5 (7.70-7.55m) 2.366 1.00 2.663 3.47 2.34 2.3340 2.7670 BH-5 (6.70-6.90m) 2.772 0.17 2.843 1.22 2.767 13.04 3.64 2.7674 2.8619 BH-6 (6.70-6.90m) 2.822 0.47 2.843 1.303 3.45 2.8645 2.845 BH-10 (4.70-5.75m) 2.823 1.10 2.853 2.663 3.45 2.8645 2.845 BH-10 (4.77-6.00m) 2.852 1.304 2.553 2.603 3.46 2.653 2.8645 BH-11 (4.77-6.00m) 2.652 1.50 2.653 2.603 3.46 2.653 2.8645 <td>2</td> <td></td> <td>(17.00 - 17.25 m)</td> <td>2.574</td> <td></td> <td>2.599</td> <td>3.65</td> <td>2.508</td> <td>71.92</td> <td>9.15</td> <td>2.5078</td> <td>2.7605</td> <td>0.101</td>	2		(17.00 - 17.25 m)	2.574		2.599	3.65	2.508	71.92	9.15	2.5078	2.7605	0.101
BH-2 (12.65 - 12.95 m) 2.803 0.38 2.819 0.956 2.791 2.869 2.7914 2.7914 2.7154 2.7914 2.7154	ຕ		(4.60 - 4.90 m)	2.713		2.724	1.60	2.682	73.91	4.28	2.6816	2.8016	0.045
BH-4 (7.00-7.95 m) 2.366 1.35 2.511 6.107 2.334 2.2038 1.433 2.7718 2.9508 BH-5 (7.00-7.95 m) 2.366 1.00 2.836 2.11 2.7718 2.9508 2.7718 2.9508 BH-6 (100-7.95 m) 2.366 1.00 2.836 2.11 2.7718 2.9508 2.7718 2.9508 BH-6 (100-6.90 m) 2.806 1.00 2.834 1.23 2.003 3.84 3.46 2.465 2.9031 BH-6 (4.00-4.50 m) 2.825 0.47 2.843 1.23 2.803 3.84 3.46 2.465 2.945 BH-6 (4.00-4.50 m) 2.825 0.47 2.843 1.23 2.803 3.813 2.733 2.733 2.733 2.733 2.733 2.733 2.733 2.733 2.733 2.733 2.733 2.834 2.743 2.733 2.834 2.733 2.835 2.845 2.9418 1.1124 2.8055 2.9418 1.1124 2.8055 2.9418 1.1124 2.4323 2.8419 2.14	44		(12.65 - 12.95 m) /2 35 2 52 m)	2.803		2.819 7 568	3.471	2.792	40.00 20 82	2.68 8.60	2.7919	2.8690	0.028
BH-5 (275-310 m) 2.806 1.00 2.836 2.11 2.778 47.37 5.66 2.7778 2.8645 BH-6 (18.06-18.38 m) 2.7770 0.45 2.7955 1.35 2.7758 3.333 3.73 2.7778 2.8645 BH-6 (18.06-18.38 m) 2.7770 0.45 2.7955 1.35 2.7758 3.333 3.73 2.7578 2.8645 BH-6 (4.00-4.57 m) 2.8772 0.47 2.864 1.13 2.8755 3.333 3.73 3.76 2.8645 2.9091 BH-10 (477-500 m) 2.555 2.843 1.30 2.443 5.06 1.124 2.4855 2.8148 BH-10 (477-500 m) 2.555 1.50 2.553 2.611 4.50 2.833 2.8049 BH-10 (477-500 m) 2.555 1.10 2.553 2.613 2.633 2.6349 BH-13 (16.6-1700 m) 2.456 1.80 2.533 2.633 2.6349 BH-13 (16.6-1700 m) 2.456 1.80 2.533 2.412 2.757	שר		(1770 - 795 m)	2 366		2.511	6.107	2 334	22.038	14.493	2.3340	2.7670	0.169
BH-5 (18.06-18.38 m) 2.770 0.45 2.795 1.35 2.758 3.33 3.73 2.7578 2.8645 BH-6 (400-4.25 m) 2.772 0.17 2.804 1.32 2.767 13.04 3.64 2.7674 2.8719 BH-6 (400-4.25 m) 2.772 0.17 2.804 1.32 2.767 13.04 3.64 2.7674 2.8719 BH-6 (6.70-6.90 m) 2.482 0.17 2.804 1.32 2.767 13.04 3.64 2.7635 2.8019 BH-10 (4.77-5.00 m) 2.482 2.611 4.50 2.498 5.653 2.8055 2.8148 BH-10 (5.00-5.55 m) 2.556 1.10 2.553 3.06 2.583 2.8055 2.8148 BH-13 (16.66-17.00 m) 2.4563 1.60 2.533 5.19 2.4121 2.7575 BH-13 (16.66-17.00 m) 2.4563 1.60 2.533 2.4121 2.7575 BH-13 (16.66-17.00 m) 2.456 1.50 2.453 2.4055 2.4121 2.7575	° ∼		(2.75 - 3.00 m)	2.806		2.836		2.778	47.37	5.86	2.7778	2.9508	0.062
BH-6 (4,00-4.25 m) 2.772 017 2.804 1.32 2.767 13.04 3.64 2.7674 2.8719 BH-6 (6.70-6.90 m) 2.822 0.47 2.843 1.23 2.809 33.46 2.432 2.9031 BH-16 (6.70-6.90 m) 2.822 0.47 2.843 1.23 2.809 33.46 2.432 2.9031 BH-10 (4.77-5.00 m) 2.855 1.16 2.553 3.06 2.833 48.93 7.91 2.8055 2.9041 BH-10 (4.77-5.00 m) 2.556 1.10 2.553 3.06 2.833 48.93 7.91 2.8935 2.8045 BH-113 (16.86-17.00 m) 2.456 1.80 2.553 4.833 6.18 2.5233 2.6949 BH-13 (16.86-17.00 m) 2.456 1.80 2.412 3.466 12.53 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.523 2.4121 2.7575 2.4121 2.7575 BH-14 (16.86-17.00 m) 2.456 1.80 2.412 2.	8	1	(18.08 - 18.38 m)	2.770		2.795		2.758	33.33	3.73	2.7578	2.8645	0.039
BH-6 (6.70-6.90 m) 2.822 0.47 2.843 1.23 2.809 38.46 3.46 2.8055 2.9091 BH-10 (4.77-5.00 m) 2.460 1.16 2.559 5.19 2.432 2.277 12.62 2.4355 2.8148 BH-10 (4.77-5.00 m) 2.555 2.511 4.50 2.498 5.19 2.412 2.498 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.743 2.7435 2.844 2.844 2.844 2.844 2.845 2.8055 2.8055 2.8049 2.743 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6349 2.6549 2.6549 2.6349 2.6549 2.6349 2.6157 2.6349 2.6121 2.7575 2.4121 2.7575 2.4121 2.7575 2.4121 2.7575 2.4121 2.7575 2.4121 2.7575 2.4121 2.757	6		(4.00 - 4.25 m)	2.772		2.804		2.767	13.04	3.64	2.7674	2.8719	0.038
BH-8 (970-990 m) 2.460 1.16 2.559 5.19 2.432 2.227 12.62 2.4333 2.7836 BH-10 (4.77-500 m) 2.555 2.28 2.611 4.50 2.498 50.68 11.24 2.4985 2.8148 BH-10 (5.00-5.25 m) 2.555 2.28 2.611 4.50 2.483 50.68 11.24 2.4985 2.8148 BH-112 (5.00-5.25 m) 2.556 1.10 2.553 2.453 4.833 7.91 2.5635 2.8055 BH-13 (16.86 - 17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-13 (16.86 - 17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-13 (16.86 - 17.00 m) 2.456 1.80 2.533 2.8121 2.7575 2.4121 2.7575 BH-13 (16.86 - 17.00 m) 2.456 1.80 2.533 2.4121 2.7575 2.4121 2.7575 RAMAR 1 <td< td=""><td>9</td><td></td><td>(6.70 - 6.90 m)</td><td>2.822</td><td></td><td>2.843</td><td></td><td>2.809</td><td>38.46</td><td>3.46</td><td>2.8085</td><td>2.9091</td><td>0.036</td></td<>	9		(6.70 - 6.90 m)	2.822		2.843		2.809	38.46	3.46	2.8085	2.9091	0.036
BH-10 (4.77-5.00 m) 2.555 2.28 2.611 4.50 2.498 50.68 11.24 2.4955 2.8148 BH-10 (5.00-5.25 m) 2.652 1.50 2.663 3.06 2.583 48.93 7.91 2.5835 2.8055 BH-12 (3.00-3.30 m) 2.556 1.10 2.553 2.45 2.812 3.66 12.4 2.5833 2.693 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.6349 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.6349 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.253 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.612 2.7575 BH<13	Ŧ	BH - 8	(0.70 - 9.90 m)	2.460		2.559		2.432	22.27	12.62	2.4323	2.78361	0.144
BH-10 (500-525 m) 2.622 1.50 2.663 3.06 2.583 48.93 7.91 2.5835 2.8055 BH-12 (3.00-3.30 m) 2.556 1.10 2.590 2.45 2.523 4.83 6.18 2.5833 2.6949 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 2.7575 BH-13 (16.86-17.00 m) 2.456 1.80 2.426 1.80 2.412 2.7575 BH 1 1 2.412 <td< td=""><td>2</td><td>BH-10</td><td>(4.77 - 5.00 m)</td><td>2.555</td><td></td><td>2.611</td><td></td><td>2.498</td><td>50.68</td><td>11.24</td><td>2.4985</td><td>2.8148</td><td>0.127</td></td<>	2	BH-10	(4.77 - 5.00 m)	2.555		2.611		2.498	50.68	11.24	2.4985	2.8148	0.127
BH-12 (300-3.30 m) 2.556 1.10 2.590 2.45 2.528 44.83 6.18 2.5283 2.6949 BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 BH-11 (16.86-17.00 m) 2.456 1.80 2.557 5.19 2.412 34.66 12.53 2.4121 2.7575 REMARK :	13		(5.00 - 5.25 m)	2.622		2.663		2.583	48.93	7.91	2.5835	2.8055	0.086
BH-13 (16.86-17.00 m) 2.456 1.80 2.537 5.19 2.412 34.66 12.53 2.4121 2.7575 REMARK :	4		(3.00 - 3.30 m)	2.556		2.590		2.528	44.83	6.18	2.5283	2.6949	0.066
	5	풘	(16.86 - 17.00 m)	2.456		2.537		2.412	34.66	12.53	2.4121	2.75751	0.143
	<u>9</u>			•								-	
	17					-							
	18	-							-				
	9											•	
LEMARK :	20												
		REMARK :										-	: I
	•						:						
							• • 5. *	•		-			•
								:					

.

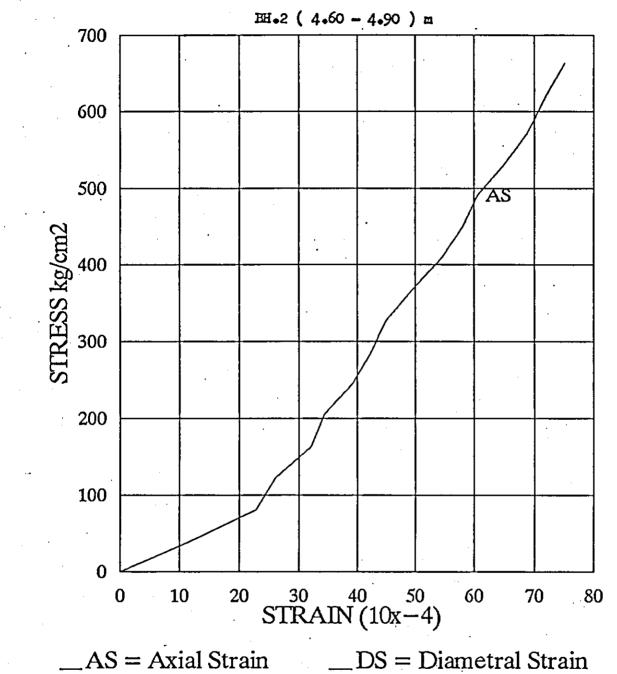

.

	REQUEST BY PROJECT LOCATION DATE RECEIVED	: Warsamson :	TEST TESTE		: : February 4, 1995 : cb :		
	<u> </u>	COMPR. W	SHEAR W.	POIS. RAT.	YOUNG'S MOD.	MODULUS RIG	
No	SAMPLE	(VP)	(VS)	(U)	(E)	(G)	
		m/sec.	m/sec.	-	kg/cm²	kg/cm²	
1	BH - 1, 3.08 - 3.3	3 3,133.33	1,566.67	0.3333	1.55E+05	5.82E+0	
2	BH - 1, 17.00 - 1	7.25 3,102.86	1,551.43	0.3333	1.89E+05	7.08E+0	
3	BH - 2, 4.60 - 4.9	3,185.71	1,858,33	0.2421	2.32E+05	9,36E+0	
4	BH - 2, 12.65 - 12	2.95 3,142.86	1,692.31	0.2958	2.08E+05	8.02E+0	
5	BH - 4, 2.35 - 2.5	3,600.00	1,661.54	0.3647	1.89E+05	6.92E+0	
6	BH - 4, 7.70 - 7.9	3,085.71	1,542.86	0.3333	1.53E+05	5.73E+0	
7	BH - 5 2.75 - 3.0	2,333.33	1,354.84	0.2457	1.29E+05	5.16E+0	
8	BH - 5 18.08 - 18	8.38 2,678.95	1,566.15	0.2404	1.69E+05	6.79E+0	
9	BH - 6 4.00 - 4.2	253,375.00	1,800.00	0.3012	2.34E+05	8.97E+0	
10	BH - 6 6.70 - 6.9	2,815.00	1,671.88	0.2278	1.94E+05	7.88E+0	
11	BH - 8, 9.70 - 9.9	0 1,740.00	949.09	0.2882	5,71E+04	2.22E+0	
12	BH - 10, 4.77 - 5.0	3,040.00	1,636.92	0.2958	1.77E+05	6.85E+0	
13	BH - 10, 5.00 - 5.2	25 3,456.67	1,481.43	0.3875	1.60E+05	5.75E+0	
14	BH - 12, 3.00 - 3.3	3,185.71	1,858.33	0.2421	2.19E+05	8.83E+0	
15	BH - 13, 16.86 - 1	7.00 3,696.00	1,540.00	0.3950	1.63E+05	5.82E+0	
16			1				
17							
18					· · ·		
19			, , , , , , , , , , , , , , , , , , , ,				
20	· · · · · · · · · · · · · · · · · · ·		:				
21							
22							
23						· · · · · · · · · · · · · · · · · · ·	
24	· · ·					<u></u>	
25						· ·	
26			· · · · · · · · · · · · · · · · · · ·				
27							
28							

D.3

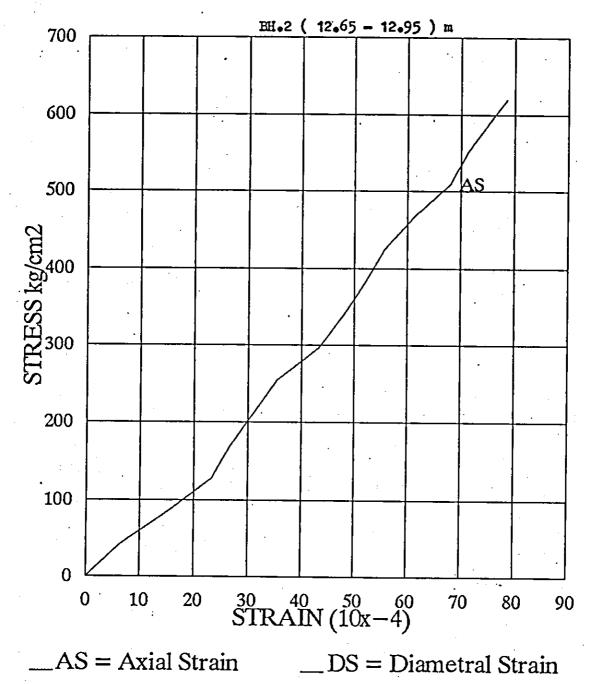

• 3

FL	REQUEST B PROJECT OCATION DATE SIZE OF SPE JD CORREC	ECIMENT		DN 1995 9.38	cm	СК	: BH - 1 : 3.08 - 3.33 m :	
				ADING (X 10			(x 10^-4)	· .
No	LOAD (kg)	STRESS (kg/cm²)	AXIAL d	DIAME d1	TRAL d2	AXIAL a	DIAMETRAL d1 + d2	NOTE
+	I							
1	0	0.000	0	-	-	0.000	- 1	
2	1000	47.622	<u>38</u> 86	-	-	4.051 9.168	-	
3	2000	95.245 142.867	159	-	-	16.951	-	
4 5	4000	190.489	206		-	21.962		·····
6	5000	238.111	263			28.038	-	
7	6000	285.734	200	-	-	31.876	-	•
8	7000	333,356	337	•	-	35.928		
9	8000	380.978	378	-	-	40.299	-	1.1
10	9000	428.601	452	•	- ·	48.188	-	
11	9800	466.698	573	-	-	61.087	-	
	REMARK :		SAMPLE FAIL	URE AT 6:	466.6983	kg/cm²		


	REQUEST B PROJECT LOCATION DATE SIZE OF SPI	ECIMENT	: ACE : WARSAMS(: January 25, : HEIGHT DIAMETER AREA : 1.0158259	DN 1995 10.87 5.18	DRILL HOLE DEPTH TYPE OF RC TEST COND cm cm cm cm ²	OCK	BH - 1 17.00 - 17.25 m		
			DIAL RE	ADING (X 1	0^-3) mm	STRAIN	(x 10^-4)		
No	LOAD	STRESS	AXIAL		ETRAL	AXIAL	DIAMETRAL	NOTE	
	(kg)	(kg/cm²)	d	d1	d2	a	d1 + d2		
1	0	0.000	0			0.000			
2	1000	48.203	37		-	3.404			
3	2000	96.405	93	··	-	8.559		·	
4	3000	144.608	137			12.603	-		
_5	4000	192.810	163	-		14.995	· -		
6	5000	241.013	198	-	-	18.215	•		
7	6000	289.215	211	-	•	19.411			
8	7000	337.418	239	•	•	21.987	-		
9	8000	385.620	287	-	-	26.403	-		
10	9000	433.823		-		28.703	-		
11	10000	482.025	336	•	-	30.911			
12	11000	530.228	357	•		32.843	•		
13	12000	578.430	376	-	-	34.591	-		
14	13000	626.633	392	-		36.063	-		
15	13200	636.273	424	-		39.006	-		
		·			· ·		· · · · · · · · · · · · · · · · · · ·		
					- <u> </u>	<u> </u>			
-					_ <u></u>	<u> </u>			
{									
								·	
								۰.	
		······							
				· · ·		1		-	
			· · · · · · · · · · · · · · · · · · ·				·····		
		· · · ·				1		•	
						1			
				•	1	1	· · · · · · · · · · · · · · · · · · ·		
						1		· · · · · · · · · · · · · · · · · · ·	
								· · · · · ·	
	<u>TTER</u>	arrenten (
5 F	REMARK :			ميلية (1914) والحرق المراجع الموقع الموقع الم					

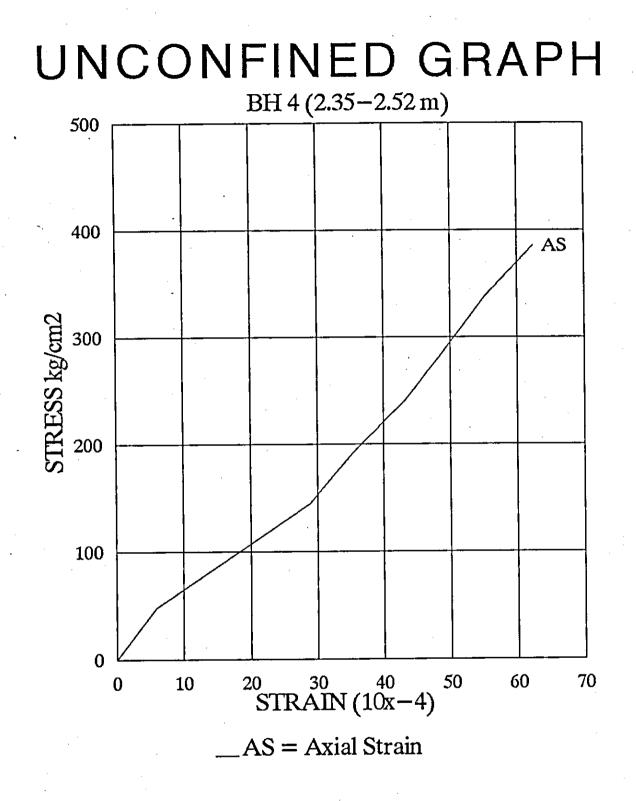
	UNCO	DNFIN	IED (COMI	PRES	SION	TES	Т	
REQUES PROJEC LOCATIC DATE SIZE OF	T : DN :		lepp 995 11,15		СК	BH 2 4.60 - 4.90 M	1		
DIAMETER 5,6 cm AREA 24,630 cm2 L/D CORRECTION : 1,0073571									
			DIAL RE	ADING (X10-	-3)mm	STRAIN ()	(10—4)		
No.	LOAD	STRESS	AXIAL	DIAMETF	RAL	AXIAL	DIAMETRAL	NOTE	
	(Kg)	(kg/cm2)	d	d,1	d.2	<u> a </u>	d1+ d2		
1	0	0,000	0	0	0	0,000	0,000		
2	1000	40,899	135	0	0	12,108	0,000		
3	2000	81,799	254	. 0	0	22,780	0,000		
4	3000	122,698	290	0	0	26,009	0,000		
5	4000	163,598	358	0	0	32,108	0,000		
6	5000	204,497	382	0	. 0	34,260	0,000		
7	6000	245,397	438	0	0	39,283	0,000		
8	7000	286,296	472	0	0	42,332	0,000		
9	8000	327,196	502	0	0	45,022	0,000		
- 3 - 10	9000	368,095	552	0	0	49,507	0,000		
11	10000	408,995	608	0	0	54,529	0,000		
12	11000	449,894	648	0	0	58,117	0,000		
13	12000	490,793	674	0	. 0	60,448	0,000		
13			725	0	. 0	65,022	0,000		
	13000	531,693		0	0				
15	14000	572,592	768			68,879	0,000		
16	15000	613,492	798	0	0	71,570	0,000	•	
17	16200	662,571	838	0	0	75,157	0,000		
			· · · · · · · · · · · · · · · · · · ·						
								·	
		· · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			· · · ·	
							·	<u> </u>	
								<u></u>	
			•						
								<u>-</u> .	
			· ·	· · ·					
				1	·		1	·	
	REMARK :	SAMPLE FAIL	URE AT	c;	662,571	kg/cm^2	·		
								- מומ-מט	

D.8

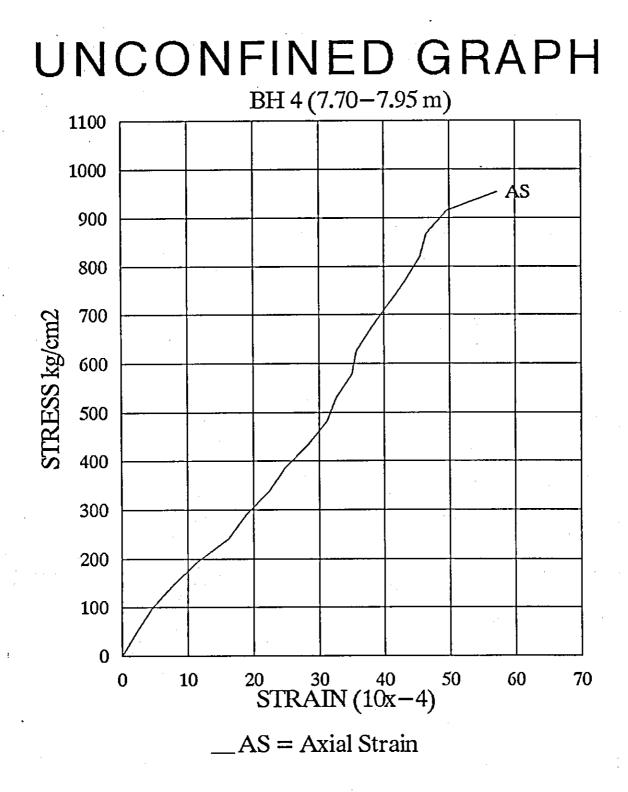


	UNCO	DNFIN			PRES			1
REQUES	тву :	· -,		DRILL HOLE	•	BH 2		
ROJEC		Warsamson H	lepp	DEPTH	. 1	2.65 - 12.95	M .	•
		Sorong, Irja		TYPE OF RO	ск :			•
DATE		February 2, 1	995	TEST COND	ITION :	•		
	SPECIMENT :	-	· 11 c	m				
		DIAMETER	5,5 0	;m				
		AREA	23,758 0					
JD COR	RECTION	1,008098						
			DIAL READING (X10-3)mm STRAIN (x10-4)					
No.	LOAD	STRESS	AXIAL	DIAMETE		AXIAL	DIAMETRAL	NOTE
ľ	(Kg)	(kg/cm2)	d	d.1	d.2	a	d1+ d2	•
1	0	0,000	0	0	0	0,000	0,000	
2	1000	42,431	70	0	0	6,364	0,000	· .
3	2000	84,863	166	0	0	15,091	0,000	
4	3000	127,294	256	0	0	23,273	0,000	
5	4000	169,726	294	0	0	26,727	0,000	
6	5000	212,157	342	0	0	31,091	0,000	
7	6000	254,588	390	0	0	35,455	0,000	• • •
8	7000	297,020	476	0	0	43,273	0,000	
9	8000	339,451	527	0	0	47,909	0,000	
10.	9000	381,883	573	0	0	52,091	0,000	
11	10000	424,314	614	0	0	55,818	0,000	
12	11000	466,746	674	. 0	0	61,273	0,000	
13	12000	509,177	748	0	0	68,000	0,000	
14	13000	551,608	784	0	0	71,273	0,000	
15	14000	594,040	833	0	0	75,727	0,000	
16	14600	619,499	864	0	0	78,545	0,000	· ·
								· · · ·
		L						
	<u> </u>							
		- <u>-</u> -		· · · ·				
				· · · · · · · · · · · · · · · · · · ·				
	· · · · ·					<u>.</u>		
	· · · · · · · · ·							
		· · ·				· · · · · · · · · · · · · · · · · · ·		<u>.</u>
	· · · · · · · · · · · · · · · · · · ·							
				· · ·		· · · · · · · · · · · · · · · · · · ·		
						· · · · · · · · · · · · · · · · · · ·	¦{·	
		·				·	<u> </u>	
				· · · · · · · · · · · · · · · · · · ·	l	<u> </u>	<u>├───</u> <u>├</u>	
					· · · · · · · · · · · · · · · · · · ·	·	<u> </u>	
					· · · · · · · · · · · · · · · · · · ·			
			l .				} ł	,
	<u> </u>	l	l ##****			l New r		
		SAMPLE FAI			610 400	kg/cm^2		
an a		OAWELE FAI	LOUE VI	There will	013 ,433	£9/900 €	-	·

