# SOCIALIST REPUBLIC OF VIET NAM PROJECTS MANAGEMENT UNIT NO.2

**FINAL REPORT** 

# FOR ROAD & BRIDGE PORTION ON LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

(Vol. 2 of 2)

**MARCH 2013** 

Japan International Cooperation Agency (JICA)

ORIENTAL CONSULTANTS CO., LTD. (OC) NIPPON KOEI CO., LTD. (NK) PADECO CO., LTD. (PADECO) JAPAN BRIDGE & STRUCTURE INSTITUTE, INC. (JBSI) THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

# **CONTENTS**

| CHAPTE   | R 1 GENERAL                                              | 1-1                                   |
|----------|----------------------------------------------------------|---------------------------------------|
| 1.1      | INTRODUCTION                                             | 1-1                                   |
| 1.1.1    | Background                                               |                                       |
| 1.1.2    | Outline of Design Study                                  |                                       |
| 1.1.3    | Study Arca                                               |                                       |
| 1.2      | SCOPE OF DESIGN STUDY                                    |                                       |
| 1.2.1    | Scope of Design Study                                    |                                       |
| 1.2.2    | Work Schedule                                            |                                       |
| 1.2.3    | Main History of the Study                                | 1 <b>-7</b>                           |
| СНАРТЕ   |                                                          | 2_1                                   |
| 01/01/21 |                                                          | · · · · · · · · · · · · · · · · · · · |
| 2.1      | I OPOGRAPHIC SURVEY                                      |                                       |
| 2.1.1    | Scope and Purpose of Survey                              |                                       |
| 2.1.2    | Applied Standards                                        | 2-1                                   |
| 2.1.3    | Work Volume                                              | 2-2                                   |
| 2.1.4    | Equipment for Survey                                     | 2-3                                   |
| 2.1.5    | Control Point Survey                                     | 2-3                                   |
| 2.1.6    | Route Survey for Road Portion                            | 2-13                                  |
| 2.1.7    | Route Survey for Bridge Portion                          | 2-14                                  |
| 2.1.8    | Positioning of Boring Pits                               | 2-16                                  |
| 2.1.9    | Survey Results                                           | 2-21                                  |
| 2.1.10   | Points to be Noted for Drawings                          | 2-27                                  |
| 2.2      | HYDROLOGICAL SURVEY                                      | 2-28                                  |
| 2.2.1    | General                                                  | 2-28                                  |
| 2.2.2    | Review of Hydrological Survey Report in FS Stage         | 2-28                                  |
| 2.2.3    | Supplemental Hydrological Survey                         | 2-31                                  |
|          |                                                          | 3_1                                   |
|          |                                                          |                                       |
| 3.1      | GENERAL                                                  |                                       |
| 3.2      | STRATUM CLASSIFICATION                                   | 3-2                                   |
| 3.3      | SUBSOIL CONDITIONS OF APPROACH ROAD AREA IN HAI AN SIDE  | 3-4                                   |
| 3.3.1    | Stratum Classification                                   | 3-4                                   |
| 3.3.2    | N-value                                                  | 3-7                                   |
| 3.3.3    | Soil Parameters                                          | 3-7                                   |
| 3.3.4    | Soil Parameters for Design                               | 3-16                                  |
| 3.4      | SUBSOIL CONDITIONS OF BRIDGE AREA                        | 3 <b>-</b> 17                         |
| 3.4.1    | Stratum Classification                                   | 3 <b>-</b> 17                         |
| 3.4.2    | N-value                                                  |                                       |
| 3.4.3    | Soil Parameters                                          | 3-21                                  |
| 3.4.4    | Rock Parameters                                          |                                       |
| 3.4.5    | Soil and Rock Parameters for Design                      | 3-31                                  |
| 3.5      | SUBSOIL CONDITIONS OF APPROACH ROAD AREA IN CAT HAI SIDE |                                       |
| 3.5.1    | Stratum Classification                                   |                                       |
| 3.5.2    | N-value                                                  | 3-36                                  |
| 3.5.3    | Soil Parameters                                          | 3-36                                  |
| 3.5.4    | Soil Parameters for Design                               | <b>3-</b> 49                          |

#### Volume 1/2

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| 3.6   | CONCLUSIONS AND RECOMMENDATIONS |  |
|-------|---------------------------------|--|
| 3.6.1 | Conclusions                     |  |
| 3.6.2 | Recommendations                 |  |

# CHAPTER 4 MATERIAL SURVEY ......4-1

| 4.1   | INTRODUCTION                                            | 4-1 |
|-------|---------------------------------------------------------|-----|
| 4.1.1 | General                                                 | 4-1 |
| 4.1.2 | Objectives of Survey                                    | 4-1 |
| 4.2   | MATERIAL QUANTITIES REQUIRED FOR THE PROJECT            |     |
| 4.3   | CONDITIONS OF SURVEY                                    | 4-3 |
| 4.3.1 | Standards to be applied                                 | 4-3 |
| 4.3.2 | Procedures of Survey                                    | 4-4 |
| 4.3.3 | Contents of Survey                                      | 4-5 |
| 4.3.4 | Quantities of Survey                                    | 4-5 |
| 4.4   | RESULTS OF SURVEY                                       | 4-6 |
| 4.4.1 | List of Material Sources                                | 4-6 |
| 4.4.2 | Borrow Pits                                             | 4-7 |
| 4.4.3 | Sand Resources for Embankment                           |     |
| 4.4.4 | Sand Resources for Soft Soil Treatment                  |     |
| 4.4.5 | Rock Quarries for Asphalt Concrete and Cement Concrete  |     |
| 4.4.6 | Fine Aggregate for Asphalt Concrete and Cement Concrete |     |
| 4.4.7 | Asphalt and Cement Concrete Mixing Plants               |     |
| 4.5   | CONCLUSIONS AND RECOMMENDATIONS                         |     |
| 4.5.1 | Conclusions                                             |     |
| 4.5.2 | Recommendations                                         |     |

| CHAPTE | R 5 HIGHWAY DESIGN                                         | 5-1 |
|--------|------------------------------------------------------------|-----|
| 5.1    | DESIGN CONDITION OF HIGHWAY                                | 5-1 |
| 5.1.1  | Future development plan of Dinh Vu - Cat Hai Economic Zone | 5-1 |
| 5.1.2  | Design concept in Cat Hai area                             | 5-7 |

#### **CHAPTER 6** 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.5 6.5.1 6.5.2 6.6 6.7

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM |
|----------------------------------------------------------------------------------------------|
| FINAL REPORT                                                                                 |

| CHAPTE | R 7 HIGHWAY DESIGN                           | 7-1           |
|--------|----------------------------------------------|---------------|
| 7.1    | HIGHWAY DESIGN                               | 7-1           |
| 7.1.1  | Design Standard                              | <b>7-</b> 1   |
| 7.1.2  | Basic Design Concept                         |               |
| 7.1.3  | Typical Cross Section                        |               |
| 7.1.4  | Land acquisition and ROW                     |               |
| 7.1.5  | Horizontal and Longitudinal Alignment        |               |
| 7.1.6  | Local Approach Road Design                   |               |
| 7.2    | PAVEMENT DESIGN                              | 7-24          |
| 7.2.1  | Design Condition                             |               |
| 7.2.2  | Design Result                                |               |
| 7.2.3  | Design Sheet                                 |               |
| 7.3    | INTERCHANGE/INTERSECTION DESIGN              | 7 <b>-4</b> 4 |
| 7.3.1  | Location of Interchange/Intersections        | 7 <b>-4</b> 4 |
| 7.4    | DRAINAGE DESIGN                              |               |
| 7.4.1  | Road Surface Drainage                        |               |
| 7.4.2  | Irrigation                                   | 7-74          |
| 7.5    | SOFT SOIL TREATMENT                          | 7-78          |
| 7.5.1  | Design Criteria                              | 7-78          |
| 7.5.2  | Method of analysis                           |               |
| 7.5.3  | Result of the analysis                       |               |
| 7.5.4  | Typical Cross Section of Soft Soil Treatment |               |
| 7.6    | ROAD STRUCTURE DESIGN                        | 7-95          |
| 7.6.1  | Road Structures                              |               |
| 7.7    | TRAFFIC SAFETY                               |               |
| 7.7.1  | Guardrail                                    |               |
| 7.7.2  | Guard post                                   |               |
| 7.7.3  | Concrete curb                                | 7-105         |
| 7.7.4  | Delineators                                  | 7-105         |
| 7.7.5  | Traffic signs                                | 7-106         |
| 7.7.6  | Road marking                                 |               |

| CHAPTE | R 8 DESIGN OF BRIDGES                                   | 8-1 |
|--------|---------------------------------------------------------|-----|
| 8.1    | DESIGN CONDITIONS                                       |     |
| 8.1.1  | Basic Conditions                                        |     |
| 8.1.2  | Material to be used                                     |     |
| 8.1.3  | Conditions of Design Load                               |     |
| 8.1.4  | Load Modifier Factors and Load Combinations             |     |
| 8.1.5  | Concrete Cover                                          |     |
| 8.1.6  | Site Condition                                          |     |
| 8.1.7  | Concept on Comparative Study for Structure Optimization |     |
| 8.2    | SPAN LENGTH AND SPAN ARRANGEMENT                        |     |
| 8.2.1  | Study on Span Length of Main Bridge                     |     |
| 8.2.2  | Study on Span Length of Approach Bridge                 |     |
| 8.2.3  | Study on Number on Continuous Spans of Approach Bridge  |     |
| 8.2.4  | Study on Span Length of Flyover Bridge                  |     |
| 8.2.5  | Recommended Span Arrangement in Bridge Section          |     |
| 8.3    | STUDY OF MAIN BRIDGE                                    |     |
| 8.3.1  | Selection of Type of Main Bridge                        |     |
| 8.3.2  | Selection of Erection Method for Main Bridge            |     |
| 8.3.3  | Superstructure of Main Bridge                           |     |
| 8.3.4  | Substructure of Main Bridge                             |     |

# - 8.4.5 : Volume 1/2

#### 8.5 - : Volume 2/2

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| 8.3.5 | Study on Main Bridge Foundation                      |  |
|-------|------------------------------------------------------|--|
| 8.3.6 | Detailed Design of Main Bridge                       |  |
| 8.4   | DESIGN OF APPROACH BRIDGE                            |  |
| 8.4.1 | Study on Structure of Approach Bridge                |  |
| 8.4.2 | Substructure of Approach Bridge                      |  |
| 8.4.3 | Study on Foundation                                  |  |
| 8.4.4 | Study on Type of Bridge Foundation                   |  |
| 8.4.5 | Detailed Design of Approach Bridge                   |  |
| 8.5   | DESIGN OF CAM RIVER BRIDGE                           |  |
| 8.5.1 | Background                                           |  |
| 8.5.2 | General Plan and Site Conditions of Cam River Bridge |  |
| 8.5.3 | Design of Superstructure                             |  |
| 8.5.4 | Design of Substructure                               |  |
| 8.5.5 | Precast T Girder Erection Method                     |  |
| 8.6   | STUDY ON BRIDGE ACCESSORIES                          |  |
| 8.6.1 | Bearings                                             |  |
| 8.6.2 | Expansion Joint                                      |  |
| 8.6.3 | Railing                                              |  |

| CHAPTE | R 9 ELECTRIC WIRING AND LIGHTING FACILITY |     |
|--------|-------------------------------------------|-----|
| 91     | GENERAL                                   | 9_1 |
| 9.1.1  | Design concept for Electric Wiring.       |     |
| 9.1.2  | Scope of Works                            |     |
| 9.2    | DESIGN STANDARDS                          |     |
| 9.3    | DESIGN CONDITIONS                         |     |
| 9.3.1  | Service conditions                        |     |
| 9.3.2  | Design criteria                           |     |
| 9.4    | EQUIPMENT AND MATERIAL                    |     |
| 9.4.1  | General                                   |     |
| 9.4.2  | Equipment                                 |     |
| 9.4.3  | Material                                  |     |
| 9.5    | INSPECTION AND TEST                       |     |
| 9.6    | DRAWINGS                                  |     |
| 9.7    | FIGURES                                   |     |

| CHAPTER 10 CONSTRUCTION PLANNING                       |  |
|--------------------------------------------------------|--|
| 10.1 PROJECT OUTLINE                                   |  |
| 10.1.1 Work Content                                    |  |
| 10.1.2 Major Work Quantity                             |  |
| 10.1.3 Major Materials to be incorporated in the works |  |
| 10.2 TEMPORARY FACILITIES                              |  |
| 10.2.1 Temporary Facilities Outline                    |  |
| 10.2.2 Summary of Temporary Facilities                 |  |
| 10.2.3 Temporary Access Road                           |  |
| 10.2.4 Navigation Channel Safety                       |  |
| 10.2.5 Existing Utilities and Connection               |  |
| 10.2.6 Access to and Possession of Site                |  |
| 10.3 SOFT SOIL TREATMENT AND EMBANKMENT WORK           |  |
| 10.3.1 Soft Soil Treatment Works                       |  |
| 10.3.2 Geo-textile Sheet Spreading Works               |  |
| 10.4 ROAD WORKS                                        |  |
| 10.4.1 Road Works Outline                              |  |

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM |  |
|----------------------------------------------------------------------------------------------|--|
| FINAL REPORT                                                                                 |  |

| 10.4.2 | Sub grade, Sub -base course and Base- course Works |  |
|--------|----------------------------------------------------|--|
| 10.4.3 | Asphalt Treated Base Course and Pavement Works     |  |
| 10.5   | APPROACH BRIDGE                                    |  |
| 10.5.1 | Approach Bridge Works Outline                      |  |
| 10.5.2 | Approach Bridge (SBS Method) Working Sequence      |  |
| 10.5.3 | Sub Structure Works                                |  |
| 10.5.4 | Fabrication of PC Segments                         |  |
| 10.5.5 | Segment Erection Work (Span By Span Method)        |  |
| 10.5.6 | Cast in-place Cantilever Method                    |  |
| 10.6   | MAIN BRIDGE                                        |  |
| 10.6.1 | MAIN BRIDGE WORK OUTLINE                           |  |
| 10.6.2 | Main Bridge Overall Working Program                |  |
| 10.6.3 | Main Bridge Sub-structure Construction Method      |  |
| 10.6.4 | Pier Head construction                             |  |
| 10.6.5 | Main Bridge Girder Construction Method             |  |
| 10.7   | PROGRAM                                            |  |
| 10.7.1 | Total construction period                          |  |
| 10.7.2 | Basis of program                                   |  |
| 10.7.3 | Construction Program                               |  |
| 10.7.4 | Network Program                                    |  |
| 10.7.5 | Work Days Calculation                              |  |
| 10.8   | MACHINE LIST                                       |  |
| 10.8.1 | Machinery selection study                          |  |
| 10.8.2 | Machine list                                       |  |

# 

| 11.1 \$ | SAFETY PLAN                                                     |  |
|---------|-----------------------------------------------------------------|--|
| 11.1.1  | Introduction                                                    |  |
| 11.1.2  | Objectives                                                      |  |
| 11.1.3  | Safety Organization Chart and Responsibility                    |  |
| 11.1.4  | Safety Training                                                 |  |
| 11.1.5  | Safety Meeting                                                  |  |
| 11.1.6  | Personal Protective Equipment                                   |  |
| 11.1.7  | Access Control on Site                                          |  |
| 11.1.8  | Safety Control and Activity                                     |  |
| 11.1.9  | Safety Inspection / Remedying Defects                           |  |
| 11.1.10 | Penalties for Safety Violations / Failure to Comply             |  |
| 11.1.11 | First Aid                                                       |  |
| 11.1.12 | Special Obligations and Care of the works                       |  |
| 11.1.13 | Working under Extreme Conditions                                |  |
| 11.1.14 | Emergency Preparedness                                          |  |
| 11.1.15 | Triggering must be done to conform to the following conditions: |  |
| 11.1.16 | Motivation                                                      |  |
| 11.1.17 | Effective Communication for Safety                              |  |
| 11.1.18 | Safety Reports and Notification of Accidents                    |  |
| 11.2 \$ | SAFETY WORKING PRACTICES                                        |  |
| 11.2.1  | Objectives                                                      |  |
| 11.2.2  | Statutory Requirements on Safe Practices                        |  |
| 11.2.3  | Preliminary Works / Typical Erection Works                      |  |
| 11.2.4  | Excavation and Backfilling                                      |  |
| 11.2.5  | Road Works                                                      |  |
| 11.2.6  | Temporary Jetty Work                                            |  |
| 11.2.7  | Bored Piling Work                                               |  |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| 11.2.8  | Sheet Pile Work                                         |  |
|---------|---------------------------------------------------------|--|
| 11.2.9  | Pile Cap / Pier Column Work                             |  |
| 11.2.10 | Construction of Bridge Superstructure (Main Bridge)     |  |
| 11.2.11 | Construction of Bridge Superstructure (Approach Bridge) |  |
| 11.2.12 | Breach of Safety Plan                                   |  |

