Appendices

A-1.LIS	T OF PARTIES CONCERNED IN THE RECIPIENT COUNTRY A-1-:
A-2.PF	ESENTATION MATERIALS FOR THE MEETING A-2-2
1.	Meeting with AFAD Ankara 25 Feb. 2014 A-2-2
2.	Meeting with AFAD Ankara 26 Feb. 2014 A-2-6
3.	Round Table Meeting in Bursa 21 Feb. 2014 A-2-1
A-3.PF	OJECT PROFILE SUMMARY SHEET A-3-:
A-4.GE	NERAL TECHNICAL REPORT ON TURKISH STRUCTURAL DESIGN CODES
A-5.D0	DCUMENT FOR THE APPROXIMATE COST ESTIMATE OF THE PROJECT
A-6.DI	SASTER MEDICAL PLAN BY THE TURKISH RED CRESCENT A-6-:
A-7.TR	AINING CURRICULUM FOR UMKE MEMBERS A-7-:
A-8.LIS	ST OF HOSPITAL PPP PROJECTS
A-9.HE	ALTHCARE INSURANCE SYSTEM IN TURKEY (ABOUT SGK) A-9-:
A-10P	HOTO COLLECTION IN THE FIELD STUDYA-10-2

A-1. List of Parties Concerned in the Recipient Country

Japan International Cooperation Agency (JICA)

Ms. Tomita Akiko	Deputy Director General, Middle East and Europe Department
Mr. Hanadate Daimin	Director, Europe Division, Middle East and Europe Department
Ms. Uchida Kumiko	Advisor, Europe Division, Middle East and Europe Department
Mr. Funakoshi Yu	Europe Division, Middle East and Europe Department
Mr. Takeya Kimio	Visiting Senior Advisor
Mr. Ota Koji	Visiting Senior Advisor
Mr. Sawada Hideki	Disaster Management Division 2, Water Resources and
	Disaster Management Group Global Environment Department
Mr. Saito Akio	Chief Representative, Turkey Office
Mr. Ueki Masahiro	Senior Representative, Turkey Office
Mr. Minamitani Taichi	Turkey Office
Mr. Emin Ozdamar	Senior Program Officer, Turkey Office
Mr. Ali Bekin	Turkey Office

AFAD Ankara

Mr. M Akif Danaci	Head of Planning and Mitigation Department
Mr. Sinan Demir	Geology Engineer, Department of Planning & Mitigation
Mr. Murat Beyhan	Geophysical Engineer, Department of Planning & Mitigation
Mr. Mehmet Akif Alkan	Department of Planning & Mitigation, Group Head
Dr. Teliz Teker	Department of Planning & Mitigation
Mr. Ferhat Erdinc	Department of Planning & Mitigation
Mr. Ozgur t. Ozmen	Department of Planning & Mitigation
Mr. Cumhur Ozkaptan	AFAD Assistant Specialist
Mr. Fatih Gungor	Disaster and Emergency Management Expert
Mr. Hamza Ozkilic	Head of Department of Administrative Services
Mr. Murat Nurlu	Head of Earthquake Department
Mr. Onur Demirkol	Head of System Management and Information Security
	Working Group
Mr. Melih Rustu Calikoglu	Head of Department of Management Services
Mr. Nihol Akbaba	IT Engineer
Mr. Oktay Gokle	IT Engineer
Mr. Tugbay Kilic	Earthquake Department, Chief of National Seismic Observation
	Network
Ms. Evrim Akin Yazgan	AFAD Attorney ship
Mr. Dogus Ok	Communication Group
Ms. Sezin Tuna	Department of Strategy Development
Ms. Cemile Akca	Department of Strategy Development
Mr. Ayhan Isik	Department of Recovery
Mr. Shoji Hasegawa	Expert, JICA
AFAD Bursa	

Mr. İbrahim Tari Mr. Burhanettin Aydinli

Director Department Director

Mr. Cenk Seker	Geology Engineer
Mr. Bekir Becermen	Director of Search and Rescue
Mr. Rawazan Kurtgu	Bursa Treasury Communication Center
Mr. Yalcin Mumcu	Head of civil defence unit
Mr. Abdulkin Yioit	Chief of search and rescue team
Mr. Ibrahim Morkmaz	Engineer
Ms. Korsat Veral	Engineer
Ms. Mac Gesden	Engineer

AFADEM

Mr. Mete Mirzdaglu	Director
Mr. Feffah Olcak	Engineer
Ms. Pinar Onalemdar	Engineer
Ms. Serim Yelbay	Engineer

Ministry of Environment and Urbanization

Dr. Hayriye Sengun	Department Director
Mr. Yusuf Koc	Deputy General Director, General Directorate of Infrastructure
	and Urban Regeneration Services
Mr. Cahit Kocaman	Head of Earth Science Department
Ms. Ebru Alarslan	Engineer, Dept. of Infrastructure and Urban Transformation
Mr. Bubent Yalazi	Engineer, Dept. of Infrastructure and Urban Transformation
Ms. Didem Ertek	Engineer
Dr. Kamil Sonmez	Engineer

Ministry of Health

Dr. M. Ertugrul Egin	Deputy Director of Health Service Department (Coordinator)
Dr. Muhittin Demirkasimoglu	Department of Disaster and Emergency Management
Mr. Murat Binici	Deputy Director of Construction & Maintenance
Mr. Kaan Bektas	Construction & Maintenance, Civil Engineer
Mr. Ahmet Kaan Bektas	Directorate of Health Investments

SAKOM, Ankara

Uzm. Dr. Muzaffer Akkoca
Dr. Sidika Tekeli Yesil
Dr. Muhittin Demirka Simoglu
Mr. Bild Sahin
Mr. Emine Emer
Mr. Idris Arslan
Dr. Murat Eindek
Dr. Hakan Gides
Mr. Jaduen Qemirei

<u>Ministry of National Education</u> Dr. A. Hakan Mutlu Ms. Ayam Ginar Mr. Muzafb Ortlek Director, Dept. of Disaster and Emergency Management Epidemiologist/Consultant Department of Disaster and Emergency Management
Department of Disaster and Emergency Management

Construction and Estate Department Construction and Estate Department Construction and Estate Department A-1-2

<u>Ministry of Development</u> Mr. Hasan Coban Ms. Ayse Erkan	Expert (Disaster Management) Staff
Governorship of Bursa Mr. Ergun Gungor	Deputy Governor
Provincial Directorate of Environment a	nd Urbanization, Bursa
Mr. Hakan Gür	Branch Manager
Mr. Gülşen Usta	Vice Director
Mr. Halit Turgut	Deputy Director
Ms. Cemalleddin Başalan	Deputy Director
Ms. Tülin Özmen	Project Works Branch Manager
Ms. Ebru Bilgili Kirlicar	Architect
Provincial Directorate of Health, Bursa	
Dr. Ozcan Akan	Director
Dr. Murat Derin	Head of Health Research and Improvement
Dr. Zaynep Nur Gencerler	Emergency Health Services
Dr. Sibel Pasin	Emergency Health Services
Dr. Mehmet Kavak	Emergency Health Services
Dr. Mesut Yilmaz	Disaster Health Services
Dr. Hakan Bas	Emergency Health Services
Dr. Murat Derin	Development of research and health
Dr. Haice Alkan	Development of research and health
Dr. Elif Piskin	Development of research and health
AKOM, Bursa	
Mr. Suleyman Alper	Branch Manager
Mr. Mustafa Şevk Eken	Chief
Provincial Directorate of National Educa	ation, Bursa
Mr. Hasmet Kartoglu	Deputy Manager, Construction Department
Ms. Aynur Çınar	Construction and Estate Department
Mr. Nejdet Kof	Construction and Estate Department
Mr. Serdar Akçıl	Construction and Estate Department
Mr. Denız Saraçoğlu	Construction and Estate Department
General Directorate of Highways / 14. R	egion Directorate, Bursa
Mr. Bekir Koc	Deputy Director
Mr. Bulent Ors	Real Estate Head Engineer
Mr. Soner Tokay	Responsible of Civil Defence
Provincial Directorate of Infrastructure a	und Urban Transformation, Bursa
Mr. Bayram Okumus	Acting Director
Mr. Eyup Gül	Infrastructure and Urban Transformation A-1-3

Ms. Dilek Yildiz	Civil Engineer
Ms. Irem Aksulu	Geophysical Engineer
Mr. Himmet Dağli	Infrastructure and Urban Transformation
Provincial Directorate of Transpor	tation, Communication and Maritime, Gemlik Office
Mr. Serkan Canli	Gemlik Harbour Master
Mr. M. Asim Sulu	Gemlik Harbour Master Assistant
Mudanya Port authority	
Mr. Halil Karakus	Director
Provincial Directorate of Science,	Industry and Technology, Bursa
Mr. Fevzi Muduru	Branch Manager
Provincial Special Administration	, Renewal Construction Work Department HQ
Mr. Hakan Bebek	Map Engineer Renewal and Redevelopment Director
Bursa Metropolitan Municipality	
Mr. Murat Uşun	Presidency of Settlement and Urbanization Department
Mr. Ismail Ayas	Settlement and Urbanization Department, City
-	Planning/Branch Manger
Dr. Fazilet Altinişik	Geological Engineer (Reconstruction Implementation Branch)
Dr. Murat Emre Haşal	Settlement and Urbanization Department, Civil Engineer
-	(Reconstruction Implementation Branch)
Ms. Ayse Isnl	Settlement and Urbanization Department
Mr. Hakan Karademir	Settlement and Urbanization Department, City Planner (City
	Planning Branch Management)
Mr. Habip Aslan	Branch Manager Real Estate and Expropriation Department
Ms. Ebru Beşiktepe	Settlement and Urbanization Department, Environment and
	City Planner
Dr. O. Metin Ilkişik	Settlement and Urbanization Department, Consultant
Mr. Cağlor Ekşi	Settlement and Urbanization Department, City Planning
Ms. Selin Gür	Settlement and Urbanization Department, City Planning
Mr. Haluk Acar	Settlement and Urbanization Department, City Planning
Mr. Murat Yun	Settlement and Urbanization Department, City Planning
Mr. Onur Acar	Settlement and Urbanization Department, City Planning
Mr. Esla Eser	Garbage Landfil Department
Mr. Yedim Dedeogl	Garbage Landfil Department
Mr. Orhan Dogan	Director, Fire Department
Mr. Ozcan Bayrak	Fire Department
Mr. Hakan Koyunlular	Head, Transportation Department
Ms. Mehnet Koz	Director of Water Department
Osmangazi Municipality	
Mr. İsmail Selimoğlu	Deputy Mayor
Mr Kenan Akan	Deputy Mayor

Mr. Alev Çetindaya

Deputy Mayor City Planner A-1-4

Mr. Memis Memis	Garbage Section
Mr. Savas Çamlik	Garbage Section
Ms. Alev Çelinkaya	Garbage Section
Ms. Alev Çetinkaya	City Planner
Mr. Özcan Baytar	City Planner
Mr. Fatih Arslan	City Planner
Mr. Fatih Nazlım	City Planner
Mr. Ali Uzsezer	City Planner
Yildirim Municipality	
Mr. Özgen Keskin	Mayor
Mr. Fatih Polat	Deputy Mayor
Ms. Gamze Genc	Director of City Planning
Mr. Elif Demir	Topographical Engineer
Mr. Mimar Sinan Ozturk	Construction Technician
Mr. Nur Cetinkaya	City Planner
Gemlik Municipality	
AV. Refik Yirmaz	Mayor
MAG (Neighborhood Disaster Volu	inteer) Gemlik
Mr. Yusuf Yumru	Member
Ms. Bergin Özdem	Member
Ms. Güler Doğan	Member
Mr. Hale Utkuan	Member
Mr. Balü Selim Silahtarölu	Member
Geophysics Engineers Chamber, Bu	ursa branch
Mr. Murat Arabaci	President of geophysics engineers chamber, Bursa branch
Mr. Tuncer Ciltas	Geology Engineer
Istanbul Technical University	
Mr. Faith Sutcu	Faculty of Architecture Structural Systems Division
Uludag Univ. Directorate of Constr	uction and Technical Works
Mr. Fahri Durmaz	Chief Administrative Officer Faculty of Medicine, Healthcare
	and Research Center
Arc. Nilay Onart	Director, Directorate of Construction and Technical Works
Bursa State Hospital	
Dr. Nuri Dindar	Deputy Head Doctor
Mr. Selahattin Erkan	Administrative and Finance Director
Mr. Maksude Asci	Administrative and Finance Staff
Dr. Hüseyin Demirel	Staff
Cekirge Hospital	
Dr. Muhaqmmed Gunaydin	Staff

Dr. Koyhan Poilur	Staff
Dr. Cenelettin Daglar	Staff
Dr. Koder Murbul	Staff
Dr. Biben Onat	Staff
Dr. Kemal Kaya	Staff
Dr. Husegin Deniber	Staff
Dr. Sepil Kaya	Staff

Medical Park Healthcare Group Bursa Hospital

Mr. Kemal Ekici	Technical Service Responsible		
Ms. Aysengul Aydin	Technical Service Responsible		

SevketYilmaz Research and Education Hospital

Prof. Dr. Mehmet Karadag	Director of Medical Service
Ms. Sevgi Inceler	Civil defence Expert
Mr. Kader Murgul	KHB
Ms. Nurcan Capaci	Staff
Ms. Sule Kurdal	Staff

UEDAS

Mr. Yusuf Ziya Yuce

Director of Corporate Communications

Bursa Gaz

Mr. Meksen Sukuru Ozden	Deputy General Manager
Mr. Melih Cetinkaya	Head of Operational Management Department
Mr. Mete Cetinkaya	Engineer
Mr. Gokalp Kamar	Engineer

DOSAB:Demirtas Organize Industrial Zone Organization of businessmen and industrialists

Mr. Ufuk Kivrak	General Coordinator
Mr. Adnan Sarmen	Board Member

DSI (General Directorate of State Hydraulic Works)

Mr. Sahin Cengiz	Deputy Director
Mr. Tali Buyruk	Disaster Management
Mr. Taha Guner	Disaster Management
Mr. Hakki Kilavuz	Maintenance
Mr. Alacffin Yagci	Engineer

<u>ilbank</u>

Mr. Cihan Şımşek	Deputy Director General
Mr. Ibrahim Sahin	International Relations Department, Department Head
Dr. Birol Kayranli	International Relations Department, Project Management
	Division II
Ms. Gamze Aslan	International Relations Department, Project Management
	Division II Environmental Engineer
Mr. A. Turan Söylemez	Manager, International Relation Dept.
	Λ 1 4

Mr. Irfan Bahadir Onder	International Relations Department
Ms. Fazilet Tanrikulu	Department of Spatial Planning Urban Planner
Mr. Behive Somunw Anoay	Project Department
Mr. Mehmet Gurbuz	Planning Board Chairman
Ms. Belma Yaman	Directorate General of Architects
Turkish Association for Seismic Isolation	<u>1</u>
Mr. Mehmet Emre Ozcanli	Vice President
Taisei Corporation Marmaray Project Co	ntract BC 1 Office, Istanbul
Mr. Toru Ueda	Deputy Project Director
Mr. Yoshihisa Hatano	Project Manager
Ms. Basek Dogan	Project Architect
HACETTEPE University Hospital	
Prof. K. Hakan Altintas, M.D.	Head of Faculty of Medicine Department of Public Health
Ms. Selma Kilig	Staff
Mr. Hasan Kus	Staff
Mr. Ugur Yilmazer	Staff
Ms. Ayse Mertoglu	Staff
Ms. Neslihan Ugar	Staff
Ms. Didem Dajnoz M.D.	Staff
Ms. Ekin Koq M.D.	Staff
Hazama Ando Corporation Turkey Office	e, Istanbul
Mr. Moriwaki Yoshinori	General Manager
PROTA engineering Head Office, Istanbu	ul
Mr. Joseph Kubin	Chairman, Board of Directors
Ms. Hülya Eksert	Deputy General Manager
ITOCHU	
Mr. Aybars Ataeli	Deputy General Manager, Business Development
Honda Factory, Cayirova, Kocaeli	
Mr. Ayhan Temizoz	Assistant Manager, Safety & Environment Human Resources
YD Arch. (Local Architecture Company,	Istanbul)
Mr. Baris Dogan	Architect/ Director
Mr. More Algin Ersoy	Architect
Ms. Bora Yeruyurt	Architect/ Urban Planner
Seyas (Local Architecture Company, Ista	<u>nbul)</u>
Mr. a. alaz albay	CEO
Mr. savci baskurt	Civil engineer

Conger (Medical Equipment Consulta	<u>ints)</u>
Mr. Baris Conger	Consultant
DINAMIK PROJE (Local Architectur	e Company, Istanbul)
Mr. Erden Ayas	Mech. Eng.
HB Teknik (Local Architecture Comp	any, Istanbul)
Mr. Hasan Akgul	Electrical Engineer
YUKSEK Proje (Local Architecture Co	mpany, Ankara)
Mr. Ibrahim Ozturk	Civil Engineer President
Mr. Alptug Ozturk	Civil engineer
Su Yani (Local Architecture Company	Ankara)
Mr. Ali Canoglu	General Manager
Mr. Jameil Eiden	Monogor, Business Development & Marketing Dept
	Manager, Business Development & Marketing Dept.
Ms. Inci Yalim Olcay	Deputy General Manager & Manager of Architectural Design
ANEL (Local Architecture Company M	&E, Istanbul)
Mr. Icra Kurulu Uyesi	Executive Board Member
Mr. Turgut Alp Colakoglu	International Projects Coordinator
Mr. Suleyman Demirhan	Tender Manager/ Elecrical Engineer
Ms. M. Sirin Celikel	Electrical Engineer

Mr. K. Serkan Kilic Tender Coordinator

Mr. F. Tuncay Ayhan

Mechanical Projects Coordinator/ Mechanical Engineer

A-2. Presentation Materials for the Meeting

1. Meeting with AFAD, Department of Planning and Mitigation, 25 February, 2014

Disaster Management Complexes by Planning Level

Disaster Management Complex network

Facilities required for DMC and Responsible Authorities

Facilities		AFAD	Metropolitan Municipality	Others
1	Disaster Operation Center (Including Logistic Center, Search & Rescue Team Facilities, Heliport)	•		
2	Disaster & Emergency Training Center			
3	Disaster Risk Education Center	•		
4	Satellite Network (VSAT)	•		
5	Information Gathering & Dissemination System	•		
6	R&D Institute	•		
1	DRM related Facilities (Fire /AKOM/112 etc.)		•Fire/AKOM	•112(MOH)
8	Waste Incineration Plant			
9	Parks/Open Spaces/Sports Facilities		•	
10	Emergency Road Network			
1	Disaster Base Medical Center			•(MOH)
12	School			. (MONE)
13	Non-down life line			

Facilities required for DMC related to AFAD

n going (10]	•[14] •[6]	•[12]
[10]	•[6]	
[18]		
	•[10]	
[50]		
[150]		
[7]		
[235]	[30]	[12]
	[50] [150] [7] [235]]Approximat	[50] [150] [7] [235] [30]]Approximate Cost Estimation

2. Proposed Components of

proposed DMC

[1] Disaster & Emergency Operation Center

A-2-2

<section-header><section-header><section-header><section-header><table-row><table-row>

[4] Satellite Network (VSAT) [5] Information Gathering and Dissemination System

[6] Research & Development Center

	Package A	Package B	Package C
	*Nation wide ICT Netwark *Training, Education and R&D Center in national level *Regional DMC in each logistic zone	*Nation wide ICT Netwark *Training, Education and R&D Center in national level 55 high nanked Regional DMCs and 5 Provincial DMCs (ane in each region where Regional DMC (acces)	*Nation wide ICT Network *Training, Education and R&D- Center in national level * 3 Regional DMCs and Provincial DMCs in their regions.
National Level	Training Center (AFADEM) Education Center (AFADEM) Satellite Network (VSAT) Information Gathering and Dissemination System R&D Center	Training Center (AFADEM) Education Center (AFADEM) Satellite Network (VSAT) Information Gathering and Dissemination System R&D Center	Training Center (AFADEM) Education Center (AFADEM) Satellite Network (VSAT) Information Gathering and Dissemination System R&D Center
Regional Level DMC	Regional DMC (13 centers*) Disaster Operation Center Training Center Bducation Center * Excluding Ankara and Istanbul	Regional DMC (5 centers) Disaster Operation Center Training Center Education Center	Regional DMC (3 centers) Disaster Operation Center Training Center Education Center Provincial DMC
Provincial Level	_	(5 Provinces surrounding Regional DMC) Disaster Operation Center	(12 Provinces surrounding Regional DMC) Disaster Operation Center

Package B

National Revel + 5 Regional Revel DMCs + 5 Provincial Revel DMCs

Package C

National Revel + 3 Regional Revel DMCs + 12 Provincial Revel DMCs

Project Package Alternatives

	National 1 Regional 13	National 1 Regional 5 Provincial 5	National 1 Regional 3 Provincial 12
[1] Disaster Operation Center (Including Logistic Center, Heliport, and AFAD Office)	182	130	186
[2] Training Center (Including search & rescue team station)	88	40	28
[3] Education Center	148	68	48
[4] Satellite Network (VSAT)	50	50	50
[5] Information Gathering & Dissemination System	150	150	150
[6] R&D Institute	7	7	7
Total	625	445	469
	1	pproximate Cost Estin	mation by Million US\$

Image of Project schedule

	2015	2016	2017	2018	2019	2020
1.Tender of Consultant	=					-
2.Project Design		-				
3.Tender for Construction		6				
4.Construction Period	1.1	12.00	-	-)	
5.Technical Assistances	-		1		(100 1 mm) (100 mm) mm) 1	
2015.3rdQ	E/N. L/A					

Necessary time for procurement (1~3) is from a year to two years.

