### 8.3 Study of Main Bridge

### 8.3.1 Selection of Type of Main Bridge

#### 8.3.1.1 General

(1) Study Objections

In order to select appropriate main bridge by comprehensive evaluation in terms of construction cost, construction planning and aesthetic point of view, comparison study for the types of the main bridge is performed.

#### (2) Conditions of Study

In this study, the span arrangement of 95m+150m+150m+95m for fulfill the navigation clearance which mentioned in the previous chapter is assumed. The foundation of steel pipe sheet pile type and the erection method of Cantilever with Precast Girder Segments are also assumed, as recommended by JICA's Preparatory Survey (SAPROF Study). The comparison studies concerning erection method and foundation type are discussed in Chapters 8.3.2 and 8.3.5.

#### (3) Scope of Study

The study was implemented by checking the following items.

1) Selection of Main Bridge Type

In JICA's Preparatory Survey, PC Girder Bridge with V-shaped Piers is recommended and approved by MOT.

In this study, the following two alternatives are studied.

- (i) Alternative-1: PC Girder with V-shape piers (Approved by MOT)
- (ii) Alternative-2: Extradosed Bridge

Because of the lane arrangement in the future as shown in the figure below, the pylons for the extradosed bridge is to be located at the outside of the girder.

(4) Items to be studied

Items to be studied are economic, technical and other validities as shown in Table 8.1.6-1.

# 8.3.1.2 Contents of Study

# (1) Comparison Study

The comparison study is performed as shown in the following table.

1) Study Result

As shown in the following figure, Alternative-1: PC Girder with V-shaped piers is recommended from comprehensive view points, economic, technical and other viabilities.



(a) Alternative -1: PC Girder with V-shaped Piers



(b) Alternative -2: Extradosed Bridge

Source: Study Team



|                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                     | 9                                                                                                | 10                                                                                                                           | 10                                                                                                  | 4                                                                                         | 5                                                                                                                | 4                                                                                                                              |                                                | 17         |
|------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|
| -2               |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsion, Two Cell Box Girder       | ment.<br>The coupation.<br>and large concrete volume.<br>Lige.<br>Luced by shrinkage of the girder.                                                                                                                                                                                                                                                                                                                                                                                | Superstructure         222,402,000,000         VND           Substructure         309,321,000,000         VND           Substructure         309,321,000,000         VND           Feta         541,723,000,000         VND           Feta         1,22         1,22         1,000,000 |                                                                                                  |                                                                                                                              | ke a contribution.                                                                                  |                                                                                           |                                                                                                                  | gation.                                                                                                                        |                                                | Aland      |
| Alternative      |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Double Pilar Tower, Double Suspe | Structurally Stable<br>Ginder is lower than Atternative-1, which resulted in lower vertical alg<br>Double ris lower than Atternative-1, which resulted in lower vertical and<br>Double and plar tower with double suspension cables results in worred<br>Datance of webs is larger (174m), which results in tworred low, ginder<br>The net span is 150m which is optimum length for extradosed type bric<br>Stable or anchor box is needed at the top of pylon to hold the extrado |                                                                                                                                                                                                                                                                                        | Construction of pylon is an additional phase to Altenrative-I.<br>Construction Period: 22 months | Cable maintenance such as tensile force monitoring will be applied.<br>The number of beerings are the same as Alternative-1. | 14%(Preliminary Estimate)<br>In addition to Alternative-1, extradosed cables, anchors and sadde mai | Slender appearnace with long span<br>Tower and extradosed cables make a symbolic showing. | Extradosed Bridge is new technology in Vietnam<br>Steel bine sheat pile foun dation is new technology in Vietnam | There are pylons, but tow enough for air navigation.<br>The cantilever method for girder erection can avoid obstacles for navi | Construction Cost is higher than Alternative-1 | nemmons    |
|                  | 20                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | œ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VND<br>VND<br>VND<br>40                                                                                                                                                                                                                                                                | 9                                                                                                | 9                                                                                                                            | 10                                                                                                  | 3                                                                                         | 4                                                                                                                | 4                                                                                                                              |                                                | 81         |
| Afternative-1    | PU Graer with V Shape Pier              | Alating and a second se | JF Study, Approved by MOT        | resulted in higher vertical alignment<br>the girder, which resulted in narrower occupied area.<br>sults in smaller converte volume.<br>span length is 120m, which results in reasonable cost.<br>in large secondary stress induced by shrinkage of the girder.                                                                                                                                                                                                                     | Superstructure 142,818,000,000 '<br>Substructure 302,855,000,000 '<br>Total 43,513,000,000 '<br>Ratio 100                                                                                                                                                                              | ale scafoldings.                                                                                 | s not necessary.<br>ternative-2.                                                                                             | and cement make contributions.                                                                      |                                                                                           | chnology in Vietnam.                                                                                             | for air navigation.<br>1 can avoid obstacles for navigation.                                                                   | ve-2                                           | :          |
|                  | 500 1 1000 1000 1000 1000 1000 1000 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAPRO                            | Structurally Stable<br>Girder is higher than Atemative-2, which<br>there are no pilars nor cables outside of the<br>Distance of webs is shorter (Juh), which re<br>Owing to Veshapad pilers, the net center s<br>The rigidity of pilers is high, which results i                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                        | V-shape pier and pier head needs large sc<br>Construction Period: 22 months                      | Any special maintentance for PC cables is<br>The number of bearings is the same as Alt                                       | 63% (Preliminary Estimate)<br>Steel pipe sheet piles, PC strands, rebars                            | Slender appearance<br>V-shape pier make a symbolic showing.                               | Steel pipe sheet pile foundation is new ter                                                                      | There are no pylons which are obstacles f<br>The cantilever method for girder erection                                         | Construction cost is lower than Alternati      |            |
| Max              | Point                                   | ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 40                                                                                                                                                                                                                                                                                   | 10                                                                                               | 15                                                                                                                           | 10                                                                                                  | ы                                                                                         | പ                                                                                                                | u.                                                                                                                             |                                                | 100        |
| Evaluation Items |                                         | Schematic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | Structural Aspect<br>and Stability                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Construction Cos                                                                                                                                                                                                                                                                       | Construction Plan<br>and Period                                                                  | Maintenance                                                                                                                  | STEP Clearance                                                                                      | Aesthetics                                                                                | New Technology                                                                                                   | Traffic Management<br>Environmental<br>Aspect                                                                                  |                                                | Evaluation |

Table 8.3.1-1 Comparison on Type of Main Bridge

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

# 8.3.2 Selection of Erection Method for Main Bridge

# 8.3.2.1 Comparative Study between Cast-in-place and Pre-cast segment

For concrete box girder with long span over 100m, a balanced cantilever construction is the most appropriated and suitable erection method under the constraints such as navigation channel, deep valley and river. The main bridge has 2 spans of 150m for clearance of navigation channel and 90m on both side spans which are constructed with the balanced cantilever construction. The balanced cantilever construction is divided into two methods which are cast-in-place and precast segments in relation with design and construction concepts and economic point. The comparative study for cast-in-place and precast segment methods are shown in the table on the next page.

As the results on the comparative study, cast-in place balanced cantilever segment method is selected by the following main points;

-Precast balanced cantilever segment method can be shorten construction period by two months in comparison with cast-in-place balanced cantilever segment method but the construction period of cast-in-place is not in critical pass of total construction schedule.

-Precast segments are erected by crawler cranes mounted on the barges that disturb ship traffic in the navigation channel during construction.

-Wide precast yard and casting equipment are required for fabrication of box segment in the Cut Hi side where is in the limited small island.

| Evaluation Items                            | Max.<br>Point |                                                                                                                      | Atternative-1                                                                                                                                                                              |    | Alternative-2                                                                                                                                                                                                                                                                                |    |
|---------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Side View                                   |               |                                                                                                                      |                                                                                                                                                                                            | 1  |                                                                                                                                                                                                                                                                                              |    |
|                                             |               | Cast-iı                                                                                                              | n-place Balanced Cantilever Method                                                                                                                                                         |    | Precast Balanced Cantilever Method                                                                                                                                                                                                                                                           |    |
| Structural Aspect and<br>Stability          | 10            | <ul> <li>Cast—in—place tech<br/>length with a varyin</li> <li>Prime application of<br/>navigation channel</li> </ul> | inique is applied for long and irregular span<br>ng depth girder like a proposed main bridge.<br>f cast-in-place cantilever bridge is used over<br>without any disturbance of sea traffic. | 10 | <ul> <li>Casting of superstructure segments are started at the beginning of<br/>construction at the same time as construction of substructure.</li> <li>Segments are produced in the fabrication yard providing consistent<br/>rates of production with superior quality control.</li> </ul> | 10 |
| Construction Cost<br>(Vietnam Million Dong) | 40            | Superstructure<br>Substructure<br>Total<br>Ratio                                                                     | 154,459<br>282,784<br>430,281<br>1,00                                                                                                                                                      | 40 | Superstructure         177,628           Substructure         282,784           Total         460,412           Ratio         1,22                                                                                                                                                           | 24 |
| Construction P <b>l</b> an and<br>Period    | 10            | <ul> <li>Number of segment<br/>wagon and the rate</li> <li>Construction period</li> </ul>                            | t is reduced due to the use of large erection<br>s of construction is improved.<br>d: 24 months                                                                                            | 8  | <ul> <li>Since eliminating the use of falsewaork, the rate of erection girder<br/>is increased in comparison with Cast-in-place.</li> <li>Construction period: 22 months</li> </ul>                                                                                                          | 10 |
| Maintenance                                 | 15            | <ul> <li>A bridge members</li> <li>free except 4 beari</li> <li>is applied for sea si</li> </ul>                     | are rigid connection and maintenance<br>ing shoes. Efficient concrete coverage<br>ide area.                                                                                                | 12 | All bridge members are rigid connection and maintenance<br>free except 4 bearing shoes. Efficient concrete coverage<br>is applied for sea side area.                                                                                                                                         | 12 |
| STEP Clearance                              | 10            | <ul> <li>Procurement mater</li> <li>Procurement equipr</li> <li>Procurement ratio:</li> </ul>                        | ial: steel pipe, PC cable and anchor, Steel pipe pile<br>ment: Large erection wagon<br>ApproximateM 55%                                                                                    | 10 | <ul> <li>Procurement material: steel pipe, PC cable and anchor, Steel pile</li> <li>Procurement equipment: Erection Lifting, Match casting machine</li> <li>Procurement ratio: Approximately 55%</li> </ul>                                                                                  | 10 |
| Aesthetics                                  | 5             | -Aesthetically config                                                                                                | guration is the same after completion of bridge.                                                                                                                                           | 5  | Aesthetically configuration is the same after completion of bridge.                                                                                                                                                                                                                          | 5  |
| New Technology                              | 5             | -Common technolog                                                                                                    | sy but large scale in Vietnam                                                                                                                                                              | 4  | New technology of precasting: Match casting in Vietnam                                                                                                                                                                                                                                       | 5  |
| Environmental Impact                        | a             | -Avoid disruption to                                                                                                 | the existing ship traffic in the navigation.                                                                                                                                               | 2  | <ul> <li>Temporary yard is required for precasting girder segment<br/>and disturbance ship traffic during construction.</li> </ul>                                                                                                                                                           | e  |
| Evaluation                                  | 100           | <ul> <li>Cast-in-place balar.</li> <li>construction of gird<br/>sea traffic and out c</li> </ul>                     | nced cantilever method is recommended because<br>ler can be proceeded without any disturbance of<br>of critical pass of project                                                            | 94 | <ul> <li>This alternative has advantage of short construction period but<br/>disadvantage is disturbance ship traffic due to segment transportation.</li> <li>Large fabrication area is required in Cat Hai Island.</li> </ul>                                                               | 62 |
|                                             |               |                                                                                                                      | Recommendable                                                                                                                                                                              |    | Less Recommendable                                                                                                                                                                                                                                                                           |    |

Remark: Construction cost is direct cost based on JICA's Preparatory Survey, therfore its amount is revised in det Source : Study Team

#### (1) Election of Main Bridge

Erection of the segments in "balanced" cantilever was done with traveling forms supported by the previously completed portions of the superstructure as shown in the figure below. These space frames supported the forms and wet concrete weight of the segments, the largest of which weighed on the order of 4,000 KN and was approximately 16 m width. The form travelers also support platforms required to finish the concrete surfaces and install transverse and longitudinal prestressing tendons. The construction sequence is shown in the Construction plan.



### Source: Study Team

Figure 8.3.2-1 Erection of Main Girder with Form traveler

# 8.3.3 Superstructure of Main Bridge

# 8.3.3.1 Cross Section of Main Girder

Outside configurations of main and approach bridges applies to the same dimension of Approach Bridge to focus on the continuity of structure. Comparative study of the cross section was presented in the article 3.5 of Preliminary Study Report.

The cross-section of the main bridge is a single-cell box girder, consisting of the upper slab with cantilevering flanges, webs, and the lower slab as shown in the Figure below. The box girder webs have a constant vertical inclination of 28.78 to 100 considering the width of lower slab of 5.0m of main bridge.

