Tanzania Electric Supply Company Ltd. (TANESCO) Ministry of Energy and Minerals The United Republic of Tanzania

PREPARATORY SURVEY REPORT ON THE PROJECT FOR REHABILITATION OF SUBSTATIONS AND CONSTRUCTION OF NEW LINES AND SUBSTATIONS IN DAR ES SALAAM IN THE UNITED REPUBLIC OF TANZANIA

JANUARY 2014

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

YACHIYO ENGINEERING CO., LTD.

WEST JAPAN ENGINEERING CONSULTANTS, INC.

IL
JR
14-005

PREFACE

Japan International Cooperation Agency (JICA) decided to conduct the preparatory survey and entrust the survey to the Consortium consist of Yachiyo Engineering Co., Ltd. and West Japan Engineering Consultants, Inc..

The survey team held a series of discussions with the officials concerned of the Government of Tanzania, and conducted a field investigations. As a result of further studies in Japan, the present report was finalized.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of Tanzania for their close cooperation extended to the survey team.

January, 2014

Hidetoshi IRIGAKI Director General, Industrial Development and Public Policy Department Japan International Cooperation Agency

SUMMARY

SUMMARY

① Overview of the Country

The United Republic of Tanzania (hereinafter referred to as "Tanzania") is situated in the eastern part of the African continent and the largest country in East Africa. Tanzania has a total land area of approximately 945,000 km² (roughly 2.5 times bigger than Japan) and a population of approximately 44.92 million. It is a unitary republic that was formed by the amalgamation of Tanganyika on the mainland and the island of Zanzibar in 1964.

Regarding the economy, the Government of Tanzania had promoted the socialism after independence. However, the Government of Tanzania adopted market-oriented economic reforms under support from the World Bank and IMF from 1986. The gross domestic product (GDP) growth rate recorded more than 6.0% from 2002 and GDP growth rate is projected at more than 6.0% annually until 2017. Meanwhile, the gross national income (GNI) per capita is low at US\$570 (2012, according to the World Bank), and the major challenge facing the Government of Tanzania concerns how to translate high economic growth into reduction of poverty.

To implement policies, the most important issue is that the Government of Tanzania has to secure the budget. In terms of fiscal management, Tanzania has a perennial fiscal deficit whereby expenditure exceeds revenue. And it depends on the support of bilateral or multilateral assistance to secure the necessary budget. Accordingly, it is unable to independently finance the construction and upgrading of large-scale public facilities and has no choice but to depend on assistance from donors.

② Background of the Project

The Energy Sector of Tanzania plays a significant role for economic growth rates in excess of 6% per annum, and power demand expansion is outpacing economic growth with a program of accelerated electrification and vitalized economic activity. However, during the period of privatization of TANESCO from 1992 to 2006, there was no public support from the government or other donors and reinforcement of facilities to meet increasing demand or maintenance/repair of existing facilities were hardly carried out. Therefore, many existing equipment and facilities have become old and there are many problems probably caused by aging degradation. Moreover, the capacity of substations and transmission and distribution facilities cannot catch up with the rapidly increasing demand and the existing facilities chronically have to have overload operation, and the situation is critical with frequent power outage in many places.

To improve the situation, the Tanzanian government formulated Power System Master Plan (2012 Update) with 25-year forecasts from 2008 to promote enhancements for power supply facilities and development of key transmission, distribution and substation facilities. Especially, regarding transmission and distribution network, the Power System Master Plan to provide the stable power supply to the city with high power demand was formulated, and JICA implemented the Study for

Rehabilitation of Distribution Facilities in Major Cities in Tanzania in 2002 and this resulted in formulation of master plan for expansion and improvement of transmission and distribution network. This report indicated the necessity of reinforcement of the transmission and distribution network and the necessary measure for improvement of reliability of stable power supply based on the construction of 132kV transmission line and secondary substations.

It was against such a background that the Government of Tanzania issued the request to the Government of Japan for the improvement and expansion of transmission and distribution facilities to realize the improvement of infrastructure for the stable power supply based on the aforementioned Power System Master Plan.

③ Outline of the study findings and Project contents

In response to the request, JICA dispatched the Survey Team to Tanzania from February 24 to April 6, 2013 (first field survey) and from May 11 to May 25, 2013 (second field survey) in order to reconfirm the contents of the request and discuss the contents for implementation with related agencies on the Tanzanian side (responsible government agency: Ministry of Energy and Minerals (MEM), and implementing agency: TANESCO), and survey the Project sites and gather related materials and data.

On returning to Japan, the Survey Team examined the necessity, social and economic impacts and validity of the Project based on the field survey materials and compiled the findings into the draft preparatory survey report. JICA dispatched the Survey Team to Tanzania for the third field survey (outline explanations) from September 28 to October 9, 2013 in order to explain and discuss the draft preparatory survey report and reach a basic agreement with the Tanzanian counterparts.

The Project plan compiled based on the survey findings targets the procurement and installation for the improvement of transmission and distribution lines and substation facilities, and the construction of new substations and related facilities. The Outline of the Basic Plan is as follows;

	Outline of the Basic Plan			
	The Pr	oject for Rehabilitation of Substations and Construction of New Lines and Substations	Q'ty	
		in Dar es Salaam	रण	
	1. Reinforc	ement of Ilala Substation (132/33/11 kV) and 132 kV Transmission line (approximately 7.5 km)		
	(1) Equip	pment to be supplied and installed for Reinforcement of Ilala Substation		
	1)	132 kV Circuit Breakers (CB), Disconnecting Switches (DS) (including modification material of	1 lot	
		the existing DS), Current Transformers, Lightning Arresters, Busbar materials for extension and		
		other necessary materials		
	2)	60 MVA,132/33 kV Transformer	2 sets	
	3)	315 kVA, 33/0.4-0.23 kV Station Service Transformer	2 sets	
	4)	33 kV Switchgear (Indoor type, Protection relays mounted)	24 panel	
	5)	11 kV Switchgear (Indoor type, Protection relays mounted)	20 panel	
lan	6)	Control System (Micro SCADA system)	1 lot	
n P	7)	Metering Panel (Watt-hour meters)	1 lot	
atio	8)	Transformer Voltage Regulating Panel (132/33 kV and 33/11 kV Transformers)	1 lot	
all	9)	Protection Panels (132/33 kV and 33/11 kV Transformer Protection, 132 kV Transmission Line	1 lot	
Inst		Protection)		
pu	10)	DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot	
nt a	11)	Uninterruptible Power Supply System	1 lot	
me	12)	AC Distribution Panels	1 lot	
din	13)	33 kV Lightning Arresters	30 phase	
Eq	14)	11 kV Lightning Arresters	45 phase	
t of	15)	33 kV and 11 kV Cables	1 lot	
nen	16)	Other materials (Low Voltage Cables, Earthing materials and others)	1 lot	
Irer	17)	New Control Building (Approximately 1,013 m ² , Single story)	1 lot	
Procurement of Equipment and Installation Plan	18)	Substation Civil Works (Roads in Substation, Oil Separator, Equipment Foundations, Cable trenches and others)	1 lot	
Ц	19)	Modification Works at Ubungo Substation (Replacement of 132 kV CTs and Overhead Bypass	1 lot	
	19)	Conductors, and others)	1 101	
		conductors, and others)		
	(2) Mate	rials to be supplied and installed for Reinforcement of 132 kV Transmission Line		
	1)	Double circuits of Transmission lines (TACSR 240 mm ²)	Approx.	
			7.5 km	
	2)	Insulators	1 lot	
	3)	Accessories	1 lot	

Outline of the Basic Plan

1	The Project for Rehabilitation of Substations and Construction of New Lines and Substations in Dar es Salaam	Q'ty
2. Ex	pansion of Msasani Substation (33/11 kV) and Construction of 33 kV Distribution Line (Approximately	
	5 km)	
(1)	Equipment to be supplied and installed for Expansion of Msasani Substation	
~ /	1) 15 MVA, 33/11 kV Transformer	1 set
	2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
	3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 pane
	4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	5 pane
	5) 11 kV Switchgear Panel (Outdoor type, for extension of existing Switchgears)	1 lot
	6) Control System (Micro SCADA system)	1 lot
	7) Metering Panel (Watt-hour meters)	1 lot
	8) Transformer Voltage Regulating Panel	1 lot
	9) AC Distribution Panel	1 lot
	10) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	11) 33 kV Lightning Arresters	6 phas
	12) 11 kV Lightning Arresters	12 phas
	13) 33 kV and 11 kV Cables	1 lot
	14) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
	15) New Control Building (Approximately 169 m ² , Single story)	1 lot
	16) 33 kV Switchgear Panels (for Makumbusho Substation)	1 lot
	17) Modification works of Control panels and metering panels (for Makumbusho Substation)	1 lot
	18) 33 kV Cables (for Makumbusho Substation)	1 lot
(2)	Materials to be supplied and installed for Construction of 33 kV Distribution Line	
	1) 33 kV Distribution Line (ACSR 150 mm ²)	1 lot
	2) Grounding Wires (AAC 30 mm ²)	1 lot
	3) Steel Poles	1 lot
	4) Insulators	1 lot
	5) Accessories	1 lot
	6) Earthing Materials	1 lot
3. Co	onstruction of Muhimbili Substation (33/11kV) and 33kV Distribution Lines (Approximately 2.0 km)	
(1)	Equipment to be supplied and installed for Construction of Muhimbili Substation	
	1) 15 MVA, 33/11 kV Transformer	1 set
	2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
	3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 pane
	4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	4 pane
	5) Control System (Micro SCADA system)	1 lot
	6) Metering Panel (Watt-hour meters)	1 lot
	7) Transformer Voltage Regulating Panel	1 lot
	8) AC Distribution Panel	1 lot
	9) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	10) 33 kV Lightning Arresters	6 phas
	11) 11 kV Lightning Arresters	12 pha
	12) 33 kV and 11 kV Cables	1 lot
	13) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
	14) New Control Building (Approximately 169 m ² , Single story)	1 lot
	15) 33 kV Cables (for New City Center Substation)	1 lot
(2)	Materials to be supplied and installed for Construction of 33 kV Distribution Line	
	1) 33 kV Distribution Line (ACSR 150 mm ²)	1 lot
	2) Grounding Wires (AAC 30 mm ²)	1 lot
	3) Steel Poles	1 lot
	4) Insulators	1 lot
	5) Accessories	1 lot
	6) Earthing Materials	1 lot

The Project for Rehabilitation of Substations and Construction of New Lines and Substations in Dar es Salaam	Q'ty
 4. Construction of Jangwani Beach Substation (33/11 kV) and 33 kV Distribution Line (Approximately 6.5	
km)	
(1) Equipment to be supplied for Construction of Jangwani Beach Substation	
1) 15 MVA, 33/11 kV Transformer	1 set
2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
 3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted) 	3 panel
 4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted) 	4 panel
5) Control System (Micro SCADA system)	1 lot
6) Metering Panel (Watt-hour meters)	1 lot
7) Transformer Voltage Regulating Panel	1 lot
8) AC Distribution Panel	1 lot
9) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
10) 33 kV Lightning Arresters	6 phase
11) 11 kV Lightning Arresters	12 phase
12) 33 kV and 11 kV Cables	1 lot
13) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
14) New Control Building (Approximately 169 m ² , Single story)	1 lot
15) 33 kV Switchgear Panels (for Tegeta Substation)	1 lot
16) Modification works of Control panels and metering panels (for Tegeta Substation)	1 lot
17) 33 kV Cables (for Tegeta Substation)	1 lot
(2) Materials to be supplied and installed for Construction of 33 kV Distribution Line	
1) 33 kV Distribution Line (ACSR 150 mm ²)	11.4
 2) Grounding Wires (AAC 30 mm²) 	1 lot
3) Steel Poles	1 lot
4) Insulators	1 lot 1 lot
5) Accessories	1 lot
6) Earthing Materials	1 lot
5. Construction of Mwananyamala Substation (33/11 kV) and 33 kV Distribution Lines (Approximately 1.1	
km)	
(1) Equipment to be supplied for Construction of Mwananyamala Substation	
1) 15 MVA, 33/11 kV Transformer	1 set
2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 panel
4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	4 panel
5) Control System (Micro SCADA system)	1 lot
6) Metering Panel (Watt-hour meters)	1 lot
7) Transformer Voltage Regulating Panel	1 lot
8) AC Distribution Panel	1 lot
9) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
10) 33 kV Lightning Arresters	6 phase
11) 11 kV Lightning Arresters	12 phase
12) 33 kV and 11 kV Cables 12) Other Meterials (Levy Valtage Cables, Farthing meterials and others)	1 lot
 13) Other Materials (Low Voltage Cables, Earthing materials and others) 14) New Control Building (Approximately 169 m², Single story) 	1 lot
 14) New Control Building (Approximately 169 m², Single story) 15) 33 kV Switchgear Panels (for Makumbusho Substation) 	1 lot
	1 lot 1 lot
16) Modification Works of Control panels and metering panels (for Makumbusho Substation)17) 33 kV Cables (for Makumbusho Substation)	1 lot 1 lot
	1 101
(2) Materials to be supplied and installed for Construction of 33 kV Distribution Line	
1) 33 kV Distribution Line (ACSR 150 mm ²)	1 lot
 2) Grounding Wires (AAC 30 mm²) 	1 lot
3) Steel Poles	1 lot
-,	- 100
4) Insulators	1 lot
4) Insulators5) Accessories	1 lot 1 lot

	The Project for Rehabilitation of Substations and Construction of New Lines and Substations in Dar es Salaam	Q'ty
Procurement Plan	(1) Spare Parts, Testing Equipment and Maintenance Tools	1 lot

④ Project implementation schedule and cost estimation

In the event where the Project is implemented based on the Japan's Grant Aid scheme, the total cost of the Project will be (*confidential*). The costs to be borne by the Tanzanian side will be approximately 196.8 million yen. The contents and costs to be borne by the Tanzanian side are as given below:

\bigcirc	Country of long the motorial store of	(Annuarizately 1,500,000, IDV)	
(1)	Securing of land for material storage	(Approximately 1,500,000 JPY)	
2	Payment of bank commission based on banking:	(Approximately 5,000,000 JPY)	
	• Commission of the Authorization to Pay (A/P)		
	Payment commission		
3	Registration for Japanese supervisors and engineers f	for construction period:	
		(Approximately 3,400,000 JPY)	
4	Expenses for necessary power outages during constru	action period:	
		(Approximately 1,400,000 JPY)	
5	RAP Compensation:	(Approximately 26,000,000 JPY)	
6	Expenses for relocation of gravesites	(Approximately 10,600,000 JPY)	
\bigcirc	Expenses for EIA procedures	(Approximately 2,900,000 JPY)	
8	Excess weight charges for domestic transport:	(Approximately 6,400,000 JPY)	
9	Expenses for substations:	(Approximately 76,100,000 JPY)	
	(Leveling the land, Removing the un-used equipment, Construction of fences and gates,		
	etc.)		
10	Expenses for 132kV transmission lines:	(Approximately 5,300,000 JPY)	
	(Leveling the land for the work space, removing the	he un-used conductor, insulators and	

Expenses for 33kV distribution lines: (Approximately 58,200,000 JPY)
 (Replacement of the existing 11kV distribution line interfered with the new 33kV distribution line, Construction of 11kV distribution line from new 33/11kV substations)

The implementation schedule for the Project including the detailed design will be approximately 28 months.

(1) Relevance

accessories, etc.)

The Project is deemed to be highly appropriate as an aid undertaking since it will aid realization of development plans and energy policy in Tanzania and impart benefits for the general public of Tanzania.

(2) Efficiency

1) Quantitative effects

Outcome indicator	Base value (2012) (Current value)	Target (2019) (3 years after the completion of the Project)
1. No. of beneficiaries * ¹		
	381,225 households	428,602 households
2. Equipment capacity		
132 kV transmission line (Ubungo Substation – Ilala Substation)	200MVA	440MVA
132/33 kV transformer (Ilala Substation)	210MVA	240MVA
33/11 kV transformer) (Reinforced, expanded and constructed substations)	45MVA	105MVA
3. Power outage time and frequency $*^2$		
	26.3 hours/month	23.7 hours/month
4. Percentage of voltage drop		
	4.8% * ³	4.3% *3
5. Power loss		
Kinondoni Region	16.4%	12.7% *4
Ilala Region	14.9%	11.2% *4

*1 Number of households is calculated based on the number of residents in Kinondoni and Ilala regions (4 numbers per household) and electrification rate in Dar es Salaam. Number of households in 2019 is calculated with Table 3-4-1.2. (2012 Population and Housing Census, March 2013)

*2 Power outage time of 33 kV systems at Ilala Substation is used as the current value for the monthly average power outage time. The target is set at 10% lower than the current level.

*3 Percentage of voltage drop of the 33 kV system at the Ilala Substation is used as the current value. The target is set at 10% lower than the current level.

*4 Calculated with reference to the Power System Master Plan (2012 Update) and Annual Report 2011.

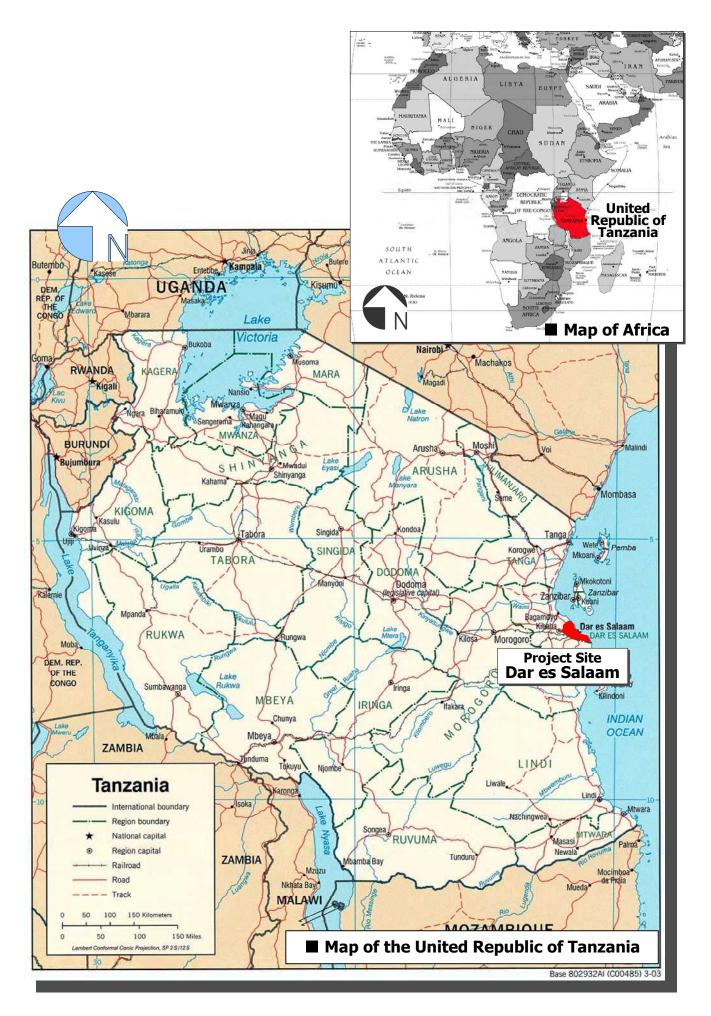
2) Qualitative effects

Indirect effects of the Project will be that it will contribute to the stable operation of hospitals and schools, improving the living environment for residents in the Project target area and improving productivity in factories.

To sum up, since Project implementation can be expected to have major effects, it is confirmed to be relevant for implementation under the Grant Aid scheme of the Government of Japan. Moreover, the Tanzanian side is deemed to possess adequate personnel and budget for implementing the Project and conducting operation and maintenance after implementation.

Contents

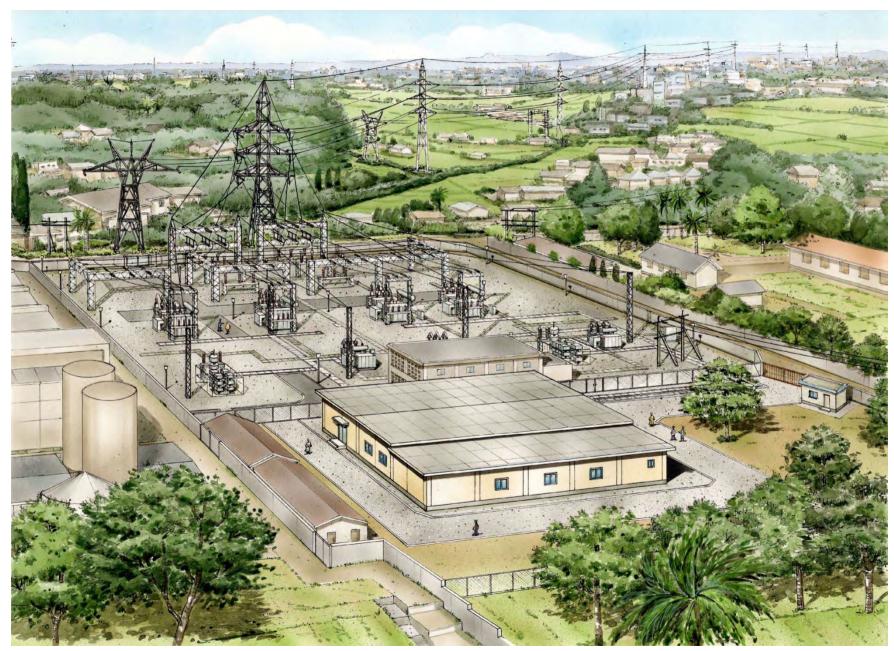
Preface


Summary		
Location Map / H	Perspective	
List of Figures &	z Tables	
Abbreviations		
	round of the Project	
1-1 Backgro	und of the Project ·····	1-1
	Conditions	
1-2-1 Loc	ation	1-2
	nate (Temperature, Precipitation, Relative Humidity,	
	d Velocity and Lightning Strike)	
	nental and Social Consideration	
1-3-1 Env	ironmental Impact Examination	
1-3-1-1	Project Components	
1-3-1-2	Characteristics of the Project area	1-5
1-3-1-3	Legal Framework on Environmental and Social Consideration in Tanzania	1-7
1-3-1-4	Comparison of Alternative Options	1-14
1-3-1-5	Environmental Scoping	1-18
1-3-1-6	TOR of the Environmental and Social Consideration Survey	1-21
1-3-1-7	Result of Survey on Environmental and Social Consideration	1-23
1-3-1-8	Evaluation of Potential Impact	1-32
1-3-1-9	Mitigation Measures ·····	1-37
1-3-1-10	Environmental Monitoring Plan	1-42
1-3-1-11	Stakeholder Consultation	1-43
1-3-2 Lan	d Acquisition and Resettlement	1-46
1-3-2-1	Project component related to land acquisition and resettlement	1-46
1-3-2-2	Legal Framework in Land Acquisition and Resettlement	1-47
1-3-2-3	Scope of Land Acquisition and Resettlement	1-57
1-3-2-4	Eligibility for Compensation and Resettlement Assistance	1-57
1-3-2-5	Grievance Mechanism ·····	1-57
1-3-2-6	Institutional Framework ·····	1-58
1-3-2-7	Implementation Schedule	1-58
1-3-2-8	Implementation Budget ······	1-59
1-3-2-9	Monitoring and Evaluation	1-59
1-3-2-10	Stakeholder Consultation	1-60
1-3-3 Oth	ers·····	1-61
1-3-3-1	Environmental Checklist	1-61

Chapter 2 Co	ntents of the Project	2-1
2-1 Outlin	ne of the Project	2-1
2-1-1	Overall objectives and Project purpose	2-1
2-1-2	Outline of the Project	2-1
2-2 Outlin	ne Design of the Requested Japanese Assistance	2-1
2-2-1 I	Design Policy	2-1
2-2-1-	1 Basic Policy ·····	2-1
2-2-1-	2 Plan for Natural Conditions	2-2
2-2-1-	3 Plan for Socioeconomic Conditions	2-2
2-2-1-	4 Plan for Construction Conditions	2-2
2-2-1-	5 Plan for Using Local Contractors, Equipment and Materials	2-3
2-2-1-	6 Plan for O&M Capacity of Implementing Agency	2-3
2-2-1-	7 Planned Scopes for Facilities and Equipment and Setting Grades	2-4
2-2-1-	8 Plan for Construction and Procurement Methods and Work Period	2-4
2-2-2	Basic Plan ·····	2-5
2-2-2-	1 Procurement of Equipment and Installation Plan	2-5
2-2-2-		
2-2-2-	3 Power System Analysis	2-13
2-2-2-	4 Basic Plan Overview ·····	2-27
2-2-3	Outline Design Drawing	2-79
2-2-4	Implementation Plan	2-133
2-2-4-	1 Implementation Policy	2-133
2-2-4-	2 Implementation Conditions	2-134
2-2-4-	3 Scope of Works ·····	2-135
2-2-4-	4 Consultant Supervision	2-137
2-2-4-	5 Quality Control Plan	2-141
2-2-4-	6 Procurement Plan	2-141
2-2-4-	7 Operational Guidance Plan	2-142
2-2-4-	8 Implementation Schedule	2-143
2-3 Oblig	gations of Recipient Country	2-144
2-4 Proje	ect Operation Plan ·····	2-146
2-4-1	Basic Plan ·····	2-146
2-4-2	Operation and Maintenance Structure	2-146
2-4-3 I	Regular Inspection Items	2-147
2-4-4	Spare Part Purchasing Plan ·····	2-149
2-5 Proje	ct Cost Estimation	2-150
2-5-1 I	Initial Cost Estimation	2-150
2-5-2	Operation and Maintenance Cost	2-151

Chapte	r 3 Project Evaluation	3-1
3-1	Preconditions	3-1
3-2	Necessary Inputs by Recipient Country	3-1
3-3	Important Assumptions	3-2
3-4	Project Evaluation	3-2
3-	4-1 Relevance	3-2
3-	4-2 Effectiveness	3-5

[Appendices]


- 1. Member List of the Study Team
- 2. Study Schedule
- 3. List of Parties Concerned in the Recipient Country
- 4. Minutes of Discussions
- 5. Technical Memorandum
- 6. Coordination Meeting among the Stake Holders
- 7. Construction Procedure for Ilala Substation (Study)
- 8. Procedure for 132kV Transmission Line Reinforcement (Study)
- 9. Environmental and Social Impact Assessment Project Brief
- 10. Result of the Screening by NEMC
- 11. Scoping Report
- 12. Approval letter for Scoping Report
- 13. Draft EIA Report (TANESCO→NEMC)
- 14. Request & Approval letter for Substation land
 - (1) Mwananyamala substation
 - (2) Jangwani Beach substation
 - (3) Muhimbili substation
- 15. Request and Approval for 33 kV Distribution Line Construction
- 16. Draft Monitoring Form
- 17. Factual Geotechnical Report
- 18. Outline Table of Sectional Power Flow
- 19. Resettlement Policy Framework

Location of the Project Site

Location of the Project Site (detail)

Architectural Rendering of Ilala Substation

List of Figures and Tables

Chapter 1

Figure 1-2-2.1	Monthly Average Temperature	1-3
Figure 1-2-2.2	Monthly Average Relative Humidity	1-3
Figure 1-2-2.3	Monthly Average Precipitation	1-3
Figure 1-2-2.4	No. of Rainy Days of Each Month	1-3
Figure 1-2-2.5	Monthly Average Wind Velocity	1-4
Figure 1-2-2.6	No. of Days of Lightning (Each Month)	1-4
Figure 1-3-1-2.1	Land use in Dar es Salaam	1-7
Figure 1-3-1-4.1	Comparison of Alternative Options a) Alt-1, b) Alt-2	1-17
Figure 1-3-1-7.1	Disposed transformers stored near the entrance of Ilala substation	1-24
Figure 1-3-1-7.2	Wastes and materials stored in the proposed new control building area	1-24
Figure 1-3-1-7.3	Transformer without secondary containment in Ubungo substation (drums of insulating oils are on the ground and oil stain was observed)	1-25
Figure 1-3-1-7.4	Insulating Oil used in the TANESCO's substations	1-25
Figure 1-3-1-7.5	Access road to Ilala substation	1-29
Figure 1-3-1-7.6	Aerial photo around Ilala substation (Google earth, 2013)	1-30
Figure 1-3-1-11.1	Stakeholder consultation during the process of EIA in Upanga West	1-46
Table 1-1.1	Outline of the Requested Components	1-2
Table 1-3-1-3.1	Steps for obtaining EIA certificate	1-7
Table 1-3-1-3.2	Other permits related to the Project	1-8
Table 1-3-1-3.3	EIA process	1-10
Table 1-3-1-3.4	Evaluation Criteria of EIS	1-13
Table 1-3-1-3.5	Relevant Institutions to this project	1-13
Table 1-3-1-4.1	Comparison of Alternative Options	1-16
Table 1-3-1-5.1	Provisional Environmental Scoping	1-19
Table 1-3-1-6.1	TOR of the Environmental and Social Consideration Survey	1-22
Table 1-3-1-7.1	Groundwater level at each substation site	1-26
Table 1-3-1-7.2	Maximum permissive noise level for general environment by TBS standards	1-27
Table 1-3-1-7.3	Noise Level Guidelines by IFC EHS guidelines	1-27
Table 1-3-1-7.4	Major wild bird species flying into Jangwani swamp (Interview with WCST)	1-28
Table 1-3-1-7.5	Approximate value of General Public exposure to electricand magnetic fields	1-31
Table 1-3-1-8.1	Evaluation of Potential Impact	1-33
Table 1-3-1-9.1	Mitigation Measures	1-38
Table 1-3-1-10.1	Draft Environmental Monitoring Plan	1-42
Table 1-3-2-2.1	Relevant Legal System of Land Acquisition and Involuntary Resettlement	1-47
Table 1-3-2-2.2	Compensation package	1-50

Table 1-3-2-2.3	Gap Analysis and Resettlement Policy for this project	1-53
Table 1-3-3-1.1	Environmental Checklist: Power Transmission and Distribution lines	1-62

Chapter 2

Figure 2-2-2-2.1	Power demand forecast up to 2035 (by region in Dar es Salaam)	2-10		
Figure 2-2-2-2.2	Dar es Salaam power system diagram 2-			
Figure 2-2-2-3.1	Work flow for power system analysis	2-14		
Figure 2-2-2-3.2	Power flow with 0.86 load power factor in 2025 without 11kV capacitor banks at Ilala substation	2-17		
Figure 2-2-2-3.3	Power flow with 0.86 load power factor in 2025 with 11kV capacitor banks at Ilala substation	2-17		
Figure 2-2-2-3.4	Power flow with 0.90 load power factor in 2015 with 11kV capacitor banks at Ilala substation	2-21		
Figure 2-2-2-3.5	Power flow with 0.90 load power factor in 2020 with 11kV capacitor banks at Ilala substation	2-22		
Figure 2-2-2-3.6	Power flow with 0.90 load power factor in 2025 with 11kV capacitor banks at Ilala substation	2-23		
Figure 2-2-2-4.1	Image of 132kV Transmission Line Reinforcement	2-64		
Figure 2-2-4-4.1	Project Relation Diagram	2-139		
Figure 2-2-4-8.1	Project Implementation Schedule	2-143		
Figure 2-4-1.1	Basic Concepts for Transmission, Distribution and Substation Facility Maintenance	2-146		
Table 2-2-2-1.1	Procurement of Equipment and Installation Plan	2-5		
Table 2-2-2-2.1	Dar es Salaam power demand forecast from the PSMP	2-8		
Table 2-2-2-2.2	Dar es Salaam power demand by region (2012)	2-8		
Table 2-2-2-2.3	Dar es Salaam power demand by region (2011)	2-8		
Table 2-2-2-2.4	Dar es Salaam power demand by region (2010)	2-9		
Table 2-2-2-2.5	Dar es Salaam power demand by region (2009)	2-9		
Table 2-2-2-2.6	Power demand forecast up to 2035	2-11		
Table 2-2-2-3.1	Outputs for each substation	2-14		
Table 2-2-2-3.2	Transformer Taps	2-18		
Table 2-2-2-3.3	Result of voltage value	2-19		
Table 2-2-2-3.4	The result of power flow	2-20		
Table 2-2-2-3.5	Short circuit current	2-20		
Table 2-2-2-3.6	Line Constants	2-24		
Table 2-2-2-4.1	Weather Conditions	2-27		
Table 2-2-2-4.2	Electrical Systems and Design Conditions	2-27		
Table 2-2-2-4.3	Wind Loads for Power Lines	2-28		
Table 2-2-2-4.4	Distribution Assembly Conditions	2-28		
Table 2-2-2-4.5	Substation Short Circuit Current Values	2-28		
Table 2-2-2-4.6	Equipment List for Ilala Substation supplied by the Japanese side	2-31		

Table 2-2-2-4.7	Specifications of Main Equipment	2-33
Table 2-2-2-4.8	Equipment List at Msasani Substation	2-40
Table 2-2-2-4.9	Equipment List at Makumbusho Substation	2-41
Table 2-2-2-4.10	Specifications of Main Equipment	2-42
Table 2-2-2-4.11	Equipment List at Muhimbili Substation	2-46
Table 2-2-2-4.12	Specifications of Main Equipment	2-47
Table 2-2-2-4.13	Equipment List at Jangwani Beach Substation	2-50
Table 2-2-2-4.14	Equipment List at Tegeta Substation	2-51
Table 2-2-2-4.15	Specifications of Main Equipment	2-51
Table 2-2-2-4.16	Equipment List at Mwananyamala Substation	2-55
Table 2-2-2-4.17	Equipment List at Makumbusho Substation	2-56
Table 2-2-2-4.18	Specifications of Main Equipment	2-56
Table 2-2-2-4.19	Spare Parts for 5 Substations	2-59
Table 2-2-2-4.20	Spare Parts for Makumbusho and Tegeta Substations	2-62
Table 2-2-2-4.21	Testing Equipment and Maintenance Tools	2-63
Table 2-2-2-4.22	Material List for 132kV Transmission Line	2-66
Table 2-2-2-4.23	Summary of Major Equipment (132kV Transmission Line)	2-67
Table 2-2-2-4.24	Length of 33kV Distribution Line	2-69
Table 2-2-2-4.25	Material List for 33kV Distribution line (Makumbusho substation ~ Msasani substation)	2-70
Table 2-2-2-4.26	Material List for 33kV Distribution line (New City Center substation ~ Muhimbili substation)	2-71
Table 2-2-2-4.27	Material List for 33kV Distribution line (Tegeta substation ~ Jangwani Beach substation)	2-72
Table 2-2-2-4.28	Material List for 33kV Distribution line (Makumbusho substation ~ Mwananyamala substation	2-73
Table 2-2-2-4.29	Summary of Major Equipment (33kV Distribution Line)	2-74
Table 2-2-4-3.1	Procurement and Construction Work Demarcation for the Project	2-135
Table 2-2-4-4.1	Engineers to be dispatched by the Contractor	2-140
Table 2-4-3.1	Inspection Items for Standard Facility Equipment	2-147

Chapter 3

Table 3-4-1.1	Number of Existing Customers at this moment	3-3
Table 3-4-1.2	Number of New Customers after the Completion of the Project	3-3

Abbreviations

ACSRAluminum Conductor Steel ReinforcedAPHAThe American Public Health AssociationARAPAbbreviated Resettlement Action PlanATDBAfrican Development BankBSBritish StandardsDACDevelopment Assistance CommitteeDAWASCODar es Salaam Water and Sewerage CorporationDCDirect CurrentDCDirect CurrentEAEnvironmental AuditE/NExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironmental Impact AssessmentEISEnvironmental Impact AssessmentEISEnvironmental Management ActEMPEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEWURAEnergy and Water Utility Regulatory AuthorityG/AGross National IncomeIBAInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Commission On Non-Ionizing Radiation ProtectionIDAInternational Compaction SinoIFCInternational ComporationIFCInternational ComporationIFCInternational Cooperation of Nature and Natural ResourcesIJCAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCMMinistry of Energy and MineralsMPMunistry of Energy and Minerals	AC	Alternate Current
ARAPAbbreviated Resettlement Action PlanAIDBAfrican Development BankBSBritish StandardsDACDevelopment Assistance CommitteeDAWASCODar es Salaam Water and Severage CorporationDCDirect CurrentDCCDistribution Control CenterEAEnvironmental AuditE/NExchange of NotesEDCEconomic Development Cooperation FundEHSEnvironment Health and SafetyEIAEnvironmental Impact AssessmentEIAEnvironmental Impact AssessmentEMAEnvironmental Management ActEMAEnvironmental Management ActEMAEnvironmental Management PlanEVURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGANGross Domestic ProductGNIGross National IncomeIDAInternational Development AssociationFIAInternational Development AssociationGMAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGNIInternational IncomeIDAInternational Comprision on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIDAInternational Development AssociationIDAInternational Cooperation of Nature and Natural ResourcesIDAJapan International Cooperation of Nature and Natural ResourcesIDCAJapan International Cooperation affertIDCAMaternational Cooperation AgencyKIASubstation Kilimanjaro Int	ACSR	Aluminum Conductor Steel Reinforced
AricanArican Development BankBSBritish StandardsDACDevelopment Assistance CommitteeDAWASCODar es Salaam Water and Sewerage CorporationDCDirect CurrentDCCDistribution Control CenterEAEnvironmental AuditE/NExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironmental Impact AssessmentEISEnvironmental Impact AssessmentEISEnvironmental Management ActEMPEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEUEuropean UnionEWAGrant AgreementGMAGross Domestic ProductGMAGross National IncomeBAAInportant Bird AreaICNIRPInternational Development AssociationIECInternational Comprission Non-Ionizing Radiation ProtectionIDAInternational Ectrotechnical CommissionICNIRPInternational Monetary FundIUCNInternational Cooperation AgencyIICASubstation Kilimanjaro International AirportIUCNMiternational Cooperation AgencyIICASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMSubstation Kilimanjaro International Airport	APHA	The American Public Health Association
BSBritish StandardsDACDevelopment Assistance CommitteeDAWASCODar es Salaam Water and Sewerage CorporationDCDirect CurrentDCCDistribution Control CenterEAEnvironmental AuditE/NExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironmental Impact AssessmentEIAEnvironmental Impact AssessmentEISEnvironmental Management ActEMAEnvironmental Management PlanEVAEuropean UnionEVAGrant AgreementGMAGrant AgreementGMAGrant AgreementGMAImportant Bird AreaICNIRPInternational IncomeBAInternational IncomeGMAGrant AgreementGMAInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational ComparisionIDAInternational Electrotechnical CommissionIFCInternational Monetary FundIUCNInternational Cooperation of Nature and Natural ResourcesIJCAJapan International Cooperation of Nature and Natural ResourcesIJCASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMoled Case Circuit BreakerMEMMinistry of Energy and Minerals	ARAP	Abbreviated Resettlement Action Plan
DACDevelopment Assistance CommitteeDAWASCODar es Salaam Water and Sewerage CorporationDCDirect CurrentDCCDistribution Control CenterEAEnvironmental AuditEVNExchange of NotesEDCFConomic Development Cooperation FundEHSEnvironmental Impact AssessmentEIAEnvironmental Impact StatementEIAEnvironmental Impact StatementEMAEnvironmental Management ActEMPEnvironmental Management PlanEVURAEnergy and Water Utility Regulatory AuthorityEVEorgean UnionEWURAGrans AgreementGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIBAInternational Comparision on Nature and Natural ResourcesIFCInternational Electrotechnical CommissionIFCInternational Cooperation of Nature and Natural ResourcesIFCAJapan International Cooperation of Nature and Natural ResourcesIFCAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMided Case Circuit BreakerMEMMided Case Circuit BreakerMEMMinistry of Energy and Minerals	AfDB	African Development Bank
DAWASCODar es Salaan Water and Sewerage CorporationDCDirect CurrentDCCDistribution Control CenterEAEnvironmental AuditEVNExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironmental Impact AssessmentEIAEnvironmental Impact AssessmentEISEnvironmental Impact AssessmentEISEnvironmental Management ActEMAEnvironmental Management PlanEVNEuropean UnionEVURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Development AssociationIECInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Cooperation AgencyIKASubstation Minerary FundIUCNInternational Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMilelennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	BS	British Standards
DCDirect CurrentDCCDistribution Control CenterEAEnvironmental AuditENExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironment Health and SafetyEIAEnvironment Halth and SafetyEIAEnvironment Halth and SafetyEIAEnvironmental Impact AssessmentEMAEnvironmental Management ActEMAEnvironmental Management PlanEVAUnited States Environmental Protection AgencyEVEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Development AssociationIDAInternational Comprision on Non-Ionizing Radiation ProtectionIDAInternational Cooperation AgencyIKASubstation Infor Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMided Case Circuit BreakerMEMMinistry of Energy and Minerals	DAC	Development Assistance Committee
DCCDistribution Control CenterEAEnvironmental AuditENExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironment Health and SafetyEIAEnvironment Health and SafetyEIAEnvironmental Impact AssessmentEISEnvironmental Management ActEMAEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Development AssociationIDAInternational CooperationIDAInternational Cooperation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	DAWASCO	Dar es Salaam Water and Sewerage Corporation
EAEnvironmental AuditENExchange of NotesEDCFEconomic Development Cooperation FundEHSEnvironment Health and SafetyEIAEnvironment Health and SafetyEIAEnvironmental Impact AssessmentEISEnvironmental Impact StatementEMAEnvironmental Management ActEMPEnvironmental Management PlanEVEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIFCInternational Electrotechnical CommissionIFCInternational Finance CorporationIFCInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesITCASubstation Kilimanjaro International AirportIKASubstation Kilimanjaro International AirportMCCBMidled Case Circuit BreakerMEMMinstry of Energy and Minerals	DC	Direct Current
E/NExchange of NotesEDCFEconomic Development Cooperation FundEIACEnvironment Health and SafetyEIAEnvironment Health and SafetyEIAEnvironmental Impact AssessmentEISEnvironmental Impact StatementEMAEnvironmental Management ActEMPEnvironmental Management PlanEVEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAInportant Bird AreaICNIRPInternational Development AssociationIDAInternational Comprission on Non-Ionizing Radiation ProtectionIFCInternational Electrotechnical CommissionIFCInternational Finance CorporationIFCAJapan International Cooperation AgencyIICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMidled Case Circuit BreakerMEMMolded Case Circuit Breaker	DCC	Distribution Control Center
EDCFEconomic Development Cooperation FundEHSEnvironment Health and SafetyEIAEnvironmental Impact AssessmentEISEnvironmental Impact StatementEMAEnvironmental Management ActEMPEnvironmental Management PlanEVEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrast AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Development AssociationIFCInternational Electrotechnical CommissionIFCInternational Finance CorporationIKAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportICCNBInternational Cooperation AgencyIFCInternational Cooperation AgencyIFCSubstation Kilimanjaro International AirportICCMMillennium Challenge CorporationICAMillennium Challenge CorporationIMCCBMided Case Circuit BreakerMEMMinstry of Energy and Minerals	EA	Environmental Audit
EHSEnvironment Health and SafetyEIAEnvironmental Impact AssessmentEIAEnvironmental Impact StatementEISEnvironmental Management ActEMAEnvironmental Management PlanEMAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Electrotechnical CommissionIFCInternational Finance CorporationIFCInternational Monetary FundIUCNNInternational Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMSubstation Kilimanjaro International Airport	E/N	Exchange of Notes
EIAEnvironmental Impact AssessmentEISEnvironmental Impact StatementEMAEnvironmental Management ActEMPEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIBAInternational Electrotechnical CommissionIFCInternational Electrotechnical CommissionIFCInternational Finance CorporationIFCInternational Monetary FundIUCNJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	EDCF	Economic Development Cooperation Fund
EISEnvironmental Impact StatementEMAEnvironmental Management ActEMPEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMided Case Circuit BreakerMEMSubstation Kilimanjaro International AirportMEMSubstation StreakerMEMSubstation Streaker	EHS	Environment Health and Safety
EMAEnvironmental Management ActEMPEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMWinstry of Energy and Minerals	EIA	Environmental Impact Assessment
EMPEnvironmental Management PlanEPAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Electrotechnical CommissionIFCInternational Electrotechnical CommissionIFCInternational Monetary FundIUCNInternational Cooperation AgencyJICASubstation Kilimanjaro International AirportKIASubstation Kilimanjaro International AirportMCCBMided Case Circuit BreakerMEMSubstation State State	EIS	Environmental Impact Statement
EPAUnited States Environmental Protection AgencyEUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIFCInternational Finance CorporationIFCInternational Monetary FundIUCNInternational Monetary FundIUCNSubstation Kilimanjaro International AirportKIASubstation Kilimanjaro International AirportMCCBMided Case Circuit BreakerMEMWinstry of Energy and Minerals	EMA	Environmental Management Act
EUEuropean UnionEWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	EMP	Environmental Management Plan
EWURAEnergy and Water Utility Regulatory AuthorityG/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIFCInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMEMMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	EPA	United States Environmental Protection Agency
G/AGrant AgreementGDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIECInternational Electrotechnical CommissionIFCInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMEMMinistry of Energy and Minerals	EU	European Union
GDPGross Domestic ProductGNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMStinstry of Energy and Minerals	EWURA	Energy and Water Utility Regulatory Authority
GNIGross National IncomeIBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International CooperationKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMMinstry of Energy and Minerals	G/A	Grant Agreement
IBAImportant Bird AreaICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	GDP	Gross Domestic Product
ICNIRPInternational Commission on Non-Ionizing Radiation ProtectionIDAInternational Development AssociationIDAInternational Electrotechnical CommissionIECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	GNI	Gross National Income
IDAInternational Development AssociationIECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	IBA	Important Bird Area
IECInternational Electrotechnical CommissionIFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	ICNIRP	International Commission on Non-Ionizing Radiation Protection
IFCInternational Finance CorporationIMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	IDA	International Development Association
IMFInternational Monetary FundIUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	IEC	International Electrotechnical Commission
IUCNInternational Union for Conservation of Nature and Natural ResourcesJICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	IFC	International Finance Corporation
JICAJapan International Cooperation AgencyKIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	IMF	International Monetary Fund
KIASubstation Kilimanjaro International AirportMCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	IUCN	International Union for Conservation of Nature and Natural Resources
MCCMillennium Challenge CorporationMCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	JICA	Japan International Cooperation Agency
MCCBMolded Case Circuit BreakerMEMMinistry of Energy and Minerals	KIA	Substation Kilimanjaro International Airport
MEM Ministry of Energy and Minerals	MCC	Millennium Challenge Corporation
	MCCB	Molded Case Circuit Breaker
MP Monitoring Plan	MEM	Ministry of Energy and Minerals
	MP	Monitoring Plan
NEAC National Environmental Advisory Committee	NEAC	National Environmental Advisory Committee
NEMC National Environmental Management Council	NEMC	National Environmental Management Council

NESC	National Environmental Standards Committee
NGO	Non-Governmental Organizations
NPES	National Poverty Eradication Strategy
NSGRP	National Strategy for Growth and Reduction of Poverty
O&M	Operation and Maintenance
OJT	On the Job Training
OLTC	On-load tap changer
ONAN	Oil Natural Air Natural
OSHA	Occupational Safety and Health Administration
PCB	Polychlorinated Biphenyl
PEA	Preliminary Environmental Assessment
PRS	Poverty Reduction Strategy
PRSP	Poverty Reduction Strategy Paper
PSMP	Power System Master Plan
ROW	Right of Way
RTU	Remote Terminal Units
SCADA	Supervisory Control and Data Acquisition System
SIDA	Swedish International Development Cooperation Agency
TAC	Technical Advisory Committee
TACSR	Thermal-Resistant Aluminum Alloy Conductors Steel Reinforced
TANESCO	Tanzania Electric Supply Company Ltd.
TANROADS	Tanzania National Roads Agency
TBS	Tanzania Bureau of Standards
TEDAP	Tanzania Energy Development and Access Expansion Project
TOR	Terms of Reference
TPDF	Tanzanian People's Defense Force
UPS	Uninterruptible Power Supply
VCB	Vacuum Circuit Breaker
WB	World Bank
WCST	Wild life Conservation Society Tanzania
WHO	World Health Organization

CHAPTER 1 BACKGROUND OF THE PROJECT

Chapter 1 Background of the Project

1-1 Background of the Project

The Energy Sector of Tanzania plays a significant role for economic growth rates in excess of 6% per annum, and power demand expansion is outpacing economic growth with a program of accelerated electrification and vitalized economic activity. However, during the period of privatization of TANESCO from 1992 to 2006, there was no public support from the government or other donors and reinforcement of facilities to meet increasing demand or maintenance/repair of existing facilities were hardly carried out. Therefore, many existing equipment and facilities have become old and there are many problems probably caused by aging degradation. Moreover, the capacity of substations and transmission and distribution facilities cannot catch up with the rapidly increasing demand and the existing facilities chronically have to have overload operation, and the situation is critical with frequent power outage in many places.

To improve the situation, the Tanzanian government formulated Power System Master Plan (2012 Update) with 25-year forecasts from 2008 to promote enhancements for power supply facilities and development of key transmission, distribution and substation facilities. Especially, regarding transmission and distribution network, the Power System Master Plan to provide the stable power supply to the city with high power demand was formulated, and JICA implemented the Study for Rehabilitation of Distribution Facilities in Major Cities in Tanzania in 2002 and this resulted in formulation of master plan for expansion and improvement of transmission and distribution network. This report indicated the necessity of reinforecement of the transmission and distribution network and the necessary measure for improvement of reliability of stable power supply based on the construction of 132kV transmission line and secondary substations.

It was against such a background that the Government of Tanzania issued the request to the Government of Japan for the improvement and expansion of transmission and distribution facilities to realize the improvement of infrastructure for the stable power supply based on the aforementioned Power System Master Plan.

This project aims to improve and enhance transmission, distribution and substation facilities in Dar es Salaam in order to achieve the provision of stable power supply to medical institution and public facilities and the reliability of quality for electricity services. Moreover, in the operation of the power system, this project shall contribute to improving the reduction of power loss, frequent power interruption, voltage drop and low power factor caused by the deterioration and overload operation.

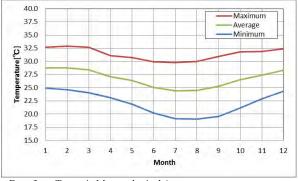
Table 1-1.1 shows the results of evaluating the Project components based on assessment items such as the urgency, relevance, necessity and beneficial effect, etc. according to the final requested contents and analysis in Japan confirmed in the first field survey.

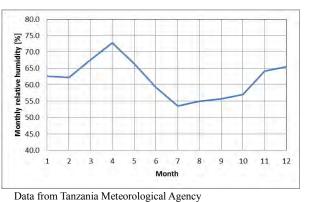
	Table 1-1.1 Outline of the Requested Components				
Priority	Substation	Components			
1	Ilala substation (132/33/11kV) (Reinforcement)	 Reinforcement of Ilala substation Including two sets of 60 MVA Transformer (132/33 kV) Reinforcement of existing 132kV transmission line (approximately 7.5km: from Ubungo substation to Ilala substation) 			
2	Msasani substation (33/11kV) (Expansion)	 Expansion of Msasani substation Including a set of 15 MVA Transformer (33/11kV) Construction of 33kV distribution line (approximately 7.6 km: from Makumbusho substation to Msasani substation) 			
3	Muhimbili substation (33/11kV) (New construction)	 Construction of Muhimbili substation Including a set of 15 MVA Transformer (33/11kV) Construction of 33kV distribution line (approximately 2.0km: from NCC (New City Center) substation to Muhimbili substation) 			
4	Jangwani Beach substation (33/11kV) (New construction)	 Construction of Jangwani Beach substation Including a set of 15 MVA Transformer (33/11kV) Construction of 33kV distribution line (approximately 6.5 km: from Tegeta substation to Jangwani Beach substation) 			
5	Mwananyamala substation (33/11kV) (New construction)	 Construction of Mwananyamala substation Including a set of 15 MVA Transformer (33/11kV) Construction of 33kV distribution line (approximately 1.1 km: from Makumbusho substation to Mwananyamala substation) 			

Table 1-1.1 Outline of the Requested Components

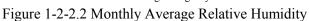
1-2 Natural Conditions

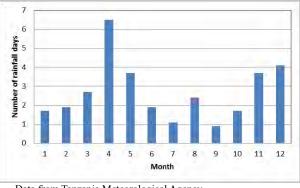
The city of Dar es Salaam is located in the southeast of Tanzania, with Dar es Salaam Port on the eastern coast. The region is in the tropics and 0-55 meters above sea level.


1-2-1 Location


The project sites are located in a coastal zone at latitude 6°42′ south and longitude 39°16′ east, facing the Indian Ocean. A plain stretches for 15-16 kilometers from the coast to the inland area.

1-2-2 Climate (Temperature, Precipitation, Relative Humidity, Wind Velocity and Lightning Strike)


(1) Temperature, Precipitation and Relative Humidity


Figures 1-2-2.1 to 1-2-2.4 are the graphs of temperature, relative humidity, precipitation and number of rainy days in the Dar es Salaam Region. The figures show the monthly average values from 2002 to 2011. In the coastal area including the region, it is hot and humid with high average temperature and humidity. From December to March, it is hot and the highest temperature exceeds 30 degrees Celsius on many days. From June to September, it is relatively cool and the lowest temperature is below 20 degrees Celsius. There are two rainy seasons – the long rains from March to May and the short rains from November to December.

Data from Tanzania Meteorological Agency Figure 1-2-2.1 Monthly Average Temperature

Data from BBC website

1 2 3

350

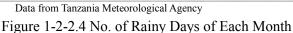
(mm) 2200 X 200 300

Average Monthly I 100 20

50

0

Figure 1-2-2.3 Monthly Average Precipitation


6 7

Month

8 9 10 11 12

4

5

(2) Wind Velocity

Figure 1-2-2.5 shows the average wind velocity in Dar es Salaam Region measured by the Tanzania Meteorological Agency. The figure shows monthly average wind velocity from 2002 to 2011. The annual average wind velocity is 5.9 m/s. According to the Tanzania Meteorological Agency, in Dar es Salaam Region it is rare to have such strong winds that affect electric equipment and cyclones in the Indian Ocean very rarely approaches to the coastal area in East Africa. The greatest wind velocity ever recorded is 24 m/s.

Lightning (3)

Figure 1-2-2.6 shows the number of days of lightning in Dar es Salaam Region recorded by the Tanzania Meteorological Agency. The figure shows monthly average from 2002 to 2011. Rainy seasons have more days of lightning, e.g., in April, there is lightning every other day. From May to October, there is little lightning. There were 29 days of lightning in 2011.

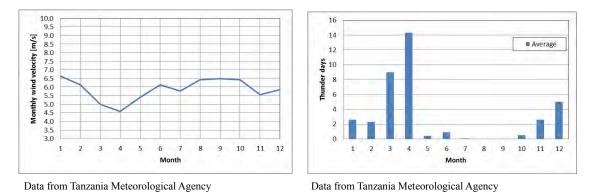


Figure 1-2-2.5 Monthly Average Wind Velocity Figure 1-2-2.6 No. of Days of Lightning (Each Month)

1-3 Environmental and Social Consideration

1-3-1 Environmental Impact Examination

1-3-1-1 Project Components

The Project has two principal components; the new construction and reinforcement of substations, and new installation and improvement of the transmission and distribution lines. These components will be installed in Ilala Region and Kinondoni Region in Dar es Salaam. Detailed project description is available in the Chapter 2.

