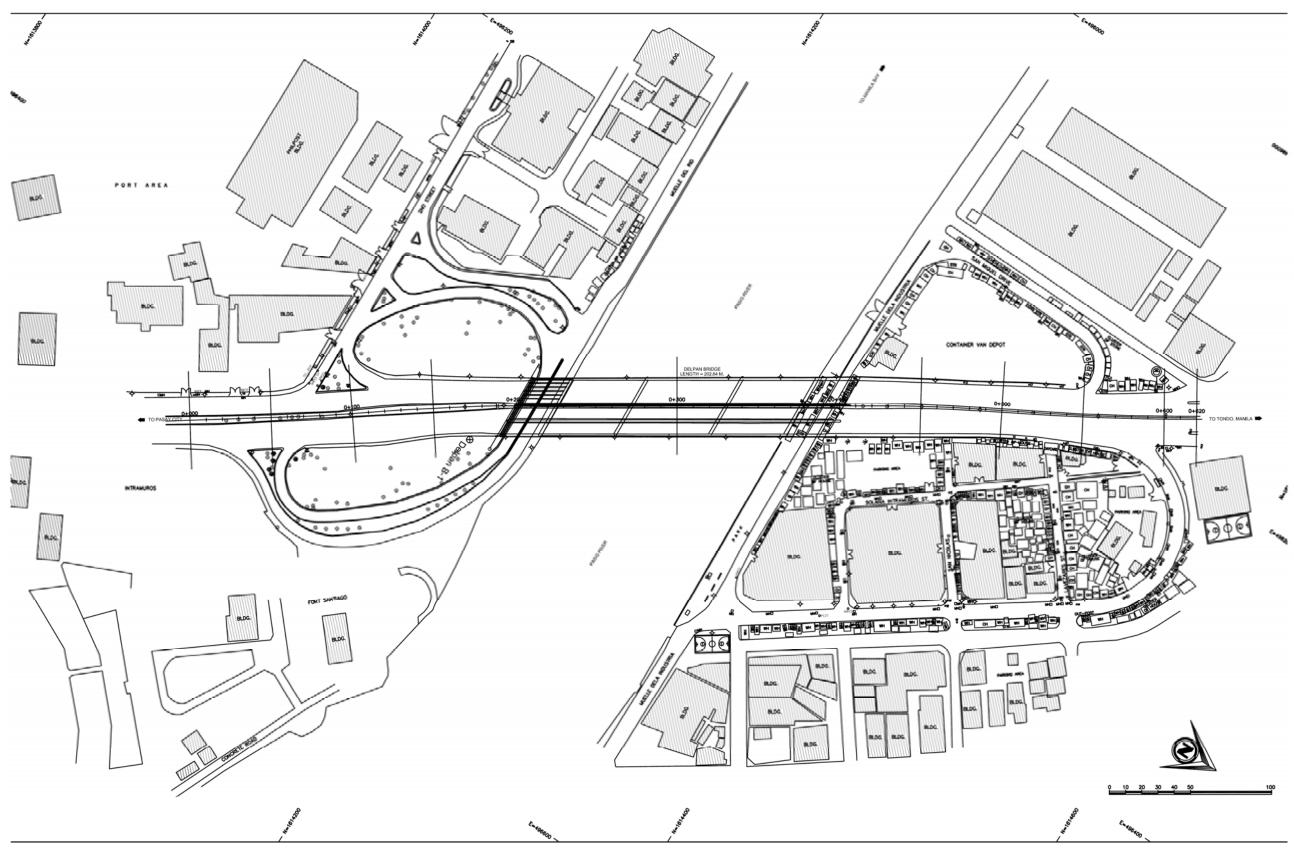
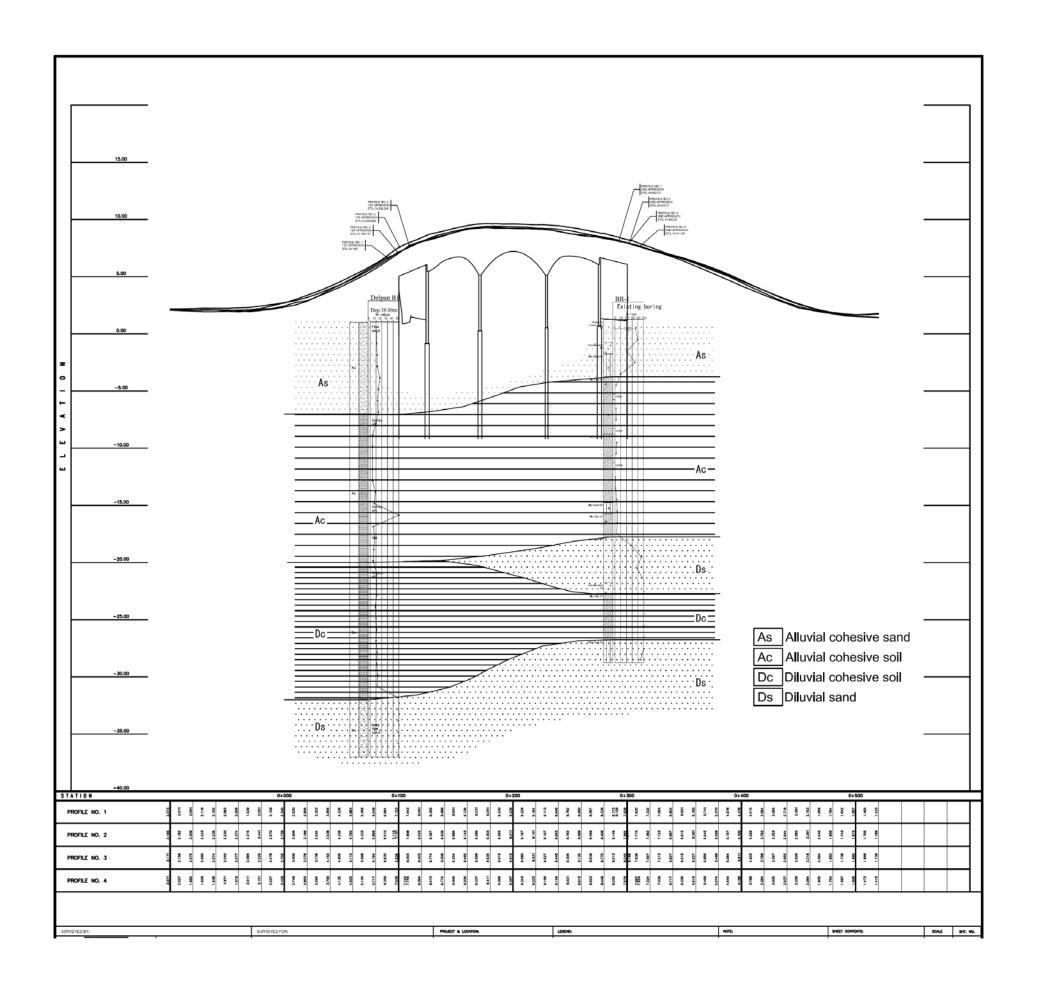
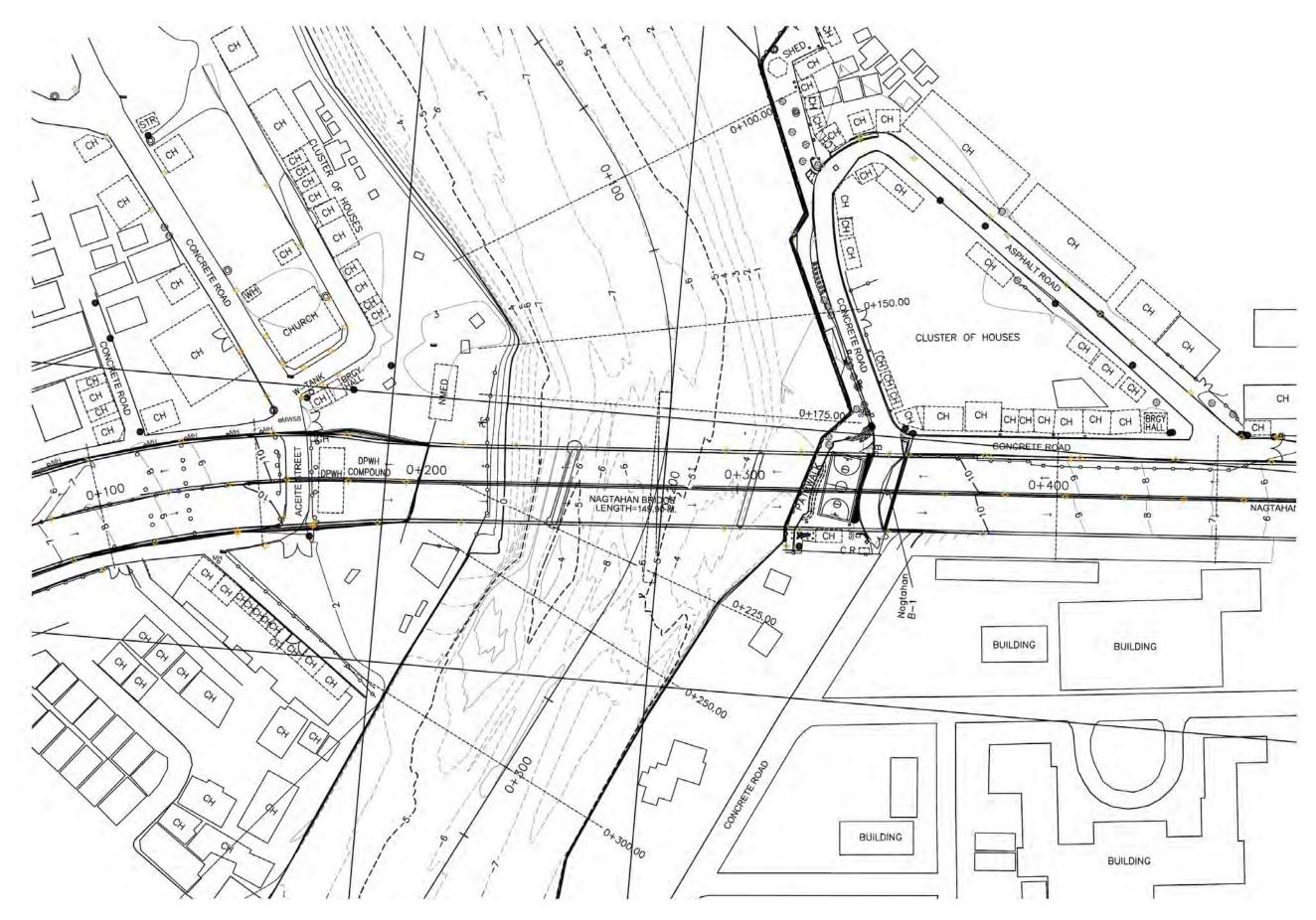
VOLUME 3


RESULTS OF EXISTING CONDITION SURVEY

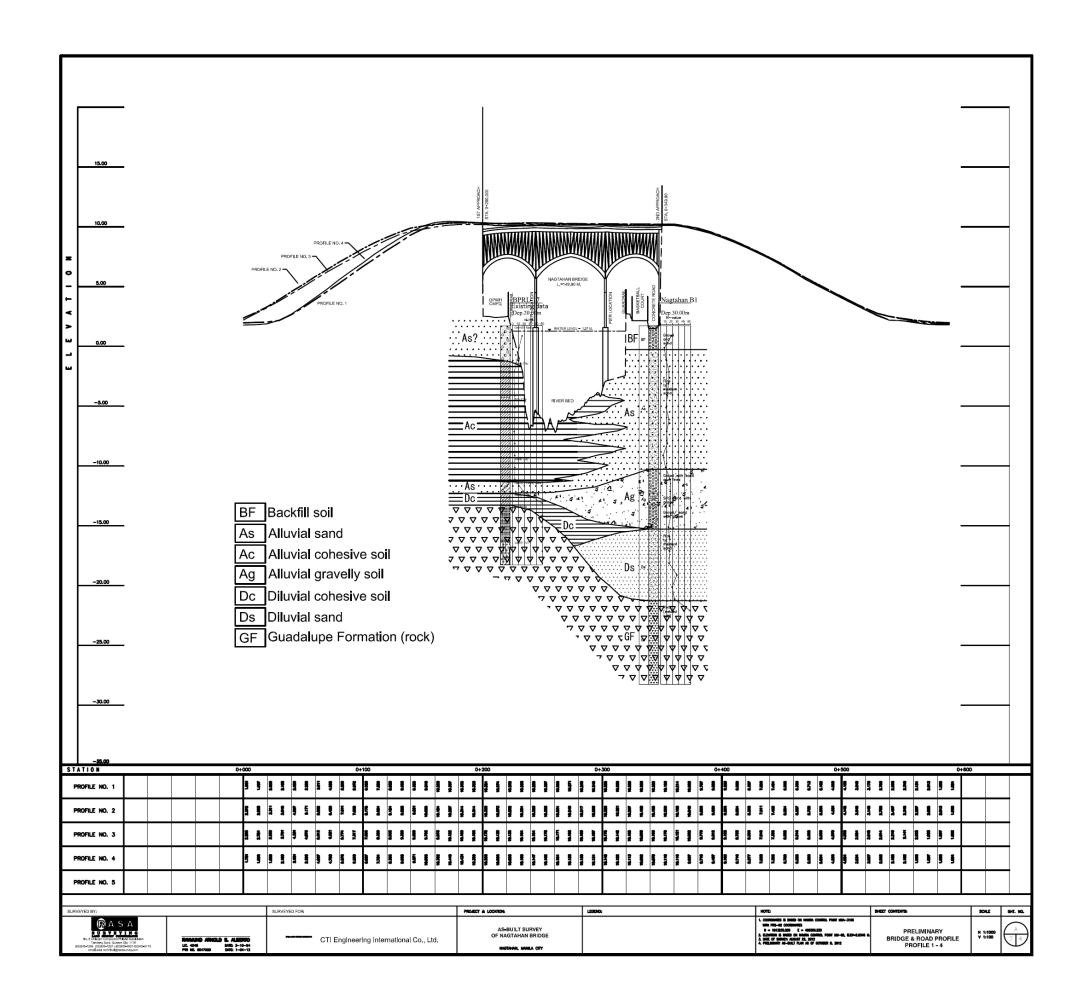
APPENDIX 3-A


GEOLOGICAL DATA (LOCATION OF BOREHOLES, BORING LOGS, AND GEOLOGICAL PROFILES)

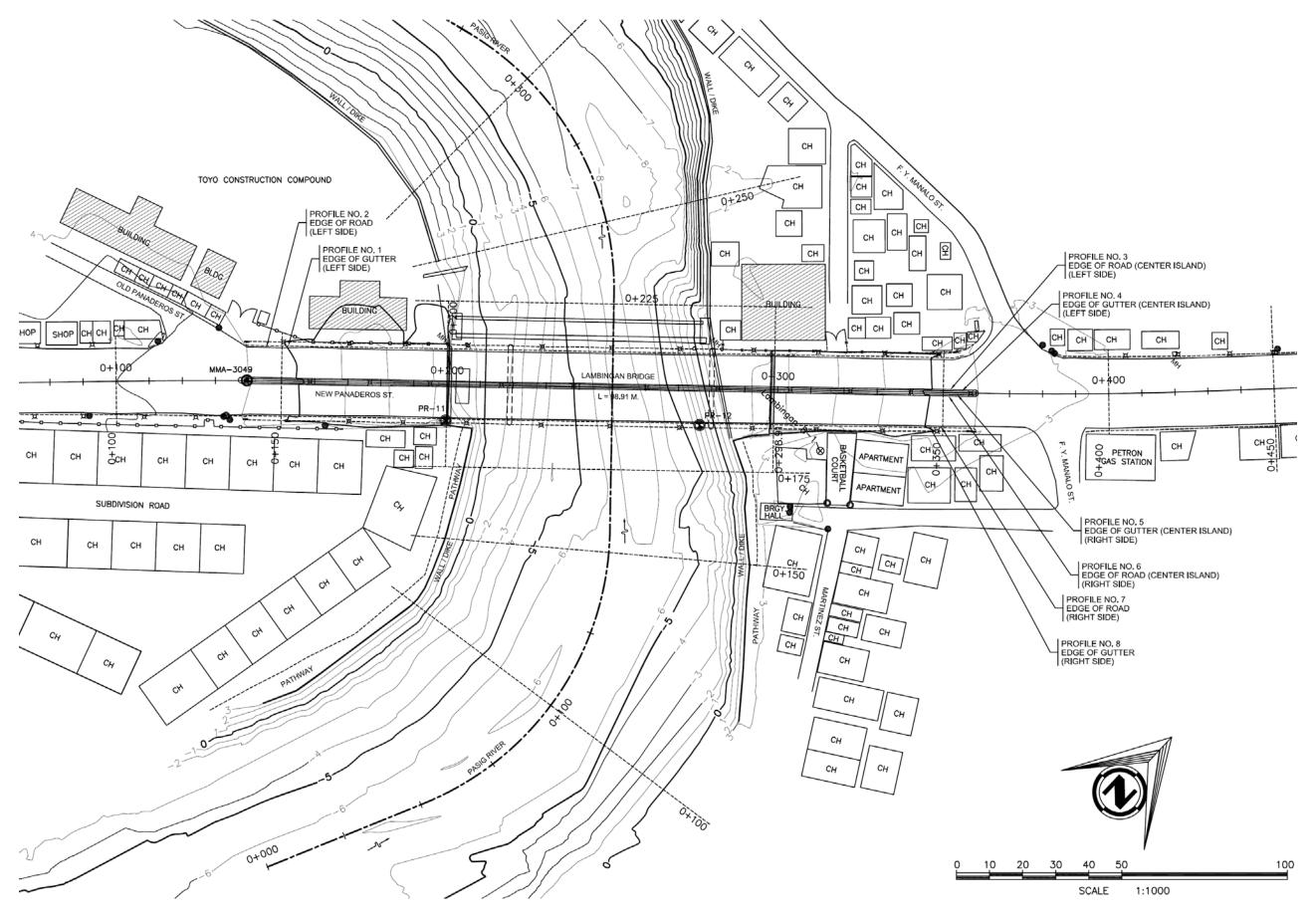
(1) Package B


1) Delpan Bridge

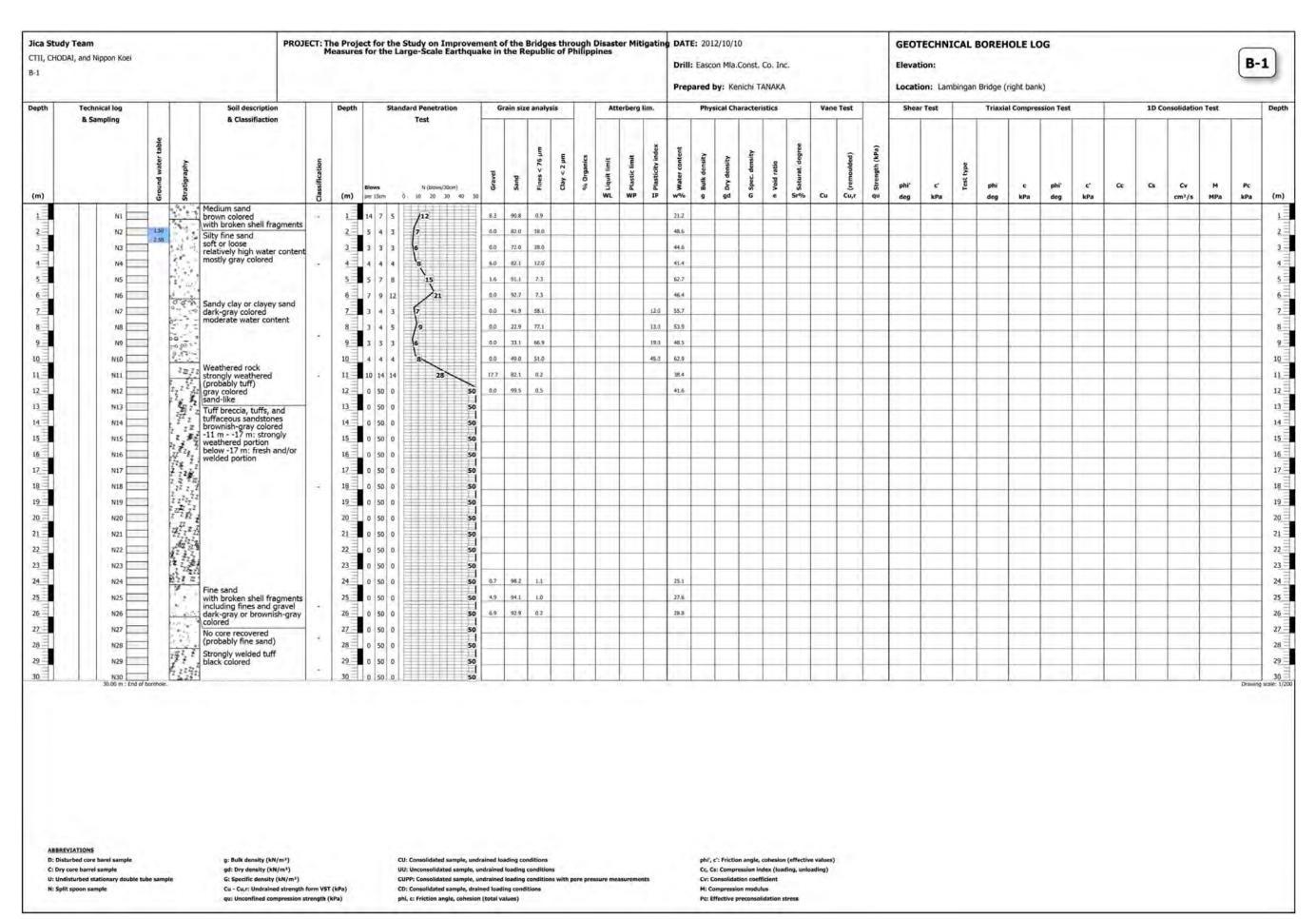
Jica Study	Team		PROJECT:	The Proje Measurer	ect for the s for the L	s Study on Improve arge-Scale Earthq	ement uake in	of the the R	Bridge epubli	es throi	igh Di ilippin	isaster I ies	Mitigatir	Drill	II: Easco	2/11/05 on Mia.C by: Ken	onst. C					Eleva	TECHN tion: tion: De				OG						B-1
epth	Technical log & Sampling	Soil descrip & Classifia		Depth	Sta	ndard Penetration Test		Grain siz	te analy:	sis	T	Atterbe	erg lim.		Phys	sical Cha	racterist	tics	1	Vane Tes		She	ar Test		Triaxia	Compres	sion Test			1D Co	nsolidatio	n Test	
		und water table tigraphy	sification			N (binws/30cm)	Gravel	pue	Fines < 76 µm	Clay < 2 µm	% Organics	A Liquit Ilmit	lastic limit lasticity index	Water content	Bulk density	ny density	pec. density	old ratio	aturat, degree	Committee	rength (phi'	ć	Test type	phi	c	phi'	ę.	Cc	Cs	cv	M	Pc
1)	-1-1	Mainly fine sand	Class		per 15cm	0 10 20 30 40	50	, W	15	0	ď	พีเพี	VP IP	w%	0	gd	Ğ	e Si	r% (Cu Cu	,r qu	deg	kPa		deg	kPa	deg	kPa		-	cm ² /s	MPa	kPa
	NI N2	sometime includi shell fragments relatively low wa	ster content	2	7 6 5	11	0.0		7.6					14.I 28.2																			
	N3	blackish-gray col	lored	3	8 6 6	12	0.0	98,1	1.9					20.1					1		4	1											
	N4	1.00		4	9 7 5	12	0.0	120	4.6		-			33.3	-		-		+		-								-				
•	N5 N6			6	6 8 9	/17 14	0.9		4.0		1			27.3					+		1												
	N7			7		13	0.0		17.1					29.5																			
	N8	Candy sile		8=	5 6 7	13	0.0	91.6	8.4					26.6					1		1												
	N9	Sandy silt relatively high w blackish-gray col relatively soft	ater content	9 =	9 6 4	/10	0.0		56.9		-		7.0	52.Z					+		-												
	N10	relatively soft		10 =	2 2 2	4	0.0	1	95.1		+	+	7.0	58.1					+	-	+												
	N11	Human .		11 12	2 2 2	4	0.0		3.5				7,4	47.0					1														
	N13	الم المال من		13	3 2 2	4	0.0	9,4	90,6				21.0	48.9																			
	N14	E - L-4		14	2 2 2	4	0.0	7.7	92.3		-		13.0	42.2			_		+	-	-												
1	N15	الموالية Sandy silt Sandy silt الموالية الموالية Sandy silt الموالية الموا		15 =	4 5 4	9	0.0		3,9		+	-	-	43.4	-			-	+	-	-	-											
	N16 N17	relatively high wincluding brocker	ater content en shell	16 =	8 15 35	"	0.0				-			45.2				_	\pm	-													
	NIB	gray / dark-gray		18	1.0	6	0.0		84.9				11.0																				
	N19	with clay and fin	e sand shell	19	3 3 5		0.0	7.5	92.5				31.0	75.4					1	-11													
	N20	fragments mostly dark-gray	//blackish	20 =	3 3 3	6	0.0		95.9		-	-	23.0				-		+		-	-			-								
	N21	-gray colored Clayey silt		21 =	3 2 3	\ \ 11	0.0	-	88.7 55.5		1		30.0	70.1					\pm	-													
	N22	with fine sand including broken fragments	shell	23	5 6 5	11	0.0		77.6				11.0						T														
	N24	mostly dark-gray		24	5 5 6	11	0.0	100	94.3				18.0	100																			
	N25	interbedded with colored volcanic -30.5 m	ash abuot	25		9	0.0	33.7	66.3		4	-	24.0	79.8	-		-	-	+	-	-	-						-					-
	N26	1. 20		26	100	10	0.0		1,499		1	-	12.0		-		-	-	+		+			\vdash						1			
	N27 N28	7		27	5 6 5	10	0.0		95.9				7.0						+														
	N29			29		12	0,0	100	100				2.0	100																			
	N30			30	6 5 6	11	0.0	21.1	78.9	\vdash	4	-	5.0	77.0			-	-	+	-	+	-											
	N31	السين ال		31	6 6 7	13	0.0	11000	Text		+	-	2.0					-	+		+-	-						-					-
	N32			32 =		12	0.0		7.9		+	-	3,0	1			-	-	+		+	1	-										
	N33	Very fine sand silty		33 34	- 1	5	1	16	1000				3,0																				
	N35	relatively low wa yellowish-gray co	ater content olored	35 -	28 50 0	5	3																										
	N36		14	36	19 40 10	5	34.3	62.1	3.7										-		-							151					
	N37			37		5		3.3	12.9		+	-		-			-		+	-	-	-											
1	38.00 m : End of bland	Stoke		38 =	35 50 0	5	0.0	88.1	11.9						1	-			-		_		1										Drawing s

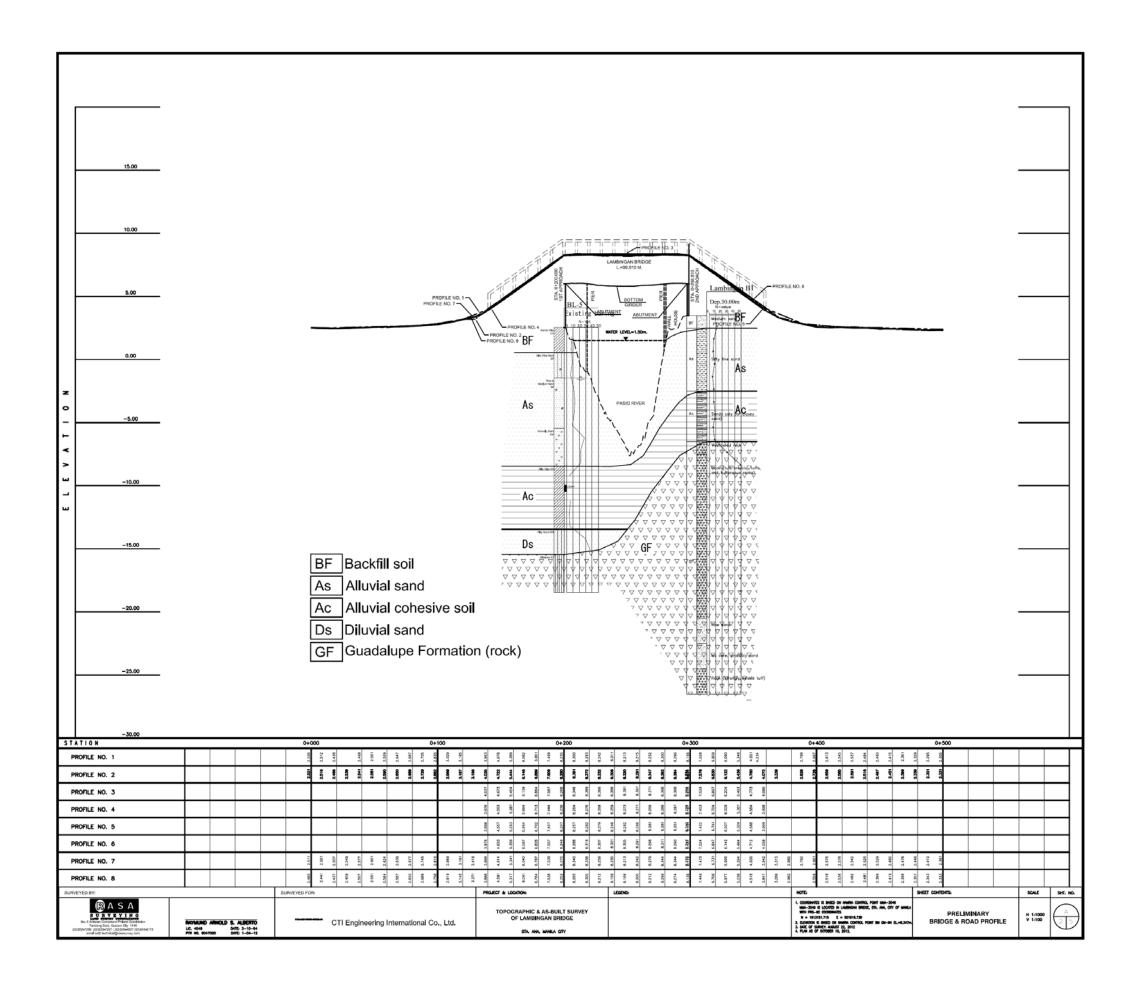


2) Nagtahan Bridge

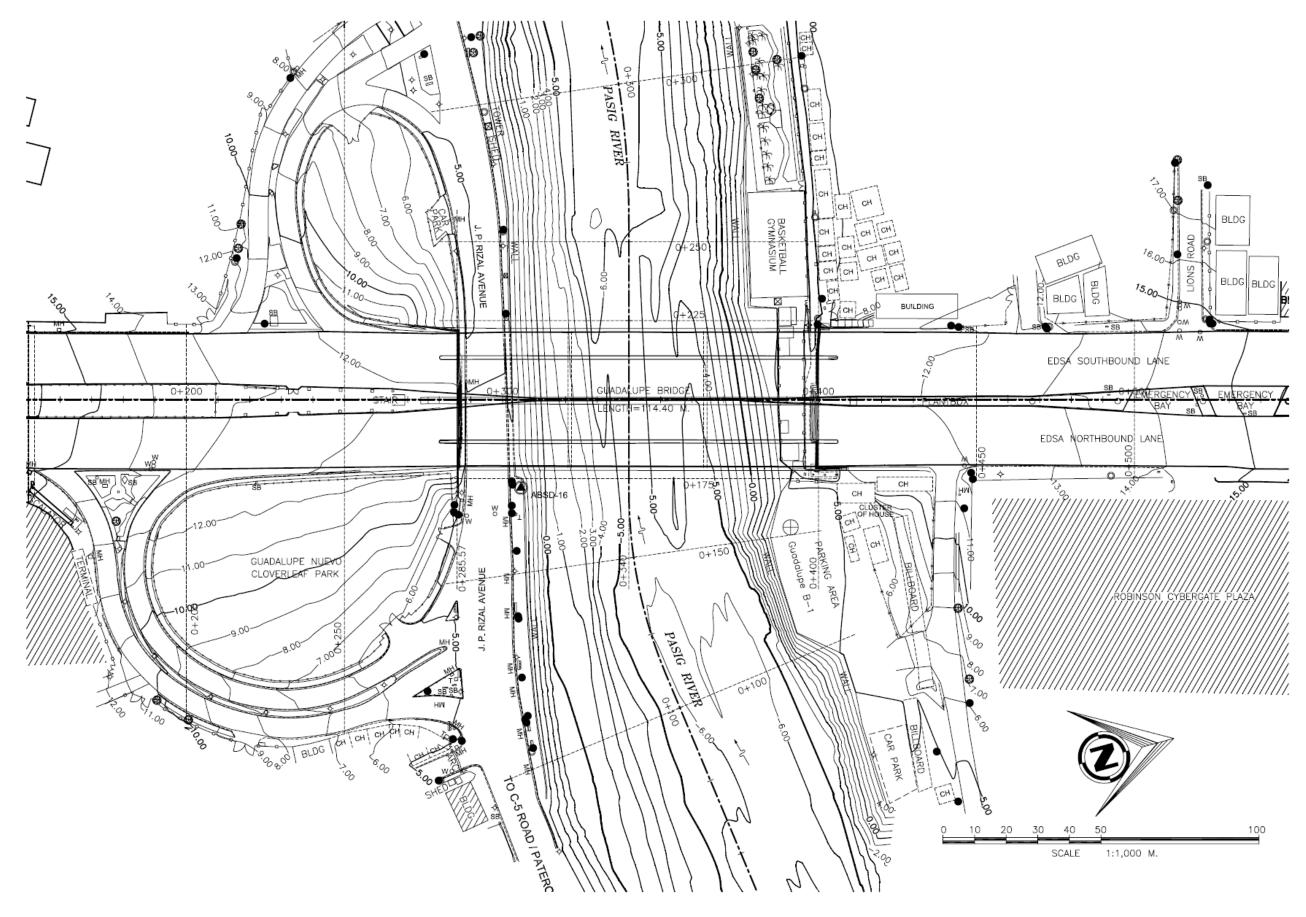


Appendix 3-A-4


Technical log Solid escription A Classifiaction Solid escription A Classifiaction Standard Powertation Test Test Standard Powertation Test Standard Powertation Te	1D Consolidati	Cv H Po	
Company Comp	100.0		
1		0.0 10 10.00	Pc kPa
13.		Dra	Drawi