The height of box girder varies from 7.5m (Height/Span=7.5/150=1/20) at top of the piers to 3.5m at the mid-spans. The width of the upper slab is constant at 16.0 m including the cantilevering flanges of about 3.35m width each. The box girder will carry 4 lanes of traffic that are each 3.50m wide. The bridge deck has a transverse slope of 2% for drainage purposes and will carry a concrete railing at its edges. The thickness of the upper slab cantilevers varies transversally from 0.26m to 0.55m outside the box but from 0.26m to 0.46m at the end segments of main bridge to adjust the thickness to the approach bridge. The lower slab has a thickness variable from 1.0m at the top piers to 0.26m at the mid-span. The thickness of webs also varies transversally from 0.6m to 0.45m as shown in the figure below. Internal diaphragms are provided at the top of V-shaped walls piers, on which the deck is restrained, where they are 3.0m thick, as well as at the end pier of main bridge where they are 2.5m thick which are situated over the bridge bearings in the last box girder segment directly adjacent to the approach bridge. Internal diaphragms are provided inside the spans for positioning at 7th segment from the top of the pier.



Source: Study Team

Figure 8.3.3-1 Cross Section for Main Girder of the Initial Stage

The main bridge is planned with the stage construction integrated with pile cap in JICA Preparation Study. Is case that integrated pile cap is applied; cross section of 2nd stage is configured as shown in the following figure to estimate external forces for pile cap design.



Source: Study Team

Figure 8.3.3-2 Cross Section for Main Girder for the Second Stage

# 8.3.3.2 Cantilever Segments and Pier Head

A pier table length of 15.0m with an asymmetry of to the pier centerline, and several types of segments, being 5.0m long in the spans and 3.0m at the closure segments but only 3.5m near the pier table as shown in the figure below. Keeping deeper segments shorter was intended to level volumes of concrete placement and capacity of form traveler during construction. To reduce of number of segments, the form traveler with capacity of 4,000kNm is selected for a long span bridge.



Source: Study Team



# 8.3.3.3 Cast-in-Place Segments on the False work

At the end segments of side span, the long segments out of cantilever portion are built on-site using formwork supported by temporary false work as shown in the figure below.



Figure 8.3.3-4 Cast-in-place Segments on False Work

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

# 8.3.3.4 Post-Tensioning System

Longitudinal cantilever erection tendons are located in the upper slab of both box and cantilever sections. Naturally, they will be stressed beginning with the shortest tendons that connect only a few segments. Stressing of the tendons will be performed on newly cast segments prior to stripping of the forms in an alternating manner on the end at which the newly cast segment. This sequence is expected to generate a more even distribution of prestressing forces, including losses of prestress, in the superstructure.

The continuity tendon prestrssing is carried out after the completion of the cantilever segment and the connection of them by casting key segment in the mid span. The tendons are divided in 5 groups: two of them are placed on the expansions of the webs and the remaining three are placed on the lower slab. Tendons are anchored surrounded by spiral reinforcement in anchorage blocks, also called anchorage blisters, which are symmetrically located on the inside lower slab edges of the box girder. The length of tendons varies from 30.0 m to 68.0 m and their profile follows the profile of the lower slab. The arrangement of the longitudinal cantilever tendons in the upper slab is shown in the figure below.



Source: Study Team

Figure 8.3.3-5 Arrangement of Longitudinal Cantilever Tendons

# 8.3.3.5 Materials used for Main Girder

Main construction materials in main bridge are listed below

- Cantilever cable and Continuity cable: 12S15.2 or 19S15.2
- Transversal cable: 1S28.6
- Concrete strength: 40 N/mm2
- Reinforcing bar: SD345

# 8.3.4 Substructure of Main Bridge

# 8.3.4.1 General

Main bridge of the Lach Huyen Bridge has 4 spans and is 490m in total length supported 3 V-shaped piers. The V-shaped pier was selected considering the economical point due to reduction of span length and aesthetical view point in the Feasibility Study. In the Preparatory Survey conducted by the JICA in 2010, the V-shaped Pier was also selected by the JICA Study Team and approved by the MOT.

In order to select appropriate structure of the piers in the main bridge, issues on V-shaped pier; Skelton balance, shape in Longitudinal Direction, level on bottom and aesthetic consideration are discussed in this chapter.

# 8.3.4.2 Skelton Balance of V-shaped Pier

The V-type pier of main Bridge is determined by the balance of 6 elements (skeleton) of  $\theta$ , L, L1, L2, L3 and H as shown in the figure below considering the natural and structural conditions and aesthetic view point. H (height of wall of V-shape) should be fixed to maintain same shape of triangle and make a simple structure. In case that top of sub-structure is set above high water level of 2.55 m (Design frequency: P=5%), inspection and maintenance of V-shape walls are easily conducted after the construction. In case that the top of sub-structure is set at level of 2.65 m recommended in Sub-section 8.3.4.4, height of 10cm is secured for allowance.  $\theta$  (Angle at the vertex of triangle is mainly influenced to economical and aesthetical points. The comparative study of V-shape varying  $\theta$  from 30° to 90° is conducted and shown in the table on the next page.



Source: Study Team

Figure 8.3.4-1 Skelton of V-shaped Piers

|                             |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 9                                                                                                                                                                                                                                                         | 32                                                                                                                                                                      | 9                                                                                                                            | 12                                                                                                                                                 | 8                                                                                                                                             | e                                                                                                                                                  | 5                                                       | 5                             | 77                                                                                                                                                     |                                       |
|-----------------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                             | Alternative-3    |                      | 2.450 <u>600</u> 2.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Approx. $\theta = 45^{\circ}$ | educed from 150m to 110m and depth of<br>to 7.2m. But Pier top structure has bong<br>naison force may occur on the lower slab.<br>ped pier is a rigid connection to<br>sideming anthuake-resistance.                                                      | 145,878<br>329,458<br>475,335<br>1,09                                                                                                                                   | f 13 segments can be minimized but<br>iod of substructure be extended by large<br>Construction period: 26 months             | rs are rigid connection and maintenance<br>aing shoes. Efficient concrete coverage<br>side area.                                                   | terial: steel pipe, PC cable and anchor<br>nipment: Large erection wagon<br>o: Approximately 37%                                              | ier is unstable image  in low navigation                                                                                                           | ising new scaffo <b>l</b> ding system in Vietnam        | nental impact                 | is too much opened so that structuraly<br>unfavorable with the structure on the                                                                        | Not Recommendable                     |
|                             |                  | 3000<br>1000         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Center span is re<br>girder from 80m<br>span and large te<br>Bottom of V-sha<br>substructure cor                                                                                                                                                          | Superstructure<br>Substructure<br>Total<br>Ratio                                                                                                                        | Erection period c<br>construction per<br>large foundation                                                                    | <ul> <li>All bridge membe<br/>free except 4 be<br/>is applied for sea</li> </ul>                                                                   | <ul> <li>Procurement ma</li> <li>Procurement equivalence</li> </ul>                                                                           | • Wide V-shaped p<br>clearance                                                                                                                     | New shaped pier u                                       | No major environn             | Angle of V–shap<br>and aesthetica<br>sea                                                                                                               |                                       |
| ٦<br>د                      |                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 10                                                                                                                                                                                                                                                        | 40                                                                                                                                                                      | 10                                                                                                                           | 12                                                                                                                                                 | 8                                                                                                                                             | 5                                                                                                                                                  | 2                                                       | 5                             | 95                                                                                                                                                     |                                       |
| ly on Angle of V-shaped Piŧ | Alternative-2    | 0005<br>0005<br>0005 | 2.450 2.431<br>2.450 2.132<br>2.450 2.132<br>2.450 2.132<br>2.450 2.132<br>2.450 2.132<br>2.450 2.132<br>2.450 2.132<br>2.451 2.132<br>2.552 2.552 2.132<br>2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 2.552 | Approx. $\theta = 30^{\circ}$ | duced from 150m to 125m and depth<br>m 8.0m to 7.5m economically.<br>ped pier is a rigid connection to<br>isidering earthquake-resistance.                                                                                                                | 154,459<br>282,784<br>437,243<br>1,00                                                                                                                                   | iod can be minimized by the deduction<br>nts from 15 to 14 segments<br>od: 24 months                                         | s are rigid connection and maintenance<br>aring shoes. Efficient concrete coverage<br>side area.                                                   | erial: steel pipe, PC cable and anchor<br>ipment: Large erection wagon<br>3: Approximately 35%                                                | simply an equilateral triangle and<br>le and matching with horizontal sea line                                                                     | sing new scaffolding system in Vietnam                  | lental impact                 | s superior to other cases in economic ints.                                                                                                            | Most Recommendable                    |
| nparison Stud               |                  | 8600                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Center span is re     of girder also fror     also fror     also tron     substructure con                                                                                                                                                                | Superstructure<br>Substructure<br>Total<br>Ratio                                                                                                                        | Construction peri<br>cantilever segme<br>Construction peri                                                                   | <ul> <li>A bridge member</li> <li>A bridge except 4 bear</li> <li>is applied for sear</li> </ul>                                                   | Procurement mat     Procurement equ     Procurement rati                                                                                      | <ul> <li>V-shaped pier is a sesthetically stab</li> </ul>                                                                                          | New shaped pier u                                       | No major environm             | <ul> <li>This alternative is<br/>and aesthetic poi</li> </ul>                                                                                          | · · · · · · · · · · · · · · · · · · · |
| Table 8.3.4-1 Con           | Alternative-1    |                      | 2.450 00 3.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Approx. $\theta = 15^{\circ}$ | <ul> <li>Center span is reduced from 150m to 140m but deduction<br/>of girder depth (7.8m) is almost same as single pier (8.0m).</li> <li>Bottom of V-shaped pier is a rigid connection to<br/>substructure considering earthquake-resistance.</li> </ul> | Superstructure         171,621           Substructure         24,548           Substructure         24,548           Total         446,169           Ratio         1,02 | •Substructure is almost same as Atternative-2 but<br>15 cantilever segments are required.<br>•Construction period: 25 months | A bridge members are rigid connection and maintenance<br>free except 4 bearing shoes. Efficient concrete coverage<br>is applied for sea side area. | Procurement material steel pipe, PC cable and anchor     Procurement equipment: Large erection wagon     Procurement ratio: Approximately 35% | <ul> <li>V-shaped pier is sharp angle and elegant as a single pier,<br/>but does not balance with center span (150m)<br/>aesthetically.</li> </ul> | New shaped pier using new scaffolding system in Vietnam | No major environmental impact | <ul> <li>Aesthetically recommendable but narrow V–shaped pier<br/>has less offect on structural and economical aspects than<br/>Atemative–2</li> </ul> | Less Recommendable                    |
|                             | Max.<br>Point    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 10                                                                                                                                                                                                                                                        | 40                                                                                                                                                                      | 10                                                                                                                           | 15                                                                                                                                                 | 10                                                                                                                                            | 5                                                                                                                                                  | 5                                                       | 5                             | 100                                                                                                                                                    |                                       |
|                             | Evaluation Items |                      | Side View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | Structural Aspect and<br>Stability                                                                                                                                                                                                                        | Construction Cost<br>(Vietnam Million Dong)                                                                                                                             | Construction Plan and<br>Period                                                                                              | Maintenance                                                                                                                                        | STEP Clearance                                                                                                                                | Aesthetics                                                                                                                                         | New Technology                                          | Environmental Impact          | Evaluation                                                                                                                                             |                                       |

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

# 8.3.4.3 Comparative Study on Pier Appearance in Longitudinal Direction

Angle at the vertex of triangle ( $\theta$ ) of approximate  $60^{\circ}$  is selected for V-shaped pier from structural and economical viewpoints. The V-shaped pier in longitudinal direction has 3 alternative configurations planned considering structural stability and aesthetic point.