Project components are summarized as follows:

> New substations

Jangwani Beach substation, Muhimbili substation, Mwananyamala substation

Reinforcement / Expansion of the existing substations Ilala substation, Msasani substation

33kV Distribution line (New)

Tegeta substation to Jangwani Beach substation (6.5km) Makumbusho substation to Mwananyamala substation (1.1km) Makumbusho substation to Msasani substation (7.6km) New City Center substation to Muhimbili substation (2.0km)

132kV Transmission line (Reinforcement) Ubungo substation to Ilala substation (7.5km)

1-3-1-2 Characteristics of the Project area

(1) Topography and Soils

Altitude of Dar es Salaam is less than 200 m.a.s.l. Area is generally flat to gently undulating plains, slope range 0-3% developed on old alluvial terrace no longer flooded. Major soils are well drained, moderately deep to deep, red, yellowish red or orange sands and loamy sands with sandy loams in subsoil, weak structure and very low natural fertility. Mixed alluvial deposits occur on recent flood plains along Msimbazi valley and Mzinga rivers. The areas are subject to frequent flooding.

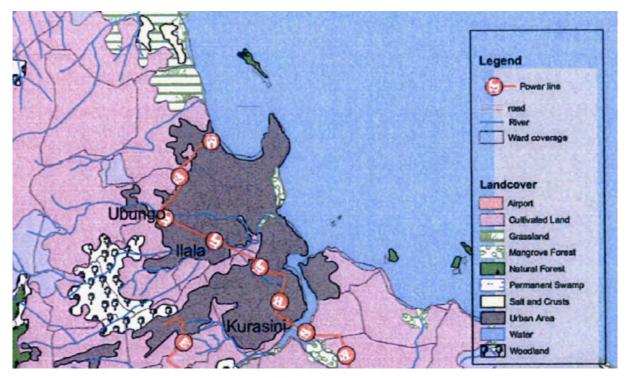
(2) Protected area

There are several forest conservation areas near the project area as below. However all of them are more than 10km away from the project area. No other protected area such as national parks is located in and around the project area.

- Ruvu North Forest Reserve: Northwest of Dar es Salaam. Located about 10km west of Tegeta.
- Pande Forest Reserve: Northwest of Dar es Salaam. Located about 10km west of Tegeta.

- Pugu Forest Reserve: West of Dar es Salaam. Located more than 10km west of city center of Dar es Salaam.
- Kazimzumbwi Forest Reserve: West of Dar es Salaam. Located more than 10km west of city center of Dar es Salaam.
- Vikindu Forest Reserve: Located about 15km south of the city center of Dar es Salaam.

(3) River


Msimbazi river is located in the project area. The length of river is about 35km and the basin area is about 300km². It has three tributaries; Sinza river, Ubungo river and Luhanga river. These rivers flow through the industrial area, urban area, residential area and cultivated area in Dar es Salaam. Because of the effluent from these areas, these rivers are highly polluted and there is no fish living in these rivers.

(4) Land use and Ecosystem

In Dar es Salaam, most of the vegetation and fauna have been lost or displaced due to intensive urban development of residential areas, infrastructures and gardens. In the city center where the project is undertaken, no large wild mammals are seen except for small mammals, birds some reptiles, amphibians and fish along the Msimbazi creek river and its estuary. Common animals on the project site seen include birds, butterflies, grasshoppers, ants of various kinds, etc. Since the proposed site is within an area used by other stakeholders, there are no big fauna reported or observed.

The main natural vegetation includes coastal shrubs, Miombo, woodland, coastal swamps and mangrove trees. The vegetation within the Municipal vicinity is evergreen. However most of the natural vegetation and trees have been cleared and only few remain on isolated spots.

Land use in Dar es Salaam is shown in Figure 1-3-1-2.1. Dark grey area is urban area.

Source: ESIA for Reinforcement and Upgrade of Dar es Salaam, Kilimanjaro and Arusha Transmission and Distribution System Project, 2005

Figure 1-3-1-2.1 Land use in Dar es Salaam

1-3-1-3 Legal Framework on Environmental and Social Consideration in Tanzania

(1) The process of Environmental Impact Assessment (EIA) and its permit

According to "the Environmental Impact Assessment and Audit Regulations, 2005" which is made under "the Environmental Management Act, No.20 of 2004", the Project is on a mandatory list (the First Schedule, Mandatory list A, 7-(1)) requiring EIA. The screening decision letter of NEMC on May 7th 2013 requires the Project to undertake a full EIA.

TANESCO has secured necessary budget for EIA and has been implementing EIA procedure in accordance with the steps shown in Table 1-3-1-3.1. If any covenants are imposed on the EIA certificate, TANESCO has to comply with it in implementing the Project. Thus, it is necessary to incorporate the content of the covenants into the project plan and the tender documents.

Sterr	Deservable hade		2013							2014					
Step	Responsible body	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
1 EIA budget approval	TANESCO														
2 EIA registartion	TANESCO														
3 Project Brief	TANESCO														
4 Screening	NEMC														
5 Scoping Report	TANESCO														
6 Approval of Scoping Report	NEMC														
7 EIA study	TANESCO														
8 Submission of EIA report to NEMC	TANESCO														
9 EIA report review	NEMC and TAC														
10 EIA report modification	TANESCO														
11 Approval of EIA certificate	Minister														

Table 1-3-1-3.1 Steps for obtaining EIA certificate

(2) Other permits related to the project

Following other permits are required to obtain for this project.

Permit	Description
Land use permit for Jangwani Beach	TANESCO obtained a land use permit from Tanzania People's
substation site	Defence Force (TPDF) on December 2, 2011.
Land use permit for Muhimbili	TANESCO obtained a permit to use the land of Muhimbili National
substation site	Hospital. TANESCO sent an acceptance letter of the Hospital's
	permit to the Hospital on September 24 th , 2012.
Permit to use Road Reserve	TANESCO has obtained the permission to use road reserve to
	construct 33kV distribution line from TANROADS and Ilala
	Municipality on 4th July 2013 and from Kinondoni Municipality on
	3 rd July 2013.
Safety Inspection Permit issued by the	This permit is required for construction and operation phase
Ministry of Labor, Youth Development	according to Occupational Health and Safety Act No.5 of 2003.
and Sports	TANESCO will obtain it before construction starts.
Building Permits by Dar es Salaam	TANESCO will obtain the building permits to construct substation
City Council	buildings from Dar es Salaam City Council. This permit is stipulated
	in the City Council By-law. After making a contact with the
	Contractor, the process for obtaining the permit starts.
Permission from the Ministry of	TANROADS overloaded charges are paid to the Ministry of
Infrastructure, to transport heavy loads	Infrastructure for issuance of road permit to transport the equipment
from the port of entry to the site	of abnormal weights and sizes. The contractor will obtain this permit
	before transporting heavy loads.

Table 1-3-1-3.2 Other permits related to the Project

(3) Relevant legislation and regulation

1) The Environmental Management Act, 2004

The Environmental Management Act (EMA) is the principal legislation governing environmental management in Tanzania. Cap 191 provides for the legal and institutional framework for dealing with environmental issues. It also regulates the roles of the National Environment Management Council (NEMC) and the National Environmental Advisory Committee (NEAC). Under this Act, NEMC is mandated to undertake enforcement, compliance, review and monitoring of environmental impact assessment and has a role of facilitating public participation in environmental decision making, exercise general supervision and coordinating over all matters relating to the environment. The Act also requires the Council to determine whether the proposed project should be subjected to an EIA, to approve consultants to undertake the EIA study, to invite public comments and also to have the statutory authority to review EIS and to recommend to the Minister for approval and issuance of EIA certificate.

Section 81, subsection 1 in Part VI, requires project proponents or developers to undertake an Environmental Impact Assessment (EIA) at his/her own cost prior to commencement or

financing of a project or undertaking. The types of projects requiring EIA are listed in the third schedule of the Act. Section 82 makes EIA mandatory to all projects that fall under the EIA mandatory list (Schedule 3). Among the 16 listed project types, this project falls under the type "10. Electrical infrastructure." Any development project cannot be implemented without EIA according to this act.

Section 110 of Part VIII requires project proponents or any person not to discharge any hazardous substance, chemical, oil or mixture containing oil in any waters or any other segment of the environment. Part IX requires project proponents to manage and dispose waste including hazardous waste in appropriate manner. Section 141 of Part X requires project proponents to comply with environmental quality standards and criteria. Section 147 of Part X states that National Environmental Standards Committee (NESC) sets noise and vibration standards and NESC also establishes noise levels and noise emission standards applicable to construction sites, plants , machinery, motor vehicles, aircraft, including sonic booms, industrial and commercial activities.

Part XVI requires project proponents, which a licence or order has been issued under this Act, to take all reasonable steps to prevent that body corporate from contravening or failing to comply with the licence or order.

Section 186 and Section 187 provide the penalty for committing an offence against the standards regulated under this Act. Any person who commits an offence is liable on conviction to a fine of less than ten million shillings or to imprisonment for less than seven years or to both.

Any person discharges any pollutant into the environment contrary to the provisions of this Act, commits an offence and is liable on conviction to a fine of less than fifty million shillings or to imprisonment for less than twelve years. In addition, the court may direct that person to pay the full cost of cleaning up the polluted environment and of removing the pollution; or clean up the polluted environment and remove the effects of pollution to the satisfaction of the Council.

2) Environmental Impact Assessment and Audit Regulations, 2005

The Environmental Impact Assessment and Audit Regulations No. 349 of 2005 were made pursuant to Section 82 and Section 230 of the Environmental Management Act No. 20 of 2004. The regulations provide the basis for undertaking Environmental Impact Assessments and Environmental Audits for various types of development projects with significant environmental impacts. In addition, the regulations set out the procedures for carrying out review and approval of Environmental Impact Assessments.

Part III of the Regulation deals with project registration and screening procedures. Regulation 5 requires the applicant for the EIA Certificate to submit a project brief to NEMC in the format set out in the Third Schedule of the EMA (2005) and First Schedule of the Regulations. The Third Schedule also provides the format for project registration. Regulation 6(1) specifies the content

of the project brief. NEMC subsequently undertakes a screening of the project based on the submitted project brief and registration form and decides if the developer will have to carry out environmental assessment.

Regulation 46(1) classifies projects into two types:

- > Type A: projects requiring a mandatory EIA; and
- > Type B: projects requiring a Preliminary Environmental Assessment (PEA)

3) Stages of Environmental Impact Assessment (EIA) process in Tanzania

Given below are key steps of EIA process according to the Environmental Management Act, 2004 and the Environmental Impact Assessment and Audit Regulations, 2005:

Stage	Description
Registration	The proponent is required to register a project with NEMC by submitting duly filled EIA application form.
Screening	Screening is an initial review step in the EIA process. Thus, the EIA application forms and Project Brief are screened in order to assess and establish the category of project and determine the level of EIA required. This is done by NEMC within 5 working days after submission of EIA application forms.
Scoping	If the screening indicates that a full EIA is required, identification of main issues of concern through scoping will be conducted by the developer through his Consultant. This is done by consulting all the relevant concerned parties. Draft terms of references (ToR) will then be prepared to guide the impact assessment study. A Scoping Report and draft Terms of Reference (ToR) are submitted to NEMC for review and approval. This is done within 10 days after submission of the Scoping Report.
Impact Assessment	Conducting EIA study is done after approval of ToR by NEMC. The Consultant uses the ToR to conduct the actual EIA study. The crucial task is to identify likely impacts, assess and evaluate their severity and magnitude and propose mitigation measures to minimise potential negative impacts and enhance positive benefits. The output of this stage is an EIA report, also known as Environmental Impact Statement (EIS). This includes an Environmental Management plan (EMP) as well as a Monitoring Plan (MP) that outline management and monitoring of anticipated impacts, including those, which affect local communities in the project area. Public consultation is mandatory when conducting an EIA and the proponent (through his consultant) must meet key stakeholders to get their views.
Review	Once the proponent has submitted an EIA report (EIS), NEMC conducts site verification visit. The site visit is conducted to verify information provided in the EIS report. NEMC then coordinates a cross-sectoral Technical Advisory Committee (TAC) to review the EIS. The TAC is composed of members from sectors responsible for environment and resource management. Review of EIS

Table 1-3-1-3.3 EIA process

Stage	Description
	is completed by NEMC within 60 days from the date it was received by NEMC, and this is as required by EMA 2004. The Minister may within 30 days, upon receipt of recommendations of the Council approve or disapprove the EIS.
Public hearing	As part of the review process a public hearing may be necessary to address public concerns over a proposed activity or project. Normally this takes place when major concerns have been raised by the public and potential negative impacts of the proposed project are perceived to be far reaching. Other critical factors that may necessitate public hearing are sensitivity of the site location, type and scale of project, technology used, multiple land use considerations, presence of relocation and resettlement issues, cumulative impacts and any other factor related to a particular project that might cause public concern.
Environmental decision-making	After submission of the final version of the EIS, NEMC assesses it in order to ascertain whether all the TAC comments and recommendations have been adequately addressed by the consultant. Thereafter terms and conditions for issuance of the EIA Certificate are prepared by NEMC. Approval/disapproval of the EIS is done by the Minister responsible for Environment as stipulated in EMA 2004 section 92 (1).
Appeals	Both the proponent and the affected or interested parties have the right to appeal. If there is dissatisfaction on the decision reached, provision for appeal to the Environmental Tribunal or Court of law is provided by law.
Project implementation	This is conducted according to the terms and conditions of approval and is guided by the Environmental Management and Monitoring Plans.
Monitoring	Day to day internal monitoring (also known as routine monitoring) is done by the developer (project management team), but compliance monitoring is done by NEMC in collaboration with key stakeholders and regulatory bodies.
Environmental Audit	There are two levels of Environmental Audits, i.e. Environmental Impact Audit and Environmental Management Audit. Environmental Impact Audit involves comparing the impacts predicted in an EIS with those that actually occur after implementation of the project while Environmental Management Audit involves checks against adherence to plans, mitigation measures and general compliance of terms and conditions.

4) Screening and Evaluation Criteria of EIA

• At the Stage of Screening

The following shall be screening criteria:

- > The project will not substantially use natural resources.
- Potential residual impacts on the environment are likely to be minor, of little significance and easily mitigated.
- > The type of project, its environmental impacts and measures for managing them are well

understood in Tanzania.

- Reliable means exist for ensuring that impact management measures can and will be adequately planned and implemented.
- > The project will not displace significant numbers of people, families or communities.
- The project is not located in, and will not affect, any environmentally sensitive areas such as;
 - national parks, wetlands, Productive agricultural land;
 - important archaeological, historical and cultural sites;
 - areas containing rare or endangered flora or fauna;
 - areas containing unique or outstanding scenery;
 - mountains or developments on or near steep hill-slopes;
 - dry tropical forests (e.g. Brachystegia woodlands);
 - development near high population concentrations or industrial activities where further development could create significant environmental problems; and
 - prime ground-water re-charge areas or areas of importance for surface run off of water.
- > The project type will not result in:

Policy initiatives which may affect the environment such as changes in agricultural pricing subsidies or the tobacco liberation; major changes in land tenure; or changes in water use though irrigation, drainage promotion or dams, changes in fishing practices.

- \succ The project will not cause:
 - adverse socio economic impact;
 - land degradation;
 - water pollution;
 - air pollution;
 - damage to wildlife and habitat;
 - adverse impact on climate and hydrological cycle; and
 - creation of by-products, residual or waste materials which require handling and disposal in a manner that is not regulated by existing authorities
- The project will not cause significant public concern because of potential environmental changes. The following are guiding principles:
 - is the impact positive, mainly begin or harmful;
 - what is the scale of the impact in terms of area affected numbers of people or wildlife;
 - what is the intensity of the impact;
 - what will be the duration of the impact;
 - will there be cumulative effects from the impact;
 - are the effects politically controversial;
 - have the main economic, ecological and social costs been quantified;
 - will the impact vary by social group or gender; and
 - is there any international impact due to the proposal projects.
- The project will not necessitate further development, which is likely to have a significant impact on the environment.
- At the Evaluation Stage of Environmental Impact Statement (EIS)

According to the section 24, PART VI of Environmental Impact Assessment and Audit Regulations, 2005, the following is NEMC's screening criteria during the examination stage of EIS.

Review Area 1	Description of the Development, Local Environmental and Baseline Conditions				
	Description of the development				
	Local environmental and baseline conditions				
Review Area 2	Identification and evaluation of key impacts				
	 Identification of key impacts and its evaluation 				
	Residual impacts				
	Cumulative impacts				
	Prediction of impact magnitude				
	· Assessment of impact significance				
Review Area 3	Alternatives, mitigations, EMP, and commitment				
Review Area 4	Stakeholder participation and communication of results				
	Stakeholder participation				
	• Presentation				
	Composition of the stakeholders				
	Non-technical summary				

Table 1-3-1-3.4 Evaluation Criteria of EIS

[Source] Environmental Impact Assessment and Audit Regulations, 2005

5) Environmental Standards in Tanzania

The Tanzania Bureau of Standards is the designated national authority (TBS Act 1975) for developing all kinds of national standards, including environmental standards. The TBS Act establishes the National Environment Standards Committee (NESC) which is responsible for developing environmental standards. The Environment Management Act 2004, recognizes the existence of the NESC.

Part X enumerates the types of environmental standards to be established, they include water quality, discharge of effluent into water, air quality, control of noise and vibration pollution, sub-sonic vibrations, soil quality, control of noxious smells, light pollution, and electromagnetic waves and microwaves. Development of national environmental standards is still at its infancy stage. Only 9 compulsory environmental standards (those that require compulsory compliance) have been developed so far. Although, it is not stated in the Acts, in the absence of national standards, project proponents are encouraged to use international standards such as those of WHO, World Bank, British Standards (BS), EU, American Public Health Association (APHA), US Environmental Protection Agency (EPA) etc.

(4) Relevant Institutions to this project

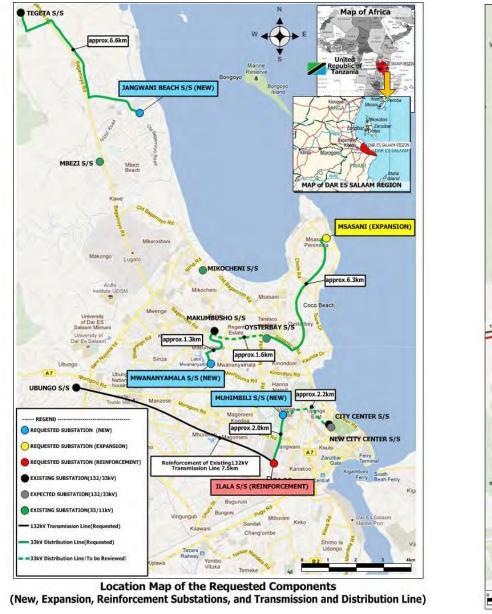
	1 5					
Level	Institution	Responsibilities				
Project owner	TANESCO	Project implementation, mitigation measures, monitoring of all environmental issues and supervision of contractors.				
National level	Vice President's Office, Minister Responsible for	Issue an Environmental Certificate and environmental management conditions having received project				

Table 1-3-1-3.5 Relevant Institutions to this project

Level	Institution	Responsibilities
	Environment	recommendation from NEMC (Category A and Category B subprojects).
	National Environmental Management Council (NEMC)	Review the project's Environmental Impact Assessment (EIA). Ensure that the project EIA is implemented according to the conditions of the EIA certificate. Recommend to the Minister Responsible for Environment to grant an EIA Certificate after the project proponent have followed all EIA process for Category A and B sub projects. Issue directives based on monitoring and evaluation reports.
	Ministry of Land and Human Settlements Development	Advice and monitoring all issues, which will be related with Land Acquisition and Resettlement.
	Tanzania National Roads Agency (TANROADS)	Issue permit on transporting heavy and abnormal loads such as transformers and generator engines.
	Occupational Safety & Health Authority (OSHA)	Workplace inspections. Industrial hygiene surveys. Issues guidelines, regulations and standards. Health examinations of workers, Training of workers and employers.
Regional	Dar es Salaam Regional Secretariats	Environmental coordination of all advice on environmental management in their respective regions.
Local	Municipal Council	Overseeing municipal development activities and issuing of permit. Monitoring the project implementation activities for the benefit of the municipal environment. Collaborate with the project developer to ensure that mitigation measures address adverse impacts.
	Ward Council	Planning environmental management programs within their respective wards. Reporting on environmental activities of projects within the wards. Mobilizing and capacity building of the population within the wards in regard to environmental management and protection. Implementing ward environmental management and protection programs within the ward.

1-3-1-4 Comparison of Alternative Options

In order to reduce negative environmental and social impacts including land acquisition and displacement, and also overall project costs, while maximizing the outcome of the project, the Team reviewed its original proposal and has proposed alternative options for this project. Following alternatives are compared as shown in Table 1-3-1-4.1.


- Alternative 1 (Alt-1): The original proposal by TANESCO.
- Alternative 2 (Alt-2) : Proposed alternative option by the Team. The distribution line from Ilala substation to Muhimbili substation is rerouted to the line from New City Center substation to Muhimbili substation.

• Alternative 3 (Alt-3) : No project implementation (Zero option).

The zero option of Alt-3 will not solve to improve current vulnerable power supply situation such as power interruption, voltage fluctuations and voltage drop technically. The original proposal by TANESCO of Alt-1 will cause a lot of relocation especially in the area between Muhimbili substation and Ilala substation and might have some minor impact on natural environment since the distribution line crosses Jangwani swamp, which is a part of the important bird area. The proposed alternative option of Alt-2 will cause less relocation compared to Alt-1 with no significant negative impact on natural environment. Thus, Alt-2 is most recommended for this project.

I	tem	Alt-1	Alt-2	Alt-3 (zero option)
Outline of the	Length	Transmission: 7.5 km	Transmission: 7.5 km	Transmission: 0 km
Option	-	Distribution : 17.8 km	Distribution : 17.2km	Distribution : 0 km
	Major component	Substations (5) :	Substations (5) :	n/a
		- Ilala	Same as Alt-1	
		- Msasani		
		- Mwananyamala (new)		
		- Muhimbili (new)		
		- Jangwani Beach (new)		
		<u>132kV Transmission line:</u>	<u>132kV Transmission line:</u>	
		Ubungo substation – Ilala substation (7.5 km)	Same as Alt-1	
		33kV Distribution line: 1) Ilala – Mubimbili (2.0km)	<u>33kV Distribution line:</u>	
		 Ilala – Mubimbili (2.0km) Tegeta–Jangwani Beach (6.6 km) 	 New City Center-Muhimbili (2.0 km) Tegeta–Jangwani Beach (6.5 km) 	
		 a) Makumbusho- Mwananyamala (1.3 km) 	 a) Makumbusho- Mwananyamala (1.1 km) 	
		 4) Makumbusho- Msasani (7.9 km) 	 4) Makumbusho- Msasani (7.6 km) 	
Technical		- Less Technical Loss	- Same as Alt-1	- No Improvement of Electric Supply
Aspect		- Less Load-shedding		Reliability for existing and waiting
1		- Financial Recovery by connecting to Waiting		customers
		customers, and the above less facts.		
Benefit		Beneficiary: 1,092,500 household	Beneficiary: 1,092,500 household	Beneficiary: 0 people
Environmental	Social	➤ A lot of informal settlers are within ROW of the	> No relocation is expected with the distribution line	No impact
and Social	Environment	distribution line from Ilala substation to	from Muhimbili to New City Center substation.	
Impact		Muhimbili substation. More than 50 houses	➤ Some houses within ROW of the transmission line	
		would be affected along this line.	will be relocated.	
		\succ Some houses within ROW of the transmission	≻ Construction of Mwananyanamala substation	
		line will be relocated.	causes relocation of 62 people.	
		Constrution of Mwananyanamala substation		
	NT / 1	causes relocation of 62 people.		
	Natural	► Distribution line from Ilala substation to	≻ No significant negative impact to natural	No impact
	Environment	Muhimbili substation passes along Jangwani swamp area. The line is expected to be	environment is expected since all components are located in city area.	
		constructed with towers and it might affect water	 Some roadside trees will be cut down. 	
		birds passing by this swamp since the swamp is	> Some roadside trees will be cut down.	
		Important Bird Area (IBA).		
		 Some roadside trees will be cut down. 		
		> Some roudside trees will be cut dowil.		

Table 1-3-1-4.1 C	Comparison o	of Alternative	Options
-------------------	--------------	----------------	---------

a) Alt-1

1-3-1-5 Environmental Scoping

Environmental Scoping below is undertaken by the JICA study team. The scoping is applicable to Alternative-2, which is most feasible at this stage.

F	Provisional		Description
Environmental Item	Imp		Description
	Construction	Operation	
1. Pollution Control			
Air Quality	B-	D	Construction: Some emission of exhaust gas and dust from vehicles and heavy construction machinery will be expected. Operation: No air emission is expected.
Water quality	D	D	Construction: No large scale alternation of the topography or civil engineering work is expected, thus water pollution due to soil runoff will is limited. Operation: No wastewater discharge from the project site is expected.
Waste	B-	В-	Construction: Rehabilitation of Ilala substation will involve replacement of existing transformers. In addition, there are a lot of industrial waste and materials stored in the compound of Ilala substation, which will be needed to be disposed or relocated prior to construction. Proper management of these wastes and materials is needed. Operation: Some extent of industrial waste will be produced through maintenance activity.
Soil Contamination	B-	В-	Construction/Operation: If spillage of insulation oil from transformers occurs, it would cause soil and groundwater contamination.
Noise and Vibration	B-	B-	Construction: Construction work could produce some extent of noise and vibration. Operation: Transformers will produce some extent of noise.
Ground Subsidence	D	D	Construction: No large scale groundwater extraction and no large scale alternation of topography or civil engineering work are expected for the installation work and no ground subsidence is anticipated to occur. Operation: No large scale groundwater extraction is expected, thus no ground subsidence is anticipated to occur.
Odor	D	D	Construction: No offensive odor is anticipated to originate from construction work. Operation: No offensive odor is anticipated to originate from the transmission and distribution facilities.
Bottom Sediment	D	D	Construction: The installation works will not affect bottom sediment due to soil erosion from the works as no large scale alternation of topography or civil engineering work is expected. Operation: Operation and maintenance work will not affect bottom sediment due to soil erosion.
2. Natural Environme	ent		
Protected Areas	D	D	Construction/Operation: The project is not located within the protected area.
Ecosystem	B-	B-	Construction/Operation: Jangwani swamp area, which is part of the Important Bird Area (IBA), is adjacent to the project site. The project might affect the avi-fauna around this swamp.
Hydrology	D	D	Construction: The construction work will not involve any major alternation of the topography or civil engineering works, the construction work will not affect groundwater and rivers. Operation: The operation and maintenance work will not involve any major alternation of the topography.
Topography and Geology	D	D	Construction: The construction work will not involve any major alternation of the topography or civil engineering works, no impacts are anticipated on the local topography or geology. Operation: The operation and maintenance work will not involve any major alternation of the topography.
3. Social Environmen			
Resettlement	B-	D	Construction: Acquiring Muwananyamala substation site involves resettlement of 62 people. Within the required space for installation work of a new 132kV power cable from Ubungo substation to Ilala substation, some encroachers are observed and they are required to be relocated. Operation: The operation and maintenance work will not involve resettlement.

Table 1-3-1-5.1 Provisional Environmental Scoping

Environmental Item	Provisional Imp		Description
	Construction	Operation	· ·
Living and	B+	B+	Construction: Opportunities for employment could increase during construction.
livelihood			Operation: Improvement of power supply could improve livelihood in Dar es Salaam.
Heritage	D	D	Construction/Operation: There is no cultural and historical heritage in the project site.
Landscape	D	D	Construction/Operation: No significant change in landscape is expected.
Ethnic Minorities and Indigenous People	D	D	Construction/Operation: There is no ethnic minority and indigenous people in the project area.
Land Use and Natural Resources	B-	D	Construction: The construction of Mwananyamala substation involves acquiring private residential plots. Except this substation site, no major land use change is expected. Operation: Operation and maintenance work will not involve land use alternation.
Water Use	D	D	Construction/Operation: The project will not involve large scale extraction of water.
Existing Social	B-	D	Construction: There is a water supply facility adjacent to Muhimbili substation site. Construction work for this substation might affect the
Infrastructure and			facility. Proper management of construction work is required in this site.
Institution			Operation: Operation and maintenance work will not affect existing social infrastructure and institution.
Misdistribution of	B-	D	Construction: Appropriate attention to equal employment of local work force could avoid misdistribution of benefits and damage.
Benefit and Damage			Operation: The project will improve electricity supply in Dar es Salaam as a public service. Therefore, misdistribution of benefit and damage is not expected.
Gender/Children's right	D	D	Construction/Operation: No significant impact on gender and children's right are expected.
Local Conflict of Interest	D	D	Construction/Operation: The project will improve the local electricity supply as public service. This item is, therefore irrelevant.
HID/AIDS and diseases	D	D	Construction/Operation: As the scale of the construction, operation and maintenance work is small and local laborers will be employed, there is no tangible risk of a disaster or occurrence of infectious diseases due to the mass inflow of laborers from other areas.
Working Condition	B-	B-	Construction: Injuries due to accidents or incidence of diseases could increase during construction. Operation: Risks of electrocution and falling from high places would be expected.
4. Others			
Accidents	B-	B-	Construction: As Ilala substation is close to a primary school and Msasani substation and Mwanyamala substation sites are close to residential houses, risks of traffic accidents due to transportation of construction materials around these sites would be increased. Operation: Although it is rare, the overhead cables may be cut and dangled due to accidents or disasters.
Electromagnetic waves	D	B-	Construction: Construction works will not produce electromagnetic waves. Operation: The power lines and electrical equipment will emit electric and magnetic fields (EMF).

A+/-: Significant positive/negative impact is expected

B+/B-: Positive/negative impact is expected to some extent.

C+/-: Extent of positive/negative impact is unknown

D+/-: No impact is expected

1-3-1-6 TOR of the Environmental and Social Consideration Survey

Based on the result of the provisional environmental scoping, the Team decided the TOR of the environmental and social consideration survey on this project as shown in Table 1-3-1-6.1.

Item	Survey item	Method
Comparison of the alternatives	 Review the alternatives to the TANESCO's original proposal Comparison of the routes of 33kV distribution line Boundary of the substation sites 	 Review the alternatives to minimize relocation and land acquisition and to maximize the impact of the Project Site survey Interview with relevant institution on habitat of bird
Waste	Waste management and disposal in constructing substations especially for Ilala substation	 Review existing information Site survey at Ilala substation Survey on waste management of Ilala substation
Soil and groundwater contamination	Measures to prevent leakage of insulation oil at substation sites	 Site survey at substation sites Survey on groundwater level at substation sites Information gathering on coverage of water supply system in Dar es Salaam city Consider mitigation measures
Noise	Noise emission level and its impact on the adjacent area	 Confirm land use of each substation site according to the Land use plan of Municipal council Interview with Tanzania Bureau of Standards (TBS) about the noise standard Comparison between noise emission level at substations and noise standard Site survey Consider mitigation measures
Ecosystem	Impact on birds around the project sites especially near Jangwani swamp	 Interview with WCST (Wild life Conservation Society Tanzania) Information gathering on birds in Jangwani swamp Site survey Interview with the Transmission Department and the Distribution Department of TANESCO on bird strike
Resettlement	Extent of resettlement and land acquisition	 Site survey, review existing information Conduct survey on resettlement and develop an abbreviated resettlement action plan
ExistingSocialInfrastructureandInstitution	Impact on the existing social infrastructure and institution	Site survey, interviewReview existing information
Accident	Accident risks around the project sites in construction and operation	 Site survey Information gathering on policy and action of TANESCO on health and safety issue
Electromagetic Waves	Impact of the electromagnetic waves by 132kVtransmission line and 33kV distribution lines	 Confirm emission level of electromagnetic waves from 132kV transmission line and 33kV distribution lines and compare with the guideline of ICNIRP Site survey

Table 1-3-1-6.1 TOR of the Environmental and Social Consideration Survey

1-3-1-7 Result of Survey on Environmental and Social Consideration

Based on the TOR of the environmental and social consideration survey, the Team conducted the survey and the result is shown below.

Item	Finding / Issue
Waste	The Environmental (Solid Waste Management) Regulations, 2009, and Environmental Management (Hazardous Waste Control and Management)
	Regulations, 2009 are the main Tanzanian legislation regulating both non-hazardous and hazardous waste management under the Environmental
	Management Act, 2004. According to the Environmental Management (Hazardous Waste Control and Management) Regulations 2009, hazardous
	waste shall be classified in accordance with the criteria set out in the Third Schedule on the basis of listed waste streams, constituents and other wastes to
	be controlled which are hazardous under Part I of the First Schedule, read with or combined with hazardous characteristics listed under Part II of the
	First Schedule.
	At the time of site visit, disposed transformers were observed to be stored near the entrance of Ilala substation without proper labeling/sign board. The

site management states that these transformers will be sold to external vendors. Also, some other wastes and materials including new transformers for distribution facility were stored in and around the proposed area of the new control building. Based on site management and JICA study team's visual observation, the substation was not equipped with either designated hazardous waste or domestic waste storage shed. At the time of the site visit, an approximately 10 m^2 oil stain was observed on bare soil in the east of the current control building. Before construction, these wastes and materials should be transferred or disposed properly in accordance with the regulation. According to the Ilala Reginal Manager of TANESCO, there is no PCB contained transformers in Ilala substation.

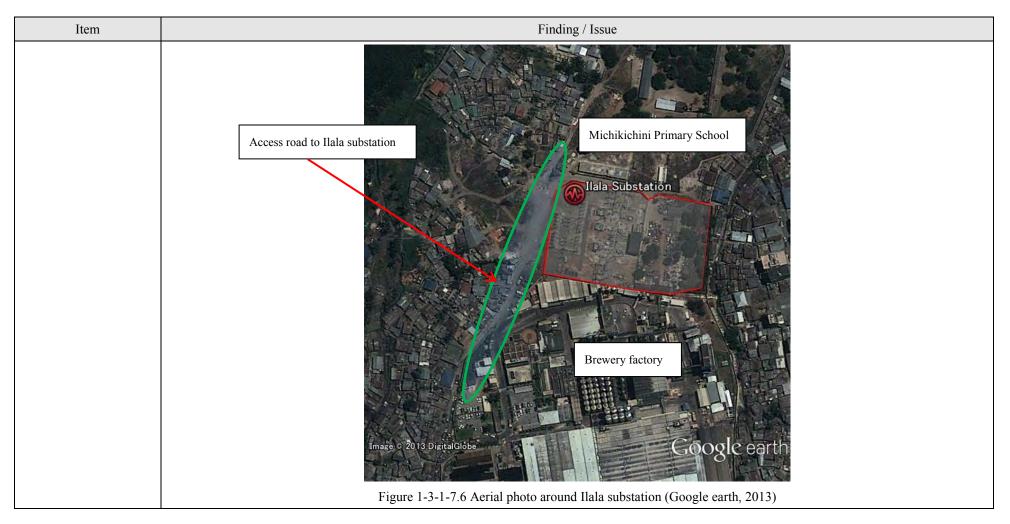
Figure 1-3-1-7.1 Disposed transformers stored near the entrance of Ilala substation

Figure 1-3-1-7.2 Wastes and materials stored in the proposed new control building area

Item	Finding / Issue
Soil and groundwater	According to the Environmental Management (Soil Quality Standards) Regulations, 2007, made under Section 144, 145 and 230 (s) of the
contamination	Environmental Management Act, 2004, no person is allowed to discharge any hazardous substance, chemical, oil or mixture containing oil on any
	soils . A person who discharges these substances on any soils or any other segment of the environment commits an offence. The person convicted of the
	offence under this regulation may be ordered by the court to pay the cost of the removal, including any costs which may be incurred by the Government
	or Government agency in the restoration of the soil environment damaged or destroyed as a result of the discharge.

Regarding soil contamination, potential areas of concern at the project sites are the areas for installing transformers in the substation sites. Highly-refined, mineral insulating oils are used to cool transformers and provide electrical insulation between live components. Insulating oil is a hazardous material and leakage/spillage of insulating oil from transformers might cause soil contamination. Some of the transformers in the TANESCO's substations were observed to be without secondary containment under the transformers and oil stain was also observed around those transformers.

Figure 1-3-1-7.3 Transformer without secondary containment in Ubungo substation (drums of insulating oils are on the ground and oil stain was observed)


Figure 1-3-1-7.4 Insulating Oil used in the TANESCO's substations

Item			Findin	ng / Issue			
	According to a soil investigation performed in March 2013 by the JICA study team for the proposed substation sites, groundwater is located at a depth of						
	4.5m to 10.0m (Table 1-3-1-7.1).	Since the ground	lwater depth is around	4 to 6m below ground le	vel in the areas of Muhir	nbili, Mwananyamala and	
	Jangwani Beach site and is overlai	id by moderate pe	rmeable materials, grou	ndwater vulnerability is as	ssumed to be moderate for	r these areas.	
		Tab	le 1-3-1-7.1 Groundwat	er level at each substation	site		
	Substation site name	Ilala	Muhimbili	Mwananyamala	Jangwani Beach	Msasani	
	Groundwater level	GL -9.0 m	GL -6.5 m	GL -4.5 m	GL -4.5 m	GL -10.0m	
Noise	both privately and by public. Out of the rest 40 % have no direct acces Ilala Municipality 52% of its popu Noise in the form of buzzing or h	s. In Temeke Mur	nicipality, 68% of its pop with clean and safe wate	pulation are served with cler, and the remaining popu	ean and safe water the resultation have no direct acco	st have no direct access. In ess.	
	33/11kV 15MVA transformer and Council, the land classification of the maximum permissive noise le "Institutional" in the IFC EHS Go equivalent to the value for "Mixed	Mwananyamala vel is 50dBA(day uidelines adopts th	substation site is "Resid)/35dBA(night) accordi he maximum permissiv	dential" and rest of the sit ng to TBS standards show e noise level of 55dBA(d	es are classified as "Insti vn in Table 1-3-1-7.2. Th ay)/45dBA(night) value (tution." For "Residential," he noise level guideline for	

Item		Finding / Issue			
	Table 1-3-1-7.2 Maximum perr	missive noise level for genera	al environment by TBS stan	dards	
	Facility		DAY (6:00-22:00)	NIGHT (22:00-6:00)	
	Any building used as hospital, convalescence home, home for the aged, sanatorium, and learning institutions, conference rooms, public library, and environmental and recreational site.		45 dBA	35 dBA	
	Residential building	50 dBA	35 dBA		
	Mixed residential (with some commercial and entertainment)		55 dBA	45 dBA	
	Residential and Industry/small scale production and commerce		60 dBA	50 dBA	
	Industrial area		70 dBA	60 dBA	
	(TZS932:2007 Acoustics-General tolerance limits for envir Table 1-3-1-7.3 I	ronmental noise) Noise Level Guidelines by II	FC EHS guidelines		
	Receptor	Daytime (7:00-22:00)	-	nttime 0-7:00)	
	Residential; institutional; educational	55 dBA	45	dBA	
	Industrial; commercial	70 dBA	70	dBA	
	(IFC General EHS Guidelines: Environmental	Noise Management)			
	To comply with the above mentioned maximum permissiv sound-proof walls will be considered at Mwananyamala subst		-	-	

Item				Finding / Issue						
Ecosystem		Since the original proposal from TANESCO was including the 33kV distribution line from Muhimbili substation to Ilala substation with steel towers and								
		this line passes along Jangwani swap, the Team had an interview with Wild life Conservation Tanzania (WCST) on wild birds flying into the swamp and								
		potential impact of	the project on these birds. According	to WCST, the major birds flying into the sw	yamp are shown in Tale 1-3-1-7.4. All of them are					
		common species and there is no endangered or vulnerable species specified by IUCN. Thus, there is little concern on these birds.								
		According to the Transmission Department and the Distribution Department of TANESCO, there is a bird strike problem in Mwanza area but there is no								
		-	*	• · · ·	•					
		such problem in Da	such problem in Dar es Salaam city so far. In Dar es Salaam city, they have a problem with crows, which are exotic species.							
		Table 1-3-1-7.4 Major wild bird species flying into Jangwani swamp (Interview with WCST)								
			Common name	Scientific name	IUCN category					
		1.	Greater Flamingo	Phoenicopterus roseus	Least Concern					
		2.	Grey Heron	Ardea cinerea	Least Concern					
		3.	Black- headed Heron	Ardea melanocephala	Least Concern					
		4.	Cattle Egret	Bubulcus ibis	Least Concern					
		5.	Little Egrets	Egreta garzetta	Least Concern					
		6.	Yellow -billed Stork	Mycteria ibis	Least Concern					
		7.	Sacred Ibis	Threskiornis aethiopica	Least Concern					
		8.	Hamerkop	Scopus umbretta	Least Concern					
		9.	Malachite Kingfisher	Corythornis cristata	Least Concern					
		10.	Striped kingfisher	Halcyon chelicuti	Least Concern					
		11.	Grey -headed Kingfisher	Halcyon leucocephala	Least Concern					
		12.	Lilac-breasted Rollers	Coracias caudatus	Least Concern					
Resettlement		See 1-3-2-1								
Existing	Social	At Muhimbili subs	tation site, there is a water tower and	also is a semi-basement concrete water tank	of Muhimbili hospital in the east of the site. The					
Infrastructure	and				t is expected that there is no impact on this tank as					
Institution				· · · · · · · · · · · · · · · · · · ·	r					
monution		far as the construction work is done carefully.								

Item	Finding / Issue	
Accident	Ilala substation is located in the south of Michikichini Primary School across the road and Muwananyamala substation site is located in the middle of residential area. Because of this location, these two sites have a risk of accident involving students and neighborhood residents with construction vehicles and machineries during the construction phase. The access road to Ilala substation is unpaved and narrow with shops and houses on the west side as shown in Figure 1-3-1-7.5 and Figure 1-3-1-7.6. This road is the route to and from the school for the students and the community road for the neighborhood residents.	
		Figure 1-3-1-7.5 Access road to Ilala substation

Item		Finding	/ Issue				
Electromagetic Waves	Electric and magnetic fields (EMF) are invisible lines of force emitted by and surrounding any electrical device (e.g. power lines and elec						
	equipment). Even though there is no concrete scientific evidence, it is thought that electromagnetic waves along power lines may cause health problem						
	to the people w	ho are directly exposed to them for long period of time. Since	ce there is no specific guid	leline on exposure to electror	nagnetic w		
	Tanzania, the Te	am has evaluated potential exposure by the transmission line	and distribution line to the	public against the reference le	vels devel		
	the Internationa	l Commission on Non-Ionizing Radiation Protection (ICN	NIRP). The exposure level	s are expected to remain be	elow the l		
	recommendation	as shown in Table 1-3-1-7.5.					
		Table 1.2.1.7.5 Approximate value of Conserve	ublia auna quira ta ala stria a	nd magnatia fields			
	Table 1-3-1-7.5 Approximate value of General Public exposure to electric and magnetic fields Source Electric Field (V/m) Magnetic Field						
			Electric Field (V/m)	Magnetic Field (µT)	-		
		132kV Transmission Line		1	_		
		Case1: Between Tower No.1 and No.25					
		Under the Line (GL)	Approx. 1,400	Approx. 18			
		Around Wayleave	Approx. 570	Approx. 11			
		Case2: Connection to Substations					
		Worst	Approx. 2,500	Approx. 30			
		33kV Distribution Line					
		$\mathbf{U}_{\mathbf{r}}$ denotes $\mathbf{U}_{\mathbf{r}}$ (CI)	Approx. 920	Approx. 9			
		Under the Line (GL)	11	11			
		Around Wayleave	Approx. 770	Approx. 8			

1-3-1-8 Evaluation of Potential Impact

Based on the results of the environmental and social consideration survey, the Team evaluated the potential impact of the Project as shown in Table 1-3-1-8.1.

Table 1-3-1-8.1 Evaluation of Potentia	al Impact
--	-----------

	Provis	sional	Table 1-5-1-8.1 Evaluation of Fotential impact						
	Scopi	ing of	Scoping after the						
.	Impact			vey					
Environmental Item	Constructio	Operation	Constructio	Operation	Description				
1.Pollution Control									
Air Quality	B-	D	B-	D	Same as the provisional environmental scoping.				
Water quality	D	D	B-	B-	Construction: During construction of the substations, some amount of water discharge is expected but no hazardous effluent				
					water discharge is expected. The discharged water is penetrated into the ground.				
					Operation: Sewage water will be discharged from Ilala substation and it will be treated with a septic tank and then infiltrated				
					into the ground after separating sludge. Because of this treatment, water pollution to surrounding area is not expected.				
					Secondary containment with oil-water separator will be installed under each transformer at substation sites to retain insulation				
					oil in case of oil leakage from transformers. This prevents leaked oil from soil and groundwater pollution.				
Waste	B-	B-	B-	B-	Same as the provisional environmental scoping.				
Soil Contamination	B-	B-	B-	B-	Construction/Operation: If insulation oil is leaked from transformers, it may cause soil and groundwater pollution. 132/33kV				
					60MVA transformer would contain around 30,000L of insulation oil. 33/11kV 15MVA transformer with OLTC would contain				
					around 9,000L of insulating oil.				
Noise and Vibration	B-	B-	B-	B-	Construction: While installation work for transmission cable and distribution lines would not produce high level continuous				
					noise, construction work for substations would produce some extent of noise in operating construction vehicles and				
					machineries. Management of daily construction work period and construction vehicles and machineries would reduce noise				
					impact to surrounding area.				
					Operation: 132/33kV 60MVA transformer will produce 80dBA of noise at the source. 33/11kV 15MVA transformer will				
					produce 72dBA of noise.				

	Provisional Scoping of Impact		afte	oping er the rvey	
Environmental Item	Constructio	Operation	Constructio	Operation	Description
					Since Mwananyamala substation is closely located to neighborhood houses, it is difficult to reduce noise level to appropriate level (eg. 45dBA during nighttime at site boundary) only with attenuation in distance. It is necessary to have appropriate mitigation measures for this substation. As for Muhimbili substation and Jangwani Beach substation, residential houses and hospital facilities are also closely located, and it is necessary to have appropriate mitigation measures such as location of transformer and installation of wall. These substations are expected to have such mitigation measures and the impact would be
Ground Subsidence	D	D	D	D	mitigated. Same as the provisional environmental scoping.
Odor	D	D	D	D	Same as the provisional environmental scoping.
Bottom Sediment	D	D	D	D	Same as the provisional environmental scoping.
2.Natural Environment	1				
Protected Areas	D	D	D	D	Same as the provisional environmental scoping.
Ecosystem	В-	В-	D	D	Construction/Operation: Although the original proposal from TANESCO included the distribution line from Ilala substation to Muhimbili substation with steel towers, the alternative route from New city center substation to Muhimbili substation is proposed instead of that route. Because of this change, there will be no impact on Jangwani swamp. In addition, birds flying into Jangwani swamp are not endangered species but common species and there is no bird strike problem with transmission and distribution line in Dar es Salaam so far. Thus, the Project would not have any negative impact on existing ecosystem.
Hydrology	D	D	D	B-	Operation/Operation: If insulation oil leaks from the transformers at the substation sites, it may infiltrate into the ground and then into groundwater (aquifer) under the substation sites. This would cause groundwater pollution.
Topography and Geology	D	D	D	D	Same as the provisional environmental scoping.

	Provisional Scoping of Impact		ing of after the			
Environmental Item	Constructio	Operation	Constructio	Operation	Description	
3.Social Environment						
Resettlement	В-	D	В-	D	Construction: Construction of Mwananyamala substation involves land acquisition and resettlement of 62 people. Installation of 132kV transmission cable between Ubungo substation and Ilala substation would not involve land acquisition and it will be installed to existing towers having established wayleaves. Since a few informal houses seem to be within the project affected area, they would be relocated. There are also 250 graves, which have to be relocated, in the project affected area of transmission line. The distribution line will be constructed within the existing road reserve of TANROADS and the Municipality and it does not involve land acquisition. If there is any building/structure within the road reserve, the distribution line is expected to be installed avoiding them. Thus, the distribution line would not cause resettlement.	
Living and livelihood	B+	B+	B+	B+	Same as the provisional environmental scoping.	
Heritage	D	D	D	D	Same as the provisional environmental scoping.	
Landscape	D	D	D	D	Same as the provisional environmental scoping.	
Ethnic Minorities and Indigenous People	D	D	D	D	Same as the provisional environmental scoping.	
Land Use and Natural Resources	B-	D	B-	D	Same as the provisional environmental scoping.	
Water Use	D	D	D	D	Same as the provisional environmental scoping.	
ExistingSocialInfrastructureandInstitution	B-	D	B-	D	Same as the provisional environmental scoping.	
Misdistribution of	B-	D	B-	D	Same as the provisional environmental scoping.	

	Provisional Scoping of Impact		1 0			
Environmental Item	Constructio	Operation	Constructio	Operation	Description	
Benefit and Damage						
Gender/Children's right	D	D	D	D	Same as the provisional environmental scoping.	
Local Conflict of Interest	D	D	D	D	Same as the provisional environmental scoping.	
HID/AIDS and diseases	D	D	D	D	Construction/Operation: This project would involve about 100 workers in construction phase. In operation phase, about 6 to 7 workers for Ilala substation and 1 security guard for each rest of the substations would be deployed. The project do not expect any adverse impact regarding infectious diseases because no massive influx of workers is expected as most labors can be supplied locally for the construction works.	
Working Condition	B-	B-	В-	B-	Same as the provisional environmental scoping.	
3.Others Accidents	B-	B-	B-	B-	Same as the provisional environmental scoping.	
Electromagnetic waves	D	B-	D	D	Operation: The extent of electric field and magnetic field produced by the transmission line and distribution line was compared with the guidelines on limits of exposure to static magnetic fields developed by ICNIRP (International Commission on Non-Ionizing Radiation Protection). The extent of electromagnetic field produced by the 132kV transmission line and 33kV distribution line is below the guideline level at the ground under the cable and around the boundary of wayleaves. Considering this, the project would not cause negative impact by electromagnetic waves from the power cable.	

A+/-: Significant positive/negative impact is expected B+/B-: Positive/negative impact is expected to some extent. C+/-: Extent of positive/negative impact is unknown

D+/-: No impact is expected

1-3-1-9 Mitigation Measures

To mitigate potential negative impact by the project, following mitigation measures should be taken. Cost of mitigation measures is included in the project total cost.

		Table 1-3-1-9.1 Milligation Measures			
Impact		Mitigation measures	Cost	Implementing Organization	Responsible Organization
1	Waste	Construction waste will be transported to the appropriate disposal site with	Included in the	TANESCO,	TANESCO,
		preventing from flying apart and falling off. Soil waste from construction at Ilala	contractor's daily work	Contractor	Contractor
		substation will be used for preparation of Muhimbili substation site to minimize			
		the disposal amount when it is possible. The construction sites will be managed to			
		minimize the amount of waste produced by the Project. As for industrial waste			
		disposal site, TANESCO and the contractor will consult with Dar es Salaam city			
		council.			
		Industrial waste such as waste oil and sludge will be treated and disposed by the			
		qualified contractor. The qualification for the waste disposal company will be			
		issued by municipalities. TANESCO and the contractor will confirm if the waste			
		disposal company has the qualification from the municipality. TANESCO will			
		ensure the contractor not to fly apart and fall off the waste during transporting			
		construction waste.			
2	Soil and	Secondary containment made of concrete or asphalt will be installed under each	US\$2,000 to \$4,000 per	TANESCO,	TANESCO,
	groundwater	transformer to prevent insulation oil from leaking out of the substation site in case	transformer	Contractor	Contractor
	Contamination	of oil leakage. Base of the containment will be constructed during foundation work			
		for transformers and then outside walls will be constructed after installing			
		transformers.			
		The containment will be equipped with oil-water separator connected to storm			
		water drainage. This prevents insulation oil from running off the substation site in			
		case if oil leakage. If insulation oil is leaked from a transformer, ballast in the			
		containment will be retrieved. If any oil film is observed in the oil-water separator			
		during daily management activity, absorptive treatment will be conducted.			

Table 1-3-1-9.1 Mitigation Measures

	Impact	Mitigation measures	Cost	Implementing Organization	Responsible Organization
		Volume of secondary containment will be determined taking into account of the insulation oil amount of each transformer. According to Japanese standard on electrical equipment, the volume of facility preventing leaked oil from running off should be 50% volume of the amount of insulation oil plus water amount necessary to put out a fire.			
3	Noise	Mwananyamala substation:The transformer will be located near the center of the substation site to keepenough distance from adjacent houses. Since it is difficult to reduce noise levelbelow 45dBA during nighttime only with attenuation in distance, sound barrierwall will be installed around the transformer. Noise reduction effect with the wallis 25dBA at a maximum. The specification of noise barrier wall such as locationand material will be determined considering the specification and characteristic ofthe transformer.Jangwani Beach substation:	US\$50,000	Contractor	Contractor

	Impact	Mitigation measures	Cost	Implementing Organization	Responsible Organization
		The transformer will be located to keep enough distance from adjacent houses.			
		Since noise reduction is not enough with attenuation in distance, installation of			
		sound barrier wall will be considered.			
		Muhimbili substation:			
		Some facilities of Muhimbili hospital are located in the north of the substation site.			
		The transformer will be located with enough distance from those facilities. Since			
		noise reduction is not enough with attenuation in distance, installation of sound			
		barrier wall will be installed.			
4	Resettlement	Except Mwananyamala substation, construction and reinforcement of the	See ARAP policy	TANESCO	TANESCO
		substations will not involve resettlement.			
		The distribution line will be constructed within the existing road reserve of			
		TANROADS and the Municipality and it does not involve land acquisition. If there			
		is any building/structure within the road reserve, the distribution line is expected to			
		be installed avoiding them. Thus, the distribution line would not cause			
		resettlement.			
		Construction of Mwananyamala substation involves land acquisition and			
		resettlement of 62 people. Installation of 132kV transmission cable between			
		Ubungo substation and Ilala substation would not involve land acquisition and it			
		will be installed to existing towers having established wayleaves. Since a few			
		informal houses seem to be within the project affected area, these would be			
		relocated. In order to reduce project affected people, the work space is modified.			
		Remaining impact will be mitigated through developing the policy for the			
		abbreviated resettlement plan (ARAP) in consistent with JICA's safeguard policy			

	Impact	Mitigation measures	Cost	Implementing Organization	Responsible Organization
		and World Bank OP 4.12. TANESCO will take necessary measures based on this ARAP policy.			
5	Existing Social Infrastructure and Institution	The boundary of Muhimbili substation site is close to the semi-basement concrete water tank of Muhimbili hospital. If the water distribution pipe from the water tank is expected to be affected by the construction work, the pipe would be rerouted before the construction of the substation as necessary. During the construction of the substation, the contractor should be careful enough not to damage the water tank and its function.	US\$200~400	Contractor	Contractor
6	Accident	According to TANESCO's Health and Safety Policy and Contractors' Occupational Health and Safety Guidelines, the Contractor will prepare a Contractor's Occupational Health and Safety Management Plan, including details of occupational health and safety procedures to prevent accidents and other OHS related incidents. Based on this plan, the contractor will implement prevention measures for accident and occupational health and safety issues to reduce its risks. The plan ensures safety for neighborhood and accident prevention within the construction site. To prevent the electrification and fire caused by distribution equipment and facility, enough distance between power cable and structures nearby should be maintained. The route for construction vehicle should be determined to minimize the risk of traffic accident. The contractor will consider the hours with high volume of traffic in developing the construction schedule.	contractor's daily work	Contractor	Contractor

1-3-1-10 Environmental Monitoring Plan

Based on the above mentioned mitigation measures, the Team developed the draft environmental monitoring plan as shown in Table 1-3-1-10.1.

