THE PROJECT FOR STUDY ON

IMPROVEMENT OF BRIDGES THROUGH
DISASTER MITIGATING MEASURES FOR LARGE SCALE EARTHQUAKES

IN
THE REPUBLIC OF THE PHILIPPINES

FINAL REPORT

APPENDIX 1-B

DESIGN EXAMPLE (NEW BRIDGE) USING DPWH-BSDS

DECEMBER 2013

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

CTI ENGINEERING INTERNATIONAL CO., LTD
CHODAI CO., LTD.
NIPPON KOEI CO., LTD.

APPENDIX 1-B

DESIGN EXAMPLE (NEW BRIDGE) USING DPWH-BSDS

Table of Contents

PART 1BASIC KNOWLEDGE OF EARTHQUAKE ENGINEERING AND STRUCTURALDYNAMICS

1. Basic Knowledge of Earthquake Engineering P1-1
1.1 General P1-1
1.2 Causes of Earthquake P1-1
1.3 Velocity and Transmission of Seismic Wave. P1-3
1.4 Time History Wave and Spectrum of Earthquake P1-6
1.5 Intensity of Earthquakes (Magnitude, Seismic Intensity Scale and Engineering Seismic Coefficient) P1-8
2. Basic Knowledge of Structural Dynamics. P1-12
2.1 General P1-12
2.2 Characteristic Vibration of Structure and Seismic Load P1-12
2.3 Material Non-linearity P1-15
2.4 Static Design and Dynamic Design Methods P1-17
2.5 Load Factor Design (LFD) and Load and Resistance Factor Design (LRFD) P1-19
PART 2
DESIGN EXAMPLE-1: DESIGN EXAMPLE OF SIMPLY-SUPPORTED BRIDGE
3. Fundamental Design Conditions for Bridge Seismic Design Example P2-1
1.1 Outline of Seismic Design Example of Pier with Pile Foundation P2-1
1.2 Confirmation of Design Requirements and Fundamental Design Conditions P2-2
1.2.1 Bridge Importance (Bridge Operational Classification) BSDS (Article 3.2). P2-2
1.2.2 Seismic Performance Requirements BSDS (Article 3.3) P2-3
1.2.3 Load Condition for Seismic Design. P2-4
1.2.4 Material Properties P2-5
1.2.5 Ground Condition for Seismic Design BSDS (Article 3.5.1) P2-5
1.2.6 Design Acceleration Response Spectrum Methodology BSDS (Article-3.6) P2-6
1.2.7 Analysis Requirements and Applied Methodology P2-8
1.2.8 Design Requirements and Applied Methodology P2-18
4. Seismic Design Example of A Pier (Simply-supported Bridge) P2-35
2.1 Outline of the Design P2-35
2.2 Design Conditions P2-36
2.2.1 Structural Conditions P2-36
2.2.2 Load Condition P2-36
2.2.3 Design Acceleration Response Spectra. P2-40
2.2.4 Confirmation of Seismic Performance Zone P2-41
2.2.5 Confirmation of Response Modification Factors P2-42
2.2.6 Assessment of Liquefaction Potential P2-42
2.3 Initial Bridge Analysis and Substructure Design P2-47
2.3.1 Recommended Design Procedure P2-47
2.3.2 Initial Bridge Analysis P2-47
2.3.3 Initial Substructure Design P2-50
2.4 Bridge Analysis with Foundation Spring (Determination of Design Forces) P2-51
2.4.1 Spring Properties of the Pile Foundation P2-51
2.4.2 Bridge Analysis. P2-56
2.5 Determination of Design Displacement and Design Seat Length P2-62
2.5.1 Determination of Design Displacement P2-62
2.5.2 Determination of Design Seat Length P2-63
2.6 Seismic Design of the Column P2-64
2.6.1 Design Condition P2-64
2.6.2 Column Design Force P2-64
2.6.3 Verification of Flexural Resistance P2-66
2.6.4 Verification of Column Displacement P2-67
2.6.5 Verification of Shear Resistance P2-67
2.6.6 Verification of Minimum Required Reinforcement P2-69
2.7 Seismic Design of the Pile Foundation P2-71
2.7.1 Spring Properties of the Pile Foundation P2-71
2.7.2 Foundation Design Force P2-76
2.7.3 Reaction Force and Displacement of Each Pile P2-78
2.7.4 Stability Verification P2-83
2.7.5 Verification of Pile Resistance against Seismic Force P2-85
2.7.6 Verification of Minimum Required Reinforcement. P2-87
5. Cost Comparative Study on Determination of Return Period of Design Acceleration Response Spectrum for BSDS P2-89
3.1 Background and Objective of the Cost Comparative Study P2-89
3.1.1 Background P2-89
3.1.2 Objective P2-89
3.2 Study Condition P2-89
3.3 Study Cases P2-91
3.4 Result of the Study P2-92

DESIGN EXAMPLE-2: SEISMIC DESIGN EXAMPLE OF CONTINUOUS BRIDGE (REPLACEMNT PLAN OF MAWO BRIDGE)

1. Design Condition P3-1
1.1 Location of Mawo Bridge P3-1
1.2 Design Condition P3-2
1.3 Procedure Flow Chart of the Design Example of Mawo Bridge P3-5
2. Eigenvalue and Response Spectrum Analysis P3-7
2.1 Seismic Analysis Methodology P3-7
2.1.1 General P3-7
2.1.2 Static Analysis (Uniform Load Elastic Method) P3-7
2.1.3 Eigenvalue Analysis (Single or Multimode Elastic Method). P3-8
2.1.4 Response Spectrum Analysis P3-10
2.1.5 Time History Analysis P3-10
2.1.6 Applied Methodology of Seismic Analysis P3-10
2.2 Analysis Model P3-11
2.2.1 Global Analysis Model P3-11
2.2.2 Member Sectional Properties P3-15
2.2.3 Model of Bearing P3-20
2.2.4 Model of Footing with Foundation Springs P3-24
2.3 Results of Eigenvalue Analysis P3-26
2.4 Damping Constant P3-28
2.5 Design Spectrum P3-29
2.6 Results of Response Spectrum Analysis P3-30
3. Design Example of Substructure and Foundation P3-34
3.1 Design Concept P3-34
3.1.1 General P3-34
3.1.2 Design Specifications P3-35
3.1.3 General Outline of Design Flows P3-36
3.1.4 Outline Design Items of Foundation Seismic Design P3-38
3.1.5 Design Software P3-38
3.2 Analysis P3-39
3.2.1 General P3-39
3.2.2 Foundation Spring for Seismic Analysis P3-40
3.2.3 Results of Seismic Analysis P3-41
3.3 Pier Outline Design P3-42
3.3.1 Design Condition P3-42
3.3.2 Column Design P3-46
3.3.3 Pile Foundation Design P3-53
4. Design Example of Unseating Prevention System P3-63
4.1 Design Requirement P3-63
4.2 Seat Length P3-65
4.3 Unseating Prevention Device P3-67
4.4 Countermeasure to Prevent Superstructure from Settling P3-69
4.5 Structure/ Device to Limit Excessive Displacement P3-70

PART 1

BASIC KNOWLEDGE OF EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS

1. Basic Knowledge of Earthquake Engineering

1.1 General

The basic knowledge of earthquake engineering required for bridge design is introduced in this Chapter. The introduced knowledge may be minimum and limited. Therefore, it is recommended that further reference is made to earthquake engineering related books for more detailed information or inquiry.

1.2 Causes of Earthquake

According to the definition in seismology, an earthquake is a phenomenon of ground shaking caused by movement at the boundary of tectonic plates of the Earth's crust by the sudden release of stress. The edges of tectonic plates are made by trench (or fractures or fault). Most earthquakes occur along the trench lines when the plates slide past each other or collide against each other.
There are mainly two types or causes of earthquake. One is caused by the movement of tectonic plate of the Earth's crust and the other is caused by the movement of active faults in the continental plate. There is another type called volcanic earthquake, in which the magma stored in reservoirs moves upwards, fractures the rock, and squeezes through, causing earthquakes usually with magnitudes not much significant.
The major characteristics of the two main types of earthquake and the location of plate boundaries and active faults in the Philippines defined by PHIVOLCS (Philippine Institute of Volcanology and Seismology) are shown in Table 1.2-1.

Plate Boundary Type of Earthquake

Most earthquakes occur along the edge of the oceanic and continental plates. The Earth's crust is made up of several plates. The plates under the oceans are called oceanic plates and the rest are continental plates. The plates are moved around by the motion of a deeper part of the mantle that lies underneath the crust. These plates are always bumping into each other, pulling away from each other, or past each other. Earthquakes usually occur where two plates run into each other or slide past each other.

Active Fault Type of Earthquake

Earthquakes can also occur far from the edges of plates, along active faults. Active faults are cracks in the earth where sections of a plate move in different directions. Active faults are caused by all that bumping and sliding the plates do. There are three main types of active fault movement which may cause an earthquake, namely; normal fault, reverse (thrust) fault and strike-slip fault.

Table 1.2-1 Types of Earthquake

| Type | Plate Boundary Earthquake | Active Fault Earthquake |
| :--- | :--- | :--- | :--- |
| Image | | |
| Mechanism of | | |
| Occurrence of | | |
| Earthquake | | | (a) Ocean plate slips in continental plate

1.3 Velocity and Transmission of Seismic Wave

There are several kinds of seismic wave, and they all move in different directions as shown in Figure 1.3-1. When the seismic wave is transmitted in bedrock or the ground, the amplitude becomes small. The phenomenon of decrement of the seismic wave is called dumping.
The two main types of waves are "body waves" and "surface waves". Body waves can travel through the Earth's crust, but surface waves can only move along the surface of the ground. Traveling through the Earth's crust, body waves arrive before the surface waves emitted by an earthquake. The body waves are of a higher frequency than surface waves. The transmission of each kind of seismic wave is explained in Table 1.3-1

Body Wave (P Wave and S Wave)

The first kind of body wave is the primary wave (P wave). This is the fastest seismic wave, and consequently the first to arrive at a seismic station. P waves are also known as compressional waves. Subjected to a P wave, particles move in the same direction that the wave is moving in, which is the direction that the energy is traveling.
The other type of body wave is the secondary wave (S wave). An S wave is slower than a P wave and can only move through solid rock. S waves move rock particles up and down, or from side-to-side perpendicular to the direction that the wave is traveling. Travelling only through the crust, surface waves are of a lower frequency than body waves. Though they arrive after body waves, it is surface waves that are almost entirely responsible for the damage and destruction associated with earthquakes. This damage and the strength of the surface waves are reduced in deeper earthquakes.

Surface Wave (Love Wave and Rayleigh Wave)

The two main types of surface waves are "Love wave" and "Rayleigh wave". Love wave is the fastest surface wave and moves the ground from side-to-side. Confined to the surface of the Earth's crust, Love waves produce entirely horizontal motion.
Rayleigh wave rolls along the ground just like a wave rolls across a lake or an ocean. Since this wave rolls, it moves the ground up and down and from side-to-side in the same direction that the wave is moving. Most of the shaking felt from an earthquake is due to Rayleigh wave, which can be much larger than the other waves.
The velocity of a seismic wave depends on the density or hardness (modulus of elasticity) of the ground material. The velocity of P wave at ground surface is approximately 5 to $6 \mathrm{~km} / \mathrm{sec}$ and the velocity of S wave is approximately 3 to $4 \mathrm{~km} / \mathrm{sec}$, that is, $60-70 \%$ of P wave. Surface wave is slightly slower than S wave. All waves are transmitted from the epicenter at the same time as an earthquake occurs.

However, the time lag of arrival of P waves and S waves become big depending on the distance from the epicenter as shown in Figure 1.3-2. This time lag is called as S-P time or duration of preliminary tremors. When the duration of preliminary tremors (sec) is multiplied by 8 , it becomes the distance (km) to the epicenter. For example, if the duration of a preliminary tremor is 10 seconds, the distance to the epicenter could be evaluated at approximately 80 km .

Figure 1.3-1 Example of Seismic Wave in Different Directions
Table 1.3-1 Kinds of Seismic Wave Transmission

[^0]
(Source: Sapporo District Meteorological Observatory, http://www.jma-net.go.jp/sapporo/knowledge/jikazanknowledge/jikazanknowledge2_2.html)

Figure 1.3-2 Example of Seismic Wave Transmission to Different Locations

1.4 Time History Wave and Spectrum of Earthquake

Several period waves are contained in a time history earthquake wave. A time history earthquake wave could be recomposed into each period by its intensity, and its transform is called Fourier spectrum. However, it is difficult to find the influence to the structure during earthquake by the observation of Fourier spectrum. A better method to understand its behavior is to use response spectrum.
As shown in Figure 1.4-1, a response spectrum is simply a plot of the peak of a series of steady-state response with single-degree-of-freedom system varying natural frequency that are forced into motion by the same base vibration. The resulting plot can then be used to pick off the response of any linear system, given its natural frequency of vibration. In the case of acceleration, the response spectrum is called an acceleration response spectrum.
Figure 1.4-2 shows an example of transformation of the acceleration response spectrum from the observed time history wave of a previous earthquake in Japan. The figures include the matching of the target response spectrum by modification of time history wave.

(Source: Japan Meteorological Agency)
Figure 1.4-1 Procedure of Transformation of Response Spectrum from Time History Wave


```
(a) time history of original record and spectrally matched