### 

| 12.1 OBJECTIVES OF ENVIRONMENTAL AND SOCIAL CONSIDERATIONS AND REQUI                | RED ACTIONS |
|-------------------------------------------------------------------------------------|-------------|
| 12.1.1 Objectives of the tasks on environmental and social considerations           |             |
| 12.2 REVIEW OF ELA REPORT                                                           | 12-1        |
| 12.2.1 Brief description on the approval of the EIA Report                          | 12-5        |
| 12.2.2 Deficiencies found in the EIA Report and proposed actions                    | 12 0        |
| to improve deficiencies                                                             |             |
| 12.2.3 Impacts to living and livelihood of local residents.                         |             |
| 12.2.4 Impacts to air ambient and noise                                             |             |
| 12.2.5 Impacts to surface water quality                                             |             |
| 12.2.6 Impacts of solid wastes, and waste soils                                     |             |
| 12.2.7 Impacts caused by the waste soils dumping sites                              |             |
| 12.2.8 Impacts to local traffic, local topography, traffic accidents, etc           |             |
| 12.2.9 Impacts to ecosystem                                                         |             |
| 12.2.10 Restoration of construction sites and yards after completion of constructio | on12-42     |
| 12.3 ENVIRONMENTAL MANAGEMENT PLAN                                                  |             |
| 12.3.1 Objectives                                                                   |             |
| 12.3.2 EMP Implementing Organization                                                |             |
| 12.3.3 Impact mitigation measures                                                   |             |
| 12.3.4 Site environmental supervision                                               |             |
| 12.3.5 Complaint Procedure                                                          |             |
| 12.3.6 Reporting                                                                    |             |
| 12.3.7 Environmental Monitoring Plan                                                |             |
| 12.3.8 EMP implementing schedule                                                    |             |
| 12.4 OPERATION PHASE EMP                                                            |             |
| 12.5 RAP MONITORING PLAN                                                            |             |
| 12.5.1 Objectives of RAP Monitoring Plan                                            |             |
| 12.5.2 Various stages to be covered by the RAP Monitoring Plan                      |             |
| 12.5.3 Scope of RAP Monitoring Plan                                                 |             |
| 12.5.4 Reports and Reporting                                                        |             |
| 12.5.5 Data Management                                                              |             |
| 12.6 INFORMATION DISSEMINATION AND PUBLIC CONSULTATIONS                             |             |
| 12.7 ESTIMATED COST FOR ENVIRONMENTAL MANAGEMENT                                    |             |
| 12.8 SUPPLEMENTARY EIA DUE TO DREDGING WORKS                                        |             |

| CHAPTE | R 13 HIV/AIDS PREVENTION PROGRAM                                  | 13-1 |
|--------|-------------------------------------------------------------------|------|
| 13.1   | INTRODUCTION                                                      |      |
| 13.1.1 | Situation in Vietnam                                              |      |
| 13.1.2 | Situation in the Project Sites                                    |      |
| 13.2   | ISSUES                                                            |      |
| 13.3   | DESIGN AND IMPLEMENTATION STRATEGY                                |      |
| 13.4   | SCOPE OF THE PROGRAM                                              |      |
| 13.4.1 | Program Title                                                     |      |
| 13.4.2 | The Program Period and Schedule                                   |      |
| 13.4.3 | Supervision, Implementing Agencies, and Manager/Service Providers |      |

|        | FINAL REPORT                                                                 |
|--------|------------------------------------------------------------------------------|
| 13.4.4 | Site and Immediate Community                                                 |
| 13.5   | EXPECTED ACTIVITIES                                                          |
| 13.5.1 | Implementation Arrangement                                                   |
| 13.5.2 | Advocacy and Capacity Building                                               |
| 13.5.3 | Information, Education, Communication (IEC)                                  |
|        | and Behavior Change Communication (Peer Education) 13-12                     |
| 13.5.4 | Provision of Health Service and Counseling                                   |
| 13.5.5 | Monitoring and Evaluation                                                    |
| 13.6   | NOTES FOR DESIGN ADJUSTMENT AND IMPLEMENTATION                               |
| 13.7   | COST ESTIMATES                                                               |
| 13.8   | ANNEXES                                                                      |
| 13.8.1 | Annex-1: Draft Program Design and Monitoring Framework 13-15                 |
| 13.8.2 | Annex-2: Tentative Plan of Operation                                         |
| 13.8.3 | Annex-3: Sample Implementation Guide13-25                                    |
| 13.8.4 | Annex-4: TOR for Management and Monitoring Consultants (Roads & Bridge)13-30 |
| 13.8.5 | Annex-5: Sample TOR for Service Provider                                     |
| 13.8.6 | Annex-6: Sample HIV Clause for Inclusion in Construction Contracts           |
| 13.8.7 | Annex-7: Cost estimates                                                      |
| 13.8.8 | Annex-8: Abbreviations                                                       |
|        |                                                                              |
|        |                                                                              |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

| CHAPTER 14 OPERATION AND MAINTENANCE PLAN                                       | 4-1          |
|---------------------------------------------------------------------------------|--------------|
| 14.1 OUTLINE OF CONSTRUCTED ROAD1                                               | .4-1         |
| 14.1.1 Legislation Related to the Route1                                        | .4-1         |
| 14.1.2 Details of the Road Facilities1                                          | 4-2          |
| 14.1.3 Ambient Circumstances of Route1                                          | .4-3         |
| 14.2 EXISTING STATE OF THE ROAD OPERATION AND MAINTENANCE1                      | 4-4          |
| 14.2.1 Outline of Responsible Organization for the Operation and Maintenance    | 4-4          |
| 14.2.2 Recent Topics Related to Road Maintenance14                              | -23          |
| 14.2.3 Technical Level of Operation and Maintenance Work14                      | -27          |
| 14.3 FINANCIAL AND BUDGET SITUATION OF ROAD OPERATION AND MAINTENANCE           |              |
| ORGANIZATION14                                                                  | -30          |
| 14.3.1 Legislation of National Budget Related to Road Operation and Maintenance | -30          |
| 14.3.2 National Budget Related to Road Operation and Maintenance14              | -31          |
| 14.4 PROPOSAL OF OPERATION AND MAINTENANCE TO CONSTRUCTED ROAD14                | -37          |
| 14.4.1 Proposal of Management Organization for Operation and Maintenance14      | <b>I-</b> 37 |
| 14.4.2 Proposal of Organization and Activities in the Management Organization14 | -40          |
| 14.4.3 Contract Method for Operation and Maintenance Works14                    | -49          |
| 14.4.4 Estimated Cost for Operation and Maintenance Activities                  | <b>-4</b> 9  |
|                                                                                 |              |
| CHAPTER 15 COST ESTIMATE AND PROCUREMENT                                        | 5-1          |

| 15.1 THE POLICY OF THE COST ESTIMATE FOR ROAD AND BRIDGE PORTION |       |
|------------------------------------------------------------------|-------|
| 15.1.1 Application Standard and Related Laws and Regulations     |       |
| 15.1.2 Construction Cost Structure                               |       |
| 15.1.3 Conditions of Cost Estimate                               |       |
| 15.2 PROJECT COST                                                |       |
| 15.2.1 Structure of Project Cost                                 |       |
| 15.2.2 Project Cost                                              |       |
| 15.3 ANNUAL FUND REQUIREMENT                                     |       |
| 15.4 PROCUREMENT RATIO FROM JAPAN                                | 15-19 |
| 15.5 THE DETAILED EXPLANATION OF COST ESTIMATE                   |       |
| 15.5.1 General Items                                             |       |
| 15.5.2 Borrow Pit for Earth Work                                 |       |

#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

|        |                                                                      | _             |
|--------|----------------------------------------------------------------------|---------------|
| 15.5.3 | Quarry site for Pavement Work and Concrete Work                      | 6             |
| 15.5.4 | SBS Erection Method15-29                                             | 9             |
| 15.5.5 | Temporary expense contained in Pay-item "Concrete 50Mpa for Segment" | 1             |
| 15.5.6 | Temporary expense contained in Pay-item                              |               |
|        | "concrete 50Mpa for Pier Head Cast in Place"                         | 5             |
| 15.5.7 | Temporary expense contained in Pay-item "Erection of Segment"        | 6             |
| 15.5.8 | Depreciation of Steel Sheet Pile                                     | 0             |
|        |                                                                      |               |
|        |                                                                      |               |
| CHAPTE | R 16 PROJECT EFFECTIVENESS16-                                        | 1             |
| 16.1   | GENERAL                                                              | 1             |
| 16.2   | ECONOMIC ANALYSIS                                                    | 1             |
| 16.2.1 | Review of the Existing Studies                                       | 1             |
| 16.2.2 | Preconditions of the Analysis                                        | 2             |
| 16.2.3 | Evaluation of Project Benefits                                       | 7             |
| 16.2.4 | Evaluation of Project Benefits                                       | 2             |
| 16.3   | MONITORING OF PROJECT PERFORMANCE                                    | 5             |
| 16.3.1 | Qualitative Benefit of the Project                                   | 5             |
| 16.3.2 | Indicators and Targets                                               | 6             |
|        |                                                                      |               |
|        |                                                                      |               |
| CHAPTE | R 17 ROJECT IMPLEMENTATION PLAN                                      | 1             |
| 17.1   | LOAN AGREEMENT                                                       | 1             |
| 17.2   | IMPLEMENTATION STRUCTURE                                             | 1             |
| 17.2.1 | Related Organizations                                                | 1             |
| 17.3   | IMPLEMENTATION SCHEDULE                                              | 1             |
| 17.3.1 | Pre-construction Works                                               | 1             |
| 17.3.2 | Construction Works                                                   | 2             |
| 17.3.3 | Implementation Program (I/P)                                         | 2             |
| 17.4   | CONSTRUCTION PACKAGING PLAN                                          | 4             |
| 17.4.1 | Background                                                           | 4             |
| 17.4.2 | Alternatives of Packaging Plans                                      | 4             |
| 17.4.3 | Comparative Study                                                    | 8             |
|        |                                                                      |               |
|        |                                                                      |               |
| CHAPTE | R 18 FUTURE UPGRADE PLAN                                             | 1             |
| 18.1   | GENERAL 18-                                                          | 1             |
| 18.1.1 | Basic Concept 18-                                                    | 1             |
| 18.1.2 | Expected Timing of Second Stage 18-                                  | 1             |
| 18.7   | FITURE UPGRADE PLAN OF ROAD SECTION 18-                              | 2             |
| 18.2   | Second Stage 18-                                                     | $\frac{1}{2}$ |
| 18.2.1 | FUTURE UPGRADE PLAN OF BRIDGE SECTION 19-                            | ۔<br>۲        |
| 1821   | Abutment                                                             | z             |
| 1837   | Approach Bridge 18-                                                  | ן<br>ג        |
| 1832   | Main Bridge                                                          | 4             |
|        |                                                                      |               |

| 18.3.3 | Main Bridge                               | 18-4 |
|--------|-------------------------------------------|------|
| 18.4   | FUTURE UPGRADE PLAN OF TAN VU INTERCHANGE | 18-6 |
| 18.4.1 | First Stage                               | 18-6 |
| 18.4.2 | Second Stage                              | 18-7 |

| CHAPTE | R 19 PREPARATION OF TENDER DOCUMENTS              | 19-1 |
|--------|---------------------------------------------------|------|
| 19.1   | PREQUALIFICATION DOCUMENTS                        |      |
| 19.1.1 | Descriptions                                      |      |
| 19.1.2 | Types of Contract                                 |      |
| 19.1.3 | Prequalification Documents                        |      |
| 19.2   | BIDDING DOCUMENTS                                 |      |
| 19.2.1 | Descriptions                                      |      |
| 19.2.2 | Sample Bidding Documents Under Japanese ODA Loans |      |
| 19.2.3 | Bidding Documents for the Project                 |      |

#### List of Tables

| Table 2.1.2-1  | Standards System                                                  | 2-1           |
|----------------|-------------------------------------------------------------------|---------------|
| Table 2.1.3-1  | Contracted and Actual Work Volume                                 | 2-2           |
| Table 2.1.4-1  | Equipment for Survey                                              | 2-3           |
| Table 2.1.5-1  | Parameters in 364:2006 standards                                  | 2-5           |
| Table 2.1.5-2  | Observation error tolerance in TCXDVN 364:2006 standards          | 2-5           |
| Table 2.1.5-3  | Comparison for D/D stage                                          | 2-6           |
| Table 2.1.5-4  | Comparison for F/S stage                                          | 2-7           |
| Table 2.1.5-5  | Comparison for D/D and F/S stages                                 | 2 <b>-</b> 7  |
| Table 2.1.5-6  | Comparison of Elevation of F/S and D/D stages                     | 2-9           |
| Table 2.1.5-7  | Result of quality control of IV class leveling                    | 2-10          |
| Table 2.1.5-8  | Dimensions of secondary control point                             | 2-11          |
| Table 2.1.5-9  | Results of quality control for Secondary control points           | 2-12          |
| Table 2.1.8-1  | Coordinates of Boring Pits for Road portion                       | 2-16          |
| Table 2.1.8-2  | Coordinates of Boring Pits for Bridge portion                     | 2-18          |
| Table 2.1.9-1  | F inal Results of Grade IV control points                         | 2-21          |
| Table 2.1.9-2  | Final Result of Secondary control points                          | 2-22          |
| Table 2.1.9-3  | Detail of Drawings of Longitudinal                                | 2-25          |
| Table 2.1.9-4  | Detail of Drawings of Cross-section                               | 2-25          |
| Table 2.1.9-5  | Detail of Drawings of Plan-metric                                 | 2 <b>-</b> 25 |
| Table 2.1.9-6  | Detail of Drawings of Longitudinal                                | 2 <b>-</b> 26 |
| Table 2.1.9-7  | Detail of Drawings of Cross-section                               | 2-26          |
| Table 2.1.9-8  | Detail of Drawings of Plan-metric                                 | 2-26          |
| Table 2.1.9-9  | Detail of Drawings of Plan-metric                                 | 2 <b>-</b> 27 |
| Table 2.1.9-10 | Detail of Drawings of Cross-section                               | 2 <b>-</b> 27 |
| Table 2.2.2-1  | Scope and Quantities of Hydrological Survey in FS Stage           | 2-28          |
| Table 2.2.3-1  | Highest Water Levels equivalent to frequencies at Hon Dau Station | 2-32          |
| Table 2.2.3-2  | Highest Water Levels equivalent to frequencies                    |               |
| in E           | Bridge Section (Current Status)                                   | 2-32          |

| Table 2.2.3-3         | Highest Water Levels equivalent to frequencies in Bridge Section           |               |
|-----------------------|----------------------------------------------------------------------------|---------------|
| (After Dinh V         | u Industrial Zone completed)                                               | 2-32          |
| Table 2.2.3-4<br>in 1 | Highest Water Levels equivalent to frequencies<br>Road Section Km0-Km4+200 | 2-33          |
| Table 2.2.3-5         | Difference of water level between investigated data                        |               |
| and                   | high WLs equivalent to frequencies                                         | 2-33          |
| Table 2.2.3-6         | Design high water levels along the section                                 | 2-33          |
| Table 2.2.3-7         | Summary of Design Water Levels at Locations of Drainage Structures         | 2-34          |
|                       |                                                                            |               |
| Table 3.1-1           | Contents of Geotechnical Investigation                                     |               |
| Table 3.2-1           | Stratum Classification (Main Layer)                                        | 3-2           |
| Table 3.3.1-1         | Stratum Classification (Hai An side)                                       | 3-4           |
| Table 3.3.1-2         | Thickness of Each Layer (Hai An side)                                      | 3-5           |
| Table 3.3.2-1         | N-value of Each Layer (Hai An side)                                        | 3-7           |
| Table 3.3.3-1         | Soil Characteristics of Each Layer (Hai An side)                           | 3-8           |
| Table 3.3.3-2         | Shear Strength of Clay for Short Term Stability (Hai An side)              |               |
| Table 3.3.3-3         | Shear Strength of Clay for Long Term Stability (Hai An side)               |               |
| Table 3.3.3-4         | Shear Strength of Sand (Hai An side)                                       | 3-11          |
| Table 3.3.3-5         | Soil Parameters for Settlement Analysis (Hai An side)                      | <b>3-</b> 14  |
| Table 3.3.4-1         | Soil Parameters for Design (Hai An side)                                   | 3-16          |
| Table 3.4.1-1         | Stratum Classification (Bridge Area)                                       | 3-17          |
| Table 3.4.1-2         | Thickness of Each Layer (Bridge Area)                                      | 3-18          |
| Table 3.4.2-1         | N-value of Each Layer (Bridge Area)                                        |               |
| Table 3.4.3-1         | Soil Characteristics of Each Layer (Bridge Area)                           |               |
| Table 3.4.3-2         | Shear Strength of Clay for Short Term Stability (Bridge Area)              |               |
| Table 3.4.3-3         | Shear Strength of Sand (Bridge Area)                                       | 3-24          |
| Table 3.4.3-4         | Soil Parameters for Settlement Analysis (Bridge Area)                      |               |
| Table 3.4.4-1         | Results of Rock Test (Bridge Area)                                         |               |
| Table 3.4.4-2         | Rock Parameters for Design (Bridge Area)                                   |               |
| Table 3.5.1-1         | Stratum Classification (Cat Hai side)                                      |               |
| Table 3.5.1-2         | Thickness of Each Layer (Cat Hai side)                                     | 3-33          |
| Table 3.5.3-1         | Soil Characteristics of Each Layer (Cat Hai side)                          | 3-37          |
| Table 3.5.3-2         | Shear Strength of Clay for Short Term Stability (Cat Hai side)             | 3-39          |
| Table 3.5.3-3         | Shear Strength of Clay for Long Term Stability (Cat Hai side)              | 3-40          |
| Table 3.5.3-4         | Shear Strength of Sand (Cat Hai side)                                      | 3-41          |
| Table 3.5.3-5         | Soil Parameters for Settlement Analysis (Cat Hai side)                     | 3-46          |
| Table 3.5.4-1         | Soil Parameters for Design (Cat Hai side)                                  |               |
| Table 3.6.1-1         | Stratum Classification (Main Layer)                                        |               |
| Table 3.6.1-2         | Soil Parameters for Design (Hai An side)                                   | 3-51          |
| Table 3.6.1-3         | Soil and Rock Parameters for Design (Bridge Area)                          | 3 <b>-</b> 51 |
| Table 3.6.1-4         | Soil Parameters for Design (Cat Hai side)                                  |               |
| Table 3.6.2-1         | Additional Geotechnical Investigation in Construction Stage                |               |