Environmental Item	Item	Location	Frequency	Responsible body
Construction Pha Permit	 Issuance of EIA certificate Compliance with the covenants of EIA certificate 	N/A	Before the construction	TANESCO
Waste Resettlement	Types of the waste, amount, disposal method • Relocated households • Affected households • Compensation • Grave removal	Construction sites Project affected area	Once a month Once a month	TANESCO, Contractor TANESCO
Existing Social Infrastructure and Institution	Impact on the water tank in Muhimbili hospital site	Muhimbili sibstation site	During the construction of Muhimbili substation	Contractor
Accident	 Implementation of health and safety management plan Accident record 	Construction sites	Once a month	TANESCO, Contractor
Operational Phas Waste	Types of the waste, amount, disposal method	Substation sites	Once a month for 6 months after starting its operation	TANESCO
Soil and groundwater contamination	Leakage of insulation oil	Substation sites	Once a month for 6 months after starting its operation	TANESCO
Noise	Equivalent continuos A-weighted sound pressure level (L _{Aeq)} • Daytime 6:00-22:00 • Nighttime 22:00-6:00	 Residential area adjacent to Mwananyamala substation Hospital area adjacent to Muhimbili substation Residential area adjacent to Jangwani Beach substation 	Once a month for 6 months after starting its operation	TANESCO

Table 1-3-1-10.1 Draft Environmental Monitoring Plan

1-3-1-11 Stakeholder Consultation

Based on the section 178 of "the Environmental Management Act, 2004" and the Section 17 of "the Environmental Impact Assessment and Audit Regulations, 2005", TANESCO had stakeholder consultations during the course of Environmental Impact Assessment study. It is held four times at the stage of Scoping, Detail survey for preparing ESIA report, Review of ESIA report, and Disclosure process of ESIA report. Following stakeholders were consulted during the EIA study. TANESCO explained outline of the project, potential impact of the project and its mitigation measures at the consultation meetings.

- Municipal Authorities: Ilala, Kinondoni
- Tanzania National Roads Agency (TANROADS)
- The Dar es Salaam Water and Sewerage Authority (DAWASA)
- Tanzania Telecommunication Company (TTCL)
- Local Communities:
 - ✓ Mchikichini, Upanga East and Upanga West in Ilala Municipal Council
 - ✓ Makurumla, Kawe, Mzimuni, Kunduchi, Wazo, Msasani, Mabibo, Ubungo, Mikocheni and Makumbusho ward in Kinondoni Municipal Council

Concerns raised by the participants in the stakeholder consultations are incorporated in the Environmental and Social Management (ESMP) and Monitoring Plans (EMP).

Followings are the comments from the participants in the stakeholder consultations.

- Municipal Authorities: Ilala, Kinondoni
 - ✓ TANESCO should now opt using the underground cables instead of overhead transmission lines.
 - ✓ If TANESCO project is going to affect people compensation procedures should be done in order to avoid misunderstanding with the community and communication should pass through Municipal offices, ward and Mtaa levels in order to make them aware of what is going on about the project.
 - ✓ TANESCO should educate the community about the project in order to avoid conflict, there might be different challenges but if education will be clearly provided the project will be successful.

• TANROADS

- ✓ TANESCO should have good plan with their project in order to avoid using road reserve. Using road reserve is not a proper plan so the company should prepare for compensation when implementing the project regardless the cost. Using underground cables is the best option nowadays so the company should opt using this method.
- ✓ Those who will be found in the road reserve are encroachers and are not entitled for compensation. But if TANESCO is going to use area which is out of the road reserve then compensation should be paid.

- ✓ TANESCO have a big challenge concerning theft of their properties and these thieves do cooperate with TANESCO staff so security should be increased in the transformers and other properties.
- ✓ TANESCO should protect the environment, the behavior of cutting trees during clearance of the line and leave trees is bad and it brings bad reputation to the company. After pruning trees cleaning should be done.

• DAWASA

- ✓ Surveyor from TANESCO should observe what is inside the proposed route and it will be good to have a joint survey with DAWASA officers in order to observe what is in the proposed route and advice accordingly.
- ✓ In order to make a project success they advice TANESCO to pass the distribution line (from Tegeta S/S on the way to Bagamoyo road project) on the left side of the road from the substation because they have another large water pipe project on the right side which is expected to start soon. But if that option will not be good for TANESCO then the company will have to wait until we are done with our water project.
- TTCL
 - ✓ The project is good in order to make it successful there must be cooperation between TTCL, DAWASA, TANROADS and respective municipals. He advised TANESCO to arrange a day so as to have site visit to conduct joint survey with all stakeholders as this will enable the company to have a good plan with the project after identifying all properties which belongs to other companies in the proposed route.
- Local Communities
 - \checkmark How the project would be beneficial to the community.

The ESIA team thanked the residents for their participation and responded to their questions informing them that the project has its benefits and drawbacks. Some of the benefits highlighted were:

- > Gains in the local and national economy thus leading to increase in revenue.
- Access to reliable power.
- > Improved security in the area due to street lightning.
- > Direct and indirect skilled and non-skilled employment opportunities
- ✓ How safe would one be if he/she lives near the substation?
 - For safety issues, it is highly recommended that no one lives too close to the substation and this would be adhered to.
 - > It will be built by experienced personnel.
 - > Perimeter fencing, Security and lightning.
 - > Entry to the substation is restricted, only authorized officers will be allowed
- ✓ Some of the drawbacks of the projects identified were:

- > Air and noise pollution during construction.
- > Possibility of occurrence of accidents on the site during construction.
- It was responded that In view of occupational health and safety concerns, the proponent will ensure health, safety and welfare of workers to prevent accidents in the course of employment and additionally provision of PPE would reduce the impacts of dust and minimize exposure to a variety of hazards respectively.
- ✓ Wanted to know whether the locals would be employed during the construction and operation phases of the project.
 - The team emphasized that locals will be given first priority in employment especially casual employment, the contractor will be advised to contract locals in the project area.
- ✓ Compensation of the properties to the affected people to be done before construction of the project and that proper valuation of properties and payment be made in time and should be adequate to enable PAPs get alternative housing.
 - It was responded that in deed compensation will be paid before construction starts according to Land Acts 1999.
 - The valuation process is vested to Chief Government Valuer and TANESCO being public company cannot pay beyond the Chief Government Valuer's opinion.
- ✓ Awareness on the valuation and compensation of the properties procedures to the affected people by the project. This is because most people are unaware of the procedures involved during valuation and compensation exercise.
 - TANESCO agreed that is the problem during the valuation exercise and promised to continue raising awareness during the detailed ESIA study. Further, TANESCO will ensure that engaged valuers conduct awareness meetings with PAPs before the valuation of properties starts.
- ✓ Wanted to know how will issues relating HIV/AIDS to the construction workers and community be dealt.
 - It was responded that HIV/AIDS awareness within the community is very high but the project will continue to educate and sensitize workers and the community on how to avoid spread HIV/AIDS during the project implementation.
 - Adverts and brochures will be erected and distributed to workers to warn and to remind people to take care for themselves.

Figure 1-3-1-11.1 Stakeholder consultation during the process of EIA in Upanga West.

1-3-2 Land Acquisition and Resettlement

1-3-2-1 Project component related to land acquisition and resettlement

(1) Substation

Acquiring Mawananyamala substation site involves relocation of 62 people. Two plots of land, Plot No.76 and No.77 of Block 2 in Mwananyamala area, will be acquired for this substation. TANESCO has obtained agreement on selling of "Right of Occupancy" from the land owner of Plot No.77 on June 18, 2012 and from the owner of Plot No. 76 on June 15, 2012. TANESCO completed valuation process of these plots in January 2013 and compensation value is Tsh 417,890,494.90 in total. Rest of the substation sites are not expected to involve involuntary resettlement. Other substation sites do not involve resettlement.

(2) 132kVTransmission line from Ubungo substation to Ilala substation

Since the Project would contribute to replacing the existing power line to new ones for the transmission line from Ubungo substation to Ilala substation, the project does not involve new land acquisition for this component. Therefore, the project affected area for the 132kV transmission line for this project is defined as follows.

- The area that falls within the area/work space required for installation work of a new power line and maintenance activity (including area occupied by the towers);
- > The area required for access pathway to the towers

During the course of this study, the Team set necessary work space, and only a few houses around Tower No.5 are the project affected houses by the work space. There are 250 graves within the work space and its relocation process is now undertaken.

Transmission Department of TANESCO has been conducting the way leave management activity throughout Tanzania. They are removing and relocating illegal structures within the wayleaves to secure safety. They will deal with the illegal structures outside the project affected area within the wayleaves of the transmission line between Ubungo and Ilala substation in the course of this management activity.

(3) Distribution line

Since the distribution lines will be constructed within the existing road reserve of TANROADS, Kinondoni Municipality and Ilala Municipality, the construction of distribution line does not involve land acquisition. Therefore, no resettlement derived from land acquisition is expected. If there is any building/structure within the road reserve, the distribution line is expected to be installed avoiding them. Thus, the distribution line would not cause resettlement.

1-3-2-2 Legal Framework in Land Acquisition and Resettlement

(1) Relevant legislation and regulation on Land Acquisition and Resettlement in Tanzania

Relevant legal system of land acquisition and involuntary resettlement is described in Table 1-3-2-2.1

National	National Land Policy, 1997				
National Policies	National Environmental Policy, 1997				
roncies	National Human Settlement Development Policy, 2007				
	The Land Act (No.6), 1999				
	Village Land Act (No.7), 1999				
	The Land Acquisition Act, 1967				
	The National Land Use Planning Commission Act (No.3), 1984				
	Urban Planning Act, 2007				
	Land use Planning Act, 2007				
Legal	Graves (Removal) Act, 1969				
Framework	Local Government (District Authorities) Act				
	Local Government (Urban Authorities) Act				
	Land (Forms) Regulations, 2001				
	Land (Assessment of the Value of Land for Compensation) Regulations, 2001				
	Land (Compensation Claims) Regulations, 2001				
	Land (Management of the Land Compensation Fund) Regulations, 2001				
	The Village Land Regulations, 2001				

Table 1-3-2-2.1 Relevant Legal	System of Land Acc	guisition and Involuntar	v Resettlement

1) The Land Act (No. 6), 1999

The major function of this land act is to promote the fundamentals of the "National Land Policy" through giving clear classification and tenure of land, land administration procedures, rights and

incidents of land occupation, granted rights of occupancy, conversion of interests in land, dispositions affecting land, land leases, mortgaging of land, easements and analogous rights, co-occupation and partitioning and, settlement of land disputes. One of the pertinent issues when dealing with land is the right of occupancy. According to the Land Act, 1999, the right of occupancy is given in two categories that separate citizens and non-citizens rights to occupy land.

- For a citizen or in a group of two or more formed in association, partnership or corporate body will enjoy the right of being granted the right of occupancy or derivative of a granted right of occupancy.
- For a non-citizen, or in a group whether formed into a corporate body under the Companies Ordinance or otherwise, (including corporate bodies whose majority shareholders or owners are non-citizens) may only obtain a right of occupancy or derivative right for purposes of investment prescribed under the Tanzania investment act 1997.

2) Land (Assessment of the Value of Land for Compensation) Regulations, 2001

This regulation defines the land assessment and its compensation as below.

- > The basis for assessment of the value of any land and unexhausted improvement for purposes of compensation, under the Act shall be the market value of such land.
- The market value of any land and unexhausted improvement shall be arrived at by use of comparative method evidenced by actual recent, sales of similar properties or by use of income approach or replacement cost method
- Every assessment of the value of land and unexhausted improvement for the purposes of payment of compensation by Government or Local Government Authority shall be verified by the Chief Valuer of the Government or his representative.
- The interest upon any compensation shall be paid by the Government or the local government authority only where there is no prompt payment of compensation made.
- For the purpose of computing interest payable upon compensation "prompt payment of compensation" means payment of compensation within six months after the subject land has been acquired or revoked.
- Where amount of compensation remains unpaid for six months after acquisition or revocation, interest at the average percentage rate of interest offered by commercial banks on fixed deposits shall be recoverable until such compensation is paid.

3) Land (Compensation Claims) Regulations, 2001

These Regulations shall apply to all applications or claims for compensation against the Government or local government authority or any public body or institution under the Act who may claim compensation. The following may claim compensation:

> The holder of a granted right of occupancy in respect of general or reserved land which is transferred to village land under Section 5 of the Act or in respect of land the subject of a

right of occupancy which is compulsorily acquired by the President for public purposes under Section 22 of the Act or in respect of a right of occupancy which has been revoked under Section 49 of the Act;

- The holder of a granted customary right of occupancy in respect of land which is declared to be hazardous land under section 7 of the Act;
- The holder of a customary right of occupancy where the land becomes the subject of a granted right of occupancy in favor of another person and such holder is moved or relocated under section 34 of the Act.
- The occupier of land which he has obtained under or as a consequence of a disposition by a holder of a granted or customary right of occupancy where such occupier is refused a right of occupancy under section 54 of the Act;
- The occupier of land in any urban or peri urban area where such land is acquired by the President under section 60 of the Act.

The Land (Assessment of Value for compensation) Regulation 2001 shall apply to any application or claim for compensation by any person occupying land. The Commissioner or the authorized officer shall cause a notice to be published on a public notice board and serve a notice in a prescribed form on every occupier.

- > notifying the occupier of the land which is the subject of compensation;
- > requiring the occupier to submit his claim for compensation;
- requiring the occupier to appear physically on such date, time and place where assessment shall be done.

The Commissioner or the authorized officer shall cause the valuation for compensation purposes to be undertaken. The Commissioner or the authorized officer shall prepare a compensation schedule and submit to the Fund, together with the claim for compensation.

- The Fund shall, within not more than thirty days from the date (missing) for compensation and compensation schedule from the Commissioner or authorized officer make verification and accept or reject payment.
- This regulation shall apply to all applications or claims for compensation against the Government or local government authority or any public body or institution under the Act.
- The compensation under section 156 of the Act shall apply against a non-government corporate body, association or group of persons in whose favor a public right of way is created.

Compensation shall take the form of monetary compensation. Without prejudice to the generality of the above, compensation may, at the option of the government, take the form of all or a combination of or any of the following;

- > a plot of land of comparable quality, extent and productive potential to the land lost;
- > a building or buildings of comparable quality extent and use comparable to the building or

buildings lost;

- Plants and seedlings;
- > regular supplies of grain and other basic foodstuff for a specified time.

4) **Project affected people and Compensation**

Based on The Land Act (No.6), 1999 and Land (Assessment of the Value Land for Compensation) Regulation, 2001, the basis for assessment of the value of any land and unexhausted improvement for purposes of compensation shall be the market value of such land. Where amount of compensation remains unpaid for six months after acquisition or revocation, interest at the average percentage rate of interest offered by commercial banks on fixed deposits shall be recoverable until such compensation is paid.

Category	Compensation
Compensation for lost assets	Compensation at market value
Disturbance allowances	Multiplying value of the land by average percentage rate of interest offered by commercial banks on fixed deposits for twelve months at the time of loss of interest in land.
Transport allowance	Equivalent to transporting 12 tons of goods for a 20 km. distance price determined by area
Accommodation allowance	Cash money to rent the same structure per month x 36 months
Loss of rental income	Lump sum cash payment for 36 months rent per tenant
Loss of profit allowance	Profit of the business per month x 36months
Compensation for loss of income	Payment in lieu of wages while rebuilding

Table 1-3-2-2.2 Compensation package

(Road Sector Compensation and Resettlement Guidelines, United Republic of Tanzania, February 2009)

(2) JICA's Policy on Resettlement

According to the JICA's Environmental and Social Consideration Guidelines (April, 2010), following s are the JICA's policy on resettlement.

- I. Involuntary resettlement and loss of means of livelihood are to be avoided when feasible by exploring all viable alternatives.
- II. When, population displacement is unavoidable, effective measures to minimize the impact and to compensate for losses should be taken.
- III. People who must be resettled involuntarily and people whose means of livelihood will be hindered or lost must be sufficiently compensated and supported, so that they can improve or at least restore their standard of living, income opportunities and production levels to pre-project levels.
- IV. Compensation must be based on the full replacement $cost^1$ as much as possible.
- V. Compensation and other kinds of assistance must be provided prior to displacement.
- VI. For projects that entail large-scale involuntary resettlement, resettlement action plans must be prepared and made available to the public. It is desirable that the resettlement action plan include elements laid out in the World Bank Safeguard Policy, OP 4.12, Annex A.
- VII. In preparing a resettlement action plan, consultations must be held with the affected people and their communities based on sufficient information made available to them in advance. When consultations are held, explanations must be given in a form, manner, and language that are understandable to the affected people.
- VIII. Appropriate participation of affected people must be promoted in planning, implementation, and monitoring of resettlement action plans.
- IX. Appropriate and accessible grievance mechanisms must be established for the affected people and their communities.

Above principles are complemented by World Bank OP 4.12, since it is stated in JICA Guideline that "JICA confirms that projects do not deviate significantly from the World Bank's Safeguard Policies". Additional key principle based on World Bank OP 4.12 is as follows.

X. Affected people are to be identified and recorded as early as possible in order to

¹ Description of "replacement cost" is as follows.

cscription of	replacement co	st is as follows.
Land	Agricultural	The pre-project or pre-displacement, whichever is higher, market value of land of equal
	Land	productive potential or use located in the vicinity of the affected land, plus the cost of
		preparing the land to levels similar to those of the affected land, plus the cost of any
		registration and transfer taxes.
	Land in	The pre-displacement market value of land of equal size and use, with similar or improved
	Urban	public infrastructure facilities and services and located in the vicinity of the affected land,
	Areas	plus the cost of any registration and transfer taxes.
Structure	Houses and	The market cost of the materials to build a replacement structure with an area and quality
	Other	similar or better than those of the affected structure, or to repair a partially affected
	Structures	structure, plus the cost of transporting building materials to the construction site, plus the
		cost of any labor and contractors' fees, plus the cost of any registration and transfer taxes.

establish their eligibility through an initial baseline survey (including population census that serves as an eligibility cut-off date, asset inventory, and socioeconomic survey), preferably at the project identification stage, to prevent a subsequent influx of encroachers of others who wish to take advance of such benefits.

- XI. Eligibility of Benefits include, the PAPs who have formal legal rights to land (including customary and traditional land rights recognized under law), the PAPs who don't have formal legal rights to land at the time of census but have a claim to such land or assets and the PAPs who have no recognizable legal right to the land they are occupying.
- XII. Preference should be given to land-based resettlement strategies for displaced persons whose livelihoods are land-based.
- XIII. Provide support for the transition period (between displacement and livelihood restoration.
- XIV. Particular attention must be paid to the needs of the vulnerable groups among those displaced, especially those below the poverty line, landless, elderly, women and children, ethnic minorities etc.
- XV. For projects that entail land acquisition or involuntary resettlement of fewer than 200 people, abbreviated resettlement plan is to be prepared.

In addition to the above core principles on the JICA policy, it also laid emphasis on a detailed resettlement policy inclusive of all the above points; project specific resettlement plan; institutional framework for implementation; monitoring and evaluation mechanism; time schedule for implementation; and, detailed Financial Plan etc.

(3) Gap Analysis and Resettlement Policy for this project

Result of the gap analysis between JICA's safeguard policy and laws of Tanzania is shown in Table 1-3-2-2.3 as well as the draft resettlement policy.

No.	JICA Guidelines	Laws of Tanzania	Gap between JICA Guidelines and Laws of Tanzania	Resettlement Policy for this project
1.	Involuntary resettlement and loss of means of livelihood are to be avoided when feasible by exploring all viable alternatives. (JICA GL)	No specific provisions on avoiding involuntary resettlement and loss of means of livelihood although these can come from Environmental and Social Impact Assessment (ESIA)	Avoiding involuntary resettlement is not mentioned in Tanzania land laws	Consider alternative alignment to avoid unnecessary loss of livelihoods
2.	When population displacement is unavoidable, effective measures to minimize impact and to compensate for losses should be taken. (JICA GL)	When displacement is unavoidable, compensation will be given as follows (Land Act, 1999 – Cap 113, Part II Section 3 (1) (g), Section 34 and 156) Market value of unexhausted improvement ² , disturbance allowance, transport allowance, accommodation allowance and loss of profits, although depreciated replacement value is given and valuation is often not done properly because some aspects that need to be included are not taken into account – for example, using market values is sometimes ignored and information to affected persons is not sufficiently provided	Full replacement value (market value) plus transaction costsare not mentioned in Tanzania laws Measures to minimize impacts are not explicit in Tanzania laws	Consider full replacement value (market value plus transaction cost into compensation package)
3.	People who must be resettled involuntarily and people whose means of livelihood will be hindered or lost must be sufficiently compensated and supported, so that they can improve or at least restore their standard of living, income opportunities and production levels	Livelihood restoration is not addressed although, sometimes done through provision of alternative affected social services- for example, providing an	Livelihood restoration is not explicit in Tanzania laws	This ARAP should consider PAPs whose strictures have partially been affected by the project to compensate for the areas/size affected unless the area affected is larger and it impacts on it affect the quality of the livelihood, which will then result to full compensationof

Table 1-3-2-2.3 Gap Analysis and Resettlement Policy for this project

² Land Act, 1999 interprets unexhausted improvement as anything or any quality permanently attached to the land directly resulting from the expenditure of capital or labor by an occupier or any person acting in his behalf and increasing the productive capacity, the utility, the sustainability of its environmental quality and includes trees standing crops and growing produce whether of an agricultural or horticulture nature. This condition has been amended by the Land (Amendment Act), 2004 by replacing Subsection 8 and 9 of the Land Act 1999 to allow for sale land without unexhausted improvements. For development purposes or as joint venture.

No.	JICA Guidelines	Laws of Tanzania	Gap between JICA Guidelines and Laws of Tanzania	Resettlement Policy for this project
	to pre-project levels. (JICA GL)			the value of the structure. Prepare a livelihood restoration plan, including transitional support(for example putting in place deliberate policies to employ affected persons between the
				transition period so that they can have some work and earn income as well as providing alternative services points while new social services are being developed for them etc.) to ensure standards of living are restored and improved
4.	Compensation must be based on the full replacement cost as much as possible. (JICA GL)	Market values but usually in practice provide with depreciated replacement values (although the law does not direct the use of depreciated values)	Full replacement cost not paid	Consider adopting full replacement value (market valuesplus transaction costs)
5.	Compensation and other kinds of assistance must be provided prior to displacement. (JICA GL)	Compensation must be provided prior to displacement (Land Acquisition Act, 1967 (15- (1)) and Land Act 1999- Cap 113)	Tanzania laws does not have consideration of other assistance to project affected persons	Consider provision of other assistance (for example affirmative policies to employ affected persons, provision of support on land acquisition, payment of land and related fees, and power or water utilities , provision of temporary social services etc. to ease the burden on affected persons) beside statutory compensation
6.	For projects that entail large-scale involuntary resettlement, resettlement action plans must be prepared and made available to the public. (JICA GL)	For large scale involuntary resettlement compensation must be provided (Land Acquisition Act 1967 Part II Section 11 and Land Cap 113, Part II Section 3 (1) (g))	Tanzania Law does not consider Resettlement Action Plan as mandatory	Using JICA GL, consider RAP as mandatory tool to manage impacts
7.	In preparing a resettlement action plan, consultations must be held with the affected people and their	Prior to conducting valuation affected people and local authorities are informed about the project, its effect, valuation and	The level of consultation in Tanzania laws is not as detailed as in others including JICA GL and WB	Consider adopting detailed and sufficient consultations and information sharing with affected

No.	JICA Guidelines	Laws of Tanzania	Gap between JICA Guidelines and Laws of Tanzania	Resettlement Policy for this project
	communities based on sufficient information made available to them in advance. (JICA GL)	compensation process(Land Act Cap. 113 Section 34 (6), 35 (3))		persons
8.	When consultations are held, explanations must be given in a form, manner, and language that are understandable to the affected people. (JICA GL)	Prior to conducting valuation affected people and local authorities are informed about the project, its effect, valuation and compensation process(Land Act Cap. 113 Section 34 (6), 35 (3) and Part XIV Section 168 (1) and 169 (1) and (2). And Land Acquisition Act Part II Section 7(1))	The level of consultation in Tanzania laws is not as detailed as in others including JICA GL and WB	Consider adopting detailed and sufficient consultations and information sharing with affected persons
9.	Appropriate participation of affected people must be promoted in planning, implementation, and monitoring of resettlement action plans. (JICA GL)	In Tanzania land laws, Resettlement Action Plan is not mandatory, although compensation is required	There is no sufficient participation of affected persons in planning, implementation and monitoring of Resettlement Action Plan	Consider ensuring effective and appropriate participation of affected persons in planning, implementation and monitoring of RAP
10.	Appropriate and accessible grievance mechanisms must be established for the affected people and their communities. (JICA GL)	Tanzania land laws provides a mechanism for dealing with grievances including lodging complaints to the courts (Land Acquisition Act 1967, Section 13 (1) and (2) and Land Act, Cap 113. Part XIII Section 167 (1))	Tanzania grievance mechanism is not easily accessible to affected persons	Provide an easily accessible grievance mechanism procedures to all affected persons
11.	Affected people are to be identified and recorded as early as possible in order to establish their eligibility through an initial baseline survey (including population census that serves as an eligibility cut-off date, asset inventory, and socioeconomic survey), preferably at the project identification stage, to prevent a subsequent influx of encroachers of others who wish to take advance of such benefits. (WB OP4.12 Para.6)	Affected People are identified during the valuation exercise and the valuation date is the eligible cut-off date ³	Socio-Economic baseline survey is not undertaken as part of the valuation exercise	Undertake socio-economic baseline data collection as part of the valuation exercise

³ This is adopted as best practice but not provided in any land law in Tanzania

No.	JICA Guidelines	Laws of Tanzania	Gap between JICA Guidelines and Laws of Tanzania	Resettlement Policy for this project
12.	Eligibility of benefits includes, the PAPs who have formal legal rights to land (including customary and traditional land rights recognized under law), the PAPs who don't have formal legal rights to land at the time of census but have a claim to such land or assets and the PAPs who have no recognizable legal right to the land they are occupying. (WB OP4.12 Para.15)	Eligibility of benefits includes, the PAPs who have formal legal rights to land (including customary and traditional land rights recognized under law), the PAPs who don't have formal legal rights to land at the time of valuation but have <u>invested</u> on land will be eligible for compensation of assets but not land (recognized as tenants) Land Act Cap 133	Tanzania Law does not recognize encroachers	Informal settlers who havepermanent structures and graves in the way leave should be for compensated but not for land. i
13.	Preference should be given to land-based resettlement strategies for displaced persons whose livelihoods are land-based. (WB OP4.12 Para.11)	Compensation for land can either be in form of cash or land based)Land Act Cap 113 Section 49 (3) for cash transactions and Land Acquisition Act , 1967 Section 11 (2)	There is no preference to land based resettlement strategies	Where appropriate preference to land based resettlement strategies should be adopted, especially taking into account land scarcity in Dar es Salaam
14.	Provide support for the transition period (between displacement and livelihood restoration). (WB OP4.12 Para.6)	-	The law is silent about provision of support during transition and for livelihood restoration	Consider providing support during transition (for example for acquiring new lands, paying for land registration as well as temporary social services) and for livelihood restoration
15.	Particular attention must be paid to the needs of the vulnerable groups among those displaced, especially those below the poverty line, landless, elderly, women and children, ethnic minorities etc. (WB OP4.12 Para.8)	-	There is no attention for particular group of project affected persons in Tanzania land laws, all PAPs are treated in equally in the compensation process	Assess existence of such groups during socio-economic survey in the proposed site and pay particular attention to their needs if found to be available, especially, women, children and elderly person.
16.	For projects that entail land acquisition or involuntary resettlement of fewer than 200 people, abbreviated resettlement plan is to be prepared. (WB OP4.12 Para.25)	For projects that affect a large size of people, a Land Use Plan is required to accommodate the project. (Land Use Planning Act, 2007. Section 23, 32 and 35 and Village Land Use Guidelines on 2002)	ARAP is not mandatory in the Tanzania law	Adopt ARAP for this project as part of best practice to manage impacts

1-3-2-3 Scope of Land Acquisition and Resettlement

Scope of the land acquisition and resettlement is as described in 1-3-2-1. Acquiring Mawananyamala substation site involves relocation of 62 people, while other substations do not involve resettlement.

Since JICA's Grant Aid would contribute to replacing the existing temporal power cable to a new cable for the transmission line from Ubungo substation to Ilala substation, the project does not involve new land acquisition for this component. Only a few informal houses around Tower No.5 are expected to be the project affected houses by the work space for the transmission line. Since the distribution lines will be constructed within the existing road reserve of TANROADS, Kinondoni Municipality and Ilala Municipality, the construction of distribution line does not involve land acquisition. If there is any building/structure within the road reserve, the distribution line is expected to be installed avoiding them. Thus, the distribution line would not cause resettlement.

If there is any people who have to be relocated because of the project, an abbreviated resettlement action plan (ARAP) will be developed as necessary. The main objective of the ARAP is to provide an agreed plan for the compensation and resettlement of persons who will be affected by the project implementation. The plan provides a road map for resolving displacement, resettlement and compensation issues related to project implementation. The ARAP has also developed mitigation measures through consultation with PAPs, several relevant authorities, including government at both national and local level.

1-3-2-4 Eligibility for Compensation and Resettlement Assistance

The basic principle governing compensation is that none of the PAPs should be made worse off by the project displacements. A registered valuer will conduct inspection of all the affected properties within the finally selected project sites. Compensation details for each identified property will be provided in individual compensation schedules which will be signed by Ward Executive Officers, District Commissioners and Regional Commissioners of relevant areas. The Chief Government Valuer will approve the valuation report before being submitted to the Commissioner for Lands in Dar es Salaam. Notices to claim compensation will be served to all owners of affected properties within the project sites. The "cut-off" date for eligibility for compensation and resettlement measures will be determined by the date on which these notifications were served. The entitlement matrix will be developed during the ARAP survey based on the resettlement policy described in Table 1-3-2-2.3.

1-3-2-5 Grievance Mechanism

Taking into account the complexity of resolving disputes and grievances, PAPs will be informed about various grievance redress procedures and of their right to appeal if not satisfied. During surveys and inventory of PAPs and their properties, and in various consultative and stakeholder engagements, PAPs will be informed about the grievance and dispute redress procedures. PAPs will also become aware of the extent of damages to properties, crops and commercial activities that the Project would entail.

Section 13 (1) of the Land Acquisition Act 1967 includes provision regarding any land that is acquired where there is a dispute or disagreement. The Act elaborates disputes and stipulates the timeframe (six weeks) for resolving them before the aggrieved party can institute a suit in a court of law for resolution. The Land Act, 1999 and supporting regulations improves Section 13(1) of the Land Acquisition Act by establishing Land Tribunals at the Ward and District levels. If not satisfied with decisions of the Land Tribunal, the aggrieved party is obliged to take the matter to the court. If the local courts and/or the Land Tribunals cannot settle the matter, the matter will go to the High Court for resolution. The High Court of Tanzania and Court of Appeal is the highest appellate "judge" in this system. The decision of the High Court would be final.

The procedures for compensation dispute resolution prescribed by the Land Acts are cumbersome and costly, taking into account the fact that most of the PAPs have limited knowledge about legal issues and their rights with respect to the laws. Thus, the Grievance and dispute resolution structures will be established at local level in order to listen to complaints brought to them by PAPs and solve them before a decision to go to court is undertaken by the PAP. Considering this, a simplified grievance redress mechanism will be established, that will enable timely settlement of grievances to the PAPs. The grievance procedures will be anchored and administered at the local level to facilitate access, flexibility and openness to all PAPs.

1-3-2-6 Institutional Framework

The compensation process and ARAP implementation arrangements envisaged for this project have several steps involving individual PAPs, affected communities, respective Local Government Authorities (e.g., regional and district councils), TANESCO and the Ministry of Energy and Minerals, Ministry of Housing and Human Settlement and the TANROADS.

The overall responsibility for resettlement lies with the Ministry of Energy and Minerals and payments will be made through the fiscal authority of TANESCO as the project implementer. Once compensation payments have been made to PAPs through an agreed arrangement, TANESCO and district government authorities will have a critical role to play to ensure that PAPs are using their entitlements for the purpose of relocation consistent with the timing in the vacancy agreements.

1-3-2-7 Implementation Schedule

In developing the ARAP, the compensation schedule will be developed based on the approved valuation reports. It will also have to be approved by the Chief Government Valuer and to submit it to TANESCO. Approval of the compensation schedules signifies the official instruction to TANESCO to pay compensation to the PAPs.

Upon receipt of the approved compensation schedules, TANESCO will make out cheques in the name of the Compensation Fund and forward these, together with the compensation schedules, to the relevant municipalities. TANESCO will post notices in the affected areas advising beneficiaries to collect their compensation payments from the relevant municipal offices. The municipalities will be

responsible for the actual payment of compensation to each beneficiary. In the presence of local leaders, each beneficiary will be required to sign for the receipt of the compensation due on the compensation schedule.

Demolition of structures and destruction of crops and trees will not commence until beneficiaries have received their entitlements. Displaced property owners will have the right to salvage material and assets from their plots and harvest and standing crops before a date advised at the time of compensation payment.

To ensure timely completion of resettlement activities, district authorities will facilitate the resettlement process. TANESCO will urge all PAPs to vacate within the time frame that will be agreed between the two parties.

1-3-2-8 Implementation Budget

Based on the resettlement policy described in the table 1-3-2-2.3, the cost of resettlement implementation will be calculated. The total cost for compensation is derived from the approved valuation and compensation schedules reports which show the different categories of payments (i.e. replacement cost of houses, land market value, disturbance and transport allowances, etc.). TANESCO is responsible for providing the resettlement implementation cost based on the ARAP.

1-3-2-9 Monitoring and Evaluation

ARAP implementation will be closely monitored by both TANESCO and independent firm to provide TANESCO an effective basis for assessing resettlement progress and to identify potential difficulties and problems. Broadly, the monitoring and evaluation (M&E) system will involve:

- Administrative monitoring, including but not limited to daily planning, implementation, feedback and trouble shooting, individual PAP file maintenance, progress reporting
- Socio-economic monitoring, including but not limited to: case studies; using baseline information to compare the PAPs' socio-economic conditions over time; looking at the issues of vacating properties, asset demolition, and the salvaging of materials; and tracking morbidity and mortality, communal harmony, consultations, number of grievances filed and resolutions; and
- Impact evaluation and monitoring, including but not limited to income changes over time, with a special focus on livelihoods restoration or improvement.

Monitoring the progress of ARAP execution will be carried out through internal monitoring processes by TANESCO. The indicators of achievement of objectives during ARAP implementation are of two kinds; 1) Process Indicators that reflect project inputs, expenditure, staff deployment, etc., and 2) Output Indicators that reflect results in terms of numbers of PAPs compensated. Process indicators related to the physical progress of work will focus on items such as:

- Grievance redress procedures: status and functionality
- Opening of bank accounts

- Disbursement of compensation payments and receipt by PAPs
- Number of households and businesses displaced and resettled
- Structures rebuilt/replaced
- Progress and completion of scheduled activities
- Meetings with PAPs and other stakeholders
- Financial status of the Project

Output indicators will be the same as those collected during the socio-economic survey to evaluate changes in living standards against pre-project levels.

1-3-2-10 Stakeholder Consultation

The public participation process for resettlement will be taken into account particular feature of the Project. In connection with the requirement that displaced persons to be meaningfully consulted, consultations will be made through meetings and interviews involving stakeholders at national, regional, district, and ward levels, the local government and central government as well as NGOs that operate in the project area.

The main objective of public participation is to enable stakeholders learn about the project, its impacts and how they will be mitigated, especially the issues about compensation, relocation and to secure their cooperation. Other objectives include assisting stakeholders to understand applicable laws and regulations governing compensation and to involve stakeholders in census, socio-economic surveys, and inventory of households and affected assets for Resettlement Action Plan preparation.

Stakeholders/institutions for Resettlement Action Planning and Implementation would be as follows:

- (a) TANESCO
- (b) Ministry of Lands, Housing and Human Settlements
- (c) Ministry of Energy and Minerals
- (d) Local Government Authorities (Ilala Municipal, Kinondoni Municipal, etc)
- (e) Project-affected Persons
- (f) Local communities
- (g) NGOs and CBOs
- (h) TANROADS

The ARAP will be disclosed to prior to appraisal. In Tanzania the resettlement action plan will be made available to the public for a period of six weeks in the relevant municipal and ward offices. This disclosure will be advertised in newspapers and on radio stations commonly accessed by the local population. It will be available in full in English and in summary in Kiswahili. During this period people will be given the opportunity to respond to the ARAP, in writing or verbally, to the relevant Municipal Director or Ward Executive Officer who will then pass on the responses to TANESCO.

1-3-3 Others

1-3-3-1 Environmental Checklist

Based on the JICA's Guidelines for Environmental and Social Considerations (April, 2010), the study team has reviewed the Project with TANESCO using the Environmental Checklist: Power Transmission and Distribution lines as shown in Table 1-3-3-1.1.

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
1 Permits and	(1) EIA and	(a) Have EIA reports been already	(a) Y	(a) The draft EIA report was developed on December 23 rd , 2013. According to "the Environmental Impact
Explanation	Environmental	prepared in official process?		Assessment and Audit Regulations, 2005" which is made under "the Environmental Management Act, No.20 of
	Permits			2004", the Project is on a mandatory list (the First Schedule, Mandatory list A, 7-(1)) requiring EIA. On May 7 th
				2013, National Environmental Management Council (NEMC) made a decision that this project requires a full
				Environmental Impact Assessment (EIA) study. TANESCO secured a necessary budget for EIA and developed the
				draft EIA report.
		(b) Have EIA reports been approved	(b) N	(b) TANESCO will submit the EIA report and will obtain the Environmental Certificate approved by the Minister.
		by authorities of the host country's		
		government?		
		(c) Have EIA reports been	(c) N	(c) See (b)
		unconditionally approved? If		
		conditions are imposed on the		
		approval of EIA reports, are the		
		conditions satisfied?		
		(d) In addition to the above	(d)	(d) Following permits are required to obtain for this project.
		approvals, have other required	Y	Land use permit for Jangwani Beach substation site: TANESCO obtained a land use permit from Tanzania
		environmental permits been		People's Defence Force (TPDF) on December 2, 2011.
		obtained from the appropriate	Y	Land use permit for Muhimbili substation site: TANESCO obtained a permit to use the land of Muhimbili
		regulatory authorities of the host		National Hospital. TANESCO sent an acceptance letter of the Hospital's permit to the Hospital on October
		country's government?		15 th , 2013.
			Y	Permit to use road reserve: TANESCO has obtained the permission to use road reserve to construct 33kV
				distribution line from TANROADS and Ilala Municipality on 4 th July 2013 and from Kinondoni
				Municipality on 3 rd July 2013.
			Ν	Safety Inspection Permit is by the Ministry of Labor, Youth Development and Sports: This permit is
				required for construction and operation phase according to Occupational Health and Safety Act No.5 of
				2003. TANESCO will obtain it before construction starts.

Table 1-3-3-1.1 Environmental Checklist: Power Transmission and Distribution lines

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
			N N	 <u>Building Permits</u> by Dar es Salaam City Council: TANESCO will obtain the building permits to construct substation buildings from Dar es Salaam City Council. This permit is stipulated in the City Council By-law. After making a contact with Contractor, the process for obtaining the permit starts. <u>Permission from the Ministry of Infrastructure, to transport heavy loads from the port of entry to the site</u> (TANROADS overloaded charges are paid to the Ministry of Infrastructure for issuance of road permit to transport the equipment of abnormal weights and sizes.): Contractor will obtain this permit before transporting heavy loads.
	(2) Explanation to the Local Stakeholders	 (a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the 	(a) Y (b)Y	 (a) Based on the section 178 of "the Environmental Management Act, 2004" and the Section 17 of "the Environmental Impact Assessment and Audit Regulations, 2005", TANESCO had stakeholder consultations during the course of Environmental Impact Assessment study. It is held four times at the stage of Scoping, Detail survey for preparing ESIA report, Review of ESIA report, and Disclosure process of ESIA report. Following stakeholders were consulted during the EIA study. TANESCO explained outline of the project, potential impact of the project and its mitigation measures at the consultation meetings. Municipal Authorities: Ilala, Kinondoni Tanzania National Roads Agency (TANROADS) The Dar es Salaam Water and Sewerage Authority (DAWASA) Tanzania Telecommunication Company (TTCL) Local Communities: ✓ Mchikichini, Upanga East and Upanga West in Ilala Municipal Council ✓ Makurumla, Kawe, Mzimuni, Kunduchi, Wazo, Msasani, Mabibo, Ubungo, Mikocheni and Makumbusho ward in Kinondoni Municipal Council EIA report will be disclosed to the public. EIA Report Disclosure is the task of the National Environmental Management Act, 2004. The task is clarified in "PART VIII ACCESS TO ENVIRONMENTAL IMPACT STATEMENTS AND INFORMATION" in the Environmental Impact Assessment and Audit Regulations, 2005. (b) Concerns raised by the participants in the stakeholder consultations are incorporated in the Environmental and Social Management (ESMP) and Monitoring Plans (EMP).

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
		project design?		
	(3) Examination	(a) Have alternative plans of the	(a) Y	(a) In order to reduce negative environmental and social impacts including land acquisition and displacement, and
	of Alternatives	project been examined with social		also overall project costs, while maximizing the outcome of the project, the Team reviewed its original proposal
		and environmental considerations?		and has proposed alternative options for this project. Following alternatives are compared as shown (see the details
				in the report).
				Alternative 1 (Alt-1): The original proposal by TANESCO.
				> Alternative 2 (Alt-2): Proposed alternative option by the Team. The distribution line from Ilala substation
				to Muhimbili substation is rerouted to the line from New City Center substation to Muhimbili substation.
				Alternative 3 (Alt-3): No project implementation (Zero option).
				The zero option of Alt-3 will not solve the existing electrical problems; power disruption, voltage fluctuations and
				voltage drop by over load. The original proposal by TANESCO of Alt-1 will cause a lot of relocation and might
				have some minor impact on natural environment. The proposed alternative option of Alt-2 will cause less
				relocation compared to Alt-1 with no significant negative impact on natural environment. Thus, Alt-2 is most
				recommended for this project.
2 Pollution	(1) Water	(a) Is there any possibility that soil	(a) N	(a) Although small earthmoving activities will be expected at Muhimbili substation site, there is hardly any
Control	Quality	runoff from the bare lands resulting		possibility of degradation in downstream basin. Since magnitude of those earthmovings are small scale and
		from earthmoving activities, such as		countermeasures will be taken against soil erosion during the construction phase.
		cutting and filling will cause water		
		quality degradation in downstream		
		water areas? If the water quality		
		degradation is anticipated, are		
		adequate measures considered?		
3 Natural	(1) Protected	(a) Is the project site located in	(a) N	(a) The project sites are not located in protected areas.
Environment	Areas	protected areas designated by the		
		country's laws or international		
		treaties and conventions? Is there a		

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
		possibility that the project will		
		affect the protected areas?		
	(2) Ecosystem	(a) Does the project site encompass	N	(a)-(f): The project is located in the city area of Dar es Salaam and most of the vegetation and fauna have been lost
		primeval forests, tropical rain		or displaced due to intensive urban development of residential areas, infrastructures and gardens. There is no
		forests, ecologically valuable		special habitat of endangered fauna and flora in the project area.
		habitats (e.g., coral reefs,		
		mangroves, or tidal flats)?		
		(b) Does the project site encompass		
		the protected habitats of endangered		
		species designated by the country's		
		laws or international treaties and		
		conventions?		
		(c) If significant ecological impacts		
		are anticipated, are adequate		
		protection measures taken to reduce		
		the impacts on the ecosystem?		
		(d) Are adequate measures taken to		
		prevent disruption of migration		
		routes and habitat fragmentation of		
		wildlife and livestock?		
		(e) Is there any possibility that the		
		project will cause the negative		
		impacts, such as destruction of		
		forest, poaching, desertification,		
		reduction in wetland areas, and		
		disturbance of ecosystem due to		
		introduction of exotic (non-native		
		invasive) species and pests? Are		

1-65

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
0.1	Item		No: N	(Reasons, Mitigation Measures)
		adequate measures for preventing		
		such impacts considered?		
		(f) In cases where the project site is		
		located in undeveloped areas, is		
		there any possibility that the new		
		development will result in extensive		
		loss of natural environments?		
	(3) Topography	(a) Is there any soft ground on the	(a)N	(a)(b) Altitude of Dar es Salaam is less than 200 m.a.s.l. Area is generally flat to gently undulating plains, slope
	and Geology	route of power transmission and		range 0-3% developed on old alluvial terrace no longer flooded. No major alternations of the local topography or
		distribution lines that may cause		large-scale civil engineering work will occur under the project, making slope failures, landslides or soil runoff
		slope failures or landslides? Are		highly unlikely.
		adequate measures considered to		
		prevent slope failures or landslides,		
		where needed?		
		(b) Is there any possibility that civil	(b)N	
		works, such as cutting and filling		
		will cause slope failures or		
		landslides? Are adequate measures		
		considered to prevent slope failures		
		or landslides?		
		(c) Is there a possibility that soil	(c)Y	(c) The preparation of the substation sites could have an adverse impact on soils through excavation for the
		runoff will result from cut and fill		foundations of the site. This potential impact will, however, be short-lived on the flat land or temporary since it is
		areas, waste soil disposal sites, and		expected that exposed areas will be covered quickly by vegetative re-growth to stabilize the soil and minimize
		borrow sites? Are adequate		erosion. TANESCO will apply erosion control practices such as compaction and early re-vegetation to promote
		measures taken to prevent soil		soil conservation.
		runoff?		
4 Social	(1) Resettlement	(a) Is involuntary resettlement	(a) Y	(a) Acquiring Mawananyamala substation site involves relocation of 62 people, while other substations do not
Environment		caused by project implementation?		involve resettlement. Since JICA's Grant Aid would contribute to replacing the existing temporal power cable to a

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
		If involuntary resettlement is		new cable for the transmission line from Ubungo substation to Ilala substation, the project does not involve new
		caused, are efforts made to		land acquisition for this component. Only a few informal houses around Tower No.5 are expected to be the project
		minimize the impacts caused by the		affected houses by the work space for the transmission line. Since the distribution lines will be constructed within
		resettlement?		the existing road reserve of TANROADS, Kinondoni Municipality and Ilala Municipality, the construction of
				distribution line does not involve land acquisition. If there is any building/structure within the road reserve, the
				distribution line is expected to be installed avoiding them. Thus, the distribution line would not cause resettlement.
				If there is any people who have to be relocated because of the project, an abbreviated resettlement action plan
				(ARAP) will be developed to mitigate negative impact as necessary. TANESCO will implement ARAP before the
				commencement of the construction.
		(b) Is adequate explanation on	(b)Y	(b) In developing the ARAP, consultation with project affected people will be held. TANESCO will explain
		compensation and resettlement		resettlement assistance based on the ARAP.
		assistance given to affected people		The ARAP will be made available to the public for a period of six weeks in the relevant municipal and ward
		prior to resettlement?		offices as follows:
				 Newspaper to inform the RAP to public.
				> Municipal
				 Regional commissioner Office
				> Ward office
				> TANESCO website
				Language: Swahili / English
		(c) Is the resettlement plan,	(c)Y	(c) In the course of developing the abbreviated resettlement action plan (ARAP), socioeconomic survey is
		including compensation with full		conducted. Full replacement cost and restoration of livelihoods and living standards will be considered in
		replacement costs, restoration of		developing the ARAP.
		livelihoods and living standards		
		developed based on socioeconomic		
		studies on resettlement?		
		(d) Are the compensations going to	(d) Y	(d) According to the Tanzanian law, compensation must be provided prior to displacement. TANESCO will pay
		be paid prior to the resettlement?		compensation prior to the resettlement.
		(e) Are the compensation policies	(e)Y	(e) The ARAP will contain the compensation policies.

1-67

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
		prepared in document?		
		(f) Does the resettlement plan pay	(f)Y	(f) In developing the ARAP, existence of such groups will be assessed during socio-economic survey in the
		particular attention to vulnerable		proposed site and pay particular attention to their needs if found to be available, especially, women, children and
		groups or people, including women,		elderly person.
		children, the elderly, people below		
		the poverty line, ethnic minorities,		
		and indigenous peoples?		
		(g) Are agreements with the	(g)Y	(g) In developing the ARAP, agreement with the affected people will be obtained prior to resettlement.
		affected people obtained prior to resettlement?		
		(h) Is the organizational framework	(h)Y	(h) In developing the ARAP, the organizational framework will be established to implement resettlement.
		established to properly implement		TANESCO and other responsible organization will secure necessary resource to implement the plan.
		resettlement? Are the capacity and		
		budget secured to implement the		
		plan?		
		(i) Are any plans developed to	(i)Y	(i) The ARAP will contain a monitoring plan for its proper implementation.
		monitor the impacts of		
		resettlement?		
		(j) Is the grievance redress	(j)Y	(j) In developing the ARAP, the grievance mechanism will be developed.
		mechanism established?		
	(2) Living and	(a) Is there a possibility that the	(a)Y	(a) The project will cause involuntary resettlement and it may affect adversely the living conditions of inhabitants.
	Livelihood	project will adversely affect the		To minimize this impact, the ARAP will be developed and implemented.
		living conditions of inhabitants?		Construction work could affect access to public services and traffic by the local people. However, the construction
		Are adequate measures considered		works will be done within the limited areas and in short-term. The adverse impact is not serious and is limited.
		to reduce the impacts, if necessary?		Construction observers will direct local people and traffic passing safely.
		(b) Is there a possibility that	(b) N	(b) The project do not expect any adverse impact regarding infectious diseases because no massive influx of
		diseases, including infectious		workers is expected as most labors can be supplied locally for the construction works. However, with the
		diseases, such as HIV will be		introduction of some migrant workers into the communities along the project sites, mitigation measures will be

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
		brought due to immigration of workers associated with the project? Are adequate considerations given to public health, if necessary? (c) Is there any possibility that installation of structures, such as power line towers will cause radio interference? If any significant radio interference is anticipated, are adequate measures considered? (d) Are the compensations for		 (c) The new 132kV transmission power cable will be installed on the existing power line towers from Ubungo substation to Ilala substation by replacing current temporal 33kV power cable. Required way leave of 40m width is secured and no radio interference is anticipated. Some informal settlers exist within the way leave, but the way leave will be cleared during the way leave management activity by the transmission department of TANESCO. The planned construction of 33kV distribution line does not expect radio interference which will negatively affect local people. (d) Compensation will be provided based on the ARAP.
		transmission wires given in accordance with the domestic law?		
	(3) Heritage	(a) Is there a possibility that the project will damage the local archeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a) N	(a) There is no prominent archaeological, historical, cultural or religious site to consider at the project sites.
	(4) Landscape	(a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?	(a) N	(a) No significant impact is expected on landscape because there are no special natural and cultural landscapes around the project sites. However, some trees will be cut down. The distribution lines will be designed and routed to avoid tall/large trees as much as possible.
	(5) Ethnic Minorities and	(a) Are considerations given to reduce impacts on the culture and	N/A	(a)(b): There are no settlements of ethnic minorities or indigenous people in and along the project sites.

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
	Indigenous	lifestyle of ethnic minorities and		
	Peoples	indigenous peoples?		
		(b) Are all of the rights of ethnic		
		minorities and indigenous peoples		
		in relation to land and resources		
		respected?		
	(6) Working	(a) Is the project proponent not	(a)Y	(a) In accordance with relevant laws such as the Occupational Health and Safety Act, 2003; Electricity Ordinance
	Conditions	violating any laws and ordinances		Cap.131, Fire Act no. 3 of 2003, Employment and Labour Relations Act 2004, TANESCO has developed "Health
		associated with the working		and Safety Policy, revised in 2008" and "Contractors' Occupational Health and Safety Guidelines, revised in
		conditions of the country which the		2011."The project will follow these policy and guidelines.
		project proponent should observe in		
		the project?		
		(b) Are tangible safety	(b)Y	(b) Safety rules, protection code & safe working practice are in place in line with TANESCO's Health and Safety
		considerations in place for		Policy and adhered to during project implementation.
		individuals involved in the project,		
		such as the installation of safety		
		equipment which prevents		
		industrial accidents, and		
		management of hazardous		
		materials?		
		(c) Are intangible measures being	(c)Y	(c) Upon being awarded a contract to work within TANESCO controlled premises, the Contractor will prepare a
		planned and implemented for		Contractor's Occupational Health and Safety Management Plan, including details of occupational health and
		individuals involved in the project,		safety procedures to prevent accidents and other OHS related incidents. In this Contractor's OHS Management
		such as the establishment of a		Plan, the Contractor is also required to include a Disaster and Emergency Response Plan. This plan will detail the
		safety and health program, and		emergency measures and procedures that the Contractor has put in place for their own employees. The
		safety training (including traffic		Contractor's Occupational Health and Safety Management Plan must be approved by TANESCO before the
		safety and public health) for		contractor commences work. In addition to the Contractor's Occupational Health and Safety Management Plan
		workers etc.?		that Contractors will submit prior to commencement of work, regular OHS audits which will be conducted by the

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
				Contractor and their records kept.
		(d) Are appropriate measures taken	(d)Y	(d) Security guards on the project shall be trained on appropriate measures to take in handling and dealing with the
		to ensure that security guards		general public. This shall be included in regular safety communications to be done by the contractor.
		involved in the project not to		
		violate safety of other individuals		
		involved, or local residents?		
5 Others	(1) Impacts	(a) Are adequate measures	(a) Y	(a) According to TANESCO's Health and Safety Policy and Contractors' Occupational Health and Safety
	during	considered to reduce impacts during		Guidelines, the Contractor will prepare a Contractor's Occupational Health and Safety Management Plan,
	Construction	construction (e.g., noise, vibrations,		including details of occupational health and safety procedures to prevent accidents and other OHS related
		turbid water, dust, exhaust gases,		incidents.
		and wastes)?		The Contractor shall abide by all environmental concerns according to the requisite of environmental laws and the
				Environmental Impact Assessment (EIA). The Contractor will be given a copy of any relevant EIAs that have been
				conducted by TANESCO or other entities. Prior to beginning any work activity, a Site-Specific Environmental
				Management Plan should be completed by the Contractor to determine if adequate measures are in place to
				prevent and manage environmental likely environmental impacts. TANESCO will issue guidelines for the
				preparation of the Contractor's Site-Specific Environmental Management Plan.
		(b) If construction activities	(b)N	(b) The project site is located in city area of Dar es Salaam and little adverse impact on natural environment is
		adversely affect the natural		expected. However, an environmental officer will be assigned to the project to monitor project construction
		environment (ecosystem), are		activities to ensure impacts are mitigated.
		adequate measures considered to		
		reduce impacts?		
		(c) If construction activities	(c)Y	(c)The construction activities can affect neighboring shops, residents and schools. According to TANESCO's
		adversely affect the social		Contractors' Occupational Health and Safety Guidelines, contractor shall abide by all mitigation measures based
		environment, are adequate measures		on good practice, professionalism and as specified in the Site-Specific Environmental Management Plan,
		considered to reduce impacts?		Environmental Impact Assessment (EIA), and/or Environmental Impact Audit.
	(2) Monitoring	(a) Does the proponent develop and	(a)Y	(a) As part of the environmental assessment process, an Environmental and Social Monitoring Plan will be
		implement monitoring program for		prepared and it will be implemented by TANESCO.
		the environmental items that are		

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental C	Considerations						
	Item		No: N	(Reasons, Mitigation Measures)							
		considered to have potential impacts?									
		(b) What are the items, methods and	(b)Y	(b) Items, methods and frequence	cies of monitoring will be included in the Environmental and Social Monitoring						
		frequencies of the monitoring		Plan. In accordance with the pre-	oject implementation, necessary monitoring should be undertaken with defined						
		program?		frequency and timing during con	nstruction and operation stages. Project monitoring activities focus on significant						
				environmental and social concern	n as follows (provisional):						
				 Construction stage 							
				Item	Permit, Waste, Resettlement, Existing infrastructure, Accident						
				Frequency	Every month						
				Responsible for monitoring	TANESCO and Contractor						
				Reporting	TANESCO will report to NEMC and JICA						
				Disclosure	Result of monitoring will be disclosed to the public.						
				 Operation stage 							
				Item	Waste, Soil and groundwater contamination, Noise						
				Frequency	Every month for 6 months after construction						
				Responsible for monitoring	TANESCO						
				Reporting	TANESCO will report to NEMC and JICA						
				Disclosure	Result of monitoring will be disclosed to the public.						
		(c) Does the proponent establish an	(c)Y	(c) Monitoring framework will be	e established in developing the Environmental and Social Monitoring Plan.						
		adequate monitoring framework									
		(organization, personnel,									
		equipment, and adequate budget to									
		sustain the monitoring framework)?									
		(d) Are any regulatory requirements	(d)Y	(d) According to the Environme	ental Impact Assessment and Audit Regulations, 2005, National Environmental						
		pertaining to the monitoring report		Management Council (NEMC)	will give order to TANESCO for submission of the monitoring reports, if						
		system identified, such as the		necessary.							

