Republic of the Philippines

Detailed Design Study Report of New Bohol Airport Construction and Sustainable Environment Protection Project

Final Report

September 2013

Japan International Cooperation Agency (JICA)

Japan Airport Consultants, Inc. (JAC) Nippon Koei Co., Ltd. (NK) NJS Consultants Co., Ltd. (NJS) Joint Venture

Exchange Rate of Currency US\$ 1.00 = ¥ 98.9 US\$ 1.00 = PHP 43 PHP 1.00 = ¥ 2.3 Application Date: As of September 2013

Table of Contents

Table of Contents

CHAPTER 1 BACKGROUND OF THE PROJECT

1.1. Precedents	1-1
1.2. Roles tasked in the New Airport Construction	1-2
1.3. Air Transportation in the entire Philippines	1-4
1.4. Air Transportation in the Central Philippines	1-6
1.5. Current Situation of the Exiting Bohol-Tagbilaran Airport 1.5.1. General	1-8
1.5.2. Airside Facilities	1-8
1.5.3. Landside Facilities	1-9
1.5.4. Air Navigation Facilities	1-10
1.5.5. Flight Information Advisory Service by CAAP	1-11
1.5.6. Problem of the existing Tagbilaran Airport	1-16
1.6. Selection of New Airport Site 1	1-22

CHAPTER 2 CURRENT CONDITIONS OF CONSTRUCTION SITE

2.1. Geological Conditions	2-1
2.1.1. Previous Geological Survey conducted in 2009	2-1
2.1.2. Additional Geological Survey conducted in 2013	2-9
2.1.3. Observations and Findings	2-108
2.2. Weather Conditions	2-110
2.3. Airspace Conditions	2-123
2.3.1. Obstacle Limitation Surfaces 2	2-123
2.3.2. Topography and Navigation Warnings 2	2-125
2.3.3. Air Traffic Flow 2	2-125
2.3.4. Airspace Classification 2	2-127
2.4. Noise Pollution Aspect 2	2-129

CHAPTER 3 FACILITY REQUIREMENTS AND MASTER PLAN

3.1. Design Ye	ar		3-1
3.2. Air Traffic	Demand Forecast		3-1
3.2.1. Ann	ual Passenger Traffic Demand		3-1
3.2.2. Pea	k-Hour Air Passengers Demand	d	3-2
3.2.3. Flee	et Plan of Major Domestic Airline	es in the Philippines	3-3

	3.2.4. Development Feature determined by DOTC 3.2.5. Simulated Flight Schedule	
3.3.	Runway Length	3-7
3.4.	Utilities	3-11 3-12
3.5.	Rescue and Fire Station	3-13
3.6.	Summary of Airport Facility Requirements	3-15
3.7.	 3.7.2. Review of Airfield Separation Distances 3.7.3. Aircraft Parking Configuration 3.7.4. Layout Plan of Terminal Facilities 3.7.5. Road and Car Park 	3-16 3-17 3-20 3-22 3-23
	3.7.6. Phase-1 Airport Layout Plan	3-24

CHAPTER 4 DESIGN OF CIVIL WORKS

4.1. Geometric Design of Airside Infrastructure	4-1
4.1.1. Design Aircraft	4-1
4.1.2. Runway	4-1
4.1.3. Taxiways	4-4
4.1.4. Apron	4-5
4.2. Longitudinal and Transversal Profile Design	4-7
4.2.1. Existing Terrain	4-7
4.2.2. Runway Profile	4-7
4.2.3. Transversal Slope and Grading	4-7
4.3. Pavement Works	4-18
4.3.1. General ·····	4-18
4.3.2. Aircraft Movement Area	4-18
4.3.3. Road Pavements	4-23
4.4. Drainage ·····	4-27
4.4.1. Design Conditions and Formula	4-27
4.4.2. Drainage for Airside	4-29
4.4.3. Soaking Yard	4-31

	4.4.4. Drainage for Terminal Area4.4.5. Airport Drainage Plan	
4.5.	Miscellaneous Facilities	4-46
	4.5.1. Curbstone and Gutter	4-46
	4.5.2. Fence and Gate	4-47
4.6.	Landscaping	4-48
	4.6.1. Basic Concept	4-48
	4.6.2. Landscape as the Tropical Island Airport	4-48
	4.6.3. Growing Trees and Plants by Recycling Waste Water	4-49
	4.6.4. Interphase with ECC	4-50

CHAPTER 5 DESIGN OF UTILITY WORKS

5.1.	Water Supply System	5-1
	5.1.1. General ·····	5-1
	5.1.2. Water Demand Projection	5-2
	5.1.3. Water Source	5-2
	5.1.4. Storage Facilities	5-3
	5.1.5. Water Distribution System	5-3
	5.1.6. Exterior Fire Protection System	5-4
	5.1.7. Study on the possible conversion of Rainfall to Potable Water	5-7
5.2.	Power Supply System ·····	5-10
	5.2.1. System Summary	5-10
	5.2.2. Power Distribution System ·····	5-10
	5.2.3. Emergency Generators	
	5.2.4. Solar Power Generation System	5-16
	5.2.5. External Lighting System	5-26
5.3.	Sewage Treatment System	5-27
	5.3.1. System Summary	5-27
	5.3.2. Design for Sewage Treatment Plant (STP)	5-27
	5.3.3. Sewage Collection System Design	5-38

CHAPTER 6 DESIGN OF BUILDING WORKS

6.1. Passenger Terminal Building (Subcomponent B1)	·· 6-2
6.1.1. Architectural Works	·· 6-2
6.1.2. Electrical Works	6-17
6.1.3. Mechanical Works	6-20
6.2. Control Tower, ATC Operation & Administration Building (ATC) (Subcompone	,
	6-26

	6.2.1. Architectural Works	
	6.2.2. Electrical Works	6-30
	6.2.3. Mechanical Works	6-31
6.3.	Fire Station & Maintenance Building (FSM) (Subcomponent B4)	6-36
	6.3.1. Architectural Works	
	6.3.2. Electrical Works	6-37
	6.3.3. Mechanical Works	6-38
6.4.	Ancillary Buildings (ACB) (Subcomponent B5)	6-40
	6.4.1. Architectural Works	6-40
	6.4.2. Electrical Works	6-41
	6.4.3. Mechanical Works	6-41
6.5.	Utility Buildings (ULB) (Subcomponent B6)	6-43
	6.5.1. Water Tank and Pump House (WPH) (Sub-component B61)	6-43
	6.5.2. Power House (PWH) (Subcomponent B62)	6-45
	6.5.3. Sewage Treatment Plant Control Room (STP) (Subcomponent B63) \cdots	6-49
	6.5.4. Material Recovery Facility (MRF) (Subcomponent B64)	6-52
6.6.	Navaids Buildings (NAV) (Subcomponent B7)	6-54
	6.6.1. Architectural Works	6-54
	6.6.2. Electrical Works	6-55
	6.6.3. Mechanical Works	6-55

CHAPTER 7 DESIGN OF BUILDING STRUCTURES

	74
7.1. Basis of Design	
7.1.1. Codes & Standards and Design References	7-1
7.1.2. Materials	7-1
7.2. Design Considerations and Analysis	7-2
7.2.1. Deign Loadings ·····	7-2
7.2.2. Load Combinations	7-6
7.3. Analysis	7-7
7.3.1. Vertical Load Analysis	7-7
7.3.2. Lateral Load Analysis	7-8
7.4. Design of Reinforced Concrete Frame Members	7-10
7.4.1. Design of Frame Beams	7-10
7.4.2. Design of Beam-Column Joints	7-10
7.4.3. Design of Columns	7-11
7.4.4. Design of Shear Walls	7-11
7.4.5. Soil Bearing Capacity for Design	

7.5. Section Size of Main Structural Elements for Major Buildings 7-12

CHAPTER 8 DESIGN OF AIR NAVIGATION FACILITIES

8.1.	General	
	8.1.1. Facilities for Basic Design	8-1
8.2.	Radio Navigation Aids	
	8.2.1. ILS	8-5
	8.2.2. VOR/DME	8-10
8.3.	ATS and Telecommunication Facilities	
	8.3.1. Control Consoles and VCCS	8-11
	8.3.2. Telecommunication	8-13
8.4.	Meteorology Facilities	8-15
	8.4.1. Aeronautical Weather Observation System	8-15
	8.4.2. Weather Data Processing and Display System	8-16
8.5.	Visual Aids	8-18
	8.5.1. Precision Approach Lighting System (PALS) (RWY 21 side)	8-20
	8.5.2. Simple Approach Lighting System (SALS) (RWY 03 side)	8-20
	8.5.3. PAPI System ·····	8-21
	8.5.4. Runway Edge Lights	8-22
	8.5.5. Runway Threshold and Wing Bar Lights, Runway End Lights	8-22
	8.5.6. Stopway Edge Lights	8-23
	8.5.7. Turning Point Indicator Lights	8-23
	8.5.8. Taxiway Edge Lights	8-24
	8.5.9. Taxiing Guidance Signs	8-24
	8.5.10. Apron Floodlighting	8-25
	8.5.11. Aerodrome Beacon	8-25
	8.5.12. Wind Direction Indicators Light	8-25
	8.5.13. Monitoring and Control System	8-26

CHAPTER 9 DESIGN OF EXTERNAL WATER SUPPLY

9.1.	Design Conditions	9-1
	9.1.1. Method of Water Supply to the Airport	9-1
	9.1.2. Water Supply System Development Plan	9-1
9.2.	. Water Demand	9-2
	9.2.1. Designed Water Demand for the Airport	9-2
	9.2.2. Designed Water Demand for Resettlement Area	9-3
9.3.	. Premise for Facility Plan	9-4
	9.3.1. Facility Plan	9-4

9.3.2. Equipment Plan	9-5
9.4. Facility Design	9-8
9.4.1. Pipeline Design ·····	9-8
9.4.2. Receiving Tank and Relay Tank	9-10
9.4.3. Structural Plan	9-11
9.4.4. Transmission Pump ·····	9-12
9.4.5. Outline of Major Facilities	9-12
9.5. Construction Sites for Receiving Tank and Relay Tank	9-21
9.5.1. Receiving Tank Construction Site	9-21
9.5.2. Relay Tank Construction Site	9-21
9.6. Concept of Cost Estimate	9-22
9.7. Procurement and Implementation Schedule	9-23
9.7.1. Procurement Plan ·····	9-23
9.7.2. Implementation Plan	9-23

CHAPTER 10 CONSTRUCTION PLAN

10.1. Activity Schedule before Commencement of Construction	10-1
10.2. Temporary Works	10-2
10.2.1. Access to Construction Site and Care of Habitants	10-2
10.2.2. Temporary Construction Yard	10-3
10.2.3. Temporary Drainage	10-4
10.3. Geological Conditions of the Site	10-5
10.3.1. Summary of Geotechnical Survey	10-5
10.3.2. Further Investigation for Possible Cavity	10-9
10.4. Airport Drainage	10-10
10.4.1. Aeronautical Area	10-10
10.4.2. Soaking Yard	10-11
10.5. Earthwork	10-13
10.6. Execution Plan	10-15
10.6.1. Delivery of Raw Materials	10-15
10.6.2. Batching Plants	10-16
10.6.3. Major Quantities of Building Works	10-16
10.7. Preliminary Construction Schedule	10-18

CHAPTER 11 PROJECT COST AND PROCUREMENT PLAN

11.1. Project Cost ·····	11-1
11.1.1. Construction Cost estimated through the Detailed Design	11-2
11.2. Procurement Plan	11-7

CHAPTER 12 REPORT OF IMPACT ASSESSMENT ON CLIMATE CHANGE MITIGATION

12.1. Objectives of the Assessment	12-1
12.2. Relevant Framework to Climate Change Mitigation in the Philippines	
12.2.1. Laws and Regulations	
12.2.2. Responsible Organizations	12-2
12.3. Renewable Energy and Energy Efficiency	
12.3.1. Overall Policies	
12.3.2. Renewable Energy	12-3
12.3.3. Energy Efficiency	12-4
12.3.4. Responsible Organizations	12-5
12.4. Profile of Power Supply in the Philippines	
12.4.1. Power Generation	
12.4.2. Grid Profile ·····	
12.4.3. Luzon Grid ·····	
12.4.4. Visayas Grid	
12.4.5. Mindanao Grid	12-7
12.5. Greenhouse Gas Emissions in the Philippines	12-7
12.6. Facility Conditions of Airports in the Philippines	12-8
12.6.1. Solar Power System ·····	
12.6.2. Air Conditioning System ·····	12-8
12.6.3. Water Heating System ·····	12-9
12.6.4. Lighting System ·····	12-10
12.6.5. Energy Efficient Facilities in the Bohol Airport	12-10
12.7. Estimation of Emission Reduction in the Bohol Airport	12-12
12.7.1. Emission Boundary in Estimation of Emission Reduction	
12.7.2. Baseline Scenario in Estimation of Emission Reduction	
12.7.3. Reduced Amount of Electricity Consumption	
12.8. Reduced Amount of CO2 Emissions	12-18
12.8.1. Reduction by Installation of Solar Power System	-
12.8.2. Reduction by Installation of VRF Air-Conditioning System	12-10
12.8.3. Reduction by Installation of Solar Water Heating System	12-10

12.8.4. Reduction by Installation of Energy Efficient Lighting System	12-19
12.8.5. Leakage Emissions (Emissions from Diesel Generator)	12-19

12.9. Total Emission Reduction in the Bohol Airport 12-20

CHAPTER 13 REPORT ON ENVIRONMENT & SOCIAL CONSIDERATIONS

13.1. Introduction	13-1
13.2. Environmental Compliance Certificate	13-1
13.2.1. DENR Administrative Order (DAO) 2003-30	
13.2.2. Revised ECC (R07-0804-0133-25) Dated 16 April, 2013	
13.2.3. New Conditions of Revised ECC	
13.3. Environmental Management Plan	13-4
13.3.1. Impact Management Plan ·····	
13.4. Environmental Monitoring Plan (EMoP)	
13.4.1. General ·····	
13.4.2. Self-Monitoring Plan	
13.4.3. Multi-sectoral Monitoring Framework	13-18
13.5. Solid Waste Management Plan	13-23
13.5.1. Introduction	13-23
13.5.2. Construction Phase	13-24
13.5.3. Operation Phase	13-27
13.5.4. Solid Waste Management Plan at Panglao Island	13-39
13.6. Social Development Plan	13-42
13.6.1. Introduction	13-42
13.6.2. Programs during Airport Construction and Operations Phases	13-42
13.6.3. Medium-term and Long-term Social Development Plan	
13.7. Information, Education and Communication (IEC) Plan	
13.7.1. Present Situation	13-45
13.8. Biodiversity Conservation Plan	13-52
13.8.1. Introduction ·····	13-52
13.8.2. Environmental Conditions in Panglao Island	13-52
13.8.3. Arranging Scenery Plan at the Site by Seedlings	13-53
13.8.4. National Green Program	
13.8.5. Panglao Green Program Prepared by LPMO-TWG	13-58
13.9. Recommendation from JICA Advisory Committee	13-66
13.8.1. Soaking Yard	13-66
13.8.2. Seedlings ·····	13-66
13.8.3. Recycling Waste Water System	

13.8.4. Hot Water Supply System	 13-67
	10.07

CHAPTER 14 REVIEW AND IMPLMENTATION OF RESETTLEMENT ACTION PLAN (RAP)

14.1. Introduction ·····	
14.1.1. Scope of Work ·····	14-1
14.1.2. Implementing Structure of JICA Study Team	14-1
14.2. Status of Land Acquisition and Resettlement	14-2
14.2.1. Scale and Progress of Land Acquisition	14-2
14.2.2. Status of Resettlement and Preparation of Resettlement Site	14-3
14.2.3. Schedule and Progress of RAP Activities	14-6
14.3. Activities Assisted by the JICA Study Team	14-9
14.3.1. Re-organization of Local Project Management Team (LPMT)	14-9
14.3.2. Information Dissemination on the Project	14-10
14.3.3. Reflecting Social Considerations in Detailed Design and Construction	
Process of the New Airport	14-10
14.3.4. Formulation of Entitlement Package on Resettlement	14-13
14.3.5. Preparation of Livelihood Restoration Program	14-14
14.3.6. Update of Resettlement Action Plan (RAP)	
14.4. Activities Assisted by the JICA Study Team	
14.4.1. Land Acquisition	14-18
14.4.2. Resettlement Site Preparation and Relocation	14-19
14.4.3. Management of Resettlement Site	
14.4.4. Enhancement of Grievance Redress Mechanism	14-21
14.4.5. Strengthening Monitoring System	14-21

List of Illustrations

CHAPTER 1 BACKGROUND OF THE PROJECT

Figure 1.3-1 Location of Airports in the entire Philippines	• 1-4
Figure 1.4-1 Location of Airports in the Central Philippines	• 1-6
Figure 1.5-1 Airfield Layout of Tagbilaran Airport	• 1-8
Figure 1.5-2 FSS Tower and VFR Room at Tagbilaran Airport	1-12
Figure 1.5-3 Topography around Tagbilaran Airport	1-13
Figure 1.5-4 Runway 17 and Hilly Terrain for Runway 35 Approach	1-14
Figure 1.5-5 Approach/Departure Traffic Circuit Chart for Tagbilaran Airport	1-14
Figure 1.5-6 Properties affected by Tagbilaran Airport development	1-19
Figure 1.5-7 Noise Contour (WECPNL) if Tagbilaran Airport is developed	1-20
Figure 1.5-8 Possible Noise pollution, if Tagbilaran Airport is developed	1-20
Figure 1.5-9 Obstacle Limitation Surface (Virtual Image) at Tagbilaran Airport	1-21
Figure 1.6-1 Alternative Sites for New Bohol Airport (in 2000 FS)	1-22

CHAPTER 2 CURRENT CONDITIONS OF CONSTRUCTION SITE

Figure 2.1-1 Potential Cavity suspected through GPR Survey (in 2009) 2-1
Figure 2.1-2 (1) Boreholes and Test Pits investigated in May & August 2009 along Runway & Taxiways 2-3
Figure 2.1-2 (2) Boreholes and Test Pits investigated in May & August 2009 along Runway & Taxiways 2-4
Figure 2.1-2 (3) Boreholes and Test Pits investigated in May & August 2009 at Terminal Area 2-5
Figure 2.1-3 (1) Runway Centerline Profile with Borehole and Test Pit logs (sta. 420 m – 1,140 m) 2-6
Figure 2.1-3 (2) Runway Centerline Profile with Borehole and Test Pit logs (sta. 1,140 m - 1,860 m) 2-7
Figure 2.1-3 (3) Runway Centerline Profile with Borehole and Test Pit logs (sta. 1,860 m - 2,560 m) 2-8
Figure 2.1-4 Location of Additional 48 Boreholes 2-9
Figure 2.1-5 Runway Pavement Structure 2-108
Figure 2.1-6 Philosophy of Design Load for Asphalt Pavement (B777-300) 2-109
Figure 2.3-1 Obstacle Limitation Surface (1) 2-123
Figure 2.3-2 Obstacle Limitation Surface (2) 2-124
Figure 2.3 3 Topography around Panglao Island 2-125
Figure 2.3-4 Assumed Traffic Flow for New Bohol Airport 2-126

Figure 2.4-1 Noise Contour (WECPNL) for New Bohol Airport at Panglao 2-129

CHAPTER 3 FACILITY REQUIREMENTS AND MASTER PLAN

Figure 3.2-1 Simulated Flight Schedule at New Bohol Airport [Medium Case] (2020)	3-4
Figure 3.2-2 Simulated Flight Schedule at New Bohol Airport [Medium Case] (2025)	3-5
Figure 3.2-3 Simulated Flight Schedule at New Bohol Airport [Medium Case] (2030)	3-5
Figure 3.2-4 Simulated Flight Schedule at New Bohol Airport [Medium Case] (2035)	3-6
Figure 3.2-5 Simulated Flight Schedule at New Bohol Airport [Medium Case] (2040)	3-6
Figure 3.3-1 Distance to Regional Cities from Bohol	-8
Figure 3.5-1 Location of Fire station; and Distance to Runway ends	13
Figure 3.7-1 Separation of Apron and Buildings from Code E Runway 3-2	20
Figure 3.7-2 Terminal Area Site Plan 3-2	22
Figure 3.7-3 Proposed Airport Layout Plan 3-2	25

CHAPTER 4 DESIGN OF CIVIL WORKS

Figure 4.1-1 Runway End Safety Area (240 m from the end of runway strip) 4-3
Figure 4.1-2 Width and Length of Turning Pad for A300-300 4-3
Figure 4.1-3 Proposed Taxiway Width with required Fillet for A330-300 4-4
Figure 4.1-4 Separation between Runway and Taxiways 4-7
Figure 4.2-1 Existing Topography 4-8
Figure 4.2-2 (1) Runway Profile (Sta. 440 ~ 1,140 m) 4-9
Figure 4.2-2 (2) Runway Profile (Sta. 1,140 m ~ 1,860 m) 4-10
Figure 4.2-2 (3) Runway Profile (Sta. 1,860 m ~ 2,560 m) 4-11
Figure 4.2-3 (1) Typical Cross Section - Sta. 0-900 (Soaking Yard) 4-12
Figure 4.2-3 (2) Typical Cross Section - Sta. 0+500 (Runway03 Threshold) 4-12
Figure 4.2-3 (3) Typical Cross Section - Sta.0+800 (PTB Area) 4-12
Figure 4.2-3 (4) Typical Cross Section - Sta.1+100 (Area in front of Tower) 4-12
Figure 4.2-3 (5) Typical Cross Section - Sta.1+400 (around middle of Runway) ··· 4-13
Figure 4.2-3 (6) Typical Cross Section - Sta.2+000 (Touchdown Area for Runway 22) 4-13
Figure 4.2-3 (7) Typical Cross Section - Sta.2+500 (Runway22 Threshold) ····· 4-13
Figure 4.2-3 (8) Typical Cross Section - Sta.2+700 (Approach Lighting) 4-13
Figure 4.2-4 (1) Airside Grading Plan – South-west end (1st quarter) 4-14
Figure 4.2-4 (2) Airside Grading Plan – South-west (2nd quarter) 4-15
Figure 4.2-4 (3) Airside Grading Plan – North-east 3rd quarter 4-16
Figure 4.2-4 (4) Airside Grading Plan – North-east end (4th quarter) 4-17
Figure 4.3-1 Annual Departures for design Aircraft 4-19

Figure 4.3-2 Thickness of Flexible Pavement - Runway	4-19
Figure 4.3-3 Thickness of Flexible Pavement - Taxiway	4-20
Figure 4.3-4 Thickness of Rigid Pavement – Apron	4-20
Figure 4.3-5 Runway Pavement Structure	4-22
Figure 4.3-6 Taxiway Pavement Structure	4-22
Figure 4.3-7 Pavement Structure at Apron and GSE Road	4-23
Figure 4.3-8 Apron Pavement Structure	4-23
Figure 4.3-9 Road and Car Park Pavement Structure	4-24
Figure 4.3-10 Aeronautical Areas Pavement Layout Plan	4-25
Figure 4.3-11 Terminal Areas Pavement Layout Plan	4-26
Figure 4.4-1 Riprap Open Canal for Aeronautical Area	4-29
Figure 4.4-2 Reinforced Concrete Pipe	4-30
Figure 4.4-3 Filtration Bank for Aeronautical Area	4-30
Figure 4.4-4 Filtration Bank on Soaking Yard	4-31
Figure 4.4-5 Drainage Catchment Areas	4-33
Figure 4.4-6 (1) Drainage Layout Plan for Aeronautical Areas	4-39
Figure 4.4-6 (2) Drainage Layout Plan for Aeronautical Areas	4-40
Figure 4.4-6 (3) Drainage Layout Plan for Aeronautical Areas	4-41
Figure 4.4-7 (1) Drainage Layout Plan for Terminal Areas	4-42
Figure 4.4-7 (2) Drainage Layout Plan for Terminal Areas	4-43
Figure 4.4-8 (1) Drainage Facility Detail for Terminal Areas	4-44
Figure 4.4-8 (2) Drainage Facility Detail for Terminal Areas	4-44
Figure 4.4-8 (3) Drainage Facility Detail for Terminal Areas	4-45
Figure 4.4-9 Oil Separator for Terminal Area	4-45
Figure 4.5-1 Curbstone and Gutter	4-46
Figure 4.5-2 Typical Plan, Section and Elevation of Perimeter Fence and Gate \cdots	4-47
Figure 4.6-1 Planting Plan of Car Parking	4-51
Figure 4.6-2 Planting Plan of Courtyard (PTB Airside)	4-52
Figure 4.6-3 Sodding Layout Plan	4-52
Figure 4.6-4 Irrigation Plan of Landside	4-53

CHAPTER 5 DESIGN OF UTILITY WORKS

Figure 5.1-1 Flow Diagram of Water Supply System	5-1
Figure 5.1-2 Layout of Water Tank and Pump Facilities	5-5
Figure 5.1-3 Layout and Section of Pump Room	5-6

Figure 5.1-4 Possible Rain fall Reservoir Tank under PTB (Baggage make-up area)	5-8
Figure 5.1-5 Possible Single Line Diagram for Water Purifier	· 5-8
Figure 5.2-1 Power Supply System Line Diagram	5-13
Figure 5.2-2 Power House Layout Plan	5-15
Figure 5.2-3 Energy Mix of Luzon-Visayas Power System (Capacity Basis)	5-25
Figure 5.3-1 Location of STP	5-29
Figure 5.3-2 STP Process Flow Diagram	5-30
Figure 5.3-3 Mass-Balance Sheet	5-32
Figure 5.3-4 STP Layout Plan	5-35
Figure 5.3-5 STP Hydraulic Profile	5-36
Figure 5.3-6 Sewer Pipe Plan Drawing	5-40

CHAPTER 6 DESIGN OF BUILDING WORKS

Figure 6.1-1 Ground Floor Plan of Passenger Terminal Building (With Passengers Diagram)	Flow 6-12
Figure 6.1-2 Airside Elevation of Passenger Terminal Building	6-13
Figure 6.1-3 Cross Section of Passenger Terminal Building	6-14
Figure 6.1-4 Roof Plan of Passenger Terminal Building	6-15
Figure 6.2-1 Floor Plan of ATO Facilities	6-28
Figure 6.2-2 Elevation of ATO Facilities	6-29
Figure 6.2-3 Cold Water Supply Piping System Schematic Diagram	6-32
Figure 6.2-4 Solar Water Heater	6-33
Figure 6.2-5 Sewer & Vent System Schematic Diagram	6-33
Figure 6.2-6 Storm Drainage Piping System Schematic Diagram	6-34
Figure 6.3-1 Layout Plan of Fire Station and Maintenance Building	6-37
Figure 6.4-1 Layout Plan of Drivers Lounge and Car Park Toilets	6-40
Figure 6.4-2 Layout Plan of Guardhouses	6-40
Figure 6.4-3 Layout Plan of Tollbooths	6-41
Figure 6.5-1 Floor Plan of Water tank and Pump House	6-43
Figure 6.5-2 Floor Plan of Power House	6-46
Figure 6.5-3 Plan View of STP Control Room	6-49
Figure 6.5-4 Floor Plan of MRF	6-52
Figure 6.6-1 Basic Plans of 3 Facilities	6-54

CHAPTER 8 DESIGN OF AIR NAVIGATION FACILITIES

Figure 8.1-1 ANS, ATS and MET Facilities Layout Plan	 8-4
	• •

Figure 8.2-1 Radio Navigation Aids System Diagram	• 8-7
Figure 8.2-2 LLZ Site Layout Plan	• 8-8
Figure 8.2-3 GS/T-DME Site Layout Plan	• 8-9
Figure 8.2-4 VOR/DME Facility Layout Plan	8-11
Figure 8.3-1 ATS and Telecommunication Schematic System Diagram	8-14
Figure 8.4-1 Schematic Diagram for Aeronautical Weather Observation System $ \cdot \cdot $	8-17
Figure 8.5-1 Visual Aids Facilities Layout Plan	8-19
Figure 8.5-2 PALS Layout Plan	8-20
Figure 8.5-3 SALS Layout Plan	8-21
Figure 8.5-4 PAPI Layout Plan	8-22
Figure 8.5-5 Threshold and End Lights Layout Plan	8-23
Figure 8.5-6 Taxiway Edge Lights and Taxing Guidance Signs Layout Plan	8-24
Figure 8.5-7 Schematic Diagram for Aeronautical Weather Observation System	8-26

CHAPTER 9 DESIGN OF EXTERNAL WATER SUPPLY

Figure 9.1-1 Water Supply Scheme to Airport and Resettlement Area	· 9-2
Figure 9.3-1 Water Supply System for Airport and Resettlement Area	· 9-7
Figure 9.4-1 Schematic Drawing for Hydraulic Calculation Modeling	• 9-9
Figure 9.4-2 Water Supply Facilities Plan	9-14
Figure 9.4-3 Receiving Tank General Arrangement Drawing	9-15
Figure 9.4-4 Receiving Tank General Drawing	9-16
Figure 9.4-5 Pump House General Drawings	9-17
Figure 9.4-6 Emergency Power Generator House General Drawing	9-18
Figure 9.4-7 Relay Tank General Arrangement Drawing	9-19
Figure 9.4-8 Relay Tank General Drawing	9-20
Figure 9.5-1 Receiving Tank Site	9-21
Figure 9.5-2 Relay Tank Site	9-22
Figure 9.7-1 Scope of Project Division	9-25
Figure 9.7-2 Construction Schedule (DOTC Fund)	9-26

CHAPTER 10 CONSTRUCTION PLAN

Figure 10.2-1 Remaining Houses and Barangay Road	10-3
Figure 10.2-2 Proposed Temporary Construction Yard	10-4
Figure 10.2-3 Temporary Ditch, Rainfall Detention and Soaking Yard	10-5
Figure 10.3-1 (1) Typical Soil at North-east side of Runway (Borehole BH-31)	10-6
Figure 10.3-1 (2) Typical Soil at North-east side of Runway (Borehole BH-31)	10-7

Figure 10.3-2 Typical Soil at South-west side of Runway (Borehole BH-18) 10-	7
Figure 10.3-3 Typical soil at Soaking Yard (Borehole BH-45) 10-	8
Figure 10.3-4 Location for Further Borehole Investigations 10-	9
Figure 10.4-1 Drainage Facilities at Aeronautical Area 10-1	0
Figure 10.4-2 Filtration Bank at Aeronautical Area 10-1	1
Figure 10.4-3 Filtration Bank at Soaking Yard 10-1	2
Figure 10.5-1 Typical Cross Section - Sta. 0-900 (Soaking Yard) 10-1	3
Figure 10.5-2 Runway Cross Section - Sta. 0+500 (Runway03 Threshold) 10-1	3
Figure 10.5-3 Runway Cross Section - Sta.0+800 (PTB Area) 10-1	3
Figure 10.5-4 Runway Cross Section - Sta.1+100 (Area in front of Tower) 10-1	4
Figure 10.5-5 Runway Cross Section - Sta.1+400 (around middle of Runway) ····· 10-1	4
Figure 10.5-6 Runway Cross Section - Sta.2+000 (Touchdown Area for Runway 22)10-7	4
Figure 10.5-7 Runway Cross Section - Sta.2+500 (Runway22 Threshold) 10-1	5

CHAPTER 12 REPORT OF IMPACT ASSESSMENT ON CLIMATE CHANGE MITIGATION

Figure 12.2-1 Framework of the National Climate Change Action Plan	12-2
Figure 12.2-2 Organizational Structure of the Climate Change Commission	12-3
Figure 12.4-1 Location of Three Grids	12-6
Figure 12.6-1 Power Supply and Energy Efficient Equipment in the Bohol Airport	12-11
Figure 12.7-1 Baseline and Project Scenarios of Solar Power System	12-13
Figure 12.7-2 Baseline and Project Scenarios of Air-Conditioning System	12-13
Figure 12.7-3 Baseline and Project Scenarios of Solar Water Heating System …	12-14
Figure 12.7-4 Baseline and Project Scenarios of Energy Efficient Lighting S	

CHAPTER 13 REPORT ON ENVIRONMENT & SOCIAL CONSIDERATIONS

Figure 13.4-1 Location of Monitoring Stations of Water, Air & Noise 13-18

CHAPTER 14 Review AND IMPLEMENTATION OF RESETTLEMENT ACTION PLAN (RAP)

Figure 14.1-1 Implementing Structure of 'Review and Implementation of RAP' und Study	
Figure 14.2-1 Progress of Land Acquisition and Airport Layout (June 2013)	14-3
Figure 14.2-2 Distribution of 45 Families Need to Resettle (June 2013)	14-4
Figure 14.2-3 Resettlement Site Plan by BPG (71 Plots)	14-5
Figure 14.3-1 Transition of Width of Airfield and Alignment of Access Road	14-11
Figure 14.3-2 Explanation on Passage of Barangay Roads during Construction	14-12

List of Tabulations

CHAPTER 1 BACKGROUND OF THE PROJECT

Table 1.3-1 Nationwide Air traffic record in the Philippines ••••••••••••••••••• 1	-5
Table 1.4-1 Domestic Air Traffic Record at major 10 Airports in the Central Philippines1	-7
Table 1.5-1 General Information of Tagbilaran Airport ••••••••••••••••••••••••••••••••••••	-8
Table 1.5-2 Airfield Facilities at Tagbilaran Airport 1	-9
Table 1.5-3 Landside facilities at Tagbilaran Airport	-9
Table 1.5-4 ATS and Telecommunication 1-	11
Table 1.5-5 Meteorological Facilities 1-	11
Table 1.5-6 Aeronautical Ground Lights	11
Table 1.5-7 Situation and Problem at Tagbilaran Airport	16
Table 1.6-1 Evaluation of Alternative Construction Sites 1-2	23

CHAPTER 2 CURRENT CONDITIONS OF CONSTRUCTION SITE

Table 2.1-1 General Relationship between N-value and Subsoil Bearing Strength	2-108
Table 2.2-1 Number of rainy days in each month of the year	2-110
Table 2.2-2 Number of rainy days in each month of the year	2-110
Table 2.2-3 (1) Daily Weather Data at Tagbilaran City in June 2010	2-111
Table 2.2-3 (2) Daily Weather Data at Tagbilaran City in July 2010	2-112
Table 2.2-3 (3) Daily Weather Data at Tagbilaran City in August	2-113
Table 2.2-3 (4) Daily Weather Data at Tagbilaran City in September 2010	2-114
Table 2.2-3 (5) Daily Weather Data at Tagbilaran City in October 2010	2-115
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010	2-116
Table 2.2-3 (7) Daily Weather Data at Tagbilaran City in December 2010	2-117
Table 2.2-3 (8) Daily Weather Data at Tagbilaran City in January 2011	2-118
Table 2.2-3 (9) Daily Weather Data at Tagbilaran City in February 2011	2-119
Table 2.2-3 (10) Daily Weather Data at Tagbilaran City in March 2011	2-120
Table 2.2-3 (11) Daily Weather Data at Tagbilaran City in April 2011	2-121
Table 2.2-3 (12) Daily Weather Data at Tagbilaran City in May 2011	2-122
Table 2.3-1 Airspace Classification in Manila FIR	2-127
Table 2.3 2 Requirements for the flights within each class of airspace	2-127
Table 2.3-3 ATS Airspace Class-Services Provided & Flight Requirements	2-128
Table 2.3-4 Airspace Classification of Bacolod & Iloilo Airport	2-128

CHAPTER 3 FACILITY REQUIREMENTS AND MASTER PLAN

Table 3.2-1 Annual Passenger Traffic Forecast ·······	3-1
Table 3.2-2 Peak Hour Air Traffic Demand at New Bohol Airport (Medium Case) \cdots	3-2
Table 3.2-3 Short-term Fleet Plan of major domestic Airlines in the Philippines	3-3
Table 3.3-1 Required Runway Length by ICAO Category of Aircraft	3-9
Table 3.3-2 Comparison of Design Aircraft	3-10
Table 3.4-1 Water Demand Projection for 2020	3-11
Table 3.4-2 Projected Design Sewage Flow	3-12
Table 3.5-1 Response Time of Fire Fighting Vehicles ····································	3-14
Table 3.6-1 Facility Requirements for New Bohol Airport	3-15
Table 3.7-1 Alternative Locations of Phase-1 Runway	3-16
Table 3.7-2 Alternative Study on Location of Phase-1 Runway	3-17
Table 3.7-3 Review of Airfield Separation Distances	3-18
Table 3.7-4 Chronological Summary in the planned Location of Access Road ·····	3-19
Table 3.7-5 Typical Aircraft Parking Patterns	3-21

CHAPTER 4 DESIGN OF CIVIL WORKS

Table 4.1-1 Design Aircraft in each category of ICAO code	· 4-1
Table 4.1-2 ICAO Annex 14 (Aerodrome Reference Code and Width of Runway) ·	4-2
Table 4.1-3 ICAO Annex 14 (Runway End Safety Area)	· 4-3
Table 4.1-4 ICAO Annex 14 (Taxiway Minimum Separation Distances)	· 4-5
Table 4.1-5 Dimension of Apron	· 4-6
Table 4.3-1 Annual Departures of Design Aircraft	4-18
Table 4.3-2 FAA's Subgrade Compaction Requirements for Flexible Pavement \cdots	4-21
Table 4.4-1 Rainfall Intensity-Duration-Frequency Data for Tagbilaran City	4-27
Table 4.4-2 (1) Airport Drainage Computation – Catchment Areas a and b	4-34
Table 4.4-2 (2) Airport Drainage Computation – Catchment Area c	4-35
Table 4.4-2 (3) Airport Drainage Computation – Catchment Area subdivision c5 \cdots	4-36
Table 4.4-2 (4) Airport Drainage Computation – Catchment Area c6	4-37
Table 4.4-2 (5) Airport Drainage Computation – Catchment Area c7	4-38

CHAPTER 5 DESIGN OF UTILITY WORKS

Table 5.1-1 Water Demand Projection	5-2
Table 5.1-2 Possible collectible rainfall and Cost Saving	5-7
Table 5.2-1 Total Load for the Airport	5-12
Table 5.2-2 Horizontal Solar Insolation Data by NASA	5-16
Table 5.2-3 Temperature (Max. and Min.) and Rainfall	5-17

Table 5.2-4 Possible Capacity and Size of Product of Japanese Manufacturer	5-19
Table 5.2-5 Road Lighting – Required Average Horizontal Illuminance	5-26
Table 5.3-1 Projected Design Sewage Flow	5-27
Table 5.3-2 Planed Influent Sewage Quality	5-28
Table 5.3-3 STP Design Quality	5-28
Table 5.3-4 Design Value of Necessary Volume of Tanks	5-33
Table 5.3-5 Recommended Tank Dimensions	5-33
Table 5.3-6 Equipment Specifications	5-34
Table 5.3-7 Hydraulic Calculations	5-38
Table 5.3-8 Location, Minimum Size, and Maximum Spacing of Manhole	5-38
Table 5.3-9 Minimum Depth of Cover and Alignment	5-38
Table 5.3-10 Flow Calculation (2020)	5-39
Table 5.3-11 Flow Calculation (2040)	5-39

CHAPTER 6 DESIGN OF BUILDING WORKS

Table 6.1-1 Floor Area Summary of Passenger Terminal Building	6-2
Table 6.1-2 Location of Flight information display system	6-16
Table 6.2-1 Runway Threshold Elevation	6-27
Table 6.2-2 Required Eye Level	6-27
Table 6.2-3 Floor Area of Control Tower, ATC Operation and Administration Building	6-29
Table 6.2-4 Service List of Plumbing	6-31
Table 6.3-1 Floor Area for Fire Station and Maintenance Building	6-37
Table 6.3-2 Service List of Plumbing	6-38
Table 6.4-1 Service List of Mechanical Works	6-41
Table 6.5-1 Floor Areas of Water Tank and Pump House ••••••••••••••••••••••••••••••••••••	6-43
Table 6.5-2 Floor Area Power House	6-46
Table 6.5-3 Service List of Plumbing	6-47
Table 6.5-4 Floor Area STP	6-49
Table 6.5-5 Service List of Plumbing	6-50
Table 6.5-6 Floor Area MRF	6-52
Table 6.6-1 Summary of Floor Areas for Navaids Building Structures	6-54
Table 6.6-2 Service List of Mechanical Works	6-55

CHAPTER 8 DESIGN OF AIR NAVIGATION FACILITIES

Table 8.1-1 Facility Requirements for Air Navigation Aids	8-3
Table 8.2-1 Basic Specifications of LLZ, GS & T-DME	8-6

Table 8.2-2 Basic Specifications of VOR / DME	8-10
Table 8.3-1 Basic Specifications of Control Consoles and VCCS	8-12
Table 8.3-2 Basic Specifications of Telecommunication Facilities	8-13
Table 8.4-1 Basic Specifications of AWOS	8-15
Table 8.4-2 Basic Specifications of WDPDS	8-16

CHAPTER 9 DESIGN OF EXTERNAL WATER SUPPLY

Table 9.2-1 Designed Water Demand for the Airport ••••••••••••••••••••••••••••••••••••	9-2
Table 9.2-2 Design Water Supply Amount for Resettlement Area	9-3
Table 9.3-1 Designed Water Supply Amount	9-4
Table 9.4-1 Pipe Diameter ·····	9-8
Table 9.4-2 Minimum Concrete Cover	9-11
Table 9.4-3 Outline of Major Facilities ••••••••••••••••••••••••••••••••••••	9-12

CHAPTER 10 CONSTRUCTION PLAN

Table 10.1-1 Activity Schedule before Commencement of Construction of the Proje	ect10-2
Table 10.6-1 Quantity of major Building Works	10-17
Table 10.7-1 Preliminary Construction Schedule	10-19

CHAPTER 11 PROJECT COST AND PROCUREMENT PLAN

Table 11.1-1 Base Construction Cost Estimate at JICA Preparatory Survey 11-	1
Table 11.1-2 Construction Cost estimated through the Detailed Design 11-	3
Table 11.1-3 Comparison the Base Construction Cost Estimate against those estimate through the course of JICA Preparatory Survey 11-	
Table 11.1-4 Base Construction Cost Estimate with fluctuation of Exchange Rate \cdot 11-	6
Table 11.2-1 Material, equipment and services assumed as Japanese origin 11-7	7

CHAPTER 12 REPORT OF IMPACT ASSESSMENT ON CLIMATE CHANGE MITIGATION

Table 12.1-1 Environmental Factors Considered in Development of Eco-Airport \cdots	12-1
Table 12.4-1 Power Generation in 2011	12-5
Table 12.4-2 Summary of Facilities in 2011	12-6
Table 12.4-3 Power Generation in Luzon Grid in 2011	12-6
Table 12.4-4 Power Generation in Visayas Grid in 2011	12-7
Table 12.4-5 Power Generation in Mindanao Grid in 2011	12-7
Table 12.4-6 GHG Emissions in 1994	12-8
Table 12.6-1 Airports Using Central Air-Conditioning System (Chiller)	12-8
Table 12.6-2 Water Heating System in Airports	12-9

Table 12.6-3 Specification and Quantity of LED Lamps 12	2-12
Table 12.7-1 Conditions in Estimation of Generated Electricity with Solar Power sys 12	
Table 12.7-2 Details in Estimation of Conserved Electricity with VRF Air-Conditiosystem12	
Table 12.7-3 Designed Specification of Solar Water Heating System in the Bohol Air 12	
Table 12.7-4 Details in Estimation of Consumed Electricity in Lighting System … 12	2-17
Table 12.8-1 Grid Emission Factors in the Philippines (tCO2/MWh) 12	2-18
Table 12.8-2 Emission Reduction by Installation of Solar Power System in the BAirport12	
Table 12.8-3 Emission Reduction by Installation of VRF Air-Conditioning System inBohol Airport12	
Table 12.8-4 Emission Reduction by Installation of Solar Water Heating System inBohol Airport12	
Table 12.8-5 Emission Reduction by Installation of Energy Efficient Lighting System inBohol Airport12	
Table 12.8-6 Commercial Power Failure in the Tagbilaran Airport in 2012 12	2-20
Table 12.8-7 Estimated Diesel Consumption by Generators in the Bohol Airport \cdot 12	2-20
Table 12.8-8 Total Emission Reduction in the Bohol Airport 12	2-20

CHAPTER 13 REPORT ON ENVIRONMENT & SOCIAL CONSIDERATIONS

Table 13.2-1 Conditions of ECC for the Project (Updated in June 2008)	13-2
Table 13.2-2 Brief History of EIS and ECC	13-4
Table 13.3-1 Impact Management Plan	13-5
Table 13.4-1 Summary Matrix of the Environmental Monitoring Plan	13-13
Table 13.4-2 Monitoring Stations of Water	13-17
Table 13.4-3 Monitoring Stations of Air & Noise	13-17
Table 13.4-4 Official Members of MMT	13-19
Table 13.4-5 Detailed Cost Estimation of Environmental Monitoring Plan	13-20
Table 13.5-1 Major Construction Works and Waste Sources	13-25
Table 13.5-2 Organization for Implementation of Recycling Program (Operation	
Table 13.5-3 Waste Assessment Approaches ····································	13-29
Table 13.5-4 Actual Result of Generated Waste Amount at Komatsu Airport in	Japan 13-30
Table 13.5-5 Estimation of Generated Waste Amount at the New Airport	13-31
Table 13.5-6 Floor Area Schedule of MRF	13-33
Table 13.5-7 Common Recyclable Materials Found at Airports	13-34

Table 13.5-8 Sample Greenhouse Gas Benefits of Recycling Using EPA's WARM 1	model 13-38
Table 13.5-9 Action/Financial Plans of Solid Waste Management for Resettlement	
Table 13.7-1 Communication Plan being Performed by EDCOM 1	13-47
Table 13.7-2 First Year Activities 1	13-49
Table 13.7-3 Second Year Activities 1	13-50
Table 13.7-4 Third Year Activities 1	13-50
Table 13.7-5 IEC Budget 1	13-51
Table 13.8-1 Number of Coconut Trees to be Cut in the Project Site 1	13-55
Table 13.8-2 Detailed Number of Seedlings under the Project 1	13-55
Table 13.8-3 National Target of Seedlings 1	13-57
Table 13.8-4 Area Target and Accomplishment (Province of Bohol) 1	13-57
Table 13.8-5 Seedlings Target and Accomplishment (Province of Bohol) 1	13-57
Table 13.8-6 Work Plan and Approved Budget 1	13-63
Table 13.10-1 Required Actions and Future Schedule 1	13-67

CHAPTER 14 REVIEW AND IMPLEMENTATION OF RESETTLEMENT ACTION PLAN (RAP)

Table 14.2-1 Status of Land Acquisitions as End-June 2013	14-2
Table 14.2-2 Schedule and Progress of RAP Activities (End of August 2013)	14-8
Table 14.3-1 Responsibilities of Each Unit in the Re-Established LPMT	14-9
Table 14.3-2 Outline of Work and Financial Plan for Livelihood Assistance	14-15
Table 14.3-3 Description on Local Employment in Bidding Documents	14-15
Table 14.3-4 Other Assistance Conducted for Updating RAP	14-16
Table 14.3-5 Performance Monitoring Sheet of Resettlement Action Plan (End 2013)	

List of Abbreviations

List of Abbreviations

<u>A</u>	
AASHTO	American Association of State Highway and Transportation Officials
AAZ	Aerodrome Advisory Zone
ABC	A: Common Combustibles, B: Flammable Liquids & Gas, C: Live Electrical
	Equipment
AC	Alternating Current
ACB	Ancillary Building
ACC	Area Control Center
ACI	American Concrete Institute
ADM	Administration Building
A/G	Air to Ground
AGL	Airfield Ground Lights
AIP	Airport Improvement Program
AIS	Aeronautical Information Service
AISC	American Institute of Steel Construction
ALS	Approach Lighting System
AMSL	Above Mean Sea Level
AMHS	ATS Message Handling System
ANS	Air Navigation Service
ANSI	American National Standards Institute
ASCE	American Society of Civil Engineer
ASEP	American Society of Exercise Physiologists
ASTM	American Society for Testing and Materials
ATC	Air Traffic Control
ATS	Air Traffic Service
ATS	Automatic Transfer Switch
ATZ	Aerodrome Traffic Zones
AWOS	Aeronautical Weather Observation System Specifications
<u>B</u>	
BAC	Bid and Award Committee
BBC	Bohol Biodiversity Complex
BCP	Biodiversity Conservation Plan
BEC	Bohol Environmental Code
BEMO	Bohol Environment Management Office
BEPO	Bohol Employment and Placement Office

BH	Borehole
BHS	Baggage Handling Systems
BICTU	Bohol Information and Communications Technology Unit
BISU	Bohol Island State University
BMT	Bohol Marine Triangle
BMS	Building Management System
BOD	Biochemical Oxygen Demand
BOHECO-I	Bohol I Electric Cooperative, Inc.
BOQ	Bill Of Quantities
BPG	Bohol Provincial Government
BSP	British Standard Pipe

<u>C</u>

—	
CAAP	Civil Aviation Authority of the Philippines
СВ	Concrete Block
CBR	California Bearing Ratio
CCC	Climate Change Commission
CCO	Command and Control Office
CCR	Constant Current Regulator
CCTV	Closed Circuit Television
CDM	Clean Development Mechanism
CFLs	Compact Fluorescent Lamp
CHATTO	Communication HEAT-Bohol Activities & programs Thru Tri-media Outreach
СНВ	Concrete Hollow Block
CIQ	Customs, Immigration and Quarantine
CNC	Certificate of Non-Coverage
COD	Chemical Oxygen Demand
СРТ	Car Parks Toilet
CRSI	Concrete Reinforcing Steel Institute
СТВ	Cargo Building
СТО	ATC Operation/Administration Building
CTR	Control Zone
<u>D</u>	
DA	Department of Agriculture
DAO	Department Administrative Order

- DAR Department of Agrarian Reform
- DC Direct Current

D/D	Detailed Design
DENR	Department of Environment and Natural Resources
DME	Distance Measuring Equipment
DNA	Designated National Authority
DOE	Department of Energy
DOT	Department of Tourism
DOTC	Department of Transportation and Communications
DPWH	Department of Public Works and Highways
DRL	Drivers Lounge

E

-	
EAAA	Eastern Asia Airport Alliance
ECC	Environmental Compliance Certificate
ECP	Energy Conservation Program
EDCOM	Effective Development Communication
EDS	Explosive Detection System
EGF	Environment Guarantee Fund
EIA	Environmental Impact Assessment
EIAMD	Environmental Impact Assessment Management Division
EIS	Environment Impact Statement
EMB	Environmental Management Bureau
EMF	Environment Management Fund
EMP	Environmental Management Plan
EMMoP	Environment Management Monitoring Plan
EMoF	Environmental Monitoring Fund
EMoP	Environmental Monitoring Plan
EO	Executive Order
EPA	Environmental Protection Agency
EPIRA	Electric Power Industry Reform Act
EPRMP	Environment Preliminary Management Plan
EPS	Electric Pipe Shaft
ERC	Energy Regulatory Commission
ESCO	Establish an Energy Service Company
ETD	Explosive Trace Detector

F

FAA	Federal Aviation Administration
FADS	Fire Alarm and Detection System

FAF	Final Approach Fix
FAHU	Fresh Air Handling Unit
FCU	Fan Coil Unit
FIDIC	International Federation of Consulting Engineers
FIDS	Flight Information Display System
FIR	Flight Information Region
FiT	Feed-in Tariff
FOBS	Flight Operation Briefing Service
FOD	Foreign Object Debris
FRS	Fire Rescue Station
FS	Feasibility Study
FSM	Fire Station and Airport Maintenance Building
FSS	Flight Service Station

<u>G</u>

GCC	General Conditions of Contract
GDH	Guard House
GEMP	Government Energy Management Program
GHG	Greenhouse Gas
GIS	Geographic Information System
GOJ	Government of Japan
GOP	Government of the Republic of the Philippines
GPR	Ground Penetration Radar
GPS	Global Positioning System
GRM	Grievance Redress Mechanism
GS	Glide Slope
GSE	Ground Service Equipment

H

HDPE-EF	High Density Polyethylene Electric-Fusion Joint
HF	High Frequency
HID	High Intensity Discharge
HLURB	Housing and Land USE Regulatory Board
HVAC	Heating Ventilation and Air-Conditions
HWL	High Water Level

Ī

IAS Indicated Air Speed
IAS Indicated Air Speed

IATA	International Air Transport Association
ICAO	International Civil Aviation Organization
ICB	International Competitive Bidding
IEC	Information Education and Communication
IEER	Initial Environment Evaluation Report
IFR	Instrument Flight Rule
IGES	Institute for Global Environmental Strategies, Japan
ILS	Instrument Landing System
IMP	Impact Management Plan
IPCC	Intergovernmental Panel on Climate Change
IRR	Implementation Rules and Regulations

J

Japan Civil Aviation Bureau
Junction
Japan International Cooperation Agency
Japanese Industrial Standard

L

LAN	Local Area Network
LCB	Local Competitive Bidding
LCC	Low Cost Carrier
LED	Light Emitting Diode
LGU	Local Government Unit
LLZ	Localizer
LPDA	Log Periodic Dipole Antenna
LPMT	Local Project Management Team
LV	Low Voltage
LWL	Low Water Level
LWUA	Local Water Utilities Administration

M

MC	Memorandum Circular
MDD	Maximum Dry Density
MDF	Main Distribution Frame
MEL	Minimum En-route Altitude
MET	Meteorological Equipment
METAR	Regular Airport Weather Report

MENRO	Municipal Environment and Natural Resources Office
MIAA	Manila International Airport Authority
MLGUs	Municipal Local Government Units
MMT	Multi-partite Monitoring Team
MNT	Maintenance Building
MOA	Memorandum of Agreement
MPDO	Municipal Planning and Development Office
MRF	Material Recover Facility
MSL	Mean Sea Level
MV	Medium Voltage
MWFRS	Main Wind-Force Resisting System

N

NAIA	Ninoy Aquino International Airport
NAPOCOR	National Power Corporation
NASA	National Aeronautics and Space Administration in United States
NAV	Navaids Buildings
NBADP	New BOHOL Airport Development Project
NCCAP	National Climate Change Action Plan
NCSP	National Standard Code of Philippines
NDB	Non-Directional Beacon
NEECP	National Energy Efficiency and Conservation Program
NEMA	National Electrical Manufacturing Association
NFPA	National Fire Protection Association
NGO	Non-governmental Organization
NGP	National Greening Program
NHA	National Housing Authority
NIPAS	National Integrated Protected Areas System
NPT	National Pipe Thread
NREB	National Renewable Energy Board
NREL	National Renewable Energy Laboratory in United States
NSCP	National Structural Code of The Philippines

<u>0</u>

Oxidation Ditch
Official Development Assistance
Office In Charge
Operation Manual

<u>P</u>	
PABX	Private Automatic Branch Exchange
PAFs	Project Affected Families
PAGASA	Philippine Atmospheric Geophysical and Astronomical Services
	Administration
PAL	Philippine Airline
PALS	Precision Approach Lighting System
PAP	Project Affected Person
PAPI	Precision Approach Path Indicator
PBB	Passenger Boarding Bridge
PBD	Philippine Bidding Documents
РСА	Philippine Coconut Authority
РССР	Portland Cement Concrete Pavement
РСО	Pollution Control Office
PD	Presidential Decree
PEC	Philippine Electrical Code
PEEP	Philippine Energy Efficiency Project
PEISS	Philippines Environmental Impact Statement System
PEMAPS	Project Environmental Monitoring and Audit Prioritization Scheme
PENRO	Provincial Environment and Natural Resources Office
PEO	Provincial Environment Office
PGB	Provincial Government BOHOL
PGSO	Provincial General Services Office
PI	Plasticity Index
PLC	Programmable Logic Controller
PLOMPCO	Panglao Landowners Multi-Purpose Cooperative
РМО	Project Manager Office
PNP	Philippine National Police
PNSDW	Philippine National Standards for Drinking Water
POs	People's Organizations
PPDO	Provincial Planning and Development Office
PPP	Public Private Partnership
РТВ	Passenger Terminal Building
PV	Solar Photovoltaic
PVC	Polyvinyl Chloride
PWH	Power House

<u>Q</u>	
QNH	Altimeter sub-scale setting to obtain elevation when on the ground
QFE	Atmospheric pressure at aerodrome elevation
<u>R</u>	
RA	Republic Act
RAP	Resettlement Action Plan
RC	Reinforced Concrete
RCA	Residual Containment Area
RCP	Reinforced Concrete Pipe
REDL	Runway Edge Light
RENL	Runway End Light
REPF	Renewable Energy Policy Framework
RIV	Rapid Intervention Vehicle
RMMS	Remote Maintenance and Monitoring System
ROW	Right Of Way
RTHL	Runway Threshold Light
RVR	Runway Visual Range
RWY	Runway
<u>S</u>	
<u>S</u> SALS	Simple Approach Lighting System
—	Simple Approach Lighting System Social Development Plan
SALS	
SALS SDP	Social Development Plan
SALS SDP SPECI	Social Development Plan Special Weather Report
SALS SDP SPECI STEP	Social Development Plan Special Weather Report Special Terms for Economic Partnership
SALS SDP SPECI STEP STFs	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities
SALS SDP SPECI STEP STFs STP	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant
SALS SDP SPECI STEP STFs STP	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant
SALS SDP SPECI STEP STFs STP SWM	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant
SALS SDP SPECI STEP STFs STP SWM	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant Solid Waste Management Plan
SALS SDP SPECI STEP STFs STP SWM <u>T</u> T-DME	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant Solid Waste Management Plan Terminal-Distance Measuring Equipment
SALS SDP SPECI STEP STFS STP SWM <u>T</u> T-DME TDH	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant Solid Waste Management Plan Terminal-Distance Measuring Equipment Total Dynamic Head
SALS SDP SPECI STEP STFS STP SWM T-DME TDH TEDL	Social Development Plan Special Weather Report Special Terms for Economic Partnership Sewage Treatment Facilities Sewage Treatment Plant Solid Waste Management Plan Terminal-Distance Measuring Equipment Total Dynamic Head Taxiway Edge Light

Terminal Control Area

Telephone Terminal Cabinet

VIII

Terms of Reference

TMA

TOR

TTC

TRCV	Transceiver
TWG	Technical Working Group
TWY	Taxiway

U

—	
UBC	Uniform Building Code
UL	Underwriter Laboratories, Inc.
ULB	Utility Buildings
UNCSD	United Nations Commission on Suitable Development
UNFCCC	United Nations Framework Convention on Climate Change
UPS	Uninterruptible Power Supply
u-PVC	Unplasticised Polyvinyl Chloride

V

VAT	Value Added Tax
VCCS	Voice Communication Control System
VFR	Visual Flight Rule
VHF	Very High Frequency
VOR	VHF Omnidirectional Radio Range
VRF	Variable Refrigerant Flow
VSAT	Very Small Aperture Terminal

W

WARM	Waste Reduction Model
WBRL	Wing Bar Light
WDIL	Wing Direction Indicator Light
WDPDS	Weather Data Processing and Display System
WECPNL	Weighted Equivalent Continuous Perceived Noise Level
WMO	World Meteorological Organization
WPH	Water Tank and Pump Houses
WT	Water Tank

CHAPTER 1 BACKGROUND OF THE PROJECT

TABLE OF CONTENTS

CHAF	PTER 1 BACKGROUND OF THE PROJECT	1-1	
1.1.	Precedents 1		
1.2.	Roles tasked in the New Airport Construction		
1.3.	Air Transportation in the entire Philippines	1-4	
1.4.	Air Transportation in the Central Philippines		
1.5.	Current Situation of the Exiting Bohol-Tagbilaran Airport	1-8	
1.5.1	1. General		
1.5.2	2. Airside Facilities		
1.5.3	3. Landside Facilities		
1.5.4	4. Air Navigation Facilities		
1.5.8	5. Flight Information Advisory Service by CAAP	1-11	
1.5.0	6. Problem of the existing Tagbilaran Airport		
1.6.	Selection of New Airport Site		

Chapter 1 Background of the Project

1.1. Precedents

Due to the archipelago geography that consists of 7,000 or more islands, the Government of the Republic of the Philippines (GOP) has continued its effort to establish safe and capable nationwide aviation network to enhance nation's socio-economic activities along with international standards and practice.