- a) Alternative-1: Simple solid rectangular type
- b) Alternative-2: Reversed trapezoid with void
- c) Alternative-3: Reversed trapezoid with slit

V-shaped wall extended to upper slab is recommended to make a large triangle shape as a symbolic appearance and aesthetic structure from side view. Comparative study of sub-structure with V-shaped pier in longitudinal direction is shown in the table on the next page. Comparisons are mainly evaluated with structural and aesthetical points. Difference of construction cost is minimal so that an economical evaluation is considered to be almost same. Alternative-3 is recommended in aesthetical point.

|                  |                       | 0                                                                               | 40                                               | 10                              | 12                                                                                               | 10                                                                                             | ى<br>س                                                                                                                   | 5                                       | 5                                    | 97                                                             |                    |
|------------------|-----------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------------------|--------------------|
| Alternative-3    |                       | tructure flow smoothly to substructure<br>ox girder and separated V-shaped wall | 154,459<br>284,481<br>438,940<br>1,004           | 24 months                       | are rigid connection and maintenance<br>ing shoes. Efficient concrete coverage<br>ide area:      | rial: steel pipe, PC cable and anchor<br>ment: Large erection wagon<br>Approximately 55%       | traprzoid extended to the bottom of<br>oolic appearance and aesthetic view.<br>nted to make constrast for aesthetics.    | sing new scaffolding system in Vietnam  | ental impact                         | superior to other Alternatives in the tic points.              | Most Recommendable |
|                  | · 141   K             | <ul> <li>Loads from supers<br/>through webs of b</li> </ul>                     | Superstructure<br>Substructure<br>Total<br>Ratio |                                 | <ul> <li>All bridge members<br/>free except 4 bear<br/>is applied for sea s</li> </ul>           | Procurement mate<br>Procurement equip<br>Procurement ratio:                                    | -A large slit shaped<br>lower slab is a sym<br>• The slit can be pai                                                     | -New shaped pier u                      | •No major environm                   | <ul> <li>This alternative is<br/>structural and aes</li> </ul> |                    |
|                  |                       | 10                                                                              | 40                                               | 10                              | 12                                                                                               | 10                                                                                             | 4                                                                                                                        | 5                                       | 5                                    | 96                                                             |                    |
| Alternative-2    |                       | structure flow smoothly to substructure<br>box girder and V-shaped wall.        | 154459<br>283.632<br>438.091<br>1,002            | 24 months                       | s are rigid connection and maintenance<br>aring shoes. Efficient concrete coverage<br>side area. | eriat steel pipe, PC cable and anchor<br>ipment: Large erection wagon<br>s: Aporoximatelv 55%  | raped with V-Heg wall extended to upper<br>appearance and aesthetic structure.                                           | using new scaffolding system in Vietnam | mental impact                        | recommendable in comparison with                               | Less Recommendable |
|                  |                       | <ul> <li>Loads from super<br/>through webs of</li> </ul>                        | Superstructure<br>Substructure<br>Total<br>Ratio |                                 | <ul> <li>All bridge member</li> <li>free except 4 bea</li> <li>is applied for sea</li> </ul>     | Procurement mat     Procurement equ     Procurement ratio                                      | A large triangle sh<br>slab is a symbolic                                                                                | <ul> <li>New shaped pier</li> </ul>     | <ul> <li>No major environ</li> </ul> | -Aesthetically not<br>Aternative-3                             |                    |
|                  |                       | 9                                                                               | 40                                               | 10                              | 12                                                                                               | 10                                                                                             | e                                                                                                                        | 2                                       | 2                                    | 91                                                             |                    |
| Alternative-1    |                       | from superstructure is concentrated at<br>superstructure and V-shaped wall.     | 154,459<br>282,784<br>437,243<br>1,00            | 24 months                       | s are rigid connection and maintenance<br>aring shoes. Efficient concrete coverage<br>side area. | erial: steel pipe, PC cable and anchor<br>ipment: Large erection wagon<br>o: Aooroximately 55% | ped with V-shaped wall is an oppressive<br>arance of bridge.<br>tich is very simple structure, is need<br>retic accents. | using new scaffolding system in Vietnam | mental impact                        | esthetically not recommended in<br>other Alternatives          | Not Recommendable  |
|                  | ⊥ <sub>4</sub> ⊥ ∣ (§ | <ul> <li>Loads (Morment)</li> <li>part connecting s</li> </ul>                  | Superstructure<br>Substructure<br>Total<br>Ratio |                                 | <ul> <li>All bridge member<br/>free except 4 bea<br/>is applied for sea</li> </ul>               | Procurement mat<br>Procurement equ                                                             | <ul> <li>Small triangle sha<br/>feeling in low cle.</li> <li>V-shaped wall, wh<br/>some more aesth</li> </ul>            | New shaped pier                         | -No major environ                    | <ul> <li>Structurally and a<br/>comparison with</li> </ul>     |                    |
| Max.<br>Point    |                       | 10                                                                              | 40                                               | 10                              | 15                                                                                               | 10                                                                                             | 2                                                                                                                        | 5                                       | 5                                    | 100                                                            |                    |
| Evaluation Items | Side View             | Structural Aspect and<br>Stability                                              | Construction Cost<br>(Vietnam Million Dong)      | Construction Plan and<br>Period | Maintenance                                                                                      | STEP Clearance                                                                                 | Aesthetics                                                                                                               | New Technology                          | Environmental Impact                 | Evaluation                                                     |                    |



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

### 8.3.4.4 evel on Bottom of V-shaped Wall (Level of Pier Top)

Level of bottom of V-shape wall should be determined by the following points;

- a) Sea water level
- b) Size of triangle of V-shape wall
- c) Planning height of bridge

Main bridge is a symmetric vertical alignment at the center of bridge length. 3 V-shaped piers of main bridge are basically same size triangle in structural and aesthetical considerations. Level on bottom of V-shaped wall at center pier is higher than adjacent both side piers. For future bridge inspection and maintenance (if necessary), the level of all top piers should maintain above sea water level. Sea water levels in the main bridge site are set for bridge design as follow;

- Design High Water Level (P=1%): 2.720m
- High Water Level (P=5%) : 2.550m
- Mean High Water Level: 1.970m
- Mean Water Level: 0.150m
- Mean Low Water Level: -1.67m

In case that the bottom of V-shaped wall of both side piers is above high water level (P=5%) for determination of navigation clearance, the V-shaped wall is always seen above water level. However, mass-concrete of sub-structure comes in sights above water level at mean low water level and may spoil aesthetic view of V-shaped pier as shown in following Figure 8.3.4-2. On the other hand, in case that the bottom of V-shaped wall of both side piers is set above mean low water level as shown in Figure 8.3.4-3, the V-shaped wall always sinks under water and not only spoils aesthetic view due to submergence of triangle but also requires periodical inspection and maintenance.

Consequently, the level of pier top is designed both by comparing with the water level of 2.55 m (High Water Level) for easy maintenance and by comparing with the water level of 1.97m (Mean High Water Level) for aesthetical view. The pier top of sub-structure should be set at level of 2.65 m considering allowance of 10 cm.

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT



(a) Mean High Water Level



(b) Mean Low Water Level

Source: Study Team

Figure 8.3.4-2 Projected Pier (2.650m) above Mean High Water Level and Mean Low Water Level

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT



Side Piers

Center Pier





Side Piers

**Center Piers** 

(b) Mean Low Water Level

Source: Study Team

Figure 8.3.4-3 Projected Pier (1.050m) above High Water Level and Mean Low Water Level

### 8.3.4.5 Aesthetic Considerations of V-shaped Pier

One of creativity on structure is aesthetics of pier. We create smooth and soft appearance by creating curved line. Walls of V-shaped pier make a slim on concrete wall with moderate curve and straight lines. At the corner of column, curves of 250mm radius are provided to make a soft line corners as shown in the figure below.



Source: Study Team



Vertical slits are also provided to show slender V-shaped wall pier and to enjoy contrast between light and shade as shown in the figure below. Furthermore, to show stronger impact, the slits are painted to make contrast with white concrete and blue sea water.





Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

### 8.3.4.6 Effect of Creep and Shrinkage on V-shaped Pier

- (1) Effect of Creep and Shrinkage in Ridged Frame Bridge
  - 1) General

In general, piers of a concrete ridged frame bridge are vulnerable to the effect of creep and shrinkage of the girder, especially; in case of a long span ridged bridge with short pier.

Pre-stressed concrete girder has tendency to shorten due to creep and shrinkage through its life and the deformation becomes large in proportion to span length.

#### 2) Effect of Creep and Shrinkage on Pier of Main Bridge

Main bridge consists a pre-stressed concrete 4-span continuous rigid-frame bridge with 2 spans of 150m in the center. The rigid section is 300m in longitudinal direction and piers are short (approx. 20m high from top of the pile cap), rigidly connected to box girder with triangle-shape as shown in the figure below. The main bridge, which is constructed by cantilever method, is not flexible enough to accommodate longitudinal movement due to creep and shrinkage through its long time behavior.

After the main bridge is connected in the mid-span, the deformation is generated toward inside. The constraint effects of the longitudinal movement of the box girders can introduce large stresses and consequently large moments in short and V-shaped piers. Time dependent effects of creep and shrinkage are particularly significant on long-term deformation.



Source: Study Team

Figure 8.3.4-6 Span Arrangement and Profile of Main Bridge





Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

(2) Result of Preliminary Analysis

To indicate the effects of the measure, results from preliminary structural analysis, displacement, section forces and stress, are introduced, in this section. The conditions of analysis are presented in the section 8.3.7.2. The values of displacement, sectional forces and stress presented in this section are tentative based on the preliminary analysis.

1) Displacement

The displacements 100 years after completion of construction are summarized in the figure below.



Source: Study Team



2) Section Forces

The section forces 100 years after completion of construction due to creep and shrinkage are shown in the figure and the table below.











| Pier No. | Wall          | Position       | Axial Force* (kN) | Shear Force* (kN) | Bending Moment* (kN·m) |
|----------|---------------|----------------|-------------------|-------------------|------------------------|
|          | Left          | Top of Wall    | -2,136            | 5,380             | -34,349                |
| D76      | Wall          | Bottom of Wall | -2,136            | 5,358             | -35,857                |
| P/0      | Right<br>Wall | Top of Wall    | 2,488             | -1,324            | 2,542                  |
|          |               | Bottom of Wall | 2,488             | -1,324            | -15,214                |
| D77      | Left          | Top of Wall    | -1,187            | 3,111             | -24,448                |
| P//      | Wall          | Bottom of Wall | -1,187            | 3,111             | 14,496                 |

Table 8.3.4-3 Summary of Section Forces\* of Pier due to Creep and Shrinkage

3) \*the values are based on the results from the preliminary structure analysis

4) Stress

The stress due to creep and shrinkage 100 years after completion of construction are summarized in the figure and the table below. Creep and shrinkage of the girder induce additional tensile stress up to 5MPa which causes damages in the left wall of P76 and at the right wall of P78.



Source: Study Team





Source: Study Team

Figure 8.3.4-12 Stress\* of Bottom Fiber due to Creep and Shrinkage

| Dian No.      | W.11          | Position       |                        | Tensile Stress* (MPa)    |                |
|---------------|---------------|----------------|------------------------|--------------------------|----------------|
| Pier No.      | w all         |                | Dead Load (DC, DW, PS) | Creep, Shrinkage (CR,SH) | DC+DW+PS+CR+SH |
|               | Left          | Top of Wall    | 5.258                  | 3.428                    | 8.686          |
| P76           | Wall          | Bottom of Wall | 7.079                  | 4.933                    | 12.012         |
| (Left Pier)   | Right<br>Wall | Top of Wall    | 4.582                  | -0.143                   | 4.439          |
|               |               | Bottom of Wall | 6.521                  | -1.988                   | 4.533          |
| P77           | Left<br>Wall  | Top of Wall    | 2.977                  | 2.456                    | 5.433          |
| (Center Pier) |               | Bottom of Wall | 5.778                  | 1.972                    | 7.751          |

Table 8.3.4-4 Summary of Stress\* of Pier due to Creep and Shrinkage

5) \*the values are based on the results from the preliminary structure analysis

Source: Study Team

#### (3) Subsidiary Measure

#### 1) Pressurization before Closing

In order to reduce large bending moment induced by creep and shrinkage, which causes damages on the V-shaped piers, a subsidiary measure is required.

The recommended measure is pressurization immediately after the segments are constructed by cantilever method, which was applied to rigid frame bridges in Thanh Chi Bridge Construction Project and other projects.

In the subsidiary measure, jacking forces in the longitudinal direction are loaded just before closing segments are casted at center of span. The bending moment in the V-shaped piers due to the jacking forces can cancels out the part of bending moment due to creep and shrinkage.



Source: Study Team



#### 2) Construction Step and Control of Pressurization

The recommended method involves the following steps as shown in the figure on the next page.

Step 1: Erect box girders successively with pre-stressing cantilever tendons

- Step 2: Install blisters, brackets and struts for jacking at both top and lower slabs of box girder. 4 jacking equipment (2,000 kN) set at the blisters and struts and pushes the end of box girder outward to introduce moment into the V-shaped pier.
- Step 3: Placing concrete cure at closure segment of the center span. The jacking equipment maintain until concrete reaches required strength.
- Step 4: Releasing jacking force and then continuity cables are tensioned.

Pressurization by jacks in Step-2 is operated simultaneously at the both mid-spans and all hydraulic jacks are required to synchronize, control and monitor jacking force, jack ram and displacement of box girder.

Since the construction of closure segments in Step-3 is carried out in narrow and intricate space due to pressurization equipment, formwork, reinforcement and PC sheath of closure concrete are required to set in the position before pressurization equipment is provided.

It is confirmed that continuity cables at the both mid-spans should be tensioned and then continuity cables in the both side-spans be tensioned later because deformation and moment due to creep and shrinkage are controlled properly.



Figure 8.3.4-14 Procedures of Pressurization Method by Jacking Force

#### 3) Structure of Pressurization By Jacks

In order to reduce secondary moment of upper and lower slabs and webs due to pressurization, 4 blisters for jack base are provided at upper and lower slabs and pressure is carried out by 4 number of jacks simultaneously at two center spans as shown in the figure below. Total jacking force each jacking place is estimated at 2,000kN introduced into the box girder and its displacement is approximately 40mm which are approximately calculated on half as much as time dependent displacement due to creep and shrinkage over the entire life of bridge (100 years). Material properties of PC concrete are assumed that compressive strength of 28 days is 400Mpa, ultimate creep factor 2.35 and ultimate shrinkage strain 0.0008 respectively.