Category	Environmental	Main Check Items	Yes: Y	Confirmation of Environmental Considerations
	Item		No: N	(Reasons, Mitigation Measures)
		format and frequency of reports		
		from the proponent to the		
		regulatory authorities?		

CHAPTER 2 CONTENTS OF THE PROJECT

Chapter 2 Contents of the Project

2-1 Outline of the Project

2-1-1 Overall objectives and Project purpose

While Tanzania has recorded economic growth rates in excess of 6% per annum with vitalized economic activity, power demand expansion is outpacing economic growth. Due to facility enhancements in response to growing power demands and insufficient maintenance for existing equipment and facilities, many existing equipment and facilities are deteriorating. Response to the increased demands has resulted in a chronic overload, with decreased power quality, frequent outages and other major obstacles to social and economic activity.

This project aims to develop and enhance power transmission, distribution and substation facilities in Dar es Salaam based on the aforementioned Power System Master Plan in order to support economic growth in the city and develop stable power supply and infrastructure. This shall contribute to improve the chronic overloads from enhanced transmission and distribution capacities and to reduce power outages, transmission losses and voltage drop rates.

2-1-2 Outline of the Project

To achieve the overall objectives, this project shall procure and install the equipment and materials needed to repair and build new transmission, distribution and substation facilities, as well as build all related facilities in Dar es Salaam, Tanzania's largest commercial city. This shall contribute to improve the chronic overload and quality of power supply, enable power supply to new consumers, and vitalize city economic activity and operation of schools, hospitals and other public facilities.

2-2 Outline Design of the Requested Japanese Assistance

2-2-1 Design Policy

2-2-1-1 Basic Policy

The Project scope was centered on consumers in Kinondoni and Ilala regions in Dar es Salaam. The Project shall enhance key substations needed for stable, more reliable power supply and expand existing substations and build new substations urgently needed to cover increased demands, as well as procure and install the equipment and materials for maintaining the transmission and distribution lines for these facilities. It aims to satisfy power demand forecast for the target year, set 10 years from start of service for project facilities.

Also, designs for new substations shall take into account the safety of local residents, landscapes and other environmental and social considerations.

2-2-1-2 Plan for Natural Conditions

(1) **Temperature Conditions**

The average annual maximum and minimum temperatures for the Project area are 31.4°C and 22.1°C, respectively. Mornings are humid at an average relative humidity of 82%, while afternoons are relatively more livable at 61.8%.

Power supply facilities used under the Project shall account for the above temperatures and relative humidity. Care shall also be taken such that the equipment shall operate properly with no obstacles to O&M in the external air temperatures, temporary temperature increases from direct sunlight and high humidity.

(2) Rainfall and Lightning

Annual rainfall for the Project area averages roughly 1,000 mm. By month, rainfall amounts are concentrated in the heavy rains from March to May, with another lighter rainy season with relatively more rainfall in November and December. These rainy periods shall be fully accounted for when forming outdoor work schedules for equipment installation, civil and construction works in the Project construction plans.

There is also lightning during rainy periods. With the risk of lightning striking towers during overhead transmission and distribution line work, lightning shall be properly accounted for in work schedules involving such work. Transmission lines and substation facilities must also be equipped with sufficient protection against lightning surges from power lines.

(3) Wind

The Dar es Salaam record for maximum wind speed is relatively low at 45 knots per hour (approx. 23.15 m/s).

(4) Salt Damage

The Project area is located within 5 kilometers of the coast and thus includes measures against salt damage.

2-2-1-3 Plan for Socioeconomic Conditions

This project is in urban area along trunk roads with heavy traffic and near residential areas. Phone, water, sewage and other infrastructural facilities are also buried where the distribution poles shall be constructed. Thus, to the extent possible, work should not interfere with local residents and traffic or obstruct existing structures and buried objects. Distribution line design shall also maintain safe separation distances from nearby residences and stores along road boundaries.

2-2-1-4 Plan for Construction Conditions

Dar es Salaam has good construction conditions. There is much large-scale construction activity for

various commercial facilities and office buildings and multiple general contractors which handle such construction work, including electrical contractors. Thus, the project construction plan utilizes local contractors. Local procurement should be an option for Labors, transportation vehicles and construction equipment. From orders received, local subcontractors should also be an option for project substation construction as well as general workers for substation construction, civil engineering and construction, and power line construction.

However, highly skilled engineers are needed during equipment installation and for post-installation adjustments and testing, so local contractors cannot be used for anything besides Labors. Japanese engineers shall be sent to fulfill these roles.

Locally procured materials shall be used to the extent possible in the interest of nurturing the local industry. The aggregate, cement, rebar and other civil works and construction materials can be procured locally in Tanzania. However, the substation facilities as well as transmission and distribution equipment and materials needed for the Project are not manufactured locally. Such equipment shall be procured from Japan or third countries, accounting for factors such as past introduction of existing equipment and Tanzanian O&M capacity.

2-2-1-5 Plan for Using Local Contractors, Equipment and Materials

The project construction plan utilizes local contractors for substation construction, civil engineering and construction and power line construction. Labors, transportation vehicles and construction materials and equipment can be procured locally with relative ease.

2-2-1-6 Plan for O&M Capacity of Implementing Agency

TANESCO has experience with a number of cooperation projects with other donors and similar scale power projects with Japan's Grant Aid, including a project for the reinforcement of transmission and distribution facilities in Dar es Salaam completed in October 2010. They also have experience in O&M for substation, transmission and distribution facilities provided to Tanzania by past Japanese grant aid. TANESCO is considered capable in terms of O&M for substations, transmission and distribution facilities and shall handle O&M for such power supply facilities scheduled to be developed and procured in the Project.

However, TANESCO does have financial difficulties. These difficulties delay updates to substation, transmission and distribution equipment in aging facilities and impair procurement of expensive replacement and spare parts, resulting in overloading, electrical accidents and outages. TANESCO training plans for its engineers and operators is also considered insufficient; engineers do not possess sufficient knowledge or skill regarding recently introduced substation, transmission and distribution facilities. Proper O&M skill shall be transferred by Japanese engineers to TANESCO engineers during the Project. Japanese engineers shall train local engineers on O&M for power supply facilities on the job during the construction period, and Japanese side shall also provide O&M manuals. Japanese side shall also provide the minimum required spare parts and testing equipment for more effective, more efficient facility O&M.

JICA has a technical cooperation project called the Project for Capacity Development of Efficient Distribution and Transmission Systems, scheduled for five years from 2009. For this TCP, JICA conducts technical training for TANESCO engineers, electricians and technicians working with transmission and distribution systems, produces training materials and trains instructors. Also targeting engineers in regional offices, the training is anticipated to build O&M capacity for transmission and distribution facility engineers at TANESCO, who shall be in charge of O&M after project completion.

2-2-1-7 Planned Scopes for Facilities and Equipment and Setting Grades

The following basic plan for the scope and skill levels for project equipment and material procurement and installed facility construction has been formulated in light of the conditions given above.

(1) Planned Scope for Facilities and Equipment

The Project shall develop power supply facilities to supply stable power to social and public facilities and residents living in the Project area, based on power demand forecasts for the target year 2025. The Japanese side shall procure and install the essential facilities, with the Tanzanian side responsible for equipment it can procure and install to encourage Tanzania to continue O&M of power supply facilities by itself.

In order to keep the designs economical, equipment specifications shall use standard products conforming to international standards when possible. They are compatible with existing facilities and equipment when selecting the configuration and specifications for essential equipment. Still, Dar es Salaam power demands are expected to be revised further upward in the future. Thus, in consideration of the future power demands, it is important to discuss equipment configurations and specifications with some margin built in.

Essential facilities for the collectively selected equipment and facilities shall be built.

(2) Plan for Setting Grades

Care shall be taken not to deviate from the technical levels of TANESCO when designing the power supply facilities procured and installed in the Project, conforming to existing facility configurations, TANESCO technical standards and construction manuals.

2-2-1-8 Plan for Construction and Procurement Methods and Work Period

The Project consists of multiple sites (substations) and shall hang distribution and transmission lines spanning a respective 17.2km and 7.5km simultaneously, involving forced power outages in the economic and industrial centers of the city. Work teams need to be formed appropriately, the construction methods used need to be well known to local contractors and engineers, and a management system must be put in place so that work progresses safely and swiftly.

2-2-2 Basic Plan

2-2-2-1 Procurement of Equipment and Installation Plan

Table 2-2-2-1.1 Procurement of Equipment and Installation Plan

	Table 2-2-2-1.1 Productment of Equipment and Instantion Plan	
	The Project for Rehabilitation of Substations and Construction of New Lines and Substations in Dar es Salaam	Q'ty
	Reinforcement of Ilala Substation (132/33/11 kV) and 132 kV Transmission line (approximately 7.5 km)	
	(1) Equipment to be supplied and installed for Reinforcement of Ilala Substation	
	1) 132 kV Circuit Breakers (CB), Disconnecting Switches (DS) (including modification material of	1 lot
	the existing DS), Current Transformers, Lightning Arresters, Busbar materials for extension and	
	other necessary materials	
	2) 60 MVA,132/33 kV Transformer	2 sets
	3) 315 kVA, 33/0.4-0.23 kV Station Service Transformer	2 sets
	4) 33 kV Switchgear (Indoor type, Protection relays mounted)	24 panel
	5) 11 kV Switchgear (Indoor type, Protection relays mounted)	20 panel
	6) Control System (Micro SCADA system)	1 lot
	7) Metering Panel (Watt-hour meters)	1 lot
	8) Transformer Voltage Regulating Panel (132/33 kV and 33/11 kV Transformers)	1 lot
	9) Protection Panels (132/33 kV and 33/11 kV Transformer Protection, 132 kV Transmission Line	1 lot
	Protection)	
	10) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	11) Uninterruptible Power Supply System	1 lot
	12) AC Distribution Panels	1 lot
	13) 33 kV Lightning Arresters	30 phase
ц	14) 11 kV Lightning Arresters	45 phase
Pla	15) 33 kV and 11 kV Cables	1 lot
lon	16) Other materials (Low Voltage Cables, Earthing materials and others)	1 lot
llati	17) New Control Building (Approximately 1,013 m ² , Single story)	1 lot
ıstal	18) Substation Civil Works (Roads in Substation, Oil Separator, Equipment Foundations, Cable	1 lot
d la	trenches and others)	
an(19) Modification Works at Ubungo Substation (Replacement of 132 kV CTs and Overhead Bypass	1 lot
ent	Conductors, and others)	
pm	(2) Materials to be supplied and installed for Reinforcement of 132 kV Transmission Line	
inb	1) Double circuits of Transmission lines (TACSR 240 mm ²)	Approx.
οfΕ		7.5 km
Procurement of Equipment and Installation Plan	2) Insulators	1 lot
sme	3) Accessories	1 lot
cure	2. Expansion of Msasani Substation (33/11 kV) and Construction of 33 kV Distribution Line (Approximately	
Pro	7.6 km)	
	(1) Equipment to be supplied and installed for Extension of Msasani Substation	
	1) 15 MVA, 33/11 kV Transformer	1 set
	2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
	3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 panel
	4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	5 panel
	5) 11 kV Switchgear Panel (Outdoor type, for extension of existing Switchgears)	1 lot
	6) Control System (Micro SCADA system)	1 lot
	7) Metering Panel (Watt-hour meters)	1 lot
	8) Transformer Voltage Regulating Panel	1 lot
	9) AC Distribution Panel	1 lot
	10) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	11) 33 kV Lightning Arresters	6 phase
	12) 11 kV Lightning Arresters	12 phase
	13) 33 kV and 11 kV Cables	1 lot
	14) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
	15) New Control Building (Approximately 169 m ² , Single story)	1 lot
	16) 33 kV Switchgear Panels (for Makumbusho Substation)	1 lot
	17) Modification works of Control panels and metering panels (for Makumbusho Substation)	1 lot
	18) 33 kV Cables (for Makumbusho Substation)	1 lot

	The Project for Rehabilitation of Substations and Construction of New Lines and Substations in Dar es Salaam	Q'ty
	(2) Materials to be supplied and installed for Construction of 33 kV Distribution Line	
	 Materials to be supplied and instance for construction of 35 kV Distribution Ellie 33 kV Distribution Line (ACSR 150 mm²) 	1 lot
	 2) Grounding Wires (AAC 30 mm²) 	1 lot
	3) Steel Poles	1 lot
	4) Insulators	1 lot
	5) Accessories	1 lot
	6) Earthing Materials	1 lot
Ī	3. Construction of Muhimbili Substation (33/11kV) and 33kV Distribution Line (Approximately 2.0 km)	
	(1) Equipment to be supplied and installed for Construction of Muhimbili Substation	
	1) 15 MVA, 33/11 kV Transformer	1 set
	2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
	3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 panel
	4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	4 panel
	5) Control System (Micro SCADA system)	1 lot
	6) Metering Panel (Watt-hour meters)	1 lot
	7) Transformer Voltage Regulating Panel	1 lot
	8) AC Distribution Panel	1 lot
	9) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	10) 33 kV Lightning Arresters	6 phase
	11) 11 kV Lightning Arresters	12 phase
	12) 33 kV and 11 kV Cables	1 lot
	13) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
	14) New Control Building (Approximately 169 m ² , Single story)	1 lot
	(2) Materials to be supplied and installed for Construction of 33 kV Distribution Line	
	1) 33 kV Distribution Line (ACSR 150 mm ²)	1 lot
	2) Grounding Wires (AAC 30 mm ²)	1 lot
	3) Steel Poles	1 lot
	4) Insulators	1 lot
	5) Accessories	1 lot
	6) Earthing Materials	1 lot
	4. Construction of Jangwani Beach Substation (33/11 kV) and 33 kV Distribution Line (Approximately 6.5	
	km)	
	(1) Equipment to be supplied and installed for Construction of Jangwani Beach Substation	
	1) 15 MVA, 33/11 kV Transformer	1 set
	2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
	3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 panel
	4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	4 panel
	5) Control System (Micro SCADA system)	1 lot
	6) Metering Panel (Watt-hour meters)	1 lot
	7) Transformer Voltage Regulating Panel	1 lot
	8) AC Distribution Panel	1 lot
	9) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	10) 33 kV Lightning Arresters	6 phase
	11) 11 kV Lightning Arresters	12 phase
	12) 33 kV and 11 kV Cables	1 lot
	13) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
	14) New Control Building (Approximately 169 m ² , Single story)	1 lot
	15) 33 kV Switchgear Panels (for Tegeta Substation)	1 lot
	16) Modification works of Control panels and metering panels (for Tegeta Substation)	1 lot
	17) 33 kV Cables (for Tegeta Substation)	1 lot
	(2) Materials to be supplied and installed for Construction of 33 kV Distribution Line	
	1) 33 kV Distribution Line (ACSR 150 mm ²)	1 lot
	2) Grounding Wires (AAC 30 mm ²)	1 lot
	3) Steel Poles	1 lot
	4) Insulators	1 lot
	5) Accessories	1 lot
	6) Earthing Materials	1 lot

	The Project for Rehabilitation of Substations and Construction of New Lines and Substations in Dar es Salaam	Q'ty
	5. Construction of Mwananyamala Substation (33/11 kV) and 33 kV Distribution Lines (Approximately 1.1	
	km)	
	(1) Equipment to be supplied for Construction of Mwananyamala Substation	
	1) 15 MVA, 33/11 kV Transformer	1 set
	2) 50 kVA, 33/0.4-0.23 kV Station service Transformer	1 set
	3) 33 kV Switchgear Panel (Indoor type, Protection relays mounted)	3 panel
	4) 11 kV Switchgear Panel (Indoor type, Protection relays mounted)	4 panel
	5) Control System (Micro SCADA system)	1 lot
	6) Metering Panel (Watt-hour meters)	1 lot
	7) Transformer Voltage Regulating Panel	1 lot
	8) AC Distribution Panel	1 lot
	9) DC Supply System (Batteries, Chargers and DC Distribution Panels)	1 lot
	10) 33 kV Lightning Arresters	6 phase
	11) 11 kV Lightning Arresters	12 phase
	12) 33 kV and 11 kV Cables	1 lot
	13) Other Materials (Low Voltage Cables, Earthing materials and others)	1 lot
	14) New Control Building (Approximately 169 m ² , Single story)	1 lot
	15) 33 kV Switchgear Panels (for Makumbusho Substation)	1 lot
	16) Modification Works of Control panels and metering panels (for Makumbusho Substation)	1 lot
	17) 33 kV Cables (for Makumbusho Substation)	1 lot
	(2) Materials to be supplied and installed for Construction of 33 kV Distribution Line	
	1) 33 kV Distribution Line (ACSR 150 mm ²)	1 lot
	2) Grounding Wires (AAC 30 mm ²)	1 lot
	3) Steel Poles	1 lot
	4) Insulators	1 lot
	5) Accessories	1 lot
	6) Earthing Materials	1 lot
n	(1) Spare Parts, Testing Equipment and Maintenance Tools	1 lot
Procurement Plan		
ent		
rem		
Inoc		
Prc		

2-2-2-2 Dar es Salaam Power Demand Forecast and Power System

Dar es Salaam power demand as used in the Project is estimated based on the Power System Master Plan (2012 Update, hereinafter the PSMP) formulated by the Tanzanian government. Table 2-2-2-2.1 below gives the Dar es Salaam power demand forecast from the PSMP, but subdivided estimates are required due to system analysis in the study.

		-												
					Units: MW									
A ====		Substation Load Distribution Along 2015/2020/2025												
Area	Bus No.	Bus Name	2015	2020	2035									
	5189	Ubungo-2		321.32	646.36									
	5190	Ubungo-1	248.51	175.41	188.91									
	5218	Ubungo 33	62.04	93.05	100.20									
	5205	Chalinze 33	4.34	6.50	7.01									
	5207	Ilala 33	75.49	113.22	121.93									
Dar	5210	Mtoni	20.24	30.36	32.70									
es	5217	Mlindizi 33	13.45	20.17	21.72									
Salaam	5247	F zone1	124.74	51.40	55.36									
	5248	F zone2	94.21	38.82	41.81									
	5250	F zone3	32.36	13.34	14.37									
	5294	Kunduchi 33	91.34	37.63	40.53									
	5709	Dar-2		126.53	436.55									
	5709	Dar-2		68.31	115.73									
		Total	766.72	1096.06	1823.18									

Table 2-2-2-2.1 Dar es Salaam power demand forecast from the PSMP

Source: Power System Master Plan (2012 Update)

The Study Team obtained the records for power demand in Dar es Salaam by region from TANESCO for the past five years back to 2009. Tables 2-2-2-2.2 up to 2-2-2.5 give the obtained demand results and PSMP demand forecast.

Table 2-2-2-2.2 Dar es Salaam power demand by region (2012)

													(Un	it:MW)	
							20	12						Peak	Rate
Peak Demand		1	2	3	4	5	6	7	8	9	10	11	12		
1	Power System Master Plan (2012)													490.1	
2	Zonal														
2	Dar es Salaam	376.0	364.3	369.1	360.6	341.3	368.4	350.1	350.0	376.1	385.4	389.0	408.1	408.1	
	Regional														
	Kinondoni North	120.2	111.7	165.0	117.5	106.2	101.7	107.2	119.0	114.3	117.0	108.0	100.0	165.0	31%
3	Kinondoni South	120.0	114.9	114.9	110.3	99.7	63.0	69.2	56.0	87.8	52.6	52.6	78.2	120.0	22%
	Ilala	182.0	182.0	157.4	156.0	149.3	162.6	150.0	152.0	158.8	0.0	182.0	174.4	182.0	34%
	Temeke	66.2	66.2	66.2	66.3	66.3	66.3	67.5	66.3	67.9	67.8	67.8	69.5	69.5	13%
														536.5	100%

Source: Created based on materials from TANESCO

Table 2-2-2-3 Dar es Salaam power	demand by region (2011)
-----------------------------------	-------------------------

													(Un	it:MW)	
							20	11						Peak	Rate
Peak Demand		1	2	3	4	5	6	7	8	9	10	11	12		
1	Power System													485.1	
1	Master Plan (2012)													465.1	
2	Zonal														
2	Dar es Salaam	348.1	331.2	363.7	374.8	335.8	330.6	373.3	376.7	350.9	379.5	379.8	426.6	426.6	
	Regional														
	Kinondoni North	108.1	119.0	97.7	97.9	96.3	100.9	92.6	128.1	129.6				129.6	27%
3	Kinondoni South	53.3	85.9	86.9	70.0	62.5	81.1	80.0	91.7	90.0				91.7	19%
	Ilala	193.0	171.0	184.0	125.0	170.0	169.0	155.7	150.7	161.2				193.0	40%
	Temeke	64.3	65.0	65.0	65.0	65.0	66.2	66.2	66.2	66.2				66.2	14%
														480.5	100%

Source: Created based on materials from TANESCO

							1		2	$\boldsymbol{\omega}$	· ·	/			
													(Un	it:MW)	
							20	10						Peak	Rate
Peak Demand		1	2	3	4	5	6	7	8	9	10	11	12		
1	Power System Master Plan (2012)														
2	Zonal														
	Dar es Salaam	350.4	361.2	370.3	373.0	346.0	339.0	369.0	344.0	337.0	371.0	360.0	359.6	373.0	
	Regional														
	Kinondoni North	120.0	121.0	119.0	119.0	100.0	85.7	82.0	86.4	135.0	92.6	98.2	99.4	135.0	23%
3	Kinondoni South	65.0	90.4	90.0	53.9	50.0	53.7	42.2	52.0	50.1	48.3	96.6	90.1	96.6	16%
	Ilala	218.9	219.1	222.8	215.6	207.3	300.0	208.0	200.0	192.0	202.7	201.5	184.1	300.0	50%
	Temeke	65.0	65.0	62.0	64.0	64.0	64.2	64.2	64.2	64.3	64.3	64.3	64.3	65.0	11%
														596.6	100%

Table 2-2-2-2.4 Dar es Salaam power demand by region (2010)

Source: Created based on materials from TANESCO

Table 2-2-2-5 Dar es Salaam power demand by region (2009)

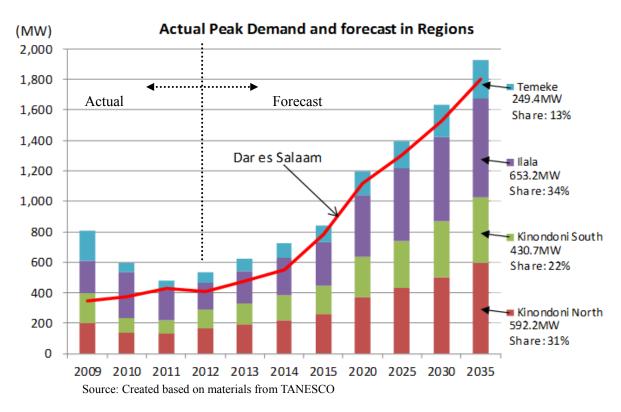
													(Un	it:MW)	
		2009													
Peak Demand		1	2	3	4	5	6	7	8	9	10	11	12		
1	Power System Master Plan (2012)											373.0			
2	Zonal														
2	Dar es Salaam	311.4	323.0	324.7	321.4	344.6	331.6	326.0	325.5	320.3	322.5	350.1	356.6	356.6	
	Regional														
	Kinondoni North		197.0		96.0	96.0	96.0	96.0	97.1	96.0		106.0	118.4	197.0	24%
3	Kinondoni South		197.0	72.0	68.3	70.0	70.0	72.6	80.0	64.5		65.0	65.0	197.0	24%
	Ilala		197.0		199.0	201.0	184.5	176.0	173.1	191.6		209.1	215.3	215.3	27%
	Temeke		197.0	62.5	61.8	61.8	63.0	62.5	62.0	62.8		66.0	65.0	197.0	24%
														806.3	100%

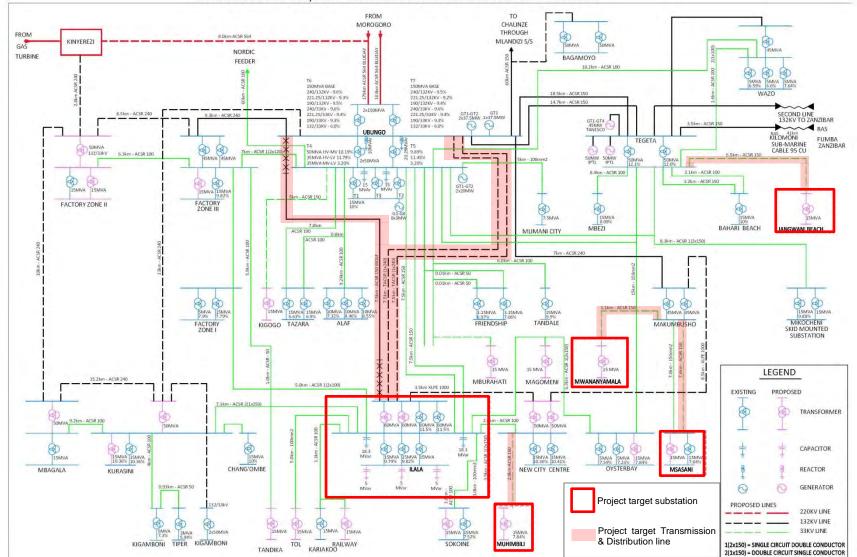
Source: Created based on materials from TANESCO

Note that the total for peak demand values by region are greater than the overall peak demand value for Dar es Salaam as the regional peak demand values differ from day to day. Power demand forecast in the study divide PSMP peak demand values among the substations.

Proportions for each regional allotment are taken from the latest figures in 2012. Applying PSMP power estimates up to 2035 yields Figure 2-2-2-2.1. Power demand forecast from the study are given in Table 2-2-2-2.6.

Figure 2-2-2.2 is a power system diagram for Dar es Salaam.




Figure 2-2-2-2.1 Power demand forecast up to 2035 (by region in Dar es Salaam)

Demand Forecast beased on Power System Master Plan 2012 Update								2015						Power Factor of Load 2020						2025			Unit F 2030					2: MW Q: MVar 2035				MVA
Demand Forecast beased on Power System Master Plan 2012 Opdate Demand Forecast for Dar es Salaam Voltage(kV)							()					1,120			1.305					1.526						—						
Region Name of Bus Total Capacity Remarks					Bus Pri. Sec.			Total	Share	784 Share P Q S							s	Total	Share	P.	Q	s	Total	Share	P	Q	S	Total	Share	1,802 P	Q	S
Region	Makumbusho 33kV	45MVA		*1	132	132	33	241	10%	81	39	90		10%	115	56	128	401	10%	134	65	149		10%	157	76	175	554	10%	186	90	2
			× 2	*1							39																					
	Msasani 11kV		× 2		33	33		30.75%	2%	16	8	17	30.75%	2%	22	11	25	30.75%	2%	26	13	29	30.75%	2%	31	15	34	30.75%	2%	36	17	
Kinondoni North	Mwananyamala 11kV	15MVA	× 1		33	33	11		1%	8	4	9	-	1%	11	5	12		1%	13	6	14		1%	15	/	17	-	1%	18	9	:
	Tegeta (Kunduchi) 33kV	50MVA	× 2	*2	132	132	33		10%	76	37	85	ō	10%	109	53	121		10%	127	62	141		10%	149	72	165		10%	176	85	19
	Jangwani Beach 11kV	15MVA	× 1		33	33	11		1%	8	4	9	_	1%	11	5	12		1%	13	6	14		1%	15	7	17	_	1%	18	9	2
	Mtoni 132kV	30MVA 25MVA	× 2 × 1		132	132	33		7%	53	25	58		7%	75	36	83		7%	87	42	97		7%	102	50	114		7%	121	58	1:
Kinondoni	Ubungo 33kV	-			132	132	33	175 22.37%	20%	154	74	171	250 22.37%	20%	220	106	244	292 22.37%	20%	256	124	284	341 22.37%	20%	299	145	333	403 22.37%	20%	353	171	39
South	Chalinze 33kV	15MVA	× 1		132	132	33		1%	8	4	9	9	1%	11	5	12		1%	13	6	14		1%	15	7	17	-	1%	18	9	2
	Mlindizi 33kV	10MVA	× 2		132	132	33		2%	14	7	15	-	2%	20	9	22		2%	23	11	25		2%	27	13	30	-	2%	32	15	3
	Ilala 33kV	60MVA	× 4		132	132	33	266	14%	110	53	122	380	14%	157	76	174	443	14%	183	88	203	518	14%	214	103	237	611	14%	252	122	28
	Ilala 11kV	15MVA	× 3		33	33	11	33.92%	3%	24	11	26	6 33.92%	3%	34	16	37	33.92%	3%	39	19	43	33.92%	3%	46	22	51	33.92%	3%	54	26	6
	Factory Zone 2 33kV	50MVA	× 1		132	132	33		3%	24	11	26		3%	34	16	37		3%	39	19	43		3%	46	22	51		3%	54	26	6
llala	Factory Zone 3 33kV	45MVA	× 2	*3	132	132	33		6%	46	22	52		6%	66	32	74		6%	77	37	86		6%	90	44	100		6%	107	52	11
	Factory Zone 1 33kV	15MVA	× 3	*4	33	33	11		2%	16	8	17		2%	22	11	25		2%	26	13	29		2%	31	15	34		2%	36	17	4
	New City Center 33kV	50MVA	× 2	*5	132	132	33	F	5%	39	19	44	4	5%	56	27	62		5%	65	32	72		5%	76	37	85		5%	90	44	10
	Muhimbili 11kV	15MVA	× 1		33	33	11		1%	8	4	9		1%	11	5	12		1%	13	6	14		1%	15	7	17		1%	18	9	2
	Kurasini 33kV	50MVA	× 1		132	132	33	101	6%	47	23	52	145	6%	67	33	75	169	6%	78	38	87	198	6%	92	44	102	233	6%	108	52	12
Temeke	Mbagala 33kV	50MVA	× 1		132	132	33	12.95%	7%	54	26	61	12.95%	7%	78	38	86	12.95%	7%	91	44	101	12.95%	7%	106	51	118	12.95%	7%	125	117 9 855 9 171 9 15 26 26 26 26 26 26 26 26 26 26 26 26 26	13
*1:Except for M *2:Except for J *3:Except for F	0		•				Total		100%	784	380	871		100%	1,119	542	1,244	分	100%	1,305	632	1,450		100%	1,526	739	1,695		100%	1,801	872	2,00

Table 2-2-2-2.6 Power demand forecast up to 2035

Source: Created based on materials from TANESCO

*5:Except for Muhimbili

DAR ES SALAAM 132/33kV LINE AND SUBSTATIONS SINGLE LINE DIAGRAM

Source: Created based on data from TANESCO

Figure 2-2-2-2.2 Dar es Salaam power system diagram

2-2-2-3 Power System Analysis

(1) Study Objectives for Power System Analysis

Besides there being multiple power systems, power production and consumption must continually be balanced. Power supply facilities in Dar es Salaam are currently developed according to the PSMP. Coupled with plans to construct large thermal power plants and other factors, short-circuit capacity for the Dar es Salaam power system should increase. In the present study, power flow analysis for development of these facilities was conducted. Short-circuit current for circuit breakers and other major equipment shall be set to reflect this in outline design.

(2) Basic Plan for Power Flow Analysis

1) Scope

Radial Power Distribution System in Dar es Salaam is set to the end connection.

2) Sections for analysis

Peak sections for 2015, 2020 and 2025.

3) Confirmation of secured power supply facilities with power flow calculations

Power Flow analysis shall be performed for each section using system analysis software PSS/.E Ver. 33 to study the effects on Project flow improvements and considerations for future transmission and distribution facility plans.

Note that once project scope has been clarified, it shall be clarified which transmission and distribution lines are critical to be commissioned and make possible recommendations to the Tanzanian side to manifest the effects as planned.

4) Maintain proper voltage

Power flow analysis for heavy and light loads shall be performed in 2015, 2020, and 2025 (target year section) to calculate bus voltages and verify need for capacitor banks in the Project.

5) Confirmation of rated short circuit current exceeding ratings of circuit breakers with short circuit current calculations

Three-phase short circuit current in each bus for 2015, 2020 and 2025 (target year section) shall be calculated to evaluate and review rated short-time current for the Project circuit breaking equipment.

Figure 2-2-2-3.1 shows the flow from the performed power system analyses.

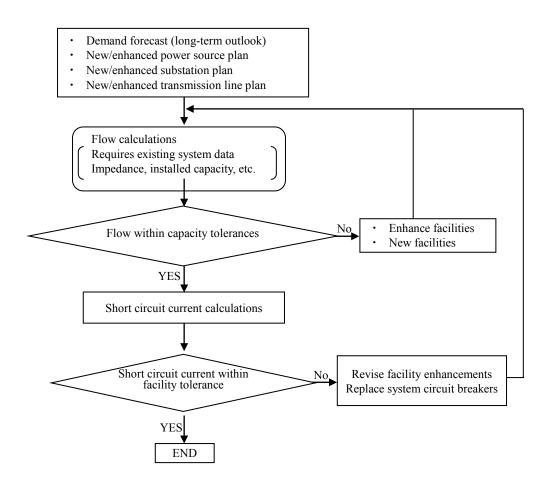


Figure 2-2-2-3.1 Work flow for power system analysis

(3) Analysis Prerequisites

1) The outputs for each substation are set as given below.

	Nominal Voltage	2015	2020	2025						
	kV	P (MW)	P (MW)	P (MW)						
Ubungo	132	312.47	312.47	312.47						
Kinyerezi	132	312.00	552.10	552.10						
Tegeta	132	114.42	114.42	114.42						

Table 2-2-2-3.1 Outputs for each substation

- 2) The loads for each bus are set according to the power demand forecast up to 2035 as given in Table 2-2-2-2.6.
- 3) If the bus voltages deviate from their adjustment ranges of 0.95 to 1.05 per unit, the next step shall be adjusting voltage with a transformer tap. Transformer taps in voltage adjustment can change the adjustable range by $\pm 10\%$. This precondition is adapted in order to make the result of analysis easier though voltage dead-band for tap-changing, which is approximately less than 0.5%, is different from the actual operation.
- 4) The load power factor shall be 0.9, but in the study 0.86, the power factor confirmed in

materials collected in a study requested by the Tanzanian side on need for 11 kV capacitor banks at Ilala substation.

5) The system configuration shall set the 132kV transmission line between New City Center and Makumbusho substation and between Factory Zone 3 and Factory Zone 2 substation to "open". Even though 132kV transmission lines between substations compose a loop system to improve reliability, open-loop system is adapted in this analysis because, in case of a loop system in high load factor, it might become overloaded in order not to control shunt current well, and ratio of the shunt current changes by transition of the load factor that is unfavorable operation.

(4) Analysis Procedure

- 1) Analyze for the target year with a load power factor of 0.86 and review the need for capacitor banks.
- 2) If needed, connect capacitor banks to the Ilala substation and analyze.
- 3) Perform a power flow analysis for each section in 2015, 2020 and 2025 with power factor of 0.9 based on the results of steps 1) and 2).

(5) Analysis Data

Analysis normally requires existing data on transmission and distribution lines, transformers and generators. As data is incomplete for this plan, data from field studies shall be used in the analysis. Items with unknown line specifications, line placements and generator data shall be calculated with constant numbers of similar items and standard line arrangement conditions.

1) Transmission and distribution line data

Line constants for each transmission and distribution line shall be calculated and used based on locally obtained materials and the PSMP.

2) Transformer data

Set based on locally obtained materials, the PSMP and power system analysis data prepared by TANESCO.

3) Generator data

Set based on locally obtained materials, the PSMP and existing generator data and rated to 80% of maximum generator output.

(6) Analysis and the result

1) Review for necessity of 11kV Capacitor Banks at Ilala substation

Figure 2-2-2-3.2 shows the result of power flow with 0.86 load power factor in 2025 without 11kV capacitor banks at Ilala substation and Figure 2-2-2-3.3 shows the result of power flow with 0.86 load power factor in 2025 with 11kV capacitor banks at Ilala substation.

The 11kV bus voltage at Ilala substation indicates 10.484kV and the load at 132/33kV transformer indicates 62.5MVA at the Project target year 2025. Though the voltage value is within positive and negative 5%, it should be desired to avoid unstable voltage fluctuation on the heavy load. Because voltage drop is higher with large reactive power at power transformer, it is also desired to achieve and operative effect by reducing reactive power at power transformer since the effect is lighter by changing tap voltage. In addition, it is not recommended to operate 132/33kV transformer with 4% overload.

On the other hand, the 11kV bus voltage at Ilala substation recovers up to 10.761kV by using 11kV capacitor banks and the load at 132/33kV transformer indicates 60.7MVA at the Project target year 2025. This is around 1% overload and it might be able to endure continuous operation.

In order to expect multiplier effect in terms of saving transformer capacity and saving voltage drop with reduced reactive power, it is considerable to install 11kV capacitor banks at Ilala substation.

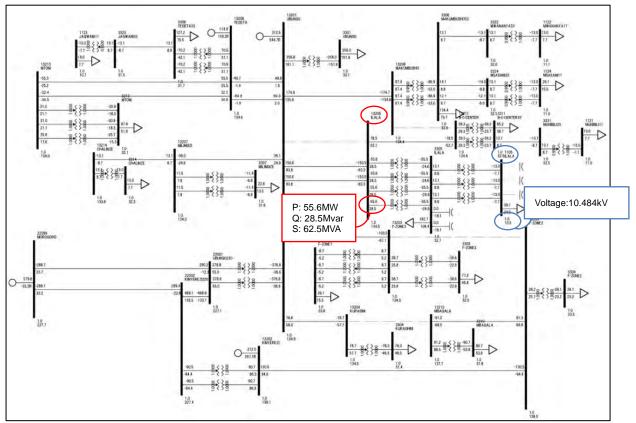


Figure 2-2-2-3.2 Power flow with 0.86 load power factor in 2025 without 11kV capacitor banks at Ilala substation

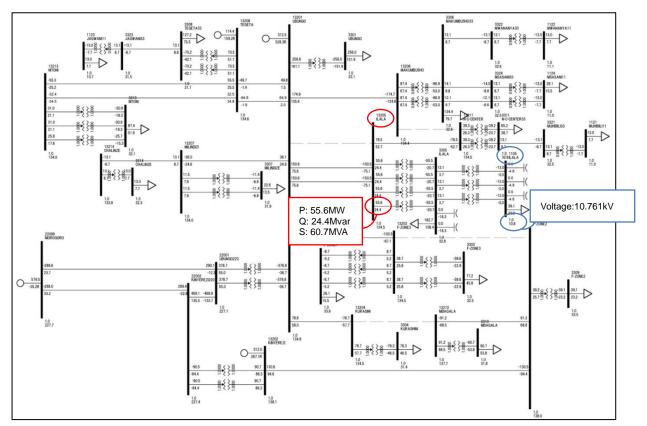


Figure 2-2-2-3.3 Power flow with 0.86 load power factor in 2025 with 11kV capacitor banks at Ilala substation

2) The result of analysis at each peak section

① Result of voltage value

Table 2-2-2-3.2 shows transformer taps and Table 2-2-2-3.3 shows the result of voltage values. Note that transformer taps were adjusted only when each peak sectional voltage exceeded positive and negative 5% of ranges.

Note that the result in case of review for necessity of 11kV capacitor banks at Ilala substation is indicated as well.

						Wir	ıding Ratio (p	.u.)		
Bus	From Bus		Bus			2025 without	2025 with	2015 with	2020 with	2025 with
No.	Name	kV	No.	To Bus Name	kV	Capacitor	Capacitor	Capacitor	Capacitor	Capacitor
NO.	Name		NO.			PF 0.86	PF 0.86	PF 0.90	PF 0.90	PF 0.90
1105	ILALA	11	3305	ILALA	33	1.00	1.00	1.00	1.00	1.00
1105	ILALA	11	3305	ILALA	33	1.00	1.00	1.00	1.00	1.00
1105	ILALA	11	3305	ILALA	33	1.00	1.00	1.00	1.00	1.00
1121	MUHIBILI	11	3321	MUHIBILI	33	0.95	0.95	1.00	1.00	0.95
1122	MWANANYA	11	3322	MWANANYA	33	0.95	0.95	1.00	0.95	0.95
1123	JAGWANI	11	3323	JAGWANI	33	0.95	0.95	1.00	0.95	0.90
1124	MSASANI	11	3324	MSASANI	33	0.95	0.95	1.00	0.95	0.95
1124	MSASANI	11	3324	MSASANI	33	0.95	0.95	1.00	0.95	0.95
3301	UBUNGO	33	13201	UBUNGO	132	1.00	1.00	1.00	1.00	1.00
3303	F-ZONE3	33	13203	F-ZONE3	132	1.00	1.00	1.00	1.00	1.00
3303	F-ZONE3	33	13203	F-ZONE3	132	1.00	1.00	1.00	1.00	1.00
3304	KURASHINI	33	13204	KURASINI	132	1.00	1.00	1.00	1.00	0.95
3305	ILALA	33	13205	ILALA	132	1.00	1.00	1.00	1.00	1.00
3305	ILALA	33	13205	ILALA	132	1.00	1.00	1.00	1.00	1.00
3305	ILALA	33	13205	ILALA	132	1.00	1.00	1.00	1.00	1.00
3305	ILALA	33	13205	ILALA	132	1.00	1.00	1.00	1.00	1.00
3306	MAKUMBUSHO	33	13206	MAKUMBUSHO	132	0.95	0.95	1.00	0.95	0.95
3306	MAKUMBUSHO	33	13206	MAKUMBUSHO	132	0.95	0.95	1.00	0.95	0.95
3307	MILINDIZE	33	13207	MILINDIZI	132	1.00	1.00	1.00	1.00	1.00
3307	MILINDIZE	33	13207	MILINDIZI	132	1.00	1.00	1.00	1.00	1.00
3308	TEGETA	33	13208	TEGETA	132	1.00	1.00	1.00	1.00	0.95
3308	TEGETA	33	13208	TEGETA	132	1.00	1.00	1.00	1.00	0.95
3309	F-ZONE2	33	13209	F-ZONE2	132	1.00	1.00	1.00	1.00	1.00
3310	MBAGALA	33	13210	MBAGALA	132	1.00	1.00	1.00	1.00	1.00
3311	N-C-CENTER	33	13211	N-C-CENTER	132	1.00	1.00	1.00	1.00	1.00
3311	N-C-CENTER	33	13211	N-C-CENTER	132	1.00	1.00	1.00	1.00	1.00
3313	MTONI	33	13213	MTONI	132	1.00	1.00	1.00	1.00	1.00
3313	MTONI	33	13213	MTONI	132	1.00	1.00	1.00	1.00	1.00
3313	MTONI	33	13213	MTONI	132	1.00	1.00	1.00	1.00	1.00
3314	CHALINZE	33	13214	CHALINZE	132	1.00	1.00	1.00	1.00	1.00
3320	F-ZONE1	33	13203	F-ZONE3	132	1.00	1.00	1.00	1.00	1.00
3320	F-ZONE1	33	13203	F-ZONE3	132	1.00	1.00	1.00	1.00	1.00
3320	F-ZONE1	33	13203	F-ZONE3	132	1.00	1.00	1.00	1.00	1.00
13201	UBUNGO	132	22001	UBUNGO	220	1.00	1.00	1.00	1.00	1.00
13201	UBUNGO	132	22001	UBUNGO	220	1.00	1.00	1.00	1.00	1.00
13202	KINYEREZI	132	22002	KINYEREZI	220	1.00	1.00	1.00	1.00	1.00
13202	KINYEREZI	132	22002	KINYEREZI	220	1.00	1.00	1.00	1.00	1.00

Table 2-2-2-3.2 Transformer Taps

Note: Red numbers show adjusted p.u. value

				025		025		015		2020	20	25
			wit	hout	v	vith	v	vith		with	wi	th
				acitor	Cap	acitor	Cap	acitor	Ca	pacitor	Capa	citor
			PF:	0.86	PF:	0.86	PF:	0.90	PF:	0.90	PF:	0.90
Base kV	Bus No.	Bus Name	p.u.	kV								
11	1105	ILALA	0.953	10.484	0.978	10.761	1.020	11.216	0.990	10.894	0.971	10.677
11	1121	MUHIBILI11	1.002	11.026	1.003	11.029	0.987	10.854	0.959	10.552	0.994	10.930
11	1122	MWANANYA11	1.005	11.053	1.005	11.053	0.961	10.566	1.031	11.344	1.003	11.032
11	1123	JAGWANI11	0.970	10.668	0.970	10.668	0.972	10.691	0.989	10.878	1.086	11.945
11	1124	MSASANI11	1.001	11.011	1.001	11.011	0.959	10.545	1.029	11.314	1.000	10.995
33	3301	UBUNGO	1.003	33.099	1.003	33.099	1.012	33.399	0.998	32.918	0.987	32.561
33	3303	F-ZONE3	0.984	32.469	0.984	32.469	1.003	33.102	0.984	32.475	0.971	32.027
33	3304	KURASHINI	0.950	31.360	0.950	31.360	0.988	32.601	0.961	31.700	0.998	32.944
33	3305	ILALA	0.990	32.663	0.994	32.802	1.016	33.515	0.995	32.845	0.981	32.370
33	3306	MAKUMBUSH033	0.988	32.604	0.988	32.604	0.979	32.294	1.003	33.096	0.981	32.366
33	3307	MILINDIZE	0.967	31.918	0.967	31.918	0.995	32.842	0.972	32.079	0.956	31.548
33	3308	TEGETA33	0.959	31.654	0.959	31.654	0.991	32.716	0.966	31.881	1.004	33.142
33	3309	F-ZONE2	1.014	33.475	1.014	33.475	1.030	33.980	1.023	33.749	1.024	33.789
33	3310	MBAGALA	0.964	31.825	0.964	31.825	1.007	33.231	0.988	32.614	0.983	32.429
33	3311	N-C-CENTER33	0.986	32.545	0.986	32.551	1.005	33.152	0.986	32.535	0.973	32.096
33	3313	MTONI	0.972	32.083	0.972	32.083	0.997	32.898	0.975	32.165	0.959	31.647
33	3314	CHALINZE	0.978	32.281	0.978	32.281	1.000	33.007	0.980	32.333	0.965	31.855
33	3320	F-ZONE1	1.017	33.551	1.017	33.551	1.019	33.620	1.007	33.241	0.998	32.944
33	3321	MUHIBILI33	0.985	32.515	0.985	32.518	1.004	33.135	0.985	32.512	0.972	32.066
33	3322	MWANANYA33	0.988	32.588	0.988	32.588	0.978	32.287	1.003	33.083	0.980	32.350
33	3323	JAGWANI33	0.956	31.532	0.956	31.532	0.990	32.657	0.963	31.789	1.001	33.040
33	3324	MSASANI33	0.984	32.472	0.984	32.472	0.977	32.225	1.000	32.997	0.977	32.248
132	13201	UBUNGO	1.021	134.772	1.021	134.772	1.021	134.772	1.011	133.386	1.002	132.264
132	13202	KINYEREZI	1.046	138.072	1.046	138.072	1.045	137.940	1.045	137.940	1.050	138.600
132	13203	F-ZONE3	1.019	134.495	1.019	134.495	1.020	134.627	1.009	133.175	1.000	132.013
132	13204	KURASINI	1.019	134.455	1.019	134.455	1.020	134.614	1.009	133.148	1.000	131.987
132	13205	ILALA	1.019	134.482	1.019	134.495	1.020	134.666	1.009	133.201	1.000	132.026
132	13206	MAKUMBUSHO	1.018	134.389	1.018	134.389	1.020	134.587	1.008	133.096	0.999	131.921
132	13207	MILINDIZI	1.015	134.006	1.015	134.006	1.018	134.376	1.006	132.805	0.997	131.564
132	13208	TEGETA	1.020	134.640	1.020	134.640	1.020	134.640	1.009	133.188	1.000	132.000
132	13209	F-ZONE2	1.045	137.966	1.045	137.966	1.045	137.887	1.044	137.861	1.049	138.508
132	13210	MBAGALA	1.043	137.676	1.043	137.676	1.044	137.742	1.043	137.650	1.047	138.257
132	13211	N-C-CENTER	1.019	134.442	1.019	134.468	1.020	134.653	1.009	133.175	1.000	132.000
132	13213	MTONI	1.015	133.967	1.015	133.967	1.017	134.284	1.005	132.660	0.995	131.380
132	13214	CHALINZE	1.014	133.835	1.014	133.835	1.017	134.284	1.005	132.673	0.996	131.406
220	22001	UBUNGO220	1.032	227.106	1.032	227.106	1.033	227.216	1.030	226.644	1.032	226.952
220	22002	KINYEREZI220	1.034	227.436	1.034	227.436	1.034	227.524	1.032	227.106	1.035	227.590
220	22099	MOROGORO	1.035	227.700	1.035	227.700	1.035	227.700	1.040	228.800	1.050	231.000

Table 2-2-2-3.3 Result of voltage value

As shown in the table, voltage values are within positive and negative 5% of rages and voltage taps are adjusted within positive and negative 10% in every case.

② The result of power flow

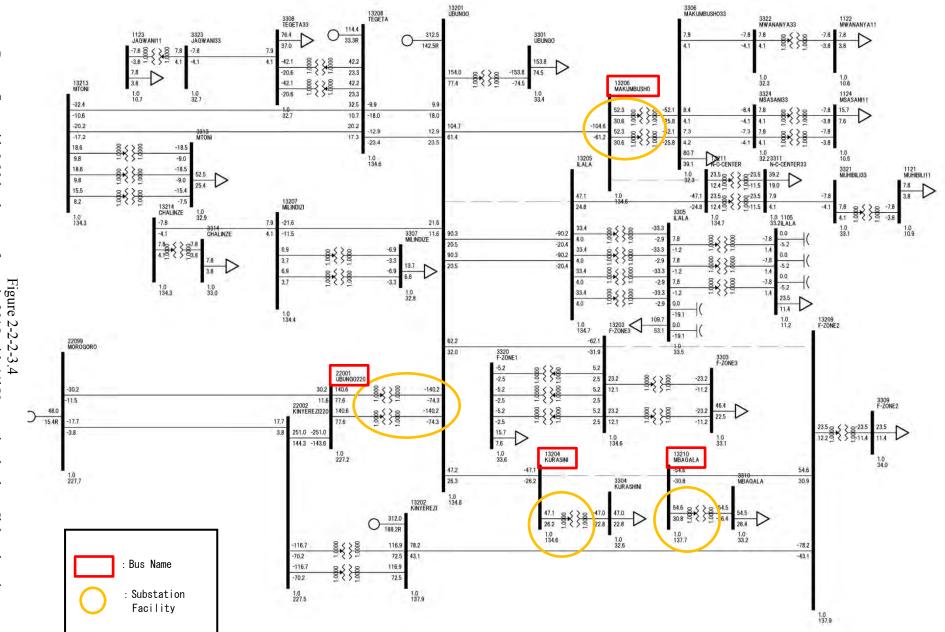
Table 2-2-2-3.4 shows the result of power flow at each sectional peak. The results are come from comparison for rated current of circuit breakers and sustained current of transmission and distribution lines and it can be determined as reasonable values at every section.

Note that the result in case of review for necessity of 11kV capacitor banks at Ilala substation is indicated as well.