At the existing Tagbilaran Airport, the capital airport of Bohol Province in the Central Philippines, the air passenger demand has been dramatically increased from 39 thousand in 2001 to 572 thousand in 2010, and further increased to 755 thousand in 2011 with an average annual growth rate of more than 30 %. This is mainly because the runway at the existing Tagbilaran Airport was extended in 2002, upon which jet aircraft (B737, A320) operations were commenced, and lately LCCs offer daily 9 round trips of 80-minutes air services to/from Manila with less fare than 30-hours ferry services.

The existing Tagbilaran airport is situated right in the middle of downtown, where numerous housings exist in close proximity to the runway, operations are allowed only with visual flight rule (VFR) thus often cancelled when cloudy, narrow apron (with 2 aircraft stands) deeply encroaches into the runway strip, hilly terrain jeopardizes aircraft approach to the runway, there are no control tower nor air navigation facilities, all facilities are obsolete and not in accordance with even minimum safety requirements. Hence, GOP plans to construct a new Bohol Airport to meet international standard in Panglao Island since 1990's. In the past, feasibility studies had been made twice in 2000 and 2007, and a detailed engineering was conducted once by a local consultant in 2009. However, the locally-funded bidding was not successful presumably due to lack of finance and/or the national election in 2010.

In 2010, the new Aquino Administration of GOP defined the New Airport Construction Project being one of the priority infrastructure development projects to be implemented under Public Private Partnership (PPP), and requested technical assistance from Japan International Cooperation Agency (JICA). In response, JICA conducted from April 2011 to August 2012, a "Preparatory Study" for the New Bohol Airport Construction and Sustainable Environment Protection Project (from herein after called the "Project").

The Preparatory Study has concluded that is possible to financially attract private investors to build and operate such local airport of mainly domestic operations. Hence, the GOP decided that the Project would be implemented through a "public-build and private-operate scheme", as the most doable PPP scheme.

In 2012, Civil Aviation Authority of the Philippines (CAAP) restricted the aircraft operations during the time in which one aircraft stands in the apron because it is situated

within the runway strip. This is an appropriate solution for the sake of aircraft operational safety, but in return the existing airport has become no longer capable of accommodating further demand increase. Hence construction of the new Bohol Airport at the earliest possible time frame is earnestly sought by every party concerned.

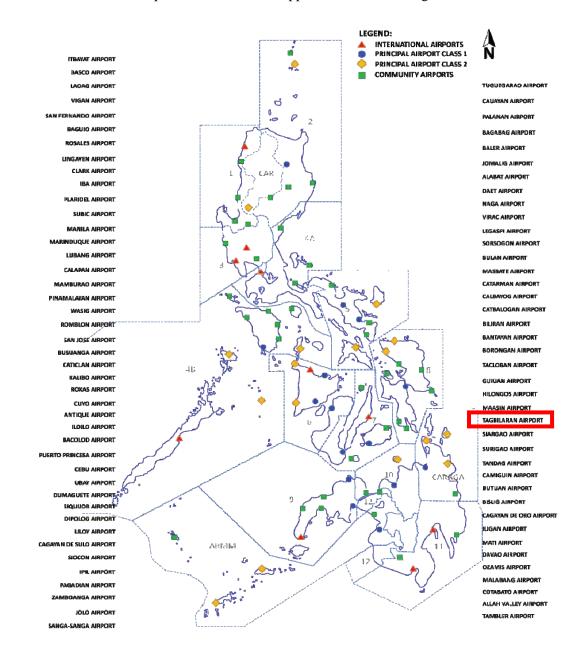
In the end of 2012, upon request from the GRP, a STEP Loan for the New Bohol Airport Construction was pledged by the Government of Japan (GOJ), and Loan Agreement for the Project was engaged between the GOP and JICA on 27th March 2013.

JICA has granted this Detailed Design Study for the Project, and further started to dispatch another Consultants' team to conduct a multi-year technical assistance program to preserve natural environment in the vicinity.

In the meantime, the GOP, through Department of Transportation and Communications (DOTC), has started by its own fund, the following activities

- a) From February 2013, additional geotechnical and topographic surveys, the results are considered in this report
- b) Bidding announcement in April 2013 of local bidding for Preparatory Works (boundary fence, clearing and grubbing of construction site)
- c) Bidding announcement in June 2013, of local bidding for construction of external water supply piping network, which detailed design and bidding documents were prepared earlier through the course of this JICA Study
- d) Preparation of local bidding for embankment of perimeter of soaking yard
- e) Miscellaneous activities for finalization of land acquisition and resettlement of project affected families (PAFs), including negotiation and information disseminations

1.2. Roles tasked in the New Airport Construction


Owing to the inherent natural resources in Bohol Province and due to global concerns on sustainable environmental protection with energy conservation, the new Bohol Airport to be constructed under financial assistance of Japan is desired to deserve the status of "Eco-airport".

The following elements of "Eco-airport" are mainly incorporated in the Detailed Design, and are described in the respective chapters indicated as follows:

a)	Airport drainage should not cause ocean contamination:	Chapter 4.4.2~3
b)	Beautiful landscaping to regulate CO2 emission:	Chapter 4.6.2
c)	Recycling of sewerage treated water for landscaping:	Chapters 4.6.3 / 5.3.2 (5)
d)	Natural ventilation for short dwelling-time passengers:	Chapter 6.1.1 (5)
e)	Adoption of renewable energy (solar panel on the roof):	Chapters 5.2.4 / 6.1.1 (5)
f)	Energy-saving type air condition system:	Chapter 6.1.3 (2)
g)	Solar water heater:	Chapter 6.2.3 (1)
h)	LED lighting:	Chapter 6.1.2 (2)
i)	Universal Design:	Chapter 6.1.2 (4)

1.3. Air Transportation in the entire Philippines

Locations of the airports in the entire Philippines are shown in Figure 1.3-1.

Note

10 International Airport: accommodating scheduled international flights, with CIQ facilities
15 Principal Airport Class 1: accommodating scheduled domestic flights of jet aircraft
17 Principal Airport Class 2: accommodating scheduled domestic flights by turbo-prop aircraft
41 Community Airport: to accommodate commuter and/or general aviation flights

Source: CAAP

Figure 1.3-1 Location of Airports in the entire Philippines

There are 83 airports in the Philippines, from which 10 are designated as international airports, 15 as principal airports class 1, 17 as class 2, and 41 as community airports.

The chronological changes in the nationwide air traffic volumes in the Philippines are shown in the Table below.

Year	Total Passenger	Total Cargo	Total Aircraft
Teal	Movement	Movement (in Kgs.)	Movement
1992	13,768,005	381,138,752	412,460
1993	15,090,872	415,638,687	370,833
1994	16,468,004	428,203,923	407,986
1995	17,730,347	488,366,467	446,755
1996	19,864,800	526,277,040	495,273
1997	22,756,438	680,670,144	528,612
1998	19,444,029	502,131,976	365,816
1998	19,444,029	502,131,976	365,816
1999	20,279,201	510,628,738	468,756
2000	20,592,932	553,168,592	472,140
2001	19,329,924	505,665,011	357,689
2002	20,606,090	549,720,662	409,308
2003	20,232,889	526,869,575	372,666
2004	23,634,313	590,505,446	358,725
2005	24,675,383	590,989,124	329,336
2006	26,684,128	531,180,991	286,181
2007	34,209,248	642,542,728	607,837
2008	36,044,167	534,377,275	562,818
2009	39,139,222	480,636,808	591,540
2010	41,872,041	561,614,178	612,826
2011	52,632,261	597,839,975	754,534
2012	58,836,216	671,511,124	835,778

Table 1.3-1 Nationwide Air traffic record in the Philippines

Source: Civil Aviation Authority of the Philippines (CAAP)

The Table shows that air traffic in the Philippines has kept increasing remarkably for the past 5 years. The number of air passengers increased from 34.2 million in 2007 to 58.8 million in 2012 with an average annual growth of 11.5 %. The aircraft movements increased from 608 thousand in 2007 to 836 thousand in 2012 with an average annual growth of 6.6 %, while the air cargo volumes for the past decade remained fairly constant and stayed between 500 thousand to 670 thousand tons.

At the nation's premier airport, Ninoy Aquino International Airport (NAIA), 14,139 thousand international, 17,739 domestic, and 2,011 general aviation passengers (i.e. total of 33,890 thousand passengers) and 461,550 thousand tons of Cargo were handled in 2012 by thirty-one (31) foreign airlines and five (5) domestic airlines; which is equivalent to 60 % of nation's total passengers and 70 % of cargoes.

The total annual aircraft movements at NAIA in 2012 of 273 thousand (i.e. nearly 800 operations a day, or 65 operations in a peak hour) have most probably reached the physical operational capacity of the two runways of closed configuration at NAIA. Being aware that Manila is almost 80% of the origin/destination of the flights to/from local major airports situated especially in the Central or Southern Philippines, development of alternate capital airport in Manila region is essentially required.

1.4. Air Transportation in the Central Philippines

In the Central Philippines, there are a total of 20 airports, in which 3 airports are designated as international airport (Mactan, Puerto Princesa and Kalibo), 7 as principal airports Class 1, 6 as Class 2 and 4 airports are designated as community airports.

The locations of these 20 airports are shown in Figure 1.3-1.

Note

3 International Airport: accommodating scheduled international flights, with CIQ facilities
7 Principal Airport Class 1: accommodating scheduled domestic flights of jet aircraft
6 Principal Airport Class 2: accommodating scheduled domestic flights by turbo-prop aircraft
4 Community Airport: to accommodate commuter and/or general aviation flights

Source: CAAP

Figure 1.4-1 Location of Airports in the Central Philippines

Among these 20 airports in the Central Philippines, 13 airports are located in "Visayas", namely, 2 international airports (Mactan, Kalibo), 6 principal airports Class 1 (Iloilo,

Bacolod, Tacloban, Tagbilaran, Dumaguete, Roxas), 4 Class 2 airports (Caticlan and others), and 1 community airport.

Table 1.4-1 shows the past domestic traffic record (2001 to 2012) for aircraft movements and air passengers at the 10 major airports in the Central Philippines.

Table 1.4-1 Domestic Air Traffic Record at major 10 Airports in the Central Philippines

Region	IVb			VI				VII		VIII	
Island	Palwan		Par	nay		Ne	gros	Cebu	Bohol	Leyte	
Airport	Puetro Princesa	Caticlan	Kalibo	Roxas	Iloilo	Bacolod	Dumaguete	Mactan (Cebu)	Tagbilaran	Tacloban	
Runway	2650 m	834 m	2187 m	1890 m	2500 m	2000 m	1845 m	3300 m	1779 m	2138 m	Total
Population	892,660	495,122	515,265	701,664	2,261,826	2,869,766	1,231,904	3,850,989	1,230,110	724,240	
Aircraft	A330	DH3	A320	A320	A320	A320	A320	A330	A320	A320	
			Ann	ual Domest	ic Aircraft	Movemant	s				
2001	2,695	7,512	5,264	1,440	13,425	8,032	2,184	24,047	1,154	6,448	72,201
2002	2,000	11,124	5,796	1,440	17,864	7,052	2,164	26,005	2,134	6,708	82,287
2003	2,792	11,426	2,858	1,438	17,412	6,680	2,540	24,541	1,920	6,367	77,974
2004	3,170	14,242	5,938	1,460	17,736	6,904	2,162	23,892	1,816	6,500	83,820
2005	3,232	19,172	2,822	1,182	8,224	6,114	1,922	24,219	2,262	4,046	73,195
2006	2,914	18,880	3,398	1,230	8,232	6,188	1,898	23,977	2,194	4,432	73,343
2007	3,352	18,662	4,307	1,142	9,070	7,782	2,690	25,895	2,810	4,186	79,896
2008	4,012	23,362	3,486	1,288	9,366	8,510	2,714	25,113	3,300	5,032	86,183
2009	6,292	19,875	3,888	1,822	12,136	9,676	2,630	37,311	4,478	8,912	107,020
2010	7,368	24,516	7,774	1,558	16,034	15,780	3,048	38,397	4,664	7,616	125,269
2011	8,484	17,288	8,946	1,482	18,520	12,106	3,530	43,719	6,512	7,391	127,978
2012	12,046	15,952	12,326	2,024	18,176	11,674	5,380	48,496	7,332	9,816	143,222
				Annual Dor	mestic Pass	engers					Total
2001	188,713	162,786	236,968	86,915	696,587	534,832	137,334	1,860,461	39,268	297,878	4,241,742
2002	147,000	196,315	274,560	81,804	676,015	512,240	134,877	1,733,273	76,314	302,281	4,134,679
2003	194,176	234,911	229,068	84,552	681,360	522,395	152,316	1,850,453	104,934	308,454	4,362,619
2004	267,507	392,484	267,172	100,550	739,494	572,666	173,496	1,947,057	159,073	345,668	4,965,167
2005	284,042	519,349	239,851	102,183	708,469	562,062	162,915	2,263,777	196,707	327,912	5,367,267
2006	306,607	516,631	341,097	119,944	863,018	663,882	188,465	2,467,517	240,176	398,909	6,106,246
2007	388,083	545,015	511,051	133,418	1,001,273	782,573	275,991	2,985,695	344,068	510,683	7,477,850
2008	477,293	793,478	381,436	153,488	1,073,788	840,711	306,182	2,940,830	398,661	626,856	7,992,723
2009	584,232	797,312	500,713	188,237	1,324,148	1,044,623	360,360	3,835,163	561,774	892,856	10,089,418
2010	822,358	672,919	754,372	203,840	1,581,304	1,218,213	362,551	4,206,651	572,476	1,148,728	11,543,412
2011	986,775	729,661	830,783	189,220	1,707,937	1,345,195	410,165	4,582,241	754,911	1,008,552	12,545,440
2012	1,322,925	595,564	1,116,006	217,466	1,854,427	1,018,137	450,986	5,195,125	734,045	1,149,592	13,654,273
Increase from 2001 to 2012	701%	366%	471%	250%	266%	190%	328%	279%	1869%	386%	322%
average annual growth from 2001 to 2012	19%	13%	15%	9%	9%	6%	11%	10%	30%	13%	11%
average Pax onboard (2012)	110	37	91	107	102	87	84	107	100	117	95

Source: JICA Study Team

The Table shows extraordinary growth of domestic air traffic in the Central Philippines. Particularly for the 5 years since 2005, the total volume of domestic passengers at these 10 airports has drastically increased from 4.3 million in 2001 to 13.7 million in 2012, and the total number of domestic aircraft movements has increased from 72 thousand in 2001 to 143 thousand in 2012.

The Table also shows that the numbers of domestic passengers at airports in Visayas were dramatically increased with an average annual growth of more than 10 %.

1.5. Current Situation of the Exiting Bohol-Tagbilaran Airport

1.5.1. General

The existing Tagbilaran Airport is situated right in the middle of downtown, where numerous housings exist in close proximity to the runway, narrow apron (with 2 aircraft stands) deeply encroaches into the runway strip, hilly terrain jeopardizes aircraft approach to the runway, there are no control tower nor air navigation facilities, all facilities are obsolete and not in accordance with even minimum safety standard.

The Table 1.5-1 shows the general information of Tagbilaran Airport.

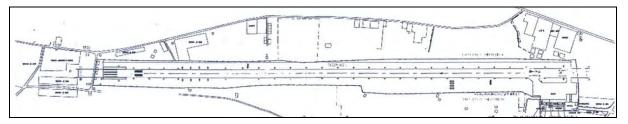

Item	Description
City / Aerodrome	TAGBILARAN National Airport
Domestic or International	Domestic
ICAO Reference Code	3C
Airport Reference Point	Long. 123°51'13.0665''E, Lat. 09°39'51.088''N
Elevation	11.52m (38 FT) AMSL
Reference Temperature	28 degree Celsius
Operational Hours	0600 to 1800 (Local time)
Administered by	Civil Aviation Authority of the Philippines (CAAP)

Table 1.5-1 General Information of Tagbilaran Airport

Source: JICA Study Team

1.5.2. Airside Facilities

Figure 1.5-1 and Table 1.5-2 shows layout and configuration of airside facilities.

	Item	Description
S	Direction	17/35
	Length	1,779 m.
^o Runway	Width	30 m.
u	Pavement	PCCP
	Runway strip	Width : 50 m. on both side, Length: 1,842.3 m.
r	-Configuration	2 Connections with Apron
_c Taxiway	Width	21 m.
-	Pavement	PCCP
e		Passenger loading apron
	Configuration	2 x A320
	Aircraft stands	Self maneuvering
Apron	Parking	126 m. x 40 m. (5,040 sq.m.)
т	Area	PCCP
J	Pavement	
I		

Table 1.5-2 Airfield Facilities at Tagbilaran Airport

CA Study Team

1.5.3. Landside Facilities

The existing landside facilities of Tagbilaran Airport consist of a passenger terminal building with car parking area, FSS building, fire station and power house. The configuration of the existing landside facilities is shown below in Table 1.5-3.

Building	Area		Description
	Public area	Departure area	 10 Check-In counters for the followings: Philippines Airline CEBU Pacific Airline AIRPHIL-Express Airline ZEST Airline 3 X-Ray's located at departure area. Operating one X-Ray only 2X-Rays (Out of Commission) Baggage loading area.
Passenger	Restricted area	Arrival area	Baggage Handling SystemAdministrator staff
terminal building		Airport manager's room	 Aerodrome operation staff Airport Manager Secretary
		PASCOM (PNP)	Airport Police staff
	Private area	Car parking	Limited to 30 cars
		Concessionaire	 20 Concessionaire as follows; The Peacock Garden Luxury Resort and Spa Island City Mall BOHOL Quality Corp. BOHOL Coconut Palm Resort BOHOL Beach Club

FSS building		Rooftop VFR room Equipment room	 La Construction Paradise Beach Resort BOHOL Tropics Resort Corporation Agricultural Promotion Centre The Artist Shop Comp. Inc Virginia Dumapias Cionverge Jocelyn Putian Philippine Airline CEBU Pacific Airline ZEST Airline AIRPHIL-Express Airline SKYCAP Airport Tricycle Driver Association RAMER for Car and Van for hire MPC for Car and Van for hire BIOD Radio communication facility VHF antenna Radio communication console Fixed communication console Flight data console Radio communication equipment VHF Receiver equipment VHF Receiver equipment
	Restricted area		 HF Transceiver equipment Voice communication control system Voice recording system
		CAAP office	 Air traffic service staff Air navigation operation staff
		Office	• Fire man staff
Fire station		Garage	Fire major vehicleRapid intervention vehicle
Power		Engine generator room	Engine generator Power receiving system
house		Office	Air navigation operation staff

Source: JICA Study Team

1.5.4. Air Navigation Facilities

The airport commenced its operation without radio navigation aids. These were never provided except for visual aids facilities. The existing radio facilities consist of VHF AM, VHF FM, HF SSB, voice communication control system and voice recording system in the ATS and telecommunication system, which is supporting the air traffic advisory service. The configuration of existing ATS and telecommunication system, meteorological facilities and aeronautical ground lights are shown below in Tables 1.5-4 to 6.

I	tem	Description
Air to ground communication system	VHF AM 122.2MHz	 Configuration of VHF radio communication 50W VHF AM transmitter equipment VHF AM receiver equipment 5W VHF AM transceiver equipment
Ground to ground communication system	VHF FM	 Configuration of VHF radio communication 5W VHF FM transceiver equipment 5W VHF FM portable transceiver
Point to point communication system	HF SSB 5205KHz and 3872.5KHz	Configuration of HF SSB radio communication100W HF SSB transceiver equipment
Radio, intercom & telephone line control system	Control system	 Configuration of control system Voice communication control system Voice recording system
Air traffic advisory service	Service console	Configuration of console Aerodrome console Fixed communication console Flight data console

Table 1.5-4 ATS and Telecommunication

Source: JICA Study Team

Table 1.5-5 Meteorological Facilities

Item		Description
Aerodrome weather information	Meteorological facilities	Configuration of meteorological facilities • Wind speed sensor • Wind direction sensor • Temperature sensor • Barometric pressure sensor • Operational status monitor

Source: JICA Study Team

Table 1.5-6 Aeronautical Ground Lights

Item		Description
Visual aids for navigation	Aeronautical ground lights	 Configuration of aeronautical ground lights Runway edge light Runway threshold and wing bar light for both sides Runway end light for 17 side Taxiway edge light for North side PAPI for both sides

Source: JICA Study Team

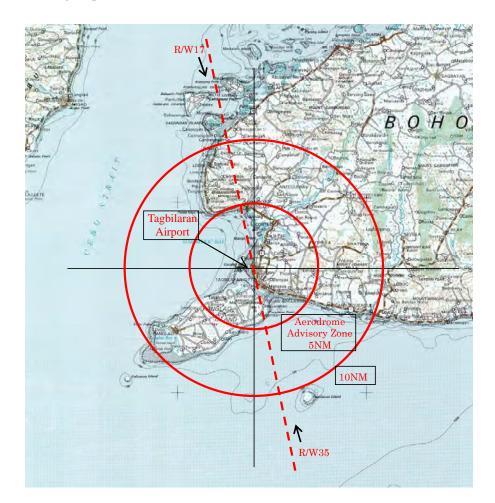
1.5.5. Flight Information Advisory Service by CAAP

(1) General

ATS airspace classification of Tagbilaran Airport is "G" which is prescribed in ICAO Annex 11. It is not an air traffic control service but an aerodrome information advisory service for aircrafts which are on the airfield ground or flying over within 5NM radius from the airport reference point and vertical limits with an altitude of less than 2,000 ft. The flight procedure for the airport is only VFR flight and no vertical separation is established. The service has been operated by Civil Aviation Authority of the Philippines (CAAP).

The operation hour of aerodrome information advisory service is from 06:00 to 18:00 local time. The advisory service is ordinarily carried out by two radio communicators; and in total six radio communicators are stationed for the airport advisory service with morning and afternoon shifts.

The following is particular information related to the flight information advisory service at Tagbilaran Airport as noted during the site observation:


- a) Mainly inform aircraft pilots of the airport status such as the weather condition, landing /departure runway, etc.
- b) Initial contact with aircraft starts around 10NM from the airport. (There are cases that pilot requests airport weather conditions when they are flying on en-route around 100~130 NM from the airport.)
- c) FSS receives ATC Clearance for flight plan from Mactan ACC via Mactan Radar indirectly due to no establishment of direct hot line between the FSS and Mactan ACC.
- Phraseology of advisory service for aircraft's landing and taking-off is "YOU MAY LAND/TAKE-OFF" instead off "Cleared to Land/Cleared for Take-off".
- e) FSS staff is called "Communicator" not ATC controller, however they have an ATC Controller certificate.

FSS Tower in Tagbilaran Airport FSS Console inside of Tower Figure 1.5-2 FSS Tower and VFR Room at Tagbilaran Airport

(2) Topography and Aircraft Operation

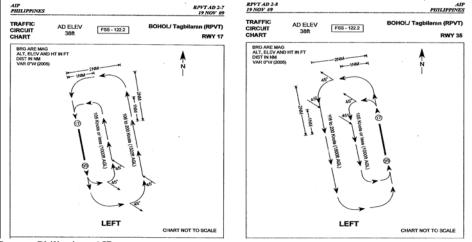
Figure 1.5-3 shows a general topographical map around Tagbilaran Airport marked with a distance approximately 10NM radius from the airport reference point. Regular flights for the airport are only to and from Manila. In addition there are some general aviation flights such as private & training flights by flying schools which are facilitated at Mactan and Dumaguete Airports. The number of general aviation flights at the airport is around 80~100 flights per month.

Source: JICA Study Team

Figure 1.5-3 Topography around Tagbilaran Airport

According to the information provided by the FSS staff, the following obstacles such as hills or mountains that the pilots have to pay attention to for their aircraft operations are located around Tagbilaran Airport:

- a) Mountains with a height of around 1,500 ft. are located at 5 NM north of the airport
- b) Hills with a height of around 650 ft. are located at 3.5 NM south of the airport
- c) Buildings on the hills are located at 2 km south of the airport
- d) There is an antenna tower for cell-phone base station in the vicinity of the airport
- e) Many trees and residential houses are close to the airport boundary


R/W17Approach direction

R/W35Approach direction

Figure 1.5-4 Runway 17 and Hilly Terrain for Runway 35 Approach

(3) Flight Procedure

There are no radio navigational aids such as ILS, VOR/DME or NDB for the airport, so that VFR traffic circuits are only established as left hand pattern for approach and departure procedure, which is prescribed in the airport's AIP. During the site observation, however, an Airbus 320 from Manila executed its approach to R/W 17 via the Right Base to Final course (right hand pattern) based on the pilot's observation.

Source: Philippines AIP

Figure 1.5-5 Approach/Departure Traffic Circuit Chart for Tagbilaran Airport

The VFR flight procedures for Tagbilaran Airport are as follows:

- Arriving aircraft shall enter the traffic circuit on the downwind leg at an angle of 45 degrees; and
- b) Departing aircraft shall follow the traffic circuit after passing the aerodrome boundary; and then leave the circuit at an angle of 45 degrees from the crosswind leg.

(4) Airspace Restrictions

Restricted, prohibited and danger areas, such as military/training activities and hazardous features which affect airspace usage or aircraft operations, are presently not established around the Tagbilaran Airport area.

1.5.6. Problem of the existing Tagbilaran Airport

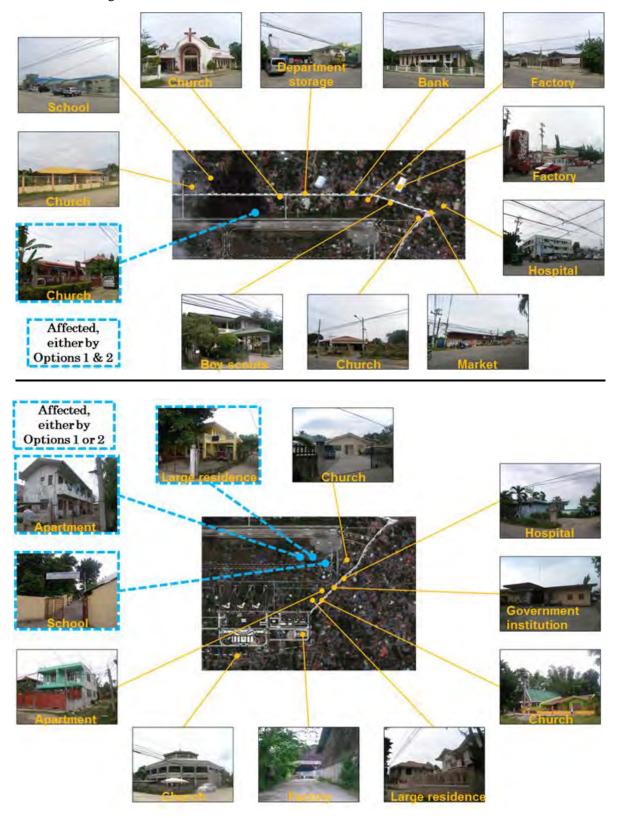
(1) Current Restriction

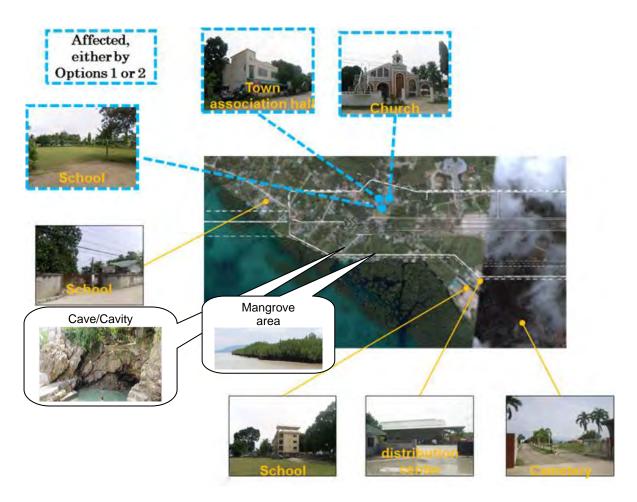
Current situations and problems at the existing Tagbilaran Airport are summarized in Table 1.5-7.

-	-	
	Runway Strip	It does not meet the requirement for ICAO Code3, i.e. 150 m (75 m on both side) in case of non-instrument landings.
	Runway length	Due to lack of stop-way and runway-end-safety area (ICAO requires minimum of 150 m in total) on both ends of the runway, effective runway length is considerably shorter than the announced 1790 m (e.g. only some 1500m is available), which could have endangered passengers' life safety and/or imposed payload restriction on predominant aircraft (A320) from the operators safety point of view.
	Passenger Terminal	It situates too close to the runway, where aircraft parking on the apron falls inside the non-instrument runway strip, and not cleared from the runway transitional surface.
	Apron Spot	There are two (2) aircraft stands parking to face uni-direction in tandem position without bypass taxiing lane. This first-come-first-serve basis parking style is observed in the morning peak-hour to causes the 3 rd aircraft on hold in the air until the 2 stands have been vacated.
	VFR approach operations	Visual Flight Rule (VFR) approach is only applied for aircraft operations. Instrument Flight Rule (IFR) approach cannot be provided unless northern high mountains are removed.
	Possibility for Expansion	Densely-populated housing and commercial area exist in close proximity. Further expansion, if required, would spend considerable cost and time for acquisition of ROW, replacement and resettlement.

Table 1.5-7 Situation and Problem at Tagbilaran Airport

Source: JICA Study Team


The above table shows that the Tagbilaran Airport is suffered from serious infirmity in its current infrastructure.


Features of the existing Tagbilaran Airport are explained in the Photo below:

(2) Properties for Possible Demolition and Replacement; if operations continue

If operations at Tagbilaran Airport are continued, the properties affected thus requiring acquisition of ROW, demolition and replacement/ resettlement of the residents are shown in Figure 1.5-6.

Source: JICA Study Team

Figure 1.5-6 Properties affected by Tagbilaran Airport development


In addition, as shown in the above pictures, there exist wide area of clean mangrove and a cave observed at vertical face of limestone precipice in the immediate vicinity of the runway extension area. This will not only give difficulty in 10-m high embankment for the minimal width of non-instrument runway strip, but also special considerations must be given to how to protect such natural environment especially during construction period.

(3) Properties affected by Possible Noise Pollution; if operations continue

If operations at Tagbilaran Airport are continued, possible noise pollution will be occurred along-with the main street in Tagbilaran City downtown. Impacts of the noise pollution have been simulated by using FAA software, and measured by means of Weighted Equivalent Continuous Perceived Noise Level (WECPNL).

WECPNL is a parameter of noise pollution based on ICAO Annex 16. In Japan, properties affected by more than 75 WECPNL are subject to compensation of noise preventive measures, e.g. provision of sound proof windows, walls, roofs and/or air-conditioning.

Possible noise contours for the years 2020 and 2030, and the properties affected by the noise pollution (above WECPNL75) are shown in Figures 1.5-7 and -8, respectively.

Source: JICA Study Team

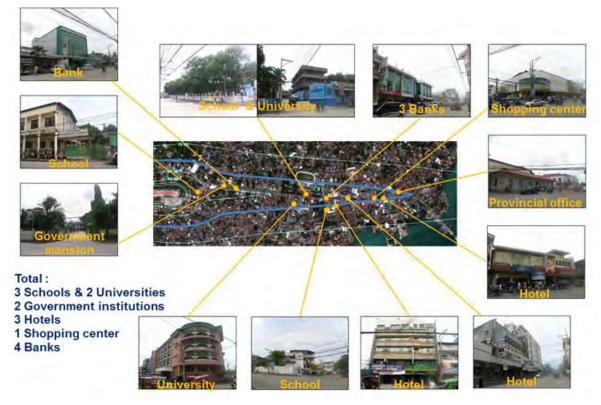
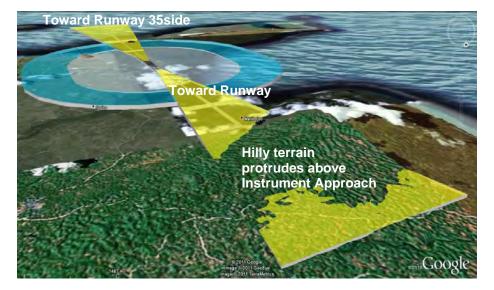



Figure 1.5-8 Possible Noise pollution, if Tagbilaran Airport is developed

(4) Possible Obstacles; if Instrument Approach Runway is applied

A series of hilly terrain exists along northern part of the approach surface (approximately 5NM from the runway threshold), which are protruding above the obstacle limitation surfaces for the instrument runway, thereby giving difficulty to establish an instrument approach procedure in accordance with ICAO Annex 14.

When standard ILS approach procedure is implemented, the pilot must face toward the exact runway orientation at the Final Approach Fix (FAF). However, approaching to the FAF from any direction the aircraft would pass over such topography at extraordinary near distance. Those hilly terrain projecting above the obstacle limitation surfaces are virtually shown in Figure 1.5-9.

View of Runway from North side

View of Runway from South side

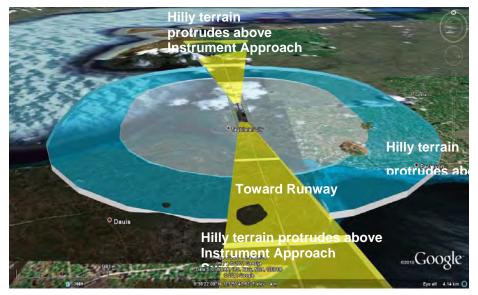
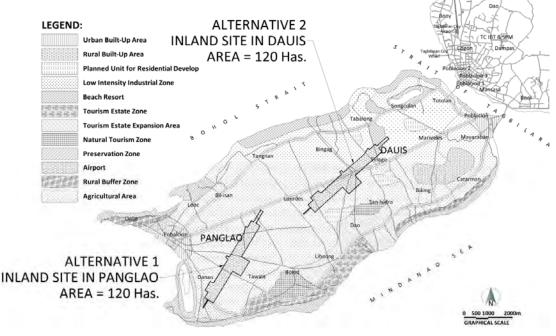


Figure 1.5-9 Obstacle Limitation Surface (Virtual Image) at Tagbilaran Airport

1.6. Selection of New Airport Site


The site for the New Bohol Airport on Panglao Island was earlier selected through the course of Feasibility Study conducted in 2000, for the main reason that the mainland Bohol is mountainous and has very few flat areas, where if an airport would be developed, natural topography would project into obstacle limitation surface of the runway.

Panglao Island is located south west of Bohol and elongates along its northeasterly-southwesterly axis. It is separated from mainland Bohol by a shallow 600-m wide channel, with two bridges connected between the Island and mainland Bohol.

The Island is monotonously flat interrupted by two low hills located at the northeastern end (Dayao and Bicag Hills, Dauis) and along southeastern side (Bolod Hill, Barangay Tawala). The average elevation of the island is 15 to 20 m. above MSL. The apex of Bicag Hill has the highest elevation with a peak height of 184 m above MSL.

The Island is made up of coralline limestone. Being highly soluble even in slightly-acidic water, the limestone terrain is characterized by solution cavities which range in varying dimensions from fractures of few centimeters to caves and sinkholes. Another characteristic of the limestone terrain is the absence of a surface drainage system; instead surface run-off is diverted to subterranean drainage ways.

Panglao Island was a logical alternative site and the municipalities of Dauis and Panglao had been earmarked as the possible alternative sites, as shown in Figure 1.6-1.

Source: JICA Study Team

Figure 1.6-1 Alternative Sites for New Bohol Airport (in 2000 FS)

Alternative 1 (Panglao Site) was selected through evaluation mainly as shown in Table 1.6-1.

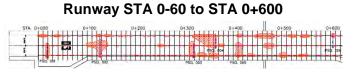
Item	Alternative 1 - Panglao Site	Alternative 2 - Dauis Site							
	In Barangays Bolod and Tawala. The land is flat	In Barangays Tabalong, Tinago and Bingag. The							
General	and predominantly agricultural and rural in	land is undulated in northern part, undeveloped							
	character.	with marginal agriculture and coconut plantation.							
Distance from	15 km 20.20 minutes hy con	8 km 15 20 minutes hu son							
Tagbilaran city	15 km, 20-30 minutes by car	8 km; 15-20 minutes by car							
		Direction is toward Tagbilaran Airport. Low hills							
	Approach/departure for either direction has no	exist at 2.5km east that may protrude into the							
Airspace	obstruction. The site is within the outer horizon	inner horizontal surface. The site is within the							
	surface of Tagbilaran.	conical surface of Tagbilaran.							
	Both Alternatives suite against prevailing wind direction which is northeast (NE). Wind coverage is								
Wind Coverage	99.79% and cross wind is 5 miles per hour.								
Social	NT 1' ' '	Paved spine road (highway) and power line must							
Environment	No diversion is necessary.	be diverted.							
Natural									
Environment	Adverse impacts on natural environment on both a	Iternatives will be little.							
	The aircraft noise problem will be minimal if land use surrounding the new airport is appropriately								
Pollution	controlled in the future. Noise modeling study conducted by the Consultant shows that noise generated								
	by airport operations will be within a tolerable limit.								
Resident	Local residents are aware of the project benefits and possible livelihood opportunities. 40% of Panglao								
perception	site was acquired in 2000, while no acquisition wa	s made in Dauis.							
Conclusion	Recommended Not recommended								

Table 1.6-1 Evaluation of Alternative Construction Sites

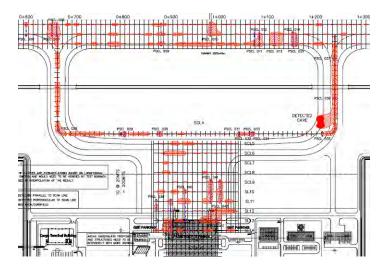
CHAPTER 2 CURRENT CONDITIONS OF CONSTRUCTION SITE

TABLE OF CONTENTS

CHAF	PTER 2 CURRENT CONDITIONS OF CONSTRUCTION SITE	2-1
2.1.	Geological Conditions	2-1
2.1.1	1. Previous Geological Survey conducted in 2009	2-1
2.1.2	2. Additional Geological Survey conducted in 2013	2-9
2.1.3	3. Observations and Findings	2-108
	Weather Conditions	
2.3.1	Obstacle Limitation Surfaces	2-123
2.3.2	2. Topography and Navigation Warnings	2-125
2.3.3	3. Air Traffic Flow	2-125
2.3.4	4. Airspace Classification	2-127
2.4.	Noise Pollution Aspect	2-129


Chapter 2 Current Conditions of Construction Site

2.1. Geological Conditions


The project site is situated at 2 to 9 m above mean sea level, and underlain by Late Oligocene to Middle Miocene sediments and volcanic, mainly marine sandstone, shale and reef limestone; with some conglomerate, coal measure and marine and elastic-basaltic pyroclastic and lavas. A thick layer of coralline limestone underlain by thin layer of mostly medium plastic stiff to hard brown sandy elastic silt at the surface are the prevalent soil-rock formation as evidenced through the boreholes and test pits conducted. Information obtained from exploratory boreholes and test pits indicate that the site area is mostly consisting of cohesive deposits on top and under laying rock formations.

2.1.1. Previous Geological Survey conducted in 2009

A Ground Penetration Radar (GPR) survey conducted in 2009. In Figure 2.1-1 are potential cavities shown.

Runway STA + 600 to STA 1+300

Runway STA 1+300 to STA 2+560

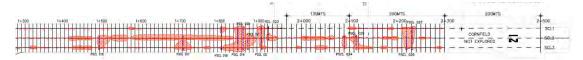


Figure 2.1-1 Potential Cavity suspected through GPR Survey (in 2009)

After having obtained the results of GPR survey, a geological investigations by means of Boreholes (BH) and Test Pits were implemented, the locations and logs of which are summarized as shown in Figures 2.1-2 (1) to (3), and with the runway centerline profile as shown in Figures 2.1-3 (1) to (4).

One (1) 80-cm deep cavity was detected at an elevation of 2 m below the ground (at Borehole No. May 09 BH-2) as shown in Figure 2.1-2 (2) among 43 bore holes. This cavity is situated 1 m below subgrade level and should be considered to be grouted or replaced and re-compacted with good soil, through the course of further borehole investigation scheduled to be carried out just after subgrade excavation.

At the Borehole No. Aug 09 BH-6, a low N-value (of 3 to 6) was detected at an elevation of 4 to 6 m below the ground level as shown in Figure 2.1-3 (2). Another relatively low N-Value (of 9 to 11) was detected at an elevation of 1 to 3 m below the ground level (in the Borehole No. May 09 BH-3) as shown in Figure 2.1-3 (2). In both cases no ground water table was found; therefore the subsoil below is permeable and not saturated by water.

Such lower N-values were explained by geological specialist that even if the location had originally been likely cavity, it was already filled up with soil by storm-water penetration. As shown in Figure 2.1-3 (2) those 2 lower N-value strata are located below the subgrade excavation bottom which should be earmarked as the potential location of weak subsoil where replacement/re-compaction of soil may be necessary later when subgrade construction is commenced.

With the exception of the three (3) Boreholes mentioned above, subsoil below the bottom of runway subgrade excavation level consists generally of dense coralline limestone strata, similar to Mactan International Airport. In some parts elastic silt or silty sand with N-values of more than 15 were found, which is equivalent to geological conditions at Narita Airport and its surroundings..

