Appendix 3

Strategic Environmental Assessment Report

Japan International Cooperation Agency Nepal Electricity Authority

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

Strategic Environmental Assessment Report

February 2014

Electric Power Development Co., Ltd. (J-POWER)

Table of Contents

CHAPTER 1	INTRODUCTION1
CHAPTER 2	TARGET SETTING OF SEA1
CHAPTER 3	ENVIRONMENTAL BASELINE
3.1 Tempe	ERATURE AND RAINFALL
3.2 Geogi	АРНҮ
3.3 River	SYSTEM
3.4 Prote	CTED AREA
3.5 Conse	RVATION SPECIES
3.6 Popul	ATION
3.7 Admin	IISTRATIVE BOUNDARY
3.8 Ethni	CITY
3.9 LITERA	ACY RATE
3.10 LAND	USE
3.11 RAFTI	NG
3.12 TRANS	PORTATION
CHAPTER 4	LAW AND REGULATIONS
4.1 Relat	ED LAWS AND REGULATIONS
4.2 Polici	ies and Guidelines
4.3 INTER	NATIONAL AGREEMENT AND TREATY
4.4 EIAAN	ND IEE REQUIREMENT
CHAPTER 5	ZERO OPTION
5.1 Solar	Power Generation
5.2 WIND	POWER GENERATION
5.3 Therm	AL POWER GENERATION (DIESEL OR GAS TURBINE)
CHAPTER 6	FIRST STEP
6.1 Proje	CT DESCRIPTION
6.2 Scree	NING ITEMS AND METHODS
(1) On-	going Projects
(2) Ove	rlapped Project
(3) Not	appropriate as Storage-type Hydroelectric Power Projects
6.3 Scree	NED PROJECTS
(1) On-	going Projects
(2) Ove	vrlapped Project
(3) Not	appropriate Projects
CHAPTER 7	SECOND STEP
7.1 Proje	CT DESCRIPTION
7.2 Scopii	NG AND EVALUATION METHODS
	Final Report

Appendix 3 SEA Report

(1) Evaluation I	tems and Methods	47
(2) Weighting of	the Second Step	
7.3 IMPACT ASSESSM	MENT	
(1) Impact Evalu	ation	
(2) Sensitivity A	nalysis	
7.4 SELECTION OF F	PROMISING PROJECT	111
(1) Total Installe	ed Capacity of Promising Projects	111
(2) Number of P.	roject in Each River Basin	111
(3) Overlap with	Issued Survey and Construction License for Generation	113
(4) Selection of I	Promising Projects	115
CHAPTER 8 THIRD	STEP	116
8.1 PROJECT DESCR	IPTION	116
8.2 SCOPING		142
(1) Evaluation I	tems and Methods	142
(2) Weighting of	the Third Step	155
8.3 IMPACT ASSESS	ИЕNT	161
(1) Impact Evalu	lation	161
(2) Sensitivity A	nalysis	210
CHAPTER 9 CUMUL	ATIVE IMPACT	247
9.1 PROJECT DESCR	IPTION	247
(1) Existing Proj	iects	247
(2) Possible Proj	ects	251
9.2 SCOPING		255
9.3 IMPACT ASSESS	ИЕNT	256
(1) Water Regula	ation Effects on Eetland Ecosystem	256
(2) Barrier Effec	ets on Migration Fish	258
(3) Space Crown	ing Impact on Forest Ecosystem	261
CHAPTER 10 MITIGA	TION MEASURES	263
10.1 MITIGATION FOR	INDIVIDUAL PROJECT	
(1) Chera-1 Proj	<i>ect</i>	263
(2) Lower Jhimr	uk Project	263
(3) Madi Project		263
(4) Nalsyau Gad	Project	263
(5) Naumure (W	'. Rapti) Project	263
(6) Lower Badig	ad Project	263
(7) Andhi Khola	Project	263
(8) Dudh Koshi .	Project	264
(9) Kokhajor-1 F	Project	
(10) Sun Koshi N	o.3 Project	264
10.2 MITIGATION FOR	R CUMULATIVE IMPACT	

(1)	Water Regulation Effects on Wetland Ecosystem	
(2)	Barrier Effects on Migration Fish	
(3)	Space Crowning Impact on Forest Ecosystem	
CHAPTE	ER 11 MONITORING METHODS	
11.1	ENVIRONMENTAL MONITORING FOR INDIVIDUAL PROJECT	
11.2	ENVIRONMENTAL MONITORING FOR CUMULATIVE IMPACT	
CHAPTE	CR 12 STAKEHOLDER MEETING	
12.1	The 1st Stakeholders Meeting	
12.2	THE 2ND STAKEHOLDERS MEETING	
12.3	THE 3RD STAKEHOLDERS MEETING	
12.4	DISCUSSION AT THE REGIONAL OFFICE IN POKHARA	
12.5	SEA REPORT EVALUATION MEETING	
12.6	DISCUSSION AT MINISTRY OF FORESTS AND SOIL CONSERVATION	
12.7	DISCUSSION AT THE WWF NEPAL	
12.8	DISCUSSION AT THE IUCN NEPAL.	
12.9	DISCUSSION AT THE DEPARTMENT OF FOREST UNDER THE MINISTRY OF FOREST	'S AND SOIL
CONSE	RVATION	
12.10	DISCUSSION AT THE DIRECTORATE OF FISHERIES DEVELOPMENT, NATIONAL	[NLAND
FISHEI	RIES AND AQUACULTURE DEVELOPMENT PROGRAM	
		000
CHAPTE	TR 13 SUGGESTIONS FOR ELAS IN FS STAGE	
13.1	Required documents for Environmental and Social consideration \dots	
(1)	Environment Impact Assessment (EIA/IEE)	
(2)	Environmental Management Plan	
(3)	Resettlement Action Plan	
(4)	Indigenous People Plan	
13.2	COMPREHENSIVE SCOPING IN FS STAGE	
13.3	ATTENTIONAL ISSUES OF PHYSICAL ENVIRONMENT	
(1)	Air quality	
(2)	Water quality	
(3)	Water flow	
(4)	Waste	
(5)	Topography and geology	
(6)	Noise and vibration	
(7)	Odor	
(8)	Sedimentation	
13.4	ATTENTIONAL ISSUES OF NATURAL ENVIRONMENT	
(1)	Protected Area	
(2)	Plants	
(3)	Terrestrial animals	
(4)	Aquatic species	

13.5 A	TTENTIONAL ISSUES OF SOCIAL ENVIRONMENT	
(1)	Resettlement and land acquisition	
(2)	Water use	
(3)	Accident	
(4)	Life and Livelihood	
(5)	Use of land and natural resources	
(6)	Infrastructure	
(7)	Culture	
(8)	Landscape	
(9)	Ethnic minority and Indigenous people	
(10)	Working environment and work safety	

List of Annexes

The following SEA Annexes are included in Appendix 5 of Final Report.

SEA Annex 1:	Geological Survey Report - Dudh Koshi (E-01)
SEA Annex 2:	Geological Survey Report - Kokhajor-1 (E-06)
SEA Annex 3:	Geological Survey Report - Sun Koshi No.3 (E-17)
SEA Annex 4:	Geological Survey Report - Lower Badigad (C-02)
SEA Annex 5:	Geological Survey Report - Andhi Khola (C-08)
SEA Annex 6	Geological Survey Report - Chera-1 (W02)
SEA Annex 7:	Geological Survey Report - Lower Jhimruk (W-05)
SEA Annex 8:	Geological Survey Report - Madi (W-06)
SEA Annex 9:	Geological Survey Report - Nalsyau Gad (W-23)
SEA Annex 10:	Geological Survey Report - Naumure (W. Rapti) (W-25)
SEA Annex 11:	Environmental Survey Summary Report
SEA Annex 12:	Environmental Survey Report - Dudh Koshi (E-01)
SEA Annex 13:	Environmental Survey Report - Kokhajor-1 (E-06)
SEA Annex 14:	Environmental Survey Report - Sun Koshi No.3 (E-17)
SEA Annex 15:	Environmental Survey Report - Lower Badigad (C-02)
SEA Annex 16:	Environmental Survey Report - Andhi Khola (C-08)
SEA Annex 17:	Environmental Survey Report - Chera-1 (W02)
SEA Annex 18:	Environmental Survey Report - Lower Jhimruk (W-05)
SEA Annex 19:	Environmental Survey Report - Madi (W-06)
SEA Annex 20:	Environmental Survey Report - Nalsyau Gad (W-23)
SEA Annex 21:	Environmental Survey Report - Naumure (W. Rapti) (W-25)
SEA Annex 22:	Comments on SEA Report from Department of Forests

List of Tables

Table 3.4-1	National Protected Area in Nepal	4
Table 3.4-2	International Protected Area in Nepal	5
Table 3.4-3	List of Key Biodiversity Area in Nepal	6
Table 3.5-1	IUCN Red-List Species and Protected Wildlife in Nepal	7
Table 3.5-2	Distribution maps of National Red List Mammals in Nepal	14
Table 3.8-1	Population of Ethnic Gropes	21
Table 3.8-2	Definition of Janajati	24
Table 5.3-1	Comparison of Electric Power Generation Methods in Nepal	36
Table 6.1-1	Potential Projects (67 projects) in the First Step	37
Table 6.2-1	Screening Condition for Not Appropriate Projects	38
Table 6.3-1	Screening of the Potential Projects	43
Table 7.1-1	Candidate Project at the Second Step (31 projects)	46
Table 7.2-1	List of Gauging Stations Selected for Energy Calculation (1/2)	48
Table 7.2-2	Evaluation Criterion for Reliability of Flow Data	50
Table 7.2-3	Evaluation Criterion for Risk of GLOF	51
Table 7.2-4	Evaluation Criterion for Sedimentation	52
Table 7.2-5	Geologic and Seismic Dataset for Each Project Site (5-1)	53
Table 7.2-6	Evaluation Criterion for Geology applied by NEA	63
Table 7.2-7	Evaluation Criterion for Site Geology	65
Table 7.2-8	Evaluation Criterion for Proximity to Large Tectonic Thrusts	67
Table 7.2-9	Closeness to Other Faults	67
Table 7.2-10	Evaluation Criterion for Natural Hazard (Earthquakes)	67
Table 7.2-11	Evaluation Criterion for Seismicity – Matrix	68
Table 7.2-12	Evaluation Criterion for Length of Access Road	71
Table 7.2-13	Evaluation Criterion for Difficulty Level of Financing	71
Table 7.2-14	Study Level of Candidate Projects on the Long List	71
Table 7.2-15	Classification of Study Level for Evaluation of Reliability	72
Table 7.2-16	Evaluation Criterion for Reliability of Development Plan	72
Table 7.2-17	Evaluation Criterion for Unit Generation Cost	73
Table 7.2-18	Evaluation Criterion for Installed Capacity	73
Table 7.2-19	Evaluation Criterion for Annual Energy Production	74
Table 7.2-20	Evaluation Criterion for Energy Production in the Dry Season	74
Table 7.2-21	Evaluation Criterion for Impact on the Forest Area	75
Table 7.2-22	Points for the Impact on Protected Area	75
Table 7.2-23	Evaluation Criterion for Impact on Protected Area	75
Table 7.2-24	List of Fishes used in the Evaluation	76
Table 7.2-25	Evaluation Criterion for Impact on Fishes	76
Table 7.2-26	List of Species and Points for Impact on Conservation Species	77
Table 7.2-27	Evaluation Criterion for Conservation Species	77
Table 7.2-28	Evaluation Criterion for Impact of Construction for Transmission Line to	
	the Social Environment	77

Table 7.2-29	Evaluation Criterion for Impact on Household	78
Table 7.2-30	Evaluation Criterion for Impact on Agricultural Land	78
Table 7.2-31	Evaluation Criterion for Impact on Ethnic Minority	79
Table 7.2-32	Evaluation Criterion for Impact on Tourism	79
Table 7.2-33	Evaluation Items and Weight at the Second Stage (Base Case)	80
Table 7.2-34	Weight of Evaluation Item (Case 1)	81
Table 7.2-35	Weight of Evaluation Item (Case 2)	81
Table 7.3-1	Impact on Protected Area	94
Table 7.3-2	Impact on Conservation Species	96
Table 7.3-3	Impact on Tourism	102
Table 7.3-4	Evaluation Score and Ranking	103
Table 7.3-5	Evaluation Score and Ranking of Each Case	104
Table 7.3-6 (1)	Evaluation Score and Ranking of Base Case (1/3)	105
Table 7.4-1	Promising Projects (Number of promising projects in each river basin is	
	five or less)	.112
Table 7.4-2	Issued Survey and Construction License for Generation	.113
Table 7.4-3	Promising Projects (taking issued licenses into consideration)	.114
Table 7.4-4	Selection of Promising Projects	.115
Table 7.4-5	Promising Projects	.115
Table 8.1-1	Promising Projects on the third Step (10 projects)	.116
Table 8.1-2	Salient Features of Promising Projects	.119
Table 8.1-3	Source Reports of Promising Projects	120
Table 8.1-4	Salient Features of the Dudh Koshi Project (E-01)	123
Table 8.1-5	Salient Features of the Kokhajor-1 Project (E-06)	125
Table 8.1-6	Salient Features of the Sun Koshi No.3 Project (E-17)	127
Table 8.1-7	Salient Features of the Lower Badigad Project (C-02)	129
Table 8.1-8	Salient Features of the Andhi Khola Project (C-08)	131
Table 8.1-9	Salient Features of the Chera-1 Project (W-02)	133
Table 8.1-10	Salient Features of the Lower Jhimruk Project (W-05)	135
Table 8.1-11	Salient Features of the Madi Project (W-06)	137
Table 8.1-12	Salient Features of the Nalsyau Gad Project (W-23)	139
Table 8.1-13	Salient Features of the Naumure (W. Rapti) Project (W-25)	141
Table 8.2-1	Evaluation Criterion for Reliability of Flow Data	143
Table 8.2-2	Evaluation Criterion for Risk of GLOF	143
Table 8.2-3	Evaluation Criterion for Sedimentation	143
Table 8.2-4	Evaluation Criteria for Geological Conditions of Site (Basic Evaluation)	145
Table 8.2-5	Evaluation Criteria for Geological Conditions of Site (Deduction of point)	146
Table 8.2-6	Evaluation Criteria for Geological Conditions of Site (Score)	146
Table 8.2-7	Evaluation Criterion for Large Tectonic Thrust and Fault	147
Table 8.2-8	Evaluation Criterion for Seismicity (Class by Area)	147
Table 8.2-9	Evaluation Criterion for Seismicity (Class by Acceleration)	147
Table 8.2-10	Evaluation Criterion for Seismicity (Matrix of Score)	147
Table 8.2-11	Time required for Each Stage	148

Table 8.2-12	Evaluation Criterion for Lead Time to Commencement of Commercial	
	Operation	148
Table 8.2-13	Evaluation Criterion for Unit Generation Cost	149
Table 8.2-14	Evaluation Criterion for Installed Capacity	149
Table 8.2-15	Evaluation Criterion for Annual Energy Production	149
Table 8.2-16	Evaluation Criterion for Energy Production in the Dry Season	150
Table 8.2-17	Evaluation Criterion for Impact on Forest	150
Table 8.2-18	Evaluation Criterion for Impact of Flora	151
Table 8.2-19	Evaluation Criterion for Impact on Terrestrial Fauna	151
Table 8.2-20	Evaluation Criterion for Impact on Protected Area	152
Table 8.2-21	Evaluation Criterion for Impact on Aquatic Fauna	152
Table 8.2-22	Evaluation Criterion for Impact of Transmission Line	152
Table 8.2-23	Evaluation Criterion for Impact on Household, etc	153
Table 8.2-24	Evaluation Criterion for Impact on Ethnic Minority Group	153
Table 8.2-25	Evaluation Criterion for Impact on Agriculture	154
Table 8.2-26	Evaluation Criterion for Impact on Fishery	154
Table 8.2-27	Evaluation Criterion for Impact on Tourism and Culture	154
Table 8.2-28	Evaluation Criterion for Impact on Infrastructure	155
Table 8.2-29	Evaluation Criterion for Impact on Rural Economy and Development Plan	155
Table 8.2-30	Weight of Evaluation Item (Case 1: Even weight)	157
Table 8.2-31	Weight of Evaluation Item (Case 2: Technical conditions oriented)	158
Table 8 2 22	Weight of Evolution Item (Cose 2: Environmental import oriented)	159
Table 8.2-52	weight of Evaluation item (Case 5: Environmental impact oriented)	157
Table 8.2-32	Weight of Evaluation Item (Case 3: Environmental Impact oriented)	157
Table 8.2-32	Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely)	160
Table 8.2-32 Table 8.2-33	Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data	160 161
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2	Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF	160 161 162
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3	Weight of Evaluation Item (Case 3: Environmental Impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir	160 161 162 163
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4	Weight of Evaluation Item (Case 3: Environmental Impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects	160 161 162 163 164
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5	Weight of Evaluation Item (Case 3: Environmental Impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects	160 161 162 163 164 165
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects Physical Contingency Ratio of Civil Works for Desk Study-Level Projects 	160 161 162 163 164 165 166
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects Physical Contingency Ratio of Civil Works for Desk Study-Level Projects 	160 161 162 163 164 165 166 167
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects	160 161 162 163 164 165 166 167 167
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects Physical Contingency Ratio of Civil Works for Desk Study-Level Projects Summary of Project Cost for Promising Projects	160 161 162 163 164 165 166 167 167
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects	160 161 162 163 164 165 166 167 167 168 168
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10 Table 8.3-11	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects Summary of Energy Calculation Result for Promising Projects	160 161 162 163 164 165 166 167 167 168 168 168
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10 Table 8.3-12	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF Summary of Study Result on Life of Reservoir	160 161 162 163 164 165 166 167 167 168 168 169 169
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10 Table 8.3-12 Table 8.3-13	 Weight of Evaluation Item (Case 3: Environmental Impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data Summary of Study Result on Risk of GLOF	160 161 162 163 164 165 166 167 167 168 168 168 169 169 171
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10 Table 8.3-12 Table 8.3-13 Table 8.3-14	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely)	160 161 162 163 164 165 166 167 167 168 168 169 169 171 172
Table 8.2-32 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10 Table 8.3-12 Table 8.3-13 Table 8.3-14	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data. Summary of Study Result on Risk of GLOF. Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects. Summary of Energy Calculation Result for Promising Projects. Summary of Project Cost for Promising Projects. Evaluation of Unit Generation Cost Summary of Required Time to Commencement of Construction	160 161 162 163 164 165 166 167 167 168 169 169 169 171 172 172
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-7 Table 8.3-8 Table 8.3-9 Table 8.3-10 Table 8.3-11 Table 8.3-12 Table 8.3-13 Table 8.3-14 Table 8.3-15 Table 8.3-16	 Weight of Evaluation Item (Case 3: Environmental impact oriented) Weight of Evaluation Item (Case 4: Technical conditions oriented extremely) Summary of Study Result for Reliability on Flow Data. Summary of Study Result on Risk of GLOF. Summary of Study Result on Life of Reservoir Summary of Flow Data for Promising Projects. Summary of Energy Calculation Result for Promising Projects. Physical Contingency Ratio of Civil Works for Desk Study-Level Projects. Summary of Project Cost for Promising Projects. Evaluation of Unit Generation Cost Summary of Required Time to Commencement of Construction Summary of Lead Time to COD for Promising Projects. Evaluation of Site Geology of the Dudh Koshi Project. Evaluation of Site Geology of the Sun Koshi No.3 Project. Evaluation of Site Geology of the Lower Badigad Project. 	160 161 162 163 164 165 166 167 167 168 169 169 169 171 172 172 172
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-10 Table 8.3-10 Table 8.3-11 Table 8.3-12 Table 8.3-13 Table 8.3-14 Table 8.3-15 Table 8.3-16 Table 8.3-17	 Weight of Evaluation Item (Case 3: Environmental impact oriented)	160 161 162 163 164 165 166 167 167 168 169 169 169 171 172 172 173 173
Table 8.2-32 Table 8.2-33 Table 8.3-1 Table 8.3-2 Table 8.3-2 Table 8.3-3 Table 8.3-4 Table 8.3-5 Table 8.3-6 Table 8.3-6 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-7 Table 8.3-10 Table 8.3-10 Table 8.3-11 Table 8.3-12 Table 8.3-13 Table 8.3-14 Table 8.3-15 Table 8.3-16 Table 8.3-17 Table 8.3-18	 Weight of Evaluation item (Case 5: Environmental impact oriented)	160 161 162 163 164 165 166 167 167 168 169 169 169 169 171 172 172 173 173 173

Table 8.3-20	Evaluation of Site Geology of the Madi Project	. 175
Table 8.3-21	Evaluation of Site Geology of the Nalsyau Gad Project	. 175
Table 8.3-22	Evaluation of Site Geology of the Naumure (W. Rapti) Project	. 176
Table 8.3-23	Evaluation Summary of Seismicity	. 177
Table 8.3-24	Evaluation Summary of Geological Condition of Site	. 178
Table 8.3-25	Evaluation Summary of Thrust and Fault	. 179
Table 8.3-26	Impact on Forest in the Reservoir Area	. 180
Table 8.3-27	Impact on Flora in the Reservoir Area	. 182
Table 8.3-28	Impact on terrestrial Fauna	. 185
Table 8.3-29	Impact on Fish	. 189
Table 8.3-30	Impact on Rare Species and Protected Area in the Downstream	. 191
Table 8.3-31	Length of Transmission Line	. 193
Table 8.3-32	Impact on Building	. 194
Table 8.3-33	Number of Ethnic Minority GroupsProject Name	. 195
Table 8.3-34	Impact on Agriculture	. 196
Table 8.3-35	Impact on Fisheries	. 199
Table 8.3-36	Impact on Tourism and Culture	. 203
Table 8.3-37	Impact on Infrastructures	. 205
Table 8.3-38	Impact on the Local Economy and the Existing Development Plan	. 208
Table 8.3-39	Evaluation Score and Ranking (Summary)	. 210
Table 8.3-40 (1)	Evaluation Score and Ranking of Case 1 (1/8)	211
Table 8.3-41 (1)	Evaluation Score and Ranking of Case 2 (1/8)	. 219
Table 8.3-42 (1)	Evaluation Score and Ranking of Case 3 (1/8)	. 227
Table 8.3-43 (1)	Evaluation Score and Ranking of Case 4 (1/8)	. 235
Table 9.1-1	Operating and Constructing Major Hydro Power plants in Nepal	. 247
Table 9.1-2	Operating Major Irrigation Barrage in Nepal and India	. 249
Table 9.1-3	HPPs in Preparation Stage of Construction	. 252
Table 9.1-4	Candidate Projects	. 253
Table 9.1-5	Main road projects in Nepal	. 255
Table 9.2-1	Scoping Table for Cumulative Impact	. 256
Table 9.3-1	Existing and Planned Storage-type Major Hydroelectric Power Projects	. 257
Table 9.3-2	Schedule of Water Requirements of the Gandak Project in Cumecs	. 258
Table 9.3-3	Number of Existing and Planned HPP in Each River Basin	. 259
Table 12.1-1	Comment in the First Stakeholders Meeting and Reply or Action Taken by	
	NEA and Study Team (Tentative)	. 268
Table12.1-2	Program of the 1st Stakeholders Meeting	. 272
Table 12.1-3	Participant List of the 1st Stakeholders Meeting	. 273
Table 12.2-1	Comment in the Second Stakeholders Meeting and Reply or Action Taken	
	by NEA and Study Team (Tentative)	. 274
Table12.2-2	Program of the 2nd Stakeholders Meeting	. 281
Table 12.2-3	Participant List of the 2nd Stakeholders Meeting	. 282
Table 12.3-1	Comment in the Third Stakeholders Meeting and Reply or Action Taken by	
	NEA and Study Team (Tentative)	. 285

Table12.3-2	Program of the 3rd Stakeholders Meeting	. 288
Table12.3-3	Participant List of the 3rd Stakeholders Meeting	. 289
Table 13.1-1	Required documents for Transmission line and Hydropower plant	. 302
Table 13.1-2	Required information of RAP	. 303
Table 13.1-3	Required Information of IPP	. 304
Table 13.2-1	Comprehensive Scoping for Hydropower Plant	. 306
Table 13.2-2	Comprehensive Scoping on Transmission Line	. 307

List of Figures

Figure 3.1-1	Rainfall and Temperature in Kathmandu (1981-2010)	2
Figure 3.2-1	Elevation Map	2
Figure 3.3-1	River systems in Nepal	3
Figure 3.4-1	National Parks and World Heritage	4
Figure 3.5-1	Habitat of Important Fishes in Nepal	. 13
Figure 3.6-1	Population density in Nepal	. 20
Figure 3.7-1	Administrative boundaries	. 20
Figure 3.9-1	Literacy Rate	. 25
Figure 3.9-2	Literacy rate growth	. 25
Figure 3.10-1	Land Use Map	. 26
Figure 3.11-1	Major Rafting Routes	. 27
Figure 3.12-1	Main national roads in Nepal	. 27
Figure 7.1-1	Location of Candidate Projects on the Second Step	. 45
Figure 7.2-1	Location of Gauging Stations Selected for Energy Calculation	. 47
Figure 7.2-2	Monsoon Wetness Index Isolines	. 50
Figure 7.2-3	Example of Active Faults in Nepal	. 66
Figure 7.2-4	Actual Distribution of Proximity to Large Tectonic Thrusts for all Project	
	Sites	. 67
Figure 7.2-5	Actual Distribution of Acceleration for All Project Sites	. 69
Figure 7.2-6	Geology Evaluation Outcome from All three Criteria for All Project Sites	. 69
Figure 7.2-7	Availability of Geological Maps in Nepal	. 70
Figure 7.3-1	Reliability of flow Data (Score)	. 82
Figure 7.3-2	Risk of GLOF (Score)	. 83
Figure 7.3-3	Sedimentation (Life Time of Reservoir: Year)	. 83
Figure 7.3-4	Sedimentation (Score)	. 84
Figure 7.3-5	Seismicity (Score)	. 84
Figure 7.3-6	Geological Condition of Site (Score)	. 85
Figure 7.3-7	Natural Hazard (Earthquake) (Score)	. 85
Figure 7.3-8	Length of Access Road (km)	. 86
Figure 7.3-9	Length of Access Road (Score)	. 86
Figure 7.3-10	Difficulty Level of Financing (2012 Project Cost: MUS\$)	. 87
Figure 7.3-11	Difficulty Level of Financing (Score)	. 87

Figure 7.3-12	Reliability of Development Plan (Score)	. 88
Figure 7.3-13	Unit Generation Cost (US cent/kWh)	. 88
Figure 7.3-14	Unit Generation Cost (Score)	. 89
Figure 7.3-15	Installed Capacity (MW)	. 89
Figure 7.3-16	Installed Capacity (Score)	. 90
Figure 7.3-17	Annual Energy Production (GWh)	. 90
Figure 7.3-18	Annual Energy Production (Score)	. 91
Figure 7.3-19	Energy Production in the Dry Season (GWh)	. 91
Figure 7.3-20	Energy Production in the Dry Season (Score)	. 92
Figure 7.3-21	Impact on Forest (Inundated Forest Area: ha)	. 92
Figure 7.3-22	Impact on Forest (Unit Inundated Forest Area: ha/MW)	. 93
Figure 7.3-23	Impact on Forest (Score)	. 93
Figure 7.3-24	Impact on Protected Area (Score)	. 94
Figure 7.3-25	Impact on Fishes (Score)	. 95
Figure 7.3-26	Impact on Conservation Species (Score)	. 95
Figure 7.3-27	Impact on Locality by Construction of Transmission Line (km)	. 97
Figure 7.3-28	Impact on Locality by Construction of Transmission Line (Score)	. 97
Figure 7.3-29	Impact on Household (Households)	. 98
Figure 7.3-30	Impact on Household (Score)	. 98
Figure 7.3-31	Impact on Agriculture (Inundated Agricultural Land: ha)	. 99
Figure 7.3-32	Impact on Agriculture (Unit inundated Agricultural Land: ha/MW)	. 99
Figure 7.3-33	Impact on Agriculture (Score)	. 99
Figure 7.3-34	Impact on Ethnic Minority (Number of Ethnic Minority Groups)	100
Figure 7.3-35	Impact on Ethnic Minority (Score)	100
Figure 7.3-36	Impact on Tourism (Number of Religious Asset and Trekking Route)	101
Figure 7.3-37	Impact on Tourism (Score)	101
Figure 8.1-1	Location of Promising Projects on the third Step	117
Figure 8.1-2	Locations of Promising Projects in Isohyetal Map	117
Figure 8.1-3	Locations of Promising Projects in Seismic Hazard Map	118
Figure 8.1-4	Location of Dudh Koshi Project (E-01)	122
Figure 8.1-5	General Layout of the Dudh Koshi Project (E-01)	122
Figure 8.1-6	Location of Kokhajor-1 Project (E-06)	124
Figure 8.1-7	General Layout of the Kokhajor-1 Project (E-06)	124
Figure 8.1-8	Location of Sun Koshi No.3 Project (E-17)	126
Figure 8.1-9	General Layout of the Sun Koshi No.3 Project (E-17)	126
Figure 8.1-10	Location of Lower Badigad Project (C-02)	128
Figure 8.1-11	General Layout of the Lower Badigad Project (C-02)	128
Figure 8.1-12	Location of Andhi Khola Project (C-08)	130
Figure 8.1-13	General Layout of the Andhi Khola Project (C-08)	130
Figure 8.1-14	Location of Chera-1 Project (W-02)	132
Figure 8.1-15	General Layout of the Chera-1 Project (W-02)	132
Figure 8.1-16	Location of Lower Jhimruk Project (W-05)	134
Figure 8.1-17	General Layout of the Lower Jhimruk Project (W-05)	134

Figure 8.1-18	Location of Madi Project (W-06)	136
Figure 8.1-19	General Layout of the Madi Project (W-06)	136
Figure 8.1-20	Location of Nalsyau Gad Project (W-23)	138
Figure 8.1-21	General Layout of the Nalsyau Gad Project (W-23)	138
Figure 8.1-22	Location of Naumure (W. Rapti) Project (W-25)	140
Figure 8.1-23	General Layout of the Naumure (W. Rapti) Project (W-25)	140
Figure 8.3-1	Forest Land in the Reservoir Area	180
Figure 8.3-2	Number of Trees in the Reservoir Area	181
Figure 8.3-3	Average of Crown Coverage in the Reservoir Area (%)	181
Figure 8.3-4	Number of Plant Species Reported in the Reservoir Area	184
Figure 8.3-5	Number of Plant Species of Conservation Significance in the Reservoir	
	Area	184
Figure 8.3-6	Number of Mammal Species Reported in the Reservoir Area	187
Figure 8.3-7	Number of Bird Species Reported in the Reservoir Area	187
Figure 8.3-8	Number of Herpetofauna Species Reported in the Reservoir Area	187
Figure 8.3-9	Number of Conservation Mammalian Species Reported in the Reservoir	
	Area	188
Figure 8.3-10	Number of Conservation Bird Species Reported in the Reservoir Area	188
Figure 8.3-11	Number of Conservation Herpetofauna Species Reported in the Reservoir	
	Area	188
Figure 8.3-12	Number of Fish Species Reported in the Reservoir Area	190
Figure 8.3-13	Number of Fish Species of Conservation Significance in the Reservoir	
	Area	190
Figure 8.3-14	Length of Recession Area (km)	190
Figure 8.3-15	Number of the Protected Area in the Downstream	192
Figure 8.3-16	Number of the Protected Species in the Downstream	192
Figure 8.3-17	Impact on Forest by Transmission Line	193
Figure 8.3-18	Number of Household	194
Figure 8.3-19	Number of Schools	194
Figure 8.3-20	Number of Industries	195
Figure 8.3-21	Total Numbers of Ethnic Minority Groups	196
Figure 8.3-22	Impact on Cultivated Land (km ²)	197
Figure 8.3-23	Impact on the Number of Irrigation Systems	197
Figure 8.3-24	Impact on Number of Fishermen	201
Figure 8.3-25	Number of the Nearest Fish Markets	201
Figure 8.3-26	Availability of Fish in the Market (kg/day)	201
Figure 8.3-27	Total Sales of Fish Market (Rs./day)	202
Figure 8.3-28	Total Income of Fisherman (Rs./Year)	202
Figure 8.3-29	Number of Cultural Structures (Temples)	204
Figure 8.3-30	Number of Tourist Facilities	204
Figure 8.3-30 Figure 8.3-31	Number of Tourist Facilities Number of Tourist/Year	204 204
Figure 8.3-30 Figure 8.3-31 Figure 8.3-32	Number of Tourist Facilities Number of Tourist/Year Impact on Roads	204 204 206

Figure 8.3-34	Impact on Water Mill / Hydroelectric power	. 206
Figure 8.3-35	Impact on Drinking Water Schemes	. 207
Figure 8.3-36	Number of Markets	. 209
Figure 8.3-37	Number of Existing Plans	. 209
Figure 8.3-38	Number of Previous Experience / Issues	. 209
Figure 8.3-39 (1)	Characteristics of Promising Projects (1)	. 243
Figure 9.1-1	Existing HPPs and Irrigation Barrage	. 250
Figure 9.1-2	Existing road network in Nepal	. 251
Figure 9.1-3	HPPs in Preparation Stage and Candidate projects	. 252
Figure 9.1-4	Issued Licenses by Ministry of Energy (2012)	. 253
Figure 9.1-5	Planned Major Irrigations in Nepal	. 254
Figure 9.1-6	Planned Road (2011/2012)	. 254
Figure 9.3-1	Existing and Planned Barrier in Karnali River System	. 259
Figure 9.3-2	Existing and Planned Barrier in Gandaki River System	. 260
Figure 9.3-3	Existing and Planned Barrier in Koshi River System	. 260
Figure 9.3-4	Land Use and Existing and Planned Projects (West)	. 261
Figure 9.3-5	Land Use and Existing and Planned Projects (Center)	. 262
Figure 9.3-6	Land Use and Existing and Planned Projects (East)	. 262
Figure 12.1-1	Weightage of Evaluation Criteria	. 271
Figure12.1-2	Summary Result about Technical and Economic Conditions	. 271
Figure12.1-3	Summary Result about Social and Natural Environment	. 272
Figure 12.2-1	Summary Result of Hydrology Rating	. 278
Figure12.2-2	Summary Result of Geology Rating	. 279
Figure 12.2-3	Summary Result of Effectiveness Rating	. 279
Figure 12.2-4	Summary Result of Natural Environment Rating	. 280
Figure 12.2-5	Summary Result of Social Environment Rating	. 280
Figure 12.2-6	Cases of Sensitive Analysis	. 281
Figure 12.2-7	Example of Press Release about 2 nd Stakeholders Meeting	. 284
Figure 12.3-1	Example of Press Release about 3 rd Stakeholders Meeting	. 291

Chapter 1 Introduction

The method of Strategic Environmental Assessment (SEA) is adopted for the project evaluation in the Nationwide Master Plan Study on Storage Type Hydroelectric Power Development in Nepal. This SEA report is an appendix of the final report of the Nationwide Master Plan Study on Storage Type Hydroelectric Power Development in Nepal. The SEA study contains both technical and environmental aspects. But some technical issues such as Hydrology and Geology are consisted for SEA evaluation. More detail discussions on the technical matters are described in the final report.

Chapter 2 Target Setting of SEA

The electricity power demand in FY2031/32 is forecasted at 4,279 MW (Base case) as described in Chapter 7 of the Final report. The target of the SEA is to propose 10 promising projects and their developing order in order to fulfill this demand mainly by storage type hydroelectric power projects in environmentally sustainable manners without having serious impact on natural environment and social issues. The run-of-river type hydroelectric power projects are not considered in the SEA. But they are included in development planning in the main report.

Chapter 3 Environmental Baseline

The environmental baseline in Nepal is briefly summarized in this section. The site survey results for the third step are attached as SEA Annex 11 - SEA Annex 21 in Appendix 5. The site surveys were conducted only in dry season. Then some fauna and flora of rainy season might be lacked.

3.1 Temperature and Rainfall

The lowest average temperature in Kathmandu (Alt. 1,336 m) is 10.9 °C in January and the highest is 24.4°C. The annual rainfall is 1,476 mm. Dry seasons is May to October and rainy season is November to April. Rainfall pattern in a year is almost similar in the country. The monthly rainfall and temperature is shown in Figure 3.1-1.

Source: Japan Meteorological Agency

3.2 Geography

Nepal has Low zone under 1,000 m along southern Indian border and the elevation goes up toward North East until Himalaya Mountain range over 8,000 m. Most of the possible HPPs locate around 1,000 m to 1,500 m. The elevation map is shown in Figure 3.2-1.

Figure 3.2-1 Elevation Map

3.3 River System

All the river systems in Nepal flow North to South and gathered in Ganges River in India. There are 15 major river systems and Karnali, Gandaki, Koshi is the three big water systems. The river system is shown in the Figure 3.3-1.

Figure 3.3-1 River systems in Nepal

3.4 Protected Area

Protected areas in Nepal have two types such as international protected areas and national protected areas.

International protected areas include World Heritage, registered wetlands under the Ramsar Convention, and the Key Biodiversity Areas (KBA)¹. National protected areas designated by the National Parks and Wild Conservation Act 2029 (1973) are National Parks, Wildlife Reserves, Hunting Reserves, Conservation Areas and National Park/Wildlife Reserve Buffer Zones (See Figure 3.4-1, Table 3.4-2, and Table 3.4-3). Development approval will be needed before hydro-electric development and additional regulation will be adapted for environmental flow. The

¹ Key biodiversity areas are places of international importance for the conservation of biodiversity through protected areas and other governance mechanisms. They are identified nationally using simple, standard criteria, based on their importance in maintaining species populations. As the building blocks for designing the ecosystem approach and maintaining effective ecological networks, key biodiversity areas are the starting point for conservation planning at landscape level. Governments, intergovernmental organizations, NGOs, the private sector, and other stakeholders can use key biodiversity areas as a tool for identifying national networks of internationally important sites for conservation. (Source: IUCN)

protected areas indirectly affected by hydroelectric power development are the Bardia National Park downstream of the Kankaimai, Rapti and Babai rivers, the Chitwan National Park downstream of the Gandaki river, and the Koshi Tappu Wildlife Reserve downstream of the Koshi river.

Source: Department of National Parks and Wildlife Conservation (2013), World Database of Protected Area (2011)

Figure 3.4-1 National Parks and World Heritage

Designation Type	Name	Designated Year
National Park	Langtang NP	1976
	Sagarmatha NP	1976
	Chitwan NP	1973
	Rara NP	1976
	Bardiya NP	1984
	Shey Phoksundo NP	1984
	Khaptad NP	1984
	Shivapuri Nagarjun NP	2002
	Makalu Barun NP	1991
	Banke NP	2010
National Park - Buffer Zone	Chitwan NP BZ	1996
	Bardiya NP BZ	1996
	Sagarmatha NP BZ	2002
	Rara NP BZ	2006
	Langtang NP BZ	1998
	Makalu Barun NP BZ	1999
	Khaptad NP BZ	2006

Table 3.4-1	National	Protected	Area	in Nepa	l
	1	I I Ottette		mittepa	

Designation Type	Name	Designated Year
	Shey Phoksundo NP BZ	1998
	Banke NP BZ	2010
Wildlife Reserve	Shuklaphanta WR	1976
	Koshi Tappu WR	1976
	Parsa WR	1984
Wildlife Reserve- Buffer	Parsa WR BZ	2005
Zone	Koshi Tappu WR BZ	2004
	Shuklaphanta WR BZ	2004
Conservation Area	Annapurna CA	1992
	Kanchanjunga CA	1997
	Manasalu CA	1998
	Krishnasar CA	2009
	Gaurishankar CA	2010
	Api Nampa CA	2010
Hunting Reserve	Dhorpatan HR	1987

Table 3.4-2	International	Protected A	rea in	Ne	nal
	Inter mational	IIOCCCCCUII			P

Designation Type	Name	Designated Year
World Heritage Site	Sagarmatha National Park	1979
	Chitwan National Park	1984
Wetlands of International	Koshi Tappu	1987
Importance (Ramsar)	Gokyo and associated lakes	2007
	Gosaikunda and associated lakes	2007
	Phoksundo Lake	2007
	Rara Lake	2007
	Mai Pokhari	2008
	Beeshazar and associated lakes	2003
	Ghodaghodi Lake Area	2003
	Jagadishpur Reservoir	2003

Name	Area (km ²)	Source
Shivapuri National Park	91.4	KBA data supplied by Jack Tordoff, BirdLife International
Bardia National Park	912.5	KBA data supplied by Jack Tordoff, BirdLife International
Dharan forests	771.4	KBA data supplied by Jack Tordoff, BirdLife International
Kanchenjungha Conservation	1,749.7	KBA data supplied by Jack Tordoff, BirdLife International
Area		
Langtang National Park	1,536.9	KBA data supplied by Jack Tordoff, BirdLife International
Sagarmatha National Park	1,130.0	KBA data supplied by Jack Tordoff, BirdLife International
Makalu Barun National Park	2,354.4	KBA data supplied by Jack Tordoff, BirdLife International
Annapurna Conservation Area	7,414.6	KBA data supplied by Jack Tordoff, BirdLife International
Chitwan National Park	1,184.3	WDPA 2009 - Latest Info: Official Agency reply (Dept. of National Parks and Wildlife Conservation - government focal point) received via D. Joshi (IUCN Nepal) for the UN List 2003 request, June 2003
Sukla Phanta Wildlife Reserve	370.8	WDPA 2009 - Latest Info: Official Agency reply (Dept. of National Parks and Wildlife Conservation - government focal point) received via D. Joshi (IUCN Nepal) for the UN List 2003 request, June 2003
Shey-Phoksundo National Park	3,649.1	WDPA 2009 - Latest Info: Official Agency reply (Dept. of National Parks and Wildlife Conservation - government focal point) received via D. Joshi (IUCN Nepal) for the UN List 2003 request, June 2003
Khaptad National Park	234.3	WDPA 2009 - Latest Info: Official Agency reply (Dept. of National Parks and Wildlife Conservation - government focal point) received via D. Joshi (IUCN Nepal) for the UN List 2003 request, June 2003.
Dhorpatan Hunting Reserve	1,320.2	WDPA 2009 - Latest Info: Official Agency reply (Dept. of National Parks and Wildlife Conservation - gov. focal point) received via D. Joshi (IUCN Nepal) for the UN List 2003 request, June 2003 & Dhorpatan HR Website, accessed 3/08/2004.
Parsa Wildlife Reserve	478.4	WDPA 2009 - Latest Info: Official Agency reply (Dept. of National Parks and Wildlife Conservation - government focal point) received via D. Joshi (IUCN Nepal) for the UN List 2003 request, June 2003
Tamur valley and Watershed	1,339.7	KBA data supplied by Jack Tordoff, BirdLife International
Mai Valley forests	579.1	KBA data supplied by Jack Tordoff, BirdLife International
Nawalparasi forests	59.0	Based on feedback from Partner, IBA Directory and Google Earth
Rara National Park	116.8	Based on feedback from Partner, IBA Directory and Google Earth
Ghodaghodi Lake	11.0	Based on feedback from Partner, IBA Directory and Google Earth
Rampur valley	27.9	Based on feedback from Partner, IBA Directory and Google Earth
Phulchowki Mountain forests	11.5	Based on feedback from Partner, IBA Directory and Google Earth
Barandabhar forests and wetlands	168.3	Based on feedback from Partner, IBA Directory and Google Earth
Dang Deukhuri foothill forests	3,502.0	Based on feedback from Partner, IBA Directory and Google Earth
and west Rapti wetlands	722.0	Deced on feedback from Dortson IDA Directory and Caseda Forth
Lagdishpur Deserveir	133.9	Dascu on feedback from Partner, IBA Directory and Google Earth
Jaguishpur Reservoir	4.0	Based on feedback from Partner, IBA Directory and Google Earth
Koshi Tannu Wildlife Deserve and	22.1	Based on feedback from Partner, IBA Directory and Google Earth
Koshi Barrage	217.4	based on recuback from Farmer, IDA Directory and Google Earth

Table 3.4-3	List of Key	Biodiversity	y Area i	n Nepal

Source: Integrated Biodiversity Assessment Tool (2012), etc.

3.5 Conservation Species

88 species which are above rank VU (Vulnerable) are listed on IUCN (International Union for Conservation of Nature) red list in Nepal (See Table 3.5-1). Distribution areas of some species are proved. The Government of Nepal also identifies the 39 protected wildlife in the National Parks and Wildlife Conservation Act, 2029 (1973).

 Table 3.5-1
 IUCN Red-List Species and Protected Wildlife in Nepal

PLANTAE				
Family	Genus	Species	Common names (Eng.)	Status
SCAPANIACEAE	Andrewsianthus	ferrugineus		EN
SOLENOSTOMATACEAE	Diplocolea	sikkimensis		EN
TAKAKIACEAE	Takakia	ceratophylla		VU
SOLENOSTOMATACEAE	Scaphophyllum	speciosum		VU
CYCADACEAE	Cycas	pectinata		VU
LEGUMINOSAE	Dalbergia	latifolia	Bombay Blackwood, Indian Rosewood, Indonesian Rosewood, Malabar Rosewood	VU
ULMACEAE	Ulmus	wallichiana		VU

MAMMALIA

Family	Genus	Species	Common names (Eng.)	Status	GON
SUIDAE	Porcula	salvania	Pygmy Hog	CR	
MURIDAE	Apodemus	gurkha	Himalayan Wood Mouse, Himalayan Field Mouse	EN	
CERVIDAE	Axis	porcinus	Hog Deer, Indochinese Hog Deer, Thai Hog Deer	EN	
BOVIDAE	Bubalus	arnee	Asian Buffalo, Asiatic Buffalo, Indian Buffalo, Indian Water Buffalo, Water Buffalo, Wild Asian Buffalo, Wild Water Buffalo	EN	Х
LEPORIDAE	Caprolagus	hispidus	Hispid Hare, Assam Rabbit	EN	х
CANIDAE	Cuon	alpinus	Dhole, Asiatic Wild Dog, Indian Wild Dog, Red Dog	EN	
ELEPHANTIDAE	Elephas	maximus	Asian Elephant, Indian Elephant	EN	х
MANIDAE	Manis	pentadactyla	Chinese Pangolin	EN	х
MOSCHIDAE	Moschus	chrysogaster	Alpine Musk Deer, Himalayan Musk Deer	EN	Х
MOSCHIDAE	Moschus	fuscus	Black Musk Deer, Dusky Musk Deer	EN	
MOSCHIDAE	Moschus	leucogaster	Himalayan Muskdeer, Himalayan Musk-deer, Himalayan Musk Deer	EN	
FELIDAE	Panthera	tigris	Tiger	EN	х
FELIDAE	Panthera	uncia	Snow Leopard, Ounce	EN	х
BOVIDAE	Pantholops	hodgsonii	Chiru, Tibetan Antelope	EN	х
PLATANISTIDAE	Platanista	gangetica	South Asian River Dolphin, Blind River Dolphin, Ganges Dolphin, Ganges River Dolphin, Ganges Susu, Indus River Dolphin	EN	Х
FELIDAE	Prionailurus	viverrinus	Fishing Cat	EN	
AILURIDAE	Ailurus	fulgens	Red Panda, Lesser Panda, Red Cat-bear	VU	х

Family	Genus	Species	Common names (Eng.)	Status	GON
MUSTELIDAE	Aonyx	cinerea	Asian Small-clawed Otter, Oriental Small-clawed Otter, Small-clawed Otter	VU	
VIVERRIDAE	Arctictis	binturong	Binturong, Bearcat, Palawan Binturong	VU	
BOVIDAE	Bos	mutus	Wild Yak, Yak	VU	х
BOVIDAE	Bos	gaurus	Gaur, Indian Bison	VU	х
MUSTELIDAE	Lutrogale	perspicillata	Smooth-coated Otter, Indian Smooth-coated Otter	VU	
URSIDAE	Melursus	ursinus	Sloth Bear	VU	
VESPERTILIONIDAE	Myotis	sicarius	Mandelli's Mouse-eared Myotis, Mandelli's Mouse-eared Bat	VU	
FELIDAE	Neofelis	nebulosa	Clouded Leopard	VU	х
FELIDAE	Pardofelis	marmorata	Marbled Cat	VU	
RHINOCEROTIDAE	Rhinoceros	unicornis	Greater One-horned Rhino, Great Indian Rhinoceros, Indian Rhinoceros	VU	Х
CERVIDAE	Rucervus	duvaucelii	Barasingha, Swamp Deer	VU	
CERVIDAE	Rusa	unicolor	Sambar, Sambar Deer	VU	
BOVIDAE	Tetracerus	quadricornis	Four-horned Antelope, Chousingha	VU	Х
URSIDAE	Ursus	thibetanus	Asiatic Black Bear, Himalayan Black Bear	VU	
BOVIDAE	Capricornis	thar	Himalayan Serow	NT	
BOVIDAE	Hemitragus	jemlahicus	Himalayan Tahr	NT	
HYAENIDAE	Hyaena	hyaena	Striped Hyaena	NT	Х
MUSTELIDAE	Lutra	lutra	Eurasian Otter, Common Otter, European Otter, European River Otter, Old World Otter	NT	
CERCOPITHECIDAE	Macaca	assamensis	Assam Macaque, Assamese Macaque	NT	х
BOVIDAE	Naemorhedus	goral	Himalayan Goral, Goral	NT	
BOVIDAE	Ovis	ammon	Argali, Wild Sheep	NT	х
FELIDAE	Panthera	pardus	Leopard	NT	
SCIURIDAE	Petaurista	nobilis	Bhutan Giant Flying Squirrel, Grays Giant Flying Squirrel, Noble Giant Flying Squirrel	NT	
SCIURIDAE	Ratufa	bicolor	Black Giant Squirrel, Malayan Giant Squirrel	NT	
CERCOPITHECIDAE	Semnopithecus	hector	Tarai Gray Langur, Gray Langur, Hanuman Langur, Lesser Hill Langur, Tarai Sacred Langur	NT	
VIVERRIDAE	Viverra	zibetha	Large Indian Civet	NT	
Cervidae	Cervus	duvaucelii	Swamp Deer		х
Felidae	Lynx	lynx	Lynx		х
MANIDAE	Manis	crasscaudata	Pangolin		х
Canidae	Canis	lupus	Gray Wolf		х
Viverridae	Prionodon	pardicolor	Lingsang		х
FELIDAE	Prionailurus	bengalensis	Leopard Cat		х
Suidae	Sus	salvanius	Pygmy Hog		х
URSIDAE	Ursus	arctos	Himalayan Brown Beer		х

Family	Genus	Species	Common names (Eng.)	Status	GON
ARDEIDAE	Ardea	insignis	White-bellied Heron.	CR	0011
	11.000		Imperial Heron	on	
ACCIPITRIDAE	Gyps	bengalensis	White-rumped Vulture, Asian White-backed Vulture, Oriental White-backed Vulture, White-backed Vulture	CR	
ACCIPITRIDAE	Gyps	tenuirostris	Slender-billed Vulture	CR	
OTIDIDAE	Houbaropsis	bengalensis	Bengal Florican, Bengal Bustard	CR	х
ACCIPITRIDAE	Sarcogyps	calvus	Red-headed Vulture, Indian Black Vulture, Pondicherry Vulture	CR	
ANATIDAE	Rhodonessa	caryophyllacea	Pink-headed Duck	CR	
ACCIPITRIDAE	Neophron	percnopterus	Egyptian Vulture, Egyptian Eagle	EN	
CICONIIDAE	Leptoptilos	dubius	Greater Adjutant	EN	
OTIDIDAE	Sypheotides	indicus	Lesser Florican, Likh	EN	
ACCIPITRIDAE	Aquila	clanga	Greater Spotted Eagle, Spotted Eagle	VU	
ACCIPITRIDAE	Aquila	hastata	Indian Spotted Eagle	VU	
ACCIPITRIDAE	Aquila	heliaca	Eastern Imperial Eagle, Asian Imperial Eagle, Imperial Eagle	VU	
PHASIANIDAE	Catreus	wallichi	Cheer Pheasant, Chir Pheasant, Wallich's Pheasant	VU	х
SYLVIIDAE	Chaetornis	striata	Bristled Grassbird	VU	
OTIDIDAE	Chlamydotis	undulata	Houbara Bustard, Houbara	VU	
TIMALIIDAE	Chrysomma	altirostre	Jerdon's Babbler	VU	
EMBERIZIDAE	Emberiza	aureola	Yellow-breasted Bunting	VU	
FALCONIDAE	Falco	cherrug	Saker Falcon, Saker	VU	
FALCONIDAE	Falco	naumanni	Lesser Kestrel	VU	
MUSCICAPIDAE	Ficedula	subrubra	Kashmir Flycatcher	VU	
PHASIANIDAE	Francolinus	gularis	Swamp Francolin	VU	
SCOLOPACIDAE	Gallinago	nemoricola	Wood Snipe	VU	
GRUIDAE	Grus	antigone	Sarus Crane	VU	х
ACCIPITRIDAE	Haliaeetus	leucoryphus	Pallas's Fish-eagle, Band-tailed Fish-eagle, Pallas's Fish Eagle, Pallas's Sea-eagle	VU	
CICONIIDAE	Leptoptilos	javanicus	Lesser Adjutant	VU	
PICIDAE	Mulleripicus	pulverulentus	Great Slaty Woodpecker	VU	
PLOCEIDAE	Ploceus	megarhynchus	Yellow Weaver, Finn's Baya Weaver, Finn's Weaver, Himalayan Weaver	VU	
CISTICOLIDAE	Prinia	cinereocapilla	Grey-crowned Prinia	VU	
LARIDAE	Rynchops	albicollis	Indian Skimmer	VU	
MUSCICAPIDAE	Saxicola	insignis	White-throated Bushchat, Hodgson's Bushchat, White-throated Bush Chat	VU	
TIMALIIDAE	Turdoides	longirostris	Slender-billed Babbler	VU	

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

Family	Genus	Species	Common names (Eng.)	Status	GON	
ANATIDAE	Anas	falcata	Falcated Duck, Falcated Teal	NT		
ANHINGIDAE	Anhinga	melanogaster	Oriental Darter, Darter	NT		
ANATIDAE	Aythya	nyroca	Ferruginous Duck, Ferruginous Pochard, White-eyed Pochard	NT		
BUCEROTIDAE	Buceros	bicornis	Great Hornbill	NT	х	
ACCIPITRIDAE	Circus	macrourus	Pallid Harrier, Pale Harrier	NT		
CICONIIDAE	Ephippiorhynchus	asiaticus	Black-necked Stork	NT		
FALCONIDAE	Falco	jugger	Laggar Falcon	NT		
SYLVIIDAE	Graminicola	bengalensis	Rufous-rumped Grassbird	NT		
ACCIPITRIDAE	Ichthyophaga	humilis	Lesser Fish-eagle, Lesser Fish Eagle, Lesser Fishing Eagle	NT		
ACCIPITRIDAE	Ichthyophaga	ichthyaetus	Grey-headed Fish-eagle, Grey-headed Fish Eagle, Grey-headed Fishing Eagle			
INDICATORIDAE	Indicator	xanthonotus	Yellow-rumped Honeyguide	NT		
SCOLOPACIDAE	Limosa	limosa	Black-tailed Godwit	NT		
CICONIIDAE	Mycteria	leucocephala	Painted Stork	NT		
SCOLOPACIDAE	Numenius	arquata	Eurasian Curlew, Curlew			
PELECANIDAE	Pelecanus	philippensis	Spot-billed Pelican, Grey Pelican	NT		
SYLVIIDAE	Phylloscopus	tytleri	Tytler's Leaf-warbler, Tytler's Leaf Warbler	NT		
TIMALIIDAE	Spelaeornis	caudatus	Rufous-throated NT Wren-babbler, Short-tailed Wren-babbler, Tailed Wren-babbler			
TIMALIIDAE	Sphenocichla	humei	Blackish-breasted Babbler	NT		
LARIDAE	Sterna	acuticauda	Black-bellied Tern	NT		
THRESKIORNITHIDAE	Threskiornis	melanocephalus	Black-headed Ibis	NT		
CICONIIDAE	Ciconia	nigra	Black Stork		х	
CICONIIDAE	Ciconia	ciconia	White Stork		х	
OTIDAE	Eupodotis	indica	Lesser Florican		х	
PHASIANIDAE	Lophophorus	impejanus	Impeyon pheasant		х	

REPTILIA

Family	Genus	Species	Common names (Eng.)	Status	GoN
GEOEMYDIDAE	Batagur	kachuga	Bengal Roof Turtle, Red-crowned Roofed Turtle	CR	
GAVIALIDAE	Gavialis	gangeticus	Gharial, Fish-eating Crocodile, Gavial, Indian Gavial, Indian Gharial, Long-nosed Crocodile	CR	х
TESTUDINIDAE	Indotestudo	elongata	Elongated Tortoise, Pineapple Tortoise, Red-nosed Tortoise, Yellow-headed Tortoise, Yellow Tortoise	EN	
GEOEMYDIDAE	Hardella	thurjii	Crowned River Turtle	VU	
TRIONYCHIDAE	Nilssonia	hurum	Indian Peacock Softshell Turtle, Peacock Soft-shelled Turtle	VU	
ELAPIDAE	Ophiophagus	hannah	Hamadryad, King Cobra	VU	
BOIDAE	Python	molurus	Asiatic Rock Python, Burmese Python, Indian Python, Tiger Python		х
Varanidae	Varanus	flavescens	Golden Monitor Lizard		х

AMPHIBIA

Family	Genus	Species	Status
DICROGLOSSIDAE	Nanorana	minica	VU
DICROGLOSSIDAE	Nanorana	rostandi	VU
MEGOPHRYIDAE	Scutiger	nepalensis	VU
RANIDAE	Hylarana	chitwanensis	NT
DICROGLOSSIDAE	Nanorana	annandalii	NT
DICROGLOSSIDAE	Nanorana	ercepeae	NT

ACTINOPTERYGII

Family	Genus	Species	Common names (Eng.)	Status
CYPRINIDAE	Schizothorax	nepalensis	Snow Trout	CR
CYPRINIDAE	Schizothorax	raraensis	Rara Snowtrout	CR
CLARIIDAE	Clarias	magur	Wagur, Mangur, Manguri	EN
CYPRINIDAE	Tor	putitora	Putitor Mahseer, Golden Mahaseer	EN
CYPRINIDAE	Cyprinion	semiplotum	Assamese Kingfish	VU
CYPRINIDAE	Puntius	chelynoides	Dark mahseer	VU
CYPRINIDAE	Schizothorax	richardsonii		VU
SCHILBEIDAE	Ailia	coila	Gangetic ailia	NT
SISORIDAE	Bagarius	bagarius		NT
SISORIDAE	Bagarius	yarrelli		NT
NOTOPTERIDAE	Chitala	chitala		NT
CYPRINIDAE	Labeo	pangusia	Pangusia labeo	NT
CYPRINIDAE	Neolissochilus	hexagonolepis	Katli	NT
BALITORIDAE	Schistura	devdevi		NT
CYPRINIDAE	Tor	tor	mahseer	NT
SILURIDAE	Wallago	attu		NT

Family	Genus	Species	Common names (Eng)	Status
DASYATIDAE	Himantura	fluviatilis	Ganges Stingray	EN
CARCHARHINIDAE	Carcharhinus	leucas	Bull Shark	NT
Family	Genus	Species	Common names (Eng)	Status
CARCHARHINIDAE	Carcharhinus	leucas	Bull Shark	NT
DASYATIDAE	Himantura	fluviatilis	Ganges Stingray	EN
INSECTA				
Family	Genus	Species	Common names (Eng)	Sstatus
PLATYCNEMIDIDAE	Calicnemia	nipalica		VU
CHLOROGOMPHIDAE	Chlorogomphus	selysi		VU
EPIOPHLEBIIDAE	Epiophlebia	laidlawi	Relict Himalayan Dragonfly	NT
CORDULEGASTRIDAE	Neallogaster	ornata		NT
GASTROPODA				
Family	Genus	Species	Status	
POMATIOPSIDAE	Tricula	mahadevensis	VU	

CHONDRICHTHYES

Source: IUCN Red List of Threatened Species. Version 2012.2

Most of rare fishes which travel long distances are the cold –water fish. These fishes are going down to low altitude during the dry season, and are running up to lay eggs in cold water during the rainy season. There are fishes which move over a large elevation difference; *Tor Tor, Labeo Pangusia,* Gagarium *Yarreleli* move between the altitude from EL.140 m below to EL.800 m, *Tor Putitora,* Neolissochilus move between the altitude EL.140 m below to EL.1,300 m, *Schizothoraz richardsonii* move between the altitude EL.140 m to more than EL.1,300 m. The Figure 3.5-1 shows the estimated habitat of important fishes in Nepal.

However, distribution of rare fishes in Nepal has not been investigated enough and its distribution across the country is not fully figured out.

Figure 3.5-1 Habitat of Important Fishes in Nepal

Table 3.5-2Distribution maps of National Red List Mammals in Nepal

Final Report Appendix 3 SEA Report

Final Report Appendix 3 SEA Report

Final Report Appendix 3 SEA Report

Source: The Status of Nepal's Mammals: The National Red List Series (IUCN 2012)

3.6 Population

Population of Nepal has been growing average 2.2% per year since 1960. The census data in 2011 show total population is 26,494,504. Child Mortality Rate has been decreasing from 290 to 48 per 1,000 and Life Expectancy at birth has been increasing from 38.5 to 68.5 years since 1960 to 2011. The population density is higher in Kathmandu, Pokara and low land along the Indian border than the other area. Figure 3.6-1 shows the population density map.

Source: Population census (2011)

Figure 3.6-1 Population density in Nepal

3.7 Administrative Boundary

Nepal has five Development Regions, 14 Zones, 75 Districts and 4,056 Village Development Committees. Figure 3.7-1 shows the map of the boundaries.

Figure 3.7-1 Administrative boundaries

3.8 Ethnicity

Nepal has various ethnic groups. 128 ethnic groups are recorded in the population census 2011. These ethnic groups are classified in six groups such as Adivasi/Janajati, BCTS, Dalit, Madhesi, Religious Minority, and others. Adivasi/Janajati is indigenous people who account for 36% of the national total population (See Table 3.8-2). BCTS (Brahmin/Chhetri/Thakuri/Sanyashi Dalit) is high caste people who account for 32%. Dalit is bottom caste people who account for 14%. Madhesi is the people living in Tarai plain who account for 14%². Religious Minority means Islamic people who account for 4% (See Table 3.8-1). The National Foundation for Development of Indigenous Nationalities Act (2002) identified 59 ethnic groups as Adivasi/Janajati which own language, religion, tradition, culture, civilization and traditional egalitarian social structure and classified in five groups from endangered to advantaged based on the alienations. But it cannot be concluded that these counted groups are only the indigenous people. 48 out of 59 Adivasi/Janajatis are listed on the Census 2011 and other groups are under discussion if they are to be included in Adivasi/Janajati now. Then the classification of ethnic groups in Nepal is a matter of argument because of the history that Rana families forced no-Hindu groups into caste system and various epithets.

Category		Name	Madhesi	Popul	ation	Rate	
Adivasi/	Endangered	Meche	*	4,867	21,284	0.0%	0.1%
Janajati		Raji	*	4,235		0.0%	
		Lepcha		3,445		0.0%	
		Pattharkatta/ Kushwadiya	*	3,182		0.0%	
		Hayu		2,925		0.0%	
		Kisan	*	1,739		0.0%	
		Raute		618		0.0%	
		Kusunda		273		0.0%	
		Bankariya		-		-	
		Mugali		-		-	
Highly marginalized	Dhanuk	*	219,808	594,030	0.8%	2.2%	
	Danuwar	*	84,115		0.3%		
	Majhi	*	83,727		0.3%		
	Chepang /Praja		68,399		0.3%		
	Satar/ Santhal	*	51,735		0.2%		
	Jhangad/ Dhagar	*	37,424		0.1%		
	Thami	*	28,671		0.1%		
	Bote	*	10,397		0.0%		
	Brahmu/ Baramo		8,140		0.0%		
	Lhomi		1,614		0.0%		
	Thudam		-		-		
		Sivar (Chumba)		-		-	

Table 3.8-1Population of Ethnic Gropes

² Total population of Madheshi of 71 ethnics which are listed on Census 2011 out of 94 Madhesi ethnics (GoN on Magh 21, 2065 (2009) identified) are 12,449,631 which is 47% of total national population. But this figure excluded the Madheshi which are overlapped with Adivasi/Janajati or Dalit.
Category		Name	Madhesi	Popul	ation	Ra	ite
	Marginalized	Tharu	*	1,737,470	3,891,696	6.6%	14.7%
		Tamang		1,539,830		5.8%	
		Kumal	*	121,196		0.5%	
		Gharti/Bhujel		118,650		0.4%	
		Rajbansi	*	115,242		0.4%	
		Kumhar	*	62,399		0.2%	
		Sunuwar		55,712		0.2%	
		Gangai	*	36,988		0.1%	
		Dhimal	*	26,298		0.1%	
		Tajpuriya	*	19,213		0.1%	
		Darai	*	16,789		0.1%	
		Pahari		13,615		0.1%	
		Bhote		13,397		0.1%	
		Dura		5,394		0.0%	
		Dolpo		4,107		0.0%	
		Lhopa		2,624		0.0%	
		Topkegola		1,523		0.0%	
		Walung		1,249		0.0%	
		Free		-		-	
		Mugali		-		-	
		Larke (Nupriba)		-		-	
	Disadvantaged	Magar		1,887,733	3,587,191	7.1%	13.5%
		Rai		620,004		2.3%	
		Gurung		522,641		2.0%	
		Limbu		387,300		1.5%	
		Sherpa		112,946		0.4%	
		Yakkha		24,336		0.1%	
		Chhantyal/Chhantel		11,810		0.0%	
		Hyolmo		10,752		0.0%	
		Jirel		5,774		0.0%	
		Byasi/Sauka		3,895		0.0%	
		Tangbe		-		-	
		Tin Gaunle Thakali		-		-	
		Bahra Gaunle		-		-	
		Marphali Thakali		-		-	
	Advanced	Newar		1,321,933	1,335,148	5.0%	5.0%
		Thakali		13,215		0.0%	
	Others	Janajati Others		1,228	1,228	0.0%	0.0%
BCTS		Chhetree		4,398,053	8,412,507	16.6%	31.8%
		Brahman - Hill	*	3,226,903		12.2%	
		Thakuri		425,623		1.6%	
		Sanyası/Dasnami	*	227,822		0.9%	
D. I'		Brahman - Tarai	*	134,106	2 504 445	0.5%	12 601
Dalit		Kami		1,258,554	3,594,447	4.8%	13.6%
		Damai/Dholi		472,862		1.8%	
		Sarki		374,816		1.4%	
		Chamar/ Harijan/ Ram	*	335,893		1.3%	
		Musahar	*	234,490		0.9%	

Final Report Appendix 3 SEA Report

Category	Name	Madhesi	Popul	ation	Rate	
	Dusadh/ Pasawan/ Pasi	*	208,910		0.8%	
	Dhobi	*	109,079		0.4%	
	Tatma/Tatwa	*	104,865		0.4%	
	Lohar	*	101,421		0.4%	
	Khatwe	*	100,921		0.4%	
	Bantar/Sardar	*	55,104		0.2%	
	Badi		38,603		0.1%	
	Dom	*	13,268		0.1%	
	Kori	*	12,276		0.0%	
	Gaine		6,791		0.0%	
	Sarbaria	*	4,906		0.0%	
	Halkhor		4,003		0.0%	
	Chidimar	*	1,254		0.0%	
	Kalar	*	1,077		0.0%	
	Dalit Others		155,354		0.6%	
Madhesi (Other)	Yadav	*	1,054,458	3,747,586	4.0%	14.1%
	Teli	*	369,688		1.4%	
	Koiri/Kushwaha	*	306,393		1.2%	
	Kurmi	*	231,129		0.9%	
	Mallaha	*	173,261		0.7%	
	Kewat	*	153,772		0.6%	
	Kathabaniyan	*	138,637		0.5%	
	Kalwar	*	128,232		0.5%	
	Kanu	*	125,184		0.5%	
	Hajam/Thakur	*	117,758		0.4%	
	Sudhi	*	93,115		0.4%	
	Halwai	*	83,869		0.3%	
	Baraee	*	80,597		0.3%	
	Bin	*	75,195		0.3%	
	Nuniya	*	70,540		0.3%	
	Sonar	*	64,335		0.2%	
	Kahar	*	53,159		0.2%	
	Marwadi	*	51,443		0.2%	
	Kayastha	*	44,304		0.2%	
	Rajput	*	41,972		0.2%	
	Lodh	*	32,837		0.1%	
	Badhaee	*	28,932		0.1%	
	Bangali	*	26,582		0.1%	
	Gaderi/Bhedihar	*	26,375		0.1%	
	Mali	*	14,995		0.1%	
	Dhunia	*	14,846		0.1%	
	Rajdhob	*	13,422		0.1%	
	Rajbhar	*	9,542		0.0%	
	Punjabi/Sikh	*	7,176		0.0%	
	Amat	*	3,830		0.0%	
	Munda	*	2,350		0.0%	
	Dev	*	2,147		0.0%	
	Kamar	*	1,787		0.0%	

Final Report Appendix 3 SEA Report

Category	Name	Madhesi	Popul	ation	Ra	Rate	
	Koche	*	1,635		0.0%		
	Nurang	*	278		0.0%		
	Terai Others	*	103,811		0.4%		
Religious Minority	Musalman	*	1,164,255	1,164,255	4.4%	4.4%	
Others	Kulung		28,613	145,132	0.1%	0.5%	
	Ghale		22,881		0.1%		
	Khawas		18,513		0.1%		
	Undefined Others		15,277		0.1%		
	Nachhiring		7,154		0.0%		
	Yamphu		6,933		0.0%		
	Chamling		6,668		0.0%		
	Foreigner		6,651		0.0%		
	Aathpariya		5,977		0.0%		
	Bantaba		4,604		0.0%		
	Thulung		3,535		0.0%		
	Mewahang Bala		3,100		0.0%		
	Bahing		3,096		0.0%		
	Natuwa		3,062		0.0%		
	Dhankar/ Dharikar		2,681		0.0%		
	Dhandi		1,982		0.0%		
	Samgpang		1,681		0.0%		
	Khaling		1,571		0.0%		
	Loharung		1,153		0.0%		
Total			26,49	4,504	100	.0%	

Source: Census 2011; Nepal Federation of Indigenous Nationalities Act (2004); GoN on 2065 Magh 21 (2009-2-3)

Table 3.8-2Definition of Janajati

"Nationality (Janajati) is that community which has its own mother tongue and traditional culture and yet do not fall under the conventional four fold Varna of Hindu or Hindu hierarchical caste structure. A Janajati group has the following characteristics:

- A distinct collective identity
- Own language, religion, tradition, culture and civilization; own traditional egalitarian social structure
- Traditional homeland or geographical area
- Written or oral history
- Having "we-feeling"
- Have had no decisive role in politics and government in modern Nepal;

Who declare themselves as Janajati"

Source: The National Committee for Development of Nationalities (1996)

3.9 Literacy Rate

Literacy rate in Nepal is 65.2%. Leteracy rate in urban area such as Kathmandu, Lalitpur, Kaski, Bhaktapur are higher than 80% but rural area such as Humla, Mahottari, Rautahat, Palpa, Khotang are lower than 50%. Adult literacy rate has been kept increasing 20.6% to 60.3% since 1981. But the difference between a man and a woman are big and the rate of femal women ages 15 and above in 2010 was still 48.3%.

Source: Census 2011

3.10 Land Use

The land above around EL.4,000 m is covered with ice and snow and below EL.4,000 m is covered with forest and cultivation area. Low land around Indian border and Kathmandu valley are mainly used as cultivation. Figure 3.10-1 shows the Land Use map.

Source: 1:25,000 and 1:50,000 topography map (Survey Department, Nepal)

Figure 3.10-1 Land Use Map

3.11 Rafting

Rafting is one of the popular tourism activities in Nepal. Main rafting routes are in Kalnari river system, Gandaki river system, and river system. According to the Nepal Tourism Statistics (2011) the number of tourists for rafting is increasing 262% per year from 2007. It is reported 2,181 tourists enjoyed by rafting in 2011. Main rafting routes are in the Kalnari, Gandaki , and Koshi river systems. Figure 3.11-1 shows main rafting routes.

Figure 3.11-1 Major Rafting Routes

3.12 Transportation

National roads of Nepal cut longitudinally West to East. But the transportation of goods has many difficulties, because the roads are easily to be blocked by the landslide in rainy season. Figure 3.12-1 shows main National roads in Nepal.

Source: 1:25,000 and 1:50,000 topography map (Survey Department, Nepal)

Figure 3.12-1 Main national roads in Nepal

Chapter 4 Law and Regulations

Environment protection Act (1997) and National Environment Impact Assessment Guidelines (1993) stipulate EIA procedures in Nepal. But there are no laws and regulations which provide SEA procedures. Land compensation is stipulated by Land Acquisition Act 2034 (1977) and Land Acquisition Guidelines 2049(1993). But they are only mentioning the payment compensation and far different from the resettlement guidelines by JICA; it does not meet the requirement of JICA. Forest compensation is prescribed by Forest Act 2049 (1993 and 1995 amendments) and Forest Regulation 2052 (1995). But the detail discussion of the compensation cannot be started until issuance of the generation license which can be obtained after financing. Drinking water standard is provided by National Drinking Water Quality Standards, 2062 but there is no ambient river water quality standard in Nepal. Other laws and regulations related with Environment are as follows.

4.1 Related Laws and Regulations

Following are the key policy instruments of the Government of Nepal attracted by the project in the process of development licensing, surveys, design, development and operation.

- Aquatic Animals Protection Act 2017 (1960) and Amendment 2055 (1999);
- District Development Committee (Working Agreements) Rules 2050 (1993);
- Electricity Act 2049 (1992) and Electricity Rules 2050 (1993);
- Environment Protection Act 2053 (1997) and Environment Protection Regulations 2054 (1997);
- Explosives Substances Act 2018 (1961);
- Forest Act 2049 (1993 and 1995 amendments) and Forest Regulation 2051 (1995);
- Hydropower Development Policy 2056 (2001);
- Labor Act 2048 (1992);
- Land Administration Act 2024 (1967);
- Land Acquisition Act 2034 (1977) and Land Acquisition Guidelines 2049 (1993);
- Local Self Governance Act 2055 (1999) and Local Self Governance Regulation 2056 (1999);
- National Parks and Wildlife Conservation Act 2029 (1973) and National Parks and Wildlife Conservation Regulation 2030 (1974);
- Public Roads Act 2031 (1974);
- Soil and Watershed Conservation Act 2039 (1982);
- Solid Waste (Management and Resource Mobilization) Act 2044 (1987), repealed 2067 (2010);
- Village Development Committee (Working Procedures) Rules 2050 (1994); and,
- Water Resources Act 2049 (1992) and Water Resources Rules 2050 (1993).

Regarding the compliance labor environment and Land Acquisition in Nepal, these are determined by Labor Act 2048 (1992) and Land Acquisition Act 2034 (1977). The followings are the brief summary

of these acts, respectively.

Labor Act 2048 (1992)

This act is consisting with 11 chapters and stipulates various conditions for labors.

Employment and job security is stipulated in Chapter 2, such as classification of the posts, prohibition on child labor and restriction on minor and women, on job security, retrenchment and reemployment and so on. The labor condition about working hours is stipulated in Chapter 3, and about remuneration is stipulated in mainly in Chapter 4. Regarding the measurement aimed at industrial accident prevention relating to occupational health and safety, it is stipulated in chapter 5. Welfare arrangements are stipulated in Chapter 6. Special arrangement applicable in respect of specific enterprise such as construction enterprise, it is stipulated in Chapter 7. Chapter 8 determined conduct and penalties and Chapter 10 determined settlements of labor disputes. Other Chapters describe preliminary, board officers and other provision and Miscellaneous.

Land Acquisition Act 2034 (1977)

This act is consisting 43 sections and stipulates the compensation measures and its institutional framework.

Section 3 stipulates power of Government to Acquire Lands anywhere for public purpose subject to compensation. Section 4 empowers government to acquire land upon request by institutions for indicated purpose in this section subject to the payment of compensation and all expenses stipulated in this act. Section 5, 6, 7 and 8 stipulate provisions and procedures for initiating initial land acquisition process and estimating compensation rates. Section 9 and 10 stipulate procedures and provisions for notification to land acquisition. Section 11 stipulates right of landowners to file complain within a time-limit of seven days from the date of the publication of the notice with regards to the land right, if they might be affected by the notice., Section 13, 14, and 15 stipulate procedures and provisions of compensation fixation. Section 16 and 17 stipulate criteria for compensation fixation. Section 19 stipulates discloser of the compensation entitlement through public notification. Section 25 stipulates the special cases such as urgent necessity to maintain transport or communication facilities, or to ensure the safety. In these cases, provision of complain against the compensation rates to the Ministry or Home Affairs and the decision of the Ministry of Home Affairs on complain is final according to this section. Section 39 stipulates the penalties for the case necessary process has not correctly taken as described in this act. Other sections describe the role and necessary preparation taking by government side, the rules for a special case such as the land acquisition for diplomatic missions and international agencies and other rules relating to acquire or sell the land.

4.2 Policies and Guidelines

Following policies and guidelines of the government of Nepal will have to be complied in the environmental study including study procedures, impact identification and prediction, design of the

mitigation prescriptions and so on.

- Hydropower Development Policy 2056 (2001);
- National Environmental Impact Assessment Guidelines 2049 (1993);
- Draft EIA Guidelines for Water Resources Sector 2050 (1994);
- EIA Guidelines for Forestry Sector 2050 (1995);
- Forestry Sector Policy 2057 (2000);
- Water Resource strategy, 2002;
- Land use policy, 2068;
- Nepal Biodiversity strategy, 2002;
- Sustainable Development Agenda for Nepal, 2003;
- Climate change policy, 2011;
- Leasehold Forestry policy, 2002;
- National Agriculture policy, 2004;
- Rural Energy Policy, 2006;
- Agrobiodiversity policy, 2007;
- Tourisum policy, 2009;
- Forest Fire Management Strategy, 2010;
- National wetland Policy, 2012; and,
- Irrigation policy, 2013.

4.3 International Agreement and Treaty

The international Agreements and treaties applicable to the Study are as follows.

- Biosphere Reserves
- Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (1973)
- International Tropical Timber Agreement for the Asia and Pacific Region (1956)
- Ramsar Convention (1971)
- World Heritage Site Convention
- ILO Convention concerning Indigenous and Tribal Peoples in Independent Countries (1989, No. 169)
- Convention on Biological Diversity (CBD) (1992)
- United Nations Framework Convention on Climate Change (1992)
- Kyoto Protocol to the United Nations Framework Convention on Climate Change (1998)
- Basel Convention the Montreal Protocol on Substances that Deplete the Ozone Layer
- International Treaty on plant Genetic Resources for Food and Agriculture (2001)

4.4 EIA and IEE requirement

There is no legal requirement for Strategic Environmental Assessment of Hydropower Project in Nepal. But Environmental Impact Assessment (EIA) or Initial Environmental Examination (IEE) will be required when projects move to feasibility study. The Environment Protection Act 1997 (EPA 1997) and Environment Protection Rules 1997 (EPR 2010 as amended) stipulates the projects which need EIA or IEE. All the hydropower projects which are more than 50MW are required to prepare EIA. Transmission line projects more than 132kV are required EIA. Followings are the requiring IEE/EIA projects in the EPR 1997.

Requireing IEE projects

- 1. Supply of electricity though the constructions of transmission lines of from 33 to 132 KV capacity.
- 2. Operation of rural electrification projects of 1 to 6 MW.
- 3. Operation of electricity generation projects from 5 to 50 MW capacity.

Requireing EIA projects

- 1. Supply of electricity through installation of transmission lines of more than 132kv.capacity.
- 2. Operation of more than 6 mva. Rural Electrification Projects.
- 3. Operation of electricity generation projects with a capacity of more than 50 MW.
- 4. Generation of more than 1mw. Diesel or the heat electricity.

Matters to be mentioned in IEE/EIA are also stipulated in EPR 1997 as follows.

Matters to be mentioned in IEE (EPR 1997, 2010 amended)

1. Name and address of individual or institution preparing the report:

2 Summery of the proposal: (To briefly mention the following matters in regard to the possibly impact of the implementation of the proposal on the environment):

- (a) Objectives of the proposal,
- (b) Impact on land-use.
- (c) Adverse impact on the environment impact on human life, and population pressure,
- (d) Damage to be suffered by local goods or objects,
- (e) Other necessary matters.