Disaster Operation Center	around 2~3 years
②Training Center	around 2~3 years
③Education Center	around 2~3 years
@Satellite Network (VSAT)	around 1.5 ~ 2 years
SInformation Gathering & Dissemination System	around 3~4 years
6 Research Center	around 2~3 years

Action to be taken for project formulation

Action	Deadline	Responsible Organization
Submit an application for Investment Program to MOD	By August 2014 (the sooner, the better)	AFAD (JICA will support as possible)
Request ODA Loan to Japanese Government officially	By Octorber 2014 (the sooner, the better)	UT (after approval for a proposed project by MOD)
Dispatch Fact Finding Mission	By April 2015 (for 2 weeks)	JICA
Dispatch Appraisal Mission	By June 2015 (for 2 weeks)	JICA
Sign Exchange of Notes and Loan Agreement	By September 2015	E/N: GoT & GoJ L/A: AFAD & JICA

Teşekkür ederim

2. Meeting with AFAD, 26 February, 2014

Facilities	AFAD	Metropolitan Municipality	Others
 Disaster & Emergency Management Center (Including Operation Center, AFAD office, Logistic Center, Heliport) 	•		
[2] Training Center for Search & Rescue			
[3] Education Center for Disaster Preparedness	•		
[4] Satellite Network (VSAT)	•		
[5] Information Gathering & Dissemination System	•		
[6] R&D Institute	•		
[7] DRM related Facilities (Fire /AKOM/112 etc.)		Fire/AKOM	•112(MOH)
[8] Waste Incineration Plant		•	
[9] Parks/Open Spaces/Sports Facilities		•	
[10] Emergency Road Network		•	
[11] Disaster Base Medical Center			•(MOH)
[12] School			• (MONE)
[13] Non-down life line			•

				A Nati Regio	A. ional 1 mal 13	Natio Regic Provir	3 inal 1 inal 5 icial 5	Natio Regio Provin	onal 1 onal 1 ncial12
			Unit Cost	No.	Cost	No.	Cost	No.	Cost
	(2) Trai	ning Center for Search & Rescue	10	1	10	1	10	1	10
z	(3) Edu	cation Center for Disaster Preparedness	18	1	18	1	18	1	18
tior	(4) Sate	ellite Network (VSAT)	50	1	50	1	50	1	50
af	(5) Info	rmation Gathering & Dissemination System	n 150	1	150	1	150	1	150
	(6) R&I	D Institute	7	1	7	1	7	1	7
R	(1) Disa	aster Management Center	14	13	182	5	70	3	42
egio	(2) Trai	ning Center for Search & Rescue	6	13	78	5	30	3	18
hal	(3) Edu	cation Center for Disaster Preparedness	10	13	130	5	50	3	30
Prov.	(1) Disa	ster & Emergency Management Center	12	*	3	5	60	12	144
		Total		62	25	44	15	46	59

ſ

	2015	2016	2017	2018	2019	2020	
1.Tender of Consultant	-	>					
2.Project Design							
3.Tender for Construction	121211	ő			1		
4.Construction Period							
S.Technical Assistances	-						
Necessary time for pr Construction Periods	ocurement of each con	(1~3) is from aponents is	n a year to as follows.	two years.			
①Disaster & Emergency	Managem	ent Center	-	around 2	~3 years		
2 Training Center for Se	arch & Reso	cue		around 2	~3 years		
③Education Center for I	Disaster Pre	paredness	-	around 2	~3 years		
④ Satellite Network (VS)	AT)			around 1	.5~2 years		
5Information Gathering	g & Dissemi	ination Syste	em	around 3	~4 years	1	
				around 2~2 years			

Submit an application for investment Program to MOD By August 2014 (the sooner, the better) AFAD (JICA will support as pc appanese Government officially Dispatch Fact Finding Mission By April 2015 (for 2 weeks) JICA	
Request ODA Loan to Japanese Government officially By October 2014 (the sooner, the better) UT (after approval for a pr project by MOD) Dispatch Fact Finding Mission By April 2015 (for 2 weeks) JICA	ossible)
Dispatch Fact Finding Mission By April 2015 JICA (for 2 weeks)	roposed
Dispatch Appraisal Mission By June 2015 JICA. (for 2 weeks)	
Sign Exchange of Notes By September 2015 E/N: GoT & GoJ and Loan Agreement L/A: AFAD & JICA	

٦

Component	Level	Unit	Cost/Unit	Cest U##
[1]	Reginal	13	14	182
Management Centre	Provincial	0	12	C
[2]	National	1	10	10
Rescue	Reginal	13	6	78
[3] Education Center for Public Preparedness	National	1	18	18
	Reginal	13	10	130
[4] Satelite Network (VSAT)	National	1	50	50
[5] Information Gathering & Dissemination System	National	1	150	150
[6] R&D Institute	National	1	7	7
			Total	625

Component	Level	Unit	Gost/Unit	Cost U+**
[1]	Reginal	5	14	70
Management Centre	Provincial	5	12	60
[2]	National	1	10	10
Rescue	Reginal	5	6	30
[3] Education Center for Public Preparedness	National	1	18	18
	Reginal	5	10	50
[4] Satelite Network (VSAT)	National	1	50	50
[5] Information Gathering & Dissemination System	National	1	150	150
[6] R&D lostitute	National	1	7	7

Component	Level	Unit	Cost/Unit:	Cost U+#
(1)	Reginal	3	14	42
Management Centre	Provincial	12	12	144
2]	National	1	10	10
Rescue	Reginal	3	6	18
[3] Education Center for Public Preparedness	National	1	18	18
	Reginal	3	10	30
[4] Satellite Network (VSAT)	National	1	50	50
[5] Information Gathering & Dissemination System	National	t	150	150
[6] R&D Institute	National	1	7	7
			Total	469

3. Round Table Meeting at Bursa, 21 February, 2014

Shirefri	Seismic Resistant Non-Structural Parts
Anti-Drop A/C (example)	ure but
not Ceiling	AIC
Shatterproof Glasses of Windo (example)	WS Elastic Sealing Reinforced Glas
 Shatterproof Film on Existing Window Replacement of Existing Glass 	s with

	AFAD	Metropolitan Municipality/ Municipality		MONE
Regional Level	D&E Operation Center AFAD Training Center AFAD Education Center AFAD Logistic Center AFAD Office Heliport	Park/Open Space Fire / Police/AKOM Waste Incineration Plant	Disaster Base Medical Center 112 Center	
Provincial Level	D&E Operation Center AFAD Logistic Center AFAD Office Heliport	Park/Open Space	Disaster Base Medical Center 112 Center	
District A Level	Heliport	District Disaster Management Center Park/Open Space Stockpile Store	(Local Hospital) 112 Station	School
District B Level	Heliport	District Disaster Management Center Park/Open Space Stockpile Store	(Local Hospital)	School

Risk Assessment	Data Collection & Assessment of Current Situation Damage Estimation / Hazard Map
Reduction of the Disaster Risk in Urban Area	Improvement of Vulnerable Area Retrofitting of buildings, infrastructure and life-lin
Disaster Resistant Urban Structure	Disaster Management Complex DRM Facilities / Evacuation Spaces Emergency Road Network
Disaster Management System Development	Institutional Development / Capacity Building for DRM Disaster Information System
Awareness Enhancement on	Education Program for Students Training for Community Leaders

A-3. Project Profile Summary Sheet

Project Title	National 1-1 Upgrade of Disaster and Emergency Training Center (AFADEM) for
	Professional/Government Staff
	Provincial 3-1-3 Establishment of regional disaster and emergency training center for
	professional/government staff
Project	Upgrade and establishment of disaster and emergency training center for central level
Components	(AFADEM) and regional level respectively.
	[Ankara AFADEM]
	Upgrades of the disaster and emergency training center of AFAD (AFADEM) include an
	upgrade of the facilities and of the training programs, and are in line with the nationwide
	AFAD human resources development goal.
	■Facility and Equipment Development
	• Floor area: approximately 10,000 m ²
	• Hands-on training facility including: traffic accident, train accident, firefighting,
	rescue from building, maritime accident, collapsed building, rescue from rubble,
	landslide, CBRN, and industrial disaster.
	Training Programs
	• Training of Trainers (TOT), and encouragement of new trainers to move to other
	provinces
	Assistance for development of curriculum and teaching material
	• Addition of hands on training in the new facilities to respond to complex urban
	• Training for search and rescue team and central government officials
	[Regional Level Training Center]
	training program and training material for various disasters prono to occur in the region
	Facility and Equipment Development
	• Floor area: approximately 5 000 m^2
	 Hands-on training facility similar to that of AFADEM, with a special focus on
	region-specific trainings such as industrial disaster, mountain disaster, and
	landslide in Bursa.
Meaning of	Disaster response will be enhanced through upgrading AFADEM's function as a center of
the project in	human resource development for disaster prevention which enables high level training for
terms of	various disasters such as complex urban disasters and man-made disasters.
urban	Trainers trained at AFADEM will be deployed to regional training centers to provide and
planning	promote disaster prevention training at regional and provincial levels. Training programs
	will prepare trainees for region-specific disasters.
Effectiveness	TOT for improvement of disaster prevention knowledge and skill as nationwide human
and the need	resource development will contribute to an increase in number of trainers and personnel
management	related to search and rescue. In accordance with the amendment of the AFAD law,
C	regional training centers will belong to AFADEM and regional training will contribute
	regional human resources development.
	[Normal time]
	Center of disaster response training for professionals.
	[Disaster time]
Indicator	base for search and rescue teams.
multator	Number of trainings available in each region
	Number of hands-on training facilities
	I rumber of namus on manning facilities

Approx.	1,520 million yen (1 training center)
Estimated	
Duration	Facility:
Durution	Planning and design: 1 year Progurament: 6 menths Construction: 1 year
	Training and design: 1 year, 1 rocurements o months, constructions 1 year
	Technical Assistance for 2 years
Candidata	E information And EADEM international and a line
Site	Existing AFADEM site at Ankara
Implementati	AFAD
on Agency	
Intention of	AFAD has a strong intention to enhance human resources development.
Implementati	
Budget	No
secured in	
Turkey	
Necessary	
Japanese	
technology	
Priority	A
Maturity	Mid+
	Human resources development is regarded as important in AFAD's 5-year Strategic Plan
	and AFADEM has started to discuss with the AFAD administration department regarding
	the establishment of center.
	Since there are existing organization and a training center, the project is ready to be
	implemented.
Related Project	1-2 Disaster Education Center
Note	Training of first trainers is necessary for newly introduced training facility, and could be
	performed in Ankara by Japanese experts.

Project Title	National 2-1 Establishment of a Disaster Education Center for Citizens (Bousai Kan)
Project Components	Construction of a disaster education center for citizens inspired by the Bursa disaster prevention experience-learning facility concept. Currently AFADEM's education center for citizens is limited to earthquake simulation equipment. The education center in Ankara should present all disasters prone to occur in Turkey, while regional centers should focus on region-specific diasters. Logistics associated with operating the centers also need to be developed.
	 [National level] Floor area: approximately 12,000m² ① Exhibit of past major disasters and damages ② Provision of scientific knowledge and information regarding disasters through various methods including demonstration by experiment. ③ Disaster experience-learning facility (simulation of earthquake, storm, flood, fire, etc.) ④ Exhibit of countermeasures for disasters ⑤ Seminars and workshops (first aid, etc.) Development of contents, teaching material, instructor training, and assistance with operation and management.
	 [Regional level] Floor area: approximately 6,000m² ① Exhibit of past region-specific disasters and damages ② Provision of scientific knowledge and information regarding disasters through various methods including demonstration by experiment. ③ Region-specific disaster experience-learning facility ④ Seminars and workshops (first aid, etc.) Instructor training and assistance with operation and management.
Meaning of the project in terms of resilient urban planning	Disaster education centers contribute to the increase of citizens' disaster awareness through education programs including students and teachers. Practical education programs can be conducted such as development of evacuation maps and preparation of disaster prevention plans through workshops.
Effectiveness and the need for disaster management	Creating disaster education centers will enhance citizens' awareness of disaster prevention as citizens will learn about disasters through historical disaster presentations, scientific explanations, and simulations. Disaster education will be more effective through experience-learning methods. [Normal time] Disaster prevention training for citizens [Disaster time] Base for volunteers' activity
Indicator	Number of participants to education programs
Approximate Estimated Cost	Number of workshops and their participants 2,200 million yen (National level) 1,100 million yen (Regional level)
Duration	Facility Planning and design: 1 year, Procurement: 6 months, Construction: 1 year Development of education program, development of exhibits, and technical assistance: 3 years
Canaldate Site	Ankara for the central center, and to be determined for each regional center

Implementation Agency	AFAD
Intention of Implementation Agency	AFADEM has the intention to establish disaster education centers.
Budget secured in Turkey	No
Necessary Japanese technology	Shaking table (earthquake simulation equipment) Smoke simulation equipment
Priority	Α
Maturity	High: The project is listed on AFAD's 5-year Strategic Plan
Related Project	1-1 Disaster and Emergency Training Center
Note	Maintenance is important for simulation equipment and maintenance costs are high. Therefore, the type and level of simulators for central and regional centers shall be carefully selected. Technical assistance for development of exhibits and operation and maintenance is necessary from the beginning of the project, and is available from Japanese experts.

Project Title	National 3-2 Research Center for Policy Making / Decision Making
Project Components	 Establishment of a research and development (R&D) center for comprehensive research activity on disaster prevention to assist AFAD's policy making. Disaster information archive: All information related to disaster collected by each university and institute shall be consolidated and optimized for disaster risk management policy making and disaster response. Current AFAD Databank Project needs to be improved for this function. Research on Disaster Management Policy: Research on practical disaster prevention activity useful for AFAD and local governments shall be conducted Research Laboratory: AFAD's research and development center shall have a research laboratory and equipment to be utilized by universities to promote disaster prevention research. Floor area: approximately 10,000 m² Sector: seismology, earthquake engineering, river engineering
Meaning of the project in terms of resilient urban planning	Establishment of a disaster R&D center will contribute disaster resilient urban planning.
Effectiveness and the need for disaster management	More effective disaster prevention and mitigation countermeasure will be taken through coordination with universities and institutes involved in disaster prevention R&D, information archiving, and technology development. Sharing facility and equipment with other R&D institutes will enhance research on disaster prevention in Turkey
Indicator	Number of publications on research results
Estimated Cost	1 940 million ven (excluding special experimental equipment)
Duration	Facility
	Planning and design: 1 year Procurement: 6 months Construction: 1 year
Candidate Site	Existing AFADEM site at Ankara
Implementation Agency	AFAD
Intention of Implementation Agency	AFAD has strong intention to enhance the R&D center.
Budget secured in Turkey	No
Recommended Japanese technology	3 dimensional shaking table (Mitsubishi Heavy Industry)
Priority	Α
Maturity	Mid: Databank project has been implemented together with Middle East Technical University. Earthquake department has implemented collaborative research with universities inside and outside of Turkey.
Related Project	-
Note	An engineer will be required for operation and maintenance of special experimental equipment.

Project Title	National 5-1 Satellite Communication System
Project Components	AFAD has a plan to procure 700 VSTA earth stations to provide information to all provinces. 200 mobile stations and helicopter on-board stations are proposed.
	Eived Terminal on town >
	Terminal 25 Company of the second sec
	15局 Fixed Terminal ~82局 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	VSAT> Portable VSAT Vehicle mounted VSAT Helicopter mounted VSAT 5合
Meaning of the project in terms of resilient urban planning	Development of a highly reliable and real time communication infrastructure that connects the central level and provincial level disaster and emergency management centers/agencies across the country. Because there is a possibility that the existing fiberoptic network breaks in the event of a disaster, this proposed satellite communications network with high reliability is required for information communication.
Effectiveness and the need for disaster management	It is required to share disaster information from AFAD Ankara to all provinces and regions.
Indicator	Reception of disaster information images Use of images of when considering disaster recovery is possible
Estimated Cost	500 fixed stations, 200 mobile stations: 5 billion yen 3 helicopter on-board VAST stations: 2 billion yen
Duration	Pilot project will be started from 2014. Progurement will be performed from 2015 to 2017
Candidate Site	Center station in ANKARA, Mobile and fixed stations in each province
Implementation Agency	AFAD
Intention of Implementation Agency	Implementation of this project is planned for June – July 2014. The pilot project implementation plan of the small-scale end of 2014 by the vendor chosen by the test(TUBITAK is carried out at AFAD budget) Modified later, the building will be completed procurement expected to start from 2015, to the end of the year 2017
Budget secured in Turkey	Until Pilot Project
Verification of a possible use Japanese technology	Lossless data transmission is available. Helicopter on-board VAST stations is achievable with Japanese products.
Priority	
Maturity	High: The plan running at AFAD. Entrusted to the TUBITAK system construction, I have started a pilot project. Scheduled to be implemented already for fixed station, for possible mobile station is performed in April the technical review of equipment for the pilot project. Already implemented the presentation of Japanese products to AFAD (ITOCHU Corporation, JSAT other six companies) Industry Association of Japan.
Related Project	Information transmission system (a satellite system is required as infrastructure)
Note	-

Project Title	National 5-2 Information Gathering & Dissemination System		
Project Components	Establishment of a platform for information collection and transmission in case of disaster. In addition a disaster prediction system may be built, for early warnings related to earthquakes, floods, and landslides. The management of information will be performed in Ankara, while each region will have a server system to control and set up a notification system by voice and TV broadcasting. Note that establishment of a satellite communication network system is under another project.		
Meaning of the project in terms of resilient urban planning	This project will enable early warning, leading to a reduction in material damage and human loss (rapid evacuation/sheltering). Further, it is possible to provide information after a disaster is also possible to take appropriate measures.		
Effectiveness and the need for disaster management	Necessary mitigation can be implemented thanks to the rapid provision of information to the general public, the disaster management of AFAD as J-ARART of Japan.		
Indicator	-		
Estimated Cost	Central system (information collection and transmission): 3 billion yen Each province subsystem (information receiption and distribution): 10 billion yen		
Duration	Three years, starting after 2015		
Candidate Site	Center in ANKARA Subsystem in each provinces		
Implementation Agency	AFAD		
Intention of Implementation Agency	AFAD has interest in Japanese system		
Budget secured in Turkey	-		
Recommended Japanese technology	J-Alert system		
Priority	Α		
Maturity	Middle: This system is included on the plan of AFAD's IT department		
Related Project	Disaster forecast system and hazard map		
Note	-		
Project Title	Provincial 3-1-1 Disaster and Emergency Management Center		
--	---	--	--
Project Components	Establishment of provincial disaster and emergency management centers as the central facility of Disaster Management Complexes (DMC). AFAD office, heliport and logistic center shall be included on the site.		
	 Floor area: 6,000m² Operation center (with a large screen) Meeting room (information collection, meetings) Working place for relevant organizations Computer room Dining room, restrooms, locker rooms and bedrooms Storage, mechanical room Seismically isolated structure Ability to operate independently for 3-15 days in case of infrastructure failure. Redundancy of energy supply shall be considered. Energy saving technology shall be introduced. 		
Meaning of the project in terms of resilient urban planning	[Normal time] Coordination system among relevant organizations shall be developed through training during normal times. The center can be utilized for disaster education. [Disaster time]		
	The sisaster and emergency management center is the central facility of every Disaster Management Complex (DMC), and is the location where the disaster and emergency board (main members of concerned entities) can be set up. The center collects information on the disaster, secondary disaster(s), response activities, and on the availability of relief supplies and volunteers. The center also analyzes the information and makes orders. In addition to being a contact point for central government, disaster related organizations and other province's disaster and emergency management centers, the center acts as base for relief supplies reception and delivery and for search and rescue activity. The center outside of the disaster affected area will function as logistic center for procurement and delivery of relief supplies.		
Effectiveness and the need for disaster management	Confusion at the time of disaster can be avoided by establishment of a center specifically intended for disaster management. The center contributes to increasing disaster prevention awareness since the center will be utilized for disaster education to inform citizens of the importance of disaster prevention.		
Indicator	Number of supporting activities during disasters Number of trainings during normal times		
Approx. Estimated Cost	1,480 million yen (Facility with heliport: 1,000 million yen, Communication equipment: 350 million yen, Storage: 130 million yen)		
Duration Candidate Site	2 years		
Implementation	AFAD		
Agency			
Intention of Implementation Agency	Establishment of provincial disaster and emergency management centers is part of AFAD's 5-year Strategic Plan.		
Budget secured	No. Proposal to MOD was not accepted.		
Recommended Japanese	Integrated disaster prevention system for local government, broadcast message system		

Technology	(Hitachi Solutions)	
	Public information commons	
Priority	Α	
Maturity	High: The project is planned in AFAD's 5-year Strategic Plan. It is not already	
	implemented because provincial AFAD was under jurisdiction of provincial governors,	
	and it is expected to be implemented shortly since the AFAD law was amended.	
Related Project	t Function will be enhanced by the simultaneous development of a satellite network and of	
	an early information collection and warning system.	
Note	•	

Project Title	Provincial 3-1-11 Construction of facilities related to Disaster Risk Management (Fire Station, AKOM, Police Station, 112 Station, Station of Civil Defense, etc.)	
Project Components	Construction of facilities related to disaster risk management and emergency response close to each other to the Disaster Management Center. These facilities will have tools and equipment for disaster relief activities, and vehicles (fire engine, ambulance, and search & rescue vehicles), stand-by station and dormitory for staff on duty. Stockpiles required for each service should also be equipped. Total Floor Area: 6,000 m ²	
Meaning of the project in terms of resilient urban planning	By building facilities related to disaster risk management and emergency response activities in/near the Disaster Management Complex, cooperation among the authorities will become easier in the event of a disaster to allow for enhanced communication, sharing of facilities and resources, and collaboration.	
Effectiveness and the need for disaster management	One of the advantages to allocate disaster related facilities in the DMC is to support efficient disaster management. Close proximity of facilities will allow direct communication among staff of the institutions. It will help efficient disaster relief activities. Direct communication during normal periods will enable smooth communication and action during a disaster.	
Indicator	Number of cases where teams dispatched for search and rescue activities include staff from different DRM organizations	
Estimated Cost	680 million ven	
Duration	Design and Tender Stage: 12-18 months (including PQ and preparation of tender documents) Construction: 12 months	
Candidate Site	Within the sites of the regional or provincial disaster management complexes	
Implementation Agency	Bursa Metropolitan Municipality, Bursa Provincial Directorate of Health and Interior	
Intention of Implementation Agency	Coordination with several authorities is required. Some authorities already show positive intent to implement this project, if the land is available.	
Budget secured by Turkey	Not yet	
Recommended Japanese Technology	-	
Priority	Α	
Maturity	-	
Related Project	Disaster Management Complex	
Note	-	

Project Title	Provincial 3-1-4 Disaster Base Medical Center	
Project	Although it is a new concept in Turkey, introduction of "Disaster Base Medical Centers"	
Components	is proposed and a model hospital will be constructed.	
	Component A:	
	\diamond Reconstruction of Cekirge hospital with 700 beds and 140,000m ² as a	
	Disaster Base Medical Center.	
	Component C:	
	♦ Renovation and expansion of	
	Sevket Yilmaz Devlet hospital	
	(strengthening of lifesaving	
	emergency function, etc.).	
	the second second second second second second second second second second second second second second second se	
	and a second second second second second second second second second second second second second second second	
Meaning of the	The disaster prevention and response functions of the city can be improved by clarifying	
project in terms	the function of Disaster Base Medical Centers and selecting sites strategically.	
of resilient		
urban planning		
Effectiveness	The model hostpital will be a showcase of the function and capacity of a Disaster Base	
and the need	Medical Center providing appropriate medical services in times of emergency and	
for disaster	disaster, which are different from routine medical services. The expansion of the concept	
management	to the rest of the country will greatly enhance Turkey's disaster prevention and response	
	abilities.	
Indicator	The number of emergency drills (which received training)	
	Number of patients accepted in times of disasters	
Approx.	Component A: 43,770 million yen (Facility 26,770 million yen, Medical Equipment	
Estimated Cost	17,000 million yen)	
	Component C: 9,450 million yen (renovation of facility 4,600 million yen, medical	
	equipment 4,850 million yen), 9,530 million yen (150 beds expansion work, facility	
Duration	5,900 million yen, medical equipment 3,630 million yen/	
Candidate Site	Pure province	
culturate pro-	bursa province	
Implementation	AFAD and MOH	
Agency		
Intention of	The importance of a disaster hospital is understood by MOH health service station.	
Implementation	However, since the hospital of interest are subject hospitals PPP operations, trying to	
Agency	check to MOH about its feasibility.	
Budget by Turkey side	-	
Recommended	Seismic isolation technology of Japan such as base-isolating devices, flexible joints for	
Japanese	mechanical piping, expansion joints and elevator with automatic diagnosis system	
technology		
Priority	D	
1 1101109	В	
Maturity	Middle	
	hitute	
Related Project	Disaster and Emergency Management Center	
	Development of disaster medical information system	
Note	In the present condition of Turkey, functions of Disaster Base Medical Centers are not	
	specified as Japanese ones. By specifying functions and facility content of Disaster Base	
	Medical Center, facility arrangement will be specified and ensured. Moreover, by	
	cooperating with non-medical-related facilities, the disaster base medical center will take	
	measures more effectively and rapidly against disaster in the Disaster Management	
	Complex.	

Project Title	Provincial 3-1-10 Development of parks/open spaces		
Project Components	Development of parks in regional/provincial/district level DMCs with a logistic center, aseismic resistant water reservoir, vegetation that helps prevent fire spread, heliport, temporary toilet, etc. Existing park shall be upgraded with facilities and equipment. Park area: Regional level: 300,000m ² Provincial level: 100,000m ² District level: 50,000m ²		
Meaning of the project in terms of resilient urban planning	Open spaces can be utilized for multipurpose in disaster by developing park in DMC. Park/open spaces are necessary facility for regional/provincial DMC. Cost- effectiveness is high since existing park can be utilized.		
Effectiveness and the need for disaster management	In disaster, parks can be utilized for evacuation, camp for search and rescue team, and storage of relief material. Parks will be considered as evacuation place when people visit there.		
Indicator	Number of parks with disaster prevention facilities		
Estimated Cost	2 420 million yon		
Duration	Procurement: 6 months (incl. preparation of bidding documents) Construction: 12 months		
Candidate Site	Regional/provincial DMCs		
Implementation Agency	Ministry of Environment and Urbanization, Bursa Municipality		
Intention of Implementation Agency	Municipality and district are favourable to the project		
Budget by Turkey side	-		
Recommended Japanese technology	Seismic resistant water reservoirs, although Japanese reservoirs perform similarly to Turkish reservoirs.		
Priority	А		
Maturity	Middle		
Related Project	DMC		
Note	-		

Project Title	Provincial 3-1-6 Waste incineration plant with power generator		
Project Components	Construction of a waste incineration plant with power generator in DMCs. Currently there are no waste incineration plants in Turkey and waste is being landfilled. However, to promote waste incineration in the EU and to reduce the environmental load, a waste incineration plant with power generator shall be introduced. This type of plant produces more energy than a methane gas power generator. Incineration capacity: 3,000 ton/day Power generation capacity: $54MW/day$ Floor Area: furnace $20,000m^2$, waste \Rightarrow waste Incineration Plant $extreme the transformed and the transformation of the $		
Meaning of the project in terms of resilient urban planning	In times of disasters, it is necessary to continuously supply electricity to the Disaster Management Complex (DMC). Introducing a waste incineration plant with power generator in the DMC will supply electricity regardless of the damage to power generation or transmission facilities located further away from the DMC.		
Effectiveness and the need for disaster management	Continuous supply of electricity in case of disaster enables the DMC to function.		
Indicator	Power output, income and expenditure		
Estimated Cost	45,000 million yen		
Duration	Procurement: 1 year (incl. PQ and preparation of bidding documents) Construction: 42 months (Reference to construction period of waste incineration plant in Tokyo)		
Candidate Site	Regional/provincial DMC		
Implementation Agency	Bursa municipality		
Intention of Implementation Agency	Bursa municipality is examining waste treatment instead of landfill since the current landfill site will reach fill capacity by 2025.		
Budget secured by Turkey	No		
Recommeded Japanese technology	Environmental measure: flue gas treatment system, which can be introduced to Turkey by Japanese experts. Seismic resistant structure: use Japan's experience which has the majority of the world's waste incineration plants.		
Priority	В		
Maturity	Waste incineration plan has been proposed by other projects. The need for waste incineration plants is high as an alternative to landfilling, in addition to disaster prevention.		
Related Project	DMC		
Note	Construction cost is expensive. It is necessary to establish a garbage collection system to separate burnable waste from other waste.		