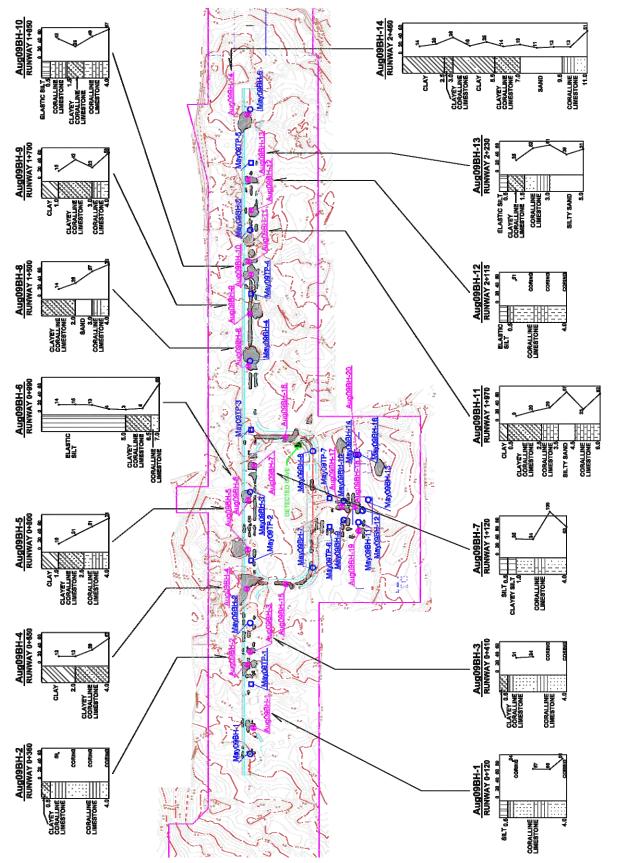


Figure 2.1-2 (1) Boreholes and Test Pits investigated in May & August 2009 along Runway & Taxiways

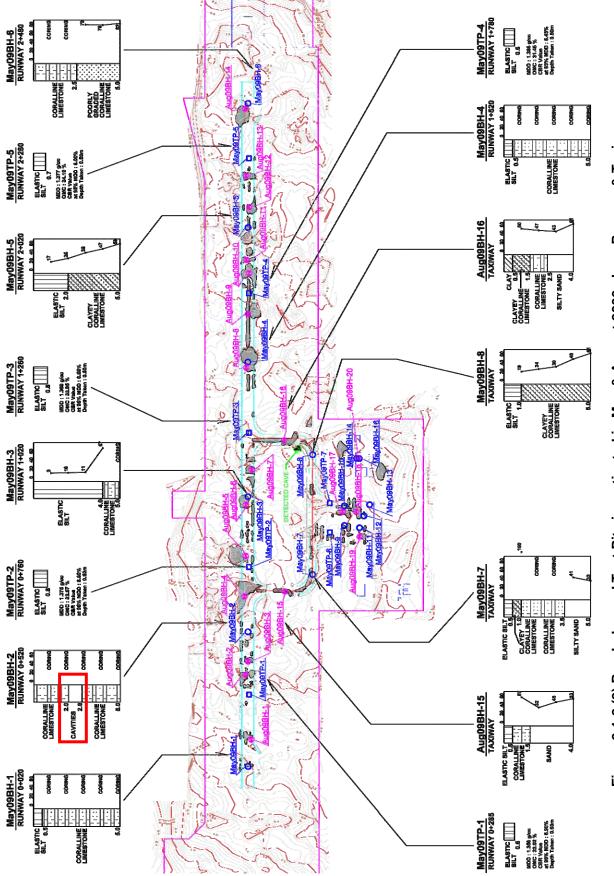


Figure 2.1-2 (2) Boreholes and Test Pits investigated in May & August 2009 along Runway & Taxiways

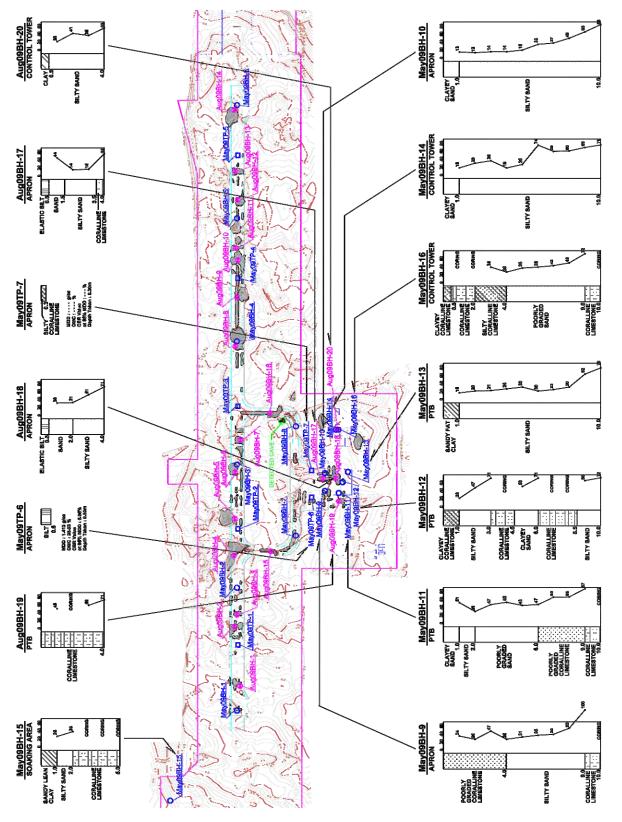
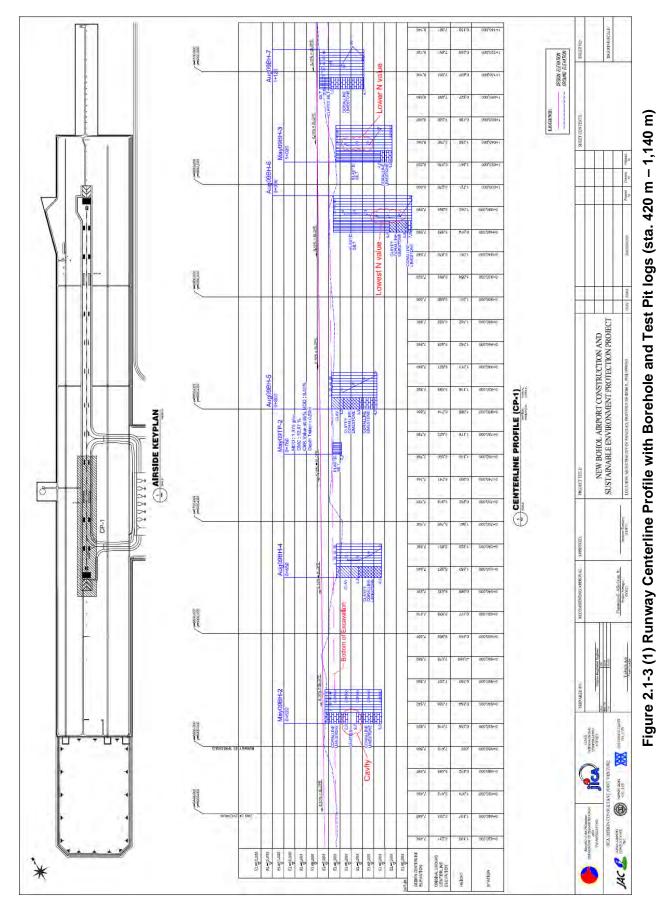
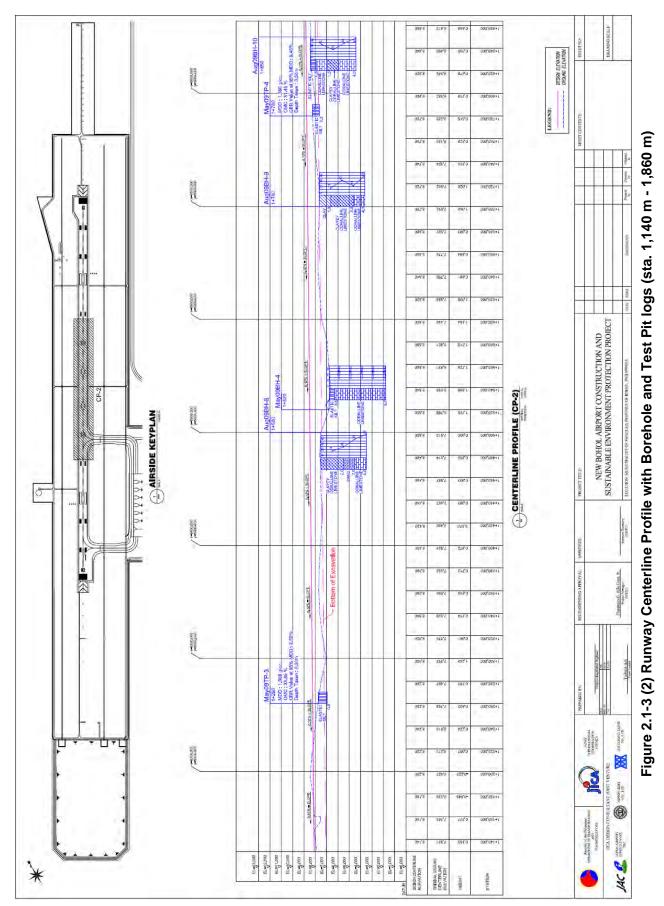




Figure 2.1-2 (3) Boreholes and Test Pits investigated in May & August 2009 at Terminal Area

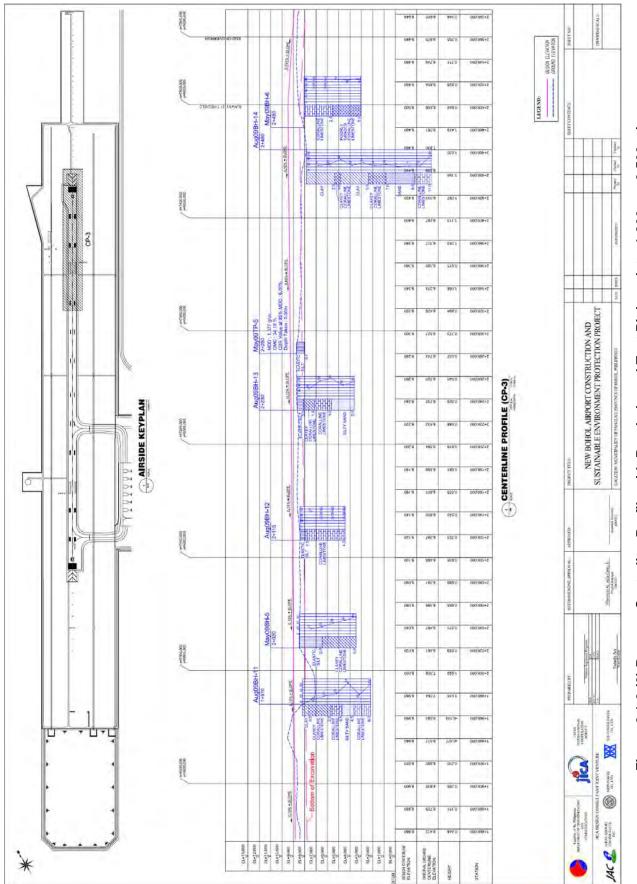


Figure 2.1-3 (3) Runway Centerline Profile with Borehole and Test Pit logs (sta. 1,860 m - 2,560 m)

2.1.2. Additional Geological Survey conducted in 2013

Additional geotechnical surveys for forty eight (48) boreholes were conducted by DOTC in February 2013. Locations of the boreholes are:

- 2 rows of 13 boreholes at 200-m longitudinal spacing along the runway, each row at a lateral distance of 50 m from the centreline; 26 boreholes in total
- ➢ 4 boreholes at Soaking Yard
- ➢ 4 boreholes at Taxiways
- ➢ 4 boreholes at Apron
- ➢ 4 boreholes at Passenger Terminal Building (PTB)
- ➢ 1 borehole at Control Tower
- ➢ 6 boreholes along centerline of Access Road

Figure 2.1-4 Location of Additional 48 Boreholes

Depth of the boreholes was 5-m only since primary purpose was to ascertain whether any shallow cavity exists underneath the airport pavement and buildings.

As the results, no major cavity was found except porous nature appeared on an undisturbed core sample shown in Picture 2.1-1 which was only the recovered core sample among 48 boreholes.

Standard Penetration Test (STP) by means of 63.5-kg automatic hammer with tripping device (free drop from the height of 76 cm) at every 1-m depth at 48 boreholes could have been achieved without coring, and N-value is measured at generally 50 to 100. This means that the dense soil strata are generally of porous non-plastic coralline limestone, where the terrain is much permeable that resulted in less vegetation or trees grown.

Picture 2.1-1 Core Sample Recovered

Borehole test data are shown in the subsequent pages.

Borehole BH-1 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

Existing Grade: 13.6 m

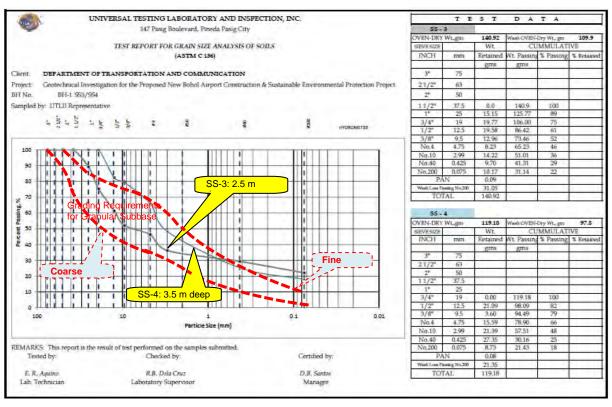
Finished Grade: 13.0 m

Subgrade Elevation: 12.0 m Cut height: 1.6 m

RO	JECI	1			Ge	techn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	t & Sus	tainable Environmental		HOLE	NO:					B	H-1		-
					_		a Project						DEPT	H:					5	,0 m	-	
_	ATIC E DI		D:	ļ,	Pa		Bohol 25/2013 DATE FINISHED: 2/2	25/20	13		WATER TABLE: DW	T										
	ABER	RY		TYPE		CATION				N	-VALUES	TTENT	ATTER				_	_				
DEPIH,m	NUN	% RECOVERY	% RQD	LE TY	LOG SYMBOL	ASSIFIC	DESCRIPTION		SPT		GRAPH	RE COI				Ē	11			-		Ī
DEI	SAMPLE NUMBER % RECOVERY % RQD SAMPLE TYPE	SAMF	106	UNIFIED CLASSIFICATION	156m	15 cm	Sivin	MOISTURE CONTENT	LL (%)	Pl (%)	1 1/2	3	3/4	1/2	3/8 4	19	40					
1						ŝ	Ground Surface	-14	14		10 20 30 40	2	1411	111	11	-		-		-		
	1	100		ss	X	SM	Brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	23	29	19	Subgrade Cut 1.6m	14.50	NP	NP		100	92	85	81 70	65	50	
1	2	89	- 0	55	X	GM	Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	34	20	22		16.96	NP	NP	100	93	79	59	52 40	34	20	
2	3	78	- 0	55	X	GM	Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	27	16	19		20.14	NP	NP	100	89	75	61	52 46	35	29	
	4	67		55	X	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	20	29	3		13.48	NP	NP		l	100	82	79 66	48	25	
	5	67		55	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	30	37	41		12.59	NP	NP		100	95	76	68 48	36	24	

Pictures of disturbed soil samples

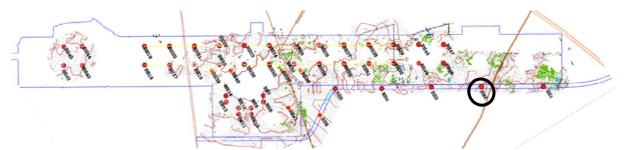
Moisture contents of disturbed soil samples


Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	170.02	218.13	191.27	158.34	165.05
Weight of can & dry soil, g.	151.12	189.76	162.89	142.27	149.00
Weight of water, g.	18.90	28.37	28.38	16.07	16.05
Weight of can, g.	21.61	22.48	21.97	23.09	21.55
Weight of dry soil, g.	129.51	167.28	140.92	119.18	127.45
Moisture Content, %	14.59	16.96	20.14	13.48	12.59

Borehole BH-1 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

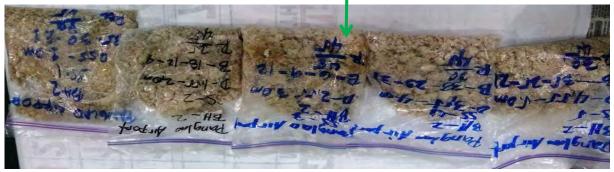
Fine topsoil exists. No large cavity exists.

Natural subgrade level (1.6 m deep) is dense (N-value > 40) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.



Borehole BH-2 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

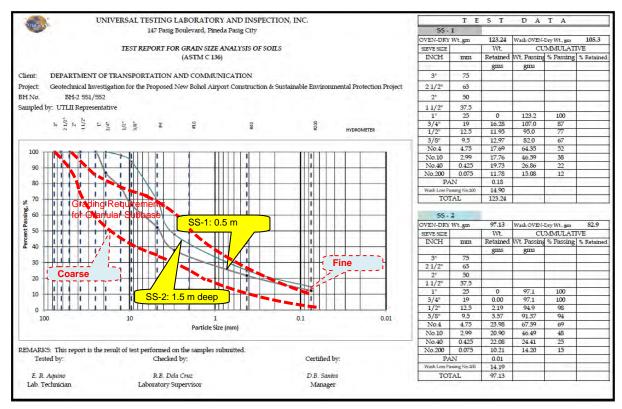
Existing Grade: 14.0 m

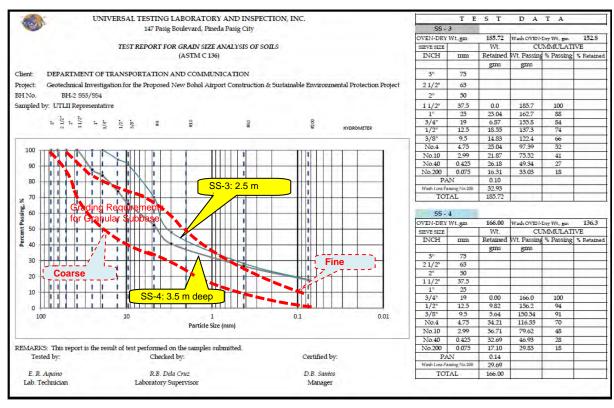

Finished Grade: 12.0 m

Subgrade Elevation: 11.0 m Cut height: 3.0 m

ROJ	ECT	2			Geotechin Protection	ical Investigation for the Proposed New Bohol Airport	Const	nuction	& Sus	ainable Environmental	_	HOLE				-			H-2	
C	ATIC	N-		-	Panglao,							DEPT	n:			-		5,	Um	
AT	EDF	ULLI	D:	-			5/201	3		WATER TABLE: DW	Т									
ABER RY PE		TYPE	CATION	N-VALUES N-VALUES					ATTER		G SIEVE ANALYSIS % PASSING SIEVE NO.									
DEPSH'III	NUN	OVE	% RQD	L H	SSIFIC	DESCRIPTION	1	SPT		GRAPH	ECON	1								-
120	SAMPLE NUMBER % RECOVERY % RQD % RQD SAMPLE TYPE U05 SYMBOL		15 cm	15 cm	15 cm	GRAPH	MOISTURE CONTENT	LL (%)	PI (%)	11/2	4	3/4	1/2 3	/8 4	10	40				
	r	67	- 1	55		Ground Surface Light brown, very dense poorly graded sand with silt and gravel (broken corals	35	30	21	10 20 30 40 Subgrade	9.10	NP	NP		100	87	77 6	7 52	38	22
	2	56	- 0	55	SM	with limestone) of no plasticity Light brown, medium dense silty sand with gravel (broken corals with limestone)	18	12	9	Cut 3.0m	10.68	NP	NP			100	98 9	4 69	48	25
	3	100		55	ям	of no plasticity Light brown, medium dense silty sand with gravel (broken corals with limestone) of no plasticity	6	9	12		12.82	NP	NP	100	88	84	74 6	6 52	41	27
	4	67	1	55	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	33	23	31		9.46	NP	NP			100	94 9	1 70	48	28
	5	67	1	22	SM	Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	35	25	21		10.87	NP	NP	100	84	84	71 6	8 54	40	26

Pictures of disturbed soil samples

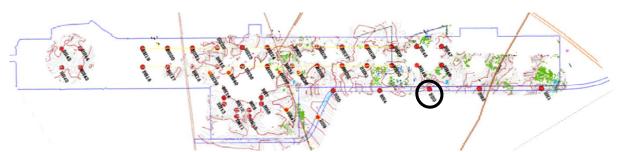

Moisture contents of disturbed soil samples


Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	159.98	132.95	235.00	207.84	196.35
Weight of can & dry soil, g.	148.76	122.58	211.19	191.64	179.64
Weight of water, g.	11.22	10.37	23.81	16.20	16.71
Weight of can, g.	25.52	25.45	25.47	25.64	25.89
Weight of dry soil, g.	123.24	97.13	185.72	166.00	153.75
Moisture Content, %	9.10	10.68	12.82	9.76	10.87

Borehole BH-2 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

No fine topsoil exists. No large cavity exists.

Natural soil at subgrade level (3 m deep) is of the N-value of 15 to 20 and porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.



Borehole BH-3 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

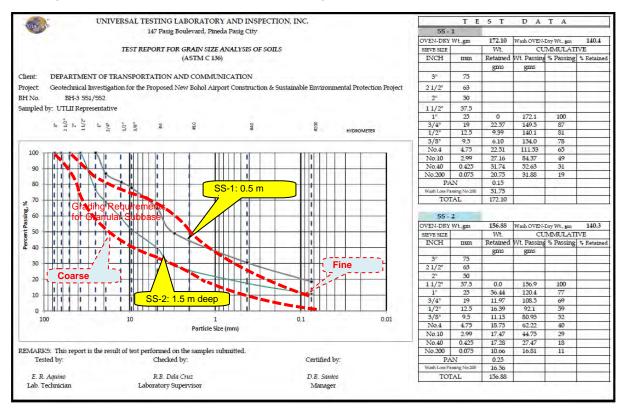
Existing Grade: 8.3 m

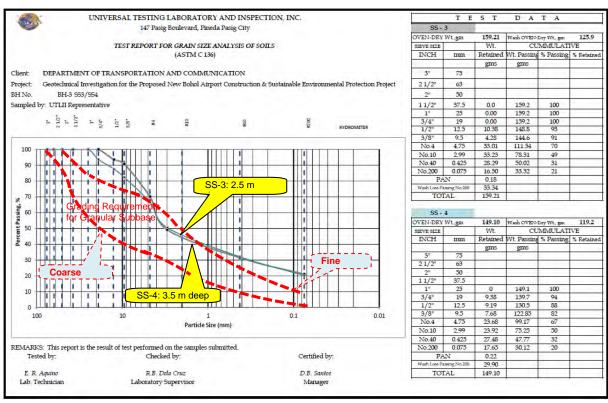
Finished Grade: 9.5m

Subgrade Elevation: 8.5 m Fill height: 0.2 m

RO	JECI					nical Investigation for the Proposed New Bohol Airpor	Const	ruction	ı & Sust	inable Environme	ntal		HOLE							H-3		
						on Project						- 1	DEPTH	Ŀ					5	.0 m		
	ATIO E DI	DN: RILLI	ED:			o, Bohol /25/2013 DATE FINISHED: 2/	25/20	13	1	VATER TABLE:	DWT											
	ABER	RY	1	PE	CATION	1	1		N-	ALUES	1	ITENT	ATTER					-	NAL			
DEPTH,m	NUN	% RECOVERY	% ROD	LE T	STMBO	DESCRIPTION		SPT		CRADU	_	ECON				1				T	÷.	T
	SAMPLE NUMBER	% REC	%	SAMPLE TYPE	UNIFIED CLASSIFICATION		15cm	15cm	15 cm	Subgrade Fill 0.2m	Ш	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2 3	/8 4	10	40	
-		-	=	_	5	Ground Surface				10 20 30	40	-	_	_		_	_			-	-	
	1	100	100	55	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	16	36	38		1	10.95	NP	NP		100	87	81.	8 65	44	31	
	2	51		55	GW-GI	Light brown, dense well graded garvel w with silt and sand (broken corals with	11	18	17		1	9.18	NP	NP	100	77	69	59 J	2 40	28	17	
*	з	100	- (4)	55	SM	limestone) of no plasticity Brown, medium dense silty sand with gravel (broken corals with limestone) of no plasticity	9	8	9		1	16.81	NP	NP			100	99. 1	1 70	49	31	
	4	100	10 U.S.	55	SM	no plasticity Brown, medium dense silty sand with gravel (broken corals with limestone) of no plasticity	9	11	13		1	15.64	NP	NP		100	94	87 4	2 86	50	32	
	5	89		55	5М	Light brown, medium dense silty sand with gravel (broken corals with limestone) of no plasticity	5	6	6		4	19.38	NP	NP		100	89	80	3 59	45	30	

Pictures of disturbed soil samples

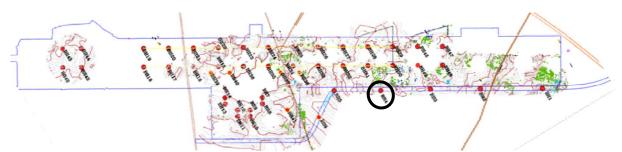



			—		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	216.72	197.03	203.09	198.11	148.84
Weight of can & dry soil, g.	197.88	182.63	176.33	174.79	128.86
Weight of water, g.	18.84	14.40	26.76	23.32	19.98
Weight of can, g.	25.78	25.75	17.12	25.69	25.78
Weight of dry soil, g.	172.10	156.88	159.21	149.10	103.08
Moisture Content, %	10.95	9.18	16.81	15.64	19.38

Borehole BH-3 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

No fine topsoil exists. No large cavity exists. N-value drops to 10 at 5-m deep.

Natural soil at surface (subgrade level) generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.



$Borehole \ BH-4-Access \ Road \ (Pavement \ Thickness: 0.5 \ m+Subgrade: 0.5 \ m)$

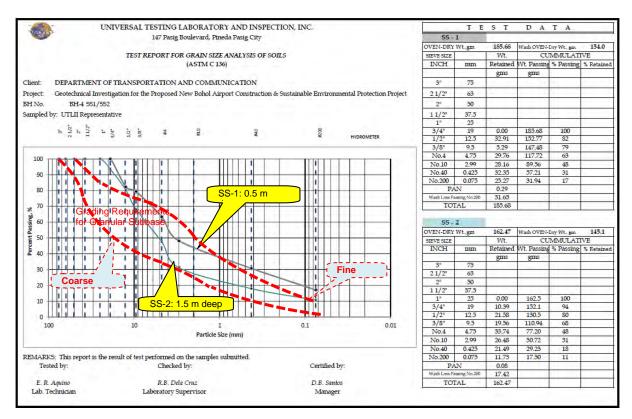
Existing Grade: 8.3 m

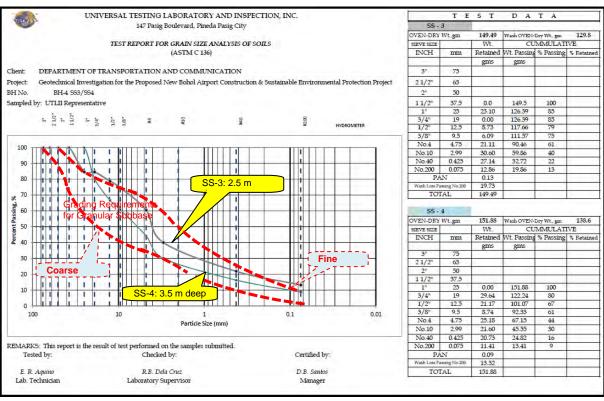
Finished Grade: 9.2 m

Subgrade Elevation: 8.2 m Cut height: 0.1 m

OJ	ECT						ical Investigation for the Proposed New Bohol Airport	Const	ruction	n & Sust	aina	able Environn	nental		HOLE				-		_	BH-4	$l \equiv$	
					-	1.2.2.2.1	1 Project								DEPT	H.			1		-	5.0 m	0	_
_	ATIC E DR		ED:		Par	nglao, 2/2		6/20	13	_	WAT	TER TABLE:	D	WT										
	ABER	RY		PE		CATION	1.	1		N-	VA	LUES		ITENT		RBERG				-				
	SAMPLE NUMBER	% RECOVERY	% RQD	SAMPLE TYPE	DEMOS SO	UNIFIED CLASSIFICATION	DESCRIPTION	1	SPT		1	GRAPH	ł	MOISFURE CONTENT	u	PI								
	SAME	%		SAI	1	UNIFIED	Ground Surface	15 cm	150	15cm		Subgrade Cut 0.1m		MOISI	(%)	(%)	11/2		-				63	
-	1	44		22	X	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	29	27	46	Ì			8.42	NP	NP	1		101	75	54 3	87 28	21	
	2	67	- (4)	25	X	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	30	27	48				9.07	NP	NP		100	88	76	64 4	19 37	26	
Ī	3	67	4	22	X		Light brown, very dense swell graded gravel with sand (broken corals with limestone) of no plasticity	31	28	33				10.05	NP	NP		100	74	49	42 3	34 27	14	
	4	44	-	55	X	SP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	25	31	29				10.72	NP	NP		100	54	81	62 4	46 35	19	
	5	67	-	55	X	SP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no planacity	29	38	46				10.47	NP	NP			100	75	62 4	46 36	20	

Pictures of disturbed soil samples

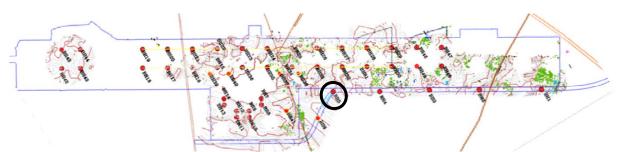



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	230.81	203.75	186.92	185.08	184.13
Weight of can & dry soil, g.	211.12	188.29	175.05	177.59	167.65
Weight of water, g.	19.69	15.46	11.87	7.49	16.48
Weight of can, g.	25.44	25.82	25.56	25.71	17.29
Weight of dry soil, g.	185.68	162.47	149.49	151.88	150.36
Moisture Content, %	10.60	9.52	7.94	4.93	10.96

Borehole BH-4 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

No fine topsoil exists. No large cavity exists.

Natural soil at subgrade level generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.



Borehole BH-5 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

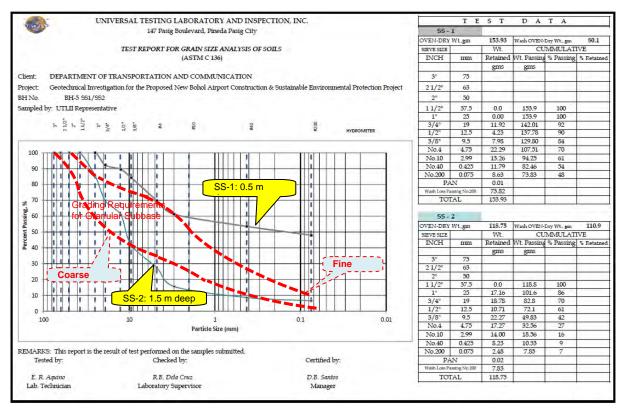
Existing Grade: 9.0 m

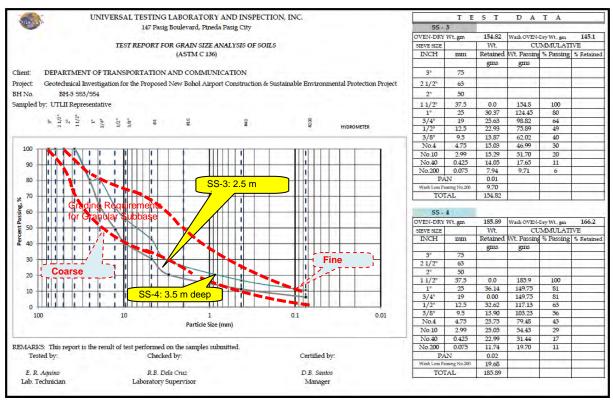
Finished Grade: 8.8 m

Subgrade Elevation: 7.8 m Cut height: 1.2 m

OJ	ECT	-			Geotechu	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	tain	able Env	rironn	nental	1		HOLE	NO.:					-	BH	I-5	_	
					Protection										_	DEPT	H:						5.0	m		
-	ATIC E DF		ED:		Panglao, 2/		23/20	13		WA	TER TAB	LE:	: 3	DW	т											
	ABER	RY		F	ATION				N	-VA	LUES				TENT	ATTER		1	%	-			ALY	-) .	
	NUN	% RECOVERY	% RQD	LE TY	SIMBO	DESCRIPTION	1.1.	SPT	1.0		G	RAP			ECON	U		Ĩ							1	I
ALL D'II	SAMPLE NUMBER	% REG	%	SAMPLE TYPE	LOS SYMBOL UNIFIED CLASSIFICATION		15 cm	15 cm	15cm	_	0	WAT I			MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	ī	3/4	1/2	3/8	4	10	40	
	~			-	3	Ground Surface	2	-		_	10 20	- 30	40	< 1.	2	12-4	6.4					-				
1	1	100	(i) (i)	52	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	19	30	28		Subgr Cut 1	ade .2m			25.93	NP	NP		100	92	90	84	70	61	54	
	2	78	-	55	GP-GM	Light brown, dense poorly graded gravel with sand (broken corals with limestone) of no plasticity	12	15	17			Ħ			9.49	NP	NP	100	86	70	61	42	27	16	9	
	3	56		22	GP-GM	Ught brown, dense poorly graded gravel with sand (broken corals with limestone) of no plasticity	25	17	18						7.98+	NP	NP	100	80	64	49	40	30	20	11	
Ī	4	56		55	GP-GM	Light brown, dense poorly graded gravel with sand (broken corals with limestone) of no plasticity	49	25	19						8.94	NP	NP	100	81	81	63	56	43	29	17	
	5	56		25	GP-GM	Light brown, medium dense poorly graded gravel with sand (broken corals with limestone) of no plasticity	25	13	1				1		10.51	NP	NP	100	87	80	65	58	44	31	17	

Pictures of disturbed soil samples

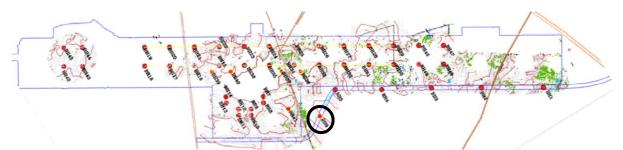



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	219.33	155.91	192.94	227.99	198.51
Weight of can & dry soil, g.	179.42	144.64	180.58	211.37	181.26
Weight of water, g.	39.91	11.27	12.36	16.62	17.25
Weight of can, g.	25.49	25.89	25.68	25.48	17.11
Weight of dry soil, g.	153.93	118.75	154.90	185.89	164.15
Moisture Content, %	25.93	9.49	7.98	8.94	10.51

Borehole BH-5 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

Fine topsoil exists. No large cavity exists.

Natural soil at subgrade level (1.2 m deep) is dense (N-value > 30) but porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.



Borehole BH-6 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

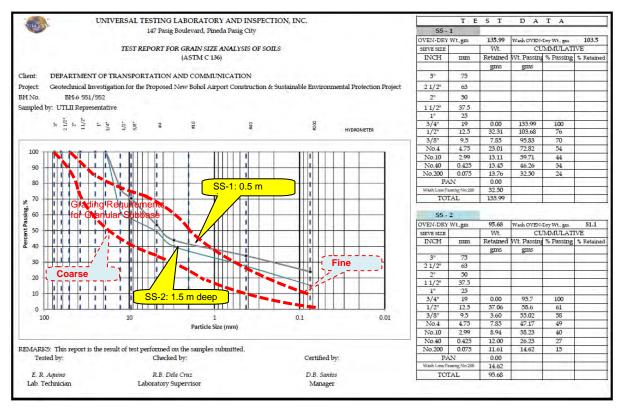
Existing Grade: 7.4 m

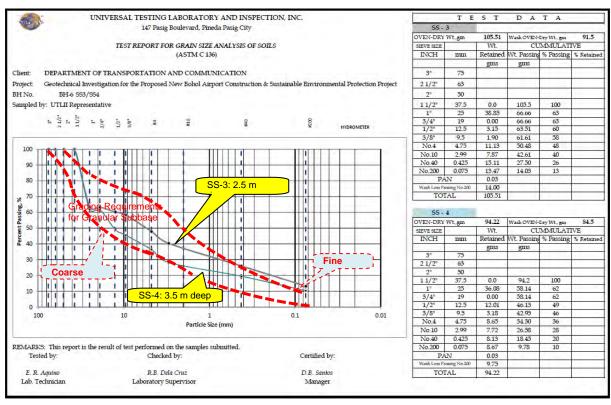
Finished Grade: 8.5 m

Subgrade Elevation: 7.5 m Fill height: 0.1 m

ROJ	JECT	-		- 3	Geo	techni	cal Investigation for the Proposed New Bohol Airport	Const	ruction	& Sust	ainabi	e Envir	ronme	ntal		HOLE	NO.:						BH	-6	
					<u></u>		Project					-				DEPT	H:						5.0	m	
-	ATIC E DF		D:	1	Pan		Bohol 2/2013 DATE FINISHED: 3/	2/201	3		WATE	TABLE	- -	DV	т										
	ABER	RY		FE		CATION				N-	VAL	JES			TENT	1.	RBERG		%).
DEPTH,m	NUN	OVE	% RQD	Ē	CEW1	SSIFI	DESCRIPTION	1.0	SPT		_	-		_	ECON	10i							1		1
	SAMPLE NUMBER	% RECOVERY	%	SAMPLE TYPE	1063	UNIFIED CLASSIFICATION		15cm	15 cm	15cm		ubgra ill 0.1	de	₽	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	ī	3/4	1/2	3/8	•	10	40
-				-	-	5	Ground Surface	-			TT	20	90	40			1.243	1		1		-			-
-	1	56	(4)	22	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no planacity	29	33	37					11.75	NP	NP	1		100	76	70	54	44	34
	2	44	-	25	X	GM	Brown, very dense silty gravel with sand (broken corals with limestrine) of no plasticity	29	30	38					8.75	NP	NP			100	61	58	49	40	27
	3	67		22	X		Brown, very dense sity gravel with sand (broken corals with imestone) of no plasticity	30	30	49					17.65	NP	NP	100	63	63	60	58	45	40	26
	4	44		55	G	P-GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	20	30	42					10.19	NP	NP	100	62	62	49	46	36	28	20
	5	44	-	22	G	P-GM	Brown, very dense poorly graded gravel with silt and sand (br/ken corals with limestone) of no plasticity	30	39	46					8.53	NP	NP	100	89	68	58	49	41	34	23

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	168.84	122.82	142.75	120.77	136.57
Weight of can & dry soil, g.	152.89	114.46	124.13	111.17	127.22
Weight of water, g.	15.95	8.36	18.62	9.60	9.35
Weight of can, g.	17.10	18.88	18.62	16.95	17.56
Weight of dry soil, g.	135.79	95.58	105.51	94.22	109.66
Moisture Content, %	11.75	8.75	17.65	10.19	8.53

Borehole BH-6 – Access Road (Pavement Thickness: 0.5 m + Subgrade: 0.5 m)

No fine topsoil exists. No large cavity exists.

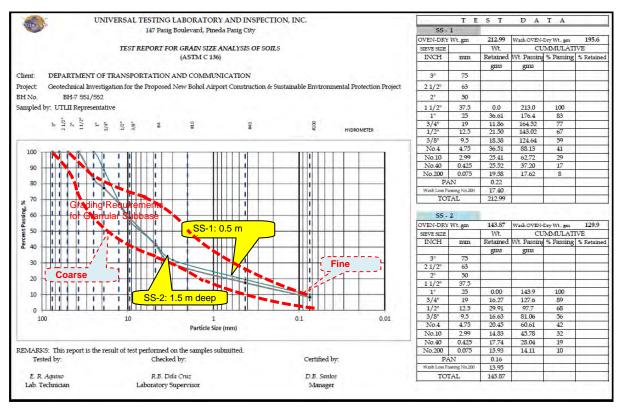
Natural soil at surface generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

Borehole BH-7 - Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

Existing Grade: 7.6 m Finished Grade: 7.4 m Subgrade Elevation: 6.1 m Cut height: 1.5 m

RO]	ECT	6		- 0	Geotechn	ical Investigation for the Proposed New Bohol Airport	Const	nuction	& Sus	ainable Environmental		HOLE	NO:	-					BH-	7	
					Protection	n Project						DEPT	H:						5.0 r	n	_
	ATIC E DF	DN: ULLI	D:	1	Panglao, 2/		26/201	3		WATER TABLE: DW	т	-									
_	ABER	RY		PE	CATION				N	VALUES	TENT	ATTER							LYS		
DEPTH,m	NUN	% RECOVERY	% RQD	E	CLASSIFIC	DESCRIPTION		SPT		GRAPH	E CON					m		1	T	1	
DEP	SAMPLE NUMBER	% RE(%	SAMPLE TYPE	UNIFIED CLASSIFICATION	2010-020	15 cm	15 cm	15 cm	GIATH	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/B	4	10 4	0
		1.T.,	111		5	Ground Surface	164	1.00	1	10 20 30 40	~	111.	17.1.	123	1.1	11		=	÷.,		
	1	100	-	55	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	38	41	47	Subgrade Cut 1.5m	9.18	NP	NP	100	83	77	67	59	41	29 1	7
1	2	81	-	55	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	45	48	46		8.58	NP	NP		100	89	68	56	42	34 1	9
2	3	78	- 0	55	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	46	54	61		8.00	NP	NP		100	95	83	68	47	32 1	6
	4	56		55	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	69	58	43		6.32	NP	NP	100	83	72	60	47	36	24 1	ini.
	5	67	4	55	GP	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	56	41	.8		8.35	NP	NP	100	88	56	51	41	26	19 1	1

Pictures of disturbed soil samples



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	257.99	172.98	240.77	166.48	182.60
Weight of can & dry soil, g.	238.43	160.63	224.86	157.61	170.50
Weight of water, g.	19.56	12.35	15.91	8.87	12.10
Weight of can, g.	25.44	16.76	25.93	17.33	25.54
Weight of dry soil, g.	212.99	143.87	198.93	140.28	144.96
Moisture Content, %	9.18	8.58	8.00	6.32	8.35

Borehole BH-7 - Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

No fine topsoil exists. No large cavity exists.

Natural soil at subgrade level (1.5 m deep) is dense (N-value >80) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

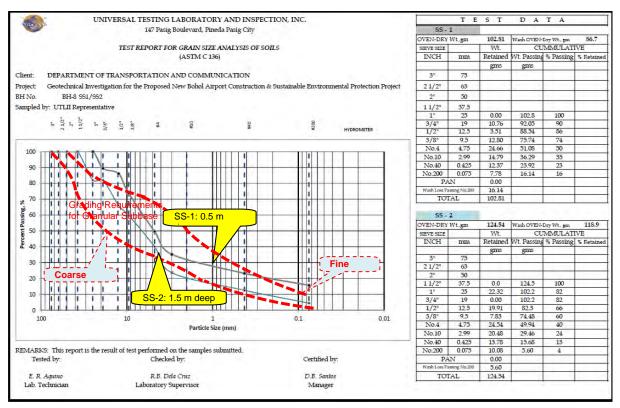
STREET.	UNIV	VERSAL TESTING L			ON, INC.			- 3	ST	DA	T A	
~		14/ Pasig t	Boulevard, Pineda	a Pasig City			OVEN-DE	100	198.83	web own	-Dry Wt., gm	184.7
		TEST REPORT FOR	CRAIN STTE A	NALVER OF SOT	c		SIEVE SIZ		190.00		JMMULAT	
		TEST REPORT FOR	(ASTM C 136)	NAL1515 OF SOIL	5		INCH	mm	Retained		% Passing	
			(A31MC 130)				INCH	mun	gms	gms	a rassing	* Netain
lient: DEP	APTMENT OF T	RANSPORTATION A	NDCOMMUNI	CATION			3"	75	guis	guis		
							· · · · · · · · · · · · · · · · · · ·		-			-
		tion for the Proposed N	New Bonol Airpol	rt Construction & 5	ustainable Envirol	nmental Protection		63			-	-
H No.	BH-7 553/554						2"	50	-		-	
ampled by: U	TLII Representativ	re					1 1/2"	37.5		1.111		
	L. L.						- 1ª	25	0.00	198.83	100	
in	2' 2' 11/3	3/8*	OTa	01	80	HYDROMETER	3/4"	19	9.96	188.87	95	
				17		HYDROMETER	1/2"	12.5	23.38	165.49	83	
							3/8"	9.5	30.91	134.58	68	
100 11 11		- MILLIN -	1 111	1111	THEFT	1.1.1.	No.4	4.75	40.23	94.35	47	
							No.10	2.99	34.12	60.23	30	
90	N N I D						No.40	0.425	29.40	30.83	16	
		X 1 1		1	1		No.200	0.075	16.46	14.37	7	-
80 1 1		1 1 1 1 1	- SS	-3: 2.5 m				PAN	0.20			
70 11				0. 2.0 m				Passing No.200 DTAL	14.17	-		-
Percent Passing, %	for Granu	Requirements lar Subbase			6		OVEN-DF		140.28 Wt.		-Day WE, gan	133.0
2							INCH	mm	Retained		% Passing	
40									gms	gms		
							3*	75	0	0		
30						Fine 🗧	2 1/2"	63		2 2		
20 L C	oarse						2"	50		1		
1 DEC	הרכד מרכו	-					11/2 ⁿ	37.5	0.0	140.3	100	
10							1"	25	24.24	116.04	83	
		SS-4: 3.	5 m deep				3/4"	19	14.80	101.24	72	
			<u>і ії</u>				1/2"	12.5	17.77	\$3.47	60	
100		10	1		0.1	0	01 3/8"	9.5	17,58	65.89	47	
			Particle Size	(mm)			No.4	4.75	16.04	49.85	36	
				7.1.2			No.10	2.99	15.64	34.21	24	
			and the second second				No.40	0.425	16.22	17.99	13	
		ult of test performed or		mitted.	47.94	100	No.200	0.075	9.93	8.06	6	
Tested by:	1	Checked	by:		Certified	i by:		PAN	0.80			
					D.B. Sa			Passing No.200	7.26			-
E.R. Aquin		R.B. Dela										

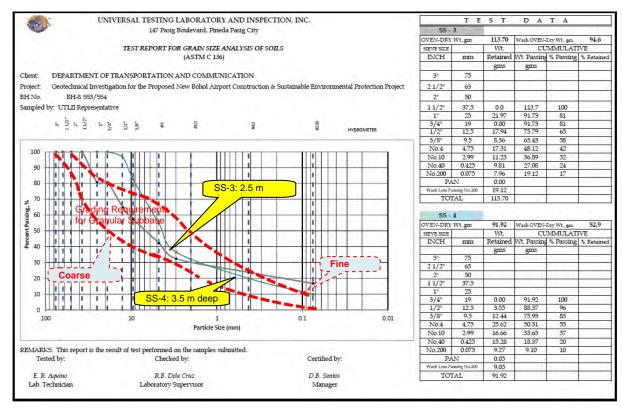
Borehole BH-8 - Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

Existing Grade: 7.2 m Finished Grade: 7.7 m Subgrade Elevation: 6.4 m Cut height: 1.8 m

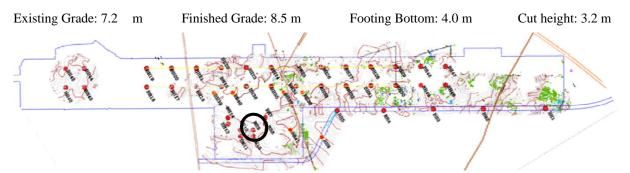
RO	JECT			- 1	Ge	otechni	cal Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	taina	ble En	vironn	nental			HOLE	NO.:	-					BH	-8		-
					Pro	tection	Project										DEPTH	H:						5.0	m	_	_
	EDF		ED:		Pa	nglao, 3/		2/201	3		WAT	ER TAB	ILE:	1	DW	r											
	ABER	RV		PE		CATION				N	VA	LUES	n.			TENT	ATTER			%).	
DEPTH,m	NUN	% RECOVERY	% RQD	SAMPLE TYPE	OEMNS SO	ASSIFIC	DESCRIPTION		SPT	21	1	G	RAP	4		E CON				-	11		1				
DE	SAMPLE NUMBER	% RE	%	SAMP	105	UNIFIED CLASSIFICATION		15 cm	15cm	15cm					_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	•	10	40	20
						5	Ground Surface				-	10 20	0 30	40		-	47.74	4.1.2	1								
1 -	1	67	-	22	X	GM	Dark brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	60	87	77	f	Sub	grad	e		15.60	NP	NP		100	90	86	74	50	35	23	1
1	2	44		22	X	GW	Dark brown, dense well graded gravel with sand (broken corals with limestone) of no plasticity	49	56	47		Gu				12.27	NP	NP	100	82	82	66	60	40	24	13	-
	3	78	4	-55	Х	GM	Dark brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	73	38	40						34.42	NP	NP	100	81	81	65	58	42	32	24	1
3	4	44	- 4	25	X	SP-GM	Dark brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	46	28	27	1					11.58	NP	NP			100	96	83	55	37	20	1
	5	78		52	X	SP-GM	Dark brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	30	29	22						17.04	NP	NP			100	83	72	53	34	20	

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	140.77	168.18	174.85	121.19	169.64
Weight of can & dry soil, g.	124.73	152.90	135.71	110.55	148.30
Weight of water, g.	16.04	15.28	39.14	10.64	21.34
Weight of can, g.	21.92	28.36	22.01	18.63	23.07
Weight of dry soil, g.	102.81	124.54	113.70	91.92	125.23
Moisture Content, %	15.60	12.27	34.42	11.58	17.04

Borehole BH-8 - Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

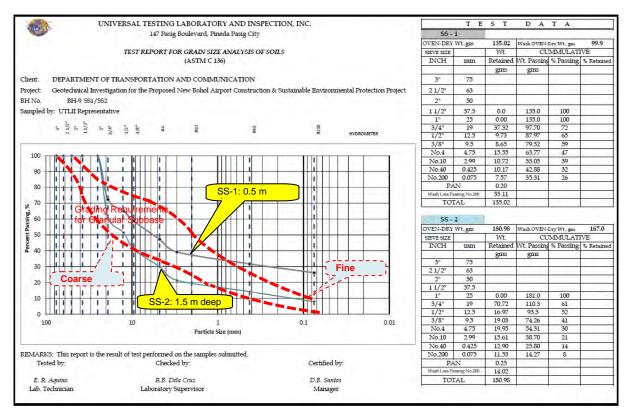

No fine topsoil exists. No large cavity exists.

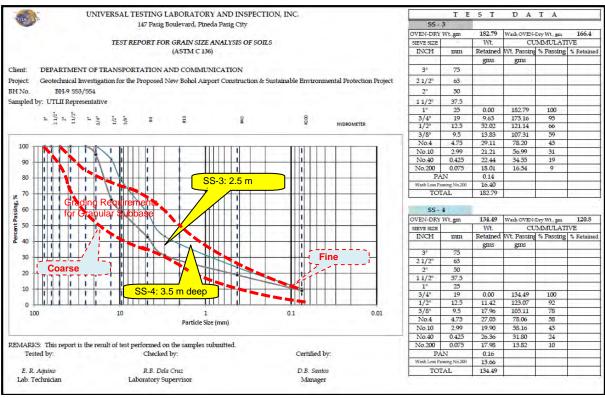
Natural soil at subgrade level (1.8 m deep) is dense (N-value >100) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

Borehole BH-9 - PTB

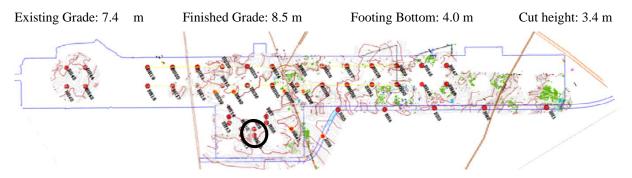
RO	ECI				Geotechr	ucal Investigation for the Proposed New Bohol Airport	Const	nuction	ı & Sust	inable Environ	mental		HOLE	NO .:						BH	[-9	
					Protection								DEPT	H				_		5.0	m	
	ATIC E DI	DN: ULLI	ED:	1	Panglao, 2/		26/20	3	1	VATER TABLE:	DV	VT	-									
_	ABER	RY		PE	ATION		Ľ		N-	ALUES	Τ.	ITENT	ATTER									o.
DEPTH,m	NUN	OVE	% RQD	LE J	STMBO	DESCRIPTION	-	SPT		GRAP	u l	ECON				1					Ĩ1	Ē
Ē	SAMPLE NUMBER	% RECOVERY	%	SAMPLE TYPE	LOG SYMBOL UNIFIED CLASSIFICATION		15cm	15 cm	15cm	UNAF	n	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	4	3/4	1/2	3/8	*	10	40
	S		-		3	Ground Surface			-	10 20 3	D 40	2	1	1		_	-				-	
	1	100	1.000	55	GM	Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	13	14	27	Footing Cut 3.2m		11.52	NP	NP		100	72	65	59	47	39	32
	2	89	1.00	22	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	20	33	22			6.61	NP	NP		100	61	57	41	30	21	14
2	3	89	- 14/	52	GP-GM	Light brown, dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	13	16	17			6.90	NP	NP		100	95	66	59	43	IÉ	19
	4	100	10 - 1 C	52	SP-SM	Light brown, medium dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	20	12	16			8.12	NP	NP		11.0	100	92	78	58	43	24
	5	100	T	55	GP-GM	Light brown, dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	19	19	16			6.14	NP	NP	100	88	82	67	58	42	32	18

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	170.75	218.58	221.16	171.29	161.36
Weight of can & dry soil, g.	155.19	206.62	208.55	160.37	153.02
Weight of water, g.	15.56	11.96	12.61	10.92	8.34
Weight of can, g.	20.17	25.64	25.76	25.88	17.22
Weight of dry soil, g.	135.02	180.98	182.79	134.49	135.80
Moisture Content, %	11.52	6.61	6.90	8.12	6.14

Borehole BH-9 - PTB

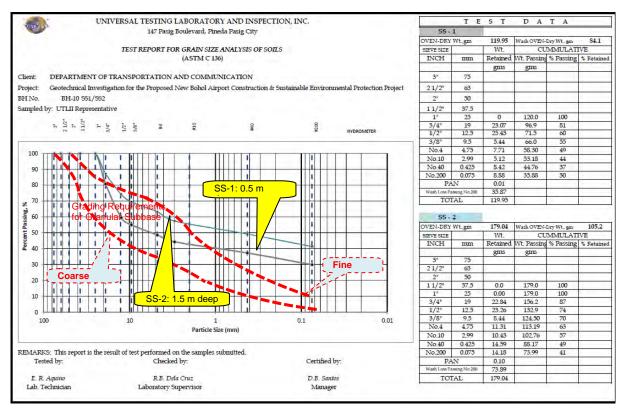

No fine topsoil exists. No large cavity exists.

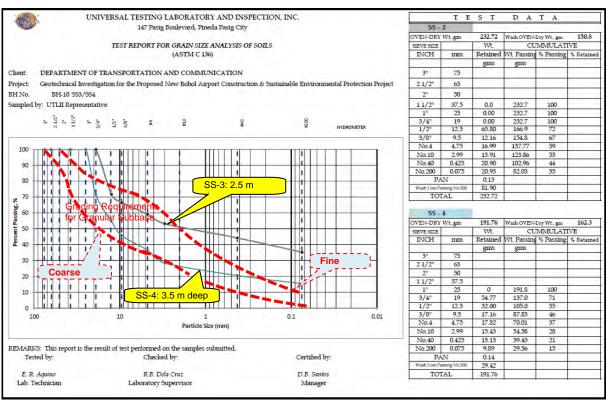
Natural soil at footing bottom level (3.2 m deep) is N-value of 30 to 40.

Borehole BH-10 - PTB

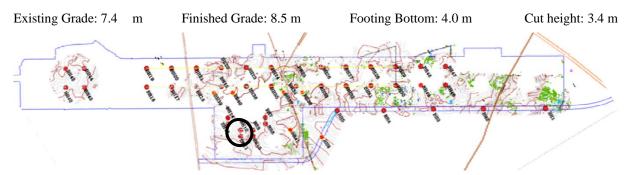
OJ.	ECT				Ge	otechni	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	ainable Environmental		HOLE	NO.:			-			BH-	10	-
					Pr	otection	Project						DEPT	H:						5,0	m	
-	ATIC E DR	ON: ILLI	D:		Pa	nglao, 2/2		6/201	13		WATER TABLE: DW	т										
	ABER	RY		TYPE		CATION				N	VALUES	TIENT			Ĩ		SIE	-) .
	NUN	RECOVERY	% RQD	LE TY	SYMBOL	SSIFIC	DESCRIPTION		SPT		GRAPH	ECON				n	1		11		11	Ĩ
1	SAMPLE NUMBER	% REC	%	SAMPLE	1003	JUIFIED CLASSIFICATION		15 cm	15cm	L5 cm	SKAFH	MOISTURE CONTENT	LL (%)	Pl (%)	11/2	¥.	3/4	1/2	3/8	4	19	40
1		12.				5	Ground Surface	÷.,	1		10 20 30 40	~	11.1	1.14	2.1		2.1	1	-			
1	1	45	-	25	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	26	22	18		13.26	NP	NP	1	100	81	60	55	49	44	37
	2	89		55	X	GM	Dark brown, medium dense silty sa gravel with sand (broken corals with limestone)	6	7	7	Footing Cut 3.4m	19.46	NP	NP		Í	100	87	74	69	63	57
	3	100	-	25	X	GM	of no plasticity Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	21	33	80		14.38	NP	NP	1.0		100	72	66	59	53	44
	4	44		22	X	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	43	59	71		7.57	NP	NP	1.0	100	71	55	46	36	28	20
	5	44	1.00	22	X	GW-GM	Light brown, very dense well graded gravel with silt and sand (broken corals with limestone) of no plasticity	25	39	51		2.09	NP	NP	100	84	60	26	17	10	4	1

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	153.30	230.73	283.27	232.81	145.75
Weight of can & dry soil, g.	137.40	195.89	249.81	218.29	143.12
Weight of water, g.	15.90	34.84	33.46	14.52	2.63
Weight of can, g.	17.45	16.85	17.09	26.53	17.31
Weight of dry soil, g.	119.95	179.04	232.72	191.76	125.81
Moisture Content, %	13.26	19.46	14.38	7.57	2.09

Borehole BH-10 – PTB

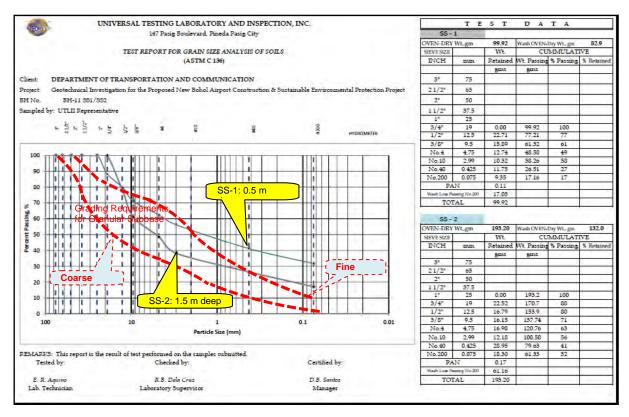

Fine topsoil exists. No large cavity exists. N-value drops to 13 at 2-m deep.