·

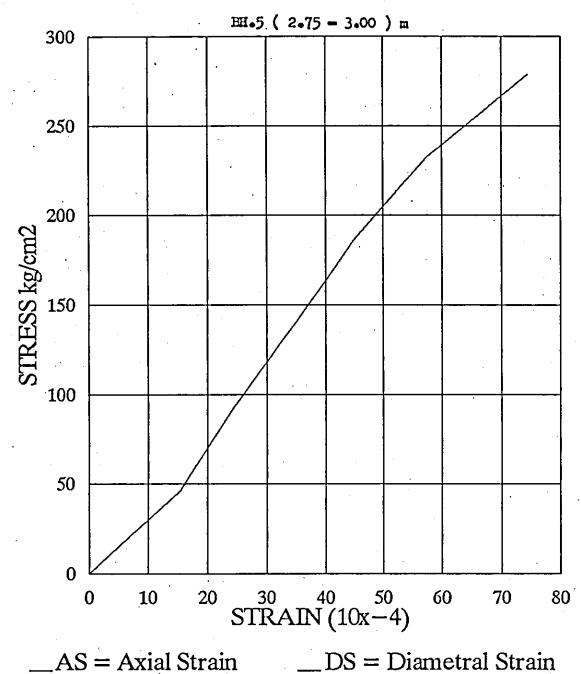

•

UNCONFINED GRAPH



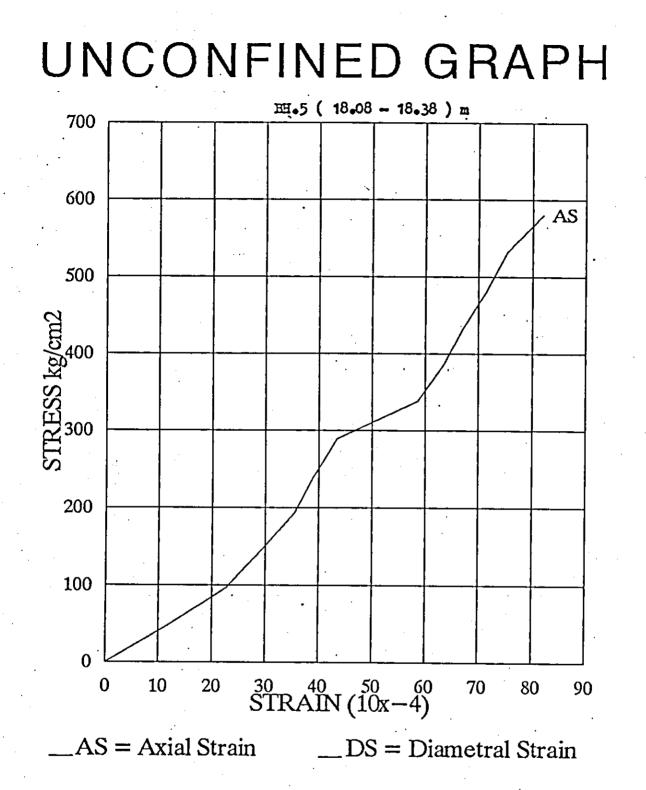
D.11

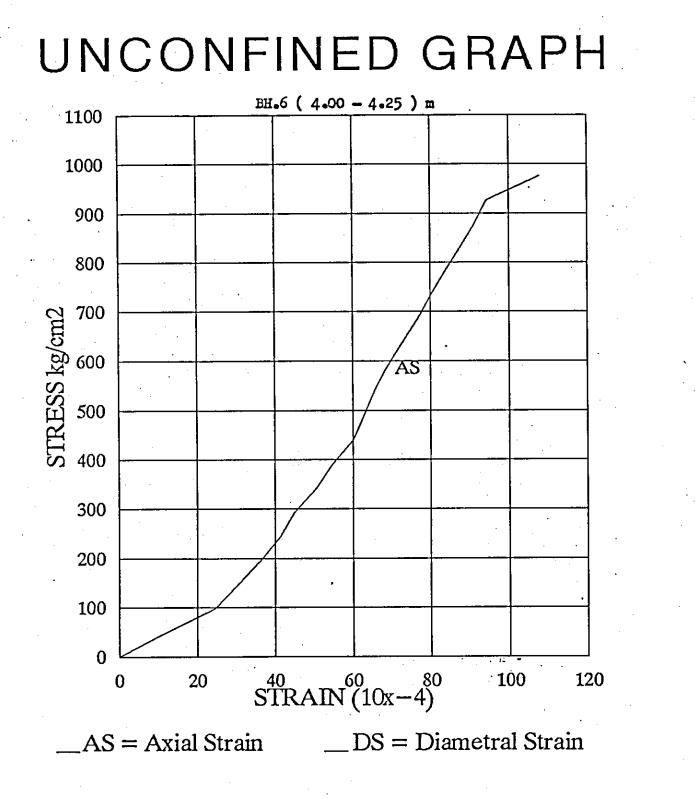
		JECT : DEPTH : 2.35 - 2.52 m ATION : WARSAMSON TYPE OF ROCK :						
			DIAL RE	ADING (X 10	^-3) mm	STRAIN	l (x 10^-4)	
No	LOAD	STRESS	AXIAL	DIAME		AXIAL	DIAMETRAL	NOTE
ľ	(kg)	(kg/cm²)	d .	d1 -	d2	а	d1 + d2	
1	0	0.000	0	-	-	0.000	-	
2	1000	48.154	64	-	-	5.926	-	
3	2000	96.309	189		-	17.500	•	
_4	3000	144.463	312	-	-	28.889	-	
5	4000	192.618	383	•	•	35.463		
6	5000	240.772	467			43.241		<u> </u>
7	<u> </u>	288.927 337.081	<u>532</u> 596	•	•	49.259		
0	8000	385.236	596 674			55.185 62.407	•	
	0000	303.230	0/4	-	-	02.407	-	
								····
								· · · · ·
			·					
								_
								· · · - -
		<u></u>						
-					· · · · · · · · · · · · · · · · · · ·	· · · · ·		
-					· ·			
					— • · · · · · · · · · · · · · · · · · ·			
				•	·			
- †								
	1							
					· ·			
		_						
						•		
	REMARK :				er verbere		danis (Marka Serie da Lange, a. 19) 2. – Angel Serie da Lange (Marka Serie 2. – Angel Serie da Lange (Marka Serie da Lange (Marka Serie da Lange) 2. – Angel Serie da Lange (Marka Serie da Lange) 2. – – – – – – – – – – – – – – – – – – –	的学生的神经
$1 \le 1$					DOC ODEO	PR-PR-PR-	eren ser de la	



F L C S	REQUEST B PROJECT OCATION DATE SIZE OF SPE	ECIMENT	ACE WARSAMSC January 25, HEIGHT DIAMETER AREA 1.0148132	- DN	cm	СК	: BH - 4 : 7.70 - 7.95 m :	
	í	· · ·	DIAL RE	ADING (X 10	^-3) mm	STRAIN	I (x 10^-4)	
No	LOAD	STRESS	AXIAL	DIAME	TRAL	AXIAL	DIAMETRAL	NOTE
. [(kg)	(kg/cm²)	d	d1	d2	а	d1 + d2	
		0.000	0	-		0.000		
1	0 / 1000	48.154	24			2.222		
- 2	2000	96.309	48	•		4.444	-	
4	3000	144.463	82			7.593	-	
- 4	4000	192.618	123			11.389		
6	5000	240.772	125		•	16.204	-	
-7	6000	288.927	203			18.796	-	
-8	7000	337.081	241		-	22.315	•	
- 9	8000	385.236	268	•	-	24.815	-	
10	9000	433.390	306	•	-	28.333	-	
11	10000	481.545	337	-	-	31.204	-	
12	11000	529.699	352	-	-	32.593	-	
13	12000	577.854	379		-	35.093	-	
14	13000	626.008	386	-	-	35.741	-	
15	14000	674.163	412	-	-	38.148	-	
16	15000	722.317	440	-	•	40.741	-	
17	16000	770.472	467		-	43.241	<u> </u>	
18	17000	818.626	491	-	-	45.463	+	
19	18000	866.781	502		-	46.481	+	,
20	19000	914.935	537		-	49.722		
21	19800	953.459	618		•	57.222		
						l		
				<u></u>	· · · · · · · · · · · · · · · · · · ·			
	-			· · · · · · · · · · · · · · · · · · ·				<u> </u>
		· · · ·						
	· ··- ·=				<u> </u>			
						· · · · · ·	{	
			· · · · · · · · · · · · · · · · · · ·	<u>.</u>		<u> </u>		
			<u> </u>		<u> </u>		<u> </u>	·
					<u> </u>			
					<u> </u>		·	
—		 	· ·		<u> </u>			
		! <u></u> .			+			
Sectored	a an eile de com		l Citational	l Rozanie (Marine and Santos	Leging Cardelers	i Varistiki (Marka)		er for the second s
	REMARK .		的复数建物中的					
			SAMPLE FAL	URF AT c *	1 953 4587	ka/cm ²		

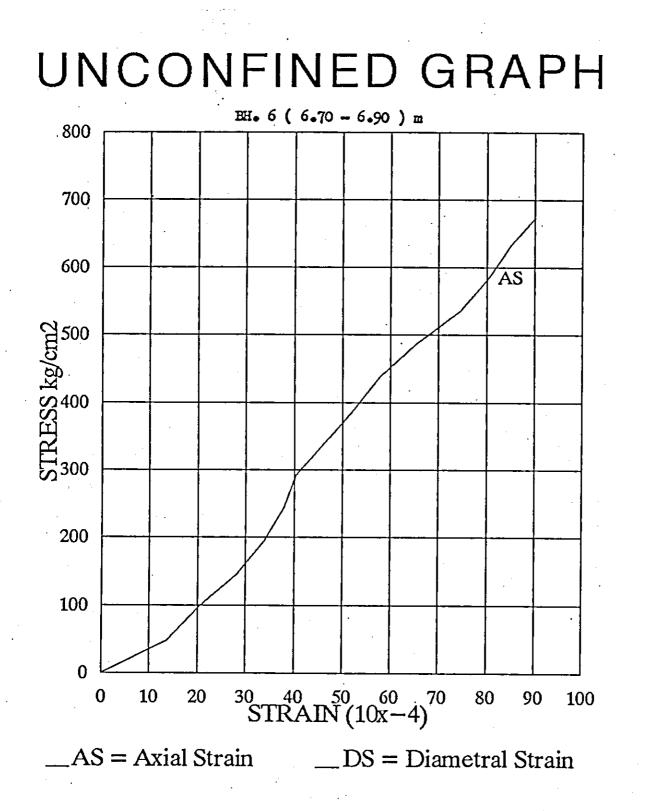
REQUES		: : Warsamson H	lenn .	DRILL HOLE	· ·	:BH 5 • 275 - 300	M	
		Sorong, Irja		TYPE OF RC				
		: February 2, 1	995	TEST COND		•		
		HEIGHT			mon	•		• •
		DIAMETER						
		AREA	-			••		
000			20,031	cmz	· .			
JD COR	RECTION :	0,9674608						
		·	DIAL RE	ADING (X10-	-3)mm	STRAIN (x10-4)	
No.	LOAD	STRESS	AXIAL	DIAMET			DIAMETRAL	NOTE
ł	(Kg)	(kg/cm2)	d	d.1	d.2	a	d1+ d2	HOIL
1	0	0,000	0	0	0			·
2	1000	46,444	127	0	0	15,488		•
3	2000	92,888	201	0	0	24,512		
4	3000	139,332	285	0	0	34,756		
5	4000	185,776	368	0	0	44,878	0,000	
6	5000	232,220	471	0	0	57,439		
7	6000	278,664	610	0	0	· · · · · · · · · · · · · · · · · · ·	0,000	•••• <u> </u>
					0	14,390	0,000	
	· · · · · · · · · · · · · · · · · · ·	•				<u> </u>	├─── ·· · · · · · · · · · · · · · · · ·	
	·		· _ ·				├ ────┤-	
{	[
					· · · · · · · · · · · · · · · · · · ·		├ ───── │ .	
					,			
	· · ·	·				·		
							· · · ·	
					· · · ·			
							i [-	
		· · ·						
·					· ·			
					•			·
[·					·	· · · ·	├	
				·			├──────┤-	
1	I			1		<u> </u>	and all the second	:
	a an		a a contra de Caldada			The Little Contraction of the		:


UNCONFINED GRAPH

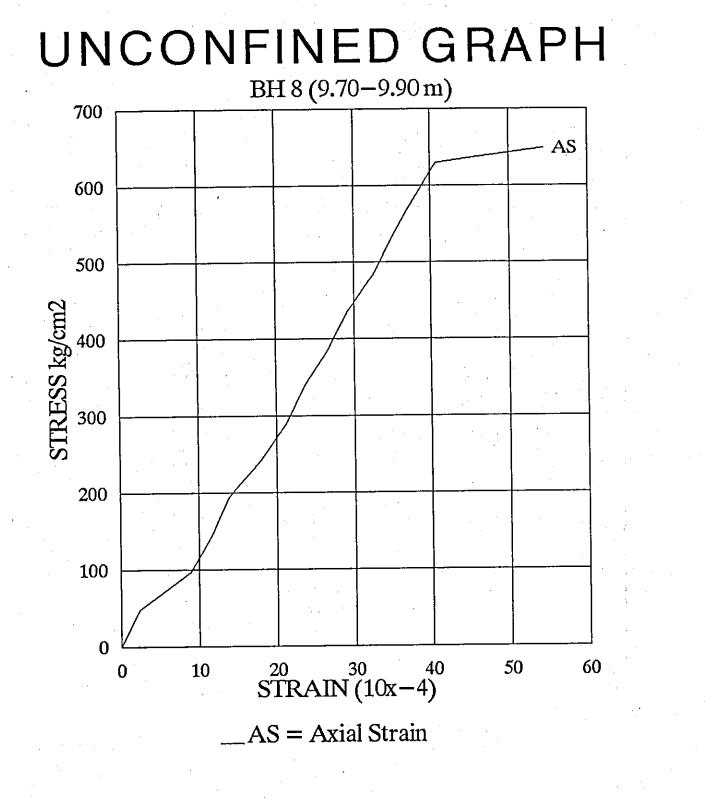

D.17

. .

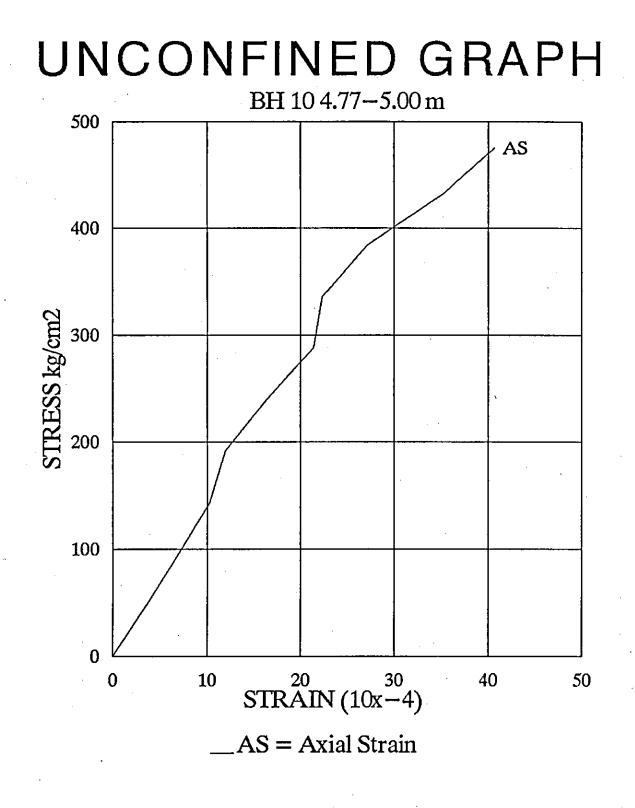
	UNC	DNFIN	IED (COM	PRES	SION	TES	Т
REQUES PROJEC LOCATIC DATE	T : DN :	Warsamson H Sorong, Irja February 2, 1 HEIGHT	Черр 995	DRILL HOLE DEPTH TYPE OF RO TEST COND	ск :	BH 5 18.08 – 18.38	ВМ	
	RECTION	DIAMETER AREA	5,15 (20,831 (om om2				
No.	LOAD	STRESS	. DIAL RE	ADING (X10- DIAMETE	RAL.	STRAIN () AXIAL	DIAMETRAL	NOTE
	(Kg)	(kg/cm2)	d	d.1	d.2	a	d1+ d2	
1.	0	0,000	0	0	0	0,000	0,000	
2	1000	48,301	120	0	0	11,788	0,000	
3	2000	96,603	231	0	0	22,692	0,000	
4	3000	144,904	298	0	0	29,273	0,000	
5	4000	193,205	362	0	· 0	35,560	0,000	
6	5000	241,506	398	. 0	0	39,096	0,000	
7	6000	289,808	442	0	0	43,418	0,000	
8	7000	338,109	596	0	0	58,546	0,000	
9	8000	386,410	647	0	0	63,556	0,000	
10	9000	434,711	685	0	0	67,289	0,000	,
11	10000	483,013	728	0	0	71,513	0,000	
12	11000	531,314	765	0	0	75,147	0,000	
13	12000	579,615	835	0	0	82,024	0,000	•
15	12000	575,015				02,024	0,000	
						<u> </u>		· · · · ·
							<u> </u> -	
	· · · · · ·					-	<u>-</u> -	
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
							∤	
·								
							<u> </u>	
						•		
		l						
		-						
		1				· · · · · · · · · · · · · · · · · · ·	<u> </u>	
		· · · ·					 	· <u> </u>
							<u>↓</u> †	
			· · · · · ·				<u> </u>	<u> </u>
					[
							<u> </u>	
							<u></u> ∮	
	·	l		·		l	<u> </u>	
	REMARK ;	SAMPLE FAI		c:	579,615	kg/cm^2		
		anna an seacha	Aller - Medarley					UN-DIS



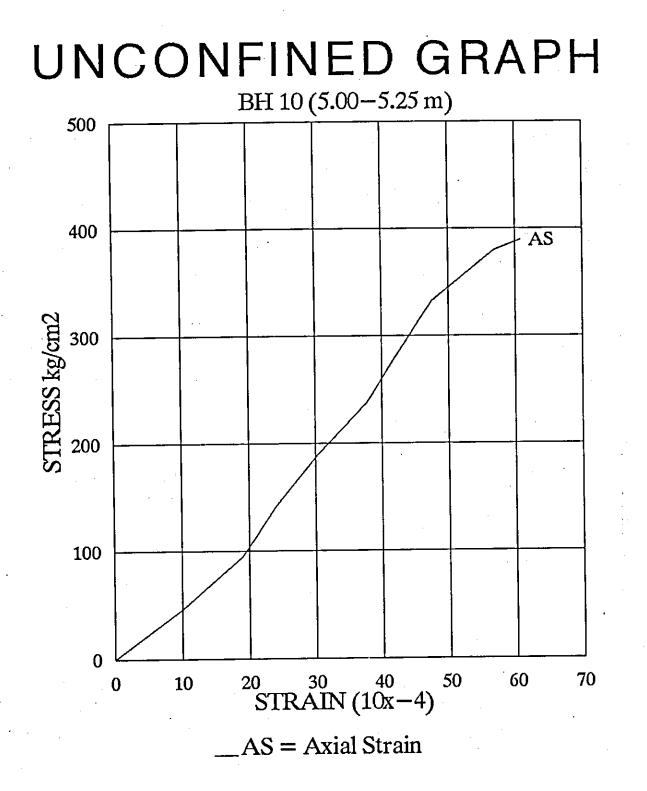
SIZE OF SPECIMENT : HEIGHT 10,8 cm DIAMETER 5,15 cm AREA 20,831 cm2 L/D CORRECTION : 1,0157241 No. LOAD STRESS AXIAL DIAMETRAL AXIAL DIAMETRAL Image: No. (Kg) (kg/cm2) d d.1 d.2 a d1+ d2 Image: No. 0.000 0 0 0 0.000 0.000 0 Image: No. 145,283 330 0 0 30,556 0.000 0	• •
No. LOAD STRESS AXIAL DIAMETRAL AXIAL DIAMETRAL (Kg) (kg/cm2) d d.1 d.2 a d1+ d2 1 0 0,000 0 0 0 0,000 0,000 2 1000 48,761 126 0 0 11,667 0,000 3 2000 97,522 264 0 0 24,444 0,000 4 3000 146,283 330 0 0 36,111 0,000 5 4000 195,043 390 0 0 36,111 0,000 6 5000 243,804 446 0 0 41,296 0,000 7 6000 292,565 486 0 0 45,000 0,000 8 7000 341,326 548 0 0 50,741 0,000 9 8000 390,087 592 0 0 54,815 <td< td=""><td></td></td<>	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NOTE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
4 3000 146,283 330 0 0 30,556 0,000 5 4000 195,043 390 0 0 36,111 0,000 6 5000 243,804 446 0 0 41,296 0,000 7 6000 292,565 486 0 0 45,000 0,000 8 7000 341,326 548 0 0 54,815 0,000 9 8000 390,087 592 0 0 54,815 0,000 10 9000 438,848 648 0 0 60,000 0,000 11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 65,556 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 <t< td=""><td></td></t<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
6 5000 243,804 446 0 0 41,296 0,000 7 6000 292,565 486 0 0 45,000 0,000 8 7000 341,326 548 0 0 50,741 0,000 9 8000 390,087 592 0 0 54,815 0,000 10 9000 438,848 648 0 0 60,000 0,000 11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 68,704 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 76,481 0,000	
7 6000 292,565 486 0 0 45,000 0,000 8 7000 341,326 548 0 0 50,741 0,000 9 8000 390,087 592 0 0 54,815 0,000 10 9000 438,848 648 0 0 60,000 0,000 11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 68,704 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 76,481 0,000	
8 7000 341,326 548 0 0 50,741 0,000 9 8000 390,087 592 0 0 54,815 0,000 10 9000 438,848 648 0 0 60,000 0,000 11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 65,556 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 76,481 0,000	
9 8000 390,087 592 0 0 54,815 0,000 10 9000 438,848 648 0 0 60,000 0,000 11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 65,556 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 76,481 0,000 15 14000 682,652 826 0 0 76,481 0,000	
10 9000 438,848 648 0 0 60,000 0,000 11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 65,556 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 76,481 0,000 15 14000 682,652 826 0 0 76,481 0,000	
11 10000 487,609 677 0 0 62,685 0,000 12 11000 536,370 708 0 0 65,556 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 76,481 0,000 15 14000 682,652 826 0 0 76,481 0,000	
12 11000 536,370 708 0 0 65,556 0,000 13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 72,407 0,000 15 14000 682,652 826 0 0 76,481 0,000	
13 12000 585,130 742 0 0 68,704 0,000 14 13000 633,891 782 0 0 72,407 0,000 15 14000 682,652 826 0 0 76,481 0,000	
14 13000 633,891 782 0 0 72,407 0,000 15 14000 682,652 826 0 0 76,481 0,000	
15 14000 682,652 826 0 0 76,481 0,000	
16 15000 731,413 864 0 0 80,000 0,000	
17 16000 780,174 904 0 0 83,704 0,000	
18 17000 828,935 945 0 0 87,500 0,000	
19 18000 877,696 985 0 0 91,204 0,000	
20 19000 926,456 1019 0 0 94,352 0,000	
21 20000 975,217 1164 0 0 107,778 0,000	
REMARK : SAMPLE FAILURE AT c :	



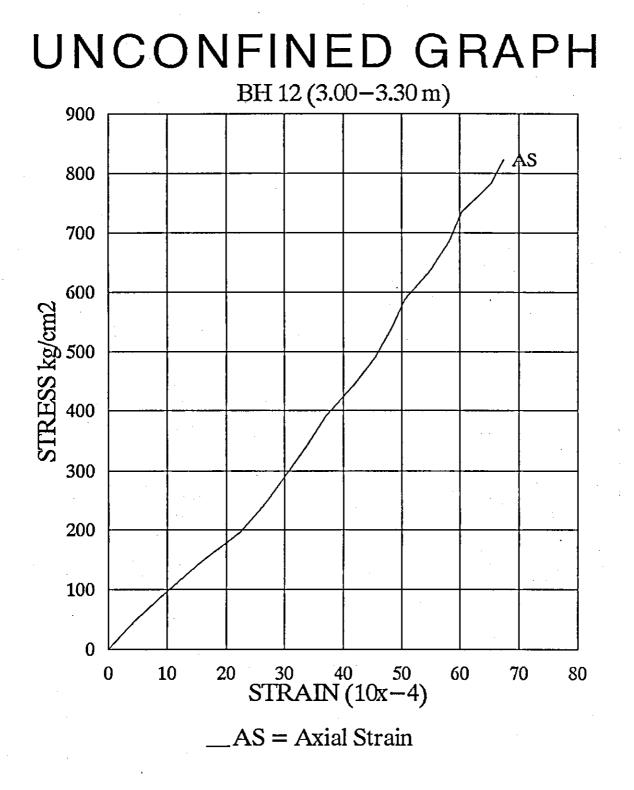
D.21


		DNFIN		20M	PRES	SION	TES	Т
						BH 6	· · · .	
REQUES				DRILL HOLE		6.70 - 6.90	84	
•	OJECT : Warsamson Hepp CATION : Sorong, Irja					0.70 - 0.90	171	
LOCATIC			,	TYPE OF RO				
•		February 2, 19						
SIZE OF	E OF SPECIMENT : HEIGHT 10,7 cm							
	DIAMETER 5,15 cm						•	
		AREA	20,831	cm2				
L/D COR	RECTION	1,0142619		-				
;		· · · · · · · · · · · · · · · · · · ·		ADING (X10-	2\mm	STRAIN (×10_4)	
	1045	OTDECO		DIAMETE		`	DIAMETRAL	NÔTE
No.	LOAD	STRESS	AXIAL d		d.2		d1+ d2	NOIL
	<u>(Kg)</u>	(kg/cm2)		<u>d.1</u>		a 0,000		
	0	0,000	0	0	0			
2	1000	48,691	145	0	0	13,551	0,000	<u> </u>
3	2000	97,381	215	0	0	20,093	0,000	· · <u>_ · · · · · · · · · · · · · · · · ·</u>
4	3000	146,072	301	0	0	28,131	0,000	
5.	4000	194,763	362	0	0	33,832	0,000	
6	5000	243,453	405	0	0	37,850	0,000	
7	6000	292,144	431	0	0	40,280	0,000	· · · · · · · · ·
8	7000	340,835	496	0	0	46,355	0,000	
9	8000	389,525	561	0	0	52,430	0,000	·
10	9000	438,216	620	0	0	57,944	0,000	
11	10000	486,907	701	0	0	65,514	0.000	·
12	· 11000	535,597	798	0	0	74,579	0,000	<u> </u>
13	12000	584,288	861	0	0	80,467	0,000	
14	13000	632,979	. 911	0	0	85,140	0,000	
15	13800	671,931	961	0	0	89,813	_0,000	
								<u>-</u>
								· - · · · · · · · · · · · · · · · · · ·
	·						•	
			·····				· · · · ·	
			- <u></u> .					
		•						
•			. <u></u>					
_			L					
		х						
				1				
				· .		1		
	1			· ·			1	· ·
	<u> </u>	ii	·	<u> </u>				
	J							.92
	REMARK :	SAMPLE FAI	LURE AT	C:	671,931	kg/cm^2		
l d da								UN-DIS
<u>(5) 2001,0 (5.0)060,00</u>	e an an ann an Christer an	<u>en de la contraction de la contraction</u>	an oo 'i gaalaa ahaa iya iyaa	ye na na yennan 1999 1999 1999 1999 1999 1999 1999	a - ann an an Air an		and the second	4. <u> </u>

	UN	ICON	FINE		MPRE	3810	N TES	T
	REQUEST B PROJECT LOCATION		: ACE : : WARSAMS(ON	DRILL HOLE DEPTH TYPE OF RO		: BH - 8 : 9.70 - 9.90 m :	
	DATE SIZE OF SPI	ECIMENT	: HEIGHT DIAMETER AREA	10.35	cm ·	TION	:	
	L/D CORREC	CTION	: 1.0088961					
	1010	070500		ADING (X 10			V (x 10^-4)	NOTE
No	LOAD (kg)	STRESS (kg/cm²)	AXIAL d	DIAME d1	d2	AXIAL a	DIAMETRAL d1 + d2	NOTE
1	0	0.000	0	- .		0.000		
2	1000	48.433	24	•	-	2.319	-	
3	2000	96.866	92	•	• •	8.889	-	
4	3000	145.299	121	•	-	11.691	-	
5	4000	193.732	143	-	-	13.816	-	
6	5000	242.165	186	-	-	17.971	-	
7	6000	290.598	221	-	-	21.353	-	
8	7000	339.032	245	-		23.671	-	
9	8000	387.465	277	-	-	26.763	•	
10	9000	435.898	302	-	-	29.179	-	
11	10000	484.331	338	-	•	32.657	-	
12	11000	532.764	362	. =	•	34.976	-	
13	12000	581.197	391	-	-	37.778		
14	13000	629.630	422	-	-	40.773	-	<u></u>
15	13400	649.003	563		-	54.396	-	
·				··				
	<i>i</i> .						· .	
								······································
					· ·			
						· · · · ·		
	·		·		· · · · ·			
								······································
					· · · · · · ·			<u> </u>
			<u> </u>					·····
				•				······
- Ciliano	in a san ang ang ang ang ang ang ang ang ang a		i in the state of the	The contracts	i Sticker and			
	REMARK :		SAMPLE FAIL	URE AT c :	649.0033	ka/cm²		



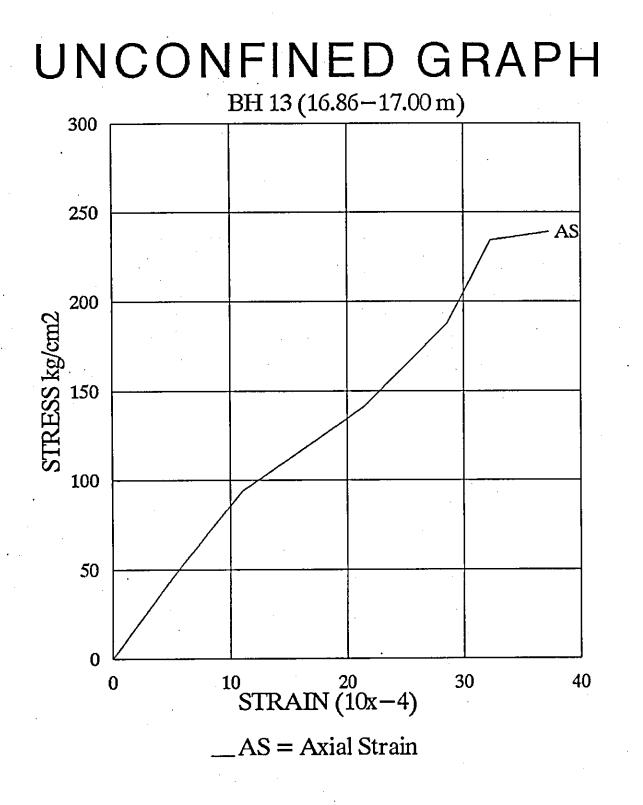
		hillinnillinnilleittelt	n an					
	REQUEST B	Y	: ACE	,	DRILL HOLE		: BH - 10	
	PROJECT		:		DEPTH		: 4.77 - 5.00 m	
	LOCATION		: WARSAMSC	DN (TYPE OF ROO	СК	•	
	DATE				TEST CONDIT	TION		
	SIZE OF SPI		: HEIGHT	10.55				
	0.22 0. 0. 0		DIAMETER					
			AREA	21.074				
	L/D CORREC	CTION	1.0110718					
						•		
			DIAL RE	ADING (X 10	^-3) mm		l (x 10^-4)	
No	LOAD	STRESS	AXIAL	DIAME	TRAL	AXIAL	DIAMETRAL	NOTE
	(kg)	(kg/cm ²)	d	d1	d2	а	d1 + d2	
1	0	0.000	0		· -	0.000	-	
2	1000	47.977	38	•	-	3.602	=	•
-3	2000	95.954	74		-	7.014	-	
4	3000	143.931	109	-	-	10.332		
5	4000	191.908	126	•	-	11.943	-	
- 6	5000	239.885	173	-	-	16.398		
7	6000	287.862	225	-	•	21.327	-	
8	7000	335.839	235	-	-	22.275	-	
- 9	8000	383.816	286	-	•	27.109	-	
10	9000	431.792	372	-	-	35.261	-	
11	9900	474.972	429	-	-	40.664	-	
					1			
			·	-				
				-				
					ł			
				· · · · ·				•
								
[
					· · · · · · · · · · · · · · · · · · ·			
		·						
	REMARK :							
			SAMPLE FAIL	URE AT c:	474.9717	kg/cm²		
《中期》》	10月1日 (第二)とり	國的中國自由的自由國家的著作的同意	State front in his of the of	en finklinder och nor Bederle ^{i, av} b	《路底 "算过"的"公司"的"算道"的"	an a	1.54m~5.5%的東歐地名 常常開始	an a



.