Project Title	Provincial 3-4-3, 3-4-6 Improvement of the seismic performance of bridges, elevated bridges, and rotaining wells of underpesses	
	bridges, and retaining wans of underpasses.	
Project Components	Assess damage to bridges on the emergency road network using the scenario earthquakes and, if necessary, retrofit piers and/or girder or replace the bridge.	
Meaning of the project in terms of resilient urban planning	To secure the function of emergency road network during disasters	
Effectiveness and the need for disaster management	The degradation of bridges (tilt of piers and exposure of rebars of girders) on the Ankara – Izmir road, the main road of Bursa, can be observed by visual inspection. It is necessary to conduct the seismic assessment of bridges, elevated bridges and retaining walls of underpasses of roads included on the emergency road network, and to conduct seismic strengthening retrofits or replacements.	
Indicator	Bridge damage risk reduction	
Estimated Cost	JPY130 million (for strengthening)	
Duration	2 years	
Candidate Site	All bridges in Bursa	
Implementation Agency	Bursa metropolitan municipality	
Intention of Implementation Agency	Recognized the necessity of the assessment and strengthening	
Budget secured by Turkey	Bursa metropolitan municipality has a plan and associated budget to strengthen bridges	
Recommended Japanese technology	Bridge strengthening and girder-falling prevention technology	
Priority	В	
Maturity	High, Bursa metropolitan municipality has a plan to strengthen bridges	
Related Project	1-4-1 Development of emergency road network system, construction of DMC	
Note	There is a plan and budget for rehabilitation of the Nilufer bridge	

Project Title	Provincial 3-1-9 Establishment of Sports Center	
Project Components	Construction of sports center in regional/provincial DMCs (athletic field, gymnasium and swimming pool) Floor area: 4,500m ²	
Meaning of the project in terms of resilient urban planning	In disaster, large-space sports center can be utilized effectively as evacuation shelters and for storage of relief supplies in coordination with other facilities, by developing the sports center as part of the DMC. Sports centers with storage of supplies can be a model of disaster prevention facility.	
Effectiveness and the need for disaster management	Sports center can be utilized as evacuation shelters and logistic centers. Swimming pools can be used as water reservoirs.	
Indicator	Number of accepted evacuees in case of disaster Volume of water in the swimming pool.	
Approx. Estimated Cost	760 million yen	
Duration	Procurement: 10 months (including PQ and preparation of bidding documents Construction: 12 months	
Candidate Site	Regional/provincial DMCs	
Implementation Agency	Bursa municipality, Ministry of Youth and Sports	
Intention of Implementation Agency	-	
Budget secured by Turkey	No	
Recommended Japanese technology	Seismic resistant structure: similar standards in Turkey and Japan	
Priority	В	
Maturity	The center is required for regional/provincial DMC	
Related Project	DMC	
Note	-	

Project Title	Provincial 2-2-2, 2-2-3 Seismic resistant school model	
Project Components	Construction of a school using a seismic resistant non-structural components, and planned as an evacuation center with water reservoir and supplies in district DMCs. Floor area: 4,800m ² (1,200m ² x 4 story x 1 school)	
Meaning of the project in terms of resilient urban planning	Schools in district DMCs can be utilized as evacuation centers, triage space, and logistic center in coordination with other facilities. Schools with disaster prevention functions can be a model for future school planning.	
Effectiveness and the need for disaster management	Safety of students will be ensured. School can be utilized as an evacuation center for neighborhood.	
Indicator	Increase in number of schools with water reservoirs and storage for emergency supplies	
Estimated Cost	200 million yen (1,200m ² x 4 story x 1 school)	
Duration	Procurement: 6 months (including preparation of bidding documents) Construction: 8 months (1 school)	
Candidate Site	District DMC	
Implementation Agency	Ministry of National Education	
Intention of Implementation Agency	Concept of school in consideration of disaster prevention is useful for the engineers of MONE (MONE Bursa provincial office)	
Budget by Turkey side	-	
Recommended Japanese technology	Seismic resistant structure: Japanese and Turkish standards are similar, although retrofits presented in Chapter 5 are well known by Japanese engineers and would benefit the implementation of this project in Turkey. Strengthening of non-structural part: any local contractor should be able to implement changes, although oversight by a well versed Japanese engineer may be beneficial in the beginning. Plan as evacuation center: Japan's experience can be adapted to fit Turkey's situation.	
Priority	В	
Maturity	School is required for district DMC and MONE Bursa provincial office.	
Related Project	DMC	
Note	-	

Project Title	Provincial 3-2-2 Reinforcement of Public Port in the City of Gemlik
Project Components	 Expansion and improvement of the Gemlik public port partly through reclaiming land from the sea (enhancement of disaster-prevention performance) Been extended the Public Port in the vicinity of Gemlik town, earthquake-resistance is also made. A disaster prevention square to become the relief supplies acceptance base in times of a disaster Construction of a disaster prevention park for the residents of Gemlik Warehouse for emergency supplies, water tank
Meaning of the	[In normal times]
project in terms of resilient urban planning	Providing residents in the Gemlik city center with venues for leisure and relaxation. Strengthening traffic convenience with vessels and aircrafts. [During a disaster]
	Function as a wide-area disaster relief activity base during a large-scale disaster, contribute to facilitating lifesaving and supporting disaster-stricken citizens, and enhance disaster prevention performance in the region.
Effectiveness and the need for disaster management	Build disaster-prevention bases against a large-scale disaster, such as a base to receive support supplies in case a petroleum-related or chemical substance-related accident occurs on the commercial side of the port during a disaster.
Indicator	Volume of disaster support supplies delivery and distribution Time of supplied to disaster-stricken areas. Number of relief unit members received Transport time of response personnel and volunteers to disaster-stricken areas.
Estimated Cost	10.1 billion ven
Duration	Current status research and drafting layout plans of port facilities: 1 year Assessment of the impact on environment, etc.: 1 year Implementation of land reclamation (by using soil excavated from hill development in the city center): 2 years Stabilizing the soils of reclaimed land, etc.: 1 year Preparation of port facilities, broad-area disaster-prevention bases, etc.: 1 year
Candidate Site	Inner part of Gemlik Port
Implementation Agency	MOTMAC
Intention of Implementation Agency	The mayor is showing a positive attitude. However, there is a need to reaffirm the intention of the mayor after the election.
Budget secured by Turkey	Not secured yet
Recommended	-Technology to develop residential land plots on the hill and simultaneously reclaim land
Japanese technology	from the sea. (It was proved feasible at Kobe Port Island and Rokko Island.) -Land reclamation technology (including a high-pressure method to inject and mix cement slurry)
Priority	Α
Maturity	Not ready yet
Related Project	Construction business of DMC
Note	-

Project Title	Provincial 3-4-1 Development of an emergency road network and associated operation			
	regulations at the provincial level			
Project	Development of an emergency road network			
Components	(1) Wide-area emergency road, main road necessary for securing the traffic of emergency vehicles for rescue, relief, and firefighting; roads to receive supporting personnel and relief materials from neighboring cities; roads for providing personnel and relief materials to neighboring provinces struck by a disaster The main emergency road is specified as that which connects the province governor's			
	office, metropolitan office, DMC, AFAD office, airport, seaport and critical disaster			
	2 City emergency road: roads necessary for emergency traffic for rescue relief a			
	firefighting, which links the main road with the road to police station, fire station, disaster base hospital etc.			
	 Creation of traffic control plan applied to disaster based on the real situation of road 			
	width as well as the possible disaster scale			
	④ Enact necessary legal regulations to allow for the effective operation of the road			
	during disasters			
	АУУТ В ДУУТ В ДУУТ В УД 000 ТО 10752-И. То 10752-И. То 20752-И. То 20752-И. То 20752-И.			
Meaning of the	To assure the efficient emergency response by securing the emergency vehicle traffic			
project in terms	(such as rescue, relief, and firefighting) immediately after a disaster.			
of resilient				
urban planning				
Effectiveness	Traffic congestion happened in the 1999 Kocaeli earthquake on the road to disaster area.			
and the need	Japan has experienced the difficulty of emergency traffic in disaster due to the damage of			
for disaster	roads and/or the obstruction by collapsed buildings. Bursa is aware of the importance of			
Indicator	the emergency road network, but hasn't developed such network yet.			
Indicator	arrival time of emergency vehicles			
Estimated Cost	390 million yen			
Duration	2 years			
Candidate Site	Bursa province			
Implementation	Bursa metropolitan municipality			
Agency				
Intention of	Be aware of the importance of the emergency road and having a plan for the			
Agency	Improvement of road			
Budget secured	Budget partially secured			
by Turkey	Duget partially secured			
Recommended	Experience of emergency road network development			
Japanese				
technology				
Priority	В			
Maturity	Middle			
Related Project	Development of DMCs			
Note	Construction for widening the road between Gemlik and Mudanya has been started			

GENERAL TECHNICAL REPORT on TURKISH STRUCTURAL DESIGN CODES

Prepared for: NIKKEN SEKKEI LTD.

Date: November 2013

Fatih SUTCU, Ph.D. Istanbul Technical University Faculty of Architecture Structures & Earthquake Engineering Working Group

1. SUBJECT

JICA (Japan International Cooperation Agency), in collaboration with the Japanese Government is preparing to propose a Disaster Resilient City Concept including a Central Medical Hospital for Disasters with resilient infrastructure. The hospital in question is planned to be built by Japanese loan in Bursa-city. In this context, Nikken Sekkei is contract with JICA for a survey project on "Seismic Resilient City in Turkey".

In this project, Nikken Sekkei in collaboration with Oriental Consulting as a civil engineering consultant and ITEC as a medical consultant will propose the concept of Central Medical Hospital for Disasters with Japaneseorigin seismic isolation system.

This report which investigates the essential issues on the current Turkish Seismic Code and the progress on Seismic Isolation regulations in Turkey is the basis for Nikken Sekkei for preparing the above mentioned proposal. 2. LIST OF CODES AND REGULATIONS WHICH CONTROL STRUCTURAL DESIGN IN TURKEY.

2.1. Turkish Seismic Code: Specification for Buildings to be Built in Seismic Zones (2007). (Abbreviated as DBYBHY 2007)

This is the main code used for seismic design of buildings in Turkey. This code will be referred as "Turkish Seismic Code" throughout this report. This code includes the following chapters:

- Analysis Requirements For Earthquake Resistant Buildings
- Earthquake Resistant Design Requirements for Reinforced Concrete Buildings
- Earthquake Resistant Design Requirements For Structural Steel Buildings
- Earthquake Resistant Design Requirements For Adobe Buildings
- Foundation Soils And Earthquake Resistant Design Requirements For Foundations
- Evaluating Existing Buildings And Retrofitting

The historical development of Turkish Seismic Code (2007) is given in Chapter 3 of this report.

Background of setting design spectrum in this code is given in Chapter 1.2.2 as follows:

DBYBHY 2007

Chapter 1.2.2 - The design earthquake considered in this Specification corresponds to highintensity earthquake defined in 1.2.1 above. For buildings with Building Importance Factor of I = 1 in accordance with Chapter 2, Table 2.3, the probability of exceedance of the design earthquake within a return period of 50 years is 10 %. Earthquakes with different probabilities of exceedance are defined in Chapter 7 to be considered in assessment and retrofit of existing buildings.

The importance factor of medical buildings is I=1.50. This corresponds to an earthquake with 10% probability of exceedance within a return period of 50 years (2475 years return period.). At least 3 artificial ground motions are required for time history analysis. Outline of common

practices and/or guidelines for seismic ground motion input to be used in time-history analysis procedures is explained in this code at Chapter 2.9. (Please refer to the file "DBYBHY 2007-English-Chapters1,2")

Turkish Seismic Code also includes chapters for the seismic requirements for non-structural or Mechanical/Electrical elements. Namely, these chapters are "2.11 - Seismic Loads Applied To Structural Appendages, Architectural Elements, Mechanical and Electrical Equipment" and "2.12 - Non-Building Structures". Please refer to the file "DBYBHY 2007-English-Chapters 1,2.pdf" for details.

Turkish Seismic Code does not include chapters regarding Robustness/Redundancy requirements.

Currently the the Turkish Ministry of Public Works and Settlement (MoPWS) has established commissions among academic stuff from universities to prepare additional chapters for the Turkish Seismic Code. New chapters will include Seismic Isolation Design, Passive Control of Buildings, Smart Retrofitting Methods, etc.

On internet 2 separate files may be found in English regarding Turkish Seismic Code. First is "<u>Specification</u> for Buildings to be Built in Seismic Zones (2007)", (Refer to file DBYBHY2007-English-Chapters1,2.pdf). This is the translation of the first two Chapters by Prof. Aydinoglu who is a member belonging to the preparing committee of the code.

The second file is "<u>ANNEX Specification for Structural</u> for Structures to be <u>Built in Disaster Areas</u>". This is the unofficial translation of Turkish Seismic Code. Please ignore this file.

In addition I have an almost-complete English translation of Turkish Seismic Code which is not officially announced yet. (Refer to DBYBHY2007-English-Full.pdf). Please find this code in the additional attachments. Please remember that this is a draft version. It starts from Chapter 5. Apparently there will be additional 4 chapters in the beginning. This translation includes all parts of Turkish Seismic Code except for the chapter originally named as "Chapter 7: Evaluating Existing Buildings And Retrofitting" in the Turkish version.

2.2. TS500 (February 2000) Requirements For Design And Construction Of Reinforced Concrete Structures (by Turkish Standards Institute)

This code includes comprehensive information about material properties of RC components, the design of RC member sections and construction practice details. TS500 can be used for RC building design in non-earthquake zones. In earthquake zones, the building design must meet the requirements of TS500 and Turkish Seismic Code together.

2.3. TS 648 (December 1980) Building Code for Steel Structures (by Turkish Standards Institute)

This code explains the material properties of structural steel members, the design of steel member sections connection and construction practice details. TS648 can be used for steel building design in non-earthquake zones. In earthquake zones, the building design must meet the requirements of TS648 and Turkish Seismic Code together.

2.4. TS 498 (November 1997) Design Loads For Buildings (by Turkish Standards Institute)

This code explains the design loads for structural design. Wind loads, snow loads, live loads are given in this code.

Earthquake loads are calculated according to the relevant chapter of Turkish Seismic Code.

Load combinations including the earthquake loads are given in Turkish Seismic Code. Load combinations including other types of loading such as wind loading, temperature changes or earth thrust loads are given in TS500. The load combinations subject is investigated in detail in Chapter 4 of this report.

In TS 498 the live loads for hospitals may be found in Chapter 12.1. The live loads are summarized in the following table:

Area definition	Design live load (kN/m ²)
Patient rooms	2.0
Examinations rooms	3.5
Operation rooms and corridors	5.0

 Table 1. Live loads for hospitals

The wind loads are given in Chapter 11 of TS498 and calculated as $W = C_f.q.A$ where W is the wind load, C_f is the aerodynamic coefficient, q is the velocity pressure (kN/m^2) and A is the surface area. Values C_f and q are obtained for varying wind velocities and aerodynamic properties by the given tables in this chapter.

Example: For hospital type buildings where building height is less than 20m, velocity pressure q=0.8 kN/m2 and aerodynamic coefficient of a relevant surface C_f =1.2. Therefore unit wind load is approximately W'=0.96 kN/m². Design wind load of a special location (relevantly high hills, seaside or a valley receiving strong winds) is determined by the judgment of the design engineer unless indicated otherwise in design requirements.

2.5. Turkish Ministry of Health -Standards for Design and Construction of Seismically Isolated Medical Buildings (2013)

This is a very brief standard about seismic isolation design and construction of medical buildings. This standard is published by Turkish Ministry of Health in 2013 summer and is effective for the medical buildings with more than 100 beds to be constructed in 1st and 2nd grade seismic zones of Turkey explained in Turkish Seismic Code. This code is based on the following regulations and codes:

- ASCE 7-05 Minimum Design Loads for Buildings and Other Structures
- The Building Standard Law of Japan, Notification No. 2009, Establishment of Technical Criteria Necessary For Safety of Structural Methods for Buildings With Seismic Isolation System.
- Eurocode 8- Seismic Design of Buildings
- Fema 577 Design Guide for Improving Hospital Safety in Earthquakes, Floods, and High Winds.

The design earthquakes considered in this code corresponds to an earthquake with the return period of 475 years and 2,475 years. The probabilities of exceeding these two cases are 10% and 2% in 50 years, respectively. hospital buildings with seismic isolation The are required to be designed by using the 475 years return period earthquake and the displacement of the seismic isolation layer should be checked with time-history analysis by using the 2,475 years return period earthquakes. At least 7 ground motions are required for time history analysis.

2.6. Seismic Isolation Design Code For Buildings (2009) prepared by Turkish Association For Seismic Isolation

This code is prepared by "Turkish Association for Seismic Isolation" in 2009 and is based on the American regulations. The code is prepared in English and is given in additional attachments along with this report. (Please refer to TC SEISMIC ISOLATION DESIGN CODE Turkish Association for Seismic Isolation.pdf) After the regulation by Turkish Ministry of Health (given in Chapter 2.5 of this report) is announced this code is not used in Turkey actively.

3. HISTORICAL BACKGROUND of TURKISH SEISMIC DESIGN CODE DEVELOPMENT and CODE ESSENTIALS.

While many catastrophic earthquakes have hit various areas of Turkey in history, the first major catastrophic natural disaster experienced by Republic of Turkey was the Erzincan earthquake in 1939. The magnitude of the earthquake was 7.8 and caused a loss of more than 33,000 lives and destruction of 140,000 homes. This earthquake was a milestone for adoption of the concept of earthquake-resistant design and construction in Turkey.

Consequently, the first set of explicit legal provisions for earthquake-resistant design was established in 1940 by the Ministry of Public Works. This seismic regulation was revised in 1944. The law stated that any building built without complying with the requirements of the regulation would be demolished. However, it is not clearly stated which authority will do the demolishment and consequently no demolishment was done. The seismic regulation was updated in 1949 and 1953 to reflect the amendments of the seismic zone map without any major change in the code. By the establishment of Ministry of Reconstruction and Resettlement in 1958, the disaster prevention policy was upgraded and the formulation of the base shear coefficient was revised in 1961. The next revisions in 1968 and 1975 brought important enhancements to the seismic design and introduced the international developments to the engineering society in Turkey. The concept of ductility was first time mentioned at member and structural levels in 1975 code. The principles of the capacity design were introduced by the 1998 code together with important detailing issues for seismic design.

The most recent version of the code issued in 2007, particularly has been a very important step towards the displacement-based design through the related requirements for the seismic assessment of existing buildings and retrofitting. The evolution of the seismic design code is summarized below.

3.1 1940 Seismic Regulation

This was the first seismic regulation in Turkey. Besides several rules related to construction, materials and workmanship, this code gave the fundamental base shear coefficient of 0.10 for calculation of the lateral seismic load. In case of presence of the wind load (W), the design lateral load (H) is calculated by Eq. 1, where only half of the live load (P) is considered in addition to the dead load (G). On the other hand, half of the wind load (W) is included as well. No specific distribution of the lateral load along the height of the building was defined in this code.

$$H = 0.10\left(G + \frac{P}{2}\right) + \frac{W}{2} \tag{1}$$

3.2 1944 Seismic Regulation

This regulation was based on the Italian code of the time and it included a seismic zone map having two seismic zones, Zones I and II. Areas outside Zones I and II were considered to be safe in terms of seismicity.

The fundamental base shear coefficient (the ratio of the base shear force to the seismic weight of the building) was adopted to be 0.02-0.04 and 0.01-0.03 for Zones I and II, respectively. Selection of the appropriate value in these ranges was the responsibility of design engineers. However, approval of the inspecting authority was required for the selected value.

Like in previous version, in this regulation, the geotechnical conditions of the construction site and the structural characteristics were not taken into account. Furthermore, the distribution of the lateral load along the height of the building has still not been defined either.

3.3 1961 Seismic Regulation

In 1960s and 1970s, due to very rapid industrialization and a great portion of the existing buildings were demolished and reconstructed by increasing number of stories according to 1961 Seismic Regulation. In this regulation, parameters related to the seismic zone, type of the structural system and the ground conditions were taken into account for determining the base shear coefficient. Upper limit of the base shear coefficient is assumed to be 0.10 and the distribution of the seismic loads is considered to be uniform along the height of the building.

A qualitative recommendation was also present in this code to prevent excessive irregularities in plan and to minimize the potential negative effects of global torsion. The code required that all parts of the building should resist seismic lateral load given in Eq.2. In this

equation, C and n were the fundamental base shear coefficient and the live load reduction factor, respectively. The live load reduction factor was given as ordinary buildings (residential 0.5 for buildings), load reduction was allowed for whereas no denselv populated buildings (theaters, hotels, factories and office buildings). The fundamental base shear coefficient calculated by Eq.3, where C_o was a coefficient was depending on the height of the building, n_1 was а coefficient related to soil conditions (Soil type I, ΙI and III) and to type of structural system (reinforced the concrete or steel), and n_2 was seismic zone coefficient (Zones I and II). The numerical values of Co and n1 are summarized in Tables 2 and 3, respectively.

It should be noted that the interaction between soil and structure was somehow taken into account through the coefficient n_1 . The coefficient n_2 was to be taken as 1.0 and 0.6 for the seismic zones I and II, respectively. On other hand, higher seismic demand on the the lower their relatively higher buildings due to stiffness, particularly in case of stiff soil conditions, was not taken into account properly in this code. Clearly, this negligence may result with unnecessarily high seismic design loads for relatively high-rise structures, whereas the seismic design loads taken into account for low-rise structures may be on the unsafe side.

$$H = C(G + nP) + W/2$$

$$C = C_0 n_1 n_2$$

(2)(3)

It should be noted that, when the wind load (W) is higher than the design lateral load calculated by Eq.2, the design lateral load is considered to be equal to the wind load. The code permitted an increase of 50% in allowable stresses in case of seismic design. The seismic zone map was revised in 1963 and the number of seismic zones is increased from two to four including a zone where no seismic design is required.

Height of building (m)	C ₀ coefficient
<16	0.06
16-22	0.07
22-28	0.08
28-34	0.09
34-40	0.10
>40	+0.01/for each 3m

 Table 2. The coefficient of Co depending on building height

Ground Type	Reinforced Concrete	Steel
Ι	0.8	0.6
II	0.9	0.8
III	1.0	1.0

Table 3. The coefficient n1 according to building type and ground conditions

I rock, hard soil, II medium soil, III soft soil

3.4 1968 Seismic Regulation

This code introduced significant enhancements to seismicresistant design such as:

- Definition of minimum dimensions for columns [depth of short side > maximum (240 mm; 0.05 × story height)]
- Definition of minimum dimensions for beams (150 \times 300 mm, depth \geq 3 times of the slab thickness)
- Definition of minimum dimensions of shear walls [width ≥ maximum (200 mm and 0.04 × story height)]
- Confinement reinforcement requirement for columns and beams in the vicinity of joints (transverse reinforcement is to be doubled with respect to the mid-height of the column and mid-span of the beam).
- Confinement reinforcement requirement in the beamcolumn joint
- Consideration of dynamic characteristics of the building
- Introduction of the building importance factor
- Inverse triangular distribution of the lateral forces
- Increase of the base shear force due to global torsion of the building, when the eccentricity between centers of mass and rigidity exceeds 5% of the larger plan dimension of the building.

In this code, base shear force (F) to consider the effects of earthquakes is to be calculated by Eq.4. In this equation, W is the total weight of the building to be considered for the seismic analysis (Eq.5) and C is the fundamental base shear coefficient to be calculated by Eq.6. It should be noted that according to this code no live load reduction factor is allowed for buildings such theaters, schools, stadiums, storage facilities. as However, a live load reduction factor of 0.5 is given for health facilities, hotels, administrative or residential buildings. Co given in Eq.6 is the seismic zone factor (0.06, 0.04 and 0.02, for Zones I, II and III, respectively), α is the coefficient reflecting ground

conditions (0.8, 1.0 and 1.2, for hard, medium and soft soil, respectively), β is the building importance factor (1.5 for important or densely populated buildings such as communication buildings, hospitals, fire stations, museums, schools, stadiums, theaters, train stations, religious buildings, and 1.0 for ordinary buildings such as residential, office and industrial buildings, hotels, restaurants, etc.), and γ is the dynamic coefficient to be calculated by Eq.7a or 7b depending on the fundamental period of the building (T) in seconds.

A simple equation is also given in the code for calculation of the fundamental period of the building (Eq.8) to be used unless the period is not calculated by using a sophisticated method. In this equation H and D are the height of the building (m) and the plan dimension of the building (m) in the direction of the considered lateral load.

$$F = CW \tag{4}$$

$$W = \sum W_i = \sum G_i + n_i P_i \quad (i:storynumber)$$
(5)

$$C = C_0 \alpha \beta \gamma \tag{6}$$

$$\gamma = 1 \ (T \le 0.5s) \tag{7a}$$

$$\gamma = \frac{0.5}{T} \ (T > 0.5s) \tag{7b}$$

$$T = \frac{0.09H}{\sqrt{D}} (s) \tag{8}$$

According to the code, the lateral forces are to be distributed to floor levels along the height by using Eq.9. In this equation, F_i , W_i and h_i are the lateral forces applied to the i^{th} story floor, the weight of the story and the height of the story measured from the foundation level, respectively.

$$F_i = F \frac{W_i h_i}{\sum W_i h_i} \tag{9}$$

In 1972, the seismic zone map was divided into five seismic risk zones (Fig.1a), including the zone with no seismic risk.