						Power flow		
Rated Voltage	Substation	Rated Current (Circuit Breaker)	Sustained Current (T&D lines)	2025 without Capacitor PF 0.86	2025 with Capacitor PF 0.86	2015 without Capacitor PF 0.90	2020 without Capacitor PF 0.90	2025 without Capacitor PF 0.90
33kV	Makumbusho	800A	397A	278A	278A	159A	222A	266A
JUKV	Mwananyamala	800A	3377	2704	2704	1007		200/1
33kV	Makumbusho	800A	397A	294A	294A	168A	235A	282A
33K V	Msasani	800A	397A			TUOA		2027
33kV	Tegeta	800A	397A	288A	288A	157A	232A	260A
33K V	Jangwani Beach	800A	397A			15/A		200A
33kV	New City Center	-	397A	279A	279A	154A	227A	269A
33K V	Muhimbili	800A	397A	279A	279A	104A	2278	209A
100.1/	Ubungo 1	3150A	962A	738A	722A	2074	E0.0 A	707A
132kV	Ilala 1	1200A	902A	/38A	722A	397A	592A	/0/A
100.1/	Ubungo 2	3150A	060 4	700 4	7004	2074	592A	7074
132kV	Ilala 2	3150A	962A	738A	722A	397A		707A

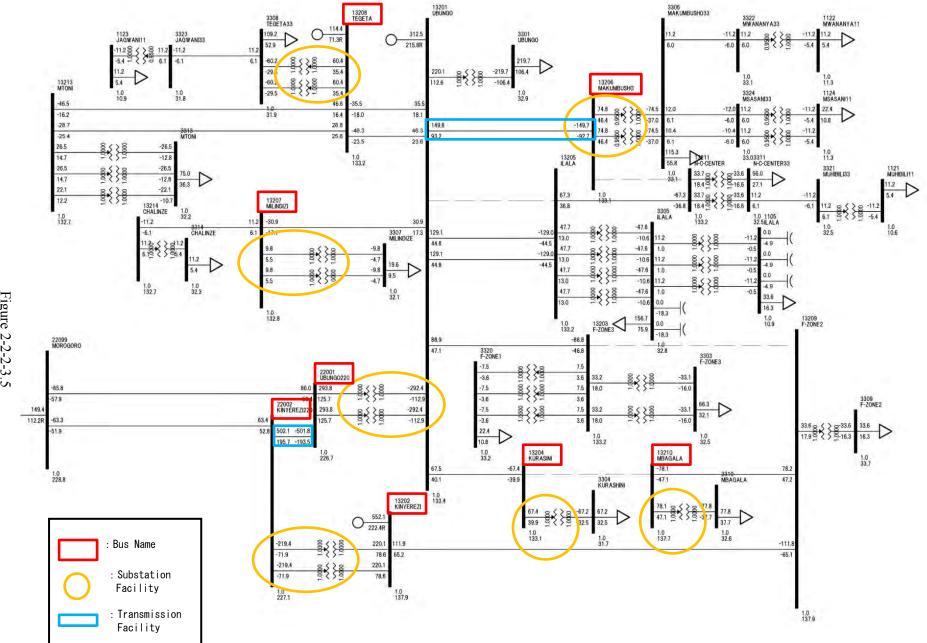
Table 2-2-2-3.4 The result of power flow

③ Short circuit current

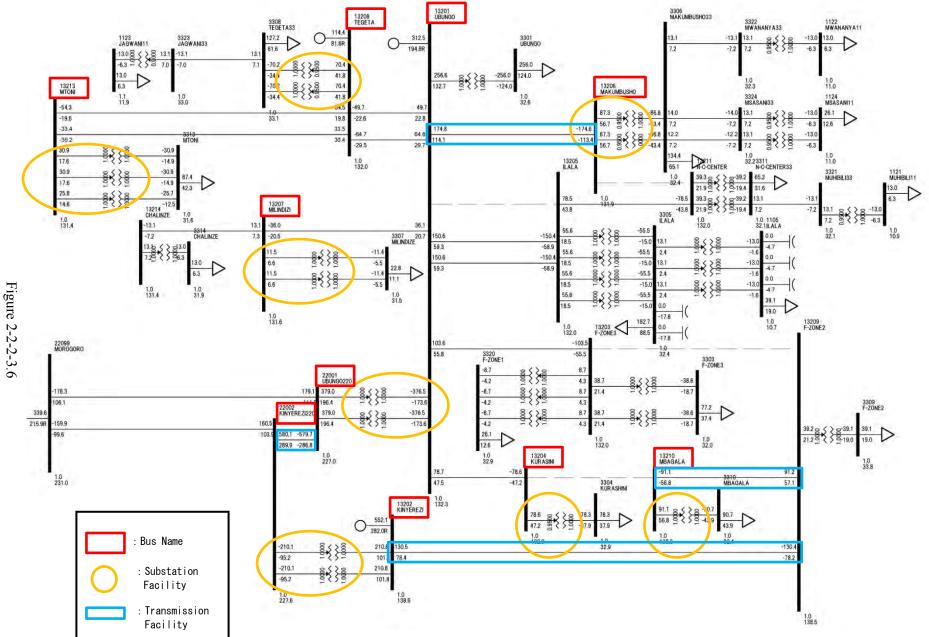

Table 2-2-3.5 shows short circuit current. The results are come from comparison for rated short-time current of circuit breakers and short-time allowable current of transmission and distribution lines and it can be determined as reasonable values at every section.

Rated Voltage	Substation	Substation Short-time Rat allowable current (T&D lines) (Cir		Short Circuit Current
33kV	Makumbusho	29.52kA	25kA	18.1kA
33K V	Mwananyamala	29.JZKA	25kA	15.3kA
33kV	Makumbusho	29.52kA	25kA	18.1kA
33K V	Msasani	29.JZKA	25kA	8.0kA
33kV	Tegeta	29.52kA	25kA	12.2kA
33K V	Jangwani Beach	29.JZKA	25kA	7.0kA
33kV	New City Center	29.52kA	-	15.6kA
33K V	Muhimbili	29.JZKA	25kA	12.1kA
1201-1/	Ubungo	53.09kA	31.5kA	24.6kA
132kV	Ilala	03.09KA	25kA	21.2kA

Table 2-2-2-3.5 Short circuit current


Notes: Short circuit current for Ubungo Substation is calculated with two sets of 220/132kV transformer.

From Figure 2-2-2-3.4 up to Figure 2-2-2-3.6 show the result of power flow at year of 2015, 2020 and 2025 sectional power flow and Table 2-2-2-3.6 shows line constants.



2-21

2-22

2-23

	Base capacity=	10	MVA	Fr	equency=	50	Hz			•										•			,
			R	ating		Li	ine Info	rmation			Line Constant For						Line Constant For Analysis: (10MVA Base, pu value)					ulue)	
	From	To	Nominal Voltage [kV]	Rated Current @Base Capacity	Laying Method	Spec.	1	nduotor	ТҮРЕ	Resistance R	Inductance L	Capacitance C	Length [km]	Resistance R	Inductance L	Reactance XL	Capacitance C	Sustained Current	Short-time allowable current	Resistance [A•Ω/V√3]	Reactance [A•Ω/V√3]	Capacitance [A・Ω /V√3]	Capacity
				[A]		Materials		Size (mm2		[Ω/km]	[mH/km]	[µ F/km]		[Ω]	[mH]	[Ω]	[µ F]	[A]	[kA]	p.u.	p.u.	p.u.	[MVA]
1	MAKUMBUSHO	MWANANYA	33 33	175 175	O/H U/G	Al Cu	1*3 1*3	150 300	ACSR(Dingo) XLPE	0.18000 0.06060	1.30516 0.51147	0.00885 0.22152	0.913 0.160	0.16434 0.00970	1.19161 0.08184	0.37417 0.02570	0.00808 0.03544	397 545	29.52 80.40	0.0015091 0.0000890	0.0034359 0.0002360	0.0004440 0.0019471	22.69 31.15
			33						Total				1.073	0.17404	1.27344	0.39986	0.04353	397	29.52	0.0015981	0.0036718	0.0023912	22.69
2	MAKUMBUSHO	MSASANI	33	175	0/Н	AI	1*3	150	ACSR(Wolf)	0.18070	1.12229	0.01036	7.600	1.37332	8.52937	2.67822	0.07876	405	29.41	0.0126108	0.0245934	0.0043267	23.15
3	MAKUMBUSHO	MSASANI	33 33	175 175	O∕H U∕G	AI Cu	1*3 1*3	150 300	ACSR(Dingo) XLPE	0.18000 0.06060	1.30516 0.51147	0.00885	7.452 0.100	1.34136 0.00606	9.72603 0.05115	3.05397 0.01606	0.06597 0.02215	397 545	29.52 80.40	0.0123174 0.0000556	0.0280438 0.0001475	0.0036243 0.0012170	22.69 31.15
			33						Total				7.552	2.72074	18.30655	5.74826	0.16688	397	29.52	0.0123730	0.0281913	0.0048413	22.69
			33	175	O/H	AI	1*3	150	ACSR(Dingo)	0.18000	1.30516	0.00885	6.429	1.15722	8.39086	2.63473	0.05692	397	29.52	0.0106264	0.0241940	0.0031268	22.69
4	TEGETA	JAGWANI	33	175	U/G	Cu	1*3	300	XLPE	0.06060	0.51147	0.22152	0.090	0.00545	0.04603	0.01445	0.01994	545	80.40	0.0000501	0.0001327	0.0010953	31.15
			33						Total				6.519	1.16267	8.43689	2.64918	0.07685	397	29.52	0.0106765	0.0243268	0.0042221	22.69
			33	175	0/Н	AI	1*3	150	ACSR(Dingo)	0.18000	1.30516	0.00885		0.28602	2.07390	0.65120	0.01407	397	29.52	0.0026264	0.0059798	0.0007728	22.69
5	N-C-CENTER	MUHIBILI	33	175	U/G	Cu	1*3	300	XLPE	0.06060	0.51147	0.22152	0.370	0.02242	0.18925	0.05942	0.08196	545	80.40	0.0002059	0.0005457	0.0045028	31.15
			33						Total				1.959	0.30844	2.26314	0.71063	0.09603		29.52	0.0028323	0.0065255	0.0052756	22.69
6	UBUNQO	F-ZONE3	132	44	0/Н	AI	1*3	240	ACSR(Hawk)	0.11530	1.32785	0.00870	9.300	1.07229	12.34901	3.87759	0.08087	583	46.11	0.0006154	0.0022254	0.0011107	133.29
7	UBUNGO	KURASINI	132	44	0/Н	AI	1*3	240	ACSR(Hawk)	0.11530	1.32785	0.00870	13.000	1.49890	17.26205	5.42028	0.11304	583	46.11	0.0008603	0.0031108	0.0015526	133.29
	UBUNGO	ILALA	132	44	0/Н	AI	1*3	240	TACSR	0.11840	1.33055	0.00868	7.500	0.88800	9.97911	3.13344	0.06508	962	53.09	0.0005096	0.0017983	0.0008938	219.94
9	UBUNGO	ILALA	132	44	0/Н	AI	1*3	240	TACSR	0.11840	1.33055	0.00868	7.500	0.88800	9.97911	3.13344	0.06508		53.09	0.0005096	0.0017983	0.0008938	219.94
	UBUNGO	ILALA	132	44	0/Н	AI	1*3	150	ACSR(Wolf)	0.18070	1.38663	0.00831	7.500	1.35525	10.39970	3.26551	0.06235	-	29.41	0.0007778	0.0018741	0.0008563	92.60
	UBUNGO	MAKUMBUSHO	132	44	0/Н	AI	1*3	240	ACSR(Hawk)	0.11530	1.26056	0.00918	7.000	0.80710	8.82391	2.77071	0.06425	583	46.11	0.0004632	0.0015902	0.0008825	133.29
	UBUNGO	MILINDIZI	132	44	0/Н	AI	1*3	150	ACSR(Wolf)	0.18070	1.37283	0.00840	60.000	10.84200	82.36970	25.86409	0.50400	-	29.41	0.0062225	0.0148439	0.0069222	92.60
13	UBUNGO	TEGETA	132	44	0/Н	AI	1*3	150	ACSR(Wolf)	0.18070	1.38663	0.00831	18.500	3.34295	25.65259	8.05491	0.15380		29.41	0.0019186	0.0046229	0.0021123	92.60
			132	44	0/H	AI	1*3	150	ACSR(Wolf)	0.18070	1.38663	0.00831	13.900	2.51173	19.27411	6.05207	0.11556	405	29.41	0.0014415	0.0034734	0.0015871	92.60
14	UBUNGO	TEGETA	132	44	U/G	Cu	1*3	300	XLPE	0.06060	0.51147	0.22152	0.800	0.04848	0.40918	0.12848	0.17721	545	80.40	0.0000278	0.0000737	0.0024339	124.60
			132										14.700	2.56021	19.68329	6.18055	0.29277	405	29.41	0.0014694	0.0035471	0.0040210	92.60
	KINYEREZI	F-ZONE2	132	44	0/H	AI	1*3	240	ACSR(Hawk)	0.11530	1.32785	0.00870	2.800	0.32284	3.71798	1.16745	0.02435	583	46.11	0.0001853	0.0006700	0.0003344	133.29
	F-ZONE3	F-ZONE2	132	44	0/H	AI	1*3	240	ACSR(Hawk)	0.11530	1.32785	0.00870	8.500	0.98005	11.28673	3.54403	0.07391	583	46.11	0.0005625	0.0020340	0.0010152	133.29
	KURASINI	MBAGALA	132	44	0/H	AI	1*3	240	ACSR(Hawk)	0.11530	1.32785	0.00870	15.200	1.75256	20.18332	6.33756	0.13218	583	46.11	0.0010058	0.0036373	0.0018153	133.29
	ILALA MAKUMBUSHO	N-C-CENTER	132	44	U/Q U/Q	AI	1*3 1*3	1,000	XLPE	0.02860	0.56177	0.37173	3.500 8.500	0.10010	1.96620	0.61739	1.30106	831 831	180.00 180.00	0.0000574	0.0003543	0.0178693	189.99
	MILINDIZI	CHALINZE	132	44	0/G 0/H	AI AI	1+3	1,000	ACSR(Wolf)	0.02880	1.37283	0.00840	37.000	6.68590	4.77806	15.94952	0.31080		29.41	0.0038372	0.0091538	0.0042687	92.60
20	MILINDIZI	UNALINZE	132	44			1*3		ACSR(Wolf)	0.18070	1.37283	0.00840	37.000	0.63245	4.85319	1.52390	0.02910	405	29.41	0.0003630	0.0008746	0.0003996	92.60
	TEGETA	MTONI	132	44	O/H Marine	Cu	1*3	150 95	Sub-Marine	0.18070	0.81490	0.00831	41.000	10.12639	33.41071	10.49096	0.02910	315	29.41	0.0058118	0.0060210	0.0003996	92.60 72.02
21	TEGETA	MICNI	132	44	Warme	Cu	1+3	50	Total	0.24099	0.81490	0.01433	44.500	10.75884	38.26390	12.01487	0.62472		25.46	0.0061747	0.0068956	0.0085801	72.02
-			132	44	O/H	AI	1*3	150	ACSR(Wolf)	0.18070	1.38663	0.00831	26.000	4.69820	36.05229	11.32042	0.82472	405	29.41	0.0026964	0.0064970	0.0029686	92.60
	TEGETA	MTONI	132	44	Marine	Cu	1*3	300	Sub-Marine	0.06000	0.69999	0.00831	37.200	2.23200	26.03948	8.17640	0.63595	560	80.40	0.0012810	0.0046926	0.0023080	128.03
			132	44	marine	Gu	140		Total	0.00000	0.05599	0.01710	63.200	0.00000	0.00000	0.00000	0.00000		29.41	0.0039774	0.0048928	0.0117031	92.60
23	F-ZONE2	MBAGALA	132	44	0/н	AI	1*3	240	ACSR(Hawk)	0.11530	1.32785	0.00870	10.000	1.15300	13.27850	4.16945	0.08696	583	46.11	0.0006617	0.0023929	0.0011943	133.29
	UBUNGO	KINYEREZI	220	26	0/H 0/H	AI	1*3	564	BJOY1	0.05070	1.32785	0.00929	10.000	0.50700	12.45650	3.91134	0.09294	1165	104.90	0.0001048	0.0008081	0.0007658	443.92
	UBUNGO	MOROGORO	220	26	0/H	AI	1*3	564	BJOY1	0.05070	1.24565	0.00929	179.000	9.07530	222.97143	70.01303	1.66355		104.90		0.0144655	0.0137087	443.92
		MOROGORO	220	26	0/H 0/H	AI	1+3	564	BJOY1	0.05070	1.24565	0.00929	163.400	8.28438	203.53928	63.91133	1.51857	1165	104.90		0.0132048	0.0125139	443.92
- 0	MAN IEREZI	monodono	220	20	0/1	~	1-3	004	53011	0.00070	1.24305	0.00929	103.400	0.20438	203.03828	03.91133	1.01807	1165	104.90	0.0017110	0.0132048	0.0120139	440.0Z

(7) Recommendation of review for facility expansion and/or reinforcement

It is recommended to determine the necessity of Substation and Transmission facility expansion and/or reinforcement since the following facilities are assumed to become overloaded by the result of analysis based on the power demand forecast in PSMP

1) From the result of power flow in 2015 (Refer to marked points in Figure 2-2-2-3.4)

[Substation installed capacity]

- ① Kurasini substation installed capacity (132/33kV) might be overloaded. (Around104~108%)
- ② Mbagala substation installed capacity (132/33kV) might be overloaded. (Around121~125%)
- ③ Ubungo substation installed capacity (220/132kV) might be overloaded. (Around106~107%)
- Makumbusho substation installed capacity (132/33kV) might be overloaded. (Around129~135%)
- 2) From the result of power flow in 2020 (Refer to marked points in Figure 2-2-2-3.5)[Substation installed capacity]
 - Kurasini substation installed capacity (132/33kV) might be overloaded. (Around 149~157%)
 - ② Mbagala substation installed capacity (132/33kV) might be overloaded. (Around 173~182%)
 - ③ Ubungo substation installed capacity (220/132kV) might be overloaded. (Around 209~213%)
 - Makumbusho substation installed capacity (132/33kV) might be overloaded. (Around 185~196%)
 - (5) Mlindizi substation installed capacity (132/33kV) might be overloaded. (Around 109~113%)
 - (6) Tegeta substation installed capacity (132/33kV) might be overloaded. (Around 134~140%)
 - (7) Kinyerezi substation installed capacity (220/132kV) might be overloaded. (Around 154~156%)

[Transmission installed capacity]

- (8) [132kV] Ubungo ~ Makumbusho transmission installed capacity might be overloaded.(Around 130%)
- (9 [220kV] Kinyerezi~Ubungo transmission installed capacity might be overloaded.(Around 118%)

3) From the result of power flow in 2025 (Refer to marked points in Figure 2-2-2-3.6)

[Substation installed capacity]

- Kurasini substation installed capacity (132/33kV) might be overloaded. (Around 174~183%)
- ② Mbagala substation installed capacity (132/33kV) might be overloaded. (Around 202~215%)

- ③ Ubungo substation installed capacity (220/132kV) might be overloaded. (Around 276~285%)
- Makumbusho substation installed capacity (132/33kV) might be overloaded. (Around 216~231%)
- (5) Mlindizi substation installed capacity (132/33kV) might be overloaded. (Around 127~132%)
- (6) Tegeta substation installed capacity (132/33kV) might be overloaded. (Around 156~164%)
- ⑦ Kinyerezi substation installed capacity (220/132kV) might be overloaded. (Around 154~156%)
- 8 Mtoni substation installed capacity (132/33kV) might be overloaded. (Around 114~119%)

[Transmission installed capacity]

- (9) [132kV] Ubungo ~ Makumbusho transmission installed capacity might be overloaded.(Around 155%)
- (10 [220kV] Kinyerezi \sim Ubungo transmission installed capacity might be overloaded.(Around141%)
- (1) [132kV] Kinyerezi \sim F-Zone2 transmission installed capacity might be overloaded.(Around108%)
- 12 [132kV] Mbagala ~ F-Zone2 transmission installed capacity might be overloaded.(Around111%)

2-2-2-4 Basic Plan Overview

(1) **Design Conditions**

Project design conditions are as follows:

1) Weather conditions

Weather conditions applicable to designs for substation facilities, transmission and distribution line facilities, buildings, and foundations are as shown in Table 2-2-2-4.1.

Area	Dar es Salaam		
Elevation	Under 1,000 m		
	High	40°C	
Outside air temperature	Low	10°C	
	Average	20°C	
Maximum humidity		97%	
Maximum wind speed	Maximum wind speed		
Rainfall (Monthly highs)		1,300 mm	
Bearing capacity		90 kN/m ²	

Table 2-2-2-4.1 Weather Conditions

2) Electrical systems and design conditions

Table 2-2-2-4.2 Electrical Systems and Design Conditions

Item	Transmission System	Substation System	Distribution Su	Low Voltag (Station pow	-	
Frequency			50Hz			_
Phase			3-phase		3-phase/ single-phase	
Maximum voltage	145k	V	36kV	12kV	440V/253V	125V DC
Nominal voltage	132k	V	33kV	11kV	400V/230V	110V DC
Lightning impulse withstand voltage	650k	V	$200 kV (170 kV)^{*1}$	$90 \text{kV} (75 \text{kV})^{*1}$	2kV	-
Power-frequency withstand voltage	275k	V	28kV	_	_	
Grounding system		Direct				
Minimum creepage distance	3,212mm	3,500mm	25mi	n/kV	—	
Conductor minimum distance	-		(* 1)		—	-
Phase to Ground(minimum distance)	1,700mm (1	,300mm)	500mm (350mm)	300mm (140mm)	-	—
Phase to Phase(minimum distance)	2,500mm (1	,700mm)	900mm (500mm)	600mm (180mm)	-	—
Minimum line clearance					—	
General locations	6.7m	-	5.0m ^{*2}	5.0m ^{*2}	—	
Roads	8.0m	-	7.0m ^{*2}	7.0m ^{*2}	_	_
Railways	9.0m	-	9.0m ^{*2}	9.0m ^{*2}	—	_
Waterways/sea routes	10.0m	-	$10.0m^{*2}$	10.0m ^{*2}	_	_
Wayleave	40.0	m	10.0m	5.0m	_	_

*1: Indoors

*2: Distribution system only

Notes: 1. Conductor minimum separation distance for power lines is set according to relevant specifications and standards. Separation distance for conductors in 33kV and 11kV switchgears is set according to manufacturer specifications.

2. For separation distances for power line conductors and supports in places where TANESCO standards cannot be adapted, TANESCO shall obtain permission from relevant authorities (TANROADS, City council, Municipal council, etc.).

Object	132kV	33kV
	Transmission Line	Distribution Line
Conductor	92kg/m ²	50kg/m ²
Steel Pole	-	73kg/m ²
Steel Tower	266kg/m ²	-

* Wind load for 132kV transmission lines is existing design wind velocity

(Steel tower: 38m/s, conductor: 40m/s)

Condition	Application			
Maximum span (S)	85m			
Line sag rate (d), max	3%			
Safety factor	2.5+			
Maximum temperature	40°C			
Minimum temperature	10°C			

① System voltage

220 kV systems: 220 kV ±5% (209.0 - 220 - 231.0 kV)

132 kV systems: 132 kV±5% (125.4 - 132 - 138.6 kV)

33 kV systems: 33 kV ±5% (31.35 - 33 - 34.65 kV)

2 Frequency

Acceptable variation (Electric Utility Industry Law: 50 Hz $\pm 2.5\%$ (51.25 - 50 - 48.75 Hz)

Variation from automatic frequency adjustments: $50 \text{ Hz} \pm 0.2 \text{ Hz} (50.2 - 50 - 49.8 \text{ Hz})$

③ Short circuit current values

The following was obtained by summarizing and calculating locally collected data:

Table 2-2-2-4.5 Substation Short Circuit Current Values

Substation Name	132 kV	33 kV	11 kV
Ubungo Substation	24.6 kA	-	-
Ilala Substation	21.2 kA	28.0 kA	19.5 kA
Msasani Substation	-	8.0 kA	11.4 kA
Muhimbili Substation	-	12.1 kA	12.8 kA
Mwananyamala Substation	-	15.3 kA	13.8 kA
Jangwani Beach Substation	-	7.0 kA	10.2 kA
Tegeta Substation	-	12.2 kA	-
Makumbusho Substation	-	18.1 kA	-
New City Center Substation	-	15.6 kA	-
Oyster Bay Substation	-	17.3 kA	-

(2) Applicable Standards and Units Used

Substation systems, transmission and distribution facilities are generally designed in accordance with IEC standards or equivalent Japanese standards.

(3) **Protection Coordination**

1) Protection Relay Application

Protection relays applied for 132 kV Transmission lines, 33 kV & 11 kV Distribution lines and Transformers under this project shall be as same application method as at present as follows;

- 132 kV Transmission lines: Distance relay for main & Time over current relay for back-up,
- 33 kV Distribution lines: Time over current and instantaneous over current relay,
- 11 kV Distribution lines: Time over current and instantaneous over current relay and
- Transformers: Current Ratio differential relay and time over current relay.

As for capacitor bank protection, additional unbalance detection relay shall be equipped because the capacitor bank consists of plural capacitors connected in parallel for each phase and there is a case that over current relay cannot detect the single or few sets of capacitor failure of which fault current flows little unless ground or short circuit fault occurs.

The protection relays to be provided shall be modern digital type which has a flexible setting feature, self-diagnostic function and no mechanical deterioration even though the existing protection relays used in Ilala and Msasani substations are mechanical movement type.

2) Protection Coordination

Where to use over current relays the operation time settings shall be maintained the relationship "long" to "short" to the equipment protected from upstream side of the current flow and shall be quick enough to trip before reaching the capability limit of the protected equipment.

As the neutral point of transmission and distribution lines in Tanzanian system is grounded directly, fault current of ground fault and short circuit becomes the same level, it was found in the existing system that there is the case of mis-coordination between distribution line feeder over current relay for short current protection and low voltage side of transformer main over current relay for ground fault protection. In order to avoid the case above, over current relay shall be equipped each phase and no ground fault relay in common return circuit of current transformer secondary is required.

Since the transmission lines interconnected to 132 kV bus at Ilala substation would be loop configuration after the newly constructed transmission line to New City Center, the settings of these distance relays of protective impedance zones and operation times of the zones for Ubungo, New City Center and Ilala substations shall be well coordinated and tested at the Project execution stage.

(4) Detailed Design of the Equipment and Facilities

1) Substations

- ① Ilala Substation (Reinforcement)
 - (a) General

The following basic concept is applied for reinforcement and rehabilitation of Ilala Substation.

- Existing 132 kV equipment should be used as much as possible.
- 90 MVA transformer (T1) should be replaced with new 60 MVA transformer in order to have parallel operation with existing transformers (T2 and T5).
- Two new 60 MVA transformers (T1 above and T7) shall be installed parallel with Transformers T2 and T5.
- Existing 15 MVA transformers (T3, T4 and T6) should be used.
 (Note; Defective transformer T3 has been planned to be replaced with new one under AfDB Project)
- Indoor type 33 kV switchgears should be installed in new control building, instead of existing outdoor type switchgears.
- Indoor type 11 kV switchgears should be installed instead of existing switchgears, as well.
- All control and protection panels should be renewed and installed in new control building, except following panel.
 - 132 kV Transmission line protection panel for New City Center substation, supplied under Finnish Project.
- All control and power cables should be replaced with new ones.
- Entire earthing system in the substation shall be considered and all equipment earthing shall be connected to new earthing system including existing equipment.
- Temporary cables may be used for exchanging existing connections in order to reduce shutdown time and range as much as possible.
- In accordance with Environmental Regulation, noise level at the boundary shall be controlled less than maximum permissive noise level.

Following items should be done by TANESCO.

- Temporary Oil storage and disposal for Transformer T1 (90 MVA)
- Abandoned transformer and all other materials at 132 kV yard should be removed for new equipment installation.
- Trees, steel towers for Antennas, waste materials and others scattered in front of control building should be removed for construction of new control building.
- The following works in relation with GCC and NCC SCADA system;-
 - 1) Newly installed Multiplexers in new Control building and the connection between the Multiplexers and Micro SCADA System of Ilala Substation,

- Modification works of existing SCADA System, required for new equipment, such as 132/33 kV Transformers, 132 kV Switchgears and equipment/system in Ilala Substation of the Project,
- Supply of 48 V DC Batteries and Chargers,
- Un-utilized wires, porcelain insulators and their hardware on second circuit of the 132 kV towers should be removed for new conductor installation before commencement of the Project.
- Coordination works in relation with Shutdown (time and range) for the Project between associated agencies.
- (b) Basic Design

Table 2-2-2-4.6 indicates equipment to be supplied by the Japanese side, according to the equipment requested by Tanzanian government and the Single Line Diagram is shown in Fig. SS-E-01.

NO.	Equipment supplied by the Japanese side	Q'ty	Unit	Remarks
(1)	60 MVA, 132/33 kV Transformer	2	set	 2 x 60 MVA transformers (T1 and T7) shall be provided. Expansion of 132 kV Bus and outdoor type switchgear for additional one (1) bay for 60 MVA transformer (T7) with associated structures and foundations shall be provided. Removal of existing 90 MVA Transformer for replacement is required at construction stage. The works include removal of insulation oil from the tank.
(2)	33 kV Switchgear	24	panel	 Indoor type new 33 kV Switchgear panels shall be installed. Note; Protection relays are mounted on respective panels. Existing two (2) sets of 33 kV Capacity Banks shall be utilized. New two (2) sets of Station service transformers shall be provided.
(3)	11 kV Switchgear	20	panel	 Indoor type new 11 kV Switchgear panels shall be installed. Note; 1. Protection relays are mounted on respective panels. 2. Three sets of new 11 kV, 5 Mvar Capacitor Banks shall be provided.
(4)	Control Panels	1	lot	Micro SCADA System shall be applied. See item (16) in this list.
(5)	132 kV Transmission Line Protection Panels complete with relays	1	lot	 Transmission line protection panel(s) complete with relays shall be provided for two Ubungo lines (UB1 & UB2). T/L Protection Panel for New City Center line (NC) which is planned to be installed under the Finnish Project shall be relocated to the newly

Table 2-2-2-4.6 Equipment List for Ilala Substation supplied by the Japanese side

NO.	Equipment supplied by	Q'ty	Unit	Remarks
	the Japanese side			constructed control building and re-used.
(6)	132/33 kV Transformer Protection Panels complete with relays	1	lot	Four (4) sets of 132/33 kV Transformer protection panels complete with relays shall be provided.
(7)	33/11 kV Transformer Protection Panels complete with relays	1	lot	Three (3) sets of 33/11 kV Transformer protection panels complete with relays shall be provided.
(8)	AC Distribution Panels	1	lot	Suitable numbers of feeders shall be supplied.
(9) (10)	DC Distribution Panels Battery and Charger	1	lot set	Ditto 110 V DC Batteries and their chargers shall be provided. (Capacity calculation with DC load duration time should be conducted.) In addition, Uninterruptible Power Supply system shall be provided for Micro SCADA System (See item No. (16) below in the list).
(11)	New Control Building	1	lot	New control building consisting of Switchgear room, Control room, Battery room, etc shall be constructed.
(12)	33 kV Power Cables	1	lot	 Power cables with necessary materials for laying and connection Temporary cables, cable-heads and associated materials during the construction period should be considered.
(13)	11 kV Power Cables	1	lot	Ditto
(14)	Control Cables & CT Cables	1	lot	Control cables and CT cables shall be re-newed.
(15)	Earthing conductors and accessories	1	lot	 Entire earthing system in the substation shall be considered Overhead grounding wires for new 132 kV switchgear and transformer area shall be modified.
(16)	Substation micro SCADA system	1	lot	 Server and Client (Work Station-HMI) with Bay Control Unit (BCU) system shall be provided for controlling and supervising of the substation. The system includes Transformer voltage regulating system which covers four (4) units of 132/33 kV transformers and three (3) units of 33/11 kV transformers. The system can communicate with Tanzania SCADA system (GCC and DCC SCADA system) via multiplexer equipment which is provided by Tanzania side.
(17)	Basic Training on substation operation and maintenance	1	lot	Training on an OJT basis.Trainees should be selected by Tanzanian side.
(18)	TACSR conductor (240 mm ²) and associated hardware for 132 kV Ilala-Ubungo Transmission Lines	1	lot	 In order to increase the transmission line capacity, thermal resistant type conductor "TACSR 240 mm²" shall be installed on the existing double circuit transmission line towers. The reinforcement of the towers shall be conducted by the Japanese side, if necessary. It should be noted that the existing single circuit transmission line towers can be used by Tanzanian side. CTs for both Ilala and Ubungo substations on

NO.	Equipment supplied by the Japanese side	Q'ty	Unit	Remarks
				 the circuits shall be replaced with higher ratio ones. (See item No. (20) below) The modifications on Tanzanian GCC and DCC SCADA system caused by the above transmission line modification should be done by Tanzanian side.
(19)	Porcelain insulators and associated hardware for the above	1	lot	- Porcelain insulators for 132 kV line and its associated materials shall be provided.
(20)	Others (The materials not requested by Tanzanian side)	1	lot	 Due to the replacement of the 132 kV conductors, the following 132 kV equipment and materials shall be replaced with suitable rated ones. The existing 132 kV CB on Ubungo No. 1 (UB1) line with 1,200 A current rating. Two (2) sets of 132 kV CT with 1,200/1/1/1 A on Ilala-Ubungo lines at both Ilala and Ubungo Substations. (Total 12 phases of CT) 132 kV Overhead Conductors with 1,200 A capacity on both Ubungo No. 1 (UB1) and No.2 (UB2) lines. At Ubungo Substation, 132 kV Overhead bypass line conductors of two Ilala circuits. In addition to the above, the equipment listed below should be replaced with new ones;- 132 kV Disconnecting Switches (DS) on the busbar side of UB1, T1 and T2 circuits with 25 kA-2 sec. 132 kV DSs (including Earthing Switches) on the line side of UB1 and UB2, and on the busbar side of UB1 and UB2, and on the busbar side of UB2 and T5 circuits with remote control unit, due to adapt Substation micro SCADA system.

(c) Specifications of Main Equipment

	Table 2-2-2-4.7 Spe	cifications of M	ain Equipment
--	---------------------	------------------	---------------

No.	Equipment	Specifications	Q'ty
IL-1	132 kV Gas Circuit Breaker (CB)		2 sets
	1) Type	Three-pole, outdoor use, porcelain	
		(creepage distance: 3,500 mm or longer,	
		complete with operating mechanism)	
	2) Rated Voltage	145 kV or higher	
	3) Rated Current	1,200 A or higher	
	4) Rated Interrupting Current	25 kA or higher	
	5) Operating Sequence	O-0.3 secCO-3 minCO	
	6) Lightning Impulse Withstand Voltage	650 kV or higher	
	7) Power Frequency Withstand	275 kV or higher	
	Voltage (1 min.)	_	
	8) Control Voltage	DC 110 V	
	9) Equipment to be applied	For UB1 bay (replacement) and T7 bay	
		(new installation)	
IL-2-1	132 kV Disconnecting Switch (DS)		4 sets
	1) Type	Three-pole, single-throw, outdoor use,	

No.	Equipment	Specifications	Q'ty
		horizontal double break rotating and insulator type (Insulator creepage distance: 3,500 mm or longer)	
	2) Rated Voltage	145 kV or higher	
	3) Rated Current	1,200 A or higher	
	4) Rated Short-time Current	25 kA-2 sec. or higher	
	5) Lightning Impulse Withstand Voltage	650 kV or higher	
	6) Power Frequency Withstand Voltage (1 min.)	275 kV or higher	
	7) Control Voltage	DC 110 V	
	8) Equipment to be applied	Busbar side DS on T1, T2 and UB1 bays	
		(replacement) and Busbar side DS on T7 bay (new installation)	
IL-2-2	Materials for 132 kV DS		1 lot
	modification for "Remote control		for 4
	function" (including Earthing		DSs
	Switches)	Line side DS on UB1 and UB2 bays	
	1) Applied DS	(with ES), and busbar side DS on UB2	
		and T5 bays	
IL-3	2) Control Voltage 132 kV Current Transformer (CT)	DC 110 V	6
IL-J	1) Type	Outdoor use, single phase, oil-filled	phases
	1) 1900	porcelain type or bushing type, single or	phases
		double-core, double ratio, hermetically	
		sealed (insulator creepage distance:	
		3,500 mm or longer)	
	2) Rated Voltage	145 kV or higher	
	3) Rated Primary Current	1,200 A	
	4) Rated Secondary Current	1/1/1 A	
	5) Tolerances	Core 1: Class 0.5 or higher	
		Core 2,3: Class 5P20 or higher	
	6) Rated Burden	30 VA each or higher	
	7) Rated Short-time Current	25 kA-2 sec. or higher	
	8) Lightning Impulse Withstand Voltage	650 kV or higher	
	9) Power Frequency Withstand Voltage (1 min.)	275 kV or higher	
	10) Equipment to be applied	For UB1 and UB2 bays	
IL-4	132 kV Lightning Arrester		12
	1) Type	Outdoor use, Metal oxide gapless type,	phases
		single phase (Insulator creepage	
	2) Poted Volteres	distance: 3,500 mm or longer)	
	2) Rated Voltage	120 kV	
	3) Rated Discharge Current	10 kA For T1 T2 T5 and T7 have	
IL-5	4) Equipment to be applied 132 kV Busbar, Supporting	For T1, T2, T5 and T7 bays	1 lot
11-3	structures for Busbars, Insulators and		1 101
	other materials		
	1) 132 kV Busbars for extension	Hard drawn stranded wire (HDCC 600	
		mm ² or higher) or equivalent $(HDCC 600)$	
	2) Steel structures for 132 kV Busbar and T7 bays		
	3) Post Insulators for 132 kV busbars	Insulator creepage distance: 3,500 mm or higher	
	4) Tension insulators for 132 kV		
	busbar dead-end towers		

No.	Equipment	Specifications	Q'ty
	5) 132 kV Overhead Conductors	For UB1 and UB2: THDCC 325 mm ²	
	6) Post Insulators for T7 branching	Insulator creepage distance: 3,500 mm	
	circuit	or higher	
	7) Grounding Wires	ACS 55 mm^2 or higher	
IL-6	132/33kV Power Transformer	T1 and T7	2 sets
-	1) Type	Outdoor use, with On-load tap changer	
	2) Continuous Rated Capacity	60 MVA	
	3) Rated Primary Voltage	132 kV	
	4) Rated Secondary Voltage	33 kV	
	5) Type of Cooling	ONAN	
		3	
	6) Number of phase	-	
	7) Frequency	50 Hz	
	8) Tap Voltages	132 kV +10% to -10%	
	9) Number of taps	17 taps	
	10) Step voltage	1.25%	
	11) Winding Connections	Primary: Star with solidly grounded	
		Secondary: Star with solidly grounded	
		Tertiary: Delta	
		Vector Group: YNyn0(d1)	
	12) Impedances	12.4%	
	13) Lightning Impulse Withstand	Primary: 650 kV or higher	
	Voltage	Secondary: 170 kV or higher	
	14) Power Frequency Withstand	Primary: 275 kV or higher	
	Voltage (1 min.)	Secondary: 70 kV or higher	
	(i min.)	Neutral on Primary & Secondary: 70 kV	
		or higher	
		Tertiary: 28 kV or higher	
	15) Connections	Primary: Overhead conductors	
	(15) Connections		
	1 Durshing CT	Secondary: Cables	
	16) Bushing CT	Primary: 300/1/1/1 A	
		Secondary: 1,200/1/1/1 A	
		Primary neutral: 300/1 A	
		Secondary neutral: 1,200/1 A	
	17) Others	Parallel operation should be done with	
		existing transformers T2 (12.40%)	
		and T5 (12.35%)	2 /
IL-7	33/0.4 kV Station Service Transformer		2 sets
	1) Type	Outdoor use, with No-load tap changer	
	2) Continuous Rated Capacity	315 kVA	
		33 kV	
	3) Rated Primary Voltage		
	4) Rated Secondary Voltage	400-230 V (three phases, four wires)	
	5) Type of Cooling	ONAN	
	6) Number of phase	3	
	7) Frequency	50 Hz	
	8) Tap Voltages	33 kV +/-5.0%	
	9) Number of taps	5 taps	
	10) Step voltage	2.5%	
	11) Winding Connections	Primary: Delta	
		Secondary: Star with solidly grounded	
		Vector Group: Dyn11	
	12) Impedances	approximately 5%	
	13) Connections	Primary & Secondary: Cables	
IL-8	33 kV Switchgears		24
11-0	1) Type	Indoor use, Metal enclosed or Metal	panel
	1) 1ypc		panels
	2) Datad Valtana	clad type	
	2) Rated Voltage	36 kV	

No.	Equipment	Specifications	Q'ty
	3) Rated Current	Busbar: 2,500 A or higher 132/33 kV Transformer bay: 1,600 A or higher	
	4) Rated Interrupting Current	Other bays: 800 A or higher 31.5 kA or higher	
	5) Rated Short-time Current	31.5 kA-2 sec. or higher	
	6) Lightning Impulse Withstand Voltage	170 kV or higher	
	7) Power Frequency Withstand Voltage (1 min.)	70 kV or higher	
	8) Control Voltage9) Number of Feeders	DC 110 V 132/33 kV Transformer secondary	
		: 4 panels 33/11 kV Transformer primary	
		: 3 panels 33/0.4 kV Transformer primary	
		: 2 panels	
		33 kV Capacitor Banks: 2 panels33 kV Feeders: 12 panels	
		Bus-tie: 1 panels	
IL-9	10) Protection Relays 11 kV Switchgears	Overcurrent relays and others	20
112-9	1) Type	Indoor use, Metal enclosed or Metal clad type,	panels
	2) Rated Voltage	12 kV	
	3) Rated Current	Busbar: 1,600 A or higher 33/11 kV Transformer: 1,200 A or	
		higher	
	4) Rated Interrupting Current	Others: 600 A or higher 25 kA or higher	
	5) Rated Short-time Current6) Lightning Impulse Withstand	25 kA-2 sec. or higher 75 kV or higher	
	Voltage 7) Power Frequency Withstand Voltage (1 min.)	28 kV or higher	
	8) Control Voltage 9) Number of Feeders	DC 110 V 33/11 kV Transformer secondary: 3	
		panels 11 kV Feeder: 12 panels 11 kV Capacitor Banks: 3 panels	
		Bustie: 2 panels	
	10) Protection Relays	Over current relays and others	
IL-10	Substation Control System 1) Control System	Micro SCADA system by Control and monitoring servers via local area	1 lot
		network (LAN) for all I/O data in a substation, such as status of switchgears, protection relays, local control facilities and other facilities. The Control and monitoring servers should be duplicate system.	
	2) Component	 Substation Control System Panel 132 kV Transmission Line Bay Control Unit (BCU) 132/33 kV Transformer BCU 33/11 kV Transformer BCU 	

No.	Equipment	Specifications	Q'ty
		 Control and Monitoring Work Stations LAN Cables and other necessary materials 	
	3) Communication	Gateway unit for communication with GCC SCADA system and DCC SCADA system on IEC-60870-1-101/104 basis	
	4) Control Voltage	230 V AC by UPS	
IL-11	Metering Panel	Watt-hour meters supplied by Tanzanian side are mounted by Japanese side at the Site.	1 lot
IL-12	Transformer Voltage Regulating Panel 1) Type	Indoor use, air insulated, metal enclosed	1 lot
	2) Purpose	self-standing type Transformer voltage control by OLTC (On-load tap changers) of 4 units of 132/33 kV Transformers and 33/11 kV Transformers	
IL-13	Transformer Protection Relay Panels 1) Type 2) Purpose	Indoor use, air insulated, metal enclosed self-standing type - 4 units of 132/33 kV Transformer	1 lot
	· •	- 3 units of 33/11 kV Transformer	
IL-14	132 kV Transmission Line Protection Panels		1 lot
	1) Type 2) Purpose	Indoor use, air insulated, metal enclosed self-standing type - UB1 & UB2 (new installation) - New City Center supplied by Finland	
IL-15	DC Power Supply System (including	Project (to be relocated)	1 lot
	DC Distribution Panels) 1) Type	Thyristor type, indoor use, air insulated, metal enclosed self-standing type	
	2) System	Duplicate charger system (Dump-less transfer system)	
	3) Input4) Output	400 V AC or 230 V AC 110 V DC (+/-3 V), 120A Output voltage should be regulated by Silicon droppers or equivalent.	
	5) Batteries	Lead-acid Battery with control valves or equivalent, 700 Ah/10 Hr., 54 cells	
	6) DC Distribution Panels	Indoor use, air insulated, metal enclosed self-standing type, 110 V DC	
IL-16	Uninterruptable Power Supply (UPS) 1) Type	Indoor use, air insulated, metal enclosed self-standing type, Inverter type or equivalent	1 lot
	2) Input	400 V AC or 230 V AC, and 110 V DC (Substation battery)	
	3) Output4) Others	AC 230 V (single phase) +/- 5%, 50 A Distribution circuits for UPS output shall be included.	
IL-17	AC Distribution Panel		1 lot

No.	Equipment	Specifications	Q'ty
	 Type Ratings 	Indoor use, air insulated, metal enclosed self-standing type AC 400 - 230 V, three phase and four wires	
IL-18	33kV Lightning Arrester1) Type2) Rated Voltage3) Rated Discharge Current4) Equipment to be applied	Outdoor use, Metal oxide gapless type, single phase 33 kV 10 kA 33 kV side of T2 and T5 Transformers (6 phases) 33 kV Feeders (for 8 feeders, 24 phases)	30 phases
IL-19	 11kV Lightning Arrester 1) Type 2) Rated Voltage 3) Rated Discharge Current 4) Equipment to be applied 	Outdoor use, Metal oxide gapless type, single phase 12 kV 10 kA 11 kV Feeders (for 15 feeders, 45 phases)	45 phases
IL-20	33 kV, 11 kV Cables1) Type2) Purpose	XLPE Cables Between Transformers and 33 kV/11 kV Switchgear panels (including 33 kV temporary cables)	1 lot
	3) Others	Cable sealing ends, Structures for Cable heads and other necessary materials	
IL-21	Other Materials 1) Low voltage cables 2) Earthing materials	600 V power cables and control cables For substation entire earthing (Earthing conductors, earthing rods, connection materials and other necessary materials)	1 lot
	 3) Cabling materials 4) 11 kV Capacitor Banks a. Type b. Quantity c. Rated capacity d. Rated voltage e. Rated short-time withstand 	Conduits, cable racks and others Outdoor, Three phases/set (Star connection) 3 sets 5 Mvar or higher 12 kV or higher 25 kA-2 sec. or higher	
	currentf. Accessories5) Repairing materials for existing cable pits	Inrush current limiting reactor, Unbalance current detecting CTs, Unbalance current relays and others Concrete blocks, Concrete covers and others	
IL-22	New Control Building 1) Size and story 2) Structures 3) Lightings 4) Other Facilities	1,013 m ² , Single story RC structures	1 lot 1 lot 1 lot 1 lot 1 lot
IL-23	Construction of other substation facilities 1) Steel Structures 2) Substation Earthing 3) Equipment Foundations 4) Cable Trenches/Ducts 5) Oil storage basin for Transformers	for Overhead wires including Overhead grounding wires	1 lot 1 lot 1 lot 1 lot 1 lot 1 lot

No.	Equipment	Specifications	Q'ty
	(with oil separator)		1 lot
	6) Gravels		1 lot
	7) Fire Extinguishers		1 lot
IL-24	1) Removal of existing 90 MVA Transformer	Removal of oil, disassembling and removal of 90 MVA, 132/33 kV Transformer (T1) to vacant space inside	1 lot
		the substation	
	2) 33 kV and 11 kV temporary cables	33 kV and 11 kV temporary cables should be used in order to minimize the duration and the range of power system outages.	1 lot
Uhungo	Substation	oumges.	
UB-1	132 kV Current Transformer		6
OD I	1) Type	Outdoor use, single phase, oil-filled	phases
	1) 1990	porcelain type or bushing type, single or	phuses
		double-core, double ratio, hermetically	
		sealed (insulator creepage distance:	
		3,500 mm or longer)	
	2) Rated Voltage	145 kV or higher	
	3) Rated Primary Current	1,200 A	
	4) Rated Secondary Current	1/1/1 A	
	5) Tolerances	Core 1: Class 1.0 or higher	
	,	Core 2,3: Class 5P20 or higher	
	6) Rated Burden	30 VA each or higher	
	7) Rated Short-time Current	25 kA-2 sec. or higher	
	8) Lightning Impulse Withstand Voltage	650 kV or higher	
	9) Power Frequency Withstand Voltage (1 min.)	275 kV or higher	
	10) Equipment to be applied	For Ilala 1 and Ilala 2 bays	
UB-2	132 kV Overhead Conductors and other materials		1 lot
	1) 132 kV Overhead Conductors	Hard aluminum stranded wires (HAl	
	(Bypass conductors for 2 circuits)	590 mm ² or higher) or equivalent	
	2) Other necessary materials	Terminals, connectors and other	
	-	necessary materials	

2 Msasani Substation (Expansion)

(a) General

Msasani Substation was constructed in 1993, using "the Japan's Grant Aid Project". The substation is consisting of 1 unit of 15 MVA Transformer and outdoor type 11 kV Switchgears (1 x incoming feeder and 3 x outgoing feeders). Since the substation has almost 14 MVA loads or more continuously, the extension of one more transformer and associated equipment has been requested by the Tanzanian government.

Because the space of the substation is limited, it is impossible to extend existing 33 kV busbars. Consequently, the existing 11 kV switchgear should be connected with new 11 kV switchgear, which is fed from new 15 MVA transformer. New transformer should be as same specification as the one of the existing Transformer (T1) to enable parallel operation of the transformers. (The existing LTC control circuit shall be modified.)

Msasani Substation shall be fed from Makumbusho Substation. According to the site survey and the discussion with the Tanzanian side, one unit of 33 kV feeders shall be extended to existing 33 kV switchgears (No.2 Busbar side). The following basic concept is applied for the extension of Msasani Substation.

- One (1) set of 15 MVA Transformer shall be installed.
- Indoor type 33 kV Switchgear panels shall be supplied for incoming and a new 15 MVA Transformer.
- New indoor type 11 kV Switchgear panels shall be installed and connected with the existing switchgear panel using underground cables.
- Micro SCADA system shall be installed to control and monitor the substation and also to communicate with Tanzanian SCADA system.
- Interface for RTU of DCC SCADA system shall be provided.
- 110 V DC Battery and its Charger shall be supplied.
- Control building shall be constructed to install indoor type new equipment of the Project.
- In accordance with Environmental Regulation, noise level at the boundary shall be controlled less than maximum permissive noise level.

Following items should be done by Tanzanian side.

- Removal of overhead lines between first and second poles of 11 kV MS3 feeder
- Removal of the Diesel generator set installed beside the existing Substation
- RTU and associated communication facilities including 48 V DC Battery and charger system installation
- Optical fiber cable installation between new and existing Substations
- Modification of Optical Multiplexer and/or related communication facilities in existing substation to communicate with additional new substation if necessary
- Modification of SCADA system in DCC to accommodate at new Substation
- (b) Substation Equipment

The equipment list for Msasani Substation is shown in Table 2-2-2-4.8 and Single Line Diagram in Fig. SS-E-02. Table 2-2-2-4.9 indicates the necessary equipment at Makumbusho Substation.

No.	Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
1.	15 MVA Transformer (T2)	1	set	15 MVA (ONAN)
				33+/-10% / 11 kV (17 taps)
				Parallel operation with existing T1 trans-
				former is required.
2.	50 kVA Station Service Trans-	1	Set	50 kVA (ONAN)
	former (STR2)			33 kV+/-5.0% / 400-230 V
3.	Indoor type 33 kV	3	panel	1 x Incoming feeder
	Switchgear			1 x 15 MVA Transformer primary
				1 x 50 kVA Station Service Transformer

Table 2-2-2-4.8 Equipment List at Msasani Substation

No.	Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
4.	Indoor type 11 kV Switchgear	5	Panel	 1 x 15 MVA Transformer secondary 3 x Outgoing feeders 1 x Bus Section
5.	Outdoor type 11 kV Switchgear	1	panel	1 panel for connection with new 11 kV Switchgear Modification of LTC control circuits in parallel operation with T2
6.	Micro SCADA System	1	lot	Substation Control system with Bay Control Units
7.	Metering Panel	1	lot	Watt-hour meters (type: EDMIL Mk10E, supplied by the Tanzanian side) are mounted by the Japanese side.
8.	33/11 kV Transformer Control and Protection Panel	1	lot	OLTC (On-Load Tap Changer) Control and Transformer protection
9.	AC Distribution Panels	1	set	400-230 V AC, Three phases, Four wires
10.	110 V DC Batteries and Battery Charger	1	set	Lead-acid batteries with control valves, 55 cells, The Battery capacity should cover the existing equipment, due to deterioration of existing battery system.
				Thyristor type charger (including DC Distribution panels)
11.	33 kV Cables	1	lot	Between 33 kV Switchgear and first pole of 33 kV Distribution line/15 MVA Transformer
12.	11 kV Cables	1	lot	Between 11 kV Switchgear and first pole of 11 kV feeders/15 MVA Transformer, and between outdoor type 11 kV Switchgear (extension) and new installed indoor use 11 kV Switchgear (Bus Section panel)
13.	Low Voltage Cables	1	lot	Power and control cables
14.	Earthing conductors and accessories	1	lot	Substation earthing
15.	Substation Building	1	lot	Switchgear room, Battery room, etc. The design of Substation building should be considered for future development of the system.