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VI | ET NAM |
|----------------------------------------------------------------------------------------|--------|
| FINAL RE                                                                               | PORT   |

| Table 4.1.2-1          | Ouantities of soil, sand and macadam required for the project                    |
|------------------------|----------------------------------------------------------------------------------|
| Table 4.1.2-2 (        | Quantities of aggregate for concrete                                             |
| Table 4.3.1-1          | Specification for Soil and Aggregate                                             |
| Table 4.3.4-1          | Quantities of Construction Material Source Survey                                |
| Table 4.4.1-1          | List of Material Sources                                                         |
| Table 4.4.2-1          | List of Material Sources                                                         |
| Table 4.4.2-2          | Results of Laboratory Tests of Samples at Borrow Pits                            |
| Table 4.4.2-3          | Transportation distance                                                          |
| Table 4.4.3-1          | Results of Laboratory Tests of Sand Resources for Embankment                     |
| Table 4.4.3 <b>-</b> 2 | Reserve, Capacities and Transportation Distance                                  |
| Table 4.4.4-1          | Reserve, Capacities and Transportation Distance                                  |
| Table 4.4.4-2          | Results of Laboratory Tests of Sand Resources for Soft Soil Treatment            |
| Table 4.4.5-1          | Reserve, Capacities and Transportation Distance                                  |
| Table 4.4.5-2          | Results of Laboratory Tests of Rock Samples                                      |
| Table 4.4.6-1          | Reserve, Capacities and Transportation Distance                                  |
| Table 4.4.6-2          | Results of Laboratory Tests of Sand Samples4-19                                  |
| Table 4.4.7-1          | Location, Actuality, and Technology of Mixing Plants                             |
|                        |                                                                                  |
| Table 5.1.1-1          | Area of None-Tariff Zone                                                         |
| Table 5.1.1-2          | Area of Industrial Zone                                                          |
| Table 5.1.1-3          | Area of Industrial Zone                                                          |
|                        |                                                                                  |
| Table 6.4.1-1          | FS & SAPROF Target Years                                                         |
| Table 6.4.2-1          | Dinh Vu Island Trip Generation/Attraction Variables & Values for FS & SAPROF6-3  |
| Table 6.4.2-2          | Cat Hai Island Trip Generation/Attraction Variables & Values for FS & SAPROF 6-3 |
| Table 6.4.2-3          | Cat Ba Island Trip Generation/Attraction Variables & Values for FS & SAPROF 6-3  |
| Table 6.4.2-4          | Trip Generation & Attraction Rates                                               |
| Table 6.4.2-5          | Comparison of FS & SAPROF Traffic Forecasts                                      |
| for                    | Morning Peak Hour (unit: PCU)                                                    |
| Table 6.5.1-1          | Dinh Vu Island Trip Generation/Attraction Variables for LH Project               |
| Table 6.5.1-2          | Southern Dinh Vu Island Trip Generation/Attraction Variable for LH Project       |
| Table 6.5.1-3          | Cat Hai Island Trip Generation/Attraction Variables for LH Project               |
| Table 6.5.1-4          | Cat Hai Island Trip Generation/Attraction Variables for LH Project               |
| Table 6.5.2-1          | Peak Hour Factors by Vehicle Type                                                |
| Table 6.5.2-2          | PCU Conversion Factors                                                           |
| Table 6.5.2-3          | Modal Split of Industrial Employees in Dinh Vu                                   |
| Table 6.5.2-4          | Modal Split of Residents in Dinh Vu6-11                                          |
| Table 6.5.2-5          | Project Road Usage                                                               |
| Table 6.5.2-6          | Modal Split for Cat Hai (unit: %)6-12                                            |
| Table 6.5.2-7          | Modal Split for Cat Ba (unit: %)                                                 |
| Table 6.6-1 I          | Daily Traffic by Year for Project Area    6-13                                   |

#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| Table 6.6-2      | Average Annual Growth in Daily Traffic for Project Area                                 | 6-13 |
|------------------|-----------------------------------------------------------------------------------------|------|
| Table 6.6-3      | Daily Traffic by Vehicle Type per Direction for 2015                                    | 6-18 |
| Table 6.6-4      | Daily Traffic by Vehicle Type per Direction for 2020                                    | 6-18 |
| Table 6.6-5      | Daily Traffic by Vehicle Type per Direction for 2030                                    | 6-18 |
| Table 6.7-1<br>f | Comparison of FS & LH Project Traffic Forecasts<br>for Morning Peak Hour(unit: PCU)     | 6-21 |
| Table 6.7-2      | Comparison of SAPROF & LH Project Traffic Forecasts<br>for Morning Peak Hour(unit: PCU) | 6-21 |

| Table 7.1.2-1  | Dimensions for Design Vehicles                                         | 7-1           |
|----------------|------------------------------------------------------------------------|---------------|
| Table 7.1.2-2  | Summary of the Geometric Design Criteria for the Highway               | 7-2           |
| Table 7.1.3-1  | Comparison table of Alternatives of Design of Road Cross Section       | 7 <b>-</b> 6  |
| Table 7.1.3-2  | Fill slope gradient                                                    | 7-8           |
| Table 7.1.5-1  | Alignment Elements and Coordinates of IP                               | 7-13          |
| Table 7.1.5-2  | Comparative Main Control Points for Longitudinal Design                | 7 <b>-1</b> 4 |
| Table 7.1.5-3  | Summary of additional control points for longitudinal alignment design | 7-15          |
| Table 7.1.6-1  | vertical clearance for local approach road                             | 7-17          |
| Table 7.1.6-2  | Summary of underpass box culvert                                       | 7-20          |
| Table 7.1.6-3  | Summary of frontage road                                               | 7-20          |
| Table 7.1.6-4  | Design criteria for local approach road                                | 7-23          |
| Table 7.2.1-1  | Summary of Design Values                                               | 7 <b>-</b> 24 |
| Table 7.3.1-1  | Location of Intersections                                              | 7 <b>-4</b> 4 |
| Table 7.3.1-2  | Evaluation of Interchange/Intersection Type for Tan Vu Interchange     | 7-47          |
| Table 7.3.1-3  | Capacity Analysis of Tan Vu Interchange                                | 7-48          |
| Table 7.3.1-4  | Dimension of Trailer                                                   |               |
| Table 7.3.1-5  | Intersection Treatment                                                 | 7-51          |
| Table 7.3.1-6  | Minimum Curve Radius for Right Turn Lane                               | 7-52          |
| Table 7.3.1-7  | Length of Deceleration Taper                                           | 7-52          |
| Table 7.3.1-8  | Length of Acceleration Taper                                           | 7 <b>-</b> 53 |
| Table 7.3.1-9  | Taper and Deceleration lane length                                     | 7-55          |
| Table 7.3.1-10 | Evaluation of Interchange/Intersection Type for No.1 Interchange       |               |
| Table 7.3.1-11 | Capacity Analysis of No.1 Interchange                                  | 7 <b>-</b> 61 |
| Table 7.3.1-12 | Design Speed of No.1 Intersection                                      | 7-63          |
| Table 7.3.1-13 | Entry Width for No.1 Intersection                                      | 7 <b>-</b> 64 |
| Table 7.3.1-14 | Flare Length for No.1 Intersection                                     | 7-65          |
| Table 7.3.1-15 | Entry Angle for No.1 Intersection                                      | 7-65          |
| Table 7.4.1-1  | Existing and Anticipated Main Land Use along Tan Vu Lach Huyen Highw   | ay 7-69       |
| Table 7.4.1-2  | Drainage Pipe List                                                     | 7 <b>-</b> 71 |
| Table 7.4.1-3  | Types of Drainage Pipe Outlet                                          | 7 <b>-</b> 73 |
| Table 7.4.2-1  | List of Irrigation Culvert                                             | 7-75          |
| Table 7.4.2-2  | Comparison Irrigation Culverts between F/S and D/D                     | 7-76          |

| Table 7.5.1-1  | Allowable residual settlement after construction of pavement                  | 7-78                 |
|----------------|-------------------------------------------------------------------------------|----------------------|
| Table 7.5.2-1  | Friction angle and Ratio of stress division depending on replacement ratio    | 7 <b>-</b> 84        |
| Table 7.5.3-1  | Sectioning for Detailed Design (Hai An side)                                  | 7-86                 |
| Table 7.5.3-2  | Soil parameters for settlement calculation (Hai An side)                      | 7 <b>-</b> 88        |
| Table 7.5.3-3  | Recommended Countermeasures and Applicable Condition in Detailed Desig        | gn7 <b>-</b> 90      |
| Table 7.5.3-4  | Soft Soil Treatment Methods                                                   | 7-91                 |
| Table 7.5.3-5  | Selected countermeasures and result of calculation of the treatment (Hai An s | side). 7 <b>-</b> 92 |
| Table 7.5.3-6  | Selected countermeasures and result of calculation of the treatment (Cat Hai  | side) 7-93           |
| Table 7.6.1-1  | List of Drainage/Irrigation box culvert type                                  | 7-96                 |
| Table 7.6.1-2  | List of Drainage/Irrigation pipe culvert type                                 | 7-96                 |
| Table 7.6.1-3  | Technical comparison for retaining wall between SAPROF and D/D                | 7 <b>-</b> 98        |
| Table 7.7.1-1  | Schedule of guardrail                                                         | 7-104                |
| Table 8 1 2-1  | Specification for PC Cable                                                    | 8-2                  |
| Table 8 1 3_1  | Dynamic Load Allowance                                                        |                      |
| Table 8.1.3-1  | Multiple Presence Factor                                                      |                      |
| Table 8 1 3-3  | Temperature Ranges (degree in Celsius)                                        | 8-6                  |
| Table 8 1 3-4  | Wind Velocity                                                                 | 8-0<br>8-7           |
| Table 8 1 3-5  | Correct Coefficient for Wind Zone and Elevation                               |                      |
| Table 8 1 3-6  | Acceleration and Seismic Zone                                                 | 8-8                  |
| Table 8 1 3-7  | Site Coefficient                                                              |                      |
| Table 8.1.3-8  | Response Modification Factor                                                  |                      |
| Table 8.1.4-1  | Load Modifier Factors                                                         | 8-11                 |
| Table 8.1.4-2  | Load Combinations.                                                            |                      |
| Table 8.1.4-3  | Minimum Concrete Cover                                                        |                      |
| Table 8.1.4-4  | Design data for Approach Bridge at Boring NoBB7                               |                      |
| Table 8.1.4-5  | Pier Height and Seawater Depth                                                |                      |
| Table 8.1.4-6  | Correction factor for pier scour                                              |                      |
| Table 8.1.4-7  | Results of Design Scour Depth                                                 |                      |
| Table 8.1.5-1  | Evaluation Criteria of Alternative Study                                      | 8-22                 |
| Table 8.1.5-2  | Scoring System for Evaluation of Alternative Structure                        | 8-22                 |
| Table 8.2.1-1  | Comparison Table on Span Length and Shape of Piers of Approach Bridge         |                      |
| Table 8.2.2-1  | Comparison on Number of Continuous Spans of Approach Bridge                   |                      |
| Table 8.2.3-1  | Comparison in Flyover Bridge for Intersection No.2                            |                      |
| Table 8.2.3-2  | Comparison in Flyover Bridge for Intersection No.3                            | 8-33                 |
| Table 8.2.4-1  | Recommended Span Arrangement in comparison with SAPROF Study                  |                      |
| Table 8.3.1-1  | Comparison on Type of Main Bridge                                             | 8-37                 |
| Table 8.3.2-1  | Comparison between Cast-in-place Cantilever Method                            |                      |
| and Precast Se | gment Method of Main Bridge                                                   | 8-39                 |
| Table 8.3.4-1  | Comparison Study on Angle of V-shaped Pier                                    | 8-46                 |
| Table 8.3.4-2  | Comparison Study on Pier Appearance in Longitudinal Direction                 | 8-48                 |