Fig. 1 (a) Seismic zone map in 1972, **(b)** current seismic zone map (source: Ministry of Public Works and Settlements, http://www.deprem.gov.tr)

3.5 1975 Seismic Regulation

1975 Seismic Regulation has been valid for more than 20 years. A great portion of existing buildings in Turkey were designed and constructed, while this code was in effect. This is the first code that defines ductility explicitly. Furthermore, the base shear force was given as a function of structural ductility for the first time implicitly according to a structure type coefficient. Other important improvements in the code were:

- Inclusion of more detailed principles related to seismic-resistant detailing
- Inclusion of details about minimum cross-sectional dimensions and minimum reinforcement ratios for structural members

- Inclusion of more detailed requirements related to confinement
- Inclusion of a quantitative shear design for beamcolumn joints
- Inclusion of the ground dominant period into the equation given for determination of the spectrum coefficient
- Inclusion of an explicit definition of irregular buildings (although the definitions of irregularities were not sufficiently detailed)
- Inclusion of the requirement of the modal analysis for irregular or high-rise structures (H > 75 m)
- Introduction of the concept of increased longitudinal reinforcement at end zones of shear walls
- Consideration of an additional eccentricity of 5% of the largest plan dimension of the building.

However, it should be noted that while an increase of longitudinal reinforcement at the end zones of the shear walls was introduced in the code, the confinement of longitudinal bars in these end zones was not required.

In the code, the base shear force was to be calculated by Eq.10. In this equation C, Co, K, S and I are the fundamental base shear coefficient, the seismic zone coefficient (0.10, 0.08, 0.06 and 0.04, for Zones I, II, III and IV, respectively), the structure type coefficient, the dynamic coefficient and the building importance factor, respectively. The values of the structure type coefficient K, which was actually introduced for consideration of ductility capacity of various structural systems, are given in Table 4 depending on the type of the structure. As seen in this table, relatively lower ductility capacity of the shear wall structures is taken into account by increasing design base shear force in this version of the seismic design code.

The dynamic coefficient (spectrum coefficient) is to be evaluated by Eq.11, where T_o is the effective period of the ground in seconds. It should be noted that the dynamic coefficient should be assumed as 1.0 for one and two-story structures and all masonry buildings. For the fundamental period of buildings, in addition to Eq.8, which has already been given in the 1968 regulation, an alternative formula was given as well (Eq. 12). In Eq.12, N is the number of stories. The building importance factor, I was almost same as in the 1968 code (either 1.0 for ordinary buildings, or 1.5 for important or densely populated buildings.

$$C = C_0 KSI \ge \frac{C_0}{2} \tag{10}$$

$$S = \frac{1}{\left| 0.8 + T - T_0 \right|} \le 1.0 \tag{11}$$

$$T = (0.07 \sim 0.10)N \tag{12}$$

Table 4 The structure type coefficient, *K*

Structure type	K ^a
Ductile frames ^b	(a) 0.60, (b) 0.80, (c) 1.00
Non-ductile frames ^b	(a) 1.20, (b) 1.50, (c) 1.50
Steel frames with bracings ^b	(a) 1.20, (b) 1.50, (c) 1.60
Shear wall–ductile frames ^{b,c}	(a) 0.80, (b) 1.00, (c) 1.20
Shear wall structures without frames	1.33
Masonry buildings	1.50
Others	1.00

^a The minimum value of K is 1.0 for one or two-story structures

^b Having (a) reinforced concrete or reinforced masonry infill walls, (b) unreinforced masonry infill walls, (c) light weight or few

infill walls, or prefabricated concrete infill walls

^c The ductile frames should resist at least 25% of the lateral loads

The distribution of the base shear force along the height of the building was again adopted according to the first mode shape of the building, with an additional singular force to be applied to the top story (F_t) , to take implicitly into account the effects of higher modes approximately as given in Eqs.13 and 14. According to this version of the code, F_t was assumed to be zero for low-rise buildings (H/D \leq 3).

$$F_{i} = (F - F_{t}) \frac{W_{i}h_{i}}{\sum W_{i}h_{i}}$$

$$F_{t} = 0.004F \left(\frac{H}{D}\right)^{2} \le 0.15F$$
(13)

It is important to note that the permission to increase the allowable stresses of concrete and steel was reduced to 33% from 50% in the code. Additionally, the permitted increase of the ground allowable stress was reduced to 33% for the ground types I, II and III. No increase for the ground allowable stresses was permitted for the ground type IV, as well as for the concrete and steel allowable stresses for structures on the ground type IV.

It should be noted that while the building weight to be considered for calculation of the base shear force was similar to the 1968 code (Eq. 5), the values of live load reduction factor (n) were slightly revised. This value was 0.8 for storage type structures, 0.6 for schools, theaters, concert halls, shops, dormitories, and 0.3 for residential buildings, offices, hospitals, hotels. It is important to emphasize that the reinforced concrete design and construction code in Turkey (TS500) was revised in 1984 and 2000.

After 1984, while still the use of allowable stress design was permitted, the ultimate strength design was encouraged. Consequently, after mid-1980s, design engineers began to use the ultimate strength design instead of the allowable stress approach. In the most recent version of the reinforced concrete design and construction code published in 2000, the use of the allowable stress design is not permitted any more. In 1996, the seismic zone map has been revised once more (Fig. 1b). In the revised seismic zone map, which still has five seismic zones, the area for Zone I is significantly increased. This seismic zone map is still in use.

3.6 1998 Seismic Regulation

After more than 20 years of the publication of the 1975 code, a revised version was published in 1998 just 1 year before the catastrophic earthquakes experienced in 1999. Therefore, the 1998 code and the earthquakes experienced created a milestone in terms of earthquake-resistant design and construction, as well as the demand of public for safe housing.

The most important advances introduced through the 1998 code are:

- Inclusion of the detailed capacity design principles
- Explicit definition of the design earthquake in terms of occurrence probability
- Explicit definition of the acceptable structural performance under the design earthquake
- Definition of the elastic design spectrum
- Definition of the seismic load reduction factor depending on the structural characteristics, including dynamic properties and ductility of the structural system and the over-strength factor
- Inclusion of detailed requirements on confinement and explicit rules for reinforcement detailing
- Quantitative definition of irregularities.

The capacity design principles in the code provide that plastic hinges form at beams by assuring that columns are stronger than beams framing into the same joint. Furthermore, the shear capacity of beams and columns as well as shear walls is kept higher than their bending capacity, so that ductile failure is ensured in case of seismic loads higher than that considered in seismic design.

The design earthquake considered in the code corresponds to an earthquake with the return period of 475 years for ordinary buildings (for building importance factor 1.0) and 2,475 years for the most important buildings (for building importance factor 1.5). The probabilities of exceeding these two cases are 10% and 2% in 50 years, respectively.

In the code, the spectral acceleration coefficient A(T) is given by Eq.15, where A_o , I and S(T) are the effective acceleration coefficient seismic (seismic zone coefficient), the building importance factor and the elastic spectrum coefficient evaluated for 5% damping ratio. The effective seismic acceleration coefficient (A_o) is to be taken as 0.40, 0.30, 0.20 and 0.10, for the seismic zones I, II, III and IV, respectively, (Fig.1b). The building importance factor (I) is given with more details in the code compared to its previous versions, (Table 5). Spectrum coefficient (S(T)) is determined through Eqs.16a, 16b, 16c as a function of the fundamental period the building (T) and the characteristic spectrum periods $(T_A \text{ and } T_B)$, which are to be determined depending on the ground type.

The characteristic spectrum periods for various ground conditions are given in Table 6. In this table, it is apparent that Z1 represents strongest ground conditions, while Z4 corresponds to the weakest.

$$A(T) = A_0 IS(T) \tag{15}$$

$$S(T) = 1 + 1.5 \frac{T}{T_A} \quad (0 \le T \le T_A)$$
(16a)

$$S(T) = 2.5 \ (T_A \le T \le T_B)$$
 (16b)

$$S(T) = 2.5 \left(\frac{T_B}{T}\right)^{0.8} \quad (T \ge T_B)$$
(16c)

Table 5.	The	building	importance	factor, I
		0		,

Purpose of occupancy or type of building	Importance factor (<i>I</i>)
 Buildings to be utilized after the earthquake and buildings containing hazardous materials (a) Buildings required to be utilized immediately after the earthquake (hospitals, fire fighting buildings, telecommunication facilities, transportation stations and terminals, power generation and distribution facilities, official administration buildings, etc.) (b) Buildings containing or storing toxic, explosive and flammable materials, etc. 	1.5
 2. Intensively and long-term occupied buildings and buildings preserving valuable goods (a) Schools, dormitories, military barracks, prisons, etc. (b) Museums 	1.4
3. Intensively but short-term occupied buildings Sport facilities, cinema, theatre and concert halls, etc.	1.2
4. Other buildings Buildings other than defined above (residential and office buildings, hotels, building-like industrial structures, etc.)	1.0

Table 6. Characteristic spectrum periods

Local Site Class	$T_A(s)$	T _B (s)
Z1	0.10	0.30
Z2	0.15	0.40
Z3	0.15	0.60
Z4	0.20	0.90

The fundamental period of the building can be calculated by Eq. 17 or Eq. 18. Equation 17 is the well-known Rayleigh equation, where m_i is the mass of the i^{th} story, F_{fi} is the fictitious lateral load acting on the i^{th} story and d_{fi} is the corresponding displacement of the i^{th} story in the direction of F_{fi} . On the other hand, Eq.18 is an empirical relation, where C_t is a coefficient and depends on structural system of the building (0.08 for steel frames, 0.07 for reinforced concrete frames, \leq 0.05 for shear wall buildings) and H_N is the total height of the building in m.

$$T_{1} = 2\pi \sqrt{\sum_{i=1}^{N} m_{i} d_{fi}^{2} / \sum_{i=1}^{N} F_{i} d_{fi}}$$
(17)

$$T_1 \cong T_{1A} = C_t H_N^{3/4}$$
 (18)

For using inelastic capacity of the structures, certain deformations (controlled level of inelastic damages) beyond elastic limits are allowed under the design earthquake explicitly, provided that the building does not collapse, life safety is ensured and damages are kept within the controlled limits. For utilizing inelastic deformations, the structural system should have a certain level of ductility.

According to the code, the buildings can be designed considering two levels of ductility; normal or high. There particularly are several rules, in terms of the application of the capacity design, construction details and irregularities for classifying the structural systems as normal or high ductility. Since inelastic deformations are allowed, the lateral load demand evaluated by using the elastic design spectrum is reduced depending on the characteristics of the structural system by the seismic load reduction factor $R_a(T)$ given by Eqs.19a, 19b.

Obviously, if the structural system can be classified as a high ductility system, the reduction in lateral loads is higher than that of a normal ductility structural system.

$$\begin{split} R_{a}(T) &= 1.5 + (R - 1.5) \frac{T}{T_{A}} \quad (T \leq T_{A}) \end{split} \tag{19a} \\ R_{a}(T) &= R \quad (T > T_{A}) \end{aligned} \tag{19b}$$

As seen in Eqs. 19a, 19b the seismic load reduction factor R_a can be calculated as a function of the structural system coefficient, R, which can be determined through Table 7. Finally, the reduced base shear force (V_t) can be calculated by Eq.20, where W is the total weight of the building to be calculated in a similar method as in the 1975 Code by considering dead load and reduced live load. Furthermore, in this revision the lateral drift limits were also revised.

$$V_t = W \frac{A(T)}{R_A(T)} \ge 0.10 A_0 I W$$
 (20)

Requirements on the combinations of the seismic loads with the other loads are given in the related codes for typical buildings, such TS500. In this code, the wind and seismic loads are not considered in one single combination together. Some typical design combinations given in this code are 1.4G + 1.6Q, G + Q + E, 0.9G + E, G + 1.3Q + 1.3W and 0.9G + 1.3 W, where G, Q, E and W represent dead, live, seismic and wind loads, respectively.

Table 7. The structural system coefficients, R

Building structural system	Systems of normal ductility level	Systems of high ductility level
(1) Cast-in-situ reinforced concrete buildings	1	
(1.1) Buildings in which seismic loads are fully resisted by frames	4	8
(1.2) Buildings in which seismic loads are fully resisted by coupled structural walls	4	7
(1.3) Buildings in which seismic loads are fully resisted by solid structural walls	4	6
(1.4) Buildings in which seismic loads are jointly resisted by frames and solid and/ or coupled structural walls	4	7
(2) Precast reinforced concrete buildings		
(2.1) Buildings in which seismic loads are fully resisted by frames with connections capable of cyclic moment transfer	3	6
(2.2) Buildings in which seismic loads are fully resisted by single-story hinged frames with fixed-in bases		5
(2.3) Buildings in which seismic loads are fully resisted by prefabricated solid structural walls	×.	4
(2.4) Buildings in which seismic loads are jointly resisted by frames with connections		
capable of cyclic moment transfer and cast-in-situ solid and/or coupled structural walls	3	5
(3) Steel buildings		
(3.1) Buildings in which seismic loads are fully resisted by frames	5	8
(3.2) Buildings in which seismic loads are fully resisted by single-story hinged frames		
with fixed-in bases	4	6
(3.3) Buildings in which seismic loads are fully resisted by braced frames or cast-in-situ reinforced concrete structural walls		
(a) Concentrically braced frames	3	-
(b) Eccentrically braced frames	÷	7
(c) Reinforced concrete structural walls	4	6
(3.4) Buildings in which seismic loads are jointly resisted by frames and braced frames or cast-in-situ reinforced concrete structural walls		
(a) Concentrically braced frames	4	÷
(b) Eccentrically braced frames	-	8
(c) Reinforced concrete structural walls	4	7

Ιt is worth noting that while the code was quite comprehensive in terms of reinforced concrete structures, recommendations on steel structures were not equally detailed. This was due to the fact that number of steel structures was very low compared to reinforced concrete structures before the 1999 earthquakes. Consequently, while still being in marginal numbers with respect to reinforced concrete structures, the amount of steel construction has increased significantly after the 1999 earthquakes, necessitating more comprehensive seismic provisions in the code.

3.7 2007 Seismic Regulation (Turkish Seismic Code)

demand of Based on the people and the official institutions for earthquake safe environment after the earthquakes experienced in 1999, many structures were investigated in terms of seismic safety and some of these were retrofitted. However, due to lack of official guidelines and standards about seismic safety assessment and retrofitting, in many cases non-standard and sometimes inappropriate approaches were being used by design engineers while analyzing or retrofitting the existing buildings. Therefore, the most recent version of the seismic design code published in 2007 includes the issues on seismic safety assessment of existing buildings and retrofitting comprehensively. The code has only minor revisions in the provisions related to reinforced concrete buildings to be newly designed. However, the seismic safety requirements for steel structures, which were not addressed in sufficient comprehensiveness in the previous codes, are covered comprehensively in the code. With this version, the title of the code, which was "Specification for structures in disaster areas" since 1961, has been changed as "Specification for buildings to be built in seismic areas". Consequently, issues related with other disasters (such as flood and fire) are removed from the code.

The most important advances introduced through the 2007 version of the code are:

• Inclusion of a new extensive chapter on seismic safety assessment and retrofitting of existing buildings

• Inclusion of a linear elastic method for seismic safety assessment considering the inelastic behavior in terms of approximate allowable demand/capacity ratios given depending on the damage level

• Inclusion of the performance-based assessment principles for existing structures in seismic safety evaluation and retrofitting

• Inclusion of different levels of design earthquakes (such as service, design and maximum earthquakes) and performance levels (such as immediate occupancy, life safety and collapse prevention) to be considered for various types of buildings

• Inclusion of single-mode and multi-mode push-over analysis for seismic safety assessment and retrofitting

• Inclusion of nonlinear time history analysis

• Inclusion of principles and details related with conventional retrofitting techniques (such as concrete jacketing, strengthening with steel members, and shear wall additions) and retrofitting using innovative materials (such as fiber reinforced polymers).

performance-based assessment, As known, in seismic performance of the building is determined based on the extent and distribution of structural member damages. In the code, the damage levels are determined depending on the concrete compressive strain at the extreme compression fiber (either on the cover or core depending on the damage level) and tensile reinforcement strain, which are calculated through the rotations of plastic hinges when push-over analysis is carried out. When distributed plasticity assumption is used, the critical strains can be evaluated directly.

Additional Information:

Seismic zone maps for individual cities are prepared by Ministry of Public Works and Settlements and 2 example cities are given here, Istanbul and Bursa. The whole map is given in the attachment as an Excel file named "Turkish seismic zone maps city by city.xls".

Figure 2 . Seismic zone map for Istanbul.

Figure 3. Seismic zone map for Bursa.

4. STRUCTURAL DESIGN METHODOLOGY

4.1 Material strength

Definition of material strength for reinforced concrete structures is defined in "TS500 Requirements for Design and Construction of Reinforced Concrete Structures -Chapter 3.2-Rebars and Chapter 3.3 Concrete". These chapters are translated and explained as follows:

TS500

3.2 Re-bars

The steel material for re-bars should meet the requirements of "TS708 Steel for the Reinforcement of Concrete - Reinforcing Steel". The mechanical properties of steel materials are given in the following table. The young modulus of rebar steel is 2×10^5 MPa.

Mechanical	Rebars			Mesh reinforcement		
property	Natural h	ardness		Cold formed steel		
	S220a	S420a	S500a	S420b	S500bs	S500bk
Minimum yielding strength f _{yk} (MPa)	220	420	500	420	500	500
Ultimate strength f _{su} (MPa)	340	500	550	550	550	550
$\varphi \le 32$ Ultimate strain ε_{su} (%)	18	12	12	10	8	5
Ultimate strain ϵ_{su} (%)	18	10	10	10	8	5

Table 3.1. Mechanical	properties	of rehar steel	types	(from TS708)
	properties	of febal steel	types.	(101113700)

3.3 Concrete

Concrete should be prepared in-site according to the design strength value given by the structural engineer or ready-mixed concrete should be used which meets the requirements of TS 11222 Standards for ready mixed concrete.

(Note by Fatih Sutcu: TS500 is published at 2000. Effective from 2002, abovementioned TS11222 is no longer used. Instead of TS11222, a new code TS EN 206 which is

adopted from European Standard "ENV 206 Concrete - Part 1: Specification, performance, production and conformity" is used. Please refer to ENV 206 EN206-1 European Norm for Concrete.pdf in the attachment)

3.3.1 Concrete types and compressive strength of concrete

Concrete types are determined by compressive strength value. Characteristic compressive strength of concrete specimens, f_{ck} is evaluated by using cylindrical concrete specimens with diameter of 150 mm and height of 300mm. Specimens is cured for 28 days before testing. The compressive strength tests are performed according to "TS3068 Making and Curing Test Specimens for Concrete in Test Laboratory". The test values of characteristic concrete types are given in the following table:

Concrete type	Characteristic compressive strength, f_{ck} MPa	Characteristic tensile strength, f_{ctk} MPa	Young modulus after 28 days of cure, E _c MPa
C16	16	1.4	27000
C18	18	1.5	27500
C20	20	1.6	28000
C25	25	1.8	30000
C30	30	1.9	32000
C35	35	2.1	33000
C40	40	2.2	34000
C45	45	2.3	36000
C50	50	2.5	37000

 Table 3.2. Concrete types and strength values.

4.1 Limit States

Definition of limit states to be considered in structural design and the load combinations including seismic loads are given in this section.

In TS500 Requirements for Design And Construction Of Reinforced Concrete Structures the resistance factors and load combinations for reinforced concrete buildings are given in "Chapter 6.2- Structural Safety". This chapter is translated and explained as follows:

TS500

6.2- Structural Safety

6.2.1. Introduction

In structural design, the building should be designed to prevent collapse in building life-span and also cracks, deformations or vibrations which will negatively affect the strength or using comfort of the building. In this context the design loads are increased with certain load coefficients while material strength is reduced for safety. These coefficients are determined by statistical methods.

6.2.2. Limit states Method.

In order to satisfy the abovementioned safety requirements the substantial limit states of a building in its lifespan shall be investigated separately for (i) ultimate strength limit state and (ii) serviceability limit state.

6.2.3. Ultimate strength limit state

The ultimate strength of all structural members (design strength) that are calculated using the reduced material strengths given in 6.2.5 should be not less than the inertial forces calculated by the increased design loads defined in 6.2.6

6.2.4 Serviceability limit state

In all structural members the cracks, deformations and displacements caused by the effective loads should be calculated by the methods given in Chapter 13 and should be in the range of limits given in the same chapter.

6.2.5. Material strength coefficients

The design strength of structural materials will be obtained by reducing the characteristic material strength given in Chapter 3 by Material strength coefficients that are equal or larger than 1.0. For Ultimate strength limit state the Material strength coefficients for concrete and steel is given as follows:

Concrete: $f_{cd} = f_{ck} / \gamma_{mc}$ $f_{ctd} = f_{ctk} / \gamma_{mc}$ Steel: $f_{yd} = f_{yk} / \gamma_{ms}$

 $\begin{array}{l} f_{cd}: \mbox{ Design compressive strength of concrete} \\ f_{ck}: \mbox{ Characteristic compressive strength of concrete} \\ f_{ctd}: \mbox{ Design tensile strength of concrete} \\ f_{ctk}: \mbox{ Characteristic tensile strength of concrete} \\ \gamma_{mc}: \mbox{ Material strength coefficient of concrete} \\ f_{yd}: \mbox{ Design compressive strength of steel} \\ f_{yk}: \mbox{ Characteristic compressive strength of steel} \\ \gamma_{ms}: \mbox{ Material strength coefficient of steel} \\ \gamma_{mc} = 1.5 \ \mbox{ and } \gamma_{ms} = 1.15. \end{array}$

```
Example:
  C25 concrete. f_{ck}=25N/mm^2 \rightarrow f_{cd} = f_{ck} / \gamma_{mc} \rightarrow f_{cd}=16.7N/mm^2
For Serviceability limit state the Material strength
coefficient is assumed to be 1.0.
6.2.6. Load coefficients and load combinations
The characteristic load effects are defined in TS 498 and
Turkish Seismic Code. The design load F_d obtained by
common load combinations are given as follows:
(a) Only vertical loads
F_d = 1, 4G + 1, 6Q
F_d = 1,0G + 1,2O + 1,2T
Where G is dead load, Q is live load and T is the loads by
temperature changes, shrinking or differential settlement.
T is considered is the cases that T effect cannot be
neglected.
(b) In cases of effective wind loading, following load
combinations are considered in addition to the load
combinations in (a).
F_d = 1,0G + 1,3Q + 1,3W
F_{d} = 0,9G + 1,3W
(c) In cases of effective earthquake, following load
combinations are considered in addition to the load
combinations in (a).
F_d = 1,0G + 1,0Q + 1,0E
F_d = 0,9G + 1,0E
(d) In cases of lateral soil pressure, following load
combinations are considered in addition to the
                                                     load
combinations in (a).
F_d = 1, 4G + 1, 6Q + 1, 6H
F_d = 0,9G + 1,6H
(e) In cases of fluid pressure, the evaluated fluid
pressure is increased by 40% and added to all
                                                     load
combinations with live loads.
         Serviceability limit state design all
(f) In
                                                      load
combination coefficients are considered to be 1.0.
```
5. EVALUATING THE SEISMIC PERFORMANCE OF EXISTING BUILDINGS

Turkish Seismic Design Code (DBYBHY 2007) includes a chapter for evaluating the seismic performance of existing buildings, namely "Chapter 7. Evaluation and Retrofitting of Existing Buildings". This chapter is not translated in English officially or unofficially. Here I have roughly translated this chapter in English.

DBYBHY 2007

CHAPTER.7 EVALUATION&RETROFITTING OF EXISTING BUILDINGS

7.1 CONTENTS

7.1.1.Chapter 7 is used for the assessment of existing and retrofitted buildings.

7.1.2. The analysis procedures given are not for applying to Steel and Masonry type structures. Steel structures are to be evaluated by using Chapter 2 and 4, new building design methods.

7.1.3 Prefabricated reinforced concrete buildings are to be evaluated depending on Chapters 2 and 3

7.1.4 The given rules are not to be used for non-building structures defined in 2.12

7.1.5 A damaged structure's earthquake performance may not be evaluated by this chapter

7.1.6 For the retrofit of a damaged structures and the evaluation of retrofitted structures this chapter will be used. For retrofitting, existing member strength and stiffness of damaged buildings will be evaluated by the engineer in charge.

7.2 DATA COLLECTING FROM BUILDINGS.

7.2.2.Data levels

Depending on the data level, a data level coefficient will be used for the capacity evaluation.

7.2.2.1. Limited level 7.2.2.2. Mid-level 7.2.2.3. Comprehensive level 7.2.3 Material strength The existing buildings material strength is used for capacity evaluation.

7.2.16. Data level coefficients to be applied on member capacities.

Table7.1			
Data level	Data level coefficient		
Limited level	0.75		
Mid-level	0.90		
Comprehensive level	1.0		

7.3. DAMAGE LEVELS AND DAMAGE REGIONS IN STRUCTURAL MEMBERS

7.3.1. Sectional Damage Levels

For ductile members, 3 levels are defined. These are Minimum Damage level (MN), Safety Damage level (GV) and Collapse Damage level (GC). Minimum Damage level defines the beginning of non-linear behavior level for sections, Safety Damage level defines the upper limit of safe nonlinear behavior and Collapse Damage level defines the precollapse behavior of the section. Non-ductile members are not classified here.