### (4) Effects of Pressurization on V-shaped Piers

To indicate the effects of the subsidiary measure, results from structural analysis, displacement, bending moment and stress, are introduced.

1) Displacement

Displacement due to the pressurization is shown in the figure below.



Source: Study Team



#### 2) Bending Moment

Bending moment on V-shaped piers due to the pressurization is summarized in the table below.

| Pior No.  | Wall          | Position       | Bending Mor         | ment (kN·m)    |
|-----------|---------------|----------------|---------------------|----------------|
| r lei No. | vv all        | Position       | Creep and Shrinkage | Pressurization |
|           | Left          | Top of Wall    | -34,349             | 15,228         |
| D76       | Wall          | Bottom of Wall | 35,857              | -29,014        |
| F70       | Right<br>Wall | Top of Wall    | 2,542               | -13,269        |
|           |               | Bottom of Wall | -15,214             | 27,850         |
| D77       | Left          | Top of Wall    | -24,448             | 955            |
| P//       | Wall          | Bottom of Wall | 14,496              | -194           |

Table 8.3.4-5 Summary of Bending Moment of Pier due to Pressurization

### 3) Stress

Stress in V-shaped piers due to the pressurization is summarized in the table below.

| Dian No.      | Wall          | Position       |                          | Tensile Stress (MPa) |                |
|---------------|---------------|----------------|--------------------------|----------------------|----------------|
| Flei No.      | w all         | Position       | Creep, Shrinkage (CR,SH) | Pressurization       | DC+DW+PS+CR+SH |
|               | Left          | Top of Wall    | 3.428                    | -1.649               | 7.037          |
| P76           | Wall          | Bottom of Wall | 4.933                    | -4.224               | 7.788          |
| (Left Pier)   | Right<br>Wall | Top of Wall    | -0.143                   | 1.456                | 5.895          |
|               |               | Bottom of Wall | -1.988                   | 4.071                | 8.604          |
| P77           | Left          | Top of Wall    | 2.456                    | -0.096               | 3.227          |
| (Center Pier) | Wall          | Bottom of Wall | 1.972                    | -0.024               | 7.726          |

Table 8.3.4-6 Summary of Stress of Pier due to Pressurization

Source: Study Team

(5) Measurement during Loading Pressurization

The effectiveness of pressurization is verified by the following measurements;

1) Measurement of displacement at each pier top on the upper slab and space length between the tips of both cantilever box girders in pressurization section

2) Instrumentation and measurement of rotation at the end of pier during loading

3) Crack width at the bottom of V-shaped walls and the connection of V-shape walls and box girder

# (6) Cost Estimate

The preliminarily estimated cost for one (1) set of pressurization work is summarized in the table below. It is noted that two (2) sets are necessary for the center spans.

| Items             | Description                                | Unit: JPY |
|-------------------|--------------------------------------------|-----------|
| A. Direct Cost    | H beam                                     | 150,220   |
|                   | Fixing Materials                           | 405,898   |
|                   | Hydraulic Jacks                            | 1,351,800 |
|                   | Workers, Crane Operation and Miscellaneous | 266,090   |
|                   | Other Direct Cost                          | 43,480    |
|                   | Total Direct Cost                          | 2,217,488 |
| B. Common Cost    | (5.5% x A)                                 | 121,962   |
| C. Taxable Income | (6% x (A + B))                             | 140,367   |
| Pre-tax Cost      | (A+B+C)                                    | 2,479,817 |

Table 8.3.4-7 Summary of Preliminary Cost Estimate of Pressurization Work (One Set)

Source: Study Team

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

### 8.3.5 Study on Main Bridge Foundation

### 8.3.5.1 Selection of Foundation Type for Main Bridge

#### (1) Introduction

1) General

In Preparatory Survey of JICA, it is recommended to install steel pipe sheet pile (SPSP) foundation for Main Bridge which is located in deep water. In this section, a comparative study is presented for selection of type of foundation for Main Bridge. The study consists of 2 sub studies, 1) comparative study between steel pipe sheet pile foundation and cast in place pile foundation, 2) comparative study for steel pipe sheet pile foundation between Integrated foundation and separate foundation of main bridge. The point of this study is construction period and safety construction at the deep water need to focus on detail.

#### 2) Site Condition

The site conditions indicate as following.

| Study Type                                    | Туре-3                   |
|-----------------------------------------------|--------------------------|
| Bridge Type                                   | Main Br.                 |
| Station                                       | Km +561.3 ~8+77.12       |
| Pier No.                                      | P76 ~ P78                |
| Reclamation Plan                              | No                       |
| Bridge Span length (m)                        | 150.0                    |
| Estimated Corrosion Thicknesof Steel Pile(mm) | 7                        |
| Water depth (m)                               | 7.0~11.0                 |
| E.L. of Pile Cap                              | E.L9.0 (Top of Pile Cap) |

Table 8.3.5-1 Site Conditions for Study

Source: Study Team

#### (2) Selection of Foundation Type for Main Bridge

1) General

In order to select appropriate types of foundation for main bridge, the comparative study was conducted.

- 2) Comparative Study
- a) Foundation Type of Comparative

In this comparative study, the following three alternatives are studied.

Altenative-1: Steel pipe pile foundation (recommended by SAPROF Study)

Altenative-2: Cast in place pile foundation

b) Result of Comparative Study

The result of comparative study is shown in the table 8.3.5-2 following Table. As the table indicates, Altenative-1, Steel pile sheet pile foundation, is most recommendable foundation type of main bridge. Since Altenative-1 is advantages in construction cost and workability in the sea.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.



#### THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

\*Not consider for scour

Source: Study Team (consideration in B/D)

- (3) Selection of Foundation Style for Main Bridge
  - 1) General

In order to select appropriate style of foundation for main bridge, the comparative study was conducted.

- 2) Comparative Study
- a) Foundation Type of Comparative

In this comparative study, the following three alternatives are studied.

Altenative-1: Integrated Type of Steel pipe pile foundation (recommended by SAPROF Study) Altenative-2: Separate Type of Steel pipe pile foundation

b) Result of Comparative Study

The result of comparative study is shown in following Table. As the table indicates, Altenative-2, Separate type of Steel pile sheet pile foundation, is most recommendable foundation type of main bridge. Since Altenative-2 is advantages in construction period and cost. Especially, in the Integrated foundation type could not have been in time construction period.

| Evaluation Items                                               | Max.<br>Point                                                                                        | Alternative-1<br>Integrated Foundation Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | Alternative-2<br>Separate Foundation Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |  |  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|
|                                                                |                                                                                                      | SAPROF Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |  |  |
| Side View                                                      |                                                                                                      | Pier Base<br>Pier Cap<br>Pier Base<br>Pier Cap<br>Pier Base<br>Pier Cap<br>Pier Base<br>Pier Base | ncrete | Future Construction Interim construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Base<br>e Cap<br>rete<br>stone |  |  |
| Structural Aspect and                                          | 10                                                                                                   | Steel Pipe Sheet Pile (SPSP) Foundation (D=1.2m,t=16,SKY4)<br>- Eccentric load by pier dead load always act on foundation.<br>- Large number of Pile Cap concrete<br>Large number of pile Cap concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90)    | Seel Pipe Sheet Pile (SPSP) Foundation (D=12m,t=19.SKY490) Consideration of construction is required. Serul methods                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o                              |  |  |
| Stability                                                      | Stability 10 - Large number of steel pipe sheet piles                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6      | - Small number of<br>- Small number of steel pipe sheet piles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                              |  |  |
| Construction Cost<br>(due to main items of<br>SPSP Foundation) | 40                                                                                                   | Quantity<br>(for 1 foundation)         Unit Cost<br>(VND)         Total<br>(1,000VND)           Pile Cap + Pier Base Co         3,419m3         6,859,258         23,451,118           Steel Pipe Sheet Pile         2,507 t         44,003,858         110,318,244           Base Concrete (h=4m         1,933m3         1,723,811         3,331,506           Blinding stone (h=1m         483m3         737,139         356,156           Excavation         4,832m3         318,066         1,38,993,792           Ratio         1000         1,000         1,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40     | Quantity<br>(for 1 foundation)         Unit Cost<br>(VND)         Total<br>(1,000VND)           Pile Cap + Pier Base Cor         1,318m3         6,859,258         9,043,521           Steel Pipe Sheet Pile         1,373 t         44,003,858         60,431,818           Base Concrete (h=3m)         595m3         1,723,811         1,025,805           Blinding stone (h=1m)         198m3         737,139         146,219           Excavation         1,587m3         318,066         504,733           Total         72,318,790         Ratio         0,520 | 32                             |  |  |
| Construction Plan and<br>Period                                | 10                                                                                                   | - Workability is inferior due to large number of foundation work in the sea.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4      | - Workability is superior with small number of foundation work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                              |  |  |
| Maintenance                                                    | Maintenance 15 - Inferior in Maintenance due to large column base of future construction on the sea. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6      | - Superior in Maintenance with small number of Maintenance po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |  |  |
| STEP Clearance 10                                              |                                                                                                      | <ul> <li>- 85% (Preliminary Estimate)</li> <li>- Large number of steel pipe pile acceptance a contribution.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10     | <ul> <li>- 32% (Preliminary Estimate)</li> <li>- Small number of steel pipe pile acceptance a contribution</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |  |  |
| Aesthetics 5                                                   |                                                                                                      | <ul> <li>Slender appearance of Pier</li> <li>Column base of future construction to be exposed above water<br/>level.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3      | <ul> <li>Slender appearance of Pier</li> <li>Column base of future construction to not be exposed above water level.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                              |  |  |
| New Technology                                                 | 5                                                                                                    | - Steel Pipe Pile Foundation is new technology in Vietnam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5      | - Steel Pipe Pile Foundation is new technology in Vietnam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                              |  |  |
| Environmental Aspect                                           | 5                                                                                                    | Interior in Environmental aspect due to large number of excavated soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3      | - Superior in Environmental aspect with small number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                              |  |  |
| Evaluation                                                     | 100                                                                                                  | Construction cost is highest with long construction period.     Eccentric load by pier dead load always act on foundation.     Inferior in Aesthetics due to column base of future construction     to be exposed above water level.     Less Recommended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77     | Minimum Construction cost with construction period.     Superior in Aesthetics due to column base of future construction to not be exposed above water level.      Most Recommended                                                                                                                                                                                                                                                                                                                                                                                   | 79                             |  |  |



\*Not consider for scour

Source: Study Team (consideration in B/D)

### 8.3.5.2 Study on Design Condition for Steel Pipe Sheet Pile

#### (1) General

A Steel pipe sheet pile consists of a steel pipe pile as the main component member, to with the joints illustrated in detail of following figure are attached. Compared to an ordinary steel sheet pile, it has an advantage of considerable rigidity; witch lends itself highly useful for wall structures such as earth retaining walls for deep excavation and deep water foundations.

Steel pipe sheet pile foundation is consisted of outside steel pipe sheet pile well and diaphragm steel pile sheet pile well. Open end steel pipe sheet piles are driven to the designated depth, loads from superstructure are transmitted to the upper slab and then to the sheet piles and finally to soil by friction and tip bearing.

Steel pipe sheet pile foundation lets the Outside sheet pipe well itself get up over the water surface, its joints being filled with cut off materials to serve as temporary cofferdam with temporary braces and wales. The inside of well is dried, and after a pile cap and a pier are erected there, the pipe pile temporary cofferdam planning cutting passion around above the top end of the footing is underwater cut and removed.





Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

### (2) Design Flow

Detail Design of steel pipe sheet pile foundation based on following flow.





#### (3) Construction Step

The procedure for construction method of steel pipe sheet pile foundations and points of construction at each stage are shown as below.

1) Steel pipe sheet pile setting and driving

In setting and driving steel pipe sheet piles, to prevent the rotating and tilting of pipe pile, guide frames are installed inside and outside the circumference of the well are attached. Pile setting and driving work is performed by the pile driver on the boat or on the scaffold at site. Piles are set, one by one, by the Vibro hammer, at positions determined by the guides.

2) Joint work and bottom slab concrete casting

When the pipe pile driving is completed to the designed depth, earth and sand in the joint are removed and filling mortar into the joints to below the pile cap. Next comes pouring of cut off material into the joint of temporary cofferdam section by Nylon bags. Then the internal excavation to the prescribed depth by a clamshell and water pump is performed. Upon completion of the excavation, the ground surface is evened with sand gravel, and under water slab concrete is cast.

3) Braces setting with drying up

After curing of underwater bottom slab concrete, drying up of the inside of the temporary cofferdam is started. The water level is lowered to the lower level of the stage braces and a wales is set up, one by one.

4) Shear connection setting

In order to make the pile cap and the internal wall of steel pipe sheet pile foundation in one body, a shear connection is welded to the pipe pile.



Source: Study Team

Figure 8.3.5-3 The procedure for construction method of steel pipe sheet pile foundations (1)

5) Pile cap and column construction

The arrangement on pile cap reinforcement as well as concrete casting follows. Then, a column is erected.

6) Temporary Braces & wales removal and underwater cutting of sheet pile

While water is poured inside the temporary cofferdam, braces and wales are removed, one by one. After external and internal pressure are balanced, steel pipe sheet pile are cut under the water at the top of the pile cap.