 	REQUEST B PROJECT LOCATION DATE SIZE OF SPI	ECIMENT	: ACE : : WARSAMSC : January 25, : HEIGHT DIAMETER AREA : 1.008098	DN 1995 10.4	TEST CONDI cm cm	СК	: BH - 10 : 5.00 - 5.25 m : :	
	<u> </u>		DIAL READING (X 10^-3) mm			STRAIN (x 10^-4)		
No	LOAD	STRESS	AXIAL DIAMETRAL			AXIAL DIAMETRAL		NOTE
	(kg)	(kg/cm ²)	d	d1	d2	a	d1 + d2	
1	0	0.000	0			0.000		
2	1000	47.469	107	-	•	10.288		· · · ·
3	2000	94.937	198		-	19.038		
4	3000	142.406	252		-	24.231	-	
5	4000	189.874	316		•	30.385		
6	5000	237.343	392	•		37.692		<u>.</u>
7	6000	284.811	442	-	•	42.500	-	
8	7000	332.280	494	-	-	47.500	-	
9	8000	379.749	592	-	-	56.923	•	
10	8200	389.242	632	-	-	60.769	-	
			·					
<u> </u>				<u> </u>				·······
·								
<u> </u>								
					· · · · ·			
				··· - ··	·			
-+								
-+								
		· · · · —		·				
								
				in distriction			Malian and	
ंा	REMARK :				1632443			
			SAMPLE FAIL	UREATc:	389.2423	kg/cm²	- I Nursellari Songa Si Sanga Si Sanga Si Sanga Si	

ן ן נ	REQUEST B PROJECT LOCATION DATE SIZE OF SPE	ECIMENT	ACE WARSAMSC January 25, HEIGHT DIAMETER AREA 1.0201911	1995 11.12	cm	CK	: BH - 12 : 3.00 - 3.30 m : :	
Ī			DIAL READING (X 10^-3) mm			STRAIN (x 10^-4)		
No	LOAD	STRESS	AXIAL		TRAL	AXIAL	DIAMETRAL	NOTE
	(kg)	(kg/cm²)	d	d1	d2 ·	a	d1 + d2	
1	0	0.000	0	•	-	0.000	_	
2	1000	48.975	52	· •	-	4.676	-	
3	2000	97.951	112	-	-	10.072	-	
4	3000	146.926	176	-	•	15.827	-	
5	4000	195.901	249	•	-	22.392	-	
6	5000	244.877	296	-	-	26.619	-	
7	6000	293.852	337	-	-	30.306	-	
8	7000	342.827	376	-	-	33.813	-	
9	8000	391.802	412	=	-	37,050	-	
10	9000	440.778	462	-	-	41.547	•	
11	10000	489.753	505	-	-	45.414	-	
12	11000	538.728	536	-	-	48.201	•	
13	12000	587.704	562	•	-	50.540	-	
14	13000	636.679	611	•	-	54.946	•	
15	14000	685.654	647	-	-	58,183	-	
16	15000	734.630	671	-	-	60.342	-	•
17	16000	783.605	727		-	65.378	-	
18	16800	822.785	749	-	-	67.356	-	
				<u></u>				,
-								· · · · · · · · · · · · · · · · · · ·
-+								
					ļ		·	
-+								
			· · · · ·	· · · · · · · · · · · · · · · · · · ·	+	· <u> </u>	.	<u> </u>
					·	······		
				- ,				
								<u> </u>
م درور م درور	entre en 1 a en	计中心存储器 网络拉马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马马	ne a culture fire of a c	neredeensi teet ee	م ماده کرد. این اور اور باز کرد. این ماده کرد	Na setter det takteraar in	a sector a sector de la companya de la sector	n an anna an anna anna
18	REMARK :			設備を設め				


D.31

UNCONFINED COMPRESSION TEST REQUEST BY : ACE DRILL HOLE : BH - 13 . DEPTH : 16.86 - 17.00 m PROJECT : : WARSAMSON TYPE OF ROCK LOCATION 5 : January 25, 1995 TEST CONDITION DATE : SIZE OF SPECIMENT : HEIGHT 9.2 cm DIAMETER 5.18 cm AREA 21.074 cm² **L/D CORRECTION** 0.9875021 DIAL READING (X 10^-3) mm STRAIN (x 10^-4) DIAMETRAL LOAD STRESS No AXIAL DIAMETRAL NOTE AX!AL ď d1 d2 d1 + d2(kg) (kg/cm²) а 0 , 1 0 0.000 **.** . 0.000 -_ 2 1000 46.859 48 5.217 ---3 2000 93.717 102 11.087 -• -4 3000 140.576 197 --21.413 -5 4000 187.434 263 28.587 • --234.293 32,283 6 5000 297 --• 7 5100 238.978 343 37.283 • --

SAMPLE FAILURE AT c : 238.9785 kg/cm²

REMARK:

D.32

D.33

INDIRECT TENSILE STRENCTE TEST

	REQUEST BY PROJECT LOCATION DATE RECEIVED	RECEIVED BY : Warsamson TEST DATE : TESTED BY : APPROVED BY :			January 15, 1995	
No	SAMPLE	THICKNESS	DLAMETER	EFFECTIVE LOAD	TENSITE STRENGTH	REMARK
		(cm)	(cm)	(lbs)	(kg/cm²)	
1	BH - 1 (3.08 - 3.33 m)	5.720	5.170	3730	36.4230	
2	BH-1 (17.00 - 17.25 m)	5.180	5.170	3450	37.2008	
3		5.820	5.180	2653.56	56.0300	
4		5.640	5.170	2041.2	44.5700	$L = 45.80 \text{ cm}^2$
5		5.220	5.170	4600	49.2209	
6	BH - 4 (7.70 - 7.95 m)	5,380	5.180	3360	34.8161	
7	BH-5 (2.75-3.00 m)	5.260	5.180	1179.36		$L = 42.80 \text{ cm}^2$
8	BH-5 (18.08 - 18.38 m)	5.170	5.160	2154.6	51.4200	$L = 41.90 \text{ cm}^2$
9		5.230	5.170	2494.8		$L = 42.47 \text{ cm}^2$
10	BH - 6 (6.70 - 6.90 m)	4,950		3787.56		$L = 40.20 \text{ cm}^2$
11	BH - 8 (9.70 - 9.90 m)	5.440		8600	88.1298	
12		5.310		4150	43.6532	
13		6.020		4200	38.8934	
14		5.880	5.170	3640	34.5770	
15				ļ		
16		<u> </u>				
17			<u> </u>	ļ	· · · · · · · · · · · · · · · · · · ·	
18			l			·
19			ļ		<u> </u>	
20						
_21						
_22			l			
23		<u> </u>	Į		· · · · · · · · · · · · · · · · · · ·	
24			<u> </u>			
25			<u> </u>	<u> </u>		
_26			<u></u>			
27				<u> </u>		<u> </u>
_28			<u> </u>			
29				ł		
30	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1	!

REMARK:

APPENDIX D.2

Disturbed Soil Samples

- Specific Gravity

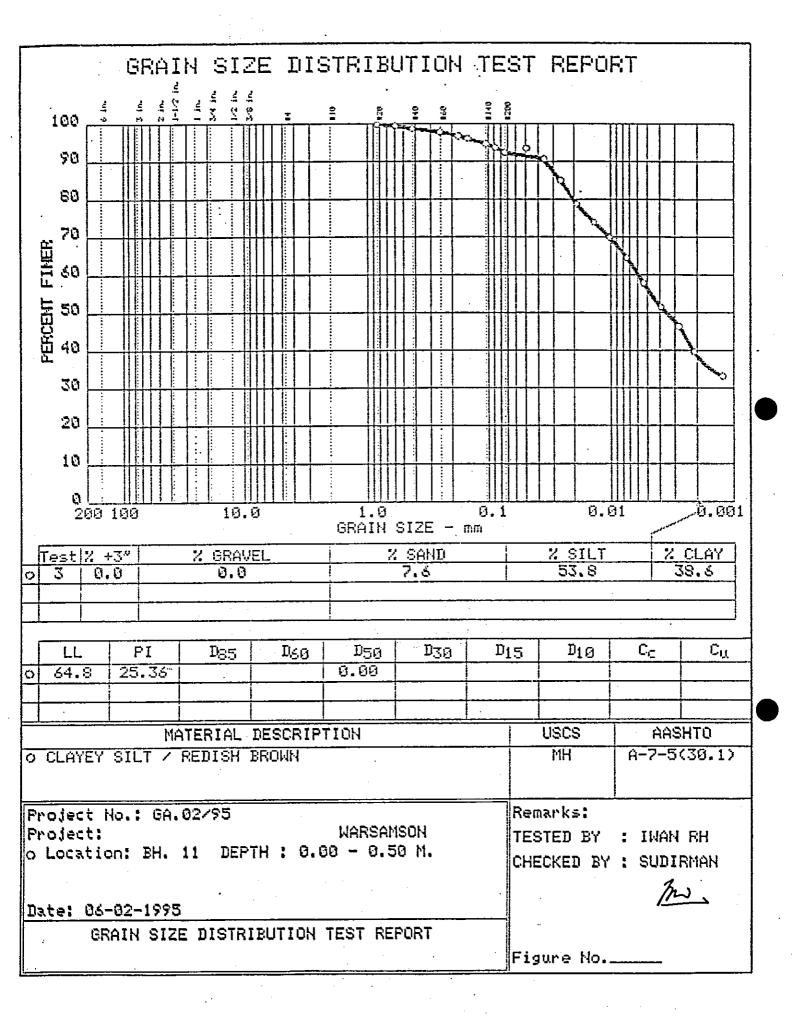
- Grain Size Analysis

- Atterberg Limits (LL and PL)

- Compaction Test

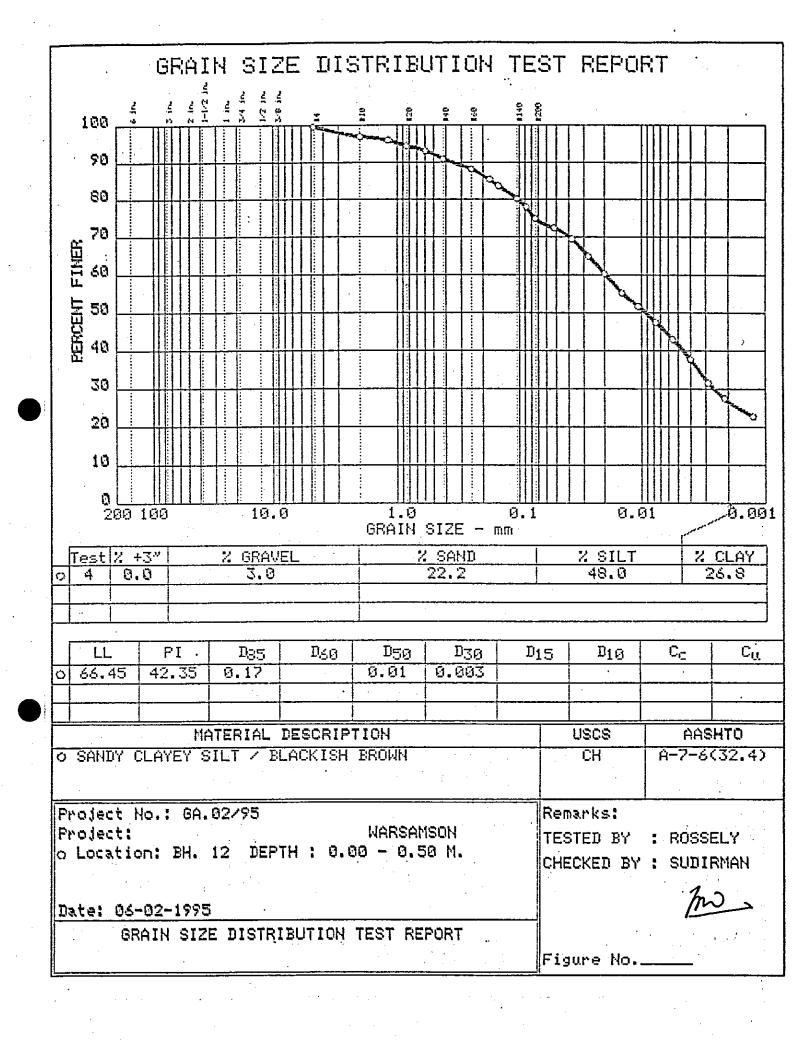
- Permeability Test

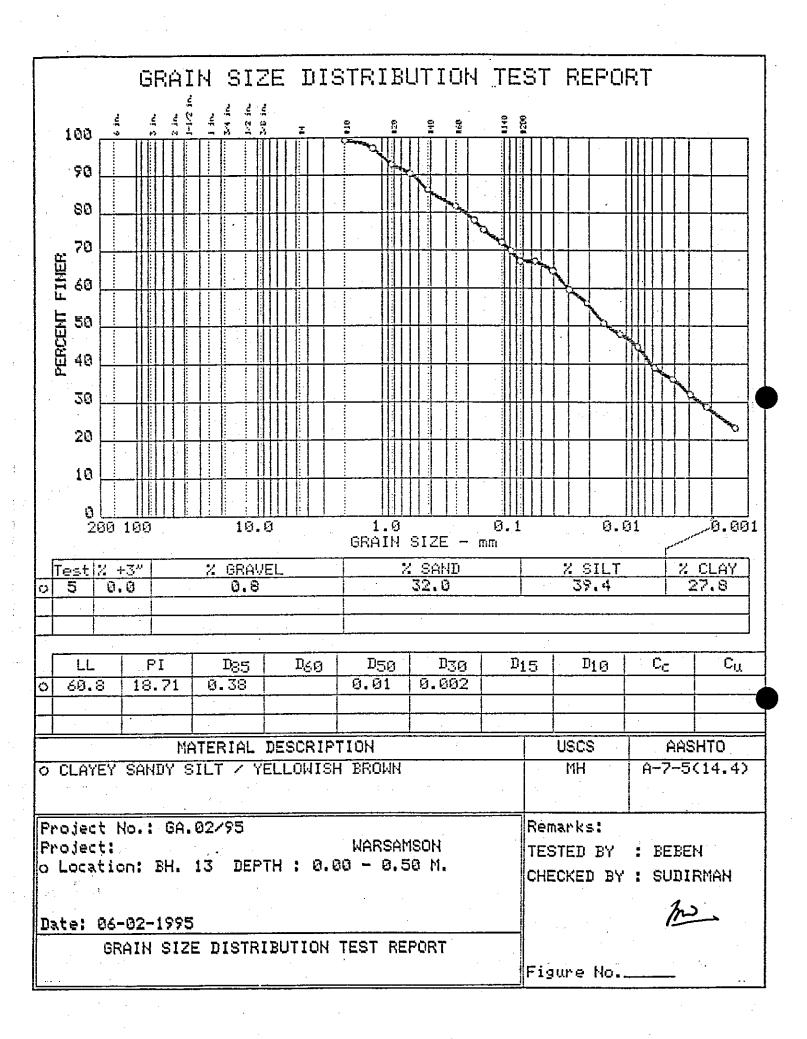
SPECIFIC GRAVITY TEST	
VTIV	
CGR	
ECIFI	
SP	

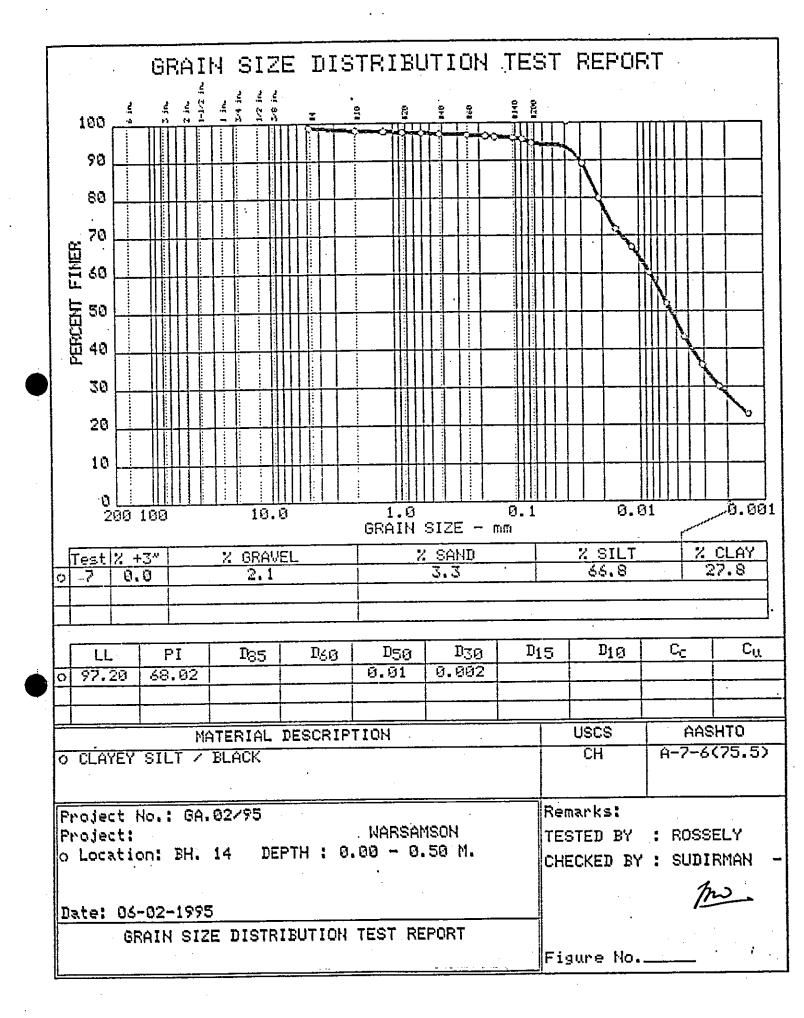

DATE : 14-02-1995

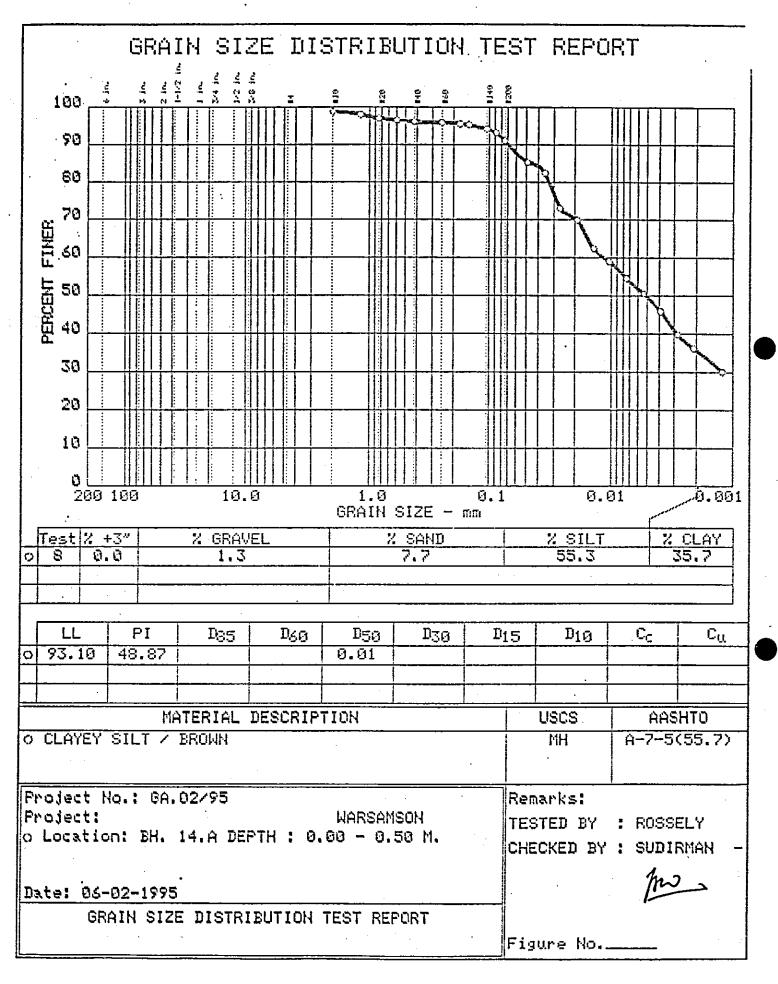
PROJECT:

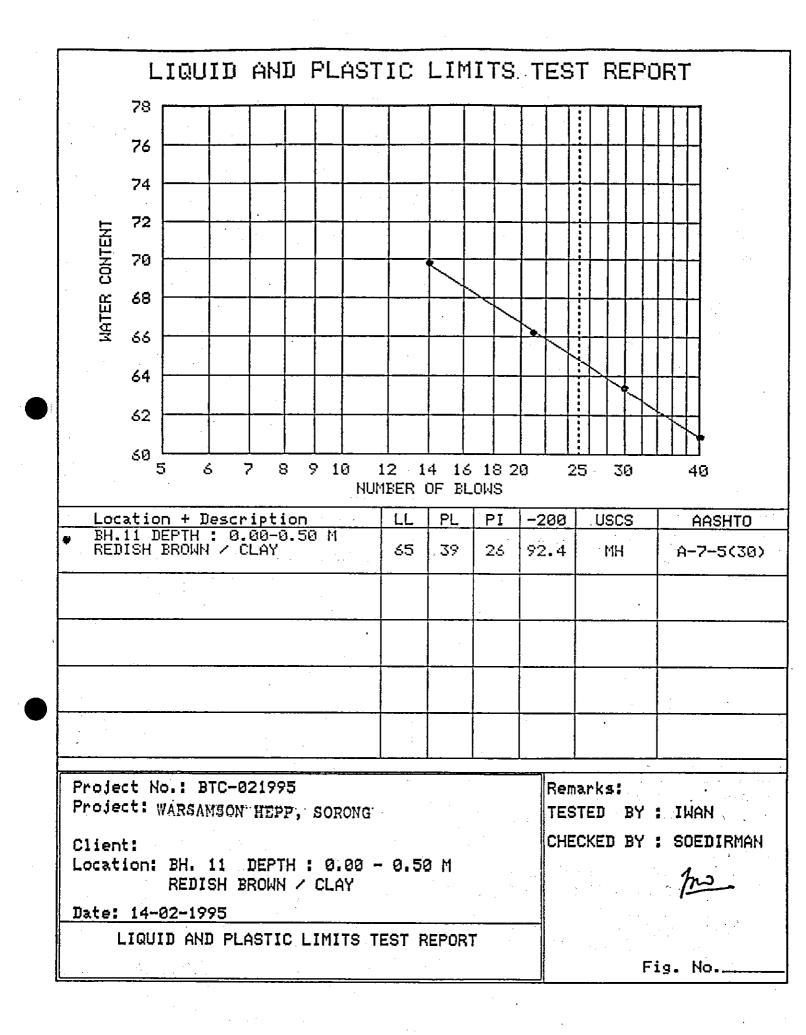
TESTED BY : HERNA CS CHECKED BY : SUDIRMAN

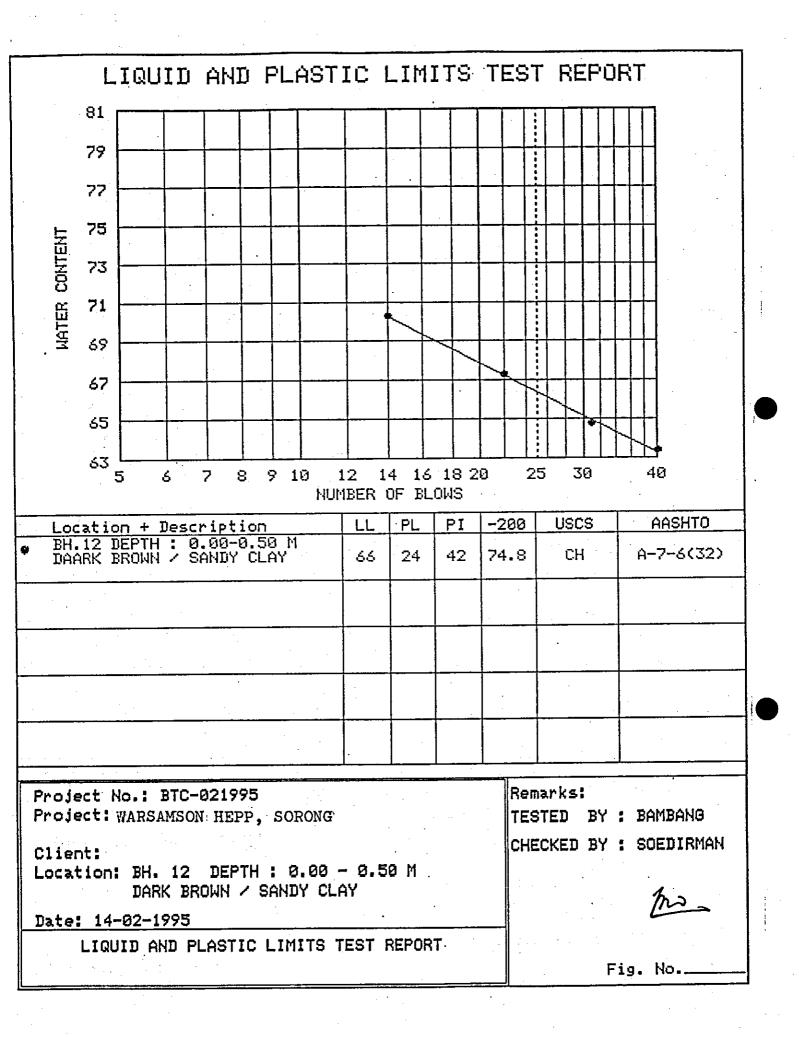

~

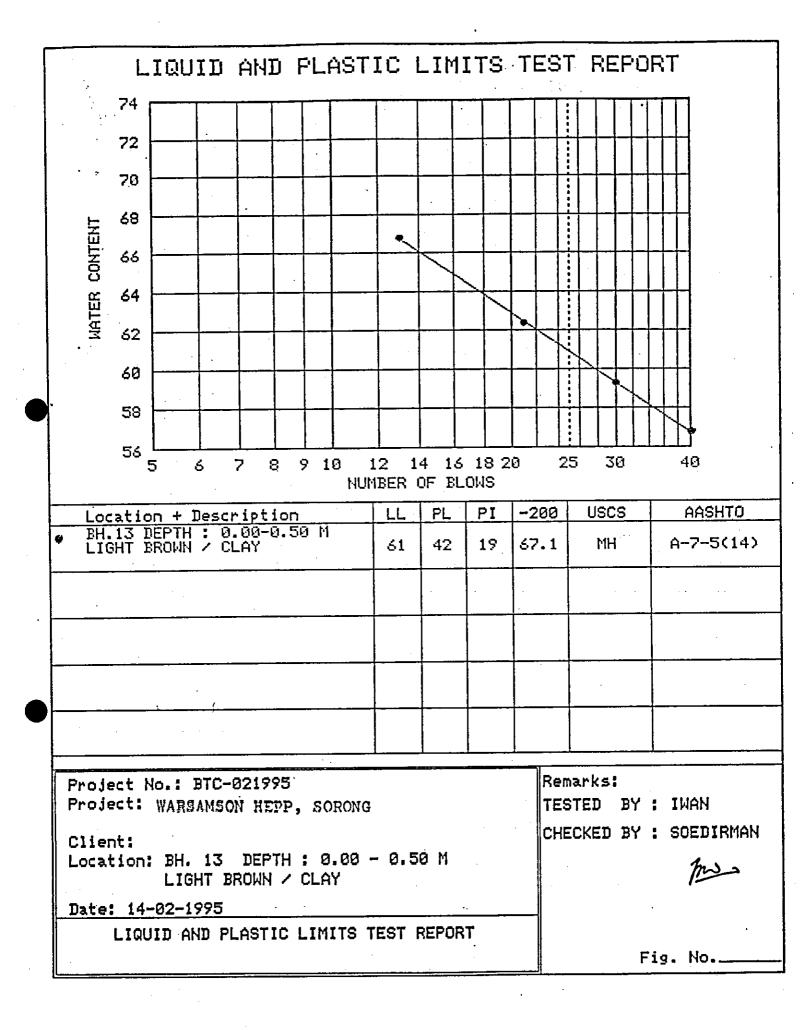

2.763 27.43 5.00 82.43 32.43 77.43 1.82 2.747 24.50 80.61 4**A** 0.00 - 0.50 M **BH-14 A** 2.778 73.64 24.50 75.44 1.80 27.69 22.69 5.00 70.44 σ 39.95 34.95 5.00 87.78 24.60 84.70 89.70 1.92 2.604 2.597 0.00 - 0.50 M **BH-14** 78.74 24.50 1.93 5.00 27.11 75.67 80.67 2.591 32.11 ø 27.75 22.75 5.00 73.98 28.00 70.85 75.85 2.674 2.681 1.87 Q 0.00 - 0.50 M **BH-13** 1.86 79.04 28.00 74.04 2,688 29.66 24.66 5.00 77.18 60 24.70 73.41 23.32 5.00 76.60 2.762 28.32 2.778 78.41 1.81 0.00 - 0.50 M **BH-12** 74.30 24.70 76.09 1.79 71.09 2.793 5.00 28.21 23.21 z 1.85 2.695 27.56 22.56 5.00 27.60 73.22 78.22 2.703 76.37 0.00 - 0.50 M **BH-11** 27.60 25.50 20.50 73.98 70.84 1.86 5.00 75.84 2.688 ပ္ပ WT OF PICN.+WATER TX DEG. C W4 WT PICN.+WATER+SAMPLE W3 WT OF SAMPLE WT=W1-W2 WT OF PICN.+SAMPLE W1 **VOL. OF SAMPLE W5-W3** SPEC.GRAV WT/(W5-W3) IVT OF PICN+WATER Ä TEMP. TX DEC. C TEMP. TI DEC. C SAMP.NO/DEPTH TV5= TV1-W2+W4 IVT OF PICN. AVERACE PICN.NO.