```

(1) Tokachi Oki Earthquake, 2003

```


(2) Miyagi-ken Hokubu Earthquake, 2003
(Source: JICA Study Team)
Figure 1.4-2 Example of Time History Earthquake Wave and Acceleration Response Spectrum

\subsection*{1.5 Intensity of Earthquakes (Magnitude, Seismic Intensity Scale and Engineering Seismic Coefficient)}

\section*{(1) General}

Basically, an earthquake is measured by its Magnitude and Intensity. The Magnitude indicates the amount of energy released at the source of one earthquake and is measured by the Magnitude Scale. The intensity of an earthquake at a particular locality indicates the violence of earth motion produced there by the earthquake. It is determined from reported effects of the tremor on human beings, furniture, buildings, geological structure, etc. In the Philippines, the PHIVOLCS Earthquake Intensity Scale (PEIS) is adopted, which classifies earthquake effects into ten scales.
When an earthquake occurs, its magnitude can be given a single numerical value by the Magnitude Scale. However, the intensity is variable over the area affected by the earthquake, with high intensities near the epicenter and lower values further away. These are allocated a value depending on the effects of the shaking according to the Intensity Scale.

(Source: Sapporo District Meteorological Observatory, http://www.jma-net.go.jp/sapporo)
Figure 1.5-1 Deference between Magnitude and Intensity

\section*{(2) Magnitude Scale}

\section*{Richter Magnitude Scale}

In 1935, Charles Richter and Beno Gutenberg developed the local magnitude scale (Ml), which is popularly known as the Richter magnitude scale, to quantify medium-sized earthquakes between magnitude 3.0 and 7.0. This scale was based on the ground motion measured by a particular type of seismometer at a distance of 100 km from the earthquake's epicenter. For this reason, there is an upper limit on the highest measurable magnitude, and all large earthquakes will tend to have a local magnitude of around 7. Since this Ml scale was simple to use and corresponded well with the damage
which was observed, it was extremely useful for engineering earthquake-resistant structures and gained common acceptance.

\section*{Moment Magnitude Scale (Mw)}

The moment magnitude scale (Mw) is used by seismologists to measure the size of earthquake in terms of the energy released. The magnitude is based on the seismic moment of the earthquake, which is equal to the rigidity of the Earth multiplied by the average amount of slip on the fault and the size of the area that slipped. The scale was developed in the 1970's to succeed the 1930's Richter magnitude scale (Ml). Even though the formulae are different, the new scale retains the familiar continuum of magnitude values defined by the older one. The Mw is now the scale used to estimate magnitude for all modern large earthquakes by the United States Geological Survey (USGS).

\section*{(3) Seismic Intensity Scale}

The Philippine Institute of Volcanology and Seismology (PHIVOLCS) is the government agency that is monitoring earthquakes that affect the Philippines. PHIVOLCS provided the earthquake intensity scale to determine the destructiveness of earthquake, as shown in Table 1.5-1.

Table 1.5-1 \(\quad\) PHIVOLCS Earthquake Intensity Scale (PEIS)
\begin{tabular}{|c|c|c|c|}
\hline & Scale & \[
\begin{gathered}
\text { PGA } \\
\text { (g values) }
\end{gathered}
\] & Description \\
\hline I & \begin{tabular}{l}
Scarcely \\
Perceptible
\end{tabular} & 0.0005 & Perceptible to people under favorable circumstances. Delicately balanced objects are disturbed slightly. Still water in containers oscillates slowly. \\
\hline II & Slightly Felt & 0.0009 & Felt by few individuals at rest indoors. Hanging objects swing slightly. Still water in containers oscillates noticeably. \\
\hline III & Weak & 0.0011 & Felt by many people indoors especially in upper floors of buildings. Vibration is felt like one passing of a light truck. Dizziness and nausea are experienced by some people. Hanging objects swing moderately. Still water in containers oscillates moderately. \\
\hline IV & Moderately Strong & 0.0050 & Felt generally by people indoors and by some people outdoors. Light sleepers are awakened. Vibration is felt like a passing of heavy truck. Hanging objects swing considerably. Dining plates, glasses, windows and doors rattle. Floors and walls of wood framed buildings creak. Standing motor cars may rock slightly. Liquids in containers are slightly disturbed. Water in containers oscillates strongly. Rumbling sound may sometimes be heard. \\
\hline V & Strong & 0.0100 & Generally felt by most people indoors and outdoors. Many sleeping people are awakened. Some are frightened, some run outdoors. Strong shaking and rocking felt throughout building. Hanging objects swing violently. Dining utensils clatter and clink; some are broken. Small, light and unstable objects may fall or overturn. Liquids spill from filled open containers. Standing vehicles rock noticeably. Shaking of leaves and twigs of trees are noticeable. \\
\hline VI & Very Strong & 0.1200 & Many people are frightened; many run outdoors. Some people lose their balance. Motorists feel like driving in flat tires. Heavy objects or furniture move or may be shifted. Small church bells may ring. Wall plaster may crack. Very old or poorly built houses and man-made structures are slightly damaged though well-built structures are not affected. Limited rock-falls and rolling boulders occur in hilly to mountainous areas and escarpments. Trees are noticeably shaken. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|l|}
\hline \multicolumn{2}{|c|}{ Scale } & \begin{tabular}{c} 
PGA \\
(g values)
\end{tabular} & \\
\hline VII & Destructive & 0.2100 & \begin{tabular}{l} 
Most people are frightened and run outdoors. People find it difficult to \\
stand in upper floors. Heavy objects and furniture overturn or topple. Big \\
church bells may ring. Old or poorly-built structures suffer considerable \\
damage. Some well-built structures are slightly damaged. Some cracks may \\
appear on dikes, fish ponds, road surface, or concrete hollow block walls. \\
Limited liquefaction, lateral spreading and landslides are observed. Trees \\
are shaken strongly. (Liquefaction is a process by which loose saturated \\
sand lose strength during an earthquake and behave like liquid).
\end{tabular} \\
\hline VIII & \begin{tabular}{l} 
Very \\
Destructive
\end{tabular} & 0.5300 & \begin{tabular}{l} 
People panicky. People find it difficult to stand even outdoors. Many \\
well-built buildings are considerably damaged. Concrete dikes and \\
foundation of bridges are destroyed by ground settling or toppling. Railway \\
tracks are bent or broken. Tombstones may be displaced, twisted or \\
overturned. Utility posts, towers and monuments mat tilt or topple. Water \\
and sewer pipes may be bent, twisted or broken. Liquefaction and lateral \\
spreading cause man-made structures to sink, tilt or topple. Numerous \\
landslides and rock-falls occur in mountainous and hilly areas. Boulders are \\
thrown out from their positions particularly near the epicente. Fissures and \\
fault-rapture may be observed. Trees are violently shaken. Water splash or \\
top over dikes or banks of rivers.
\end{tabular} \\
\hline IX & Devastating & \(0.7110-\) & \begin{tabular}{l} 
People are forcibly thrown to ground. Many cry and shake with fear. Most \\
buildings are totally damaged. Bridges and elevated concrete structures are \\
toppled or destroyed. Numerous utility posts, towers and monument are \\
tilted, toppled or broken. Water sewer pipes are bent, twisted or broken. \\
Landslides and liquefaction with lateral spreading and sand-boils are \\
widespread. The ground is distorted into undulations. Trees shake very \\
violently with some toppled or broken. Boulders are commonly thrown out. \\
River water splashes violently on slops over dikes and banks.
\end{tabular} \\
\hline X & \begin{tabular}{l} 
Completely \\
Devastating
\end{tabular} & \(1.1500<\) & \begin{tabular}{l} 
Practically all man-made structures are destroyed. Massive landslides and \\
liquefaction, large scale subsidence and uplifting of land forms and many \\
ground fissures are observed. Changes in river courses and destructive \\
seethes in large lakes occur. Many trees are toppled, broken and uprooted.
\end{tabular} \\
\hline
\end{tabular}
(Source: PHIVOLCS)

\section*{(4) Engineering Seismic Coefficients}

The PHIVOLCS Earthquake Intensity Scale (PEIS) described above show the destructivity impact of earthquakes qualitatively. However, PEIS is not used for bridge seismic design. The bridge seismic design expresses the strength of earthquake by the seismic coefficient or Peak Ground Acceleration (PGA) of the ground surface.

The seismic coefficient of bridge seismic design (k) is formulated as follows, expressing the ratio between the maximum acceleration of the ground surface ( \(\alpha\) ) and the acceleration of gravity (g).
\[
\mathrm{k}=\frac{\alpha}{\mathrm{g}}=\frac{\alpha(\mathrm{gal})}{980(\mathrm{gal})} \approx \frac{\alpha}{1000}
\]

Table 1.5-2 shows a comparison including (1) the location of existing trench and fault, which was shown in Table 1.2-1; (2) the seismic zone map, which is currently used by DPWH for bridge seismic design with acceleration coefficient (A) of 0.40 , except for Palawan with \(A=0.20\); and (3) he proposed Peak Ground Acceleration (PGA) map provided by the Project.

Table 1.5-2 Comparison of Seismic Intensity for Bridge Design


\section*{2. Basic Knowledge of Structural Dynamics}

\subsection*{2.1 General}

The basic knowledge of structural dynamics required for bridge design is introduced in this Chapter. The introduced knowledge may be minimum and limited. Therefore, it is recommended that further reference is made to structural dynamics related books for more detailed information or inquiry.

\subsection*{2.2 Characteristic Vibration of Structure and Seismic Load}

\section*{Normal Mode}

A Normal Mode is a pattern of motion in which all parts of the system move at the same frequency and with a fixed phase relation. The motion described by the normal mode is called resonance. The frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, etc., has a set of normal modes that depend on its structure, materials and boundary conditions.
A mode of vibration is characterized by a modal frequency and a mode shape. It is numbered according to the number of half waves in the vibration. As shown in Figure 2.2-1, if a vibrating beam with both ends pinned displayed a mode shape of half of a sine wave (one peak on the vibrating beam) it would be vibrating in Mode 1. If it had a full sine wave (one peak and one valley) it would be vibrating in Mode 2. Figure 2.2-2 shows the case of cantilever such as bridge pier.


Mode 1 (Frequency: F1, Period: T1)


Mode 2 (Frequency: F2, Period: T2)


Mode 3 (Frequency: F3, Period: T3)

Figure 2.2-1 Example of Normal Modes of Beam


Figure 2.2-2 Example of Normal Modes of Cantilever

\section*{Resonance and Forced Vibration}

In physics, resonance is the tendency of a bridge to vibrate with greater amplitude at some frequencies than at others. Frequencies at which the response amplitude is a relative maximum are known as the resonance frequencies. At these frequencies, even small periodic driving forces can produce large amplitude vibration, because the bridge stores vibration energy.
Forced vibration is a vibration caused forcibly by receiving the external force to fluctuate such as earthquakes. When the periods of forced vibration is the same or close to the natural frequency of the bridge, the vibration occurs remarkably. It is also called as resonance.

\section*{Acceleration Response Spectrum and Vibration Mode}

The expected acceleration response of a bridge during earthquake is called as Acceleration Response Spectrum, which was explained in Section 1.4. The Design Response Spectrum for acceleration is developed, as shown in Table 2.2-1 with site coefficient for Peak Ground Acceleration (PGA), 0.2-sec period spectral acceleration, and 1.0 -sec period spectral acceleration in the Bridge Seismic Design Specification.
An example of calculation of Design Acceleration Spectrum is shown in Figure 2.2-3. The first natural period of ordinary bridge is basically short such as \(\mathrm{T} 1=0.5\) (sec), which is defined with the strength of substructure and supported mass of superstructure. However, the natural period of high elevated bridge or bridges which adopt rubber bearings are longer than the ordinary bridge. In that case, the acceleration response can be estimated as smaller than that of ordinary bridges.

Table 2.2-1 Design Response Spectrum, Bridge Seismic Design Specification (BSDS)



Figure 2.2-3 Example of Design Acceleration Spectrum (Soil Type I, 5\% dumping)

\subsection*{2.3 Material Non-linearity}

The "linear" behavior could be defined as a property which could be "superposition relation" between the causes and effects. As an example, displacement of the vertical direction of bridge girder becomes large in proportion to the vertical load. In addition, as shown in Figure 1.3-1, the total displacement can be calculated by summing up the vertical displacement due to dead load, live load, etc. Its behavior could be called linear.


Figure 2.3-1 Example of Superposition Relation in Linear Property
On the other hand, non-linear means not linear in mathematical terms. In other words, it is the phenomenon that superposition relation is not formed. As an example, the reinforced concrete used in bridge construction (the stress-strain relation of reinforcing bar is as shown in Figure 2.3-2) does not appear to be on a straight line because the plastic deformation happens when the strain reaches the yield stress, and the strain grows after the yielding. Material non-linearity means that the straight line does not have stress and strain relationship in this way. However, it may be said that the above-mentioned superposition relationship is up to the yielding point of materials, because the stress-strain relation of reinforced bar is a straight line. The stress-strain relation of concrete is also non-linear when the strain of concrete is large as shown in Figure 2.3-3.


Figure 2.3-2 Ideal Stress-Strain Relation of Reinforcing Bar


Figure 2.3-3 Ideal Stress-Strain Relation of Concrete

The material non-linearity is one of the important considerations for the seismic design, especially when large-scale earthquakes are considered because the material may behave in non-linear level.
The non-linearity horizontal force-displacement relation of reinforced concrete pier is shown in Figure 2.3-4. The restitution force of reinforced concrete shall be considered when the bridge pier had suffered from a repetitive force such as a large-scale earthquake. Generally, the skeleton of repetitive force contains cracking of concrete, yielding of reinforced bar and, ultimately, compression of concrete in the tri-linear type of skeleton model such as Takeda Model. The stiffness of reinforced concrete is changed by major events such as cracking or yielding. When the bridge pier had behaved as non-linear, the residual displacement will remain after the earthquake.
Figure 2.3-5 shows an example of historical curve of the bending moment-curvature relation at pier bottom obtained by Non-linear time history response analysis.


Figure 2.3-4 Non-linear Behavior of Reinforced Concrete Pier


Figure 2.3-5 Example of Historical Curve of the Bending Moment-Curvature at Pier Bottom

\subsection*{2.4 Static Design and Dynamic Design Methods}

The analysis method of seismic design is classified into static analysis and dynamic analysis. Since earthquake is a dynamic phenomenon and the response of a structure usually changes from time to time, dynamic analysis is desirable to use in the seismic design of bridges. However, if the behavior of the structure is not complicated, the static analysis has to be carried out, because the dynamic analysis is complicated.
The major dynamic analysis methods for bridge seismic design are shown in Table 2.4-1. These analysis methods have their own characteristics and the method shall be selected according to the type of bridge.

Table 2.4-1 Major Dynamic Analysis Methods for Bridge Seismic Design
\begin{tabular}{|c|c|c|c|c|c|}
\hline Analysis Method & Description & \begin{tabular}{l}
Analytic \\
Model
\end{tabular} & Input Force for Seismic Design & Major Output & Remarks \\
\hline Eigenvalue Analysis & \begin{tabular}{l}
Eigenvalue analysis is an analysis to obtain the vibration characteristics of the structure itself (natural period and mode shape). \\
When the natural period of the structure is close to the distinction of seismic force, sympathetic vibration will occur. This may be caused by fatigue or the destruction of the bridge. \\
It is important to identify the Eigenvalue to avoid sympathetic vibration of bridges during earthquake.
\end{tabular} & Linear & -N/A & \begin{tabular}{l}
- Natural Period \\
- Mode Shape
\end{tabular} & \\
\hline Response Spectrum Analysis & \begin{tabular}{l}
The response spectrum shows a maximum response level (Acceleration, Velocity, etc.) of the single degree of freedom (SDOF) model (having one natural period and one dumping coefficient) during earthquake. \\
The maximum response of the multi-degree of freedom (MDOF) model could be estimated to sum up multi-modal response. This is Response Spectrum Analysis.
\end{tabular} & Linear & - Acceleration Response Spectrum & - Maximum Response (Acceleration, Velocity, Displacement and Section Forces, etc.) & \begin{tabular}{l}
- Eigenvalue \\
Analysis is required \\
- Non-linear behavior is not considered
\end{tabular} \\
\hline Time History Response Analysis & \begin{tabular}{l}
Time history response analysis has two kinds of analytical method, namely; "time history modal analysis method" and "direct numerical integration method". \\
The direct numerical integration method is usually used in bridge seismic design exercises on the response of structure by direct numerical integration. \\
The stiffness matrix could be changed at every step of calculation on the direct numerical integration. Therefore, this method is popularly used for the non-linear analysis, such as a complicated structure including high frequency vibration modes.
\end{tabular} & \begin{tabular}{l}
Linear/ \\
Non-linear
\end{tabular} & - Time History Seismic Wave & - Time History Response (Acceleration, Velocity, Displacement and Section Forces, etc.) & \begin{tabular}{l}
-Following integral calculus method are usually employed, \\
Newmark \(\beta\) \\
Wilson \(\theta\) \\
Runge-Kutta
\end{tabular} \\
\hline
\end{tabular}

\subsection*{2.5 Load Factor Design (LFD) and Load and Resistance Factor Design (LRFD)}

In 1994, the first edition of the "AASHTO LRFD Bridge Design Specifications" was published, placing earthquake loading under Extreme Event I limit state. Similar to the 1992 edition, the LRFD edition accounts for column ductility using the response modification R factors. In 2008, the "AASHTO LRFD Interim Bridge Specifications" was published to incorporate more realistic site effects based on the 1989 Loma Prieta earthquake in California. Moreover, the elastic force demand is calculated using the 1,000 -year maps as opposed to the earlier 500 -year return earthquake.

The comparison of ASD (WSD), LFD and LRFD is shown in Table 2.5-1.
Table 2.5-1 Comparison of ASD, LFD and LRFD
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Design Method} & ASD: Allowable Stress Design & LFD: Load Factor Design & LRFD: Load and Resistance Factor Design \\
\hline & (WSD: Working Stress Design) & (Strength Design) & \begin{tabular}{l}
(Reliability Based Design/ \\
LSD: Limit State Design)
\end{tabular} \\
\hline Description & A method where the nominal strength is divided by a safety factor to determine the allowable strength. This allowable strength is required to equal or exceed the required strength for a set of ASD load combinations. & \begin{tabular}{l}
LFD is a kind of the so-called Limit State Design (LSD) method. The limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. The condition may refer to a degree of loading or other actions on the structure, while the criteria refer to structural integrity, fitness for use, durability or other design requirements. \\
LSD requires the structure to satisfy three principal criteria: the Ultimate Limit State (ULS), the Serviceability Limit State (SLS) and the Fatigue Limit State (FLS).
\end{tabular} & The LRFD method subdivides the limit state of the structure compared to the LFD method. In addition, load factor and resistance factor are modified based on probability statistics data from a combination of limit state of various loads. The LRFD method modifies three equivalents to LFD method, such as Service Limit State, Fatigue \& Fractural Limit State, Strength Limit State and Extreme Event Limit State, and the coefficient is changed. \\
\hline Basic Equation & \begin{tabular}{l}
\[
\Sigma \mathrm{DL}+\Sigma \mathrm{LL} \leq \mathrm{R}_{\mathrm{u}} / \mathrm{FS}
\] \\
where, FS: Factor of Safety
\end{tabular} & \[
\begin{aligned}
& \gamma\left(\Sigma \beta_{\mathrm{DL}} \mathrm{DL}+\Sigma \beta_{\mathrm{LL}} \mathrm{LL}\right) \leq \phi \mathrm{R}_{\mathrm{u}} \\
& \text { where, } \\
& \gamma: \text { Load Factor } \\
& \beta: \text { Load Combination Coefficient } \\
& \phi: \text { Resistance Factor }
\end{aligned}
\] & \[
\begin{aligned}
& \eta\left(\Sigma \gamma_{\mathrm{DL}} \mathrm{DL}+\Sigma \gamma_{\mathrm{LL}} \mathrm{LL}\right) \leq \phi \mathrm{R}_{\mathrm{u}} \\
& \text { where, } \\
& \eta: \eta \text { Factor } \\
& \gamma: \text { Load Factor } \\
& \phi: \text { Resistance Factor }
\end{aligned}
\] \\
\hline Advantage & - Simplistic & \begin{tabular}{l}
- Load factor applied to each load combination \\
- Types of loads have different levels of uncertainty
\end{tabular} & \begin{tabular}{l}
- Accounts for variability \\
- Uniform levels of safety \\
- Risk assessment based on reliability theory
\end{tabular} \\
\hline Limitation & \begin{tabular}{l}
- Inadequate account of variability \\
- Stress not a good measure of resistance \\
- Factor of Safety is subjective \\
- No risk assessment based on reliability theory
\end{tabular} & \begin{tabular}{l}
- More complex than ASD \\
- No risk assessment based on reliability theory
\end{tabular} & \begin{tabular}{l}
- Requires availability of statistical data \\
- Resistance factors vary \\
- Old habits
\end{tabular} \\
\hline
\end{tabular}

\section*{PART 2}

DESIGN EXAMPLE-1:
DESIGN EXAMPLE OF SIMPLY-SUPPORTED BRIDGE

\section*{1. Fundamental Design Conditions for Bridge Seismic Design Example}

\subsection*{1.1 Outline of Seismic Design Example of Pier with Pile Foundation}

The design example is explained along with the following flowchart, which covers the basic process of seismic design in accordance with Bridge Seismic Design Specifications (BSDS).


Figure 1.1-1 Outline of Seismic Design Example

\subsection*{1.2 Confirmation of Design Requirements and Fundamental Design Conditions}

\subsection*{1.2.1 Bridge Importance (Bridge Operational Classification) BSDS (Article 3.2)}

For the purpose of seismic design, bridges shall be classified into one of the following three operational categories, as shown in the following table. DPWH or those having jurisdiction shall classify the bridges into one of the above three operational categories. The basis of classification shall include social/survival and security/defense requirements. In classifying a bridge, considerations should be given to possible future changes in conditions and requirements.

Table 1.2.1-1 Operational Classification of Bridges
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Operational \\
Classification (OC)
\end{tabular}} & \multicolumn{1}{c|}{ Performance } \\
\hline \begin{tabular}{l} 
OC-I \\
(Critical Bridge)
\end{tabular} & \begin{tabular}{l} 
- Bridges that must remain open to all traffic after the design earthquake. \\
- Other bridges required by DPWH to be open to emergency vehicles and \\
vehicles for security/defense purposes immediately after an earthquake \\
larger than the design earthquake.
\end{tabular} \\
\hline \begin{tabular}{l} 
OC-II \\
(Essential Bridge) \\
(Selected)
\end{tabular} & \begin{tabular}{l} 
- Bridges that should, as a minimum, be open to emergency vehicles and \\
for security/defense purposes within a short period after the design \\
earthquake, i.e. 1,000 year return period event.
\end{tabular} \\
\hline \begin{tabular}{l} 
OC-III \\
(Other Bridge)
\end{tabular} & - All other bridges not required to satisfy OC-I or OC-II performance \\
\hline
\end{tabular}

In the design example, "OC-II (Essential Bridge)" is applied for the operational classification. Accordingly, the following two conditions are given to designers;
1) Design seismic force
"An earthquake with 1,000-year return period" shall be used for the seismic design force.
2) Response Modification Factors for Substructures

Response modification factors for Substructures (hereafter, called as R-factor) for "Essential Bridge", shall be applied to design of piers/columns. The relationship between "R-factor" and "Operational Classification" is shown in the following table. In the design example, " \(\mathrm{R}=2.0\) " is selected under single column condition.

Table 1.2.1-2 Response Modification Factors
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Substructure }} & \multicolumn{3}{c|}{ Operational Category } \\
\cline { 2 - 4 } & Critical & Essential & Others \\
\hline Wall-type piers - larger dimension & 1.5 & 1.5 & 2.0 \\
\hline Reinforced concrete pile bents & & & \\
- Vertical piles only & 1.5 & 2.0 & 3.0 \\
- With batter piles & 1.5 & 1.5 & 2.0 \\
\hline Single columns & 1.5 & 2.0 & 3.0 \\
\hline Steel or composite steel and concrete pile bents & & (Selected) & \\
- Vertical piles only & 1.5 & 3.5 & 5.0 \\
- With batter piles & 1.5 & 2.0 & 3.0 \\
\hline Multiple column bents & 1.5 & 3.5 & 5.0 \\
\hline
\end{tabular}

\subsection*{1.2.2 Seismic Performance Requirements BSDS (Article 3.3)}

In BSDS, the following three requirements are given as seismic performance requirements. However, in the design example, only performance requirement against Level-2 EQ (Large earthquakes with a 1000 -year return period) is verified for simplification. Also, as a part of design example for unseating prevention system, only design of seat length is explained in the design for simplification.
[Seismic performance requirements]
1) Bridges shall have the following three levels of seismic performance.
- Seismic Performance Level 1 (SPL-1)

Performance level of a bridge to ensure its normal sound functions during an earthquake
- Seismic Performance Level 2 (SPL-2)

Performance level of a bridge to sustain limited damages during an earthquake and capable of recovery immediately for critical bridges and within a short period for essential bridges
- Seismic Performance Level 3 (SPL-3)

Performance level of a bridge to ensure safety against collapse during an earthquake
2) Bridges classified under "operational classification" shall conform to the performance requirements given in the following table and the design earthquake ground motion.

Table 1.2.2-1 Earthquake Ground Motion and Seismic Performance of Bridges
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Earthquake Ground Motion (EGM)} & \multicolumn{3}{|c|}{Bridge Operational Classification} \\
\hline & OC-I
(Critical Bridges) & \begin{tabular}{l}
OC-II \\
(Essential Bridges)
\end{tabular} & \[
\begin{gathered}
\text { OC-III } \\
\text { (Other Bridges) }
\end{gathered}
\] \\
\hline Level 1 & SPL-1 & SPL-1 & SPL-1 \\
\hline (Small to moderate earthquakes which are highly probable during the bridge service life) & (Keep the bridge sound function; resist seismic forces within elastic limit) & (Keep the bridge sound function; resist seismic forces within elastic limit) & (Keep the bridge sound function; resist seismic forces within elastic limit) \\
\hline Level 2 & SPL-2 & SPL-2 & SPL-3 \\
\hline \multirow[t]{4}{*}{(Large earthquakes with a 1,000-year return period)} & (Limited seismic & (Limited seismic & (May suffer damage \\
\hline & damage and capable of immediately & damage and capable of recovering bridge & but should not cause collapse of bridge or \\
\hline & recovering bridge & finction with & any of its structural \\
\hline & functions without structural repair) & structural repair within short period) & elements) \\
\hline
\end{tabular}
3) Bridges shall be designed to ensure that unseating of superstructures can be prevented, even if structural failures may occur due to structural behavior or ground failures which were not expected in the seismic design.

\subsection*{1.2.3 Load Condition for Seismic Design}

\subsection*{1.2.3.1 Load Combination and Load Factors BSDS (Article 1.5)}

The combination of factored extreme force effects for "Extreme Event I load combination", as stated in "Article-3.4 of the AASHTO LRFD Bridge Design Specifications (2012)", shall be used for seismic design. With this regards, the load factor for live load \(\gamma_{\mathrm{EQ}}\) shall be 0.50 .
The detail of the applied loads and load combination for seismic design is shown in the following table.

Table 1.2.3-1 Load Combination and Load Factors for "Extreme Event I"

\(\gamma_{\mathrm{p}}\) : Load factors for permanent loads (refer to AASHTO LRFD for the detail)

\section*{[Permanent Loads]}
- DC: Dead load of structural components and nonstructural attachments
- DW: Dead load of wearing surface and utilities
- DD: Downdrag force
- EL: Miscellaneous locked-in force effects resulting from the construction process, including jacking apart of cantilevers in segmental construction
- PS: Secondary forces from post-tensioning
- EH: Horizontal earth pressure load
- ES: Earth surcharge load
- EV: Vertical pressure from dead load of earth fill
- CR: Force effects due to creep
- SH: Force effect due to shrinkage
[Transient Loads]
- LL: Vehicular live load
- WA: Water load and stream pressure
- FR: Friction load
- EQ: Earthquake load

In the design example, the following load combination is applied.
Load combination: \(\left[1.0^{*}(\mathrm{DC}+\mathrm{DW}+\mathrm{EH}+\mathrm{EV})\right]+[0.5 \mathrm{LL}]+[1.0 \mathrm{EQ}]\)

\subsection*{1.2.3.2 Unit Weight}

The following unit weights are applied in the design example.
- Reinforced concrete: \(\gamma \mathrm{c}=24.0(\mathrm{kN} / \mathrm{m} 3)\); rounded up for modification

Note: - (Unit weight of concrete) \(=2320\) ( \(\mathrm{kg} / \mathrm{m} 3\) ); normal density concrete
- (Unit weight of re-bars in \(1 \mathrm{~m}^{3}\) of concrete \()=200(\mathrm{~kg} / \mathrm{m} 3)\)
- Wearing surface: \(\gamma_{\mathrm{ws}}=22.5(\mathrm{kN} / \mathrm{m} 3)\)
- Water: \(\gamma \mathrm{w}=10.0(\mathrm{kN} / \mathrm{m} 3)\)
- Soil: \(\gamma \mathrm{t}=\) (result of soil tests)

\subsection*{1.2.4 Material Properties}

The following material properties are applied in this design example.
Table 1.2.4-1 Material Properties
\begin{tabular}{|c|l|l|}
\hline Material & \multicolumn{1}{|c|}{ Strength } & \multicolumn{1}{c|}{ Remarks } \\
\hline Concrete & \begin{tabular}{l} 
fc'= 28.0 (MPa); \\
Compressive Strength at 28 days
\end{tabular} & -To be applied to all the substructure members \\
\hline Re-bars & \begin{tabular}{l} 
Fy= 415 (N/mm2); \\
Grade60
\end{tabular} & \begin{tabular}{l}
-To be applied to all the substructure members \\
- Applicable diameter: \\
D16, D20, D25, D28, D32, D36
\end{tabular} \\
\hline
\end{tabular}
- Young's modulus
- Concrete: \(\mathrm{Ec}=4800 \sqrt{\mathrm{fc}}{ }^{\prime}=25,000(\mathrm{MPa})\); rounded down for modification
- Steel: Es=20,000 (MPa)

\subsection*{1.2.5 Ground Condition for Seismic Design BSDS (Article 3.5.1)}

Ground types for seismic design shall be classified, in principle, in accordance with the types defined in following table, in accordance with the ground characteristic value \(\mathrm{T}_{\mathrm{G}}\) defined by the following equation. When the ground surface lies on the same level as the surface of a base ground surface for seismic design, the ground type shall be Type-I.
\(T_{G}=4 \sum_{i=1}^{n} \frac{H_{i}}{V_{s i}}\)
Where,
\(\mathrm{T}_{\mathrm{G}}\) : Characteristic value of ground (s)
Hi: Thickness of the i-th soil layer (m)
\(\mathrm{V}_{\mathrm{si}}\) : Average shear elastic wave velocity of the i-th soil layer ( \(\mathrm{m} / \mathrm{s}\) )
i : Number of the i-th soil layer from the ground surface when the ground is classified into \(n\) layers from the ground surface to the surface of the base ground surface for seismic design

Table 1.2.5-1 Ground Types (Site Class) for Seismic Design
\begin{tabular}{|c|l|c|}
\hline \multicolumn{1}{|c|}{ Ground Type } & \begin{tabular}{c} 
Characteristic Value of \\
Ground, \(\mathrm{T}_{\mathrm{G}}\) (s)
\end{tabular} \\
\hline Type-I & Good diluvial ground and rock & \(\mathrm{T}_{\mathrm{G}}<0.2\) \\
\hline Type-II & \begin{tabular}{l} 
Diluvial and alluvial ground not belonging to \\
either Type-III or Type-I ground
\end{tabular} & \(0.2 \leq \mathrm{T}_{\mathrm{G}}<0.6\) \\
\hline Type-III & Soft ground and alluvial ground & \(0.6 \leq \mathrm{T}_{\mathrm{G}}\) \\
\hline
\end{tabular}

In the design example, average shear elastic wave velocity, " \(\mathrm{V}_{\mathrm{si}}\) " is estimated with the following equations.
- For cohesive soil layer,
\[
V_{s i}=100 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 25\right)
\]
- For sandy/cohesionless soil layer,
\[
V_{s i}=80 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 50\right)
\]

Where,
Ni : Average N -value of the i-th soil layer obtained from SPT
Note: When the N -value is 0 , the value of \(V_{s i}\) can be taken as \(50(\mathrm{~m} / \mathrm{s})\).

In the design example, the following bridge site is chosen for the ground conditions.
- Lambingan Bridge; consideration of liquefiable ground condition (pile foundation)

\subsection*{1.2.6 Design Acceleration Response Spectrum Methodology BSDS (Article-3.6)}

The five-percent-damped-design response spectrum shall be taken as specified in the following figure. The spectrum shall be calculated using the mapped peak ground acceleration coefficients and the spectral acceleration coefficients from three acceleration-contour maps, scaled by the zero-, short-, and long-period site factors, Fpga, Fa, and Fv, respectively.


Figure 1.2.6-1 Design Response Spectrum
Design response spectrum can be formed along with the following four steps.
- Step-1: Identify specific values of PGA, Ss, and \(\mathrm{S}_{1}\) for bridge sites on the acceleration-contour maps.
- Step-2: Identify specific values of Fpga, Fa, and Fv in the each "site factor table".
- Step-3: Calculate and plot the coordinates of the following points in the graph.
( \(0, \mathrm{Fpga} * \mathrm{PGA}\) ), ( \(0.2 * \mathrm{Ts}, \mathrm{Fa} * \mathrm{Ss}\) ), ( \(0.2, \mathrm{Fa} * \mathrm{Ss}\) ), ( \(\left.\mathrm{S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{Ds}}, \mathrm{Fa}^{*} \mathrm{Ss}\right),\left(1.0, \mathrm{Fv}^{*} \mathrm{~S}_{1}\right)\)
- Step-4: Form spectrum by connecting the plotted points ( \(\mathrm{Csm}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{T}\), if "Ts \(<\mathrm{T}\) ")
(See the following figure for the reference.)

(1) Acceleration Coefficient at T=0 (s), As=Fpga*PGA
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Acceleration map for "PGA" & \multicolumn{7}{|l|}{Get "linearly-interpolated value of Fpga" with the table.} \\
\hline  & \multicolumn{7}{|c|}{Fpga (site factor for PGA)} \\
\hline \multirow{5}{*}{Get "PGA value" at the bridge site} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { PGA } \\
(\mathrm{T}=0)
\end{gathered}
\]} & PGA< & PGA= & PGA= & PGA= & PGA= & PGA \(\geq\) \\
\hline & & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.80 \\
\hline & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \text { Soil } \\
\text { type }
\end{array}
\]} & 1.2 & 1.2 & 1.1 & 1.0 & 1.0 & 1.0 \\
\hline & & 1.6 & 1.4 & 1.2 & 1.0 & 0.9 & 0.85 \\
\hline & & 2.5 & 1.7 & 1.2 & 0.9 & 0.8 & 0.75 \\
\hline
\end{tabular}
(2) Design spectral acceleration coefficient at \(\mathrm{T}=0.2\) (s), \(\mathrm{S}_{\mathrm{Ds}}=\mathrm{Fa} * \mathrm{Ss}\)

Acceleration map for "Ss"
Get "linearly-interpolated value of Fa" with the table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{ Fa (site factor for Ss) } \\
\hline \multicolumn{2}{|c|}{Ss} & \(\mathrm{Ss}<\) & \multicolumn{2}{|c|}{\(\mathrm{Ss}=\)} & \(\mathrm{Ss}=\) & \(\mathrm{Ss}=\) & \(\mathrm{Ss}=\) \\
(T=0.2) & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 2.0 \\
\hline \multirow{2}{*}{ Soil } & I & 1.2 & 1.2 & 1.1 & 1.0 & 1.0 & 1.0 \\
\cline { 2 - 8 } & II & 1.6 & 1.4 & 1.2 & 1.0 & 0.9 & 0.85 \\
\cline { 2 - 9 } & III & 2.5 & 1.7 & 1.2 & 0.9 & 0.8 & 0.75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{(3) Design spectral acceleration coefficient at T \(=1.0, \mathrm{~S}_{\mathrm{D} 1}=\mathrm{Fv}^{*} \mathrm{~S}^{\text {a }}\)} \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Acceleration map for " \(\mathrm{S}_{1}\) " \\
Get "" \(S_{1}\)-value" at the bridge site
\end{tabular}} & \multicolumn{8}{|l|}{Get "linearly-interpolated value of Fv" with the table.} \\
\hline & & & \multicolumn{6}{|c|}{Fv (site factor for \(\mathrm{S}_{1}\) )} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{S}_{1} \\
(\mathrm{~T}=1.0)
\end{gathered}
\]}} & \(\mathrm{S}_{1}<\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1} \geq\) \\
\hline & & & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.80 \\
\hline & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Soil } \\
\text { type }
\end{gathered}
\]} & I & 1.7 & 1.6 & 1.5 & 1.4 & 1.4 & 1.4 \\
\hline & & II & 2.4 & 2.0 & 1.8 & 1.6 & 1.5 & 1.5 \\
\hline & & III & 3.5 & 3.2 & 2.8 & 2.4 & 2.4 & 2.0 \\
\hline
\end{tabular}

Figure 1.2.6-2 Formation of Design Response Spectrum

In the design example, the following bridge site is chosen for design response spectrum formation, corresponding to the ground condition of specific bridge site explained before.
- Lambingan Bridge; consideration of response spectra at the site with liquefiable ground condition

\subsection*{1.2.7 Analysis Requirements and Applied Methodology}

\subsection*{1.2.7.1 Seismic Performance Zones BSDS (Article-3.7)}

Each bridge shall be assigned to one of the four seismic zones in accordance with the following table using the value of \(\mathrm{S}_{\mathrm{D} 1}\) (based on the \(1.0-\mathrm{sec}\) period design spectral acceleration for the design earthquake).

If liquefaction-induced lateral spreading or slope failure that may impact the stability of the bridge could occur, the bridge should be designed in accordance with Seismic Zone 4 (SZ-4), regardless of the magnitude of \(\mathrm{S}_{\mathrm{D} 1}\).

Table 1.2.7-1 Seismic Zones
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Acceleration Coefficient, \(\mathrm{S}_{\mathrm{D} 1}\)} & Seismic Zone \\
\hline \(\mathrm{S}_{\mathrm{D} 1} \leq 0.15\) & \(\mathrm{SZ}-1\) \\
\hline \(0.15<\mathrm{S}_{\mathrm{D} 1} \leq 0.30\) & \(\mathrm{SZ}-2\) \\
\hline \(0.30<\mathrm{S}_{\mathrm{D} 1} \leq 0.50\) & \(\mathrm{SZ}-3\) \\
\hline \(0.50 \leq \mathrm{S}_{\mathrm{D} 1}\) & \(\mathrm{SZ}-4\) \\
\hline
\end{tabular}


The seismic zones (SZ) reflect the variation in seismic risk across the country and are used to permit different requirements for methods of analysis, minimum support lengths, column design details, and foundation and abutment design procedures.

\subsection*{1.2.7.2 Analysis Requirements (for Single-span Bridges) BSDS (Article-4.1.2)}

The following three analysis requirements are given for single-span bridges although multispan bridge condition is selected for the design example.
1) Seismic analysis is not required for single-span bridges, regardless of seismic zone.
2) Connections between the bridge superstructure and the abutments shall be designed for the minimum force requirements as specified in Article 4.2.1 (3.10.9 AASHTO).
3) Minimum support length requirements shall be satisfied at each abutment as specified in Article 4.1.4 (4.7.4.4 AASHTO).

\subsection*{1.2.7.3 Analysis Requirements (for Multispan Bridges) BSDS (Article-4.1.3)}

The following four analysis requirements are given for multispan bridges. As explained below, either "multimode elastic method (MM)" shall be applied for multispan bridges whose importance is categorized as "Essential". However, in the design example, "uniform load elastic method (UL)" is applied for simplification of analysis.
[Analysis requirements]
1) For multi-span structures, the minimum analysis requirements shall be as specified in the following table.

Table 1.2.7-2 Minimum Analysis Requirements for Seismic Effects
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Seismic Zone} & \multirow{3}{*}{Single-Span Bridges} & \multicolumn{6}{|c|}{Multispan Bridges} \\
\hline & & \multicolumn{2}{|l|}{Other Bridges} & \multicolumn{2}{|l|}{Essential Bridges} & \multicolumn{2}{|l|}{Critical Bridges} \\
\hline & & Regular & Irregular & Regular & Irregular & Regular & Irregular \\
\hline 1 & \multirow{4}{*}{No seismic analysis required} & * & * & * & * & * & * \\
\hline 2 & & SM/UL & SM & SM/UL & MM & MM & MM \\
\hline 3 & & SM/UL & MM & MM & MM & MM & MM/TH \\
\hline 4 & & SM/UL & MM & MM & MM & MM/TH & MM/TH \\
\hline
\end{tabular}

Where,
* = no seismic analysis required

UL = uniform load elastic method
SM = single-mode elastic method
MM = multimode elastic method
TH = time history method
2) Except as specified below, bridges satisfying the requirements of the following table may be taken as "regular" bridges. Bridges not satisfying the requirements of the table shall be taken as "irregular" bridges.

Table 1.2.7-3 Regular Bridge Requirements
\begin{tabular}{|l|c|c|c|c|c|}
\hline Parameter & \multicolumn{5}{|c|}{ Value } \\
\hline Number of Spans & 2 & 3 & 4 & 5 & 6 \\
\hline Maximum subtended angle for a curved bridge & \(90^{\circ}\) & \(90^{\circ}\) & \(90^{\circ}\) & \(90^{\circ}\) & \(90^{\circ}\) \\
\hline Maximum span length ratio from span to span & 3 & 2 & 2 & 1.5 & 1.5 \\
\hline \begin{tabular}{l} 
Maximum bent/pier stiffness ratio from span to span, \\
excluding abutments
\end{tabular} & - & 4 & 4 & 3 & 2 \\
\hline
\end{tabular}
3) Curved bridges comprised of multiple simple-spans shall be considered to be "irregular" if the subtended angle in plan is greater than 20 degrees. Such bridges shall be analyzed by either the multimode elastic method or the time-history method.
4) A curved continuous-girder bridge may be analyzed as if it were straight, provided all of the following requirements are satisfied:
- The bridge is "regular" as defined in the above table, except that for a two-span bridge the maximum span length ratio from span to span must not exceed 2;
- The subtended angle in plan is not greater than 90 degrees; and
- The span lengths of the equivalent straight bridge are equal to the arc lengths of the curved bridge. If these requirements are not satisfied, then curved continuous-girder bridges must be analyzed using the actual curved geometry.

\subsection*{1.2.7.4 Bridge Seismic Analysis Conditions in the Design Example}

\section*{(1) Application of Single Degree of Freedom Method}

As one of uniform load elastic methods, "Single Degree of Freedom Method" is applied in the design example. Vibration characteristics of the simply-supported bridge can be acquired with the method for both longitudinal and transverse directions. In order to acquire the realistic vibration characteristics of structures, foundations are modeled as spring in the design. The detail of the analysis model is illustrated below.


Figure 1.2.7-1 Design Model for Seismic Design of Pier

If the vibration unit is assumed with the above model, the natural period of the structure can be determined with the following equation.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{Where,}
\(\mathrm{W}: 80 \%\) of the substructure weight and the entire weight of the superstructure \((\mathrm{kN})\)
g: gravity acceleration: \(g=9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)\)
K : stiffness of the structure \((\mathrm{kN} / \mathrm{m})\)
\(\delta\) : lateral displacement of the superstructure at application point of seismic inertial force from the superstructure when \(80 \%\) of the substructure weight and the entire weight of the superstructure act jointly in the direction of the seismic force (m); \(\delta=\delta \mathrm{p}+\delta \mathrm{o}+\theta \mathrm{o}\) *ho
\(\delta \mathrm{p}\) : lateral displacement of the substructure body at application point of seismic inertial force from the superstructure (m);
\[
\delta_{p}=\frac{W u * h^{3}}{3 * E * I}+\frac{0.8 * W_{p} * h_{p}^{3}}{8 * E * I}
\]

Wu : weight of superstructure under consideration \((\mathrm{kN})\) h:

Wp: weight of substructure (kN)
hp : height of the substructure (m)
E: Young's modulus of the substructure ( MPa )
I: moment of inertia of the substructure (m4)
סo: lateral displacement of footing (m);
\(\delta o=\frac{H_{0} * A r r-M_{0} * A s r}{\text { Ass * Arr }- \text { Asr * Ars }}\)


\(\theta \mathrm{o}\) *ho: lateral displacement of footing caused by rotation of the pile cap (m);
\[
\theta o=\frac{-H_{0} * \text { Ars }+M_{0} * \text { Ass }}{\text { Ass } * \text { Arr }- \text { Asr } * \text { Ars }}
\]

The detail of the methodology is illustrated below.


Figure 1.2.7-2 Displacement of the Substructure in the Longitudinal Direction

\section*{(2) Application Point of Seismic Inertial Force from Superstructure}

In the design example, height from the top of the substructure body to application point of seismic inertial force from superstructure, "ho", is defined as follows.


Figure 1.2.7-3 Application Point of Seismic Inertial Force of Superstructure

\section*{(3) Pier/Column Stiffness in Bridge Seismic Analysis BSDS (Commentary-C4.5.3)}

The bridge shall be modeled to be consistent with the degrees-of-freedom chosen to represent the natural modes and frequencies of vibration. The stiffness of the elements of the model shall be defined to be consistent with the bridge being modeled.
In the design example, "a moment of inertia equal to one-half that of the uncracked section" is adopted as cracked section stiffness in bridge analysis for the consideration of nonlinear effects which decrease stiffness. The methodology derives from the following commentary of LRFD 2012.

In seismic analysis, nonlinear effects which decrease stiffness, such as inelastic deformation and cracking, should be considered. Reinforced concrete columns and walls in Seismic Zones 2, 3, and 4 should be analyzed using cracked section properties. For this purpose, a moment of inertia equal to one-half that of the uncracked section may be used. (LRFD 2012, C4.7.1.3)

The image of cracked section stiffness is illustrated below.


Figure 1.2.7-4 Image of Cracked Section Stiffness

\subsection*{1.2.7.5 Dynamic Spring Property of Pile Foundation BSDS (Article-4.4.3)}

\section*{(1) Introduction to Modeling of Foundation Spring in Bridge Analysis}

In order to obtain the vibration characteristics of structures, the consideration of the foundation spring in the analysis model is one of the most important issues for the realistic results. Although bridge analyses can be conducted with foundation springs fixed, the consideration of the realistic spring properties could contribute to the cost-effectiveness of the structure. As shown in the following figure, with the application of foundation spring, natural period of analysis model becomes longer, which results in the reduction of the response acceleration cost-effective design.
(1) No foundation spring
(2) With foundation spring


Figure 1.2.7-5 Effect of Foundation Spring on Seismic Designs

The foundation spring can be considered in analyses with the either type of models in the following figure. Both models are considered to generate the equivalent analysis results. The detail of the methodologies is explained from the next page.


Figure 1.2.7-6 Modeling of Foundation Spring

\section*{(2) Coefficient of Subgrade Reaction, " \(\mathrm{K}_{\mathrm{H}}\) "}

Coefficient of subgrade reaction, \(\mathrm{K}_{\mathrm{H}}\), is defined with the following equation.
\(K_{H}=K_{H 0}\left(\frac{B_{H}}{0.3}\right)^{-3 / 4}\)
Where,
\(\mathrm{K}_{\mathrm{H} 0}\) : reference value of the coefficient of subgrade reaction in horizontal direction ( \(\mathrm{kN} / \mathrm{m} 3\) );
\[
K_{H 0}=\frac{E_{D}}{0.3}
\]
\(\mathrm{B}_{\mathrm{H}}\) : equivalent loading width of foundation (m); \(B_{H}=\sqrt{\frac{D}{\beta}} \quad \begin{aligned} & \text { " } 1 / \beta \text { " implicates effective } \\ & \text { range of " } \mathrm{K}_{H} \text { ". }\end{aligned}\)
\(\mathrm{E}_{\mathrm{D}}\) : dynamic modulus of ground deformation (kN/m2); \(E_{D}=2 *\left(1+v_{D}\right) * G_{D}\)
\(\mathrm{G}_{\mathrm{D}}\) : dynamic shear modulus of ground deformation (kN/m2); \(G_{D}=\frac{\gamma_{t}}{g} V_{S D}^{2}\)
\(v_{D}\) : dynamic Poisson's ratio of the ground ( 0.45 for soil above water, 0.5 for soil under water)
\(\gamma \mathrm{t}\) : unit weight of the ground \((\mathrm{kN} / \mathrm{m} 3)\)
g : acceleration of the gravity; \(\mathrm{g}=9.8\) (ms2)
\(\mathrm{V}_{\mathrm{SD}}\) shear elastic wave velocity of the ground ( \(\mathrm{m} / \mathrm{s}\) ); \(V_{S D}=c_{v} * V_{s i}\)
\(c_{v}\) : modification factor based on degree of ground strain; \(\quad \begin{gathered}c_{v}\left\{\begin{array}{l}=0.8\left(V_{s i}<300 \mathrm{~m} / \mathrm{s}\right) \\ =1.0\left(V_{s i} \geq 300 \mathrm{~m} / \mathrm{s}\right)\end{array}\right.\end{gathered}\)
Vsi: the average shear wave velocity of the i-th soil layer;
\[
V_{s i}\left[\begin{array}{l}
=100 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 25\right) \\
\text { (for cohesive soil layers) } \\
=80 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 50\right) \\
\text { (for sandy/cohesionless soil layers) }
\end{array}\right.
\]

If piles are modeled individually as shown in the following figure, " \(\mathrm{K}_{\mathrm{H}}\) " should be calculated with dynamic modulus of ground deformation, " \(E_{D}\) ", of each layer.


Figure 1.2.7-7 Coefficient of Subgrade Reaction, " \(\mathrm{K}_{\mathrm{H}}\) "

\section*{(3) Spring Properties of Foundation Structures}

If the effect of foundation on analyses is focused on " \(1 / \beta\) " range, which is the effective range of " \(K_{H}\) ", foundation structure can be modeled as group of springs in one node as shown in the following figure. If this method is applied, " \(\mathrm{K}_{\mathrm{H}}\) " should be calculated with the average value of " \(\mathrm{E}_{\mathrm{D}}\) " in " \(1 / \beta\) " range, " \(\left(E_{D}\right)\) \({ }_{\beta}\) ".


Figure 1.2.7-8 Coefficient of Subgrade Reaction, " \(\mathbf{K}_{\mathbf{H}}\) "

After the calculation of " \(\mathrm{K}_{\mathrm{H}}\) " with " \(\left(\mathrm{E}_{\mathrm{D}}\right)_{\beta}\) ", \(\beta\) can be obtained with the following equation.
\(\beta=\sqrt[4]{\frac{K_{H}{ }^{*} D}{4^{*} E^{*} I}}\)
Then, if there's no pile projection over the ground surface, spring properties of a pile can be determined with the following equations; spring properties of a pile with rigid connection at the head
\begin{tabular}{l}
\(\mathrm{K} 1=4 * \mathrm{E} * \mathrm{I}^{*} \beta^{3}(\mathrm{kN} / \mathrm{m})\) \\
\(\mathrm{K} 2=\mathrm{K} 3=2 * \mathrm{E}^{*} \mathrm{I}^{*} \beta^{2}(\mathrm{kN} / \mathrm{rad})\) \\
\(\mathrm{K} 4=2 * \mathrm{E}^{*} \mathrm{I} * \beta(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\) \\
\(\mathrm{Kv}=\mathrm{a} * A \mathrm{Ap}^{*} \mathrm{E} / \mathrm{L}(\mathrm{kN} / \mathrm{m})\) \\
\hline
\end{tabular}

Where,
K1, K3: radical force \((\mathrm{kN} / \mathrm{m})\) and bending moment \((\mathrm{kN} * \mathrm{~m} / \mathrm{m})\) to be applied on a pile head when displacing the head by a unit volume in a radical direction while keeping it from rotation.
K2, K4: radical force ( \(\mathrm{kN} / \mathrm{rad}\) ) and bending moment ( \(\mathrm{kN} * \mathrm{~m} / \mathrm{rad}\) ) to be applied to on a pile head when rotating the head by a unit volume while keeping it from moving in a radical direction.
Kv: axial spring constant of a pile
a: modification factor; with CCP, \(\mathrm{a}=0.031^{*}(\mathrm{~L} / \mathrm{D})-0.15\)
L: pile length (m)
D: pile diameter (m)
Ap: net cross-sectional area of a pile (mm2)
E: Young's modulus of elasticity of the pile ( \(\mathrm{kN} / \mathrm{mm} 2\) )
Finally, spring properties of entire pile foundation can be determined with the following equations.


Note: the above equations can be applied only when there're no battered piles.

Where,
Ass: horizontal spring property of the foundation structure ( \(\mathrm{kN} / \mathrm{m}\) )
Asr, Ars: spring properties of the foundation structure in combination with "Ass" and "Arr" (kN/rad)
Arr: rotational spring property of the foundation structure ( \(\mathrm{kN} \mathrm{N}^{*} / \mathrm{rad}\) )
n : number of piles in the foundation structure (nos)
Xi: X-coordinate of the i-th pile head (m)

Determination process of spring properties of foundation for bridge seismic analyses can be summarized with the following flowchart.
Step-6: Calculation of " \(\beta\) "
(Spring property of entire pile foundation)
For pile foundation
\[
\begin{aligned}
& \text { Ass }=n * K_{1} \\
& \text { Asr }=\text { Ars }=-n * K_{2} \\
& \text { Arr }=n^{*} K_{4}+K_{v} \sum_{i=1}^{n} X_{i}^{2}
\end{aligned}
\]
Where, n: number of piles

E: Young's modulus of concrete piles ( \(\mathrm{kN} / \mathrm{m} 2\) )
I: moment of inertia of a pile (m4)
If \((1 / \beta)\) becomes equal to \(\left(1 / \beta_{1}\right)\),
Step-5: Calculation of "K1, K2, K3, K4"
(Spring property of a pile)
\(\mathrm{K} 1=4 * \mathrm{E} * \mathrm{I} * \beta^{3}(\mathrm{kN} / \mathrm{m})\)
\(\mathrm{K} 2=\mathrm{K} 3=2 * \mathrm{E}^{*} \mathrm{I}^{*} \beta^{2}(\mathrm{kN} / \mathrm{rad})\)
\(\mathrm{K} 4=2 * \mathrm{E}^{*} \mathrm{I} * \beta(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\)
\(\mathrm{Kv}=\mathrm{a} * \mathrm{Ap}\) *E/L (kN/m)

Step-4: Calculation of " \(\beta\) "
\(\beta=\sqrt[4]{\frac{K_{H} * D}{4 * E * I}} \Rightarrow \begin{aligned} & \text { Compare value of }(1 / \beta) \\ & \text { with that of }\left(1 / \beta_{1}\right) .\end{aligned} \quad\) (Feed back)
Where,
Under the condition with "no battered pile"

Figure 1.2.7-9 Determination Process of Dynamic Spring Property of Pile Foundation

\subsection*{1.2.8 Design Requirements and Applied Methodology}

\subsection*{1.2.8.1 Combination of Seismic Force Effects BSDS (Article 5.2)}

In the design example, combination of seismic force effects is considered in accordance with the following two provisions defined in BSDS.
1) The elastic seismic force effects on each of the principal axes of a component resulting from analyses in the two perpendicular directions shall be combined to form two load cases as follows:
- 100 percent of the absolute value of the force effects in one of the perpendicular directions combined with 30 percent of the absolute value of the force effects in the second perpendicular direction, and
- 100 percent of the absolute value of the force effects in the second perpendicular direction combined with 30 percent of the absolute value of the force effects in the first perpendicular direction.
2) Where foundation and/or column connection forces are determined from plastic hinging of the columns specified in Article 5.3.4.3, the resulting force effects may be determined without consideration of combined load cases specified herein.

\subsection*{1.2.8.2 Design Forces for Seismic Zone 3 and 4 BSDS (Article 5.3.4)}

In the design example, design forces are determined in accordance with the following provision for Seismic Zone 3 and 4. Design force determination process of single column is explained in the design example.

\subsection*{1.2.8.3 Design Forces to be Applied BSDS (Article 5.3.4.1)}

The design forces of each component shall be taken as the lesser of those determined using:
- (1) modified design forces (Article 5.3.4.2); or
- (2) inelastic hinging forces (Article 5.3.4.3),
for all components of a column, column bent and its foundation and connections.

\subsection*{1.2.8.4 Modified Design Forces BSDS (Article 5.3.4.2)}

Modified design forces shall be determined as specified in Article 5.3.3, except that for foundations the R-factor shall be taken as 1.0.

\subsection*{1.2.8.5 Inelastic Hinging Forces BSDS (Article 5.3.4.3)}

\section*{(1) Single Columns and Piers BSDS (Article 5.3.4.3.b)}
1) Force effects shall be determined for the two principal axes of a column and in the weak direction of a pier or bent as follows:
- Step-l: Determine the column overstrength moment resistance. Use a resistance factor, \(\varphi\) of 1.3 for reinforced concrete columns and 1.25 for structural steel columns. For both materials, the
applied axial load in the column shall be determined using Extreme Event Load Combination 1, with the maximum elastic column axial load from the seismic forces determined in accordance with Article 4.2.1 taken as EQ.