3. The following matters must be explicitly mentioned in respect to the proposal:

- (a) Type of proposal,
 - (i) Processing,

(ii) Manufacturing,

(iii) Installation,

(iv) Service delivery,

(v) Others.

(b) If related to delivery, the nature and type of goods to be delivered.

(c) Proposal's

(i) Installed capacity

(ii) Number of hours to be operated per day or year.

(d) Materials to be used (quantity and year to be mentioned). (e) Emission resulting from the implementation of the proposal (the time of operation and the consequent volume of emission to be specified) (i) Solid (ii) Liquid (iii) Air, (iv) Gas, (v) Noise (vi) Dust, (vii) Others (f) Energy to be used: (i) Type, (ii) Sources (iii) Volume of consumption (per day and year) (g) Human Resource requirements: (h) Resources required for the implementation of the proposal: (i) Total (Gross) capital (ii) Working capital (iii) Land area, (iv) Building and their types, (v) Machinery and tools (vi) Others. (i) Detailed particulars of the area where the project is to be implemented: (i) Maps, (ii) Population and condition relating to settlements in the area as well as in the nearby areas, (iii) Particulars of any sensitive things or objects, if any, located close to the area where the proposal is to be implemented (iv) Current situation (v) Sources of water (vi) Arrangement made for disposing or processing the waste (vii) Paths for movement in the area where the proposal is to be implemented (j) Manufacturing processes (k) Details of the technology (1) Other necessary matters. 4. Impact of the implementation of the proposal on the environment: (a) Impact on the social, economic cultural spheres: (i) Impact on human health, (ii) Degradation of cultivable land, (iii) Destruction of forests, (iv) Changes in social, cultural and religious norms and value, (v) Others. (b) Biological Impact: (i) Population, (ii) Flora and fauna. (iii) 'Natural habitat and communities (c) Physical Impact: (i) Land, (ii) Atmosphere,

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

- (iii) Water,
- (iv) Noise,
- (v) Man-made objects,
- (vi) Others

5. Alternatives for the implementation of the proposal:

(a) Design

(b) Project site

(c) Processes, time-schedule,

(d) Raw materials to be used,

(e) Others

6. Alternatives to reduce or control the impact of the implementation of the proposal on the environment.

7. Matters to be monitored while implementing the proposal.

8. Other necessary matters.

Matters to be mentioned in EIA (EPR 1997, 2010 amended)

1. Name and Address of the individual or intuition preparing the report:

2. Summary of the proposal: (to mention the following matters in regard to the possible impact of the implementation of the proposal on the environment.):

(a) Objectives of the proposal,

(b) Impact on land-use,

(c) Adverse impact on the environment, impact on human life, and population pressure,

(d) Damage to be suffered by local goods or objects

(e) Other necessary matters.

3. Summary of the Report: Brief particulars of the matters mentioned in the report relating to the environmental impact assessment.

4. Particulars of the proposal:

(a) To specify the technical, geographical, environmental, economic, social, cultural and physical aspects of the proposal.

(b) To specify the objectives, working policies and work-schedule of the activities to be undertaken during each phase of the implementation of the proposal.

5. Basic information relating to the proposal: To mention basic information about the geo-physical, cultural, biological, and social and economic conditions of the area to be assessed, as well any possible change that may occur there before the implementation of the proposal. In case there are any data which may not be available or any Subject which may not be covered by the study, they too should be mentioned. 6. Identification of environmental Impact: To mention the possible positive and negative impact on the following spheres of the environment while implementing the proposal, and estimate and specify the volume of possible impart according to time and work schedules as far as possible.

(a) Geographical area likely to have positive or negative impact of the implementation of the proposal and thereof time-schedule.

(b) Impact of waste and pollution to be emitted through the implementation of the proposal.

(c) Direct or indirect and cumulative impact of the implementation of the proposal on the environment.

7. Analysis of the alternatives for the proposal: The following matters are to be analyzed:

(a) Matters concerning the design of the proposal, project site, technology, operation procedure, time –schedule and raw materials to be used.

(b) Comparison is to be made on the basis of the fixed and working capital, local suitability, institutional training and supervision needed for the implementation of the proposal, and the

environmental cost and returns and economic significance of each alternative measures are to be analyzed as far as possible.

(c) Short, medium and long – term adverse impact of the implementation of the proposal.

(d) Sources of energy to be used for the implementation of the proposal and measures to be adopted for saving such energy.

(e) Analysis of the consequences of the non- implementation of the proposal.

8. Measure to reduce environmental impact:

(a) To mention practical preventive measures to be adopted for all activities which could have a negative impact on the environment.

(b) In case the environmental impact cannot be fully avoided through preventive measures, arrangements made for payments of compensation shall be mentioned. The effectiveness of the preventive measures shall be analyzed from the view point of their cost on the basis of the comparison with other possible alternatives.

(c) The effectiveness of the preventive measures shall be analyzed from the viewpoint of their cost on the basis of a comparison with other possible alternatives.

9. To mentioned matters concerning environmental management plans.

10. Review of policy and Legal Provisions: To review the related policies, laws, and Rules on the basis of the nature and scale of the proposal. If any policy or legal provision, needs to e reformed, to specify the same.

11. Monitoring of the Proposal: To mention the procedure of monitoring the impact of the implementation of the proposal on the environment, as well as the monitoring agency, time-schedule, monitoring and evaluation Indicators etc.

12. To mention the format and relevancy of environmental examinations.

13. Reference materials: To make at list of publications quoted as references while preparing the report in the following manner:

(a) Author,

(b) Date of Publication,

(c) Title of the material quoted,

- (d) Year volume, number, etc. (if any)
- (e) Page number

14. To include the following particulars in the Annexes:

(a) Maps relating to the land structure, geographical location, land-use and land-capacity and other maps related to the study.

(b) Aerial photographs as far as possible of the proposal implementation site and the surrounding areas,

(c) Questionnaires or lists of Subject matters used for field research.

(d) Matters connected with the evaluation of the environmental impact such as charts and photographs.

(e) Hydrological and climatic data (by arranging them serially and chronologically)

(f) Data relating to flora and fauna of the proposal implementation site,

(g) Geological and risk evaluation data (if available),

(h) Information relating to the quality of air and water and the noise level before and after the operation of the project it available.

(i) Matrix or serial graphs relevant to the environmental impact assessment.

(j) Maps, slides records, video films and visual support equipments.

(k) Cropping techniques and data relating to livestock farming, soil features, and quantity of chemical fertilizers used.

(l) List of written reference materials used at the time of preparing the study report.

(m) List of invitees and participants and records of discussions, meetings and gathering among the

concerned agencies, and brief particular of monitoring operations.(n) List of names of individuals and institutions comprising of the study team involved in the preparation of the environmental impact assessment report.

(o) Name, address and telephone number of the individuals and institutions contacted in the course of the study.

Chapter 5 Zero Option

If there are no hydroelectric power projects in Nepal, Solar Power, Wind Power, Thermal Power would be the alternative generation source. Followings show the possibility of the alternative source in Nepal. All of them can be the generation source to some extent, but cannot be stable and low cost energy supply to fulfill the energy demand.

5.1 Solar Power Generation

Since the generation cost by solar power is considerably high at the present time, construction of a number of large-scale solar power generation facilities that are connected to the integrated power system is considered to be unfeasible for the time being. On the other hand, it is suitable for electrification of each house/facility and the power source for street light. However, solar power generation facilities are not able to produce electricity during the night and their output fluctuate depending on the intensity of sunlight, electric storage devices like rechargeable batteries should be combined with them.

5.2 Wind Power Generation

Since there are many examples in many countries and its generation cost is relatively modest, wind power generation is one of promising power generation method as one of power sources that are to be connected to the integrated power system. However, since its output largely fluctuates depending on wind conditions and power generation responding the demand is difficult, the rate of its installed capacity in the power system has an upper limit. In addition, when it is used alone or in a small-scale rural power grid, electric storage devices like rechargeable batteries are required for stable power supply.

5.3 Thermal Power Generation (Diesel or Gas Turbine)

Thermal power generation is not affected by the nature and excellent in responding to the demand fluctuation, but it will be used only for the power source in emergency in Nepal. And generation cost would be high and CO_2 emission would be highest. It does not have any plan to construct a new thermal electric power plant at present.

	Hydropower	Solar Power	Wind Power	Thermal Power (Diesel, gas turbine)
Domestic potential	42,000 MW	2,100 MW ¹⁾ (grid connected)	3,000 MW ¹⁾	
Responsiveness to demand	Fair (ROR-type is inferior to storage-type)	Poor (Fair if electric storage devises are used)	Poor (Fair if electric storage devises are used)	Good
Generation Cost (Rs/kWh)	ROR (NEA): 3.1 ²⁾ ROR (IPP): 5.4 - 6.5 ²⁾ Storage (NEA): 5.0 ²⁾	Household use: 28 - 32 ³⁾ Mega solar: 20 - 40 ³⁾	8 - 15 ³⁾	Diesel (NEA): 27 ²⁾
Impact on Environment	Fair (Storage-type is inferior to ROR-type)	Good	Good	Poor
Expected Role	 Main power source for the national grid Rural electrification by mini/micro hydro 	 Rural electrification of each household/public facility Street light, etc. 	 Power source for the national grid Rural electrification 	- Emergency power source

 Table 5.3-1
 Comparison of Electric Power Generation Methods in Nepal

1) Alternative Energy Promotion Centre, Nepal.

2) Estimated by JICA Study Team

3) National Policy Unit, Japan. 2010 price, on the assumption that JPY 1.0 = Rs. 0.85.

Chapter 6 First Step

6.1 **Project description**

At the first step 67 Potential Projects (see Table 6.1-1) are examined. 65 projects were listed by NEA in December 2009 and two projects (C-19: Baghmati Multipurpose and W-27: Nisti-Panah) were added by NEA's request in January 2012. These are briefly examined on the desk study.

	Eastern River Basi	n		Central River Basi	n		Western River Bas	in
No.	Project Name	Capacity (MW)	No.	Project Name	Capacity (MW)	No.	Project Name	Capacity (MW)
E-01	Dudh Koshi	300.0	C-01	Kaligandaki-Modi	816.4	W-01	Barbung Khola	122.9
E-02	Dudh Koshi-2	456.6	C-02	Lower Badigad	380.3	W-02	Chera-1	148.7
E-03	Dudh Koshi-3	1,048.6	C-03	Lower Daraudi	120.2	W-03	Chera-2	104.3
E-04	Dudh Koshi-4	1,603.0	C-04	Seti-Trisuli	128.0	W-04	Humla-Karnali	467.1
E-05	Khimti	128.1	C-05	Upper Daraudi	111.4	W-05	Lower Jhimruk	142.5
E-06	Kokhajor-1	111.5	C-06	Kaligandaki-2	660.0	W-06	M adi	199.8
E-07	Likhu-1	91.2	C-07	Budhi Gandaki	600.0	W-07	Mugu Karnali	3,843.8
E-08	Mulghat	2,647.7	C-08	Andhi Khola	180.0	W-08	Sani Bhari-1	763.5
E-09	Piluwa-2	107.3	C-09	Langrang Khola	218.0	W-09	Sani Bhari-2	646.9
E-10	Rosi-2	106.5	C-10	Uttar Ganga	300.0	W-10	Sharada-2	96.8
E-11	Sankhuwa-1	176.0	C-11	M adi-Ishaneshor	86.0	W-11	Thuli Gad-2	119.7
E-12	Tama Koshi-3	330.0	C-12	Kali Gandaki No.1	1,500.0	W-12	Tila-1	617.2
E-13	Tamor No.1	696.0	C-13	M arsy angdi	510.0	W-13	Tila-3	481.9
E-14	Tamor (Terahathum)	380.0	C-14	Seti (Gandaki)	230.0	W-14	Thuli Gad	120.0
E-15	Sun Koshi No.1	1,357.0	C-15	Dev Ghat	150.0	W-15	LR-1	98.0
E-16	Sun Koshi No.2	1,110.0	C-16	Bhomichok	200.0	W-16	BR-3B	801.0
E-17	Sun Koshi No.3	536.0	C-17	Trishulganga	1,500.0	W-17	BR-4	667.0
E-18	Sun Koshi No.3	432.0	C-18	Ridi Khola	97.0	W-18	Surkhet	600.0
E-19	Sun Koshi No.3	190.0	C-19	Bagmati MP *	140.0	W-19	Lakarpata	1,200.0
E-20	Indrawati	91.2				W-20	Bhanakot	810.0
E-21	Kankai	90.0				W-21	Thapna	500.0
						W-22	SR-6	642.0
						W-23	Nalsyagu Gad	400.0
						W-24	Sarada Babai	75.0
						W-25	Naumure (W. Rapti)	245.0

Table 6.1-1	Potential Projects (67	projects) in the First Step
-------------	------------------------	-----------------------------

*: Added in January 2012.

W-26 Lohare Khola W-27 Nisti-Panah * 67.0

90.4

6.2 Screening items and methods

First step aims to exclude projects deemed inappropriate as candidates of evaluation in the Study. Following three conditions are adopted for screening. The information used for the screening is NEA consultation, previous project report, and previous master plan study report given by NEA. Site survey and additional document survey was not conducted for the First Step.

(1) On-going Projects

The evaluation of the projects in Detail Design / Feasibility Study was deemed not useful. Then these projects were excluded from the project to be evaluated in the Study. However, these projects were taken into consideration in the Master Plan that was prepared in the final stage of this study.

(2) Overlapped Project

The locations of some projects are about the same with other project. These duplicated projects were excluded.

(3) Not appropriate as Storage-type Hydroelectric Power Projects

From the viewpoints of installed capacity, dam height, project cost, regulating capacity of

reservoir³, number of submerging households, etc., projects that were deemed inappropriate as a storage-type hydroelectric power project in Nepal were excluded.

Items	Screening condition	Reason				
Installed Capacity	More than 1,000 MW	It is too big because the total installed capacity of Nepal at the end of FY2010/11 was about 700 MW and that the power demand in FY2027/28 forecasted by NEA is about 3,700 MW.				
Dam Height	Higher than 300m	It is too high because the maximum dam height in the world as of January 2012 was 300 m (Nurek dam in Tajikistan).				
Project Cost	More than US\$ 2 billion	It is too expensive because the national budget of Nepal in FY2009/10 was about US\$ 4.5 billion and the current project costs are higher than those at the time point of cost estimation.				
Regulating Capacity ⁴ of Reservoir	Less than 5%	It will not work effectively for dry season energy. The main role of projects in this study is seasonal regulation of river flow, that is to store excess river flow in the rainy season and to discharge the stored water in the dry season.				
Number of Submerging Households	More than 5,000 households	It is too big, because resettlement issues might be biggest obstacles for development.				
National Park and Protected Area	Projects that located in the area stipulated in "National Parks and Wildlife Conservation Act, 2029"	JICA Guidelines for Environmental and Social Considerations (April 2004) stipulates as follows: "Projects must, in principle, be undertaken outside protected areas that are specifically designated by laws or ordinances of the governments for conservation of nature or cultural heritage."				
World Heritage	Projects that located in world heritages	Ditto				

Table 6.2-1	Screening Condition	for Not Appropriate	Projects
		rrrrr	

6.3 Screened projects

36 projects are excluded from 67 Potential Projects. All the excluded projects are summarized in Table 6.3-1.

(1) On-going Projects

Five projects which are in the stage of Detailed Design, Feasibility/Pre-Feasibility Study are excluded. Names of the projects are as follows.

³ Regulating capacity of reservoir (%) = (Effective storage volume of reservoir) / (Annual inflow) \times 100

⁴ In Japan, one of definitions of storage-type is the regulating capacity more than 20%. Regulating capacity of ROR-type is about 0%.

Project in Detailed Design Stage

C-07: Budhi Gandaki (600 MW)

Projects on which FS or Pre-FS is in progress

- E-14: Tamor (Terahathum) (530 MW)
- C-06: Kaligandaki-2 (660 MW)
- C-19: Bagmati Multipurpose (140 MW)
- W-27: Nisti-Panah (90.4 MW)
- (2) Overlapped Project

Five projects are excluded because of duplication of the location. Followings are the name of the projects.

E-13: Tamor No. 1 (696 MW)
Tamor No. 1 was excluded and E-14: Tamor (Terahathum) (530 MW) was adopted because the study of Tamor (Terahathum) project was conducted later than Tamor No. 1.

E-18: Sun Koshi No. 3 (432 MW) and E-19: Sun Koshi No. 3 (190 MW)

These two projects were excluded and E-17: Sun Koshi No. 3 (536 MW) was adopted because this alternative is the optimum development plan in "Master Plan Study on the Koshi River Water Resources Development" (March 1985, JICA).

C-14: Seti (Gandaki) (230 MW) This project was excluded because its location overlaps with Upper Seti projects that is now in the detailed design stage.

- W-14: Thuli Gad (120 MW)Thuli Gad was excluded and W-11: Thuli Gad -2 (119.7 MW) was adopted because the study of Thuli Gad -2 projects was conducted later than Thuli Gad.
- W-15: LR-1 (98 MW)
 LR-1 was excluded and W-26: Lohare Khola (67 MW) was adopted because the study of Lohare Khola project was conducted later than LR-1.
- (3) Not appropriate Projects

36 projects are excluded from the viewpoints of installed capacity, dam height, project cost, regulating capacity of reservoir⁵, number of submerging households, etc.

⁵ Regulating capacity of reservoir (%) = (Effective storage volume of reservoir) / (Annual inflow) \times 100

Installed Capacity

Projects whose installed capacity was more than 1,000 MW were excluded taking into consideration that the total installed capacity of Nepal at the end of FY2010/11 was about 700 MW and that the power demand in FY2027/28 forecasted by NEA is about 3,700 MW. The projects excluded are as follows (see the column C of Table 6.3-1).

- E-03: Dudh Koshi-3 (1,048.6 MW)
- E-04: Dudh Koshi-4 (1,603 MW)
- E-08: Mulghat (2,647.7 MW)
- E-15: Sun Koshi No. 1 (1,357 MW)
- E-16: Sun Koshi No. 2 (1,110 MW)
- C-12: Kali Gandaki No. 1 (1,500 MW)
- C-17: Trishulganga (1,500 MW)
- W-07: Mugu Karnali (3,843.8 MW)
- W-19: Lakarpata (1,200 MW)

Dam Height

Projects whose dam height was higher than 300 m were excluded taking into consideration that the maximum dam height in the world as of January 2012 was 300m (Nurek dam in Tajikistan). The projects excluded are as follows (see the column D of Table 6.3-1).

- E-03: Dudh Koshi-3 (357m)
- E-04: Dudh Koshi-4 (425m)
- W-07: Mugu Karnali (694m)
- W-08: Sani Bhari-1 (417m)
- W-09: Sani Bhari-2 (330m)
- W-13: Tila-3 (338m)

Project Cost

Projects whose project cost at the estimated point of time was more than US\$ 2 billion were excluded taking into consideration that the national budget of Nepal in FY2009/10 was about US\$ 4.5 billion and the current project costs are higher than those at the time point of cost estimation. The projects excluded are as follows (see the column E of Table 6.3-1).

- E-03: Dudh Koshi-3 (US\$ 2.26billion)
- E-04: Dudh Koshi-4 (US\$ 2.87 billion)
- E-08: Mulghat (US\$ 2.37 billion)
- W-07: Mugu Karnali (US\$ 4.78 billion)

Regulating Capacity of Reservoir

Projects whose regulating capacity of reservoir was less than $5\%^6$ were excluded taking into consideration that the main role of projects in this Study is seasonal regulation of river flow that is to store excess river flow in the rainy season and to discharge the stored water in the dry season. The projects excluded are as follows (see the column F of Table 6.3-1).

- E-05: Khimti (2.91%)
- E-07: Likhu-1 (2.87%)
- E-15: Sun Koshi No. 1 (0.19%)
- C-04: Seti-Trisuli (2.56%)
- C-15: Dev Ghat (0.32%)
- C-16: Bhomichok (0.07%)
- W-04: Humla-Karnali (2.73%)
- W-13: Tila-3 (2.13%)

Number of Submerging Households

Since large number of relocation of households has a serious impact on the social environment of the project area, projects that required more than 5,000 households of submergence were excluded. The projects excluded are as follows (see the column G of Table 6.3-1).

- E-21: Kankai (11,700)
- C-06: Kaligandaki-2 (7,000)
- C-13: Marsyangdi (5,170)
- W-16: BR-3B: (9,270)
- W-18: Surkhet (6,600)
- W-19: Lakarpata (20,400)

National Park and Protected Area⁷

Projects that located in the area stipulated in "National Parks and Wildlife Conservation Act, 2029" were excluded. The projects excluded are as follows (see the column H of Table 6.3-1).

- E-11: Sankhuwa-1 (Makalu-Barun Conservation Area)
- C-09: Langtang Khola (Langtang National Park)
- C-10: Uttar Ganga (Dhorpatan Hunting Reserve)

⁶ In Japan, one of definitions of storage-type is the regulating capacity more than 20%. Regulating capacity of ROR-type is about 0%.

⁷ JICA Guidelines for Environmental and Social Considerations (April 2004) stipulates as follows: "Projects must, in principle, be undertaken outside protected areas that are specifically designated by laws or ordinances of the governments for conservation of nature or cultural heritage."

World Heritage

Projects that located in world heritages were to be excluded. However, there was no project in Table 6.3-1 that locates in a world heritage.

Table 6.3-1 Screening of the Potential Projects

		1				Excluded from	n Obiect of Evalua	ation		
			Α	В	С	D	E	F	G	Н
No.	Project Name	Selected Candidate Project	DD, FS or Pre FS Stage	Overlap with Other Project	Installed Capacity > 1,000MW	Dam Height > 300m	Project Cost > US\$2,000M	Regulating Capability Factor < 5%	Submerging Houses > 5,000	National Parks and Wildlife Conservation Act
E-01	Dudh Koshi	√								
E-02	Dudh Koshi-2	√ **						<u>3.50</u>		
E-03	Dudh Koshi-3				1,048.6	357.0	2,264.3			
E-04	Dudh Koshi-4				1,603.0	425.0	2,872.6	2.01		
E-05	Khimti Kalahaiar 1							2.91		
E-00	Likhu-1							2.87		
E-08	Mulghat				2.647.7		2.368.1	2.07		
E-09	Piluwa-2	√			2,0111		2,00011			
E-10	Rosi-2	√								
E-11	Sankhuwa-1									Conservation Area
E-12	Tama Koshi-3	✓								
E-13	Tamor No.1			with E-14						
E-14	Tamor (Terahathum)		Pre FS		1.057.0			0.10		
E-15	Sun Koshi No.1				1,357.0			0.19		
E-16 E-17	Sun Koshi No.2 Sun Koshi No.3 (536 MW)				1,110.0					
E-17	Sun Koshi No 3 (432 MW)	,		with E-17						
E-18	Sun Koshi No.3 (190 MW)			with E-17						
E-20	Indrawati	✓		with E 17						
E-21	Kankai								11,700	
C-01	Kaligandaki-Modi	√							,	
C-02	Lower Badigad	√								
C-03	Lower Daraudi	\checkmark								
C-04	Seti-Trisuli							2.56		
C-05	Upper Daraudi	√								
C-06	Kaligandaki-2		FS						7,000	
C-07	Budhi Gandaki		DD							
C-08	Andhi Khola	v								National Dark
C-10	Langrang Knota Uttar Ganga									Hunting Reserve
C-11	Madi-Ishaneshor	✓								Hunting Reserve
C-12	Kali Gandaki No.1				1,500.0					
C-13	Marsyangdi								5,170	
C-14	Seti (Gandaki)			with Upper Seti						
C-15	Dev Ghat							0.32		
C-16	Bhomichok							0.07		
C-17	Trishulganga				1,500.0					
C-18	Ridi Khola	~	EC							
U-19	Bagman MP *	√ **	F5					2 75		
W-01 W-02	Chera-1	✓ ···						<u>2.75</u>		
W-03	Chera-2	✓								
W-04	Humla-Karnali							2.73		
W-05	Lower Jhimruk	✓								
W-06	Madi	✓								
W-07	Mugu Karnali				3,843.8	694.0	4,868.1			
W-08	Sani Bhari-1	ļ				417.0				
W-09	Sani Bhari-2 Shorada 2					330.0				
W-10	Snarada-2 Thuli Gad 2	✓ ✓								
W-11 W-12	Tila-1	↓ ↓ ✓								
W-13	Tila-3					338.0		2.13		
W-14	Thuli Gad	1		with W-11		550.0		2.13		
W-15	LR-1	1		with W-26						
W-16	BR-3B								9,270	
W-17	BR-4	✓								
W-18	Surkhet								6,600	
W-19	Lakarpata				1,200.0				20,400	
W-20	Bhanakot	√					ļ			
W-21	Thapna	✓ ✓								
W-22	SK-6	✓ 	┠───┤							
W-23	Ivalsyagu Gau Sarada Babai	× 								
W-24	Salada Dabal Naumure (W. Ranti)	↓ ↓ ✓								
W-26	Lohare Khola	· ·								
W-27	Nisti-Panah *	1	Pre FS		1					

* : Added in January 2012** : These projects are not excluded from the objects of evaluation because of the request by NEA.

43

Chapter 7 Second Step

7.1 **Project Description**

At the second step, 31 Candidate Projects (See Figure 7.1-1 and Table 7.1-1) are examined. These 31 projects are selected from 67 Potential Projects. These are examined on the detail desk study.

Figure 7.1-1 Location of Candidate Projects on the Second Step

No.	Project Name	River	Installed	Total	Dry	Reservoir	FSL			
			Capacity	Energy	Energy	Area	(m)			
			(MW)	(GWh)	(GWh)	(km ²)				
E-01	Dudh Koshi	Dudh Koshi to	300.0	1,864.6	821.3	11.05	580.0			
		Baiku Khola								
E-02	Dudh Koshi-2	Dudh Koshi	456.6	2,225.5	617.5	5.22	907.0			
E-06	Kokhajor-1	Kokhajor	111.5	270.7	124.1	8.92	437.0			
E-09	Piluwa-2	Piluwa	107.3	152.9	83.0	1.37	624.0			
E-10	Rosi-2	Roshi	106.5	334.1	117.8	4.31	734.0			
E-12	Tama Koss-3	Tamakoshi	287.0	1,325.3	468.8	5.84	965.0			
E-17	Sun Koshi No.3	Sun Koshi	432.0	1,419.0	300.5	23.99	670.5			
E-20	Indrawati	Indrawati	91.2	954.0	542.4	12.75	724.0			
C-01	Kaligandaki-Modi	Confluence of	816.4	3,477.4	709.3	16.34	839.0			
		Karigandaki and								
		Modi								
C-02	Lower Badigad	Badigad	380.3	1,354.4	486.8	13.65	688.0			
C-03	Lower Daraudi	Daraudi	120.2	251.7	126.8	17.28	411.0			
C-05	Upper Daraudi	Daraudi	111.4	217.7	116.7	4.14	673.0			
C-08	Andhi Khola	Andhi Khola	180.0	431.5	191.0	5.52	675.0			
C-11	Madi- Ishaneshor	Madi	86.0	393.3	103.5	5.35	590.0			
C-18	Ridi Khola	Ridi	97.0	255.3	133.7	9.37	770.0			
W-01	Barbung Khola	Barbung	122.9	683.5	227.1	2.21	3,246.0			
W-02	Chera-1	Chera	148.7	557.8	166.2	4.00	866.0			
W-03	Chera-2	Chera	104.3	402.6	117.7	6.85	753.0			
W-05	Lower Jhimruk	Jhimruk	142.5	456.3	163.4	4.98	597.0			
W-06	Madi	Madi	199.8	642.9	256.4	7.66	1,090.0			
W-10	Sharada - 2	Sharada	96.8	455.6	159.6	5.38	568.0			
W-11	Thuli Gad - 2	Thuligad	119.7	513.5	157.9	5.42	765.0			
W-12	Tila - 1	Tila	617.2	2,428.7	642.9	5.55	2,089.0			
W-17	BR-4	Bheri	667.0	3,315.3	1,479.8	100.64	794.0			
W-20	Bhanakot	Karnali	810.0	7,042.2	4,089.3	50.29	1,080.0			
W-21	Thapna	Bheri	500.0	3,450.5	1,894.4	81.35	740.0			
W-22	SR-6	Seti (West)	642.0	3,284.1	1,425.5	51.20	603.0			
W-23	Nalsyau Gad	Nalsyau Gad	400.0	795.2	248.5	2.66	1,525.0			
W-24	Sarada Babai	Sarada & Babai	75.0	202.0	92.6	7.50	730.0			
W-25	Naumure (W. Rapti)	West Rapti	245.0	1,165.1	425.2	19.76	517.0			
W-26	Lohare Khola	Lohare	67.0	292.7	100.9	16.03	780.0			

 Table 7.1-1
 Candidate Project at the Second Step (31 projects)

7.2 Scoping and Evaluation Methods

The second step aims to select the Promising 10 projects from Candidate 31 projects. The Multi Criteria Analysis (MCA) was adopted for evaluation of the candidate projects in the second stage. 21 items are used for the evaluation. Sensitivity analysis is also done for other two cases. The data used for evaluation are existing project documents, geological map, topographical map, land-use map,

Protected area map and so on. No site survey is conducted for the Second Step. Followings are evaluation methods and scoring criteria used for each items.

- (1) Evaluation Items and Methods
 - 1) Hydrology

a. Reliability of Flow Data

NEA has estimated the flow of the project by two kinds of methods. In the case there is a gauging station near the project site, the flow of the project is estimated by using the gauged flow data. In the case that there is no gauging station near the project site, the flow of the project is estimated by Regional Analysis. Regional Analysis is a method to estimate the flow using correlation equations, which were derived by the correlation among flow, catchment area and precipitation intensity based on the flow data and precipitation data gauged at gauging stations and meteorological observatories whole of the country.

In this study the flow data at the 75 gauging stations in which gauging period is more than 10 years was adopted considering reliability of flow data. The flow data used for electric energy calculation was for the latest ten years.

Figure 7.2-1 shows the location of gauging stations reviewed. Table 7.2-1 show the specification of these gauging stations.

Figure 7.2-1 Location of Gauging Stations Selected for Energy Calculation

No	CS No	Name of Diver	Location	Latitude	Longitude	Elevation	Drainage Area	Gau	ging P	eriod
190.	US INU.	Name of Kiver	Location	Ν	Е	(m)	(km ²)	From	То	Period
1	120	Chamelia	Nayalbadi	29 40 20	80 33 30	685	1,150	1965	2006	42
2	170	Sumayagad	Patan	29 27 30	80 33 23	1,110	188	1966	1987	22
3	215	Karnali	Lalighat	29 09 32	81 35 28	590	15,200	1977	2006	30
4	220	Tilanadi	Nagma	29 06 26	81 40 49	1,935	1,870	1973	2006	34
5	225	Sinjhakhola	Diware	29 12 00	81 55 00	1,943	824	1967	2006	40
6	240	Karnali	Asaraghat	28 57 10	81 26 30	629	19,260	1962	2006	45
7	250	Karnali	Benighat	28 57 40	81 07 10	320	21,240	1963	2006	44
8	259.2	Seti	Gopaghat	29 18 00	80 46 30	756	4,420	1986	2006	21
9	260	Seti	Bangga	28 58 40	81 08 40	328	7,460	1963	2006	44
10	265	Thulo Bheri	Rimna	28 42 47	82 17 00	550	6,720	1977	2006	30
11	269.5	Bheri	Sanaijighat	28 31 02	81 39 25	500	12,200	1992	2006	15
12	270	Bheri	Jamu	28 45 20	81 21 00	246	12,290	1963	2006	44
13	280	Karnali	Chisapani	28 38 40	81 17 30	191	42,890	1962	2006	45
14	286	Saradakhola	Daradhunga	28 17 58	82 01 30	579	816	1972	2006	35
15	289.95	Babai	Chepang	28 21 04	81 43 14	325	2,557	1990	2006	17
16	290	Babai	Bargadha	28 25 20	81 22 10	192	3,000	1967	1987	21
17	330	Marikhola	Nayagaon	28 04 20	82 48 00	536	1,938	1965	2006	42
18	339.5	Jhimrukkhola	Chernata	28 03 00	82 49 40	762	683	1971	1995	25
19	350	Rapti	Bagasotigaon	27 51 12	83 47 34	381	3,380	1976	2006	31
20	360	Rapti	Jalkundi	27 56 50	82 13 30	218	5,150	1964	2006	43
21	404.7	Mayagdi Khola	Mangalghat	28 21 10	83 31 16	914	1,112	1976	2006	31
22	406.5	Modikhola	Nayapul	28 15 15	83 43 27	701	601	1976	2006	31
23	410	Kali Gandaki	Setibeni	28 00 14	83 36 31	546	6,630	1964	1995	32
24	415	Adhikhola	Andhimuhan	27 58 28	83 35 58	543	476	1964	1991	28
25	419.1	Kali Gandaki	Ansing	27 53 05	83 47 42	351	10,020	1996	2006	11
26	420	Kali Gandaki	Kotagaun	27 45 00	84 20 50	198	11,400	1964	2006	43
27	428	Mardikhola	Lahachowk	28 18 02	83 55 06	915	160	1974	1995	22
28	430	Seti	Phoolbari	28 14 00	84 00 00	830	582	1964	1984	21
29	438	Madi	Shisaghat	28 06 00	84 14 00	457	858	1975	2006	32
30	439.3	Khudikhola	Khudibazar	28 17 12	84 21 27	990	151	1983	1995	13
31	439.7	Marshyandi	Bimalnagar	27 57 00	84 25 48	354	3,774	1987	2006	20
32	439.8	Marshyandi	Goplingghat	27 55 35	84 29 42	320	3,850	1974	1986	13
33	440	Chepekhola	Gharmbesi	28 03 41	84 29 23	442	308	1964	2006	43
34	445	Burhi Gandaki	Arughat	28 02 37	84 48 59	485	4,270	1964	2006	43
35	446.8	Phalankhukhola	Brtrawati	27 58 25	85 11 15	630	162	1971	1995	25
36	447	Trishuli	Betrawati	27 58 08	85 11 00	600	4,110	1977	2006	30
37	448	Tadi	Belkot	27 51 35	85 08 18	475	653	1969	2006	38
38	449.91	Trishuli	Kalikhola	27 50 08	84 33 12	220	16,760	1994	2006	13
39	450	Narayani	Devghat	27 42 30	84 25 50	180	31,100	1963	2006	44
40	460	Rapti	Rajaiya	27 26 50	84 58 26	332	579	1963	2006	44
41	465	Manaharikhola	Manahari	27 32 37	84 49 03	305	427	1964	2006	43
42	470	Lotharkhola	Lothar	27 35 14	84 44 07	336	169	1964	2004	41
43	505	Bagmati	Sundarijal	27 46 49	85 25 36	1,600	17	1963	2006	44
44	530	Bagmati	Gaurighat	27 42 35	85 21 10	1,300	68	1991	2006	16
45	536.2	Bishnumati	Budhanilkantha	27 46 54	85 21 25	1,454	4	1969	1985	17
46	540	Nakhukhola	Tika Bhairab	27 34 30	85 18 50	1,400	43	1963	1980	18
47	550	Bagmati	Chovar	27 39 40	85 17 50	1,280	585	1963	1980	18
48	550.05	Bagmati	Khokana	27 37 44	85 17 41	1,250	658	1992	2006	15
49	560	Thadokhola	Darkot-Markhu	27 36 20	85 09 00	1,830	14	1964	1976	13
50	570	Kulekhanikhola	Kulekhani	27 35 10	85 09 30	1.480	126	1963	1977	15

Table 7.2-1	List of Gauging Stat	ions Selected for	Energy Calculation	(1/2)

N	CG N	N (D)	T (Latitude	Longitude	Elevation	Drainage Area	Gau	ging P	eriod
NO.	GS NO.	Name of River	Location	Ν	Е	(m)	(km ²)	From	То	Period
51	589	Bagmati	Padharadoven	27 09 06	85 29 30	180	2,700	1979	2006	28
52	590	Bagmati	Karmaiya	27 08 22	85 29 22	177	2,720	1965	1979	15
53	600.1	Arun	Uwagaun	27 35 21	87 20 22	1,294	26,750	1985	2006	22
54	602	Sabayakhola	Tumilingtar	27 18 36	87 12 45	305	375	1974	2006	33
55	602.5	Hinwakhola	Pipaltar	27 17 45	87 13 30	300	110	1974	2006	33
56	604.5	Arun	Turkighat	27 20 00	87 11 30	414	28,200	1975	2006	32
57	606	Arun	Simle	26 55 42	87 09 16	152	30,380	1986	2006	21
58	610	Bhotekosi	Barbise	27 47 18	85 53 55	840	2,410	1965	2006	42
59	620	Balephi	Jalbire	27 48 20	85 46 10	793	629	1964	2006	43
60	627.5	Melamchi	Helambu	28 02 21	85 32 07	2,134	84	1990	2006	17
61	630	Sunkosi	Pachuwarghat	27 33 30	85 45 10	602	4,920	1964	2006	43
62	640	Rosikhola	Panauti	27 34 50	85 30 50	1,480	87	1964	1987	24
63	647	Tamakosi	Busti	27 38 05	86 05 12	849	2,753	1971	2006	36
64	650	Khimtikhola	Rasnalu	27 34 30	86 11 50	1,120	313	1964	2006	43
65	652	Sunkosi	Khurkot	27 20 11	86 00 01	455	10,000	1968	2006	39
66	660	Likhu	Sangutar	27 20 10	86 13 10	543	823	1964	2006	43
67	668.5	Solukhola	Salme	27 30 03	86 34 52	1,800	246	1987	2006	20
68	670	Dudhakosi	Rabuwabazar	27 16 14	86 40 02	460	4,100	1964	2006	43
69	680	Sunkosi	Kampughat	26 52 28	86 49 10	200	17,600	1966	1985	20
70	681	Sunkosi	Hampchuwar	26 55 15	87 08 45	150	18,700	1991	2006	16
71	684	Tamur	Majhitar	27 09 30	87 42 45	533	4,050	1996	2006	11
72	690	Tamur	Mulghat	26 55 50	87 19 45	276	5,640	1965	2006	42
73	695	Saptakosi	Chatara	26 52 00	87 09 30	140	54,100	1977	2006	30
74	728	Maikhola	Rajdwali	26 52 45	87 55 45	609	377	1983	2006	24
75	795	Kankai	Mainachuli	26 41 12	87 52 44	125	1,148	1972	2006	35

Source: Stream flow summary (1962-2006), October 2008, DHM

NEA has calculated the monthly flow data by Regional Analysis using the flow data before 1990 and the Monsoon Wetness Isolines based on the precipitation before 1984. In this study the Study Team revised the calculation formula for monthly flow as follows using the flow data before 2006 and precipitation before 2010. Figure 7.2-2 shows Monsoon Wetness Index Isolines revised based on the monthly average precipitation data before 2010.

January:	$Q = 0.0249 \times A^{0.8847}$
February:	$Q = 0.0203 \times A^{0.892}$
March:	$Q = 0.0178 \times A^{0.9039}$
April:	$Q = 0.0163 \times A^{0.9345}$
May:	$Q = 0.0188 \times A^{0.9748}$
June:	$Q = 0.01682 \times A^{0.23219} \times MWI^{0.521437}$
July:	$Q = 0.00256 \times A^{0.892982} \times MWI^{0.62385}$
August:	$Q = 0.005817 \times A^{0.889299} \times MWI^{0.541055}$
September:	$Q = 0.004677 \times A^{0.877219} \times MWI^{0.535014}$
October:	$Q = 0.00304A \times {}^{0.863316} \times MWI^{0.497909}$
November:	$Q = 0.001422 \times A^{0.873818} \times MWI^{0.491577}$
December:	$Q = 0.000995 \times A^{0.88672} \times MWI^{0.470822}$

Figure 7.2-2 Monsoon Wetness Index Isolines

The gauged flow data is more reliable than the calculated flow data. Therefore, the Study Team decided the criterion for the reliability of flow data to evaluate the potential projects by the estimation measures of flow data as Table 7.2-2.

The project in which the flow data is gauged for 10 years is considered as Low Risk. Its score is 100.

The project in which the flow data is gauged for 10 years but there are some missing data is considered as Medium Risk. Its score is calculated by the following formula.

Medium Risk Score = $100 \times Number$ of existing data / (12 months \times 10 years)

The project in which the flow data is calculated by calculation formula derived from the flow data gauged in the all gauging stations of Nepal is considered as High Risk. Its score is 0.

Flow Data	Estimated by the formula derived from the flow data gauged in the all gauging stations of Nepal	Gauged at the site but there are some missing data	Gauged at the site for 10 years
Score	0	$\frac{100 \times \text{Number of existing data /}}{(12 \text{ months} \times 10 \text{ years})}$	100

 Table 7.2-2
 Evaluation Criterion for Reliability of Flow Data

b. Risk of GLOF

When glacial lake outburst flood (GLOF) occurs in the upstream basin of the project site, GLOF may damage the hydroelectric power stations.

As shown in the main report, according to the report by ICIMOD, 21 potentially critical glacial lakes in Nepal are identified.

Therefore, the Study Team decided the evaluation criterion for risk of GLOF to evaluate the potential projects by the number of potentially critical glacial lakes upstream of the project site as Table 7.2-3.

The project where there is no potentially critical glacial lake upstream basin is considered as No Risk. Its score is 100.

The project where there is at least a potentially critical glacial lake upstream basin is considered as Risky. The 21 potentially critical glacial lakes are categorized into I, II, III. The project where the potentially critical glacial lake is category III is considered as Low Risk. Its score is 40. The project where the potentially critical glacial lake is category II is considered as Medium Risk. Its score is 20. The project where the potentially critical glacial lake is category I is considered as High Risk. Its score is 0.

Table 7.2-3Evaluation Criterion for Risk of GLOF

Number of glacial lakes identified as			One or more	
"potentially critical" by ICIMOD located along the upper reaches of the dam	None	Low risk	Medium risk	High risk
Score	100	40	20	0

c. Sedimentation

Sediment phenomena progresses and it reduces effective storage capacity between FSL and MOL. In this stage, reservoir storage effect to regulate river water is reduced, and consequently the power plant cannot generate energy as expected at the planning stage. In the case the sediment reaches to the intake and the level reaches the intake sill, the power plant faces a problem to stop the generation because of intrusion of sediment to the waterway.

Life of reservoir is an index to show the sediment impact to reservoir. It means how long years the reservoir become full by sediment yield. Life reservoir is equal to storage of reservoir divided by mean annual sediment yield.

Since the expected life of power station is 50 years, life of reservoir is required to be more than 50 years. The project in which life of reservoir is less than 50 years is considered as High Risk. Its score is 0. The life of reservoir of Low Risk project is decided to be 100 years. Its score is 100. The life of reservoir in the Medium Risk project is more than 50 years and less than 100 years. The score is calculated by proration. Table 7.2-4 shows the evaluation criterion for sedimentation.

If the sediment yield of a project is estimated, the sediment yield was adopted. However, unless the sediment yield of a project is estimated, the sediment yield was calculated using the specific sediment yield of 3 areas of Nepal, such as the eastern area, the central area and the western area.

Tab	le 7.2-4 Evaluatio	n Criterion for Sedimenta	ition
Life of Reservoir	Less than 50 years	50 years - 100 years	More than 100 years
Score	0	Linear interpolation	100

2) Geology

Here in this section describes the evaluation criteria for geology.

As discussed already, Nepal has numerous large active faults inside. Naturally earthquakes occur very frequent. Earth conditions including geology vary one area to another so rapidly. Storage hydroelectric power is 30-50 years structure that extreme cares should be paid to such Geology, Tectonic Faults, or Seismicity, in its site selection, as well as in its design. Hereby these geological evaluation criteria have been studied.

In the study, an each criterion is defined as "Geological conditions of the site," "Natural hazard (earthquake)" and "Seismicity." Each criterion is valued from "1" to "5" depending on each site condition. And thus "weighted percentage" determined by the Study Team is multiplied onto each "value," giving the final total "geological evaluation point."

Each criterion is determined based on the actual project sites conditions concerning these 3 categories thus the most appropriate "threshold" for each criterion is defined from the actual dataset of projects. The sites were selected for the long listed project sites proposed by the Counterpart for this Study.

The actual geologic and seismic dataset analyzed for all the sites are presented in Table 7.2-5.

															Seismic	ty	
No.	Name				Geological Map (50,000	or 250,000)]	Previous Studies (Desk studies by NEA, pre-F	S, FS)		Mining - operating	Area	Accel ratio	Epicenter
		Formation	Area	Age	Rock Type	Large Tectonic Thrust	Faults	Land slides	Faults	Seismicity	Dam	Powerhouse	Reservoir	mine	area	mgal	distance to M>4 (km)
E-01	Dudh Koshi	Seti formation	LH (Lesser Himalaya)	Upper Precambrian- Late Paleozoic	Metasediment, phyllite and quartzite with minor conglomerate.	MCT 26km NW, MBT 32km SW	Dudh Kosi fault. ENE-WSW crossing dam axis, resrvoir along river bed.	mode g rate	Dudh Koshi fault run NE- SW, in tunnel with wide shear zone but not considered active fault (associated with anticline). 2km from damsite. These 2 faults cross tunnel.		Quartzite and phyllite.On right bank quartzite and phyllie contact has no signs of fault or shear zone. This contact also has no sign of shear at upstream at confluence with Thotne khola, but the contact shows strongly faulted feature in 900m downstream.	UG. Mica schist predominant. Medium-high in strengnth.	Rim mainly consists of phyllites, considered impervious.		LH (Lesser Himalaya)	240	10km, M4-5, NE
E-02	Dukh Koshi-2	Seti formation	LH	Upper Precambrian- Late Paleozoic	Metasediment, phyllite and quartzite with minor conglomerate.	MCT 28km NW, MBT 28km SW	Dudh Kosi fault 2km to SE on left bank	mode rate	Local fault crosses tunnel MBT 46km south	high	Augen gneiss	Phyllite and quartzit with alluvial deposit	e Augen gneiss, phyllite, quartzite,with alluvials		LH	260	4km, M4-5, E
E-03	Dukh Koshi-3	Ulleri formation on Left abutment, Seti formation on right abutment	LH	Ulleri); Upper Precambrian- Late Paleozoic Seti); ditto.	Ulleri); Schists. Augen gneiss. Intrusions of granite noted. Seti); ditto.	MCT 20km NW, MBT 50km SW. One thrust EW crosses damsite in 800m. (across river bed) thus 0km.	Fault crossing dam axis & reservoir along river bed. A faul crossing river 800m upstream.	mode t rate	Local fault 9km south, MBT 65km south	moderate	Phyllite and quartzite	Quartzite with alluvial deposits	Phyllite and quartzite, with alluvial deposits		LH	330	8km, M4-5, N
E-04	Dukh Koshi-4	Seti formation	LH	Upper Precambrian- Late Paleozoic	Metasediment. Phyllite and quartzite with minor conglomerate.	MCT 10km N, MBT 55km SW	A fault lies in 1.5km on leftbank	mode rate	2 local faults 3, 6km south, MBT 60km south	moderate - high	Phyllite and quartzite	Augen gneiss with alluvial deposits	Phyllite, quartzite, and augen gneiss		LH	350	4km, M4-5, W
E-05	Khimti	Ulleri formation, of Pokhara sub group, Midland group	LH	Upper preCambrian	Schists, augen gneiss,	MCT 6km NE	A minor fault 3km upstream crossing river	mode rate	MBT 35km south	moderate	Schist, quartzite,and augen gneiss	Quartzite and schist	Schist, quartzite amd augen gneiss		LH	300	7km, M4-5, NE
E-06	Kokhajor-1	Upper middle Siwaliks formation	Siwaliks	Middle Miocene- lower Pleistocene	Sandstone, mudstone with siltstone, sandstone predominant.	MBT 2.5km north.	none	mode rate	MBT 2km north	high	Sandstone with conglomerate	Sandstone with conglomerate	Sandstone with conglomerate		Siwaliks	140	26km, NNE, M4-5
E-07	Likhu-1	Galyang formation, Lakharpata subgroup, midland group	LH	Larte Paleozoic	Shales with limestone, calcerous slates, dolomitic limestones,	MCT 750m downstream	none	mode rate	MBT 4km south, Near to Aunkoshi fault	moderate	Phyllite and quartzite	Limestone with terrace deposit.	Phyllite, quartzite, and limestone		LH	190	23km, M4-5, SW
E-08	Mulghat	Seti formation	LH	Upper Precambrian- Late Paleozoic	Metasediment, phyllite and quartzite with minor conglomerate.	MBT 12km, south	One fault parallel to river, crosses dam axis	mode rate	MBT 16km south	moderate	Greenish grey phyllite and quartzite	Phyllite and quartzit	e Greenish grey phyllite and quartzite with conglomerate	YES	LH	140	3km, M4-5, W
E-09	Piluwa-2	Seti formation, of Pokara sub-group, Midland group.	LH	Upper preCambrian	Phyllite, Quartzite with minor conglomerate layer	MBT, 43km south	1km on left bank	mode rate	MCT 3km south	high	Quartzite, phyllite, augen gneiss	Quartzite, phyllite, augen gneiss	Quartzite, phyllite, augen gneiss and schist		LH	200	12km, NW, M5-6
E-10	Rosi-2	Malekhu Limestone.	LH	Paleozoic	Limestone with dolomite	Mahabharat thrust (MT) crosses damsite, runs along river in reservoir. Reservoir in limestone, MBT 12km south	none	none	MBT 17km south	moderate - high	Phyllite and quartzite	Phyllite and quartziti covered with terrace deposits	e Phyllite and quartzite covered with terrace deposits		LH	180	27km, NW, M4-5
E-11	Sankhuwa-1	Sarung KH formation, of Kathmandu group, Midland group	LH	Late Paleozoic	Quartz biotite schists, occasionally interbedded with quartzites.	MCT 6km north, MBT >50km south.	A thrust 250m downstream	mode rate	MCT 3km north	high	Biotite schist with quartzite	Biotite schist with quartzite	Biotite schist and quartzite		LH	250	5km, M4-5, seismicity active
E-12	Tama Koshi-3	Ulleri formation, of Pokhara sub group, Midland group	LH	Upper preCambrian	Schists, augen Gneiss,	MBT>50km south, MCT 1.5km upstream	A thrust, (maybe MCT) 1.5km upstream crossing reservoir.	mode rate	2 faults and 1 synclinal axis across tunnel		Cambrian gneiss, OB 10m at mountain slope, 20m at riverbed. No fault in dam. V shape valley. Natural soil erosion & mass wasting is limited in watershed./ 1 old landslide on left bank downstream. Left bank should be studied for height and stability.	UG. sound blocky to massive gneiss, no fault.	Augen geneiss. Watershed condition good except 1 new landslide on the downstream of intake.		LH	340	14km M5-6, seismicity active
E-13	Tamor No.1	Seti formation, of Pokara sub-group, Midland group.	LH	Upper preCambrian	Phyllite, quartzite with minor conglomerate layer	MBT, 20km south	A thrust crossing reservoir 5km upstream.	mode rate	none		Precambiran Telio Khola F. of phyllite, quartzite, Landslide in rightbank during excavation high.				LH	150	16km, M4-5, SW
E-14	Tamor (Terahathum)	Sarung KH formation, of Kathmandu group, Midland group	LH	Late Paleozoic	Quartz biotite schists, occasionally interbedded with quartzites.	MBT 30km south	A thrust immediate downstream crossing river, 500m	mode rate							LH	170	22km, M4-5, SW

Table 7.2-5Geologic and Seismic Dataset for Each Project Site (5-1)

E-15 Sun ko	oshi No.1	Sarung KH formation, of Kathmandu group, Midland group	LH	Late Paleozoic	Quartz biotite schists, occasionally interbedded with quartzites.	MBT 9km SW	none	mode rate			Cambrian, Bhimphedi F. (biotite schist). Alluvial deposit 26m thick Right bank steep, left bank gentle slope. No fault.				LH	190	6km, M4-5, S
E-16 Sun ko	oshi No.2	Twaa Khola formation, of Kathmandu group, Midland group	LH	Late Paleozoic	Biotite quartz schists, with intercalation of quartzite, amphibolites.	MBT 12km, south	A fault parallel to MBT 1km downstream.	mode rate			Syncline to S along axis, granite intrusion, Cambrian Bhimphedi Towakhola F. biotite schist. riverbed 29m thick. CH at 19-22m at drillings of banks. No geological problem. extermeley attractive.				LH	190	26km, NNE, M4-5
E-17 Sun ko Kosi M (Multip	oshi No.3, MP purpose)	Kunchha formation, Lower Nawakot group	LH	PreCambrian	Phyllites, metasandstones, gritstones	MBT 16km south	none	mode rate	Small fault crosses dam axis, thrust 5km W.		Precambrian Kuncha F. of sandstone. right bank steep, left bank steep cliff. Riverbed max 40m.				LH	190	28km, M4-5, NW
E-18 Sun ko Kosi M	oshi No.3, MP	Kunchha formation, Lower Nawakot group	LH	PreCambrian	Phyllites, metasandstones, gritstones	MBT 16km south	none	mode rate							LH	190	28km, M4-5, NW
E-19 Sun ko	oshi No.3	Ranimatta formation, Midland group,	LH	Uppe preCambrian- Late Paleozoic	Phyllite gritstone with conglomerate, and quartzite	MBT 22km south	A fault along river in reservoir in 2km	mode rate							LH	225	25km, M4-5, NW
E-20 Indraw	wati	Ranimatta formation, Midland group,	LH	Upper preCambrian- Late Paleozoic	Phyllite gritstone wth conglomerate, and quartzite	MCT 15km north, MBT 30km south	A fault crosses damsite along river	mode rate	MBT 10km south, MCT 16km north. Sun koshi fault 3km south.		Lesser Himalaya, m-1 grade metamorphics. The area is in Ranimatta formation of phyllite. Banks stable. Right bank more gentle with deposit 10-15m thick, left bank steeper. Soft- medium hard phyllite. River deposits 15-20m thick.	Surface PH. OB <10m but 15-20m away from slope. No geological hazards expected.	Mainly phyllite with some quartzite. No major instabilities including faults, landslides. Phyllites expected impervious that water tightness expected.	YES, but minor affects	LH	225	14km, M4-5, W
E-21 Kankai	ai	Upper middle Siwalik, Siwalik group	Siwaliks	Middle Miocene- Upper Pleistocene	Sandstones, pebby sandstones with siltstones, mudstones.	MBT 13km north	A fault parallel to MBT 7km upstream.	mode rate	Major fault with breccia runs in left abutment.		Alternation of sandstone, shale and siltstone of middle-upper Siwaliks formation. In plio- pleistocene. Soft and weathered easily. Shale predominant on left bank, sandstone predominant on right bank. Riverbed thick 17-19m. Talus on left bank. Banks rather steep 40deg.				Siwaliks	130	18km, M5-6, N
C-01 Kaligar	ndaki-Modi	Thick Alluvium, Kunchha formation (right), Kuushma Quartzite (left)	LH	PreCambrian	Phyllite, phyllitic quartzite (right), quartzite (left)	MCT 25km south, MBT 50km south	none	mode rate	MCT 15km south	moderate	Conglomerate	Conglomerate	Phyllite quartzite conglomerate		LH	200	23km, M4-5, N
C-02 Lower	r Badigad	Bennnighat Slate, Upper Nuwakot group	LH	PreCambrian	Slate, carboneceous slate with limestone and quartzite	MBT 25km south	Some faults in reservoir, 3.5km	mode rate	Badigad fault passes through project area. MCT 20km north	moderate- high	Limestone and slate	Limestone	Limestone, dolomite, slate,and phyllite		LH	170	30km, M4-5, N
C-03 Lower	r Daraudi	Ranimatta formation, Midland group,	LH	Upper preCambrian- Late Paleozoic	Phyllite gritstone with conglomerate, and quartzite	MBT 17km south	none	mode rate	MBT 20km south	moderate	Phyllite	Phyllite	Phyllite, quartzite and gritty phyllite		LH	250	24km, M4-5, E
C-04 Seti-Tr (FS)	'risuli	Benighat Slates, of Nawakot group	LH	Upper Paleozoic	Shales, phyllites, carboneceous slates	MBT 7km south	A fault parallel to river crosses dam axis,	mode rate	No major geological hazards.		Dandagaon phyllites of Lesser Himalaya. Damsite comprises slaty phyllite, quartzite, int. limestone. Banks are m. strong to strong calcerous phyllite and quartzite. River runs along anticline axis. Fair-good rock mass.	Surface PH. quartzite, phyllite, dolomite of Nourpul formation, LH. Alluvials 15-20m thick. Fair.	Covered by alluvial- colluvials. Rare outcrops with weathered and calecerous rocks. Potential mass movements, kalstic phenomena. Major faults cross.		LH	190	27km, M5-6, NE
C-05 Upper	r Daraudi	Ranimatta formation, Midland group,	LH	Upper preCambrian- Late Paleozoic	Phyllite gritstone with conglomerate, and quartzite	MCT 8km north	A fault immediately upstream crossing river, 500m	mode rate	MCT 12km north	moderate	Phyllite and quartzite	Phyllite	Phyllite and mica quartzite		LH	300	28km, M5-6, NE
C-06 Kaligar	ındaki-2	Lower Nourpul formation, Nawakot group	LH	Upper Paleozoic	Quartzite, with phyllite intercalation	MBT, 2.9km south	Some parallel faults to MBT crossing river close at damsite, at 800m upsttream, and 500m downstream.	mode rate	MBT 8km south		Nuwakot complex of late cambrian-Paleozoic. Phyllite, intercallation of quartzite and phyllte.	Surface PH. Basement on intercalation of phyllite and quartzite. Riverbed thick as 2-10m near PH.	Phyllite, slate, quartzite. Number of faults pass. Biggest is Kaligandaki fault		LH	180	16km, M4-5, N
C-07 Budhi	Gandaki	Sangram formation, or sequences of Midland group	LH	Upper preCambrian- Late Paleozoic	Shales intercallatd with limestone, quartzite or quartzite, calcerous quartzite	MBT 18km south	Some parallel faults crossing river close at damsite100m.	mode rate			Late Cambrian, phyllite.				LH	270	13km, M5-6, N

Table 7.2-5	Geologic and Seis	mic Dataset for Each	n Project Site (5-2)
IBT 9km SW	none	mode	Cambrian Bhimph

			-									-			
C-08	Andhi Khola	Benighat Slates, of Nawakot group	LH	Upper Paleozoic	Shales, phyllites, carboneceous slates	MBT 25km south	none	mode MCT 70km N, MBT 20km rate S. Andhikhola F.(active F) is 500m downstream of confluence with Kaligandaki and Andhikhola river.		Late Cambrian-early Paleozoic, metamorphics/ predominantly phyllite of Andhikhola slates member. Right bank steep with thin OB. Left bank steep with thick terrace >100m on top. No faults. River deposit 1-5m. Phyllite medium strong to strong. Fair to good.	Semi-UG. Phllyte. Terrace 45m thick.		LH	200	40km, M4-5, NE
C-09	Langrang Khola	Himal Group,	HH (Higher Himalaya)	PreCambrian	Biotite gneiss	MCT 10km east	Unknown as map does not cover the areaa	mode Traversed by MCT rate		Relocated 20km upstream with a higher dam. Fresh to slightly weathered gneiss with fair RQD.	U/G PH recommended as rock is good. Quartzite and garnetifferous mica schist with fair RMR		HH (Higher Himalaya)	250	16km, M5-6, SW
C-10	Uttar Ganga	Lakharpata formation, of Midlandgroup	LH	Late Paleozoic	Limestone, dolomitic limestone (quartzite, shales)	MCT 22km N	none	mode Surrounded by MCT but rate considered inactive. MBT 50km south, Phalebas thrust anticipated but not confirmed.		Lesser Himalaya. Metasedimentary rocks, of Dhorpatan phyllite zone. Dominantly calcarerous, of phyllites-schists-quartzite- limestone. No karstic features but needs investigation. Dam site river channel in line with Uttara Ganga anticline. Banks steep.	Surface PH/ Phyllite, calcerous extension of Bari rocks. Covered by Gad Fault may glacial deposits to cause cross PH. potential Limestone, phyllite. Ganga anticline may Colluvials 20-30m. Affect water tightness. No instabilities.		LH	400	4 events <5km, 2km closest. M4-5, 5-6, seisimicity large
C-11	Madi- Ishaneshor	Kunchha formation, of Nawakot group	LH	Upper Cambrian- Precambrian	Phyllite, phyllitic quartzite, quartztic phyllite,	MCT 10km north	One lineament just downstream, 250m.	mode MBT 50km south, rate MCT 30km north		Lesser Himalaya, Kunchha formation of Nawakot complex, metasedimentary rocks. Medium hard phylllitic quartzite. Considered Fair. River bed at channel 5-10m thick.	3 surface PH Quartzite-phyllite. phyllite. Riverbed 10m->30m. Slopes are stable. Quartzite-phyllite. Considered impervious. No landslides, no karstic conditions. No major faults, considered water tight.		LH	400	5km, M4-5, SE, seisimicisty rather large
C-12	Kali Gandaki No. 1	Benighat slate, of Upper Nuwakot group,	LH	preCambrian	Slate, carboneceous slate with limestone, quartzite bands	MBT 25km south	1 fault crossing river 500m upsream.	mode rate		Upper Proterozoic-Cambrian dolomitic limestone, phyllice, slate, chert, etc. Low-interm. thick terrace widely spread. 16m max. Limestone upstream & at right bank. Phyllite in left bank. Limestone not weathered but solution cavities in limestone. 200m shear zone along dam axis. Some instabilities on steep leftbank.	Low level alluvial Limestone upstream of terrace, damsite. Phyllite at confluence with Andhi instabilites along hillside above PH. at confluence.		LH	170	40km, M4-5, NW
C-13	Marsyangdi	Ranimatta formation, Midland group,	LH	Upper preCambrian- Late Paleozoic	Phyllite gritstone wth conglomerate, and quartzite	MCT 37km north, MBT 11km south	A fault 1km on left bank	mode rate					LH	220	25km, M5-6, NE
C-14	Seti (Gandaki)	Kunchha formation, of Nawakot group,	LH	Upper preCambrian- Cambrian	Phyllite, phyllitic quartzite, quartztic phyllite,	MCT 20km north	none	mode MBT 8km to south rate	moderate	Slate	Slate and limestone Slate, limestone, phyllite and quartzite		LH	400	3km, M4-5, SE
C-15	Dev Ghat	Middle Siwalik, of Siwalik group	Siwaliks	Neogene	Sandstones, with shale and siltstone	MBT 6km south	Some faults parallel to MBT, 3km upstream, 200m downstreamm, etc.	mode rate		Old metamorphic rocks with banks 45deg slopes			LH	160	39km, M4-5, N
C-16	Bhomichok	Ranimatta formation, Midland group,	LH	Upper preCambrian- Late Paleozoic	Phyllite gritstone with conglomerate, and quartzite	MBT 14km south	A fault along river in reservoir, a fault 1km on right bank	mode rate		Midland metasediment of metamorphic rocks of sandstone, slate, quartzite, siliceous mica schist, green schist, graphite chlorite quartz schist, mica gneiss, granitic gneiss of late Cambrian. Banks form 35-45deg. River deposits 1-5m.			LH	240	17km, M5-6, NE
C-17	Trishulganga	Ranimatta formation, Midland group,	LH	Upper preCambrian- Late Paleozoic	Phyllite gritstone with conglomerate, and quartzite	MBT 12km south	2 faults with 1.2km upstream, 500m downstream, crossing river	mode rate		Late preCambrian metamorphic rock of sandstone, slate, quartzite, schist, gneiss. Alluvials thin. Abutments relatively steep. Good for damsite.			LH	210	20km, M4-5, NE
C-18	Ridi Khola	Dhading dolomite, of Upper Nuwakot group	LH	PreCambrian	Dolomite, silicious dolomite	MBT, 11km south	none	high A thrust fault runs parallel to river		Both banks stable. Riverbed 16-20m. Left bank consisted of fractured rocks with loose rocks hanging over. Right bank is stable dolomite.	Initial surface PH was not suitable as a big landslide inmediate upstream. Changed location to 100m upstream with with rocky slope recommended. UG at fresh - slightly weathered limestone.		LH	180	30km, M4-5, NW

Table 7.2-5	Geologic and Seismic Dataset for Each Project Site (5-3)

C-19	Bagmati Multiporpose	Middle Siwaliks	Siwaliks	Upper preCambrian - Late Paleozoic	Sandstone, with clays, conglomerates	MCT 19km north	A fault 1km leftbank	mode rate						Siwaliks	110	33km, M4-5, S
W-01	Barbung Khola	Himal group (1,000,000 scale map only available)	НН	preCambrian	Gneiss?	MCT 20km east	none?	mode rate	MCT 25km south	moderate		Gneiss	Gneiss and schist	HH	200	24km, M4-5, E
W-02	Chera-1	Kushma formation, of Lakharpata subgroup, Midland group	LH	Upper Cambrian-late Paleozoic	Quartzites intercalated with phyllites.	MBT 30km SW	A fault 2km upsteream	mode rate	MBT 30km south	moderate	Quartzite	Quartzite covered by alluvial deposits	Phyllite, quartzite and slate	LH	250	10km, M4-5, NE
W-03	Chera-2	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 27km SW	A fault immeadiate upstream 500m	mode rate	MBT 20km south	moderate	Phyllite and quartzite	Quartzite covered by alluvial deposits	Phyllite, quartzite and slate	LH	200	10km, M4-5, NE
W-04	Humla-Karnali	Himal group (1,000,000 scale map only available)	НН	preCambrian	Biotite gneiss, mica schists, augen gneiss, micaceous quaurtzites.	MCT very close, 1km south	unknown	mode rate	MCT 10km south	low- moderate	Schist and gneiss	Quartzite	Gneiss, schist and quartzite	нн	250	7km, M4-5, N, frequent seismicity
W-05	Lower Jhimruk	Syanga formation, of Pokhara subgroup, Midland group	LH	Upper preCambrian	Quartzite, quartztic limestone, with shales and calcareous quartztic beds etc.	MBT immediate close to damsite. 2km south	none	mode rate	MBT 3km south	moderate- high	Quartzite	Limestone covered by alluvium	Limestone, shale, quartzite and schist	LH	150	34km, M4-5, NE
W-06	Madi	Ranimatta formation, of Dailekh group, Midland group	LH	PreCambrian	Shales, shaly phyllite, quartzite with carbonate beds.	MBT 25km, south	A fault 1km upstream crossing river	mode rate	MBT 25km south	moderate- high	Phyllite	Phyllite	Phyllite, limestone and quartzite	LH	160	35km, M4-5, NE
W-07	Mugu Karnali	Nawakot group, Jaljala group (1,000,000 scale map only available)	LH	PreCambrian	Marine sediments; Lower parts clastic (phyllites, sandstones,quartzites, calcareous sandstones)	MCT 23km NE	unknown	mode rate	MCT 10km north	moderate	Phyllite and schist	Schist	Phyllite, schist, dolomite, limestone	LH	350	0km, M4-5, very much frequent seismicity
W-08	Sani Bhari - 1	Lakharpata formation, of Midlandgroup	LH	Late Paleozoic	Limestone, dolomitic limestone (quartzite, shales)	MCT 46km, north	none	mode rate	MBT 75km south Ranimatta thrust 35km south	moderate	Limestone	Dolomite	Phyllite, limestone, dolomite and quartzite	LH	200	16km, M5-6, W
W-09	Sani Bhari - 2	Lakharpata formation, of Midlandgroup	LH	Late Paleozoic	Limestone, dolomitic limestone with intercalation of shales.	MBT 46km south	A fault 2km upstream crossing river	mode rate	MBT 55km south	moderate	Limestone	Dolomite	Phyllite, limestone, dolomite	LH	170	3km, M5-6, E
W-10	Sharada - 2	Lower middle Siwaliks	Siwaliks	Middle Miocene- lower Pleistocene	Sandstone, interbedded with siltstone, mudstone	MBT, 6km south	A fault in 2km upstream crossin river	g mode rate	MBT 3km north	moderate- high	Sandstone and conglomerate	Conglomerate and claystone	Sandstone, mudstone, siltstone	Siwaliks	120	30km, M4-5, N
W-11	Thuli Gad - 2	Middle Siwaliks	Siwaliks	Middle Miocene- Pleistocene	Sandstone, interbedded with shales, conglomerates, mudstones.	MBT, 3km north	Some faults in 1-2km	mode rate	Thuligad active fault across dam axis	high	Sandstone and shale	Sandstone and alluvial deposits	Quartzite, dolomite shale, and limestone	Siwaliks	220	very close, 1km, M4-5
W-12	Tila - 1	Kalikot formation, Dadeldhura group, Jaljara group	LH	preCambrian	Schists, quartzite, carbonates, augen gneiss, crystalline limestone	MBT 50km south	unknown/none?	mode rate	MBT 50km south Reanimatta thrust 25km south	moderate	Gneiss	Gneiss	Gneiss, granite and pegmatite	LH	330	6km, M4-5, SE
W-13	Tila - 3	Kalikot formation, Dadeldhura group, Jaljara group	LH	preCambrian	Schists, quartzite, carbonates, augen gneiss, crystalline limestone	MBT 36km south	A fault crossing river in 4km downstream	mode rate	MBT 45km south, Ranimata thrust 10km north	moderate	Schist and gneiss	Schist	Gneiss, limestone, schist	LH	350	18km, M4-5, SW
W-14	Thuli Gad	Middle Siwaliks	Siwaliks	Middle Miocene- Pleistocene	Sandstone, interbedded with shales, conglomerates, mudstones.	MBT, 3km north	Some faults in 1-2km	mode rate	MBT across dam site	very high	Sandstone, dolomite and limestone	Sandstone and alluvial deposits	Sandstone, mudstone, dolomitic limestone	Siwaliks	220	very close, 1km, M4-5
W-15	LR-1	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 18km south	A low angle thrust crosses both banks of reservoir (location of a thrust not neccessarily accurate) 500m	mode			2 dam axes/ Midland group metasediment of phyllite. MCT crosses both abutments paralell to river at boundary of phyllite and gneiss above. Axis2 is not favorable as MCT crosses dam abutment. And MCT crosses above axis1 dam abutment. Axis1left bank covered with thick mudflow deposit and terrace. Mudflow younger than terrace deposit. Active landslides observed Rightbank steep with phyllite. Axis2 right abutment steep and considered good. Axis 1 fair. Axis2 poor-fair	Surface PH.	Active landslide. Thick mudflow on left bank upstream/ MCT caused erosion.	LH	300	10km, M4-5, N

Table 7.2-5	Geologic and Seismic Dataset for Each Project Site (5-4)
	Geologie and Seisinie Dataset for Each Project Site (5-1)

W-16	BR-3B	Kushma formation and Ulleri formation, of Dailekh subgroup, Midland group	LH	Upper Cambrian-late Paleozoic	Quartzite intercalated with phyllite, augen gneiss, schists.	MBT 5km, south	A fault along river at dam axis	mode rate					LH	140	14km, M4-5, N
W-17	BR-4	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 25km, south	A fault immeadiate upstream. Or	n mode rate					LH	200	10km, M4-5, S
W-18	Surkhet	Middle Siwaliks, of Siwalik group	Siwaliks	Mid-Miocene Pleistocene	Sandstone interbedded with clay, shales, conglomerates, mudstone.	MBT 2km south	None, but expected parallel to MBT.	mode rate					Siwaliks	180	20km, M4-5, NE
W-19	Lakarpata	Lower Siwaliks, Siwalik group	Siwaliks	Mid-Miocene Pleistocene	Sandstone interbedded with shales, clays, conglomerates.	MBT 1km south	None, but expected parallel to MBT.	mode rate		Hard sandstone and siltstone. Good for dam construction/ Hard and fresh sandstone			Siwaliks	180	25km, M4-5, NE
W-20	Bhanakot	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 30km south	A fault 1km upstream, crossing river	mode rate					LH	350	12km, M4-5, NW
W-21	Thapna	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 20km south	A fault 3km upstream, crossing river	mode rate					LH	160	8km, M4-5, NW
W-22	SR-6	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 15km south	A fault 500m downstream, crossing river	mode rate					LH	320	4km, M4-5, E
W-23	Nalsyagu Gad	Swat formation, Surkhet group,	LH	Cretaceous	Carboneceous shales with limestrones and quartzes.	MBT 60km south	A fault very close at left bank. 0km	mode A thrust 9km upstream. rate Nalsyagu fault parallel to river, on rightbank. MBT 50km, MCT 75km.	moderate	Lesser Himalaya, Paleozoic. Damsite major geology is dolomite with frequent shale intercalation. Dolomite m. strong. On Right bank, N fault runs parallel to river. (FS geological conditions found better, containing siliceous limestones predominantly, providing firm foundation)	Paleozoic, partially metamorphics of Proterozoic. Sandstone, shale bu terrace and alluvials thick. N fault crosses 500m downstream.	Dolomite, shale, quartzite. Left bank steeper, right bank tgentle. Number of landslides. No geological hazards from photos, but a thrust crosses reservoir. Potential leagkage.	LH	200	some M4-5 <10km, closest 7km, NW
W-24	Sarada Babai	Lower Siwaliks, Siwalik group	Siwaliks	Mid-Miocene lower Pleistocene	Sandstone interbedded with mudstone, shale, siltstone, marl	MBT very close 0km, crossing . dam site, along river	Some parallel faults with MBT	mode MBT 300m north from rate damsite on right bank		"Dam design influenced by MBT but not significant" Sandstone, siltstone, mudstone. OB: <10m at riverchannel. Alternating beds of sandstone, thinly siltstone and mudstone. Right bank crushed, fractured and disturbed due to MBT.	Conglomerate bed, alluvium >30m, founded on conglomerate bed or >30m.	Sandstone, siltstone, mudstone slate, quartzite, dolomite, f dolomitic quartzite expected. MBT crosses reservoir.	Siwaliks	130	30km, M4-5, N
W-25	Naumure (W. Rapti)	Middle Siwaliks, of Siwalik group	Siwaliks	Mid-Miocene- Pleistocene	Sandstone interbedded with clay, shales, conglomerates, mudstone.	MBT 1km north	none	mode MBT and 2 parallel faults rate pass reservoir. Paleozoic Metasedimentary rocks north, Siwaliks south of MBT.		Middle Siwaliks sedimentary rocks of sandstone, shale, conglomerate, mudstone etc. Damsite mainly sandstone with mudstone, shales. Sandstone is thick medium strong. No major faults observed but many shear zones are seen in mudstone and siltstone beds. Weathering to sound rock is 10-40m.	Mostly of weaker rocks as mudstone, shale, siltstone, and less sandstone.	MBT and 2 parallel faults pass reservoir Paleozoic metasedimentary rocks north, Siwaliks south of MBT.	Siwaliks	130	40km, M4-5, NE
W-26	Lohare Khola (Lohore Khola)	Ranimatta formation, of Lakharpata sub-group, Midland group	LH	Upper Cambrian-late Paleozoic	Phyllites, phyllitic quartzite, metasandstones, conglomerate beds	MBT 9km SW	none	mode rate		Left bank very steep. V shape valley. Phyllitic rock.	UG recommended due to deep creek and steep slope.	Flood deposit, terrace deposit. Colluvials, and metasediment of phyllite, quartzite, gneiss. MCT passes across reservoir requiring water tightness study.	LH	260	13km, M4-5, NE
W-27	Nisti-Panah	Benighat Slate	LH	PreCambrian	Slate with limestone and quartzite band	MBT, 35km SW	none	mode rate		Option1/Phyllites with quartz veins. Option2/Phyllites, quartzitic phyllites. Option3/similar to option 2 (presumably)	Option1/ terrace deposits. Option2/slate.		LH	240	13km, M4-5, NW

Table 7.2-5Geologic and Seismic Dataset for Each Project Site (5-5)

a. Evaluation Criterion for Site Geology

When considering the global regional geological features of hydroelectric power development areas, it is advisable and a natural procedure to consider typical representing geological characteristics of each "sub division" of geological features such as age, rock type, or physical properties.

NEA, in the past, also applied the similar methodology and provided "qualitative" geological point (score) to each candidate project. The methodology NEA applied is shown in Table 7.2-6.

Units	Sub-Units	Lithology	Rock	Boundary	Age	
1			Condition			
Higher	Tibetan . Tethys	Fossiliferous sedimentary rocks (Limestone, Shale, Sandstone etc,)	Good to	мст	Precambrian to Neogene	
Himalaya	Himalayan Gneiss	High-grade metamorphic rocks (Granite, Gneiss, Schist etc.)	Excellent .			
Lesser Himalaya	Crystalline zone Midland Group	Metamorphosed sedimentary and crystalline rocks. (such as Quartzite, Schist, Granite, Gneiss etc.) Low-grade metamorphic rocks (Phyllite, Slate Quartzite etc)	Fair to Good	MBT	Precambrian to Permian	
	Upper Siwalik Middle	Conglomerates Sandstone, Siltstone,				
Siwaliks	Siwalik Lower Siwalik	Mudstone & Clay Sandstone, Shale & Pseudo Conglomerates	Poor to Fair	HFF	Tertiary	
Terai Plains	Quaternary Deposit	Alluvium Gravels, Boulders, Sand, Clay etc.	Poor		Recent	

 Table 7.2-6
 Evaluation Criterion for Geology applied by NEA

Summary of Regional Geology

Source: Update and Review of Identification and Feasibility Study of Storage Project, phase 1 Coarse Screening and Ranking Study, Main Report (July 2002))

In principle, the evaluation by NEA divided the geological condition of each site inclusively into 3 categories, after collection of basic information and being based on regional geological maps.

- High Himalaya, High Himalaya metamorphic Zone: good-excellent
- Lesser Himalaya: good-fair
- Siwaliks: poor-fair

This criterion by NEA, is broadly true and understandable as a whole, however a little rough. The Study Team has considered it is necessary to re-evaluate this taking into consideration the more detailed data such as "rock types" and "ages" of each site both of which compose the specific site geology.
After collecting various geological data on all candidate sites, the Study Team has come to apply "matrix" evaluation criterion for "Geological conditions of the site" shown below, after the discussion with NEA. The both parties discussed this based on the actual geologic and seismic dataset of the whole project sites. In other words, this criterion matrix is the outcome after it has been "tuned" so that the both parties have agreed upon.

For instance, there is a case that the criterion was revised after the discussion. Initially "limestone" was put inferior "point" as it was generally interpreted as one of problematic rocks. However, it has been suggested that a certain limestone in Nepal is less problematic when it is being "Siliceous dolomite- limestone." The evaluation matrix has been revised accordingly.

The details of the Evaluation Criterion on Site Geology are described as below.

(a) Criterion of "Age" and "Rock type"

Based on the concept above, The "Matrix" on Table 7.2-7 has been proposed and applied.

The idea is to represent the general feature of the site geology by the combination (Matrix) of "Age" and "Rock type" thus representing the qualitative evaluation scores (ranks) for each site in terms of, from the perspective of the "general geologic feature."

(b) Modification (Subtraction of points) by "Landslides" or "Mines in operations"

i) Landslides

As landslides in reservoir or dam axes have negative impacts from safety points of view as well as it may bring potential increases of development cost. The Comparative and relative "screening" on landslides considering their scales, as well as their activities must be conducted. Risks by landslides when noted will be valued as subtraction of "20 point" from above (a) Criterion Matrix.

ii) Mines in Operations

The impacts of natural resource developments nearby on the potential planning (planned) sites of hydroelectric power are not geological issues but rather, they have much more political aspects of Nepal government's capabilities of coordination between two contradicting parties.

Naturally the individual elements of such mining activities for all potential sites must be considered to evaluate any impact from such activities. However, in this study, the conditions of having mining activities or development plans nearby is classified as equally "disadvantageous" and is valued subtraction "20 point".

Thus, the modification is:

- i) Frequent landslides, subtract 20 point from (a) value
- ii) Mines in operations etc., subtract 20 point from (a) value

Based on this criterion, the Study Team processed the actual geology and seismic dataset for all candidate sites and determined "Evaluation Criterion for Site Geology (i.e. Geological conditions of the site)."

The result is shown in Table 7.2-7.

Age	Precambrian, Cambrian	Paleozoic	Mesozoic	Tertiary	Quaternary
Class	1	2	3	4	5
Rock	igneous	Cristaline (incl. quartzite, hornfels)	Metasediment (incl. metasandstone, phyllite)	sediment	limestone
Class	1	2	3	4	5

Matrix (Age, Rock)	(1,1), (1,2), (2,1)	(1,3), (2,2)	(2,3)	(1,4), (1,5), (2,4), (2,5), (3,1), (3,2), (3,3), (3,4)	(3,5), (4,1), (4,2), (4,3)	(4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5)
Score ^{*1)}	100	80	70	60	40	20

*1): In case of frequent landslides, subtract "20 points" from Score.