5) Pile cap and column construction

6) Temporary Braces & wales removal and underwater cutting of sheet pile

Source: Study Team

Figure 8.3.5-4 The procedure for construction method of steel pipe sheet pile foundations (2)

Thickness of Bottom Slab concrete is determined by the following figure.



Source: Study Team (refer from "SPSP Foundation", Japanese Association for Steel Pipe Piles, 2002) Figure 8.3.5-5 The procedure for construction method of steel pipe sheet pile foundation

# 8.3.5.3 Design Considerations

#### (1) Design Principal

1) Design Specifications

Basically, the bridges and structures in this project shall be designed with the Vietnamese Design Standard (22 TCN 272-05) and AASHTO-LRFD (Load and Resistance Factor Design, 3rd Edition 2004). However, the design of steel pipe sheet pile not fit for these standards, therefore it design shall be determined referring to Japanese Standard of "Specifications for Highway Bridges -Part IV" (SHB-2002).

### 2) Design soil condition

### Boring Data

A total of 6 boreholes, two boreholes for each main bridge foundation were performed. The soil is consisted clay and silt, layers up to approximately top 30 m are clay and N-SPT values are low. Soil constants and the elevation of bearing stratum for foundation design of main bridge are decided by comparing the 2 boring logs of each foundation, the smaller N-SPT and deeper elevation were applied as follows.

| Pier No | Boring No | Boring Location               |
|---------|-----------|-------------------------------|
| P76     | BP-77     | center of foundation          |
| P77     | BP-80     | 14m from center of foundation |
| P78     | BP-81     | center of foundation          |

| Table | 8.3.5 | -4 Det  | ermined | desian | borina | No. |
|-------|-------|---------|---------|--------|--------|-----|
| iabio | 0.0.0 | 1 0 0 0 |         | acoign | Sound  |     |

Source: Study Team

### Liquefaction

Liquefaction potential at earthquake is excluded in foundation design of main bridge due to there is no saturated soil layer having ground water level higher than 10m below the ground surface and located at a depth less than 20 m below the ground surface.



Source: Study Team
3) Loading Combination and Safety factors

The design cases and corresponding safety factor for stability and allowable stress for members is shown in the following table.

| Loading Combinations                                           | Safety factor ( <i>n</i> )<br>for stability | Increase of allowable stress |
|----------------------------------------------------------------|---------------------------------------------|------------------------------|
| 1.Ordinary Condition :<br>(DC+DW)+EV+CR+SH+EL+LL+WA            | 3.0                                         | 1.00                         |
| 2.Temperature Condition :<br>(DC+DW)+EV+CR+SH+EL+LL+WA + TG+TU | 3.0                                         | 1.15                         |
| 3.Wind Condition:<br>(DC+DW)+EV+CR+SH+EL+LL+WA +WS             | 2.0                                         | 1.25                         |
| 4.Seismic Condition:<br>(DC+DW)+EV+CR+SH+EL+WA' +EQ            | 2.0                                         | 1.50                         |
| 5.Vessel Collision force<br>(DC+DW)+EV+CR+SH+EL+LL+WA' + CV    | 2.0                                         | 1.70                         |

|                     | Castan fan Daarin n  | Compatitude and Allaurable | Change in Charl Ding |
|---------------------|----------------------|----------------------------|----------------------|
| Table 8.3.5-5 Safet | y Factor for Bearing | Capacity and Allowable     | Stress in Steel Pipe |

| = | Dead load of structural components and non-structural attachments   |  |  |  |  |  |  |
|---|---------------------------------------------------------------------|--|--|--|--|--|--|
| = | Dead load of wearing surfaces and utilities                         |  |  |  |  |  |  |
| = | Vertical pressure from dead load of earth fill                      |  |  |  |  |  |  |
| = | Creep                                                               |  |  |  |  |  |  |
| = | Shrinkage                                                           |  |  |  |  |  |  |
| = | Accumulated locked-in force effects resulting from the construction |  |  |  |  |  |  |
|   | process, including the secondary forces from post-tensioning        |  |  |  |  |  |  |
| = | Vehicular live load                                                 |  |  |  |  |  |  |
| = | Temperature gradient                                                |  |  |  |  |  |  |
| = | Uniform temperature                                                 |  |  |  |  |  |  |
| = | Water load (WA': due to MWL)                                        |  |  |  |  |  |  |
| = | Wind load on structure                                              |  |  |  |  |  |  |
| = | Earthquake, Includes effect of liquefaction due to earthquake       |  |  |  |  |  |  |
| = | Vessel collision force                                              |  |  |  |  |  |  |
|   |                                                                     |  |  |  |  |  |  |

Source: Article 4 of Part IV, SHB-2002 & Article 4 of 22 TCN 272-05

## 4) Vertical Bearing Capacity

Vertical bearing capacity(Ra) and safety factor(n, refer to table8.3.5-5) of Steel Pipe Sheet Pile foundation shall be calculated as follows.

$$R_a = \frac{1}{n} R_u$$

$$R_{u} = q_{d} \cdot A_{1} + \frac{1}{n_{1} + n_{2} + n_{3}} \left\{ U_{1} \sum L_{i} f_{i} + U_{2} \sum L_{j} f_{j} \right\}$$

where

- $A_1$ : Tip closed section of sheet pile (m<sup>2</sup>)
- $q_d\,$  :Tip resistance per unit area (kN/m²)

$$q_d / N = 300$$
  $\overline{N} = 40$ 



- $n_1$  :number of sheet piles in exterior wall
- $n_2$  :number of sheet piles in bulkhead
- U<sub>1</sub> :circumference envelop length of exterior wall (m)
- U2 :circumference envelop length of interior wall and bulkhead (m)
- $L_i$  :length of each layer considering side friction for exterior wall (m)
- $f_i$  :maximum friction coefficient for exterior wall (kN/m<sup>2</sup>)
- $L_j$  :length of each layer considering side friction for exterior wall (m)
- $f_j$ :maximum friction coefficient for interior wall (kN/m<sup>2</sup>)



Source: Article 13 of Prt IV, SHB-2002



## 5) Material

## Steel Pipe Sheet Pile

Two types of steel pipe of steel pipe sheet pile Grade SKY400 and Grade SKY 490 based on the Japanese Standard JIS 5530 or equivalent international standard shall be used. The properties and strength are as follows.

| Table ( |         | Duamantina au |          | 1        | Ctall Dia  | . fa Cta  |         |            |
|---------|---------|---------------|----------|----------|------------|-----------|---------|------------|
| rable a | 8.3.5-6 | Properties ar | a stress | LIMIT OF | Steel PIDE | a for Ste | el Pibe | Sheet Plie |
|         | 0.0.0 0 |               |          |          |            |           |         |            |

| Туре          | Yield Strength f y<br>(MPa) | Tensile Strength f u<br>(MPa) | Modulus of Elasticity<br>(Mpa) |
|---------------|-----------------------------|-------------------------------|--------------------------------|
| Grade SKY 400 | 235                         | 400                           | 200,000                        |
| Grade SKY 490 | 315                         | 490                           | 200,000                        |

Source: JIS 5530

## Estimated Corrosion Thickness of Steel Pile

The estimated corrosion thickness of steel pipe pile and steel pipe sheet pile based on the Report No PMU2/110422-1 shall be used. The design of corrosion thickness is as follows.

| Table 8.3.5-7 Design of Estimated Corrosion Thicknesses |
|---------------------------------------------------------|
|---------------------------------------------------------|

|                               | Cast against earth | Direct exposure to selt water |
|-------------------------------|--------------------|-------------------------------|
| Estimated Corrosion Thickness | 2mm                | 7mm                           |

Source: Study Team

## (2) Design Model

#### 1) General

The steel pipe sheet pile foundation has a very wide range of  $\beta$ Le, which indicates the applicable scope of the design method, and generally belongs to elastic foundations of finite length. Judging from  $\beta$ Le, some are regarded as an elastic foundation with a value less than 1, however, the steel pipe sheet pile foundation is a structure consisting of steel pipe sheet pile mutually joined by joint pipes of smaller rigidity than the steel pipe body and with mortar filled in the joint pipes, and a shear slippage deformation easily occurs in it. Therefore, verification of the slippage at the foundation bottom may be omitted. That is, stability should be verified on vertical bearing capacity and horizontal displacement.

An outline of the stability calculation model used in verification for ordinary, storm and seismic condition is shown in Table 8.3.5-8.

|                                                              |                                                                                           | Verification for ordinary conditions,<br>storm and Level 1 earthquake conditions                                                                 |                                              |  |  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
|                                                              |                                                                                           | $B \leq 30 \text{m}, L/B > 1$<br>and $\beta L_e > 1$                                                                                             | $B > 30m, L/B \le 1$<br>or $\beta L_e \le 1$ |  |  |
|                                                              | Design model                                                                              | Finite-length beam<br>on an elastic floor<br>(Beam Model)<br>Analysis by an image<br>well beam that cons<br>shear slippage of th<br>(Well Model) |                                              |  |  |
| ion                                                          | Steel pipe sheet pile                                                                     | Lin                                                                                                                                              | ear                                          |  |  |
| Shear resistance of joint                                    |                                                                                           | Evaluation by composite<br>efficiency and moment<br>distribution factor                                                                          | Bilinear                                     |  |  |
| Horizontal ground resistance<br>at the foundation front face |                                                                                           | Linear considering strain dependency                                                                                                             |                                              |  |  |
| element                                                      | Horizontal shear ground<br>resistance at the foundation<br>peripheral faces               | Included in the horizontal resistance of the front ground                                                                                        |                                              |  |  |
| hesitance                                                    | Vertical shear ground<br>resistance at the foundation<br>outer and inner peripheral faces | Included in the bearing capacity of the steel pipe sheet pile                                                                                    |                                              |  |  |
| Jround                                                       | Vertical ground resistance at the foundation bottom face                                  | Linear                                                                                                                                           | Linear                                       |  |  |
|                                                              | Horizontal shear ground<br>resistance at the foundation<br>bottom faces                   | Linear                                                                                                                                           | Linear                                       |  |  |

| Table | 835-8   | Stability | Calculation | model |
|-------|---------|-----------|-------------|-------|
| rabic | 0.5.5-0 | stability | Calculation | mouci |

Source: Article 13 of Prt IV, SHB-2002

2) Finite-length beam Model

The sectional forces, displacement and unit ground reaction force of a well-type steel pipe sheet pile foundation may be derived by regarding the steel pipe sheet pile foundation as a finite-length beam on an elastic model, as shown in following model.



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

3) Imaginary well Method

This analysis method is based on a beam theory that considers shear deformation. That is, an imaginary well is assumed by tying up steel pipe sheet piles at their central axes as shown in Figure 8.3.5-8. Assuming that the central axis of each steel pipe sheet pile is fixed to the central plane of the imaginary well wall, establish the following assumptions in order to render the well into one dimension as a beam theory.

- a) The imaginary well obeys a beam theory that considers shear deformation.
- Each individual deformation steel pipe sheet pile obeys a beam theory that neglects shear b)

deformation.

Assumption a. assumes the law of plain conservation for the imaginary well. As shown in Figure 8.3.5-9, this law asserts that a section AA in the imaginary well that was horizontal before displacement keeps to be flat after displacement and displaces to a section A'A'.



Source: Article 13 of Art IV, JRA-2002

Figure 8.3.5-10 Steel pile sheet pile Foundation

Source: Article 13 of Art IV, JRA-2002

Figure 8.3.5-9 Slippage displacement δv of Joint Accompanying Shear Deformation B of Imaginary Well

The sectional forces, displacement and unit ground reaction force of a well-type steel pipe sheet pile foundation may be derived by regarding the steel pipe sheet pile foundation as a imaginary well method, as shown in following model.