- Step-2: Using the column overstrength moment resistance, calculate the corresponding column shear force. For flared columns, this calculation shall be performed using the overstrength resistances at both the top and bottom of the flare in conjunction with the appropriate column height. If the foundation of a column is significantly below ground level, consideration should be given to the possibility of the plastic hinge forming above the foundation. If this can occur, the column length between plastic hinges shall be used to calculate the column shear force.
2) Force effects corresponding to a single column hinging shall be taken as:
- Axial Forces - Those determined using Extreme Event Load Combination 1, with the unreduced maximum and minimum seismic axial load of Article 4.2.1 taken as \(E Q\).
- Moments - those calculated in Step 1.
- Shear Force - that calculated in Step 2.
a) Inelastic Hinging Forces (Pier Design Forces) BSDS (Article 5.3.4.3.e)

The design forces shall be those determined for Extreme Event Limit State Load Combination I, except where the pier is designed as a column in its weak direction. If the pier is designed as a column, the design forces in the weak direction shall be as specified in Article 4.2.2.4.3d and all the design requirements for columns, as specified in Section 5 (Concrete Structures) of the AASHTO LRFD Bridge Design Specifications (2012), shall apply. When the forces due to plastic hinging are used in the weak direction, the combination of forces, specified in Article 4.2.1, shall be applied to determine the elastic moment which is then reduced by the appropriate R-factor.
b) Inelastic Hinging Forces (Foundation Design Forces) BSDS (Article 5.3.4.3.f)

The design forces for foundations including footings, pile caps and piles may be taken as either those forces determined for the Extreme Event Load Combination I, with the seismic loads combined as specified in Article 4.2.1, or the forces at the bottom of the columns corresponding to column plastic hinging as determined in Article 4.2.1.

\subsection*{1.2.8.6 Outline of Design Force Determination Process in the Design Example}

To sum up the above requirements for design forces, design forces are determined as follows.

\section*{(1) Column Design Force}

Step-1: Conduct bridges analysis and get resulted forces at column base in both longitudinal and transverse directions namely;
- \(\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{T}}\) : bending moment at column base in longitudinal/transverse direction ( \(\mathrm{kN} * \mathrm{~m}\) )
- \(\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{T}}\) : Shear force at column base in longitudinal/transverse direction ( kN )

Step-2: Calculate the design forces considering the combination of seismic force effects inelastic hinging effect ( R -factor) with the following equations.
- for longitudinal direction
\(M_{d L}=\sqrt{\left(1.0 * M_{L}\right)^{2}+\left(0.3 * M_{T}\right)^{2}} / R:\) Design moment \((\mathrm{kN} * \mathrm{~m})\)
\(V_{d L}=\sqrt{\left(1.0 * V_{L}\right)^{2}+\left(0.3 * V_{T}\right)^{2}}\) : Design shear force (kN)
- for transverse direction
\(M_{d T}=\sqrt{\left(1.0 * M_{T}\right)^{2}+\left(0.3 * M_{L}\right)^{2}} / R\) : Design moment \((\mathrm{kN} * \mathrm{~m})\)
\(V_{d T}=\sqrt{\left(1.0 * V_{T}\right)^{2}+\left(0.3 * V_{L}\right)^{2}}:\) Design shear force \((\mathrm{kN})\)
Note: axial force at the column base is defined as,
\(\mathrm{Nd}=\mathrm{Rd}+\mathrm{Wp}(\mathrm{kN})\)
Where,
Rd : reaction force of the pier \((\mathrm{kN})\)
Wp: weight of pier column (kN)

The detail of the calculation process is illustrated in the following figure.


Figure 1.2.8-1 Determination of Column Design Force

\section*{(2) Foundation Design Force}

Step-1: Create an axial force ( N )-nominal moment ( Mn ) interaction diagram of the column and plot a dot on the curve where " N " is equal to design axial force, " \(\mathrm{Nd} "\). " \(\phi * \mathrm{Mn}\) " is regarded as "Mu" if the flexural resistance factor, \(\phi\) is equal to 1.0.
\(M u=1.0 * M n(\phi=1.0)\)
Where,
Mu: ultimate bending moment strength of the column ( \(\mathrm{kN}^{*} \mathrm{~m}\) )
Mn : nominal bending moment of the column ( \(\mathrm{kN} * \mathrm{~m}\) )
\(\phi\) : flexural resistance factor of the column

Step-2: Determine the column overstrength moment resistance, "Mp", with the flexural resistance factor, \(\phi\) of 1.3. " \(\phi\) *Mn" is regarded as "Mp" with the flexural resistance factor, \(\phi\) of 1.3;
\(M p=1.3^{*} M n(\phi=1.3)\) : the column overstrength moment resistance \(\left(\mathrm{kN}^{*} \mathrm{~m}\right)\)
Step-3: Using the column overstrength moment resistance, "Mp", calculate the corresponding column shear force, "Vp" at the column base with the appropriate column height;
\(V p=M p / h\) : the corresponding column shear force at column base ( kN )
Where,
h : height from the application point of seismic inertial force from the superstructure to the column base (m)
Step-4: Add the effect of the footing weight to "the inelastic hinging forces" calculated above;

> - for longitudinal/transverse direction \[ M d=M p+M f=M p+F f * h_{f} / 2 \text { : Design moment }\left(\mathrm{kN}^{*} \mathrm{~m}\right) \] \[ V d=V p+F f=V p+W f * A s \text { : Design shear force }(\mathrm{kN}) \] Note: axial force at the footing base is defined as, Nd' \(=\mathrm{Rd}+\mathrm{Wp}+\mathrm{Wf}(\mathrm{kN})\)

Where,
Mf: moment caused by weight of the footing ( \(\mathrm{kN}^{*} \mathrm{~m}\) )
Ff: seismic inertial force caused by weight of the footing (kN)
Wf: weight of pier column (kN)
hf: height of footing (m)
As: acceleration coefficient; As= Fpga*PGA (g)

The detail of the calculation process is illustrated in the following figure.
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{} & Inelastic hinging forces] \\
\hline & \begin{tabular}{l}
Mu : ultimate flexural resistance of the column,
\[
\mathrm{Mu}=1.0^{*} \mathrm{Mn}(\phi=1.0)(\mathrm{kN} * \mathrm{~m})
\] \\
Mn : nominal flexural resistance of the column ( \(\mathrm{kN} * \mathrm{~m}\) ) \(\phi\) : flexural resistance factor of the column \\
h : height at the application point of seismic inertial force from the superstructure from the column base (m) \\
Axial force-moment interaction diagram
\[
\text { (Nd, } \left.1.0^{*} \mathrm{Mn}=\mathrm{Mu}\right)
\]
\end{tabular} \\
\hline
\end{tabular}


Figure 1.2.8-2 Determination of Foundation Design Force

\subsection*{1.2.8.7 Column Resistance LRFD (Section 5)}

\section*{(1) Flexural Resistance}

In the design example, flexural resistance of columns, " \(\phi^{*} \mathrm{Mn}\) ", is determined as follows.
\(M r=\phi^{*} M n\)
Where,
Mr: flexural resistance of the column (kN*m)
Mn : nominal flexural resistance of the column ( \(\mathrm{kN} * \mathrm{~m}\) )
\(\phi\) : flexural resistance factor of columns; \(\phi=0.9\)


\section*{(2) \(\mathbf{P}\) - \(\Delta\) Requirements BSDS (Article 4.7)}

The displacement of any column or pier in the longitudinal or transversal direction shall satisfy the following equation. As shown below, the equation can be interpreted as the requirement for maximum displacement verification.
\[
\begin{aligned}
& \Delta * P u<0.25 * \varphi^{* M n} \\
& \leftrightarrow \Delta<\frac{\varphi^{*} M n}{4 * P u}
\end{aligned}
\]
in which:
\(\Delta=12 * \mathrm{R}_{\mathrm{d}} * \Delta_{e}\)
\(R_{d}\left\{\begin{array}{l}=\left(1-\frac{1}{R}\right) \frac{1.25 * T_{s}}{T}+\frac{1}{R}(T<1.25 * T s) \\ =1 \quad(T \geq 1.25 * T s)\end{array}\right.\)


Where,
\(\Delta\) : Displacement of the point of contraflexure in the column or pier relative to the point of fixity for the foundation (m)
\(\Delta_{e}\) : Displacement calculated from elastic seismic analysis (m)
T: Period of fundamental mode of vibration (sec.)
Ts: Corner period specified in BSDS Article 3.6.2 (sec.)
R: R-factor; R=2.0
Pu: Axial load on column or pier ( kN )
\(\varphi\) : Flexural resistance factor for column; \(\varphi=0.9\)
Mn: Nominal flexural strength of column or pier calculated at the axial load on the column or pier ( \(\mathrm{kN} * \mathrm{~m}\) )

\section*{(3) Shear Resistance}

In the design example, shear resistance of columns, " \(\phi * \mathrm{Vn}\) ", is determined with the following process.
Step-1: calculation of "Vn"
- Vn= Vc+Vs (kN)
Where,
Vn: nominal shear resistance (kN)
Vc: shear strength developed by concrete ( kN );
\(\mathrm{Vc}=0.083 * \beta^{*}\left(\mathrm{f}^{\prime} \mathrm{c}^{\prime}\right)^{0.5} * \mathrm{bv} * \mathrm{dv}\)
\(=0\) (to be on the conservative side)
Vs: shear strength developed by re-bars (kN);
\[
V s=(A v * f y * d v * \cot \theta) / s
\]
\(\beta\) : factor indicating ability of diagonally cracked concrete to transmit tension and shear; \(\beta=2.0\)
f'c': specified compressive strength of concrete ( \(\mathrm{N} / \mathrm{mm} 2\) )
bv: effective web width (mm)
dv: effective shear span (mm);
\(d v=0.9^{*} \mathrm{de}=0.9^{*}(\mathrm{D} / 2+\mathrm{Dr} / \pi)\)
fy: yield strength of transverse reinforcement ( \(\mathrm{N} / \mathrm{mm} 2\) )
\(\theta\) : angle of inclination of diagonal compressive stress (degrees); \(\theta=45\)
s : spacing of transverse reinforcement (mm)
Step-2: determination of "Vr"
- Vr: shear resistance of columns (kN);
\[
\mathrm{Vr}=\phi^{*} \mathrm{Vn}
\]
Where,
\(\phi\) : shear resistance factor for columns; \(\phi=0.9\)

Figure 1.2.8-3 Determination Process of Shear Resistance of Columns

\section*{(4) Requirement for Minimum Reinforcement}
[Minimum Required Longitudinal Reinforcement]
\(\rho_{s} \geq 0.0075\) (for "seismic zone \(3 \& 4\) ")
Where,
\(\rho_{s}\) : ratio of longitudinal reinforcement to gross area of concrete section; \(\rho_{s}=\mathrm{Aa} / \mathrm{Ag}\)
Aa : total area of longitudinal reinforcement (m2); Aa= As*n
As: cross-sectional area of single longitudinal reinforcement bar (m2)
n : number of longitudinal reinforcement bar
Ag: gross area of concrete section (m2)
[Minimum Required Transverse Reinforcement]
In the design example, minimum required transverse reinforcement is verified by the greater value of following two formulas.
Greater of \(\rho_{s} \geq 0.45 *\left(\frac{A_{g}}{A_{c}}-1\right) * \frac{f_{c}^{\prime}}{f_{y h}}\) or \(\rho_{s} \geq 0.12 * \frac{f_{c}^{\prime}}{f_{y h}}\)
Where,
\(\rho_{\mathrm{s}}\) : ratio of transverse reinforcement to total volume of concrete core
Ag: gross area of concrete section (m2)
Ac: area of core measured to the outside diameter of transverse reinforcement (m2)
fc': specified concrete strength at 28 days ( \(\mathrm{N} / \mathrm{mm} 2\) )
fyh: yield strength of transverse reinforcement ( \(\mathrm{N} / \mathrm{mm} 2\) )

\subsection*{1.2.8.8 Minimum Seat Length Requirements BSDS (Article 4.6, 7.2)}

Adequate measures against unseating of superstructures shall be taken when the superstructure separates structurally from the substructure, and with large relative displacements. Support lengths at expansion bearings without restrainers, shock transmission units (STUs) or dampers shall be designed to either accommodate the greater of the maximum calculated displacement (BSDS Article 4.1.3), except for bridges in Zone 1, or the empirical seating or support length, \(\mathrm{S}_{\mathrm{EM}}\). I \(n\) the design example, design of seat length is explained, complying with the following equation of minimum seat length, \(S_{\text {EM }}\).
\[
\mathrm{S}_{\mathrm{EM}}=0.7+0.005 * \mathrm{~L}
\]

Where,
L: distance between two substructures for determining the seat length (m)

\subsection*{1.2.8.9 Definition of Ground Surface in Seismic Design BSDS (Article 3.5.2)}

The ground surface to be considered in seismic design refers to the ground surface in which the design earthquake ground motion/forces specified in Article 3.6 is applied, with the assumption that the seismic forces acts only on the structures above it and excluding the structures existing below it.

Accordingly, the ground surface in the design example is defined as the following figure.


Figure 1.2.8-4 Definition of Ground Surface in Seismic Design

\subsection*{1.2.8.10 Assessment of Liquefaction Potential BSDS (Article 6.2.3 \& 6.2.4)}

\section*{(1) Application of FL method for assessment of liquefaction potential}

In the design example, liquefaction potential is assessed with "FL Method". In this method, possibility of liquefaction is assessed by the value of " \(F_{\mathrm{L}}\) ", which is the ratio of dynamic shear strength ratio (resistance), " R ", to seismic shear stress ratio (load), "L". As shown in the following figure, if " \(\mathrm{F}_{\mathrm{L}}\) " is 1.0 or less, the target layers are regarded as liquefiable. That means, liquefaction happens when seismic load in the ground, "L" is larger than ground resistance against liquefaction, "R". As a result of the assessment, Soil coefficient reduction factor "DE" can be obtained. "DE" can be used in seismic design of pile foundation.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Decide "DE"} & \multicolumn{4}{|l|}{Soil coefficient reduction factor "DE"} \\
\hline & \multirow{2}{*}{\(\mathrm{F}_{\mathrm{L}}\)} & \multirow{2}{*}{X (m)} & \multicolumn{2}{|l|}{DE} \\
\hline & & & \(\mathrm{R} \leqq 0.3\) & \(0.3<\mathrm{R}\) \\
\hline & \multirow[b]{2}{*}{\(\mathrm{F}_{\mathrm{L}} \leqq 1 / 3\)} & \(0 \leqq \mathrm{X} \leqq 10\) & 0 & 1/6 \\
\hline & & \(10<X \leqq 20\) & 1/3 & 1/3 \\
\hline & \multirow{2}{*}{\(1 / 3<\mathrm{F}_{\mathrm{L}} \leq 2 / 3\)} & \(0 \leqq X \leqq 10\) & 1/3 & 2/3 \\
\hline & & \(10<X \leq 20\) & 2/3 & 2/3 \\
\hline & \multirow[b]{2}{*}{\(2 / 3<\mathrm{F}_{\mathrm{L}} \leqq 1\)} & \(0 \leqq X \leqq 10\) & 2/3 & 1 \\
\hline & & \(10<X \leq 20\) & 1 & 1 \\
\hline
\end{tabular}

Figure 1.2.8-5 FL Method for Assessment of Liquefaction Potential

\section*{(2) Three requirements to judge the need of liquefaction potential assessment}

For alluvial sandy layers which have all of the following three conditions, liquefaction potential assessment shall be conducted. The detail is illustrated in the following figure.
1) Saturated soil layers which have ground water level higher than 10 m below the ground surface and located at a depth less than 20 m below the ground surface.
2) Soil layers which contains fine content (FC) of \(35 \%\) or less, or soil layers which have plasticity index (Ip) less than 15 , even if FC is greater than \(35 \%\).
3) Soil layers which have mean particle size \(\left(\mathrm{D}_{50}\right)\) less than 10 mm and particle size at \(10 \%\) pass on the grading curve \(\left(\mathrm{D}_{10}\right)\) is less than 1 mm .



Figure 1.2.8-6 Three Requirements to Judge the Need of Liquefaction Potential

\section*{(3) Assessment liquefaction potential by "FL Method"}

Liquefaction potential is assessed with the following methodological process in the design example.

Step-2: Calculation of " \(\sigma_{\mathrm{v}}\) " \(\&^{\prime \prime} \sigma_{\mathrm{v}}\) ""
- Total overburden pressure \(\sigma_{\mathrm{v}}(\mathrm{kN} / \mathrm{m} 2)\); \(\sigma_{\nu}=\gamma_{t 1} * h_{W}+\gamma_{t 2} *\left(X-h_{W}\right)\)
- Effective overburden pressure \(\sigma_{\mathrm{v}}{ }^{\prime}(\mathrm{kN} / \mathrm{m} 2)\); \(\sigma_{v}^{\prime}=\sigma_{v}-u=\sigma_{v}-\gamma_{w}^{*} X\)
Where,
\(\gamma \mathrm{w}\) : unit weight of water \((\mathrm{kN} / \mathrm{m} 3) ; \gamma \mathrm{w}=10\)
hw: depth at water level (m)


Figure 1.2.8-7 Assessment Process of Liquefaction Potential by "FL Method"

\subsection*{1.2.8.11 Seismic Design Methodology of Pile Foundation BSDS (Article 5.4.3)}

\section*{(1) Modeling of Pile Foundation Structures}

As already explained in the analysis methodology section, foundation structures can be modeled by either of types in the following figure. Simplified model is applied in the design example.

Bqth models are applicable for foundation design; equivalent


Figure 1.2.8-8 Modeling for Foundation Design

\section*{(2) Coefficient of Subgrade Reaction, " \(K_{H}\) " for Foundation Design}

Coefficient of subgrade reaction, " \(\mathrm{K}_{\mathrm{H}}\) ", is defined with the following equation. The determination process of spring properties for foundation design is almost same as that for bridge analysis except that " \(\mathrm{E}_{\mathrm{D}}\) " should be replaced with " \(\alpha * \mathrm{E}_{0}\) " in the calculation formula of " \(\mathrm{K}_{\mathrm{H}}\) ".

Where,
\(\mathrm{K}_{\mathrm{H} 0}\) : reference value of the coefficient of subgrade reaction in horizontal direction (kN/m3);
\(K_{H 0}=\frac{\alpha^{*} E_{0}}{0.3}\) (for bridge analysis, \(K_{H 0}=\frac{E_{D}}{0.3}\) )
\(\alpha\) : coefficient for the estimation of subgrade reaction coefficient;
\(\alpha\left\{\begin{array}{l}=1 \text { (Normal state) } \\ =2 \text { (Under earthquake) }\end{array}\right.\)
\(\mathrm{E}_{0}\) : modulus of deformation (kN/m2); \(\mathrm{E}_{0}=2800 *(\mathrm{~N}\)-value \()\)


\section*{(3) Spring Properties of Foundation Structures}

Spring properties of pile foundation structures are determined with the following process.
\begin{tabular}{|c|l}
\hline Step-1: Assumption of " \(1 / \beta_{1}\) ". \\
Generally, \(4 * \mathrm{D}<\left(1 / \beta_{1}\right)<6 * \mathrm{D}\) \\
Where, D: diameter of a pile
\end{tabular}\(\longleftarrow\)\begin{tabular}{l} 
Ineed back) \\
Input \((1 / \beta)\) into \(\left(1 / \beta_{1}\right)\) until \((1 / \beta)\) becomes \\
equal to \(\left(1 / \beta_{1}\right)\).
\end{tabular}

Step-2: Calculation of " \(\mathrm{B}_{\mathrm{H}}\) " with " \(1 / \beta_{1}\) "
\(B_{H}=\sqrt{\frac{D}{\beta_{1}}}\)

Step-3: Calculation of " \(K_{H}\) "
\(K_{H}=K_{H 0}\left(\frac{B_{H}}{0.3}\right)^{-3 / 4}\)
Where,
\(K_{H 0}=\frac{\left(\alpha * E_{0}\right)_{\beta}}{0.3}\)
\(\left(\alpha^{*} E_{0}\right)_{\beta}\), average value of dynamic modulus of ground deformation within " \(1 / \beta\) " range


Step-4: Calculation of " \(\beta\) "
\(\beta=\sqrt[4]{\frac{K_{H}{ }^{*} D}{4 * E *}} \Rightarrow \begin{aligned} & \text { Compare value of }(1 / \beta) \\ & \text { with that of }\left(1 / \beta_{1}\right) . \\ & \text { Where }\end{aligned}\) Where
E: Young's modulus of concrete piles ( \(\mathrm{kN} / \mathrm{m} 2\) )
I: moment of inertia of a pile (m4)
If \((1 / \beta)\) becomes equal to \(\left(1 / \beta_{1}\right)\),


Step-5: Calculation of "K1, K2, K3, K4"
(Spring property of a pile)
\(\mathrm{K} 1=4^{*} \mathrm{E}^{*} \mathrm{I}^{*} \beta^{3}(\mathrm{kN} / \mathrm{m})\)
\(\mathrm{K} 2=\mathrm{K} 3=2^{*} \mathrm{E}^{*} \mathrm{I}^{2} \beta^{2}(\mathrm{kN} / \mathrm{rad})\)
\(\mathrm{K} 4=2^{*} \mathrm{E}^{*} \mathrm{I}^{*} \beta\left(\mathrm{kN}{ }^{*} \mathrm{~m} / \mathrm{rad}\right)\)
\(\mathrm{Kv}=\mathrm{a}^{*} \mathrm{Ap}^{*} \mathrm{E} / \mathrm{L}(\mathrm{kN} / \mathrm{m})\)

Under the condition with "no battered pile"
Step-6: Calculation of " \(\beta\) "
(Spring property of entire pile foundation)
For pile foundation


Where, n: number of piles

Figure 1.2.8-9 Determination Process of Spring Property of Pile Foundation

\section*{(4) Reaction Force and Displacement of Each Pile}

Reaction force and displacement of each pile can be obtained with the following procedure.
[The relationship among displacements, foundation stiffness and design forces]
\begin{tabular}{|l|}
\hline Axx* \(\delta x+\) Axy* \(\delta y+\) Axa* \(\alpha=\) Vd \\
Ayx* \(\delta x+\) Ayy* \(\delta y+A y a * \alpha=N d\) \\
Aax* \(\delta x+\) Aay* \(\delta y+\) Aaa* \(\alpha=\mathrm{Md}\) \\
\\
{\([\) Unknown parameters \(]\)} \\
\(\delta x:\) lateral displacement (m) \\
\(\delta y:\) vertical displacement (m) \\
\(\alpha:\) rotational angle (degrees) \\
\hline
\end{tabular}



Nd: vertical force (kN)
The solution of the above equations
Step-1: calculation of "displacement and rotation" of footing \(\delta_{x}=\frac{V_{d} * A_{a a}-M_{d} * A_{x a}}{A_{x x} * A_{a a}-A_{x a} * A_{a x}}\) : lateral displacement at the origin "O" (m) \(\delta_{y}=\frac{N_{d}}{A_{y y}}:\) vertical displacement at the origin " O " (m) \(\alpha=\frac{-V_{d} * A_{a x}+M_{d} * A_{x x}}{A_{x x} * A_{a a}-A_{x a} * A_{a x}}:\) rotational angle of the footing (degrees)


Step-2: calculation of "reaction force and displacement" at each pile head
Pni \(=\mathrm{Kv}^{*}\left(\delta \mathrm{y}+\alpha^{*} \mathrm{Xi}\right)\) : axial force acting on "pile head in i-th row" \((\mathrm{kN})\)
Phi \(=\mathrm{K} 1 * \delta \mathrm{x}-\mathrm{K} 2 * \alpha\) : horizontal force acting on "pile head in i-th row" \((\mathrm{kN})\)
\(\mathrm{Mti}=-\mathrm{K} 3 * \delta \mathrm{x}+\mathrm{K} 4 * \alpha\) : bending moment acting on "pile head in i-th row" (kN*m)

Step-3: graphing of "reaction force and displacement" of each pile
1) Rigid-pile-head connection \(y=\frac{P_{h i}}{2 * E * I * \beta^{3}} e^{-\beta^{*} X}\left\{\left(1+\beta^{*} h_{0}\right) * \cos \left(\beta^{*} X\right)-\beta^{*} h_{0} * \sin \left(\beta^{*} X\right)\right\}\)
: horizontal displacement of single pile (m)
\(M=\frac{-P_{h i}}{\beta} e^{-\beta^{*} X}\left\{\beta^{*} h_{0} * \cos \left(\beta^{*} X\right)-\left(1+\beta^{*} h_{0}\right) * \sin \left(\beta^{*} X\right)\right\}\)
: bending moment of single pile \(\left(\mathrm{kN}^{*} \mathrm{~m}\right)\)
\(S=-P_{h i} * e^{-\beta^{*} X}\left\{\cos \left(\beta^{*} X\right)-\left(1+2 * \beta^{*} h_{0}\right) * \sin (\beta * X)\right\}\)
: shear force of single pile (kN)
2) Hinge-pile-head connection \(M=\frac{P_{h i}}{\beta} e^{-\beta^{*} X} \sin \left(\beta^{*} X\right):\) bending moment of a pile \(\left(\mathrm{kN}^{*} \mathrm{~m}\right)\)


Figure 1.2.8-10 Reaction Force and Displacement of Each Pile

The detail of graphing of "reaction force and displacement" of each pile is illustrated below.


Maximum moment under the ground (rigid-pile-head connection)

Maximum moment under the ground
(hinge-pile-head connection)
\(M_{\text {max }}=\frac{-P_{h i}}{\beta} e^{-\beta^{*} l m} * \sin \left(\beta^{*} X\right)\)
\(l_{m}=\frac{\pi}{4 * \beta}\)
\(h_{0}=M_{t} / P_{h i}\)
: converted pile projection length (m)
Figure 1.2.8-11 Reaction Force and Displacement of Each Pile

\section*{(5) Verification of Reaction Force and Displacement of Each Pile}

In the design of pile foundation, the following four items shall be verified.
1) Verification of Horizontal Displacement

The horizontal displacement at the pile head, \(\delta x\), should be limited within 15 to less than 20 mm ; \(\delta x \leqq 15\) to less than \(20(\mathrm{~mm})\)


Figure 1.2.8-12 Verification of Horizontal Displacement

\section*{2) Verification of Bearing Capacity and Capacity against Axial Pull-out Force}

The bearing capacity and capacity against axial pull-out force shall be verified with the following equations.
- verification of bearing capacity
\[
\left(P_{n i}\right)_{\max }<R_{R}
\]
- verification of capacity against axial pull-out force
\(\left(P_{n i}\right)_{\min }<P_{R}\)


Figure 1.2.8-13 Bearing Capacity and Capacity against Axial Pull-out Force
Where,
[Bering capacity]
\(\left(\mathrm{P}_{\mathrm{n}}\right)_{\text {max }}\) : maximum axial load at the pile head ( kN )
\(\mathrm{R}_{\mathrm{R}}\) : bearing capacity against axial force of single pile \((\mathrm{kN})\); \(\mathrm{R}_{\mathrm{R}}=\gamma^{*}(\phi * \mathrm{Rn}-\mathrm{Ws})+\mathrm{Ws}-\mathrm{W}\)
\(\gamma\) : modification coefficient depending on nominal bearing resistance estimation method; \(\gamma=1.0\)
\(\phi\) : resistance factor for bearing capacity under extreme event limit state; \(\phi=0.65\)
Rn: nominal resistance of pile (kN); Rn= qd*A+U* \(\sum \mathrm{li}\) *fi*DE
qd: ultimate end bearing capacity intensity ( \(\mathrm{kN} / \mathrm{m} 2\) )
A: sectional area of a pile (m2); \(\mathrm{A}=\left(\pi^{*} \mathrm{D}^{2}\right) / 4\)
D: pile diameter (m)
U : perimeter of the pile (m); \(\mathrm{U}=\pi^{*} \mathrm{D}\)
li: thickness of i-th layer considered for the bearing capacity (m)
fi: skin friction of i-th layer ( \(\mathrm{kN} / \mathrm{m} 2\) )
DE: reduction factor of i-th layer's soil parameters considering liquefaction effects
Ws: weight of soil inside the pile (kN)
W: effective weight of the pile and soil inside it; \(\mathrm{W}=(\gamma \mathrm{c}-\gamma \mathrm{w}) * \mathrm{~A}\) *
[Capacity against axial pull-out force]
\(\left(\mathrm{P}_{\mathrm{n}}\right)_{\text {min }}\) : maximum axial pull-out force at the pile head (kN)
\(\mathrm{P}_{\mathrm{R}}\) : factored axial pull-out resistance of single pile (kN); \(\mathrm{P}_{\mathrm{R}}=-\phi * \mathrm{Pn}+\mathrm{W}\)
\(\phi\) : resistance factor for Capacity against axial pull-out force under extreme event limit state; \(\phi=0.50\)
Pn: nominal axial pull-out resistance of single pile (kN); Pn= \(\mathrm{U}^{*} \sum \mathrm{li}{ }^{*} \mathrm{fi} * \mathrm{DE}\)

\section*{3) Verification of Flexural Capacity LRFD (Section 5)}

Both "bending moment at the pile head" and "bending moment of pile under the ground" shall be limited to less than or equal to the flexural of piles, \(0.9^{*} \mathrm{Mn}\);
\(\operatorname{Max}\left(\mathrm{Mt}, \mathrm{M}_{\max }\right) \leqq 0.9^{*} \mathrm{Mn}(\mathrm{kN} * \mathrm{~m})\)


Figure 1.2.8-14Verification of Flexural Resistance of Single Pile

\section*{4) Verification of Shear Force LRFD (Section 5)}

Shear force at the pile head shall be limited to less than or equal to shear resistance of piles, "Vr". The shear resistance is determined with the following process (see "column resistance" for the detail).

Step-1: calculation of "Vn"
- Vn= Vc+Vs (kN)

Where,
Vn: nominal shear resistance ( kN )
Vc: shear strength developed by concrete ( kN );
\[
\begin{aligned}
\mathrm{Vc} & =0.083 * \beta^{*}\left(\mathrm{f}^{\prime} \mathrm{c}^{\prime}\right)^{0.5} * \mathrm{bv} * \mathrm{dv} \\
& =0 \text { (to be on the conservative side) }
\end{aligned}
\]

Vs: shear strength developed by rebars (kN);
\[
\mathrm{Vs}=(\mathrm{Av} * \mathrm{fy} * \mathrm{dv} * \cot \theta) / \mathrm{s}
\]
\[
\begin{aligned}
& \text { Step-2: determination of "Vr" } \\
& \text { - Vu: shear resistance of columns (kN); } \\
& \quad \mathrm{Vr}=0.9^{*} \mathrm{Vn} \\
& \hline
\end{aligned}
\]

Figure 1.2.8-15 Determination Process of Shear Resistance of Single Pile

\section*{5) Requirement for Minimum Reinforcement Verification LRFD (Section 5)}

The following two equations are applied for the minimum reinforcement verification of longitudinal and transverse reinforcement.
[Verification formula for minimum required longitudinal reinforcement]
- Within confinement length (potential plastic hinging region)
\(\rho_{s} \geq 0.0075\) (for "seismic zone \(3 \& 4\) ")
Note: confinement length extends from the underside of the pile cap over a length of not less than 2.0 pile diameters or 0.6 (m).
Where,
\(\rho_{\mathrm{s}}\) : ratio of longitudinal reinforcement to gross area of concrete section; \(\rho_{\mathrm{s}}=\mathrm{Aa} / \mathrm{Ag}\)
Aa : total area of longitudinal reinforcement (m2); Aa=As*n
As: cross-sectional area of single longitudinal reinforcement bar (m2)
n : number of longitudinal reinforcement bar
Ag: gross area of concrete section (m2)
- Below confinement length
\(\rho_{s} \geq 0.005\)
Note: longitudinal reinforcement shall be provided in the upper end of the pile for 2.5 (m) with a minimum steel ratio of 0.005 provided by at least four bars.
[Verification formula for minimum required transverse reinforcement]
\(\rho_{s} \geq 0.12 * \frac{f_{c}^{\prime}}{f_{y h}}\)
Where,
\(\rho_{\mathrm{s}}\) : ratio of transverse reinforcement to total volume of concrete core
fc': specified concrete strength at 28 days ( \(\mathrm{N} / \mathrm{mm} 2\) )
fyh: yield strength of transverse reinforcement ( \(\mathrm{N} / \mathrm{mm} 2\) )

\section*{2. Seismic Design Example of A Pier (Simply-supported Bridge)}

\subsection*{2.1 Outline of the Design}

Seismic design of a pier is conducted based on 'Force-based Design Method' with liquefiable ground condition. From the next page, overall design and calculation of the pier is explained along with the following process.


Figure 2.1-1 Outline of Seismic Design of a Pier

\subsection*{2.2 Design Conditions}

\subsection*{2.2.1 Structural Conditions}

Structural conditions for the design are as follows.
- Bridge type: simply-supported composite steel I-shaped girder bridge
- Span length: 30.0 (m)
- Total road width: 10.5 (m)
- Skew angle: 90 degrees (non-skewed straight bridge)
- Pier type: single circular column
- Pier height: 11.9 (m) (column height: 10.0 (m))
- Foundation type: cast-in-place pile foundation
- Centroid of the superstructure: 2.0 m from the column top

Bridge Profile


\section*{Cross-section}


Figure 2.2.1-1 Bridge Profile and Superstructure Cross-section

\subsection*{2.2.2 Load Condition}

\section*{(1) Reaction Force}

Reaction forces for the design are as follows.
- Reaction force caused by "dead load": Rd= 2900 (kN/pier)
- Reaction force caused by "live load": Rl= 1800 (kN/pier)

Reaction force caused by dead load of the superstructure is determined by the following calculation.
- Bridge type: simply-supported I-shaped steel girder bridge
- Span length: \(\quad \mathrm{L}=30.0 \quad(\mathrm{~m})\)
- Total road width \(\quad \mathrm{W}=10.5 \quad(\mathrm{~m})\)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Superstructure } & \multicolumn{2}{|c|}{ Unit load, \(\mathrm{q} /\)} & \multicolumn{2}{c|}{ Length, \(l\)} & Member & \multicolumn{2}{c|}{ No. of } & Line load, \\
\hline Railing & 0.6 & \(\mathrm{kN} / \mathrm{m}\) & - & num & & & 2 & nos & 1.2 \\
\hline Ashalt Pavement & 22.5 & \(\mathrm{kN} / \mathrm{m} 3\) & 10.5 & m & 0.10 & m & 1 & nos & 23.6 \\
\hline Deck Slub & 24.0 & \(\mathrm{kN} / \mathrm{m} 3\) & 10.5 & m & 0.21 & m & 1 & nos & 52.9 \\
\hline Steel Members & 170 & \(\mathrm{~kg} / \mathrm{m} 2\) & 10.5 & m & & & 1 & nos & 17.9 \\
\hline
\end{tabular}

Total load at the pier \(=\) qt*L \(=2900(\mathrm{kN})\); rounded up for modification
Reaction force, \(\mathrm{Rd}=\mathrm{qt}{ }^{*} \mathrm{~L} / 2=1450(\mathrm{kN})\)
Note: Rd=(Total load)/(No. of bearig lines at the pier)

Unit weight of the superstructure is assumed with the following graph.
Steel weight per unit area (kg/m2)


Source: Guideline for Basic Planning of Steel Superstructures (Japan Bridge Association)
Figure 2.2.2-1 Relationship between Steel Weight of Composite Steel I-shaped Girder Per Unit Area and Bridge Span Length

The image of dead load condition is illustrated below.


Figure 2.2.2-2 Image of Load Condition

\section*{(2) Dead Load of the Pier}

The dead loads of each pier component are calculated as follows.
1) Coping
\[
\begin{aligned}
\mathrm{W} 1 & =(1.0+2.0) * 3.25 / 2 * 1.9 * 2 * 24.0 \\
& =437.8(\mathrm{kN})
\end{aligned}
\]
2) Column
\[
\begin{aligned}
\mathrm{W} 2 & =3.14 *(2.1 / 2)^{2} * 10.0 * 24.0 \\
& =831.0(\mathrm{kN})
\end{aligned}
\]
3) Coping + Column
\[
\begin{aligned}
\mathrm{Wp} & =\mathrm{W} 1+\mathrm{W} 2 \\
& =831.0+437.8 \\
& =1269.0(\mathrm{kN}) ; \text { rounded up }
\end{aligned}
\]
4) Footing
\(\mathrm{Wf}=4.5^{*} 7.0^{*} 1.9 * 24.0\)
\(=1436.0(\mathrm{kN})\)


Figure 2.2.2-3 Dimension of the Pier

\section*{1) Ground Condition (Liquefiable Ground Condition: Pile Foundation)}

In order to explain the design process of pile foundation at the liquefiable site, the ground condition of Lambingan Bridge is chosen.
\(1 \alpha=4, E 0=2800^{*} N\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Layer symbol} & \multirow[t]{3}{*}{\begin{tabular}{l}
Layer Thickness \\
(m)
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[b]{4}{*}{\[
\left\{\right.
\]}} & \multicolumn{7}{|c|}{Soil Parameters} & \multicolumn{2}{|l|}{} \\
\hline & & & & \multicolumn{2}{|l|}{N -value} & \(\gamma \mathrm{t}\) & FC & D50 & C & \(\phi\) & \(\dot{\alpha}^{*}\) Eo & Vsn \\
\hline & & & & Blows & Ave. & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & (\%) & (mm) & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & ( \({ }^{\circ}\) ) & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & (m/sec) \\
\hline Bs & 1 & & & 12 & 12 & 17 & 0.9 & 0.74 & 0 & 35 & 8,400 & 183 \\
\hline \multirow{5}{*}{As} & \multirow{5}{*}{5} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{}} & 7 & \multirow{5}{*}{11} & 17 & 17.3 & 0.14 & \multirow{5}{*}{0} & \multirow{5}{*}{34} & \multirow{5}{*}{7,700} & \multirow{5}{*}{178} \\
\hline & & & & 6 & & 17 & 28.0 & 0.12 & & & & \\
\hline & & & & 8 & & 17 & 12.0 & 0.21 & & & & \\
\hline & & & & 15 & & 17 & 7.3 & 0.42 & & & & \\
\hline & & & & 21 & & 17 & 7.3 & 0.20 & & & & \\
\hline \multirow{4}{*}{Ac} & \multirow{4}{*}{4} & \multicolumn{2}{|r|}{\multirow[t]{4}{*}{}} & 7 & \multirow{4}{*}{7} & 15 & 58.1 & - & \multirow{4}{*}{44} & \multirow{4}{*}{0} & \multirow{4}{*}{4,900} & \multirow{4}{*}{191} \\
\hline & & & & 9 & & 15 & 77.1 & - & & & & \\
\hline & & & & 6 & & 15 & 66.9 & - & & & & \\
\hline & & & & 8 & & 15 & 51.0 & - & & & & \\
\hline WGF & 1 & 10 &  & 28 & 28 & 17 & 0.2 & 2.38 & - & 37 & 19,600 & 292 \\
\hline \multirow{10}{*}{GF} & \multirow{10}{*}{10} & \multirow{10}{*}{15
20} & \multirow[t]{10}{*}{Bearing layer} & 50 & \multirow{10}{*}{50} & 21 & 0.5 & 0.60 & \multirow{10}{*}{173} & \multirow{10}{*}{21} & \multirow{10}{*}{39,530} & \multirow{10}{*}{292} \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c} 
Layer \\
Symbol
\end{tabular} & \multicolumn{1}{|c|}{ Soil characteristics } \\
\hline Bs & Medium sand; brown colored; and with broken shell fragments \\
\hline As & Silty fine sand; soft or loose; relatively high water content; and mostly gray colored \\
\hline Ac & Sandy clay or clayey sand; dark-gray colored; and moderate water content \\
\hline WGF & Weathered rock; strongly weathered (probably tuff); gray colored; and sand-like \\
\hline \multirow{3}{*}{ GF } & \begin{tabular}{l} 
Tuff breccia, tuffs, and tuffaceous sandstones; brownish-gray colored; 11 m \(17 \mathrm{~m}:\) \\
strongly weathered portion; and below 17 m: fresh and/or welded portion
\end{tabular} \\
\cline { 2 - 3 } \begin{tabular}{l} 
Fine sand; with broken shell fragments; including fines and gravel; and dark-gray or \\
brownish-gray colored
\end{tabular} \\
\cline { 2 - 3 } & No core recovered; and probably fine sand \\
\cline { 2 - 3 } & Strongly welded tuff; and black colored \\
\hline
\end{tabular}

Figure 2.2.2-4 Ground Condition for Pile Foundation Design

Soil type of the ground is classified as "Type-II" as shown below.
Table 2.2.2-1 Result of Soil Classification
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Layer} & Layer thickness & N -value & \[
\begin{gathered}
\text { Vsi } \\
(\mathrm{m} / \mathrm{s})
\end{gathered}
\] & \begin{tabular}{l}
Hi/Vsi \\
(s)
\end{tabular} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Criteria for the classification}} \\
\hline Bs & Sand & 1.0 & 12 & 183 & 0.005 & & \\
\hline As & Sand & 5.0 & 11 & 178 & 0.028 & & \\
\hline Ac & Cray & 4.0 & 7 & 191 & 0.021 & Soil type & Definition \\
\hline WGF & Rock & 1.0 & 28 & 292 & 0.003 & Type-I & \(\mathrm{T}_{\mathrm{G}}<0.2\) \\
\hline \multicolumn{5}{|c|}{\(\mathrm{T}_{\mathrm{G}}=4 * \Sigma(\mathrm{H} / \mathrm{Vs})\)} & 0.232 & Type-II & \(0.2 \leq \mathrm{T}_{\mathrm{G}}<0.6\) \\
\hline & & \multicolumn{3}{|c|}{Soil Type} & Type-II & Type-III & \(0.6 \leq \mathrm{T}_{\mathrm{G}}\) \\
\hline
\end{tabular}

Where,
\(\mathrm{T}_{\mathrm{G}}\) : characteristic value of ground (s); \(T_{G}=4 \sum_{i=1}^{n} \frac{H_{i}}{V_{s i}}\)
Hi: i-th layer thickness (m)
Vsi: average shear elastic wave velocity of the i-th layer ( \(\mathrm{km} / \mathrm{s}\) );
\[
V_{s i} \begin{cases}=100 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 25\right) & \text { (for cohesive soil layer) } \\ =80 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 50\right) & \text { (for sandy soil layer) }\end{cases}
\]

\subsection*{2.2.3 Design Acceleration Response Spectra}

The design acceleration spectra is formed as follows, corresponds to the site condition of Lambingan Bridge.
[Step-1: Identification of specific values of acceleration coefficients on the maps]


Figure 2.2.3-1 Identification of Values of Acceleration Coefficients on the Maps
[Step-2: Identification of specific values of site factors]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{6}{|c|}{(1) Fpga (site factor for PGA)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { PGA } \\
& (\mathrm{T}=0) \\
& \hline
\end{aligned}
\]}} & PGA< & PGA= & PGA= & PGA= & PGA= & PGA \(\geq\) \\
\hline & & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.80 \\
\hline \multirow[b]{3}{*}{Soil type} & I & 1.2 & 1.2 & 1.1 & 1.0 & 1.0 & 1.0 \\
\hline & II & 1.6 & 1.4 & 1.2 & 1.0 & 0.9 & -0:85-* \\
\hline & III & 2.5 & 1.7 & 1.2 & 0.9 & 0.8 & 0.75 \\
\hline
\end{tabular}
[Linear interpolation of Fpga]
\[
\begin{aligned}
\mathrm{F}_{\mathrm{pga}} & =1.0+(0.9-1.0) /(0.50-0.40) *(0.46-0.40) \\
& =0.94 \sqrt{(0.4,1.0)} \underset{\substack{(0.5-0.4}}{\substack{(0.46,0.94)}}(0.5,0.9)
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{(2)} & \multicolumn{3}{|l|}{Fa (site factor for Ss)} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{c|}
\hline \mathrm{Ss} \\
(\mathrm{~T}=0.2)
\end{array}
\]}} & Ss< & Ss= & Ss= & Ss= & Ss= & Ss \(\geq\) \\
\hline & & 0.25 & 0.50 & 0.75 & 1.00 & 1.25 & 2.0 \\
\hline \multirow[t]{3}{*}{Soil type} & I & 1.2 & 1.2 & 1.1 & 1.0 & 1.0 & 1.0 \\
\hline & II & 1.6 & 1.4 & 1.2 & 1.0 & 0.9 & -0:85- \\
\hline & III & 2.5 & 1.7 & 1.2 & 0.9 & 0.8 & 0.75 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ (3) Fv (site factor for \(\mathrm{S}_{1}\) ) } \\
\hline \multicolumn{2}{|c|}{\(\mathrm{S}_{1}\)} & \(\mathrm{~S}_{1}<\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1}=\) & \(\mathrm{S}_{1} \geq\) \\
(T=1.0) & 0.10 & 0.20 & 0.30 & 0.40 & 0.50 & 0.80 \\
\hline \multirow{2}{*}{ Soil } & I & 1.7 & 1.6 & 1.5 & 1.4 & 1.4 & 1.4 \\
\cline { 2 - 8 } type & II & 2.4 & 2.0 & 1.8 & 1.6 & \(\cdots \cdot 1: 5 \cdots\) & \(\cdots \cdot 1: 5 \cdots\) \\
\cline { 2 - 8 } & III & 3.5 & 3.2 & 2.8 & 2.4 & 2.4 & 2.0 \\
\hline
\end{tabular}

Figure 2.2.3-2 Calculation of Site Factors
[Step-3: Calculate and plot the coordinates of the following points in the graph.]
\[
\left(0, \mathrm{Fpga}^{*} \mathrm{PGA}\right),\left(0.2 * \mathrm{Ts}, \mathrm{Fa}^{*} \mathrm{Ss}\right),\left(0.2, \mathrm{Fa}^{*} \mathrm{Ss}\right),\left(\mathrm{S}_{\mathrm{D} 1} / \mathrm{S}_{\mathrm{DS}}, \mathrm{Fa} * \mathrm{Ss}\right),\left(1.0, \mathrm{Fv}^{*} \mathrm{~S}_{1}\right)
\]
[Step-4: Form spectra by connecting the plotted points ( \(\mathrm{Csm}=\mathrm{S}_{\mathrm{D} 1} / \mathrm{T}\), if "Ts<T")]


Figure 2.2.3-3 Acceleration response Spectra (Lambingan Br., Soil Type-II)

\subsection*{2.2.4 Confirmation of Seismic Performance Zone}

As shown in the following figure, the target bridge is categorized as "Seismic Zone 4 (SZ-4)" with the value of \(\mathrm{S}_{\mathrm{D} 1}, 0.64\). In accordance with the following classification result, "multimode elastic method (MM)" shall be applied for multispan bridges whose importance is categorized as "Essential". However, in the design example, "uniform load elastic method (UL)" is applied for simplification of analysis. All the other design requirements for SZ-4 are followed in the design.


Figure 2.2.4-1 Seismic Performance Zone and Minimum Analysis Requirements

\subsection*{2.2.5 Confirmation of Response Modification Factors}

As for R -factor, \(\mathrm{R}=2.0\) is applied to design of single column in accordance with the requirement for "Essential Bridge" shown in the following table.

Table 2.2.5-1 Response Modification Factors for Substructures
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{\multicolumn{1}{|c|}{ Substructure }} & \multicolumn{3}{c|}{ Operational Category } \\
\cline { 2 - 4 } & Critical & Essential & Others \\
\hline Wall-type piers - larger dimension & 1.5 & 1.5 & 2.0 \\
\hline Reinforced concrete pile bents & & & \\
- Vertical piles only & 1.5 & 2.0 & 3.0 \\
- With batter piles & 1.5 & 1.5 & 2.0 \\
\hline Single columns & 1.5 & 2.0 & 3.0 \\
\hline Steel or composite steel and concrete pile bents & & & \\
- Vertical piles only & 1.5 & 3.5 & 5.0 \\
- With batter piles & 1.5 & 2.0 & 3.0 \\
\hline Multiple column bents & 1.5 & 3.5 & 5.0 \\
\hline
\end{tabular}

\subsection*{2.2.6 Assessment of Liquefaction Potential}

Out of the layers of the site ground, only layer "As" satisfies the following three requirements for liquefaction potential assessment.
1) soil layer which classified into alluvial sand
2) soil layer which contains fine content (FC) less than \(35 \%\)
3) soli layer which has mean particle size ( \(\mathrm{D}_{50}\) ) less than 10 mm and particle size at \(10 \%\) pass on the grading curve \(\left(\mathrm{D}_{10}\right)\) is less than 1 mm



Figure 2.2.6-1 Confirmation for Necessity of Liquefaction Potential Assessment

The liquefaction potential of layer "As" is assessed with the following four steps.
[Step-1. Determination of design parameters]
- As = Fpga*PGA \(=0.44\) (g): acceleration coefficient
- Water level: -1.5 (m) from the ground surface
- Soil parameters of layer "As"
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Depth } \\
& \text { X (m) }
\end{aligned}
\] & Layer symbol & N -value & \[
\begin{gathered}
\gamma \mathrm{t} 2 \\
(\mathrm{kN} / \mathrm{m} 3)
\end{gathered}
\] & \[
\begin{gathered}
\text { D50 } \\
(\mathrm{mm})
\end{gathered}
\] & FC (\%) \\
\hline 0.00 & Bs & & & & \\
\hline 1.00 & \multirow{6}{*}{As} & 12 & 18.0 & 0.74 & 0.9 \\
\hline 2.00 & & 7 & 18.0 & 0.14 & 17.3 \\
\hline 3.00 & & 6 & 18.0 & 0.12 & 28.0 \\
\hline 4.00 & & 8 & 18.0 & 0.21 & 12.0 \\
\hline 5.00 & & 15 & 18.0 & 0.42 & 7.3 \\
\hline 6.00 & & 21 & 18.0 & 0.20 & 7.3 \\
\hline
\end{tabular}


Where,
\(\gamma \mathrm{t} 2\) : unit weight of soil below water level ( \(\mathrm{kN} / \mathrm{m} 3\) );
\(\gamma \mathrm{t} 2=\gamma \mathrm{t}+1\)
\(\gamma \mathrm{t} 1\) : unit weight of soil above water level \((\mathrm{kN} / \mathrm{m} 3)\)
\(\mathrm{D}_{50}\) : mean particle size (mm)
FC: fine content (\%)
N -value (SPT result)
[Step-2. Calculation of " \(\sigma_{v} \& \sigma_{v}{ }^{\prime}\) "]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Depth } \\
& \text { X (m) }
\end{aligned}
\] & Layer symbol & N -value & \[
\begin{gathered}
\gamma \mathrm{t} 2 \\
(\mathrm{kN} / \mathrm{m} 3)
\end{gathered}
\] & \[
\begin{gathered}
\gamma \mathrm{t} 1=\gamma \mathrm{t} 2-1 \\
(\mathrm{kN} / \mathrm{m} 3)
\end{gathered}
\] & ov (kN/m2) & \[
\begin{gathered}
\sigma v^{\prime} \\
(\mathrm{kN} / \mathrm{m} 2)
\end{gathered}
\] \\
\hline 0.00 & Bs & & & & 0.0 & 0.0 \\
\hline 1.00 & \multirow{6}{*}{As} & 12 & 18.0 & 17.0 & 17.0 & 17.0 \\
\hline 2.00 & & 7 & 18.0 & 17.0 & 34.5 & 29.5 \\
\hline 3.00 & & 6 & 18.0 & 17.0 & 52.5 & 37.5 \\
\hline 4.00 & & 8 & 18.0 & 17.0 & 70.5 & 45.5 \\
\hline 5.00 & & 15 & 18.0 & 17.0 & 88.5 & 53.5 \\
\hline 6.00 & & 21 & 18.0 & 17.0 & 106.5 & 61.54 \\
\hline
\end{tabular}

Where,
\(\sigma_{\mathrm{v}}\) : total overburden pressure ( \(\mathrm{kN} / \mathrm{m} 2\) );
\[
\sigma_{v}=\gamma_{t 1} * h_{W}+\gamma_{t 2} *\left(X-h_{W}\right)
\]
\(\sigma_{\mathrm{v}}{ }^{\prime}\) : effective overburden pressure ( \(\mathrm{kN} / \mathrm{m} 2\) );
\[
\sigma_{v}{ }^{\prime}=\sigma_{v}-u=\sigma_{v}-\gamma_{w} * X
\]
\(\gamma_{\mathrm{w}}\) : unit weight of water \((\mathrm{kN} / \mathrm{m} 3)\); \(\gamma_{\mathrm{w}}=10\)
\(h_{w}\) : depth at water level (m); \(h_{w}=1.5\)

[Step-3. Calculation of "Na"]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Depth } \\
& \text { X (m) }
\end{aligned}
\] & Layer symbol & N -value & \[
\begin{aligned}
& \text { D50 } \\
& (\mathrm{mm})
\end{aligned}
\] & FC (\%) & \[
\begin{gathered}
\sigma v^{\prime} \\
(\mathrm{kN} / \mathrm{m} 2)
\end{gathered}
\] & N1 & C1 & C2 & Na \\
\hline 0.00 & Bs & & & & 0.0 & & & & \\
\hline 1.00 & \multirow{6}{*}{As} & 12 & 0.74 & 0.9 & 17.0 & 23.448 & 1.000 & 0.000 & 23.4 \\
\hline 2.00 & & 7 & 0.14 & 17.3 & 29.5 & 11.960 & 1.146 & 0.406 & 14.1 \\
\hline 3.00 & & 6 & 0.12 & 28.0 & 37.5 & 9.488 & 1.360 & 1.000 & 13.9 \\
\hline 4.00 & & 8 & 0.21 & 12.0 & 45.5 & 11.775 & 1.040 & 0.111 & 12.4 \\
\hline 5.00 & & 15 & 0.42 & 7.3 & 53.5 & 20.648 & 1.000 & 0.000 & 20.6 \\
\hline 6.00 & & 21 & 0.20 & 7.3 & 61.5 & 27.148 & 1.000 & 0.000 & 27.1 \\
\hline
\end{tabular}

Where,
Na : modified N -value considering grain size effect
- for sand layers
\[
N a=C 1 * N 1+C 2
\]

Where,
\[
\begin{aligned}
& \mathrm{N} 1=170 * \mathrm{~N} /\left(\sigma_{\mathrm{v}}{ }^{\prime}+70\right) \\
& \mathrm{C} 1= \begin{cases}1 & (0 \leqq \mathrm{FC}<10) \\
(\mathrm{FC}+40) / 50 & (10 \leqq \mathrm{FC}<60) \\
\mathrm{FC} / 20-1 & (60 \leqq \mathrm{FC})\end{cases} \\
& \mathrm{C} 2= \begin{cases}0 & (0 \leqq \mathrm{FC}<10) \\
(\mathrm{FC}-10) / 18 & (10 \leqq \mathrm{FC})\end{cases}
\end{aligned}
\]
- for gravel layers
\[
N a=\left\{1-0.36 \log _{10}\left(D_{50} / 2\right)\right\} N 1
\]

[Step-4. Calculation of " \(F_{L}\) "]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Depth } \\
& \text { X (m) }
\end{aligned}
\] & Layer symbol & \[
\begin{gathered}
\sigma \mathrm{V} \\
(\mathrm{kN} / \mathrm{m} 2)
\end{gathered}
\] & \[
\begin{gathered}
\sigma v^{\prime} \\
(\mathrm{kN} / \mathrm{m} 2)
\end{gathered}
\] & Na & R & L & \(\mathrm{F}_{\mathrm{L}}\) \\
\hline 0.00 & Bs & 0.0 & 0.0 & & & & \\
\hline 1.00 & \multirow{6}{*}{As} & 17.0 & 17.0 & 23.4 & & & \\
\hline 2.00 & & 34.5 & 29.5 & 14.1 & 0.254 & 0.499 & 0.509 \\
\hline 3.00 & & 52.5 & 37.5 & 13.9 & 0.252 & 0.588 & 0.429 \\
\hline 4.00 & & 70.5 & 45.5 & 12.4 & 0.238 & 0.641 & 0.371 \\
\hline 5.00 & & 88.5 & 53.5 & 20.6 & 0.315 & 0.673 & 0.469 \\
\hline 6.00 & & 106.5 & 61.5 & 27.1 & 0.526 & 0.693 & 0,758 \\
\hline
\end{tabular}

Where,
\(F_{L}=R / L\)
R: dynamic shear strength ratio (resistance);
\(R=\left\{\begin{array}{l}0.0882 \sqrt{N a / 1.7}(N a<14) \\ 0.0882 \sqrt{N a / 1.7}+1.6 * 10^{-6}(N a-14)^{4.5}(14 \leq N a)\end{array}\right.\)
L: seismic shear stress ratio (load);
\(L=(1-0.015 * X) * A s * \sigma_{v} / \sigma_{v}\)

\(X\) : depth from ground surface (m)
[Calculation Example]
\(\mathrm{At} \mathrm{X}=2.0(\mathrm{~m})\),
\(\mathrm{Na}=14.1>14\) then,
\(=0.0882 \sqrt{\mathrm{Na} / 1.7+1.6^{*} 10^{-6}}\)
\(=0.0882 \sqrt{14.1^{*} 1.7}+1.6^{*} 10^{-6}\)

\(=0.254\)
\(\mathrm{~L}=\left(1-0.015^{*} \mathrm{X}\right) * \mathrm{As}^{*} \sigma_{\mathrm{v}} / \sigma_{\mathrm{v}}\),

\(=(1-0.015 * 2.0) * 0.44 * 34.5 / 29.5\)

\(=0.499\)


Therefore,
\(\mathrm{F}_{\mathrm{L}}=\mathrm{R} / \mathrm{L}\)
\(=0.254 / 0.499\)
\(=0.509<1.0\) (Liquefiable)

\section*{[Step-4’. Determination of "DE"]}

As shown below, soil coefficient reduction factor, "DE", can be determined with the average value of " R " and " \(\mathrm{F}_{\mathrm{L}}\) ". "DE" is applied in pile foundation design in order to consider the reduction of soil parameters due to liquefaction effect.

Result of liquefaction potential assessment
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Depth } \\
& \text { X (m) }
\end{aligned}
\] & Layer symbol & R & \[
\begin{gathered}
\mathrm{R} \\
\text { (Ave.) }
\end{gathered}
\] & L & \(\mathrm{F}_{\mathrm{L}}\) & \begin{tabular}{l}
\[
\mathrm{F}_{\mathrm{L}}
\] \\
(Ave.)
\end{tabular} \\
\hline 0.00 & Bs & - & - & & - & \\
\hline 1.00 & \multirow{6}{*}{As} & - & - & & & \\
\hline 2.00 & & 0.254 & \multirow{5}{*}{0.317} & 0.499 & 0.509 & \multirow{5}{*}{0.507} \\
\hline 3.00 & & 0.252 & & 0.588 & 0.429 & \\
\hline 4.00 & & 0.238 & & 0.641 & 0.371 & \\
\hline 5.00 & & 0.315 & & 0.673 & 0.469 & \\
\hline 6.00 & & 0.526 & & 0.693 & 0.758 & \\
\hline \[
0 \leqq \vdots
\] & & & \[
\begin{gathered}
\vdots \\
0.3<\mathrm{R}
\end{gathered}
\] & & & \(\stackrel{\vdots}{\vdots}<\mathrm{F}_{\mathrm{L}} \leqq\) \\
\hline
\end{tabular}

Soil coefficient reduction factor "DE"
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\(\mathrm{F}_{\mathrm{L}}\)} & \multirow{2}{|c|}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{2}{|c|}{DE} \\
\cline { 3 - 4 } & & \(\mathrm{R} \leqq 0.3\) & \(0.3<\mathrm{R}\) \\
\hline \multirow{2}{*}{\(\mathrm{F}_{\mathrm{L}} \leqq 1 / 3\)} & \(0 \leqq \mathrm{X} \leqq 10\) & 0 & \(1 / 6\) \\
\cline { 2 - 4 } & \(10<\mathrm{X} \leqq 20\) & \(1 / 3\) & \(1 / 3\) \\
\hline \multirow{2}{*}{\(1 / 3<\mathrm{F}_{\mathrm{L}} \leqq 2 / 3\)} & \(0 \leqq \mathrm{X} \leqq 10\) & \(1 / 3\) & \(2 / 3\) \\
\cline { 2 - 4 } & \(10<\mathrm{X} \leqq 20\) & \(2 / 3\) & \(2 / 3\) \\
\hline \multirow{2}{*}{\(2 / 3<\mathrm{F}_{\mathrm{L}} \leqq 1\)} & \(0 \leqq \mathrm{XE}=2 / 3\) \\
\cline { 2 - 4 } & \(10<\mathrm{X} \leqq 20\) & \(2 / 3\) & 1 \\
\hline
\end{tabular}

Figure 2.2.6-2 Determination of Soil Coefficient Reduction Factor

The overall calculation of liquefaction potential assessment is summarized in the next page.
Table 2.2.6-1 Result of Liquefaction Potential Assessment (Ground Condition at Lambingan Br. Site) Depth (m) \(\quad \mathrm{N}\)-value


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Z & & & \(\checkmark\) & ¢ & \(\cdots\) & & & & & & & & & & \\
\hline ก & &  & On in &  & \(0^{2} 8\) & \({ }^{\circ}\) & & & & & & & & & \\
\hline Ј & & 8 & \% & O & \(0^{8} 8\) & - & & & & & & & & & \\
\hline \(\bar{z}\) & &  &  & \[
\underset{\sim g}{\circ}
\] & An &  & \[
0
\] &  & \[
\mathfrak{A l n}
\] &  &  &  &  & ? & An \\
\hline B & & & \[
\stackrel{n}{n g n}
\] & \[
\stackrel{n}{n} \mid
\] &  & \[
\stackrel{c}{c}
\] & \[
:
\] &  & \[
\mathfrak{s i n}
\] &  & Rn: & ? &  &  & ? \\
\hline B & & & \[
\stackrel{n}{n} \mathrm{~m}
\] &  & \[
\dot{B l n}
\] & An & An & \[
0
\] & An &  & NTh &  & \[
\underset{\sim}{e n}
\] &  & \[
\overbrace{n}^{2}
\] \\
\hline \[
\begin{aligned}
& \text { O} \\
& \vdots \\
& \hline
\end{aligned}
\] & & & \(\cdots\) & \(\mathrm{V}^{\circ} \mathrm{O}\) & \(\cdots\) &  & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline As=Fpga*PGA & 0.44 \\
\hline
\end{tabular}
\begin{tabular}{l|l|}
\hline Water Lv. & 1.50 (m)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 号会 & & & 2 & \(\mathrm{cic}^{\text {y }}\) & - & & & & & & & & \\
\hline  & & \(\bigcirc 0\) & 00 & 0 & 0 & & & & & & & & \\
\hline  & & & \[
0
\] & \[
\overbrace{0}^{\circ}
\] & \[
0
\] & \(\square\) &  & \[
\cdots
\] & \[
\stackrel{\rightharpoonup}{\mathrm{A}} \underset{\mathrm{i}}{\mathrm{~A}} \mathrm{~A}
\] &  &  &  & \(\cdots\) \\
\hline  & & &  &  &  & 2 &  &  &  &  &  &  &  \\
\hline & & & &  &  &  & &  &  & \[
8
\] &  & in & - \\
\hline  & & & 4 & 8 & & & 4 & \[
\left|\begin{array}{l}
1 \\
3 \\
3
\end{array}\right|
\] & & & \(\stackrel{4}{4}\) & & \\
\hline  & & &  &  &  &  &  &  &  & A &  &  &  \\
\hline
\end{tabular}


\subsection*{2.3 Initial Bridge Analysis and Substructure Design}

\subsection*{2.3.1 Recommended Design Procedure}

As the first step of seismic design, initial dimension of structures is recommended to be calculated as follows.


Figure 2.3.1-1 Recommended Design Procedure

\subsection*{2.3.2 Initial Bridge Analysis}

As initial bridge analysis, natural period of the bridge structure is calculated with the single degree of freedom method without modeling foundation spring. The detail of analysis is explained only for longitudinal direction which dominates of the substructure dimension.
Analysis methodology and analysis result are shown from the next page.


Figure 2.3.2-1 Single Degree of Freedom Method for Natural Period Acquisition
- Bridge analysis for longitudinal direction -
[Step-1. Calculation of deflection due to column bending, " \(\delta \mathrm{p}\) "]
\[
\begin{aligned}
\delta_{p} & =\frac{W u * h^{3}}{3 * E * I c}+\frac{0.8 * W_{p} * h_{p}^{3}}{8 * E * I c} \\
& =\frac{2900 * 10^{3}}{3 * 25000000 * 0.477}+\frac{0.8 * 1269 * 10^{3}}{8 * 25000000 * 0.477} \\
& =0.092(\mathrm{~m})
\end{aligned}
\]

Where,
H: seismic inertial force from the superstructure (kN); H=Wu*Csm= 2900*1.0= 2900
Wu: superstructure weight undertaken by the pier under EQ; Wu= 2900
Csm: seismic coefficient (g); Csm= 1.0
h: height from column base to application point of seismic inertial force from the superstructure (m);


E: concrete modulus of elasticity (kN/m2); \(\mathrm{E}=25000000\)
I : moment of inertia of the column (m4); \(\mathrm{I}=\pi^{*}(\mathrm{D} / 2)^{4} / 4=3.14^{*}(2.1 / 2)^{4} / 4=0.95\)
Ic: moment of inertia of cracked column section (m4); Ic \(=\mathrm{I} / 2=0.95 / 2=0.477\)


D: column diameter (m); \(\mathrm{D}=2.1\)
Wp: weight of pier coping and column (kN); Wp= 1269
hp: column height (m); hp= 10.0
[Step-2. Calculation of natural period]
\[
\begin{aligned}
T & =2.01 \sqrt{\delta} \\
& =2.01 \sqrt{0.092} \\
& =0.61(\mathrm{~s})
\end{aligned}
\]
[Step-3. Determination of design seismic coefficient]
Csm= 1.04 (g)


Figure 2.3.2-2 Design Seismic Coefficient for Longitudinal Direction

\subsection*{2.3.3 Initial Substructure Design}

Based on the initial bridge analysis, the following substructure shape is decided. Calculation detail of initial substructure design is skipped here to avoid the repetition of explanation of design process.


Figure 2.3.3-1 Initial Assumption of Pier Dimension

The bridge analysis with foundation spring is explained with the above substructure condition from the next page.

\subsection*{2.4 Bridge Analysis with Foundation Spring (Determination of Design Forces)}

\subsection*{2.4.1 Spring Properties of the Pile Foundation}
[Step-0. Preliminary calculation of design parameters]
Design parameters for pile foundation springs are summarized as follows.


Where,
\(\mathrm{E}_{\mathrm{D}}\) : dynamic modulus of ground deformation (kN/m2); \(E_{D}=2 *\left(1+v_{D}\right) * G_{D}\)
\(\mathrm{G}_{\mathrm{D}}\) : dynamic shear modulus of ground deformation \((\mathrm{kN} / \mathrm{m} 2)\); \(G_{D}=\frac{\gamma_{t}}{g} V_{S D}^{2}\)
\(v_{D}\) : dynamic Poisson's ratio of the ground ( 0.45 for soil above water, 0.5 for soil under water)
\(\gamma \mathrm{t}\) : unit weight of the ground \((\mathrm{kN} / \mathrm{m} 3)\)
g : acceleration of the gravity; \(\mathrm{g}=9.8(\mathrm{~ms} 2)\)
\(\mathrm{V}_{\mathrm{SD}}\) shear elastic wave velocity of the ground ( \(\mathrm{m} / \mathrm{s}\) ); \(V_{S D}=c_{v} * V_{s i}\)
\(\mathrm{c}_{\mathrm{v}}\) : modification factor based on degree of ground strain; \(\quad c_{v}\left\{\begin{array}{l}=0.8\left(V_{s i}<300 \mathrm{~m} / \mathrm{s}\right) \\ =1.0\left(V_{s i} \geq 300 \mathrm{~m} / \mathrm{s}\right)\end{array}\right.\)
Vsi: the average shear wave velocity of the i-th soil layer;
\[
V_{s i}\left[\begin{array}{l}
=100 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 25\right) \\
\text { (for cohehive soil layers) } \\
=80 N_{i}^{1 / 3}\left(1 \leq N_{i} \leq 50\right) \\
\text { (for sandy/cohesionless soil layers) }
\end{array}\right.
\]
[Step-1. Assumption of " \(1 / \beta\) " and initial calculation of " \(\mathrm{B}_{\mathrm{H}}\) "]
Typically, " \(1 / \beta\) " for bridge analyses is 3 times as large as the pile diameter. Therefore, the parameter " \(\beta\) " is initially assumed as " 3 "; \(\left(1 / \beta_{1}\right)=3.0\)
Then, equivalent loading width of foundation, " \(B_{H}\) ", is initially determined with the following equation.
\(\mathrm{B}_{\mathrm{H}}=\sqrt{\mathrm{D} / \beta 1}\)
\[
\begin{aligned}
& =\sqrt{1.0 * 3.0} \\
& =1.732(\mathrm{~m})
\end{aligned}
\]

Where,
D : pile diameter (m); \(\mathrm{D}=1.0\)
[Step-2. Initial calculation of " \(\mathrm{K}_{\mathrm{H}}\) "]
Coefficient of subgrade reaction, \(\mathrm{K}_{\mathrm{H}}\), is calculated as follows. In the calculation process, average value of " \(E_{D}\) " within " \(1 / \beta\) " range, " \(\left(E_{D}\right)_{\beta}\) ", should be applied, focusing on the effective range of " \(K_{H}\) " The image of relationship among parameters is illustrated in the following figure.


Figure 2.4.1-1 Coefficient of Subgrade Reaction, " \(\mathbf{K}_{\mathbf{H}}\) "
\[
\begin{aligned}
\left(E_{D}\right)_{\beta} & =\frac{\sum E_{D} i^{*} L i}{1 / \beta} \\
& =\Sigma\left(104934^{*} 3.0\right) / 3.0 \\
& =104934(\mathrm{kN} / \mathrm{m} 2)
\end{aligned} \quad \begin{array}{cc}
\text { In this case, only one layer within " } 1 / \beta \text { " range }
\end{array}
\]
\[
=(1 / 0.3) * 104934
\]
\[
=349780(\mathrm{kN} / \mathrm{m} 3)
\]

Therefore,
\(\mathrm{E}_{\mathrm{D}} \mathrm{i}\) : dynamic modulus of ground deformation of i-th layer (kN/m2)
Li: Thickness of i-th layer (m)
\[
\begin{aligned}
\mathrm{K}_{\mathrm{H}} & =\mathrm{K}_{\mathrm{H} 0} *\left(\mathrm{~B}_{\mathrm{H}} / 0.3\right)^{-3 / 4} \\
& =349780^{*}(1.732 / 0.3)^{-3 / 4} \\
& =93913(\mathrm{kN} / \mathrm{m} 3)
\end{aligned}
\]

\section*{[Step-3. Initial calculation of " \(\beta\) "]}

The pile specific parameter, " \(\beta\) ", is initially calculated as follows.
\[
\begin{aligned}
\beta & =\sqrt[4]{\frac{K_{H} * D}{4^{*} E^{*} I}} \\
& =\sqrt[4]{\frac{93913 * 1.0}{4^{* 25000000 * 0.049}}} \\
& =0.372\left(\mathrm{~m}^{-1}\right)
\end{aligned}
\]

Then,
\((1 / \beta)=1 / 0.372\)
\[
=2.688 \text { (m) }
\]

Where,
E: Young's modulus of elasticity; E=25000000 (kN/m2)
I: moment of inertia of a pile;
\[
\begin{aligned}
\mathrm{I} & =\pi^{*}(\mathrm{D} / 2)^{4} / 4 \\
& =3.14^{*}(1 / 2)^{4} / 4 \\
& =0.049(\mathrm{~m} 4)
\end{aligned}
\]
[Step-4. Comparison of " \(1 / \beta^{\prime}\) " and " \(1 / \beta_{1}\) "]
The value of initially assumed " \(1 / \beta_{1}\) " must be compared with value of " \(1 / \beta\) ". In this case, " \(1 / \beta_{1}\) " is 3.0 while " \(1 / \beta\) " is 2.689 . If the two values are different, process of step- \(1-4\) shall be iterated using resulted " \(1 / \beta\) " replaced with " \(1 / \beta_{1}\) " until " \(1 / \beta_{1}\) " becomes equal to " \(1 / \beta\) ". The value of " \(1 / \beta\) " is finalized as follows.
```