3) Lambingan Bridge



Appendix 3-A-7

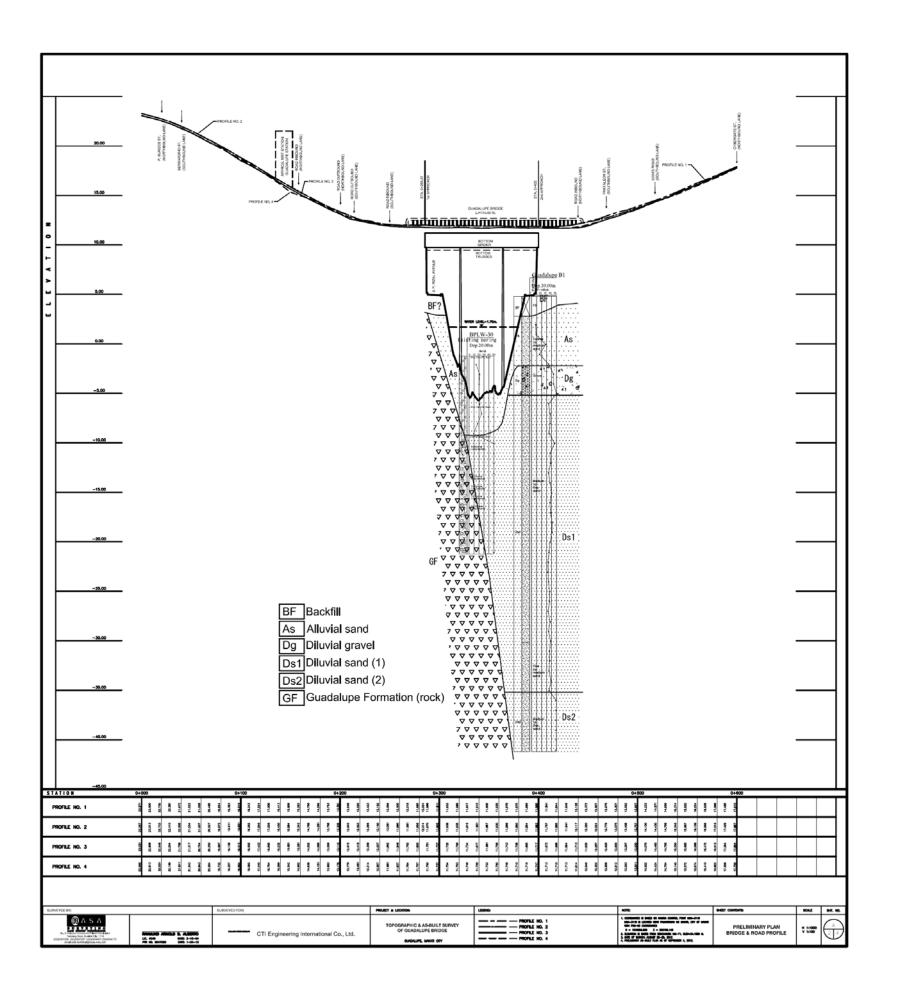
4) Guadalupe Bridge

Appendix 3-A-10

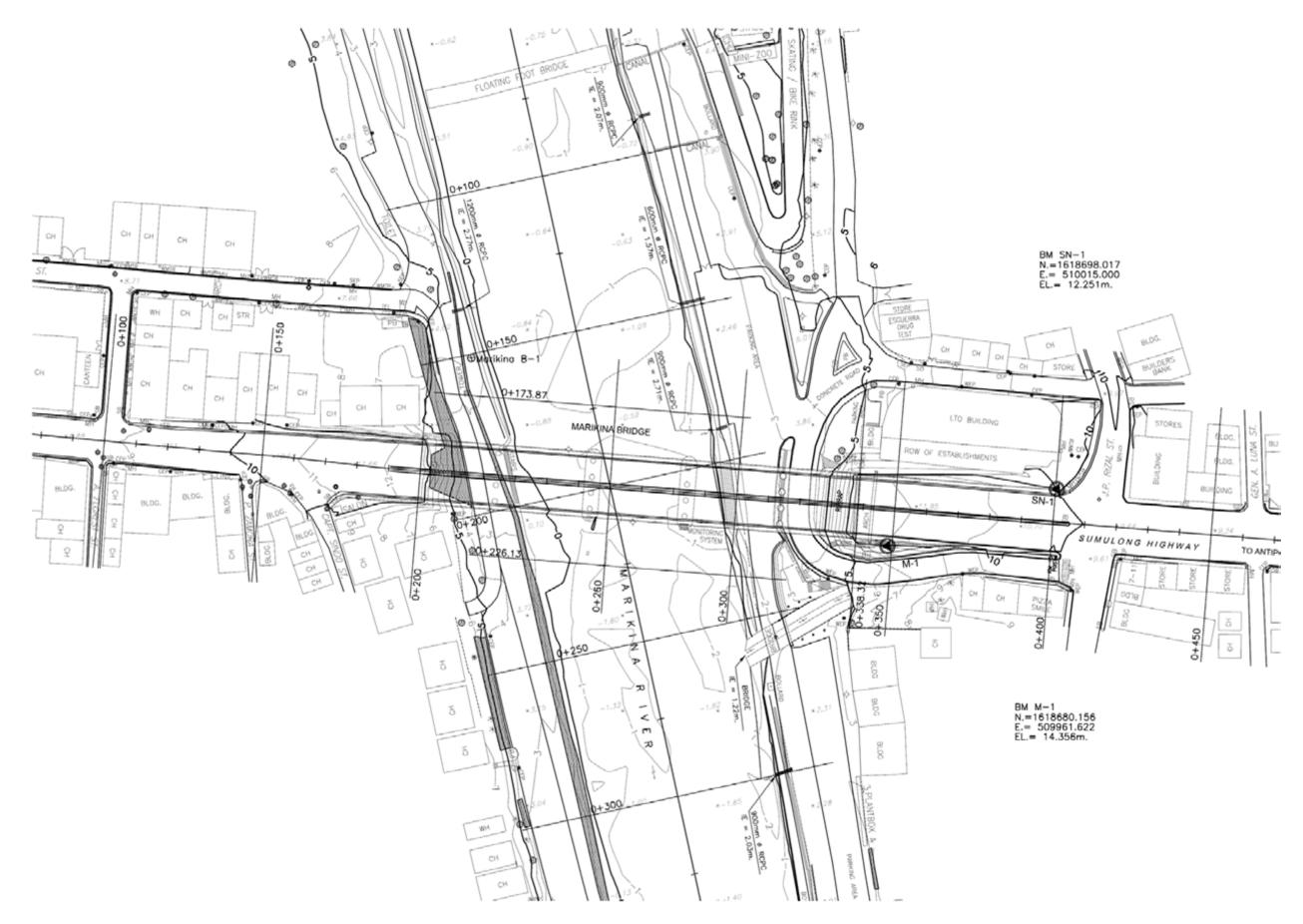
						10, 110 211 30 00	ne carciiqu	iake in	the Re	public c	of Philip	ppines			Drill:		Mla.Cons						GEOT Elevat		adalupe	Bridge (i	right bank	()						B-1
	Technical log & Sampling		Soil description & Classifiaction		Depth	Standard Pene Test	etration	Gr	aîn size	analysis		At	terberg	lim.		Physic	al Charact	eristics		Van	ne Test		Shea	r Test		Triaxia	l Compres	sion Test	1		1D Co	nsolidatio	n Test	
0		Ground water table Stratigraphy		Classification	(m)		(ms/300n) 0 30 40 5	Gravel	Sand	v I	Clay < 2 µm	A Liquit limit	A Plastic limit	T Plasticity index	& Water content	a Bulk density	& Dry density Spec. density		Saturat. degree	Cu	(pepionided)	2 Strength (kPa)	phi' deg	c' kPa	Test type	phi deg	c kPa	phi' deg	c' kPa	Cc	G	Cv cm²/s	M MPa	Pc kPa
		Fill sinclu	ding rock/concrete		1=								-							-														
	N1	sand brow	nish-gray/yellowish		3			12.4	97.4	1.1					23,4																			
	N3	inclu fragn (avg.	ding broken shell nents, fines and grave 15 mm in diameter)	els -	5	6 10 18	28	35.7	63.0	0,4					19.5																			
	N4	9			6 7	3 5 11 16 10 14 20	34	9,7	83.6 54.3	1.7					25.4																			
	N6	Dark	el with sand -gray/brownish /gray colored		8	18 20 24	44	37.7	61.9	0.4					10.4																			
	N7	46 Fe			10	20 20 30	44	18.9	78.6	2.5					8.8 22.5																			
	N9	3 some	ly medium to fine sal etime coarse sand with broken shell	nd	11	15 17 17	34	34.7	64.6	0.8					8.3		-		+		-													
	N10 N11	fragr black very	with broken shell nents rish-gray colored rich with broken she	ar l	100	16 19 18 15 18 19	37 37	3.9	95.9	1.1					25.4																			
	N12	180 Fragr	ments about -21.5 m ding gravlel (10-15 m ameter)			15 16 19	35											-																
	N13				=	16 16 30 19 18 19	37	2.1 2.6	97.5	0.5 1.3					23.5																			
	N15				17	16 18 20	38			0								1																
	N16 N17	V (18	12 16 18 14 17 20	34	0.0	98.7	0,2					26.3																			
	N18				20	16 19 21	40	2.7	96.6	0.7	-		-		32.4		-	+	+	-	-												-	
4.	N19 N20				21 =	17 18 19	37 1 38	8.5	91,5	1.8					24.2																			
	N21	50		180		15 19 22	41	23.6	75,7	0.5					23.0			-																
	N22 N23	3.				17 20 21	41 / 37	41.2	58,6	0,2					9.3																			
10	1124				26	15 17 18	35	1.0	98.2	D.9					32.5																			
	N25					13 17 16 12 18 15	33 11 33	0.0	99.5	0.5					27.9																			
	N27	0.000			29	14 19 15	34									_	-	-	1		1													
	N28 N29				30 31		36 26	2.4 E0	95.0	3.9					29.1°																			
	N30					15 17 16	33\												1		-													
	N31 N32	4.8			33 34	16 18 19 13 16 18	37	3.3	99.1	0.9 1.2					63.2 71.6																			
	N33	Main	ly fine to medium sar	nd	35	11 16 20	38																											
	N34 N35	poor	ively low water conte with broken shell ements	ent		12 17 19 15 19 17	36 36	0.2	90.8	6.2					65,9																			
	Continued	dark	-gray/blackish-gray																			Y					7							Drawing se

Jica Stud CTII, CHO B-1	ly Team DAI, and Nippon Koei		PROJECT:	The Proje Measures	ect for the	e Study on Improve Large-Scale Earthqu	ment d ake in	of the the R	Bridge epubli	es thro	ough I hilipp	Disaste ines	er Miti		Drill:	Eascor	n Mla.C	Const. C	-					Elevat	ion:			OLE LO							В	-1)
Depth	Technical log & Sampling	Soil description		Depth	St	andard Penetration Test	G	irain siz	e analy	rsis		Atte	erberg li	m.		Physi	cal Cha	racteris	tics		Vane	Test		Shea	Test		Triaxia	l Compres	ssion Test			10 Co	nsolidatio	n Test		Deg
(m)	Ground water table		Classification	(m)	Blows per 15em	N (bitren/30cm) 0 10 20 30 40 2	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	A Liquit limit	S Plastic limit	8 Plasticity index	& Water content	o Bulk density	D Dry density	D Spec. density	a Void ratio	Saturat, degree	Cu	(remoulded)	2 Strength (kPa)	phi' deg	c' kPa	Test type	phi deg	c kPa	phi'	c' kPa	Cc	a	Cv cm ² /s	M MPa	Pc kPa	(11)
38	N36	Mainly fine to medium sand relatively low water content poor with broken shell fragement dark-gray/blackish-gray colored		38	14 17 18	25)	0.0	97.7	2,3						52.7					-11					-		3-6			1				1	3-2	38
39	N37 60°	dark-gray/blacksin-gray colored		39	16 19 20	39	0.0	82.7	17.3	, I					46.5																					39
40	N38	40		40 -	15 17 11	35	0.0	99.8	0.2						75.2																					40
41	MOS CON	Mainly medium to fine sand Moderate water content with broken shell fragmans blackish-gray colored		41	0 50 0	50																														41
42	N40 0.36 8	d de la contraction de la cont		42 =	o 50 0	50								_		\perp			_																	42
43	N41			43	0 50 0	50								-					-																	43
44	N42			44	0 50 0	50	0.0	99.8	0.2						66.7		_		-		-															44
45	N43			45	27 50 0	50	16.5	83.3	0.2	-				-	\$5.4				-	-	_	-													-	45
46	16.00 m : End of barenoic.			46	22 50 0	50	0.5	98.9	0.7						58.0																				Drawin	4/

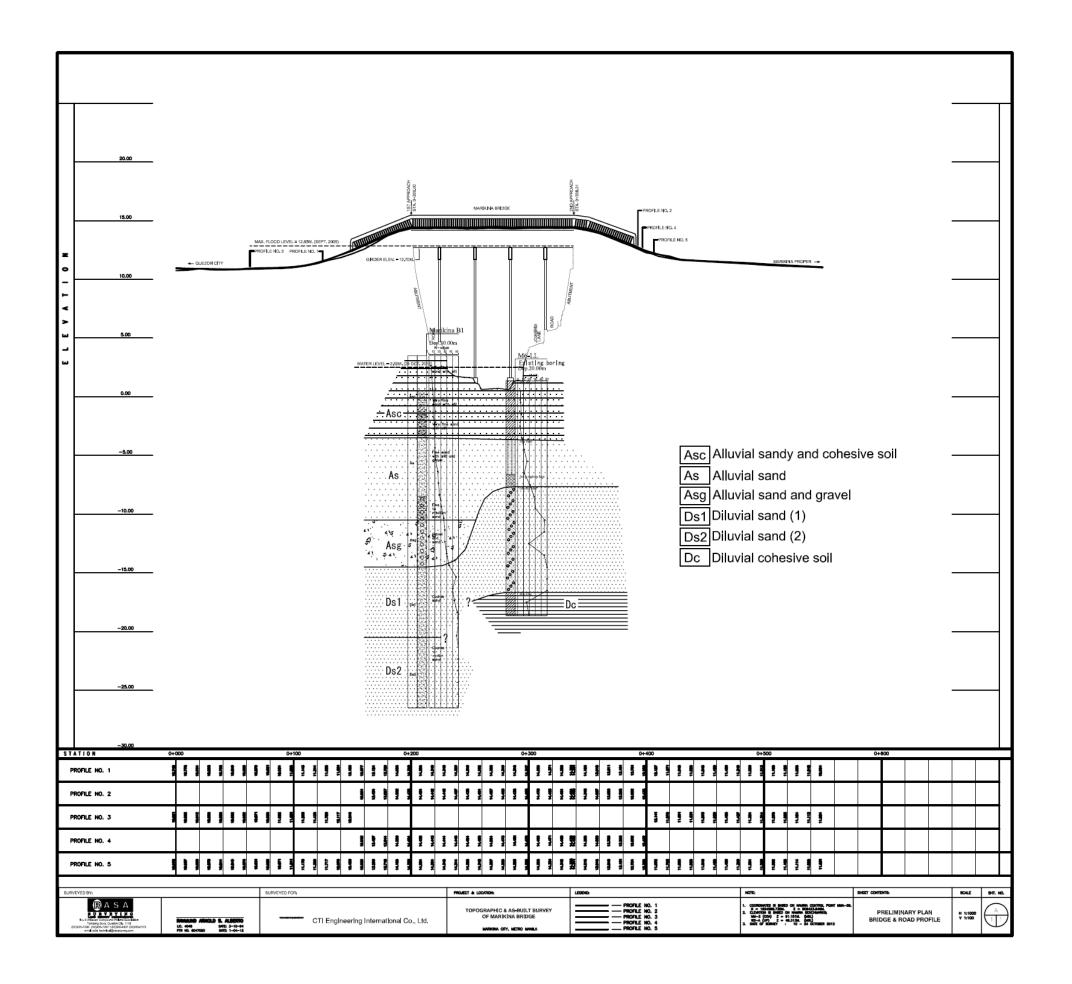
ABBREVIATIONS


D: Disturbed core barel sample

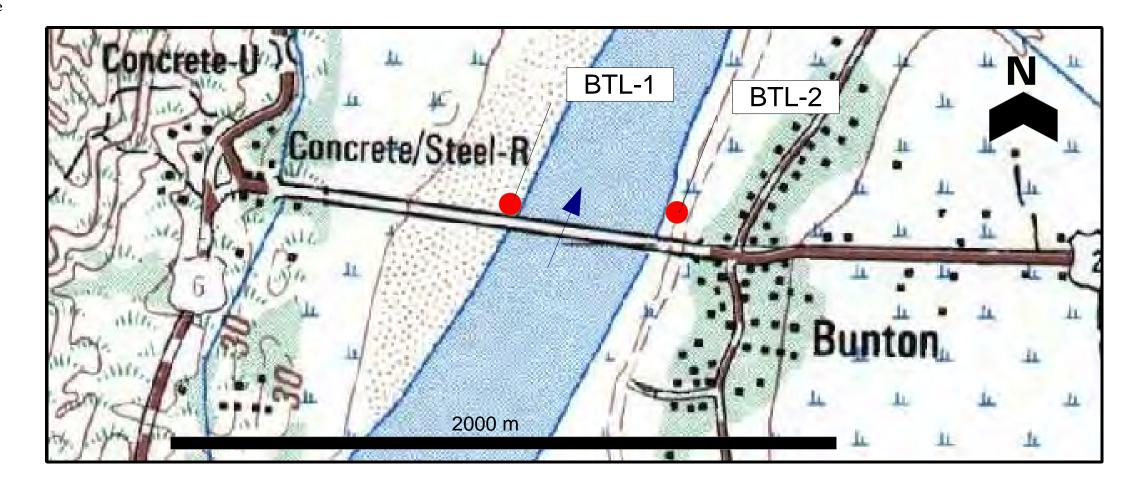
C: Dry core barrel sample
U: Undisturbed stationary double tube sample N: Split spoon sample


g: Bulk density (kN/m³)
gd: Dry density (kN/m²)
G: Specific density (kN/m²)
Cu - Cu,r: Undrained strength form VST (kPa)
qu: Unconfined compression strength (kPa)

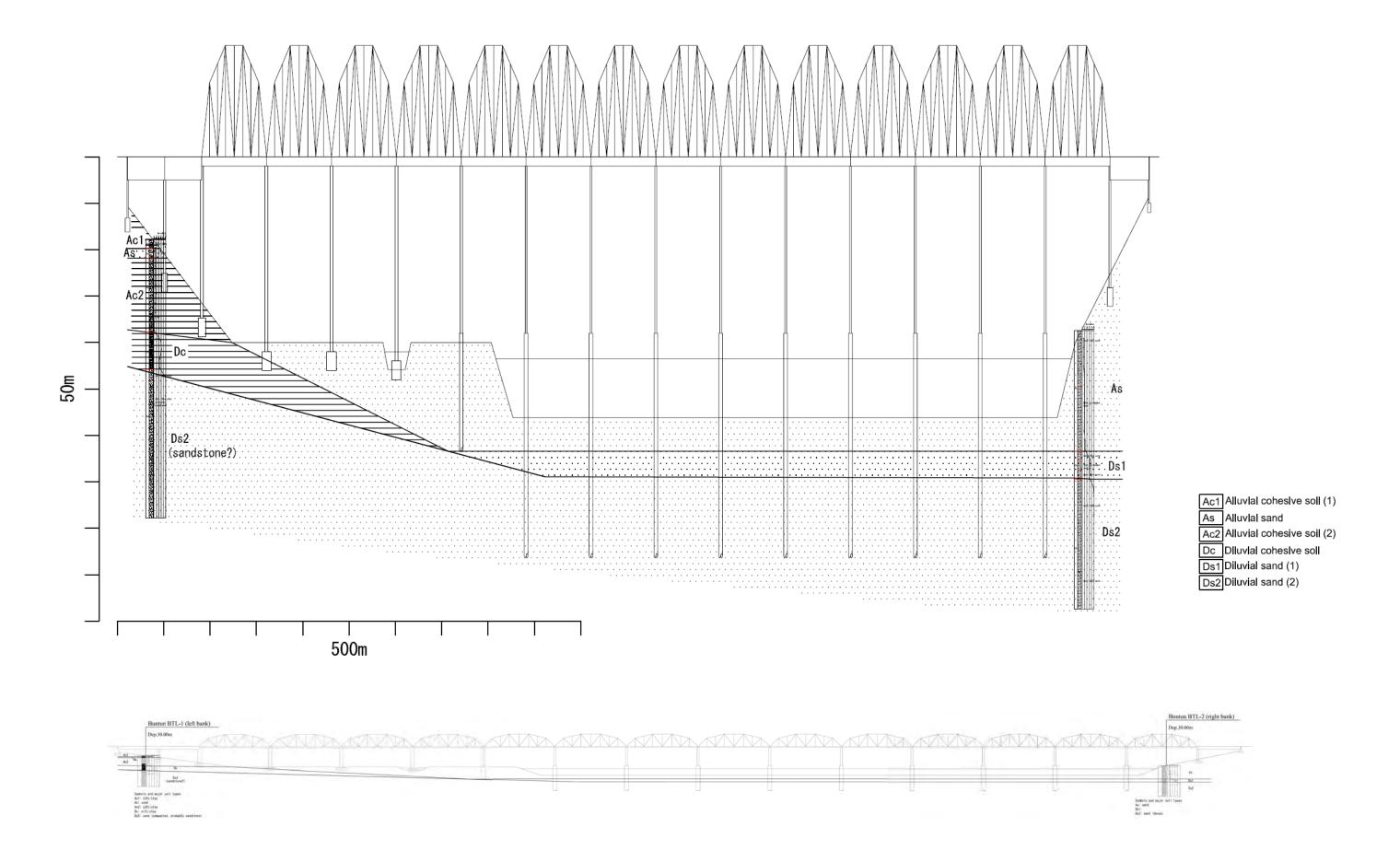
CU: Consolidated sample, undrained loading conditions
UU: Unconsolidated sample, undrained loading conditions
CUPP: Consolidated sample, undrained loading conditions with pore pressure mea
CD: Consolidated sample, drained loading conditions
phi, c: Friction angle, cohesion (total values)


phi', c': Friction angle, cohesion (effective values)
Cc, Cs: Compression index (loading, unloading)
Cv: Consolidation coefficient
M: Compression modulus
Pc: Effective preconsolidation stress

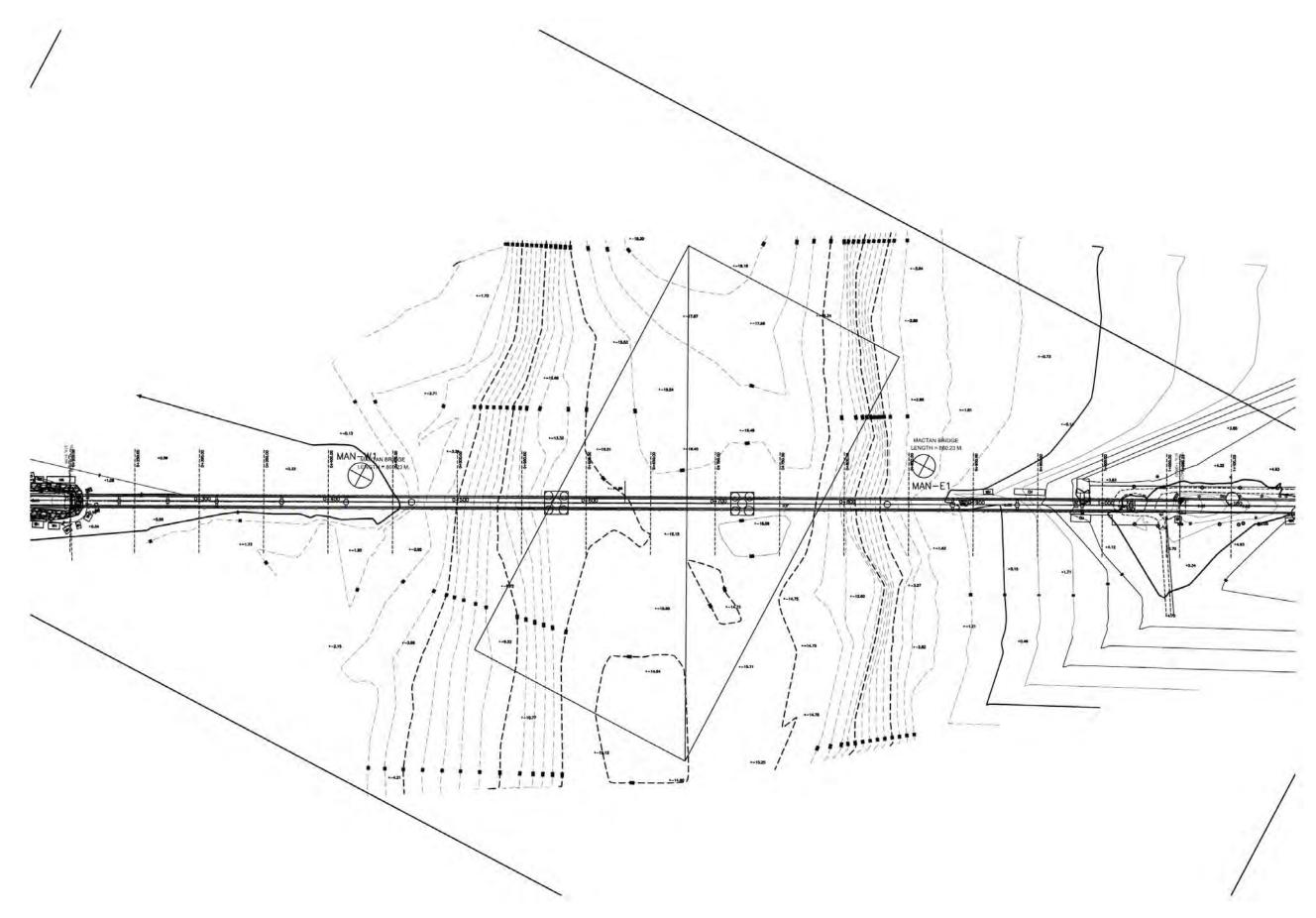
5) Marikina Bridge



CTII, CHOD. B-1	r Team AI, and Nippon Koel		PF	ROJECT: T	he Proje Jeasures	ct for the S for the Lar	Study on Improve rge-Scale Earthqu	ement d iake in	of the I	Bridge:	s throug of Phili	gh Disa Ippines	ster M	litigatin	Drill	l: Easco	2/11/06 n Mla.Co						Eleva				ht bank)	OG						B-:	1
Depth	Technical log & Sampling		Soil description & Classifiaction	Ì	Depth	Stand	fard Penetration Test	G	rain size	analysi	s	,	Atterber	rg fim.		Phys	ical Chara	octeristic	s	٧	ane Test		She	ar Test		Triaxia	al Compre	ssion Test			1D C	onsolidatio	n Test		De
		ound water table atigraphy		ssification		Bloves	N.(bloves/30cm)	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	Ve Drganics Liquit limit	Plastic	Plasticity Index	Water content	Bulk density	Dry density	Spec. density	Void ratio		(remoulded)	Strength (MPa)	phi	c'	Test type	phi	c	phi	×.	Cc	Cs.	Cv	м	Pc	
n)		5 5	Very fine sand	5	(m)	e E E E	10 20 30 40 1	0.0	82,4	17.6		W	L WP	IP	W%	9	gd	G	e Sr%	6 C	Cu Cu,	r qu	deg	kPa		deg	kPa	deg	kPa			cm²/s	MPa	kPa	(1
1	N1 NZ		silty poor graded relatively high water con	tent -	2	2 2 3	5	0.0	99.6	0.4					47.4																				
4	N3	200	brown colored		3 =	3 2 4	6	0.0	91.5	2.6	4	1	1		45.6				1	1	-	-		1	ļ.,										
	N4.	4.20	Mainly very fine sand with silt brownish-gray colored		4	2 4 4	8	33.8	62.9	3.2	-		+	-	26.3		-	-	-	+	-	+-		-	-					-					
	N5	3.0	Very fine sand		5	2 4 3	7	19.6	84.4	0.4	-	-	+	+	35.1		-	-	+	-	+	+	-	-											
	N6	F8	silty brownish-gray/gray color	red -	6	4 5 4	9	2.9	95.2	2.6		-	+		37.1		-	_	+	+	_	+		1											F
	N7 NB	100	Mainly fine sand including silt and gravel	<i>i</i> []	8	4 4 6	10 10	3.2	96.4	0.4					25.8							7 =													
1	N9	A.S.	relatively high water con dark-gray colored	tent	9=	4 6 5	11	0.7	99.1	2.6					32.6																				
	N10			14	10	8 7 8	15	0.0	96.7	3.3					17.3																				
	N11	10/3			11=	6 8 8	16	27.5	72.2	0.4	-		1		22.9		-	-	-	+	-	+		-											
	N12		Fine to medium sand		12 =	7 9 9	18	23.4	73.0	2,6	-	-		-	25.8			-	-	+		-		-											
	N13		relatively high to modera water content	ste	13		21	0.5	96.4	3,2	-	+	+	-	27.8	-	-	-	+	+	-	+-	-	1	1							-			1
	N14	12-3	blackish-gray colored Gravel and sand		1000		25 \ \ 27	47.6	95.0	2.6		-	+	_	37.2 10.6			+	+	+	-	+		1											1
	N15	10.50	relatively low to moderat water content		15	11 12 15	27	32.5	63.9	3.6		-			15.4		-					1		-			-								
1	N17	1285	sometime medium to fine sand with gravel including gravels (20-30		1 2	14 14 16	30\	45.1	53.3	0.4					16.3																				
	N18	200	in diameter)		18	15 17 17	34	20.7	78.2	2.6					13.0							115													
	N19	0000	Coarse sand relatively high water con brownish-gray/blackish-g	tent	19	18 18 28	46	27.4	72.0	0.6	-		-		18.0		_	-	-	-	-	-													
	N20	0,840	colored	gary	20 =	17 19 24	43	32.4	56.7	0.4	-	-	+	-	16.4	-	-	-	+	+	+	+-	-	-	-					-					1
	N21	1 88		-7	100	19 19 24	43\	33.4	65.5	2.6					18.1				+	+		1		1						-					
	N22	***			100	20 22 26	48	1	81,4	0.9	_	1	+	_	18.5		-	_	+	+	+	+													
	N23 N24	θ.			23	20 23 38	61 / 47\		67.9 97.8	2.6					27.6																				
1	N25	(Q. 34a.	Mainly coarse to medium	1	75	24 27 26	53	1	86.2	17	-	1			23.2																				
	N26	0	sand including gravel having diameters of 10-20 mm relatively high water con dark-gray/blackish-gray colored			25 26 28	54	1	91.2	0.4					24.8																				
1	N27		relatively high water con dark-gray/blackish-gray	tent	27	27 28 27	55	13	98.0	2.6					27.4			_						1											
	N28	0.00	colored		28	30 29 21	50	2.0	97.2	8.0	-	4	1		23.9			-	1	+	-	4	-	-	1			-							
	N29 N30				29. 30		50	4.7	94.2	2.6		+	+		29.5			-			-	+	-											Drawing	1