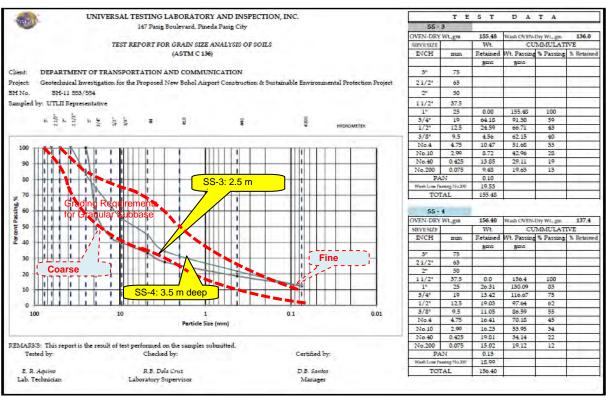
Natural soil at footing bottom level (3.4 m deep) is dense (N-value > 100).

Borehole BH-11 – PTB

RO	JECT					nical Investigation for the Proposed New Bohol Airpo	rt Const	ruction	& Sus	ainable Environmental		HOLE				1	_	11	BH-1	1	
						on Project					_	DEPT	H:			12			5.0 n	1	
	ATIC E DF		ED:	-), Bohol /26/2013 DATE FINISHED: 2,	/26/20	13		WATER TABLE: DW	Т										
	ABER	RY		PE	CATION	100 C 100 C			N	VALUES	ITENT		RBERG			_		- T	LYS	-	
DEFIN,IN	NUN	% RECOVERY	% RQD	LET	ASSIFI	DESCRIPTION	1	SPT		GRAPH	RE CON					T	1			1	
	SAMPLE NUMBER	% RE(%	SAMPLETYPE	UNIFIED CLASSIFICATION		15 cm	15 cm	15 cm	QUALIT	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4 1	0 40	3
1		1			3	Ground Surface			_	10 20 30 40		i inder		1.					4.	+	1
1	1	89	4	55	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	17	31	37		9.03	NP	NP			100	77	61	49 3	8 27	,
1	2	67		ss	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	19	28	35	Cut 3.4m	16.01	NP	NP		100	88	80	71	63 5	6 41	1
2	3	44	۰.	SS	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	24	33	40		7.56	NP	NP		100	34	43	40	33 2	8 19	2
	4	44		SS	GP-GN	Brown, very dense poorly graded gravel with A silt and sand (broken corals with limestone) of no plasticity	30	39	48		7.31	NP	NP	100	-83	75	62	55	44 3	4 22	2
	5	44		55	GW	Brown, very dense well graded gravel with sand (broken corals with limestone) of no plasticity	42	53	65		11.48	NP	NP	100	87	72	36	29	18 1	6 7	

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	128.05	241.96	187.19	187.93	232.53
Weight of can & dry soil, g.	119.03	211.03	175.44	176.49	211.21
Weight of water, g.	9.02	30.93	11.75	11.44	21.32
Weight of can, g.	19.11	17.83	19.96	20.09	25.43
Weight of dry soil, g.	99.92	193.20	155.48	156.40	185.78
Moisture Content, %	9.03	16.01	7.56	7.31	11.48

Borehole BH-11 – PTB

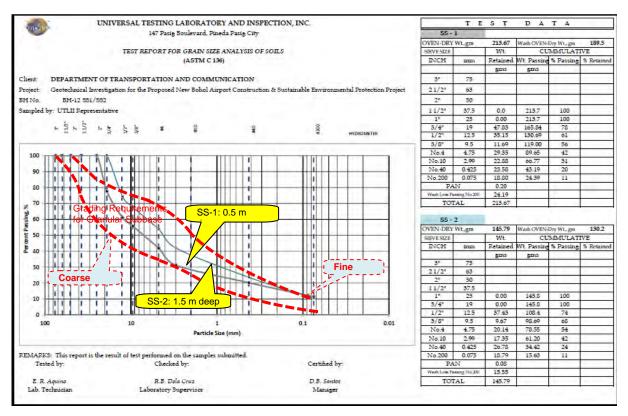
Fine topsoil exists. No large cavity exists.

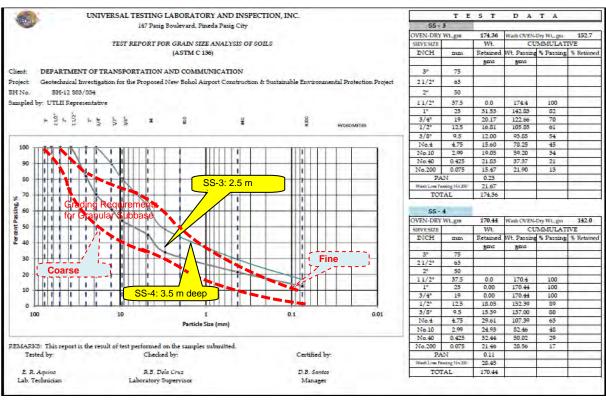
Natural soil at footing bottom level (3.4 m deep) is dense (N-value > 70).

Borehole BH-12 – PTB

RO	JECI	1			Geotechn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	ainable Environmental		HOLE	NO.:			1		BI	H-12		
					Protection				_			DEPTI	H:			12		5	0 m		
	ATIO E DI	DN: RILLI	D:	1	Panglao, 2/		6/20	3		WATER TABLE: DW	Т										
	ABER	RY		PE	CLASSIFICATION	11 11 20 - 20 AC	ļ		N	VALUES	CONTENT	ATTER						NAL			
חברוחיווו	NUN	RECOVERY	% RQD	LETV	SSIFIC	DESCRIPTION		SPT	=	GRAPH	E CON	1		Ē	ř.		7	i ii	11		
DEP	SAMPLE NUMBER	% REC	%	SAMPLE TYPE	UNIFIED CLA		15 cm	15 cm	15 cm	UNAPH	MOISTURE	LL (%)	PI (%)	1 1/2	1	3/4	1/2 3	/8 4	10	40	
			1		S	Ground Surface				10 20 30 40	-		1			_					
	1	100		55	GP-GM	Light brown, medium dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	6	12	13	Edoting	8.16	NP	NP		100	78	61 5	6 42	31	20	
1	2	100	3.	55	GP-GM	Light brown, dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	15	20	22	Cut 3.4m	8.09	NP	NP			100	74 6	8 54	42	24	
	3	100	(55	бМ	Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	20	19	26		13.72	NP	NP	100	82	70	60 S	4 45	34	21	
	4	100	141	55	SM	Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	23	21	22		13.65	NP	NP			100 4	89 8	0 63	48	29	
	5	100	14	55	GP-GM	Light brown, dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	16	17	27		10.25	NP	NP		100	88	76 6	1 45	36	21	

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	256.81	176.33	215.39	212.17	178.34
Weight of can & dry soil, g.	239.37	164.53	191.46	188.90	163.06
Weight of water, g.	17.44	11.80	23.93	23.27	15.28
Weight of can, g.	25.70	18.74	17.10	18.46	13.99
Weight of dry soil, g.	213.67	145.79	174.36	170.44	149.07
Moisture Content, %	8.16	8.09	13.72	13.65	10.25

Borehole BH-12 – PTB

No fine topsoil exists. No large cavity exists.

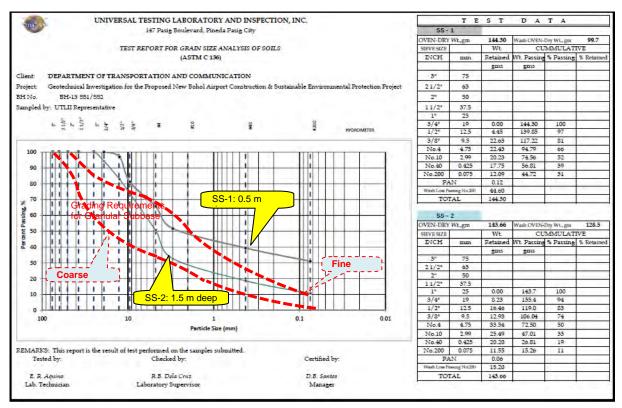
Natural soil at footing bottom level (3.4 m deep) is dense (N-value > 40).

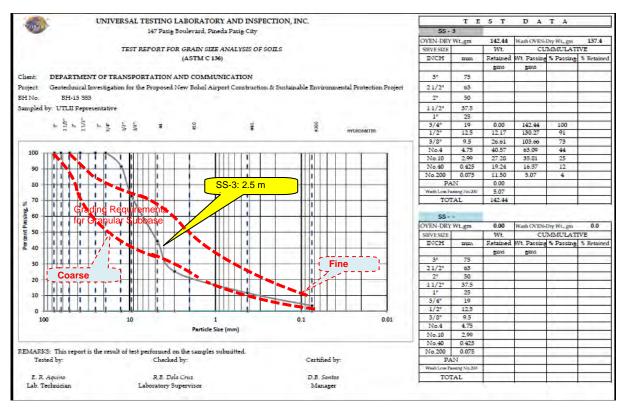
Borehole BH-13 – Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

Existing Grade: 7.8 m Finished Grade: 7.4 m Subgrade Elevation: 6.1 m Cut height: 1.7 m

RO	ECT	1			Geo	techn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	ainable Environmental		HOLE	NO.:			1	_		BH-	13	
					12.6	ST 1045	n Project						DEPT	H:						5.0	m	_
	ATIC E DF	ON: RILLI	ED:		Pan	0	Bohol 26/2013 DATE FINISHED: 2/2	26/201	13	-	WATER TABLE: DW	Т										
	ABER	RY		PE		CLASSIFICATION				N	VALUES	ITENT		RBERG		%		EVE /				j
UEP IH, M	NUN	COVE	% RQD	LETY	UdWIC	VSSIFIC	DESCRIPTION	1	SPT		GRAPH	E CON	1.21		T				5			
UEP	SAMPLE NUMBER	% RECOVERY	%	SAMPLE TYPE	100	UNIFIED CLA		15 cm	15 cm	15 cm	GRAFH	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	ī	3/4	1/2	3/8	4	10	40
	S	121	11		L	S	Ground Surface	-		-	10 20 30 40	2		100	1.					1	_	_
	1	89	-	55		SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	48	61	54	Subgrade	15.87	NP	NP			100	97	81	56	52	40
1	2	100		55	\langle	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	46	51	58		7.30	NP	NP		100	94	83	74	50	33	19
2	3	44	- 44	55	\langle	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	49	53	61		8.00	NP	NP			100	91	73	44	25	12
4	4	10	0	25			Yellowish white, very poor corals			co	RNG	+	N	10	SA	M	IP	LE	TE	S	FE	D
5	5	33	0	cs.			Yellowish white, very poor corals	1	R	co	RING	211	N	10	SA	M	IP	LE	TE	S	FE	D

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	186.89	179.79	170.73		
Weight of can & dry soil, g.	163.99	169.30	159.33		
Weight of water, g.	22.90	10.49	11.40		
Weight of can, g.	19.69	25.64	16.89		
Weight of dry soil, g.	144.30	143.66	142.44		
Moisture Content, %	15.87	7.30	8.00		

Borehole BH-13 – Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

Fine topsoil exists. No large cavity exists.

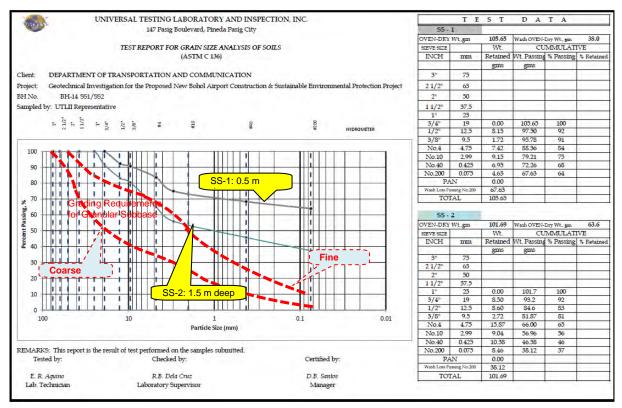
Natural soil at subgrade level (1.7 m deep) is dense (N-value > 90) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

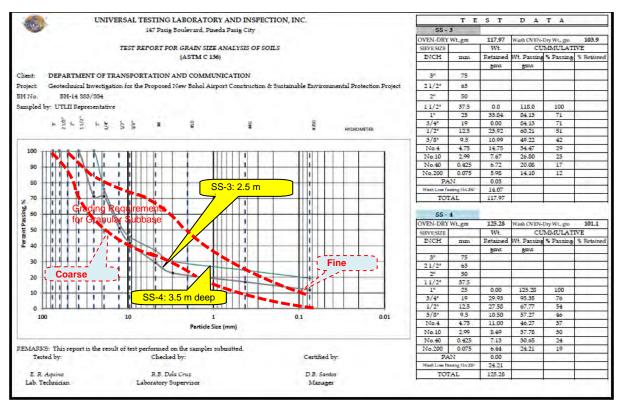
Borehole BH-14 – Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

Existing Grade: 7.6 m Finished Grade: 7.1 m Subgrade Elevation: 5.8 m Cut height: 1.8 m

20	JECT			18	Ge	otechni	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	tainable Environmental		HOLE	NO.:	-				BH	I-14	1.1	_
		Protection Project ON: Panglao, Bohol RILLED: 3/1/2013 DATE FINISHED: At any of the second seco				_			DEPT	HL:					5.0	0 m (
-		TON: Panglao, Bohol DRILLED: 2/1/2013 DATE FINISH 2/2/2013 DATE FINISH 2/2/2013 DATE FINISH 2/2/2013 DATE FINISH DESCRIP 2/2/2013 DESCRIP 2/2/2013 Ground St Ground St 67 - SS M ML gravel (broken corals with					A Trace of the second															
ΑT	EDF	arn	ED:			3/	1/2013 DATE FINISHED: 3/	1/201	3	_	WATER TABLE: DW	т										
	ABER	RY		PE		CATION				N	-VALUES	TENT	ATTER	RBERG				E AN				
	NUN	COVE	RQD	LE T	SYMBO	ASSIFI	DESCRIPTION	1	SPT	21	GRAPH	ECO				11		11		17		
1	SAMPLE NUMBER	% RE(%	SAMP	105	FIED CL		15 cm	15cm	15cm	UNATI	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4 1	ųz 3/1		10	40	
	S					S	Ground Surface	-	-	1	10 20 30 40	2	47.74									
	1	67		22	X	ML	Dark brown, medium stiff silt with sand and gravel (broken corals with limestone) of no plasticity	21	7	1	Subgrade Cut 1.8m	25.30	NP	NP			100 9	92 91	84	75	68	
	2	44	(a)	52	X	GM	Dark brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	36	29	70		16.36	NP	NP		100	92 8	83 81	65	56	46	
	3	67		25	X	SP-GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	40	38	45		7.05	NP	NP	100	71	71 5	1 43	29	23	17	
	4	78	÷	55	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	25	31	29		8.80	NP	NP		100	76 5	54 46	37	30	2,4	
	5	44	-	25	X	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	31	28	36		7.00	NP	NP			1	00 85	53	38	29	

Pictures of disturbed soil samples




			-		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	149.76	137.11	144.82	157.72	151.58
Weight of can & dry soil, g.	123.03	120.47	136.50	146.69	142.75
Weight of water, g.	26.73	16.64	8.32	11.03	8.83
Weight of can, g.	17.38	18.78	18.53	21.41	16.99
Weight of dry soil, g.	105.65	101.69	117.97	125.28	125.76
Moisture Content, %	25.30	16.36	7.05	8.80	7.02

Borehole BH-14 – Apron (Pavement Thickness: 0.8 m + Subgrade: 0.5 m)

Fine topsoil exists. No large cavity exists. N-value is 13 at 1-m deep.

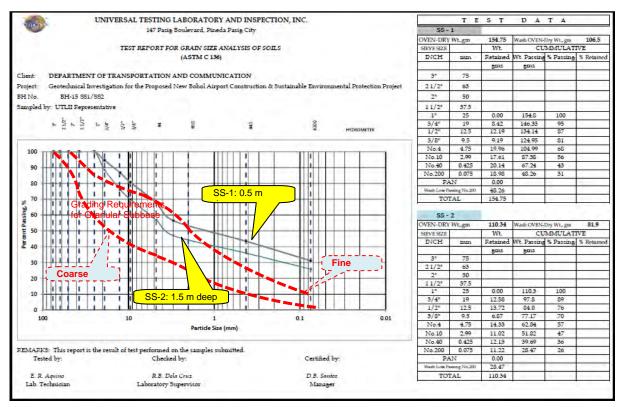
Natural soil at subgrade level (1.8 m deep) is dense (N-value > 50) but porous. It will require blending with crashed limestone fragment when used for granular subbase course.

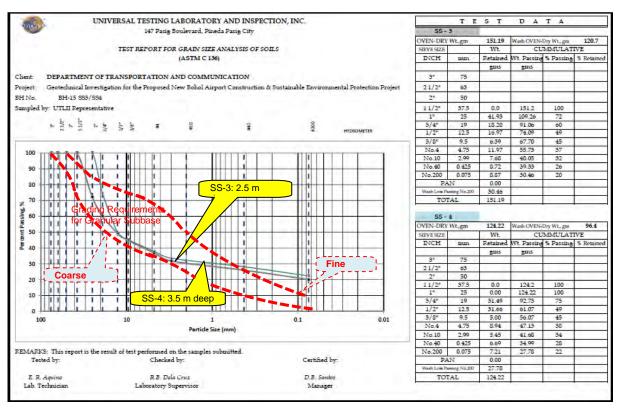
Borehole BH-15 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.2 m Finished Grade: 7.7 m Subgrade Elevation: 5.8 m Cut height: 1.4 m

RO	ECT				Geo	techn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	ainable Environmental		HOLE	NO.:						BH-1	5	
					-		n Project			_			DEPT	H:				_	1	5.0 n	1	
	ATIO E DI	DN: RILLI	ED:	4	Pan	<u> </u>	Bohol 28/2013 DATE FINISHED: 2/2	8/201	13		WATER TABLE: DW	т										
-	ABER	RY		PE		CATION				N	VALUES	VTENT					_			LYS		
DEPTH, m	E NUN	% RECOVERY	RQD	SAMPLE TYPE	SYMBO	ASSIFI	DESCRIPTION	1	SPT	Ξ.	GRAPH	RE COL					ti:				11	
DE	SAMPLE NUMBER	% RE	%	SAME	101	UNIFIED CLASSIFICATION		15 cm	15 cm	15 cm		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10 40	o
			-		-	5	Ground Surface				10 20 30 40					_	_	-	-	-	-	-
	1	100	-	55	K	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	30	28	35	Subgrade Cut 14m	15.55	NP	NP		100	95	87	81	68 5	56 43	3
1	2	67		55		GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	27	28	34		11.16	NP	NP		100	89	76	70	57 4	13 34	6
2	3.	67	0	55	\langle	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	28	29	32		9.91	NP	NP	100	72	60	49	45	37 3	12 24	6
3	4	81	140	ss		GM	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	20	21	35		10.08	NP	NP		100	75	49	45	38 3	i4 2	8
4	5	78	14	55	N	GP- GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	28	28	32		5.36	NP	NP	100	85	42	32	21	14 1	12 10	D

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	200.78	144.50	187.39	154.10	169.23
Weight of can & dry soil, g.	176.71	132.19	172.41	141.58	161.51
Weight of water, g.	24.07	12.31	14.98	12.52	7.72
Weight of can, g.	21.96	21.85	21.22	17.36	17.38
Weight of dry soil, g.	154.75	110.34	151.19	124.22	144.13
Moisture Content, %	15.55	11.16	9.91	10.08	5.36

Borehole BH-15 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

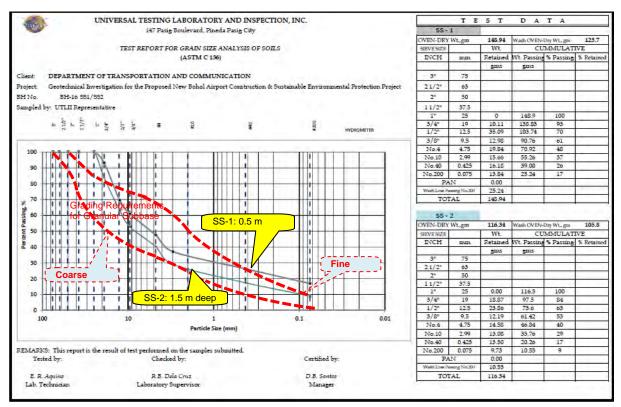
Natural soil at subgrade level (1.4 m deep) is dense (N-value > 50) but porous. It will require blending with crashed limestone fragment when used for granular subbase course.

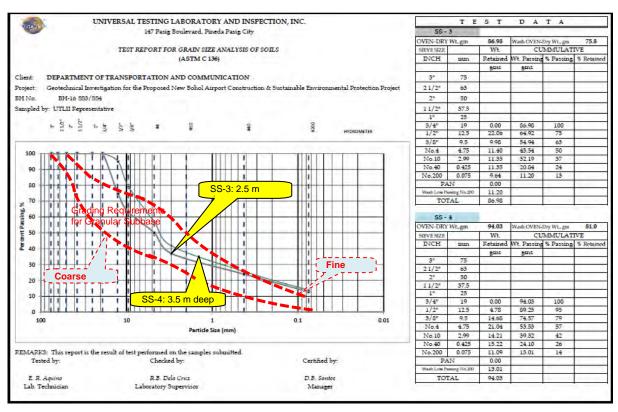
Borehole BH-16 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.2 m Finished Grade: 7.5 m Subgrade Elevation: 5.6 m Cut height: 0.6 m

ROJ	ECT	¢			Geo	otechni	ical Investigation for the Proposed New Bohol Airpo	rt Const	ruction	n & Sus	taina	able E	nviro	nmer	tal		HOLE	NO.:				_	1	BH-	16	_
							Project		_								DEPT	H:					-	5.0	n	_
	ATIC E DF	DN: RILLI	D:		Par	0	Bohol 1/2013 DATE FINISHED: 3	/1/201	3		WAT	TER TA	BLE:	-	DV	T										
	IBER	RY		TYPE		UNIFIED CLASSIFICATION				N	-VA	LUE	S			TENT		RBERG NITS							100	
DEP IH, M	NUN	% RECOVERY	RQD	LETY	SYMBOL	ASSIFIC	DESCRIPTION		SPT			(GRA	рн	1	RE CON				1	11	T,				
E.	SAMPLE NUMBER	% RE	%	SAMPLE	106	IED CL		15 cm	15 cm	15 cm	-	_	5101		_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40 2
	St	1	5			UNIF	Ground Surface	11	,	11	ſ	"Sut	dra	de	40	£		100				1		1		
	1	100	-	55	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	38	42	40		Cu	t 0.6	m		8.31	NP	NP		100	93	70	61	48	37 3	26 1
1	2	78		SS	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	40	30	24						7.01	NP	NP		100	84	63	53	40	29	17 1
z	3	78		SS	X	GM	Brown, very dense silty gravel with sand Wroken corals with limestone) of no plasticity	20	21	21						10.24	NP	NP			100	75	63	50	35 2	24 1
3	4	100		55	X	SIL	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	26	27	25						13.17	NP	NP		1	100	95	79	57	42 1	26 1
	5	78		55	X	SP- SM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	12	23	28						9.55	NP	NP		100	73	65	54	36	25	14 1

Pictures of disturbed soil samples


Moisture contents	of	disturbed	soil	samples
-------------------	----	-----------	------	---------


			—		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	187.04	141.64	114.15	126.36	131.82
Weight of can & dry soil, g.	174.66	133.49	105.24	113.98	121.98
Weight of water, g.	12.38	8.15	8.91	12.38	9.84
Weight of can, g.	25.72	17.15	18.26	19.95	18.92
Weight of dry soil, g.	148.94	116.34	86.98	94.03	103.06
Moisture Content, %	8.31	7.01	10.24	13.17	9.55

Borehole BH-16 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

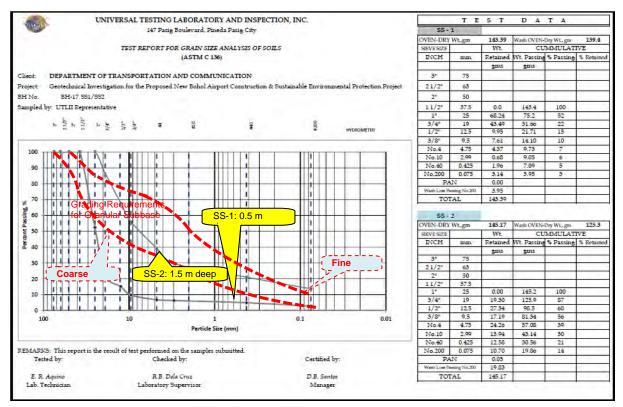
Natural soil at subgrade level (0.6 m deep) is dense (N-value > 70) but porous. It will require blending with crashed limestone fragment when used for granular subbase course.

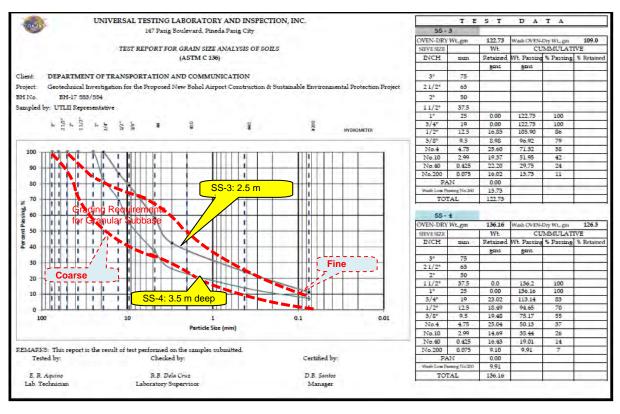
Borehole BH-17 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.0 m Finished Grade: 7.2 m Subgrade Elevation: 5.3 m Cut height: 0.7 m

ROJ	ECT	1				ical Investigation for the Proposed New Bohol Airport	Const	ruction	a & Sus	tainab	ole En	vironn	nental		HOLE	NO.:						BH-1	17	_
					Protection										DEPT	H:				_		5.0 r	n	
	ATIC E DF	DN: RILLI	ED:	1	Panglao, 3/	0.14.94	2/201	3		WATE	RTAB	LE: _	D	TW	Ī.									
	ABER	RY		PE	CATION				N	VAL	UES	1		VTENT		RBERG MITS			_			LYS		
חבר וח,וח	SAMPLE NUMBER	% RECOVERY	% RQD	SAMPLE TYPE	UNIFIED CLASSIFICATION	DESCRIPTION		SPT	200		G	RAPH	ł	MOISTURE CONTENT	ü	PI	Ĩ	12.2	3/4	1/2	3/8		10	40
3	SAMF	% ₽		SAN	UNIFIED	Ground Surface	15 cm	15 cm	15 cm	4	ú z	30	10	MOIST	(%)	(%)	1 1/2		3/4	1/2	3/8	4	10	40
	1	100		55	GW	Dark brown, dense well graded gravel (broken corals with limestone) of no plasticity	63	12	15		Cut	grade 07m		6.56	NP	NP	100	52	22	15	10	7	6	5
	2	78		55	GM	Dark brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	23	27	35					10.32	NP	NP	ľ	100	87	68	56	39	30	21
	3	100	0	55	бМ	Brown, dense silty gravel with sand broken corals with limestone) of no plasticity	17	23	20					11.02	NP	NP			100	86	79	58	42	24
	4	100	1	55	GP-GM	Light brown, dense poorly gradec gravel with sand (broken corals with limesto e) of no plasticity	20	21	23					10.36	NP	NP		100	83	70	55	37	26	14
	5	100		55	GP-GM	Light brown, very dense poorly fraded gravel with sand (broken corals with imestone) of no plasticity	36	40	44			10		7.51	NP	NP		100	89	74	63	42	28	15

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	172.87	177.44	156.89	167.11	191.02
Weight of can & dry soil, g.	163.46	162.50	143.36	153.00	176.65
Weight of water, g.	9.41	14.94	13.53	14.11	14.37
Weight of can, g.	20.07	17.73	20.63	16.84	25.49
Weight of dry soil, g.	143.39	144.77	122.73	136.16	151.16
Moisture Content, %	6.56	10.32	11.02	10.36	9.51

Borehole BH-17 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

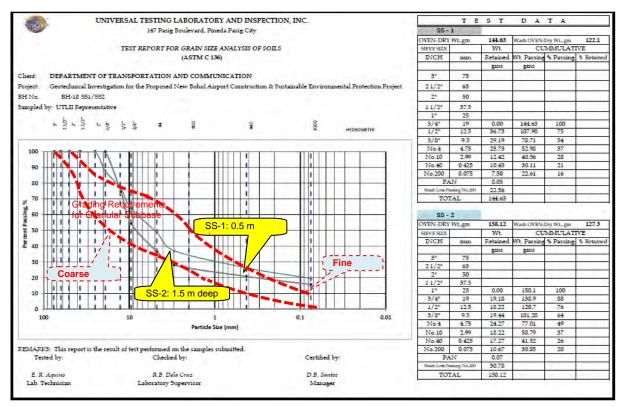
Natural soil at subgrade level (0.7 m deep) is dense (N-value > 30) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

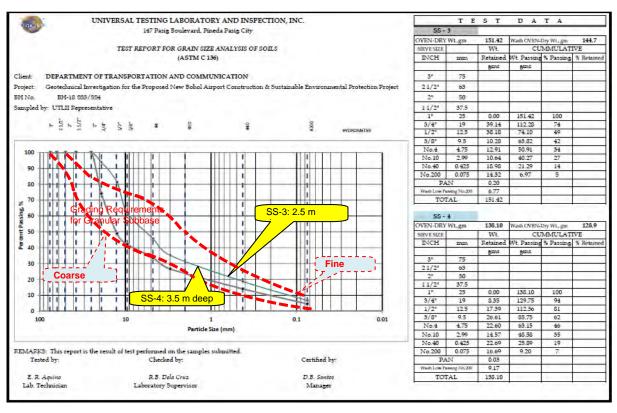
Borehole BH-18 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.2 m Finished Grade: 6.9 m Subgrade Elevation: 5.0 m Cut height: 1.2 m

ROJ	ECT	r			Geotech	nical Investigation for the Proposed New Bohol Airpor	t Const	ruction	& Su	taina	ble En	viron	menta	al		HOLE	NO.;			-	-	-	BH	18	-
					Protecto	on Project										DEPT	H:						5.0	m	_
	ATIC				Panglac																				
AT	EDR	an.L.	ED:		3	/2/2013 DATE FINISHED: 3,	2/201	3		WAT	ER TA	BLE:	_	DW	Т										
	ABER	RY	1	PE	OS STARIOL CLASSIFICATION	1.1.1.1.5.5.7			N	-VA	LUES				TIENT	ATTER	RBERG								
min and	NUN	OVE	% ROD	E TV	SSIFIC	DESCRIPTION	1.00	SPT			0	RAP	<u>.</u>	-	CO.								-		1.11
ner	SAMPLE NUMBER	% RECOVERY	1%	SAMPLE TYPE	UNIFIED CLA		15 cm	15 cm	15 cm		G	RAP	n		MOSTURE CONTENT	LL (%)	PI (%)	14/1	ŀ,	44	49	1/B	•	tă-	40
	S.				S	Ground Surface		-	1		a a			4	2					1.					
	1	44	ł	10	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	29	37	46	ſ		grac : 1.21			8.42	NP	NP			100	75	54	37	23	21
2	2	67	÷	10	бМ	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	30	27	48		T				9.07	NP	NP		100	88.	75.	64	49	37	25
1	3	67	X	10	GP-GI	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	31	28	33						10.05	NP	NP		100	74	49	ų	34	27	14
	4	44	ł	-	GP-GI	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	25	31	29	X					10.72	NP	NP		100	54	m	63	46	35	19
	5.	67	Y	10	GP-GI	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	29	38	1						10.47	NP	NP			100	75	52	45	34	20

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	182.21	197.98	193.22	178.82	176.41
Weight of can & dry soil, g.	170.03	183.64	177.95	164.01	162.11
Weight of water, g.	12.18	14.34	15.27	14.81	14.30
Weight of can, g.	25.40	25.52	26.03	25.91	25.48
Weight of dry soil, g.	144.63	158.12	151.92	138.10	136.63
Moisture Content, %	8.42	9.07	10.05	10.72	10.47

Borehole BH-18 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

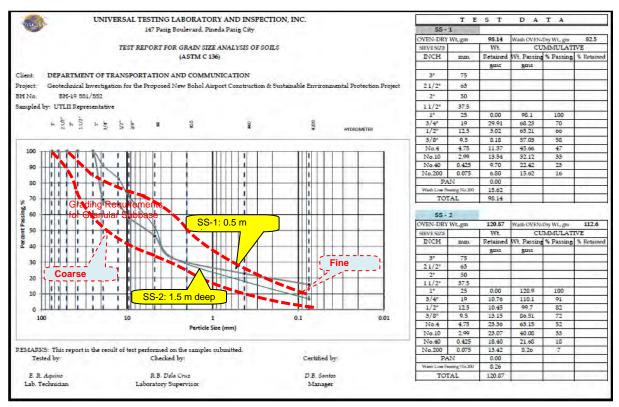
Natural soil at subgrade level (1.2 m deep) is dense (N-value > 50) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

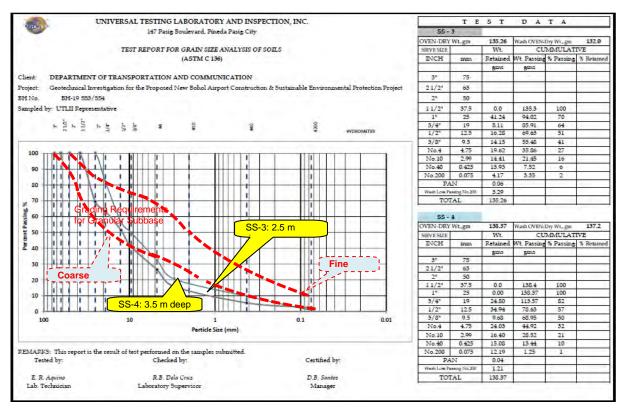
Borehole BH-19 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.2 m Finished Grade: 6.9 m Subgrade Elevation: 5.0 m Cut height: 1.2 m

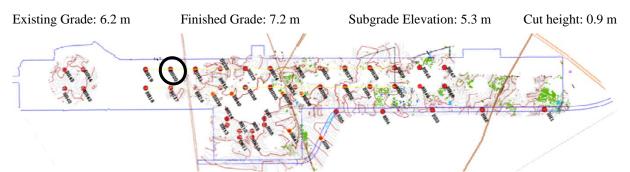
RO	JECT	2		3	Geo	techni	cal Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	taina	ble Er	wire	nmen	ital		HOLE	NO.:					1	BH-	19	_
							Project								-		DEPT	H:						5.0	n	
-	ATIC E DF		ED:		Pan	glao, 1 3/1		1/201	3		WAT	ER TAI	BLE:		DV	T										
	ABER	RY		PE		UNIFIED CLASSIFICATION	19,000,000	1		N	VA	LUES	5			TTENT		RBERG	1			VE /				
DEPTH, M	NUN	% RECOVERY	% RQD	SAMPLE TYPE	SYMBOL	ASSIFIC	DESCRIPTION		SPT			G	RA	РН	1	RECON										
5	SAMPLE NUMBER	% RE	%	SAMF	106	IED CL		15 cm	15 cm	15 cm	1	9			_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40
	S					INN	Ground Surface	H	H	π	12	10 1	20	30	40	Σ				11						
	1	67	+	55	X	GM	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	32	30	20	ľ	Sut Cu	gra	ade 2m		15.24	NP	NP	1	100	70	66	58	47	53	23
1	2	89		55	Ka	P-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	30	31	27	ł	F	Ħ	1		8.56	NP	NP		10	91	82	72	52	33	18
	3	78		55	X	GW	Light brown, very dense well graded gravel with sand (broken corals with limestone) of no plasticity	29	33	34	1					14.76	NP	NP	100	70	64	52	41	27	16	6
	4	89		55	X	GW	Light brown, very dense well graded gravel with sand (broken corals with limestone) of no plasticity	27	29	37						7.50	NP	NP		100	82	57	50	32	21	10
	5	67		55	X	GW	Light brown, very dense well graded gravel with sand (broken corals with lightestone) of no plasticity	30	33	39			1 ×			6.52	NP	NP		100	84	54	47	32	20	9

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	134.93	153.10	179.88	173.61	180.45
Weight of can & dry soil, g.	119.97	142.75	159.94	163.23	170.73
Weight of water, g.	14.96	10.35	19.94	10.38	9.72
Weight of can, g.	21.83	21.88	24.68	24.86	21.70
Weight of dry soil, g.	98.14	120.87	135.26	138.37	149.03
Moisture Content, %	15.24	8.56	14.74	7.50	6.52

Borehole BH-19 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

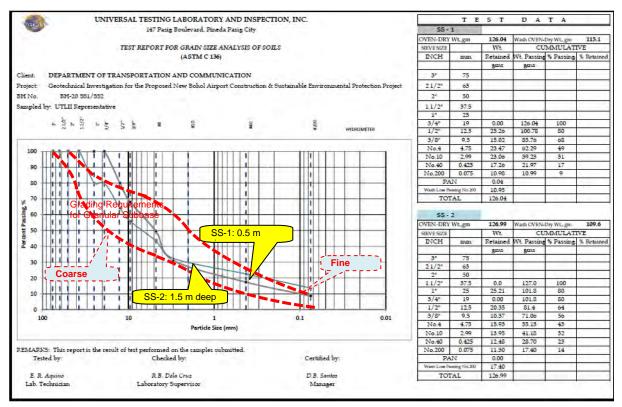

No fine topsoil exists. No large cavity exists.

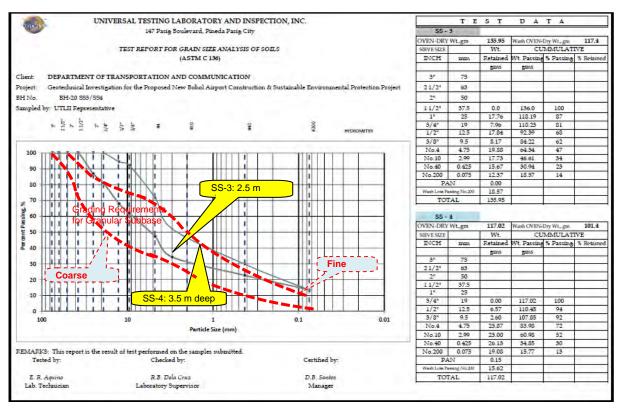
Natural soil at subgrade level (1.2 m deep) is dense (N-value > 60) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

Borehole BH-20 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

PROJECT:					Geotechnical Investigation for the Proposed New Bohol Airport Construction & Sustainable Environmental Protection Project											HOLE NO .: DEPTH:			BH-20 5.0 m						
	ATIC E DF	ON: RILLI	ED:		Panglao,	Bohol	2/201	3		WAT	ER TA	BLE		DW	Τ					2			5.0		
-	SAMPLE NUMBER	% RECOVERY	% RQD	SAMPLETYPE	CATION	DESCRIPTION SPT Ground Surface	N-VALUES							VTENT	T IN ALTER			-	EVE ANALYSIS ASSING SIEVE NO.						
-					ASSIFI		SPT			GRAPH			RE COI			11						11			
DEPTH,m					UNIFIED CLASSIFICATION				10			MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	3/2	3/8	4	10	40			
	1	94	-	55	V	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	55	38	52	Ĺ	Su Cu	ibg it 0.	ade 9 m	Ţ	10.50	NP	NP		1 1	100	80	68	49	31	17
	2	67		55	бМ	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	28	42	39						8.13	NP	NP	100	80	80	64	56	43	32	23
	3	44		55	бМ	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	33	39	42	Ι					6.52	NP	NP	100	87	81	68	62	47	34	23
	4	44		55	sм	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	40	47	1						6.32	NP	NP			100	94	92	72	52	30
	5	44		55	sм	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	38	51	45	I					2.39	NP	NP				100	96	74	53	29

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	165.24	151.48	161.11	145.08	161.64
Weight of can & dry soil, g.	152.00	141.15	152.25	137.69	158.47
Weight of water, g.	13.24	10.33	8.86	7.39	3.17
Weight of can, g.	25.96	14.16	16.30	20.67	25.86
Weight of dry soil, g.	126.04	126.99	135.95	117.02	132.61
Moisture Content, %	10.50	8.13	6.52	6.32	2.39

Borehole BH-20 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

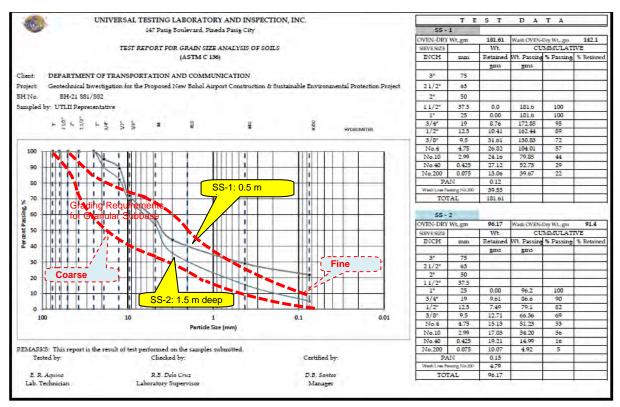
Natural soil at subgrade level (0.9 m deep) is dense (N-value > 70) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

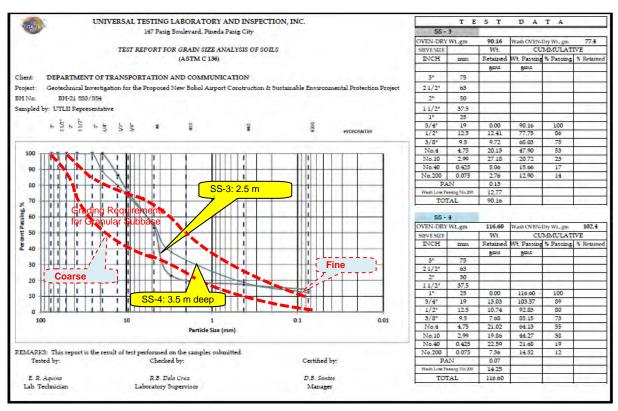
Borehole BH-21 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.0 m Finished Grade: 7.5 m Subgrade Elevation: 5.6 m Cut height: 0.4 m

RO	ECT	1					ical Investigation for the Proposed New Bohol Airport	t Const	ruction	a & Sus	taina	ble Er	wiron	mental			HOLE				1			BH-	21	
ŝ.							a Project			-						_	DEPTI	H:				_		5.0	m	_
	ATIC E DF	ON: ULLI	D:		Pan		Bohol 28/2013 DATE FINISHED: 2/	28/20	13		WAT	ER TA	BLE:	I	DWI											
	ABER	RY	1	TYPE		CLASSIFICATION				N	-VA	LUES				UTENT				%).
UCF11,m	SAMPLE NUMBER	% RECOVERY	% ROD	PLET	SYMBO	ASSIFIC	DESCRIPTION		SPT		Ľ.	G	RAP	н		MOISTURE CONTENT	ц	PI	T			١.				
5	AMPL	% RI	%	SAMPLE	10	UNIFIED C	and the second s	15 cm	15 cm	15 cm		_		_		ADISTU	(%)	(%)	1 1/2	1	3/4	1/2	3/8	4	10	40
	S		11	11		IN N	Ground Surface		-	Ч			rade			2	1.1	1				21				
	1	89	-	55	X	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	29	31	32		Cut	0.4 m	┦╹		6.97	NP	NP		100	95	89	72	57	44	29
1	2	78		55	X si	100	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	26	29	24					Ì	5.84	NP	NP		100	90	82	69	53	36	16
	3	44		55	X		Brown, very dense silty gravel with sand (broken corals with limestone) or no plasticity	33	36	29						5.70	NP	NP		1	100	86	75	53	23	17
4	4	56		55	X	GM	Brown, very dense silty grave with sand (broken corals with limestone) of no plasticity	28	33	30						5.38	NP	NP		100	89	80	73	55	38	19
4	5	44		55	X	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	31	25	36					Ī	4.30	NP	NP			100	85	75	58	46	27

Pictures of disturbed soil samples


Moisture contents of disturbed soil samples


			-		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	220.05	127.57	112.42	148.56	115.33
Weight of can & dry soil, g.	207.39	121.95	107.28	142.29	111.64
Weight of water, g.	12.66	5.62	5.14	6.27	3.69
Weight of can, g.	25.78	25.78	17.12	25.69	25.75
Weight of dry soil, g.	181.61	96.17	90.16	116.60	85.89
Moisture Content, %	6.97	5.84	5.70	5.38	4.30

Borehole BH-21 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

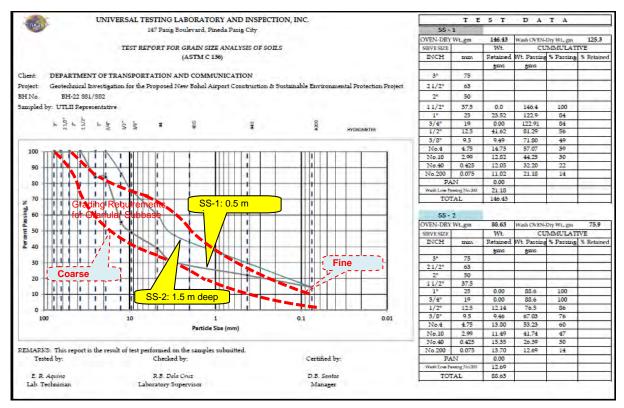
Natural soil at subgrade level (0.4 m deep) is dense (N-value > 60) but porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.

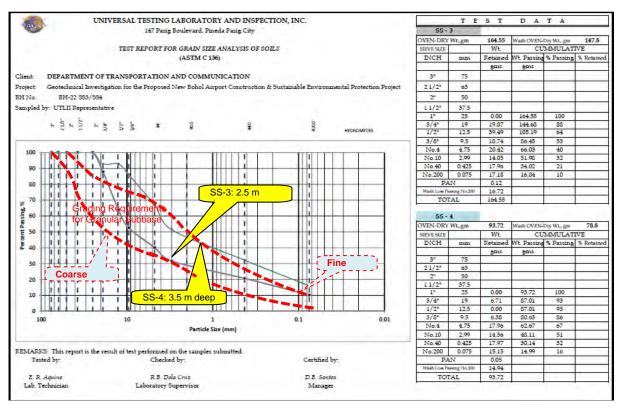
Borehole BH-22 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.8 m Finished Grade: 7.7 m Subgrade Elevation: 5.8 m Cut height: 1.0 m

ROJ.	ECT			13	Ge	otechn	ical Investigation for the Proposed New Bohol Airport	t Const	ruction	a & Sus	taina	ble En	viro	nmer	ntal		HOLE	NO.:				_		BH-	-22	
					Pro	tection	n Project										DEPT	H:						5.0	m	-
	TIC	0.00			Par	0	Bohol	_					_		_							-				
ATI	DR	ILLI	ED:		-	2/	27/2013 DATE FINISHED: 2/	27/20	3	_	WAT	ER TAI	BLE:	-	DV	T										
	ABER	RY		PE		CATION			line:	N	-VA	LUES				ITENT		RBERG		%	_).
	NUN	OVE	% RQD	LETY	VMB0	SSIFIC	DESCRIPTION		SPT			0	DA	рн		ECON	1231	5	1	101			i i			
5	SAMPLE NUMBER	% RECOVERY	%	SAMPLETYPE	106	UNIFIED CLASSIFICATION		15 cm	15 cm	15 cm	-	0	RA	rn	_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	i.	3/4	1/2	3/8	4	10	40
	S	1.5				NS.	Ground Surface	-	-	-	1	10 2	ú	30	40	2	1.21	121		11.	11	11	1	1.1		11
0 P. 4 1	1	67		55	X	GM	Yellowish brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	36	67	7		Sub Cut	gra 1 n	ide Im		6.07	NP	NP	100	84	84	56	49	39	30	22
	2	78		55	X	SM	Yellowish brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	12	15	19					X	8.52	NP	NP			100	86	76	60	47	30
2	3	100	- 0	\$5.	X	GM	Yellowish brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	14	16	20						8.56	NP	NP		100	88	64	52	40	31	21
4	4	100	94	55	X	SM	Yellowish brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	12	12	16				/	T	10.75	NP	NP		100	93	93	86	67	51	32
	5	78		SS	X	SM	Yellowish brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	14	14	18						10.53	NP	NP			100	90	86	66	50	32

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	170.67	113.50	195.75	124.34	138.49
Weight of can & dry soil, g.	161.78	105.95	181.66	114.27	126.91
Weight of water, g.	8.89	7.55	14.09	10.07	11.58
Weight of can, g.	15.35	17.32	17.11	20.55	16.91
Weight of dry soil, g.	146.43	88.63	164.55	93.72	110.00
Moisture Content, %	6.07	8.52	8.56	10.74	10.53

Borehole BH-22 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

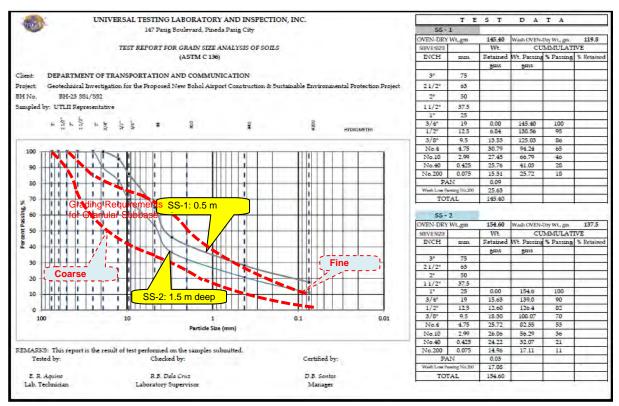
Natural soil at subgrade level (1.0 m deep) is dense (N-value > 30) but porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.