[Step-1: Assumption of " $1 / \beta$ " and calculation of "B---------- ${ }_{\mathrm{H}}$ "]
(1) $\left(1 / \beta_{1}\right)=2.660$
(2) $B_{H}=\sqrt{D / \beta_{1}}=1.631(\mathrm{~m})$
[Step-2: Calculation of " K_{H} "]
(1) $\left(E_{D}\right)_{\beta}=\frac{\sum E_{D} i * L i}{1 / \beta}=104934(\mathrm{kN} / \mathrm{m} 2)$
(2) $\mathrm{K}_{\mathrm{H} 0}=(1 / 0.3) *\left(\mathrm{E}_{\mathrm{D}}\right)_{\beta}=349780(\mathrm{kN} / \mathrm{m} 3)$
(3) $\mathrm{K}_{\mathrm{H}}=\mathrm{K}_{\mathrm{H} 0} *\left(\mathrm{~B}_{\mathrm{H}} / 0.3\right)^{-3 / 4}=98242(\mathrm{kN} / \mathrm{m} 3)$
[Step-3: Calculation of " β "]
(1) $\beta=\sqrt[4]{\frac{K_{H}{ }^{*} D}{4^{*} E^{*} I}}=0.376\left(\mathrm{~m}^{-1}\right)$
(2) $(1 / \beta)=2.660(\mathrm{~m})=\left(1 / \beta_{1}\right)$ (Finalized)

```
[Step-5. Calculation of spring properties of single pile]
Without pile projection over the ground surface, spring properties of single pile can be determined as follows.
- Spring property of single pile in horizontal/rotational direction
\begin{tabular}{|c|}
\hline \[
\mathrm{K} 1=4 * \mathrm{E}^{*} \mathrm{I} * \beta^{3}
\] \\
\hline \[
=4 * 25000000 * 0.049 * 0.376^{3}
\] \\
\hline \multirow[t]{2}{*}{= \(260471(\mathrm{kN} / \mathrm{m})\)} \\
\hline \\
\hline \(=2 * 25000000 * 0.049 * 0.376^{2}\) \\
\hline \(=346371\) (kN/rad) \\
\hline ,K4= 2*E*I* \(\beta\) \\
\hline \(=2 * 25000000 * 0.049 * 0.376\) \\
\hline \(=921200(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\) \\
\hline
\end{tabular}

Where,
K1, K3: radical force ( \(\mathrm{kN} / \mathrm{m}\) ) and bending moment ( \(\mathrm{kN} * \mathrm{~m} / \mathrm{m}\) ) to be applied on a pile head when displacing the head by a unit volume in a radical direction while keeping it from rotation.
K2, K4: radical force ( \(\mathrm{kN} / \mathrm{rad}\) ) and bending moment \((\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\) to be applied to on a pile head when rotating the head by a unit volume while keeping it from moving in a radical direction.
- Spring property of single pile in vertical direction
!Kv= \({ }^{*}\) Ap*E/L
\(=0.16 * 0.785 * 25000000 / 10.0\)
\(=314000(\mathrm{kN} / \mathrm{m})\)
Where,
Kv : axial spring constant of a pile
a: modification factor; for CIP pile,
\[
\begin{aligned}
\mathrm{a} & =0.031^{*}(\mathrm{~L} / \mathrm{D})-0.15 \\
& =0.031^{*}(10.0 / 1.0)-0.15 \\
& =0.16
\end{aligned}
\]

L: pile length (m); L= 10.0
D: pile diameter (m); D= 1.0
Ap: net cross-sectional area of a pile (m2);
\[
\begin{aligned}
\mathrm{Ap} & =\pi^{*}(\mathrm{D} / 2)^{2} \\
& =3.14^{*}(1.0 / 2)^{2} \\
& =0.785(\mathrm{~m} 2)
\end{aligned}
\]
[Step-6. Calculation of the entire pile foundation structure]
If the effect of foundation on analyses is focused on " \(1 / \beta\) " range, which is the effective range of " \(K_{H}\) ", foundation structure can be modeled as group of springs in one node as shown in the following figure.


Figure 2.4.1-2 Modeling of Pile Foundation

Therefore, the spring properties of the entire pile foundation are calculated as follows.
- For longitudinal direction


- For transverse direction
\[
\begin{aligned}
\text { Ass } & =\mathrm{n} * \mathrm{~K} 1 \\
& =6 * 260471 \\
& =1562827(\mathrm{kN} / \mathrm{m})
\end{aligned}
\]
\[
\text { Asr= Ars= }-n * K 2
\]
\[
=-6 * 346371
\]
\[
=-2078227(\mathrm{kN} / \mathrm{rad})
\]
\[
\operatorname{Arr}=\mathrm{n} * \mathrm{~K} 4+\mathrm{Kv} \Sigma \mathrm{Xi}^{2}
\]
\[
=\mathrm{n} * \mathrm{~K} 4+\mathrm{Kv}^{*} * \mathrm{Xi}^{2} * \mathrm{n}
\]
\[
=6 * 921200+314000 * 2.5^{2} * 4
\]
\[
=13377200(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})
\]


Where,
Ass: horizontal spring property of the foundation structure (kN/m)
Asr, Ars: spring properties of the foundation structure in combination with "Ass" and "Arr" (kN/rad)
Arr: rotational spring property of the foundation structure ( \(\mathrm{kN} * \mathrm{~m} / \mathrm{rad}\) )
n : number of piles in the foundation structure (nos)
Xi: X-coordinate of "pile head in i-th row" (m)

\subsection*{2.4.2 Bridge Analysis}

\subsection*{2.4.2.1 Bridge Analysis Methodology}

As shown below, natural period of the bridge is calculated with the single degree of freedom method.


Figure 2.4.2-1 Single Degree of Freedom Method for Natural Period Acquisition

\subsection*{2.4.2.2 Bridge Analysis for Longitudinal Direction}
[Step-1. Calculation of deflection due to column bending, " \(\delta \mathrm{p}\) "]
\[
\begin{aligned}
\delta_{p} & =\frac{W u * h^{3}}{3 * E * \text { Ic }}+\frac{0.8 * W_{p} * h_{p}^{3}}{8 * E * \text { Ic }} \\
& =\frac{2900 * 10^{3}}{3 * 25000000 * 0.477}+\frac{0.8 * 1343 * 10^{3}}{8 * 25000000 * 0.477} \\
& =0.092(\mathrm{~m})
\end{aligned}
\]

Where,
H : seismic inertial force from the superstructure (kN); H= Wu*Csm= 2900*1.0= 2900
Wu: superstructure weight undertaken by the pier under EQ; Wu= 2900
Csm: seismic coefficient (g); Csm=1.0
h: height from column base to application point of seismic inertial force from the superstructure (m);


E: concrete modulus of elasticity ( \(\mathrm{kN} / \mathrm{mm} 2\) )
I: moment of inertia of the column (m4); I= \(\pi^{*}(\mathrm{D} / 2)^{4} / 4=3.14^{*}(2.1 / 2)^{4} / 4=0.95\)
Ic: moment of inertia of cracked column section (m4); Ic= \(\mathrm{I} / 2=0.95 / 2=0.477\)


D: column diameter (m); \(\mathrm{D}=2.1\)
Wp: weight of pier coping and column (kN); Wp= 1269
hp: column height ( m ); hp=10.0
[Step-2. Lateral displacement of pile cap, \(\delta\) o]
\[
\begin{aligned}
\delta o & =\frac{H_{0} * \text { Arr }-M_{0} * \text { Asr }}{\text { Ass } * \text { Arr }- \text { Asr } * \text { Ars }} \\
& =\frac{5064 * 8470950-42606 *(-2078227)}{1562827 * 8470950-(-2078227) *(-2078227)} \\
& =0.015(\mathrm{~m})
\end{aligned}
\]

Where,
Ho: horizontal force at the pile cap base (kN);
\[
\begin{aligned}
H \mathrm{H} & =\mathrm{Wu}+0.8^{*}(\mathrm{Wp}+\mathrm{Wf}) \\
& =2900+0.8^{*}(1269+1436) \\
& =5064
\end{aligned}
\]

Mo: bending moment at the pile cap base ( \(\mathrm{kN} * \mathrm{~m}\) );
\[
\begin{aligned}
\mathrm{Mo} & =\mathrm{Wu} * \mathrm{ho}+0.8 * \mathrm{Wp} *(0.5 * \mathrm{hp}+\mathrm{hf})+0.8 * W \mathrm{Wf} * 0.5 * \mathrm{hf} \\
& =2900 * 11.9+0.8^{*} 1269 *(0.5 * 10.0+1.9)+0.8 * 1436 * 0.5 * 1.9 \\
& =42606
\end{aligned}
\]
ho: height from pile cap base to application point of seismic inertial force (m); ho=11.9
hf: height of the pile cap (m); hf= 1.9
Wf: weight of the pile cap (kN); Wf= 1436
Ass= 1562827 (kN/m)
Asr, Ars \(=-2078227\) (kN/rad)
Arr= \(8470950(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\)
[Step-3. Lateral displacement of pile cap due to rotation of the structure, " \(\theta\) o*ho"]
\[
\begin{aligned}
\theta \mathrm{o} * \mathrm{ho} & =0.009 * 11.9 \\
& =0.107(\mathrm{~m})
\end{aligned}
\]

Where,
\[
\begin{aligned}
\theta o & =\frac{-H_{0} * \text { Ars }+M_{0} * \text { Ass }}{\text { Ass } \operatorname{Arr}-\text { Asr } * \text { Ars }} \\
& =\frac{-5046 *(-2078227)+42606 * 1562827}{1562827 * 8470950-(-2078227) *(-2078227)} \\
& =0.009(\mathrm{~m})
\end{aligned}
\]

\section*{[Step-4. Calculation of total displacement, " \(\delta\) "]}
\(\delta=\delta \mathrm{p}+\delta \mathrm{o}+\theta \mathrm{o} * \mathrm{ho}\)
\(=0.092+0.015+0.107\)
\(=0.213(\mathrm{~m})\)
[Step-5. Calculation of natural period]
\[
\begin{aligned}
T & =2.01 \sqrt{\delta} \\
& =2.01 \sqrt{0.213} \\
& =0.93(\mathrm{~s})
\end{aligned}
\]
[Step-6. Determination of design seismic coefficient]
\[
\begin{aligned}
\mathrm{Csm} & =0.64 / \mathrm{Tm} \\
& =0.64 / 0.93 \\
& =0.69(\mathrm{~g})
\end{aligned}
\]


Figure 2.4.2-2 Design Seismic Coefficient for Longitudinal Direction

\subsection*{2.4.2.3 Bridge Analysis for Transverse Direction}
[Step-1. Calculation of deflection due to column bending, " \(\delta \mathrm{p}\) "]
\[
\begin{aligned}
\delta_{p} & =\frac{W u * h^{3}}{3 * E * \text { Ic }}+\frac{0.8 * W_{p} * h_{p}^{3}}{8 * E * \text { Ic }} \\
& =\frac{2900 * 12^{3}}{3 * 25000000 * 0.477}+\frac{0.8 * 1269 * 10^{3}}{8 * 25000000 * 0.477} \\
& =0.150(\mathrm{~m})
\end{aligned}
\]

Where,
H: seismic inertial force from the superstructure (kN); H= Wu*Csm= 2900*1.0= 2900
Wu: superstructure weight undertaken by the pier under EQ; Wu= 2900
Csm: seismic coefficient (g); Csm= 1.0
h : height from column base to application point of seismic inertial force from the superstructure (m);


E: concrete modulus of elasticity ( \(\mathrm{kN} / \mathrm{mm} 2\) )
I: moment of inertia of the column (m4); \(\mathrm{I}=\pi^{*}(\mathrm{D} / 2)^{4} / 4=3.14^{*}(2.1 / 2)^{4} / 4=0.95\)
Ic: moment of inertia of cracked column section (m4); Ic \(=\mathrm{I} / 2=0.95 / 2=0.477\)


D : column diameter ( m ); \(\mathrm{D}=2.1\)
Wp: weight of pier coping and column (kN); Wp= 1269
hp : column height (m); hp= 10.0
[Step-2. Lateral displacement of pile cap, \(\delta\) o]
\[
\begin{aligned}
\delta o & =\frac{H_{0} * A r r-M_{0} * A s r}{\text { Ass } * \text { Arr }- \text { Asr } * \text { Ars }} \\
& =\frac{5064 * 13377200-48407 *(-2078227)}{1562827 * 13377200-(-2078227) *(-2078227)} \\
& =0.010(\mathrm{~m})
\end{aligned}
\]

Where,
Ho: horizontal force at the pile cap base (kN);
\[
\begin{aligned}
\mathrm{Ho} & =\mathrm{Wu}+0.8^{*}(\mathrm{Wp}+\mathrm{Wf}) \\
& =2900+0.8^{*}(1269+1436) \\
& =5064
\end{aligned}
\]


Mo: bending moment at the pile cap base ( \(\mathrm{kN} * \mathrm{~m}\) );
\[
\begin{aligned}
\mathrm{Mo} & =\mathrm{Wu} * \mathrm{ho}+0.8^{*} \mathrm{Wp}^{*}(0.5 * \mathrm{hp}+\mathrm{hf})+0.8^{* W f}{ }^{*} 0.5 * \mathrm{hf} \\
& =2900 * 13.9+0.8^{*} 1269 *(0.5 * 10.0+1.9)+0.8^{*} 1436^{*} 0.5 * 1.9 \\
& =48407
\end{aligned}
\]
ho: height from pile cap base to application point of seismic inertial force (m); ho= 13.9
hf: height of the pile cap (m); hf= 1.9
Wf: weight of the pile cap (kN); Wf= 1436
Ass= 1567010 (kN/m)
Asr, Ars=-2081934 (kN/rad)
Arr \(=13382127(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\)
[Step-3. Lateral displacement of pile cap due to rotation of the structure, " \(\theta 0 *\) ho"]
\[
\begin{aligned}
\theta \mathrm{o} * \mathrm{ho} & =0.005 * 13.9 \\
& =0.070(\mathrm{~m})
\end{aligned}
\]

Where,
\[
\begin{aligned}
\theta o & =\frac{-H_{0} * \text { Ars }+M_{0} * \text { Ass }}{\text { Ass } * \text { Arr }- \text { Asr } * \text { Ars }} \\
& =\frac{-5064 *(-2078227)+48407 * 1562827}{1562827 * 13377200-(-2078227) *(-2078227)} \\
& =0.005(\mathrm{~m})
\end{aligned}
\]

> [Step-4. Calculation of total displacement, " \(\delta\) "]
> \(\begin{aligned} \delta= & \delta \mathrm{p}+\delta \mathrm{o}+\theta \mathrm{o} * \mathrm{ho}\end{aligned}\)
> \(=0.150+0.010+0.070\)
> \(=0.230(\mathrm{~m})\)
[Step-5. Calculation of natural period]
\[
\begin{aligned}
T & =2.01 \sqrt{\delta} \\
& =2.01 \sqrt{0.230} \\
& =0.96(\mathrm{~s})
\end{aligned}
\]
[Step-6. Determination of design seismic coefficient]
\[
\begin{aligned}
\mathrm{Csm} & =0.64 / \mathrm{Tm} \\
& =0.64 / 0.96 \\
& =0.66(\mathrm{~g})
\end{aligned}
\]


Figure 2.4.2-3 Design Seismic Coefficient for Transverse Direction

\subsection*{2.5 Determination of Design Displacement and Design Seat Length}

\subsection*{2.5.1 Determination of Design Displacement}

Design displacement, \(\Delta\) is calculated as follows, based on the result of bridge analysis in transverse direction which generated larger displacement.
[Step-1. Calculation of Column Displacement (transverse direction)]
\[
\begin{aligned}
\delta_{p} & =\frac{H * h^{3}}{3 * E * I c}+\frac{0.8 * W_{p} * h_{p}^{3}}{8 * E * I c} \\
& =\frac{1914 * 12^{3}}{3 * 25000000 * 0.477}+\frac{0.8 * 1269 * 10^{3}}{8 * 25000000 * 0.477} \\
& =0.103(\mathrm{~m})=\Delta_{\mathrm{e}}
\end{aligned}
\]

Where,


H: seismic inertial force from the superstructure (kN); H= Wu*Csm= 2900*0.69= 1914
Wu: superstructure weight undertaken by the pier under EQ; Wu= 2900
Csm: seismic coefficient (g); Csm= 0.69 (bridge analysis result)
[Step-2. Calculation of Design Displacement, \(\triangle\) ]
\[
\begin{aligned}
\Delta & =12 * \mathrm{R}_{\mathrm{d}} * \Delta_{\mathrm{e}} \\
& =12 * 1.0 * 0.103 \\
& =1.24(\mathrm{~m})
\end{aligned}
\]

Where,
\(\mathrm{R}_{\mathrm{d}}=1.0(\mathrm{~T}=0.96>1.25 * \mathrm{Ts}=0.769)\)
\(\Delta_{\mathrm{e}}\) : Displacement calculated from elastic seismic analysis (m)
T: Period of fundamental mode of vibration (sec.)
Ts: Corner period specified in BSDS Article 3.6 .2 (sec.)
R: R-factor; R=2.0
Pu: Axial load on column or pier (kN); \(\mathrm{Pu}=\mathrm{Rd}+0.5 * \mathrm{Rl}=3800\)
\(\varphi\) : Flexural resistance factor for column; \(\varphi=0.9\)
Mn: Nominal flexural strength of column or pier calculated at the axial load on the column or pier (kN*m)

\subsection*{2.5.2 Determination of Design Seat Length}

The minimum required seat length is calculated as follows.
\[
\begin{aligned}
\mathrm{S}_{\mathrm{EM}} & =0.7+0.005 * \mathrm{~L} \\
& =0.7+0.005 * 30.0 \\
& =0.85(\mathrm{~m})
\end{aligned}
\]

Where,
L : distance between two substructures for determining the seat length (m) ; L= 30.0

Therefore, coping thickness is designed as the following figure.


Figure 2.5.2-1 Design Seat Length and Coping Thickness

\subsection*{2.6 Seismic Design of the Column}

\subsection*{2.6.1 Design Condition}
[Longitudinal reinforcement]
- fy= 415 (MPa); Grade60
- Diameter: 32 (mm)
- No. of re-bars
- 1st row: 48 (nos)
- 2nd row: 24 (nos)
- Cover meter
(column edge to rebar center)
- 1st row: 150 (mm)
- 2nd row: 250 (mm)


\subsection*{2.6.2 Column Design Force}
[List of forces]
Seismic Forces in Longitudinal dir.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & W & Csm & \(\mathrm{H}=\mathrm{W}^{*} \mathrm{Csm}\) & h & \(\mathrm{M}=\mathrm{H}^{*} \mathrm{~h}\) \\
\cline { 2 - 6 } & \((\mathrm{kN})\) & - & \((\mathrm{kN})\) & \((\mathrm{m})\) & \((\mathrm{kN} * \mathrm{~m})\) \\
\hline Superstructure & 2,900 & 0.690 & 2,001 & 10.0 & 20,010 \\
\hline Pier & 1,269 & 0.690 & 876 & 7.0 & 6,129 \\
\hline \multicolumn{7}{c|}{ Sum: } & \(\mathrm{V}_{\mathrm{L}}=\) & 2,894 & \(\mathrm{M}_{\mathrm{L}}=\) & 26,139
\end{tabular}

Seismic Forces in Transverse dir.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & W & Csm & \(\mathrm{H}=\mathrm{W}^{*} \mathrm{Csm}\) & h & \(\mathrm{M}=\mathrm{H}^{*} \mathrm{~h}\) \\
\hline & (kN) & - & (kN) & (m) & (kN*m) \\
\hline Superstructure & 2,900 & 0.660 & 1,914 & 12.0 & 22,968 \\
\hline Pier & 1,269 & 0.660 & 838 & 7.0 & 5,863 \\
\hline & Sum: & \(\mathrm{V}_{\mathrm{T}}\) & 2,771 & & 28,831 \\
\hline
\end{tabular}

Where,
W : weight of structures ( kN )
H : horizontal seismic inertial force \((\mathrm{kN})\)
M : bending moment ( \(\mathrm{kN} * \mathrm{~m}\) )
\(\mathrm{V}_{\mathrm{L}}, \mathrm{V}_{\mathrm{T}}\) : shear force at the column base ( kN )
\(\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{T}}\) : bending moment at the column base (kN*m)

Design force for the column design is calculated as follows.


Figure 2.6.2-1 Determination of Column Design Force
[Design force for longitudinal direction]
- Nd: design axial force for N-M interaction diagram (kN);
\[
\begin{aligned}
\mathrm{Nd} & =\mathrm{Rd}+0.5 * \mathrm{Rl}+\mathrm{Wp} \\
& =2900+0.5^{*} 1800+1269 \\
& =5069(\mathrm{kN})
\end{aligned}
\]
- Vd: design shear force
\[
\begin{aligned}
V_{d L} & =\sqrt{\left(1.0 * V_{L}\right)^{2}+\left(0.3 * V_{T}\right)^{2}} \\
& =\sqrt{(1.0 * 2894)^{2}+(0.3 * 2771)^{2}} \\
& =3011(k N)
\end{aligned}
\]
- Md: design bending moment
\[
\begin{aligned}
M_{d L} & =\sqrt{\left(1.0 * M_{L}\right)^{2}+\left(0.3 * M_{T}\right)^{2}} / R \\
& =\sqrt{(1.0 * 26139)^{2}+(0.3 * 28831)^{2}} / 2.0 \\
& =14939(\mathrm{kN} * \mathrm{~m})
\end{aligned}
\]
[Design force for transverse direction]
- Nd: design axial force for N-M interaction diagram (kN);
\[
\begin{aligned}
\mathrm{Nd} & =\mathrm{Rd}+0.5 * \mathrm{Rl}+\mathrm{Wp} \\
& =2900+0.5^{*} 1800+1269 \\
& =5069(\mathrm{kN})
\end{aligned}
\]
- Vd: design shear force
\[
\begin{aligned}
V_{d T} & =\sqrt{\left(1.0 * V_{T}\right)^{2}+\left(0.3 * V_{L}\right)^{2}} \\
& =\sqrt{(1.0 * 2771)^{2}+(0.3 * 2894)^{2}} \\
& =2903(\mathrm{kN})
\end{aligned}
\]
- Md: design bending moment
\[
\begin{aligned}
M_{d T} & =\sqrt{\left(1.0 * M_{T}\right)^{2}+\left(0.3 * M_{L}\right)^{2}} / R \\
& =\sqrt{(1.0 * 28831)^{2}+(0.3 * 26139)^{2}} / 2.0 \\
& =13767(\mathrm{kN} * \mathrm{~m})
\end{aligned}
\]

\subsection*{2.6.3 Verification of Flexural Resistance}

Flexural capacity of the column is verified against the design force demand as follows.
[Design force]
- longitudinal direction: Md= 14939 (kN*m)
- transverse direction: Md= 13767 (kN*m)
- axial force: \(\mathrm{Nd}=5069\) (kN)


Mr : flexural resistance of the column \((\mathrm{kN} * \mathrm{~m})\)
\(\phi\) : resistance factor; \(\phi=0.9\)
Mn: nominal flexural resistance ( \(k N * m\) ); Mn= 21618
Note: \(\phi^{*} \mathrm{Mn}\) is obtained from "the N-M interaction diagram" shown below


Figure 2.6.3-1 N-M Interaction Diagram of the Column
[Capacity verification]
-for longitudinal direction
Md= 14939 < 19456 (OK)
(0.77) (1.00)
-for transverse direction
Md= 13767 < 19456 (OK)
(0.71) (1.00)

\subsection*{2.6.4 Verification of Column Displacement}

Displacement requirement of the column is verified using the following formula.
\[
\begin{aligned}
& \Delta * P u<0.25 * \varphi^{*} M n \\
& \leftrightarrow \Delta<\frac{\varphi^{*} M n}{4 * P u}
\end{aligned}
\]

\section*{[Design Displacement]}
\[
\begin{aligned}
\Delta & =12 * \mathrm{R}_{\mathrm{d}} * \Delta_{e} \\
& =12 * 1.0 * 0.103 \\
& =1.24(\mathrm{~m})
\end{aligned}
\]

Where,
\(\mathrm{R}_{\mathrm{d}}=1.0\) ( \(\mathrm{T}=0.96>1.25 * \mathrm{Ts}=0.769\) )
\(\Delta_{e}\) : Displacement calculated from elastic seismic analysis (m)
[Verification of displacement]
\[
\begin{aligned}
\frac{\varphi^{*} M n}{4 * P u} & =\frac{19456}{4 * 5069} \\
& =1.28
\end{aligned}
\]

Therefore,
\[
\Delta=1.24<1.28(\mathrm{~m})(\mathrm{OK})
\]

\subsection*{2.6.5 Verification of Shear Resistance}

Shear capacity of the column is verified against the design force demand as follows.
[Design force]
- longitudinal direction: Vd= 3011 (kN)
- transverse direction: Vd= 2903 (kN)
[Shear resistance]
- Step-1: calculation of "Vn"

Vn= Vc+Vs
\(=0+6345\)
\(=6345(\mathrm{kN})\)
Where,
Vn: nominal shear resistance (kN)
Vc: shear strength developed by concrete (kN);
\(\mathrm{Vc}=0.083 * \beta * \sqrt{f^{\prime} c^{\prime}} * b v * d v\)
\(=0(\mathrm{kN})\) (to be on the conservative side)
Vs: shear strength developed by re-bars (kN);
\(V s=(A v * f y * d v * \cot \theta) / s\)
\(=(1256.0 * 415 * \cot 45) / 120\)
\(=6345(\mathrm{kN})\)
\(\beta\) : factor indicating ability of diagonally cracked concrete to transmit tension and shear
\(\theta\) : Angle of inclination of diagonal compressive stress (degrees); \(\theta=45\)
f'c': specified compressive strength of concrete (N/mm2); fc’=28
bv: effective web width (mm); bv= 2100 dv: effective shear span (m);
\[
\begin{aligned}
\mathrm{dv} & =0.9^{*} \mathrm{de}=0.9 *(\mathrm{D} / 2+\mathrm{Dr} / \pi) \\
& =0.9^{*}(2100 / 2+1800 / 3.14) \\
& =1461(\mathrm{~mm})
\end{aligned}
\]

D: Gross diameter of the column (mm); D= 2100
Dr: Diameter of the circle passing through the centers of longitudinal re-bars (mm); Dr= 1800
fy: yield strength of transverse reinforcement ( \(\mathrm{N} / \mathrm{mm} 2\) ); fy= 415

Av: area of shear reinforcement within distance "s" (mm2); Av= \((314.0 * 2) * 2=1256.0\) (diameter: 20)
s : spacing of transverse reinforcement (mm); s= 120

Simplified procedure is applied with the following values;
\(-\beta=2.0\)
\(-\theta=45\)
[Definition of parameters]

- Step-2: determination of "Vr"

Vr= \(\phi^{*} \mathrm{Vn}\)
\(=0.9 * 6345\)
\(=5710(\mathrm{kN})\)
Where,
Vr: shear resistance of the column (kN)
\(\phi\) : resistance factor; \(\phi=0.9\)
[Capacity verification]
-for longitudinal direction
\(\mathrm{Vd}=3011<5710\) (OK)
(0.54) (1.00)
-for transverse direction
\(\mathrm{Vd}=2903<5710\) (OK)
(0.52) (1.00)

\subsection*{2.6.6 Verification of Minimum Required Reinforcement}

\subsection*{2.6.6.1 Verification of Minimum Required Longitudinal Reinforcement}

The longitudinal reinforcement ratio is verified to be not less than \(1.0 \%\) as shown below.
\[
\begin{aligned}
\rho s & =\mathrm{Aa} / \mathrm{Ag} \\
& =0.059 / 3.461 \\
& =0.017>0.010(\mathrm{OK})
\end{aligned}
\]

Where,
\(\rho \mathrm{s}\) : ratio of longitudinal reinforcement to gross area of concrete section
Aa: total area of longitudinal reinforcement (m2); Aa=As*n=(819/106)*72 \(=0.059\)
As: cross-sectional area of single longitudinal reinforcement bar (mm2); As= 819
n : number of longitudinal reinforcement bar; \(\mathrm{n}=72\)
Ag: gross area of concrete section (m2); \(\mathrm{Ag}=\pi^{*}(\mathrm{D} / 2)^{2}=3.14^{*}(2.1 / 2)^{2}=3.461\)
D: diameter of column (m); \(\mathrm{D}=2.1\)

\subsection*{2.6.6.2 Verification of Minimum Required Transverse Reinforcement}

Amount of minimum required transverse reinforcement is verified as follows.
[Step-1: calculation of minimum required reinforcement-1]
\[
\begin{aligned}
\rho_{s} & \geq 0.45 *\left(\frac{A_{g}}{A_{c}}-1\right) * \frac{f_{c}^{\prime}}{f_{y h}} \\
& =0.45 *\left(\frac{3.461}{2.543}-1\right) * \frac{28}{415} \\
& =0.0110
\end{aligned}
\]

Where,
Ag: gross area of concrete section (m2);
\[
\begin{aligned}
\mathrm{Ag} & =\pi^{*}(\mathrm{D} / 2)^{2} \\
& =3.14 *(2.1 / 2)^{2} \\
& =3.461
\end{aligned}
\]

Ac: area of core measured to the outside diameter of transverse reinforcement (m2);
\[
\begin{aligned}
\mathrm{Ac} & =\pi^{*}(\mathrm{Dr} / 2)^{2} \\
& =3.14^{*}(1.8 / 2)^{2} \\
& =2.543
\end{aligned}
\]
\(\mathrm{f}^{\prime} \mathrm{c}^{\prime}\) : specified compressive strength of concrete ( \(\mathrm{N} / \mathrm{mm} 2\) ); fc' \(=28\)
fyh: yield strength of transverse reinforcement (N/mm2); fy= 415
[Step-2: calculation of minimum required reinforcement-2]
\[
\begin{aligned}
\rho_{s} & \geq 0.12 * \frac{f_{c}^{\prime}}{f_{y h}} \\
& =0.12 * \frac{28}{415} \\
& =0.0081
\end{aligned}
\]
[Step-3: calculation of " \(\rho s\) " and verification of minimum required reinforcement]
\[
\begin{aligned}
\rho_{s} & =\frac{\pi^{*} D_{r} *\left(A_{v} / 2\right)}{\pi^{*}\left(D_{r} / 2\right)^{2} * s}=\frac{4 *\left(A_{v} / 2\right)}{D_{r} * s} \\
& =\frac{4 *(1256.0 / 2)}{1800 * 120} \\
& =0.0116>0.0110(O K)
\end{aligned}
\]

Where,
\(\rho s\) : ratio of transverse reinforcement to total volume of concrete core
s : spacing of transverse reinforcement (mm); s=120
Av: area of shear reinforcement within distance "s" (mm2); Av= 1256.0 (=314.0*4, As=314.0)
Note: bundling of two re-bars is applied.
Dr: diameter of the circle passing through the centers of longitudinal re-bars (mm); Dr= 1800

\subsection*{2.7 Seismic Design of the Pile Foundation}

\subsection*{2.7.1 Spring Properties of the Pile Foundation}
[Step-0. Preliminary calculation of design parameters]
Design parameters for pile foundation springs are summarized as follows.


Where,
\(\alpha\) : coefficient for the estimation of subgrade reaction coefficient;
\(\alpha=1\) (Normal state), 2 (Under earthquake)
\(\mathrm{E}_{0}\) : modulus of deformation \((\mathrm{kN} / \mathrm{m} 2) ; \mathrm{E}_{0}=2800^{*}(\mathrm{~N}\)-value)
\(\gamma \mathrm{t}\) : unit weight of soil ( \(\mathrm{kN} / \mathrm{m} 3\) )
\(\gamma^{\prime}\) : effective unit weight of soil (kN/m3); \(\gamma^{\prime}=\gamma \mathrm{t}-\gamma_{\mathrm{w}}\)
\(\gamma_{\mathrm{w}}\) : unit weight of water \((\mathrm{kN} / \mathrm{m} 3)\)
fi: maximum shaft resistance of i-th layer considering pile shaft resistance \((\mathrm{kN} / \mathrm{m} 2)\)
DE: soil coefficient reduction factor obtained from liquefaction potential assessment
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\(\mathrm{F}_{\mathrm{L}}\)} & \multirow{2}{*}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{2}{|c|}{DE} \\
\cline { 3 - 4 } & & \(\mathrm{R} \leqq 0.30\) & \(.3<\mathrm{R}\) \\
\hline \multirow{2}{*}{\(\mathrm{F}_{\mathrm{L}} \leqq 1 / 3\)} & \(0 \leqq \mathrm{X} \leqq 10\) & 0 & \(1 / 6\) \\
\cline { 2 - 4 } & \(10<\mathrm{X} \leqq 20\) & \(1 / 3\) & \(1 / 3\) \\
\hline \multirow{2}{*}{\(1 / 3<\mathrm{F}_{\mathrm{L}} \leqq 2 / 3\)} & \(0 \leqq \mathrm{X} \leqq 10\) & \(1 / 3\) & \(2 / 3\) \\
\cline { 2 - 4 } & \(10<\mathrm{X} \leqq 20\) & \(2 / 3\) & \(2 / 3\) \\
\hline \multirow{2}{*}{\(2 / 3<\mathrm{F}_{\mathrm{L}} \leqq 1\)} & \(0 \leqq \mathrm{X} \leqq 10\) & \(2 / 3\) & 1 \\
\cline { 2 - 4 } & \(10<\mathrm{X} \leqq 20\) & 1 & 1 \\
\hline
\end{tabular}
[Step-1. Assumption of " \(1 / \beta\) " and initial calculation of " \(\mathrm{B}_{\mathrm{H}}\) "]
Typically, " \(1 / \beta\) " for foundation design is \(3-6\) times as large as the pile diameter. Therefore, the parameter " \(\beta\) " is initially assumed as " 4 "; \(\left(1 / \beta_{1}\right)=4.0\)
Then, equivalent loading width of foundation, " \(B_{H}\) ", is initially determined with the following equation.
\[
\begin{aligned}
\mathrm{B}_{\mathrm{H}}= & \sqrt{\mathrm{D} / \beta 1} \\
& =\sqrt{1.0 * 4.0} \\
& =2.0(\mathrm{~m})
\end{aligned}
\]

Where,
D : pile diameter (m); \(\mathrm{D}=1.0\)
[Step-2. Initial calculation of " \(\mathrm{K}_{\mathrm{H}}\) "]
Coefficient of subgrade reaction, \(\mathrm{K}_{\mathrm{H}}\), is calculated as follows. In the calculation process, average value of " \(\alpha * \mathrm{E}_{0}\) " within " \(1 / \beta\) " range, " \(\left(\alpha * \mathrm{E}_{0}\right)_{\beta}\) ", should be applied, focusing on the effective range of " \(\mathrm{K}_{\mathrm{H}}\) ". The image of relationship among parameters is illustrated in the following figure.


Figure 2.7.1-1 Coefficient of Subgrade Reaction, " \(K_{H}\) "
\[
\begin{aligned}
&\left(\alpha * \mathrm{E}_{0}\right)_{\beta}=\frac{\sum\left(\alpha * \mathrm{E}_{0} * D E\right) i * L i}{1 / \beta} \\
&= \Sigma(20544 * 3.5+19600 * 0.5) / 4.0 \\
&=20426(\mathrm{kN} / \mathrm{m} 2)
\end{aligned}
\]

Then,
\[
\begin{aligned}
\mathrm{K}_{\mathrm{H} 0} & =(1 / 0.3) *\left(\alpha^{*} \mathrm{E}_{0}\right)_{\beta} \\
& =(1 / 0.3) * 20426 \\
& =68086(\mathrm{kN} / \mathrm{m} 3)
\end{aligned}
\]

Therefore,
\[
\begin{aligned}
\mathrm{K}_{\mathrm{H}} & =\mathrm{K}_{\mathrm{H} 0} *\left(\mathrm{~B}_{\mathrm{H}} / 0.3\right)^{-3 / 4} \\
& =68086 *(2.0 / 0.3)^{-3 / 4} \\
& =16411(\mathrm{kN} / \mathrm{m} 3)
\end{aligned}
\]

In this case, two layers within " \(1 / \beta\) " range

\(\alpha=1\) (normal condition)
\(\mathrm{E}_{\mathrm{D}} \mathrm{i}\) : dynamic modulus of ground deformation of i-th layer ( \(\mathrm{kN} / \mathrm{m} 2\) )
Li: Thickness of i-th layer (m)
[Step-3. Initial calculation of " \(\beta\) "]
The pile specific parameter, " \(\beta\) ", is initially calculated as follows.
\[
\begin{aligned}
\beta & =\sqrt[4]{\frac{K_{H} * D}{4^{*} E^{*} I}} \\
& =\sqrt[4]{\frac{16411 * 1.0}{4^{*} 25000000 * 0.049}} \\
& =0.241\left(\mathrm{~m}^{-1}\right)
\end{aligned}
\]

Then,
\((1 / \beta)=1 / 0.241\)
\[
=4.157 \text { (m) }
\]

Where,
E: Young's modulus of elasticity; \(\mathrm{E}=25000000(\mathrm{kN} / \mathrm{m} 2)\)
I: moment of inertia of a pile;
\[
\begin{aligned}
\mathrm{I} & =\pi^{*}(\mathrm{D} / 2)^{4} / 4 \\
& =3.14^{*}(1 / 2)^{4} / 4 \\
& =0.049(\mathrm{~m} 4)
\end{aligned}
\]
[Step-4. Comparison of " \(1 / \beta^{\prime}\) " and " \(1 / \beta_{1}\) "]
The value of initially assumed " \(1 / \beta_{1}\) " must be compared with value of " \(1 / \beta\) ". In this case, " \(1 / \beta_{1}\) " is 4.0 while " \(1 / \beta\) " is 4.157 . If the two values are different, process of step- \(1-4\) shall be iterated using resulted " \(1 / \beta\) " replaced with " \(1 / \beta_{1}\) " until " \(1 / \beta_{1}\) " becomes equal to " \(1 / \beta\) ". The value of " \(1 / \beta\) " is finalized as follows.
[Step-1: Assumption of " \(1 / \beta\) " and calculation of " \(\mathrm{B}_{\mathrm{H}}\) "]
(1) \(\left(1 / \beta_{1}\right)=4.176\)
(2) \(\mathrm{B}_{\mathrm{H}}=\sqrt{\mathrm{D} / \beta_{1}}=2.044(\mathrm{~m})\)
[Step-2: Calculation of " \(\mathrm{K}_{\mathrm{H}}\) "]
(1) \(\left(\alpha * E_{0}\right)_{\beta}=\frac{\sum\left(\alpha^{*} E_{0} * D E\right) i^{*} L i}{1 / \beta}=20390(\mathrm{kN} / \mathrm{m} 2)\)
(2) \(\mathrm{K}_{\mathrm{H} 0}=(1 / 0.3)^{*}\left(\alpha^{*} \mathrm{E}_{0}\right)_{\beta}=67970\)
(3) \(\mathrm{K}_{\mathrm{H}}=\mathrm{K}_{\mathrm{H} 0} *\left(\mathrm{~B}_{\mathrm{H}} / 0.3\right)^{-3 / 4}=16117(\mathrm{kN} / \mathrm{m} 3)\)
[Step-3: Calculation of " \(\beta\) "]
(1) \(\beta=\sqrt[4]{\frac{K_{H}{ }^{*} D}{4^{*} E^{*} I}}=0.239\left(\mathrm{~m}^{-1}\right)\)
(2) \((1 / \beta)=4.176(\mathrm{~m})=\left(1 / \beta_{1}\right)\) (Finalized)

[Step-4: Calculation of \(\boldsymbol{\beta}\) ' for Seismic Design]
(1) \(\mathrm{K}_{\mathrm{H}}{ }^{\prime}=2 * \mathrm{~K}_{\mathrm{H}}=2 * 16117=32235(\mathrm{kN} / \mathrm{m} 3)\)
(2) \(\beta^{\prime}=\sqrt[4]{\frac{K_{H}{ }^{*} D}{4 E^{*} E^{*} I}}=0.285\left(\mathrm{~m}^{-1}\right)\)
[Step-5. Calculation of spring properties of single pile]
Without pile projection over the ground surface, spring properties of single pile can be determined as follows.
- Spring property of single pile in horizontal/rotational direction

K1 \(=4 * \mathrm{E}^{*} \mathrm{I} * \beta^{3}\)
\(=4 * 25000000 * 0.049 * 0.285^{3}\)
\(=113431(\mathrm{kN} / \mathrm{m})\)
K2 \(=\mathrm{K} 3=2 * \mathrm{E}^{*}\) I \(* \beta^{, 2}\)
\(=2 * 25000000 * 0.049 * 0.285^{2}\)
\(=1999001(\mathrm{kN} / \mathrm{rad})\)
;K4 \(=2 *{ }^{*}{ }^{*} \mathrm{I}^{*} \beta\),
\(=2 * 25000000 * 0.049 * 0.285\)
\(=698250(\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\)
Where,
K1, K3: radical force ( \(\mathrm{kN} / \mathrm{m}\) ) and bending moment \((\mathrm{kN} * \mathrm{~m} / \mathrm{m})\) to be applied on a pile head when displacing the head by a unit volume in a radical direction while keeping it from rotation.
K2, K4: radical force ( \(\mathrm{kN} / \mathrm{rad}\) ) and bending moment \((\mathrm{kN} * \mathrm{~m} / \mathrm{rad})\) to be applied to on a pile head when rotating the head by a unit volume while keeping it from moving in a radical direction.
- Spring property of single pile in vertical direction
\(\mathrm{Kv}=\mathrm{a} * \mathrm{Ap} * \mathrm{E} / \mathrm{L}\)
\(=0.160 * 0.785 * 25000000 / 10.0\)
\(=314000(\mathrm{kN} / \mathrm{m})\)
Where,
Kv : axial spring constant of a pile
a: modification factor; for CIP pile,
\[
\begin{aligned}
\mathrm{a} & =0.031^{*}(\mathrm{~L} / \mathrm{D})-0.15 \\
& =0.031^{*}(10.0 / 1.0)-0.15 \\
& =0.160
\end{aligned}
\]

L: pile length (m); L= 10.0
D: pile diameter (m); D= 1.0
Ap: net cross-sectional area of a pile (m2);
\[
\begin{aligned}
\mathrm{Ap} & =\pi^{*}(\mathrm{D} / 2)^{2} \\
& =3.14^{*}(1.0 / 2)^{2} \\
& =0.785(\mathrm{~m} 2)
\end{aligned}
\]
[Step-6. Calculation of the entire pile foundation structure]
If the effect of foundation on analyses is focused on " \(1 / \beta\) " range, which is the effective range of " \(K_{H}\) ", foundation structure can be modeled as group of springs in one node as shown in the following figure.


Figure 2.7.1-2 Modeling of Pile Foundation

Therefore, the spring properties of the entire pile foundation are calculated as follows.
- For longitudinal direction
```