Source: Study Team (refer from "SPSP Foundation", Japanese Association for Steel Pipe Piles, 2002) Figure 8.3.5-11 Calculation Model of Imaginary well

## 4) Determined of Design Model

Design model for Steel Pile Sheet Pile foundation design of main bridge are decided by table 8.3.5-9 as follows.

|              |          | D(n    | n)     | L(m)  | L/D       | $\beta(m^{-1})$ | Le(m)  | βLe     | De:<br>Mo | sign<br>del* |        |
|--------------|----------|--------|--------|-------|-----------|-----------------|--------|---------|-----------|--------------|--------|
|              | Normal   | LL     | 21.469 | <30m  | 35.50     | 1.6535 >1       | 0.0340 | 33.69   | 1.145 >1  | Beam         | Beam   |
| P76          | Norman   | TT     | 12.782 | <30m  | 35.50     | 2.7773 >1       | 0.0394 | 33.69   | 1.327 >1  | Beam         | Deam   |
| 170          | Saismic  | LL     | 21.469 | <30m  | 35.50     | 1.6535 >1       | 0.0328 | 36.81   | 1.207 >1  | Beam         | Beam   |
|              | Seisinic | TT     | 12.782 | <30m  | 35.50     | 2.7773 >1       | 0.0378 | 36.81   | 1.391 >1  | Beam         | Dealii |
|              | Normal   | LL     | 21.469 | <30m  | 35.50     | 1.6535 >1       | 0.0345 | 30.19   | 1.042 >1  | Beam         | Doom   |
| D77          | normai   | TT     | 12.782 | <30m  | 35.50     | 2.7773 >1       | 0.0429 | 30.19   | 1.295 >1  | Beam         | Dealii |
| <b>F</b> / / | Saismic  | LL     | 21.469 | <30m  | 35.50     | 1.6535 >1       | 0.0324 | 33.92   | 1.099 >1  | Beam         | Beam   |
|              | Seisinie | TT     | 12.782 | <30m  | 35.50     | 2.7773 >1       | 0.0392 | 33.92   | 1.330 >1  | Beam         | Deam   |
| Normal       | LL       | 21.469 | <30m   | 35.50 | 1.6535 >1 | 0.0426          | 23.49  | 1.001≒1 | Well      | Wall         |        |
|              | normai   | TT     | 12.782 | <30m  | 35.50     | 2.7773 >1       | 0.0499 | 23.49   | 1.172 >1  | Beam         | wen    |
| F / 0        | Saismic  | LL     | 21.469 | <30m  | 35.50     | 1.6535 >1       | 0.0354 | 29.09   | 1.030 >1  | Beam         | Beam   |
| Seism        | Seisinic | TT     | 12.782 | <30m  | 35.50     | 2.7773 >1       | 0.0443 | 29.09   | 1.289 >1  | Beam         | Deall  |

 Table 8.3.5-9 Determined design model

Note)

Beam : Finite-length beam on an elastic floor (Beam Model)

Well : Imaginary well beam that considering shear slippage of the joints (Well model)



Source: Study Team

Figure 8.3.5-12 Shape of SPSP Foundation

- (3) Spring Model for Global Analysis
  - 1) Lateral soil reaction coefficient

$$k_{H} = \frac{1}{0.3} \alpha E_{o} \left(\frac{B_{H}}{0.3}\right)^{-3/4}$$

where

kH : lateral soil reaction coefficient (kN/m3)

BH : reduced loading width orthogonal to loading direction (m)

$$\beta = \sqrt[4]{\frac{k_H \cdot D}{4EI}}$$

D:loading width orthogonal to loading direction (m) De:effective width orthogonal to loading direction  $1/\beta$ :soil depth relating to lateral resistance, and is less than foundation length (m)  $\beta$ :characteristic value of foundation (1/m)

E:Young's modulus of foundation = 2.00E8 (kN/m2) I:moment of inertia of foundation (m4) Le:effective embedment depth of foundation (m)

$$k_{H1} = (1 + \alpha_H) \cdot k_H \cdot (\frac{y}{y_o})^{-1/2}$$

where

- kH1 : basis of lateral reaction coefficient considering strain dependency (kN/m3)
- $\alpha H$ : Increment factor considering contribution from lateral shear reaction and resistance of soil inside well (=1.00)
- y: horizontal displacement of foundation at design stratum (m)
- yo : basis of displacement (m)

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

## 2) Spring Model of Steel Pipe Sheet Pile Foundation

## Spring Model of Steel Pipe Sheet Pile foundation for Global Analysis are shown as follows.

| P76<br>Stiffless o<br>- Stiffless<br>- Geomet                        | f SPSP Fou<br>rical Momelt                                    | IdatioI<br>E =<br>of Ilertia             | 2.0E+08                                                        | kI/m2                                           |                                                                 | A =                                                             | 3.3487<br>(t=14&16)                     | m <sup>2</sup>                         |                                   | 2 8686.8 6.391.2<br>21469.2           |
|----------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------|---------------------------------------|
| Tralsve                                                              | rse Directiol                                                 | =                                        | 55.329                                                         | (m <sup>4</sup> )                               |                                                                 | B <sub>TI</sub> =                                               | 21.469                                  | m G                                    |                                   | 6391                                  |
| Horizolta                                                            | l Sprilg (BP                                                  | -77)                                     |                                                                |                                                 |                                                                 |                                                                 |                                         |                                        | 12611.8                           |                                       |
|                                                                      | 1 0 0                                                         |                                          | Iormal                                                         |                                                 |                                                                 |                                                                 |                                         | Seismic                                |                                   | -                                     |
| Laver                                                                |                                                               | Lolgitudilal I                           | DirectioI (LL)                                                 | Tralsverse Di                                   | rectiol (TT)                                                    |                                                                 | Lolgitudilal                            | DirectioI (LL)                         | TraIsverse E                      | virectiol (TT)                        |
|                                                                      | Depth (m)                                                     | kh1 (kI/m3)                              | Sprilg(kI/m)                                                   | kh1 (kI/m3)                                     | Sprilg(kI/m)                                                    | Depth (m)                                                       | kh1 (kI/m3)                             | Sprilg(kI/m)                           | kh1 (kI/m3)                       | Sprilg(kI/m)                          |
| overhalg                                                             | 0                                                             | kiii (ki/iii5)                           | opring(iti) iti)                                               | kiii (ki/iii5)                                  | opring(iti/ iii/                                                | 0                                                               | kiii (ki/iii5)                          | opring(iii/ iii/                       | kiii (kt iii3)                    | opring(ki) iii)                       |
| 1                                                                    | 9.89                                                          | 1 542                                    | 33 105                                                         | 1 354                                           | 0                                                               | 9.89                                                            | 3 084                                   | 38 892                                 | 2 707                             | 58 117                                |
| 2                                                                    | 7.00                                                          | 3 855                                    | 82 763                                                         | 3 384                                           | 0                                                               | 7.00                                                            | 7 709                                   | 97 218                                 | 6 769                             | 145 324                               |
| 3                                                                    | 3.50                                                          | 6 939                                    | 148 973                                                        | 6,092                                           | 0                                                               | 3.50                                                            | 13 877                                  | 175.003                                | 12 183                            | 261 557                               |
|                                                                      | 4.80                                                          | 2 855                                    | 82 762                                                         | 3 384                                           | 0                                                               | 4.80                                                            | 7 700                                   | 07.218                                 | 6 760                             | 145 324                               |
| 5                                                                    | 4.80                                                          | 3,833                                    | 380,688                                                        | 15 568                                          | 0                                                               | 4.00                                                            | 25 464                                  | 447 227                                | 21 125                            | 668 /27                               |
| 5                                                                    | 5.40                                                          | 24 602                                   | 744 824                                                        | 60.017                                          | 0                                                               | 5.40                                                            | 60 285                                  | 875.014                                | 60.017                            | 1 207 827                             |
| 7                                                                    | 2.11                                                          | 28 547                                   | 207 566                                                        | 67.666                                          | 1 452 721                                                       | 2.11                                                            | 77.005                                  | 072.245                                | 67.696                            | 052 500                               |
| /<br>T-+-1                                                           | 3.11                                                          | 56,547                                   | 827,300                                                        | 07,000                                          | 1,432,721                                                       | 3.11                                                            | 77,093                                  | 972,243                                | 07,080                            | 633,388                               |
| Pile Tip S<br>Vertical S<br>HorizoItal<br>RotatioI S                 | prilg<br>prilg<br>Sprilg<br>prilg                             | =                                        | Iormal<br>1.0823E+07<br>3.2469E+06<br>5.3664E+08<br>2.3155E+08 | kI/m<br>kI/m<br>kIm/rad<br>kIm/rad              | (LL)<br>(TT)                                                    | Seismic<br>2.1646E+07<br>6.4937E+06<br>1.0733E+09<br>4.6311E+08 | kI/m<br>kI/m<br>kIm/rad<br>kIm/rad      | (.L.)<br>(TT)                          | (for Lolgitudil<br>(for Tralsvers | al Directiol)<br>e Directiol)         |
| P77<br>Stiffless o<br>- Stiffless<br>- Geomet<br>Lolgitud<br>Tralsve | f SPSP Fou<br>rical Momelt<br>dilal Directio<br>rse Directiol | IdatioI<br>E =<br>of Ilertia<br>I =<br>= | 2.0E+08<br>149.088<br>64.663                                   | kI/m2<br>(m <sup>4</sup> )<br>(m <sup>4</sup> ) |                                                                 | A =<br>B <sub>LL</sub> =<br>B <sub>TT</sub> =                   | 3.8318<br>(t=14&19)<br>12.611<br>21.469 | m <sup>2</sup> - C                     |                                   | 63912 8686.8 63912<br>21469.2 21469.2 |
| Horizolta                                                            | l SpriIg (BP                                                  | -80)                                     |                                                                |                                                 |                                                                 |                                                                 |                                         |                                        | 12611.8                           |                                       |
| Ļ                                                                    |                                                               | T T D. 117                               | Iormal                                                         |                                                 |                                                                 |                                                                 | T T I. 117 1                            | Seismic                                | /D I                              | , , , , (mm)                          |
| Layer                                                                | Depth (m)                                                     | Lolgitudilal I                           | Directiol (LL)                                                 | Tralsverse Di                                   | rectiol (TT)                                                    | Depth (m)                                                       | Lolgitudilal                            | Directiol (LL)                         | Tralsverse L                      | Pirectiol (TT)                        |
|                                                                      | -                                                             | kh1 (kl/m3)                              | Sprilg(kl/m)                                                   | kh1 (kl/m3)                                     | Sprilg(kl/m)                                                    | 1.50                                                            | kh1 (kl/m3)                             | Sprilg(kl/m)                           | kh1 (kl/m3)                       | Sprilg(kl/m)                          |
| overhalg                                                             | 0                                                             | 700                                      | 0.105                                                          | 60.1                                            | 14 605                                                          | 1.58                                                            | 1.557                                   | 10.625                                 | 710                               | 15.006                                |
| 1                                                                    | 7.92                                                          | 722                                      | 9,105                                                          | 684                                             | 14,685                                                          | 6.34                                                            | 1,557                                   | 19,635                                 | 712                               | 15,286                                |
| 2                                                                    | 3.90                                                          | 4,629                                    | 58,376                                                         | 4,102                                           | 88,066                                                          | 3.90                                                            | 9,341                                   | 117,799                                | 4,271                             | 91,694                                |
| 3                                                                    | 9.00                                                          | 3,086                                    | 38,918                                                         | 2,735                                           | 58,718                                                          | 9.00                                                            | 6,227                                   | 78,529                                 | 2,847                             | 61,122                                |
| 4                                                                    | 4.00                                                          | 16,974                                   | 214,059                                                        | 15,042                                          | 322,937                                                         | 4.00                                                            | 34,250                                  | 431,927                                | 15,661                            | 336,226                               |
| 5                                                                    | 8.00                                                          | 33,947                                   | 428,106                                                        | 30,083                                          | 645,852                                                         | 8.00                                                            | 68,499                                  | 863,841                                | 31,321                            | 672,431                               |
| 6                                                                    | 2.68                                                          | 38,577                                   | 486,495                                                        | 34,185                                          | 733,918                                                         | 2.68                                                            | 77,840                                  | 981,640                                | 35,592                            | 764,125                               |
| Total<br>Pile Tip S<br>Vertical S<br>Horizoltal<br>RotatioI S        | 35.50<br>prilg<br>prilg<br>Sprilg<br>prilg                    | =                                        | Iormal<br>1.0823E+07<br>3.2469E+06<br>5.3664E+08<br>2.3155E+08 | kI/m<br>kI/m<br>kIm/rad<br>kIm/rad              | Seismic<br>2.1646E+07<br>6.4937E+06<br>1.0733E+09<br>4.6311E+08 | 35.50<br>kI/m<br>kI/m<br>kIm/rad<br>kIm/rad                     | (LL)<br>(TT)                            | (for LoIgitudilal<br>(for Tralsverse I | DirectioI)<br>DirectioI)          |                                       |

| P78<br>Stiffless of SPSP Fouldatio | I    |                           |            |                       |              |
|------------------------------------|------|---------------------------|------------|-----------------------|--------------|
|                                    | E =  | 2.0E+08 kI/m2             | A =        | 3.8318 m <sup>2</sup> |              |
| - Geometrical Momelt of IIe        | rtia |                           |            | (t=14&19)             |              |
| LoIgitudiIal Directiol =           |      | 149.088 (m <sup>4</sup> ) | $B_{LL} =$ | 12.611 m              | $\delta_{0}$ |
| TraIsverse DirectioI $=$           |      | 64.663 (m <sup>4</sup> )  | $B_{TT}=$  | 21.469 m              |              |