In case of mines in operations etc., subtract "20 points" from Score.

b. Evaluation Criterion for Natural Hazard (Earthquakes)

Considering the situation of seismicity and earthquake risks, it has been discussed and proposed to apply the Evaluation Criteria for that. It has been discussed to apply "Large Thrusts and faults" and "Seismicity (Earthquakes)."

First, the "Large thrusts and faults" criterion is considered. This evaluation is composed of 2 factors, such as the "proximity to large tectonic thrusts" and the "closeness to other faults," and named after "Evaluation Criterion for Natural Hazard (Earthquakes)."

"Large tectonic thrusts" develop in Nepal as Himalayan Frontal Thrust (HFT), Main Boundary Thrust (MBT) or Main Central Thrust (MCT) of E-W directions in parallel to the Himalaya range. Both MBT and MCT accompany 150 m to 100 m wide "disturbed zones." It is noted that not always earthquake faults are revealed by seismic activities. However it is also acknowledged that seismic activity is large with frequent earthquakes in the past, thus such earthquakes are likely to affect serious damages to construction structures once surface faulting occur. In any case it is accepted that faults themselves are considered as weak thus not suitable for foundation. Considering these, such criterion as "proximity to tectonic thrusts" is one of the useful measures to screen candidate projects.

The tectonic movements have shifted their main tectonic thrusting formation from north

toward south, thus at present MBT can be more active causing large earthquakes over M8 than MCT which was once active in earlier stages of Himalayan orogenic movement. This indicates MCT and MBT are at present not equal in their effects. However, in considering the purpose of "screening" projects, the closeness to such tectonic thrusts (or accompanying faults) was decided to be evaluated equally.

It is also necessary to collect and evaluate risks of such faults other than large tectonic thrusts in general. Figure 7.2-3 shows the example of such faults map.

Source: Detailed mapping on active fault in developing region and its significance: A case study of Nepal, 2005.

Figure 7.2-3Example of Active Faults in Nepal

However, after collection of such data, it was found there were no such compiled data like "Active Faults of Japan" in Nepal, although Nepal has suffered many earthquakes and bears many faults till present. Thus, it is concluded that evaluation of "activeness" for such faults are not to be conducted, but that the "closeness to those faults" are to be used.

The evaluation value for "Natural Hazard (Earthquake)" is determined as a sum of points for "proximity to tectonic thrusts" and the points for "closeness to other faults" shown below.

As an agreed methodology, the "threshold" used for the proximity to tectonic thrusts (in Table 7.2-8) is decided from the distribution of actual data from the actual geologic and seismic dataset for all the project sites (Figure 7.2-4). "Threshold" used for closeness to other faults shown inTable 7.2-9 is decided through the discussions with NEA.

Distance	Score
> 12.8 km	5
< 12.8 km	3
< 3.2 km	1
< 1.6 km	0

Figure 7.2-4 Actual Distribution of Proximity to Large Tectonic Thrusts for all Project Sites

Distance	Score
> 1 km	0
< 1 km	-1
< 100 m	-2

Table 7.2-9Closeness to Other Faults

Based on this criterion, the Study Team processed the actual geology and seismic dataset for all candidate sites (Table 7.2-5) and determined "Evaluation Criterion for Natural Hazard (Earthquakes)," i.e., the criterion on the proximity and closeness to large tectonic thrusts and faults.

The result is shown in Table 7.2-10.

Table 7.2-10	Evaluation Criterion for Natural Hazar	d (Earthquakes)
--------------	--	-----------------

Distance to large tectonic thrusts	> 12.8 km	12.8 km > > 3.2 km	3.2 km > > 1.6 km	1.6 km >
Score ^{*1)}	100	60	20	0

*1): In case of the closeness to other faults < 1 km, subtract 20. In case of the closeness < 100 m, subtract 40.

c. Evaluation Criterion for Seismicity (frequency, scale)

The "Seismic hazard map" was prepared in Nepal as a reference for evaluation of seismic activities. This map indicates the horizontal acceleration (cm/sec²), thereby seismic activities of each potential site are to be "screened" by putting relative "threshold" into such acceleration values from view of "design horizontal seismic coefficient."

The Himalayas are the place for the collision of Indian subcontinent and Eurasia continent, thus inducing frequent earthquakes such as thrust types.

Most of the earthquakes have occurred in Lesser Himalaya, the area between MCT and MBT, and many in western Nepal. It may be better to differentiate the impact of MCT, MBT, and HFT in terms of each seismic risk. But as we see M7.5 occurred in 1916 near MCT, so we decide all these thrusts may be better treated equally risky for seismic risks.

It should be noted that NEA study in the past just simply rules that the regional area such as Lesser Himalaya has a "same single" higher seismic risk than others such as Higher Himalaya.

However, when looking at the hazard map, there are difference in risk values even in same Lesser Himalaya, thus NEA's grouping is not sufficient enough to represent such localities.

Therefore in this study we determined "seismicity risk" based on the "Matrix" shown in Table 7.2-11. This is the combination of "regional area" and "acceleration value" shown in the hazard map.

The Study Team also decides that the points by the table will be subtracted by 1 point if any earthquake of M>4 occurs within 10 km distance from site, which is considered the caution level in Nepal in general.

As agreed, the "threshold" of Figure 7.2-5 was determined after the evaluation of the actual distribution of the data in the actual geologic and seismic dataset for all the project sites.

Area	Higher Himalaya (Tibetan-Techys Zone)	Metamorphic zone (Higher Himalaya Crystalline)	Lesser Himalaya	Siwaliks (Sub-Himalaya)	Terai Zone
Class	1	1	2	3	3
Acceleration	> 240 gal	240 gal > > 180 gal	180 gal >		
Class	1	2	3		

 Table 7.2-11
 Evaluation Criterion for Seismicity – Matrix

Matrix (Area, Acceleration)	(3,3)	(1,3)	(2,3), (3,2)	(1,2)	(1,1), (2,1), (2,2), (3,1)
Score ^{*1)}	100	80	60	40	20

*1): In case of the closeness to epicenters greater than M4 < 10 km, subtract 20.

All the outcome and result using these three criteria are compiled in Figure 7.2-6.

Source: based on the simple summation of all three criteria with equal weight.

The discussion with NEA has concluded that the results above, in general, bear no problem. However, we found several issues to be solved so it is advisable to note such issues as below for the next stage.

- Incompleteness of geological maps
- Unavailability of aerophotographs (Lack of landslides data)

It is also noted each "weighted percentage" for "Site Geology," "Natural Hazard (Earthquakes)" and "Seismicity" is defined by the Study Team as discussed later. This is basically rooted upon the stakeholders, NEA, etc. But the weighted ratio is the present evaluation value and is

fundamentally to be revised from time to time referring the various changing circumstances in the future that such ratio needs to be re-evaluated when required.

Incompleteness of geological maps

Figure 7.2-7 shows the available geological maps in Nepal for 1:50,000 (as of June 1, 2012). As clearly shown only 30 sheets are available for 1:50,000 which scales are usually required in this kind of study. Only 1:1,000,000 or 1:250,000 maps cover all the land. Especially the eastern and the western areas are lack of geological maps of 1:50,000.

Figure 7.2-7 Availability of Geological Maps in Nepal

The Study Team collected the previous study reports (pre-FS, FS, or other desk studies). However it was revealed that pre-FS level geological studies sometimes did not conduct drillings or field survey, rather instead just carried out aerophoto interpretation for their analysis, without confirmation of the actual geology. Therefore, the possibility is that the actual geology differs from the descried geology in the existing materials. The confirmation of geology by visiting sites is necessary.

Lack of landslides data

As shown in Figure 7.2-7, there are only 8 sheets of "landslides" in Nepal. In conjunction with the unavailability of geological maps for 1:50,000, the data for collapses, landslides and other geological features are prepared far below sufficient. The actual analysis one by one in each prospective area is necessary.

It is well worth to note that Department of Survey does not have any stocks nor is able to publish those in time for them due to "load shedding."

3) Lead Time

a. Length of Access Road

The length of access road newly to be built for a project could influence at its construction period significantly. The length of access road for each project was extracted from the existing study. In case that no information was found in the study, the length from a major road to project site was measured on a topographical map. All the data were compared relatively. Evaluation points were prorated between 100 points set as the minimum length of 0 km and 0 points set as the maximum length of 65 km. (See Table 7.2-12)

Length of access road (km)	0 (Min.)	0 - 65	65 (Max.)
Score (points)	100	Linear interpolation	0

b. Difficulty level of financing

In general, the larger project requires the higher cost as well as the longer construction period. It takes longer time for financing for such project. Therefore, the difficulty level of financing could be estimated with the cost of each project. The cost of each project estimated in the existing study at the various point of time was adjusted to the present cost in consideration to price escalation, and compared relatively. Evaluation points were allocated between 100 points set as the minimum project cost of 173.8 million US\$ and 0 points set as the maximum project cost of 1,728.8 million US\$ on quadratic interpolation in consultation with NEA. (See Table 7.2-13)

 Table 7.2-13
 Evaluation Criterion for Difficulty Level of Financing

Project Cost (MUS\$)	173.8 (Min.)	173.8 - 1,728.8	1,728.8 (Max.)
Score (points)	100	Quadratic interpolation	0

c. Reliability of Development Plan

In general, the more advanced study level a project has, the higher reliability the project has. Therefore, the reliability of develop plan was to be evaluated with study level of each project. The portions of study levels of 65 potential projects in the long list provided by NEA are as shown in Table 7.2-14.

 Table 7.2-14
 Study Level of Candidate Projects on the Long List

Study Level	Number of Projects
Desk Study	54
Pre-Feasibility Study	4
Feasibility Study	7

The difference about the geological information on each above-mentioned study level is classified in the long list as follows:

- Desk Study: Based on regional maps and other relevant information without a site visit
- Prefeasibility Study: Geological mapping with site visit
- Feasibility Study: with drilling and seismic and construction material survey

With reference to the classification of study levels in the long list, all projects were classified into 6 categories depending on the study level considering the all collected information related to the studies for the projects. (See Table 7.2-15)

Study Level	Application
FS completed	Feasibility Study has been completed.
FS on going*	Feasibility Study is ongoing.
Pre-FS	Pre-Feasibility Study has been completed.
Preliminary Study	Additional investigations such as site reconnaissance, etc. have been conducted after desk study.
Desk Study	Desk study has been conducted.
Desk Study (few data)	Few data is available though Desk study has been conducted.

 Table 7.2-15
 Classification of Study Level for Evaluation of Reliability

*: Only the Nalsyau Gad Project is on this study level. See Clause 10.1.3 (1).

In general, a Feasibility Study is conducted to objectively determine the viability of the project from the standpoint of technical, economic, financial, and social and natural environment. A Feasibility Study report is used for the nations' policy makers to determine whether to implement the project. It is also used for international financial institutions to examine and determine the viability of the project. Pre-Feasibility Study is classified as Feasibility Study of which accuracy is beyond the required level to achieve above-mentioned purpose. The Desk Study is defined as a study conducted on available topographical maps without site survey. Further, a study for which additional survey such as site reconnaissance, etc. were conducted after Desk Study prior to conduct Pre-Feasibility Study is defined as Preliminary Study.

Evaluation points were prorated between 100 points set as the highest study level of FS completed and 0 points set as the lowest study level of Desk study (few data) depending on study levels as shown in Table 7.2-16.

Study Level	FS completed	FS on going	Pre-FS	Preliminary Study	Desk Study	Desk Study (few data)
Score	100	80	60	40	20	0

The projects for which feasibility study or pre-feasibility study were conducted at the time of this study were excluded from the evaluation.

4) Benefit by Project

a. Unit Generation Cost

A unit generation cost is one of the important indices of economic efficiency of project, the smaller the unit cost is, the smaller investment is required to yield the same benefit. Since the unit generation cost in this chapter is used as the index of relative economic efficiency of project, the following simplified calculation formula was used.

Unit generation cost (US cent/kWh) = Project cost / Annual energy production (kWh) × expense rate

The project with the smallest unit generation cost was scored 100 points, the project with the largest unit generation cost was scored 0 point, and other projects were scored a point obtained by linear interpolation with unit generation cost. (See Table 7.2-17)

 Table 7.2-17
 Evaluation Criterion for Unit Generation Cost

Unit Generation Cost	2.21	2.21 - 20.42	20.42
(US cent/kWh)	(Minimum)		(Maximum)
Score	100	Linear interpolation	0

Note: Unit Generation Cost = Project Cost / Annual Energy Production $\times 10\%$

b. Installed Capacity

The maximum system load on January 28, 2011, the day of the maximum load in FY2010/11, was 946.1 MW. However, the total installed capacity including diesel plants was 705.6 MW, and the real supply capacity was 510.1 MW including the import from India. According to the demand forecast by the Study Team, the maximum demand in FY2030/31 will be 3,071 MW, and it will increase several percent in FY2031/32⁸, the last year of the study range of this study. Under these circumstances, projects with large installed capacity should receive a high evaluation because they contribute to the reduction of load shedding much more than small-scale projects.

On the other hand, it takes time to the implementation of project since large-scale projects require large costs in general and financing of these projects is associated with difficulty.

Though the suitable development scale of promising project was expected 100 MW to 300 MW in the scope of work of this study, the evaluation score of installed capacity was determined as shown in Table 7.2-18 taking the above-mentioned aspects into consideration.

Table 7.2-18Evaluation Criterion for Installed Capacity

Installed Capacity (MW)	0	0 - 100	100 - 300	300 - 1,000	More than 1,000
Score	0	Linear interpolation	100	Linear interpolation	0

⁸ The demand forecast in FY2031/32 had not been calculated when evaluation of installed capacity was carried out.

c. Annual Energy Production

Same as installed capacity, annual energy production also indicates a project scale. The annual energy production of each project is described in the existing report of each project. However, since calculation conditions may be different project by project, the Study Team calculated the annual energy productions of all candidate projects with same calculation conditions.

In general, projects with large energy production are more preferable than those with smaller energy production. On the other hand, these projects have a tendency of having large installed capacity, and in some cases this may be contradictory to the evaluation of installed capacity described in the above. To avoid this contradiction, the score was determined that it linearly proportionate to annual energy production until 2,000 GWh and a constant value, the perfect score, for more than 2,000 GWh. (See Table 7.2-19)

 Table 7.2-19
 Evaluation Criterion for Annual Energy Production

Annual Energy Production (GWh)	0	0 - 2,000	More than 2,000
Score	0	Linear interpolation	100

Note: "2,000 GWh" is about 1.5 times of the average of annual energy production of all candidate projects.

d. Energy Production in Dry Season

One of the important roles of storage-type hydroelectric power project is energy production in the dry season. Same as the above-mentioned evaluation of annual energy production, the score was determined that it linearly proportionate to energy production until 850 GWh, the perfect score for more than that. (See Table 7.2-20)

Table 7.2-20	Evaluation Criterion for Energy 1	Production in the Dry Season
	E alantion eriterion for Energy	roudetten in the big seusen

Energy Production in Dry Season (GWh)	0	0 - 850	More than 850
Score	0	Linear interpolation	100

Note: "850 GWh" is about 1.5 times of the average of energy production in the dry season of the all projects.

5) Natural Environment

a. Impact on Forest Area

Impact on the forest area is evaluated by the size of the affected forest area per unit output. Evaluation points are given by the value obtained by the following calculation (forest area inside of reservoir area / energy production of power station), 0 point for the maximum value (11.24 ha/MW), 100 points for the minimum value (0.10 ha/MW) and between them, the evaluation points are given by proportional distribution. In case many small projects are developed, the total lost forest area may be larger than the lost forest area by one project with large project area. Therefore, affected area per unit output is used for evaluation in order to minimize the total lost forest area to meet the demand. (See Table 7.2-21)

Inundated Forest Area (ha/MW)	0.10 (Min)	0.10 - 11.24	11.24 (Max)
Score	100	Linear interpolation	0

 Table 7.2-21
 Evaluation Criterion for Impact on the Forest Area

b. Impact on Protected Area

The impact on the protected area is evaluated by the direct or indirect impact of reservoir area for the six protected areas described in Table 7.2-22. In downstream of reservoir area, according to the operation of reservoir, the flow rate may be increased in dry season and reduced during the rainy season. To account for this effect, one point is given for each category if the World Heritage, National Park including its buffer zone, Wildlife Reserve, Ramsar Convention or Key Biodiversity Area is located in the downstream of reservoir area. If the Key Biodiversity Area or one part of this area is located in the reservoir area, it counts 2 points. The total score of each project is the sum of the points of each category, the highest score is 3 and the lowest score is 0. Regarding these scores, the evaluation points are given for each project, 0 evaluation point for score of 3, 100 evaluation points for score of 0 and between them, the evaluation points are given by proportional distribution. (See Table 7.2-23)

 Table 7.2-22
 Points for the Impact on Protected Area

Category	Description	Point
a) World Heritage	Indirect impact (located downstream of the reservoir)	1
b) National Park	- ditto -	1
c) Ditto (Buffer zone)	- ditto -	1
d) Wildlife Reserve	- ditto -	1
e) Ramsar Convention	- ditto -	1
f) Key Biodiversity Area	Direct impact (located in the reservoir area)	2

Note: Candidate projects which have direct impact on a) to e) have been already excluded.

Table 7.2-23Evaluation Criterion for Impact on Protected Area

Total Point	0	0 - 3	3
Score	100	Linear interpolation	0

c. Impact on Fishes

The impact on fishes is evaluated by the impact to water system where the following 18 species in Table 7.2-24 nominated in the IUCN Red List are living. The number of inhabitant fish of each water system corresponds to the score of projects located in its water system, the highest score is 10 and the lowest score is 0. Regarding these scores, the evaluation points are given for each project, 0 evaluation point for score of 0, 100 evaluation points for score of 10 and between them, the evaluation points are given by proportional distribution. (See Table 7.2-25)

Scientific Name	English Name	Criteria	Lake and River system ^{9, 10}
Schizothorax nepalensis	Snow Trout	CR	Rara lake
Schizothorax raraensis	Rara Snowtrout	CR	Rara lake
Himantura fluviatilis	Ganges Stingray	EN	
Clarias magur	Wagur	EN	Kosi, Gandaki, Karnali, Mahakali,
Tor putitora Putitor	Mahseer	EN	Kosi, Gandaki, Karnali, Mahakali,
Cyprinion semiplotum	Assamese Kingfish	VU	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Puntius chelynoides	Dark mahseer	VU	
Schizothorax richardsonii	Snow Trout	VU	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Carcharhinus leucas	Bull Shark	NT	
Ailia coila	Gangetic ailia	NT	
Bagarius bagarius		NT	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Bagarius yarrelli		NT	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Chitala chitala		NT	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Labeo pangusia	Pangusia labeo	NT	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Neolissochilus hexagonolepis	Katli	NT	Kosi, Gandaki, Karnali, Mahakali, and their feeder streams
Schistura devdevi		NT	
Tor tor	mahseer	NT	Kosi, Gandaki, Karnali, Mahakali, Also in Phewa lake, Begnas lake
Wallago attu		NT	Kosi, Gandaki, Karnali, Mahakali,

Table 7.2-24List of Fishes used in the Evaluation

Note: CR = Critically endangered, EN = Endangered, VU = Vulnerable, NT = Near threatened

Table 7.2-25Evaluation Criterion for Impact on Fishes

Precious fish (species)	0 (Min)	0 - 10	10 (Max)
Score	100	Linear interpolation	0

d. Impact on Conservation Species

The impact on conservation species is evaluated by the impact to the seven rare land species shown in Table 7.2-26 for which the distribution map are available. If there is overlap in the distribution of rare species and the reservoir area, point of five levels is given by the habitat density. Total score of each project is the sum of scores of every seven species, the highest score is 18 and the lowest score is 7. Regarding these scores, the evaluation points are given for each project, 0 evaluation point for the highest score of 18, 100 evaluation points for the lowest score of 7 and between them, the evaluation points are given by proportional distribution. (See Table 7.2-27)

⁹ Coldwater fisheries in the trans-Himalayan countries (FAO, 2002)

¹⁰ Coldwater Fish and Fisheries in Nepal (Jiwan Shrestha)

Conservation species				Point				
Donthono tionia (EN)	No habitat			Hat	oitat			
Panunera ugris (EN)	0		5					
Lecture Lecture (NIT)	No habitat	Habitat						
Lutra Lutra (NT)	0		5					
	No habitat	Habitat						
Macaca assamensis (NT)	0	5						
Panthera pardus (NT)	No habitat	(Low) \leftarrow Habitat density \rightarrow (High)					(High)	
	0	1		2	4		5	
Malanana analana (MII)	No habitat	(Low)	\leftarrow	Habitat	density	\rightarrow	(High)	
Metursus ursinus (VU)	0	1		2	2		5	
Nacfalia nabulaan (VIII)	No habitat			Hat	oitat			
Neolelis nebulosa (VU)	0			4	5			
Ursus thibstonus (VII)	No habitat	(Low)	<i>~</i>	Habitat	density	\rightarrow	(High)	
Utsus undetanus (VU)	0	1		2	4		5	

 Table 7.2-26
 List of Species and Points for Impact on Conservation Species

Note: EN = Endangered, VU = Vulnerable, NT = Near threatened

Presence Code: 1 = The species is known or thought very likely to occur presently in the area, usually encompassing current or recent (post 1980) localities where suitable habitat at appropriate altitudes (or depths) remains.

2 = The species' presence is considered probable, either based on extrapolations of known records, or realistic inferences (e.g., based on distribution of suitable habitat at appropriate altitudes and proximity to areas where it is known or thought very likely to remain Extant). 'Probably Extant' ranges often extend beyond areas where the species is Extant, or may fall between them.

3 = The species may possibly occur, and should be searched for, but there are no known records and less than probably occurrence. 'Possibly Extant' ranges often extend beyond areas where the species is Extant or Probably Extant, or may fall between them.

4 = The species was formerly known or thought very likely to occur in the area, but it is most likely now extirpated from the area because habitat loss/other threats are thought likely to have extirpated the species and/or owing to a lack of records in the last 30 years.

5 = The species was formerly known or thought very likely to occur in the area, but there have been no records in the last 30 years and it is almost certain that the species no longer occurs, and/or habitat loss/other threats have almost certainly extirpated the species.

6 = The species was formerly known or thought very likely to occur in the area but it is no longer known whether it still occurs (usually because there have been no recent surveys).

(Source: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.1.)

Table 7.2-27Evaluation Criterion for Conservation Species

Total Pont of Habitat Density	7 (Min.)	7 - 18	18 (Max.)	
Score	100	Linear interpolation	0	

6) Social Environment

a. Impact of Construction for Transmission Line to the Social Environment

As for the impact to the social environment by construction of new transmission line, longer transmission line has much influence to the scenery, acquisition of right of way and surrounding residents. Therefore, evaluation points were prorated between 100 points set as length of 30 km or less and 0 points set as length of 100 km or more. (See Table 7.2-28)

Table 7.2-28Evaluation Criterion for Impact of Construction for Transmission Line
to the Social Environment

Length of Transmission Line (km)	Less than 30	30 - 100	More than 100
Score	100	Linear interpolation	0

Note: Length to the nearest 400 kV substation

b. Impact on Household

The impact on household is evaluated by the number of buildings located in reservoir area on the map. The number of buildings on the map is different from the actual number of buildings. Also, in some cases, the numbers of buildings indicated in report are not the same as the number on the map. However, in order to have a same evaluation level, only the number of building on the map is used for the impact evaluation. The maximum number is 3,175 and the minimum number is 0. Regarding these numbers, the evaluation points are given for each project, 0 evaluation point for the maximum number of 3,175, 100 evaluation points for the minimum number of 0 and between them, the evaluation points are given by proportional distribution. (See Table 7.2-29)

Table 7.2-29	Evaluation	Criterion for	Impact on	Household

Number of building	0 (Min.)	0 - 3,175	3,175 (Max.)
Score	100	Linear interpolation	0

c. Impact on Agricultural Land

The impact on agricultural land is evaluated by the agricultural land area per unit output (Agricultural land area inside of reservoir area (according to the map) / energy production of power station). With this calculation, the maximum value is 9.05 ha/MW and the minimum value is 0.15 ha/MW. Regarding these values, the evaluation points are given for each project, 0 evaluation point for 9.05 ha/MW, 100 evaluation points for 0.15 ha/MW and between them, the evaluation points are given by proportional distribution. The reason for using the area per unit output is the same as the evaluation of the impact on forest area. (See Table 7.2-30)

 Table 7.2-30
 Evaluation Criterion for Impact on Agricultural Land

Inundated agricultural land (ha/MW) 0.15 (Min)		0.15 - 9.05	9.05 (Max)	
Score	100	Linear interpolation	0	

d. Impact on Ethnic Minority

The impact on ethnic minority is evaluated by the number of affected ethnic minority. For this evaluation, the ethnic minority is determined by the 84 caste groups less than 200,000 people in the population census in 2001. The number of ethnic minorities is the sum of the number of the relevant ethnic minorities extracted from the VDC statistics and this is counted by each reservoir area, the maximum number is 26 ethnics and the minimum number is 0. Regarding these numbers the evaluation points are given for each project, 0 evaluation points for 26 ethnics, 100 evaluation points for 0 and between them, and the evaluation points are given by proportional distribution. (See Table 7.2-31)

Table 7.2-31	Evaluation	Criterion	for Impac	t on Ethnic	Minority

Number of minor ethnic group	0 (Min.)	0 - 26	26 (Max.)
Score	100	Linear interpolation	0

Note: Number of ethnic group living in the VDCs in the reservoir area.

e. Impact on Tourism

The impact on tourism is evaluated by the impact to tourist area frequented by foreign tourists as well as trekking routes and the impact to temples, mosques and churches in reservoir area. Most of project does not affect the tourist area. Therefore, the projects affecting the tourist area are evaluated with 0 points and the others are evaluated with 100 points. (See Table 7.2-32)

Table 7.2-32Evaluation Criterion for Impact on Tourism

Number of trekking route and religious asset in the reservoir area	0 (Min.)	0 - 10	10 (Max.)
Score	100	Linear interpolation	0

(2) Weighting of the Second Step

The evaluation items described above were weighted depending on the importance in the objective of the Study, development of storage-type hydroelectric power projects in Nepal. Scores of each evaluation item were multiplied by the weight of such evaluation item, and the total of weighted scores of all evaluation items is the evaluation score of project in question.

The Study Team prepared a draft of weighting taking into consideration the weighting used in other projects in the past, and then it was modified after discussion with the NEA. The Study Team proposed the modified draft of weighting to the first stakeholders meeting and invited comment on it from participants. The final weighting shown in Table 7.2-34 to Table 7.2-36 were determined by reference to useful comments obtained from stakeholders.

The basic ideas for deciding weights of evaluation items are as follows.

- Same weight is attached to the technical and economic conditions and the impact on environment.
- In the technical and economic conditions, importance is placed on the effectiveness of project.
- In the impact on environment, same weight is attached to the impact on natural environment and the impact on the social environment.

Category	%	Subcategory	%	Evaluation Item	%	Point
		TT 1 1 · 1		Reliability of flow data	25	3.13
		Hydrological	25	Risk of GLOF	40	5.00
		Conditions		Sedimentation	35	4.37
				Seismicity	30	3.75
		Geological Conditions	25	Geological conditions of the site	40	5.00
Technical and				Natural hazard (earthquake)	30	3.75
Economical	50			Length of access road	25	2.50
Conditions		Lead Time	20	Difficulty level of funding	35	3.50
				Reliability of development plan	40	4.00
		Effectiveness of Project		Unit generation cost	25	3.75
			30	Installed capacity	20	3.00
				Annual energy production	20	3.00
				Energy production in the dry season	35	5.25
				Impact on forest	25	6.25
		Impact on	50	Impact on protected area	30	7.50
		Natural Environment	50	Impact on fishes	20	5.00
				Impact on conservation species	25	6.25
Impact on Environment	50			Impact on locality by construction of transmission line	20	5.00
		Impact on	-	Impact on household	25	6.25
		Social Environment	50	Impact on agriculture	20	5.00
				Impact on ethnic minority	20	5.00
				Impact on tourism	15	3.75
				Total		100

 Table 7.2-33
 Evaluation Items and Weight at the Second Stage (Base Case)

In the first stake-holder meeting, some attendees made comments that the technical and economical conditions were more important than the impact on environment when the power condition of Nepal was considered. Taking these comments into consideration, two other cases of weighting were prepared, Case 1 that put more importance on the technical and economical conditions (60%) and Case 2 that put more importance on the impact on environment (60%), and effects of difference in weighting on evaluation result were studied.

Category % Subc		Subcategory	%	Evaluation Item	%	Point		
		TT 1 1 1 1		Reliability of flow data	25	3.75		
		Gonditions	25	Risk of GLOF	40	6.00		
		Conditions		Sedimentation	35	5.25		
				Seismicity	30	4.50		
		Geological Conditions 25		Geological conditions of the site	40	6.00		
Technical and				Natural hazard (earthquake)	30	4.50		
Economical	60			Length of access road	25	3.00		
Conditions		Lead Time		Difficulty level of funding	35	4.20		
				Reliability of development plan	40	4.80		
		Effectiveness of		Unit generation cost	25	4.50		
			20	Installed capacity	20	3.60		
		Project		Annual energy production	20	3.60		
				Energy production in the dry season	35	6.30		
				Impact on forest		5.00		
		Impact on	50	Impact on protected area	30	6.00		
		Natural Environment		Impact on fishes		4.00		
				Impact on conservation species		5.00		
Impact on Environment	40			Impact on locality by construction of transmission line	20	4.00		
		Impact on Social Environment		Impact on household	25	5.00		
				Impact on agriculture		4.00		
				Impact on ethnic minority	20	4.00		
				Impact on tourism	15	3.00		
				Total				

 Table 7.2-34
 Weight of Evaluation Item (Case 1)

Table 7.2-35	Weight of	f Evaluation	Item ((Case 2))
14010 /12 00	, eight o	1 Draiaation	Item (,

Category	%	Subcategory %		Evaluation Item	%	Point		
		TT 1 1 1 1		Reliability of flow data	25	2.50		
		Gonditions	25	Risk of GLOF	40	4.00		
		Conditions		Sedimentation	35	3.50		
				Seismicity	30	3.00		
		Geological Conditions	25	Geological conditions of the site	40	4.00		
Technical and		Natural hazard (earthquake)				3.00		
Economical	40			Length of access road	25	2.00		
Conditions		Lead Time	20	Difficulty level of funding	35	2.80		
				Reliability of development plan	40	3.20		
		Effectiveness of Project		Unit generation cost	25	3.00		
			20	Installed capacity	20	2.40		
			50	Annual energy production	20	2.40		
				Energy production in the dry season	35	4.20		
				Impact on forest		7.50		
		Impact on	50	Impact on protected area	30	9.00		
		Natural Environment	30	Impact on fishes		6.00		
				Impact on conservation species		7.50		
Impact on Environment	60			Impact on locality by construction of transmission line	20	6.00		
		Impact on	50	Impact on household		7.50		
		Social Environment		Impact on agriculture	20	6.00		
				Impact on ethnic minority	20	6.00		
				Impact on tourism	15	4.50		
				Total				

7.3 Impact Assessment

Second Step is an evaluation for 31 Candidate projects based on the document survey. Evaluation is conducted from major six categories such as Hydrological Condition, Geological Conditions, Lead Time, Effectiveness of Project, Impact on Natural Environment, and Impact on Social Environment.

- (1) Impact Evaluation
 - 1) Hydrological Conditions

a. Reliability of flow data

Reliability of Flow Data is evaluated by the methods described in Section 7.2 (1) 1) a. The flow data of Lower Jhimruk (W05), Tila-1 (W12), Bhanakot (W20), Dudh Koshi (E01), Tama Koss-3 (E12), Sun Koshi No.3 (E17), Dudh Koshi-2 (E02), Andhi Khola (C08), Madi-Ishaneshor (C11), Thapna (W21), and Sarada Babai (W24) is relatively more reliable than the other projects.

Figure 7.3-1 Reliability of flow Data (Score)

b. Risk of GLOF

The Risk of GLOF is evaluated by the methods described in Section 7.2 (1) 1) b. The risk is relatively higher in Dudh Koshi (E01), Dudh Koshi-2 (E02), and Kaligandaki-Modi (C01).

Figure 7.3-2 Risk of GLOF (Score)

c. Sedimentation

The sedimentation risk is evaluated by the methods described in Section 7.2 (1) 1) c. Kokhajor-1 (E06), Piluwa-2 (E09), Upper Daraudi (C05), Lower Daraudi (C03), and Andhi Khola (C08) has relatively higher risk than the other projects.

Figure 7.3-3Sedimentation (Life Time of Reservoir: Year)

Figure 7.3-4 Sedimentation (Score)

2) Geological Conditions

a. Seismicity

Seismicity Risk is evaluated by the methods described in Section 7.2 (1) 2) c. Relatively lower risk projects are Naumure (W. Rapti) (W25), Sharada-2 (W10), Kokhajor-1 (E06), and Sarada Babai (W24).

Figure 7.3-5 Seismicity (Score)

b. Geological condition

Geological Condition is evaluated by the methods described in Section 7.2 (1) 2) a. Relatively lower scored projects are Naumure (W. Rapti) (W25), Sharada-2 (W10), Kokhajor-1 (E06), Thuli Gad-2 (W11), and Sarada Babai (W24). Relatively higher scored projects are Tila-1 (W12), Tama Koss-3 (E12), Barbung Khola (W01).

Figure 7.3-6 Geological Condition of Site (Score)

c. Natural hazard

Natural Hazard is evaluated by the methods described in Section 7.2 (1) 2) b. Relatively lower scored projects are Lower Jhimruk (W05), Naumure (W25), Tama Koss-3 (E12), Kokhajor-1 (E06), Thuli Gad-2 (W11), and Sarada Babai (W24).

Figure 7.3-7 Natural Hazard (Earthquake) (Score)

3) Lead Time

a. Length of access road

Length of Access Road is evaluated by the methods described in Section 7.2 (1) 3) a. relatively lower scored projects are Dudh Koshi (E01), Barbung Khola (W01), and Tila-1 (W12).

Figure 7.3-9 Length of Access Road (Score)

b. Difficulty level of funding

Difficulty Level of Funding is evaluated by the methods described in section 7.2 (1) 3) b. Relatively lower scored projects are BR-4 (W17), Bhanakot (W20), and Thapna (W21).

Figure 7.3-10 Difficulty Level of Financing (2012 Project Cost: MUS\$)

Figure 7.3-11 Difficulty Level of Financing (Score)

c. Reliability of development plan

Reliability of Development Plan is evaluated by the methods described in Section 7.2 (1) 3) c. Relatively higher scored projects are Dudh Koshi (E01), Andhi Khola (C08), Madi-Ishaneshor (C11), and Nalsyau Gad (W23).

Figure 7.3-12 Reliability of Development Plan (Score)

4) Effectiveness of Project

a. Unit generation cost

Unit Generation Cost is evaluated by the methods described in Section 7.2 (1) 4) a. Relatively lower scored projects are Upper Daraudi (C05), Piluwa-2 (E09), Ridi Khola (C18), and Kokhajor-1 (E06).

Figure 7.3-13 Unit Generation Cost (US cent/kWh)

Figure 7.3-14 Unit Generation Cost (Score)

b. Installed capacity

Installed Capacity is evaluated by the methods described in Section 7.2 (1) 4) b. Relatively lower scored projects are Bhanakot (W20), Kaligandaki-Modi (C01), BR-4 (W17), SR-6 (W22), and Tila-1 (W12).

Figure 7.3-15 Installed Capacity (MW)

Figure 7.3-16 Installed Capacity (Score)

c. Annual energy production

Annual Energy Production is evaluated by the methods described in Section 7.2 (1) 4) c. Relatively lower scored projects are Piluwa-2 (E09), Sarada Babai (W24), Upper Daraudi (C05), Ridi Khola (C18), Lower Daraudi (C03), Lohare Khola (W26), Kokhajor-1 (E06), Rosi-2 (E10), and Indrawati (E20).

Figure 7.3-17 Annual Energy Production (GWh)

Figure 7.3-18 Annual Energy Production (Score)

d. Energy production in the dry season

Energy Production in Dry Season is evaluated by the methods described in Section 7.2 (1) 4) d. Bhanakot (W20), Dudh Koshi (E01), Thapna (W21), SR-6 (W22), BR-4 (W17) are relatively higher scores than the other projects.

Figure 7.3-19 Energy Production in the Dry Season (GWh)

Figure 7.3-20 Energy Production in the Dry Season (Score)

5) Impact on Natural Environment

a. Impact on forest

Impact on forest is evaluated by the methods described in Section 7.2. BR-4 (W17), Thapna (W21), SR-6 (W22), Bhanakot (W20) are more than 1,000 ha which is relatively larger than the other projects. When it comes to unit forest are per MW, Lohare Khola (W26), BR-4 (W17), Kokhajor-1 (E06), Thapna (W21) are relatively bigger impact than the other projects.

Figure 7.3-21 Impact on Forest (Inundated Forest Area: ha)

Figure 7.3-22 Impact on Forest (Unit Inundated Forest Area: ha/MW)

Figure 7.3-23 Impact on Forest (Score)

b. Impact on protected area

Impact on Protected area is evaluated by the methods described in Section 7.2. The scores of Sharada - 2 (W10), Lower Badigad (C02), Andhi Khola (C08), Madi- Ishaneshor (C11), Kaligandaki-Modi (C01), Sarada Babai (W24), Upper Daraudi (C05), Ridi Khola (C18), and Lower Daraudi (C03) are relatively lower than the other projects.

No.	Project Name	World Heritage	National Park	National Park (Buffer Zone)	Wildlife Reserve	Ramsar	Key Biodiversity Area	Total Point
E-01	Dudh Koshi				1	1		2
E-02	Dukh Koshi-2				1	1		2
E-06	Kokhajor-1							0
E-09	Piluwa-2				1	1		2
E-10	Rosi-2				1	1		2
E-12	Tama Koss-3				1	1		2
E-17	Sunkosi No.3	1			1	1		2
E-20	Indrawati				1	1		2
C-01	Kaligandaki-Modi	1	1	1				3
C-02	Lower Badigad	1	1	1				3
C-03	Lower Daraudi	1	1	1				3
C-05	Upper Daraudi	1	1	1				3
C-08	Andhi Khola	1	1	1				3
C-11	Madi-Ishaneshor	1	1	1				3
C-18	Ridi Khola	1	1	1				3
W-01	Barbung Khola			1				1
W-02	Chera-1			1				1
W-03	Chera-2			1				1
W-05	Lower Jhimruk			1				1
W-06	Madi			1				1
W-10	Sharada-2		1	1			2	3
W-11	Thuli Gad-2			1				1
W-12	Tila-1			1				1
W-17	BR-4			1				1
W-20	Bhanakot			1				1
W-21	Thapna			1				1
W-22	SR-6			1				1
W-23	Nalsyagu Gad			1				1
W-24	Sarada Babai		1	1			2	3
W-25	Naumure (W. Rapti)			1				1
W-26	Lohare Khola			1				1

c. Impact on fishes

Impacts on fishes are evaluated by the methods described in Section 7.2. Relatively higher score projects are Madi (W06), Lower Jhimruk (W05), Naumure (W. Rapti) (W25), and Sarada Babai (W24).

Figure 7.3-25 Impact on Fishes (Score)

d. Impact on conservation species

Impact on conservation species are evaluated by the methods described in Section 7.2 Relatively lower scored projects are Dudh Koshi (E01), Tama Koss-3 (E12), Sun Koshi No.3 (E17), Dudh Koshi-2 (E02), Kokhajor-1 (E06), Andhi Khola (C08), Madi- Ishaneshor (C11), Rosi-2 (E10), Piluwa-2 (E09), Thuli Gad-2 (W11), Indrawati (E20), SR-6 (W22), Upper Daraudi (C05), and Lower Daraudi (C03).

Figure 7.3-26 Impact on Conservation Species (Score)

No. Project Name		Panthera tigris (EN)		Lutra lutra (NT)		Macaca assamensis (NT)		Panthera pardus (NT)		Melursus ursinus (VU)		Neofelis nebulosa (VU)		Ursus thibetanus (VU)		Total Point
		Habitat	Point	Habitat	Point	Habitat	Point	Habitat	Point	Habitat	Point	Habitat	Point	Habitat	Point	rome
E-01	Dudh Koshi			1	5	1	5					1	5	5	2	17
E-02	Dukh Koshi-2			1	5	1	5					1	5	5	2	17
E-06	Kokhajor-1			1	5	1	5					1	5	5	2	17
E-09	Piluwa-2			1	5	1	5					1	5	5	2	17
E-10	Rosi-2			1	5	1	5					1	5	5	2	17
E-12	Tama Koss-3			1	5	1	5					1	5	5	2	17
E-17	Sunkosi No.3			1	5	1	5					1	5	5	2	17
E-20	Indrawati			1	5	1	5					1	5	5	2	17
C-01	Kaligandaki-Modi			1	5	1	5							6	1	11
C-02	Lower Badigad			1	5	1	5			5	1			5	2	13
C-03	Lower Daraudi			1	5	1	5					1	5	5	2	17
C-05	Upper Daraudi			1	5	1	5					1	5	5	2	17
C-08	Andhi Khola			1	5	1	5			5	1	1	5	5	2	18
C-11	Madi-Ishaneshor			1	5	1	5					1	5	5	2	17
C-18	Ridi Khola			1	5	1	5			5	1			5	2	13
W-01	Barbung Khola			1	5	1	5	1	5					6	1	16
W-02	Chera-1			1	5	1	5			5	1			6	1	12
W-03	Chera-2			1	5	1	5			5	1			5	2	13
W-05	Lower Jhimruk			1	5	1	5			5	1			5	2	13
W-06	Madi			1	5					5	1			6	1	7
W-10	Sharada-2	1	5							5	1			5	2	8
W-11	Thuli Gad-2	1	5	1	5	1	5			5	1			5	2	18
W-12	Tila-1			1	5	1	5							2	4	14
W-17	BR-4			1	5	1	5			5	1			5	2	13
W-20	Bhanakot			1	5	1	5							6	1	11
W-21	Thapna			1	5	1	5			5	1			5	2	13
W-22	SR-6	1	5	1	5	1	5							5	2	17
W-23	Nalsyagu Gad			1	5	1	5							2	4	14
W-24	Sarada Babai	1	5							1	5			5	2	12
W-25	Naumure (W. Rapti)	1	5	1	5					5	1			5	2	13
W-26	Lohare Khola			1	5	1	5			5	1			6	1	12

6) Impact on Social Environment

a. Impact on locality by construction of transmission line

Impact on Locality by Construction of Transmission Line is evaluated by the methods described in Section 7.2. The length of transmission line needed for Bhanakot (W20), Tila-1 (W12), and Lohare Khola (W26) are more than 80 km which is relatively longer than the other projects.

Figure 7.3-27 Impact on Locality by Construction of Transmission Line (km)

Figure 7.3-28 Impact on Locality by Construction of Transmission Line (Score)

b. Impact on household

Impact on household is evaluated by the methods described in Section 7.2. The number of buildings in the reservoir of BR-4 (W17), SR-6 (W22), and Thapna (W21) are more than 1,000 which are relatively higher than the other projects.

Figure 7.3-30 Impact on Household (Score)

c. Impact on agriculture

Impact on Agriculture is evaluated by the methods described in Section 7.2. The impact on farm land of BR-4 (W17) and Thapna (W21) is more than 2,000 ha which is relatively higher than the other projects. When it comes to agricultural land per MW, impact of Lower Daraudi (C03), Lohare Khola (W26), BR-4 (W17), and Indrawati (E20) are more than 5 ha/MW which is relatively higher than the other projects.

Figure 7.3-31 Impact on Agriculture (Inundated Agricultural Land: ha)

Figure 7.3-32 Impact on Agriculture (Unit inundated Agricultural Land: ha/MW)

d. Impact on ethnic minority

Impact on ethnic minority is evaluated by a method described in Section 7.2. SR-6 (W22), Thapna (W21), Kaligandaki-Modi (C01), and Tama Koss-3 (E12) are located in the VDCs which contains relatively higher number of ethnic minority groups.

Figure 7.3-34 Impact on Ethnic Minority (Number of Ethnic Minority Groups)

Figure 7.3-35 Impact on Ethnic Minority (Score)

e. Impact on tourism

Impact on tourism is evaluated by a method described in Section 7.2. Relatively many temples are located in the reservoir of C01 Kaligandaki-Modi, W17 BR-4, W21 Thapna, and W22 SR-6. Then the scores of these projects are lower.

Figure 7.3-36 Impact on Tourism (Number of Religious Asset and Trekking Route)

Figure 7.3-37 Impact on Tourism (Score)

No.	Project Name	Church	Monument	Mosque	Temple	Trecking	Total
E-01	Dudh Koshi				1		1
E-02	Dukh Koshi-2						0
E-06	Kokhajor-1						0
E-09	Piluwa-2				1		1
E-10	Rosi-2						0
E-12	Tama Koss-3				1		1
E-17	Sunkosi No.3				5		5
E-20	Indrawati				1		1
C-01	Kaligandaki-Modi				10		10
C-02	Lower Badigad						0
C-03	Lower Daraudi				1		1
C-05	Upper Daraudi						0
C-08	Andhi Khola				1		1
C-11	Madi- Ishaneshor				2		2
C-18	Ridi Khola						0
W-01	Barbung Khola						0
W-02	Chera-1						0
W-03	Chera-2						0
W-05	Lower Jhimruk						0
W-06	Madi						0
W-10	Sharada-2						0
W-11	Thuli Gad - 2		1		1		2
W-12	Tila-1						0
W-17	BR-4				9		9
W-20	Bhanakot				1		1
W-21	Thapna				8		8
W-22	SR-6				9		9
W-23	Nalsyagu Gad						0
W-24	Sarada Babai				2		2
W-25	Naumure (W. Papti)				1		1
W-26	Lohare Khola				3	1	4

Table 7.3-3Impact on Tourism

(2) Sensitivity Analysis

The 31 candidate projects selected in Second Step (See Section 7.1) were evaluated by the evaluation method described in Section 7.2 (1), then the evaluation scores of each evaluation item were weighted with the weight described in Section 7.2 (2) and summed up, and evaluation scores of each candidate project were obtained. Numerical value or information of each evaluation item was obtained from existing project reports, topographical and geological maps, and other literature.

Table 7.3-4 shows the evaluation score and ranking of candidate projects, Table 7.3-5 shows the ranking of each case and Table 7.3-6 shows the detail of evaluation results.

	D 1		Bas	e Case	С	ase 1	Case 2			
No.	Project Name	P (MW)	Score	Ranking	Score	Ranking	Score	Ranking		
E-01	Dudh Koshi	300.0	65	6	65	5	65	9		
E-02	Dukh Koshi-2	456.6	62	12	61	17	63	12		
E-06	Kokhajor-1	111.5	62	13	60	20	64	10		
E-09	Piluwa-2	107.3	59	21	57	25	60	19		
E-10	Rosi-2	106.5	60	20	58	21	61	17		
E-12	Tama Koss-3	287.0	63	10	63	13	63	13		
E-17	Sunkosi No.3	536.0	63	11	64	8	62	15		
E-20	Indrawati	91.2	58	23	58	24	58	24		
C-01	Kaligandaki-Modi	816.4	57	25	58	23	56	25		
C-02	Lower Badigad	380.3	62	14	63	14	62	16		
C-03	Lower Daraudi	120.2	50	30	52	29	49	31		
C-05	Upper Daraudi	111.4	53	27	51	30	54	27		
C-08	Andhi Khola	180.0	62	15	64	9	61	18		
C-11	Madi- Ishaneshor	86.0	61	17	62	15	59	21		
C-18	Ridi Khola	97.0	53	28	53	28	53	28		
W-01	Barbung Khola	122.9	61	18	60	19	63	14		
W-02	Chera-1	148.7	65	7	64	7	66	4		
W-03	Chera-2	104.3	62	16	61	16	63	11		
W-05	Lower Jhimruk	142.5	71	2	69	2	73	2		
W-06	Madi	199.8	76	1	73	1	78	1		
W-10	Sharada-2	96.8	64	9	63	12	65	7		
W-11	Thuli Gad-2	119.7	59	22	58	22	60	20		
W-12	Tila-1	617.2	66	4	65	6	66	5		
W-17	BR-4	667.0	51	29	53	27	49	30		
W-20	Bhanakot	810.0	66	5	66	4	65	8		
W-21	Thapna	500.0	61	19	64	10	58	23		
W-22	SR-6	642.0	58	24	61	18	56	26		
W-23	Nalsyagu Gad	400.0	68	3	67	3	70	3		
W-24	Sarada Babai	75.0	57	26	55	26	59	22		
W-25	Naumure (W. Rapti)	245.0	65	8	64	11	66	6		
W-26	Lohare Khola	67.0	50	31	51	31	49	29		

Table 7.3-4Evaluation Score and Ranking

E: Eastern River Basin, C: Central River Basin, W: Western River Basin.

Base Case: Technical point 50%, Environmental point 50%

Case 1: Technical point 60%, Environmental point 40%

Case 2: Technical point 40%, Environmental point 60%

	Table 7.3-5	Evaluation Score and Ranking of Each C	Case
--	-------------	--	------

Case-1

Base Case

Technical point : 50%, Environmental point : 50%

No.	Project Name	P (MW)	Score	Ranking
W-06	Madi	199.8	76	1
W-05	Lower Jhimruk	142.5	71	2
W-23	Nalsyagu Gad	400.0	68	3
W-12	Tila - 1	617.2	66	4
W-20	Bhanakot	810.0	66	5
E-01	Dudh Koshi	300.0	65	6
W-02	Chera-1	148.7	65	7
W-25	Naumure (W. Rapti)	245.0	65	8
W-10	Sharada - 2	96.8	64	9
E-12	Tama Koss-3	287.0	63	10
E-17	Sunkosi No.3	536.0	63	11
E-02	Dukh Koshi-2	456.6	62	12
E-06	Kokhajor-1	111.5	62	13
C-02	Lower Badigad	380.3	62	14
C-08	Andhi Khola	180.0	62	15
W-03	Chera-2	104.3	62	16
C-11	Madi- Ishaneshor	86.0	61	17
W-01	Barbung Khola	122.9	61	18
W-21	Thapna	500.0	61	19
E-10	Rosi-2	106.5	60	20
E-09	Piluwa-2	107.3	59	21
W-11	Thuli Gad - 2	119.7	59	22
E-20	Indrawati	91.2	58	23
W-22	SR-6	642.0	58	24
C-01	Kaligandaki-Modi	816.4	57	25
W-24	Sarada Babai	75.0	57	26
C-05	Upper Daraudi	111.4	53	27
C-18	Ridi Khola	97.0	53	28
W-17	BR-4	667.0	51	29
C-03	Lower Daraudi	120.2	50	30
W-26	Lohare Khola	67.0	50	31

Technical point : 60%, Environmental point : 40%									
No.	Project Name	P (MW)	Score	Ranking					
W-06	Madi	199.8	73	1					
W-05	Lower Jhimruk	142.5	69	2					
W-23	Nalsyagu Gad	400.0	67	3					
W-20	Bhanakot	810.0	66	4					
E-01	Dudh Koshi	300.0	65	5					
W-12	Tila - 1	617.2	65	6					
W-02	Chera-1	148.7	64	7					
E-17	Sunkosi No.3	536.0	64	8					
C-08	Andhi Khola	180.0	64	9					
W-21	Thapna	500.0	64	10					
W-25	Naumure (W. Rapti)	245.0	64	11					
W-10	Sharada - 2	96.8	63	12					
E-12	Tama Koss-3	287.0	63	13					
C-02	Lower Badigad	380.3	63	14					
C-11	Madi- Ishaneshor	86.0	62	15					
W-03	Chera-2	104.3	61	16					
E-02	Dukh Koshi-2	456.6	61	17					
W-22	SR-6	642.0	61	18					
W-01	Barbung Khola	122.9	60	19					
E-06	Kokhajor-1	111.5	60	20					
E-10	Rosi-2	106.5	58	21					
W-11	Thuli Gad - 2	119.7	58	22					
C-01	Kaligandaki-Modi	816.4	58	23					
E-20	Indrawati	91.2	58	24					
E-09	Piluwa-2	107.3	57	25					
W-24	Sarada Babai	75.0	55	26					
W-17	BR-4	667.0	53	27					
C-18	Ridi Khola	97.0	53	28					
C-03	Lower Daraudi	120.2	52	29					
C-05	Upper Daraudi	111.4	51	30					
W-26	Lohare Khola	67.0	51	31					

Case-2											
Tech	nical point : 40%, Envi	ironmental p	ooint : 60)%							
No.	Project Name	P (MW)	Score	Ranking							
W-06	Madi	199.8	78	1							
W-05	Lower Jhimruk	142.5	73	2							
W-23	Nalsyagu Gad	400.0	70	3							
W-02	Chera-1	148.7	66	4							
W-12	Tila - 1	617.2	66	5							
W-25	Naumure (W. Rapti)	245.0	66	6							
W-10	Sharada - 2	96.8	65	7							
W-20	Bhanakot	810.0	65	8							
E-01	Dudh Koshi	300.0	65	9							
E-06	Kokhajor-1	111.5	64	10							
W-03	Chera-2	104.3	63	11							
E-02	Dukh Koshi-2	456.6	63	12							
E-12	Tama Koss-3	287.0	63	13							
W-01	Barbung Khola	122.9	63	14							
E-17	Sunkosi No.3	536.0	62	15							
C-02	Lower Badigad	380.3	62	16							
E-10	Rosi-2	106.5	61	17							
C-08	Andhi Khola	180.0	61	18							
E-09	Piluwa-2	107.3	60	19							
W-11	Thuli Gad - 2	119.7	60	20							
C-11	Madi- Ishaneshor	86.0	59	21							
W-24	Sarada Babai	75.0	59	22							
W-21	Thapna	500.0	58	23							
E-20	Indrawati	91.2	58	24							
C-01	Kaligandaki-Modi	816.4	56	25							
W-22	SR-6	642.0	56	26							
C-05	Upper Daraudi	111.4	54	27							
C-18	Ridi Khola	97.0	53	28							
W-26	Lohare Khola	67.0	49	29							
W-17	BR-4	667.0	49	30							
C-03	Lower Daraudi	120.2	49	31							

E: Eastern River Basin, C: Central River Basin, W: Western River Basin.

	Category	Technical and Economical Conditions																							
	Subcategory			Н	ydrologi	cal Con	ditions					G	Geologi (See T	cal Condition able 8.4.1-5)	15		Lead Time								
F	valuation Item	Reliabilit	y of Flow	Data	Ri	isk of G	LOF	Se	dimentat	ion	Se	ismicity	Ge Condi	ological ition of Site	Natu (Eai	ral Hazard rthquake)	Leng	th of Acce	ess Road	Difficulty	Level of	Financing	Reliability	of Deve Plan	lopment
	Weight (%)			3.13			5.00			4.37		3.75		5.00		3.75			2.50			3.50			4.00
No.	Project Name	Calculation Method	Score	Weighted Score	Risk	Score	Weighted Score	Life Time of Reservoir	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Length (km)	Score	Weighted Score	2012 Project Cost (MUSD)	Score	Weighted Score	Study Level	Score	Weighted Score
W-06	Madi	RH	0.0	0.00	None	100	5.00	202.0	100.0	4.37	60	2.25	40	2.00	100	3.75	15.0	76.9	1.92	394.5	85.8	3.00	DS	20	0.80
W-05	Lower Jhimruk	GS330*As/Ag	100.0	3.13	None	100	5.00	146.9	100.0	4.37	60	2.25	40	2.00	20	0.75	18.0	72.3	1.81	312.4	91.1	3.19	DS	20	0.80
W-23	Nalsyagu Gad	RH	0.0	0.00	None	100	5.00	149.5	100.0	4.37	20	0.75	20	1.00	60	2.25	30.0	53.8	1.35	607.5	72.1	2.52	FS ongoing	80	3.20
W-12	Tila - 1	GS225*As/Ag	100.0	3.13	None	100	5.00	65.5	31.1	1.36	20	0.75	60	3.00	100	3.75	56.0	13.8	0.35	1163.8	36.3	1.27	DS	20	0.80
W-20	Bhanakot	GS240*As/Ag	100.0	3.13	None	100	5.00	144.3	100.0	4.37	20	0.75	40	2.00	100	3.75	1.0	98.5	2.46	1728.8	0.0	0.00	DS few data	0	0.00
E-01	Dudh Koshi	GS670	100.0	3.13	High	0	0.00	145.4	100.0	4.37	20	0.75	40	2.00	60	2.25	65.0	0.0	0.00	830.8	57.7	2.02	FS	100	4.00
W-02	Chera-1	RH	0.0	0.00	None	100	5.00	119.3	100.0	4.37	20	0.75	40	2.00	100	3.75	5.5	91.5	2.29	332.2	89.8	3.14	DS	20	0.80
W-25	Naumure (W. Rapti)	RH	0.0	0.00	None	100	5.00	191.5	100.0	4.37	100	3.75	0	0.00	0	0.00	34.0	47.7	1.19	594.5	72.9	2.55	Pre FS	60	2.40
W-10	Sharada - 2	RH	0.0	0.00	None	100	5.00	140.2	100.0	4.37	100	3.75	0	0.00	60	2.25	5.0	92.3	2.31	173.8	100.0	3.50	DS	20	0.80
E-12	Tama Koss-3	GS647	87.5	2.74	None	100	5.00	133.9	100.0	4.37	20	0.75	60	3.00	0	0.00	13.0	80.0	2.00	515.6	78.0	2.73	DS few data	0	0.00
E-17	Sunkosi No.3	GS630*As/Ag	100.0	3.13	None	100	5.00	100.5	100.0	4.37	20	0.75	40	2.00	100	3.75	20.0	69.2	1.73	1147.0	37.4	1.31	DS	20	0.80
E-02	Dukh Koshi-2	GS670*As/Ag	100.0	3.13	High	0	0.00	77.3	54.7	2.39	20	0.75	40	2.00	100	3.75	35.0	46.2	1.15	979.7	48.2	1.69	DS	20	0.80
E-06	Kokhajor-1	RH	0.0	0.00	None	100	5.00	353.8	100.0	4.37	100	3.75	0	0.00	20	0.75	22.0	66.2	1.65	324.0	90.3	3.16	DS	20	0.80
C-02	Lower Badigad	RH	0.0	0.00	None	100	5.00	165.6	100.0	4.37	60	2.25	20	1.00	100	3.75	0.0	100.0	2.50	672.8	67.9	2.38	DS	20	0.80
C-08	Andhi Khola	GS415*As/Ag	100.0	3.13	None	100	5.00	280.5	100.0	4.37	20	0.75	20	1.00	100	3.75	8.0	87.7	2.19	450.3	82.2	2.88	FS	100	4.00
W-03	Chera-2	RH	0.0	0.00	None	100	5.00	111.3	100.0	4.37	20	0.75	40	2.00	80	3.00	2.5	96.2	2.40	283.5	92.9	3.25	DS	20	0.80
C-11	Madi- Ishaneshor	GS438*As/Ag	98.3	3.08	None	100	5.00	160.9	100.0	4.37	20	0.75	40	2.00	40	1.50	3.0	95.4	2.38	190.3	98.9	3.46	FS	100	4.00
W-01	Barbung Khola	RH	0.0	0.00	None	100	5.00	52.1	4.1	0.18	40	1.50	60	3.00	100	3.75	60.0	7.7	0.19	184.7	99.3	3.48	DS	20	0.80
W-21	Thapna	GS269.5*As/Ag	100.0	3.13	None	100	5.00	204.9	100.0	4.37	60	2.25	40	2.00	100	3.75	1.0	98.5	2.46	1484.2	15.7	0.55	DS few data	0	0.00
E-10	Rosi-2	RH	0.0	0.00	None	100	5.00	149.8	100.0	4.37	20	0.75	20	1.00	60	2.25	15.0	76.9	1.92	326.9	90.2	3.16	DS	20	0.80
E-09	Piluwa-2	RH	0.0	0.00	None	100	5.00	363.5	100.0	4.37	20	0.75	40	2.00	100	3.75	40.0	38.5	0.96	275.4	93.5	3.27	DS	20	0.80
W-11	Thuli Gad - 2	RH	0.0	0.00	None	100	5.00	126.9	100.0	4.37	60	2.25	0	0.00	20	0.75	10.0	84.6	2.12	221.3	96.9	3.39	DS	20	0.80
E-20	Indrawati	RH	0.0	0.00	None	100	5.00	208.6	100.0	4.37	20	0.75	40	2.00	60	2.25	2.3	96.5	2.41	360.4	88.0	3.08	Pre FS	60	2.40
W-22	SR-6	GS260*As/Ag	98.3	3.08	None	100	5.00	186.8	100.0	4.37	20	0.75	40	2.00	80	3.00	17.0	73.8	1.85	1212.7	33.2	1.16	DS	20	0.80
C-01	Kaligandaki-Modi	RH	0.0	0.00	Low	40	2.00	177.0	100.0	4.37	20	0.75	40	2.00	100	3.75	0.0	100.0	2.50	768.4	61.8	2.16	DS	20	0.80
W-24	Sarada Babai	GS286	100.0	3.13	None	100	5.00	72.6	45.2	1.97	100	3.75	0	0.00	0	0.00	32.0	50.8	1.27	259.1	94.5	3.31	DS	20	0.80
C-05	Upper Daraudi	RH	0.0	0.00	None	100	5.00	317.3	100.0	4.37	20	0.75	40	2.00	40	1.50	15.0	76.9	1.92	444.5	82.6	2.89	DS	20	0.80
C-18	Ridi Khola	RH	0.0	0.00	None	100	5.00	252.1	100.0	4.37	20	0.75	20	1.00	60	2.25	6.0	90.8	2.27	383.3	86.5	3.03	Preliminary	40	1.60
W-17	BR-4	RH	0.0	0.00	None	100	5.00	197.1	100.0	4.37	20	0.75	40	2.00	60	2.25	1.0	98.5	2.46	1369.6	23.1	0.81	DS	20	0.80
C-03	Lower Daraudi	RH	0.0	0.00	None	100	5.00	289.1	100.0	4.37	20	0.75	40	2.00	100	3.75	0.0	100.0	2.50	198.4	98.4	3.44	DS	20	0.80
W-26	Lohare Khola	RH	0.0	0.00	None	100	5.00	155.0	100.0	4.37	20	0.75	40	2.00	60	2.25	5.0	92.3	2.31	218.9	97.1	3.40	Pre FS	60	2.40

Table 7.3-6 (1) Evaluation Score and Ranking of Base Case (1/3)

	Category Technical and Economical Conditions (C					Cont.)			Impact on Environment																		
	Subcategory						Effectiven	ess of Pro	ject									Impact	t on Nat	tural Enviro	nment						
I	Evaluation Item	Unit Ge	eneratio	on Cost	Ins	stalled Ca	apacity	Annual	Energy F	Production	Energy	Productio Season	n in Dry		Impact on F	Forest		Impact of (See	Impact on Protected Area (See Table 8.4.3-6)			Impact on Fishes			Impact on Conservation Species (See Table 8.4.3-7)		
	Weight (%)			3.75			3.00			3.00			5.25				6.25			7.50			5.00			6.25	
No.	Project Name	(USc/kWh)	Score	Weighted Score	(MW)	Score	Weighted Score	(GWh)	Score	Weighted Score	(GWh)	Score	Weighted Score	Inundated Forest Area (ha)	Forest Area / Installed Capacity (ha / MW)	Score	Weighted Score	Total Point	Score	Weighted Score	Numbers of Species	Score	Weighted Score	Total Point	Score	Weighted Score	
W-06	Madi	6.14	75.6	2.84	199.8	100.0	3.00	642.9	32.1	0.96	256.43	32.1	1.69	214	1.07	91.3	5.71	1	66.7	5.00	0	100.0	5.00	7.0	100.0	6.25	
W-05	Lower Jhimruk	6.85	71.8	2.69	142.5	100.0	3.00	456.3	22.8	0.68	163.37	20.4	1.07	196	1.38	88.6	5.54	1	66.7	5.00	0	100.0	5.00	13.0	45.5	2.84	
W-23	Nalsyagu Gad	4.73	83.2	3.12	400.0	85.7	2.57	1285.5	64.3	1.93	462.90	57.9	3.04	41	0.10	100.0	6.25	1	66.7	5.00	10	0.0	0.00	14.0	36.4	2.27	
W-12	Tila - 1	4.79	82.9	3.11	617.2	54.7	1.64	2428.7	100.0	3.00	642.86	80.4	4.22	237	0.38	97.5	6.09	1	66.7	5.00	10	0.0	0.00	14.0	36.4	2.27	
W-20	Bhanakot	2.45	95.4	3.58	810.0	27.1	0.81	7042.2	100.0	3.00	4089.34	100.0	5.25	1,484	1.83	84.5	5.28	1	66.7	5.00	10	0.0	0.00	11.0	63.6	3.98	
E-01	Dudh Koshi	4.46	84.6	3.17	300.0	100.0	3.00	1864.6	93.2	2.80	821.33	100.0	5.25	382	1.27	89.5	5.59	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
W-02	Chera-1	5.95	76.6	2.87	148.7	100.0	3.00	557.8	27.9	0.84	166.17	20.8	1.09	157	1.06	91.4	5.71	1	66.7	5.00	10	0.0	0.00	12.0	54.5	3.41	
W-25	Naumure (W. Rapti)	5.10	81.2	3.05	245.0	100.0	3.00	1165.1	58.3	1.75	425.17	53.1	2.79	908	3.71	67.6	4.23	1	66.7	5.00	0	100.0	5.00	13.0	45.5	2.84	
W-10	Sharada - 2	3.81	88.1	3.30	96.8	96.8	2.90	455.6	22.8	0.68	159.57	19.9	1.04	268	2.77	76.1	4.75	3	0	0.00	10	0.0	0.00	8.0	90.9	5.68	
E-12	Tama Koss-3	3.89	87.7	3.29	287.0	100.0	3.00	1325.3	66.3	1.99	468.77	58.6	3.08	227	0.79	93.8	5.86	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
E-17	Sunkosi No.3	6.29	74.8	2.81	536.0	66.3	1.99	1824.8	91.2	2.74	461.90	57.7	3.03	519	0.97	92.2	5.76	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
E-02	Dukh Koshi-2	4.40	84.9	3.18	456.6	77.6	2.33	2225.5	100.0	3.00	617.48	77.2	4.05	209	0.46	96.8	6.05	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
E-06	Kokhajor-1	11.97	44.4	1.67	111.5	100.0	3.00	270.7	13.5	0.41	124.11	15.5	0.81	546	4.90	56.9	3.56	0	100	7.50	3	70.0	3.50	17.0	9.1	0.57	
C-02	Lower Badigad	4.97	81.9	3.07	380.3	88.5	2.66	1354.4	67.7	2.03	486.81	60.9	3.20	376	0.99	92.0	5.75	3	0	0.00	10	0.0	0.00	13.0	45.5	2.84	
C-08	Andhi Khola	6.96	71.2	2.67	180.0	100.0	3.00	646.9	32.3	0.97	207.10	25.9	1.36	254	1.41	88.2	5.52	3	0	0.00	10	0.0	0.00	18.0	0.0	0.00	
W-03	Chera-2	7.04	70.8	2.66	104.3	100.0	3.00	402.6	20.1	0.60	117.68	14.7	0.77	351	3.37	70.7	4.42	1	66.7	5.00	10	0.0	0.00	13.0	45.5	2.84	
C-11	Madi- Ishaneshor	4.84	82.6	3.10	86.0	86.0	2.58	393.3	19.7	0.59	103.52	12.9	0.68	154	1.79	84.8	5.30	3	0	0.00	10	0.0	0.00	17.0	9.1	0.57	
W-01	Barbung Khola	2.70	94.1	3.53	122.9	100.0	3.00	683.5	34.2	1.03	227.09	28.4	1.49	20	0.16	99.5	6.22	1	66.7	5.00	10	0.0	0.00	16.0	18.2	1.14	
W-21	Thapna	4.30	85.5	3.21	500.0	71.4	2.14	3450.5	100.0	3.00	1894.43	100.0	5.25	2,094	4.19	63.3	3.96	1	66.7	5.00	10	0.0	0.00	13.0	45.5	2.84	
E-10	Rosi-2	9.79	56.1	2.10	106.5	100.0	3.00	334.1	16.7	0.50	117.75	14.7	0.77	50	0.47	96.7	6.04	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
E-09	Piluwa-2	18.01	12.0	0.45	107.3	100.0	3.00	152.9	7.6	0.23	82.96	10.4	0.55	51	0.48	96.7	6.04	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
W-11	Thuli Gad - 2	4.31	85.4	3.20	119.7	100.0	3.00	513.5	25.7	0.77	157.86	19.7	1.03	170	1.42	88.2	5.51	1	66.7	5.00	10	0.0	0.00	18.0	0.0	0.00	
E-20	Indrawati	9.39	58.2	2.18	91.2	91.2	2.74	384.0	19.2	0.58	116.00	14.5	0.76	103	1.13	90.8	5.67	2	33.3	2.50	7	30.0	1.50	17.0	9.1	0.57	
W-22	SR-6	3.69	88.7	3.33	642.0	51.1	1.53	3284.1	100.0	3.00	1425.50	100.0	5.25	1,929	3.00	73.9	4.62	1	66.7	5.00	10	0.0	0.00	17.0	9.1	0.57	
C-01	Kaligandaki-Modi	2.21	96.7	3.63	816.4	26.2	0.79	3477.4	100.0	3.00	709.28	88.7	4.66	177	0.22	99.0	6.19	3	0	0.00	10	0.0	0.00	11.0	63.6	3.98	
W-24	Sarada Babai	12.83	39.8	1.49	75.0	75.0	2.25	202.0	10.1	0.30	92.64	11.6	0.61	258	3.44	70.0	4.38	3	0	0.00	0	100.0	5.00	12.0	54.5	3.41	
C-05	Upper Daraudi	20.42	-0.9	-0.03	111.4	100.0	3.00	217.7	10.9	0.33	116.72	14.6	0.77	140	1.26	89.6	5.60	3	0	0.00	10	0.0	0.00	17.0	9.1	0.57	
C-18	Ridi Khola	15.01	28.1	1.05	97.0	97.0	2.91	255.3	12.8	0.38	133.65	16.7	0.88	410	4.23	63.0	3.94	3	0	0.00	10	0.0	0.00	13.0	45.5	2.84	
W-17	BR-4	4.13	86.4	3.24	667.0	47.6	1.43	3315.3	100.0	3.00	1479.84	100.0	5.25	3,548	5.32	53.2	3.32	1	66.7	5.00	10	0.0	0.00	13.0	45.5	2.84	
C-03	Lower Daraudi	7.88	66.3	2.49	120.2	100.0	3.00	251.7	12.6	0.38	126.81	15.9	0.83	324	2.70	76.7	4.79	3	0	0.00	10	0.0	0.00	17.0	9.1	0.57	
W-26	Lohare Khola	7.48	68.4	2.57	67.0	67.0	2.01	292.7	14.6	0.44	100.92	12.6	0.66	753	11.24	0.0	0.00	1	66.7	5.00	10	0.0	0.00	12.0	54.5	3.41	

Table 7.3-6 (2) Evaluation Score and Ranking of Base Case (2/3)

	Category	Impact on Environment (Cont.)																	
	Subcategory							Impac	t on Social	Enviro	nment								
E	valuation Item	Impact Con Trans	on Loc structio missior	ality by on of 1 Line	Impact	on Hou	ısehold	In	npact on Ag	ricultu	re	Impact or	thnic	e Minority	Impac (See 7	ct on To Fable 8.	urism 4.3-8)		
	Weight (%)			5.00			6.25				5.00			5.00			3.75		100
No.	Project Name	Length (km)	Score	Weighted Score	Number of Inundate d Househol d	Score	Weighted Score	Inundate d Firm Land (ha)	Firm Land / Installed Capacity (ha / MW)	Score	Weighted Score	Number of ethnic minority groups	Score	Weighted Score	Number of Religious Asset and Trekking Route	Score	Weighted Score	Total Sc	ore
W-06	Madi	43	81.4	4.07	162	94.9	5.93	266	1.33	86.8	4.34	5	80.8	4.04	0	100.0	3.75	75.67	76
W-05	Lower Jhimruk	54	65.7	3.29	186	94.1	5.88	210	1.47	85.2	4.26	3	88.5	4.42	0	100.0	3.75	70.72	71
W-23	Nalsyagu Gad	31	98.6	4.93	90	97.2	6.07	126	0.32	98.2	4.91	5	80.8	4.04	0	100.0	3.75	68.32	68
W-12	Tila - 1	86	20.0	1.00	44	98.6	6.16	208	0.34	97.9	4.90	0	100.0	5.00	0	100.0	3.75	65.55	66
W-20	Bhanakot	110	0.0	0.00	361	88.6	5.54	1,078	1.33	86.8	4.34	5	80.8	4.04	1	90.0	3.38	65.66	66
E-01	Dudh Koshi	21	100.0	5.00	52	98.4	6.15	418	1.39	86.1	4.30	8	69.2	3.46	1	90.0	3.38	65.19	65
W-02	Chera-1	51	70.0	3.50	75	97.6	6.10	97	0.65	94.4	4.72	10	61.5	3.08	0	100.0	3.75	65.17	65
W-25	Naumure (W. Rapti)	68	45.7	2.29	615	80.6	5.04	613	2.50	73.6	3.68	9	65.4	3.27	1	90.0	3.38	64.58	65
W-10	Sharada - 2	23	100.0	5.00	154	95.1	5.95	142	1.47	85.2	4.26	0	100.0	5.00	0	100.0	3.75	64.29	64
E-12	Tama Koss-3	21	100.0	5.00	56	98.2	6.14	136	0.47	96.4	4.82	18	30.8	1.54	1	90.0	3.38	63.26	63
E-17	Sunkosi No.3	27	100.0	5.00	343	89.2	5.57	978	1.82	81.2	4.06	11	57.7	2.88	5	50.0	1.88	63.13	63
E-02	Dukh Koshi-2	15	100.0	5.00	71	97.8	6.11	225	0.49	96.2	4.81	7	73.1	3.65	0	100.0	3.75	62.16	62
E-06	Kokhajor-1	51	70.0	3.50	102	96.8	6.05	130	1.17	88.6	4.43	8	69.2	3.46	0	100.0	3.75	61.69	62
C-02	Lower Badigad	36	91.4	4.57	366	88.5	5.53	671	1.76	81.9	4.10	11	57.7	2.88	0	100.0	3.75	62.43	62
C-08	Andhi Khola	38	88.6	4.43	97	96.9	6.06	158	0.88	91.9	4.59	9	65.4	3.27	1	90.0	3.38	62.32	62
W-03	Chera-2	49	72.9	3.65	114	96.4	6.03	144	1.38	86.2	4.31	6	76.9	3.85	0	100.0	3.75	62.45	62
C-11	Madi- Ishaneshor	10	100.0	5.00	89	97.2	6.07	264	3.07	67.2	3.36	6	76.9	3.85	2	80.0	3.00	60.64	61
W-01	Barbung Khola	67	47.1	2.36	0	100.0	6.25	19	0.15	100.0	5.00	2	92.3	4.62	0	100.0	3.75	61.29	61
W-21	Thapna	56	62.9	3.15	1,495	52.9	3.31	2,646	5.29	42.3	2.11	11	57.7	2.88	8	20.0	0.75	61.11	61
E-10	Rosi-2	32	97.1	4.86	125	96.1	6.00	151	1.42	85.8	4.29	2	92.3	4.62	0	100.0	3.75	59.75	60
E-09	Piluwa-2	5	100.0	5.00	13	99.6	6.22	49	0.46	96.6	4.83	8	69.2	3.46	1	90.0	3.38	58.63	59
W-11	Thuli Gad - 2	42	82.9	4.15	108	96.6	6.04	159	1.33	86.8	4.34	3	88.5	4.42	2	80.0	3.00	59.14	59
E-20	Indrawati	15	100.0	5.00	179	94.4	5.90	521	5.71	37.5	1.88	11	57.7	2.88	1	90.0	3.38	57.80	58
W-22	SR-6	25	100.0	5.00	1,291	59.3	3.71	1,431	2.23	76.7	3.83	26	0.0	0.00	9	10.0	0.38	58.23	58
C-01	Kaligandaki-Modi	11	100.0	5.00	436	86.3	5.39	549	0.67	94.2	4.71	19	26.9	1.35	10	0.0	0.00	57.03	57
W-24	Sarada Babai	32	97.1	4.86	359	88.7	5.54	369	4.92	46.4	2.32	3	88.5	4.42	2	80.0	3.00	56.81	57
C-05	Upper Daraudi	18	100.0	5.00	72	97.7	6.11	174	1.56	84.2	4.21	5	80.8	4.04	0	100.0	3.75	52.58	53
C-18	Ridi Khola	35	92.9	4.65	51	98.4	6.15	429	4.42	52.0	2.60	7	73.1	3.65	0	100.0	3.75	53.07	53
W-17	BR-4	51	70.0	3.50	3,175	0.0	0.00	3,565	5.34	41.7	2.08	13	50.0	2.50	9	10.0	0.38	50.98	51
C-03	Lower Daraudi	9	100.0	5.00	677	78.7	4.92	1,088	9.05	0.0	0.00	14	46.2	2.31	1	90.0	3.38	50.28	50
W-26	Lohare Khola	92	11.4	0.57	243	92.3	5.77	422	6.30	30.9	1.55	9	65.4	3.27	4	60.0	2.25	49.98	50

Table 7.3-6 (3) Evaluation Score and Ranking of Base Case (3/3)

7.4 Selection of Promising Project

As described in "7.2 Scoping and Evaliation Methods," evaluation of technical/economical conditions and impact on the natural/social environment of the 31 candidate projects were conducted. Based on the evaluation results, the promising projects were selected from the top, as a general rule, taking into consideration 1) the total installed capacity of promising projects, 2) the number of projects in each river basin, and 3) overlap with issued survey/construction licenses for generation, and also positive and negative effects on local economy by implementation of power development projects and avoiding concentration of negative effects on environment and society.

(1) Total Installed Capacity of Promising Projects

In May 2012, when the total installed capacity of promising projects was studied, the required capacity of storage-type hydropower project to be developed by FY2031/32 is estimated at about 2,900 MW by deducting the existing capacity and power import from the demand, this means that about 2,200 MW of development is required in addition to Tanahu project (140 MW) and Budhi Gandaki project (600 MW) that are now in the detailed design stage. Taking into consideration that there is a possibility of review on the required development capacity and also a possibility that some promising projects may be judged unfeasible by the results of the environmental and geological survey for the promising projects, the required total installed capacity of promising projects were decided to be about 2,600 MW (\approx 2,200 MW × 1.2).

(2) Number of Project in Each River Basin

Kathmandu, the capital city of Nepal with large power demand, is located in the Central Region in terms of administrative area, and this region corresponds to the western part of eastern river basin and the eastern part of central river basin.

However, as shown in Table 7.4-1, many projects in the western river basin were ranked near the top. Therefore, if promising projects were selected simply by the rank, seven or eight out of ten were in the western river basin that is far from Kathmandu. Taking into consideration these projects locate far from demand centers like Kathmandu, and it will take time for construction of a backbone transmission line to the western river basin to which these projects will be connected, and also taking into consideration the economic effects on regions by development of projects, the maximum number of promising projects in one river basin was decided to be five (5).

Table 7.4-1 shows the promising projects of each case when the number of projects in each river basin was limited to five.

Base Case												
Technical : 50%, Environmental : 50%												
No.	Project Name	P (MW)	Ranking									
W-06	Madi	199.8	1 (W1)									
W-05	Lower Jhimruk	142.5	2 (W2)									
W-23	Nalsyagu Gad	400.0	3 (W3)									
W-12	Tila - 1	617.2	4 (W4)									
W-20	Bhanakot	810.0	5 (W5)									
E-01	Dudh Koshi	300.0	6 (E1)									
W-02	Chera-1	148.7	_									
W-25	Naumure (W. Rapti)	245.0	_									
W-10	Sharada - 2	96.8										
E-12	Tama Koss-3	287.0	7 (E2)									
E-17	Sunkosi No.3	536.0	8 (E3)									
E-02	Dukh Koshi-2	456.6	9 (E4)									
E-06	Kokhajor-1	111.5	10 (E5)									
C-02	Lower Badigad	380.3										
C-08	Andhi Khola	180.0										
W-03	Chera-2	104.3										
C-11	Madi- Ishaneshor	86.0										
W-01	Barbung Khola	122.9										
W-21	Thapna	500.0										
E-10	Rosi-2	106.5										
E-09	Piluwa-2	107.3										
W-11	Thuli Gad - 2	119.7										
E-20	Indrawati	91.2										
W-22	SR-6	642.0										
C-01	Kaligandaki-Modi	816.4										
W-24	Sarada Babai	75.0										
C-05	Upper Daraudi	111.4										
C-18	Ridi Khola	97.0										
W-17	BR-4	667.0										
C-03	Lower Daraudi	120.2										
W-26	Lohare Khola	67.0										

Table 7.4-1	Promising Projects (Number of promising projects in each river basin is five or less)
-------------	---

Technical: 60%, Environmental: 40% **Project Name**

Case-1

No.