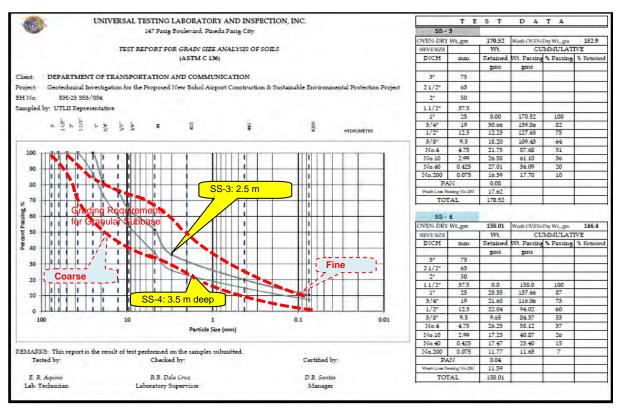
Borehole BH-23 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.2 m Finished Grade: 7.9 m Subgrade Elevation: 6.0 m Cut height: 1.2 m

O	JECT	ξ			Ge	otechni	cal Investigation for the Proposed New Bohol Airport	Const	ruction	1 & Sust	ainal	ole En	viro	nmen	tal		HOLE	NO.:						BH-2	3	_
					Pro	otection	Project			_							DEPT	H:			-			5.0 r	n	
	ATIC E DR		ED:		Pa	nglao, i 3/		1/201	3	- 1	VATE	ER TAR	BLE:		DW	т										
	ABER	RY	í,	PE		CLASSIFICATION				N	VAL	UES				ITENT				%				EVE		
	NUN	COVE	ROD	LET	SYMBO	SSIFIC	DESCRIPTION		SPT		1	0	RA	DL		ECO	1.1		1	11	1	Ϊ.	T		1	
2	SAMPLE NUMBER	% RECOVERY	%	SAMPLETYPE	106	UNIFIED CLA		5 cm	15 cm	15 cm	-	0	INA	rη	-	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	٩	4	iq 20
5	S	1	22	19	4	INN	Ground Surface	-	1	-	1	0 2	10	30	40	2		1	2			1.5		1		
č,	1	67	- 0	55	Х		Dark brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	19	27	34	ſ			rade .2m		8.95	NP	NP			100	95	86	65	i6 2	8 1
	2	44		ss	X	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	20	25	55	t	1	F	1	Ť	6.60	NP	NP		100	90	82	70	53	17 2	i 1
2	3	44	5	55	X	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	27	33	57		I				6.01	NP	NP		100	82	75	64	51	6 2	10 1
	4	44		SS	X	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	29	30	53						5.93	NP	NP	100	87	73	60	53	37	16 1	5
	5	44		55	X	GW	Yellowish brown, medium dense well graded gravel with sand (broken corals with limestone) of no plasticity	61	54	63						8.11	NP	NP	100	68	63	41	30	20	13 1	ŝ

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	183.83	185.15	206.46	193.45	191.32
Weight of can & dry soil, g.	170.81	174.95	196.21	184.08	178.89
Weight of water, g.	13.02	10.20	10.25	9.37	12.43
Weight of can, g.	25.41	20.35	25.69	26.07	25.69
Weight of dry soil, g.	145.40	154.60	170.52	158.01	153.20
Moisture Content, %	8.95	6.60	6.01	5.93	8.11

Borehole BH-23 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

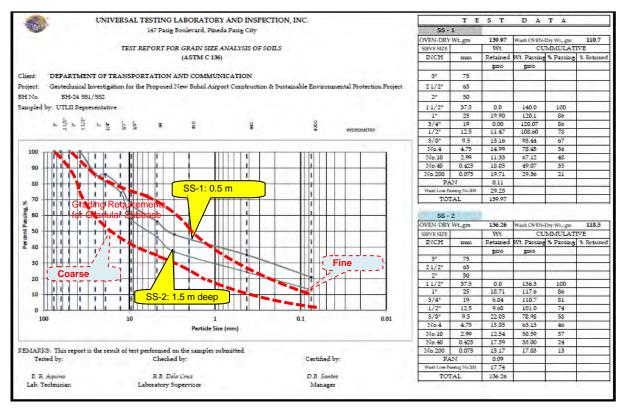
Natural soil at subgrade level (1.2 m deep) is dense (N-value > 40) but porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.

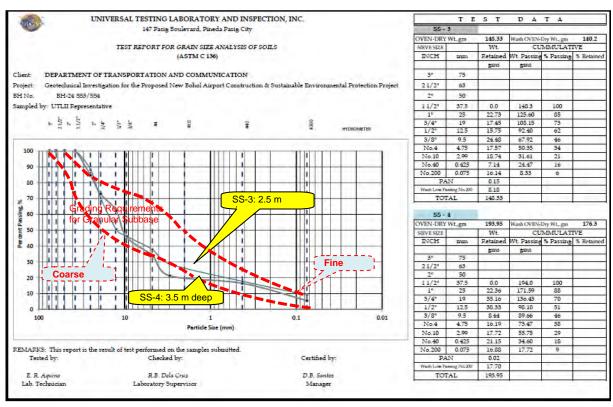
Borehole BH-24 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.4 m Finished Grade: 8.1 m Subgrade Elevation: 6.2 m Cut height: 0.2 m

ROJ	ECT	5			Geotechi	nical Investigation for the Proposed New Bohol Airpor	t Const	ruction	ı & Sus	taina	ble Em	vironme	ntal		HOLE	NO.:						BH-	24	
						n Project									DEPT	H:				_		5.0	m	
	A TIC	ON: CILLE	ED:		Panglao 3		/2/201	3		WAT	ER TAB	LE:	DV	T										
	ABER	RY		PE	OG SYMBOL CLASSIFICATION				N	-VA	LUES			ITENT		RBERG		%						
DEP I H'M	SAMPLE NUMBER	% RECOVERY	ROD	SAMPLE TYPE	ASSIFIC	DESCRIPTION		SPT			G	RAPH	. 1	MOISTURE CONTENT	u	PI				ĨĨ	ΪĬ	r l		Ĩ
5	AMPL	% RE	%	SAM	UNIFIED CI		15 cm	15 cm	15 cm	-	Subgr	a da	-16	IOISTU	(%)	(%)	1 1/2	i	3/4	1/2	3/8	4	10	40 2
	S				IN	Ground Surface		Ţ	Ŧ		Cut A		44	2	1		12.1							
	1	100		55	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	13	26	35			Π		15.80	NP	NP	100	86	86	78	67	56	48	35 2
1	2	78		\$5	GM	Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	17	18	16	Τ			X	13.75	NP	NP	100	86	81	74	58	46	37	24 1
2	3	44	1	55	GP-GN	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	16	32	24					13.80	NP	NP	100	85	73	62	46	34	21	16
	4	78		SS	GP-GN	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	40	39	22					9.45	NP	NP	100	88	70	51	46	38	29	18
	5	67	1	55	SP-SM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	50	39	27					14.79	NP	NP		100	93	84	70	57	45	25

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	181.28	173.74	189.27	230.61	176.18
Weight of can & dry soil, g.	159.17	155.00	168.80	212.28	156.07
Weight of water, g.	22.11	18.74	20.47	18.33	20.11
Weight of can, g.	19.20	18.74	20.47	18.33	20.11
Weight of dry soil, g.	139.97	136.26	148.33	193.95	135.96
Moisture Content, %	15.80	13.75	13.80	9.45	14.79

Borehole BH-24 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

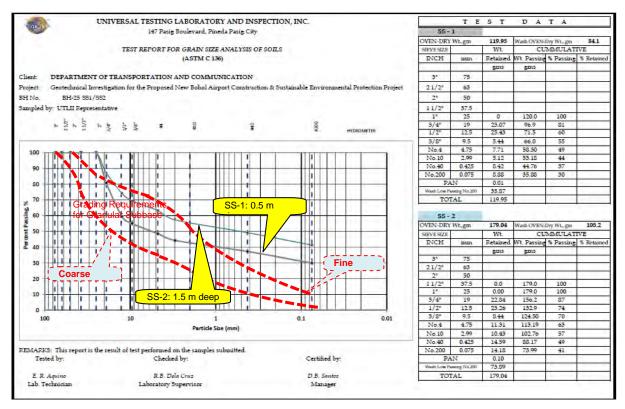
Natural soil at surface (subgrade level) is dense (N-value > 40) but porous. It will require blending with crashed limestone fragment when used for granular subbase course.

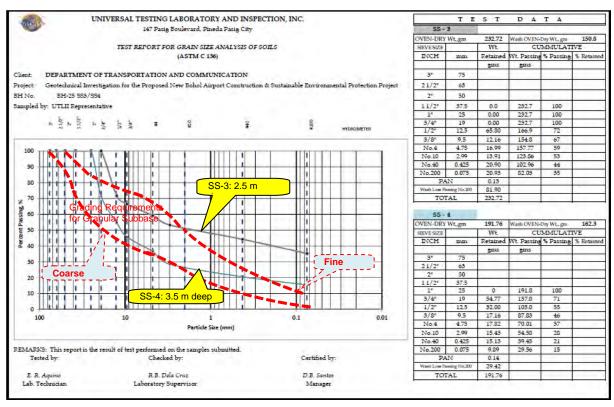
Borehole BH-25 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.6 m Finished Grade: 8.3 m Subgrade Elevation: 6.4 m Cut height: 0.2 m

RO	ECT	1				unical Investigation for the Proposed New Bohol Airpo	rt Const	ruction	n & Sus	tainal	ble En	viron	nenta	1		HOLE							BH-		
~	ATIC				122.00	on Project				_			_		_	DEPT	H:						5.0	m	-
		ULLI	ED:		0	o, Bohol 2/22/2013 DATE FINISHED: 2,	/22/20	13	-	WATE	ER TAE	BLE:		DW	т										
	ABER	RY		PE	CLASSIFICATION				N	-VAL	UES				UTENT				%	-	SSIN).
	SAMPLE NUMBER	% RECOVERY	% RQD	SAMPLE TYPE	ASSIEL	DESCRIPTION	1	SPT	-		G	RAP	н	1	MOISTURE CONTENT		PI					1			Ì
	MPLI	% RE	%	SAME	ED CI		5	15 cm	15 cm	æ			· ·	n -	DISTUR	LL (%)	(%)	1 1/2	ī	3/4	1/2	3/8	4	10	40
	SF	Ľ.			UNIFIED	Ground Surface	51	51	15			grade A 2m		L	ž				Ĺ.				4		
	1	100	1	55	SN	plasticity	16	21	26	ſ					21.20	NP	NP			100	84	76	63	54	40
	2	56		<u>ss</u>	SN	Light brown, very dense silty sand with gravel (broken corals with limestone) of	28	36	25				f li		7.41	NP	NP			100	93	81	64	50	31
	3	44		55	SP-S	no plasticity Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	22	40	52						6.90	NP	NP	100	83	83	71	69	57	46	27
	4	67	- 14	55	SN	no plasticity	86	58	89						5.22	NP	NP			100	73	67	51	39	25
	5	67	-1-	55	sn	Light brown, medium dense silty sand	0	6	9	1			/		16.18	NP	NP	100	BO	73	68	62	52	42	25

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	161.55	169.59	148.46	115.77	260.81
Weight of can & dry soil, g.	136.45	159.19	139.99	110.97	227.11
Weight of water, g.	25.10	10.40	8.47	4.80	33.70
Weight of can, g.	18.05	18.87	17.24	19.05	18.86
Weight of dry soil, g.	118.40	140.32	122.75	91.92	208.25
Moisture Content, %	21.20	7.41	6.90	5.22	16.18

Borehole BH-25 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Fine topsoil exists. No large cavity exists. N-value drops to 13 at 5-m deep.

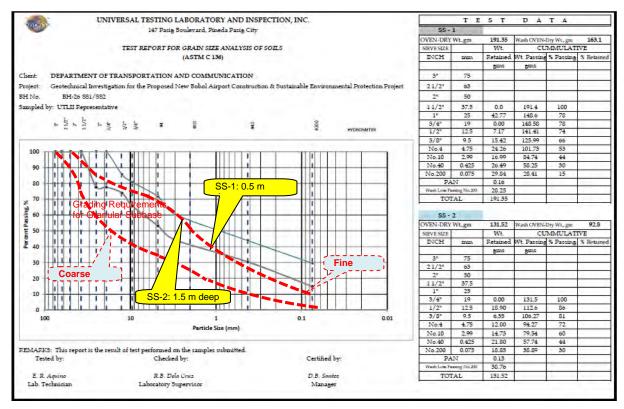
Natural soil at surface (subgrade level) is dense (N-value > 40) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

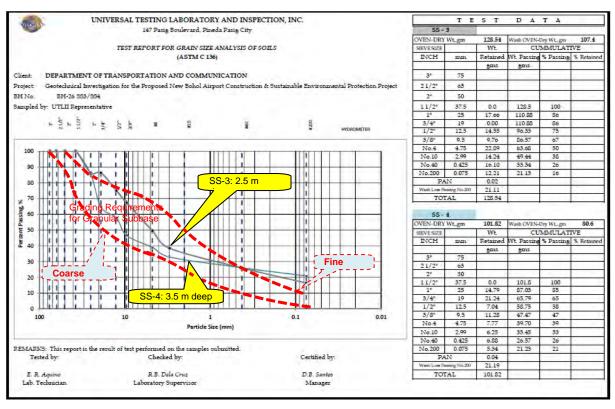
Borehole BH-26 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.2 m Finished Grade: 8.5 m Subgrade Elevation: 6.6 m Cut height: 0.6 m

ROJ	ECT						ical Investigation for the Proposed New Bohol Airport	Const	ruction	n & Sus	aina	ble Er	wire	onme	ntal		HOLE					_	-	BH		-
~	ATIC	NT.			1.2.2		n Project	_	-		_	_	_		-		DEPT	H:				_	_	5.0	m	_
	E DF		ED:		Par	0	Bohol 24/2013 DATE FINISHED: 2/2	24/20	3		WAT	ER TA	BLE:		DW	Т										
	ABER	RY		PE		CATION	110001			N	VA	LUES	5			TTENT						VE /	27.07			J.
חברוחיווו	NUN	% RECOVERY	RQD	SAMPLE TYPE	SYMBO	ASSIFI	DESCRIPTION		SPT			0	RA	PH	1	SE COP						11	N	11	1	
	SAMPLE NUMBER	% RE	%	SAMF	105	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm		10	20.	20	T	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	I	3/4	1/2	3/8	4	10	40
	1	67	1	55	X	1	Light brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	27	12	16	ŀ	Gu Cu	99 1 0	ade 6 m	Ĭ	13.23	NP	NP	100	78	78	74	66	53	44	30
1	2	100		SS	X	GM	Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	12	17	17		V				13.74	NP	NP			100	86	81	72	60	44
	3	78		55	X	GM	Light brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	12	11	13				/		15.04	NP	NP	100	86	86	75	67	50	38	26
	4	67	1.1	55	X	GM	Light brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	12	7				1			16.60	NP	NP	100	85	65	58	47	39	33	26
	5	89		55	X	SP	Light brown, medium dense poorly graded sand (broken corals with limestone) of no plasticity	2	9	10			Ĭ			23.38	NP	NP					100	98	91	71

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	241.99	167.67	167.18	135.62	108.98
Weight of can & dry soil, g.	216.67	149.60	147.86	118.72	91.62
Weight of water, g.	25.32	18.07	19.32	16.90	17.36
Weight of can, g.	25.32	18.08	19.32	16.90	17.36
Weight of dry soil, g.	191.35	131.52	128.54	101.82	74.26
Moisture Content, %	13.23	13.74	15.03	16.60	23.38

Borehole BH-26 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Fine topsoil exists. No large cavity exists. N-value drops to 15 at 4-m deep.

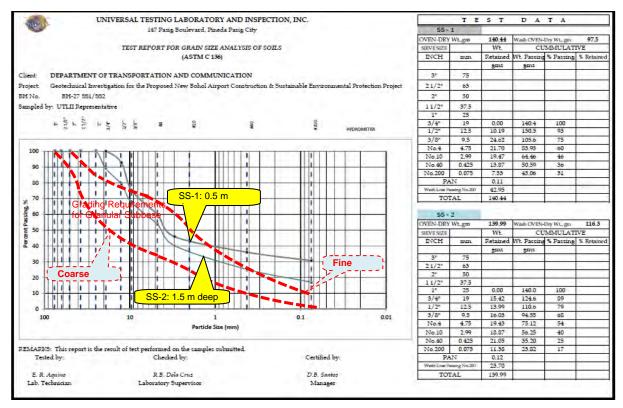
Natural soil at subgrade level (0.6 m deep) is dense (N-value > 30) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

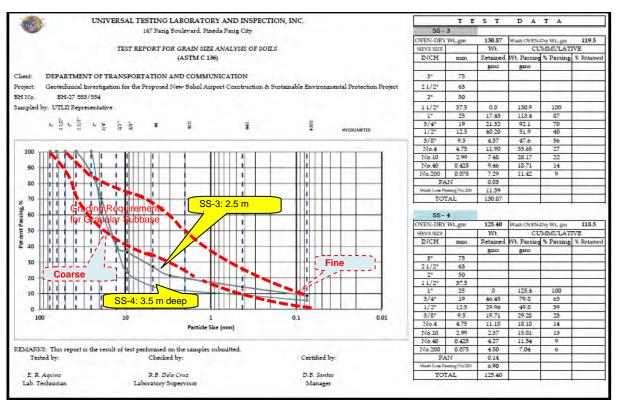
Borehole BH-27 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.6 m Finished Grade: 8.7 m Subgrade Elevation: 6.8 m Cut height: 0.8 m

RO	ECT				Geotech	nical Investigation for the Proposed New Bohol Airpor	t Const	ruction	n & Sus	tainal	ble En	vironr	neni	tal		HOLE	NO.:				-		BH	27		
						on Project									-	DEPT	H:						5.0	m		
	ATIC E DF	DN: ULLI	ED:		0	9, Bohol /24/2013 DATE FINISHED: 2/	24/20	13		WAT	ER TAB	LE:		DW	T											
-	ABER	RY		PE	CATION				N	VAL	UES				TTENT		RBERG		%		1.0).	
DEPTH,m	NUN	COVE	% ROD	LET)	ASSIFIC	DESCRIPTION		SPT			G	RAP	н		E CON		1				11	ř.	11	1	1	
DEP	SAMPLE NUMBER	% RECOVERY	%	SAMPLE TYPE	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm		0	NACI		_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40	
	1	100		55		Light brown, medium dense silty sand with gravel (broken corals with limestone)	6	7	6	Ĺ	Sub Cu	grad 0.8	le n	ļļ	19.94	NP	NP			100	93	75	60	46	36	I
1	2	89	- 1	55	5М	of no plasticity Brown, medium dense silty sand with gravel (broken corals with limestone) of no plasticity	7	6	10		Ā				16.87	NP	NP		100	89	79	68	54	40	25	
	3	44		SS	SP-SN	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity Light brown, dense poorly graded sand	21	44	61	Χ		1	1	1	9.77	NP	NP	100	.87	70	40	36	27	22	14	
	4	67	1	SS	SP-SN	Light brown, dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity Light brown, dense poorly graded sand	35	31	20						6.27	NP	NP		100	63	39	23	14	13	9	
1	5	78	-	SS	SP	Light brown, dense poorly graded sand sand with gravel (broken corals with limestone) of no plasticity	28	16	17					R	22.13	NP	NP		100	77	68	62	53	46	39	

Pictures of disturbed soil samples


Moisture contents of disturbed soil samples


Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	186.80	181.99	160.52	151.93	261.45
Weight of can & dry soil, g.	158.80	158.38	147.74	144.07	236.85
Weight of water, g.	28.00	23.61	12.78	7.86	24.60
Weight of can, g.	18.36	18.39	16.87	18.67	25.69
Weight of dry soil, g.	140.44	139.99	130.87	125.40	211.16
Moisture Content, %	19.94	16.87	9.77	6.27	11.65

Borehole BH-27 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists. N-value is 13 at 1 to 2-m deep.

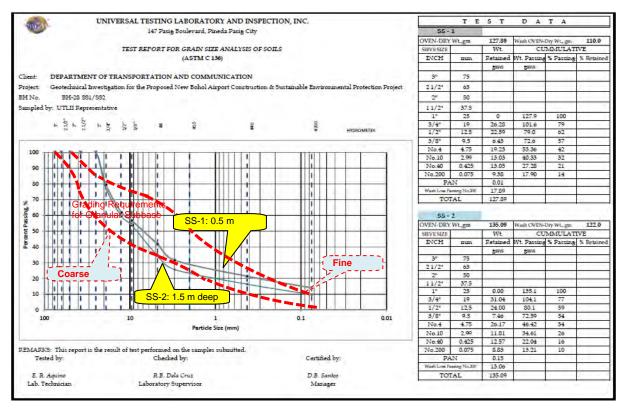
Natural soil at subgrade level (0.6 m deep) is not much durable (N-value of 13), and will require blending with large amount of crashed limestone fragment when used for granular subbase course.

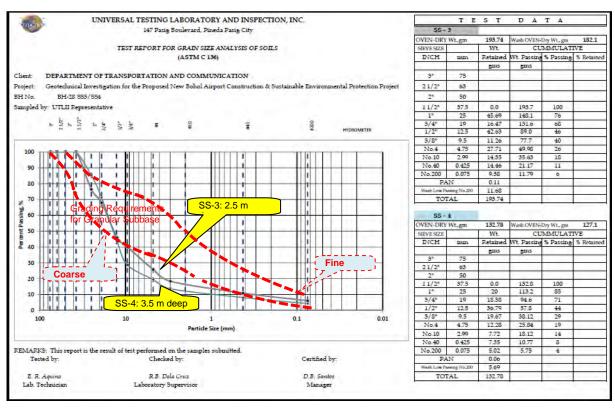
Borehole BH-28 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.2 m Finished Grade: 8.9 m Subgrade Elevation: 7.0 m Cut height: 1.2 m

ROJ	ECT	1			Geo	otechn	ical Investigation for the Proposed New Bohol Airport	Const	uction	a & Su	stain	able Er	wire	nme	ntal		HOLE	NO.:					1	BH-	-28	
				1	Pro	tection	n Project										DEPT	H:					_	5.0	m	1
-	ATIC E DF	ON: RILLI	ED:		Par	0	Bohol 24/2013 DATE FINISHED: 2/2	24/20	3		WA	TER TA	BLE:	5	DV	VT										
-	ABER	RY		PE		ATION			ι.,	N	-VA	LUES	5			ITENT		RBERG 11TS		%		VE A	- C - C - C	-).
DEP I H, M	NUN	% RECOVERY	% RQD	LET	SYMBO	ASSIFIL	DESCRIPTION		SPT			G	RA	рн		E CON	1.2			1				1		
	SAMPLE NUMBER	% RE(%	SAMPLE TYPE	10g	UNIFIED CLASSIFICATION		15 cm	15 cm	15 cm				r ii	_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	1/2	3/8	4	10	40
_	5					S	Ground Surface Brown, dense silty gravel with sand	F.				10	20	30	40	4		1					-		-	
	1	100	2	55	X	GM	(broken corals with limestone) of no plasticity	25	28	19		Sul	gra	ade 2m		16.32	NP	NP		100	82	66	62	48	37	18
	2	89		SS	X	GM	Brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	27	14	15		F	P		/	13.92	NP	NP		100	77	59	54	34	26	16
	3	100		55	X	GM	brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	17	10	11		T				8.55	NP	NP	100	76	68	46	40	26	18	11
	4	44	÷	55	X	GM	Brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	9	7	21	I					6.77	NP	NP	100	85	71	43	29	19	14	8
	5	56		55	X	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	18	27	24	Ĩ			1		8.37	NP	NP			100	92	83	39	37	13

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	185.90	173.07	230.26	163.00	120.85
Weight of can & dry soil, g.	162.65	154.26	213.70	154.81	112.95
Weight of water, g.	23.25	18.81	16.56	8.19	7.90
Weight of can, g.	20.17	19.17	19.96	22.03	18.56
Weight of dry soil, g.	142.48	135.09	193.74	132.78	94.39
Moisture Content, %	16.32	13.92	8.55	6.17	8.37

Borehole BH-28 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

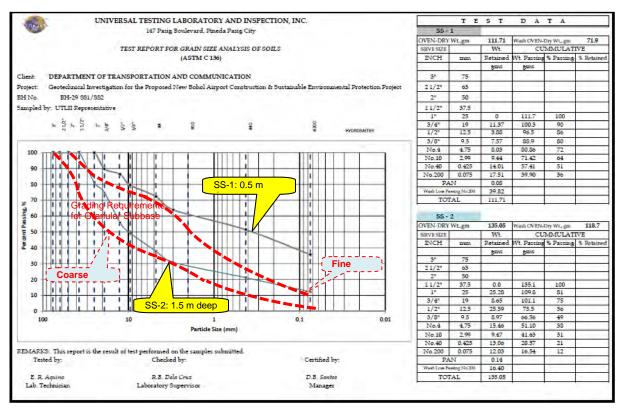
Natural soil at subgrade level (1.2 m deep) is dense (N-value > 30) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

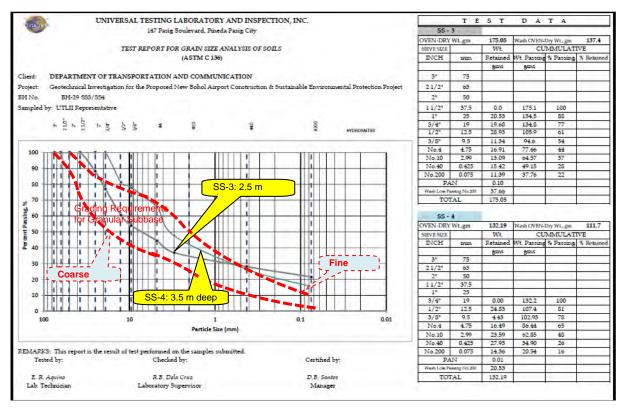
Borehole BH-29 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.0 m Finished Grade: 9.1 m Subgrade Elevation: 7.2 m Fill height: 0.2 m

ROJ	ECT	1				nical Investigation for the Proposed New Bohol Airpor	t Const	ruction	1 & Sus	taina	ble Er	vironm	ental		HOLE	NO.:			1.3			BH-2	9	_
						on Project					-				DEPT	H:			12			5.0 m	6 _	
-	ATIC E DI	DN: RILLI	D:), Bohol /25/2013 DATE FINISHED: 2/	25/20	13		WAT	ER TA	BLE:	D	VT	-									
	ABER	RY		PE	CATION	Citanos S			N	-VA	LUES		1	TTENT	12.00	RBERG				1.77	20.00			
DEPTH,M	NUN	% RECOVERY	RQD	LETY	ASSIFIC	DESCRIPTION	0.00	SPT			G	RAPH	1	E CON										I
DEF	SAMPLE NUMBER	% REG	%	SAMPLE TYPE	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm		Subg	grade 0.2m ^o		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	i.	3/4	1/2	3/8	4 1	i0 40	ò
	1	100	4	55	SM	Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	10	13	20	Ŧ				19.03	NP	NP	1	100	90	86	80	72 6	4 5	1
	2	67		ss	GP-GI	Light brown, very dense poorly graded gravel silt and sand (broken corals with	24	40	57					6.72	NP	NP	100	81	75	56	49	38 3	1 2	1
	3	78		SS	GM	limestone) of no plasticity Light brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	40	19	19	Ι				12.31	NP	NP	100	88	77	60	54	44 3	17 21	
	4	44		55	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	53	72	75					7.69	NP	NP		Ĩ	100	81	78	65 4	17 21	12
	5	44		55	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	E	57	65					7.69	NP	NP		100	94	75	67	47 3	5 2	

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	151.87	159.89	215.66	161.16	174.92
Weight of can & dry soil, g.	130.61	150.81	194.11	150.99	163.88
Weight of water, g.	21.26	9.08	21.55	10.17	11.04
Weight of can, g.	18.90	15.76	19.05	18.80	20.36
Weight of dry soil, g.	111.71	135.05	175.06	132.19	143.52
Moisture Content, %	19.03	6.72	12.31	7.69	7.69

Borehole BH-29 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Fine topsoil exists. No large cavity exists.

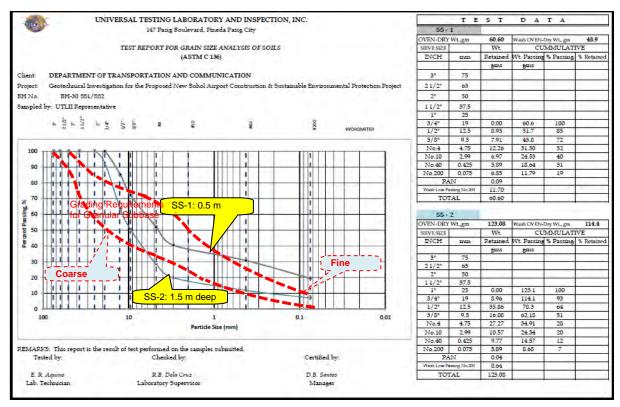
Natural soil at surface (subgrade level of 0.2 m deep) is not much dense (N-value of 20 to 30), and may require replacement of subgrade to 1 m deep.

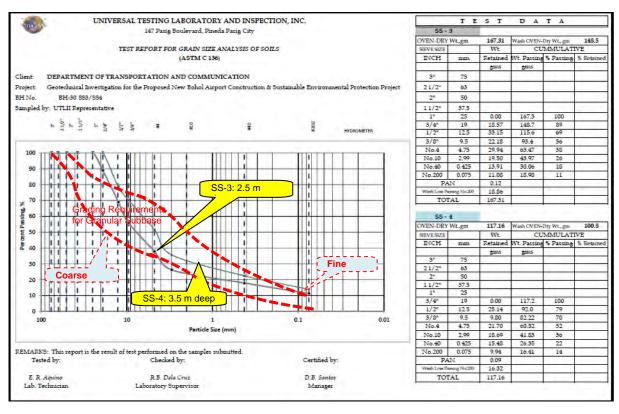
Borehole BH-30 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.0 m Finished Grade: 9.1 m Subgrade Elevation: 7.2 m Fill height: 0.2 m

ROJ	ECT	1					ical Investigation for the Proposed New Bohol Airport	Const	ruction	1 & Sus	taina	ble Er	nvir	onm	ental			HOLE				3			BH	-30	
					1.1.1.1		n Project										_	DEPT	H:				_		5.0	m	
	ATIC E DR		ED:		Pang		Bohol 25/2013 DATE FINISHED: 2/:	25/20	13		WAT	ER TA	BLE	r	1	DW	T										
	ABER	RY		PE		CATION				N	VA	LUES	5				ITENT									_) .
	NUN	% RECOVERY	% RQD	LE T)	SYMBO	ASSIFIC	DESCRIPTION		SPT	Ĩ.	L.	6	R/	1PH	_		E CON	5		T	1.1		Ι.				
í.	SAMPLE NUMBER	% RE	%	SAMPLE TYPE	501	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm	-	Subg Fill			₽		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40
1	-		-	-		5	Ground Surface Light brown, medium dense silty sand			-	T		20	30	40	Г	-	_	-				-	-			-
	1	67	-	55	X s	M	with gravel (broken corals with limestone) of no plasticity	10	11	12			L				18.98	NP	NP			100	85	72	52	40	31
	2	44		55	SP		Light brown, medium poorly graded sand with silt and gravel (broken corals with	7	10	14							7.49	NP	NP		100	93	64	51	28	20	12
ĺ	3	67		55	SP	-SM	limestone) of no plasticity Light brown, medium poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	18	18	24		1		1			9.60	NP	NP		100	89	69	56	38	26	18
	4	78		SS	X		limestone) of no plasticity Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	24	26	Y							11.39	NP	NP			100	78	70	52	36	23
ĺ	5	67		55	Χ.	M	Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	17	24	19	1						10.15	NP	NP			100	71	62	43	35	2

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	87.46	149.67	200.49	151.12	207.10
Weight of can & dry soil, g.	75.96	140.45	184.42	137.78	189.57
Weight of water, g.	11.50	9.22	16.07	13.34	17.53
Weight of can, g.	15.36	17.37	17.11	20.62	16.87
Weight of dry soil, g.	60.60	123.08	167.31	117.16	172.70
Moisture Content, %	18.98	7.49	9.60	11.39	10.15

Borehole BH-30 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Fine topsoil exists. No large cavity exists.

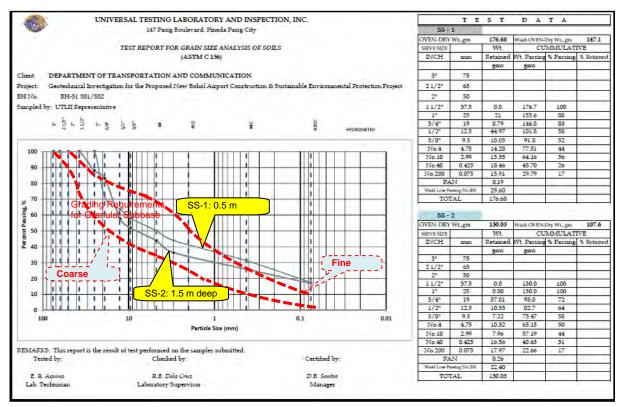
Natural soil at surface (subgrade level) is not much dense (N-value of 20), and may require replacement of subgrade to 1 m deep.

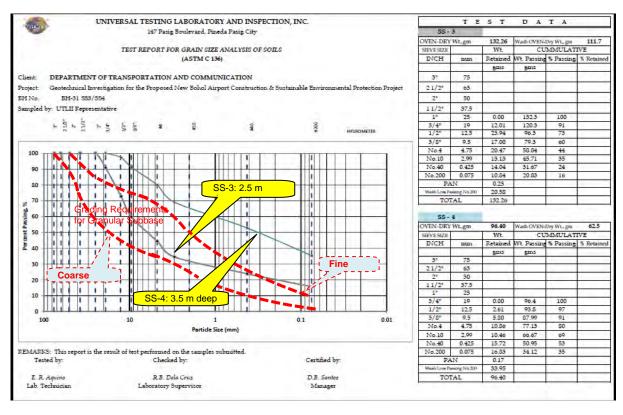
Borehole BH-31 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.6 m Finished Grade: 8.9 m Subgrade Elevation: 7.0 m Cut height: 1.6 m

ROJ	ECI	2			Ge	otechn	ical Investigation for the Proposed New Bohol Airpor	t Const	ruction	& Sus	taina	ble Er	wire	onme	ntal			HOLE	NO.:						BH-	31	
					-	1.	n Project											DEPTI	H:						5.0	m	_
	ATIC	ON:	D.		Pa	0	Bohol 24/2013 DATE FINISHED: 2/	24/20	2	_	WAT	ER TA	BLE		DI	WT	_										
				Π	T	-	24/2010 DATE TEXABLE. 2/	1							D	T	-	ATTER	BERG	-		SIE	VE			215	-
	ABEF	RY		Ы		ATIC				N	-VA	LUES	5	_	_		TENT	LIM	ITS			_	SSIN).
חבר וח,ווו	NUN	% RECOVERY	% RQD	LETY	SYMBO	CLASSIFICATION	DESCRIPTION	1.	SPT	(Et		6	RA	PH	1	1	IE CON	2	121		Ľ.						71
2	SAMPLE NUMBER	% RE(%	SAMPLE TYPE	100	UNIFIED CL		E CH	15 cm	2 cm	-		11		-		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	ï	3/4	1/2	3/8	4	10	40
	SI		Ц	Ĩ.		UNIF	Ground Surface		н	it .	4	10	20	30	40	1	Σ				10						
	1	100		55	X	SM	Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	14	26	20				grac 1.6r		1	1.65	NP	NP	100	88	83	58	52	44	36	26
	2	78		55	X	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	19	34	70		Π			7	1	13.04	NP	NP		100	71	64	58	50	44	31
	3	67		55	X	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	18	25	37	Ì					1	16.05	NP	NP		100	91	73	60	44	35	24
	4	67	- F	55	X	SM	Light brown, dense silty sand with gravel (broken corals with limestone) of no plasticity	10	13	17						1	17.06	NP	NP			100	97	91	80	69	53
	5	67		55	X	SM	Light brown, medium dense silty sand with gravel (broken corals with limestone) of no plasticity	8	a	15						1	17.50	NP	NP		1		100	92	83	72	55

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	221.94	166.83	170.29	131.04	183.41
Weight of can & dry soil, g.	201.35	149.87	149.06	114.59	159.14
Weight of water, g.	20.59	16.96	21.23	16.45	24.27
Weight of can, g.	24.67	19.84	16.80	18.19	20.49
Weight of dry soil, g.	176.68	130.03	132.26	96.40	138.65
Moisture Content, %	11.65	13.04	16.05	17.06	17.50

Borehole BH-31 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

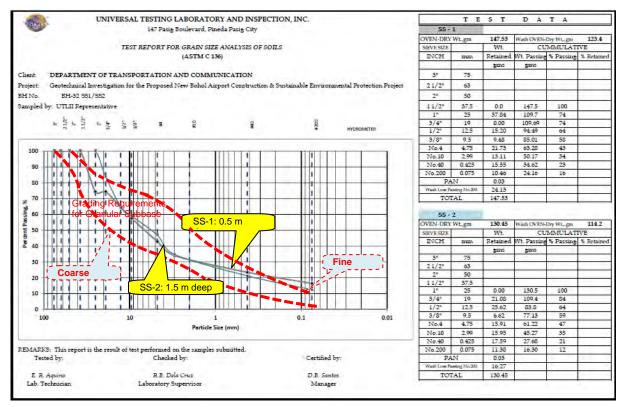
Natural soil at subgrade level (1.6 m deep) is dense (N-value > 30) but porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.

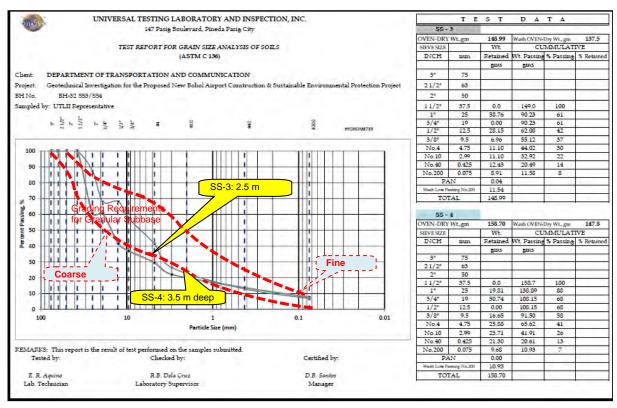
Borehole BH-32 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.2 m Finished Grade: 8.7 m Subgrade Elevation: 6.8 m Cut height: 1.4 m

OJI	ECT	5				ical Investigation for the Proposed New Bohol Airpor	t Const	ruction	n & Sus	ainable En	vironn	iental		HOLE	NO.:			10		В	H-32	0	
					Protection	1.00.00			-					DEPT	H:			12		5	5.0 m		
-	ATIC E DF	ON: ULLI	ED:		Panglao, 2/		24/20	13		VATER TAE	BLE:	D	VT										
Ì	ABER	RY	Ĩ	PE	LOG SYMBOL UNIFIED CLASSIFICATION				N	VALUES			TENT		RBERG			-			YSIS VE N		
	NUN	% RECOVERY	% RQD	SAMPLE TYPE	ASSIFI	DESCRIPTION	-	SPT		G	RAPH		RE CON			11	T					1	
	SAMPLE NUMBER	% RE	%	SAME	IED CL		15 cm	15 cm	15 cm				MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	1/2	3/8 4	10	40	
	S				UNIF	Ground Surface	1	1.	1	10 2	0 30	40	Σ	1 and	Y		12				:		
Ì	1	100	-1-	55	бМ	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	12	29	14	s	ubgra	de	16.09	NP	NP	100	74	74	64	58 4	3 34	23	
	2	88		55	GP-GM	Light brown, medium dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	14	33	35		T		12.01	NP	NP		100	84	64	59 7	4 35	21	
	3	78		55	GP-GM	Light brown, medium dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	6	7	12	X		1	7.20	NP	NP	100	61	61	42	37 3	0 22	14	
	4	88		55	GP-GM	Light brown, medium dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	14	15	12	\square			7.51	NP	NP	100	88	68	68	58 4	1 26	13	
	5	88	+	55	GP-GM	Light brown, medium dense poorly graded gravel with silt and sand (broken corple with limestone) of no plasticity	6	9	14		/		7.40	NP	NP		100	94	81	51 4	4 28	15	

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	196.66	171.96	185.12	195.88	176.26
Weight of can & dry soil, g.	172.92	156.29	174.39	183.96	165.85
Weight of water, g.	23.74	15.67	10.73	11.92	10.41
Weight of can, g.	25.39	25.84	25.40	25.26	25.26
Weight of dry soil, g.	147.53	130.45	148.99	158.70	140.59
Moisture Content, %	16.09	12.01	7.20	7.51	7.40

Borehole BH-32 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists. N-value drops to 13 at 3-m deep.

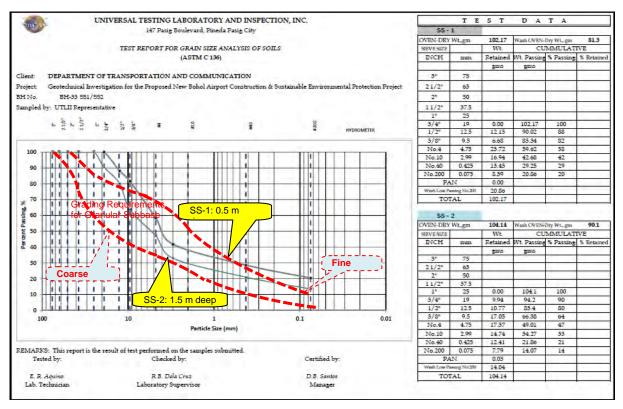
Natural soil at subgrade level (1.4 m deep) is dense (N-value > 50) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

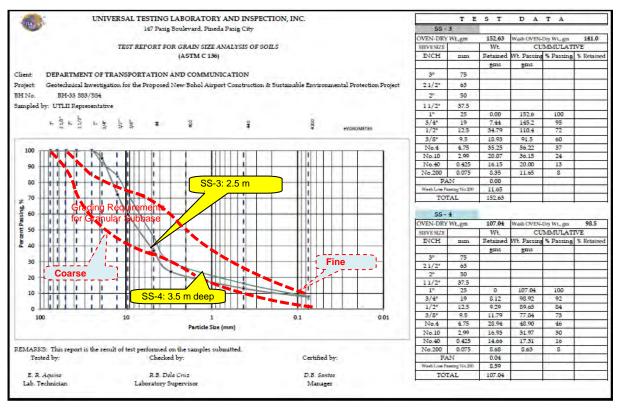
Borehole BH-33 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.2 m Finished Grade: 8.5 m Subgrade Elevation: 6.6 m Cut height: 1.6 m

RO	ECT					ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	taina	ble En	viroi	umen	tal		HOLE	NO.:					- 3	BH-3	3	
					Protection							_		-		DEPT	H:				_	1	5.0 n	n.	
	ATIC E DF	DN: RILLE	ED:		Panglao, 2/	1.1.1.2	24/201	13		WAT	ER TAI	BLE:	_	DW	т										
	ABER	RY	Ī	PE	CATION				N	VA	UES	8			ITENT					_			LYS		
חברותיוח	NUN	OVE	% RQD	LETY	SSIFIC	DESCRIPTION		SPT		F	0	RA	hu	1	ECON		65	1	Î	T	ĩĩ				1
2	SAMPLE NUMBER	% RECOVERY	%	SAMPLE TYPE	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm		9	INAI	'n	_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	ı	3/4	1/2	3/8	4	10 4	40
	1	100		55		Light brown, medium dense silty gravel with sand (broken corals with limestone) of no plasticity	31	12	13	ŀ	Sut	gra	de		13.62	NP	NP	1		100	88	82	58 4	42 2	29
	2	44		55	бМ	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	47	56	49	L		F	X		14.99	NP	NP	1	100	90	80	64	47 1	33 7	21
	3	78		ss	GP-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	33	26	18					7	8.20	NP	NP	ſ	100	95	72	60	37 :	24 1	13
	4	78	1	SS	GP-GM	Light brown, dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	30	17	18		Ι				7.75	NP	NP		100	90	84	73	46 3	30 1	16
	5	44)	55	SP-SM	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	29	30	25	X					8.56	NP	NP		1	100	85	79	56 3	35 1	18

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	133.05	136.76	184.46	133.99	115.56
Weight of can & dry soil, g.	119.53	121.15	171.95	125.69	108.03
Weight of water, g.	13.52	15.61	12.51	8.30	7.53
Weight of can, g.	17.36	17.01	19.32	18.65	20.04
Weight of dry soil, g.	102.17	104.14	152.63	107.04	87.99
Moisture Content, %	13.23	14.99	8.20	7.75	8.56

Borehole BH-33 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

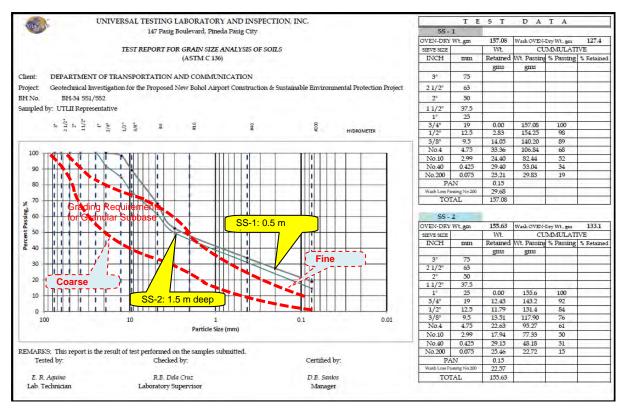
Natural soil at subgrade level (1.6 m deep) is dense (N-value > 50) but porous. It generally meets gradation of granular subbase course when blending with crashed limestone fragment.

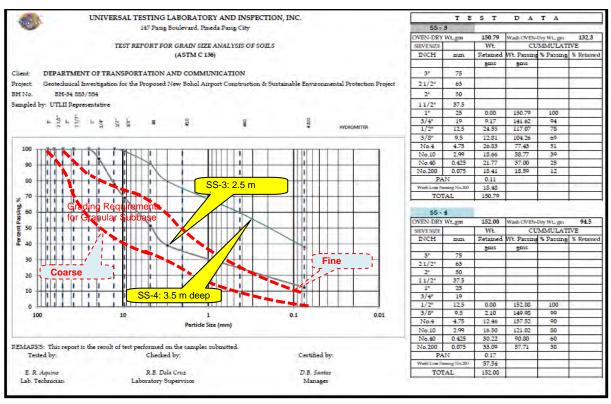
Borehole BH-34 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.4 m Finished Grade: 8.3 m Subgrade Elevation: 6.4 m Cut height: 1.0 m

OJI	ECT						ical Investigation for the Proposed New Bohol Airport	Const	ruction	t & Sus	taina	ble E	nyiro	onme	ntal		HOLE						1	BH		
					_		n Project										DEPT	H:				_	_	5.0	m	-
-	E DF	ON: RILLE	D:		Pang	1.1.1	Bohol 23/2013 DATE FINISHED: 2/2	23/20	13	-	WAT	ER TA	BLE:	_	DV	T	-									
	ABER	RY	Ĩ	'PE	Ĩ	CLASSIFICATION				N	VA	LUE	s			ITENT		RBERG	ļ.	%		VE		100		э.
	NUN	% RECOVERY	RQD	SAMPLE TYPE	SYMBO	ASSIFIC	DESCRIPTION		SPT	1		(GRA	PH		SE CON				1	1			T		
	SAMPLE NUMBER	% RE	%	SAMF	106	IED CL		2 cm	15 cm	5 cm			510			MOISTURE CONTENT	LL (%)	Pl (%)	1 1/2	r	3/4	1/2	3/8	4	10	40
	S			1		UNIFIED	Ground Surface	1	1.	1		10	20	30	40	Σ	1 day		1.7		-	1	-			
	1	100	0	55	X	м	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	41	47	57		Sut Cu	ogra t 1.0	ide Om		9.27	NP	NP	Ì		100	98	89	68	52	34
	2	67		55	X	м	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	31	54	41						4.74	NP	NP		100	92	84	76	61	50	31
	3	44		55	GP	-GM	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	61	64	70						5.71	NP	NP		100	94	78	69	51	39	25
	4	67		55	X	м	Light brown, very dense silty sand with travel (broken corals with limestone) of no pl sticity	46	39	57						7.84	NP	NP			I	100	99	90	80	60
	5	78	-	55	X	м	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	40	54	69						7.76	NP	NP				100	99	94	84	62

Pictures of disturbed soil samples


Moisture contents of disturbed soil samples


			-		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	197.25	188.89	184.94	189.41	162.86
Weight of can & dry soil, g.	182.69	181.51	176.33	177.48	152.97
Weight of water, g.	14.56	7.38	8.61	11.93	9.89
Weight of can, g.	25.61	25.88	25.54	25.40	25.50
Weight of dry soil, g.	157.08	155.63	150.79	152.08	127.47
Moisture Content, %	9.27	4.74	5.71	7.84	7.76

Borehole BH-34 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

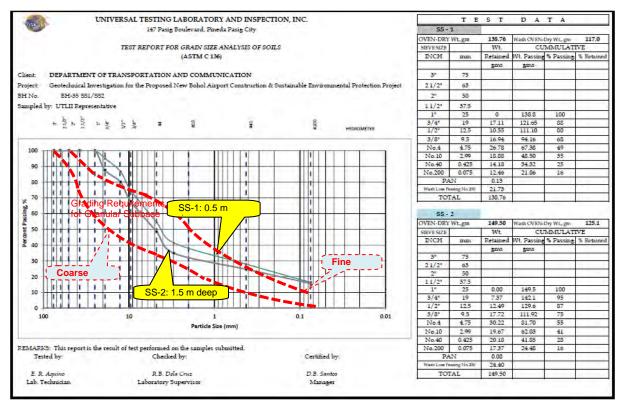
Natural soil at subgrade level (1.0 m deep) is dense (N-value > 60) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

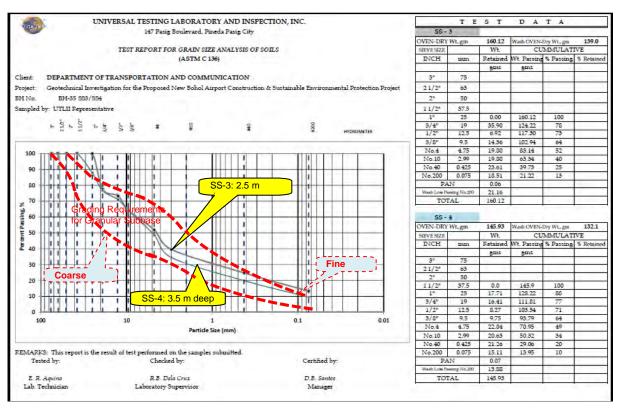
Borehole BH-35 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 7.0 m Finished Grade: 8.1 m Subgrade Elevation: 6.2 m Cut height: 0.8 m

OJ	ECT	5					cal Investigation for the Proposed New Bohol Airpo	rt Const	ruction	n & Sus	taina	able E	nyire	onme	ental		HOLE	NO.:	1.1				1	BH	-35	
					<u> </u>	otection								_			DEPT	H:					_	5.0	m	
-		N:	D:	1	Pa	nglao, 1 2/2		/23/20	13		WAT	TER TA	BLE:		D	WT	<u>-</u>									
	ABER	RY	Î	PE	-	CLASSIFICATION				N	-VA	LUE	s			VTENT		RBERG		%		VE			SIS E NC).
	NUN	% RECOVERY	RQD	LET	SYMBO	ASSIFI	DESCRIPTION		SPT			(GRA	PH		RE COL				1	1					
2	SAMPLE NUMBER	% RE	%	SAMPLE TYPE	106	UNIFIED CL	Ground Surface	15 cm	15 cm	15 cm			310		_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	3/2	3/8	4	10	40
	1	100		55	X	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity		36	53	ĺ	Sut Cu	ogra t 0.	ide 3m	Ţ	8.51	NP	NP		100	88	80	68	49	35	25
1	2	100		ss	X		Light brown, very dense silty sand with gravel (broken coral: with limestone) of no plasticity	17	28	36						7.86	NP	NP		100	95	87	75	55	41	28
2	3	100		ss	X		Light frown, dense silty gravel with sand (broken corals with limestone) of no plasticity	20	30	16						7.76	NP	NP		100	78	73	54	52	40	25
	4	67		55	X	GP-GM	Ight brown, medium dense poorly graded gravel with silt and sand (broken corals with imestone) of no plasticity	12	18	10						6.90	NP	NP	100	88	77	71	64	49	34	20
	5	78		55	X	GP-GM	ight brown, medium dense poorly graded gravel with silt and sand (broken corals with imestone) of no plasticity	12	8	13						3.39	NP	NP	100	58	58	40	33	23	16	10

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	176.13	186.89	198.15	181.29	179.72
Weight of can & dry soil, g.	164.32	175.14	185.73	171.22	174.69
Weight of water, g.	11.81	11.75	12.42	10.07	5.03
Weight of can, g.	25.56	25.64	25.61	25.29	26.15
Weight of dry soil, g.	138.76	149.50	160.12	145.93	148.54
Moisture Content, %	8.51	7.86	7.76	6.90	3.39

Borehole BH-35 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists. N-value drops to 20 at 5-m deep.

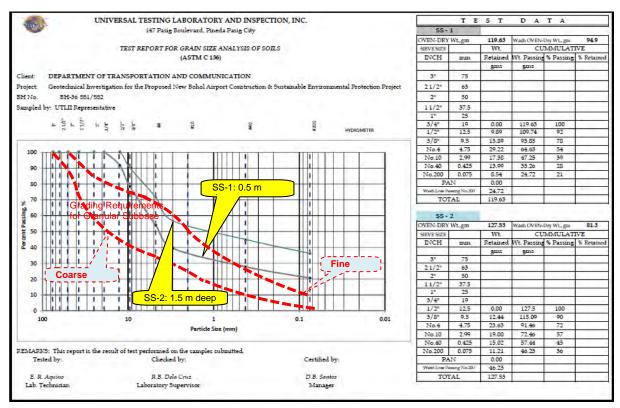
Natural soil at subgrade level (0.8 m deep) is dense (N-value > 40) but porous. It generally meets gradation of granular subbase course when blending with small amount of crashed limestone fragment.