No.	Equipment	Q'ty	Unit	Major Specifications
1.	Indoor type 33 kV Switchgear	1	panel	One feeder unit of 33 kV Switchgear panel (feeding for Msasani Substation)
2.	Modification materials for the existing Control panels	1	lot	Mimic buses, Discrepancy switches, Name plates and other necessary materials for Control panel modification
3.	Watt-hour meter	1	lot	Watt-hour meters (type: EDMIL Mk10E supplied by the Tanzanian side) are mounted by the Japanese side.
4.	33 kV Cables	1	lot	33 kV Switchgear to 33 kV first pole inside the substation
5.	Low voltage cables	1	lot	Power and control cables

(c) Specifications of Main Equipment

No.	Equipment	Specifications	Q'ty
MS-1	33/11 kV Power Transformer	1	1 set
1013-1	1) Type	Outdoor use, with On-load tap changer	1 500
	2) Continuous Rated Capacity	15 MVA	
	3) Rated Primary Voltage	33 kV	
	4) Rated Secondary Voltage	11 kV	
	5) Type of Cooling	ONAN	
	6) Number of phase	3	
	7) Frequency	50 Hz	
	8) Tap Voltages	33 kV +10% to -10%	
	9) Number of taps	17 taps	
	10) Step voltage	1.25%	
	11) Winding Connections	Primary: Star with solidly grounded	
		Secondary: Star with solidly grounded	
		Tertiary: Delta	
		Vector Group: YNyn0(d1)	
	12) Impedances	Approximately 8.0% (Impedance of the	
	· •	existing transformer; 7.64%)	
	13) Lightning Impulse Withstand	Primary: 200 kV or higher	
	Voltage	Secondary: 90 kV or higher	
	14) Power Frequency Withstand	Primary: 70 kV or higher	
	Voltage (1 min.)	Secondary: 28 kV or higher	
	15) Connection	Primary & Secondary: Cables	
	16) Bushing CT	Secondary: 1,200/1/1 A	
	10) Bushing CT		
		Primary neutral: 400/1 A	
	17) Others	Secondary neutral: 400/1 A	
	17) Others	Parallel operation shall be done with existing transformers T1 (7.64%)	
MS-2	33/0.4 kV Station Service		1 set
	Transformer		
	1) Type	Outdoor use, with No-load tap changer	
	2) Continuous Rated Capacity	50 kVA	
	3) Rated Primary Voltage	33 kV	
	4) Rated Secondary Voltage	400-230 V (three phases, four wires)	
	5) Type of Cooling	ONAN	
	6) Number of phase	3	
	7) Frequency	50 Hz	
	8) Tap Voltages	30 HZ 33 kV +/-5.0%	
	9) Number of taps		
	10) Step voltage	5 taps 2.5%	
	10) Step voltage 11) Winding Connections	Primary: Delta	
	(11) which g Connections		
		Secondary: Star with neutral brought out,	
		with solidly grounded	
		Vector Group: Dyn11	
1 1 2 3	12) Impedances	approximately 6%	-
MS-3	33 kV Switchgears		3
	1) Type	Indoor use, Metal enclosed or Metal clad	panels
		type	
	2) Rated Voltage	36 kV	
	3) Rated Current	Busbar: 1600 A or higher	
		33/11 kV Transformer: 800 A or higher	
		Others: 800 A or higher	
	4) Rated Interrupting Current	25 kA or higher	

Table 2-2-2-4.10 Specifications of Main Equipment

No.	Equipment	Specifications	Q'ty
	6) Lightning Impulse Withstand	200 kV or higher	
	Voltage 7) Power Frequency Withstand Voltage (1 min.)	90 kV or higher	
	8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer primary: 1 panel 33/0.4 kV Transformer primary: 1 panel	
		Incoming: 1 panel	
MS-4	11 kV Switchgears		5
	1) Type	Indoor use, Metal enclosed or Metal clad type, air insulated	panels
	2) Rated Voltage	12 kV	
	3) Rated Current	Busbar: 1,200 A or higher Others: 600 A or higher	
	4) Rated Interrupting Current	25 kA or higher	
	5) Rated Short-time Current	25 kA-2 sec. or higher	
	6) Lightning Impulse Withstand Voltage	75 kV or higher	
	7) Power Frequency Withstand Voltage (1 min.)	28 kV or higher	
	8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer secondary: 1 panel	
		11 kV Feeder: 3 panels	
		Panel for Busbar connection: 1 panel	
		(between existing and new 11 kV	
		Switchgears)	
MS-5	Extension of Existing 11 kV		1
	Switchgear (Outdoor use)		panel
	1) Purpose	In order to connect the new 11 kV	
		Switchgear (indoor use) to the existing	
		switchgear (outdoor use), the cable	
		connection feeder shall be extended for	
		existing switchgear.	
	2) Type	Outdoor, metal-enclosed and air insulated type	
	3) Manufacturer of existing Switchgear	Takaoka Electric Mfg. Co., Ltd.	
	4) Ratings	12 kV, 1200 A, 25 kA	
	5) Number of Feeders	Panel for Busbar connection : 1 panel	
		(Busbar extension and cable connection (1,200 A capacity) with new indoor type	
		Switchgear)	
	6) Others	Modification shall be done for the existing Tap-changer control circuits to enable parallel operation with existing T1	
		parallel operation with existing T1 transformer (7.64%).	
MS-6	Micro SCADA Sytem		1 lot
1110-0	1) Control System	Micro SCADA system by Control and monitoring servers via local area network	1 101
		(LAN) for all I/O data in a substation.	
	2) Component	 Substation Control System Panel 33/11 kV Transformer BCU Control and Monitoring Work Stations 	
		 LAN Cables and other necessary materials 	

No.	Equipment	Specifications	Q'ty
	3) Communication	Gateway unit for communication with GCC SCADA system and DCC SCADA system on IEC-60870-1-101/104 basis	
	4) Control Voltage	110 V DC and 230 V AC by UPS	
MS-7	Metering Panel	Watt-hour meters supplied by Tanzanian side are mounted by Japanese side at the Sites.	1 panel
MS-8	33/11 kV Transformer Control and Protection Panel		1 panel
	1) Type	Indoor use, air insulated, metal enclosed	P
	2) Control	 self-standing type Control of OLTC (On-load tap changers) on 33/11 kV Transformers Transformer's parallel operation 	
		control and/or independent operation control	
	3) Protection	Transformer differential protection and over current protection	
MS-9	AC Distribution Panel		1 lot
	1) Type	Indoor use, air insulated, metal enclosed	
	2) Ratings	self-standing type AC 400 - 230 V, three phase and four wires	
MS-10	DC Power Supply System (including		1 lot
	DC Distribution Panels)		
	1) Type	Thyristor type, indoor use, air insulated, metal enclosed self-standing type	
	2) System	Single charger	
	3) Input	400 V AC or 230 V AC	
	4) Output	DC 110 V (+/-3 %) Output voltage should be regulated by	
	5) Batteries	Silicon droppers or equivalent. Lead-acid Battery with control valves or equivalent, 700 Ah/10 Hr., 54 cells	
	6) DC Distribution Panels	Indoor use, air insulated, metal enclosed self-standing type, 110 V DC	
MS-11	33 kV Lightning Arrester		6
	1) Type	Outdoor use, Metal oxide gapless type,	phases
	2) Rated Voltage	single phase 33 kV	
	3) Rated Discharge Current	10 kA	
	4) Equipment to be applied	Top of the first pole of 33 kV incoming and outgoing feeders (3 phases each)	
MS-12	11 kV Lightning Arrester		12
	1) Type	Outdoor use, Metal oxide gapless type, single phase	phases
	2) Rated Voltage	12 kV	
	3) Rated Discharge Current	10 kA	
	4) Equipment to be applied	11 kV side of T2 Transformer (3 phases inside of the cable box) and 11 kV outgoing feeders (3 phases for 3 feeders)	
MS-13	33 kV, 11 kV Cables	ourgoing recuers (5 phases for 5 feedels)	1 lot
1.10 15	1) Type	XLPE Cables	1.100
	2) Purpose	Between Transformers and 33 kV/11 kV	

No.	Equipment	Specifications	Q'ty
	3) Others	Switchgear panels Cable sealing ends, Structures for Cable heads and other necessary materials	
MS-14	Other Materials		1 lot
	 Low voltage cables Earthing materials 	600 V power cables and control cables For substation entire earthing (Earthing conductors, earthing rods, connection materials and other necessary materials)	
	3) Cabling materials	Conduits, cable racks and others	
MS-15	33 kV Switchgears for Makumbusho Substation		1 panel
	 Purpose Type 	Feeder panel extension for power feeding to Msasani Substation Indoor type, 33 kV Gas insulated Metal	
	3) Manufacturer and year4) Panel type and Serial No.	Clad Switchgear AREVA (2009) GHA-36-25-08, No. TG092361-1 (Busbar	
	5) Ratings 6) Number of Feeders 7) Type of Circuit Breaker	ratings: 1,600 A) 36 kV, 800 A, 25 kA-2 sec. 33 kV Feeder: 1 panel VCB or GCB	
MS-16	Modification materials for the existing Control panels at Makumbusho Substation	Additional control panel shall be installed next to the existing control panels. The additional panel includes digital meters, mimic buses, discrepancy switches, wiring materials, terminals and other necessary parts.	1 lot
MS-17	Metering Panel at Makumbusho Substation	Watt-hour meters supplied by the Tanzanian side are mounted by the Japanese side at the Sites.	1 lot
MS-18	New Control Building 1) Size and story 2) Structures 3) Lightings 4) Other Facilities	169 m ² , Single story RC structures	1 lot 1 lot 1 lot 1 lot 1 lot
MS-19	Construction of other substation facilities 1) Steel Structures 2) Substation Earthing 3) Outdoor Lightings 4) Equipment Foundations 5) Cable Trenches/Ducts 6) Oil storage basin for Transformers (with oil separator) 7) Gravels	for Overhead wires including Overhead grounding wires	1 lot 1 lot 1 lot 1 lot 1 lot 1 lot 1 lot 1 lot
	8) Fire Extinguishers		1 lot

③ Muhimbili Substation (New)

(a) General

In accordance with Tanzanian Government's request, one 15 MVA, 33/11 kV Transformer and its incoming and outgoing switchgears shall be installed.

Since New City Center Substation, which is power source of Muhimbili Substation, will

be constructed newly by the Finnish Project, it is recommended that one feeder of 33 kV switchgear should be considered for Muhimbili Substation at New City Center Substation by the Finnish side.

The following basic concept is applied for new Muhimbili Substation.

- One (1) set of 15 MVA Transformer shall be installed.
- Indoor type 33 kV Switchgear panels shall be supplied for incoming and a new 15 MVA Transformer.
- Indoor type 11 kV Switchgear panels shall be installed and distributed to the area.
- Micro SCADA system shall be installed to control and monitor the substation and also to communicate with Tanzanian SCADA system.
- 110 V DC Battery and its Charger shall be supplied.
- Control building shall be constructed to install indoor type new equipment of the Project.
- In accordance with Environmental Regulation, noise level at the boundary shall be controlled less than maximum permissive noise level.

Following items should be done by the Tanzanian side.

- Multiplexer and associated communication facilities including 48 V DC Battery and charger system installation.
- Optical fiber cable installation between new Substation and DCC SCADA system
- Modification of Optical Multiplexer and/or related communication facilities in existing Substation to communicate with additional new substation if necessary
- Modification of DCC SCADA system to accommodate new Substations
- (b) Substation Equipment

The equipment list for Muhimbili Substation is shown in Table 2-2-2-4.11 and Single Line Diagram in Fig. SS-E-03.

No.	Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
1.	15 MVA Transformer (T1)	1	Set	15 MVA (ONAN) 33+/-10% / 11 kV (17 taps)
2.	50 kVA Station Service Transformer (STR1)	1	Set	50 kVA (ONAN) 33 kV +/-5.0% / 400-230 V
3.	Indoor type 33 kV Switchgear	3	panel	1 x Incoming feeder 1 x 15 MVA Transformer primary 1 x 50 kVA Station Service Transformer
4.	Indoor type 11 kV Switchgear	4	Panel	1 x 15 MVA Transformer secondary 3 x Outgoing feeders
5.	Micro SCADA System	1	lot	Substation Control system with Bay Control Units
6.	Metering Panel	1	lot	Watt-hour meters supplied by the Tanzanian side are mounted by the Japanese side at the Sites.

Table 2-2-2-4.11 Equipment List at Muhimbili Substation

No.	Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
7.	33/11 kV Transformer	1	lot	OLTC (On-Load Tap Changer) Control
	Control and Protection Panel			and Transformer protection
8.	AC Distribution Panels	1	set	400-230 V AC, Three phases, Four wires
9.	110 V DC Batteries and its	1	set	Lead-acid batteries and its charger
	Charger			(including DC Distribution panels)
10.	33 kV Cables	1	lot	Between 33 kV Switchgear and first pole
				of 33 kV Distribution line/15 MVA
				Transformer
11.	11 kV Cables	1	lot	Between 11 kV Switchgear and first pole
				of 11 kV feeders/15 MVA Transformer
12.	Low Voltage Cables	1	lot	Power and control cables
13.	Earthing conductors and	1	lot	Substation earthing
	accessories			
14.	Substation Building	1	lot	Switchgear room, Battery room, etc.
				The design of Substation building should
				be considered for future development of
				the system.

(c) Specifications of Main Equipment

No.	Equipment	Specifications	Q'ty
	1 1		~ •
MH-1	 33/11 kV Power Transformer 1) Type 2) Continuous Rated Capacity 3) Rated Primary Voltage 4) Rated Secondary Voltage 5) Type of Cooling 6) Number of phase 7) Frequency 8) Tap Voltages 9) Number of taps 	Outdoor use, with On-load tap changer 15 MVA 33 kV 11 kV ONAN 3 50 Hz 33 kV +10% to -10% 17 taps	1 set
	 10) Step voltage 11) Winding Connections 12) Impedances 13) Lightning Impulse Withstand 	1.25%Primary:Star with solidly groundedSecondary:Star with solidly groundedTertiary:DeltaVector Group:YNyn0(d1)Approximately 8%Primary:200 kV or higher	
	 13) Eighting Inpulse Withstand Voltage 14) Power Frequency Withstand Voltage (1 min.) 15) Connections 16) Bushing CT 	Secondary: 90 kV or higher Primary: 70 kV or higher Secondary: 28 kV or higher, Primary & Secondary: Cables Secondary: 1,200/1/1 A Primary neutral: 400/1 A Secondary neutral: 400/1 A	
MH-2	 33/0.4 kV Station Service Transformer 1) Type 2) Continuous Rated Capacity 3) Rated Primary Voltage 4) Rated Secondary Voltage 5) Type of Cooling 	Outdoor use, with No-load tap changer 50 kVA 33 kV 400-230 V (three phases, four wires) ONAN	1 set
	6) Number of phase	3	

Table 2-2-2-4.12 Specifications of Main Equipment

No.	Equipment	Specifications	Q'ty
	7) Frequency	50 Hz	
	8) Tap Voltages	33 kV +/-5.0%	
	9) Number of taps	5 taps	
	10) Step voltage	2.5%	
	11) Winding Connections	Primary: Delta	
	if) which geometricity	Secondary: Star with solidly grounded	
	12) Incorrection	Vector Group: Dyn11	
1011.0	12) Impedances	approximately 6%	2
MH-3	33 kV Switchgears		3
	1) Type	Indoor use, Metal enclosed or Metal clad	panel
		type	
	2) Rated Voltage	36 kV	
	3) Rated Current	Busbar: 1600 A or higher	
	-,	33/11 kV Transformer: 800 A or higher	
		Others: 800 A or higher	
	4) Rated Interrupting Current	25 kA or higher	
	5) Rated Short-time Current	25 kA-2 sec. or higher	
	6) Lightning Impulse Withstand	170 kV or higher	
	Voltage		
	7) Power Frequency Withstand	70 kV or higher	
	Voltage (1 min.)		
	8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer primary: 1 panel	
		33/0.4 kV Transformer primary: 1 panel	
		Incoming: 1 panel	
MH-4	11 IN Switch googe	meoning. I paner	4
<u>МП-4</u>	11 kV Switchgears	Indeen was Matel anglesed on Matel alad	-
	1) Type	Indoor use, Metal enclosed or Metal clad	panel
		type, air insulated	
	2) Rated Voltage	12 kV	
	3) Rated Current	Busbar: 1,200 A or higher	
		Others: 600 A or higher	
	4) Rated Interrupting Current	25 kA or higher	
	5) Rated Short-time Current	25 kA-2 sec. or higher	
	6) Lightning Impulse Withstand	75 kV or higher	
	Voltage	/ 5 K V OF HIGHOF	
		29 kV or higher	
	7) Power Frequency Withstand	28 kV or higher	
	Voltage (1 min.)	DC 110 V	
	8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer secondary: 1 panel	
		11 kV Feeder: 3 panels	
MH-5	Micro SCADA Sytem		1 lot
	1) Control System	Micro SCADA system by Control and	
		monitoring servers via local area network	
		(LAN) for all I/O data in a substation.	
	2) Component	- Substation Control System Panel	
		- 33/11 kV Transformer BCU	
		- Control and Monitoring Work Stations	
		- LAN Cables and other necessary	
		materials	
	3) Communication	Gateway unit for communication with	
		GCC SCADA system and DCC SCADA	
		system on IEC-60870-1-101/104 basis	
MH-6	Metering Panel		1
10111-0		11 5	-
		Tanzanian side are mounted by the	panel
		Japanese side at the Sites.	1

No.	Equipment	Specifications	Q'ty
MH-7	33/11 kV Transformer Control and Protection Panel		1 panel
	1) Type	Indoor use, air insulated, metal enclosed	paner
	2) Control	 self-standing type Control of OLTC (On-load tap changer) on 33/11 kV Transformer Transformer's parallel operation control 	
	3) Protection	and/or independent operation control (for future use to be considered) Transformer differential protection and overcurrent protection	
MH-8	AC Distribution Panel 1) Type	Indoor use, air insulated, metal enclosed	1 lot
	2) Ratings	self-standing type AC 400 - 230 V, three phase and four wires	
MH-9	DC Power Supply System (including DC Distribution Panels)		1 lot
	1) Type	Thyristor type, indoor use, air insulated, metal enclosed self-standing type Single charger	
	2) System3) Input	400 V AC or 230 V AC	
	4) Output	DC 110 V (+/-3 %) Output voltage should be regulated by Silicon droppers or equivalent.	
	5) Batteries	Lead-acid Battery with control valves or equivalent, 700 Ah/10 Hr., 54 cells	
	6) DC Distribution Panels	Indoor use, air insulated, metal enclosed self-standing type, 110 V DC	
MH-10	33 kV Lightning Arrester		6
	 Type Rated Voltage 	Outdoor use, Metal oxide gapless type, single phase 33 kV	phases
	3) Rated Discharge Current	10 kA	
	4) Equipment to be applied	Top of the first pole of 33 kV incoming and outgoing feeders (3 phases each)	
MH-11	11 kV Lightning Arrester		12
	 Type Rated Voltage 	Outdoor use, Metal oxide gapless type, single phase 12 kV	phases
	3) Rated Discharge Current4) Equipment to be applied	10 kA 11 kV side of T1 Transformer (3 phases inside of the cable box) and 11 kV outgoing feeders (3 phases for 3 feeders)	
MH-12	33 kV, 11 kV Cables		1 lot
	1) Type 2) Purpose	XLPE Cables Between Transformers and 33 kV/11 kV Switchgear panels	
	3) Others	Cable sealing ends, Cable head structures and other necessary materials	
MH-13	Other Materials	600 V nower only and control only	1 lot
	 Low voltage cables Earthing materials 	600 V power cables and control cables For substation entire earthing (Earthing conductors, earthing rods, connection materials and other necessary materials)	
	3) Cabling materials	Conduits, cable racks and others	

No.	Equipment	Specifications	Q'ty
MH-14	New Control Building		
	1) Size and story	169 m^2 , Single story	1 lot
	2) Structures	RC structures	1 lot
	3) Lightings		1 lot
	4) Other Facilities		1 lot
MH-15	Construction of other substation		
	facilities		
	1) Steel Structures	for Overhead wires	1 lot
	2) Substation Earthing	including Overhead grounding wires	1 lot
	3) Outdoor Lightings		1 lot
	4) Equipment Foundations		1 lot
	5) Cable Trenches/Ducts		1 lot
	6) Oil storage basin for Transformers		1 lot
	(with oil separator)		
	7) Gravels		1 lot
	8) Fire Extinguishers		1 lot

- ④ Jangwani Beach Substation (New)
 - (a) General

Tanzanian Government's request is as same as Muhimbili Substation, i.e., one 15 MVA, 33/11 kV Transformer and its incoming and outgoing switchgears shall be installed.

Jangwani Beach Substation shall be fed from Tegeta Substation. According to the discussion with Tanzanian side and our site survey, one unit of 33 kV feeder shall be extended to existing 33 kV switchgears (No.2 Busbar side). The basic concept is as same as the one for Muhimbili Substation.

(b) Substation Equipment

The equipment list for Jangwani Beach Substation is shown in Table 2-2-2-4.13 and Single Line Diagram in Fig. SS-E-04. Table 2-2-2-4.14 indicates the necessary equipment at Tegeta Substation.

Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
15 MVA Transformer (T1)	1	set	15 MVA (ONAN)
			33+/-10% / 11 kV (17 taps)
50 kVA Station Service	1	set	50 kVA (ONAN)
Transformer (STR1)			33 kV +/-5.0% / 400-230 V
Indoor type 33 kV Switchgear	3	panel	1 x Incoming feeder
			1 x 15 MVA Transformer primary
			1 x 50 kVA Station Service Transformer
Indoor type 11 kV Switchgear	4	Panel	1 x 15 MVA Transformer secondary
			3 x Outgoing feeders
Micro SCADA System	1	lot	Substation Control system with Bay
			Control Units
Metering Panel	1	lot	Watt-hour meters supplied by Tanzanian
			side are mounted by Japanese side at the
			Sites.
	Japanese side 15 MVA Transformer (T1) 50 kVA Station Service Transformer (STR1) Indoor type 33 kV Switchgear Indoor type 11 kV Switchgear Micro SCADA System	Japanese sideQ ty15 MVA Transformer (T1)150 kVA Station Service1Transformer (STR1)1Indoor type 33 kV Switchgear3Indoor type 11 kV Switchgear4Micro SCADA System1	Japanese sideQ tyUnit15 MVA Transformer (T1)1set50 kVA Station Service1setTransformer (STR1)1setIndoor type 33 kV Switchgear3panelIndoor type 11 kV Switchgear4PanelMicro SCADA System1lot

Table 2-2-2-4.13 Equipment List at Jangwani Beach Substation

No.	Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
7.	33/11 kV Transformer Control	1	lot	OLTC (On-Load Tap Changer) Control
	and Protection Panel			and Transformer protection
8.	AC Distribution Panels	1	set	400-230 V AC, Three phases, Four wires
9.	110 V DC Batteries and its	1	set	Lead-acid batteries and its charger
	Charger			(including DC Distribution panels)
10.	33 kV Cables	1	lot	Between 33 kV Switchgear and first pole
				of 33 kV Distribution line/15 MVA
				Transformer
11.	11 kV Cables	1	lot	Between 11 kV Switchgear and first pole
				of 11 kV feeders/15 MVA Transformer
12.	Low Voltage Cables	1	lot	Power and control cables
13.	Earthing conductors and	1	lot	Substation earthing
	accessories			
14.	Substation Building	1	lot	Switchgear room, Battery room, etc.
				The design of Substation building should
				be considered for future development of
				the system.

Table 2-2-2-4.14 Eq	uipment List	at Tegeta Substation

No.	Equipment	Q'ty	Unit	Major Specifications
1.	Indoor type 33 kV Switchgear	1	panel	One feeder unit of 33 kV Switchgear panel (feeding for Jangwani Beach Substation)
2.	Modification materials for the existing Control panels	1	lot	Mimic buses, Control switches, Name plates and other necessary materials for Control panel modification
3.	Watt-hour meter	1	set	To install Watt-hour meter to the existing panel
4.	33 kV Cables	1	lot	33 kV Switchgear to 33 kV first pole inside the Substation
5.	Low voltage cables	1	lot	Power and control cables

(c) Specifications of Main Equipment

Table 2-2-2-4.15 Specifications of Main Equipment

No.	Equipment	Specifications	Q'ty
JB-1	33/11 kV Power Transformer		1 set
	1) Type	Outdoor use, with On-load tap changer	
	2) Continuous Rated Capacity	15 MVA	
	3) Rated Primary Voltage	33 kV	
	4) Rated Secondary Voltage	11 kV	
	5) Type of Cooling	ONAN	
	6) Number of phase	3	
	7) Frequency	50 Hz	
	8) Tap Voltages	33 kV +10% to -10%	
	9) Number of taps	17 taps	
	10) Step voltage	1.25%	
	11) Winding Connections	Primary: Star with solidly grounded	
		Secondary: Star with solidly grounded	
		Tertiary: Delta	
	12) Impedances	Approximately 8%	
	13) Lightning Impulse Withstand	Primary: 200 kV or higher	
	Voltage	Secondary: 90 kV or higher	
	14) Power Frequency Withstand	Primary: 70 kV or higher	

No.	Equipment	Specifications	Q'ty
	Voltage (1 min.)	Secondary: 28 kV or higher	
	15) Connection	Primary & Secondary: Cables	
	16) Bushing CT	Secondary: 1,200/1/1 A	
		Primary neutral: 400/1 A	
		Secondary neutral: 400/1 A	
JB-2	33/0.4 kV Station Service		1 set
	Transformer		
	1) Type	Outdoor use, with No-load tap changer	
	2) Rated Primary Voltage	33 kV	
	3) Rated Secondary Voltage	400-230 V (three phases, four wires)	
	4) Continuous Rated Capacity	50 kVA	
	5) Type of Cooling	ONAN	
	6) Number of phase	3	
	7) Frequency	50 Hz	
	8) Tap Voltages	33 kV+/-5.0%	
	9) Number of taps	5 taps	
	10) Step voltage	2.5%	
	11) Winding Connections	Primary: Delta	
		Secondary: Star with solidly grounded	
		Vector Group: Dyn11	
	12) Impedances	Approximately 6%	
JB-3	33 kV Switchgears		3
	1) Type	Indoor use, Metal enclosed or Metal clad	Panel
		type	
	2) Rated Voltage	36 kV	
	3) Rated Current	Busbar: 1600 A or higher	
		33/11 kV Transformer: 800 A or higher	
		Others: 800 A or higher	
	4) Rated Interrupting Current	25 kA or higher	
	5) Rated Short-time Current	25 kA-2 sec. or higher	
	6) Lightning Impulse Withstand	170 kV or higher	
	Voltage		
	7) Power Frequency Withstand	70 kV or higher	
	Voltage (1 min.)		
	8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer primary: 1 panel	
		33/0.4 kV Transformer primary: 1 panel	
		Incoming: 1 panel	
JB-4	11 kV Switchgears		4
	1) Type	Indoor use, Metal enclosed or Metal clad	panel
		type, air insulated	
	2) Rated Voltage	12 kV	
	3) Rated Current	Busbar: 1250 A or higher	
		Others: 600 A or higher	
	4) Rated Interrupting Current	25 kA or higher	
	5) Rated Short-time Current	25 kA-2 sec. or higher	
	6) Lightning Impulse Withstand	75 kV or higher	
	Voltage		
	7) Power Frequency Withstand	28 kV or higher	
	Voltage (1 min.)		
	8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer secondary: 1 panel	
		11 kV Feeder: 3 panels	
JB-5	Micro SCADA Sytem		1 lot
	1) Control System	Micro SCADA system by Control and	- 100
	,		1
		monitoring servers via local area network	

No.	Equipment	Specifications	Q'ty
	2) Component	- Substation Control System Panel	
		- 33/11 kV Transformer BCU	
		- Control and Monitoring Work Stations	
		- LAN Cables and other necessary	
		materials	
	3) Communication	Gateway unit for communication with	
		GCC SCADA system and DCC SCADA	
		system on IEC-60870-1-101/104 basis	
JB-6	Metering Panel	Watt-hour meters supplied by the	1
		Tanzanian side are mounted by the	panel
ID 7	33/11 kV Transformer Control and	Japanese side at the Sites.	1
JB-7	Protection Panel		
		Indoor use air insulated metal enclosed	panel
	1) Type	Indoor use, air insulated, metal enclosed self-standing type	
	2) Control	- Control of OLTC (On-load tap changer)	
	2) Control	on 33/11 kV Transformers	
		- Transformer's parallel operation control	
		and/or independent operation control	
		(for future use to be considered)	
	3) Protection	Transformer differential protection and	
		overcurrent protection	
JB-8	AC Distribution Panel		1 lot
	1) Type	Indoor use, air insulated, metal enclosed	
		self-standing type	
	2) Ratings	AC 400 - 230 V, three phase and four	
		wires	
JB-9	DC Power Supply System (including		1 lot
	DC Distribution Panels)	Themisten temp indeen ever ain insulated	
	1) Type	Thyristor type, indoor use, air insulated,	
	2) System	metal enclosed self-standing type Single charger	
	3) Input	400 V AC or 230 V AC	
	4) Output	DC 110 V (+/-3 %)	
	1) Output	Output voltage should be regulated by	
		Silicon droppers or equivalent.	
	5) Batteries	Lead-acid Battery with control valves or	
		equivalent, 700 Ah/10 Hr., 54 cells	
	6) DC Distribution Panels	Indoor use, air insulated, metal enclosed	
		self-standing type, 110 V DC	
JB-10	33 kV Lightning Arrester		6
	1) Type	Outdoor use, Metal oxide gapless type,	phase
		single phase	
	2) Rated Voltage	33 kV	
	3) Rated Discharge Current	10 kA	
	4) Equipment to be applied	Top of the first pole of 33 kV incoming	
ID 11	11 W Lightning Arrestor	and outgoing feeders (3 phases each)	10
JB-11	11 kV Lightning Arrester 1) Type	Outdoor use, Metal oxide gapless type,	12 phase
	1) Type	single phase	phase
	2) Rated Voltage	12 kV	
	3) Rated Discharge Current	12 KV 10 kA	
	4) Equipment to be applied	11 kV side of T1 Transformer (3 phases	
	., 24 aprilent to be applied	inside of the cable box) and 11 kV	
		outgoing feeders (3 phases for 3 feeders)	
	1	and and require (5 phases for 5 recuers)	l

No.	Equipment	Specifications	Q'ty
JB-12	33 kV, 11 kV Cables		1 lot
	1) Type	XLPE Cables	
	2) Purpose	Between Transformers and 33/11 kV Switchgear panels	
	3) Others	Cable sealing ends, Cable head structures and other necessary materials	
JB-13	Other Materials		1 lot
	1) Low voltage cables	600 V power cables and control cables	
	2) Earthing materials	For substation entire earthing (Earthing conductors, earthing rods, connection materials and other necessary materials)	
	3) Cabling materials	Conduits, cable racks and others	
JB-14	33 kV Switchgear for Tegeta		1
	Substation		panel
	1) Purpose	Feeder panel extension for power feeding to Jangwani Beach Substation	
	2) Type	Indoor type, 33 kV Air insulated Metal Clad Switchgear	
	3) Manufacturer and year	ABB SACE (1994)	
	3) Panel type and Reference No.	UNILVER G36, 1.2065.3 (Busbar rating: 1,250 A)	
	4) Ratings	36 kV, 800 A, 25 kA-1 sec.	
	5) Number of Feeders	11 kV Feeder: 1 panel	
	6) Type of Circuit Breaker	VCB or GCB	
JB-15	Modification materials for the	Meters, Mimic buses, Control switches,	1 lot
	existing Control panels at Tegeta	Wiring materials, Terminals and other	
	Substation	necessary parts	
JB-16	Metering Panel at Tegeta Substation	Watt-hour meters supplied by the Tanzanian side are mounted by the	1 lot
		Japanese side at the Sites.	
JB-17	New Control Building		
	1) Size and story	169 m^2 , Single story	1 lot
	2) Structures	RC structures	1 lot
	3) Lightings		1 lot
	4) Other Facilities		1 lot
JB-18	Construction of other substation facilities		
	1) Steel Structures	for Overhead wires	1 lot
	2) Substation Earthing	including Overhead grounding wires	1 lot
	3) Outdoor Lightings		1 lot
	4) Equipment Foundations		1 lot
	5) Cable Trenches/Ducts		1 lot
	6) Oil storage basin for Transformers (with oil separator)		1 lot
	7) Gravels		1 lot
	8) Fire Extinguishers		1 lot

(5) Mwananyamala Substation (New)

(a) General

Tanzanian Government's request is as same as Muhimbili Substation, i.e., one 15 MVA, 33/11 kV Transformer and its incoming and outgoing switchgears shall be installed.

Mwananyamala Substation shall be fed from Makumbusho Substation, as same as

Msasani Substation. According to the discussion with Tanzanian side and our site survey, one unit of 33 kV feeder shall be extended at No.1 Busbar side of existing 33 kV switchgear, which is the other side of the one for Msasani Substation. The basic concept is as same as the one for Muhimbili Substation.

(b) Substation Equipment

The equipment list for Mwananyamala Substation is shown in Table 2-2-2-4.16 and Single Line Diagram in Fig. SS-E-05. Table 2-2-2-4.17 indicates the necessary equipment in Makumbusho Substation.

				Wiwananyamata Substation
No.	Equipment supplied by the Japanese side	Q'ty	Unit	Major Specifications
1.	15 MVA Transformer (T1)	1	set	15 MVA (ONAN)
				33+/-10% / 11 kV (17 taps)
2.	50 kVA Station Service	1	set	50 kVA (ONAN)
	Transformer			33 kV +/-5.0% / 400-230 V
3.	Indoor type 33 kV Switchgear	3	panel	1 x Incoming feeder
			-	1 x 15 MVA Transformer primary
				1 x 50 kVA Station Service Transformer
4.	Indoor type 11 kV Switchgear	4	Panel	1 x 15 MVA Transformer secondary
				3 x Outgoing feeders
5.	Micro SCADA System	1	lot	Substation Control system with Bay Control
				Units
6.	Metering Panel	1	lot	Watt-hour meters supplied by the Tanzanian
	_			side are mounted by the Japanese side.
7.	33/11 kV Transformer Control	1	lot	OLTC (On-Load Tap Changer) Control and
	and Protection Panel			Transformer protection
8.	AC Distribution Panels	1	set	400-230 V AC, Three phases, Four wires
9.	110 V DC Batteries and its	1	set	Lead-acid batteries and its charger
	Charger			(including DC Distribution panels)
10.	33 kV Cables	1	lot	Between 33 kV Switchgear and first pole of
				33 kV Distribution line/15 MVA
				Transformer
11.	11 kV Cables	1	lot	Between 11 kV Switchgear and first pole of
				11 kV feeders/15 MVA Transformer
12.	Low Voltage Cables	1	lot	Power and control cables
13.	Earthing conductors and	1	lot	Substation earthing
	accessories			
14.	Substation Building	1	lot	Switchgear room, Battery room, etc.
				The design of Substation building should be
				considered for future development of the
				system.

Table 2-2-2-4.16 Equipment List at Mwananyamala Substation

No.	Equipment	Q'ty	Unit	Major Specifications
1.	Indoor type 33 kV Switchgear	1	panel	One feeder unit of 33 kV Switchgear panel (feeding for Mwananyamala Substation)
2.	Modification materials for the existing Control panels	1	lot	Mimic buses, Discrepancy switches, Name plates and other necessary materials for Control panel modification
3.	Watt-hour meter	1	lot	Watt-hour meters supplied by the Tanzanian side are mounted by the Japanese side at the Sites.
4.	33 kV Cables	1	lot	33 kV Switchgear to 33 kV first pole inside the Substation
5.	Low voltage cables	1	lot	Power and control cables

Table 2-2-2-4.17 Equipment List at Makumbusho Substation

(c) Specifications of Main Equipment

No.	Equipment	Specifications	Q'ty
MW-1	 33/11 kV Power Transformer 1) Type 2) Continuous Rated Capacity 3) Rated Primary Voltage 4) Rated Secondary Voltage 5) Type of Cooling 6) Number of phase 7) Frequency 8) Tap Voltages 9) Number of taps 10) Step voltage 11) Winding Connections 	Outdoor use, with On-load tap changer 15 MVA 33 kV 11 kV ONAN 3 50 Hz 33 kV +10% to -10% 17 taps 1.25% Primary: Star with solidly grounded Secondary: Star with solidly grounded Tertiary: Delta	1 set
	 12) Impedances 13) Lightning Impulse Withstand Voltage 14) Power Frequency Withstand Voltage (1 min.) 15) Connection 16) Bushing CT 	Approximately 8% Primary: 200 kV or higher Secondary: 90 kV or higher Primary: 70 kV or higher Secondary: 28 kV or higher Primary & Secondary: Cables Secondary: 1,200/1/1 A Primary neutral: 400/1 A Secondary neutral: 400/1 A	
MW-2	Station Service Transformer 1) Type 2) Continuous Rated Capacity 3) Rated Primary Voltage 4) Rated Secondary Voltage 5) Type of Cooling 6) Number of phase 7) Frequency 8) Tap Voltages 9) Number of taps 10) Step voltage 11) Winding Connections	Outdoor use, with No-load tap changer 50 kVA 33 kV 400-230 V (three phases, four wires) ONAN 3 50 Hz 33 kV +/-5.0% 5 taps 2.5% Primary: Delta Secondary: Star with solidly grounded Vector Group: Dyn11	1 set

No.	Equipment	Specifications	Q'ty
	12) Impedances	Approximately 6%	
MW-3	33 kV Switchgears 1) Type	Indoor use, Metal enclosed or Metal clad type	3 panel
	2) Rated Voltage3) Rated Current	36 kV Busbar: 1600 A or higher 33/11 kV Transformer: 800 A or higher Others: 800 A or higher	
	4) Rated Interrupting Current5) Rated Short-time Current6) Lightning Impulse Withstand	25 kA or higher 25 kA-2 sec. or higher 170 kV or higher	
	Voltage 7) Power Frequency Withstand Voltage (1 min.)	70 kV or higher	
	8) Control Voltage 9) Number of Feeders	DC 110 V 33/11 kV Transformer primary: 1 panel 33/0.4 kV Transformer primary: 1 panel Incoming: 1 panel	
MW-4	11 kV Switchgears1) Type	Indoor use, Metal enclosed or Metal clad type, air insulated	4 panel
	 2) Rated Voltage 3) Rated Current 	12 kV Busbar: 1,200 A or higher Others: 600 A or higher	
	4) Rated Interrupting Current5) Rated Short-time Current	25 kA or higher 25 kA-2 sec. or higher	
	6) Lightning Impulse Withstand Voltage7) Power Frequency Withstand	90 kV or higher 28 kV or higher	
	Voltage (1 min.) 8) Control Voltage	DC 110 V	
	9) Number of Feeders	33/11 kV Transformer secondary: 1 panel 11 kV Feeder: 3 panels	
MW-5	Micro SCADA Sytem 1) Control System	Micro SCADA system by Control and monitoring servers via local area network	1 lot
	2) Component	 (LAN) for all I/O data in a substation Substation Control System Panel 33/11 kV Transformer BCU Control and Monitoring Work Stations LAN Cables and other necessary 	
	3) Communication	materials Gateway unit for communication with GCC SCADA system and DCC SCADA system on IEC-60870-1-101/104 basis	
MW-6	Metering Panel	Watt-hour meters supplied by the Tanzanian side are mounted by the Japanese side at the Sites.	l panel
MW-7	33/11 kV Transformer Control and Protection Panel		1 panel
	 Type Control 	Indoor use, air insulated, metal enclosed self-standing type - Control of OLTC (On-load tap	
		 changer) on 33/11 kV Transformers Transformer's parallel operation control and/or independent operation 	

No.	Equipment	Specifications	Q'ty
		control (for future use to be considered)	
	3) Protection	Transformer differential protection and	
		overcurrent protection	
MW-8	AC Distribution Panel		1lot
	1) Type	Indoor use, air insulated, metal enclosed	
	2) Ratings	self-standing type AC 400 - 230 V, three phase and four	
	2) Ratings	wires	
MW-9	DC Power Supply System (including		1 lot
	DC Distribution Panels)		
	1) Type	Thyristor type, indoor use, air insulated,	
	2) System	metal enclosed self-standing type Single charger	
	2) System3) Input	400 V AC or 230 V AC	
		DC 110 V (+/-3 %)	
	4) Output	Output voltage should be regulated by	
		Silicon droppers or equivalent.	
	5) Batteries	Lead-acid Battery with control valves or equivalent, 100 Ah/10 Hr., 54 cells	
	6) DC Distribution Panels	Indoor use, air insulated, metal enclosed	
		self-standing type, 110 V DC	
MW-10	33 kV Lightning Arrester		6
	1) Type	Outdoor use, Metal oxide gapless type,	phase
	2) Rated Voltage	single phase 33 kV	
	3) Rated Discharge Current	10 kA	
	4) Equipment to be applied	Top of the first pole of 33 kV incoming	
		and outgoing feeders (3 phases each)	
MW-11	11 kV Lightning Arrester	O the Mitches it was to a	12
	1) Type	Outdoor use, Metal oxide gapless type, single phase	phase
	2) Rated Voltage	12 kV	
	3) Rated Discharge Current	10 kA	
	4) Equipment to be applied	11 kV side of T1 Transformer (3 phases	
		inside of the cable box) and 11 kV	
MW-12	33 kV, 11 kV Cables	outgoing feeders (3 phases for 3 feeders)	1 lot
1,1,1,1,1,2	1) Type	XLPE Cables	1 101
	2) Purpose	Between Transformers and 33/11 kV	
		Switchgear panels	
	3) Others	Cable sealing ends, Cable head structures and other necessary materials	
MW-13	Other Materials		1 lot
	1) Low voltage cables	600 V power cables and control cables	
	2) Earthing materials	For substation entire earthing (Earthing	
		conductors, earthing rods, connection	
	3) Cabling materials	materials and other necessary materials) Conduits, cable racks and others	
MW-14	33 kV Switchgears for Makumbusho		1
	Substation		panel
	1) Purpose	Feeder panel extension for power feeding	-
		to Mwananyamala Substation	
	2) Type	Indoor type, 33 kV Gas insulated Metal	
	3) Manufacturer and year	Clad Switchgear AREVA (2009)	
	<i>5)</i> manufacturer and year	IIII (2007)	1

No.	Equipment	Specifications	Q'ty
	4) Panel type and Serial No.	GHA-36-25-08, No. TG092361-1	
		(Busbar ratings: 1,600 A)	
	5) Ratings	36 kV, 800 A, 25 kA-2 sec. or higher	
	6) Number of Feeders	33 kV Feeder: 1 panel	
	7) Type of Circuit Breaker	VCB or GCB	
MW-15	Modification materials for the	Digital meters, mimic buses, discrepancy	1 lot
	existing Control panels at	switches, wiring materials, terminals and	
	Makumbusho Substation	other necessary parts.	
		Note; An additional control panel is	
		supplied, when 33 kV feeder	
		extension panel is supplied for	
		Msasani substation. See item	
10111		MS-15.	
MW-16	Metering Panel at Makumbusho	Watt-hour meters supplied by the	1 lot
	Substation	Tanzanian side are mounted by the	
NOV 17		Japanese side at the Sites.	
MW-17	U	$1(0 m^2)$ Single stars	1 1-4
	1) Size and story	169 m ² , Single story RC structures	1 lot
	2) Structures	KC structures	1 lot 1 lot
	3) Lightings4) Other Facilities		1 lot
MW-18	Construction of other substation		1 101
101 00-10	facilities		
	1) Steel Structures	for Overhead wires	1 lot
	2) Substation Earthing	including Overhead grounding wires	1 lot
	3) Outdoor Lightings	including overhead grounding wites	1 lot
	4) Equipment Foundations		1 lot
	5) Cable Trenches/Ducts		1 lot
	6) Oil storage basin for Transformers		1 lot
	(with oil separator)		- 100
	7) Gravels		1 lot
	8) Fire Extinguishers		1 lot

- (6) Spare Parts and Maintenance Tools
 - (a) Spare Parts

		Spare Parts	Ilala S/S	Msasani S/S	Muhimbili S/S	Jangwani Beach S/S	Mwananya- mala S/S
1.		132 kV GCB					
	(1)	Trip coil	1				
	(2)	Closing coil	1				
	(3)	MCCB (Each type)	1				
	(4)	Auxiliary relay (each type)	1				
2.		132 kV Disconnecting Switch (D	S)				
	(1)	MCCB (each type)	1				
	(2)	Magnetic contactor (each type)	1				
	(3)	Auxiliary relay (each type)	1				
3.		Modification materials for existin	g 132 kV D	S			
	(1)	MCCB (each type)	1				
	(2)	Magnetic contactor (each type)	1				

		Spare Parts	Ilala S/S	Msasani S/S	Muhimbili S/S	Jangwani Beach S/S	Mwananya- mala S/S
	(3)	Auxiliary relay (each type)	1	5/5	5/5	Beach 5/5	India 5/5
	(3)	ruxinary relay (each type)	1				
4.		132/33 kV and 33/11 kV Transfor	mers				
	(1)	132 kV Bushing	1				
	(2)	Buchholts relay	1	1	1	1	1
	(3)	Oil temperature gauge	1	1	1	1	1
	(4)	Oil level gauge	1	1	1	1	1
	(5)	MCCB (each type)	1				
	(6)	Auxiliary relay (each type)	1				
	(7)	Fuse (each type)	100%				
	(8)	Lamp (each type)	100%				
		LED lamp (each type, with socket)	1				
5.		33 kV Switchgears					
	(1)	Interrupting valves (each type)	3 phases	3 phases	3 phases	3 phases	3 phases
	(2)	1 91 /	100%	100%	100%	100%	100%
		LED lamp (each type, with socket)	10%	10%	10%	10%	10%
	(3)	MCCB (each type)	1	1	1	1	1
	(4)	Protection relay (each type)	1	1	1	1	1
	(5)	Auxiliary relay (each type)	3	1	1	1	1
	(6)	Magnetic contactor (each type)	1	1	1	1	1
	(7)	DC/DC Converter (each type)	1	1	1	1	1
	(8)	Trip coil (each type)	1	1	1	1	1
<u> </u>	(9)	Closing coil (each type)	1	1	1	1	1
L	(10)	Space heater (with thermostat)	1	1	1	1	1
<u> </u>	(11)	Meter (each type)	1	1	1	1	1
ļ	(12)	Switch (each type)	1	1	1	1	1
(
6.	(1)	11 kV Switchgears	1	1	1	1	1
	(1) (2)	Circuit Breaker (each type)	100%	100%	100%	100%	100%
	(2)	Lamp (each type) LED lamp (each type, with					
		socket)	10%	10%	10%	10%	10%
	(3)	Fuse (each type)	1	1	1	1	1
	(4)	MCCB (each type)	1	1	1	1	1
	(5)	Protection relay (each type)	1	1	1	1	1
	(6)	Auxiliary relay (each type)	3	1	1	1	1
	(7)	Magnetic contactor (each type)	1	1	1	1	1
	(8)	DC/DC Converter (each type)	1	1	1	1	1
	(9)	Trip coil (each type)	1	1	1	1	1
	(10)	Closing coil (each type)	1	1	1	1	1
	(11)	Space heater (with thermostat)	1	1	1	1	1
	(12)	Meter (each type)	1	1	1	1	1
	(13)	Switch (each type)	1	1	1	1	1
L							
7.		Micro SCADA system					
	(1)	Bay control unit (each type)	1	1	1	1	1

		Spare Parts	Ilala S/S	Msasani S/S	Muhimbili S/S	Jangwani Beach S/S	Mwananya- mala S/S
	(2)	I/O module (each type)	1	1	1	1	1
	(3)	Ethernet switch (each type)	1	1	1	1	1
8.		Transformer Voltage Regulating p	1				
	(1)	Transformer Voltage Regulator	1				
	(2)	MCCB (each type)	1				
	(3)	Meter (each type)	1				
	(4)	Lamp (each type)	100%				
		LED lamp (each type, with socket)	1				
	(5)	Fuse (each type)	1				
9.		Transformer Protection Panel					
).	(1)	Protection relay (each type)	1				
	(1) (2)	MCCB (each type)	1				
	(2) (3)	Lamp (each type)	100%				
	(3)	LED lamp (each type, with					
		socket)	10%				
	(4)	Fuse (each type)	1				
10.		33/11 kV Transformer Control and	d Drotaction	Danal			
10.	(1)	Protection relay (each type)		1 Panel	1	1	1
	(1)	• • • • •		1	1	1	1
	(2)	Transformer Voltage Regulator		1	1	1	1
	(3)	Meter (each type)		100%	100%	100%	100%
	(4)	Lamp (each type) LED lamp (each type, with		100%	100%	100%	100%
		socket)		10%	10%	10%	10%
	(5)	Fuse (each type)		1	1	1	1
	(6)	Annunciator unit		1	1	1	1
	(7)	Operation switch (each type)		1	1	1	1
11		132 kV Transmission Line Protect	tion Donal				
11.	(1)	Protection relay (each type)	1				
	(1)	MCCB (each type)	1				
	(2)	· · · ·	100%				
	(3)	Lamp (each type) LED lamp (each type, with					
		socket)	10%				
-	(4)	Fuse (each type)	1				
12.		DC Power Supply System					
	(1)	MCCB (each type)	1	1	1	1	1
	(2)	Meter (each type)	1	1	1	1	1
	(3)	Lamp (each type)	100%	100%	100%	100%	100%
		LED lamp (each type, with socket)	10%	10%	10%	10%	10%
	(4)	Fuse (each type)	1	1	1	1	1
13.		Uninterruptible Power Supply Sys	stem				
13.	(1)	MCCB (each type)	1				
	(1) (2)	Meter (each type)	1				
	(2)		1				L

		Spare Parts	Ilala S/S	Msasani S/S	Muhimbili S/S	Jangwani Beach S/S	Mwananya- mala S/S
	(3)	Lamp (each type)	100%				
		LED lamp (each type, with socket)	10%				
	(4)	Fuse (each type)	1				
14.		AC Distribution Panel					
-	(1)	MCCB (each type)	1	1	1	1	1
	(2)	Meter (each type)	1	1	1	1	1
	(3)	Lamp (each type)	100%	100%	100%	100%	100%
		LED lamp (each type, with socket)	10%	10%	10%	10%	10%
	(4)	Fuse (each type)	1	1	1	1	1
15.		33 kV Arresters					
	(1)	33 kV Arrester	3 phases	3 phases	3 phases	3 phases	3 phases
16.		11 kV Arresters					
	(1)	11 kV Arrester	3 phases	3 phases	3 phases	3 phases	3 phases
17.		33 kV and 11 kV Cables					
	(1)	Outdoor use, 33 kV Cable sealing ends (each type, 3 phase/set)	1	1	1	1	1
	(2)	Indoor use, 33 kV Cable sealing ends (each type, 3 phase/set)	1	1	1	1	1
	(3)	Outdoor use, 11 kV Cable sealing ends (each type, 3 phase/set)	1	1	1	1	1
	(4)	Indoor use, 11 kV Cable sealing ends (each type, 3 phase/set)	1	1	1	1	1

Table 2-2-2-4.20 Spare Parts for Makumbusho and Tegeta Substations

	Spare Parts	Makumbusho S/S	Tegeta S/S
1.	33 kV Switchgears		
(1)	Interrupting valves (each type)	3 phases	3 phases
(2)	Lamp (each type)	100%	100%
	LED lamp (each type, with socket)	10%	10%
(3)	MCCB (each type)	1	1
(4)	Protection relay (each type)	1	1
(5)	Auxiliary relay (each type)	1	1
(6)	Magnetic contactor (each type)	1	1
(7)	DC/DC Converter (each type)	1	1
(8)	Trip coil (each type)	1	1
(9)	Closing coil (each type)	1	1
(10)	Space heater (with thermostat)	1	1
(11)	Meter (each type)	1	1
(12)	Switch (each type)	1	1
2.	Control Panels		
(1)	Auxiliary relay (each type)	1	1
(2)	Meter (each type)	1	1
(3)	Lamp (each type)	100%	100%
	LED lamp (each type, with socket)	10%	10%

	Spare Parts	Makumbusho S/S	Tegeta S/S
(4)	Fuse (each type)	1	1
(5)	Operation switch (each type)	1	1

(b) Testing Equipment and Maintenance Tools for Procurement Equipment

	Tools	Ilala S/S	4×33/11kV S/S
1.	Testing Equipment		
1.1	Oil Insulating Testing Device	1	
1.2	Universal Tester	1	2
1.3	Phase Indicator	1	1
1.4	Protective Relay Fault Analyzer		1
1.5	Voltage Detector (200 kV AC)	1	1
1.6	Voltage Detector ($3 \sim 34.5 \text{ kV AC}$)	1	1
1.7	Voltage Detector (600 V AC)	1	1
1.8	Megger (500 V DC)	1	1
1.9	Megger (1,000 V DC)	1	1
1.10	Megger (5,000 V DC)		1
1.11	Digital Multi-meter	1	1
1.12	Clamp meter	1	1
2.	Maintenance Tools for Substations		
2.1	Electrical Work Tools	1	2
	Tool box, Bolt cutter, Terminal crimping tool, adjustable		
	wrench, Water pump pliers, Cable cutter, Wire stripper,		
	Hammer, Convex rule, Electric knife, Hand saw,		
	Combination cutting pliers with terminal crimping,		
	Cutting pliers, Side cutting pliers, Diagonal cutting		
	pliers, Screw driver (+), Screw driver (-), Torpedo level		

Table 2-2-2-4.21 Testing Equipment and Maintenance Tools

2) 132kV Transmission Line (Ubungo Substation to Ilala Substation)

① Basic items

Using the existing two-circuit transmission towers between Ubungo and Ilala Substations, both circuits shall be wired with thermal resistant conductor to secure transmission capacity to bear the loads for new City Center Substation (132/33/11kV), being built with aid from Finland and the Ilala Substation (132/33/11kV). Figure 2-2-2-4.1 shows an image of the 132kV transmission line reinforcement.

One of the circuits currently used in 240mm² ACSR and the other circuit which is currently used with ACSR 150mm² lines shall be re-connected with thermal resistant conductors to the steel structures at each substation. No additional steel structure shall be added for either substation.

Note that a steel structure (ST No.13) must be added on Songas grounds.

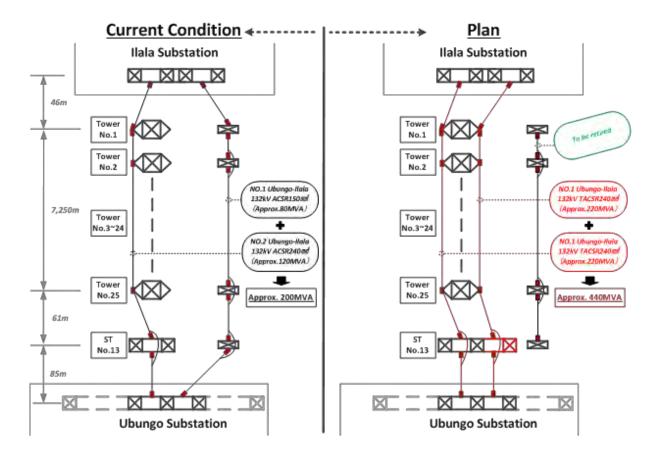


Figure 2-2-2-4.1 Image of 132kV Transmission Line Reinforcement

2 Planning

(a) Line arrangement

A vertical line arrangement shall be used, as with existing lines.

(b) Supports

Existing transmission steel towers (standard design span of 300m) shall be used for line supports.

Upon visual inspection, some minor damage and oxidation was noticed on some of the steel towers, but not enough to impact tower strength.

(c) Foundations

Upon visual inspection above the ground, there was no real damage to the foundation.

(d) Conductors

Due to very little allowance of the strength in original design conditions for the existing transmission towers, TACSR 240mm² (TACSR) shall be used since TACSR is estimated to be almost the same diameter and weight to existing lines with good thermal resistance and at least 1.6 times of the allowable current.

(e) Insulation

The same 250 mm porcelain insulator of existing lines shall be used.

③ Equipment list

The Material list is shown in Table 2-2-2-4.22.