7.3.2. Damage regions

Damage regions are defined depending on the damage level of its critical sections using Fig 7.1

Figure 7.1

7.3.3. Defining member and section damages

The damage level of a section will be decided by using the inner forces and/or strains evaluated by methods given in 7.5 or 7.6 and the levels defined in 7.3.1.

Member damage will be decided according to the section with the highest damage

7.4 GENERAL PRINCIPLES AND RULES FOR EARTHQUAKE PERFORMANCE EVALUATION

7.4.1. The aim of this chapter is to evaluate the earthquake performance of an existing or retrofitted building. In order to do this, linear methods described at 7.5 or non-linear methods described at 7.6 may be used. These two theoretically separate approaches will obviously not result identically. However, the general principles and rules defined below are valid for both approaches.

7.4.2. For the definition of earthquake input effect, the elastic acceleration spectrum given in 2.4 will be used. However modifications given in 7.8 will be applied in order to consider the exceeding possibilities. The building importance factor given in 2.4.2 will not be used. (I=1.0 for all buildings)

7.4.3. Earthquake performance of buildings will be evaluated by the combined effects of vertical loads and earthquake effects. Live loads will be determined using chapter 7.4.7

7.4.4. Earthquake forces will be applied on the building in both directions and both ways, separately.

7.4.13. Stiffnesses of concrete members are defined by considering cracked concrete sections. The cracked section stiffnesses of beams are taken as 40% of uncracked section stiffnesses and cracked section stiffnesses of columns and shear walls are calculated according to their axial load level:

if $N_d/(A_c*f_{cm}) \leq 0.1,$ then 0.40 of uncracked stiffness is taken as cracked stiffness,

if $N_d/(A_c\star f_{cm}) \ge 0.4\,,$ then 0.80 of uncracked stiffness is taken as cracked stiffness,

For the values of $N_d/(A_c*f_{cm})$ between 0.1 and 0.4, interpolation is done to calculate cracked stiffness.

^{•••}

 N_d is the axial load value under gravity loading, A_c is the concrete section area, $f_{\rm cm}$ is the existing concrete compressive strength.

7.5. EVALUATING THE EARTHQUAKE PERFORMANCE OF A BUILDING WITH LINEAR METHODS.

7.5.1. Analysis methods

Linear analysis methods to be used for the seismic analysis of buildings and building-like structures are, Equivalent Seismic Load Method given in 2.7, Mode-Combination Method given in 2.8. The following additional rules will be applied to the aforementioned methods.

7.5.1.1. The selected buildings should not be taller than 25m, have at most 8 stories and torsional irregularity coefficient η_{bi} is smaller than 1.4. For base shear demand calculation, R is taken as 1, and building importance factor I is also taken as 1. On the other hand a new λ constant is introduced as 1.0 for buildings up to 2 stories except basement and 0.85 for others. (The reason is that the effective mass for the first mode of such buildings is generally not higher than 85% of building mass)

7.5.2 Evaluating the damages for structural members of RC buildings

7.5.2.1. For evaluating the damage levels of ductile RC members with linear analysis methods the demand to capacity ratios (r) are used. By dividing the earthquake demands with the corresponding residual capacities, the demand to capacity ratios (r) are calculated.

7.5.2.2. RC members are classified as "ductile" in case their collapse mechanism is bending failure and "brittle" if it is shear failure. Shear capacities (V_r) for beam end sections and column mid sections are calculated according to TS 500. If V_E is greater than V_r , then the element is defined as brittle, otherwise ductile. Detailed method is explained in Chapter 3.

7.5.2.5. For obtaining the damage region of a member, the calculated r (demand to capacity) ratios will be compared to Table 7.2, Table 7.3, Table 7.4 limit values for columns, beams and structural walls respectively.

Ductile Columns		Damage	Damage Level		
$\frac{N}{A_{\rm c}f_{\rm c}}$	Confinement	$\frac{V}{b_{\rm w}d f_{\rm ct}}$	MN	GV	GC
≤ 0.1	YES	≤ 0.65	3	6	8
≤ 0.1	YES	≥ 1.30	2.5	5	6
≥0.4	YES	≤ 0.65	2	4	6
≥0.4	YES	≥ 1.30	2	3	5
≤ 0.1	NO	≤ 0.65	2	3.5	5
≤ 0.1	NO	≥ 1.30	1.5	2.5	3.5
≥0.4	NO	≤ 0.65	1.5	2	3
≥0.4	NO	≥ 1.30	1	1.5	2
Brittle (Columns	-	1	1	1

Table 7.3

Ductile Beams		Damage Level			
$\frac{\rho-\rho'}{\rho_b}$	Confinement	$\frac{V}{b_{\rm W}d\ f_{\rm ct}}$	MN	GV	GC
≤ 0.0	YES	≤ 0.65	3	7	10
≤ 0.0	YES	≥ 1.30	2.5	5	8
≥ 0.5	YES	≤ 0.65	3	5	7
≥ 0.5	YES	≥ 1.30	2.5	4	5
≤ 0.0	NO	≤ 0.65	2.5	4	6
≤ 0.0	NO	≥ 1.30	2	3	5
≥ 0.5	NO	≤0.65	2.5	4	6
≥0.5	NO	≥ 1.30	1.5	2.5	4
Brittle Beams		1	1	1	

Table 7.4

Ductile Shearwalls	Damage Level		
Confinement	MN	GV	GC
YES	3	6	8
NO	2	4	6
Brittle Shearwalls	1	1	1

7.5.3. Relative story drift control.

In a linear analysis of a building, the relative story drift of any column or shear wall at each storey, in the considered direction should be compared to the values according to the damage limits defined in Table 7.6. If these inter-storey drifts are greater than the limit values at any storey, then the building does not satisfy the selected performance level.

Tab	le.	7.6	

Inter-story drift ratio	Damage Level		
	MN	GV	GC
δ_{ji}/h_{ji}	0.01	0.03	0.04

7.6. INELASTIC METHODS

Push-over method and Time-history method is explained in detail.

7.7 EVALUATING THE BUILDING EARTHQUAKE PERFORMANCE

7.7.2 Instant Occupancy Performance Level (IO)

At each storey, in the considered direction 10% of beams may exceed to the Significant Damage Region at most, while all other structural members are in the Minimum Damage Region. No retrofitting is required except for strengthening of the brittle members if any.

7.7.3. Life safety Performance Level (LS)

At each storey, in the considered direction 30% of the beams may exceed to the advanced damage region at most.

The columns at advanced damage region shouldn't be greater than 20% of the overall lateral strength of columns on that story. (40% for top story)

All other structural members are at Minimum or Significant Damage Region.

7.7.4. Collapse Prevention Performance Level (CP)

Including that all brittle members are at Collapse Range, at each storey, in the considered direction 20% of the beams may exceed to the Collapse Region at most. All other structural members are at Minimum, Significant or Advanced Damage Region. The occupation of this type of building is unfavorable in the means of life safety.

Building purpose	Earthquake level		
and type	At 50 years	At 50 years	At 50 years
	%50	%10	%2
Buildings to be used after an earthquake (Hospital, communication, energy supplier)	-	Ю	LS
Buildings with long time&dense inhabitants (Schools, museums)	-	Ю	LS
Buildings with short time&dense inhabitants (Theatres, sport facilities)	Ю	LS	-
Buildings with dangerous contents. (Toxic stocks)	-	IO	СР
Others (Accommodation, hotels, offices)	-	LS	-

Table 7.8. The expected earthquake performance levels for buildings:

6. REGULATIONS AND CODES REGARDING THE MECHANICAL, ELECTRICAL and PLUMBING (MEP) SYSTEMS.

The seismic design of MEP systems is explained in the Chapter 2.1 of this report. As abovementioned the Turkish Seismic Code eplains the seismic design of MEP systems very briefly in <u>DBYBHY 2007 Chapter 2.11 - Seismic Loads</u> <u>Applied To Structural Appendages, Architectural Elements,</u> <u>Mechanical and Electrical Equipment.</u> (**Refer to file DBYBHY2007-English-Chapters1,2.pdf**)

Except for this chapter, there are no other seismic design codes for MEP systems. However, Turkish Standards Institute has published several codes about the MEP systems. Current "MoH regulation for hospital design" includes the standards to be used for MEP systems. Most of these codes are prepared according to the international or European codes such as IEC (International Electro-technical Commission), CENELEC HD (European Committee for Electro-technical Standardization - Harmonization Document) or EN (European Committee for Standardization)

Some of the important standards required for the design of medical facilities by MoH is given in the following chapters.

6.1. Electrical Standards

Turkish Standard no	International Standard no if any	Standard name
TS HD 60364-7-710	HD 60364-7- 710:2012	Low-voltage electrical installations - Part 7- 710: Requirements for special installations or locations - Medical locations
TS EN 61558-2-15	EN 61558-2- 15:2012	Safety of transformers, reactors, power supply units and combinations thereof - Part 2-15: Particular requirements and tests for isolating transformers for the supply of medical locations
TS267 EN 60076-1	IEC 60076-1	Power transformers Part 1: General
TS 10901 EN 60076-2	IEG 60076-2	Power transformers - Part 2: Temperature rise
TS 10902 EN 60076-3	IEC 60076-3	Power transformers –. Part 3: Insulation levels, dielectric tests and external clearances in air

Table 8: Turkish Standards regarding electrical systems

TS 10903	IEC 60076-4	Power transformers - Part 4: Guide to the lightning impulse and switching impulse testing
TS 10904 EN 60076-5	IEC 60076-5	Power transformers –. Part 5: Ability to withstand short circuit
TSHD 428.1 Sİ	CENELEC HD 428.1 Sİ	Three-phase oil-immersed distribution transformers 50 Hz, from 50 to 2500 kVA with highest voltage for equipment not exceeding 36 kV - Part 1: General requirements and requirements for transformers with highest voltage for equipment not exceeding 24 kV
TSHD 428.3 Sİ	CENELEC HD 428.3 Sİ	Three-phase oil-immersed distribution transformers 50 Hz, from 50 to 2500 kVA with highest voltage for equipment not exceeding 36 kV - Part 1: General requirements and requirements for transformers with highest voltage for equipment not exceeding 36kV
TS 8711	IEC 60551	Determination of transformer and reactor sound levels
TS3215	IEC 60354	Loading guide for oil-immersed power transformers
TS EN 50180	BS EN 50180	Bushings above 1 kV up to 52 kV and from 250 A to 3,15 kA for liquid filled transformers
TS EN 50386	BS EN 50386	Bushings up to 1 kV and from 250 A to 5 kA, for liquid filled transformers
TSHD 428.2.3.S1	HD 428.2.3.S1	Three-phase oil-immersed distribution transformers 50 Hz, from 50 to 2500 kVA with highest voltage for equipment not exceeding 36kV
TSEN60641-1+A1	IEC 60641-1-AM1	Amendment 1 - Specification for pressboard and press paper for electrical purposes. Part 1: Definitions and general requirements
TS EN 60641-2	IEC 60641-2	Pressboard and press paper for electrical purposes - Part 2: Methods of tests
	IEC 60298	A.C. metal-enclosed switchgear and control gear for rated voltages above 1 kV and up to and including 52 kV

IEC 60056	Specification for alternating-current circuit- breakers - Part 6: Guide to the testing of circuit-breakers with respect to the switching of cables on no-load
IEC 60129	Alternating current (isolators) and earthing switches
IEC 60694	Common specifications for high-voltage switchgear and control gear standards
IEC 60281	Magnetic cores for application in coincident current matrix stores having a nominal selection ratio of 2:1

The list for the standards of Electrical devices and equipment includes a big number of standards. This is a brief list to show that Turkish standard is adapted to the International codes.

6.2. Elevator Standards

The standards for elevators are given as follows:

Turkish	International	Standard name
Standard no	Standart no if any	
TS 1812	EN: 81-1	Safety rules for the construction and
		installation of lifts - Part 1 : Electric lifts
TS EN: 81-2	EN: 81-2	Safety rules for the construction and
		installation of lifts – Part 2 : Hydraulic lifts
TS EN: 81-3	EN: 81-3	Safety rules for the construction and
		installation of lifts Part 3: Electric and
		hydraulic service lifts
TS 4789	ISO 7465	Passenger lifts and service lifts Guide
		rails for lift cars and counterweights T-
		type
TS 8237	ISO 4190-1	Lift (Elevator) installation Part 1: Class I,
		II, III and VI lifts
TS 8238	ISO 4190-2	Lift (US: Elevator) installation Part 2:
		Class IV lifts
TS EN 13015	EN 13015	Maintenance for lifts and escalators. Rules
		for maintenance instructions

Table 9: Turkish Standards regarding elevators.

Other Standards required by MoH for elevators are given as follows:

TS EN 12385-5 ; TS EN 81-70; TS EN 81-28 ; TS EN 81-58 ; TS EN 81-72 ; TS EN 81-71 ; TS EN 81-73 ; TS EN 81-80 ; TS EN 12015 ; TS EN 12016

6.3. Medical Installments And Plumbing Standards

Standards for Medical installments and plumbing are as follows:

Turkish Standard no	International Standart no if any	Standard name and explanation
TS EN ISO 13485	ISO 13485	Medical devices Quality management
		systems Requirements for regulatory
		purposes
	COUNCIL DIRECTIVE 93/42/EEC	Medical devices
TS EN ISO 7396	ISO 7396-1	Medical gas pipeline systems Part 1: Pipeline systems for compressed medical gases and vacuum ISO 7396-1:2007 specifies requirements for design, installation, function, performance, documentation, testing and commissioning of pipeline systems for compressed medical gases, gases for driving surgical tools and vacuum in healthcare facilities to ensure continuous delivery of the correct gas and the provision of vacuum from the pipeline system. It includes requirements for supply systems, pipeline distribution systems, control systems, monitoring and alarm systems and non- interchangeability between components of different gas systems. ISO 7396-1:2007 is applicable to pipeline systems for the following medical gases: oxygen, nitrous oxide, medical air, carbon dioxide, oxygen/nitrous oxide mixtures; to pipeline systems for the following gases: oxygen-enriched air, air for driving surgical tools, nitrogen for driving surgical tools; and to pipeline systems for vacuum.

Table 10: Turkish Standards regarding medical installments and plumbing.

TS EN ISO 7396-2	ISO 7396-2	Medical gas pipeline systems Part 2:
		Anaesthetic gas scavenging disposal systems
		ISO 7396-2:2007 specifies requirements for
		the design, installation, function, performance,
		documentation, testing and commissioning of
		anaestnetic gas scavenging disposal systems,
		avposure of the operator and other persons to
		anaesthetic gases and vapours. It includes
		requirements for the power device, pipeline
		system, performance, non-interchangeability
		between key components and avoidance of
		cross connections between anaesthetic gas
		scavenging (AGS) disposal systems and
		medical gas and vacuum pipeline systems.
TS EN ISO 11197	ISO 11197	Medical supply units
		ISO 11197:2004 specifies requirements
		and test methods for medical supply units
		intended for use in healthcare facilities to
		supply electric power and/ medical gases
		and/or liquids and anaesthetic gas
		scavenging systems. It is applicable in
		conjunction with IEC 60601-1:1988.
		, , , , , , , , , , , , , , , , , , ,

Other Standards for Medical installments and plumbing are given as follows:

TS EN ISO 10524-1; TS EN ISO 14971 ; TS EN ISO 9170-1 ;TS EN ISO 9170-2 ; TS EN ISO 14155-1; TS EN ISO 15002 ; TS EN 1041 ; TS EN 980 ; TS EN 60601-1 ; TS EN 13348 ; HTM 2022

6.4. Regulation for Fire Protection:

Turkish Fire Protection and Training Association (TUYAK) has published "Turkey's Regulation on Fire Protection" in English in 2012. This Regulation may be obtained from TUYAK.

This English regulation is the translation of the original Turkish regulation prepared in 2009.

TUYAK Office: Tel: +90 212 320 24 04- +90 541 617 99 59 Fax: +90 212 320 24 03 <u>Tuyak@tuyak.org.tr</u> www.tuyak.org.tr

6.5. Regulation for Clean Water Supply System

The regulation used by MoH for clean water supplying system is, "TS 1258 Rules for Calculation for Installation Water Supply on Building"

7. DISASTER RESILIENT PLANS FOR MEDICAL FACILITIES

Although there is not a standard disaster plan provincial private administration, Turkish Ministry of Health has announced a document for "Guidelines for Preparing Emergency Plans by Local Health Authorities". This document has comprehensive information on how to prepare an emergency plan regarding a disaster.

Each Local Health Authority is supposed to use this guideline to prepare for emergency cases such as natural disasters or technological explosions..etc.

The Guideline contents may be summarized as follows:

- City risk assessment.
- Evaluating past disasters and emergency cases.
- Current situation of the city.
- Preparation for an emergency case.
- Evaluating the structural performance of existing important buildings.
- Emergency response topics.
- Structure of Local Health Authorities during an emergency case and job definitions.
- Emergency response in first 72 hours.
- General Coordination
- Evaluation of health issues
- Evaluation of alternate medical attendance areas
- Evaluation of buildings to be used as hospitals such as schools during an emergency case
- Evaluation of food/drink and clothing sources of hospitals during an emergency case
- Evaluation of places to be used as morgues in case.
- Coordination management.
- Systems for gathering emergency data and coordination.

- Rehabilitation issues (evaluation of the structural system of medical facilities and repairing methods; psychological support for survivors..etc)
- Evaluating the plans determining the city or cities to support during a wide-range emergency case.

Although this guideline is very comprehensive, the number of cities which has prepared an emergency plan, or the contents of the plans that has been prepared or the awareness of medical facilities about this plan is unknown at the moment.

However I have reached to the emergency and disaster resilient plans of several governmental hospitals from internet, including the abovementioned topics.

8. CONCLUSIONS

This report investigates the essential issues on the current Turkish Seismic Code, the progress on Seismic Isolation regulations in Turkey and the regulations that govern the structural engineering issues in Turkey.

In addition to the structural engineering issues the report gives information about the Mechanical, Electrical and Plumbing Standards that are effective in Medical Facility design.

Throughout the report references are given to the codes in English when available. The English codes available are also sent as additional attachments with this report. When not available in English, the necessary parts are translated and included in this report.

The codes that are only available in Turkish (e.g. TS500Reinforced Concrete Code) are not sent as an attachment, although required parts can be translated on demand in the future.

Finally, a brief explanation about the "Guidelines for Preparing Emergency Plans by Local Health Authorities" prepared by Turkish Ministry of Health is given.

Faturfutur

Fatih Sutcu, PhD

Istanbul Technical University Department of Architecture Structures and Earthquake Engineering Work Group. Istanbul-Turkey Tel: +90-212-293 13 00 (2281) fatih.sutcu@itu.edu.tr

ADDITIONAL ATTACHMENTS:

- **a.** DBYBHY2007-English-Chapters1,2.pdf
- **b.** DBYBHY2007-English-Full.pdf
- c. Turkish seismic zone maps city by city.pdf
- d. TC SEISMIC ISOLATION DESIGN CODE Turkish Association For Seismic Isolation.pdf
- e. EN206-1 European Norm for Concrete.pdf

A-5. DOCUMENTS FOR ESTIMATED COST OF PROJECT

1) Building Cost per Unit Area by MOEU (TL/m2) 2014 Original

							62 SERİ N	IOLU EMLA KANUN	,k vergisi/ Iu genel t Ekidi	' Serial No EBLİĞİ/ O R/ Attach	. 62 fixed Mfical Noti	property 1 ice	tax law											anan
					2014 YIL	I İÇİN Bİ	VALARIN I MALİY	Metrekaf Yet bedel	RE NORMAL LERİNİ GÖ:	. İNŞAAT/ STERİR C	Year 201 ETVEL/ Ta	4 Building able of Co	g cost pel st	· unit area	(m2)								μ μ	ng C
BİNALAR' BUILDINGS	GELİI ST	K KARKA EEL BUIL RAMEWC	S BİNA/ DING NRK	BET(ONARME K RETE FRA	ARKAS NEWORI	, Bri	lĞMA KAG ck Masonr	iR BİNA y Building	YIGM /HA	A YARIK NA LF AND S ONDV BUI	AGIR BI TONE	AHŞ WOO	AP BINAL	AR IGS	TAŞ DU	VARLI B	NALL SI	BECEKON	DU TARZ VA DING ST	1 Bi KEF AC	PIÇ VE I OBE ANI SIMP	IĞ.BASİ OTHER	900 PC
	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	OR1 Ave	ASC Min	3. AZ/	\. ORT.	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. A Ave I	Nin A	ax O	RT. AS ve Mi	G. AZ	A. ORT × Ave	1.
	1) FABR	ika ve in	IALATHAN	VE BINAL.	ARI/ Factor	ies and r	olants BUI	LDINGS																1
A) LÜKS İNŞ./ Luxuary Construction		•		•	•	•	'	'	•	•												'	•	
B) 1. SINIF INS./ 1st Class Construction	679.16	755.69	717.43	560.06	615.35	587.7	1 384.2	24 470.	73 427.45	•												'	•	1
C) 2. SINIF INS./ 2nd Class Construction	426.79	468.59	447.69	358.70	374.34	366.5	52 227.5	57 275.0	04 251.31	- 1	•					-	-					-	-	
D) 3. SINIF INS./ 3rd Class Construction	320.45	362.97	341.71	253.08	272.24	262.£	36 140.:	39 183.t	52 162.01	104.19	127.59	115.89	157.38	198.50	177.94	113.42 1	38.95 1	26.19 11	14.81 120	0.52 11	7.67 87.	89 113.	42 100.6	9
E) BASİT/ Basic	182.20	199.19	190.70	141.79	172.94	157.3	17 75.1	5 90.7	6 82.96	57.43	75.15	66.29	102.09	103.51	102.80	65.21	30.81	73.01 5	3.87 63	07 58	.47 41.	83 43.9	3 42.8	- j
	2) FABR	ika ve iv	IALATHAN	JE BİNASI	I, SOSYAL	BİNALAF	RI VS./ Fac	tories and	plants BUIL	DING, SO	CIAL HOL	JSE												
A) LÜKS İNŞ./ Luxuary Construction		,		,		•	'	'	•		,					,							•	Ē
B) 1. SINIF INS./ 1st Class Construction	679.16	755.69	717.43	560.06	615.35	587.7	H 384.2	24 470.	73 427.45							,				,			•	Ť
C) 2. SINIF INS./ 2nd Class Construction	426.79	468.59	447.69	358.70	374.34	366.5	32 227.5	57 275.0	04 251.31	•												•	•	È
D) 3. SINIF INS./ 3rd Class Construction	320.45	362.97	341.71	253.08	272.24	262.£	36 140.	39 183.6	32 162.01	1 104.19	127.59	115.89	157.38	198.50	177.94	113.42 1	38.95 1	26.19 8	7.89 11:	3.42 100	0.66 73.	06 87.8	9 80.4	
E) BASİT/ Basic	182.20	199.19	190.70	141.79	172.94	157.3	17 75.1	5 90.7	6 82.96	57.43	75.15	66.29	102.09	105.63	103.86	65.21	30.81	73.01 4	1.83 51	.01 46	.42 30.	46 41.8	3 36.1	
	3) OTEL	BİNALAR	II/ HOTEL	BUILDING	<i>(</i>)																			
A) LÜKS İNŞ./ Luxuary Construction	1687.92	1812.71	1750.32	1410.75	1532.67	1471	71 1240.	59 1363.	24 1301.9	2 886.86	1002.41	944.64	1488.73	1588.68	1538.71	217.94 1	350.49 1:	284.22					•	,
B) 1. SINIF INS./ 1st Class Construction	1215.09	1312.21	1263.65	981.14	1077.55	1029.	35 860.6	52 915.2	21 887.92	35.18	673.46	654.32	993.92	1109.47	1051.70	340.78 9	37.18 8	88.98				'	•	<u> </u>
C) 2. SINIF INS./ 2nd Class Construction	818.10	878.37	848.24	655.76	696.16	675.5	36 530.5	37 602.5	57 566.77	7 407.65	426.07	416.86	655.76	735.86	695.81	523.89 5	79.18 5	51.54				-	•	
D) 3. SINIF INS./ 3rd Class Construction	637.32	701.83	669.58	456.51	514.66	485.5	79 346.6	57 412.t	30 379.6 4	1 286.40	305.55	295.98	471.41	547.99	509.70	331.74 3	97.00 3	64.37		-		-	'	•
E) BASİT/ Basic	•		•	•	•	•	90.7	111.	29 101.03	3 67.34	87.89	77.62	170.15	213.38	191.77	108.49 1	30.44 1	19.47				•	•	
	4) SİNEN	1A - TİYA	TRO BINA	LARI/ CIN	EMA - THE	ATRE BL	DIIDING																	·9·
A) LÜKS İNŞ./ Luxuary Construction	1883.84	2023.13	1953.49	1527.01	1629.08	1578.	05 1384.	60 1521.	48 1453.0	4 946.28	1090.29	1018.29	,			,			,			'	•	<u> </u>
B) 1. SINIF INS./ 1st Class Construction	1356.12	1464.52	1410.32	1095.02	1136.18	1115.	60 960.{	51 1021.	43 990.97	7 708.90	751.62	730.26										'	•	i i
C) 2. SINIF INS./ 2nd Class Construction	913.06	980.33	946.70	731.88	776.97	754.4	13 592.0	61 672.5	51 632.5t	\$ 454.96	475.53	465.25				-	-			-	•	-	•	
D) 3. SINIF INS./ 3rd Class Construction	711.30	783.32	747.31	509.50	574.39	541.5	386. 1	90 460.	51 423.71	1 319.65	341.01	330.33											'	
E) BASİT/ Basic						•	98.1	117.	30 108.01	60.93	72.78	66.86	'			80.70 1	07.61	94.16 5	5.39 68	.06 61	.73 41.	92 52.9	8 47.4	10
	5) HAST,	AHANE - I	KLINIK BİR	VALARI/ F	- HOSPITAL	CLINIC	BUILDING																	
A) LÜKS İNŞ./ Luxuary Construction	1793.19	1912.22	1852.71	1441.18	1542.35	1491.	77 1188.	.64 1307.	67 1248.1	6 899.56	1032.21	965.89		•								•	•	
B) 1. SINIF INS./ 1st Class Construction	1284.72	1384.20	1334.46	1037.28	1079.80	1058.	54 906.	37 967.1	58 936.9	3 669.99	710.79	690.39	-										•	
C) 2. SINIF INS./ 2nd Class Construction	866.39	927.63	897.01	688.70	733.77	711.2	24 561.	14 636.	32 598.9t	3 430.20	448.94	439.57	'									•	•	
D) 3. SINIF INS./ 3rd Class Construction	674.25	741.42	707.84	482.90	546.70	514.8	30 367.:	32 435.:	32 401.32	2 303.52	326.50	315.01					•			-		'	'	<u> </u>
E) BASIT/ Basic	'	'		,			90.1	2 108.8	36 99.49	56.96	68.86	62.91			•	61.18	96.94	79.06	2.70 61	.18 56	.94 41.	69 53.5	9 47.6	+

