

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Estimation of PNG Forest Biomass including Contribution to FRA2015

06th March 2014 (Revised on 17th March with basemap ver.1)

Rabbie Inzing Lalo/Kiyoshi Suzuki

Forest Policy & Planning Directorate, PNGFA

JICA long-term expert

2014/3/6

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Contents

- Tiers
- Steps:
 - Step 1: Assessment of available data
 - Step 2: Design of estimation method
 - Step 3: Calculation of Forest Area
 - Step 4: Calculation of AGLB (Above Ground Living Biomass)
 - Step 5: Calculation of BGLB (Below Ground Living Biomass)
 - Step 6: Calculation of Total Living Biomass
 - Step 7: Calculation of Total Forest Biomass Carbon
- Comparison of our result with previous studies
- Summary
- Future Activities

Tiers = Ranks = levels

- *Decision trees in GPG 2000 and 2003
 - •Tier 3 are more complex approaches, possibly models. However should be compatible with lower tiers.
 - •Tier 2 are similar but with country specific emission factors and other data
 - •Tier 1 are simple methods with default values

FRA 2015 Biomass Tiers

Tier 3. Country specific national or sub-national biomass conversion expansion factors applied or other domestic or otherwise nationally relevant biomass studies.

Tier 2. Application of country specific national or sub-national biomass conversion factors from other country with similar climatic conditions and forest types.

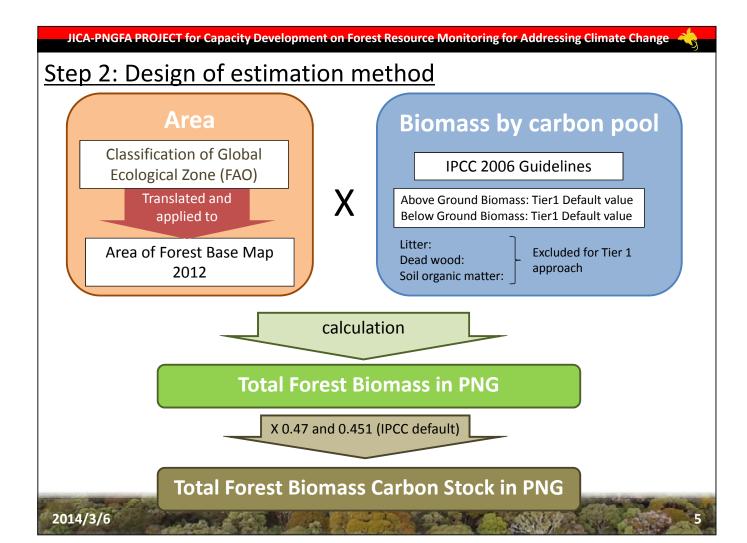
Tier 1. International/regional default biomass expansion factors applied.

* https://unfccc.int/files/meetings/.../ipcc_good_practice_guidance.ppt

2014/3/6

3

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

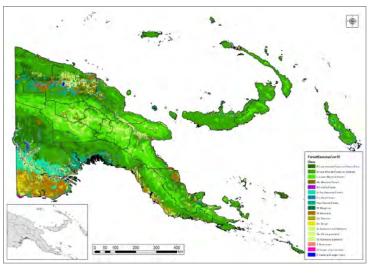


Step 1: Assessment of available data

- We try to estimate forest carbon stocks to aim to reach IPCC Tier2 level as much as possible.
- Newly created "PNG Forest Base Map 2012" is ready to use as country specific data for area calculation.
- However available data of carbon content of PNG forest is very limited as shown in below table.

5 carbon pools	Available data of PNG forest	Issues
Above Ground	Bryan et al (2010) estimated average AGB using 22 unlogged forest data and 35 logged forest data of PNG.	✓ Average of all types of forest cannot applied to Tier2 level estimation.
Biomass (AGB)	Fox et al (2010) estimated forest carbon in lowland forest using 125 permanent sample plots (PSPs).	✓ Forest carbon of other forest types are not estimated.✓ Locations of PSPs can be biased.
Below Ground Biomass (BGB)	Scarce	
Litter	Scarce	
Dead wood	Scarce	
Soil organic matter	Scarce	

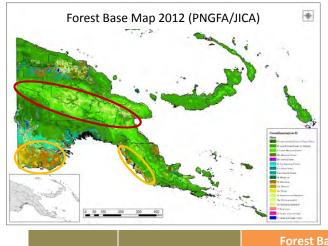
In consideration of data availability of PNG forest, we decided to use area of Forest Base Map 2012 as area data, and use IPCC Tier 1 default value as carbon content.


JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

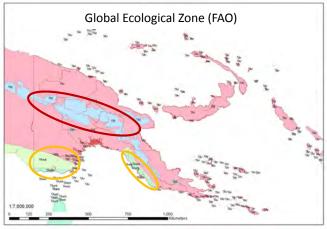
Step 3: Calculation of Forest Area

 New Forest Base Map 2012 was developed using high resolution satellite imagery under JICA-PNGFA Project. Area of Forest types on Forest Base Map 2012 are calculated as in table below.

Forest Base Map 2012


	Forest Base Map 2012 (PNGFA/JICA)					
	Forest type	Area (ha)				
Р	Low Altitude Forest on Plains & Fans	8,807,748				
Н	Low Altitude Forest on Uplands	12,404,244				
L	Lower Montane Forest	8,221,846				
Мо	Montane Forest	358,050				
D	Dry Seasonal Forest	957,387				
В	Littoral Forest	69,994				
Fri	Seral Forest	158,783				
Fsw	Swamp Forest	2,070,809				
М	Mangrove Forest	524,582				
W	Woodland	3,091,027				
Sa	Savanna	651,825				
Sc	Scrub	394,340				

Area of Forest types of Forest Base Map 2012


2014/3/6

Step 4: Calculation of AGLB (Above Ground Living Biomass)

 Entire PNG is located in Tropical Ecological Zone. We assign most suitable forest type of Global Ecological Zone to each forest type of PNG Forest Base Map 2012 considering distribution and characteristic of forest.

Applied to

Lower rainfall area D			Forest Base Map 2012	Ecological Zone 2001		
Sc Scrub TAwb Tropical dry forest High altitude area L Lower montane forest TM Tropical mountain	Lower rainfall area	W	Woodland	TAwa		
				TAwb	Tropical dry forest	
	High altitude area	L Mo		TM	·	

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Step 4: Calculation of AGLB (Above Ground Living Biomass)

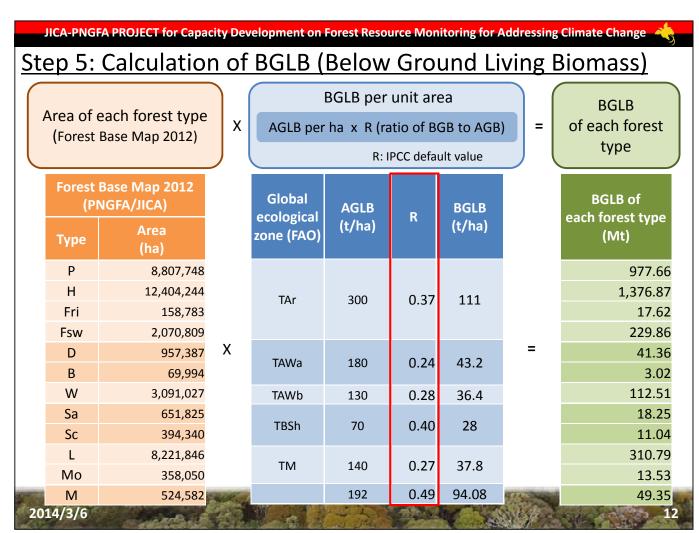
In order to calculate AGLB, IPCC Tier 1 default values are applied **TABLE 4.12** TIER 1 ESTIMATED BIOMASS VALUES FROM TABLES 4.7-4.11 (EXCEPT TABLE 4.11B) Applied to forest (VALUES ARE APPROXIMATE; USE ONLY FOR TIER 1) other than mangrove Above-ground Above-ground Above-ground Above-ground net biomass net biomass biomass in growth in biomass in forest growth in Climate natural forests forest **Ecological zone** plantations natural forests domain plantations (tonnes d.m. (FAO Global Ecological Zone) (tonnes d.m. (tonnes d.m. ha-1) (tonnes d.m. ha-1) ha-1 yr-1) ha-1 yr-1) 7.0 Tropical rain forest 300 150 15.0 5.0 Tropical moist deciduous forest 180 120 100 2.4 8.0 Tropical Tropical dry forest 130 60 **TAwb** Tropical shrubland 70 30 1.0 5.0 **TBsh** Tropical mountain systems 140 90 1.0 5.0 140 50 10.0 Subtropical humid forest 220 Subtropical dry forest 130 24 20 Sub-2006 IPCC Guidelines for National Greenhouse Gas Inventory (Volume 4, Chapter 4, page 4.63) tropical

Table 4.3 Above-ground biomass in mangroves (tonnes d.m. ha⁻¹) ⁴

Domain Region Above-ground biomass 95%CI Range

Tropical Tropical Wet 192 (n=49) ¹ 187, 204 8.7-384

Step 4: Calculation of AGLB (Above Ground Living Biomass)


Comparison of characteristic and biomass/timber volume of each forest type between Forest Base Map 2012 (PNGFA/JICA) and Global Ecological Zone (FAO)

Forest Base Map 2012 (PNGFA/JICA)					IPCC ABG		
	Forest types	Annual rainfall	PNGRIS volume	ı	Forest types	Descriptions	(t/ha)
Р	Low altitude forest on plains and fans	High	High				
Н	Low altitude forest on uplands	High	High	TAr	Tropical rain forest	Wet: 0 – 3 months dry. When dry period, during winter	300
Fri	Seral forest	High	High		101.030		
Fsw	Swamp forest	High	High				
D	Dry seasonal forest	Low-Middle	Middle	TAwa	Tropical moist deciduous	Wet/dry: 3 – 5 months	180
В	Littoral forest	-	-	.,	forest	dry, during winter	100
W	Woodland	Low-High	Low- Middle	TAwb	Tropical dry forest	Dry/wet: 5 – 8 months dry, during winter	130
Sa	Savanna	Low	Low	TD .	Tropical	Semi-Arid: Evaporation	70
Sc	Scrub	Low	Low	TBsh	h shrubland	> Precipitation	70
L	Lower montane forest	High	High	TM	Tropical mountain	Approximate > 1000 m altitude (local	140
Мо	Montane forest	High	-		systems	variations)	
М	Mangrove	-	-				192

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Story 1. Coloulation of ACLD (Above Cround Living Diomoses)

<u>S</u>	te	<u>ep 4: Calcula</u>	ition of a	<u>AG</u>	<u>LB (</u> ,	<u>Above Groun</u>	<u>d Livir</u>	ng B	<u>iomass)</u>
		Area of each fore (Forest Base Map	* *	Х		AGLB per ha (IPCC default value)	= (ead	AGLB of th forest type
	Fc	orest Base Map 2012 (P Forest type	NGFA/JICA) Area (ha)			signed forest type of al ecological zone (FAO)	AGLB value (t/ha)		AGLB of each forest type (Mt)
	Р	Low Altitude Forest on Plains & Fans	8,807,748						2,642.32
	Н	Low Altitude Forest on Uplands	12,404,244		TAr	Tropical rain forest	300		3,721.27
		Seral Forest	158,783						47.63
ı	sw	Swamp Forest	2,070,809						621.24
	D	Dry Seasonal Forest	957,387	Χ	TAWa	Tropical moist deciduous	180	=	172.33
	В	Littoral Forest	69,994			forest			12.60
	W	Woodland	3,091,027		TAWb	Tropical dry forest	130		401.83
	Sa	Savanna	651,825		TDCh	Tranical chrubland	70		45.6 3
	Sc	Scrub	394,340		IBSII	Tropical shrubland	70		27.60
	L	Lower Montane Forest	8,221,846		TM	Tropical mountain	140		1,151.06
	Мо	Montane Forest	358,050			systems			50.13
		Mangrove Forest	524,582				192	N.	100.72
1	201	4/3/6		100	100			PER LA	10

Step 6: Calculation of Total Living Biomass

AGLB + BGLB = Total Living Biomass

Forest Base Map 2012 (PNGFA/JICA)	AGLB (Mt)	BGLB (Mt)	Total Living Biomass (Mt)
P	2,642.32	977.66	3,619.98
Н	3,721.27	1,376.87	5,098.14
Fri	47.63	17.62	65.26
Fsw	621.24	229.86	851.10
D	172.33	41.36	213.69
В	12.60	3.02	15.62
W	401.83	112.51	514.35
Sa	45.6 3	18.25	63.88
Sc	27.60	11.04	38.65
L	1,151.06	310.79	1,461.84
Mo	50.13	13.53	63.66
M	100.72	49.35	150.07
Total	8,994.37	3,161.88	12,156.25

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Step 7: Calculation of Total Forest Biomass Carbon

Total Living
Biomass

X

Carbon Fraction
(CF)

Total forest biomass carbon

Applied to forest other than mangrove

2014/3/6

	CARBON FRACTION	N OF ABOVEGROUND FOREST BIO	OMASS
Domain	Part of tree	Carbon fraction, (CF) [tonne C (tonne d.m.) ⁻¹]	References
Default value	All	0.47	McGroddy et al., 2004
	All	0.47 (0.44 - 0.49)	Andreae and Merlet, 2001; Chambers <i>et al.</i> , 2001; McGroddy <i>et al.</i> , 2004; Lasco

2006 IPCC Guidelines for National Greenhouse Gas Inventory (Volume 4, Chapter 4, page 4.48)

mangrove	Component	%C	95% CI ³	Range	
	Leaves + wood ¹	45.1 (n = 47)	42.9, 47.1	42.2-50.2	

2013 Supplement to the 2006 IPCC Guidelines: Wetlands (Wetlands Supplement) (Chapter 4, page 4.12)

Step 7: Calculation of Total Forest Biomass Carbon

Carbon Fraction Total Living Total forest X biomass carbon **Biomass** (CF)