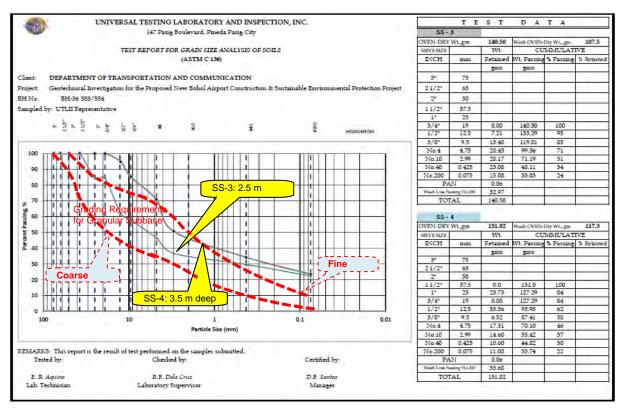
Borehole BH-36 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 6.8 m Finished Grade: 7.9 m Subgrade Elevation: 6.0 m Cut height: 0.8 m

ROJ	ECT	1			-		ical Investigation for the Proposed New Bohol Airport	Const	ruction	n & Sus	taina	ble E	wiro	nmer	ntal		HOLE						-	BH	-36	_
				1.1.1		A. 14	a Project										DEPT	H:					_	5.0	m	_
	ATIC E DF	ON: CILLI	ED:		Par	<u> </u>	Bohol 1/2013 DATE FINISHED: 3/	1/201	3		WAT	ER TA	BLE:	į.	DW	Л										
	ABER	RY		PE		UNIFIED CLASSIFICATION				N	-VA	LUES	5			TENT				%		VE).
חבר וח,ח	SAMPLE NUMBER	% RECOVERY	% RQD	SAMPLE TYPE	5 SYMBO	ASSIFIC	DESCRIPTION		SPT			0	RA	РН		MOISTURE CONTENT	ш	PI						1	1	
5	AMPL	% RE	%	SAM	100	FIED CI		15 cm	15 cm	15 cm	÷				_	IOISTU	(%)	(%)	1 1/2	i	3/4	1/2	3/8	4	10	40
	S	-	1		1	IN	Ground Surface	-		1	É	10 Sut		30	10	2	1000						1			Ē.
1	1	100		55	Ķ	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	15	30	34		Cu	gra 0.8	m	Р	18.09	NP	NP			100	92	78	54	39	28
1	2	67		\$\$	X	SM	Brown, very dense silty sand with grovel (broken corals with limestone) of no plasticity	30	34	44				1		13.49	NP	NP				100	90	72	57	45
2	3	67	4	55	X	GM	Brown, very danse silty gravel with sand (broken corals with limestone) of no plasticity	20	31	32						8.48	NP	NP		100	95	85	71	51	34	24
4	4	44		SS	X	GM	Brown, very dense silty gravel with sand (boken corals with limestone) of no plasticity	30	34	38						11.81	NP	NP	100	84	84	62	58	45	37	30
	5	44	4	ss	X	GM	srown, very dense silty gravel with sand broken corals with limestone) of no plasticity	30	39	46						7.74	NP	NP	100	88	59	56	49	38	28	21

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	162.91	170.60	177.38	194.70	200.81
Weight of can & dry soil, g.	141.27	153.39	165.46	176.87	188.21
Weight of water, g.	21.64	17.21	11.92	17.83	12.60
Weight of can, g.	21.64	25.86	24.96	25.85	25.49
Weight of dry soil, g.	119.63	127.53	140.50	151.02	162.72
Moisture Content, %	18.09	13.49	8.48	11.81	7.74

Borehole BH-36 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

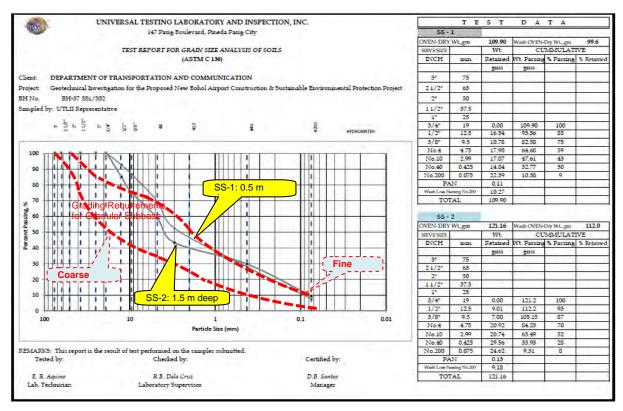
Natural soil at subgrade level (0.8 m deep) is dense (N-value of 45 to 60) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

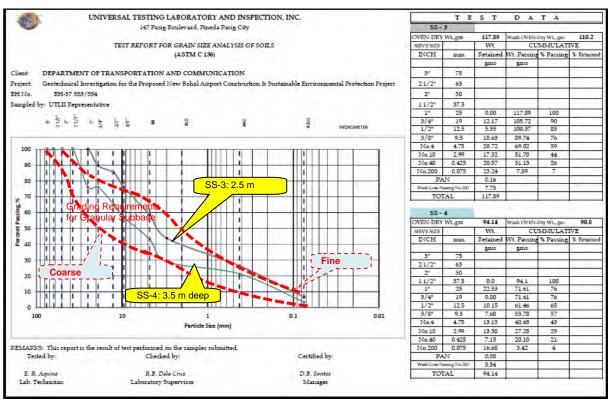
Borehole BH-37 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

Existing Grade: 7.8 m Finished Grade: 8.1 m Subgrade Elevation: 6.4 m Cut height: 1.4 m

ROJ	ECI	5			Geotechn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	t & Su	stainable Environmental		HOLE	NO.:			1			BH	-37	
					Protection							DEPT	H:						5.0	m	
-	ATIC E DE	ON: BILLI	ED:	-	Panglao, 3/		2/201	3		WATER TABLE: DV	/T										
-	ABER	RY	Ĩ	PE	ATION		1		N	I-VALUES	ITENT						VE /		-) .
DEP I H, M	NUN	OVE	% RQD	LE TV	SSIFIC	DESCRIPTION		SPT		GRAPH	ECON	477	iε.						-	1	
	SAMPLE NUMBER	% RECOVERY	%	SAMPLE TYPE	UNIFIED CLASSIFICATION		15 cm	15 cm	15 cm	GRAPH	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	1/2	3/8	4	10	40
	S		1.7		N	Ground Surface	-	F		10 20 20 40	4	15	1	1.1							
	1	100	-	55	SP-SM	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	27	33	38	Subgrade Cut 1.4m	33.18	NP	NP			100	85	75	59	43	30
1	2	81		SS	SP-SM	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	33	34	33		12.16	NP	NP			100	93	87	70	52	28
2	3	78	1	55	SP-SM	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	29	33	18		11.79	NP	NP		100	90	85	76	59	44	26
	4	56		55	GW	Light brown, very dense well graded gravel (broken corals with limestone) of no plasticity	38	43	51		42.86	NP	NP	100	76	76	65	57	43	29	21
	5	67		55	SP-SM	Light brown, very dense poorly graded sand with silt and gravel (broken corals with limestone) of no plasticity	61	42	1		26.69	NP	NP			100	82	98	62	45	20

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	172.02	155.50	154.40	160.29	132.27
Weight of can & dry soil, g.	135.56	140.77	140.50	119.94	108.91
Weight of water, g.	36.46	14.73	13.90	40.35	23.36
Weight of can, g.	25.66	19.61	22.61	25.80	21.40
Weight of dry soil, g.	109.90	121.16	117.89	94.14	87.51
Moisture Content, %	33.18	12.16	11.79	42.86	26.69

Borehole BH-37 -

No fine topsoil exists. No large cavity exists.

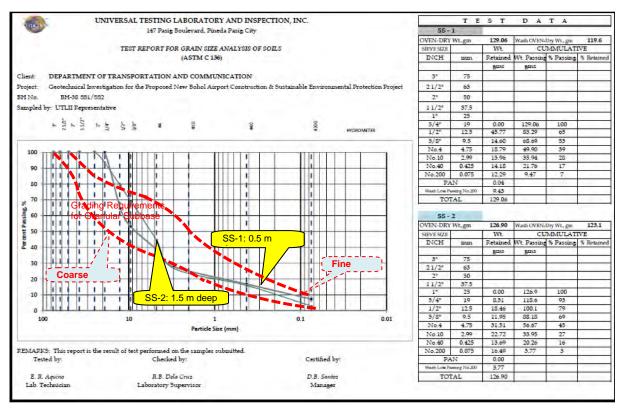
Natural soil at subgrade level (1.4 m deep) is dense (N-value of 45 to 60) but porous. It will require blending with amount of crashed limestone fragment when used for granular subbase course.

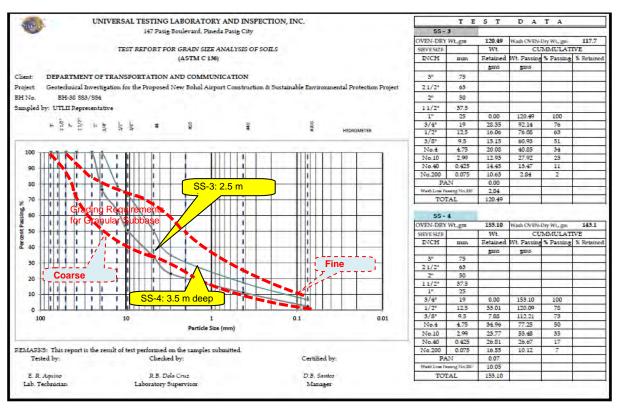
Borehole BH-38 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

Existing Grade: 7.6 m Finished Grade: 8.1 m Subgrade Elevation: 6.4 m Cut height: 1.2 m

RO	ECI	1			Geotechn Protection	ical Investigation for the Proposed New Bohol Airport	t Const	ruction	n & Sus	taina	ble Env	viron	menta	1		HOLE					_		BH-		-
	ATIC	ON:	T		Panglao,	Bohol	2/201	2			ER TAB	15.		DW	T	. DEFI	п.						5.0	0	1
				PE	T	2/2013 DATE FINDHED: 3/	2/201	3	N		LUES			Dw	1.5	ATTER			%	_			ALYS EVE		
DEPTH, m	E NUN	% RECOVERY	% RQD	PLET	ASSIFL	DESCRIPTION	1.1	SPT			G	RAP	н	1	RE COI					5	11	11			
DE	SAMPLE NUMBER	% RE	%	SAMPLETYPE	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm	÷	10 20	1 1	0 4	ń	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	ı,	3/4	1/2	3/8	4	10	40
	1	89		SS		Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	24	54	40	f	Sub	Π			30.47	NP	NP			100	65	53	39	28	17
	2	100	1	55	GW	Brown, dense well graded gravel with sand (broken corals with limestone) of no plasticity	35	23	25	1		1			9.42	NP	NP		100	93	76	69	45	27	16
2	з	89		55	GW	Brown, dense well graded gravel with sand (broken corals with limestone) of no plasticity	26	30	38						10.52	NP	NP		100	76	63	51	34	23	11
	4	67	1	SS	GP-GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	39	24	28						13.58	NP	NP		ĮĮ	100	78	73	50	35	17
	5	89		ss	GP-GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with innestone) of no plasticity	33	28	25		Ĩ				5.81	NP	NP		100	92	77	68	52	36	20

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	190.29	164.39	156.17	195.18	180.97
Weight of can & dry soil, g.	150.97	152.43	143.50	174.39	172.40
Weight of water, g.	39.32	11.96	12.67	20.79	8.57
Weight of can, g.	21.91	25.53	23.01	21.29	24.95
Weight of dry soil, g.	129.06	126.90	120.49	153.10	147.45
Moisture Content, %	30.47	9.42	10.52	13.58	5.81

Borehole BH-38 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

No fine topsoil exists. No large cavity exists.

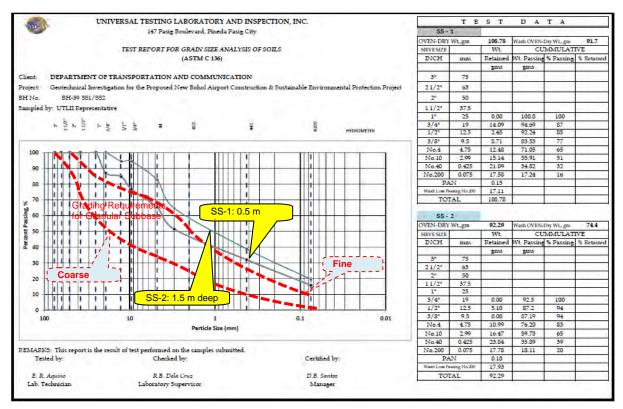
Natural soil at subgrade level (1.2 m deep) is dense (N-value of 40 to 60) but porous. It will require blending with small amount of crashed limestone fragment when used for granular subbase course.

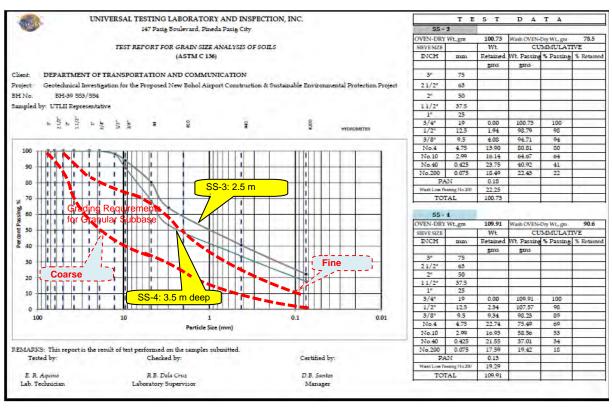
Borehole BH-39 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

Existing Grade: 7.4 m Finished Grade: 7.5 m Subgrade Elevation: 5.8 m Cut height: 1.6 m

ROJ	ECT	1			Geo	otechn	ical Investigation for the Proposed New Bohol Airpor	t Const	ruction	a & Su	tain	able 1	Envi	ronm	ental			HOLE	NO.:			-			BH	-39	
					-		n Project						_					DEPT	HI:				_		5.0	m	
	ATIC E DR		ED:		Par	0	Bohol /3/2013 DATE FINISHED: 3	/3/201	3		WA	TERT	ABL	E:		DW	т										
	ABER	RY	Ĩ	PE		ATION			Ċ.	N	-VA	LUI	S	l.	2		TENT			Ĩ	%		VE	100	100) .
חבר וחיווו	NUN	% RECOVERY	RQD	LETY	SYMBOL	SSIFIC	DESCRIPTION	2	SPT		1	1	GR	APH			E CON					i (1		11	1
	SAMPLE NUMBER	% RE(%	SAMPLETYPE	100	UNIFIED CLASSIFICATION		15 cm	15 cm	15 cm	-		UN		_		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	i,	3/4	1/2	3/8	4	10	40
_			. 1			5	Ground Surface		.,	12	2	10	20	30	40				1.2.				_	_			1
	1	67		55	X	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	33	45	35	ľ	s	ıbgı	rade	Ħ	ī	7.53	NP	NP		100	87	85	77	65	51	32
1	2	67		55	X	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	27	22	22				.6m		1	12.05	NP	NP			100	94	94	83	65	39
2	3	89	14	55	X	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	18	23	23							14.47	NP	NP			100	98	94	80	64	41
	4	44	1	SS	X	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	20	22	21	/					1	11.42	NP	NP			100	98	-89	69	53	34
	5	44	20	ss	X	GM	Light brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	25	33	35							10.81	NP	NP	100	73	73	63	60	50	37	24

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	142.43	129.22	140.85	148.14	127.13
Weight of can & dry soil, g.	134.24	118.10	126.27	135.59	116.41
Weight of water, g.	8.19	11.12	14.58	12.55	10.72
Weight of can, g.	25.46	25.81	25.54	25.68	17.25
Weight of dry soil, g.	108.78	92.29	100.73	109.91	99.16
Moisture Content, %	7.53	12.05	14.47	11.42	10.81

Borehole BH-39 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

No fine topsoil exists. No large cavity exists.

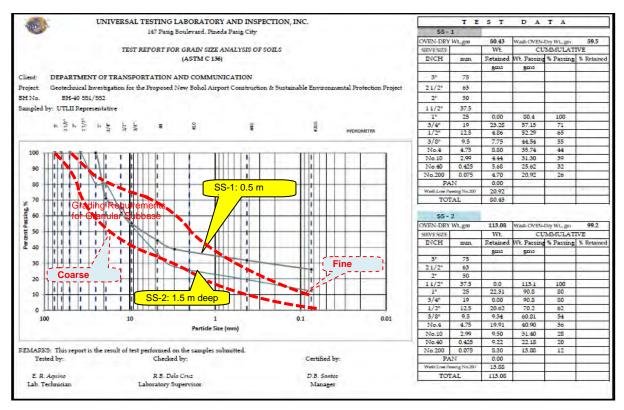
Natural soil at subgrade level (1.6 m deep) is dense (N-value of 40 to 50) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

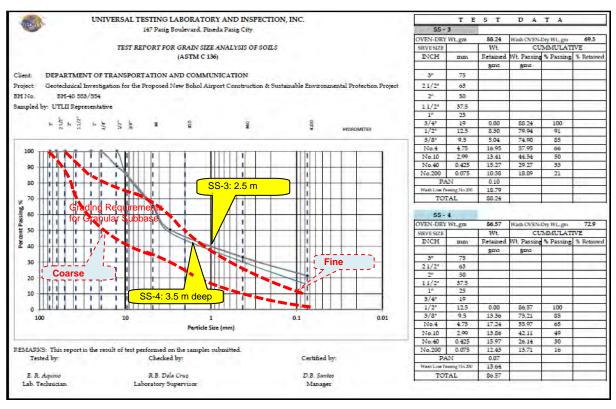
Borehole BH-40 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

Existing Grade: 7.0 m Finished Grade: 7.5 m Subgrade Elevation: 5.8 m Cut height: 1.2 m

ROJ	ECT	1					ical Investigation for the Proposed New Bohol Airport	Const	ruction	n & Su	taina	able En	viror	ument	al		HOLE		A. 45					BH		
~~	ATIC				×.,	199 1 2 2 2 2	n Project										DEPT	H:				_	_	5.0	m	-
-		N: AILLI	ED:	-	Par	0	Bohol 22/2013 DATE FINISHED: 2/2	22/20	13	-	WAT	TER TAB	LE:	-	DW	Т										
_	ABER	RY		PE		CLASSIFICATION				N	-VA	LUES	÷			VTENT		RBERG 1ITS		%		10.00	1000).
min han	NUN	% RECOVERY	RQD	SAMPLE TYPE	SYMBO	ASSIFIC	DESCRIPTION		SPT			G	RAF	эн		RE CON				1	1			1		
5	SAMPLE NUMBER	% RE	%	SAME	106			15 cm	15 cm	15 cm	-	Ĩ				MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	1/2	3/8	4	10	40
	St			1		UNIFIED	Ground Surface	Ħ	÷1	Ŧ		10 2	0	30	40	v	1									
	1	100		55		GM	Dark brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	8	20	29	ľ	Sub	gra	de m	1	14.71	NP	NP		100	71	65	55	44	39	32
1	2	67		55		GM	Dark brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	57	50	49			Ŧ	Ħ		9.62	NP	NP	100	80	80	62	54	36	28	20
2	3	67		55	\langle	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	38	29	32						9.80	NP	NP			100	91	88	66	50	33
1	4	56		-55		SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	60	31	35						9.03	NP	NP			T	100	85	65	49	30
	5	56		55	\langle	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	29	24	29						7.92	NP	NP			100	95	88	63	46	27

Pictures of disturbed soil samples

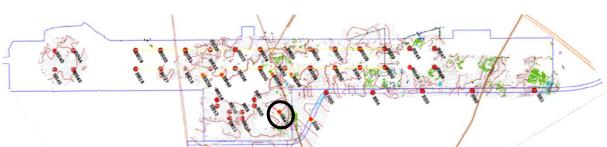



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	110.31	142.77	108.65	113.41	141.84
Weight of can & dry soil, g.	98.48	131.89	100.49	105.59	132.81
Weight of water, g.	11.83	10.88	8.16	7.82	9.03
Weight of can, g.	18.05	18.81	17.25	19.02	18.78
Weight of dry soil, g.	80.43	113.08	83.24	86.57	114.03
Moisture Content, %	14.71	9.62	9.80	9.03	7.92

Borehole BH-40 – Taxiway (Pavement Thickness: 0.9 m + Subgrade/Slope: 0.8 m)

No fine topsoil exists. No large cavity exists.

Natural soil at subgrade level (1.2 m deep) is dense (N-value of 90 to 100) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.


Borehole BH-41 – Control Tower

Existing Grade: 6.0 m

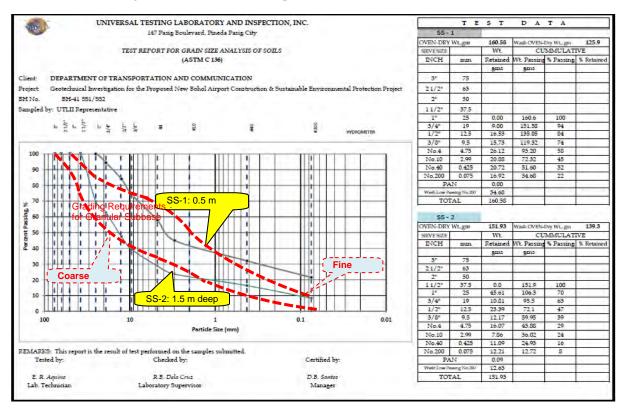
Finished Grade: 8.0 m

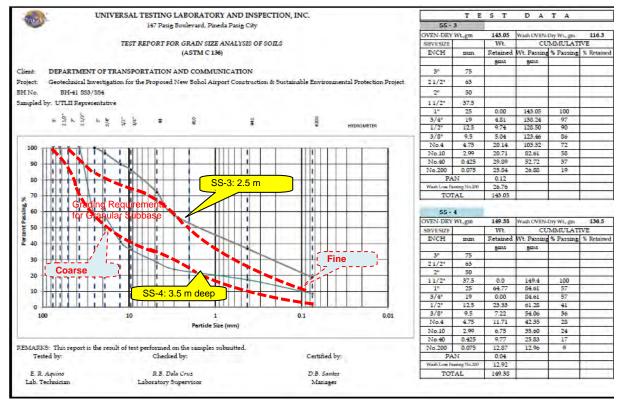
Footing Bottom: 3.5 m

Cut height: 2.5 m

RO	ECI				Geotechn	ical Investigation for the Proposed New Bohol Airport	Const	ructior	& Sust	ainable Environmental		HOLE	NO.:						BH-	41	
					Protection	n Project						DEPT	H:						5.0	m	
	ATIC E DF	ON: RILLI	ED:		Panglao, 3/		2/201	3	_	WATER TABLE: DW	Г										
	ABER	RY		PE	CATION	09.0000 P			N	VALUES	TIENT			1	%).
10'UL 10	NUN	RECOVERY	% RQD	LET	SSIF	DESCRIPTION	0.3	SPT		GRAPH	E COI		1.		T		1	1		T	
	SAMPLE NUMBER	% RE(%	SAMPLETYPE	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	Ĩ	3/4	1/2	3/8	4	10	40
	1	100		55	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	57	64	50	10 20 30 40	10.39	NP	NP		100	94	84	74	58	45	32
1	2	100		55	1000	Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	70	57	22	Cut 215 m	16.69	NP	NP	100	70	63	47	39	29	24	16
-	3	100	1.14	55	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	70	25	32		12.44	NP	NP		100	97	90	86	72	58	37
	4	44	1	55		Light brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	30	40	25		12.12	NP	NP	100	57	57	41	36	29	24	17
	5	44		55	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	32	40	43		9.75	NP	NP	100	91	91	82	72	60	50	34

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	199.29	202.65	186.76	185.58	170.58
Weight of can & dry soil, g.	182.61	177.29	168.97	167.48	157.24
Weight of water, g.	16.68	25.36	17.79	18.10	13.34
Weight of can, g.	22.03	25.36	25.92	18.10	20.47
Weight of dry soil, g.	160.58	151.93	143.05	149.38	136.77
Moisture Content, %	10.39	16.69	12.44	12.12	9.75

Borehole BH-41 – Control Tower

No fine topsoil exists. No large cavity exists.

Natural soil at footing bottom level (2.5 m deep) is N-value of more than 50.

Borehole BH-42 – Soaking Yard

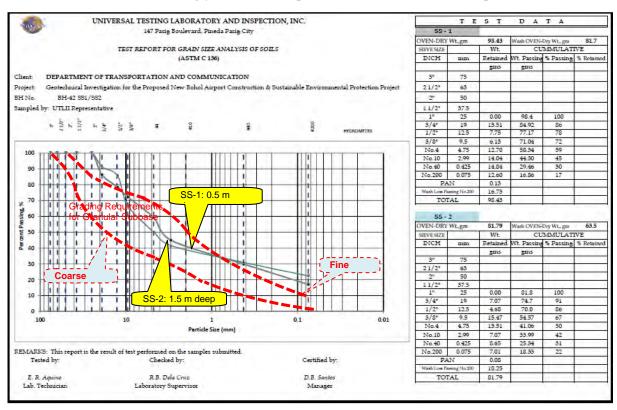
Existing Grade: 2.6 m

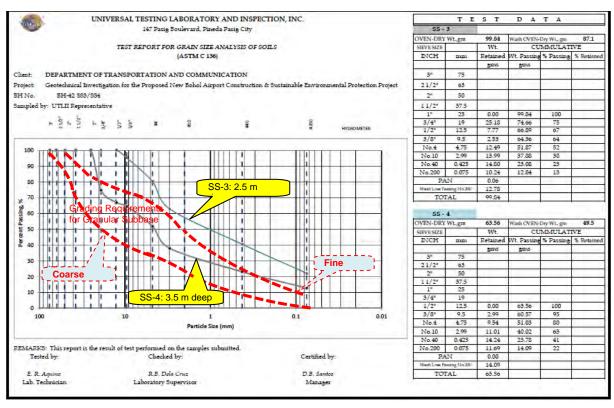
Finished Grade: 2.0 m

Cut height: 0.6 m

ROJ	ECT	2		9	Geote	chn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	aina	ble En	viron	nental			HOLE	NO .:						BH	-42	
				1	rote	ction	n Project	_									DEPT	H:				_		5.0	m	
	ATIC E DF		ED:	1	ang		Bohol /4/2013 DATE FINISHED: 3/-	4/201	3		WAT	ER TAB	BLE:	I	ow	0										Ċ.
	ABER	RY		PE	3	CLASSIFICATION				N	VA	LUES				VTENT				%) .
חבר וחיווו	NUN	RECOVERY	% RQD	LET		VSIFI	DESCRIPTION		SPT			G	RAP	u .		E COI	1.21									
	SAMPLE NUMBER	% REC	%	SAMPLE TYPE	2	UNIFIED CL		5 cm	15 cm	5 cm	_	G	NAF	n.		MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40
	S		1		4	3	Ground Surface	r		T		10 2	0 31	40		2	1.1	≤ 1		L.				22		
	1	67	÷	55	s	м	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	80	83	88	Ľ	Cu	0.61			10.62	NP	NP		100	86	78	72	54	45	30
1	2	56		55	6	м	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	88	80	39						8.85	NP	NP		100	91	86	67	50	42	31
2	3	56	- 60	55	s	м	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	30	29	26	T				I	3.36	NP	NP		100	75	67	64	52	38	33
	4	67	- A.	55	s	м	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	30	30	25						13.99	NP	NP				100	95	80	63	41
	5	56	- 1-	55	s	м	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	20	4	33	1					11.21	NP	NP			10	90	82	70	58	42

Pictures of disturbed soil samples

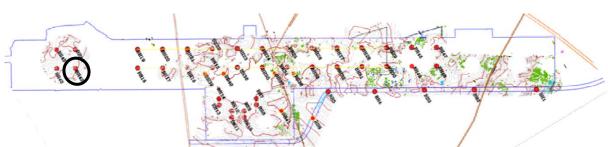



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	133.70	108.84	120.00	90.63	137.62
Weight of can & dry soil, g.	123.25	101.60	116.65	81.74	125.81
Weight of water, g.	10.45	7.24	3.35	8.89	11.81
Weight of can, g.	24.82	19.81	16.81	18.18	20.46
Weight of dry soil, g.	98.43	81.79	99.84	63.56	105.35
Moisture Content, %	10.62	8.85	3.36	13.99	11.21

Borehole BH-42 – Soaking Yard

No fine topsoil exists. No large cavity exists.

Natural soil at bottom of soaking yard (0.6 m deep) is dense (N-value > 100) but porous.



Borehole BH-43 – Soaking Yard

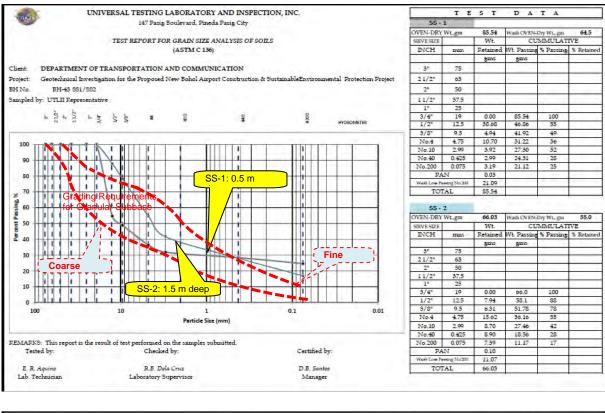
Existing Grade: 2.6 m

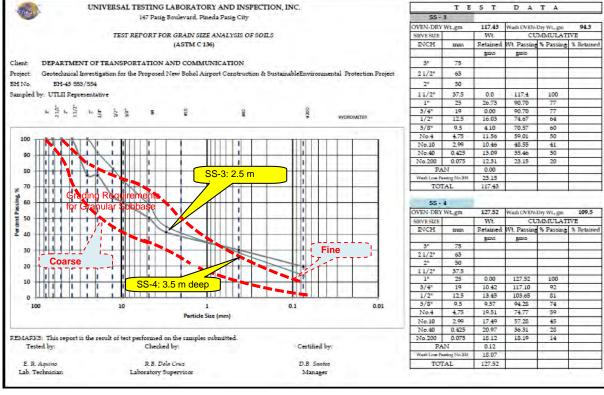
Finished Grade: 2.0 m

Cut height: 0.6 m

ROJ	ECT	1		(Geotechn	ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	aina	ble Er	aviro	nmer	ntal		HOLE	NO.:						BH-	43	
				- 12 -	Protection	and the design of the second se										DEPT	H:				_		5.0	m	
	ATIC E DF		ED:	2	Panglao, 3/	* 5475	4/201	3		WAT	ER TA	BLE:	52	DW	T										
	ABER	RY		PE	CATION				N	VA	LUES	5			VTENT		RBERG		%	SIE			EVE).
חבר וח,ווא	NUN	COVE	% RQD	LET	ASIFI	DESCRIPTION		SPT	6-3		C	GRA	рн		E COI	1.21	5								
1	SAMPLE NUMBER	% RECOVERY	%	SAMPLETYPE	UNIFIED CLASSIFICATION	Ground Surface	15 cm	15 cm	15 cm						MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40
	1	56	- 1	55		Brown, very dense well graded gravel with silt and sand (broken corals with limestone) of no plasticity	80	80	59	Ţ	¢u	20 11 O.	30 6 m		11.23	NP	NP			100	55	49	36	32	28
	2	67		55	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	53	68	36						7.18	NP	NP		1.1	100	88	78	55	42	28
	3	67		55	GМ	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	33	29	27	Ι				Π	10.70	NP	NP	100	77	77	64	60	50	41	30
	4	67	t	.55	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	30	31	3						7.50	NP	NP		100	92	81	74	59	45	29
	5	56	t	55	SM	Light brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	30	1	28						11.01	NP	NP			100	87	84	66	53	34

Pictures of disturbed soil samples

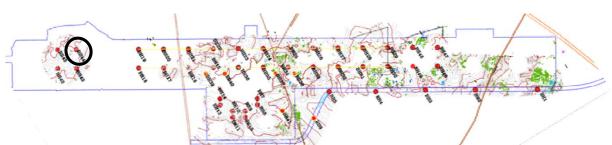



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	112.32	86.40	146.48	162.99	137.91
Weight of can & dry soil, g.	102.71	81.66	134.65	153.43	126.90
Weight of water, g.	9.61	4.74	11.83	9.56	11.01
Weight of can, g.	17.17	15.63	17.22	25.91	26.86
Weight of dry soil, g.	85.54	66.03	117.43	127.52	100.04
Moisture Content, %	11.23	7.18	10.07	7.50	11.01

Borehole BH-43 – Soaking Yard

No fine topsoil exists. No large cavity exists.

Natural soil at bottom of soaking yard (0.6 m deep) is dense (N-value > 100) but porous.



Borehole BH-44 – Soaking Yard

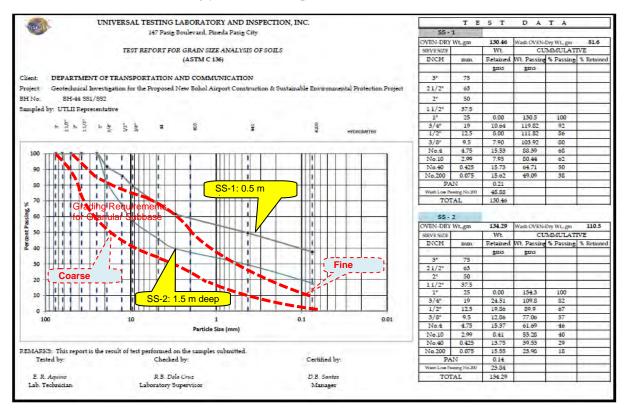
Existing Grade: 2.2 m

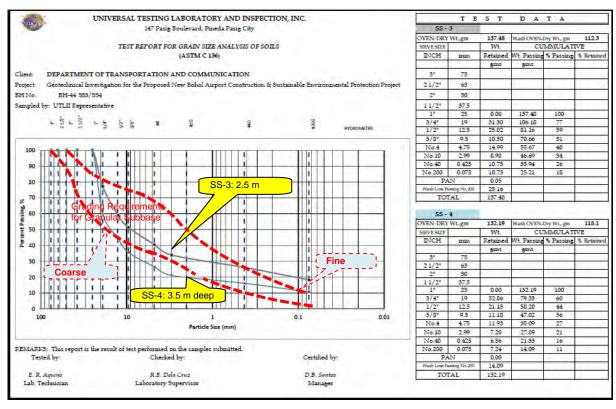
Finished Grade: 2.0 m

Cut height: 0.2 m

OJ	ECT	1		1.1	_		ical Investigation for the Proposed New Bohol Airport Project	Const	ruction	t & Su	stain	able E	Enviro	onme	ntal			HOLE					_		BH		_
	ATIC E DF	ON: RILLI	ED:		1. S. 1. A.	ao,	Bohol	4/201	3		WA	TER T	ABLE:		ľ	DW.		DEPT	п:			P			5.0	m	
	ABER	RY	Ĩ	PE		CLASSIFICATION	L III THOMAS IN			N	-VA	LUE	S				TENT	ATTER		Ļ	%						0.
	NUN	% RECOVERY	ROD	SAMPLE TYPE	SYMBO	ASSIFI	DESCRIPTION	1	SPT				GRA	PH			RE CON			11		- 31			1	1	
	SAMPLE NUMBER	% RE	%	SAME	106	UNIFIED UL	Ground Surface	15 cm	15 cm	15 cm	_		- -				MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	r	3/4	1/2	3/8	4	10	40
	1	89	- 4-	55	V	M	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	18	18	17	T	Gut	0,2 1	30			13.41	NP	NP		100	92	86	80	68	62	50
	2	44	-	SS	G		Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	38	42	56	ľ				1		16.70	NP	NP		100	82	67	57	46	40	29
	3	67		55	G	M	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	22	28	3							10.47	NP	NP		100	77	59	51	40	34	26
	4	67		55	GP-	GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	25	27	35							13.85	NP	NP		100	60	44	36	27	21	16
	5	67	-	55	G	M	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	35	26	31							3.27	NP	NP			100	88	73	53	38	12

Pictures of disturbed soil samples

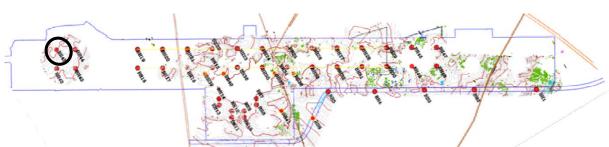



Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	165.45	176.59	177.80	167.66	180.17
Weight of can & dry soil, g.	147.96	154.17	163.41	149.35	175.06
Weight of water, g.	17.49	22.42	14.39	18.31	5.11
Weight of can, g.	17.50	19.88	25.93	17.16	18.60
Weight of dry soil, g.	130.46	134.29	137.48	132.19	156.46
Moisture Content, %	13.41	16.70	10.47	13.85	3.27

Borehole BH-44 – Soaking Yard

No fine topsoil exists. No large cavity exists.

Natural soil at bottom of soaking yard (0.2 m deep) is not much dense.



Borehole BH-45 – Soaking Yard

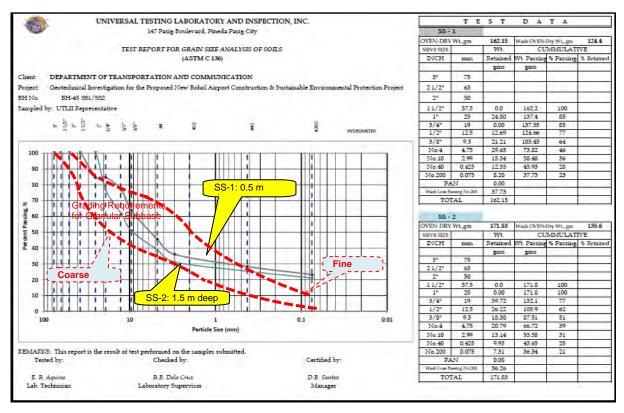
Existing Grade: 2.0 m

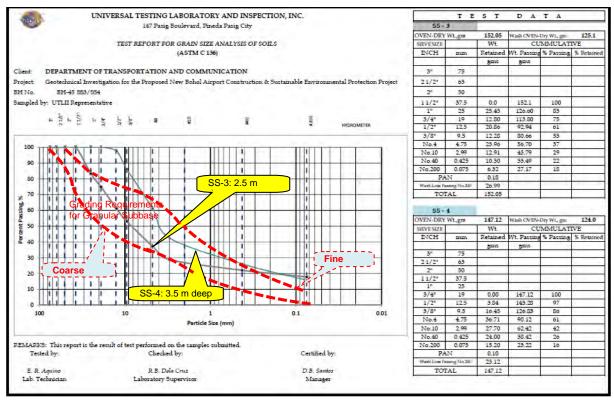
Finished Grade: 2.0 m

Cut height: 0 m

RO	JECT			(Geotech	nical Investigation for the Proposed New Bohol Airpor	t Const	ruction	n & Sus	aina	ble En	vironm	ental		HOLE	NO.:	τ			_		BH	-45	
						on Project					-				DEPT	H:					-	5.0	m	
	ATIC E DR		D:	1	0	, Bohol /4/2013 DATE FINISHED: 3/	/4/201	3		WAT	ER TAB	LE:	E	OWT	<u>-</u>									
-	ABER	RY		PE	UNIFIED CLASSIFICATION	1.000			N	VA	LUES	1		TIENT	12.00 0.00	RBERG		%						0.
DEPTH, M	NUN	% RECOVERY	% RQD	LET	ASSIFI	DESCRIPTION	0.00	SPT			G	RAPH	1	RE COI										
DE	SAMPLE NUMBER	% RE(%	SAMPLE TYPE	IED CL		Scm	15 cm	5 cm	_	0		_	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/8	4	10	40
	S	1.			No.	Ground Surface	-	ч	1		10Cut	0 m30	40	Z				11			11	-		
	1	44	1	ss	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	40	63	57	T				8.73	NP	NP	100	81	81	78	64	45	36	28
1	2	78	- A -	ss	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	37	43	29					9.00	NP	NP		100	77	62	51	39	31	25
2	3	56		ss	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	28	31	2					6.54	NP	NP	100	83	75	61	53	37	29	22
	4	67	1 - T	55	SM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	33	21	26					3.73	NP	NP		Ĩ	100	97	86	61	42	26
	5	67	- E	55	GP-GA	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	32	23	25					4.49	NP	NP		100	90	6Z	40	19	13	11

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	200.92	208.80	187.66	172.70	187.43
Weight of can & dry soil, g.	186.85	193.33	177.71	167.21	180.49
Weight of water, g.	14.07	15.47	9.95	5.49	6.94
Weight of can, g.	25.70	21.50	25.66	20.08	26.05
Weight of dry soil, g.	161.15	171.83	152.05	147.13	154.44
Moisture Content, %	8.73	9.00	6.54	3.73	4.49

Borehole BH-45 – Soaking Yard

No fine topsoil exists. No large cavity exists.

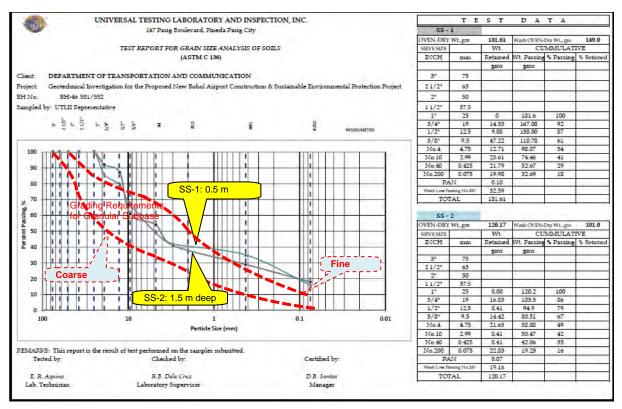
Natural soil at bottom of soaking yard (0 m deep) is dense (N-value > 100) but porous.

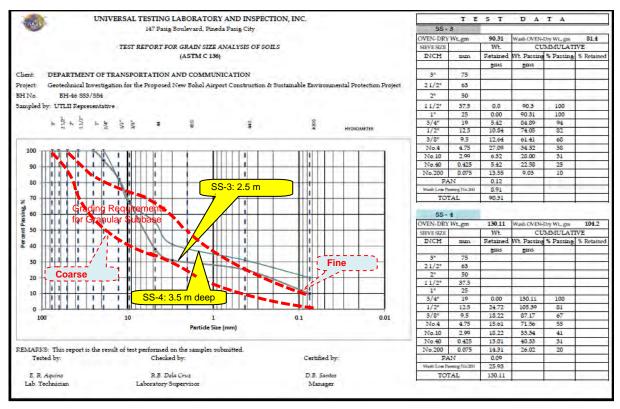
Borehole BH-46 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.0 m Finished Grade: 9.3 m Subgrade Elevation: 7.4 m Cut height: 0.6 m

OJ	ECT	1		1.7	Geotecl	nical Investigation for the Proposed New Bohol Airpor	rt Cons	truction	ı & Su	tain	able Er	nviror	ment	al		HOLE	NO.:					-	BH	46	
				1	Protect	on Project					-					DEPT	H:						5.0	m	
-	ATIC E DR	ON: ULLE	D:	-		o, Bohol /20/2013 DATE FINISHED: 3/	/20/20	13		WA	TER TA	BLE:	_	DW	T	2									
	ABER	RY		TYPE	UNIFIED CLASSIFICATION				N	-VA	LUE	5			TENT		RBERG				VE /).
	NUN	% RECOVERY	ROD	PLE TY	ASSIFIC	DESCRIPTION		SPT			(GRAF	н		RECON	u	PI		1	1			11		
1	SAMPLE NUMBER	% RE	%	SAMPLE .	PIED CL		15 cm	15 cm	15 cm	_				_	MOISTURE CONTENT	(%)	(%)	1 1/2	1	3/4	1/2	3/8		10	80
	S				13	Ground Surface		1	1	ſ	Sut	drad	lë .	40	Z	1.1	1.0								
	1	89	-	55	GM	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	15	12	20		Cu	grad t 0.6r	'n	μ	19.10	NP	NP		100	92	87	61	54	41	29
	2	100	1.00	55	GN	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	39	34	41						15.25	NP	NP		100	86	79	57	49	42	35
	3	89		55	GP-G	Brown, very dense poorly graded gravel with M silt and sand (broken corals with limestone) o no plasticity	f 25	28	34						12.41	NP	NP		100	94	82	68	38	31	25
	4	67	-	25	GM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	20	30	42			0			8.16	NP	NP			100	81	67	55	41	31
	5	67	1	22	GM	Brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity.	.5	41	37						10.72	NP	NP		100	96	84	70	58	42	29

Pictures of disturbed soil samples


Moisture contents of disturbed soil samples


			_		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	228.09	159.56	126.42	163.79	118.55
Weight of can & dry soil, g.	203.40	141.23	115.21	153.17	109.21
Weight of water, g.	34.69	18.33	11.21	10.62	9.34
Weight of can, g.	21.79	21.06	24.90	23.06	22.13
Weight of dry soil, g.	181.61	120.17	90.31	130.11	87.08
Moisture Content, %	19.10	15.25	12.41	8.16	10.72

Borehole BH-46 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

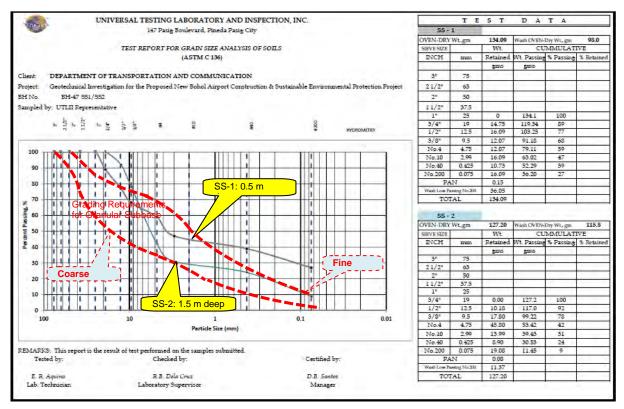
Natural soil at subgrade level (0.6 m deep) is dense (N-value of 30 to 40) but porous. It will require blending with small amount of crashed limestone fragment when used for granular subbase course.

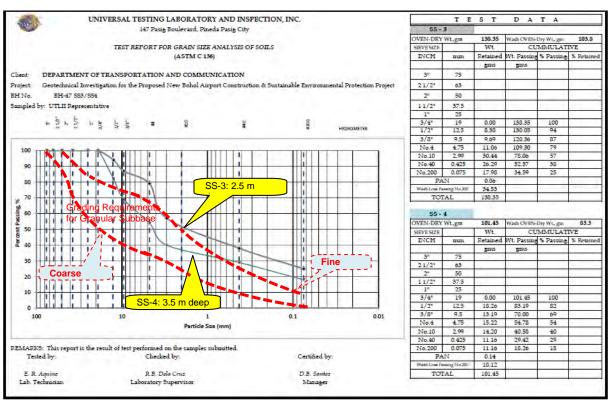
Borehole BH-47 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.2 m Finished Grade: 9.5 m Subgrade Elevation: 7.6 m Cut height: 0.6 m

OJ	ECT					ical Investigation for the Proposed New Bohol Airport	Const	ruction	& Sus	tain	able Er	wironn	nental		1	HOLE	NO.:					_	BH-	47	
					Protection											DEPT	H						5.0	m	
	ATIC E DR	DN: ULLE	D:		Panglao, 3/		20/20	13		WA	TER TA	BLE:		DW	т										
	ABER	RY	1	TYPE	UNIFIED CLASSIFICATION				N	VA	LUES	5			TENT		10000			_).
	SAMPLE NUMBER	% RECOVERY	RQD	PLE TV	ASSIFIC	DESCRIPTION		SPT			c	RAP	1	1	MOISTURE CONTENT		PI		1						
	MPLI	% RE	36	SAMPLE .	IED CL		2 CM	15 cm	15 cm	_			-	_	INISIO	LL (%)	(%)	1 1/2	1	3/4	1/2	3/8	•	10	40
	3	0			INN	Ground Surface	15	T	1		Subg	rade	44		M			1.					~		
	1	89	-	22	GM	Brown, dense silty gravel with sand (broken corals with limestone) of no plasticity	18	15	22		Cut ().6m	₽		15.16	NP	NP		100	89	77	68	59	47	39
	2	89	4	55	GP-GM	Brown, very dense poorly graded gravel with silt and sand (broken corals with limestone) of no plasticity	21	33	40	ľ			1		18.20	NP	NP	Ĩ		100.	92	78	42	31	24
	з	67		22	SM	Dark brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	15	41	-						25.42	NP	NP			100	94	87	79	57	38
	4	89	- 0	55	бМ	Dark brown, very dense silty sand with gravel (broken corals with limestone) of no plasticity	27	1	45						10.17	NP	NP			100	82	69	54	40	29
	5	89	- 0	55	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	31	54	62	Ĩ					12.75	NP	NP		100	90	77	55	51	45	31

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	174.63	171.52	197.38	132.74	134.59
Weight of can & dry soil, g.	154.30	148.37	162.21	122.42	122.20
Weight of water, g.	20.33	23.15	35.17	10.32	12.39
Weight of can, g.	20.21	21.17	23.86	20.97	25.06
Weight of dry soil, g.	134.09	127.20	138.35	101.45	97.14
Moisture Content, %	15.16	18.20	25.42	10.17	12.75

Borehole BH-47 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

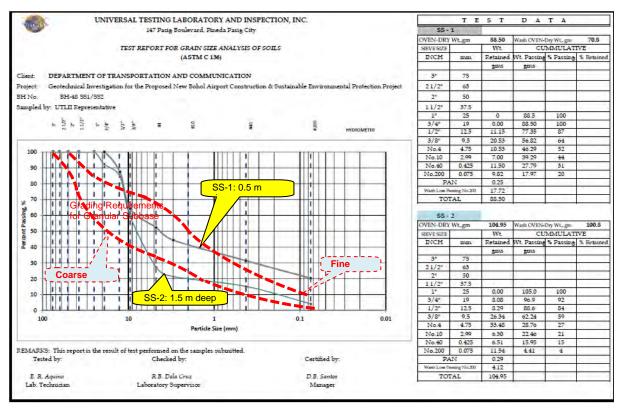
Natural soil at subgrade level (0.6 m deep) is dense (N-value of 30 to 40) but porous. I will require blending with crashed limestone fragment when used for granular subbase course.