| Table 8.3.4-3  | Summary of Section Forces* of Pier due to Creep and Shrinkage         |                |
|----------------|-----------------------------------------------------------------------|----------------|
| Table 8.3.4-4  | Summary of Stress* of Pier due to Creep and Shrinkage                 | 8-56           |
| Table 8.3.4-5  | Summary of Bending Moment of Pier due to Pressurization               |                |
| Table 8.3.4-6  | Summary of Stress of Pier due to Pressurization                       | 8 <b>-</b> 61  |
| Table 8.3.4-7  | Summary of Preliminary Cost Estimate of Pressurization Work (One Set) | 8 <b>-</b> 61  |
| Table 8.3.5-1  | Site Conditions for Study                                             |                |
| Table 8.3.5-2  | Comparison on Foundation for Main Bridge                              |                |
| Table 8.3.5-3  | Comparison on Foundation Style for Main Bridge                        |                |
| Table 8.3.5-4  | Determined design boring No                                           | 8-70           |
| Table 8.3.5-5  | Safety Factor for Bearing Capacity and Allowable Stress in Steel Pipe |                |
| Table 8.3.5-6  | Properties and Stress Limit of Steel Pipe for Steel Pipe Sheet Pile   |                |
| Table 8.3.5-7  | Design of Estimated Corrosion Thicknesses                             | 8-73           |
| Table 8.3.5-8  | Stability Calculation model                                           |                |
| Table 8.3.5-9  | Determined design model                                               |                |
| Table 8.3.6-1  | Dimensions of Structural Members of Substructure                      |                |
| Table 8.3.6-2  | Dimensions of Structural Members of Superstructure                    |                |
| Table 8.3.6-3  | Properties of Concrete                                                |                |
| Table 8.3.6-4  | Properties of Prestressing Steel                                      |                |
| Table 8.3.6-5  | Properties of Reinforcing Steel                                       |                |
| Table 8.3.6-6  | Construction Sequence simulated in Structural Analysis                |                |
| Table 8.3.6-7  | Required Reinforcement for Shear Force in Longitudinal Direction      |                |
| Table 8.3.6-8  | Required Reinforcement in Transversal Direction                       | 8-101          |
| Table 8.3.6-9  | Design Results of SPSP for Longitudinal Direction                     | 8-110          |
| Table 8.3.6-10 | Design Results of SPSP for Transversal Direction                      | <b>8-</b> 111  |
| Table 8.3.6-11 | Design Results of Top Slab for Longitudinal Direction                 | 8-112          |
| Table 8.3.6-12 | Design Results of Top Slab for Transverse Direction                   | 8-113          |
| Table 8.3.6-13 | Design Results connection between Top Slab and SPSP                   | 8-114          |
| Table 8.4.1-1  | Comparison on Erection Method for Approach Bridge                     | 8 <b>-</b> 116 |
| Table 8.4.1-2  | Comparison on Erection for Approach Bridge (A1-P75)                   | 8-118          |
| Table 8.4.1-3  | Comparison on Erection for Approach Bridge (P79-A2)                   | 8-119          |
| Table 8.4.1-4  | Concrete covering for reinforcing bars (22TCN-272-05)                 | 8-124          |
| Table 8.4.1-5  | Approximate dimension of each member                                  | 8-125          |
| Table 8.4.1-6  | Necessary thickness for arrangement of tendon                         | 8-126          |
| Table 8.4.1-7  | Thickness of Lower Slab                                               | 8-126          |
| Table 8.4.1-8  | Thickness of Web                                                      | 8-127          |
| Table 8.4.1-9  | Temperature Gradient                                                  | 8-128          |
| Table 8.4.1-10 | Load Factor and Load Combination                                      | 8-129          |
| Table 8.4.1-11 | Properties of Concrete (Main Girder)                                  | 8-129          |
| Table 8.4.1-12 | Properties of Prestressing Steel (PC Strand Cable)                    | 8-130          |
| Table 8.4.1-13 | Properties of Prestressing Steel (PC Bar - SBPR930/1180)              | 8-130          |
| Table 8.4.1-14 | Reinforcing Bars                                                      | 8-130          |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| Table 8.4.1-15 | Spring Constants of Pile                                  |  |
|----------------|-----------------------------------------------------------|--|
| Table 8.4.1-16 | Spring Constants of Shoe                                  |  |
| Table 8.4.1-17 | Structure clarification of Main girder                    |  |
| Table 8.4.1-18 | Direct wheel load on Upper slab                           |  |
| Table 8.4.1-19 | Bending moment (Live load) [A]                            |  |
| Table 8.4.1-20 | Designed Bending moment (D+LL+IM+Ps+Cr+SH) [A]            |  |
| Table 8.4.1-21 | Composite bending fiber stress [A]                        |  |
| Table 8.4.1-22 | Safety factor for ultimate load working state [A]         |  |
| Table 8.4.1-23 | Bending moment (live load) [B]                            |  |
| Table 8.4.1-24 | Designed Bending moment (D+LL+IM+Ps+Cr+SH) [B]            |  |
| Table 8.4.1-25 | Arrangement of reinforced bars                            |  |
| Table 8.4.1-26 | Stress of reinforcing bars                                |  |
| Table 8.4.1-27 | Safety factor under ultimate load working state [B]       |  |
| Table 8.4.1-28 | Bending moment (live load) [C]                            |  |
| Table 8.4.1-29 | Designed bending moment (D+LL+IM+Ps+Cr+SH) [C]            |  |
| Table 8.4.1-30 | Composite bending stress [C]                              |  |
| Table 8.4.1-31 | Safety factor under ultimate load working state [C]       |  |
| Table 8.4.1-32 | Bending moment (live load) [D]                            |  |
| Table 8.4.1-33 | Designed bending moment (D+LL+IM+Ps+Cr+SH) [D]            |  |
| Table 8.4.1-34 | Arrangement of reinforced bars                            |  |
| Table 8.4.1-35 | Stress of reinforcing bars                                |  |
| Table 8.4.1-36 | Safety factor under ultimate load working state [D]       |  |
| Table 8.4.1-37 | Concrete covering for reinforcing bars (TCXDVN327: 2004)  |  |
| Table 8.4.1-38 | Approximate dimension of each member                      |  |
| Table 8.4.1-39 | Necessary thickness for arrangement of tendon             |  |
| Table 8.4.1-40 | Thickness of Lower Slab                                   |  |
| Table 8.4.1-41 | Necessary thickness for arrangement of cable              |  |
| Table 8.4.1-42 | Standard classification of traveler                       |  |
| Table 8.4.1-43 | Length of Pier Table                                      |  |
| Table 8.4.1-44 | Relation between segment length and area of main girder   |  |
| Table 8.4.1-45 | Temperature Gradient                                      |  |
| Table 8.4.1-46 | Load Factor and Load Combination                          |  |
| Table 8.4.1-47 | Properties of Concrete (Main Girder)                      |  |
| Table 8.4.1-48 | Properties of Pre stressing Steel (PC Strand Cable)       |  |
| Table 8.4.1-49 | Properties of Pre-stressing Steel (PC Bar - SBPR930/1180) |  |
| Table 8.4.1-50 | Properties of Pre-stressing Steel (Reinforcement Bar)     |  |
| Table 8.4.1-51 | Spring Constants of Pile                                  |  |
| Table 8.4.1-52 | Spring Constants of Shoe                                  |  |
| Table 8.4.1-53 | Structure clarification of Main girder                    |  |
| Table 8.4.1-54 | Direct wheel load on Upper deck slab                      |  |
| Table 8.4.1-55 | Bending moment (Live load) [A]                            |  |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| Table 8.4.1-56 | Designed Bending moment (D+LL+IM+Ps+Cr+SH) [A]              |  |
|----------------|-------------------------------------------------------------|--|
| Table 8.4.1-57 | Composite bending stress [A]                                |  |
| Table 8.4.1-58 | Safety factor for ultimate load working state [A]           |  |
| Table 8.4.1-59 | Bending moment (live load) [B]                              |  |
| Table 8.4.1-60 | Designed Bending moment (D+LL+IM+Ps+Cr+SH) [B]              |  |
| Table 8.4.1-61 | Arrangement of reinforced bars                              |  |
| Table 8.4.1-62 | Stress of reinforcing bars                                  |  |
| Table 8.4.1-63 | Safety factor under ultimate load working state [B]         |  |
| Table 8.4.1-64 | Bending moment (live load) [C]                              |  |
| Table 8.4.1-65 | Designed bending moment (D+LL+IM+Ps+Cr+SH) [C]              |  |
| Table 8.4.1-66 | Composite bending stress [C]                                |  |
| Table 8.4.1-67 | Safety factor under ultimate load working state [C]         |  |
| Table 8.4.1-68 | Bending moment (live load) [D]                              |  |
| Table 8.4.1-69 | Designed bending moment (D+LL+IM+Ps+Cr+SH) [D]              |  |
| Table 8.4.1-70 | Arrangement of reinforced bars                              |  |
| Table 8.4.1-71 | Stress of reinforcing bars                                  |  |
| Table 8.4.2-1  | Stress of external cable and reinforcing bar                |  |
| Table 8.4.3-1  | Stress of external cable and reinforcing bar                |  |
| Table 8.4.3-2  | Length of approach cushion slab                             |  |
| Table 8.4.3-3  | Comparative Study on Pier Sharpe of Approach Bridge         |  |
| Table 8.4.3-4  | Width of bridge seats                                       |  |
| Table 8.4.3-5  | Refer from JSHB                                             |  |
| Table 8.4.4-1  | Pier Height and Seawater Depth                              |  |
| Table 8.4.4-2  | Foundation Study Type for Approach Bridge and Main Bridge   |  |
| Table 8.4.4-3  | Pile arrangement                                            |  |
| Table 8.4.4-4  | Connections between pile and pile cap                       |  |
| Table 8.4.4-5  | Comparison for pile diameter of steel pipe pile at Pier     |  |
| Table 8.4.4-6  | Comparison for pile diameter of steel pipe pile at abutment |  |
| Table 8.4.4-7  | Comparison for pile diameter of cast in place pile          |  |
| Table 8.4.4-8  | Load combination and load factor                            |  |
| Table 8.4.4-9  | The results of Study of Foundation Type                     |  |
| Table 8.4.5-1  | Site Condition for Study of Type-1                          |  |
| Table 8.4.5-2  | Comparison on Foundation Type-1 for Approach Bridge         |  |
| Table 8.4.5-3  | Site Condition for Study of Type-2                          |  |
| Table 8.4.5-4  | Comparison on Foundation Type-2 for Approach Bridge         |  |
| Table 8.4.5-5  | Site Conditions for Study of Type-4                         |  |
| Table 8.4.5-6  | Comparison on Foundation type-4 for Approach Bridge         |  |
| Table 8.4.6-1  | Elevation and Reclamation thickness from bottom of pile cap |  |
| Table 8.4.6-2  | Dimension list of Substructure(1/2)                         |  |
| Table 8.4.6-3  | Dimension list of Substructure(2/2)                         |  |
| Table 8.4.6-4  | Grouping of Pier                                            |  |

Table 8.5.2-1 - : Volume 2/2

|                |                                                                        | FINAL REPORT |
|----------------|------------------------------------------------------------------------|--------------|
| Table 8.4.6-5  | List of reinforcement for each type of Pier(1/2)                       |              |
| Table 8.4.6-6  | List of reinforcement for each type of Pier(1/2)                       |              |
| Table 8.4.6-7  | Properties and Stress Limit and used Steel Pipe                        |              |
| Table 8.4.6-8  | Range of thickness and used thickness                                  |              |
| Table 8.4.6-9  | Design of Estimated Corrosion Thicknesses                              |              |
| Table 8.4.6-10 | Type of Steel pipe pile                                                |              |
| Table 8.4.6-11 | List of Steel pipe pile(1/2)                                           |              |
| Table 8.4.6-12 | List of Steel pipe pile(2/2)                                           |              |
| Table 8.4.6-13 | Type of Bored pile                                                     |              |
| Table 8.4.6-14 | List of Bored pile                                                     |              |
| Table 8.5.2-1  | Hydrological Conditions of Cam River                                   |              |
| Table 8.5.2-2  | Soil Condition at Boring No.BA-13 and BA-14                            |              |
| Table 8.5.2-3  | Calculation of Scour Depth                                             |              |
| Table 8.5.2-4  | Total Scour Depth                                                      |              |
| Table 8.6.1-1  | Comparison on Type of Bearing for Main Bridge                          |              |
| Table 8.6.1-2  | Reaction Forces and Displacements at Bearings                          |              |
| Table 8.6.1-3  | Reaction force of rubber bearing                                       |              |
| Table 8.6.1-4  | Reaction force of rubber bearing                                       |              |
| Table 8.6.1-5  | Amount of Movement at each bearing                                     |              |
| Table 8.6.1-6  | Amount of Movement in each support                                     |              |
| Table 8.6.1-7  | Allowable value of rubber                                              |              |
| Table 8.6.1-8  | Allowable value of Inner Steel Plate                                   |              |
| Table 8.6.1-9  | Detail Dimension of Bearing                                            |              |
| Table 8.6.1-10 | Longitudinal movement                                                  |              |
| Table 8.6.1-11 | Check result of stress                                                 |              |
| Table 8.6.1-12 | Check result of transformation performance                             |              |
| Table 8.6.1-13 | Check result of stress                                                 |              |
| Table 8.6.1-14 | Check result of transformation performance                             |              |
| Table 8.6.1-15 | The amount of the movement at earthquake                               |              |
| Table 8.6.1-16 | The result of the buckling stress, shearing strain and tensile stress. |              |
| Table 8.6.1-17 | Reaction force of rubber bearing                                       |              |
| Table 8.6.1-18 | Reaction force of rubber bearing                                       |              |
| Table 8.6.1-19 | Amount of Movement in each support                                     |              |
| Table 8.6.1-20 | Amount of Movement in each support                                     |              |
| Table 8.6.1-21 | Allowable value of rubber                                              |              |
| Table 8.6.1-22 | Allowable value of Inner Steel Plate                                   |              |
| Table 8.6.1-23 | Detail Dimension of Bearing                                            |              |
| Table 8.6.1-24 | Longitudinal movement                                                  |              |
| Table 8.6.1-25 | Check result of stress                                                 |              |
| Table 8.6.1-26 | Check result of transformation performance                             |              |
| Table 8.6.1-27 | Check result of stress                                                 |              |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM<br>FINAL REPORT |                                                                       |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Table 8.6.1-28                                                                                               | Check result of transformation performance                            |
| Table 8.6.1-29                                                                                               | The amount of the movement at carthquake                              |
| Table 8.6.1-30                                                                                               | The result of the buckling stress, shearing strain and tensile stress |
| Table 8.6.2-1                                                                                                | Comparison on Type of Expansion                                       |
| Table 8.6.2-2                                                                                                | Longitudinal Movement at Ends of Main Girders                         |
| Table 8.6.2-3                                                                                                | Amount of the movement                                                |
| Table 8.6.2 <b>-</b> 4                                                                                       | The design movement applied to the expansion joint considers          |
| Т                                                                                                            | he movement after the girder                                          |
| Table 8.6.2-5                                                                                                | The amount of design movement at the abutment and pie                 |
| Table 8.6.2-6                                                                                                | Amount of the movement                                                |
| Table 8.6.2 <b>-</b> 7                                                                                       | The design movement applied to the expansion joint considers          |
| the movement                                                                                                 | after the girder                                                      |
| Table 8.6.2-8                                                                                                | The amount of design movement at the abutment and pie                 |
| Table 8.6.3-1                                                                                                | Comparison on Type for Handrail                                       |
|                                                                                                              |                                                                       |
| Table 9.1.1-1                                                                                                | Available Product in Vietnam                                          |
| Table 9.3.2-1                                                                                                | Technical parameters of power receiving and distribution system       |
|                                                                                                              |                                                                       |
| Table 10.1.2-1                                                                                               | Major Work Quantity                                                   |
| Table 10.1.3-1                                                                                               | Major Materials10-5                                                   |
| Table 10.2.2-1                                                                                               | Summary of Temporary Facilities10-7                                   |
| Table 10.2.4-1                                                                                               | Navigation Safety Equipment                                           |
| Table 10.3.1-1                                                                                               | Soft Soil Treatment and Embankment Work Procedure                     |
| Table 10.5.3-1                                                                                               | Approach Bridge Piling Machinery and Working Platform                 |
| Table 10.7.2-1                                                                                               | Frequency in Occurrence of Normal Wave Height by Direction10-42       |
| Table 10.7.2-2                                                                                               | Work Limit natural conditions for marine activity                     |
|                                                                                                              |                                                                       |
| Table 11.1.8-1                                                                                               | Example of Table of Safety Activity                                   |
|                                                                                                              |                                                                       |
| Table 12.1.1-1                                                                                               | Required actions for environmental considerations12-1                 |
| Table 12.1.1-2                                                                                               | Required actions on social considerations                             |
| Table 12.2.2-1                                                                                               | EIA Report Appraisal Council's major comments                         |
|                                                                                                              | Deficiencies in the ELA Report found by the UCA D/D Study Team        |
| and                                                                                                          | proposed actions to improve                                           |
| Table 12.2.3-1                                                                                               | Land use in the project-affected wards/communes                       |
| Table 12.2.3-2                                                                                               | Population of the wards/communes in the Project area                  |
| Table 12.2.3-3                                                                                               | Category of house by its built material and story                     |
| Table 12.2.3-4                                                                                               | Coverage of public facilities                                         |
| Table 12.2.3-5                                                                                               | Land to be acquired for the Project (unit: m <sup>2</sup> )           |
| Table 12.2.3-6                                                                                               | Affected structures and households                                    |
| Table 12.2.3-7                                                                                               | Expected works during construction phase (Road & Bridge Portion)12-21 |

| Table 12.2.4-1        | Background air pollution concentration (unit:µg/m3)                         |                |
|-----------------------|-----------------------------------------------------------------------------|----------------|
| Table 12.2.4-2        | Predicted ambient quality (unit: $\mu g/m^3$ )                              |                |
| (at                   | the survey point 10m from the road embankment side)                         |                |
| Table 12.2.4-3        | Predicted noise level at survey point A1                                    | 12-27          |
| Table 12.2.4-4        | Predicted noise level at survey point A2                                    |                |
| Table 12.2.4-5        | Predicted noise level at survey point A3                                    | 12-28          |
| Table 12.2.4-6        | Predicted noise level at survey point A4                                    | 12-28          |
| Table 12.2.4-7        | Summarization of predicted noise level at 4 survey points                   | 12 <b>-</b> 29 |
| Table 12.2.4-8        | Typical Noise Mitigation Measures                                           | 12-30          |
| Table 12.2.4-9        | Location of materials exploitation sources, transportation routes,          |                |
| and                   | I distance to the Project site                                              | 12-31          |
| Table 12.2.5-1        | Location of additional site for surface water quality survey                | 12 35          |
| Table $12252$         | Result of water quality survey at supplemental site                         | 12-35          |
| Table 12.2.3-2        | Mangrova treas found in the Project area                                    | 12-30          |
| Table 12.2.9-1        | Paliay abiaatiya and target of EMD                                          | 12 40          |
| Table 12.3.1-1        | Coordination of location of someling sites of ambient air and surface susta | 12-42          |
| Table 12.3.7-1        | Environmental Manitaring – Dra construction phase                           | 12-51          |
| Table 12.3.7-2        | Environmental Monitoring – Pre-construction phase                           | 12-51          |
| Table 12.3.7-3        | Environmental Monitoring Program - Construction Phase                       | 12-32          |
| rable 12.5.2-1<br>cov | rered by the RAP Monitoring Plan                                            |                |
| Table 12.5.3-1        | Indicators to be applied for the internal monitoring                        |                |
| Table 12.5.3-2        | Indicators to be applied for the external monitoring                        |                |
| Table 12.5.4-1        | Proposed reporting cycle for RAP monitoring                                 |                |
| Table 12.7-1          | Personnel Training Program                                                  | 12-61          |
| Table 12.7-2          | Estimated Costs for Environmental Protection                                |                |
| for                   | construction of environmental facilities                                    | 12-62          |
| Table 12.7-3          | Estimated cost for maintenance of environmental facilities                  |                |
| (du                   | ring the first 2 years of operation phase)                                  | 12 <b>-</b> 62 |
| Table 12.7-4          | Estimated cost for socio-economic survey                                    | 12-63          |
| Table 12.7-5          | Estimated cost for environmental sampling survey – direct expenses          | 12-64          |
| Table 12.7 <b>-</b> 6 | Estimated cost for environmental sampling survey – indirect expenses        | 12-65          |
| Table 12.7-7          | Estimated cost for monitoring                                               | 12-66          |
| Table 12.7-8          | Estimated cost for public consultation and information dissemination        | 12-67          |
| Table 12.7-9          | Estimated cost for implementation of RAP                                    |                |
| Table 12.7-10         | Total estimated cost for environmental management and monitoring            |                |
| <b>T 11 10 10 1</b>   |                                                                             | 10 0           |
| Table 13.4.2-1        | Program Schedule                                                            | 13-8           |
| Table 13.4.4-1        | Expected Participants in the Program                                        |                |
| Table 13.7-1          | Summary Table for Cost Estimates                                            | 13-15          |