Forest Base Map 2012 (PNGFA/JICA)	Total Living Biomass (Mt)	CF	Total forest biomass carbon (Mt)
Р	3,619.98		1,701.39
Н	5,098.14		2,396.13
Fri	65.26		30.67
Fsw	851.10		400.02
D	213.69		100.43
В	15.62	0.47	7.34
W	514.35		241.74
Sa	63.88		30.02
Sc	38.65		18.16
L	1,461.84		687.07
Мо	63.66		29.92
M	150.07	0.451	67.68
Total	12,156.25		5,710.59

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change -

Comparison of our result with previous studies

2014/3/6

	Total Forest		Area data		Biomass data				
	Biomass Carbon (MtC)	Мар	Forest type	Disturbance	Carbon value (AGLB + BGLB)	Source of data			
JICA-PNGFA (2014)	5,711	Forest Base Map 2012 (36.4 mil ha)	All forest types (5 types)	Not considered	Tier1 default value: 46-146 tC/ha (5 classes)	IPCC (2006)			
Bryan et al (2010)	4,770	UPNG Forest Map 2002 (28.2 mil ha)	1 type only (rain forest)	Considered (Unlogged, Logged)	All rain forests Unlogged: 168 tC/ha Logged: 76 tC/ha	22 PNG's unlogged forest data (Powell(1970) etc.) 35 PNG's logged forest data			
	4,154		All forest types (8 types, but	All forest	All forest	All forest		Tropical: 120tC/ha Dry forest/woodland : 60tC/ha	Olson et al(1983)/ Gibbs(2006)
Gibbs et al (2007)	8,037	type: Global land cover map (8 tyl 2000 not appli		Not	Tropical Asia- Equatorial:250tC/ha Seasonal:150tC/ha	Houghton(1999)/ DeFreis et al(2002)			
(2007)	7,075			not applicable to	not applicable to	applicable to	applicable to	considered	Tropical Asia: 78-225tC/ha (4 classes)
	5,160		., ,		Tropical Asia: 151tC/ha	Brown and Achard et al (2004)			
Total range	4,154 - 8,037				Tropical equatorial for Tropical seasonal fore Tropical dry forest: 7	est: 105-169t/ha			

Summary

- Newly created Forest Base Map 2012 provides the most accurate estimate and recent total area of each forest type (reasonably strong activity data).
- On the other hand, information of five carbon pools of PNG forests is scarce (very weak emission factors). Therefore IPCC Tier 1 default value was used to estimate forest carbon.
- Our estimation of national forest carbon differ from previous studies to some extent. This is due to number of reasons including difference in forest definitions, in forest area and in data sources of emission factors.
- Our estimate of 5,711 MtC as a total national forest carbon content is considered as the most reliable and internationally acceptable.

2014/3/6

1

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Future Activities

- To calculate forest carbon at IPCC Tier 2 Level, PNGFA is recommended to undertake some activities as shown below.;
 - Obtain data of 5 carbon pools of each forest type in national scale.
 - Obtain country specific data of both forest area (activity data) and forest carbon contents (emission factor) of disturbed forest.
- Next JICA-PNGFA Project and National Forest Inventory supported by UN-REDD/FAO/EU will be able to contribute to obtain these data.

2014/3/6

10

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

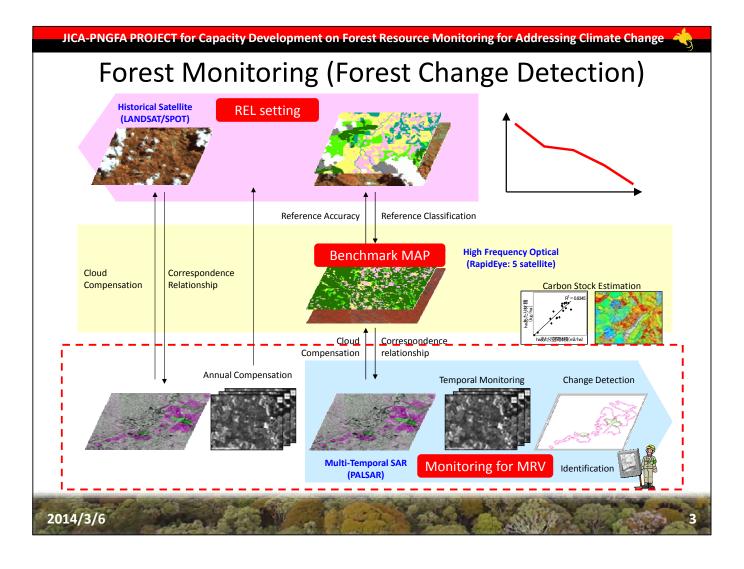
Technology of Forest Change Detection

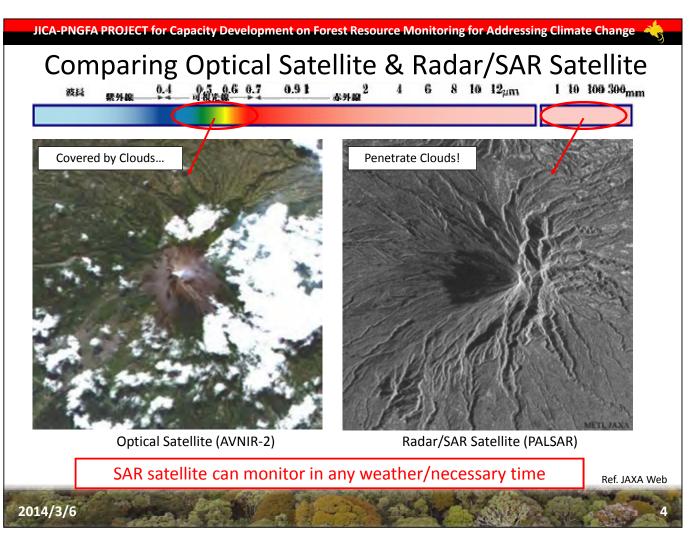
06th March 2014

Masamichi HARAGUCHI

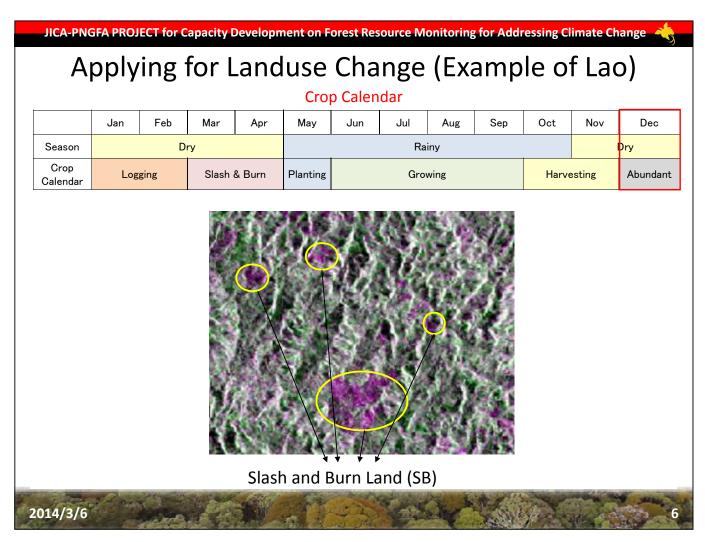
Team Leader of JICA Short-term Consultants
Kokusai Kogyo Co., Ltd (KKC)

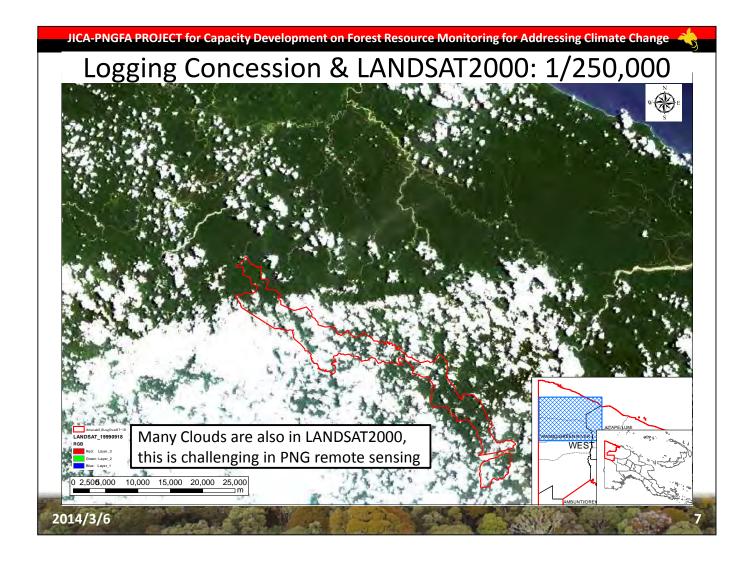
2014/3/6

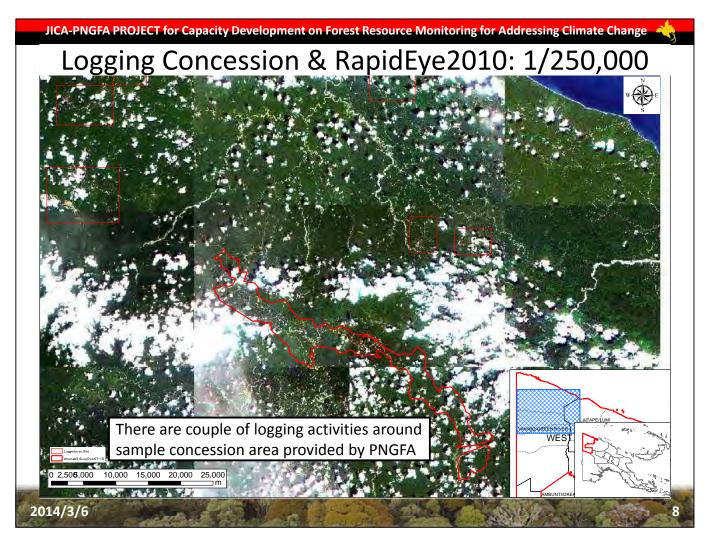

1

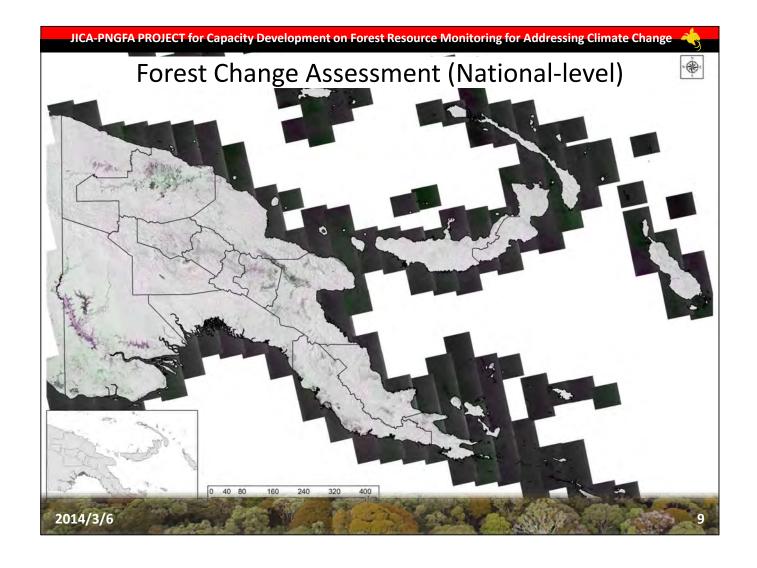

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

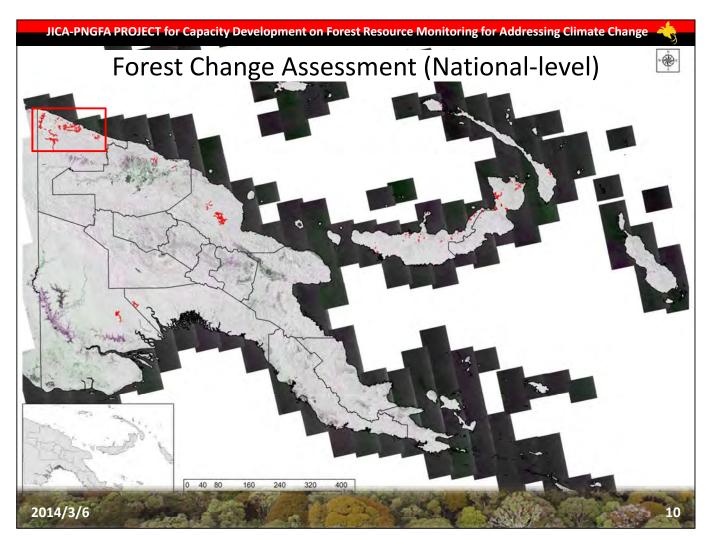


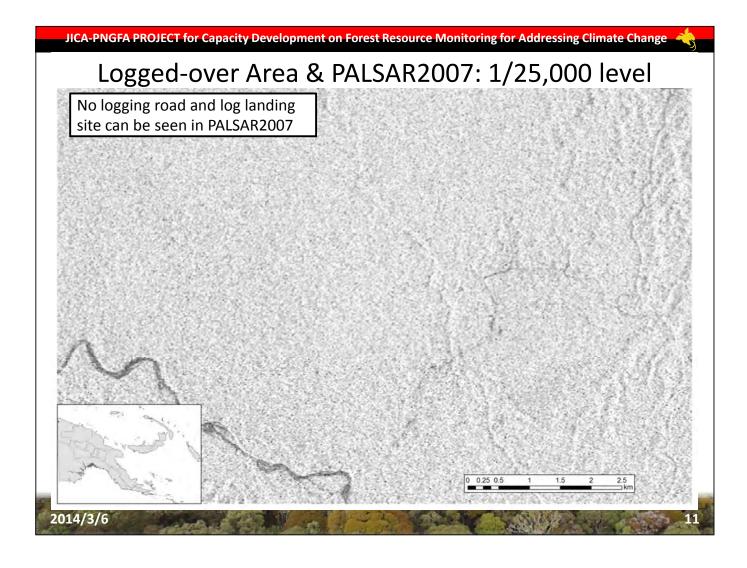

Contents

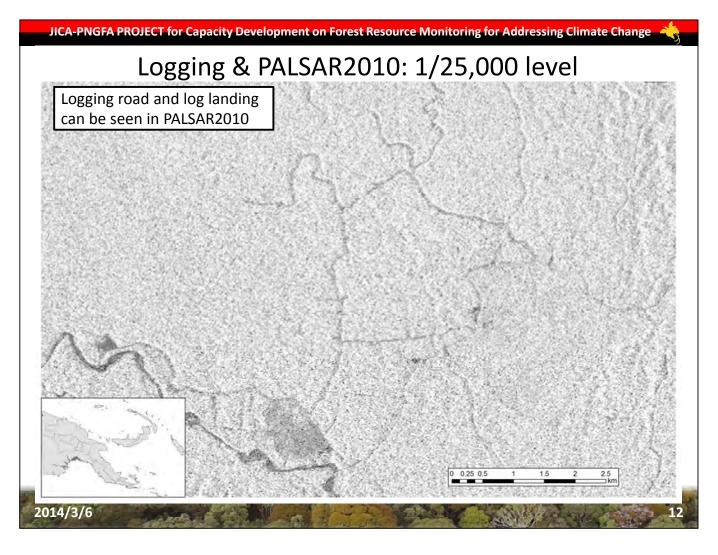

- Forest Monitoring (Forest Change Detection)
- Comparing Optical Satellite & Radar/SAR Satellite
- Detecting and Estimating Deforestation Area
- Applying for Landuse Change (Example of Lao)
- Forest Change Assessment in PNG (National-level)
- Applying for Logging Concession Monitoring
- Applying for Forest Clearance Authority Monitoring