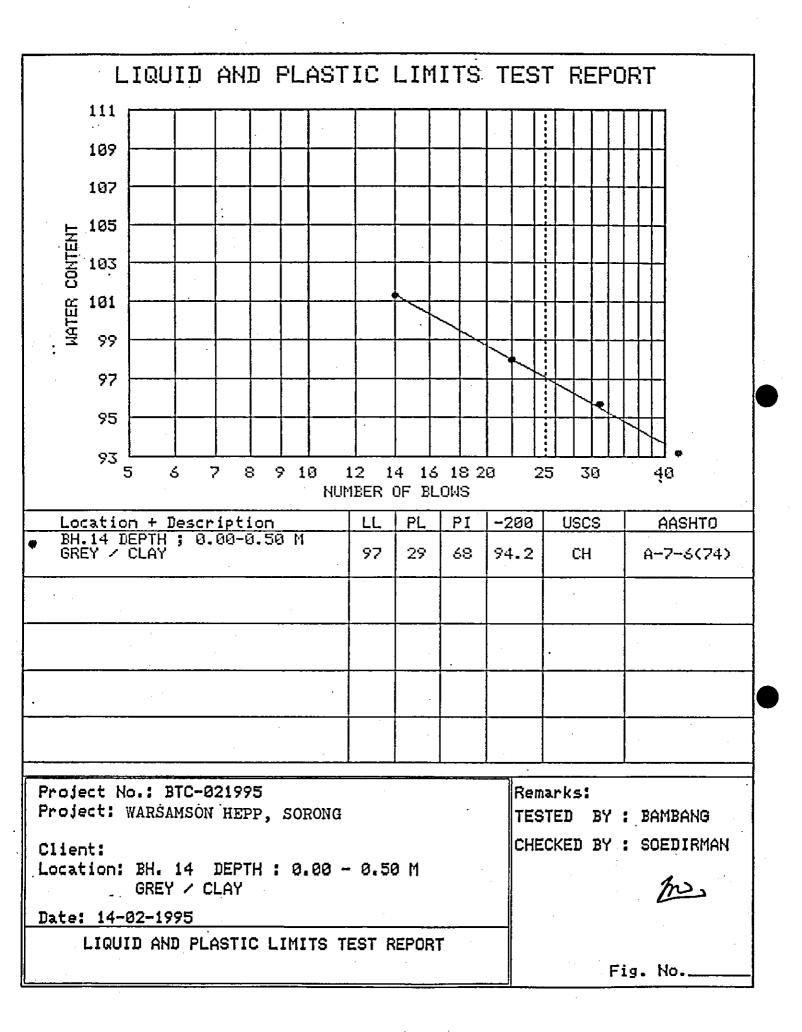


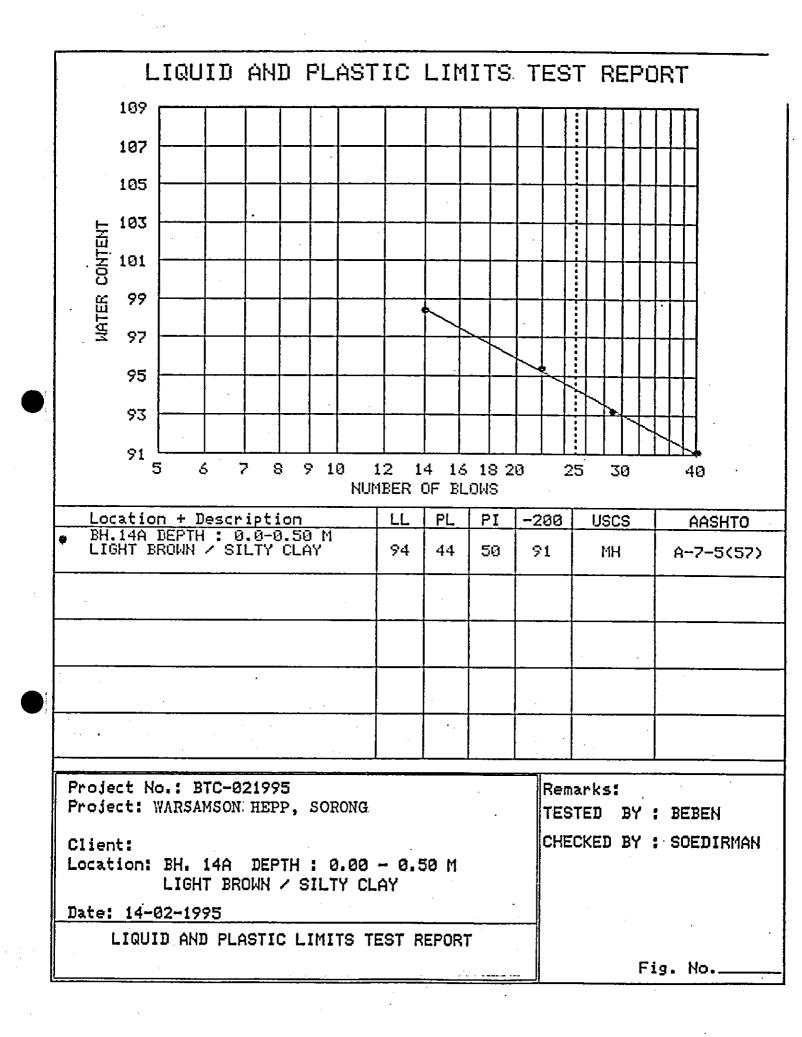

D.37

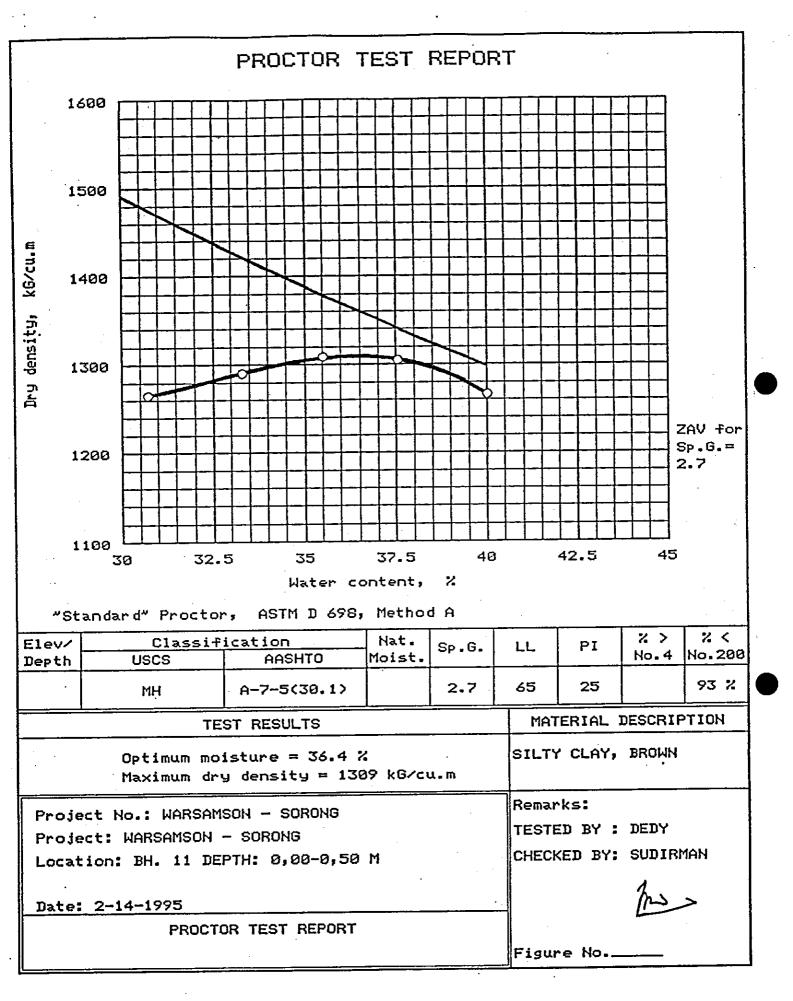

37

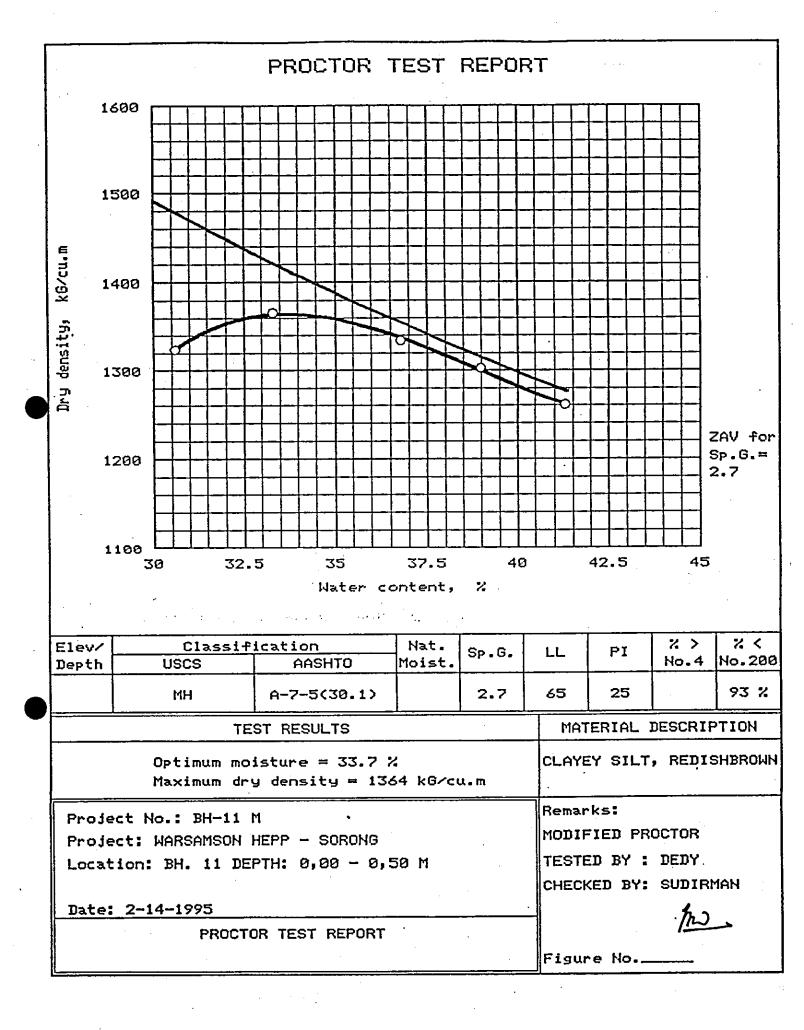


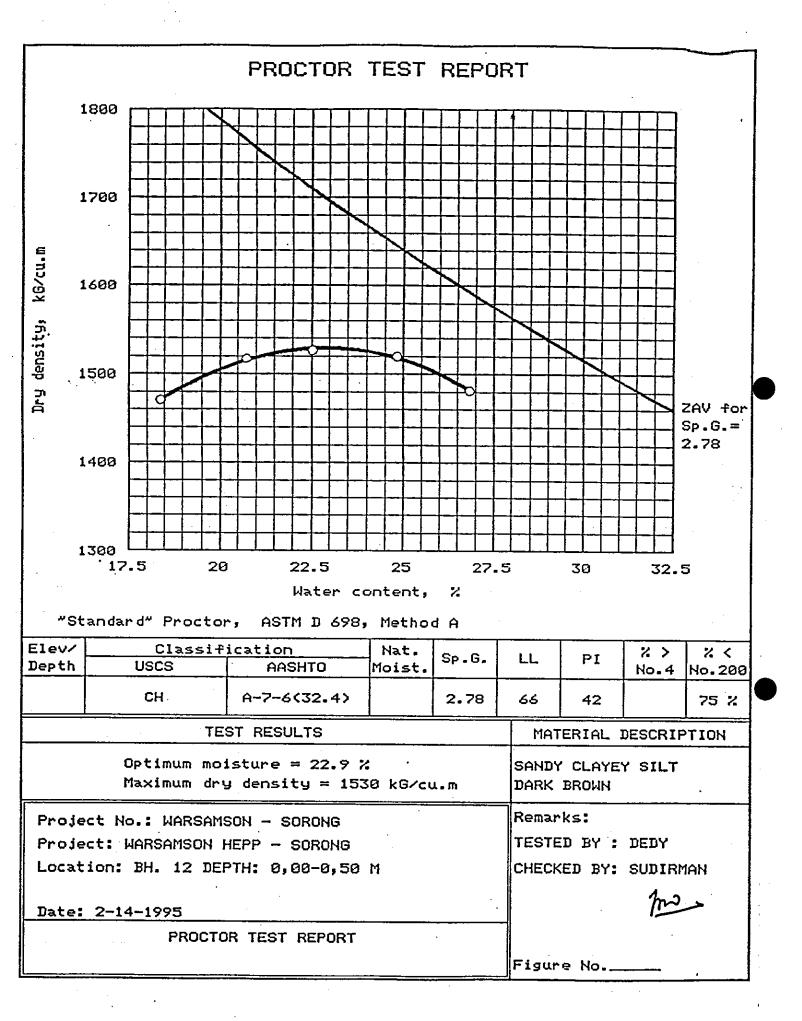


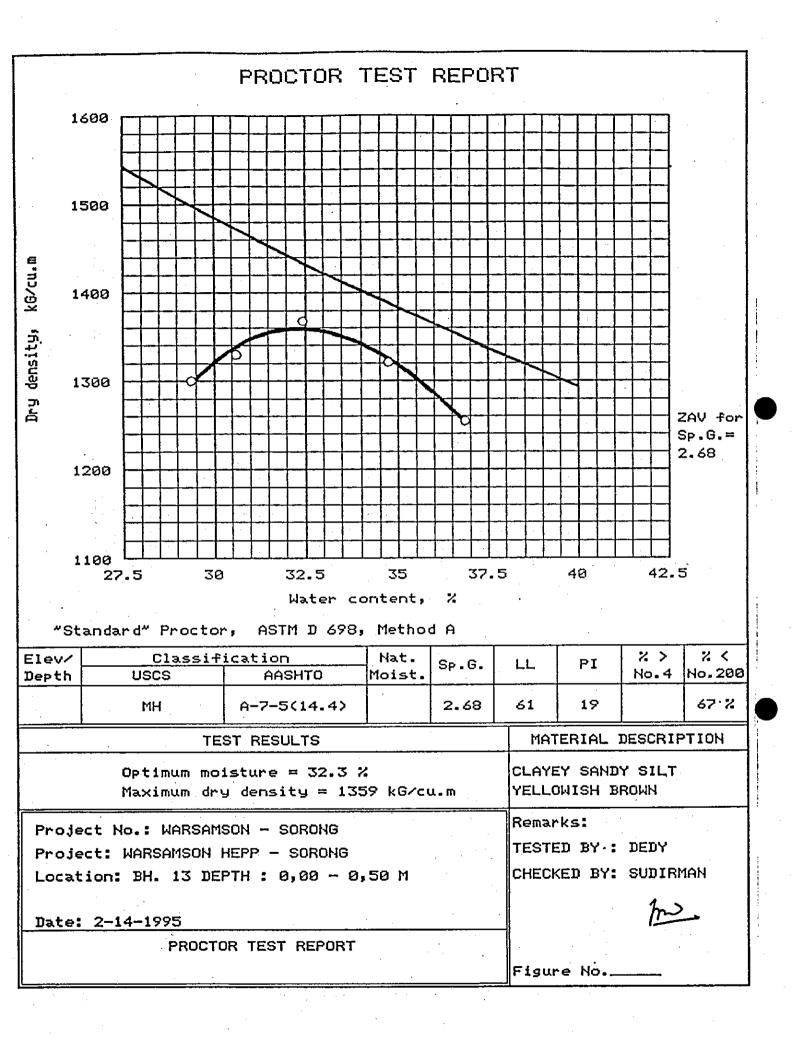


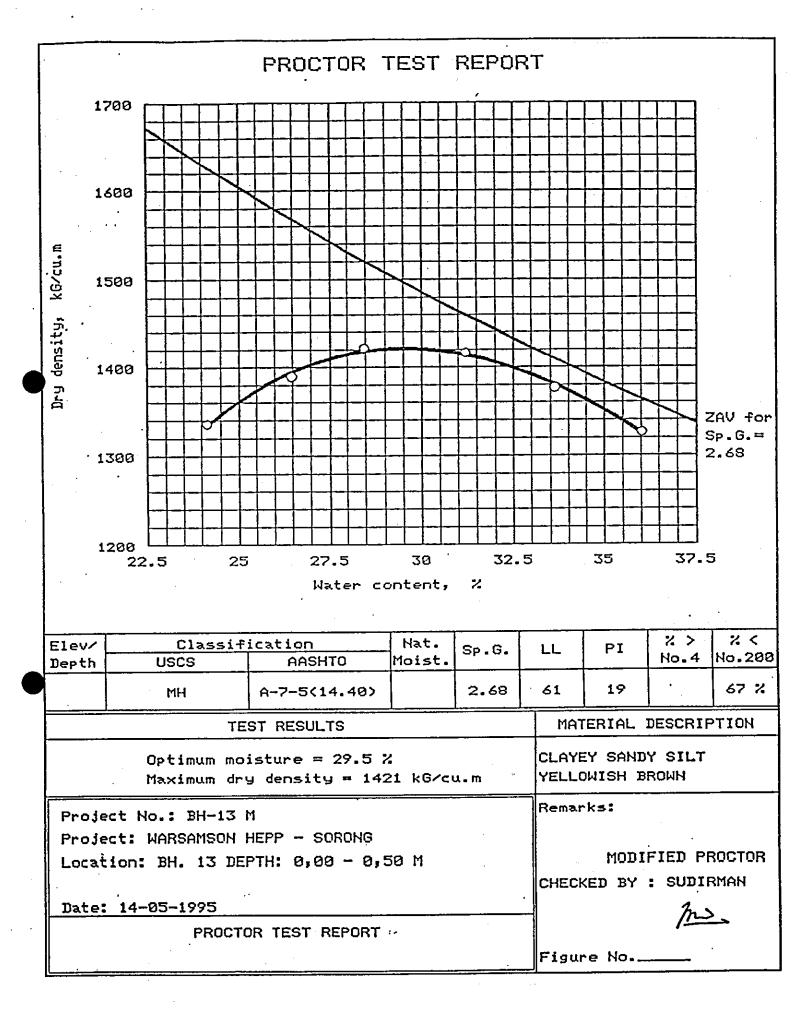


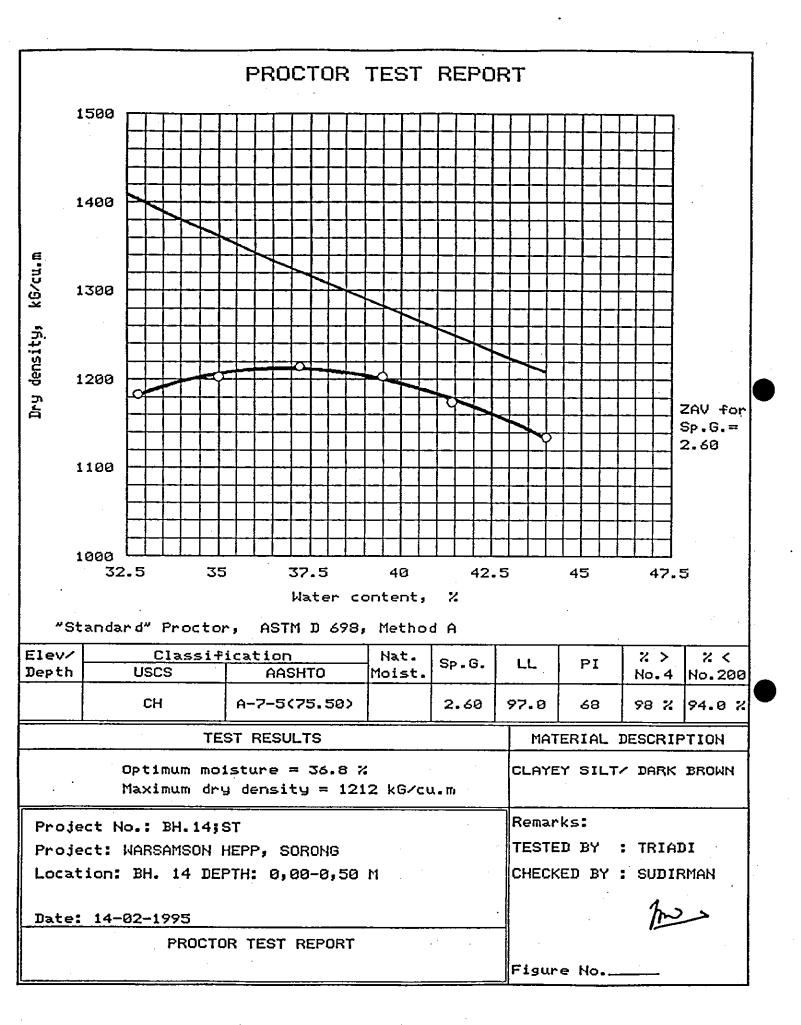


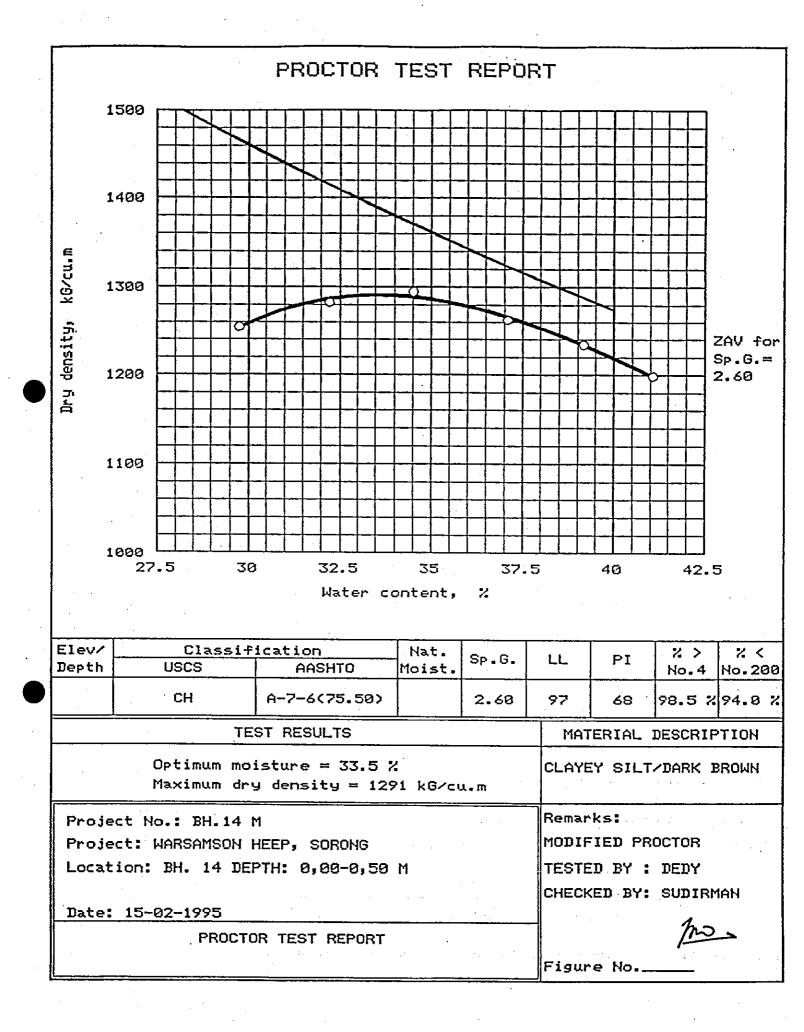

· · · ·

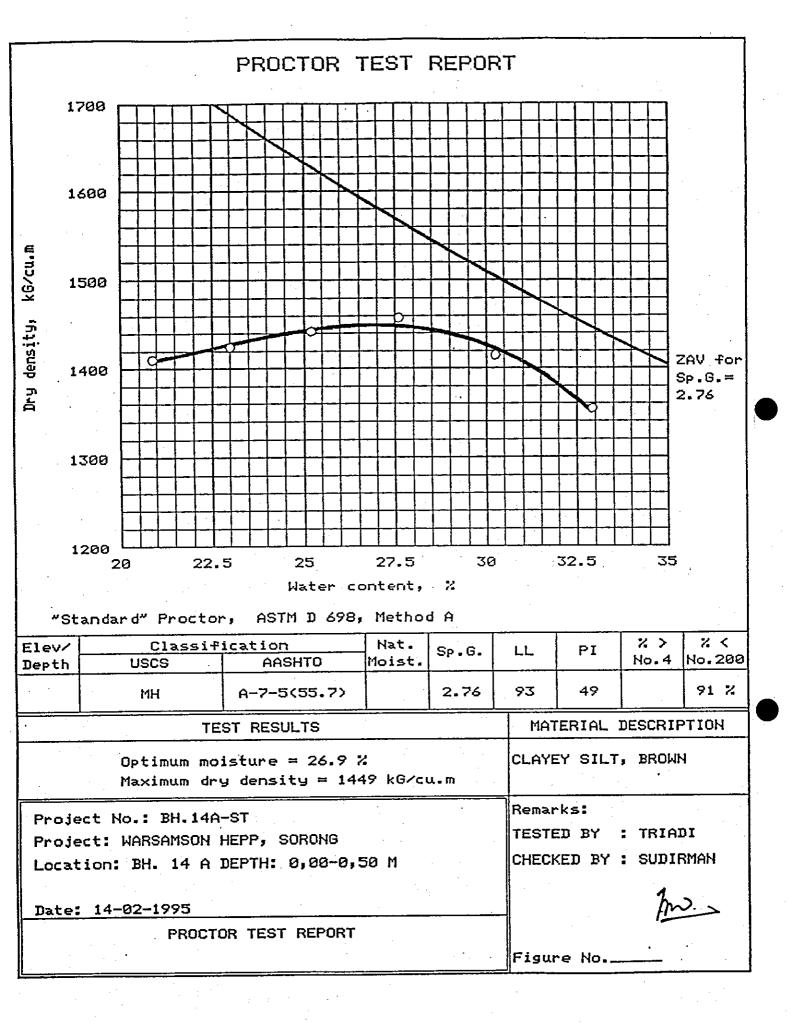


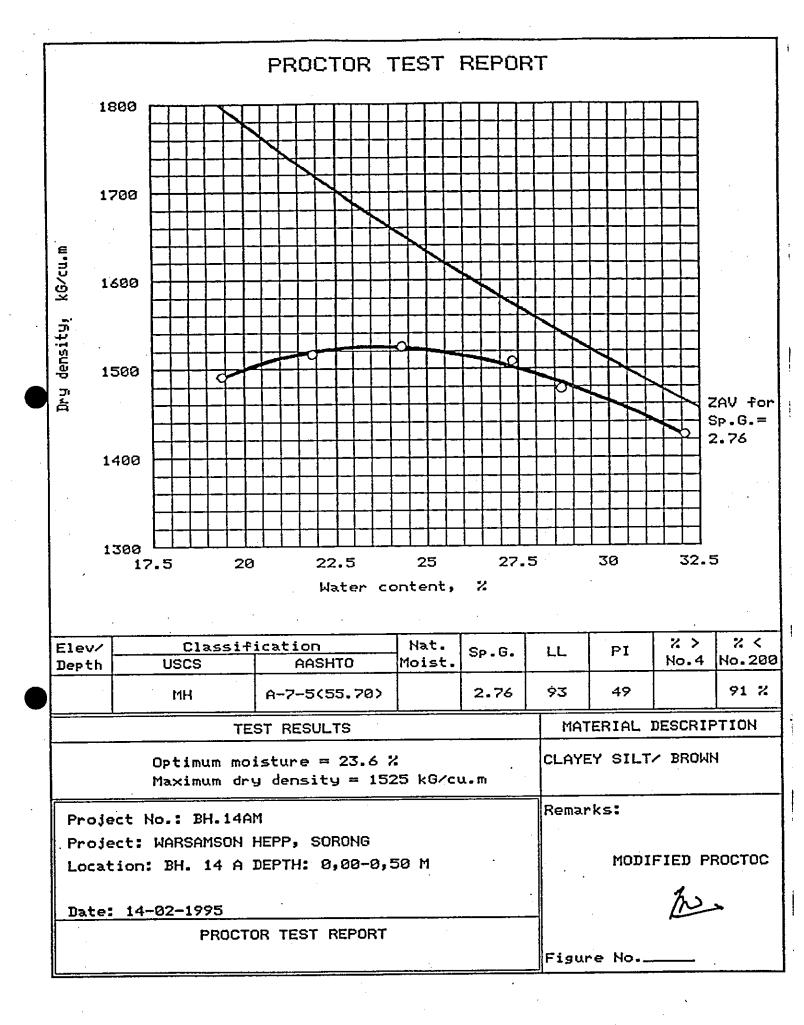











1

SAMPLE NO. LOCATION DEPTH		DD ; OMC+2%		SOIL TYPE COLOUR	: SILTY CLAY : BROWN	
SOIL PARAMETE	R:					
DIAMETER (D):	5,200	(CM)	MOIST.CONT	(Wn):	38.400	(%)
LENGTH (L):	3,000	(CM)	SPECIFIC GR	AVITY (Gs):	2.700	(-)
AREA (A):						(GR/CM^3
VOLUME (V):	63.679	(CM^3)	DRY UNIT W	EIGHT (7d) :		(GR/CM^3
CONSTANT HEAD		• ·				
				21 - (L1 L0) (
		IDROULICC	SKADIENI ($(1) = (11 \cdot 12)/[$	L= 66.667	(-)
.= 0	CM					
TIME	TIME	MEASURED	RATE OF	· ·	1	1
FROM START	INTERNAL	FLOW	FLOW	1	REMARKS	
	,t	Q	q	t		
	MIN	ml	ML/MIN			1
	0.5	11.2				
	0.5	11.2		ļ		
	0.5	11.1	•			
	0.5	11				
	0.5	11				-
	0.5	11				
	0.5	11				
	0.5	11		· · · · · · · · · · · · · · · · · · ·		
	0.5	11				
	0.5	11	22			
						1
						1
						1
						1
						1
					1	1

KOEF OF PERMEABILITY = q/(A*i*60) =

0.00025911 cm/sec.

ኑ

LOCATION DEPTH		BH.12 / 95% M	1DD ; OMC+2%	SOIL 1 COLO		: SANDY CLAYEY SI : DARK BROWN	LT
SOIL PARA							
DIAMETER	(D):	5.200	(CM)	MOIST.CONT	(Wn):	24.900	(%)
LENGTH	(L):	3.000	(CM)	SPECIFIC GRAVITY	(Gs):	2.780	(-)
AREA .	(A):	21.226	(CM^2)	UNIT WEIGHT	(7n):	1.815	(GR/CM ^3
VOLUME	(V):	63,679	(CM^3)	DRY UNIT WEIGHT	(7d):	1.454	(GR/CM ^ 3

h1 = 200 CM HIDROULIC GRADIENT (i) = (h1-h2)/L = 66.667 (-) h1 = 0 CM

TIME	TIME	MEASURED	RATE OF		1
FROM START	INTERNAL	FLOW	FLOW	1	REMARKS
· · ·	t '	Q	Р	t .	
•	MIN	ml	ML/MIN		
	0.5	7			
	0.5	7			· · · · ·
	0.5	7			
•	0.5	6.5			
	0.5	6.5			· · · · · · · · · · · · · · · · · · ·
• •	0.5	6.5		· · ·	
	0.5	6.5			the second se
	0.5	6.5	······································		
· ·	0.5	6.5	<u> </u>		
	0.5	6.5`	13		
					•
			· · ·		
			. <u>.</u>	· · · · · · · · ·	
			· · · ·		
		·	···· · ·		

KOEF OF PERMEABILITY = q/(A*i*60) =

0.00015311 cm/sec.

た

SAMPLE NO. LOCATION DEPTH	:1	BH.13 / 95% MI 0.00 - 0.50 M	DD;OMC+2%		SOIL TY COLOU		: CLAYEY SA : YELLOWIS		
SOIL PARAM	IETER	:					· .		
DIAMETER (D):	5,200	(CM)	MOIST.CONT	(Wn):		34.300	(%)
LENGTH (L):	3.000	(CM)	SPECIFIC GR	AVITY (Gs):		2,680	(-)
AREA (A):	21.226	(CM^2)	UNIT WEIGH	Г. (γ́n):	· .	1.732	(GR/CM^3
VOLUME (V):	63.679	(CM^3)	DRY UNIT WI	EIGHT	(1d):		1.290	(GR/CM^3
	4								
CONSTANT	HEAD								
1 =	200 C	M H	IDROULIC	GRADIENT (i) =(h	1-h2)/L	_= 6	5.667	"(-)
1 =	0 C	M				•			
				RATE OF	r		1	· · · · · · · · · · · · · · · · · · ·	7
TIME		TIME INTERNAL	MEASURED FLOW	FLOW		L	REMAR	. K C	
FROM ST	ARI	t	Q	r LOW	1	L t	NEMAI		
		MIN	ml	ML/MIN		•			
		0.5	8						
		0.5	8				1		
		0.5	8						
		0.5	7				· ·		
		0.5	7		Í .				
	· · · · · ·	0.5	7						
		0.5	7						
		0.5	7						
		0.5	7	1					
		0.5	7	14					
		· · · · · · · · · · · · · · · · · · ·		<u> </u>					
				· · · · · · · · · · · · · · · · · · ·					
-		· · · · · · · · ·							
							1		

KOEF OF PERMEABILITY = q/(A*i*60) =

0.00016489 cm/sec.

3

LOCATION	: BH.14 / 95% M	DD ; OMC+2%		SOIL TYPE	: CLAYEY SILT	
	: 0.00 - 0.50 M	,			: DARK BROWN	
OIL PARAME					· · · ·	•
DIAMÈTER (D)	£ 5.200	(CM),	MOIST.CONT	(Wn):	38.800	(%)
LENGTH (L)			SPECIFIC GRA			(-)
AREA (A)	: 21.226	(CM^2)	UNIT WEIGHT	(7n):	1.598	(GR/CM
VOLUME (V)	: 63.679					(GR/CM*
ONSTANT HE	AD :		. ·		•	
		IDROULIC	GRADIENT (i) =(h1-h2)/	L= 66.667	(•)
	0 СМ		、		_	
						_
TIME	TIME	MEASURED	RATE OF]
FROM STAR	INTERNAL	FLOW	FLOW	1	REMARKS	
	t	Q	Р	t		
	MIN	ml	ML/MIN			
	0.25	17.5				-
	0.25	17.5				-
	0.25	17.5				4
	0.25	17				_
	0.25	17				·
•	0.25	17		· .		
	0.25	17				
	0.25	17				
	0.25	17				
	0.25	17	68			
				· · · · · ·		
	· ·			······································		-
				· · · · · · · · · · · · · · · · · · ·		
						1
1						-1

KOEF OF PERMEABILITY = q/(A*i*60) = 0.00080089 cm/sec.

S	AMPLE NO.	:				·	
	LOCATION	: BH.14A / 95%)	MDD;OMC+2	% ['] S	OIL TYPE	: CLAYEY SILT	
	DEPTH	: 0.00 - 0.50 M		C	OLOUR	: BROWN	
:	SOIL PARAMETE	R :					
	DIAMETER (D):	5.200	(CM)	MOIST.CONT	(Wn):	28.900	(%)
	LENGTH (L):	3.000	(CM)	SPECIFIC GRA	VITY (Gs):	2.760	(-)
	AREA (A):	21.226	(CM^2)	UNIT WEIGHT	(/n):		(GR/CM^3)
	VOLUME (V):	63.679	(CM^3)	DRY UNIT.WEI	GHT (7a):	1.377	(GR/CM^3)
(h1 =	COŃSTANT HEAI			GRADIENT (i) -/b1_b2)/	1 - 66 667	<i></i>
-				arabiteni (1) =(III-IIZ)/	L= 66.667	(-)
h1 =	= 0	CM			•		
	TIME	TIME	MEASURED	RATEOF	·······		7
	FROM START	INTERNAL	FLOW	FLOW	1	REMARKS	Ì
		t	Q	٩ (t'		
		MIN	ml	ML/MIN			
		0.25	12				
	•	0.25	12				
		0.25	11.7				
		0.25	11.7				
		0.05					

TIME	TIME	MEASURED	RATE OF		
FROM START	INTERNAL	FLOW	FLOW	1	REMARKS
	t	Q	q	t'	
	MIN	ml	ML/MIN		
	• 0.25	12			· · · · · · · ·
•	0.25	12			
=	0.25	11.7		, , ,	<u> </u>
	0.25	11.7			
	0.25	11.5			
	0.25	11.5			-
	0.25	11.5	· · · · · · · · · · · · · · · · · · ·		
	0.25	11.5			
· · · · · · · · · · · · · · · · · · ·	0.25	11.5			
	0.25	11.5	46		
					_ · <u></u> _
				· · · · · · · · · · · · · · · · · · ·	

KOEF OF PERMEABILITY = q/(A*i*60) = 0.00054178 cm/sec.

APPENDIX D.3

Concrete Aggregate Samples

- Specific Gravity and Absorption

- Grain Size Analysis

- Alkali Reactivity Test

- Sulphate Soundness Test

- LA Abrassion Test

- Crushing Test

- Organic Impurities

- Mud and Clay Content

Project: Warsamson HEPPLocation: Sorong, Irian jayaType: Makbon - 1 (SP - 1)Date of test: February 13th, 1995

	. 1			
	A	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) 250	250	250	250	gr
Weight of dried sample Bk	240.14	240.16	240.15	gr
Pycnometer + water (25° C) B	357.8	358.0	357.9	gr
Sample (SSD) + Water (25 ° C) + pycnometer Bt	505.41	505.43	505.42	. gr
	А	В	Average	Remark
Bk Specific Gravity :Bk B + 250 - Bt	2.35	2.34	2.35	
Dry density - Saturated Surface : 250 B + 250 - Bt	2.44	2.43	2.44	
Apperent Specific Gravity : Bk B + Bk - Bt	2.60	2.59	2.60	
(250 - Bk) Absorption : x 100 % Bk	4.11	4.10	4.11	%
		L	[<u> </u>

Project: Warsamson HEPPLocation: Sorong, Irian jayaType: Makbon - 2 (SP - 2)Date of test: February 13th, 1995

	Α	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) 250	250	250	250	gr