Axx= n*K1
= 6*113431
=680586 (kN/m)
Axa=Aax= -n*K2
= -6*199001
=-1194008 (kN/rad)
Aaa= n*K4+Kv }
mp@subsup{Xil}{}{2
= n*K4+Kv* Xi }\mp@subsup{}{}{*
=6*698250+314000*1.25**6
= 7133250 (kN*m/rad)

```


Where,
Axx: horizontal spring property of the foundation structure ( \(\mathrm{kN} / \mathrm{m}\) )
Axa, Aax: spring properties of the foundation structure in combination with " \(\mathrm{A}_{\mathrm{xx}}\) " and " \(\mathrm{A}_{\mathrm{a}}\) " (kN/rad)
Aaa: rotational spring property of the foundation structure ( \(\mathrm{kN} * \mathrm{~m} / \mathrm{rad}\) )
n : number of piles in the foundation structure (nos)
Xi: X-coordinate of the i-th pile head (m)

\subsection*{2.7.2 Foundation Design Force}
[List of forces]
\(\mathrm{Rd}+0.5 \mathrm{Rl}=3800(\mathrm{kN})\)
As \(=\) Fpga \(*\) PGA \(=0.44\) (g)
\(\mathrm{Wp}=1269(\mathrm{kN})\); weight of the column
Wf= \(1436(\mathrm{kN})\); weight of the pile cap
\(\mathrm{Mu}=19456(\mathrm{kN} * \mathrm{~m})\) : flexural resistance of the column

Design force for the foundation design is calculated as follows.


Figure 2.7.2-1 Determination of Foundation Design Force
[Inelastic hinging forces]
Mp: the column overstrength moment resistance ( \(\mathrm{kN}^{*} \mathrm{~m}\) );
\[
\begin{aligned}
\mathrm{Mp} & =1.3^{*} \mathrm{Mu} \\
& =1.3^{*} 19456 \\
& =25293\left(\mathrm{kN}^{*} \mathrm{~m}\right)
\end{aligned}
\]

Vp: the column overstrength shear resistance (kN);

[Seismic inertial force of the footing]
\[
\begin{aligned}
\mathrm{Ff} & =\mathrm{Wf} *\left(0.5^{*} \mathrm{As}\right) \\
& =1436^{*}\left(0.5^{*} 0.44\right) \\
& =316(\mathrm{kN}) \\
\mathrm{Mf} & =\mathrm{Ff} * \mathrm{hf} / 2 \\
& =316^{*} 0.95 \\
& =300\left(\mathrm{kN}^{*} \mathrm{~m}\right)
\end{aligned}
\]

Where,
hf: height of the footing (m); hf= 1.9
[Design force for longitudinal direction]
- Nd: design axial force (kN);
\[
\begin{aligned}
\mathrm{Nd} & =\mathrm{Rd}+0.5^{*} \mathrm{Rl}+\mathrm{Wp}+\mathrm{Wf}+\mathrm{Wso} \\
& =2900+0.5^{*} 1800+1269+1436+267 \\
& =6772(\mathrm{kN})
\end{aligned}
\]
- Vd: design shear force (kN);
\[
\begin{aligned}
\mathrm{Vd} & =\mathrm{Vp}+\mathrm{Ff} \\
& =2529+316 \\
& =2845(\mathrm{kN})
\end{aligned}
\]
- Md: design bending moment ( \(\mathrm{kN} * \mathrm{~m}\) )
\[
\begin{aligned}
\mathrm{Md} & =\mathrm{Mp}+\mathrm{Mf} \\
& =25293+300 \\
& =25593\left(\mathrm{kN}^{*} \mathrm{~m}\right)
\end{aligned}
\]
[Design force for longitudinal direction]
- Nd: design axial force (kN);
\[
\begin{aligned}
\mathrm{Nd} & =\mathrm{Rd}+0.5 * \mathrm{Rl}+\mathrm{Wp}+\mathrm{Wf}+\mathrm{Wso} \\
& =2900+0.5^{*} 1800+1269+1436+267 \\
& =6772(\mathrm{kN})
\end{aligned}
\]
- Vd: design shear force (kN);
\[
\begin{aligned}
\mathrm{Vd} & =\mathrm{Vp}+\mathrm{Ff} \\
& =2108+316 \\
& =2424(\mathrm{kN})
\end{aligned}
\]
- Md: design bending moment (kN*m)
\[
\begin{aligned}
\mathrm{Md} & =\mathrm{Mp}+\mathrm{Mf} \\
& =25293+300 \\
& =25593(\mathrm{kN} * \mathrm{~m})
\end{aligned}
\]


\subsection*{2.7.3 Reaction Force and Displacement of Each Pile}

\subsection*{2.7.3.1 Reaction Force and Displacement of Each Pile for Longitudinal Direction}
[Step-1: Calculation of "displacement and rotation" of the pile cap]
Displacement of each pile is calculated as follows.
\begin{tabular}{|l|}
\hline Axx* \(\delta x+\) Axy* \(\delta y+A x a * \alpha=V d\) \\
Ayx* \(\delta x+A y y * \delta y+A y a * \alpha=N d\) \\
Aax* \(\delta x+A a y * \delta y+A a a^{*} \alpha=\mathrm{Md}\) \\
\\
{\([\) Unknown parameters \(]\)} \\
\(\delta x:\) lateral displacement (m) \\
\(\delta y:\) vertical displacement (m) \\
\(\alpha:\) rotational angle (degrees)
\end{tabular}



Figure 2.7.3-1 Reaction Force and Displacement of Each Pile
- \(\delta \mathrm{x}\) : lateral displacement at the origin "O" (m);
\[
\begin{aligned}
\delta_{x} & =\frac{V_{d} * A_{a a}-M_{d} * A_{x a}}{A_{x x} * A_{a a}-A_{x a} * A_{a x}} \\
& =\frac{2845 * 7133250-25593 *(-1194008)}{680586 * 7133250-(-1194008) *(-1194008)} \\
& =0.0148(\mathrm{~m})
\end{aligned}
\]
- \(\delta \mathrm{y}\) : vertical displacement at the origin " O " (m);
\[
\begin{aligned}
\delta_{y} & =\frac{N_{d}}{A_{y y}} \\
& =\frac{6772}{1884000} \\
& =0.00359(\mathrm{~m})
\end{aligned}
\]
- \(\alpha\) : rotational angle of the footing (degrees)
\[
\begin{aligned}
\alpha & =\frac{-V_{d} * A_{a x}+M_{d} * A_{x x}}{A_{x x} * A_{a a}-A_{x a} * A_{a x}} \\
& =\frac{-2845 *(-1194008)+25593 * 680586}{680586 * 7133250-(-1194008) *(-1194008)} \\
& =0.00607(\mathrm{rad})
\end{aligned}
\]
[Step-2: Calculation of reaction force at each pile head]
Reaction forces at each pile head
\begin{tabular}{|c|c|c|c|c|}
\hline Row & Xi (m) & Pni (kN) & Phi (kN) & Mti (kN*m) \\
\hline 1 & -1.250 & -1255.2 & 470.8 & 1293.2 \\
\hline 2 & 1.250 & 3509.7 & 470.8 & 1293.2 \\
\hline
\end{tabular}

Where,
Pni \(=\mathrm{Kv}^{*}\left(\delta \mathrm{y}+\alpha^{*} \mathrm{Xi}\right)\) : axial force acting on "pile heads in i-th row" \((\mathrm{kN})\)
Phi \(=\mathrm{K} 1 * \delta \mathrm{x}-\mathrm{K} 2 * \alpha\) : horizontal force acting on "pile heads in i-th row" \((\mathrm{kN})\)

\(\mathrm{Mti}=-\mathrm{K} 3 * \delta \mathrm{x}+\mathrm{K} 4 * \alpha\) : bending moment acting on "pile heads in i-th row" \((\mathrm{kN} * \mathrm{~m})\)
(Calculation example; piles in the 2nd row)
- \(\mathrm{Pn}_{2}\) : axial force acting on "pile head in the 2nd row" \((\mathrm{kN})\);
\[
\begin{aligned}
\mathrm{Pn}_{2} & =\mathrm{Kv}^{*}\left(\delta \mathrm{y}+\alpha^{*} \mathrm{X}_{2}\right) \\
& =314000 *(0.00359+0.00607 * 1.25) \\
& =3509.7(\mathrm{kN})
\end{aligned}
\]
\(\mathrm{Ph}_{2}\) : horizontal force acting on "pile head in the 2nd row" \((\mathrm{kN})\);
\[
\begin{aligned}
\mathrm{Ph}_{2} & =\mathrm{K} 1 * \delta \mathrm{x}-\mathrm{K} 2 * \alpha \\
& =113431 * 0.0148-199001 * 0.00607 \\
& =470.8(\mathrm{kN})
\end{aligned}
\]
\(\mathrm{Mt}_{2}\) : bending moment acting on "pile head in the 2 nd row" \(\left(\mathrm{kN}^{*} \mathrm{~m}\right)\);
\[
\begin{aligned}
\mathrm{Mt}_{2} & =-\mathrm{K} 3 * \delta \mathrm{x}+\mathrm{K} 4 * \alpha \\
& =-199001 * 0.0148+698250 * 0.00607 \\
& =1293.2(\mathrm{kN} * \mathrm{~m})
\end{aligned}
\]

[Step-3: Graphing of "reaction force and displacement" of each pile] Reaction force and displacement of each pile is graphed as follows.
1) Rigid-pile-head connection
\[
y=\frac{P_{h i}}{2 * E * I * \beta^{3}} e^{-\beta^{*} X}\left\{\left(1+\beta^{*} h_{0}\right) * \cos \left(\beta^{*} X\right)-\beta^{*} h_{0} * \sin \left(\beta^{*} X\right)\right\}
\]
: horizontal displacement of a pile (m)
\[
M=\frac{-P_{h i}}{\beta} e^{-\beta^{*} X}\left\{\beta^{*} h_{0} * \cos \left(\beta^{*} X\right)-\left(1+\beta^{*} h_{0}\right) * \sin \left(\beta^{*} X\right)\right\}
\]
: bending moment of a pile \(\left(\mathrm{kN}^{*} \mathrm{~m}\right)\)
\[
S=-P_{h i} * e^{-\beta^{*} X}\left\{\cos \left(\beta^{*} X\right)-\left(1+2 * \beta^{*} h_{0}\right) * \sin \left(\beta^{*} X\right)\right\}
\]
: shear force of a pile (kN)
2) Hinge-pile-head connection
\(M=\frac{P_{h i}}{\beta} e^{-\beta^{*} X} \sin \left(\beta^{*} X\right):\) bending moment of a pile \(\left(\mathrm{kN}^{*} \mathrm{~m}\right)\)



Figure 2.7.3-2 Reaction Force and Displacement of the Single Pile
(Note)
- Maximum moment under the ground for rigid-pile-head connection, \(\mathrm{M}_{\max }\left(\mathrm{kN} \mathrm{k}^{*}\right)\);
\[
\begin{aligned}
M_{\max } & =\frac{-P_{h i}}{2 * \beta} \sqrt{\left(1+2 * \beta^{*} h_{0}\right)^{2}+1} * e^{-\beta^{* l m}} \\
& =\frac{-470.8}{2 * 0.285} \sqrt{(1+2 * 0.285 * 2.746)^{2}+1} * e^{-0.285 * 1.304} \\
& =-1568.4(\mathrm{kN} * \mathrm{~m}) \\
l_{m}= & \frac{1}{\beta} \tan ^{-1}\left(\frac{1}{1+2 * \beta^{*} h_{0}}\right) \\
& =\frac{1}{0.285} \tan ^{-1}\left(\frac{1}{1+2 * 0.285 * 2.746}\right) \\
& =1.304(\mathrm{~m})
\end{aligned}
\]
\[
h_{0}=M_{t} / P_{h i}: \text { converted pile projection length (m) }
\]
= 1293.2/470.8
\[
=2.746(\mathrm{~m})
\]
- Maximum moment under the ground for hinge-pile-head connection, \(\mathrm{M}_{\max }(\mathrm{kN} * \mathrm{~m})\);
\[
\begin{aligned}
M_{\max } & =\frac{-P_{h i}}{\beta} e^{-\beta^{* l m}} * \sin \left(\beta^{*} l_{m}\right) \\
& =\frac{-470.8}{0.285} e^{-0.285 * 2.756} * \sin (0.285 * 2.756) \\
& =-532.6(\mathrm{kN} * \mathrm{~m}) \\
l_{m}= & \frac{\pi}{4 * \beta} \\
& =\frac{3.14}{4 * 0.285} \\
& =2.756(\mathrm{~m})
\end{aligned}
\]

\subsection*{2.7.3.2 Reaction Force and Displacement of Each Pile for Transverse Direction}
[Step-1: Calculation of "displacement and rotation" of the pile cap] - \(\delta x\) : lateral displacement at the origin " O " (m);
\[
\begin{aligned}
\delta_{x} & =\frac{V_{d} * A_{a a}-M_{d} * A_{x a}}{A_{x x} * A_{a a}-A_{x a} * A_{a x}} \\
& =\frac{2424 * 7133250-25593 *(-1194008)}{680586 * 12039500-(-1194008) *(-1194008)} \\
& =0.0088(\mathrm{~m})
\end{aligned}
\]
- \(\delta \mathrm{y}\) : vertical displacement at the origin " O " ( m );
\[
\begin{aligned}
\delta_{y} & =\frac{N_{d}}{A_{y y}} \\
& =\frac{6772}{1884000} \\
& =0.00359(\mathrm{~m})
\end{aligned}
\]
\(-\alpha\) : rotational angle of the footing (degrees)
\[
\begin{aligned}
\alpha & =\frac{-V_{d} * A_{a x}+M_{d} * A_{x x}}{A_{x x} * A_{a a}-A_{x a} * A_{a x}} \\
& =\frac{-2424 *(-1194008)+25593 * 680586}{680586 * 12039500-(-1194008) *(-1194008)} \\
& =0.003(\mathrm{rad})
\end{aligned}
\]
[Step-2: Calculation of reaction force at each pile head]
Reaction forces at each pile head
\begin{tabular}{|c|c|c|c|c|}
\hline Row & Xi (m) & Pni (kN) & Phi (kN) & Mti (kN*m) \\
\hline 1 & -2.500 & -1227.7 & 401.2 & 343.5 \\
\hline 3 & 2.500 & 3482.3 & 401.2 & 343.5 \\
\hline
\end{tabular}

Where,
Pni \(=\mathrm{Kv}^{*}\left(\delta \mathrm{y}+\alpha^{*} \mathrm{Xi}\right)\) : axial force acting on "pile heads in i-th row" (kN)
Phi= K1* \(\delta \mathrm{x}-\mathrm{K} 2 * \alpha\) : horizontal force acting on "pile heads in i-th row" (kN)
Mti= -K3* \(\delta \mathrm{x}+\mathrm{K} 4 * \alpha\) : bending moment acting on "pile heads in i-th row" (kN*m)
[Step-3: Graphing of "reaction force and displacement" of each pile]
Reaction force and displacement of each pile is graphed as follows.


Figure 2.7.3-3 Reaction Force and Displacement of the Single Pile
(Note)
- Maximum moment under the ground for rigid-pile-head connection, \(\mathrm{M}_{\max }\left(\mathrm{kN} \mathrm{k}^{*}\right)\);
\[
\begin{aligned}
M_{\max } & =\frac{-P_{h i}}{2 * \beta} \sqrt{\left(1+2 * \beta * h_{0}\right)^{2}+1} * e^{-\beta^{* l m}} \\
& =\frac{-343.5}{2 * 0.285} \sqrt{(1+2 * 0.285 * 0.856)^{2}+1} * e^{-0.285 * 2.076} \\
& =-698.3(\mathrm{kN} * \mathrm{~m}) \\
l_{m}= & \frac{1}{\beta} \tan ^{-1}\left(\frac{1}{1+2 * \beta^{*} h_{0}}\right) \\
= & \frac{1}{0.285} \tan ^{-1}\left(\frac{1}{1+2 * 0.285 * 0.856}\right) \\
= & 2.076(\mathrm{~m})
\end{aligned}
\]
\(h_{0}=M_{t} / P_{h i}\) : converted pile projection length (m)
\[
=343.5 / 401.2
\]
\[
=0.856(\mathrm{~m})
\]
- Maximum moment under the ground for hinge-pile-head connection, \(\mathrm{M}_{\max }(\mathrm{kN} * \mathrm{~m})\);
\[
\begin{aligned}
M_{\max } & =\frac{-P_{h i}}{\beta} e^{-\beta^{* l m}} * \sin \left(\beta * l_{m}\right) \\
& =\frac{-401.2}{0.285} e^{-0.285 * 2.756} * \sin (0.285 * 2.756) \\
& =-453.8(\mathrm{kN} * \mathrm{~m}) \\
l_{m}= & \frac{\pi}{4 * \beta} \\
& =\frac{3.14}{4 * 0.285} \\
& =2.756(\mathrm{~m})
\end{aligned}
\]

\subsection*{2.7.4 Stability Verification}

\subsection*{2.7.4.1 Parameters for Stability Verification}
[Verification parameters for longitudinal direction]
- Lateral displacement; \(\delta x=14.8\) (mm)
- Push-in force; \(\left(\mathrm{P}_{\mathrm{ni}}\right)_{\text {max }}=3509.7\) (kN)
- Pull-out force; \(\left(\mathrm{P}_{\mathrm{ni}}\right)_{\text {min }}=-1255.2(\mathrm{kN})\)
[Verification force for transverse direction]
- Lateral displacement; \(\delta x=8.8\) (mm)
- Push-in force; \(\left(\mathrm{P}_{\mathrm{n}}\right)_{\max }=3482.3(\mathrm{kN})\)
- Pull-out force; \(\left(\mathrm{P}_{\mathrm{n}}\right)_{\text {min }}=-1227.7(\mathrm{kN})\)

\subsection*{2.7.4.2 Bearing Capacity and Capacity against Axial Pull-out Force}
[Bearing capacity]
\(\mathrm{R}_{\mathrm{R}}\) : bearing capacity against push-in force of single pile (kN);
\[
\begin{aligned}
\mathrm{R}_{\mathrm{R}} & =\gamma^{*}(\phi * \mathrm{Rn}-\mathrm{Ws})+\mathrm{Ws}-\mathrm{W} \\
& =0.65^{*}(1.0 * 6337.8-68.1)+68.1-109.9 \\
& =4009.6(\mathrm{kN})
\end{aligned}
\]

Where,

\(\gamma\) : modification coefficient depending on nominal bearing resistance estimation method; \(\gamma=1.0\)
\(\phi\) : resistance factor for bearing capacity under extreme event limit state; \(\phi=0.65\)
Rn : nominal resistance of pile ( kN );
\[
\begin{aligned}
\mathrm{Rn} & =\mathrm{qd} * \mathrm{~A}+\mathrm{U} * \sum \mathrm{li} * \mathrm{fi} * \mathrm{DE} \\
& =5000 * 0.785+2412.8 \\
& =6337.8(\mathrm{kN})
\end{aligned}
\]
qd: ultimate end bearing capacity intensity (kN/m2); qd= 5000
A: sectional area of a pile \((\mathrm{m} 2) ; \mathrm{A}=\left(\pi^{*} \mathrm{D}^{2}\right) / 4=\left(3.14^{*} 1.0^{2}\right) / 4=0.785\)
D: pile diameter (m); D= 1.0 (m)
U : perimeter of the pile (m); \(\mathrm{U}=\pi * \mathrm{D}=3.14 * 1.0=3.14\)
li: thickness of i-th layer considered for the bearing capacity (m)
fi: skin friction of i-th layer ( \(\mathrm{kN} / \mathrm{m} 2\) )
DE: reduction factor of i-th layer's soil parameters considering liquefaction effects
From the following table,
- \(\mathrm{U} * \sum \mathrm{li} * \mathrm{fi} * \mathrm{DE}=2412.8(\mathrm{kN})\); nominal skin friction
- Ws=A* \(\sum \mathrm{li}^{*} \gamma^{\prime}=68.1(\mathrm{kN})\); weight of soil inside the pile

Calculation of friction resistance
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Layer & \begin{tabular}{c} 
Layer \\
type
\end{tabular} & \begin{tabular}{c}
\(l \mathrm{i}\) \\
\((\mathrm{m})\)
\end{tabular} & N -value & \begin{tabular}{c}
\(\gamma^{\prime}\) \\
\((\mathrm{kN} / \mathrm{m} 3)\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{li}^{*} \gamma^{\prime}{ }^{*} \mathrm{~A}\) \\
\((\mathrm{kN})\)
\end{tabular} & \begin{tabular}{c} 
fi \\
\((\mathrm{kN} / \mathrm{m} 2)\)
\end{tabular} & DE & \begin{tabular}{c}
\(\mathrm{U}^{*} \mathrm{Li}^{*} \mathrm{fi}{ }^{*} \mathrm{DE}\) \\
\((\mathrm{kN} / \mathrm{m} 2)\)
\end{tabular} \\
\hline 1 & Sand & 3.50 & 11 & 9.0 & 24.7 & 55 & 0.7 & 403.2 \\
\hline 2 & Cray & 4.00 & 7 & 7.0 & 22.0 & 70 & - & 879.2 \\
\hline 3 & Rock & 1.00 & 28 & 9.0 & 7.1 & 150 & - & 471.0 \\
\hline 4 & Rock & 1.40 & 50 & 13.0 & 14.3 & 150 & - & 659.4 \\
\hline 5 & 0.000 & 0.00 & 0 & 0.0 & 0.0 & 0 & - & 0.0 \\
\hline 6 & 0.000 & 0.00 & 0 & 0.0 & 0.0 & 0 & - & 0.0 \\
\hline 7 & 0.000 & 0.00 & 0 & 0.0 & 0.0 & 0 & - & 0.0 \\
\hline Sum & & & & Ws= & 68.1 & & & 2412.8 \\
\hline
\end{tabular}

W: effective weight of the pile and soil inside it; \(\mathrm{W}=(\gamma \mathrm{c}-\gamma \mathrm{W})^{*} \mathrm{~A} * \mathrm{~L}=(24.0-10.0)^{*} 0.785^{*} 10.0=109.9\) \(\gamma_{\mathrm{c}}\) : unit weight of pile \((\mathrm{kN} / \mathrm{m} 3) ; \gamma_{\mathrm{c}}=24.0\)
\(\gamma_{\mathrm{w}}\) : unit weight of water \((\mathrm{kN} / \mathrm{m} 3)\); \(\gamma_{\mathrm{w}}=10.0\)
L : length of the pile (m); \(\mathrm{L}=10.0\)
[Capacity against axial pull-out force]
\(\mathrm{P}_{\mathrm{R}}\) : factored axial pull-out resistance of single pile (kN);
\[
\begin{aligned}
\mathrm{P}_{\mathrm{R}} & =-\left(\phi^{*} \mathrm{Pn}+\mathrm{W}\right) \\
& =-(0.50 * 2412.8+109.9) \\
& =-1316.3(\mathrm{kN})
\end{aligned}
\]

Where,

\(\phi\) : resistance factor for capacity against axial pull-out force under extreme event limit state; \(\phi=0.50\)
Pn: nominal axial pull-out resistance of single pile (kN); Pn= U* \(\sum\) li \(* \mathrm{fi}^{*}\) DE= 2412.8
W: effective weight of the pile and soil inside it; \(W=(\gamma c-\gamma \mathrm{w}) * \mathrm{~A} * \mathrm{~L}=109.9\)

\subsection*{2.7.4.3 Stability Verification for Longitudinal Direction}
- Displacement verification
\[
\delta x=14.8<15.0(\mathrm{~mm})(\mathrm{OK})
\]
- Stability verification against push-in force
\[
\left(\mathrm{P}_{\mathrm{ni}}\right)_{\max }=3509.7<4009.6(\mathrm{kN})(\mathrm{OK})
\]
- Stability verification against pull-out force
\[
\left(\mathrm{P}_{\mathrm{ni}}\right)_{\min }=-1255.2<-1316.3(\mathrm{kN})(\mathrm{OK})
\]

\subsection*{2.7.4.4 Stability Verification for Transverse Direction}
- Displacement verification
\(\delta x=8.8<15.0(\mathrm{~mm})(\mathrm{OK})\)
- Stability verification against push-in force
\(\left(\mathrm{P}_{\mathrm{ni}}\right)_{\max }=3482.3<4009.6(\mathrm{kN})(\mathrm{OK})\)
- Stability verification against pull-out force
\[
\left(\mathrm{P}_{\mathrm{ni}}\right)_{\min }=-1227.7<-1316.3(\mathrm{kN})(\mathrm{OK})
\]

\subsection*{2.7.5 Verification of Pile Resistance against Seismic Force}

\subsection*{2.7.5.1 Forces for Verification of Pile Resistance}
[Verification forces for longitudinal direction]
- \(\mathrm{M}=1568.4(\mathrm{kN} * \mathrm{~m})\)
- \(\mathrm{S}=470.8(\mathrm{kN})\)
[Verification forces for transverse direction]
- M= 698.3 (kN*m)
- \(\mathrm{S}=401.2\) (kN)

\subsection*{2.7.5.2 Pile Resistance}

\[
\mathrm{Mr}=\phi^{*} \mathrm{Mn}
\]
\[
\begin{aligned}
& =0.9 * 2021 \\
& =1818.9(\mathrm{kN} * \mathrm{~m})
\end{aligned}
\]
\(\left(\mathrm{Nd}=\left(\mathrm{P}_{\mathrm{ni}}\right)_{\text {min }}=-1228\right)\)
Where,
Mu: flexural resistance of single pile ( \(\mathrm{kN} * \mathrm{~m}\) ) with re-bars of 18-D36
\(\phi\) : resistance factor; \(\phi=0.9\)
Mn : nominal flexural resistance ( \(\mathrm{kN} * \mathrm{~m}\) )
Note: \(\phi^{*} \mathrm{Mn}\) is obtained from "the N-M interaction diagram" shown below


Figure 2.7.5-1 N-M Interaction Diagram of the Column
[Shear resistance]
- Step-1: calculation of "Vn"
\(\mathrm{Vn}=\mathrm{Vc}+\mathrm{Vs}\)
\(=0+1074\)
\(=1074(\mathrm{kN})\)
Where,
Vn: nominal shear resistance ( kN )
Vc: shear strength developed by concrete (kN);
\(\mathrm{Vc}=0.083 * \beta^{*} \sqrt{\mathrm{f}^{\prime} \mathrm{c}^{\prime}} * \mathrm{bv} * d v\)
\(=0(\mathrm{kN})\) (to be on the conservative side)
Vs: shear strength developed by re-bars (kN);
Vs= (Av*fy*dv*cot \(\theta\) )/s
\(=(398 * 415 * \cot 45) / 100\)
\(=1074(\mathrm{kN})\)
\(\beta\) : factor indicating ability of diagonally cracked concrete to transmit tension and shear; \(\beta=2.0\)
\(\theta\) : Angle of inclination of diagonal compressive stress (degrees); \(\theta=45\)
f'c': specified compressive strength of concrete ( \(\mathrm{N} / \mathrm{mm} 2\) ); fc'= 28
bv: effective web width (mm); bv= 1000
dv: effective shear span (m);
\[
\begin{aligned}
\mathrm{dv} & =0.9^{*} \mathrm{de}=0.9^{*}(\mathrm{D} / 2+\mathrm{Dr} / \pi) \\
& =0.9^{*}(1000 / 2+700 / 3.14) \\
& =651(\mathrm{~mm})
\end{aligned}
\]

D: Gross diameter of the column (mm); \(\mathrm{D}=1000\)

Simplified procedure is applied with the following values;
\(-\beta=2.0\)
- \(\theta=45\)


Dr: Diameter of the circle passing through the centers of longitudinal re-bars (mm); Dr= 700
fy: yield strength of transverse reinforcement
( \(\mathrm{N} / \mathrm{mm} 2\) ); fy= 415
Av: area of shear reinforcement within distance "s"
(mm2); Av= (199*2)*2=398 (diameter: 16)
s: spacing of transverse reinforcement (mm); s= 100
- Step-2: determination of "Vr"
\(\mathrm{Vr}=\boldsymbol{\phi}^{*} \mathrm{Vn}\)
\(=0.9 * 1074\)
\(=967.0(\mathrm{kN})\)
Where,
Vr: shear resistance of the column (kN)
\(\phi\) : resistance factor; \(\phi=0.9\)

\subsection*{2.7.5.3 Verification for Resistance of Single Pile}
[Resistance verification for longitudinal direction]
- Flexural resistance of single pile
\(\mathrm{Md}=1568.4<1812.6\) (OK)
(0.87) (1.00)
- Shear resistance of single pile
\(\mathrm{Vd}=470.8<967.0(\mathrm{OK})\)
(0.49) (1.00)
[Capacity verification]
- Flexural resistance of single pile
\(\mathrm{Md}=698.3<1818.9\) (OK)
(0.38) (1.00)
- Shear resistance of single pile
\(\mathrm{Vd}=401.2<967.0\) (OK)
(0.41) (1.00)

\subsection*{2.7.6 Verification of Minimum Required Reinforcement}

\subsection*{2.7.6.1 Verification of Minimum Required Longitudinal Reinforcement}

The longitudinal reinforcement ratio is verified to be not less than 0.75 as shown below.
\[
\begin{aligned}
\rho \mathrm{s} & =\mathrm{Aa} / \mathrm{Ag} \\
& =0.018 / 0.785 \\
& =0.023>0.0075(\mathrm{OK})
\end{aligned}
\]

Where,
\(\rho s\) : ratio of longitudinal reinforcement to gross area of concrete section
Aa: total area of longitudinal reinforcement (m2); Aa=As*n \(=\left(1006 / 10^{6}\right) * 18=0.018\)
As: cross-sectional area of single longitudinal reinforcement bar (mm2); As= 1006
n : number of longitudinal reinforcement bar; \(\mathrm{n}=18\)
Ag: gross area of concrete section (m2); \(\mathrm{Ag}=\pi^{*}(\mathrm{D} / 2)^{2}=3.14^{*}(1.0 / 2)^{2}=0.785\)
D : diameter of pile (m); \(\mathrm{D}=1.0\)

\subsection*{2.7.6.2 Verification of Minimum Required Transverse Reinforcement}

The transverse reinforcement ratio satisfies the requirement as shown below.
\[
\begin{aligned}
\rho_{s} & \geq 0.12 * \frac{f_{c}^{\prime}}{f_{y h}^{\prime}} \\
& =0.12 * \frac{28}{415} \\
& =0.0081
\end{aligned}
\]

Where,
\(\rho s\) : ratio of transverse reinforcement to total volume of concrete core
\(\mathrm{f}^{\prime} \mathrm{c}^{\prime}\) : specified compressive strength of concrete ( \(\mathrm{N} / \mathrm{mm} 2\) ); \(\mathrm{fc}=28\)
fyh: yield strength of transverse reinforcement \((\mathrm{N} / \mathrm{mm} 2)\); \(\mathrm{fy}=415\)

Therefore,
\[
\begin{aligned}
\rho_{s} & =\frac{\pi * D_{r} *\left(A_{v} / 2\right)}{\pi *\left(D_{r} / 2\right)^{2} * s}=\frac{4 *\left(A_{v} / 2\right)}{D_{r} * s} \\
& =\frac{4 *(398 / 2)}{700 * 100} \\
& =0.0114>0.0081(\text { OK })
\end{aligned}
\]

Where,
ps: ratio of transverse reinforcement to total volume of concrete core
s : spacing of transverse reinforcement (mm); s= 100
Av: area of shear reinforcement within distance "s" (mm2); Av= 398 (=199*2, As= 199)
Dr: diameter of the circle passing through the centers of longitudinal re-bars (mm); \(\mathrm{Dr}=700\)

\title{
3. Cost Comparative Study on Determination of Return Period of Design Acceleration Response Spectrum for BSDS
}

\subsection*{3.1 Background and Objective of the Cost Comparative Study}

\subsection*{3.1.1 Background}

Development of design earthquake ground motions for use in seismic design codes in the Philippines has been largely stagnated. In the early part of this project, JICA Study Team recognized the necessity of study on development and sustainable evolution of localized design earthquake ground motions for use in seismic design of Philippine bridges. However, the Study Team found out the deficiencies regarding the localization of ground motions such as;
- adoption of AASHTO code in the past,
- difficulties to adopt the latest code,
- non-existence of strong-motion records in the Philippines, and
- limited existing data in seismology (not directly usable in seismic hazard analysis).

In view of the above, the Study Team decided to conduct the study on development of localized design earthquake ground motions using probabilistic seismic hazard analysis (PSHA) in order to generate design spectral parameters for obtaining design acceleration response spectra whose methodology was based on the latest AASHTO code. As a result, counter maps of spectral parameters (PGA, SA at 0.2 sec , and SA at 1.0 sec ) corresponding to 500 -year return period and 1000 -year return period earthquakes were prepared. Now that the contour maps are prepared, the earthquake return period applied in the seismic design in the Philippines needs to be decided, considering the balance between structural safety and economics.

\subsection*{3.1.2 Objective}

The objective of the comparative study here is to examine;
- the effect of earthquake return period difference (500-year or 1000-year) on structure design, and
- the effect of earthquake design code difference (NSCP or BSDS) on structure design.

\subsection*{3.2 Study Condition}

The comparative study was conducted under the following design conditions. The conditions are totally same as those used in the seismic design example except that three different design acceleration spectra were applied in each study case.
- Bridge type: simply-supported composite steel I-shaped girder bridge
- Span length: 30.0 (m)
- Total road width: 10.5 (m)
- Skew angle: 90 degrees (non-skewed straight bridge)
- Pier type: single circular column
- Pier height: 11.9 (m) (column height: 10.0 (m))
- Foundation type: cast-in-place concrete pile foundation
- Centroid of the superstructure: 2.0 m from the column top
- Reaction forces for the design
- Reaction force caused by "dead load": Rd=2900 (kN/pier)
- Reaction force caused by "live load": Rl=1800 (kN/pier)


Figure 3.2-1 Structural Condition for Comparative Study
- Ground condition (geotechnical investigation result of Lambingan Bridge site; soil type-II)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Layer symbol} & \multirow[t]{3}{*}{Layer Thickness (m)} & \multicolumn{2}{|l|}{\multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Depth } \begin{array}{l}
\text { N-value } \\
(\mathrm{m})
\end{array} 0 \begin{array}{l}
1020304050
\end{array} \\
& 0
\end{aligned}
\]}} & \multicolumn{9}{|c|}{Soil Parameters} \\
\hline & & & & \multicolumn{2}{|l|}{N -value} & \(\gamma \mathrm{t}\) & FC & D50 & C & \(\phi\) & \(\dot{\alpha}^{*}\) Eo & Vsn \\
\hline & & & & Blows & Ave. & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & (\%) & (mm) & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & ( \({ }^{\circ}\) ) & (kN/m²) & (m/sec) \\
\hline Bs & 1 & & & 12 & 12 & 17 & 0.9 & 0.74 & 0 & 35 & 8,400 & 183 \\
\hline \multirow{5}{*}{As} & \multirow{5}{*}{5} & \multicolumn{2}{|r|}{\multirow[t]{5}{*}{}} & 7 & \multirow{5}{*}{11} & 17 & 17.3 & 0.14 & \multirow{5}{*}{0} & \multirow{5}{*}{34} & \multirow{5}{*}{7,700} & \multirow{5}{*}{178} \\
\hline & & & & 6 & & 17 & 28.0 & 0.12 & & & & \\
\hline & & & & 8 & & 17 & 12.0 & 0.21 & & & & \\
\hline & & & & 15 & & 17 & 7.3 & 0.42 & & & & \\
\hline & & & & 21 & & 17 & 7.3 & 0.20 & & & & \\
\hline \multirow{4}{*}{Ac} & \multirow{4}{*}{4} & \multirow{6}{*}{10} & & 7 & \multirow{4}{*}{7} & 15 & 58.1 & - & \multirow{4}{*}{44} & \multirow{4}{*}{0} & \multirow{4}{*}{4,900} & \multirow{4}{*}{191} \\
\hline & & &  & 9 & & 15 & 77.1 & - & & & & \\
\hline & & & & 6 & & 15 & 66.9 & - & & & & \\
\hline & & & & 8 & & 15 & 51.0 & - & & & & \\
\hline WGF & 1 & & \(\cdots\) & 28 & 28 & 17 & 0.2 & 2.38 & - & 37 & 19,600 & 292 \\
\hline \multirow{10}{*}{GF} & \multirow{10}{*}{10} & & \multirow[t]{10}{*}{Bearing layer} & 50 & \multirow{10}{*}{50} & 21 & 0.5 & 0.60 & \multirow{10}{*}{173} & \multirow{10}{*}{21} & \multirow{10}{*}{39,530} & \multirow{10}{*}{292} \\
\hline & & \multirow[b]{8}{*}{15
20} & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline & & & & 50 & & 21 & - & - & & & & \\
\hline
\end{tabular}
- Design acceleration response spectra
1) NSCP (soil type-II)
2) BSDS (soil type-II, 500-year return period; Lambingan Bridge site)
3) BSDS (soil type-II, 1000-year return period; Lambingan Bridge site)


Figure 3.2-2 Design Acceleration Response Spectrum for Comparative Study

\subsection*{3.3 Study Cases}

The following five cases were chosen for the cost comparative study.
Table 3.3-1 Study Cases
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Case} & \multirow[t]{2}{*}{\begin{tabular}{l}
Applied \\
Spectra
\end{tabular}} & \multirow[t]{2}{*}{Return Period
(Design Spectra)} & \multirow[t]{2}{*}{R-factor} & \multicolumn{2}{|l|}{Resistance factor \(\varphi\)} & \multirow[b]{2}{*}{Column stiffness} & \multirow[t]{2}{*}{Disp. check} \\
\hline & & & & Flexural & Shear & & \\
\hline 1 & NSCP & 500-year (NSCP) & 3.0 (Essential/Critical) & 0.75 & 0.85 & Uncracked section & \\
\hline 2 & BSDS & 500-year (BSDS) & 2.0 (Essential) & 0.75 & 0.85 & Cracked section & Yes \\
\hline 3 & BSDS & 1000-year (BSDS) & 2.0 (Essential) & 0.90 & 0.90 & Cracked section & Yes \\
\hline 4 & BSDS & 500-year (BSDS) & 1.5 (Critical) & 0.75 & 0.85 & Cracked section & Yes \\
\hline 5 & BSDS & 1000-year (BSDS) & 1.5 (Critical) & 0.90 & 0.90 & Cracked section & Yes \\
\hline
\end{tabular}

As shown in the above table, the design of five study cases was differentiated with the following six parameters.
1) Applied Spectra

Either NSCP spectra or BSDS spectrum was applied in each study case.
2) Return Period

As the return period of acceleration design spectra, either 500-year or 1000-year was in each study case.
3) Response modification factor (R-factor)

Response modification factor (R-factor) was chosen under single circular column condition for each study case, considering the difference of applied codes and bridge importance. The applied factors are 3.0 for NSCP, 2.0 for BSDS with essential bridge, and 1.5 for BSDS with critical bridge.
4) Flexural resistance factor

Either " \(\varphi=0.75\) " or " \(\varphi=0.90\) " was applied for flexural resistance factor in each study case. " \(\varphi=\) 0.75 " is the factor used with 500-year return period design spectra, based on LFD. Also, " \(\varphi=\)
0.90 " is the factor used with 1000-year return period design spectra, based on LRFD (ver. after 2008).
5) Shear resistance factor

Either " \(\varphi=0.85\) " or " \(\varphi=0.90\) " was applied for shear resistance factor in each study case. " \(\varphi=0.85\) " is the factor used with 500 -year return period design spectra, based on LFD. Also, " \(\varphi=0.90\) " is the factor used with 1000-year return period design spectra, based on LRFD (ver. after 2008).
6) Column stiffness

Either "Uncracked section" or "Cracked section" was applied for column stiffness in bridge analysis. By applying "Cracked section", natural period of the column becomes longer.
7) Displacement Check

Displacement was verified for cases designed in accordance with BSDS.
Note: Foundation spring defined in BSDS was applied to all the above cases.

\subsection*{3.4 Result of the Study}

As shown in the following table, resulted costs ratio of studied cases range from 1.00 to 1.64. Major findings of the study are;
- cost increase by changing R-factor from 3.0 to 2.0 is about 18 \% (comparison of Case-1 and Case-2).
- cost increase by changing R-factor from 3.0 to 1.5 is about 25 \% (comparison of Case-1 and Case-4).
- cost difference caused by difference of earthquake return periods is \(2 \%\) under the condition of Rfactor 2.0 (comparison of Case-2 and Case-3).
- cost difference caused by difference of earthquake return periods is \(32 \%\) under the condition of Rfactor 1.5 (comparison of Case-4 and Case-5).

In consideration of above findings, the application of 1000-year return period design spectrum is considered to be the most realistic and practical. On the contrary, the application of R-factor 1.5 is considered to be unrealistic and impractical for the design of typical bridges. R-factor 1.5 should be applied only the special cases such as the design of very important bridges which connect islands.

Table 3.4-1 Result of the Cost Comparative Study (Summary)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Case} & \multirow[t]{2}{*}{Applied Spectra} & \multirow[t]{2}{*}{Return Period} & \multirow[t]{2}{*}{R-factor} & \multicolumn{2}{|l|}{Resistance factor \(\varphi\)} & \multirow[t]{2}{*}{Column stiffness} & \multirow[t]{2}{*}{Disp. check} & \multirow[t]{2}{*}{\begin{tabular}{l}
Column diameter \\
(m)
\end{tabular}} & \multirow[t]{2}{*}{No. of piles} & \multicolumn{2}{|l|}{Cost} \\
\hline & & & & Flexura & Shear & & & & & Php & Ratio \\
\hline 1 & NSCP & \[
\begin{aligned}
& 500 \text {-year } \\
& \text { (NSCP) }
\end{aligned}
\] & 3.0 (Essential/
Critical) & 0.75 & 0.85 & Uncracked section & - & 2.0 & 5 & 3,781,279 & 1.00 \\
\hline 2 & BSDS & \[
\begin{aligned}
& \text { 500-year } \\
& \text { (BSDS) }
\end{aligned}
\] & \begin{tabular}{l}
2.0 \\
(Essential)
\end{tabular} & 0.75 & 0.85 & Cracked section & Yes & 2.1 & 6 & 4,474,810 & 1.18 \\
\hline 3 & BSDS & \[
\begin{array}{|c|}
\hline 1000 \text {-year } \\
\text { (BSDS) } \\
\hline
\end{array}
\] & \begin{tabular}{l}
2.0 \\
(Essential)
\end{tabular} & 0.90 & 0.90 & Cracked section & Yes & 2.1 & 6 & 4,575,204 & 1.21 \\
\hline 4 & BSDS & \[
\begin{gathered}
\text { 500-year } \\
\text { (BSDS) }
\end{gathered}
\] & 1.5
(Critical) & 0.75 & 0.85 & Cracked section & Yes & 2.4 & 6 & 4,723,966 & 1.25 \\
\hline 5 & BSDS & \[
\begin{array}{|c|}
\hline 1000 \text {-year } \\
\text { (BSDS) }
\end{array}
\] & 1.5
(Critical) & 0.90 & 0.90 & Cracked section & Yes & 2.4 & 8 & 6,242,197 & 1.65 \\
\hline
\end{tabular}

The further detail of the cost comparative study result is shown in the following table. Additionally, the effect of displacement check on the cost was shown after the main comparison table.

Table 3.4-2 Result of the Cost Comparative Study (Detail)

1) Verification formula: \(\Delta * \mathrm{Pu}=0.25^{*} \varphi^{*} \mathrm{Mn}\)

Table 3.4-3 Result of the Cost Comparative Study (Effect of Displacement Check on the Cost)

1) Verification formula: \(\Delta^{*} \mathrm{Pu}=0.25^{*} \varphi^{*} \mathrm{Mn}\)

Note: There's no effect of displacement check on cost of Case-4 \& 5 because displacement check doesn't dominate the designs.

\section*{PART 3}

DESIGN EXAMPLE-2:
SEISMIC DESIGN EXAMPLE OF CONTINUOUS BRIDGE (REPLACEMNT PLAN OF MAWO BRIDGE)

\section*{1. Design Condition}

\subsection*{1.1 Location of Mawo Bridge}


LOCATION MAP OF STUDY BRIDGES (PACKAGE C : OUTSIDE METRO MANILA)
Figure 1.1-1 Location of Mawo bridge

\subsection*{1.2 Design Condition}

For the design example using new "DPWH Guide Specifications LRFD Bridge Seismic Design Specifications, 1st Edition, 2013", hereinafter referred to as "BSDS", Mawo bridge is selected because the superstructure is of girder type that does not behave with complicated modes and there are both structurally different foundation types such as pile and spread foundations; therefore, Mawo bridge may be structurally appropriate bridge for organization of the seismic design example as well as the point of view of general use of new BSDS.


Figure 1.2-1 Mawo Bridge

\section*{(1) Superstructure}


12,700
Figure 1.2-2 Cross Section/ Lane Arrangement of Mawo Bridge
\begin{tabular}{lll} 
Live Loads & \(:\) & AASHTO Live Loads HL93 and Lane Loads \\
Supporting Bearing & \(\vdots\) & Laminated Rubber Bearing - Force Distribution Bearing \\
Supporting Condition & \(:\) & Shown as follows:
\end{tabular}

Table 1.2-1 Supporting Condition of New Bridges
\begin{tabular}{|l|c|c|c|c|}
\hline & \begin{tabular}{c} 
Bearing Support \\
Abutment No.1
\end{tabular} & \begin{tabular}{c} 
Bearing Support \\
Pier No.1
\end{tabular} & \begin{tabular}{c} 
Bearing Support \\
Pier No.2
\end{tabular} & \begin{tabular}{c} 
Bearing Support \\
Abutment No.2
\end{tabular} \\
\hline Longitudinal Direction & Elastic Support & Elastic Support & Elastic Support & Elastic Support \\
\hline Transversal Direction & Fixed & Elastic Support & Elastic Support & Fixed \\
\hline
\end{tabular}
(2) Substructure

Abutment Type : Reversed T Type
Pier Type : RC Wall Type
Foundation : Spread Footing (Abutments No.1)
Cast-In-Place Pile (Piers and Abutment No.2)

\section*{(3) Materials}

Table 1.2-1 Concrete Strength by Structural Member
\begin{tabular}{|c|l|}
\hline \begin{tabular}{c} 
Compressive Strength \\
at 28 days (MPa) \\
(Cylinder Specimen)
\end{tabular} & \multicolumn{1}{c|}{ Structural Member } \\
\hline 40 & PC Girder and Fin-back \\
\hline 28 & Substructure (Pier, Abutment, Pile Caps, Wing wall) \\
\hline 21 & Approach Slab \\
\hline 28 & Cast-in-situ Bored Pile \\
\hline 18 & \begin{tabular}{l} 
Non-reinforced Concrete Structure \\
Lean Concrete
\end{tabular} \\
\hline
\end{tabular}

Table 1.2-2 Properties and Stress Limit of Reinforcing Bars
\begin{tabular}{|c|c|c|c|c|}
\hline Type & \begin{tabular}{c} 
Yield Strength fy \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c} 
Tensile Strength fu \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c} 
Modulus of Elasticity \\
\((\mathrm{MPa})\)
\end{tabular} & \begin{tabular}{c} 
Diameter of Bar \\
\((\mathrm{mm})\)
\end{tabular} \\
\hline Grade 275 & 275 & 500 & 200,000 & D10, D12, D16,D20 \\
\hline Grade 415 & 414 & 620 & 200,000 & D25,D28,D32,D36 \\
\hline
\end{tabular}

\section*{(4) Soil Condition}

The foundation is supported by assumed bearing layer shown as the following tables.
Table 1.2-3 Soil Conditions (L1)
\begin{tabular}{|c|l|c|c|c|c|c|c|}
\hline Layer & & \(\gamma(\mathrm{kN} / \mathrm{m} 3)\) & N -value & \(\mathrm{C}(\mathrm{kN} / \mathrm{m} 2)\) & \(\varphi(\mathrm{deg})\) & \(\mathrm{E} 0(\mathrm{kN} / \mathrm{m} 2)\) & \(\mathrm{Vs}(\mathrm{m} / \mathrm{sec})\) \\
\hline Ac1 & Clay & 14 & 3 & 19 & 0 & 2,100 & 144 \\
\hline As & Sand & 17 & 10 & 0 & 34 & 7,000 & 172 \\
\hline Ag2 & Gravel & 18 & 21 & 0 & 36 & 14,700 & 221 \\
\hline Ac2 & Clay & 18 & 8 & 50 & 0 & 5,600 & 200 \\
\hline Ds1 & Sand & 17 & 17 & 0 & 32 & 11,900 & 206 \\
\hline Ds2 & Sand & 19 & 31 & 0 & 34 & 21,700 & 251 \\
\hline VR & Rock & 21 & 300 & 170 & 38 & 136,098 & 300 \\
\hline
\end{tabular}

Table 1.2-4 Soil Conditions (L2)
\begin{tabular}{|c|l|c|c|c|c|c|c|}
\hline Layer & & \(\gamma(\mathrm{kN} / \mathrm{m} 3)\) & N-value & \(\mathrm{C}(\mathrm{kN} / \mathrm{m} 2)\) & \(\varphi(\mathrm{deg})\) & \(\mathrm{E} 0(\mathrm{kN} / \mathrm{m} 2)\) & \(\mathrm{Vs}(\mathrm{m} / \mathrm{sec})\) \\
\hline Ag1 & Gravel & 18 & 7 & 0 & 32 & 4,900 & 153 \\
\hline Ac1 & Clay & 14 & 2 & 13 & 0 & 1,400 & 126 \\
\hline As & Sand & 19 & 50 & 0 & 41 & 70,000 & 213 \\
\hline VR & Rock & 21 & 300 & 170 & 38 & 136,098 & 300 \\
\hline
\end{tabular}


Figure 1.2-3 Geological Map at Mawo Bridge

\subsection*{1.3 Procedure Flow Chart of the Design Example of Mawo Bridge}

Basically, the design example proceeds in accordance with "1.6 SEISMIC DESIGN FLOWCHART OF BSDS".
The procedure flow chart of this design example Mawo Bridge is shown in the following figure based on newly specified BSDS. In this design example, only the seismic design is mentioned throughout multimode analysis; the design example of limit state design and serviceability design is not included.


Figure 1.3-1 Procedure Flow Chart of the Design Example of Mawo Bridge


Figure 1.3-2 Seismic Design Procedure Flow Chart, Specified in BSDS

\section*{2. Eigenvalue and Response Spectrum Analysis}

\subsection*{2.1 Seismic Analysis Methodology}

\subsection*{2.1.1 General}

For seismic design, responses of structure by given seismic forces must not be exceeded specified limitation values. As the calculation methodologies to obtain such the responses of structure, various numerical computing analytical approaches are worldwidely utilized such as static analysis, dynamic analysis, elastic analysis and elasto-plastic analysis.
Currently, familiar analytical approaches utilized in earthquake countries is categorized into static analysis and dynamic analysis, furthermore dynamic analysis can be categorized into eigenvalue analysis based on single or multimode, response spectrum analysis under elastic method and timehistory response analysis under elasto-plastic method. In this sentence, the characteristic properties of such the various methodologies are organized and the seismic analysis method to be applied to the outline design example is selected.

\subsection*{2.1.2 Static Analysis (Uniform Load Elastic Method)}

Analytical approaches of seismic performance have two methodologies such as static and dynamic analysis. The static analysis is the most simplified method because vibration characteristic has been transposed to static uniform load system under the precondition that equal energy assumption is approval. However, the load system of static analysis is commonly based on a basic vibration mode vector, what it is a basic shape of mode vector that can be transposed to mono-mass-system model and is not applicable to seismically irregular bridge. Furthermore, damping matrix as well as mass matrix do not exist naturally; therefore, the design's flexibility may be comparatively low because responses should be computed depending on only stiffness matrix and because structural damping and hysteresis damping of seismic countermeasure devices such as seismic-isolation bearing and viscosity damper cannot be considered accurately in the analysis.

\section*{< Static Analysis >}
\[
\begin{aligned}
& \text { Internal Forces (Member Forces) }=\text { External Forces (Horizontal Loads): } \\
& \qquad K \times U=P
\end{aligned}
\]

Eq.
K: Stiffness matrix, U: Displacement of Nodes, P: Horizontal Forces

\section*{< Dynamic Analysis >}

Internal Forces (Inertial Forces + Damping Forces + Member Forces) = Seismic Forces:
\[
\begin{equation*}
M \times \ddot{U}+C \times \dot{U}+K \times U=M \times \ddot{Z} \tag{Eq.}
\end{equation*}
\]

M: Mass matrix, C: Damping matrix, K: Stiffness Matrix, \(\ddot{Z}\) :Acceleration Vector, \(\ddot{U}:\) Acceleration Vector of Nodes, \(\dot{U}\) : Velocity of Nodes, \(U\) : Displacement of Nodes

Therefore, the static analysis must not be applied to all of bridge types and structural conditions from the aspect of its property; firstly, a basic vibration mode shown below should be confirmed based, using eigenvalue analysis, whether the deformation shape obtained by static analysis are similar to the basic vibration mode, which can be defined as first mode, or not. Unless synchronization can be seen between them, response spectrum analysis with eigenvalue analysis based on multimode elastic analysis or time history analysis should be applied.


Figure 2.1.2-1 Example of Basic Vibration Mode (Longitudinal Direction)

\subsection*{2.1.3 Eigenvalue Analysis (Single or Multimode Elastic Method)}

Response values are calculated based on vibration property of the bridge and inputted seismic motion. Before calculating specific response values such as sectional forces and displacements, understanding the vibration characteristic of the target bridge must be extremely important phase because not only understanding dynamic behaviors but also dominant basic vibration mode can be understood to be utilized for static analysis. The most familiar methodology to clear this problem is eigenvalue analysis with multimode elastic method. Multi-Degree-of-Freedom and Multi-Mass-Vibration system such as bridge structure has same number of natural periods and vibration modes to number of mass. Such like that, eigenvalue analysis can be defined as calculating characteristic values of multi-massvibration system; the following values are commonly utilized.
(i) Natural Frequency and Natural Period

Natural frequency is defined as the vibration frequency (Hz), and Natural Period is the time (seconds) for a cycle, which indicates the period of well-vibrated vibration system. Eigenvalue analysis is to obtain characteristic values of vibration system, the principal is conformed to the above mentioned equation regarding dynamic analysis in which right side member is zero. Then, damping term should be separated from eigenvalue analysis but should be considered to determine mode damping based on various damping property when response spectrum analysis or time history response analysis. Therefore:
> No effects from inputted seismic motion and its direction
- Effects from mass and structural system
> Non-linear performance of structural members not considered
> Damping coefficient not considered, but later can be considered for response spectrum analysis or time history response analysis
In eigenvalue analysis, the natural frequency \(\omega\) is obtained without consideration of damping factor, using the following equation. Where, the natural period T is the inverse number of the natural frequency.
\[
\begin{equation*}
[K]-\omega^{2}[M]=0 \tag{Eq.}
\end{equation*}
\]
\([K]\) : Stiffness matrix, \([M]\) : Mass matrix
(ii) Participation factor and Effective mass

The participation factor at " j " th mode can be obtained by following the equation. The standard coordination " \(\mathrm{q}_{\mathrm{j}}\) " that is the responses of the mode with larger participation factor become larger and commonly the participation factor have both positive and negative values.
\[
\begin{equation*}
\beta_{j}=\left\{\Phi_{j}\right\}^{T}[M]\{L\} / \bar{M}_{j} \tag{Eq.}
\end{equation*}
\]
\(\beta_{j}\) : Model participation factor, \(\left\{\Phi_{j}\right\}\) : Mode matrix, \([M]\) : Mass matrix, \(\{L\}\) : Acceleration distribution vector: \(\{\ddot{Z}\}=\ddot{z}\{L\}:\{\ddot{Z}\}\) : Acceleration vector, \(\ddot{z}\) :Ground motion acceleration, \(\bar{M}_{j}\) : Equivalent mass

From the participation factor, the effective mass at " j " th mode can be obtained by the following equation and have always positive value and the summation of effective mass of all of the vibration modes must conform to total mass of the structure. This effective mass indicates "vibrating mass in all of mass". In case of modal analysis, accurate analytical results are generally obtained on the basis of adoption of the vibration modes including generally \(90 \%\) of total mass. Thus, the participation factor and the effective mass can present useful indicator of dominant property regarding mass of each vibration mode such as which mass, which direction, how much amount.
\[
\begin{equation*}
m_{j}=\left(\left\{\Phi_{j}\right\}^{T}[M]\{L\}\right)^{2} / \bar{M}_{j} \tag{Eq.}
\end{equation*}
\]
\(m_{j}\) : Effective mass
(iii) Natural Vibration Mode (Mode Vector)

Natural vibration mode, what is called as mode vector, indicated the vibration shape at any mode based on dynamic equation of n-freedom system, which is very important factor because it is required in all the terms consisting of dynamic equation such as mass, damping and stiffness matrix. Generally, standard vibration mode vector \(\left\{\Phi_{j}\right\}\) can be obtained by modal coordination which is transformed from displacement vector \([u]\) under ratio constant condition; then, coupling parameters are disappeared; n-freedom problem can be treated as " \(n\) " of mono-freedom systems. Such the analytical method is called and modal analysis method.

\subsection*{2.1.4 Response Spectrum Analysis}

Response spectrum analysis method can be defined as one of dynamic analytical approach under elastic conditions; maximum responses of structural members are easily confirmed for seismically irregular bridges.
When standard vibration mode vector can be obtained based on previously explained eigenvalue analysis, the modal analysis for the mode vector corresponding to the natural period and damping factors can be easily implemented and can compute maximum response of structural members.
Dynamic analysis consists of this response spectrum analysis and time history response analysis for which response can be computed historically by inputting wave shape historical seismic motion. However, it is not usually necessary to obtain complicated historical responses on seismic design but is frequently necessary to obtain only maximum responses of the structural members. Therefore, maximum responses for each vibration mode under a seismic motion are preliminarily prepared until a certain mode, and then the spectrum processed and organized by natural period and mode damping factor is absolutely response spectrum.
Natural modes can be called as 1st mode, 2nd mode and 3rd mode in the order corresponding to longer natural period or shorter natural vibration.
Where, the vibration modes that should be preliminarily prepared are to be adopted until the mode that over \(90 \%\) of effective mass against total mass has been accumulated. For Mawo bridges, the superstructure type is categorized in girder type bridge not cable supported bridge; hence, 1st mode shape may be dominant mode. Therefore, it is not necessary to consider high modes like suspension bridges.
For superposition of maximum responses of multiple-mass system using response spectrum of each mode, SRSS, Square Rood of Sum of Square, and CQC method, Complete Quadratic Combination are worldwidely utilized.

\subsection*{2.1.5 Time History Analysis}

Time history analysis is one of dynamic analytical approaches to obtain historical responses by inputting historical wave seismic motion. Generally, fiber elements are utilized for analytical model that may be complicated model because historical curves should be inputted into each element. However, in contrast to above mentioned response spectrum method, more advanced and high freedom dynamic behaviors can be obtained because the vibration system under material non-linearity as well as nonlinear historical properties of piers and rubber bearings can be accurately incorporated into the fiber elements.

\subsection*{2.1.6 Applied Methodology of Seismic Analysis}

Based on the DPWH BSDS, application of dynamic analysis to obtain definite solution of seismic behavior is highly recommended, mainly specified in SECTION 4.
Because Mawo bridge is one of multi-span girder type bridges, the seismic behavior may not behave irregularly; static analysis or single-mode elastic method may be applied to the design; however, damping constants of all the structural elements as well as LRB should be appropriately incorporated into the analysis using mode-damping factor in the dynamic method; otherwise, validity and compliance of historical properties of various members and devices to be imputed into fiber model, among structural details of mainly RC piers, hysteresis curves affected significantly by the structural details and newly determined seismic motion, has not be organized completely in DPWH BSDS. Besides, both response spectrum analysis using multimode elastic method considering LRB damping constant and time history analysis under elasto-plastic method are not common methodology for seismic design; introduction of basic dynamic analysis may be highly useful for general designers and engineers in Philippines.
Consequently, for the seismic analysis for the design example of Mawo bridge, the response spectrum analysis with multimode elastic method is selected.

\subsection*{2.2 Analysis Model}

\subsection*{2.2.1 Global Analysis Model}

In this project, as seismic analysis, modal response spectrum analysis is conducted for seismic design. Based on the response results, various structural members can be determined such as piers, foundations, bearings and expansion joints. In the design example of Mawo bridge, for the modal response spectrum analysis, STAAD ProV8i (Bentley System. Inc, USA) is utilized because this software is commonly utilized and distributed in Philippines.
Based on the results of the outline design of superstructure such as member dimension and mass, analytical model and results of modal response spectrum analysis are explained in this item.
Besides, in this design example, abutments are not modeled in the seismic analysis because abutments may have enough strength and stiffness fixed by grounds for seismic vibration; if abutments are modeled in the analysis, excess damping efficiency would be expected to the whole of structural responses.
```