#### HorizoItal Sprilg (BP-81)

|          |             |                | Iormal         |              |               | Seismic   |              |                |                           |              |  |
|----------|-------------|----------------|----------------|--------------|---------------|-----------|--------------|----------------|---------------------------|--------------|--|
| Layer    | Danth (m)   | LoIgitudiIal I | Directiol (LL) | Tralsverse D | irectioI (TT) | Danth (m) | LoIgitudiIal | Directiol (LL) | Tralsverse Directiol (TT) |              |  |
|          | Depth (III) | kh1 (kI/m3)    | Sprilg(kI/m)   | kh1 (kI/m3)  | SpriIg(kI/m)  | Depth (m) | kh1 (kI/m3)  | SpriIg(kI/m)   | kh1 (kI/m3)               | SpriIg(kI/m) |  |
| overhaIg | 0           |                |                |              |               | 6.41      |              |                |                           |              |  |
| 1        | 2.35        | 0              | 0              | 0            | 0             | 0         | 0            | 0              | 0                         | 0            |  |
| 2        | 5.70        | 784            | 9,887          | 698          | 14,985        | 1.64      | 1,645        | 20,745         | 1,440                     | 30,915       |  |
| 3        | 3.80        | 2,351          | 29,648         | 2,095        | 44,978        | 3.80      | 4,934        | 62,223         | 4,320                     | 92,746       |  |
| 4        | 10.10       | 4,701          | 59,284         | 4,189        | 89,934        | 10.10     | 9,867        | 124,433        | 8,639                     | 185,471      |  |
| 5        | 3.10        | 23,506         | 296,434        | 20,947       | 449,711       | 3.10      | 49,337       | 622,189        | 43,197                    | 927,396      |  |
| 6        | 8.10        | 36,043         | 454,538        | 32,118       | 689,541       | 8.10      | 75,651       | 954,035        | 66,236                    | 1,422,021    |  |
| 7        | 2.35        | 39,177         | 494,061        | 34,911       | 749,504       | 2.35      | 82,229       | 1,036,990      | 71,995                    | 907,929      |  |
| Total    | 35.50       |                |                |              |               | 35.50     |              |                |                           |              |  |

Total 35.50

| Pile Tip Sprilg   |   |
|-------------------|---|
| Vertical Sprilg   | = |
| HorizoItal SpriIg | = |
| RotatioI Sprilg   | = |

Iormal 1.0823E+07 kI/m 3.2469E+06 kI/m 5.3664E+08 kIm/rad 2.3155E+08 kIm/rad

Seismic 2.1646E+07 kI/m 6.4937E+06 kI/m 1.0733E+09 kIm/rad

4.6311E+08 kIm/rad

(for LoIgitudiIal DirectioI) (LL) (TT)

(for Tralsverse Directiol)

12611.8



Source: Study Team

## (4) Pile Stress

In a steel pipe sheet pile foundation of the type that also serves as a temporary cofferdam, the steel pipe sheet piles are used as cofferdam walls during work execution. Therefore, cofferdam walls shall be verified to be safe against the loads acting during temporary work.

As the top slab concrete is placed with the steel pipe sheet piles in a deformed state, the residual stress  $(\sigma_1)$  due to and remaining after work execution and the stress  $(\sigma_2)$  occurring due to the design external forces after completion should be added. The sum  $(\sigma)$  shall be equal to the allowable stress  $(\sigma_a)$  or less.

Because the stress occurring in the steel pipe sheet pile at drainage is influenced by the sequence of work execution, it is necessary to fully investigate the work sequence and execute the design according to that work.



where

- $\sigma$  : combined stress ( =  $\sigma 1 + \sigma 2$ )
- $\sigma 1$  : stress due to after completion loads.
- $\sigma^2$  : residual stress due to during construction
- $\sigma a$  : allowable stress in steel pipe sheet pile

#### Source: Study Team

Figure 8.3.5-13 Combined stress for steel pipe sheet pile foundation

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

## (5) Top Slab

The top slab of a steel pipe sheet pile foundation generally has a large rigidity and is rigidly connected to the steel pipe sheet piles, it may be calculated as a cantilever with the fixed end at the outer edge of the lower end of the body. However, the soil in the well should share no load.

#### 1) Pile Reaction Force

The vertical pile reaction force (Ri) of the steel pipe sheet pile used for the design of a top slab should be calculated using following formula.

$$Ri = \frac{Vo \cdot Aoi}{\Sigma (ni \cdot Aoi)} + \frac{Mo \cdot Aoi}{\Sigma (IBi \cdot Aoi)} \cdot Xi$$

where,

- Ri : vertical reaction force of ith sheet pile and inner single piles (kN/pile)
- Vo : vertical load acting on bottom face of top slab (kN)
- Mo: moment acting on bottom face of top slab (kN.m)
- n1 : number of sheet piles comprising outer periphery of well part
- n2 : number of sheet piles comprising bulkhead
- n3 : number of inner single piles
- Ao1 : net cross-sectional area of sheet piles comprising outer periphery of well part
- Ao2 : net cross-sectional area of sheet piles comprising bulkhead
- Ao3 : net cross-sectional area of inner single piles
- IBi : sum of distance from center of steel pipe sheet piles and inner single piles to the neutral axis of well section  $(m^2)$
- 2) Bending Moment

In a section of top slab, investigate the per unit width the stress per unit width at the position of the steel pipe sheet pile that produces the maximum vertical reaction force



Longitudinal direction

Transverse direction

Source: Study Team



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

$$MA = \frac{Rmax}{Do'} \cdot \left(L + \frac{Do}{2}\right) + \Sigma \left(Ri \cdot \frac{Li}{ai}\right) - \frac{w \cdot L^2}{2} \quad (kN. m/m)$$
$$MA' = \frac{Rmin}{Do'} \cdot \left(L + \frac{Do}{2}\right) + \Sigma \left(Ri \cdot \frac{Li}{ai}\right) - \frac{w \cdot L^2}{2} \quad (kN. m/m)$$

where, MA,MA': bending moment per meter at the column bottom of a fixed edge (kN.m/m)

Rmaxi : maximum vertical reaction force of exterior pile (kN/pile)

- Rmini : minimum vertical reaction force of exterior pile (kN/pile)
- Ri : vertical reaction force of bulkhead pile (kN/pile)
- L : distance between the column bottom and the inner surface of pile
- Li : distance from face of column to center of bulkhead pile (m)
- w : dead weight of top slab and overburden load  $(kN/m^2)$
- Do : outer diameter of sheet pile and inner pile (m)
- Do' : center-to-center interval of exterior sheet pile (m)
- d : effective depth of top slab (m)
- (6) Connection between Top Slab and Steel Pipe Pile

Connection between top slab and steel pipe pile for "Reinforcement Stud Method" should be calculated as followings.

- 1) Design bending moment
  - Me =  $Rp \cdot e$

 $MFix = \sigma sa \cdot Zo$ 

where, Me : moment due to eccentricity of reaction force (kN.m)

- MFix : restraining moment (kN.m)
- Rp : vertical reaction force of a sheet pile (kN)
- e : eccentricity (m)
- $\sigma$ sa : allowable stress of sheet pile (kN/m<sup>2</sup>)
- Zo : section modulus of sheet pile body  $(m^3)$

Use the maximum between Me and MFix.

#### 2) Design of moment reinforcement

- Tensile stress due to moment

$$T1 = \frac{M}{h}$$
  
$$\sigma s1 = \frac{T1}{nb \cdot Ab}$$



| where, | T1  | : tensile force acting on moment reinforcement (N)            |
|--------|-----|---------------------------------------------------------------|
|        | Μ   | : design moment (N.mm)                                        |
|        | h   | : center-to-center interval of moment reinforcement (mm)      |
|        | σs1 | : tensile stress of moment reinforcement (N/mm <sup>2</sup> ) |
|        |     |                                                               |

- nb : number of moment reinforcement (piles/layer)
- Ab : cross-sectional area of one moment reinforcement (mm<sup>2</sup>)

- Tensile stress due to horizontal force

$$T2 = \frac{Ho}{n1}$$
  
$$\sigma s2 = \frac{T2}{2 \cdot nb \cdot Ab}$$

where, T2 : horizontal force acting on moment reinforcement (N)

Ho : horizontal force acting on the bottom of top slab (N)

n1 : number of exterior sheet piles

 $\sigma s2$  : tensile stress of moment reinforcement (N/mm<sup>2</sup>)

-Resultant stress

 $\sigma s = \sigma s 1 + \sigma s 2 \le \sigma s a$ 

where,  $\sigma$ sa : allowable tensile stress of moment reinforcement (N/mm<sup>2</sup>)

- Required number of piles

nba 
$$\geq \frac{2 \cdot T1 + T2}{2 \cdot \sigma \operatorname{sa} \cdot \operatorname{Ab}}$$

where, nba : necessary number of moment reinforcement (piles/layer)

#### 3) Design of shear reinforcement

- Shear stress

$$\tau s = \frac{Rp}{ns \cdot \Lambda s} \leq \tau sa$$

where,  $\tau s$  : shear stress of shear reinforcement (N/mm<sup>2</sup>)

Rp : vertical reaction force of a sheet pile (N)

- ns : number of shear reinforcement
- As : cross-sectional area of shear reinforcement (mm<sup>2</sup>)
- $\tau$ sa : allowable shear stress of shear reinforcement (N/mm<sup>2</sup>)
- Required number of piles

$$nsa \geq \frac{Rp}{\tau sa \cdot As}$$

where, nsa : necessary number of shear reinforcement (piles)

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

## 8.3.6 Detailed Design of Main Bridge

# 8.3.6.1 Design Condition

## (1) Profile of bridge

The profile of Main Bridge is as shown in the figure below.



(b) Segments and Sections of Superstructure

Source: Study Team

Figure 8.3.6-1 Profile of Main Bridge

## (2) Conditions of Foundation

The conditions of the foundation of Main Bridge are presented in Section 8.3.5.3.

## (3) Condition of Superstructure and Substructure

1) Geometry

Geometric Conditions of the pier are summarized in the table below.

| Ite            | ms     | Dimension(m) | Area (m <sup>2</sup> ) | Inertia -1 (m <sup>4</sup> ) | Inertia -2 (m <sup>4</sup> ) |
|----------------|--------|--------------|------------------------|------------------------------|------------------------------|
| V-shaped Wall  | Тор    | 3.0 x 5.0    | 141                    | 28.9                         | 10.0                         |
|                | Bottom | 3.0 x 7.0    | 211                    | 98.0                         | 14.6                         |
| Lower Pier Col | umn    | 7.0 x 10.5   | 73.5                   | 300                          | 675                          |

Source: Study Team

#### Table 8.3.6-2 Dimensions of Structural Members of Superstructure

| -                | Items               | Dimension (m)                                                        | Note |
|------------------|---------------------|----------------------------------------------------------------------|------|
| Girder Height    | Cantilever Segments | Variation from 3.50 to 7.50                                          |      |
|                  | False Work Segments | Variation from 3.20 to 3.50                                          |      |
| Girder Width     | Upper Slab          | 15.7                                                                 |      |
|                  | Lower Slab          | Variation from 5.00 to 7.475                                         |      |
| Member Thickness | Web                 | Variation from 5.00 to 7.475           Variation from 0.400 to 0.600 |      |
|                  | Upper Slab          | Variation from 0.260 to 0.550                                        |      |
|                  | Lower Slab          | Variation from 0.260 to 1.40                                         |      |

Source: Study Team

## 2) Material

## a) Concrete

## Table 8.3.6-3 Properties of Concrete

|                | Items                                | Superstructure     | Substructure |
|----------------|--------------------------------------|--------------------|--------------|
| Compressive S  | trength, f'c (MPa)*                  | 40                 | 40           |
| Compressive S  | trength at Pre-stressing, fci (MPa)* | 32.5               | 32.5         |
| Specific Weigh | $t (kN/m^3)$                         | 24.5               | 24.5         |
| Young's Modul  | lus, Ec (MPa)                        | 33900              | 33900        |
| Allowable Stre | ss (MPa)                             |                    |              |
| Commencies     | Before Losses                        | 19.5               | 19.5         |
| Compressive    | After Losses, Service Limit          | 16                 | 16           |
|                | Defere Lesses                        | Longitudinal: 1.42 | 2.95         |
| Tancila        | before Losses                        | Transversal: 2.85  | 2.63         |
| Tensne         | After Lesses Comiss Limit            | Longitudinal: 1.58 | 2.16         |
|                | Aner Losses, Service Limit           | Transversal: 3.16  | 5.10         |

\*Based on Cylinder Samples

Source: Study Team

#### b) Steel

### Table 8.3.6-4 Properties of Prestressing Steel

| Items                           | 12\$15.2 | 19\$15.2 | 1S28.6 |
|---------------------------------|----------|----------|--------|
| Tensile Strength, fpu (MPa)     | 1850     | 1850     | 1800   |
| Yield Strength, fpy (MPa)       | 1600     | 1600     | 1500   |
| Modulus of Elasticity, Ep (MPa) | 195000   | 195000   | 195000 |
| Allowable Tensile Stress (MPa)  | 1295     | 1295     | 1260   |

Source: Study Team

| Items                     | SD345  | Note |
|---------------------------|--------|------|
| Tensile Strength, fpu     | 490    |      |
| Yield Strength, fpy       | 345    |      |
| Modulus of Elasticity, Ep | 200000 |      |

Source: Study Team

Arrangement of PC Tendons 3)

The arrangement of PC tendons is shown in the figure below.



Figure 8.3.6-2 Arrangement of PC Tendons

## 8.3.6.2 Design of Superstructure for Longitudinal Direction

(1) Model for Analysis

The conditions of the model of analysis is as follows,

- The model includes the members of superstructure, substructure and foundation.

- The members of the structure are modeled into frame elements at the positions of the centroid.

- The rigid zones are considered at the connections between the girder and the V-shaped walls, and, the V-shaped walls and the lower pier column.

- The foundations are modeled as presented in Section 8.3.5.2

- The both ends at the side span are fixed in vertical direction, movable in longitudinal direction, and supported by a spring in transversal direction. The spring constants are also presented in Section 8.3.5.2.