Weight of dried sample Bk	239.47	239.45	239.46	gr
Pycnometer + water (25° C) B	355.6	355.7	355.7	gr
Sample (SSD) + Water (25 ° C) + pycnometer Bt	503.06	503.05	503.06	gr
	А	В	Average	Remark
Bk Specific Gravity :Bk B + 250 - Bt	2.34	2.33	2.34	
Dry density - Saturated Surface : 250 B + 250 - Bt	2.44	2.44	2.44	
Apperent Specific Gravity : Bk B+ Bk - Bt	2.60	2.60	2.60	
(250 - Bk) Absorption : x 100 % Bk	4.40	4.40	4.40	%

Project	: Warsamson HEPP
Location	: Sorong, Irian jaya
Туре	: Makbon - 3 (SP - 3)
Date of test	: February 13th, 1995

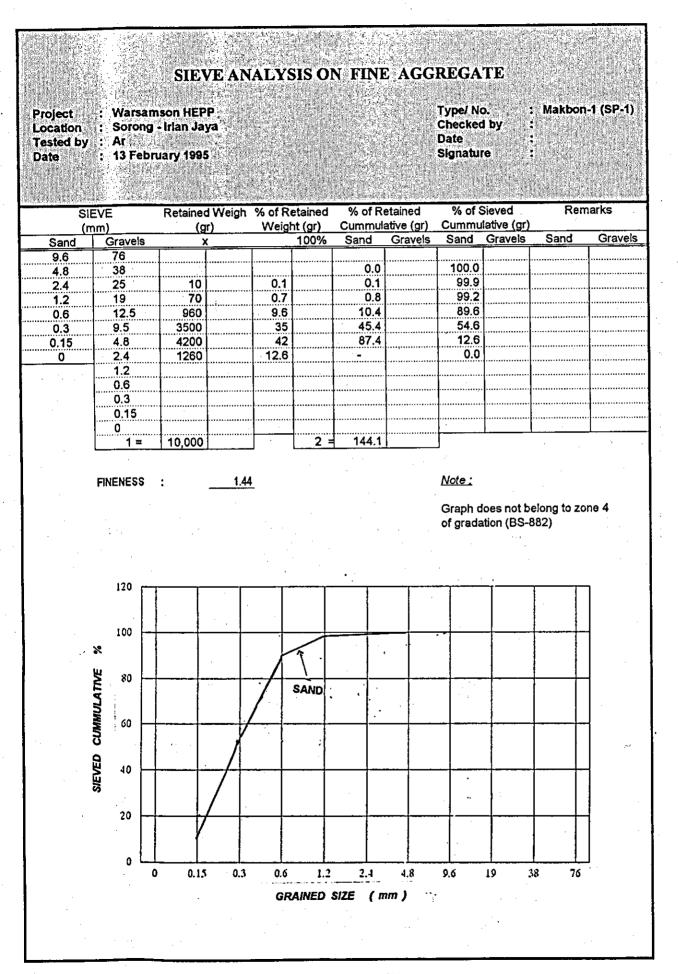
.

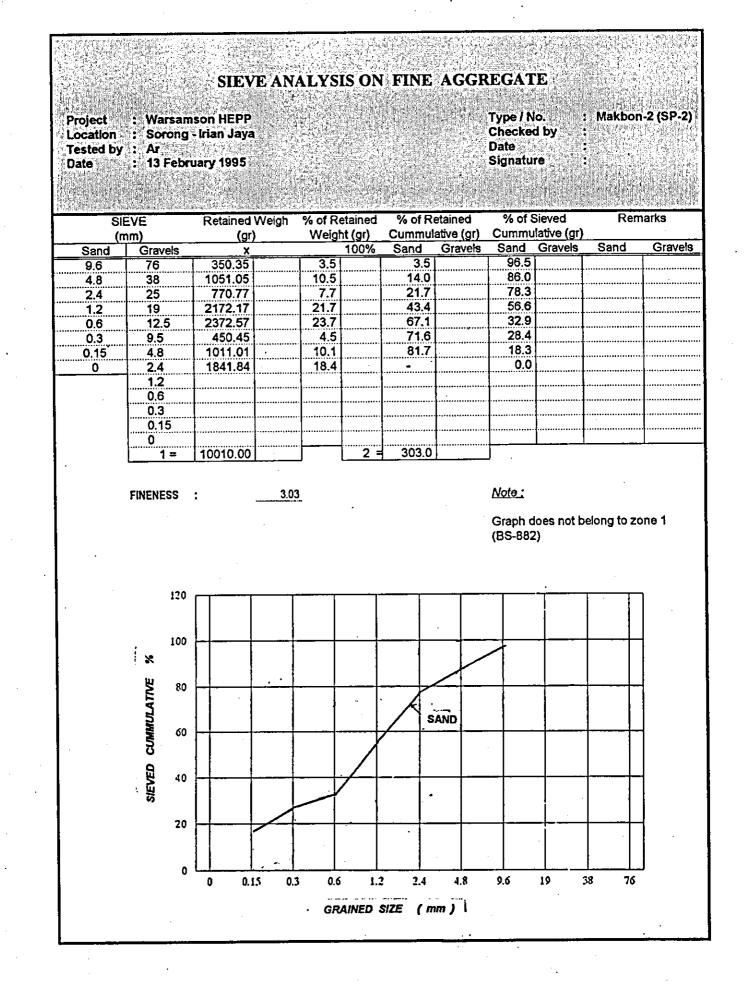
	Α	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) Bj	250	250	250	gr
Weight of dried sample Bk	216.06	216.08	216.07	gr
Pycnometer + water (25° C) B	340.69	340.71	340.70	
Sample (SSD) + Water (25 ° C) + pycnometer Bt	486.52	486.54	486.53	gr -
	А	в	Average	Remark
Bk Specific Gravity :Bk B+250 - Bt	2.07	2.07	2.07	
Dry density - Saturated Surface : 250 B + 250 - Bt	2.40	2.40	2.40	
Apperent Specific Gravity : Bk B + Bk - Bt	3.08	3.07	3.08	
(250 - Bk) Absorption : x 100 % Bk	15.71	15.70	15.71	%

Project: Warsamson HEPPLocation: Sorong, Irian jayaType: Warsamson (SP - 4)Date of test: February 13th, 1995

	A	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) 250	250	250	250	gr
Weight of dried sample Bk	244.60	244.62	244.61	gr
Pycnometer + water (25° C) B	358.00	358.02	358.01	gr
Sample (SSD) + Water (25 ° C) + pycnometer Bt	511.87	511.85	511.86	gr
	A	В	Average	Remark
Bk Specific Gravity :Bk B + 250 - Bt	2.54	2.54	2.54	
Dry density - Saturated Surface : 250 B + 250 - Bt	2.60	2.60	2.60	
Apperent Specific Gravity : Bk B + Bk - Bt	2.70	2.69	2.70	
(250 - Bk) Absorption : x 100 % Bk	2.21	2.20	2.21	%

Project: Warsamson HEPPLocation: Sorong, Irian jayaType: BH - 6 Area / Site ADate of test: February 13th, 1995


	A	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) Bj	2690	2692	2691	gr
Weight of dried sample Bk	2657	2658	2658	gr
Sample (SSD) + Water (25 ° C) Ba	1669	1671	1670	gr
	A	В	Average	Remark
Bk Specific Gravity :Bj - Ba	2.60	2.60	2.60	
Dry density - Saturated Surface : Bj Bj - Ba	2.63	2.64	2.64	
Apperent Specific Gravity : Bk Bk - Ba	2.69	2.69	2.69	
(Bj - Bk) Absorption : x 100 % Bk	1.24	1.24	1.24	%
			1	


Project Location Type Date of test : Warsamson HEPP : Sorong, Irian jaya : Limestone (Warsamson River) : February 13th, 1995

	A ·	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) Bj	1768	1770	1769	gr
Weight of dried sample Bk	1744	1746	1745	gr
Sample (SSD) + Water (25 ° C) Ba	1103	.1105	1104	gr
	A	В	Average	Remark
Bk Specific Gravity :Bj - Ba	2.62	2.62	2.62	
Dry density - Saturated Surface : Bj Bj - Ba	2.66	2.66	2.66	
Apperent Specific Gravity : Bk Bk - Ba	2.72	2.72	2.72	
(Bj - Bk) Absorption : × 100 % Bk	1.38	1.37	1.38	%
· · · · · · · · · · · · · · · · · · ·				

Project	: Warsamson HEPP
Location	: Sorong, Irian jaya
Туре	: Breccia (near Batu Lubang Village)
Date of test	: February 13th, 1995

	A	В	Average	Remark
Weight of dry Sample - Saturated surface (SSD) Bj	2667	2669	2668	gr
Weight of dried sample Bk	2552	2554	2553	gr
Sample (SSD) + Water (25 ° C) Ba	1620	1622	1621	gr
	А	В	Average	Remark
Bk Specific Gravity :Bj - Ba	2.43	2.44	2.44	
Dry density - Saturated Surface : Bj Bj - Ba	2.55	2.55	2.55	
Apperent Specific Gravity : Bk Bk - Ba	2.74	2.74	2.74	
(Bj - Bk) Absorption : x 100 % Bk	4.51	4.50	4.51	%

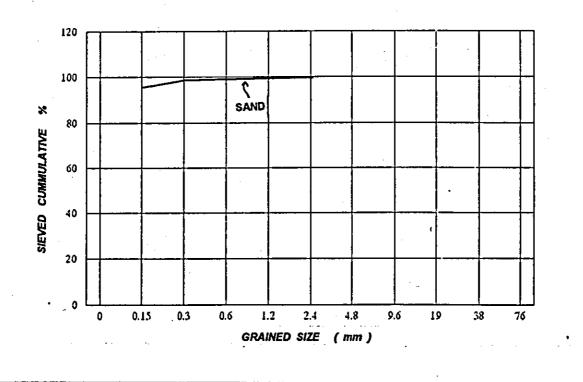
~

SIEVE ANALYSIS ON FINE AGGREGATE

Project Warsamson HEPP Location Tested by : Ar Date

Sorong - Irlan Jaya 13 February 1995 ici.

Type / No. Checked by Makbon - 3 (SP - 3) Date Signature


SI SI	EVE	Retained	Weigh			% of R	etained	% of Sieved		Remarks	
(r	nm)	(gr)		Weig	nt (gr)	Cummul	ative (gr)	Cummu	ilative (gr)		
Sand	Gravels	X			100%	Sand	Gravels	Sand	Gravels	Sand	Gravel
9.6	76										
4.8	38	T									
2.4	25	20		0.2		0.2		99.8			
1.2	19	10		0.1		0.3		99.7			
0.6	12.5	20		0.2		0.5		99.5	*****		
0.3	9.5	40		0.4		0.9		99.1			
0.15	4.8	360		3.6	· ·	4.5		95.5			
0	2.4	9550		95.5		-			******************		
	1.2	1							**********************	********************	
	0.6										
	0.3	1									[
	0.15	1	·							•••••••••••••••••••••	
	0	1			······································	•••••••				•••••••••••••••••••••	
	1 =	10,000			2 =	64.0		1	·		1

FINENESS :

0.64

<u>Note :</u>

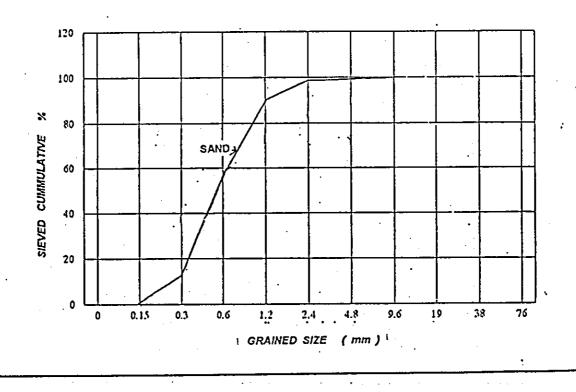
Graph does not belong to zone of gradation.

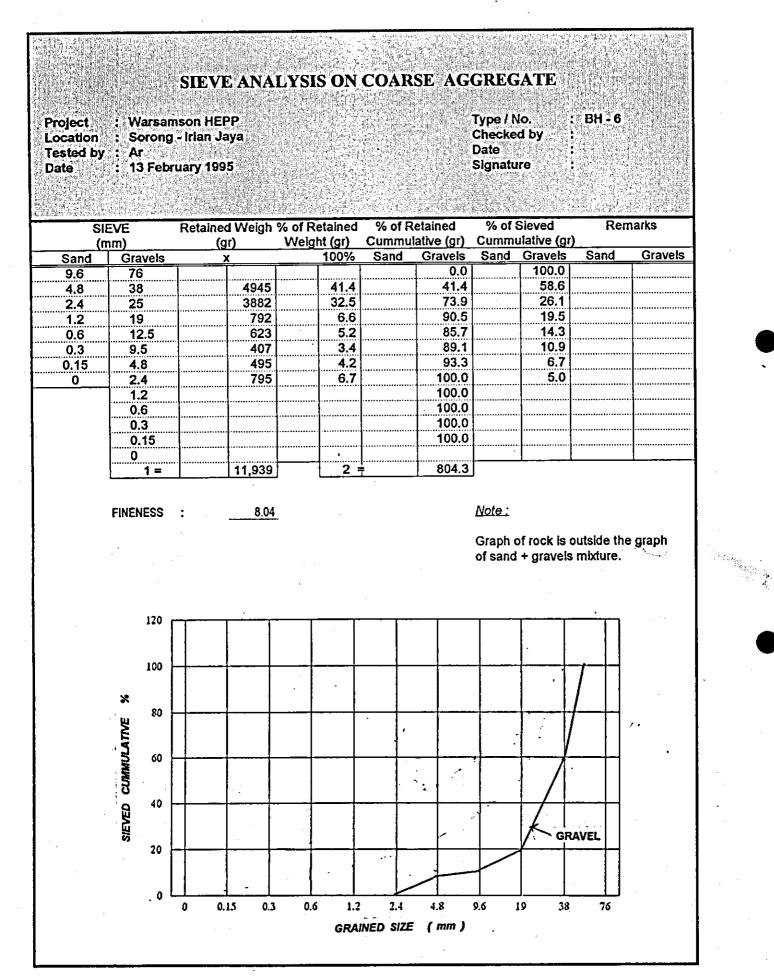
SIEVE ANALYSIS ON FINE AGGREGATE

Project : Warsamson HEPP. Location : Sorong - Irian Jaya Tested by : Ar

Date : 13 February 1995

Type / No. Checked by Date Signature : Warsamson (SP-4)


SIEVE		Retained Weigh	% of Retained		d % of Retained		% of Sieved		Rem	
· .	າຫ)	(gr)	Weight (gr)		Cummula		Cummulative (gr)			
, Sand	Gravels	x	10	0%	Sand	Gravels	Sand	Gravels	Sand	Gravels
9.6	76						100.0			
4.8	38	30	0.3		0.3		99.7			
2.4	25 ·	80	0.8	Ī	1.1		98.9			
1.2	19	600	6	ľ	7.1		92.9		********	
0.6	12.5	3500	35		42.1		57.9		*********	
0.3	9.5	4440	44.4	1	86.5		13.5			• • • • • • • • • • • • • • • • • • • •
0.15	4.8	1250	12.5	i	99.0		1.0		****************	***********************
0	2.4 ·	100	1	ľ	-					************************
	1.2			•	,			*****		
	0.6			ľ		•••••••				
	0.3									**********************
	0.15					******			·····	
	0									
· ·	1 =	10,000		2 -	236.1					• ,


FINENESS :

2.36

Note :

Sand belongs to zone 3 of gradation (BS-882)

SIEVE ANALYSIS ON COARSE AGGREGATE

Warsamson HEPP Project Sorong - Irian Jaya Location Tested by Ar. 13 February 1995 Date

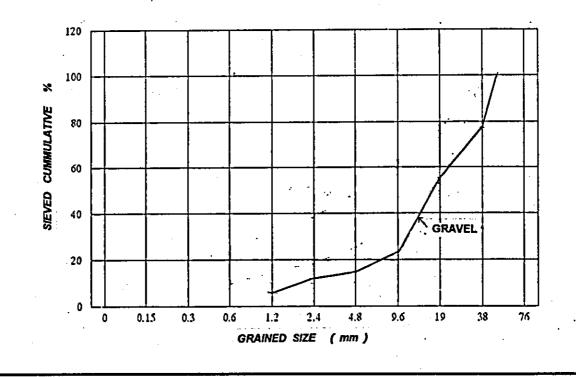
Type / No. Checked by Date 👘 Signature

Limestone

SIEVE		Retained Weigh	% of Retained	% of R	etained	% of \$	Sieved	Ren	narks
(n	nm)	(gr)	Weight (gr)	Cummula	ative (gr)	Cummu	Cummulative (gr)		
Sand	Gravels	x	100%	Sand	Gravels	Sand	Gravels	Sand	Gravel
9.6	76						100.0		
4.8	38	2361	22.85		22.9		77.1		
2.4	25	4670	45.20		68.0		54.8		
1.2	19	1002	9.70		77.8		22.2		
0.6	12.5	787	7.62		85.4		14.6		
0.3	9.5	298	2.88		88.3		11.7	•	
0.15	4.8	603	5.80		94.1		5.9		
0	2.4	612	5.92		100.0				
	1.2				100.0	l			
	0.6				100.0				
	0.3				100.0				
	0.15				100.0				
	1 =	10,333	2 =	ļ	783.1		I I		· · · · · · · · ·

FINENESS

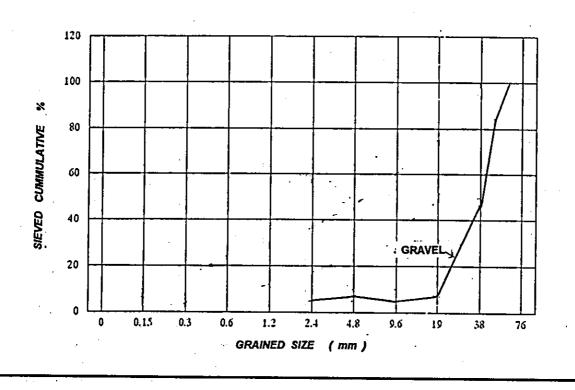
:


7.83

Graph of rock, outside the zone of sand + gravels mixture.