(2) Package C

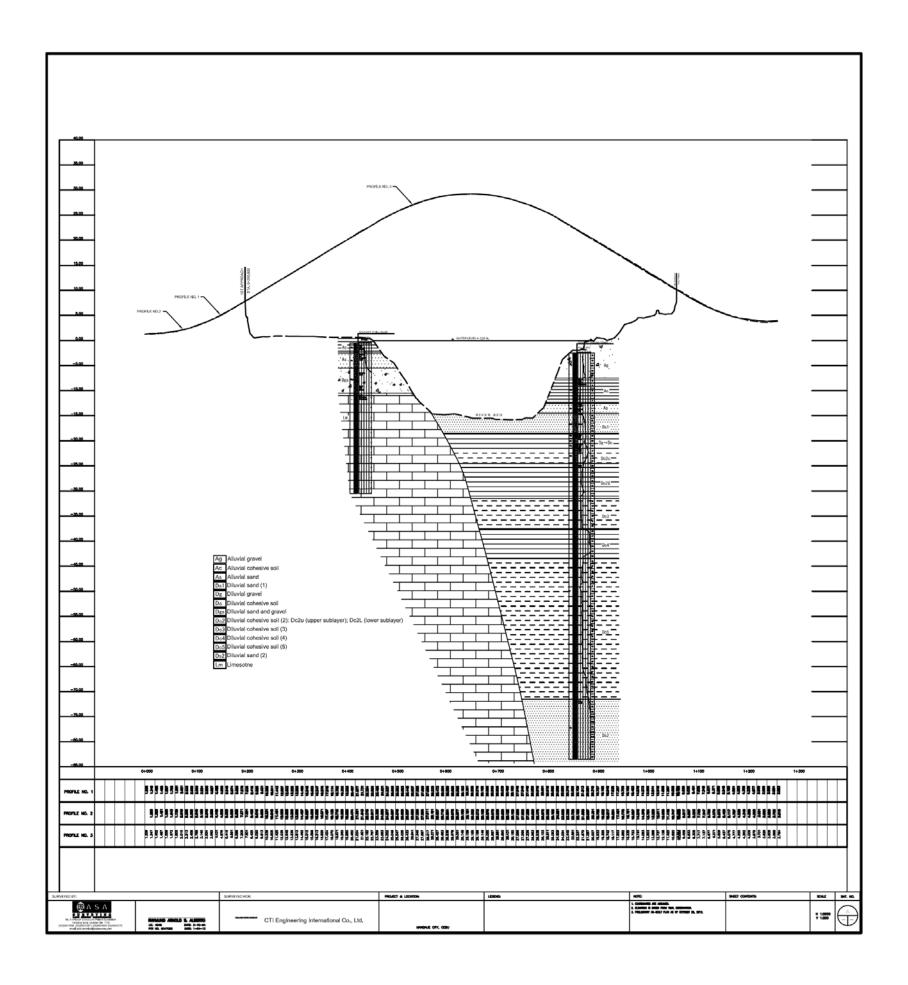
1) Buntun Bridge



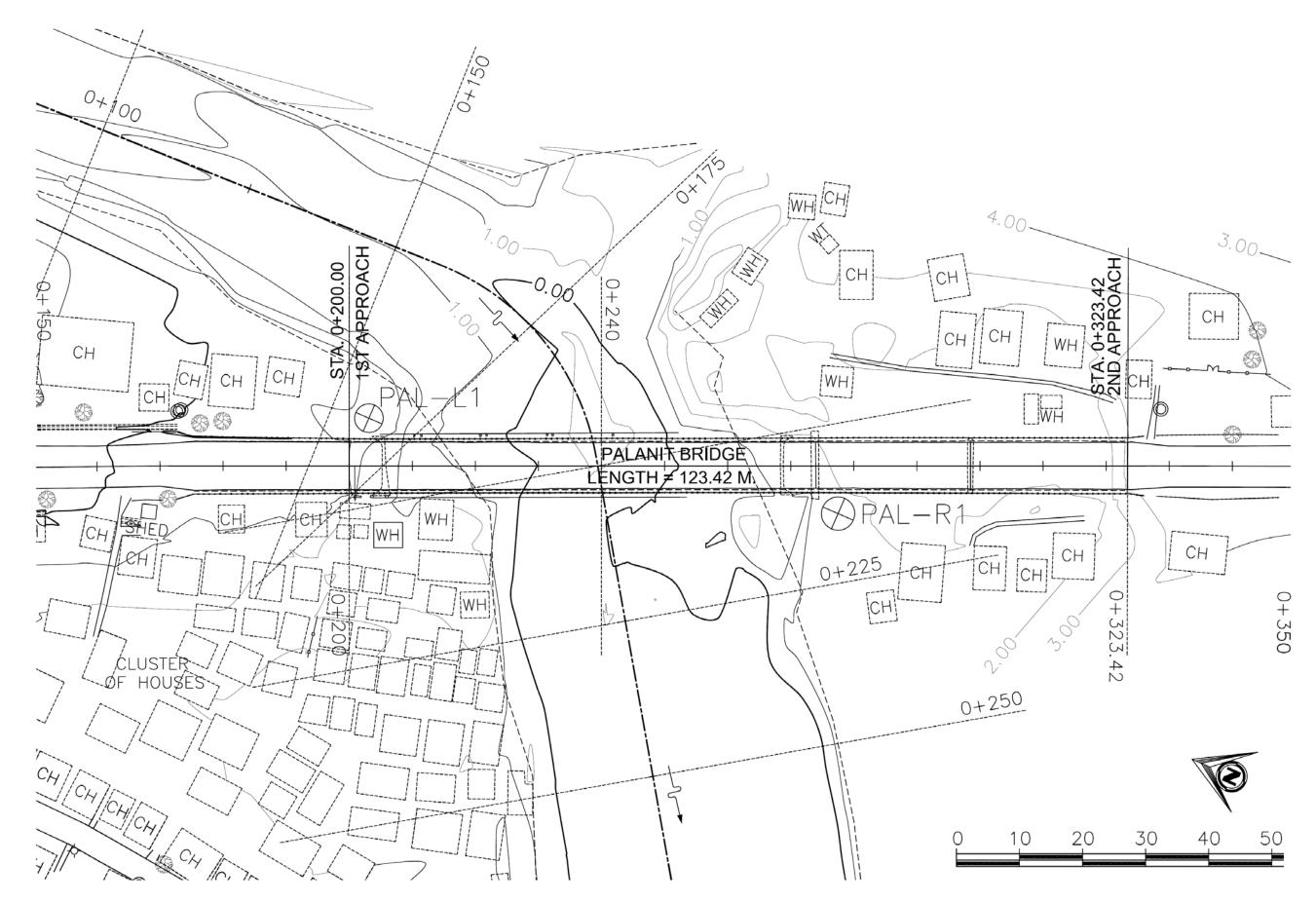
	Team	PROJE	CT: The Proje Measures	ct for the Study on Improv for the Large-Scale Eartho	ement i	of the the R	Bridge epublic	s through	gh Disas ippines	ster Mil		Drill:	Eascon	11/06 Mla.Cons : Kenich						Elevat	tion:		BOREH	Dank)	oG						BTL-	-1)
epth	Technical log & Sampling	Soil description & Classifiaction	Depth	Standard Penetration Test	0	irain siz	e analys	is	A	tterberg	lim.		Physic	al Charact	erístics		Van	e Test		Shea	r Test		Triaxia	of Compre	ssion Test			1D C	onsolidatio	n Test		De
	ound water table		ssification	Blows N (blows/30cm)	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	Plastic limit	Plasticity index	Water content	Bulk density	Dry density Spec. density	Void ratio	Saturat. degree		(remoulded)	Strength (kPa)	phi'	c'	Test type	phi	c	phi:	c'	Cc	Cs	Cv		Pc	
n)	8 E	Silty clay including gravel and very	(m)	per 15cm 0 10 20 30 40	50 o.s	98.3	3.2		WL	WP	IP	w%		gd G		Sr%	Cu	Cu,r	qu	deg	kPa	-	deg	kPa	deg	kPa			cm²/s	MPa	kPa	(1
	NZ	fine sand Fine sand	. 2	3 3 3 6	8.5		3.4																									
	3.10	with gravel Clay including grval	3=	3 3 3 6	2.0	1.0	4.0	+	+				\pm	+	+																	-
	1,0 0,0	medium water content sometime including gravel	5	3 3 3 6	0.0	15.7	8.0																									1
	N6 0 9		6	3 3 4 7	0.0	1	2.9	4		-		-		-	-	-									-			-				1
	N7 0 0 0		8	2 2 3 5	0.0	10.7	19.6	\pm		+			\forall	-	+	\vdash		\vdash			-											1
	Gr 2 4 4	Caly medium water content dark-gray - bluish-gray	9	1 1 1 2	0.0		0.6																									1
	N10	colored	10	1 1 1 2	0.0		1.6	+	-	-	\vdash		+	-	+	H																-
	10 E H	very fine sandy relatively low water conent	11 =	11 14 15 29 10 15 17 32	0,0	196.7	0,6			1					Н	Н																1
	N13	yellowish-brown colored	13	11 12 13 25	0.0	100	0.8																									1
	N14	Very fine sand	14	11 12 13 25	0.5	98.0	1.7	-		-	+	-	-	-	+												-		-			-
	, ms	with gravel weakly consolidated reddish-brown colored	- 15 — 16 —		0		-		- -	1								-			-			-		-				-		1
	10000	Very fine sand (probably strongly weathered sandstone)	17		0.0	98.0	2.0														-											1
		relatively low water content	18		0.0		0.5	-	+	-	\vdash	-	+	+	+	-				-												+
	N19 N20	-gray/yellowish-gray colored very dense or relatively consolidated below -23m	19 20		0 0.0	98.7	0.9																									
	N21	in diameter) included about	21	0 50 0	0.0	99.3	0.7	-																								4
	1022	-25m	22 = 23 =		0.0	99.1	0.9	+	+-	+	+		-	+	+			\vdash									\vdash					1
	N24		24		0.0	1000	Print.																									
	N25		25	0 50 0 8	0.0	97,8	2.2	-		-			-	-	-	-									-				-			-
	N26 N27 N28 N29		26 =		0 0.0		1 - 1	-						-																		1
	N28		100	0 50 0 5	0.0		1.0																									1
	N29		30		0.0		1000	-	-	-			-	-	-																	-

	dy Team DDAI, and Nippon Koei	PROJECT: TI	ne Proje easures	ct for the Study on Improve for the Large-Scale Earthqu	ment of ake in t	the Br he Rep	ridges public	throug of Phil	gh Dis lippine	aster es	Mitiga	D	rill: E	ascon f	lla.Cons	t. Co. In					Eleva	tion:		BOREH	t bank)	og					(1	BTL-	2
Depth		I description	Depth	Standard Penetration Test	Gra	in size a	nalysis			Attert	berg lim			Physical	Charact	eristics		Van	ne Test		She	ar Test		Triaxia	d Compre	ssion Test			1D Co	nsolidatio	Test		Depti
	ound water table	ssification		Blows N (blows/30cm)	Gravel	2	Fines < 76 µm	Clay < 2 µm	% Organics		Plastic limit	Plasticity index			Spec density	Void ratio	Saturat, degree	2.	(remoulded)	Strength (kPa)	phí'	4	Test type	phi	c	phi*	c'	Cc	Cs.	Cv	м	Pc	
(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	N3 2.50 relatively below -2 N4 N5 N6 N6 N7 Rine to m moderate dark-gray N10 N11 N12 Very fine with silt relatively Fine to m h16 N17 Very find with silt not on h16 N17 N18 Very find with silt not on h16 N17 N18 N18 Very fine to m h19 Relatively Very fine Very fine Relatively Very fine Relatively Very fine Very fine Very fine Relatively Very fine Ve	gray colored high water content m edium sand water content colored sand high water content edium sand gray colored sand or blackish-gray	1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1	Per 150m 0 10 70 30 40 50 2 3 3 6 3 3 3 6 2 3 3 6 3 4 5 9 3 3 6 9 2 2 7 9 3 3 6 9 2 4 5 9 3 4 5 9 3 4 4 8 2 5 7 12 2 6 6 12 15 16 17 33 14 15 15 30 14 15 15 30 14 15 15 30 15 16 17 33 16 17 33 17 18 15 15 50 36 41 9 50 36 45 5 50 40 50 0 50	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	99.1 99.8 99.1 99.2 99.5 99.8 99.8 99.8 99.8 99.1 98.8 99.8 99.1 99.5 99.7 99.1 99.5 99.7 99.7	5.6 1.0 0.4 0.9 0.8 0.5 0.4 0.2 0.5 0.5 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5			VL 1	WP 1	1P W9 51. 36. 26. 30. 33. 19. 12. 23. 26. 27. 20. 19. 38. 23. 35.	.5 .5	9 9	d G		Sr%	Co	Cu,r	qu	deg	kPa		deg	kPa	deg	kPa			cm²/s	MPa	kPa	1 1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
ABBR D: C: Dr U: Ue :	NSD 30,00 m End of boreholes REVIATIONS sturbed core barel sample gd: 1 core	sand sded low water content gray colored - ## density (kN/m²) ry density (kN/m²) Cur: Undrained strength form VST	26 27 28 29 30	0 50 0 50 20 25 25 50 19 26 24 50 20 27 23 50 21 25 25 50 CU: Consolidated sample, un UU: Unconsolidated sample, CUPP: Consolidated SAMPLE, CUPP. CUPP. CONSOLIDATED SAMPLE, CUPP.	0.0 0.0 0.0 0.3	97.5 96.6 97.3 98.4	nditions nditions v	with pore	e pressure	e measure	urements	13. 31. 28. 31. 30.	9 9	Cc, Cs: Co Cv: Conso					s)													Drawing	26 27 28 29 30

2) 1st Mandaue-Mactan Birdge

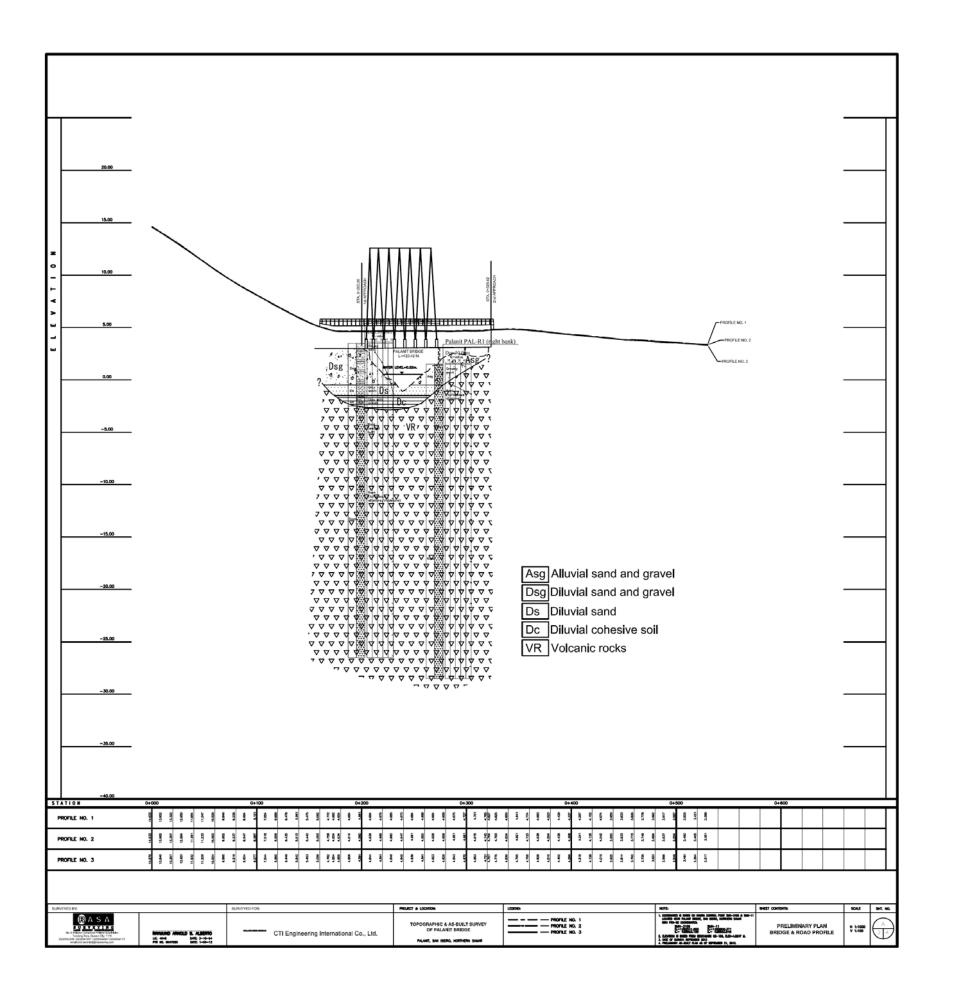


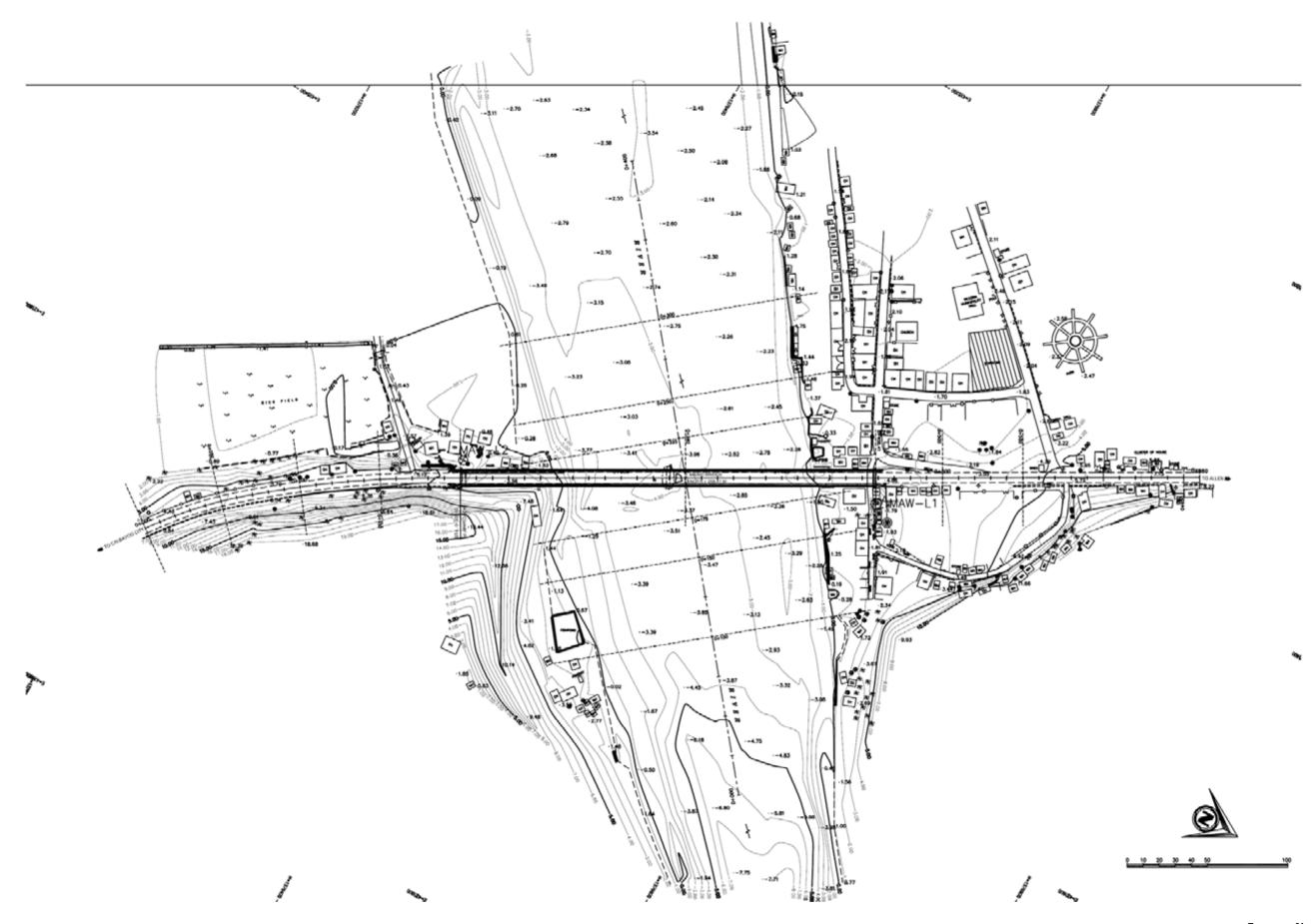
CTII, CHOD MAN-E1	AI, and Nippon Koei			Measure	ect for the Study on Improve s for the Large-Scale Earthqu	iake in	the Re	epublic	of Phi	lippin	es	nugau	Dril	l: Easco	2/11/06 n Mla. Co n y: Kenic					Elevat				n Brdige	OG					AN-	E1(1)
epth	Technical log & Sampling	Soil description & Classifiaction		Depth	Standard Penetration Test	G	rain size	e analysi	iis		Atterbe	erg lim.		Phys	ical Chara	cteristics	Vai	ne Test	T	Shea	r Test		Triaxia	al Compre	ssion Test			1D Co	nsolidatio	n Test		Dej
m)	Ground water table	Stratigraphy	Classification	(m)	Blows N (hiows/30cm) per 15cm 0 10 20 30 40 5	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Org	TA Liquit limit		* Water content	a Bulk density	Dry de	6 Spec. density	Cu	(remoulded)	2 Strength (kPa)	phi' deg	c' kPa	Test type	phi deg	c kPa	phi'	c' kPā	cc	Cs	Cv cm²/s	M MPa	Pc kPa	(1
1 2 3 4 5 6 6 7 8 8 9 0 1 1 2 2 3 4 4 5 6 6 7 7 8 8 9 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 6 7 7 8 8 9 9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N1	Clay with coral fragments soft moderate to relatively high content Dark-gray colored Silty sand mainly fine sand relatively high water content dark-gray colored Sandy silt including fine sand relatively high water content dark gray colored Sandy silt including fine sand relatively high water content dark gray colored Sand mainly fine sand including silt relatively high water content dark gray colored Sand mainly medium sand relatively high water content dark gray colored Gravel with silt including 30 mm gravles relatively high water content dark gray colored Clay relatively low water content yellowish-brown colored Clay relatively high water content	water at at at at at at at at at a	1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	8 8 10																										Drawing	11 11 11 11 11 12 22 22 22 22 22 22 22 2


Soft districtions Copie	TII, CHOI MAN-E1	y Team DAI, and Nippon Koei		PROJECT:	The Proje Measures	ect for the for the La	Study on Improve arge-Scale Earthqu	ement c Jake in	of the I the Re	Bridge epublic	s throug c of Phili	gh Disa ippine	aster M	litigating	Drill	E: 2012/ : Eascon	Mla, Cor						Elevat	tion:			OLE LO	OG					MAN-	E1(1)
## Company of the com	oth				Depth	Stan		G	rain size	e analys	is		Atterber	rg lim.		Physic	al Charac	teristics		Var	ne Test		Shea	r Test		Triaxia	al Compre	ssion Test			1D Co	onsolidatio	on Test	
	S	ound water		Classification	(m)	7.5			Sand	35 < 76	2					Bulk dens		Void	Satur	Cu	(remoulde	Strength	1200		Test type		1000		1000	CC	Cs		1.00	0.00
		N38 N39 N4G N41 N42 N43 N44 N45 N46 N47 N46 N50 N51 N52 N53 N54 N55 N56 N57 N58 N59 N6G N61 N62 N63 N64 N63 N64 N64 N64 N65 N65	Clay Clay	content gments and	38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 64	16 20 25 19 25 25 20 26 27 10 10 10 9 10 11 7 9 8 6 9 8 7 10 10 6 8 9 8 7 7 8 6 7 8 6 7 8 7 9 6 6 10 6 7 10 7 7 10 7 7 10 7 10 7 10 7 10 7 10	15 15 15 15 16 17 16 18 18 18 18 18 18 18																						NF d					

8. Sampling 8. Classification 1. Classification	Jica Study CTII, CHODA MAN-E1	Team I, and Nippon Koei	i		PROJECT: 1	he Projec leasures f	t for the S for the Lar	udy on Imp ge-Scale Ea	orovemen rthquake i	t of the in the R	Bridges tepublic	through of Philipp	Disaste pines	ter Mitiga	Dri	II: Eascon	11/06 Mla. Const. : Kenichi TA					Elevati	ion:		EHOLE L						IAN-I	1(1)
The control of the	Depth					Depth	Standa			Grain siz	ze analysis	•	Atte	terberg lim	n.	Physica	al Characteris	istics	Va	ine Test		Shear	Test	Tr	axial Compr	ession Test	t		1D Co	onsolidatio	n Test	Dept
75 N75 N75 N75 N76 N76 N76 N77 N77 N77 N78 N77 N78 N77 N78 N	(m)		ound water tab		Classification				0 50 S	Sand	Fines < 76 µm	c 2	S Liquit limit			S S	~ 6	Void	Satur	(remoulded	Strength			ig pi				Cc	Cs			
72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75 - 76 - 77 - 77 -	N76		Sifty sand (to be observed)		76	34 36 14		50																							75 76 77
COURT CASE	78 79 80	N78				78 79	25 24 24		58 48 48																							78 79 80
	81	N81 81.00 m : E	and of borehole.			- =	29 30 33								1						4,											B1 Drawing scale: 1/2

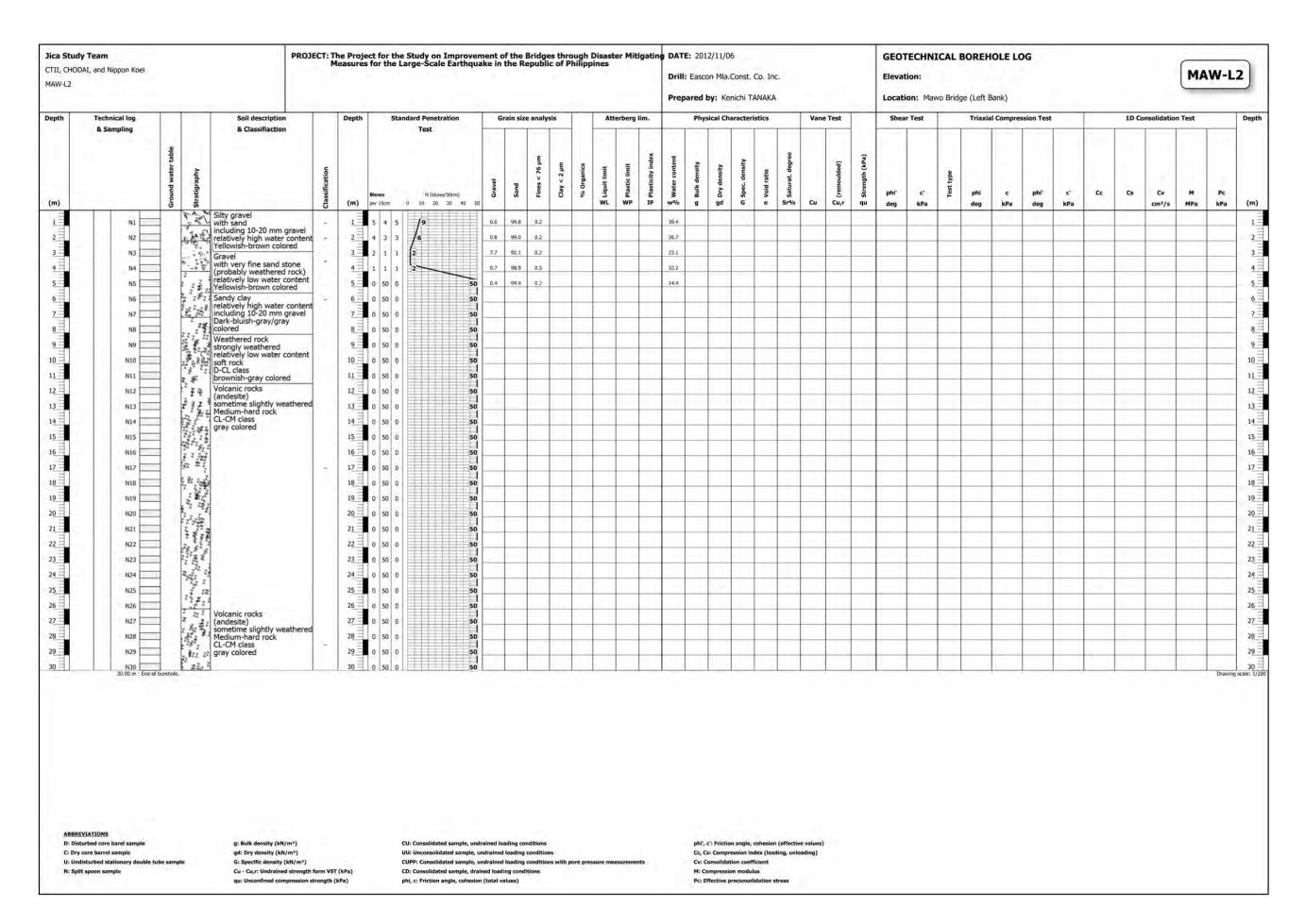
Company Comp	MAN-W	w.		GEOTECHNI Elevation: Location: 1st N						2/11/06 n Mla. Co ny: Kenio	l: Easco	Drill	tigatin	ster Mi	h Disas ppines	throug of Phili	public (the Re	ment o	Study on Improver rge-Scale Earthqu	or the Larg	Measures f	PROJECT		nd Nippon Koei	Dica Study CTII, CHODA MAN-W1
March Marc	st 1D Consolidation Test	I Compression Test	Triaxia	Shear Test	TX	Test	Vane		cteristics	ical Chara	Phy		lim.	tterberg	A		analysis	ain size	Gr		Standa	Depth				epth
1	c' Cc Cs Cv M Pc kPa cm²/s MPa kPa	10 CGC 12 23 2 3 1 1 2 2	phi phi	1.0.50	Strength (kPa		Cu	Satur	Spec		Bulk	Water content	H Plasticity index	A Plastic limit	Liquit	× ×	× 76	Sand	Gravel			N	Jassification	Strattgraphy	sround water table	m)
14	Drawing																			211 24 1 24 1 26 29 50 50 50 50 50 50 50 50 50 50	10 9 12 10 11 13 10 12 12 12 14 13 13 14 14 18 32 13 19 18 34 16 16 16 16 16 16 16 1	1	and vels, - water d - dium tent colored - dium tent colored -	including coral fragmen moderate to relatively water content brown colored coarse to medium sand including 10 mm gravel and coral fragments relatively moderate water content brownish-gray colored Gravelly sand or sand with gravel mainly coarse to medium sand moderate water content light brownish gray colored water content light brownish gray colored grayish-white colored water water content light prownish gray colored/grayish-white colored weathered soft rock porus below -23m: moderatel weathered	N2	2 3 4 5 5 6 7 8 8 9 0 0 1 2 2 3 3 4 4 5 5 6 7 7 8 8 9 9

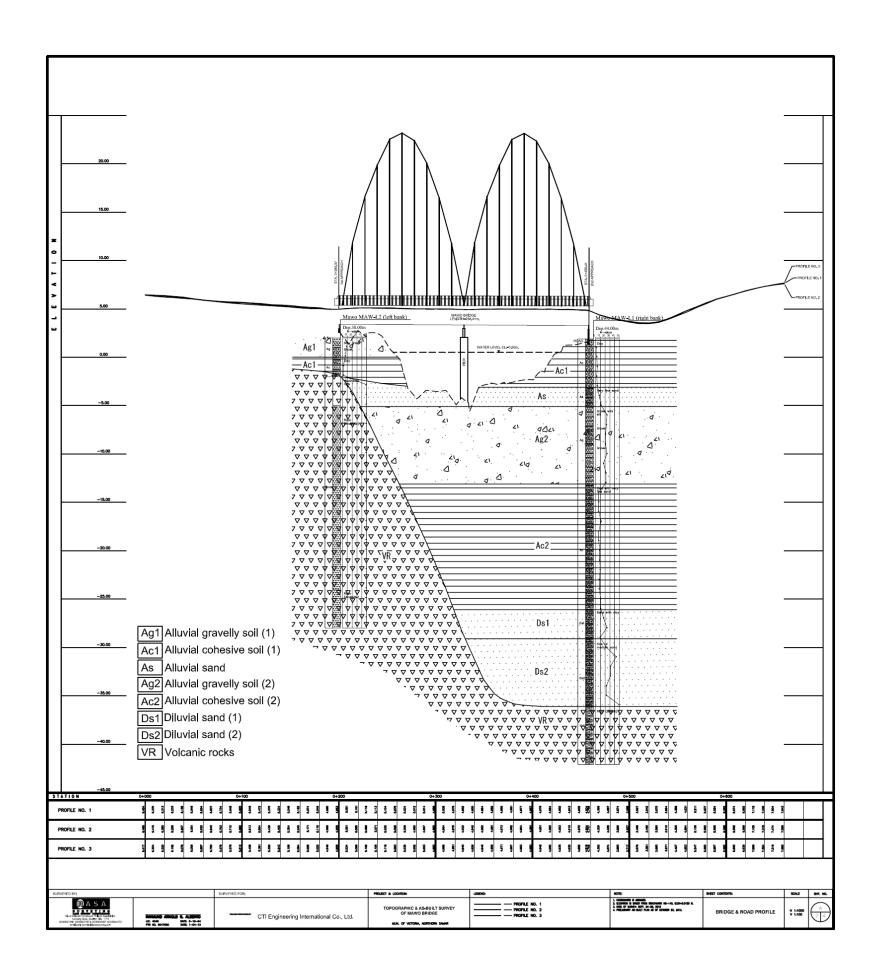

3) Palanit Bridge

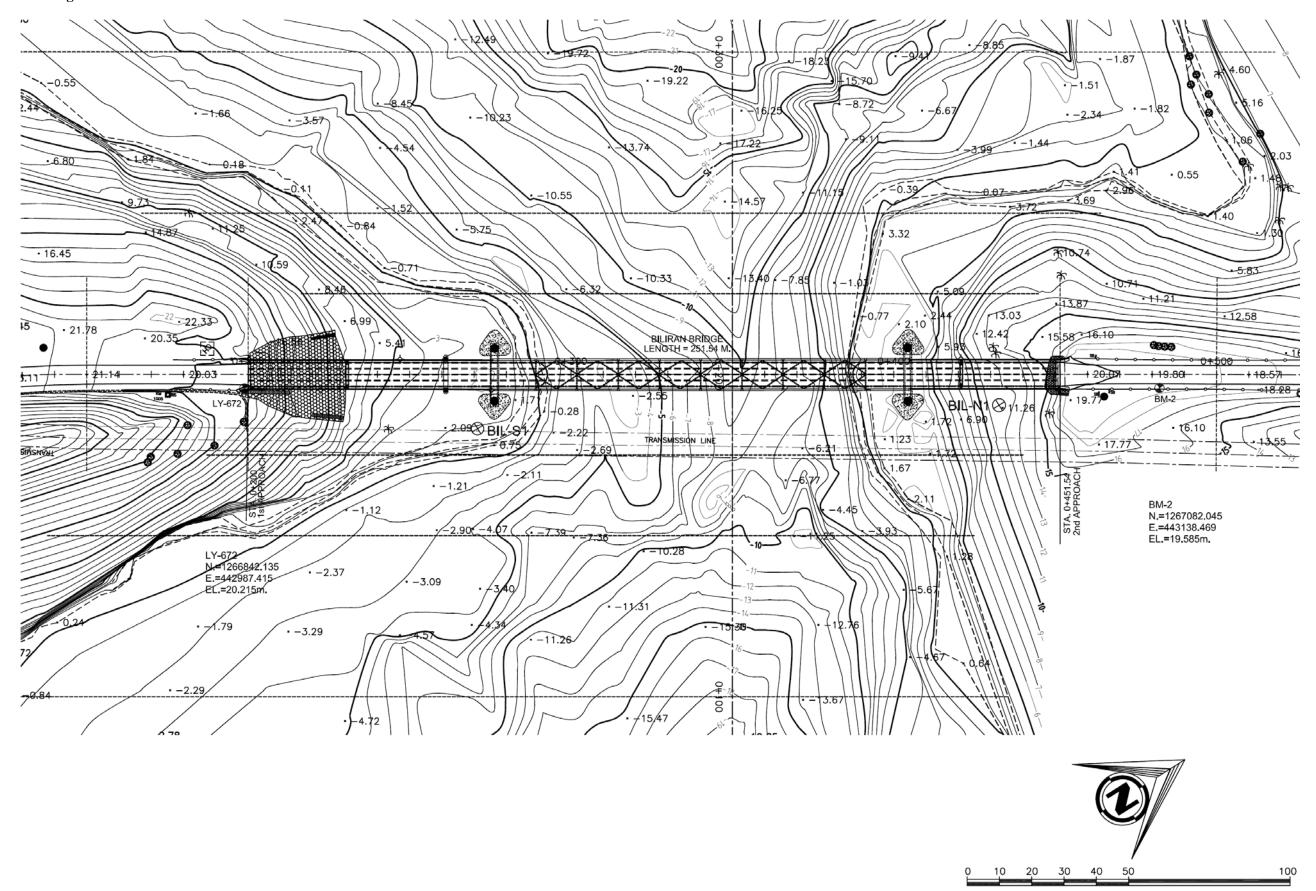

Appendix 3-A-27

A Clear/fination A Clear/fination A Clear/fination A Clear-fination A Clear-fina	Jica Stud CTII, CHO PAL-L1	dy Team IDAI, and Nippon Koel	P	ROJECT: The	e Project easures fo	for the Study on Improve or the Large-Scale Earthqu	ement o	of the the R	Bridge epublic	s throi c of Ph	ugh Di iilippir	isaste nes	er Miti		Drill	Easco	n Mla.Co	onst. Co.						Elevati	ion:		BORE	HOLE L	OG					P	AL-L:	
The state of the s	Depth				Depth		G	irain siz	te analys	sis		Atte	rberg I	lim.		Physi	cal Char	racteristic	s	,	Vane Te	ist	T	Shear	Test		Triaxi	ial Compr	ession Tes	t		1D Cc	onsolidatio	n Test	1	Depti
No.	(m)	Ground water table Strattgraphy		Classification			Gravel	Sand	š	V	8	Liquit lim								6 ((remould	Strength	0.7		Test type	100		1000		Cc	Cs	1000000	100		(m
	1 2 3 4 4 5 5 6 6 7 8 8 9 9 10 11 12 13 14 1 15 16 17 18 19 20 22 23 24 25 27 28 29 30 30	N1	clayey or silty sand brown/brownish -gray/yelowish-gray col relatively low to modera water content -1 m: clayey medium sa with gravel -2 m: gravelly sand w gravel Silty sand w gravel Silty sand mainly coarse to medium sand moderate water content brownish-gray colored Clay with gravel moderate water content including 30 mm gravel Welded tuff light-gray/greenish-gray colored soft rock tuffaceous siltstone/mudstone soft rock greenish-gray colored CL class sometime weathered	nd -	2 12 3 14 4 20 5 22 6 18 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 20 2 21 0 22 2 23 0 24 2 25 0 26 2 27 0 28 0 29 0 20 2 21 0 22 2 23 0 24 2 25 0 26 2 27 0 28 0 29 0 20	14 15 29 38 1 20 38 1 22 24 46 1 25 25 25 56 1 23 26 49 1 25 25 56 1 25 26 1 26 26 26 26 26 26 26 26 26 26 26 26 26	8.9 0.0 6.0 6.0	95.0 95.8 97.2	3.2 5.0 4.2 2.8						19.0 29.1 29.2 30.7																					1 2 3 4 4 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 30 scale: 1

