FINAL REPORT

ON

PROJECT ON DEVELOPMENT OF HUMAN CAPACITY ON OPERATION OF WEATHER ANALYSIS AND FORECASTING IN THE PEOPLE'S REPUBLIC OF BANGLADESH

JANUARY 2014

JAPAN INTERNATIONAL COOPERATION AGENCY

CONSORTIUM OF JAPAN WEATHER ASSOCIATION AND INTERNATIONAL METEOROLOGICAL CONSULTANT INC.

BDO
JR
14-002

Location Map of the Project Sites

List of Abbreviations

AWS	:	Automatic Weather System
BDRCS	:	Bangladesh Red Crescent Society
BMD	:	Bangladesh Meteorological Department
BST	:	Bangladesh Standard Time
BTTB	:	Bangladesh Telegraph and Telephone Board
BWDB	:	Bangladesh Water Development Board
C/P	:	Counterpart
CPP	:	Cyclone Preparedness Programme
DMB	:	Disaster Management Bureau
DRR	:	Directorate of Relief and Rehabilitation
ECMWF	:	European Centre for Medium-Range Weather Forecasts
ECNEC	:	Executive Committee for National Economic Council
EDGE	:	Enhanced Data Rates for GSM Evolution
EOC	:	Emergency Operations Center
ERD	:	Economic Relation Division
FFWC	:	Flood Forecasting and Warning Centre
FY	:	Fiscal Year of Japan
GPS	:	Global Positioning System
GTS	:	Global Telecommunication System
IMDMCC	:	Inter-Ministerial Disaster Management Coordination Committee
JCC	:	Joint Coordinating Committee
JICA	:	Japan International Cooperation Agency
JMA	:	Japan Meteorological Agency
M/M	:	Minutes of Meetings

MDMR	:	Ministry of Disaster Management and Relief
MOA	:	Ministry of Agriculture
MOD	:	Ministry of Defence
MOE	:	Ministry of Environment
MOF	:	Ministry of Food
МОН	:	Ministry of Health
MOS	:	Model Output Statistics
NHM	:	(JMA) Non-Hydrostatic Model
NDMC	:	National Disaster Management Council
NOAA	:	National Oceanic and Atmospheric Administration
NWP	:	Numerical Weather Prediction
OJT	:	On-the-Job Training
PCM	:	Project Cycle Management
PDM	:	Project Design Matrix
РО	:	Plan of Operation
Pre-ECNEC	:	Pre-Executive Committee for National Economic Council
R/D	:	Record of Discussions
RIC	:	Regional Inspection Center
SAARC	:	South Asia Association for Regional Cooperation
SMS	:	Short Mail Message Service
SWC	:	Storm Warning Centre
TPP	:	Technical Project Proposal
UNDP	:	United Nations Development Programme
UNHCR	:	The Office of the United Nations High Commissioner for Refugees
VBA	:	Visual Basic for Applications
WMO	:	World Meteorological Organization

Exchange Rates of Currency assigned by JICA

Month	Japanese Yen /	Japanese Yen / 1 Bangladesh Taka
FY2009	1050	1 Daligiadesii Taka
9	93.13	1.382
10	89.98	1.326
11	90.87	1.342
12	86.66	1.259
1	91.45	1.346
2	90.14	1.328
3	89.25	1.314
FY2010		
4	92.70	1.365
5	94.06	1.384
6	91.10	1.333
7	88.66	1.304
8	87.05	1.278
9	84.85	1.244
10	83.67	1.229
11	81.23	1.169
12	84.16	1.219
1	82.86	1.195
2	82.16	1.172
3	81.73	1.172
FY2011		
4	82.87	1.161
5	81.96	1.144
6	80.86	1.123
7	80.99	1.093
8	77.83	1.057
9	76.79	1.057
10	76.63	1.036
11	75.84	1.012
12	77.95	1.030
1	77.91	0.978
2	76.60	0.925
3	80.48	1.001

Month	Japanese Yen / 1US\$	Japanese Yen / 1 Bangladesh Taka
FY2012		
4	82.50	1.025
5	81.07	1.007
6	79.26	0.984
7	79.45	0.987
8	78.31	0.975
9	78.63	0.979
10	77.68	0.969
11	79.65	0.998
12	82.11	1.027
1	85.81	1.087
2	91.04	1.166
3	91.84	1.184
FT2013		
4	94.19	1.227
5	97.84	1.278
6	101.03	1.323
7	98.07	1.282
8	98.10	1.280
9	98.04	1.287
10	98.29	1.289
11	98.25	1.292
12	102.19	1.338

Project on Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh FINAL REPORT

Table of Contents

Location Map of the Project Sites List of Abbreviations Exchange Rates of Currency assigned by JICA

	Outline	e of the Project (Background, Objective and Circumstance)	1
1.1 I	Backgro	ound of the Project	1
1.2 (Objectiv	ve of the Project	4
1.3 (Circum	stance of the Project	4
	ACTU	AL INPUTS	6
2.1	Disp	eatch of JICA Expert Team	6
2.	1.1.	Expert Dispatch Schedule	9
2.	1.2.	Flowchart	. 10
2.	1.3.	Work Schedule	11
2.2	Cou	nterpart Training in Japan	. 12
2.	2.1.	Basic training on Numerical Weather Prediction (NWP)	. 12
2.	2.2.	Weather Information Services	. 13
2.	2.3.	Observation Data Control	. 14
2.3	Pro	vision of Equipment	. 15
2.4	List	of Outputs	. 18
2.5	RE∖	ISION OF THE PROJECT DESIGN MATRIX (PDM)	. 21
	ISSUE	S, IDEAS AND LESSONS LEARNED DURING PROJECT IMPLEMENTATION	. 29
	PROJ	ECT OUTPUTS	. 30
	Recom	nmendations towards the achievement of the overall goal	. 37
	THE R	ECORDS OF THE JOINT COORDINATING COMMITTEE	. 38
	1.1 1.2 (1.3 (2.1 2. 2. 2. 2. 2. 2. 2. 2. 3 2.4 2.5	Outline 1.1 Backgro 1.2 Objectiv 1.3 Circums ACTU, 2.1 Disp 2.1.1. 2.1.2. 2.1.3. 2.2 Cou 2.2.1. 2.2.2. 2.2.3. 2.3 Prov 2.4 List 2.5 REV ISSUE PROJI Recom THE R	Outline of the Project (Background, Objective and Circumstance)

Annexes

- 1. Pictures of activities in each field
- 2. Outputs

1. Outline of the Project (Background, Objective and Circumstance)

1.1 Background of the Project

Bangladesh is situated in a heavy rainfall and tropical cyclone prone region in the flood plains of the major rivers like the Ganges, the Brahmaputra and the Meghna with 20% of its landmass being flooded annually. During the pre-monsoon, monsoon, and post-monsoon seasons (March-November), it is constantly hammered by natural disasters such as tropical cyclones, storm surges, local severe storms, heavy rainfall, river erosion, major floods, flash floods, and their attendant landslides, and other forms of devastation every year. Bangladesh has long been associated with extreme vulnerability to natural disasters which are all responsible for its perpetual economic retardation. It experiences significant economic losses coupled with human anguish and sufferings generated especially by flood which is a perennial problem in this country. It has caused significant damage to agriculture, thereby, inflicting widespread poverty on the people of Bangladesh. These natural disasters have adversely affected the people's standard of living.

Moreover, with the accumulative unfavorable effects of global warming and climate change, this country, with its high population density, is likely to become more vulnerable to meteorological disasters and will, thus, encounter more intense floods, droughts and more severe and frequent tropical cyclones. During summer and the southwest monsoon season, intense rainfall in and around Bangladesh (with its large spatial and temporal variation - excessive rainfall at times and scanty sometimes) is responsible for the flash floods, floods and droughts that cause extensive damage to the infrastructure and agriculture of Bangladesh.

< Japanese Cooperation in the Field of Meteorology >

Japanese cooperation in the field of meteorology started in 1988 with the replacement of the two old cyclone surveillance radars located in the coastal belt of Bangladesh, more specifically at Cox's Bazar and Khepupara.

In the year 1994, Japan's Grant Aid took a more pragmatic approach by

connecting the two coastal belt radars with the Storm Warning Center (SWC) of the Bangladesh Meteorological Department (BMD) through a micro-wave link for the real-time visualization of Radar images. Since then, and also with the subsequent increase in the amount of Japan's Grant Aid, a significant impact and improvement was seen in the cyclone forecasting and warning system as well as in the disaster management of Bangladesh which led to a considerable reduction in economic losses & human casualties.

In 1998-1999, through the Project for Strengthening of the Weather Warning Services related to Natural Disasters in Bangladesh, a massive upgrading of the BMD's overall operational capabilities were undertaken, namely, a new radar in Rangpur in the north-west part of Bangladesh for detecting severe thunderstorms was established, the old Dhaka Radar was replaced, Satellite Ground Receiving Stations were established, the BMD's Global Telecommunication Link was modernized, online weather presentation via TV was introduced, and a micro-wave link was established for the speedy transmission of hazardous weather information to the Honorable Prime Minister's Office, Zia International Airport and the Flood Forecasting & Warning Centre (FFWC). In order to improve the BMD's performance in the Aviation Sector, an Automatic Weather Observation System was also installed at the Zia International Airport under the Project.

During 2007-2009, Japan's Grant Aid has mainly given emphasis on the replacement of the two old radars, one at Cox's Bazar and the other at Khepupara, with Doppler Technology for improved tropical cyclone monitoring. In addition, another Doppler Radar at Moulvibazar has also been established which is equipped with improved precipitation monitoring facility for flash flood, flood forecasting and warning. During this period, due importance was also given to upgrade the GMS Satellite System to MTSAT and restore the existing WAN & LAN connection along with establishment of VSAT Links to connect all the radars for preparation of composite pictures at the SWC in Dhaka. Rainfall is an important component of the hydrological cycle and accurate rainfall estimates are necessary not only to improve the weather forecast, flood forecast and warning system but also to develop an understanding of the basic mechanisms of disaster management on which the warnings are based. With the help of observations from the newly operational Doppler Radar Systems, it would be possible to acquire accurate estimates of rainfall and its time of occurrence which will make possible the issuance of timely and advance flash flood and flood warning for disaster risk reduction, which, in turn, will considerably reduce the adverse impact of floods and flash floods on the socio-economic conditions of Bangladesh.

<Necessity of the Development of the Human Capacity of the BMD >

Significant damages resulting from meteorological disasters which frequently occur every year

still remains to be one of the major elements hampering the socio-economic development of Bangladesh in both a macro/micro-scale. The BMD has been incessantly receiving strong demand from both the public and the Government to upgrade its weather forecasting and warning systems. The current weather analysis and forecasting work done are mostly based on the subjective analysis of the weather forecasters and do not give forecasts which specify values of parameters (i.e. forecasted rainfall amount), places and forecast time. This situation makes it difficult for users to utilize the weather information from the BMD for their specific purpose.

More accurate and tailored weather forecasts need modern technologies of objective weather analysis such as radar rainfall analysis and numerical weather prediction (NWP), both of which are based on the computation of complex equations. These technologies will give values of parameters such as rainfall, temperature, wind, possibility of isolated heavy rain, etc. at particular places over the whole country.

The rainfall observation stations and the communication system of the BMD are not enough to detect and monitor local heavy rainfall on a real time basis. On the other hand, data from the meteorological radar systems provide real time data of location and intensity of water drops from the clouds. When the data is calibrated by actual rainfall data on the computers, it will immediately provide an estimated actual amount of local rainfall in high resolution in the covered areas of the meteorological radar systems provided under the grant aid projects of the Government of Japan. This rainfall data will help generate more accurate and timely flood forecasting without the need for huge investments for hundreds of rain gauge telemetry stations.

Numerical weather prediction (NWP), a kind of computer-based simulation model which mostly consists of physical equations, predicts future atmospheric conditions and gives quantitative data of air pressure, rainfall, temperature, etc. in high spatial and time resolution. The introduction of the NWP technique and its related methods is expected to drastically change the quality of weather forecasts of the BMD. However, a total NWP system needs a considerable amount of time for its development and investment for hardware. Therefore, it would be more feasible and prudent for the BMD to begin initially with basic skills trainings on the NWP system and the application of NWP products to weather forecasting.

Under such a background, the Bangladesh Government requested the Japan Government for the implementation of a technical cooperation project aimed at the improvement of the capability for weather observation, which is a base of weather analysis and forecasting duties, the improvement of observation accuracy through radar calibration with meteorological radar data and actual rainfall data, the establishment of medium and long range forecasting method by introducing the Numerical Weather Prediction (NWP), the conduct of trend analysis of climate change through the utilization of accumulated climate data and the improvement of the capacity to promote these highly accurate information.

1.2 Objective of the Project

The objectives of the Project are as follows.

- Improvement of the capability for weather observation which is a base of weather analysis and forecasting duties;
- Improvement of observation accuracy through radar calibration with meteorological radar data and actual rainfall data;
- Establishment of medium and long range forecasting method by introducing the Numerical Weather Prediction (NWP);
- Conduct of trend analysis of climate change through the utilization of accumulated climate data; and,
- · Improvement of the capacity to promote highly accurate information.

1.3 Circumstance of the Project

The implementation of this project follows the projects described in the table below.

	The other meteorological projects that were implemented	ed before the Project
Completion Year	Name of the Project	Major Maintenance Items
1988	The Project for Improvement of the Meteorological Radar Systems at Cox's Bazar and Khepupara	Cox's Bazar S-Band Radar Khepupara S-Band Radar
1994	The Project for Establishment of Microwave Link for Meteorology in the People's Republic of Bangladesh	Digital microwave lines
2000	Improvement of the Natural Disasters Weather Warning Project in the People's Republic of Bangladesh	Rangpur S-Band Radar Dhaka S-Band Radar
2007	The Project for the Improvement of the Meteorological Radar System at Cox's Bazar and Khepupara $(1/2)$	Cox's Bazar S-Band Radar
2008	The Project for the Improvement of the Meteorological Radar System at Cox's Bazar and Khepupara (2/2)	Khepupara S-Band Radar
2009	The Project for Establishment of the Meteorological Radar System at Moulvibazar in the People's Republic of Bangladesh	Moulvibazar S-Band Radar

This "Technical Cooperation Project for Development of Human Capacity on the Operation of Weather Analysis and Forecasting" was originally scheduled to be implemented for four years from October 2009 to December 2012. However, in the Final Evaluation conducted in July–September 2012, a one year extension of the project period has been proposed in order to guarantee the achievement of the project objectives and the sustainability of the outcomes. Due to the problems described in the table below, it was confirmed that the achievement of the project outcome and project objective would be difficult as several activities are affected by these problems. Under such situation, the one year extension of the project period from January 2013 to December 2013 was decided upon on the basis of the recommendations of the Final Evaluation report and the result of extensive discussions with the Bangladesh Government.

Problems	Reason	Affected activities			
		To install the six (6) AWSs and twelve (12) rain gauges at the eighteen existing meteorological observatories.			
		To revise the field observation guidelines (including the AWS) in accordance with the latest WMO policy.			
		To provide observation training for field observers based on the field observation guidelines and the data entry format.			
		To conduct training on the data quality of observed data for forecasters.			
Postponed	Delay of the	To prepare the operation and maintenance manuals for observation fields and instruments			
procurement of the	completion of procedures by JICA and by the government	(including the AWS).			
the AWS (Automatic		procedures by	procedures by	procedures by	To provide the training for field observers and instruments inspectors on the maintenance
Weather Observation		and control of observation fields and observation instruments (including the AWS).			
System AWS) for more than one year.	of Bangladesh.	To compare the data obtained by the AWS and existing equipment and conduct quality			
		control.			
		To identify the radar ZR relation parameter for rainfall calculation in the observation range of 5			
		existing meteorological radar systems and optimize the parameter.			
		To prepare correlation charts of rainfall data of radar and surface observations.			
		To compose the rainfall composite picture of 5 existing meteorological radar systems			
		optimized radar ZR relation parameter for rainfall calculation in SWC.			
		To archive the observation data and conduct quality control.			

2. ACTUAL INPUTS

2.1 Dispatch of JICA Expert Team

The following JICA experts that were involved in the Project for five (5) years in accordance with the schedule are attached hereunder.

Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA September 12, 2009 December 20, 2009 December 20, 2009 Leodor 12, 2010 2.20 M/M Yoshihisa UCHIDA September 13, 2010 September 13, 2010 September 13, 2010 2.40 M/M Yoshihisa UCHIDA September 13, 2011 Pebruary 18, 2011 2.40 M/M January 29, 2011 September 14, 2011 December 14, 2011 2.40 M/M January 29, 2011 September 13, 2012 September 13, 2012 2.40 M/M January 29, 2011 December 14, 2011 December 14, 2011 2.40 M/M January 29, 2011 December 14, 2011 December 12, 2012 Arch 17, 2012 September 13, 2012 November, 2013 November, 2013 November, 2013 March 32, 2013 April 19, 2013 January 32, 2013 April 19, 2013 July 7, 2013 November, 2010 February 28, 2010 February 28, 2010 Kesistant Leader / Weather Toshihide ENDO Toshihide ENDO January 32, 2013 April 19, 2013 June 7, 2010 September 18, 2010 October 19, 2013 January 62, 2010	Assigned Field	Name of Experts	Dispatch Schedule in This Fiscal Y	ear						
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA February 6, 2010 February 6, 2010 2.20 M/M June 4, 2010 June 4, 2010 June 4, 2010 2.20 M/M Variation Management Yoshihisa UCHIDA September 10, 2011 September 10, 2011 September 10, 2011 June 4, 2010 2.20 M/M January 29, 2011 December 14, 2011 December 14, 2011 December 14, 2011 June 4, 2010 2.40 M/M January 23, 2012 February 18, 2013 June 4, 2010 September 20, 2012 Norember 12, 2012 Norember 12, 2012 June 4, 2010 June 4, 2010 June 4, 2010 June 4, 2011 June 4, 2010 June 4, 2010 June 4, 2010 June 4, 2010 <td></td> <td></td> <td>September 27, 2009 – October 11, 2009</td> <td>1.50.149.6</td>			September 27, 2009 – October 11, 2009	1.50.149.6						
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA September 13, 2010 Cotober 12, 2010 2.20 M/M January 29, 2011 February 18, 2011 Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA September 9, 2011 September 20, 2011 September 31, 2011 January 23, 2012 February 18, 2011 June 27, 2017 December 31, 2011 Beernber 31, 2012 March 17, 2012 January 23, 2012 September 30, 2012 November 30, 2012 November 30, 2012 November 30, 2012 January 52, 2010 January 52, 2			December 20, $2009 -$ December 20, 2009	1.70 M/M						
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA September 13, 2010 - October 12, 2010 January 29, 2011 - February 18, 2011 June 27, 2011 - September 20, 2011 December 14, 2011 - December 31, 2011 January 23, 2012 - February 1, 2012 2.40 M/M Assistant Leader / Weather Observation Yoshihide ENDO March 3, 2012 - March 17, 2012 March 3, 2012 - December 20, 2012 March 3, 2012 - December 20, 2012 1.57 M/M Assistant Leader / Weather Observation Toshihide ENDO March 20, 2013 - April 19, 2013 July 7, 2013 - July 18, 2013 1.93 M/M Weather Service Infrastructure Calibration Toshihide ENDO September 20, 2009 - January 6, 2010 February 8, 2010 - February 13, 2011 1.80 M/M Weather Service Infrastructure Calibration Toshihide ENDO September 18, 2010 - October 8, 2010 June 27, 2011 - July 31, 2011 1.80 M/M Weather Service Infrastructure Calibration Kenji MORI September 13, 2010 - October 8, 2010 June 27, 2011 - July 31, 2013 2.20 M/M Meteorological Calibration Radar Calibration Takayuki OTSU September 13, 2011 - January 26, 2012 February 28, 2012 - March 14, 2013 2.20 M/M Statistical Analysis Takayuki MOTOYA September 13, 2010 - October 14, 2010 September 20, 2011 - January 12, 2012 1.37 M/M Data Quality Control and Statistical Analysis Takayuki			$\frac{12000}{1000} = \frac{1200}{1000} = \frac{1200}{1000}$							
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA January 29, 2011 - February 18, 2011 June 27, 2011 - September 20, 2011 January 23, 2012 - February 1, 2012 2.40 M/M Key and Comparization Management Yoshihisa UCHIDA September 14, 2011 - December 31, 2011 January 23, 2012 - February 1, 2012 2.40 M/M Key and Comparization Management Yoshihisa UCHIDA September 14, 2011 - December 31, 2011 June 27, 2013 - April 19, 2013 July 7, 2013 - April 19, 2013 July 7, 2013 - July 18, 2013 October 19, 2013 - November12, 2010 1.57 M/M Key and Comparization Management Toshihide ENDO September 20, 2009 - Junuary 6, 2010 February 18, 2010 - October 81, 2010 1.93 M/M Key and Comparization Management Toshihide ENDO Toshihide ENDO September 18, 2010 - October 8, 2010 June 00, 2010 - June 27, 2010 - December 11, 2010 June 00, 2010 - June 27, 2010 - December 18, 2011 June 27, 2011 - July 20, 2012 - 0.70 M/M 1.80 M/M Weather Service Infrastructure Kenji MORI September 13, 2010 - October 14, 2013 July 7, 2013 - April 19, 2013 July 7, 2013 - December 18, 2011 2.20 M/M Weather Service Infrastructure Kenji MORI September 13, 2010 - October 14, 2010 December 23, 2013 - October 14, 2010 2.20 M/M Meteorological Calibration Radar Takayuki OTSU September 13, 2010 - October 19, 2001 1.60 M/M			June 4, $2010 -$ June 18, 2010	2 20 M/M						
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA June 29, 2011 - February 18, 2011 June 27, 2011 - July 13, 2011 September 9, 2011 - September 20, 2011 January 23, 2012 - February 1, 2012 March 3, 2012 - March 17, 2012 2.40 M/M Assistant Leader / Weather Observation Yoshihise ENDO September 20, 2012 March 29, 2013 - April 19, 2013 July 7, 2013 - July 18, 2011 October 19, 2013 - November 15, 2012 I.57 M/M December 10, 2013 - December 19, 2013 July 7, 2013 - December 19, 2013 1.93 M/M Assistant Leader / Weather Observation Toshihide ENDO December 10, 2013 - December 19, 2013 July 7, 2013 - December 19, 2013 1.93 M/M Weather Service Infrastructure Calibration Toshihide ENDO December 18, 2010 - October 19, 2013 July 7, 2013 - July 18, 2011 1.13 M/M Weather Service Infrastructure Calibration Kenji MORI September 18, 2010 - October 14, 2013 July 7, 2013 - July 19, 2013 July 7, 2013 - December 14, 2011 - January 26, 2012 June 30, 2012 - July 20, 2012 - 0.70 M/M March 29, 2013 - April 19, 2013 July 7, 2013 - December 18, 2010 - October 14, 2013 September 23, 2013 - October 14, 2013 - December 14, 2010 December 19, 2011 - January 12, 2012 - 1.57 M/M December 19, 2011 - January 12, 2012 - 1.57 M/M December 19, 2011 - January 12, 2012 - 1.57 M/M December 19, 2011 - January 12, 2012 - 1.57 M/M December 19, 2011 - January 12, 2012 - 1.57 M/M December 10, 2011 - January 12, 2012 - 1.57 M/M December 19, 2011 - January 12, 2012 - 1.57 M/M December 19, 2011 - January 12, 2012 - 1.57 M/M December 10, 2011 - January 12, 2012 - 1.57 M/M December 10, 2011 - January 12, 2012 - 1.57 M/M Decembe			September 13, $2010 - \text{October 12}, 2010$	2.20 M/M						
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA September 9, 2011 – September 20, 2011 December 14, 2011 – December 31, 2011 January 23, 2012 – February 1, 2012 2.40 M/M March 3, 2012 – March 17, 2012 September 5, 2012 – March 17, 2012 2.40 M/M September 5, 2012 – September 20, 2011 March 3, 2012 – March 17, 2012 1.57 M/M September 5, 2012 – December 10, 2013 – December 20, 2001 March 29, 2013 – April 19, 2013 July 7, 2013 – July 18, 2013 1.93 M/M December 10, 2013 – December 19, 2013 1.93 M/M Assistant Leader / Weather Observation Toshihide ENDO February 8, 2010 – February 23, 2010 – 1.13 M/M Weather Service Infrastructure Toshihide ENDO September 18, 2010 – October 8, 2010 – June 27, 2011 – July 31, 2013 – July 19, 2013 – September 13, 2010 – October 8, 2010 – October 14, 2013 – July 19, 2013 – July 19, 2013 – September 23, 2013 – October 14, 2010 – September 13, 2010 – October 14, 2010 – September 13, 2010 – October 14, 2010 – September 13, 2010 – October 14, 2010 – September 22, 2012 – March 14, 2012 – 1.37 M/M Becember 02, 2011 – January 28, 2012 – March 14, 2012 – 1.37 M/M December 02, 2011 – January 28, 2012 – March 14, 2012 – 1.37 M/M December 02, 2011 – July 11 – July 13, 2011 – July 13, 2011 – July 13, 2011 – September 23, 2010 – September 23, 2			January 29, 2011 – February 18, 2011							
Leader / Weather Forecasting & Warning Service and Organization Management Yoshihisa UCHIDA September 1, 2011 - September 20, 2012 March 3, 2012 - February 1, 2012 March 3, 2012 - September 20, 2012 November 5, 2012 - September 20, 2012 November 5, 2012 - November 15, 2011 July 7, 2013 - July 18, 2013 July 7, 2013 - July 18, 2013 October 19, 2013 - November 1, 2013 July 7, 2013 - December 19, 2013 December 10, 2010 - February 23, 2010 June 10, 2010 - June 27, 2010 September 23, 2010 - December 18, 2010 June 27, 2011 - July 31, 2011 September 14, 2011 - January 26, 2012 June 30, 2012 - July 20, 2012 0, 70 MM March 29, 2013 - April 19, 2013 July 7, 2013 - July 19, 2013 September 13, 2010 - October 14, 2010 September 13, 2010 - October 14, 2013 December 13, 2010 - November 14, 2011 December 13, 2010 - November 14, 2011 January 28, 2012 - March 14, 2012 Just 2010 - November 14, 2011 January 28, 2012 - March 14, 2012 January 28, 2012 - March 14, 2012 January 28, 2012 - March 14, 2012 January 28, 2012 - March 14, 2010 January 28, 2012 - December 18, 2010 January 28, 2012 - December 12, 2010 January 28, 2012 - December 12, 2010 January 28, 2012 - December 23, 2010 January 28, 2012 - December 23, 2010 January 2010 - July 14, 2011 January 27, 2010 - July 14, 2011 Janue 27, 2011 - January 18, 2010 January 27, 2010 - July 14,			June 27. $2011 - July 13, 2011$							
Warning Service and Organization Management Yoshihisa UCHIDA December 14, 2011 - December 31, 2011 240 M/M Granization Management Yoshihisa UCHIDA March 3, 2012 - February 1, 2012 March 17, 2012 November 20, 2013 1.57 M/M March 29, 2013 - December 10, 2013 - December 10, 2013 December 10, 2013 1.93 M/M December 10, 2013 - December 10, 2013 - December 10, 2013 - December 10, 2013 1.93 M/M Assistant Leader / Weather Observation Toshihide ENDO - December 18, 2010 - September 18, 2010 1.13 M/M Weather Service Infrastructure Toshihide ENDO - December 14, 2011 - January 6, 2010 1.80 M/M Weather Service Infrastructure Kenji MORI - September 23, 2013 - December 18, 2013 2.20 M/M Meteorological Calibration Radar - Takayuki OTSU September 27, 2009 - October 8, 2010 1.60 M/M December 02, 2011 - December 12, 2013	Leader / Weather Forecasting &		September 9, $2011 -$ September 20, 2011	2 40 14 24						
Organization Management January 23, 2012 January 23, 2012 January 23, 2012 January 23, 2012 January 24, 2012 January 24, 2012 January 24, 2012 March 17, 2012 September5, 2012 September5, 2012 September5, 2012 November1, 2012 January 24, 2013 January 62, 2013 January 62, 2013 January 62, 2010 January 62, 2011 January 62, 2012 January 62, 2012 January 62, 2010 January 62, 2012 January 62, 2012 January 64, 2011 January 64, 2011 January 64, 2011 January 64, 2011 January 64, 2012 January 64, 2011 January 64, 2011 January 12, 2	Warning Service and	Yoshihisa UCHIDA	December 14, $2011 - December 31, 2011$	2.40 M/M						
Assistant Leader / Weather Observation Toshihide ENDO Formula (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Organization Management		January 23, $2012 -$ February 1, 2012							
September 3, 2012 September 20, 2012 1.57 M/M November 1, 2012 December 1, 2012 December 12, 2013 1.57 M/M March 29, 2013 July 18, 2013 July 18, 2013 1.93 M/M December 10, 2013 December 10, 2013 December 10, 2013 1.93 M/M Assistant Leader / Weather Observation Toshihide ENDO December 10, 2010 February 23, 2010 1.13 M/M Meteorological Cost and Statistical Analysis Toshihide ENDO September 18, 2011 June 10, 2010 June 27, 2011 July 31, 2011 September 18, 2011 June 27, 2011 July 31, 2011 June 20, 2012 June 30, 2012 July 20, 2012 0.70 M/M Meteorological Califormatic Califorma			March 3, 2012 - March 17, 2012							
Assistant Leader / Weather Toshihide ENDO December 1, 2012 December 1, 2013 1.93 M/M Assistant Leader / Weather Toshihide ENDO December 1, 2013 December 1, 2013 1.93 M/M Meteorological Corbor 19, 2013 December 1, 2013 December 1, 2013 1.93 M/M Meteorological Corbor 19, 2013 December 1, 2013 December 1, 2013 1.13 M/M Meteorological Radar Takayuki OTSU Takayuki OTSU December 1, 2010 1.13 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 13, 2010 October 14, 2011 1.60 M/M September 7, 2010 December 14, 2010 January 26, 2012 0.70 M/M 1.60 M/M November 14, 2011 July 7, 2013 July 19, 2013 2.20 M/M 2.20 M/M September 13, 2010 October 14, 2013 July 7, 2013 July 19, 2013 2.20 M/M Meteorological Radar Takayuki OTSU September 27, 2010 November 14, 2010 1.60 M/M December 12, 2011 Data Quality Control and Statistical Analysis Takayuki MOTOYA September 17,			Nevember 5, 2012 – September 20, 2012	1.57 M/M						
Match 29, 2013 April 19, 2013 Juny 18, 2013 July 7, 2013 July 7, 2013 July 18, 2013 July 18, 2013 December 10, 2013 December 10, 2013 December 19, 2013 July 18, 2013 December 10, 2013 December 10, 2013 December 10, 2013 July 18, 2013 December 10, 2013 December 10, 2013 December 10, 2013 July 18, 2010 June 10, 2010 June 10, 2010 June 27, 2010 July 18, 2010 July 18, 2010 September 14, 2011 July 19, 2013 July 10, 2011 July 10, 2011 July 19, 2013 July 7, 2013 July 19, 2013 July 19, 2013 July 19, 2013 July 19, 2013 July 7, 2013 July 19, 2013 July 7, 2013 July 19, 2013 July 7, 2013 July 19, 2013 July 19, 2013 July 19, 2013 July 19, 2013 September 13, 2010 October 14, 2010 September 10, 2013 July 19, 2013 <td></td> <td></td> <td>November 5, $2012 -$ November 15, 2012</td> <td>1.5 / M/M</td>			November 5, $2012 -$ November 15, 2012	1.5 / M/M						
Assistant Leader / Weather Observation Toshihide ENDO December 10, 2013 – July 18, 2013 October 19, 2013 – November 19, 2013 December 10, 2013 – December 19, 2013 1.93 M/M Assistant Leader / Weather Observation Toshihide ENDO Toshihide ENDO December 20, 2009 – January 6, 2010 February 8, 2010 – Cotober 8, 2010 June 10, 2010 – Duce 27, 2010 September 18, 2010 – December 11, 2010 1.13 M/M Weather Service Infrastructure Toshihide ENDO September 23, 2013 – April 19, 2013 July 7, 2011 – July 31, 2011 4.00 M/M Weather Service Infrastructure Kenji MORI September 10, 2013 – December 18, 2011 July 7, 2013 – July 19, 2013 2.20 M/M Meteorological Calibration Radar Calibration Takayuki OTSU September 13, 2010 – October 8, 2010 October 24, 2010 – November 14, 2012 1.37 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 7, 2009 – October 9, 2009 0.43 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 7, 2009 – December 16, 2010 December 18, 2010 – December 12, 2010 0.50 M/M December 18, 2010 – December 18, 2010 – December 18, 2010 – December 12, 2010 0.50 M/M December 12, 2010 0.50 M/M December 19, 2011 – January 22, 2010 December 12, 2010 – December 12, 2010 0.50 M/M <td></td> <td></td> <td>Marsh 20, 2012 — December 20, 2012</td> <td></td>			Marsh 20, 2012 — December 20, 2012							
Assistant Leader / Weather Observation Toshihide ENDO December 10, 2013 – November1, 2013 December 20, 2009 – January 6, 2010 February 8, 2010 – February 23, 2010 June 10, 2010 – June 27, 2010 September 18, 2010 – October 8, 2010 June 27, 2011 – July 31, 2011 September 08, 2011 – September 18, 2011 June 30, 2012 – July 31, 2011 September 08, 2011 – September 18, 2011 June 30, 2012 – July 31, 2011 June 30, 2012 – July 31, 2011 July 7, 2013 – July 19, 2013 July 7, 2013 – July 19, 2013 September 23, 2013 – October 14, 2010 December 10, 2013 – December 14, 2010 2.20 M/M Weather Service Infrastructure Calibration Kenji MORI September 13, 2010 – October 8, 2010 July 7, 2013 – July 19, 2013 September 23, 2013 – October 14, 2010 December 10, 2013 – December 14, 2010 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 – October 9, 2009 September 27, 2009 – October 9, 2009 0.43 M/M September 05, 2012 – December 16, 2011 0.50 M/M September 16, 2011 – December 16, 2011 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 27, 2009 – October 14, 2010 December 12, 2010 – December 16, 2010 0.50 M/M September 22, 2010 – December 16, 2010 June 4, 2010 – June 24, 2010 June 24, 2010 June 4, 2010 – June 24, 2010 2.40 M/M September 22, 2010 – December 16, 2010 June 27, 2011 – July 14, 2011 June 27, 2011 – July 14, 2011 2.40 M/M			10129,2013 - April 19,2013							
Section Descember 10, 2013 December 19, 2013 December 10, 2013 - December 19, 2013 - December 19, 2013 Assistant Leader / Weather Observation Toshihide ENDO June 10, 2010 - February 23, 2010 1.13 M/M Assistant Leader / Weather Observation Toshihide ENDO September 18, 2010 - December 10, 2010 - December 11, 2010 June 27, 2010 - December 10, 2010 - December 11, 2010 - December 11, 2010 - December 11, 2010 June 27, 2010 - December 10, 2013 - December 11, 2010 - December 10, 2013 - December 14, 2013 - December 13, 2010 - December 14, 2013 - December 13, 2010 - December 14, 2013 - December 14, 2013 - December 14, 2013 - December 14, 2013 - December 14, 2011 - December 22, 2010 - December 14, 2010 <td></td> <td></td> <td>July 7, 2013 - July 10, 2013</td> <td>1.93 M/M</td>			July 7, 2013 - July 10, 2013	1.93 M/M						
Assistant Leader / Weather Observation Toshihide ENDO December 20, 2009 January 6, 2010 1.13 M/M Assistant Leader / Weather Observation Toshihide ENDO September 18, 2010 October 8, 2010 1.80 M/M Movember 27, 2010 December 18, 2010 October 8, 2010 1.80 M/M November 27, 2010 December 18, 2011 September 18, 2011 4.00 M/M November 14, 2011 June 27, 2011 July 31, 2011 4.00 M/M Newember 14, 2011 September 18, 2011 4.00 M/M Newember 14, 2011 January 26, 2012 0.70 M/M Meteorological Calibration Kenji MORI September 23, 2013 October 14, 2013 2.20 M/M Meteorological Calibration Radar Takayuki OTSU September 13, 2010 October 14, 2012 1.37 M/M September 27, 2009 October 14, 2011 January 12, 2012 1.37 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 October 14, 2012 1.37 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 10, 2011 September 27, 2009 October 14, 2010 <td></td> <td></td> <td>December 10, $2013 - November 1, 2013$</td> <td></td>			December 10, $2013 - November 1, 2013$							
Assistant Leader / Weather Observation Toshihide ENDO February 8, 2010 February 23, 2010 1.13 M/M Assistant Leader / Weather Observation Toshihide ENDO February 23, 2010 June 10, 2010 June 27, 2010 1.80 M/M November 27, 2010 September 18, 2010 October 8, 2010 I.80 M/M November 27, 2010 July 31, 2011 September 18, 2011 4.00 M/M November 14, 2011 January 26, 2012 0.70 M/M June 30, 2012 July 20, 2012 0.70 M/M March 29, 2013 April 19, 2013 2.20 M/M September 13, 2010 October 14, 2013 2.20 M/M December 10, 2013 December 18, 2010 1.60 M/M Weather Service Infrastructure Kenji MORI September 19, 2011 January 12, 2012 Meteorological Calibration Radar Takayuki OTSU September 19, 2011 January 12, 2012 1.60 M/M December 02, 2011 January 12, 2012 March 14, 2012 1.37 M/M September 27, 2009 October 9, 2009 0.43 M/M Meteorological Calibration Radar Takayuki OTSU September 12, 2010			December 10, $2013 -$ December 19, 2013							
Assistant Leader / Weather Observation Toshihide ENDO Formulay 2, 2010 Itenday 2, 2010 Itenday 2, 2010 Assistant Leader / Weather Observation Toshihide ENDO Formulay 2, 2010 December 1, 2010 Itenday 3, 2010 Itenday 3, 2010 Meteorological Calibration Toshihide ENDO Toshihide ENDO Formulay 3, 2011 June 27, 2010 December 11, 2010 Meteorological Calibration Kenji MORI September 14, 2011 January 26, 2012 0.70 M/M Meteorological Calibration Radar Kenji MORI September 13, 2010 October 14, 2010 I.60 M/M December 19, 2011 January 28, 2012 March 14, 2012 I.37 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 October 9, 2009 0.43 M/M December 02, 2011 December 12, 2011 December 12, 2011 January 12, 2012 1.37 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 October 9, 2009 0.43 M/M December 02, 2011 December 12, 2010 November 12, 2010 September 23, 2011 Jo.50 M/M December 0			Eabruary 8 2010 Eabruary 23 2010	1.13 M/M						
Assistant Leader / Weather Observation Toshihide ENDO September 18, 2010 October 8, 2010 1.80 M/M Assistant Leader / Weather Observation Toshihide ENDO Formation June 27, 2011 July 31, 2011 4.00 M/M September 08, 2011 January 26, 2012 July 31, 2011 4.00 M/M November 14, 2011 January 26, 2012 0.70 M/M March 29, 2013 April 19, 2013 July 7, 2013 July 7, 2013 July 7, 2013 2.20 M/M Weather Service Infrastructure Kenji MORI September 13, 2010 October 48, 2010 1.60 M/M Meteorological Calibration Radar Kenji MORI September 73, 2019 October 8, 2010 1.60 M/M December 10, 2013 December 10, 2013 December 14, 2010 I.60 M/M 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 77, 2009 October 9, 2009 0.43 M/M December 02, 2011 December 18, 2013 November 12, 2012 1.37 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 72, 2009 October 14, 2010 0.50 M/M			1000000000000000000000000000000000000							
Assistant Leader / Weather Observation Toshihide ENDO November 27, 2010 – December 11, 2010 June 2010 – December 11, 2010 Assistant Leader / Weather Observation Toshihide ENDO September 08, 2011 – July 31, 2011 4.00 M/M September 08, 2011 – January 26, 2012 June 30, 2012 – July 20, 2012 0.70 M/M March 29, 2013 – April 19, 2013 July 7, 2013 – July 19, 2013 2.20 M/M Weather Service Infrastructure Kenji MORI September 13, 2010 – October 8, 2010 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 – October 9, 2009 0.43 M/M September 02, 2011 – January 12, 2012 Takayuki OTSU September 27, 2009 – October 9, 2009 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 77, 2009 – October 14, 2010 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 72, 2010 – June 24, 2010 0.50 M/M September 18, 2010 – October 14, 2011 – January 12, 2012 0.60 M/M 0.50 M/M 0.50 M/M December 02, 2011 – December 12, 2012 – December 12, 2011 – Jone 72, 2012 – December 12, 2010 – Jone 72, 2012 – Jone Paragene 73, 2010 – June 24, 2010 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA			September 18, 2010 – Julie 27, 2010	1.80 M/M						
Assistant Leader / Weather Observation Toshihide ENDO Toshihide E			September 18, $2010 - 0$ Cooper 8, 2010	1.00 101/101						
Assistant Leader / Weather ObservationToshihide ENDOToshihide ENDOSeptember 08, 2011 - September 18, 2011 June 30, 2012 - July20, 20124.00 M/MMeteorological CalibrationRadar CalibrationKenji MORISeptember 08, 2010 - October 14, 2013 December 13, 2010 - October 14, 2013 December 13, 2010 - October 14, 2013 December 19, 2011 - January 12, 2012 I - January 12, 2012 February 28, 2010 - November 14, 20101.60 M/MMeteorological CalibrationRadar Takayuki OTSUSeptember 02, 2011 - January 12, 2012 February 28, 2012 - March 14, 2010 October 14, 2010 - October 9, 20091.37 M/MData Quality Control and Statistical AnalysisTakayuki MOTOYASeptember 27, 2009 - October 14, 2010 December 18, 2013 - December 16, 2011 October 18, 2013 - November 1, 2013 December 22, 2012 - December 22, 2012 December 23, 2010 - October 14, 2010 December 24, 2010 - September 22, 2012 December 23, 2010 - October 14, 2010 December 24, 2010 - September 23, 2010 December 14, 2010 - September 23, 2010 December 14, 2010 - September 24, 2010 December 22, 2011 - December 16, 2011 December 22, 2012 - December 22, 2012 December 22, 2010 - December 24, 2010 December 27, 2009 - October 14, 2010 December 22, 2010 - December 24, 2010 December 22, 2010 - December 24, 2010 December 22, 2010 - December 24, 2010Data Quality Control and Statistical AnalysisTakayuki MOTOYAData September 27, 2009 - October 14, 2010 December 20, 2011 - February 18, 2010 December 24, 2010 - December 16, 2010 December 24, 2010 - December 24, 2010 September 23, 2010 - February 18, 2011 December 24, 2010 - December 24, 2010 December 24, 2010 - December 24, 2010 December 24, 2010 - December 23, 2011 De			$\frac{1}{10000000000000000000000000000000000$							
Observation Jostifilde ENDO September 10, 2011 - September 16, 2011 - 4.00 M/M November 14, 2011 June 30, 2012 July 20, 2012 0.70 M/M November 14, 2011 - January 26, 2012 0.70 M/M March 29, 2013 - April 19, 2013 July 20, 2012 0.70 M/M March 29, 2013 - July 20, 2013 - April 19, 2013 2.20 M/M September 23, 2013 - October 14, 2013 - December 18, 2013 2.20 M/M Weather Service Infrastructure Kenji MORI September 13, 2010 - October 8, 2010 1.60 M/M December 19, 2011 - January 12, 2012 - November 14, 2010 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 - October 9, 2009 0.43 M/M December 02, 2011 - Dacember 16, 2011 0.50 M/M December 05, 2012 - December 16, 2011 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 27, 2009 October 11, 2009 - December 2, 2010 0.50 M/M December 18, 2010 - February 8, 2010 - February 23, 2010 - September 2	Assistant Leader / Weather	Tashihida ENDO	Julie 27, 2011 - July 51, 2011	4.00 M/M						
$ \begin{array}{c} Toteller 14, 2011 & - January 20, 2012 & 0.70 M/M \\ \mbox{June 30, 2012 & - July 20, 2012 & 0.70 M/M \\ \mbox{March 29, 2013 & - July 19, 2013 & July 7, 2013 & - July 19, 2013 \\ \mbox{July 7, 2013 & - July 19, 2013 & - December 18, 2010 & - October 4, 2010 & - October 4, 2010 & - October 24, 2010 & - October 24, 2010 & - November 14, 2012 & - I.37 M/M & - December 19, 2011 & - January 12, 2012 & - March 14, 2012 & - February 28, 2012 & - March 14, 2012 & - December 28, 2010 & - October 9, 2009 & 0.43 M/M & - December 02, 2011 & - December 16, 2011 & 0.50 M/M & - December 02, 2011 & - December 16, 2011 & 0.50 M/M & - December 05, 2012 & - December 28, 2010 & 0.50 M/M & - December 05, 2012 & - December 12, 2012 & 0.60 M/M & - October 18, 2013 & - November 1, 2013 & 0.50 M/M & - December 18, 2013 & - November 1, 2013 & 0.50 M/M & - December 18, 2010 & - December 26, 2009 & - Dotober 11, 2009 & - December 26, 2009 & - December 12, 2010 & - September 26, 2009 & - December 12, 2010 & - September 26, 2009 & - December 14, 2010 & - September 26, 2009 & - Dotober 11, 2009 & - December 12, 2010 & - Dec$	Observation		September $16, 2011 -$ September $18, 2011$ November $14, 2011$ January 26, 2012	4.00 101/101						
March 29, 2013 - July 20, 2012 0.00 M/M March 29, 2013 - April 19, 2013 2.20 M/M March 29, 2013 - July 19, 2013 2.20 M/M Weather Service Infrastructure Kenji MORI September 23, 2013 - October 14, 2010 1.60 M/M Meteorological Calibration Radar Kenji MORI September 13, 2010 - October 8, 2010 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 - October 9, 2009 0.43 M/M December 02, 2011 - December 16, 2011 - Soptember 28, 2010 0.50 M/M December 02, 2011 - December 16, 2011 0.50 M/M December 05, 2012 - December 16, 2011 0.50 M/M December 05, 2012 - December 12, 2012 0.60 M/M December 05, 2012 - December 12, 2013 0.50 M/M December 05, 2012 - December 12, 2010 0.50 M/M December 05, 2012 - December 12, 2013 0.50 M/M December 02, 2011 - December 12, 2013 0.50 M/M December 18, 2013 November 1, 2013 0.50 M/M December 18, 2013 November 14, 2010 1.90 M/M </td <td></td> <td></td> <td>$\frac{14,2011 - January 20,2012}{June 30,2012}$</td> <td>0.70 M/M</td>			$\frac{14,2011 - January 20,2012}{June 30,2012}$	0.70 M/M						
Michi 29, 2013- July 19, 20132.20 M/MJuly 7, 2013- July 19, 20132.20 M/MWeather Service InfrastructureKenji MORISeptember 13, 2010- October 14, 2013Meteorological CalibrationRadar CalibrationKenji MORISeptember 13, 2010- October 8, 2010 October 24, 20101.60 M/MMeteorological CalibrationRadar CalibrationTakayuki OTSUSeptember 12, 2012 February 28, 2012- March 14, 2012 I.37 M/M1.60 M/MData Quality Control and Statistical AnalysisTakayuki MOTOYASeptember 27, 2009 December 18, 2010- October 14, 2010 I.00 M/M0.50 M/MData Quality Control and Statistical AnalysisTakayuki MOTOYASeptember 27, 2009 I.90 M/M- October 14, 2010 I.90 M/M- September 26, 2009 I.90 M/M- September 16, 2011 I.050 M/MData Statistical AnalysisTakayuki MOTOYASeptember 18, 2010 I.90 M/M- February 23, 2010 I.90 M/M- September 14, 2010 I.90 M/M- September 14, 2010 I.90 M/MData Statistical AnalysisTakayuki MOTOYASeptember 18, 2010 I.90 M/M- September 23, 2010 I.90 M/M- September 14, 2010 I.90 M/M- September 16, 2010 I.90 M/MData Statistical AnalysisTakayuki MOTOYASeptember 18, 2010 I.90 M/M- September 18, 2010 I.90 M/M- September 18, 2010 I.90 M/M- September 18, 2010 I.90 M/MData Statistical AnalysisTakayuki MOTOYASeptember 19, 2011 I.90 M/M- September 23, 2010 I.90 M/M- September 23, 2010 I.90 M/M- September 23,			March 20, 2012 – July 20, 2012	0.70 101/101						
Main y 1, 2013Sin y 1, 20132.20 M/MSeptember 23, 2013October 14, 20132.20 M/MWeather Service InfrastructureKenji MORISeptember 13, 2010October 14, 2010Meteorological CalibrationRadar Takayuki OTSUSeptember 27, 2009October 9, 20090.43 M/MSeptember 02, 2011September 27, 2009October 9, 20090.43 M/MData Quality Control statistical AnalysisTakayuki MOTOYASeptember 27, 2009October 11, 2009Data Statistical AnalysisTakayuki MOTOYASeptember 27, 2009October 11, 2009Data Statistical AnalysisTakayuki MOTOYASeptember 12, 2010June 4, 2010September 18, 2010October 18, 2010June 4, 2010June 4, 2010September 18, 2010October 18, 2010June 4, 2010June 4, 2010September 18, 2010October 18, 2011June 4, 2010June 4, 2010September 18, 2010June 4, 2010June 4, 2010September 16, 2011September 18, 2011September 18, 2011June 4, 2010June 4, 2010September 18, 2011June 4, 2010June 4, 2010September 16, 2010September 18, 2011October 18, 2011September 16, 2011September 16, 2010September 18, 2010June 4, 2010June 4, 2010September 16, 2010September 18, 2011September 18, 2011September 18, 2011September 16, 2010September 23, 2011September 18, 2011September 23, 2011September 23, 2011September 09, 2011September 23, 2011 </td <td></td> <td></td> <td>L_{1} Luly 7 2013 – April 19, 2013</td> <td></td>			L_{1} Luly 7 2013 – April 19, 2013							
Weather Service InfrastructureKenji MORISeptember 10, 2013– December 18, 2013Weather Service InfrastructureKenji MORISeptember 13, 2010– October 8, 20101.60 M/MMeteorological CalibrationRadar CalibrationTakayuki OTSUSeptember 27, 2009– October 9, 20090.43 M/MMeteorological CalibrationRadar CalibrationTakayuki OTSUSeptember 27, 2009– October 9, 20090.43 M/MData Quality Control Statistical AnalysisTakayuki MOTOYASeptember 27, 2009– October 11, 20090.50 M/MData Statistical AnalysisTakayuki MOTOYASeptember 27, 2009– October 11, 20090.50 M/MDecember 18, 2010 December 20, 2011Takayuki MOTOYASeptember 27, 2009– October 11, 20091.90 M/MSeptember 18, 2010 December 18, 2010June 4, 2010 September 18, 2010June 24, 20101.90 M/MSeptember 20, 2011 December 20, 2011Takayuki MOTOYASeptember 18, 2010 September 18, 2010June 24, 20102.40 M/MSeptember 19, 2011 December 2, 2011June 27, 2011 June 27, 2011July 14, 2011 September 09, 20112.67 M/M			September 23, 2013 — July 19, 2013 September 23, 2013 — October 14, 2013	2.20 M/M						
Weather Service Infrastructure Kenji MORI September 13, 2010 October 3, 2010 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 12, 2011 January 12, 2012 1.37 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 October 9, 2009 0.43 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 12, 2012 December 12, 2010 0.50 M/M Takayuki MOTOYA Takayuki MOTOYA September 12, 2009 October 14, 2010 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 12, 2010 December 12, 2010 1.90 M/M September 2, 2010 December 18, 2010 June 4, 2010 June 24, 2010 2.40 M/M			December 10, 2013 — December 18, 2013							
Weather Service Infrastructure Kenji MORI September 13, 2010 November 14, 2010 1.60 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 October 9, 2009 0.43 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 27, 2009 October 14, 2010 0.50 M/M December 02, 2011 December 02, 2011 December 22, 2012 0.60 M/M December 03, 2010 September 27, 2009 October 16, 2011 0.50 M/M December 04, 2011 December 05, 2012 December 22, 2012 0.60 M/M October 18, 2013 November 1, 2013 0.50 M/M December 05, 2012 December 22, 2012 0.60 M/M October 18, 2013 November 1, 2013 0.50 M/M December 19, 2009 October 11, 2009 December 22, 2012 0.60 M/M December 22, 2010 December 24, 2010 September 23, 2010 1.90 M/M September 23, 2010 June 4, 2010 June 24, 2010 2.40 M/M September 09, 2011 September 23, 2011 2.40 M/M 2.40 M/M			September 13, $2010 = 0$ Ctober 8, 2010							
Weather Service Infrastructure Kenji MORI Occoder 24, 2010 Internet 14, 2010 1.37 M/M December 19, 2011 January 12, 2012 February 28, 2012 March 14, 2012 1.37 M/M Meteorological Calibration Radar Takayuki OTSU September 27, 2009 October 9, 2009 0.43 M/M September 02, 2011 December 02, 2011 December 16, 2011 0.50 M/M December 05, 2012 December 16, 2011 0.50 M/M December 05, 2012 December 12, 2013 0.60 M/M October 18, 2013 November 1, 2013 0.50 M/M December 05, 2012 December 22, 2012 0.60 M/M October 18, 2013 November 1, 2013 0.50 M/M December 05, 2012 December 22, 2012 0.60 M/M October 18, 2013 November 1, 2013 0.50 M/M December 18, 2010 December 22, 2010 1.90 M/M September 18, 2010 June 4, 2010 June 24, 2010 June 4, 2010 June 24, 2010 2.40 M/M September 2, 2010 December 16, 2010 2.40 M/M February 4, 2011 Febr			October 24, 2010 $-$ November 14, 2010	1.60 M/M						
Determine Determine Jore 10, 2011 Jore 2012 Jore 14, 2010 Jore 14, 2010 Jore 14, 2010 Jore 14, 2010 Jore 14, 2011 Jore 14, 2010	Weather Service Infrastructure	Kenji MORI	December 19 $2011 = 100000000000000000000000000000000$	·						
Meteorological Calibration Radar Calibration Takayuki OTSU September 27, 2009 October 9, 2009 0.43 M/M September 14, 2010 – September 28, 2010 0.50 M/M December 02, 2011 – December 16, 2011 0.50 M/M December 05, 2012 – December 16, 2011 0.60 M/M October 18, 2013 – November 1, 2013 0.50 M/M December 05, 2012 – December 22, 2012 0.60 M/M October 18, 2013 – November 1, 2013 0.50 M/M December 05, 2012 – December 22, 2012 0.60 M/M October 18, 2013 – November 1, 2013 0.50 M/M December 05, 2012 – December 22, 2012 0.60 M/M October 18, 2013 – November 1, 2013 0.50 M/M December 27, 2009 – October 11, 2009 December 2, 2010 1.90 M/M September 12, 2010 – September 23, 2010 – September 23, 2010 1.90 M/M September 18, 2010 – October 14, 2010 2.40 M/M 2.40 M/M December 2, 2010 – December 16, 2010 2.40 M/M 2.40 M/M 2.67 M/M 2.67 M/M			February 28 2012 - March 14 2012	1.37 M/M						
Meteorological Calibration Radar Takayuki OTSU September 14, 2010 September 14, 2010 September 28, 2010 0.50 M/M December 02, 2011 December 02, 2011 December 02, 2011 December 16, 2011 0.50 M/M December 05, 2012 December 02, 2012 December 16, 2011 0.50 M/M December 05, 2012 December 12, 2013 November 1, 2013 0.50 M/M December 05, 2012 December 12, 2013 November 1, 2013 0.50 M/M December 05, 2012 December 22, 2012 0.60 M/M December 05, 2012 December 12, 2009 October 11, 2009 December 12, 2009 December 22, 2010 0.50 M/M September 27, 2009 October 11, 2009 December 22, 2010 0.50 M/M September 27, 2009 December 2, 2010 December 26, 2009 1.90 M/M September 18, 2010 June 4, 2010 June 24, 2010 2.40 M/M September 18, 2010 December 16, 2010 December 2, 2010 2.40 M/M December 27, 2011 June 27, 2011 June 14, 2011 2.67 M/M			September 27, 2009 – October 9, 2009	0.43 M/M						
Meteorological CalibrationRadar Takayuki OTSUTakayuki OTSUDecember 11, 2010December 16, 20110.50 M/MDecember 02, 2011-December 02, 2011-December 16, 20110.50 M/MDecember 05, 2012-December 02, 2012-December 22, 20120.60 M/MOctober 18, 2013-November 1, 20130.50 M/MData Quality Control Statistical AnalysisTakayuki MOTOYASeptember 27, 2009-October 11, 2009December 1, 2009-December 26, 20091.90 M/MSeptember 18, 2010-June 4, 2010-June 4, 2010June 4, 2010-June 24, 2010September 18, 2010-2.40 M/MDecember 2, 2011-June 27, 2011-July 14, 20112.40 M/MSeptember 09, 2011-September 23, 2011-2.67 M/M			September 14, 2010 $-$ September 28, 2010	0.50 M/M						
Calibration December 05, 2012 December 05, 2012 December 22, 2012 0.60 M/M December 05, 2013 November 1, 2013 0.50 M/M October 18, 2013 November 1, 2013 0.50 M/M Data Quality Control and Statistical Analysis Takayuki MOTOYA September 27, 2009 October 11, 2009 December 18, 2010 February 8, 2010 February 23, 2010 1.90 M/M September 18, 2010 June 4, 2010 June 24, 2010 2.40 M/M September 27, 2011 December 16, 2010 2.40 M/M 2.40 M/M	Meteorological Radar	Takayuki OTSU	December 02, 2011 – December 16, 2011	0.50 M/M						
Data Quality Control and Statistical Analysis Takayuki MOTOYA September 18, 2013 – November 1, 2013 0.50 M/M September 27, 2009 – October 11, 2009 December 26, 2009 1.90 M/M September 27, 2009 – December 26, 2009 1.90 M/M September 18, 2010 – June 24, 2010 September 18, 2010 – June 24, 2010 September 18, 2010 – October 14, 2010 September 18, 2010 – October 14, 2010 December 2, 2010 – December 16, 2010 September 27, 2011 – December 16, 2010 September 0, 2011 – September 23, 2011 2.40 M/M	Calibration	Tukuyuki 0150	December 05, $2012 - December 22, 2012$	0.60 M/M						
Data Quality Control and Statistical Analysis Takayuki MOTOYA September 12, 2019 – October 11, 2009 – October 11, 2009 Data Quality Control and September 27, 2009 – October 11, 2009 – December 26, 2009 1.90 M/M Data Data Takayuki MOTOYA September 18, 2010 – February 23, 2010 June 4, 2010 June 24, 2010 2.40 M/M September 18, 2010 – October 14, 2010 December 16, 2010 – December 16, 2010 2.40 M/M September 09, 2011 – February 18, 2011 – June 27, 2011 – July 14, 2011 2.67 M/M			October 18 2013 – November 1 2013	0.50 M/M						
Data Quality Control and Statistical AnalysisTakayuki MOTOYADecember 1, 2009 December 1, 2009 December 1, 2009 December 2, 2010 December 18, 2010 December 16, 2010 December 23, 20111.90 M/M 2.40 M/MData Quality Control and Statistical AnalysisTakayuki MOTOYADecember 1, 2009 September 18, 2010 December 2, 2010 December 16, 2010 December 23, 20111.90 M/MData Quality Control and Statistical AnalysisTakayuki MOTOYASeptember 18, 2010 December 2, 2010 December 16, 2010 December 23, 20112.40 M/M			September 27, 2009 – October 11, 2009	010 0 102/102						
Data Quality Control and Statistical Analysis Takayuki MOTOYA Takayuki Takayuki MOTOYA Takayuki MOTOYA Takayuki MOTOYA Takayuk			December 1, 2009 – December 26, 2009	1.90 M/M						
Data Quality Control and Statistical Analysis Takayuki MOTOYA Takayuki Takayuki MOTOYA Takayuki MOTOYA Takayuk			February 8, 2010 – February 23, 2010							
DataQualityControland Statistical AnalysisTakayuki MOTOYASeptember 18, 2010October 14, 20102.40 M/MStatistical AnalysisDecember 2, 2010December 2, 2010December 16, 20102.40 M/MJune 27, 2011July 14, 2011July 14, 20112.67 M/MSeptember 09, 2011September 09, 2011September 23, 20112.67 M/M			June 4, 2010 – June 24, 2010							
Statistical Analysis December 2, 2010 - December 16, 2010 2.40 M/M February 4, 2011 - February 18, 2011 June 27, 2011 - July 14, 2011 2.67 M/M September 09, 2011 - September 23, 2011 2.67 M/M	Data Quality Control and	Takayuki MOTOYA	September 18, 2010 – October 14, 2010							
February 4, 2011 February 18, 2011 June 27, 2011 July 14, 2011 September 09, 2011 September 23, 2011	Statistical Analysis	,	December 2, 2010 – December 16. 2010	2.40 M/M						
June 27, 2011 – July 14, 2011 September 09, 2011 – September 23, 2011 2.67 M/M			February 4, 2011 – February 18. 2011							
September 09, 2011 – September 23, 2011 2.67 M/M			June 27, 2011 – July 14, 2011							
			September 09, 2011 – September 23. 2011	2.67 M/M						