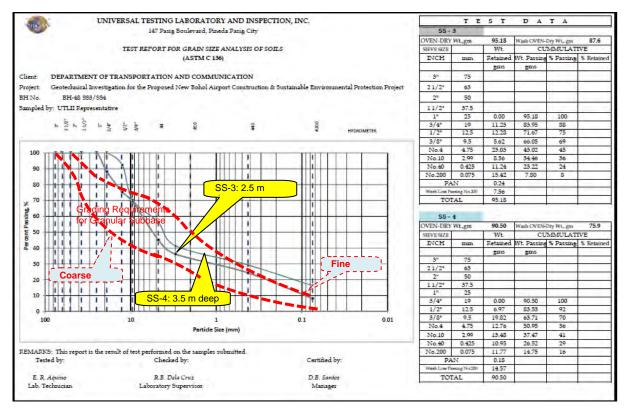
Borehole BH-48 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 9.0 m Finished Grade: 9.5 m Subgrade Elevation: 7.6 m Cut height: 1.4 m

lOJ	ECT	5		1.1	Geotech	nical Investigation for the Proposed New Bohol Airport	Const	ruction	t & Su	stain	able E	nviro	nmer	utal		-	HOLE	NO .:						BH-	48	
					Protectio	on Project											DEPT	H:						5,0	m	
	ATIC E DF		D:	-		, Bohol /21/2013 DATE FINISHED: 3/2	21/20	13		WA	TER TA	BLE:	-	D	WT											
	ABER	RY		TYPE	CATION				N	-VA	LUE	s				TIENT	ATTER			%	SIE).
	NUN	% RECOVERY	ROD	VLE TV	ASSIFIC	DESCRIPTION		SPT			(GRA	PH			SE CON					1-1		1			_
2	SAMPLE NUMBER	% RE	%	SAMPLE '	UNIFIED CLASSIFICATION		15cm	15cm	15cm	_				_	-	MOISTURE CONTENT	LL (%)	Pl (%)	11/2	i,	5/4	1/2	3/8	4	10	40
_	1	1			5	Ground Surface	1		100	1	10	20	30	40	1	~	-	1					1		-	_
	1	100	-	ss	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	16	15	17	ľ	Sul	bgra	ide	i	10	0.12	NP	NP	1		100	87	64	52	44	31
	2	89		55	GW	Brown, very dense well graded gravel with sand (broken corals with limestone) of no plasticity	30	34	41	ļ	Gu			1	14	4.18	NP	NP		100	92	84	59	27	21	15
	3	89	0	25	GP-GI	Brown, very dense poorly graded gravel with a silt and sand (broken corals with limestone) of no plasticity	38	49	40						9	.72	NP	NP		100	88	75	69	45	36	24
	4	89	- A-	55	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	39	40	47						18	8.16	NP	NP			100	92	70	56	41	29
	5	100		55	GM	Brown, very dense silty gravel with sand (broken corals with limestone) of no plasticity	42	54	5						19	5.40	NP	NP		100	90	84	72	60	51	34

Pictures of disturbed soil samples




Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	122.86	144.75	129.83	131.68	122.08
Weight of can & dry soil, g.	113.90	129.87	120.58	115.25	109.10
Weight of water, g.	8.96	14.88	9.25	16.43	12.98
Weight of can, g.	25.40	24.92	25.40	24.75	28.80
Weight of dry soil, g.	88.50	104.95	95.18	90.50	84.30
Moisture Content, %	10.12	14.18	9.72	18.16	15.40

Borehole BH-48 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

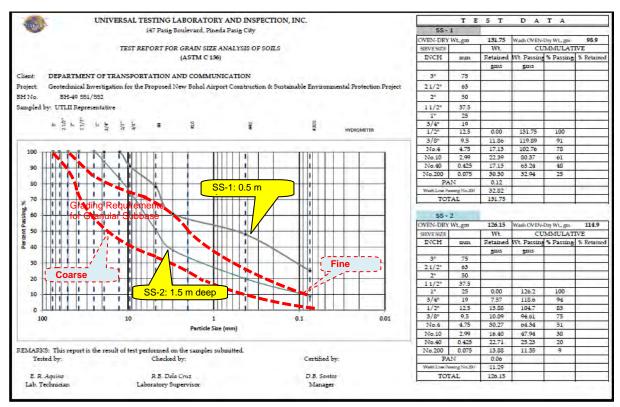
Natural soil at subgrade level (1.4 m deep) is dense (N-value of 60 to 70) but porous. It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

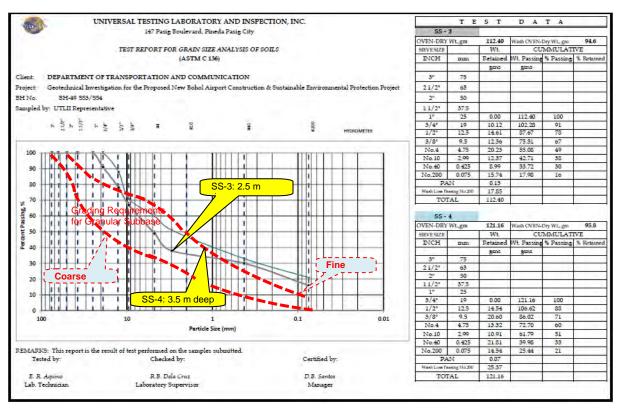
Borehole BH-49 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

Existing Grade: 8.0 m Finished Grade: 9.3 m Subgrade Elevation: 7.4 m Cut height: 0.6 m

ROJ	ECT						I Investigation for the Proposed New Bohol Airport	Const	nuction	& Sus	tain	able E	nvirot	nment	tal		HOLE	NO.:					1	BH-4	9	
				10	Protect	ion Pr	roject										DEPT	H				_	1.1	5.0 r	a –	
	ATIC E DR		D:		Pangl			1/20	3		WA	TER T/	ABLE:	_	DW	т										
	ABER	RY	1	TYPE	CLASSIFICATION					N	-VA	LUE	s			TENT	0.000	RBERG			_	VE A				
DEFIH,m	NN	OVE	RQD	L H	COLEUC		DESCRIPTION	1	SPT			-	GRA			ECON		1.1	1							
,	SAMPLE NUMBER	% RECOVERY	%	SAMPLE	INIFIED CLA			15cm	15 cm	15cm			GRAN	п	-	MOISTURE CONTENT	LL (%)	PI (%)	1 1/2	1	3/4	1/2	3/B	•	10 4	6
	S				N	-	Ground Surface	÷	-4	1	1.	Sub	grad	ë	40	2	120									
	1	89		55	SN		rown, very dense silty sand with gravel proken corals with limestone) of no plasticity	14	12	18	4	Cu	t 0.6n	n	P	12.18	NP	NP				100	91	78	61 4	8
1 -	2	89		ss	SP-S		rown, very dense poorly graded sand with silt proken corals with limestone) of no plasticity	30	34	40						19,40	NP	NP		100	94	83	75	51 :	38 2	a
2	3	67		22	GN		rown, very dense silty gravel with sand proken corals with limestone) of no plasticity	32	41	45						10.75	NP	NP		100	91	78	67	49 3	38 3	o
3	4	89		55	GN		rown, very dense silty gravel with sand roken corals with limestone) of no plasticity	38	45	52						21.40	NP	NP			100	88	71	60 !	51 3	3
	5	100		55	GN		rown, very dense silty gravel with sand roken corals with limestone) of no plasticity	45	51	60						22.18	NP	NP		100	92	80	64	55	45 3	4
1		-	-			-		ENI	105	BORE	HO	E		11					-		-	-		-		-

Pictures of disturbed soil samples




			-		
Location	SS1	SS2	SS3	SS4	SS5
Can Number	1	2	3	4	5
Weight of can & wet soil, g.	170.11	170.80	145.65	167.22	188.26
Weight of can & dry soil, g.	154.06	146.33	133.57	115.25	158.28
Weight of water, g.	16.05	24.47	12.08	141.29	29.98
Weight of can, g.	22.31	20.18	21.17	20.13	23.12
Weight of dry soil, g.	131.75	126.15	112.40	95.12	135.16
Moisture Content, %	12.18	19.40	10.75	21.40	22.18

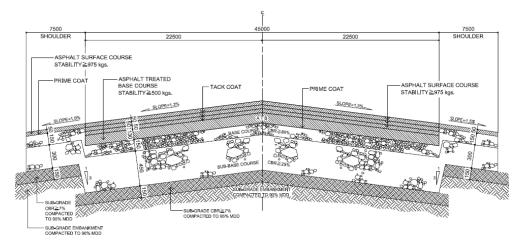
Borehole BH-49 – Runway (Pavement Thickness: 0.9 m + Subgrade/Slope: 1.0 m)

No fine topsoil exists. No large cavity exists.

Natural soil at subgrade level (0.6 m deep) is not much dense (N-value of 30). It will require blending with large amount of crashed limestone fragment when used for granular subbase course.

2.1.3. Observations and Findings

The Geological Survey Report (in Apr 2013; by Universal Testing Laboratory and Inspection) recommends that:

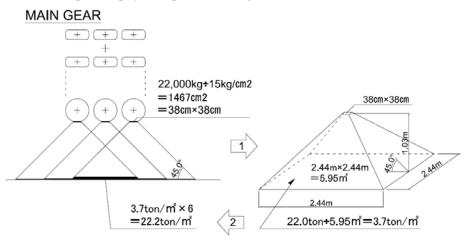

- a) Plasticity Index (PI) of soil is 6 to 10
- b) Bearing capacity is 500 kPa (50 ton/ m^2)
- c) Slope gradient should not steeper than 1(V) : 1(H)
- d) Subgrade Reaction (K) is 54 MN/m³ (200 pci) for pavement or slab-on grade

The above b) is based on the actual results of borehole investigations, which concurred with a generally-known relationship between N-value and bearing strength as shown in Table 2.1-1, i.e. the value of bearing strength in ton/m² is equivalent to N Value (50). Because of the high value of the bearing capacity (50 ton/ m²), building foundation is planned to be sustained by RC footings (without piling)

Table 2.1-1 General Relationship between N-value and Subsoil Bearing Strength

Classific	cation of Soil	Bearing Strength (t/m2)	N value
	dense	30	$30 \sim 50$
Sand	medium	20	$20 \sim 30$
Sand	medium	10	$10 \sim 20$
	loose	5	$5 \sim 10$
	dense	10	$8 \sim 15$
Clay	medium	5	$4\sim 8$
	loose	3	$2\sim 4$

Given in Chapter 4, the runway pavement thickness is designed to be 88 cm with minimum 15-cm thick well compacted subgrade (i.e. 1.03 m thick n total).



Source: JICA Study Team

Figure 2.1-5 Runway Pavement Structure

Principle of asphalt pavement design is based on the assumption that the load of main gear is vertically distributed to the depth to the bottom of pavement with a horizontal distribution of 45-degree below the surface. The main gear of B777-300 consists of 6

tires (dual triple-tandem configuration), and maximum tire pressure of B777 is 15 kg.cm² which requires 38 cm square (1,467 cm²) of the pavement top surface. Consequently, the area of the load at the bottom of the 1.03-m thick pavement structure is 2.44 m square (or 5.95 m^2). The load of a main gear at pavement surface is 22 tons (loaded at the surface area of 1,467 cm²) and the same load measured at the bottom of the pavement is 3.70 tons/m² (equally loaded at the area of 5.95 m²). The center of the main gear is affected by the same load of 6 accumulated tires, which is 22.2 tons/m²(i.e.3.7 tons/m² x 6 tires) in total. This philosophy is explained in Figure 2.1-6:

Source: JICA Study Team

Figure 2.1-6 Philosophy of Design Load for Asphalt Pavement (B777-300)

Considering the fact that N-value of natural subgrade level is more than 30 (equivalent to bearing strength of at least 30 tons/m²), the natural subsoil is assumed to be capable of sustaining B777.

Among 91 boreholes in total, only one (1) cavity happened to be detected, horizontal distribution of which was unknown, and possibly another cavity may exist. Therefore, several engineering practice shall be exercised during construction stage, as follows:

- a) Upon commencement, 5-m deep borehole investigation to the location of footings for PTB, control tower and administration building would be carried out. When excavation to the pavement subgrade level is completed, 2-m deep borehole investigation would be carried out. Those are incorporated in the specifications, BOQ and drawing of General Requirement so as to dictate possible cavity.
- b) When cavity is found during the course of earthwork, the cavity should be removed to the bottom irrespective of the designed subgrade thickness.
- c) Suspected weak soil underneath, if found, should be replaced, or grouted or covered by concrete slabs when necessary, subject to further Engineers' solution.

2.2. Weather Conditions

Monthly rainfall recorded from 1998 to 2008 is summarized as shown in Table 2.2-1.

		CAL	ENDA	R YE	EARS	1998	-2008	(figu	ures are i	n millime	eters)	
MONTH	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	AVERAGE
JANUARY	35.50	177.80	64.10	85.30	52.40	78.50	64.40	26.20	95.70	185.50	264.70	102.74
FEBRUARY	0.60	182.00	312.91	63.30	85.50	64.60	97.70	1.30	130.70	25.10	202.80	106.05
MARCH	5.00	166.10	206.30	83.90	79.00	18.00	79.30	78.80	183.60	31.80	236.50	106.21
APRIL	TRACE	173.40	110.90	82.70	99.50	24.90	12.40	60.10	41.50	26.20	107.10	73.87
MAY	8.40	73.00	71.00	77.90	47.30	207.20	185.50	42.90	66.80	124.10	179.20	98.48
JUNE	52.70	173.10	125.50	193.60	197.90	196.00	148.00	137.50	125.00	244.10	294.00	171.58
JULY	71.80	183.60	69.00	152.70	131.70	230.90	116.60	133.10	103.60	141.30	155.30	135.42
AUGUST	83.40	219.90	96.40	117.90	130.90	179.00	109.40	129.50	111.50	50.50	241.00	133.58
SEPTEMBER	36.80	81.10	67.30	62.10	57.60	122.10	109.40	81.30	72.60	154.20	131.10	88.69
OCTOBER	177.40	189.10	301.50	187.40	156.50	266.20	102.10	92.50	140.50	214.60	176.20	182.18
NOVEMBER	253.20	158.90	279.40	447.50	148.40	107.20	111.50	204.50	170.00	161.30	120.90	196.62
DECEMBER	66.20	162.60	284.40	182.90	82.30	372.10	73.20	269.60	157.90	170.40	NA	182.16
YEARLY TOTAL	791.00	1,940.60	1,988.71	1,737.20	1,269.00	1,866.70	1,209.50	1,257.30	1,399.40	1,529.10	2,108.80	1,577.58
YEARLY AVERAGE	71.91	161.7	165.7	144.8	105.8	155.6	100.8	104.8	116.6	127.4	191.7	131.52

Table 2.2-1 Number of rainy days in each month of the year

The Table shows that annual rainfall volumes are largely varying from 791 mm (in 1998) to 2108 mm (in 2008).

The latest weather conditions daily recorded at Tagbilaran City from June 2010 to May 2011, i.e. for atmospheric pressure, temperature, humidity, rainfall, wind speed and direction, are shown in the subsequent pages.

During the same period, annual total rainfall was 2,400 mm. The most rainfall recorded was in the month of January (i.e. 364 mm), and maximum rainfall was 94.6 mm in October 2010. Judging from the 1-year record that air pressure of lower than 1000 hPa was not in the record, no tropical depression nor typhoon seemed to hit the area

Unlike Manila area, Visayas area has an average rainfall through the year (i.e., no rainy or dray seasons). The number of days on which more than 5-mm rain falls is 183. Those features for each month are shown in Table 2.2-1.

Marth			Number	r of days			Total of Rainfall
Month	No Rain	$0 \sim 5 \text{ mm}$	$5 \sim 10 \ \mathrm{mm}$	10 - 15 mm	$15\sim 20 \ mm$	20 mm more	Days
1 2010	16	-	2	2			- 14
June 2010	16	1	3	2	1	1	14
July 2010	13	11	2	1	1	3	18
August 2010	11	9	7	2	1	1	20
September 2010	17	3	4		2	4	13
October 2010	12	12	1	1	· · · · · · · · · · · · · · · · · · ·	5	19
November 2010	7	12	4	4	3	· · · ·	23
December 2010	13	6	2	1	4	5	18
January 2011	8	10	3	2	1	8	23
February 2011	12	8	3	2	1	2	16
March 2011	4	13	6	4		-4	27
April 2011	17	10	2	š		1	13
May 2011	12	12	3	1	1	2	19
Total	142	113	40	20	14	.36	223

Table 2.2-2 Number of rainy days in each month of the year

		Π	gnimfigiJ	(24)			>	>		>	>	>			>				>			>	>	>	>			$\rangle\rangle$			91	10		Γ		~	s	
		ORS	Thunderstorm	(23)	T			У,	>))	\rangle		>	>	,	>			`	>)	>	>	>		>		>		>			13	C1		CTAS		7 - 8	Oktas	11
		US METE	lisH	(22)																														ESS IN OF	lays with:	9	s	
		SLLANEO	stzzin(Tais,R	(21))	>		>)	>	>	>	>		Ì	>		`	>)	>	>	>	>			>		>	>		15	eI		MEAN CLOUDNESS IN OKTAS	Number of days with	2 -	Oktas	19
		MISCI	Fog	(20)																														MEAN	~		ta	
2010	For the Month of: June 2010		Smoke/Haze/	(19)			.))))		>	>	>	>))		>)	>`	>)	>)		>	>	>	>)	>)	$\rangle\rangle$	>	>	30				-	- 0	Okta	0
June 2	e Month of:	ssə	Mean Cloudine (Oktas)	(18)	6	5	5	6	5	5	6	7	7	6	5 1	1	0 0	1	0 1	6	7	. 00	7	6	6	7	9	7	6	6	196	100	6		,	C.C.2	-	61
ty in ,	For the	HINE	Precentage of Maximum Possible	(17)																														VALUES	1	5	81	33.61
an Ci		SUNS	sətunM	(16)																														OMETRIC				
2.2-3 (1) Daily Weather Data at Tagbilaran City in June 2010	(7)		Time of mumixsM (OTU)bniW	(15)														E FORD	0434 Z							1110 Z							1110 Z	MONTHLY PSYCHOMETRIC VALUES	(ecc)	ne (c)	()	Hg)
l at Ta	123°52'E		Direction of mumixeM Speed	(14)															200							180							180	MONTHL	E	Dew Point Lemperature (C)	Relative Humidity (%)	Vapor Pressure (mmHg)
r Data	LONGITUDE:	MIND	mumixsM (sqm)bssq2	(13)															800							014							014			Dew Polin	Relative H	Vapor Pre
eathei	ΓO		Prevailing Direction (degrees)	(12	140			180																				180		180			180	8 AM)				0
ily We			Average (aqm)booq2	Ξ	Inn			001							002										002			700			030		001	8 AM TO	100	more		1
1) Da			Rainfall (mm)	(10)	0.0	0.0	0.0	10.8	0.0	0.0	3.0	2.0	0.8	0.0	0.0	1.4	0.0	0.0	11.8	0.0	8.2	11.0	0.0	0.0	0.0	70.2	0.0	7.6	1.4	0.0	1.49.9	140.0		MITERS (20.2	TO OC		1
2.2-3 (N'8E°60	э.	Mean Relativ Mumidity	6)				80																									81	L IN MILLIMITERS (8 AM TO 8 AM)		10 CZ		4
Table 2	LATITUDE:		Mean Dew Point	(8)	C.02	25.8	25.8	25.8	25.6	25.4	26.0	25.8	25.6	25.6	25.0	24.7	0.02	6.62	2.02	24.02	25.3	25.3	25.0	25.0	25.6	24.9	25.4	25.2	25.3	25.8			25.5		10	L.U OF		13
F	Ľ		пкэМ	9	30.9				29.8		29.3	28.7	29.2	29.2	30.2	7.02	0.72	4.62	7.67	0.02	28.4	28.1	29.0	29.2	30.0	28.0	28.7	29.2	28.4	30.0			29.5	TOTAL 24-H RAINFAI		TO L.U		14
		TURE (°C	muminiM	(9)	25.8	25.5	26.0	25.1	25.4	25.5	25.6	25.0	25.0	24.6	25.5	0.42	3 30	2.62	24.5	24.0	24.3	24.0	25.0	24.3	25.5	23.0	24.4	24.5	24.3	25.4	748.4	40.4	24.9	TOTAL		Trace		0
		EMPERA	mumixeM	(5)	36.0			36.0	34.3	35.0	33.0	32.4	33.5	33.8	34.8	0.20	22.7	7.00							34.4	33.0	33.0	33.8	32.6	34.5	1010 3	CATOL	34.0		0		00 Z	35 Z
		T	dIuE doW	(4)	0.12	26.6	26.9	26.7	26.5	26.3	26.8	26.5	26.4	26.4	26.2	396	2.02	1.02	190	256	25.8	25.9	25.9	25.8	26.5	25.6	26.0	26.0	26.0	26.6	7001	1.02/	26.3		[emperature	36.5°C	6/04/10 0700 2 23.0°C	6/25/10 1935 Z 29.8°C
	~		Dry Bulb	(3)	30.6	29.2	30.6	29.6	29.6	29.1				29.0		202	000	4.62	500	C.02	27.4	27.8	28.6	28.5	29.6	27.8	28.0	28.4	28.3	29.3	870.7		29.0	MES	Ľ	est	Date Lower	
	TAGBILARAN CITY	RE (hPa)	Presan Sea Level Pressure	(2)	10.007	1010.9	1007.1	1008.1	1008.7	1009.0	1009.4	1010.5	1010.8	1010.0	1009.8	10100	10007	1.0001	10105			1010.1	1011.1	1009.5	1007.8	1008.8	1010.0	1007.7	1008.9	1009.1	30284.2	2	1009.5	EXTREMES	Ire		z	z
	TAGBILA	PRESSU	Station Pressure	(2a)	100/./	1010.0	1006.2	1007.2	1007.8	1008.1	1008.5	1009.6	1009.9	1009.1	1008.9	1 000 1	1.009.1	1 000 0	1000.6	1000.0	1 008.4	1009.2	1010.2	1008.6	1006.9	1007.9	1.009.1	1006.8	1008.0	1008.2	207577		1008.6		Sea Level Pressure	1012.7 MBS	6/22/10 1330 1007 0 MBS	6/04/10 0700 1009.5 MBS
	STATION	ų	tnoM sát to va	Э- ц	Wed 2				Sun 6 Mon 7	Tue 8							CI ONI		Eri 10									Mon 28		Wed 30	31 Total	Mean/	Extreme		Sea L	est	Date	

Status Status<																								
Terreture Terreture Antimit Antimantimit Antimit Antimit	STATION:		ARAN CIT	Y				LAI		9°38'N			LIDNOL		3°52'E		Fα	r the Month (of: July 2010					
1 1	ų	PRESSU	RE (hPa)		TE	SMPERAT	URE (°C)		$\left \right $	ຸລ/			IM	ΠN		SI	INSHINE	ssə		MISCI	ELLANEO	US METE	ORS	
$ \begin{array}{ $	noM sát to ya		ІэvэЛ	Dry Bulb	dluE deW	mumixeM	muminiM	пьэМ	tnioT	Humidity	(uuu)	(sdur)pəədS	Direction (degrees)	Speed(mps)	bssq2 fo smiT mumixsM		mumixeM	nibuol') nsəM		goŦ	SizrinU/nis.R	lisH	moterstonudT	gnintigi.J
$ \begin{array}{ $			(2)	(3)	(4)	(5)	(9)	(2)										(18)	(19)	(20)	(21)	(22)	(23)	(24)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Thu 1	1 009.0				32.5	24.0	28.2	24.6	84	1.0	001	050						>		>		>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_				35.0	25.0	30.0	25.6	81	0.0	001	180						>				>	>
4 1000 0003 03		_				34.0	25.2	29.6	25.8	82	0.0	001	180						>					>
5 1000 0003 200 <td></td> <td></td> <td></td> <td></td> <td></td> <td>35.2</td> <td>25.0</td> <td>30.1</td> <td>25.1</td> <td>78</td> <td>0.0</td> <td>002</td> <td>300</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>\ 0</td> <td></td> <td></td> <td></td> <td></td> <td></td>						35.2	25.0	30.1	25.1	78	0.0	002	300						\ 0					
0 0	Mon 5					33.0	24.6	28.8	25.4	85	Г	001	050								>		>	
7 1						32.3	24.3	28.3	25.0	89	1.6	001	040						>		>		>	>
8 10001 00101 233 356 343 342 283 341 342 343 </td <td>Wed 7</td> <td>1009.7</td> <td>1010.6</td> <td></td> <td>26.2</td> <td>32.5</td> <td>24.5</td> <td>28.5</td> <td>25.6</td> <td>86</td> <td>4.0</td> <td>001</td> <td>270</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td></td> <td>></td> <td></td> <td>></td> <td>></td>	Wed 7	1009.7	1010.6		26.2	32.5	24.5	28.5	25.6	86	4.0	001	270						>		>		>	>
9 10005 10104 254 256 341 352 250 351 </td <td>Thu 8</td> <td></td> <td></td> <td></td> <td></td> <td>34.3</td> <td>24.2</td> <td>29.2</td> <td>24.7</td> <td>80</td> <td>Τ</td> <td>002</td> <td>180</td> <td>010</td> <td></td> <td>4 Z</td> <td></td> <td></td> <td>></td> <td></td> <td>></td> <td></td> <td></td> <td>></td>	Thu 8					34.3	24.2	29.2	24.7	80	Τ	002	180	010		4 Z			>		>			>
1 1						34.4	35.2	29.8	25.6	80	Г	001	270						>					>
$ \begin{array}{ $						33.4	24.8	29.1	25.2	82	1.6	001	140						>		\rangle			>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						32.0	23.5	27.8	24.7	90	34.7	001	120						>		>		>	
$ \begin{array}{ $	Mon 12					31.9	23.7	27.8	25.2	92	15.1	001	060						>		>		>	>
$ \begin{array}{ $						32.6	24.7	28.6	25.1	84	0.2	001	180								>			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						33.2	24.2	28.7	25.2	89	0.4	100	050		_				>		>		>	>
$ \begin{array}{ $				27.4		32.8	24.5	28.6	25.4	89	0.0	002	180	_	_	_			>					>
1 10002 10003 203 </td <td></td> <td>\rightarrow</td> <td></td> <td></td> <td></td> <td>33.8</td> <td>25.0</td> <td>29.4</td> <td>25.6</td> <td>80</td> <td>0.0</td> <td>001</td> <td>280</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td>)</td>		\rightarrow				33.8	25.0	29.4	25.6	80	0.0	001	280										+)
16 10080 273 253 323 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 233 234 234 234 234 234 234 234 234 234 234 234 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>33.4</td> <td>25.5</td> <td>29.4</td> <td>25.6</td> <td>79</td> <td>0.0</td> <td>100</td> <td>270</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>`</td> <td></td> <td>,</td> <td></td>		_				33.4	25.5	29.4	25.6	79	0.0	100	270			_					`		,	
10 1000 278 250 341 270 281 100 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>52.4</td> <td>7.07</td> <td>20.0</td> <td>0.07</td> <td>10</td> <td>7.0</td> <td>700</td> <td>240</td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td>ļ</td> <td>)</td> <td></td> <td>)</td> <td>Ì</td>		_				52.4	7.07	20.0	0.07	10	7.0	700	240				+			ļ))	Ì
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						54.2	25.8	0.62	24.9	5	8.II	700	180	+		+	+	+		Ţ	>		>	>)`
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						2.00	0.07	7.67	1.07	60	0.0	700	060			+)`
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						52.0	24.8	28.7	2 20	82	0.0	100	180											\geq
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_				34.0	25.0	5 66	25.6	86	1.0	700	180										T	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						33.0	24.6	28.8	25.4	84	4.0	002	180											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						33.8	24.2	29.0	24.7	78	0.0	002	090						>				>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						32.8	24.2	28.5	24.7	89	5.1	001	040						>		>		>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						31.0	24.0	27.5	24.9	90	5.6	001	040						>		>			
29 10081 10097 276 236 332 240 286 250 85 270 001 180 1 7 \checkmark	Wed 28					32.7	24.0	28.4	25.3	84	0.8	002	180						>		>			>
30 10092 10101 275 255 325 239 282 25.0 88 49.4 001 180 1 7 ~ 7 7 7 7 7 7 7 7 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>33.2</td> <td>24.0</td> <td>28.6</td> <td>25.0</td> <td>85</td> <td>27.0</td> <td>100</td> <td>290</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>></td> <td></td> <td>\rangle</td> <td></td> <td>></td> <td>></td>						33.2	24.0	28.6	25.0	85	27.0	100	290						>		\rangle		>	>
31 1010.1 101.1 01.0 01.1 01.0 01.1 01.0 01.0 01.1 01.0 01.0 01.0 01.1 01.0 01.0 01.0 01.1 01.0 01.0 01.0 01.1 01.0 01.0 01.0 01.1 01.0 01.0 01.0 01.0 01.0 01.0 01.0 01.0 01.0 01.0 01.0 01.0 <t< td=""><td></td><td>\downarrow</td><td></td><td></td><td></td><td>32.5</td><td>23.9</td><td>28.2</td><td>25.0</td><td>86</td><td>49.4</td><td>100</td><td>180</td><td>-</td><td></td><td>+</td><td>+</td><td>+</td><td>></td><td></td><td>></td><td></td><td></td><td></td></t<>		\downarrow				32.5	23.9	28.2	25.0	86	49.4	100	180	-		+	+	+	>		>			
Iotal 312669 30.22 10279 770.1 20 13 13 Includi 3126654 871.2 803.2 10279 770.1 20 13 13 12 90.3 12 90.3 13 14 00 180 010 180 0214 7 7 13 14 20 13 14 20 13 14 20 13 14 20 13 13 14 20 13 14 20 13 14 20 13 13 14 20 13 14 20 13 14 20 13 13 14 20 13 13 14 20 13 14 20 13 13 14 20 13 13 14 20 13 13 14 20 13 14 20 13 14 20 13 14 20 13 14 20 13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>33.0</td><td>24.2</td><td>28.6</td><td>25.2</td><td>81</td><td>0.0</td><td>002</td><td>180</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						33.0	24.2	28.6	25.2	81	0.0	002	180		_									
True 1008.0 1009.5 23.1 23.2 34 001 130 010 130 0214.2 7 EXTREMES TOTAL 24H RAINFALLIN MILLAMITERS (8 AM TO 8 AM) MONTHLY PSYCHOMETRIC VALUES MEAN CLOUDNESS IN OKTAS Sea Level Pressure Temperature 01 or 10 or 25 or 50 or 100 or 26 or Number of days with. 1012.8 MBS Highest 35.2 °C Trace 01 or 10 or 25 or 50 or 100 or 26 or 0.1 or 26 or 0.1 or 0 or 0 or 0.1 or 0.1 or 0.1 or 0 or 0 or 0.1 or 0.1 or 0.1 or 0.0 or 0.0 or 0.0 or 0.0 or 0.1 or 0.1 or 0.0 or 0.0 or 0.0 or 0.0 or 0.0 or 0.1 or 0.1 or 0.1 or 0.0 or <td< td=""><td>Mea</td><td></td><td>m</td><td></td><td>×</td><td>1027.9</td><td>770.1</td><td>0.00</td><td>0.10</td><td>3</td><td></td><td>039</td><td>+</td><td></td><td></td><td></td><td>_</td><td>2</td><td></td><td></td><td>20</td><td></td><td>13</td><td>16</td></td<>	Mea		m		×	1027.9	770.1	0.00	0.10	3		039	+				_	2			20		13	16
EXTREMESTOTAL 24H RAINFALL IN MILLIMITERS (8 AM TO 8 AM)MONTHLY PSYCHOMETRIC VALUESMEAN CLOUDNESS IN OKTASSea Level PressureTemperatureTemperature0.1 or1.0 or2.5 or50 or100 or10 or2.5 or20 or100 or100 or2.5 or100 or100 or2.5 or100 or2.5 or100 or2.6 or100 or100 or2.6 or100 or100 or2.6 or100 or <td< td=""><td>Extre</td><td></td><td></td><td></td><td></td><td>7.00</td><td>0.42</td><td>0.02</td><td>7.07</td><td>5</td><td>-</td><td>100</td><td>-</td><td>-</td><td>+170</td><td>4</td><td></td><td></td><td>~</td><td></td><td></td><td></td><td></td><td></td></td<>	Extre					7.00	0.42	0.02	7.07	5	-	100	-	-	+170	4			~					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			EXTRE	MES		╞	TOTAL	24-H RAIN	_	MITTIM	TERS (8 A	M TO 8	(MA	LNOW	THLY PSYC	CHOMET	RIC VALU	ES		MEAN	CLOUDN	ESS IN OF	SYL	
1012.8 MBS Highest 35.2 C Table more more more more more more more more 2.6<		a Level Press	ure	· .	Femperature		,		<u> </u>	_		00 or	Dew	Point Temp	berature (°C)			25.2		- 1	Number of (days with:		
st 1005.1 MBS Lowest 23.5° C 81 6 7/15/10/25 Z Date 7/11/10/236 Z 2 18 13 5 3 0 0 Vanor Pressure (nmHe) 31.66 0 6	Highest Date	1012.8 MI 7/10/10.02	8S 02 Z		35.2°C 7/04/10 045	Z	Ince					nore							5 đ	- =	2 - Okti	6 86	7 - 7 Okts	~ ~
7/15/10725 Z Date 7/11/10/2350 Z 2 18 13 5 3 0 0 Varor Pressure (mmHe) 31.66 0 6	Lowest	1005.1 ME	38		23.5°C	1	t						Relat	tive Humidi	(%) (ij)			81	õ)	
	Date	7/15/10 07			7/11/10 235	Z 05	2	18	13	S.	3	0		w Pressure ((mmHg)			31.66	_	_	9		25	

31.66

apor Pressure (mmHg)

29.4

009.5 MBS

		Γ	gnintitgi.T	(24)	,	>),	>			>	>	>	,	>				,))))	>)	$\langle \rangle$	$\langle \rangle$	$\langle \rangle$			`	$\rangle\rangle$, ,	>	17		Γ					٦
		DRS	moterstorm	(23))	>			>				>				,)`),	>	,	>)		•	>			`	$\rangle\rangle$,) 		14		TAS		7 - 8	Oktas	21	
		MISCELLANEOUS METEORS	lisH	(22)																															MEAN CLOUDNESS IN OKTAS	avs with		s		_
		LLANEOI	Asin/DrisA	(21)	7	>))	>	>	>		>	7),	>		,),),),	>				•	>			`	>		>	20		TOLDNE	Number of days with:	2 - 6	Oktas	10	
		MISCE	goŦ	(20)																										1					MEAN	Z		_		_
0	vugust 2010		Smoke/Haze/ Smoke/Haze/	(19)	7	>))	$\rangle\rangle$	>	>	>	>	>),)),),))),))))	>)	>)>		·)>)	>	>))	$\rangle\rangle$	> >)	31				0 - 1	Okta	0	
it 201(For the Month of: August 2010	ssa	Mean Cloudine (Oktas)	(18)	9	2	00 R	~ ~	000	7	~	7	-	~	9	5	0		L	~ ~	0	0	0 00		7	7	7	9	4 (9	9	9	212	7		Γ	_			9
3 (3) Daily Weather Data at Tagbilaran City in August 2010	For the	HNE	Precentage of Maximum Possible	(17)																															VALLES		25.1	82		31.66
ty in /		IHSNUS	sətunM	(16)																															METRIC					
an Ci			Time of mumixsM Wind(UTC)	(15)					0758 Z	1110 Z								1 0000	0528 Z											7 NICI				1510 Z	MONTHLY PSYCHOMETRIC VALLES		re (°C)			g)
gbilar	123°52'E		Direction of Maximum Speed	(14)					180	180								~ * *	040										000	077				220	VIHINO		Dew Point Temperature (°C)	Relative Humidity (%)		V apor Pressure (mmHg)
at Ta	LONGITUDE:	MIND	mumixeM (eqm)b99q2	(13)					011	010								000	600										610 1	710				012	~		Dew Point	Relative Hu	,	V apor Pres
. Data	LON		Prevailing Direction (degrees)	(12)	270	270	180	220	180	180	180	180	090	360	060	180	320	030	040	090	140	040	040	150	180	270	220	270	180	180	140	180		180	8 AM	T		Ī	•	
ather			eganevA Average	(11)	100	100	002	003	003	003	002	003	002	001	100	002	100	100	100	100	002	100	100	000	002	002	002	002	002	100	002	002	053	002	3 AM TO		100 or		0	
ily W€		ſ	Rainfall (mm)	(10)	9.2	19.4	7.4	0.01	4.2	0.2	0.0	0.2	12.4	24.6	0.2	0.0	0.0	7.2	1.8	7.6	1.6	0.0	1	1.0	0.0	4.8	0.0	0.0	0.0	0.0	0.0	6.2	137.8		LEIN MITTERS (8 AM TO 8 AM		50 or		0	
(3) Da	N'8E°60	ə	Mean Relativ Munidity	(6)	87	82	88	82	81	79	78	75	86	87	86	62	88	68	68	8	28	85	85	70	81	80	77	75	74	81	79	79		82	U MILLIN		25 or		ŝ	
2.2-3 (LATITUDE:		Mean Dew Point	(8)	25.5	25.2	25.4	52	25.2	25.3	25.3	25.1	25.0	24.4	25.3	25.5	25.7	25.3	25.0	25.2	25.3	25.4	1.62	24.8	25.4	24.4	24.4	23.8	24.6	9.46	25.6	25.7		25.1	_		1.0 or		16	
Table 2.2-	Ľ		пьэМ	(2)	27.6	28.3	27.0	28.6	29.2	29.3	29.6	29.2	28.7	27.2	28.2	29.2	29.2	27.4	27.8	27.3	28.9	28.82	28.5	20.02	29.3	28.0	29.4	28.5	29.6	2.62	29.7	29.8		28.6	TOTAL 24-H RAINFA		0.1 or		19	
-		TURE (°C	muminiM	(9)	24.0	23.8	24.3	24.5	25.0	25.0	25.8	24.2	23.6	23.5	24.5	24.5	24.9	23.8	24.4	24.0	25.0	24.8	24.4	2.45	24.9	23.6	25.6	24.2	25.0	23.5	25.0	25.2	758.0	24.5	TOTA		Trace		7	
		TEMPERATURE	mumixeM	(5)	31.2	32.8	31.4	31.8	33.5	33.6	33.4	34.2	33.8	30.8	31.8	34.0	33.5	31.0	31.2	30.6	32.8	52.9	33.4	33.4	33.7	32.4	33.2	32.8	34.3	33.4	34.4	34.5	1017.8	32.8				00 Z	30 Z	
		T	dluE dsW	(4)	26.0	26.0	25.9	25.8	26.0	26.2	26.3	26.2	25.6	25.0	25.9	26.4	26.4	25.8	25.5	25.8	26.0	1.02	26.02	757	26.2	25.3	25.5	25.0	25.8	25.4	26.5	26.6	802.9	25.9		emnerafure	35.0°C	8/28/10 0800	8/28/10 23	29.2°C
	~		Δ τy Βυίδ	(3)				21.3		29.1		29.8	27.4			29.4							282							2.62	29.5	29.6	880.0	28.4	MES		sst	Date		
	RAN CIT	JRE (hPa)	Pressure Level Mean Sea	(2)				10007.2									1010.2						1008.4							20101			31287.8	1009.3	EXTREMES	IT.e.		Z		
	TAGBILARAN CITY	PRESSUI	Station Pressure	(2a)	1009.8	1008.0	1005.9	10063	1007.1	1007.4	1 007.7	1008.8	1009.4	1010.7	1009.0	1 008.6	1009.3	1009.7	1008.6	1007.6	1 008.6	1009.4	1007 5	1007.8	1008.8	1009.6	1009.2	1 008.9	1008.4	1009.6	1007.8	1007.4	31259.9	1008.4		Sea Level Pressure	1012.2 MBS	8/11/10 1530	8/04/10 08	1009.3 MBS
	STATION:	ų	ay of the Mont	E a				Thi 5		Sat 7	Sun 8												Sar 21		Mon 23				Fri 27	Sun 20				Mean/ Extreme		Sea L	Highest	Date		

Marcal	ų	PRESSUI	JRE (hPa)		T	TEMPERAT	URE (°C)			_			11	UND			IHSNDS	AE .	SSP		MISCELLA	NEOUS MET	EOI	
$ \begin{array}{ $	noM shi to ya		ГэчэД	Dry Bulb	Web Bulb	mumixeM	muminiM		TrioT	Humidity	(uuu)	(sduu)pəədS	Direction (degrees)	Speed(mps)	Speed To smiT	(OTU)baiW		aldisso¶		əzemz		lisH	Thunderstorm	2 ainthisi. I
$ \begin{array}{ $	-	_		(3)		(5)	(9)		_	_	_	_	_	_	_	_			_	(6)		_	(23)	(24)
3 1002 0101 320 <td>Wed 1</td> <td>1008.2</td> <td></td> <td>28.8</td> <td></td> <td>33.4</td> <td>23.3</td> <td>28.4</td> <td>25.9</td> <td>84</td> <td>27.8</td> <td>002</td> <td>180</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>></td> <td>></td> <td></td> <td>></td> <td>></td>	Wed 1	1008.2		28.8		33.4	23.3	28.4	25.9	84	27.8	002	180						7	>	>		>	>
3 10000 10010 256 351 256 250 2000				28.0		32.3	25.0	28.6	25.6	87	0.0	001	160						8	>				>
1 10000 10014 356 360 300 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>33.5</td> <td>25.0</td> <td>29.2</td> <td>24.8</td> <td>82</td> <td>0.0</td> <td>001</td> <td>270</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>></td> <td></td> <td></td> <td></td> <td>></td>						33.5	25.0	29.2	24.8	82	0.0	001	270						7	>				>
5 1005 1001 333 341 550 333 343 351 <td></td> <td></td> <td></td> <td></td> <td></td> <td>34.3</td> <td>25.0</td> <td>29.6</td> <td>25.6</td> <td>83</td> <td>3.0</td> <td>002</td> <td>180</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7</td> <td>></td> <td>></td> <td></td> <td></td> <td>)</td>						34.3	25.0	29.6	25.6	83	3.0	002	180						7	>	>)
$ \begin{array}{ $						34.6	25.0	29.8	25.2	76	0.2	002	300						7	>)			>
$ \begin{array}{ $						33.2	24.0	28.6	24.6	80	6.0	002	180						7	>	>			>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c $						32.3	24.0	28.2	25.9	90	0.0	001	140						7	>				
$ \begin{array}{ $						33.8	23.6	28.7	24.6	80	21.8	002	140	010		438 Z			7	\rangle	>		>	
$ \begin{array}{ $						33.2	24.2	28.7	25.4	83	0.0	001	180						7	>				>
$ \begin{array}{ $							24.2	28.2	25.6	85	0.0	001	180						7	>			>	>
1 10066 00057 56.5 25.6 33.3 34.0 25.8 34.1 58.0 001 800 90 6 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1							24.2	28.7	25.1	82	7.4	002	050						7	\rangle	\rangle		>	
$ \begin{array}{ $							24.2	28.8	24.7	80	0.0	001	180						9	\rangle				
14 10083 10093 256 73 27 7 <							23.0	29.9	24.6	90	6.8	001	180						7	>	>		>	>
15 10084 10093 255 350 315 310 286 255 85 00 001 180 0 6 ×							23.5	27.6	24.2	86	51.2	001	180						7	\rangle	>		>	>
$ \begin{array}{ $						33.2	24.0	28.6	25.5	80	0.0	002	180						5	>				>
II 10070 0073 278 256 353 210 280 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 001 180 1						33.6	24.5	29.0	25.6	83	0.0	001	140						9	>				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_				33.5	24.0	28.8	24.9	84	0.0	001	180						9	>)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				27.8			23.1	28.2	25.4	87	19.8	001	180						9	>	>		>)
21 10084 10093 280 264 319 314 214 255 81 00 001 270 7							23.9	28.6	25.0	81	0.0	002	150						5	>	>		>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						33.9	24.9	29.4	25.5	81	0.0	100	180	+		-	+	+	2	>			,	>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_				33.0	23.2	28.1	24.6	81	0.0	002	040	+		-	+	+	2	>			>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						33.4	24.0	28.7	25.0	81	0.0	001	270	+		+		-	5))	_	_		Y
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_				34.0	24.2	29.1	24.6	78	0.0	100	270	+		+			4))				>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						35.0	25.0	30.0	25.2	78	0.0	002	040						7	>		_		
$ 26 \text{ [0087] [0087] [00956] [254] 256 \ 338 \ 2413 \ 275 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 251 \ 276 \ 27$		\downarrow					21.2	27.9	25.4	78	0.0	100	270	+	+	+	+	+	9	7	_	_		Y
Zi 100.0 100.0i 2/5 5/5 5/5 2/		\downarrow					21.5	27.6	25.1	6L	0.0	100	270	+			+	+	2)`			`))
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							C.C2	7.97	c.c7	٥/ ٥	15.4	100	000	+		+	+		0)))`) Ì
$ \frac{27}{31} \frac{10000}{100(3} \frac{10012}{10072} - \frac{203}{272} - \frac{237}{257} - \frac{302}{30} - \frac{230}{254} - \frac{230}{252} - \frac{30}{253} - \frac{30}{20} - \frac{001}{10} - \frac{000}{10} - \frac{000}{$					0.02	515	23.0	0.12	25.4	5 5	0.5	100	040	+	+	+	+	+	0	>`				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_			1.07	205	1.02	0.07	0.07	16	0.40	100	1001	+		+		+	• •				>	
Total 302519 302789 8414 775.0 997.4 716.9 206.5 041 180 198 30 14 12 Mean 1008.4 1009.3 38.1 25.9 33.2 23.9 28.6 25.2 83 001 180 010 150 1438 Z 7 7 14 1 12 Mean 1008.1 1009.3 28.1 25.9 33.2 23.9 28.6 55.0 61 180 160 150 1438 Z 1 1 1 1 Mean 1008.1 1008.0 100.1 180 010 160 150 1438 Z 1 <td< td=""><td></td><td></td><td>7.1001</td><td></td><td>1.62</td><td>7.00</td><td>24.4</td><td>C.12</td><td>7.07</td><td>02</td><td>0.0</td><td>700</td><td>100</td><td>+</td><td></td><td>+</td><td>+</td><td>+</td><td>•</td><td>></td><td></td><td></td><td></td><td></td></td<>			7.1001		1.62	7.00	24.4	C.12	7.07	02	0.0	700	100	+		+	+	+	•	>				
Weard Outer of the stress Ou	Tat				775.0		716.0				206.5	041							108	30	11		5	5
Titemack 1009.3 28.1 25.9 33.2 23.9 28.6 25.2 83 001 180 160 150 1438.Z 7 7 EXTREMES Targe 0.1 or 1.0 or 25.0 or 100 or 180 101 1438.Z 7 7 Sea Level Pressure Temperature Trace 0.1 or 2.5 or 50 or 100 or 2.6 or Number of alys with: st 1012.1 MBS Highest 35.0 °C Trace 0.1 or 1.0 or 25 or 50 or 100 or 2.6 °C 0.1 °C 0.1 °C 0.1 °C	Mea				6611	0	/10.7			1		1-0	-		+	1			120	00	+1	_	14	17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Extren	- 1			25.9		23.9	28.6	25.2	83	_	100	_	_	-	38 Z	-	_	7					
EXTREMES TOTAL 24H RAINFALL IN MILLINITIERS (8 AM TO 8 AM) MONTHLY PSYCHOMETRIC VALUES MEAN CLOUDNESS IN OKTAS Sea Level Pressure Temperature 0.1 or 2.5 or 50 or 100 or 2.5 or 50 or 100 or 2.5 or 00 or 2.5 or 0.0 or																								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			EXTRE	MES			TOTAL	24-H RAIN	_	JIULTIMI	TERS (8 A	M TO 8 /	(MI)	MOM	VTHLY PS	YCHOM	STRIC V.	ALUES			IEAN CLOU	UDNESS IN	OKTAS	
st [1012.1 MBS Highest 35.0°C Trace 0.0 1.00 2.0 0.00 0.00 0.00 2.0 0.01 2.6 0.1 2.6 0.1 2.6 0.1 2.6 0.1 2.6 0.1 2.6 0.1 2.6 0.1 2.6 0.1 2.6 0.1 0.1 2.6 0.1 0.1 2.6 0.1 <td>Sec</td> <td>i Level Pressu</td> <td>ıre</td> <td>L</td> <td>emperature</td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00 or</td> <td>Davi</td> <td>. Doint Tam</td> <td>" untrue (</td> <td>Ê</td> <td></td> <td>151</td> <td></td> <td></td> <td>Numbe</td> <td>r of days wit</td> <td>h:</td> <td></td>	Sec	i Level Pressu	ıre	L	emperature	8						00 or	Davi	. Doint Tam	" untrue (Ê		151			Numbe	r of days wit	h:	
9/04/10 1430 Z Date 9/24/10 0615 Z mode mode mode mode mode mode 0 (kias) 0 (kias) <td>Highest</td> <td>1012.1 MI</td> <td>1</td> <td></td> <td>35.0°C</td> <td></td> <td>Trace</td> <td></td> <td></td> <td></td> <td></td> <td>nore</td> <td>5</td> <td>V FOILT 140</td> <td>Inperature (</td> <td></td> <td>_</td> <td>4104</td> <td>Ļ</td> <td>0 - 1</td> <td></td> <td>2-6</td> <td></td> <td>7 - 8</td>	Highest	1012.1 MI	1		35.0°C		Trace					nore	5	V FOILT 140	Inperature (_	4104	Ļ	0 - 1		2-6		7 - 8
at 1005/10155 Lowest Lowest Lat. C 0 13 12 6 3 1 0 Vapor Pressure (mmHg) 0 10 0 10 0 10 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 0 10 0 10 0 10 0 10 0 10 0 10 0 10 10 0 10 0 10	Date	9/04/10 14	z		9/24/10 061	15 Z	\dagger	-	+	+	-		Rel	trive Humid	(%) (ij)			2		Okta	-	Oktas		ktas
1003 MBS Mean 28.1°C 2 1 Vapor Pressure (mmHg) 31.66 V	Date	10/201/08/0		-	0/75/10 724	15.7	-	11	5	4		-										10		00
	Mean	1009.3 ME			28.1°C	1	,	3	-		, ,	-	-	or Pressure	s (mmHg)			31.66		>		24		2

Table 2.2-3 (4) Daily Weather Data at Tagbilaran City in September 2010

I		gnimtgi.I	(24)	>	Ì	$\rangle\rangle$		>	>	,))	>				$\langle \rangle$)	>	>	,))	>		>	18				7 - 8	Oktas	
	EORS	Thunderstorm	(23)	>	Ì	\rangle		>		>		`	>				$\left \right\rangle$)	>		>			>	>	13		KTAS		Ĺ		
	US MET	lisH	(22)																														ESS IN O	lays with:	9	as	
	MISCELLANEOUS METEORS	slzzin@ainsA	(21)	>)	>`	>	>	$\left \right\rangle$		>	>	,))	>`		>>	$\langle \rangle$			\geq)	>		>	>`	>	>	>	20		MEAN CLOUDNESS IN OKTAS	Number of days with:	2-6	CKI	
0	MISCE	Fog	(20)											T	T																		MEAN	Z			
For the Month of: October 2010		Smoke/Haze/	(19)))	>`	$\rangle\rangle$	>>	>	>	>	>)))	>`	>))	>>	>	>	>	\geq)	>`	$\rangle\rangle$	>>	>	>	\sum	$\rangle\rangle$	>	>	31				0 - 1	Okta	
fonth of: O	ss	Mean Cloudine (Oktas)	(18)	7 00	- 1	9	~ ~	8	8	~	~	2	00 1	- 1	- 1		7	7	7	7	9		0 0	00	~	~	- 1	9	7	7	223	7	╞	Γ			
For the M	NE	mumixsM 9IdizzoA	(17)			+																											ALUES		75.1	8	
	IHSNUS	Precentage of	(16) (_		-	+	+																		ETRIC V		-		
		mumixeM (DTU)bniW	(15) (1820 Z		_					+	+					0300 Z									0530 Z			0530 Z	MONTHLY PSYCHOMETRIC VALUES	ť	0		
123°52'E		beed Time of	_			-	050 1							+						180 0.									040 0			040 05	THLY PS		Dew Point Lemperature (*C)	ity (%)	
	Q	Speed(mps) Direction of mumixeM	(14)			+	012						+	+	+					010			+				-		018			_	MON	E	oint 1 em	Relative Humidity (%)	
LONGITUDE:	MIM	(seergeb) Maximum	(13)	040	0/7	270	180	050	040	270	180	180	270	180	180	060	270	180	220	180	180	180	180	150	240	180	180	140	320	090		018	$\left \right $	ļ	Dew I	Relati	
		Prevailing Direction	(12			002			002		001				100						002		Inn		001				002		047	180	(WY 8 0.				
		Average (aqm)b9992	Ξ																													002	L MA 8)	100	more		
		Rainfall (mm)	(10	9.6		0.0					3.0				3.2								0.0				0.2			40.6	305.1		MITERS	02	no or more		
09°38'N	ə	Mean Relativ Humidity	(6)			81																						85				8	L IN MILLIMITERS (8 AM TO 8 AM)		TO CZ		
LATITUDE:		Mean Dew Point	(8)	24.9	1.02	25.9	26.4	25.3	25.6	25.2	25.5	25.2	24.8	24.9	25.6	24.5	25.3	24.8	25.1	25.2	25.0	25.0	0.02	25.1	25.1	25.0	24.7	24.8	24.2	24.5		25.1	_		nore		
L/		пвэМ	6	28.0	20.0	29.0	29.0	28.9	28.2	29.0	29.2	29.1	28.4	7.97	28.20	28.2	28.0	29.2	29.2	29.1	29.8	1.67	0.62	28.9	29.6	28.6	27.0	28.2	26.6	27.7		28.6	TOTAL 24-H RAINFAI		U.I or more		
	URE (°C)	muminiM	(9)	24.4	2.07	24.5	23.8	24.8	24.5	24.5	25.0	25.2	25.0	24.5	0.02	23.2	23.7	24.5	25.0	25.2	25.4	25.0	0.02	24.4	24.8	23.9	23.6	24.0	23.8	23.2	757.2	24.4	TOTAL		Trace		
	TEMPERATURE (°C	mumixeM	(5)	31.5	0.16	33.6	34.3	33.0	31.8	33.5	33.5	33.0	31.8	97.0	0.25	33.2	32.4	34.0	33.3	33.0	34.2	34.4	34.0	33.4	34.4	33.4	30.4	32.5	29.5	32.2	1019.0	32.9	╞			70	
	TEN	dluE dsW	(4)	25.5	4.02	26.7	26.9	25.9	26.1	25.8	26.0	25.8	25.5	CC7	2.02	25.3	25.8	25.7	26.0	26.1	26.1	20.5	02 8 5 6	26.1	26.0	25.6	25.3	25.4	24.5	24.8	800.4	25.8		emperature	34.5°C	10/22/10 0635	
		Dry Bulb	(3)	27.3	20.4	28.5	29.2	27.9	27.8	27.6	27.7	27.7	27.5	21.4	28.4	27.7	27.5	28.4	28.8	29.0	29.6	29.6	0.62	29.2	29.0	27.2	27.0	27.4	25.3	25.6	868.7	28.0	S	Ľ	est	ų.	
N CITY	hPa)		(2)	1007.4	000 -	1008.3	1007.9	1008.4	1007.9	1008.2	1008.1	1008.5	1009.5	7.6001	1008 1	1009.4	1008.3	1007.1	1006.7	1008.3	1008.2	C./001	1008 3	1007.9	1008.0	1008.8	1009.2	1.0001	1008.9	1007.4	31257.2	1008.3	EXTREMES	\mid		7	
TAGBILARAN CITY	PRESSURE (hPa)	Pressure Mean Sea		1006.5 1		1007.4 1			0						1 C/001								1 0.7 001				1008.3 1			1 006.5 1	31229.5 31	1007.4 1	Ξ	Pressure		10/11/10 0130	
	PRI	noinst2	(1)		+	2 4	-		7 1	_		_										4	77	_			27 10	_		31 10		Extreme 1		Sea Level Pressure	101	1/01	
STATION:	ų	noM shi for Mont	I	Fri	Date	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Mon	Ine	Dew	Fri	Sat	Sun	Mon	Tue	Wed	Ihu	Sat	Sun	Mon	Tue	Wed	E.	Sat	Sun	L	Extr			est	Date	