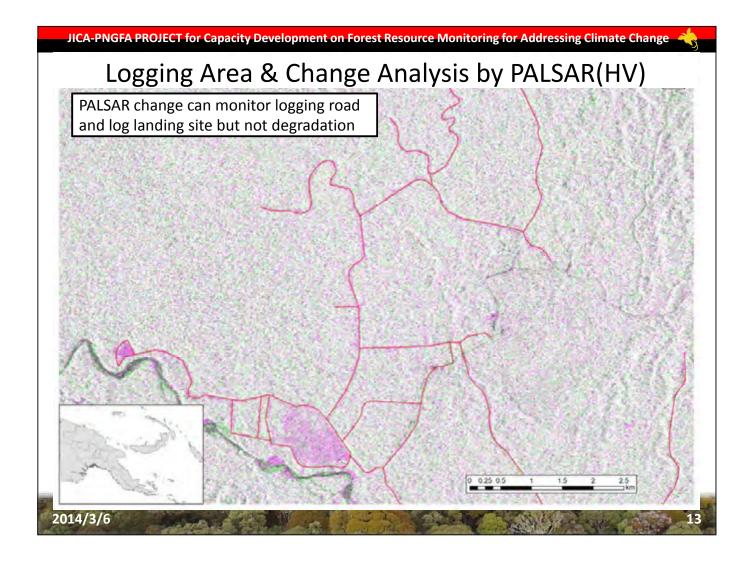


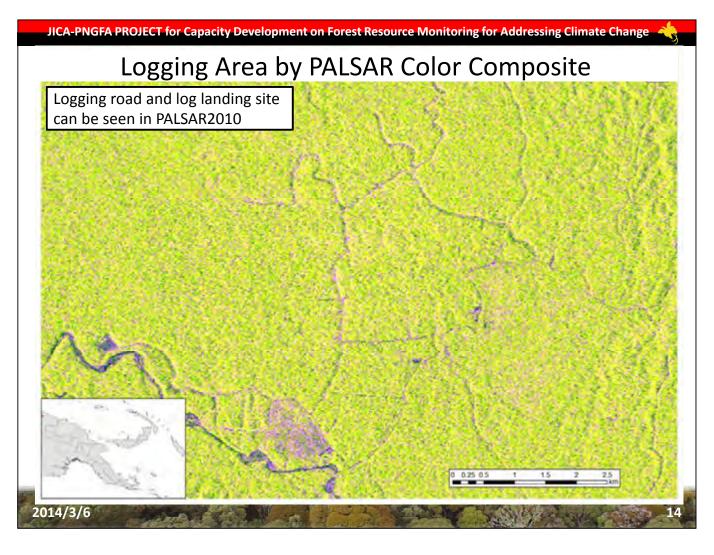


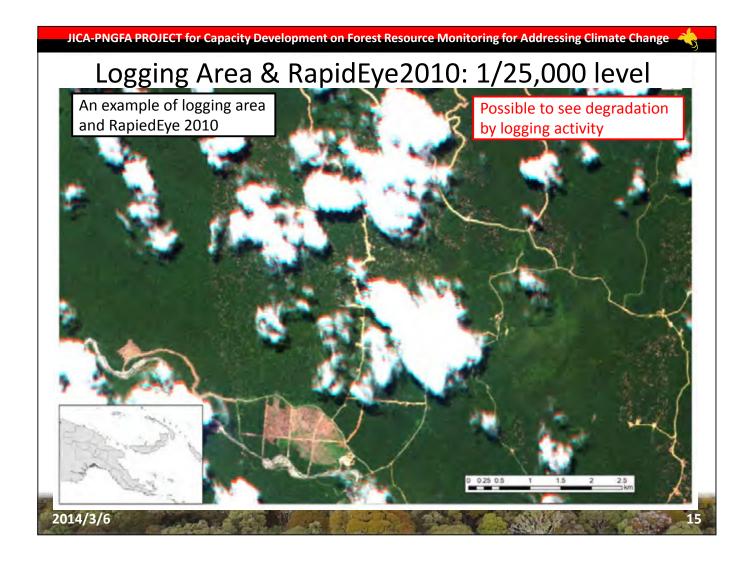


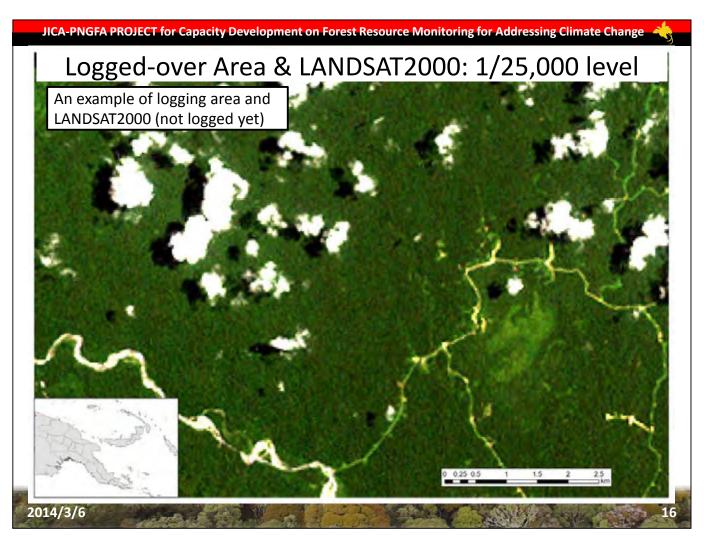


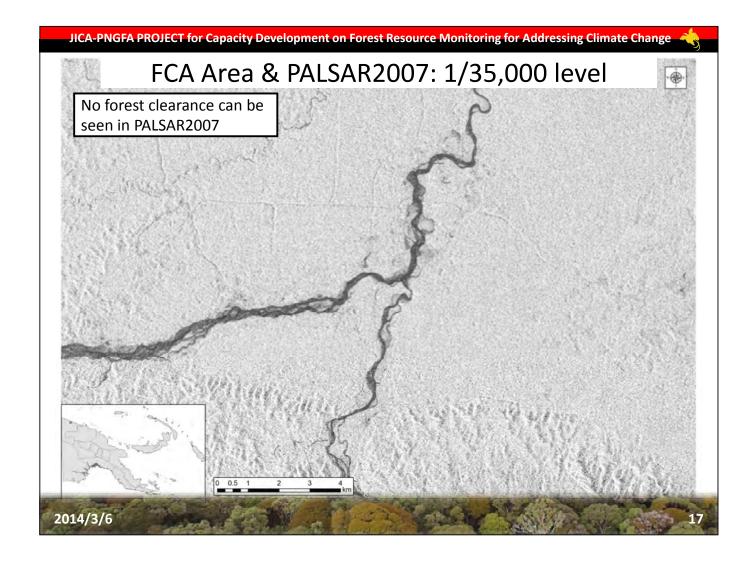


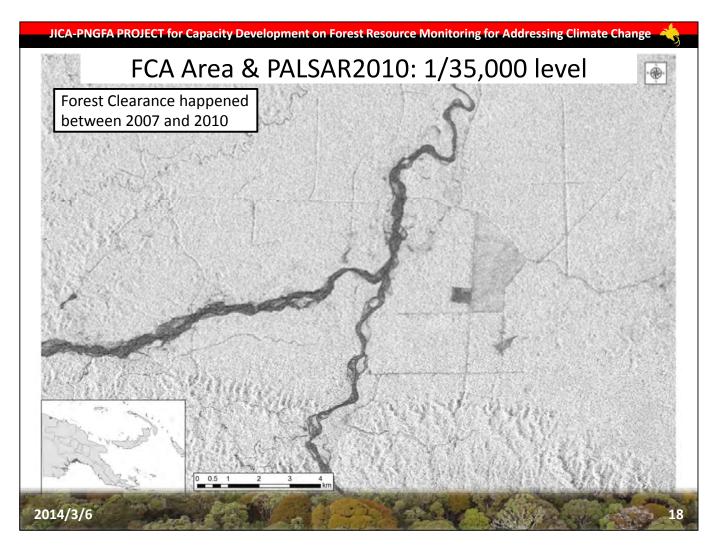


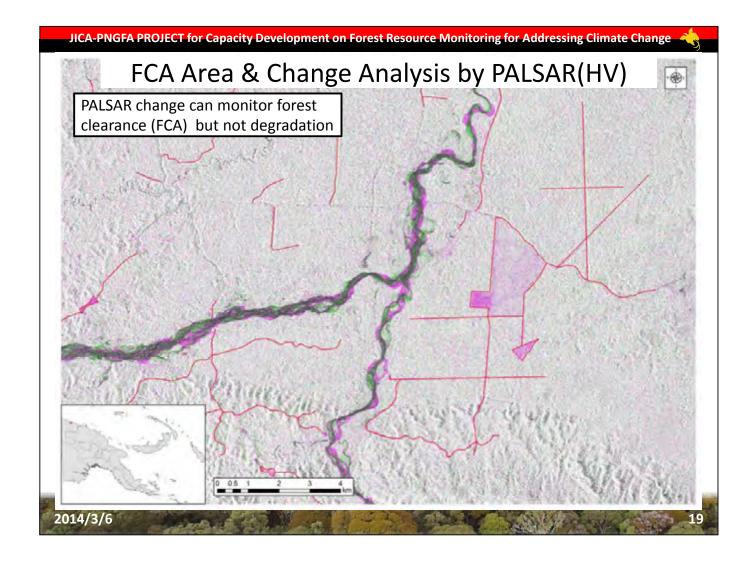


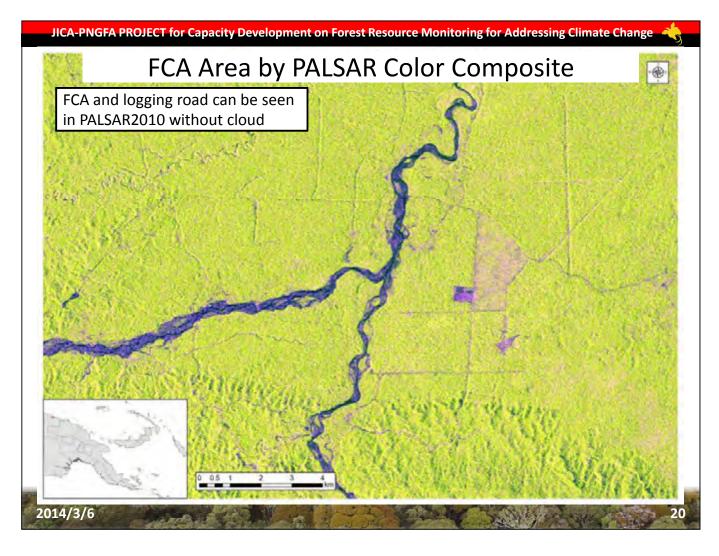


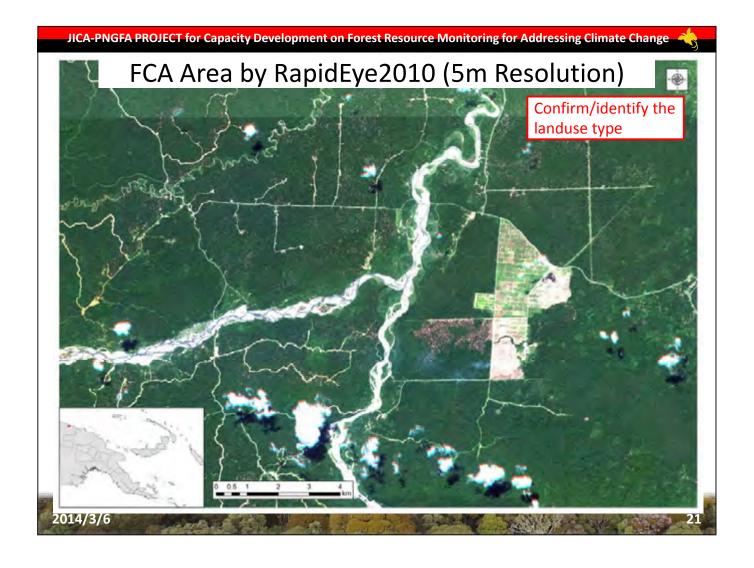


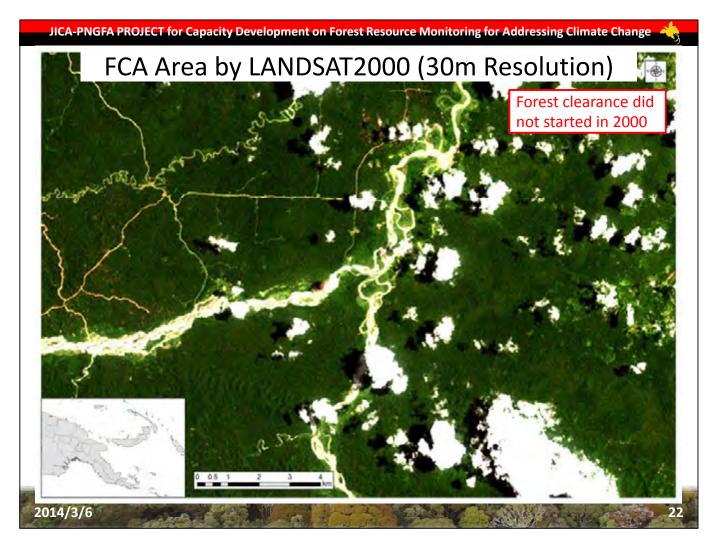












Summary

- There are some area where it is difficult to collect good quality data by optical satellite, even by RapidEye (5 constellation satellites)
- RapidEye shows good potential to monitor logging and forest clearance (FCA) activities in PNG, even selective logging site are visible with 5m resolution
- PALSAR(HV) shows good potential to monitor logging roads and forest clearance in PNG, but difficult to monitor degradation by selective logging site
- SAR satellite analysis is useful for screening, Identifying AOI (Area of Interest) for intensive monitoring (following case study presentation)
- Combined use of those remote sensing(SAR & Optical) and ground truth with local knowledge should be considered for PNG forest monitoring