		December 2, 2011 –	December 31, 2011									
		March 01, 2012 –	March 17, 2012									
		August 31, 2012 –	September 22, 2012	1.22 M/M								
		December 26, 2012 $-$	Lanuary 04, 2012	1.55 WI/WI								
		December 20, 2012 – March 20, 2012	January 04, 2015									
		May 14, 2013	April 19, 2015 May 10, 2013									
		May 14, 2013 = 0	November 2, 2013	2.17 M/M								
		November 14, 2013 –	December 6, 2013									
		December 6, 2010 –	December 23, 2010	0.60 M/M								
Web Site Design	Timothy Michael Kiddle	December 2, $2010 =$	December 19, 2011	0.60 M/M								
		September 27, 2000	October 0, 2010	0.00 101/101								
		Eebruary 6, 2010	Eebruary 8, 2010	1.10 M/M								
		1 Colump 11, 2010	Iune 26, 2010									
		September 21, 2010 –	October 8, 2010									
		November 26, 2010 –	December 16, 2010	2.60 M/M								
		Indveniber 20, 2010 – January 20, 2011	February 18, 2011									
Numerical Weather Prediction	Nobutaka NOGUCHI	$_{\rm June 27, 2011} =$	July 14 2011									
Numerical Weather Fredetion		September 09, 2011 –	September 29, 2011									
		December 2, 2011 –	December 27, 2011	3 17 M/M								
		Ianuary 23, 2012 _	February 4, 2012	5.17 101/101								
		March 1 $2012 =$	March 17, 2012									
		September 5, 2012 –	September 16, 2012									
		December 6, $2012 =$	January01 2013	1.30 M/M								
		September 27, 2009 –	October 9, 2009									
		December 1 2009 -	December 22, 2009	1.60 M/M								
		Eebruary 15, 2010 –	February 27, 2010	1.00 101/101								
		1001001913, 2010	Iuly 3, 2010									
		September 14, 2010 –	October 8, 2010									
		December 7 2010 $-$	December 21, 2010	2.70 M/M								
		Ianuary 22, 2011 _	February 10, 2011									
		Iune 27 2011 -	July 13, 2011									
Weather Information	Soshi IWATA	September 11 2011 –	October 5, 2011									
Dissemination	505111071171	December 06, 2011 –	December 24, 2011	3 43 M/M								
		Ianuary 13, 2012 –	February 04 2012	5.45 M/M								
		February 28, 2012 –	March 17, 2012									
		September 13, 2012 –	October 4 2012									
		December 05, 2012 –	December 20, 2012	1.27 M/M								
		April 5 2013 -	April 19, 2013									
		October 1 $2013 -$	October 16, 2013	1 33 M/M								
		December 12, 2013 –	December 20, 2013	1.55 11.11								
		September 27, 2009 –	November 15, 2009	1 67 M/M								
		Iune 4 2010 -	July 3 2010	1.07 112.111								
Meteorological Radar		November 26, 2010 –	December 25, 2010	2.00 M/M								
Operation and Maintenance (I)	Takehiro YOSHIDA	Iune $26, 2010$	July 22, 2011									
		October 13, 2011 –	November 09 2011	1.83 M/M								
		October 30, 2012 –	December 7 2012	1 30 M/M								
		September 29, 2009 –	November 21, 2009	1.50 101/101								
		December 2, 2009 –	February 20, 2010	4.50 M/M								
		June 5, $2010 -$	July 28, 2010									
		September 14 2010 -	October 12, 2010									
		October 26, 2010 $=$	November 12, 2010	5.30 M/M								
		November 27, 2010 $-$	December 24, 2010	5.50 11/11								
Meteorological Radar	Nasir Uddin Rhuivan	Intervention $27,2010 =$ Ianuary 19,2011 =	February 17 2011									
Operation and Maintenance (B)		1000000000000000000000000000000000000	July 31 2011									
		September 10, 2017 –	November 08 2011									
		November 15, $2012 =$	December 30 2011	5.70 M/M								
		February 16 2012 -	March 16, 2012									
		I = I = I = I = I = I = I = I = I = I =	July 18, 2012									
		November 1, 2012 –	December 6. 2012	1.80 M/M								
	1											

Operation & Maintenance for Studio Equipment	Nasir Uddin Bhuiyan	March 28, 2013	May 2, 2013	1.80 M/M				
Meteorological Information	Madalaa KANOME							
Mass Media	MOTOKO KANOME							
		September 22, 2012 –	October6, 2012	1.00 M/M				
Radar Observation Data	Takanari FUIII	December 08, 2012 –	December 22, 2012					
Collection and Calibration		July 5, 2013 –	July 19, 2013	1.00 M/M				
		October 18, 2013 –	November 1, 2013	1.00 101/101				
		June 30, 2012 –	July30, 2012	5 12 M/M				
Disastan Assessment Duilding		September 05, 2012 -	January 05, 2013	3.13 M/M				
Disaster Awareness Building	Yosyiyuki YAGIRI	March 19, 2013	August 4, 2013					
(Project Coordinator)		August 17, 2013 –	August 26, 2013	5.53 M/M				
		December 3, 2013 –	December19, 2013					
	Kazunari MIJD ATA	December 20, 2009 -	December 31, 2009	0.40 M/M				
Project Coordinator	Kazunon MUKATA	September 27, 2010 -	October 8, 2010	0.40 M/M				
	Takanari FUJII	January 24, 2012 –	February 4, 2012	0.40 M/M				

2.1.1. Expert Dispatch Schedule

					1nd F	Y			2nd				FY							3rd F	Ϋ́							4t	h FY							5tl	h FY					
		FY			FY200	9	_					FY20	10			_		_			FY20	11							FY	2012							FY	2013				
		Month	9	10 1	1 12	1 2	2 3	4	5	6 7	8	9	10 1	12	1	2 3	4	5	6 7	8	9	10 1	1 12	1	2 3	3 4	5	6	7 8	9	10 11	12	1	2 3	4	5	6 7	8	9 10	0 11	12	1
No. Field	Name	Phase	-	Activity Planning Phase Technology Transfer Phase																`																						
1 Leader / Weather Forecasting & Warning Service and Organization Management	Yoshihisa UCHIDA		1:	5	1	8 18	8		1	5		30			21				17		12	-	18	10	15					16	11	20			22		12			14	10	
2 Assistant Leader / Weather Observation	Toshihide ENDO				1	8 10	6			18		21		15					35		11		74					2	:1						22		13		22		9	
3 Weather Service Infrastructure	Kenji MORI					29						26	••• 22											5	14																	
4 Meteorological Radar Calibration	Takayuki OTSU		13	1 3								15											15									18							F	15		
5 Data Quality Control and Statistical Analysis	Takayuki MOTOYA		1:	5	26	10	6			21		21		15	15	5			18		15		30		17	•				23		7 10	D		22	6			1	14 2	23	
6 Web Site Design	Timothy Michael Kiddle													18									18																			
7 Numerical Weather Prediction	Nobutaka NOGUCHI		13	3		20	0		-	18		18		21	21				18		21		26	13	17	I				12		27										
8 Weather Information Dissemination	Soshi IWATA		13	3	22	13	3			21		25		15	20				17		25		19	23	19					22		16			15				16	1	9	
9 Meteorological Radar Operation and Maintenance (J)	Takehiro YOSHIDA			50						30				30					27			28									3	9										
10 The 1-4th fiscal year: Meteorological Radar Operation and Maintenance (B) The 5th fiscal year: Operation & Maintenance for Studio Equipment	Nasir Uddin Bhuiyan			54		81				54		29	18	28	30				35		60	0	46		30			1	8		3	δ			36							
11 Meteorological Information Application and Promotion for Mass Media	Motoko KANOME																								19																	
12 Meteorological Radar Observation Data Collection & Calibration Technique	Takanari FUJII																													15		15					15		I	15		
13 Disaster Awareness Building (Project Coordinator)	Yoshiyuki YAGIRI																												31		123					139		10			17	

2.1.2. Flowchart

Italic type = JICA Expert C/P Training = Counterpart Training

FLOWCHART (Project)

2.1.3. Work Schedule

.1.3. Work Schedule	1st FY				2nd FY																4rd F			FY					
		1	FY2009		1			1 -	1 - 1	FY20	10		1.			1 -			FY201	1							FY2012	2	_
Connective of RMD for observation and forecasting is improved	9 10		12	1 2	3	4	5 6	17	8	9	10	11 12	1	2	3 4		6 7	8	9	0 1	1 12		2 3	4		0	/ 8 9	9 10)
Site survey at the existing observatories					+		+	+	+ +				+		_	+	+ $+$	+ +			+	+'	\vdash	+	+	+	++	+	
Preparation of specifications of the observation instruments required for improving the existing observatories									<u> </u>				+											-	-+				
Procurement of the required observation instruments									1																				-
Civil work at the existing observatories	1	1	1 1			1		İ	1 1			İ	1	i i i		1			-			1			-				T
Installation of the required observation instruments at the existing observatories													1																
Preparation of field observation procedures																													
Preparation of field observation guideline																													
Implementation of training on observation & quality control								_	<u> </u>				1																
Inspection of field observation manual utilization									ļ				<u> </u>			_						'							
Training on quality control for observed data			L						ļļ.									_	_			 '							_
Preparation of observation field and instrument maintenance and management procedures			<u> </u>						₋				ļ									'	$ \longrightarrow $						\rightarrow
Preparation of observatory maintenance and management record book									ļ	_											_	'	\vdash						_
Preparation of observation field & instrument maintenance and management manual									II-															_					\rightarrow
Implementation of training for observation field & instrument maintenance and management									 -																		_		
Inspection of utilization of observation field & instrument maintenance and management manual			<u> </u>				_		 													+'					<u>_</u>	\rightarrow	-+
Comparison of observation data			++				_	+		_			ļ., .,							_	+-			_	\rightarrow			<u> </u>	-
Training for forecast briefing		_		_	_			_								_				-	┛	<u>+'</u>		_	-+			<u> </u>	\rightarrow
Preparation of forecast briefing flowchart and record book			++																			'							-+
Einstein of forecast briefing flowchart and record book			++										+							-		+'							
Analyzic of quantitative vainfall estimation by using the Pader date is implemented	\vdash	+	+ +	_	_		_		+	-		_		+	_	+	+	+	_	_	+	+-	┝═╤─		<u> </u>	\rightarrow		—	\rightarrow
Collection and study of the existing date and materials			+ +				_	+	+ +	-			1			-					+-	+-	\vdash	\rightarrow			-+	+	-
Study and preparation of specifications of the equipment required for the Project																	+					+							-+
Programment and installation of the equipment			1		_																								
Optimization of rainfall amount calculating parameter of all the existing radars	+		++					-	++-					++							+	+		+	-+				-
Study on archive of velocity data & products made by the existing Donnler Radars	 		+					-	+				+	+			+				+	+7	- +-	+		-			
Analysis of correlations between surface and radar observation data	t		++						++					++			+					+	F-+-			-			-
Study of the constants B and β in the radar equation for calculating rainfall amount by all the existing radars and selection of the optimal constants for the radar observation	<u>+</u>		1 1						<u>├</u>					<u> </u> -			+				+	+				-+-			
Reconfirmation correlations between surface and radar observation data			+ - +						+ +				-	++			+					+-7		++					-
The trend analysis of climate change is conducted by using the accumulated meteorological data	\vdash	+			-			+	+	-			1			+		+			+	+	F+	+-+	+	-	+++		\dashv
Preparation of daily observation data input format			1 1						††-					<u>├</u>							+	+'		+-+					+
Archiving of observed data	t		++						+-+				+	++								+		+			-++-		+
Implementation of statistical processing	<u> </u>		1						<u>† †</u>				1	† – †					<u>-</u>		T	+-7		+	-+		-+	+	-
Analysis of statistical processing result				- F				- F	<u> </u>													+							\neg
Quality evaluation of the existing climate data			+ - +					+	 -				<u> </u>				$+-\Gamma$				- T	+7	F				-++-		-+
Study on observation mideline and database of the existing climate data									++-				+	++-			+					+'				F			
Procurement support of the equipment required for climate data management								-	┼╍╍┼╸				+	+			+					+'							-
Capacity of BMD personnel for 1 to 3 days weather forecasting on trial using basic techniques of NWP is developed									+ +	-		_	+		_	+		+ +			+-	+'				\rightarrow		+	╡
Preparation of specifications of the equipment & software required for NWP										-			1			-					+-	+'	\vdash	\rightarrow	-+	-			-
Installation of the equipment & software required for NWP																													-+
Training on NWP technique			++					+									+F					+							-+
PC training			+				-	+					1								+	+-	\vdash			-			+
Trial operation of NHM by PC Cluster					-		—	-								-						+						+	\rightarrow
Evaluation for Results of Numerical Weather Prediction: Adaptability of NWP																	+ $ -$												-
Concept and theory of NWP Guidance																													-+
Basic practical training on Preparation of NWP Guidance using PC			+										1									+'		-	+				\neg
Applicative practical training on NWP Guidance using PC																	+					+		-					
Capacity of BMD staff to promote understandings about meteorological information among the "stakeholders" is further developed		1			1			1			-+		1			+		+		-	+	+-	\vdash				+	+	-
Preparation of PR materials of Thunderstorm													+									+		-					-
Preparation of PR materials of Flood			1 1						<u> </u> -				1								-	+	<u> </u>						-
Preparation of PR materials of Tropical Cyclone	1		1							-			1											-					1
Preparation of PR materials of Climate Change													1												T				
Preparation of activity plan on weather information dissemination			1 1					<u> </u>	††-				†	11		-	1 1					+		-					-
Implementation of questionnaire													1											-					-
Implementation of Thunderstorm seminar & open class/ distribution of PR materials			1 1						1				1	1															_
Implementation of Flood seminar & open class/ distribution of PR materials		-	1 1				_	-					1			-													-
Implementation of Tropical Cyclone seminar & open class/ distribution of PR materials													1																-
Implementation of Climate Change seminar & open class/ distribution of PR materials			1 1										1									1						-	
Improvement of BMD special weather bulletin			1 1					1	1				1																
Procurement support of the equipment required for posting the climate data on Web site			1 1					1	i	1			1			1													
Review of Web site design		-								-			1																
Posting the summary of climate data statistical analysis on Web site								1								1						1							
Discussion with the mobile phone companies										, i			1			1													_
Preparation of the operational rules for the early warning system																													
Revision of the operational rules for the early warning system								T												T									
Preparation of the specifications of the equipment required for the early warning system																													
Equipment installation, initial setting and basic performance are confirmed																													
Preparation of the flow chart for the early warning dissemination																													
Preparation of the formatted warning messages																													
Preparation of the early warning dissemination record book																													
Arrangement and implementation of the early warning dissemination training									1				1																
Review of the early warning dissemination training																													
The meteorological Radar systems are operated and maintained properly and efficiently																													
Works in Japan																													
Implementation of technical training courses on meteorological radar system																													
Implementation of meteorological radar operation training																													
Implementation of meteorological radar maintenance training																				1									
Preparation of manual summary							-																						
Preparation of operation & maintenance record book							-																						
Preparation of consumables & spare parts list and procurement plan							-												T										
Preparation of observation routine schedule for meteorological radar systems																									I				
Report and project evalution studies			ĻIJ						Ļ					l															
Preparation of Inception Report (IC/R) Draft version																													_
Preparation/ explanation/ discussion on Inception Report (IC/R)								T								T				T									
Preparation/ explanation/ discussion on Progress Report 1 (P/R1)																													
Preparation/ explanation/ discussion on Progress Report 2 (P/R2)			\square																										
Preparation/ explanation/ discussion on Progress Report 3 (P/R3)																													
										T	T																		
Preparation/ explanation/ discussion on Final Report (F/R)																													
Project evalution study by JICA																													
Project evalution study by JICA									μĹ													\perp	\square						
Training in Japan (NWP basic training)			\square					-	 					<u> </u>			<u> </u>	_				- -'				\square			_
Iraining in Japan (Meteorological information services)			$ \downarrow \downarrow$						ļļ.									_				- '		_					
Training in Japan (Observation data management)	1	1	1		1	1		1	1 1			1	1	1 1		1	1	1			1	1 '	1		8	1	1 1		

2.2 Counterpart Training in Japan

2.2.1. Basic training on Numerical Weather Prediction (NWP)

	Table: Carrinary of Training					
Course Period	February 6, 2012 - March 3, 2012					
Participants	1. Mr. Quamrul Hassan (Forecaster)					
2. Mr. Md. Abdul Matin (Communication Engineer)						
Course Objectives	To obtain basic techniques on the NHM (NWP model) for the preparation of 1-3 days					
	weather forecasts.					
Achievements of the	Improved understanding on the practical operation of the NHM (NWP model)					
Training	which can be used in Bangladesh.					
-	Acquired deeper knowledge on the NHM (NWP model) through the training of					
	researchers and engineers in a developed country.					

Table: Summary of Training

Table: Training Schedule

		Training Places	Contents of Training					
6	Mon		Travel: Dhaka - Bangkok (Stay)					
7	Tue		Travel: Bangkok - Narita (Tokyo)					
8	Wed	Tokyo International Center of JICA	Orientation/Briefing					
9	Thu	JMA Head Office	Forecast Center, NWP Center, and Observation Field					
10	Fri	Japan Weather Association (JWA)	Forecast section, Media section and Mobile web section					
11	Sat		Day off					
12	Sun		Day off					
12	Man	Yokohama Local Meteorological Observatory	Local Meteorological Observatory					
15	Mon	Tokyo Aviation Weather Service Center	Aviation Weather Service					
14	Tree	Aerological Observatory	Aerological Observatory					
14	Tue	Meteorological Instruments Center	Meteorological Instruments Center					
15	Wed	Japan Agency for Marine-Earth Science and Technology (JAMSTEC): Yokohama	Latest earth and marine science					
16	Thu	National Research Institute for Earth Science	Advanced technology for disaster prevention					
10	Thu	and Disaster Prevention (NIED)	X-band multi-parameter radar (MP-X)					
17	Eri	Japan Aerospace Exploration Agency (JAXA):	Utilization of Observed Data of Tropical Rainfall					
17	1.11	Hatoyama	Measuring Mission					
18	Sat		Day off					
19	Sun		Day off					
20	Mon	Meteorological Research Institute (JMA-MRI)	Physical process of Non-Hydrostatic Model (NHM). Regional climate model					
21	Tue	Meteorological Research Institute (JMA-MRI)	Setting of Surface Data, Boundary and Initial Condition for Bangladesh					
22	Wed	Japan Weather Association (JWA)	Utilization of the NWP products					
23	Thu	Japan Agency for Marine-Earth Science and Technology (JAMSTEC): Yokosuka	Marine observation equipment Latest ocean climate					
24	Fri	Japan Aerospace Exploration Agency (JAXA): Tsukuba	Wide usage of meteorological satellite data/pictures					
25	Sat		Day off					
26	Sun		Day off					
27	Mon	Meteorological Research Institute (JMA-MRI)	NHM forecast in Southeast Asia.					
28	Tue	Japan Weather Association (JWA)	Visualization of Transmitted High Resolution Model Data Outline of Non Hydrostatic Model(NHM)					
29	Wed	Japan Weather Association (JWA)	NHM operation					
1	Thu	JICA	JICA Evaluation					
2	Fri		Travel: Narita - Bangkok (Stay)					
3	Sat		Travel: Bangkok - Dhaka					

2.2.2. Weather Information Services

Course Period	February 6, 2012 - March 1, 2012
Participants	1. Mr. Md. Shameem Hassan Bhuiyan (Agro-meteorology division)
	2. Ms. Taslima Imam (Training division)
Course	To obtain techniques on the preparation of visualized information which the general public easily
Objectives	understands.
5	To obtain techniques on the presentation of tropical cyclone visualized information to be
	disseminated through the media.
Achievements	• Obtained the appropriate techniques on the presentation of tropical cyclone visualized information
of the	through the training in the JWA.
Training	Recognized that visualized information is highly important to provide a more accurate, prompt and
	easily understandable weather information to users by visiting TV stations.
	Learned about community-based weather services from the local newspaper company in Sendai,
	the disaster site of a tsunami.
	Learned about the effective awareness building on disaster prevention by visiting the creative
	exhibition facilities where visitors can enjoy learning.
	 Obtained several fresh ideas about open classes that the BMD started last year by observing school education on global warming.

Table: Summary of Training

Table: Training Schedule

		Place of training	Contents of training					
6	Mon		Travel: Dhaka - Bangkok (Stay)					
7	Tue		Travel: Bangkok - Narita					
8	Wed	Tokyo International Center, JICA	JICA briefing and orientation					
9	Thu	Japan Meteorological Agency (JMA)	Forecast Center, NWP Center, and Observation Field					
10	Fri	Japan Weather Association (JWA)	Forecast section, Media section and Mobile web section					
11	Sat		Day off					
12	Sun		Day off					
13	Mon	Yokohama Local Meteorological Observatory	Local Meteorological Observatory					
		Tokyo Aviation Weather Service Center	Aviation Weather Service					
14	Tue	The Tokyo Rinkai Disaster Prevention Park	Disaster Prevention facility					
		Fuji Television Network, Inc.	Weather information Program broadcasting by Private TV Center					
15	Wed	Japan Broadcasting Corporation, NHK	Weather information Program broadcasting by Public TV Center					
16	Thu	National Research Institute for Earth Science and Disaster Prevention (NIED)	Advanced technology for disaster prevention X-band multi-parameter radar (MP-X)					
17	Fri	Travel: Tokyo - Sendai (Stay)	Devastated Area by Huge Earthquake					
		Miyogi profesture	Deviated Area by Luga Forthquaka					
18	Sat	Trovali Sandaj Talvo	Devasialeu Area by Huge Earinquake					
10	Sun	Traver. Sendar - Tokyo	Day off					
19	Sull	Life Sefety Learning Center Televe	Day on					
20	Mon	Fire Department	Disaster experience learning center (heavy rain and earthquake)					
21	Tue	Japan Weather Association (JWA)	Presentation technique of tropical cyclone visualized information to be disseminated through mass media					
22	Wed	National Museum of Emerging Science and Innovation	Effective and visualized exhibition method					
22	Thu	Japan Agency for Marine-Earth Science	Marine observation equipment					
23	Thu	and Technology (JAMSTEC): Yokosuka	Latest ocean climate					
24	Fri	Weather Caster Network (Non-profit organization)	School education on global warming					

25	Sat		Day off
26	Sun		Day off
27	Mon	Japan Weather Association (JWA)	Presentation technique at JWA studio.
28	Tue	Tokyo International Center, JICA	Evaluation meeting by JICA
29	Wed		Travel: Narita - Bangkok (Stay)
1	Thu		Travel: Bangkok - Dhaka

2.2.3. Observation Data Control

Table: Summary of Training

Course Period	February 6, 2012 - February 22, 2012
Participants	1. Mr. Md. Shadekul Alam (Forecaster at the Storm Warning Center)
	2. Mr. Md. Ahmed Arif Rashid (Senior Mechanical Engineer)
Course Objectives	To improve acquisition/management techniques of meteorological data.
Achievements of the	 Expanded knowledge on the weather observation, data collection and data
Training	management methods in a developed country through the training in the JMA and the
	JWA.
	 Obtained the necessary knowledge in order for the BMD to establish a
	meteorological data system and to guarantee data quality through the training at the
	Meteorological Instruments Center.

Table: Training Schedule

		Training Places	Contents of the training					
6	Mon		Travel: Dhaka - Bangkok (Stay)					
7	Tue		Travel: Bangkok - Narita (Tokyo)					
8	Wed	Tokyo International Center of JICA	Orientation/Briefing					
9	Thu	JMA Head Office	Forecast Center, NWP Center, and Observation Field					
10	Fri	Japan Weather Association (JWA)	Forecast section, Media section and Mobile web section					
11	Sat		Day off					
12	Sun		Day off					
13	Mon	Yokohama Local Meteorological Observatory	Local Meteorological Observatory					
		Tokyo Aviation Weather Service Center	Aviation Weather Service					
14	Тце	Aerological Observatory	Aerological Observatory					
14	Tue	Meteorological Instruments Center	Meteorological Instruments Center					
15	Wed	Meteorological Instruments Center	Operation Check, Repair & Maintenance methods and Examination of Meteorological Instruments					
16	Thu	National Research Institute for Earth	Advanced technology for disaster prevention					
10	Thu	Science and Disaster Prevention (NIED)	X-band multi-parameter radar (MP-X)					
17	Fri	Japan Aerospace Exploration Agency (JAXA): Hatoyama	Satellite data analysis technique					
18	Sat		Day off					
19	Sun		Day off					
20	Mon	JICA	JICA Evaluation					
21	Tue		Travelling: Narita - Bangkok (Stay)					
22	Wed		Travelling: Bangkok - Dhaka					

2.3 Provision of Equipment

The Equipment for the activities of each expert procured and provided to the BMD under the Project is listed in the following table.

Name of Equipment	Manufacturer	Model	Purpose	Q'ty	Installation Site	Inspection Date					
FY2009 (1st FY)											
For Weather Forecasting & Warning Service and Organization Management											
Digital Visual Presenter	ELMO	P30S	For visual aid projector of document data, etc.	1	BMD Head Office	Feb. 5, 2010					
Color LCD Type Monitor Display	PROLINK	PRO3201T W	For display of the weather information	3	BMD Head Office	Oct. 20, 2009					
Desktop PC for Weather Briefing	HP Compaq	DC5800	For display, preparation and storage of the weather information	3	BMD Head Office	Oct. 20, 2009					
For Meteorological Observation		•	•								
GPS measuring device	Garmin	GPSMAP6 0 CSx	For site survey of latitude, longitude	1	BMD Head Office	Feb. 5, 2010					
Altimeter	Brunton	ADC Summit	and altitude	1	BMD Head Office	Feb. 5, 2010					
For Meteorological Radar Calibration			I								
Desktop PC for Radar Calibration	HP Compaq	DC5800	For radar calibration	2	BMD Head Office	Oct. 20, 2009					
Linux OS	Red Hat	Linux 5	For radar calibration	2	BMD Head Office	Mar. 04, 2010					
Rain Gauge and Data Logger	Delairco	-	For acquisition of rainfall data	12	Twelve (12) Existing Observatories 1) Saidpur 2) Dinajpur 3) Bogra 4) Mymensingh 5) Tangai 6) Srimangal 7) Chandpur 8) Mongla 9) Bhola 10) Sitakunda 11) Kutubdia 12) Teknaf	Mar. 15, 2010					
Data Collection & Storage Unit	Delairco	-	For data collection & storage at the BMD Head Quarters	1	BMD Head Office	Mar. 15, 2010					
Hard Disk for Data Storage	Buffalo	HD-PX500 U2	For radar calibration data storage	2	BMD Head Office	Feb. 26, 2010					
For Data Quality Control and Statistical	Analysis	1	1								
Desktop PC for Data Quality	HP Compaq	DC5800	For statistical analysis	2	BMD Head Office	Oct. 20, 2009					
Control and Statistical Analysis	HP Compaq	DX2810	For data quality control	1	BMD Head Office	Feb. 17, 2010					
For Numerical Weather Prediction		1	1								
Laptop PC for Basic Training on NWP	Best Systems	BSC-LOW MM5NBV	For basic training on NWP	1	BMD Head Office	Mar. 12, 2010					
For Weather Information Dissemination		1	1								
Laptop PC for Workshop	HP	6930P	For projection of the documents at the workshop	1	BMD Head Office	Oct. 20, 2009					
Others											

UPS	APOLLO	1120F	For supplying back-up AC power to PC etc.	7	BMD Head Office	Oct. 20, 2009 Feb. 17, 2010
	HP	K7100	For printing the	3		Oct. 20, 2009
Color Inkjet Printer	Cannon	PIXUS iP100	documents and materials	2	BMD Head Office	Nov. 27, 2009
Laser Pointer	KOKUYO	SASHI-82	For pointing table, figure, video, etc.	2	BMD Head Office	Sep. 24, 2009
Projector	Hitachi	RX80	For projecting table, figure, video, etc. to the screen	2	BMD Head Office	Oct. 13, 2009
Spare of a Valve for the projector	Hitachi	For RX80	For spare of a valve for the projector	8	BMD Head Office	Oct. 13, 2009
Copy Machine (including Scan)	Canon	IR-3225	For printing documents & materials	1	BMD Head Office	Oct. 13, 2009
Hard Disk for Data Storage	Buffalo	HD-PX500 U2	For data storage of the report, etc.	1	BMD Head Office	Nov. 18, 2009
FY2010 (2nd FY)						
For Numerical Weather Prediction						
PC Cluster for training on NWP	Delairco	-	For numerical analyses	1	BMD Head Office	Mar. 7, 2011
White Board	-	-	For training on NWP	1	BMD Head Office	Jun. 7, 2010
For Web Site Design						
USB Modem for training on Web Site design	Grameenphone	Internet modem	For Internet access by a PC for training	1	BMD Head Office	Dec. 10, 2010
Software for training on Web Site design	Adobe	Dreamweav er CS5	For web page edit	1	BMD Head Office	Dec. 8, 2010
Others						
Vacuum Cleaner	Panasonic	MC-CL481	For cleaning the equipment procured under the Project	1	BMD Head Office	Jun. 11, 2010
FY2011 (3rd FY)			J. J. J. J. J. J. J. J. J. J. J. J. J. J			
For Meteorological Observation						
Automatic Weather System (AWS)	Delairco	-	Weather Observation	6	Six (6) Synoptic Observation Station 1) Dhaka 2) Rajshahi 3) Sylhet 4) Barisal 5) Khulna 6) Chittagong	Nov. 01, 2011
Spare parts for AWS						
 5103 Wind Speed and Direction Sensor: 2 Temperature and Humidity Sensor: 1 PTB330A Barometer:1 RIM8050 Rain Gauge: 1 CSD3 Solar Duration Sensor: 1 SP LIte2 Solar Radiation Sensor: 1 DLM Data Collection Unit: 1 µDCP: 1 Interface Board: 1 Set 1008M/F Line Driver: 1 SAM2W GPRS Modem: 1 PS15M Solar Power Regulator: 1 	Delairco	-	Maintenance o f AWS	1	BMD Head Office	Mar. 19, 2012
Spare parts for Rain gauge	Delairco	-	Maintenance of	1	BMD Head Office	Mar. 19, 2012

Data Lagger Deards 1 (Used for			AWS and Rain			
Bogla Station)			gauge			
Sunguard 4.5A Solar Power						
Regulator: 1 CELEXT009S GPRS Modem						
(Fastrak Extend): 1 (Used for						
MaijdiCourt Station)						
 CNPV-10M Solar Panel: 1 (Used for Joydebpur Station) 						
Vibration Battery Drill	Hitachi	DV18DBL(1	BMD Hand Office	Jup 24 2011
	Hitacili	2LSCK)	Installation of	1	BMD Head Office	Juli. 24, 2011
Safety Belt	Fujij Electric	Tsuyo Light	Observation Equipment	9	BMD Head Office	Oct 4 2011
Surely Don	i ujii Elecuie	TD-27	Equipment	4	Bill Head Office	000. 1, 2011
Laminate Machine	LAMINATOR	YL-320	Courting of	1	BMD Head Office	Jun. 30, 2011
For NWP			Meteorological Floduct			
Lenton PC for Guidence training	DELL	Inspiron	Training for	3	BMD Head Office	Jul 28 2011
haptop i e foi outuance training	DELL	N5110	Guidance	0		Jul. 20, 2011
Anti-Virus Software	Kaspersky	Internet Security	PC	3	BMD Head Office	Jun. 29, 2011
HDD Drive for Data Storage	BUFFALO	SHD-PE12 8G-WH	Storage for NWP	1	BMD Head Office	Jun. 24, 2011
HDD Drive for Data Storage	BUFFALO	HD-LBV3.	Product	1	BMD Head Office	Jun. 24, 2011
For Weather Information Dissemination		0105				
PC for Cyclone Trucking Bulletin Display	DELI	Vostro	Cyclone Trucking	1	BMD Head Office	Ian 23 2012
	Wik	460n	Bulletin Display	1		Juni 23, 2012
Electric Cable Drum	waiton	Z00m-1200		1	BMD Head Office	Jan. 31, 2012
Monitor Cable		_		1	BMD Head Office	Jun. 29, 2011
Portable Screen	-	-	Implementation of	1	BMD Head Office	Jun. 30, 2011
	King	Fotopro	Seminar Class and	1	BMD Head Office	Jun 23 2011
Accessories for Video	King	C-4i		T	Divid field Office	Juli. 23, 2011
	Transcend	HC10		4	BMD Head Office	Jun. 23, 2011
Graphic Software	CorelDRAW	GraphicsSu ite X5	Production of Weather	1	BMD Head Office	Dec. 22, 2011
Video Camera	Panasonic	Panasonic	Dissemination	1	BMD Head Office	Mar. 15, 2012
For Meteorological Radar Operation and	Maintenance					
AVR	Delixi	SVE3000		1		Jun. 29, 2011
Maintenance Parts for Antenna Controller Circuit Board	-	-	Operation and	1	Rangpur	Jun. 24, 2011
		NS102A-A	Maintenance of Meteorological		Meteorological Radar Station	
Circuit breaker	Nikko Electric	C500V-75 A- HC-LW	ince corological	1	Rudui Station	Feb. 7, 2012
FY2012(4th FY)						
Meteorological Information Programmes	Recording Equipn	nent (Audio-v	video and Studio Equipm	nent)	1	
Live Editing Unit	NEWTEK	Tricaster 455	For producing	1	BMD Head Office	Jan. 1, 2013
Live Recording Control Unit	NEWTEK	CS-450	weather	1	BMD Head Office	Jan. 1, 2013
	WESTERN	WDBY8L	programmes in			
Data Storage External HDD	DIGITAL	0020BBK	order to distribute	1	BMD Head Office	Jan. 1, 2013
Live Text Editing programme	NEWTEK	LTX-10	it to TV centers and	1	BMD Head Office	Jan. 1. 2013
HD Camera Recorder	CANON	XF-300	BMD Website via	1	BMD Head Office	Jan. 1, 2013
Ultra-Directional Microphone	Betterway	EM2800A	the internet	1	BMD Head Office	Jan. 1, 2013

Tripod for Camera	Libec	RH25		1	BMD Head Office	Jan. 1, 2013
Tiepin Microphone	SONY	ECMC115		2	BMD Head Office	Jan. 1, 2013
Monaural Mixer	YAMAHA	MG102		1	BMD Head Office	Jan. 1, 2013
Monitor for Caster (Dual Monitor Type)	FUJITSU	PD-LED1 85B		1	BMD Head Office	Jan. 1, 2013
Video Distribution Unit	KRAMER	VM-216H		1	BMD Head Office	Jan. 1, 2013
Monitor for Editing Work	DELL	U2711		2	BMD Head Office	Jan. 1, 2013
Uninterrupted Power Supply	APC	2kVA		1	BMD Head Office	Jan. 1. 2013
Automatic Voltage Regulator	MICRO	2kVA		1	BMD Head Office	Jan. 1. 2013
LED Lighting Set	NANGGUANG	CN600HS	For producing weather information	1	BMD Head Office	Jan. 1, 2013
Automatic Voltage Regulator	MICRO	2kVA	programs in order to distribute it to TV center and BMD Website via the Internet	1	BMD Head Office	Jan. 1, 2013
Air Conditioning System	Fujitsu General	ASG-30	For keep the appropriate room temperature for broadcast studio	2	BMD Head Office	Jan. 1, 2013
For Weather Observation						
Battery Charger	ALPS Electric Instruments	SP1210TR	For maintenance of	1	BMD Head Office	Jul. 9, 2012
Hexagon Shaft Drill Set	NACHI	COSET10	AWS and Rain	1	BMD Head Office	Jul. 9, 2012
Maintenance Terminal for AWS and Rain Gauge	FUJITSU	LH531	Gauge	1	BMD Head Office	Jan. 2, 2013
For Radar Calibration						
External Hard Disk Drive	LaCie	LCH-MN2 T U3/E	For archiving Radar Rainfall Data	1	BMD Head Office	Jul. 5, 2012
For Weather Information Dissemination						
Graphic Design Tool Kit (Software)	Adobe	Creative Suite 6	For implementation of	1	BMD Head Office	Jan. 2, 2013
Megaphone	TOA	3W ER-1103	Open Class/Seminar	2	BMD Head Office	Jul. 4, 2012
External Hard Disk Drive	LaCie	LCH-MN2 T U3/E	For archiving Outputs of Weather Dissemination Activities	1	BMD Head Office	Jul. 5, 2012
FY2013(5th FY)						
None						

2.4 List of Outputs

The reports ordered by JICA are listed in the following table.