Table 14.1.1-1Law, Regulation, Decree and Circular for the Development<br/>of Tan Vu - Lach Huyen Highway14-1

#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| Table 14.1.2-1  | Outline of Tan Vu - Lach Huyen Highway14-2                                |
|-----------------|---------------------------------------------------------------------------|
| Table 14.1.3-1  | Ambient Surrounding Tan Vu - Lach Huyen Highway                           |
| Table 14.1.3-2  | Related Organizations along Tan Vu - Lach Huyen Highway14-4               |
| Table 14.2.1-1  | Role and Duties of Representative Departments of DRVN                     |
| Table 14.2.1-2  | Function of Infrastructure and Road Safety Department14-8                 |
| Table 14.2.1-3  | Roles in Road Traffic Safety Activities between DRVN and Traffic Police   |
| Table 14.2.1-4  | Function of Maintenance and Management Department                         |
| Table 14.2.1-5  | Expenditure of Road Operation and Maintenance in DRVN (2006 - 2010)       |
| Table 14.2.1-6  | RRMUs under DRVN14-10                                                     |
| Table 14.2.1-7  | Organizational Profile of RRMU214-11                                      |
| Table 14.2.1-8  | Expenditure of Road Operation and Maintenance in RRMU2 (2006 - 2010)14-12 |
| Table 14.2.1-9  | RRMCs under RRMU2                                                         |
| Table 14.2.1-10 | Organizational profile of RRMC (240)14-14                                 |
| Table 14.2.1-11 | Expenditures for Road Development and Maintenance in RRMC (240)           |
| Table 14.2.1-12 | Organizational Profile of County Unit14-16                                |
| Table 14.2.1-13 | Organizational Profile of Hai Phong PDOT14-18                             |
| Table 14.2.1-14 | Expenditures for Road Operations and Maintenance                          |
| in Ha           | ai Phong PDOT (2006 - 2010)                                               |
| Table 14.2.1-15 | Organizational Profile of RRMC (Overland Road Company)14-20               |
| Table 14.2.1-16 | Expenditures for Road Development and Maintenance in RRMC                 |
| (Hai            | Phong Overland road one member limited Company )                          |
| Table 14.2.2-1  | Organizational Profile of RRMC (236)                                      |
| Table 14.2.2-2  | Expenditures for Road Development and Maintenance in RRMC (236)           |
| Table 14.2.2-3  | Outline of PBMC                                                           |
| Table 14.2.2-4  | Monitoring Items of Each Facilities                                       |
| Table 14.2.2-5  | Outline of PBMC Workshop in Vietnam                                       |
| Table 14.2.3-1  | Function of Science, Technology, Environment                              |
|                 | List of Propagad Standards and Spacifications                             |
| on R            | oad Operation and Maintenance by DRVN14-28                                |
| Table 14.2.3-3  | Outline of Technical Co-operation Project on Road Maintenance by JICA     |
| Table 14.3.1-1  | Law, Regulation, Decree and Circular of Fiscal Resources                  |
| for R           | oad Development, Operation and Maintenance                                |
| Table 14.3.1-2  | List of Tax, Fee and Charge for Road Maintenance Fund14-30                |
| Table 14.3.2-1  | Analysis Results of Ten Years Plan14-31                                   |
| Table 14.3.2-2  | Government Budget System and Process14-32                                 |
| Table 14.3.2-3  | State Budget for Maintenance, Repair Work and Construction14-35           |
| Table 14.3.2-4  | Sufficiency Ratio of the Maintenance Budget14-36                          |
| Table 14.4.1-1  | Typical Process and Schedule to Determine the Road Operator               |
| Table 14.4.1-2  | Options of the Assumed Management Organization14-37                       |
| Table 14.4.1-3  | Comparison Table of the Maintenance Organization                          |
| Table 14.4.2-1  | Size of the RRMC's Office by NORM14-42                                    |
| Table 14.4.2-2  | Responsible Organization to Each Maintenance Work14-43                    |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| Table 14.4.2-3      | Details of the Site Office                                                                                                 | 14-43          |
|---------------------|----------------------------------------------------------------------------------------------------------------------------|----------------|
| Table 14.4.2-4      | Construction Equipment in RRMC (240) and RRMC (236)                                                                        | 14-44          |
| Table 14.4.2-5      | Concrete Activities of the Maintenance Works                                                                               | 14 <b>-</b> 45 |
| Table 14.4.2-6      | Needed Operation and Maintenance Technique                                                                                 |                |
| for                 | Tan Vu - Lach Huyen Highway                                                                                                | 14-46          |
| Table 14.4.4-1      | Outline of Each Calculation Method for Operation and Maintenance Cost.                                                     |                |
| Table 14.4.4-2      | Routine Maintenance Annual Cost                                                                                            |                |
| Table 14.4.4-3      | Periodic Maintenance Cost for 10 Years                                                                                     | 14 <b>-</b> 51 |
| Table 14.4.4-4      | Estimate of Future Operation and Maintenance Cost                                                                          | 14-51          |
| Table 14.4.4-5      | Routine and Periodic Maintenance Cost Estimation by SAPROF                                                                 |                |
| Table 14.4.4-6      | Routine and Periodic Maintenance Cost Estimation by This Study                                                             | 14-52          |
|                     |                                                                                                                            |                |
| Table 15.1.1-1      | Application of a Japanese cost estimate standard                                                                           |                |
| Table 15.1.1-2      | The composition of the labour in SBS construction method                                                                   |                |
| Table 15.1.3-1      | The Currency Classification and The Tax in Project Cost Item                                                               |                |
| Table 15.2.1-1      | Composition of Bill item of Project cost                                                                                   | 15-7           |
| Table 15.2.2-1      | Verification Cost of MOC                                                                                                   | 15-9           |
| Table 15.2.2-2      | Approved Cost of DRVN                                                                                                      |                |
| Table 15.2.2-3      | Project Cost Based On Present Exchange Rate of Road and Bridge Portion                                                     | 15-12          |
| Table 15.2.2-4      | Project Cost based on M/D (19 <sup>th</sup> March 2010) of Road of<br>each Huven Port Infrastructure Construction Project" | 15 13          |
| $T_{able} 15.2.2.5$ | Comparison of a direct construction cost (without VAT)                                                                     |                |
| Table 15.2.2-5      | The Dateil Factor of Change                                                                                                | 15 15          |
| Table 15.2.2-0      | Consultant Recommondation Cost                                                                                             | 15-15          |
| Table 15.2.2-7      | The output by year (Based on the construction plan)                                                                        | 15 17          |
| Table 15.3-1        | Versely Drive Lader                                                                                                        | 15 17          |
| Table 15.3-2        | A group Fride Index                                                                                                        | 15 10          |
| Table 15.3-3        | Annual Fund Requirement.                                                                                                   |                |
| Table 15.4-1        | Summary of Procurement Ratio from Japan                                                                                    |                |
| Table 15.4-2        | Amount of Procurement from Japan                                                                                           |                |
| Table 15.5.1-1      | Summary of Temporary Facilities                                                                                            |                |
| Table 15.5.1-2      | Temporary Roads and Site Compound                                                                                          |                |
| Table 15.5.1-3      | Water Cut-off Expense for Road Construction                                                                                |                |
| Table 15.5.2-1      | The procurement place of filling material                                                                                  | 15 <b>-</b> 24 |
| Table 15.5.2-2      | Required quantity of filling and procurement distribution                                                                  |                |
| Table 15.5.3-1      | Required quantity of sand and a crushed stone Existing Sand Stockpiles                                                     | 15-26          |
| Table 15.5.3-2      | Summary of Distribution of Sand Pit and Quarry Site                                                                        |                |
| Table 15.5.3-3      | Existing Sand Stockpiles                                                                                                   |                |
| Table 15.5.3-4      | Existing Quarry Site                                                                                                       | 15-29          |
| Table 15.5.4-1      | The SBS equipment included in pay-items                                                                                    | 15-29          |
| Table 15.5.5-1      | Quantity of Rail Foundation of Gantry Crane (80t)                                                                          | 15-31          |
| Table 15.5.5-2      | Quantity of Rail Foundation of Gantry Crane (7.5t)                                                                         | 15-31          |
| Table 15.5.5-3      | Quantity of Shed Rail Foundation                                                                                           |                |

| Table 15.5.5-4  | Quantity of Reinforcement assembly stand Foundation                   |
|-----------------|-----------------------------------------------------------------------|
| Table 15.5.5-5  | Quantity of Short Line Equipment Foundation                           |
| Table 15.5.5-6  | Quantity of Segment Stockyard Foundation                              |
| Table 15.5.5-7  | Japan Norm of Rail Equipment installation and Removal (Per 100m)15-36 |
| Table 15.5.5-8  | Japan Norm of Gantry crane (80t) assembly and demolition              |
| Table 15.5.5-9  | Concrete foundation (per one crane)                                   |
| Table 15.5.5-10 | Japan norm of Tower crane (180t-m) installation and demolition15-38   |
| Table 15.5.5-11 | Product Cost of No.1, No.2 Erection Girder (Quotation)15-39           |
| Table 15.5.5-12 | Japan norm of Movable shed assemble and demolition                    |
| Table 15.5.5-13 | Japan Norm of Support Installation and Removal (per 10m)15-41         |
| Table 15.5.5-14 | Japan Norm of Reinforcement assembly stand ground assembly            |
| Table 15.5.5-15 | Reinforcement assembly stand installation Per 10t                     |
| Table 15.5.5-16 | Reinforcement assembly stand removal Per 10t15-43                     |
| Table 15.5.5-17 | Short line form installation and removal Per 1.0t15-43                |
| Table 15.5.5-18 | Quantity of Side form main part15-44                                  |
| Table 15.5.5-19 | Quantity of Side form support beam15-44                               |
| Table 15.5.5-20 | Quantity of Frame of Side form15-45                                   |
| Table 15.5.5-21 | Quantity of Bottom form (for L= 3.000 m)15-45                         |
| Table 15.5.5-22 | Quantity of Bottom frame support beam (for L=3.000m)15-45             |
| Table 15.5.5-23 | Quantity of Frame of bottom form (for L=3.0m)15-46                    |
| Table 15.5.5-24 | Quantity of Bottom form pillar (replacement type)15-46                |
| Table 15.5.5-25 | Quantity of Bottom form rail material15-46                            |
| Table 15.5.5-26 | Type of Inner Form15-47                                               |
| Table 15.5.5-27 | Quantity of Inner Form Type-115-48                                    |
| Table 15.5.5-28 | Quantity of Inner Form Type-215-48                                    |
| Table 15.5.5-29 | Quantity of Inner Form Type-315-49                                    |
| Table 15.5.5-30 | Quantity of Inner Form Type-415-49                                    |
| Table 15.5.5-31 | Quantity of Inner Form Type-515-50                                    |
| Table 15.5.5-32 | Quantity of Inner form support beam15-50                              |
| Table 15.5.5-33 | Quantity of Inner form move cart15-51                                 |
| Table 15.5.5-34 | Quantity of Inner form rail material15-51                             |
| Table 15.5.5-35 | Quantity of Lateral beam parts of Inner form15-52                     |
| Table 15.5.5-36 | Quantity of Edge form main part15-52                                  |
| Table 15.5.5-37 | Quantity of Frame of edge form                                        |
| Table 15.5.5-38 | List of Hydraulic-machines equipment hire for beam separation         |
| Table 15.5.5-39 | Reference norm of Standard Segment production                         |
| Table 15.5.5-40 | Manufacture yard power supply equipment15-54                          |
| Table 15.5.6-1  | Japan Norm of Bracket support and scaffold15-55                       |
| Table 15.5.6-2  | Japan Norm of Segment support on the bracket15-56                     |
| Table 15.5.7-1  | Japan Norm of Steel Plate Foundation15-56                             |
| Table 15.5.7-2  | Quantity of Bent Foundation                                           |

| Table 15.5.7-3  | Japan Norm of Driven and pulling cost of H beam pile                         |
|-----------------|------------------------------------------------------------------------------|
| Table 15.5.7-4  | Japan Norm of foundation installation and removal15-59                       |
| Table 15.5.7-5  | Japan Norm of Installation and removal of bent equipment15-60                |
| Table 15.5.7-6  | Capacity of 150t Crawler Crane                                               |
| Table 15.5.5-7  | Japan Norm of Rail Equipment installation and Removal (Per 100m)15-61        |
| Table 15.5.7-8  | Japan Norm of Field preassembling of crection girder15-63                    |
| Table 15.5.7-9  | Weight of main girder15-63                                                   |
| Table 15.5.7-10 | Attached structure                                                           |
| Table 15.5.7-11 | Product Cost of No.1, No.2 Erection Girder (Quotation)                       |
| Table 15.5.7-12 | Product Cost of No.3 Erection Girder (Quotation)15-64                        |
| Table 15.5.7-13 | Japan Norm of Movement and installation of a SBS girder (per one time) 15-65 |
| Table 15.5.7-14 | Compound hire of a gantry crane with a leg width of 30 m                     |
| Table 15.5.7-15 | Japan Norm of Segment connection15-68                                        |
| Table 15.5.7-16 | Japan Norm of PC steel bar fixation15-68                                     |
| Table 15.5.7-17 | Japan Norm of PC steel bar strain15-69                                       |
| Table 15.5.8-1  | Diversion of The Steel Sheet Pile                                            |
| Table 15.5.8-2  | Diversion Times and Quantity of Steel Sheet Pile15-71                        |
| Table 15.5.8-3  | Diversion Times of Other Material15-71                                       |
|                 |                                                                              |
| Table 16.2.1-1  | Comparison of Economic Analysis of the Past Studies and This Study16-1       |
| Table 16.2.2-1  | Summary of Project Cases for Evaluation16-3                                  |
| Table 16.2.2-2  | Conditions of Each Section16-4                                               |
| Table 16.2.2-3  | Traffic Volume Used for Benefit Calculation                                  |
| Table 16.2.2-4  | Demand of Barge Transport16-6                                                |
| Table 16.2.3-1  | Benefit Items Considered in This Study16-8                                   |
| Table 16.2.3-2  | Unit Value of VOC16-8                                                        |
| Table 16.2.3-3  | Unit Value of Vessel Operating Cost16-9                                      |
| Table 16.2.3-4  | Estimation of Freight Opportunity Cost                                       |
| Table 16.2.3-5  | Unit Value of TTC                                                            |
| Table 16.2.3-6  | Summary of Project Benefit                                                   |
| Table 16.2.4-2  | Annual Requirement of Economic Project Cost (First Stage)16-12               |
| Table 16.2.4-3  | Result of Economic Evaluation                                                |
| Table 16.2.4-4  | Summary of Sensitivity Analysis                                              |
| Table 16.2.4-5  | Result of Lower Container Scenario                                           |
| Table 16.3.2-1  | Proposed Operation Indicators and Benchmarks16-16                            |
|                 |                                                                              |
| Table 17.3.3-1  | I mplementation Milestone                                                    |
| Table 17.4.2-1  | Alternatives in Procurement Plan and Construction Cost                       |
| Table 17.4.3-1  | Evaluation Criteria of Alternative Study and Maximum Scores                  |
| Table 17.4.3-2  | Comparison of Alternatives in Construction Packaging Plan                    |