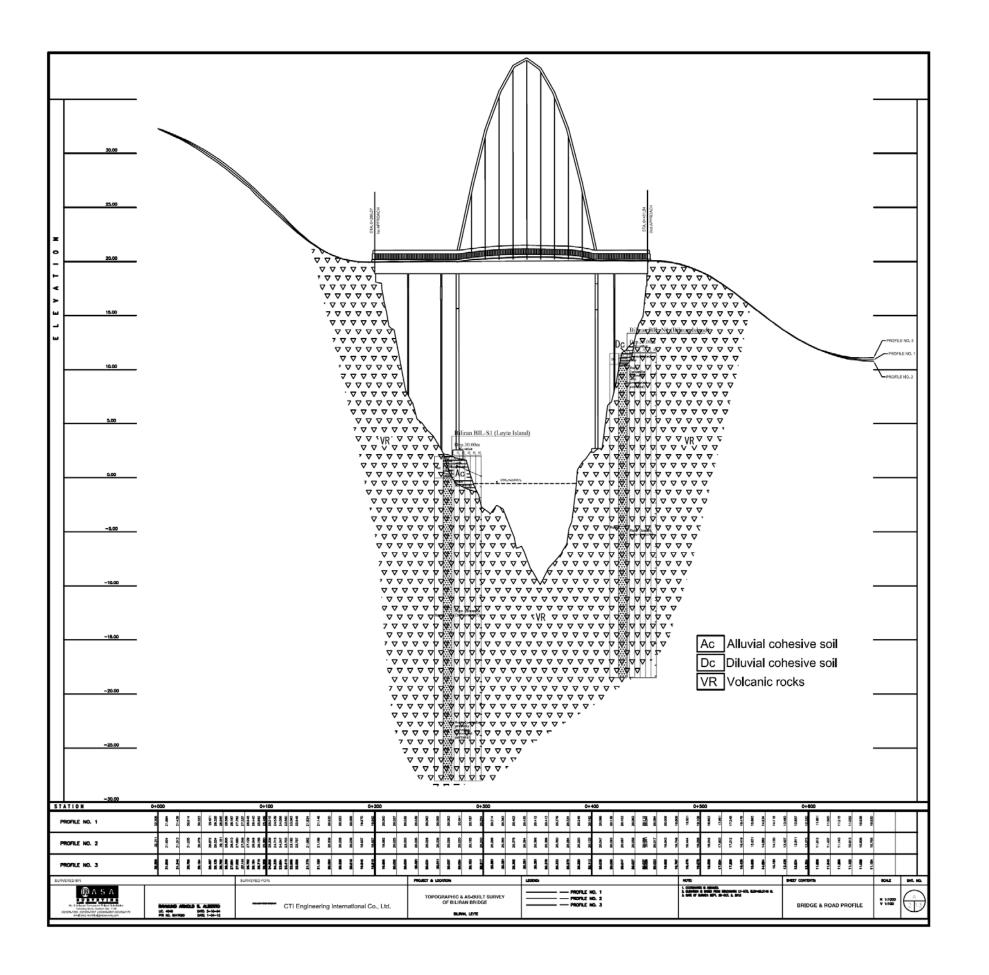
AL-R1	OAI, and Nippon Koei		OJECT: The F Meas	Project fo ures for	or the Study on Improve the Large-Scale Earthq	ement o Jake in	of the R	Bridge: epublic	s throu	igh Dis	isaster ies	r Mitiga		Orill: Ea	2012/11/ ascon Mla ad by: K	.Const.						Elevati	ion:		GOREH	oank)	oG					P	AL-R	1)
epth	Technical log & Sampling	Soil description & Classifiaction	De	epth	Standard Penetration Test	G	rain siz	ė analysi	is		Atter	berg lim	١.	,	Physical C	haracteri	istics	1	Vane T	est		Shear	Test		Triaxia	l Compre	ssion Test			1D C	onsolidati	on Test		Dep
n)	Ground water table	Stratigraphy	Classification	m) per 15	The state of the s	Gravel	Sand	Fines < 76 µm		% Organics				% Water content	6 Dry density	6 Spec. density	a Void ratio	Saturat degree	Cu	(remould	2 Strength (kPa)	phi' deg	c' kPa	Test type	phi deg	c kPa	phi'	c' kPa	Cc	G	Cv cm²/s	M MPa	Pc kPa	0
	N3	Gravely sand relatively low water content, including plant roots and 10 mm gravel, dark-grown color tuffaceous siltstone greenish-gray colored soft rock CL class Tuffaceous rock mainly tuffaceous siltstone greenish-gray colored in responsibility of the portions of the	ah 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 0 0 6 0 0 7 0 0 8 0 0 9 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1	00 0 50 0 50 0 50 0 0 55 0 0 0 0 0 55 0 0 0 0 0 55 0 0 0 0 0 55 0 0 0 0 0 55 0 0 0 0 0 55 0 0 0 0 0 55 0 0 0 0 0 0 55 0 0 0 0 0 0 55 0		84.1	2.7						1.0																			Draveng	0 scole



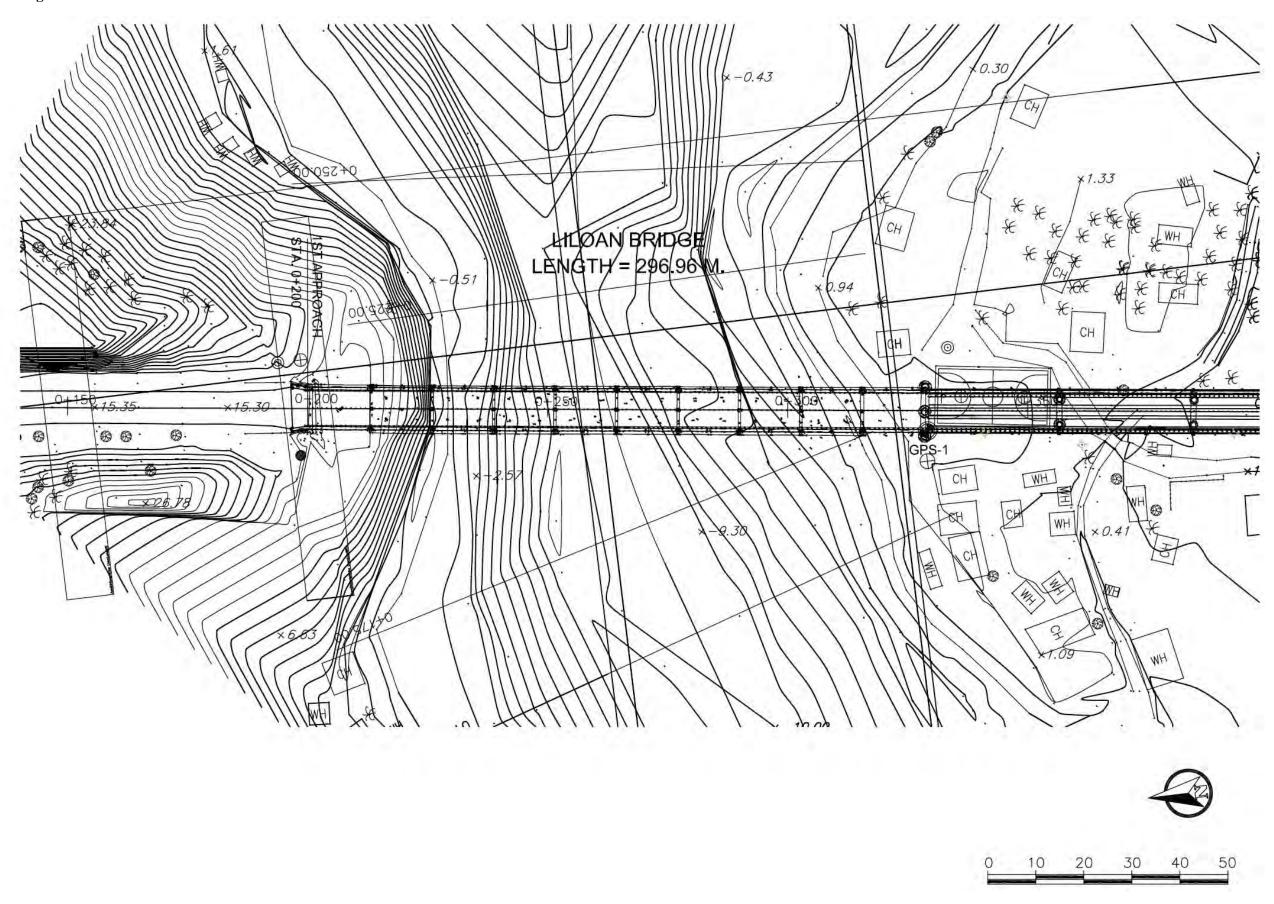

4) Mawo Bridge


Appendix 3-A-31

	Team M. and Nippon Koei	PROJEC	CT: The Proj Measure	ect for the Study on Improv s for the Large-Scale Earthq	ement o uake in	of the I	Bridge: epublic	s through	gh Disa: lippines	ster Miti	igating	Drill	: Eascor	1/11/06 n Mla.Cor y: Kenici						Elevat				OLE LO	OG					MA	W-L
oth	Technical log & Sampling	Soil description & Classifiaction	Depth	Standard Penetration Test	G	irain size	e analysi	is	A	Atterberg (lim.		Physic	cal Chara	cteristics		Var	ne Test		Shea	r Test		Triaxia	I Compres	ssion Test			1D Co	nsolidatio	n Test	
	und water table rignaphy		sification	Blows N (blows/30cm)	Gravel	Sand	Fines < 76 µm		% Organics The Liquit limit	Plastic limit	Plasticity index	Water content	Bulk density	Dry density	Spec. density	Saturat, degree		(remoulded)	Strength (kPa)	phi'	e	Test type	phi	c	phi'	e'	Cc	Cs	Cv	м	Pc
	g g g g Mainle	y clay	G (m)	per 15cm 0 10 20 30 40	50	200			WL	. WP	1P	w%	g		G e		Cu	Cu,r	qu	deg	kPa		deg	kPa	deg	kPa			cm²/s	MPa	kPa
	Re 9. 4 includ	time silty ling gravels rate to relatively high	2	1 1 2 3	0.0	1000	35.0 56.3				12.0 2.0	72.6																			
	water	content	3 =	2 1 3 4	0.0	43.7	56.3				2.0	54.7																			
	N4 56 - 60		4 =	2 2 1 3	0.0	20.3	79.7	-		1	3.6	73.8			-	-		+													
	N5 Very	fine sand	5=	3 1 3 4	0.0	97.5	- 2.2	-	-	+	-	69.1		-	+	+		-													
	N6 silty includ	ding 20-30 mm gravel vely high water content	- 6	5 4 4 8	0.0	98.5	1.5		+			46.3			+	+		+													
	Dark-	gray colored	7 = 8	4 5 7 12 11 14 10 24	0.0 80.0	11	0.2					6,9			=	1		1													
	I P J Glave	el with silt vely high water content ling 10-30 mm gravel	9=	10 15 8 23	33.2		0.6					15.7																			
	N10 green	-gray colored	10	10 12 9 21	24.4	75.4	0.2					24.7																			
ŀ,	N11 Some	time with sand vely high water content	u.	17 10 11 21	49.6	49.4	11	-	_	-		13.7		-	-	+-	-	-													
	N12 dark-	gray/blackish in/brownish-gray	12	13 11 13 /24	39.1		1.1	-			-	14.9			-	+		-													
	Main!	y gravel	- 13 =	9 9 8 17	4L7		31	+	+			12.5			+	+		+													
	N14 with s	silt and sand sish-gray colored	15	10 9 13 22	5.4	1.00	1.6					13:9					t														
	relation	time sand with gravel vely high water content	16	4 4 3 67	0.0	17.5	61.8				12.0	58.0																			
	N17 some	with very fine sand time sandy or //clayey silt	17	5 4 3 7	0.0	32.0	68.0				9.0	54.0																			
	N18 mode	rately water content	18	4 4 3 7	0.0	27.9	72.1	-	-		4.0	56.0			_	-	-	-													
	N19 green	/blackish-gray colored	19	5 6 6 /12	0.0	43.4	56.6		-	-	2.0	59.7			-	+															
	N20		20 =	3 4 3 7	0.0		75,7		+		4.0	64.1			+	+		+													
	N21 N22		- 21 -	5 4 5 9	0.0	64.4	56.6 35.6	-			5.C 4.C	51.9 44.6			1	+		1													
	3.00		23 -		0.0	56.6	43.4				4.0	56.2																			
	100		24	5 5 5 10	0.0		60.5				4.0	43.5																			
	N25		25	3 4 4 8	0.0	64.7	35.3				3.6	53.4																			
	N26		26 =	4 5 3 8	is	96.6	2.4		-			46.1		-	-	-		-													
	N27		27 =	4 6 5 11	0.3	100	1.6	-	-	-		51.8			-	+		+													
	N28 Sand	with clay	28 =	6 5 6 11	0.0		3.3	-	+	+-		41.8			+	+															
	Mark-	y medium to fine sand gray/blackish-gray	30	8 9 8 17 24	0.0	1000	0.9					55.3																			
	, o mode	rate to relatively high content	31																												
	N32 Fine t	to medium sand time with 10-20 mm	32		0.0	97.7	2.3					26.5																			
	N33 grave	vely low to moderate	33 =	13 21 22 43	0.0	99.6	0.4	-	-			22.0		-	_	-		-													
		content gray colored	34	10 15 16 31	10.7	86.8	2.5	-	-			39.8			-	+	-														
	-4-		35 =	13 17 14 31	19.0		1.4					33.3			+	+		1													
	N36 N37		36 =	7 10 13 23 1 9 11 12 23	61.6		2.2					30.0																			

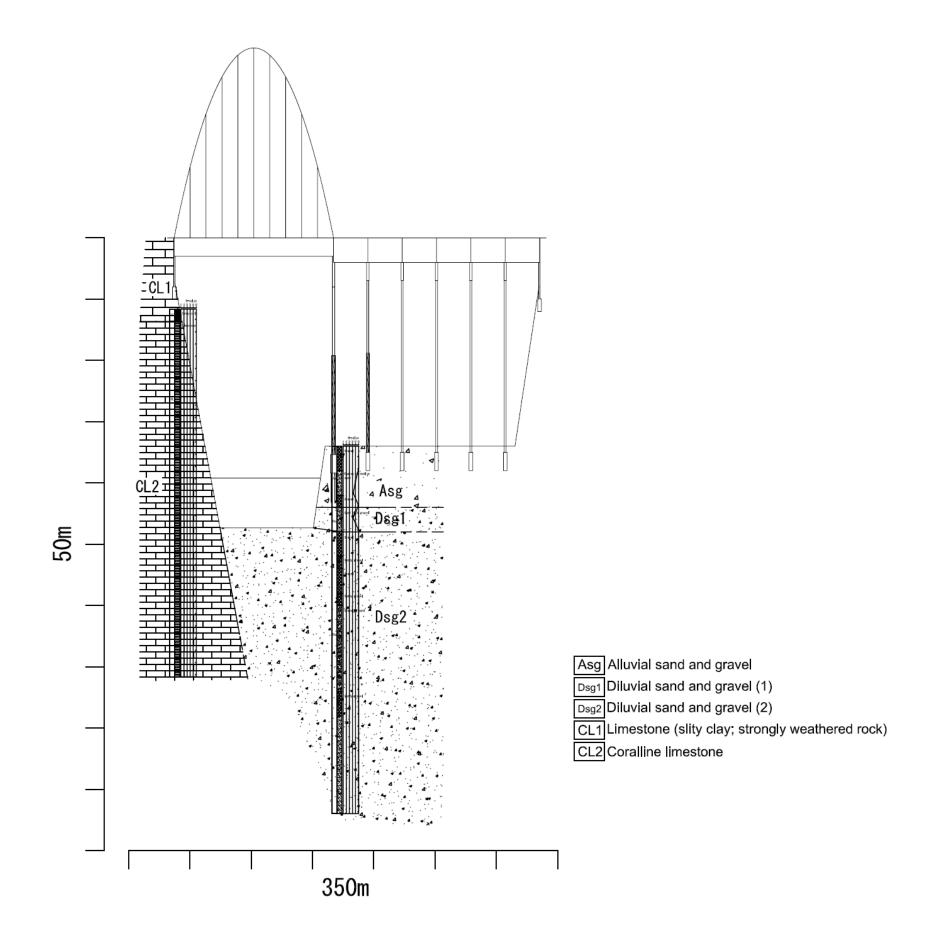


5) Biliran Bridge

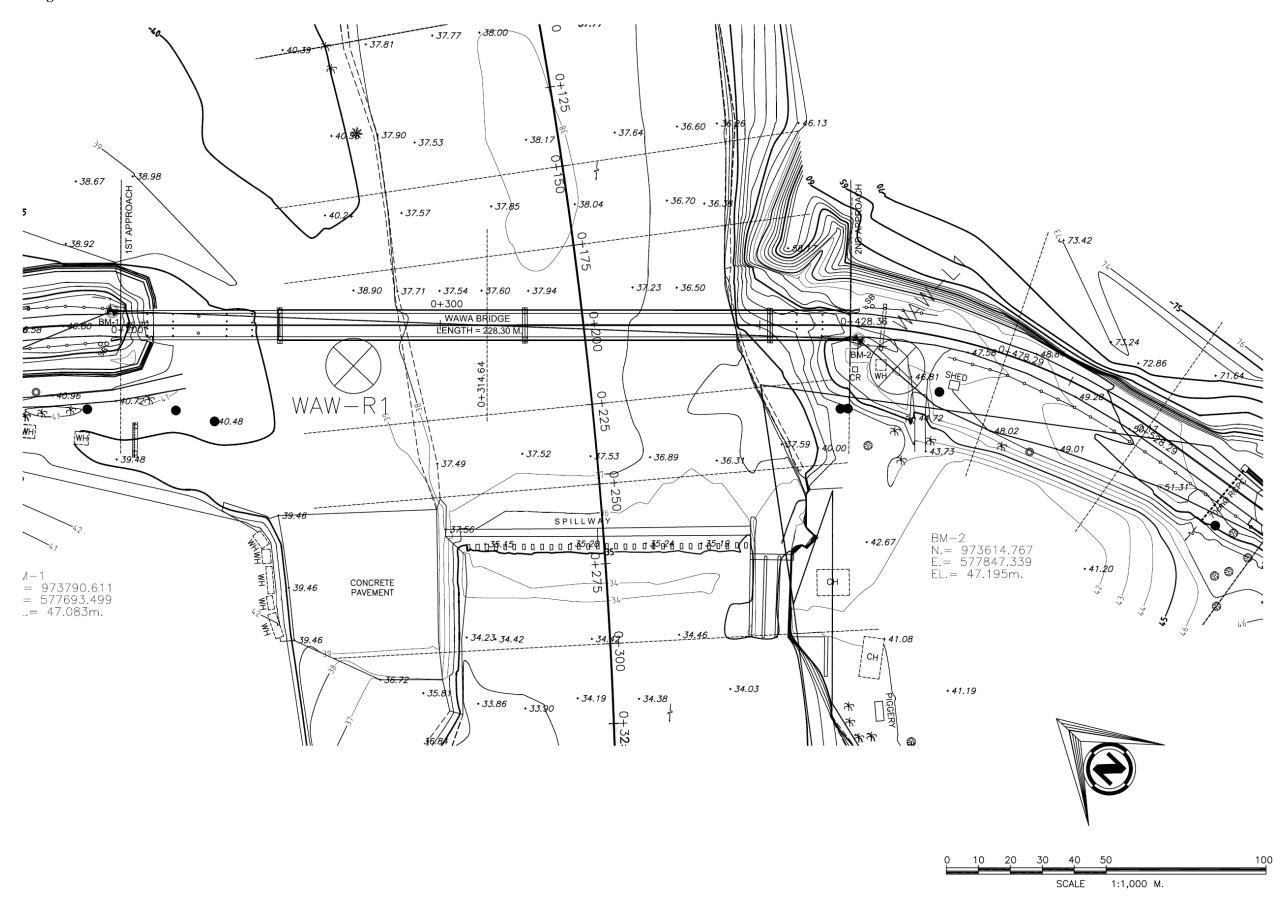


The control of the	(KPa)	Strength (kPa)	Shear Te	est	Tria	riaxial Comp	pression T	Test	100	GEOTECHNICAL BOREHOLE LOG Elevation: Location: Billiran Bridge (north side) BIL-N1 Location: Billiran Bridge (north side) Depth						
Ni	Strength	Strength														
with gravel National Service (lava) Note the end of the image of the		40	100	c' kPa	Test type			100	 Cs	Cv cm²/s	M MPa	Pc kPa				
11												Drawing's				

Jica Stud CTII, CHOI BIL-S1	dy Team DAI, and Nippon Koei	PROJECT	: The Proje Measures	ect for the s for the La	Study on Improv arge-Scale Earthq	ement o	of the I the Re	Bridges epublic	s throug of Phil	gh Disa lippines	ster M	litigating	Drill	l: Easco	n Mla.Co	onst. Co.			GEOTECHNICAL BOREHOLE LOG Elevation: Location: Biliran Bridge (south side) Vane Test Shear Test Triaxial Compression Test 1D Consolidation Test Depth													
Depth		Soil description & Classifiaction	Depth	Stan	dard Penetration Test	G	rain size	e analysi	s	1	Atterber	rg lim.		Phys	ical Char	acteristic	cs	Van	ne Test		Shea	r Test		Triaxia	Compres	ssion Test			1D Co	nsolidation	n Test	De
(m)	Ground water table Stratigraphy	27.7	-lassincation	Blows per 15cm	N (blows/30cm) 0 10 20 30 40	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	Plastic		& Water content	o Bulk density		O Spec. density	a Void ratio	6 Cu	(remoulded)	8 Strength (KPa)	phí' deg	c' kPa	Test type	phi deg	¢ kPa	phi' deg	ć' kPa	Cc	Cs	Cv cm²/s	M MPa	Pc kPa (
1	NI	vith gravel ing 15 mm gravel rate water content prown colored ite sh gray/black colored im hard rock rely fresh, sometime y weathered	1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	9 2 3 25 30 20 0 50 0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		31.9 82.7	68.1				5.6	47.4																			Drawling scale
D: Dis C: Dry U: Und	y core barrel sample disturbed stationary double tube sample lit spoon sample	g: Bulk density (kN/m²) gd: Dry density (kN/m²) G: Specific density (kN/m²) Cu - Cu,r: Undrained strength form qu: Unconfined compression streng qu: Unconfined compression streng		u ci ci	U: Consolidated sample, i U: Unconsolidated sample UPP: Consolidated sample, o hi, c: Friction angle, coher	, undrained , undrained rained load	d loading of d loading of ting condi	conditions conditions		: pressure	measuren	ments		Cc, Cs Cv: Co M: Co	: Compress ensolidation mpression	sion index (n coefficien	(loading, u nt															

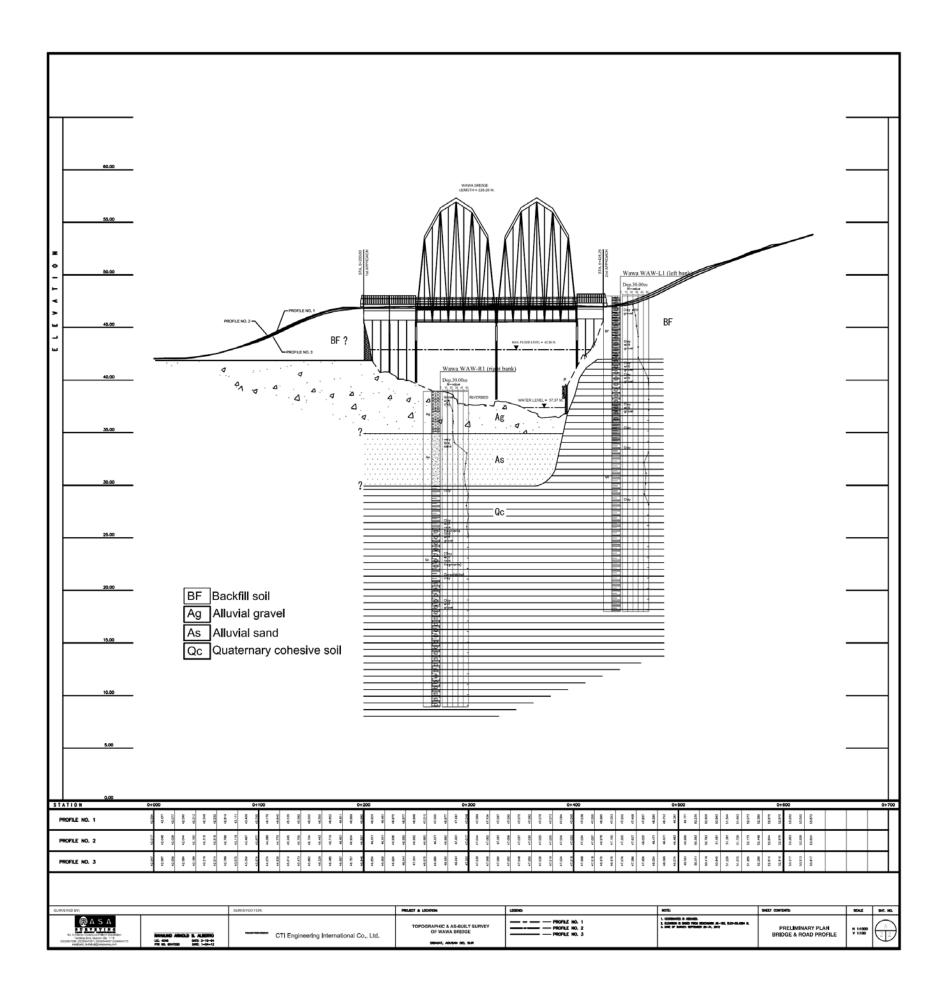


6) Liloan Bridge



Part Part	Jica Study Team CTII, CHODAI, and Nippon Koei LIL-N1	PROJECT: The P Measu	roject for the Study on Improven ures for the Large-Scale Earthqua	nent of the Brid ke in the Repu	lges throu blic of Phi	igh Disas ilippines	ter Mitiga	Dri	TE: 2012/ II: Eascon	Mla.Cons			GEOTECHNICAL BOREHOLE LOG Elevation: Location: Liloan Bridge (North side) Vane Test Shear Test Triaxial Compression Test 1D Consolidation Test Depth													
Part Part	& Sampling	AGARCON CONTROL OF THE CONTROL OF TH	Part Street And Street Annual	Grain size and	alysis	At	tterberg lim	1.	Physic	cal Charact	eristics		Vane T	Test		Shear Te	est	Tri	axial Comp	ression Te	t		1D Co	onsolidatio	on Test	Dep
1	ound water	Lassification		2 2	2 pm	% Org		Plasticity index	Bek			Saturat. degree	Cu	(rem	Strei			Tes ph				Cc	Cs	100000	The second second	
N28	2	analon as weathered some colored elely high water content one dilty-sandy limestone elely high porosity and fossils and calcite ck. St. St. St. St. St. St. St. St. St. St	2	0.0 86.4 13.	6			25.9																		1 1 2 3 3 4 4 5 5 6 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Drawing scale: 1