Fiscal Year	Output	Submission Month
1 st EV	INCEPTION REPORT	October 2009
ISL F I	PROGRESS REPORT 1	March 2010
2nd FY	PROGRESS REPORT 2	March 2011
2rd EV	WORK PLAN 3	March 2012
510 F 1	PROGRESS REPORT 3	March 2012
Ath EV	WORK PLAN 4	July 2012
τu1 1 1	PROGRESS REPORT 4	January 2013

5th EV	WORK PLAN 5	July 2013
Juiri	FINAL REPORT	January 2014

The outputs of the Project by each expert are listed in the following table.

Γ

PDM Output	Output prepared by the Project				
	Weather Observation Guideline				
	Beaufort Scale				
	Cloud Type Code				
	Instrument Inspection/Maintenance, Automatic Weather Station (Rain Gauge)				
	Instrument Inspection/Maintenance, Automatic Weather Station (AWS)				
	Installation & Operation Manual (Meteorological Data Collection and Display Software)				
	Maintenance & Calibration Manuals (Automatic Weather Station (AWS) Network				
	Installation & Technical Manual (Rain Gauge System)				
	Summary – Guide to Meteorological Instruments and Methods of Observation according to				
	WMO Seventh Edition				
	Quality Assurance and Management of Observing Systems according to WMO Seventh				
	Edition				
	Observation Equipment Layout Plan (Observation Field) First Class Observatory				
Capacity of BMD for	Observation Equipment Layout Plan (Observation Field) Agromet. Observatory				
observation and forecasting is	AWS Layout Plan (Dhaka, Rajshahi, Sylhet, Barisal, Khulna, Chittagong)				
improved	Standardized Specifications of Manual Observation Instruments				
	Standardized Specifications of Automatic Weather System (AWS)				
	Standardized Specifications of Automatic Rain Gauge				
	Standardized Specifications of Data Receiving System				
	Standardized Specifications of Communication Instrument				
	Standardized Details of AWS Pole (Drawings for Manufacturing)				
	Standardized Details of AWS Pole (Drawings for Foundation)				
	Drawings for manufacturing furniture for briefing room equipment				
	Forecast briefing flowchart				
	Briefing flowchart for mass media				
	BMD meteorological service regulation				
	Forecast products by emergency management phase and location specificity				
	Forecast briefing flowchart revised version				
	BMD meteorological service regulation revised version				
	C-Shell scripts for use in BMD system to store IRIS product(RAIN1) files and to make				
	figure of radar rainfall distribution from RAIN1 product files				
	Source code(C language) files of radar data analysis for use in BMD system				
Quantitative rainfall	Source code(Fortran) files of rain-gauge data analysis and processing for B-Beta estimation				
estimation by using Doppler	for use in BMD system				
Radars is implemented	Excel template files for correlation analysis between radar and rain-gauge data, and for				
-	estimation of B-beta values				
	Instruction on radar calibration for BMD radar system				
	Presentation materials for lectures and trainings in this project				
	Comparison between BMD Formula and WMO Formula for Barometer Cistern Level				
	Pressure				
The trend analysis of climate	Calculation of Atmospheric Pressure for Fixed-Cistern Type (Kew Type) Barometer				
change is conducted by using	Calculation of Atmospheric Pressure for Fortin Type Barometer				
the accumulated	Calculation of Relative Humidity and Dew Point Temperature				
meteorological data.	Weather Observation Data Input Manual				
	Daily Observation Data Input Sheet				
	Changing Trend of Yearly Mean Temperature and Yearly Precipitation				
Capacity of BMD personnel	Training Materials				
for 1 to 3 days weather	NO.1-Dynamics for Numerical Prediction				
forecasting on trial using	NO.2-Dry Thermodynamics				
basic techniques of	NO.3-Moist Thermodynamics				
Numerical Weather	NO.4-Isobaric Surface				

Dradiation (NW/D) is	NO 5 Bisherdeon's Dreem
developed	
developed.	NO.0-VOLICILY
	NO Shallow water wave
	NO.8-Deep Sea wave
	NO.9-Scale Analysis
	NO.10-Quasi-Geostrophic Equations
	NO.11-Theory of Quasi-Geostrophic Equations
	NO.12-Energy Conservation
	NO.13-Baroclinic Wave
	NO.14-Synoptic Wave
	NO.15-Overview of Mesoscale Phenomena
	NO.16-Mesoscale Equations
	NO.17-Introduction to the MM5
	NO.18-Map Projection
	NO.19-Equations of Map Factor
	NO.20-Introduction of JMA-Model
	NO.21-Numerical Methods
	NO.22-Differencing Technique
	NO.23-Introduction of EC Model
	NO.24-JMA-Nonhydrostatic Model Operation
	NO.25-NHM_Tutorial
	NO.26-Introduction to Linux
	NO.27-NHM-Installation
	NO.28-Running Training of NHM
	NO.29-Execution of NHM
	NO.30-Learning Fortran
	NO.31-Outline of NHM Main Program
	NO.32-Example of NHM
	NO.33-Reading of Main Program
	NO.34-Basic Equations of NHM
	NO.35-Reference Atmosphere
	NO.36-Terrain Coordinate
	NO.37-Time Integration
	NO.38-Practice of Preparation for NWP Execution
	No 39-Outline of Weather Guidance
	No.40-Production of Weather Guidance
	No.41-Practice on Weather Guidance
	No.42-MPI for parallel Calculation
	No.42 Practice of Restart
	No.43-1 factice of Restart
	No.45 Objective Applyois
	No.45-Objective Allarysis
	No.47 Visualization of NuSDaS Data
	Installation of CantOS 5.5 (Linux OS)
	(INA NUM) Operation Manual for DC Cluster
	DC Cluster
	PC-Cluster Operation Manual
Capacity of BMD staff to	
promote understandings about	Brochure "Save Yourself"
meteorological information	Book "Weather Information"
among the "stakeholders" is	BMD Character
further developed.	Mascot of BMD Character
	Software for preparation of Visualized BMD Special Weather Bulletin
	SAFETY PRECAUTION
The meteorological Radar	Necessary of Periodic Maintenance of Radar System
systems are operated and	Techniques used in Doppler radar
maintained properly and	Maintenance Sheets
efficientl	Routine care of Computer System
	Routine Check Sheet for Radar System

2.5 REVISION OF THE PROJECT DESIGN MATRIX (PDM)

■1st Revision (October 2009)

The revision of certain items to make the descriptions of the PDM more concrete were proposed and approved at the Joint Coordinating Committee (JCC) conducted during the 2nd fiscal year.

■2nd Revision (January 2010)

In order to maintain the logical relationship between the Output and the Activities of the PDM, to shift Activity 3.2 for Output 3 to Activity for Output 2 and to add "activity 4-3" to Output 4 were proposed at the terminal evaluation conducted by JICA in October 2009. This proposal was approved at the JCC implemented during the 4th fiscal year.

The original PDM, 1st revised PDM (revised parts: blue color), and 2nd revised PDM (revised parts: red color) are attached hereunder.

The summary of the revised items in the PDM are indicated in the following table.

PROJECT DESIGN MATRIX (PDM) [Original]

Narrative Summary	Objectively Verifiable Indicators	Means of Verification	Important Assumption
Overall Goal Highly precise weather and climate information is utilized for Natural Disaster Management and contributed to the reduction of the Natural Disaster Losses.			
Project Purpose Weather information for natural disaster management is more strengthened in terms of time and quality through human capacity development and dissemination of weather information among the stakeholders are more broadened.	 Quantitative rainfall information using rainfall calibration is provided. More timely and precise forecasting and warning-delivery to organizations related to Natural Disaster Management and Mass Media are performed. 	 Report of the Project Record of forecasting and warning Report of the Project Interview to organization elated to DM and Mass Media 	State policy of weather services in the Government of Bangladesh remains unchanged
Outputs			
1. Capacity of BMD for daily weather observation and forecasting is improved.	1-1 The training for observers / inspectors are implemented more than 6 times during the Project and 70% of participants understand the contents of the training.	1-1 Report of training for observers / inspectors Result of Questionnaire	
	1-2 More than 70% of the observers follow the revised observation guideline by end of the Project.	1-2 Questionnaire and survey	
	1-3 More than 70% of the inspectors follow the revised guideline for inspections by end of the Project.	1-3 Evaluation by expert Questionnaire	
 Quantitative rainfall estimation by using Doppler Radars is effectively utilized for weather forecasting and warning. 	 2-1 Correlation between calibrated rainfall data and actual rainfall data is confirmed by December, 2010. 2-2 BMD can calculate the estimated rainfall data under the coverage area of 5 Radars by using the calibration method by December, 2011. 	2-1 Calculated Correlation2-2 Estimated rainfall data	
3. Climate data is utilized for the trend analysis of climate change.	3-1 Result of the Climate statistical analysis is shared with the SAARC Countries by December, 2010.	3-1 Result of statistical analysis Report of regional workshop	
4. Capacity of BMD personnel for weather forecasting using basic techniques	4-1 More than 5 personnel of BMD are capable of using the NWP	4-1 Evaluation by expert	
of Numerical Weather Prediction (NWP) is established.	basic technique by the end of the Project.	Questionnaire	
5. Capacity of BMD to promote understandings about weather and climate	5-1 The seminar / workshop are implemented more than 6 times	5-1 Report of seminar / workshop	
information in central/local governments, related organizations/agencies and end-user is improved	during the Project and 70% of participants understand the contents of the training.	Result of Questionnaire	
	5-2 More than 2 categories of Booklets for target group (elementary school and people of affected area, etc) for promoting understandings of weather, climate and disaster are published and distrubuted during the Project.	5-2 Booklets	
6. Weather observation and monitoring equipment such as meteorological	6-1 The training on O&M of Meteorological Radar are implemented	6-1 Report of the training	
Radar system etc. are operated and maintained properly.	more than 3 times during the Project and 70% of participants	Result of Questionnaire	
	understand the contents of the training.	6-2 Evaluation by expert	
	6-2 10 personnel of BMD are capable of efficient O&M of	6-3 Report of the Project	
	Meteorological Radar system by the end of the Project.	Questionnaire and survey	
	6-3 More than 70% of the personnel related to 0&M of Meteorological Radar follow the guideline for 0 kM		
	6-3 More than 70% of the personnel related to O&M of Meteorological Radar follow the guideline for O&M.		

Activities	Inp	Pre-conditions	
1-1 To conduct the training for observers on Meteorological Observation.	(Bangladeshi Side)	(Japan Side)	Trained observers
1-2 To revise the existing guideline on Meteorological Observation in accordance with latest WMO edition. To conduct the training for forecasters on data acquisition and quality control.	1. Provision of the project office for the project experts in BMD Head Office	 Experts Weather Observation 	continue working for BMD.
1-3 To have the daily briefing on every weather forecast among the forecasters.	2. Allocation of the required counterpart personnel	 Weather Forecasting Radar Calibration techniques Climate data management 	Trained inspectors continue working for
1-4 To conduct the training for inspectors on inspection of the instruments.	3. Provision of training spaces	- Statistical Analysis techniques	BMD.
1-5 To revise the existing guideline on inspection of the instruments and equipments in accordance with latest WMO edition.	4. Provision of installation spaces for the equipment to be procured under the Project	- Numerical Weather Prediction - Weather Radar operation and maintenance	BMD personnel who acquired technique
2-1 To implement the Radar Calibration with existing Radar data and actual	5. Security of the equipment for the Project	2. Equipment Supply	remain on duty.
rainfall data in the observatories under coverage area of Cox's Bazar and Khepupara Radars.	6. Operation and maintenance expenses of the equipment for the Project	 Provision of training in Japan 	Meteorological Radar
2-2 To establish the contention between actual rainfall and estimated rainfall.2-3 To implement the Radar Calibration with existing Radar data and actual rainfall data in the observatories under coverage area of Moulavi bazar Radar.	7. Tax exemption, custom clearance and other procedures required for importing the equipment for the Project		Budget required for maintenance allocates.
2-4 To implement the Radar Calibration with existing Radar data and actual rainfall data in the observatories under coverage area of Dhaka and Rangpur Radars.			
2-5 To evaluate the result of estimated rainfall data by the calibration method.			
 3-1 To develop the Quality Control System (automatic and human quality control) for identification of abnormal values. 3-2 To modify the Quality Control System. 3-3 To archive the climate data in the database developed in the Project. 3-4 To implement the statistical analysis of climate trend. 3-5 To organize the regional workshop on climate change. 			
 4-1 To conduct the basic training on Numerical Weather Prediction (NWP). 4-2 To study for the applicability of NWP result calculated by other countries. 4-3 To examine the method of Guidance by using the result of study mentioned 4-2. 4-4 To develop the Meso Spectral Model (MSM) for NWP by using PC on trial 			
5-1 To conduct the workshop for organizations and agencies related to disaster			
5-2 To make the booklet for promoting the understandings of end-users of weather and climate information.			
 6-1 To conduct the training on operation and maintenance of Meteorological Radar System. 6-2 To review the guideline for maintenance of the equipments. 6-3 To review the guideline for operation of Meteorological Radar system. 6-4 To make the appropriate maintenance plan. 			

PROJECT DESIGN MATRIX (PDM) [revised-1]

Narrative Summary	Objectively Verifiable Indicators	Means of Verification	Important Assumption
Overall Goal			
Highly precise weather and climate information is utilized for	Utilization of weather and climate information by organizations	Interview to the person in charge in	
natural disaster management which contributes to the reduction of	related to natural disaster management	organizations related to natural disaster	
the natural disaster losses.		management	
Project Purpose			
weather information for natural disaster management is	1. Rainfall data of the optimized radar ZR relation parameter for	1. Data distribution record	weather data, forecasting
development and dissemination of weather information among	2 Accurate and easily understandable forecasting and warning	2 Weather forecasting and warning	utilized by organizations
various stakeholders.	to organizations related to natural disaster management and	prepared by BMD for organizations	related to natural disaster
	Mass Media are timely issued.	related to natural disaster management	management and Mass
		and Mass Media	Media.
Outputs			
1. Capacity of BMD for observation and forecasting is improved.	1-1 Enable to acquire and archive accurate observed data: 6	1-1 Database in BMD Head Office	State policy of weather
	existing meteorological observatories	1-2 Report of the Project	services in the Government
	1-2 Training for field observers and data inspectors on observed	1.3 Briefing records	of Bangladesh remains
	data acquisition and data quality control: 6 times	1-5 Difering records	unenanged.
	1-3 Briefing in SWC: at least 1 time/day		
2 Quantitative rainfall estimation by using Doppler Radars is	2.1 Correlation of radar rainfall data observed by the optimized	2-1 Correlation chart of rainfall data of	
implemented	radar ZR relation parameter for rainfall calculation and	radar and surface observations	
	surface observation being corroborated.	2-2 Computers in SWC	
	2-2 Binary data of rainfall intensity composite picture created by		
	rainfall data of 5 existing radar systems optimized ZR relation		
	parameter for radar rainfall calculation is distributed to		
	FFWC.		
3. Climate data is utilized for the trend analysis of climate	3-1 Summary of Climate statistical analysis is shared	3-1 BMD web page	
change.	with the SAARC Countries.	Regional Workshop of SAARC	
		Countries opened	
4. Capacity of BMD personnel for 1 to 5 days weather forecasting	4-1 Enable to use the basic techniques of Numerical Weather	4-1 Report of the Project	
(NWP) is established	Prediction (IVWP): 5 start of BIMD		
5. Understanding about weather and climate information among	5-1 Implementation of seminars for stakeholders related to	5-1 List of participants of seminar	
stakeholders related to natural disaster are deepened.	natural disaster: 8 times, 70% of the participants understood	Questionnaires to the participants of	
	the contents	seminar	
	5-2 Booklets of weather, climate and natural disaster to be	5.2 Booklats	
	distributed to stakeholders related to natural disaster including	J-2 BOOKIEIS	
	elementary schools and residents in disaster affected area: 3		
6. Weather observation and monitoring equipment such as	6-1 Enable to implement regular maintenance and trouble	6-1 Report of the Project	
meteorological radar system etc. are operated and maintained	shooting for the meteorological Doppler radar systems:	6-2 Record sheet of regular check	
property.	9 staff of BMD	5 2 Record sheet of regular cheek	
	6-2 Operation/maintenance manuals being utilized in each		
	existing Meteorological Radar Station		

	Activities		Inputs		Pre-conditions	
	1-1	To rehabilitate the existing meteorological observatories in the targeted areas	(B	angladeshi Side)	(Japan Side)	To be able to obtain cooperation
	1-2 1-3	To prepare the field observation guideline To provide the training for field observers and data inspectors on observed data	1.	Provision of the project office for the project experts in BMD Head Office	1. Dispatch of experts	of organizations related to natural disaster management
	1-4	acquisition and data quality control To prepare the operation and maintenance manuals for observation fields and instruments	2.	Allocation of the required counterpart personnel	- weather Porecasting & warning Service and Organization Management	
	1-5	To provide the training for field observers and instrument inspectors on maintenance and control of observation fields and observation instruments	3. ₄	Provision of training spaces	- Weather Service Infrastructure	
	1-6	To prepare the briefing flowchart and record	4.	the equipment to be procured under	- Meteorological Radar Calibration	
	2-1	To procure and set up the required equipment for the training on optimization of reder ZP relation parameter for rainfall calculation		the Project	- Data Quality Control and Statistical Analysis	
	2-2	To prepare correlation charts of rainfall data of radar and surface observations in the	5.	Security of the equipment for the	- Web Site Design	
		observation range of 5 existing meteorological radar systems optimized radar ZR relation parameter for rainfall calculation	6.	Operation and maintenance expenses	- Weather Information Dissemination	
	2-3	To compose the rainfall composite picture of 5 existing meteorological radar		of the equipment for the Project	- Meteorological Radar Operation and Maintenance	
	3-1	To develop daily observation data input sheet for easy statistical processing and	7.	Tax exemption, custom clearance and other procedures required for	2. Equipment Supply	
2	51	data quality control of observed data		importing the equipment for the	3. Provision of training in Japan	
5	3-2	To conduct climate data statistical analysis To multich the summarized result of alignets data statistical analysis to BMD Web		Project		
	5-5	page				
	3-4	To conduct the workshop of South Asian Association for Regional Cooperation (SAARC) on Climate Change				
	4-1	To procure and set up the required equipment for the training on Numerical Weather Prediction (NWP)				
	4-2	To conduct the basic training on Numerical Weather Prediction (NWP)				
	4-3	To conduct the training on Numerical Weather Prediction (NWP) guidance				
	4-4 5-1	To conduct the seminars for the stakeholders related to natural disaster				
	5-2	To prepare the booklets of weather, climate and natural disaster				
	6-1	To conduct the training on operation and maintenance of the meteorological radar systems				
	6-2	To prepare the operation and maintenance manuals for the meteorological radar				
		system				

PROJECT DESIGN MATRIX (PDM) [revised-2]

Narrative Summary	Objectively Verifiable Indicators	Means of Verification	Important Assumption
Overall Goal Natural disaster losses are reduced by the utilization of highly precise weather information.	Cases which prove that the utilization of BMD's weather information by organizations related to natural disaster management contributed to the natural disaster losses.	 Interviews with SWC and the persons in charge in organizations related to natural disaster management Case analysis by experts including the third party experts 	
Project Purpose			
More accurate weather information is timely issued to the stakeholders of the natural disaster management.	 Data from BMD Radar Systems optimized by radar ZR relation parameter for timely forecasting and warning is provided to FFWC Accurate and easily-understanding forecast and warning including tropical cyclone are timely issued to the organizations related to natural disaster management and mass media. 	 1-1 Data distribution record at BMD 1-2 Data receiving record at FFWC 2-1 Weather forecast and warning prepared by BMD to natural disaster management organizations and mass media such as special weather bulletin 2-2 Interviews with the natural disaster management organizations and mass media 	BMD's meteorological data and weather forecast and warning prepared by BMD is utilized by the natural disaster management organizations and mass media.
Outputs			
 Capacity of BMD for observation and forecasting is improved. 	 1-1 More than 80% of the hourly data such as surface temperature, humidity, wind direction, wind speed and precipitation are acquired at the six meteorological observatories with the AWSs. 1-2 Surface observations are conducted in each observatory by using the existing equipment in accordance with the observation guidelines which is developed by this Project. 1-3 Among the observers who attend the data quality control training, more than 70% of the participants understand the contents of the training. 1-4 Quality control is continuously conducted. 1-5 Briefing for understanding and sharing the meteorological situations is conducted at SWC at least once a day. 	 1-1 Database in BMD head office 1-2 Direct observation by experts including the third party experts 1-3 Achievement test 1-4 Observation records 1-5 Briefing records 	State policy of weather services in the Government of Bangladesh remains unchanged. Trained BMD staff remain on the duty. Data transfer system between BMD and FFWC functions properly.

2 Analysis of quantitative rainfall estimation by using the Radar data is implemented	2-1 Correlation of radar rainfall data observed by the optimized radar ZR relation parameter for rainfall calculation and surface observation is corroborated	2-1 Correlation chart of rainfall data of radar and surface observations
	2-2 Binary data of composite rainfall amount created by rainfall data of the five (5) existing radar systems optimized ZR relation parameter for radar rainfall calculation is composed	2-2 Binary data of composite rainfall amount created by rainfall data of the five (5) existing radar systems
 The trend analysis of climate change is conducted by using the accumulated meteorological data. 	 3-1 More than two (2) BMD staff can detect abnormal values and human error of the accumulated meteorological data through the computer program. 3-2 Summary of climate statistical analysis is shared in the public. 	3-1 Analysis result of the data quality control program3-2 BMD's website
4. Capacity of BMD personnel for 1 to 3 days weather forecasting on trial using basic techniques of Numerical Weather Prediction (NWP) is developed.	4-1 More than five (5) staff of BMD can develop products and guidance by the Numerical Weather Prediction (NWP) model.	4-1 Report of the Project Outputs of the NWP
 Capacity of BMD staff to promote understandings about meteorological information among the "stakeholders" is further developed. 	 5-1 BMD staff's planning and presentation skills for disseminating meteorological information is improved. 5-2 70% of the participants in the seminars/open-class (more than 8 times) understand the contents. 5-3 Meteorological information on the BMD's website is user-friendly and updated. 	 5-1 PR materials Weather forecast (such as TV)/ daily and special weather bulletin 5-2 Questionnaires to the participants of seminar/open-class 5-3 BMD's website
6. The meteorological Radar systems are operated and maintained properly and efficiently.	 6-1 More than fifteen (15) BMD staff for the five Radar systems can implement regular maintenance and trouble shooting (except serious troubles which require assistance from HQ or manufacturer) for the meteorological radar systems. 6-2 More than 80% of the BMD's staff in each existing meteorological radar station can operate and maintain the radar system in accordance with the operation/maintenance manual which is developed by this Project. 6-3 Meteorological radar observation schedule is maintained based on the requirement of SWC. 6-4 Operation cost for the meteorological radar system in normal season is saved. 	 6-1 Record sheet of regular check and trouble shooting Interview with the superintendents of each radar system 6-2 Direct observation by experts including the third party experts 6-3 Project report 6-4 Operation cost for meteorological radar system in normal season (before and after the implementation of the radar observation routine schedule)
7. Capacity of BMD for early warning dissemination is improved.		7.1. Record book of early warning dissemination

 28

3 ISSUES, IDEAS AND LESSONS LEARNED DURING PROJECT IMPLEMENTATION

Issues, ideas and lessons learned during Project Implementation are listed in the following table.

Output of PDM	Issues for the Project Implementation	Ideas of Solutions for the Issues/Recommendation to the BMD	
Capacity of BMD for observation and forecasting is improved.	 Due to the reduction of the budget, the appropriate procurement procedure and belated approval of the TPP by the Bangladesh Government as well as the procurement of the AWS was delayed. The following activities were postponed: Installation of the AWS Quality control of the observation data Implementation of trainings on observation data acquisition & quality control Implementation of trainings for observation field & instrument maintenance and management Preparation of observation field and instrument maintenance and management maintenance and management maintenance and management maintenance and management 		
Quantitative rainfall estimation by using Doppler Radars is implemented.	Sufficient observed data that could be used to make a comparison has not been obtained due to the delay in the procurement of the AWS and rain gauge.		
The trend analysis of climate change is conducted by using the accumulated meteorological data.	There was no substantial foundation for the BMD's conversion table for measuring barometric pressure, relative humidity and dew-point temperature. Observed data comparison table	BMD Standard Formulae were prepared according to the formulae specified in the WMO guidelines and the hypsometric formulae.	
Capacity of BMD personnel for 1 to 3 days weather forecasting on trial using basic techniques of Numerical Weather Prediction (NWP) is developed.	None	None	
Capacity of BMD staff to promote understandings about meteorological information among the "stakeholders" is further developed.	None	None	
The meteorological Radar systems are operated and maintained properly and efficiently.	None	None	

4 PROJECT OUTPUTS

The Progress of the Project Achievements at the end of the Project is indicated in the following table.

Project Purpose	Indicators	Achievements
Weather information for natural disaster management	1. Rainfall data of the optimized radar ZR relation parameter for rainfall calculation being provided to FFWC.	Optimized radar data was provided to the FFWC by the BMD.
is strengthened in terms of time and quality through human capacity development and dissemination of weather information among various stakeholders.	 Accurate and easily-understanding forecast and warning including tropical cyclone are timely issued to the organizations related to natural disaster management and mass media. 	The program for the preparation of Visualized BMD Special Weather Bulletins (for Cyclone Tracking, Storm Surge & Strong Wind Warning) was developed. The "Visualized BMD Weather Bulletin" was issued timely through TVs and the BMD web site, when cyclone "Mahasen" attacked Bangladesh in May 2013.
Output	Activities	Achievements
1. Capacity of BMD for observation and forecasting is improved.	 1-1 More than 80% of the hourly data such as surface temperature, humidity, wind direction, wind speed and precipitation are acquired at the six meteorological observatories with the AWSs. 1-2 Surface observations are conducted in each observatory by using the existing equipment in 	Hourly data such as surface temperature, humidity, wind direction, wind speed and precipitation have been acquired at the five meteorological observatories with the AWSs from July 2012. Training in accordance with the prepared field observation and observation instruments maintenance/management manuals was
	accordance with the observation guidelines which is developed by this Project. 1-3 Among the observers who attend the data	implemented.
	quality control training, more than 70% of the participants understand the contents of the training.	participants understood the contents of the training.
	Quality control is continuously conducted.	Observed data which deviated from the normal value range was detected by the "Observation Data Input Format." In addition, human errors such as the misreading of the conversion table were reduced.
	1-5 Briefing for understanding and sharing the meteorological situations is conducted at SWC at least once a day.	Weather Briefing is conducted at the briefing room which was newly constructed under the Project.