#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

 Table 18.1.1-1
 Outline of Stage Construction

#### List of Figures

| Figure 1.1.3-1          | Study Arca                                                                                                     | 1-3           |
|-------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
| Figure 1.2.2-1          | Overall Study Schedule (Original)                                                                              | 1 <b>-</b> 6  |
| Figure 1.2.2-2          | Overall Study Schedule (Actual)                                                                                | 1-6           |
| Figure 1.2.2-3<br>for L | Work Schedule of Design Study of Road/Bridge Portion<br>Lach Huyen Port Infrastructure Construction (Original) | 1-7           |
| Figure 2.1.5-1          | Specifications for a Grade IV control point                                                                    | 2-4           |
| Figure 3.1-1 C          | Geotechnical Investigation Area                                                                                | 3-1           |
| Figure 3.3.1-1          | Soil Profile of Approach Road Area in Hai An side (1/2)                                                        | 3-5           |
| Figure 3.3.1-2          | Soil Profile of Approach Road Area in Hai An side (2/2)                                                        | 3-6           |
| Figure 3.3.3-1          | Chart of Soil Parameters (Hai An side)                                                                         | 3-9           |
| Figure 3.3.3-2          | Determination Method of C and $\phi$ using $(\sigma_{1f}+\sigma_3)/2$ and $(\sigma_{1f}-\sigma_3)$             | 3-10          |
| Figure 3.3.3-3          | Shear Strength of Clay for Short Term Stability (Hai An side)                                                  | 3-12          |
| Figure 3.3.3-4          | Shear Strength of Clay for Long Term Stability (Hai An side)                                                   | 3-13          |
| Figure 3.3.3-5          | Relationship between Cc and $W_{L}$ (Hai An side)                                                              | 3-14          |
| Figure 3.3.3-6          | e~logP Curve and logP~logCv Curve (Hai An side)                                                                | 3-15          |
| Figure 3.4.1-1          | Soil Profile of Bridge Area (1/2)                                                                              | 3-19          |
| Figure 3.4.1-2          | Soil Profile of Bridge Area (2/2)                                                                              | 3-20          |
| Figure 3.4.3-1          | Chart of Soil Parameters (Bridge Area)                                                                         | 3-23          |
| Figure 3.4.3-2          | Shear Strength of Clay for Short Term Stability (Bridge Area)                                                  | 3-25          |
| Figure 3.4.3-3          | Relationship between Cc and $W_{L}$ (Bridge Area)                                                              | 3-26          |
| Figure 3.4.3-4          | e~logP Curve and logP~logCv Curve (Bridge Area)-1/2                                                            | 3 <b>-</b> 27 |
| Figure 3.4.3-5          | c~logP Curve and logP~logCv Curve (Bridge Area)-2/2                                                            | 3 <b>-</b> 28 |
| Figure 3.4.4-1          | Relationship between Unconfined Strength and Bulk Density (Bridge Area)                                        | 3-29          |
| Figure 3.4.4-2          | Relationship between Unconfined Strength and Absorption (Bridge Area)                                          | 3-30          |
| Figure 3.5.1-1          | Soil Profile of Approach Road Area in Cat Hai side (1/2)                                                       | 3-34          |
| Figure 3.5.1-2          | Soil Profile of Approach Road Area in Cat Hai side (2/2)                                                       | 3-35          |
| Figure 3.5.2-1          | N-value of Each Layer (Cat Hai side)                                                                           | 3-36          |
| Figure 3.5.3-1          | Chart of Soil Parameters (Cat Hai side)                                                                        | 3-38          |
| Figure 3.5.3-2          | Determination Method of C and $\phi$ using $(\sigma_{1f}+\sigma_3)/2$ and $(\sigma_{1f}-\sigma_3)$             |               |
| Figure 3.5.3-3          | Shear Strength of Clay for Short Term Stability (Cat Hai side)-1/2                                             | 3-42          |
| Figure 3.5.3 <b>-</b> 4 | Shear Strength of Clay for Short Term Stability (Cat Hai side)-2/2                                             | 3 <b>-</b> 43 |
| Figure 3.5.3-5          | Shear Strength of Clay for Long Term Stability (Cat Hai side)-1/2                                              | 3 <b>-4</b> 4 |
| Figure 3.5.3-6          | Shear Strength of Clay for Long Term Stability (Cat Hai side)-2/2                                              | 3-45          |
| Figure 3.5.3-7          | Relationship between Cc and $W_{L}$ (Cat Hai side)                                                             | 3-46          |
| Figure 3.5.3-8          | e~logP Curve and logP~logCv Curve (Cat Hai side)-1/2                                                           | 3-47          |

| I HE DI        | ETAILED DESIGN STUDY FOR LACH HUTEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM |
|----------------|-----------------------------------------------------------------------------------------|
| Figure 3.5.3-9 | e~logP Curve and logP~logCv Curve (Cat Hai side)-2/2                                    |
| Figure 4.4.2-1 | Location of Borrow Pits                                                                 |
| Figure 4.4.3-1 | Location of Sand Resources for Embankment                                               |
| Figure 4.4.5-1 | Location of Rock Quarries4-16                                                           |
| Figure 5.1.1-1 | Plan of DVIZ                                                                            |
| Figure 5.1.1-2 | Plan of NDVIZ5-3                                                                        |
| Figure 5.1.1-3 | Photo at Zone-2 (Land development work not started yet)5-5                              |
| Figure 5.1.1-4 | Crossing Roads                                                                          |
| Figure 5.1.1-5 | Cross Section of IZ Internal Roads                                                      |
| Figure 6.5.2-1 | Future Road Network in 2030                                                             |
| Figure 6.6-1   | Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2015                         |
| Figure 6.6-2   | Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2020                         |
| Figure 6.6-3   | Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2030                         |
| Figure 6.6-4   | Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2035                         |
| Figure 6.6-5   | Peak Hour Turning Movement Traffic Flows at Tan Vu Interchange (2015-2030)6-19          |
| Figure 6.6-6   | Peak Hour Turning Movement Traffic Flows at Intersection#1 (2015-2030)                  |
| Figure 7.1.2-1 | Cross Section (Phase-1)                                                                 |
| Figure 7.1.2-2 | Cross Section (Phase-2)                                                                 |
| Figure 7.1.2-3 | Concept of lane shift                                                                   |
| Figure 7.1.2-4 | Details of transition section                                                           |
| Figure 7.1.3-1 | Alternatives for comparison                                                             |
| Figure 7.1.3-2 | Slope protection at fish pond section                                                   |
| Figure 7.1.3-3 | Slope protection at Residential area and salt field in Cat Hai                          |
| Figure 7.1.3-4 | Slope protection at sea and dike relocation section                                     |
| Figure 7.1.3-6 | Typical cross section                                                                   |
| Figure 7.1.4-1 | Concept for land acquisition area and ROW7-11                                           |
| Figure 7.1.5-1 | Plan and Photo at Thon Trung Village, Dong Bai Commune7-12                              |
| Figure 7.1.6-1 | General Layout of Underpass Box Culvert (4.0x3.2)                                       |
| Figure 7.1.6-2 | Typical Cross Section of Frontage Road7-18                                              |
| Figure 7.1.6-3 | Photos in Hai An district                                                               |
| Figure 7.1.6-4 | Plan and photo at Km10+4147-19                                                          |
| Figure 7.1.6-5 | Plan and photo at Km13+6007-19                                                          |
| Figure 7.1.6-6 | Pavement structure of frontage road                                                     |
| Figure 7.1.6-7 | Plan and Photo of Intersection at Km11+5207-21                                          |
| Figure 7.1.6-8 | Plan and Photos of Intersection and Relocated Road at Km15+5767-22                      |
| Figure 7.2-1   | Pavement Structure                                                                      |
| Figure 7.3.1-2 | Alternative Interchange/Intersection types7-45                                          |

| Figure 7.3.1-3          | Traffic Demand Forecast for Tan Vu IC in 2020                                  |
|-------------------------|--------------------------------------------------------------------------------|
| Figure 7.3.1-4          | Summary of Right Turn Ramp Design                                              |
| Figure 7.3.1-5          | Length of Left Turn Storage Lane                                               |
| Figure 7.3.1-6          | Storage Lane and Deceleration lane for Left Turn Lane                          |
| Figure 7.3.1-7          | Radius of Each Turning Path                                                    |
| Figure 7.3.1-8          | Plan and Typical Cross Section                                                 |
| Figure 7.3.1-9          | Road Sign Plan                                                                 |
| Figure 7.3.1-10         | No.1 Intersection Proposed in Dinh Vu - Cat Hai Economic Zone Master Plan 7-59 |
| Figure 7.3.1-11         | Alternative Intersection types                                                 |
| Figure 7.3.1-12         | Geometric Elements                                                             |
| Figure 7.3.1-13         | Plan of Local Intersection at Km11+520                                         |
| Figure 7.3.1-14         | Plan of Local Intersection at Km11+576                                         |
| Figure 7.4.1-1          | Envisioned Status of Hai An Section (Phase-1 construction is completed)7-68    |
| Figure 7.4.1-2          | Envisioned Status of Hai An Section (Future stage)                             |
| Figure 7.4.1-3          | Typical Drainage System                                                        |
| Figure 7.4.1-4          | Side Ditch                                                                     |
| Figure 7.4.1-5          | Median Ditch                                                                   |
| Figure 7.4.1-6          | Drainage Pipe (D=0.75)                                                         |
| Figure 7.4.1-7          | Catch Basin Type A17-72                                                        |
| Figure 7.4.1-8          | Catch Basin Type B17-72                                                        |
| Figure 7.4.1-9          | Outlet Type A , B , C7-73                                                      |
| Figure 7.4.2-1          | Navigation Area at Km15+1007-74                                                |
| Figure 7.4.2-2          | Photo of Existing Channel (From Km 13+400 to west)7-77                         |
| Figure 7.4.2 <b>-</b> 3 | Details of relocation channel7-77                                              |
| Figure 7.5.1-1          | Traffic Load Calculation Diagram                                               |
| Figure 7.5.1-2          | Traffic Load Value and Distribution7-80                                        |
| Figure 7.5.2-1          | Exemplary Analysis of Excess Pore Pressure and Settlement                      |
| Figure 7.5.2-2          | Arrangement and design concept of SCP7-83                                      |
| Figure 7.6.1-1          | Construction procedure of box culvert7-95                                      |
| Figure 7.6.1-2          | Size of Drainage/Irrigation box culvert7-97                                    |
| Figure 7.6.1-3          | Size of Drainage/Irrigation pipe culvert7-97                                   |
| Figure 7.6.1 <b>-</b> 4 | Minimum concrete cover for box culvert                                         |
| Figure 7.6.1-5          | Cost comparison for retaining wall between SAPROF and D/D7-99                  |
| Figure 7.6.1-6          | Details of Concrete Sheet Pile Wall                                            |
| Figure 7.6.1-7          | Details of piled slab at Cam River Bridge7-102                                 |
| Figure 7.6.1-8          | Details of piled slab at Approach Bridge                                       |
| Figure 7.7.1-1          | Installation of guardrail (cross section)7-104                                 |
| Figure 7.7.1-2          | Guardrail layout7-104                                                          |
| Figure 7.7.2-1          | Details of guard post                                                          |
| Figure 7.7.3-1          | Details of concrete curb7-105                                                  |
| Figure 7.7.4-1          | Details of delineator                                                          |

|                                                                                 | FINAL REPORT |
|---------------------------------------------------------------------------------|--------------|
| Figure 7.7.5-1 Details of traffic signs                                         | 7-106        |
|                                                                                 |              |
| Figure 8.1.1-1 Width Composition of Superstructure                              |              |
| Figure 8.1.3-1 Conditions of Live Load                                          |              |
| Figure 8.1.3-2 Response Spectrum                                                |              |
| Figure 8.1.6-1 Soil Profile                                                     |              |
| Figure 8.1.6-2 Definition sketch for scour components for a complex pier        |              |
| Figure 8.1.6-3 Suspended pier scour ratio.                                      |              |
| Figure 8.1.6-4 Common pier shapes                                               |              |
| Figure 8.1.6-5 Pile cap equivalent width                                        |              |
| Figure 8.1.6-6 Pile spacing factor                                              |              |
| Figure 8.1.6-7 Adjustment factor for number of aligned rows                     |              |
| Figure 8.2.1-1 Navigation Clearance                                             |              |
| Figure 8.2.1-2 Span Length determined from Navigation Clearance                 |              |
| Figure 8.2.3-1 Location of Interchange and Intersections                        |              |
| Figure 8.2.3-2 Typical Cross Section of Dinh Vu Ring Road                       |              |
| Figure 8.3.1-1 Cross Section of Main Bridge at Pier (Second Stage)              |              |
| Figure 8.3.2-1 Erection of Main Girder with Form traveler                       |              |
| Figure 8.3.3-1 Cross Section for Main Girder of the Initial Stage               |              |
| Figure 8.3.3-2 Cross Section for Main Girder for the Second Stage               |              |
| Figure 8.3.3-3 Cantilever Segments and Pier Head                                |              |
| Figure 8.3.3-4 Cast-in-place Segments on False Work                             |              |
| Figure 8.3.3-5 Arrangement of Longitudinal Cantilever Tendons                   |              |
| Figure 8.3.4-1 Skelton of V-shaped Piers                                        |              |
| Figure 8.3.4-2 Projected Pier (2.650m) above Mean High Water Level              |              |
| and Mean Low Water Level                                                        |              |
| Figure 8.3.4-3 Projected Pier (1.050m) above High Water Level and Mean Low Wate | r Level8-51  |
| Figure 8.3.4-4 Corner Arrangement of V-shaped Wall Pier                         |              |
| Figure 8.3.4-5 Vertical Slit for Aesthetical Aspect                             |              |
| Figure 8.3.4-6 Span Arrangement and Profile of Main Bridge                      |              |
| Figure 8.3.4-7 Deformation and Moment due to Creep and Shrinkage                |              |
| Figure 8.3.4-8 Longitudinal Displacement* due to Creep and Shrinkage            |              |
| Figure 8.3.4-9 Shear Force* due to Creep and Shrinkage                          |              |
| Figure 8.3.4-10 Bending Moment* due to Creep and Shrinkage                      |              |
| Figure 8.3.4-11 Stress* of Top Fiber due to Creep and Shrinkage                 |              |
| Figure 8.3.4-12 Stress* of Bottom Fiber due to Creep and Shrinkage              |              |
| Figure 8.3.4-13 Deformation and Moment due to Pressurization (Jacking Force)    |              |
| Figure 8.3.4-14 Procedures of Pressurization Method by Jacking Force            |              |
| Figure 8.3.4-15 Structure of Pressurization by Jacks                            |              |
| Figure 8.3.4-16 Longitudinal Displacement due to Pressurization                 |              |
| Figure 8.3.5-1 Conceptual View of Steel Sheet Pile Foundation                   |              |
|                                                                                 |              |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

| Figure 8.3.5-2 Design Flow for basic design of steel pipe sheet pile foundation                   |
|---------------------------------------------------------------------------------------------------|
| Figure 8.3.5-3 The procedure for construction method of steel pipe sheet pile foundations (1)8-68 |
| Figure 8.3.5-4 The procedure for construction method of steel pipe sheet pile foundations (2)8-69 |
| Figure 8.3.5-5 The procedure for construction method of steel pipe sheet pile foundation          |
| Figure 8.3.5-6 P76 Foundation with Boring No BP- 77 & BP-78                                       |
| Figure 8.3.5-7 Region where the skin friction force at the inter peripheral surface               |
| of the well portion of the foundation should be taken into account                                |
| Figure 8.3.5-8 Calculation Model of Steel Pipe Sheet Pile Foundation                              |
| Figure 8.3.5-9 Slippage displacement of Joint Accompanying Shear Deformation                      |
| of Imaginary Well                                                                                 |
| Figure 8.3.5-10 Steel pile sheet pile Foundation                                                  |
| Figure 8.3.5-11 Calculation Model of Imaginary well                                               |
| Figure 8.3.5-12 Shape of SPSP Foundation                                                          |
| Figure 8.3.5-13 Combined stress for steel pipe sheet pile foundation                              |
| Figure 8.3.5-14 Section Calculation Model of Top Slab                                             |
| Figure 8.3.6-1 Profile of Main Bridge                                                             |
| Figure 8.3.6-2 Arrangement of PC Tendons                                                          |
| Figure 8.3.6-3 Model for Structural Analysis                                                      |
| Figure 8.3.6-4 Models corresponding to Construction Sequence (1)                                  |
| Figure 8.3.6-5 Models corresponding to Construction Sequence (2)                                  |
| Figure 8.3.6-6 Models corresponding to Construction Sequence (3)                                  |
| Figure 8.3.6-7 Sectional Forces                                                                   |
| Figure 8.3.6-8 Fiber Stress                                                                       |
| Figure 8.3.6-9 Sections for Transversal Analysis                                                  |
| Figure 8.3.6-10 Model for Transversal Analysis                                                    |
| Figure 8.3.6-11 Design Truck and Lane Loading for Transversal Analysis                            |
| Figure 8.3.6-12 Stress in Service Limit State (LL1L)                                              |
| Figure 8.3.6-13 Bending Moment Diagram in Strength Limit State                                    |
| Figure 8.3.6-14 Arrangement of PC Tendons                                                         |
| Figure 8.3.6-15 Sectional Forces in Service Limit State                                           |
| Figure 8.3.6-16 Sectional Forces in Strength Limit State                                          |
| Figure 8.3.6-17 Sectional Forces in Extreme Event Limit State                                     |
| Figure 8.3.6-18 Fiber Stress (Service Limit State)                                                |
| Figure 8.3.6-19 Fiber Stress (Strength Limit State)                                               |
| Figure 8.3.6-20 Fiber Stress (Extreme Event Limit State)                                          |
| Figure 8.3.6-21 Reinforcement of V-shaped Wall                                                    |
|                                                                                                   |
| Figure 8.3.6-22 Relationships between resistance capacity                                         |

| and sectional force in Pier Members                             |  |
|-----------------------------------------------------------------|--|
| Figure 8.3.6-23 Reinforcement of Lower Pier Column and Pile Cap |  |
| Figure 8.3.6-24 Relationships between resistance capacity       |  |