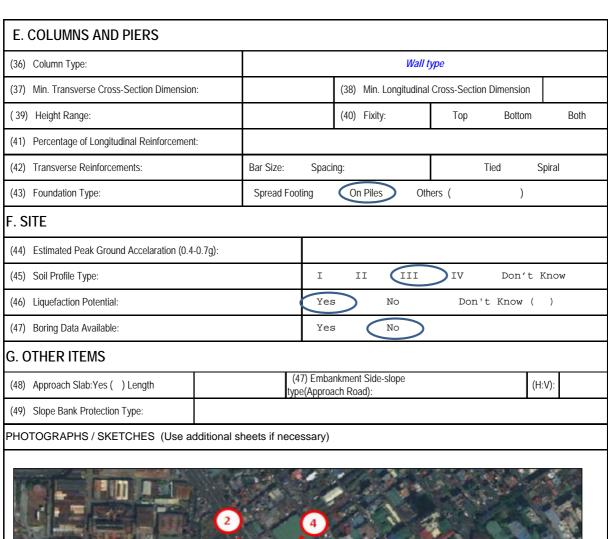
Jica Study Team CTII, CHODAI, and Nippon Koel LIL-S1 Depth Technical log Soil description Depth Standard Penetration Grain size analysis Atterberg lim. PROJECT: The Project for the Study on Improvement of the Bridges through Disaster Mitigating DATE: 2012/11/06 Drill: Eascon Mia.Const. Co. Inc. Prepared by: Kenichi TANAKA Depth Technical log Soil description Depth Standard Penetration Grain size analysis Atterberg lim. Physical Characteristics Vane Test Shear Test Triaxial Compression Test 1D Consolidation Test Drills: Atterberg lim. Physical Characteristics Vane Test Triaxial Compression Test 1D Consolidation Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test Triaxial Compression Test 1D Consolidation Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test Triaxial Compression Test 1D Consolidation Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test Triaxial Compression Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test Triaxial Compression Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test Triaxial Compression Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test Shear Test Triaxial Compression Test Drills: Atterberg lim. Physical Characteristics Vane Test Shear Test											1)																						
Depth	Technical log & Sampling	Soil description & Classifiaction	Dep	th Sta	ndard Penetration Test	-	Grain siz	e analys	sis		Atterbe	rg lim.		Phys	ical Charac	teristics		Var	ne Test		Shea	r Test		Triaxia	l Compres	ssion Test			1D Co	nsolidatio	n Test		Dept
	und water table	atigraphy	ssification	Blows	N (blows/30cm)	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	9	Liquit limit Plactic limit	Plasticity index	Water content	Bulk density	Dry density	Spec. density			(remoulded)	Strength (kPa)	phi'	c'	Test type	phi	c	phi'	ď	Cc	Cs	Cv	м	Pc	
(m)		Gravel probably including boulders of an Dark-gray colored	jeste 1	per 15cm	0 10 20 30 40 5	50					VL W	P 1P	w%	9	gd (o Cu	Cu,r	qu	deg	kPa		deg	kPa	deg	kPa			cm²/s	MPa	kPa	(m)
2	NZ 300	1000		0 50 0	50																												2
3	N3	Coarse to medium sand relatively high water content including broken shell fregments. Blackish-gray/dark-gray colored	3	16 20 20	40	0.0	100	0.9		+	+	+	30.2			+	-			+			+				1						3
5	N4	Gravel probably including boulders of an dark-gray colored	desite . 5	0 50 0	33	0.0	99.5	0.5		+			26,7				+										1						5
6	N6	Sand with gravel mainly medium to fine sand		14 16 16	32	8.7	90.6	0.7					18.1																				6
7	The second secon		7	0 50 0	50		-										-						-					-					2
9		Gravel including probably boulders of an blackish-gray colored	seste 8	0 50 0	50																						1						
	N10	Sandy gravel mainly coarse sand including broken shell/coral fragm	e		50	25.2	74.6	0.2		\top	+		11.1										\vdash										1
		moderate water content blackish gray colored	11		50																												1
2		probably including boulders of an Sendy gravel including broken coral/shell fragm moderate water content		0 50 0	50	-	-			-	-	-	-			-											-	-					13
		moderate water content blackish-gray colored		= - -	50	24.7		0,2		+	+	+	12.3			+	+						-										1
	N14 0	sometime sandy gravel mainly coarse to medium sand relatively poor in broken coval/she	14 Il fragments 15		50	33.3	1	0.2					9.3																				
	N16	433	16	= 1 = 1 = 1 =	50																												,
=	N17		17	17 50 0	50	9.0	90.8	0.2					17.4								-		-										1
	0		18	- 10	50	18.6	81.3	0.2		+	+	+	18.6			+	+						+										1
1	N19 N20	1.8	1 <u>9</u> 2 <u>0</u>	= 1	50	7.5	92.2	0.2					23.2																				
3	N21	Sandy gravel probably including boulders of bar relatively low to moderate water or blackish gray colored	salt 21		50	22.2	77.2	0.6					10.7																				
1		Sand Sand	22	=	50	-				+	+	+	-	\vdash	-	-	+		-			-	-					-				_	1
=		medium to fine sand rich in broken coral/shell fragmen relatively low water content blackish-gray/dark-gray colored	s 2 <u>3</u>	=11-1-1-1	50	17.7	82.1	0.2		-	+	+	0.1				+	+	-				1										2
	N24 N25	becargaylar gay cover	25		50	19.9	80.0	0.2					6.6																				2
3	N26		26	0 50 0	50					1							1																
=	N27		27		50		-			+	-	+	-		-	-	+	-	-				-				-	-	-				2
	N28		2 <u>8</u> 2 <u>9</u>		50		70.2						7.6										1										2
3				14 50 0	50		1	0.2					5.7						+	_		1										Drawing :	3



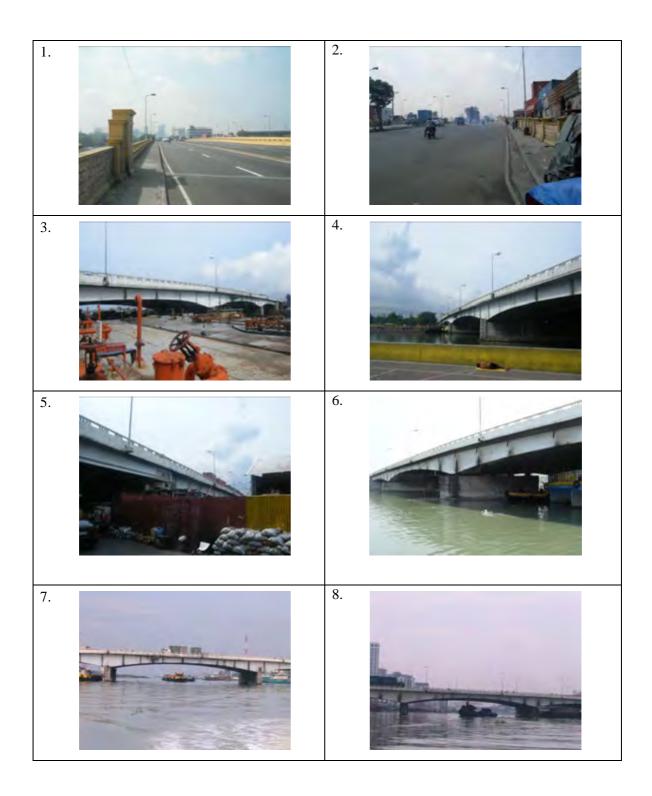
7) Wawa Bridge

	Team I, Nippon Koeï		PROJECT:	The Pro Measure	ject for the es for the L	Study o arge-Sca	n Improve ale Earthq	ement d uake in	of the B	Bridge: epublic	s throug of Phili	h Disa ippines	ster M	itigatin	Drill	: Easco	n Mla.C	onst. Co.		GEOTECHNICAL BOREHOLE LOG Elevation: Location: Wawa Bridge (left bank) Vane Test Shear Test Triaxial Compression Test 1D Consolidation Test Depth														
×	Technical log & Sampling	Soil description & Classifiaction		Depti	Star	ndard Pene Test	etration	G	Grain size	analysi	is		Atterber	g lim.		Physi	cal Char	acteristic	s	Va	ne Test		Shea	ır Test		Triaxia	i Compre	ssion Test	7		1D Co	nsolidatio	n Test	
	nd water table	igraphy	ification					ravel	pue	nes < 76 µm	Clay < 2 µm	No Organics Liquit limit	astic limit	asticity index	Water content	ulk density	ry density	sec. density	Void ratio		emoulded)	rength (kPa)	aki'		Test type			abit			~		м	0.5
	Ground Street	Clay with gravel	Class	(m)	per 15cm	0 10 20	lows/30cm) i0 30 40	50	33	Ē	5 8	WL		IP.	w%	g	gd		s sr%	% Cu	Cu,	r qu	phi' deg	c' kPa	, T	phi deg	c kPa	phi' deg	c' kPa	Cc	Cs	Cv cm²/s	м мра	Pc kPa
	NI NI S	relatively low water co	ontent 0-40	2	7 9 11 8 10 15		20 \ 25	26.3	73.3	0.2					20.3																			
	N2 Do	brownish-gray colored	do Se		7 10 17		27\	0.9	96.6	2.5				7 = 11	22,0								12	111										= 1
	N4			4	10 12 18		30	2,4	97.4	0.2					18.3																			
	NS S	Clay with gravel including gravel of 20 mm in diameter	-30	5 -	8 11 19		30	0.0	99.5	0.5			-		29.5		-																	
	N6	relatively low water co	ontent	6 -	9 10 20		30	3.7	95.8	0.5		+	+		27.4				+		+				-									
	7-	Clay with gravel relatively high-moder	ate	7	10 15 25		40	0.0	11.1	89,0				10,0	32.3				+		-													
	N8 5-9	water content dark-gray/blackish-gr		8 -	0 50 0		50	1	99.5	0.5					43.8																			
ï	N10 NO			10	12 15 35		50	1	99.7	0.3					42.4																			
		Clay with gravel relatively high-moders water content	I	11	(2) (2) ju		50		5.6	94.5				19.0	46.1																			
	N12 9°	dark-gray/blackish-gr colored	ay	12	0 50 0		50	0.0	8.8	91.2				10.0	46.9																			
	N13	medium soft/hard Clay with gravel		13	0 50 0		50	0.0	3.4	96.6				30.0	33.1																			
	N14 0	relatively high-moders water content		14	0 50 0		50	0.0	1.9	98.1		-		14.0	38.1				-		-				-			-						
	N15 15.10 15.00	dark-gray/blackish-gray/colored	ay	15	0 50 0		50	0.0	1.6	98,4		-	-	11.0	25.3		-				-											-		
	N16	Clay		16			41\	0.0	3.0	97.0				22.0	26.2																			
	N17	relatively high water of greenish-gray colored	l	17			45	0.0	1.3	98.7				11.0	30.6 27.5																			
	N18	Clay relatively low water co bluish-gray/greenish-	ontent	18			42		11.7	88.3				11.0	30.6																			
	N20	colored soft-hard, sometime	gray	20			50	2	33.3	66.7				18.0	26.3																			
	N21	consolidated	_	21			50	0.0	31.4	68.6				8.0	44.3								E											
	N22	somtime with gravel medium-soft hard		22	21 23 30		5:	0.0	89.2	10.8					47.8																			
	N23	dark-greenish-gray co moderate water conte	ent	23	20 25 27		5:	0.0	5.3	94.8			-	5.0	-44.1		_																	
	N24		d below	24	21 26 25		5.	0.0	8.7	91.3				9.0	47.1		-		-															
	N25	V 20 1	-		22 25 33		51	4		93.6		-	-	4.0	51.3		-		-		-				-									
		-0.4. a		1 1 1 1 1	23 27 34		6: 5:	0.0		90.3			-	6.0	26.7		-		+															
	N27			11.1	25 25 30		5:	0.0	1 5 2	94.4			-	17,0	42.0				-		_													
	N28	20		29	20 26 25			1		89.5 0.4				7.0	30.6																			
	N30 N30	F			25 36 35		6. 7:	0.0	1, 4, 4	2.6				22.0	28.8																			

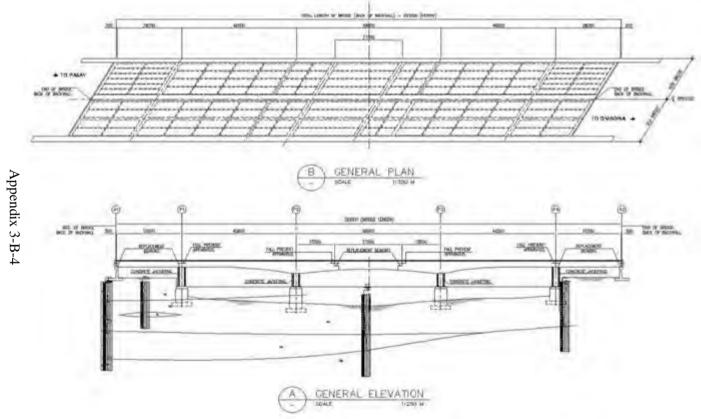
AW-R1	y Team DAI, Nippon Koeï		PROJEC	CT: The Pr Measu	oject f res for	for the Study on Improve r the Large-Scale Earthqu	ment o ake in	of the I	Bridge: epublic	s throu	igh Disa ilippine	aster I	Mitigatir	Dril	I: Easco	n Mla.Co	onst. Co.					Eleval				OLE LO	oG					WA	W-R1	1)
pth	Technical log & Sampling		Soil description & Classifiaction	Dep	th	Standard Penetration Test	Gr	rain size	e analys	is		Atterbe	erg lim.		Phys	ical Char	acteristic	s	Van	ne Test		Shea	r Test		Triaxia	al Compre	ssion Test			1D Cc	onsolidatio	on Test		Dep
n)		Ground water table Stratigraphy		Classification	Blow) per i	ws N (blowy/20cm) 15cm 0 10 20 30 40 50	Gravel	Sand	Fines < 76 µm	Clay < 2 µm	% Organics	\$ 18		Water content	© Bulk density	& Dry density	© Spec. density	o Void ratio	Cu	(remoulded)	E Strength (KPa)	phi'	c' kPa	Test type	phi deg	c kPa	phi' deg	c' kPa	Cc	Cs	Cv cm²/s	M MPa	Pc kPa	0
	N1	overhole.	brownish-gray/yellowish -gray colored Very fine sand with gravel and clay brownish-gray/yellowish -gray colored relatively low water content (probably strongly weathered sandstone) Clay relatively low water content sometime consolidated dark-gray/greenish-gray colored Clay with rock fragments relatively high water content greenish-gray colored Clay with gravel relatively low water content greenish-gray/blackish-gray colored Clay with rock fragments) no core recovered Clay with gravel relatively low water content greenish-gray/blackish-gray colored Clay with gravel relatively high water content including gravels of 10-30 mm in diameter (probably sheared/fractured clayey/silty rocks) blackish-gray/greenish-gray colored	2 3 3 4 5 6 6 7 2 8 8 9 10 11 12 12 13 14 15 16 16 17 2 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 10 10 10 10 10 10 10 10 10 10 10 10 10	9 8 8 10 10 11 11 15 16 16 16 20 24 26 27 27 35 32 32 33 30 0 46 66 0 0 0 0 0 0	20 27																												scale


APPENDIX 3-B

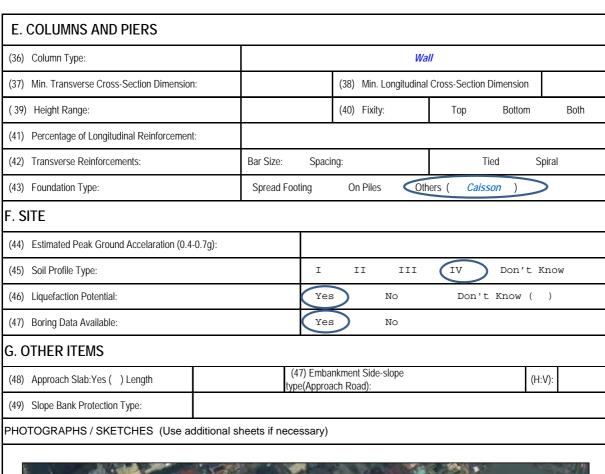
DETAILED RESULTS FOR FIRST SCREENING OF CANDIDATE BRIDGES

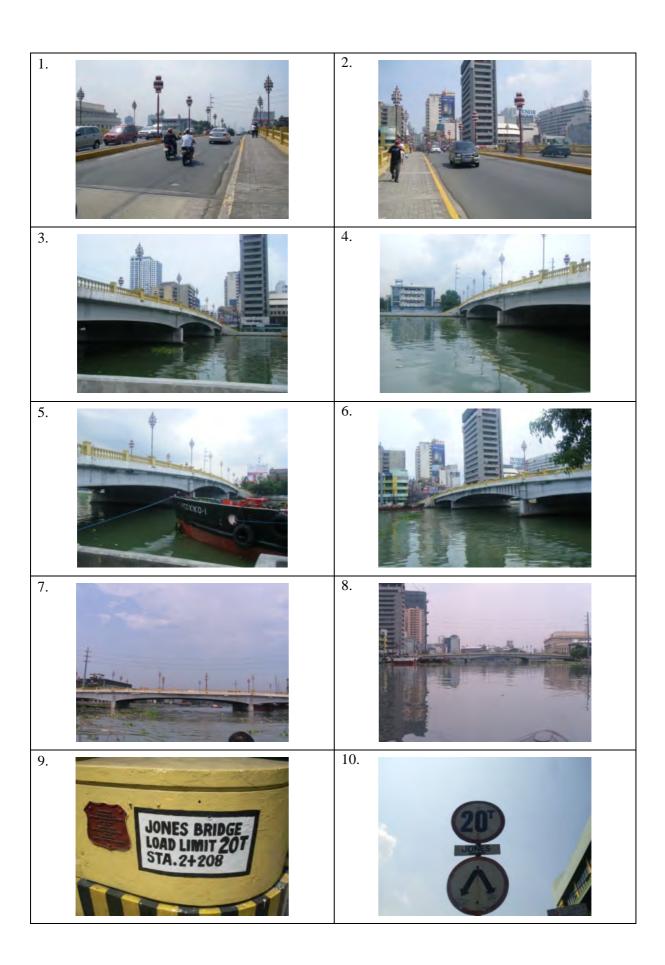

(1) Package B

1) Delpan Bridge


			В	RIDG	ŝΕ	SEISMIC	INVE	ENTO	RY [ATA						
A. GENERAL																
(1) Bridge Name:				L	Delp	oan Bridge (Downs	tream)			(2)	Pos	ted Loa	d Limit	20	tons
(3) Location:	km.:			Route	е:		E	Bonifacio	Drive		·.		Prov./ C	ity	Por	t Area
(4) Crossing Condition:		(Cross	sing Rive	er,()	Railway,() F	Roadway	,() Val	ley,()	Others (•)	•		
(5) AADT:			(6)	Detour I	Dista	ance:				(7) Es	ssential E	Bridge	e?	Ye	s()	No()
(8) Alignment:			Str	raight,	Cui	rved, (Radius)		_m	Skewe	d, (Skew	Angle) 3	30 <mark>°</mark>	$\overline{\mathbf{S}}$			
(9) No. of Spans:		5	(10)	Span L	_eng	ths	26.65+	46.0+5	7.60+	46.0+26	6.65	(11)	Total Le	ength:		202.9
(121) Left Sidewalk Wid	lth:		1	1.6	(13)) Carriageway \	Width:		17	7.32	(14) Rig	ht Sic	dewalk \	Nidth:		1.6
(15) Overall Width (inclu	uding side	ewalk):										(16)	Year B	uilt:	1 96	5(1988)
(17) As-builts or design	drawings	availa	ble?				Ye	s N	0)						
(18) Design calculations	s available	e?					Ye	s N	0)						
(19) Structure hydraulic	ally adeq	uate?					Ye	s N	0	Don't kn	iow ()					
(21) Seismically Retrofit	tted?						Ye	s O)	Descrip	tion (But	som	e are st	olen)		
B. SUPERSTRU	CTURE															
(23) Superstructure Typ	e:			Steel T	russ	s, Steel Gire	der, R	CDG,	PSC	CG (Gerbe	er Box G	irder)), Othe	rs()	
(24) Number of Girders	/Span:					Girder 1, Girder 7	(25)	Continuo	us?			Yes	N	0)	
(26) Number of Expans	ion Joints	:		6		(27) Type of	f Expans	ion Joint	S:	Ste	el, Ruk	bber,	Seam	1		_
C. BEARINGS																
(28) Bearing Type:		Roller,	, Rock	er, Rut	ober	, Others (Pi	er: Steel	\supset	Со	ndition:	Functio	oning	()	Not Fu	nction	ng ()
(29) Type of Restraint (Transvers	se):						(30) Ty	ype of R	estraint (Longitud	inal):				
(31) Seating Length (Lo	ngi, Tran	s) :		Abutme	nts:	1.3, 0.	.7	Piers	S:			Hing	es:		1	
D. ABUTMENTS								-			•					
(32) Type:					V	Vall Type			(33)	Height:				4	.8	
(34) Foundation Type:		Sp	read Fo	ooting,	On F	Piles, Others (F	RCP)		(35)	Wingwall	Lengths	L	<i>:</i>		R:	

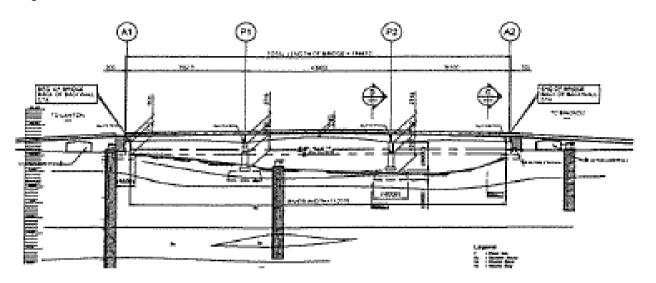
Main Features of the Bridge

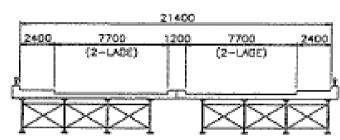




2) Jones Bridge

			В	RIDGE	SEISMIC	C INVE	ENTO	RY	DATA						
A. GENERAL															
(1) Bridge Name:					Jones	Bridg e					(2) Po	sted Lo	ad Lim	t	tons
(3) Location:	km.:			Route:								Prov./	City		
(4) Crossing Condition:			Cross	sing River,()Railway,()	Roadway	y,() Val	lley,()) Others ()			
(5) AADT:			(6)	Detour Dis	tance:				(7) E	ssenti	ial Brido	ge?	Y	es()	No()
(8) Alignment:			St	raight , C	urved, (Radius))	_m	Skew	ved, (Skew	Angle	e)°		•		
(9) No. of Spans:		3	(10)	Span Ler	ngths	3	35.51+4	3.40	+35.50		(11)) Total L	ength:	1	14.41
(121) Left Sidewalk Width	1:		2	2 .35 (1	3) Carriageway	/ Width:			16.5	(14)	Right S	idewalk	Width:	:	2.35
(15) Overall Width (includ	ing side	:walk):		•			21.2	•		•	(16)) Year E	Built:	1	1948
(17) As-builts or design dr	awings	availab	le?		•	Ye	es N	lo)		•				
(18) Design calculations a	ıvailable	÷?				Ye	es N	lo)						
(19) Structure hydraulicall	y adeqı	uate?				Ye	es N	lo	Don't k	now ()					
(21) Seismically Retrofitte	d?					Ye	s N		Descri	ption					
B. SUPERSTRUC	TURE	<u> </u>													
(23) Superstructure Type:				Steel Tru	ss, Steel G	irder, F	RCDG,	PS	SCG, Oth	ers()				
(24) Number of Girders/S	pan:				8	(25)	Continuo	us?			Ye	s) I	No		
(26) Number of Expansion	n Joints	:		2	(27) Type	of Expans	sion Joint	S:	St	eel,	Rubber	, Sear	n		
C. BEARINGS									•					-	
(28) Bearing Type:		Roller	Rock	cer, Rubbe	er, Others ()		C	Condition:	Fun	nctionin	g()	Not F	unctioni	ng ()
(29) Type of Restraint (Tr.	ansvers	se):		C	oncrete Blo	ck	(30) T	ype of	Restraint	(Longi	itudinal)):			
(31) Seating Length (Long	gi, Trans	s) :		Abutments	0.9, (0.8	Piers	S:	0.7, 1.	0	Hin	ges:			
D. ABUTMENTS															
(32) Type:					Wall			(33)	Height:						
(34) Foundation Type:		Spre	ead Fo	ooting, On	Piles, Others	(RCP)		(35)	Wingwal	II Leng	yths	L:		R:	

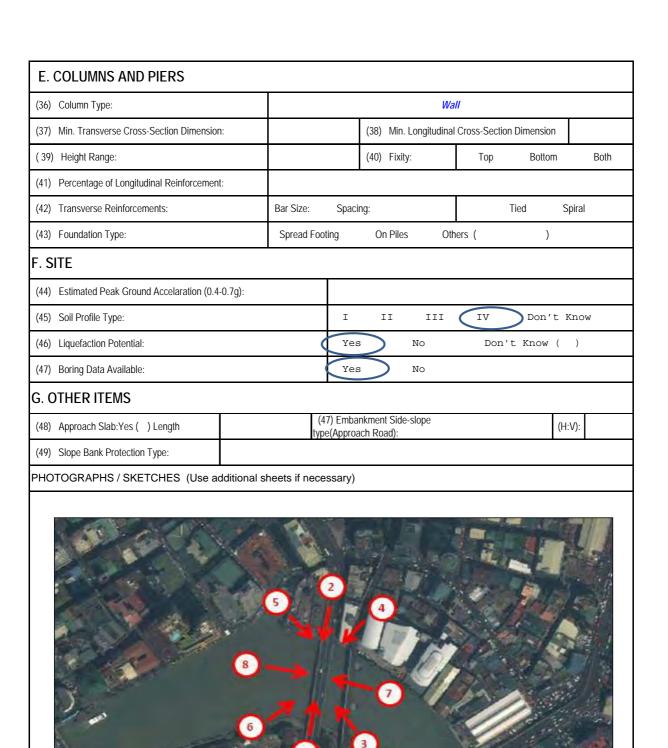


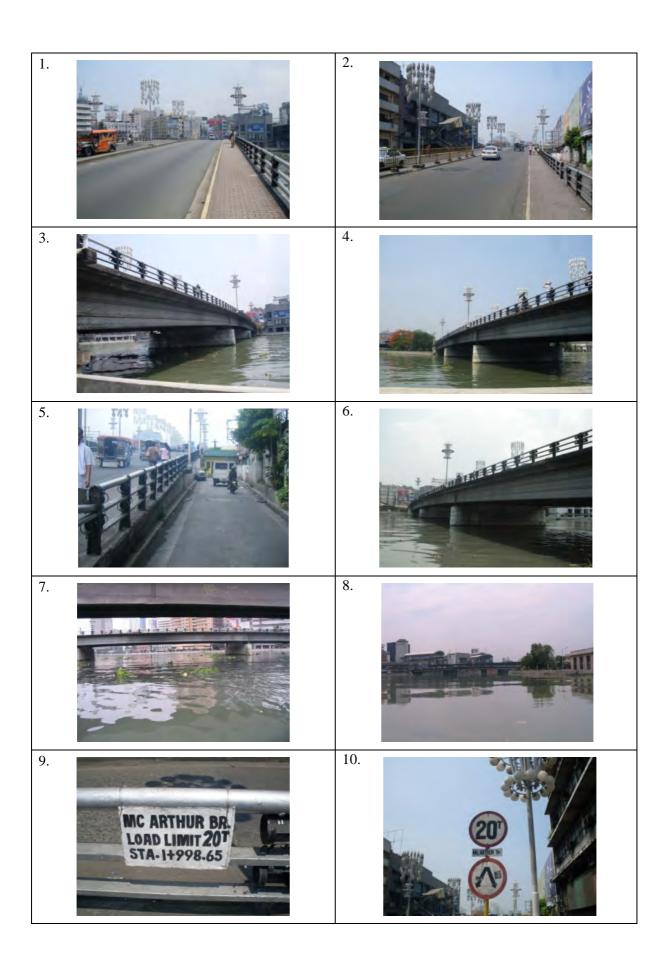

Component/			
Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab	Cracking		Most of cracks are less than width 0.3mm but several cracks are long and more than 1mm are observed.
(Primary)	Water leaking		At several cracks portion or cold joints, water leaking is observed.
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Corrosion		Corrosion is occurred at end girder portion.
	Paint Peel off		Paint peel off is entirely progressing on steel girders.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Shoe/Bearing	Corrosion		All steel bearings are considerably corroded.
Abutments	Cracking concrete		Many vertical clacks are observed.
Piers	Cracking concrete		A few vertical cracks are observed on concrete wall between pier columns
Curb and Railing (Secondary)	Cracking		Many cracks are occurred on newly repaired walkway.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Expansion Joint	Water leaking		Water leaking from expansion joint at both abutments is observed.
	Displacement		Cover of expansion joint is displaced.

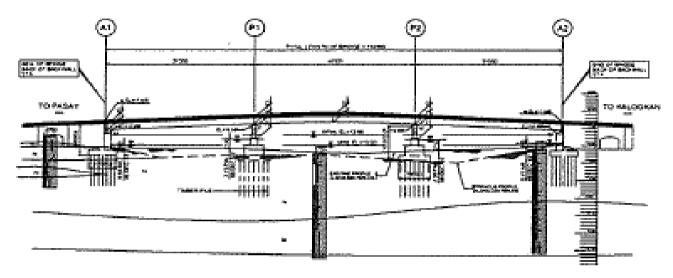
Bridge Profile

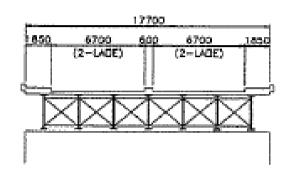



Main Features of the Bridge

3) McArthur Bridge

			В	RIDG	iΕ	SEISMIC	INVE	ENTO	RY	DATA								
A. GENERAL																		
(1) Bridge Name:						McAurthur	Bridge	e				(2) Posted Load Limit			mit		tons	
(3) Location:	km.:			Route:			Rizal St.				Prov./ City			M anila				
(4) Crossing Condition:		(Cross	sing Rive	r,()	Railway,() R	Roadway	,() Val	lley,() Others ()					
(5) AADT:			(6)	Detour Distance:		(7) Essential Bridg			ge? Yes() No()			No()						
(8) Alignment:		(St	raight ,	Cui	rved, (Radius) _		_m	Ske	wed, (Skew	Angl	e) °		·				
(9) No. of Spans:		3	(10)	Span L	.eng	ıths		3 7.3+	40.3	3+37.0		(11)) Tota	I Lengt	h:	114.6		
(121) Left Sidewalk Wid	th:			1.8	(13)) Carriageway V	Vidth:		6.	70+6.70	(14)	Right S	idewa	alk Wid	th:	1.8		
(15) Overall Width (inclu	ıding side	walk):						17.6				(16) Year Built:				1948		
(17) As-builts or design	drawings	availal	ble?				Yes No											
(18) Design calculations	available	?					Yes No											
(19) Structure hydraulically adequate?				Yes lo Don't know ()														
(21) Seismically Retrofit	ted?						Yes No Description											
B. SUPERSTRUC	CTURE																	
(23) Superstructure Type: Steel Truss,			s, Steel Gird	ler, R	CDG,	F	PSCG, Oth	ers()									
(24) Number of Girders/Span:					7 (25) Continuous? Yes No													
(26) Number of Expansi	on Joints	:		2 (27) Type of Expansion Joints: Steel, Rubber, Seam														
C. BEARINGS										-								
(28) Bearing Type: Roller, Rocker, Rubber, Others (Abut: Fix				ıt: Fix, P	ier: Pin)		Condition:	Fur	nctionin	g()	No	t Fun	ction	ing ()				
(29) Type of Restraint (Transverse):			(Concrete Block (30) Type of Restraint			(Long	itudinal):									
(31) Seating Length (Longi, Trans):			Abutme	nts:	1.2, 0.8 Piers: 0.7, 0.7 Hinges:				_									
D. ABUTMENTS																		
(32) Type:			Wall			Wall			(33) Height:									
(34) Foundation Type:		Spi	Spread Footing, On Piles, Others (F			(CP)		(35	5) Wingwa	II Len	engths L: R:							

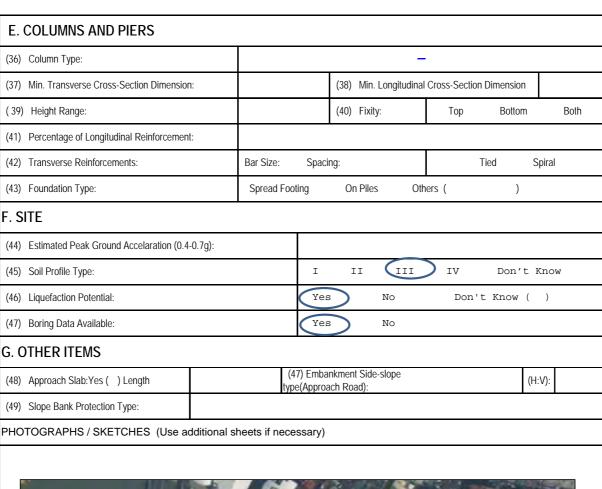

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab (Primary)	Cracking		Cracks with width less than 1mm are observed in a ratio of 20% of deck slab and water leaking is occurred on a part of cracks.
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Corrosion		Corrosion on steel members is progressing, especially; Gusset plates and lower flanges are severely corroded.
	Deformation/B uckling		Lower flange of Plate girder is deformed due to impact of ship.
	Paint Peel off		Paint peel off is entirely observed on the steel plate girders. (Poor Condition)

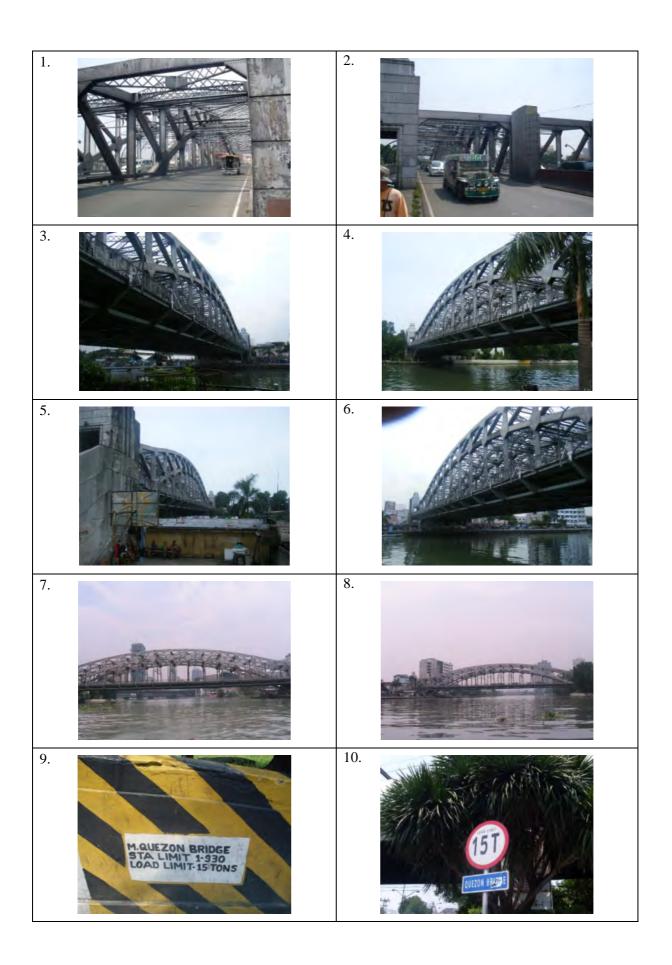

Component/ Material/	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Classification	_	-	
Shoe/Bearing	Corrosion		Steel bearings are severely corroded and stopped sliding function properly.
	Abnormal Displacement		Some of steel bearings are displaced abnormally.
Abutments	Cracking concrete		Several long cracks with width more than 1mm are observed horizontally.
	Honeycomb		A few honeycombs caused by unskilled workman ship are observed.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Pier	Spalling, Scaling, Disintegration		Scaling due to scratching by ship on the pier concrete surface is observed.
	Cracking concrete		Many cracks with width less than 1mm are observed vertically.
	Exposure/Corrosion of Reinf.	2110	At some parts of spalling, Exposure/ Corrosion of Rebars is observed.
Expansion Joint (Primary)	Water leaking		Water leaking is observed at expansion joints.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Expansion Joint (Primary)	Displacement		Expansion joints are displaced.
Painting Cond. (Primary)	Discoloration		Discoloration due to paint peer off is observed.
	Rust		After Paint peel off, rusting is starting on the steel plate girders.