2014/3/6

23

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

2014/3/6

24

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Forest Change Detection Case Study: Milne Bay and West Sepik

Mr. Oala Iuda

Local Technical (GIS) Assistant
Capacity Development on Forest Resource Monitoring
for Addressing Climate Change

JICA-PNG FA Project

Email: oiuda12@gmail.com

Mr. Jehu Antiko

Assistant Cartographer
Inventory & Mapping Branch
Policy and Planning/PNG Forest Authority

Email: jantiko@gov.pngfa.pg

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Outline

- 1.Introduction
 - i. Purpose
 - ii. Study Site
- 2.Data Used to Quantify Land Use
 - i. Source Imagery
 - ii. Segmentation
- 3. Change Detection Results
- 4.Limitations
- **5.Estimating Carbon Stock Changes**
- 6.Conclusion


Introduction: Purpose

- Pilot REDD site for PNG FA to apply Tier 1 or the 'simple first order approach'
 - Approach 1, Level Assessment
 - Using default values
- Trial Land Representation 'Approach 1'
 - Tracking of LU conversions
 - Non-spatially explicit
 - Know areas of each transition
- Trial approach on Carbon stock change estimation
- Trial Basemap Version 0 with Landsat images for tracking and area calculation

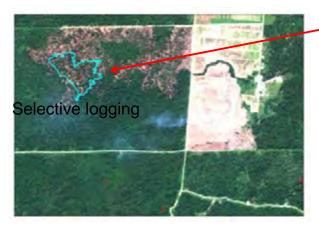
JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Introduction: Study Site

- Central Suau FMA, Alotau District, Milne Bay Province
- Romei Tadji FMA, Aitape/Lumi District, West Sepik Province

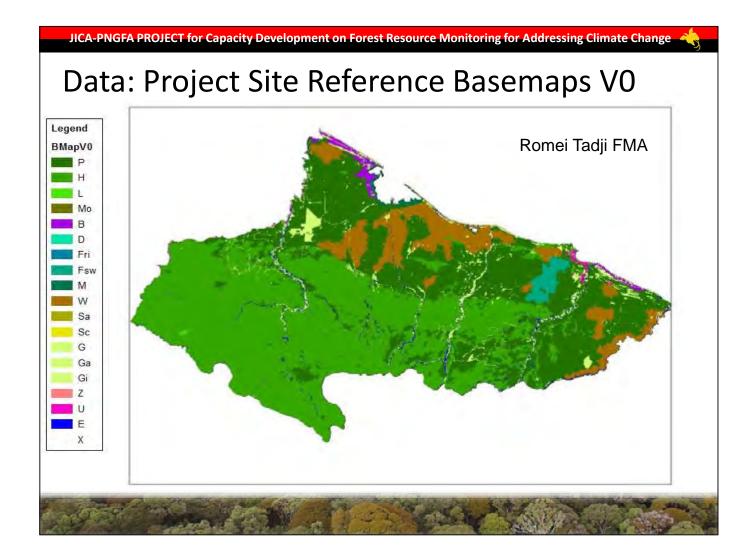
Central Suau FMA = 59,000 ha

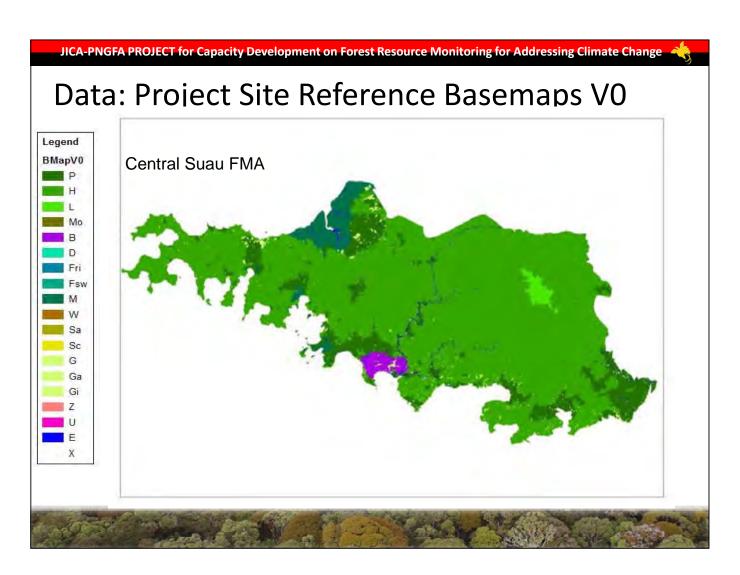
Data: Satellite Imagery

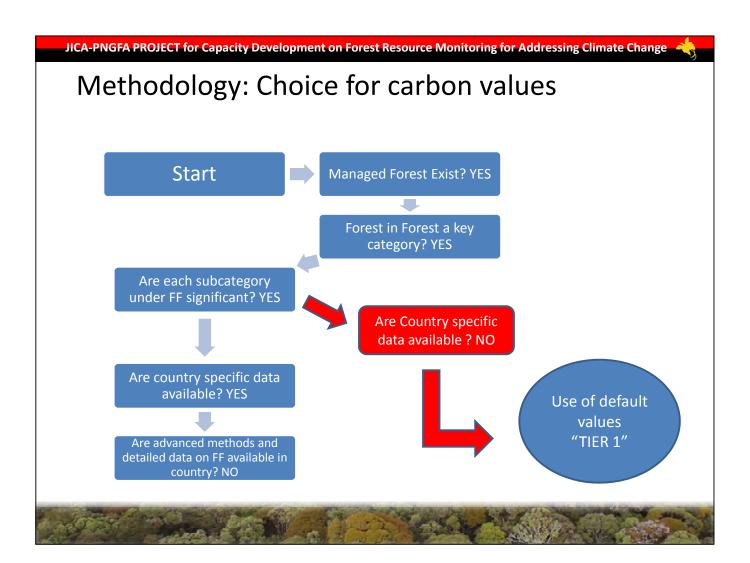

Time (Year)	Satellite	Resolution (m)	Band Composition	Path_Row ID	Application Sites
0 – (1990)	Landsat 5	25-30	3, 2, 1	94_67 and 93_67	Central Suau West Romei
1 – (2000)	Landsat 5	25-30	3, 2, 1	94_67 and 93_67	Central Suau West Romei
2 – (2005)	Landsat 5	25-30	3, 2, 1	94_67 and 93_67	Central Suau West Romei
3 – (2010)	RapidEye	5	3, 2, 1		Central Suau West Romei
4 – (2013)	Landsat 8	25-30	4, 3, 2	94_67 and 93_67	West Romei
	And the second second		A CANADA		THE WAY AND THE

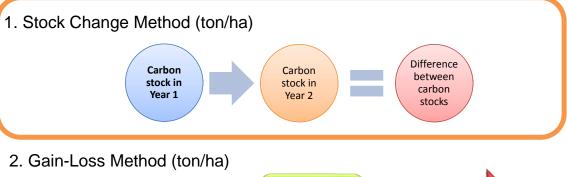
JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

 Developed using Object-Based classification using eCognition


Segmentation




Imagery Only (Landsat 4/5)

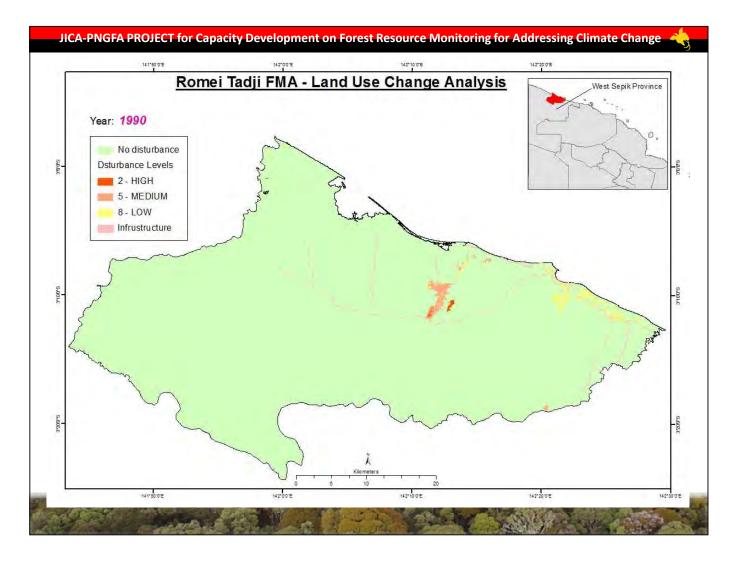

Year 2010

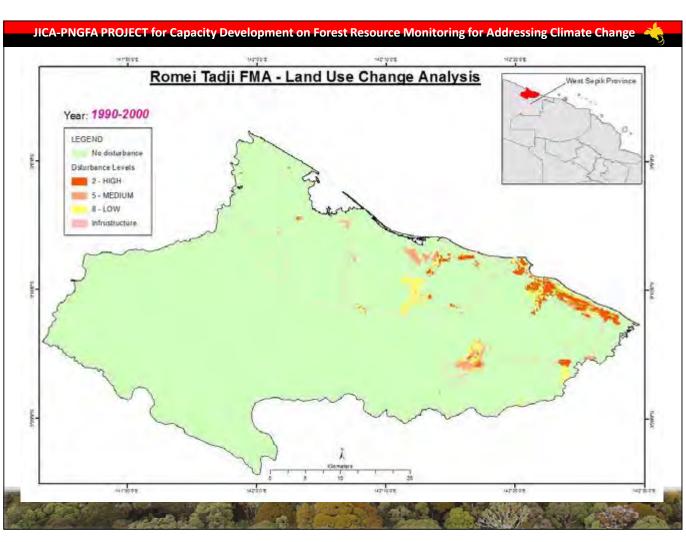
Methodology: Choice for carbon estimation Approach