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET | ' NAM |
|------------------------------------------------------------------------------------------|-------|
| FINAL REP                                                                                | ORT   |

| and sectional force in Pier Members                                                |         |
|------------------------------------------------------------------------------------|---------|
| Figure 8.3.6-25 Major Dimension and Materials used for SPSP Foundation for P76~P78 | 3 8-108 |
| Figure 8.3.6-26 Plan of Construction Step                                          |         |
| Figure 8.3.6-27 Stress Diagram of SPSP for P76                                     |         |
| Figure 8.3.6-28 Calculation results of Steel Pipe Sheet Pile for P7                | 8-111   |
| Figure 8.3.6-29 Detail of connection between Top Slab and SPSP                     | 8-114   |
| Figure 8.4.1-1 Analysis Model                                                      |         |
| Figure 8.4.1-2 Process and the schedule of the structure analysis                  |         |
| Figure 8.4.1-3 Arrangement of External PC Tendon                                   |         |
| Figure 8.4.1-4 Stress of Top Fiber (Dead Load)                                     |         |
| Figure 8.4.1-5 Stress of Bottom Fiber (Dead Load)                                  |         |
| Figure 8.4.1-6 Stress of Top Fiber (Service Limit State)                           |         |
| Figure 8.4.1-7 Stress of Bottom Fiber (Service Limit State)                        |         |
| Figure 8.4.1-8 Bending Moment of Main Girder (Strength Limit State)                |         |
| Figure 8.4.1-9 Diagonal tensile stress                                             |         |
| Figure 8.4.1-10 Maximum Shear stress                                               |         |
| Figure 8.4.1-11 Stress of Top Fiber (Dead Load)                                    |         |
| Figure 8.4.1-12 Stress of Bottom Fiber (Dead Load)                                 |         |
| Figure 8.4.1-13 Stress of Top Fiber (Service Limit State)                          |         |
| Figure 8.4.1-14 Stress of Bottom Fiber (Service Limit State)                       |         |
| Figure 8.4.1-15 Bending Moment of Main Girder (Strength Limit State)               |         |
| Figure 8.4.1-16 Diagonal tensile stress                                            |         |
| Figure 8.4.1-17 Maximum Shear stress                                               |         |
| Figure 8.4.1-18 Stress of Top Fiber (Dead Load)                                    |         |
| Figure 8.4.1-19 Stress of Bottom Fiber (Dead Load)                                 |         |
| Figure 8.4.1-20 Stress of Top Fiber (Service Limit State)                          |         |
| Figure 8.4.1-21 Stress of Bottom Fiber (Service Limit State)                       |         |
| Figure 8.4.1-22 Bending Moment of Main Girder (Strength Limit State)               |         |
| Figure 8.4.1-23 Diagonal tensile stress                                            |         |
| Figure 8.4.1-24 Maximum Shear stress                                               |         |
| Figure 8.4.1-25 Stress of Top Fiber (Dead Load)                                    |         |
| Figure 8.4.1-26 Stress of Bottom Fiber (Dead Load)                                 |         |
| Figure 8.4.1-27 Stress of Top Fiber (Service Limit State)                          |         |
| Figure 8.4.1-28 Stress of Bottom Fiber (Service Limit State)                       |         |
| Figure 8.4.1-29 Bending Moment of Main Girder (Strength Limit State)               |         |
| Figure 8.4.1-30 Diagonal tensile stress                                            |         |
| Figure 8.4.1-31 Maximum Shear stress                                               |         |
| Figure 8.4.1-32 General Section for Arrangement of Transversal PC Tendon (ctc500)  |         |
| Figure 8.4.1-33 Arrangement of Transversal PC Tendon                               |         |
| (intermediate support cross section) ctc500mm                                      |         |
| Figure 8.4.1-34 Necessary thickness for anchorage of PC Tendon                     |         |

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN | VIET NAM |
|-------------------------------------------------------------------------------------|----------|
| FINAL F                                                                             | REPORT   |

| Figure 8.4.1-35 Segment length-section area                                       |  |
|-----------------------------------------------------------------------------------|--|
| Figure 8.4.1-36 Segment arrangement                                               |  |
| Figure 8.4.1-37 Analysis Model                                                    |  |
| Figure 8.4.1-38 Process and the schedule of the structure analysis                |  |
| Figure 8.4.1-39 Arrangement of PC Tendon                                          |  |
| Figure 8.4.1-40 Bending Moment in all Dead load state                             |  |
| Figure 8.4.1-41 Bending Moment in Service load state                              |  |
| Figure 8.4.1-42 Stress of Top Fiber (Dead Load)                                   |  |
| Figure 8.4.1-43 Stress of Top Fiber (Dead Load)                                   |  |
| Figure 8.4.1-44 Stress of Bottom Fiber (Dead Load)                                |  |
| Figure 8.4.1-45 Stress of Top Fiber (Service Limit State)                         |  |
| Figure 8.4.1-46 Stress of Bottom Fiber (Service Limit State)                      |  |
| Figure 8.4.1-47 Bending Moment of Main Girder (Strength Limit State)              |  |
| Figure 8.4.1-48 Diagonal tensile stress                                           |  |
| Figure 8.4.1-49 Maximum Shear stress                                              |  |
| Figure 8.4.1-50 Bending Moment caused by Dead Load                                |  |
| Figure 8.4.1-51 Bending Moment in Service                                         |  |
| Figure 8.4.1-52 Stress of Top Fiber (Dead Load)                                   |  |
| Figure 8.4.1-53 Stress of Bottom Fiber (Dead Load)                                |  |
| Figure 8.4.1-54 Stress of Top Fiber (Service Limit State)                         |  |
| Figure 8.4.1-55 Stress of Bottom Fiber (Service Limit State)                      |  |
| Figure 8.4.1-56 Bending Moment of Main Girder (Strength Limit State)              |  |
| Figure 8.4.1-57 Diagonal tensile stress                                           |  |
| Figure 8.4.1-58 Maximum Shear stress                                              |  |
| Figure 8.4.1-59 General Section for Arrangement of Transversal PC Tendon (ctc550) |  |
| Figure 8.4.1-60 Arrangement of Transversal PC Tendon                              |  |
| (intermediate support cross section) ctc500mm                                     |  |
| Figure 8.4.2-1 Flowchart of Designing Cross beam                                  |  |
| Figure 8.4.2-2 End cross beam $\Lambda 1$ in FEM mesh                             |  |
| Figure 8.4.2-3 Restraint Condition of End cross beam A1                           |  |
| Figure 8.4.2-4 Loading Condition in FEM [A1]                                      |  |
| Figure 8.4.2-5 Cross beam P1 [Model-1] in FEM mesh                                |  |
| Figure 8.4.2-6 Restraint Condition of P1 [Model-1]                                |  |
| Figure 8.4.2-7 Load Condition in P1 [Model-1]                                     |  |
| Figure 8.4.2-8 Cross beam P1 [Model-2] in FEM mesh                                |  |
| Figure 8.4.2-9 Restraint Condition of P1 [Model-2]                                |  |
| Figure 8.4.2-10 Load Condition in FEM [A1]                                        |  |
| Figure 8.4.3-1 Flowchart of Designing Deviator                                    |  |
| Figure 8.4.3-2 Number of deviators                                                |  |
| Figure 8.4.3-3 Deviator Examination in FEM mesh                                   |  |
| Figure 8.4.3-4 Analysis model for calculation of Stress on longitudinal           |  |

| THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTIO | N PROJET IN VIET NAM<br>FINAL REPORT |
|--------------------------------------------------------------------------|--------------------------------------|
| and transverse direction                                                 |                                      |
| Figure 8.4.3-5 The component force of external cable in FEM analysis     |                                      |
| Figure 8.4.3-6 The study result and the amount of reinforcing bar        |                                      |
| of deviator component force                                              |                                      |
| Figure 8.4.3-7 FEM mesh for examination of bottom slab                   |                                      |
| Figure 8.4.3-8 Result of FEM analysis in Lower side of bottom slab       |                                      |
| Figure 8.4.3-9 FEM mesh for examination of bottom slab                   |                                      |
| Figure 8.4.3-10 Result of FEM analysis in Upper side of bottom slab      |                                      |
| Figure 8.4.3-11 FEM mesh for examination of deviator                     |                                      |
| Figure 8.4.3-12 Result of FEM analysis in Upper side of deviator         |                                      |
| Figure 8.4.3-13 Joint Filler                                             |                                      |
| Figure 8.4.3-14 Sectional view of Beam                                   |                                      |
| Figure 8.4.3-15 Arrangement of reinforcement at beam                     |                                      |
| Figure 8.4.4-1 Plan Layout for Approach Bridge and Main Bridge           |                                      |
| Figure 8.4.4-2 Plan Layout for Approach Bridge and Main Bridge           |                                      |
| Figure 8.4.4-3 Variations for Pile Cap Elevation                         |                                      |
| Figure 8.4.4-4Design of pile foundations for downdrag                    |                                      |
| Figure 8.4.4-5Standard Sections of a SL piles                            |                                      |
| Figure 8.4.4-6 Downdrag load and the range of SL pile                    |                                      |
| Figure 8.4.4-7 Grouping for Foundation Study                             |                                      |
| Figure 8.4.5-1 Pile Cap Elevation of Variations 2                        |                                      |
| Figure 8.4.5-2 Pile Cap Elevation of Variation 2 or 3                    |                                      |
| Figure 8.4.5-3Pile Cap Elevation of Variation 4                          |                                      |
| Figure 8.4.5-4 Construction Plan of Alternative-4                        |                                      |
| Figure 8.4.6-1 Blockout at A1 abutment                                   |                                      |
| Figure 8.4.6-2 Blockout at A2 abutment                                   |                                      |
| Figure 8.4.6-3 Arrangement of Reinforcement at Abutment                  |                                      |
| Figure 8.4.6-4 Pile arrangement for Pier                                 |                                      |
| Figure 8.4.6-5 Pile arrangement for Abutment                             |                                      |
| Figure 8.4.6-6 Steel Pipe Pile D=800mm (A2 abutment)                     |                                      |
| Figure 8.4.6-7 Steel Pipe Pile D=1100mm (P8,P9,P53)                      |                                      |
| Figure 8.4.6-8 Pile Arrangement                                          |                                      |
| Figure 8.5.1-1 Cam River Box Culvert                                     |                                      |
| Figure 8.5.2-1 Topographic Profile of Cam River (Km 1+700)               |                                      |
| Figure 8.5.2-2 Soil Profile adjacent to Cam River (Km 1+700)             |                                      |
| Figure 8.5.2-3 General view of Cam River Bridge                          |                                      |
| Figure 8.5.3-1 Girder Arrangement                                        |                                      |
| Figure 8.5.3-2 Arrangement of PC Tendons                                 |                                      |
| Figure 8.5.3-3 Reinforcement for Web of Girders                          |                                      |
| Figure 8.5.3-4 Reinforcement for Flange of Girders                       |                                      |

| THE DETA                      | FINA                                                                   | L REPORT |
|-------------------------------|------------------------------------------------------------------------|----------|
| Figure 8.5.4-1 D              | imensions of Abutment                                                  |          |
| Figure 8.5.4-2 D              | imensions of Pier                                                      |          |
| Figure 8.5.4-3 R              | einforcement of Pier                                                   |          |
| Figure 8.5.4-4 Re             | einforcement of Abutment                                               |          |
| Figure 8.6.1-1 Lo             | ocation for installation of Bearings in Main Bridge                    |          |
| Figure 8.6.1-2 D              | imensions of Pot Bearings                                              |          |
| Figure 8.6.1-3 Fl             | ow of Bearing Design                                                   |          |
| Figure 8.6.1-4 D              | imension of End support bearing                                        |          |
| Figure 8.6.1-5 D              | imension of middle support bearing                                     |          |
| Figure 8.6.1-6 D              | imension of middle support bearing                                     |          |
| Figure 8.6.2-1 Ex             | xpansion Joint between Main Bridge and Approach Bridge                 |          |
| Figure 8.6.2-2 M              | ovement of girder end                                                  |          |
| Figure 8.6.2-3 M              | ovement of girder end                                                  |          |
| Figure 8.6.2-4 Ez             | xpansion Joint on Approach Bridge                                      |          |
| Figure 8.6.3-1 E <sub>2</sub> | xpansion Joint on Approach Bridge                                      |          |
| Figure 9.7-1 T                | YPICAL LIGHTING POLE & HIGH MAST                                       | 9-13     |
| Figure 9.7-2 Ll               | GHTING POLE MATERIAL                                                   |          |
| Figure 9.7-3 ST               | FREET LUMINAIRE                                                        |          |
| Figure 9.7-4 Ll               | GHTING TRANSFORMER STATION                                             |          |
| Figure 9.7-5 N                | AVIGATION LIGHT                                                        |          |
| Figure 9.7-6 17               | 7M HIGH MAST                                                           |          |
| Figure 9.7-7 25               | 5M HIGH MAST                                                           | 9-19     |
| Figure 10.2.3-1               | Plan for Entrance Access Road and Site compound No1 and No2            |          |
| Figure 10.2.3-2               | Plan of Access Road Bridge km 1.7 (near Cam River)                     |          |
| Figure 10.2.3-3               | Plan View of Site Access Roads                                         |          |
| Figure 10.2.3-4               | Typical Cross Sections of Site Access Roads                            |          |
| Figure 10.2.3-5               | Dredging Area and Dumping Area                                         |          |
| Figure 10.2.3-6               | Temporary Jetty                                                        |          |
| Figure 10.4.1-1               | Road Work Procedure                                                    |          |
| Figure 10.5.2-1               | Approach Bridge (SBS Method) Working Sequence                          |          |
| Figure 10.5.3-1               | Construction sequence for Approach Bridge sub structure                |          |
| Figure 10.5.4-1               | PC segment fabrication sequence                                        |          |
| Figure 10.5.4-2               | Segment Fabrication Cycle Time                                         |          |
| Figure 10.5.4-3               | Geometry control outline                                               |          |
| Figure 10.5.4-4               | Segment fabrication and installation program showing stockpile number. |          |
| Figure 10.5.5-1               | Segment Erection Work Cycle Time                                       |          |
| Figure 10.5.6-1               | Pier Head Temporary Shoe Detail                                        |          |
| Figure 10.5.6-2               | A2-P79 Cantilever Method Working Program                               |          |
| Figure 10.6.1-1               | Construction sequence                                                  |          |
|                               |                                                                        |          |

#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

| Figure 10.6.2-1  | Main Bridge Overall Program                                                            |
|------------------|----------------------------------------------------------------------------------------|
| Figure 10.6.2-2  | Main Bridge Foundation Work Program10-33                                               |
| Figure 10.6.2-3  | Main Bridge Pile Cap Work Program                                                      |
| Figure 10.6.2-4  | Main Bridge Pier Construction Program10-34                                             |
| Figure 10.6.2-5  | Main Bridge Pier Head Construction Program                                             |
| Figure 10.6.2-6  | Main Bridge Girder Construction Program10-34                                           |
| Figure 10.6.4-1  | Working sequence of Pier head construction                                             |
| Figure 10.6.5-1  | Construction sequence of Main bridge girder10-38                                       |
| Figure 10.6.5-2  | Main Girder Construction Cycle Time                                                    |
| Figure 10.7.4-1  | Network Program                                                                        |
| Figure 10.7.5-1  | Work Days Calculation for Pier 30 Substructure Works                                   |
| Figure 10.7.5-2  | Work Days Calculation Sheet for Pier 7510-51                                           |
| Figure 10.7.5-3  | Time Calculation for Pier 77 Works10-52                                                |
| Figure 10.7.5-4  | Time Calculation for Road Pavement Works10-53                                          |
|                  |                                                                                        |
| Figure 11.1.3-1  | Example of Safety Organization Chart 11-2                                              |
| Figure 11.1.4-1  | Emergency Communication Network                                                        |
| Figure 12.2.3.1  | Planned wall in front of the Van Co Huong Temple/Pagoda 12 17                          |
| Figure 12.2.3-1  | Planned underpass at $Km10+420$ and the frontage road $12-18$                          |
| Figure 12.2.3-2  | Planned underpass at Km13+600 and the frontage road 12-18                              |
| Figure 12.2.3-5  | Planned intersection at Km11+520 12-10                                                 |
| Figure 12.2.3-   | Planned intersection at $Km11+520$ 12-19<br>Planned intersection at $Km15+576$ 12-19   |
| Figure 12.2.5 5  | Location of air quality and noise survey                                               |
| 1 igure 12.2.1 i | carried by CASST in August 2008                                                        |
| Figure 12.2.5-1  | Location of the additional site for surface water quality survey 12-36                 |
| Figure 12.2.9-1  | Map of sites of survey on ecosystem carried out                                        |
| Eiguna 12 2 0 2  | Drimory, Numerics in Coostal Water 12.41                                               |
| Figure 12.2.9-2  | Primary Nursenes III Coastal water                                                     |
| rigure 12.3.2-1  | (in construction phase)                                                                |
| Figure 12.3.7-1  | Locations of sampling sites of ambient air and surface water                           |
| Figure 12.3.8-1  | EMP Implementing Schedule                                                              |
| -                |                                                                                        |
| Figure 14.1.2-1  | Assumed Limits of the Operation and Maintenance<br>for Tan Vu - Lach Huyen Highway14-2 |
| Figure 14.1.3-1  | Plan for Tan Vu - Lach Huyen Highway14-3                                               |
| Figure 14.2.1-1  | Organization Chart of MOT14-5                                                          |
| Figure 14.2.1-2  | Classifications of Road Maintenance Activities and Investment Projects                 |
| Figure 14.2.1-3  | Details of the Activities and the Responsible Organization                             |
| -                | at Each Stage on Road Maintenance14-6                                                  |
| Figure 14.2.1-4  | Organization Chart of DRVN14-7                                                         |
| Figure 14.4.1-1  | Road Operator of Trunk Roads in Hai Phong City14-39                                    |