Progress of the Project Achievements
Activities of PDM	Achievement Ratio	Achievements
1-1 To install the six (6) AWSs and twelve (12) rain gauges at the eighteen existing meteorological observatories.		 6 AWSs were installed at the 6 existing synoptic meteorological observatories: 1) Dhaka 2) Rajshahi 3) Sylhet 4) Barisal 5) Khulna 6) Chittagong
	100%	 12 Rain gauges were installed at the 12 existing synoptic meteorological observatories: Saidpur Dinajpur Bogra Mymensingh Tangai Srimangal Chandpur Mongla Bhola Sitakunda Kutubdia Teknaf The following drawings were prepared. Layout plan for the AWS pole Concrete foundation for the AWS pole 10m height AWS pole (Manufacturing Drawings) Concrete foundation for the AWS pole (Shop Drawings) Standardized observation equipment layout plan for the agro-meteorological observatory.
1-2 To revise the field observation guidelines (including AWS) in accordance with the latest WMO policy.	100%	AWS specifications were also prepared. Field observation procedures were prepared. Field observation guidelines were prepared. The training on observation data acquisition & quality control was implemented.
To provide the observation training for field observers based on the field observation guidelines and the data entry format	100%	synoptic meteorological observatories in Bangladesh.
1-4 To provide the training for field observers on observed data acquisition and data quality control	100%	Data collected from the installed AWSs and rain gauges were compared with manually observed data. Based on the results of the comparison, a significant difference was not found.
1-5 To prepare the operation and maintenance manuals for observation fields and instruments (including AWS).	100%	 The following products were prepared. Drawings for the manufacturing of furniture for the briefing room equipment Forecast briefing flowchart Briefing flowchart for the mass media BMD meteorological service regulation Forecast products according to the emergency management phase and location specificity

	1-6 To provide the training for field observers and instruments inspectors on maintenance and control of observation fields and observation instruments (including AWS).	100%	Preparation of the field observation & instruments maintenance/management rules was conducted. Preparation of the observatory maintenance and management record book was conducted. Preparation of the field observation & instruments maintenance/management manual was conducted. Trainings for field observation & instruments maintenance/management were implemented.								
	1-7 To compare the data obtained by the AWS and existing equipment and conduct quality control.	100%	Comparison between the data obtained using the AWSs and Rain Gauges installed under the Project and those obtained using manual observation was conducted.								
	1-8 To prepare the briefing flowchart and record, and conduct briefing along with the flow chart.	100%	 Training for forecast briefing has been implemented. The following products were prepared. Drawings for the manufacturing of furniture for briefing room equipment Forecast briefing flowchart Briefing flowchart for the mass media BMD meteorological service regulation Forecast products according to the emergency management phase and location specificity 								
Project Purpose	Indicators		Achievements								
2. Quantitative rainfall estimation by using Doppler Radars is implemente d.	 2-1 Correlation of radar rainfall dat the optimized radar ZR relation rainfall calculation and surfac being corroborated. 2-2 Binary data of rainfall intens: picture created by rainfall data radar systems optimized ZR relat for radar rainfall calculation is FFWC. 	a observed by parameter for e observation ity composite of 5 existing tion parameter distributed to	The training on the detailed procedures for analysis was implemented and the conduct of correlation analysis using observed data for this year was carried out as a test case. The binary data of composite rainfall amount was created using rainfall data from the five (5) existing radar systems whose ZR relation parameters were optimized for radar rainfall calculation.								
	Activities	Achievement Ratio	Achievements								
	2-1 To procure and set up the required equipment for the training on optimization of radar ZR relation parameter for rainfall calculation.	100%	The rain gauges were installed at the 12 meteorological observatories: 1) Saidpur 2) Dinajpur 3) Bogra 4) Mymensingh 5) Tangai 6) Srimangal 7) Chandpur 8) Mongla 9) Bhola 10) Sitakunda 11) Kutubdia 12) Teknaf								
	2-2 To prepare correlation charts of rainfall data of radar and surface observations in the observation range of 5 existing meteorological radar systems	100%	After the correlation analysis between the rainfall data from surface observation and the radar rainfall data obtained after increasing radar operation hours was done, the optimization of the radar ZR relation parameter of the 5 existing meteorological radar systems for rainfall calculation was implemented.								

	2-3 To prepare correlation charts of rainfall data of radar and surface observations.	100%	The training on the detailed procedure for analysis was implemented. Correlation analysis using observed data from the installed rain gauges in the Project and the existing meteorological radar was conducted. C-shell script of the automatic data collection and the analysis programs for radar data (Analysis PC in the BMD) Training material about "Radar Calibration"							
	2-4 To compose the rainfall composite picture of 5 existing meteorological radar systems optimized radar ZR relation parameter for rainfall calculation in SWC	100%	The plan to release additional products made from the new B and β values for testing purposes was adjusted.							
Project	Indicators		Achievements							
3. The trend analysis of climate change is conducted by	3-1 More than two (2) BMD stat abnormal values and human accumulated meteorological dat computer program. 3-2	ff can detect error of the a through the	2 Counterparts can detect the value which deviated from the normal value range. Graphics showing the correlations and trends of annual							
using the accumulated meteorologica	Summary of climate statistica shared in the public.	l analysis is	precipitation and temperature for more than 30 years at the 6 existing synoptic observations (Dhaka, Rajshahi, Sylhet, Barisal, Khulna and Chittagong) were prepared							
l data.	Activities	Achievement Ratio	Achievements							
	3-1 To develop daily observation data input sheet for easy statistical processing and data quality control of observed data	100%	 Observation data input sheet was developed. Formula for the automatic calculation by the Input Format was determined. Formula for Relative Humidity Formula for Dew Point Temperature Formula for the temperature correction value for the calculation of Station Level Pressure Formula for the gravity correction value for the calculation of Station Level Pressure Formula for the height correction value for the calculation of Mean Sea Level (MSL) Pressure Operation manual for the observation data input sheet was also prepared. 							
	3-2 To archive the observation data and conduct quality control	100%	Observation data of the AWS is archived automatically. Through a comparison of the data obtained by the AWS and those obtained using manual observation as well as the determination of the normal value range, data quality control was conducted.							
	3-3 To conduct climate data statistical analysis by using the above data	100%	Statistical analysis (histogram preparation and calculation of correlation) of the climate data (rainfall and temperature) for more than 30 years at the 6 existing synoptic observations (Dhaka, Rajshahi, Sylhet, Barisal, Khulna and Chittagong) was executed.							
Project Purpose	Indicators		Achievements							
4. Capacity of BMD personnel for 1 to 3 days weather	4-1 Enable to use the basic to Numerical Weather Prediction (1 of BMD	echniques of NWP): 5 staff	More than 6 C/Ps of the BMD could develop products and guidance using the NWP model. The capacity of BMD personnel to conduct 1 to 3 days trial weather forecasting using basic techniques of the NWP was developed.							

forecasting on trial using	Activities	Achievement Ratio	Achievements						
basic techniques of Numerical Weather Prediction	4-1 To procure and set up the required equipment for the training on Numerical Weather Prediction (NWP)	100%	Installation of the cluster computer procured for the training on the NWP at the SWC was completed. Installation of the required software/model into the cluster computer was also completed.						
(NWP) is developed.	4-2 To conduct the basic training on Numerical Weather Prediction (NWP)	100%	The basic training on the NWP was conducted. Training on computer operation for the NHM was conducted. Comparison between the NHM calculation result using the observation data of the tropical cyclone which landed in Bangladesh and the MTSAT imageries as well as the evaluation of the accuracy of the NHM calculation result were conducted.						
	4-3 To conduct the training on Numerical Weather Prediction (NWP) guidance	100%	Lectures on the concept and theory of NWP Guidance were conducted. A 35 Grid Point Value (GPV) near the synoptic meteorological observation point in Bangladesh was selected. NWP forecast guidance for 1-3 days at the 35 points was prepared using a multiple regression analysis.						
	4-4 To operate the Meso Scale Model (MSM) by using PC (Linux) on trial base	100%	The trial operation of the NHM using the cluster computer and laptop PCs for training was conducted.						
Project Purpose	Indicators		Achievements						
5. Capacity of BMD staff to promote	5-1 BMD staff's planning and pres for disseminating meteorologica is improved.	entation skills al information	The BMD staff's planning and presentation skills for disseminating meteorological information have been improved.						
understanding s about meteorologica l information	5-2 Implementation of seminars fo related to natural disaster: 8 time participants understood the conte	r stakeholders es, 70% of the ents	Seminars for stakeholders related to natural disaster management were implemented more than 8 times, and more than 70% of the participants understood the contents.						
among the "stakeholders" is further	5-3 Meteorological information or website is user-friendly and upda	the BMD's tted.	Meteorological information on the BMD's website is user-friendly and updated.						
developed.	Activities	Achievement Ratio	Achievements						
	5-1 To prepare PR materials of weather, climate and natural disaster	100%	Animated cartoon DVDs entitled "Save Yourself and Reduce Risk," brochures and posters on the natural disasters which dealt damages and negative impacts to Bangladesh were prepared.						
	5-2 To conduct the seminars/ open-class for the stakeholders	100%	Seminars/open classes for the stakeholders were implemented,						
	5-3 To upload and update meteorological information including summarized result of climate data statistical analysis on the BMD website	100%	A hyperlink button to access the website of the animated cartoon entitled "Save Yourself and Reduce Risk" to allow users to download or display the cartoon was created on the BMD's website. BMD Special Weather Bulletins prepared under the Project for the Cyclone which attacked Bangladesh were uploaded on the BMD website and were regularly updated on time on the BMD						
	5-4 To disseminate meteorological information through media.	100%	The Department of Disaster Management (DDM) under the Ministry of Disaster Management and Relief had expressed a dissenting view on the early warning dissemination done by the BMD. However, during a meeting among the DDM, BMD and JICA (including the project expert) on November 15, 2012, the DDM agreed on a "Positive Duplication" of the early warning dissemination system by the DDM and the BMD.						

Project Purpose	Indicators		Achievements								
6. Weather observation and monitoring equipment such as meteorologica l radar system etc. are operated and maintained properly.	6-1 More than fifteen (15) BMD s Radar systems can impl maintenance and trouble sh serious troubles which require HQ or manufacturer) for the radar systems.	staff for the five ement regular nooting (except assistance from meteorological	 In order to improve the technical skills of all radar staff at each radar station, 30 engineers in total joined an OJT on maintenance and measurement work of the radar system in FY2012 (Cox's Bazar: 9, Rangpur: 7, Khepupara: 7 and Moulvibazar: 7). Maintenance work for the workstation of the Doppler Radar systems were carried out by two (2) engineers belonging to the National Meteorological Communication Centre and the BMD Head Office. OJTs for new or transferred personnel were carried out by the skilled personnel of each radar station. All personnel except the mechanical staff was able to operate and shutdown the radar with accuracy. Troubleshooting of the MOD UNIT was done by the personnel of the Moulvibazar radar station. The unit was tested by the Experts and was confirmed to be in good operation. 								
	6-2 More than 80% of the BMD existing meteorological rada operate and maintain the ra accordance with the operati manual which is developed by 6-3	's staff in each ar station can adar system in ion/maintenance this Project.	All of the BMD staff at each radar station operate and maintain the system in accordance with the operation/maintenance manual which was developed under the Project. Advice to the BMD on radar operation hours during the rainy								
	Meteorological radar observat maintained based on the requir	ion schedule is ement of SWC.	season and the dry season.								
	6-4 Operation cost for the meteor system in normal season is sav	orological radar ed.	Observation schedule for the meteorological radar was observed and maintained properly.								
	Indicators	Achievement Ratio	Achievements								
	6-1 To prepare the operation and maintenance manuals for the meteorological radar system	100%	Technical training for the staff of five (5) radar stations on the fundamental skills and circuit diagram necessary for troubleshooting works of the meteorological radar system was conducted. (Radar stations: Dhaka, Rangpur, Cox's Bazar, Khepupara and Moulvibazar) Training on radar operation procedures at three (3) Doppler meteorological radar stations (Cox's Bazar, Khepupara, and Moulvibazar) was conducted. Training on maintenance works for the radar transmitter, receiver and Antenna System at 3 Doppler radar stations (Cox's Bazar, Khepupara and Moulvibazar) was conducted. Main training was focused on: 1. Replacement and adjustment works of "Klystron." 2. Measurement of the following items: (1) Average transmitting power. (2) Pulse width (3) Pulse repetition frequency (4) Radar receiver sensitivity check (5) Receiver Linearity check (6) Receiver Dynamic Range (Z CAL) check (7) Sleep ring Cleaning (8) Motor belt tension checking (9) Meter reading of voltage and current 3. Practical Troubleshooting After the preparation of the manual summary, a portion of the manual summary (exchange and adjustment procedure of the transmitter) was revised and adapted to the C/P's technical level								

6-2 To conduct the training on operation and maintenance of Meteorological Radar System.	100%	The operation & maintenance record book was used in the conduct of routine work. Instructions for the preparation of the radar spare parts consumables (ink cartridge and battery for the UPS) list were made.
6-3 Operation cost for meteorological radar system in normal season (before and after the implementation of the radar observation routine schedule)	100%	 Radar Observation Frequency was set as follows. 1. Radar observation: 6 times per day according to the WMO guidelines. 2. During cyclone/severe weather: 24 hours continuously. The review and establishment of the radar observation system of the BMD during the dry season were conducted.

5 Recommendations towards the achievement of the overall goal

Recommendations towards the achievement of the Overall Goal of the Project are described in the following table.

	Overall Goal
Highly precise weather and clim	ate information is utilized for natural disaster management which contributes to the
PDM Output	Recommendations
Capacity of BMD for observation and forecasting is improved	 The development of more qualified technical personnel is indispensable. Appropriate measures against any damage and/or loss of the equipment must be made. Close communication and association with international institutions must be made as the governmental organization responsible for the mitigation of meteorological disasters. Further research to increase the level of understanding/knowledge about meteorological disasters and its mechanisms along with other related meteorological phenomena must be conducted.
Quantitative rainfall estimation by using Doppler Radars is implemented.	 In order to obtain enough volume of radar rainfall data for the correlation analysis with rainfall data from surface observation, increasing radar operation hours is required. In order to improve the accuracy of radar observation data, the periodic optimization of the radar ZR relation parameter (B and β) of the existing meteorological radar systems for rainfall calculation should be implemented.
The trend analysis of climate change is conducted by using the accumulated meteorological data.	 Standards and formulae specified by the World Meteorological Organization (WMO) must be complied with. Formulae for Relative Humidity, Dew Point Temperature, temperature correction value for the calculation of Station Level Pressure, gravity correction value for the calculation of Station Level Pressure and height correction value for the calculation of the Mean Sea Level (MSL) Pressure made under the Project must be continuously utilized as the BMD's official formulae for observation data calculation.
Capacity of BMD personnel for 1 to 3 days weather forecasting on trial using basic techniques of Numerical Weather Prediction (NWP) is developed.	 Continuous recruitment of human resources for the next-generation. Continuous trial operation of the Numerical Weather Prediction (NWP) model and the development of more qualified technical personnel through trainings and other related manpower development programs.
Capacity of BMD staff to promote understandings about meteorological information among the "stakeholders" is further developed.	Continuing educational activities for the general public in coordination with various related disaster management agencies and the mass media for a more effective natural disaster prevention and management strategy.
The meteorological Radar systems are operated and maintained properly and efficiently	 In connection with equipment maintenance, consideration must be given to the following. Recruitment of Electric Engineer/Staff (the existing vacant positions must be filled). Internal technical training in the BMD. Establishment of appropriate measures against system failure. A fully documented maintenance system with proper document control. Scheduled replacement of parts and overhauls.

6 THE RECORDS OF THE JOINT COORDINATING COMMITTEE

The Joint Coordinating Committees (JCCs) held at the BMD Head Office are indicated in the following table.

Date	Participants	Venue	Relevant Items discussed				
October 7, 2009	JICA Bangladesh Office : 3 MOD : 1 ERD : 1 DMB : 1 FFWC : 1 BMD : 2 Experts : 5	BMD Head Office	 Approval of the Inception Report Approval of the PDM proposed by the Expert team 				
February 17, 2010	JICA Bangladesh Office: 0 ERD : 1 BMD : 2 Experts : 6	BMD Head Office	 Progress of the Project Postponement of the procurement schedule of the Cluster Computer and the AWS by JICA 				
February 15, 2011	JICA Bangladesh Office : 4 MOD : 1 ERD : 1 DMB : 1 BMD : 2 Expert : 1	BMD Head Office	 Report of the interim evaluation review Approval of the revised PDM proposed by the interim evaluation review study team 				
March 14, 2012	ICA Bangladesh Office : 2 ERD : 1 FFWC : 1 BMD : 2 Experts : 4	BMD Head Office	 Progress of the Project Training in Japan 				
September 20, 2012	JICA Bangladesh Office : 3 Project Evaluation Consultant : 2 ERD : 1 MOD : 1 BMD : 2 Experts : 2	BMD Head Office	 Progress of the Project Extension of the Project and activities to be implemented in the next year 				
December 17, 2013	JICA Bangladesh Office : 2 ERD : 1 DDM : 1 BMD : 2 Experts :4	JICA Bangladesh Office : 2	 Evaluation of the Project Handover of the equipment listed in the table "2-3 Provision of Equipment" mentioned before. 				

Annexes

1. Pictures of activities in each field

2. Major Outputs

Annex	Outputs
1	Weather Observation Guideline
2	Analysis Result based on Stored Radar and Raingauge Data
3	Instruction on radar calibration for BMD radar system
4	Calculation of Atmospheric Pressure for Fixed-Cistern Type (Kew Type) Barometer
5	Calculation of Atmospheric Pressure for Fortin Type Barometer
6	Calculation of Relative Humidity and Dew Point Temperature
7	Weather Observation Data Input Manual
8	Changing Trend of Yearly Mean Temperature and Yearly Precipitation
9	Installation of CentOS 5.5 (Linux OS)
10	PC-Cluster Operation Manual
11	(JMA-NHM) Operation Manual for PC-Cluster
12	Brochure "Save Yourself"
13	Book "Weather Information"
14	BMD Character
15	Mascot of BMD Character
16	Visualized BMD Special Weather Bulletin on May 16, 2013
17	Major Dissemination Activity of Animated Cartoon for Natural Disaster Awareness
	named "Save Yourself and Reduce Risk"
18	Result of Open Class Activity
19	SAFETY PRECAUTION
20	Necessary of Periodic Maintenance of Radar System
21	Techniques used in Doppler radar

3. Minutes of Meeting for the Joint Coordinating Committees (JCCs)

1. Pictures of the activities

বাংলাদেশ আবহাওয়া অধিদপ্তর

FIELD OBSERVATION GUIDELINE

December 2010 (Ver. 1)

TECHNICAL COOPERATION PROJECT FOR DEVELOPMENT OF HUMAN CAPACITY ON OPERATION OF WEATHER ANALYSIS AND FORECASTING IN THE PEOPLE'S REPUBLIC OF BANGLADESH

<u>বিষয় বস্তু/সূচিপত্র</u> Contents

বাংলা	English
পর্যবেক্ষণাগারের অবস্থান	Information of the Synoptic Observatories
পর্যবেক্ষণে ব্যবহৃত যন্ত্রপাতি ব্যবহারের পর্যায়ক্রম	Reading Order of Meteorological Instruments in the Observation Field
আবহাওয়া পর্যবেক্ষণের সময় সূচি	Observation Time Schedule
প্রাত্যাহিক কাজের/নিত্য কর্মের নির্দেশিকা	Routine Task Guideline
মেঘের প্রকারভেদ/ ধরণ	Cloud Type
বিউফোর্ট স্কেল	Beaufort Scale
বৰ্তমান আবহাওয়া সংকেত	WW Phenomenon
বায়ুচাপ নির্ণয়ের হিসাব নিরুপণ /গণনা	Calculation of Atmospheric Pressure
আদ্রতার রূপ পরিবর্তনের হিসাব নিরুপণ	Calculation of Relative Humidity and Dew Point Temperature
আদর্শিক / তুল্যকরণ মান	Standardized Specifications
চিত্র সমূহ	Drawings

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2012

lated Gravity	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²	cm/s ²
Calcul Station (979.000	979.000	978.994	978.942	978.933	978.942	978.909	978.894	978.902	978.903	978.871	978.862	978.859	978.848	978.832	978.831	978.838	978.822	978.803	978.807	978.805	978.800	978.812	978.787	978.778	978.784	978.788	978.793	978.785	978.773	978.774	978.756	978.746	978.722	978.687
Altitude	39 m	33 m	36 m	18 m	18 m	34 m	17 m	13 m	11 m	22 m	8 m	12 m	8 m	0 m	6 m	7 m	6 m	6 m	4 m	3 m	3 m	4 m	5 m	2 m	2 m	2 m	2 m	6 m	63 m	33 m	4 m	2 m	2 m	2 m	5 m
Longitude	88°55`	89°14′	88°41 ′	89°22′	90°26´	91°53`	88°42`	89°03`	89°56`	91°44′	90°23'	88°49`	89°51`	91°11´	89°10`	90°11´	90°42′	91°25´	89°05`	89°32`	90°22`	,6£°06	91°06′	89°36`	90°20`	91°06′	91°26′	91°42′	92°12´	91°49´	91°49′	90°14´	91°51´	91°58´	92°18′
Latitude	25°45′	25º44′	25°39′	24º51′	24°43′	24°54′	24º22′	24°08′	24º15′	24°18′	23°46′	23°39`	23°36`	23°26′	23º11´	23°10′	23°16′	23°02`	22°43′	22°47′	22°45′	22º41 ′	22°52′	22°28′	22°20′	22°26′	22°29′	22°35′	22°38′	22º21´	22°16′	21°59′	21º49′	21º26′	20°52′
Observatory Name	Saidpur	Rangpur	Dinajpur	Bogra	Mymensingh	Sylhet	Rajshahi	Ishwardi	Tangail	Srimangal	Dhaka	Chuadanga	Faridpur	Comilla	Jessore	Madaripur	Chandpur	Feni	Satkhira	Khulna	Barisal	Bhola	MaijdiCourt	Mongla	Patuakhali	Hatiya	Sandwip	Sitakunda	Rangamati	Chittagong (Ambagan)	Chittagong (Patenga)	Khepupara	Kutubdia	Cox's Bazar	Teknaf
Index	41858	41859	41863	41883	41886	41891	41895	41907	41909	41915	41923	41926	41929	41933	41936	41939	41941	41943	41946	41947	41950	41951	41953	41958	41960	41963	41964	41965	41966	41977	41978	41984	41989	41992	41998

Reading Order of Meteorological Instruments in the Observation Field

	Psychrometer (August) Dry & Wet Temperature	2	Rain Gauge <i>Precipitation</i>		5	Evaporation Pan <i>Evaporation</i> <i>(Pan)</i>	0
1	Thermograph Temperature	3	Rain Recorder Precipitation			Wind Run Indicator <i>Distant Wind</i>	
	Hygrograph <i>Relative</i> <i>Humidity</i>	4	Soil Depth Thermometer Soil Temperature 5, 10, 20, 30 & 50 cm depth	THE /	6	Pyranograph Solar Radiation	Ve
	Minimum & Maximum Thermometer <i>Min. & Max.</i> <i>Temperature</i>				7	Sunshine Recorder Sunshine Duration	No.

			UTC	00	03	06	09	12	15	18	21
	Visibility		km								
	Present Phenomenon	K∐▲									
Phenomenon	Cloud (Octas)	$\otimes \otimes$									
	Cloud Types	CL CM CH					<u> </u>				<u> </u>
	Height of Cloud		m								
	Base	11									
	Psychrometer		°C								
	Thermograph		°C								
12	Hygrograph		%								
	Maximum Temperature		°C								
Wooden Shelter	Maximum Temperature		°C								=
	Rain Gauge		mm								
•	Rain Recorder		mm								
	Soil Depth Temperature	MUL/	°C								
	Evaporation (Pan)		mm								
Observation Field	Distant Wind		km								
Observation rield	Solar Radiation	- I	W/m²								
	Sunshine Recorder		hours								
	Barometer Temperature	M	°C								
-	Barometer Pressure		hPa								
ABOERTE	Barograph		hPa								
Observation Building	Wind Direction										
	Wind Speed	eed									

Observation Time Schedule

Observation Time Schedule

<mark>প্রাত্যাহিক কাজে/ নিত্য কর্মের নির্দেশিকা</mark> Bangladesh Meteorological Department

ROUTINE TASK GUIDELINE

Routine task Guidel

Beaufort Scale

বিউ	ফোৰ্ট স্কেল	Beaufort Sca	le
বিউফোর্ট নম্বর	স্থলভাগের অ	বস্থা	বায়ুর গতি কিঃমিঃ/ঘঃ (নটিক্যাল মাইল)
0	বাতাস নিস্তব্ধ/শান্ত। ধোঁয়া সরাসরি উপরের দিকে উঠবে।		<૨ (< ১)
2	ধোঁয়ার দিক অনুসারে বাতাসের দিক নির্ধারণ করা যাবে। বায়ুমান যন্ত্রসমূহ স্থির থাকবে।	E W	9-6 (0-6)
2	মুখমন্ডলে বাতাস অনুভূত হবে, পাতার শব্দ শোনা যাবে। বায়ুমান যন্ত্রসমূহ ঘুরতে থাকবে।		৬-১১ (৪-৬)
9	পাতা ও ছোট ডালপালা নড়তে থাকবে। হাল্কা পতাকাগুলো উড়তে থাকবে।		(d-70) 75-72
8	ধূলা ও কাগজের টুকরা উড়তে থাকবে, ছোট ডালপালা দোল খাবে।	*	২০-২৯ (১১-১৬)
¢	ছোট ছোট গাছপালা দোল খেতে শুরু করবে। আবন্ধ জলাশয়ে ছোট ছোট ঢেউয়ের সৃষ্টি হবে।		৩০-৩৯ (১৭-২১)
৬	বড় গাছের ডালপালা দোল খাবে। টানানো তারে শিসের শব্দ হবে। ছাতা ব্যবহার করা কষ্টকর হয়ে পড়বে।		8०-৫० (२२-२٩)
٩	বড় গাছ নড়তে থাকবে। বাতাসের বিপরীতে হাটা কষ্টকর হয়ে পড়বে।		৫১-৬১ (২৮-৩৩)
৮	বড় গাছের ডালাপালা ভেঙ্গে পড়বে। বাতাসের বিপরীতে হাঁটা অসম্ভব হয়ে পড়বে।		હર-૧૪ (૭8-8૦)
\$	অবকাঠামোর সামান্য ক্ষয়ক্ষতি ঘটবে।		<i>९</i> ৫-৮९ (8 ३ -8९)
30	দৃষ্টিসীমা কমে যাবে। বড় বড় গাছ উপড়ে পড়বে। অবকাঠামোর উলেখযোগ্য ক্ষয়ক্ষতি ঘটবে।		(82-96) 22-202
22	দৃষ্টিসীমা খুব কমে যাবে । ব্যাপক ক্ষয়ক্ষতি ঘটবে।		১০২-১১৭ (৫৬-৬৩)
১২	অবকাঠামোর উলেখযোগ্য ও ব্যাপক ক্ষয়ক্ষতি ঘটবে।		১১৮ এবং তার অধিক (৬৪ এবং তার অধিক)

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2013

WW PHENOMENON

(Present Weather Symbols)

	0	1	2	3	4	5	6	7	8	9
0					\sim	00	S	\$/2	ശ്ര	(5)
1				\langle	$ \mathbf{\bullet} $)•((\bullet)	K	\forall)(
2	•]		*	•*	7	∇	₹]	\bigcirc		R
3	S	÷	S	£	£	l€	⇒	₽	€	€
4	(\equiv)								\mathbf{Y}	\mathbf{V}
5	9	99	9	,	999	? 99	3	3	8	~ * *
6					•••		\sim	\sim	● ×	*● *
7	×	* *	* *	* * *	***	* * * *	\leftrightarrow	- <u>A</u> -	-x	\triangle
8	∇	$\overline{\forall}$	V	×	¥₹	*	₹	∇	$\overline{\Delta}$	∇
9	▲	K]•	又]:	因*/	אַא	●/* 戊	Â	•/* T§	24	∆ T3

	পর্যবেক্ষণ য	ন্ত্রপাতির অ	াদর্শিক /	তুল্যকরণ মান	
Standardized	l Specifica	tions of l	Manual	Observation	Instruments

No	Instruments	Purposo	Specifications
110.	Thisti unitentis	F ut pose	
	Psychro-	To measure Surface	Type: Psychrometer consisting of Unsheathed Liquid-in-Glass (Mercury)
	Evaporometer	Atmospheric Temperature	Thermometer for combination of dry- and wet-bulb temperature measurement by
		and Relative Humidity.	Natural Aspiration according to AUGUST
			Wall-Mount Type.
			Measuring and Application Range: -20°C to +60°C
1			Accuracy: ±0.2°C within the Total Range
			Division of Scale: 0.2°C
			Mounting on the Inner Side of Shelter
			No electric power consumption
			Psychro-Evaporometer: Stand-alone type (not together with Maximum and
			Minimum Thermometer (Item No.2 and 3))
	Maximum	To measure Maximum	Type: Liquid-in-Glass (Mercury) unsheathed Thermometer with a thick wall where
	Thermometers	Surface Atmospheric	scale is marked directly,
		Temperature.	Wall-Mount Type.
		-	Measuring and Application Range: -20°C to +60°C
2			Accuracy: ±0.2°C
			Division of Scale: 0.2°C
			No electric power consumption
			Maximum Thermometer: Stand-alone type (not together with
			Psychro-Evaporometer (Item No.1))
	Minimum	To measure Minimum	Type: Liquid-in-Glass (Alcohol) unsheathed Thermometer with a thick wall where
	Thermometers	Surface Atmospheric	scale is marked directly.
	11101111011101010	Temperature	Wall-Mount Type
		Temperature.	Measuring and Application Range: -30°C to +50°C
3			Accuracy: +0.3°C
5			Division of Scale: 0.2°C
			No electric power consumption
			Minimum Thermometer: Stand-alone type (not together with
			Psychro-Evanorometer (Item No 1))
	Thermograph	To measure Surface	Type: Rimetallic Thermograph with mechanical Clock Work Drum and Metallic
	mennograph	Atmospheric Temperature	Housing
		ranospherie remperature.	Measuring and Application Range: -10° C to $\pm 50^{\circ}$ C
			Accuracy: $\pm 0.5^{\circ}$ C Division of Scale: 0.5°C
			Accuracy. ±0.5 C Division of Scale. 0.5 C Recording Period: Seven (7) days
4			Housing: Metal
-			Power Supply: Spiral Spring
			Clockwork Accuracy: +60 seconds per day
			No electric power consumption
			Thermography Stand along type (not together with Hydrograph (Item No 5) and the
			Parograph (Item No.12))
	Unano anonh	To macque estativo	Dalograph (Item No.15))
	пудгодгари	Io measure relative	Massuring Dengal 00/ to 1000/
		Humarty of an	A contracting Calify 20/
			Accuracy: 2%
			Division of Scale: 1%
			Kange of Application: -35° to $+70^{\circ}$ (Temperature), 0% to 100% (Relative
5			numuny) Depending Demicdle Server (7) devis
5			Housing Metal
			nousing, wieldi Downe Supply, Spirel Spire
			Power Supply: Spiral Spring
			Ciockwork accuracy: ±00 seconds per day
			No elecutic power consumption Hydrography Stand along type (not together with Thermograph (Item N= 4) == 1.41
			rygrograph: Stand-alone type (not together with Thermograph (Item No.4) and the
			Barograph (Item No.13))