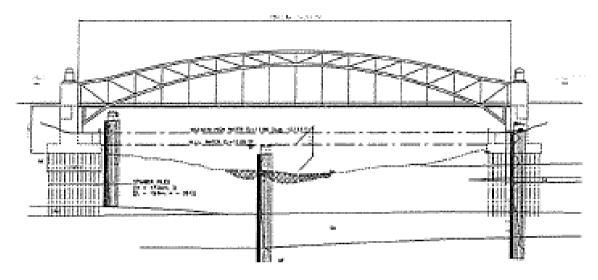
Bridge Profile

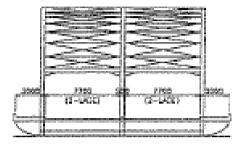

Main Features of the Bridge



4) Quezon Bridge

			В	RIDG	iΕ	SEISMIC	INVE	ENTO	RY [ATA	ı					
A. GENERAL																
(1) Bridge Name:						Quezon E	Bridge					(2) Po	(2) Posted Load Limit			tons
(3) Location:	km.:			Route	9:			Quezon	n Blvd.				Prov./ City		Q uez	zon City
(4) Crossing Condition:		<	Cross	sing Rive	er,()	Railway,() R	Roadway	,() Val	ley,()	Others ()			
(5) AADT:			(6)	Detour Distance:						(7) E	ssentia	al Brido	je?	Y	es()	No()
(8) Alignment:			St	raight,	Cu	rved, (Radius) _		_m	Skewe	d, (Skew	Angle) <mark>°</mark>		•		
(9) No. of Spans:		1	(10)	Span L	eng	yths	102.4				(11)	Total	Length:		102.4	
(121) Left Sidewalk Widt	h:			3	(13)) Carriageway V	Vidth:		7.70	+7.70	(14) F	Right S	idewall	Width:		3
(15) Overall Width (include	ding side	walk):					21.9 (16) Year Built: 1940				1946					
(17) As-builts or design of	(17) As-builts or design drawings available? Yes No															
(18) Design calculations available? Yes No																
(19) Structure hydraulica	(19) Structure hydraulically adequate? Yes No Don't know ()															
(21) Seismically Retrofitte	ed?						Yes	s No	Č	Descri	ption					
B. SUPERSTRUC	TURE	•														
(23) Superstructure Type	9:			Steel T	rus	s, Steel Giro	der, R	CDG,	PS(CG, off	ers(S	teel Ty	pe Arc	h)	>	
(24) Number of Girders/S	Span:					3	(25)	Continuo	us?			Yes No				
(26) Number of Expansion	on Joints	:		2		(27) Type of	pe of Expansion Joints: Steel, Rubber, Seam									
C. BEARINGS																
(28) Bearing Type:		Roller,	Rock	ker, Rub	ober	t, Others (A	nchor		Со	ndition:	Fund	ctionin	g()	Not F	unction	ning ()
(29) Type of Restraint (T	ransvers	e):						(30) Ty	pe of R	estraint	(Longit	tudinal):			
(31) Seating Length : Abutments:						Piers	s:			Hin	ges:					
D. ABUTMENTS																
(32) Type:						Wall			(33)	Height:						
(34) Foundation Type:		Spr	ead F	ooting, (On F	Piles, Others (R	RCP)		(35)	Wingwa	II Lengt	ths	L:		R:	



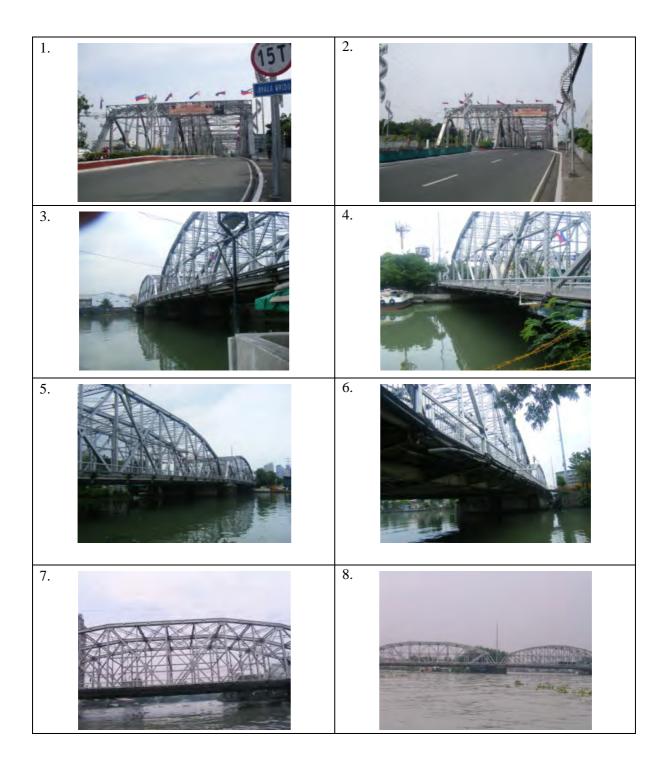


Component/ Material/ Classification	Type Damages	of	Picture of the Damage	Reasoning for the Evaluation
Deck Slab (Primary)	Cracking			Deck slab on main bridge is quite good condition but some cracks are detected.
	Waterleaking			At end portion of deck slab, waterleaking is detected.
Concrete Beam/ Girder (Approach Bridge) (Primary)	Cracking			Many cracks with width more than 1mm are observed on approach bridge girders.
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Corrosion			Many gusset plates are corroded but members of arch bridge are good condition.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Deformation/Bu ckling		Gusset plate is deformed due to impact of bridge.
	Loose Connection		Some bolts are missing and loosing connection.
	Paint Peel off		Paint peels off on some arch members are deserved.
Abutments	Cracking concrete		Some cracks with width less than 1mm are observed vertically on abutment.

Bridge Profile

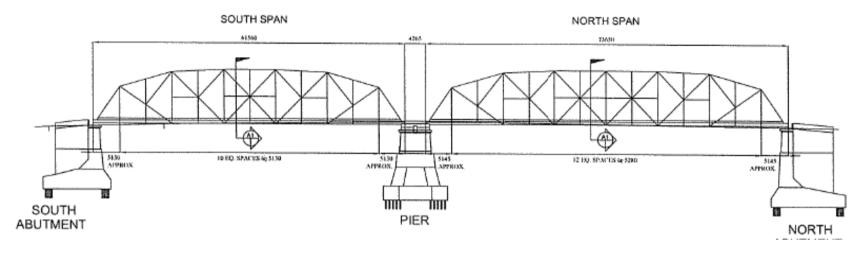
Main Features of the Bridge



5) Ayala Bridge

	BRIDGE SEISMIC INVENTORY DATA														
A. GENERAL															
(1) Bridge Name:					Ayala l	Bridge				(2	Pos	sted Load L	imit		tons
(3) Location:	km.:			Route:								Prov./ City			
(4) Crossing Condition:	Condition: Crossing River,(Railway,()			Roadway	ı,() Val	ley,() (Others ()					
(5) AADT:			(6)	(6) Detour Distance:				(7) Essential B			Bridge? Yes(() N	lo()	
(8) Alignment:			Sti	Straight Curved, (Radius)m Skewed, (Skew Angle)°											
(9) No. of Spans:		2	(10)	Span Lenç	gths	6 1	1 560 +(4	1265) +	73650		(11)	Total Leng	th:	139	475
(121) Left Sidewalk Wid	th:		23	335 (13	3) Carriageway	/ Width:		8570-	+8550	(14) Riç	ght Si	dewalk Wid	th:	36	85
(15) Overall Width (including sidewalk): 25350 (16) Year Built:															
(17) As-builts or design drawings available? Yes No															
(18) Design calculations available? Yes No															
(19) Structure hydraulica	(19) Structure hydraulically adequate? Yes No Don't know ()														
(21) Seismically Retrofit	ted?					Ye	s) No)	Descrip	otion (Re	etrofitt	ed in 1999)			
B. SUPERSTRUC	CTURE	Ξ													
(23) Superstructure Typ	e:			Steel Trus	s, Steel Gi	irder, R	RCDG,	PSC	G, Othe	ers()				
(24) Number of Girders/	Span:				3	(25)	Continuo	us?			Yes	No	<u> </u>		
(26) Number of Expansi	on Joints	.:		3	(27) Type	of Expans	ion Joints	S:	Ste	eel, Ru	ıbber,	Seam			
C. BEARINGS															
(28) Bearing Type:	(Roller,	Rock	ker, Rubbe	r, Others ()		Cor	ndition:	Functi	ioning	() No	t Fun	ıctioning	
(29) Type of Restraint (7	Fransvers	se):					(30) Ty	pe of R	estraint (Longitud	dinal):				
(31) Seating Length (Lo	Seating Length (Longi, Trans): Abutments: 1.8, 1.2 Piers: Hinges:														
D. ABUTMENTS	D. ABUTMENTS														
(32) Type:								(33) I	Height:						
(34) Foundation Type:		Spr	read Fo	ooting, On I	Piles, Others	(RCP)		(35)	Wingwall	Length	S	L:		R:	

E. COLUMNS AND PIERS							
(36) Column Type:							
(37) Min. Transverse Cross-Section Dimension:		(38) Min. Longitudi					
(39) Height Range:		(40) Fixity:	Тор	Bottom	Both		
(41) Percentage of Longitudinal Reinforcement:							
(42) Transverse Reinforcements:	Bar Size:	Spacing:		Tied S	piral		
(43) Foundation Type:	Spread Foo	Spread Footing On Piles Others ()					
F. SITE							
(44) Estimated Peak Ground Accelaration (0.4-0.7g):							
(45) Soil Profile Type:		I II III) IV	Don't l	Know		
(46) Liquefaction Potential:		Yes No	Don'	t Know ()		
(47) Boring Data Available:		Yes No					
G. OTHER ITEMS							
(48) Approach Slab:Yes () Length		7) Embankment Side-slope e(Approach Road):		(H	:V):		
(49) Slope Bank Protection Type:							
PHOTOGRAPHS / SKETCHES (Use addition	nal sheets if nece	essary)					

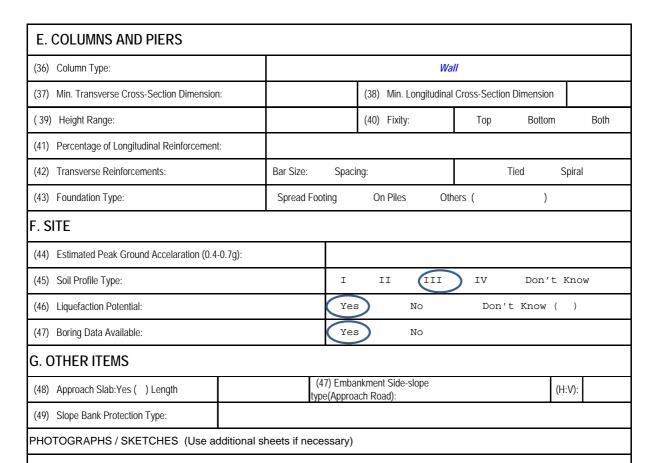


Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
	Cracking		Many cracks with width less than 0.3mm are observed on deck slab.
Deck Slab (Primary)	Scaling/Spalling		Several small spallings are observed on the deck slab.
	Water leaking		Some portion of deck slab, cracks are combined with water leaking
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Corrosion		Joints and bracing members are severely corroded and main truss members are also progressing corrosion.

Component/			
Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
	Cracking/Fracture		Bracing members are fractured or cracking or missing due to impact of ship, especially flooring system.
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Deformation/Buck ling		Many bracing members are deformed due to impact of ship.
	Loose Connection	ACTION AND ADDRESS OF THE PARTY	Same bracing members are missing due to loose connection or broken by impact of ship.
	Paint Peel off	10000000 P	Paint of steel truss members are progressing peel off entirely.

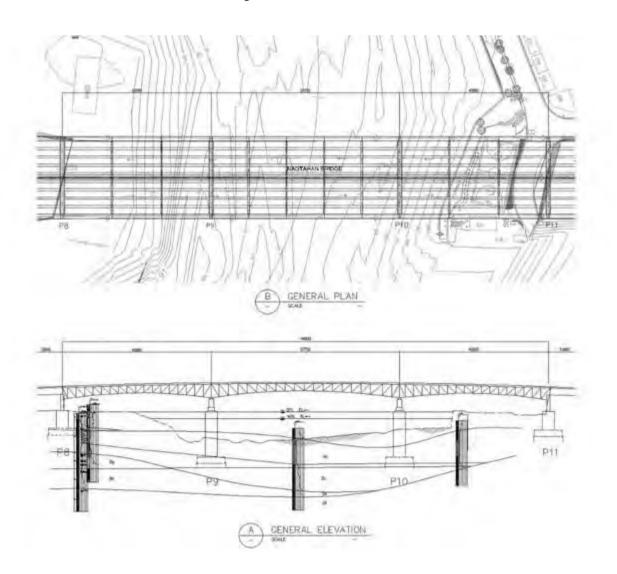
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Shoe/Bearing	Corrosion		Steel bearings, especially base plate and connection to truss members are severely corroded.
	Displacement	9.000	Slightly displacement of steel bearing is observed horizontally.
Abutments	Spalling, Scaling, Disintegration		Many spallings or scalings are observed on abutment.
	Cracking concrete		Many cracks with width less than 1mm are observed vertically and horizontally.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Piers	Spalling, Scaling, Disintegration		Large spallings/ disintegrations are observed on pier and degrade of concrete strength is predicted.
	Cracking concrete		Same cracks with width more than 1mm are observed vertically but crack is a little crack entirely.


Main Features of the Bridge

6) Nagtahan Bridge

			В	RIDGE	SEISMIC	INVE	ENTO	RY I	DATA						
A. GENERAL															
(1) Bridge Name:					Nagtahan	Bridge	9			((2) Po:	sted Load Limit			tons
(3) Location:	km.:			Route:		Nagtahan St.					Prov./ Cit	y Sta	a. Mesa.	Manila	
(4) Crossing Condition:		•	Crossing River,() Railway,() F			Roadway	,() Val	Valley,() Others ()	•		
(5) AADT:			(6)	Detour Dista	ance:				(7) E	ssentia	ıl Bridg	je?	Yes	i() N	lo()
(8) Alignment:			St	raight, Cui	rved, (Radius)		_m (Skewe	ed, 11°	>					
(9) No. of Spans:		3	(10)	Span Leng	ths	45.60+57.73+45.60				(11)	Total Ler	gth:	148	3.93	
(121) Left Sidewalk Wid	th:			1 (13)	Carriageway \	Nidth:		11.1	1+11.1	(14) R	Right Si	idewalk W	idth:		1
(15) Overall Width (including sidewalk):						24.7				(16)	Year Bui	lt:	19	66	
(17) As-builts or design drawings available? Yes No															
(18) Design calculations available? Yes No															
(19) Structure hydraulica	(19) Structure hydraulically adequate? Yes No Don't know ()														
(21) Seismically Retrofit	ted?					Ye	s) No)	Descri	ption					
B. SUPERSTRUC	CTURI	Ξ													
(23) Superstructure Typ	e:			Steel Truss	s, Steel Gird	der, R	CDG,	PS	CG, Oth	ers()				
(24) Number of Girders/	'Span:				10	(25) Continuous?					Yes No				
(26) Number of Expansi	on Joints	S :		2	(27) Type of	f Expans	ion Joints	S:	St	eel, R	Rubber	, Seam		_	-
C. BEARINGS															
(28) Bearing Type:		Roller,	Rock	ker, Rubber	, Others (Ste	eel)		Co	ondition:	Func	ctioning	g() N	lot Fur	nctioning	()
(29) Type of Restraint (7	Fransver	se):		Cor	ncrete Bloci	k	(30) Ty	pe of F	Restraint	(Longitı	udinal)	:			
(31) Seating Length (Lo	ngi, Tran	ıs) :		Abutments:	1.0, 1.	.0	Piers	:			Hing	ges:			
D. ABUTMENTS															
(32) Type: Wall (33) Height:															
(34) Foundation Type:		Spre	ad Fo	ooting, on F	Piles, Others (F	RCP)		(35)	Wingwal	I Lengtl	hs	L:		R:	

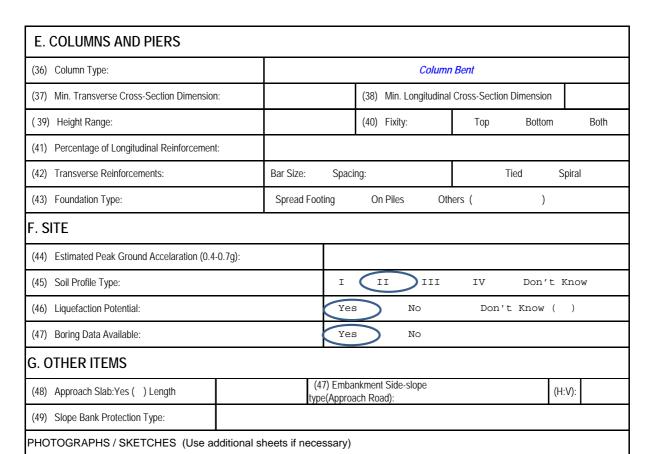


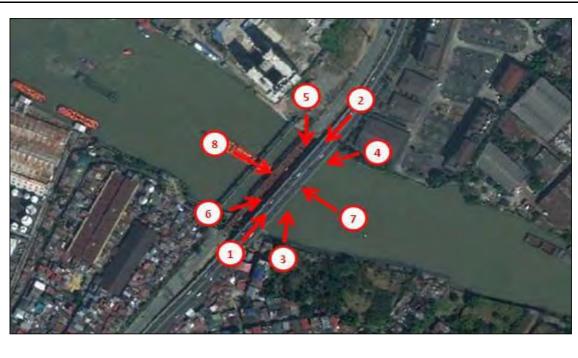
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab (Primary)	Cracking		Most of cracks are less than width 0.3mm but several cracks are long and more than 1mm are observed.
	Waterleaking	PAR B ST. T	Waterleaking are observed at some parts of cracks at end of deck slab.
Concrete Beam/ Girder (Primary)	Cracking		Cracks with width less than 1mm are observed on half of girders.
	Spalling, Scaling, Disintegration		Spalling is observed at the connection between concrete girder and slab.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Delamination		Some delaminations are observed at the bottom of girders.
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Corrosion		After paint peel off, some parts are corroded especially gusset plates.
	Paint Peel off		Paint peel off is observed overall steel truss members.
Shoe/Bearing	Corrosion		Steel bearing is slightly corroded.

Component/	Type of		Reasoning for the
Material/ Classification	Damages	Picture of the Damage	Evaluation Evaluation
Pier	Cracking concrete		Several cracks with width less than 1mm are observed.
	Spalling, Scaling,Disinte gration		Some spallings are detected on pier.
	Exposure/Corro sion of Reinf.		Exposure of rebars due to scaling are observed pier wall.
Expansion Joint (Primary)	Water leaking		Water leaking from expansion joint at pier is observed.

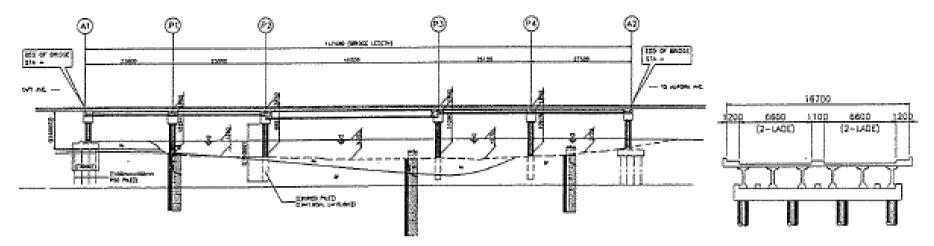
Bridge Profile





7) Pandacan Bridge

		Ē	BRIDGE	E SEIS	SMIC	INVE	ENTO	RY	DATA	4					
A. GENERAL															
(1) Bridge Name:		Pandacan Bridge (Nagtahan Link) (2)									(2) Po	(2) Posted Load Limit			tons
(3) Location:	km.:		Route:		PACC	D-STA. N	IESA .	Road			Prov./	City	Pan	dacan	
(4) Crossing Condition:		Cro	ssing River,	Railwa	ay,() R	Roadway	,() Val	ley,()	Others	()	•		
(5) AADT:		(6)	Detour Dis	stance:					(7)	Essenti	al Brido	ge?	Y	es()	No()
(8) Alignment:		C	Straight ,	Curved, (R	Radius) _		_m	Skew	ed, (Skev	w Angle	e)°				
(9) No. of Spans:		5 (10)) Span Lei	ngths	2	3.80+2	.5.00+4	6.00	+25.10+	+27.50	(11)	Total	Length:	1	47.4
(121) Left Sidewalk Width	n:		1.2 (1	3) Carria	igeway V	Vidth:		6.	5+6.5	(14) I	Right S	idewall	k Width:		1.2
(15) Overall Width (include	ding sidev	valk):					16.6				(16)) Year	Built:		1997
(17) As-builts or design d	rawings a	available?				Ye	s N	0							
(18) Design calculations	available'	?				Ye	s N	0							
(19) Structure hydraulical	lly adequ	ate?				Ye	s N	0	Don't I	know ()					
(21) Seismically Retrofitte	ed?					Yes	S No		Descr	iption					
B. SUPERSTRUC	TURE														
(23) Superstructure Type	:		Steel Tru	iss, S	iteel Gird	der, R	CDG,	PS	SCG, Ot	bers()				
(24) Number of Girders/S	Span:			6		(25)	Continuo	us?			Ye	s	No)	
(26) Number of Expansio	n Joints:			(27)	Type of	Expans	ion Joint	S:	S	teel,	Rubber	, Sea	ım		_
C. BEARINGS															
(28) Bearing Type:	F	Roller, Ro	cker, Rubb	er, Othe	ers ()			С	ondition:	Fun	ctionin	g()	Not F	unctioni	ng ()
(29) Type of Restraint (Tr	ransverse	e):					(30) Ty	pe of	Restraint	t (Longi	itudinal)):			
(31) Seating Length:			Abutment	S:		Piers: Hinges: -				_					
D. ABUTMENTS															
(32) Type:		Co	olumn Be	nt with	Diagh	ram W	all	(33)	Height:						
(34) Foundation Type:		Spread	Footing, Or	Piles, O	thers (R	RCP)		(35)	Wingwa	all Leng	ıths	L:		R:	



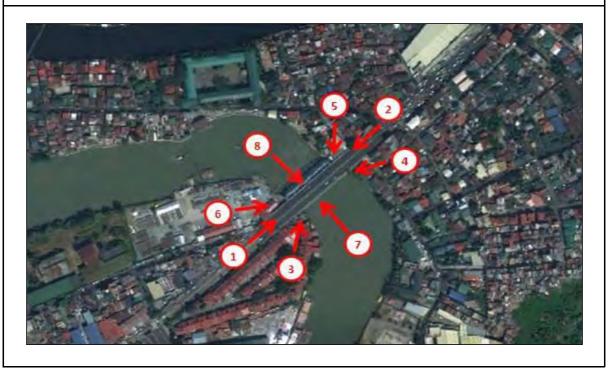
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
	Cracking		Most of cracks are less than width 0.3mm but several cracks are long and more than 1mm are observed.
Deck Slab (Primary)	Scaling/Spalling		A few spallings are observed on deck slab.
	Water leaking		At some parts of cracks, water leaking are observed
Concrete Beam/ Girder (Primary)	Cracking		A few Cracks with width less than 0.3mm are observed.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Exposure/Corrosi on of Rebars		Exposure/Corrosion of Rebars caused by unskilled workmanship is observed.
Abutments	Cracking concrete		Many cracks are observed horizontally and vertically on abutment.
	Exposure/Corrosi on of Reinf.		A few Exposure/ Corrosion of Rebar is observed on piers
Pier	Spalling, Scaling,Disintegra tion		Several spallings are observed on piers.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Pier	Cracking concrete	B? G MGGNZ HIP HOP SOLID	Shear crack is observed on pier wall.
	Exposure/Corro sion of Reinf.	SIN SIN	Exposure/Corrosion of Rebars due to impact of ship is detected at pile cap.
Expansion Joint (Primary)	Waterleaking		Waterleaking is observed at expansion joints.
	Difference in elevation		Difference in elevation is occurred between bridge and approach slab.

Bridge Profile

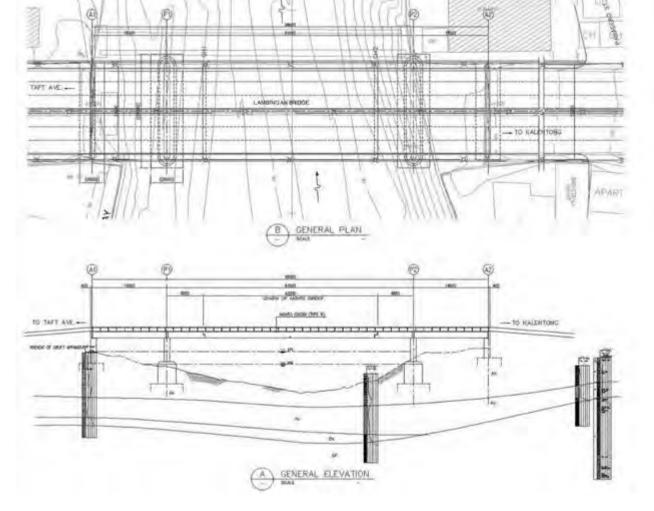

Main Features of the Bridge



8) Lambingan Bridge

		E	BRIDGE	SEISMIC	INVE	ENTO	RY D	АТА						
A. GENERAL														
(1) Bridge Name:	Lambingan Bridge (2) Posted Load Limit 15									tons				
(3) Location:	km.:		Route:		Ne	w Panad	leros St		•		Prov./ City	,	M anil	а
(4) Crossing Condition:		Cros	ssing River,()) Railway,() F	Roadway	,,() Val	ley,()	Others ()			
(5) AADT:		(6)	Detour Dista	ance:				(7) E	ssential	Bridg	e?	Yes()) N	0()
(8) Alignment:		Ű	Straight , Cu	rved, (Radius) _.		_m	Skewed	d, (Skew	/ Angle)	0				
(9) No. of Spans:		3 (10) Span Lenç	jths	1	8.50+6	1.10+1	18.50		(11)	Total Lengt	h:	98	.1
(121) Left Sidewalk Wid	th:		1.5 (13)) Carriageway \	Nidth:		10.0-	-10.0	(14) Rig	ght Sid	dewalk Wid	th:	1.	5
(15) Overall Width (inclu	ding sidew	alk):				24				(16)	Year Built:		197	79
(17) As-builts or design drawings available? Yes No														
(18) Design calculations	available?				Ye	es N	0							
(19) Structure hydraulica	ally adequa	te?			Ye	es N	0	Don't k	now ()					
(21) Seismically Retrofit	ted?				Ye	s No		Descri	otion					
B. SUPERSTRUC	CTURE													
(23) Superstructure Type	e:		Steel Trus	s, Steel Gird	der, F	RCDG,	PSC	G(Gerb	er), Oth	ners()			
(24) Number of Girders/	Span:			12	(25)	Continuo	us?			Yes	No No)		
(26) Number of Expansion	on Joints:			(27) Type of	f Expans	ion Joint	S:	Ste	eel, Ru	ıbber,	Seam		-	
C. BEARINGS														
(28) Bearing Type:	R	oller, Roo	cker Rubber	t, Others ()		Cor	ndition:	Functi	oning	() No	t Functi	ioning	()
(29) Type of Restraint (1	ransverse ⁻):				(30) Ty	pe of R	estraint	(Longitud	dinal):	:			
(31) Seating Length:			Abutments:	0.85	Piers: Hinge				es:	es: 0.5				
D. ABUTMENTS														
(32) Type:				Wall			(33) H	leight:				4.83		
(34) Foundation Type:		Spread F	ooting, On I	Piles, Others (I	RCP)		(35) \		I Lengths	s l	L:	R:		

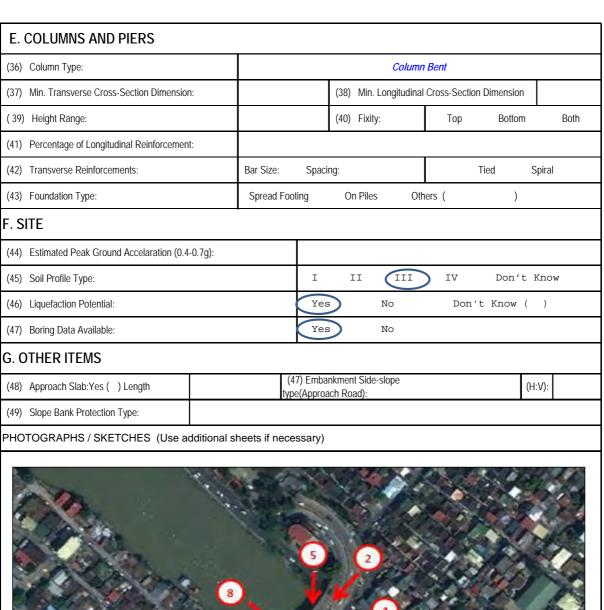
PHOTOGRAPHS / SKETCHES (Use additional sheets if necessary)

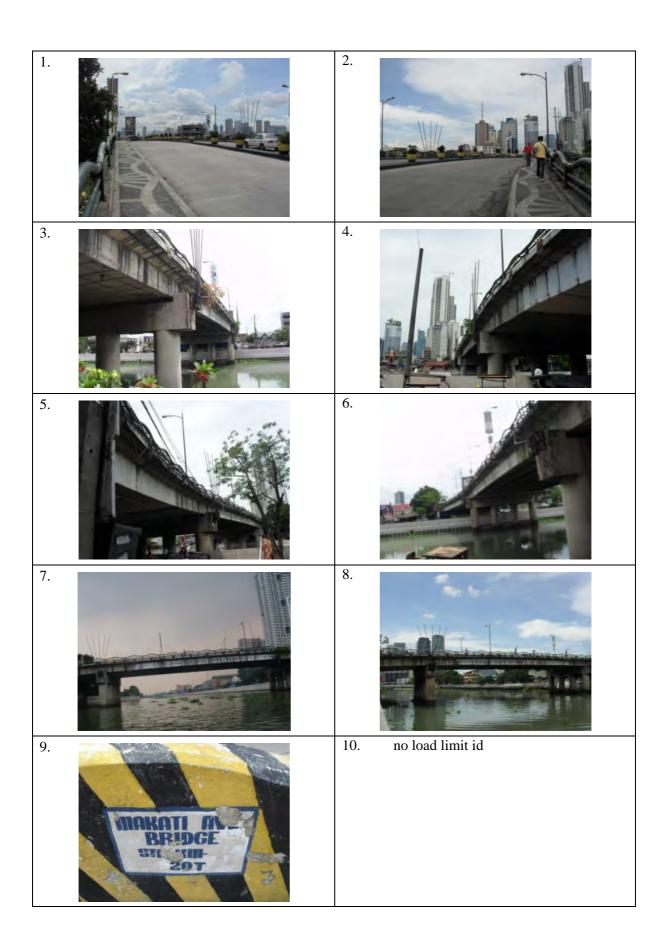

Component/ Material/	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Classification			
Deck Slab (Primary)	Cracking		Cracks on deck slab of PC girder are mostly observed on bottom side. Cracks are not serious but developing on entire deck slab.
	Water leaking		At some parts of cracks, water leaking are observed in transverse direction.
Concrete Beam/ Girder (Primary)	Cracking concrete		Many cracks are observed on the outside girder. Especially, On the all hinge portion, shear cracks are observed that are considered to be fatal cracks
	Spalling, Scaling,Disinte gration	THE WAY I LIVE FOR I !	A few spallings caused by collision by ship are observed. The damage is serious.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Honeycomb		A few honeycombs caused by unskilled workmanship are observed.
Abutments	Spalling, Scaling,Disi ntegration		A few spallings are observed at shear key block.
	Cracking concrete		Many vertical clacks are observed near the joint between wing wall and retaining wall.
Pier	Spalling, Scaling,Disi ntegration		Scaling on surface of concrete is scraped due to ship.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Pier	Cracking concrete	AHOOC Neg	Many cracks with less than 0.3mm observed horizontally and vertically.
Curb and Railing (Secondary)	Cracking/Cor rosion		Severe corrosion is occurred on steel railing.
Expansion Joint (Primary)	Water leaking		Water leaking is observed at all expansion of hinge joints.
	Difference in elevation		Difference in elevation is observed between girders and approach slab.