|                   |                                                          | FINAL REPORT |
|-------------------|----------------------------------------------------------|--------------|
| Figure 14.4.1-2   | Possible of the Management Organization                  |              |
| Figure 14.4.2-1   | Proposed Organization Chart of RRMC                      |              |
|                   |                                                          |              |
| Figure 15.5.1-1   | Layout of Maintenance and Protection of Traffic          |              |
| Figure 15.5.5-2   | Quantity of Rail Foundation of Gantry Crane (7.5t)       |              |
| Figure 15.5.5-3   | Shed Rail foundation                                     |              |
| Figure 15.5.5-4   | Quantity of Shed Rail Foundation                         |              |
| Figure 15.5.5-5   | Short Line Equipment Foundation Side View                |              |
| Figure 15.5.5-6   | Short Line Equipment Foundation Front View               |              |
| Figure 15.5.5-7   | Soil Stabilization of Segment Fabrication Yard           |              |
| Figure 15.5.5-8   | Foundation of Segment Stockyard                          |              |
| Figure 15.5.5-9   | Pavement of Segment Stockyard                            |              |
| Figure 15.5.5-10  | Tower crane (180 t-m)                                    |              |
| Figure 15.5.5-11  | Movable Shed                                             |              |
| Figure 15.5.5-12  | Curing Program                                           |              |
| Figure 15.5.5-13  | Japan Norm of Support Installation and Removal (per 10m) |              |
| Figure 15.5.7-1   | RNo.1, 2 Erection Girder Installation                    |              |
| Figure 15.5.7-2   | Quantity of Bent Foundation                              |              |
| Figure 15.5.7-3   | Erection Girder                                          |              |
| Figure 15.5.7-4   | Construction days of Installation and Demolition         |              |
| Figure 15.5.7-5   | Erection of No.3 girder                                  |              |
| Figure 15.5.7-6   | Segment transshipment gantry crane 80t                   |              |
| Figure 15.5.7-7   | Adhesives coating of Joint                               |              |
|                   |                                                          |              |
| Figure 16.2.2-1 C | Comparison of Passenger Transport PCU                    |              |
|                   |                                                          |              |
| Figure 17.3.3-1   | Estimated Implementation Program                         |              |
| Figure 17.4.2-1   | Alternatives on Construction Packaging Plan              |              |
|                   |                                                          |              |
| Figure 18.1.2-1   | Future Lane Requirement in JICA's Preparatory Survey     |              |
| Figure 18.2.1-1   | Typical Cross Section of Road Section                    |              |
| Figure 18.3.1-1   | Cross Section at Abutment                                |              |
| Figure 18.3.2-1   | Plan View of Approach Bridge                             |              |
| Figure 18.3.2-2   | General View of Approach Bridge with Second Stage        |              |
| Figure 18.3.3-1   | Plan View of Main Bridge                                 |              |
| Figure 18.3.3-2   | Cross Section at Pier P77 of Main Bridge including       |              |
| Figure 18.3.3-3   | Cross Section for Main Girder for the Second Stage       |              |
| Figure 18.4.1-1   | Signalized At-grade Intersection                         |              |
| Figure 18.4.2-1   | Separate-grade Interchange                               |              |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

#### 8.5 Design of Cam River Bridge

#### 8.5.1 Background

Tan Vu – Lach Huyen Highway is crossing Cam River at Km 1+700 and a box culvert with 8 cells, 8 x (4m x 4m), was planned, which is approved by 3139/QD-BGTVT dated 29th of October, 2010. The plan view and crosssection of box culvert is shown in the figure below.

On 5th of August, 2011, a meeting was held between Hai Phong PC and JICA Study Team, chaired by Mr Le Van Thanh, Vice Chairman, and concluded that the box culvert would be replaced by a bridge as stated in Notice No.242-TB/UBND dated 8th of August, 2011.

In accordance with the conclusion, a study was conducted to select an appropriate bridge type for crossing Cam River.



Source: Study Team

Figure 8.5.1-1 Cam River Box Culvert

#### 8.5.2 General Plan and Site Conditions of Cam River Bridge

In this chapter, appropriate general plan of the bridge is determined based on topographic hydrological conditions.

(1) Topographic Conditions

The figure below shows the topographic profile of Cam River. The lowest point is GL-2.2 at Km 1+700.



Figure 8.5.2-1 Topographic Profile of Cam River (Km 1+700)

#### (2) Hydrological Conditions

The hydrological conditions of Cam River at the intersection with Tan Vu – Lach Huyen Highway are summarized as follows;

| Items                                         | Quantities/ Values | Note                            |
|-----------------------------------------------|--------------------|---------------------------------|
| Design Discharge, Q*                          | $176 \text{ m}^3$  | Design Frequency, P =: 1%       |
| Design Velocity, V                            | 0.39 m/s           | Design Frequency, $P = 1\%$     |
| Necessary Width for Drainage, W               | 51.35 m            | Perpendicular to Flow Direction |
| Angle between Directions of River and Highway | 59 degree          |                                 |

Table 8.5.2-1 Hydrological Conditions of Cam River

\* Based on Article 2.2.3 "Supplemental Hydrological Survey" in Basic Design Report

#### (3) Length of Bridge

The length of the bridge is defined based on the necessary width for drainage, W=51.35m, shown in the table above and the skew angle,  $\theta$ =59 degree, parallel to the river front.

As shown in the plan view below, the bridge length is defined as 69.2m.

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

#### (4) Soil Conditions

The ground conditions by D/D study are shown in below illustrations and following tables.

| Layer Name | Soil Type  | Average<br>N-Value | Wet Density<br>Above Water<br>Level<br>γ (kN/m3) | Wet Density<br>Under Water<br>Level<br>γ (kN/m3) | Shear Strength<br>C (kN/m2) | Internal<br>Friction<br>(degree) | Horizontal<br>Spring<br>Constant<br>αE0 (kN/m2) |
|------------|------------|--------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------|----------------------------------|-------------------------------------------------|
| 3          | Lean Clay  | 1                  | 17.0                                             | 8.0                                              | 12.0                        | -                                | 5600                                            |
| 4          | Lean Clay  | 3                  | 18.0                                             | 9.0                                              | 42.0                        | -                                | 19600                                           |
| 6          | Sandy Clay | 16                 | 19.0                                             | 10.0                                             | 78.0                        | -                                | 36400                                           |
| L6-1       | Silty Sand | >50                | 19.0                                             | 10.0                                             | 78.0                        | 30.0                             | 36400                                           |
| 7B         | Silt       | 7                  | 18.0                                             | 9.0                                              | 42.0                        | -                                | 19600                                           |
| 8          | Lean Clay  | 14                 | 19.0                                             | 10.0                                             | 84.0                        | -                                | 39200                                           |
| 9          | Clay       | 6                  | 18.0                                             | 9.0                                              | 36.0                        | -                                | 16800                                           |
| 10B        | Silty Sand | >50                | 21.0                                             | 12.0                                             | -                           | 40.0                             | 137200                                          |

Table 8.5.2-2 Soil Condition at Boring No.BA-13 and BA-14

Source: Study Team







Figure 8.5.2-2 Soil Profile adjacent to Cam River (Km 1+700)

#### (5) Scour Depth

Total scour from superposition of components is given by

 $y_s = y_{s \; pier} + y_{s \; pc} + y_{s \; pg}$ 

 $y_s\colon$  Total scour depth, m

 $y_{s \text{ pier}}$ : Scour component for the pier stem in the flow, m

 $y_{s pc}$ : Scour component for the pier cap of footing in the flow, m

 $y_{s pg}$ : Scour component for the piles exposed to the flow, m

Scour component for the pier stem in the flow is given by

 $y_{s \text{ pier}} = K_{h \text{ pier}} [2.0 \text{ } \text{K}_1 \text{ } \text{K}_2 \text{ } \text{K}_3 \text{ } \text{K}_4 \text{ } \text{ } \text{a}_{\text{pier}}^{0.65} \text{ } \text{y}_1^{0.35} \text{ } \text{Fr}_1^{0.43}]$  $\text{Fr}_1 = V_1 / (g.y_1)^{0.5}$ 

 $K_{h\,\text{pier}}$ :Coefficient to account for the height of the pier stem above the bed and the shielding effect by the pile cap overhang distance "f" in front of the pier stem

 $K_{h\ pier} = (0.4075\ -\ 0.669\ f/a_{pier})\ -\ (0.4271\ -0.778\ f/a_{pier})\ h1/a_{pier}\ +\ (0.1615\ -\ 0.455\ f/a_{pier})(h_1/a_{pier})^2\ -\ (0.0269\ -\ 0.012\ f/a_{pier})(h_1/a_{pier})^3$ 

Scour component for the pier cap of footing in the flow is given by

 $\begin{array}{lll} y_{s\,pc} & = & 2.0\;K_1\;K_2\;K_3\;K_4\;K_w\;a_{\ pc}^{*\,0.65}\;y_2^{\;0.35}\;Fr_2^{\;0.43}\\ Fr_2 & = V_2\;/\;(g.y_2)^{0.5} \end{array}$ 

Scour component for the piles exposed to the flow is given by  $y_{s pg} = K_{h pg} [2.0 K_1 K_2 K_3 K_4 a_{pg}^{*0.05} y_3^{0.05} Fr_3^{0.043}]$ 

Where:

 $\Delta y_{xcb}$  : Level after scour, m

y<sub>1</sub>: Flow depth directly upstrream of the pier, m

 $K_1$ : Correction factor for pier nose shape

 $K_2$ : Correction factor for angle of attack of flow

K<sub>3</sub>: Correction factor for bed condition

 $K_4$ : Correction factor for armoring by bed material size (only with  $D_{50} = > 60 \text{ mm}$ )

a : Pier width, m

 $\mathbf{V}_1$  : Mean velocity of flow directly upstream of the pier, m/s

K<sub>w</sub> : Wide pier factor

K<sub>sp</sub> : Coefficient for pile spacing

F<sub>rf</sub> : Froude number

$$\mathbf{F}_{\rm rf} = \mathbf{V}_{\rm f} / \left( \mathbf{g} \cdot \mathbf{y}_{\rm f} \right)^0$$

g : Acceleration of gravity  $(9.81 \text{ m/s}^2)$ 

 $V_{\rm f}$  : average velocity in the flow zone below the top of the footing, m/s

 $V_2$  : average adjusted velocity in the vertical of flow approaching the pier,  $\ensuremath{\text{m/s}}$ 

K<sub>m</sub>: Coefficient for number of aligned rows, m

 $(K_m = 1 \text{ for skewed or staggered pile group})$ 

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

The parameters for calculation of the scour depth are shown in the table below.

#### Table 8.5.2-3 Calculation of Scour Depth

| H <sub>1%</sub> = 2.50 m |                         |            |                |       |      |                   |                    |                     | (ii)                |               |                |      |                |                |                |     |                         |                         |                |                     |
|--------------------------|-------------------------|------------|----------------|-------|------|-------------------|--------------------|---------------------|---------------------|---------------|----------------|------|----------------|----------------|----------------|-----|-------------------------|-------------------------|----------------|---------------------|
| No.                      | $\nabla_{\mathrm{trô}}$ | <b>y</b> 1 | V <sub>1</sub> |       | f    | a <sub>pier</sub> |                    | K <sub>h pier</sub> |                     |               | K1             |      | K <sub>2</sub> |                | K <sub>3</sub> |     |                         | K4                      |                | y <sub>s pier</sub> |
| Trô                      | (m)                     | (m)        | (m/s)          | Fr₁   | (m)  | (m)               | h <sub>0</sub> (m) | h₁(m)               | K <sub>h pier</sub> | HD mòi<br>trô | K <sub>1</sub> | θ(°) | L (m)          | K <sub>2</sub> | §,ys«ng        | K3  | D <sub>50</sub><br>(mm) | D <sub>95</sub><br>(mm) | K <sub>4</sub> | (m)                 |
|                          |                         |            |                |       |      |                   |                    |                     |                     |               |                |      |                |                |                |     |                         |                         |                |                     |
| P1                       | -2.20                   | 4.70       | 0.53           | 0.078 | 0.70 | 1.80              | -3.03              | -1.03               | 0.661               | vu«ng         | 1.1            | 0    | 10.00          | 1.0            | b»ng ph1/ag    | 1.1 | 0.08                    | 0.35                    | 1.00           | 1.35                |
| <u>P2</u>                | -2.05                   | 4.55       | 0.52           | 0.078 | 0.70 | 1.80              | -3.18              | -1.18               | 0.711               | vu«ng         | 1.1            | 0    | 10.00          | 1.0            | b≫ng pn /ag    | 1.1 | 0.08                    | 0.35                    | 1.00           | 1.43                |

|   | H <sub>1%</sub> | =          | 2.50  | m    |                |                |                |       |                 |                 |                  |                |     |      |                |                |     |      |                         |                | (iii)             |
|---|-----------------|------------|-------|------|----------------|----------------|----------------|-------|-----------------|-----------------|------------------|----------------|-----|------|----------------|----------------|-----|------|-------------------------|----------------|-------------------|
| ſ | No.             | <b>y</b> 1 | V 1   | Т    | h <sub>2</sub> | k <sub>s</sub> | y <sub>2</sub> | V2    |                 | a <sub>pc</sub> | a* <sub>pc</sub> | K              | 1   |      | K <sub>2</sub> |                |     |      | K                       | w              | y <sub>s pc</sub> |
|   | Trô             | (m)        | (m/s) | (m)  | (mm)           | (mm)           | (m)            | (m/s) | Fr <sub>2</sub> | (m)             | (m)              | HD mòi tr<br>ô | K1  | θ(°) | L (m)          | K <sub>2</sub> | K3  | K4   | D <sub>50</sub><br>(mm) | K <sub>w</sub> | (m)               |
| ſ |                 |            |       |      |                |                |                |       |                 |                 |                  |                |     |      |                |                |     |      |                         |                |                   |
| ľ | P1              | 4.70       | 0.53  | 2.00 | -2.36          | 0.250          | 5.37           | 0.46  | 0.064           | 2.05            | 1.58             | vu«na          | 1.1 | 0    | 10.00          | 1.0            | 1.1 | 1.00 | 0.08                    | 1.00           | 1.72              |
| ľ | P2              | 4.55       | 0.52  | 2.00 | -2.47          | 0.250          | 5.26           | 0.45  | 0.062           | 2.05            | 1.83             | vu«ng          | 1.1 | 0    | 10.00          | 1.0            | 1.1 | 1.00 | 0.08                    | 1.00           | 1.85              |
|   |                 |            |       |      |                |                |                |       |                 |                 |                  |                |     |      |                |                |     |      |                         |                |                   |

Pier stem depth Component

The total scour depths and the elevations at the piers, P1 and P2 are summarized in the table below.

| Pier No. | Total Scour Depth y <sub>s</sub> (m) | River Bed Elevation after scour (m) |
|----------|--------------------------------------|-------------------------------------|
| P1       | 3.06                                 | -5.26                               |
| P2       | 3.27                                 | -5.32                               |

#### Table 8.5.2-4 Total Scour Depth

#### (6) Span Length and Type of Girder

Regarding span component and bridge type, it was judges that 3 spans continuous or simply supported girder is reasonable from technical & economical view points. After comparison on three (3) alternatives as shown in the Discussion paper No.15, PC Hollow slab girder was selected from aesthetic & economical view point. However, according to the site conditions, DRVN and PMU-2 insisted that pre-cast girder shall be adopted. Finally, PC T girder simply supported was adopted and designed. (Concrete volume of PC T girder is less than PC Hollow slab girder, box girder and PC I girder with cast-in-situ deck slab.)

#### (7) General Plan

The general plan of Cam River Bridge is as shown in the figure below.

#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT



Source: Study Team



#### 8.5.3 Design of Superstructure

#### (1) Girder Arrangement

The girder arrangement is as shown in the figure below.



Source : Study Team



- (2) Design conditions
  - Bridge Type: Prestressed Concrete Bridge
  - Structure Type: PC simply supported T girder
  - Length: 3@23.0 = 69m
  - Design Speed: 80km/h
  - Construction Method: Post tension Pre-cast girder
  - Erection Method: Erection girder
  - Live Load: 22TCN-272-05 (AASHTO LRFD)
  - Width Composition: 15.050m for design
- (3) Material to be used (common to main & approach bridge)

See the article 8.1.2 in this report.

#### (4) Tendon Arrangement

The tendon arrangement in is as shown in the figure below.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT



(b) Transversal PC Tendons





#### (5) Results of Design

Detailed design conditions and calculation is shown in Design Report on Cam River Bridge. The resultant reinforcement is as shown in the figures below.



Source: Study Team



THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT



Source: Study Team



Source: Study Team



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

#### 8.5.4 Design of Substructure

#### (1) Structure Dimensions

The Dimensions of substructure are as shown in the figure below.



Source : Study Team





THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Source : Study Team

Figure 8.5.4-2 Dimensions of Pier

(2) Material to be used (common to main & approach bridge)

See the article 8.1.2 in this report.

(5) Results of Design

Detailed design conditions and calculation is shown in Design Report on Cam River Bridge. The resultant reinforcement is as shown in the figures below.



THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Source: Study Team



THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT



Source : Study Team

Figure 8.5.4-4 Reinforcement of Abutment

#### 8.5.5 Precast T Girder Erection Method

On the Cam River, 3 continuous PC Post tension T girders will be constructed by erection girder after fabricating PC Girder behind abutment.

Outline of erection is shown below.



Source: Study Team



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.