A-5-1

BİNALAR' BUILDINGS	ĢEL S	IK KARKA TEEL BUIL RAMEWC	S BINA/ DING NRK	BETC / CONCF	NARME KA RETE FRAM	RKAS EWORK	YIĞM /Brick N	A KAGIR I Iasonry Bi	BİNA uilding		A YARIKA NA F AND ST	GIR BI ONE	AH\$/ WOOE	AP BİNAL <i>ı</i>) BUILDIN	GS BI	taş du	VARLI Bİ STONE V			U TARZI E A DING STYL	i KERP ADO	Ç VE Dİ 3E AND SIMPL	Ğ.BASİ ⁻ OTHER
	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. /	ASG. Min	AZA. 0 Max	DRT. A	SG. AZ Ain Ma	A. ORT X AVE	. ASG	AZA Max	ORT. Ave
	6) BANF	(A - SIGO	RTA BINAL	ARI/ BAN	K - INSURAI		DINGS																
A) LÜKS İNŞ./ Luxuary Construction	1808.50	2072.43	1940.47	1465.93	1563.93	1514.93	1074.01	1205.43	1139.72	908.43	1046.68	977.56								'	•	•	•
B) 1. SINIF INS./ 1st Class Construction	1301.88	1405.93	1353.91	953.99	1051.22	1002.61	745.11	850.69	797.90	598.52	687.41	642.97				,				'	•	•	•
C) 2. SINIF INS./ 2nd Class Construction	876.53	941.12	908.83	645.60	702.60	674.10	450.43	548.39	499.41	382.83	450.42	416.63							•	•	•	•	•
D) 3. SINIF INS./ 3rd Class Construction	682.84	710.18	696.51	442.08	488.38	465.23	307.61	374.44	341.03	284.04	318.25	301.15				,			•	'	•	•	•
E) BASİT/ Basic	221.80	240.78	231.29	119.25	163.32	141.29	94.16	113.19	103.68	72.16	94.16	83.16	103.30	123.81	113.56 7	7.48 1	03.30 9	0.39 6	6.08 77.	48 71.7	8 47.08	54.6	50.86
	7) İDARI	E BİNALA	RI/ ADMINI	STRATIO	4 BUILDING																		
A) LÜKS İNŞ./ Luxuary Construction	1459.66	1554.65	1507.16	901.06	1090.30	1040.68	778.39	886.86	832.63	573.52	750.04	661.78							•	'	'	•	•
B) 1. SINIF INS./ 1st Class Construction	900.32	985.39	942.86	679.16	755.69	717.43	520.35	592.64	556.50	421.79	487.74	454.77								'	'	'	•
C) 2. SINIF INS./ 2nd Class Construction	1 574.23	611.82	593.03	448.72	468.59	458.66	349.48	374.34	361.91	231.09	291.35	261.22	,	,		,	,			'	'	•	•
D) 3. SINIF INS./ 3rd Class Construction	402.63	455.82	429.23	306.25	362.97	334.61	246.70	272.24	259.47	144.61	190.72	167.67								'	'	'	•
E) BASIT/ Basic	182.20	221.90	202.05	108.49	133.28	120.89	57.43	75.15	66.29	57.43	75.15	66.29	102.09	105.63	103.86 6	35.21 8	30.81 7	3.01 5	3.87 63.	07 58.4	7 34.75	43.93	39.3
	8) BENZ	'in İSTAS'	YONU, YIK/	AMA VE Y.	AĞLAMA Bİ	NALARI/ (GASOLINE	STATION,	WASHING	& OILIN	g Bulldi	NGS											
A) LÜKS İNŞ./ Luxuary Construction	1379.54	1480.69	1430.12	1063.17	1169.63	1116.40	835.01	951.40	893.21	•								•	•	•	•	•	•
B) 1. SINIF INS./ 1st Class Construction	927.79	1017.53	972.66	728.58	810.69	769.64	527.01	635.76	581.39							-		-		•	•	•	•
C) 2. SINIF INS./ 2nd Class Construction	1 569.60	640.33	604.97	450.97	502.67	476.82	318.65	383.29	350.97							-		-		•	•	•	•
D) 3. SINIF INS./ 3rd Class Construction	390.90	431.94	411.42	271.49	327.79	299.64	155.13	208.39	181.76	111.78	136.88	124.33	155.13	212.93	184.03 1	21.68 1	49.09 1:	35.39 7	8.34 121	68 100.0	1 59.33	78.34	68.87
E) BASİT/ Basic	144.52	185.52	165.02	103.42	142.98	123.20	80.61	97.38	89.00	61.60	80.61	71.11	86.70	94.30	90.50	54.72 8	36.70 7	0.71 4	4.88 54.	72 49.8	32.70	44.88	38.79
	9) YERA	LTI GAR	VJLARI/ Un	deraround	darades																		
A) LÜKS İNS./ Luxuary Construction		•		,	, ,	•		•		,	,		,	,		,	,	,	•	'	'	•	•
B) 1. SINIF INS./ 1st Class Construction			.														,		•	'	'	•	•
C) 2. SINIF INS./ 2nd Class Construction	1 639.14	735.02	687.08	464.64	571.83	518.24				•									•	•	•	•	•
D) 3. SINIF INS./ 3rd Class Construction	456.51	510.43	483.47	320.45	386.38	353.42				'						-	-	-	•	•	'	•	•
E) BASİT/ Basic	182.20	221.90	202.05	141.79	182.20	162.00				•					•	36.15 4	1 8.22 4	2.19 2	4.78 30.	46 27.6	2 18.79	23.76	21.28
	10) MÜS	stakil G	ARAJLAR/ I	INDEPENC	JENT GARA	GES																	
A) LÜKS İNŞ./ Luxuary Construction	•			•		•				•									•	•	•	•	•
B) 1. SINIF INS./ 1st Class Construction						•					•					-		-		•	•	•	•
C) 2. SINIF INS./ 2nd Class Construction	1 380.11	429.25	404.68	301.33	369.39	335.36	169.19	187.91	178.55	164.96	204.14	184.55	223.47	279.86	251.67 1	79.20 2	20.68 1	99.94 10	9.56 158	80 134.1	- 8	•	•
D) 3. SINIF INS./ 3rd Class Construction	271.51	320.45	295.98	193.18	236.80	214.99	126.18	133.28	129.73	104.19	127.59	115.89	157.38	198.50	177.94 1	13.42 1	39.68 1:	26.55 7	3.06 113	42 93.2	4 65.21	73.06	69.1
E) BASIT/ Basic	141.79	172.94	157.37	108.49	133.28	120.89	43.23	53.87	48.55	57.43	75.15	66.29	65.21	80.81	73.01 6	35.21 8	30.81 7	3.01 3	4.75 43.	33 39.3	4 30.46	41.83	36.15

	11) ÇOK.	KATLI G/	ARAJLAR/ I	MULTI ST	OREY GARA	GES														
A) LÜKS İNŞ./ Luxuary Construction						•							-	-	•	•	•	'	•	
B) 1. SINIF INS./ 1st Class Construction														-	•	•	•	'	•	_
C) 2. SINIF INS./ 2nd Class Construction	723.47	789.98	756.73	510.14	587.89	549.02								-	•	•	•	'	•	
D) 3. SINIF INS./ 3rd Class Construction	495.54	523.15	509.35	364.39	402.63	383.51			-			-	-	-	•			'	•	_
E) BASİT/ Basic	224.72	265.10	244.91	141.79	182.20	162.00							-	-	•	•	'	'	•	

Data Collection Survey for Disaster Resilient Urban Plan in Turkey

BINALAR/ BUILDINGS	ÇELİK STE FR	KARKA: EL BUIL	S BINA/ DING RK	BETC / CONCI	NARME KA	RKAS EWORK	YIĞ /Brick	iM A KAGİ Masonry	R BİNA Building	YIGM/ /HAL	A YARI KJ NA _F AND S'	AGIR BI TONE	AHS	AP BİNALJ D BUILDIN	AR GS	TA\$ DU	VARLI Bİ STONE V	NA G VALL SI	ECEKOND N LUM BUILT	U TARZI F A DING STYI	BI KERP ADO LE	iç ve di Be and Simpl	Ğ.BASİT OTHER E	
	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. 0 Max	DRT. A Ave N	SG. AZ Ain Ma	A. ORI X Ave	F. ASG	. AZA. Max	ORT. Ave	1
	12) YURT	BINALA	RI/ DORMI	TORY BU	ILDINGS																			1
A) LÜKS İNŞ./ Luxuary Construction				•		•	•	•	•										•	•	•	•	•	_
B) 1. SINIF INS./ 1st Class Construction				•		•	•	•	•		•								•	•	•	•	•	_
C) 2. SINIF INS./ 2nd Class Construction	546.60	603.98	575.29	352.96	426.20	389.58	295.99	353.8	9 324.94	296.05	340.30	318.18							•	'	'	'	•	
D) 3. SINIF INS./ 3rd Class Construction	364.39	402.63	383.51	271.51	320.45	295.98	236.80	272.2-	4 254.52	246.70	272.24	259.47							•	'	•	•	•	-
E) BASİT/ Basic	182.20	221.90	202.05	80.81	105.63	93.22	57.43	75.15	66.29	47.48	57.43	52.46	102.09	115.55	108.82	65.21	80.81 7	3.01 5	1.01 80.	81 65.9	1 30.46	3 41.83	36.15	
	13) OKUL	BINALA	RI/ SCHOC	יר פחורםו	NGS																			
A) LÜKS İNS./ Luxuary Construction	-	,		,		•		•	•	'							,	,	•		•	•	•	_
B) 1. SINIF INS./ 1st Class Construction						•	•	•		•							,		•	•	•	•	•	-
C) 2. SINIF INS./ 2nd Class Construction	641.41	698.62	670.02	398.14	471.86	435.00	316.35	340.3(0 328.33	267.00	331.52	299.26	240.49	295.13	267.81	181.46	22.34 2	01.90	•	•	•	•	•	-
D) 3. SINIF INS./ 3rd Class Construction	442.36	492.00	467.18	306.25	362.97	334.61	253.08	272.2*	4 262.66	190.72	236.80	213.76	209.13	256.63	232.88	113.42	38.95 1	26.19 7:	3.06 113.	42 93.2	4 65.21	73.06	69.14	1
E) BASİT/ Basic	182.20	199.19	190.70	90.76	105.63	98.20	57.79	75.15	66.47	75.85	80.11	77.98	83.64	100.65	92.15	65.21	80.81 7	3.01 4	3.93 51.	01 47.4	7 30.46	3 41.83	36.15	1
	14) VİİZM	E HAVII	MS /14	a SNIMMI	s 100																			1
A) I fike ins / I miner Construction														,		,	,			_		_		
P) 1 SINE INS / 1st Class Construction	018 61	1044 EE	081 50	E1173	677 37	644 52	341.33	1381	1 380 72							, ,				' '				-
C) 2 SINIF INS / 2nd Class Construction	530.97	596.90	563.94	370.75	398.40	384.58	227.57	20.00	259.83									, ,						
D) 3 SIME INS / 3rd Class Construction	385.64	117.36	414.00	21.0.10 236.80	04-000	254 E2	111 20	144.61	1 127 05															-
D) 3. SINIT ING. 3rd Class Construction F) BASIT/ Basic	+0.000	- 100	414.00					144.0											· ·	• •				-
																			_					-
	15) BANY	O ve HAI	MAMLAR	BATH & E	ATHS																			
A) LÜKS İNŞ./ Luxuary Construction				•		•		•	•	•	•								•	•	•	•	•	_
B) 1. SINIF İNŞ./ 1st Class Construction	1307.24	1416.42	1361.83	666.40	733.02	699.71	496.94	592.6	4 544.79	-				-			-			•	•	-	•	
C) 2. SINIF İNŞ./ 2nd Class Construction	828.02	898.21	863.12	420.39	468.59	444.49	347.35	374.3-	4 360.85				-							'	•		•	
D) 3. SINIF İNŞ./ 3rd Class Construction	618.18	662.83	640.51	253.08	305.55	279.32	187.14	236.8	0 211.97										•	•	'	'	•	
E) BASİT/ Basic						•		•	•	•	•							•	•	•	•	•	•	
	16) PAZA	R ve FUA	AR YERLEF	kindeki y	'APILAR' BU		in and EX	(HIBITION	MARKET PL	ACE														
A) LÜKS İNŞ./ Luxuary Construction	,	,				•	•	•	•	'	,						,		•	'	'	'	•	
B) 1. SINIF INS./ 1st Class Construction						•	•	•	•	•									•	•	•	•	•	
C) 2. SINIF INS./ 2nd Class Construction	-					•		•			•								•	•	•	•	•	
D) 3. SINIF INS./ 3rd Class Construction	306.25	362.97	334.61	197.78	249.54	223.66	165.88	183.6;	2 174.75	127.59	144.61	136.10	180.77	198.50	189.64	113.42	38.95 1	26.19	•	•	•	•	•	-
E) BASIT/ Basic	199.19	233.21	216.20	90.76	105.63	98.20	75.15	90.76	82.96	57.43	75.15	66.29	102.09	115.55	108.82	65.21	80.81 7	3.01	•	•	•	•	•	
	17) SOĞU	K HAVA	DEPOLAR		TORAGES																			
A) LÜKS İNS / Liviian/ Construction		,			,	ŀ	. 	ŀ		[-		.										-

A-5-3

A) LÜKS İNŞ./ Luxuary Construction											•						•	•	•	•	•	
B) 1. SINIF INS./ 1st Class Construction						•				-	-			-	-	-	•	•	-	•	•	
C) 2. SINIF INS./ 2nd Class Construction	499.48	551.95	525.72	358.25	422.81	390.53	324.92	396.06	360.49							-		'	•	'	•	
D) 3. SINIF INS./ 3rd Class Construction	364.39	402.63	383.51	271.51	320.45	295.98	194.26	236.80	215.53								•	'		'	•	
E) BASIT/ Basic	141.79	182.20	162.00	122.64	141.79	132.22	75.15	90.76	82.96								•	'		'	•	

Data Collection Survey for Disaster Resilient Urban Plan in Turkey

BINALAR' BUILDINGS	ÇELİK STE FR	KARKAS EL BUILI TAMEWO	s Bina/ Ding RK	BETC / CONCI	NARME KAF RETE FRAMI	RKAS EWORK	YIĞM /Brick N	A KAGİR E Iasonry Bu	sinA ilding	YIGMA /HALF MASO!	YARI KAG NA : AND STO	SIR BI	AH\$A WOOD	P BİNALAI BUILDING	. UB	IA\$ DUV	ARLI BİN		ECEKONDI NA	J TARZI BI	ADOB	Ç VE DİĞ E AND O SIMPLE	.BASIT
	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	ORT. Ave	ASG. Min	AZA. Max	Ave N	SG.	ZA. OF Max A	.⊤ə ≊ ¥	SG. AZA lin Max	. ORT.	ASG. Min	AZA. Max	ORT. Ave
	18) KURU	TMA YEF	RERI/ DR	Y AREA																			
A) LÜKS İNŞ./ Luxuary Construction						•		•		•									•	•	•	•	•
B) 1. SINIF INS./ 1st Class Construction	•					•		•									•		•	•	•	•	•
C) 2. SINIF INS./ 2nd Class Construction						•		•									•		•	•	•	•	•
D) 3. SINIF INS./ 3rd Class Construction	362.97	386.38	374.68	197.78	249.54	223.66	165.88	183.62	174.75	126.18	133.28 1	29.73							•	•	•	•	•
E) BASİT/ Basic	199.19	233.21	216.20	80.11	96.42	88.27	75.85	80.11	77.98	47.48	57.43	52.46							•	•	•	•	•
	19) SİLOL	AR/ SILC																					
A) LÜKS İNŞ./ Luxuary Construction						•													•	•	•	•	•
B) 1. SINIF INS./ 1st Class Construction			.					,		,			,				•		•	•	•	•	•
C) 2. SINIF INS./ 2nd Class Construction	828.02	898.21	863.12	448.72	517.49	483.11													•	•	•	•	•
D) 3. SINIF INS./ 3rd Class Construction	641.58	695.44	668.51	320.45	362.97	341.71													•	•	•	•	•
E) BASİT/ Basic	•			-		•		-		-	-	-					•		-	•	-	-	-
	20) TRAN	SFORMA	TÖR BİNA	LARI/ TR	ANSFORME	S BUILD	NGS																
A) LÜKS İNŞ./ Luxuary Construction						•		•											•	•	•	•	•
B) 1. SINIF INS./ 1st Class Construction	,					•		,		,			,						•	•	•	'	•
C) 2. SINIF INS./ 2nd Class Construction						•		•									•		•	•	•	•	•
D) 3. SINIF INS./ 3rd Class Construction	411.18	462.90	437.04	224.72	272.92	248.82	113.42	131.85	122.64	94.99	99.25	97.12					•		•	•	•	•	•
E) BASIT/ Basic						•											•		•	•	•	•	•
	21) DİĞEF	R TICARE	THANE ve	İŞYERLE	Rİ/ OTHER I	SUSINES:	S FIRM and	COMMER	CIALS														
A) LÜKS İNŞ./ Luxuary Construction	1808.50	1942.20	1875.35	1205.43	1329.22	1267.33	950.21	1074.01	1012.11	727.67	858.27 7	92.97	313.27 1	446.96 13	80.12		•		•	•	•	-	•
B) 1. SINIF INS./ 1st Class Construction	1236.54	1328.44	1282.49	850.69	922.08	886.39	598.52	721.56	660.04	368.37	470.91 4	19.64	26.63 1	004.12 9	65.38		•			•		-	•
C) 2. SINIF INS./ 2nd Class Construction	828.67	910.73	869.70	549.17	568.89	559.03	355.44	437.51	396.48	206.57	261.30 2	33.94	97.00	\$20.56 6	08.78		•		•	•	•		-
D) 3. SINIF INS./ 3rd Class Construction	554.47	619.75	587.11	371.44	442.08	406.76	239.24	289.41	264.33	141.27	176.98 1	59.13 4	04.84	180.77 4	42.81		•		•	•			•
E) BASIT/ Basic	240.78	264.33	252.56	126.83	163.32	145.08	94.16	113.19	103.68	72.16	94.16	83.16	97.26	123.81 1	10.54 7	7.48 1(03.30 90 .	39 66	:08 77.4	8 71.78	40.25	50.87	45.56
	22) MESK	EN BINA	LARI/ HOL	ISE BUILI	DING																		
A) LÜKS İNŞ./ Luxuary Construction	1867.89	1991.91	1929.90	1107.99	1243.48	1175.74	908.73	937.04	922.89			•	179.95	631.38 15	55.67			_	•	•		•	•
B) 1. SINIF INS./ 1st Class Construction	1234.62	1332.04	1283.33	699.72	768.76	734.24	581.89	613.75	597.82	383.49	402.09 3	92.79	52.11 1	069.46 10	10.79				•				•
C) 2. SINIF INS./ 2nd Class Construction	819.27	902.49	860.88	448.12	532.29	490.21	380.81	398.57	389.69	270.15	274.58 2	72.37 (14.66	704.12 6	59.39				•	•	•	'	•
D) 3. SINIF INS./ 3rd Class Construction	552.67	614.66	583.67	316.17	378.16	347.17	284.31	295.84	290.08	190.43	193.96 1	92.20	20.63	340.11 3	30.37 15	9.40 19	96.61 178	.01 91	.25 141.7	116.48		•	•
E) BASİT/ Basic	227.62	277.21	252.42	161.17	227.62	194.40	90.34	93.87	92.11	90.34	93.87	92.11	04.51	125.74 1	15.13 6	3.74 10	0.97 82.	36 54	.90 63.7	4 59.32	43.42	54.90	49.16
	23) ÖZELI	LİK ARZE	EDEN BİN/	LAR/ Exc	eptional Fea	tures Bu	Idings																
	ÖZELLİK İR ÜST SI	ARZEDEľ INIFA AÍT	N BINALAR INŞAAT D	IN VERGİ EĞERİ Y	DEĞERİNİN OKSA TESPİ	HESABIN T EDILEN	DA, KULLAN I İNŞAAT SI	JIŞ TARZIN NIFINDAKİ	A GÖRE (C ORTALAM	TEL, SIN A DEĞEF	IEMA, TÌY <i>I</i> 8 % 50 AR	atro, İşy Tirilmak	ERI VE N SURETI	esken Bi 'Le değe	NASI GİBİ) ERLENDİR	VARSA ME YAPI	BİR ÜST İN LIR. İNŞA	IŞAAT D AT TÜRÜ	JEČERININ U IÇİN MET	ORTALAM REKARE I	a rakami Jormal İi	I ESAS AI NŞAAT N	LINIR. B IALİYET

BEDELI BELIRLENMEMIS ISE BU SINFIN ALTINDA BELIRLEME YAPILMIS ILK SINIFA AIT ORTALAMA RAKAM % 50 ARTIRLARAK DIKKATE ALINIR. / Bublich value calculation of trax exceptional features of the Manipulative by (Hotel, Chema, Theater, Comercial Building and Housing) Construction of a top value Versa will be based on average figures. If there is a top class value construction construction construction of a top value Versa will be based on average figures. If there is a top class value construction cons

HAFIF PREFABRIK BINALAR, YIGMA YARI KAGIR BINA GRUBUNDA DEGERLENDIRILIR/ Prefabricated light buildings, and Stone Masonry Building group Haf the evaluate

NOT: METREKARE NORMAL INSAAT MALYET BEDELLERININ ORTALAMALARI ESAS ALINIR. METREKARE NORMAL INSAAT MALYET BEDELLERINE ASANSÖR, KALORIFER VEYA KLIMA TESISAT BEDELLERI DAHIL DEĞILDIR. (BINADA KALORIFER, KLIMA VE ASANSÖR TESISATI VARSA BU BEDELLERE KALORIFER VEYA KLIMA IÇIN %6 ORANINDA ILAVE YAPILIR.) Note: this cost doesn't include the cost for hydronic panel heating, air conditioning and elevator facilities. Hence, 8% for the air conditioning and the heating and 6% for the elevator will be added as needed.

Data Collection Survey for Disaster Resilient Urban Plan in Turkey

2) Scale of other facilities for calculate approximate cost estimate (Excl. Disaster & Emergency Management Center and Disaster Base Hospital)

Facilities	Scale	Assuming of scale
Training Center for Search	11,700m2	Assuming a scale of AFADEM 11,700m2
& Rescue		
Education Center for	12,000m2	Assuming a scale of Life Safety Learning Center in Tokyo
Disaster Preparedness		(Tachikawa Bousai-Kan) about 12,000 m [*]
(National level)		Cost of building and equipment is calculated that divide
		proportionally of total floor area by Bursa Disaster
		Training Center.
Education Center for	6,000m2	Assuming a scale of Bursa Disaster Training Center
Disaster Preparedness		(6,200m2). Total Construction Cost is 14.5 million TL.
(Regional level)		
Research & Development	10,000m2	Assuming about 2/3 scale of Hyogo Earthquake
Center:		Engineering Research Center (16,642.90m2) in Japan
DRM related facilities (Fire	6,000m2	Assuming a scale of AFAD Disaster Management Center
Dept. /AKOM/112 etc.)		of Type A (6,000m2)
	100,000m2	Assuming a scale of Miki Disaster Management Park
Park/Open Space		(10ha)
School	3,500m2	Assuming a scale of 500 students, total floor area is
		3500m2
Stockpile Storage	2,400m2	Assuming a scale of AFAD LOGISTIC CENTER
		(2,400m2)
Sports Center (Gymnasium,	7,500m2	Assuming a scale of Yamagata city Sports Center in
pool)		Japan. Total Floor area is 7,500m2 (Pool:2,044m2, Second
		Gymnasium:5,595m2)
Waste Incineration Plant	22,500m2	Assuming a cost scale of Proposal of the Project of
		Incineration plant and Disaster Management Complex
		related seismic base isolation. Incineration Plant and
		Power Generation facility (22,500m2/3,000 ton/day)
		45,000 million yen
Heliport	5,000m2	Assuming a scale of Heliport next to the site of AFAD
		Bursa (5,000m2)
Smart Community Base	35ha	Assuming a scale of Harumi Triton Square in Japan
Facilities		(43.5ha, 45F+B4F)
Seismic strengthening of	100 m	Assuming a distance of Highway in Bursa (100m)
bridge		
Emergency Road Network	200,000m2	Assuming a distance of Mudanya - Gemlik road,
		20km(L)×10m(W)=200,000m2
Seaside Disaster	10 ha	Assuming about 1/3 scale of Sakaisenboku Port second
Management Complex:		district area of Disaster prevention bases in Japan
Gemlik port		(27.9ha), 1870 million yen
Improvement of the		Project components are Expansion of Road:5km, Park/Open
mountainous area.		Space 2000m2, Stockpile Storage, and Mini Monorall:250m is assuming Asuka Park in Kita-ku. Tokyo. Mini monorail Asuka
		pearl rail has 260 million yen per 48m.