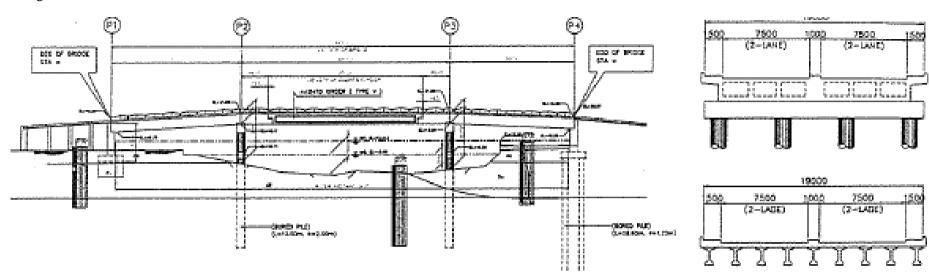
Bridge Profile





9) Makati Mandalyong Bridge

			В	RIDG	Ε	SEISMIC	INVE	ENTO	RY [DATA							
A. GENERAL																	
(1) Bridge Name:				M	lak	rati-Mandalu	yong E	Bridge				(2) Po	sted	Load Lir	nit		tons
(3) Location:	km.:		Route:					Burgo	s St.				Pro	v./ City	/	M aka	ti City
(4) Crossing Condition:		(Cross	sing River		Railway,() F	Roadway	,() Val	ley,()	Others ()				
(5) AADT:			(6)	Detour D	ista	ance:				(7) E	ssent	tial Brido	ge?		Yes	()	No()
(8) Alignment:			St	raight,	Cur	rved, (Radius) _		_m	Skewe	ed, (Skew	/ Angl	e)°					
(9) No. of Spans:		3	(10)	Span Le	eng	ths		30.0+	50.0+	30.0		(11)) Tota	al Length	1:		110
(121) Left Sidewalk Width	h:			1.5	(13)	Carriageway V	Vidth:		7.4	1+7.4	(14)	Right S	idew	alk Widtl	n:		1.5
(15) Overall Width (includ	ding side	walk):	<u> </u>	•				18.8			•	(16)) Yea	ar Built:		1	986
(17) As-builts or design d	Irawings	availat	ole?				Ye	s N	0						•		
(18) Design calculations	available	?					Ye	s N	0								
(19) Structure hydraulical	lly adequ	ate?					Ye	s) N	0	Don't k	now ()					
(21) Seismically Retrofitte	ed?						Yes	s No		Descri	ption						
B. SUPERSTRUC	TURE																
(23) Superstructure Type):			Steel Tr	uss	s, Steel Giro	der, R	CDG,	PS	CG (Gert	oer),	Others()			
(24) Number of Girders/S	Span:			9	(C	enter)	(25)	Continuo	us?			Ye	s (No)		
(26) Number of Expansio	n Joints:			4		(27) Type of	Expansi	ion Joint	S:	St	eel,	Rubber	·, S	eam		fi	inger
C. BEARINGS																	
(28) Bearing Type:		Roller,	Rock	ker, Rubl	ber	, Others (Ste	eel)	>	Сс	ndition:	Fui	nctionin	g()	Not	Fun	ctionir	ıg ()
(29) Type of Restraint (Tr	ransvers	e):						(30) T	ype of F	Restraint	(Long	jitudinal):				
(31) Seating Length:				Abutmen	ts:		Piers: Hinges: 0.8				0.8						
D. ABUTMENTS									•					-			
(32) Type:			Col	lumn Be	ent	t with Diagh	ram W	all	(33)	Height:							
(34) Foundation Type:		Spr	ead Fo	ooting, O	n P	Piles, Others (F	RCP)		(35)	Wingwa	ll Len	gths	L:			R:	



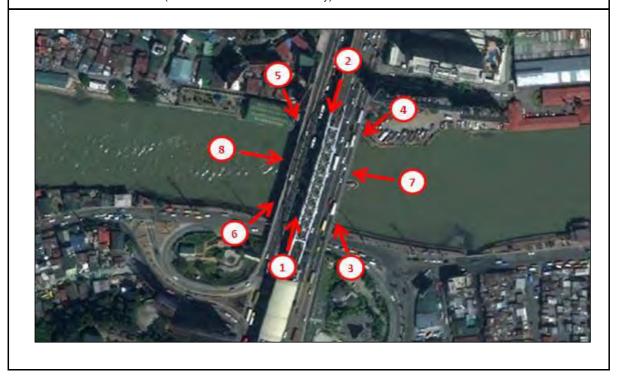
Main Viewpoints of the Bridge

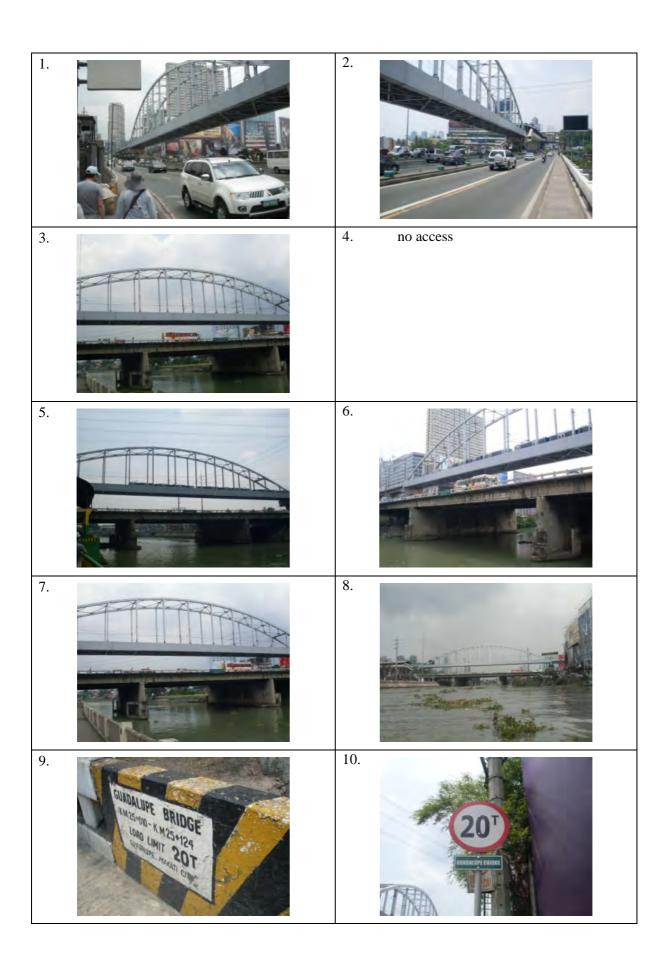
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab (Primary)	Cracking		Cracks with width less than 1mm are entirely observed on bottom deck slab.
	Cracking concrete		Many cracks on concrete surface of both sides of box girder are observed. Especially at the end box girders cracks are severely developed.
Concrete Beam/ Girder (Primary)	Exposure/Corro sion of Rebars		A few exposure/ Corrosion of rebars is observed due to delamination.
	Spalling, Scaling,Disinte gration		A few small spallings are observed on bottom of box girder.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Honeycomb		Several honeycombs caused by unskilled workman ship are observed.
	Corrosion		Steel bearing plates are severely corroded by waterleaking from expansion joint.
Shoe Bearing (Primary)	Abnormal Displacement		Steel bearings located at curved section are displaced outward.
	Bulging/Rupture		Rubber bearing pads are bulging and gaps are caused at expansion joints. The lubber pads are not recognized but bearing height (space) is shorting toward outside.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Abutments	Cracking concrete		Several cracks are observed on abutment.
	Spalling, Scaling,Disinte gration		Spalling and scaling caused by ship are observed on piers in the river.
Pier	Cracking concrete		Many cracks with less than 0.3mm are observed but covered by painting.
	Exposure/Corr osion of Reinf.		A few Exposure/ Corrosion of Rebars are observed on piers, which caused by ship.

Main Features of the Bridge



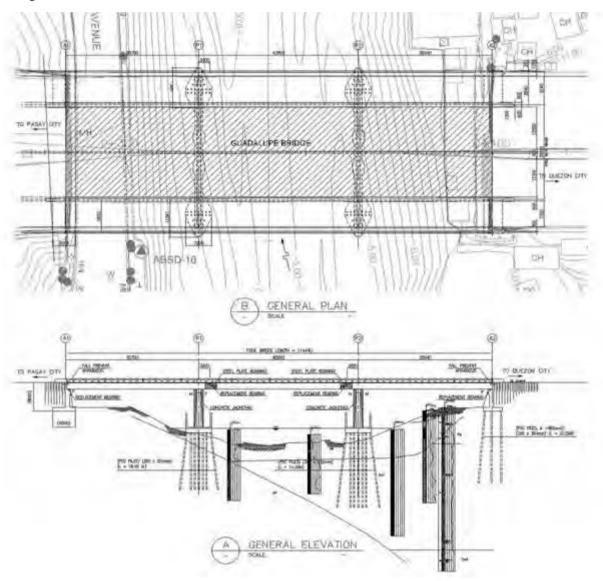


10) Guadalupe Bridge

BRIDGE SEISMIC INVENTORY DATA														
A. GENERAL														
(1) Bridge Name:				Gua	adalupe Brid	lge (Ce	entral)			(2) Po	osted L	oad Limit		tons
(3) Location:	km.:			Route:			EDS	SA SA		•	Prov.	/ City M	Makati andaluy	City / ong City
(4) Crossing Condition:		•	Cross	sing River,(Railway,() F	Roadway	,() Val	ley,()	Others ()	•		
(5) AADT:			(6)	Detour Dista	ance:				(7) Ess	ential Brid	ge?	Ye	s()	No()
(8) Alignment:			St	raight, Cu	ved, (Radius) ₋		_m	Skewe	d, (Skew A	ngle)°		•		
(9) No. of Spans:		3	(10)	Span Leng	jths		3 5.7 +4	12.8+3	5.94	(11) Total	Length:	14	14.44
(121) Left Sidewalk Widt	h:			— (13)) Carriageway \	Nidth:		12.3	3 +12.5 (*	14) Right S	Sidewal	k Width:		_
(15) Overall Width (include	ding side	walk):	<u> </u>	•			25.4			(16) Year	Built:	1	962
(17) As-builts or design of	drawings	availab	ole?			Ye	s N	0)	•				
(18) Design calculations	available	?				Ye	s N	0						
(19) Structure hydraulica	ılly adequ	iate?			(Ye	s N	0	Don't kno	w ()				
(21) Seismically Retrofitt	ed?					Yes	s No		Description	on				
B. SUPERSTRUC	TURE													
(23) Superstructure Type	e:			Steel Trus	s, Steel Gird	der, R	CDG,	PSC	CG, Other	s()				
(24) Number of Girders/S	Span:			1	0/3	(25)	Continuo	us?		Ye	es	No		
(26) Number of Expansion	on Joints:			2	(27) Type of	Expans	ion Joint	S:	Stee	l, Rubbe	r, Se	am		
C. BEARINGS														
(28) Bearing Type:	1	Roller,	Rock	ker, Rubber	, Others ()		Со	ndition:	Functionin	g()	Not Fu	nctionin	ıg ()
(29) Type of Restraint (T	ransvers	e):					(30) Ty	ype of R	Restraint (Lo	ongitudinal):			
(31) Seating Length:	(31) Seating Length: Abutments: Piers: Hinges: —													
D. ABUTMENTS														
(32) Type:				V	Vall Type			(33)	Height:					
(34) Foundation Type:		Spre	ead Fo	ooting, On F	Piles, Others (F	RCP)		(35)	Wingwall L	engths.	L:		R:	

E. COLUMNS AND PIERS						
(36) Column Type: Wall Type						
(37) Min. Transverse Cross-Section Dimension:		(38) Min. Longitudin	al Cross-Section	Dimension		
(39) Height Range:		(40) Fixity:	Тор	Bottom	Both	
(41) Percentage of Longitudinal Reinforcement:						
(42) Transverse Reinforcements:	Bar Size:	Spacing:	-	Tied S	piral	
(43) Foundation Type:	Spread Foot	ing On Piles C	Others ()		
F. SITE	•					
(44) Estimated Peak Ground Accelaration (0.4-0.7g):					
(45) Soil Profile Type:		I III III	IV	Don't F	Know	
(46) Liquefaction Potential:		Yes No Don't Know ()				
(47) Boring Data Available:		Yes No				
G. OTHER ITEMS						
(48) Approach Slab:Yes () Length	(47) Embankment Side-slope type(Approach Road): (H:V):					
(49) Slope Bank Protection Type:	1,,,,	, , ,		•	•	
PHOTOGRAPHS / SKETCHES (Use addition	onal sheets if neces	ssary)				

Main Viewpoints of the Bridge

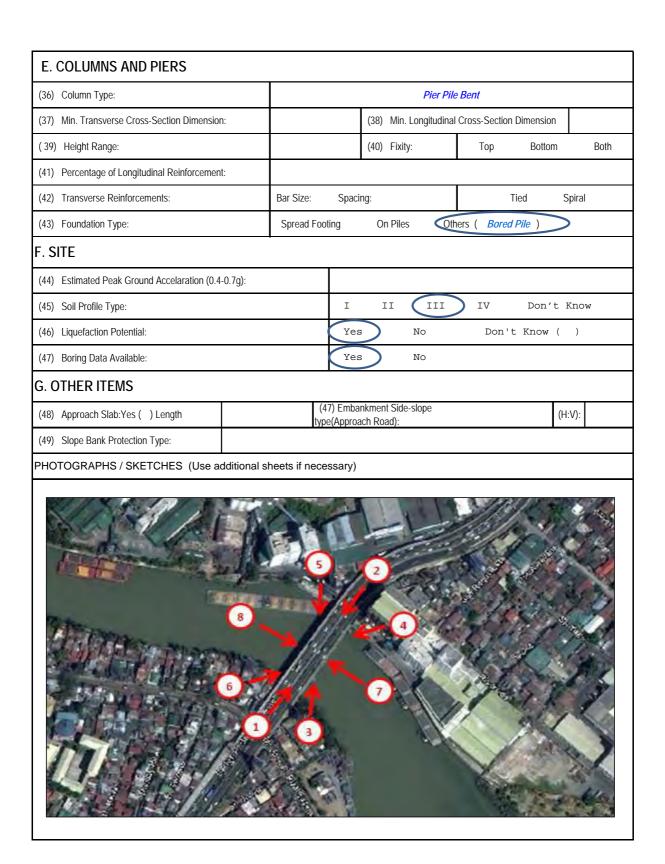

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation		
Deck Slab (Primary)	Cracking		Cracks on deck slab of PC girder are mostly observed on bottom side.		
	Water leaking		At some parts of cracks, water leaking are observed.		
Concrete Beam/ Girder (Primary)	Cracking		Many cracks are observed on the outside girder. Especially, On the all hinge portion, shear cracks are observed that are considered to be fatal cracks		
	Delamination		A few delaminations are observed on bottom of girders.		

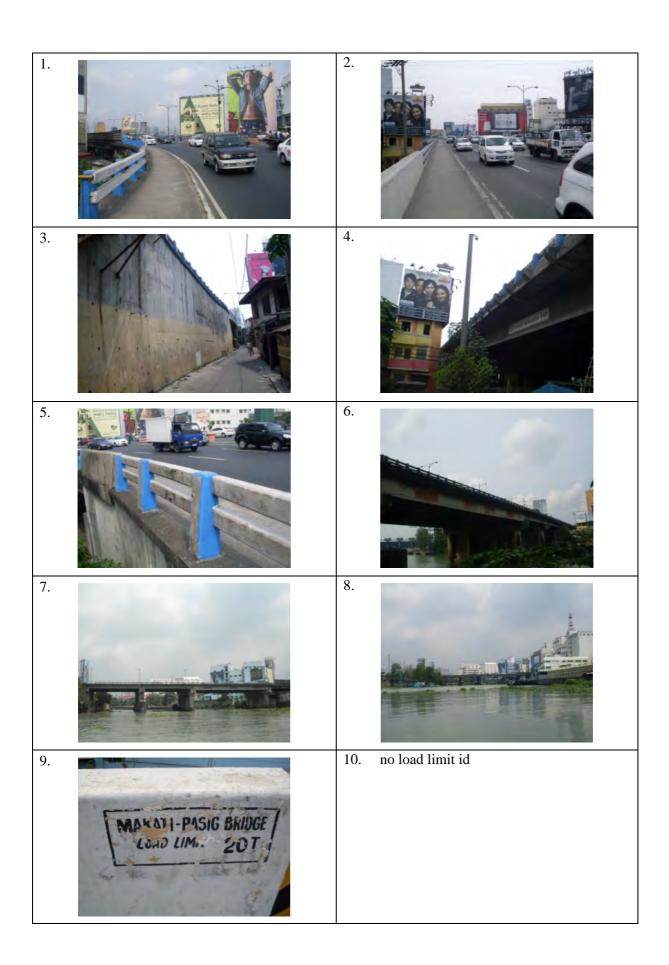
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Loose Connection		A few missing steel bracings are observed.
	Paint Peel off	ELMIS	Paints of Steel truss bridge is quite good condition but paint peel off is observed at some places.
Abutments	Delamination		A few delaminations are observed on abutment.
	Cracking concrete		A few cracks are observed on abutment.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Piers	Spalling, Scaling,Disinte gration		Many spallings and scaling due to impact of ships are observed.
	Cracking concrete		Cracks are occurred on wall concrete between rectangular piles
	Exposure/Corro sion of Reinf.		Many exposure /corrosion of rebars due to impact of ships are observed.
Curb and Railing (Secondary)	Cracking		Cracks on railing are observed.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Curb and Railing (Secondary)	Spalling/Delam ination		Several spalling and delamination are observed.
Expansion Joint	Water leaking		Water leaking is observed at all expansion of hinge joints.
Expansion Joint	Abnormal Space/Noise		Normal spaces are occurred on expansion joint at all hinge joints, because of deflection of center girders.
Painting Cond. (Primary)	Discoloration	EL MIR.	Discoloration is entirely progressing.

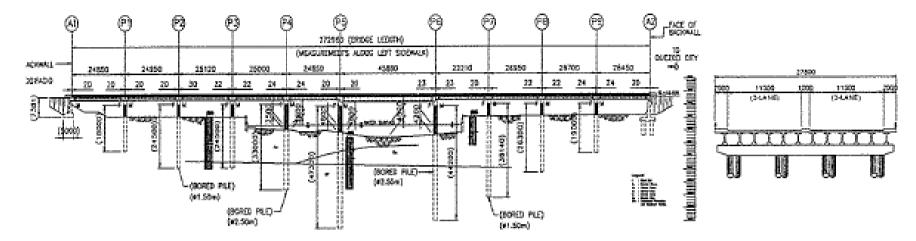
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Slope Protection (Secondary)	Cracks		Many cracks are occurred on concrete facing slope.
Approach Road	Cracking		Many asphalt cracks are observed.
River Condition (Secondary)	Others		River course is slightly bent so ships are often hit pier body. Strong protects are necessary.


Main Features of the Bridge



11) C-5 Bridge

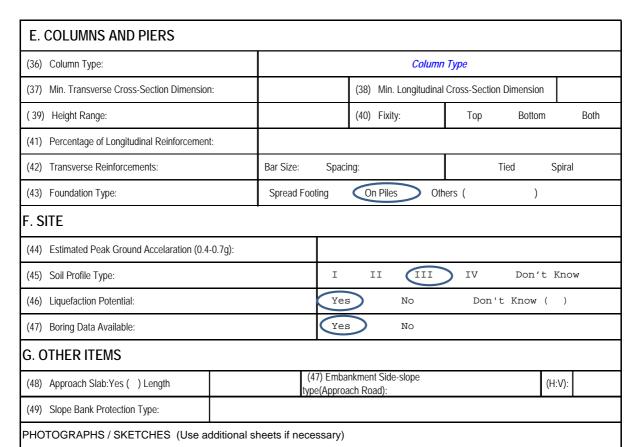
			BRIDG	}Ε :	SEISMIC	INVE	NTO	RY D	ATA					
A. GENERAL														
(1) Bridge Name:			C-8	5 Br	idge (Makat	i-Pasig	Bridg	<i>e)</i>		(2) Po	sted Load	d Limit		tons
(3) Location:	km.:		Route	e:			C-8	5		•	Prov./ Ci	ty	Pasiç	g City
(4) Crossing Condition:		Cı	rossing Rive	er,	Railway,() F	Roadway	() Va	lley,()	Others ()			
(5) AADT:		((6) Detour	Dista	ince:				(7) Essei	ntial Brid	ge?	Yes	s()	No()
(8) Alignment:			Straight,	tur	ved, (Radius) ₋		_m	Skewe	d, (Skew An	gle)°	•			
(9) No. of Spans:		10 ((10) Span I	_engt	the				25.00+24. 26.70+26.	1/11) Total Lei	ngth:	27	72.96
(121) Left Sidewalk Wid	th:		2	(13)	Carriageway \				+11.25 (14	•	idewalk V	Vidth:		2
(15) Overall Width (inclu	ıding sidev	valk):					27.7		•	(16) Year Bu	ıilt:	1	1998
(17) As-builts or design	drawings a	available'	?			Ye	$S \supset N$	lo						
(18) Design calculations	available	?				Ye	s > N	lo						
(19) Structure hydraulica	ally adequ	ate?				Ye	s N	lo	Don't know	0				,
(21) Seismically Retrofit	ted?					Yes	N	0	Description	ı (Seismi	c Design i	s appli	∋d)	,
B. SUPERSTRUC	CTURE													
(23) Superstructure Typ	e:		Steel	Fruss	s, Steel Giro	der, R	CDG,	PSC	G, Others()				
(24) Number of Girders/	Span:			12	?/10	(25) (Continuo	ous?		Ye	s No	$\tilde{}$	>	
(26) Number of Expansi	on Joints:		8		(27) Type of	Expansi	on Joint	S:	Steel,	Rubbe	r, Seam			
C. BEARINGS														
(28) Bearing Type:	F	Roller, R	Rockei Rul	bber,	Others ()		Coi	ndition: F	unctionin	g()	Not Fu	nctionir	ng ()
(29) Type of Restraint (1	Fransverse	÷):					(30) T	ype of R	estraint (Lor	gitudinal):			
(31) Seating Length: Abutments: Piers: Hinges: —														
D. ABUTMENTS														
(32) Type:				W	/all Type			(33)	Height:					
(34) Foundation Type:		Sprea	d Footing,	On P	iles, Others (E	Bored Pile		(35)	Wingwall Le	ngths	L: 3	3.8	R:	

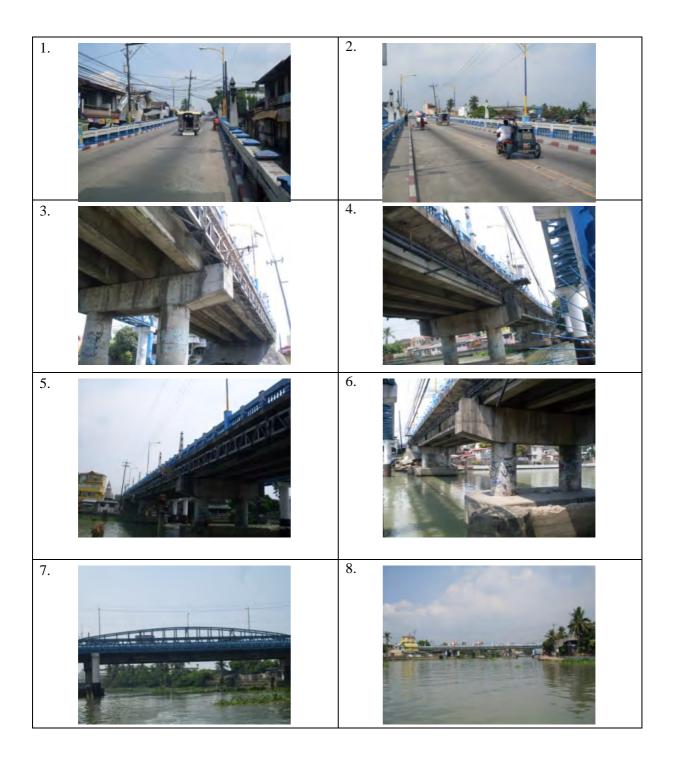


Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab	Cracking		Crackings width less than 0.3mm is observed on some part.
(Primary)	Water leaking		Cracks with water leaking are at end of slab but only one place.
Concrete Beam/ Girder (Primary)	Exposure/Corros ion of Rebars		Exposure/Corrosio n of rebars is observed on flange of girder but only this place.
	Spalling, Scaling,Disintegr ation		Several spalling are observed on girders.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Honeycomb	SEE COSES	Few honeycombs are observed on cross beams.
Piers	Spalling, Scaling,Disintegr ation	The state of the s	Spalling and scalling are observed on pier concrete due to intentionally impact
(Primary)	Cracking concrete		Some Cracks less than 1mm are observed on interval wall between Circular piles at several piers.
Curb and Railing (Secondary)	Cracking		Small cracks are observed on end post of railings.

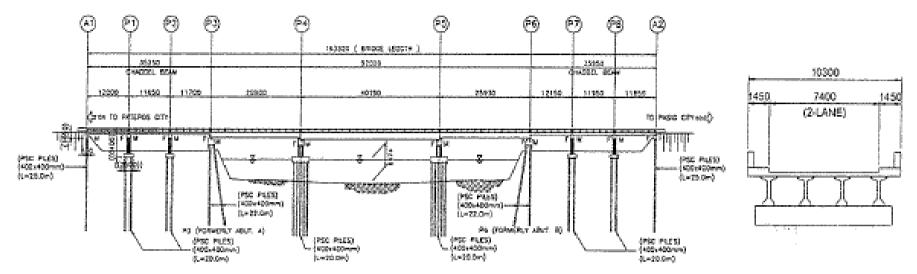
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Curb and Railing (Secondary)	Impact Damaged		One hand railing is damaged due to impact of car.
	Water leaking		Water leaking from expansion joint is observed.
Expansion Joint (Primary)	Abnormal Space/Noise		Abnormal space is occurred which should be covered.
	Displacement		Covers of expansion joint are displaced. It is caused by water leaking.


Main Features of the Bridge



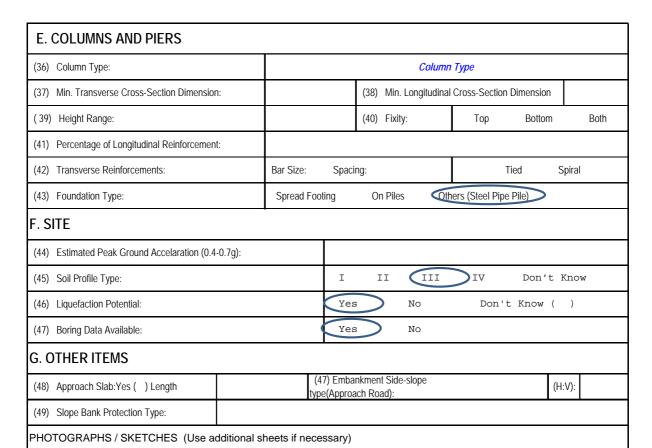
12) Bambang Bridge

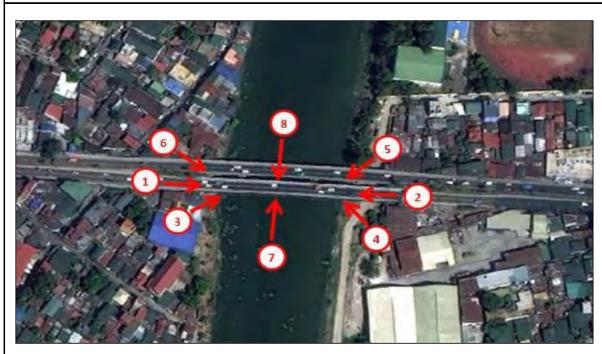
			В	RIDGE	SEISMIC	INVE	ENTO	RY D	ATA					
A. GENERAL														
(1) Bridge Name:					Bambang	Bridge	9			(2)	Posted Lo	oad Limit	,	tons
(3) Location:	km.:			Route:			A.Lu	na		•	Prov.	City	Pasig	City
(4) Crossing Condition:		4	Cross	sing River,(Railway,() F	Roadway	,() Val	ley,() (Others ()	•		
(5) AADT:			(6)	Detour Dista	ance:				(7) Es	sential Br	idge?	Yes	s() N	No()
(8) Alignment:		4	Str	raight , Cu	rved, (Radius) ₋		_m	Skewed	d, (Skew A	Angle)°				
(9) No. of Spans:		9	(10)	Span Leng	yths (25.9+40 95+11.8	- 1	1) Total	Length:	16:	3.32
(121) Left Sidewalk Widt	h:		1	1.5 (13)) Carriageway \	Width:		3.4-	+3.4	(14) Right	Sidewal	k Width:	1	.5
(15) Overall Width (include	ding side	:walk):					10.35			(*	6) Year	Built:	19	992
(17) As-builts or design of	drawings	availab	le?			Ye	s N	0						
(18) Design calculations	available	∍?				Ye	s N	0						
(19) Structure hydraulica	ılly adeq	uate?				Ye	s N	0	Don't kno	ow ()				
(21) Seismically Retrofitt	ed?					Yes	s) No)	Descript	ion (Seisi	nic desig	n is applie	ed)	
B. SUPERSTRUC	TURE	Ξ												
(23) Superstructure Type	э:			Steel Trus	s, Steel Gird	der, R	CDG,	PSC	G, Otbe	rs()				
(24) Number of Girders/S	Span:			8 /	6, 4/3	(25)	Continuo	us?		,	res 🤇	No		
(26) Number of Expansion	on Joints	:		_	(27) Type of	Expans	ion Joint	S:	Stee	el, Rubb	er, Sea	am	_	_
C. BEARINGS														
(28) Bearing Type:		Roller,	Rock	kor Rubber	, Others ()		Cor	ndition:	Function	ing()	Not Fu	nctioning	J ()
(29) Type of Restraint (T	ransvers	se):			_		(30) Ty	pe of R	estraint (L	ongitudir	al):		_	
(31) Seating Length (Lor	ngitudina	l):		Abutments:	0.6		Piers	S:		Н	inges:			
D. ABUTMENTS														
(32) Type:				V	Vall Type			(33) H	Height:				1	
(34) Foundation Type:		Spre	ead Fo	ooting, On F	Piles, Others (F	RCP)		(35) \	Vingwall	Lengths	L:		R:	

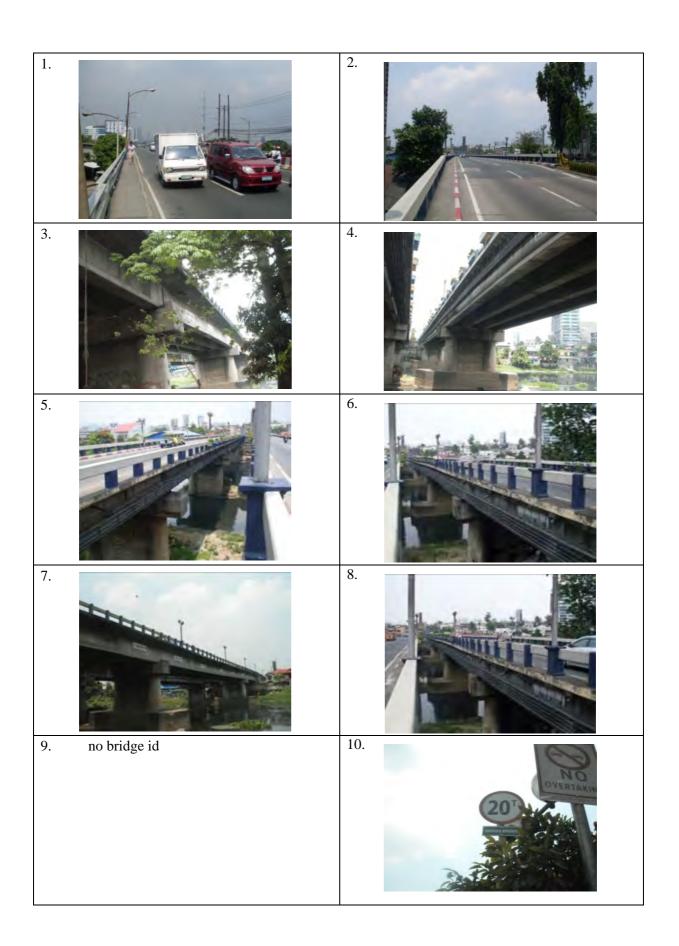


Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab	Cracking		Cracking width about 1mm on slab is covered with 30%.
(Primary)	Scaling/Spalling		Scaling on the deck slab is observed entirely but its condition is not bad.
Concrete Beam/ Girder (Primary)	Exposure/Corros ion of Rebars	Feyssinet	Few Exposure/ Corrosion of rebars are observed on concrete girders.
	Spalling, Scaling, Disintegr ation		Few spalling and scalling are observed on concrete girders.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Delamination		One Delamination is observed on concrete girder.
Abutments	Spalling, Scaling, Disintegration		Several Spallings and disintegration are observed on abutment.
	Cracking concrete		Cracks on side of pile bent abutment are appeared.
Slope Protection (Secondary)	Erosion		Slope protection on A1 abutment is heavily damaged.