Seismic Analysis: Response Spectrum Analysis based on Modal Eigenvalue Analysis
Software: STAAD ProV8i (Bentley System. Inc, USA)
\ Superstructure Type: PC Fin-Back Box Girder
> Bridge Length : L=205m
> Angle of Alignment: }90\mathrm{ Degrees
> Global Analysis Model and Nodes Coordination :

```



Figure 2.2.1-1 Global Analysis Model


Figure 2.2.1-2 Analysis Model (Superstructure at A1 and P1)


Figure 2.2.1-3 Analysis Model (Superstructure at P2 and A2)


Figure 2.2.1-4 Analysis Model (Substructure P1 and P2)

\subsection*{2.2.2 Member Sectional Properties}

Following table shows node number and their coordination inputted in the analysis.
Table 2.2.2-1 Node Coordination (Girder)
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \multicolumn{1}{c|}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 126 & 104.000 & 1.250 & 0.000 \\
\hline 127 & 108.000 & 1.250 & 0.000 \\
\hline 128 & 112.000 & 1.250 & 0.000 \\
\hline 129 & 116.000 & 1.250 & 0.000 \\
\hline 130 & 120.000 & 1.250 & 0.000 \\
\hline 131 & 124.000 & 1.250 & 0.000 \\
\hline 132 & 128.000 & 1.250 & 0.000 \\
\hline 133 & 132.000 & 1.250 & 0.000 \\
\hline 134 & 136.000 & 1.250 & 0.000 \\
\hline 135 & 142.000 & 1.250 & 0.000 \\
\hline 136 & 148.000 & 1.250 & 0.000 \\
\hline 137 & 152.000 & 1.250 & 0.000 \\
\hline 138 & 156.000 & 1.250 & 0.000 \\
\hline 139 & 160.000 & 1.250 & 0.000 \\
\hline 140 & 164.000 & 1.250 & 0.000 \\
\hline 141 & 168.000 & 1.250 & 0.000 \\
\hline 142 & 172.000 & 1.250 & 0.000 \\
\hline 143 & 176.000 & 1.250 & 0.000 \\
\hline 144 & 180.000 & 1.250 & 0.000 \\
\hline 145 & 184.000 & 1.250 & 0.000 \\
\hline 146 & 188.000 & 1.250 & 0.000 \\
\hline 147 & 192.000 & 1.250 & 0.000 \\
\hline 148 & 196.000 & 1.250 & 0.000 \\
\hline 149 & 200.000 & 1.250 & 0.000 \\
\hline 150 & 203.120 & 1.250 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \multicolumn{1}{c|}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 101 & 0.880 & 1.250 & 0.000 \\
\hline 102 & 4.000 & 1.250 & 0.000 \\
\hline 103 & 8.000 & 1.250 & 0.000 \\
\hline 104 & 12.000 & 1.250 & 0.000 \\
\hline 105 & 16.000 & 1.250 & 0.000 \\
\hline 106 & 20.000 & 1.250 & 0.000 \\
\hline 107 & 24.000 & 1.250 & 0.000 \\
\hline 108 & 28.000 & 1.250 & 0.000 \\
\hline 109 & 32.000 & 1.250 & 0.000 \\
\hline 110 & 36.000 & 1.250 & 0.000 \\
\hline 111 & 40.000 & 1.250 & 0.000 \\
\hline 112 & 44.000 & 1.250 & 0.000 \\
\hline 113 & 48.000 & 1.250 & 0.000 \\
\hline 114 & 52.000 & 1.250 & 0.000 \\
\hline 115 & 56.000 & 1.250 & 0.000 \\
\hline 116 & 62.000 & 1.250 & 0.000 \\
\hline 117 & 68.000 & 1.250 & 0.000 \\
\hline 118 & 72.000 & 1.250 & 0.000 \\
\hline 119 & 76.000 & 1.250 & 0.000 \\
\hline 120 & 80.000 & 1.250 & 0.000 \\
\hline 121 & 84.000 & 1.250 & 0.000 \\
\hline 122 & 88.000 & 1.250 & 0.000 \\
\hline 123 & 92.000 & 1.250 & 0.000 \\
\hline 124 & 96.000 & 1.250 & 0.000 \\
\hline 125 & 100.000 & 1.250 & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \multicolumn{1}{c|}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 2101 & 0.880 & 1.250 & 4.900 \\
\hline 2116 & 62.000 & 1.250 & 4.900 \\
\hline 2135 & 142.000 & 1.250 & 4.900 \\
\hline 2150 & 203.120 & 1.250 & 4.900 \\
\hline 3101 & 0.880 & 0.000 & 4.900 \\
\hline 3116 & 62.000 & -0.295 & 4.900 \\
\hline 3135 & 142.000 & -0.295 & 4.900 \\
\hline 3150 & 203.120 & 0.000 & 4.900 \\
\hline 4101 & 0.880 & 1.250 & -4.900 \\
\hline 4116 & 62.000 & 1.250 & -4.900 \\
\hline 4135 & 142.000 & 1.250 & -4.900 \\
\hline 4150 & 203.120 & 1.250 & -4.900 \\
\hline 4501 & 0.880 & 0.000 & 0.000 \\
\hline 4516 & 62.000 & -0.295 & 0.000 \\
\hline 4535 & 142.000 & -0.295 & 0.000 \\
\hline 4550 & 203.120 & 0.000 & 0.000 \\
\hline 5101 & 0.880 & 0.000 & -4.900 \\
\hline 5116 & 62.000 & -0.295 & -4.900 \\
\hline 5135 & 142.000 & -0.295 & -4.900 \\
\hline 5150 & 203.120 & 0.000 & -4.900 \\
\hline
\end{tabular}


Table 2.2.2-2 Node Coordination (Pier)

P1
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \multicolumn{1}{|c|}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 6001 & 62.000 & -0.590 & 0.000 \\
\hline 6002 & 62.000 & -2.590 & 0.000 \\
\hline 6003 & 62.000 & -4.590 & 0.000 \\
\hline 6004 & 62.000 & -6.590 & 0.000 \\
\hline 6005 & 62.000 & -8.590 & 0.000 \\
\hline 6006 & 62.000 & -9.590 & 0.000 \\
\hline 6007 & 62.000 & -10.590 & 0.000 \\
\hline 6008 & 62.000 & -10.690 & 0.000 \\
\hline 8116 & 62.000 & -0.590 & 4.900 \\
\hline 8516 & 62.000 & -0.590 & -4.900 \\
\hline
\end{tabular}

P2
\begin{tabular}{|r|c|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \(X(\mathrm{~m})\) & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 7001 & 142.000 & -0.590 & 0.000 \\
\hline 7002 & 142.000 & -2.590 & 0.000 \\
\hline 7003 & 142.000 & -4.590 & 0.000 \\
\hline 7004 & 142.000 & -6.590 & 0.000 \\
\hline 7005 & 142.000 & -8.590 & 0.000 \\
\hline 7006 & 142.000 & -9.590 & 0.000 \\
\hline 7007 & 142.000 & -10.590 & 0.000 \\
\hline 7008 & 142.000 & -10.690 & 0.000 \\
\hline 8135 & 142.000 & -0.590 & 4.900 \\
\hline 8535 & 142.000 & -0.590 & -4.900 \\
\hline
\end{tabular}

Table 2.2.2-3 Node Coordination (Abutment))

A1
\begin{tabular}{|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \multicolumn{1}{|c|}{\(\mathrm{X}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 8101 & 0.880 & -0.295 & 4.900 \\
\hline 8301 & 0.880 & -0.295 & 0.000 \\
\hline 8501 & 0.880 & -0.295 & -4.900 \\
\hline
\end{tabular}

A2
\begin{tabular}{|r|c|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \(\mathrm{X}(\mathrm{m})\) & \multicolumn{1}{c|}{\(\mathrm{Y}(\mathrm{m})\)} & \multicolumn{1}{c|}{\(\mathrm{Z}(\mathrm{m})\)} \\
\hline \hline 8150 & 203.120 & -0.295 & 4.900 \\
\hline 8350 & 203.120 & -0.295 & 0.000 \\
\hline 8550 & 203.120 & -0.295 & -4.900 \\
\hline
\end{tabular}

Table 2.2.2-4 Structural Material
\begin{tabular}{|c|c|c|c|}
\hline Item & Symbol & Girder & Pier \\
\hline \hline Compressive Strength at 28 days & f'c & 50 MPa & 24 MPa \\
\hline Elastic Modulus & Ec & \(31,000 \mathrm{MPa}\) & \(25,000 \mathrm{MPa}\) \\
\hline Shear Modulus & Gc & \(13,480 \mathrm{MPa}\) & \(10,870 \mathrm{MPa}\) \\
\hline
\end{tabular}

Following the table shows the member property of superstructure of Mawo bridge. In this example of outline design, constant values are adopted based on the results of the superstructure design because the vibration behavior may be quite simple.

Member Number 101 to 149
\(\mathrm{A}=16.33 \mathrm{~m}^{2}\)
\(\mathrm{Iz}=14.02 \mathrm{~m}^{4}\)
\(\mathrm{Iy}=363.48 \mathrm{~m}^{4}\)
\(\mathrm{JX}=44.0 \mathrm{~m}^{4}\)
Except the girder property, following rigid elements should be adequately modeled.
Table 2.2.2-5 Member Property (Rigid Elements of Superstructure)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{No.} & \multicolumn{2}{|l|}{node} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mathrm{A} \\
(\mathrm{~m} 2) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathrm{Iz} \\
(\mathrm{~m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathrm{Iy} \\
(\mathrm{~m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathrm{Jx} \\
(\mathrm{~m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Note} \\
\hline & Start & End & & & & & \\
\hline 2101 & 101 & 2101 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 2116 & 116 & 2116 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 2135 & 135 & 2135 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 2150 & 150 & 2150 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 3101 & 2101 & 3101 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 3116 & 2116 & 3116 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 3135 & 2135 & 3135 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 3150 & 2150 & 3150 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4101 & 101 & 4101 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4116 & 116 & 4116 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4135 & 135 & 4135 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4150 & 150 & 4150 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4501 & 101 & 4501 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4516 & 116 & 4516 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4535 & 135 & 4535 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 4550 & 150 & 4550 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 5101 & 4101 & 5101 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 5116 & 4116 & 5116 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 5135 & 4135 & 5135 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 5150 & 4150 & 5150 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline
\end{tabular}


Figure 2.2.2-1 Model of Superstructure

Substructures also modeled by beam element simply. In seismic analysis, nonlinear effects of which decrease stiffness, such as inelastic deformation and cracking, should be considered. Reinforced concrete piers in Seismic Performance Zones 2, 3 and 4 should be analyzed using cracked section properties. For this purpose, a moment of inertia equal to one-half that of the uncracked section may be used, specified in 4.5.3 of SPWH BSDS.

Table 2.2.2-6 Member Property (Piers)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{No.} & \multicolumn{2}{|c|}{node} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { A } \\
(\mathrm{m} 2) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Iz } \\
(\mathrm{m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Iy } \\
(\mathrm{m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathrm{Jx} \\
(\mathrm{~m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Note} \\
\hline & Start & End & & & & & \\
\hline 6001 & 6001 & 6002 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 6002 & 6002 & 6003 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 6003 & 6003 & 6004 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 6004 & 6004 & 6005 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 6005 & 6005 & 6006 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & Pile Cap \\
\hline 6006 & 6006 & 6007 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & Pile Cap \\
\hline 6007 & 6007 & 6008 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & Virtual \\
\hline 6501 & 8116 & 6001 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 6516 & 8516 & 6001 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{No.} & \multicolumn{2}{|c|}{node} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { A } \\
(\mathrm{m} 2) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Iz } \\
(\mathrm{m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Iy } \\
(\mathrm{m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \mathrm{Jx} \\
(\mathrm{~m} 4) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Note} \\
\hline & Start & End & & & & & \\
\hline 7001 & 7001 & 7002 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 7002 & 7002 & 7003 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 7003 & 7003 & 7004 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 7004 & 7004 & 7005 & 36.6 & 11.48 & 263.98 & 66.86 & \\
\hline 7005 & 7005 & 7006 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & Pile Cap \\
\hline 7006 & 7006 & 7007 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & Pile Cap \\
\hline 7007 & 7007 & 7008 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & Virtual \\
\hline 7501 & 8135 & 7001 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline 7535 & 8535 & 7001 & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & rigid \\
\hline
\end{tabular}



Element coordinate system

Figure 2.2.2-2 Model of Piers

The structural mass are inputted for the following sections.
i) Superstructure

Distributed loads are applied to the all nodes of superstructures as: \(412.195 \mathrm{kN} / \mathrm{m}\)
ii) Substructure

The mass of column per 2 m height is to be following value. \(1756 \mathrm{kN} / 2 \mathrm{~m}\) height Also the footing: \(6905 \mathrm{kN} / 2 \mathrm{~m}\) height

\subsection*{2.2.3 Model of Bearing}

Force distribution method by laminated rubber bearings (LRB) shown in the following figure are commonly utilized in viaducts and bridges in Japan as efficient devices to achieve appropriate seismic design.


Figure 2.2.3-1 Laminated Rubber Bearing


Figure 2.2.3-2 Steel Bearing

This bearing consists of rubber and steel plate layers. By changing the stiffness of the laminated rubber, such as thickness, number of layers and sizes, seismic horizontal forces can be freely and evenly adjusted to substructures. Therefore, the boundary condition between superstructure and substructure is defined as "E" that means "elastic".

Otherwise, in Philippines, commonly thin-rubber bearing with anchor bars are utilized as bearing. By this bearing, only two ways of the boundary condition such as "Fix" or "Move" can be applied, which means that controlling of horizontal seismic forces or contribution forces to substructures depends on not horizontal stiffness of bearing but just only the period of its dynamic properties.

In this outline design of Mawo bridge, a technical comparison study among laminated rubber bearing, thin-rubber bearing with anchor bars and steel bearing is studied from the point of view of seismic behavior, shown as following table.

Table2.2.3-1 Comparison Study of Bearing in Mawo Bridge
\begin{tabular}{|l|l|}
\hline Bearing & Results of Evaluation \\
\hline Laminated Rubber Bearing \\
Under Force Distribution Method & \begin{tabular}{l} 
Boundary Condition: \\
LD: Elastic (A1-P1-P2-A2), TD: Fix (A1,A2) Elastic (P1,P2) \\
Time Period \\
LD: 1.31S, TD: 1.13s \\
Modal Dumping of 1st mode \\
LD: 3\%. TD: 2\% \\
Total Horizontal Forces of Superstructure using Modal Dumping \\
LD: 71000kN of 84500kN, TD: 74000kN of 84500kN \\
Seismic Force Distribution \\
LD: A1:P1:P2:A2=1:1:1:1, TD: A1:P1:P2:A2=1:1:1:1
\end{tabular} \\
\hline Pad Rubber Bearing with Dowel & \begin{tabular}{l} 
Boundary Condition: \\
LD: Move (A1, A2), Fix (P1, P2), TD: Fix (A1-P1-P2-A2) \\
Time Period \\
LD: 0.8S, TD: 0.9s
\end{tabular} \\
Modal Dumping of 1st mode \\
LD: 2\%. TD: 2\%
\end{tabular}

* LD: Longitudinal Direction, TD: Transversal Direction

In this outline design the following LRB is applied.
Table2.2.3-2 LRB of Mawo Bridge
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Supports } & Nos. & Rub. Dimension & Rub. Thickness & \(G\) \\
\hline Abutment 1 & 3 & 1500 mmx 1500 mm & \(37 \mathrm{mmx5layers}\) & \(1.4 \mathrm{~N} / \mathrm{mm} 2\) \\
\hline Pier 1 & 3 & 1500 mmx 1500 mm & \(37 \mathrm{mmx5layers}\) & \(1.4 \mathrm{~N} / \mathrm{mm} 2\) \\
\hline Pier 2 & 3 & 1500 mmx 1500 mm & 37 mmx 5layers & \(1.4 \mathrm{~N} / \mathrm{mm} 2\) \\
\hline Abutment 2 & 3 & 1500 mmx 1500 mm & \(37 \mathrm{mmx5layers}\) & \(1.4 \mathrm{~N} / \mathrm{mm} 2\) \\
\hline
\end{tabular}


Table2.2.3-3 Dimension of LRB of Mawo Bridge

In the analysis, above bearing properties are imputed as nodal spring, calculated as follows.
< Calculation of Nodal Spring of LRB >
\[
K=\frac{G \times B \times B}{t \times n}
\]

Eq.
K: Nodal Spring of LRB (kN/m), B: Width of Rubber, t: Thickness of rubber \(n\) : Number of layers

Where, for the LRB of Mawo bridge, the following calculation can be given by above equation.
\[
\begin{equation*}
K=\frac{1.4 \times 1500 \times 1500}{37 \times 5}=17027 \mathrm{kN} / \mathrm{m}^{2} \tag{Eq.}
\end{equation*}
\]

Such the nodal spring is available to be inputted into the Program "STAAD" with specified dimensions, such as the following table.

Table2.2.3-4 LRB Spring of Mawo Bridge
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & \multicolumn{2}{|l|}{node} & Kx & Ky & Kz & KRx & KRx & KRz \\
\hline & Start & End & (kN/m) & (kN/m) & (kN/m) & (kNm/rad) & (kNm/rad) & ( \(\mathrm{kNm} / \mathrm{rad}\) ) \\
\hline 8001 & 3101 & 8101 & \(1.00 \mathrm{E}+09\) & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8011 & 3116 & 8116 & \(1.00 \mathrm{E}+09\) & 17,030 & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8021 & 3135 & 8135 & \(1.00 \mathrm{E}+09\) & 17,030 & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8031 & 3150 & 8150 & \(1.00 \mathrm{E}+09\) & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8201 & 4501 & 8301 & \(1.00 \mathrm{E}+09\) & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8211 & 4516 & 6001 & \(1.00 \mathrm{E}+09\) & 17,030 & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8221 & 4535 & 7001 & \(1.00 \mathrm{E}+09\) & 17,030 & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8231 & 4550 & 8350 & \(1.00 \mathrm{E}+09\) & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8501 & 5101 & 8501 & \(1.00 \mathrm{E}+09\) & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8511 & 5116 & 8516 & \(1.00 \mathrm{E}+09\) & 17,030 & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8521 & 5135 & 8535 & \(1.00 \mathrm{E}+09\) & 17,030 & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline 8531 & 5150 & 8550 & \(1.00 \mathrm{E}+09\) & 17,030 & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}+09\) & \(1.00 \mathrm{E}-09\) & \(1.00 \mathrm{E}-09\) \\
\hline
\end{tabular}


Figure 2.2.3-3 Model of LRB Bearing (1)


Node 8511, 8211 and 8011 have nodal spring
Figure 2.2.3-4 Model of LRB Bearing (2)

\subsection*{2.2.4 Model of Footing with Foundation Springs}

Generally, piles and ground conditions are not modeled by beam elements in structural analysis but are modeled by lumped spring models consisting of piles and ground conditions. Therefore, such the lamped spring should be inputted to the structural analysis in accordance with the rule of the software. For the detail examination how to obtain the foundation springs, refer to see the Chapter 3 in this design example
i) Composite Spring Matrix

Composite spring matrix consists of \(6 x 6\) matrix, which perfectly model the piles and ground conditions. However, for some software including STAAD, this matrix form can not easily inputted.

Table 2.2.4-1 Composite Spring Matrix
COMPOSITE SPRING MATRIX
Mawo P1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{ CHODAI's Software "NONPIER" OK/ Some Common Commercialized So } \\
\hline Fx & \(\delta x\) & \(\delta y\) & \(\delta z\) & \(\theta x\) & \(\theta y\) & \(\theta z\) \\
\hline Fy & & & & & & \\
\hline Fz & & & & \(7.660 \mathrm{E}+06\) & \(1.290 \mathrm{E}+07\) & \\
\hline Mx & & & \(1.290 \mathrm{E}+07\) & \(2.017 \mathrm{E}+08\) & & \\
\hline My & & & & & \(2.068 \mathrm{E}+08\) & \\
\hline Mz & \(-1.290 \mathrm{E}+07\) & & & & & \(1.284 \mathrm{E}+08\) \\
\hline
\end{tabular}


Mawo P2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\delta x\) & \(\delta y\) & \(\delta z\) & \(\theta x\) & \(\theta y\) & \(\theta z\) \\
\hline Fx & \(7.012 \mathrm{E}+06\) & & & & & \(-1.290 \mathrm{E}+07\) \\
\hline Fy & & \(7.667 \mathrm{E}+06\) & & & & \\
\hline Fz & & & \(7.658 \mathrm{E}+06\) & \(1.290 \mathrm{E}+07\) & & \\
\hline Mx & & & \(1.290 \mathrm{E}+07\) & \(2.067 \mathrm{E}+08\) & & \\
\hline My & & & & & \(1.000 \mathrm{E}+09\) & \\
\hline Mz & \(-1.290 \mathrm{E}+07\) & & & & & \(1.094 \mathrm{E}+08\) \\
\hline
\end{tabular}

\section*{ii) Simplified Spring}

The composite spring matrix consists of symmetrical matrix. Therefore, in order to simplify input method, sometimes following the values extracted from the symmetrical matrix are sometimes utilized. The extracted values should be the values on the diagonal lines of the matrix. The composite spring matrix can be defined as a symmetrical matrix but can be unboundedly diagonal matrix. Therefore, the values on the diagonal lines can work as primal springs and the others may affect as supplemental springs from the point of view of structural mechanics. The results of the dynamic analysis, the natural period may be slightly shorter than the composite spring matrix.

Table 2.2.4-2 Composite Spring Matrix

\section*{-REPRESENTATIVE SPRING}

Mawo P1 CHODAI's Software "NONPIER" OK/ Common Commercialized Sotwar
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & KX & KY & KZ & TX & TY & TZ \\
\cline { 2 - 7 } & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kNm} / \mathrm{rad})\) & \((\mathrm{kNm} / \mathrm{rad})\) & \((\mathrm{kNm} / \mathrm{rad})\) \\
\hline JRA & \(7.410 \mathrm{E}+06\) & \(6.422 \mathrm{E}+06\) & \(7.410 \mathrm{E}+06\) & \(1.581 \mathrm{E}+08\) & \(1.000 \mathrm{E}+09\) & \(1.054 \mathrm{E}+08\) \\
\hline FB-Pier & \(7.669 \mathrm{E}+06\) & \(9.046 \mathrm{E}+06\) & \(7.660 \mathrm{E}+06\) & \(2.017 \mathrm{E}+08\) & \(2.068 \mathrm{E}+08\) & \(1.284 \mathrm{E}+08\) \\
\hline
\end{tabular}

Mawo P2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & KX & KY & KZ & TX & TY & TZ \\
\cline { 2 - 7 } & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kNm} / \mathrm{rad})\) & \((\mathrm{kNm} / \mathrm{rad})\) & \((\mathrm{kNm} / \mathrm{rad})\) \\
\hline JRA & \(7.403 \mathrm{E}+06\) & \(8.895 \mathrm{E}+06\) & \(7.403 \mathrm{E}+06\) & \(2.015 \mathrm{E}+08\) & \(1.000 \mathrm{E}+09\) & \(1.285 \mathrm{E}+08\) \\
\hline FB-Pier & \(7.012 \mathrm{E}+06\) & \(7.667 \mathrm{E}+06\) & \(7.658 \mathrm{E}+06\) & \(2.067 \mathrm{E}+08\) & \(1.662 \mathrm{E}+08\) & \(1.094 \mathrm{E}+08\) \\
\hline
\end{tabular}
iii) Fixed supports

This method is the most simple method for the modeling of foundations. Obviously, the natural period may be shorter than any other models with foundation springs.

Here, for above three methods, following the comparison study is shown in order to determine the method to be applied for the dynamic analysis by STAAD. Where, because composite spring matrix is not allowed to be inputted by STAAD, the comparison study is conducted by "RITTAI", produced by Chodai, which have a lot of actual results from common structure to long span cable supported bridge in the world.

Table 2.2.4-3 Comparison Study of Foundation Springs
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
MODEL-1 \\
Composite Spring Matrix
\end{tabular} & \begin{tabular}{c} 
MODEL-2 \\
Simplified Spring
\end{tabular} & \begin{tabular}{c} 
MODEL-3 \\
Fix
\end{tabular} \\
\hline \multicolumn{3}{|c|}{ Comparison of Natural Period } \\
\hline \(\mathrm{T}=1.319 \mathrm{~s}\) & \(\mathbf{T}=\mathbf{1 . 3 1 0 ~ s}\) & \(\mathrm{T}=1.294 \mathrm{~s}\) \\
\hline\(+0.68 \%\) & \(\mathbf{1 . 0 0}\) & \(-1.22 \%\) \\
\hline \multicolumn{4}{|c|}{ Comparison of Response Displacement } \\
\hline Girder End: \(\mathrm{D}=36.4 \mathrm{~cm}\) & Girder End: \(\mathbf{D}=\mathbf{3 6 . 3} \mathbf{~ c m}\) & Girder End: D= 36.2cm \\
\hline\(+0.03 \%\) & \(\mathbf{1 . 0 0}\) & \(-0.03 \%\) \\
\hline
\end{tabular}

As shown in the comparison study, seismically the fixed model is the most conservative method of all. Naturally the natural period, which affects critically response values, is the shortest of all. Meanwhile, the differences between others such as the results of composite spring matrix and simplified springs are just only \(0.68 \%\), otherwise, the differences between simplified springs and fixed model are \(1.22 \%\). Therefore, when the modes, in which foundations are preferentially moved, are located in higher orders and if the software can not allow complicated data input, the structural modeling of simplified spring is structurally and seismically acceptable from the results, shown as follows.

Table 2.2.4-4 Supporting Condition of Piers
\begin{tabular}{|c|r|c|c|c|c|c|c|}
\hline Pier No. & Node No. & \begin{tabular}{c} 
KX \\
\((\mathrm{kN} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
KY \\
\((\mathrm{kN} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c}
KZ \\
\((\mathrm{kN} / \mathrm{m})\)
\end{tabular} & \begin{tabular}{c}
KRX \\
\((\mathrm{kNm} / \mathrm{rad})\)
\end{tabular} & \begin{tabular}{c}
KRY \\
\((\mathrm{kNm} / \mathrm{rad})\)
\end{tabular} & \begin{tabular}{c}
KRZ \\
\((\mathrm{kNm} / \mathrm{rad})\)
\end{tabular} \\
\hline \hline P1 & 6007 & \(7.67 \mathrm{E}+06\) & FIX & \(7.66 \mathrm{E}+06\) & \(2.02 \mathrm{E}+08\) & FIX & \(1.28 \mathrm{E}+08\) \\
\hline P2 & 7007 & \(7.01 \mathrm{E}+06\) & FIX & \(7.66 \mathrm{E}+06\) & \(2.07 \mathrm{E}+08\) & FIX & \(1.09 \mathrm{E}+08\) \\
\hline
\end{tabular}


A1

\subsection*{2.3 Results of Eigenvalue Analysis}
i) Results of Eigenvalue Analysis

The following table shows the results of eigenvalue analysis until 10th modes.
Table 2.3-1 Results of Eigenvalue Analysis
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Modes } & Dominant & Frequency & \multirow{2}{*}{\begin{tabular}{c} 
Period \\
Move
\end{tabular}} & \begin{tabular}{c} 
(Hz)
\end{tabular} & \multicolumn{2}{|c|}{ Ratio of Effective Mass } & Mode \\
\cline { 5 - 6 } & (s) & Longitudinal & Transversal & Damping \\
\hline 1 & Girder Lng. & 0.763 & 1.310 & \(\mathbf{0 . 7 6 4}\) & 0.000 & 0.031 \\
\hline 2 & Girder Trn. & 0.885 & 1.130 & 0.000 & \(\mathbf{0 . 6 1 7}\) & 0.021 \\
\hline 3 & Girder Trn. & 2.619 & 0.382 & 0.000 & 0.088 & 0.012 \\
\hline 4 & Girder Trn. & 5.658 & 0.177 & 0.000 & 0.071 & 0.010 \\
\hline 5 & P2 Long. & 7.325 & 0.137 & 0.097 & 0.000 & 0.083 \\
\hline 6 & P1 Long. & 7.712 & 0.130 & 0.099 & 0.000 & 0.082 \\
\hline 7 & Girder Lng. & 8.628 & 0.116 & 0.001 & 0.000 & 0.010 \\
\hline 8 & P1 P2 Trn. & 9.452 & 0.106 & 0.000 & 0.001 & 0.093 \\
\hline 9 & P1 P2 Trn. & 9.584 & 0.104 & 0.000 & 0.001 & 0.093 \\
\hline 10 & All Trn. & 10.059 & 0.099 & 0.000 & 0.000 & 0.011 \\
\hline
\end{tabular}

According to the results, predominant mode for longitudinal direction shown below obviously obtained at 1st mode whose period is 1.31s and effective mass ration is \(76 \%\) of modes for longitudinal direction.


Figure 2.3-1 Predominant 1st Mode for Longitudinal Direction
Therefore, the 1st mode for longitudinal direction is so important mode shape, which have enough effective mass ratio. And for the 1st mode for transversal direction shown below is the mode with the effective mass ratio of 0.62 and with the period of 1.13 s for transversal direction. Both of the behaviors of longitudinal and transversal direction are efficiently functioned against strong seismic forces, using Force Distribution Bearings and appropriate dumping coefficient of them.


Figure 2.3-2 1st and 2nd Mode for Transversal Direction
In particular, the effective mass from 3rd mode, suddenly/ drastically decreased from the 1st and 2nd mode, the periods of which are much shorter than 0.4 s caused by decrement of effective mass. Besides, the ratio of effective mass from 4th mode, there are no modes beyond \(10 \%\); hence, the contributing rate of the modes except 1st and 2nd is clearly low for response values. Therefore, combination of seven modes may compute enough accurate response value based on mode combination using CQC method.
\begin{tabular}{|c|c|c|c|}
\hline Mode No. & Mode shape & & \\
\hline \multirow{4}{*}{1} & \multirow[t]{4}{*}{} & Max Dir. & \\
\hline & & Frequency & 0.763 Hz \\
\hline & & Period & 1.310 sec . \\
\hline & & Mode damp. & 0.031 \\
\hline \multirow{4}{*}{2} & \multirow{8}{*}{6} & Max Dir. & \\
\hline & & Frequency & 0.885 Hz \\
\hline & & Period & 1.130 sec . \\
\hline & & Mode damp. & 0.021 \\
\hline \multirow{4}{*}{3} & & Max Dir. & \\
\hline & & Frequency & 2.619 Hz \\
\hline & & Period & 0.382 sec . \\
\hline & & Mode damp. & 0.012 \\
\hline & \multirow[b]{4}{*}{\[
\%
\]} & Max Dir. & \\
\hline & & Frequency & 5.658 Hz \\
\hline & & Period & 0.177 sec . \\
\hline & & Mode damp. & 0.010 \\
\hline \multirow{4}{*}{5} & \multirow[b]{4}{*}{} & Max Dir. & \\
\hline & & Frequency & 7.325 Hz \\
\hline & & Period & 0.137 sec . \\
\hline & & Mode damp. & 0.083 \\
\hline \multirow{4}{*}{6} & \multirow[b]{4}{*}{} & Max Dir. & \\
\hline & & Frequency & 7.712 Hz \\
\hline & & Period & 0.130 sec. \\
\hline & & Mode damp. & 0.082 \\
\hline \multirow{4}{*}{7} & \multirow[b]{4}{*}{\[
*
\]} & Max Dir. & \\
\hline & & Frequency & 8.628 Hz \\
\hline & & Period & 0.116 sec . \\
\hline & & Mode damp. & 0.010 \\
\hline \multirow{4}{*}{8} & \multirow[b]{4}{*}{} & Max Dir. & \\
\hline & & Frequency & 9.452 Hz \\
\hline & & Period & 0.106 sec . \\
\hline & & Mode damp. & 0.093 \\
\hline \multirow{4}{*}{9} & \multirow[b]{4}{*}{} & Max Dir. & \\
\hline & & Frequency & 9.584 Hz \\
\hline & & Period & 0.104 sec. \\
\hline & & Mode damp. & 0.093 \\
\hline \multirow{4}{*}{10} & \multirow[b]{4}{*}{(s)} & Max Dir. & \\
\hline & & Frequency & 10.059 Hz \\
\hline & & Period & 0.099 sec. \\
\hline & & Mode damp. & 0.011 \\
\hline
\end{tabular}

Figure 2.3-3 Results of Eigenvalue Analysis

\subsection*{2.4 Damping Constant}

Structural damping usually strongly affects the results of dynamic analysis; appropriate examined damping coefficient must be incorporated into the model regardless linear, non-linear, modal analysis or time history response analysis.
For superstructures of general bridge types, viscous damping material internal damping, friction damping at bearing supports and aero dynamical damping can be considered. Also, for piers, material internal damping and friction damping as well as fugacity damping and friction damping between ground and footing can be considered.


However, the specific mechanism of each damping factors are absolutely complicated, for execution of dynamic analysis, such the specific mechanism is not necessary to be understood. Generally damping forces are treated as equivalent damping forces in proportional to mass and strain energy. Generally, because equivalent damping factor of each structural member can not directly be incorporated into dynamic equation, for response spectrum analysis, damping forces should be transformed to mode damping factors in order to be considered in the analysis.


Where, generally for girder type bridge, strain energy proportional method, shown in the following equation, are utilized because this method can be incorporated into the dynamic in proportional to the amount of strain of the members and structural springs that do not have any mass.
<Mode damping hi: Strain Energy Proportional Method>
\[
\begin{equation*}
h_{i}=\frac{\sum_{j=1}^{n} c_{j} x_{i}^{t} k_{j} x_{i}}{x_{i}^{t} K x_{i}} \tag{Eq.}
\end{equation*}
\]
\(c_{j}\) : Structure damping factor of each element, \(x_{i}\) : Mode at \(i, k_{j}\) : Stiffness matrix of each element,
K : Stiffness matrix of all structure
For the bridges in this project, as the Cj in the above equation, following values are adopted.

Table 2.4-1 Damping Constant
\begin{tabular}{|l|c|}
\hline Structure & Damping ratio \\
\hline Girder & \(2 \%\) \\
\hline Bearing (elastic type) & \(3 \%\) \\
\hline Pier & \(2 \%\) \\
\hline Foundation & \(10 \%\) \\
\hline
\end{tabular}

\subsection*{2.5 Design Spectrum}

The design spectrum utilized for modal and response spectrum analysis shall be as following figure and table, specified for each bridge to be replaced.

5\% Damped


Soil Type \& Response Coefficement
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Guadarupe Br.}} & \multicolumn{2}{|l|}{Soil Profile Type} & \multicolumn{6}{|l|}{Soil Profile Type} \\
\hline & & \multicolumn{2}{|l|}{Mawo Br. at A1} & \multicolumn{2}{|l|}{Wawa Br. at A1} & \multicolumn{2}{|l|}{Lambingan Br .} & \multicolumn{2}{|l|}{Palanit Br.} \\
\hline & & & & & & at A1 & \& B1 & & \\
\hline T(sec) & \(\mathrm{Cs}(\mathrm{g})\) & T(sec) & \(\mathrm{Cs}(\mathrm{g})\) & T(sec) & \(\mathrm{Cs}(\mathrm{g})\) & T(sec) & \(\mathrm{Cs}(\mathrm{g})\) & T \((\mathrm{sec})\) & \(\mathrm{Cs}(\mathrm{g})\) \\
\hline 0.010 & 0.380 & 0.010 & 0.380 & 0.010 & 0.380 & 0.010 & 0.380 & 0.010 & 0.630 \\
\hline 0.120 & 0.920 & 0.200 & 0.820 & 0.150 & 0.880 & 0.110 & 0.920 & 0.070 & 1.570 \\
\hline 0.120 & 0.920 & 0.200 & 0.820 & 0.150 & 0.880 & 0.110 & 0.920 & 0.070 & 1.570 \\
\hline 0.590 & 0.920 & 1.120 & 0.820 & 0.730 & 0.880 & 0.560 & 0.920 & 0.340 & 1.570 \\
\hline 0.590 & 0.915 & 1.120 & 0.820 & 0.730 & 0.877 & 0.560 & 0.911 & 0.340 & 1.559 \\
\hline 0.610 & 0.885 & 1.200 & 0.767 & 0.750 & 0.853 & 0.600 & 0.850 & 0.600 & 0.883 \\
\hline 0.700 & 0.771 & 3.000 & 0.307 & 0.800 & 0.800 & 0.700 & 0.729 & 0.700 & 0.757 \\
\hline 0.810 & 0.667 & 4.000 & 0.230 & 0.850 & 0.753 & 0.800 & 0.638 & 0.800 & 0.663 \\
\hline 0.900 & 0.600 & 5.000 & 0.184 & 0.900 & 0.711 & 0.900 & 0.567 & 0.900 & 0.589 \\
\hline 1.000 & 0.540 & 6.000 & 0.153 & 1.000 & 0.640 & 1.000 & 0.510 & 1.000 & 0.530 \\
\hline 2.000 & 0.270 & 7.000 & 0.131 & 2.000 & 0.320 & 2.000 & 0.255 & 2.000 & 0.265 \\
\hline 3.000 & 0.180 & 8.000 & 0.115 & 3.000 & 0.213 & 3.000 & 0.170 & 3.000 & 0.177 \\
\hline 4.000 & 0.135 & 9.000 & 0.102 & 4.000 & 0.160 & 4.000 & 0.128 & 4.000 & 0.133 \\
\hline 5.000 & 0.108 & 10.000 & 0.092 & 5.000 & 0.128 & 5.000 & 0.102 & 5.000 & 0.106 \\
\hline 6.000 & 0.090 & 0.000 & 0.000 & 6.000 & 0.107 & 6.000 & 0.085 & 6.000 & 0.088 \\
\hline 7.000 & 0.077 & 0.000 & 0.000 & 7.000 & 0.091 & 7.000 & 0.073 & 7.000 & 0.076 \\
\hline 8.000 & 0.068 & 0.000 & 0.000 & 8.000 & 0.080 & 8.000 & 0.064 & 8.000 & 0.066 \\
\hline 9.000 & 0.060 & 0.000 & 0.000 & 9.000 & 0.071 & 9.000 & 0.057 & 9.000 & 0.059 \\
\hline 10.000 & 0.054 & 0.000 & 0.000 & 10.000 & 0.064 & 10.000 & 0.051 & 10.000 & 0.053 \\
\hline
\end{tabular}

Figure 2.5-1 Design Spectrum for New Bridge Design

\subsection*{2.6 Results of Response Spectrum Analysis}

From the Following table, seismic response values computed by response spectrum values are shown. For superposition of maximum responses of multiple-mass system using response spectrum of each mode, SRSS, Square Rood of Sum of Square, and CQC method, Complete Quadratic Combination, are worldwidely utilized for the mode combination method of applied modes in the response spectrum analysis. In this outline design, CQC method is applied because accuracy of the combination is better than any other method for adjacent values such as the modes of 5th, 6th and 7th, the eigenvalues of which are distributed closely.

\section*{(1) Response values for Longitudinal Direction}
i) Displacements

Table 2.6-1 Displacements of Girder
Picked up the end nodes of girder.
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline Node & DX(mm) & DY(mm) & DZ(mm) & RX(rad) & RY(rad) & RZ(rad) \\
\hline \hline 101 & 362.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 150 & 362.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

Table 2.6-2 Displacement of P1
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Node } & DX(mm) & DY(mm) & DZ(mm) & RX(rad) & RY(rad) & \multicolumn{1}{c|}{ RZ(rad) } \\
\hline \hline 6001 & 27.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6002 & 20.5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6003 & 14.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6004 & 9.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6005 & 5.2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6006 & 3.8 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 6007 & 2.4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

Table 2.6-3 Displacement of P2
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ Node } & DX(mm) & DY(mm) & DZ(mm) & RX(rad) & RY(rad) & \multicolumn{1}{c|}{ RZ(rad) } \\
\hline \hline 7001 & 29.8 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7002 & 22.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7003 & 15.8 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7004 & 10.1 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7005 & 5.9 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7006 & 4.3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 7007 & 2.6 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
ii) Sectional force

Table 2.6-4 Sectional Forces of P1
\begin{tabular}{|c|c|r|r|r|r|r|r|}
\hline No. & Node & \multicolumn{1}{c|}{\(\mathrm{Fx}(\mathrm{kN})\)} & \(\mathrm{Fy}(\mathrm{kN})\) & \multicolumn{1}{c|}{\(\mathrm{Fz}(\mathrm{kN})\)} & \(\mathrm{Mx}(\mathrm{kNm})\) & \multicolumn{1}{c|}{\(\mathrm{My}(\mathrm{kNm})\)} & \multicolumn{1}{c|}{\(\mathrm{Mz}(\mathrm{kNm})\)} \\
\hline \hline \multirow{2}{*}{6001} & 6001 & 439.9 & 17187.1 & 0.0 & 0.0 & 0.0 & 5048.9 \\
\cline { 2 - 8 } & 6002 & -439.9 & -17187.1 & 0.0 & 0.0 & 0.0 & -39415.5 \\
\hline \multirow{2}{*}{6002} & 6002 & 439.9 & 17407.2 & 0.0 & 0.0 & 0.0 & 39415.5 \\
\cline { 2 - 8 } & 6003 & -439.9 & -17407.2 & 0.0 & 0.0 & 0.0 & -74144.8 \\
\hline \multirow{2}{*}{6003} & 6003 & 439.9 & 17644.0 & 0.0 & 0.0 & 0.0 & 74144.8 \\
\cline { 2 - 8 } & 6004 & -439.9 & -17644.0 & 0.0 & 0.0 & 0.0 & -109278.1 \\
\hline \multirow{2}{*}{6004} & 6004 & 439.9 & 17841.0 & 0.0 & 0.0 & 0.0 & 109278.1 \\
\cline { 2 - 8 } & 6005 & -439.9 & -17841.0 & 0.0 & 0.0 & 0.0 & -144762.1 \\
\hline \multirow{2}{*}{6005} & 6005 & 439.9 & 17913.9 & 0.0 & 0.0 & 0.0 & 144762.1 \\
\cline { 2 - 8 } & 6006 & -439.9 & -17913.9 & 0.0 & 0.0 & 0.0 & -162582.8 \\
\hline \multirow{2}{*}{6006} & 6006 & 439.9 & 18588.1 & 0.0 & 0.0 & 0.0 & 162582.8 \\
\cline { 2 - 8 } & 6007 & -439.9 & -18588.1 & 0.0 & 0.0 & 0.0 & -180738.5 \\
\hline
\end{tabular}

Table 2.6-5 Sectional Forces of P2
\begin{tabular}{|c|c|r|r|r|r|r|r|}
\hline No. & Node & Fx(kN) & Fy(kN) & \multicolumn{1}{c|}{ Fz(kN) } & Mx(kNm) & \multicolumn{1}{c|}{\(\mathrm{My}(\mathrm{kNm})\)} & \multicolumn{1}{c|}{\(\mathrm{Mz}(\mathrm{kNm})\)} \\
\hline \hline \multirow{2}{*}{7001} & 7001 & 437.8 & 17064.9 & 0.0 & 0.0 & 0.0 & 5011.8 \\
\cline { 2 - 8 } & 7002 & -437.8 & -17064.9 & 0.0 & 0.0 & 0.0 & -39134.0 \\
\hline \multirow{2}{*}{7002} & 7002 & 437.8 & 17292.2 & 0.0 & 0.0 & 0.0 & 39134.0 \\
\cline { 2 - 8 } & 7003 & -437.8 & -17292.2 & 0.0 & 0.0 & 0.0 & -73632.4 \\