._

		SIEVE ANA	TVCICON	COAD	CF A'C			일부가 다 같은 다이다.	
			11919 VI		SE AG		JALL .	의 10 - 20 - 49 Min 10 - 50 - 54 Min 10 - 50 - 54	
Project	: Warsan	son HEPP				Type /	No. :	Breccia	
Location	Badishika 🖓 👘	- Irian Jaya				Checke			
Tested by	Representation of the second sec second second sec second second sec					Date			
Date	: 13 Febr	uary 1995				Signatu	ire 👘 :		
SI	EVE	Retained Weigh	% of Retained	% of R	etained	% of	Sieved	Ren	narks
(r	<u>ກກ)</u>	(gr)	Weight (gr)	Cummula	ative (gr)	Cummi	ulative (gr)		
Sand	Gravels	<u>×</u>	100%	Sand	Gravels	Sand	Gravels	Sand	Gravels
9.6	50	2476	17.2		-		82.8		
4.8	38	5195	36.0		53.2		46.8		I
2.4	25	4850	33.6		86.8		13.2	· · · ·	
1.2	19	698	4.8		91.6		8,4		
0.6	12.5	440	3.0		94.6		5.4		
0.3	9.5	140	1.0		95.6		4.4		
0,15	4.8	211	1.5		92.1		7.9		
0	2.4	419	2.9		95.0		5.0		
	1.2				100.0				
	0.6				100.0				
	0.3				100.0			·····	
					100.0		1		1
	0.15	·····				*************			
	0.15 0 1 =	14.429	2 =		827.5				


FINENESS :

•

8.28

Note :

nte de la construcción de la tra-La construcción de la construcción La construcción de la construcción d Graph of rock, outside the zone of sand + gravels mixture.

D.76

RESULT OF ALKALI REACTIVITY TEST

Project Location Date of test

: Warsamson HEPP : Sorong, Irian Jaya

No.	Sample No.	Rc	Sc	Unit	Remark
1	SP - 1	170.10	84.42	mmol / L	Fine Aggregate
2	SP - 2	187.11	65.93	mmol / L	Fine Aggregate
3	SP - 3	277.83	62.60	mmol / L	Fine Aggregate
4	SP - 4	170.10	102.90	mmol / L	Fine Aggregate
5	BH - 6	170.10	34.63	mmol / L	Coarse Aggregate
6	Limestone (S. Warsamson)	96.39	41.96	mmol / L	Coarse Aggregate
7	Breccia (Near Batu Lubang Village)	277.83	95.90	mmol / L	Coarse Aggregate

ANTRONOMICAL CONTRACTOR	restation and the second	Receivers		ana tanàna amin'ny fisiana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr' I amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny	
	PROJECT LOCATION	: Sorong			
				nangan tahung ang ang ang ang ang ang ang ang ang a	
	Solution used				
		ANDER ANDER MARKEN MARK ·	n seten de seren en s	na contra a contra contra contra de macador de ana de la contra de la contra de la contra de la contra de la co La contra de la contr	an in the second state of the s Second state of the second state of the
NO OF	SIEVE SIZE	WEIGHT		IS WEIGHT PERCENTAGE PASSING	• •
SAMPLE	(mm)	(gr)	BEFORE TEST (gr)	DESIGNATED SIEVE AFTER TEST	LOSS
SP - 1	2.36-1.18	100	100	17.9	1.59
(sand)	1.18 - 0.60		100	30.0	4.74
SP - 2 (sand)	4.8 - 2.4 2.4 - 1.2	100 100	100 100	30.6 24.1	3.66 2.14
	1.2 - 0.6 0.6 - 0.3	100 100	100 100	4.4 3.3	2.7 0.1
SP-4	2.4 - 1.2 1.2 - 0.6	100 100	100	18.2 4.5	0.05 0.04
(sand)	0.6 - 0.3	100	100	13.0	9.9
		en e			· .
BH • 6 (coarse aggregate)	63 - 50 50 - 38	1990 2980	1990 2980	2.81 3.75	0.55 0.62
		· .			
LIMESTONE	30 - 19	1500	1500	0.67	0.44
(coarse aggregate)	19 - 9.5	1000	1000	2.00	1.79
LAVA BRECCIA	36 - 25	1650	1650	5.7	2.65
(coarse aggregate)	30-23	1000			2.00
					· · · · · · · · · · · · · · · · · · ·
	:				
1					
· · ·					-
NOTE :	l			······································	•
		•	•		

D.78

.

LOS ANGELES ABRASSION TEST

Project : Warsamson HEPP Location : Sorong - Irian Jaya Tested by : Ar Date of test : February 13, 1995

1,369.50

30 - 19

Type : BH-6

No:	Sieve (m	• No; m)	After	of Sample Oven ram.)	Weight of After To (grai	ested 🐩	Weight Difference (gram)	Abrasion After Tested
	Passing	Retained	a	b	а	b	(4)-(6)a (5)-(7)	(8) x 100 % (4) or (5)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	50.00 37.50	37.50 25.00	5000 5009 10009		8223		1786	17.8
	Sieve Diameter (mm)	Weight of on vol. c		Sample of	f Retained n sieve dia. han 2.0 mm	Sample of	of Passing on dia. 2 mm (%)	

1290

79.5

5.8

LOS ANGELES ABRASSION TEST

Project : Warsamson HEPP Location : Sorong - Irian Jaya Tested by : Ar Date of test : February 13, 1995

30 - 19

1,471.80

Type : Limestone

No:	Sieve (m	us ester and and a	After	of Sample Oven ram)	Weight of After T (gra	ested	Weight Difference (gram)	Abrasion After Tested
	Passing	Retained	a	b	a	b	(4)-(6)0	(8)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	50.00 37.50	37.50 25.00	5002 5010 10012		7103		2909	29.6
		.*	- 1 4					
			-					
	SU Sieve Diameter							
	(mm)	on vol. o	(gr)		han 2.0 mm	(gr)	on dia. 2 mm (%)	

1210

261.8

17.78

LOS ANGELES ABRASSION TEST

Project : Warsamson HEPP Location : Sorong - Irian Jaya Tested by : Ar Date of test : February 13, 1995

Type : Breccia

No:	Sleve (m) No.	After	of Sample Oven ram)	Weight of After To (`grai	ested	Weight Difference (gram)	Abrasion After Tested (%)
	Passing	Retained	a	b	а	b	(4)-(6)a (5)-(7)	(8) x 100 % (4) or (5)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	50.00 37.50	37.50 25.00	5008 5000 10008		6236		3772	37.7
								•
		р. 				· .		
	· · ·							

Sieve Diameter	Weight of Sample on vol. of 1.1 I	Weight of Retained Sample on sieve dia.		of Passing on dia, 2 mm	a de se
(mm)	(gr)	of more than 2.0 mm	(gr)	(%)	
30 - 19	1,369.50	1170	199.5	14.57	

HARDNESS INDEX OF FINE AGGREGATE USING THE CRUSHING METHODE

No : Makbon - 1 (SP - 1)

Description	Sample A	Standard B
Weight of Sample (gr)	100	100
Weight after crushed :		
- Retained in sieve diameter 0.3 mm (gr)	13.7	60.4
- Passing the sieve diameter of 0.3 mm (gr)	86.3	39.6
Hardness Index : A / B	2.18	

No : Makbon - 2 (SP - 2)

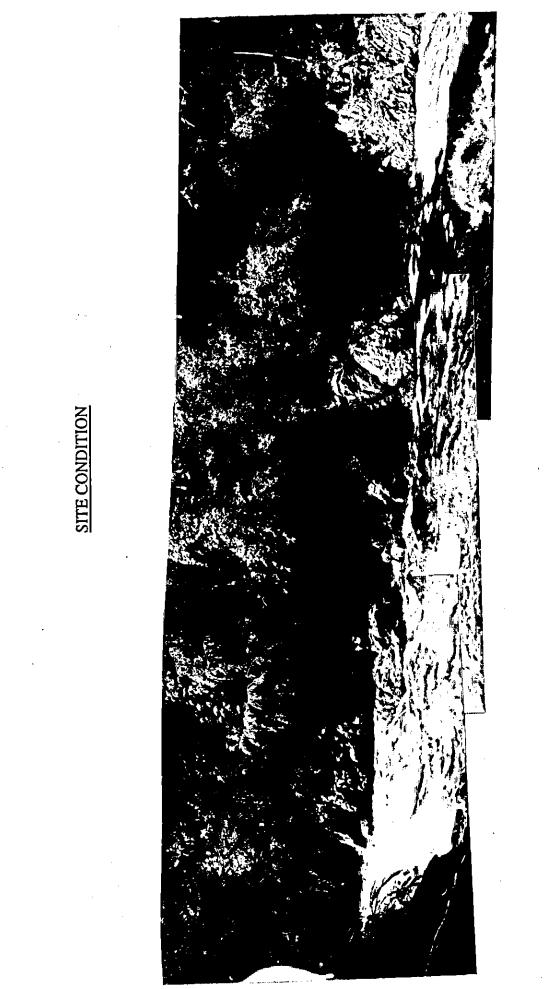
Description	Sample. A	Standard B
Weight of Sample (gr)	100	100
Weight after crushed :		
- Retained in sieve diameter 0.3 mm (gr)	79.7	92.7
- Passing the sieve diameter of 0.3 mm (gr)	20.3	7.3
Hardness Index : A / B	2.78	

No : Warsamson (SP - 4)

Sample A	Standard B
100	100
83.1	85.4
16.9	14.6
1.16	
	A 100 83.1 16.9

TEST OF SAND ON ORGANIC CONTENT

Location Tested by	: WARSAMS : Sorong - Ir : Ar : 13 Februar		Checked by Date Signature, Type	Fine Aggregate		
No	Туре	Volume of sample In the Erlenmayer (cm^3)	Volume No. OH 3% in the Erlenmayer (cm^3)	Sample's Color after 24 hours compared with Standard's Colo (tanmin solution)		
SP - 1	Sand	130 130 130	200 200 200	The color is brighter than the standard (No. 2) No, Organic matter		
SP - 2	Sand	130 130 130	200 200 300	The color is brighter than the standard (No. 2) No, Organic matter		
SP - 3	Sand	130 130 130	200 200 200	The color is brighter than the standard (No. 2) No, Organic matter		
SP - 4	Sand	130 130 130	200 200 200	The color is brighter than the standard (No. 2) No, Organic matter		


Remarks :

MUD AND CLAY CONTENT OF SAND / GRAVELSProject:Varsamson HEPP Location:Location:Sorong - Irian JayaTested by:Date:February 13, 1995Type:Fine Aggregate					
No	Туре	Dried Weight i Sample	Sample	% Mud & Clay	Remarks
的後		Before cleaned	After Cleaned	Content	
1	SP - 1	200 200	191.84 191.70	4.08 4.15	
•••••		200	191.86	4.07	
· · · · · · · · · · · · · · · · · · ·				Avg = 4.10	
2	SP-2	200	191.50	4.25	
		200	191.70	4.15	
,		200	191.60	4.20	
				Avg = 4.20	
3	SP-3	100	62.10	37.90	
.	.	100	62.30	37.70	······
				Avg = 37.80	
4	SP-4	200	198.00	1.00	
		200	197.20	1.40	
		200	197.00	1.50	
				Avg = 1.30	

÷

APPENDIX E

Photographs of Field Work Activities

West Bank at Dam Site Alternative D

SITE CONDITION

-

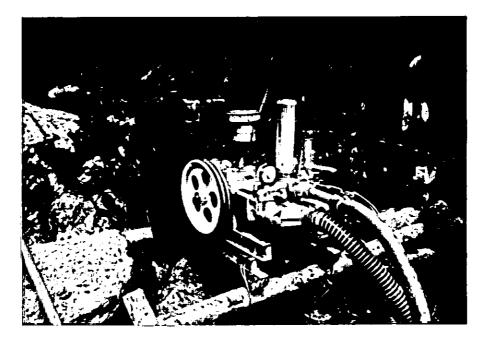
East Bank at Dam Site Alternative D

Power House Area (Southward View)

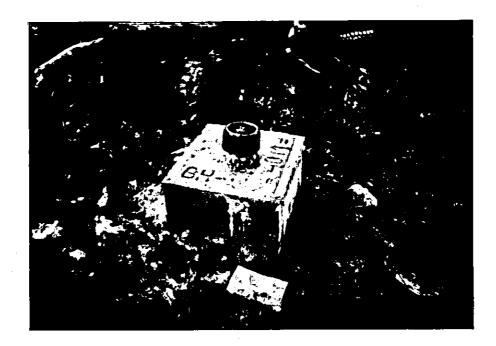
SITE CONDITION

E.3

EXPLORATORY DRILLING



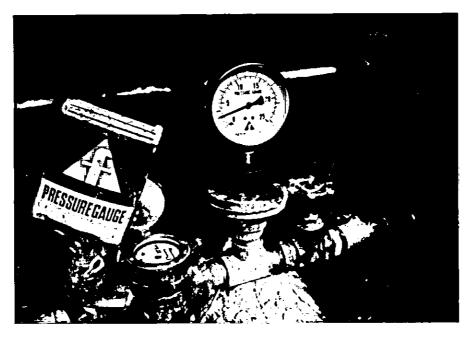
Vertical Drilling at Borehole BH -14



Inclined Drilling at Borehole BH -5 (40 degrees)

EXPLORATORY DRILLING

The Water Pump for Supplying the Drilling Water



Concrete Block at the Location of Completed Borehole (BH -11)

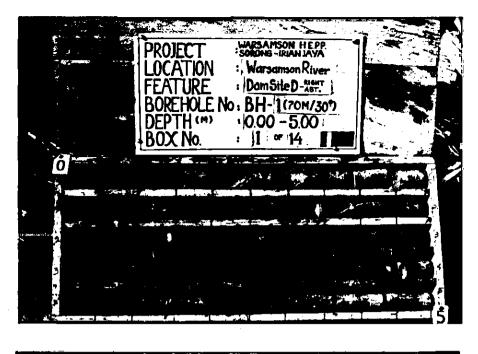
LUGEON TEST

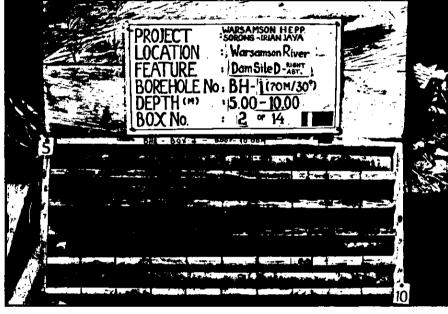
The Expandable Packer, High Pressure Tubing and Air Pump

The Pressure Gauge

SEISMIC REFRACTION SURVEY

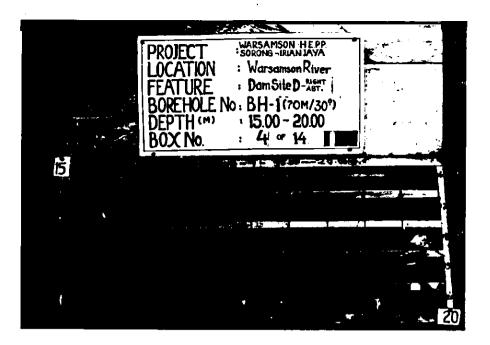
The Field Graph, Seismic Amplifier and Blaster

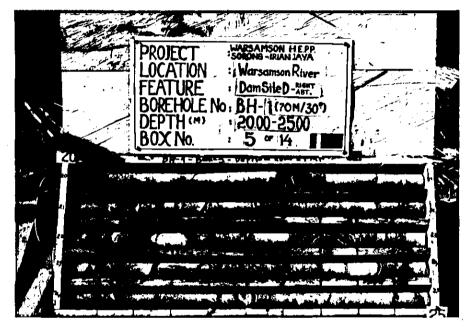


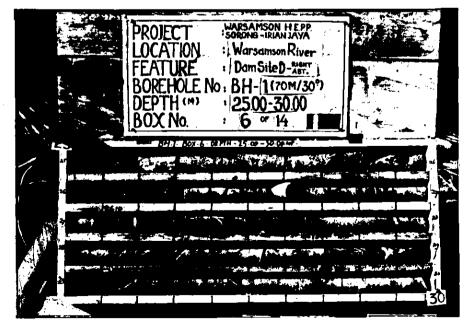

The Geophone

APPENDIX F

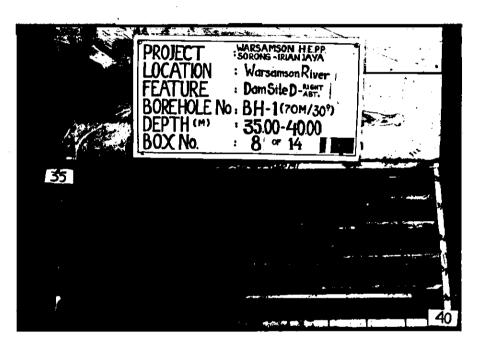
Photographs of Core Samples

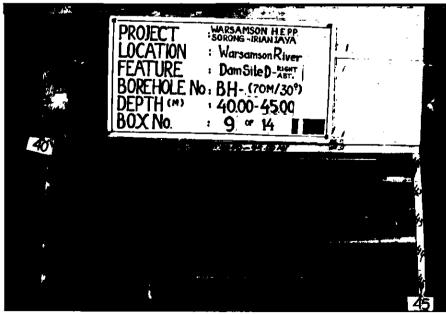

F.0

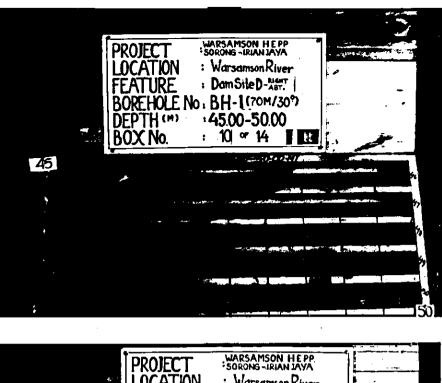


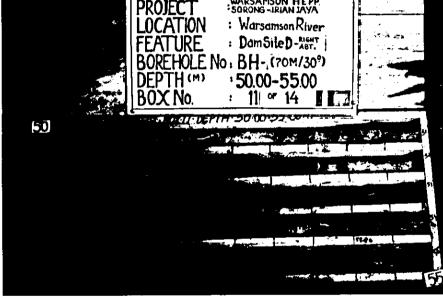


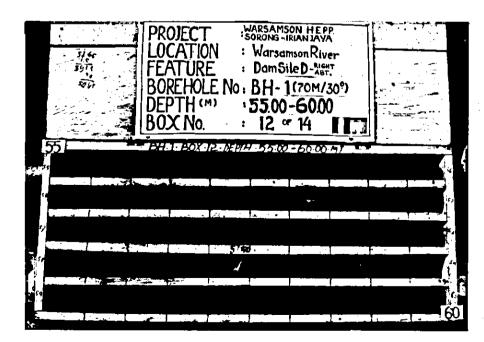
Core Box BH - 1 , Total Depth : 70.00m Box No. 1 \sim 3 (0.00 - 15.00) m

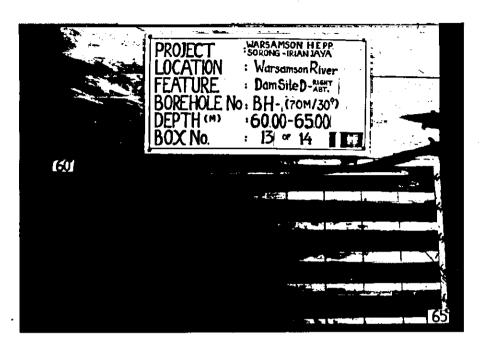


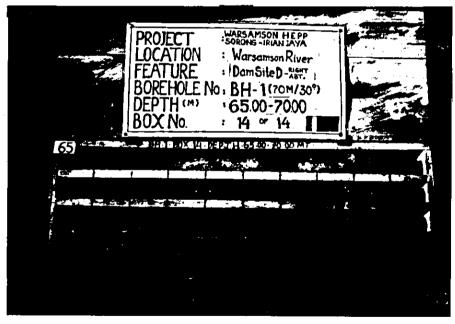


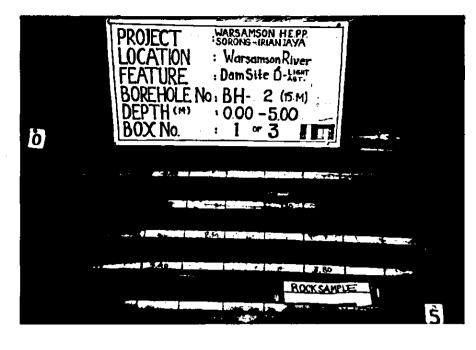

Core Box BH - 1 , Total Depth : 70.00m Box No. 4 \sim 6 (15.00 - 30.00) m

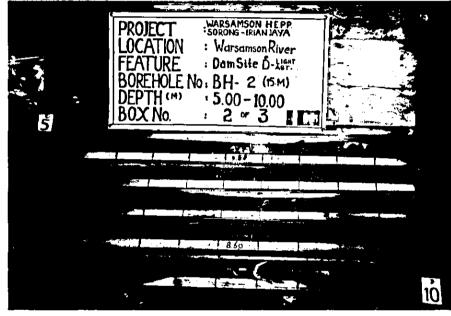

WARSAMSON HEPP PROJECT LOCATION : Warsamson River FEATURE : Dam Sile D-ABT BOREHOLE No , BH- 1(70M/30") DEPTH (M) ·3000-3500 BOX No. : Z ~ 14 2 The Works Street 2月19日21日的15年月月1日

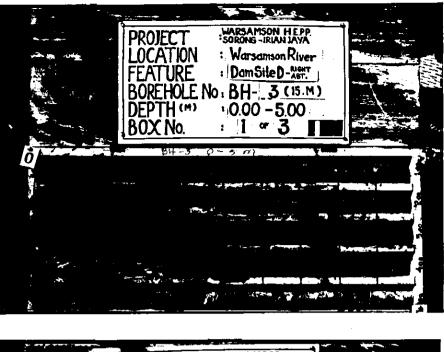


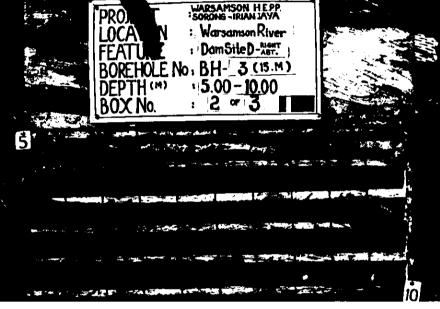

Core Box BH - 1, Total Depth : 70.00mBox No. $7 \sim 9 (30.00 - 45.00) m$

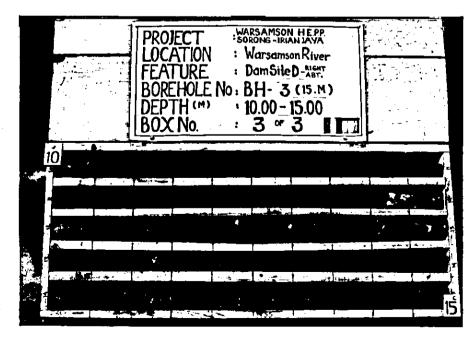




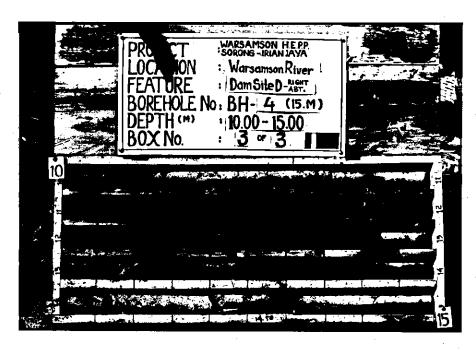

Core Box BH - 1, Total Depth : 70.00m Box No. 10 ~ 12 (45.00 - 60.00) m

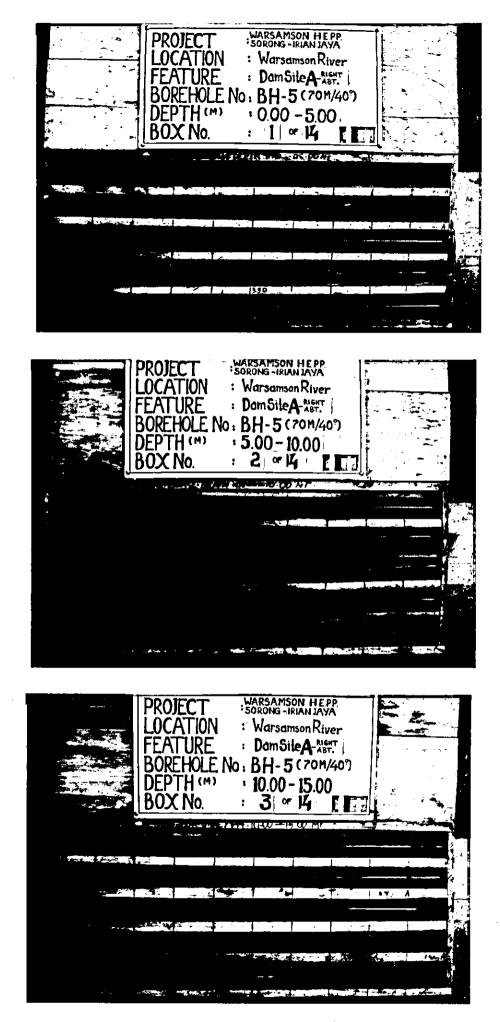

Core Box BH - 1, Total Depth : 70.00m Box No. 13 \sim 14 (60.00 - 70.00) m



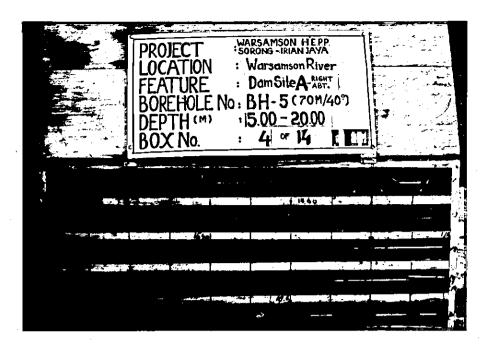


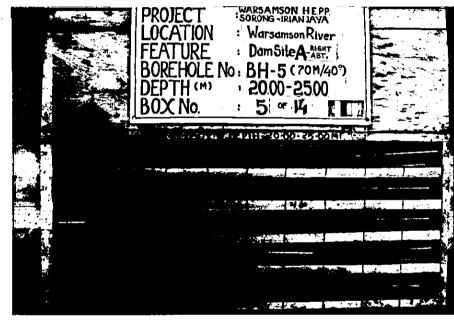
Core Box BH - 2, Total Depth : 15.00m Box No. 1 \sim 3 (0.00 - 15.00) m

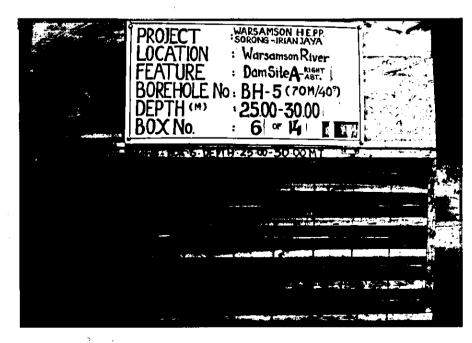


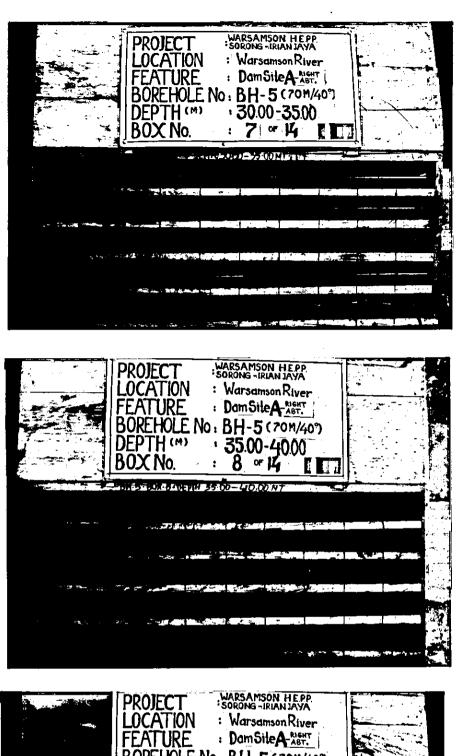

Core Box BH - 3 , Total Depth : 15.00m Box No. 1 \sim 3 (0.00 - 15.00) m

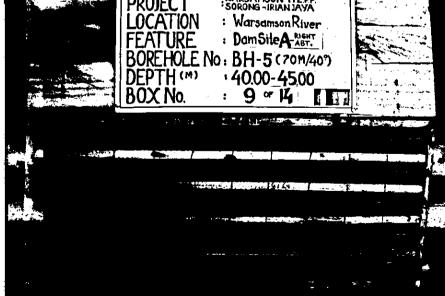
WARSAMSON HEPP PROJECT LOCATION : Warsamson River FEATURE : DamSileD-ABT. BOREHOLE No BH- 4 (15.M) DEPTH (M) • 0.00 - 5.00 BOX No. : 1 ° 3 فيدرد . 7 WARSAMSON HEPP PROJECT : Warsamson River location FEATURE : Dam Site D-ABT. BOREHOLE No: BH- 4 (15.M) DEPTH (M) BOX No. ·<u>|5.00-10.00</u> · 2 ∝ 3 | 3


.