E-01

E-17

C-08

W-21

W-06 Madi

W-05 Lower Jhimruk

W-23 Nalsy agu Gad

Dudh Koshi

Sunkosi No.3

Andhi Khola

W-25 Naumure (W. Rapti)

Thapna

W-10 Sharada - 2

W-03 Chera-2

W-22 SR-6

E-10 Rosi-2

C-01

E-12 Tama Koss-3

C-02 Lower Badigad

E-02 Dukh Koshi-2

W-01 Barbung Khola

E-06 Kokhajor-1

W-11 Thuli Gad - 2

E-20 Indrawati

E-09 Piluwa-2

W-17 BR-4

W-24 Sarada Babai

C-18 Ridi Khola

C-03 Lower Daraudi

C-05 Upper Daraudi

W-26 Lohare Khola

Kaligandaki-M odi

C-11 Madi- Ishaneshor

W-20 Bhanakot

W-12 Tila - 1

W-02 Chera-1

P (MW)

199.8

142.5

400.0

810.0

300.0

617.2

148.7

536.0

180.0

500.0

245.0

96.8

287.0

380.3

86.0

Ranking

1 (W1)

2 (W2)

3 (W3)

4 (W4)

5 (E1)

6 (W5)

7 (E2)

8 (C1)

9 (E3)

10 (C2)

Case-2

Tech	nical: 40%, Environm	ental : 60%	
No.	Project Name	P (MW)	Ranking
W-06	M adi	199.8	1 (W1)
W-05	Lower Jhimruk	142.5	2 (W2)
W-23	Nalsy agu Gad	400.0	3 (W3)
W-02	Chera-1	148.7	4 (W4)
W-12	Tila - 1	617.2	5 (W5)
W-25	Naumure (W. Rapti)	245.0	_
W-10	Sharada - 2	96.8	_
W-20	Bhanakot	810.0	_
E-01	Dudh Koshi	300.0	6 (E1)
E-06	Kokhajor-1	111.5	7 (E2)
W-03	Chera-2	104.3	
E-02	Dukh Koshi-2	456.6	8 (E3)
E-12	Tama Koss-3	287.0	9 (E4)
W-01	Barbung Khola	122.9	
E-17	Sunkosi No.3	536.0	10 (E5)
C-02	Lower Badigad	380.3	
E-10	Rosi-2	106.5	
C-08	Andhi Khola	180.0	
E-09	Piluwa-2	107.3	
W-11	Thuli Gad - 2	119.7	
C-11	Madi- Ishaneshor	86.0	
W-24	Sarada Babai	75.0	
W-21	Thapna	500.0	
E-20	Indrawati	91.2	
C-01	Kaligandaki-Modi	816.4	
W-22	SR-6	642.0	
C-05	Upper Daraudi	111.4	
C-18	Ridi Khola	97.0	
W-26	Lohare Khola	67.0	
W-17	BR-4	667.0	
C-03	Lower Daraudi	120.2	

Final Report Appendix 3 SEA Report

E: Eastern River Basin, C: Central River Basin, W: Western River Basin.

104.3 456.6 642.0 122.9 111.5 106.5 119.7 816.4 91.2 107.3 75.0 667.0 97.0

120.2

111.4

67.0

(3) Overlap with Issued Survey and Construction License for Generation

As shown in Table 7.4-2, a large number of survey and construction licenses for generation have been issued by the Department of Electricity Development (DOED) under the Ministry of Energy to promote development of hydroelectric power by private sector.

				(As of May 13, 2012)
	Item	Number	Total Capacity (MW)	Remarks
	Below 1 MW	202	148.405	
Survey License	1 to 25 MW	175	1,087.899	
	25 to 100 MW	52	2,766.600	
	Above 100 MW	29	8,470.000	
Construction License		74	1,777.556	Including existing and under construction

Table 7.4-2Issued Survey and Construction License for Generation

Source: DOED's website

NEA and the Study Team checked the locations of projects ranked near the top against the survey and construction licenses (1 MW or more) issued as of May 13, 2012, and found that the locations of following four projects overlapped with the project areas of issued licenses. NEA and the Study Team sought a comment from the DOED on the likelihood of implementation of the projects selected in this study in the project area of issued license.

Tila-1 (W-12, 617.2 MW) Bhanakot (W-20, 810 MW) Tama Koshi-3 (E-12, 287 MW) Dudh Koshi-2 (E-02, 156.6 MW)

According to the DOED, even if storage-type projects make effective use of river water more than ROR type projects, it is difficult to develop storage-type projects at the site where licenses have already been issued to another agency/company, and it is better not to include these projects in the promising projects of the Study. Taking this into consideration, NEA and the Study Team decided that these four projects should not be selected as the promising projects.

In the column "Ranking (1)" in Table 7.4-3, the promising projects excluding the above-mentioned four projects (shaded projects) are shown.

Table 7.4-5		Tab	le 7	.4-3
-------------	--	-----	------	------

7.4-3 **Promising Projects (taking issued licenses into consideration)**

Base Case

Technical point : 50%, Environmental point : 50%

Ne	Ducie et Nome	D (MUA	Ranking	Ranking
NO.	Project Name	P (MW)	(1)	(2)
W-06	M adi	199.8	1 (W1)	1 (W1)
W-05	Lower Jhimruk	142.5	2 (W2)	2 (W2)
W-23	Nalsy agu Gad	400.0	3 (W3)	3 (W3)
W-12	Tila 1	617.2		4 (W4)
₩-20	Bhanakot	810.0		5 (W5)
E-01	Dudh Koshi	300.0	4 (E1)	6 (E1)
W-02	Chera-1	148.7	5 (W4)	_
W-25	Naumure (W. Rapti)	245.0	6 (W5)	
W-10	Sharada - 2	96.8		
<u>E-12</u>	Tama Koss-3	287.0	_	7 (E2)
E-17	Sunkosi No.3	536.0	7 (E2)	8 (E3)
E 02	Dukh Koshi-2	4 56.6	—	9 (E4)
E-06	Kokhajor-1	111.5	8 (E3)	10 (E5)
C-02	Lower Badigad	380.3	9 (C1)	
C-08	Andhi Khola	180.0	10 (C2)	
W-03	Chera-2	104.3		
C-11	Madi- Ishaneshor	86.0		
W-01	Barbung Khola	122.9		
W-21	Thapna	500.0		
E-10	Rosi-2	106.5		
E-09	Piluwa-2	107.3		
W-11	Thuli Gad - 2	119.7		
E-20	Indrawati	91.2		
W-22	SR-6	642.0		
C-01	Kaligandaki-Modi	816.4		
W-24	Sarada Babai	75.0		
C-05	Upper Daraudi	111.4		
C-18	Ridi Khola	97.0		
W-17	BR-4	667.0		
C-03	Lower Daraudi	120.2		
W-26	Lohare Khola	67.0		

Case-1	Case-1					
Tech	nical point : 60%, Er	vironmen	tal point :	40%		
No	Project Name	P (MW)	Ranking	Ranking		
110.	I Toject Ivanie	1 (1111)	(1)	(2)		
W-06	M adi	199.80	1 (W1)	1 (W1)		
W-05	Lower Jhimruk	142.50	2 (W2)	2 (W2)		
W-23	Nalsy agu Gad	400.00	3 (W3)	3 (W3)		
W-20	Bhanakot	810.00		4 (W4)		
E-01	Dudh Koshi	300.00	4 (E1)	5 (E1)		
W-12	Tila 1	617.20		6 (W5)		
W-02	Chera-1	148.70	5 (W4)			
E-17	Sunkosi No.3	536.00	6 (E2)	7 (E2)		
C-08	Andhi Khola	180.00	7 (C1)	8 (C1)		
W-21	Thapna	500.00	8 (W5)			
W-25	Naumure (W. Rapti)	245.00				
W-10	Sharada - 2	96.80				
E-12	Tama Koss-3	287.00		9 (E3)		
C-02	Lower Badigad	380.30	9 (C2)	10 (C2)		
C-11	Madi- Ishaneshor	86.00	10 (C3)			
W-03	Chera-2	104.30				
E-02	Dukh Koshi-2	4 56.60				
W-22	SR-6	642.00				
W-01	Barbung Khola	122.90				
E-06	Kokhajor-1	111.50				
E-10	Rosi-2	106.50				
W-11	Thuli Gad - 2	119.70				
C-01	Kaligandaki-Modi	816.40				
E-20	Indrawati	91.20				
E-09	Piluwa-2	107.30				
W-24	Sarada Babai	75.00				
W-17	BR-4	667.00				
C-18	Ridi Khola	97.00				
C-03	Lower Daraudi	120.20				
C-05	Upper Daraudi	111.40				
W-26	Lohare Khola	67.00				

Case-2					
Tech	nical point : 40%, Er	nvironmen	tal point :	60%	
No	Project Name	P (MW)	Ranking	Ranking	
110.	110jeet Walle	1 (1111)	(1)	(2)	
W-06	M adi	199.8	1 (W1)	1 (W1)	
W-05	Lower Jhimruk	142.5	2 (W2)	2 (W2)	
W-23	Nalsyagu Gad	400.0	3 (W3)	3 (W3)	
W-02	Chera-1	148.7	4 (W4)	4 (W4)	
<u>₩-12</u>	Tila - 1	<u>617.2</u>	—	5 (W5)	
W-25	Naumure (W. Rapti)	245.0	5 (W5)		
W-10	Sharada - 2	96.8			
₩-20	Bhanakot	810.0	_		
E-01	Dudh Koshi	300.0	6 (E1)	6 (E1)	
E-06	Kokhajor-1	111.5	7 (E2)	7 (E2)	
W-03	Chera-2	104.3	_	_	
E 02	Dukh Koshi 2	456.6	_	8 (E3)	
<u>E-12</u>	Tama Koss-3	287.0	_	9 (E4)	
W-01	Barbung Khola	122.9	_	_	
E-17	Sunkosi No.3	536.0	8 (E3)	10 (E5)	
C-02	Lower Badigad	380.3	9 (C1)		
E-10	Rosi-2	106.5	10 (E4)		
C-08	Andhi Khola	180.0			
E-09	Piluwa-2	107.3			
W-11	Thuli Gad - 2	119.7			
C-11	Madi- Ishaneshor	86.0			
W-24	Sarada Babai	75.0			
W-21	Thapna	500.0			
E-20	Indrawati	91.2			
C-01	Kaligandaki-Modi	816.4			
W-22	SR-6	642.0			
C-05	Upper Daraudi	111.4			
C-18	Ridi Khola	97.0			
W-26	Lohare Khola	67.0			
W-17	BR-4	667.0			
C-03	Lower Daraudi	120.2			

E: Eastern River Basin, C: Central River Basin, W: Western River Basin. (Example: "E1" = the 1st place in the Eastern River Basin, "C2" = the 2nd place in the Central River Basin.)

Shaded projects: Excluded projects because of competence of issued licenses.

Ranking (1): Issued licenses are considered. Ranking (2): Issued licenses are not considered.

(4) Selection of Promising Projects

As shown in Table 7.4-4, for all cases, the total installed capacity of the promising projects was about 2,600 MW, 1.2 time of the required total installed capacity of promising projects.

There were 13 projects were selected in total, and seven projects were selected as the promising projects in all cases, three projects in two cases, and three projects in one case.

Taking this into consideration, seven projects selected in all cases and three projects selected in two cases (with " \checkmark " in Table 7.4-4) were selected as the promising projects.

No.	Project Name	P (MW)	Base Case	Case-1	Case-2	Number of selected project	Promising Project
E-01	Dudh Koshi	300.0	E1	E1	E1	3	✓
E-06	Kokhajor-1	111.5	E3		E2	2	✓
E-10	Rosi-2	106.5			E4	1	
E-17	Sunkosi No.3	536.0	E2	E2	E3	3	✓
C-02	Lower Badigad	380.3	C1	C2	C1	3	✓
C-08	Andhi Khola	180.0	C2	C1		2	✓
C-11	Madi- Ishaneshor	86.0		C3		1	
W-02	Chera-1	148.7	W4	W4	W4	3	✓
W-05	Lower Jhimruk	142.5	W2	W2	W2	3	\checkmark
W-06	Madi	199.8	W1	W1	W1	3	✓
W-21	Thapna	500.0	_	W5		1	
W-23	Nalsyagu Gad	400.0	W3	W3	W3	3	\checkmark
W-25	Naumure (W. Rapti)	245.0	W5		W5	2	\checkmark
Total Installed Capacity (MW)			2,643.8	2,873.3	2,570.3		2,643.8

Table 7.4-4Selection of Promising Projects

E: Eastern River Basin, C: Central River Basin, W: Western River Basin.

Example: "E1" = the 1st place in the Eastern River Basin, "C2" = the 2nd place in the Central River Basin.

Table 7.4-5 shows the promising projects that were finally selected.

No.	Project Name	P (MW)
E-01	Dudh Koshi	300.0
E-06	Kokhajor-1	111.5
E-17	Sunkosi No.3	536.0
C-02	Lower Badigad	380.3
C-08	Andhi Khola	180.0
W-02	Chera-1	148.7
W-05	Lower Jhimruk	142.5
W-06	Madi	199.8
W-23	Nalsyagu Gad	400.0
W-25	245.0	
Total	Installed Capacity (MW)	2,643.8

Table 7.4-5Promising Projects

Chapter 8 Third Step

8.1 **Project Description**

At the third step 10 Promising Projects (See Table 8.1-1 and Figure 8.1-1) are examined. These 10 projects were selected from 31 Candidate Projects. These are examined based on the data obtained by brief site survey.

	Project	District	Installed Capacity (MW)	Dam Height (m)	Full Supply Level (m)	Reservoir Area (km ²)	Annual Energy (GWh)	Project Cost (MUS\$)
E-01	Dudh Koshi	Okhaldhunga, Khotang, Solukhumbu	300.0	180	580	11.1	1,910	1,144
E-06	Kokhajor-1	Sinduli, Kabhrepalanchok	111.5	107	437	4.6	279	477
E-17	Sun Koshi No.3	Ramechhap, Kabhrepalanchok, Sindhupalchok	536.0	140	700	30.1	1,884	1,691
C-02	Lower Badigad	Gulmi	380.3	191	688	13.7	1,366	1,210
C-08	Andhi Khola	Syangja	180.0	157	675	5.5	649	666
W-02	Chera-1	Jajarkot	148.7	186	866	4.0	563	577
W-05	Lower Jhimruk	Arghakhachi, Pyuthan	142.5	167	597	6.0	455	521
W-06	Madi	Rolpa	199.8	190	1,090	7.7	621	637
W-23	Nalsyau Gad	Jajarkot	410.0	200	1,570	6.3	1,406	967
W-25	Naumure (W. Rapti)	Argakhanchi, Pyuthan	245.0	190	517	19.8	1,158	955

 Table 8.1-1
 Promising Projects on the third Step (10 projects)

Figure 8.1-1 Location of Promising Projects on the third Step

The locations of promising projects are plotted in the isohyetal map and seismic hazard map of Nepal as follows. (See Figure 8.1-2 and Figure 8.1-3)

Figure 8.1-2 Locations of Promising Projects in Isohyetal Map

Figure 8.1-3 Locations of Promising Projects in Seismic Hazard Map

The salient features of the promising projects are summarized in Table 8.1-2.

r											
No.	Unit	E-01	E-06	E-17	C-02	C-08	W-02	W-05	W-06	W-23	W-25
Project Name		Dudh Koshi	Kokhajor- 1	Sun Koshi No.3	Lower Badigad	Andhi Khola	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)
Installed Capacity	MW	300.0	111.5	536.0	380.3	180.0	148.7	142.5	199.8	410.0	245.0
Catchment Area	km ²	4,100.0	281.0	5,520.0	2,050.0	475.0	809.0	995.0	674.0	571.5	3,430.0
Dam Height	m	180.0	107.0	140.0	191.0	157.0	186.0	167.0	190.0	200.0	190.0
Total Storage Volume	MCM	687.4	218.7	1,220.0	995.9	336.5	254.9	386.0	359.5	419.6	1,021.0
Effective Storage Volume	MCM	442.1	166.1	555.0	505.5	238.7	141.1	211.6	235.1	296.3	580.0
Reservoir Area	km ²	11.1	4.6	30.1	13.7	5.5	4.0	6.0	7.7	6.3	19.8
Full Supply Level	m	580.0	437.0	700.0	688.0	675.0	866.0	597.0	1,090.0	1,570.0	517.0
Minimum Operating Level	m	530.0	390.0	674.0	654.0	626.7	814.0	557.0	1,030.0	1,498.0	474.2
Tail Water Level	m	303.4	200.0	575.0	475.0	368.5	640.0	390.0	800.0	872.0	358.0
Rated Gross Head	m	275.0	226.3	116.3	196.0	307.0	220.0	194.6	280.8	649.3	162.6
Rated Net Head	m	249.3	205.6	109.3	192.5	286.3	217.6	190.4	277.0	635.5	154.5
Rated Power Discharge	m ³ /sec	136.0	63.9	570.0	232.6	81.4	80.5	88.1	84.9	75.0	185.6
Total Energy	GWh	1,909.6	278.9	1,883.6	1,366.0	648.7	563.2	454.7	621.1	1,406.1	1,157.5
Dry Energy	GWh	523.3	94.1	335.9	354.7	137.1	120.6	94.4	170.7	581.8	309.9
Length of Access Road	km	65.0	22.0	20.0	0	8.0	5.5	18.0	15.0	25.0	34.0
Length of Transmission Line	km	43.0	62.0	35.0	49.0	49.0	66.0	75.0	62.0	112.0	79.0
Project Cost	MUS\$	1,144.0	476.5	1,690.5	1,209.8	665.8	576.9	520.9	637.3	966.9	954.5
Unit Generation Cost	¢ /kWh	6.0	17.1	9.0	8.9	10.3	10.2	11.5	10.3	6.9	8.2
EIRR (8% of Interest Rate, 12NRs/kWh)	%	17.6	7.6	13.1	13.2	13.0	12.6	10.9	12.3	15.6	15.2
FIRR (8% of Interest Rate, 12NRs/kWh)	%	30.0	n.a.	19.4	19.8	19.1	17.8	11.5	16.8	25.8	25.3
Forest Land to be submerged	km ²	4.1	2.9	8.2	3.3	1.5	1.5	1.9	1.6	0.8	7.9
Downstream Protected Area	nos	2	1	2	3	3	3	2	2	3	2
Protected Species in the Project Area	nos	20	11	18	17	15	16	19	15	8	20
Dewatering Area	km	60	21	1	4	60	7	8	10	11	1
Reported Fish species	nos	24	7	21	12	6	11	11	8	8	16
Resettlement (Household)	nos	63	92	1,599	1,606	542	566	229	336	263	456
Cultivated land to be submerged	km ²	3.3	1.7	9.4	5.9	1.7	1.1	2.0	1.9	2.5	6.1
Fishermen	nos	154	-	712	217	156	25	254	100	115	43
Road to be submerged	km	5	-	39	26	3	4	3	11	-	2

 Table 8.1-2
 Salient Features of Promising Projects

The source reports of the promising projects are shown in Table 8.1-3.

No.	Project Name	Source Report			
E-01	Dudh Koshi	Dudh Koshi Hydroelectric Project Feasibility Study, 1998, CIWEC (Canadian International Water and Energy Consultants)			
E-06	Kokhajor-1	Update and Review of Identification and Feasibility Study of Storage Project, 2002, NEA			
E-17	Sun Koshi No.3	Master Plan Study on the Koshi River Water Resources Development, 1985, JICA			
C-02	Lower Badigad	Update and Review of Identification and Feasibility Study of Storage Project, 2002, NEA			
C-08	Andhi Khola	Feasibility Study on Andhi Khola Hydroelectric Project, 1998, NEA			
W-02	Chera-1	Update and Review of Identification and Feasibility Study of Storage Project, 2002, NEA			
W-05	Lower Jhimruk	Update and Review of Identification and Feasibility Study of Storage Project, 2002, NEA			
W-06	Madi	Update and Review of Identification and Feasibility Study of Storage Project, 2002, NEA			
W-23	Nalsyau Gad	Nalsyau Gad Storage Hydroelctric Project Feasibility Study, Executive Summary, 2012, NEA			
W-25	Naumure (W.Rapti)	Naumure (W.Rapti) Hydroelectric Project Pre-Feasibility Study, 1990, NEA			

 Table 8.1-3
 Source Reports of Promising Projects

In addition to above, the following master plan studies have been conducted in terms of storage-type hydroelectric power projects.

- Identification and Feasibility Study of Project, 2000-2004, NEA
- Master Plan of Hydroelectric Development in Nepal, 1974, JICA
- Gandaki River Basin Power Study, Basin Study, Basin Master Plan, 1979, UNDP
- Master Plan Study for Water Resource Development of the Upper River and Mahakali River Basin, 1993, JICA
- Medium Hydropower Study Project, Power Sector Efficiency Project, 1997, World Bank and CIWEC

Furthermore, the following studies such as Pre-FS, FS, etc. have been conducted for storage-type hydroelectric power projects.

- FS and DD on Budhi Gandaki Project, since 2012, GON
- Review of Indrawati Hydroelectric Project, 2011, NEA
- Detailed Survey on Tamor (Terathum) Project, 2010, NEA
- FS on Seti-Trisuli Project, 2005, NEA
- FS on -Ishaneshore Hydroelectric Project, 2002, NEA

- Pre-FS on Utter Ganga Project, 2004, NEA
- Detailed Engineering on West Seti Project, 1997, GON
- FS on Kankai Project 1985, NEA
- Pre-FS on Kali Gandaki-2 Hydroelectric Project, 1985, NEA
- Preliminary Study on Thuligad, Seti-SR1 and Sarda -Kalleri, MOWR
- Bag-Mati Multipurpose Project, 1981, GON

The general layout and salient features of each promising project is shown from next page.

Figure 8.1-4 Location of Dudh Koshi Project (E-01)

Figure 8.1-5 General Layout of the Dudh Koshi Project (E-01)

Item	Unit	Dudh Koshi Project
Installed Capacity	MW	300.0
Catchment Area	km ²	4,100.0
Dam Height	m	180.0
Total Storage Volume	МСМ	687.4
Effective Storage Volume	МСМ	442.1
Reservoir Area	km ²	11.1
Full Supply Level	m	580.0
Minimum Operating Level	m	530.0
Tail Water Level	m	303.4
Rated Gross Head	m	275.0
Rated Net Head	m	249.3
Rated Power Discharge	m ³ /sec	136.0
Total Energy	GWh	1,909.6
Dry Energy	GWh	523.3
Length of Access Road	km	65.0
Length of Transmission Line	km	43.0
Project Cost	MUS\$	1,144.0
Unit Generation Cost	¢ /kWh	6.0
EIRR (8% of Interest Rate, 12NRs/kWh)	%	17.6
FIRR (8% of Interest Rate, 12NRs/kWh)	%	30.0
Forest Land to be submerged	km ²	4.1
Downstream Protected Area	nos	2
Protected Species in the Project Area	nos	20
Dewatering Area	km	60
Reported Fish species	nos	24
Resettlement (Household)	nos	63
Cultivated land to be submerged	km ²	3.30
Fishermen	nos	154
Road to be submerged	km	5

Table 8.1-4Salient Features of the Dudh Koshi Project (E-01)

Figure 8.1-6 Location of Kokhajor-1 Project (E-06)

Item	Unit	Kokhajor-1 Project
Installed Capacity	MW	111.5
Catchment Area	km ²	281.0
Dam Height	m	107.0
Total Storage Volume	МСМ	218.7
Effective Storage Volume	MCM	166.1
Reservoir Area	km ²	4.6
Full Supply Level	m	437.0
Minimum Operating Level	m	390.0
Tail Water Level	m	200.0
Rated Gross Head	m	226.3
Rated Net Head	m	205.6
Rated Power Discharge	m ³ /sec	63.9
Total Energy	GWh	278.9
Dry Energy	GWh	94.1
Length of Access Road	km	22.0
Length of Transmission Line	km	62.0
Project Cost	MUS\$	476.5
Unit Generation Cost	¢ /kWh	17.1
EIRR (8% of Interest Rate, 12NRs/kWh)	%	7.6
FIRR (8% of Interest Rate, 12NRs/kWh)	%	n.a.
Forest Land to be submerged	km ²	2.9
Downstream Protected Area	nos	1
Protected Species in the Project Area	nos	11
Dewatering Area	km	21
Reported Fish species	nos	7
Resettlement (Household)	nos	92
Cultivated land to be submerged	km ²	1.70
Fishermen	nos	-
Road to be submerged	km	-

 Table 8.1-5
 Salient Features of the Kokhajor-1 Project (E-06)

Figure 8.1-8 Location of Sun Koshi No.3 Project (E-17)

Figure 8.1-9 General Layout of the Sun Koshi No.3 Project (E-17)

Item	Unit	Sun Koshi No.3 Project
Installed Capacity	MW	536.0
Catchment Area	km ²	5.520.0
Dam Height	m	140.0
Total Storage Volume	MCM	1 220 0
Effective Storage Volume	MCM	555.0
Reservoir Area	km ²	30.1
Full Supply Level	m	700.0
Minimum Operating Level	m	674.0
Tail Water Level	m	575.0
Rated Gross Head	m	116.3
Rated Nat Haad		110.3
Rated Net Head	3,	570.0
Rated Power Discharge	m [°] /sec	570.0
Total Energy	GWh	1,883.6
Dry Energy	GWh	335.9
Length of Access Road	km	20.0
Length of Transmission Line	km	35.0
Project Cost	MUS\$	1,690.5
Unit Generation Cost	¢ /kWh	9.0
EIRR (8% of Interest Rate, 12NRs/kWh)	%	13.1
FIRR (8% of Interest Rate, 12NRs/kWh)	%	19.4
Forest Land to be submerged	km ²	8.2
Downstream Protected Area	nos	2
Protected Species in the Project Area	nos	18
Dewatering Area	km	1
Reported Fish species	nos	21
Resettlement (Household)	nos	1,599
Cultivated land to be submerged	km ²	9.40
Fishermen	nos	712
Road to be submerged	km	39

Table 8.1-6Salient Features of the Sun Koshi No.3 Project (E-17)

Figure 8.1-10 Location of Lower Badigad Project (C-02)

Figure 8.1-11 General Layout of the Lower Badigad Project (C-02)

Item	Unit	Lower Badigad Project
Installed Capacity	MW	380.3
Catchment Area	km ²	2,050.0
Dam Height	m	191.0
Total Storage Volume	МСМ	995.9
Effective Storage Volume	МСМ	505.5
Reservoir Area	km ²	13.7
Full Supply Level	m	688.0
Minimum Operating Level	m	654.0
Tail Water Level	m	475.0
Rated Gross Head	m	196.0
Rated Net Head	m	192.5
Rated Power Discharge	m ³ /sec	232.6
Total Energy	GWh	1,366.0
Dry Energy	GWh	354.7
Length of Access Road	km	0
Length of Transmission Line	km	49.0
Project Cost	MUS\$	1,209.8
Unit Generation Cost	¢ /kWh	8.9
EIRR (8% of Interest Rate, 12NRs/kWh)	%	13.2
FIRR (8% of Interest Rate, 12NRs/kWh)	%	19.8
Forest Land to be submerged	km ²	3.3
Downstream Protected Area	nos	3
Protected Species in the Project Area	nos	17
Dewatering Area	km	4
Reported Fish species	nos	12
Resettlement (Household)	nos	1,606
Cultivated land to be submerged	km ²	5.9
Fishermen	nos	217
Road to be submerged	km	26

 Table 8.1-7
 Salient Features of the Lower Badigad Project (C-02)

Figure 8.1-12 Location of Andhi Khola Project (C-08)

Figure 8.1-13 General Layout of the Andhi Khola Project (C-08)

Item	Unit	Andhi Khola Project
Installed Capacity	MW	180.0
Catchment Area	km ²	475.0
Dam Height	m	157.0
Total Storage Volume	МСМ	336.5
Effective Storage Volume	МСМ	238.7
Reservoir Area	km ²	5.5
Full Supply Level	m	675.0
Minimum Operating Level	m	626.7
Tail Water Level	m	368.5
Rated Gross Head	m	307.0
Rated Net Head	m	286.3
Rated Power Discharge	m ³ /sec	81.4
Total Energy	GWh	648.7
Dry Energy	GWh	137.1
Length of Access Road	km	8.0
Length of Transmission Line	km	49.0
Project Cost	MUS\$	665.8
Unit Generation Cost	¢ /kWh	10.3
EIRR (8% of Interest Rate, 12NRs/kWh)	%	13.0
FIRR (8% of Interest Rate, 12NRs/kWh)	%	19.1
Forest Land to be submerged	km ²	1.5
Downstream Protected Area	nos	3
Protected Species in the Project Area	nos	15
Dewatering Area	km	60
Reported Fish species	nos	6
Resettlement (Household)	nos	542
Cultivated land to be submerged	km ²	1.7
Fishermen	nos	156
Road to be submerged	km	3

Table 8.1-8Salient Features of the Andhi Khola Project (C-08)

Figure 8.1-14 Location of Chera-1 Project (W-02)

Figure 8.1-15 General Layout of the Chera-1 Project (W-02)

Item	Unit	Chera-1 Project
Installed Capacity	MW	148.7
Catchment Area	km ²	809.0
Dam Height	m	186.0
Total Storage Volume	МСМ	254.9
Effective Storage Volume	МСМ	141.1
Reservoir Area	km ²	4.0
Full Supply Level	m	866.0
Minimum Operating Level	m	814.0
Tail Water Level	m	640.0
Rated Gross Head	m	220.0
Rated Net Head	m	217.6
Rated Power Discharge	m ³ /sec	80.5
Total Energy	GWh	563.2
Dry Energy	GWh	120.6
Length of Access Road	km	5.5
Length of Transmission Line	km	66.0
Project Cost	MUS\$	576.9
Unit Generation Cost	¢ /kWh	10.2
EIRR (8% of Interest Rate, 12NRs/kWh)	%	12.6
FIRR (8% of Interest Rate, 12NRs/kWh)	%	17.8
Forest Land to be submerged	km ²	1.5
Downstream Protected Area	nos	3
Protected Species in the Project Area	nos	16
Dewatering Area	km	7
Reported Fish species	nos	11
Resettlement (Household)	nos	566
Cultivated land to be submerged	km ²	1.1
Fishermen	nos	25
Road to be submerged	km	4

Table 8.1-9Salient Features of the Chera-1 Project (W-02)

Figure 8.1-16 Location of Lower Jhimruk Project (W-05)

Figure 8.1-17 General Layout of the Lower Jhimruk Project (W-05)

Item	Unit	Lower Jhimruk Project
Installed Capacity	MW	142.5
Catchment Area	km ²	995.0
Dam Height	m	167.0
Total Storage Volume	МСМ	386.0
Effective Storage Volume	МСМ	211.6
Reservoir Area	km ²	6.0
Full Supply Level	m	597.0
Minimum Operating Level	m	557.0
Tail Water Level	m	390.0
Rated Gross Head	m	194.6
Rated Net Head	m	190.4
Rated Power Discharge	m ³ /sec	88.1
Total Energy	GWh	454.7
Dry Energy	GWh	94.4
Length of Access Road	km	18.0
Length of Transmission Line	km	75.0
Project Cost	MUS\$	520.9
Unit Generation Cost	¢ /kWh	11.5
EIRR (8% of Interest Rate, 12NRs/kWh)	%	10.9
FIRR (8% of Interest Rate, 12NRs/kWh)	%	11.5
Forest Land to be submerged	km ²	1.9
Downstream Protected Area	nos	2
Protected Species in the Project Area	nos	19
Dewatering Area	km	8
Reported Fish species	nos	11
Resettlement (Household)	nos	229
Cultivated land to be submerged	km ²	2.0
Fishermen	nos	254
Road to be submerged	km	3

Table 8.1-10Salient Features of the Lower Jhimruk Project (W-05)

Figure 8.1-18 Location of Madi Project (W-06)

Figure 8.1-19 General Layout of the Madi Project (W-06)

Item	Unit	Madi Project
Installed Capacity	MW	199.8
Catchment Area	km ²	674.0
Dam Height	m	190.0
Total Storage Volume	МСМ	359.5
Effective Storage Volume	МСМ	235.1
Reservoir Area	km ²	7.7
Full Supply Level	m	1,090.0
Minimum Operating Level	m	1,030.0
Tail Water Level	m	800.0
Rated Gross Head	m	280.8
Rated Net Head	m	277.0
Rated Power Discharge	m ³ /sec	84.9
Total Energy	GWh	621.1
Dry Energy	GWh	170.7
Length of Access Road	km	15.0
Length of Transmission Line	km	62.0
Project Cost	MUS\$	637.3
Unit Generation Cost	¢ /kWh	10.3
EIRR (8% of Interest Rate, 12NRs/kWh)	%	12.3
FIRR (8% of Interest Rate, 12NRs/kWh)	%	16.8
Forest Land to be submerged	km ²	1.6
Downstream Protected Area	nos	2
Protected Species in the Project Area	nos	15
Dewatering Area	km	10
Reported Fish species	nos	8
Resettlement (Household)	nos	336
Cultivated land to be submerged	km ²	1.9
Fishermen	nos	100
Road to be submerged	km	11

 Table 8.1-11
 Salient Features of the Madi Project (W-06)

Figure 8.1-20 Location of Nalsyau Gad Project (W-23)

Figure 8.1-21 General Layout of the Nalsyau Gad Project (W-23)
Item	Unit	Nalsyau Gad Project
Installed Capacity	MW	410.0
Catchment Area	km ²	571.5
Dam Height	m	200.0
Total Storage Volume	МСМ	419.6
Effective Storage Volume	МСМ	296.3
Reservoir Area	km ²	6.3
Full Supply Level	m	1,570.0
Minimum Operating Level	m	1,498.0
Tail Water Level	m	872.0
Rated Gross Head	m	649.3
Rated Net Head	m	635.5
Rated Power Discharge	m ³ /sec	75.0
Total Energy	GWh	1,406.1
Dry Energy	GWh	581.8
Length of Access Road	km	25.0
Length of Transmission Line	km	112.0
Project Cost	MUS\$	966.9
Unit Generation Cost	¢ /kWh	6.9
EIRR (8% of Interest Rate, 12NRs/kWh)	%	15.6
FIRR (8% of Interest Rate, 12NRs/kWh)	%	25.8
Forest Land to be submerged	km ²	0.8
Downstream Protected Area	nos	3
Protected Species in the Project Area	nos	8
Dewatering Area	km	11
Reported Fish species	nos	8
Resettlement (Household)	nos	263
Cultivated land to be submerged	km ²	2.5
Fishermen	nos	115
Road to be submerged	km	-

 Table 8.1-12
 Salient Features of the Nalsyau Gad Project (W-23)

Figure 8.1-22 Location of Naumure (W. Rapti) Project (W-25)

Figure 8.1-23 General Layout of the Naumure (W. Rapti) Project (W-25)

Item	Unit	Naumure Project
Installed Capacity	MW	245.0
Catchment Area	km ²	3,430.0
Dam Height	m	190.0
Total Storage Volume	МСМ	1,021.0
Effective Storage Volume	МСМ	580.0
Reservoir Area	km ²	19.8
Full Supply Level	m	517.0
Minimum Operating Level	m	474.2
Tail Water Level	m	358.0
Rated Gross Head	m	162.6
Rated Net Head	m	154.5
Rated Power Discharge	m ³ /sec	185.6
Total Energy	GWh	1,157.5
Dry Energy	GWh	309.9
Length of Access Road	km	34.0
Length of Transmission Line	km	79.0
Project Cost	MUS\$	954.5
Unit Generation Cost	¢ /kWh	8.2
EIRR (8% of Interest Rate, 12NRs/kWh)	%	15.2
FIRR (8% of Interest Rate, 12NRs/kWh)	%	25.3
Forest Land to be submerged	km ²	7.9
Downstream Protected Area	nos	2
Protected Species in the Project Area	nos	20
Dewatering Area	km	1
Reported Fish species	nos	16
Resettlement (Household)	nos	456
Cultivated land to be submerged	km ²	6.1
Fishermen	nos	43
Road to be submerged	km	2

 Table 8.1-13
 Salient Features of the Naumure (W. Rapti) Project (W-25)

8.2 Scoping

The third step aims to evaluate 10 Promising projects from various points of view. Sixty three evaluation items are explained in this section.

(1) Evaluation Items and Methods

The evaluation items and evaluation criteria are basically similar to the items and criteria that were used for the evaluation of candidate projects as mentioned in Clause 7.2. However, taking into account the comments obtained in the stakeholder meeting, some evaluation items were added and some modification was made in the evaluation criteria as described below.

Technical and Economical Conditions

- Hydrological Conditions
 - Reliability of flow data, risk of glacier lake outburst flood (GLOF), and sedimentation.
- Geological Conditions
 - Geological conditions of project site, thrust and fault ¹), and seismicity.
 - ¹⁾: The name of "Natural hazard (earthquake)" in Clause 7.2 was changed.
- > Time to commencement of commercial operation²⁾
 - ²⁾: In Clause 7.2, this item was evaluated as "Lead Time to Implementation of Project" by "Length of access road," "Difficulty level of funding," and "Reliability of development plan (current stage of study)."
- Effectiveness of Project
 - Unit generation cost, installed capacity, annual energy production, and energy production in the dry season.

Impact on the Environment

- Impact on the Natural Environment
 - Impact on forest, impact on flora³⁾, impact on terrestrial fauna³⁾, impact on protected area, impact on aquatic fauna, and impact of transmission line⁴⁾.
 - ³⁾: Added items.
 - ⁴⁾: This item was moved from "Impact on social environment."
- Impact on the Social Environment
 - Impact on household, etc., impact on ethnic minority, impact on agriculture, impact of fishery ⁵), impact on tourism, impact on infrastructure ⁵), and impact on rural economy and development plan ^{5).}
 - ⁵⁾: Added items.
- 1) Hydrology

Same as the evaluation of candidate projects, evaluation items for hydrology are "Reliability of

flow data," "Risk of glacier lake outburst flood (GLOF)," and "Sedimentation."

a. Reliability of flow data

Evaluation method and point allocation of reliability of flow data are same as those that were used for evaluation of candidate projects, and the detail is described in Section 7.2 (1) 1) a.

The evaluation criterion for reliability of flow data is shown in Table 8.2-1.

Flow Data	Estimated by the formula derived from the flow data gauged in the all gauging stations of Nepal	Gauged at the site but there are some missing data	Gauged at the site for 10 years
Score	0	$100 \times$ Number of existing data / (12 months \times 10 years)	100

Table 8.2-1	Evaluation	Criterion f	for Relia	bility of Floy	v Data
	Lituration	Criterion	ior reena		Duth

b. Risk of GLOF

Evaluation method and point allocation of risk of GLOF are same as those that were used for evaluation of candidate projects, and the detail is described in Section 7.2 (1) 1) b.

The evaluation criterion for reliability of flow data is shown in Table 8.2-2.

Table 8.2-2Evaluation Criterion for Risk of GLOF

Number of glacial lakes identified as	None	One or more			
"potentially critical" by ICIMOD located along the upper reaches of the dam		Low risk	Medium risk	High risk	
Score	100	40	20	0	

c. Sedimentation

Evaluation method and point allocation of sedimentation are basically same as those that were used for evaluation of candidate projects, and the detail is described in Section 7.2 (1) 1) c. However, since nine out of ten projects have same score if the same point allocation is used, the point allocation was modified to obtain appropriate evaluation result.

The evaluation criterion for sedimentation is shown in Table 8.2-3.

Table 8.2-3	Evaluation	Criterion	for	Sedimentation
-------------	------------	-----------	-----	---------------

Life of Reservoir	78 (Min.)	Min 300 years	More than 300 years	
Score	0	Linear interpolation	100	

2) Geology

Evaluation items for geology are "Geological conditions of the site," "Natural hazard (earthquake)," and "Seismicity." The name of "Natural hazard (earthquake)" was changed to

"Thrust and fault." The detail of each evaluation method was described in Section 7.2 (1) 2).

a. Geological conditions of the site

.

For promising projects other than the Dudh Koshi Project and the Nalsyau Gad Project that are in FS stage, geological site survey of promising projects was conducted by a Nepalese consulting company by subcontract. Based on the survey results, geological conditions of reservoir, dam, headrace tunnel and powerhouse were separately evaluated.

Evaluation criterion for site geology is shown in Table 8.2-4.

Structure	Item	Score	State	Reference*	
		100	Impervious	Not karstified and most joints are tight.	
	Water tightness	60	Medium	Weakly karstified or some joints are open.	
Decornoir		20	Pervious	Karstified or most joints are open.	
Reservoir		100	Stable	Few landslides and area of dip slope is limited.	
	Slope Stability	60	Medium	Some landslides or area of dip slopes is moderately wide.	
		20	Unstable	Many landslides or area of dip slope is wide.	
		100	Hard and compact	Ordinal Quartzite, Limestone, Sandstone, Phyllite and Slate.	
	Soundness	60	Medium	Ordinal Mudstone	
Dom		20	Soft	Softer than ordinal Mudstone	
Dam	Water tightness	100	Impervious	Not karstified and most joints are tight.	
		Water tightness 60		Medium	Weakly karstified or some joints are open.
		20	Pervious	Karstified or most joints are open.	
		100	Strong	Ordinal Quartzite, Limestone and Sandstone.	
Headrace Tunnel	Soundness	60	Medium	Ordinal Phyllite and Slate under thick overburden. Ordinal Mudstone or weak rocks.	
				Weak	Ordinal Mudstone or weak rocks, under thick overburden.
		100	Hard and compact	Ordinal Quartzite, Limestone, Sandstone, Phyllite and Slate.	
	Soundness	60	Medium	Ordinal Mudstone	
Dower House		20	Soft	Softer than ordinal Mudstone	
rower nouse		100	Stable	Few landslides and area of dip slope is limited.	
	Slope Stability	60	Medium	Some landslides or area of dip slopes is moderately wide.	
		20	Unstable	Many landslides or area of dip slope is wide.	

Table 8.2-4 Evaluation Criteria for Geological Conditions of Site (Basic Evaluation)

* In reference of soundness, ordinal rocks are shown for example. Observed rock and its condition should be described.

Item	Reference and Score of Subtract			
Fault	This item is applied for all structure sites. In case of existence of large or active fault, subtract 20 points. Large fault are those with > 1 m thick sheared zone.			
Thick deposit	This item is applied for dam site and power house site. In case of existence of alluvium and colluvium >30m in the vicinity of valley bottom, subtract 20 points.			

 Table 8.2-5
 Evaluation Criteria for Geological Conditions of Site (Deduction of point)

 Table 8.2-6
 Evaluation Criteria for Geological Conditions of Site (Score)

Structure site	Reservoir		Dam		Headrace Tunnel	Power House	
Item	Water tightness	Slope stability	Soundness	Water tightness	Soundness	Soundness	Slope stability
Basic evaluation	А	В	Е	F	J	Μ	Ν
Subtract by fault	C (negative)		G (negative)		K (negative)	O (neg	gative)
Subtract by thick deposits		-	H (negative)			P (neg	gative)
Score of each site	$\mathbf{D} = (\mathbf{A} + \mathbf{B})$	B) / 2 + C	$\mathbf{I} = (\mathbf{E} + \mathbf{F})$	/ 2 + G + H	L = J + K	$\mathbf{Q} = (\mathbf{M} + \mathbf{N})$) / 2 + O + P
Score of project area	$\mathbf{R} = (\mathbf{D} + \mathbf{I} + \mathbf{L} + \mathbf{Q})$			4			

b. Thrust and fault

Evaluation method and point allocation of risk of thrust and fault are same as "Natural hazard (earthquake)" used for evaluation of candidate projects, and the detail is described in Section 7.2 (1) 2) b.

The evaluation criterion for reliability of flow data is shown in Table 8.2-7.

 Table 8.2-7
 Evaluation Criterion for Large Tectonic Thrust and Fault

Distance to large tectonic thrusts	> 12.8 km	12.8 km > > 3.2 km	3.2 km > > 1.6 km	1.6 km >
Score ^{*1)}	100	60	20	0

*1): In case of the closeness to other faults < 1 km, subtract 20. In case of the closeness < 100 m, subtract 40.

c. Seismicity

Evaluation method and point allocation of risk of thrust and fault are same as those that were used for evaluation of candidate projects, and the detail is described in Section 7.2 (1) 2) c.

The evaluation criterion for reliability of flow data is shown in Table 8.2-8 to Table 8.2-10.

Table 8.2-8Evaluation Criterion for Seismicity (Class by Area)

Area	Higher Himalaya (Tibetan-Techys Zone)	Metamorphic zone (Higher Himalaya Crystalline)	Lesser Himalaya	Siwaliks (Sub-Himalaya)	Terai Zone
Class	1	1	2	3	3

 Table 8.2-9
 Evaluation Criterion for Seismicity (Class by Acceleration)

Acceleration	> 240 gal	240 gal > > 180 gal	180 gal >
Class	1	2	3

Table 8.2-10	Evaluation	Criterion	for Seismicity	(Matrix of Score)
--------------	------------	-----------	----------------	-------------------

Area	1	2	3
1	20	20	20
2	40	20	60
3	80	60	100

3) Time to Commencement of Commercial Operation

In the evaluation of candidate projects, this evaluation item was evaluated by length of access

road, difficulty level of funding, and reliability of development plan as shown in Table 8.2-11. In the evaluation of promising projects, lead time to commercial operation was estimated and the required time was directly evaluated, instead of these three items.

The lead time consists of seven stages, "Pre-FS," "FS," "Financial arrangement," "Tendering (selection of consultant)," "Detailed design," "Tendering (selection of contractor)," and "Construction" as shown in Table 8.2-11.

Stage	Time (Year)	Remark
Pre FS	1.0	Study prior to FS
FS	1.5	
Financial arrangement	2.0	(Commencement of access road construction)
Tendering	1.0	Selection of consultant
Detailed design	2.0	Including preparation of tender documents
Tendering	1.0	Selection of contractor
Construction	4.5 - 6.0	Depending on project (without access road construction)

 Table 8.2-11
 Time required for Each Stage

For example, lead time of a project in desk-study level is the total time from pre-FS to construction, lead time of a project in pre-FS level is the total time from FS to construction.

The project with 10 years in lead time was scored 100 points, the project with 20 years in lead time was scored 0 points, and other projects were scored a point obtained by linear interpolation with lead time. (See Table 8.2-12)

Table 8.2-12Evaluation Criterion for Lead Time to Commencement of
Commercial Operation

Time to commencement of commercial operation (Year)	10	10 - 20	20
Score (points)	100	Linear interpolation	0

4) Effectiveness of Project

a. Unit generation cost

Evaluation method is basically same one that was used for evaluation of candidate projects; the following simplified calculation formula was used.

The project with the smallest unit generation cost was scored 100 points, the project with the largest unit generation cost was scored 0 point, and other projects were scored a point obtained by linear interpolation with unit generation cost.

Since the number of projects was changed from 31 candidate projects to 10 promising projects, and also their project costs of promising projects were reviewed, the minimum unit generation cost changed from 2.21 USc/kWh to 4.57 USc/kWh and the maximum changed from 20.42 USc/kWh to 13.58 USc/kWh as shown in Table 8.2-13.

Table 8.2-13Evaluation Criterion for Unit Generation Cost

Unit Generation Cost	4.57	2.21 - 20.42	13.58
(US cent/kWh)	(Minimum)		(Maximum)
Score	100	Linear interpolation	0

Note: Unit Generation Cost = Project Cost / Annual Energy Production \times 10%

b. Installed Capacity

In the evaluation of candidate projects described in Table 8.2-14, since the suitable development scale was expected 100 MW to 300 MW in the Scope of Work of this Study, the evaluation point was gradually decreased for projects more than 300 MW.

In the evaluation of promising projects, importance was put on large installed capacity because of its effect on mitigating load shedding. And since the maximum installed capacity among the promising projects is 536 MW, though there might be some minor difficulty of financing, etc., development of this scale of projects seems to have sufficient probability. Therefore, point allocation for evaluation of installed capacity was modified as shown in Table 8.2-14.

 Table 8.2-14
 Evaluation Criterion for Installed Capacity

Installed Capacity (MW)	0	0 - 300	300	More than 300
Score	0	Linear interpolation	100	100

c. Annual Energy Production

In the evaluation of candidate projects described in Section Table 8.2-15, the evaluation point was proportional to annual energy production up to 2,000 GWh and it is constant (full score) to 2,000 GWh and over.

In the evaluation of promising projects, since the maximum among the promising projects was 1,920 GWh, the evaluation point was determined proportional to annual energy production up to 1,910 GWh, the maximum value, as shown in Table 8.2-15.

Table 8.2-15	Evaluation	Criterion	for Annual	Energy	Production
--------------	------------	------------------	------------	--------	------------

Annual Energy Production (GWh)	0	0 - 1,910	1,910 (Max.)
Score	0	Linear interpolation	100

d. Energy Production in Dry Season

Same to the above-mentioned annual energy production, the evaluation point of dry season energy was determined proportional to dry energy up to 523 MW, the maximum value, as shown in Table 8.2-16.

 Table 8.2-16
 Evaluation Criterion for Energy Production in the Dry Season

Energy Production in Dry Season (GWh)	0	0 - 523	523 (Max.)
Score	0	Linear interpolation	100

5) Natural Environment

a. Impact on Forest

The impact on forest was evaluated by the total of evaluation scores of forest land per unit installed capacity, average crown coverage¹¹, and number of trees per unit installed capacity.

Regarding forest land per unit installed capacity, the project with the smallest forest land per unit installed capacity was evaluated at 100 points, the project with the largest was evaluated at 0 points, and other projects were evaluated by linear interpolation. Regarding crown coverage, 100 points was given to the project with the largest coverage and 0 points to the project with the smallest coverage, and the other projects were evaluated by linear interpolation. The project with the largest number of trees per unit installed capacity was evaluated at 0 point and the smallest number was evaluated at 100 points.

Table 8.2-17 shows the largest/smallest values and corresponding evaluation points.

Items			Min		Max
			Impact		impact
Impact on Forest	Forest land (km2)	Value	0.3	-	8.2
•	Forest land (km2/MW)	Point	0.001	-	0.0032
		Score	100	Linear interpolation	0
	Average Crown Coverage (%)	Point	15.0	-	70.0
		Score	100	Linear interpolation	0
	Number of trees (nos)	Value	9,776	-	520,608
	Number of trees (nos/MW)	Point	24.4	-	1980.1
		Score	100	Linear interpolation	0

Table 8.2-17Evaluation Criterion for Impact on Forest

b. Impact on Flora

The impact on flora was evaluated by the number of plant species reported and the number of plant species of conservation significance. For both evaluation items, the project with the

¹¹ The ratio of area that is covered by leaf and branch.

largest number was evaluated at 0 points, the smallest number at 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-18 shows the largest/smallest values and corresponding evaluation points.

Items			Min Impact		Max impact
Impact on Flora	Number of Plant species	Point	0.0	-	74.0
	reported	Score	100	Linear interpolation	0
	Number of Plant species of	Point	0.0	-	6.0
	conservation significance	Score	100	Linear interpolation	0

 Table 8.2-18
 Evaluation Criterion for Impact of Flora

c. Impact on Terrestrial Fauna

The impact on terrestrial fauna was evaluated by the numbers of mammal/bird/herpetofauna species reported, the numbers of conservation mammal/bird/herpetofauna species reported in the reservoir area. For all evaluation items,

The project with the largest number of species was evaluated at 0 points, the smallest number of species at 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-19 shows the largest/smallest values and corresponding evaluation points.

Items			Min Impact		Max impact
Impact on Terrestrial	Number of Mammal	Point	11.0	-	24.0
Fauna	species reported	Score	100	Linear interpolation	0
	Number of conservation	Point	4.0	-	9.0
	Mammalian species reported	Score	100	Linear interpolation	0
-	Number of Bird species	Point	13.0	-	51.0
	reported	Score	100	Linear interpolation	0
	Number of conservation	Point	0.0	-	4.0
	Bird species reported	Score	100	Linear interpolation	0
	Number of Herpetofauna	Point	6.0	-	17.0
	species reported	Score	100	Linear interpolation	0
	Number of conservation	Point	0.0	-	5.0
	Herpetofauna species reported	Score	100	Linear interpolation	Ō

 Table 8.2-19
 Evaluation Criterion for Impact on Terrestrial Fauna

d. Impact on Protected Area

Projects located in a protected area had already been excluded from the promising projects.

The impact on protected area was evaluated by the number of protected area in the downstream and the number of protected species in the downstream. The project with the largest number of protected area/protected species in the downstream was given 0 points, the

smallest number was given 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-20 shows the largest/smallest values and corresponding evaluation points.

Items			Min Impact		Max impact
Impact on Protected	Number of the protected	Point	1.0	-	3.0
Area -	area downstream	Score	100	Linear interpolation	0
	Number of the protected	Point	3.0	-	6.0
	species downstream	Score	100	Linear interpolation	0

 Table 8.2-20
 Evaluation Criterion for Impact on Protected Area

e. Impact on Aquatic Fauna

The impact on aquatic fauna was evaluated by length of recession area, number of fish species reported, and number of fish species of conservation significance. Regarding the length of recession area, the project with the longest recession area was evaluated at 0 points, the shortest 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-21 shows the largest/smallest values and corresponding evaluation points.

Items			Min Impact		Max impact
Impact on Aquatic	Length of recession area	Point	0.5	-	60.0
fauna	(km)	Score	100	Linear interpolation	0
	Number of Fish species	Point	6.0	-	24.0
	reported	Score	100	Linear interpolation	0
	Number of Fish species of	Point	2.0	-	4.0
	conservation significance	Score	100	Linear interpolation	0

 Table 8.2-21
 Evaluation Criterion for Impact on Aquatic Fauna

f. Impact of Construction of Transmission Line

The impact of construction of transmission line was evaluated by the length of transmission line. The project with the longest transmission line was evaluated at 0 points, the shortest 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-22 shows the largest/smallest values and corresponding evaluation points.

Table 8.2-22 Evaluation Criterion for Impact of Transmission Li

Items			N	Vin mpact		Max impact
Impact of	Length of Trar	nsmission Pa	oint 3	33.0	-	79.0
Transmission Line	Line (km)	So	core 1	100	Linear interpolation	0

6) Social Environment

a. Impact on Household, etc.

The impact on household, etc. was evaluated by the numbers of households / schools / workshops to be relocated per unit installed capacity. For these evaluation items, 0 points was given to the project with the largest number, 100 points to the smallest number, and the other projects were evaluated by linear interpolation.

Table 8.2-23 shows the largest/smallest values and corresponding evaluation points.

Items			Min Impact		Max impact
Impact on Household,	Number of Household	Point	0.2	-	4.2
etc.	(nos//MW)	Score	100	Linear interpolation	0
	Number of Schools	Point	0.00	-	0.05
	(nos/MW)	Score	100	Linear interpolation	0
	Number of Industries	Point	0.00	-	0.03
	(nos/MW)	Score	100	Linear interpolation	0

Table 8.2-23	Evaluation	Criterion	for Impa	ct on I	Household.	etc.
	Litanation	Criterion	Tor impa		liousenoiu,	

b. Impact on Ethnic Minority

The impact on ethnic minority was evaluated by the number of ethnic groups under Disadvantaged, Marginalized, and Highly Marginalized. The project with the largest number of ethnic groups was evaluated at 0 points, the largest number at 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-24 shows the largest/smallest values and corresponding evaluation points.

Items Min Impact					Max impact
Ethnic Minority Group	Total Numbers of Ethnic	Point	0	-	5
	Minority Groups	Score	100	Linear interpolation	0

c. Impact on Agriculture

The impact on agriculture was evaluated by the agricultural land per unit installed capacity and the number of irrigation systems. The project with the largest cultivated land per unit installed capacity was evaluated at 0 points, the smallest at 100 points, and the other projects were evaluated by linear interpolation. Regarding the impact on irrigation systems, the project with the largest number was given 0 points, the smallest 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-25 shows the largest/smallest values and corresponding evaluation points.

Items				Min Impact		Max impact
Agriculture	Cultivated	land	Point	0.003	-	0.025
	(km2/MW)		Score	100	Linear interpolation	0
	Number of	Irrigation	Point	0	-	58
	systens		Score	100	Linear interpolation	0

 Table 8.2-25
 Evaluation Criterion for Impact on Agriculture

d. Impact on Fishery

The impact on fishery was evaluated by the number of fishermen and fish markets, availability of fish in the market, sales amount of fish, total income of fishermen, and length of recession area. For all these evaluation items, the project with the largest number was given 0 points, the smallest 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-26 shows the largest/smallest values and corresponding evaluation points.

Items Min Max Impact impact Impact on Fish and Number of Fishermen Point 0 712 Fishery 100 Linear interpolation 0 Score Number of the nearest 7 Point 0 fish markets Score 100 Linear interpolation 0 Availability of fish in the Point 0 140 Market (kg/day) 100 Score Linear interpolation 0 Total sale fish Point 0 42000 of (Rp/day) 100 Linear interpolation Score 0 3,710,000 Total income (Rp/year) Point 0 100 Score Linear interpolation 0

Table 8.2-26Evaluation Criterion for Impact on Fishery

e. Impact on Tourism and Culture

The impact on tourism and culture was evaluated by the number of temples, tourist facilities, and tourists. The project with the largest number was evaluated at 0 points, the smallest number at 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-27 shows the largest/smallest values and corresponding evaluation points.

Table 8.2-27	Evaluation	Criterion fo	or Impact on	Tourism and	Culture

Items		Min Impac	st	Max impact
Tourism and culture	Number of Cultural	Point 0	-	10
	Structures (Temples)	Score 100	Linear interpolation	0
	Number of Tourist	Point 0	-	10
	Facilities	Score 100	Linear interpolation	0
	Number of Tourists/Yr	Point 0	-	20,000
		Score 100	Linear interpolation	0

f. Impact on Infrastructure

The impact on infrastructure was evaluated by the length of road, the number of bridges, the number of water mills/turbines/hydroelectric power stations, and the number of drinking water schemes. The project with the longest/largest was evaluated at 0 points, the shortest/smallest at 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-28 shows the largest/smallest values and corresponding evaluation points.

Items			Min Impact		Max impact
Infrastructure	Road (paved and	Point	0	-	29.75
	graveled, km)	Score	100	Linear interpolation	0
	Bridge	Point	2	-	18
		Score	100	Linear interpolation	0
	Water Mill/Hydropower	Point	0	-	26
		Score	100	Linear interpolation	0
	Drinking Water Schemes	Point	0	-	29
		Score	100	Linear interpolation	0

 Table 8.2-28
 Evaluation Criterion for Impact on Infrastructure

g. Impact on Rural Economy and Development Plan

The impact on rural economy and development plan was evaluated by the number of markets, the number of development plans (on going and planning), and the number of previous issues. The project with the largest number was evaluated at 0 points, the smallest number at 100 points, and the other projects were evaluated by linear interpolation.

Table 8.2-29 shows the largest/smallest values and corresponding evaluation points.

 Table 8.2-29
 Evaluation Criterion for Impact on Rural Economy and Development Plan

Items			Min Impact		Max impact
Economy Development	Market	Point	0	-	5
		Score	100	Linear interpolation	0
	Ongoing/Proposed	Point	0	-	10
	Development Plans	Score	100	Linear interpolation	0
	Previous	Point	0	-	1
	Experience/Issues	Score	100	Linear interpolation	0

(2) Weighting of the Third Step

Same as the evaluation of candidate projects, the evaluation items described in 8.2 (1) above were weighted depending on the importance in the objective of the Study. Scores of each evaluation item were multiplied by the weight of such evaluation item, and the total of weighted scores of all evaluation items is the evaluation score of project in question.

Taking into consideration the result of questionnaire in the second stakeholders meeting, the following four cases of combination of weights of technical and economical conditions and

impact of environment were prepared.

- Case 1: Same importance on technical and economical conditions and impact on environment (50% for technical and economical conditions, 50% for impact on environment)
- Case 2: Technically and economically oriented (60% for technical and economical conditions, 40% for impact on environment)
- Case 3: Environmentally oriented (40% for technical and economical conditions, 60% for impact on environment)
- Case 4: Extremely technically and economically oriented (the average of questionnaire result. 75% for technical and economical conditions, 25% for impact on environment)

Regarding the subcategories in technical and environmental conditions, also taking into consideration the result of questionnaire, the weight of hydrological conditions was increased from 25% to 30% and that of lead time was decreased from 25% to 20%. In the impact on environment, the weight of social environment was increased from 50% to 60% and that of natural environment was decreased from 50% to 40%.

The weights of each evaluation item were determined by reference to other projects and based on knowledge of the study team.

Table 8.2-30 shows the weights and point allocations of each case.

Category	%	Subcategory	%	Evaluation Item	%	Point
Cutogory	70	Bubballogory	70	Reliability of flow data	35	5.25
		Hydrological	30	Risk of GLOF	30	4.50
		Conditions		Sedimentation	35	5.25
		<u> </u>		Seismicity	25	3.13
Technical and		Geological	25	Geological conditions of the site	50	6.24
Economical	50	Conditions		Thrust and fault	25	3.13
Conditions		Lead time	20	Time to commencement of commercial operation	100	10.00
				Unit generation cost	25	3.13
		Effectiveness of	25	Installed capacity	20	2.50
		Project		Annual energy production	10	1.25
				Energy production in the dry season	45	5.62
				Impact on forest	(23)	1.90
				Forest land	9	1.80
				Average of crown coverage	7	1.40
				Impact on flora	(16)	1.40
				Number of plant species reported	8	1.60
				Number of plant species of conservation significance	8	1.60
				Impact on terrestrial fauna	(17)	
				Number of mammal species reported	3	0.60
				Number of bird species reported	2	0.40
		Impact on		Number of herpetofauna species reported	2	0.40
		Natural	40	Number of conservation mammalian species reported (reservoir)	4	0.80
		Environment		Number of conservation bird species reported (reservoir)	3	0.60
				Number of conservation herpetofauna species reported (reservoir)	3	0.60
				Impact on aquatic fauna	(22)	
				Number of fish species reported	9	1.80
				Number of fish species of conservation significance	9	1.80
				Length of recession area	4	0.80
				Number of protected areas in the downstream	(10)	1.60
				Number of protected areas in the downstream	8	1.60
				Impact of transmission line	(6)	1.00
				Length of transmission line	6	1.20
				Impact on household, etc.	(17)	
				Number of estimated households	10	3.00
Impact on	50			Number of schools	4	1.20
Environment	50			Number of industries	3	0.90
				Impact on ethnic minority	(8)	
				Number of ethnic minority groups	8	2.40
				Impact on agriculture	(19)	2 70
				Impact on irrigation	9	2.70
				Impact on fishery	(15)	5.00
				Number of fishermen	3	0.90
				Number of fish market	2	0.60
				Availability of fish in the market	1	0.30
		Impact on		Sales amount of fish	3	0.90
		Social	60	Total income	3	0.90
		Environment		Length of recession area	3	0.90
				Impact on tourism and culture	(14)	—
				Number of cultural structures	6	1.80
				Number of tourist facilities	4	1.20
				Number of tourists	4	1.20
				Impact on initiastructure	(19)	2 10
				Impact on bridges	/ 	1 20
				Impact on water mill, turbing, hydroglectric power station	4	1.20
				Impact on drinking water schemes	4	1.20
				Impact on rural economy and development plan	(8)	
				Impact on market	4	1.20
				Number of development plans	2	0.60
				Previous issues	2	0.60
				Total		100

Table 8.2-30	Weight of Evaluation Item	(Case 1: Even weight)
	weight of Evaluation frem	(Cuse It Liten weight)

Category	%	Subcategory	%	Evaluation Item	%	Point
2		ger		Reliability of flow data	35	6.30
		Hydrological	30	Risk of GLOF	30	5.40
		Conditions		Sedimentation	35	6.30
		0 1 1 1		Seismicity	25	3.75
Technical and	Geological	25	Geological conditions of the site	50	7.50	
Economical	60	Conditions		Thrust and fault	25	3.75
Conditions		Lead time	20	Time to commencement of commercial operation	100	12.00
				Unit generation cost	25	3.75
		Effectiveness of	25	Installed capacity	20	3.00
		Project		Annual energy production	10	1.50
				Energy production in the dry season	45	6.75
				Impact on forest	(23)	
				Forest land	9	1.44
				Number of trees in the reservoir area	7	1.12
				Average of crown coverage	(16)	1.12
				Number of plant species reported	(10)	1.28
				Number of plant species of conservation significance	8	1.20
				Impact on terrestrial fauna	(17)	
				Number of mammal species reported	3	0.48
				Number of bird species reported	2	0.32
		Impact on		Number of herpetofauna species reported	2	0.32
		Natural	40	Number of conservation mammalian species reported (reservoir)	4	0.64
		Environment		Number of conservation bird species reported (reservoir)	3	0.48
				Number of conservation herpetofauna species reported (reservoir)	3	0.48
				Impact on aquatic fauna	(22)	
				Number of fish species reported	9	1.44
				Number of fish species of conservation significance	9	1.44
				Length of recession area	4	0.64
				Impact on protected area	(16)	
				Number of protected areas in the downstream	8	1.28
				Number of protected species in the downstream	8	1.28
				Impact of transmission line	(6)	0.07
				Length of transmission line	0 (17)	0.96
				Impact on household, etc.	(17)	2.40
Immoston				Number of estimated nousenoias	10	2.40
Environment	40			Number of industries	4	0.90
Linvironment				Impact on ethnic minority	(8)	0.72
				Number of ethnic minority groups	8	1.92
				Impact on agriculture	(19)	
				Impact on irrigation	9	2.16
				Impact on agricultural land	10	2.40
				Impact on fishery	(15)	
				Number of fishermen	3	0.72
				Number of fish market	2	0.48
				Availability of fish in the market	1	0.24
		Impact on Social		Sales amount of fish	3	0.72
		Environment	60	Total income	3	0.72
				Length of recession area	3	0.72
				Impact on tourism and culture	(14)	
				Number of cultural structures	6	1.44
				Number of tourist facilities	4	0.96
				Number of Iourisis	4 (10)	0.90
				Impact on made	(19)	1.68
				Impact on Iridges	, 	0.96
				Impact on water mill, turbing, hydroglectric power station	4	0.96
				Impact on drinking water schemes	4	0.96
				Impact on rural economy and development plan	(8)	
				Impact on market	4	0.96
				Number of development plans	2	0.48
				Previous issues	2	0.48
				Total		100

Table 8.2-31	Weight of Evaluation Item (Case 2: Technical conditions oriented

Table 8.2-32	Weight of Evaluation Item	(Case 3: Environmental	impact oriented)
--------------	---------------------------	------------------------	------------------

Category	%	Subcategory	%	Evaluation Item	%	Point
		TT 1 1 1 1		Reliability of flow data	35	4.20
		Hydrological	30	Risk of GLOF	30	3.60
		Conditions		Sedimentation	35	4.20
				Seismicity	25	2.50
Technical and		Geological	25	Geological conditions of the site	50	5.00
Economical	40	Conditions		Thrust and fault	25	2.50
Conditions		Lead time	20	Time to commencement of commercial operation	100	8.00
				Unit generation cost	25	2.50
		Effectiveness of	25	Installed capacity	20	2.00
		Project	23	Annual energy production	10	1.00
				Energy production in the dry season	45	4.50
				Impact on forest	(23)	
				Forest land	9	2.16
				Number of trees in the reservoir area	7	1.68
				Average of crown coverage	7	1.68
				Impact on flora	(16)	
				Number of plant species reported	8	1.92
				Number of plant species of conservation significance	8	1.92
				Impact on terrestrial fauna	(17)	
				Number of mammal species reported	3	0.72
				Number of bird species reported	2	0.48
		Impact on		Number of herpetofauna species reported	2	0.48
		Natural	40	Number of conservation mammalian species reported (reservoir)	4	0.96
		Environment		Number of conservation bird species reported (reservoir)	3	0.72
				Number of conservation herpetofauna species reported (reservoir)	3	0.72
				Impact on aquatic fauna	(22)	
				Number of fish species reported	9	2.16
				Number of fish species of conservation significance	9	2.10
				Length of recession area	4	0.90
				Impact on protected area	(16)	1.02
				Number of protected areas in the downstream	8	1.92
				Number of protected species in the downstream	0 (6)	1.92
				I mpact of transmission line	(0)	1.4.4
				Impact on household, etc.	(17)	1.44
				Number of estimated households	10	3.60
Impact on				Number of schools	10 	1 44
Environment	60			Number of industries	3	1.44
Linvironment				Impact on ethnic minority	(8)	
				Number of ethnic minority groups	8	2.88
				Impact on agriculture	(19)	
				Impact on irrigation	9	3.24
				Impact on agricultural land	10	3.60
				Impact on fishery	(15)	
				Number of fishermen	3	1.08
				Number of fish market	2	0.72
				Availability of fish in the market	1	0.36
		Income the Constant		Sales amount of fish	3	1.08
		Environment	60	Total income	3	1.08
		Environment		Length of recession area	3	1.08
				Impact on tourism and culture	(14)	
				Number of cultural structures	6	2.16
				Number of tourist facilities	4	1.44
				Number of tourists	4	1.44
				Impact on infrastructure	(19)	
				Impact on roads	7	2.52
				Impact on bridges	4	1.44
				Impact on water mill, turbine, hydroelectric power station	4	1.44
				Impact on drinking water schemes	4	1.44
				Impact on rural economy and development plan	(8)	
				Impact on market	4	1.44
				ivumber of development plans	2	0.72
Catagori	I	l		Total	2	100
Category				10tal		100

Table 8.2-33	Weight of Evaluation Item	(Case 4: Technical	l conditions oriented extremely)
--------------	---------------------------	--------------------	----------------------------------

Category	%	Subcategory	%	Evaluation Item	%	Point
		Hydrological		Reliability of flow data	35	7.88
		Conditions	30	Risk of GLOF	30	6.75
		Conditions		Sedimentation	35	7.88
		Geological		Seismicity	25	4.69
Technical and		Conditions	25	Geological conditions of the site	50	9.38
Economical	75		• •	Thrust and fault	25	4.69
Conditions		Lead time	20	Time to commencement of commercial operation	100	15.00
				Unit generation cost	25	4.69
		Effectiveness of	25	Installed capacity	20	3.75
		Project		Annual energy production	10	1.88
				Energy production in the dry season	(22)	8.44
				Ecrect land	(23)	0.00
				Number of trees in the reservoir area	9	0.90
				Average of crown coverage	7	0.70
				Impact on flora	(16)	
				Number of plant species reported	8	0.80
				Number of plant species of conservation significance	8	0.80
				Impact on terrestrial fauna	(17)	
				Number of mammal species reported	3	0.30
				Number of bird species reported	2	0.20
		Impact on		Number of herpetofauna species reported	2	0.20
		Natural	40	Number of conservation mammalian species reported (reservoir)	4	0.40
		Environment		Number of conservation bird species reported (reservoir)	3	0.30
				Number of conservation herpetofauna species reported (reservoir)	3	0.30
				Impact on aquatic fauna	(22)	
				Number of fish species reported	9	0.90
				Number of fish species of conservation significance	9	0.90
				Length of recession area	4	0.40
				Impact on protected area	(16)	
				Number of protected areas in the downstream	8	0.80
				Number of protected species in the downstream	8	0.80
				Impact of transmission line	(6)	
				Length of transmission line	6	0.60
				Impact on household, etc.	(17)	
.				Number of estimated households	10	1.50
Impact on	25			Number of schools	4	0.60
Environment				Number of industries	3	0.45
				Impact on etimic minority	(8)	1.20
				Number of einnic munority groups	0	1.20
				Impact on irrigation	(19)	1 35
				Impact on agricultural land	9	1.50
				Impact on fishery	(15)	1.50
				Number of fishermen	3	0.45
				Number of fish market	2	0.30
				Availability of fish in the market	1	0.15
				Sales amount of fish	3	0.45
		Impact on Social	60	Total income	3	0.45
		Environment		Length of recession area	3	0.45
				Impact on tourism and culture	(14)	
				Number of cultural structures	6	0.90
				Number of tourist facilities	4	0.60
				Number of tourists	4	0.60
				Impact on infrastructure	(19)	
				Impact on roads	7	1.05
				Impact on bridges	4	0.60
				Impact on water mill, turbine, hydroelectric power station	4	0.60
				Impact on drinking water schemes	4	0.60
				Impact on rural economy and development plan	(8)	
				Impact on market	4	0.60
				Number of development plans	2	0.30
			I	F Tevious issues	2	100

8.3 Impact Assessment

Third Step is an evaluation for the ten Promising Projects based on the site survey. 50 evaluation items of six categories are examined in detail. After Impact Evaluation, Sensitivity Analysis was conducted. Followings are the result of the Impact Evaluation and the Sensitivity Analysis.

(1) Impact Evaluation

1) Hydrological Data and Energy

a. Hydrology

As for hydrological data of the 10 promising projects, 3 items, namely, reliability of flow data, risk of GLOF, sedimentation of were researched and evaluated.

(a) Reliability of Flow Data

Flow data is indispensable for energy calculation and has a decisive influence on economical efficiency of a project. As for 10 promising projects, the study result on reliability of flow data of each project is summarized in the following table.

No.	Project Name	Reliability of Flow Data
E-01	Dudh Koshi	The gauging station 670 is located at 1.5 km upstream from the dam axis. The reliability of flow data of the project is relatively higher.
E-06	Kokhajor-1	Since there is no gauging station near the project site, the flow of the project is calculated by Regional Analysis. The reliability of flow data of the project is relatively lower.
E-17	Sun Koshi No.3	The gauging station 630 is located at 8 km upstream from the dam axis. Multiplying the flow data of the gauging station by the rate of catchment area of the project site to one of gauging station gives the flow data of the project. The reliability of flow data of the project is relatively higher.
C-02	Lower Badigad	Since there is no gauging station near the project site, the flow of the project is calculated by Regional Analysis. The reliability of flow data of the project is relatively lower.
C-08	Andhi Khola	The gauging station 415 is located at 1.5 km upstream from the dam axis. Multiplying the flow data of the gauging station by the rate of catchment area of the project site to one of gauging station gives the flow data of the project. The reliability of flow data of the project is relatively higher.
W-02	Chera-1	Since there is no gauging station near the project site, the flow of the project is calculated by Regional Analysis. The reliability of flow data of the project is relatively lower.
W-05	Lower Jhimruk	The gauging station 330 is located at 27 km upstream from the dam axis. Multiplying the flow data of the gauging station by the rate of catchment area of the project site to one of gauging station gives the flow data of the project. The reliability of flow data of the project is relatively higher.
W-06	Madi	Since there is no gauging station near the project site, the flow of the project is calculated by Regional Analysis. The reliability of flow data of the project is relatively lower.

 Table 8.3-1
 Summary of Study Result for Reliability on Flow Data

No.	Project Name	Reliability of Flow Data
W-23	Nalsyau Gad	-ditto-
W-25	Naumure (W. Rapti)	-ditto-

(b) Risk of GLOF

Similarly, the study result on risk of GLOF of each promising project is summarized in the following table.

No.	Project Name	Risk of GLOF
E-01	Dudh Koshi	There are 10 potentially critical glacial lakes upstream of the Dudh Koshi Project. Out of 10, 3 glacial lakes are classified in category I which is high risk. Therefore, the risk of GLOF of the project is high. Imja Tsho is the highest risky glacial lake in terms of GLOF.
E-06	Kokhajor-1	There is no potentially critical glacier lake in term of GLOF upstream of the project site.
E-17	Sun Koshi No.3	There are nine potentially critical glacial lakes in term of GLOF upstream of the Sun Koshi basin. All of them are located in Tibet. Lumi Chimi Lake and Gangxi Co Lake are the high risk glacial lakes. Both of them are the end moraine dammed glacial lakes and category I. The risk of GLOF of the project is high.
C-02	Lower Badigad	There is no potentially critical glacier lake in term of GLOF upstream of the project site.
C-08	Andhi Khola	-ditto-
W-02	Chera-1	-ditto-
W-05	Lower Jhimruk	-ditto-
W-06	Madi	-ditto-
W-23	Nalsyau Gad	-ditto-
W-25	Naumure (W. Rapti)	-ditto-

 Table 8.3-2
 Summary of Study Result on Risk of GLOF

(c) Sedimentation

Similarly, in order to evaluate influence of sedimentation on 10 promising projects, the life of reservoir of each project was estimated. The result is summarized in the following table.

No.	Project Name	Specific Sediment Yield (t/km ² /yr)	Sediment Yield (10 ⁶ m ³ /yr)	Total Storage Volume (10^6 m^3)	Life time of Storage (years)
E-01	Dudh Koshi	2,540	6.9	687.4	100
E-06	Kokhajor-1	5,900	1.1	218.7	199
E-17	Sun Koshi No.3	1,871	6.9	1,220.0	177
C-02	Lower Badigad	2,526	5.2	995.9	192
C-08	Andhi Khola	2,526	1.2	336.5	280
W-02	Chera-1	1,000	0.5	254.9	510
W-05	Lower Jhimruk	5,750	3.8	386.0	102
W-06	Madi	5,750	2.6	359.5	138
W-23	Nalsyau Gad	3,960	1.5	419.6	280
W-25	Naumure (W. Rapti)	5,750	13.1	1,021.0	78

Table 8.3-3Summary of Study Result on Life of Reservoir

b. Energy Calculation

The energy calculation was conducted by using flow data obtained from the hydrological study and planning features in order to evaluate annual energy production of 10 promising projects.

(a) Calculation Method

The energy calculation for each project was conducted by using "Energy Calculation based on Dynamic Programming Ver.1.70" which is a computer program developed by J-POWER. The program enables to estimate maximized annual energy by optimizing reservoir operation rule of a project based on the concept of optimization by Dynamic Program (DP).

The Dynamic Program's mathematical meaning is to determine the control vector which can make the evaluating function value maximum or minimum under given restraint conditions, which is based upon the optimum principal. The optimum principal is the optimized plan which can make its decision the optimum on conditions from primary decision to result for whatever primary conditions and decision of the system.

In the case of reservoir operation rule optimization, evaluating function corresponds to annual energy, outflow discharge from reservoir and reservoir volume on given inflow discharge to reservoir correspond to restriction conditions, and control vector against above issues corresponds to reservoir operation rule.

(b) Data for Calculation

The project parameters required for energy calculation such as Full Supply Level (FSL), Minimum Operational Level (MOL) and Water Level-Storage Volume Curve of reservoir, effective head, power discharge, etc. were excerpted from the source reports.

However, since turbine efficiency and generator efficiency have been improved in recent

years, the design review for electromechanical equipment of promising projects was carried out by using HD Wiz which is a computer program developed by J-POWER based on existing hydroelectric power station data around world. The installed capacities obtained from the result of this design review were used for the energy calculation.

The peak hour was established as 12 hours for energy calculation in consultation with NEA.

As for flow data, the data estimated in the hydrological analysis were used. The following table shows average monthly flows at dam sites of promising projects.

														(Unit: m ³ /s)
No.	Project Name	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	Average Discharge
E-01	Dudh Koshi	45.6	35.8	33.8	45.7	84.0	282.5	651.6	652.3	519.5	188.7	89.5	59.9	224.1
E-06	Kokhajor-1	3.7	3.1	2.9	3.2	4.6	16.1	45.0	53.2	38.3	17.4	8.2	5.2	16.7
E-17	Sun Koshi No.3	62.5	55.8	52.8	58.6	90.0	211.7	574.8	701.0	440.0	208.3	106.7	78.7	220.1
C-02	Lower Badigad	21.2	18.3	17.5	20.3	31.8	85.1	216.7	261.6	184.1	82.1	39.7	26.3	83.7
C-08	Andhi Khola	4.7	3.9	3.2	3.0	6.3	33.3	99.8	94.1	67.2	26.7	9.9	6.1	30.1
W-02	Chera-1	9.3	8.0	7.6	8.5	12.8	34.2	88.6	108.2	77.1	35.0	16.8	11.0	34.8
W-05	Lower Jhimruk	9.4	7.9	6.6	6.7	6.9	20.5	68.9	115.7	97.4	39.6	16.1	10.5	33.9
W-06	Madi	7.9	6.8	6.4	7.2	10.8	30.0	78.9	95.8	68.4	31.0	14.8	9.7	30.6
W-23	Nalsyau Gad	6.8	5.8	5.5	6.1	9.1	25.7	68.0	82.6	59.1	26.9	12.8	8.3	26.4
W-25	Naumure (W. Rapti)	33.4	28.9	27.9	32.8	52.5	143.6	363.6	434.9	303.9	134.2	65.1	43.3	138.7

Table 8.3-4Summary of Flow Data for Promising Projects

(c) Calculation Result

The results of annual energy calculation for promising projects are summarized in the following table. Where, only for the Nalsyau Gad Project, the energy estimated in the feasibility study report is adopted as result since the feasibility study has just completed in 2012 in consultation with NEA.