No.	Instruments	Purpose	Specifications			
	Soil Surface	To measure soil Surface	Type: Liquid-in-Glass Thermometer, measuring on the ground			
	Thermometer	Temperature.	Measuring Range: -30°C to +50°C			
6			Accuracy: ±0.3°C			
÷			Resolution: $\leq 0.2^{\circ}$ C			
			Division of Scale: 0.2°C			
-	Soil Depth	To measure Temperature at	Type: Bent type Liquid.in-Glass (Mercury) Thermometer, hent-stem 150°			
	Thermometer	5cm depth Underground in	Measuring Range: -25°C to +45°C			
	(5cm)	Soil.	Accuracy: ±0.2°C at 0°C to +50°C, ±0.4°C at <0°C			
7-1			Resolution: $\leq 0.2^{\circ}$ C			
			Division of Scale: 0.2°C			
			Support Material made of (Stainless) Steel			
-	Soil Depth	To measure Temperature at	Type: Bent type Liquid.in-Glass (Mercury) Thermometer, hent-stem 150°			
	Thermometer	10cm depth Underground in	Measuring Range: -20°C to +40°C			
	(10cm)	Soil.	Accuracy: ±0.2°C at 0°C to +50°C, ±0.4°C at <0°C			
7-2			Resolution: $\leq 0.2^{\circ}$ C			
			Division of Scale: 0.2°C			
			Support Material made of (Stainless) Steel			
	Soil Depth	To measure Temperature at	Type: Bent type Liquid-in-Glass (Mercury) Thermometer Bent-stem 150°			
	Thermometer	20cm depth Underground in	Measuring Range: -15°C to +35°C			
	(20cm)	Soil.	Accuracy: ±0.2°C at 0°C to +50°C, ±0.4°C at <0°C			
7-3			Resolution: $\leq 0.2^{\circ}$ C			
			Division of Scale: 0.2°C			
			Support Material made of (Stainless) Steel			
	Soil Depth	To measure Temperature at	Type: Straight type Liquid-in-Glass (Mercury) Thermometer			
	Thermometer	50cm depth Underground in	Measuring Range: -10° C to $+30^{\circ}$ C			
	(50cm)	Soil.	Accuracy: ±0.3°C at -10°C to -5°C, ±0.15°C at -5°C to 30°C			
7-4			Resolution: $\leq 0.1^{\circ}$ C			
			Division of Scale: 0.1°C			
			Steel			
			No electric power consumption			
	Soil Depth	To measure Temperature at	Type: Straight type Liquid-in-Glass (Mercury) Thermometer			
	Thermometer	100cm depth Underground	Measuring Range: -10°C to +30°C			
	(100cm)	in Soil.	Accuracy: ±0.3°C at -10°C to -5°C, ±0.15°C at -5°C to 30°C			
7-5			Resolution: $\leq 0.1^{\circ}$ C			
			Case for Thermometer, Guide tube with cover can and chain made of (stainless)			
			Steel			
			No electric power consumption			
7-6	Soil Drill	To install of Soil Depth				
	Rain Gauge	To measure Surface	Type: Rain Gauge according to Hellmann			
		Precipitation.	Measuring Range: Precipitation quantity 60mm			
			Resolution/ Scale: 0.1mm (0 to 10mm)			
			Range of Application: 0°C to +60°C			
8-1			Collecting Surface Area Size: 200mm ² or 314mm ²			
			Zinc Plate Housing Height: approximately 450mm			
			Measuring Cylinder: for 10 mm precipitation quantity			
			Materials for mounting on foundation			
	Rainfall Recorder	To record Precipitation	Type: Drum Recorder			
	Raman Recorder	reading on Drum.	Measuring Range: 10mm at full scale of recording,			
			Accuracy: 0.5mm/1minute			
			Resolution and Division of Scale: 0.5mm			
			Kange of Application: 0°C to 60°C			
			Recording Period: One (1) day			
8-2			Power Supply: Spiral Spring			
			Clockwork accuracy: ±60 seconds per day			
			Collecting Surface Area Size: 200mm ² or 314mm ²			
			Zinc Plate Housing Height: approximately 1 200mm			
			Materials for Mounting on Foundation			
			No electric power consumption			

No.	Instruments	Purpose	Specifications
	Wind Vane and	To measure Surface Wind	Type: Combination of single or double bladed Wind Vane and three-armed Cup
	Anemometer	Direction and Wind Speed.	Rotor Anemometer
		*	Measuring Range: 0-360°, 0-60m/s
			Accuracy: $\pm 1\%$ (Wind Direction), $\pm 3\%$ (Wind Speed)
0.1			Resolution: 2.5° (Wind Direction), 0.1m/s (Wind Speed)
9-1			Range of Application: 0°C to +60°C, Wind Speed 0m/s to 60m/s
			Starting Value: 1m/s
			Housing: Aluminum/Stainless Steel with grey color
			Input Power: Single Phase, AC220V, 50Hz with AC/DC power supply
			Galvanized Steel Traverse for φ 50 mm top mast
	Indicator for Wind	To display wind direction	Type: Desktop type analog wind indicator
	Direction and Wind	and wind speed by receiving	Measuring Range: $0-360^\circ$, $0-35m/s$
	Speed	from the Wind Vone and the	Accuracy: $\pm 5^{\circ}$ (Wind direction), $\pm 2\%$ (Wind speed) Resolution and Division of Scales 10% (Wind direction), $1m/s$ (Wind speed)
0.2		A nomentary (Itam No. 0, 1)	Matel Housing with durable coating
9-2		Allemonieter (item No.9-1).	Input Power: AC220V 50Hz Single Phase
			Power Supply Unit (If Power Supply Unit is required and installed outdoor, the
			Housing of the Power Supply Unit shall be weatherproof.)
			2 Sensor Cable: 15m
	Signal Cables for	To connect between the	Weatherproof Connectors
	Wind Sensor	Wind Vane and the	
9-3		Anemometer (Item No.9-1)	
		and the Indicator (Item	
		No.9-2)	
	Power Cable with	To input commercial power	Three (3)-wire, 1.5 sqmm, VCT, PVC insulated and sheathed table
9-4	Flexible Conduit	for the Power Supply Unit	Length: depend upon the site condition
-	Ріре	of the Indicator (Item	Flexible Conduit Pipe: φ 30mm
		No.9-2), if necessary	Length: depend upon the site condition
	AVR with surge	To regulate input voltage	Lapacity: IKVA or more
9-5	absorber		Output Power: AC 220V $\pm 20\%$, single phase, 50Hz
			Surge Protection
	Electric Extension	To distribute commercial	Length: 5m
9-6	Cord	Power to the AVR (Item	Five (5) outlets
		No.9-5)	
	Tripod	To mount the Wind Vane	Height: 10.5m from ground level
	Self-standing Steel	and the Anemometer (Item	Tower to be a three (3)-section: nine (9) m plus top mast of 1.5m.
	Tower with Anchor	No.9-1).	Wind Velocity : 45m/s (Maximum wind speed) at 10m high from the ground level
	Legs and Base		Velocity Pressure for structural and foundation design: 200kgf/m ² (approx.
	Plate		2000N/m ²)
			Top Mast to consist of bracket to suit top of tower and pole of φ 48mm to φ 50 mm
			and 1.5meter length.
			Anchor Legs to be more than ocommonly with bearing angles. Steel Materials: Coated by bot din galvanizing after all sawing, drilling, punching
0.7			bending and other fabrication completed
9-7			Weight of Zinc coating per square meter of actual surface
			•For five (5)mm and heavier: average not less than 550g
			•For steels under five (5)mm: not less than 450g
			For holts and other threaded Work the coating weights: average 300g/m^2
			Required Documents: Detailed design drawings for foundation including anchor
			Bolts and Base Plate. Structural calculation report. Assembling manuals
			Lightening Copper Rod, Copper cable
			Copper earthing rod (L=1,500mm) or Copper earthing plate 900x900mm,
			Cable fixer materials for mounting on foundation
	Waterproof Box	To install the Indicator	Type: FRP (Double roof type or with sunshield)
		(Item No. 9-2), AVR (Item	Inside Heating Insulation Material (Foam polyurethane): t=20mm or more
		No.9-5) and Breaker	Fixers for Tripod (Item No.9-7): Mounting materials in weatherproof material
9-8			Box Door Lever Type Handle, keyed lock and viewing window.
			Minimum Box Size: D250, H:500, W450 (mm)
			3 Cable Glands (waterproof type)
I			Non rused rower direater: 5A with power outlets (x2) Shalf located in the middle of the box for mounting Indicator (Item 0, 2)
		1	shen iocated in the middle of the box for mounting indicator (item 9-2)

No.	Instruments	Purpose	Specifications		
	Sunshine Recorder	To measure Sunshine	Type: Campbell-Stokes		
	(Campbell Stocks)	Duration.	Application Area: 10 to 25° Latitude on northern hemisphere		
	× 1 /		Measuring Range: Threshold 0.12 kW/m ² $\pm 20\%$ (WMO standard)		
10			Leveling: A circular bubble and adjustable feet for leveling		
			Accessories: Paper card for one (1) year		
			Spare Parts: one (1) glass sphere		
			No electric power consumption		
	Evaporation Gauge	To measure Water	Type: Large-size Evaporation Pan		
		Evaporation.	Hook gauge for level measurement		
		-	Measuring range: 0mm to 100mm		
			Resolution: 0.2 mm		
			Still Well for Evaporation Pan: Made of brass		
			Evaporation Pan:		
			Class A (1,200mm diameter, 250mm depth)		
			Stainless steel or aluminum		
			Materials for mounting on foundation		
			Totalizing Anemometer		
11			Sensor: Three (3)-cup		
			Starting Value: 1m/s		
			Counter Type: Six (6)-digit mechanical indicator built in the Anemometer		
			Resolution: 100m		
			Materials: Aluminum		
			Mounting Pipe: Diameter φ 30mm		
			Min-Max-floating Thermometer		
			Measuring Range: -10°C to +50°C		
			Accuracy: $\pm 1^{\circ}$ C		
			Resolution: 0.5°C		
	Managary Danamatan	To magging gunfage sin	Turner Mercurry Deremeter		
	Mercury Barometer	To measure surface air	Massuring Dange: 840hBa to 1.050 hBa 15% to 1.50%		
		pressure.	Accuracy: ± 0.25 hPa at 20°C $\pm 1°$ C		
			Resolution: $(1 \text{ hPa with venire (air pressure)}) (0.5\%) (temperature)$		
12			Division of Scale: 1hPa (air pressure) 1°C (temperature)		
			Range of Application: $0m$ to 1 200m (altitude) -15° C to $+50^{\circ}$ C (temperature)		
			Housing: Aluminum		
			No electric power consumption		
	Barograph	To measure Surface Air	Type: Aneroid Barograph		
	0 1	Pressure and compare	Measuring Range: 945hPa to 1,050 hPa		
		reading with that of	Accuracy: ±0.2 hPa		
		Mercury Barometer.	Range of Application: -10°C to +50°C (temperature), 100m to 600m (altitude)		
			Recording Period: Seven (7) days		
13			Housing: Metal		
15			Power Supply: Spiral spring		
			Clockwork accuracy: ±60 seconds per day		
			Overload Protection for transport to high altitude		
			No electric power consumption		
			Barograph: Stand-alone type (not together with Thermograph (Item No.4) and		
	X 1 1 1	T 11101	Hygrograph (Item No.5))		
	Mechanical	To measure global Solar	Type: Solar Radiation Meter and Mechanical Auto-Recorder (integrated into one		
	Pyranograph	Radiation	Sensor Block and White himsetallie string		
			School: Diack and while difficiance ships		
			Measuring Range: Approx 1 300 W/m ²		
			Power Supply: Alkaline dry cell battery A A		
14			Clockwork Accuracy +60 seconds per day		
			Recording Period: Seven (7) days		
			Pen type: Cartridge		
			Leveling: Adjustable feet and level		
			Housing: Metal with white color, (with carrying handle and polycarbonate dome		
			for solar radiation sensor)		

No.	Instruments	Purpose		Specifications
	Wind Speed and	To measure Surface Wind	Туре	
	Direction Sensor	Direction and Wind Speed.	Wind speed	: Propeller
		_	Wind direction	: Vane
			Range	
			Wind speed	: 0.3 - 100m/s
			Wind direction	: 0 - 360°
			Accuracy:	
			Wind speed	± 0.3 m/s or less (10 m/s or less), $\leq \pm 1\%$
				or less (more than 10m/s)
1			Wind direction	$\pm 3^{\circ}$ or less
-			Threshold	11 /
			Wind speed	: 1.1m/s
			Wind direction	: 1.1m/s
			Duilt in Pooring	· -10 - +30 C · Poplaceable by the enducer without any special tool
			Materials	: Rigid UV-stabilized thermonlastic (resistant to corrosion
			waterials	from sea air) or stainless steel
			Accessories	· Galvanized Steel Tripod Tower Pole(*1) Mounting
			110005551105	Bracket with galvanized U type holt 120ϕ Data
				Collection Unit Connecting Cable(s)
	Temperature and	To measure Surface	Temperature:	
	Humidity Sensor	Atmospheric Temperature	Measuring Range	: -10 - +50 °C (Minimum Observation Range)
	with Radiation	and Relative Humidity.	Accuracy	: ±0.2°C or less (at 23 °C)
	Shield	2	Sensor Type	: Platinum RTD
			Supply Voltage	: 4 - 30V
			Sensing Element	: Module Type
			Humidity;	
			Measuring Range	: 0 - 100%RH
2			Accuracy	: ±1.5%RH or less (at 23 °C)
			Stability	: <1%RH per year
			Response Time	: 10 seconds
			Supply Voltage	: 4 - 30V
			Sensing Element	: Module Type
			Accessories	: Naturally Aspirated
			Accessories	Bracket with galvanized U type holt 1200 Data
				Collection Unit Connecting Cable(s)
	Barometer	To measure surface air	Internal pressure sensors	
	Burometer	pressure	Pressure range	: 500 - 1100hPa
		pressurer	Accuracy	± 0.10 hPa or less (at +20 °C)
			Long-term stability	: ±0.1hPa/year or less (at 500 - 1100hPa)
2			Temperature range	: -10 - +50°C
3			Supply voltage	: 10 - 35VDC
			Serial I/O	: RS232C, RS485/422
			Resolution	: 0.01hPa
			Accessories	: System Enclosure Mounting Kit, Data Collection Unit
				Connecting Cable, External Pressure Port Tube.
	Rain Gauge	To measure Surface	Type	: Tipping Bucket
		Precipitation.	Capacity	: Unlimited
			Consitivity	: 81nch or 200mm
			Accuracy	+3% or less (380mm/br or less)
			Accuracy	$\pm 5\%$ (500mm/hr or less)
4-1			Contact rating	: 50V AC/DC (0.5A non-inductive)
			Contact closure Timing	: 100 milliseconds (nominal)
			Max. bounce time	: 0.75 milliseconds
			Materials	: Copper or Stainless Steel (Funnel and Housing)
			Accessories	: Data Collection Unit Connecting Cable(s)(30m),
				Pedestal Mounting Kit with Level Adjustment Function.
4-2	Pedestal for Rain	To mount the Rain Gauge	Material	: Marine grade aluminum
2	Gauge	(Item No.4-1).	Total Height	: 1m (Including Rain Gauge) with Leveling Adjustment
	Sunshine Duration	To measure Sunshine	Spectral range	: 400 – 1,100 nm
	Sensor	Duration.	Sunshine YES output	: 1.0 ± 0.1 V if direct irradiance more than 120 W/m2
_			Sunshine NO output	± 0.0 to ± 0.1 V if direct irradiance less than 120 W/m2
5			Accuracy	: more than 90% in monthly total
			Accessories	: y = 13 v DU, 1 W OF less
			Accessories	Collection Unit Connecting Coble(a)
I				Conection Unit Connecting Cable(s)

Standardized Specifications of Automatic Weather System (AWS)
No.	Instruments	Purpose		Specifications
	Sunshine Radiation	To measure Sunshine	Spectral range	: 400 – 1,100 nm
	Sensor	Radiation.	Sensitivity	: 100µV/W/m2
			Response Time	: less than 1sec
			Max. Irradiance	: 2000 W/m2
			Temperature Dependence	e
6			r r r r	: +0.15 %/°C (typical)
			Operating Temperature	$: -10^{\circ}\text{C} - + 50^{\circ}\text{C}$
			Directional Error	$\pm 5\%$ at 80 deg
			Accessories	: Galvanized Steel Tripod Tower Mounting Bracket, Data
				Collection Unit Connecting Cable(s)
	Data Collection	To collect observation data	Analog Inputs	0 ()
	Unit	from each sensors and	Number of channels	: 10 voltage inputs or more. 5 current inputs with 250Ω
		transmit the collected data		internal shunt resistor or more, 3 inputs for RTD or
		to Data Receiving System at		thermistor transducers or more
		the BMD Head Office	Input ranges	: 100mV, 1.0V, 2.0V, 5.0V
		through GSM/GPRS	Accuracy	: 0.02% FS, 5V range (-10 - 65°C)
		Modem(Item No.8).		0.1% FS for current measurements
			Digital Inputs/Outputs	
			Frequency inputs	: 3 counters, 16-bit
			Maximum count rate	: 1.4KHz
			Serial Channels	
			RS-232E ports	: 4 ports or more, hardware and software handshaking
			×.	baud rates 110bps to 115Kbps, Connecting and
				controlling capability of GSM/GPRS Modem
			Maintenance port:	: RS-232 with external weatherproof connector for
			-	real-time data access and off-loading data memory
			RS-485port	: 1 port with multi-drop capability, includes impedance
			1	termination
			Processor Functions	
			Configuration parameter	ers
				: Stored in non-volatile EEPROM
			Data memory	: 1MB internal RAM
			Calendar clock	: Comply with leap year, 2 times of day alarms,
				Accuracy ±30 sec/month, Synchronized with GPRS
			Data Management Funct	tion
			Interval of Data Calcula	ation (Accumulation, Average, Total, Max./Min. etc.)
			Data Transmission	: Conligurable
7			Transmitting Interval	: Configurable
			Data layout in the Form	at
			Data layout in the Form	· Customizable (GPRS/SMS)
			Input Voltage	· Transmittable with Data
			Power	
			Input voltage	: +7 - +40VDC
			Operating current	: less than 60mA (at 12VDC)
			Standby current	: less than 0.6mA (at 12VDC)
			Input protection	: Dual fuse surge protection, reverse polarity, and
				over-voltage
			Supply sources	: AC or DC Power source
			Environmental Characte	ristics
			Operating temperature	: -10 - +50°C
			Humidity	: 0 - 100%RH
			Vibration	: 10 - 500Hz, to 2G (IEC-68-2-6)
			EMI and ESD protection	n
				: MIL-STD461,IEC 801
			Construction	
			Circuit boards	: Surface mounted components, internal power & ground
			Tistation (1)	planes, and built-in EMI & ESD protection.
			Lightning protection	: Minimum 3 stages of protection devices on all signal
			W/-t-m C	and power lines
			Waterproofing	: IP00 • Dive & Seclet ID66 on higher
			Connections	: Flug & Socket IPO0 of higher
			Accessories	: System Enclosure Mounting Kit, Power Cable(s) between Data Collection Unit and Pagulator
			Appropriately connectab	between Data Concernon Unit and Regulator
			indicated in this specific	ation
		I	maneated in uns specific	

No.	Instruments	Purpose		Specifications
	GSM/GPRS	To transmit the collected	Туре	: GSM/GPRS dual band Modem
	Modem	data to Data Receiving	Transmitting Power	: 2W (GSM900), 1W (GSM1800)
		Office	Class	· Class 10
		Office.	Coding scheme	CS1 - CS4
			Interfaces	: RS232 (Sub-D15) Micro fit 4-pin for power Sliding
			interfaces	SIM holder
			Power	
			Input voltage	: 5.5V - 24VDC
8			Operating current	: less than 140mA (at 12VDC, GSM900)
			Standby current	(at 12 VDC, GSM1800)
			Environmental Character	ristics
			Operating temperature	: -10°C - +50°C
			Accessories	: Antenna with Cable, Data Collection Unit Connecting
				Cable, System Enclosure Mounting Kit, Power cable(s)
			Appropriately connectab	le with Data Collection Unit indicated in this
			specifications	
	Power Supply	To generate and supply	Solar Panel	
	System	electric power to AWS even	Voltage	: 12V nominal
		during no sunshine	Capacity	: 30W or more
			Module Efficiency	: 16.0% or higher
			Accessories	: Spike type on the top side (Aluminum or Stainless Steel)
			Accessories	enclosure roof (Incline 25deg +10deg Adjustable)
				Regulator Connecting Cable(s)
			Regulator	
			Capacity	: more than 5A (12V)
			System Voltage	: 12V Nominal
			Settings	: Voltage at power charge commencement and
			Ducto sti a u	completion
			Protection	Delevity
			Accessories	· Power System Enclosure Mounting Kit
			Battery	Tower System Zneissare mounting mit
9			Туре	: Sealed Maintenance Free Battery, designed for solar
				powered applications
			System Voltage	: 12V
			Capacity	: 60Ah or more
			Designed life time	: More than 10 years based upon 30% discharge cycles
			Accessories	Connecting Cable(s)
			Power System Enclosure	eointeeing cable(s)
			Туре	: Free Standing Type
			Material	: Fiber Reinforced Plastic
			International protection	rating
			TT:	: IP66
			Hinge Devices to be installed	: Stainless steel plano hinge
			Devices to be installed	the Enclosure roof
			Accessories	: Free Standing Pedestal (more than 60cm high from the
				ground to the bottom of the enclosure)
	System Enclosure	To accommodate Data Collection Unit (Item No 7)	Material	: Fiber Reinforced Plastic
		GSM/GPRS Modem (Item	international protection	: IP66
		No.8) and related devises.	Hinge	: Stainless steel piano hinge
10			Devices to be installed	: Barometer, Data Collection Unit and GPRS Modem in
				the Enclosure
			Accessories	: Galvanized Steel Pole Mounting Kit with two (2)
				gaivanized U type bolts 1200
			1	

No.	Instruments	Purpose		Specifications
11	Meteorological Data Display Unit	To display weather observation data.	Hardware: CPU Main memory (RAM) Hard disk Monitor display Interface DVD±R/W drive Input Power Software: O/S Office work software Data collection and ma - - - Accessories	 : Intel Core2 Duo, 2GHz or equivalent : 4GB or more : 250GB x two (2) drives or more : Color LCD TFT type, 19 inches or more, 1280×1024 or more : 10BASE-T/100 BASE-TX, RS-232, USB : one (1) drive : AC 220V (single phase, 50Hz) : Microsoft Windows XP, VISTA or 7 : Microsoft Office Ver.2007 or better inagement software; Data Display Function Data Collecting and Storage Function Data Collecting and Storage Function Configuration and Customization for Data Management Function of Data Collection Unit : English Keyboard, Mouth, Data Collection Unit Connecting Cable(150m), Power cable(s)
12	1kVA UPS	To supplying stable electric power to Meteorological Data Display Unit (Item No.11).	Capacity Input power Output power Back up time Automatic Meteorologie	 : 1kVA or more : AC 220V ±15% (single phase, 50Hz) : AC 220V ±5% (single phase, 50Hz). : at least 5 minutes at full load cal Data Display Unit Shutdown Function
13	Galvanized Steel Pole	To mount the Wind Speed and Direction Sensor (Item No.1), Temperature and Humidity Sensor with Radiation Shield (Item No.2), Sunshine Duration Sensor (Item No.5), Sunshine Radiation Sensor (Item No.6) and System Enclosure (Item No.10).	please see the attached o	drawings

N		Standardized Speci		
N0.	Instruments	Purpose		Specifications
	Rain Gauge	To measure Surface	Туре	: Tipping Bucket
		Precipitation.	Capacity	: Unlimited
			Orifice	: 8inch or 200mm
			Sensitivity	: 0.5mm
			Accuracy	$\pm 3\%$ or less (380mm/hr or less),
1				±5% (500mm/hr or less)
1			Contact rating	: 50V AC/DC (0.5A non-inductive)
			Contact closure Timing	: 100 milliseconds (nominal)
			Max. bounce time	: 0.75 milliseconds
			Materials	: Copper or Stainless Steel (Funnel and Housing)
			Accessories	: Data Collection Unit Connecting Cable(s)(30m),
				Pedestal Mounting Kit with Level Adjustment Function.
	Data Collection	To collect observation data	Digital Inputs	
	Unit	from Rain Gauge and	Number of channels	:3 or more
		transmit the collected data	Input Mode	: High speed inputs for sine wave, square wave, or contact
		to Data Receiving System at		closure
		the BMD Head Office	RS-232E ports	: 2 or more for connection with GPRS Modem and
		through GSM/GPRS		maintenance purpose. baud rates 110bps to 115Kbps
		Modem(Item No.3)	Processor Functions	
			Data memory	: 128KB internal RAM
			Calendar clock	: Comply with leap year, 2 times of day alarms, Accuracy
				$\leq \pm 30$ sec/month, Synchronized with GPS
			Power	
2			Input voltage	: 7 - 40VDC
2			Operating current	: <55mA (at 12VDC)
			Standby current	: <0.5mA (at 12VDC)
			Input protection	: Dual fuse surge protection, reverse polarity, and
				over-voltage
			Environmental Characte	ristics
			Operating temperature	: -10 - +85°C
			Humidity	: - 100%RH
			Construction	
			Lightning protection	: Minimum 3 stages of protection devices on all signal
				and power lines
			Waterproofing	: IP66
			Accessories	: System Enclosure Mounting Kit, Power cable(s)
	GSM/GPRS	To transmit the collected	Туре	: GSM/GPRS dual band Modem
	Modem	data to Data Receiving	Transmitting Power	: 2W (GSM900), 1W (GSM1800)
		System at the BMD Head	GPRS feature	
		Office.	Class	: Class10
			Coding scheme	: CS1 - CS4
			Interfaces	: RS232 (Sub-D15), Micro fit 4-pin for power, Sliding
			_	SIM holder
			Power	
			Input voltage	: 5.5V - 24VDC
3			Operating current	: less than 140mA (at 12VDC, GSM900)
			a	less than 100mA (at 12VDC, GSM1800)
			Standby current	: less than 5mA (at 12VDC, GSM900/GSM1800)
			Environmental Characte	ristics
			Operating temperature	: -10°C - +50°C
			Accessories	: Antenna with Cable, Data Collection Unit Connecting
				Cable, System Enclosure Mounting Kit, Power cable(s)
			Appropriately connectab	ble with Data Collection Unit indicated in this
			specifications	

Standardized Specifications of Automatic Rain Gauge

No.	Instruments	Purpose		Specifications
	Power Supply	To generate and supply	Solar Panel	
	System	electric power to AWS even	Voltage	: 40V nominal
	•	during no sunshine	Capacity	: 10W or more
		0	Module Efficiency	: 16.0% or higher
			Accessories	: Pedestal Mounting Kit, Regulator connecting Cable(s)
			Regulator	
			Capacity	:≥5A (12V)
			System Voltage	: 12V
			Solar Input Voltage	: 40V Nominal
			Settings	: Voltage at power charge commencement and
4			e	completion
			Protection	: Overload, Short Circuit, High Voltage, Reverse Polarity
			Accessories	: System Enclosure Mounting Kit
			Battery	
			Туре	: Sealed Maintenance Free Battery, designed for solar
				powered applications
			System Voltage	: 12V
			Capacity	: 7Ah or more
			Designed life time	: More than 10years based upon 30% discharge cycles
			Accessories	: System Enclosure Mounting Kit, Regulator connecting
				Cable(s)
	System Enclosure	To accommodate Data	Material	: Fiber Reinforced Plastic
		Collection Unit (Item No.2),	International protection	rating
5		GPRS Modem (Item No.3)		: IP66
5		and related devises.	Hinge	: Stainless steel piano hinge
			Devices to be installed	: Data Collection Unit, GPRS Modem, Regulator, Battery
			Accessories	: Pedestal Mounting Kit
	Pedestal	To mount the Rain Gauge	Material	: Marine grade aluminum
6		(Item No.1) and System	Total Height	: 1m (Including Rain Gauge) with Leveling Adjustment
		Enclosure (Item No.5).		
7	Digital Multi Meter	To measure electric current,	Measurement functions	: AC Electric Current and Voltage
/		Voltage and Resignance		: DC Electric Current, Voltage and Resistance

No.	Instruments	Purpose		Specifications
	Data Receiving	To measure electric current,	Hardware:	
	Unit	Voltage and Resigtance	CPU	: Intel Core2 Duo, 2GHz or equivalent
			Main memory (RAM)	: 4GB or more
			Hard disk	: 250GB x two (2) drives or more
			Monitor display	: Color LCD type, 19 inches or more, 1280×1024 or more
			Interface	: 10/100 BASE-T, RS-232, USB
			DVD-R/W drive	: one (1) drive
			Input Power	: AC 220V (single phase, 50Hz)
1			Software:	
1			O/S	: Microsoft Windows XP, VISTA or 7
			Office work software	: Microsoft Office Ver.2007 or better
			Data collection and ma	nagement software;
				- Rainfall Data and AWS Data Collecting Function –
				(Periodical data and Event data)
				- Data Management and Storage Function
				- Data Display Function (Site-by-site basis, Multiple sites
				Simultaneously, in table format)
	CSM/CDDS	To transmit the collected	Tuna	- Data Export Function
	Modem	data to Data Receiving	Transmitting Power	2W(GSM900) 1W(GSM1800)
	Widdeni	System at the BMD Head	GPRS feature	. 2W (GSW)00), IW (GSW1000)
		Office.	Class	· Class10
			Coding scheme	: CS1 - CS4
			Interfaces	: RS232 (Sub-D15), Micro fit 4-pin for power, Sliding
				SIM holder
			Power	
2			Input voltage	: AC 220V (single phase, 50Hz)
2			Operating current	: less than 140mA (at 12VDC, GSM900)
				less than 100mA (at 12VDC, GSM1800)
			Standby current	: less than 5mA (at 12VDC, GSM900/GSM1800)
			Environmental Characte	pristics
			Operating temperature	: -10°C - +50°C
			Accessories	: Antenna with Cable, Data Collection Unit Connecting
				Cable, System Enclosure Mounting Kit, Power cable(s)
			Appropriately connectal	ble with Data Collection Unit indicated in this
		To superlain a stable al. (specifications	. 11-37.4
	IKVA UPS	To supplying stable electric	Capacity	: IKVA or more $A = 220 \text{ M} + 150 \text{ (circle classes 50 \text{ H})}$
2		power to Meteorological	input power	: AC 220V $\pm 15\%$ (single phase, 50HZ)
5		No. 1)	Output power	: AC 220V \pm 5% (single phase, 50Hz).
		INO.1).	Back up time	: at least 5 minutes at full load
			Automatic Meteorologic	cal Data Display Unit Shutdown Function

Standardized Specifications of Data Receiving System

কাঠের আশ্রয়ের আদর্শ/ তুল্যকরণ মান Standardized Specifications of Wooden Shelter

-			
No.	Instruments	Purpose	Specifications
1	Wooden Shelter	To accommodate psychro-evaporometer, extreme maximum/minimum	Type: BMD Standard Large Instrument Shelter with four (4) legs made of wood and metal. Wooden Moisture Content: 20% or less Painting: Two (2) finish coats, white color
		and hygrograph.	wood Screw: Stainless

যোগাযোগ যন্ত্রপাতির আদর্শ / তুল্যকরণ মান Standardized Specifications of Communication Instruments

No.	Instruments	Purpose		Specifications
	HF SSB	To transmit meteorological	Frequency Range	: 2 to 10 MHz, Synthesized, Keypad tuning with
	Transceiver Radio	data from observation stations		detachable keypad for security.
		to BMD Head Office.	Operation	: USB (J3E) pre programmed 6 channels with scan
			-	facility. BMD has permission to use only 4 channels.
				Channel 1: 9592 KHz(Under Test)
				Channel 2: 2505 KHz
				Channel 3: 3363 KHz
				Channel 4: 8814 KHz
				Channel 5: 7500 KHz(Under Test)
				Channel 6: 9460 KHz
			Power Output	: 100 Watts PEP, reducible up to 60 Watts
			Indicator	: LED Bar graph indicating relative power output and
1-1				received signal strength, LED Bar ON Indicator, and
				Backlight.
			Display	: LCD Display to show Channel Number and Frequency.
			Front Control Panel	: Volume, Power On/Off, Channel Selector, Clarifier,
				Squelch, Microphone Socket etc.
			Rear Panel	: AC and DC Power Supply, Antenna Connector, AC and
				DC Fuse etc.
			Power Supply	: 220 Volts (AC) \pm 10%, 50 Hz.
			Microphone	: Desk Microphone or Fist/Handheld Microphone (600 Ω).
			Construction	: Modular construction with plug in circuit boards for easy
				fault finding and quick servicing.
			Accessories	: Automatic Antenna Tuner, Broadband Dipole Antenna,
	D : 1 + 1		G 1. 11.00 G	Lightning Arrester for each HF-SSB Transceiver set.
	Dipole Antenna		Complete with 30m Co	Daxial Cable and Connector
1-2			Frequency Range: 2 to	30MHz
	THE A LOOP AND A		English Installation Ma	anual
	HF Antenna Pole		Type: DMH Standard	made of Galvanized Steel
1-3			The size, painting and	methods of fabrication indicated in the drawings
-			(Standardized Details of	of HF Pole for Observation Field).
			Painting: Two (2) Fini	sh Coats, White Color

z

DRAWING TITLE OBSERVATION EQUIPMENT LAYOUT PLAN (OBSERVATION FIELD) FIRST CLASS OBSERVATORY Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting Bangladesh Meteorological Department

DRAWING No.