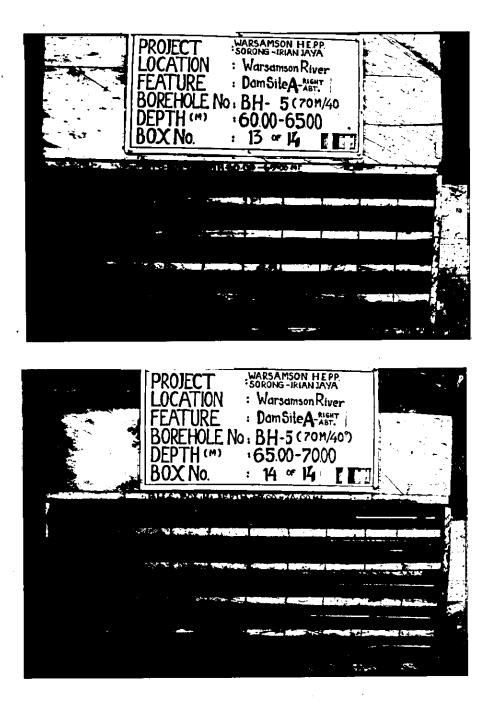



Core Box BH - 4, Total Depth : 15.00mBox No. 1 ~ 3 (0.00 - 15.00) m

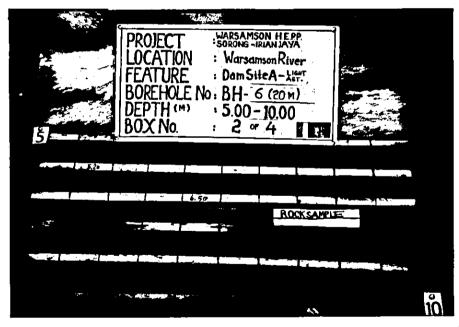

Core Box BH - 5, Total Depth : 70.00m Box No. 1 \sim 3 (0.00 - 15.00) m



Core Box BH - 5, Total Depth : 70.00m Box No. 4 \sim 6 (15.00 - 30.00) m



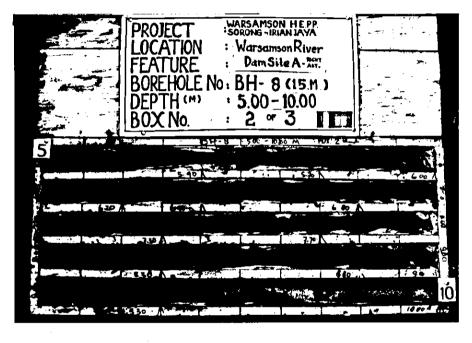
Core Box BH - 5 , Total Depth : 70.00m Box No. 7 \sim 9 (30.00 - 45.00) m

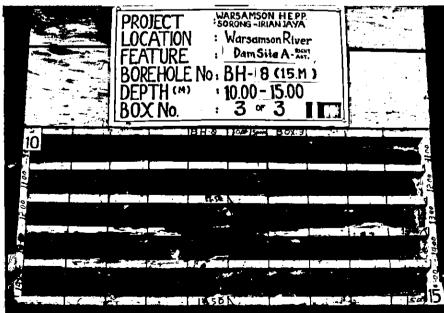

WARSAMSON HEPP PROJECT LOCATION : Warsamson River FEATURE : Dam Sile A-RIGHT BOREHOLE No . BH-5 (70m/40) DEPTH (M) · 45.00-50.00 BOX No. : 10 or 14 Ē HIS BOX ID REVIN 45 10 - 50 COTAT ÷. WARSAMSON HEPP PROJECT location : WarsamsonRiver FEATURE : DamSileA-ABT BOREHOLE No: BH-5(70m/40) •50.00-55.00 DEPTH (M) : 11 or 14 BOX No. ι. SORONG -IRIAN JAYA PKUJEC I Location : Warsamson River FEATURE : Dam Sile A-RIGHT BOREHOLE No: BH-5 (70M/409) DEPTH (M) • 55.00-60.00 : 12 ° 14 BOX No. E 2 DEPTH 55 40-60 00 N

Core Box BH - 5 , Total Depth : 70.00m Box No. 10 \sim 12 (45.00 - 60.00) m

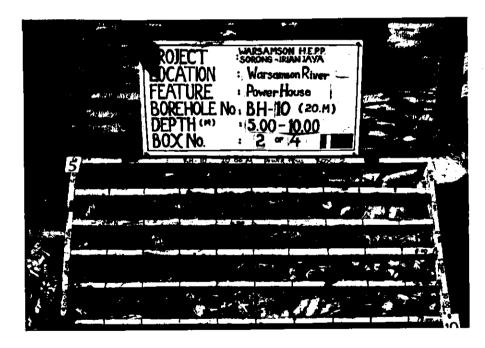
Core Box BH - 5, Total Depth : 70.00m Box No. 13 ~ 14 (60.00 - 70.00) m

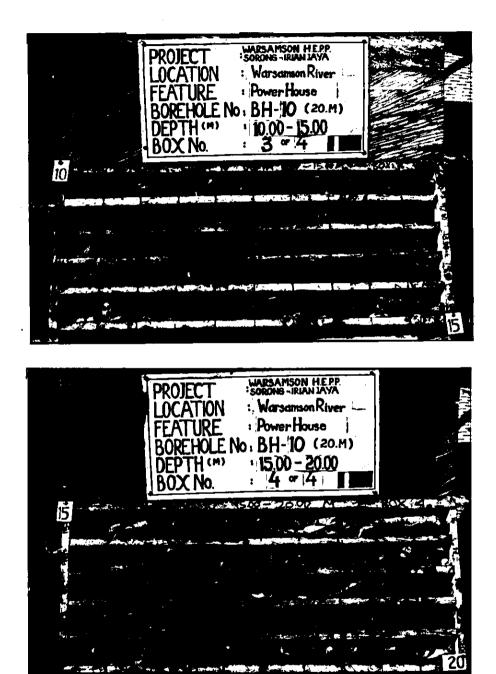
WARSAMSON HEPP PROJECT \$: Warsamson River LOCATION FEATURE : Dom SiteA-2547 BOREHOLE NO: BH- 6 (20 M) DEPTH (M) : 0.00 - 5.00 : Dam SiteA-Light • 0.00 - 5.00 • 11 • 4 BOX No. Ó 0.74 79 2.1 3 2.1 3.20 • ROCKSAMPLE


Core Box BH - 6, Total Depth : 20.00m Box No. 1 \sim 2 (0.00 - 10.00) m


WARSAMSON HEPP PROJECT OCATION : Warsamson River FEATURE : Dam SiteA-LiGHT BOREHOLE No: BH- 6 (20 M)-DEPTH (M) 10.00-15.00 BOX No. 3 4 1 5

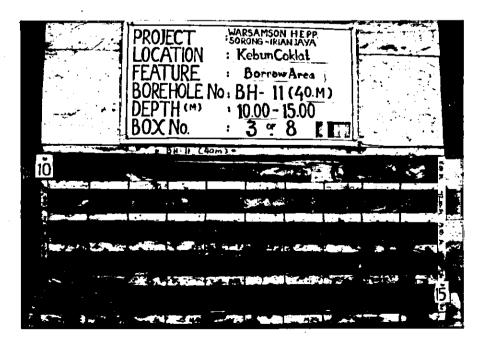
Core Box BH - 6, Total Depth : 20.00m Box No. 3 \sim 4 (10.00 - 20.00) m

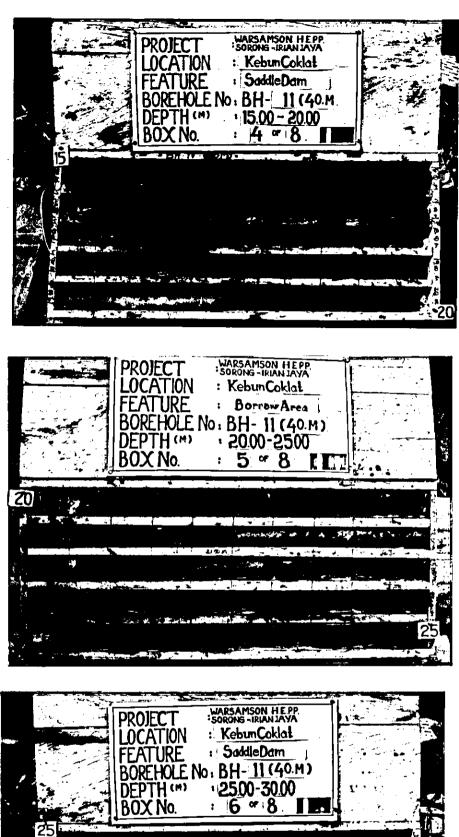

PROJECT WARSAMSON HEPP. LOCATION : WarsamsonRiver Dam Sile A-FEATURE 1 BOREHOLE No: BH- 8 (15 m) DEPTH (M) 0.00 - 5.00 BOX No. 1 **~**З : Ó. 0.40 1.1 2.20 5.20 4507



Core Box BH - 8, Total Depth : 15.00m Box No. 1 \sim 3 (0.00 - 15.00) m

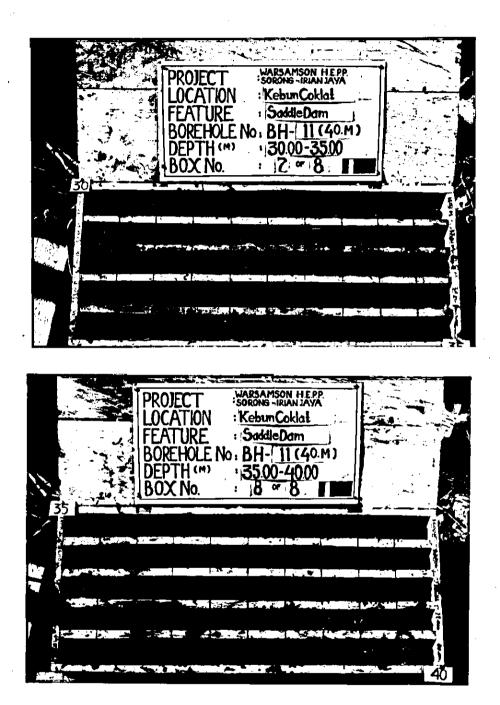
WARSAMSON HEPP. Projec PROJECT SORONG-IRLAN LAYA LOCATION : Warsamson River -FEATURE : Power House BOREHOLE No: BH-10 (20.M) DEPTH (M) : 10.00 - 5.00 BOX No. : 1 or 4 BOX No.


Core Box BH - 10 , Total Depth : 20.00m Box No. 1 \sim 2 (0.00 - 10.00) m

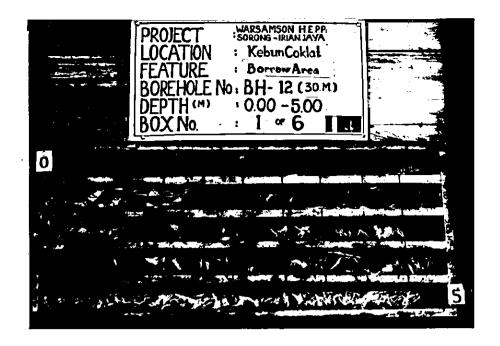

Core Box BH - 10 , Total Depth : 20.00m Box No. 3 \sim 4 (10.00 - 20.00) m

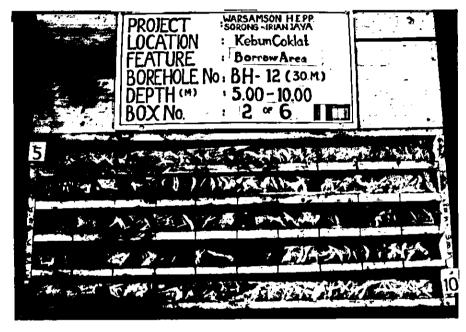
- Approximation of the second WARSAMSON HEPP PROJEC LOCATION : KebunCoklat FEATURE : SaddleDam BOREHOLE No, BH- 11 (40.M) DEPTH (**) 10.00 - 5.00 BOX No. :]] •••18 1.50

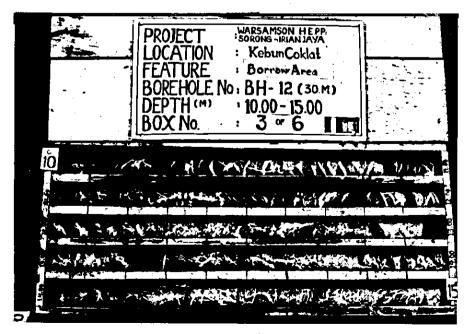
WARSAMSON HEPP PROJECT : Kebun Coklał **JOCATION** FEATURE : SaddleDam BOREHOLE No . BH-111 (40.M) 15.0<u>0-10.00</u> : 2 ∝ 8 I DEPTH (**) BOX No. n



Core Box BH - 11 , Total Depth : 40.00m Box No. 1 ~ 3 (0.00 - 15.00) m

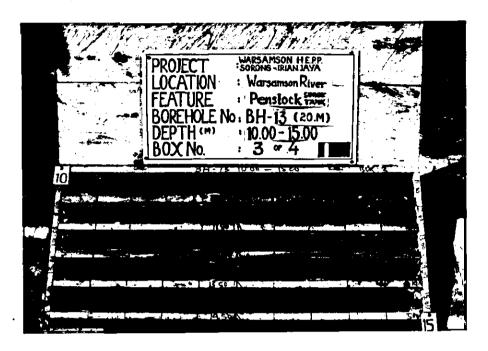


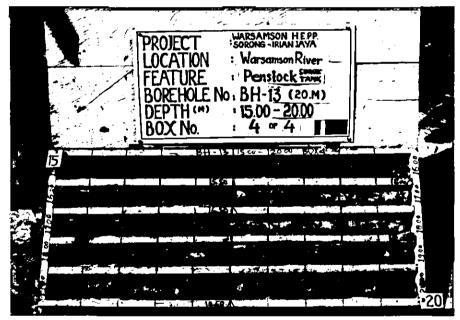

LUCATION FEATURE BOREHOLE No. BH-<u>11(40.M)</u> DEPTH (m) 2500-30.00 BOX No. : 6 ~ 8 I ...


Core Box BH - 11 , Total Depth : 40.00m Box No. 4 \sim 6 (15.00 - 30.00) m

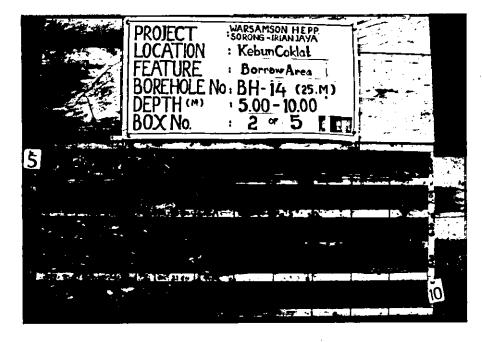
Core Box BH - 11 , Total Depth : 40.00mBox No. 7 ~ 8 (30.00 - 40.00) m

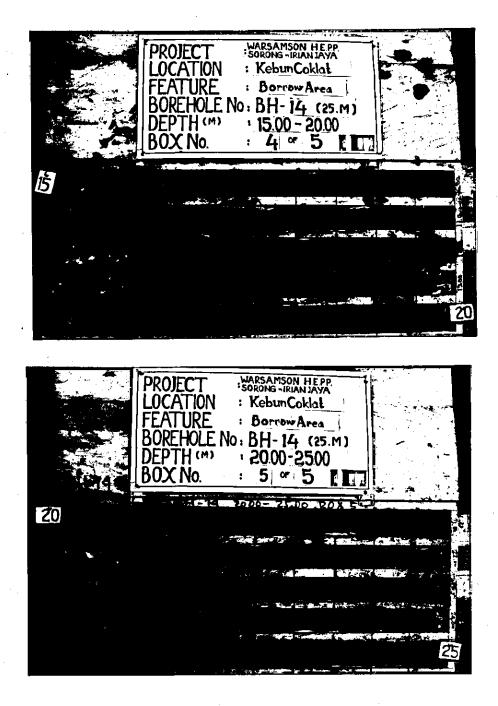
Core Box BH - 12, Total Depth : 30.00m Box No. 1 \sim 3 (0.00 - 15.00) m


WARSAMSON HEPP PROJECT Location : KebunCoklat FEATURE : BorrowArea BOREHOLE No: BH- 12 (30.M) 15.00 - 20.00 DEPTH (M) BOX No. 4 ° 6 : 5 8 200 2D . WARSAMSON HEPP PROJECT LOCATION : KebunCoklał FEATURE : BorrowArea BOREHOLE No BH- 12 (30M) DEPTH (M) · 2000-2500 BOX No. 5 ° 6 : 20 e 1 25 WARSAMSON HEPP PROJECT LOCATION : _KebunCoklał : Borrow Area FEATURE BOREHOLE No: BH-12 (30 M) DEPTH (M) BOX No. · 2500-3000 6 ° 6 . 25 130


Core Box BH - 12 , Total Depth : 30.00m Box No. 4 \sim 6 (15.00 - 30.00) m

TXT-1	PROJECT SORONG - IRLANJAYA LOCATION : Warsamson River FEATURE : Pensiock From: BOREHOLE No: BH-13 (20.M) DEPTH (M) : 5.00 - 10.00 BOX No. : 2 = 4	
5	BH-15 - 500 - 500 - 506 - 506 - 506 - 506	
5	ana	Tarrenter Transact
A State State	an an ann a chean an Airtean Ai	and the second of
	and to an advising the same product of the second	
4		
	9.50	10 1000


Core Box BH - 13 , Total Depth : 20.00m Box No. 1 \sim 2 (0.00 - 10.00) m


Core Box BH - 13, Total Depth : 20.00m Box No. $3 \sim 4$ (10.00 - 20.00) m

SORONG -IRIAN JAYA YKUJECT **LOCATION** : KebunCoklat FEATURE : Borrow Area BOREHOLE No: BH-14 (25.M) DEPTH (M) • 0.00 - 5.00, : 1 ° 5 11: BOX No. 600 -THE PARTY AND A THE

Core Box BH - 14, Total Depth : 25.00m Box No. 1 \sim 3 (0.00 - 15.00) m

Core Box BH - 14 , Total Depth : 25.00m Box No. 4 \sim 5 (15.00 - 25.00) m

APPENDIX G

Rock Mass Classification by the CRIEPE

(Dr. H. Tanaka)

	Description
	The rock mass is very fresh, and the rock forming minerals and grains undergo neither
A	weathering nor alteration. Joints are extremely tight and their surfaces have no visible
	sign of weathering.
	Sound by hammer blow is clear.
	The rock mass is solid. There is no opening joint and crack (even of 1 mm). But rock
B	forming minerals and grains undergo a little weathering and alteration in partly.
	Sound by hammer blow is clear.
	The rock mass is relatively solid. The rock forming minerals and grains undergo
	weathering except for quartz. The rock is contaminated by limonite, etc. The cohesion
CII	of joints and cracks is slightly decreased and rock blocks are separated by firm hammer
	blow along joints. Clay minerals remain on the separation surface.
	Sound by hammer blow is a little dim.
	The rock mass is somewhat soft. The rock forming minerals and grains are somewhat
	softened by weathering, except for quartz. The cohesion of joints and cracks is some-
См	what decreased and rock blocks are separated by ordinary hammer blow along the
	joints. Clay materials remain on the separation surface.
	Sound by hammer blow is somewhat dim.
C_L	The rock mass is soft. The rock forming minerals and grains are softened by
	weathering. The cohesion of joints and cracks is decreased and rock blocks are sepa-
	rated by hammer blow along the joints. Clay materials remain on the separation surface.
	Sound by hammer blow is dim.
	The rock mass is remarkably soft. The rock forming minerals and grains are softened by
D	weathering. The cohesion of joints and cracks is almost absent. The rock mass col-
	lapses by light hammer blow. Clay materials remain on the separation surface.
	Sound by hammer blow is remarkably dim.

Table G.2 Physical Property and CRIEPI Classification

					(By K. Kikuchi)
Rock Grade	-	Modulus of Elasticity (kg/cm²)	Cohesion (kg/cm ²)	Internal Friction Angle (°)	Seismic Velocity (km/sec)
A - B	over 50,000	over 80,000	over 40	65 - 55	over 3.7
C _H	50,000 - 20,000	80,000 - 40,000	40 - 20	55 - 40	3.7 - 3
См	20,000 - 5,000	40,000 - 15,000	20 - 10	45 - 30	3 - 1.5
C _L - D	less than 5,000	less than 15,000	less than 10	38 - 15	less than 1.5

G.1

APPENDIX H

Earthquake Data and Calculations

and the second

1. Earthquake Data

The present study uses earthquake data collected by the Meteorological and Geophysical Institute, Jakarta and additional data compiled by Beca Carter Holding and Ferner (1980). A total of 350 events was recorded during the period of 1923 to 1994. From all the available 350 records, 202 earthquakes with magnitude (M) of greater than 5 Richter scale were used for the recurrence analysis.

From the above records, seismic intensity at the project site was deduced based on the following Kawasumi's formulas:

 $Ij = M - 0.00183 (d - 100) - 4.605 \log d/100 (for d > 100 km)$ $Ij = M + 4.605 \log Do/D + 2 k (D - Do) \log e (for d < 100 km)$

where:

Ij	: Intensity at project site
Μ	: Magnitude of the earthquake
d	: The distance from epicentre to project site (km)
D	: The distance from hypocentre to project site (km)
Do	: The distance from hypocentre to a point of $d = 100 \text{ km}$
k	: The damping rate of s-wave (0.0192/km)

The relationship between the intensity "Ij" and peak ground acceleration "a" can be approximated by the following equation:

Ij Log a = ------ - 0.5 (Richter 1980, in Indonesian Earthquake study)

The 202 earthquake data and the results of the calculations are given in Table H.1.

2. Recurrence Analysis by Plotting Position Method

In this method, the 202 earthquake records were rearranged with decreasing magnitude as shown in Table H.2. The recurrence interval for each earthquake was then calculated with the following formula:

P Tr = ------M

where:

Tr : the recurrence interval (in years)

- P : the period in which the series of data were obtained (= 72 years) - from 1923 to 1994
- M : the sequential number of each earthquake data in Table H.2 which was arranged with decreasing magnitude

From the plot of the recurrence interval "Tr" versus the peak ground acceleration "a" in a log-log scale as shown in Figure H.1, the following relationship was obtained:

 $Log a = 0.9857 \log Tr + 0.1423$

Based on the above equation, the peak ground acceleration (a) for a return period of 100 years is 130 gals or equivalent to a seismic coefficient (k) of 0.13 g.

3. Frequency Analysis by Kawasumi Method

The frequency of occurrence for each intensity range (1 to 2, 2 to 3, 3 to 4, 4 to 5, 5 to 6, 6 to 7 and greater than 7) in the period of 72 years is calculated from Table H.2. The frequency for 100 years return period is then calculated by multiplying the above frequencies by 100/72. The cumulative frequency (Nc) is later computed by adding the 100 years return period frequencies. Table H.3 shows the results of the calculations.

From the plot of intensity "Ij" versus cumulative frequency "Nc" in a semi-log scale as shown in Figure H.2, the following relationship is obtained:

 $Ij = 8.040 - 2.625 \log Nc$

Based on the above, the probable intensity (Ij) for the return period of 100 years is 8.040 Richter scale. This intensity corresponds to the peak ground acceleration (a) of 151.36 gals, or seismic coefficient (k) of 0.15 g.