														(Un	II: Gwn)
No.	Project Name	JAN.	FEB.	MAR.	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.	Total Energy	Dry Energy
E-01	Dudh Koshi	103.0	90.7	97.1	123.5	165.2	190.4	220.7	225.5	218.3	222.4	143.8	109.0	1,909.6	523.3
E-06	Kokhajor-1	19.9	17.6	18.8	17.6	16.3	15.1	18.4	35.6	57.6	21.8	19.9	20.3	278.9	94.1
E-17	Sun Koshi No.3	71.3	63.6	67.4	61.6	61.7	134.4	358.2	404.3	325.2	182.6	81.3	72.0	1,883.6	335.9
C-02	Lower Badigad	73.9	66.7	72.5	67.6	67.4	65.7	151.2	294.0	261.6	100.0	71.5	73.9	1,366.0	354.7
C-08	Andhi Khola	37.1	33.0	18.0	0.0	14.6	28.8	89.4	146.5	130.3	52.5	49.4	49.1	648.7	137.1
W-02	Chera-1	26.4	22.7	23.5	21.2	20.7	20.8	98.6	114.2	110.5	51.6	26.3	26.9	563.2	120.6
W-05	Lower Jhimruk	19.7	17.6	19.0	18.2	20.7	47.1	73.9	61.7	70.7	66.2	20.0	19.9	454.8	94.4
W-06	Madi	36.0	32.2	34.4	31.9	31.6	30.4	34.7	136.2	125.4	56.9	35.1	36.2	621.1	170.7
W-23	Nalsyau Gad	152.5	126.3	114.4	61.5	25.4	24.6	25.4	250.5	294.2	139.4	64.8	127.1	1,406.1	581.8
W-25	Naumure (W. Rapti)	68.8	58.1	59.3	52.1	47.3	79.5	152.7	185.2	179.2	133.9	69.8	71.7	1,157.5	309.9

Table 8.3-5Summary of Energy Calculation Result for Promising Projects

2) Project Cost and Lead Time to Commencement of Operation

a. Project Cost

There were some differences among the project costs of ten promising projects in terms of time point of estimation and accuracy. In order to evaluate them as equally as possible, each project cost was escalated to the present price level and made necessary adjustments such as increase of contingency depending on the study level, etc.

b. Revision of Project Cost

In order to evaluate the project costs on the same level, each project cost was escalated from the time point of estimation in the source report to the present (Year 2013) price level with the escalation rate established based on Inflation Rate of Consumer Price of Major advanced economies (G7) published in database of International Monetary Fund (IMF), "World Economic Outlook Database, October 2012".

On that basis, the environmental mitigation costs were replaced by the latest ones estimated from the result of site investigation. The costs of electromechanical equipment were also replaced by the latest ones estimated from the international market price.

The cost for civil works was divided into 3 parts, namely, cost for dam & reservoir, cost for waterway tunnel, cost for powerhouse. The ratio of contingency for cost of each work was determined based on the study level and the result of the geological investigation at site.

The idea for contingency ratios established for the FS or Pre FS-level projects in the source reports, such as 10% for open works, 15% for underground works, etc. were maintained as they were. While the contingency ratios for desk study-level projects was basically established

as 25% of civil cost in the source reports. They were revised depending on the geological evaluation of dam & reservoir site, waterway tunnel site and powerhouse site based on the result of site investigations. Only for the Sun Koshi No.3 Project, the largest contingency ratio was applied because there was very limited information about civil structures though the geological evaluation was relatively good.

No.	Project Name	Dam (%)	Waterway (%)	Powerhouse (%)
E-06	Kokhajor-1	27.5	27.5	25.0
	Geological Condition	Poor	Poor	Fair
E-17	Sun Koshi No.3	30.0	30.0	30.0
	Geological Condition	Fair	Fair	Fair
C-02	Lower Badigad	30.0	25.0	25.0
	Geological Condition	Very Poor	Fair	Fair
W-02	Chera-1	25.0	25.0	25.0
	Geological Condition	Fair	Fair	Fair
W-05	Lower Jhimruk	27.5	25.0	25.0
	Geological Condition	Poor	Fair	Fair
W-06	Madi	27.5	25.0	25.0
	Geological Condition	Poor	Fair	Fair

 Table 8.3-6
 Physical Contingency Ratio of Civil Works for Desk Study-Level Projects

3) Cost of Promising Project

A price contingency established as 10% of each construction cost estimated with above-mentioned revision and an interest during construction established with the interest ratio of 8% were added in the construction cost to estimate total project cost. The costs of 10 promising projects are summarized in the following table.

Where, only for the Nalsyau Gad Project, the construction cost estimated in the feasibility study report is used as it is except this price contingency and interest during construction since the feasibility study has just completed in 2012.

									(Unit:	Million US\$)
No.	E-01	E-06	E-17	C-02	C-08	W-02	W-05	W-06	W-23	W-25
Project Name	Dudh Koshi	Kokhajor-1	Sun Koshi No.3	Lower Badigad	Andhi Khola	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure
Installed Capacity (MW)	300	111.5	536	380.3	180	148.7	142.5	199.8	410	245
1. Preliminary works and access road	69	15	11	41	2	27	23	24	70	15
2. Environmental mitigation cost	60	18	269	180	51	18	59	54	12	184
3. Civil Works	449	191	543	369	274	231	171	220	369	287
3.1 Dam	302	74	491	267	229	155	108	146	283	260
3.2 Waterway	121	112	28	85	41	68	56	65	69	15
3.3 Powerhouse	25	5	23	17	4	7	7	9	16	12
4. Hydromechanical-Equipment	21	11	27	23	43	12	11	14	31	14
5. Electro-mechanical Equipment	118	55	155	141	80	69	67	86	115	101
6. Transmission Line	9	12	11	13	9	13	14	12	23	15
7. Base Cost	726	302	1,016	766	460	369	344	410	620	617
8. Administration & Engineering service	68	15	92	32	31	16	15	18	61	49
9. Physical Contingency	79	61	181	125	39	68	55	71	57	63
9.1 Contingency for Civil Works	65	52	163	106	29	58	45	59	48	48
9.2 Contingency for E&M equipment	14	9	18	19	10	10	10	12	8	14
10. Price Contingency (10% of above)	87	38	129	92	53	45	41	50	74	73
11. Interest during Construction (i=8%)	184	60	272	195	84	80	66	88	156	154
10. Project Cost	1,144	476	1,691	1,210	666	577	521	637	967	955

Table 8.3-7 Summary of Project Cost for Promising Projects

No.	Project	P (MW)	E (GWh)	Project cost (US\$)	Expense rate	Unit generation cost (USC/kWh)	Score
E-01	Dudh Koshi	300.0	1,909.6	1,144,039,000	0.10	5.99	100.0
E-06	kokhajor-1	111.5	278.9	476,468,000	0.10	17.08	0.0
E-17	Sun Koshi No.3	536.0	1,883.6	1,690,504,000	0.10	8.97	73.1
C-02	Lower Badigad	380.3	1,366.0	1,209,838,000	0.10	8.86	74.1
C-08	Andhi Khola	180.0	648.7	665,805,000	0.10	10.26	61.5
W-02	Chara-1	148.7	563.2	576,856,000	0.10	10.24	61.7
W-05	Lower Jhimruk	142.5	454.7	520,860,000	0.10	11.46	50.7
W-06	M adi	199.8	621.1	637,310,000	0.10	10.26	61.5
W-23	Nalsyau Gad	410.0	1,406.1	966,869,000	0.10	6.88	92.0
W-25	Naumure	245.0	1,157.5	954,512,000	0.10	8.25	79.6

Table 8.3-8Evaluation of Unit Generation Cost

a. Lead Time to Commencement of Operation

The required lead time to the commencement of operation was estimated from each project stage and construction period.

4) Project Stage

The required times to the commencement of construction differ depending on project. The time to be required on each stage was empirically established as follows:

Stage	Time (Year)	Remark
Pre FS	1.0	Study prior to FS
FS	1.5	-
Financial Arrangement	2.0	(Commencement of access road construction)
Tendering	1.0	Selection of consultant
Detailed Design	2.0	Including preparation of tender documents
Tendering	1.0	Selection of contractor
Commencement of Construction	-	-

 Table 8.3-9
 Summary of Required Time to Commencement of Construction

5) Construction Period

The construction periods differ depending on project. The construction period of FS of Pre FS-level project established in the source report was maintained as it was. The construction period of desk study-level project was established considering the scale of dam and the length of waterway tunnel as major structure of project, and result of geological investigation at site as shown in the following table. Where, construction time for preparatory works such as construction of access road, camp, etc. is not included in the construction period since they are normally implemented during the time between financial arrangement and commencement of construction in Nepal.

		Installed	Dam	Dam	Dam	Tunnel	Construction
0	Project Name	Capacity	Height	Type	Volume	Length	Period
0.		(MW)	(m)		(MCM)	(km)	(Year)
E-01	Dudh Koshi	300.0	180	Rockfill	9.2	13.3	6.0
E-06	Kokhajor-1	111.5	107	Rockfill	4.7	6.6	4.5
E-17	Sun Koshi No.3	536.0	140	Concrete	1.9	-	6.0
				Gravity			
C-02	Lower Badigad	380.3	191	Rockfill	16.9	4.4	6.0
C-08	Andhi Khola	180.0	157	Concrete	8.2	3.4	4.5
				Faced Rockfill			
W-02	Chera-1	148.7	186	Rockfill	9.8	4.3	5.0
W-05	Lower Jhimruk	142.5	167	Rockfill	6.8	5.8	4.5
W-06	Madi	199.8	190	Rockfill	9.2	5.7	5.0
W-23	Nalsyau Gad	410.0	200	Rockfill	17.9	8.2	6.0
W-25	Naumure	245.0	190	Rockfill	13.2	-	6.0
	(W.Rapti)						

 Table 8.3-10
 Summary of Construction Period for Promising Projects

6) Lead Time to Commencement of Operation

As a result of study mentioned above, the lead time to commencement of operation for each project is summarized in the following table.

										(Unit: Year)
No.	E-01	E-06	E-17	C-02	C-08	W-02	W-05	W-06	W-23	W-25
Project Name	Dudh	Kokhajor-	Sun Koshi	Lower	Andhi	Chera-1	Lower	Madi	Nalsyau	Naumure
	Koshi	1	No.3	Badigad	Khola		Jhimruk		Gad	
Installed Capacity (MW)	300	111.5	536	380.3	180	148.7	142.5	199.8	410	245
Pre-Feasibility Study	-	1.0	1.0	1.0	-	1.0	1.0	1.0	-	-
Feasibility Study	-	1.5	1.5	1.5	1.5	1.5	1.5	1.5	-	1.5
Financial Arrangement	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Selection of Consultant	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Detailed Design	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Selection of Contractor	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Construction	6.0	4.5	6.0	6.0	4.5	5.0	4.5	5.0	6.0	6.0
Total (Year)	12.0	13.0	14.5	14.5	12.0	13.5	13.0	13.5	12.0	13.5

Fable 8.3-11	Summary of Lead Time to COD for Promising Projects
---------------------	--

 Table 8.3-12
 Evaluation of Time to Commencement of Commercial Operation

No. Project		D (MW)	Pre-	ES	Financial	Selection of	ממ	Selection of	Construction	Total	Score
INO.	No. Project		FS	1.2	Arrangement	Consultant	עט	Contractor	Construction	(Year)	(point)
E-01	Dudh Koshi	300.0			2.0	1.0	2.0	1.0	6.0	12.0	80
E-06	kokhajor-1	111.5	1.0	1.5	2.0	1.0	2.0	1.0	4.5	13.0	70
E-17	Sun Koshi No.3	536.0	1.0	1.5	2.0	1.0	2.0	1.0	6.0	14.5	55
C-02	Lower Badigad	380.3	1.0	1.5	2.0	1.0	2.0	1.0	6.0	14.5	55
C-08	Andhi Khola	180.0		1.5	2.0	1.0	2.0	1.0	4.5	12.0	80
W-02	Chara-1	148.7	1.0	1.5	2.0	1.0	2.0	1.0	5.0	13.5	65
W-05	Lower Jhimruk	142.5	1.0	1.5	2.0	1.0	2.0	1.0	4.5	13.0	70
W-06	Madi	199.8	1.0	1.5	2.0	1.0	2.0	1.0	5.0	13.5	65
W-23	Nalsy au Gad	400.0			2.0	1.0	2.0	1.0	6.0	12.0	80
W-25	Naumure	245.0		1.5	2.0	1.0	2.0	1.0	6.0	13.5	65

7) Geological Issues

a. Geological Investigation

Study level of promising projects vary from Desk Study to FS. To increase the topographic and geological data of projects which remain in Desk Study level, subcontract work was conducted for promising projects from July 2012 to February 2013. Among 10 promising projects, geological and engineering geological review was conducted for the Dudh Koshi Project and the Nalsyau Gad Project which study level is FS. For remaining 8 projects, satellite image interpretation and geological field survey were conducted. Geological field survey of each project was conducted for some 5 days.

b. Evaluation Method for Site Geology

At the stage of evaluating promising project, evaluation for geology consists of 3 criteria, namely "Geological conditions of the site", "Thrust and fault" and "Seismicity." Evaluation method of "Geological conditions of the site" is changed according to abovementioned geological investigation and described in this section. The content of criterion of "Thrust and fault" is same of "Natural hazard (earthquake)" which was applied for selecting promising projects .There is no change in sub-criterion "Seismicity" which was also applied for selecting

promising projects. Evaluation criteria of these two are shown in Section 7.2 (1) 2) b and c.

Hydroelectric project area composed of major structure sites, i.e. reservoir area, dam site, headrace tunnel route and power station site. Representing necessary conditions of these structure sites are as follows

- Reservoir area: water tightness, stability of surrounding slopes
- Dam site: stability of foundation rock, water tightness
- > Headrace tunnel: stability of foundation rock
- > Powerhouse: stability of foundation rock, stability of the slope behind

Evaluation of these structure sites are shown below

(a) Reservoir Area

Watertightness of reservoir area is evaluated based on the distribution of carbonate rocks and the condition of joints of rockmass.

Stability of surrounding slopes is evaluated based on the distribution and size of landslide and the distribution of dip slopes.

(b) Dam Site

Stability of dam foundation rock is evaluated based on soundness of rockmass as foundation rock for rock fill dam.

Watertightness of dam site is evaluated based on the distribution of carbonate rocks and the condition of joints of rockmasss. This evaluation should be more conservative than the case of reservoir.

(c) Headrace Tunnel Route

Stability of tunnel foundation is evaluated based on strength of rockmass and overburden of the tunnel, which control the stability of tunnel walls during construction works.

(d) Powerhouse Site

Powerhouses are assumed open type, except the project in which the underground type adopted in FS. Stability of open type powerhouse foundation is evaluated based on soundness of rockmass, which is same for dam site.

Stability of the slope behind the powerhouse is evaluated based on the distribution of landslide and dip slopes.

In the zone of considerable width along major faults, usually the quality of rockmass has been decreased by the movement of the fault. In case fault with more than 1m wide sheared zone is known in the structure site, evaluation is lowered by subtracting the score. Thick river deposits usually introduce difficulties in construction of dam and powerhouse, In case that more than 30m thick river deposits exist or assumed, evaluation of the dam site and powerhouse site is lowered by subtracting the score.

Evaluation criterion for site geology is compiled in Section 7.2 (1) 2) a.

c. Result of Evaluation for Site Geology

Geological outline and result of evaluation of site geology are shown in Table 8.3-13~Table 8.3-22.

Score for each sub-item and that of structure site are shown with red letters in Table 8.3-13. Sub-items of low scores and with subtracts are those with disadvantages in engineering geological point of view.

	Geology				S	Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere dep	».		5		
			d −20	\sim	T		b 10) c 10	0 A 80
Reservoir Area	Okhaidunga Phyllite Zone and Dudh Koshi Dome Zone	phyllite90%, quartzite10%	2 major local faults (Ekuluade Fault, Vichalo F,)				watertight	small scale slides	
			a 0	e	0	a 100	D 6)	R 80
Dam Site	Okhaidunga Phyllite Zone	quartzite on the left bank, phyllite on the right bank	no major fault	20m	R(RI Va	QD<30−66%, MR:40−60, Q alue:4−6	groundwater level is slightly higher than river level or the left bank	a few instabilities	
			d −20			<mark>a</mark> 60			C 40
Headrace Tunnel Route	Okhaidunga Phyllite Zone Manebhanjyug Phyllite- Limestone Zone Mahabharat Zone	phyllite and quartzite limestone and carbonatious phyllite Sch and gneiss	3 major local faults (Dudh Koshi Fault, Halesi F. Sun Koshi F.)		Fa 6(9, m cc ar lo m 1(air (RMR:40– 0, Q value:4– .), naximum rock over 1250m nd about 4km ong section is nore than 000m			
- ·			d 0	e	0	a 100		c 10	0 D100
Powerhouse Site (undergroun d)	Mahabharat Zone	schistose gneiss	no major fault	_	(F R R R	Fair to Good: QD 72%, MR:50-70, Q alue:5-12,)		-	

 Table 8.3-13
 Evaluation of Site Geology of the Dudh Koshi Project

a, b, c = 100 or 60 or 20 (60 and 20 show disadvantage) d, e = 0 or -20 or lower score (-20 and lower score show disadvantage) A= (b+c)/2+d B= (a+b)/2+d+e C=a+d D= (a+c)/2+d+e

	Geology					Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Riv de	/ere posits				
				0			60	60	60
Reservoir Area	Upper Siwaliks:	conglomerate with sandstone and mudstone	no major fault			soft (sometimes hard)	poorly-cemented conglomerates of the Upper Siwaliks are quite pervious	vulnerable to erosion (erode easily) and many shallow slumps,	
	Middle Siwaliks:	sandstone				moderately hard, and relatively strong.	relatively impervious	generally stable and a few rockslides	
Dam Site				0	0	100	60		80
	Middle Siwaliks:	sandstone and mudstone	no major fault	10 soi thi	to me30m ck	relatively soft	moderately to slightly pervious		
				0		60			60
Headrace Tunnel Route	Middle Siwaliks:	sandstone interbedded with mudstone	no major			moderately strong			
	Lower Siwaliks	sandstone and mudstone	fault			relatively soft, maximum overburden 600m			
				0	0	100		100	100
Powerhouse Site	Lower Siwaliks	sandstone and mudstone	no major fault	10 [.] thi	−20m ck	relatively soft		bedding planes dip towards the mountain	

 Table 8.3-14
 Evaluation of Site Geology of the Kokhajor-1 Project

Table 8.3-15Evaluation of Site Geology of the Sun Koshi No.3 Project

	Geology				Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere deposits				
			-20			100	60	60
Reservoir Area	Kuncha Formation	quartzite with schist	a fault				wide desrtibution of colluviums	
	Benighat Slate	slate with limestone	passing along the Indrawati River			limestone may be peamiable, butdestributed in middle stream of the reservoir area		
			0	0	100	100		100
Dam Site	Kuncha Formation	quartzite with thin phyllite	no major fault	not thick	hard	impervious		
			0	\sim	100			100
HeadraceTu nnel Route	Kuncha Formation	quartzite with thin phyllite	no major fault		hard, maximum overburden 300m			
			0	0	100		100	100
Powerhouse Site	Kuncha Formation	quartzite with few bands of phyllite	no major fault	not thick	medium hard		stable	

	Geology				Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere deposits				
			-20			100	20	40
Reservoir Area	Benighat Slate	slate with limestone, and quartzite with shale	Badigad Fault	alluvium >		impervious	relatively stable except active Gultung Pahiro, mainly rockslides	
	Dhading Dolomite	limestone and dolomite	(active)	30m thick		may be permeable, but limited distibution in reservoir area		
Dam Site			-80	-20	100	100		0
	Benighat Slate	quartzite and shale	Badigad Fault (active)	more than 30m thick assumed by the thickness in reservoir area	medium strong to strong	impervious		
			0		100			100
Headrace Tunnel Route	Benighat Slate	quartzite and shale	no major fault		medium strong to strong, maximum overburden 200m			
			0	-20	100		100	80
Powerhouse Site	Benighat Slate	quartzite and shale	no major fault	> 50m	medium strong to strong		bedding planes dip toward mountain	

 Table 8.3-16
 Evaluation of Site Geology of the Lower Badigad Project

Table 8.3-17	Evaluation of Site Geology of Andhi Khola Project
	Evaluation of Site Geology of Anum Know 1 roject

	Geology				Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere deposits				
			-20			100	20	40
Reservoir	Dhading Dolomite	thick bedded dolomite	Andhi Khola			dolomite in limited area		
Area	Benighat Slate	slate with many carbonate bands	Fault, Keware Fault		slates are highly weathered and highly fragile	watertight	highly unstable as manifested by many landslides	
			0	0	20	20		20
Dam Site	Benighat Slate	laminated light gray slate	no major fault	2.7m thick by boring	thick terrace deposits above el. 606 on the left bank	thick terrace deposits above el. 606m on the left bank		
			0		60			60
Headrace Tunnel Route	Benighat Slate	light to dark gray, laminated slate	no major fault		slates are highly fragile and intensely deformed, maximum overburden 350m			
	Site		0	-20	60		60	40
Power house	Benighat Slate	light gray, carbonaceous slate	no major fault	45m thick sand and gravel	slates are highly fragile		a large landslide	

	Geology					Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault		Rivere deposits				
				0	\sim		60	100	80
Reservoir	Meta- diamictite	meta- diamictite including calcareous clasts	no major		alluvial deposits are limited in		dissolution cavities of calcareous clasts	major landslides	
Al Ca	Lower Quartzite	quartzite with schist	fault		and they			are limited	
	Lower Schist	phyllite or garnet schist and quartzite		á t t	are less than 25 m thick				
				0	0	100	60		80
Dam Site	Meta− diamictite	meta- diamictite including calcareous clasts	no major fault			categorised as good or fair	impervious, however calcareous nature of the meta- diamictite should be studied in more detail		
				0		100			100
Headrace Tunnel	Meta- diamictite	meta- diamictite including calcareous clasts	no major			comparatively strong, tunnel alignment makes an acute angle			
Route	Upper Quartzite	quartzite with schist and phyllite	fault			with the foliation.			
	Upper Schist	garnet schists with quartzite				500m			
				0	0	100		100	100
Powerhouse Site	Upper Schist	thick-banded quartzite with sporadic schist partings	no major fault		assumed same as reservoir area i.e. less than 25m thick	comparatively strong		gentle dipping bedding plane	

 Table 8.3-18
 Evaluation of Site Geology of the Chera-1 Project

 Table 8.3-19
 Evaluation of Site Geology of the Lower Jhimruk Project

	Geology				Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere deposits				
			-20			60	100	60
Reservoir Area	Khamari Formation, Eocene Beds, Dhurbang Khola F.	shale, sandstone and dolomite	a major fault			distribution of dolomite	mass-wasting phenomena are not abundant, relatively stable	
			0	0	100	100		100
Dam site	Khamari Formation	shale and sandstone	no major fault	not thick	sound	impervious	relatively stable	
			-20		100			80
Headrace Tunnel Route	Khamari F, Eocene Beds, Dhurbang Khola F. Ranagaon F.	shale, sandstone	a major fault		maximun overburden 700m			
Powerbouse			0	0	100		60	80
Powerhouse Site	Ranagaon Formation	shale	no major fault	thick	sheared bed rock		sheared bed rock	
	Geology				Soundness	Water Tightness	Slope Stability	Score
--------------------	-----------------------	--	---	-------------------------	-------------------------------------	--	--	-------
	Formation	Lithology	Fault	Rivere deposits				
			-20			60	60	40
	Garnet Schist Unit	chlorite to garnet schist						
	Sattin Formation	sandstone and shale with some coal seams	one fault between Garnet Schist Unit				most area is covered with	
Reservoir Area	Srichaur Formation	shale, phyllite and thin- bedded limestone	and Sattin Formation, and another fault between Sattin				colluvium, major slides are observed along the Dhansi Khola (along a	
	Ranibas Formation	medium-to thick-bedded limestone with few bands of black slate	Formation and Srichaur Formation			limestone present in the most part of the project will create some problem.	fault)	
			0	0 0	100	100		100
Dam Site	Ranibas Formation	slate and limestone	no major fault	supposed to be thick		limestone is siliceous and shows no evidence of any cavern structure from the surface		
Headrace			0		100			100
Tunnel Route	Ranibas Formation	supposed to be slate and limestone	no major fault		maximum overburden about 400m			
			0	0	100		100	100
Powerhouse Site	Ranibas Formation	supposed to be slate and limestone	no major fault	supposed to be thick	supposed to be sound		supposed to be stable	

 Table 8.3-20
 Evaluation of Site Geology of the Madi Project

Table 8.3-21Evaluation of Site Geology of the Nalsyau Gad Project

	Geology				Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere deposits				
			-20			60	100	60
Reservoir		slate	Nalsvau Gad			impervious	no major Iandslids	
Area		dolomite	Fault			further investigations are needed		
			0	0	100	60		80
Dam Site		dolomite	no major fault	10m thick by a boring	fair	further investigations are needed		
			-20		100			80
Headrace Tunnel Route		dolomite75%, remainings are quartzite, phyllite and slate	2 large sheared zones		bedding plane perpendicular to tonnel axis, max. overburden 500m			
			0	0	100		100	100
Powerhouse Site		phyllite, quartzite and shale	no major fault	infered 15m thick	sound		strikes of bedding plane are about perpendicular to slope	

Table 8.3-22	Evaluation of Site Geology of the Naumure (W. Rapti) Pa	roject
--------------	---	--------

	Geology				Soundness	Water Tightness	Slope Stability	Score
	Formation	Lithology	Fault	Rivere deposits				
			-20			100	60	60
	Middle Siwaliks	sandston and siltstone				slightly pervious and could pose threat of minor seepage		
	Lower Siwaliks	sandstone with shale						
	Sangram Formation	black shale			weakest unit			
Reservoir Area	Syangja Formation	calcareous quartzites and quartzitic limestpne with shale	MBT				rocks near MBT are sheared and easily become unstable	
	Lakharpatta Formation	limestone and dolomites with thin shales and quartizes				possible leakage through this Formation will be blocked by Siwaliks distributed to the south of MBT		
			0	0	100	60		80
Dam Site	Middle Siwaliks	sandstone and siltstones	no major fault	20m thick by a boring	good to fair	slightly pervious and could pose threat of minor seepage, think careful for dam site		
Headrace			0		100			100
Tunnel Route	Middle Siwaliks	sandstone	no major fault		overburden <60m			
			0	0	100		100	100
Powerhouse Site	Middle Siwaliks	mudstone with sandstone	no major fault	about 20m thick	sound		strikes of bedding plane are about perpendicular to slope	

-							
No.	Project	Area	Acceleration	Area - Acceleration Matrix	Basic score	Closeness to epicenters greater then M4 (km)	Project score
		Class	Class	Wiatrix		Subtraction	1
E-01	Dudh Koshi	LH	М	2.2	20	L = 10	
		2	2	2, 2	20	0	20
E-06	Kokhajor-1	SI	S	2 1	20	L = 26	
		3	1	5, 1	20	0	20
E-17	Sunkosi No.3	LH	М	2.2	20	L = 28	
		2	2	2, 2	20	0	20
C-02	Lower Badigad	LH	L	2.2	60	L = 30	
		2	3	2, 3	00	0	60
C-08	Andhi Khola	LH	М	2.2	20	L = 40	
		2	2	2, 2	20	0	20
W-02	Chera-1	LH	S	2.1	20	L = 10	
		2	1	2, 1	20	0	20
W-05	Lower Jhimruk	LH	L	2.2	60	L = 34	
		2	3	2, 3	00	0	60
W-06	M adi	LH	L	2.2	60	L=35	
		2	3	2, 3	00	0	60
W-23	Nalsyau Gad	LH	М	2.2	20	L=7	
		2	2	2, 2	20	-20	0
W-25	Naumure (W. Rapti)	SI	L	3 3	100		
		3	3	5, 5	100	0	100

Table 8.3-23Evaluation Summary of Seismicity

Area: HH = Higher Himalay a (Tibetan-Techy s Zone), MZ = Metamorphic zone (Higher Himalaya), LH = Lesser Himalaya, SI = Siwaliks (Sub-Himalaya), TZ = Terai Zone

Accelelation: L (240 gal $< \alpha$), M (180 gal $< \alpha < 240$ gal), S ($\alpha < 180$ gal)

			Reservoi	ir			E	am			Headrac	e Tuni	nel		Power	House			
No.	Project	Water	Slope	Fault	Score	Soundness	Water	Fault	Thick	Score	Soundness	Fault	Score	Soundness	Site	Fault	Thick	Score	Project
		tightness	stability				tightness		deposit						stability		deposit		score
E-01	Dudh Koshi	Impervious	Stable			Hard	Medium				Medium			Hard	Stable				
		100	100	-20	80	100	60	0	0	80	60	-20	40	100	100	0	0	100	75
E-06	Kokhajor-1	Pervious	Medium			Hard	Medium				Medium			Hard	Stable				
		60	60	0	60	100	60	0	0	80	60	0	60	100	100	0	0	100	75
E-17	Sunkosi No.3	Impervious	Medium			Hard	Impervious				Strong			Hard	Stable				
		100	60	-20	60	100	100	0	0	100	100	0	100	100	100	0	0	100	90
C-02	Lower Badigad	Impervious	Unstable			Hard	Medium	Active			Strong			Hard	Stable				
		100	20	-20	40	100	60	-80	-20	0	100	0	100	100	100	0	-20	80	55
C-08	Andhi Khola	Impervious	Unstable			Soft	Pervious				Medium			Hard	Stable				
		100	20	-20	40	20	20	0	0	20	60	0	60	60	60	0	-20	40	40
W-02	Chera-1	Medium	Stable			Hard	Medium				Strong			Hard	Stable				
		60	100	0	80	100	60	0	0	80	100	0	100	100	100	0	0	100	90
W-05	Lower Jhimruk	Medium	Stable			Hard	Impervious				Strong			Hard	Stable				
		60	100	-20	60	100	100	0	0	100	100	-20	80	100	60	0	0	80	80
W-06	M adi	Medium	Medium			Hard	Impervious				Strong			Hard	Stable				
		60	60	-20	40	100	100	0	0	100	100	0	100	100	100	0	0	100	85
W-23	Nalsyau Gad	Medium	Stable			Hard	Medium				Strong			Hard	Stable				
		60	100	-20	60	100	60	0	0	80	100	-20	80	100	100	0	0	100	80
W-25	Naumure (W. Rapti)	Impervious	Medium			Hard	Medium				Strong			Hard	Stable				
		100	60	-20	60	100	60	0	0	80	100	0	100	100	100	0	0	100	85

Table 8.3-24 **Evaluation Summary of Geological Condition of Site**

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

No	Project	Distance to	large techtonic	thrusts (km)	Basic	Closseness to	Subtraction	Project
110.	Tioject	MBT	MCT	Minimum	score	other faults (km)	Subtruction	score
E-01	Dudh Koshi	32.0	26.0	26.0	100	0.5	-20	80
E-06	Kokhajor-1	2.5		2.5	20	>1	0	20
E-17	Sunkosi No.3	16.0		16.0	100	>1	0	100
C-02	Lower Badigad	25.0		25.0	100	0.0	-40	60
C-08	Andhi Khola	25.0		25.0	100	< 1	-20	80
W-02	Chera-1	30.0		25.0	100	>1	0	100
W-05	Lower Jhimruk	2.0		2.0	20	>1	0	20
W-06	Madi	25.0		25.0	100	>1	0	100
W-23	Nalsyau Gad	60.0		60.0	100	0.5	-20	80
W-25	Naumure (W. Rapti)	3.0		3.0	20	>1	0	20

 Table 8.3-25
 Evaluation Summary of Thrust and Fault

8) Natural Environment

The main subjects of the natural environmental survey were: forest, flora, terrestrial fauna, aquatic fauna, protected area in the downstream and rare species in the downstream. The land use was also analyzed using the topographic maps of 1996. These maps were updated based on the satellite images taken from 2010 to 2012 and was analyzed in order to observe the tendency of changes of land use.

a. Impact on Forest

Comparing the forest area submerged in reservoir area, the impact on the Sun Koshi and the Naumure Projects are significant with more than 7 square kilometers of submerged forest area. More than 400,000 trees will be also affected. On the other hand, the submerged forest area of the Nalsyau Gad and the Chera-1 Projects are less than 1 square kilometers and the affected trees will be less than 40,000. Regarding the crown coverage, for the Kohajor-1 and the Dudh Koshi Projects are relatively high with more than 50%. I contrast, for the Madi and the Nalsyau Gad Projects are relatively low with less than 20 %. In comparison with the land use map of 1996 and the satellite image taken in 2010/2011, the forest land of the Naumure and the Andhi Khola Projects have decreased more than 1 square kilometer. By contrast, about the Sun Koshi Project, increase of forest land more the 3 square kilometers has been observed (see Table 8.3-26).

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No. 3
Land Use Reservoir	r Area (2010	TO 2012)								
Forest land (km2)	1.46	1.87	1.64	0.76	7.85	3.304	1.51	4.10	2.89	8.16
Bush/Shrub land (km2)	0.72	0.51	2.02	0.89	1.22	0.589	0.38	0.32	0.02	2.57
Cultivated land (km2)	1.08	2.04	1.92	2.54	6.11	5.896	1.65	3.30	0.59	9.39
Water and Sand Bodies etc. (km2)	0.71	0.89	1.04	0.54	4.27	2.930	1.07	3.03	1.04	9.49
Grass Land (km2)	0.02	0.30	1.04	0.90	0.03	0.908	0.91	0.27	0.06	0.47
land Use Change (19	96/2010, 20	11) - Reserv	oir Area							
Forest land (km2)	0.12	-0.60	-0.50	-0.25	-1.28	-0.444	-1.03	0.29	-0.005	3.09
Bush/Shrub land (km2)	-0.09	0.40	0.38	-0.43	0.88	0.275	0.25	-0.16	0.02	-0.91
Cultivated land (km2)	-0.10	-0.22	-0.75	0.28	0.00	-0.800	0.07	-0.87	0.25	-0.46
Water and Sand Bodies etc. (km2)	0.32	0.05	0.00	-0.33	0.01	0.074	-0.16	0.62	-0.33	-1.35
Grass Land (km2)	-0.04	0.30	0.87	0.05	0.03	0.908	0.86	0.13	0.06	-0.36
Average Crown Coverage (%)	41	26	15	20	40	38	38	53	70	38
Number of trees in the reservoir area	38,088	83,776	36,982	9,776	485,130	129,360	77,312	242,720	202,300	520,608

 Table 8.3-26
 Impact on Forest in the Reservoir Area

Figure 8.3-1 Forest Land in the Reservoir Area

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

Figure 8.3-2Number of Trees in the Reservoir Area

Figure 8.3-3 Average of Crown Coverage in the Reservoir Area (%)

b. Impact on Flora

The vegetation composition of each project site belong to a upper sub-tropical or sub-tropical and the dominant trees in these areas are: Khyar and Hill sal forest, Mixed hardwood forest, Pine forest, Sisso forest and Mixed broad leaved forest and etc. Regarding the community forest which used by surrounding residents to collect firewood, there are 25 places for the Naumure (W. Rapti) Project, 24 places for Madi Project and only less than 4 places for the Andhi Khola Project, the Dudh Koshi Project and the Sun Koshi No.3 Project.

Regarding the plant species, there are many reported plants for the Madi Project (74 species) and for the Dudh Koshi Project (67 species). In contrast, there are relatively few reported species for the Kokhajor-1 Project (10 species), and the Chera-1 Project (35 species). The largest number of the reported species of conservation significance is for the Madi Project as 6 species and the smallest number is for the Nalsyau Gad Project as 1 species.

				<u> </u>						
No. Project Name	W-02 Chera-1	W-05 Lower Jhimruk	W-06 Madi	W-23 Nalsyau Gad	W-25 Naumure (W. Rapti)	C-02 Lower Badigad	C-08 Andhi Khola	E-01 Dudh Koshi	E-06 Kokhajor-1	E-17 Sun Koshi No. 3
VEGETATION COMPOSITION	Upper Sub-tropical species	Sub-tropical species	Subtropical species	Upper Sub-tropical species	Sub-tropical species	Upper Sub-tropical species	Sub-tropical species	Upper Sub-tropical species	Sub-tropical Species	Sub-tropical species
FOREST TYPE	Mainly Hill sal Forest	Mainly hill sal	Hill Sal Forest and Pine Forest	Mixed hardwood forest and Pine forest	Mainly Hill sal forest	. Khayar /Sisso forest, Hill sal forest and Mixed broad leaved forest	Khyar and Hill sal forest	Mixed broad leaved forests and Hill sal Forest.	Hill Sal forest	Khyar and Hill sal forest
DOMINANT TREE SPECIES	Shoera robusta (Sal)	Shoera robusta (Sal)	Shorea robusta and Pinus roxburgii	Bombax ceiba , : Celtis australis , Pinus roxburgii	Shoera robusta (Sal)	Acacia catechu (Khayar), Bombax ceibia (Simal),Shoe ra robusta (Sal) and Schima wallichii (chilaune)	Acacia catechu (Khayar), Bombax ceibia (Simal),Shoe ra robusta (Sal) and Schima wallichii (chilaune)	Shoera robusta (Sal)	Shorea robusta, Acacia catechu, Adina cardifolia, Terminalia alata, Bombax ceiba	Acacia catechu (Khayar), Bombax ceibia (Simal),Shoe ra robusta (Sal) and Schima wallichii (chilaune)
NO OF COMMUNITY FOREST IN RESERVOIR AREA	12	6	24	9	25	12	3	11	4	4
NO OF GOVERNMENT FOREST IN RESERVOIR AREA	0	3	0	0	2	2	1	2	1	0
NO OF LEASEHOLD FOREST IN RESERVOIR AREA	1	0	0	0	0	0	0	0	0	0
No OF PRIVATE FOREST IN RESERVOIR	0				0	0	0	1	0	0
AVERAGE TREE NOS PER HECTOR OF FOREST	529	426	225	323	618	392	521	592	700	638
AVERAGE CROWN COVERAGE	41	26	15	20	40	38	38	53	70	38
NO OF TREES IN THE RESERVOIR AREA	38088	83776	36982	24580	485130	129360	77312	242720	202300	520608

No. Project Name	W-02 Chera-1	W-05 Lower Jhimruk	W-06 Madi	W-23 Nalsyau Gad	W-25 Naumure (W. Rapti)	C-02 Lower Badigad	C-08 Andhi Khola	E-01 Dudh Koshi	E-06 Kokhajor-1	E-17 Sun Koshi No. 3
No OF PLANT SPECIES REPORTED	35	55	74	59	55	>45	41	67	10	46
NO OF SPECIES OF CONSERVATION SIGNIFICANCE	3	4	6	1	4	5	5	3	3	5
NO OF IUCN CONSERVATION SPECIES IN RESERVOIR	0	0	0	0	0	0	0	0	0	0
NO OF CITES CONSERVATION SPECIES IN RESERVOIR	0	1(II)	1 (II)	0	1(II)	1(II)	1 (II)	0	0	0
NO OF GOVERNMENT PROTECTED SPECIES IN RESERVOIR	3	4	5	1	4	4	5	3	3	5

Figure 8.3-4 Number of Plant Species Reported in the Reservoir Area

Figure 8.3-5 Number of Plant Species of Conservation Significance in the Reservoir Area

c. Impact on Terrestrial Fauna

Regarding the terrestrial fauna, the Naumure and the Lower Jhimruk Projects conserve relatively well their habitat. On the other hand, the habitat of terrestrial fauna is divided by farmland, houses and collecting firewood place in the other project sites. The quality of habitat has been decreased. Reflecting these habitats conditions, the number of mammal species and herpetofauna species are relatively large in the Lower Jhimruk, the Naumure (W. Rapti) and the Dudh Koshi Projects, and relatively small in the Nalsyau Gad, the Andhi Khola and the Sun Koshi No. 3 Projects. Meanwhile, the number of birds' species has a tendency to increase even in a large impact area, 51 species for the Dudh Koshi Project and 50 species for the Sun Koshi No.3 Project have been reported.

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No. 3
NO OF MAMMAL SPECIES REPORTED	15	23	18	11	24	21	12	24	13	11
NO OF BIRD SPECIES REPORTED	28	49	21	13	49	30	16	51	21	50
NO OF HERPETOFAUNA SPECIES REPORTED	13	17	9	8	17	9	6	17	8	9
HABITAT CONDITIONS	Degraded and fragmented	Partially degraded by human encroachmen t	DEGRADE D AND FRAGMEN TED	high degree of human encroachmen t /degraded	Good habitat area for wildlife	Disturbed and fragmented due to human encroachmen t	Degraded and fragmented due to human encroachmen t	Disturbed by human interference	Fragmente d and degraded due to intervening of settlement fodder collection	Degraded and fragmented by human encroachmen t
MIGRATION ROUTE	Seasonal habitat for feeding	Seasonal habitat for feeding	SEASONAL FEEDING SITE	seasonal feeding habitat of jaleva and a few mammalian species	Seasonal ground for feeding only	seasonal feeding ground for a number of species	Seasonal ground for feeding only	Seasonal feeding ground for jalewa	seasonal feeding ground for a number of species	Seasonal feeding ground
NO OF CONSERVATION MAMMALIAN SPECIES REPORTED (RESERVOIR)	7	8	7	6	9	9	7	9	5	6
NO OF IUCN CONSERVATION SPECIES IN RESERVOIR	3(NT), 1 (VU)	3 (NT), 1 (VU)	4 (NT)	3 (NT), 1 (VU)	5(NT), 1 (VU)	2 (NT), 1 (VU), 1 (EN)	2(NT), 1 (VU)	5 (NT), 1 (VU)	2(NT)	1(EN), 1 (NT)
NO OF CITES CONSERVATION SPECIES IN RESERVOIR	3 (III), 2 (I)	3(III), 3 (I)	4 (I) AND 3 (III)	4(I), 2 (III)	3(III), 3 (I)	3 (III), 3 (I), 2(II)	3 (III), 2 (I) and 1 (II)	3 (III), 3 (I)	2(I), 1 (II), 1 (III)	2(III), 2 (II), 2 (I)
NO OF GON CONSERVATION SPECIES IN RESERVOIR	1	1	1	1	2	0	0	1	1	1
NO OF CONSERVATION	2	3	1	0	3	3	1	3	2	4

Table 8.3-28 Impact on terrestrial Fauna

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower	Madi	Nalsyau	Naumure	Lower	Andhi	Dudh Koshi	Kokhajor-1	Sun Koshi
		Jhimruk		Gad	(W. Rapti)	Badigad	Khola			No. 3
BIRD SPECIES										
REPORTED										
(RESERVOIR)										
NO OF IUCN	1 (EN)	1(EN)	0	0	1 (EN)	1(CR),	0	1(EN)	1(VU)	2(VU),
CONSERVATION SPECIES						1(EN), 1				1(CR), 1
IN RESERVOIR						(VU)				(NT)
NO OF CITES	1(I)	1(I), 1 (II)	1 (I)	0	1(I), 1 (II)	0	I(I)	1(I), 1 (II)	1(I), 1 (III)	1 (I)
CONSERVATION SPECIES										
IN RESERVOIR										
NO OF GON	1	0	1	0	0	0	1	1	1	0
CONSERVATION SPECIES										
IN RESERVOIR										
NO OF CONSERVATION	4	4	1	1	4	0	2	5	1	3
HERPETOFAUNA										
SPECIES REPORTED										
(RESERVOIR)										
NO OF IUCN	0	0	0	0	0	0	0	0	0	1(VU)
CONSERVATION SPECIES										
IN RESERVOIR										
NO OF CITES	2(III), 2 (II)	2(II), 1 (III),	1 (II)	1 (I)	3(II), 1 (III)	0	1(I) AND 1	3(II), 1 (III),	1 (I)	2(II), 1 (I)
CONSERVATION SPECIES		1 (I)					(II)	1 (I)		
IN RESERVOIR										
NO OF GON	0	1	1	1	1	0	1	1	1	1
CONSERVATION SPECIES										
IN RESERVOIR										

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

Figure 8.3-6 Number of Mammal Species Reported in the Reservoir Area

Figure 8.3-7 Number of Bird Species Reported in the Reservoir Area

Figure 8.3-8 Number of Herpetofauna Species Reported in the Reservoir Area

Figure 8.3-9 Number of Conservation Mammalian Species Reported in the Reservoir Area

Figure 8.3-10 Number of Conservation Bird Species Reported in the Reservoir Area

Figure 8.3-11 Number of Conservation Herpetofauna Species Reported in the Reservoir Area

d. Impact on Fish

The impact on aquatic fauna has been evaluated taking into account fish species, number of fish species of conservation significance and the length or recession area. At the filed, interview with fisherman was conducted to collect the information and the length of recession area was measured on topographic maps. Regarding the number of fish species, the largest number of fish as 24 species was reported for the Dudh Koshi Project, relatively small number of fish species as 6 for the Andhi Khola Project and as 7 for the Kokhajor-1 Project were reported.

The Andhi Khola and the Dudh Koshi Projects have the longest recession area as 60 km. In contrast, the Sun Koshi No.3 and the Naumure (W. Rapti) Projects have the short recession are as less than 1 km. Table 8.3-29 show the results of Impact on aquatic fauna.

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No. 3
NO OF FISH SPECIES REPORTED	11	11	8	8	16	12	6	24	7	21
NO OF FISH SPECIES OF CONSERVATION SIGNIFICANCE	2	2	3	2	2	4	2	3	2	3
NO OF IUCN CONSERVATION SPECIES IN RESERVOIR	2 (NT)	2(NT)	2(NT), 1(VU)	1 (NT), 1 (VU)	2 (NT)	2 (NT), 1 (VU), 1 (EN)	1 (NT), 1 (VU)	3 (NT)	2(NT)	3 (NT)
NO OF CITES CONSERVATION SPECIES IN RESERVOIR	0	0	0	0	0	0	0	0	0	0
NO OF GON CONSERVATION SPECIES IN RESERVOIR	0	0	0	0	0	0	0	0	0	0
Length of Recession Area (km)	7	8	10	11	0.5	4	60	60	21	0.5

Table 8.3-29Impact on Fish

Figure 8.3-12 Number of Fish Species Reported in the Reservoir Area

Figure 8.3-13 Number of Fish Species of Conservation Significance in the Reservoir Area

Figure 8.3-14 Length of Recession Area (km)

e. Impact on Rare Species and Protected Area in the Downstream

All the rivers on which the ten promising projects are located into India into India in their downstream, joint to Ganges River and leak to the Indian Ocean. Studies were conducted about distribution of protected areas in the downstream of project sites, in India and in Nepal. Also, studies were conducted on distribution of species listed in IUCN red list relatively clear of distribution in India. The largest number of protected areas is the 3 for the Chera-1 and the Nalsyau Gad Projects and the smallest is 1 for the Kokhajor-1 Project. The largest number of rare species is also reported for the Chera-1 and the Nalsyau Gad Projects as 6 species and the smallest is 3 for the Dudh Koshi, the Kokhajor-1 and the Sun Koshi No.3 Projects. Regarding Ganges River Dolphin, it is distributed to the downstream of all projects. Table 8.3-30 and Figure 8.3-15 show the results of the survey about the impact on rare species and protected area in the downstream.

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No.3
Number of the protected area	3	2	2	3	2	3	3	2	1	2
downstream										
Bardia National Park (Inc. Buffer zone, Extension and KBA)	1	1	1	1	1					
Chitwan National Park (Inc. KBA)						1	1			
Koshi Tappu Wildlife Reserve (Inc. KBA)								1		1
Valmiki Sanctuary (India)						1	1			
Katarniyaghat Sanctuaire (India)	1			1						
Ganga Dolphin Sanctuary (India)	1	1	1	1	1	1	1	1	1	1
Number of the protected species downstream	6	4	4	6	4	5	5	3	3	3
Red-crowned roofed turtle (Batagur kachuga)										
Gharial (Gavialis gangeticus)	1	1	1	1	1	1	1			
Chrysomma altirostre (Jerdon's Babbler)						1	1		1	
Gallinago nemoricola (Wood Snipe)								1	1	1
Leptoptilos dubius (Greater Adjutant)						1	1	1	1	1
Nanorana ercepeae	1	1	1	1	1					
Nanorana minica	1			1						
Nanorana rostandi	1	1	1	1	1	1	1			
Prinia burnesii (Rufous-vented Prinia)								1		1
Rhinoceros unicornis (Indian Rhinoceros)	1			1		1	1			
Rucervus duvaucelii (Barasingha)	1	1	1	1	1					

 Table 8.3-30
 Impact on Rare Species and Protected Area in the Downstream

Final Report Appendix 3 SEA Report

Figure 8.3-15 Number of the Protected Area in the Downstream

Figure 8.3-16 Number of the Protected Species in the Downstream

f. Impact by Transmission Line

Construction of new hydroelectric power station will be accompanied by not only an impact in the submerged area by reservoir area but also land acquisition and deforestation for the construction of transmission line. Construction of transmission line has also a risk to make an impact on cultivated lands and residential areas. However, the transmission line route has not been determined at this time and the route between planed substation and power stations were covered by forest land for almost all the promising projects. Therefore, the impact by transmission line was evaluated with its lengths which make an impact on forest land. The longest extension of transmission line was 112km for the Nalsyau Gad Project and the shortest was 35km for the Sun Koshi No.3 Project.

Table 8.3-31 and Figure 8.3-17 show the results of the impact by transmission line.

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W.Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No.3
Length of Transmission Line (km)	66	75	62	112	79	49	49	43	62	35

Table 8.3-31Length of Transmission Line

Figure 8.3-17 Impact on Forest by Transmission Line

9) Social Environment

The impact on social and environment was evaluated mainly by the impact on the buildings, ethnic minority groups, agriculture, fisheries, tourism and culture, existing infrastructure, and development plan for other sectors. The brief summary of each survey results are as follows.

a. Impact on Buildings

The impact on buildings was evaluated by the number of households, schools and industries in the reservoir area. The number of households was basically estimated based on the number of structure that was counted from satellite image and placement and usage of households observed in the field. Regarding the number of schools and industries, these were studied by interview survey in the field. The estimated number of household is more than 1,500 in the place relatively close to the capital such as the Sun Koshi No.3 and the Lower Badigad Projects. On the other hand, only 63 household have reported for the Dudh Koshi Project. The number of schools and industries shows the similar trend.

Table 8.3-32, Figure 8.3-18, Figure 8.3-19 and Figure 8.3-20 shows the results of the impact on buildings.

				5-52	impact o	n Dunu	mg			
No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W.Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No.3
No. Of HH reported in field Survey	566	229	336	291	456	1606	542	63	219	1599
Schools	3	4	2	2	5	18	9	-	6	19
Industries	-	3	-	-	-	11	6	-	0	2(Brick Factories)

Figure 8.3-18 Number of Household

Figure 8.3-19 Number of Schools

Figure 8.3-20 Number of Industries

b. Impact on Ethnic Minority Groups

The impact on ethnic minority groups was evaluated with the number of minority groups from the ethnic groups observed with interview survey in the field. The largest number of minority groups observed in this survey was 5 groups for the Lower Badigad Project, the smallest number was 0 for the Nalsyau Gad Project. Table 8.3-33 and Figure 8.3-21 show the results of the impact on ethnic minority groups

Table 8.3-33 Number of Ethnic Minority GroupsProject Name	W-02 Chera -1	W-05 Lower Jhimr uk	W-06 Madi	W-23 Nalsy au Gad	W-25 Naum ure (W.Ra pti)	C-02 Lower Badig ad	C-08 Andhi Khola	E-01 Dudh Koshi	E-06 Kokha jor-1	E-17 Sun Koshi No.3
Total Numbers of Ethnic Minority Groups	1	3	1	0	2	5	2	3	2	4
Brahmin	\checkmark	\checkmark		\checkmark		\checkmark		×	×	
Thakuri/Chhetri	\checkmark	\checkmark					×		×	
Dalit	\checkmark								×	
Newar (Advanced)	×	\checkmark	×	×	×				×	
Thakali (Advanced)	×	×	×	×	×		×	×	×	×
Magar (Disadvantaged)	\checkmark			×						
Gurung (Disdavnataged)	×		×	×				×	×	×
Tamang (Disadvantaged)	×	×	×	×	×	×	×			
Majhi (Marginalised)	×	×	×	×	×	×	×		×	
Kumal (Marginalised)	×	\checkmark	×	×	×	×	×	×	×	×
Tharu (Marginalised)	×	×	×	×	×		×	×	×	
Bote (Highly Marginalised)	×	×	×	×	×	\checkmark	×	×	×	×
Majhi(High Marginalised)	×	×	×	×	×		×	×	×	×

NOTE: $\sqrt{}$ = Presence × = Absence

Figure 8.3-21 Total Numbers of Ethnic Minority Groups

c. Impact on Agriculture

The impact on agriculture was evaluated by the cultivated land in the reservoir area estimated based on the satellite image analysis and the number of irrigation systems observed with the interview survey. Regarding the cultivated land, the impact on the Sun Koshi No. 3 Project was the biggest as 9.4 km², the smallest was 1.1 km² for the Chera-1 Project. About the number of irrigation systems, relatively large number of irrigation systems were observed for the projects in a narrow valley such as the Lower Badigad, the Naumure (W. Rapti) and the Andhi Khola Projects. Relatively small for the Nalsyau Gad, the Dudh Koshi and the Kokhajor-1 Projects. Table 8.3-34, Figure 8.3-22 and show the results of the impact on agriculture.

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No.3
Cultivated land (km2)	1.1	2.0	1.9	2.5	6.1	5.9	1.7	3.3	1.7	9.4
land Use Change (1996-2010/2011) - Cultivated land (km2)	0.10	-0.22	-0.75	0.13	0.00	-0.80	0.07	-0.87	0.25	-0.46
Irrigation	7	3	16	0	25	58	23	1	2	20

Table 8.3-34Impact on Agriculture

Figure 8.3-22 Impact on Cultivated Land (km²)

Figure 8.3-23 Impact on the Number of Irrigation Systems

d. Impact on Fisheries

Interview survey with fisherman in the field was conducted for the survey about the impact on fisheries, and the necessary data such as the type of fisherman (full-time workers, seasonal workers, part-time), average catch (kg/day), self-consumption rate, the number of the nearest fish market, the average of total sales of fish market (Rs/day), the average cost of fish (Rs/kg), the average of annual income of fisherman and the fish availability compared to past. Based on the results of these surveys, the average of total annual income of fisherman were calculated to compare the results between the projects. Regarding the number of fisherman could not be observed for the Kokhajor-1 Project. About the number of fish markets, the relatively large number of 7 was observed for the Sun Koshi No.3, the Lower Badigad and the Dudh Koshi Projects. For these same three projects, the availability of fish and the total sales in the nearest

fish market, and the total annual income of fisherman have tended to large. Regarding the length of recession area, the Project and the Naumure Project are as short as 0.5 km, meanwhile the Dudu Project and the Project are as long as 60 km. Table 8.3-35, Figure 8.3-24, Figure 8.3-25, Figure 8.3-26, Figure 8.3-27 and Figure 8.3-28 show the above mentioned results. The amount of fish in recent years have shown basically decline by an increase in fishing pressure with the exception of the Lower Badigad Project, there are two reasons assumed: 1) the fishery regulation was enhanced about the fishing with dynamite and poison, 2) fish were run-up bypassing the block of run-up by Karigandaki A hydroelectric power plant.

Table 8.3-35 Impact on Fisheries													
No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17			
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No.3			
Number of FISHERMEN	25	254	100	115	43	217	156	154	0	712			
OCCUPATIONAL FISHERMEN	23	4	0	112	0	86	0	20	0	80			
(RESERVOIR)													
PART TIME FISHERMEN	2	21	39	45	43	91	50	71	0	450			
RECREATIONAL FISHERMEN	0	All	61	58	0	40	106	All	0	182			
AVERAGE CATCH (KG)	1.5	0	1	1.5	1	3	1.5	2	0	2			
/DAY/Man													
CONSUMED AT HOME	50%	50%	75%	35%	50%	25%	50%	50%	0	25%			
SOLD IN THE MARKET	50%	50%	25%	65%	50%	75%	50%	50%	0	75%			
NO OF NEAREST FISH MARKET	4	3	3	3	2	7	3	7	0	7			
AVAILABILITY OF FISH IN THE	5 to 20	2 to 25	3 to 5	2 to 5	2 to 13	4 to 25	2 to 15	5 to 15	0	10 to 30			
MARKET IN A DAY (KG/DAY)													
AVERAGE COST OF FISH	200	180	300	200	250 to 300	250	250 to 350	250	0	250 to 350			
(NRS/KG)													
AVERAGE ANNUAL INCOME BY	15000	9000	7000	20000	9000	10 to 12000	10000 to	20000	0	7000			
OCCUPATIONAL AND PART							12000						
TIME FISHERMEN													
FISH AVAILABILITY COMPARED	Less	Less	Less	Less	Less	Increased	Less	Less	No record	Less			
TO PAST													
Availability of fish in the Market	50	40.5	12	10.5	15	101.5	25.5	70	0	140			
(kg/day)													

No.	W-02	W-05	W-06	W-23	W-25	C-02	C-08	E-01	E-06	E-17
Project Name	Chera-1	Lower Jhimruk	Madi	Nalsyau Gad	Naumure (W. Rapti)	Lower Badigad	Andhi Khola	Dudh Koshi	Kokhajor-1	Sun Koshi No.3
Total sale of fish (Rs./day)	10000	7290	3600	2100	4125	25375	7650	17500	0	42000
Total income (Rs./year)	375,000	225,000	273,000	1,140,000	387,000	1,062,885	550,000	1,820,000	0	3,710,000
Length of Recession Area	7	8	10	11	0.5	4	60	60	21	0.5

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

Figure 8.3-24 Impact on Number of Fishermen

Figure 8.3-25 Number of the Nearest Fish Markets

Figure 8.3-26 Availability of Fish in the Market (kg/day)

Figure 8.3-27 Total Sales of Fish Market (Rs./day)

Figure 8.3-28 Total Income of Fisherman (Rs./Year)

e. Impact on Tourism and Culture

The information on the number of cultural structures (temples), unique handicraft, tourist facilities, tourists (pers./Ys), etc. have been collected for the survey about the impact on tourism and culture. Regarding the Hindu festivals, many festivals were conducted everywhere and it was difficult to confirm the concrete number of festival and the pilgrimage. About the number of Temples, the largest number was 10 for the Sun Koshi No.3 Project, there was no reported temples for the Kokhajor-1 and the Nalsyau Gad Projects. Regarding handicraft, livingware such as straw matting (Gundri), bamboo basket (Doko) have been fabricating in the Lower Jhimruk Project. Products with goat hair in the Nalsyau Gad Project and bags in the Andhi Khola Project have been also fabricating. In the reservoir area of the Sun Koshi No.3 Project, there are a number of hotels which collect about 20,000 tourists in total by year. In the Dudh Koshi Project, rafting tourism has been carrying in two places. Table 8.3-36, Figure 8.3-29, Figure 8.3-30 and Figure 8.3-31 show the above mentioned results.

			Tuble	ole e e mipu		inu cuiture				
Project Name	W-02 Chera-1	W-05 Lower Jhimruk	W-06 Madi	W-23 Nalsyau Gad	W-25 Naumure (W. Rapti)	C-02 Lower Badigad	C-08 Andhi Khola	E-01 Dudh Koshi	E-06 Kokhajor-1	E-17 Sun Koshi No.3
Cultural Aspects										
Number of Cultural Structures (Temples)	1	1	4	-	2	9	5	2	0	>10
Type of Cultural Festivals	Hindu Cultur	re (Dasain, Tihar, Tee	ja, Manghe S	ankrati) and Magar Dhanya Purne), and	[•] Diwas, Lhosar, So l Purnima among J	nam Losar, Bis anjati/Adivasi i	ket Sankrati, Ekada n all the project site	ashi, Pitri Puja, Gh es.	atu Nach, Lakhe	, Botre (Barki,
Unique Handicraft	-	Gundri/Doko/ Mandro for self-use	-	Bakral from Goat wool	Mandal as per need	-	Nepali Bag and Woollen Products	-	-	-
Tourism										
Number of Tourist Facilities	None		-	-		-	None	2 (Rafting)	-	10
Number of Tourists/Yr	none	-	-	-	-	-	None	10	-	20,000

Table 8.3-36Impact on Tourism and Culture

Figure 8.3-29 Number of Cultural Structures (Temples)

Figure 8.3-30 Number of Tourist Facilities

Figure 8.3-31 Number of Tourist/Year

f. Impact on Infrastructures

Regarding the survey about the impact on infrastructures, it was conducted mainly about the length and type of road (paving road, gravel road), the number of bridges (suspension bridges, motorable bridges), existing water mill/turbine and drinking water schemes. The road length was measured on maps based on the information collected in the field. The number of bridges and water schemes were confirmed with hearing survey in the field. Regarding the impact on roads, the Sun Koshi No.3 Project where the national road leading to China will be submerged shows the impact relatively significant. Also the impact on the Lower Badigad Project will be significant because 20km of motorable road will be affected. On the other hand, the Nalsyau Gad and the Kokhajor-1 Projects will be almost unaffected. The Sun Koshi No.3 and the Lower Badigad Projects have more than 10 bridges which will be also affected. In the Lower Badigad and the Nalsyau Gad Projects, there are more than 20 micro hydro and small water turbine for agriculture will be affected. About the Andhi Khola Project, hydroelectric power plant with 5 MW exists in the reservoir area. The number of drinking water schemes were relatively large for the Lower Badigad, the Madi and the Sun Koshi No.3 Projects. Table 8.3-37, Figure 8.3-32, Figure 8.3-33, Figure 8.3-34 and Figure 8.3-35¥ show the above mentioned results.

Project Name	W-02 Chera-1	W-05 Lower Jhimruk	W-06 Madi	W-23 Nalsyau Gad	W-25 Naumure (W. Rapti)	C-02 Lower Badigad	C-08 Andhi Khola	E-01 Dudh Koshi	E-06 Kokhajor-1	E-17 Sun Koshi No.3
Black Topped Motorable Road (km)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.0
Gravel motorable road (km)	3.8	3.3	11.2	0.0	1.8	26.1	3.4	5.0	0.0	24.4
Main Foot Trail (km)	0.3	0.0	13.6	2.0	9.8	2.5	0.0	3.2	0.0	2.5
Local Foot trail (km)	4.6	19.5	14.6	20.9	50.5	16.1	13.0	17.9	5.2	16.1
Suspension Bridges	1	3	6	4	11	11	11	5	0	13
Motorable Bridges	0	0	0	0	2	1	0	0	0	1
Fords	2	0	2		5	3	0	2	1	32
Water Mill/Turbine	9	-	2	20	-	24	-		10	15
Hydroelectric power		-	4(0.23 MW)	-	-	2 (28 kw & 0.7 MW)	1(11M W)		1(1.5 kw)	-
Drinking Water Schemes	2	7	22	-	17	29	10	5	10	22

Table 8.3-37Impact on Infrastructures

Figure 8.3-32 Impact on Roads

Figure 8.3-33 Impact on Bridges

Figure 8.3-34 Impact on Water Mill / Hydroelectric power

Figure 8.3-35 Impact on Drinking Water Schemes

g. Impact on the Local Economy and the Existing Development Plans

Regarding the impact on the local economy and the existing development plans, the interview survey was conducted mainly about the number of markets, the ongoing and proposed development plans and the previous experience/issues. Relatively large number of markets was reported in the thickly populated place such as the Sun Koshi No.3, and the Lower Badigad Projects and the small numbers were reported in the thinly populated place such as the Kokhajor-1 and the Lower Jhimruk Projects. The largest number of existing development plans as 10 was reported for the Sun Koshi No. 3 Project and there were no observed development plan for the Dudh Koshi and the Chera-1 Projects. Regarding the previous experience/issues, some conflicts were reported: 1) small dispute with the extension of road for the Sun Koshi No. 3 Project, 2) dispute with the construction of a cement plant for the Kokhajor-1 Project. However, there was no reported conflict due to hydroelectric power development in the past. Table 8.3-38, Figure 8.3-36, Figure 8.3-37, and Figure 8.3-38 show the above mentioned results.

		Table 8.3-38	Impact or	n the Local E	conomy and	the Existing	Developmen	t Plan		
	W-02 Chera-1	W-05 Lower Jhimruk	W-06 Madi	W-23 Nalsyau Gad	W-25 Naumure (W. Rapti)	C-02 Lower Badigad	C-08 Andhi Khola	E-01 Dudh Koshi	E-06 Kokhajor-1	E-17 Sun Koshi No.3
Market	4	-	2	1	3 Shops	5	4	1	0	5
Ongoing/Proposed Development Plans	None	1 Drinking Water Scheme	2 HP, 1 Irrigation	1 Suspension Bridge, 1 DW Scheme	1 CF, 1 Irrigation, 1 Alternative Energy	1Irrigation, 2 HP	Aquatic Firm and Andhi Khola Developmen t Program	None	2 irrigation, 1 micro hydro, 1 hospital, 2 road project	 2 Irrigation, 1 Ring Road, 1 Bridge, 1 Water Pump, 1 Kinmbu Farming, 4 Road Expansion
Previous Experience/Issues	None	None	None	None	None	None	None	None	Had trouble related to construction of Salimar cement industry	Minor Disputes during road expansion

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal

Figure 8.3-36 Number of Markets

Figure 8.3-37 Number of Existing Plans

Figure 8.3-38 Number of Previous Experience / Issues

(2) Sensitivity Analysis

Ten promising projects selected in "7.4 Selection of Promising Projects" were evaluated by the evaluation method described in "8.2 (1) Evaluation Items and Methods", and each evaluation point was weighted by the weight described in "8.2 (2) Weighting of the Third Step", then evaluation score of each project was obtained by summing up all weighted points. The numerical values and information, etc. of evaluation items were obtained from existing study reports, topographical and geological maps, and other reference literature, and also from the results of site surveys conducted by the study team and a Nepalese consulting firm.

As the result of evaluation, though the evaluation score is different case by case, the Nalsyau Gad Project obtained the highest score in the all cases. The Dudu, the Andhi Khola, the Chera-1, the Lower Jhimruk, and the Madi Projects obtained the second to the sixth scores. The Kokhajor-1, the Naumure (W. Rapti), the Sun Koshi No.3, and the Lower Badigad Projects were the seventh to the tenth places.

The difference in score between the Nalsyau Gad Project and the second-ranked project was 9 to 14 points, the difference between the sixth-ranked project and the seventh-ranked project was 2 to 5 points.

Table 8.3-39 shows the evaluation score and ranking of each project, their details are shown in Table 8.3-40. The characteristics of each subcategory of each project are shown in Figure 8.3-39 by setting the full score of each subcategory at 100 points.

			C	ase-1	Ca	ase-2	Ca	ase-3	Cas Score 75 66	ase-4
No.	Project Name	P (MW)	Score	Ranking	Score	Ranking	Score	Ranking	Score	Ranking
W-23	Nalsyau Gad	410	77	1	76	1	78	1	75	1
E-01	Dudh Koshi	300	65	2	65	2	64	3	66	2
W-02	Chera-1	148.7	65	2	64	3	66	2	63	4
C-08	Andhi Khola	180	64	4	64	3	63	6	65	3
W-06	Madi	199.8	63	5	62	5	64	3	60	5
W-05	Lower Jhimruk	142.5	63	5	62	5	64	3	60	5
E-06	Kokhajor-1	111.5	60	7	57	7	63	6	52	10
W-25	Naumure (W. Rapti)	245	56	8	56	8	56	8	56	8
E-17	Sun Koshi No.3	536	50	9	53	9	47	9	57	7
C-02	Lower Badigad	380.3	47	10	49	10	45	10	53	9

Table 8.3-39Evaluation Score and Ranking (Summary)

Case 1: Technical and Economic Conditions = 50%, Impact on Environment = 50%

Case 2: Technical and Economic Conditions = 60%, Impact on Environment = 40%

Case 3: Technical and Economic Conditions = 40%, Impact on Environment = 60%

Case 4: Technical and Economic Conditions = 75%, Impact on Environment = 25%
	Category									Tec	hnical an	d Economical	Conditio	ons								
	Subcategory				Hydrolog	gical cond	itions						Geolo	ogical condition	ons			Lead ti	ime	Effectiv	eness of	project
	Evaluation Item	Reliabilit	y of flow	v data	Ri	sk of GL0	OF	Se	dimentat	ion	Sei (r Table	smicity efer to e 8.7.3-6)	Ge condit (r Tabl	cological ions of site efer to e 8.7.3-7)	Thrust a (refe Table 8	nd fault r to .7.3-8)	Time t com	o comme imercial o (refer Table 8.7	encement of operation to 7.3-9)	Unit g Tab	eneration (refer to le 8.7.3-	a cost 10)
	Weight (%)			5.25			4.50			5.25		3.13		6.24		3.13			10.00			3.13
No.	Project Name	Score Weighted Score Risk Score Weight Score GS670 100.0 5.25 High 0.0 0 RH 0.0 0.00 None 100.0 4				Weighted Score	Life Time of Reservoir (year)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	(year)	Score	Weighted Score	(USc/kWh)	Score	Weighted Score	
E-01	Dudh Koshi	GS670	ulation ethodScoreWeighted ScoreRiskScoreWeighted Score100.05.25High0.0					100.0	9.9	0.52	20.0	0.63	75.0	4.68	80.0	2.50	12.0	80.0	8.00	5.99	100.0	3.13
E-06	Kokhajor-1	RH	0.0	0.00	None	100.0	4.50	199.0	54.5	2.86	20.0	0.63	75.0	4.68	20.0	0.63	13.0	70.0	7.00	17.08	0.0	0.00
E-17	Sun Koshi No.3	GS630*As/Ag	100.0	5.25	High	0.0	0.00	177.0	44.6	2.34	20.0	0.63	90.0	5.62	100.0	3.13	14.5	55.0	5.50	8.97	73.1	2.29
C-02	Lower Badigad	RH	0.0	0.00	None	100.0	4.50	192.0	51.4	2.70	60.0	1.88	55.0	3.43	60.0	1.88	14.5	55.0	5.50	8.86	74.1	2.32
C-08	Andhi Khola	GS415*As/Ag	100.0	5.25	None	100.0	4.50	280.0	91.0	4.78	20.0	0.63	40.0	2.50	80.0	2.50	12.0	80.0	8.00	10.26	61.5	1.92
W-02	Chera-1	RH	0.0	0.00	None	100.0	4.50	510.0	100.0	5.25	20.0	0.63	90.0	5.62	100.0	3.13	13.5	65.0	6.50	10.24	61.7	1.93
W-05	Lower Jhimruk	GS330*As/Ag	H 0.0 0.00 None 100.0 \$S330*As/Ag 100.0 5.25 None 100.0						10.8	0.57	60.0	1.88	80.0	4.99	20.0	0.63	13.0	70.0	7.00	11.46	50.7	1.59
W-06	Madi	RH	0.0	0.00	None	100.0	4.50	138.0	27.0	1.42	60.0	1.88	85.0	5.30	100.0	3.13	13.5	65.0	6.50	10.26	61.5	1.92
W-23	Nalsyau Gad	RH	0.0	0.00	None	100.0	4.50	280.0	91.0	4.78	0.0	0.00	80.0	4.99	80.0	2.50	12.0	80.0	8.00	6.88	92.0	2.88
W-25	Naumure (W. Rapti)	RH	0.0	0.00	None	100.0	4.50	78.0	0.0	0.00	100.0	3.13	85.0	5.30	20.0	0.63	13.5	65.0	6.50	8.25	79.6	2.49

 Table 8.3-40 (1)
 Evaluation Score and Ranking of Case 1 (1/8)

 Table 8.3-40 (2)
 Evaluation Score and Ranking of Case 1 (2/8)

	Category			Tec	hnical and Eco	nomical	Conditions (co	nt.)							Impact o	on Environme	nt				
	Subcategory				Effectivene	ss of pro	ject (cont.)								Impact of na	atural environ	ment				
					-										Impa	ct on forest			-		
	Evaluation Item	Insta	alled capa	city	Annual e	nergy pr	oduction	Energy pro	oduction season	in the dry		Forest la	nd		Numb	er of trees in t	the reserv	voir area	Average	of crown	coverage
	Weight (%)			2.50			1.25			5.62				1.80				1.40			1.40
No.	Project Name	Weighted Core Weighted Core Weighted Score Weighted Score Weighted Core Weighted Score Weighted Score Weighted Score Weighted Score Weighted Score Score						Weighted Score	(km2)	(km2/MW)	Score	Weighted Score	(nos)	(/MW)	Score	Weighted Score	(%)	Score	Weighted Score		
E-01	Dudh Koshi	300.0	100.0	2.50	1,909.6	100.0	1.25	523.3	89.9	5.05	4.1	0.0137	60.9	1.10	242,720	809	61.0	0.85	53	30.9	0.43
E-06	Kokhajor-1	111.5	37.2	0.93	278.9	14.6	0.18	94.1	16.2	0.91	2.9	0.0259	20.3	0.37	202,300	1,814	8.6	0.12	70	0.0	0.00
E-17	Sun Koshi No.3	536.0	100.0	2.50	1,883.6	98.6	1.23	335.9	57.7	3.24	8.2	0.0152	55.7	1.00	520,608	971	52.5	0.74	38	58.2	0.81
C-02	Lower Badigad	380.3	100.0	2.50	1,366.0	71.5	0.89	354.7	61.0	3.43	3.3	0.0087	77.4	1.39	129,360	340	85.4	1.20	38	58.2	0.81
C-08	Andhi Khola	180.0	60.0	1.50	648.7	34.0	0.43	137.1	23.6	1.33	1.5	0.0084	78.4	1.41	77,312	430	80.8	1.13	38	58.2	0.81
W-02	Chera-1	148.7	49.6	1.24	563.2	29.5	0.37	120.6	20.7	1.16	1.5	0.0098	73.6	1.33	38,088	256	89.8	1.26	41	52.7	0.74
W-05	Lower Jhimruk	148.7 49.6 1.24 563.2 29.5 0.37 120.6 20.7 142.5 142.5 47.5 1.19 454.7 23.8 0.30 94.4 16.2 0							0.91	1.9	0.0131	62.7	1.13	83,776	588	72.5	1.02	26	80.0	1.12	
W-06	Madi	199.8	66.6	1.67	621.1	32.5	0.41	T/0.7	29.3	1.65	1.6	0.0082	78.9	1.42	36,982	185	93.5	1.31	15	100.0	1.40
W-23 W-25	Naisyau Gad Naumure (W. Rapti)	245.0	81.7	2.50	1,406.1	60.6	0.92	581.8 309.9	53.3	3.00	0.8	0.0019	0.0	0.00	485,130	1,980	0.0	0.00	20 40	90.9 54.5	0.76

	Category											In	npact on Envi	ironment (con	nt.)										
	Subcategory											Impa	et of natural e	environment ((cont.)										
				Impact	on flora											Impact on te	rrestrial fauna	ı							
	Evaluation Item	Number of p	olant spec	cies reported	Number o conserva	of plant s ation sign	pecies of ificance	Number o	of mamm reported	al species	Number of t	bird spec	ies reported	Number of I	herpetofa reported	auna species I	Numbe mammalia (r of conse in species reservoir	ervation s reported)	Number of species re	f conserv ported (1	ation bird reservoir)	Number herpetofau (of conse na specie reservoir)	ervation s reported
	Weight (%)		-	1.60			1.60			0.60		_	0.40		-	0.40		-	0.80			0.60			0.60
No.	Project Name		Score	Weighted Score	1.60 1.60 Weighted Score Score Weighted Score Score			Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		
E-01	Dudh Koshi	67	10.9	0.18	3	60.0	0.96	24	0.0	0.00	51	0.0	0.00	17	0.0	0.00	9	0.0	0.00	3	25.0	0.15	5	0.0	0.00
E-06	Kokhajor-1	10	100.0	1.60	3	60.0	0.96	13	84.6	0.51	21	78.9	0.32	8	81.8	0.33	5	100.0	0.80	2	50.0	0.30	1	80.0	0.48
E-17	Sun Koshi No.3	46	43.8	0.70	5	20.0	0.32	11	100.0	0.60	50	2.6	0.01	9	72.7	0.29	6	75.0	0.60	4	0.0	0.00	3	40.0	0.24
C-02	Lower Badigad	45	45.3	0.73	5	20.0	0.32	21	23.1	0.14	30	55.3	0.22	9	72.7	0.29	9	0.0	0.00	3	25.0	0.15	0	100.0	0.60
C-08	Andhi Khola	41	51.6	0.83	5	20.0	0.32	12	92.3	0.55	16	92.1	0.37	6	100.0	0.40	7	50.0	0.40	1	75.0	0.45	2	60.0	0.36
W-02	Chera-1	35	60.9	0.98	3	60.0	0.96	15	69.2	0.42	28	60.5	0.24	13	36.4	0.15	7	50.0	0.40	2	50.0	0.30	4	20.0	0.12
W-05	Lower Jhimruk	55	29.7	0.48	4	40.0	0.64	23	7.7	0.05	49	5.3	0.02	17	0.0	0.00	8	25.0	0.20	3	25.0	0.15	4	20.0	0.12
W-06	Madi Nalayan Cad	74 0.0 0.00 6 0.0 0.00 18 46.2 59 23.4 0.38 1 100.0 1.60 11 100.0								0.28	21	/8.9	0.32	9	91.9	0.29	·/	50.0	0.40	1	75.0	0.45	1	80.0	0.48
W-23 W-25	Naumure (W Ranti)	55	23.4	0.38	1	40.0	0.64	24	0.0	0.60	13 49	5.3	0.40	8	0.0	0.33	0	/5.0	0.60	0	25.0	0.60	1	20.0	0.48
w-25	Naumure (w. Kapti)	55	29.7	0.48	4	40.0	0.64	24	0.0	0.00	49	5.3	0.02	17	0.0	0.00	9	0.0	0.00	3	25.0	0.15	4	20.0	0.12

Table 8.3-40 (3) Evaluation Score and Ranking of Case 1 (3/8)

 Table 8.3-40 (4)
 Evaluation Score and Ranking of Case 1 (4/8)

	Category								Im	pact on Envi	ronment (con	t.)					
	Subcategory								Impac	t of natural e	environment (cont.)					
					Impact	on aquati	ic fauna						Impact on p	rotected area			In
]	Evaluation Item	Number of f	fish spec	ies reported	Number conserva	of fish sp ation sign	pecies of ificance	Length	of recessi	ion area	Number of p do	orotected ownstrea	areas in the	Number of the	protected downstre	l species in eam	L
	Weight (%)			1.80			1.80			0.80			1.60			1.60	
No.	Project Name	me Score Weigh 24 0.0 0				Score	Weighted Score	(km)	Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	(1
E-01	Dudh Koshi	24	0.0	0.00	3	50.0	0.90	60	0.0	0.00	2	50.0	0.80	3	100.0	1.60	
E-06	Kokhajor-1	7	94.4	1.70	2	100.0	1.80	21	65.5	0.52	1	100.0	1.60	3	100.0	1.60	
E-17	Sun Koshi No.3	21	16.7	0.30	3	50.0	0.90	1	100.0	0.80	2	50.0	0.80	3	100.0	1.60	
C-02	Lower Badigad	12	66.7	1.20	4	0.0	0.00	4	94.1	0.75	3	0.0	0.00	5	33.3	0.53	
C-08	Andhi Khola	6	100.0	1.80	2	100.0	1.80	60	0.0	0.00	3	0.0	0.00	5	33.3	0.53	
W-02	Chera-1	11	72.2	1.30	2	100.0	1.80	7	89.1	0.71	3	0.0	0.00	6	0.0	0.00	
W-05	Lower Jhimruk	11	72.2	1.30	2	100.0	1.80	8	87.4	0.70	2	50.0	0.80	4	66.7	1.07	
W-06	M adi	8	88.9	1.60	3	50.0	0.90	10	84.0	0.67	2	50.0	0.80	4	66.7	1.07	
W-23	Nalsyau Gad	8	88.9	1.60	2	100.0	1.80	11	82.4	0.66	3	0.0	0.00	6	0.0	0.00	
W-25	Naumure (W. Rapti)	16	44.4	0.80	2	100.0	1.80	1	100.0	0.80	2	50.0	0.80	4	66.7	1.07	

Impact of transmission line	

Length of transmission line

		1.20
(km)	Score	Weighted Score
43	89.6	1.08
62	64.9	0.78
35	100.0	1.20
49	81.8	0.98
49	81.8	0.98
66	59.7	0.72
75	48.1	0.58
62	64.9	0.78
112	0.0	0.00
79	42.9	0.51