Final Report Chapter 2: Current Conditions of Construction Site Detailed Design Study Report of New Bohol Airport Construction and Sustainable Environment Protection Project Republic of the Philippines

Table 2.3-3 (b) Daily Weather Data at Tagbilaran City in November 2010 Table 2.3-3 (b) Daily Weather Data at Tagbilaran City in November 2010 NUT Lutus			Γ	gnimtigi.J	(24)	>)>	>>		>	`		>		>			>		>		>					>	.>	>					13				7 - 8	Oktas	14	
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 NOT Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 NOT Intermediation Total Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediation Intermediatintermediation Intermediatio			EORS	mnotersbaudT	(23)		>			>					>		>		>		>	,)`	>				>					10		KTAS		- 2	0k	1	
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 NOT Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 NOT Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest <td></td> <td></td> <td>DUS MET</td> <td>lisH</td> <td>(22)</td> <td></td> <td>JESS IN O</td> <td>davs with:</td> <td>9</td> <td>tas</td> <td>6</td> <td></td>			DUS MET	lisH	(22)																														JESS IN O	davs with:	9	tas	6	
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 NOT Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in November 2010 NOT Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest Interest <td></td> <td></td> <td>ELLANEC</td> <td>slzzinU/nisA</td> <td>(21)</td> <td>></td> <td>></td> <td>)</td> <td>></td> <td>))</td> <td>>)</td> <td></td> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>,</td> <td>))</td> <td>></td> <td>)</td> <td>></td> <td>></td> <td>></td> <td>></td> <td>)</td> <td></td> <td></td> <td>23</td> <td></td> <td>CLOUDN</td> <td>Number of</td> <td>2 -</td> <td>Ok</td> <td>10</td> <td></td>			ELLANEC	slzzinU/nisA	(21)	>	>)	>))	>)		>		>	>	>	>	>	>	>	,))	>)	>	>	>	>)			23		CLOUDN	Number of	2 -	Ok	10	
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in the management of the management of the management of the man	10	2010	MISC	goŦ	(20)																														MEAN			ta		
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in the management of the management of the management of the man	oer 20	November			(19)			.)	>))	>)			. >	>	>	>	>	>	>	2)))				.)	>))	$\rangle\rangle$			30			_	- 0	Ŏ		
Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in Table 2.2-3 (6) Daily Weather Data at Tagbilaran City in the management of the management of the management of the man	vemb	e Month of:	ssa	Mean Cloudine (Oktas)	(18)	1	9	7	9	7	8	0	, 9	7	9	5	9	7	6	9	9	9	9	1	0	, 9	5	7	5	2	7		194	6			9	5	66	
Table 2 Table 2 Introduct 1	in No	For the	HINE	mumixeM	(17)																														XALUES		52	80	31.	
Table 2 Table 2 Introduct 1	n City		SUUS	Nnutes	(16)																														DMETRIC					
Table 2 Table 2 Introduct 1	oilarar			mumixeM	(15)										0545 Z																			0545 Z	PSVCH(re (°C)	((g)	
Table 2 Table 2 Introduction of the pressure of the presex of the presex of the pressure of the pressure of the presex of t	: Tagk	123°52E		mumixeM	(14)										040																			040	CIHINO		l'emperatu	umidity (%	sure (mmH	
Table 2 Table 2 Introduct 1	ata at	GITUDE:	MIND		(13)							Ī			008																			008	2		Jew Point	Selative Hu	/apor Pres	
Table 2 Table 2 Introduct 1	ther D	LON		Direction	(12)	050	180	180	040	180	001	050	140	180	270	050	040	040	050	040	050	040	060	000	180	180	270	040	040	050	050			040	(MV)	Γ	_			
Table 2 Table 2 Introduction of the pressure of the presex of the presex of the pressure of the pressure of the presex of t	Weat				(11)	100	002	002	001	001	700	001	100	001	001	002	002	001	100	001	001	002	100	700	100	000	100	001	002	700	002		042	001	AM TO S		100 or	IIIOIC	0	
Table 2 Table 2 Introduction of the pressure of the presex of the presex of the pressure of the pressure of the presex of t	Daily				(10)	0.0	3.6	12.6	16.8	6.8	2.0	2.0	0.0	0.0	16.6	0.2	12.8	0.3	8.0	3.0	1.0	0.0	0.2	0.6	0.0	0.0	0.4	10.6	13.0	0.0	0.5		140.6		ITERS (8		50 or	TIOIC	0	
Table 2 Table 2 Introduct 1	-3 (6)	N.8£.60	ə		-	88	85	85	87	8	78	80	84	85	89	83	80	16	86	85	85	85	86	94 50	5 25	8	82	84	86	86	8			85	MITTIM		25 or		9	
AN CITY In Everet Transmission of the bault of the bautter of the bautter of the bautter of the bautter of the bault of the bautter of the baute of the bautter		直			(8)	24.0	25.7	25.2	25.4	25.4	24.1	0.40	25.3	24.5	24.9	25.2	24.5	24.8	24.6	25.6	25.1	25.4	25.0	24.0	25.6	25.4	25.1	24.4	24.8	24.8	24.1			25.0			1.0 or	TIOLO	16	
AN CITY In Environment of the present of the prese	Tab	LA'		пкэМ	(2)	28.2	29.1	28.2	28.8	28.7	2.82	0.07	28.4	27.6	28.4	28.8	29.2	27.8	27.4	28.5	28.6	28.2	28.4	7.02	20.2	28.7	29.1	28.0	28.4	2.12	28.1			28.3	24-H RAL		0.1 or	TIOLO	23	
AN CITY AN CITY (1078) (1078) (1078) (1078) (1078) (10075)			\sim	muminiM	(9)	25.9	25.0	24.5	24.5	24.4	27.5	23.5	23.8	23.8	23.9	25.0	24.3	23.5	23.8	24.6	24.6	24.0	24.0	0.02	23.8	24.4	24.8	24.0	24.4	23.7	24.2		725.2	24.2	TOTAL		Trace		0	
AN CITY AN CITY (1073) (1073) (1073) (1073) (1075) (107			MPERAT	mumixeM	(5)	31.0	33.2	31.8	33.0	33.0	32.5	31.0	33.1	31.4	32.8	32.7	34.0	32.0	31.0	32.4	32.6	32.5	32.8	0.00	33.0	33.0	33.4	32.0	32.5	30.0	32.0		972.3	32.4				0 Z	Z 0	
AN CITY AN CITY (hPa) Prevet Prevet (hPa) (1007.8 26.6 1009.2 28.3 1008.9 2.83.3 1008.9 2.83.3 1008.9 2.83.3 1009.9 2.83.4 1009.2 2.87.1 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1008.3 2.87.3 1008.3 2.87.3 1009.2 2.87.3 1008.3 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.87.3 1009.2 2.77.3 1009.2 2.77.3 1009.5			TE	dluE dsW	(4)	1.62	26.3	25.8	26.0	26.1	24.9	253	26.0	25.2	25.4	26.0	25.4	25.2	25.2	26.2	25.7	26.0	25.6	0.50	26.0	262	25.9	25.1	25.4	25.0	25.0		768.1	25.6		nnerature	1.0°C	14/10 051	28.6°C	
A N CTT 100093 3 1000 100 100 100 100 100 100 100 100				Dry Bulb	(3)	0.02	28.3	27.8	27.8	28.3	20.0	266	282	27.2	26.8	28.4	28.1	26.4	27.1	28.2	27.7	28.0	27.5	4.12	28.1	287	28.4	27.2	27.3	690	27.7		828.4	27.6	SE	ľ				
		AN CITY	E (hPa)	ГеуеД	(2)	1000.2	1009.5	1008.9	1007.6	1008.9	10101	10114	1010.7	1010.0	1008.7	1009.9	1010.8	1009.8	1008.9	1008.3	1009.2	1007.9	1006.8	10.06.0	1008.3	1008.0	1008.1	1008.4	1009.2	1007.8	1006.6		30262.3	1008.7	EXTREM			Z 0	2 O	
TAGBILAR. PRESSURA PRESS		AGBILAR	PRESSURE	Pressure	(2a)	1008.3	1008.6	1008.0	1006.7	1008.0	1 000 1	10105	1009.8	1009.1	1007.8	1009.0	1009.9	1008.9	1008.0	1007.4	1008.3	1007.0	1005.9	0.2001	10074	10071	1007.2	1007.5	1008.3	1006.9	1005.7	$\left \right $		1007.8		Sea Level Pressure	1012.9 MBS	11/09/10 0200	11/21/10 0730 Z	
100%				ay of the Mont																												31		Mean/ Extreme		SeaLev		***	10 E	

2010
ember
Dec
City in I
aran (
Fagbilaran City ir
Data at Ta
er Dat
Weathe
Daily
E
le 2.2-3 (7) Dail
Table

ς	2
TAACTA	AKAN
1100	I AUBIL/
TAC IN THE	STATION

ų	PRESSURE	E (hPa)		TE	TEMPERATI	TURE (°C)			ə.			-	VIND			SUNSHIN	NE	ssa		MISCEI	MISCELLANEOUS METEORS	JS METE	DRS	
inolví sái to va	Station Pressure	Pressure Level Mean Sea	Dry Bulb	dluE dsW	mumixeM	muminiM	пьэМ	Mean Dew Point	Mean Relativ Humidity	(mm)	Average (aqm)b99q2 gnilinv97	Direction (degrees)	Direction of Speed(mps)	nomizeM mumizeM bssq2 fo smiT	no Sunt mumizaM (STU)bniW	Precentage of	Precentage of mumixsM Possible	Mean Cloudine (Oktas)	Smaze Smaze/	Fog	slzzir@\nisA	lisH	Thunderstorin	Lightning
П (I) Мед I	(2a) 1005 8	(2)	(3)	(4)	(5)	(6) 24.6	(7)	(8)	(9)	(10) (10)	(11)		(13)	(14)	(15)	(16)	(11)	(18)	(61)	(20)	(21)	(22)	(23)	(24)
Thu 2	+	1007.2	27.8	25.8	33.2	24.5	28.8	25.2		14.2	002	030						9	>>		>			$ \rangle$
		1008.3	27.0	25.4	33.0	23.5	28.2	24.9	88	15.2	001	060						7	.)>		. >			1
Sat 4		1006.7	28.1	25.8	33.0	23.9	28.4	25.1		0.6	002	060						9	>		>			
Sun 5		1005.4	28.6	25.9	33.8	24.5	29.2	25.0		0.0	003	090						7	>					
Mon 6		1006.2	27.3	25.2	32.0	24.4	28.2	24.5	84	Т	002	040						~	>		>			
		1005.9	26.8	25.6	32.2	24.4	28.3	25.2		20.6	001	050	010	040	0445 Z			80	>		>			\rangle
		1006.1	27.2	25.4	33.4	24.8	29.1	24.8		0.4	001	060						9	>		>		>	>
		1006.8	27.4	26.0	32.0	24.0	28.0	25.6		0.0	001	340						2	>		,			
Fri 10 Sat 11	1005.7	1006.6	27.5	25.8	33.0	24.0	28.5	25.3	87	2.2	100	270						00 1	>)		>))	
		10063	286	25.8	33.3	24.1	28.6	0.02		0.0	100	150	+	+	+		+	· 9		+	>		\rangle	
		1008.9	28.5	26.4	34.0	24.2	29.1	25.8		0.0	002	040						5					,	$ \rangle$
		1008.7	28.0	25.8	33.5	24.0	28.8	25.1		F	001	040						9	>		>			
		1006.9	27.8	25.6	34.2	23.3	28.8	24.9		17.4	002	140						7	>		>		>	$ \rangle$
Thu 16		1007.4	26.8	25.5	33.0	24.0	28.5	25.1		19.0	001	030						7	>		>		>	
		1008.2	28.1	26.0	33.0	24.0	28.5	25.3		0.0	001	040						9	>					
		1008.7	28.0	26.0	34.4	24.2	29.3	25.4		3.0	002	060						9	>		>			
		1009.4	26.5	24.8	28.5	24.2	26.4	24.2		0.4	002	090				+		~	>		>			>
		1007.7	27.9	25.4	32.7	24.3	28.5	24.6		0.0	002	030						9 1))		`			
	_	10061	2.02	0.62	32.0	2.52	0.12	24.0		59.4	100	040	+	+	+			- 1	>))	+	>	+	Ť) }
Thin 23	1006.0	10001	274	252	32.4	24.0	28.2	24.5		0.0	100	140	+	+	+	+	+	7		+	+	T		
	_	1006.0	26.7	24.9	33.0	22.5	27.8	24.3		42.6	002	270						7	.)		>			$ \rangle$
		1006.4	27.2	25.5	32.0	24.2	28.1	25.0		0.0	001	060						7	>				>	
		1007.3	26.6	25.2	31.4	24.0	27.7	24.7		53.8	002	030	008	330	0427 Z			7	>		>		>	$\left \right\rangle$
Mon 27		1008.4	27.2	24.8	32.0	24.0	28.0	24.0		0.0	002	040						9	>					
		1008.4	27.3	25.5	33.2	24.5	28.8	24.9		15.2	001	050						9	>		>		>	>
		1008.2	26.8	25.6	32.0	23.9	28.0	25.2		23.4	002	290	010	040	0445 Z			~	>		>		,	
	_	1007.9	27.1	25.4	32.6	23.6	28.1	24.8		7.0	00	040	+),	+),		>	>
Fri 31		1.1001.7	26.4	25.0	31.4	23.6	27.5	24.5		1.2	100	040							>		>			
Total	<u></u>	31223.9	849.6	790.8	1011.9	744.4				282.6	047	+		+				209	31		20		6	13
Extreme	r 1006.3	1007.2	27.4	25.5	32.6	24.0	28.3	24.9	86		002	040	010	040 0	0445 Z			7						
		EXTREMES	1ES		F	TOTAL	24-H RAINFA	NEALLIN	MILLIMITERS		(8 AM TO 8 AM	WW	MG	MONTHLY I	PSYCHOMETRIC VAL	AETRIC V	VALUES			MEAN C	MEAN CLOUDNESS IN OKTAS	SS IN OK	TAS	
Sea	Sea Level Pressure	e		Temperature			10	-	26		00		Doint T.				010			ž	Number of days with	ays with:		
Highest	1011.5 MBS		est	34.4°C		Trace	10 T.U	TO OL	10 C 7	I IO OC	more	ž	Dew Fount Lemperature (C)	curperature	6		C+7		0 - 1		2 - 6		7 - 8	∞
Date	12/19/10 00			12/18/10 0655	55 Z		200		+	-		Rei	Relative Humidity (%)	udity (%)			86		Okta		Okta	s	Oktas	as
Doto	1002.8 MBS		Lowest Z	2 6.22																				
	0001/20101			P SICCONFOCE		,	10	5	10	,								ſ	•		5		10	

STATION	TAGBILARAN CITY	N CITY					LATU	Tab LATITUDE: 09°3	le 2.2	2-3 (8)	Daily \	Neathe ongrude:	er Dat: 123°521	Table 2.2-3 (8) Daily Weather Data at Tagbilaran City in January 2011 09'38N	gbilara	an Cit	y in J	anuary ^{nuary 2011}	2011			I
ų	PRESSURE ((hPa)		TEM	TEMPERATU	JRE (°C)		ع	╞	μ		WIND			IHSNUS	NE	ssə		MISCELLAN	LANEOUS ME	S METEORS	
ay of the Mon	Station Pressure Mean Sea	Pressure Pressure	Dry Bulb	Web Bulb	mumixeM	muminiM	Mean Dew	Point Mean Relativ	Rainfall Iterinfall	(mm) sgstsvA (ang)beer2	Speed(mps) Prevailing Direction	(degrees) Maximum Speed(mps)	Direction of Maximum Speed	Time of mumixsM (OTU)bniW	Precentage of	Maximum Poiszofe	Mean Cloudine (Oktas)	Smaze Smaze Smaze	Fog Aain/Drizzle	lisH	nnoterstonudT	gnintitgi.J
E D	(2a)		(3)	(4)	(5)	(9)	()	(8) (9)	(10)	(11) (0	(12)	(13)	(14)	(15)	(16)	(11)	(8)	(6)	(20) (21)	(22)	(23)	(24)
Sat 1		1008.4	26.4	24.9	30.6	24.0	27.3	24.4	88			040					∞	>	>			
	1008.5	1009.4	24.8	23.8	26.0	22.8	24.4	23.4	92		002						~),))			
	1008.7	1009.6	24.0	22.8	25.0	22.2	23.6	22.3	6 8	5.2		040 012	2 060	1244 Z			~ ~	>`))			
Wred 5	1002.0	0 0001	0.02	6.62	0.00	0.00	0.02	1.12	6 8			040					0 0					
wed o	1007.6	10.00 5	1.20	24.4	2.12	22.0	0.62	24.1	76			040			T		0 0	>)		_		
	1007.4	1008.3	0.96	070	31.8	23.5	20.2	24.7	85		700	9					0 10	>)	>)>			
Saf 8	1006.4	1007.3	27.0	24.9	31.5	24.4	28.0	24.2	84	0.2		040					7	>>				
	1005.9	1006.8	26.4	24.8	31.2	24.0	27.6	24.3	88			050					9	> >	»			
_	1003.8	1004.7	25.6	24.9	29.8	24.2	27.0	24.7	94			050					~	>			>	\rangle
Tue 11	1004.2	1005.1	26.7	25.1	32.0	23.6	27.8	24.6	88			40					9	>				>
Wed 12	1004.9	1005.8	26.8	25.6	32.0	24.2	28.1	25.2	91			180					7	>	>		>	>
Thu 13	1005.8	1006.7	26.9	25.1	30.8	24.0	27.4	24.5	86			040					8	>				>
Fri 14	1006.6	1007.5	27.8	25.8	33.5	25.0	29.2	25.2				180				_	7	>	>		>	
Sat 15	1007.1	1008.0	27.8	25.6	33.0	23.7	28.4	24.9		50.7		80 009	9 220	1816 Z		_	7	>	>		>	
	1006.8	1007.7	26.4	24.8	30.2	23.9	27.0	24.3				090					8	>	>		>	
	1008.7	1009.6	25.8	24.4	30.0	23.2	26.6	23.9	89	26.2		40					~	>	>			
	1008.6	1009.5	24.4	23.7	25.6	21.4	23.5	23.5	94		001 36	20					- 1),	>		Ì	
	1001.9	1008.0	20.0	24.9	6.16	23.4	0.12	24.5	80			180					- t	>`			>	
	1 008.0	6.0001	20.4	24.8	50.4	24.0	7.17	24.3	8	0.0		200					-	>`				
FI 21	1000 5	7.0101	1.12	010	0.76	24.0	7.97	24.5	20			040					n 0				1	
Sun 22	5 000 I	10104	1.02	24.0	31.0	0.40	4.12 27 S	24.4	91			040					• •	>))	>).	_		
	10003	1010.2	26.0	24.7	30.3	27.8	26.6	23.4				89					0 10		>))			
	1010.6	1011.5	26.5	24.9	30.6	24.0	27.3	24.4	88	1.2	002 07	040					, L	>>				
	1010.8	1011.7	25.5	24.6	28.8	23.2	26.0	24.3				10					~					
	1011.9	1012.8	23.9	23.2	26.4	22.5	24.4	23.0			002 0/	40					8	>	>			
	1010.6	1011.5	25.0	23.8	27.5	23.0	25.2	23.4	90	7.8		040				_	8	>	>			
	1010.0	1010.9	25.8	23.5	31.8	22.1	27.0	22.7	82			40				_	~	>	>			
	1009.5	1010.4	26.5	24.2	30.6	23.3	27.0	23.4	83								~	>	>			
Mon 31	1008.8	1009.7	25.6		28.0	23.2	25.6	22.7	84	1.4		020 010	050	0758 Z			8	>	>			
Total	31249.7	31277.6	809.2	760.6	931.8	725.1				363.9	058						231	31	26		7	5
Mean/ Extreme	1008.1	1009.0	26.1	24.5	30.1	23.4	26.7	24.0	88	002	2 040	012	060	1244 Z			7					
	E	EXTREMES	s		F	TOTAL 24	TOTAL 24-H RAINFAI	1	TIMITI	L IN MILLIMITERS (8 AM TO 8 AM)	TO 8 AM)		MONTHL	MONTHLY PSYCHOMETRIC VALUES	METRIC V	ALUES		~	MEAN CLOUDNESS IN OKTAS	DNESS IN	OKTAS	
Sea	Sea Level Pressure		Temp	Temperature			01 01 01	10 or 25 or		_	10	Dow Doin	Doint Tampantum (°C)	(J .) ear		010			Number	Number of days with:	h:	
Highest	1014.2 MBS		est	5°C		Trace			or or nore	or nore	5.0	101 007	I unpound	me / c)	+	0.42		0 - 1		2-6 01460		7 - 8
Lowest	1002.9 MBS	Lowest		=	7	+	+		+	+	+	Relative F	Relative Humidity (%)	(0);		88		UKIa		Oktas	5	KTas
Date	01/10/11 0700	Ζ	П	01/18/11 2300 Z	z	3	33	21 10		7 2	0	Vapor Pre	Vapor Pressure (mmHg)	Hg)		29.82		0		3		28
Mean	1008.9 MBS	Mean	an 27.4°C	4°C	_	_	_	_	_	_	_			10	_		-		_]

11
50
Ч С Ч
٨a
n N
ţ
an City in
an
ilaı
gb
Та
at
Data at Tag
Ö
her
eatl
Š
Daily Weather D
) Dail
ି
ĩ.
ile 2.2-3 (10) Dail
9
0
Tat

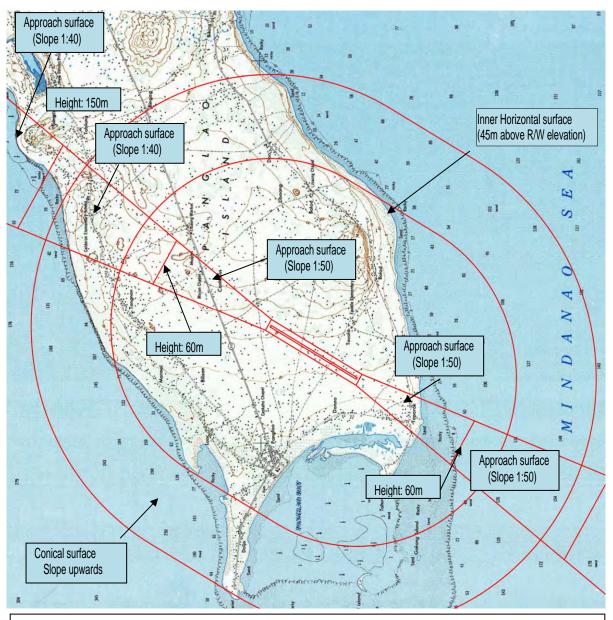
LONGITUDE: 123°52'E

LATITUDE: 09°38'N

For the Month of: March 2011

STATION: TAGBILARAN CITY

	gnintitgi.T	(24)		\setminus											,					Τ												~	,			Т			
	2 oiotdai I	0	-	>						,		/ 、	+	+	+	/			+	+	+						+	+		+	+					0	0 0 Obtae	CDMdD	26
SIDAT	Thunderstorm	(23)			>)		>				_))	>						>		>		+				×			OKTAS	=		-	
ALM SUL	lisH	(22)																																	NESS IN	days wit	2 - 0 Oltae	607	10
	slzzir().nin,R	(21)		>	>	>	>	>		>	>	>	>		>	>)	>),))	>)		\rangle	>	>)	>				>)	> %	2		MEAN CLOUDNESS IN OKTAS	Number of days with	- - -	5	•
Della	БоЯ	(20)																																	MEAN		01-1 Olte	200	0
/	Smoke/Haze/	(19)	>	>	>	>	>	>	>	>	>	>	7	>	>			>			>)			>	>)						> ~			_			5	
sət	Mean Cloudir (Oktas)	(18)	6	7	7	7	5	7	9	7	8	8	7	7	7	8	2	8	9 0	8	0 1	0	9	7	8	~	8	00 0	- 1	6	0	0	7			6			
J	Precentage of Maximum Possible	(12)																																	VALUES	24.5		86	
	sətunM	(16)																																	METRIC				
	Time of mumixsM Wind(UTC)	(15)			1355 Z														0255 Z						1005 Z	0722 Z		+		Ť		ľ	0722 Z		MONTHLY PSYCHOMETRIC VALUES	(C) a		~	
	Direction of Maximum Speed	(14)			080														040						060	040							040		ONTHLY	Dew Point Temperature (°C)		Relative Humidity (%)	
	mumixsM (sqm)bssq2	(13)			000														010	T					012	014							014		N	ew Point		elative Hu	
	Prevailing Direction (degrees)	(12)	270	180	290	140	270	090	040	050	040	040	040	040	360	030	040	040	040	040	040	040	050	040	040	040	040	090	040	000	040	040	040		AM)				
ŀ	Average Speed(mps)	(11)	002	002	002	100	001	002	002	001	001	002	003	002	002	002	002	003	004	002	700	100	002	003	003	002	003	002	700	700	100	700	002		IN MILLIMITERS (8 AM TO 8 AM)	100 or	more		-
1	Rainfall (mm)	(10)	0.0	9.7	50.0	F	7.0	0.8	0.0	44.2	7.2	2.3	8.6	0.0	7.4	1.0	0.8	12.2	2.8	I.0	0.0	0.0	0.1	45.6	33.8	13.2	2.8	6.5	4 6	12.4	2.6	280 5			TERS (8	50 or	more	T	
	VibimuH	(6)	87	84	86	88	85	82	84	88	89	86	87	6	83	86	8	88	82	80	76	5 8	8	93	89	6	89	85	40 20	88	10	6	87		MITTIM	25 or		+	
97	Mean Dew Point Mean Relati		25.5	25.1	24.5	24.7	24.1	24.0	24.9	23.8	24.5	24.3	25.0	23.9	24.2	24.6	23.7	24.3	24.2	24.5	0.62	75.7	25.4	25.2	24.1	24.4	24.3	24.4	24.0	24.0	0 10	24.0	24.6	1 1		1.0 or 2			;
ŀ	Mean Daw		28.6	28.5	27.6	27.2	27.0	27.4	28.6	27.4	27.8	27.6	28.2	25.2	27.4	27.8	27.0	27.7	28.1	27.8	24.0 1 o 1	78.0	28.6	28.4	27.0	27.0	26.4	27.0	7.07	0.12	27.6	0.12	27.5		HH RAIN			+	
-	muminiM		25.0	24.0	23.0	23.5	22.6	23.0	24.2	22.9	24.0	24.0	24.0	22.5	23.8	24.5	23.0	23.3	24.0	24.0	0.20	D.C2	23.9	23.8	23.1	23.6	23.5	23.4	24.0	24.1	0.40	734.9	23.7		TOTAL 24-H RAINFALI				
	THATTICUSTAT		32.2	33.0	32.3	31.0	31.5	31.8	33.0	32.0	31.6	31.2	32.5	28.0	31.0	31.0	31.0	32.1	32.2	31.5	0.02	21.2	33.2	33.0	31.2	30.4	29.4	30.5	22.4	31.0	21.2	21.5	31.4			+			
-	mumixeM	(2	26.1			25.2						24.9						24.8			24.2			25.5					224			ľ				rature	33.2 C 03/77/11 0450 7		02/17/11 2220 7
╞	Web Bulb	3				26.8						26.8		25.4						27.0									0.17						8	Temperature			T
┞	Dry Bulb	Ξ																															°		EXTREMES	LIG-th are	Data	Lowest	Data
	Mean Sea IsvsJ Presente					3 1009.2			2 1010.1												-20107-1 5 10004			.4 1008.3				.1 1008.0		7 1008.6		~			EXTI	ssure	00007	ABS	0000
	Station Pressure		1006.3	1007.8	1008.6	1008.	1009.4	1009.8	1009.2	1010.0		_	\downarrow		\downarrow	_		_			1 007 5	_	_				_	1007.1	+	10077	\downarrow	~				Sea Level Pressure	2 0000 11/00/20	1007.3 MBS	03/12/11 0800 7
		Ξ	-	0	3	4	Ś	9	Mon 7	Tue 8		Thu 10						Wed 16	11	2	6	Mon 21	12	23	24	25	26	27	99	20	Thu 21	Total	Mean/ Extreme		4	Sea	Date	Lowest	Date

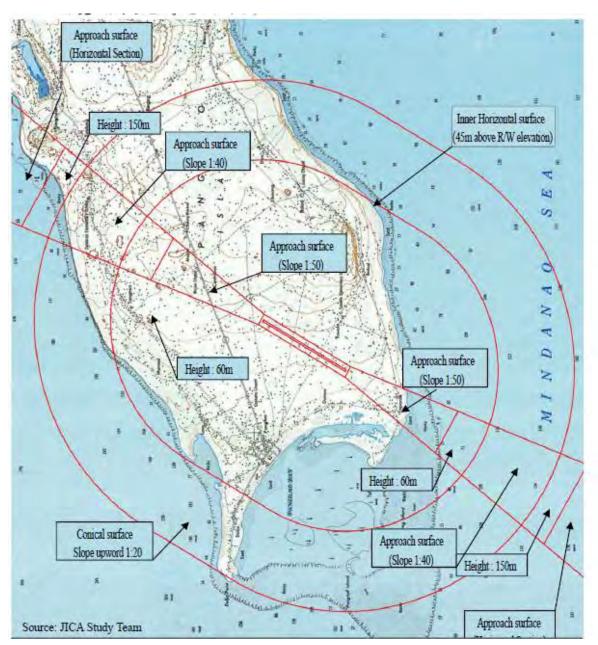

		DRS	mnotersbrundT gnimtdgiJ	(23) (24)										,	>										>	, ,		,	>);	>	4		TAS		7 - 8	Oktas	20
		S METEC	lisH	(22)									1	+		T																	SS IN OK	iys with:			
		TANEOL	slzzin().nis.R	(21)	>			>	>>)))							>	>			\rangle	,	>	,	>))	>	15		MEAN CLOUDNESS IN OKTAS	Number of days with:	2-6	Oktas	10
		MISCEI	Fog	(20)																													MEAN C	ź			
11	pril 2011		Smoke/Haze/	(19)	>	>))	$\rangle\rangle$	>>	>	>	>)))	>)	>>>	.)>	>	>	>	>	>),	>)	>>>	> >	>)	>)	>>	30				0 - 1	Okta	0
pril 2(For the Month of: April	ss	Mean Cloudine (Oktas)	8	~	2		0 1	-	9	7	5	2	- 1		9	~	7	7	5	7	7	2	7 00		9	9	5	2 2	2	199	7					
.2-3 (11) Daily Weather Data at Tagbilaran City in April 2011	For the N	NE	mumixeM Bolizzon Pldizzof	(17)																													/ALUES	211	24.0	83	31.66
n City		IHSNUS	Precentage of	(16)				+																									METRIC V				
bilara			mumixeM (DTU)bniW	(15)										E 6070	0422.2																	0422 Z	MONTHLY PSYCHOMETRIC VALUES	<i></i>	(1)		
ıt Tag	123°52'E		no nonoond mumixsM beeq2 fime of	(14)				+					1	000	080	T																080	NTHLY	county on a second	Dew Point Lemperature (C)	nidity (%)	Vapor Pressure (mmHg)
Data a	LONGITUDE:	MIND	Maximum Speed(mps) Direction of	(13)										000	008																	008	М	T Juint T	ew Point I	Relative Humidity (%)	apor Pressu
ither I	DNOT		Direction Direction (degrees)	(12)	020	320	300	040	030	140	180	050	040	050	040	160	040	270	240	180	050	270	180	180	020	360	160	270	250	090		040	(MA)		ň	Re	0
/ Wea			Speed(mps) Speed(mps) gniling	(11)	002	001	002	700	100	002	002	002	002	002	700	002	001	002	001	001	001	001	002	100	700	001	002	002	100	002	047	002	AM TO 8	⊢	more		0
(Daily			(mm)	(10)	0.6	0.0	0.0	0.0	i E	0.0	0.0	0.0	1.0	0.1	4.0	1.4	0.0	0.0	0.0	0.0	9.2	2.0	0.0	0.0 F	5 2	0.0	0.2	0.0	21.4	0.0	50.3		TERS (8 /		nore	+	0
3 (11)	N'8E°60	-	Mean Relativ Humidity		87	78	76	76	85	82	80	78	95	83	84 86	80	80	81	82	82	83	84	81	8/	70	81	83	81	83	818		82	IN MILLIMITERS (8	200	TO C7	+	1
N	LATITUDE: 0	╞	Mean Dew Point	(8)	23.8	23.4	23.8	23.0	23.5	24.0	24.0	24.0	25.6	24.1	25.0	23.9	24.0	24.4	24.2	25.2	24.8	24.5	24.6	24.8	24.7	25.5	25.2	25.6	25.5	25.5		24.5	_		TO OL	_	6
Table	LAT		useM	(2)	26.0	27.6	28.1	28.5	27.1	28.1	27.8	28.2	27.3	27.6	0.12	28.9	27.8	27.8	27.2	28.8	28.4	28.3	28.9	2.12	28.4	28.8	28.8	29.2	28.9	29.4		28.1	TOTAL 24H RAINFAL		U.I OF	_	13
		RE (°C)	muminiM	(9)	23.0	22.6	23.0	0.62	23.0	24.0	23.5	23.0	24.0	23.0	25.8	25.0	23.5	23.0	22.7	24.4	23.8	24.0	25.0	24.0	24.3	24.2	23.7	24.6	24.5	25.4	711.7	23.7	TOTAL 2		Trace	·	5
		IPERATU	mumixeM	(5)	29.0	32.6	33.2	34.0	31.2	32.2	32.0	33.4	30.6	32.1	32.0	32.8	32.2	32.8	31.8	33.2	33.0	32.6	32.8	50.4	32.6	33.4	33.8	33.8	33.3	33.5	975.6	32.5				Z	Z
		TEN	dlufi dəW	(4)	24.4	24.4	24.9	24.0	24.2	24.8	24.9	25.0	25.8	24.9	24.0	24.8	24.9	25.3	25.0	26.0	25.5	25.2	25.4	25.4	254	26.3	26.0	26.4	26.2	26.3	757.6	25.3		Temperature	34.0°C	04/04/11 0450	22.3 C 04/02/11 2200 Z 28.3 °C
			Dry Bulb	(3)	26.1	27.4	28.2	25.0	262	27.2	27.6	28.0	26.4	272	1.02	27.6	27.6	27.9	27.5	28.5	27.8	27.4	28.0	1.12	268	29.0	28.4	29.1	28.6	28.9	829.3	27.6	S	Ē	est		Date 04/ Mean 28.
	N CITY	(hPa)	Level Pressure	(2)	1009.1	1008.4	1008.4	10114	1011.9	1011.7	1012.2	1012.0	1011.6	1009.4	01101	1009.7	1009.7	1010.1	1009.1	1008.3	1009.2	1010.5	1010.3	1.6001	1008.7	1008.9	1008.6	1007.7	1008.1	1008.5	30291.9	1009.7	EXTREMES	╞			
	TAGBILARAN CITY	RESSURE	Mean Sea Mean Sea					10105							1010.3			1009.2						7.0001	~				1007.2		30264.9 3	1008.8	ſ	Level Pressure	1014.3 MBS	04/08/11 0130 1005.6 MBS	04/18/11 0840 Z
	STATION: TA	łd		(E)	+	_	m =	4 v	9	7	~		10	= ;	7 6	14		16	17		19	20	_		_	25	26	27	28	_	Total 3	Mean/ Extreme		Sea Leve			
	STA'	ų	ay of the Mont	D	Fri	Sat	Sun	The	Wed	Thu	Fri	Sat	Sun	Mon	1 ue	Thu	Fri	Sat	Sun	Mon	Tue	Wed	Ihu I	FIL	Sim	Mon	Tue	Wed	Thu	Sat		E			Highest	Date	Date

			gnimtgi.J	(24)		>						>			>)	\rangle		>			\rangle		\rangle	>					>	9		Γ		8	tas	_
		ORS	mnotersbrundT	(23)	>	>	>				>			>	,	>)	>))		.)>)		>	>							>	14		KTAS		7-8	Oktas	21
		US METH	lisH	(22)																														ESS IN O	days with:	9	as	_
		MISCELLANEOUS METEOR®	slzzinU/nisA	(21)	>>>		>	>))	>>	>				,		>))		>	>)		>	>))	>`	>	>		>	22		MEAN CLOUDNESS IN OKTAS	Number of days with:	2-6	CKI	10
		MISCI	Fog	(20)																														MEAN	1	1	Ia	
011	May 2011		Smaze/ Smoke/Haze/	(19)	>)		>	>	>)		>	>	>	>)					.)	$\left \right\rangle$	>	>	>	>))	>`	$\rangle\rangle$		>	>	31				0-1	Okta	0
2.2-3 (12) Daily Weather Data at Tagbilaran City in May 2011	For the Month of: May 2011	ssa	Mean Cloudine (Oktas)	(18)	8 9	7	8	8	8	~ ~	7	6	7	4	9	9	0	9	2	2	7	6	8	8	7	00 0	× °	0 00	2	5	9	216	7	s	25.4		85	31.66
ty in I	For th	HINE	Precentage of mumixaM 9IdizzoT	(17)																														MONTHLY PSYCHOMETRIC VALUES	36	í	so.	31.
an Ci		IHSNUS	sətunM	(16)																														OMETRIC				
gbilar	1		Time of Maximum (DTU)bniW	(15)					2 1010	7 1 7 1 7	1354 Z																						1354 Z	V PSVCH	() , en		()	lg)
at Ta	123°52'E		Direction of Maximum Speed	(14)					000	10 mm	240																						240	MONTHL	Dew Point Tennerature (°C)	annadma t	Relative Humidity (%)	Vapor Pressure (mmHg)
- Data	LONGITUDE:	MIND	mumixaM (sqm)booq2	(13)					008		015																						015		Dew Point		Relative H	Vapor Pre
eather	[0]		Prevailing Direction (agrees)	(12)	050	060	180	060	320					270	180	050	000	002			050		060			180		077		180	140		180	8 AM)				0
ily We			əgsəəvA (sqm)bəəq2	Ξ	100		001		002						001			100			001		002					200				045	001	8 AM TO	100 or	more		1
2) Da			Rainfall (mm)	(10)	40.2 T	15.2	0.5	2.7	0.2	0.2	9.0	0.0	0.0	0.0	0.0	4.0	7.6 T	1 46	0.0	0.2								0.0		0.0	50.8	165.8		IN MILLIMITERS (8 AM TO 8 AM)	50 or	more		2
2-3 (1	N-85°60	ə	Mean Relativ Humidity	(6)					86						83													81		80	83		85	IN MILLEI	25 or	more		4
Table 2.	LATITUDE:		Wean Dew Inioq	(8)	24.8	25.2	25.4	25.2	24.3	25.1	24.8	25.9	25.2	25.1	25.5	0.20	2.22	0.02	25.4	25.5	24.7	25.7	25.7	25.7	25.6	26.0	0.02	25.7	23.9	25.6	25.3		25.3	_	1 0 or	more		15
Та	r		пьэМ	(2)	27.8	28.0	27.5	26.7	27.2	27.8	27.2	29.0	28.1	28.6	29.4	28.0	78.1	1.02	29.0	28.3	28.1	28.9	28.9	29.1	29.0	29.4	20.0	2.02	29.0	29.0	29.2		28.4	TOTAL 24-H RAINFAL	0.1 or	more		19
		TURE (°C)	muminiM	(9)	23.5	24.0	24.4	24.0	24.5	24.5	21.5	24.5	24.0	24.5	25.0	25.8	0.02	25.0	24.9	25.0	24.0	24.6	25.0	25.0	25.5	25.8	2.10	24.2	25.5	25.0	24.4	762.0	24.6	TOTAL		Trace		3
		TEMPERATURE	mumixeM	(5)	32.0	32.0	30.6	29.4	30.0	31.0	33.0	33.4	32.2	32.8	33.8	27.75	33.5	22.20	33.2	31.6	32.2	33.2	32.8	33.2	32.6	33.0	0.15	33.2	32.5	33.1	34.0	1001.9	32.3			200	7 000	130 Z
		T	dluE dsW	(4)	25.2	25.6	25.8	25.6	24.9	25.7	25.7	26.6	25.9	25.8	26.2	22.0	0.02	2.96	26.1	26.1	25.2	26.4	26.4	26.4	26.4	26.6	7.07	292	252	26.4	26.0	805.3	26.0		Temperature	34.3°C	05/02/11 0500 Z	05/09/11 2130 Z 27.9°C
	~		Dry Bulb	(3)	26.5	26.7	27.2	26.8	26.7	27.6	28.5	29.0	28.0	28.1	28.5	1.12	212	0.90	28.4	28.0	26.8	28.6	28.6	28.6	28.9	28.7	1.62	2.02	29.1	29.2	28.3	868.4	28.0	MES	· .	est	Lowest	
	RAN CITY	RE (hPa)	Mean Sea Level Pressure	(2)	1008.2	1007.5	1008.5	1009.3	1008.3	1007.6	1009.2	1009.4	1010.1	1009.7	1009.2	10107	10111	10005	1009.7	1009.7	1008.7	1007.6	1007.7	1007.9	1006.7	1004.9	C.CUUI	1008 6	1009.6	1009.5	1008.7	31266.1	1008.6	EXTREME				
	TAGBILARAN CITY	PRESSURE (hPa	Station Pressure	(2a)	1007.3	1006.6	1007.6	1008.4	1007.4	1006.7	1008.3	1009.0	1009.2	1008.8	1008.3	1010.8	1010.0	1009.6	1008.8	1008.8	1007.8	1006.7	1006.8	1007.0	1005.8	1004.0	1 004.0	1 000.4	1008.7	1008.6	1007.8	31238.7	1007.7		Sea Level Pressure	1013.3 MBS	1003.2 MBS	05/25/11 0830 Z 1007.7 MBS
	STATION:		troM shi to ys	Э.	Mon 2			Thu 5	Fri 6 Sat 7	Sun 8		Tue 10		Thu 12		Sat 14		Tue 17				Sat 21	Sun 22					FII 2/ Sat 28		Mon 30	Tue 31	Total	Mean/ Extreme		Sea L(est	Lowest	
		-				-	-			_								_	-	-									_			-		_			-11	

2.3. Airspace Conditions

2.3.1. Obstacle Limitation Surfaces

Based on ICAO Annex 14 and the Airport Service Manual part 6, Obstacle Limitation are established as shown in the Figures 2.3-1 and 2.


The screening of obstacles is examined by following conditions:

 \checkmark Terrain condition by topographic maps of scale 1/50,000 and 1/250,000.

 \checkmark The expected airport elevation is located 8.3 m above the sea level.

✓ To the height of screened terrain (mountains, hills), the height of 30 m trees shall be added Source: JICA Study Team.

Figure 2.3-1 Obstacle Limitation Surface (1)

Source: JICA Study Team

Figure 2.3-2 Obstacle Limitation Surface (2)

As a result of the examination of terrain obstacles, there is not any particular natural obstruction such as hills or mountains that actually affect the operations of aircraft around the new airport site; neither is existing terrain obstacles above these surfaces observed on the topographical maps.

With regard to artificial obstacles such as buildings and towers surrounding the site, these should be examined using the aerial photo maps and actual measured locations by GPS meter and height by handy level meter in a further site reconnaissance stage in future.

2.3.2. Topography and Navigation Warnings

Panglao Island is located southwest of the island of Bohol with an area of 80.5 km², and has an almost plain terrain with elevations of up to 10 to 30 m. Hilly to mountainous areas of up to an elevation of 100 to 160 m are located at the northeast part of island. The new airport site will be located at the southwest part of the island. Figure 2.3-3 shows a general topographical map around Panglao Island with a marked distance of approximately 30 NM from the new airport.

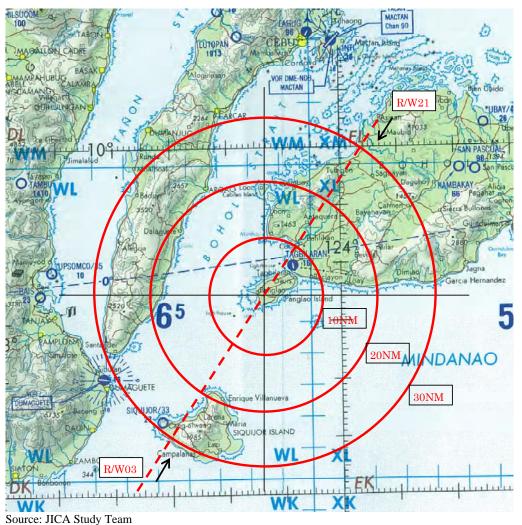
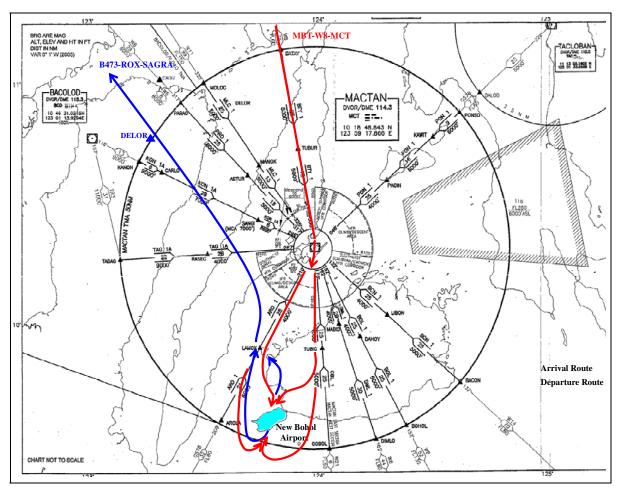


Figure 2.3-3 Topography around Panglao Island

As mentioned before restricted, prohibited and dangerous areas are not found around the New Bohol Airport's specific area.


2.3.3. Air Traffic Flow

As the New Bohol Airport will be located at 14 km (7.5NM) south west of Tagbilaran Airport, it is desirable to maintain the existing arrival and departure routes for the new airport because the location of the new airport is comparatively near to the existing airport from the point of flight route and it is possible to use the existing reporting point of the Mactan TMA.

The assumed traffic flow for the new airport is as follows:

- a) Arriving traffic from the north will be via the reporting point LAMOK or TUBIG.
- b) Arriving traffic from the south will be via the reporting point AROLA or new point.
- c) Departing traffic to the north will be via LAMOK.
- d) Departing traffic to the south will be AROLA or a new point.

Figure 2.3-4 shows assumed air traffic flow of arrival and departure for the new airport.

Source: JICA Study Team

Figure 2.3-4 Assumed Traffic Flow for New Bohol Airport

2.3.4. Airspace Classification

The airspace classification for the new airport should be established in accordance with Appendix 4 of ICAO Annex 11, and the details of classification and requirements are shown in Tables 2.3-1 to 3 respectively.

Within	the Manila FIR, the airspace is divided into the following classes.	
Class	Airspace	Levels
А	Manila FIR Upper Control Area (except special use airspace)	FL200 – UNL
А	Oceanic Airspace	Lower Limit – UNL
А	ATS Routes outside TMA	MEA – UNL
А	ATS Routes inside TMA at FL130 and above	FL130 – FL200
D	ATS Routes inside TMA below FL130	1,500 – <fl130< td=""></fl130<>
D	TMA (excluding ATS Routes at FL130 and above)	1,500 – FL200
D	Control Zones (CTRs)	Surface – Upper Limit
В	Aerodrome Traffic Zones (ATZs)	Surface – Upper Limit
G	Aerodrome Advisory Zones (AAZ)	Surface – Upper Limit
G	Uncontrolled Airspace	Nil

Table 2.3-1 Airspace Classification in Manila FIR

Source: AIP Philippines MEL: Minimum en-route altitude

Table 2.3-2 Requirements for the flights within each class of airspace

Class	Type of flight	Separation provided	Service provided	Speed limitation	Radio communication requirement	Subject to an ATC clearance
А	IFR	All aircraft	Air traffic control service	Not applicable	Continuous two-way	Yes
В	IFR	All aircraft	Air traffic control service	Not applicable	Continuous two-way	Yes
Б	VFR	All aircraft	Air traffic control service	Not applicable	Continuous two-way	Yes
D	IFR	IFR fm IFR	Air traffic control service, traffic information about VFR flights (and traffic avoidance advice on request)	250 kts IAS below 3050m (10,000ft) AMSL	Continuous two-way	Yes
	VFR	Nil	IFR/VFR and VFR/VFR traffic information (and traffic avoidance advice on request)	250 kts IAS below 3050m (10,000ft) AMSL	Continuous two-way	Yes
G	IFR	Nil	Flight information service	250 kts IAS below 3050m (10,000ft) AMSL	Continuous two-way	No
	VFR	Nil	Flight information service	250 kts IAS below 3050m (10,000ft) AMSL	No	No

Source: AIP Philippines AMSL: Above mean sea level

Table 2.3-3 ATS Airspace Class-Services Provided & Flight Requirements:Class C, E, F – Appendix of ICAO Annex 11

Class	Type of flight	Separation provided	Service provided	Speed limitation	Radio communicatio n requirement	Subject to an ATC clearance
	IFR	All aircraft	Air traffic control service	Not applicable	Continuous two-way	Yes
С	VFR	VFR fm IFR	 Air traffic control service for separation from IFR VFR/VFR traffic information (and traffic avoidance advice on request) 	250 kts IAS below 3050m (10,000ft) AMSL	Continuous two-way	Yes
E	IFR	IFR fm IFR	Air traffic control service and , as far as practical, traffic information about VFR flights	250 kts IAS below 3050m (10,000ft) AMSL	Continuous two-way	Yes
	VFR	Nil	Traffic information as far as practical	250 kts IAS below 3050m (10,000ft) AMSL	No	Yes
F	IFR	IFR fm IFR as far as practical	Air traffic advisory service; Flight information service	250 kts IAS below 3050m (10,000ft) AMSL	Continuous two-way	No
	VFR	Nil	Flight information service	250 kts IAS below 3050m (10,000ft) AMSL	No	No

Source: Appendix 4 of ICAO Annex 11

As ILS, VOR/DME and Aeronautical Ground Rights are installed for the new airport, instrument approach and departure procedures will be established for safety aircraft operations under adverse weather conditions. In view of past results, the airspace for the new airport should be established as a similar classification as in the case of Bacolod and Iloilo Airport development planning.

With regard to the Terminal Control Area (TMA), as the new airport will be located within the existing Mactan TMA and congested air traffic is not expected, a new independent TMA for the new airport is not necessary to be established. However, it should be considered expanding Mactan TMA for establishment of approach and departure procedures as required due to the south end location of Mactan TMA.

Table 2.3-4 shows airspace classification of Bacolod and Iloilo Airport as reference.

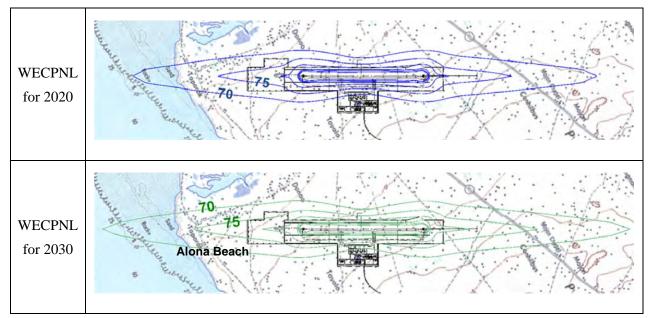

Airport	Airspace classification AIP, September 2004 (before new airport)	Airspace classification AIP, May 2008 (after new airport, latest)
Bacolod	E	ATZ – B, CTR – D TMA – D (ATS routes inside TMA below FL130) TMA – A (ATS routes inside TMA at FL130 & above)
lloilo	E	ATZ – B, CTR – C TMA – E (ATS routes inside TMA below FL130) TMA – A (ATS routes inside TMA at FL130 & above)

 Table 2.3-4 Airspace Classification of Bacolod & Iloilo Airport

Source: AIP Philippines

2.4. Noise Pollution Aspect

In the year 2020, there will be only a few residents affected by the noise level of more than WECPNL75 since ROW for the 1-km long Precision Approach Lighting System in the north-east, and wide areas for a Storm-water Soaking Yard in the south-west have already been acquired.

Source: JICA Study Team

Figure 2.4-1 Noise Contour (WECPNL) for New Bohol Airport at Panglao

In the year 2030, noise level of WECPNL75 may approach to the Alona Beach resort area, which however may be designated as commercial area (i.e. not residential area) thus not applied such noise level in this vicinity. It should be noted that main aircraft operations are designated in this Project from Runway 21 direction (i.e. approach and take-off from north-east to south-west) therefore such noise level to the Alona Beach may be somehow regulated, subject to ATC regulations.