Table H.1

SEISMICITY CATALOGUE AREA FOR EASTERN PART INDONESIA 125 - 138 EAST LONGITUDE AND 4 NORTH LATITUDE - 4 SOUTH LATITUDE YEAR 1923 - 1994, INTENSITY > 5

No. 1 2 3 4 5 6	DATE 940722 940614 940604 940503 940420 940417	TIME 17.02.26 21.01.56 00.52.33 08.06.53 23.42.25	(2.98) 1.34 (2.76)	LONGITUDE 130.96 126.26	(KM) 150	INTENSITY (RICHTER)	SOURCE	DISTANCE TO SITE (KM)	INTENSITY AT SITE
2 3 4 5	940614 940604 940503 940420 940417	21.01.56 00.52.33 08.06.53	1.34			(RICHIER)		TO SITE (KM)	ALSILE
2 3 4 5	940614 940604 940503 940420 940417	21.01.56 00.52.33 08.06.53	1.34		150	} .			
2 3 4 5	940614 940604 940503 940420 940417	21.01.56 00.52.33 08.06.53	1.34			. 6	BMG	552.80	1.75
3 4 5	940604 940503 940420 940417	00.52.33 08.06.53			88	5.6	BMG	531.22	^{1.75}
4 5	940503 940420 940417	08.06.53	(=	129.20	60	5.2	BMG	564.88	0.89
5	940420 940417		(3.08)	127.53	78	5.8	BMG	682.87	0.89
1	940417	1 23.42.23	(2.73)	129.84	47	5.2	BMG	540.59	1.02
		14.07.29	(2.13)	131.30	74	5.1	BMG	459.64	1.39
7	940416	15.16.34	(1.64)	127.15	170	5.2	BMG	588.11	0.76
8	940415	20.17.59	(3.31)	135.36	102	6.2	BMG	762.64	0.92
9	940415	17.53.41	(3.30)	129.32	250	5.5	BMG	617.15	0.91
10	940410	15.09.11	1.95	129.90	200	5.3	BMG	122.23	4.86
11	940410	12.47.10	(2.33)	131.88	250	5.2	BMG	490.46	1.31
12	940322	20.26.28	(2.36)	129.30	70	5.1	BMG	519.45	1.04
13	940322	18.20.18	0.67	123.50	70 54	5.1	BMG	412.49	1.04 1.69
14	940314	11.39.53	1.42	127.53	33	5.4	BMG	412.49 390.51	2.14
15	940394	00.05.49	1.30	131.46	310	5.2	BMG	92.98	2.14 5,36
16	940307	04.47.19	2.76	131.37	225	5.6	BMG	93.83	
.17	940303	05.51.46	0.50	126.17	144	5.6	BMG	561.39	5.74
18	940223	23.43.56	2.46	129.16	206	5,3	BMG	210.53	1.31
19	940223	19.19.48	3.38	131.30	250	5.2	BMG	156.76	3.61
20	940220	09.14.29	3.81	131.92	160	5.6	BMG	225.37	4.20
21	940220	01.54.43	0.72	126.32	130	5.8	BMG	538.56	3.75
22	940208	00.19.42	1.50	126.77	93	5.5	BMG		1.63
23	940206	14.25.39	(0.82)	131.42	110	5.1	BMG	472.80 316.47	1.31
24	940204	11.26.53	0.88	128.30	110	5.1			2.40
25	940201	22.20.31	3.42	127.50	121	5.2	BMG BMG	324.46	2.44
	• 940201	03.40.27	2.20	127.86	250	5.2		419.26	1.75
27	940125	00.05.33	2.20 1.30	127.88	230 66	5.2 5.5	BMG BMG	349.25	2.24
28	940123	17.21.24	1.05	128.05	84	5.5 5.2		354.93	2.50
29	940124	16.17.25	1.03	127.92	64 70		BMG	344.01	2.28
30	940124	16.10.59	1.74	129.12	68	5.2	BMG	352.95	2.21
31	940124	23.52.50	1.74	128.03	60 60	5.3	BMG	210.67	3.61
32	940122	18.23.24	0.80	127.71	60 60	5.6 5.1	BMG	341.42	2.70
33	.940121	18.13.53	1.05	127.70	43		BMG	388.72	1.86
34	940121	02.31.30	0.84	127.25	43 95	5.4	BMG	381.18	2.21
35	940121 940121	02.31.30	0.84 1.20	127.80	95 60	5.1 6.7	BMG	435.71	1.54
36	940121	20.27.04	0.07	126,98	50 150	6.7 5.2	BMG	366.13	3.62
37	940113	16.10.36	(3.85)	126.80		5.2	BMG	494.98	1.28
38	940110	23.55.02	(3.85) 2.30	129.83	276 300		BMG	799.37	0.46
39	931229	08.46.08	(2.70)	130.37	112	5.1 5.7	* BMG	134.07	4.45
40	931229	05.25.34	(2.70) (2.64)	130.33		5.7 5.4	BMG	526.37	1.60
40	931224	05.25.34	(2.84) 0.90	126.38	233	5.4	BMG	520.38	1.33
41	931215 931210	03.58.18	0.90	137.63	159	.::5.1 	BMG	527.16	0.99
42	931210 931119	11.45.49		130.23	200 200	5.6	BMG	749.31	0.38
43	931101	12.31.00	(3.04)	130.23	300	5.2	BMG	565.93	0.88
44 45	93101 931010	07.21.37	(2.97) (2.86)	130.50	300 119	5.2 5.1	BMG BMG	554.45 542.66	0.94 0.91

Note : latitude in bracket indicate South

H.3

Table H.1 (continued)

	• • • • • • • • • •							· · · ·	Sheets 2/4
No.	DATE	TIME	LATITUDE	LONGITUDE	DEPTH	INTENSITY	SOURCE	DISTANCE	INTENSITY
					(KM)	(RICHER)		TO SITE (KM)	AT SITE
						· · ·			
46	931002	06.52.52	1.23	126.67	117	5.3	BMG	488.17	1.42
47	930914	01.34.10	0.53	126.98	90	5.5	BMG	475.12	1.70
48	930912	03.40.05	(2.33)	129.84	272	5.9	BMG	497.58	1.96
49	930911	19.47.11	(2.60)	127.34	245	5.1	BMG	652.50	0.34
50	930910	19.29.56	(2.90)	127.84	250	5.5	BMG	647.19	0.76
51	930902	14.07.09	1.71	128.26	262	5.3	BMG	305.84	2.69
52	930830	16.09.51	(3.88)	131.40	. 70	5.1	BMG	654.19	0.33
53	930819	13.38.20	(3.74)	132.84	278	5.3	BMG	669.08	0.46
		19.08.25		127.98	91	5.3	BMG	660.77	0.50
54	930804		(3.13)	131.32	70	5.7	BMG	349.24	2.74
55	930713	08.38.34	(1.13)	131.24	•	1			
56	930713	06.16.07	(1.37)	1	70	5.1	BMG	375.02	. 1.95
57	930703	19.43.58	(2.97)	129.37	87	5.5	BMG	580.58	1.10
58	930607	00.07.40	(0.70)	130.10	130	5.1	BMG	315.91	2.40
59	930530	17.13.24	0.98	126.82	86	5.6	BMG	477.59	1.78
60	930530	17.08.56	1.07	127.01	103	6.3	BMG	454.76	2.62
61	930522	05.01.13	(2.38)	129.25	160	5.1	BMG	523.55	1.01
62	930517	12.05.20	0.03	130.44	38	5.6	BMG	227.33	3.72
63	930502	08.52.50	(3.37)	131.54	84	5.2	BMG	599.08	0.71
64	930326	01.10.39	1.11	129.53	86	5.2	BMG	190.75	3.74
65	930325	17.15.52	(1.20)	129.40	90	5.6	BMG	⁷ 397.13	2.30
66	930317	14.48.36	2.22	127.52	165	5.2	BMG	387.05	1.97
67	930224	02.44.41	0.76	129.32	2 71	5.4	BMG	231.77	3.48
68	930204	16.31.29	1.88	129.41	300	5.1	BMG	176.99	3.82
69	930203	03.28.22	1.55	127.92	54	5.2	BMG	345.51	2.27
-70	930103	17.08.11	3.95	129.50	90	5.4	BMG	273.08	3.07
71	921217	11.18.31	(3.24)	130.60	18	5.1	BMG	583,33	0.69
72	920802	05.50.11	(0.88)	127.58	19	5.8	BMG	496.29	1.87
73	920606	01.58.29	(0.60)	133.91	26	5.1	BMG	433.16	1.56
74	920404	18.46.09	(2.02)	128.38	41	5.1	BMG	532.62	0,96
75	920401	01.38.03	(3.13)	129.02	. 33	5.2	BMG	610.37	0.65
76	910811	14.43.53	(3.18)	130.31	33	5.6	BMG	580,06	1.21
77	910407	18.55.19	(3.14)	130.31	31	5.6	BMG	575.66	1.23
78	910325	15.24.18	(2.96)	127.98	33	5.4	BMG	644.58	0.68
79	901231	17 56 59	0.91	126.70	33	5.3	BMG	492.40	1.39
80	901226	01.59.35	(0.72)	127.23	33	5.1	BMG	516.02	1.06
81	901225	22.59.20	(0.76)	127.41	33	5.2	BMG	502.64	1.23
82	901120	09.03.37	0.17	127.01	114	5.6	BMG	487.25	1.72
83	r i i i i i i i i i i i i i i i i i i i	15.47.58	0.49	126.02	44	6	BMG	577.63	1.62
84	1	22.31.49	2.94	127.28	33	5.1	BMG	425.90	1.61
85	1 .	15.44.29	0.32	126.16	38	5.9	BMG	568.68	1.57
86	1	15.44.29	0.93	126.92	10	5.20	BMG	468.20	1.44
87	900718	07.31.31		120.92	33	5.20	BMG	693.24	0.14
1	1		(2.87)			5.10	BMG	607.17	0.66
88	900625	19.53.39	(3.47)	130.99	33			422.57	1.93
89	1	22.59.57	1.77	127.20	33	5.40	BMG	1	1
90	•	15,17.28	(1.12)	126.77	33	5.50	BMG	583.43	1.09
91	900525	02.03.27	(2.87)	130.34	15	5.80	BMG	545.51	1.59
92	1	19.14.26	(0.44)	126.77	23	5.20	BMG	542.04	1.01
93	1	16.23.31	(1.95)	126.05	33	5.20	BMG	702.95	0.20
94	1	10.29.45	2.09	127.80	33	5.20	BMG	355.34	2.20
95	900312	13.32.55	(3.16)	128.84	26	5.20	BMG	620.92	0.59

Note : latitude in bracket indicate South

H.4

Table H.1 (continued)

No.	DATE	TIME		LONGITUDE	DEPTH	INTENSITY	SOURCE	DISTANCE	Sheets 3/4
140.	DAIC	T HAIL	LANIODE		(KM)	(RITCHER)	SOUNCE	TO SITE (KM)	AT SITE
						(KITCHEN)			ALONE
96	900220	11.07.54	0.83	127.25	212	5.10	BMG	436.04	1.54
97	900220	01.12.19	0.85	127.25	57	5.10	BMG	572.61	0.75
98	900211	05.26.52	1.78	125.90	140	5.10	BMG	413.64	1.69
99	891227	03.20.32	0.96	126.13	62	5.10	BMG	552.78	0.85
100	891226	17.41.04							1.50
		02.12.21	2.25	126.73	56	5.30	BMG	474.78	-
101	891217		(3.51)	127.65	24	5.20	BMG	715.78	0.14
102	891218 891124	09.40.47 00.35.07	(3.61)	131.18	36	6.60	BMG	623.03	1.98
103			0.99	126.01	26	5.70	BMG	565.12 322.09	1.39
104	891101	09.49.26	2.49	128.14	37	5,50	BMG		2.75
105	891018	18.41.24	2.09	126.58	53	5.20	BMG	490.72	1.30
106	890924	02.00,52	2.85	128.34	38	5.10	BMG	309.97	2.45
107	890914	19.10.25	1.64	127.32	103	6.00	BMG	410.43	2.61
108	890906	14.45.51	0.89	126.11	37	5.80	BMG	556.60	1.53
109	890812	00.40.10	0.80	126.82	51	5.70	BMG	482.72	1.85
110	890806	07.43.39	1.09	126.31	50	5.30	BMG	530.30	1.18
111	890803	02.24.20	1.01	126.10	66	5.30	BMG	554.89	1.04
112	890802	03.37.28	(2.69)	127.31	29	5.60	BMG	662.40	0.79
113	890722	05.02.11	2.30	128.14	142	6.40	BMG	319.20	3.68
114	890521	19.30.07	2.55	126.54	77	5.40	BMG	498.81	1.46
115	890521	19.23.41	2.59	126.70	58	5.30	BMG	481.77	1.46
116	890515	18.16.16	1.55	127.27	106	5.50	BMG	417.03	2.06
117	890514	09.10.25	(2.92)	127.67	33	5.40	BMG	659.45	0.60
118	890510	08.23.24	2.69	128.42	54	5.20	BMG	296.44	2.67
119	890508	062002	0.02	126.70	76	5.10	BMG	525.47	1.00
120	890409	12.47.22	2.68	128.53	33	5.10	BMG	284.37	2.67
121	890401	11.34.38	(3.15)	127.91	33	5.10	BMG	666.65	0.27
122	890328	16.47.30	(1.95)	128.93	53	5.30	BMG	495.01	1.38
123	890323	03.10.44	2.40	128.25	95	5.10	BMG	308.46	2.47
124	890319	07.59.55	1.70	127.16	116	5.20	BMG	427.54	1.69
125	890319	02.38.52	1.57	126.66	71	5.20	BMG	484.10	1.34
126	890308	11.44.32	1.03	126.19	32	5.90	BMG	544.66	1.70
127	890228	05.59.31	2.26	127.93	53	5.20	BMG	341.99	2.30
128	890228	01.25.34	2.26	່ 127.99	58	5.30	BMG	335.35	2.45
129	890228	00.51.27	2.29	127.92	58	5.70	BMG	343.39	2.79
130	890227	23.39.10	2.30	128.01	54	5.80	BMG	333.56	2.96
131	890227	170229	2.21	126.59	88	5.10	BMG	490.06	1.21
132	890226	15.56.06	2.23	127.93	69	5.30	BMG	341.72	2.40
133	890225	04.42.18	1.93	127.99	69	5.30	BMG	334.20	2.46
134	890218	00.49.41	2.42	126.81	33	5.10	BMG	467.42	1.34
135	890217	01.14.27	0.46	126.35	39	5.30	BMG	543.72	1.10
136	890216	19.42.45	2.57	126.64	56	5.10	BMG	488.08	1.22
137	890213	11.25.41	2.35	126.73	33	5.20	BMG	475.56	1.39
138	890213	02.02.12	1.31	127.36	122	5.20	BMG	411.24	1.80
139	890211	04.05.20	2.44	126.69	33 .	5.20	BMG	480.90	1.36
140	890211	01.57.06	2.38	125.60	66	5.20	BMG	600.88	0.70
141	890211	01.35.30	2.37	126.61	60	5.30	BMG	489.02	1.41
142	890210	21.39.45	2.32	126.57	33	5.10	BMG	493.01	1.19
143	890210	20.29.43	2.39	126.65	33	5.30	BMG	484.79	1.44
144	890210	19.56.54	2.45	126.61	33	5.50	BMG	489.84	1.61
145	890210	16.30.40	2.46	126.66	33	5.10	BMG	484.44	1.24
146		15.23.55	2.46	126.69	38	5.50	BMG	481.13	1.66
147	890210	14.06.29	2.37	126.56	40	5.30	BMG	494,55	1.38

Note : latitude in bracket indicate South

Table H.1 (continued)

No.	DATE	TIME	LATITUDE	LONGITUDE	DEPTH	INTENSITY	SOURCE	DISTANCE	Sheets 4/4
	DAIL	• • • • • • • •		LONGITUDE	(KM)	(RICHTER)	SCONCE	TO SITE (KM)	AT SITE
\rightarrow					. ((HIGHTER)			ALOIL
148	890210	13.33.53	2.17	126.58	33	5.20	BMG	490.98	1.30
149	890210	12.50.30	2.43	126.70	33	5.60	BMG	479.68	1.77
150	890210	12.27.44	2,38	126.65	33	5.20	BMG	484.69	1.34
151	890210	12.16.48	2.45	126.64	33	5.30	BMG	486.53	1.43
152	890210	12.12.05	2.25	126.60	47	5.60	BMG	489.19	1.71
153	890210	12.07.43	2.40	126.63	42	5.30	BMG	487.10	1.43
154	890110	11.47.37	2.44	126.53	33	5.30	BMG	498.57	1.36
155	890210	11.38.05	2.24	126.58	33	5.40	BMG	491.34	1.50
156	890210	11.37.15	2.44	126.57	33	5.40	BMG	494.15	1.48
157	890210	11.36.26	2.32	126.57	33	5.40	BMG	493.01	1.49
158	890210	11.26.07	2.25	126.78	33	5.30	BMG	469.24	1.53
159	890210	11.15.24	2.31	126.76	44	6.20	BMG	471.90	2.42
160	890206	00.40.40	(2.83)	129.99	40	5.10	BMG	547.73	0.88
161	890114	08.11.40	(3.34)	130.60	33	5.10	BMG	594.40	0.63
162	890113	04.14.59	(3.38)	130.49	33	5.10	BMG	599.86	0.60
163	890110	06.25.44	(3.28)	130.52	33	5.10	BMG	588.50	0.66
164	890110	06.14.42	(3.05)	130.58	33	5.10	BMG	562.49	0.80
165	890110	05.55.01	(3.16)	130.56	47	5.90	BMG	574.84	1.53
166	871005	18.57.59	(0.06)	129.86	33	5.40	BMG	159.58	4.36
167	870903	01.15.35	(2.98)	129.42	33	5.60	BMG	273.58	3.27
168	870128	09.12.29	(1.19)	129.71	49	5.50	BMG	140.82	4.74
169	831012	02.23.57	(2.95)	128.43	31	5.50	BMG	374.74	2.36
170	830412	18.25.30	(2.04)	128.81	35	5.30	BMG	261.83	3.08
171	820622	14.55.56	(2.86)	129.41	27	5.40	BMG	264.27	3.16
172	800116	23.26.15	(2.05)	128.02	33	5.20	BMG	341.05	2.31
173	790921	01.26.57	(2.46)	129.30	33	5.10	BMG	242.02	3.07
174	760817	18.07.39	(3.00)	129.52	33	5.40	BMG	268.71	3.11
175	750228	02.05.19	(2.90)	129.40	67 ·	5.20	BMG	268.27	2.92
176	750228	01.53.02	(3.00)	129.20	59	5.50	BMG	290.60	3.02
177	660822	17.02.04	(1.80)	134.00	17	5.90	CGS	335.32	3.05
178	630914	00.18.33	(3.00)	131.00	33	5.50	CGS	216.00	3.75
179	630425	16.35.53	(1.44)	128.70	-	5.80	BMT	252.90	3.66
180	630416	20.00.44	(1.40)	128.90	11	5.80	ВМТ	230.88	3.89
181	630416	01.55.14	(1.10)	128.00	51	6.60	вмт	324.18	3.84
182	621101	17.52.20	(1.90)	132.00	36	6.00	ВМТ	145.30	5.17
183	600905	06.07.30	1.00	129.00	-	6.10	CGS	305.47	3.49
184	600615	23.27.40	(0.50)	133.50	-	7.40	CGS	275.35	5.05
185	600525	13.28.26	(1.00)	129.00	-	5.80	BMT	305.47	3.19
186	600511	18.36.00	(3.00)	131.00	-	6.00	CGS	216.00	4.25
187	600306	02.22.06	1.00	129.00	-	6.00	BRO	305.47	3.39
188	600305	13.49.18	1.00	129.00	-	6.75	CGS	305.47	4.14
189 190	590225 491102	20.08.06	(1.80) (3.00)	128.00 134.00	116	5.75 6.50	ISS BSA	335.32 389.40	2.90 3.25
191	460616	18.19.15	(2.00)	128.00	-	6.75	GR	341.53	3.85
192	440427	14.38.09	(0.50)	133.50	50	7.40	GR	275.35	5.05
193	440426	01.54.15	(1.00)	134.00	50	7.20	GR	324.00	4.44
194 195	420729 410912	22.49.45	(2.00)	128.50	35	7.00	GR GR	290.80	4.52
195	370405	07.02.40	(0.50) (1.00)	132.60 133.00	90	7.00 6.90	GR	170.76 216.00	5.80 5.15
197	340719	01.27.26	(0.50)	133.00	-	7.00	GR	222.65	5.17
198	301109	19.08.38	(0.50)	132.00	-	6.90	GR	120.75	6.48
199	270810	11.36.15	(1.00)	131.00	-	7.10	GR	-	
200	270611 251110	02.32.09	(1.50)	130.00 129.50	60	6.50 7.40	GR GR	120.75 162.00	6.08 6.32
202	23110	03.29.34	(1.00)	129.50		7.40	GR	256.14	5.33

Note : latitude in bracket indicate South

F : warplot

.

Table H.2

WARSAMSON H.E.P.P SURROUNDING AREA 125 - 138 EAST LONGITUDE AND 4 NORTH LATITUDE - 4 SOUTH LATITUDE YEAR 1923 - 1994

[a -		•		Sheets 1/3
No.		Peak Ground	[15] K. A. AND. Phys. 29 (29) (Mapping Company Mapping)		No:	Intensity	CONTRACT MALE MALE STRUCTURE TO STRUCTURE S	Recurrence
ak ().	<u>(1)): </u>	Acceleration	<u>Interval</u>			3- (Jr)	Acceleration	Interval
1	7.10	73.56	72.00		40	3.25	3.84	1.80
2	6.48	45.88	36.00		41	3.19	3.66	1.76
3	6.32	40.48	24.00		42	3.16	3.56	1.71
4	6.08	33.75	18.00		43	3.11	3.45	1.67
5	5.80	27.13	14.40		44	3.08	3.36	1.64
6	5.74	25.88	12.00		45	3.07	3.35	1.60
7	5.36	19.33	10.29		46	3.07	3.34	1.57
8	5.33	18.96	9.00		47	3.05	3.29	1.53
9	5.17	16.78	8.00		48	3.02	3.21	1.50
10	5.17	16.72	7.20		49	2.96	3.07	1.47
11	5.15	16.44	6.55		50	2.92	2.97	1.44
12	5.05	15.29	6.00		51	2.90	2.93	1.41
13	5.05	15.29	5.54		52	2.79	2.69	1.38
14	4.86	13.16	5.14		53	2.75	2.62	1.36
15	4.74	12.03	4.80		54	2.74	2.60	1.33
16	4.52	10.12	4.50		55	2.70	2.52	1.31
17	4.45	9.63	4.24		56	2.69	2.49	1.29
18	4.44	9.54	4.00		57	2.67	2.46	1.26
19	4.36	8.96	3.79		58	2.67	2.45	1.24
20	4.25	8.24	3.60		59	2.62	2.37	1.22
21	4.20	7.93	3.43		60	2.61	2.34	1.20
22	4.14	7.59	3.27		61	2.50	2.15	1.18
23	3.89	6.25	3.13		62	2.47	2.10	1.16
24	3.85	6.08	3.00		63	2.46	2.09	1.14
25	3.84	6.01	2.88		64	2.45	2.08	1.13
26	3.82	5.92	2.77		65	2.45	2.07	1.11
27	3.75	5.61	2.67		66	2.44	2.05	1.09
28	3.75	5.60	2.57		67	2.42	2.02	1.07
29	3.74	5.59	2.48		68	2.40	2.00	1.06
30	3.72	5.51	2.40		69	2.40	2.00	1.04
31	3.68	5.32	2.32		70	2.40	1.99	1.03
32	3.66	5.27	2.25		71	2.36	1.93	1.01
33	3.62	5.08	2.18		72	2.31	1.86	1.00
34	3.61	5.05	2.12		73	2.30	1.85	0.99
35	3.61	5.04	2.06		74	2.30	1.85	0.97
36	3.49	4.61	2.00		75	2.28	1.82	0.96
37	3.48	4.56	1.95		76	2.27	1.81	0.95
38	3.39	4.27	1.89		77	2.24	1.77	0.94
39	3.27	3.89	1.85		78	2.21	1.73	0.92

·H.7

Table H.2 (continued)

Sheets 2/3

			B	100 - Marca		0	Sneets 2/3
No.	Intensity (Ij)	Peak Ground Acceleration	Recurrence Interval	No.	Intensity (Ij)	Peak Ground Acceleration	Recurrence Interval
79	2.21	1.72	0.91	121	1.47	0.98	0.60
80	2.20	1.72	0.90	121	1.46	0.97	0.59
81	2.14	1.64	0.89	123	1.46	0.97	0.59
82	2.06	1.54	0.88	124	1.40	0.95	0.58
83	1.98	1.45	0.87	125	1.44	0.95	0.58
84	1.97	1.43	0.86	126	1.43	0.95	0.57
85	1.96	1.43	0.85	127	1.43	0.94	0.57
86	1.95	1.42	0.84	128	1.42	0.94	0.56
87	1.93	1.39	0.83	129	1.41	0.94	0.56
88	1.87	1.33	0.82	130	1.39	0.92	0.55
89	1.86	1.31	0.81	131	1.39	0.92	0.55
90	1.85	1.31	0.80	132	1.39	0.92	0.55
91	1.80	1.26	0.79	133	1.39	0.92	0.54
92	1.78	1.24	0.78	134	1.38	0.91	0.54
93	1.77	1.23	0.77	135	1.38	0.91	0.53
94	1.75	1.21	0.77	136	1.36	0.90	0.53
95	1.75	1.21	0.76	137	1.36	0.90	0.53
96	1.72	1.19	0.75	138	1.34	0.89	0.52
97	1.71	1.18	0.74	139	1.34	0.89	0.52
98	1.70	1.16	0.73	140	1.34	0.88	0.51
99	1.70	1.16	0.73	141	1.33	0.88	0.51
100	1.69	1.16	0.72	142	1.31	0.86	0.51
101	1.69	1.16	0.71	143	1.31	0.86	0.50
102	1.69	1.15	0.71	144	1.31	0.86	0.50
103	1.66	1.13	0.70	145	1.30	0.86	0.50
104	1.63	1.11	0.69	146	1.30	0.86	0.49
105	1.62	1.10	0.69	147	1.28	0.84	0.49
106	1.61	1.09	0.68	148	1.24	0.82	0.49
107	1.61	1.08	0.67	149	1.23	0.82	0.48
108	1.60	1.08	0.67	150	1.23	0.81	0.48
109	1.59	1.07	0.66	151	1.22	0.81	0.48
110	1.57	1.05	0.65	152	1.21	0.80	0.47
111	1.56	1.05	0.65	153	1.21	0.80	0.47
112	1.54	1.03	0.64	154	1.19	0.79	0.47
113	1.54	1.03	0.64	155	1.18	0.78	0.46
114	1.53	1.03	0.63	156	1.10	0.74	0.46
115	1.53	1.03	0.63	157	1.10	0.74	0.46
116	1.53	1.02	0.62	158	1.09	0.73	0.46
117	1.50	1.00	0.62	159	1.06	0.71	0.45
118	1.50	1.00	0.61	160	1.04	0.70	0.45
119	1.49	0.99	0.61	161	1.04	0.70	0.45
120	1.48	0.99	0.60	162	1.02	0.69	0.44

Table H.2 (continued)

Sheets 3/3

No.	Intensity	Peak Ground	Recurrence	No.	Intensity	Peak Ground	Recurrence
		Acceleration	Interval	2004 1004 1004	(I).	23. Anierrie Missiere dere Chieferen	
163	1.01	0.69	0.44	183	0.70	0.54	0.39
164	1.01	0.69	0.44	184	0.69	0.54	0.39
165	1.00	0.68	0.44	185	0.68	0.53	0.39
166	0.99	0.68	0.43	186	0.66	0.53	0.39
167	0.96	0.66	0.43	187	0.66	0.53	0.39
168	0.94	0.65	0.43	188	0.65	0.52	0.38
169	0.92	0.64	0.43	189	0.63	0.51	0.38
170	0.91	0.64	0.42	190	0.60	0.50	0.38
171	0.91	0.63	0.42	191	0.60	0.50	0.38
172	0.89	0.63	0.42	192	0.59	0.50	0.38
173	0.89	0.62	0.42	193	0.50	0.46	0.37
174	0.88	0.62	0.41	194	0.46	0.45	0.37
175	0.88	0.62	0.41	195	0.46	0.45	0.37
176	0.85	. 0.61	0.41	196	0.38	0.42	0.37
177	0.80	0.58	0.41	197	0.34	0.41	0.37
178	0.79	0.58	0.40	198	0.33	0.41	0.36
179	0.76	0.57	0.40	199	0.27	0.39	0.36
180	0.76	0.57	0.40	200	0.20	0.37	0.36
181	0.75	0.56	0.40	201	0.14	0.35	0.36
182	0.71	0.54	0.40	202_	0.14	0.35	0.36

File : warplot

٩.,

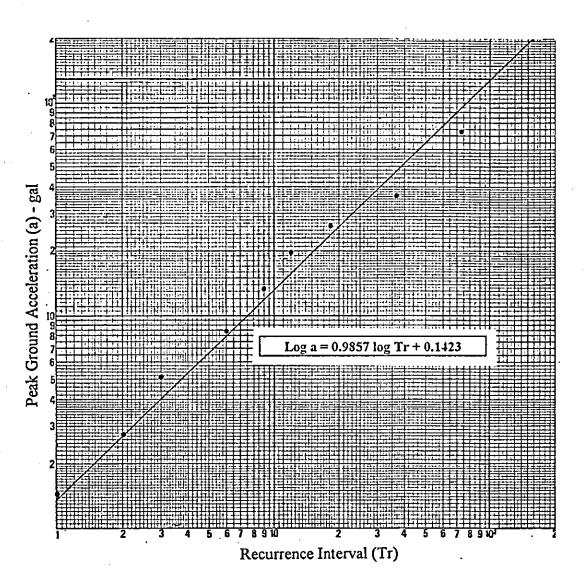


Figure H.1 : Plotting Position Curve and Recurrence Interval

Table H.3

FREQUENCY ANALYSIS

Intensity		Frequency						
ij	72 Yr	100 Yr	Cummulative					
> 7	1	1.338	1.338					
6 - 7	3	4.167	5.505					
5 - 6	9	12.5	18.005					
4 - 5	9	12.5	30.505					
3 - 4	26	36.111	66.616					
2 - 3	34	47.222	113.838					
1 - 2	84	116.666	230.504					

H.11

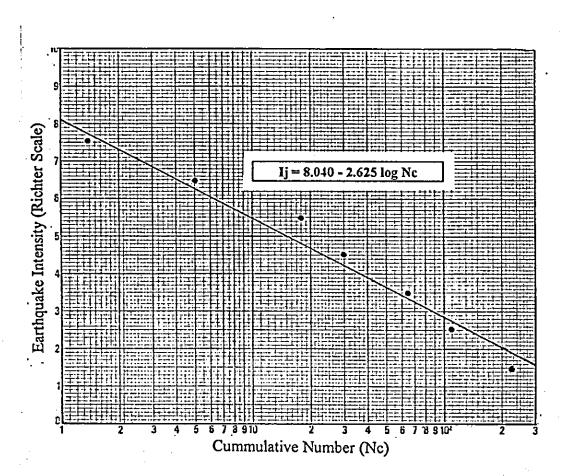


Figure H.2 : Frequency Analysis Curve Relation between Intensity (Ij) and Cumulative Number (Nc)