	Category										Imp	act on Er	nvironment (c	cont.)									
	Subcategory										Imj	pact on s	ocial environ	nent									
						In	npact on hou	sehold, e	tc.					Impact of	on ethnic	minority			Impac	t on agricultu	re		
	Evaluation Item	Numł	per of estimat	ed house	holds		Number of	schools			Number of in	dustries		Number	of ethnic groups	minority	Im	pact on irrigat	ion	In	npact on agricu	ıltural lar	d
	Weight (%)				3.00				1.20				0.90			2.40			2.70				3.00
No.	Project Name		(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score	Weighted Weighted (/MW) Score Weighted 0 0.0000 100.0 0.90				Score	Weighted Score	(facilities)	Score	Weighted Score	(km2)	(km ² /MW)	Score	Weighted Score	
E-01	Dudh Koshi	63	0.21	100.0	3.00	0	0.0000	100.0	1.20	0	0.0000	100.0	0.90	3	40.0	0.96	1	98.3	2.65	3.3	0.0110	74.0	2.22
E-06	Kokhajor-1	92	0.83	84.7	2.54	6	0.0538	0.0	0.00	0	0.0000	100.0	0.90	2	60.0	1.44	2	96.6	2.61	1.7	0.0154	50.5	1.51
E-17	Sun Koshi No.3	1,599	2.98	30.9	0.93	19	0.0354	34.1	0.41	2	0.0037	88.8	0.80	4	20.0	0.48	20	65.5	1.77	9.4	0.0175	39.4	1.18
C-02	Lower Badigad	1,606	4.22	0.0	0.00	18	0.0473	12.0	0.14	11	0.0289	13.2	0.12	5	0.0	0.00	58	0.0	0.00	5.9	0.0155	50.1	1.50
C-08	Andhi Khola	542	3.01	30.2	0.91	9	0.0500	7.1	0.09	6	0.0333	0.0	0.00	2	60.0	1.44	23	60.3	1.63	1.7	0.0092	83.7	2.51
W-02	Chera-1	566	3.81	10.4	0.31	3	0.0202	62.5	0.75	0	0.0000	100.0	0.90	1	80.0	1.92	7	87.9	2.37	1.1	0.0073	93.8	2.81
W-05	Lower Jhimruk	229	1.61	65.2	1.96	4	0.0281	47.8	0.57	3	0.0211	36.8	0.33	3	40.0	0.96	3	94.8	2.56	2.0	0.0143	56.4	1.69
W-06	M adi	336	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0	0.0000	100.0	0.90	1	80.0	1.92	16	72.4	1.96	1.9	0.0096	81.4	2.44
W-23	Nalsyau Gad	263	0.64	89.2	2.68	2	0.0049	90.9	1.09	0	0.0000	100.0	0.90	0	100.0	2.40	0	100.0	2.70	2.5	0.0061	100.0	3.00
W-25	Naumure (W. Rapti)	456	1.86	58.9	1.77	5	0.0204	62.1	0.74	0	0.0000	100.0	0.90	2	60.0	1.44	25	56.9	1.54	6.1	0.0249	0.0	0.00

Table 8.3-40 (5) Evaluation Score and Ranking of Case 1 (5/8)

Table 8.3-40 (6) Evaluation Score and Ranking of Case 1 (6/8)

	Category								Im	pact on Envi	ronment (con	t.)					
	Subcategory								Impa	ct on social e	nvironment (c	cont.)					
										Impact o	n fishery						
]	Evaluation Item	Number of t	fishermer	n (reservoir)	Numbe	r of fish	market	Availability	of fish ir	the market	Sales	amount c	f fish	To	otal incon	ne	
	Weight (%)			0.90			0.60			0.30			0.90			0.90	
No.	Project Name	ne Score Weighted Score Score (kg/d		(kg/day)	Score	Weighted Score	(Rs/day)	Score	Weighted Score	(Rs/year)	Score	Weighted Score	(1				
E-01	Dudh Koshi	154	78.4	0.71	7	0.0	0.00	70.0	50.0	0.15	17,500	58.3	0.53	1,820,000	50.9	0.46	
E-06	Kokhajor-1	0	100.0	0.90	0	100.0	0.60	0.0	100.0	0.30	0	100.0	0.90	0	100.0	0.90	
E-17	Sun Koshi No.3	712	0.0	0.00	7	0.0	0.00	140.0	0.0	0.00	42,000	0.0	0.00	3,710,000	0.0	0.00	
C-02	Lower Badigad	217	69.5	0.63	7	0.0	0.00	101.5	27.5	0.08	25,375	39.6	0.36	1,062,885	71.4	0.64	
C-08	Andhi Khola	156	78.1	0.70	3	57.1	0.34	25.5	81.8	0.25	7,650	81.8	0.74	550,000	85.2	0.77	
W-02	Chera-1	25	96.5	0.87	4	42.9	0.26	37.5	73.2	0.22	7,500	82.1	0.74	375,000	89.9	0.81	
W-05	Lower Jhimruk	254	64.3	0.58	3	57.1	0.34	40.5	71.1	0.21	7,290	82.6	0.74	225,000	93.9	0.85	
W-06	Madi	100	86.0	0.77	3	57.1	0.34	12.0	91.4	0.27	3,600	91.4	0.82	273,000	92.6	0.83	
W-23	Nalsyau Gad	115	83.8	0.75	3	57.1	0.34	10.5	92.5	0.28	2,100	95.0	0.86	1,140,000	69.3	0.62	
W-25	Naumure (W. Rapti)	43	94.0	0.85	2	71.4	0.43	15.0	89.3	0.27	4,125	90.2	0.81	387,000	89.6	0.81	

Length of recession area

		0.90
km)	Score	Weighted Score
60	0.0	0.00
21	65.5	0.59
1	100.0	0.90
4	94.1	0.85
60	0.0	0.00
7	89.1	0.80
8	87.4	0.79
10	84.0	0.76
11	82.4	0.74
1	100.0	0.90

	Category										Impac	t on Env	ironment (cor	nt.)								
	Subcategory										Impact or	n social e	environment (cont.)								
					Impact on	tourism	and culture									Impact on inf	frastructure					
	Evaluation Item	Number of	f cultural (temples)	structures	Number o	of tourist	facilities	Num	ber of to	urists	Impa	act on roa	ads	Imj	pact on bridg	25	Impact on hydr	water m ropower	ill, turbine, plant	Impact on	drinking wate	er schemes
	Weight (%)		_	1.80		_	1.20			1.20			2.10			1.20			1.20			1.20
No.	Project Name	Image: 1.80 Image: 1.20 Score Weighted Score Score Weighted Score Score Weighted Score (per year) S 2 80.0 1.44 2 80.0 0.96 10 Image: 100						Score	Weighted Score	Inundated road (km)	Score	Weighted Score	Number of inundated bridge	Score	Weighted Score	Number of facilities	Score	Weighted Score		Score	Weighted Score	
E-01	Dudh Koshi	2	80.0	1.44	2	80.0	0.96	10	100.0	1.20	5.0	87.4	1.84	5	64.3	0.77	0	100.0	1.20	5	82.8	0.99
E-06	Kokhajor-1	0	100.0	1.80	0	100.0	1.20	0	100.0	1.20	0.0	100.0	2.10	0	100.0	1.20	11	57.7	0.69	10	65.5	0.79
E-17	Sun Koshi No.3	10	0.0	0.00	10	0.0	0.00	20,000	0.0	0.00	39.5	0.0	0.00	14	0.0	0.00	15	42.3	0.51	22	24.1	0.29
C-02	Lower Badigad	9	10.0	0.18	0	100.0	1.20	0	100.0	1.20	26.1	34.0	0.71	12	14.3	0.17	26	0.0	0.00	29	0.0	0.00
C-08	Andhi Khola	5	50.0	0.90	0	100.0	1.20	0	100.0	1.20	3.4	91.3	1.92	11	21.4	0.26	0	100.0	1.20	10	65.5	0.79
W-02	Chera-1	1	90.0	1.62	0	100.0	1.20	0	100.0	1.20	3.8	90.5	1.90	1	92.9	1.11	9	65.4	0.78	2	93.1	1.12
W-05	Lower Jhimruk	1	90.0	1.62	0	100.0	1.20	0	100.0	1.20	3.3	91.6	1.92	3	78.6	0.94	0	100.0	1.20	7	75.9	0.91
W-06	Madi	4	60.0	1.08	0	100.0	1.20	0	100.0	1.20	11.2	71.5	1.50	6	57.1	0.69	6	76.9	0.92	22	24.1	0.29
W-23	Nalsyau Gad	0	100.0	1.80	0	100.0	1.20	0	100.0	1.20	0.0	100.0	2.10	4	71.4	0.86	20	23.1	0.28	0	100.0	1.20
W-25	Naumure (W. Rapti)	2	80.0	1.44	0	100.0	1.20	0	100.0	1.20	1.8	95.4	2.00	13	7.1	0.09	0	100.0	1.20	17	41.4	0.50

Table 8.3-40 (7) Evaluation Score and Ranking of Case 1 (7/8)

 Table 8.3-40 (8)
 Evaluation Score and Ranking of Case 1 (8/8)

	Category				Impact on I	Environn	nent (cont.)				Ī		
	Subcategory]	Impact on soc	ial enviro	onment (cont.	.)			Ī		
				Impac	t on rural eco	nomy an	d develop me	nt plan			1		
	Evaluation Item	Impa	act on ma	arket	Number of devel	ongoing opment	or proposed plans	Pre	evious iss	sues			
	Weight (%)			1.20			0.60			0.60	100.00	100	
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	Total	Score	Ranking
E-01	Dudh Koshi	1	80.0	0.96	0	100.0	0.60	0	100.0	0.60	64.90	65	2
E-06	Kokhajor-1	0	100.0	1.20	6	40.0	0.24	1	0.0	0.00	59.72	60	7
E-17	Sun Koshi No.3	5	0.0	0.00	10	0.0	0.00	1	0.0	0.00	49.91	50	9
C-02	Lower Badigad	5	0.0	0.00	3	70.0	0.42	0	100.0	0.60	47.14	47	10
C-08	Andhi Khola	4	20.0	0.24	2	80.0	0.48	0	100.0	0.60	63.65	64	4
W-02	Chera-1	4	20.0	0.24	0	100.0	0.60	0	100.0	0.60	64.89	65	3
W-05	Lower Jhimruk	0	100.0	1.20	1	90.0	0.54	0	100.0	0.60	62.90	63	6
W-06	M adi	2	60.0	0.72	3	70.0	0.42	0	100.0	0.60	63.06	63	5
W-23	Nalsyau Gad	1	80.0	0.96	2	80.0	0.48	0	100.0	0.60	77.25	77	1
W-25	Naumure (W. Rapti)	3	40.0	0.48	3	70.0	0.42	0	100.0	0.60	55.89	56	8

	Category									Tec	hnical an	d Economical	Conditio	ons								
	Subcategory				Hydrolog	gical cond	itions						Geole	ogical condition	ons			Lead ti	me	Effectiv	eness of	project
	Evaluation Item	Reliabilit	y of flow	v data	Ri	sk of GL0	OF	Se	dimentati	ion	Sei (r Table	smicity efer to e 8.7.3-6)	Ge condit (r Tabl	cological ions of site refer to le 8.7.3-7)	Thrust a (refe Table 8	nd fault er to .7.3-8)	Time t com	o comme imercial c (refer Table 8.7	encement of operation to 2.3-9)	Unit g Tab	eneration (refer to ble 8.7.3-1	cost 10)
	Weight (%)			6.30			5.40			6.30		3.75		7.50		3.75			12.00			3.75
No.	Project Name	Calculation Method	6.30 culation (ethod Score Weighted Score Risk Score Weighted Score 0 100.0 6.30 High 0.0 0.0 0.0 0.00 None 100.0 100.0					Life Time of Reservoir (year)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	(year)	Score	Weighted Score	(USc/kWh)	Score	Weighted Score
E-01	Dudh Koshi	GS670	100.0	6.30	High	0.0	0.00	100.0	9.9	0.62	20.0	0.75	75.0	5.63	80.0	3.00	12.0	80.0	9.60	5.99	100.0	3.75
E-06	Kokhajor-1	RH	0.0	0.00	None	100.0	5.40	199.0	54.5	3.43	20.0	0.75	75.0	5.63	20.0	0.75	13.0	70.0	8.40	17.08	0.0	0.00
E-17	Sun Koshi No.3	GS630*As/Ag	100.0	6.30	High	0.0	0.00	177.0	44.6	2.81	20.0	0.75	90.0	6.75	100.0	3.75	14.5	55.0	6.60	8.97	73.1	2.74
C-02	Lower Badigad	RH	0.0	0.00	None	100.0	5.40	192.0	51.4	3.24	60.0	2.25	55.0	4.13	60.0	2.25	14.5	55.0	6.60	8.86	74.1	2.78
C-08	Andhi Khola	GS415*As/Ag	100.0	6.30	None	100.0	5.40	280.0	91.0	5.73	20.0	0.75	40.0	3.00	80.0	3.00	12.0	80.0	9.60	10.26	61.5	2.31
W-02	Chera-1	RH	0.0	0.00	None	100.0	5.40	510.0	100.0	6.30	20.0	0.75	90.0	6.75	100.0	3.75	13.5	65.0	7.80	10.24	61.7	2.31
W-05	Lower Jhimruk	GS330*As/Ag	100.0	6.30	None	100.0	5.40	102.0	10.8	0.68	60.0	2.25	80.0	6.00	20.0	0.75	13.0	70.0	8.40	11.46	50.7	1.90
W-06	M adı	RH	0.0	0.00	None	100.0	5.40	138.0	27.0	1.70	60.0	2.25	85.0	6.38	100.0	3.75	13.5	65.0	7.80	10.26	61.5	2.31
W-23	Nalsyau Gad	КН	0.0	0.00	None	100.0	5.40	280.0	91.0	5.73	0.0	0.00	80.0	6.00	80.0	3.00	12.0	80.0	9.60	6.88	92.0 70.6	3.45
vv-23	INaunure (W. Rapti)	КП	0.0	0.00	none	100.0	5.40	/8.0	0.0	0.00	100.0	5.75	65.0	0.38	20.0	0.75	13.3	05.0	/.80	8.23	/9.0	2.99

Table 8.3-41 (1) Evaluation Score and Ranking of Case 2 (1/8)

 Table 8.3-41 (2)
 Evaluation Score and Ranking of Case 2 (2/8)

	Category			Tec	hnical and Eco	nomical (Conditions (co	ont.)							Impact of	on Environme	nt				
	Subcategory				Effectivene	ss of pro	ject (cont.)								Impact of na	atural environ	ment				
															Impa	ct on forest					
	Evaluation Item	Insta	illed capa	city	Annual e	nergy pro	oduction	Energy pro	oduction season	in the dry		Forest la	ind		Numbe	er of trees in t	the reserv	voir area	Average	of crown	coverage
	Weight (%)		_	3.00		-	1.50		-	6.75		_	-	1.44		-	-	1.12			1.12
No.	Project Name	(MW)	Score	Weighted Score	(GWh)	Score	Weighted Score	(GWh)	Score	Weighted Score	(km2)	(km2/MW)	Score	Weighted Score	(nos)	(/MW)	Score	Weighted Score	(%)	Score	Weighted Score
E-01	Dudh Koshi	300.0	100.0	3.00	1,909.6	100.0	1.50	523.3	89.9	6.07	4.1	0.0137	60.9	0.88	242,720	809	61.0	0.68	53	30.9	0.35
E-06	Kokhajor-1	111.5	37.2	1.12	278.9	14.6	0.22	94.1	16.2	1.09	2.9	0.0259	20.3	0.29	202,300	1,814	8.6	0.10	70	0.0	0.00
E-17	Sun Koshi No.3	536.0	100.0	3.00	1,883.6	98.6	1.48	335.9	57.7	3.89	8.2	0.0152	55.7	0.80	520,608	971	52.5	0.59	38	58.2	0.65
C-02	Lower Badigad	380.3	100.0	3.00	1,366.0	71.5	1.07	354.7	61.0	4.12	3.3	0.0087	77.4	1.11	129,360	340	85.4	0.96	38	58.2	0.65
C-08	Andhi Khola	180.0	60.0	1.80	648.7	34.0	0.51	137.1	23.6	1.59	1.5	0.0084	78.4	1.13	77,312	430	80.8	0.90	38	58.2	0.65
W-02	Chera-1	148.7	49.6	1.49	563.2	29.5	0.44	120.6	20.7	1.40	1.5	0.0098	73.6	1.06	38,088	256	89.8	1.01	41	52.7	0.59
W-05	Lower Jhimruk	142.5	47.5	1.43	454.7	23.8	0.36	94.4	16.2	1.09	1.9	0.0131	62.7	0.90	83,776	588	72.5	0.81	26	80.0	0.90
W-06	Madi	199.8	66.6	2.00	621.1	32.5	0.49	170.7	29.3	1.98	1.6	0.0082	78.9	1.14	36,982	185	93.5	1.05	15	100.0	1.12
W-23	Nalsyau Gad	410.0	100.0	3.00	1,406.1	73.6	1.10	581.8	100.0	6.75	0.8	0.0019	100.0	1.44	24,580	60	100.0	1.12	20	90.9	1.02
W-25	Naumure (W. Rapti)	245.0	81.7	2.45	1,157.5	60.6	0.91	309.9	53.3	3.60	7.9	0.0320	0.0	0.00	485,130	1,980	0.0	0.00	40	54.5	0.61

	Category											Im	pact on Envi	ironment (cor	nt.)										
	Subcategory											Impac	ct of natural e	environment (cont.)										
				Impact	on flora											Impact on ter	rrestrial fauna								
	Evaluation Item	Number of p	olant spec	cies reported	Number o conserva	of plant s ation sign	pecies of ificance	Number o	of mamm reported	al species	Number of t	bird speci	ies reported	Number of I	herpetofa reported	auna species	Number mammalia (of conse n species reservoir	ervation s reported)	Number o species re	f conserv eported (1	ation bird reservoir)	Number herpetofau (of conse na specie reservoir)	ervation s reported
	Weight (%)		-	1.28			1.28			0.48			0.32		_	0.32		-	0.64		_	0.48			0.48
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score
E-01	Dudh Koshi	67	10.9	0.14	3	60.0	0.77	24	0.0	0.00	51	0.0	0.00	17	0.0	0.00	9	0.0	0.00	3	25.0	0.12	5	0.0	0.00
E-06	Kokhajor-1	10	100.0	1.28	3	60.0	0.77	13	84.6	0.41	21	78.9	0.25	8	81.8	0.26	5	100.0	0.64	2	50.0	0.24	1	80.0	0.38
E-17	Sun Koshi No.3	46	43.8	0.56	5	20.0	0.26	11	100.0	0.48	50	2.6	0.01	9	72.7	0.23	6	75.0	0.48	4	0.0	0.00	3	40.0	0.19
C-02	Lower Badigad	45	45.3	0.58	5	20.0	0.26	21	23.1	0.11	30	55.3	0.18	9	72.7	0.23	9	0.0	0.00	3	25.0	0.12	0	100.0	0.48
C-08	Andhi Khola	41	51.6	0.66	5	20.0	0.26	12	92.3	0.44	16	92.1	0.29	6	100.0	0.32	7	50.0	0.32	1	75.0	0.36	2	60.0	0.29
W-02	Chera-1	35	60.9	0.78	3	60.0	0.77	15	69.2	0.33	28	60.5	0.19	13	36.4	0.12	7	50.0	0.32	2	50.0	0.24	4	20.0	0.10
W-05	Lower Jhimruk	55	29.7	0.38	4	40.0	0.51	23	7.7	0.04	49	5.3	0.02	17	0.0	0.00	8	25.0	0.16	3	25.0	0.12	4	20.0	0.10
W-06	Madi	74		0.00	6	0.0	0.00	18	46.2	0.22	21	/8.9	0.25	9	72.7	0.23	7	50.0	0.32		100.0	0.36	1	80.0	0.38
W-25	Naumure (W Ranti)	55	23.4	0.30	4	40.0	0.51	24	0.0	0.48	13 49	5.3	0.32	8	0.0	0.20	9	0.0	0.48	3	25.0	0.48	1	20.0	0.38

Table 8.3-41 (3) Evaluation Score and Ranking of Case 2 (3/8)

Table 8.3-41 (4) Evaluation Score and Ranking of Case 2 (4/8)

	Category								Im	pact on Envi	ironment (con	t.)					
	Subcategory								Impa	ct of natural e	environment (cont.)					
		Impact on aquatic fail ation Item Number of fish species reported where the species reported Number of fish species conservation signification											Impact on p	rotected area			In
	Evaluation Item	Number of f	fish spec	ies reported	Number conserva	of fish sp ation sigr	pecies of ificance	Length	of recess	ion area	Number of p	orotected ownstrea	areas in the	Number of the	protected downstre	1 species in 2am	Le
	Weight (%)			1.44			1.44			0.64			1.28			1.28	
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(km)	Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	(1
E-01	Dudh Koshi	24	0.0	0.00	3	50.0	0.72	60	0.0	0.00	2	50.0	0.64	3	100.0	1.28	
E-06	Kokhajor-1	7	94.4	1.36	2	100.0	1.44	21	65.5	0.42	1	100.0	1.28	3	100.0	1.28	
E-17	Sun Koshi No.3	21	16.7	0.24	3	50.0	0.72	1	100.0	0.64	2	50.0	0.64	3	100.0	1.28	
C-02	Lower Badigad	12	66.7	0.96	4	0.0	0.00	4	94.1	0.60	3	0.0	0.00	5	33.3	0.43	
C-08	Andhi Khola	6	100.0	1.44	2	100.0	1.44	60	0.0	0.00	3	0.0	0.00	5	33.3	0.43	
W-02	Chera-1	11	72.2	1.04	2	100.0	1.44	7	89.1	0.57	3	0.0	0.00	6	0.0	0.00	
W-05	Lower Jhimruk	11	72.2	1.04	2	100.0	1.44	8	87.4	0.56	2	50.0	0.64	4	66.7	0.85	
W-06	M adi	8	88.9	1.28	3	50.0	0.72	10	84.0	0.54	2	50.0	0.64	4	66.7	0.85	
W-23	Nalsyau Gad	8	88.9	1.28	2	100.0	1.44	11	82.4	0.53	3	0.0	0.00	6	0.0	0.00	
W-25	Naumure (W. Rapti)	16	44.4	0.64	2	100.0	1.44	1	100.0	0.64	2	50.0	0.64	4	66.7	0.85	

Impact of transmission line	

Length of transmission line

		0.96
(km)	Score	Weighted Score
43	89.6	0.86
62	64.9	0.62
35	100.0	0.96
49	81.8	0.79
49	81.8	0.79
66	59.7	0.57
75	48.1	0.46
62	64.9	0.62
112	0.0	0.00
79	42.9	0.41

	Category										Imp	act on Er	vironment (c	cont.)									
	Subcategory										Im	oact on s	ocial environ	ment									
						In	pact on hou	sehold, e	tc.					Impact of	on ethnic	minority			Impac	t on agricultu	re		
	Evaluation Item	Numł	per of estimat	ed house	holds		Number of	schools			Number of in	dustries		Number	of ethnic groups	minority	Im	pact on irrigat	ion	In	npact on agrici	ıltural laı	nd
	Weight (%)		2.40										0.72			1.92			2.16				2.40
No.	Project Name		(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score		Score	Weighted Score	(facilities)	Score	Weighted Score	(km2)	(km ² /MW)	Score	Weighted Score
E-01	Dudh Koshi	63	0.21	100.0	2.40	0	0.0000	100.0	0.96	0	0.0000	100.0	0.72	3	40.0	0.77	1	98.3	2.12	3.3	0.0110	74.0	1.78
E-06	Kokhajor-1	92	0.83	84.7	2.03	6	0.0538	0.0	0.00	0	0.0000	100.0	0.72	2	60.0	1.15	2	96.6	2.09	1.7	0.0154	50.5	1.21
E-17	Sun Koshi No.3	1,599	2.98	30.9	0.74	19	0.0354	34.1	0.33	2	0.0037	88.8	0.64	4	20.0	0.38	20	65.5	1.42	9.4	0.0175	39.4	0.95
C-02	Lower Badigad	1,606	4.22	0.0	0.00	18	0.0473	12.0	0.12	11	0.0289	13.2	0.10	5	0.0	0.00	58	0.0	0.00	5.9	0.0155	50.1	1.20
C-08	Andhi Khola	542	3.01	30.2	0.72	9	0.0500	7.1	0.07	6	0.0333	0.0	0.00	2	60.0	1.15	23	60.3	1.30	1.7	0.0092	83.7	2.01
W-02	Chera-1	566	3.81	10.4	0.25	3	0.0202	62.5	0.60	0	0.0000	100.0	0.72	1	80.0	1.54	7	87.9	1.90	1.1	0.0073	93.8	2.25
W-05	Lower Jhimruk	229	1.61	65.2	1.56	4	0.0281	47.8	0.46	3	0.0211	36.8	0.27	3	40.0	0.77	3	94.8	2.05	2.0	0.0143	56.4	1.35
W-06	M adi	336	1.68	63.3	1.52	2	0.0100	81.4	0.78	0	0.0000	100.0	0.72	1	80.0	1.54	16	72.4	1.56	1.9	0.0096	81.4	1.95
W-23	Nalsyau Gad	263	0.64	89.2	2.14	2	0.0049	90.9	0.87	0	0.0000	100.0	0.72	0	100.0	1.92	0	100.0	2.16	2.5	0.0061	100.0	2.40
W-25	Naumure (W. Rapti)	456	1.86	58.9	1.41	5	0.0204	62.1	0.60	0	0.0000	100.0	0.72	2	60.0	1.15	25	56.9	1.23	6.1	0.0249	0.0	0.00

Table 8.3-41 (5) Evaluation Score and Ranking of Case 2 (5/8)

Table 8.3-41 (6) Evaluation Score and Ranking of Case 2 (6/8)

	Category								Im	pact on Envi	ronment (con	t.)					
	Subcategory								Impa	ct on social e	nvironment (c	cont.)					
										Impact o	n fishery						
:	Evaluation Item	Number of t	fishermer	n (reservoir)	Numbe	r of fish	market	Availability	of fish ir	n the market	Sales	amount o	of fish	Тс	otal incon	ne	
	Weight (%)			0.72			0.48			0.24			0.72			0.72	
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(kg/day)	Score	Weighted Score	(Rs/day)	Score	Weighted Score	(Rs/year)	Score	Weighted Score	(1
E-01	Dudh Koshi	154	78.4	0.56	7	0.0	0.00	70.0	50.0	0.12	17,500	58.3	0.42	1,820,000	50.9	0.37	
E-06	Kokhajor-1	0	100.0	0.72	0	100.0	0.48	0.0	100.0	0.24	0	100.0	0.72	0	100.0	0.72	
E-17	Sun Koshi No.3	712	0.0	0.00	7	0.0	0.00	140.0	0.0	0.00	42,000	0.0	0.00	3,710,000	0.0	0.00	
C-02	Lower Badigad	217	69.5	0.50	7	0.0	0.00	101.5	27.5	0.07	25,375	39.6	0.29	1,062,885	71.4	0.51	
C-08	Andhi Khola	156	78.1	0.56	3	57.1	0.27	25.5	81.8	0.20	7,650	81.8	0.59	550,000	85.2	0.61	
W-02	Chera-1	25	96.5	0.69	4	42.9	0.21	37.5	73.2	0.18	7,500	82.1	0.59	375,000	89.9	0.65	
W-05	Lower Jhimruk	254	64.3	0.46	3	57.1	0.27	40.5	71.1	0.17	7,290	82.6	0.60	225,000	93.9	0.68	
W-06	M adi	100	86.0	0.62	3	57.1	0.27	12.0	91.4	0.22	3,600	91.4	0.66	273,000	92.6	0.67	
W-23	Nalsyau Gad	115	83.8	0.60	3	57.1	0.27	10.5	92.5	0.22	2,100	95.0	0.68	1,140,000	69.3	0.50	
W-25	Naumure (W. Rapti)	43	94.0	0.68	2	71.4	0.34	15.0	89.3	0.21	4,125	90.2	0.65	387,000	89.6	0.64	

Length of recession area

		0.72
km)	Score	Weighted Score
60	0.0	0.00
21	65.5	0.47
1	100.0	0.72
4	94.1	0.68
60	0.0	0.00
7	89.1	0.64
8	87.4	0.63
10	84.0	0.61
11	82.4	0.59
1	100.0	0.72

	Category										Impac	t on Env	ironment (cor	nt.)								
	Subcategory										Impact or	n social e	environment (cont.)								
					Impact on	tourism a	and culture									Impact on inf	frastructure					
	Evaluation Item	Number of	f cultural (temples)	structures	Number o	of tourist	facilities	Num	ber of to	urists	Impa	act on roa	ads	Im	pact on bridg	es	Impact on hydr	water m ropower	ill, turbine, plant	Impact on	drinking wate	er schemes
	Weight (%)		_	1.44		_	0.96			0.96			1.68			0.96		-	0.96			0.96
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(per year)	Score	Weighted Score	Inundated road (km)	Score	Weighted Score	Number of inundated bridge	Score	Weighted Score	Number of facilities	Score	Weighted Score		Score	Weighted Score
E-01	Dudh Koshi	2	80.0	1.15	2	80.0	0.77	10	100.0	0.96	5.0	87.4	1.47	5	64.3	0.62	0	100.0	0.96	5	82.8	0.79
E-06	Kokhajor-1	0	100.0	1.44	0	100.0	0.96	0	100.0	0.96	0.0	100.0	1.68	0	100.0	0.96	11	57.7	0.55	10	65.5	0.63
E-17	Sun Koshi No.3	10	0.0	0.00	10	0.0	0.00	20,000	0.0	0.00	39.5	0.0	0.00	14	0.0	0.00	15	42.3	0.41	22	24.1	0.23
C-02	Lower Badigad	9	10.0	0.14	0	100.0	0.96	0	100.0	0.96	26.1	34.0	0.57	12	14.3	0.14	26	0.0	0.00	29	0.0	0.00
C-08	Andhi Khola	5	50.0	0.72	0	100.0	0.96	0	100.0	0.96	3.4	91.3	1.53	11	21.4	0.21	0	100.0	0.96	10	65.5	0.63
W-02	Chera-1	1	90.0	1.30	0	100.0	0.96	0	100.0	0.96	3.8	90.5	1.52	1	92.9	0.89	9	65.4	0.63	2	93.1	0.89
W-05	Lower Jhimruk	1	90.0	1.30	0	100.0	0.96	0	100.0	0.96	3.3	91.6	1.54	3	78.6	0.75	0	100.0	0.96	7	75.9	0.73
W-06	Madi	4	60.0	0.86	0	100.0	0.96	0	100.0	0.96	11.2	71.5	1.20	6	57.1	0.55	6	76.9	0.74	22	24.1	0.23
W-23	Nalsyau Gad	0	100.0	1.44	0	100.0	0.96	0	100.0	0.96	0.0	100.0	1.68	4	71.4	0.69	20	23.1	0.22	0	100.0	0.96
W-25	Naumure (W. Rapti)	2	80.0	1.15	0	100.0	0.96	0	100.0	0.96	1.8	95.4	1.60	13	7.1	0.07	0	100.0	0.96	17	41.4	0.40

Table 8.3-41 (7) Evaluation Score and Ranking of Case 2 (7/8)

 Table 8.3-41 (8)
 Evaluation Score and Ranking of Case 2 (8/8)

	Category				Impact on I	Environn	nent (cont.)				Ī		
	Subcategory			Ι	mpact on soc	ial enviro	onment (cont.	.)			Ī		
				Impac	t on rural eco	nomy an	d develop mei	nt plan					
	Evaluation Item	Imp	act on ma	arket	Number of devel	ongoing opment	or proposed plans	Pre	evious iss	sues			
	Weight (%)		_	0.96		-	0.48		_	0.48	100.00	100	
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	Total	Score	Ranking
E-01	Dudh Koshi	1	80.0	0.77	0	100.0	0.48	0	100.0	0.48	65.33	65	2
E-06	Kokhajor-1	0	100.0	0.96	6	40.0	0.19	1	0.0	0.00	56.69	57	7
E-17	Sun Koshi No.3	5	0.0	0.00	10	0.0	0.00	1	0.0	0.00	52.62	53	9
C-02	Lower Badigad	5	0.0	0.00	3	70.0	0.34	0	100.0	0.48	49.36	49	10
C-08	Andhi Khola	4	20.0	0.19	2	80.0	0.38	0	100.0	0.48	64.21	64	3
W-02	Chera-1	4	20.0	0.19	0	100.0	0.48	0	100.0	0.48	64.04	64	4
W-05	Lower Jhimruk	0	100.0	0.96	1	90.0	0.43	0	100.0	0.48	61.83	62	5
W-06	M adi	2	60.0	0.58	3	70.0	0.34	0	100.0	0.48	61.80	62	6
W-23	Nalsyau Gad	1	80.0	0.77	2	80.0	0.38	0	100.0	0.48	76.45	76	1
W-25	Naumure (W. Rapti)	3	40.0	0.38	3	70.0	0.34	0	100.0	0.48	56.04	56	8

	Category									Tec	hnical and	d Economical	Conditio	ons								
	Subcategory				Hydrolog	gical cond	itions						Geole	ogical condition	ons			Lead ti	me	Effectiv	eness of	project
	Evaluation Item	Reliabilit	y of flow	v data	Ri	sk of GL0	OF	Se	dimentat	ion	Sei (r Table	smicity efer to e 8.7.3-6)	Ge condit (r Tabl	eological ions of site efer to e 8.7.3-7)	Thrust a (refe Table 8	nd fault er to .7.3-8)	Time t com	o comme imercial c (refer Table 8.7	encement of operation to 2.3-9)	Unit g Tab	eneration (refer to ble 8.7.3-1	cost 0)
	Weight (%)			4.20			3.60			4.20		2.50		5.00		2.50			8.00			2.50
No.	Project Name	4.20Calculation MethodScoreWeighted ScoreRiskScoreWeighted ScoreGS670100.04.20High0.00.		Weighted Score	Life Time of Reservoir (year)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	(year)	Score	Weighted Score	(USc/kWh)	Score	Weighted Score			
E-01	Dudh Koshi	GS670	100.0	4.20	High	0.0	0.00	100.0	9.9	0.42	20.0	0.50	75.0	3.75	80.0	2.00	12.0	80.0	6.40	5.99	100.0	2.50
E-06	Kokhajor-1	RH	0.0	0.00	None	100.0	3.60	199.0	54.5	2.29	20.0	0.50	75.0	3.75	20.0	0.50	13.0	70.0	5.60	17.08	0.0	0.00
E-17	Sun Koshi No.3	GS630*As/Ag	100.0	4.20	High	0.0	0.00	177.0	44.6	1.87	20.0	0.50	90.0	4.50	100.0	2.50	14.5	55.0	4.40	8.97	73.1	1.83
C-02	Lower Badigad	RH	0.0	0.00	None	100.0	3.60	192.0	51.4	2.16	60.0	1.50	55.0	2.75	60.0	1.50	14.5	55.0	4.40	8.86	74.1	1.85
C-08	Andhi Khola	GS415*As/Ag	100.0	4.20	None	100.0	3.60	280.0	91.0	3.82	20.0	0.50	40.0	2.00	80.0	2.00	12.0	80.0	6.40	10.26	61.5	1.54
W-02	Chera-1	RH	0.0	0.00	None	100.0	3.60	510.0	100.0	4.20	20.0	0.50	90.0	4.50	100.0	2.50	13.5	65.0	5.20	10.24	61.7	1.54
W-05	Lower Jhimruk	GS330*As/Ag	100.0	4.20	None	100.0	3.60	102.0	10.8	0.45	60.0	1.50	80.0	4.00	20.0	0.50	13.0	70.0	5.60	11.46	50.7	1.27
W-06	Madi	RH	0.0	0.00	None	100.0	3.60	138.0	27.0	1.14	60.0	1.50	85.0	4.25	100.0	2.50	13.5	65.0	5.20	10.26	61.5	1.54
W-23	Nalsyau Gad	RH	0.0	0.00	None	100.0	3.60	280.0	91.0	3.82	0.0	0.00	80.0	4.00	80.0	2.00	12.0	80.0	6.40	6.88	92.0	2.30
W-25	Naumure (W. Rapti)	КН	0.0	0.00	None	100.0	3.60	78.0	0.0	0.00	100.0	2.50	85.0	4.25	20.0	0.50	13.5	65.0	5.20	8.25	79.6	1.99

Table 8.3-42 (1) Evaluation Score and Ranking of Case 3 (1/8)

 Table 8.3-42 (2)
 Evaluation Score and Ranking of Case 3 (2/8)

	Category			Tec	hnical and Eco	nomical (Conditions (co	ont.)							Impact of	on Environme	nt				
	Subcategory				Effectivene	ss of pro	ject (cont.)								Impact of na	atural environ	ment				
															Impa	ect on forest					
	Evaluation Item	Insta	alled capa	city	Annual e	nergy pro	oduction	Energy pro	oduction season	in the dry		Forest la	ind		Numb	er of trees in t	the reserv	voir area	Average	of crown	coverage
	Weight (%)			2.00			1.00			4.50				2.16				1.68			1.68
No.	Project Name	(MW)	Score	Weighted Score	(GWh)	Score	Weighted Score	(GWh)	Score	Weighted Score	(km2)	(km2/MW)	Score	Weighted Score	(nos)	(/MW)	Score	Weighted Score	(%)	Score	Weighted Score
E-01	Dudh Koshi	300.0	100.0	2.00	1,909.6	100.0	1.00	523.3	89.9	4.05	4.1	0.0137	60.9	1.31	242,720	809	61.0	1.02	53	30.9	0.52
E-06	Kokhajor-1	111.5	37.2	0.74	278.9	14.6	0.15	94.1	16.2	0.73	2.9	0.0259	20.3	0.44	202,300	1,814	8.6	0.15	70	0.0	0.00
E-17	Sun Koshi No.3	536.0	100.0	2.00	1,883.6	98.6	0.99	335.9	57.7	2.60	8.2	0.0152	55.7	1.20	520,608	971	52.5	0.88	38	58.2	0.98
C-02	Lower Badigad	380.3	100.0	2.00	1,366.0	71.5	0.72	354.7	61.0	2.75	3.3	0.0087	77.4	1.67	129,360	340	85.4	1.43	38	58.2	0.98
C-08	Andhi Khola	180.0	60.0	1.20	648.7	34.0	0.34	137.1	23.6	1.06	1.5	0.0084	78.4	1.69	77,312	430	80.8	1.36	38	58.2	0.98
W-02	Chera-1	148.7	49.6	0.99	563.2	29.5	0.30	120.6	20.7	0.93	1.5	0.0098	73.6	1.59	38,088	256	89.8	1.51	41	52.7	0.89
W-05	Lower Jhimruk	142.5	47.5	0.95	454.7	23.8	0.24	94.4	16.2	0.73	1.9	0.0131	62.7	1.35	83,776	588	72.5	1.22	26	80.0	1.34
W-06	Madi	199.8	66.6	1.33	621.1	32.5	0.33	170.7	29.3	1.32	1.6	0.0082	78.9	1.71	36,982	185	93.5	1.57	15	100.0	1.68
W-23	Nalsyau Gad	410.0	100.0	2.00	1,406.1	73.6	0.74	581.8	100.0	4.50	0.8	0.0019	100.0	2.16	24,580	60	100.0	1.68	20	90.9	1.53
W-25	Naumure (W. Rapti)	245.0	81.7	1.63	1,157.5	60.6	0.61	309.9	53.3	2.40	7.9	0.0320	0.0	0.00	485,130	1,980	0.0	0.00	40	54.5	0.92

	Category											In	npact on Envi	ironment (con	nt.)										
	Subcategory											Impa	et of natural e	environment ((cont.)										
				Impact	on flora											Impact on te	rrestrial fauna	ı							
	Evaluation Item	Number of p	olant spec	cies reported	Number o conserva	of plant s ation sign	pecies of iificance	Number o	of mamm reported	al species	Number of I	bird spec	ies reported	Number of I	herpetofa reported	auna species I	Numbe mammalia (r of conse an species (reservoir	ervation s reported)	Number of species re	f conserv ported (1	ation bird reservoir)	Number herpetofau (of conse na specie reservoir)	ervation s reported
	Weight (%)			1.92			1.92			0.72			0.48			0.48			0.96			0.72			0.72
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score
E-01	Dudh Koshi	67	10.9	0.21	3	60.0	1.15	24	0.0	0.00	51	0.0	0.00	17	0.0	0.00	9	0.0	0.00	3	25.0	0.18	5	0.0	0.00
E-06	Kokhajor-1	10	100.0	1.92	3	60.0	1.15	13	84.6	0.61	21	78.9	0.38	8	81.8	0.39	5	100.0	0.96	2	50.0	0.36	1	80.0	0.58
E-17	Sun Koshi No.3	46	43.8	0.84	5	20.0	0.38	11	100.0	0.72	50	2.6	0.01	9	72.7	0.35	6	75.0	0.72	4	0.0	0.00	3	40.0	0.29
C-02	Lower Badigad	45	45.3	0.87	5	20.0	0.38	21	23.1	0.17	30	55.3	0.27	9	72.7	0.35	9	0.0	0.00	3	25.0	0.18	0	100.0	0.72
C-08	Andhi Khola	41	51.6	0.99	5	20.0	0.38	12	92.3	0.66	16	92.1	0.44	6	100.0	0.48	7	50.0	0.48	1	75.0	0.54	2	60.0	0.43
W-02	Chera-1	35	60.9	1.17	3	60.0	1.15	15	69.2	0.50	28	60.5	0.29	13	36.4	0.17	7	50.0	0.48	2	50.0	0.36	4	20.0	0.14
W-05	Lower Jhimruk	55	29.7	0.57	4	40.0	0.77	23	7.7	0.06	49	5.3	0.03	17	0.0	0.00	8	25.0	0.24	3	25.0	0.18	4	20.0	0.14
W-06	Madi Nalayan Cad	74	0.0	0.00	6	0.0	0.00	18	46.2	0.33	21	/8.9	0.38	9	91.9	0.35	·/	50.0	0.48	1	75.0	0.54	1	80.0	0.58
W-23 W-25	Naumure (W Rapti)	55	23.4	0.45	1	40.0	0.77	24	0.0	0.72	13	53	0.48	8	0.0	0.39	0 Q	/3.0	0.72	0	25.0	0.72	1	20.0	0.58
vv-23	Ivaunure (w. Kapti)		29.1	0.37	4	40.0	0.77	24	0.0	0.00	49	5.5	0.03	17	0.0	0.00	9	0.0	0.00	3	25.0	0.18	4	20.0	0.14

Table 8.3-42 (3) Evaluation Score and Ranking of Case 3 (3/8)

 Table 8.3-42 (4)
 Evaluation Score and Ranking of Case 3 (4/8)

	Category								Im	pact on Envi	ironment (con	t.)					
	Subcategory								Impac	ct of natural e	environment (cont.)					
					Impact	on aquati	ic fauna						Impact on pa	rotected area			In
]	Evaluation Item	Number of f	fish spec	ies reported	Number conserva	of fish sp ation sign	pecies of ificance	Length	of recessi	ion area	Number of p	orotected ownstrea	areas in the m	Number of the	protectec downstre	l species in eam	L
	Weight (%)			2.16			2.16			0.96			1.92			1.92	
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(km)	Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	(1
E-01	Dudh Koshi	24	0.0	0.00	3	50.0	1.08	60	0.0	0.00	2	50.0	0.96	3	100.0	1.92	
E-06	Kokhajor-1	7	94.4	2.04	2	100.0	2.16	21	65.5	0.63	1	100.0	1.92	3	100.0	1.92	
E-17	Sun Koshi No.3	21	16.7	0.36	3	50.0	1.08	1	100.0	0.96	2	50.0	0.96	3	100.0	1.92	
C-02	Lower Badigad	12	66.7	1.44	4	0.0	0.00	4	94.1	0.90	3	0.0	0.00	5	33.3	0.64	
C-08	Andhi Khola	6	100.0	2.16	2	100.0	2.16	60	0.0	0.00	3	0.0	0.00	5	33.3	0.64	
W-02	Chera-1	11	72.2	1.56	2	100.0	2.16	7	89.1	0.86	3	0.0	0.00	6	0.0	0.00	
W-05	Lower Jhimruk	11	72.2	1.56	2	100.0	2.16	8	87.4	0.84	2	50.0	0.96	4	66.7	1.28	
W-06	M adi	8	88.9	1.92	3	50.0	1.08	10	84.0	0.81	2	50.0	0.96	4	66.7	1.28	
W-23	Nalsyau Gad	8	88.9	1.92	2	100.0	2.16	11	82.4	0.79	3	0.0	0.00	6	0.0	0.00	
W-25	Naumure (W. Rapti)	16	44.4	0.96	2	100.0	2.16	1	100.0	0.96	2	50.0	0.96	4	66.7	1.28	

Impact of transmission line	

Length of transmission line

		1.44
(km)	Score	Weighted Score
43	89.6	1.29
62	64.9	0.94
35	100.0	1.44
49	81.8	1.18
49	81.8	1.18
66	59.7	0.86
75	48.1	0.69
62	64.9	0.94
112	0.0	0.00
79	42.9	0.62

	Category										Imp	act on Ei	vironment (c	cont.)									
	Subcategory										Im	pact on s	ocial environ	nent									
						In	pact on hou	sehold, e	tc.					Impact of	on ethnic	minority			Impac	t on agricultu	re		
	Evaluation Item	Numł	per of estimat	ed house	holds		Number of	schools			Number of in	dustries		Number	of ethnic groups	minority	Im	pact on irrigat	ion	In	npact on agricu	ıltural lar	ıd
_	Weight (%)				3.60				1.44				1.08			2.88			3.24				3.60
Weight (%) No. Project Name E-01 Dudh Koshi			(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score		Score	Weighted Score	(facilities)	Score	Weighted Score	(km2)	(km ² /MW)	Score	Weighted Score
E-01	Dudh Koshi	63	0.21	100.0	3.60	0	0.0000	100.0	1.44	0	0.0000	100.0	1.08	3	40.0	1.15	1	98.3	3.18	3.3	0.0110	74.0	2.66
E-06	Kokhajor-1	92	0.83	84.7	3.05	6	0.0538	0.0	0.00	0	0.0000	100.0	1.08	2	60.0	1.73	2	96.6	3.13	1.7	0.0154	50.5	1.82
E-17	Sun Koshi No.3	1,599	2.98	30.9	1.11	19	0.0354	34.1	0.49	2	0.0037	88.8	0.96	4	20.0	0.58	20	65.5	2.12	9.4	0.0175	39.4	1.42
C-02	Lower Badigad	1,606	4.22	0.0	0.00	18	0.0473	12.0	0.17	11	0.0289	13.2	0.14	5	0.0	0.00	58	0.0	0.00	5.9	0.0155	50.1	1.80
C-08	Andhi Khola	542	3.01	30.2	1.09	9	0.0500	7.1	0.10	6	0.0333	0.0	0.00	2	60.0	1.73	23	60.3	1.96	1.7	0.0092	83.7	3.01
W-02	Chera-1	566	3.81	10.4	0.37	3	0.0202	62.5	0.90	0	0.0000	100.0	1.08	1	80.0	2.30	7	87.9	2.85	1.1	0.0073	93.8	3.38
W-05	Lower Jhimruk	imruk 229 1.61 65.2 2.35 4 0.0281 4					47.8	0.69	3	0.0211	36.8	0.40	3	40.0	1.15	3	94.8	3.07	2.0	0.0143	56.4	2.03	
W-06	M adi	336	1.68	63.3	2.28	2	0.0100	81.4	1.17	0	0.0000	100.0	1.08	1	80.0	2.30	16	72.4	2.35	1.9	0.0096	81.4	2.93
W-23	Nalsyau Gad	263	0.64	89.2	3.21	2	0.0049	90.9	1.31	0	0.0000	100.0	1.08	0	100.0	2.88	0	100.0	3.24	2.5	0.0061	100.0	3.60
W-25	Naumure (W. Rapti)	456	1.86	58.9	2.12	5	0.0204	62.1	0.89	0	0.0000	100.0	1.08	2	60.0	1.73	25	56.9	1.84	6.1	0.0249	0.0	0.00

Table 8.3-42 (5) Evaluation Score and Ranking of Case 3 (5/8)

 Table 8.3-42 (6)
 Evaluation Score and Ranking of Case 3 (6/8)

	Category								Im	pact on Envi	ronment (con	t.)					
	Subcategory								Impa	ct on social e	nvironment (c	cont.)					
										Impact o	n fishery						
	Evaluation Item	Number of f	fishermer	n (reservoir)	Numbe	r of fish	market	Availability	of fish ir	n the market	Sales a	amount o	f fish	Тс	otal incon	ne	
	Weight (%)			1.08			0.72			0.36			1.08			1.08	
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(kg/day)	Score	Weighted Score	(Rs/day)	Score	Weighted Score	(Rs/year)	Score	Weighted Score	(1
E-01	Dudh Koshi	154	78.4	0.85	7	0.0	0.00	70.0	50.0	0.18	17,500	58.3	0.63	1,820,000	50.9	0.55	
E-06	Kokhajor-1	0	100.0	1.08	0	100.0	0.72	0.0	100.0	0.36	0	100.0	1.08	0	100.0	1.08	
E-17	Sun Koshi No.3	712	0.0	0.00	7	0.0	0.00	140.0	0.0	0.00	42,000	0.0	0.00	3,710,000	0.0	0.00	
C-02	Lower Badigad	217	69.5	0.75	7	0.0	0.00	101.5	27.5	0.10	25,375	39.6	0.43	1,062,885	71.4	0.77	
C-08	Andhi Khola	156	78.1	0.84	3	57.1	0.41	25.5	81.8	0.29	7,650	81.8	0.88	550,000	85.2	0.92	
W-02	Chera-1	25	96.5	1.04	4	42.9	0.31	37.5	73.2	0.26	7,500	82.1	0.89	375,000	89.9	0.97	
W-05	Lower Jhimruk	254	64.3	0.69	3	57.1	0.41	40.5	71.1	0.26	7,290	82.6	0.89	225,000	93.9	1.01	
W-06	M adi	100	86.0	0.93	3	57.1	0.41	12.0	91.4	0.33	3,600	91.4	0.99	273,000	92.6	1.00	
W-23	Nalsyau Gad	115	83.8	0.91	3	57.1	0.41	10.5	92.5	0.33	2,100	95.0	1.03	1,140,000	69.3	0.75	
W-25	Naumure (W. Rapti)	43	94.0	1.01	2	71.4	0.51	15.0	89.3	0.32	4,125	90.2	0.97	387,000	89.6	0.97	

Length of recession area	
--------------------------	--

		1.08
(km)	Score	Weighted Score
60	0.0	0.00
21	65.5	0.71
1	100.0	1.08
4	94.1	1.02
60	0.0	0.00
7	89.1	0.96
8	87.4	0.94
10	84.0	0.91
11	82.4	0.89
1	100.0	1.08

	Category										Impac	t on Env	ironment (cor	nt.)								
	Subcategory										Impact or	n social e	environment (cont.)								
					Impact on	tourism	and culture									Impact on inf	frastructure					
	Evaluation Item	Number of	f cultural (temples)	structures	Number o	of tourist	facilities	Nun	ber of to	urists	Impa	act on roa	ads	Imj	pact on bridg	es	Impact on hydi	water m ropower	ill, turbine, plant	Impact on	drinking wate	er schemes
	Weight (%)		_	2.16		_	1.44			1.44			2.52			1.44			1.44			1.44
No.	Project Name	2.16 1.44 Score Weighted Score Score Weighted Score (per year) 2 80.0 1.73 2 80.0 1.15 10						Score	Weighted Score	Inundated road (km)	Score	Weighted Score	Number of inundated bridge	Score	Weighted Score	Number of facilities	Score	Weighted Score		Score	Weighted Score	
E-01	Dudh Koshi	2	80.0	1.73	2	80.0	1.15	10	100.0	1.44	5.0	87.4	2.20	5	64.3	0.93	0	100.0	1.44	5	82.8	1.19
E-06	Kokhajor-1	0	100.0	2.16	0	100.0	1.44	0	100.0	1.44	0.0	100.0	2.52	0	100.0	1.44	11	57.7	0.83	10	65.5	0.94
E-17	Sun Koshi No.3	10	0.0	0.00	10	0.0	0.00	20,000	0.0	0.00	39.5	0.0	0.00	14	0.0	0.00	15	42.3	0.61	22	24.1	0.35
C-02	Lower Badigad	9	10.0	0.22	0	100.0	1.44	0	100.0	1.44	26.1	34.0	0.86	12	14.3	0.21	26	0.0	0.00	29	0.0	0.00
C-08	Andhi Khola	5	50.0	1.08	0	100.0	1.44	0	100.0	1.44	3.4	91.3	2.30	11	21.4	0.31	0	100.0	1.44	10	65.5	0.94
W-02	Chera-1	1	90.0	1.94	0	100.0	1.44	0	100.0	1.44	3.8	90.5	2.28	1	92.9	1.34	9	65.4	0.94	2	93.1	1.34
W-05	Lower Jhimruk	1	90.0	1.94	0	100.0	1.44	0	100.0	1.44	3.3	91.6	2.31	3	78.6	1.13	0	100.0	1.44	7	75.9	1.09
W-06	Madi	4	60.0	1.30	0	100.0	1.44	0	100.0	1.44	11.2	71.5	1.80	6	57.1	0.82	6	76.9	1.11	22	24.1	0.35
W-23	Nalsy au Gad	0	100.0	2.16	0	100.0	1.44	0	100.0	1.44	0.0	100.0	2.52	4	71.4	1.03	20	23.1	0.33	0	100.0	1.44
W-25	Naumure (W. Rapti)	2	80.0	1.73	0	100.0	1.44	0	100.0	1.44	1.8	95.4	2.40	13	7.1	0.10	0	100.0	1.44	17	41.4	0.60

Table 8.3-42 (7) Evaluation Score and Ranking of Case 3 (7/8)

 Table 8.3-42 (8)
 Evaluation Score and Ranking of Case 3 (8/8)

	Category				Impact on I	Environn	nent (cont.)				Ī		
	Subcategory]	mpact on soc	ial enviro	onment (cont.)			Ī		
				Impac	t on rural eco	nomy an	d develop me	nt plan					
	Evaluation Item	Impa	act on ma	arket	Number of devel	ongoing opment	or proposed plans	Pre	evious iss	sues			
	Weight (%)			1.44			0.72			0.72	100.00	100	
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	Total	Score	Ranking
E-01	Dudh Koshi	1	80.0	1.15	0	100.0	0.72	0	100.0	0.72	64.45	64	3
E-06	Kokhajor-1	0	100.0	1.44	6	40.0	0.29	1	0.0	0.00	62.75	63	7
E-17	Sun Koshi No.3	5	0.0	0.00	10	0.0	0.00	1	0.0	0.00	47.20	47	9
C-02	Lower Badigad	5	0.0	0.00	3	70.0	0.50	0	100.0	0.72	44.98	45	10
C-08	Andhi Khola	4	20.0	0.29	2	80.0	0.58	0	100.0	0.72	63.00	63	6
W-02	Chera-1	4	20.0	0.29	0	100.0	0.72	0	100.0	0.72	65.71	66	2
W-05	Lower Jhimruk	0	100.0	1.44	1	90.0	0.65	0	100.0	0.72	63.92	64	5
W-06	M adi	2	60.0	0.86	3	70.0	0.50	0	100.0	0.72	64.34	64	4
W-23	Nalsyau Gad	1	80.0	1.15	2	80.0	0.58	0	100.0	0.72	78.03	78	1
W-25	Naumure (W. Rapti)	3	40.0	0.58	3	70.0	0.50	0	100.0	0.72	55.70	56	8

	Category									Tec	hnical an	d Economical	Conditio	ons								
	Subcategory				Hydrolog	gical cond	itions						Geole	ogical condition	ons			Lead ti	me	Effectiv	eness of j	project
	Evaluation Item	Reliabilit	y of flow	/ data	Ri	sk of GL0	OF	Se	dimentat	ion	Sei (r Table	smicity efer to e 8.7.3-6)	Ge condit (r Tabl	cological ions of site refer to e 8.7.3-7)	Thrust a (refe Table 8	nd fault er to .7.3-8)	Time t com	o comme mercial c (refer Γable 8.7	encement of operation to V.3-9)	Unit g Tab	eneration (refer to le 8.7.3-1	cost 0)
	Weight (%)		7.88 6							7.88		4.69		9.38		4.69			15.00			4.69
No.	Project Name	Calculation Method	Score	Weighted Score	Risk	Score	Weighted Score	Life Time of Reservoir (year)	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	Score	Weighted Score	(year)	Score	Weighted Score	(USc/kWh)	Score	Weighted Score
E-01	Dudh Koshi	GS670	100.0	7.88	High	0.0	0.00	100.0	9.9	0.78	20.0	0.94	75.0	7.04	80.0	3.75	12.0	80.0	12.00	5.99	100.0	4.69
E-06	Kokhajor-1	RH	0.0	0.00	None	100.0	6.75	199.0	54.5	4.29	20.0	0.94	75.0	7.04	20.0	0.94	13.0	70.0	10.50	17.08	0.0	0.00
E-17	Sun Koshi No.3	GS630*As/Ag	100.0	7.88	High	0.0	0.00	177.0	44.6	3.51	20.0	0.94	90.0	8.44	100.0	4.69	14.5	55.0	8.25	8.97	73.1	3.43
C-02	Lower Badigad	RH	0.0	0.00	None	100.0	6.75	192.0	51.4	4.05	60.0	2.81	55.0	5.16	60.0	2.81	14.5	55.0	8.25	8.86	74.1	3.48
C-08	Andhi Khola	GS415*As/Ag	100.0	7.88	None	100.0	6.75	280.0	91.0	7.17	20.0	0.94	40.0	3.75	80.0	3.75	12.0	80.0	12.00	10.26	61.5	2.88
W-02	Chera-1	RH	0.0	0.00	None	100.0	6.75	510.0	100.0	7.88	20.0	0.94	90.0	8.44	100.0	4.69	13.5	65.0	9.75	10.24	61.7	2.89
W-05	Lower Jhimruk	GS330*As/Ag	100.0	7.88	None	100.0	6.75	102.0	10.8	0.85	60.0	2.81	80.0	7.50	20.0	0.94	13.0	70.0	10.50	11.46	50.7	2.38
W-06	M adi	RH	0.0	0.00	None	100.0	6.75	138.0	27.0	2.13	60.0	2.81	85.0	7.97	100.0	4.69	13.5	65.0	9.75	10.26	61.5	2.88
W-23	Nalsy au Gad	RH	0.0	0.00	None	100.0	6.75	280.0	91.0	7.17	0.0	0.00	80.0	7.50	80.0	3.75	12.0	80.0	12.00	6.88	92.0	4.31
W-25	Naumure (W. Rapti)	RH	0.0	0.00	None	100.0	6.75	78.0	0.0	0.00	100.0	4.69	85.0	7.97	20.0	0.94	13.5	65.0	9.75	8.25	79.6	3.73

Table 8.3-43 (1) Evaluation Score and Ranking of Case 4 (1/8)

 Table 8.3-43 (2)
 Evaluation Score and Ranking of Case 4 (2/8)

	Category			Tec	hnical and Eco	nomical (Conditions (co	ont.)							Impact of	on Environme	nt				
	Subcategory				Effectivene	ss of pro	ject (cont.)								Impact of na	atural environ	ment				
															Impa	ct on forest					
	Evaluation Item	Insta	alled capa	city	Annual e	nergy pro	oduction	Energy pro	oduction season	in the dry		Forest la	ınd		Numbe	er of trees in t	the reserv	voir area	Average	of crown	coverage
	Weight (%)		_	3.75		-	1.88		-	8.44		_	-	0.90		-	-	0.70			0.70
No.	Project Name	(MW)	Score	Weighted Score	(GWh)	Score	Weighted Score	(GWh)	Score	Weighted Score	(km2)	(km2/MW)	Score	Weighted Score	(nos)	(/MW)	Score	Weighted Score	(%)	Score	Weighted Score
E-01	Dudh Koshi	300.0	100.0	3.75	1,909.6	100.0	1.88	523.3	89.9	7.59	4.1	0.0137	60.9	0.55	242,720	809	61.0	0.43	53	30.9	0.22
E-06	Kokhajor-1	111.5	37.2	1.40	278.9	14.6	0.27	94.1	16.2	1.37	2.9	0.0259	20.3	0.18	202,300	1,814	8.6	0.06	70	0.0	0.00
E-17	Sun Koshi No.3	536.0	100.0	3.75	1,883.6	98.6	1.85	335.9	57.7	4.87	8.2	0.0152	55.7	0.50	520,608	971	52.5	0.37	38	58.2	0.41
C-02	Lower Badigad	380.3	100.0	3.75	1,366.0	71.5	1.34	354.7	61.0	5.15	3.3	0.0087	77.4	0.70	129,360	340	85.4	0.60	38	58.2	0.41
C-08	Andhi Khola	180.0	60.0	2.25	648.7	34.0	0.64	137.1	23.6	1.99	1.5	0.0084	78.4	0.71	77,312	430	80.8	0.57	38	58.2	0.41
W-02	Chera-1	148.7	49.6	1.86	563.2	29.5	0.55	120.6	20.7	1.75	1.5	0.0098	73.6	0.66	38,088	256	89.8	0.63	41	52.7	0.37
W-05	Lower Jhimruk	142.5	47.5	1.78	454.7	23.8	0.45	94.4	16.2	1.37	1.9	0.0131	62.7	0.56	83,776	588	72.5	0.51	26	80.0	0.56
W-06	Madi	199.8	66.6	2.50	621.1	32.5	0.61	170.7	29.3	2.47	1.6	0.0082	78.9	0.71	36,982	185	93.5	0.65	15	100.0	0.70
W-23	Nalsyau Gad	410.0	100.0	3.75	1,406.1	73.6	1.38	581.8	100.0	8.44	0.8	0.0019	100.0	0.90	24,580	60	100.0	0.70	20	90.9	0.64
W-25	Naumure (W. Rapti)	245.0	81.7	3.06	1,157.5	60.6	1.14	309.9	53.3	4.50	7.9	0.0320	0.0	0.00	485,130	1,980	0.0	0.00	40	54.5	0.38

	Category											In	npact on Envi	ironment (con	nt.)										
	Subcategory											Impa	et of natural e	environment ((cont.)										
				Impact	on flora											Impact on te	rrestrial fauna	ı							
	Evaluation Item	Number of p	olant spec	cies reported	Number o conserva	of plant s ation sign	pecies of ificance	Number o	of mamm reported	al species	Number of t	bird spec	ies reported	Number of I	herpetofa reported	auna species I	Numbe mammalia (r of conse an species (reservoir	ervation s reported)	Number of species re	f conserv ported (1	ation bird reservoir)	Number herpetofau (of conse na specie reservoir)	rvation s reported
	Weight (%)		-	0.80		_	0.80		-	0.30		-	0.20		-	0.20		-	0.40			0.30			0.30
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score
E-01	Dudh Koshi	67	10.9	0.09	3	60.0	0.48	24	0.0	0.00	51	0.0	0.00	17	0.0	0.00	9	0.0	0.00	3	25.0	0.08	5	0.0	0.00
E-06	Kokhajor-1	10	100.0	0.80	3	60.0	0.48	13	84.6	0.25	21	78.9	0.16	8	81.8	0.16	5	100.0	0.40	2	50.0	0.15	1	80.0	0.24
E-17	Sun Koshi No.3	46	43.8	0.35	5	20.0	0.16	11	100.0	0.30	50	2.6	0.01	9	72.7	0.15	6	75.0	0.30	4	0.0	0.00	3	40.0	0.12
C-02	Lower Badigad	45	45.3	0.36	5	20.0	0.16	21	23.1	0.07	30	55.3	0.11	9	72.7	0.15	9	0.0	0.00	3	25.0	0.08	0	100.0	0.30
C-08	Andhi Khola	41	51.6	0.41	5	20.0	0.16	12	92.3	0.28	16	92.1	0.18	6	100.0	0.20	7	50.0	0.20	1	75.0	0.23	2	60.0	0.18
W-02	Chera-1	35	60.9	0.49	3	60.0	0.48	15	69.2	0.21	28	60.5	0.12	13	36.4	0.07	7	50.0	0.20	2	50.0	0.15	4	20.0	0.06
W-05	Lower Jhimruk	55	29.7	0.24	4	40.0	0.32	23	7.7	0.02	49	5.3	0.01	17	0.0	0.00	8	25.0	0.10	3	25.0	0.08	4	20.0	0.06
W-06	Madi	74	0.0	0.00	6	0.0	0.00	18	46.2	0.14	21	/8.9	0.16	9	72.7	0.15	7	50.0	0.20	1	75.0	0.23	1	80.0	0.24
W-23	Naisyau Gad	59	23.4	0.19	1	100.0	0.80	24	100.0	0.30	13	100.0	0.20	8	81.8	0.16	6	/5.0	0.30	0	100.0	0.30	1	80.0	0.24
vv-25	Naumure (w. Kapti)	55	29.7	0.24	4	40.0	0.32	24	0.0	0.00	49	3.5	0.01	17	0.0	0.00	9	0.0	0.00	3	25.0	0.08	4	20.0	0.06

Table 8.3-43 (3) Evaluation Score and Ranking of Case 4 (3/8)

 Table 8.3-43 (4)
 Evaluation Score and Ranking of Case 4 (4/8)

	Category								Im	pact on Envi	ironment (con	t.)					
	Subcategory								Impac	t of natural e	environment (cont.)					
					Impact	on aquati	ic fauna						Impact on p	rotected area			In
]	Evaluation Item	Number of f	fish speci	ies reported	Number of conserva	of fish sp ation sign	pecies of ificance	Length	of recess	ion area	Number of p	orotected ownstrea	areas in the m	Number of the	protected downstre	d species in eam	Le
	Weight (%)			0.90			0.90			0.40			0.80			0.80	
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(km)	Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	(k
E-01	Dudh Koshi	24	0.0	0.00	3	50.0	0.45	60	0.0	0.00	2	50.0	0.40	3	100.0	0.80	
E-06	Kokhajor-1	7	94.4	0.85	2	100.0	0.90	21	65.5	0.26	1	100.0	0.80	3	100.0	0.80	
E-17	Sun Koshi No.3	21	16.7	0.15	3	50.0	0.45	1	100.0	0.40	2	50.0	0.40	3	100.0	0.80	
C-02	Lower Badigad	12	66.7	0.60	4	0.0	0.00	4	94.1	0.38	3	0.0	0.00	5	33.3	0.27	
C-08	Andhi Khola	6	100.0	0.90	2	100.0	0.90	60	0.0	0.00	3	0.0	0.00	5	33.3	0.27	
W-02	Chera-1	11	72.2	0.65	2	100.0	0.90	7	89.1	0.36	3	0.0	0.00	6	0.0	0.00	
W-05	Lower Jhimruk	11	72.2	0.65	2	100.0	0.90	8	87.4	0.35	2	50.0	0.40	4	66.7	0.53	
W-06	M adi	8	88.9	0.80	3	50.0	0.45	10	84.0	0.34	2	50.0	0.40	4	66.7	0.53	
W-23	Nalsyau Gad	8	88.9	0.80	2	100.0	0.90	11	82.4	0.33	3	0.0	0.00	6	0.0	0.00	
W-25	Naumure (W. Rapti)	16	44.4	2	100.0	0.90	1	100.0	0.40	2	50.0	0.40	4	66.7	0.53		

Impact of transmissi	ion line

Length of transmission line

		0.60
(km)	Score	Weighted Score
43	89.6	0.54
62	64.9	0.39
35	100.0	0.60
49	81.8	0.49
49	81.8	0.49
66	59.7	0.36
75	48.1	0.29
62	64.9	0.39
112	0.0	0.00
79	42.9	0.26

	Category										Imp	act on Er	vironment (c	ont.)									
	Subcategory										Imp	pact on se	ocial environr	nent									-
	-					Im	pact on hou	sehold, e	tc.					Impact of	on ethnic	minority			Impact	t on agricultu	re		
	Evaluation Item	Numb	per of estimat	ed house	holds		Number of	schools			Number of in	dustries		Number	of ethnic groups	minority	Imp	oact on irrigat	ion	Im	npact on agrici	ıltural lar	ıd
	Weight (%)				1.50				0.60				0.45			1.20			1.35				1.50
No.	Project Name		(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score		(/MW)	Score	Weighted Score		Score	Weighted Score	(facilities)	Score	Weighted Score	(km2)	(km ² /MW)	Score	Weighted Score
E-01	Dudh Koshi	63	0.21	100.0	1.50	0	0.0000	100.0	0.60	0	0.0000	100.0	0.45	3	40.0	0.48	1	98.3	1.33	3.3	0.0110	74.0	1.11
E-06	Kokhajor-1	92	0.83	84.7	1.27	6	0.0538	0.0	0.00	0	0.0000	100.0	0.45	2	60.0	0.72	2	96.6	1.30	1.7	0.0154	50.5	0.76
E-17	Sun Koshi No.3	1,599	2.98	30.9	0.46	19	0.0354	34.1	0.20	2	0.0037	88.8	0.40	4	20.0	0.24	20	65.5	0.88	9.4	0.0175	39.4	0.59
C-02	Lower Badigad	1,606	4.22	0.0	0.00	18	0.0473	12.0	0.07	11	0.0289	13.2	0.06	5	0.0	0.00	58	0.0	0.00	5.9	0.0155	50.1	0.75
C-08	Andhi Khola	542	3.01	30.2	0.45	9	0.0500	7.1	0.04	6	0.0333	0.0	0.00	2	60.0	0.72	23	60.3	0.81	1.7	0.0092	83.7	1.26
W-02	Chera-1	566	3.81	10.4	0.16	3	0.0202	62.5	0.38	0	0.0000	100.0	0.45	1	80.0	0.96	7	87.9	1.19	1.1	0.0073	93.8	1.41
W-05	Lower Jhimruk	229	1.61	65.2	0.98	4	0.0281	47.8	0.29	3	0.0211	36.8	0.17	3	40.0	0.48	3	94.8	1.28	2.0	0.0143	56.4	0.85
W-06	M adi	336	1.68	63.3	0.95	2	0.0100	81.4	0.49	0	0.0000	100.0	0.45	1	80.0	0.96	16	72.4	0.98	1.9	0.0096	81.4	1.22
W-23	Nalsyau Gad	263	0.64	89.2	1.34	2	0.0049	90.9	0.55	0	0.0000	100.0	0.45	0	100.0	1.20	0	100.0	1.35	2.5	0.0061	100.0	1.50
W-25	Naumure (W. Rapti)	456	1.86	58.9	0.88	5	0.0204	62.1	0.37	0	0.0000	100.0	0.45	2	60.0	0.72	25	56.9	0.77	6.1	0.0249	0.0	0.00

Table 8.3-43 (5) Evaluation Score and Ranking of Case 4 (5/8)

 Table 8.3-43 (6)
 Evaluation Score and Ranking of Case 4 (6/8)

	Category								Im	pact on Envi	ronment (con	t.)					
	Subcategory								Impa	ct on social e	nvironment (a	cont.)					
										Impact o	n fishery						
]	Evaluation Item	Number of f	fishermer	n (reservoir)	Numbe	r of fish :	market	Availability	of fish ir	n the market	Sales	amount o	of fish	To	otal incon	ne	
	Weight (%)			0.45			0.30			0.15			0.45			0.45	
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(kg/day)	Score	Weighted Score	(Rs/day)	Score	Weighted Score	(Rs/year)	Score	Weighted Score	(1
E-01	Dudh Koshi	154	78.4	0.35	7	0.0	0.00	70.0	50.0	0.08	17,500	58.3	0.26	1,820,000	50.9	0.23	
E-06	Kokhajor-1	0	100.0	0.45	0	100.0	0.30	0.0	100.0	0.15	0	100.0	0.45	0	100.0	0.45	
E-17	Sun Koshi No.3	712	0.0	0.00	7	0.0	0.00	140.0	0.0	0.00	42,000	0.0	0.00	3,710,000	0.0	0.00	
C-02	Lower Badigad	217	69.5	0.31	7	0.0	0.00	101.5	27.5	0.04	25,375	39.6	0.18	1,062,885	71.4	0.32	
C-08	Andhi Khola	156	78.1	0.35	3	57.1	0.17	25.5	81.8	0.12	7,650	81.8	0.37	550,000	85.2	0.38	
W-02	Chera-1	25	96.5	0.43	4	42.9	0.13	37.5	73.2	0.11	7,500	82.1	0.37	375,000	89.9	0.40	
W-05	Lower Jhimruk	254	64.3	0.29	3	57.1	0.17	40.5	71.1	0.11	7,290	82.6	0.37	225,000	93.9	0.42	
W-06	M adi	100	86.0	0.39	3	57.1	0.17	12.0	91.4	0.14	3,600	91.4	0.41	273,000	92.6	0.42	
W-23	Nalsyau Gad	115	83.8	0.38	3	57.1	0.17	10.5	92.5	0.14	2,100	95.0	0.43	1,140,000	69.3	0.31	
W-25	Naumure (W. Rapti)	43	94.0	0.42	2	71.4	0.21	15.0	89.3	0.13	4,125	90.2	0.41	387,000	89.6	0.40	

Length of recession area

		0.45
(km)	Score	Weighted Score
60	0.0	0.00
21	65.5	0.29
1	100.0	0.45
4	94.1	0.42
60	0.0	0.00
7	89.1	0.40
8	87.4	0.39
10	84.0	0.38
11	82.4	0.37
1	100.0	0.45

	Category										Impac	t on Env	ironment (cor	nt.)								
	Subcategory										Impact or	n social e	nvironment (cont.)								
					Impact on	tourism	and culture									Impact on inf	frastructure					
	Evaluation Item	Number of	f cultural (temples)	structures)	Number o	of tourist	facilities	Nun	ber of to	urists	Impa	ict on roa	ads	Imj	pact on bridg	es	Impact on hydr	water m ropower	ill, turbine, plant	Impact on	drinking wate	er schemes
	Weight (%)		-	0.90		-	0.60			0.60			1.05			0.60			0.60			0.60
No.	Project Name		Score	Weighted Score		Score	Weighted Score	(per year)	Score	Weighted Score	Inundated road (km)	Score	Weighted Score	Number of inundated bridge	Score	Weighted Score	Number of facilities	Score	Weighted Score		Score	Weighted Score
E-01	Dudh Koshi	2	80.0	0.72	2	80.0	0.48	10	100.0	0.60	5.0	87.4	0.92	5	64.3	0.39	0	100.0	0.60	5	82.8	0.50
E-06	Kokhajor-1	0	100.0	0.90	0	100.0	0.60	0	100.0	0.60	0.0	100.0	1.05	0	100.0	0.60	11	57.7	0.35	10	65.5	0.39
E-17	Sun Koshi No.3	10	0.0	0.00	10	0.0	0.00	20,000	0.0	0.00	39.5	0.0	0.00	14	0.0	0.00	15	42.3	0.25	22	24.1	0.14
C-02	Lower Badigad	9	10.0	0.09	0	100.0	0.60	0	100.0	0.60	26.1	34.0	0.36	12	14.3	0.09	26	0.0	0.00	29	0.0	0.00
C-08	Andhi Khola	5	50.0	0.45	0	100.0	0.60	0	100.0	0.60	3.4	91.3	0.96	11	21.4	0.13	0	100.0	0.60	10	65.5	0.39
W-02	Chera-1	1	90.0	0.81	0	100.0	0.60	0	100.0	0.60	3.8	90.5	0.95	1	92.9	0.56	9	65.4	0.39	2	93.1	0.56
W-05	Lower Jhimruk	1	90.0	0.81	0	100.0	0.60	0	100.0	0.60	3.3	91.6	0.96	3	78.6	0.47	0	100.0	0.60	7	75.9	0.46
W-06	Madi	4	60.0	0.54	0	100.0	0.60	0	100.0	0.60	11.2	71.5	0.75	6	57.1	0.34	6	76.9	0.46	22	24.1	0.14
W-23	Nalsyau Gad	0	100.0	0.90	0	100.0	0.60	0	100.0	0.60	0.0	100.0	1.05	4	71.4	0.43	20	23.1	0.14	0	100.0	0.60
W-25	Naumure (W. Rapti)	2	80.0	0.72	0	100.0	0.60	0	100.0	0.60	1.8	95.4	1.00	13	7.1	0.04	0	100.0	0.60	17	41.4	0.25

Table 8.3-43 (7) Evaluation Score and Ranking of Case 4 (7/8)

 Table 8.3-43 (8)
 Evaluation Score and Ranking of Case 4 (8/8)

	Category				Impact on I	Environn	nent (cont.)				T		
	Subcategory			Ι	mpact on soc	ial enviro	onment (cont	.)			I		
				I	mpact on othe	er sector'	s developmer	nt]		
	Evaluation Item	Imp	act on ma	arket	Number of devel	ongoing opment	or proposed plans	Pre	evious is:	sues			
	Weight (%)		-	0.60		_	0.30		_	0.30	100.03	100	
No.	Project Name		Score	Weighted Score		Score	Weighted Score		Score	Weighted Score	Total	Score	Ranking
E-01	Dudh Koshi	1	80.0	0.48	0	100.0	0.30	0	100.0	0.30	66.02	66	2
E-06	Kokhajor-1	0	100.0	0.60	6	40.0	0.12	1	0.0	0.00	52.18	52	10
E-17	Sun Koshi No.3	5	0.0	0.00	10	0.0	0.00	1	0.0	0.00	56.69	57	7
C-02	Lower Badigad	5	0.0	0.00	3	70.0	0.21	0	100.0	0.30	52.63	53	9
C-08	Andhi Khola	4	20.0	0.12	2	80.0	0.24	0	100.0	0.30	65.15	65	3
W-02	Chera-1	4	20.0	0.12	0	100.0	0.30	0	100.0	0.30	62.79	63	4
W-05	Lower Jhimruk	0	100.0	0.60	1	90.0	0.27	0	100.0	0.30	60.26	60	5
W-06	M adi	2	60.0	0.36	3	70.0	0.21	0	100.0	0.30	59.91	60	6
W-23	Nalsyau Gad	1	80.0	0.48	2	80.0	0.24	0	100.0	0.30	75.34	75	1
W-25	Naumure (W. Rapti)	3	40.0	0.24	3	70.0	0.21	0	100.0	0.30	56.28	56	8

Note: The evaluation result of Case 1.

Figure 8.3-39 (1) Characteristics of Promising Projects (1)

Note: The evaluation result of Case 1.

Figure 8.3-39 (2) Characteristics of Promising Projects (2)

Chapter 9 Cumulative Impact

9.1 **Project Description**

The information of the existing and planned Hydroelectric power plant, Irrigation, and Roads are collected to see the cumulative impact. In order to see the impact on downstream, the information in India are collected too.

- (1) Existing Projects
 - 1) Existing Hydroelectric Power stations and Irrigation Barrages

There are around 30 middle and large size hydroelectric power plants in Nepal. Five of them are under construction. Two of them are storage-type. 18 projects are in the Gandak river system, 7 projects are in Koshi river system, and 1 is in the Bagmati river system. Two of them are operating at the Irrigation barrages. The list is shown in Table 9.1-1 and the location is shown in Figure 9.1-1.