SCALE

÷.

1:200

z

OBSERVATION EQUIPMENT LAYOUT PLAN (OBSERVATION FIELD) DRAWING TITLE AGROMET OBSERVATORY Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting Bangladesh Meteorological Department

I

1:200

DRAWING No.

SCALE

Stored Radar and Raingauge Analysis Result based on Data

Calculation of parameter B and Beta Verification of Radar Rainfall

Total observa	ation hour co	incidenta	Ily observ	/ed by rad	dar and ra	aingauge
	Verificati	on Period:	2012/6/1 2012/6/1	-2013/10/2 -2013/9/30	20 (DHK,C) (MLV,KHI	OX) (c
Radar data	Mo	re than 40	0km from	the radar,	or mounta	in shade
ano rainoauoe	Radar Raingauge	Rangpur Radar(*1)	Maulvibazar Radar	Dhaka Radar	Khepupara Radar	Cox's Bazar Radar
data hava lots	Dinajpur	N/A	0	12	0	Out of Range
	Bogra	N/A	0	14	4	Out of Range
ot gap each	Mymensingh	N/A	Ļ	40	20	5
other.	Srimangal	N/A	2	36	17	18
	Tangail	N/A	0	26	22	9
CUINCIDENT	Joydebpur	N/A	0	54	6	17
observation	Chandpur	N/A	2	34	49	39
hour is verv	Maijdicourt	N/A	0	L 1	21	25
	Sitakunda	N/A	0	11	45	35
short.	Mongla	N/A	0	45	59	65
	Patuakhali	N/A	0	51	65	62
Maulvibazar	Teknaf	Out of Range	1	1	33	59
IVIAUIVIJAZAI	Sylhet	N/A	0	58	10	5
radar IS	Rajshahi	N/A	0	25	3	Out of Range
operated quite	Dhaka	N/A	0	91	21	30
	Khulna	N/A	1	38	29	38
Short urne	Barisal	N/A	0	44	60	58
from 2012/6/1.	Chittagong	Out of Range	-	42	52	51
	(*1)Rangpur Radar	: No operation.				บลุธร
	(*2)Red bold numb	er: Total hour	more than 40 i	n white colored	d cell.	7207(1

Correlation coefficient between the radar data and the raingauge data

CC was calculated by using data when both radar and raingauge observed rainfall.

In KHP and COX, CC in the cells of red bold number are mostly more than 0.6. Number of data is still small, so it is desiable to operate each radar more frequently.

: More than 400km from the radar, or mountain shade

 $(y_i - \overline{y})^2$ $(\chi_i - \overline{\chi})(y_i - \overline{y})$ $(X_i - \overline{X})^2 \sqrt{}$ CC =

CC: correlation coefficient

y: radar data(mm/h)

x: raingauge data(mm/h)

 \overline{X} , \overline{y} : avarage of x, y

Comparison of hourly rainfall between Cox's Bazar Radar and raingauges

Comparison of hourly rainfall between Khepupara Radar and raingauges

Comparison of hourly rainfall between Dhaka Radar and raingauges

Choice of g	poot	relationship b	etween radar ar	nd raingauge
XOO XOO		RG/AWS station	CC (≧0.70)	Number (≧20)
radar		Chandpur	0.77	39
ומממו		Maidicourt	0.82	25
Verification		Patuakhali	0.74	62
Period: 2012/6/1_		Teknaf	0.85	59
2013/10/20		RG/AWS station	CC (≧0.70)	Number (≧20)
КНР		Chandpur	0.83	49
		Maidicourt	0.80	21
Iauai		Sitakunda	0.76	45
Verification		Mongla	0.78	59
Period:		Patuakhali	0.85	65
2012/6/1-		Dhaka	0.74	21
00/2/01/07		Chittagong	0.71	52
			no R otolinio	2 Boto

page9

using radar and raingauge data at these point. ALOON AND NUP raual, calculate D and Dela

Result of B and Beta at COX and KHP radar	veraged log10R and log10Z at each layer of log10Z indicated good relationship and B and Beta could be calculated.	< Stratification result for COX $>$ $<$ Stratification result for KHP $>$	logIOR I OBION I ODION I OD	Correlation Coefficien 0.862 Correlation Coefficien 0.965 Slope(a) 1.748 New B= 43.9 Slope(a) 1.987 Intercept(b) 1.642 New Beta= 1.75 1.97 XY=ax+b 29 Number of data 30	B and Beta value at COX and KHP are very close. ⇒Nationally-standardized parameter is configured as	B=40, B=1.9 !!
---	---	---	--	---	--	-----------------------

--- Overview and Plan in this Project

September 2010 at BMD

Takayuki Otsu Disaster Prevention Section Disaster Prevention Department Japan Weather Association

Outline

- ----What is "Radar Calibration" ? Overview of Radar Calibration
- "Radar Calibration" in this project
- Planned Schedule
- Rough schedule until 2012
 - Work in 2010
- Review of radar theory
- What is the radar reflectivity "Z"?
 - Detail of Z-R relationship

ration	<u>s needed?</u> ibution of rainfall, but can nfall rate.	r Badar observes directly Depends on Depends on Precipitation type Balonship	page3
Overview of Radar Calibr	Why Radar Calibration is Radar can observe distri not observe accurate rain	Received Power (mW or dBm) (km) (km) (km) (km) (km) (km) (km) (z (dBZ or mm ⁶ /m ³)	

Overview of Radar Calibration What is the Z-R relationship?	rainfall rate is estimate from radar reflectivity using some assumption (B and beta). Z=BR	Z: Radar Reflectivity Factor(mm ⁶ /m ³) R: Rainfall Rate(mm/hour)	 B, : Constant but depending on drop size distribution → Assumption of B and is needed 	ightarrow The detail will be explained later in "radar theory"
--	--	---	--	--
Overview of Radar Calibration

Variation of Z-R relationship

- Stratiform part of thunder storm or high convective echo in dry air Heavy rain in the center of thunder storm or strong aggregated echo
 Convective cells in the initiation or developing stage
 Small convective cells isolated or organized to line
 Stratiform or weak, diffused echo
- . Stratiform rain at dissipating stage of thunder storm

libration	le relation between radar e value.	with <u>Rain Gauge Data</u> .	Hourly Observation Automated rain gauges are installed	ence between radar and rain find more appropriate B and
Overview of Radar Ca	We need to check th value and rain gauge	Compare <u>Radar Value</u>	Hourly Rainfall Grid value of RAIN1 Product over rain gauge	If there are large differe gauge, we would try to value.

page6

project
I this
E
ion
rat
Ca
Radar

Checking the correlation between radar and rain gauge value to optimize rainfall value observed by radar.

value in BMD's radar system would be modified, if necessary. To optimize radar data, B and

¥.
j€
5
Q
S
Ē
<u> </u>
"
.0
at
a
\mathbf{O}
<u> </u>
Ø
a C
3

How?

- 1. Store radar data in Analysis PC.
- 2. Pick radar value over rain gauge.

Programs

made by

expert

- 3. Output picked radar value.
- 4. Collect data observed by rain gauge.
- 5. Compare radar value with rain gauge Excel data

Store radar data in Analysis PC.

- Hourly rain accumulation(RAIN1) product files are created in "National Composite Processor"
 - Old files are deleted automatically.
- Those files are copied to the analysis PC automatically in daily basis by FTP. --- Detail ---
- The C-shell script "/home/bmd/autoftp.csh" do it. This script is invoked at 8:30 by "crontab"

1. Store radar data in Analysis PC.

2. Pick radar value over rain gauge.

2. Pick radar value over rain gauge.

Mesh on rain gauge station

project
this
" I
ation
Calibr
Radar (

3.Output picked radar value.

Radar value over rain gauge would be output as "csv format" to analyze using "Excel"

Example)

project
this
n" in
atior
alibra
ar Ca
Sada
<u> </u>

4.Collect data observed by rain gauge.

Hourly rain gauge data is necessary to compare with hourly radar data.

collected after new automated rain Hourly rain gauge data would be gauges are installed.

4.Collect data observed by rain gauge.

18 rain gauge station is planed

project
I this
<u> </u>
libration"
'Radar Ca

5.Compare radar value with rain gauge data

Microsoft Excel would be used for this analysis

	<u>+</u>	pa
Planned Schedule – Rough Schedule until 2012 2010 Automated rain gauges would be installed. Expert will set up the "Analysis PC" and this PC will start to store radar data automatically. 2011 2011 Expert will make the program and try to compare	radar data with rain gauge data. Expert and counterparts will discuss about the resul and the way to analysis. 2012 Analysis and discussion would be Continued. We would try to make new RAIN1 product with new B	and beta.

2010

Introduction for overview of radar calibration.

Checking the data format, radar system in BMD.

Setting up the Analysis PC for radar calibration

Start to make programs for analysis

Start to Install rain gauge

Review of radar theory

- Z-R relationship
- What is the radar reflectivity "Z"?
- Detail of Z-R relationship

R:Rainfall rate(mm/hour)

B, :Constant

Representative value:B=200, =1.6

:1.0~2.0 (for rain) B:80~1000

adar Reflectivity Factor "Z" -What is the "Z"?-	 Definition of "Z" 	$Z = D^{6} \left(= D^{6} \right) (mm^{6}/m^{3})$	D _i :Diameter of each drops	:Summation over $1m^3$ (or unit volume)	Increasing the <u>number of drop</u> or <u>diameter of drops</u> make "Z" larger.	"Z" can be measured by weather radar.	Why is Z defined as "Z= D ⁶ "?	To discuss it, we need to return "Radar Equation".	
Radar F	• De		Di	NOL	Incre; "Z" la	"Z, Cć	Why	To di	

or "Z" –What is the "Z"? –	lation"?	ar Equation	Z:Radar reflectivity factor (mm ⁶ /m ³ or dBZ) usually "dBZ" is used as unit of "Z"	each radar system automatically. ng about radar equation! rstanding to discuss it.
Radar Reflectivity Facto	 What is the "Radar Equ 	r r Rada	Pr:Received power(mW or dBm) r:Range from radar to target(km) usually "dBm" is used as unit of "Pr" <u>These values can be directly</u> <u>measured by radar.</u>	Usually "Z" is calculated by We can get "Z" without carir But it is useful for our under

 ح.										page24
Radar Reflectivity Factor "Z" -What is the "Z"	 Radar equation 	$\operatorname{Pr} = \frac{\pi^3 P G^2 \theta \phi h K ^2}{2^{10} \log_e 2 \cdot \lambda^2 r^2} \sum_{vol} D_i^6$	$= \frac{\pi^3 P_t G^2 \theta \phi h K ^2}{2^{10} 10 \pi 2^{10} 2^{10} 2^{10} Z} Z$	OBSERVED $2 IUS_e 2.4 I$	Pr: Received power r: Range from radar to target	CONSTANT	רו דמואמים אישרא וויאסאפורט אישער אישער ו אישער ו אישער וויאטאט די Beam width in horizontal and vertical direction : Beam width in horizontal and vertical direction	h: Pulse length K ² =0.930 for water (rain) ESTIMATED	D _i ⁶ : Summation of the 6 th power of droplet diameter	D ⁶ is defined as reflectivity "Z"

Radar Reflectivity Factor "Z" –What is the "Z"? –

Simplified radar equation

$$Pr = \frac{\pi^{3}P_{t}G^{2}\theta\phi h|K|^{2}}{2^{10}\log_{e} 2 \cdot \lambda^{2}r^{2}}Z$$
$$= \frac{C|K|^{2}}{r^{2}}Z \quad or \quad = \frac{C}{r^{2}}Z$$

Where
$$C = \frac{\pi^3 P_t G^2 \theta \phi h |K|^2}{2^{10} \log_e 2 \cdot \lambda^2}$$
 or $= \frac{\pi^3 P_t G^2 \theta \phi h}{2^{10} \log_e 2 \cdot \lambda^2}$

C is called "radar constant" because C is constant It is easy way to calculate the radar equation. depending on each radar system.

Representation of "Z" valueWhy is the "dBZ" used? - • Unit of "Z" usually Z is represented in the unit "dBZ" as following. Z_{dBZ} =10log ₁₀ Z (dBZ) Take care!! Take care!! Z_{dBZ} is also called reflectivity! The word "reflectivity" is used for Z_{dBZ} usually. And it is also expressed as "Z"! When you apply "Z"(dBZ) to Z-R relationship,you must convert Z(dBZ) to Z(mm ⁶ /m ³).	Representation of "Z" valueWhy is the "dBZ" used? -	Take care!! Z _{dBZ} is also called reflectivity! The word "reflectivity" is used for Z _{dBZ} usually.	And it is also expressed as "Z"! When you apply "Z"(dBZ) to Z-R relationship,you must convert Z(dBZ) to Z(mm ⁶ /m ³). $Z = 10^{10} (mm^{6}/m^{3})$	
--	---	---	--	--

epresentation of "Z" valueWhy is the "dBZ" used? -	 Why is the unit "dBZ" used? Reason 1 To shorten the range of "Z" 	@Minimum: around 10 ⁻³ (mm ⁶ /m ³) Ex.) fog or cloud droplet	Although normal weather radar can't detect such small particles.	@Maximum:around 10 ⁷ (mm ⁶ /m ³)	Ex.) very large hail as large as softball	Although such hail is very rare	<u>In dbz</u> Z ranging from –30dBZ to 70dBZ(10dBZ to 60dBZ will	make sense in my experience.)	
Rel									

l
d.?
Se
D E
ΒZ
p,,
he
is t
Ž
Ň
Ð
alc
~
Ñ
G
, Jo
, jo uc
tion of "
itation of "
entation of "
sentation of "
resentation of "
epresentation of "

Example of the relation between reflectivity and precipitation type(Please neglect Z_{DR})

Lipschutz, Pratte and Smart, 1986

presentation of "Z" valueWhy is the "dBZ" used? -	 Why is the unit "dBZ" used? 	Reason 2	To treat the radar equation easily	radar equation using dBZ unit.	10logPr=10logC+10log r ⁻² +10logZ	Changing the unit of Pr from (mW) to (dBm)	Pr(dBm)=10logPr(mW)	Z(dBZ)=Pr(dBm)-10logC+20log r	Usually,"dBm" is used for the unit of Pr rather than "mW"	
Rep	•					U				

Z-R Relationship

First suggestion of Z-R relationship

Marshall et al.(1947) suggested the equation of Z-R relationship first.

Z=BR

Z:Radar reflectivity factor(mm⁶/m³)

R:Rainfall rate(mm/hour)

B, :Constant

At that time, they showed B=190, =1.72 empirically.

Marshall et al.,1947:Measurement of rainfall by radar. J. Meteor.,4,186-192

Z-R Relationship	 Coupling between Drop-size distribution and Z-R relationship Marshall and Palmer(1948) showed that drop-size distribution can be represented by exponential distribution approximately. 	$N_D = N_0 exp(- D)$ N _D :Number of droplets of diameter D(mm) N ₀ :Constant they showed the value 0.08(cm ⁻⁴).	=41R ^{-0.21} R:Rainfall rate(mm/hour)	 Drop-size distribution is only decided by rainfall rate. Z(D⁶) can be calculated from drop size distribution. Z an be represented using only R(mm/hr) Marshall and Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5,165-166.
------------------	---	---	--	--

Z-R Relationship	 Z-R Relationship in Marshall and Palmer(1948) 	$Z = \sum_{vol} D_i^{6} = \int D^6 N_D dD$	$= N_0 \Lambda^{-7} (7 - 1)!$ = 296R ^{1.47} Same form as 7=BR		It N ₀ or change, b and also change. In other words,	if drop-size distribution change, B and also change.	And drop-size distribution depends on the type of precipitation.	
------------------	---	--	---	--	--	--	--	--

	ш			
Z-K Kelationship	 Representative value of B and Marshall et al. (1955) suggested that moderate value of and A A 	Today these values are used as standard. These value are useful for <u>rough estimation of rainfall</u> . But we should remember that its variation is large.	In case of snow,following values are used as standard. B=2000 =2.0 Gunn and Marshall(1958)	Marshall et al.,1955:Advances in Radar Weather.Adv. Geophys.,2,1-56 Gunn and Marshall,1958:The distribution of size of aggregate snowflakes.J.Meteor.,15,452-466

Z-R Relationship

Variation of Z-R relationship

\frown
<u> </u>
S
Ë
Ο
+
σ
Û
Ľ
\sim
• •
Ŧ
\mathbf{O}
<u> </u>
Ā
(U
Ξ
()

- Rainfall rate can be estimated by Z-R relationship from radar reflectivity Z
- Because of variation of Z-R relationship, we can NOT get accurate rainfall rate from reflectivity only.
- distribution. And drop size distribution depends Z-R relationship depends on drop-size on type of precipitation.

Galgulation of Atmospheric Pressure for Fixed-Cistern Type (Kew Type) Barometer

	Legend					
P _{BC}	Barometer Cistern Level Pressure	hPa				
В	Observed Barometer Reading	hPa				
C_i	Index Error Correction (provided by the Barometer Manufacturer)					
C_t	Temperature Correction					
C_g	Gravity Correction					
P'	Barometer Reading after the Correction for Index Error					
V	Total Volume of Mercury in the Fixed-Cistern Barometer	mm ³				
Α	Effective Cross-Sectional Area of the Cistern	mm ²				
$1.24 \frac{A}{V}$	Kew-Pattern Station Barometers it is taken to be 47 [hPa]. (This factor is dependent on the design of each individual instrument but for barometers of any particular pattern an average value can be used.)					
α	Cubic Thermal Expansion of Mercury $(\mu = 0.0001818)$	°C ⁻¹				
β	Coefficient of Linear Thermal Expansion of the Scale $(\beta = 0.0000184)$	°C ⁻¹				
η	Coefficient of Linear Thermal Expansion of the Cistern $(\eta = 0.000010)$	°C ⁻¹				
t_B	Temperature indicated in the incidental Thermometer to Barometer in Celsius	°C				
T_B	Temperature indicated in the incidental Thermometer to Barometer in Kelvin $T_B[K] = t_B [^{\circ}C] + 273.15$	K				
<i>P</i> ″	Barometer Reading reduced to Standard Temperature					
g 0	The standard Acceleration of Gravity $(g_0 = 9.80665)$	m/s ²				
$g_{\varphi H}$	Local Acceleration of Gravity at the Station at Latitude φ and Elevation H above Sea Level	m/s ²				
$g_{arphi 0}$	Theoretical Value of Acceleration of Gravity at Mean Sea Level at Latitude φ	m/s ²				
Н	Elevation of the Station above Sea Level	m				
H'	Absolute value in metres of the difference between the elevation of the Station (H) and the mean height of the actual surface of terrain included within a circle whose radius is about 150 km, centred at the Station $(\overline{H}) H' = H - \overline{H} $ (H' for a flatland like Bangladesh is assumed 0. [H' = 0].)	m				
φ	Latitude of the Station in radians $\varphi = \theta^{\circ} \frac{\pi}{180}$	rad				
θ	Latitude of the Station in degrees	° (degree)				
P_s	Station Level Pressure (at Elevation H)	hPa				
P _{MSL}	Mean Sea Level Pressure	hPa				
P	Air/Atmospheric Pressure	Ра				
ρ	Air Density	kg m ⁻³				
Z.	Height	m				
R	Gas Constant for Dry Air ($R = 287$)	NmK ⁻¹ kg ⁻¹				
Т	Absolute Temperature T [K] = t [°C] + 273.15	K				
γ	Temperature Lapse Rate $(\gamma = 0.0065: 0 \le z \le 11,000 \text{ m})$	K m ⁻¹				
h_{BC}	Barometer Cistern Height above Station Level	m				
H_{BC}	Barometer Cistern Height above Mean Sea Level $H_{BC} = H + h_{BC}$	m				

1. Barometer Cistern Level Pressure

<u>1-1. Formula of Instrumental Errors, Temperature and Gravity Corrections</u> $P_{BC} = B + C_i + C_i + C_g$

 $\begin{array}{ll} \hline \textbf{I-1-1.} & \underline{\textbf{Temperature Correction for Fixed-Cistern Type (Kew Type) Barometer}}\\ C_{t} = -P'\left(\alpha - \beta\right)t_{B} - \frac{4V}{3A}\left(\alpha - 3\eta\right)t_{B}\\ &= -P'\left(0.0001818 - 0.0000184\right)t_{B} - \frac{V}{A} \times \frac{4}{3} \times \left(0.0001818 - 3 \times 0.000010\right)t_{B} & \cdots & \text{substituted:}\\ & \text{Constant: } \alpha, \beta \text{ and } \eta\\ &= -0.0001634 \ P' \ t_{B} - 0.0002024 \ \frac{V}{A} \ t_{B}\\ &= -\left(0.0001634 \ P' - 0.000163 \times 1.24 \ \frac{V}{A}\right)t_{B}\\ &\approx -\left(0.000163 \times \left(P' + 1.24 \ \frac{V}{A}\right)t_{B}\right)\\ &= -0.000163 \times \left(P' + 47\right)t_{b} & \dots \text{ substituted:} \ \frac{1.24 \ \frac{A}{V}}{V} \end{array}$

1-1-2. Gravity Correction

 $P' = B + C_{\cdot}$

$$\begin{split} C_{g} &= P'' \left(\frac{g_{\phi H}}{g_{0}} - 1 \right) \\ P'' &= P' + C_{t} \\ g_{\phi H} &= g_{\phi 0} - 0.000\,003\,086\,H + 0.000\,001118 \times (H - H') \\ g_{\phi 0} &= 9.806\,20 \times (1 - 0.002\,644\,2\,\cos 2\phi + 0.000\,0058\cos^{2}2\phi) \end{split}$$

1-2. Calculation of Barometer Cistern Level Pressur

$$\begin{split} P_{BC} &= B + C_i + C_i + C_g \\ &= B + C_i + C_i + P'' \left(\frac{g_{\phi H}}{g_0} - 1\right) & \dots \text{ substituted: } C_g \\ &= B + C_i + C_i + (P' + C_i) \left(\frac{g_{\phi H}}{g_0} - 1\right) & \dots \text{ substituted: } P'' \\ &= B + C_i + C_i + (P_B + C_i + C_i) \left(\frac{g_{\phi H}}{g_0} - 1\right) & \dots \text{ substituted: } P' \\ &= \left(B + C_i + C_i\right) \left[1 + \left(\frac{g_{\phi H}}{g_0} - 1\right)\right] \\ &= \left(B + C_i - 0.000163 \times (P' + 47) t_B\right] \frac{g_{\phi H}}{g_0} & \dots \text{ substituted: } C_i \\ &= \left[B + C_i - 0.000163 \times (B + C_i + 47) t_B\right] \frac{g_{\phi H}}{g_0} & \dots \text{ substituted: } P' \\ &= \left[B + C_i - 0.000163 \times (B + C_i) t_B - 0.000163 \times 47 \times t_B\right] \frac{g_{\phi H}}{g_0} \\ &= \left[(B + C_i) (1 - 0.000163 t_B) - 0.007661 t_B\right] \frac{g_{\phi H}}{g_0} \end{split}$$

 $P_{BC} = \left[\left(B + C_i \right) \left(1 - 0.000163 t_B \right) - 0.007661 t_B \right] \frac{g_{\phi H}}{9.80665} \qquad \dots \text{ substituted: Constant: } \alpha, \beta \text{ and } g_0$

2. Station Level Pressure

2-1. Hypsometric Formula

2-1-1. Formula of Hydrostatic Equilibrium

 $\partial P = -\rho g_0 \partial z$

2-1-2. Ideal Gas Equation

 $P = \rho RT$

 $\frac{P}{RT} = \frac{\rho RT}{RT} \quad \text{ divided by } RT$

$$\rho = \frac{P}{RT} \qquad \text{substituted for } \underline{2-1-1} \cdot \underline{Formula \ of \ Hydrostatic \ Equilibrium}}$$

$$\partial P = -\rho g_0 \, \partial z$$
$$= -\frac{P}{RT} g_0 \, \partial z$$

 $\frac{1}{P}\partial P = -\frac{1}{P}\frac{P}{RT}g_0 \partial z \dots \text{ divided by } P$

$$\frac{1}{P}\partial P = -\frac{g_0}{R}\frac{1}{T}\partial z \qquad \dots \dots \text{ (A)}$$

2-1-3. Temperature Lapse Rate

$$\begin{split} \gamma &= -\frac{\partial T}{\partial z} \\ &= -\frac{T_B - T}{H_{BC} - z} \\ &= \frac{T - T_B}{H_{BC} - z} \\ \gamma \left(H_{BC} - z \right) = T - T \qquad \text{multiplied by} \quad (H_{BC} - z) \\ T - T_B &= \gamma \left(H_{BC} - z \right) \\ T &= T_B + \gamma \left(H_{BC} - z \right) \end{split}$$

2-1-4. Hypsometric Formula

(C) = (D)

$$\ln \frac{P_s}{P_{BC}} = \ln \left[\frac{T_B}{T_B + \gamma \left(H_{BC} - H \right)} \right]^{-\frac{g_0}{\gamma R}}$$
$$\frac{P_s}{P_{BC}} = \left[\frac{T_B}{T_B + \gamma \left(H_{BC} - H \right)} \right]^{-\frac{g_0}{\gamma R}}$$

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2012

2-2. Formula for Station Level Pressure

3. Mean Sea Level Pressure

3-1. Hypsometric Formula

$$\frac{1}{P} \partial P = -\frac{g_0}{R} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad \text{substituted for "}T" \text{ in Equation (A)}$$

$$-\frac{1}{P} \partial P = \frac{g_0}{R} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad \text{integrated}$$

$$-\int_{P_{BCL}}^{P_0} \frac{1}{P} \partial P = \frac{g_0}{R} \int_0^{H_{BC}} \frac{1}{T_{BC} + \gamma (H_{BC} - z)} \partial z \qquad \text{integrated}$$

$$-\int_{P_{BCL}}^{P_0} \frac{1}{P} \partial P = \frac{g_0}{R} \int_0^{H_{BC}} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad \text{integrated}$$

$$-\int_{P_{BCL}}^{P_0} \frac{1}{P} \partial P = -[\ln P]_{P_{BCL}}^{P_0} \qquad (E)$$

$$-\int_{P_{BCL}}^{P_0} \frac{1}{P} \partial P = -[\ln P]_{P_{BCL}}^{P_0} \qquad (E)$$

$$= -[n(P_{BCL}) - \ln(P_{BCL})]$$

$$= \ln \frac{P_{MSL}}{P_{BC}} \qquad \text{integrated}$$

$$= -[n(P_{BCL}) - \ln(P_{BCL})]$$

$$= \ln \frac{P_{MSL}}{P_{BC}} \qquad (E)$$

$$= \frac{g_0}{R} \int_0^{H_{BC}} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad (E)$$

$$= -\frac{g_0}{\gamma R} \left[\ln [T_B + \gamma (H_{BC} - z)] \right]_0^{H_{BC}}$$

$$= -\frac{g_0}{\gamma R} \left[\ln [T_B + \gamma (H_{BC} - H_{BC})] - \ln[T_B + \gamma (H_{BC} - 0)] \right]_0^{H_{BC}}$$

$$= \ln \left(\frac{T_B}{\gamma R} + \gamma H_{BC} \right)^{-\frac{g_0}{\gamma R}} \ln \left(\frac{T_B}{T_B} + \gamma (H_{BC} - 0) \right)^{-\frac{g_0}{\gamma R}} \ln \left(\frac{T_B}{T_B} + \gamma (H_{BC} - 0) \right)^{-\frac{g_0}{\gamma R}}$$

(F) = (G)

$$\ln \frac{P_{MSL}}{P_{BC}} = \ln \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}}$$
$$\frac{P_{MSL}}{P_{BC}} = \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}}$$

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2012

$$\begin{split} P_{MSL} &= P_{BC} \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{S_0}{\gamma R}} \\ &= P_{BC} \left(1 - 1 + \frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{S_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{T_B + \gamma H_{BC}}{T_B + \gamma H_{BC}} + \frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{S_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{\gamma H_{BC}}{T_B + \gamma H_{BC}} \right)^{-\frac{S_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{\gamma H_{BC}}{T_B + \gamma H_{BC}} \right)^{-\frac{S_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{\gamma (H + h_{BC})}{t_B + 273.15 + \gamma (H + h_{BC})} \right)^{-\frac{S_0}{\gamma R}} \end{split}$$

Absolute Temperature " T_B " replaced with Celsius Temperature " t_B ". $T_B = t_B + 273.15$