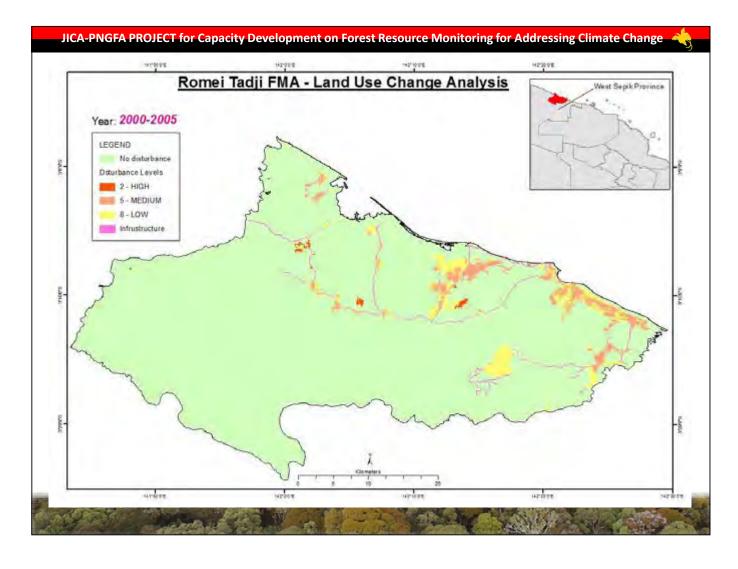
Carbon uptake through growth

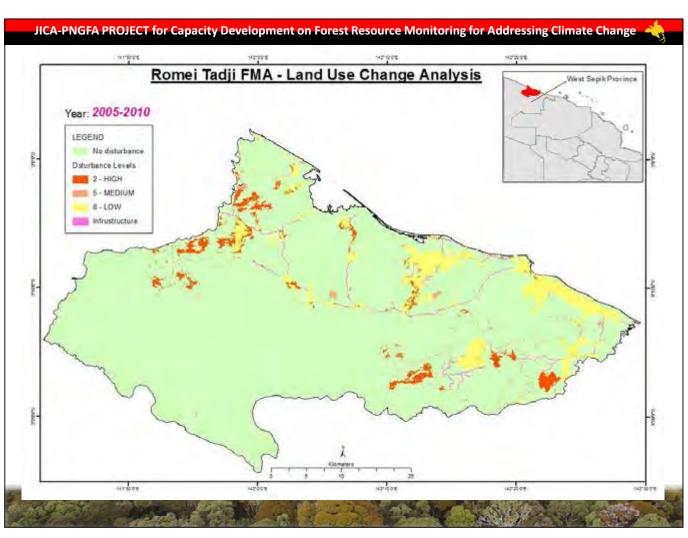
LAND USE TYPE

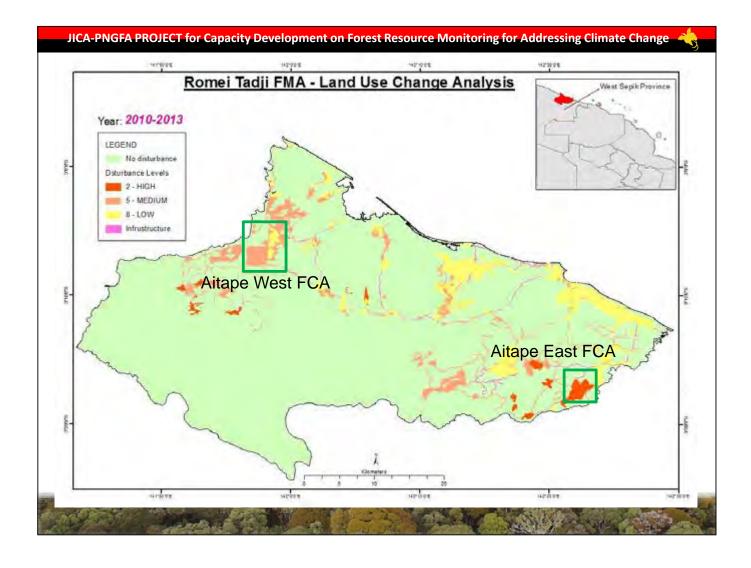
Disturbances

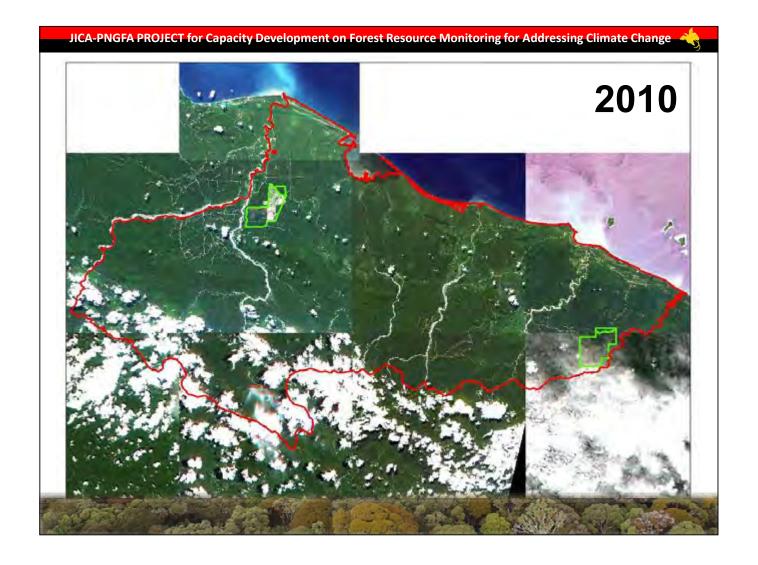

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

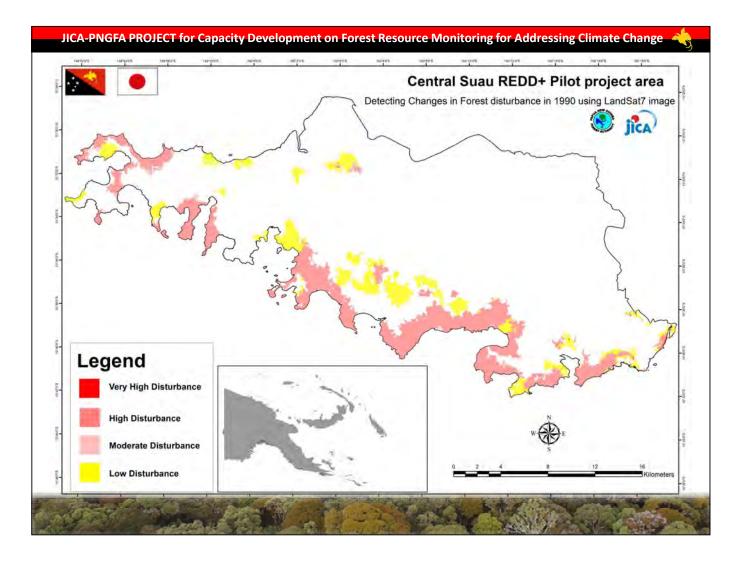


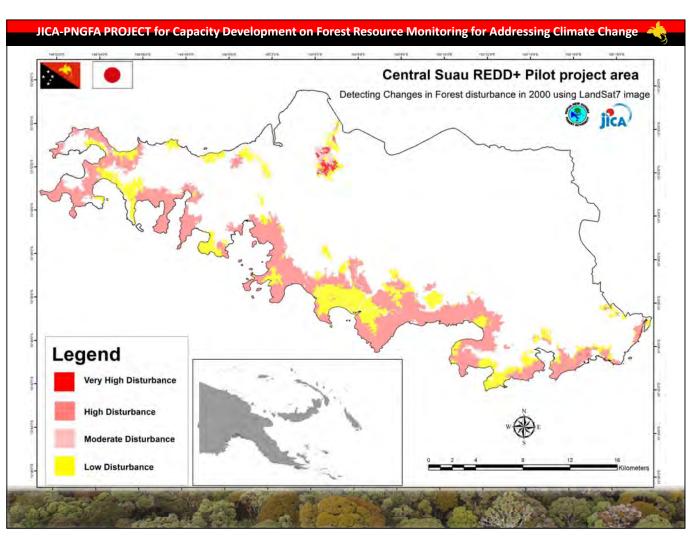

Methodology: Disturbance Levels

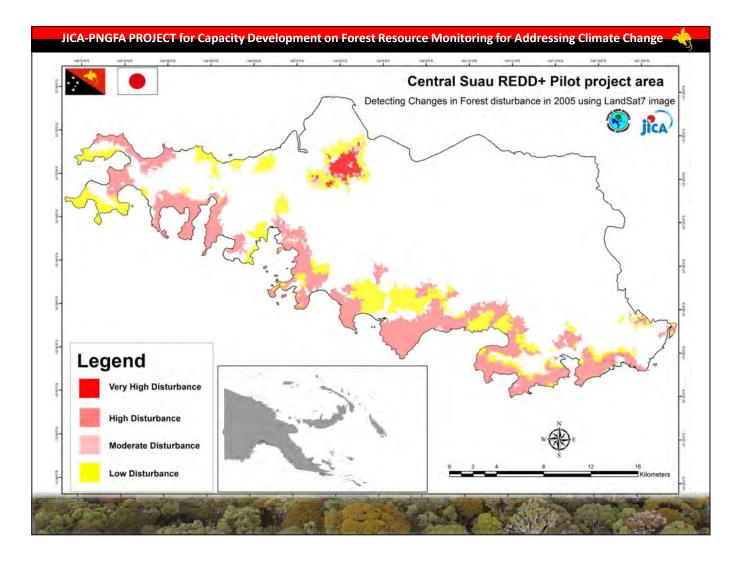

- Way for assigning biomass values to define amount of biomass lost between two time periods
- Only applied to forest land (P,H,L,B,....M, W)

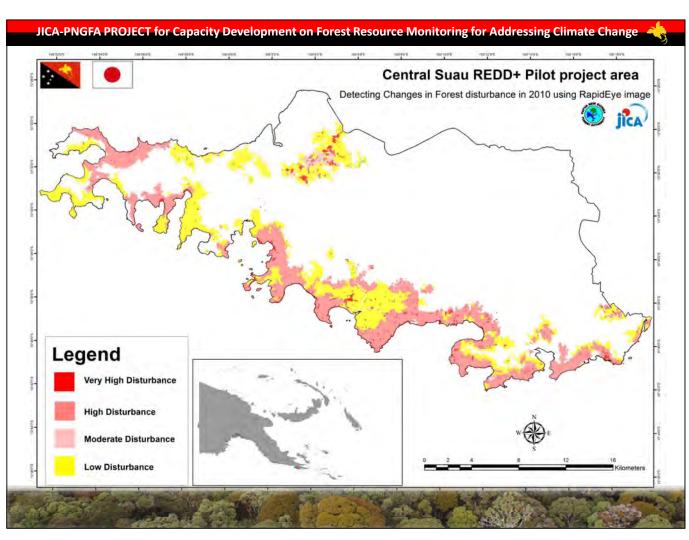

Level	Class	Land Use	Example
NA		Permanent Road, Town (existing infrastructure in Time 0)	Non-forest (G,E,U,Z)
2	Very High	Clear felling	H2 or P2 (80% disturb)
3	High	Selective logging with logging road	H3 or P3 (70% disturb)
5	Medium	Flooding, Plantation	H5 or P5 (50% disturb)
8	Low	Subsistence agriculture	H8 or P8 (20% disturb)
Intact Forest			No disturbance

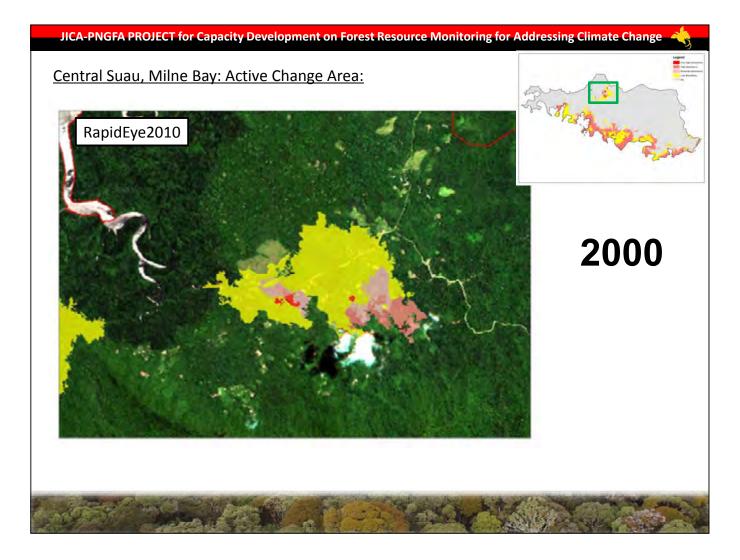


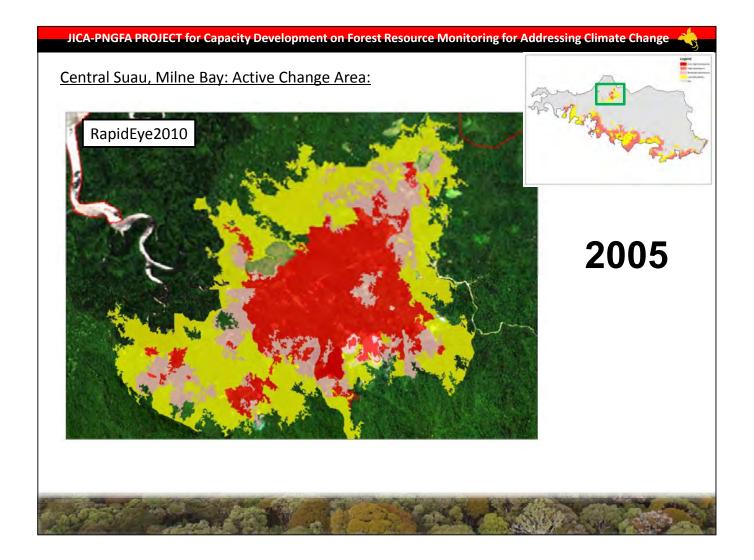


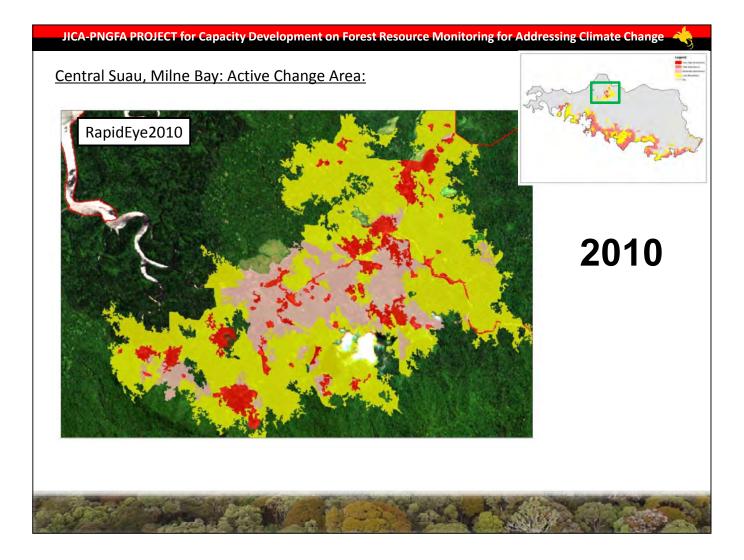












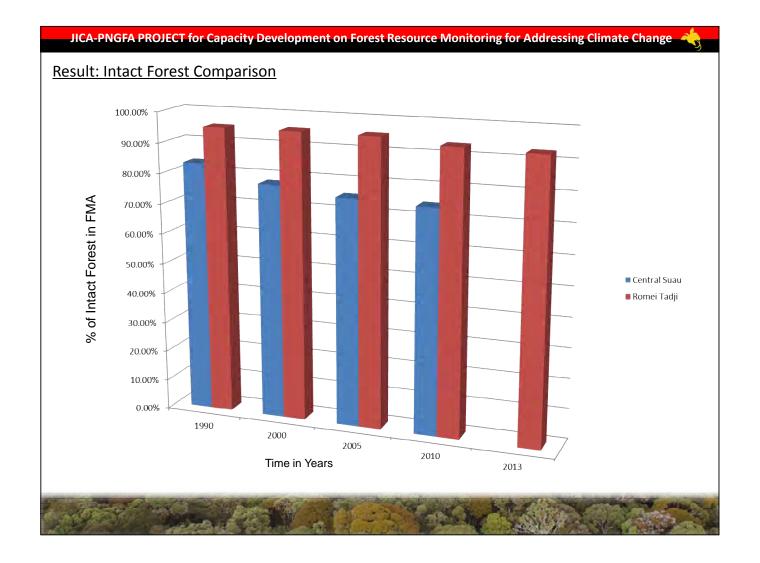
Result: Stock Change Equation

 Stock-Difference Method can be used where carbon stocks in relevant pools are measured at two points in time to assess carbon stock changes

$$\Delta C = (C2 - C1)/(t2-t1)$$

Where:

 ΔC = annual carbon stock change in the pool, tonnes C yr-1

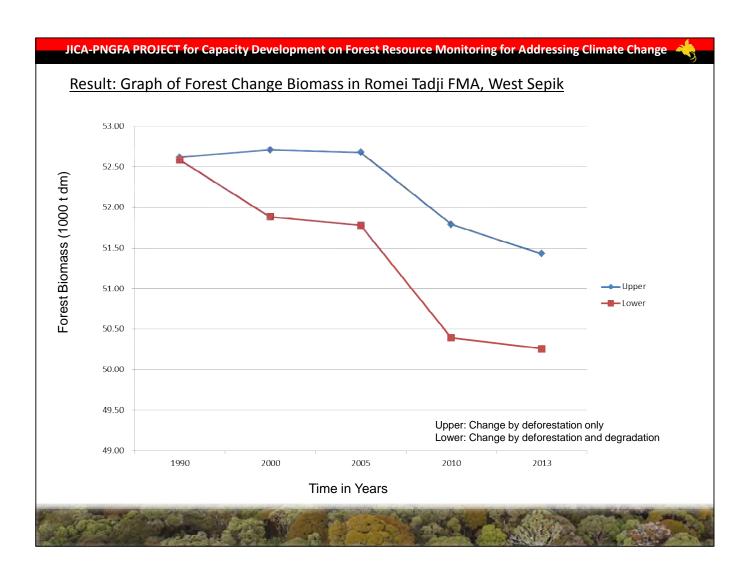

C1 = carbon stock in the pool at time t1, tonnes C

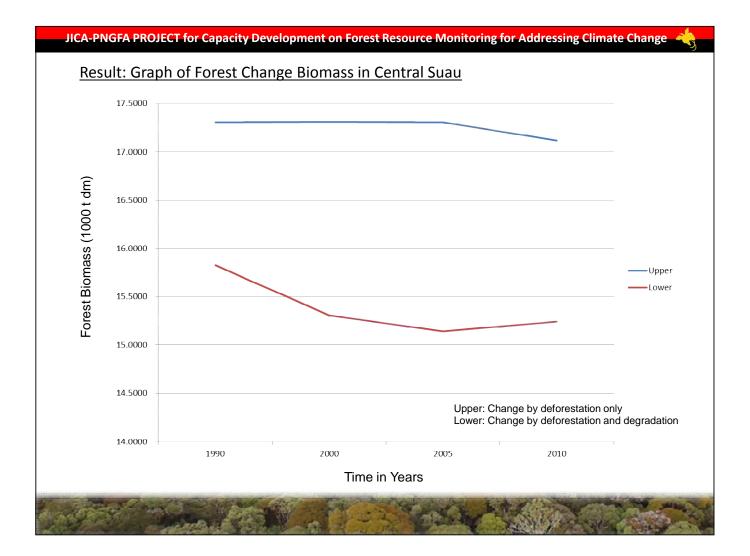
C2 = carbon stock in the pool at time t2, tonnes C

Source: Chapter 4 (pg-4.19) 2006 IPCC Guidelines for National Greenhouse Gas Inventories

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

IPCC-KC	FIMS Code	Land Cover Type	1990	2000	2005	2010	2013
	Р	Intact Low Altitude Forest on Plains and Fans	67,655.41	65,483.88	62,869.29	58,408.18	57,02
	P8	Low Disturbed Low Altitude Forest on Plains and Fans			31.78	527.76	2,68
	P5	Medium Disturbed Low Altitude Forest on Plains and Fans		52.57	4,734.02	4,798.97	4,5:
	P2	High Disturbed Low Altitude Forest on Plains and Fans	79.06	2,561.05	349.94	2,155.65	6
	Н	Intact Low Altitude Forest on Uplands	96,433.95	95,756.03	95,657.04	95,321.11	94,9
	Н8	Low Disturbed Low Altitude Forest on Uplands			571.14		
	H5	Medium Disturbed Low Altitude Forest on Uplands			166.37	248.43	3
	H2	High Disturbed Low Altitude Forest on Uplands	26.64	652.53	17.49	380.18	4
	L	Intact Lower Montane Forest	61.61	61.61	61.61	61.61	
	В	Intact Littoral Forest	1,534.97	1,448.33	1,391.39	1,391.56	1,3
Forest Land	B8	Low Disturbed Littoral Forest			56.94		
TOTEST Land	B5	Medium Disturbed Littoral Forest		86.55	86.55		
	B2	High Disturbed Littoral Forest					
	Fsw	Intact Swamp Forest	2,372.17	2,369.92	2,369.92	2,372.13	2,3
	Fsw8	Low Disturbed Swamp Forest					
	Fsw5	Medium Disturbed Swamp Forest		2.26	2.26		
	Fsw2	High Disturbed Swamp Forest					
	W	Intact Woodland	17,086.65	16,537.02	16,060.45	16,411.44	16,1
	W8	Low Disturbed Woodland			1,126.79	41.03	
	W5	Medium Disturbed Woodland	74.22	657.96		24.08	
	W2	High Disturbed Woodland	40.81		7.74		
	М	Intact Mangrove	660.58	660.58	660.58	660.58	6
Grassland	G	Grassland	5,826.76	5,652.41	5,812.88	6,145.93	6,2
Cropland	0	Agriculture	219.22	304.19	349.19	1,344.63	2,6
Wetland	E	Large rivers and lakes	1,885.89	1,890.12	1,890.12	1,888.27	1,8
	U	Settlements and large urban centres	1,123.51	759.06	652.73	1,988.86	2,4
Settlement	NA	Road (Separated from 'U')	272.18	396.61	404.25	348.91	3
	NA	Logging Road (Separated from 'U')				631.16	1
Other land	z	Bare areas	4.27	25.24	27.44	207.44	2


JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change



Code	VEGNAME	AGLB(t/ha)
Р	Low Altitude Forest on Plains & Fans	300
Н	Low Altitude Forest on Uplands	300
L	Lower Montane Forest	140
Мо	Montane Forest	140
D	Dry Seasonal Forest	180
В	Littoral Forest	180
Fri	Seral Forest	300
Fsw	Swamp Forest	300
M	Mangrove Forest	192
W	Woodland	130
Sa	Savanna	70
Sc	Scrub	70

Result: Carbon Calculations per strata – Romei Tadji

Land Cover Type (National level)	1990	2000	2005	2010
Intact Low Altitude Forest on Plains and Fans	20.30	19.65	18.86	17.52
Low Disturbed Low Altitude Forest on Plains and Fans	-	-	0.01	0.16
Medium Disturbed Low Altitude Forest on Plains and Fans	-	0.02	1.42	1.44
High Disturbed Low Altitude Forest on Plains and Fans	0.02	0.77	0.10	0.65
Intact Low Altitude Forest on Uplands	28.93	28.73	28.70	28.60
Low Disturbed Low Altitude Forest on Uplands	-	-	0.17	-
Medium Disturbed Low Altitude Forest on Uplands	-	-	0.05	0.07
High Disturbed Low Altitude Forest on Uplands	0.01	0.20	0.01	0.11
Intact Lower Montane Forest	0.01	0.01	0.01	0.01
Intact Littoral Forest	0.28	0.26	0.25	0.25
Low Disturbed Littoral Forest	-	-	0.01	-
Medium Disturbed Littoral Forest	-	0.02	0.02	-
High Disturbed Littoral Forest	-	-	-	-
Intact Swamp Forest	0.71	0.71	0.71	0.71
Low Disturbed Swamp Forest	-	-	-	-
Medium Disturbed Swamp Forest	-	0.00	0.00	-
High Disturbed Swamp Forest	-	-	-	-
Intact Woodland	2.22	2.15	2.09	2.13
Low Disturbed Woodland	-	-	0.15	0.01
Medium Disturbed Woodland	0.01	0.09	-	0.00
High Disturbed Woodland	0.01	-	0.00	-
Intact Mangrove	0.13	0.13	0.13	0.13
	F2 62	F0 74	50.60	F4 70
Total	52.62	52.71	52.68	51.79

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Limitation

- Landsat 30m resolution difficulties of interpreting (1990, 2000, 2005 and 2013)
- Cloud cover in Landsat and RapidEye hinder detection process
- Lack of knowledge on land use types
- Mangrove forest changes not captured very well
- Segmentation (2010) not fully defining situation in previous years (1990, 2000, 2005)

- Develop "Area of Interest" to train or teach imagery for classification
- Filtering clouded areas using GeoSAR before interpreting imagery
- Application of Accuracy Assessment on GIS classification
- Use of Gain-Loss Method LULUCF
- Uncertainty Assessment on Area calculation (preparation to reach Tier 2)
- Better classification workflow and Step-by-step GIS rules application

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Thank you and/or (Tenkyu tru) and/or (Arigatou gozaimasu)

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Achievements of the Current Project -Output Three-

Tatsuya Watanabe

Chief Advisor

JICA PNGFA Project

6 March, 2014

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Contents

- 1. Expected Output 3 and activities
- 2. Achievement of Output 3 measured by Indicators
- 3. Issues to be addressed

1. Expected Output 3 and activities

Expected Output 3: To address climate change, the monitoring system of forest resource including carbon stock is improved.

➤ Activities under Output 3:

- a. Participation to REDD+ Working Group
- b. Liaison with OCCD
 - ✓ COP participation (1)
- c. Preparation of basic design of forest resource monitoring system
- d. Estimation of past forest carbon change
 - ✓ Biomass Survey (2), Current Carbon Stock Estimation (3), Change Detection(4),(5)
- e. Development of preliminary Forest Reference Emission Levels

6 March, 2014

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Achievement of Output 3 measured by Indicators

- ✓ Achievement of Output 3
 - To address climate change, the monitoring system of forest resource including carbon stock is improved.

✓ Indicators

- 1. The basic design of appropriate forest resource monitoring system is prepared in written format
 - Partly completed (not yet summarized in written format)
- 2. The past change of national forest carbon stock is estimated Partly completed (for a specific area, not nation-wide)
- 3. Preliminary reference emission levels for REDD+ are developed Partly completed (for a specific area, not nation-wide)

Modified from 'Summary of Terminal Evaluation' by PNG-Japan Joint Evaluation Team

6 March, 2014

3. Issues to be addressed

Schedule of the Plan of Operation of the Project might not be realistic. More inputs were needed for an estimation of national level carbon stock change and reference emission level.

→ Elements for project activities under new output three.

Design of the forest monitoring system remains as "basic design" only.

→ New activities under new output two.

6 March, 2014

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Thank you
Tenkyu tru
Arigatou gozaimashita

6 March, 2014

6

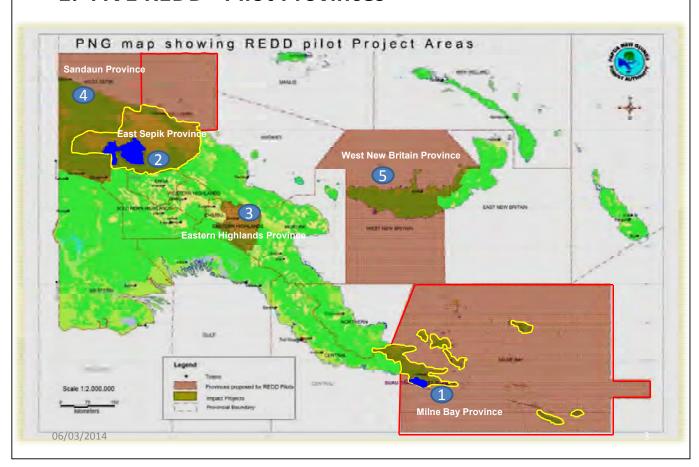
Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

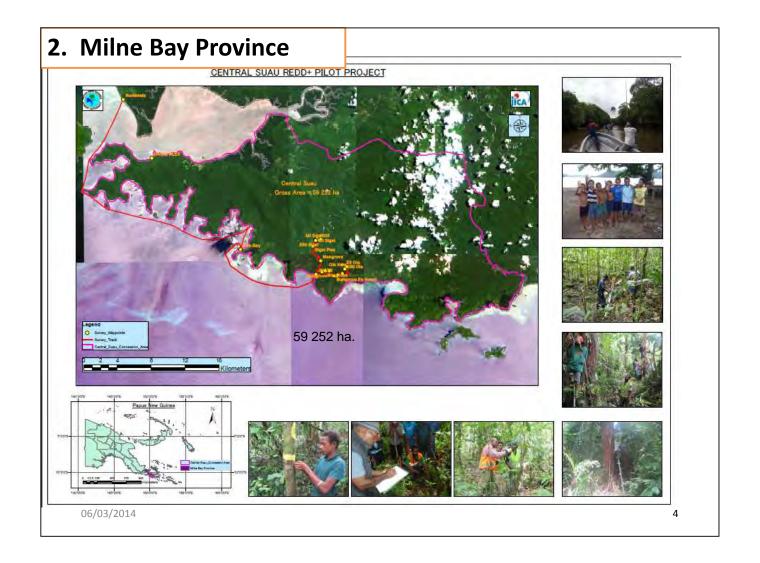
Activities related to JICA T/C Project conducted by PNGFA

Goodwill Tony Amos

Manager- REDD and Climate Change

Forest Policy and Planning Directorate/ PNGFA


JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change



Outline

- 1. Five REDD+ Pilot Provinces
- 2. Milne Bay Province Central Suau REDD+ Pilot
- 3. Activities conducted with collaboration with JICA
- 4. On-going activities for the REDD Pilot sites
- 5. Other Activities/Projects

1. FIVE REDD+ Pilot Provinces

3. Activities conducted with collaboration from

JICA Activities Duration **Purpose** Participants Discuss the methodology in data March 2012 Climate Change Workshop (Port Area Officers, Provincial Officers, FRI, HQ, DEC, OCCD Moresby) collection and assessment of the 5 Carbon Pools. Also with the demonstration of GPS instrument, tree measurement and soil/litter sample collection. May 2012 Preliminary Forest Biomass To test out the "L" shaped plot to Provincial Officers, FRI, FPPD Survey for Central Suau, Milne collect forest biomass data and (HQ), Landowners (Ipulai) Bay Province align the flight path of the satellite (Rapid Eye) at the same time prepare for the major biomass survey (October-November) Area Officers, HQ, Provincial September 2012 Below Ground Biomass Training To conduct a destructive Workshop (Lae) sampling of some trees with the Officers, FRI, OCCD, NGOs and aid of excavator in particular with Landowners (Oomsis) the measurement of fresh and dry weight of the tree. The training was conducted in 3 parts: theory, field and laboratory. October- November 2012 Main Forest Biomass Survey for To collect data and determination HQ, Provincial Officers, Area Central Suau, Milne Bay Province of carbon content for the forest Officers, FRI, UNITECH (Lecturers & students), types in four selected locations within the Central Suau area. landowners (Mila, Leileiafa, Ipulai and Modewa)

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Activities conducted with collaboration from JICA

06/03/2014

4. On-going Activities for the REDD Pilot Sites

- August-November 2012: Conducted the Development Option Study (DOS) and Climate Change Awareness for the April Salumei FMA, East Sepik Province.
- October-November 2012: Awareness on REDD, Climate Change and the New ILG Legislation (Act 2009) for Central Suau, Milne Bay Province. Also informing the people that the major biomass survey was going to be conducted in selected sites.
- April-May 2013: Conducted two activities for the Central Suau area (MBP), i.e. ILG Verification and Documentation. The other being the Vulnerability and Adaptation Assessment.