Date	Contact	Summary of Meeting
Oct. 1,	PROTA engineering Head	There is public unit cost table for public construction works in
2013	Office, Ankara	Turkey, but it is set at a cost that does not meet the market.
	Mr. Joseph Kubin(Deputy	Therefore, bidders are usually to submit your own cost.
	General Manager)	
Oct. 8,	Provincial Directorate of	Inegol Hospital (54,000m2 and 300 beds) is currently under
2013	Health Bursa	construction, at an approximate cost estimate is about 54 million
	Dr. Hakan Bas	TL(about 2.7 billion yen).
Oct. 10,	MOH Construction & Health	Construction Cost per unit area for Hospital is about 900
2013	Investment, Ankara,	USD/m2 to 1,000 USD/m2. In case of Erzurum Hospital, Total
	Murat BINICI (Health	floor area of 1st Phase is 10,000m2 (700beds), 2nd Phase is
	Investment Director)	220,000 m2, total cost is 320 million USD (Approx. $33,400$ million
N. OF		yen). (Approx. 145,000yen/m2)
Nov 25,	AFAD Bursa	Total construction cost of Bursa Disaster Learning Center is
2013	Mr. Ibrahim Tari (Director)	14,500,0001L (Approx. 700 million yen) including equipment.
		GLIVENCEM Turkish firm procured earthquake simulator.
E.L. 19	VD Asch (Less 1 Aschitester	(Site Bursa, lotal floor area 6,200m2)
гер. 13, 2014	firm) Istanbul	rublic unit cost table for public construction works in Turkey
2014	Paria Dagan (Architect/	the generation project for comparing with the
	Director)	hidding cost. This unit cost is including architectural work
	Directory	cleatrical and mechanical works cost but not including medical
		equipment cost
Fob 13	Taisoi Corporation Marmaray	Escalation of construction materials cost is 8% to 12% from
2014	Project office	2010 to 2013 Re-bar and electric wire is made by Turkey and
2011	Mr HatanoYoshihisa (Project	most construction materials can be produced in Turkey. It is very
	Manager)	difficult that compete in the bid amount cost in comparison to
	Manager,	Turkish contractor and Japanese one with respect to
		construction cost.
Feb. 14,	Hazama Ando Corporation	Normal worker's labor cost in turkey is about 500 USD/ month
2014	Istanbul office	in construction works. Tax of 18 % is applied to the building
	Mr. Yoshinori Moriwaki	construction cost. In addition, tax of 5.5% is applied that system
	(General Manager)	of with Holding Tax that the construction period crosses fiscal
	_	year (DecJan.) is applicable. Construction materials cost of
		Bursa and Istanbul is about the same. Japanese contractor will
		be able to compete with Turkish contractor in the bid, if it has
		extra charge about 20% to 30% of the total construction cost.
Feb. 14,	Seyas (Local Architecture	We cannot make a comment about the Hospital project cost
2014	firm), Istanbul	which is implemented by our firm. Because we have duty of
	a alaz albay (CEO)	confidentiality with the client. But we can say from previous
		experience, it is calculated that about 1,500 USD/m2 is for
		construction cost per unit area of Hospital and also 1,500
		USD/m2 is for medical equipment. However, this cost is not
		including design fee (about 4% to 8% of total construction cost)
D 1 - -		and seismic isolation device fee.
Feb. 17,	YUKSEK Proje (Local	Frice of steel has been rising recently, we have adopted KC
2014	Architecture firm), Ankara	structures (90%) than the steel frame. Calculates a cost estimate
	Engineen President)	of the facilities of public works in the unit price by MOEU is
	Engineer rresident/	published, it is used when evaluate the tender price. Standard
		two hode, and operation room is designed $m \times 2m$. Lean see that
		this is the standard design of public bespital. With regard to
		hospital project cost there is no made nublic appounce in the
		hidding but I think that it might be about to become 900 TL/m?
		approximately.
Feb. 18,	Su Yapi (local Engineering &	We are using the building unit cost by MOEU to make a roughly

3) List of contact of main interview on construction cost situation in Turkey

2014	Consulting Inc.)	estimate cost of construction. This unit cost is not including 18%
-	Ankara	of TAX. It is used that detail construction materials cost by
	Ali Canoglu (General	MOEU when we are estimating cost in the basic design phase
	Manager)	with quantity of each works on detailed construction works. In
		the bidding stage, this cost will be discounted about 20% to 30%
		of the public unit cost. If you need to calculate Hospital building
		cost, you can use this public unit cost by MOEU. In case of
		Suvapi project, we can say about 1.500TL/m2 is the minimum
		cost of public hospital. In case of private sector hospital about
		2.000TL/m2 or 2.500 TL/m2 exist.
Feb. 19,	AFAD Ankara	There is two type of Logistic Storage scale, one of the
2014	Ms. Belgin (Planning &	1,200m2(48 containers) and another one of 2,400m2 (96
	Mitigation)	containers). Total construction cost is 240 million TL (not incl.
		TAX) in the 81 provinces. (150 million yen per province)
Feb. 20,	ANEL (M&E Local	Roughly, it is estimated at 300 USD/m2 for building cost in the
2014	Architecture firm), at Istanbul	part of electrical and mechanical work cost in Turkey. in case of
	Icra Kurulu Uyesi (Executive	Kocaeli University Hospital, it has 700 beds and 70,000m2 of
	Board Member)	total floor area (100m2/bed), including seismic isolation
		structure, total cost of electrical and mechanical work is 32
		million USD (not include medical equipment) (475USD/m2). In
		case of private hospital in Antalya (56beds) with Operation
		Room (3), Outpatient consultation room (18), Intensive care
		room(1), Dining room (1), ICU (3), total floor area is 11,000m2,
		total cost of electrical and mechanical work is 4.0 million USD
		(not include medical equipment) (363 USD/m2)
Feb. 20,	YD Architects (Local	From the last few years, Turkey is construction rush to build the
2014	Architecture firm), at Istanbul	building in the whole country. However, there are cases that new
	Mr. Baris Dogan (Architect	construction firm was created by people who do not know well
	Director)	hospital architecture design, and they succeeded bit. Regarding
		with design fee, there is calculation guideline by Turkish
		architectural Association.

4) Breakdown cost of Hospital construction projects in Turkey (source by local architecture firm)

A) Sakarya 400 Bed hospital (at Sakarya provinc

Sakarya 400 Bed hospital	67,693	m2 Total fl	oor area		1TL=	46.85 yen
Work	Interim	Final	Cost According to	ті	1000 IPY	ratio
WOR	Payment	Payment	% (TL)	12	1000 51 1	Tatio
1 Foundation		4.00%	3,701,080.00			
2 Basement + ground floor + other floors formwork, reinforcement, concrete		15.00%	13,879,050.00			
3 Wall, sill and parapet works		2.50%	2,313,175.00			
4 Roof works		3.00%	2,775,810.00			
5 Installing doors, windows, counters, benches and cabinets		6.00%	5,551,620.00			
6 Facade		4.00%	3,701,080.00	47,651,405.00	2,232,468	51.50%
7 Floor covering		5.00%	4,626,350.00			
8 Ceiling		5.00%	4,626,350.00			
9 Stairs (inc, emergency stairs)		1.00%	925,270.00			
10 Wall covering		5.00%	4,626,350.00			
11 Paint works		1.00%	925,270.00			
12 Mechanical installation works		22.95%	21,234,946.50	21,234,946.50	994,857	22.95%
A) Sanitary installations	1.25%					
B) Heating system installations	1.20%					
C) Mutual installations	3.00%					
D) Ventilation and air-conditioning installations	6.50%					
E) Automation system installations	1.20%					
F) Burner installations	0.10%					
G) Kitchen installations	1.00%					
H) Laundry installations	0.45%					
I) Hospital equipment installations	5.00%					
J) Cooling equipment installations	3.25%					
13 Environmental lighting system		0.05%	46,263.50			
14 Transformer shift		3.00%	2,775,810.00			
15 Automatic door				12 074 772 50	565 702	12 05%
16 Hermetic sliding door		0.50%	462,635.00	12,074,773.50	505,705	13.0376
17 Low-pressure voltage sliding door						
18 Electrical installations		9.50%	8,790,065.00			
19 Elevator		4.00%	3,701,080.00	4 162 715 00	195 070	4 50%
20 Automation		0.50%	462,635.00	4,103,715.00	195,070	4.30%
21 Infrastructure and landscape		3.00%	2,775,810.00	7 402 160 00	246 701	8 00%
22 Miscellaneous works		5.00%	4,626,350.00	7,402,100.00	540,791	8.00%
Total		100.00%	92,527,000.00		4,334,890	100%

64,037 yen/m2

B)	Seyrante	pe Hospital	(at Istanbul	province)
----	----------	-------------	--------------	-----------

Ĺ	Sey	rrantepe Hospital	169,760	m2 Total fl	oor area		1TL=	46.85yen
		Work	Interim Payment	Final Payment	Cost According to % (TL)	TL	1000 JPY	ratio
1	A)	Soil improvement methods		4.00%	7,247,000.00			
	B)	Foundation		4.50%	8,152,875.00			
2	Bas	ement + ground floor + other floors formwork, reinforcement, concrete		17.30%	31,343,275.00			
3	Wal	I, sill and parapet works		2.00%	3,623,500.00			
4	Roc	of works		1.50%	2,717,625.00			
5	Inst	alling doors, windows, counters, benches and cabinets		4.00% E.00%	7,247,000.00	96,566,275.00	4,524,130	53.3%
0	Fac			1 20%	7,609,250,00			
/ 8	Ceil	ing		3.80%	6 884 650 00			
9	Stai	rs (inc. emergency stairs)		0.50%	905.875.00			
10	Wal	l covering		6.00%	10.870.500.00			
11	Pair	nt works		0.50%	905,875.00			
12	Med	chanical installation works		25.15%	45,565,512.50	45,565,512.50	2,134,744	25.2%
	A)	Sanitary installations	2.50%					
	B)	Heating system installations	3.00%					
	C)	Mutual installations	3.40%					
	D)	Ventilation and air-conditioning installations	5.80%					
	E)	Automation system installations	2.40%					
	F)	Burner installations	0.10%					
	G)	Kitchen installations	1.50%					
	H)	Laundry installations	0.45%					
	1) 1)	Hospital equipment installations	2.50%					
	J)		2.00%					
13	K) Eler	strical Works	2.0076	14 65%	26 542 137 50	26 542 137 50	1 243 499	14 7%
15	LICO	Cable	2 50%	14.0370	20,342,137.30	20,342,137.30	1,243,477	14.770
		Lighting Automation	0.50%					
		Armatures	0.50%					
		Charged Armatures	0.05%					
		Operating room system	1.00%					
		Negatoscope	0.10%					
		Exit guidance armatures	0.20%					
		Bedhead units	1.00%					
		Switch	0.50%					
		Soket	0.30%					
		Sliding door hermetic and automatic doors	0.70%					
		Phone box and distribution boards	0.20%					
		Fire detection and notification central	0.20%					
		Data system	0.10%					
		X-ray device door detector card-pass system	0.30%					
		Vocalisation - music broadcast system	0.40%					
		CCTV system	0.10%					
		Central timer system	0.10%					
		Parking access control system	0.15%					
		LCD patient get in line system	0.10%					
		Nurse call-up system	0.15%					
	L	Generator and Generator-system	1.00%					
		UPS system	0.40%					
	<u> </u>	Cable tray system	0.30%					
		Environmental lighting system	0.15%					
	-	Ligning conductor-basic earling system Main Danels	0.15%					
	-	Secondary distribution panels	0.75%					
	-	Compensation panels	0.25%					
		Transformaer and OG installations	1.25%					
		Automation	0.75%	1				
14	Elev	/ator		1.40%	2,536,450.00	2,536,450.00	118,833	1.4%
15	Infra	astructure and landscape		1.50%	2,717,625.00	0.064.405.00	144 042	E E0/
16	Mis	cellaneous works		4.00%	7,247,000.00	7,704,023.00	400,043	0.0%
	Tota	al		100.00%	181,175,000.00		8,488,049	100%

50,000 yen/m2

C) megor nospital (at Duisa province)

	Inec	jol Hospital	51,000	m2 Total fl	oor area		1TL=	46.85yen
		Work	Interim	Final	Cost According to	TL	1000 JPY	ratio
	• >		Payment	Payment	% (IL)			
1	A)	Soil improvement methods		4.50%	2,527,380.00			
	B)			4.50%	2,527,380.00			
2	Bas	sement + ground floor + other floors formwork, reinforcement, concrete		16.00%	8,986,240.00			
3	wa	I, sill and parapet works		2.50%	1,404,100.00			
4	Roc	of Works		2.00%	1,123,280.00			
5	Inst	alling doors, windows, counters, benches and cabinets		5.00%	2,808,200.00	30,047,740.00	1,407,737	53.5%
6	⊦ac	ade		4.00%	2,246,560.00			
/	FIO	or covering		4.50%	2,527,380.00			
8	Cei	Ing		4.00%	2,246,560.00			
9	Sta	rs (inc, emergency stairs)		1.00%	561,640.00			
10	Wa	l covering		5.00%	2,808,200.00			
11	Pai	nt works		0.50%	280,820.00	45 000 070 00	700.0/0	04.004
12	Me	chanical installation works		26.75%	15,023,870.00	15,023,870.00	/03,868	26.8%
	A)	Sanitary installations	3.25%					
	B)	Heating system installations	3.10%					
	C)	Mutual installations	5.00%					
	D)	Ventilation and air-conditioning installations	5.00%					
	E)	Automation system installations	1.20%					
	F)	Burner installations	0.10%					
	G)	Kitchen installations	1.00%					
	H)	Laundry installations	0.45%					
	I)	Hospital equipment installations	5.20%					
	J)	Cooling equipment installations	2.45%					
13	Eleo	ctrical Works		12.75%	7,160,910.00	7,160,910.00	335,489	12.8%
		Cable	2.00%					
		Armatures	0.50%					
		Lighting Automation	0.50%					
		Charged Armatures	0.05%					
		Operating room system	0.50%					
		Negatoscope	0.10%					
		Exit guidance armatures	0.20%					
		Bedhead units	1.00%					
		Switch	0.50%					
		Soket	0.30%					
		Sliding door hermetic and automatic doors	0.60%					
		Phone box and distribution boards	0.20%					
		Fire detection and notification central	0.20%					
		TV system	0.10%					
		Data system	0.30%					
		X-ray device, door detector, card-pass system	0.10%					
		Music-anouncement-conference system technical specification	0.40%					
		CCTV system	0.10%					
		Central timer system	0.10%					
		Parking access control system	0.15%					
		LCD patient get in line system	0.10%					
		Nurse call-up system	0.15%					
		UPS system	0.40%					
		Cable tray system	0.25%					
		Environmental lighting system	0.15%					
		Lighting conductor	0.15%					
		Main Panels	0.60%					
		Secondary distribution panels	0.30%					
		Compensation panels	0.25%					
		Transformaer building installations	1.50%					
		Energy automation	1.00%					
14	Elev	vator		1.00%	561.640.00	561.640.00	26.313	1.0%
15	Infr:	astructure and landscape		2.00%	1,123,280.00	11,010.00	20,010	
16	Mis	cellaneous works		4 00%	2,246 560 00	3,369,840.00	157,877	6.0%
<u> </u>					_,_ 10,000,00			
<u> </u>	Tot	al		100.00%	56,164,000,00		2 631 283	100%
L	1.00			100.0070	55, 104,000.00		2,001,200	10070

51,594 yen/m2

ſ

D) Sancaktepe Hospital (at Istanbul province)

Sancaktepe Hospital		53,335	53,335 m2 Total floor area			1TL= 46.85yen	
	Work	General Percentag	Cost According to % (TL)	TL	1000 JPY	ratio	
1	Construction Installations	53.15%	35,318,175.00	35,318,175.00	1,654,656	53.2%	
2	Landscape Insallations	6.19%	4,113,255.00	4,113,255.00	192,706	6.2%	
3	Sanitary Installatons	2.02%	1,342,290.00				
4	Heating-Cooling Installations	6.15%	4,086,675.00		0 766.777	24.6%	
5	Air-Conditioning Installations	9.16%	6,086,820.00				
6	Medical Gas Installations	2.31%	1,534,995.00	16,366,635.00			
7	Fire safety equipment installations	1.04%	691,080.00				
8	Natural gas installations	0.38%	252,510.00				
9	Kitchen and laundry installations	1.60%	1,063,200.00				
10	Pneumatic tube conveying system	0.56%	372,120.00				
11	Automation system	1.26%	837,270.00				
12	Garden irrigation system and decorative pool installation	0.15%	99,675.00				
13	heavy current installation	5.90%	3,920,550.00				
14	low current domestic installations	3.15%	2,093,175.00	10 451 025 00	400.042	14 0%	
15	substation, distribution denter, UPS VE generator installations	4.85%	3,222,825.00	10,031,933.00	499,043	10.076	
16	elevator, lightning protection and basic earthing installations	2.13%	1,415,385.00				
	Total	100.00%	66,450,000.00		3,113,183	100%	

58,370 yen/m2

E) Detail of M&E cost of ADANA Health Complex (at Adana province)
 Adana Health Complex/Turkey
 437,000 m2 Hospital Building
 140,000 m2 Carpark
 1,550 bed Capacity

	USD			
Electrical Works		124.69	/m2	
HV Systems		5.4	/m2	
	supply of main energy cables	excluded		
	HV Switchgear	1.92	/m2	
	Transformers	2.76	/m2	
	HV Cables	0.72	/m2	
LV System		84.99	/m2	
	LV Switsgears	10.71	/m2	
	UPS Units	1.81	/m2	
	Generators	16.84	/m2	
	Lighting Automation System	1.72	/m2	
	Bus Ducts	1.65	/m2	
	Low VoltageCables	16.24	/m 2	
	Cable trays	10.73	/m2	
	Lighting Fixtures	11.94	/m2	
	Façade Lighting	excluded		
	Landscape Lighting	excluded		
	Lighting & Sockets, including all piping and cabling	11.54	/m2	
	Heat Tracing	excluded		
	Snow Melting System	excluded		
	Earthing & Lightning Protection System	1.81	/m 2	
	Elevator & Escalators	excluded		
Weak current Sy	stems	34.3	/m2	
	IP CCTV Systems	2.41	/m2	
	Clock Systems	1.51	/m 2	
	Capark Systems	excluded		
	Nurse Call Systems	3.68	/m 2	
	Fire Alarm Systems	5.13	/m 2	
	Others	21.57	/m2	

Mechanical Works	186.69	/m2		
Plumbing & Sanitary		30.90	/m2	
ACMV (Air Conditional Mechan	nical Ventilation)	89.85	/m2	
Fire protection		24.94	/m2	
BMS (Business Management System)				
Others (Medical Gas & Vaccum) 13.00 /m2				
Cogeneration – Trigeneration System 14.07 /m2				
Solar Panels (for hot water production) 2.04 /m2				
Grounding Heat Pump		3.89	/m 2	

5) Calculation of design fee by local architecture firm

MINIMUM COST ACCOUNTING / NEW ARCHITECTURAL PROJECT COST

PROJECT INFORMATION

Project City/District/Municipality: İstanbul/İstanbul/Metropolitan Municipality I-II-III Group

Area coefficient: 1

Project area: 100000 m²

The number of duplicate blocks: 1

The Project kind: New architectural Project

The building unit cost group: 5B

Architectural class of service: Class 5

Unit cost: 1.270,00 TL

Modification rate: 1

PROJECT SERVICE and PROFESSINONAL PRACTICE	RATE	SERVICE FEE
Preparation and Survey work	5 %	106.680 TL
Preliminary Project work	15 %	320.040 TL
Final Project work	20 %	426.720 TL
Construction Project work	30 %	640.080 TL
System and Installation details	10 %	213,360 TL
Shop drawing	10 %	213.360 TL
Technical Specifications	5 %	106.680 TL
Quantity Survey	3%	64.008 TL
Cost Estimate and cCost Analysis	2%	42.672 TL
TOTAL	100 %	2.133.600 TL
PROFESSINONAL INSPECTION SERVICES	RATE	SERVICE FEE
Inspection and As-build Project	50 %	1.066.800 TL
Final account	7%	149,352 TL
Acceptance of delivery	3 %	64.008 TL
TOTAL	60 %	1.280.160 TL
SCIENTIFIC RESPONSIBILITY SERVICES	RATE	SERVICE FEE

TAXA TA	CITE LICE LICE
27 %	576.072 TL
3 %	64.008 TL
30 %	640.080 TL
	27 % 3 % 30 %

PROFESSIONAL INSPECTION FEE: 300 TL

Total Construction Cost : 100,000m2×1,270TL/m2=127,000,000TL Design Fee : 2,133,600TL+1,280,160TL+640,080TL+300TL=4,054,140 TL Design Fee / total construction cost=3.2%

7). Image and Approximate cost estimate of Information Gathering & Dissemination System

A-6. Disaster Medical Plan by the Turkish Red Crescent

The Turkish Red Crescent has blood centers and disaster management centers in more than 700 branches in 81 provinces across the country.

1) Disaster management

The Turkish Red Crescent has established a disaster logistics system with regional disaster management logistics centers across the country in preparation for and response to disasters. Its disaster response system is well organized with the nationwide networks. Its telecommunication vehicles are equipped with a mobile Turksat satellite communication system. The regional disaster management center owns a stationary satellite communication center and thus is able to respond to disasters in Turkey and the neighbouring countries.

The Turkish Red Crescent engages in humanitarian support activities at the time of disasters by utilizing its Disaster Management Directorate, nine regional disaster management bureaus (BAYM), 23 rural disaster management divisions (YAYS), and AFOM.

The Disaster Management Directorate uses 23 communication vehicles, 10 Turksat satellite communication systems, four Inmarsat satellite communication systems, 11 VHF systems, 20 HF SSB long-wave radio systems, 158 VHF hand radios, 24 VHF fixed radios, and 33 VHF vehicle-mounted radio systems.

The Disaster Coordination Center (AFOM) engages in disaster response activities in Turkey and global disaster management activities. It also engages in disaster response activities with its nationwide 33 disaster response logistics centers, eight centers of which also serve as rural centers and the remaining 25 centers serve as regional disaster management logistics centers.

At the time of the Great East Japan earthquake in 2011, the Red Crescent dispatched an emergency support team of 30 staff members to Iwate prefecture in Japan. Based on lessons learned from the 2011 Van earthquake, the Red Crescent focuses on providing many tents promptly rather than building temporary residences, and for this reason it has developed and manufactures winter and all-weather tents. Its tent manufacturing factory, food storage facilities, and other facilities are built on the premises of the disaster management centers.

2) AFOM

AFOM was founded in 2001 for the purpose of working together with all the divisions of the Red Crescent for faster and effective response to disasters. Currently, it has approximately 500 staff members. The Disaster Management Directorate is responsible for the administration of AFOM, responding to disasters and crises in collaboration with relevant organizations.