..... substituted: $H_{BC} = H + h_{BC}$

3-2.Formula for Mean Sea Level Pressure

Galculation of Atmospheric Pressure for Fortin Type Barometer

	Legend	
P_{BC}	Barometer Cistern Level Pressure	hPa
В	Observed Barometer Reading	hPa
C_i	Index Error Correction (provided by the Barometer Manufacturer)	
C_t	Temperature Correction	
C_g	Gravity Correction	
P′	Barometer Reading after the Correction for Index Error	
V	Total Volume of Mercury in the Fixed-Cistern Barometer	mm ³
Α	Effective Cross-Sectional Area of the Cistern	mm ²
$1.24 \frac{A}{V}$	Kew-Pattern Station Barometers it is taken to be 47 [hPa]. (This factor is dependent on the design of each individual instrument but for barometers of any particular pattern an average value can be used.)	
α	Cubic Thermal Expansion of Mercury $(\mu = 0.0001818)$	°C ⁻¹
β	Coefficient of Linear Thermal Expansion of the Scale $(\beta = 0.0000184)$	°C ⁻¹
η	Coefficient of Linear Thermal Expansion of the Cistern $(\eta = 0.000010)$	°C ⁻¹
t_B	Temperature indicated in the incidental Thermometer to Barometer in Celsius	°C
T_B	Temperature indicated in the incidental Thermometer to Barometer in Kelvin $T_B[K] = t_B [^{\circ}C] + 273.15$	K
<i>P</i> ″	Barometer Reading reduced to Standard Temperature	
g_0	The standard Acceleration of Gravity $(g_0 = 9.80665)$	m/s ²
$g_{\varphi H}$	Local Acceleration of Gravity at the Station at Latitude φ and Elevation H above Sea Level	m/s ²
$g_{\varphi 0}$	Theoretical Value of Acceleration of Gravity at Mean Sea Level at Latitude φ	m/s ²
Н	Elevation of the Station above Sea Level	m
H'	Absolute value in metres of the difference between the elevation of the Station (H) and the mean height of the actual surface of terrain included within a circle whose radius is about 150 km, centred at the Station (\overline{H}) $H' = H - \overline{H} $ (H' for a flatland like Bangladesh is assumed 0. $[H' = 0]$.)	m
arphi	Latitude of the Station in radians $\varphi = \theta^{\circ} \frac{\pi}{180}$	rad
θ	Latitude of the Station in degrees	° (degree)
\boldsymbol{P}_{s}	Station Level Pressure (at Elevation H)	hPa
P _{MSL}	Mean Sea Level Pressure	hPa
Р	Air/Atmospheric Pressure	Pa
ρ	Air Density	kg m ⁻³
Z.	Height	m
R	Gas Constant for Dry Air ($R = 287$)	NmK ⁻¹ kg ⁻¹
Т	Absolute Temperature T [K] = t [°C] + 273.15	K
γ	Temperature Lapse Rate $(\gamma = 0.0065: 0 \le z \le 11,000 \text{ m})$	K m ⁻¹
h_{BC}	Barometer Cistern Height above Station Level	m
H_{BC}	Barometer Cistern Height above Mean Sea Level $H_{BC} = H + h_{BC}$	m

1. Barometer Cistern Level Pressure

1-1. Formula of Instrumental Errors, Temperature and Gravity Corrections

 $P_{BC} = B + C_i + C_t + C_g$

1-1-1. Temperature Correction for Fortin Type Barometer

(1) for Fortin Type Barometer $C_{t} = -P' (\alpha - \beta) t_{B}$ $= -P' (0.0001818 - 0.0000184) t_{B} \qquad \dots \text{ substituted: Constant: } \alpha \text{ and } \beta$ $= -P' 0.0001634 t_{B}$ $P' = B + C_{i}$

1-1-2. Gravity Correction

$$C_{g} = P'' \left(\frac{g_{\phi H}}{g_{0}} - 1 \right)$$

$$P'' = P' + C_{t}$$

$$g_{\phi H} = g_{\phi 0} - 0.000\,003\,086\,H + 0.000\,001118 \times (H - H')$$

$$g_{\phi 0} = 9.806\,20 \times (1 - 0.002\,644\,2\cos 2\phi + 0.000\,0058\cos^{2} 2\phi)$$

1-2. Calculation of Barometer Cistern Level Pressure for Fortin Type Barometer

$$\begin{split} P_{BC} &= B + C_i + C_i + C_g \\ &= B + C_i + C_i + P'' \left(\frac{g_{\phi H}}{g_0} - 1 \right) & \dots \text{ substituted: } C_g \\ &= B + C_i + C_i + (P' + C_i) \left(\frac{g_{\phi H}}{g_0} - 1 \right) & \dots \text{ substituted: } P'' \\ &= B + C_i + C_i + (B + C_i + C_i) \left(\frac{g_{\phi H}}{g_0} - 1 \right) & \dots \text{ substituted: } P' \\ &= (B + C_i + C_i) \left[1 + \left(\frac{g_{\phi H}}{g_0} - 1 \right) \right] \\ &= (B + C_i - P' \left(\alpha - \beta \right) t_B \right] \frac{g_{\phi H}}{g_0} & \dots \text{ substituted: } C_i \\ &= \left[B + C_i - (P_b + C_i) \left(\alpha - \beta \right) t_B \right] \frac{g_{\phi H}}{g_0} & \dots \text{ substituted: } P' \\ &= (B + C_i) \left[1 - (\alpha - \beta) t_B \right] \frac{g_{\phi H}}{g_0} & \dots \text{ substituted: } P' \\ &= (B + C_i) \left[1 - (\alpha - \beta) t_B \right] \frac{g_{\phi H}}{g_0} & \dots \text{ substituted: } P' \\ &= (B + C_i) \left[1 - (0.0001818 - 0.0000184) t_B \right] \frac{g_{\phi H}}{g_0 g_{OCCE}} & \dots \text{ substituted: Constant } \alpha, \beta \text{ and } g_0 \end{split}$$

$$P_{BC} = (B + C_i) \left[1 - (0.0001818 - 0.0000184) t_B \right] \frac{s_{\phi H}}{9.80665}$$
$$= (B + C_i) \left(1 - 0.0001634 t_B \right) \frac{g_{\phi H}}{9.80665}$$

2. Station Level Pressure

2-1. Hypsometric Formula

2-1-1. Formula of Hydrostatic Equilibrium

 $\partial P = -\rho g_0 \partial z$

2-1-2. Ideal Gas Equation

 $P = \rho RT$

- $\frac{P}{RT} = \frac{\rho RT}{RT} \quad \text{ divided by } RT$
- $\rho = \frac{P}{RT} \qquad \text{substituted for } \underline{2-1-1} \cdot \underline{Formula \ of \ Hydrostatic \ Equilibrium}}$

$$\partial P = -\rho g_0 \partial z$$
$$= -\frac{P}{RT} g_0 \partial z$$

 $\frac{1}{P}\partial P = -\frac{1}{P}\frac{P}{RT}g_0 \,\partial z \,\dots \, \text{divided by } P$

$$\frac{1}{P}\partial P = -\frac{g_0}{R}\frac{1}{T}\partial z \qquad \dots \dots \text{ (A)}$$

2-1-3. Temperature Lapse Rate

$$\begin{split} \gamma &= -\frac{\partial T}{\partial z} \\ &= -\frac{T_B - T}{H_{BC} - z} \\ &= \frac{T - T_B}{H_{BC} - z} \\ \gamma \left(H_{BC} - z \right) = T - T_B \quad \dots \dots \text{ multiplied by } (H_{BC} - z) \\ T - T_B &= \gamma \left(H_{BC} - z \right) \\ T &= T_B + \gamma \left(H_{BC} - z \right) \end{split}$$

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2012

2-1-4. Hypsometric Formula

$$\frac{1}{P}\partial P = -\frac{g_0}{R}\frac{1}{T_B + \gamma (H_{BC} - z)}\partial z \qquad \text{....substituted for "T" in Equation (A)}$$
$$-\frac{1}{P}\partial P = \frac{g_0}{R}\frac{1}{T_B + \gamma (H_{BC} - z)}\partial z$$

$$-\int_{P_s}^{P_{BC}} \frac{1}{P} \partial P = \frac{g_0}{R} \int_{H}^{H_{BC}} \frac{1}{T_B + \gamma \left(H_{BC} - z\right)} \partial z \qquad \dots \dots \text{ (B)} \qquad \text{integrated}$$

$$-\int_{P_{s}}^{P_{BC}} \frac{1}{P} \partial P = \frac{g_{0}}{R} \int_{B}^{H_{BC}} \frac{1}{T_{B} + \gamma (H_{BC} - z)} \partial z \dots (B)$$
$$-\int_{P_{s}}^{P_{BC}} \frac{1}{P} \partial P = -\left[\ln P\right]_{P_{s}}^{P_{BC}}$$

$$= -\left[\ln(P_{BC}) - \ln(P_{s})\right]$$
$$= \left[\ln(P_{s}) - \ln(P_{BC})\right]$$
$$= \ln\frac{P_{s}}{P_{BC}} \qquad \dots \dots \text{ (C)}$$

$$\frac{1}{P} \int_{R}^{T_{B}} \frac{1}{R} \int_{H}^{H_{BC}} \frac{1}{T_{B} + \gamma (H_{BC} - z)} \partial z \dots (\mathbf{B})$$

$$\frac{g_{0}}{R} \int_{H}^{H_{BC}} \frac{1}{T_{B} + \gamma (H_{BC} - z)} \partial z = \frac{g_{0}}{R} \left[-\frac{1}{\gamma} \ln[T_{B} + \gamma (H_{BC} - z)] \right]_{H}^{H_{BC}}$$

$$= -\frac{g_{0}}{\gamma R} \left\{ \ln[T_{B} + \gamma (H_{BC} - H_{BC})] - \ln[T_{B} + \gamma (H_{BC} - H)] \right\}$$

$$= -\frac{g_{0}}{\gamma R} \ln \frac{T_{B}}{T_{B} + \gamma (H_{BC} - H)}$$

$$= \ln \left[\frac{T_{B}}{T_{B} + \gamma (H_{BC} - H)} \right]^{-\frac{g_{0}}{\gamma R}} \dots (\mathbf{D})$$

(C) = (D)

$$\ln \frac{P_s}{P_{BC}} = \ln \left[\frac{T_B}{T_B + \gamma \left(H_{BC} - H \right)} \right]^{-\frac{g_0}{\gamma R}}$$
$$\frac{P_s}{P_{BC}} = \left[\frac{T_B}{T_B + \gamma \left(H_{BC} - H \right)} \right]^{-\frac{g_0}{\gamma R}}$$

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2012

$$\begin{split} P_s &= P_{BC} \left[1 - \frac{0.0065 \times \left(H_{BC} - H\right)}{t_B + 273.15 + 0.0065 \times \left(H_{BC} - H\right)} \right]^{-\frac{9.0005}{0.0065 \times 287}} \dots \text{ substituted: Constant: } g_o, R \text{ and } \gamma \\ &= P_{BC} \left[1 - \frac{0.0065 \times \left(H_{BC} - H\right)}{t_B + 273.15 + 0.0065 \times \left(H_{BC} - H\right)} \right]^{-5.257} \end{split}$$

2-2. Formula for Station Level Pressure

3. Mean Sea Level Pressure

3-1. Hypsometric Formula

$$\frac{1}{P} \partial P = -\frac{g_0}{R} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad \text{substituted for "}T" \text{ in Equation (A)}$$

$$-\frac{1}{P} \partial P = \frac{g_0}{R} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z$$

$$-\int_{\mu_{ucc}}^{\mu_{uc}} \frac{1}{P} \partial P = \frac{g_0}{R} \int_0^{H_{BC}} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad (E) \qquad \text{.....(E)} \qquad \text{.....(E)}$$

$$-\int_{\mu_{ucc}}^{\mu_{uc}} \frac{1}{P} \partial P = \frac{g_0}{R} \int_0^{H_{BC}} \frac{1}{T_B + \gamma (H_{BC} - z)} \partial z \qquad (E) \qquad \text{.....(E)}$$

$$-\int_{\mu_{ucc}}^{\mu_{uc}} \frac{1}{P} \partial P = -[\ln P]_{\mu_{uc}}^{\mu_{uc}} = \frac{1}{R} (H_{BC} - z) \partial z \qquad (E)$$

$$-\int_{\mu_{uc}}^{\mu_{uc}} \frac{1}{P} \partial P = -[\ln P]_{\mu_{uc}}^{\mu_{uc}} = \frac{1}{R} (H_{BC} - z) \partial z \qquad (E)$$

$$-\int_{\mu_{uc}}^{\mu_{uc}} \frac{1}{P} \partial P = -[\ln P]_{\mu_{uc}}^{\mu_{uc}} = \frac{1}{R} (H_{BC} - z) \partial z \qquad (E)$$

$$= \ln (P_{MSL}) - \ln(P_{MSL})]$$

$$= \ln (P_{MSL}) - \ln(P_{BC})]$$

$$= \ln \frac{g_0}{P_{BC}} \qquad (F)$$

$$= -\frac{g_0}{R} \left\{ \ln [T_B + \gamma (H_{BC} - z)] \right\}_0^{\mu_{uc}} - \frac{g_0}{R} \left\{ \ln [T_B + \gamma (H_{BC} - z)] \right\}_0^{\mu_{uc}}$$

$$= -\frac{g_0}{\gamma R} \left\{ \ln [T_B + \gamma (H_{BC} - H_{BC})] - \ln[T_B + \gamma (H_{BC} - 0)] \right\}$$

$$= -\frac{g_0}{\gamma R} \ln \frac{T_B}{T_B + \gamma H_{BC}}$$

$$= \ln \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_B}{\gamma R}} \dots (G)$$

(F) = (G)

$$\ln \frac{P_{MSL}}{P_{BC}} = \ln \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}}$$
$$\frac{P_{MSL}}{P_{BC}} = \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}}$$

Technical Cooperation Project for Development of Human Capacity on Operation of Weather Analysis and Forecasting in the People's Republic of Bangladesh 2009 - 2012

$$\begin{split} P_{MSL} &= P_{BC} \left(\frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}} \\ &= P_{BC} \left(1 - 1 + \frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{T_B + \gamma H_{BC}}{T_B + \gamma H_{BC}} + \frac{T_B}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{\gamma H_{BC}}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{\gamma H_{BC}}{T_B + \gamma H_{BC}} \right)^{-\frac{g_0}{\gamma R}} \\ &= P_{BC} \left(1 - \frac{\gamma (H + h_{BC})}{t_B + 273.15 + \gamma (H + h_{BC})} \right)^{-\frac{g_0}{\gamma R}} \end{split}$$

Absolute Temperature " T_B " replaced with Celsius Temperature " t_B ". $T_B = t_B + 273.15$

..... substituted: $H_B = H + h_B$

3-2. Formula for Mean Sea Level Pressure

$$\begin{split} P_{MSL} &= P_{BC} \left[1 - \frac{0.0065 \times (H + h_{BC})}{t_B + 273.15 + 0.0065 \times (H + h_{BC})} \right]^{-\frac{9.80665}{0.0065 \times 287}} \quad \dots \dots \text{ substituted: Constant: } g_o, R \text{ and } \gamma \\ &= P_{BC} \left[1 - \frac{0.0065 \times (H + h_{BC})}{t_B + 273.15 + 0.0065 \times (H + h_{BC})} \right]^{-5.257} \end{split}$$

Legend	Legend							
U	Relative Humidity	%						
T_d	Dew Point Temperature	°C						
е	Water Vapor Pressure							
$e_s(t)$	Saturation Vapor Pressure at t [°C]	hPa						
$e_s(t')$	Saturation Vapor Pressure at t' [°C]							
t	Dry Bulb Temperature	°C						
ť	Wet Bulb Temperature	°C						
A	Psychrometric Constant ($A = 0.0008$: Non Aspiration Type)							
a	Constant $(a = 7.5)$							
b	Constant $(b = 237.3)$							
P_s	Station Level Pressure	hPa						

1. Relative Humidity

<u>1-1. Water Vapor Pressure (Sprung Formula)</u> $e = e_s(t') - P_s A(t - t')$

1-2. Saturation Vapor Pressure (Tetens Formula)

$$e_{s}(t) = 6.1078 \times 10^{\frac{at}{b+t}}$$
$$e_{s}(t') = 6.1078 \times 10^{\frac{at'}{b+t'}}$$

1-3. Relative Humidity

$$U = \frac{e}{e_s(t)} \times 100$$

2. Dew Point Temperature

$$T_d = \frac{b}{\frac{a}{\log \frac{e}{6.1078}} - 1}$$

Weather Observation Data Input Manual

Software

Legend

No.	Name
1	Icon
2	Worksheet
3	Book
4	Closing Button
5	Menu Bar
6	Tool Bar
7	Name Box
8	Row Number
9	Column Number
10	Cell
11	Active Cell
12	Sheet Tab

Weather Observation Data Input Manual - 1

Procedures of Data Input File (Book) Open

Weather Observation Data Input Manual - 3

1		3/4/5/6/7/8/9/10/11/12 October, 7 Update!	4 (13_(14_(15)) 5	/16_/17_	/18 / 19 / 1	<u>20 / 21 / 22</u>	<u>/23 / 24 /</u>	/ <u>25 / 26 / 2</u>	7 / 28 / 25	9 <u>/ 30 / 31 / 1</u>
1	/2 /3	October 8	/13 /14 /15	16 /17		20 / 21 / 22 lick		7 <u>25 / 26 / 2</u>	7 / 28 / 29	9 / 30 / 31 /
4	BC	D	Check!!	F	G	H	I	J	К	L
3	ВС	D Dhaka (41923)	Check!!	F	G	H	I Time (UTC)	J	К	L
3	BC	D Dhaka (41923) October 08, 2011	о Check!! Сheck!!	F 03	G 06	H Observation	I Time (UTC)	J 15	к 18	21
3 4 5	BC	Dhaka (41923) October 08, 2011 Attached Thermometer (°C)	Check!!	F 03	G 06	H Observation 09	I Time (UTC) 12	J 15	к 18	21
3 4 5 6	BC	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb)	Check!!	F 03	G 06	H Observation 09	I Time (UTC) 12	15	к 18	21
3 4 5 6 7	BC	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb) Corrected for Index-Temp-Gravity (mb)	E OO	F 03	G 06	H Observation 09	I Time (UTC)	J 15	к 18	21
3 4 5 6 7 8	B C	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb) Corrected for Index-Temp-Gravity (mb) Height Correction (mb)	Сheck!!	F 03	G 06	H Observation 09	I Time (UTC) 12	J 15	к 18	21
3 4 5 6 7 8 9	Pressure	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb) Corrected for Index-Temp-Gravity (mb) Height Correction (mb) Station Level Pressure (mb)	Сheck!!	F 03	G 06	H Observation 09	I Time (UTC) 12	J 15	к 18	21
3 4 5 6 7 8 9 10	Bar Pressure	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb) Corrected for Index-Temp-Gravity (mb) Height Correction (mb) Station Level Pressure (mb) Sea Level Reduction Constant (mb)	ο Check!! 00	F 03	G 06	H Observation 09	I Time (UTC) 12	J 15	к 18	21
3 4 5 6 7 8 9 10 11	Bar Pressure	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb) Corrected for Index-Temp-Gravity (mb) Height Correction (mb) Station Level Pressure (mb) Sea Level Reduction Constant (mb) Sea Level Pressure (mb)	E 00	F 03	G 06	H Observation 09	I Time (UTC) 12	J 15	к 18	21
3 4 5 6 7 8 9 10 11 11	Bar Pressure	D Dhaka (41923) October 08, 2011 Attached Thermometer (°C) Bar as Read (mb) Corrected for Index-Temp-Gravity (mb) Height Correction (mb) Station Level Pressure (mb) Sea Level Reduction Constant (mb) Sea Level Pressure (mb) Attimeter setting (QNH)	E 00	F 03	G 06	H Observation 09	I Time (UTC) 12	J 15	к 18	21

Barometer Temperature Barometer Pressure

A B C	D	E	F	G	H	I	J	K	L
3	Dhaka (41923)		-		Observation	Time (UTC)		-	
4	October 08, 2011	00	03	06	09	12	15	18	21
5	Attached Thermometer (°C)		Ď						
6	Bar as Read (mb)								
7	Corrected for Index-Temp-Gravity (mb)								
8 Barres	Height Correction (mb)								
9 Les	Station Level Pressure (mb)								
Bar	Sea Level Reduction Constant (mb)								
11	Sea Level Pressure (mb)								
12	Altimeter setting (QNH)								
13	24-Hour Pressure Change								
A B		5	E						
3	Dhaka (41923)								
4	October 08, 2011		00				_	6	
5	Attached Thermometer (°C)						C	lick 🎽	\mathcal{T}
6	Bar as Read (mb)								\sim
7	Corrected for Index-Temp-Gravity (r	mb)						- Trans	Input
8 sure	Height Correction (mb)						3		Observed
9 Pres	Station Level Pressure (mb)							BEALE	[#] Data
	Sea Level Reduction Constant (mb))				-			
11	Sea Level Pressure (mb)					L			
12	Altimeter setting (QNH)								- 1. 1.
10	24-Hour Pressure Change					Δ			
10							Error	Messa	ge 🗡
	2			Mi	Crosoft Ex The A c	cel a value you e iser has restr R	ntered is n icted value etry Rep He	ot valid. es that can be Cancel Ort to ead Of	e entered into this o

		2		
	BC	D	E	
3		Dhaka (41923)		Click
4		October 08, 2011	00	
5		Attached Thermometer (°C)	20.0	
6		Bar as Read (mb)		Input
7		Corrected for Index-Temp-Gravity (mb)		Data
8	sure	Height Correction (mb)		
9	Pres	Station Level Pressure (mb)		
10	Barl	Sea Level Reduction Constant (mb)		
11		Sea Level Pressure (mb)		
12		Altimeter setting (QNH)		🔼 Error Message 🧡
13	1	24-Hour Pressure Change		Microsoft Excel
	BC	D	F	
3	ВО	Dhaka (41923)		
4		October 08, 2011	00	Report to BMD
5		Attached Thermometer (°C)	20.0	Head Office
6		Bar as Read (mb)	1,000.0	
7	1	Corrected for Index-Temp-Gravity (mb)	-5.24	
8	sure	Height Correction (mb)	0.86	
9	Pres	Station Level Pressure (mb)	995.6	
10	Bar	Sea Level Reduction Constant (mb)	0.93	-
11		Sea Level Pressure (mb)	996.5	\bigcirc
12		Altimeter setting (QNH)		
13		24-Hour Pressure Change	±0	
		OK!		Automatic Input!!

Dry Bulb Temperature Wet Bulb Temperature Maximum Temperature Minimum Temperature

Squall (Force, Direction and Time)

Present Weather

\geq	0	1	2	3	4	5	6	7	8	9
0					~~	00	S	\$/2	ശ്ര	(S)
1		ΞΞ	= =	\leq	$ \bullet $)•((•)	ĸ	\forall)(
2	,	•	*	•*	7	• ▽	*]	₽	Ĩ	K
3	ф	¢,	\$	÷	÷	S	≁	₽	弁	₽
4			<u> </u>		=				¥	¥
5	,	,,	?	,',	???	·;•	2	ş	•	
6	٠	••	••	•••	•••	•••	2	2	● *	*●*
7	*	**	**	**	***	***	¢	-	-x-	۸
8	₽	♥	₹.	×.	₿	₹	₹	₽	∀	₽
9	₹	₹]•	K] :	K]%	₿₩	•/* Z	Â	•⁄* ™	a M	盘

3

4

31

32

33

34

35

36 Cloud

37

38

39

40

41

42

43

A B C G Н T Dhaka (41923) Observation Time (UTC) October 08, 2011 00 03 06 09 12 15 18 21 Form (Code) Amount (Okta) Š Direction (Code) Height of Base (Code) Form (Code) Medium Amount (Okta) Direction (Code) Height of Base (Code) Form (Code) Amount (Okta) High Direction (Code) Height of Base (Code) Total Cloud Amount (Okta) 1 BC D F Dhaka (41923) 3 October 08, 2011 00 4 Form (Code) 31 لسك Click Amount (Okta) 32 Low Direction (Code) 33 Height of Base (Code) 34 2 A B C Dhaka (41923) 3 October 08, 2011 4 00 Form (Code) 31 Click Π, 3 **Cloud Type Coad** C_L Сн См N 2 3 4 5 6 7 9

Cloud Type Code Amount, etc.

No.	Symbol	Name	Amount of cloud				
0	\otimes	None	None				
1	\otimes	1 okta or less, but no zero	1/8				
2	\bigotimes	2 oktas	2/8				
3	\otimes	3 oktas	3/8				
4	\otimes	4 oktas	4/8				
5	\otimes	5 oktas	5/8				
6	\otimes	6 oktas	6/ 8				
7	\otimes	7 oktas or more, but not 8 oktas	7/8				
8	\otimes	8 oktas	8/8				
9		Sky obscured, or cloud amount					
/		No measur	No measurement made				

- 4	В	С	D	E	
3			Dhaka (41923)		
4			October 08, 2011	00	
31			Form (Code)	CL-3	
32		M	Amount (Okta)	5	Click Click
33		Lc	Direction (Code)		
34			Height of Base (Code)	<u>_</u>	
					_

- 4	вс	D	E	S	
3		Dhaka (41923)			
4		October 08, 2011	00	_	
31		Form (Code)	CL-3		Select
32	2	Amount (Okta)	5		Symbol
33	Ľ	Direction (Code)	E	/ L	0
34		Height of Base (Code)	N NNE		Č.
			NE ENE		the
			ESE (T) SE SSE		Click 艇

1	2	Ļ
\	4	

	В	С	D	E				
3			Dhaka (41923)					
4			October 08, 2011	00				
31						Form (Code)	CL-3	Γ
32		Ŵ	Amount (Okta)	5				
33		٢	Direction (Code)	E	Γ			
34			Height of Base (Code)	100				
35			Form (Code)	CM-3				
36		E	Amount (Okta)	5				
37	loud	Med	Direction (Code)	E				
38				Height of Base (Code)	100			
39			Form (Code)	CH-3				
40		4	f	Amount (Okta)	5			
41		Ť	Direction (Code)	E				
42			Height of Base (Code)	100				
43			Total Cloud Amount (Okta)		ĪŦ			
	- 1		13	0 1 2 3 4 5 7 7	4 III +			

13

-dp-

	BC	D	E
3			
4		00	
31	Low	Form (Code)	CL-3
32		Amount (Okta)	5
33		Direction (Code)	E
34		Height of Base (Code)	100
35		Form (Code)	CM-3
36		Amount (Okta)	5
37	Med	Direction (Code)	E
38	Ŭ.	Height of Base (Code)	100
39		Form (Code)	CH-3
40	6	Amount (Okta)	5
41	Ī	Direction (Code)	E
42		Height of Base (Code)	100
43	Total Cloud Amount (Okta)		6

Significant Cloud

Weather Observation Data Input Manual - 18

Precipitation

Observed Data (Observation Building)

Wind Speed Wind Direction

Observer Name

Data Saving

Changing Trend of Yearly Mean Temperature and Yearly Precipitation

(BMD Manual Observation Data)

Installation of CentOS 5.5 (Linux OS)

1. HARD DISK PARTITIONING BY WINDOWS 7

"Create and format hard disk partitions"

🔗 Disk Managem	ent							×
File Action V	/iew Help							
(= -) 📰 🛛	🖬 🕅	X 📽 🖻 🔍	1					
Volume	Layo	ut Type	File	System	Status	Capacity	Free Spa	9
⇒ (C:) ⇒ New Volume (I ⇒ System Reserve	Simp D:) Simp ed Simp	le Basic le Basic le Basic	NTF NTF NTF	s s s	Healthy (B Healthy (P Healthy (S	63.38 GB 324.16 GB 100 MB	47.04 GB 306.48 GB 72 MB	7 9 7
< [
Disk 0		-						ł
Basic 465.76 GB	System	stem (C:)		New Volume (D:)		79 12 CP		١
Online	Healthy	Healthy (Boot, P	age Filı	Healthy	(Primary Partitio	on) Unalloca	ted	
CD-ROM 0						1		-
Unallocated	Primary pa	rtition						
					/			
The Linux	OS will b	e installed in	this v	olume.	ר / ר			
						OKI		
							1	

2. INSTALLATION OF CentOS 5.5

~	13	
🏶 CentOS	S S de	
Installation requires partitioning of your hand drive. By default, a partitioning layout is chosen which is reasonable for most users. You can either choose to use this or create your own.		
Remove linux partitions on selected drives and create default	tlayout, t	
Encrypt system		
Select the drive(s) to use for this installation.		
10-лин караний макликовникасын.		Click
Advanced storage configuration]	
Regiew and modify partitioning layout		
DiRolease Notes	da Back da Next	
	Control	
Select In	stallation Space!	
🏶 CentOS	a grade	
Installation requires partitioning of your hand drive. By default, a partitioning layout is chosen which is		
Remove all partitions on selected drives and create default is	iyout.	
Remove linux partitions on selected drives and create default	t layout.	
Create custom layout.		
Select the drive(s) to use for this installation.		Click
		"Use free space on
Advanced storage configuration]	selected drives and
Regiew and modify partitioning layout		create default layout "
Belease Notes	φ Back φ Mext	
	😂 🕀 🖉 💭 🖓 💭 🖓 🗭 Right Control	
~	15	
	Confirm!	
🖑 CentOS		
Installation requires partitioning of your hard drive.		
by denaut, a participanting taylout is chosen which is reasonable for most users. You can either choose to use this or create your own.		
Use free space on selected drives and create default layout.		
Encrypt system		
Select the drive(s) to use for this installation.		
関 103 - 11700 byli - YAN Alloss (Mellocide)		
		Click
Advanced storage configuration	J	
Regiew and modify partitioning layout		
Belease Notes	🗢 Back 🕹 Next	
	Control	
~	16 - 8 -	

3.2. UPDATING

3.3. TERMINAL OPEN

OK!

3.4. BOOT MENU SETTING (FOR WINDOWS DEFAULT)

Ele Edit View Search Tools Documents Help	
🗇 *grub.conf 🗙	
<pre># Note that you do not have to refun grub after making that # NOTICE: You have a /boot partition. This means that # all kernel and initrd paths are relative to /boo # repet (bd0 0)</pre>	ot/, eg.
<pre># tott(hub,0) # kernel/vmlinuz-version ro root=/dev/VolGroup00/ # initrd/initrd-version.img</pre>	/LogVol00
#boot=/dev/sda default=0 timeout=5	
splashimage≕(hd0,0)/grub/splash.xpm.gz hiddenmenu	
title CentOS (2.6.18-194.32.1.el5) root (hd0,0) kernel /vmlinuz-2 6 18-194 32 1 el5 ro root=/dev/Vc	00 fover 1/00 august
<pre>rhgb quiet initrd /initrd-2.6.18-194.32.1.el5.img</pre>	
title CentOS (2.6.18-194.el5) root (hd0,0) kernel (vmlinuz-2 6 18-104 el5 ro root-/dev/VolGrou	
<pre>quiet initrd /initrd-2.6.18-194.el5.img</pre>	poor Logvo cos ringo
title Others rootnoverify (hd0,0) chainloader +1	
	T

└9,└

16

Input!

Enter

"Windows'

Bille

3.5. LOG OUT

3.6. SHUT DOWN