06/03/2014

** Dicket Activities/Liebjects

• Multi-Surface National Forest Inventors, UNREDD-FAO conducter in Services (1984) Notabler ALV, February 2013 and Services in 1985 (2013) and one dended by lettersher course who ing (Regusta 2013) conducted in Lae (FR)

• Community Forest Management (1990): Londucted a way ishop in September 2013/iley military indentified for the Person jet phase) and after summittation meetings common out for each respective partners, project or pilot sites.

• JICA Project has tunded 3 international meetings in beging in COL 19) in 2013 and also the APPIVALIMENTS in beging in beging in 2012.

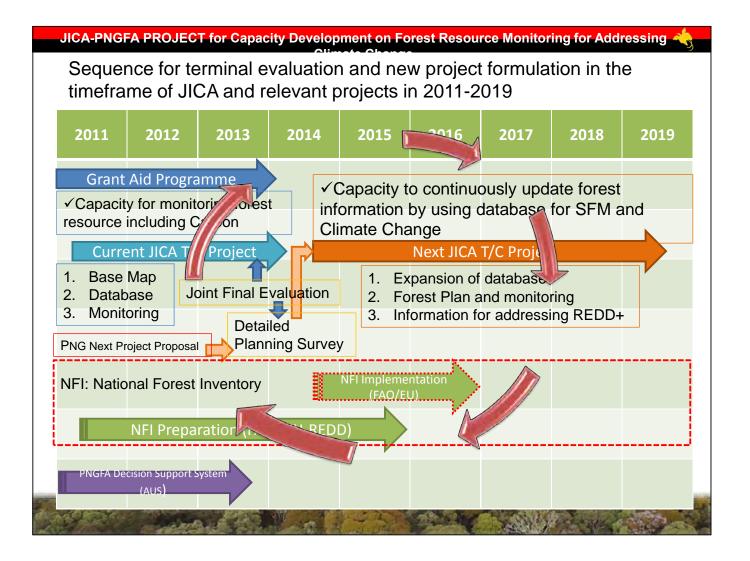
Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Collaboration with UN-REDD/FAO & JICA in PNG

Gewa Gamoga

REDD & Climate Change Branch
Forest Policy & Planning Directorate
PNG Forest Authority

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change


Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Outline

- 1. National Forest Inventory (NFI) Brief
- 2. JICA-PNGFA Project's Contribution to NFI
- 3. Summary -

Background

- FundingEU and UNREDD Program
- Project title
 - o Technical support to the PNG Forest Authority to implement a multi-purpose National Forest Inventory
- Period
 - oOctober 2013 September 2016

Background

- The project overall objective
 - -is to contribute to the implementation of PNG's policies and measures for climate change mitigation.
- The purpose
 - -is to support the PNG Forest Authority to implement a continuous and multi-purpose National Forest Inventory (NFI) as part of a National Forest Monitoring System that will fulfil the UNFCCC Cancun and Copenhagen decision requests

Background

- Key features of this project
 - Capacity building to improve the capabilities of the PNG Forest Authority and the University of Technology-Department of Forestry on continuous and multi-purpose forest monitoring systems.
 - Capacity development to establish the first multi-purpose National Forest Inventory of PNG
 - NFI Information and Data Sharing System Development
 - Support to research and education activities on PNG forests.
 - Promote policy dialogue on forestry.

NFI Progress

- Inventory Approach
- PNG has taken a double sampling approach

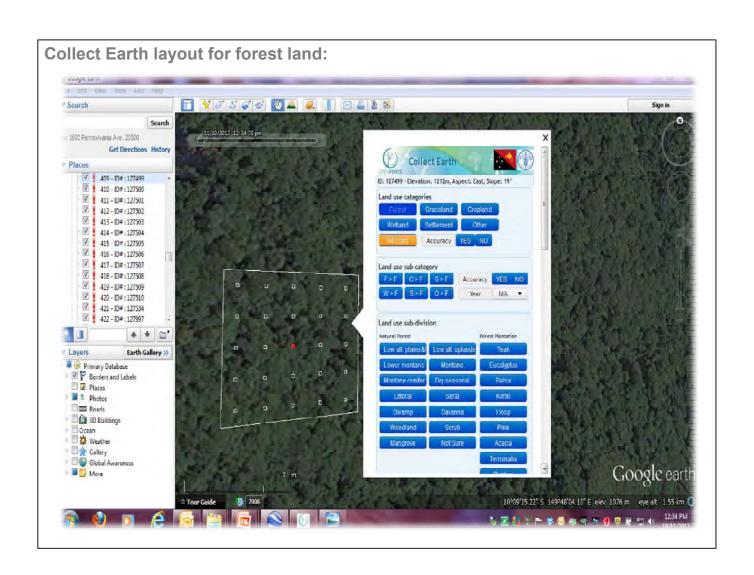
Phase 1

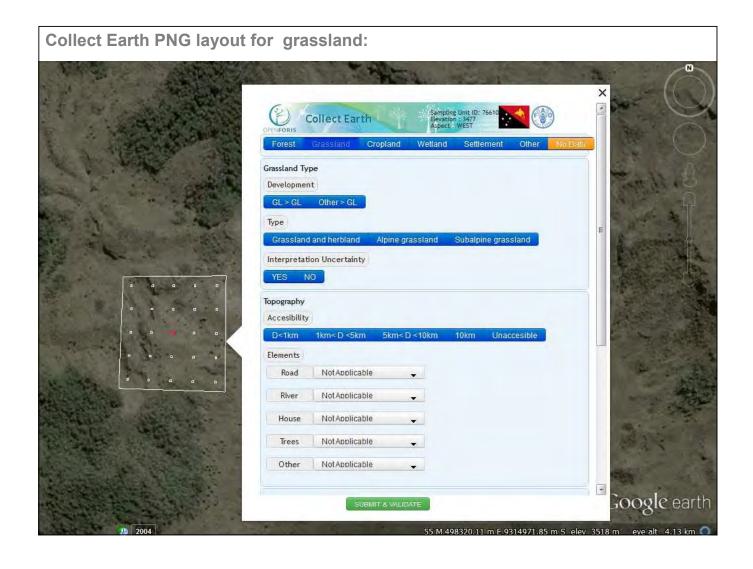
Based on RS data analysis and Collect Earth/Open foris

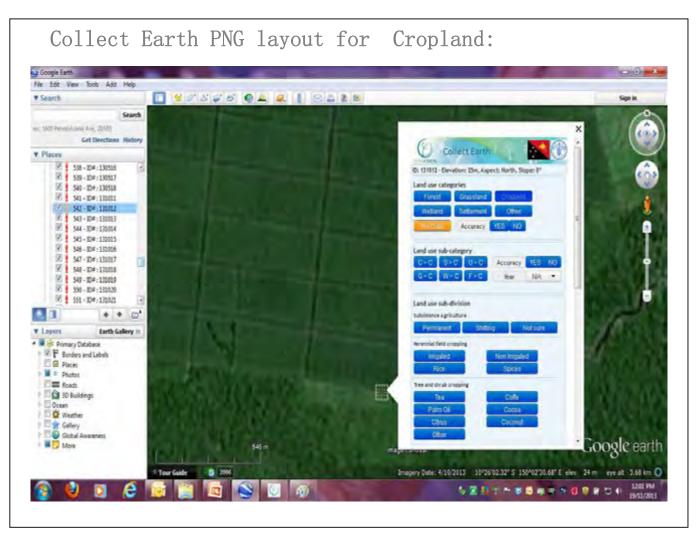
Phase 2

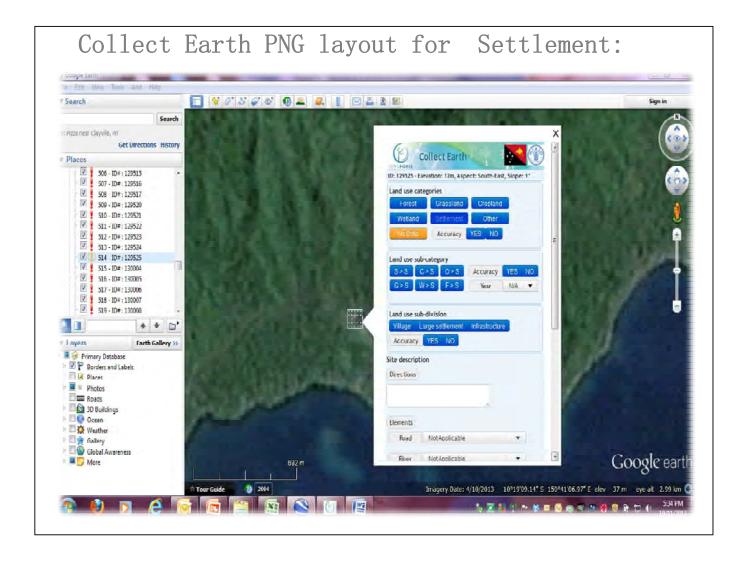
Based on field plot clusters on a random estricted sampling design

Phase 1 - Pre-Inventory Assessment


- 1. Sampling Design
 - Systematic grid 4x4 km
 - 25,279 tracts covering PNG
- 2. Sampling Unit
 - 1 hectare (100m x 100m) & 25 check points
- 3. Classification:
 - IPCC land use categories and subcategories + PNG Forest type and Vegetation classifications as subdivisions


Collect Earth PNG


- We are using "Collect Earth" to assess forest and land use
- A basic and user friendly tool to assess land use and land cover changes
 - through point sampling and visual interpretation of RS data using Google Earth

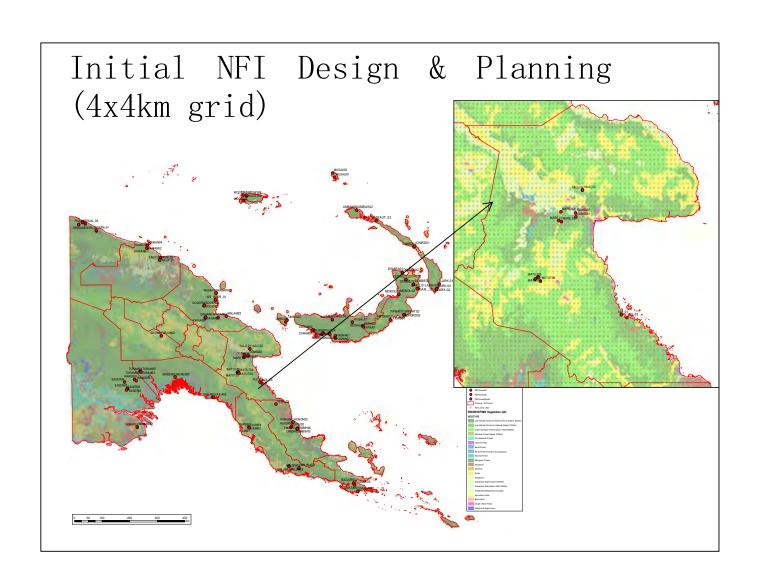

Landscape detail of Rapid Eye image coverage with sample plots distribution

Phase 1 outputs

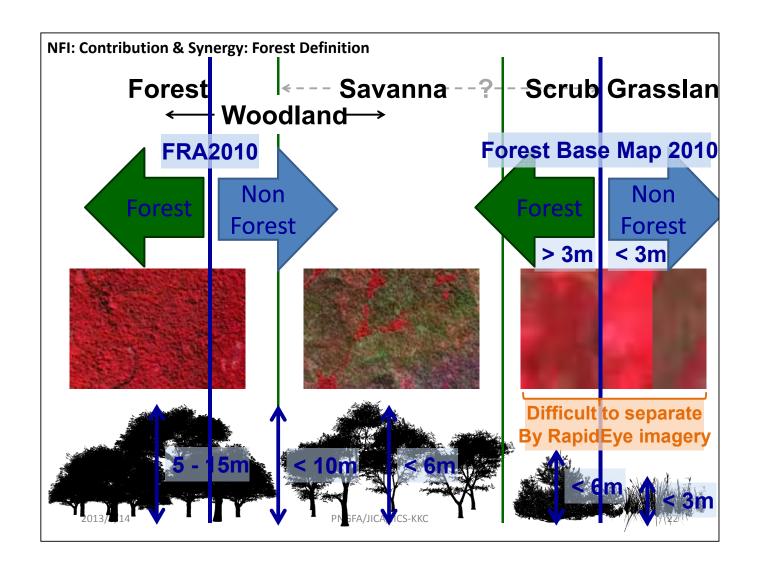
• After assessing all the 25,279 plots

Phase 1 outputs

o Separate Forest plots from non forest plots


Phase 1 outputs

o Do further analysis of the forest plots for the $2^{\rm nd}\ {\rm phase}$



JICA-PNGFA Project Contributions to NFI

- Initial NFI Design & Planning
 - assist with 4km x4km grid
- Provide expert advice on defining the national 'Forest Definition'.
- Provision of kmz files for
 - -FIMs vegetation classes
 - -rapid Eye images
 - timber concessions