3) UNITS

a. Disaster Preparation Unit

- Formulation of humanitarian support programs in and outside the country, and realization of the programs with governmental funds
- Formulation and implementation of humanitarian support programs on behalf of the government and in cooperation with the national government's disaster management organizations if it engages in disaster management in and outside the country with governmental funds
- Preparation for prompt and effective humanitarian support at the time of disasters, and formulation and implementation of regional and local action plans necessary for the support
- Implementation of global disaster prevention and disaster response training for members of the Turkish Red Crescent actually engaging in disaster management, as well as disaster management volunteers (meetings, symposiums and other opportunities to raise awareness

of disaster prevention)

- Import of aid supplies, transport equipment and transportation vehicles necessary at the time of disasters
- Securing the public land to deal with disasters and build logistics centers
- Contribution to raising public awareness in terms of disaster prevention
 - b. Disaster Response Unit
- Assistance to organizations of other countries on implementing projects in line with the principles of the Red Crescent, dispatching staff members to disaster-afflicted areas in and outside the country, and supplying necessary facilities and materials
- Provision of necessary psychological care at public facilities
- Food assistance to disabled individuals and people in poverty; food assistance and care to patients, elderly individuals, and childrenResponse to disasters in Turkey: to provide temporary shelters, food, and healthcare services, the disaster response unit may request for assistance, if necessary, from Red Cross and Red Crescent Societies in other countries, accept financial support from these societies, and provide support to regions in need
- Implementation of international humanitarian and financial support upon the approval of the Council of Ministers if such request is announced by Red Cross, Red Crescent Societies, or other international organizations (Dispatch of UMKE volunteers and response jointly with disaster management organizations in Turkey)
- Coordination and support to international humanitarian support organizations which come to Turkey to offer disaster management support. Acceptance, record, storage and distribution of support materials arriving in Turkey from abroad

Source: http://afetyonetimi.kizilay.org.tr/Default.aspx

Figure A.6.1 Locations of the Turkish Red Crescent Disaster Management Directorate and Chieftaincies

A-7. Training Curriculum for UMKE Members

(1) Basic Training

Table A 7 1	Basic training curriculum	
Iable A.7.1	Basic training curriculum a	

А	GENERAL DISASTER INFORMATION MODULE
1.	Training for developing a general approach on disaster and extraordinary situations.
2.	Turkish disaster and crysis management system.
3.	The health risk management in disaster and extraordinary situations.
4.	Introduction training on disaster epidemiology
5.	NMRT mission definitions
6.	Disaster logistics training
7.	National and international constitutions related to disasters
В	PSYCHO-SOCIAL SITUATIONS TRAINING MODULE
8.	Ethical behaviour in the field and cultural issues training
9.	Team work and management in case of disaster
10.	Stress and chaos management
11.	Leadership and motivational training
12.	Disaster psychology training
С	DISASTER AND EXTRAORDINARY SITUATION INTERVENTION MODULE
13.	Security training in the disaster or extraordinary situation scene.
14.	Medical rescue training
15.	Basic CBRN introduction training
16.	Health management in disasters
17.	Enviromental health services in disasters
18.	Sheltering, nutrition, hygen and psycho-social services in disasters
D	MEDICAL ATTENTION INFORMATION MODULE
19.	Medical pack training
20.	Basic and advanced life support training (theorical)
21.	Basic and advanced life support training (practice)
22.	The fixture of patient or injured person with alternative splints, stretchering and transportation training
23.	Intervention training in accidents with multiple injury cases
24. Triage training	
25.	Crush syndrome training
E	FIELD EXERCISE TRAINING MODULE
26.	Basic camper, continuing life under disaster and extraordinary conditions and physical conditions training.
27.	Field exercise training under disaster or extraordinary conditions
28.	Communication skills

Source : Press release by MOH UMKE http://www.acilafet.gov.tr/UMKE/

(2) Additional training

Extended training is conducted for UMKE members who has completed the basic training. Trainees learn disaster epidemiology, disaster psychology, medical approach to terrorist attacks, medical approach to fires, situation management, triage training and moulage (with plaster, etc.).

(for members engaging in mountain rescue, underwater rescue, CBRN, and air transportain				
F	IMPROVEMENT TRAINING MODULES			
1.	Mountain rescue training			
2.	Underwater rescue training			
3.	Air intervention and transportation training			
4.	CBRN attacks and industrial accidents training			

Table A.7.2	Advanced training courses for UMKE regional members	
-------------	---	--

(for members engaging in mountain rescue, underwater rescue, CBRN, and air transportation)

Source : Directive for UMKE issued by General Directorate of Emergency Health Service,
A-8. List of Hospital PPP Projects

Table A.8.1 PPP projects at the bidding stage	[Projects which tender has been announced]
---	--

No.	Name of Projects	Beds No.
 1	Kayseri Integrated Health Campus	1,583
2	Ankara Etlik Integrated Health Campus	3,566
3	Ankara Bilkent Integrated Health Campus	4,376
4	Elazig Integrated Health Campus	1,038
5	Konya Karatay Integrated Health Campus	838
6	Manisa Education and Research Hospital	558
7	Yozgat Education and Research Hospital	475
8	Bursa Integrated Health Campus	1,355
9	Istanbul Ikitelli Integrated Health Campus	2,682
10	Mersin Health Campus	1,253
11	Adana Health Campus	1,539
12	Gaziantep Health Campus	1,867
13	Physical Therapy and Rehabilitation (PTR), Psychiatry (P) and High Security Forensic Psychiatry (HSFP) Hospitals	2,400
14	Kocaeli Health Campus	1,180
15	Izmir Bayraklı Integrated Health Campus	2,000
16	Turkish Public Health Agency & Turkish Pharmaceuticals and Medical Devices Agency	-
17	Eskisehir Health Campus	1,060
18	Isparta City Hospital	755
19	Istanbul Uskudar State Hospital	425
20	Istanbul Bakirkoy Health Campus	1,043
	小計 _{Sub-total}	29,993

1. Projects in the tender process

: Tender has been awarded

Table A.8.2 Hospital PPP projects before the bidding stage [Projects which Tender has not been
announced yet]

2. Projects approved by the Higher Planning Council

No.	案件名	病床数 (予定)
1	Samsun Health Campus	900
2	Denizli City Hospital	1,000
3	Sanliurfa Health Campus	1,700
4	Izmir Yenisehir Hospital	1,200
5	Tekirdag State Hospital	479
	小計	5,279

3. Projects which proposals were submitted to the Higher Planning Council

6 Trabzon Fatih City Hospital 0 7 Izmir Southern City Hospital 1,	1,800
6 Trabzon Fatih City Hospital	1,200
	600
No. 案件名 病床炎 (予定)	§床数 予定)

4. Projects which proposals are going to be submitted to the Higher Planning Council

No.	案件名	病床数 (予定)
8	Ordu City Hospital	600
9	Aydin City Hospital	600
10	Istanbul Fatih Sultan Mehmet Hospital	400
11	Manisa YGAP Hospital	100
12	Istanbul Sancaktepe City Hospital	3,700
13	Bolu City Hospital	400
14	Diyarbakir Yenisehir Health Campus	600
15	Diyarbakir Kayapinar City Hospital	750
16	Antalya City Hospital	1,000
17	Izmir Guney Health Campus	1,400
18	K. Maras Elbistan City Hospital	300
19	K. Maras Maternity and Children's Hospital	300
20	Khramanmaras Hospital	500
21	Istanbul Erenkoy State Hospital	300
22	Bursa Osmangazi State Hospital	400
23	Mersin-Akdeniz State Hospital	400
24	Bartın State Hospital	400
25	Izmir-Buca State Hospital	400
26	Kastamonu State Hospital	400
27	Ankara-Gölbaşı State Hospital	200
28	Antalya-Kepez State Hospital	300
29	Balıkesir-Edremit State Hospital	200
30	Bilecik State Hospital	200
31	Bursa-Nilüfer State Hospital	250
32	Hatay Dörtyol State Hospital	150
33	Bursa-Yenişehir State Hospital	75
	小計	14,325
総計		51,397

A-9. Healthcare Insurance System in Turkey (about SGK)

1) Social security system in Turkey

The social security system in Turkey was substantially revised in 2007-2008, and three insurance funds – the general social insurance union (SSK), pension fund (Emekli Sandigi) and insurance union for self-employed workers (Bag-Kur) – were integrated into a single organization called the social insurance organization (SGK).

Persons under the social insurance system (employees, self-employed and civil servants) are subject to the insurance set forth in the Social Insurance and Universal Health Insurance Law and eligible for medical benefits and cash benefits. Insurance premiums are about 3-4% of the monthly income of an ordinary employed worker. As for medical benefits, insurance holders have access to medical services provided by hospitals and other medical institutions with which the insured persons have agreements. Cash benefits are classified into short-term benefits and long-term benefits (pensions) as outlined in the following table.

2) Summary of the social security system

The status, types and rights of insured persons under the Social Insurance and Universal Health Insurance Law (Law No.5510, effective on January 1, 2008) are summarized as follows:

a. Medical benefits

General Healthcare Insurance (GHI):

The GHI is definable as insurance aiming to protect the people's health and cover medical costs incurred by health-related risks. It also covers elderly pensioners. Citizens who are neither insured nor deemed to be recipient of insurance benefits of GHI holders need to pay GHI premiums. Persons in a household with an income level which is one third of the minimum wage, beneficiaries of child welfare, rehabilitants, migrants, etc. are deemed to be GHI holders. The premium is set at 12.50%, of which insured persons bear 5% and their employers bear 7.50%. The self-employed need to bear all the 12.50%.

b. Cash benefits

Short Term Benefits:

Short term benefits are paid for temporary disability. Upon the condition that the relevant doctor or the medical commission of an authorized organization submits a "disability report", the insured person concerned is paid in cash 50% of the daily income for hospital treatment, or 66% of the daily income for outpatient care.

Long Term Benefits:

Long term benefits are paid for disability, elderly persons and death. The payment term starts when the insured person concerned reaches 18 years of age, but the premiums paid until age 18 are integrated in the premium payment term. The long term benefits include the following pensions.

- * Disability pension (Monthly pension benefits for insured persons who have become disabled. Persons insured for at least 10 years are eligible for the disability pension.)
- * Elderly pension (Monthly pension benefits for females aged 58 and older and males aged 60 and older. Persons having paid premiums for at least 9,000 days are eligible for the elderly pension.)

According to the SGK, the social insurance system covered approximately 83% of all the population in 2010, and the medical insurance system has covered all the population since 2012.

 Medical costs are basically paid by insurance, so patients (insured persons) basically bear no medical costs. However, patients must pay the costs of medical services at private hospitals (private practice) which are outside the coverage of the medical insurance system. (National hospitals are not allowed to collect treatment fees from patients (mixed billing).

- Patients are required to pay 10-20% of the costs of medicines and medical supplies provided as a part of medical services. Unlike Japan, some eye glasses prescribed by doctors are covered by the medical insurance system.
- A comprehensive Diagnosis Related Group (DRG) payment system is adopted as a payment system for medical services. Its pilot system was first introduced to national hospitals in 2010, and the full-scale DRG payment system is being introduced to all the hospitals including university and private hospitals.

3) Billing by hospitals, etc. to insurance holders, and payment by insurance holders

- Within the scope of the medical insurance system administered by the SGK, hospitals and other healthcare providers first send the invoice of medical services, medicines, medical supplies, eye glasses, etc. to the SGK, the insurer, which pays the cost to the hospitals and other healthcare providers. It is becoming common for hospitals, etc. to send the invoice online.
- The payment by the SGK for medical services at national hospitals is made to the MOH, rather than individual hospitals. The SGM calculates the payment amount according to the economic trend, budgets and other factors and pays a fixed amount on a monthly basis.
- Some medical supplies including prostheses necessary for hospital treatment are requested by patients directly from the SGK.

4) Details of medical supplies

Law No. 5510 and Article 7 of the related Healthcare Practice Directives set forth the details of medical supplies to be supplied to patients. These laws and regulations stipulate that there are some medical supplies that patients directly request from the SGK.

- (i) Medical supplies used for treatment of inpatients:
- Healthcare institutions registered to the SGK must provide medical supplies necessary for treatment of inpatients. However, they are not necessarily required to provide those classified in the list of prostheses attached to the Directive and those that will be returned to the SGK later.
- If an inpatient himself has purchased medical supplies necessary for his treatment directly, rather than via the medical institution, the inpatient will be paid the cost of the supplies and the cost will be deducted from the bill of the medical institution by the SGK.
- (ii) Medical supplies used for treatment of outpatients:
- Healthcare institutions registered to the SGK must provide visually assistive tools subject to prescription (eye glasses and contact lenses). The cost incurred will be paid by the SGK to the healthcare institutions.
- If outpatients themselves have purchased other medical supplies subject to prescription, they will be refunded after submitting the treatment report, prescription, bill and other relevant documents.
- (iii) Medical supplies that need to be purchased by patients themselves
- Insurance holders or their guardians are required to pay the cost of certain medical services, which include materials for visually supportive tools, oral prostheses, and other prostheses and orthodontic appliances that are not vital for life maintenance.

5) Compensation payment by the MOF to the SGK

• The SGK is financed by the revenues of insurance premiums. But insurance premiums accounted for some 30% of all its expenditure in the previous three years; the remaining 70% were financed by grants from the MOF.

FigureA.9.1 Flow of Medical Fees in Turkey

A-10. Photo Collection in the Field Study

THE CITY OF BURSA

Photo 1. Central city of Bursa (South direction from the north side): Bursa's urban area is spread east-west in the plains and extends up to the steep foothill slopes of the Uludag mountain to the north. The high-rise housing area on the right side of the photo has been redeveloped under the Urban Transformation Law. Most of the rest of the city is composed of 4-5-story reinforced concrete buildings.

Photo 2. Central city of Bursa (View north-east): The residential high rises visible in the center of this photo were built to replace traditional 4-5-story buildings with high-rise, high-density housing. Including in the existing urban area, redevelopment projects aim for high density land use. (Osmangazi District)

Photo 3. Urban area that extends to the steep slopes of the foothills of Uludag mountain: The city extends up to the mountain from Seri Old Town. Building is aging. Many of them is not in contact with the road. (Osmangazi District) Photo 4. Building and slope typical of steep city: Many buildings are directly in contact with the stone pavement and a step prevents car from driving on this street. The building is dilapidated. Vacant in many cases. (Osumangazi District)

Photo 5. Area where redevelopment is advanced out of the city slope: Redevelopment of housing, roads and parks is progressing. Here is a good environment. (Yulidrim District)

Photo 6. Meeting place and parks within the redevelopment area: Closer view of the meeting place shown on the center of photo 5. (Yulidrim District)

Photo 7. State buildings with demolished buildings on adjacent land: Pillars and floors are made of reinforced concrete, but the wall is made of bricks, which cannot resist seismic motions. This construction type is still often used for new buildings. (Yulidrim District)

Photo 8. High-density urban area to expand on the slopes: A structure similar to that of the Photo 7 is also typically used for 4-5-story buildings. Parking is not provided on-site, and cars are parked on the road. (Yulidrim District)

Photo 9. Dense urban areas on the slope: Existing buildings have been demolished along the road that is being improved, to prevent building debris from blocking the road in times of disasters, and to broaden the road. Redevelopment of the city is underway. (Yulidrim District)

Photo 10. Dense urban areas that have been identified in the risky area (1): Building of the city wards of the ones that are about 4 ~ 6m secured Old road width. Both the tenant and the building owner is a resident. (Yulidrim District)

Photo 11. State of the extension of the building of dense urban areas that have been identified in the risky area: This is a typical example of building in an area identified as risky. Upper floors are left unbuilt and will be built once sufficient funds are secured. Floors and pillars are made of reinforced concrete, while the rest of the building is masonry blocks with lightweight walls. (Yulidrim District)

Photo 12. Dense urban areas that have been identified in the risky area (2): Various neighborhood service stores, and commercial stores are located in the lowrise section, while housing is on the upper floors. (Yulidrim District)

Photo 14. Downtown area of the Old Town (1): There are several relatively new buildings, however most buildings are old. Most buildings have 4-5 stories. (Osmangazi District)

Photo 13. General urban area facing the main street: There are stores on the lower section, and housing on the upper floors. 4-5-story mixed use buildings are common. The building shows signs of aging. (Yulidrim District)

Photo 15. Downtown area of the Old Town (2): This shopping arcade is a mall for clothing and daily necessities. Aging buildings are covered with tarps. (Osmangazi District)

Photo 16. Downtown area of the Old Town (3): Fresh food shops.

A tent projects off the first floor of a rigid 4-5-story building to perform business directly in the street. (Osmangazi District)

Photo 18. Downtown area of the Old Town (5): This vacant lot used to have residential buildings, which were demolished, leaving the structure of the adjacent building visible. (Osmangazi District)

Photo 17. Downtown area of the Old Town (4): Shop front on the main street. This street is continuously lined with commercial stores in the first story of solid 4-5-story buildings.

(Osmangazi District)

Photo 19. Downtown area of the Old Town (6): Buildings along the main road are decrepit and if they are destroyed by a large earthquake, they might block the road. (Osmangazi District)

Photo 20. Central city area of Osmangazi District (1): Typical narrow side street. (Osmangazi District)

Photo 21. Central city area of Osmangazi District (2): Along the main street, the first sotry of buildings tend to be stores while the upper floors are residences and offices. (Osmangazi District)

Photo 22. Reserved area that is based on the urban redevelopment law of Osmangazi District: This large open space has been secured and a redevelopment plan developed, redevelopment will soon be advanced in compliance with the plan. (Osmangazi District)

Photo 23. Primary school in the reserved area: This primary school is located in the reserved area of shown on photo 22. Redevelopment is carried out without demolishing this primary school, which was assessed as safe. (Osmangazi District)

Photo 24. Playground of Primary school in the reserved area: Relatively wide school playground. The site is surrounded by a relatively high walls so people cannot get inside easily. (Osmangazi District)

Photo 25. Central city area of Gemlik District: Advanced aging of buildings in the central city area. (Gemlik District)

Photo 26. City of Gemlik District, area facing the Marmara Sea: The road along the coast is lined with decrepit buildings. (Gemlik District)

Photo 31. Rivers flowing to the center of Bursa Uludag mountain: Rivers are steep valley shape, and bidding up the city toward the mountain. (Osmangazi District)

Photos 32. and 33. Dense urban areas in the steep slope of Uludag mountain: Dense urban areas of steep slopes above the area shown on Photo 31. Electricity, gas, and water supply utilities run to this area, however there is no access for vehicles near these houses. Residents walk up and down the steep stairs. (Osmangazi District) Photo 34. Stairs renovated: In conjunction with the conservation of historical buildings (Religious Sites), stairs have been renovated. (Osmangazi District)

ROAD CONDITIONS OF BURSA

GEMLIK PORT

Photo41. Gemlik public port : South-western view from the jetty which was established relatively recently (Gemlik District)

Photo 52. A small fishing port and yacht harbor in Mudanya (2): Coastline view from the jetty of the yacht harbor. Fishermen can fish near the pier where small boats are moored on the left side of the picture. There is a fishing workshop on the jetty. (Mudanya District)

Photo 55. Ferry docks and yacht harbor in Mudanya: The center of Mudanya city is visible on the right side of this picture. (Mudanya District)

SOUTHERN DISTRICT IN THE BURSA PROVINCE

DAM IN BURSA PROVINCE

Rock-fill dam with the width of 100 m

significantly. The dam supplies tap water to the city of Bursa

INDUSTRIAL PARK AT BURSA

SCHOOL IN BURSA

Data Collection Survey for Disaster Resilient Urban Plan in Turkey

Data Collection Survey for Disaster Resilient Urban Plan in Turkey

THE TRAINING CENTER OF ANKARA AFAD

Photo 81. Chemical protective suits to respond to chemical weapon terrorism action.

Photo 82. Newspaper article about the radiation leak in Fukushima

Photo 83., 84. Picture of the rows of houses after the earthquake considered in the exhibit

Photo 85. Exhibit of the brick wall failure and of the floor collapse

Photo 86. Exhibit of the fall of furniture and all interior items, and the collapse of the floor above.

fixtures (on a shake table).

East Japan Earthquake

Data Collection Survey for Disaster Resilient Urban Plan in Turkey

RESEARCH FACILITIES

Photo 99. The center for earthquake engineering research in Istanbul technical university Facilities such as pressure walls are constructed by JICA project in 1993. These are still in use now.

Photo 100. Middle East technical university, department of civil engineering: Facilities in the right hand side is an experiment facility

for the construction of high way. Brue part are pressure walls.

HOSPITAL IN ANKARA

Photo 101. HACETTEPE University Hospital: The hospital of the National University contains 1150 beds.

Photo 102. HACETTEPE University Hospital: Medical gas is considered as basic cylinder correspondence.

Photo 103. HACETTEPE University Hospital seismic retrofitting: Concrete column is retrofitted by steel.

Photo 104. HACETTEPE University Hospital: Inside of an area in renovation

HOSPITAL IN BURSA

Photo 105., 106. Medical Park Hospital in Bursa: A private hospital located inside the city of Bursa and managed by Medical Care Healthcare Group with 219 beds and 650 staff. The hospital has periodical trainings for traditional incidents such as fire accidents but has no specific training considering large scale earthquakes.

Photo 107.,108. Plan of Standard Floor of Medical Park Hospital in Bursa and Nurse Station: The hospital is a 15story building, and wards are located at the upper floors. Plan of ward floor (left photo) and a nurse station located at the centre of the floor (right photo).

with computers.

Photo 121., 122. Sevket Yilmaz Hospital Maternal Care Building: Full view of the maternal care building (left photo) and the entrance for outpatients (right photo). Built in 2007, and located next to a park.

Photo 123. Triage Line on the Floor of Sevket Yilmaz Hospital: Red, yellow and green lines are drawn on the floor to show the direction of triage.

Photo 124. 4-Bed Room of Sevket Yilmaz Hospital: Currently, single or double bedrooms are allowed in newly constructed public hospitals under the regulation of MOH, and this type of 4-bed rooms are not allowed anymore.

Photo 125., 126. Designated Spots for Evacuation in Sevket Yilmaz Hospital: 2 areas, open place inside the site and car park, are designated as evacuation spots. Sign posts are easy to find and are designed to gleam at night (without power source).

Photo 127. Security Control Room in Sevket Yilmaz Hospital: Controlling the condition of each area inside the hospital with multi-screen monitors.

Photo 128. Generator Room of Sevket Yilmaz Hospital: Backup electrical facilities are 2 1,600KVA generators and 4 650KVA generators inside the generator room built on 2006. A 1,000L oil tank (inside) and a 2,500L oil tank (outside) are available for use in these generators. (70% of the hospital electricity demand is covered by these.)

Photo 129. Area Adjacent to Sevket Yilmaz Hospital: For expansion of the hospital, they consider acquiring adjacent land. The police academy next to hospital is not used for academy and only dormitories are being used.

Photo 130. Planned Site for Cardiovascular Hospital of Sevket Yilmaz Hospital: Planned to build a cardiovascular hospital with 200 beds removing Yuksek Ihtisas Hospital.

Photo 131. Entrance of the Outpatient Department of Uludag University Hospital: The only public hospital accredited with JCI (Joint Commission International), a global healthcare accreditation organization.

Photo 132. Entrance of Uludag University Hospital: One of the two public hospitals in Bursa ranked as A1.

Photo 133. Reception of the Ophthalmology Department of Uludag University Hospital: Disaster Hospital Building is one of the 4 blocks constituting the hospital and built 5 years ago. It is used as an ophthalmology ward in general and will become a special centre during emergency situation such as earthquake.

Photo 134. Ward of Uludag University Hospital: Example of the multi-beds room.

Photo 135. Storage of Uludag University Hospital: Medical supplies are stored for emergency case.

Photo 136. Meeting with the department of architectural technology of Uludag University about anti-seismic design

Photo 137. Yuksek Ihtisas Hospital: Entrance of outpatient

Photo 138. UMKE base of Yuksek Ihtisas Hospital: An UMKE base is provided inside the hospital site. Part of the UMKE building is shown behind the UMKE vehicles shown on this picture.

MOH BURSA

112 AMBULANCE STATION INSIDE AKOM FACILITIES IN BURSA

And the state of t

Photo 143. 112 Ambulance Station inside AKOM facilities in Bursa: Arranging ambulances upon emergency orders from 112 command and control centre

Photo 144. Plan of 112 Ambulance Station in Bursa: Prototype of a planned 112 Ambulance station.

AKOM, 112 AMBULANCE STATION AND DEPARTMENT OF CONSTRUCTION AND REPAIR IN MOH

Photo 145. Department of Construction and Repair: This department is responsible for conducting construction projects for MOH. It is one of the five departments of the Directorate of Construction and Health Investment.

Photo 146. Department of Construction and Repair: Photo of a seismically-isolated hospital planned in Elzurm. It will be equipped with 386 seismic isolators and will be the first public seismically-isolated hospital.

SAKOM IN MOH

Rescue System" to monitor the activities of disaster units at regional level or 112 command and control centre each province. SAKOM can communicate with 81 provincial health offices using VHF system and satellite communication system.

Photo 151. SAKOM's Tracking System of Ambulances: It allows to track the movement of ambulances in the map on the screen, and covers all public, private and military hospitals. Details such as affiliation, staff, direction etc. of all 4,000 ambulances are controlled by the hospital information system.

Photo 152. SAKOM's Earthquake Sensing System: Situation of domestic earthquakes can be shown on the correct the sensitive of the

Situation of domestic earthquake scheming system. Situation of domestic earthquakes can be shown on the screen. It also monitors the condition of the airport, and fires or accidents covered by 112 ambulance centers. SAKOM's system is different than the system used by AFAD but the two systems can share information if necessary.

INFORMATION GATHERING INVESTIGATION FOR THE SEISMIC ISOLATION STRUCTURE IN ISTANBUL

Photo 153. Meeting with the vice president of the Turkish Association of earthquake-absorbing systems The vice president's name is Mehmet Emre Ozcanli

Photo 154. Meeting with staff of the HAZAMA Ando Turkey office

MEETING AT A LOCAL ARCHITECT OFFICE

Photo 155. At the Seyas local architects office in Istanbul

Photo 156. PROTA Local Architecural Company at Ankara. Hearing survey for Seismic Isolation in Turkey

Photo 157. At the Yuksek Proje local architect office in Ankara : His offices at in own high rise building that was designed in-house.

Photo 158. At the Su Yapi facility design company in Ankara: The company mainly works on urban infrastructure such as a gas pipelines, dams, and water and sewage facilities