No.	Name	River	River System	Owner	Туре	Capacity (KW)	Condition		
1	Chamelia	Chamaliya Nadi	Chamaliya	NEA	ROR	30,000	Construction		
2	Tinau (Butwal)	Tinau River	Danau	NEA	ROR	1,024	Operating		
3	Jhimruk Khola	Jhimruk Khola	Jhimruk Khola	Jhimruk Khola	Rapti	Private	ROR	12,000	Operating
4	Andhikhola	Kali Gandaki Nadi	Gandaki	Private	ROR	5,100	Operating		
5	Chilime	Trishuli River	Gandaki	Private	ROR	22,000	Operating		
6	Devighat	Trishuli River	Gandaki	NEA	ROR	14,100	Operating		
7	Gandak	Narayani (Sapta Gandaki)	Gandaki	NEA	ROR	15,000	Operating with Irrigation		
8	KaliGandaki "A"	Kali Gandaki Nadi	Gandaki	NEA	ROR	144,000	Operating		
9	Kulekhani III Headwork	Rapti Nadi	Gandaki	NEA	Storage	14,000	Construction		
10	Kulekhani No. 1	Bagmati	Bagmati	NEA	Storage	60,000	Operating		
11	Kulekhani No. 2	Rapti Nadi	Gandaki	NEA	ROR	32,000	Operating		
12	Marsyangdi Marsyandi Nadi		Gandaki	NEA	ROR	69,000	Operating		
13	Middle	Marsyandi	Gandaki	NEA	PROR	70,000	Operating		

 Table 9.1-1
 Operating and Constructing Major Hydro Power plants in Nepal

Final Report Appendix 3 SEA Report

				1			
No.	Name	River	River System	Owner	Туре	Capacity (KW)	Condition
	Marsyangdi	Nadi					
14	Modi Khola	Modi Khola	Gandaki	NEA	ROR	14,800	Operating
15	Phewa (Pokhara)	Seti Nadi	Gandaki	NEA	ROR	1,000	Operating
16	Rairang	Thopal Khola	Gandaki	Private	ROR	500	Operating
17	Ridi Khola	Ridi Khola	Gandaki	Private	ROR	2,400	Operating
18	Seti (Pokhara)	Seti Nadi	Gandaki	NEA	ROR	1,500	Operating
19	Tatopani/Myagdi(i) & (II)	Kali Gandaki Nadi	Gandaki	NEA	ROR	2,000	Operating
20	Trisuli	Trishuli River	Gandaki	NEA	ROR	24,000	Operating
21	Upper Trisuli 3A	Trishuli River	Gandaki	NEA	ROR	60,000	Construction
22	Indrawati III	Indrawati Nadi	Koshi	Private	ROR	7,500	Operating
23	Khimti	Khimti Khola	Koshi	Private	ROR	60,000	Operating
24	Panauti	Rosi Khola	Koshi	NEA	ROR	2,400	Operating
25	Sunkosi	SunKoshi Nadi	Koshi	NEA	ROR	10,050	Operating
26	Upper Bhotekoshi	Bhotekoshi Nadi	Koshi	Private	ROR	36,000	Operating
27	Upper Tamakoshi Headworks	Tamakoshi Nadi	Koshi	NEA	ROR	456,000	Construction
28	Chatara	Koshi	Koshi	NEA	ROR	3,200	Operating with Irrigation
29	Puwakhola	Puwa Khola	Kankaimai	NEA	ROR	6,200	Operating
30	Mistri	Mistri	Gandaki	NEA	ROR	140,000	Construction

There are around 6 large Irrigation barrages in Nepal and 6 large Irrigation barrages at downstream of the rivers from Nepal in India. The quantities of water or irrigation areas of four barrages located in the border of Nepal and India are stipulated by the international treaty or agreements. The name of the irrigation barrages are listed in Table 9.2-1 and the locations of the barrages are shown in Figure 9.1-1.

No	Name	River	River System	Country	International Treaty/ Agreement
1	Tanakpur Barrage	Mahakali Nadi	Rangun	India	Mahikali River Treaty 1996
2	Banbasa Barrage	Mahakali Nadi	Rangun	India	Sarada Canal Project Agreement with British India, 1920: and the Mahikali Irrigation Project
3	Barrage (Sujauli)	Karnali River	Karnali	India	
4	Sikta headworks	Rapti Nadi	Rapti	Nepal	
5	Kakradari Barrage	Rapti Nadi	Rapti	India	
6	Babai headworks	Babai Nadi	Babai	Nepal	
7	Rupai Bararage	Tributary of Babai Nadi	Babai	India	
8	Bagmati Irrigation Project, headworks	Bagmati Nadi	Bagmat	Nepal	
9	Gandak Irrigation (same as Gandak HPP)	Narayani (Sapta Gandaki)	Gandaki	Nepal	Gandak Irrigation and Power Project Agreement, 1954 (revised 1964)
10	Bhardaha Barrage (same as Chatara HPP)	Koshi	Koshi	Nepal	Kosi Project Agreement, 1954 Agreement between Nepal and India for the construction of Chatra Canals Project,1964 Indo-Nepal Agreement on Renovation of Chandra Canal, Construction of Pump Canal and Western Kosi Canal in Nepal, 1978
11	Kankai headworks	Kankaimai Nadi	Kankaimai	Nepal	
12	Farakka Barrage	Ganges River	Ganges	India	The Ganges River Treaty between India and Bangladesh, 1977, 1996

Table 9.1-2	Operating Major	 Irrigation Barrage 	e in Nepal and India
-------------	------------------------	--	----------------------

Figure 9.1-1 Existing HPPs and Irrigation Barrage

2) Existing Road

Road network is stretching widely in Nepal. Based on the Road Statistics 2006/2007, Black topped road is 4,258 km, Gravel road is 2,062 km, and Earthen road is 3,079 km. Black topped roads are connected from west to south in low land. Road density around the capital city is higher than the rural areas. Figure 9.1-2 shows the existing roads in Nepal.

Figure 9.1-2 Existing road network in Nepal

Source: Strategic Road Network (2011/2012)

(2) Possible Projects

Possible Hydroelectric power plants, Irrigation Barrages and Roads in Nepal are examined.

1) Planned Hydroelectric Power Projects

There are many hydroelectric power development plans in Nepal both public and private. Accroding to the generation development plan in the main report, the major possible Hydroelectric power projects are categorized in two, such as Projects in preparation stage of construction and Candidate Projects. The projects in preparation stage of construction are 11 (See Figure 9.1-3) and Candidate projects are 9 (See Figure 9.1.4). 10 of them are a storage type project. 10 of them are in Gandak river system, 6 of them are in Koshi river system, and 2 of them are in Karnali river system.

In addition to that Ministry of Energy is issuing various types of licenses for possible HPPs, such as Construction licenses and Survey licenses. 74 Construction licenses, 29 Survey licenses above 100 MW, 52 Survey licenses for 25 to 100 MW, 175 Survey licenses for 1 to 25 MW, and 202 Survey licenses for below 1 MW are issued at the time of 2012 (See Figure 9.1-4). The valid periods of the licenses are limited. Then some licenses might be expired if no activities are taken for some time.

Figure 9.1-3 HPPs in Preparation Stage and Candidate projects

No	Project Name	River System	Туре	Installed Capacity (MW)
1	Khani Khola	Koshi	ROR	25
2	Upper Sanjen	Gandaki	ROR	11
3	Sanjen	Gandaki	ROR	42.9
4	Middle Bhotekoshi	Koshi	ROR	102
5	Rasuwagadi	Gandaki	ROR	111
6	Rahughat	Gandaki	PROR	32
7	Upper Marsyangdi	Gandaki	ROR	50
8	Upper Trishuli 3B	Koshi	ROR	37
9	Upper Modi A	Gandaki	ROR	42
10	Tanahu (Upper Seti)	Gandaki	Storage	140
11	Budhi Gandaki	Gandaki	Storage	600

1able 9.1-3 HPPs in Preparation Stage of Construction	ction
---	-------

		-		
No.	Project Name	River System	Туре	Installed Capacity (MW)
1	Upper Arun	Koshi	PROR	335
2	Dudh Koshi	Koshi	Storage	300
3	Nalsyau Gad	Karnali	Storage	410
4	Andhi Khola	Gandaki	Storage	180
5	Chera-1	Karnali	Storage	148.7
6	Madi	Rapti	Storage	199.8
7	Naumure (W. Rapti)	Rapti	Storage	245
8	Sun Koshi No.3	Koshi	Storage	536
9	Lower Badigad	Gandaki	Storage	380.3

Table 9.1-4Candidate Projects

Figure 9.1-4 Issued Licenses by Ministry of Energy (2012)

2) Planned Irrigation Barrages

According to Department of Irrigation planned major irrigation systems in Nepal are Ramdi Irrigation project in Gnadak river system and Beni Ghat Irrigation project in Koshi river system. The possibility of the development is unclear at this time. In addition to that there are many other planned small size irrigation projects all over the country. Department of Irrigation seeks a possibility of irrigation use from the storage type generation projects such as the Naumure (W. Rapti) Project.

Figure 9.1-5 Planned Major Irrigations in Nepal

3) Planned Road Network

According to the Department of Road around 1,900 km are planned and under construction. In addition to that some upgrading projects such as Dhulikhel Sindhuli Bardibas Road Project, Kanti Lokpath Road Project, Road Network Development Project, and Road Sector Development Project are on going (See Table 9.1-5).

Source: Strategic Road Network 2011/2012 (DoR)

Name	Region	Length
Dhulikhel Sindhuli Bardibas Road Project	Central region	158 km
Kanti Lokpath Road Project	Central region	92 km
Kathmandu Valley Road Improvement Project	Central region	3.23 km
Road Network Development Project	Eastern region	
East West Highway Pavement Strengthening Component		140 km
Road Improvement Component		168 km
Feeder Road Construction Component		96 km
Road Sector Development Project	Far western region	297 km
	and Mid western	
	region	

Table 9.1-5Main road projects in Nepal

Source: Deartment of Roads

9.2 Scoping

Scoping table for the cumulative impact is prepared considering Hydroelectric power, Irrigation and road development. The Major impacts which would be accelerated by Hydroelectric power Projects are impact on water, forest, fishery and aquatic fauna (See Table 9.2-1). The water regulating effects accumulated by storage type HPP and Irrigations might cause serious impact on the wetland downstream. Because there are many protected area and protected species which depend on the wetland ecosystem near the Nepal and Indian border. The impact on migration fishes is also anxious by continued barriers in same river. Space crowning impact is also anxious because resettlement action itself might cause some impact on host communities and it will be accelerated by road construction. Noise and Global warming might be accelerated but they are excluded because main causes would come from road developments. Then (1) Water regulation effects, (2) Barrier effects on fish migration, and (3) Space crowning effects are selected for cumulative impact assessment.

T.	E	xisting		Р	T (1		
Items	Hydropower	Road	Irrigation	Hydropower	Road	Irrigation	Total
Air quality	-	+		+	++	+	+
Noise, Vibration	-	+		+	+++		(+++)
Water	+		+	+++			+++
Soil	-	+		+	++		(++)
Waste	-	-		+	-	+	
Global Warming	-	++		-	+++		(+++)
Resettlement	-	-		++	+	+	++
Agriculture	-	-		++	-	+	++
Fishery and Aquatic Fauna	++	-	+	+++	-	+	+++
Tourism	+	-		++	-	+	++
Forest	-	+		++	+++	+	+++
Protected Area	-	+		++	++	+	++
Terrestrial Fauna	+	+		++	++	+	++

 Table 9.2-1
 Scoping Table for Cumulative Impact

+++: Major impact, ++: Middle impact, +: Minor impact, -: No impact,

(): Main impactors are not Hydropower

9.3 Impact Assessment

(1) Water Regulation Effects on Eetland Ecosystem

In order to see the cumulative effects on water regulation, all the existing and planned storage type hydroelectric power plants were identified and the catchment area was measured by river systems (See Table 9.3-1). The Karnali river system has two planned projects in different tributaries. If all the two projects are developed, the water flow from 3.2% of the river basin will be regulated. As a result, the Bardia National Park Buffer Zone located downstream and 28 protected species might be affected. The Rapti river system has two planned hydroelectric power plants. If two projects are developed, the water flow from 66.6% of the river basin will be regulated and the Banke National Park Buffer Zone and 15 protected species might be affected. The Gandaki river system has four existing storage type project and six planned storage type projects. If all the four projects are developed, the water flow from 64.6 % of the river basin will be regulated. It might infract the Gandaki Irrigation and Power Project Agreement (1959) (Table 9.3-2) signed between Nepal and India. In addition, the Chitwan National Park located downstream and 27 protected species might be affected. In the Koshi river system, there are two planned projects in different tributaries. If all the projects are developed, the water flow from 17.8 % of the river basin will be regulated. It might infract the Kosi Project Agreement signed between Nepal and India. The Koshi Tappu Wildlife Reserve and 15 protected species might be also affected.

River System	Water Shed Area km2 (A)	Name	Condition	Catchment * Area (B)	Rate	(B/A)	International Treaty	Downstream Protected area	Protected Species recorded downstream area
Kalnari	42,890	Chera-1	Candidate	809	1.9%	3.2%	-	Bardia	28 (CR 1, EN 7, VU 10, NT 10)
		Nalsyau Gad	Candidate	572	1.3%			National Park Buffer Zone	Pygmy Hog (CR), Asian Elephant (EN), Hog Deer (EN), Ganges River Dolphin (EN), Dhole (EN), Royal Bengal Tiger (EN), Fishing Cat (EN), Hispid Hare (EN), Greater One-horned Rhino (VU), Swamp Deer (VU), Sambar (VU), Four-horned Antelope (VU), Clouded Leopard (VU), Sloth Bear (VU), Smooth-coated Otter (VU), Himalayan Black Bear (VU), Asian Small-clawed Otter (VU), Marbled Cat (VU)
Rapti	5,150	Naumure (W. Rapti)	Candidate	3,430	66.6%	66.6%	-	Banke National Park Buffer Zone	15 (CR 0, EN 3, VU 4, NT 8) Asian Elephant (EN), Royal Bengal Tiger (EN), Fishing Cat (EN), Sambar (VU), Sloth Bear (VU), Smooth-coated Otter (VU), Himalavan Black Bear
	5,150	Madi	Candidate	(764)	(14.8%)				(VU)
Gandaki	31,100	Kulekhani III Headwork	Construction	21	0.1%	64.6%	Gandak Irrigation and	Chitwan National Park	27 (CR 1, EN 7, VU 9, NT 10) Pygmy Hog (CR), Asian Elephant (EN), Hog Deer
		Andhi Khola	Candidate	475	1.5%		Power Project		(EN), Ganges River Dolphin (EN), Dhole (EN), Royal Bengal Tiger (EN), Fishing Cat (EN),
		Lower Badigad	Candidate	2,050	6.6%		Agreement		Hispid Hare (EN), Greater One-horned Rhino
		Budi Gandaki	Preparation Stage of Construction	16,066	51.7%				Antelope (VU), Clouded Leopard (VU), Sloth Bear (VU), Smooth-coated Otter (VU), Himalayan Black Bear (VU), Marbled Cat (VU)
		Tanahu	Preparation Stage of Construction	1,474	4.7%				
Bagmati	2,700	Kulekhani No.1	Existing	579	21.4%	21.4%	-	-	12 (CR 0, EN 2, VU 2, NT 8) Asian Elephant (EN), Chinese Pangolin (EN), Sambar (VU), Himalayan Black Bear (VU)
Koshi	54,100	Dudh Koshi	Candidate	4,100	7.6%	17.8%	Kosi Project Agreement	Koshi Tappu Wildlife Reserve	15 (CR 0, EN 5, VU 3, NT 7) Asian Elephant (EN), Wild Water Buffalo (EN), Ganges River Dolphin (EN), Dhole (EN), Fishing Cat (EN), Smooth-coated Otter (VU), Himalayan Black Bear (VU), Binturong (VU)

Table 9.3-1 Existing and Planned Storage-type Major Hydroelectric Power Projects

*: The figures in () means that the area is included in Noumure's catchmet area.

(Vide clause 9 of the original agreement signed on December							
Month	Western Canal system and power house in Nepal	Eastern Canal system and power house in India	Total				
January	197	129	326				
February	173	110	283				
March	169	105	273				
April	163	123	286				
May	234	226	460				
June	317	396	713				
July	432	396	828				
August	424	396	821				
September	424	396	821				
October	455	400	854				
November	314	375	688				
December	295	263	558				

Table 9.3-2 Schedule of Water Requirements of the Gandak Project in Cumecs

(2) Barrier Effects on Migration Fish

From ichthyological point of view, the rivers which have continuous barriers seem to be difficult for them to inhabit. Especially, the long distance migration fishes need access to the high mountain area with cold water that is suitable for spawning. Most of the IUCN red list fish species in Nepal are cold water migration fishes. Currently most of the existing major barriers are concentrated in the Gandaki and Koshi river systems. On the other hand, eight other main river systems are barrier free (See Table 9.3-3, Figure 9.3-1, Figure 9.3-2, and Figure 9.3-3). However, seven rivers of them are not reaching the high mountain area. Only the Karnali river system is reaching cold water area. Some of the existing barriers have fish ladders but some of them do not have any mitigation. Because of lack of data, actual barrier effects and mitigation effects are not clearly identified. But in case all the planned HPP and irrigation projects will be developed, it might cause serious impact on fish diversity in Nepal.

River System	Exist	ing	Ple	anned	Const.		Survey L	icense	
-	HPP	Irrigat	HPP	Irrigatio	license	Over	25-under	1-under	Under
		ion		n		100MW	100MW	25MW	1MW
Mahikali	1	2	0	0	1	0	2	5	3
Mahana	0	0	0	0	0	0	0	0	0
Kandra	0	0	0	0	0	0	0	0	0
Karnali	0	0	2	0	0	15	5	26	16
Babai	0	2	0	0	0	0	0	0	0
Rapti	0	2	2	0	1	0	0	3	3
Banganga	0	0	0	0	0	0	0	1	0
Danau	1	0	0	0	0	0	0	0	7
Gandaki	19	0	10	1	24	9	28	68	72
Bakaiya	0	0	0	0	0	0	0	0	1
Bagmati	0	1	0	0	0	0	0	6	4
Kamala	0	0	0	0	0	0	0	0	0
Koshi	6	1	7	1	18	5	15	52	52
Ratuwa	0	0	0	0	0	0	0	0	1
Kankaimai	1	1	0	0	2	0	1	8	2

Table 9.3-3Number of Existing and Planned HPP in Each River Basin

Figure 9.3-1 Existing and Planned Barrier in Karnali River System

Figure 9.3-2 Existing and Planned Barrier in Gandaki River System

Figure 9.3-3 Existing and Planned Barrier in Koshi River System

(3) Space Crowning Impact on Forest Ecosystem

The impact on forest ecosystem will be accelerated by road construction together with HPP and irrigation projects. The high risk areas are the Bajhang District in the Far-Western region, Mugu District, Humla District, Kalikot District, Jajarkot District in Mid-Western region, Myagdi District, Kaski District, Lamjung District in Western region, Rasuwa District in Central region, and Solukhumbu District, Sangkhuwasabha District, Taplejung District in Eastern region. Without appropriate control, encroachment, irrigal logging, irrigal hunting, and irrigal fishing might expand around the projects concentrated area.

Figure 9.3-4 Land Use and Existing and Planned Projects (West)

Figure 9.3-5Land Use and Existing and Planned Projects (Center)

Figure 9.3-6 Land Use and Existing and Planned Projects (East)

Chapter 10 Mitigation Measures

10.1 Mitigation for Individual Project

(1) Chera-1 Project

One of issues of concern in the Chera-1 Project is compensation for the resettlements. A survey should take enough time for more than 550 resettlements and be sure to equality for the people during negotiation. If possible, whole villagers will be able to move to same area with their culture. A survey for the 60 km transmission line should also take enough time.

(2) Lower Jhimruk Project

The Lower Jhimruk Project needs detail biological survey in EIA because a relatively high number of important species are identified. And important forest and grass land as habitat for the wild life should be identified. The negotiation process for the resettlement should be in a careful for the ethnic minority even if the number of resettlement is around 200. The compensation for the income from agriculture and fishery should be considered including vocational training.

(3) Madi Project

The Madi Project needs detail biological survey including fish survey and careful mitigation measures in EIA, because floral diversity and the number of important fish species are relatively high.

(4) Nalsyau Gad Project

Preliminary transmission survey will be required before EIA or IEE for the transmission line, because the route is around 112 km long. Water regulation plan during the rainy season and dry season should be carefully determined in order to minimize the impacts on the protected area and protected species. The household survey for the resettlement should take enough time because it counts around 300 households.

(5) Naumure (W. Rapti) Project

The Naumure Project needs detail biological survey in EIA, because 8 km² forest land will be submerged and it will cause habitat loss for the terrestrial fauna. Vocational training for the people who cannot live on farming might be required because more than 6 km² farm land will be lost.

(6) Lower Badigad Project

The Lower Badigad Project needs detail biological survey in EIA because a relatively large number of important mammals and fishes are identified. Relocation area for the 1,500 households should be considered in the early stage of designing. Water regulation in the rainy season and freshet rate in the dry season should be carefully examined considering the impact on protected area and protected species.

(7) Andhi Khola Project

There is an 11 MW existing off-grid HPP in the reservoir of the Andhi Khola Project. If it has to

be stopped for the construction, alternative electricity supply to the local people should be considered. Not only provision of settlement area for more than 500 resettlements, but also some income compensation should be considered for the affected retailing store.

(8) Dudh Koshi Project

A bit wider area of mammals and birds survey will be required in order to identify the migration route in EIA study. The offset mitigation for fish should be considered at the early stage of the EIA study. The number of resettlement is low, but the farm land in the reservoir area is very fertile. It means income compensation for many farmers might be required. The existing EIA report was made based on the data of 1997 and it was not approved by the Ministry of Environment. Then EIA study should be conducted again and get certificate by the Ministry of Environment.

(9) Kokhajor-1 Project

Forest compensation should be considered carefully in EIA study. The study for resettlement should be taken care of each ethnic minority group, even if the number of resettlement is 200, which is relatively low.

(10) Sun Koshi No.3 Project

Compensation process would be critical for the Sun Koshi No.3 Project, because the number of resettlement will be more than 1,500. In addition, there are some accommodations for the tourists. The alternatives of the 15 km national highway which will be submerged in the reservoir area should be also prepared. Vocational supporting and entrepreneurial capability building might be needed for the farmers and fishermen who lose their income source.

10.2 Mitigation for Cumulative Impact

Mitigations for cumulative impact often involve a number of ministries and the mitigation that can be implemented on project-by-project basis is very few. Followings are the suggestions recommended for three impacts.

(1) Water Regulation Effects on Wetland Ecosystem

In case there are a number of projects in a same river system, the impact by water regulation will be significant even if the water regulation rate of each project is not so high. The following are some proposals to reduce even a little such effect.

1) Re-regulating Reservoir

Re-regulating reservoir is one of the solutions to average daily variation of water discharge. It will maintain downstream aquatic ecology and avoid risk to human and wildlife. But it might be another barrier for fishes and it cannot control annual variation.
2) Coordinate Operation

Coordinated operation of several storage-type hydroelectric power plants in the same river system might be able to reduce the cumulative impact. In a place where accidents by sudden flooding are concerned, it careful control of water regulation timing and rate are recommended.

3) Strategic Watershed Development Control

Strategic watershed planning for each watershed with its conservation target is needed coordinating with the Ministry of Energy, Ministry of Irrigation, Department of Water Supply, Department of Soil Conservation and Watershed Management, Ministry of Forests and Soil Conservation and other sectors. The acceptable water regulating revel should be identified from the point of view of wildlife conservation. Then total volume control can be planned.

(2) Barrier Effects on Migration Fish

Hydropower, irrigation, and water supply will block the fish migration. Many planned barrier will accelerate higher risk. Followings are some suggested mitigations.

1) Minimizing the Number of Barrier

The fewer number of barriers are better for fishes. Even if fish ladder or other mitigations are installed, they are not perfect mitigation which restore rivers to the original condition. To minimize the number of barrier, constructing limited number of storage type HPPs seems better than the construction of many small ROR type projects.

2) Barrier Free River

Keep at least one or two tributary river corridors in each of west, center and east areas for the maintenance of the key Himalayan fish species. For example the Thuli Gad and Barun Khola in the Karnali system, the Lundri Khola in the Rapti system, the Badigad Khola and Budhi Khola in the Gandaki system might be candidate rivers. However it is recommended to identify these barrier free rivers once the fish conservation plan has been developed. This plan will be developed based on a nationwide fish census to be hereinafter described.

3) Fish Ladders and Hatchery

Fish ladders/hatchery are not perfect mitigations but it is better than doing nothing at all. Legalizing provision of fish ladders for projects with less than 30m high dams (hydropower, irrigation, or water supply projects) not only for new projects but also existing projects is recommended. Legalizing fish hatchery for delivering affected fish resources for all the projects with above 30 m high dams is also recommended. If possible, delivering fish resource system from existing and planned fish hatchery might be effective after detailed examination of the genetic lineage between the rivers.

4) Fish Migrate-able Flashing Gate

Some new barrier will attach sediment flushing gates at the bottom to the middle level of the dam. If some additional device might be attached on the gate, fishes might be able to migrate after flushing.

5) Nationwide Fish Census

Conducting a nationwide fish census is recommended in Nepal. There is no reliable fish distribution database and it is difficult to see actual impact and effect of existing barriers. In order to identify hot spots for fish, a periodic nationwide fish census survey is highly recommended.

6) Fish Conservation Plan

Formulation of a fish conservation plan is required before Nepali fish diversity falls into critical situation. Not only the cumulative barrier effect but also invasion of exotic fishes to Nepal is anticipated. Based on the fish monitoring result, fish conservation plan should be prepared. This fish conservation plan might be useful for an appropriate watershed management. Formulating the fish conservation plan is necessary to accomplish sustainable development and the Directorate of Fisheries Development and international NGOs will take big roles for this formulation.

(3) Space Crowning Impact on Forest Ecosystem

1) Strategic Watershed Development Control

Strategic watershed development control is required before deregulated development and forest loss. Even if it is outside of the protected area, some forests used for migration corridor and some high grade ecosystem remain sometimes. Such kind of places should be identified and informed to the development department.

2) Assured Tree Planting

The forest norm in Nepal is giving options to the developer; planting trees or paying compensation fee to the Department of Forest. But sometimes, the compensation fee is not correctly used to planting trees, because of lack of planting area. In order to assure the planting trees, developer should be responsible for tree planting from start to finish.

3) Construction Road Management

Construction of road and access roads for hydropower plant might become a trigger of illegal logging. In case the roads connect to high value forests, it should be controlled carefully.

4) Mitigation specialized organization

Installation of a mitigation organization might be useful. Many HPPs including small size will be developed in the few decades in Nepal. But it is a bit difficult to impose implementation of effective environmental mitigation on each project owner, because they are not a professional of biology. In some cases, not only the planning of mitigation measures but also monitoring and operation are not able to be expected by project owners. In order to solve these problems, establishment of organization specialized in mitigation which covers all the mitigation planning and monitoring works and which is paid by project owners is required. With this kind of organization, it can concentrate on rehabilitation of heavily damaged area effectively and efficiently.

Chapter 11 Monitoring Methods

11.1 Environmental Monitoring for Individual Project

Environmental monitoring for existing projects were planned to be conducted by the project owner and audited by Ministry of Environment, Ministry of Energy, DOED, and NEA. These monitoring plans are documented and scheduled in the EIA and EMP (Environmental Management Plan) approved by Ministry of Environment. But unfortunately the actual monitoring and audits during construction are not so fully conducted in Nepal. It is very rare to see environmental monitoring report during operation. Some new mechanisms for the compliance should be established.

11.2 Environmental Monitoring for Cumulative Impact

There is no plan for the monitoring system for cumulative impact in Nepal. But fortunately most of the main watersheds have national parks down end of the river. Then periodically monitoring system on river flow, water quality, aquatic fauna, and wetland species communicating with watershed development would be promised.

Chapter 12 Stakeholder Meeting

During the Study period, a total of three stakeholders meetings have been conducted at Kathmandu, inviting mass media, representatives of government agencies and political parties. At the second and third stakeholders meetings, holding of stakeholders meeting was informed to related districts in which promising projects are located. However, there were no participants from these districts.

In addition, interviews and hearing were conducted with a wide range of stakeholders such as the western regional office of Pokhara, ministries related to environment and forest, SEA report evaluation meeting members composed by NGOs, WWF, each related district offices and residents.

12.1 The 1st Stakeholders Meeting

On February 17, 2012, the first stakeholders meeting that was co-hosted by NEA and the Study Team

was organized in Kathmandu. 51 participants including the Study Team were recorded for this meeting.

The purpose of this stakeholders meeting was to enable the stakeholders to understand the objective, goal, study method and schedule, etc. of the Study, and to obtain comments on the appropriateness of evaluation items. In the meeting, the Study Team introduced about 67 candidate projects and explained the evaluation items with which the candidate projects are evaluated. Collection of comments by a questionnaire survey was also conducted to understand which evaluation items the stakeholders put importance on.

The main opinions and suggestions raised during the meeting are as follows.

No.	Name	Comment from Stakeholder	Reply by NEA / JICA Study Team
1	Mr. Ishwot Onta Nepal Council for Arbitration / Jalsrot Vikas Sanstha	Positive aspects of storage-type hydroelectric projects should be included and clarity on benefit sharing aspects.	[The Study Team understands that this comment is about multi-purpose storage-type projects.] Since this is a MP study on storage-type hydroelectric power development, only the benefit of hydroelectric power generation is considered. The Study Team understands that some projects will be able to be multi-purpose projects. Detail of each of these projects should be studied in another study and optimized as a multi-purpose project.
2	Dr. Rameshanada Vaidya International Centre for Integrated Mountain Development	Analysis of change in snow and ice caps is essential under the proposed project. The issue of GLOF and change in snow cover due to climate change impact should not be overlooked. The impact of climate change on hydroelectric power and capacity of hydroelectric power stations must be assessed. The fluctuation of flow both up and down must be studied in depth.	Effects of climate change on GLOF, snow cover, river flow, etc. are not considered in this MP study. In the feasibility study, etc., of each project in the next stage, effects of climate change on them will be taken into consideration, if necessary and possible.
3	Mr. Ratneshwor Lal Kayastha Madhesi Janadhikar Forum Nepal	The criteria for selection of candidate projects are normal. Since the situation of Nepal is different from other countries and we need urgent power, the criteria used in Nepal should be different from others considering this situation. Because of this reason, less weightage should be given on environmental and social aspects compared to technical and economic ones.	In the evaluation of 31 candidate projects and also in the evaluation of 10 promising projects, evaluation cases that have less weight for impacts on natural and social environment were also considered as alternative cases.
4	Mr. Surya Man Shakya EIA Association of Nepal	SEA is very timely and urgent for Nepal. Some projects should be built in remote and less developed areas of Nepal.	The 67 candidate projects were located in the whole country, but the project location itself was not one of evaluation items.

Table 12.1-1Comment in the First Stakeholders Meeting and Reply or Action Taken by NEA
and Study Team (Tentative)

No.	Name	Comment from Stakeholder	Reply by NEA / JICA Study Team
			As a result of evaluation, the locations of the ten promising projects are, one in the Eastern Region, two in the Central Region, two in the Western Region, two in both the Western and Mid-Western Regions, and three in the Mid-Western Region.
5-1	Mr. Rabin Shrestha World Bank	The level of study in each stages varies, for example, some desk studies are more elaborative and in depth than feasibility study. So based on the level of study alone, criteria should not be fixed. The level and details of information in study are important aspect.	The level of study is used for evaluating the lead time to construction, not for evaluating the depth of study.
5-2		For different hydroelectric power projects system and operative perspectives must be taken in consideration.	[The gist of this comment is not clear.]
5-3		Export potential and power exchange between Nepal-India should also be taken for consideration.	Since the objective of this MP study is to meet the domestic demand, export to India is not considered. However, import from India is considered as one of power sources to meet the domestic demand.
5-4		Though the storage master plan is proposed, the ROR master plan is not existence and it is necessary to integrate this master plan with ROR master plan.	In this study, RORs that are under construction or that are already committed are considered as specific projects. But other RORs are not considered as specific projects like as the storage projects in this study. MP of ROR will be prepared by another study in the near future, and then that will be integrated with the results of this study.
5-5	Mr. Rabin Shrestha (cont.)	The other usage of reservoir projects like irrigation, navigation, etc., is missing in selection criteria.	The Study Team understands reservoirs are able to be used for other purposes. However, since this is a MP study on hydroelectric power generation, importance was put on power generation in the evaluation criteria. Possibility or detail of multi-purpose development of selected projects will be studied individually before the implementation of these projects, and they will be optimized as multi-purpose projects
6	Mr. Kul Man Ghising Chilime Hydroelectric Project	Seasonal energy depends on the level of feasibility study, and plan load factor which should be taken in consideration by the Study Team for this study.	Monthly energy production was calculated, and then both the annual energy and the dry season energy were evaluated. In the demand forecast, the load factor was estimated at 52% by consultation with NEA.

No.	Name	Comment from Stakeholder	Reply by NEA / JICA Study Team
7	Mr. Sanjeev Raj Rajbhandari NEA	Like master plan for storage hydroelectric projects, it is urgent to develop master plan for ROR.	[See 5-4]
8	Mr. Kiran Shrestha Chilime Hydroelectric Project	Cumulative impact assessment is important in storage-type projects.	Cumulative impact is considered in the SEA.
9-1	Mr. Shambhu Ghimire Ministry of Home Affairs	Safety and security are important aspects to be included in selection criteria.	Those of technical items like GLOF and geological conditions are considered in the criteria.
9-2		Projects to be completed in short time should also be taken as criteria.	Lead time to implementation or commercial operation is used as one of evaluation criteria.

The questionnaire survey was conducted on all participants about 1) criteria which were to exclude not appropriate project and to select the candidate projects and 2) the weightage of Evaluation Criteria with which candidate projects would be evaluated. Total of 32 participants answered to this questionnaire.

Regarding the criteria which were to exclude not appropriate project, the majority of respondents answered that all 7 items showed by Study Team were appropriate. In addition, impact on agriculture, on tourism and on other technical and economical criteria were suggested as criteria which should be considered.

Regarding the weightage of criteria with which candidate projects would be evaluated, the proportion between technical conditions, efficiency (economical conditions), natural environment and social environment were 38:25:16:15 respectively in response excluding NEA and the Study Team members. On the other hand, NEA assumed an appropriate proportion is as 42:23:14:16 respectively, it showed NEA put 65 % wight on technical and economical condition. The method of weightage was varied by respondents.

In response to the results described above, the Study Team decided to study about 3 cases putting different percent on technical/economical condition and natural/social environment. The sensitive analyses were conducted about the following three cases, 1) technical/economical condition: natural/social environment equal 50:50, 2) technical/economical condition: natural/social environment equal 40:60.

Figure 12.1-1 Weightage of Evaluation Criteria

In the questionnaire, rating of the evaluation criteria on a scale of 1 to 5 was requested about the criteria with which candidate projects would be evaluated. The scale of 5 represented very important and the scale of 1 represented less important.

The following figures are summary results of questionnaire.

→ NEA → Others → Study Team

Figure12.1-2 Summary Result about Technical and Economic Conditions

Figure12.1-3 Summary Result about Social and Natural Environment

The agenda and the list of participants of the 1st stakeholders meeting are attached as Table 12.1-2 and Table 12.1-3 at the end of this section.

No.	Time	Program	Speaker/Presenter
1	9:30-9:35	Welcome address	Mr. U.D Bhatta,
			GM, Project Development Division, NEA
2	9:35-9:45	Opening address	Mr. Hari Ram Koirala
			Secretary, Ministry of Energy,
			Government of Nepal (GoN)
3	9:45-10:15	Background of the project	Mr. Lila Nath Bhattarai
			Director, PDD, NEA
			Mr. Toshifumi Serizawa
			JICA Study Team
4	10:15-10:30	Scope of the study and	Mr. Takashi Mimura,
		present status	Leader, JICA Study Team
5	10:30-11:15	SEA and Tentative Selection	Ms. Akiko Urago,
		Criteria	JICA Study Team
			Ms. Keiko Otoguro,
			JICA Study Team
6	11.30-12:00	Discussion	All Participants
7	12:00-12:15	Concluding Remarks	Mr. Yoshihiro Nomura,
			Embassy of Japan in Nepal
			Mr. Toru Kobayakawa
			JICA Headquarters, Tokyo
8	12:10-12.15	Vote of Thanks	Mr. Tika Ram B.C
			Officiating Managing Director, NEA

 Table12.1-2
 Program of the 1st Stakeholders Meeting

Category	Name	Organization/Department	Position
Ministry	Shambu Ghimire	Ministry of Home Affairs	Under Secetary
and relevant	Hari Ram Koirala	Ministry of Energy	Secretary
Organization	Sanjay Dhungel	WECS	Senior Divisional Engineer
		(Water and Energy Commission Secretariat)	
	Dinesh Napit	DMG	
	Saroj Kumar Upadhaya	Cemeca HRA	Ex.Chairman
	Ishwor Onta	Cup NEPAC/JVs	Chairman
		(Nepal Council for Arbitration / Jalsrot Vikas	
	Ram Sharma Doudal	Survey Dept	Chief Survey Officer
NGO	Ramehananda Vaidya		Senior Advisor
NUO	Kamenananda Valdya	(The International Centre for Integrated	Senior Advisor
		Mountain Development)	
	Dipak Aryal	NEFEJ / Radi Sagarmatha	Reporter
		(Nepal Forum of Environmental Journalists)	
Association	Anuradha Sharma	Nepal Engineer Association	G.S
Institution	Surya Shrestha	SCHEMS	Protessor
Media	Tamang A	Naya Nepal	Manager
	Ramesn Gnimire	Chanakya	Editor
	Durga Dhakar	NEON (National Employees Organization of Nepal)	
	Jguli Ram Than	NEON	Treasurer
Donors	Gopal C Joshi Subedi	RERL/UNDP	Renewable Energy Advisor
	1	(Renewable Energy for Rural Livelihood /	
		The United Nations Development Program)	
	Dr. Narayan Chaulagain	GIZ	Deputy Program Manager
	Shyamal Shrestha	International Finance Corporation	Operations Analyst
	Rabin Shrestha	WB	Sr.Energy Specialist
Parties	Ratneshwor Lal Kayastha	MJF-N (Madhesi Janadhikar Forum-Nepal)	
	Basanta man Singh	R.J. P (The Rastriya Janashakti Party)	Asst. Secretary
Others	R.M Shrestha	Nepal Consult (P)Ltd	Sr. Engineer/ED
	M.L Shrestha	MZT	GM
Embassy	Yasuhiro Nomura	Embassy of Japan	Secretary
JICA	Toru Kobayakawa	JICA Tokyo	Advisor
	Kenichiro lizuka	JICA Nepal Office	Representative
	Sourab Rana	JICA Nepal Office	Program Officer
	Y UKIYOSHI OZAKI Takashi Mimura	JICA IICA Study Teem	Expert
	Hirvoyasu Akaika	JICA Study Team	Leader
	Madoka Harada	IICA Study Team	
	Akiko Urago	IICA Study Team	
	Kavoko Kurisaki	JICA Study Team	
	Eiji Tsuchiya	JICA Study Team	
	Toshifumi Serizawa	JICA Study Team	
	Keiko Otoguro	JICA Study Team	
NEA	Annu Rajbhandare	NEA	Deputy Manager
	Anil Raj Bhandary	NEA	Manager
	Bisme Dhij Joshi	NEA	Manager
	Buddha K. Manak	NEA	Director
	Damodar Bhakta	NEA	Manager
	G.K Lohie	NEA	Manager
	Jagadishwor Man Singh	NEA	Director
	Keshab Raj Bhatta	NEA	
	P.K Thakur	NEA	Manager
	Pradeep Manandhar	NEA	Manager
	Prem Chndra Gupta	NEA	Asst. Manager
	Sagar Sunal		Department manager
	Ieeka Kam B.C		
	Opendra Dev Bhatta		General Manager
	Amogh Manandhar	NEA	Deputy Manager

Table 12.1-3 Part	icipant List o	of the 1st	Stakeholders	Meeting
-------------------	----------------	------------	--------------	---------

Final Report Appendix 3 SEA Report

12.2 The 2nd Stakeholders Meeting

On November 28, 2012, the second stakeholders meeting that was co-hosted by NEA and the Study Team was organized in Kathmandu. 83 participants including the Study Team were recorded for this meeting.

In this second stakeholders meeting, the process of selecting 10 promising projects among the above 67 candidate projects and its results were explained. Preliminary reports of site survey of these 10 promising projects, draft of evaluation method of these projects were also explained. In the meeting, hearing and collecting the comments to understand the stakeholders' opinions about the evaluation items with which promising projects are evaluated.

The main opinions and suggestions raised during the meeting were as follows.

No.	Name	Comment	Reply or action by NEA / JICA Study Team
1-1	Mr. S. Lacoul Ministry of Energy	How are the selected 67 projects justified? Are they from master plan studies of Koshi/Gandaki/Karnali-Mahakali basis? There seems to be additional projects as well. Are there any projects conflict with these master plan studies and/or conflict with the licensed projects?	The 65 projects were selected by NEA and two projects were added later. These MP studies in the past are some of sources. Some projects had conflicted with licensed projects, but they were excluded from this study.
1-2		Other uses of regulated flow from reservoir have been ignored. But on the other hand, minor impacts such as fishery/tourism have been considered. Why major use such as irrigation has been ignored? In case of the Dudh Koshi and the Naumure Projects, irrigation use may be determining factor for implement ability of the project.	The Study Team understands reservoirs are able to be used for other purposes. However, in addition to that this is the MP study on hydroelectric power generation, it is not easy to evaluate each project quantitatively by the total benefits of power generation and other uses in the MP stage because it requires a lot of data and information. Accordingly, the benefit of promising projects were evaluated based on only hydroelectric power generation. Possibility (or detail) of multi-purpose development of these projects will be studied individually by another study before implementation of these projects.
1-3		The proposed alternative of Dudh Koshi by-passes Sun Koshi-Kamala diversion. So this alternative may not be acceptable form the point of view of irrigation because the irrigation use is very critical in these sites.	This alternative was selected from the viewpoint of power generation. Another alternative does not conflict with irrigation purpose, but its output is smaller. Coordination between power generation and irrigation should be necessary in the early stage to implement this project.
1-4		Regional balance (in national development) has not been considered. No reservoir projects	The 67 candidate projects were located in the whole country, but the project location itself was not one of evaluation items.

Table 12.2-1Comment in the Second Stakeholders Meeting and Reply or Action Taken by
NEA and Study Team (Tentative)

No.	Name	Comment	Reply or action by NEA / JICA Study Team
		in mid-western and far western region even by 2033.	As a result of evaluation, the locations of the ten promising projects are, one in the Eastern Region, two in the Central Region, two in the Western Region, two in both the Western and Mid-Western Regions, and three in the Mid-Western Region.
2	Mr. Sanjib Man Rajbhandari NEA	It is important to include the watershed condition in the evaluation criteria since we are talking about the storage project. Individual ideas may be implemented but may not represent the overall watershed condition.	There are many items that form the watershed condition. In the evaluation of promising projects, the impact on rare species and protected area in the downstream were evaluated. They are part of consideration of the watershed condition.
3	Mr. Dilip K .Sadaula Dept. of Forest and Soil Conservation	The study of watershed U/S of storage project is important and should be included in the evaluation criteria.	Effects of U/S watershed to the project like GLOF and sedimentation were included in the evaluation criteria.
4-1	Mr. Barna Bahadur Thapa Dept. of National Parks and Wildlife Conservation	No PAS one inside 10 Pas. There is no impact.	[The gist of the comment is not clear.]
4-2		What types of method do you use to take data around conservation area?	Data and information on National Parks, Important Birds Areas (IBA), Key Biodiversity Areas (KBA), etc. were obtained from published documents including websites.
4-3		Monitoring is important during construction and operation phases.	[Since this is common knowledge, It is not necessary to respond to this comment.]
5-1	Mr. Jayandra Tamrakar NEA	Seismicity and thrust/fault are interrelated. Therefore these can be taken as a single criterion.	Both the items are used for evaluating the effect of earthquake. Seismicity is evaluated by a matrix of area and seismic acceleration shown in the earthquake hazard map. Trust/fault is evaluated by the proximity to the location of project. In this study, the effect of earthquake is evaluated by these two criteria.
5-2		However, the proximity to the active regional and local faults is important. Make a classification range by project location from the point of view of distance from active faults, e.g., less than 5 km, 5-10 km, 10-15 km, etc., and give the weightage accordingly to these classification ranges.	The proximity to regional active faults were evaluated by classifying it into 4 classes, they are less than 1.6 km, 1.6 to 3.2 km, 3.2 km to 12.8 km, and more than 12.8 km. Regarding local active faults, the proximity was classified into 2 classes, they are less than 100 m and less than 1 km, then deduced points from the evaluation score.
5-3		Presence of calcareous rocks like limestone around the reservoir area should be considered. It can cause leakage from the reservoir.	Karstified calcareous rocks are permeable and cause leakage of reservoir water through reservoir area or dam site. In geotechnical evaluation of the 10 promising projects, water tightness was adopted as one of evaluation items for reservoir area and dam site. In

No.	Name	Comment	Reply or action by NEA / JICA Study Team
			evaluation of water tightness, distribution and feature of calcareous rocks are so important that they were investigated by field survey. When presence of calcareous rocks is confirmed, evaluation of water tightness was decreased except in case they are distributed in limited area and not karstified.
5-4		Has distribution of landslide in the catchment area been considered? This can cause serious impact on the reservoir capacity.	Distribution of landslide in the catchment area was not considered in the evaluation. This should be studied in the next stage.
6-1	Mr. Rabin Shrestha World Bank	The 10 promising projects should not be prioritizing problem in prioritize, but give an impression of good and bad.	Not only the ranking of projects themselves, but details of evaluation result of each evaluation item were described in the (draft) final report for all promising projects.
6-2		In these 10 projects, identify problem areas based on complexity in geology.	A project area is composed of sites such as reservoir, dam, headrace tunnel and power house. Important physical characteristics for those sites are water tightness and slope stability, etc., which are affected by geology such as faults, calcareous rocks. In the evaluation of the promising projects, each site was evaluated by selected physical characteristics. Problem areas based on complexity in geology mean potentially problem areas. These areas correspond to sites of low evaluation in this study. Physical characteristics of low evaluation indicate the kind of problems and geology to be studied in later stages.
6-3		Identify risk free projects and seek financial commitments.	The purpose of this evaluation is to identify projects with small risk. Seeking financial commitments is in the future stage of each project.
6-4		Order of development would create confusion.	[Since this is common issue in the implementation of projects of this kind, it is not necessary to respond to this comment.]
6-5		Financial plan of NEA in future revenue requirement.	[Since this is out of scope of this Study, it is not necessary to respond to this comment.]
7	Mr. Gyanendra Prasad Kayastha NEA	On the screening criteria of exclusive of storage projects, the rating of sediment load must be mentioned and it should be one of the criteria to reject projects if annual sediment load exceeds the value of middle mountain and high mountain.	[Definitions of "middle mountain" and "high mountain" are not clear.] The effect of sediment load should be evaluated by the lime of reservoir, not by the (rate of) sediment load itself. In the screening stage of this study, the life of reservoir was not considered, but in the evaluation of candidate project, it was one of evaluation items.
8	Mr. Sitaram Thapa National	Why the regulated water is not mentioned on evaluation items for project selection?	[Does "regulated water" mean the effects (both positive and negative) on the downstream area by regulating river flow, like

No.	Name	Comment	Reply or action by NEA / JICA Study Team
	Employees Organization of NEA		effect on irrigation system and hydroelectric power stations (both existing and planned), on fishery, and other natural/social conditions?] Effects of regulated water on the downstream area should be considered when a storage-type project is implemented. However, since a variety of data/information is required to evaluate these effects quantitatively, it is not easy to evaluate these effects in the MP stage in which a lot of projects have to be evaluated to select promising projects. Accordingly, these effects were not considered in this MP study. In the next stage, in the FS study of each project for example, the effects of regulated water should be studied quantitatively in some degree, and the project will be optimized including the effects on the downstream area.
9-1	Mr. Jayandra Shrestha NEA	Why regulating capacity of Naumure as 590 is taken as evaluation criteria for screening for storage project? River discharge is more than 1210 in dry season. Does not this mean against one basic purpose of storage project is making energy in dry season. The regulating capacity of 590 is less than river discharge and there is very few meaning as storage project.	[The unit of these two values is not clear. Is it MCM?] According to the result of our study, the effective storage capacity is 580 MCM and the annual inflow is 4,400 MCM, so the regulating capacity factor is 13%. The inflow for the four months (from mid-Dec. to mid-Apr. or from Paush to Chaitra) in the dry season is about 330 MCM.
9-2		Should not one legally of T/L be considered as one of the important evaluation items, considering its availability is importance.	[The gist of this comment is not clear.]
9-3		What is the purpose of considering three cases? How these case studies influence on selection or rating of projects?	There is no weight distribution which all people agree on. Accordingly, a technically oriented case and an environmentally oriented case were also considered. As a result, there was some difference in ranking but the effect was small for this degree of difference in weight distribution.
9-4		How the rating and weight are taken or determined in evaluation frame work?	[The gist of this comment is not clear.] The evaluation items and their weight were determined by discussion in the Study Team and with NEA by reference to those in the other studied in the pars.
9-5		It is suggested to have summary of socio economic parameters along with technical parameters.	[What do "summary of socio economic parameters" and "summary of technical economic parameters" mean?]
9-6		Construction period is also estimated the time of completion period for decision making.	[The gist of this comment is not clear.] In the selection of promising project, construction period is not considered. In the

No.	Name	Comment	Reply or action by NEA / JICA Study Team
			evaluation of promising, however, the construction period of each project was estimated and used for estimation of lead time. Since time for decision making is required for all projects, it is not considered in the evaluation criteria.

The Study Team collected stakeholders' opinions conducting a questionnaire survey. 45 participants answered to this questionnaire. According to its result, more than 75% of respondents confirmed that the evaluation criteria presented by the Study Team were appropriate.

In the questionnaire, rating of the evaluation criteria on a scale of 1 to 5 was also requested. The scale of 5 represented very important and the scale of 1 represented less important. In response to the results of the questionnaire, the rating was reviewed in the Study.

The following figures are summary results of rating.

Figure 12.2-1 Summary Result of Hydrology Rating

Figure 12.2-2 Summary Result of Geology Rating

Figure 12.2-3 Summary Result of Effectiveness Rating

Figure 12.2-4 Summary Result of Natural Environment Rating

Figure 12.2-5 Summary Result of Social Environment Rating

In response to the above results, regarding the evaluation criteria with which promising project would be evaluated, the weightage for categories, subcategories and all evaluation items under subcategories were reviewed. As a result, the weightage were given to hydrological conditions, geological conditions, lead time and effectiveness as 30:25:20:25 respectively. About natural environment and social environment, the proportion of weightage between impact on natural environment and impact on social environment equal 40:60.

In addition, the Study Team decided to conduct sensitivity analyses for 4 cases. An equal weight as 50 % put on each technical/economical conditions and natural/social environment in case 1, weight as 60 % put on technical/economical conditions in case 2, weight as 60 % put on natural/social environment in case 3 and weight as 75 % put on technical/economical conditions in case 4.

Figure 12.2-6 Cases of Sensitive Analysis

The agenda and the list of participants of the 2nd stakeholders meeting are attached as Table 12.2-2 and Table 12.2-3 at the end of this section.

No.	Time	Program	Speaker/Presenter
1	9:30-9:35	Welcome address	Mr. LilaNath Bhattarai
			Director, NEA
2	9:35-9:40	Opening address	Mr. Hari Ram Koirala
			Chief Guest
3	9:40-9:55	Background of the project	Mr. Sunil Kumar Dhungel
			Project Development Division, NEA
4	9:55-10:15	Evaluation of potential	Mr. Takashi Mimura
		projects and selection of	JICA Study Team
		promising projects	
5	10:15-10:55	Report on site survey at 10	Mr. Hiroyasu Akaike, Mr. Nobuo Hoshino, and
		promising projects	Ms. Akiko Urago
			JICA Study Team
6	11:10-11:30	Assigning weightage of 10	Ms. Keiko Otoguro
		promising projects	JICA Study Team
7	11:30-12:00	Discussion	All Participants
8	12:00-12:20	Concluding Remarks	Mr. Hisashi Hoshino,
			First Secretary, Embassy of Japan in Nepal
			Mr. Mitsuyoshi Kawasaki,
			Chief Representative, JICA in Nepal
9	12.30-12.40	Vote of Thanks	Mr. U.D. Bhatta,
			GM, NEA

Fable12.2-2	Program	of the 2	nd Stakeh	olders Meeting
-------------	---------	----------	-----------	----------------

Category	Name	Organization/Department	Position
Ministry	Hari Ram Koirala	Ministry of Energy	Secretary
and relevant	Moti B. Kunwar	Ministry of Energy	Joint. Secretary
Organization	Srirajan Lamsal	Ministry of Science, Technology and	Asst. Secretary
	5	Environment	
	Purna Ghimire	Ministry of Defense	Section Officer
	Jaya Kumar Katuwal	Ministry of Local Development	Account Officer
	Saroj Kumar Uphadya	Nepal Engineering Council	Vice Chairman
	Dhanbir Yadav	Department of Hydrology and	Engineer
	A TT 11	Meteorology	
	Anupa Upadnya	(Department of Electricity Development	Director General
	Barna Bahadur Thana	Department of National Park and	Under Secretory
	Barna Banadar Thapa	Wildlife Conservation (DNPWC)	Childer Beeletory
	Dilip Sadank	Department of Soil Conservation and	SDEG
	-	Watershed Management	
	Krishna Bahadur Katwal	Department of Local Infrastructure	Engineer
		Development and Agriculture Roads	
	Damodar Bhakta	Trisuli 3B HEP	Project Manager
INCO	Shailendra Lal		Deputy Manager
INGU Association	Ramesn Adnikari	Nonal Engineering Association	PU Mambar
Institutions	Kommi Paudei	School of Environmental Management	Director
institutions	Sulya Mali Shakya	and Sustainable Development	Director
		(SchEMS)	
Media	Dhurba Basnet	NEFEJ	GS
		(Nepal Forum of Environmental	
		Journalist)	
	Ashok Thapa	The Kathmandu Post (newspaper)	Sub – Editor
	Pitamber Sigdel	Annapurna Post (newspaper)	Sr Reporter
Donors	Sitaram Bilashi	Gorknapatra	Reporter
Dollors	Di. Nalayan Chaulagani Rabin Shrestha	World Bank	Sr. Energy Sp.
	Shyamal Shrestha	International Finance Corporation	Operations Analyst
Parties	Basant Man Singh Adhikari	Rastriya Janasakti Party (R.J.P.)	Central committee member
Others	Ram Kumar Sharma	Nepal Environmenal and Scientific	Socio Economist
		Services	
Embassy	Hisashi Hoshino	Embassy of Japan	First Secretary
	Kailash Man Pradhan	Embassy of Japan	Program Manager
JICA	Kenichiro Iizuka	JICA Nepal Office	Representative
	Sourab Rana	JICA Nepal Office	Program Officer
	Yukiyoshi Ozaki Takashi Mimura	JICA IICA Study Team	Expert Loador
	Hirovasu Akaike	IICA Study Team	Leader
	Nobuo Hoshino	IICA Study Team	
	Akiko Urago	IICA Study Team	
	Takatsugu Okabe	JICA Study Team	
	Toshifumi Serizawa	JICA Study Team	
	Keiko OTOGURO	JICA Study Team	
NEA	Biswa Dhoj Joshi	NEA	Manager
	Sunil Kumar Dhungel	NEA	Director
	Upendra Dev Bhatta		General Manager
	Indra Prasad Neurope	NEA NFA	Sr. Vice President
	Sagar Suwal	NEA	Dept. Manager
	Gyanendra P Kyastha	NEA	Manager
	Khagendra Shahi	NEA	
	Lila Nath Bhattarai	NEA	Director
	Hara Hansha Bajracharya	NEA	Asst. Manager
	D. S. Paudel	NEA	Director
	Birendra K. Pathak	NEA NEA	General Manager
	Jayenura Shrestha Pradeen Thike		Director Manager
	riducep mike	TNE/A	Ivianagei

 Table 12.2-3
 Participant List of the 2nd Stakeholders Meeting

Final Report Appendix 3 SEA Report

Category	Name	Organization/Department	Position
	Rajeev Sharma	NEA	Director
	Bipnnanda Bijracharya	NEA	D. Manager
	Nireshwor Prasai	NEA	Dept. Manager
	Jagadishwor M Singh	NEA	Director
	Mahesh M. Shrestha	NEA	Deputy. Director
	Jayandra Man Tamrakar	NEA	Manager
	Uttam Amatya	NEA,	Manager
	Shanti Laxmi Shakya	NEA	Act. Director
	Amogh Manandhar	NEA	Dep. Manager
	Mohan Raj Panta	NEA	BOD
	Bhupendra Raj Gorkhali	NEA	Deputy Manager
	G. K. Lohia	NEA	Manager
	Tika Ram Paudel	NEA	Asst. Manager
	Keshab Raj Bhatta	NEA	Asst. General Manager
	Bishnu Malla	NEA	D. Manager
	Manju Lal Shrestha	NEA	Asst. Engineer
	Ishwori Prasad Khatiwoda	NEA	Act. DMD
	Gosai K. C.	NEA	Director
	Anil Rajbhandari	NEA	Manager
	Govind Raj Khanal	NEA	Director
	Mohan Shakya	NEA/ESSD	Director
		(Environmental and Social Studies	
		Department)	
	Raju Gyawali	NEA/ ESSD	Env. Specialist
	Lakshman Jha	NEA/PDD	Deputy Manager
		(Project Development Department)	
	Ram Hari Gautam	NEA/ PDD	A.C. Officer
	Janak Mahat Chhetri	NEA/PDD	Asst. Admin Officer
	Ram Kumar Thebe	NEA /Employee Union	Vice President
	Rudra Bdr. Adhikari	NEA/Engineering Services	Assistant Director
	Durga Prasad Dhakal	NEA/Nepal Rastriya Karmachari	
		Sangathan,	
	Sitaram Thapa	NEA /Nation Employee Organization	Chairman

The 2^{nd} Stakeholders Meeting received press coverage at least by 8 different newspapers in the next day of the Meeting. The following is one example of the press release in English-language newspaper.

		1	The Rising N	epal		
			BU	IST	NE	SS
2	14	South Bases States				and the new of the
More pro- By A Staff Reporter Rahmanda, Nov. 25 A Study has suggested by for 10 most viable reservoir-based hydropower projects in Nepal to address the videning difference between demand and supply of energy in sto.	reservoit the count Th selected conduct of the onviron impacts, Ao the prop generate	r-based projects in try. ese projects were a most viable after ing detail analysis ir geographical, meetal and social coeding to the report, a total of 2643-MW K	st to solution stricity. The projects have dividual capacity of around 0.400-MW. However, the NEA still in confusion in inging investment for the operation of these operations of these operations of the belownhown (300-MW),- okhajor (111.5-MW),	Ve powe Sunkoshi-III (336-MW), Lower Badigach (380.3-MW), Aandhikhola (180-MW), Cherai (148.7-MW), Lower Jhimruk (142.5-MW), Madi (199.8-MW), Naksalgadh (400-MW) and Naumure (245- MW), Out of these, the NEA has tiseff taken initiation for constructing Naksalgadh and	Characteristics Dudhkoshi projects. Out of these projects, Canadian International Water and Energy Consultancy has carried out a preliminary feasibility study of the Dudhkodi and BCA conducted the study of Sunkoshi, while NEA has carried out the preliminary feasibility study of rest of the projects.	
Electricity Authority (NEA)	S.N.	Projects	Capacity (MW)	Cost (US\$) in million	the capital, Energy Sceretary	A State of the second s
Cooperation Agency (IICA)	1	Dudhkoshi	300	830.3	the study would help in the	
has called for building 10	12	Koknajor	111.5	024	development of the reservoir-	
reservoir-based power projects-	4	Journ Dadigadh	330	114/	based hydropower projects.	Carl States of College
within a short period.	4	Anndivishole	190	450.2	"The country will be free from the problem of load-	The set of the set
JICA, which has been	6	Cherry I:	149.7	430.5	shedding during the dry season	
developing a master plan	7	Lower Ibimmit	140.7	3124	if these projects materialise,"	
for the development of	8	Madi	192.5	304.5	Koirala said.	NAMES OF TAXABLE PARTY.
projects at the national level.	0	Nakealoadh	400	7413	government would pay due	Domestic tourists enjo
had sorted out 10 most viable projects out of 67	10	Naumure	245	594.5	attention towards implementing those projects.	

Figure 12.2-7 Example of Press Release about 2nd Stakeholders Meeting

12.3 The 3rd Stakeholders Meeting

The Study team conducted the evaluation about the 10 promising project taking into consideration the comments raised in the 2nd stakeholders meeting and the result of site survey. With the purpose to sharing the results of the Study and the evaluation of 10 promising projects,

On February 13, 2013, the third stakeholders meeting that was co-hosted by NEA and the Study Team was held in Kathmandu. 107 participants including the Study Team were recorded for this meeting.

In this meeting, the result of power demand forecast and the evaluation results of promising projects taking into account the comments collected in the 2nd stakeholders meeting were explained. The opinions were collected from stakeholders about the points which should be carefully noted for making the master plan of storage type hydroelectric power development.

The main opinions and suggestions raised during the meeting were as follows.

No.	Name	Comment	Reply or action by NEA / JICA Study Team
1	Mr. Sitaram Thapa NEA Employee Union	Value of regulated water was suggested to be considered as an evaluation indicator when ranking the project during the 2nd stakeholder meeting. But it seems that it has not been considered and without its consideration, the project cannot consider technically, legally and practically feasible.	As described in No. 8 in the Q&A of the 2nd SHM, the value of regulated water was not considered in this study because a variety of data and information is required to conduct quantitative evaluation. This evaluation should be conducted in the FS stage of each project.
2-1	Mr. Shriranjan Lakoul Ministry of Energy	Whether the INPS Plan is covered or not in Demand Forecast?	[What is "Integrated Nepal Power System Plan"? What is the relation between the INPS plan and demand forecast?]
2-2		Hydro combination- is 100 % hydro system reliable?	It is the basic policy whether to rely about 100% on hydro power or to supply by thermal power to some degree. Currently, about 7.5% of the total installed capacity is thermal power (diesel), but it has been used very little because its generation cost is very high. Taking into consideration the fuel supply condition in the country, is it realistic to make a policy to develop a significant capacity of new thermal power generation in the next 20 years? Accordingly, the Study Team proposes that the power expansion plan in this study does not consider new thermal power generation but it adopts relatively large reserve margin or small LOLP. Regarding wind power and solar generation, they are suitable for electrification in small areas, but they will be one of complementary power sources in the INPS.
2-3		Value of irrigation water to be considered- also suggested in 2nd Stakeholder Meeting.	As described in No. 1-2 in the Q&A of the 2nd SHM, in addition to that this is the MP study on hydroelectric power generation, it is not easy to evaluate each project quantitatively by the total benefits of power generation and other uses in the MP stage because it requires a lot of data and information. Accordingly, the benefit of promising projects were evaluated based on only hydroelectric power generation. Possibility (or detail) of multi-purpose development of these projects will be studied individually by another study before implementation of these projects.
2-4		Issue of overlapping projects to be considered.	Since the power house of the Lower Jhimruk Project is planned in the reservoir of the Naumure Project, these two projects are not compatible. The study team recommends the Lower Jhimruk Project since this project has been ranked higher.

Table 12.3-1Comment in the Third Stakeholders Meeting and Reply or Action Taken by NEA
and Study Team (Tentative)

No.	Name	Comment	Reply or action by NEA / JICA Study Team
2-5		Geological criteria are given heavy weightage, why?	Geological conditions have impacts on construction cost. In the DD (and FS) stage, they are considered in project costs, duration of construction, etc. In the MP stage, however, since it is difficult to consider them in project costs, etc., geological conditions were used for one of qualitative parameters to evaluate the degree of difficulty to realize a project.
3-1	Mr. Mohan Shakya NEA	Since Nalsyau Gad is already in initiation process by the government, it should be reduced from the 10 priority list.	When the Nalsyau Gad Project was selected as one of promising projects, this project was not in the initiation process by the government.
3-2		GLOF risk project such as Dudh Koshi is ranked as 2nd, how?	In the FS of the Dudh Koshi Project in 1998, the impact of GLOF was evaluated. According this study, the peak discharge of GLOF are able to be controlled by the spillway designed for PMF. Further study should be conducted before implementing the project taking into consideration the latest data and information.
4-1	Mr. Subarnadash Shrestha SANIMA Hydropower	What is the proportion of Reservoir Consideration?	[What is "Reservoir Consideration"?]
4-2		Harmonization with previous studies/target to be made such as 10,000 MW by23,000 MW (WECS) to achieve the actual results.	The targets of these studies include power export. But, since this MP study is for domestic demand, the target was put on the result of demand forecast, 4,300 MW in FY2031/32.
4-3		Beneficial impacts to be highlighted by the study.	Both positive and negative impacts should be properly considered.
4-4		Compensation mechanism to the affected families /institutions to be proposed in the report.	In this study, the compensation cost of each promising project was estimated and taken into consideration in the project cost. The study team understands the importance of compensation mechanism, but since this is a very big issue and not only for hydroelectric power projects, this mechanism should be proposed in the study on this issue.
4-5		Tariff rate should also be proposed.	[See the answer to comment No. 5.]
5	Mr. Saroja Upadhyaya Nepal Engineering Council and HP Developer	The study should also analyze and indicate the investment potential / investor / development partners and recommend the tariff rate based on economic viability.	1. The financial and economic analyses of each promising project were done based on assumed tariff rates. Their results are presented in the report to facilitate discussions on the feasibility of these projects and expected returns on investments in them. The analyses were done assuming

No.	Name	Comment	Reply or action by NEA / JICA Study
			Team
			that these projects would provide wholesale electricity to NEA. The rages of wholesale tariff rates for attractive returns on investments are calculated based on the financial analyses performed for all the promising projects.
			Regarding the setting of NEA's retail tariff rates, the study teams considers the rates are subjects of policy and political considerations based on, for example, the economic and financial analyses of the promising power development projects. However, the study team prefers subsidy free retail tariff rates securing the financial viability of NEA business. The subsidy free tariff rates and better performance of the Nepali's economy without distorted power markets were assumed in the demand forecasting model.
			2. The identification of candidate investors for the ten promising projects should include the assessment of such candidates' imbedded risks and performances. The team considers that these assessments are not included in the terms of reference of this study.
6	Mr. Dipak Rauniyar Hydroelectricity Investment & Development Co., Ltd.	Investment aspects in JICA master plan study should be considered and analyzed.	[See the answer to comment No. 5.]

Addition to the above mentioned opinion obtained during the meeting, some more comments were collected by questionnaire survey conducted in this meeting. 40 respondents gave their opinions about the points which should be carefully noted for making the master plan of storage type hydroelectric power development in their answer to the questionnaire. The respondents described various opinions, such as the necessity of urgent implementation of the selected project, the necessity of harmonization with other master plan or ongoing study and the necessity of the study about the impact in downstream of project area.

Considering all above comments in the Study, the Study Team decided to conduct more detailed study on cumulative impact and on mitigation for cumulative impact.

The agenda and the list of participants of the 3rd stakeholders meeting are attached as Table 12.3-2 and Table 12.3-3 at the end of this section.

No.	Time	Program	Speaker/Presenter
1	10:00-10:10	Welcome address	Mr. Birendra Kumar Pathak General Manager, NEA
2	10:10-10:30	Background of project	Mr. Biswa Dhoj Joshi Manager, NEA
3	10:30-10:45	Power Demand Forecast	Mr. Toshifumi Serizawa JICA Study Team
4	10:45-11:05	Required Installed Capacity of Storage-type Hydroelectric Power Generation	Mr. Takashi Mimura Leader, JICA Study Team
5	11:05-11:15	Evaluation Criteria and Weight	Ms. Keiko Otoguro JICA Study Team
6	11:30-12:20	Evaluation Results of 10 Promising Projects	Dr. Toran Sharma NESS Ms. Akiko Urago JICA Study Team
7	12:20-13:00	Discussion	All Participants
8	13:00-13:10	Concluding Remarks	Mr. Hisashi Hoshino Embassy of Japan in Nepal Mr. Toru Kobayakawa JICA Tokyo
9	13:10- 13:15	Vote of Thanks	Mr. Rameshwar Yadav Managing Director, NEA

Tabla12.3.2	Program of the 3rd Stakehold	lars Maating
Table12.3-2	Program of the ord Stakehold	iers Meeting

Category	Name	Organization/Department	Position
Ministry	Hari Ram Koirala	Ministry of Energy	Secretary
and relevant	Srijana Lama	Ministry of Energy	5
Organization	Ram Pd. Ghimire	Ministry of Energy	DMG Sect.
	Kabindra Karki	Ministry of Urban Development	SDE
	Divakar Kharel	Water and Energy Commission Secretariat	SDE
INGO/NGO	Santim Nenal	(WECS) World Wildlife Fund Nenal	Director
	Santini Nepai	Society for Sustainable Development	Chairman Pasture and Fodder
	Dinesh Pariyar	(SSD)	Expert
Association	Subam Shah	Independent Power Producers'	President
	Narayan Darajuli	Association, Nepal (IPPAN)	Transura
	Ivarayan Farajun	Nenal (PPAN)	ITeasure
	Kumar Pandev	IPPAN	
Institutions	Kamala Kant Acharva	TU	Asst. Professor
	Subesh Ghimire	TU	Asst. Professor
	Sunil K. Dwivedi	TU	Asst. Professor
Media	Senchhelung Limbu	Ujyoalo 90 FM	Reporter
	Bishnu Belbase	Abhiyan	Reporter
	Bhavesh Adhikari	Kantipur	Journalist
	Bijaya	Kantipur	Journalist
	Rudra Pangeni	The Himalayan Times	Reporter
	Yogesh Pokharel	TRN	Reporter
	Ashok Thapa	Kathamandu Post	Sub Editor
	Laxaman Biyogi	Nepal Samachar Patra	Sr. Correspondent
	Sachen Gautam	Naya Patrika	Journalist
	Ram Pd. Pudasaini	Aarthik Daily	Reporter
Others	Sanjeeb Baral	Hydroelectricity Investment &	SDE
	-	Development Company Limited	
		(HIDCL)	
	Deepak Rauniar	HIDLC	
	Salil Devkota	NESS	Managing Director
	Toran Sharma	NESS	Technical Director
	Ram Kumar Sharma	NESS	Socio Economist
	Madan Koirala	NESS	Environmentalist
	Megh Raj Dhital	NESS	Geologist
Embassy	Hisashi Hoshino	Embassy of Japan	First Secretary
	Kailash Man Pradhan	Embassy of Japan	Program Manager
JICA	Toru Kobayakawa	JICA Tokyo	Advisor
	Kenichiro lizuka	JICA Nepal Office	Representative
	Sourab Rana	JICA Nepal Office	Program Officer
	Yukiyoshi Ozaki	JICA	Expert
	Takashi Mimura	JICA Study Team	Leader
	Hiroyasu Akaike	JICA Study Team	
	Nobuo Hoshino	JICA Study Team	
	Akiko Urago	JICA Study Team	
	Takatsugu Okabe	JICA Study Team	
	Toshifumi Serizawa	JICA Study Team	
	Keiko OTOGURO	JICA Study Team	
NEA	Amogh s. Manandhar	NEA	Dep. Manager
	Bharat Pd. Mainar	NEA	Asst. Manager
	UD Bhatta	NEA	GM
	BiswaDhoj Joshi	NEA	Manager
	Rajesh Sapkota	NEA	Engineer
	Sunil Kumar Dhungel	NEA	Director
	Rameshwor Yadav	NEA	MD
	Bharat Pd. Mainar	NEA	PM
	Damodar BS	NEA	
	Hari R. Shreestha	NEA	Director
	Sanjib Jha	NEA	Manager
	Sagar	NEA	Manager
	Gyanendra P Kyastha	NEA	Manager
	Santosh Maharian	NEA	Engineer

Table12.3-3	Participant	t List of the	3rd Stak	eholders]	Meeting

Final Report Appendix 3 SEA Report

Bijaya BajracharyaNEAD. ManagerPradip Man ShresthaNEAEngineerSubindra ShresthaNEAEngineerLila Nath BhattaraiNEADirectorKrishna Pd. GhimireNEAEngineerSurendra ChaudharyNEAEngineerSurya NarayanNEAEngineerSaroj KumarNEADirectorPreetam PradhanNEADirectorPreetam PradhanNEADirectorBirendra K. PathakNEAGMDeepakNEADMPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer	Category	Name	Organization/Department	Position
Pradip Man ShresthaNEAEngineerSubindra ShresthaNEAEngineerLila Nath BhattaraiNEADirectorKrishna Pd. GhimireNEAEngineerSurendra ChaudharyNEAEngineerSurya NarayanNEAEngineerSaroj KumarNEADirectorD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEADirectorPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/C Officer		Bijaya Bajracharya	NEA	D. Manager
Subindra ShresthaNEAEngineerLila Nath BhattaraiNEADirectorKrishna Pd. GhimireNEAEngineerSurendra ChaudharyNEAEngineerSurya NarayanNEAEngineerSaroj KumarNEADirectorD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEADMPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Pradip Man Shrestha	NEA	Engineer
Lila Nath BhattaraiNEADirectorKrishna Pd. GhimireNEAEngineerSurendra ChaudharyNEAEngineerSurya NarayanNEAEngineerSaroj KumarNEAVice ChairmanD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEADMPradeep Kumar ThinkeNEADirectorRajeev SharmaNEAAsst. ManagerRajendra ThapaNEAAsst. ManagerRajendra ThapaNEAAc Officer		Subindra Shrestha	NEA	Engineer
Krishna Pd. GhimireNEAEngineerSurendra ChaudharyNEAEngineerSurya NarayanNEAEngineerSaroj KumarNEAVice ChairmanD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEADirectorPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Lila Nath Bhattarai	NEA	Director
Surendra ChaudharyNEAEngineerSurya NarayanNEAEngineerSaroj KumarNEAVice ChairmanD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEAImagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAAc Officer		Krishna Pd. Ghimire	NEA	Engineer
Surya NarayanNEAEngineerSaroj KumarNEAVice ChairmanD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEAImagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAAc Officer		Surendra Chaudhary	NEA	Engineer
Saroj KumarNEAVice ChairmanD. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEAManagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAAc Officer		Surya Narayan	NEA	Engineer
D. S. PaudelNEADirectorPreetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEAManagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Saroj Kumar	NEA	Vice Chairman
Preetam PradhanNEADept. ManagerBirendra K. PathakNEAGMShailendraNEADMDeepakNEAManagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		D. S. Paudel	NEA	Director
Birendra K. PathakNEAGMShailendraNEADMDeepakNEAImagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Preetam Pradhan	NEA	Dept. Manager
ShailendraNEADMDeepakNEAManagerPradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Birendra K. Pathak	NEA	GM
DeepakNEAPradeep Kumar ThinkeNEARajeev SharmaNEATara Harsh BajracharyaNEARajendra ThapaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Shailendra	NEA	DM
Pradeep Kumar ThinkeNEAManagerRajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Deepak	NEA	
Rajeev SharmaNEADirectorTara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Pradeep Kumar Thinke	NEA	Manager
Tara Harsh BajracharyaNEAAsst. ManagerRajendra ThapaNEAA/c Officer		Rajeev Sharma	NEA	Director
Rajendra Thapa NEA A/c Officer		Tara Harsh Bajracharya	NEA	Asst. Manager
		Rajendra Thapa	NEA	A/c Officer
Bikash Dongal NEA Engineer		Bikash Dongal	NEA	Engineer
Lakshan Shah NEA Dept. Manager		Lakshan Shah	NEA	Dept. Manager
R.S Sayami NEA		R.S Sayami	NEA	
Surendra Acharya NEA Asst. Manager		Surendra Acharya	NEA	Asst. Manager
Jagadishwor M Singh NEA Director		Jagadishwor M Singh	NEA	Director
Mahesh M. Shrestha NEA Deputy. Director		Mahesh M. Shrestha	NEA	Deputy. Director
Pujan Piya NEA Asst. Manager		Pujan Piya	NEA	Asst. Manager
Jayandra Man Tamrakar NEA Manager		Jayandra Man Tamrakar	NEA	Manager
Lek Nath NEA Act. Director		Lek Nath	NEA	Act. Director
Shanti Laxmi Shakya NEA Act. Director		Shanti Laxmi Shakya	NEA	Act. Director
Deepak Pd. Bhul NEA Engineer		Deepak Pd. Bhul	NEA	Engineer
Mohan Shakey NEA Director		Mohan Shakey	NEA	Director
Jhalak Ram Subedi NEA Asst. Manager		Jhalak Ram Subedi	NEA	Asst. Manager
G.opal Kumar Lohia NEA Manager		G.opal Kumar Lohia	NEA	Manager
Tika Ram Paudel NEA Asst. Manager		Tika Ram Paudel	NEA	Asst. Manager
Keshab Kaj Bhatta NEA Director		Keshab Raj Bhatta	NEA	Director
Lava Ghimire NEA		Lava Ghimire	NEA	
Nass Man Pradhan NEA Manager		Nass Man Pradhan	NEA	Manager
Kuber Ial Shrestna NEA Admn. Officer		Kuber lal Shrestha	NEA	Admn. Officer
Pradeep Manandhar NEA Manager		Pradeep Manandhar	NEA	Manager
Anii Kajonandari NEA Manager		Anii Kajbhandari	NEA	Manager
P.C. Gupta NEA DM		P.C. Gupta	NEA DOD	
Dr. Dambar Bur. Nepai NEA/BOD BOD		Dr. Dambar Bur. Nepai		BOD Sa Vice Dresident
Amer Beikhenderi NEA/EA Sr. vice President		Amor Daibhandari	NEA/EA	Sr. vice President
Amar Kajonandari NEA/ESSD Deputy manager		D D Dimal	NEA/ESSD	Deputy manager
K, P Kimai NEA/EU President		R. P Rimai	NEA/EU	
Kalli nali Gaulam NEA/ PDD A.C. Officer Janak Mahat Chhatri NEA/ DDD Asat Admin		Kalli Hari Gautam		A.C. Officer
Janak Wana Unitetti NEA/PDD Asst. Admin. Phynometra P. Const. NEA/PDD D. Managara		Dependence Dependence		ASSI. AUIIIII. D. Managar
Diupendra K. Gopai NEA/PDD D. Manager		Bugker Ametro		D. Manager
I uskal Alliatya NEA/I DD Eligilieer Viagondra Shahi NEA/NEON Dresident		r uskai Alliatya Khagondra Shahi		Drasidant
Knagenura Shani INEA/INEOIN President Kul Man Singh NEA/Chilime Managing Director		Kul Man Singh	NEA/NEON NEA/Chilime	Managing Director
Sitaram Thana NEA /Nation Employee Organization Chairman		Sitaram Thana	NEA /Nation Employee Organization	Chairman

The 3rd Stakeholders Meeting received press coverage in the next day of the meeting at least by 3 different newspapers such as The Rising Nepal, Himalayan Times and 1 Nepal newspaper. The following is the press release in English-language newspaper.

Figure 12.3-1 Example of Press Release about 3rd Stakeholders Meeting

12.4 Discussion at the Regional Office in Pokhara

Visit Report of the Regional Offices in Pokhara

Introduction

The main purpose of visiting regional offices at Pokhara was to get information regarding developmental planning in the Western Development Region of Nepal with particular focus on the proposed storage types Hydroelectric power Project locations and to identify whether there will be major developmental conflict with concerned offices during project implementation. The visit was conducted to Regional Irrigation Office, Regional Agricultural Office and Regional Road Office on 13th June 2012. The Team Leader, Sub-Leader and Environmental and Social experts of the study team made visit to those offices. During the visit, meeting was held with the officials of the concerned offices informing them about the proposed projects that have been under study.

Team Leader Mr. Mimura highlighted the need of storage type projects in Nepal in the context of current power shortage. He also described about the proposed storage type projects at Western Developmental Region of Nepal with regards to the site, locations and features. He briefed about the projects like the Lower Badigad Project at Gulmi, the Andhi Khola Project at Syangja, the Lower Jhimruk Project at Arghakhanchi/Pyuthan and the Naumure (W. Rapti) Project at Arghakhanchi/Pyuthan that are located at Western Developmental Region of Nepal. After then, the concerns and issues raised by the officials were discussed and information regarding the developmental planning at such project sites was collected.

Output of Visit

Visit at Regional Irrigation Office

During the visit at Regional Irrigation Office, meeting was held with Engineers Mr. Mahesh Yadav,

and Mr. K.R. Baral. Mr. Baral and Mr. Yadav informed to the study team that the office is responsible mainly for construction and rehabilitation of irrigation projects. With regards to the irrigation plans at those project locations Mr. Baral informed that there are some farmers built small irrigation schemes in and around the Andhi Khola Project at Syangja. He also highlighted that there are no such major projects that are being planned in proposed project locations and added that although some minor irrigation schemes are there, the priority should be given to the storage type hydroelectric power development considering the current power shortage being faced by Nepal.

Regional Road Office

At regional road office, meeting was held with Mr. Subir Rai (Engg.), Mr. Bishwa Bijay Lal Shrestha (Engg.), Mr. Lilamani Sigdel and Ms. Ganga Kumari Thapa. They have informed to the team that under regional office there are five divisions. They suggested the study team to visit the respective division offices to get in depth information about the road development plans that are being proposed and under implementation at proposed storage hydroelectric power development sites. They also added that there are some road projects and RCC bridges that are planned and under construction at some locations of the proposed project sites. They also added that no major roads and bridges construction with the high national priority are being planned in the proposed storage hydroelectric power projects from rivers of Nepal in order to resolve the current energy crisis being faced by the nation.