BIII	OT	Quantities of th	e wateria	is for R	einfo	prcem	ient c	of 13	ZKVI	rans	miss	sion	Line	ILA	LA-U	BUN	GO				1	-		1	1		1									,	
		Tower No.		ILALA	1	2	3	4	5	6	7	8	3	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	Str.	Ubungo	Installati on	spare	Procurem	nent	Unit
		Tower Type			D±0	A+3	A+3	A±0) D±0	A±0	A±0) A±	±0 A	+3	A+3	B+3	A+3	A±0	A+3	A±0	A+3	B+3	A+3	A+3		A+3	A+3	A±0	C+3	D+3	St13	St12					
		Span(m)	No.	46	2	59 3	57 2	68	297	326 3	302	283	252	356	20	63	06 3	11 3	16 3	29 33	36 3	311 2	93 3	328 3	10 32	28 3	20 3	22 3	17 2	17 6	61	85	7,442				
С	Condu	uctor(3phasex2cc.)	TL-1	276	1,	554 2,	142 1,	608 1	1,782 1	,956 1	,812	1,698	1,512	2,13	6 1,2	36 1,	836 1,	866 1,8	396 1,9	974 2,0	016 1	,866 1,	758 1,	,968 1,8	860 1,9	968 1,9	920 1,9	932 1,	902 1,3	302 36	66	510	44,652	10%	4	49,117	m
		Grounding wire	TL-2	46	_													_					_							6	61	85	192	10%		211	m
String		Tension		6	12				12							12						12							12	12	6	6	90	0		90	
or Si		Inverted	TL-3																												6		6	0		6	
Insulator	_	Suspension	~			6	6	6		6	6	6	3	6	6		6	6	6	6	6		6	6	6	6	6	6					114	0		114	
		Jumper	TL-12		6																									6	6		18	0	-	18	set
Insulator		Tension		66	132				132							132						132							132	132	66	66	990	0	990		
Insul		Inverted	TL-3																												66		66	0	66	2,508	piece
Disc I		Suspension				66	66	66		66	66	6	6 6	6	66		66	66	66	66	66		66	66	66	66	66	66					1,254	0	1,254		
		Jumper			66																									66	66		198	-	198		
rshacle	L	Tension		6	12		<u> </u>		12			+				12		L				12							12	12	6	6	90		90		
r sh		Inverted	TL-4				<u> </u>					\perp																	<u> </u>		18		18		18	240	piece
Anchor		Suspension				6	6	6		6	6	6	6	6	6		6	6	6	6	6		6	6	6	6	6	6	<u> </u>				114		114	1	
		Jumper			6							_																		6	6		18	0	18		
r eye		Tension		6	12		<u> </u>		12	-		+				12						12		-				L	12	12	6	6	90		90		
Horn holder		Suspension	TL-5			6	6	6		6	6	6	6	6	6		6	6	6	6	6		6	6	6	6	6	6					114	0	114	222	piece
ц р		Jumper			6							_																		6	6		18	0	18		
ч		Inverted	TL-6						_			_																			6		6	0		6	piece
Ę		Tension	TL-7	6	12				12							12						12							12	12	6	6	90	0	90	96	set
o hc		Inverted										_																			6		6	0	6		
Arcing hom		Jumper	TL-8		6							_																		6	6		18	0	18	132	set
`		Suspension	-			6	6	6		6	6	6	6	6	6		6	6	6	6	6		6	6	6	6	6	6					114	0	114	-	
er er	e l	Tension	TL-9	6	12				12			_				12						12							12	12	6	6	90	0	90	96	piece
holo	ete –	Inverted	-									_																			6		6	0	6		
Horn holder	20CK	Jumper	TL-10		6							_																		6	6		18		18	132	piece
		Suspension	-			6	6	6		6	6	6	6	6	6		6	6	6	6	6		6	6	6	6	6	6					114	0	114	-	
5	5	Tension	TL-11	6	12				12			_				12						12							12	12	6	6	90		99	106	piece
Clamp for	duct	Inverted							_			_																			6		6	10%	7		-
Clai	5	Jumper	TL-12		6							_																		6	6		18		20	145	piece
		Suspension				6	6	6		6	6	6	_	6	6		6	6	6	6	6		6	6	6	6	6	6					114	10%	125		
Damper	Power	IN	TL-13		3	3	6	3	3	6	6			3	6	3	6	6	6	6	6	6	3	6	6	6	6	6	6	3	3	3	129	0		129	set
õ		OUT	TL-14	3	3	6	3	3	6	6	3	3	_	6	3	6	6	6	6	6	6	3	6	6	6	6	6	6	3	3	3		129	0		129	set
		Armor Rod	TL-15			6	6	6		6	6	6	6	6	6		6	6	6	6	6		6	6	6	6	6	6	<u> </u>				114	0			
		ate sleeve for Conductor	TL-16				<u> </u>					_		\rightarrow															<u> </u>				0	0			-
Jun	-	sleeve for Conductor	TL-17				<u> </u>					_		\square								1		-									0	-		18	piece
		Repair sleeve	TL-18				<u> </u>					_		\square								1		-					I				0				piece
		ackle for grounding wire	TL-19	2	2							_										1								2	2	2	10				piece
Susp		n clamp for grounding wire	TL-20	2	2		I															1						L	I	2	2	2	10				piece
		Aero plate	TL-21		2	2	2	2	2	2	2			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		52	-			piece
		Line No. plate	TL-22		2	2	2	2		2	2	_		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		52			52	set
	Pha	ase rotation plate	TL-23		2	2	2	2	_	2	2			2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		52			52	set
	Natio	onal Flag of Japan	TL-24		2	2	2	2	2	2	2	_		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		52	0			piece
		Hatari plate	TL-25		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		52	0		52	piece
	S	Steel structure	TL-26	1		1												1				1	1		1			1	1	1	1		1	0		1	set

Bill of Quantities of the Materials for Reinforcement of 132kV Transmission Line ILALA-UBUNGO

* Existing materials will be re-used for the existing line to become a new line. Steel structure No. 13 shall be extended for new line at Songas. 10% of spare materials such as clamps shall be procured.

Table 2-2-2-4.22 Material List for 132kV Transmission Line

④ Main specifications for major equipment

A summary of the major equipment related to 132kV transmission line facility enhancements (Ubungo Substation -Ilala Substation) is shown in Table 2-2-2-4.23.

No.	Equipment and Materials	Quantity	Unit	Specification
TL-1	Conductor	49,117	m	Applicable standard: IEC or equivalent Type: TACSR (Thermal-Resistant Aluminum Alloy Conductor Steel Reinforcement) Size:240mm ²
TL-2	Grounding wire	211	m	Applicable standard: IEC or equivalent Type: ACS (Aluminum-Clad Steel Wire) Size:55mm2
TL-3	Insulator	1	unit	Applicable standard: IEC or equivalent Type: Porcelain galvanized disk type254mmø Minimum creepage distance : 292mm or more Minimum Electrical-Mechanical failing load : 120kN Dry lightning impulse withstand voltage : 110kV Wet power frequency withstand test voltage : 40kV Power frequency puncture voltage : 110kV
TL-4	Anchor shackle for conductor	1	unit	Material: Mild steel Type: Bolt type Coating: Hot dip galvanizing Size: for TACSR240mm ²
TL-5	Horn holder ball eye	1	unit	Material: Mild steel Coating: Hot dip galvanizing
TL-6	Horn holder ball eye (Inverted)	1	unit	Material: Mild steel Coating: Hot dip galvanizing
TL-7	Arcing horn (Tension • Inverted)	1	unit	Material: Mild steel Coating: Hot dip galvanizing
TL-8	Arcing horn (Jumper • Suspension)	1	unit	Material: Mild steel Coating: Hot dip galvanizing
TL-9	Horn holder socket eye	1	unit	Material: Mild steel
TL-10	(Tension • Inverted) Horn holder socket eye (Jumper • Suspension)	1	unit	Coating: Hot dip galvanizing Material: Mild steel Coating: Hot dip galvanizing
TL-11	Clamp for conductor (Tension • Inverted)	1	unit	Material: Aluminum alloy casting, Mild steel Coating: Hot dip galvanizing Size: for TACSR240mm ²
TL-12	Clamp for conductor (Jumper • Suspension)	1	unit	Material: Aluminum alloy casting, Mild steel Coating: Hot dip galvanizing Size: for TACSR240mm ²
TL-13	Damper for conductor (In)	1	unit	Material: Mild steel Type: Stockbridge type Coating: Hot dip galvanizing Size: for TACSR240mm ²
TL-14	Damper for conductor (Out)	1	unit	Material: Mild steel Type: Stockbridge type

Table 2-2-2-4.23 Summary of Major Equipment (132kV Transmission Line)

No.	Equipment and Materials	Quantity	Unit	Specification
				Coating: Hot dip galvanizing
				Size: for TACSR240mm ²
TL-15	A D . 1	1		Material: Aluminum alloy casting
1L-13	Armor Rod	1	unit	Size: for TACSR240mm ²
TL-16	Intermediate sleeve for	1	unit	Type: Compression type
1L-10	conductor	1	umi	Size: for TACSR240mm ²
TL-17	L	1	unit	Type: Compression type
1L-1/	Jumper sleeve for conductor	1	um	Size: for TACSR240mm ²
TL-18	Domoin alasso	1	unit	Type: Compression type
1L-18	Repair sleeve	1	umi	Size: for TACSR240mm ²
				Material: Mild steel
TL-19	Anchor shackle for	1	unit	Type: Bolt type
1L-19	grounding wire	1	umi	Coating: Hot dip galvanizing
				Size: for ACS55mm ²
	Germanian elementer			Material: Aluminum alloy casting, Mild steel
TL-20	Suspension clamp for	1	unit	Coating: Hot dip galvanizing
	grounding wire			Size: for ACS55mm ²
				Material: Aluminum or stainless
TL-21	Aero plate	1	unit	Size:700mm×400mm×t2.5mm
				Accessary: Stainless bolt
				Material: Aluminum or stainless
TL-22	Line No. plate	1	unit	Size:380mm×380mm×t2.5mm
				Accessary: Stainless bolt
				Material: Aluminum or stainless
TL-23	Phase rotation plate	1	unit	Size:150mm×230mm×t2.5mm
				Accessary: Stainless bolt
				Material: Aluminum or stainless
TL-24	National Flag of Japan	1	unit	Size:300mm×200mm×t2.5mm
112-24	National Flag of Japan	1	um	High weather resistance
				Accessary: Stainless bolt
				Material: Aluminum or stainless
TL-25	Hatari plate	1	unit	Size:300mm×200mm×t2.5mm
				Accessary: Stainless bolt
				Material: Mild steel
				Coating: Hot dip galvanizing
TL-26	Steel structure	1	unit	Size:
				Post (P1) W1,016mm×D1,516mm×H19,000mm
				Beam (B1) W15,240mm×D1,516mm×H1,000mm

3) 33kV Distribution Lines

① Basic Concept

Distribution line work shall be for new and expanded substations, and the base substation to supply power shall be 132/33kV substations.

2 Planning

(a) Line arrangement

Line arrangement shall generally be horizontal, but accounting for environmental and social aspects, horizontal projections (cantilevers) or vertical arrangement shall be used for locations near existing structures or trees, or for which wayleave is difficult to obtain.

(b) Supports

As the distribution lines for the Project are in a central area of Dar es Salaam, existing 11kV distribution grid shall be present in many areas. As there are also sections crossing highways and streams, safe clearance must be maintained. Further, as TANESCO generally uses wooden poles, durability and strength issues cannot be truly erased. In light of these issues, 12m and 15m steel poles shall be used in the Project.

(c) Conductors

One of the TANESCO standards, ACSR 150mm² shall be used.

③ Equipment list

Length of 33kV distribution lines is shown in Table 2-2-2-4.24, and material lists are shown in Table 2-2-2-4.25, 26, 27 and 28.

Distribution Line Name	New City	Makumbusho-	Makumbusho-	Tegeta-
Distribution Line Name	Center-Muhimbili	Msasani	Mwananyamala	Jangwani Beach
Overhead line distance	1,589m	7,452m	913m	6,429m
Cable length	370m	100m	160m	90m
Plane distance	2.0km	7.6km	1.1km	6.5km
Spare quantity (10%)	1,748m	8,197m	1,004m	7,072m
Procurement quantity (overhead ground wire)	1,748m	8,197m	1,004m	7,072m
Procurement quantity (power lines)	5,244m	24,592m	3,013m	21,216m

Table 2-2-2-4.24 Length of 33kV Distribution Line

Part L	st on Each Pole Type for 11/33kV Distribution Line / 各ポ	ールタイス	プ 資機	材数量	表(Msa	isani)																										—		
Part N	p. Description	unit	単位															Pole T	ype			-										設計	補給	調達
Tarciv	beschpton	unic	+12	A	-1	A	-2	E	в	C-	-1		⊱2 /Pole)		-2 Wire)		D	Е	F		G		н	I-1	I-2 (Stay Pole)	I- (Stay		J		к		数量	数量	数量
		unit	式		0	9	0	(0	1		1	17	2			0	0	0		1		1	0	0	(Otay	0	13		3				
				1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計 1位: 当た	小計	1セット 当たり 小計	1セット 当たり	小計	1セット 当たり	小計 当た	小 4 小計	1セット 当たり 小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小約	合計	5%	合計
. /	Steel pole 12m with Pole Cap	рс	本	1		1	90	1		1	1	1	17	1	28					2	2							+ +	13	2	6	157	8	165
	Steel pole 15m with Pole Cap	рс	本													1		1	2			4	4	1	1	1						4	0	4
,	Disc Insulator	рс	個							18	18	18	306	18	504	18	1	в	18	9	9	12	12		18	18				6	18	867	43	910
	Anchor Shackle	рс	個							6	6	6	102	6	168	6		6	6	3	3	6	6		6	6				3	9	294	15	309
	Ball Eye	рс	個							6	6	-	102	6	168	6		6	6	3	3	6	6		6	6				3	9	294	15	309
	Socket Eye	рс	個							6	6		102	6	168	6		6	6	3	3	6	6		6	6				3	9	294	15	309
	Dead End Clamp for 33kV(ACSR150)	рс	個							6	6	6	102	6	168	6		6	6	3	3	6	6		6	6						285	14	299
	Dead End Clamp for 11kV(ACSR150)	рс	個															_				6	6							3	9	15	1	16
	Twist Strap	set	セット							6	6	6	102	6	168	6		6	6	3	3	6	6		6	6				3	9	294	15	309
	33kV Post Insulator	рс	個	3		3	270	3		3	3	3	51	3	84	3		3	3	3	3	18	18	3	3	3						429	21	450
	1 11kV Pin Insulator	рс	個個																			18	18							3	9	27	1	28
	Performed Top Tie for ACSR150	рс	個	3		3	270			3	3	3	51	3	84				3					3	3	3				_		408	20	428
	Performed Side Tie for ACSR150	pc m	m					3								3		3												9				
	Aluminum Bind Wire 4.0mm Crossarm 75x75x3.2x3000	pc	個							2	2									9	9			1	2					9	27	36 10	2	38
	Crossarm 75x75x3.2x3000 Crossarm 45x75x3.2x3000	pc	個					1		2	2					4		4	Z	2	2			-	3	3				2	6	10	1	
	Crossarm 45x75x3.2x3000 Crossarm 45x75x3.2x1500	pc	個			1	90	1			1	1	17	1	28				2	2	2		2	1	1	1						139	7	146
	Crossarm 75x75x3.2x3000 for Terminal	pc	個				30								20					5	5	2	2							5	15	22	1	23
	Crossarm 75x75x3.2x3400	рс	個																	-	5	20	20								10	20	1	21
	Crossarm 75x75x3.2x2400	pc	個										1									4	4			1	1			-		4	0	4
	Crossarm Brace Pipe type	рс	個	2				2		4	4					8		4	4	4	4	4	4	1		2				4	12	24	1	25
	Crossarm Support	рс	個	2		2	180	2		2	2	2	34	2	56	2		2	4	2	2	4	4	2	2	2						278	14	292
	I Insulator Support	рс	個			3	270																	3	3	3						270	14	284
	Stay Band (Double)	рс	個															2	1	1	1							1	13			14	1	15
6	Stay Band (Single)	рс	個					1		1	1			1	28							2	2	1		1		1	13	2	6	50	3	53
	Stay Wire	m	m					15		30	30			30	840		4	D	60	30	30	60	60 3	0		30		50	650	30	90	1700	85	1785
	Dead End Grip for Insulator	рс	個					2		4	4			2	56			4	8	8	8	4	4	2		2		2	26	4	12	110	6	116
	Dead End Grip for Thimble	рс	個					4		8	8			4	112			в	16	16		8	8	4		4			78	8	24	246	12	258
	Stay Insulator 33kV	рс	個					1		4	4			1	28			2	4	4	4	2	2	1		1		1	13			51	3	54
	Stay Insulator 11kV	рс	個																	_										2	6	6	0	6
	1 Turnbuckle	рс	個					1		2	2			1	28			2	4	4	4	2	2	1		1			13	2	6	55	3	58
	Stay Rod	рс	個					1		2				1	28			-	4	4			2	1		1			13	2	6	55	3	58
	Stay Plate	рс	個本					1		2	2			1	28			2	4	4	4	2	2	1		1			13	2	6	55	3	58
	Stay Pole	pc pc	一個										17			1									1			1	13			30	2	32
	Stay Pole Bracket	pc	本										1/								2										2	- 1/		18
	Stainless Band	set	セット																	16	-									6	18	34		36
	Ground Rod 14x1500	pc	個	1		1	90	1		1	1	1	17	1	28	1		1	1	3	3		1	1	1	1				2	6	146	- 2	153
	Lead Wire Terminal	pc	個	1		1	90	1		1	1	1		1	28	1		1	1	3			1	1	1	1				2	6	146	7	153
	Compression Connector (38-22)	pc	個	1		1	90	1		1	1	1	17	1	28	1		1	1	3	3	1	1	1	1	1				2	6	146	7	153
	Grounding Wire (IV38sq.mm)	m	m	18		18		18		18	18	18		18		18	1	B	18	40	-	40	40 1	8	18	18				20	60	2588	129	2717
	Protection Pipe for Cable (PVC150)	m	m																	4	4		8	-						4	12	24	1	25
	Pipe Saddle	рс	個																	2	2		2							2	6	10	1	11
	Bolt&Nut M16x400 (Pole/Crossarm)	рс	個	1				1												10				1						12	36	46	2	48
	Double Arming Bolt M16x400 (Pole/W-Crossarm)	рс	個							3	3					4		2	2	2	2				3	2				2	6	11	1	12
(Bolt&Nut M16x350 (Pole/Crossarm)	рс	個	2		2	180	2		2	2	2	34	2	56	2		2	2	12	12	18	18		2	2						302	15	317
	Square Washer	рс	個	8		5	450	9		19	19	20	340	20	560	18	1	1	19	45				6	20	20					114	1528	76	1604
	Bolt&Nut M16x120 (Crossarm/Brace)	set	個	2				2		2	2					8		4	4	4	4			1	2	2				4	12	18	1	19
	Bolt&Nut M16x300 (Pole/Brace)	set	個							-																				2	6	6	0	6
	Bolt&Nut M16x350 (Pole/Brace)	set	個	1				1		1	1					2		1	2	2	2					-						3	0	3
	Bolt type Connector for 33kV(ACSR150/ACSR150)	рс	個							6	6	6	102	6	168	6		2	6	6	6			-	12	12				6	18	300	15	315
	33kV Lightning Arrester	рс	個																	3	3	3	3									6	0	\leq
	33kV Line Switch	set	セット																	1	1	1	1									2	0	2
	11kV Line Switch	set	セット 個																			1	1			-				1	3	4	0	4
	11kV Lightning Arrester	pc pc	個個										-									3	3							3	9	12	1	\frown
	Bolt type Connector(ACSR150/Cu 38)		植枚									- 1								3	3									3	9	12	1	13
	Pole Number Plate	pc pc	枚枚	1		1	90 90			1	1	1	17	1	28	1				1	1	1	1		1	1			13	1	3	141	7	148
10	Danger Plate	pc pc	枚枚			1	90			1		<u> </u>			28	1					1			1	1				13	-	3	154	8	162 162
		pc m	1X m			- 1	90 450			1			85	1	28 140	1			1	10	1	20	20	-	-				13 65	10	30	154 805	40	162 845
	Barbed Wire for anti-climbing			5	-	5	450	5		5	5	5	80	5	140	5		5	10	10	10	20	20	5	5	5		5	00	10	30	805	40	840

Table 2-2-2-4.25 Material List for 33kV Distribution line (Makumbusho substation ~ Msasani substation)

t No.	Description	unit	単位														Po	le Typ	e													設計	補給	10
					A-1		A-2		B	с	-1	C- (Stay		C- (Stay)	Wire)	D	E		F	(3	H		I-1	(St	I-2 ay Po	ole) (Stay	-2 Wire) 8	J	-	ĸ	数量	数量	3
		unit	式	1セッ 当た		1セッ 当た	<u> </u>	1セット 当たり	<u> </u>	1セット 当たり	<u> </u>	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり 小計	1セット 当たり 小部	t 1tr	Ť	1セット 当たり	小計	Ť	小計 1	- T	小計 1七: 当打	2 	小計 当たり	o 小計 ^{1セッ} 当たり	- り 小計	1セット 当たり	3 小計	合計	5%	
А	Steel pole 12m with Pole Cap	рс	本		1		1	1		1		1		1						2	4								1 3	2	6	13	1	t
	Steel pole 15m with Pole Cap	рс	本													1	1		2			4		1	22	1	2 1	8				32	2	T
	Disc Insulator	рс	個							18		18		18		18	18	1	8	9	18	12		-		8	36 18	144		6	18	216	11	T
	Anchor Shackle	рс	個							6		6		6		6	6	_	6	3	6	6					12 6			3	9	75	4	
	Ball Eye	рс	個							6		6		6		6	6		6	3	6	6					12 6	48		3	9	75	4	T
	Socket Eye	рс	個							6		6		6		6	6		6	3	6	6				6	12 6	48		3	9	75	4	
	Dead End Clamp for 33kV(ACSR150)	рс	個							6		6		6		6	6		6	3	6	6					12 6	48				66	3	T
	Dead End Clamp for 11kV(ACSR150)	рс	個													-			-			6								3	9	9	0	
	Twist Strap	set	セット							6		6		6		6	6		6	3	6	6				6	12 6	48		3	9	75	4	
	33kV Post Insulator	рс	個		3		3	3		3		3		3		3	3		3	3	6	18		3	66	3	6 3	24				102	5	
	11kV Pin Insulator	рс	個		-		-												-		-	18								3	9	9	0	T
	Performed Top Tie for ACSR150	рс	個		3		3			3		3		3					3					3	66	3	6 3	24				96	5	
	Performed Side Tie for ACSR150	рс	個		-			3								3	3																	T
	Aluminum Bind Wire 4.0mm	m	m																	9	18									9	27	45	2	T
	Crossarm 75x75x3.2x3000	рс	個		1			1		2						4	2		2	2	4			1	22	3	6 3	24		2	6	62	3	T
	Crossarm 45x75x3.2x3000	pc	個	1	1			1		1						1	1							-	-						Ť	02		t
	Crossarm 45x75x3.2x1500	рс	個	1			1		1			1		1					2	2	4	2		1	22	1	2 1	8		1	1	36	2	t
	Crossarm 75x75x3.2x3000 for Terminal	pc	個											·						5	10	2								5	15	25	1	t
	Crossarm 75x75x3.2x3000 for Terminal	pc	個	1																		20							1		10	20		t
	Crossarm 75x75x3.2x2400	рс	個																			4							-	1	1			t
	Crossarm Brace Pipe type	pc	個		2			2		4						8	4		4	4	8	4		1	22		2	16		4	12	58	3	t
	Crossarm Support	рс	個		2		2	2		2		2		2		2	2		4	2	4	4				2	4 2			-		68	3	
	Insulator Support	рс	個		-		3	-				2		2		-			7			-7				3	6 3					96	5	
	Stay Band (Double)	pc	個														2		1	1	2			-			0 0		1 3	-		5	0	-
	Stay Band (Single)	рс	個					1		1				1								2		1	22		1	8	1 3	2	6	39	2	
	Stay Wire	m	m					15		30				30			40		50	30	60	60			60		30	v	0 150		90	1200	60	
	Dead End Grip for Insulator	рс	個					2		30				2			40		8	8	16	4			44		2		2 6	4	12	94	5	
	Dead End Grip for Thimble	pc	個					4		8				4			8		6	16	32	8		-	88		4		6 18			194	10	_
	Stay Insulator 33kV	pc	個					1		4				1			2		4	4	8	2			22		1		1 3	- Č	24	41	2	
	Stay Insulator 11kV	рс	個							<u> </u>							~				Ű	-		-					-	2	6	6	0	T
	Turnbuckle	рс	個					1		2				1			2		4	4	8	2		1	22		1	8	1 3	2	6	47	2	
	Stay Rod	рс	個					1		2				1			2		4	4	8	2			22		1	8	1 3	2	6	47	2	_
	Stay Plate	рс	個					1		2				1			2		4	4	8	2			22		1		1 3	2	6	47	2	
	Stay Pole	рс	本							-		1				1	~				Ű	-		-		1	2	-	1 3		<u> </u>	5	0	T
	Stay Pole Bracket	рс	個									1				1										1	2		—			2	0	
	PVC Protection Pipe L=4.0m	рс	本																	2	4					-			-	1	3	7	0	
	Stainless Band	set	セット														3			16	32									6	18	50	3	
	Ground Rod 14x1500	рс	個		1		1	1		1		1		1		1	1		1	3	6	1		1	22	1	2 1	8		2	6	44	2	
	Lead Wire Terminal	pc	個		1							1		1		1	1		1	3	6	1		-		1	2 1	8	-	2	6	44	2	
	Compression Connector (38-22)	рс	個		1		1	1		1		1		1		1	1		1	3	6	1			22	1	2 1	8		2	6	44	2	
	Grounding Wire (IV38sq.mm)	m	m	1	8	1	8	18		18		18		18		18	18	1	8	40	80	40		18 3		8	36 18		-	20		716	36	
	Protection Pipe for Cable (PVC150)	m	m			- '		10		10		10		10		10	10			40	8	8		10 1	50		00 10	144		4	12	20	1	
	Pipe Saddle	рс	個																	2	4	2							-	2	6	10	1	+
	Pipe Saddie Bolt&Nut M16x400 (Pole/Crossarm)	pc	個		1			1												10	20	- 2		1	22					12	36	78	4	-
	Double Arming Bolt M16x400 (Pole/W-Crossarm)	pc	個		<u> </u>					2						4	2		2	2	4			-		3	6 2	16	-	2		32	2	
	Bolt&Nut M16x350 (Pole/Crossarm)	pc	個		2					0		2		2		2	2		2	12	24	18					4 2			- 2	0	44	2	
	Square Washer	pc	個	-	2	1	5	9		19		20		2		18	11	_	9	45	90	10		6			4 2		-	38	114	536	27	-
	Square Washer Bolt&Nut M16x120 (Crossarm/Brace)	set	個		2		-	9		19		20		20		18	11	_	4	45	90						40 20			38		536	27	
	Bolt&Nut M16x120 (Crossarm/Brace) Bolt&Nut M16x300 (Pole/Brace)	set	個		۷	-		2		2						0	4		4	4	8			-	22	2	4 2	10	-	2	12	62	3	
	Bolt&Nut M16x300 (Pole/Brace) Bolt&Nut M16x350 (Pole/Brace)	set	個		1											2	1		2		4									- 2	0	6	0	
		pc	個	1	-	-								-		2			6	2	12				-	2	24 12	96	-	-	18	150	8	
	Bolt type Connector for 33kV(ACSR150/ACSR150) 33kV Lightning Arrester	pc pc	個							6		6		6		0	2		0	6	12	_				2	24 12	90		6	18	150	8	
	33kV Lightning Arrester 33kV Line Switch	pc set	セット	-		-														3	6	3							+	+	<u> </u>	6	0	
		set	セット					-												1	2	1							+	1	3	2	0	
	11kV Line Switch	pc	個	-				-	-													1								3	3	3	, v	
	11kV Lightning Arrester	pc pc	個			+												+				3								3	9	9	0	-
	Bolt type Connector (ACSR150/Cu 38)	pc pc	植枚																	3	6	_	_			-	-		-	5	5			+
	Pole Number Plate		-	1	1	-	1	1	1	1		1		1		1	1	+	1	1	2	1	_		22	1	2 1	8	+	1	-	37	2	
	Danger Plate	рс	枚	-	1		1	1	-	1		1		1		1	1		1	1	2	1				1	2 1	v	1 3	1	3	40	2	_
D	Japanese national Flag Plate	рс	枚	1	1	1	11	1 1	1	1 1	1	1 1		1		1	1	1	1	1	2	1		1	22	1	2 1	8	1 3	1	3	40	2	

Table 2-2-2-4.26 Material List for 33kV Distribution line (New City Center substation ~ Muhimbili substation)

Part List on Each Pole	Type for 11/33kV Distribution Line	/ 各ポ·	ールタイフ	資機	材数量表(Jangwani Beach)

irt No.	Description	unit	単位															Pole	Туре														設計	補給	調通
		unic	µ2	A-		A	-2		3	С	-1		C−2 yPole) (:	C-2 Stay Wi	re)	D		E	F		G	н	I-		I- (Stay	2 Pole)	I- (Stay	- Wire)		J	ŀ	к	数量	数量	数量
		unit	式	4 1セット 当たり	.9 小計	(1セット 当たり	0 小計	1 1セット 当たり	6 小計	1セット 当たり	6 小計	1セット 当たり	0 小計 ¹	0 toph 11c9	N計 当たり	4 小計	1セット 当たり	9 小計	7 1セット 当たり	小計 1	2 セット 当たり 小計	0 1セット 当たり 小計	していた 1セット 当たり	小計	1セット 当たり) 小計	したり したり	0 小計	1セット 当たり	10 小計	1セット 当たり	3 小計	合計	5%	슴៖
	Steel pole 12m with Pole Cap	рс	本	1	49	1		1	16	1	6	1		1							2	1							1	10	2	6	91	5	9
	Steel pole 15m with Pole Cap	рс	本												1	4	1	19	2	14		4	1		1		1				<u> </u>	┝──┥	37	2	:
	Disc Insulator	рс	個							18	108	18		18	18	-	18	342		126	9 1				18		18				6	18	684	34	-
	Anchor Shackle	рс	個							6	36	6		6	6	24	6	114	6	42	3				6		6			-	3	9	231	12	
	Ball Eye	рс	個							6	36	6		6	6		6	114	6	42	3				6		6				3	9	231	12	
	Socket Eye	рс	個							6	36	6		6	6	24	6	114	6	42	3				6		6			4	3	9	231	12	
	Dead End Clamp for 33kV(ACSR150)	рс	個							6	36	6		6	6	24	6	114	6	42	3	6 6			6		6					⊢	222	11	
	Dead End Clamp for 11kV(ACSR150)	рс	個																			6									3	9	9	0	-
	Twist Strap	set	セット							6	36	6		6	6	24	6	114	6	42	3	6 6			6		6				3	9	231	12	-
	33kV Post Insulator	рс	個	3	147	3		3	48	3	18	3		3	3	12	3	57	3	21	3	6 18	3		3		3					\vdash	309	15	
	11kV Pin Insulator	рс	個																			18									3	9	9	0	-
	Performed Top Tie for ACSR150	рс	個	3	147	3				3	18	3		3					3	21			3		3		3						186		1
	Performed Side Tie for ACSR150	рс	個					3	48						3	12	3	57															117	6	-
	Aluminum Bind Wire 4.0mm	m	m																		9 1										9	27	45	2	
	Crossarm 75x75x3.2x3000	рс	個	1	49			1	16	2	12				4	16	2	38	2	14	2	1	1		3		3				2	6	155	8	1
в	Crossarm 45x75x3.2x3000	рс	個	1	49			1	16	1	6				1	4	1	19															94	5	
с	Crossarm 45x75x3.2x1500	рс	個			1						1		1					2	14	2	4 2	1		1		1						18	1	
	Crossarm 75x75x3.2x3000 for Terminal	рс	個																		5 10	2									5	15	25	1	
	Crossarm 75x75x3.2x3400	рс	個																			20													
	Crossarm 75x75x3.2x2400	рс	個																			4													
	Crossarm Brace Pipe type	рс	個	2	98			2	32	4	24				8	32	4	76	4	28	4	3 4	1				2				4	12	310	16	
	Crossarm Support	рс	個	2	98	2		2	32	2		2		2	2	8	2	38	4	28	2	4 4	2		2		2			T			220		
	Insulator Support	рс	個			3																	3		3		3								
A	Stay Band (Double)	рс	個														2	38	1	7	1 3	,							1	10			57	3	
	Stay Band (Single)	рс	個					1	16	1	6			1								2	1				1		1	10	2	6	38	2	
	Stay Wire	m	m					15	240	30	180			30			40	760	60	420	30 6) 60	30				30		50		30	90	2250	113	
	Dead End Grip for Insulator	рс	個					2	32	4	24			2			4	76	8	56	8 1		2				2		2		4		236	12	
	Dead End Grip for Thimble	рс	個					4	64	8				4			8	152	16		16 3		4				4		6	-	8		492		
	Stay Insulator 33kV	рс	個					1	16	4				1			2	38	4	28	4		1				1		1	10	-		124		
	Stay Insulator 11kV	pc	個						10	4	24			-			2	00	4	20	7 1	, 2							<u> </u>		2	6	6	0	
	Turnbuckle	pc	個					1	16	2	12			1			2	38	4	28	4	2 2	1				1		1	10	2	6	118	-	-
	Stay Rod	pc	個						16	2	12						2	38	4	28	4 4									10	2	6	118		1
	Stay Plate	pc	個					1	16	2	12			-			2	38	4	28	4		1				1		1	10	2	0	118	0	1
	Stay Plate Stay Pole	pc	本						16	2	12						2	38	4	28	4 1	3 2								10	2	0	118	0	
		pc	個													4														10		\vdash	4	0	-
	Stay Pole Bracket	pc	本												-	4					2				- 1					+			4	0	+
	PVC Protection Pipe L=4.0m	set	セット																		-									+	1	3	,	0	-
	Stainless Band	pc	個													<u> </u>	3	57			16 3									+	6	18	107	5	1
	Ground Rod 14x1500	pc pc	個個	1	49	1		1	16	1	6	1		1	1	4	1	19	1	7			1		1		1			+	2	6	113	6	1
	Lead Wire Terminal			1	49	1		1	16	1	6	1		1	1	4	1	19	1	7	3		1		1		1				2	6	113		1
	Compression Connector (38-22)	рс	個	1	49	1		1	16	1	6	1		1	1	4	1	19	1	7	3		1		1		1			-	2	6	113		1
	Grounding Wire (IV38sq.mm)	m	m	18	882	18		18	288	18	108	18		18	18	72	18	342	18	126	40 8		18		18		18			-	20		1958	98	
	Protection Pipe for Cable (PVC150)	m	m																		4									-	4	12	20	1	_
	Pipe Saddle	рс	個																		2 4										2	6	10	1	
	Bolt&Nut M16x400 (Pole/Crossarm)	рс	個	1	49			1	16												10 20		1								12	36	121	6	1
	Double Arming Bolt M16x400 (Pole/W-Crossarm)	рс	個							3					4	16	2	38	2	14	2				3		2			<u> </u>	2	6	96	5	1
	Bolt&Nut M16x350 (Pole/Crossarm)	рс	個	2	98	2		2	32	2	12	2		2	2	8	2	38			12 24				2		2			<u> </u>		\square	226	11	-
	Square Washer	рс	個	8		5		9	144			20		20	18						45 9		6		20		20				38		1268		
	Bolt&Nut M16x120 (Crossarm/Brace)	set	個	2	98			2	32	2	12				8	32	4	76	4	28	4 1	3	1		2		2				4	12	298	15	-
I	Bolt&Nut M16x300 (Pole/Brace)	set	個							-																				\vdash	2	6	6	0	
J	Bolt&Nut M16x350 (Pole/Brace)	set	個	1	49			1	16	1	6				2	8	1	19		14	2	1											116		_
к	Bolt type Connector for 33kV(ACSR150/ACSR150)	рс	個							6	36	6		6	6	24	2	38	6	42	6 13	2			12		12				6	18	170	9	
	33kV Lightning Arrester	рс	個																		3	5 3											6	0	\triangleright
в	33kV Line Switch	set	セット																		1	2 1											2	0	
	11kV Line Switch	set	セット																			1									1	3	3	0	
	11kV Lightning Arrester	рс	個																			3								T	3	9	9	0	
	Bolt type Connector (ACSR150/Cu 38)	рс	個																		3	3									3	9	15	1	
	Pole Number Plate	pc	枚	1	49	1		1	16	1	6	1		1	1	4	1	19	1	7	1	2 1	1		1		1				1	3	106	5	
	Danger Plate	pc	枚	1	49	1		1	16	1	6	1		1		4	1	19	1	7	1 3	2 1	1		1		1		1	10	1	3	116	J J	
	Japanese national Flag Plate	pc	枚	1	49			1	16	1	6			1		4	1	19		7	1				1		1			10		3	116		
υ	Japanese national Flag Plate Barbed Wire for anti-climbing	m	n m		245			1	16 80	1	6 30	+	+ +		1	20		95	1	70	10 20		1 1		- 1			<u> </u>	+	50	+	30	640		

Table 2-2-2-4.27 Material List for 33kV Distribution line (Tegeta substation ~ Jangwani Beach substation)

Part List	on Each Pole Type for 11/33kV	'Distribution Line / 各ポ	ールタイプ 資機	材数量表(Mwananyamala)

No. Description	unit	単位		∖−1	A-2		в	~	-1	C-	-2	C-	2		<u> </u>	F	Pole Ty	F		G		н		1	Ŀ		I-	2	L		к	\neg	設計	補給	
				0	A-2 5		B 0	C-		(Stay 1		(Stay) 1		1)	E		F	_	G 2		н 0	I-		(Stay 3		(Stay 1		J 1	, 	К 3		数量	数量	t 数
	unit	式	1セット 当たり	小計	1セット 当たり 小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計 当	ット 小	+ 1セット 当たい	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	1セット 当たり	小計	合計	5%	合
A Steel pole 12m with Pole Cap	рс	本	1		1 5	1		1		1	1	1	1						2	4									1	1	2	6	18		1
B Steel pole 15m with Pole Cap	рс	本												1	1	1		2			4		1	3	1	3	1	1					8		0
A Disc Insulator	рс	個						18		18	18	18	18	18	18	18		18	9	18	12				18	54	18	18		L	6	18	162		8
B Anchor Shackle	рс	個						6		6	6	6	6	6	6	6		6	3	6	6				6	18	6	6			3	9	57	1	3
C Ball Eye	рс	個						6		6	6	6	6	6	6	6		6	3	6	6				6	18	6	6		L	3	9	57		3
D Socket Eye	рс	個						6		6	6	6	6	6	6	6		6	3	6	6				6	18	6	6		<u> </u>	3	9	57	1	3
F Dead End Clamp for 33kV(ACSR150)	рс	個						6		6	6	6	6	6	6	6		6	3	6	6				6	18	6	6		L			48		2
G Dead End Clamp for 11kV(ACSR150)	рс	個																			6									<u> </u>	3	9	9	1	0
J Twist Strap	set	セット						6		6	6	6	6	6	6	6		6	3	-		_			6	18	6	6		L	3	9	57	-	3
K 33kV Post Insulator	рс	個	3		3 15	3		3		3	3	3	3	3	3	3		3	3	6		-	3	9	3	9	3	3		<u> </u>	\vdash		51		3
M 11kV Pin Insulator	рс	個																			18									<u> </u>	3	9	9		0
N Performed Top Tie for ACSR150	рс	個	3		3 15			3		3	3	3	3					3					3	9	3	9	3	3		<u> </u>	\vdash		42		2
L Performed Side Tie for ACSR150	рс	個				3								3	3	3														<u> </u>	\square		3	(0
Q Aluminum Bind Wire 4.0mm	m	m																	9	10	-									<u> </u>	9	27	45	-	2
A Crossarm 75x75x3.2x3000	рс	個	1			1		2						4	4	2		2	2	4			1	3	3	9	3	3	\square	<u> </u>	2	6	29	<u> </u>	1
B Crossarm 45x75x3.2x3000	рс	個	1			1		1						1	1	1			_														1		0
C Crossarm 45x75x3.2x1500	рс	個			1 5					1	1	1	1					2	2	4	2	-	1	3	1	3	1	1	\vdash	<u> </u>	\vdash		18	÷	1
D Crossarm 75x75x3.2x3000 for Terminal	рс	個																		10	2									<u> </u>	5	15	25		1
E Crossarm 75x75x3.2x3400	рс	個	_	<u> </u>		-	+						\rightarrow		$ \downarrow$				_	-	20		<u> </u>						\vdash	<u> </u>	\vdash		<u> </u>	—	4
F Crossarm 75x75x3.2x2400	рс	個																			4									<u> </u>	\square				_
K Crossarm Brace Pipe type	рс	個	2			2		4						8	8	4		4	4	8	4		1	3			2	2		<u> </u>	4	12	33		2
L Crossarm Support	рс	個	2		2 10			2		2	2	2	2	2	2	2		4	2	4	4		2	6	2	6	2	2		<u> </u>	\square		34		2
M Insulator Support	рс	個			3 15																		3	9	3	9	3	3					36		2
A Stay Band (Double)	рс	個	_													2		1	1	2									1	2			4		0
E Stay Band (Single)	рс	個				1		1				1	1								2		1	3			1	1	1	2	2	6	13	-	1
F Stay Wire	m	m				15		30				30	30			40		60	30	60	60		30	90			30	30	50	50	30	90	350	18	8
H Dead End Grip for Insulator	рс	個				2		4				2	2			4		8	8	-			2	6			2	2	2	6	4	12		1	2
J Dead End Grip for Thimble	рс	個				4		8				4	4			8		16	16				4	12			4	4	6	6	8	24	82		4
K Stay Insulator 33kV	рс	個				1		4				1	1			2		4	4	8	2		1	3			1	1	1	3			16	<u> </u>	1
L Stay Insulator 11kV	рс	個																												<u> </u>	2	6	6	-	<u>ə</u>
M Turnbuckle	рс	個				1		2				1	1			2		4	4		2		1	3			1	1	1	1	2	6	20		1
N Stay Rod	рс	個				1		2				1	1			2		4	4		-	-	1	3			1	1	1	<u>1</u>	2	6	20		1
P Stay Plate	рс	個				1		2				1	1			2		4	4	8	2		1	3			1	1	1	1	2	6	20		1
R Stay Pole	рс	本								1	1			1	1										1	3			1	1	\vdash		6	-	0
T Stay Pole Bracket	рс	個								1	1			1	1										1	3				1	\vdash		6		3
A PVC Protection Pipe L=4.0m	рс	本																	1	4										<u> </u>	1	3	7	-	<u>ə</u>
B Stainless Band	set	セット	·													3		_	16											<u> </u>	6	18			3
D Ground Rod 14x1500	рс	個	1		1 5	1		1		1	1	1	1	1	1	1		1	3	-	-		1	3	1	3	1	1		<u> </u>	2	6	27	-	1
E Lead Wire Terminal	рс	個	1		1 5			1		1	1	1	1	1	1	1		1	6				1	3	1	3	1	1		<u> </u>	2	6	27		1
F Compression Connector (38-22)	рс	個	1		1 5	1		1		1	1	1	1	1	1	1		1	3		- ·		1	3	1	3	1	1		<u> </u>	2	6	27	-	1
J Grounding Wire (IV38sq.mm)	m	m	18		18 90	18		18		18	18	18	18	18	18	18		18	40				18	54	18	54	18	18		<u> </u>	20	60			1
A Protection Pipe for Cable (PVC150)	m	m																	4	-	-	-								<u> </u>	4	12			1
B Pipe Saddle	рс	個																_	2	-										<u> </u>	2	6	10	-	1
A Bolt&Nut M16x400 (Pole/Crossarm)	рс	個	1			1													10	-	-		1	3						<u> </u>	12	36	59	<u> </u>	3
B Double Arming Bolt M16x400 (Pole/W-Crossarm)	рс	個						3		_				4	4	2		2	2						3	9	2	2		<u> </u>	2	6	25	-	1
C Bolt&Nut M16x350 (Pole/Crossarm)	рс	個	2	-	2 10			2		2	2	2	2	2	2	2		2	12						2	6	2	2		<u> </u>			48	-	2
E Square Washer	рс	個	8		5 25			19		20	20	20	20			11		19	45				6			60				<u> </u>					9
G Bolt&Nut M16x120 (Crossarm/Brace)	set	個	2			2		2						8	8	4		4	4	8			1	3	2	6	2	2		<u> </u>	4	12	39	-	2
I Bolt&Nut M16x300 (Pole/Brace)	set	個																												<u> </u>	2	6	6		0
J Bolt&Nut M16x350 (Pole/Brace)	set	個	1			1		1						2	2	1		2	2	-	-									<u> </u>	┝──┼	_	6	-	0
K Bolt type Connector for 33kV(ACSR150/ACSR150)	рс	個						6		6	6	6	6	6	6	2		6							12	36	12	12		<u> </u>	6	18	96		5
A 33kV Lightning Arrester	рс	個		-															3	6	3										$ \blacksquare$		6		1
B 33kV Line Switch	set	セット											_						-	2	1							_	┝──┥		\vdash	_	2	<u> </u>	0
C 11kV Line Switch	set	セット	•	-															-		1										1	3	3		4
D 11kV Lightning Arrester	рс	個																	_		3	-						_	\vdash	<u> </u>	3	9	9	-	4
G Bolt type Connector (ACSR150/Cu 38)	рс	個																	3	6									$ \rightarrow $	_	3	9	15	F	1
A Pole Number Plate	рс	枚	1	-	1 5	1		1		1	1	1	1	1	1	1		1	1	-		-	1	3	1	3	1	1	\vdash	<u> </u>		3	20		1
B Danger Plate	рс	枚	1		1 5			1		1	1	1	1		1	1		1	1	-	-		1	3	1	3	1	1		1	1	3	21	<u> </u>	1
D Japanese national Flag Plate	pc	枚	1 1	1	1 5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	3	1	3	1	1	1	1 1	1 1	3	21	1 .	1

Table 2-2-2-4.28 Material List for 33kV Distribution line (Makumbusho substation ~ Mwananyamala substation)

④ Technical Specifications of Major Equipment and Materials

A summary of the major equipment related to 33kV Distribution line is shown in Table 2-2-2-4.29.

No.	Equipment and Materials	Quantity	Unit	Specification
1-A	Steel pole 12m with Pole Cap	1	Unit	Material: Steel Coating: Hot dip galvanizing with Anti-corrosive coat 50cm from the bottom Type: Slip joint type Slip:2 slips Length:12m Design load: Minimum 3.90kN (500kg) Accessary: Top cap, Base plate
1-B	Steel pole 15m with Pole Cap	1	Unit	Material: Steel Coating: Hot dip galvanizing with Anti-corrosive coat 50cm from the bottom Type: Slip joint type Slip:3 slips Length:15m Design load: Minimum 3.90kN (500kg) Accessary: Top cap, Base plate
2-A	Disc insulator	1	Unit	Applicable standard: IEC or equivalent Type: Porcelain galvanized disk type Minimum creepage distance : 300mm Minimum Electrical-Mechanical failing load : 120kN Dry lightning impulse withstand voltage : 110kV Wet power frequency withstand test voltage : 40kV Power frequency puncture voltage : 110kV
2-В	Anchor Shackle	1	Unit	Type: Bolt type Material: Steel with hot dip galvanizing for body, Stainless for pin
2-C	Ball Eye	1	Unit	Material: Mild steel, Hot dip galvanizing
2-D	Socket Eye	1	Unit	Material: Cast iron or Mild steel for body, Stainless for pin
2-F	Dead End Clamp for 33kV (ACSR150)	1	Unit	Material: Aluminum alloy iron casting
2-G	Dead End Clamp for 11kV (ACSR150)	1	Unit	Material: Aluminum alloy iron casting
2-J	Twist Strap	1	Unit	Hot dip galvanizing
2-K	33kV Post Insulator	1	Unit	Applicable standard: IEC or equivalent Type: Porcelain single solid core type Nominal system voltage:33kV Minimum creepage distance : 25mm/kV Minimum Electrical-Mechanical failing

Table 2-2-2-4.29 Summary of Major Equipment (33kV Distribution Line)

No.	Equipment and Materials	Quantity	Unit	Specification
				load : 12.5kN
				Dry lightning impulse withstand voltage : 170kV
				Wet power frequency withstand test
				voltage : 70kV
				Applicable standard: IEC or equivalent
				Type: Porcelain single solid core type
				Nominal system voltage:11kV
				Minimum creepage distance : 25mm/kV
2-M	11kV Post Insulator	1	Unit	Minimum Electrical-Mechanical failing
2				load : 12.5kN
				Dry lightning impulse withstand voltage :
				75kV
				Wet power frequency withstand test
2 N	Derformed Ten Tie for ACSD 150	1	Unit	voltage : 28kV
2-N	Performed Top Tie for ACSR150 Performed Side Tie for	1	Unit	ACSR150mm ² , Aluminum-clad steel wire
2-L	ACSR150	1	Unit	ACSR150mm ² , Aluminum-clad steel wire
2-Q	Aluminum Bind Wire 4.0mm	1	Unit	4.0mm Aluminum-clad steel wire
				Material: Mild steel
3-A	Crossarm 75x75x3.2x3000	1	Unit	Coating: Hot dip galvanizing
				Section shape: Square shape
		1	.	Material: Mild steel
3-B	Crossarm 45x75x3.2x3000	1	Unit	Coating: Hot dip galvanizing
				Section shape: Square shape Material: Mild steel
3-C	Crossarm 45x75x3.2x1500	1	Unit	Coating: Hot dip galvanizing
5-0	Crossann 45x75x5.2x1500	1	Oint	Section shape: Square shape
				Material: Mild steel
3-D	Crossarm 75x75x3.2x3000 for	1	Unit	Coating: Hot dip galvanizing
	Terminal			Section shape: Square shape
				Material: Mild steel
3-Е	Crossarm 75x75x3.2x3400	1	Unit	Coating: Hot dip galvanizing
				Section shape: Square shape
				Material: Mild steel
3 - F	Crossarm 75x75x3.2x2400	1	Unit	Coating: Hot dip galvanizing
				Section shape: Square shape
3-K	Crossarm Brace Pipe type	1	Unit	Material: Mild Steel
				Coating: Hot dip galvanizing
3-L	Crossarm Support	1	Unit	Material: Mild Steel
				Coating: Hot dip galvanizing
3-M	Insulator Support	1	Unit	Material: Mild Steel
				Coating: Hot dip galvanizing
4-A	Stay Band (Double)	1	Unit	Material: Mild steel
				Coating: Hot dip galvanizing Material: Mild steel
4- E	Stay Band (Single)	1	Unit	Coating: Hot dip galvanizing
4-F	Stay Wire	1	Unit	Material: Mild steel
+-1 ,	Stay with	1	Um	זיזמנכוזמו. זיזווע גוכבו

No.	Equipment and Materials	Quantity	Unit	Specification
				Type: Strand wire
				Size: 45 mm ² (2.9mm×7) or equivalent
				Coating: Hot dip galvanizing
			TT C	Material: Zinc-coated steel wire
4 - H	Dead End Grip for Insulator	1	Unit	Size:45mm ²
			.	Material: Zinc-coated steel wire
4-J	Dead End Grip for Thimble	1	Unit	Size:45mm ²
			.	Type: Porcelain type
4-K	Stay Insulator 33kV	1	Unit	Nominal system voltage:33kV
4.7		1	T T •	Type: Porcelain type
4-L	Stay Insulator 11kV	1	Unit	Nominal system voltage:11kV
4.3.6		1	T T •	Material: Mild steel
4-M	Turnbuckle	1	Unit	Coating: Hot dip galvanizing
				Material: Mild steel
4-N	Stay Rod	1	Unit	Coating: Hot dip galvanizing
				Size: 13mm ϕ ×2,100mm
4.5		1	T T •	Material: Mild steel
4-P	Stay Plate	1	Unit	Coating: Hot dip galvanizing
				Material: Steel
				Coating: Hot dip galvanizing with
				Anti-corrosive coat 50cm from the bottom
4.0		1	TT. 24	Type: Slip joint type
4-R	Stay Pole	1	Unit	Slip:2 slips
				Length:12m
				Design load: Minimum 3.90kN (500kg)
				Accessary: Top cap, Base plate
4-T	Stars Dala Dra alaat	1	Unit	Material: Mild steel
4-1	Stay Pole Bracket	1	Omt	Coating: Hot dip galvanizing
5-A	BVC Protection Ding I = 4.0m	1	Unit	Material: Polyvinyl chloride
3-A	PVC Protection Pipe L=4.0m	1	Omt	Size:26mmqx4m
				Material: Stainless
5-B	Stainless Band	1	Unit	Length:1,200mm
				Attachment: Fastener
				Material: Copper-clad steel
5-D	Ground Rod 14x1500	1	Unit	Type: Rod type
				Size:14mmqx1,500mm
5-E	Lead Wire Terminal	1	Unit	Material: Copper alloy
J-15		1	Om	Size:22mm ²
5-F	Compression Connector (38-22)	1	Unit	Material: Copper alloy
5-1		1	Omt	Size:38-22mm ²
				Material:600 V PVC insulated Copper
5-J	Grounding Wire (IV38sq.mm)	1	Unit	conductor
				Size:38mm ²
6-A	Protection Pipe for Cable	1	Unit	Material: PVC (with sealing materials)
0-A	(PVC150)			Size:150mmqx4m
6-B	Pipe Saddle	1	Unit	Material: Stainless
7-A	Bolt&Nut M16x400	1	Unit	Material: Mild steel
/-A	(Pole/Crossarm)	1	Omt	Coating: Hot dip galvanizing

No.	Equipment and Materials	Quantity	Unit	Specification
		Q		Size:M16x400 (Steel pole/Cross arm)
				Material: Mild steel
7-B	Double Arming Bolt M16x400	1	Unit	Coating: Hot dip galvanizing
/-D	(Pole/W-Crossarm)	1	Omt	Size:M16x400 (Pole/W-Crossarm)
				Material: Mild steel
7-C	Bolt&Nut M16x350	1	Unit	Coating: Hot dip galvanizing
/-C	(Pole/Crossarm)	1	Omt	Size:M16x350 (Pole/W-Crossarm)
				Material: Mild steel
7 - E	Square Washer	1	Unit	Coating: Hot dip galvanizing
				Material: Mild steel
7-G	Bolt&Nut M16x120	1	Unit	
/-G	(Crossarm/Brace)	1	Omt	Coating: Hot dip galvanizing
				Size:M16x120 (Crossarm/Brace)
7.1	Bolt&Nut M16x300	1	T I :4	Material: Mild steel
7-I	(Pole/Brace)	1	Unit	Coating: Hot dip galvanizing
				Size:M16x300 (Pole/Brace)
	Bolt&Nut M16x350		.	Material: Mild steel
7-J	(Pole/Brace)	1	Unit	Coating: Hot dip galvanizing
	· · · ·			Size:M16x350 (Pole/Brace)
7-K	Bolt type Connector for 33kV	1	Unit	Material: Aluminum alloy
	(ACSR150/ACSR150)			Coating: Galvanizing
9-A	33kV Lightning Arrester	1	Unit	Specified in substation part
				Applicable standard: IEC or equivalent,
				Type: Outdoor pole mount vertical type
				Operation method: Manual operation
				Nominal voltage:33kV
				Rated voltage:36kV
9-B	33kV Line Switch	1	Unit	Rated current:600A
				Rated withstand short circuit current:16.5kA
				(1sec.)
				Insulator: Porcelain or polymer insulator
				Accessary: Hot-dipped galvanized steel
				support with fixing material
				Applicable standard: IEC or equivalent,
			TT '	Type: Outdoor pole mount vertical type
				Operation method: Manual operation
0.0		1		Nominal voltage:11kV
9-C	11kV Line Switch	1	Unit	Rated voltage:12kV
				Rated current:600A
				Rated withstand short circuit current:16.5kA
				(1sec.)
9-D	11kV Lightning Arrester	1	Unit	Specified in substation part
				Material: Aluminum alloy
9-G	Bolt type Connector	1	Unit	Coating: Galvanizing
	(ACSR150/Cu 38)			Size:ACSR150/Cu38
		1	Unit	Material: Aluminum or stainless
10-A	Pole Number Plate			Size: 210mm×150mm×t0.5mm
				Accessary: Stainless band
10-B	Danger Plate	1	Unit	Material: Aluminum or stainless
10 D		· ·	C IIIt	Traveriai. I frammann of Swinnoss

No.	Equipment and Materials	Quantity	Unit	Specification
				Size: 210mm×150mm×t0.5mm
				Accessary: Stainless band
				Material: Aluminum or stainless
10-D	Japanese national Flag Plate	1	Unit	Size: 210mm×150mm×t0.5mm
				Accessary: Stainless band
10-E	Barbed Wire for anti-climbing	1	Unit	Material: Steel
10-12	Darbed wire for anti-enholing	1	Omt	Length:5m
				Applicable standard: BS or equivalent
	Conductor (ACSR150 mm ²)		Unit	or equivalent
11-A		1		Type: ACSR (Aluminum alloy conductor
				steel reinforced)
				Size:150mm ² (Dingo)
				Applicable standard: IEC or equivalent
	_			or equivalent
11 - B	Grounding wire (ACS30 mm ²)	1	Unit	Type: ACS (Aluminum alloy conductor
				steel reinforce)
				Size:30mm ²
	Straight joint for conductor			Applicable standard: IEC or equivalent
11 - C	$(ACSR150 \text{ mm}^2)$	1	Unit	Type: Straight compression joint
				Size: for ACSR150mm ² (Dingo)
	Straight joint for grounding wire			Applicable standard: IEC or equivalent
11 - D	$(ACS30 \text{ mm}^2)$	1	Unit	Type: Straight compression joint
				Size: for ACS30mm ²

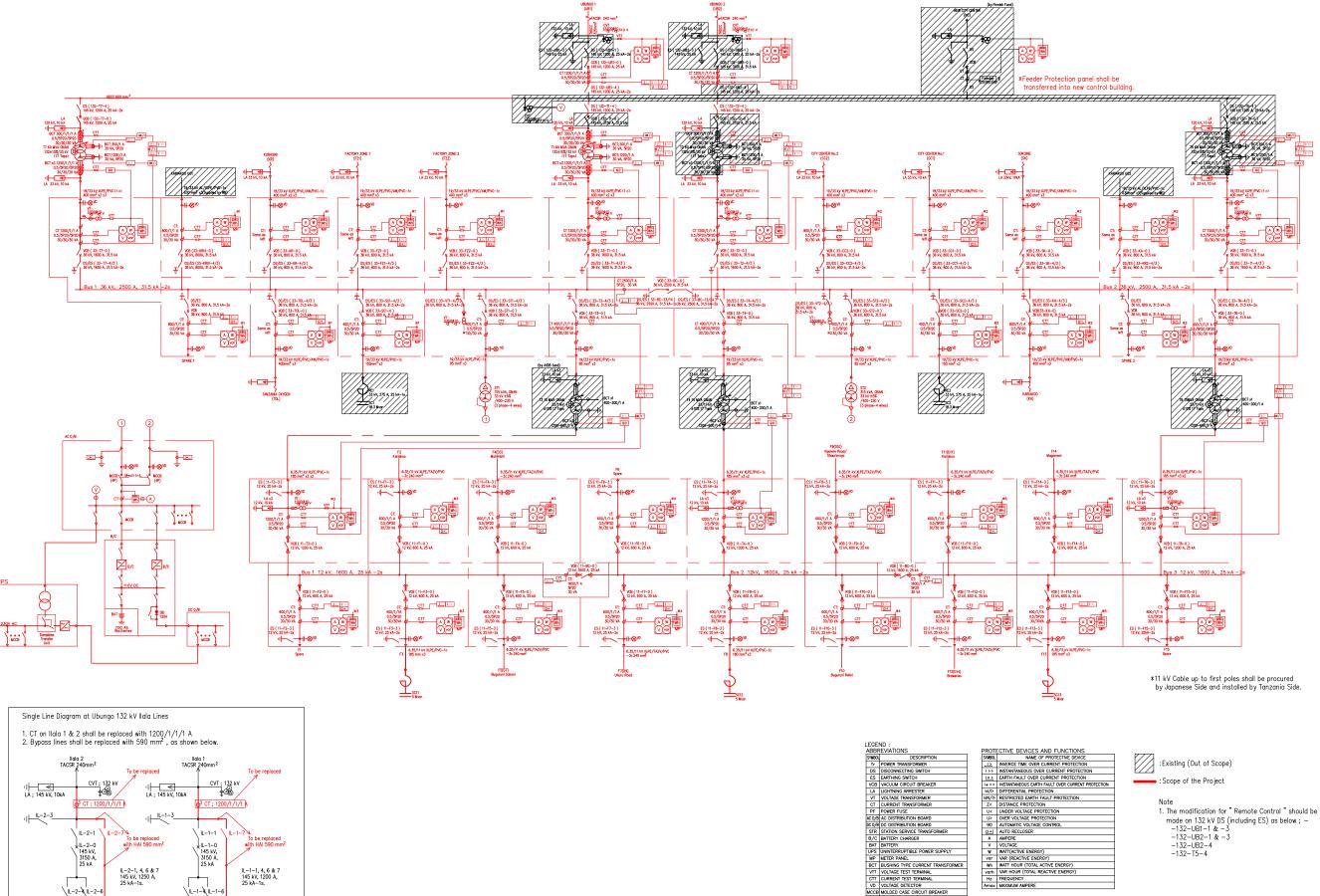
2-2-3 Outline Design Drawing

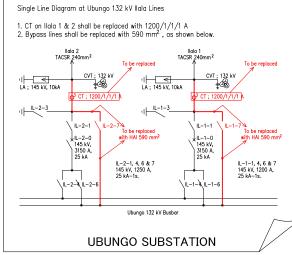
The outline design drawings for the Project are as indicated below.