Forest Definition

NFI: Contribution & Synergy: Forest Definition

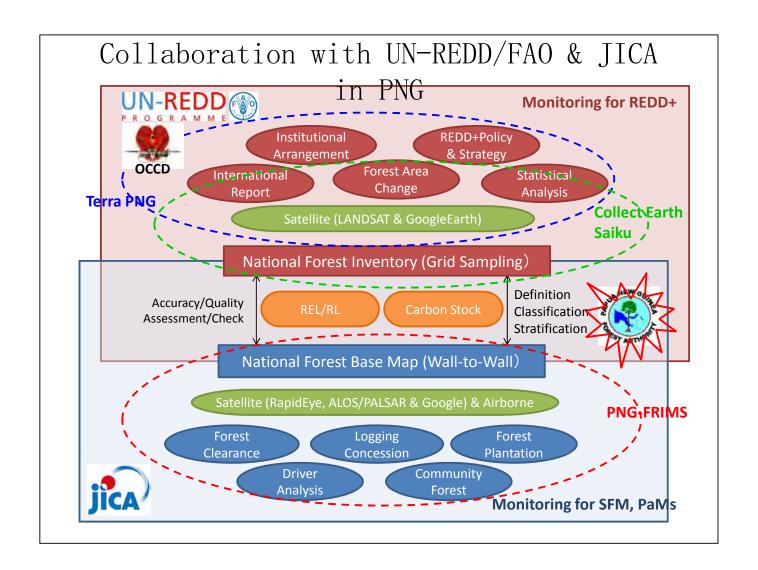
	Area	Canopy	Height	
	hectare	%	meter	
UNFCCC KP Range	0.05 - 1	10 – 30	2-5	
FAO FRA2010	0.5	10	5	
PNG WS, Feb. 2009	0.5	10	3	
PNG Tentative 2013	1	30	3	Small huddling 19 Feb. 2013
PNG FIMs	1 (smallest FMU)	>50 (LU4 Min.)		
Montane Forest			5 – 15	
Woodlands			Up to 10	
Savannah			Less than 6	
Scrub			Up to 6	
Grassland			Less than 3	
Agreement in Combined NFI WG (3)	1	10	3	16 th Aug 2013, Lae
2013/8/14	PNGFA/J	ICA/JICS-KKC		23

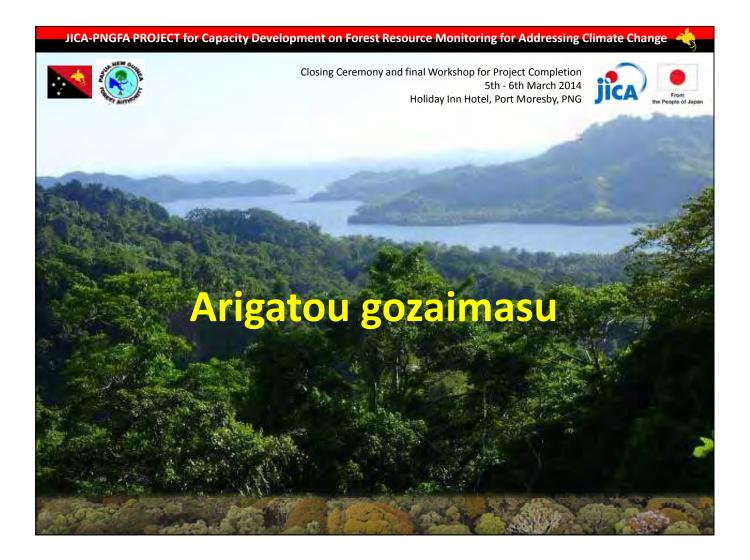
Provision of Kmz files for plot analysis

Landsat April 2013

Rapid Eye 2010

Landsat April 2013




RapidEye 2010

Collaboration with UN-REDD/FAO & JICA in PNG

Summary

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

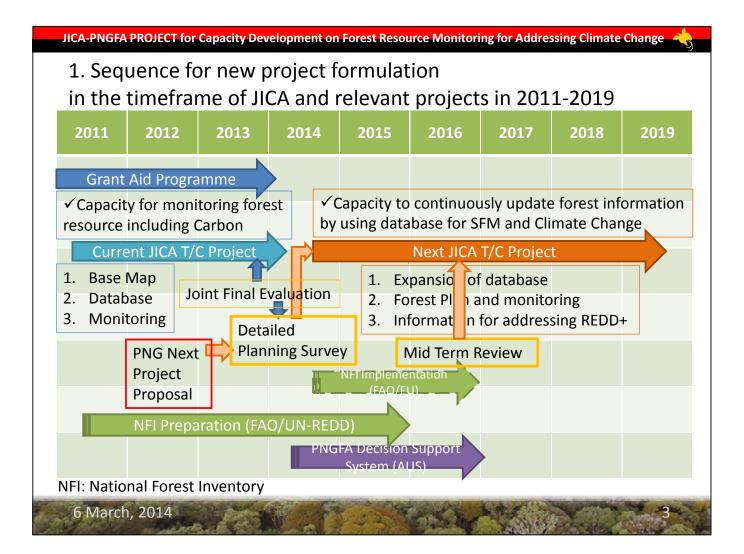
Detailed Design of the Next JICA Technical Cooperation Project

Tatsuya Watanabe

Chief Advisor

JICA PNGFA Project

6 March, 2014


1

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Contents

- 1. Sequence for new project formulation
- 2. Outline of detailed planning survey
- 3. Overall Concept of the new Project
- 4. Output 1, 2, and 3
 - 1. Issues to be tackled for Output 1 and 2
 - 2. Activities under Output 1, 2, and 3
- 5. Draft Plan of operation

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

2. Outline of detailed planning survey

1. Survey Team

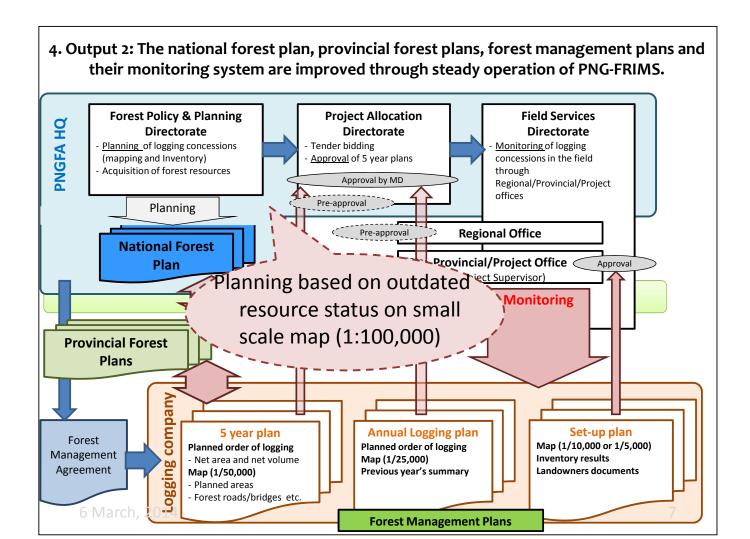
Mr. Hiroki MIYAZONO Team leader, JICA HQ

Mr. Masahiko HORI Forest Planning/Climate Change,

Forestry Agency

Mr. Akira TAKAGI Project Evaluation & Analysis,


ICONS Inc.


Mr. Hiroyuki MIYAZAKI Cooperation Planning, JICA HQ

2. Survey schedule

20th - 30th January 2014

forest plans, forest management plans and their monitoring system are improved through steady operation of PNG-FRIMS.

4. Output 1 and 2: Issues to be tackled

- ◆ Planning based on outdated resource status on small scale map (1:100,000)
 - → Limited capacity for evaluating logging operation plan
- ✓ Updating resource status on larger scale map
 - → Limited capacity for monitoring field logging operation
 - → Limited capacity for verifying compliance with the Logging Code of Practice
- ✓ Extended use of forest base-map, hand-held GPS, GIS and so on...

6 March, 2014 8

4. Output 1: The PNG Forest Resource Information Management System (PNG-FRIMS) is expanded and enhanced

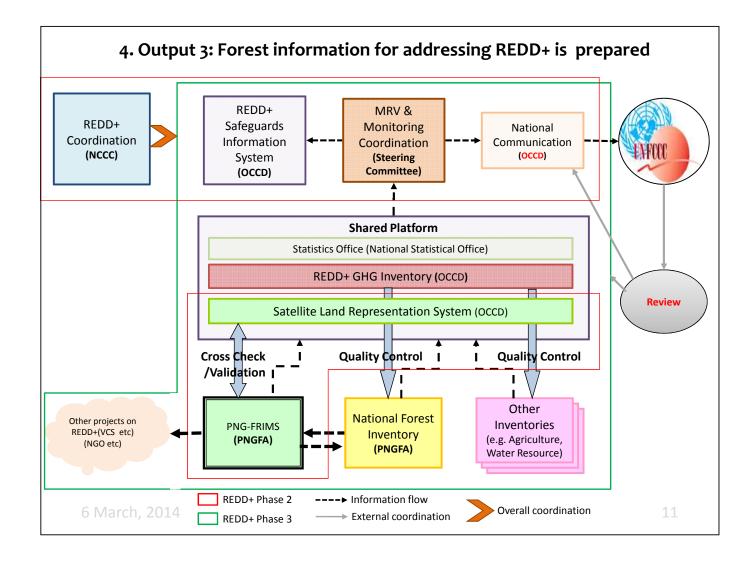
Activities

- 1.1 Examine and identify information to be added and integrated to PNG-FRIMS.
- 1.2 Lay out a basic design for expansion and enhancement of PNG-FRIMS.
- 1.3 Examine the approach of updating the forest base map.
- 1.4 Examine the method of developing and updating information on growing stock.
- 1.5 Examine the method of reflecting the ground sample plot information on forest resources in the activities 1.3 and 1.4.
- 1.6 Examine the method of preparing information other* than the methods of the activity 1.3 and 1.4 if necessary.
- 1.7 Develop a prototype of upgraded PNG-FRIMS on the basis of the activities 1.1 1.6.
- 1.8 Operate the prototype on a trial basis and finalize PNG-FRIMS.
- 1.9 Develop a work manual of the PNG-FRIMS operation including field data collection.
- 1.10 Conduct training for keeping and improving the technical levels of PNGFA and other collaborators particularly on remote sensing, GIS and database which are necessary for the PNG-FRIMS operation.
- *: Note for presentation. gardening, agriculture plantation, mining, wildlife, etc.

6 March, 2014

C

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change



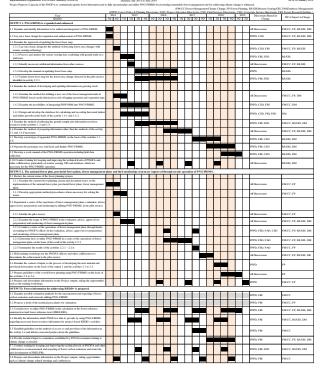
Output 2: The national forest plan, provincial forest plans, forest management plans and their monitoring system are improved through steady operation of PNG-FRIMS.

Activities

- 2.1 Review the current status of the forest planning system.
- 2.2 Experiment a series of the operations of forest management plans; evaluation, advice, approval (or preparation) and monitoring by utilizing PNG-FRIMS, in the pilot area(s).
- 2.3 Hold training workshops for the PNGFA officers and other collaborators to disseminate the achievement in the pilot area(s).
- 2.4 Examine the content of inputs to the process of developing the next national and provincial forest plans on the basis of the output 1 and the activities 2.1 to 2.3.
- 2.5 Prepare guidelines of the overall forest planning using PNG-FRIMS on the basis of the activities 2.2 to 2.4.
- 2.6 Prepare and disseminate information on the Project outputs, taking the opportunities such as the training workshops.

6 March, 2014

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change


4. Output 3: Forest information for addressing REDD+ is prepared

Activities

- 3.1 Examine possible estimation methods for the measurement and reporting of forest carbon emissions and removals utilizing PNG-FRIMS.
- 3.2 Propose a draft of the technical procedures for estimation.
- 3.3 Consider how to utilize PNG-FRIMS in the calculation of the forest reference emission level and forest reference level (FREL/FRL).
- 3.4 Identify the information which PNGFA is able to provide by using PNG-FRIMS, regarding necessary forest resource information for project-based REDD+ activities.
- 3.5 Establish guidelines on the method of access to and provision of the information in the activity 3.4 and inform concerned parties about the guidelines.
- 3.6 Provide technical input to committees established by PNG Government relating to climate change as needed.
- 3.7 Conduct training for keeping and improving the technical levels of PNGFA and other collaborators on measurement and reporting of forest carbon emissions and removals, and development of FREL/FRL.
- 3.8 Prepare and disseminate information on the Project outputs, taking opportunities such as climate change related meetings and conferences.

6 March, 2014 12

Plan of Operation

6 March, 2014

13

JICA-PNGFA PROJECT for Capacity Development on Forest Resource Monitoring for Addressing Climate Change

Closing Ceremony and final Workshop for Project Completion 5th - 6th March 2014 Holiday Inn Hotel, Port Moresby, PNG

Thank you
Tenkyu tru
Arigatou gozaimashita

6 March, 2014