Regional Agriculture Office

Meeting was held with Mr. Khem Narayan Chapagain (Agri. Extension Officer), Mr. Saroj Adhikari (Engg.), Mr. Matibar Yadav, Mr. Rammaya Kadariya and Ms. Menaka Liwali. Discussion was held regarding the proposed projects located at this region of Nepal. Mr. Chapagain highlighted that although small scale agricultural areas are available at some pocket areas of the proposed project sites of this region, no major large scale nationally important agricultural areas are available. He also informed that from the Regional Agriculture Office none of the mega agricultural development projects have been planned in such areas and also suggested the study team to visit the respective District Agricultural Offices to get in depth information about it. He added that District Agricultural Offices are responsible for preparation of the Agricultural Development Plans in coordination with the Regional Office. He made aware to the study team that Agricultural Service Center under respective District Agricultural Offices publishes a Pocket Profile mentioning about the agricultural productivity at various places of the district and suggested to collect that Profile in order to get the productivity status in the various project sites.

The team from the Regional Agriculture Office also provided the green signal for the development of proposed storage type hydroelectric power projects.

Conclusion

After meeting with the above mentioned regional offices located at Pokhara, it can be said that the proposed project sites are not having major nationally prioritized developmental plans with respect to

irrigation, road, bridges and agriculture development that will create a major conflict for the development of proposed storage type hydroelectric power projects. All the officials that have been participated during the meeting were found positive for the development of proposed storage type hydroelectric power projects in Western Development Region in order to get rid from the power crisis being faced by Nepal.

12.5 SEA Report Evaluation Meeting

Minutes of Meeting

on

Nationwide Master Plan Study on Storage-type Hydroelectric Power Development in Nepal Strategic Environmental Assessment (SEA) Evaluation Meeting

Date and Time: June 5, 2013, 11:30-13:30 Place: Ministry of Energy, Kathmandu, Nepal Participants (28) (see Attached-1 for detail): SEA Evaluation Team Members (13): Ministry of Energy (6) Ministry of Agriculture Development (1) Ministry of Irrigation (1) Ministry of Forest and Soil Conservation (1) Ministry of Science, Technology, and Environment (1) Tribhuvan University (1) WWF (2) Others (15): Nepal Electricity Authority (NEA) (4) JICA / NEA(1)JICA Study Team (6) Nepal Environmental and Scientific Services (P) Ltd (4)

The meeting was chaired by Mr. Hari Ram Koirala, secretary, Ministry of Energy. He has welcomed all the participants for the meeting and requested to provide their valuable comments in the report. He has mentioned that the valuable comments and suggestions received from the participants of meeting will become valuable for JICA study team in finalizing the report.

After the opening of the meeting by the secretary, Ministry of Energy, Mr. Takashi Mimura, team leader of JICA study team presents the thanks for holding this meeting.

After, Ms. Keiko Otoguro of JICA study team presented the composition of the draft SEA report, project screening and evaluation criteria. She has explained how projects were selected from a long list of 67 potential projects. During the first phase of study, 36 projects are excluded from 67 potential projects giving rations. She further explained in second step how 10 promising projects were selected out of 31 projects selected in the First step. The technical, economical, and environmental parameters

used for evaluation and weightage given for each parameter were explained by her. While explain the Third step, she has shown location of promising project sites and site specific details of each of the selected 10 projects in one by one basis. She has explained sub category of all the 10 projects. The sub categories of project briefed by her includes hydrological conditions, geological conditions, lead time, effectiveness of project, impact on natural environment, impact on social environment, and different loss that is going to take place in 10 promising projects.

After the presentation by Ms. Otoguro, Dr. Toran Sharma presented the mitigation measures to be followed in those 10 promising projects. He has explained the basis of cost estimations for physical, biological and socio-economic environment. He has further explained the comparison of various losses and likely cost for mitigation for all the 10 promising projects.

After the presentation by Dr. Sharma, Ms. Akiko Urago presented the Cumulative Impact Assessment (CIA). She has covered basic information about CIA and why such assessment is necessary in the context of Nepal. She has explained a brief CIA covering physical, biological and socio-economic impacts of all project sites. After that she did scoping of all project sites of three main impacts namely water regulation effects on wetland ecosystem. The next impacts identified are barrier effects on fish migration. Another important impact is space crowning impact on forest ecosystem. She has presented scoping table for Cumulative impact giving items and comparing it with existing and planned hydroelectric power in Nepal.

After the presentation by Ms. Urago, the floor was open for discussion. The name of participants participated in the discussion along with response from JICA study team is highlighted below.

1. Mr. Ashish Bhadra Khanal, Senior Divisional Engineer, Department of Irrigation, Ministry of Irrigation

In the maps shown by Ms. Urago, some of the ongoing projects are missing (example: Sikta Irrigation Project, Bheri-Babai Multipurpose Diversion Project).

Mr. Khanal has mentioned that the national water plan has emphasized in River Basin Development through Integrated Water Resource Management Plan. That is why his department is insisting JICA study team to use multiple use of water while evaluating projects.

Ms. Urago mentioned that she couldn't get such information while preparing the report. Now she will include project sites of Bheri Babai and Sikta in final report.

2. Mr. Bishwo Dhoj Joshi, PDD, NEA

He has mentioned that the water balance table should use small scale and range for small river and it should be compared with same scale used for large river.

JICA study team acknowledges it.

3. Mr. Raju Gyawali, Environment Specialist, Environment and Social Studies Department, NEA

The report has highlighted all the negative or adverse impacts while developing 10 promising projects. However, the beneficial impacts of reservoir projects should also be highlighted in the report. JICA study team mentioned that the potential and likely benefits of storage project are known.

4. Mr. Ramesh Prasad Sapkota, Lecturer, Tribhuvan University

The report has identified flora and fauna in the upstream of dam. It is advisable that it should be considered downstream of dam and in other areas as well. Besides he further mentioned that Cumulative Impact Assessment (CIA) is an important tool that needs to be integrated at plan and policy level where as IEE/EIA is at project level. The CIA presented here is not detail and followed the standard format.

Ms. Urago acknowledges it and she further added that this CIA is prepared based on the secondary information and information obtained from site during the field survey. Ms. Urago further mentioned that it is now the time for the government to think for initiating CIA in Nepal.

5. Mr.Ashish Bhadra Khanal, Senior Divisional Engineer, Department of Irrigation, Ministry of Irrigation

Mr. Khanal has mentioned that National Water Plan has given priority for irrigation sector development so master plan study of storage type hydroelectric power study should also give priority for multipurpose use of water.

Mr. Mimura has replied that irrigation sector development is important for the country. Benefit to irrigation is not taken in consideration during this study. We will mention this issue in a final report.

6. Dr. Prabhakar Pathak, Joint Secretary, Ministry of Agriculture and Development

Dr. Pathak mentioned that the government has given high priority for the development of energy, infrastructure, and agriculture sector. For the development of Agriculture sector, irrigation is essential and this is highest priority of water use in Nepal. In such promising projects, when irrigation components are not addressed, there might create some controversy among ministries. While constructing these promising projects, we are losing cultivated land and if irrigation facilities are not provided in remaining land, we might have to face the problem of food security. So this aspect needs to be considered in report.

Mr. Mimura acknowledges such issues will be dealt in a project selected for feasibility study.

7. Mr. Ashok Bhattarai, Scientific Officer, Ministry of Science, Technology, and Environment

Mr. Bhattarai has mentioned that, developing a reservoir means opportunities for creating new habitat, niches and other beneficial uses (like fisheries).

The report should mention the sources of River like snow fed, rainfall etc. The report should also like with the present global issue of climate change not only about GLOF. He has suggested that protected areas in upstream of dam should be maintained. He further added that the protected flora and fauna from Government of Nepal's list (National Report) should also be included in the report.

JICA study team acknowledges the comments and suggestions.

8. Shuva Sharma, Consultant, WWF

Mr. Sharma asked environmental expert's opinion of JICA study team regarding the ranking of 10 projects (if possible) from environmental and social perspective.

Before responding to Mr. Sharma's question by the Study Team, secretary of Ministry of Energy Mr. Koirala announce the closing of the session.

At the end, Mr. Hari Ram Koirala, thanked everyone for actively participating in the meeting. He believes that JICA study team will address the comments and suggestions raised by the participants in the final report.

Participants

<u>SEA Evaluation Team Members</u>
Ministry of Energy (6): Mr. Hari Ram Koirala, Secretary Mr. Keshab dhoj Adhikari, Jt. Secretary Mr. Sriranjan Lakoul, Jt. Secretary Mr. Anup Kumar Upadhyay, Director General, Department of Electricity Development Mr. Chatur B. Shrestha, Senior Division Geologist, Environment Unit Mr. Shyam Kishor Yadav, Senior Division Engineer, Environment Unit

Ministry of Agriculture Development (1): Dr. Prabhakar Pathak, Jt. Secretary

Ministry of Irrigation (1): Mr. Ashish Bhadra Khanal, Senior Divisional Engineer, Department of Irrigation

Ministry of Forest and Soil Conservation (1): Mr. Madhu Ghimire, Environment Officer

Ministry of Science, Technology, and Environment (1): Mr. Ashok Pd. Bhattarai, Under Secretary

Tribhuvan University (1): Mr. Ramesh Sapkota, Lecturer

WWF (2): Mr. Shuva Sharma, Consultant

Mr. Dipesh Joshi, Program Officer

Others

Nepal Electricity Authority (NEA) (4): Mr. Sunil Kumar Dhungel, Director
Mr. Biswo Dhoj Joshi, Manager, Project Development Department
Mr. Raju Gyawali, Environmental Specialist
Mr. Gopal Kumar Lohia, Manager, Project Development Department
JICA / NEA (1): Mr. Yutaro Mizuhashi, Expert
JICA Study Team (6): Mr. Takashi Mimura, Team Leader
Mr. Hiroyasu Akaike, Sub-Leader/Hydropower Engineer

Mr. Nobuo Hoshino, Senior Consultant

Ms. Akiko Urago, Environmental Consultant Mr. Takatsugu Okabe, Manager Ms. Keiko Otoguro, Coordinator/Sub-Environmental Consultant Nepal Environmental and Scientific Services (P) Ltd (4):

Mr. Salil Devkota, Managing Director

Mr. Toran Sharma, Technical Director

Mr. Ram Kumar sharma, Socio-Economist

Mr. Ram Chandra Poudel, Officer

12.6 Discussion at Ministry of Forests and Soil Conservation

Minutes of Meeting Meeting with Ministry of Forest and Soil Conservation in Nepal

Date and Time: June 4, 2013

Place: Ministry of Forest and Soil Conservation (MFSC), Kathmandu, Nepal

Participants (3):

<u>MFSC (1)</u>:

Mr. Babu Ram Yadav, Under Secretary

JICA Study Team (the Study Team) (2):

Ms. Akiko Urago Ms. Keiko Otoguro

After explaining about the guideline of the "Nationwide Master Plan Study on Storage Type Hydroelectric Power Development in Nepal (hereinafter revered to as "the Study")" by the Study Team, the MFSC and the Study Team discussed and verified about the following points.

- The MFSC requested to utilize a new National Parks boundary to the Study Team to at the Joint Coordination Committee (JCC) Meeting held on 5th June 2013.
- MFSC and the Study Team confirmed that there is no Promising Projects of the Study in the new National Parks boundary.
- The Study Team requested for digital data on the new National Park boundary by GIS format to the MFSC, the MFSC introduced the contact address of the GIS personal to the Study Team.
- The Study Team asked about the revised proportion of forest compensation especially for hydropower projects, but the MFSC did not recognize about this revision.

12.7 Discussion at the WWF Nepal

Minutes of Meeting Meeting with WWF Nepal

Date and Time: June 7, 2013, 10:45-11:30 Place: WWF, Kathmandu, Nepal Participants (7): <u>WWF (5)</u>: Mr. Santosh Mani Nepal, Director, Policy and Support Ms. Judy Oglethorpe, Chief of Party – Hariyo Ban Mr. Dipesh Joshi, Program Officer Mr. Shuva Sharma, Consultant Mr. RavindraTripathi, Research Assistant <u>JICA Stuey Team (2):</u>

Ms. Akiko Urago Ms. Keiko Otoguro

WWF explained their main activities such as about species conservation, forest conservation and protection of primary biodiversity. Closely related areas to the JCA Study Team's study are as follows.

- Chitwan: Important area for creation and conservation of corridor between Nepal and India, UNESCO World heritage site
- · Gandaki: High biodiversity area
- Babai river: National park in which there is already dry area

WWF's concerns are as follows.

- WWF is concerned about the vegetation changes by the dam; tree invasion in the river bed by flood control can be occurred downstream of the dam site.
- If the storage water in the reservoir is used for irrigation, it may affect the habitat of a rare species in the downstream of the dam. Especially at Babai river, the flow has already become less at the end of the National Park in the downstream. If the flow reduces more, it will make a serious impact on the habitat.
- By new access road made through development project, impact on environment never occurred before such as increase of illegal hunters in the involved area will be concerned.

WWF's general suggestions are as follows.

- Developers consult government policy maker about their each development plan. It is also important to take into account not only the impact of each development but also the cumulative impact within other developments for developers and Nepal Government. Rivers in Nepal are flowing to India. Also, there are corridors for species between Nepal and India. It should be concerned the impact on the Indian side.
- New projects maybe create new possibility for development of ecosystem. Impact assessment should not stay only to evaluate whether the project is good or bad. It is also important to find an alternative plan (offset plan) if the serious impact is concerned.
- It would be useful if the impact studies for hydroelectric power schemes also include other infrastructures associated with it, including access roads, irrigation schemes downstream of the dams etc.

- Assessment of factors associated with activities upstream of the dams (including roads, deforestations, multiple water uses by communities etc.) would also be useful in better understanding impacts at landscape level.
- · Linkages with climate change factors will also be useful.

Others

- WWF Nepal has not worked specifically in fish diversity projects and programs whereas it has updated information on river dolphins. WWF acknowledges that fish information for whole country of Nepal should be conducted. Otherwise, many fish species will extinct unknowingly.
- The Study Team lacks of the development information of the other sectors and distribution information of the important species. The study team requested WWF to share such kinds of information.
- WWF is now compiling a cumulative impact assessment through several projects conducted by them and this assessment will be finalized in a couple of months.

WWF will share its result with the Study Team once it finished.

12.8 Discussion at the IUCN Nepal

Minutes of Meeting Meeting with IUCN Nepal

Date and Time: December 17, 2013, 11:45-12:15 Place: IUCN, Kathmandu, Nepal Participants (5): <u>IUCN (2):</u> Mr. Yam Malla PhD, Country Representative Mr. Rajendra Khanal, Programme Coordinator <u>JICA Stuey Team (2):</u> Ms. Akiko Urago Ms. Keiko Otoguro

JICA Study Team explained the brief overview of National Master Plan Study on -type Hydroelectric Power Development in Nepal as well as the SEA conducted during the Study. Submitting the Draft SEA report to IUCN, JICA Study Team requested as follows.

- Advices on the development of about 10 promising projects
- · Sharing GIS data of distribution maps of National Red List Mammals in Nepal

IUCN accepted to give advices requested by JICA Study Team focusing on Social & Natural Environment which is their specialty. IUCN will give their brief comment about 10 promising projects and detailed comment on Dudh Koshi Project, Nalsyau Gad Project and Andhi Khola Project. IUCN promised to JICA Study Team to give the comments within about 1 month.

IUCN also accepted to share the requested GIS data with JICA Study Team. IUCN introduced to JICA Study Team the person in charge of GIS data.

IUCN has an Ecosystem Base Adaptation (EbA) project near of the Andhi Khola Project. EbA is the use of biodiversity and ecosystem services, as part of an overall adaptation strategy, which helps people to adapt to the adverse effects of climate change. IUCN will analyze the Andhi Khola Project in consideration of the point of view or EbA.

Regarding the fish conservation, JICA Study Team explained the importance of overall fish survey in Nepal, also the intension of JICA to conduct the survey about fish distribution.

IUCN suggested to JICA Study Team to consult with Godabari Fishery Farm which is a fishery expert (government organization). This farm has detail information about distribution of fishes in Nepal.

12.9 Discussion at the Department of Forest under the Ministry of Forests and Soil Conservation

Draft SEA report was submitted to Department Forest for comments in December 2013. Department of Forest sent comments on January 2014. The comments are attached in Annex 22 in Appendix 5.

Minutes of Meeting

Meeting with the Department of Forests under the Ministry of Forests and Soil Conservation in Nepal

Date and Time: December 18, 2013, 13:00-13:30 Place: Ministry of Forests and Soil Conservation, Department of Forests, Kathmandu, Nepal Participants (5):

Department of Forests (3):

Mr. Bishwa Nath Oli, Director General

Mr. Bala Ram Adhikari, Programme Co-ordinator

Mr. Kedarnath Sharma, Under Secretary

JICA Study Team (2):

Ms. Akiko Urago

Ms. Keiko Otoguro

JICA Study Team explained the brief overview of National Master Plan Study on -type Hydroelectric Power Development in Nepal. In the explanation, JICA Study Team added the following information.

- SEA was conducted during the Study.
- Stakeholders meetings were conducted three times during the Study in order to getting the opinions by stakeholders.

Submitting the Draft SEA report to the Department of Forests under the Ministry of Forests and Soil Conservation, JICA Study Team requested the following.
• Comments and advices on the development of about 10 promising projects especially on Dudh Koshi Project, Nalsyau Gad Project and Andhi Khola Project.

The Department of Forests principally accepted to give advices requested by JICA Study Team within about 1 month with a condition that NEA send an official letter to the Department of Forests which requests such kind of cooperation.

JICA Study Team apologized for the visit making an appointment without an official letter and promised to prepare the official letter through NEA.

The Department of Forests accepted the excuse from JICA Study Team and promised to give theirs comments by E-mail.

12.10 Discussion at the Directorate of Fisheries Development, National Inland Fisheries and Aquaculture Development Program

Minutes of Meeting

Meeting with Directorate of Fisheries Development, National Inland Fisheries and Aquaculture Development Program in Nepal

Date and Time: December 19, 2013, 13:45-14:15
Place: Central Fisheries Building, Kathmandu, Nepal
Participants (4):
<u>Directorate of Fisheries Development (2):</u> Ms. Rama Nanda Mishra, National Program Chief Mr. Raj Kapur Napit, Fisheries Development Officer
<u>JICA Study Team (2):</u> Ms. Akiko Urago Ms. Keiko Otoguro

JICA Study Team explained the brief overview of National Master Plan Study on -type Hydroelectric Power Development in Nepal as well as the SEA conducted during the Study. Submitting the Draft SEA report to Directorate of Fisheries Development, JICA Study Team requested advices and comments on the development of about 10 promising projects by 26th January 2014.

Directorate of Fisheries Development accepted the above request by JICA Study Team and promised to send their comments to JICA Study Team by E-mail.

The comments by Directorate of Fisheries Development during the meeting are as follows.

• In case there are a number of projects on 1 river, huge number of fish species might be affected. Mitigation measures should be important and carefully studied.

- Directorate of Fisheries Development agreed to the need for the Nationwide Fish census in the Draft SEA report.
- Directorate of Fisheries Development was highly appreciated if JICA would conduct the Nationwide Fish Study in the near term.

Chapter 13 Suggestions for EIAs in FS stage

13.1 Required documents for Environmental and Social consideration

(1) Environment Impact Assessment (EIA/IEE)

EIA procedures in Nepal are stipulated on the Amendment (January 27, 2010) of Environment Protection Regulation (1997) and National Environment Impact Assessment Guidelines (1993). Amendment (2010) requires IEE for transmission projects of more than 132 kV and hydropower projects whose output is from 1MW to 50 MW. EIA is required for hydropower projects which output is more than 50 MW. The matters to be mentioned in IEE/EIA are also stipulated in EPR 1997(See Section 4.4, Appendix 3 SEA report). Table 13.1-1 shows the required documents for hydropower and related projects.

Table 13.1-1	Required documents for Transmission line and Hydropower plant
14010 10.1 1	required documents for fransmission fine and frydropower plant

Project Type	Project size	Required Document
Transmission line	132 kV and more	IEE
Hydropower plant	1MW to 50 MW	IEE
	more than 50MW	EIA
Rural Electrification Projects	-	-

Source: Environment Protection Regulation (1997) Amendment (2010)

(2) Environmental Management Plan

The JICA Guidelines for Environmental and Social Consideration 2010 (Here after referred to as JICA Guidelines) treat Environmental Management Plan (EMP) as a part of EIA. But if it requires updated EMP based on the detail design, it can be prepared independently.

(3) Resettlement Action Plan

JICA Guidelines are suggesting to follow OP 4.12, Annex A – Involuntary Resettlement Instruments when a large number of resettlement will happen. Table 13.1-2 shows the required information of RAP based on the OP 4.12, Annex A. All the possible projects for FS have to prepare RAP.

Table 13.1-2Required information of RAP

- 1. Description of the project.
- 2. Potential impacts.
- 3. Objectives.
- 4. Socioeconomic studies. The findings of socioeconomic studies to be conducted in the early stages of project preparation and with the involvement of potentially displaced people, including
 - (a) the results of a census survey
 - (b) Other studies describing the following
 - (i) land tenure and transfer systems,
 - (ii) the patterns of social interaction in the affected communities,
 - (iii) public infrastructure and social services that will be affected; and
 - (iv) social and cultural characteristics of displaced communities.
- 5. Legal framework.
- 6. Institutional Framework.
- 7. Eligibility.
- 8. Valuation of and compensation for losses.
- 9. Resettlement measures.
- 10. Site selection, site preparation, and relocation.
- 11. Housing, infrastructure, and social services.
- 12. Environmental protection and management.
- 13. Community participation. Involvement of resettlers and host communities,
 - (a) a description of the strategy for consultation with and participation of resettlers and hosts in the design and implementation of the resettlement activities;

(b) a summary of the views expressed and how these views were taken into account in preparing the resettlement plan;

(c) a review of the resettlement alternatives presented and the choices made by displaced persons regarding options available to them, including choices related to forms of compensation and resettlement assistance, to relocating as individuals families or as parts of preexisting communities or kinship groups, to sustaining existing patterns of group organization, and to retaining access to cultural property (e.g. places of worship, pilgrimage centers, cemeteries); and

(d) institutionalized arrangements by which displaced people can communicate their concerns to project authorities throughout planning and implementation, and measures to ensure that such vulnerable groups as indigenous people, ethnic minorities, the landless, and women are adequately represented.

- 14. Integration with host populations.
- 15. Grievance procedures.
- 16. Organizational responsibilities.
- 17. Implementation schedule.

18. Costs and budget.

19. Monitoring and evaluation.

Source: OP 4.12, Annex A - Involuntary Resettlement Instruments, World Bank

(4) Indigenous People Plan

JICA Guidelines suggest Indigenous People Plan (IPP) which includes the contents in OP 4.10, Annex B – Indigenous People Plan, if the projects affect indigenous people. IPP should be prepared, when the existence of indigenous people are confirmed. Table 13.1-3 shows the main contents of IPP based on the OP 4.10, Annex B (World Bank).

Table 13.1-3Required Information of IPP

- (a) A summary of the information referred to in the followings.
 - A review, on a scale appropriate to the project, of the legal and institutional framework applicable to Indigenous Peoples.
 - Gathering of baseline information on the demographic, social, cultural, and political characteristics of the affected Indigenous Peoples' communities, the land and territories that they have traditionally owned or customarily used or occupied, and the natural resources on which they depend.
- (b) A summary of the social assessment.
- (c) A summary of results of the free, prior, and informed consultation with the affected Indigenous Peoples' communities that was carried out during project preparation and that led to broad community support for the project.
- (d) A framework for ensuring free, prior, and informed consultation with the affected Indigenous Peoples' communities during project implementation.
- (e) An action plan of measures to ensure that the Indigenous Peoples receive social and economic benefits that are culturally appropriate, including, if necessary, measures to enhance the capacity of the project implementing agencies.
- (f) When potential adverse effects on Indigenous Peoples are identified, an appropriate action plan of measures to avoid, minimize, mitigate, or compensate for these adverse effects.
- (g) The cost estimates and financing plan for the IPP.
- (h) Accessible procedures appropriate to the project to address grievances by the affected Indigenous Peoples' communities arising from project implementation. When designing the grievance procedures, the borrower takes into account the availability of judicial recourse and customary dispute settlement mechanisms among the Indigenous Peoples.
- (i) Mechanisms and benchmarks appropriate to the project for monitoring, evaluating, and reporting on the implementation of the IPP. The monitoring and evaluation mechanisms should include arrangements for the free, prior, and informed consultation with the affected Indigenous Peoples' communities.

Source: OP 4.10, Annex B - Indigenous Peoples Plan, World Bank

13.2 Comprehensive Scoping in FS stage

It is difficult to conduct site specific scoping, because it is undecided which projects will be selected for next FS. Then comprehensive scoping for ten promising projects is conducted. The risk of land slide around the reservoir might be high, because most of the sites are located in precipitous terrain. Risk of water accident would rise if there is no re-regulating pond. The low late of water rotation might cause eutrophication and dams without sedimentation flushing gate raise the flood risk near the back water of the reservoir. All the dams block migration of fishes. If the construction of the transmission line divides the forest, it will have an impact on environment; the animal migration will be inhibited and the land use of the ground under the transmission line will be limited.

The Table 13.2-1 shows scoping for hydropower plant and Table 13.2-2 shows scoping on transmission line.

	Itoma	Possible Impact									
	Items	Construction Period	Operation Period								
Physical	Air	Exhaust gas from construction	-								
		vehicles and machines									
	Water quality	Turbid water	Eutrophication in the reservoir								
	Water flow	-	Dewatering area, water flow								
			changing downstream of the								
			powerhouse, flood near the back								
			water of the reservoir, reducing flood								
			at the downstream of the								
	Wasta	Cut trees in the reservoir left	Wasta inflow the reservoir								
	W asic	buildings in the reservoir	Waste millow the reserven								
	Soil pollution	-	-								
	Topography and	Topographic change by earth work	Landslide around the reservoir,								
	geology		changing erosion and sedimentation								
			pattern downstream of the								
			powerhouse								
	Noise and vibration	Noise and vibration from	-								
		construction vehicle and									
	0.1.11	construction machines, and blasting									
	Subsidence	-	-								
	Odor	-	Odor by eutrophication and studge in								
	Rottom sediment		Sedimentation of the sludge in the								
	Douoin scannen	-	reservoir								
Natural	Protected area	_	Impact by changing water flow								
	Terrestrial ecosystem	Forest loss, habitat loss	Segmentation of the corridors,								
			Increasing of the illegal logging and								
			hunting								
			Cumulative impact of ecosystem								
	Aquatic ecosystem	Barrier on fish migration route	Habitat change by water flow, water								
			temperature, water quality,								
			Increasing of the illegal fishing								
			cumulative impact on the protected								
			Cumulative impact on migration								
			fishes								
Social	Resettlement	Resettlement. land acquisition,	-								
		structure loss									
	Water use	Damage on water sources and water	Decreasing of the irrigation water at								
		supply system	the dewatering area and downstream								
			of the powerhouse								
	Accident	Accidents by construction vehicles	Drowning by peak generation								
	Tife and limith and	and blasting	The second								
	Life and livelinood	Loss of job by land acquisition	Income loss by changing water now								
		LOSS OF Farm land, agrotorestry,	Land loss by landslide								
	Infrastructure	Fragmentation of road bridge									
	Innustructure	electricity line, water pipe, irrigation.									
		and telephone line									
	Culture	Temple, worship places	-								
	Landscape	- <u> </u>	Landscape impact by weir								
	Ethnic minority and	Diaspora by resettlement	-								
	indigenous people										
	Working environment	Infectious disease by workers	-								
	and work safety										

Table 13.2-1	Comprehensive	Scoping for	Hydropower Plant
--------------	---------------	--------------------	-------------------------

	Itere	Possible	e Impact
	Item	Construction Period	Operation Period
Physical	Air	Exhaust gas from construction	-
		vehicles and machines	
	Water quality	Turbid water	-
	Water flow	-	-
	Waste	Cut trees	-
	Soil pollution	-	-
	Topography and geology	Topographic change by earth work	-
	Noise and vibration	Noise and vibration by construction vehicles and machines	-
	Subsidence	-	-
	Odor	-	-
	Bottom sediment	-	-
Natural	Protected area	Fragmentation of the protected area	Fragmentation of the protected area
	Terrestrial ecosystem	Forest loss	Fragmentation of the migration route, Increasing illegal logging and hunting
	Aquatic ecosystem	-	-
Social	Resettlement	Resettlement and land acquisition by towers	Land use restriction under the transmission line
	Water use	-	-
	Accident	Traffic accidents by construction vehicles	-
	Life and Livelihood	Loss of job by land acquisition	Income loss by land use restriction
	Land use and natural resource use	-	-
	Infrastructure	-	-
	Culture	-	-
	Landscape	-	Impact on landscape at the view points by tower and transmission lines
	Ethnic minority and indigenous people	Diaspora by resettlement-	-
	Work environment and work safety	Infectious disease by workers	-

Table 13.2-2	Comprehensive Scop	ing on Trរ	ansmission Line
--------------	--------------------	------------	-----------------

13.3 Attentional issues of Physical Environment

- (1) Air quality
 - Anticipated Impact: Impact on air would be mainly gas emission caused by construction vehicles and trucks and dust caused by trucks.
 - Suggestions for survey: It might be possible to assess the impact without site survey because all the projects are located in not high air pollution area. If air quality survey is conducted as a baseline of monitoring, the dry season should not be excluded, day time of week day should be selected, and the main trunk road which will be used for truck route should be selected.
 - Suggestions for impact assessment: After confirming the truck route and the number of trucks, possible affected area should be marked on the map and the number of affected houses should be estimated. The possible impact should be clearly explained to the affected people at the

Stakeholder Meetings and EIA report.

- Suggestions for mitigation planning: Alternative truck route can be considered, if there is not any effective mitigation.
- Suggestions for monitoring planning: Monitoring items should be included both ambient air and vehicle gas emission. Monitoring points, items, timing, measuring methods, survey time, responsible organization, reporting format, target value, and audit timing should be identified. Penalty rules can be suggested for not fulfilled the target value.
- (2) Water quality
 - Anticipated impact: Discharge of turbid water during construction; turbid water, nutrient enrichment, anoxic water mass, and low water temperature layer generation in the reservoir; and impact on the river water quality by discharged water from the reservoir during operation. The risk would be high if it is expected population growth without sewage system. The impact on river water might affect not only on fish but also on water use downstream such as irrigation, drinking water supply, and/or industrial water supply.
 - Suggestions for survey: Water sampling points should cover not only dam site and spillway but also future monitoring points and fish survey points. If possible the sampling timings should be same as fish survey hopefully four times a year, at least wet and dry seasons.
 - Suggestions for impact assessment: The predicted water quality should be shown by water quality items, by locations, and by seasons. If possible the water quality before mitigation and after mitigation can explain the effectiveness of the mitigations. The predicted result should be sent to the biological expert and social expert for their predictions.
 - Suggestions for mitigation planning: The mitigation should be designed with civil engineers and the implementability and maintenance capability in Nepal should be considered. If possible several alternatives can be compared.
 - Suggestions for monitoring planning: Discharged water monitoring and river water monitoring should be planned respectively. River water monitoring should be planned with fish experts by analyzed items sampling points, sampling timing, sampling methods, reporting format, target value, and audit timing.
- (3) Water flow
 - Anticipated impact: Sedimentation in the reservoir might cause a rise in the river bed level at the upper reach of the reservoir. River water discharge will be extremely reduced downstream of a dam and spillway. Monthly average river discharge will be changed by water storage. If there is no reregulating reservoir, river water downstream of the spillway will be increase rapidly by peak generation. River water volume will be changed by sand flush operation. Reduction of ground water or spring by tunneling is anticipated too. If some activities, such as irrigation, drinking water intake, industrial water intake, fishery, river bathing, cloth washing, rafting, exist in the wafer flow impact area, they might be affected. If there are some storage type dams in the same river system, the impact will be cumulated after the confluences.

- Suggestions for survey: River crossing measurements at the high risk points are suggested for correct impact assessment. Survey points should be carefully selected with the social survey expert.
- Suggestions for impact assessment: Water volume, water level and current velocity should be predicted by month and time considering peak generation and sand flush operation. If it required, prediction result of sedimentation, river bed degradation by topography and geology expert could be used. The prediction result of water flow should be shared with social expert and explained clearly to the affected people at the stakeholder meeting. If there are some irrigation dams or storage type power plants in the same river system, cumulative impact at the Indian border should be assessed to confirm the consistency of the Gandak Irrigation and Power Project Agreement and the Kosi Project Agreement.
- Suggestions for mitigation planning: Mitigations should be selected feasible and practical ones with civil engineers. If possible alternative mitigations could be compared by effectiveness and cost. Responsible organizations for mitigation, initial cost, maintenance cost should be examined too.
- Suggestions for monitoring planning: High risk points should be selected as monitoring points. Responsible organizations, monitoring timing, reporting format, target value, audit organizations, and audit timing should be planned.
- (4) Waste
 - Anticipated impact: Wreckage of building and removed plants in the reservoir area, waste oil, waste woods, waste metal, waste plastics, domestic waste from construction site might be produced during construction. Floating waste captured by screen will be generated during operation whole year.
 - Suggestions for survey: The exact volume of generated waste should be surveyed, , treatment methods should be studied, and management cost at the similar projects should be estimated.
 - Suggestions for impact assessment: The possible waste volume should be estimated considering the difference of project sizes.
 - Suggestions for mitigation planning: The practical and effective measures should be suggested to avoid similar problems with other projects. Classification and recycling of waste should be considered for reduction of its volume.
 - Suggestions for monitoring planning: Volume of generated waste and treatment ways should be periodically monitored during construction and operation respectively.
- (5) Topography and geology
 - Anticipated impact: Landform will be changed by quelling and dumping. The river bed level downstream of the spillway might be lowered by decreased sediment supply if there is no sand flush gate at the dam. The risk of land slide would be higher around the reservoir. Huge amount of sediment might flow in the reservoir when GLOF occurs. Landslides might be caused by Access road and/or Transmission line, if the civil works are inadequate.
 - Suggestions for survey: Land slide survey should be done in the area above the minimum

operation level and high risk area should be identified. The survey result should be recorded in a survey slip format with latitude and longitude, photo shooting direction in order to use monitoring survey in later stage.

- Suggestions for impact assessment: Predicted points with high risk of land slide should be sent to social expert and used for the impact assessment on land use. The predicted result should be explained clearly to the affected land owners at the stakeholders meeting or other ways.
- Suggestions for mitigation planning: Feasible and practical methods in Nepal should be taken based on land use and impact extent discussion with civil engineers.
- Suggestions for monitoring planning: Monitoring points, report format, frequency should be planned for each assessed impact.
- (6) Noise and vibration
 - Anticipated impact: Noise and vibration are the main issues during construction. Vibration on houses caused by transporter vehicle, noise from rock quarry and plant operation, and building crack caused by blasting work might draw complaint.
 - Suggestions for survey: If the survey is re-commissioned, survey time, location, timing, measurement methods should be clearly instructed, because survey methods is not strictly stipulated by the Nepal government. Working area, truck route, blasting points, location of buildings should be confirmed. The existing cracking and leaning of the buildings can be recorded before construction start, if required.
 - Suggestions for impact assessment: Impact area should be identified based on the work layout maps. If there are any schools/hospitals in the impact area, alternative truck route should be examined with civil engineers. The possible extent of the impact, timing, and duration should be clearly explained to the possible affected people at the stakeholders meeting.
 - Suggestions for mitigation planning: Practical and sustainable mitigation measures in Nepal should be suggested. Several alternatives can be compared.
 - Suggestions for monitoring planning: Survey points, timing, survey methods should be instructed in detail.
- (7) Odor
 - Anticipated impact: Odor might be generated when domestic waste and human waste are not treated appropriately. The reservoir without sand flushing gate might cause odor from sludge in the reservoir.
 - Suggestions for survey: Distribution of the houses which might be affected by odor should be identified.
 - Suggestions for impact assessment: It is a bit difficult to estimate exact impact area and extent of the impact of odor, but if the odor risk cannot be excluded, the risk should be explained to the possible affected people at the stakeholders meeting.
 - Suggestions for mitigation planning: In order to reduce the odor risk, the layout of the working

area can be examined with civil engineers for example domestic waste and human waste treatment facilities could be located as far as possible from the local houses.

- Suggestions for monitoring planning: Survey points, survey methods, reporting format should be instructed in detail.
- (8) Sedimentation
 - Anticipated impact: Reservoirs without sand flushing gate might be suffered from sedimentation.
 - Suggestions for survey: Land use, terrain slope, land slide, water volume, rainfall in the river system will be gathered.
 - Suggestions for impact assessment: Sediment volume and sedimentation speed will be estimated by civil engineers.
 - Suggestions for mitigation planning: Practical and sustainable mitigation measures at the project site should be selected by comparing various types of mitigation measures.
 - Suggestions for monitoring planning: Discussing with civil engineers, suitable monitoring points, monitoring methods and reporting format should be examined.

13.4 Attentional issues of Natural Environment

- (1) Protected Area
 - Anticipated impact: Candidate projects are not located in protected area but protected areas exist downstream. If there are several major irrigation systems and hydropower plants, reduction of river flow in the wet season, increase of river flow in the dry season, fewer floods, and deduction of yearly river flow might be cumulated. If it happens, the impact would affect the species and ecosystems in the protected area which depend on natural water flow and floods.
 - Suggestions for survey: Major planned and existing irrigation facilities and storage type hydropower plant should be examined for their regulation rates.
 - Suggestions for impact assessment: Monthly simulation of river water flow at the point in the protected area is recommended. The impact on protected area could be examined with the Department of National Parks and Wildlife Conservation and NGOs.
 - Suggestions for mitigation planning: The mitigation by one project would be limited. Then cooperative mitigations with other projects would be recommended.
 - Suggestions for monitoring planning: Monitoring plan should include compliance monitoring.
- (2) Plants
 - Anticipated impact: The vegetation loss around the river by hydropower project is inescapable. Even if the vegetation is common one but used by animals as migration route, the vegetation loss might affect the habitat of the migration species.
 - Suggestions for survey: Not only the location of the protected species but also the vegetation

used highly by protected animals should be identified. The area of invasive species, degraded vegetation and erosion area should be identified too. The survey should be conducted at least two times a year in wet and dry seasons. The survey area should include Reservoir, Dam, Generation plant, Camp site, Quarry, Damping site, Access road, Construction road, and Transmission route. It should be expanded to the tree planting area for mitigation.

- Suggestions for impact assessment: Loss of vegetation area should be predicted by the vegetation class. Predictions of disappearance should be done for protected plants.
- Suggestions for mitigation planning: Mitigation of planting and transplanting should be explained with its area, timing, and methods in detail.
- Suggestions for monitoring planning: Both compliance monitoring and impact monitoring should be included. Monitoring locations, timing and frequency should be instructed in detail.
- (3) Terrestrial animals
 - Anticipated impact: Vegetation along the river is likely to be used for migration route for some terrestrial animals. And reservoirs, access roads, transmission lines might be barriers for migrations.
 - Suggestions for survey: In order to raise the survey accuracy, Japanese professional surveyors are hopefully installed by categories (mammal, bird, reptile, amphibian and insect). If there are any protected species in the project area, it is recommended to expand the survey area and identify the habitat position in whole habitat.
 - Suggestions for impact assessment: Getting information about the vegetation change and land use change from plant expert and social expert, possible affected habitat should be identified.
 - Suggestions for mitigation planning: Mitigation might include preservation of important habitat and defragmentation of the migration route. The exact location of the mitigation should be instructed in detail.
 - Suggestions for monitoring planning: Monitoring plan should include monitoring points, timing, methods, and reporting format in detail.

(4) Aquatic species

- Anticipated impact: Construction of barrier will block migration of cold water fishes for spawning. If the river is the last river in the river system which has no barrier for the cold water fishes, the risk of extinction of the species would be extremely high. Changing of water environment such as water quality, water volume, and water temperature might cause serious impact on resident species too.
- Suggestions for survey: The wet season which is migration season should not be excluded from the survey time. If possible the other rivers in the same river system would be hopefully surveyed before detail survey at the project site. Effectiveness of the mitigation of other hydropower projects in Nepal can be surveyed.
- Suggestions for impact assessment: Getting the prediction result from the expert of water quality and water flow, the extent of impact should be estimated by locations and by species in

detail.

- Suggestions for mitigation planning: Mitigation should be practical and sustainable one considering effectiveness of the other projects' mitigations.
- Suggestions for monitoring planning: Monitoring should include both compliance monitoring and impact monitoring.

13.5 Attentional issues of Social Environment

- (1) Resettlement and land acquisition
 - Anticipated impact: All the projects might cause resettlement and land acquisition.
 - Suggestions for survey: All the information in the survey area required for RAP should be gathered and arranged in GIS and database. In order to avoid deficiency of the survey, detail survey methods and arrangement methods should be taught to the re-commissioned survey company. Survey area should include a reservoir, power plant, quarry site, construction road, tentative working area, and resettlement area. In order to cover indirect impact, survey area should expand to houses and land around direct impact area. Not only house owners and land owners, but also tenant farmers, tenants of a house, servants, illegal land users, and non-registered land users should be surveyed. Elders, women, child, disabled, poverty household should be covered.
 - Suggestions for impact assessment: The impact should be distinguished between direct impact, such as resettlement and land acquisition, and indirect impact, such as business degradation or access problems. Permanent impact and temporary impact, such as the land returned after construction, should be distinguished too. The rules of the buffer zone around the reservoir should be clearly defined and boundary should be marked on the map. The predicted impact should be clearly explained in the SHM and considered to the illiterates.
 - Suggestions for mitigation planning: Entitlement matrix should be prepared for all anticipated social impact based on the format or RAP. Caution for the compensation rate should be not to be far different from that of the similar projects around the area. Selectable compensations such as land or money would be preferable than one option.
 - Suggestions for monitoring planning: Compliance monitoring should be included.

(2) Water use

- Anticipated impact: Spring water use in the reservoir area and over the tunnel route, water use at the recession area, water use downstream of the spillway might be affected.
- Suggestions for survey: Locations and user location of the wells over the tunnel route and reservoir should be surveyed. Location, water right, of drinking water intake, irrigation water intake, industrial water intake, fish farming intake and their water discharge should be surveyed in the recession area. Fishery area, sand mining points, cloth washing, river bathing, river side camping site, rafting activity, religious activities should be surveyed at the dewatering area too. Water use timing should be examined too, because some activities might be done in only the wet season. The survey area would be up to the confluence with the bigger

river. If serious impacts are predicted at some points, surveyor should ask the water flow expert to add prediction points for river water level.

- Suggestions for impact assessment: Based on the predicted water flow impact, impact value, location, timing should be examined. The people affected should be explained clearly at the SHM or other ways.
- Suggestions for mitigation planning: If any impact on water use is confirmed, it should be added in Entitlement Matrix in RAP and prepare the compensation rules.
- Suggestions for monitoring planning: Monitoring should include both compliance monitoring and impact monitoring.

(3) Accident

- Anticipated impact: Accidents might happen on the community roads by construction vehicles and industrial injury at the site during construction. Flushing water from a dam and exponential increase in river flow by peak generation might cause water accidents downstream of the dam, if there is not any re-regulating reservoir.
- Suggestions for survey: School road and commuting road, camping site along the river, and river bathing site should be surveyed. If possible previous accidents near the project site or similar projects should be surveyed with their reasons.
- Suggestions for impact assessment: The overlapped route between truck routes and school roads should be investigated. If any risks are predicted, it should be explained clearly to the affected people at the stakeholder meeting or other ways.
- Suggestions for mitigation planning: If serious impacts are predicted, alternative truck routs should be examined. Compliance of the Labor Act 2048 (1992), Some measures for workers environment such as Industrial accident prevention planning, Health and safety planning, and Safety education for workers should be prepared in the EMP.
- Suggestions for monitoring planning: Not only the monitoring for probable accidents but also compliance monitoring for mitigation should be planned.

(4) Life and Livelihood

- Anticipated impact: Not only the people affected by resettlement or land acquisition but also the people affected on only water use might have difficulty in their life and livelihood. The people who have to release their cultivation land and/or the business which lose their customer might be affected even if they do not need to be relocated. Fish farming, fishery, sand mining and rafting business might be also decreased their income.
- Suggestions for survey: All the information required for RAP should be surveyed such as current income, possible downturn in income and so on.
- Suggestions for impact assessment: Possible downturn in income, the necessity of changing the work should be assessed one by one.
- Suggestions for mitigation planning: Mitigations should be selectable for the affected people for example the mitigation for who would like to change their jobs or the mitigation for who

would not like to change their jobs.

- Suggestions for monitoring planning: Monitoring plan should cover not only the monitoring life and livelihood but also compliance monitoring for monitoring.
- (5) Use of land and natural resources
 - Anticipated impact: Residential land, agricultural land, grazing ground, national forest, community forest, and private forest might be lost by submerging.
 - Suggestions for survey: Precise maps which show national maps and community forest might not exist. Then forest boundary should be clarified by the District Forest Office or Community Forestry User Groups (CFUGs). Attention should be paid if the land category shows the exact land use. If possible alternative tree planting area for mitigation would be surveyed too. The number of users and actual usage should be surveyed on community forests.
 - Suggestions for impact assessment: After identifying the impact area on the map, exact extent of the impact should be predicted.
 - Suggestions for mitigation planning: Although forest mitigation methods are stipulated in the forest guideline (2006) and Forest Norms (2003) by the Ministry of Forest and Soil Conservation, there is a special rule (Shaskiya & Arthik Sudhar-AP 2069_Governance reform-30 Ashoj-2069) for hydropower plants which shows the rate as 1:2 for cutting and planting trees. The detail tree compensation plan can be started after issuance of construction license. Then compensation plan in EMP will be tentative one.
 - Suggestions for monitoring planning: Monitoring plan should include compliance monitoring for the planned mitigation.
- (6) Infrastructure
 - Anticipated impact: Project might affect local infrastructures such as roads, suspension bridges, distribution lines, telephone lines, water supply facilities, sewerage systems, and so on. Impact on road might cause fragmentation of the communities.
 - Suggestions for survey: The location of all the infrastructures on the map should be identified.
 - Suggestions for impact assessment: The affected locations should be identified and the infrastructure maps and design maps renewed. The possible community fragmentation area should be identified.
 - Suggestions for mitigation planning: Mitigation will reinstall equivalent value as a basic rule. But it can be added value based on the user request.
 - Suggestions for monitoring planning: Compliance monitoring for planned mitigation should be included.
- (7) Culture
 - Anticipated impact: Traditional buildings, buried cultural property, festival and traditional arts might be lost by inundation.

- Suggestions for survey: The survey area for intangible cultural properties should be expanded not only direct to impact area but also to whole village.
- Suggestions for impact assessment: Impact should be assessed whether the project might affect the sustainability of the traditional festival and/or traditional arts or not.
- Suggestions for mitigation planning: If serious cultural assets are identified, adequate mitigations including trans-building should be carefully examined.
- Suggestions for monitoring planning: Monitoring plan should include compliance monitoring.

(8) Landscape

- Anticipated impact: Landscape from viewpoints might be affected by existence of power plant facilities.
- Suggestions for survey: Viewpoints around the project area should be visited and the view, yearly users, and main view direction should be examined.
- Suggestions for impact assessment: The landscape after construction from the viewpoints should be simulated.
- Suggestions for mitigation planning: If serious impacts on landscapes are predicted, avoidance or minimization measures should be examined.
- Suggestions for monitoring planning: Compliance monitoring should be included.

(9) Ethnic minority and Indigenous people

- Anticipated impact: Ethnic minotiries are confirmed at all the candidate projects sites. Then impact on these people is anticipated.
- Suggestions for survey: Required information for IPP should be gathered. More attention should be paid to language, culture, festival, traditional architecture and traditional natural resources. Not only the affected indigenous people but also whole distribution of the groups and distribution center should be examined. Traditional practice for relocations such as direction, timing, relationship between other groups, and land conditions should be examined. If required, the meeting in the group should be supported. If there are any conflicts and problems among or between groups, actual conditions should be surveyed. Survey in dry season would be effective because of road fragmentation by land slide in wet season.
- Suggestions for impact assessment: Whether the center of the ethnic groups will be affected or not should be assessed. Not only the resource of livelihood but also resource of the festival or custom should be examined if they are affected. The result of assessment should be informed not only to the affected people but also to whole ethnic groups if required.
- Suggestions for mitigation planning: Mitigation measures should be considered to avoid diaspora and fragmentation of the ethnic groups, and to sustain the cultural inheritance. From selection of the resettlement area to compensation methods, they should not be provided in one way from project owner to the affected people. They should be decided in participatory way taking enough time. Take caution on the conflict and problems in the groups not be made worse.

- Suggestions for monitoring planning: Monitoring plan should be divided in owner's monitoring and audit monitoring. Adequacy of grievance adjustment should be monitored too.
- (10) Working environment and work safety
 - Anticipated impact: Labor accident, fight, food poisoning, communicable disease, and child labors are anticipated.
 - Suggestions for survey: Hearing survey at near and similar projects are suggested and the previous work accident and diseases and their causes should be examined.
 - Suggestions for impact assessment: Possibility of the occurrence of the similar problems should be predicted.
 - Suggestions for mitigation planning: Precaution measures should be prepared especially for communicable diseases such as HIV/AIDS.
 - Suggestions for monitoring planning: Monitoring plan should include both accident monitoring by project owners and compliance monitoring by audit organizations.

Appendix 4

Power Development Plan and Development Plan of Storage-type Hydroelectric Power Projects taking into consideration Candidate Projects proposed by NEA

Table of Contents

Appendix	4 Power Development Plan and Development Plan of Storage-type	
	Hydroelectric Power Projects taking into consideration Candidate Projects	
	proposed by NEA	
A.4.1	Introduction	1
A.4.2	Power Development Plan	1
	A.4.2.1 Candidate Projects for Hydroelectric Power Generation	1
	A.4.2.1.1 Candidate Projects proposed by NEA	1
	A.4.2.1.2 Development of ROR-type Hydroelectric Power Generation and Power	
	Imports from India	1
	A.4.2.2 Key Parameters	1
	A.4.2.3 Power Development Plan taking into consideration Candidate Projects proposed by the NEA	2
	A.4.2.3.1 Practical Development Scenario	2
	A.4.2.3.2 Power Development plan	2
A.4.3	Development Plan of Storage-type Hydroelectric Power Projects	12
	A.4.3.1 Storage-type Hydroelectric Power Projects to be Implemented	12

List of Tables

Table A.4.2.1-1	Candidate Hydroelectric Power Projects by the NEA	1
Table A.4.2.3.2-1	Generation Expansion Plan (Base Case) (Candidates proposed by NEA are	
	considered)	3
Table A.4.2.3.2-2	Generation Expansion Plan (High Case) (Candidates proposed by NEA are	
	considered)	4
Table A.4.2.3.2-3	Generation Expansion Plan (Low Case) (Candidates proposed by NEA are	
	considered)	5
Table A.4.2.3.2-4	Balance of Demand and Supply, LOLP, and Reserve Margin (Base Case)	
	(Candidates proposed by NEA are considered)	7
Table A.4.2.3.2-5	Balance of Demand and Supply, LOLP, and Reserve Margin (High Case)	
	(Candidates proposed by NEA are considered)	8
Table A.4.2.3.2-6	Balance of Demand and Supply, LOLP, and Reserve Margin (Low Case)	
	(Candidates proposed by NEA are considered)	8
Table A.4.3.1-1	Storage-type Projects to be Implemented (Candidates proposed by NEA are	
	considered)	12
Table A.4.3.1-2	Commissioning Year of Commercial Operation (Candidates proposed by the	
	NEA are considered)	13

List of Figures

Figure A.4.2.3.2-1	Balance of Peak Demand and Supply Capacity (Base Case) (Candidates	
	proposed by NEA are considered)	.9
Figure A.4.2.3.2-2	Balance of Peak Demand and Supply Capacity (High Case) (Candidates	
	proposed by NEA are considered)	.9
Figure A.4.2.3.2-3	Balance of Peak Demand and Supply Capacity (Low Case) (Candidates	
	proposed by NEA are considered)	. 10
Figure A.4.2.3.2-4	LOLP and Reserve Margin (Base Case) (Candidates proposed by NEA are	
	considered)	. 10
Figure A.4.2.3.2-5	LOLP and Reserve Margin (High Case) (Candidates proposed by NEA are	
	considered)	. 11
Figure A.4.2.3.2-6	LOLP and Reserve Margin (Low Case) (Candidates proposed by NEA are	
	considered)	. 11

Appendix 4Power Development Plan and Development Plan of
Storage-type Hydroelectric Power Projects taking into
consideration Candidate Projects proposed by NEA

A.4.1 Introduction

The NEA proposes four projects listed in Table A.4.2.1-1 as candidate projects for the power development plan in addition to the candidate projects described in "8.9 Candidate Projects for Hydroelectric Power Generation" in the main report. In Appendix 4, these four projects were also considered as the candidate projects for "Power Development Plan" and "Development Plan of Storage-type Hydroelectric Power Projects."

A.4.2 Power Development Plan

A.4.2.1 Candidate Projects for Hydroelectric Power Generation

A.4.2.1.1 Candidate Projects proposed by NEA

The Utter Ganga project was excluded from the candidate projects because it became clear that this projects is located in conservation areas.

Project Name	Туре	Installed Capacity (MW)	Annual Energy (GWh)	Project Cost* (MUS\$)	Commercial Operation** (FY)	Remarks
West Seti***	STO	750	3,636	1,483	2024	
Utter Ganga	STO	300	1,538	744	2027	Excluded from the candidates in this study. (Hunting reserve)
Kaligandaki-2	STO	680	3,470	1,347	2027	
Tamor	STO	530	2,406	1,538	2028	

 Table A.4.2.1-1
 Candidate Hydroelectric Power Projects by the NEA

Source: NEA

*: FY2012/13 price

**: The earliest case. Estimated by the NEA and reviewed by the Study Team.

***: For power export.

A.4.2.1.2 Development of ROR-type Hydroelectric Power Generation and Power Imports from India

Development of ROR-type hydroelectric power generation and power imports from India were considered to be the same described in "8.9.2 Development of ROR-type Hydroelectric Power Generation" and "8.9.3 Power Import from India" in the main report.

A.4.2.2 Key Parameters

As for the values of key parameters for formulating the power development plan, the values described in "8.10 Key Parameters" in the main report were used.

A.4.2.3 Power Development Plan taking into consideration Candidate Projects proposed by the NEA

A.4.2.3.1 Practical Development Scenario

The projects under construction or with a high probability of being constructed listed in Table 8.8-1 (in the main report) commence commercial operation according to schedule. The candidate projects to be developed after these projects are the promising storage-type HPPs selected by the Study Team listed in Table 8.9.1-1 of the main report, ROR-type HPPs listed in Table 8.9.2-1, and the projects proposed by the NEA listed in Table A.4.2.1-1 in this appendix.

With these candidate projects, a power development plan that is able to resolve the load shedding as early as possible and then secure the required LOLP with the least total costs of construction and O&M costs in terms of present value is formulated.

A.4.2.3.2 Power Development plan

(1) Commencement of commercial operation

Table A.4.2.3.2-1 to Table A.4.2.3.2-3 show the power plants to be constructed and their commencement year of commercial operation for the base case, the high case, and the low case of demand forecast, respectively

For the base case, the total installed capacity of generation facilities that are put into operation for the 20 years from FY2012/13 to FY2031/32 is 4,177 MW (the increment in imports from India is included), and 2,214 MW of this is storage-type hydroelectric power generation.

For the high case, the total installed capacity of generation facilities that are put into operation for the 20 years from FY 2012/13 to FY2031/32 is 5,186 MW, which is 1,009 MW larger than that for the base case. In these generation facilities, storage-type hydroelectric power generation is 3,223 MW, which is 1,090 MW larger than for the base case.

For the low case, the total installed capacity of generation facilities that are put into operation for the 20 years from FY 2012/13 to FY2031/32 is 4,177 MW, which is the same as for the base case. In these generation facilities, storage-type hydroelectric power generation is 2,414 MW, which is also the same as for the base case.

FY		2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20	2020/21	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29	2029/30	2030/31	2031/32
Existing	—	850.1	\rightarrow																			
Kulekhani No. 3	STO					14.0	\rightarrow															
Chameliy a	PROR					30.0	\rightarrow															
Khani Khola	ROR					25.0	\rightarrow															
Upper Sanjen	ROR						11.0	\rightarrow														
Sanjen	ROR						42.9	\rightarrow														
Upper Trishuli 3A	ROR						60.0	\rightarrow														
Upper Tamakoshi	PROR						456.0	\rightarrow														
Madhya (Middle) Bhotekosh	ROR							102.0	\rightarrow													
Rasuwagadi	ROR							111.0	\rightarrow													
Rahughat	PROR							32.0	\rightarrow													
Upper Marsyangdi	ROR							50.0	\rightarrow													
Mistri	ROR							42.0	\rightarrow													
ROR-1	ROR								100.0	\rightarrow												
Upper Trishuli 3B	ROR									37.0	\rightarrow											
ROR-2	ROR									100.0	\rightarrow											
Tanahu	STO										140.0	\rightarrow										
Upper Mode A	ROR										42.0	\rightarrow										
ROR-3	ROR										100.0	\rightarrow										
Tamakshi V	ROR											87.0	\rightarrow									
Budhi Gandaki	STO												600.0	\rightarrow								
ROR-4	ROR														100.0	\rightarrow						
ROR-5	ROR															100.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Upper Arun	PROR															335.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Dudh Koshi	STO										ļ						300.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Nalsyau Gad	STO																		410.0	\rightarrow	\rightarrow	\rightarrow
West Seti	STO																				750.0	\rightarrow
Import from India		12.0	\rightarrow	\rightarrow	\rightarrow	162.0	\rightarrow															
Added Installed Capacity	(MW)		0.0	0.0	0.0	219.0	569.9	337.0	100.0	137.0	282.0	87.0	600.0	0.0	100.0	435.0	300.0	0.0	410.0	0.0	750.0	0.0
Total Installed Capacity	(MW)	862.1	862.1	862.1	862.1	1,081.1	1,651.0	1,988.0	2,088.0	2,225.0	2,507.0	2,594.0	3,194.0	3,194.0	3,294.0	3,729.0	4,029.0	4,029.0	4,439.0	4,439.0	5,189.0	5,189.0
LOLP* (%)			50.375	53.789	57.975	32.637	2.733	1.575	1.927	2.579	1.919	3.087	0.130	0.516	1.225	0.666	0.336	1.079	0.440	1.331	0.075	0.590

Table A.4.2.3.2-1 Generation Expansion Plan (Base Case) (Candidates proposed by NEA are considered)

*: Critical LOLP is 1.375%, equivalent to 5 days/year.

Note: Projects in boldface are storage-type projects. The total install capacity includes the import from India.

FY		2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20	2020/21	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29	2029/30	2030/31	2031/32
Existing		850.1	\rightarrow																			
Kulekhani No. 3	STO					14.0	\rightarrow															
Chameliya	PROR					30.0	\rightarrow															
Khani Khola	ROR					25.0	\rightarrow															
Upper Sanjen	ROR						11.0	\rightarrow														
Sanjen	ROR						42.9	\rightarrow														
Upper Trishuli 3A	ROR						60.0	\rightarrow														
Upper Tamakoshi	PROR						456.0	\rightarrow														
Madhya (Middle) Bhotekosh	ROR							102.0	\rightarrow													
Rasuwagadi	ROR							111.0	\rightarrow													
Rahughat	PROR							32.0	\rightarrow													
Upper Marsyangdi	ROR							50.0	\rightarrow													
Mistri	ROR							42.0	\rightarrow													
ROR-1	ROR								100.0	\rightarrow												
Upper Trishuli 3B	ROR									37.0	\rightarrow											
ROR-2	ROR									100.0	\rightarrow											
Tanahu	STO										140.0	\rightarrow										
Upper Mode A	ROR										42.0	\rightarrow										
ROR-3	ROR										100.0	\rightarrow										
Tamakshi V	ROR											87.0	\rightarrow									
Budhi Gandaki	STO												600.0	\rightarrow								
Upper Arun	PROR														335.0	\rightarrow						
ROR-4, -5	ROR														200.0	\rightarrow						
Dudh Koshi	STO																300.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Nalsyau Gad	STO																	410.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow
West Seti	STO																[750.0	\rightarrow	\rightarrow
Chera-1	STO																			149.0	\rightarrow	\rightarrow
Andhi Khola	STO																					180.0
Kaligandaki-2	STO																					680.0
Import from India		12.0	\rightarrow	\rightarrow	\rightarrow	162.0	\rightarrow															
Added Installed Capacity	(MW)		0.0	0.0	0.0	219.0	569.9	337.0	100.0	137.0	282.0	87.0	600.0	0.0	535.0	0.0	300.0	410.0	0.0	899.0	0.0	860.0
Total Installed Capacity	(MW)	862.1	862.1	862.1	862.1	1,081.1	1,651.0	1,988.0	2,088.0	2,225.0	2,507.0	2,594.0	3,194.0	3,194.0	3,729.0	3,729.0	4,029.0	4,439.0	4,439.0	5,338.0	5,338.0	6,198.0
LOLP* (%)			49.198	51.573	54.322	27.323	1.945	1.680	2.695	3.334	2.625	3.923	0.345	0.967	0.403	1.218	0.824	0.309	1.167	0.091	0.913	0.087

Table A.4.2.3.2-2 Generation Expansion Plan (High Case) (Candidates proposed by NEA are considered)

*: Critical LOLP is 1.375%, equivalent to 5 days/year.

Note: Projects in boldface are storage-type projects.

The total install capacity includes the import from India.

FY		2011/12	2012/13	2013/14	2014/15	2015/16	2016/17	2017/18	2018/19	2019/20	2020/21	2021/22	2022/23	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29	2029/30	2030/31	2031/32
Existing		850.1	\rightarrow																			
Kulekhani No. 3	STO					14.0	\rightarrow															
Chameliya	PROR					30.0	\rightarrow															
Khani Khola	ROR					25.0	\rightarrow															
Upper Sanjen	ROR						11.0	\rightarrow														
Sanjen	ROR						42.9	\rightarrow														
Upper Trishuli 3A	ROR						60.0	\rightarrow														
Upper Tamakoshi	PROR						456.0	\rightarrow														
Madhya (Middle) Bhotekosł	ROR							102.0	\rightarrow													
Rasuwagadi	ROR							111.0	\rightarrow													
Rahughat	PROR							32.0	\rightarrow													
Upper Marsyangdi	ROR							50.0	\rightarrow													
Mistri	ROR							42.0	\rightarrow													
ROR-1	ROR								100.0	\rightarrow												
Upper Trishuli 3B	ROR									37.0	\rightarrow											
ROR-2	ROR									100.0	\rightarrow											
Tanahu	STO										140.0	\rightarrow										
Upper Mode A	ROR										42.0	\rightarrow										
ROR-3	ROR										100.0	\rightarrow										
Tamakoshi V	ROR											87.0	\rightarrow									
Budhi Gandaki	STO												600.0	\rightarrow								
ROR-4	ROR															100.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Upper Arun	PROR																335.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
ROR-5	ROR																100.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Dudh Koshi	STO																	300.0	\rightarrow	\rightarrow	\rightarrow	\rightarrow
Nalsyau Gad	STO																			410.0	\rightarrow	\rightarrow
West Seti	STO																					750.0
Import from India		12.0	\rightarrow	\rightarrow	\rightarrow	162.0	\rightarrow															
Added Installed Capacity	(MW)		0.0	0.0	0.0	219.0	569.9	337.0	100.0	137.0	282.0	87.0	600.0	0.0	0.0	100.0	435.0	300.0	0.0	410.0	0.0	750.0
Total Installed Capacity	(MW)	862.1	862.1	862.1	862.1	1,081.1	1,651.0	1,988.0	2,088.0	2,225.0	2,507.0	2,594.0	3,194.0	3,194.0	3,194.0	3,294.0	3,729.0	4,029.0	4,029.0	4,439.0	4,439.0	5,189.0
LOLP* (%)			51.054	55.341	60.972	36.845	3.802	2.389	2.716	2.678	1.453	2.135	0.017	0.144	0.621	1.338	0.712	0.370	1.117	0.435	1.275	0.081

Table A.4.2.3.2-3 Generation Expansion Plan (Low Case) (Candidates proposed by NEA are considered)

*: Critical LOLP is 1.375%, equivalent to 5 days/year.

Note: Projects in boldface are storage-type projects. The total install capacity includes the import from India.

(2) Supply-demand balance

Table A.4.2.3.2-4, Table A.4.2.3.2-5 and Table A.4.2.3.2-6, and Figure A.4.2.3.2-1, Figure A.4.2.3.2-2 and Figure A.4.2.3.2-3 show the supply-demand balance for the base case, the high case, and the low case of demand forecast respectively.

In these tables, some peak supply capacities are smaller than peak demand even though LOLP is within the allowable range, which is less than 1.375% and equivalent to less than 5 days/year of shortage in the supply capacity in a year. In general, shortage in the supply capacity of ROR-type HPPs concentrates in the dry season, and energy supply by ROR-type HPPs decreases significantly. To cope with that, a part of the storage-type HPPs are operated at the output lower than the installed capacity for a long time to supply base demand. Therefore, the shortage of peak supply capacity occurs for some days within the above-mentioned allowable range. Regarding energy, on the other hand, nearly 100% is supplied in years when LOLP is within the allowable range.

For the base case, though the Kulekhani No. 3 HPP (14 MW), the Chameliya HPP (30 MW), and the Khani Khola HPP (25 MW) will be put into operation in FY2015/16, the supply capacity is not able to meet the peak demand. The LOLP is improved by comparison with previous years. It is, however, a significantly large value, 33%. In FY2016/17, the Upper Tamakoshi HPP (456 MW), the Upper Sanjen HPP (11 MW), the Sanjen HPP (42.9 MW), and the Upper Trishuli 3A HPP (60 MW) are put into operation, and the LOLP becomes lower than 3%, however it is larger than 1.375%, the allowable upper limit. After then, between FY2017/18 and FY2021/22, the Nadhya (Middle) Botekoshi HPP (102 MW), the Rasuwagad HPP (111 MW), the Rahughat HPP (32 MW), the Upper Marsyangdi HPP (50 MW), the Upper Modi A HPP, and the Tamakoshi V HPP (87 MW) are put into operation. Other than these HPPs, ROR-type HPPs totaling 300 MW are also put into operation, and the LOLP fluctuates in a range between 1.5% and 3%.

In FY2022/23, commissioning of the Budhi Gandaki HPP (600 MW) makes the power demand and supply balanced, and the LOLP becomes lower than the allowable upper limit, 1.375%. Then the Upper Arun HPP (335 MW: PROR type) is put into operation in FY2025/26, the Dudh Koshi HPP (300 MW) in FY2026/27, the Nalsyau Gad HPP (410 MW) in FY2028/29, and the West Seti HPP (750 MW) is put into operation in FY2030/31. Other than these HPPs, ROR-type HPPs totaling 200 MW are also put into operation, stable supply-demand situation continues until FY2031/32. (See Table A.4.2.3.2-1)

The power development plan for the high case of the demand forecast is much the same as that for the base case until commissioning of the Budhi Gandaki HPP in FY2022/23. After then, the Upper Arun (PROR type), the Nalsyau Gad, and the West Seti HPPs are put into operation in FY2024/25, FY2027/28, and FY2029/30 respectively. Their commissioning are one year earlier than the base case. In addition, the Chera-1 HPP (149 MW) is put into operation in FY2029/30, and the Andhi Khola HPP (180 MW) and the Kaligandaki-2 HPP (680 MW) are put into operation in FY2031/32. These three HPPs are not put into operation in and before FY2031/32 in the power development plan for the base case of demand forecast. (See Table A.4.2.3.2-2)

The power development plan for the low case of demand forecast is also much the same as that for the base case until commissioning of the Budhi Gandaki HPP in FY2022/23. After then, commissioning of the Upper Arun, the Dudh Koshi, the Nalsyau Gad, and the West Seti HPPs are FY2026/27, FY2027/28, FY2029/30, and FY2031/32 respectively, one year later than for the base case of demand forecast. (See Table A.4.2.3.2-3)

	Installed	Peak	Supply	Supply –	Energy	Supply	Supply /	LOLD	Reserve
FV	Capacity	Demand	Capacity	Demand	Demand	Energy	Demand	(%)	Margin
1 1	(MW)	(MW)	(MW)	(MW)	(GWh)	(GWh)	(%)	(70)	(%)
	а	b	с	d = c - b	e	f	g = f / e	h	i = a / b - 1
2012/13	862	1,231	479	-752	5,607	4,707	84.0	50.375	-30.0
2013/14	862	1,277	477	-800	5,818	4,787	82.3	53.789	-32.5
2014/15	862	1,328	476	-852	6,049	4,865	80.4	57.975	-35.1
2015/16	1,081	1,382	696	-686	6,294	5,747	91.3	32.637	-21.8
2016/17	1,651	1,439	1,224	-215	6,556	6,527	99.6	2.733	14.7
2017/18	1,988	1,501	1,346	-155	6,836	6,819	99.8	1.575	32.5
2018/19	2,088	1,575	1,375	-200	7,176	7,154	99.7	1.927	32.5
2019/20	2,225	1,717	1,436	-281	7,823	7,788	99.6	2.579	29.6
2020/21	2,507	1,867	1,617	-250	8,504	8,481	99.7	1.919	34.3
2021/22	2,594	2,031	1,636	-395	9,252	9,198	99.4	3.087	27.7
2022/23	3,194	2,169	2,236	67	9,881	9,880	100.0	0.130	47.3
2023/24	3,194	2,321	2,236	-85	10,572	10,568	100.0	0.516	37.6
2024/25	3,294	2,513	2,265	-248	11,447	11,428	99.8	1.225	31.1
2025/26	3,729	2,714	2,537	-177	12,364	12,358	100.0	0.666	37.4
2026/27	4,029	2,925	2,837	-88	13,325	13,320	100.0	0.336	37.7
2027/28	4,029	3,158	2,837	-321	14,386	14,370	99.9	1.079	27.6
2028/29	4,439	3,410	3,247	-163	15,531	15,526	100.0	0.440	30.2
2029/30	4,439	3,676	3,247	-429	16,744	16,721	99.9	1.331	20.8
2030/31	5,189	3,966	3,997	31	18,066	18,066	100.0	0.075	30.8
2031/32	5,189	4,279	3,997	-282	19,493	19,484	100.0	0.590	21.3

Table A.4.2.3.2-4Balance of Demand and Supply, LOLP, and Reserve Margin (Base Case)
(Candidates proposed by NEA are considered)

*: Critical LOLP is 1.375%, equivalent to 5 days/year.

FY	Installed Capacity	Peak Demand	Supply Capacity	Supply – Demand	Energy Demand	Supply Energy	Supply / Demand	LOLP (%)	Reserve Margin
	(IVI W) a	(M w)		$(\mathbf{M}\mathbf{w})$ $\mathbf{d} = \mathbf{c} - \mathbf{b}$	(Gwn) e	(GW II) f	g = f/e	h	(%) i = a / b - 1
2012/13	862	1,216	479	-737	5,537	4,682	84.5	49.198	-29.1
2013/14	862	1,247	477	-770	5,678	5,326	93.8	51.573	-30.8
2014/15	862	1,284	476	-808	5,851	5,498	94.0	54.322	-32.9
2015/16	1,081	1,324	696	-628	6,031	6,029	100.0	27.323	-18.3
2016/17	1,651	1,381	1,224	-157	6,290	6,287	99.9	1.945	19.6
2017/18	1,988	1,512	1,346	-166	6,888	6,886	100.0	1.680	31.5
2018/19	2,088	1,649	1,375	-274	7,512	7,505	99.9	2.695	26.6
2019/20	2,225	1,794	1,436	-358	8,174	8,160	99.8	3.334	24.0
2020/21	2,507	1,949	1,617	-332	8,880	8,851	99.7	2.625	28.6
2021/22	2,594	2,123	1,636	-487	9,670	9,604	99.3	3.923	22.2
2022/23	3,194	2,270	2,236	-34	10,342	10,229	98.9	0.345	40.7
2023/24	3,194	2,429	2,236	-193	11,066	11,065	100.0	0.967	31.5
2024/25	3,729	2,629	2,265	-364	11,974	11,962	99.9	0.403	41.9
2025/26	3,729	2,854	2,537	-317	13,002	13,001	100.0	1.218	30.6
2026/27	4,029	3,093	2,837	-256	14,089	14,082	100.0	0.824	30.3
2027/28	4,439	3,350	2,837	-513	15,260	15,243	99.9	0.309	32.5
2028/29	4,439	3,635	3,247	-388	16,557	16,545	99.9	1.167	22.1
2029/30	5,338	3,984	3,247	-737	18,147	18,138	100.0	0.091	34.0
2030/31	5,338	4,389	3,997	-392	19,993	19,983	100.0	0.913	21.6
2031/32	6,198	4,866	3,997	-869	22,166	22,108	99.7	0.087	27.4

Table A.4.2.3.2-5Balance of Demand and Supply, LOLP, and Reserve Margin (High Case)
(Candidates proposed by NEA are considered)

*: Critical LOLP is 1.375%, equivalent to 5 days/year.

Table A.4.2.3.2-6	Balance of Demand and Supply, LOLP, and Reserve Margin (Low Case)
	(Candidates proposed by NEA are considered)

	Installed	Peak	Supply	Supply –	Energy	Supply	Supply /		Reserve
EV	Capacity	Demand	Capacity	Demand	Demand	Energy	Demand	LOLF (%)	Margin
ГІ	(MW)	(MW)	(MW)	(MW)	(GWh)	(GWh)	(%)	(%)	(%)
	а	b	с	d = c - b	e	f	g = f / e	h	i = a / b - 1
2012/13	862	1,240	479	-761	5,650	4,727	83.7	51.054	-30.5
2013/14	862	1,297	477	-820	5,907	4,818	81.6	55.341	-33.5
2014/15	862	1,361	476	-885	6,202	4,915	79.2	60.972	-36.7
2015/16	1,081	1,430	688	-742	6,514	5,857	89.9	36.845	-24.4
2016/17	1,651	1,503	1,224	-279	6,847	6,803	99.4	3.802	9.8
2017/18	1,988	1,579	1,346	-233	7,192	7,165	99.6	2.389	25.9
2018/19	2,088	1,651	1,375	-276	7,522	7,489	99.6	2.716	26.4
2019/20	2,225	1,728	1,436	-292	7,869	7,834	99.6	2.678	28.8
2020/21	2,507	1,808	1,617	-191	8,237	8,220	99.8	1.453	38.6
2021/22	2,594	1,918	1,636	-282	8,738	8,712	99.7	2.135	35.2
2022/23	3,194	2,043	2,236	193	9,307	9,307	100.0	0.017	56.3
2023/24	3,194	2,178	2,236	58	9,922	9,921	100.0	0.144	46.6
2024/25	3,194	2,349	2,236	-113	10,702	10,697	100.0	0.621	36.0
2025/26	3,294	2,533	2,265	-268	11,538	11,521	99.9	1.338	30.0
2026/27	3,729	2,728	2,537	-191	12,426	12,417	99.9	0.712	36.7
2027/28	4,029	2,939	2,837	-102	13,390	13,386	100.0	0.370	37.1
2028/29	4,029	3,167	2,837	-330	14,426	14,408	99.9	1.117	27.2
2029/30	4,439	3,408	3,247	-161	15,524	15,519	100.0	0.435	30.3
2030/31	4,439	3,662	3,247	-415	16,680	16,658	99.9	1.275	21.2
2031/32	5,189	3,934	3,997	63	17,921	17,921	100.0	0.081	31.9

*: Critical LOLP is 1.375%, equivalent to 5 days/year.

Figure A.4.2.3.2-1 Balance of Peak Demand and Supply Capacity (Base Case) (Candidates proposed by NEA are considered)

Figure A.4.2.3.2-2 Balance of Peak Demand and Supply Capacity (High Case) (Candidates proposed by NEA are considered)

Figure A.4.2.3.2-3 Balance of Peak Demand and Supply Capacity (Low Case) (Candidates proposed by NEA are considered)

Figure A.4.2.3.2-5 LOLP and Reserve Margin (High Case) (Candidates proposed by NEA are considered)

A.4.3 Development Plan of Storage-type Hydroelectric Power Projects

A.4.3.1 Storage-type Hydroelectric Power Projects to be Implemented

In the power development plan described in "A.4.2 Power Development Plan," the total installed capacity of hydroelectric power projects (including an increment in imports from India) that start commercial operation in the 20 years from FY2012/13 to FY 2031/32 including the increment in import from India is 4,177 MW for the base case of demand forecast, 5,186 MW for the high case, and 4,177 MW for the low case. The total installed capacity of storage-type hydroelectric power projects is 2,214 MW for the base case, 3,223 MW for the high case, and 2,214 MW for the low case.

Table A.4.3.1-1 shows the storage-type hydroelectric power projects to be implemented.

Droigat	Capacity	Com	mercial Operation	Domoniko			
Project	(MW)	Base Case	Base Case High Case Low Case		Keillärks		
Kulekhani No. 3	14		2015/16	Under construction			
Tanahu	140		2020/21	LA has been concluded.			
Budhi Gandaki	600		2022/23	DD is ongoing.			
Dudh Koshi	300	2026/27	2026/27	2027/28			
Nalsyau Gad	410	2028/29	2027/28	2029/30			
West Seti	750	2030/31	2029/30	2031/32			
Chera-1	149		2029/30				
Andhi Khola	180		2031/32				
Kaligandaki-2	680		2031/32				
Total Capacity		2,214 MW	3,223 MW	2,214 MW			

Table A.4.3.1-1Storage-type Projects to be Implemented
(Candidates proposed by NEA are considered)

In addition to the Kulekhani No. 3 project which is now under construction, the Tanahu project whose loan agreement has already been concluded, and the Budhi Gandaki project which is mow in the detailed design stage, the Dudh Koshi, the Nalsyau Gad, and the West Seti projects are implemented in the all cases.

For the base case of the demand forecast, the Dudh Koshi HPP (300 MW) is put into operation in FY2026/27, followed by the Nalsyau Gad HPP (410 MW) in FY 2028/29, and the West Seti HPP (750 MW) in FY2030/31. Since the West Seti HPP (750 MW) is put into operation in FY2030/21, the Andhi Khola, the Chera-1 and the Naumure projects that are put into operation by FY2031/32 in the power development plan drawn up in Chapter 8 of the main report are not necessary to be put into operation in or before FY2031/32, the last year of power development plan.

For the high case, the Nalsyau Gad and the West Seti HPPs are put into operation one year earlier than those for the base case, And the Chera-1 HPP is put into operation in FY2029/30, the Andhi Khola and the Kaligandaki-2 HPPs are put into operation in FY2031/32. These three HPPs are not put into operation in the base case are put into operation in FY2029/30, FY2031/32, and FY2031/32 respectively.

For the low case, the Dudh Koshi, the Nalsyau Gad and the West Seti HPPs are put into operation one year later than those for the base case..

Table A.4.3.1-2 shows the earliest possible years of commissioning and the commissioning years in each case of power demand forecast

	Base Case													
Project	Capacity					FY								
110jeet	(MW)	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29	2029/30	2030/31	2031/32				
Dudh Koshi	300	Р	\rightarrow	\rightarrow	G									
Nalsyau Gad	410	Р	\rightarrow	\rightarrow	\rightarrow	\rightarrow	G							
West Seti	750	Р	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	G					
(Chera-1)	149													
(Andhi Khola)	180													
(Kaligandaki-2)	680													

Table A.4.3.1-2Commissioning Year of Commercial Operation
(Candidates proposed by the NEA are considered)

	High Case														
Project	Capacity					FY									
	(MW)	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29	2029/30	2030/31	2031/32					
Dudh Koshi	300	Р	\rightarrow	\rightarrow	G										
Nalsyau Gad	410	Р	\rightarrow	\rightarrow	\rightarrow	G									
West Seti	750	Р	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	G							
Chera-1	149					Р	\rightarrow	G							
Andhi Khola	180			Р	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	G					
Kaligandaki-2	680				Р	\rightarrow	\rightarrow	\rightarrow	\rightarrow	G					

	Low Case														
Project	Capacity					FY									
	(MW)	2023/24	2024/25	2025/26	2026/27	2027/28	2028/29	2029/30	2030/31	2031/32					
Dudh Koshi	300	Р	\rightarrow	\rightarrow	\rightarrow	G									
Nalsyau Gad	410	Р	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	G							
West Seti	750	Р	\rightarrow	G											
(Chera-1)	149														
(Andhi Khola)	180														
(Kaligandaki-2)	680														

P : The earliest possible commissioning Year.

G : The commissioning year in the generation expansion plan.