Single Line Diagrams

DWG No.	Title
DWG No. SS-E-01	Single Line Diagram for Ilala Substation
DWG No. SS-E-02	Single Line Diagram for Msasani Substation
DWG No. SS-E-03	Single Line Diagram for Muhimbili Substation
DWG No. SS-E-04	Single Line Diagram for Jangwani Beach Substation
DWG No. SS-E-05	Single Line Diagram for Mwananyamala Substation
DWG No. SS-E-06	Single Line Diagram for Existing Msasani Substation

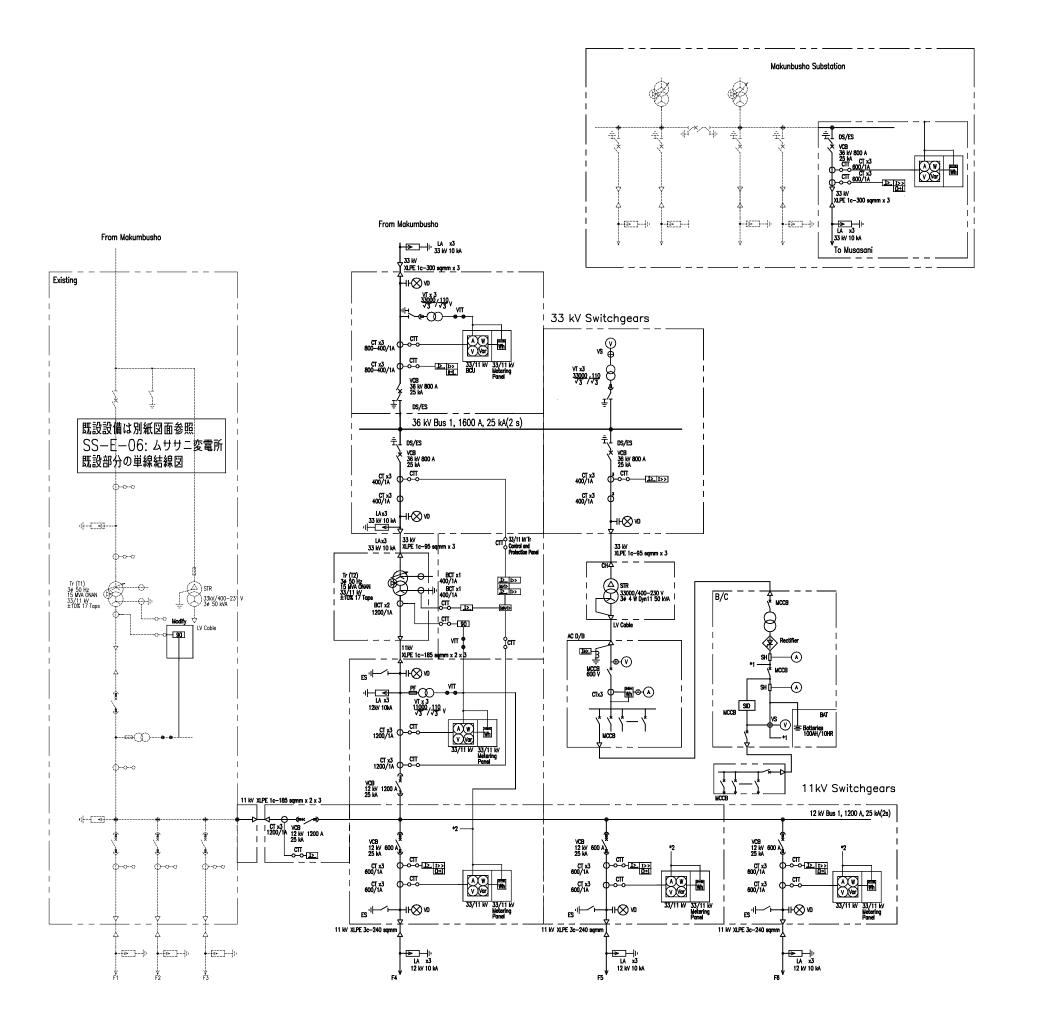
Layout Plan


DWG No.	Title
DWG No. SS-L-001	Layout Plan for Ilala Substation
DWG No. SS-L-002	Sectional Plan for Ilala Substation
DWG No. SS-L-003	Layout Plan for Msasani Substation
DWG No. SS-L-004	Layout Plan for Muhimbili Substation
DWG No. SS-L-005	Layout Plan for Jangwani Beach Substation
DWG No. SS-L-006	Layout Plan for Mwananyamala Substation
DWG No. SS-A-01	Finishing Schedule for Ilala Substation
DWG No. SS-A-02	Ground Floor Plan for Ilala Substation
DWG No. SS-A-03	Roof Plan for Ilala Substation
DWG No. SS-A-04	Elevation Plan for Ilala Substation (1)
DWG No. SS-A-05	Elevation Plan for Ilala Substation (2)
DWG No. SS-A-06	Sectional Plan for Ilala Substation
DWG No. SS-A-07	Finishing Schedule for 33/11kV Substation
DWG No. SS-A-08	Ground Floor Plan and Roof Plan for 33/11kV Substation
DWG No. SS-A-09	Elevation Plan for 33/11kV Substation
DWG No. SS-A-10	Sectional Plan for 33/11kV Substation


Transmission Line Drawings

DWG No.	Title
DWG No. TL-01	Route Map of Transmission Line (Key Plan)
DWG No. TL-01-01~05	Route Map of Transmission Line
DWG No. TL-E-01	Elevation Diagram of Gantry (Expansion)
DWG No. TL-S-01~04	Elevation Diagram of Steel Tower

Distribution Line Drawings

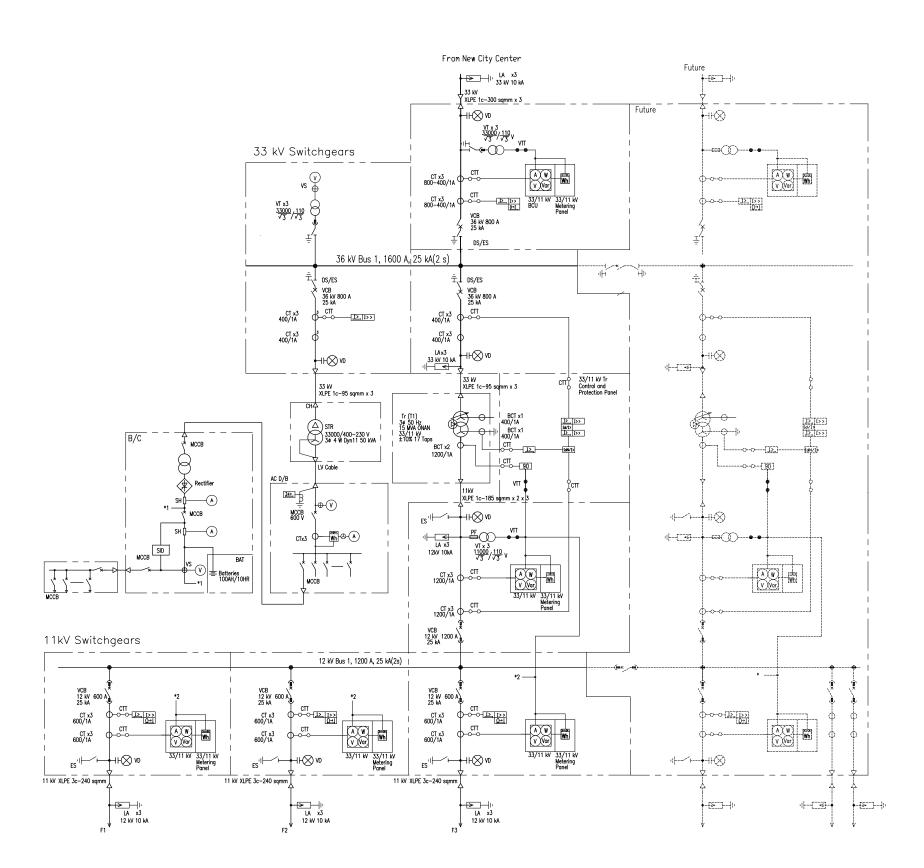

DWG No.	Title
DWG No. DL-R-01	Route Map of Distribution Line (Jangwani Beach) Key Plan
DWG No. DL-R-01-01~04	Route Map of Distribution Line (Jangwani Beach)
DWG No. DL-R-02	Route Map of Distribution Line (Muhimbili) Key Plan
DWG No. DL-R-02-01~02	Route Map of Distribution Line (Muhimbili)
DWG No. DL-R-03	Route Map of Distribution Line (Mwananyamala) Key Plan
DWG No. DL-R-03-01	Route Map of Distribution Line (Mwananyamala)
DWG No. DL-R-04	Route Map of Distribution Line (Msasani) Key Plan
DWG No. DL-R-04-01~05	Route Map of Distribution Line (Msasani)
DWG No. DL-E-01~14	Pole Type of Distribution Line

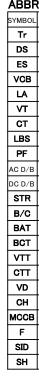
DWG No. SS-E-01 Single Line Diagram for Ilala Substation イララ変電所 単線結線図

LEGEND :

SYMBOL

<u>1 _ _ 1</u> **II** <<1 I₽ Ι₩>> Id/I> D IdN/I> R U< 0 U> **U** 25 **S** 90 A <u>0→1</u> A А V W Var Wh V Varh

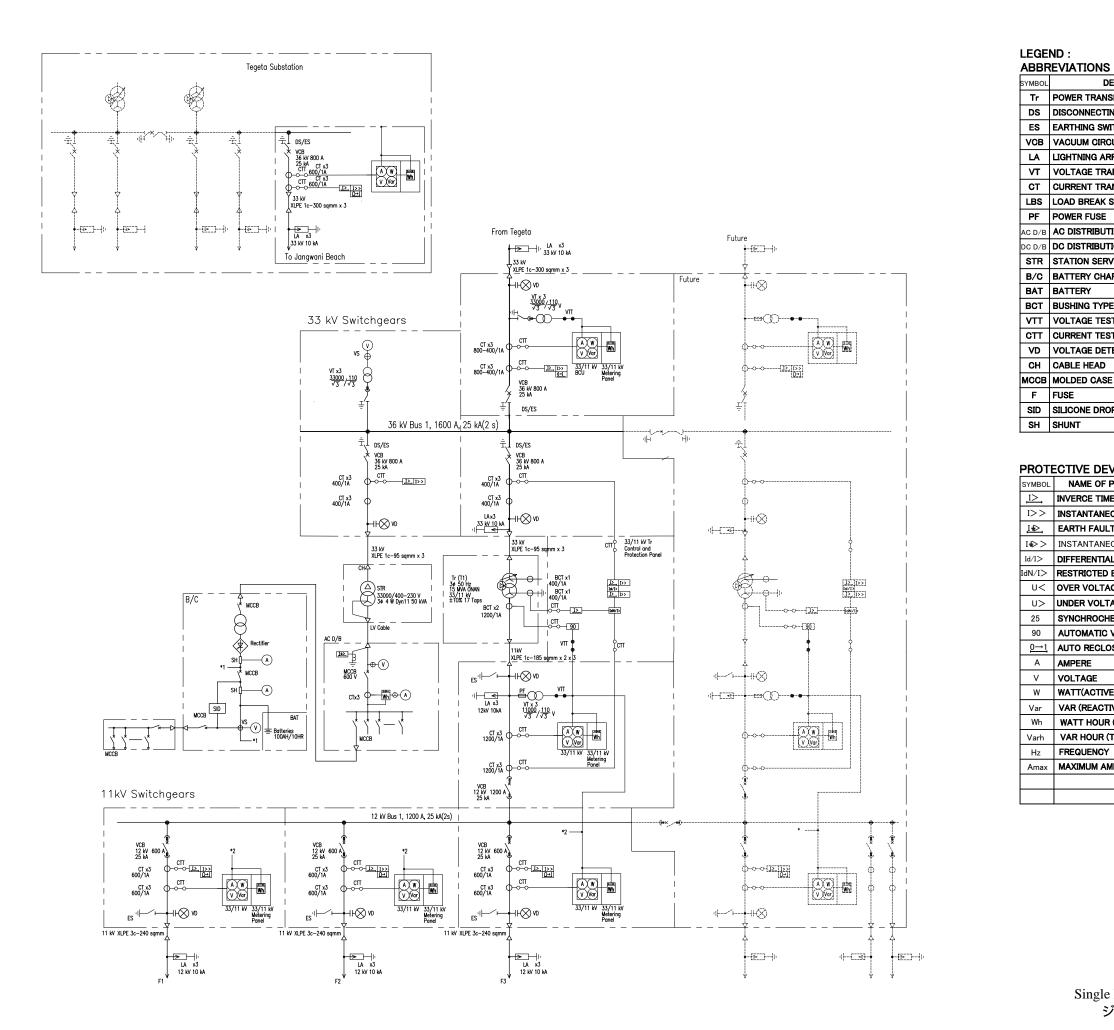

ABBREVIATIONS


ABBREVIATIONS				
SYMBOL	DESCRIPTION			
Tr	POWER TRANSFORMER			
DS	DISCONNECTING SWITCH			
ES	EARTHING SWITCH			
VCB	VACUUM CIRCUIT BREAKER			
LA	LIGHTNING ARRESTER			
۷Т	VOLTAGE TRANSFORMER			
СТ	CURRENT TRANSFORMER			
LBS	LOAD BREAK SWITCH			
PF	POWER FUSE			
AC D/B	AC DISTRIBUTION BOARD			
DC D/B	DC DISTRIBUTION BOARD			
STR	STATION SERVICE TRANSFORMER			
B/C	BATTERY CHARGER			
BAT	BATTERY			
BCT	BUSHING TYPE CURRENT TRANSFORMER			
VTT	VOLTAGE TEST TERMINAL			
CTT	CURRENT TEST TERMINAL			
VD	VOLTAGE DETECTOR			
СН	CABLE HEAD			
мссв	MOLDED CASE CIRCUIT BREAKER			
F	FUSE			
SID	SILICONE DROPPER			
SH	SHUNT			

PROTECTIVE DEVICES AND FUNCTIONS

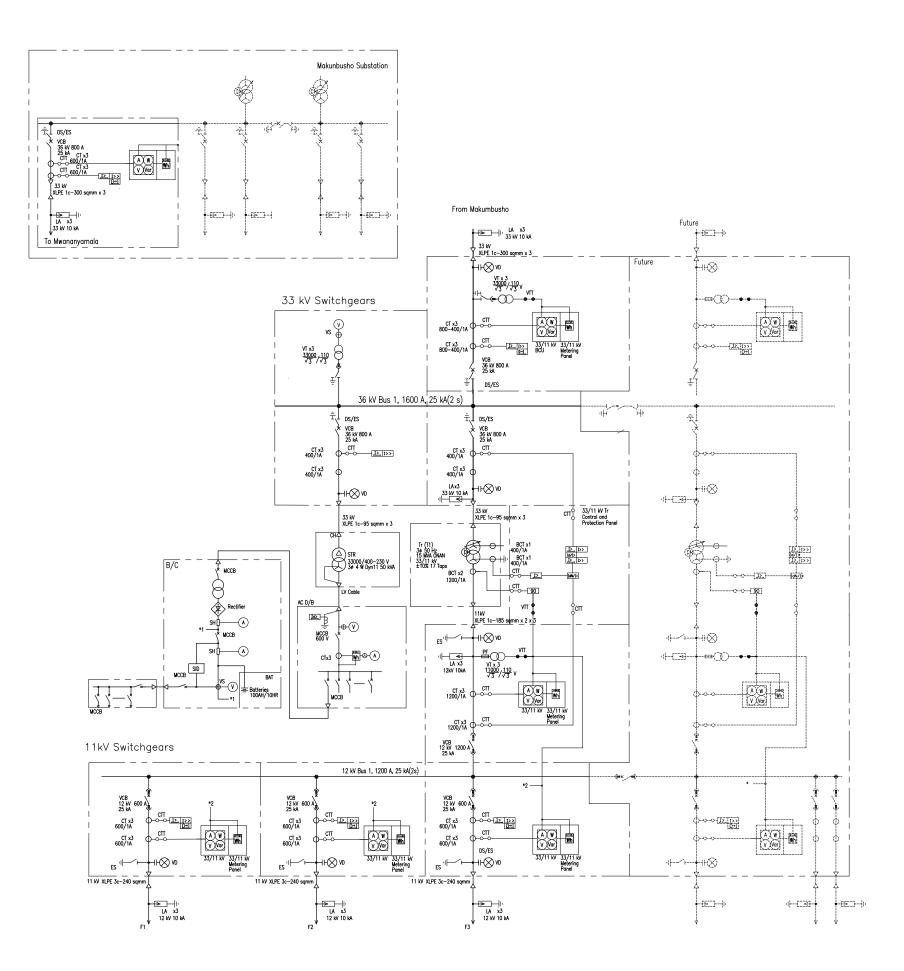
SYMBOL	NAME OF PROTECTIVE DEVICE
<u>I></u>	INVERCE TIME OVER CURRENT PROTECTION
I>>	INSTANTANEOUS OVER CURRENT PROTECTION
I₽	EARTH FAULT OVER CURRENT PROTECTION
I€>>	INSTANTANEOUS EARTH FAULT OVER CURRENT PROTECTION
Id/I>	DIFFERENTIAL PROTECTION
IdN/I>	RESTRICTED EARTH FAULT PROTECTION
U<	OVER VOLTAGE PROTECTION
U>	UNDER VOLTAGE PROTECTION
25	SYNCHROCHECK
90	AUTOMATIC VOLTAGE CONTROL
<u>0→1</u>	AUTO RECLOSER
А	AMPERE
V	VOLTAGE
W	WATT(ACTIVE ENERGY)
Var	VAR (REACTIVE ENERGY)
Wh	WATT HOUR (TOTAL ACTIVE ENERGY)
Varh	VAR HOUR (TOTAL REACTIVE ENERGY)
Hz	FREQUENCY
Amax	MAXIMUM AMPERE

DWG No. SS-E-02 Single Line Diagram for Msasani Substation ムササニ変電所 単線結線図


 $\begin{array}{c} \textbf{PROT} \\ \hline \textbf{SYMBOI} \\ \hline \textbf{I} \geq \\ \hline \textbf{I} \geq \\ \hline \textbf{I} \Rightarrow \\ \hline \textbf{V} \\ \hline \textbf{H} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{A} \\ \hline \textbf{M} \\ \hline \textbf{X} \\ \hline \textbf{I} \\ \hline \textbf{A} \\ \hline \textbf{I} \\ \hline \textbf{I} \\ \hline \textbf{A} \hline \textbf{A} \\ \hline \textbf{A} \hline \textbf{A} \\ \hline \textbf{A} \hline \hline \textbf{A} \\ \hline \textbf{A} \hline \textbf{A} \hline \hline \textbf{A$

LEGEND : ABBREVIATIONS

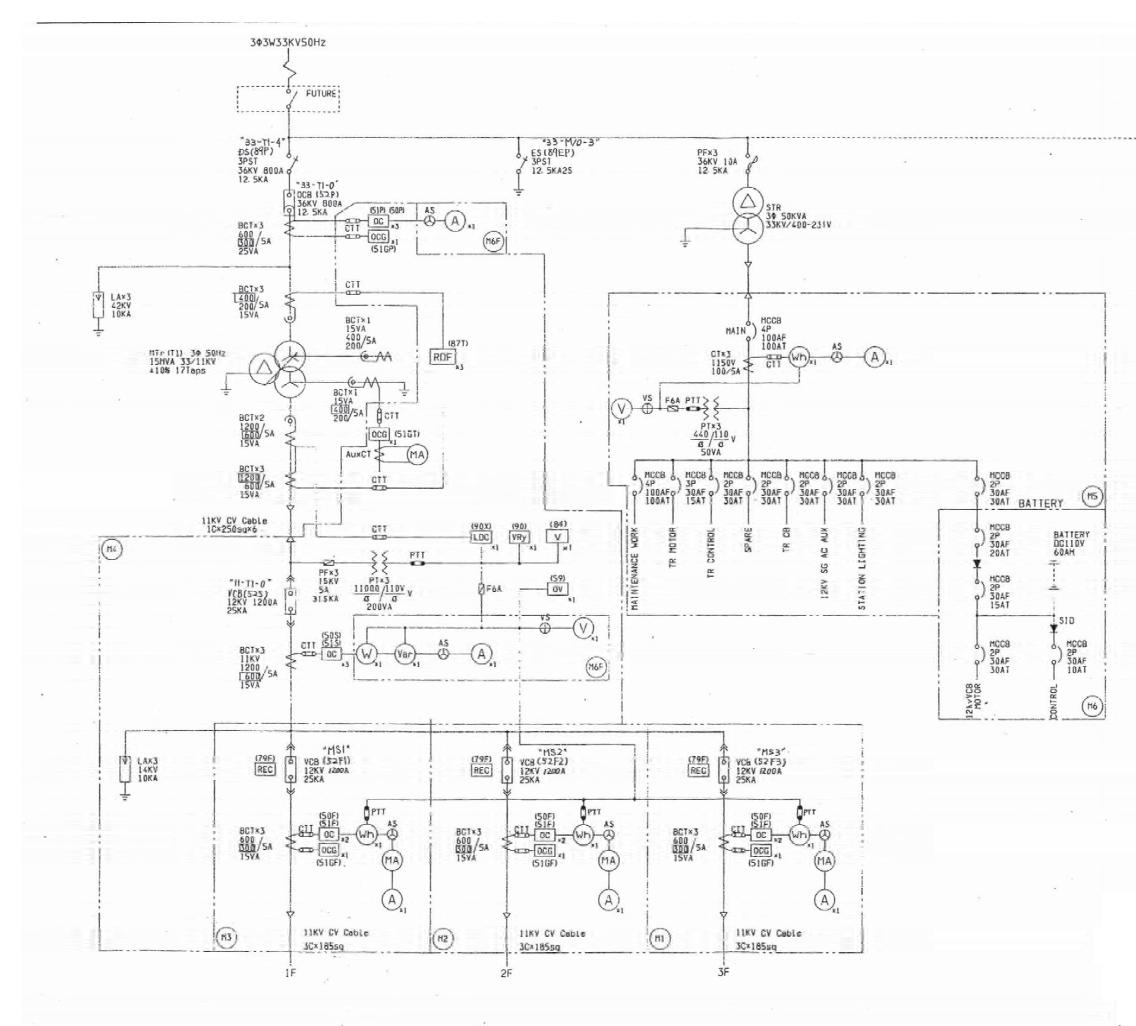
F	REVIATIONS
L	DESCRIPTION
	POWER TRANSFORMER
	DISCONNECTING SWITCH
	EARTHING SWITCH
	VACUUM CIRCUIT BREAKER
	LIGHTNING ARRESTER
	VOLTAGE TRANSFORMER
	CURRENT TRANSFORMER
	LOAD BREAK SWITCH
	POWER FUSE
3	AC DISTRIBUTION BOARD
3	DC DISTRIBUTION BOARD
	STATION SERVICE TRANSFORMER
	BATTERY CHARGER
	BATTERY
	BUSHING TYPE CURRENT TRANSFORMER
	VOLTAGE TEST TERMINAL
	CURRENT TEST TERMINAL
	VOLTAGE DETECTOR
	CABLE HEAD
3	MOLDED CASE CIRCUIT BREAKER
	FUSE
	SILICONE DROPPER
	SHUNT

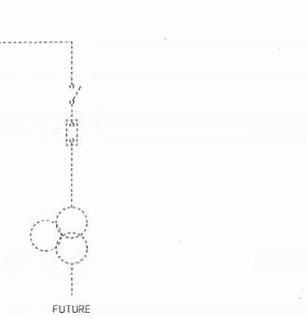

PROTECTIVE DEVICES AND FUNCTIONS

DL	NAME OF PROTECTIVE DEVICE
	INVERCE TIME OVER CURRENT PROTECTION
•	INSTANTANEOUS OVER CURRENT PROTECTION
	EARTH FAULT OVER CURRENT PROTECTION
>	INSTANTANEOUS EARTH FAULT OVER CURRENT PROTECTION
	DIFFERENTIAL PROTECTION
>	RESTRICTED EARTH FAULT PROTECTION
	OVER VOLTAGE PROTECTION
	UNDER VOLTAGE PROTECTION
	SYNCHROCHECK
	AUTOMATIC VOLTAGE CONTROL
1	AUTO RECLOSER
	AMPERE
	VOLTAGE
	WATT(ACTIVE ENERGY)
	VAR (REACTIVE ENERGY)
	WATT HOUR (TOTAL ACTIVE ENERGY)
	VAR HOUR (TOTAL REACTIVE ENERGY)
	FREQUENCY
x	MAXIMUM AMPERE

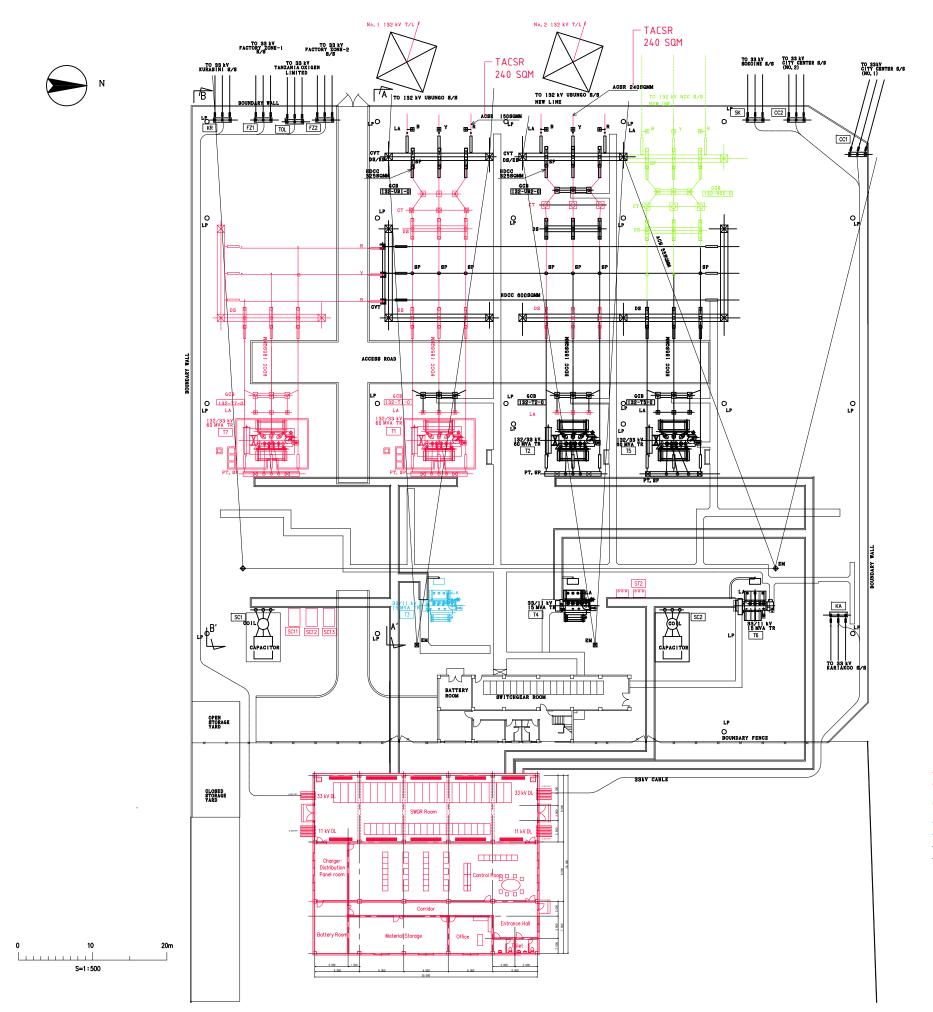
DESCRIPTION
TRANSFORMER
INECTING SWITCH
NG SWITCH
M CIRCUIT BREAKER
ING ARRESTER
GE TRANSFORMER
NT TRANSFORMER
REAK SWITCH
FUSE
TRIBUTION BOARD
TRIBUTION BOARD
N SERVICE TRANSFORMER
RY CHARGER
۲Y
IG TYPE CURRENT TRANSFORMER
GE TEST TERMINAL
NT TEST TERMINAL
GE DETECTOR
HEAD
D CASE CIRCUIT BREAKER
NE DROPPER

E DEVICES AND FUNCTIONS				
IE OF PROTECTIVE DEVICE				
CE TIME OVER CURRENT PROTECTION				
NTANEOUS OVER CURRENT PROTECTION				
FAULT OVER CURRENT PROTECTION				
NTANEOUS EARTH FAULT OVER CURRENT PROTECTION				
RENTIAL PROTECTION				
ICTED EARTH FAULT PROTECTION				
VOLTAGE PROTECTION				
VOLTAGE PROTECTION				
IROCHECK				
MATIC VOLTAGE CONTROL				
RECLOSER				
RE				
AGE				
ACTIVE ENERGY)				
REACTIVE ENERGY)				
HOUR (TOTAL ACTIVE ENERGY)				
IOUR (TOTAL REACTIVE ENERGY)				
JENCY				
IUM AMPERE				

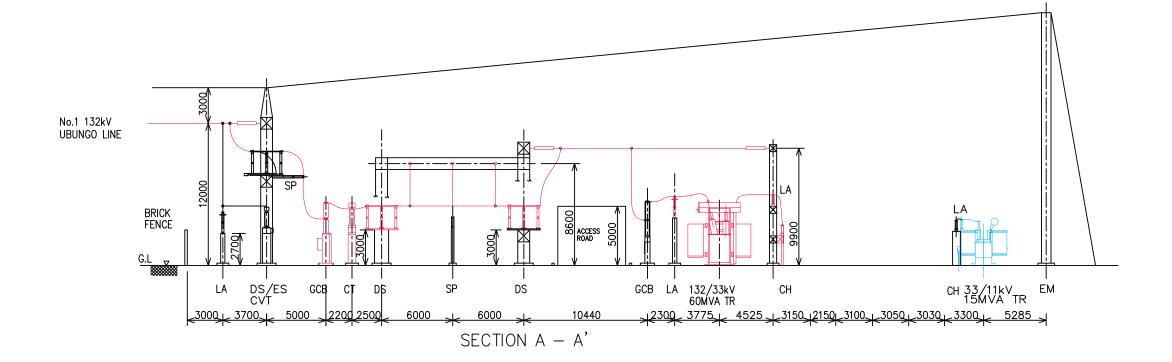


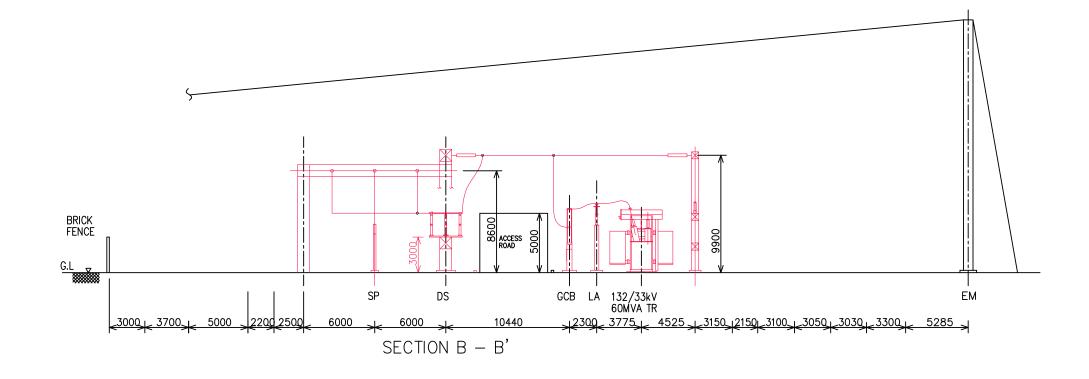

SYMBOL	DESCRIPTION
Tr	POWER TRANSFORMER
DS	DISCONNECTING SWITCH
ES	EARTHING SWITCH
VCB	VACUUM CIRCUIT BREAKER
LA	LIGHTNING ARRESTER
VΤ	VOLTAGE TRANSFORMER
СТ	CURRENT TRANSFORMER
LBS	LOAD BREAK SWITCH
PF	POWER FUSE
AC D/B	AC DISTRIBUTION BOARD
DC D/B	DC DISTRIBUTION BOARD
STR	STATION SERVICE TRANSFORMER
B/C	BATTERY CHARGER
BAT	BATTERY
BCT	BUSHING TYPE CURRENT TRANSFORMER
VTT	VOLTAGE TEST TERMINAL
CTT	CURRENT TEST TERMINAL
VD	VOLTAGE DETECTOR
СН	CABLE HEAD
мссв	MOLDED CASE CIRCUIT BREAKER
F	FUSE
SID	SILICONE DROPPER
SH	SHUNT

ECTI	PROTE
N.	SYMBOL
INVE	I>_
INST	I>>
EAR	<u>IÐ</u>
INST	Ι₽>>
DIFF	Id/I>
RES	IdN/I>
OVE	U<
UND	U>
SYN	25
AUT	90
AUT	<u>0→1</u>
AMP	Α
VOL	V
WAT	W
VAR	Var
WA ⁻	Wh
VAF	Varh
FRE	Hz
MAX	Amax


VE DEVICES AND FUNCTIONS					
AME OF PROTECTIVE DEVICE					
RCE TIME OVER CURRENT PROTECTION					
ANTANEOUS OVER CURRENT PROTECTION					
TH FAULT OVER CURRENT PROTECTION					
ANTANEOUS EARTH FAULT OVER CURRENT PROTECTION					
ERENTIAL PROTECTION					
RICTED EARTH FAULT PROTECTION					
R VOLTAGE PROTECTION					
ER VOLTAGE PROTECTION					
CHROCHECK					
OMATIC VOLTAGE CONTROL					
O RECLOSER					
ERE					
TAGE					
T(ACTIVE ENERGY)					
(REACTIVE ENERGY)					
T HOUR (TOTAL ACTIVE ENERGY)					
HOUR (TOTAL REACTIVE ENERGY)					
QUENCY					
IMUM AMPERE					

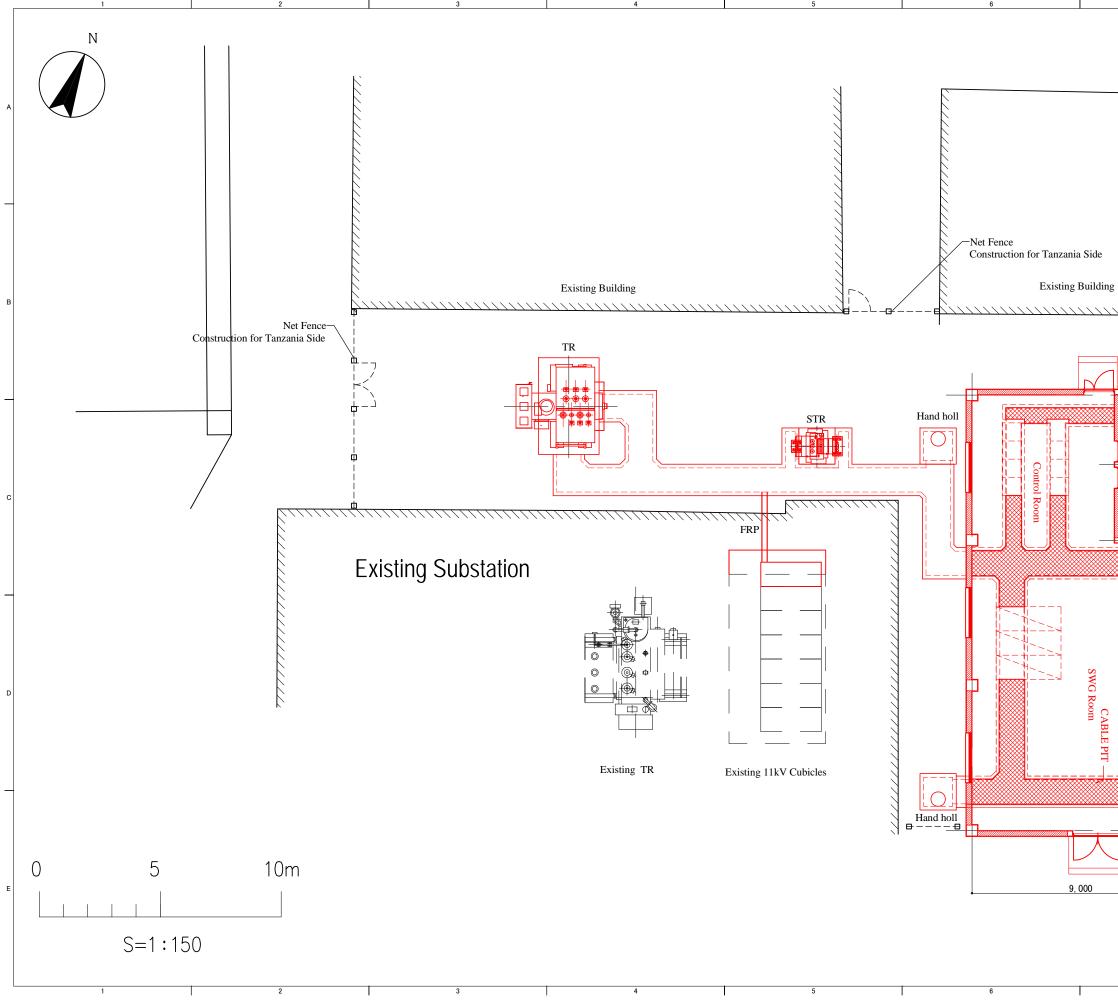
DWG No. SS-E-05 Single Line Diagram for Mwananyamala Substation ムワナニャマラ変電所・単線結線図




DWG No. SS-E-06 Single Line Diagram for Existing Msasani Substation ムササニ変電所 既設部分の単線結線図

Red : JICA Green : MFA Finland Blue : AFDB Black : Existing

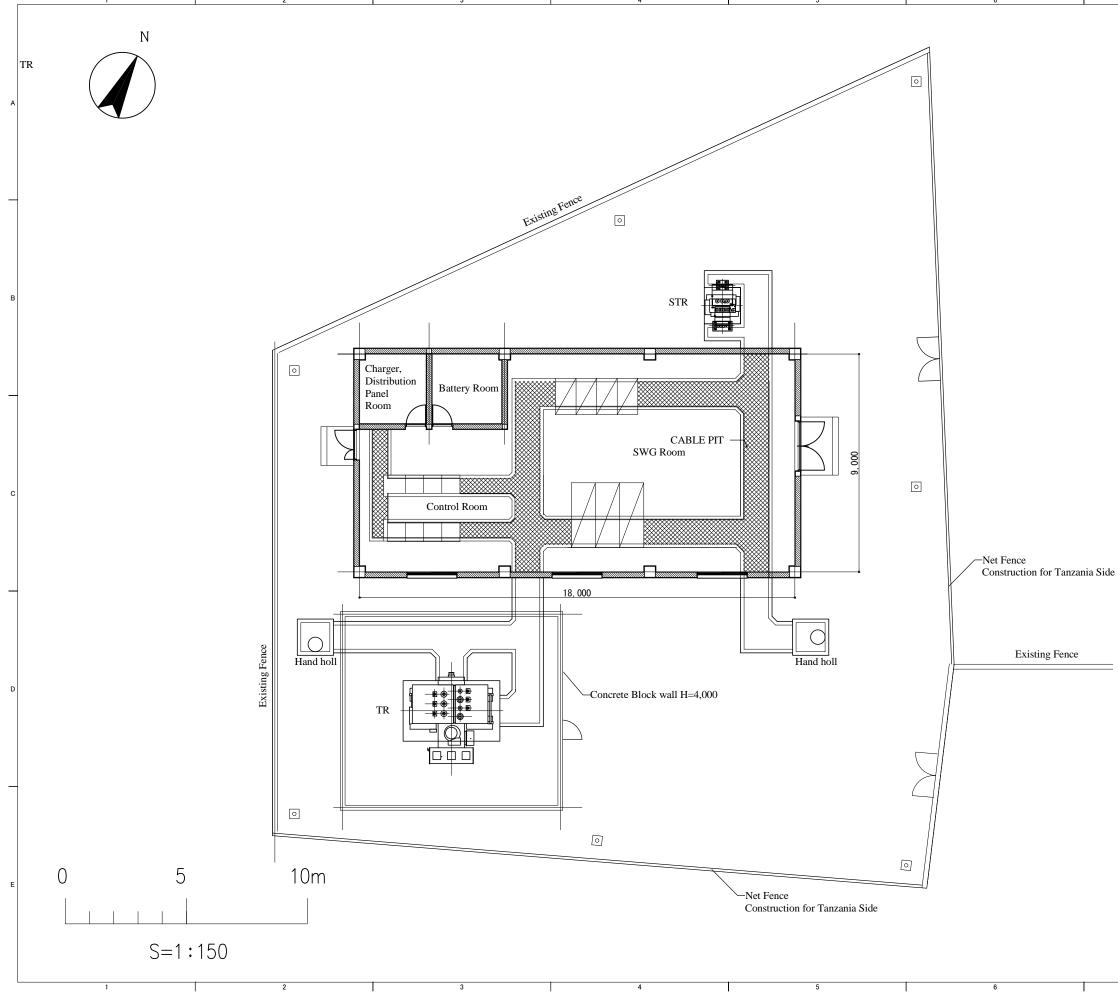
DWG No. SS-L-001 Layout Plan for Ilala Substation イララ変電所 概略配置図

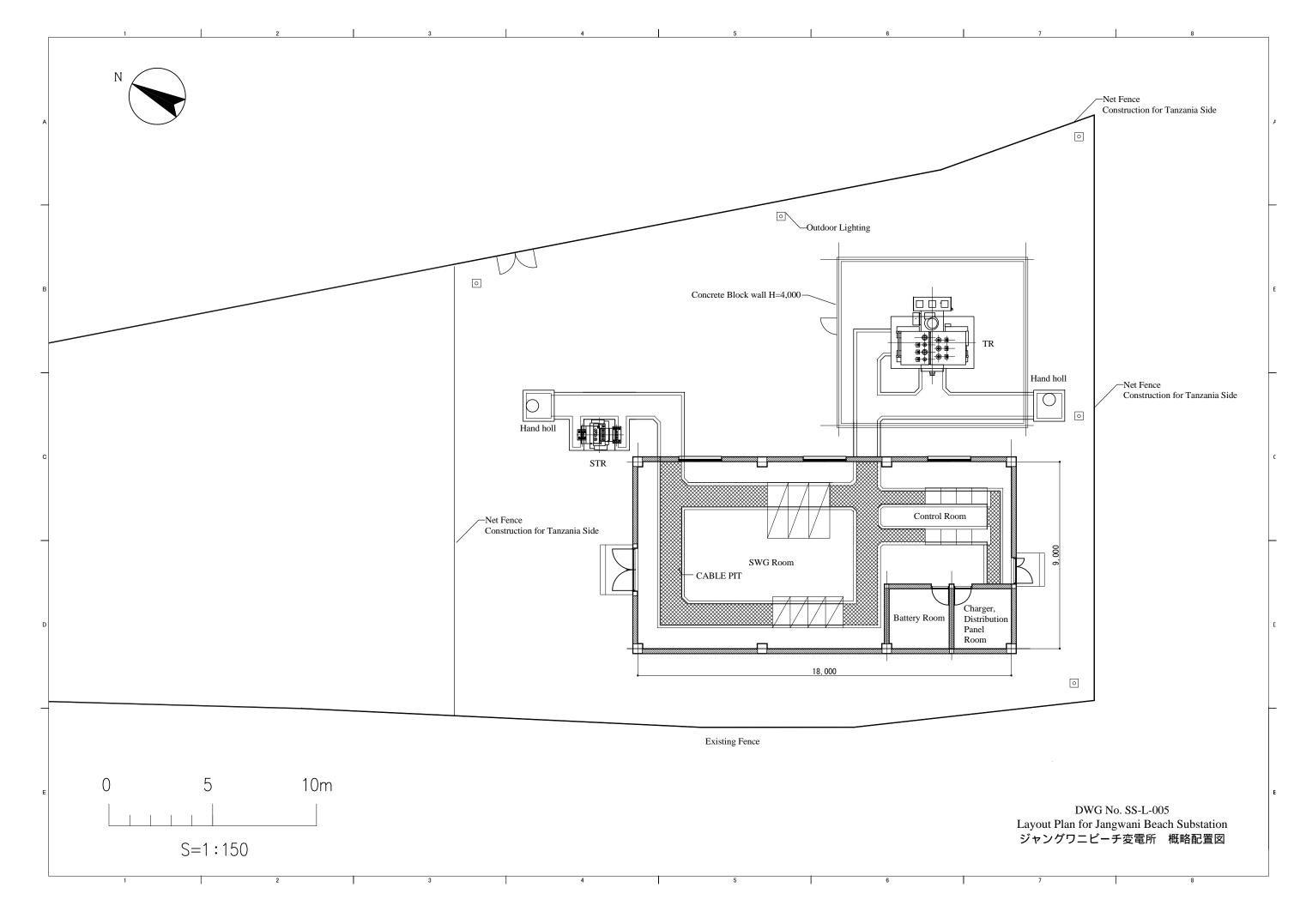


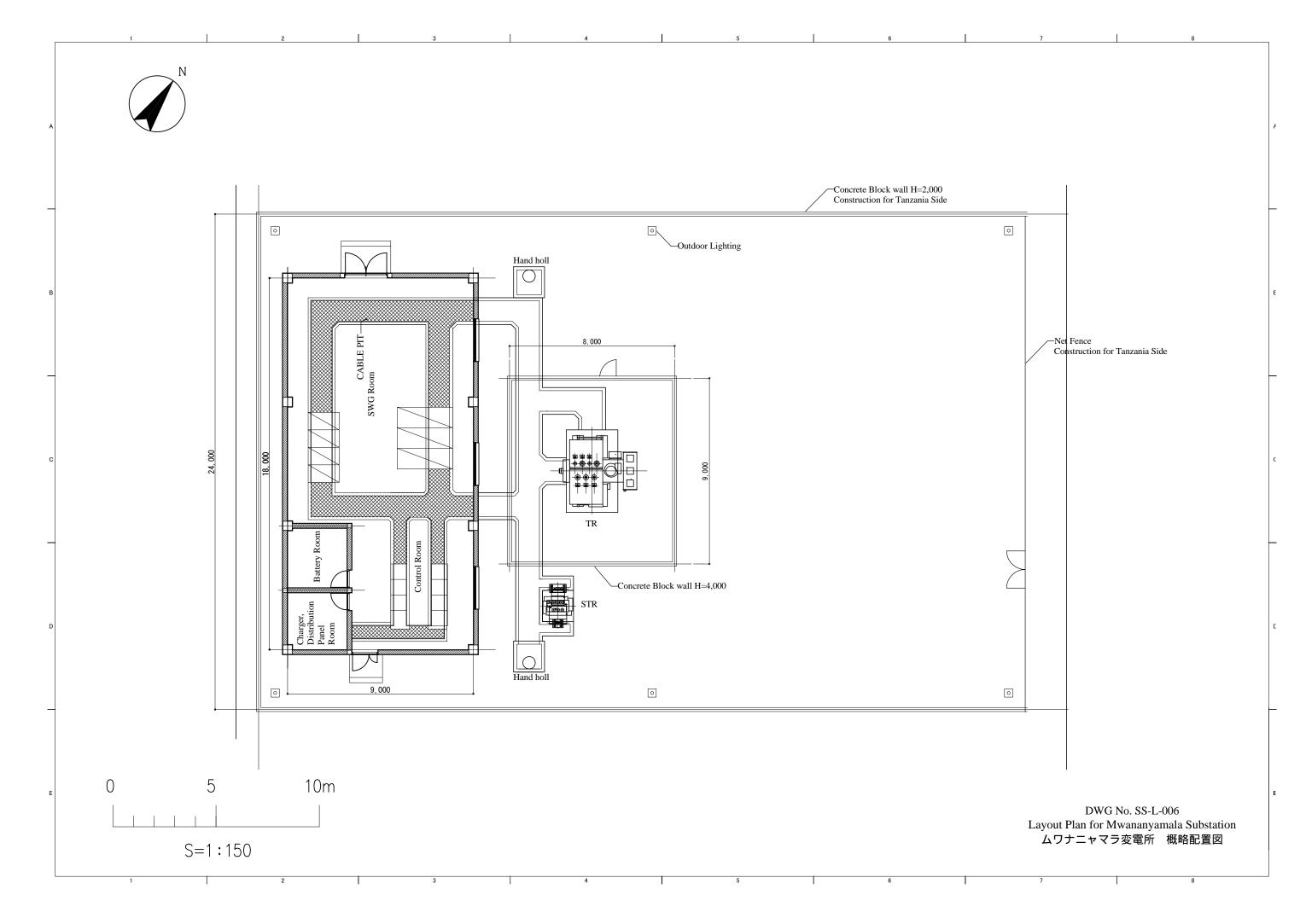
Red : JICA Blue : AFDB Black : Existing

ABBREVIATION

GCB OCB	:	GAS CIRCUIT BREAKER
	÷	
DS	:	DISCONNECTING SWITCH
ES	:	EARTHING SWITCH
СТ	:	CURRENT TRANSFORMER
CVT	:	CAPACITOR VOLTAGE TRANSFORMER
VT	:	VOLTAGE TRANSFORMER
LA	:	LIGHTNING ARRESTER
TR	:	POWER TRANSFORMER
SHR	:	SHUNT REACTOR
SP	:	STATION POST INSULATOR
LP	:	LIGHTING POLE
EM	:	EARTH MAST
СН	:	CABLE HEAD


DWG No. SS-L-002 Sectional Plan for Ilala Substation イララ変電所 概略配置図(断面図)


...... 96 1 18,000 CABLE PIT SWG Room Scope of the Project 9,000 DWG No. SS-L-003 Layout Plan for Msasani Substation


2-89

ムササニ変電所 概略配置図

DWG No. SS-L-004 Layout Plan for Muhimbili Substation ムヒンビリ変電所 概略配置図