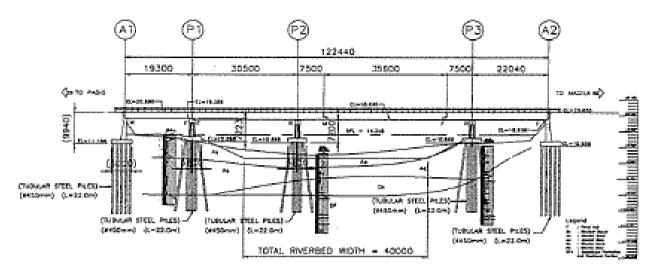

Main Features of the Bridge

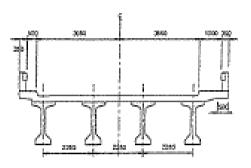




13) Vargas Bridge (Upstream)

			BRID	GE	SEISMIC	INVE	ENTO	RY	DATA							
A. GENERAL																
(1) Bridge Name:				Va	rgas Bridge	(Upstr	ream)				(2) Po	sted	Load Lim	t 2	20	tons
(3) Location:	km.:		Rou	Pasig E	Bouleva	rd Ext	ension			Prov./ City			sig (City		
(4) Crossing Condition:		Cr	ossing Riv	/er,()	Railway,() R	oadway	,() Va	ley,()	Others ()	•			
(5) AADT:		(6	6) Detour	r Dista	ance:				(7) E:	ssenti	al Brido	ge?	Y	es()	N	o()
(8) Alignment:		<	Straight,	Cui	rved, (Radius) _		_m	Skew	ed, (Skew	Angle	e) <mark>°</mark>		Ī			
(9) No. of Spans:		4 (10) Span	Leng	yths	19	.3+30.	5 +5 0.	6+22.04		(11)) Tot	al Length:		122	.44
(121) Left Sidewalk Width	h:		0.5	(13)) Carriageway W	Vidth:			7.32	(14) I	Right S	idew	alk Width:		0.	9
(15) Overall Width (include	ding side	valk):					8.72				(16)) Ye	ar Built:		19	92
(17) As-builts or design d	Irawings	available?)			Ye	s	0								
(18) Design calculations	available	?				Ye	s N	0	>							
(19) Structure hydraulica	lly adequ	ate?			(Ye	s N	0	Don't kr	now ()						
(21) Seismically Retrofitte	ed?					Yes)	Descrip	otion (Seismi	c des	sign is app	lied)		
B. SUPERSTRUC	TURE															
(23) Superstructure Type):		Steel	Trus	s, Steel Gird	ler, R	CDG,	PS	SCG, Othe	ers()					,
(24) Number of Girders/S	Span:			4	1/4	(25)	Continuo	us?			Ye	s C	No	>		
(26) Number of Expansion	n Joints:		5		(27) Type of	Expans	ion Joint	S:	Ste	eel,	Rubber	r, S	eam			
C. BEARINGS																
(28) Bearing Type:		Roller, R	ocker, R	ubber	t, Others ()		С	ondition:	Fun	ctionin	g()	Not F	unctio	oning	()
(29) Type of Restraint (Ti	ransvers	e):		Col	ncrete Block	ſ	(30) T	ype of	Restraint ((Longi	tudinal):	(1	niss	ing)	
(31) Seating Length:			Abutm	ents:			Piers	S:			Hin	ges:		0	.8	,
D. ABUTMENTS																
(32) Type:				V	Vall Type			(33)	Height:							
(34) Foundation Type:		Spread	d Footing,	On P	iles, Others (Ste	el Pipe I	Pile)	(35)	Wingwall	l Leng	ths	L:		R:		

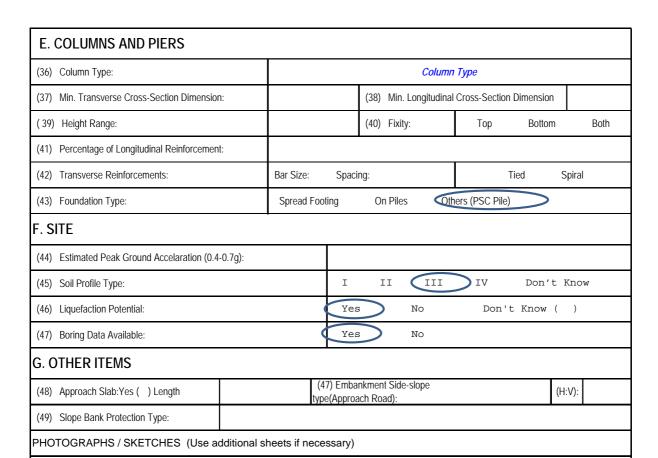


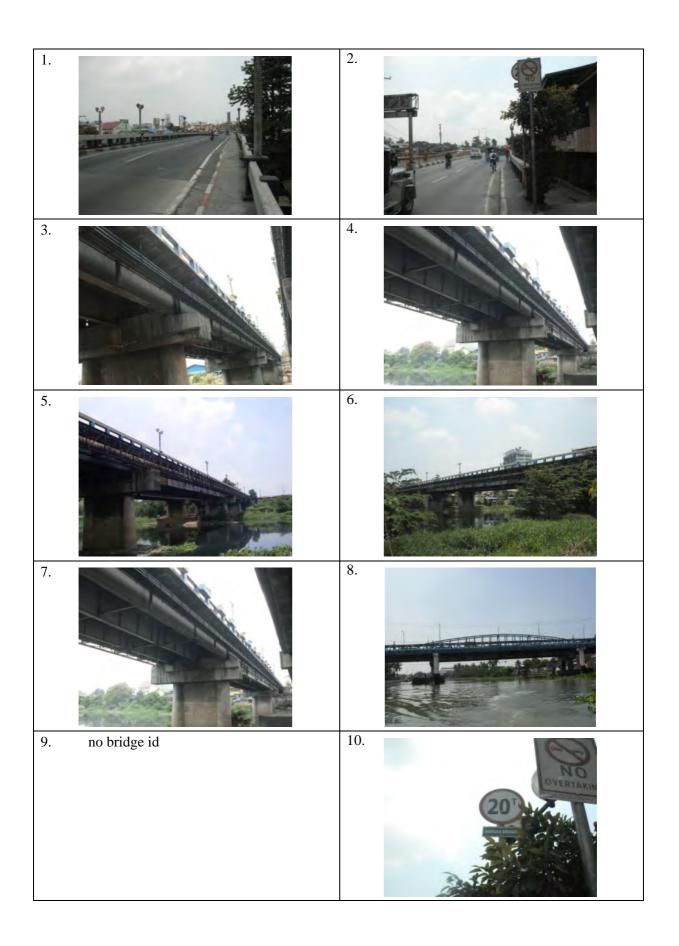


Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
	Cracking		Small cracks are visible but deck slab is good condition.
Deck Slab (Primary)	Scaling/Spalling		Small spallings are visible but deck slab is good condition.
Abutment	Cracking concrete		A few Cracks with width less than 0.3mm are observed
Pier	Cracking concrete		Some vertical cracks are visible but maintain good condition.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Pier	Exposure/Corrosi on of Reinf.		Only one Exposure/ Corrosion of Rebars is observed at pile cap.
Expansion Joint (Primary)	Water leaking		Water leaking from expansion joint is observed.
Slope Protection	Material Loss		Slope protection is maintained properly but material losses are observed.
Approach Road	Settlement		Many pot-holes are observed on approach road.

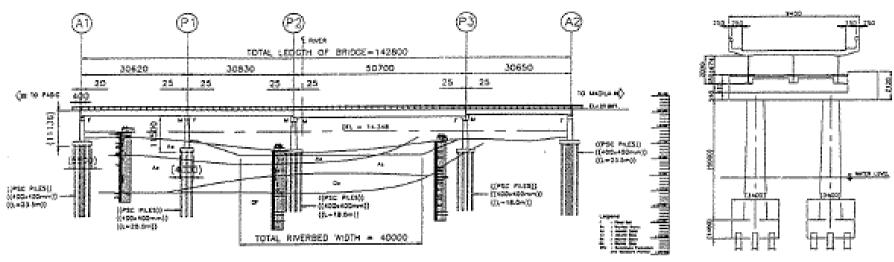
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
River Condition	Scouring		A few local scouring around piers is observed.


Main Features of the Bridge



14) Vargas Bridge (Downstream)

			BI	RIDGI	E	SEISMIC	INVE	ENTO	RY	DATA						
A. GENERAL																
(1) Bridge Name:				Vá	arg	gas Bridge (L	Downs	tream)			(2)	Po	sted Loa	d Limit		tons
(3) Location:	km.:			Route:			Pasig L	Bouleva	rd Ext	ension			Prov./ C	ity	Pas	ig City
(4) Crossing Condition:			Crossi	ng River,	()	Railway,() R	Roadway	,() Val	ley,()	Others ()	•		
(5) AADT:			(6) [Detour Di	ista	ince:				(7) Es:	sential I	Bridg	je?	Ye	s()	No()
(8) Alignment:			Stra	aight, (Cur	rved, (Radius) _		_m	Skew	ed, (Skew A	Angle)°	1				
(9) No. of Spans:		4	(10)	Span Le	eng	ths	30.6	2+30.8	3+50	.70+30.65	5	(11)	Total Le	ength:		142.8
(121) Left Sidewalk Wid	th:		0.	75 (*	13)) Carriageway V	Vidth:			7.4	(14) Rig	ht Si	idewalk \	Nidth:		0.75
(15) Overall Width (inclu	ıding side	walk):						8.9		•		(16)	Year B	uilt:		1973
(17) As-builts or design	drawings	availab	ole?				Ye	s N	0	>					•	
(18) Design calculations	available	?					Ye	s N	0	>						
(19) Structure hydraulica	ally adequ	ıate?					Ye	s N	0	Don't kno	ow ()					
(21) Seismically Retrofit	ted?						Yes	s No		Descript	ion (Pre	event	ting bridg	je Falls	are S	tolen)
B. SUPERSTRUC	CTURE															
(23) Superstructure Typ	e:			Steel Tru	uss	s, Steel Gird	der, R	CDG,	PS	SCG, Othe	rs()				
(24) Number of Girders/	Span:				3	3/4	(25)	Continuo	us?			Yes	s N	0	>	
(26) Number of Expansi	on Joints:			5		(27) Type of	Expans	ion Joint	S:	Stee	el, Ru	bber	, Seam	1		
C. BEARINGS																
(28) Bearing Type:		Roller,	Rocke	er, Rubb	oer,	, Others (Slid	le)		С	ondition:	Function	oninç	g()	Not Fu	nction	ing ()
(29) Type of Restraint (7	ransvers	e):		С	OI	ncrete Block	k	(30) T	ype of	Restraint (L	ongitud	linal)	:	(m	issir	g)
(31) Seating Length:			1	Abutment	ts:			Piers	S:			Hinç	ges:			
D. ABUTMENTS											-		_			
(32) Type:		T			И	Vall Type			(33)	Height:						
(34) Foundation Type:		Spr	ead Fo	oting, On	ı Pi	iles, Others (PS	C Pile)	>	(35)	Wingwall	Lengths	;	L:		R:	

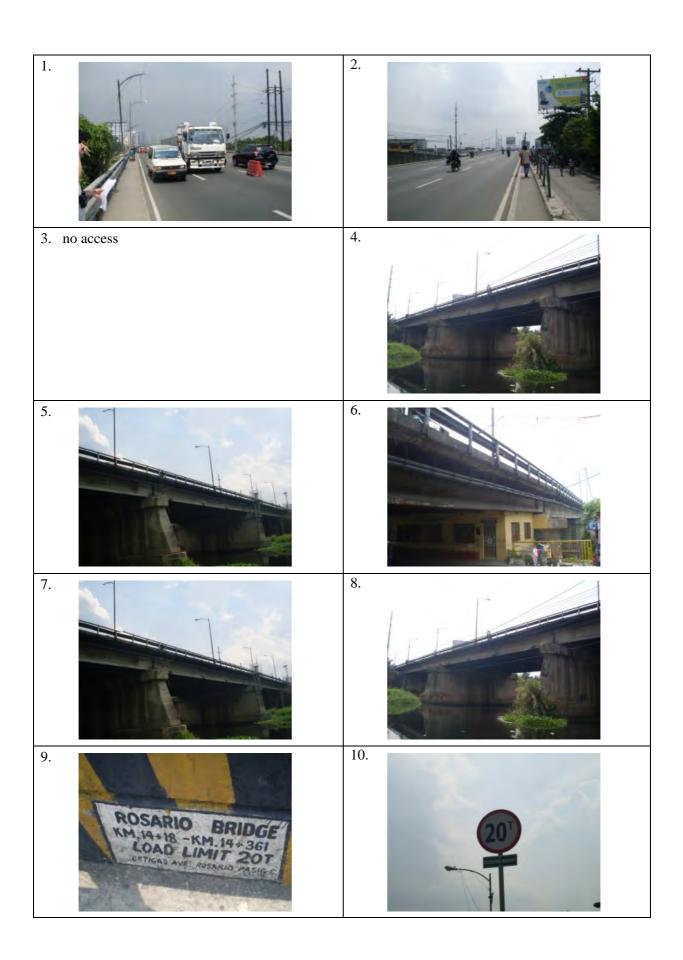


Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab	Cracking		Cracks with width less than 1mm are observed on a half of deck slab.
(Primary)	Water leaking		Water leaking are observed from the cracks with width more than 1mm.
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Corrosion		Lower flanges of steel I-girders are corroded but corrosion is limited.
	Loose Connection		Some H.T.Bolts are missing or loose connection.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Steel Beam/ Truss Member (Bracings, etc.) (Primary)	Paint Peel off		Paint peel off is progressing entirely steel plates.
Pier	Cracking concrete		Some cracks with width more than 1mm are observed on bottom of pile cap.
Slope Protection (Secondary)	Erosion		Slope protection is scoured by flood and approximately a half of protection is damaged.
Approach Road	others		Many pot-holes are observed on approach road.

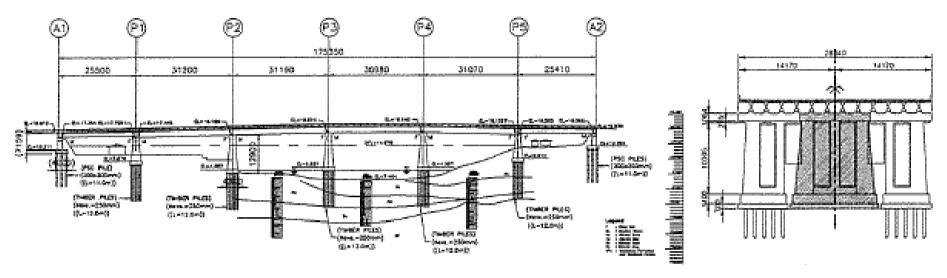
Main Features of the Bridge





15) Rosario Bridge

BRIDGE SEISMIC INVENTORY DATA													
A. GENERAL													
(1) Bridge Name:				Rosario L	Bridge				(2) Po	sted I	Load Limit		tons
(3) Location:	km.:		Route:		Ortig	as Ave.	Extension			Prov	/./ City		Rosario g City
(4) Crossing Condition:		(Crossing River,(DRailway,() F	Roadway	,() Val	ley,() Other	rs ()	-		
(5) AADT:			(6) Detour Dista	ance:			(7)	Esser	ntial Brido	ge?	Ye	s()	No()
(8) Alignment:			Straight , Cu	rved, (Radius) ₋		_m	Skewed, (Sl	kew Ang	ıle)°				
(9) No. of Spans:		6	(10) Span Leng	jths			1.20+31.19 1.07+25.4		(11)) Tota	I Length:	1	75.35
(121) Left Sidewalk Widt	h:		(13)) Carriageway \	Width:			(14) Right S	idewa	alk Width:		
(15) Overall Width (include	ding sidev	valk):							(16)) Yea	r Built:	195	2 / 1978
(17) As-builts or design of	drawings a	available	e?	•	Ye	s N	0		•				
(18) Design calculations	available'	?			Ye	s N	0						
(19) Structure hydraulica	ılly adequ	ate?			Ye	s N	o Don	't know	0				
(21) Seismically Retrofitt	ed?				Ye	s No) Des	scription					
B. SUPERSTRUC	TURE												
(23) Superstructure Type	9:		Steel Trus	s, Steel Gird	der, R	CDG,	PSCG, P	PCI Gira	er Otbe	ers()		
(24) Number of Girders/S	Span:		10	0 / 6	(25)	Continuo	us?		Ye	s (No		
(26) Number of Expansion	on Joints:		7	(27) Type of	Expans	ion Joint	s:	Steel,	Rubber	, Se	eam		
C. BEARINGS													
(28) Bearing Type:	F	Roller, (Rocker, Rubber	, Others ()		Conditio	n: Fu	unctionin	g()	Not Fu	nctioni	ng ()
(29) Type of Restraint (T	(29) Type of Restraint (Transverse): Concrete Block (30) Type of Restraint (Longitudinal):												
(31) Seating Length (Lor	ongitudinal): Abutments: 1 Piers: 1 Hinges: —												
D. ABUTMENTS													
(32) Type:			V	Vall Type			(33) Heigl	nt:			3.	127	
(34) Foundation Type:		Sprea	ad Footing, On F	Piles, Others ()	\supset		(35) Wing	wall Ler	ngths	L:	3.8	R:	_

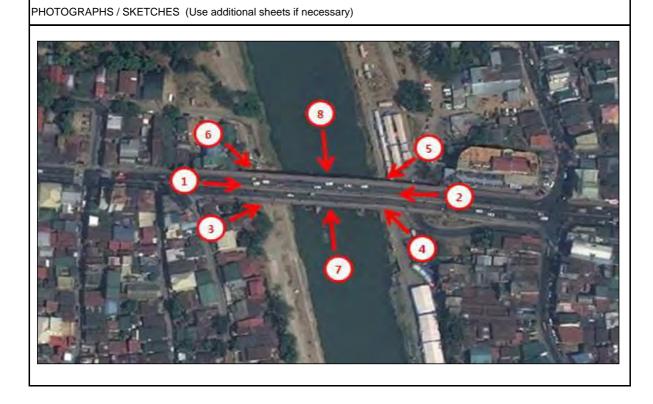

Main Viewpoints of the Bridge

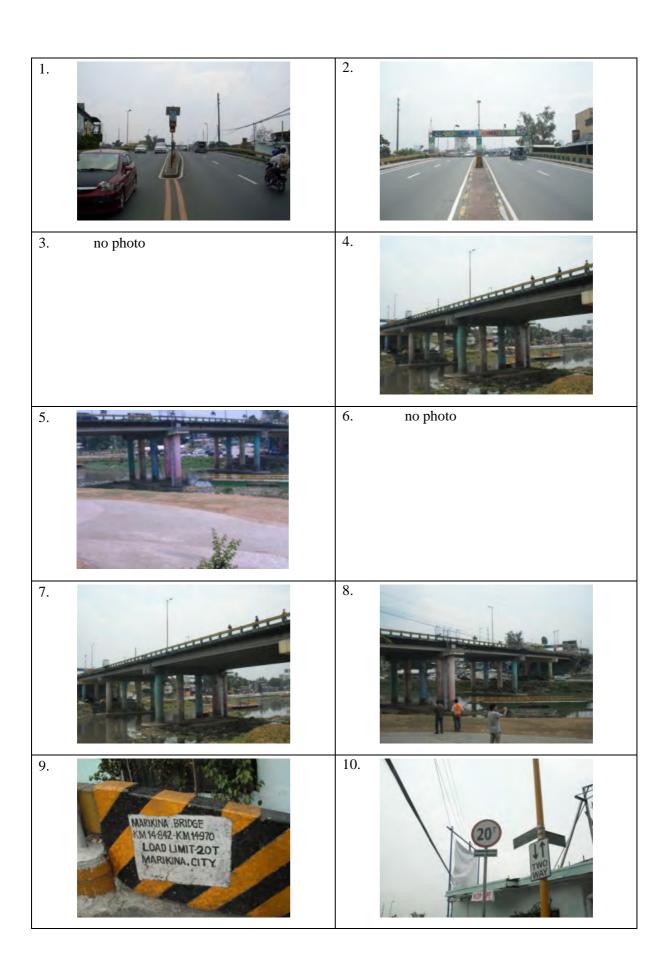
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
	Cracking		Cracks with width less than 1mm observed entirely on deck slab. Some cracks are over 1mm.
Deck Slab (Primary)	Exposure/Corro sion of Rebars		At end of deck slab, Exposure/Corrosion of Rebars due to spalling is detected.
	Scaling/Spallin g	GRS 8	Several spallings are observed on the bottom of deck slab.
Concrete Beam/ Girder (Primary)	Cracking		

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Concrete Beam/ Girder (Primary)	Exposure/Corros ion of Rebars		Exposure/Corrosion of Rebars is detected at the deep spallings.
	Delamination		Delamination is observed at hunch.
Abutments	Spalling, Scaling, Disintegr ation		Spallings caused by unskilled workman ship are observed.
	Cracking concrete		Many cracks are detected on abutment.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Pier	Cracking concrete		A few Cracks are observed on the interval wall of pier.
	Exposure/Corros ion of Reinf.		At a few piers, Exposure/Corrosion of Rebars due to impact of ship is observed.
Curb and Railing (Secondary)	Impact Damaged		Railing is damaged due to impact of traffic.
Expansion Joint (Primary)	Water leaking		Water leaking from expansion joint is observed.

Component/ Material/ Classification	Type of Damages						
Expansion Joint (Primary)	Difference in elevation		Difference in elevation at expansion joint is occurred due to displacement of girders.				
	Displacement		Due to displacement of girders, portion of expansion joint is closed and bottom of girders are opened.				
Slope Protection	Erosion		At Abutment A1, erosion of slope protection is observed.				
	Material Loss		At abutment A2, material losses are observed.				

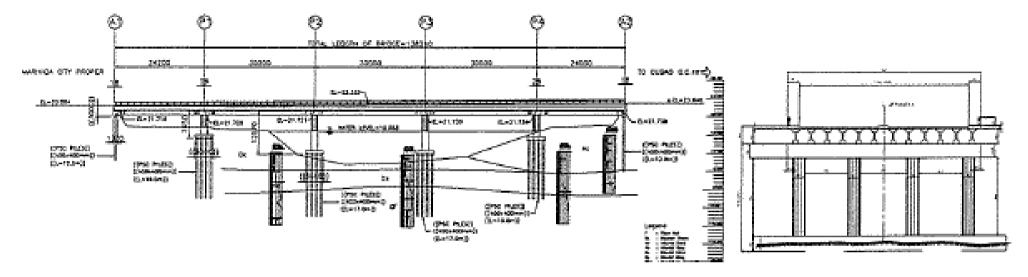

Main Features of the Bridge



16) Marikina Bridge

BRIDGE SEISMIC INVENTORY DATA															
A. GENERAL															
(1) Bridge Name:					Marikina	Bridg e				(2)	Poste	d Load Li	mit		tons
(3) Location:	km.:			Route:	A.E	Bonifacio	Ave./L	E. <i>Rodrig</i>	gues Ave		Pi	ov./ City	N	1 arikina	a City
(4) Crossing Condition:		¢	Crossir	ng River,()	Railway,() I	Roadway	,() Val	ley,() (Others ()				
(5) AADT:			(6) D	Detour Dista	ance:				(7) Es	sential Br	idge?		Yes	()	lo()
(8) Alignment:			Stra	aight , Cui	ved, (Radius)		_m	Skewed	d, (Skew A	Angle)°					
(9) No. of Spans:		5	(10)	Span Leng	ths	24.	.20+3@	30.00 -	+24.00	(11) To	tal Lengt	n:	13	8.2
(121) Left Sidewalk Widt	ih:		1.1	15 (13)	Carriageway '	Width:		8.30-	+8.30	(14) Righ	t Side	walk Widi	h:	1.	15
(15) Overall Width (inclu	ding side	ewalk):					20.3			(16) Y	ear Built:		19	080
(17) As-builts or design drawings available? Yes No															
(18) Design calculations	available	э?				Ye	s N	0							
(19) Structure hydraulica	ally adeq	uate?				Ye	s N	0	Don't kno) wc					
(21) Seismically Retrofitt	ied?					Yes	s) No)	Descript	ion (All P	iers h	ave been	retro	ofitted)	
B. SUPERSTRUC	CTURE	Ξ													
(23) Superstructure Type	e:			Steel Truss	s, Steel Gir	der, R	CDG,	PSC	G <i>PCI Gi</i>	irder)	thers()			
(24) Number of Girders/S	Span:			1	2/5	(25)	Continuo	us?		Yes No					
(26) Number of Expansion	on Joints	:		2	(27) Type o	f Expans	ion Joint	S:	Stee	el, Rubl	er,	Seam		Fin	gers
C. BEARINGS															
(28) Bearing Type:		Roller,	Rocke	er, Rubber	Others ()		Cor	ndition	Function	ing(Not	Fun	ctioning	()
(29) Type of Restraint (Transverse): Concrete Block				(30) Type of Restraint (Longitudinal):											
(31) Seating Length (Lor	ngitudina	l):	А	Abutments:	0.65		Piers	S:	_	ŀ	linges	:		_	
D. ABUTMENTS															
(32) Type:				И	Vall Type			(33)	Height:				1.5	45	
(34) Foundation Type:		Spre	ead Foo	oting, On F	Piles, Others (F	RCP)	>	(35)	Vingwall	Lengths	L:	27~4	9	R:	63

E. COLUMNS AND PIERS						
(36) Column Type:	Column Type					
(37) Min. Transverse Cross-Section Dimension:		(38) Min. Longitud	inal Cross-Section	Dimension		
(39) Height Range:		(40) Fixity:	Тор	Bottom	Both	
(41) Percentage of Longitudinal Reinforcement:		-				
(42) Transverse Reinforcements:	Bar Size:	Spacing:	-	Tied Spi	iral	
(43) Foundation Type:	ting On Piles	Others (RC Pile	es)			
F. SITE	•					
(44) Estimated Peak Ground Accelaration (0.4-0.	7g):					
(45) Soil Profile Type:		I II (II	IV	Don't Kr	now	
(46) Liquefaction Potential:		Yes No	Don'	t Know ()	
(47) Boring Data Available:		Yes No				
G. OTHER ITEMS						
(48) Approach Slab:Yes () Length		7) Embankment Side-slope e(Approach Road):		(H:V):	
(49) Slope Bank Protection Type:	typ	on ipproden rodd).		I I		



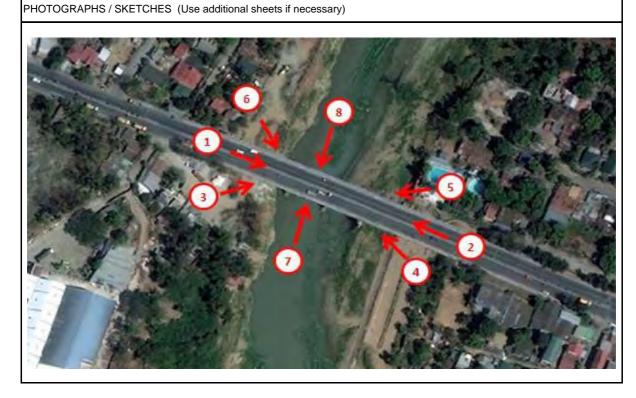
Main Viewpoints of the Bridge

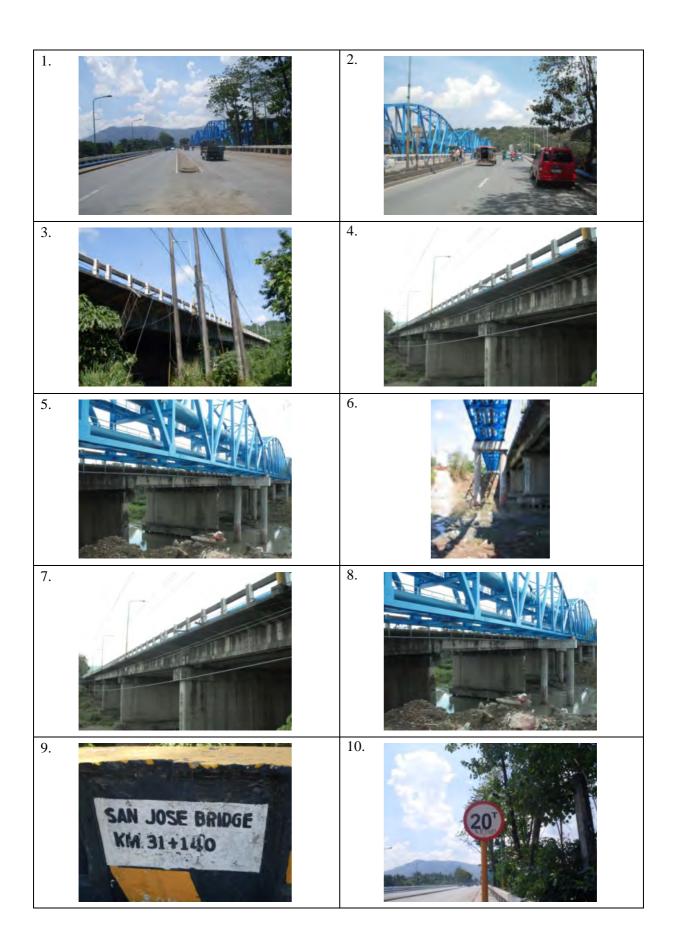
Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Deck Slab (Primary)	Cracking		Cracks with width less than 1mm observed entirely on deck slab. Some cracks are over 1mm. (Poor condition)
	Scaling/Spallin g		Many but small spalling are observed on the deck slab.
	Water leaking		Cracks combined water leaking are observed at several parts.
Concrete Beam/ Girder (Primary)	Exposure/Corro sion of Rebars		Exposure/Corrosion of Rebars is observed on cross beams.

Component/ Material/ Classification	Type of Damages	Reasoning for the Evaluation	
Concrete Beam/ Girder (Primary)	Honeycomb		A few honeycombs caused by unskilled workmanship are observed.
Shoe/Bearing	Bulging/Ruptur e		Rubber pads are ruptured.
Pier (Primary)	Spalling, Scaling,Disinte gration		Several spallings are observed on piers.
	Cracking concrete		Many cracks are observed horizontally and vertically on pier.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Expansion Joint (Primary)	Water leaking		Water leaking is observed from expansion joints.
	Displacement		

Main Features of the Bridge

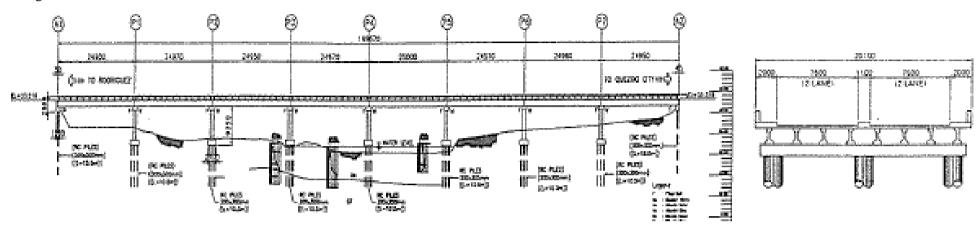




17) San Jose Bridge

BRIDGE SEISMIC INVENTORY DATA													
A. GENERAL													
(1) Bridge Name:				San Jose	Bridge)			(2) P	(2) Posted Load Limit			tons
(3) Location:	km.:		Route:	Rodrigues Highway				Prov./ City		R iz	ral		
(4) Crossing Condition: Cross			ossing River,(ssing River,() Railway,() Roadway,() Valley,() Others ()									
(5) AADT:	5) AADT: (6)) Detour Dis	Detour Distance:		(7) Esser			ential Brid	ntial Bridge? Yes		s()	No()
(8) Alignment:			Straight, C	urved, (Radius)		_m	Skewed	I, (Skew A	ngle)	-			
(9) No. of Spans:		8 (1	0) Span Ler	D) Span Lengths		24.90+24.97+24.95+24.97+ 25.00+24.97+24.96+24.95			(1	(11) Total Length:		199.67	
(121) Left Sidewalk Wid	th:		1.45 (1	3) Carriageway	Width:		7.50-	-7.50 (1	4) Right	Sidewalk V	/idth:	1	.45
(15) Overall Width (inclu	ding side	valk):				19.1			(10	(16) Year Built:		1980	
(17) As-builts or design	(17) As-builts or design drawings available? Yes No												
(18) Design calculations	available	?			Ye	s N	0						
(19) Structure hydraulica	ally adequ	ate?			Yes No Don't know ()								
(21) Seismically Retrofit	ted?			Yes No Description									
B. SUPERSTRUCTURE													
(23) Superstructure Type:			Steel Tru	Steel Truss, Steel Girder, RCDG, PSCG, others()									
(24) Number of Girders/Span:				8/8 (25) Continuous?			Υ	Yes No					
(26) Number of Expansion Joints:			9 (27) Type of Expansion Joints: Steel, Rubber, Seam Angula					gular					
C. BEARINGS													
(28) Bearing Type: Roller, Rocker, Rubber, C				er, Others ()		Cor	nditio	Functionir	ng()	Not Fur	nctionin	g()
(29) Type of Restraint (Transverse):				_			(30) Type of Restraint (Long			gitudinal):			
(31) Seating Length (Longitudinal):		Abutments	Abutments: 0.8		Piers: 0.7		Hir	Hinges:		_			
D. ABUTMENTS													
(32) Type:				Wall Type			(33) Height:			1.2			
(34) Foundation Type: Spread Footing, On Piles, Others (1			RC Pile)	$\overline{}$	(35) \	Ningwall L	engths	L: 3	8.6	R:	3.7		

E. COLUMNS AND PIERS							
(36) Column Type:	Wall Type						
(37) Min. Transverse Cross-Section Dimension:		(38) Min. Longitudinal Cross-Section Dimension					
(39) Height Range:			(40) Fixity:		Тор	Bottom	Both
(41) Percentage of Longitudinal Reinforcement:							
(42) Transverse Reinforcements:	Bar Size: Spacing:				Tied Spiral		
(43) Foundation Type:	Spread Footing On Piles Others (RC Pile)						
F. SITE							
(44) Estimated Peak Ground Accelaration (0.4-0.7g):							
(45) Soil Profile Type:		I	II I	III	IV	Don't	Know
(46) Liquefaction Potential:		Yes	No	$\overline{}$	Don '	't Know ()
(47) Boring Data Available:		Yes	No				
G. OTHER ITEMS							
(48) Approach Slab:Yes () Length	(47) Embankment Side-slope type(Approach Road):)		(H	:V):
(49) Slope Bank Protection Type:	•		·			•	•



Main Viewpoints of the Bridge

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation		
Concrete Beam/ Girder (Primary)	Cracking		Crack with width more than 1mm is detected o flange of PC T-girder. Length is approximately 3m.		
	Spalling, Scaling,Disinte gration		Several small spallings are observed.		
Shoe/Bearing	Corrosion		Steel bearings are severely corroded but not yet section loss.		
	Loose Connection		Connection of Steel bearing may be loosed and the bearing is slightly moved ahead.		

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Pier	Delamination		Delamination of concrete may be occurred at pile cap.
	Spalling, Scaling,Disinteg ration		Small spallings are observed on pier concrete.
	Cracking concrete		A few vertical cracks with width more than 1mm are observed on each pier.
Expansion Joint (Primary)	Water leaking		Water leaking is observed from expansion joints.

Component/ Material/ Classification	Type of Damages	Picture of the Damage	Reasoning for the Evaluation
Expansion Joint (Primary)	Abnormal Space/Noise		Space of expansion joints are closed abnormally.
Drainage Pipe	Clogged		Drainage pipes are completely clogged with dusts and sand.
River Condition (Secondary)	Scouring		Pile foundations are exposed by local scoring and its piles are projected.

Main Features of the Bridge