\hline \multirow{2}{*}{7003} & 7003 & 437.8 & 17537.2 & 0.0 & 0.0 & 0.0 & 73632.4 \\
\cline { 2 - 8 } & 7004 & -437.8 & -17537.2 & 0.0 & 0.0 & 0.0 & -108549.4 \\
\hline \multirow{2}{*}{7004} & 7004 & 437.8 & 17742.2 & 0.0 & 0.0 & 0.0 & 108549.4 \\
\cline { 2 - 8 } & 7005 & -437.8 & -17742.2 & 0.0 & 0.0 & 0.0 & -143831.3 \\
\hline \multirow{2}{*}{7005} & 7005 & 437.8 & 17817.5 & 0.0 & 0.0 & 0.0 & 143831.3 \\
\cline { 2 - 8 } & 7006 & -437.8 & -17817.5 & 0.0 & 0.0 & 0.0 & -161553.6 \\
\hline \multirow{2}{*}{7006} & 7006 & 437.8 & 18503.1 & 0.0 & 0.0 & 0.0 & 161553.6 \\
\cline { 2 - 8 } & 7007 & -437.8 & -18503.1 & 0.0 & 0.0 & 0.0 & -179618.8 \\
\hline
\end{tabular}
iii) Supporting Reaction

Table 2.6-6 Supporting Reaction of A1
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \(F x(k N)\) & \(F y(k N)\) & \multicolumn{1}{|c|}{\(\operatorname{Fz}(\mathrm{kN})\)} & \(\mathrm{Mx}(\mathrm{kNm})\) & \(\mathrm{My}(\mathrm{kNm})\) & \(\mathrm{Mz}(\mathrm{kNm})\) \\
\hline \hline 8101 & 6159 & 205 & 9 & 1 & 0 & 1817 \\
\hline 8301 & 6159 & 253 & 0 & 0 & 0 & 1817 \\
\hline 8501 & 6159 & 205 & 9 & 1 & 0 & 1817 \\
\hline
\end{tabular}

Table 2.6-7 Supporting Reaction of A2
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline No. & Fx(kN) & Fy(kN) & \multicolumn{1}{|c|}{\(\mathrm{Fz}(\mathrm{kN})\)} & Mx(kNm) & \(\mathrm{My}(\mathrm{kNm})\) & \(\mathrm{Mz}(\mathrm{kNm})\) \\
\hline \hline 8150 & 6159 & 204 & 9 & 1 & 0 & 1817 \\
\hline 8350 & 6159 & 253 & 0 & 0 & 0 & 1817 \\
\hline 8550 & 6159 & 204 & 9 & 1 & 0 & 1817 \\
\hline
\end{tabular}

Table 2.6-8 Supporting Reaction of P1 and P2
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\mathrm{Fx}(\mathrm{kN})\)} & \(\mathrm{Fy}(\mathrm{kN})\) & \multicolumn{1}{|c|}{\(\mathrm{Fz}(\mathrm{kN})\)} & \(\mathrm{Mx}(\mathrm{kNm})\) & \(\mathrm{My}(\mathrm{kNm})\) & \(\mathrm{Mz}(\mathrm{kNm})\) \\
\hline \hline P1 & 18588 & 440 & 0 & 0 & 0 & 182559 \\
\hline P2 & 18503 & 438 & 0 & 0 & 0 & 181430 \\
\hline
\end{tabular}

\section*{(2) Response values for Transversal Direction}
i) Displacements

Table 2.6-9 Displacement of P1
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline Node & DX(mm) & DY(mm) & DZ(mm) & RX(rad) & RY(rad) & RZ(rad) \\
\hline \hline 6001 & 0.0 & 0.0 & 12.8 & 12.8 & 0.0 & 0.0 \\
\hline 6002 & 0.0 & 0.0 & 10.6 & 10.6 & 0.0 & 0.0 \\
\hline 6003 & 0.0 & 0.0 & 8.5 & 8.5 & 0.0 & 0.0 \\
\hline 6004 & 0.0 & 0.0 & 6.4 & 6.4 & 0.0 & 0.0 \\
\hline 6005 & 0.0 & 0.0 & 4.4 & 4.4 & 0.0 & 0.0 \\
\hline 6006 & 0.0 & 0.0 & 3.4 & 3.4 & 0.0 & 0.0 \\
\hline 6007 & 0.0 & 0.0 & 2.5 & 2.5 & 0.0 & 0.0 \\
\hline
\end{tabular}

Table 2.6-10 Displacement of P2
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline Node & DX(mm) & DY(mm) & DZ(mm) & RX(rad) & RY(rad) & RZ(rad) \\
\hline \hline 7001 & 0.0 & 0.0 & 12.6 & 12.6 & 0.0 & 0.0 \\
\hline 7002 & 0.0 & 0.0 & 10.5 & 10.5 & 0.0 & 0.0 \\
\hline 7003 & 0.0 & 0.0 & 8.4 & 8.4 & 0.0 & 0.0 \\
\hline 7004 & 0.0 & 0.0 & 6.3 & 6.3 & 0.0 & 0.0 \\
\hline 7005 & 0.0 & 0.0 & 4.4 & 4.4 & 0.0 & 0.0 \\
\hline 7006 & 0.0 & 0.0 & 3.4 & 3.4 & 0.0 & 0.0 \\
\hline 7007 & 0.0 & 0.0 & 2.5 & 2.5 & 0.0 & 0.0 \\
\hline
\end{tabular}
ii) Sectional force

Table 2.6-11 Sectional Forces of P1
\begin{tabular}{|c|c|r|r|r|r|r|r|}
\hline No. & Node & \multicolumn{1}{c|}{\(\operatorname{Fx}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Fy}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Fz}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Mx}(\mathrm{kNm})\)} & \multicolumn{1}{c|}{\(M y(\mathrm{kNm})\)} & \multicolumn{1}{c|}{\(\mathrm{Mz}(\mathrm{kNm})\)} \\
\hline \hline \multirow{2}{*}{6001} & 6001 & 0.0 & 0.0 & 17322.6 & 3262.2 & 21179.0 & 0.0 \\
\cline { 2 - 8 } & 6002 & 0.0 & 0.0 & -17322.6 & -3262.2 & -55734.3 & 0.0 \\
\hline \multirow{2}{*}{6002} & 6002 & 0.0 & 0.0 & 17478.2 & 3262.2 & 55734.3 & 0.0 \\
\cline { 2 - 8 } & 6003 & 0.0 & 0.0 & -17478.2 & -3262.2 & -90536.7 & 0.0 \\
\hline \multirow{2}{*}{6003} & 6003 & 0.0 & 0.0 & 17681.6 & 3262.2 & 90536.7 & 0.0 \\
\cline { 2 - 8 } & 6004 & 0.0 & 0.0 & -17681.6 & -3262.2 & -125665.3 & 0.0 \\
\hline \multirow{2}{*}{6004} & 6004 & 0.0 & 0.0 & 17895.2 & 3262.2 & 125665.3 & 0.0 \\
\cline { 2 - 8 } & 6005 & 0.0 & 0.0 & -17895.2 & -3262.2 & -161151.0 & 0.0 \\
\hline \multirow{2}{*}{6005} & 6005 & 0.0 & 0.0 & 17990.2 & 3262.2 & 161151.0 & 0.0 \\
\cline { 2 - 8 } & 6006 & 0.0 & 0.0 & -17990.2 & -3262.2 & -178993.6 & 0.0 \\
\hline \multirow{2}{*}{6006} & 6006 & 0.0 & 0.0 & 18855.7 & 3262.2 & 178993.6 & 0.0 \\
\cline { 2 - 8 } & 6007 & 0.0 & 0.0 & -18855.7 & -3262.2 & -197272.3 & 0.0 \\
\hline
\end{tabular}

Table 2.6-12 Sectional Forces of P1
\begin{tabular}{|c|c|r|r|r|r|r|r|}
\hline No. & Node & \multicolumn{1}{c|}{ Fx(kN) } & \multicolumn{1}{c|}{ Fy(kN) } & \multicolumn{1}{c|}{ Fz(kN) } & \multicolumn{1}{c|}{ Mx(kNm) } & \multicolumn{1}{c|}{ My(kNm) } & \multicolumn{1}{c|}{ Mz(kNm) } \\
\hline \hline \multirow{2}{*}{7001} & 7001 & 0.0 & 0.0 & 17332.8 & 3262.4 & 21669.5 & 0.0 \\
\cline { 2 - 8 } & 7002 & 0.0 & 0.0 & -17332.8 & -3262.4 & -56251.8 & 0.0 \\
\hline \multirow{2}{*}{7002} & 7002 & 0.0 & 0.0 & 17487.0 & 3262.4 & 56251.8 & 0.0 \\
\cline { 2 - 8 } & 7003 & 0.0 & 0.0 & -17487.0 & -3262.4 & -91075.3 & 0.0 \\
\hline \multirow{2}{*}{7003} & 7003 & 0.0 & 0.0 & 17689.7 & 3262.4 & 91075.3 & 0.0 \\
\cline { 2 - 8 } & 7004 & 0.0 & 0.0 & -17689.7 & -3262.4 & -126222.1 & 0.0 \\
\hline \multirow{2}{*}{7004} & 7004 & 0.0 & 0.0 & 17903.3 & 3262.4 & 126222.1 & 0.0 \\
\cline { 2 - 8 } & 7005 & 0.0 & 0.0 & -17903.3 & -3262.4 & -161724.4 & 0.0 \\
\hline \multirow{2}{*}{7005} & 7005 & 0.0 & 0.0 & 17998.8 & 3262.4 & 161724.4 & 0.0 \\
\cline { 2 - 8 } & 7006 & 0.0 & 0.0 & -17998.8 & -3262.4 & -179575.4 & 0.0 \\
\hline \multirow{2}{*}{7006} & 7006 & 0.0 & 0.0 & 18872.3 & 3262.4 & 179575.4 & 0.0 \\
\cline { 2 - 8 } & 7007 & 0.0 & 0.0 & -18872.3 & -3262.4 & -197865.9 & 0.0 \\
\hline
\end{tabular}
iii) Supporting Reaction

Table 2.6-13 Supporting Reaction of A1
\begin{tabular}{|c|r|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ No. } & \(\mathrm{Fx}(\mathrm{kN})\) & \(\mathrm{Fy}(\mathrm{kN})\) & \(\mathrm{Fz}(\mathrm{kN})\) & \(\mathrm{Mx}(\mathrm{kNm})\) & \(\mathrm{My}(\mathrm{kNm})\) & \(\mathrm{Mz}(\mathrm{kNm})\) \\
\hline \hline 8101 & 561 & 3845 & 6524 & 1010 & 0 & 166 \\
\hline 8301 & 0 & 0 & 6608 & 1023 & 0 & 0 \\
\hline 8501 & 561 & 3845 & 6524 & 1010 & 0 & 166 \\
\hline
\end{tabular}

Table 2.6-14 Supporting Reaction of A2
\begin{tabular}{|r|r|r|r|r|r|r|}
\hline No. & \(F x(k N)\) & \(F y(k N)\) & \(F z(k N)\) & \(M x(k N m)\) & \(M y(k N m)\) & \(M z(k N m)\) \\
\hline \hline 8150 & 561 & 3825 & 6522 & 1010 & 0 & 166 \\
\hline 8350 & 0 & 0 & 6607 & 1023 & 0 & 0 \\
\hline 8550 & 561 & 3825 & 6522 & 1010 & 0 & 166 \\
\hline
\end{tabular}

Table 2.6-15 Supporting Reaction of P1 and P2
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \multicolumn{1}{|c|}{\(\mathrm{Fx}(\mathrm{kN})\)} & \multicolumn{1}{|c|}{\(\mathrm{Fy}(\mathrm{kN})\)} & \(\mathrm{Fz}(\mathrm{kN})\) & \(\mathrm{Mx}(\mathrm{kNm})\) & \(\mathrm{My}(\mathrm{kNm})\) & \(\mathrm{Mz}(\mathrm{kNm})\) \\
\hline \hline P1 & 0 & 0 & 18856 & 199106 & 0 & 0 \\
\hline P2 & 0 & 0 & 18872 & 199701 & 0 & 0 \\
\hline
\end{tabular}

\section*{3. Design Example of Substructure and Foundation}

\subsection*{3.1 Design Concept}

\subsection*{3.1.1 General}

Based on that the following dimensions are obtained as the outline design for substructure \& foundation of Mawo bridge.
The design of foundation is conducted base on two models for the seismic analysis model \& foundation design model. When determining the natural periods of the bridge structure, the foundation may be modeled using a series of vertical, horizontal shear and rotational springs. In this example, the seismic analysis is modeled lumped springs at the bottom of pile cap as Figure 3.1.1-2 (b), and the pile foundation design is modeled discrete element modeled \& spring at nodal points as Figure 3.1.1-2 (c).


Figure 3.1.1-1 Dimension for Substructure \& foundation of Mawo bridge.


Figure 3.1.1-2 Natural Period Calculation Model and Foundation Design Model for Pile Foundation.

\subsection*{3.1.2 Design Specifications}

Basically, the design example proceeds in accordance with "LRFD Bridge Seismic Design Specifications" (BSDS). In the "LRFD Bridge Seismic Design Specifications" was consisted in the following table based on AASHTO LRFD 2012, JRA 2012 and DPWT.

Table 3.1.2-1 Design Specifications for Substructure \& Foundation Design
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Items} & BSDS & DPWH & LRFD & JRA \\
\hline \multicolumn{2}{|l|}{1. Design Conditions \& Analysis} & & & & \\
\hline 1) & Materials Characteristics & & \(\bigcirc\) & & \\
\hline & Loads (Live load) & & - & & \\
\hline & Load factor & & & \(\bigcirc\) & \\
\hline & Seismic Force & \(\bigcirc\) & & & \\
\hline & Liquefaction & \(\bigcirc\) & & & ( \()\) \\
\hline & Load combination & & & \(\bigcirc\) & \\
\hline & Seismic Analysis (except foundation spring) & & & \(\bigcirc\) & \\
\hline \multicolumn{2}{|l|}{2. Foundation Design} & & & & \\
\hline & Foundation Spring (for Analysis \& Design) & \(\bigcirc\) & & & () \\
\hline & Foundation Design Force & & & \(\bigcirc\) & \\
\hline & Stability of Pile Foundation & \(\bigcirc\) & & & ( \()\) \\
\hline & Stability of Spread Sheet Foundation & \(\bigcirc\) & & ( \()\) & \\
\hline \multicolumn{2}{|l|}{3. Structural Section Design (column \& pile)} & & & & \\
\hline & Section check items & & & \(\bigcirc\) & \\
\hline & Section Strength & & & \(\bigcirc\) & \\
\hline & Bar-Arrangement & & & \(\bigcirc\) & \\
\hline
\end{tabular}

\subsection*{3.1.3 General Outline of Design Flows}

The procedure general outline flow chart of Substructure \& Foundation design example Mawo Bridge is shown in the following figure based on newly specified BSDS. In this design example, only the seismic design is mentioned throughout the substructure \& foundation design.


Figure 3.1.3-1 Outline Design Flow for Pile Foundation of Pier

Table 3.1.3-2 Relationship between Abutment Type \& Height
\begin{tabular}{|c|c|c|c|}
\hline Type of Abutment & Applicable height; H & Type of Abutment & Applicable height; H \\
\hline a. Gravity Type & \[
\begin{gathered}
\mathrm{H} \leqq \\
3.0 \sim 6.0 \mathrm{~m}
\end{gathered}
\] & c. Buttress Type & \(\mathrm{H}>12.0 \mathrm{~m}\) \\
\hline b. Cantilever Type & \[
\begin{aligned}
& \mathrm{H} \leqq \\
& 5.0 \sim 12.0 \mathrm{~m}
\end{aligned}
\] & d. Box Type & H> 12.0 m \\
\hline
\end{tabular}

Table 3.1.3-3 Relationship between Abutment Type \& Height



Figure 3.1.3-4 Design Flow for Pile Foundation

\subsection*{3.1.4 Outline Design Items of Foundation Seismic Design}

The principal design items of substructure \& foundation outline design example Mawo Bridge is shown in the following table based on newly specified BSDS. In this outline design example, only the seismic design is mentioned throughout the substructure \& foundation design; the design items of limit state design and serviceability design is not included.

Table 3.1.4-1 Outline Design Items of Foundation Seismic Design and design specifications
\begin{tabular}{|c|c|c|}
\hline Items & Specification & \begin{tabular}{l}
Design \\
Example
\end{tabular} \\
\hline \multicolumn{3}{|l|}{1. General Requirement} \\
\hline Ground surface in seismic design & BSDS A.3.5.2 & 3.3.1. (2) \\
\hline Response modification factors (R) & BSDS A.3.8.1 & A.3.3.1. (2) \\
\hline & & A.3.3.1. (4) \\
\hline \multicolumn{3}{|l|}{2. Analysis Requirement} \\
\hline \begin{tabular}{l}
\(\begin{array}{l}\text { Coefficients of subgrade } \\
\text { design(k) }\end{array}\) \\
reaction for foundation \\
\hline
\end{tabular} & BSDS A.4.4.2 & A.3.3.1.(4) \\
\hline Coefficients of subgrade reaction for seismic analysis(ko) & BSDS A.4.4.3 & A.3.2.2.(1) \\
\hline & & \\
\hline \multicolumn{3}{|l|}{3. Design Requirement} \\
\hline Single column and pier & \[
\begin{aligned}
& \hline \text { BSDS } \\
& \text { A.5.3.4.3.b }
\end{aligned}
\] & A.3.3.2. \\
\hline Foundation design forces & BSDS A.5.3.4.3.f & A.3.3.3(2) \\
\hline Pile Foundation & BSDS A.5.4.3. & A.3.3.3. \\
\hline Pile Arrangement & BSDS A.5.4.3.2 & A.3.3.3.(1) \\
\hline Nominal Axial Compression Resistance of a Single Pile (Bearing Capacity) & BSDS A.5.4.3.3 & A.3.3.3.(3).3) \\
\hline Section Design & LRFD Section5 & \[
\begin{aligned}
& \hline \text { A3.3.2(4),(5) } \\
& \text { A3.3.3.(4) 2),3) }
\end{aligned}
\] \\
\hline Re-bar Arrangement & LRFD Section5 & \[
\begin{aligned}
& \text { A3.3.2(3) } \\
& \text { A3.3.3.(4) 1) } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\subsection*{3.1.5 Design Software}

The outline design of Substructure and Foundation adopt the following design software.

Table 3.1.5-1 Design Software for Substructure \& Foundation Design
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Design Items } & Name of Software (Developed) \\
\hline Bridge Structural Analysis & STAAD Pro. (Bentley) \\
\hline Pile Foundation Design (including Analysis spring) & \\
Biaxial Interaction Curve for Column \& Pile & FB-Multi Pier \\
Pile reaction, Section force, Displacement and analysis & (Bridge Software Institute) \\
spring for Pile Foundation & \\
\hline
\end{tabular}

Note) BSI ; Bridge Software Institute(http://bsi.ce.ufl.edu/)

\subsection*{3.2 Analysis}

\subsection*{3.2.1 General}

The ground condition \& pile foundation at P2 is shown in the following figure. In this outline design example, only the P2 is shown throughout the coefficient of subgrade reaction \& analysis results. And the foundation spring constants for seismic, the FB-Multi pier is conducted by JRA spring.

where;
\(\mathrm{kh}=\) Coefficient of subgrade reaction in the horizontal direction at the pile section corresponding to area \(A_{H}\) derived
\(\mathrm{kv}=\) Coefficient of subgrade reaction in the vertical direction at the bottom of foundation derived


Figure 3.2.1-1 Natural Period Calculation Model for Pile Foundation


Figure 3.2.1-2 Soil condition \& Pile foundation at P2

\subsection*{3.2.2 Foundation Spring for Seismic Analysis}

\section*{(1) Coefficients of Subgrade Reaction}

When calculating the natural periods, the deformation effects of the structural members and the foundations shall be considered. The coefficients of subgrade reaction, for verification of seismic performance and calculation of natural period shall be obtained based on the stiffness of the ground which is equivalent to the deformation of the ground during an earthquake.
In this outline design, the analysis model of soil springs would be suggested using the p-y curve method based on the coefficient of subgrade reaction. The values of the coefficient of subgrade reaction shall be obtained as followings.

Table 3.2.2-1 Coefficients of Subgrade Reaction for horizontal (kh)
\begin{tabular}{|c|c|c|c|}
\hline D & (m) & 1.500 & \\
\hline Ac & \(\left(\mathrm{m}^{2}\right)\) & 1.76715 & \\
\hline Ic & \(\left(\mathrm{m}^{4}\right)\) & 0.24850 & \\
\hline Es & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & \(2.00 \mathrm{E}+08\) & \\
\hline Ec & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & \(2.50 \mathrm{E}+07\) & where; \\
\hline Es/Ec & (-) & 8.000 & \(\left(B_{H}\right)^{-3 / 4}\) \\
\hline A & \(\left(\mathrm{m}^{2}\right)\) & 1.7671 & \(k_{H}=k_{H 0}\left(\frac{B_{H}}{0.3}\right) \quad\left(\mathrm{kN} / \mathrm{m}^{3}\right)\) \\
\hline I & \(\left(\mathrm{m}^{4}\right)\) & 0.2485 & \\
\hline 1/ß(1) & (m) & 3.3848 & estimate value \(k_{H 0}=\frac{1}{0.3} \alpha E_{0} \quad\left(\mathrm{kN} / \mathrm{m}^{3}\right)\) \\
\hline \(a E_{0 \text { (ave) }}\) & (kN/m²) & 171,788 & \(B_{H}=\sqrt{D / \beta}\) (m) \\
\hline \(B_{H}\) & (m) & 2.2533 & k \(D\) \\
\hline \(k_{H 0}\) & (kN/m \({ }^{3}\) ) & 572,625 & \(\beta=\sqrt{\frac{k_{H} D}{4 E I}}\left(\mathrm{~m}^{-1}\right)\) \\
\hline \(k_{H}\) & ( \(\mathrm{kN} / \mathrm{m}^{3}\) ) & 126,212 & \(k_{H E}=\eta_{k} \alpha_{k} k_{H}\) \\
\hline b & (1/m) & 0.2954 & \\
\hline 1/3(2) & (m) & 3.3848 & 0.0000 (The check of convergence calculation (1)-(2)) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|r|r|r|r|}
\hline No. & \begin{tabular}{c} 
Strata \\
name
\end{tabular} & \begin{tabular}{c} 
Thickness \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Depth \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
EL.(m) \\
\((\) Top of \\
Laver)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{N}-\) \\
values
\end{tabular} & \begin{tabular}{c} 
Vsi \\
\((\mathrm{m} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c} 
VsD \\
\((\mathrm{m} / \mathrm{s})\)
\end{tabular} & \(\left.\begin{array}{c}v \mathrm{~d}\end{array} \begin{array}{c}\gamma \mathrm{t} \\
(\mathrm{kN} / \mathrm{m} 3)\end{array}\right)\) & \begin{tabular}{c}
\(E_{\mathrm{D}}\) \\
\(\left(\mathrm{kN} / \mathrm{m}^{2}(\mathrm{kN} / \mathrm{m} 2)\right.\)
\end{tabular} & \begin{tabular}{c}
\(k_{H}\) \\
\((\mathrm{kN} / \mathrm{m} 3)\)
\end{tabular} \\
\hline 1 & Ag2 Grave & 6.55 & 6.55 & -7.25 & 21.0 & 220.71 & 176.57 & 0.5 & 18.0 & 171,788 & 126,212 \\
\hline 2 & Ac2 Clay & 13.00 & 19.55 & -13.80 & 8.0 & 200.00 & 160.00 & 0.5 & 18.0 & 141,061 & 103,638 \\
\hline 3 & Ds1 Sand & 3.00 & 22.55 & -26.80 & 17.0 & 205.70 & 164.56 & 0.5 & 17.0 & 140,926 & 103,539 \\
\hline 4 & Ds2 Sand & 7.00 & 29.55 & -29.80 & 31.0 & 251.31 & 201.05 & 0.5 & 19.0 & 235,098 & 172,726 \\
\hline 5 & VR Rock & 1.45 & 31.00 & -36.80 & 50.0 & 294.72 & 235.78 & 0.5 & 21.0 & 357,366 & 262,557 \\
\hline
\end{tabular}
\(\mathrm{VsD}=\{\mathrm{Vsi}<300,0.8 \mathrm{xVsi}, \mathrm{Vsi}>=300,1.0 \mathrm{xVsi})\)
Table 3.2.2-2 Seismic Analysis Springs at P2 Foundation
\(\begin{array}{lll}\text { P2 } & \text { Pile Length in the grot } & L: 31.000(\mathrm{~m}) \\ & D: 1.500(\mathrm{~m})\end{array}\)

※1) Sandy: As, Cohesive: Ac
\(※ \mathrm{~g}=\) Total Unit Weight \(-9 \mathrm{kN} / \mathrm{m}^{3}\)

\section*{(2) Foundation Spring Constants for Seismic Analysis}

The Pier Foundation spring for seismic analysis is calculated by "FB-Multi Pier" (refer to A 2.2). The results of foundation spring are shown as followings. In this design, abutments are not modeled in the seismic analysis because abutments may have enough strength and stiffness fixed by grounds for seismic vibration.

Table 3.2.2-3 Foundation Springs constants of Seismic Analysis for P1 \& P2
Mawo P1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & KX & KY & KZ & TX & TY & TZ \\
\cline { 2 - 7 } & \((\mathrm{kN} / \mathrm{m})\) & \((-)\) & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kNm} / \mathrm{rad})\) & \((-)\) & \((\mathrm{kNm} / \mathrm{rad})\) \\
\hline FB-Pier & \(7.669 \mathrm{E}+06\) & Fix & \(7.660 \mathrm{E}+06\) & \(2.017 \mathrm{E}+08\) & Fix & \(1.284 \mathrm{E}+08\) \\
\hline
\end{tabular}

Mawo P2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & KX & KY & KZ & TX & TY & TZ \\
\cline { 2 - 7 } & \((\mathrm{kN} / \mathrm{m})\) & \((-)\) & \((\mathrm{kN} / \mathrm{m})\) & \((\mathrm{kNm} / \mathrm{rad})\) & \((-)\) & \((\mathrm{kNm} / \mathrm{rad})\) \\
\hline FB-Pier & \(7.012 \mathrm{E}+06\) & Fix & \(7.658 \mathrm{E}+06\) & \(2.067 \mathrm{E}+08\) & Fix & \(1.094 \mathrm{E}+08\) \\
\hline
\end{tabular} A2


Figure 3.2.2-4 Analytical Mode of Seismic Analysis by Staad Pro.

\subsection*{3.2.3 Results of Seismic Analysis}

From the Following table, seismic response values computed by response spectrum values are shown.
Table 3.2.3-1 Results of Seismic Analysis for Foundation Design


Figure 3.2.3-2 Model of P2 pier

\section*{- LONGITUDINAL DIRECTION}
<TOP OF SUBSTRUCTURES>
\begin{tabular}{|l|r|r|r|}
\hline & \multicolumn{3}{|c|}{ Longitudinal Direction } \\
\hline & \(\mathrm{H}(\mathrm{KN})\) & \(\mathrm{M}(\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) \\
\hline A1 (E) & 18,477 & 5,451 & 663 \\
\hline A2 (E) & 18,477 & 5,451 & 661 \\
\hline
\end{tabular}
<BOTTOM OF PIERS>
\begin{tabular}{|l|r|r|r|}
\hline & \(\mathrm{H}(\mathrm{KN})\) & \(\mathrm{M}(\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) \\
\hline P1 (E) & 17,841 & 144,762 & 440 \\
\hline P2 (E) & 17,742 & 143,831 & 438 \\
\hline
\end{tabular}

Note: Node No 6005, 7005
- TRANSVERSAL DIRECTION
\begin{tabular}{|l|r|r|r|}
\hline \multicolumn{4}{|c}{ <BOTTOM OF PIERS> } \\
\hline P1 (E) & 17,895 & 161,151 & 0 \\
\hline P2 (E) & 17,903 & 161,724 & 0 \\
\hline
\end{tabular}

Note: Node No 6005, 7005
<BOTTOM OF FOOTING \(>\)
\begin{tabular}{|l|c|c|r|}
\hline & H(KN) & M(KNm) & V(KN) \\
\hline P1 (E) & 18,588 & 182,559 & 440 \\
\hline P2 (E) & 18,503 & 181,430 & 438 \\
\hline
\end{tabular}

Note: Node Supporting
<BOTTOM OF FOOTING>
\begin{tabular}{|l|c|r|r|}
\hline & H \((\mathrm{KN})\) & M \((\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) \\
\hline P1 (E) & 18,856 & 199,106 & 0 \\
\hline P2 (E) & 18,872 & 199,701 & 0 \\
\hline
\end{tabular}

Note: Node Supporting

\subsection*{3.3 Pier Outline Design}

\subsection*{3.3.1 Design Condition}

\section*{(1) Design Force}

From the Following table, the Substructure \& Pile foundation design values computed by results of seismic analysis values are shown.

Table 3.3.1-1 Outline Design Items of Pile Foundation Seismic Design
- Results of Eigenvalue Analysis

VERTICAL REACTIONS FOR SUBSTRUCTURE STABLE CALCULATION (KN)
\begin{tabular}{|l|r|r|c|}
\hline & Dead load & Live load & Sum. \\
\hline P1 & 33,900 & 3,800 & 37,700 \\
\hline P2 & 33,900 & 3,800 & 37,700 \\
\hline
\end{tabular}
-Section Forces for Column design (at bottom of Column)
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \multicolumn{3}{|c|}{ Longitudinal Direction } & \multicolumn{3}{c|}{ Transversal Direction } \\
\hline & \(\mathrm{H}(\mathrm{KN})\) & \(\mathrm{M}(\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) & \multicolumn{1}{c|}{\(\mathrm{H}(\mathrm{KN})\)} & \(\mathrm{M}(\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) \\
\hline P1 (F) & 17,841 & 144,762 & 440 & 17,895 & 161,151 & 0 \\
\hline P2 (F) & 17,742 & 143,831 & 438 & 17,903 & 161,724 & 0 \\
\hline
\end{tabular}
-Section Forces for foundation design (at bottom of Pile Cap)
\begin{tabular}{|l|r|r|r|r|r|r|}
\hline & \multicolumn{3}{|c|}{ Longitudinal Direction } & \multicolumn{3}{|c|}{ Transversal Direction } \\
\hline & \(\mathrm{H}(\mathrm{KN})\) & \(\mathrm{M}(\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) & \multicolumn{1}{c|}{\(\mathrm{H}(\mathrm{KN})\)} & \(\mathrm{M}(\mathrm{KNm})\) & \(\mathrm{V}(\mathrm{KN})\) \\
\hline P1 (F) & 18,588 & 182,559 & 440 & 18,856 & 199,106 & 0 \\
\hline P2 (F) & 18,503 & 181,430 & 438 & 18,872 & 199,701 & 0 \\
\hline
\end{tabular}
- Dead Loas (for Pier column)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ Pier Column } \\
\hline & h & B & Aria & \multicolumn{1}{c|}{ Height } & Unit Weight & Self Weight \\
\cline { 2 - 7 } & \((\mathrm{m})\) & \((\mathrm{m})\) & \((\mathrm{m} 2)\) & \((\mathrm{m})\) & \((\mathrm{kN} / \mathrm{m} 3)\) & \((\mathrm{kN})\) \\
\hline P1 & 2.8 & 13.7 & 36.7 & 8.0 & 24.5 & 7,189 \\
\hline P2 & 2.8 & 13.7 & 36.7 & 8.0 & 24.5 & 7,189 \\
\hline
\end{tabular}
- Combination Loads for Column Design

Longitudinal Direction at Section A-A (bottom of Column )

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{DL} & \multicolumn{2}{|c|}{LL} & \multicolumn{3}{|c|}{EQ} & \multicolumn{5}{|c|}{SUM of TRANSVERSAL} \\
\hline & N (kN) & \(\varphi\) & N (kN) & \(\varphi\) & H (kN) & M (kNm) & \(\varphi\) & N (kN) & \(\mathrm{Hl}(\mathrm{kN})\) & Ml (kNm) & Ht (kN) & Mt (kNm) \\
\hline P2(Nmax) & 41,089 & 1.25 & 3,800 & 0.50 & 17,903 & 161,724 & 1.00 & 53,270 & 5,323 & 43,149 & 17,903 & 161,724 \\
\hline (Nmin) & 41,089 & 0.90 & 3,800 & 0.50 & 17,903 & 161,724 & 1.00 & 38,890 & 5,323 & 43,149 & 17,903 & 161,724 \\
\hline
\end{tabular}


Figure 3.3.1-1 Design Section of Column (Section A-A)

\section*{(2) Soil Condition}

The results of ground investigation are shown in below illustrations and following table. The weathered rock layer that can be regarded as the bearing layer is distributed E.L. -2.0m to E.L.-6.5m depth, and has a thick surface layer predominant with gravely sand on top. Specialty, liquefiable sand (Dsg) is thickly deposited from ground surface to GL-2.0m, of which N -value is 15 to 29 , will be affected by liquefaction occurs with reduction of geotechnical parameter. .

Table 3.3.1-2 Soil Condition \& P2 Pile Foundation


\section*{(3) Assessment of Soil Liquefaction}

According to the design specifications, sandy layer requiring liquefaction Assessment is obviously obtained as following table.

Table 3.3.1-3 Assessment of Soil Liquefaction
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Assessment of Liquefaction Potential} & & \\
\hline GL-(m) & \[
\begin{aligned}
& \text { Soil } \\
& \text { Layers }
\end{aligned}
\] & N by SPT & \begin{tabular}{l}
Ground Water Level (- \\
m)
\end{tabular} & Fc (\%) & PI & \[
\begin{gathered}
\text { D50 } \\
(\mathrm{mm})
\end{gathered}
\] & \[
\begin{gathered}
\text { D10 } \\
(\mathrm{mm})
\end{gathered}
\] & Liquefiable & & N by SPT \\
\hline & & <30 & & <35\% & <15 & \(<10 \mathrm{~mm}\) & <1mm & & & 1020304050 \\
\hline 0.70 & Ac1 & 2 & 0.50 & 62.3 & 16 & & & & 0.00 & \(\cdots\) \\
\hline 1.70 & Ac1 & 3 & 0.50 & 56.3 & 2 & & & & & P \\
\hline 2.70 & Ac1 & 4 & 0.50 & 56.3 & 2 & & & & -2.00 & ¢ \\
\hline 3.70 & Ac1 & 3 & 0.50 & 79.7 & 8 & & & & & 1 \\
\hline 4.70 & Ac1 & 4 & 0.50 & 2.2 & & 0.30 & 0.10 & & -4.00 & \\
\hline 5.70 & As & 8 & 0.50 & 1.5 & & 0.24 & 0.11 & O & & \% \\
\hline 6.70 & As & 12 & 0.50 & 1.5 & & 0.63 & 0.13 & 0 & E \({ }^{-6.00}\) & \\
\hline 7.70 & Ag & 24 & 0.50 & 0.2 & & 12.61 & 0.49 & O & & \\
\hline 8.70 & Ag & 23 & 0.50 & 0.6 & & 2.75 & 0.21 & 0 & 둔 -8.00 & \\
\hline 9.70 & Ag & 21 & 0.50 & 0.2 & & 2.57 & 0.76 & \(\bigcirc\) & & 6 \\
\hline 10.70 & Ag & 21 & 0.50 & 1.1 & & 4.57 & 0.20 & 0 & - -10.00 & \\
\hline 11.70 & Ag & 24 & 0.50 & 1.3 & & 3.24 & 0.23 & \(\bigcirc\) & & \\
\hline 12.70 & Ag & 17 & 0.50 & 3.1 & & 2.85 & 0.14 & 0 & -12.00 & \\
\hline 13.70 & Ag & 22 & 0.50 & 0.2 & & 10.30 & 0.47 & \(\bigcirc\) & -14.00 & \\
\hline 14.70 & Ag & 22 & 0.50 & 1.6 & & 0.86 & 0.16 & 0 & -14.00 & \\
\hline 15.70 & Ac2 & 7 & 0.50 & 61.8 & 12.0 & & & & -16.00 & 0 \\
\hline 16.70 & Ac2 & 7 & 0.50 & 68.0 & 9.0 & & & & & \\
\hline 17.70 & Ac2 & 7 & 0.50 & 72.1 & 4.0 & & & & -18.00 & \\
\hline 18.70 & Ac2 & 12 & 0.50 & 56.6 & 2.0 & & & & & \\
\hline 19.70 & Ac2 & 7 & 0.50 & 75.7 & 4.0 & & & & -20.00 & * \\
\hline 20.70 & Ac2 & 7 & 0.50 & 56.6 & 5.0 & & & & \multicolumn{2}{|r|}{\multirow{4}{*}{\(\rightarrow-\mathrm{N}\)-value}} \\
\hline 21.70 & Ac2 & 9 & 0.50 & 35.6 & 4.0 & 0.34 & & & & \\
\hline 22.70 & Ac2 & 9 & 0.50 & 43.4 & 4.0 & 0.09 & & & & \\
\hline 23.70 & Ac2 & 10 & 0.50 & 60.5 & 4.0 & & & & & \\
\hline 24.70 & Ac2 & 8 & 0.50 & 35.3 & & 0.14 & & & & \\
\hline
\end{tabular}

Based on the results of liquefaction assessment, reduction of geotechnical parameters shall be conducted in accordance with the following tables. In this the outline design, the liquefaction have no effect on the foundation design due to which is upper layer than the pile cap.

Table 3.3.1-4 Assessment of Soil Liquefaction Parameters
\begin{tabular}{|r|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{ Basic Soil Profile Information } \\
\hline GL-(m) & \begin{tabular}{c} 
Soil \\
Layers
\end{tabular} & \begin{tabular}{c}
N by \\
SPT
\end{tabular} & Fc (\%) & \begin{tabular}{c}
\(\mathrm{S}=1\) \\
\(\mathrm{G}=2\) \\
\(\mathrm{C}=3\)
\end{tabular} & \begin{tabular}{c}
\(\gamma \mathrm{t}\) \\
\(\gamma \mathrm{t} 1\)
\end{tabular} & \begin{tabular}{c} 
Water \\
unit \\
weight
\end{tabular} & \begin{tabular}{c} 
Ground \\
Water \\
Level \\
\((-\mathrm{m})\)
\end{tabular} & \begin{tabular}{c}
\(\sigma \mathrm{U}\) \\
\((\mathrm{Kpa})\)
\end{tabular} & \begin{tabular}{c}
\(\sigma \mathrm{v}\) \\
\((\mathrm{Kpa})\)
\end{tabular} & \begin{tabular}{c}
\(\sigma \mathrm{v}\) \\
\((\mathrm{Kpa})\)
\end{tabular} \\
\hline 5.70 & As & 8 & 1.5 & 1 & 18 & 10.00 & 0.50 & 52.00 & 87.80 & 35.80 \\
\hline 6.70 & As & 12 & 1.5 & 1 & 18 & 10.00 & 0.50 & 62.00 & 105.80 & 43.80 \\
\hline 7.70 & Ag & 24 & 0.2 & 1 & 19 & 10.00 & 0.50 & 72.00 & 124.80 & 52.80 \\
\hline 8.70 & Ag & 23 & 0.6 & 1 & 19 & 10.00 & 0.50 & 82.00 & 143.80 & 61.80 \\
\hline 9.70 & Ag & 21 & 0.2 & 1 & 19 & 10.00 & 0.50 & 92.00 & 162.80 & 70.80 \\
\hline 10.70 & Ag & 21 & 1.1 & 1 & 19 & 10.00 & 0.50 & 102.00 & 181.80 & 79.80 \\
\hline 11.70 & Ag & 24 & 1.3 & 1 & 19 & 10.00 & 0.50 & 112.00 & 200.80 & 88.80 \\
\hline 12.70 & Ag & 17 & 3.1 & 1 & 19 & 10.00 & 0.50 & 122.00 & 219.80 & 97.80 \\
\hline 13.70 & Ag & 22 & 0.2 & 1 & 19 & 10.00 & 0.50 & 132.00 & 238.80 & 106.80 \\
\hline 14.70 & Ag & 22 & 1.6 & 1 & 19 & 10.00 & 0.50 & 142.00 & 257.80 & 115.80 \\
\hline
\end{tabular}

Table 3.3.1-5 Results on Liquefaction Resistance Factor (FL) \& Reduction Factor ( \(\mathrm{D}_{\mathrm{E}}\) )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Calculation for FL} & \multicolumn{3}{|r|}{Reduction Factor \(\mathrm{D}_{\mathrm{E}}\)} \\
\hline Depth & N1 & C1 & C2 & Na & R & L & FL & R(Ave.) & FL(Ave.) & \(\mathrm{D}_{\mathrm{E}}\) \\
\hline -5.70 & 12.85 & 1.000 & 0.000 & 12.854 & 0.243 & 0.852 & 0.285 & 0.265 & 0.316 & 0.00 \\
\hline -6.70 & 17.93 & 1.000 & 0.000 & 17.926 & 0.287 & 0.826 & 0.348 & 0.265 & 0.316 & 0.00 \\
\hline -7.70 & 33.22 & 1.000 & 0.000 & 33.225 & 1.348 & 0.794 & 1.697 & & & \\
\hline -8.70 & 29.67 & 1.000 & 0.000 & 29.666 & 0.750 & 0.769 & 0.975 & & & \\
\hline -9.70 & 25.36 & 1.000 & 0.000 & 25.355 & 0.430 & 0.747 & 0.576 & & & \\
\hline -10.70 & 23.83 & 1.000 & 0.000 & 23.832 & 0.377 & 0.727 & 0.519 & 0.533 & 0.719 & 1.00 \\
\hline -11.70 & 25.69 & 1.000 & 0.000 & 25.693 & 0.445 & 0.708 & 0.628 & 0.533 & 0.719 & 1.00 \\
\hline -12.70 & 17.22 & 1.000 & 0.000 & 17.223 & 0.281 & 0.691 & 0.407 & & & \\
\hline -13.70 & 21.15 & 1.000 & 0.000 & 21.154 & 0.322 & 0.675 & 0.477 & & & \\
\hline -14.70 & 20.13 & 1.000 & 0.000 & 20.129 & 0.309 & 0.659 & 0.469 & & & \\
\hline
\end{tabular}

\section*{(4) Coefficients of Subgrade Reaction}

When design of the pile foundation, the coefficients of subgrade reaction, for verification of the design of pile foundation performance shall be obtained based on the seismic design coefficients of the ground which is equivalent to the deformation of the ground during an earthquake. In this outline design, the design model of soil springs would be suggested using the p-y curve method based on the coefficient of subgrade reaction as seismic analysis model. The values of the coefficient of subgrade reaction shall be obtained as followings.

Table 3.3.1-6 Coefficients of Subgrade Reaction for horizontal (kh) \& Vertical (kv)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{No.} & \multirow[t]{2}{*}{Strata name} & \multirow[t]{2}{*}{\begin{tabular}{l}
Thickness \\
(m)
\end{tabular}} & \multirow[t]{2}{*}{Depth (m)} & \multirow[t]{2}{*}{\begin{tabular}{l}
EL.(II)
(Top of \\
I aver)
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{N}-\) values} & \multirow[t]{2}{*}{\(\left[\begin{array}{c}\gamma \mathrm{t} \\ (\mathrm{kN} / \mathrm{m} 3\end{array}\right)\)} & \multicolumn{3}{|r|}{Deformation Modulus} & \multicolumn{2}{|l|}{\(k_{H}\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)} \\
\hline & & & & & & & \(\alpha\) & \(E_{0}\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & \(a E_{0}\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & Normal & EQ \\
\hline 1 & Ag2 Gravel & 6.55 & 6.55 & -7.25 & 21.0 & 18.0 & 1 & 58,800 & 58,800 & 38,665 & 77,330 \\
\hline 2 & Ac2 Clay & 13.00 & 19.55 & -13.80 & 8.0 & 18.0 & 1 & 22,400 & 22,400 & 14,730 & 29,459 \\
\hline 3 & Ds1 Sand & 3.00 & 22.55 & -26.80 & 17.0 & 17.0 & 1 & 47,600 & 47,600 & 31,300 & 62,601 \\
\hline 4 & Ds2 Sand & 7.00 & 29.55 & -29.80 & 31.0 & 19.0 & 1 & 86,800 & 86,800 & 57,077 & 114,154 \\
\hline 5 & VR Rock & 1.45 & 31.00 & -36.80 & 300.0 & 21.0 & 2 & 136,098 & 272,196 & 178,988 & 357,976 \\
\hline & & & Tip & -38.25 & & & & Eo \(=2800 \mathrm{~N}\) & *except for th & rock & \\
\hline
\end{tabular}

Table 3.3.1-7 Coefficient of vertical ground reaction \(\mathbf{k}_{\mathbf{V}}\)
\begin{tabular}{|c|c|r|}
\hline\(D\) & \((\mathrm{~m})\) & 1.500 \\
\hline\(A\) & \(\left(\mathrm{~m}^{2}\right)\) & 1.767 \\
\hline\(E_{0}\) & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & 272,196 \\
\hline\(\alpha\) & \((-)\) & 2 \\
\hline\(a E 0\) & \(\left(\mathrm{kN} / \mathrm{m}^{2}\right)\) & 544,392 \\
\hline\(k_{V 0}\) & \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\) & \(1,814,640\) \\
\hline\(k_{V}\) & \(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\) & 542,704 \\
\hline\(K_{V}\) & \((\mathrm{kN} / \mathrm{m})\) & 959,037 \\
\hline\(K_{V E}\) & \((\mathrm{kN} / \mathrm{m})\) & \(1,918,074\) \\
\hline\(P\) & \((\mathrm{kN})\) & 11,012 \\
\hline y & \((\mathrm{m})\) & \begin{tabular}{c} 
\\
\(k_{V}=k_{V 0}\left(\frac{B_{V}}{0.3}\right)^{-3 / 4} \quad\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\end{tabular}\(\quad\)\begin{tabular}{l}
\(k_{V 0}=\frac{1}{0.3} \alpha E_{0} \quad\left(\mathrm{kN} / \mathrm{m}^{3}\right)\) \\
\(B_{V}=\sqrt{A_{H}}=D \quad(\mathrm{~m})\) \\
\(K_{V}=k_{V} A \quad(\mathrm{kN} / \mathrm{m})\)
\end{tabular} \\
\hline
\end{tabular}

Table 3.3.1-8 Seismic Design Springs at P2 Foundation


\subsection*{3.3.2 Column Design}

\section*{(1) Column Dimension}

Based on that the following dimensions are conducted as the outline design for column of Mawo bridge, which are determined due to the dimension of rubber bearing (for column plane) and design ground surface (for column height).


Figure 3.3.2-1 Dimension of P2 column

\section*{(2) Design Load}

Based on the results of seismic analysis, summarize of design force of column is conducted for the following table, which are considered for load combination and following combination.
-100 percent of the absolute value of the force effects in one of the perpendicular directions combined with 30 percent of the absolute value of the force effects in the second perpendicular direction, and
- 100 percent of the absolute value of the force effects in the second perpendicular direction combined with 30 percent of the absolute value of the force effects in the first perpendicular direction. (BSDS A.5.2 (1))

Table 3.3.2-1 Summarize of Design Forces at Bottom of Column
Longitudinal Direction at Section A-A (bottom of Column )
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{DL} & \multicolumn{2}{|l|}{LL} & \multicolumn{3}{|c|}{EQ} & \multicolumn{5}{|c|}{SUM of LONGITUDINAL} \\
\hline & \(\mathrm{N}(\mathrm{kN})\) & \(\varphi\) & N (kN) & \(\varphi\) & H (kN) & M (kNm) & \(\varphi\) & \(\mathrm{N}(\mathrm{kN})\) & Hl (kN) & Ml (kNm) & Ht (kN) & Mt (kNm) \\
\hline P2(Nmax) & 41,089 & 1.25 & 3,800 & 0.50 & 17,742 & 143,831 & 1.00 & 53,270 & 17,742 & 143,831 & 5,371 & 48,517 \\
\hline (Nmin) & 41,089 & 0.90 & 3,800 & 0.50 & 17,742 & 143,831 & 1.00 & 38,890 & 17,742 & 143,831 & 5,371 & 48,517 \\
\hline
\end{tabular}

Transverse Direction at Section A-A (bottom of column)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{DL} & \multicolumn{2}{|l|}{LL} & \multicolumn{3}{|c|}{EQ} & \multicolumn{5}{|c|}{SUM of TRANSVERSAL} \\
\hline & N (kN) & \(\varphi\) & N (kN) & \(\varphi\) & H (kN) & M (kNm) & \(\varphi\) & \(\mathrm{N}(\mathrm{kN})\) & Hl (kN) & Ml (kNm) & Ht (kN) & Mt (kNm) \\
\hline P2(Nmax) & 41,089 & 1.25 & 3,800 & 0.50 & 17,903 & 161,724 & 1.00 & 53,270 & 5,323 & 43,149 & 17,903 & 161,724 \\
\hline (Nmin) & 41,089 & 0.90 & 3,800 & 0.50 & 17,903 & 161,724 & 1.00 & 38,890 & 5,323 & 43,149 & 17,903 & 161,724 \\
\hline
\end{tabular}

\section*{(3) Verification of Limit for Reinforcement}

According to the AASHTO LRFD specifications, the verification of limit for reinforcement is obtained as followings.
1) Cross Section of Column

2) Longitudinal Reinforcement

3) Transverse Reinforcement
\[
4.0-\mathrm{D} 25 \quad \mathrm{~A}_{\mathrm{s} 1}=\quad 2,027 \mathrm{~mm}^{2} \quad @=150
\]
Steel Strength
Concrete Strength
Elastic Modulus
\(\mathrm{f}_{\mathrm{y}}=\quad \quad 414.0 \mathrm{MPa}\)
\(\mathrm{f}_{\mathrm{c}}=\quad \quad 28.0 \mathrm{MPa}\)
\(\mathrm{E}_{\mathrm{s}}=\quad 200,000 \mathrm{MPa}\)
4) Limits for Reinforcement (LRFD 5.7.4.2 )
- Minimum area of longitudinal reinforcement
\[
A_{s} f_{y} / A_{g} f^{\prime}{ }_{c}>0.135 \quad(L R F D \text { 5.7.4.2-3 })
\]
where:
\begin{tabular}{lrr} 
Area of longitudinal reinforcement steel & A \(_{s}=\) & \(371,686 \mathrm{~mm}^{2}\) \\
Yield strength of reinforcing bars & \(\mathrm{f}_{\mathrm{y}}=\) & 414 MPa \\
Area of section & \(\mathrm{A}_{\mathrm{g}}=\) & \(36,674,400 \mathrm{~mm}^{2}\) \\
Compressive strength of concrete & \(\mathrm{f}^{\prime}=\) & 28 MPa
\end{tabular}
\begin{tabular}{llllll}
\hline Minimum area of longitudinal reinforcem \(\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / \mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{c}}=\) & 0.150 & \(>\) & 0.135 & [OK] \\
\hline
\end{tabular}

As \(/ A g>0.01 \quad(L R F D 5 \cdot 10.11 .4 .1 a)\)
\begin{tabular}{llllll} 
Minimum area of longitudinal reinforcem \(\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{g}}=\) & 0.0101 & \(>\) & 0.010 & {\([\mathrm{OK}]\)} \\
\hline
\end{tabular}
- Maximum area of longitudinal reinforcement
```

As $/ \mathrm{Ag}<0.08$ (LRFD 5.7.4.2-1)
$\mathrm{As} / \mathrm{Ag}<0.04$ (LRFD 5.10.11.4.1a)

```
\begin{tabular}{|llllll|}
\hline Maximum area of longitudinal reinforcen \(\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{g}}=\) & 0.010 & \(<\) & 0.040 & [OK] \\
\hline
\end{tabular}
- Minimum area of Transverse reinforcement (LRFD 5.8.2.5)
\[
V_{c}=0.083 b\left(\sqrt{f^{\prime}} c\right) b_{v} s / f_{y} \quad(L R F D \text { 5.8.3.3-3 })
\]
where:
- Minimum transverse reinforcement (LRFD 5.8.2.5)
area of shear reinforcement within a distance
spacing of stirrups \(\quad S=150 \mathrm{~mm}\) effective web width taken as the minimum web (LRFD A5.8.2 \(\quad b_{v}=12,300 \mathrm{~mm}\) (assumed as; bv=B-b \({ }_{1}\) )
Min. transverse rein \(\left(\mathrm{mm}^{2}\right) \quad \mathrm{A}_{\text {min }}=\quad 1,957 \quad<\quad \mathrm{Av}=2,027 \mathrm{~mm}^{2} \quad[\mathrm{OK}]\)

\section*{(4) Verification of Nominal Flexural Resistance of Column}

Based on the FB-Multi Pier result, the verification of Nominal Flexural Resistance of column is obtained as followings, which R factor (response modification factor) is 1.0. According to the following results and minimum reinforcement, the response modification factor isn't required for this section.


Figure 3.3.2-2 M-N Interaction Diagram \& Design Reaction
for longitudinal Direction (LL, Nmin, 2-D32@125)


Figure 3.3.2-3 M-M Interaction Diagram \& Biaxial Moment for Design Axial Force (at \(\mathbf{N}=\mathbf{3 8}, \mathbf{8 9 0} \mathrm{kN}\), Nmin)

\section*{(5) Verification of Nominal Shear Resistance}
1) Design Section (A-A)
2) Detail of Cross-section of Column


Conversion height with an equivalent Cross Sectional Area

3) Characteristics of material

Steel Strength
Concrete Strength
Elastic modulus
\(f_{y}=\quad 414 \mathrm{MPa}\)
\(f^{\prime}{ }_{c}=\quad 28.0 \mathrm{MPa}\)
Es = 200,000 MPa
\(\mathrm{Ec}=25,000 \mathrm{MPa}\)
4) Sectional force

Longitudinal direction of P2 at Nmin (refer to Table 3.3.1-1)
\begin{tabular}{|c|c|c|c|}
\hline Factored Axial force: & \(N u=\) & 38,890 & kN \\
\hline Factored Moment: & \(M u=\) & 143,831 & kNm \\
\hline Factored Shear force for section & \(V u=\) & 17,742 & kN \\
\hline
\end{tabular}
5) Verification of Shear Resistance

The factored shear resistance, Vr, shall be taken as;
\[
\begin{equation*}
V_{r}=\phi V_{n} \tag{LRFD5.8.2.1-2}
\end{equation*}
\]
where:
\(\phi\) : resistance factor specified in A.5.10.11.4.1b
\(V_{n}\) : nominal shear resistance shall be taken as;
\[
\begin{gathered}
V_{u}>0.5 \varphi\left(V_{c}+\right. \\
V_{n 1}=V c+V s+V_{p} \\
V_{n 2}=0.25 f{ }^{\prime}{ }_{c} b_{v} d_{v}+V_{p}
\end{gathered}
\]
(LRFD 5.8.2.4-1)
(LRFD 5.8.3.3-1)
(LRFD 5.8.3.3-2)
in which :
\[
\begin{aligned}
& V_{c}=0.083 b\left(\sqrt{ } f^{\prime} c\right) b_{v} d_{v} \\
& V_{s}=A_{v} f_{y} d_{v} \cot \theta / s
\end{aligned}
\]
(LRFD 5.8.3.3-3)
(LRFD C5.8.3.3-
resistance factor specified (LRFD A.5.10.11.4.1b)
\[
\begin{aligned}
\phi & =0.90 \\
d_{s} & =2,600 \mathrm{~mm}
\end{aligned}
\]
the corresponding effective depth from the extreme compression (LRFD 5.8.2.9-2)
\[
d e=A s f y d s / A s f y
\]
\(d_{e}=2,600 \mathrm{~mm}\)
effective shear depth (A 5.8.2.9 \(\max (0.9 \mathrm{de}, 0.72 \mathrm{~h}\) )
effective web width taken as the minimum web width within
factor indicating ability of diagonally cracked concrete to transmit tension
\(d_{v}=2,340 \mathrm{~mm}\)
\(b_{v}=12,300 \mathrm{~mm}\)
\(\beta=2.00\)
(LRFD A 5.8.3.4.1)
angle of inclination of diagonal compressive stress (LRFD A 5.8.3.4.1)
angle of inclination of transverse reinforcement to longitudinal \(\alpha=90 \mathrm{deg}\)
area of shear reinforcement within a distance \(S\)
number of shear reinforcement within \(S\)
spacing of stirrups
\(\mathrm{Av}^{\prime}=\mathrm{D} 25=506.0 \mathrm{~mm}^{2}\)
\(n=4\)
area of shear reinforcement within a distance \(S\)
\((A v=n * s) \quad A v=2024 \mathrm{~mm}^{2}\)
nominal shear resistance provided by tensile stress in concrete(LRFD 5.8.3. \(V_{c}=25,282 \mathrm{kN}\)
\[
V c=0.083 b(\sqrt{f}, c) b v d v
\]
shear resistance provided by shear reinforcement (LRFD C5.8.3.3-4)
\[
V_{s}=13,072 \mathrm{kN}
\]
\[
V s=A_{v} f_{y} d_{v} \operatorname{cotq} / s
\]
nominal resistance (LRFD 5.8.3 \(\quad V_{n}=\min \left(V_{n 1}, V_{n 2}\right)\)
\(V_{n}=38,354 \mathrm{kN}\)
\(V_{n 1}=V c+V s+V_{p} \quad(L R F D 5.8 .3 .3-1) \quad=38,354 \mathrm{kN}\) \(V_{n 2}=0.25 f{ }_{c}{ }_{c} b_{v} d_{v}+V_{p}(\) LRFD 5.8.3.3-2 \() \quad=201,474 \mathrm{kN}\)

Regions requiring transverse reinforcement (5.8.2.4-1)

> \begin{tabular}{rl} \(V_{u}=\quad\) & \(17,742 \mathrm{kN} \quad\) \\ & \\ & \(=11,377 \mathrm{kN}\) \\ \hline \end{tabular}

Transverse reinforcement is necessary
The factored resistance \(\quad V_{u}=17,742 \mathrm{kN} \quad<\varphi V n=34,518 \mathrm{kN} \quad\)-O.K-

\subsection*{3.3.3 Pile Foundation Design}

\section*{(1) Pile Foundation Dimension}

Based on that the following dimensions are conducted as the outline design for pile foundation of Mawo bridge, which are determined due to the following specification (for pile arrangement) and pile bearing with design forces (for pile diameter, pile length and pile arrangement).


Figure 3.3.3-1 Dimension of Pile Foundation


Figure 3.3.3-2 Minimum Distance between Pile Centers and Distance between Outermost Pile Center and Footing Edge (BSDS Figure C5.4.3.2-1)

\section*{(2) Design Load}

Based on the results of seismic analysis and column design, summarize of design force of pile foundation is conducted for the following table, which are considered for load combination and following combination. In this design, column is not plastic hinging, thus the foundation design forces are obtained based on the analysis results.

Table 3.3.3-1 Summarize of Design Forces at Bottom of Pile Cap
\begin{tabular}{|c|r|r|r|r|r|}
\hline LOAD CASE & \multicolumn{1}{|c|}{\(\mathrm{N}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Hl}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Ml}(\mathrm{kNm})\)} & \multicolumn{1}{c|}{\(\mathrm{Ht}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Mt}(\mathrm{kNm})\)} \\
\hline 1) Extreme- I LL(Nmax) & 62,430 & 18,503 & 181,430 & 5,662 & 59,910 \\
\hline 2) Extreme- I LL(Nmin) & 45,480 & 18,503 & 181,430 & 5,662 & 59,910 \\
\hline 3) Extreme- I TT(Nmax) & 62,430 & 5,551 & 54,429 & 18,872 & 199,701 \\
\hline 4) Extreme- I TT(Nmin) & 45,480 & 5,551 & 54,429 & 18,872 & 199,701 \\
\hline
\end{tabular}

\section*{(3) Verification of Foundation Stability}
1) Design Model

Based on that the following models are conducted for pile foundation of Mawo bridge. The values of the coefficient of subgrade reaction shall be obtained as Table 3.3-1-8.


Figure 3.3.3-3 Design Model of Pile Foundation by FB-Multi Pier
2) Section Forces \& Displacement at Pile Head

According to the foundation calculation by FB-Multi Pier, the section forces at pile head are obtained as followings.
-Case1. Extreme- I Longitudinal direction (Nmax)


Figure 3.3.3-4 Summarize of calculation results for Longitudinal direction (Nmax)
Table 3.3.3-2 Summarize for the Section Forces at Pile Head (LL, Nmax)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Load Case & Pile No. & N & Hx & Hy & Mx & My & Dis. X & Dis. Y \\
\hline \multirow[t]{12}{*}{1)} & 1 & -7,959 & 337 & -1,079 & -2,944 & -795 & 0.00251 & 0.00873 \\
\hline & 2 & -9,690 & 338 & -1,079 & -2,943 & -794 & 0.00251 & 0.00873 \\
\hline & 3 & -11,416 & 340 & -1,079 & -2,943 & -791 & 0.00251 & 0.00873 \\
\hline & 4 & -11,565 & 341 & -1,079 & -2,943 & -790 & 0.00251 & 0.00873 \\
\hline & 5 & -537 & 338 & -1,079 & -2,944 & -795 & 0.00251 & 0.00873 \\
\hline & 6 & -1,522 & 338 & -1,079 & -2,943 & -794 & 0.00251 & 0.00873 \\
\hline & 7 & -3,249 & 340 & -1,079 & -2,943 & -791 & 0.00251 & 0.00873 \\
\hline & 8 & -4,968 & 340 & -1,079 & -2,944 & -791 & 0.00251 & 0.00873 \\
\hline & 9 & -528 & 338 & -1,078 & -2,945 & -794 & 0.00251 & 0.00873 \\
\hline & 10 & -530 & 339 & -1,078 & -2,945 & -793 & 0.00251 & 0.00873 \\
\hline & 11 & -532 & 339 & -1,078 & -2,945 & -793 & 0.00251 & 0.00873 \\
\hline & 12 & -534 & 339 & -1,078 & -2,945 & -792 & 0.00251 & 0.00873 \\
\hline
\end{tabular}
-Case2 Extreme- I Longitudinal direction (Nmin)


Figure 3.3.3-5 Summarize of calculation results for Longitudinal direction (Nmax)

Table 3.3.3-3 Summarize for the Section Forces at Pile Head (LL, Nmin)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Load Case & Pile No. & N & Hx & Hy & Mx & My & Dis. X & Dis. Y \\
\hline \multirow[t]{12}{*}{2)} & 1 & -5,249 & 300 & -958 & -4,551 & -1,288 & 0.00322 & 0.0110 \\
\hline & 2 & -10,729 & 301 & -959 & -4,550 & -1,287 & 0.00322 & 0.0110 \\
\hline & 3 & -11,551 & 302 & -959 & -4,549 & -1,284 & 0.00322 & 0.0110 \\
\hline & 4 & -11,561 & 303 & -959 & -4,550 & -1,283 & 0.00322 & 0.0110 \\
\hline & 5 & -522 & 300 & -958 & -4,551 & -1,288 & 0.00322 & 0.0110 \\
\hline & 6 & -528 & 301 & -959 & -4,550 & -1,287 & 0.00322 & 0.0110 \\
\hline & 7 & -534 & 302 & -959 & -4,550 & -1,284 & 0.00322 & 0.0110 \\
\hline & 8 & -2,529 & 302 & -958 & -4,550 & -1,284 & 0.00322 & 0.0110 \\
\hline & 9 & -502 & 301 & -958 & -4,552 & -1,287 & 0.00322 & 0.0110 \\
\hline & 10 & -508 & 301 & -958 & -4,552 & -1,286 & 0.00322 & 0.0110 \\
\hline & 11 & -513 & 301 & -958 & -4,552 & -1,286 & 0.00322 & 0.0110 \\
\hline & 12 & -519 & 301 & -958 & -4,552 & -1,286 & 0.00322 & 0.0110 \\
\hline
\end{tabular}
\(<15 \mathrm{~mm}\) (1\%ot pile diameter)
- OK -
-Case3 Extreme- I Transverse direction (Nmax)


Figure 3.3.3-6 Summarize of calculation results for Transverse direction (Nmax)
Table 3.3.3-4 Summarize for the Section Forces at Pile Head (TT, Nman)

- Case4 Extreme- I Transverse direction (Nmin)


Figure 3.3.3-7 Summarize of calculation results for Longitudinal direction (Nmin)
Table 3.3.3-5 Summarize for the Section Forces at Pile Head (LL, Nmin)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Load Case & Pile No. & N & Hx & Hy & Mx & My & Dis. X & Dis. Y \\
\hline \multirow[t]{12}{*}{4)} & 1 & -519 & 1,125 & -281 & -1,450 & -2,675 & 0.00841 & 0.00342 \\
\hline & 2 & -532 & 1,126 & -281 & -1,450 & -2,674 & 0.00841 & 0.00342 \\
\hline & 3 & -8,085 & 1,128 & -282 & -1,448 & -2,672 & 0.00841 & 0.00342 \\
\hline & 4 & -11,563 & 1,128 & -282 & -1,448 & -2,672 & 0.00841 & 0.00342 \\
\hline & 5 & -513 & 1,125 & -281 & -1,450 & -2,675 & 0.00841 & 0.00342 \\
\hline & 6 & -526 & 1,126 & -281 & -1,449 & -2,675 & 0.00841 & 0.00342 \\
\hline & 7 & -2,042 & 1,128 & -281 & -1,449 & -2,672 & 0.00841 & 0.00342 \\
\hline & 8 & -11,550 & 1,128 & -281 & -1,449 & -2,672 & 0.00841 & 0.00342 \\
\hline & 9 & -506 & 1,125 & -281 & -1,449 & -2,675 & 0.00841 & 0.00342 \\
\hline & 10 & -519 & 1,126 & -281 & -1,449 & -2,674 & 0.00841 & 0.00342 \\
\hline & 11 & -533 & 1,127 & -281 & -1,451 & -2,673 & 0.00841 & 0.00342 \\
\hline & 12 & -8,354 & 1,128 & -281 & -1,450 & -2,672 & 0.00841 & 0.00342 \\
\hline
\end{tabular}
3) Verification of Pile bearing capacity \& foundation stability
- Pile Data

Type of (1:End Bearing Pile, 2 : Friction Pile )
Diameter of Pile
Pile Top Elevation
Pile Tip Elevation
Water Elevation
Unit Weight of Pile
Length of Pile
Perimeter of Pile
Area of Pile Section
\begin{tabular}{cccc} 
Type & \(=\) & 1 & - \\
D & \(=\) & 1.50 & m \\
Top E.L & \(=\) & -7.25 & m \\
Tip E.L & \(=\) & -38.25 & m \\
W.E & \(=\) & 0.50 & m \\
Wp & \(=\) & 14.50 & \(\mathrm{kN} / \mathrm{m} 3\) \\
L & \(=\) & 31.00 & m \\
U & \(=\) & 4.71 & m \\
Ap & \(=\) & 1.77 & m 2
\end{tabular}
- Ground Data \& Shaft Resistance

Pile Self Weight(Ws)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Layer & Soil Typ & \begin{tabular}{c} 
E.L \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Thickness \\
\((\mathrm{m})\)
\end{tabular} & N-Value & \begin{tabular}{c}
Li \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c}
\(\gamma \mathrm{i}\) \\
\(\left(\mathrm{kN} / \mathrm{m}^{3}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{Ws}(\mathrm{kN})\) \\
\(=\mathrm{Ap}^{*} \mathrm{~L}_{\mathrm{i}}{ }^{*} \gamma_{\mathrm{i}}\)
\end{tabular} \\
\hline 1 & S & -7.25 & 6.55 & 21 & 6.55 & 7.20 & 83.34 \\
\hline 2 & C & -13.80 & 13.00 & 8 & 13.00 & 7.20 & 165.40 \\
\hline 3 & S & -26.80 & 3.00 & 17 & 3.00 & 7.20 & 38.17 \\
\hline 4 & S & -29.80 & 7.00 & 31 & 7.00 & 8.20 & 101.43 \\
\hline 5 & S & -36.80 & 1.45 & 50 & 1.45 & 10.20 & 26.14 \\
\hline
\end{tabular}

Nominal shaft resistance(ULLifi )
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Layer & Soil Type & \begin{tabular}{c} 
E.L \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c} 
Thickness \\
\((\mathrm{m})\)
\end{tabular} & N -Value & \begin{tabular}{c}
Li \\
\((\mathrm{m})\)
\end{tabular} & \begin{tabular}{c}
fi \\
\((\mathrm{kN} / \mathrm{m} 2)\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{U} \cdot \mathrm{Li} \cdot \mathrm{fi}\) \\
\((\mathrm{kN})\)
\end{tabular} \\
\hline 1 & S & -7.25 & 6.55 & 21 & 6.55 & 105 & 3,241 \\
\hline 2 & C & -13.80 & 13.00 & 8 & 13.00 & 80 & 4,901 \\
\hline 3 & S & -26.80 & 3.00 & 17 & 3.00 & 85 & 1,202 \\
\hline 4 & S & -29.80 & 7.00 & 31 & 6.95 & 155 & 5,076 \\
\hline 5 & S & -36.80 & 1.45 & 50 & 0.00 & 200 & 0 \\
\hline
\end{tabular}

Nominal shaft resistance \(\quad\) ULLifi \(=14,420 \quad \mathrm{kN}\)
\begin{tabular}{rl} 
NOTE : 'oil Type & \(=\) S: Sand C : Clay \\
E.L & \(=\) Elevation of Upper of Layer (m) \\
Thickness & \(=\) Thickness of the Layer (m) \\
N-Value & \(=\) Average N-Value of the Layer \\
Li & \(=\) Thickness of Layer considering shaft resistance (m) \\
fi & \(=\) Maximum shaft resistance of Layer considering pile shaft resistance \((\mathrm{kN} / \mathrm{m} 2)\)
\end{tabular}
- Pile Tip Resistance
\begin{tabular}{|c|c|c|c|}
\hline Soil Type at Pile Tip ( 1:Sand, 2:Stiff Clay ) Type & = & 1 & - \\
\hline N value at Pile Tip N & = & 50 & - \\
\hline Unconfined compressive strength qu & = & - & kN/m2 \\
\hline Nominal end bearing capacity per unit area qd (Sundy Gravelly, according to BSDS Table C5.4.3.3-1) & = & 5,000 & kN/m2 \\
\hline Nominal end bearing resistance \(\mathrm{qd}^{*} \mathrm{Ap}\) & = & 8,836 & kN \\
\hline
\end{tabular}
- Bearing Capacity

Nominal bearing capacity of pile
\begin{tabular}{llcc}
Ru & \(=\) & 23,256 & kN \\
W & \(=\) & 794 & kN \\
Ws & \(=\) & 414 & kN \\
\(\phi\) & \(=\) & 0.65 & - \\
\(\gamma\) & \(=\) & 1.0 & -
\end{tabular}
( \(\mathrm{Ru}=\mathrm{qd} * \mathrm{Ap}+\mathrm{U} \Sigma\) Lifi)
Effective weight of pile and soil inside pile (W=Ap*L*Wp)
Effective weight of soil replaced by pile Ws \(=\quad 414 \quad \mathrm{kN}\)
( according to above table)
Resistance Factor for pile under extreme event limit \(\phi \quad=\quad 0.65\)
( according to BSDS A 5.4.1(5))
Modification Coefficient Depending on Nominal Be \(\quad \gamma \quad 1.0 \quad\) -
( according to BSDS Table 5.4.3.3-1)
\begin{tabular}{|l|cccc|}
\hline Allowable Bearing Capacity & Ra & \(=\) & 14,322 & kN \\
\hline NOTE \(: R a=\gamma(\phi R u-W s)+W s-W\) & \(>\) Nmax & \(=\) & 11,564 & kN \\
&
\end{tabular}
\(\mathrm{Ws}=\) Effective weight of soil replaced by pile \((\mathrm{kN})=\) Ignore (refer to Table 3.3.3-2)

\section*{(4) Verification of Pile Section}

\section*{1) Verification of Minimum Reinforcement}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{- Section Condition} \\
\hline External diameter of the circular member & \(b_{v}=\) & 1,500 mm \\
\hline External diameter of the circular member & \(D=\) & \(1,500 \mathrm{~mm}\) \\
\hline Total Beam Depth for Shear & \(=\) & \(1,500 \mathrm{~mm}\) \\
\hline Diameter of centers of the longitudinal re-b & Dr \(=\) & 1,200 mm \\
\hline Depth from to Steel Centroid & \(d=\) & 1,350 mm \\
\hline Distance & d's = & 0 mm \\
\hline Dist. from highest to lowest tension rein. & d1 & 150 mm \\
\hline & d2 = & 0 mm \\
\hline Effective Cover to Center of Closest Bar & \(d_{c}=\) & 50 mm \\
\hline Dist. from compression bar to tension bar. & \(d s=\) & 1,350 mm \\
\hline Steel Strength & \(f_{y}=\) & 414.0 Мрa \\
\hline Concrete Strength & \(f^{\prime}{ }_{c}\) & 28.0 Мра \\
\hline Elastic modulus & Es = & 200,000 Мра \\
\hline & Ec = & 25,000 Мра \\
\hline Number of Tension bar layer & \(\mathrm{nt}=\) = & 1 \\
\hline Number of Compression bar layer & \(\mathrm{nc}=\) & 1 \\
\hline
\end{tabular}

Tension Reinforcem \(1 \quad 16-\mathrm{D} 25 \quad \mathrm{~A}_{\mathrm{s} 1}=\quad 8,107 \mathrm{~mm}^{2}\), @ \(=118\)


- Limits for Reinforcement (LRFD 5.7.4.2 )

Minimum area of longitudinal reinforcement
\[
\begin{aligned}
& \text { As } / A g>0.0075 \quad \text { (LRFD 5.13.4.6.3.d }) \\
& \text { Area of longitudinal reinforcement steel } \\
& \text { Area of section } \\
& \mathrm{A}_{\mathrm{s}}= \\
& 16,214 \mathrm{~mm}^{2} \\
& A_{g}= \\
& 1,766,250 \mathrm{~mm}^{2}
\end{aligned}
\]

\section*{2) Verification of Nominal Flexural Resistance of Pile}

Based on the FB-Multi Pier result, the verification of Nominal Flexural Resistance of pile is obtained as followings, which the reinforcement is change the minimum reinforcement (D25@118) to D28@118 due to require nominal flexural resistance.


Figure 3.3.3-8 M-N Interaction Diagram \& Design Reaction for Longitudinal Direction at No9 pile (LL, Nmin, D28@118)


Figure 3.3.3-9 M-M Interaction Diagram \& Biaxial Moment of No9 Pile

\section*{3) Verification of Nominal Shear Resistance}

- Selected Section Force (Shear Max)
(refer to Table 3.3.3-4)
\begin{tabular}{lcr} 
Pier: & \multicolumn{2}{c}{ P2 } \\
\hline Load Combination: & \multicolumn{2}{c}{ Extreme(Nmax) } \\
\hline Direction (Pile No): & \(\mathrm{Nu}=\) & \(11,559 \quad \mathrm{kN}\) \\
\hline Factored Axial Force: & \(\mathrm{Mu}=\) & \(1,450 \mathrm{kN.m}\) \\
\hline Factored Moment: & \(\mathrm{Vu}=\) & \(1,246 \mathrm{kN}\) \\
\hline Factored Shear force for section: & \(\mathrm{Tu}=\) & \(0 \quad \mathrm{kN} . \mathrm{m}\) \\
\hline Factored Torsional Moment: &
\end{tabular}

The factored shear resistance, Vr , shall be taken as;
\[
\begin{equation*}
V_{r}=\phi V_{n} \tag{LRFD5.8.2.1-2}
\end{equation*}
\]
where
\(\phi \quad:\) resistance factor specified in LRFD A.5.10.11.4.1b
\(V_{n}\) : nominal shear resistance shall be taken as;
\[
\begin{aligned}
& V_{u}>0.5 \phi\left(V_{c}+V_{p}\right) \\
& V_{n 1}=V c+V s+V_{p} \\
& V_{n 2}=0.25 f^{\prime}{ }_{c} b_{v} d_{v}+V_{p}
\end{aligned}
\]
(LRFD 5.8.2.4-1)
\[
V_{n 1}=V c+V s+V_{p} \quad(L R F D \text { 5.8.3.3-1) }
\]
(LRFD 5.8.3.3-2)
in which :
\[
\begin{aligned}
& V_{c}=0.083 b\left(\sqrt{ } f^{\prime} c\right) b_{v} d_{v} \\
& V_{s}=A_{v} f_{y} d_{v} \cot \theta / s
\end{aligned}
\]
(LRFD 5.8.3.3-3)
(LRFD C5.8.3.3-1)
resistance factor specified (LRFD A.5.10.11.4.1b)
\(\phi=0.9\)
\(d_{s}=1,350 \mathrm{~mm}\)
the corresponding effectiv \(V_{c}=0.083 b\left(\sqrt{ } f^{\prime} c\right) b_{v} s / f_{y}\)
(LRFD 5.8.3.3-3)
\[
d e=A s f y d s / A s f y
\]
effective shear depth (LRFD A 5.8.2.9) max(0.9de, 0.72h)
\(d_{e}=1,132 \mathrm{~mm}\)
effective web width taken as the minimum web width within
\(d_{v}=1,080 \mathrm{~mm}\)
etchecter
factor indicating ability of diagonally cracked concrete to transmit 1
\(b_{v}=1,500 \mathrm{~mm}\)
\(\beta=2.00\)
(LRFD A 5.8.3.4.1)
angle of inclination of diagonal compressive stress (LRFD A 5.8.3. \(\quad \theta=45.0 \mathrm{deg}\)
angle of inclination of transverse reinforcement to longitudinal \(\alpha=90 \mathrm{deg}\)
area of shear reinforcement within a distance \(s \quad A_{v}{ }^{\prime}=\mathrm{D} 20=314.2 \mathrm{~mm}^{2}\)
number of stirrups
\(S_{s}=2 \mathrm{p}\)
area of shear reinforcement within a dist \((A v=n * s)\)
spacing of stirrups
\(A_{v} \quad 628.3 \mathrm{~mm}^{2}\)
nominal shear resistance provided by tensile stress in concrete
\(s=150 \mathrm{~mm}\)
\(V_{c}=1,423 \mathrm{kN}\)
\[
V c=0.083 b\left(\sqrt{ } f^{\prime} c\right) b v d v(L R F D \text { 5.8.3.3-3 })
\]
shear resistance provided by shear reinforcement
\(V_{s}=1,873 \mathrm{kN}\)
\[
V s=A_{v} f_{y} d_{v} \operatorname{cotq} / s(L R F D \text { C5.8.3.3-4) }
\]
nominal resistance (LRFD 5.8.3.3-1, -2)
\[
\begin{aligned}
& V_{n 1}=V c+V s+V_{p} \quad(\text { LRFD 5.8.3.3-1 }) \\
& V_{n 2}=0.25 f^{\prime}{ }_{c} b_{v} d_{v}+V_{p} \quad(\text { LRFD 5.8.3.3-2 })
\end{aligned}
\]
\[
\begin{aligned}
V_{n} & =3,296 \mathrm{kN} \\
& =3,296 \mathrm{kN} \\
& =11,340 \mathrm{kN}
\end{aligned}
\]
\begin{tabular}{|ccccc|}
\hline Regions requiring transverse reinforcement (LRFD 5.8.2.4-1) \\
\(V_{u}=\) & \(1,246 \mathrm{kN}\) & \(>\) & \(V n=0.5 \varphi\left(V_{c}+V_{p}\right)\) \\
& & & 640 kN (not enough)
\end{tabular}

\section*{4. Design Example of Unseating Prevention System}

\subsection*{4.1 Design Requirement}

An unseating prevention system consists of the seat length of the girder at the support, unseating prevention device, device limiting excessive displacement, and device to prevent the superstructure from settling (limiting vertical gap in superstructure). These components shall be appropriately selected in accordance with the bridge type, type of bearing supports, ground conditions, and other factors. In this chapter, the design example of the unseating prevention system is explained in accordance with the SECTION 7 of DPWH BSDS.

The superstructure is generally connected to the substructures through bearings that may be structurally weak point against huge seismic forces. As such, the superstructure and the substructure are separated functionally; significantly critical state such as bridge falling down may be caused due to large relative displacements between them in case of failure of bearings under unexpected seismic forces.

For a functional system preventing such severe state, detailed philosophy and articulate design concepts are explicitly specified in the new DPWH BSDS as "Unseating Prevention System" based on accumulated data and experiences from large number of seismic damages. The aim is to provide multiple mechanisms that can complement each other efficiently, shown as follows.

(a) Layout of Unseating Prevention System

(b) Performance under design earthquake (Level 2 EGM)

(c) Performance under unexpected earthquake (EGM \(>\) Level 2)

Figure 4.1-1 Mechanism of Unseating Prevention System

For Mawo bridge has 3 spans with 4 supports longitudinally. However, the JICA Study Team recommends continuous bridge not multi-simple-supported bridge from the aspect of seismic behavior. Therefore, major countermeasures around the intermediated piers may not be necessary to be treated. The unseating prevention system specified in the new DPWH BSDS consists of multiple devices or countermeasure in order to prevent the severe state from the important point of view of failsafe functions. In the new DPWH BSDS, in order to understand the fundamental principle of the system smoothly, the following figure is described, which may be useful and efficiently utilized even by the bridge engineer who has not ever designed this system.


Figure 4.1-2 Fundamental Principles of Unseating Prevention System
According to the fundamental principle, the specified requirements of the system for Mawo bridge can be automatically determined shown as following tables.

Table 4.1-1 Design Requirement of Unseating Prevention System for Mawo Br.
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ END SUPPORT (A1 and A2) } \\
\hline Bearing Type & \begin{tabular}{l} 
- Type B: Laminated Rubber Bearing \\
(If Type A bearing selected, limiting excessive displacement \\
device is necessary for both directions such like dowel bars.
\end{tabular} \\
\hline Devices for Longitudinal Direction & \begin{tabular}{l} 
- Adequate Seat Length \\
- Unseating Prevention Device
\end{tabular} \\
\hline Devices for Transversal Direction & \begin{tabular}{l} 
No Requirements, Structures and Devices \\
(Mawo bridge is NOT skew and curve bridge)
\end{tabular} \\
\hline INTERMEDIATE SUPPORT (P1 and P2) \\
\hline Bearing Type & \begin{tabular}{l} 
- Type B: Laminated Rubber Bearing \\
(If Type A bearing selected, limiting excessive displacement \\
device is necessary for both directions such like dowel bars.
\end{tabular} \\
\hline Devices for Longitudinal Direction & No Requirements, Structures and Devices \\
\hline Devices for Transversal Direction & No Requirements, Structures and Devices \\
\hline
\end{tabular}

\subsection*{4.2 Seat Length}

The seat length of a girder at its support shall not be less than the value obtained from either the value of \(S_{E}\) or \(S_{\text {EM }}\) specified in the new DPWH BSDS. Here, the seat length shall be measured in the direction perpendicular to the bearing support line when the direction of soil pressure acting on the substructure differs from the bridge axis, as in cases of a skew bridge or a curved bridge.
The values of \(\mathrm{S}_{\mathrm{E}}\) or \(\mathrm{S}_{\mathrm{EM}}\) can be obtained by using following the equations, specified in BSDS.


Figure 4.2-1 Value of SE
\[
\begin{aligned}
& \mathrm{S}_{\mathrm{E}}=\mathrm{u}_{\mathrm{R}}+\mathrm{u}_{\mathrm{G}} \geq \mathrm{S}_{\mathrm{EM}} \\
& \mathrm{~S}_{\mathrm{EM}}=0.70+0.005 \mathrm{l}: \mathrm{l}=\text { Span length }(\mathrm{m}) \\
& \mathrm{u}_{\mathrm{G}}=\varepsilon_{\mathrm{G}} \mathrm{~L}
\end{aligned}
\]

Eq. 7.2-1 in DPWH BSDS
Eq. 7.2-2 in DPWH BSDS
Eq. 7.2-3 in DPWH BSDS

Where:
SE : Seat length of the girder at the support, (m). SE is the length measured from the end of girder to the edge of the top of the substructure, or the girder length on the hinge/bearing joint, as shown in above figure.
\(\mathrm{u}_{\mathrm{R}}\) : Maximum relative displacement between the superstructure and the edge of the top of the substructure due to Level 2 Earthquake Ground Motion, (m). In calculating \(u_{R}\), the effects of the unseating prevention structure and the structure limiting excessive displacement shall not be considered. When soil liquefaction and lateral spreading may affect displacement of the bridges, such effects shall be considered.
\(\mathrm{u}_{\mathrm{G}}\) : Relative displacement of the ground caused by seismic ground strain, (m).
\(\mathrm{S}_{\mathrm{EM}}\) : Minimum seating length of a girder at the support, (m).
\(\varepsilon_{\mathrm{G}}\) : Seismic ground strain. \(\varepsilon_{\mathrm{G}}\) can be assumed as \(0.0025,0.00375\) and 0.005 for Ground Types I, II and III, respectively.
L : Distance between two substructures for determining the seat length (m).
\(l\) : Length of the effective span (m). When two superstructures with different span lengths are supported on one bridge pier, the longer of the two shall be used.

Here, based on the results of response spectrum analysis, the required seat length of both abutments are obtained.
< Determination of the value \(f \mathrm{u}_{\mathrm{R}}>\)
The value of \(u_{R}\) is Maximum relative displacement between the superstructure and the edge of the top of the substructure due to Level 2 Earthquake Ground Motion, (m). From the result of response spectrum analysis, the value can be obtained as 0.350 m .
\(<\) Determination of the value \(\mathrm{u}_{\mathrm{G}}>\)
\[
\mathrm{u}_{\mathrm{G}}=\varepsilon_{\mathrm{G}} \mathrm{~L}
\]

Where,
\(\varepsilon_{G} \quad:\) Seismic ground strain: A1 (Ground Type I) 0.0025, A2 (Ground Type III) 0.0050
\(\mathrm{L} \quad\) : Distance between two substructures for determining the seat length (m) as follows \(61.55 \mathrm{~m}+80 \mathrm{~m} / 2=101.55 \mathrm{~m}\)

Therefore, \(\mathrm{u}_{\mathrm{G}}=0.0025 \times 101.55=0.254 \mathrm{~m}\) for A1
\(0.0050 \times 101.55=0.508 \mathrm{~m}\) for A2


Figure 4.2-2 Value of \(L\) under Rubber Bearings, specified in BSDS
< Determination of required seat length>
\(\mathrm{S}_{\mathrm{EM}}=0.70+0.005 \mathrm{l}: \mathrm{l}=\) Span length (m)
\(0.70+0.005 \times 61.55 \mathrm{~m}=1.01 \mathrm{~m}\)
Where,
\[
\begin{aligned}
& \mathrm{S}_{\mathrm{E}}=\mathrm{u}_{\mathrm{R}}+\mathrm{u}_{\mathrm{G}}: \\
& 0.350+0.254=0.614 \mathrm{~m} \text { for } \mathrm{A} 1<\mathrm{S}_{\mathrm{EM}} \\
& 0.350+0.508=0.858 \mathrm{~m} \text { for } \mathrm{A} 2<\mathrm{S}_{\mathrm{EM}}
\end{aligned}
\]

Thus,
The value of \(\mathrm{S}_{\mathrm{EM}}\) is applied to required seat length for both side of abutments.
Therefore,
\[
\underline{\mathrm{S}}_{\underline{\mathrm{E}}}=\mathrm{S}_{\mathrm{EM}}=1.01 \mathrm{~m} \fallingdotseq 1.1 \mathrm{~m} \text { or more }
\]

\subsection*{4.3 Unseating Prevention Device}

As the unseating prevention device, various type of devices are being applied in Japan. For Mawo bridge, the unseating prevention device is required to be installed only at end support for longitudinal direction based on the design requirement. Therefore, the following table shows that explanation and applicability for end-support condition of generally utilized types of unseating prevention devices..
In this design example, a type of longitudinal cable restrainer type is adopted from the efficiency of the most appropriate applicability and generally utilized for new bridge.

Table 4.3-1 Unseating Prevention Device for End-Support
\begin{tabular}{|c|c|}
\hline Longitudinal Cable Restrainer Type & \begin{tabular}{l}
- Connected by PC cable between the abutment parapet and end cross beam of girder \\
- Applicable to various bridge types \\
- Not require brackets to be anchored to the girder \\
- No need to modify primary members \\
- Commonly utilized for New bridge
\end{tabular} \\
\hline Outside Installation Type (Chain Type) & \begin{tabular}{l}
- Connected by Chain between outside of substructure and girder \\
- Easy installation \\
- Extra works required \\
- Damage primal members \\
- Few actual results applied to new bridges \\
- Ordinary utilized in bridge retrofitting project
\end{tabular} \\
\hline Outside Installation Type (Cable Type) & \begin{tabular}{l}
- Connected by PC cable between outside of substructure and girder \\
- Easy installation \\
- Extra works required \\
- Damage primal members \\
- Few actual results applied to new bridges \\
- Ordinary utilized in bridge retrofitting project
\end{tabular} \\
\hline Bracket Type & \begin{tabular}{l}
- Install steel or concrete bracket onto abutment and girder \\
- Complicated installation \\
- Disturb maintenance of other devices due to this extra devices \\
- Extra works required \\
- Damage primal members \\
- Few actual results applied to new bridges \\
- Ordinary utilized in bridge retrofitting project
\end{tabular} \\
\hline
\end{tabular}

In the DPWH BSDS, the ultimate strength of an unseating prevention device shall not be less than the design seismic force determined by following equations.
1) When the unseating prevention device directly connects the superstructure with the substructure, the design seismic force shall be:
\[
\mathrm{H}_{\mathrm{F}}=\mathrm{P}_{\mathrm{LG}}
\]
however, \(\mathrm{H}_{\mathrm{F}} \leq 1.5 \mathrm{R}_{\mathrm{d}}\).
where,
\(\mathrm{H}_{\mathrm{F}}\) : Design seismic force of the unseating prevention device, \((\mathrm{kN})\).
\(\mathrm{P}_{\mathrm{LG}}\) : For abutments, this shall be the lesser value corresponding to the lateral (horizontal) capacity of the breast wall calculated from its nominal flexural resistance, or the nominal shear resistance of the breast wall, \((\mathrm{kN})\).
In this case, the equation 1) shall be applied for the outline design.
The following table shows the comparison of design forces such as \(H_{F}\) and \(R_{d}\).
Table 4.3-2 Unseating Prevention Device for End-Support
\begin{tabular}{|l|l|}
\hline Design Forces & \multicolumn{1}{c|}{ Value of Design Forces } \\
\hline \(\mathrm{P}_{\mathrm{LG}}\) & \begin{tabular}{l} 
Design force from ultimate strength: \\
Shear capacity of abutment wall: \(\mathrm{S}_{\mathrm{y}}=24000 \mathrm{kN}\) \\
\(\mathrm{P}_{\mathrm{Sy}}=\mathrm{S}_{\mathrm{y}}=24000 \mathrm{kN}\)
\end{tabular} \\
\hline \(1.5 \mathrm{R}_{\mathrm{d}}\) & \begin{tabular}{l} 
Design force from dead load reaction: \\
\(\mathrm{R}_{\mathrm{d}}=8350 \mathrm{kN}\) \\
\(1.5 \mathrm{R}_{\mathrm{d}}=12525 \mathrm{kN}\)
\end{tabular} \\
\hline Applied Force & \begin{tabular}{l}
\(1.5 \mathrm{R}_{\mathrm{d}}<\mathrm{P}_{\mathrm{Sy}}=\mathrm{S}_{\mathrm{y}}=24000 \mathrm{kN}\) \\
Therefore, "1.5 \(\mathrm{R}_{\mathrm{d}}\) " is applied for the design force.
\end{tabular} \\
\hline
\end{tabular}

Herein, in this example, comparison in the above table is introduced; however, for the new bridge design, basically the design forces for the unseating device is taken as 1.5 times the dead load reaction, when the unseating device connects adjacent superstructures directly or when the unseating device connects the superstructure directly to the substructure. However, in some cases when the unseating device directly connects the superstructure with the substructure, the horizontal design force taken as \(1.5 \mathrm{R}_{\mathrm{d}}\) may result to unnecessarily oversized or overspecified unseating device. In this case, the design forces for the unseating prevention device can be taken as the \(P_{\text {LG }}\) especially for retrofit or maintenance design.

Design force: \(1.5 \mathrm{R}_{\mathrm{d}}=12525 \mathrm{kN}\)
Here, 4 of PC cables resist the design force, Thus, 12525/4nos \(=3132 \mathrm{kN} / \mathrm{nos}\)
Therefore,
The design force per a set of the restrainer: \(3132 \mathrm{kN} /\) nos
Based on the obtained design force, the following stress check can be obtained.
Table 4.3-3 Verification of Longitudinal Restrainer
\begin{tabular}{|c|c|c|}
\hline & 1.5Rd: Design Forces/ nos & Allowance \\
\hline \begin{tabular}{c} 
PC Cable Type \(19 \times 12.7 \mathrm{Hmm}\) \\
4-nos/ Abutment
\end{tabular} & \(3132 \mathrm{kN} / \mathrm{nos}\). & 3667 kN \\
\hline
\end{tabular}


Figure 4.3-1 Longitudinal Restrainer for Mawo Bridge

\subsection*{4.4 Countermeasure to Prevent Superstructure from Settling}

This structure or device is not an element of the unseating prevention system but a structure to keep any gaps on the road surface as small as possible after an earthquake with a large magnitude when the bearing support system is damaged, so that residents can proceed with an emergency evacuation and that the emergency vehicles can pass as soon as possible.

Therefore, this structure or device can not be connected directly with bridge unseating prevention system; however the total height of bearings applied to Mawo bridge in this outline design stage are about 600 mm , which is comparatively taller than any other general bearing being adopted in Philippines; thus, adequate countermeasure to prevent superstructure from settling may be considered.

The design methodology of structure to prevent superstructure from settling is not complicated just for preventing the superstructure from settling can resist the vertical load from the superstructure. The commonly utilized structure in Japan is designed by RC structure installed on bearing seat, however, for the bearing seat of some small abutment or piers, this structures may occupy the seat, disturbing maintenance works around the bearing. Therefore, a lot of bridge owners request to the engineer to omit the installation of this structure. From the reason, the application for Mawo bridge should be carefully determined with close discussion between the engineer and the bridge owner in detail design stage.


Figure 4.4-1 Concept of Prevention of Superstructure Settling

\subsection*{4.5 Structure/ Device to Limit Excessive Displacement}

For Mawo bridge, Limiting Excessive Displacement devices are not required to be installed because of following the reasons.
- Apply Type B Laminated Rubber Bearing
- Not Curved Bridge, perfectly straight bridge
- Not Skew Bridge, perfectly 90 degrees of crossing angle

The verification of curved bridge and skew bridge is specified in the DPWH of BSDS

\section*{-Reference for using \(\mathbf{R}\) factor design -}

\section*{-Column Dimension}

For column design of Mawo bridge, R factor (response modification factor) is not required to be installed because of the verification of limit for reinforcement of column and nominal flexural resistance (refer to 3.3.3 Column Design).

In this reference for using R factor design, the verification of Nominal Flexural Resistance of column is conducted for R factor 1.5 , which is reconsidered for the column dimension and minimum reinforcement as followings drawings.


Column Dimension of Outline Design


Column Dimension of Outline Reference Design

\section*{-Design Load}

Based on the BSDS Table 3.8.1-1, the design force of column is obtained as followings, which the R factor (response modification factor) 1.5 could be considered for the longitudinal direction (LL). In the transverse direction (TT), the R factor could not be considered due to the high nominal flexural resistance for this direction ( \(\mathrm{Mn}=926,942 \mathrm{kNm} \gg \mathrm{Mt}=161,724 \mathrm{kNm}\), refer to Figure 3.3.3-1).

Summarize of Design Forces at Bottom of Column ( \(\mathrm{R}=1\), as Table 3.3.2-1)
Longitudinal Direction at Section A-A (bottom of Column )
\begin{tabular}{|c|r|c|r|c|r|r|r|r|r|r|r|r|}
\hline \multirow{2}{*}{} & \multicolumn{2}{|c|}{DL} & \multicolumn{2}{c|}{LL} & \multicolumn{3}{c|}{ EQ } & \multicolumn{4}{c|}{ SUM of LONGITUDINAL } \\
\cline { 2 - 15 } & \(\mathrm{N}(\mathrm{kN})\) & \(\varphi\) & \(\mathrm{N}(\mathrm{kN})\) & \(\varphi\) & \(\mathrm{H}(\mathrm{kN})\) & \(\mathrm{M}(\mathrm{kNm})\) & \(\varphi\) & \(\mathrm{N}(\mathrm{kN})\) & \(\mathrm{Hl}(\mathrm{kN})\) & \(\mathrm{Ml}(\mathrm{kNm})\) & \(\mathrm{Ht}(\mathrm{kN})\) & \(\mathrm{Mt}(\mathrm{kNm})\) \\
\hline P2(Nmax) & 41,089 & 1.25 & 3,800 & 0.50 & 17,742 & 143,831 & 1.00 & \(\mathbf{5 3 , 2 7 0}\) & \(\mathbf{1 7 , 7 4 2}\) & \(\mathbf{1 4 3 , 8 3 1}\) & 5,371 & 48,517 \\
\hline (Nmin) & 41,089 & 0.90 & 3,800 & 0.50 & 17,742 & 143,831 & 1.00 & \(\mathbf{3 8 , 8 9 0}\) & \(\mathbf{1 7 , 7 4 2}\) & \(\mathbf{1 4 3 , 8 3 1}\) & 5,371 & 48,517 \\
\hline
\end{tabular}

Transverse Direction at Section A-A (bottom of column)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{DL} & \multicolumn{2}{|l|}{LL} & \multicolumn{3}{|c|}{EQ} & \multicolumn{5}{|c|}{SUM of TRANSVERSAL} \\
\hline & \(\mathrm{N}(\mathrm{kN})\) & \(\varphi\) & \(\mathrm{N}(\mathrm{kN})\) & \(\varphi\) & H (kN) & M (kNm) & \(\varphi\) & N (kN) & Hl (kN) & Ml (kNm) & Ht (kN) & Mt (kNm) \\
\hline P2(Nmax) & 41,089 & 1.25 & 3,800 & 0.50 & 17,903 & 161,724 & 1.00 & 53,270 & 5,323 & 43,149 & 17,903 & 161,724 \\
\hline (Nmin) & 41,089 & 0.90 & 3,800 & 0.50 & 17,903 & 161,724 & 1.00 & 38,890 & 5,323 & 43,149 & 17,903 & 161,724 \\
\hline
\end{tabular}

\section*{Summarize of Design Forces at Bottom of Column ( \(\mathrm{R}=1.5\) for LL, \(\mathrm{R}=1.0\) for TT)}


\section*{- Verification of Limit for Reinforcement}

According to the AASHTO LRFD specifications, the verification of limit for reinforcement is obtained as followings, which can be reduced to the vertical bar D32@125 to D28@125 due to reduce to the area of column section.
1) Cross Section of Column

\begin{tabular}{rlr}
\(\mathrm{B}=\) & \(13,700 \mathrm{~mm}\) \\
\(\mathrm{~b}_{1}=\) & \(1,000 \mathrm{~mm}\) \\
\(\mathrm{~b}_{2}=\) & \(11,700 \mathrm{~mm}\) \\
\(\mathrm{~h}=\) & \(2,000 \mathrm{~mm}\)
\end{tabular}
2) Longitudinal Reinforcement

Num. \(\mathrm{d}_{\mathrm{ba}}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Horizontal-1} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
Layer-1 \\
Layer-2
\end{tabular}} & 94 & - D28 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{A}_{\mathrm{st1}}= \\
& \mathrm{A}_{\mathrm{st} 2}=
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 57,904 \mathrm{~mm}^{2} \\
& 57,904 \mathrm{~mm}^{2} \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& @=125 \\
& @=125 \\
& \hline
\end{aligned}
\]} \\
\hline & & & 94 & - D28 & & & \\
\hline & \multirow[t]{2}{*}{\(\mathrm{n}=\)} & 2.0 & 188.0 & & \(\mathrm{A}_{\text {st }}=\) & \(115,808 \mathrm{~mm}^{2}\) & \multirow[b]{4}{*}{\[
\begin{aligned}
& @=125 \\
& @=125
\end{aligned}
\]} \\
\hline \multirow{4}{*}{Horizontal-2} & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{array}{cc}
\text { Num. } & \mathrm{d}_{\mathrm{ba}} \\
94.00 & -\mathrm{D} 28 \\
94.00 & -\mathrm{D} 28
\end{array}
\]}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \mathrm{A}_{\mathrm{st1} 1}= \\
& \mathrm{A}_{\mathrm{st} 2}=
\end{aligned}
\]} & \multirow[b]{3}{*}{\[
\begin{aligned}
& 57,904 \mathrm{~mm}^{2} \\
& 57,904 \mathrm{~mm}^{2} \\
& \hline
\end{aligned}
\]} & \\
\hline & & Layer-1 & & & & & \\
\hline & & Layer-2 & & & & & \\
\hline & \(\mathrm{n}=\) & 2.0 & 188.0 & & \(\mathrm{A}_{\text {st }}=\) & \(115,808 \mathrm{~mm}^{2}\) & \\
\hline & & & Num. & \(\mathrm{d}_{\text {ba }}\) & & & \\
\hline Vertical-1 & & Layer-1 & 20.00 & - D28 & \(\mathrm{A}_{\mathrm{sc} 1}=\) & \(12,320 \mathrm{~mm}^{2}\) & @ \(=125\) \\
\hline & & Layer-2 & 16.00 & - D28 & \(\mathrm{A}_{\text {sc2 }}=\) & 9,856 \(\mathrm{mm}^{2}\) & \(@=125\) \\
\hline & \(\mathrm{n}=\) & 2.0 & 36.0 & & \(\mathrm{A}_{\mathrm{ct}}=\) & \(22,176 \mathrm{~mm}^{2}\) & \\
\hline & & & Num. & \(\mathrm{d}_{\text {ba }}\) & & & \\
\hline Vertical-2 & & Layer-1 & 20.00 & - D28 & \(\mathrm{A}_{\text {st1 }}=\) & 12,320 & \\
\hline & & Layer-2 & 16.00 & - D28 & \(\mathrm{A}_{\mathrm{st} 2}=\) & 9,856 mm \({ }^{2}\) & \(@=125\) \\
\hline & \(\mathrm{n}=\) & 2.0 & 36.0 & & \(\mathrm{A}_{\text {st }}=\) & \(22,176 \mathrm{~mm}^{2}\) & \\
\hline & & n & 448 & & \(\Sigma \mathrm{A}_{\text {st }}=\) & 275,968 mm \({ }^{2}\) & \\
\hline
\end{tabular}
3) Transverse Reinforcement
\[
4.0-\mathrm{D} 25 \quad \mathrm{~A}_{\mathrm{s} 1}=\quad 2,027 \mathrm{~mm}^{2} \quad @=150
\]
Steel Strength
\[
\begin{array}{rr}
\mathrm{f}_{\mathrm{y}}= & 414.0 \mathrm{MPa} \\
\mathrm{f}_{\mathrm{c}}= & 28.0 \mathrm{MPa} \\
\mathrm{E}_{\mathrm{s}}= & 200,000 \mathrm{MPa}
\end{array}
\]

Concrete Strength
4) Limits for Reinforcement (LRFD 5.7.4.2)
- Minimum area of longitudinal reinforcement
\[
A_{s} f_{y} / A_{g} f^{\prime}{ }_{c}>0.135 \quad(L R F D \text { 5.7.4.2-3 })
\]
where:
\begin{tabular}{lrr} 
Area of longitudinal reinforcement steel & \(\mathrm{A}_{\mathrm{s}}=\) & \(275,968 \mathrm{~mm}^{2}\) \\
Yield strength of reinforcing bars & \(\mathrm{f}_{\mathrm{y}}=\) & 414 MPa \\
Area of section & 1 & \(\mathrm{~A}_{\mathrm{g}}=\) \\
Compressive strength of concrete & \(\mathrm{f}_{\mathrm{c}}^{\prime}=\) & \(26,540,000 \mathrm{~mm}^{2}\) \\
& & 28 MPa
\end{tabular}
\begin{tabular}{llllll} 
Minimum area of longitudinal reinforcem \(\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{y}} / \mathrm{A}_{\mathrm{g}} \mathrm{f}_{\mathrm{c}}=\) & 0.154 & \(>\) & 0.135 & [OK] \\
\hline
\end{tabular}

As / Ag > 0.01 (LRFD 5.10.11.4.1a)
\begin{tabular}{|lllll|}
\hline Minimum area of longitudinal reinforcem \(\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{g}}=\) & 0.0104 & \(>\) & 0.010 & [OK] \\
\hline
\end{tabular}
- Maximum area of longitudinal reinforcement
\[
\begin{array}{ll}
\text { As } / A g<0.08 & (L R F D 5 \cdot 7.4 .2-1) \\
A s / A g<0.04 & (L R F D 5 \cdot 10.11 .4 .1 a)
\end{array}
\]
\begin{tabular}{|llllll|}
\hline Maximum area of longitudinal reinforcen \(\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{g}}=\) & 0.010 & \(<\) & 0.040 & [OK] \\
\hline
\end{tabular}
- Minimum area of Transverse reinforcement (LRFD 5.8.2.5)
\[
\begin{equation*}
V_{c}=0.083 b\left(\sqrt{f} f^{\prime} c\right) b_{v} s / f_{y} \tag{LRFD5.8.3.3-3}
\end{equation*}
\]
where:
- Minimum transverse reinforcement (LRFD 5.8.2.5)
area of shear reinforcement within a distance
spacing of stirrups \(\quad S=150 \mathrm{~mm}\)
effective web width taken as the minimum web (LRFD A5.8.2 \(\quad b_{v}=12,300 \mathrm{~mm}\) (assumed \(\left.a s ; b v=B-b_{1}\right)\)
\begin{tabular}{|lllllll}
\hline Min. transverse rein \(\left(\mathrm{mm}^{2}\right)\) & \(\mathrm{A}_{\min }=\) & 1,957 & \(<\) & \(\mathrm{Av}=2,027 \mathrm{~mm}^{2} \quad[\mathrm{OK}]\) \\
\hline
\end{tabular}

\section*{- Verification of Nominal Flexural Resistance of Column}

Based on the FB-Multi Pier result, the verification of Nominal Flexural Resistance of column is obtained as followings.


M-N Interaction Diagram \& Design Reaction for longitudinal Direction (2-D28@125 LL, Nmin, )


M-M Interaction Diagram \& Biaxial Moment for Design Axial Force (at \(\mathbf{N}=38,890 \mathrm{kN}, \mathrm{LL}, \mathrm{Nmin}, \mathrm{Mn}=117,167 \mathrm{kNm}\) )

\section*{- Verification of Foundation Stability}

Based on the results of seismic analysis and column design, summarize of design force of pile foundation is conducted for the following table, which are considered for outline design (Table 3.3.31, no hinge) and the column overstrength condition (refer to BSDS Appendix 4 (E), =1.3), which are not so different from no hinge design.
The verification of foundation stability shall be obtained as followings.

Summarize of Design Forces at Bottom of Pile Cap (no hinge, =1.0, as Table3.3.3-1)
\begin{tabular}{|l|r|r|r|r|r|}
\hline \multicolumn{1}{|c|}{ LOAD CASE } & \multicolumn{1}{|c|}{\(\mathrm{N}(\mathrm{kN})\)} & \multicolumn{1}{|c|}{\(\mathrm{Hl}(\mathrm{kN})\)} & \(\mathrm{Ml}(\mathrm{kNm})\) & \multicolumn{1}{|c|}{\(\mathrm{Ht}(\mathrm{kN})\)} & \multicolumn{1}{c|}{\(\mathrm{Mt}(\mathrm{kNm})\)} \\
\hline 1) Extreme- I LL(Nmax) & 62,430 & 18,503 & 181,430 & 5,662 & 59,910 \\
\hline 2) Extreme- I LL(Nmin) & 45,480 & 18,503 & 181,430 & 5,662 & 59,910 \\
\hline 3) Extreme- I TT(Nmax) & 62,430 & 5,551 & 54,429 & 18,872 & 199,701 \\
\hline 4) Extreme- I TT(Nmin) & 45,480 & 5,551 & 54,429 & 18,872 & 199,701 \\
\hline
\end{tabular}


Summarize of Design Forces at Bottom of Pile Cap (hinge, =1.3, LL)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline LOAD CASE & N (kN) & Hl (kN) & \multicolumn{2}{|c|}{Ml (kNm)} & Ht (kN) & Mt (kNm) \\
\hline 1) Extreme- I LL(Nmax) & 62,430 & 18,503 & \multirow[b]{2}{*}{1.3 Mn} & 152,317 & 5,662 & 59,910 \\
\hline 2) Extreme- I LL(Nmin) & 45,480 & 18,503 & & 152,317 & 5,662 & 59,910 \\
\hline 3) Extreme- I TT(Nmax) & 62,430 & 5,551 & \multirow[t]{2}{*}{1.3Mn*0.3} & 45,695 & 18,872 & 199,701 \\
\hline 4) Extreme- I TT(Nmin) & 45,480 & 5,551 & & 45,695 & 18,872 & 199,701 \\
\hline
\end{tabular}
\({ }^{*} \mathrm{Mn}=117,167 \mathrm{kNm}\) (refer to previous page)


Summarize for calculation results for Longitudinal direction (Nmax, \(\mathbf{N}=10,404 \mathrm{kN}\) )
\[
\text { Verification of Foundation Stability } \quad \mathrm{Ra}=14,322 \mathrm{kN} *>\quad \mathrm{Nmax}=10,404 \mathrm{kN} \quad \text {-ok- }
\]
*Ra; refer to 3.3.3. (3) 3) "Verification of pile bearing capacity \& foundation stability"

\section*{- Verification of Nominal Flexural Resistance of Pile}

Based on the FB-Multi Pier result, the verification of Nominal Flexural Resistance of pile is obtained as followings, which the reinforcement is required to D28@118 as no hinge design.


M-N Interaction Diagram \& Design Reaction for Longitudinal Direction at No9 pile (LL, Nmin, D25@118)


M-M Interaction Diagram \& Biaxial Moment of No9 Pile

\section*{- Comparison between \(R=1 \& R=1.5\)}

Base on the outline design for no hinge \((\mathrm{R}=1)\) \& hinge ( \(\mathrm{R}=1.5\) ), summarize of design are conducted for the following drawings, which are not so different because of following the reason.
- required to the high minimum longitudinal reinforcement ratio of column
- not so different for the response modification factor \((\mathrm{R}=1.5)\) \& overstrength condition \((=1.3)\)
```


[^0]: (Source: Michigan Tech, Geological and Mining Engineering and Science, http://www.geo.mtu.edu/UPSeis/index.html23)