The structural model for the analysis is shown in the figure below.



Source: Study Team



#### (2) Loading Conditions

The loading conditions for Limit States are based on Chapter 3 in Specification for Bridge Design, 22TCN272-05, summarized in the article 8.1.3 of this report.

The loading conditions during construction stage is based on Section 5.14.2.3 in Specification for Bridge Design, 22TCN272-05.

The weight and capacity of the form traveler are assumed as 1,000 kN and 4,000 kN m, respectively.

## (3) Simulation of Construction Sequence

The construction sequence of the bridge is simulated in the analysis as shown in the table on the next page.

The subsidiary measure, pressurization by jacking force just before casting the closure segments, is also considered, as presented in Section 8.3.4. The jacking force applied in the final analysis is 2,000kN.

The analysis models corresponding to the construction stages are shown in the following figures.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

|            |                                                                            | Duration | Age of Concrete |      |          |          |          |          |          |     |           | Score    | ort   |          |          |          |          |          |          |     |
|------------|----------------------------------------------------------------------------|----------|-----------------|------|----------|----------|----------|----------|----------|-----|-----------|----------|-------|----------|----------|----------|----------|----------|----------|-----|
| Segment    | Loading                                                                    | (dec)    | at Prestressing | Dist | KO       | 144      | KO       | K0       | 14       | 1/F | KC.       | Jogi     | ICIT. | KO       | 1440     | 1/44     | 1/4.0    | 1440     | 1444     |     |
| KT1        | Softworkt maximatration PT CS                                              | (day)    | (day)           | Mer  | KÜ       | K1       | K2       | К3       | K4       | K5  | КБ        | K/       | K8    | K9       | K10      | K11      | K12      | K13      | K14      | KN  |
| KI I       | arrange traveler. Wet concrete                                             | 10       | 3               |      | -        |          |          |          |          |     |           |          |       |          |          |          | -        |          | N 14     |     |
| KN1        | Self weight Remove Wet Concrete Remove Support                             | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          |          | KN1 |
|            | Remove traveler, PT, CS                                                    |          |                 |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K14        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          | K14      |     |
| K13        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          | K13      |          |     |
| K12        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          | K12      |          |          |     |
| K11        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          | K11      |          |          |          |     |
| K10        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          | _     |          | K10      |          |          |          |          |     |
| K9         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          | KO    | K9       | _        |          |          |          |          |     |
| N0         | Self weight, moving traveler, P1, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           | V7       | NO    |          |          |          |          |          |          |     |
| K/         | Self weight, moving travelet, P1, CS                                       | 10       | 3               |      |          |          |          |          |          |     | VC        | K/       |       |          |          |          |          |          |          |     |
| K5         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        |          |          |          |          | K5  | NO        |          |       | -        |          | -        |          |          |          |     |
| K4         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          | K4       | 100 |           |          |       |          |          |          |          |          |          |     |
| K3         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          | КЗ       |          |     |           |          |       |          |          |          |          |          |          |     |
| K2         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          | K2       |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K1         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          | K1       |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K0         | Self weight, instal traveler, PT, CS                                       | 30       | 20              |      | KO       |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| Pier       | Self weight                                                                | 60       | -               | Pier | KO       |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K0         | Self weight, instal traveler, PT, CS                                       | 30       | 20              |      | KO       |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K1         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          | K1       |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K2         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          | K2       |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K3         | Self weight, moving traveler, PT, CS                                       | 10       | 3               | -    | I        | <b> </b> | I        | K3       | 16.2     |     |           | <b> </b> |       | <b> </b> | I        | <b> </b> | I        |          |          |     |
| K4         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          | K4       | 100 |           |          |       |          |          |          |          |          |          |     |
| K5         | Sell weight, moving traveler, PT, CS                                       | 10       | 3               | -    |          |          | 1        | -        |          | -K5 | Vo.       |          | -     |          | -        |          | -        |          |          |     |
| N5<br>K7   | Self weight, movingtraveler, PT, CS                                        | 10       | 3               | -    | I        | -        | 1        | -        | <u> </u> |     | NB        | K7.      | -     | -        | -        | -        | <u> </u> | $\vdash$ |          |     |
| K8         | Self weight, moving traveler, P1, CS                                       | 10       | 3               | -    |          | -        |          | -        | -        | -   |           | M        | K8    | -        | -        | -        |          | $\vdash$ |          |     |
| K9         | Self weight, moving traveler. PT. CS                                       | 10       | 3               |      | 1        | -        | 1        | 1        | 1        |     |           | -        |       | K9       | -        | -        |          |          |          |     |
| K10        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | 1        | -        | 1        |          |          | -   |           | -        |       |          | K10      | -        |          |          |          |     |
| K11        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | 1        |          | 1        | 1        | 1        |     |           |          |       |          |          | K11      | <b>I</b> |          |          |     |
| K12        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          | L        |          |     |           |          |       | L        |          |          | K12      |          |          |     |
| K13        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          | K13      |          |     |
| K14        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          | K14      |     |
|            | arrange traveler, Jacking force, Wet concrete                              |          |                 |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| KN2        | Self weight, Remove Wet Concrete, Remove traveler.                         | 10       | 3               |      | [        |          | 1        |          |          |     |           |          |       |          |          |          |          |          |          | KN2 |
|            | Remove Jacking force, PT, CS                                               |          |                 | L    |          |          | L        | L        | L        |     |           |          |       | L        | L        | L        | L        |          |          |     |
| K14        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          | K14      |     |
| K13        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          | K13      |          |     |
| K12        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          | K12      |          |          |     |
| K11        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | <u> </u> | _        |          | <u> </u> | _        |     | $\square$ | _        |       | —        |          | K11      | <u> </u> |          |          |     |
| K10        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          | K10      |          |          |          |          |     |
| K9         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       | K9       |          |          |          |          |          |     |
| K8         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        |          |          |          |          |     |           | 1.00     | K8    | _        |          | _        |          |          |          |     |
| K/         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          | _   | Ve        | K7       |       |          |          |          |          | _        |          |     |
| K5         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        |          |          |          |          | K5  | ND        |          |       |          |          |          |          |          |          |     |
| K4         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        |          |          |          | K4       | No  |           |          |       |          |          |          |          |          |          |     |
| К3         | Self weight moving traveler PT CS                                          | 10       | 3               |      |          |          |          | K3       |          |     |           |          | -     |          |          |          |          |          |          |     |
| K2         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          | K2       |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K1         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          | K1       |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K0         | Self weight, instal traveler, PT, CS                                       | 30       | 20              |      | KO       |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| Pier       | Self weight                                                                | 60       | -               | Pier | KO       |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K0         | Self weight, instal traveler, PT, CS                                       | 30       | 20              |      | KO       |          |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K1         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          | K1       |          |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K2         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          | K2       |          |          |     |           |          |       |          |          |          |          |          |          |     |
| K3         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          | K3       |          |     |           |          |       |          |          |          |          |          |          |     |
| K4         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          | K4       |     |           |          |       |          |          |          |          |          |          |     |
| K5         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          | K5  | VC        |          | _     |          |          |          |          |          |          |     |
| N0         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        | -        |          | _        |          | _   | ND        | V7       | -     | -        | _        | -        |          |          |          |     |
| K8         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        |          |          |          |          |     |           | N/       | K8    |          |          |          |          |          |          |     |
| K9         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | -        |          |          |          |          | -   |           |          | 140   | K9       |          | -        |          |          |          |     |
| K10        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          | K10      |          |          |          |          |     |
| K11        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | 1        |          | 1        |          |          |     |           |          |       |          |          | K11      | i –      |          |          |     |
| K12        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          | K12      |          |          |     |
| K13        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          | K13      |          |     |
| K14        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          | K14      |     |
|            | arrange traveler, Jacking force, Wet concrete                              |          |                 |      | ļ        | ļ        | ļ        | ļ        | ļ        | ļ   | L         | ļ        |       | ļ        | ļ        | ļ        | ļ        |          |          |     |
| KN3        | Self weight, Remove Wet Concrete, Remove traveler,                         | 10       | 3               |      | I I      |          | 1        |          | 1        |     |           |          |       |          |          |          |          |          |          | KNB |
| K14        | Solf weight mechanization of a CC                                          | 10       | 2               | -    |          | -        |          | -        | <u> </u> |     | $\vdash$  | -        | -     | -        | <u> </u> | -        |          | $\vdash$ | K44      |     |
| K14<br>K13 | Self weight, movingtraveler, PT, CS<br>Self weight, movingtraveler, PT, CS | 10       | 3               |      | I        | —        | I        | -        | -        | —   |           | —        | -     | -        | <u> </u> | -        | -        | K13      | N14      |     |
| K12        | Self weight, moving traveler, PT, CS                                       | 10       | 3               | -    | -        | -        |          | ⊢        | -        |     |           | -        | -     | -        | -        | -        | K12      | 1.10     |          |     |
| K11        | Self weight, moving traveler, PT, CS                                       | 10       | 3               | -    | 1        | -        | 1        | -        | 1        | -   |           | -        |       | -        | -        | K11      | 2        |          |          |     |
| K10        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | 1        |          |          |          | 1        |     |           |          |       |          | K10      |          | 1        |          |          |     |
| K9         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          |       | K9       |          |          |          |          |          |     |
| K8         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     |           |          | K8    |          |          |          |          |          |          |     |
| K7         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          | <u> </u> |          |     |           | K7       |       |          |          |          |          |          |          |     |
| K6         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     | K6        |          |       |          |          |          |          |          |          |     |
| K5         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | I        | —        | <u> </u> | -        | 1000     | K5  | $\vdash$  | —        |       | —        | <u> </u> | —        | <u> </u> |          |          |     |
| K4         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | I        | <u> </u> | I        | K0       | K4       |     |           | <u> </u> |       | <u> </u> | <u> </u> | <u> </u> | I        |          |          |     |
| K3         | Sell weight, moving traveler, PT, CS                                       | 10       | 3               | -    | I        | -        | VA.      | к3       | <u> </u> |     |           | -        | -     | -        | <u> </u> | -        | <b>I</b> |          |          |     |
| K1         | Self weight, movingtraveler, PT, CS<br>Self weight, movingtravelor, PT, CS | 10       | 3               | -    | I        | K1       | K2       | -        | -        |     | $\vdash$  | -        | -     | -        | <u> </u> | -        | -        | $\vdash$ |          |     |
| KO         | Self weight, instal traveler PT CS                                         | 30       | 20              | -    | KO       | KI       | -        | -        | -        | -   |           | —        | -     | —        | -        | —        | -        |          |          |     |
| Pier       | Self weight                                                                | 60       | -               | Pier | KO       | -        | 1        | -        | -        |     |           | -        | -     | -        | -        | -        | 1        |          |          |     |
| KO         | Self weight, instal traveler. PT. CS                                       | 30       | 20              |      | КО       |          | 1        | <u> </u> | 1        |     |           |          |       |          | 1        |          | i –      |          |          |     |
| K1         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          | K1       | 1        |          |          |     |           |          |       |          |          |          | 1        |          |          |     |
| К2         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | 1        |          | K2       | 1        | 1        |     |           |          |       |          | 1        |          | 1        |          |          |     |
| K3         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | L        |          |          | K3       |          |     |           |          |       |          |          |          | L        |          |          |     |
| K4         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          | K4       |     |           |          |       |          |          |          |          |          |          |     |
| K5         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          | Ĺ        |          | Ĺ        |          | K5  |           | Ĺ        |       | Ĺ        |          | Ĺ        |          |          |          |     |
| K6         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          |          |          |     | K6        |          |       |          |          |          |          |          |          |     |
| K7         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | <u> </u> | _        |          | <u> </u> | _        |     | $\square$ | K7       |       | —        | <u> </u> | —        | <u> </u> |          |          |     |
| K8         | Self weight, moving traveler, PT, CS                                       | 10       | 3               | L    | I        |          | I        | L        | I        |     |           |          | K8    | 100      | I        |          | I        |          |          |     |
| K9         | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      |          |          |          | <u> </u> |          |     |           |          |       | K9       | 1077     |          |          |          |          |     |
| K10        | Sett weight, moving traveler, PT, CS                                       | 10       | 3               |      | I        |          |          | -        |          |     |           |          | -     |          | K10      | Kee.     | -        |          |          |     |
| K11<br>K12 | Self weight, moving traveler, PT, CS                                       | 10       | 3               | -    |          | -        |          | ⊢        | <u> </u> |     |           | -        | -     | -        | <u> </u> | K11      | K40      | $\vdash$ | $\vdash$ |     |
| K12        | Self weight maying traveler PT CS                                          | 10       | 3               | -    | I        |          | -        | -        |          |     |           |          |       |          | I        |          | 112      | K13      |          |     |
| K14        | Self weight, moving traveler, PT, CS                                       | 10       | 3               |      | 1        | -        | 1        | -        | -        |     |           | -        | -     | -        | -        | -        | 1        | 1110     | K14      |     |
|            | arrange traveler, Wet concrete                                             | -        | -               |      |          |          | 1        |          | 1        |     |           |          |       |          |          |          |          |          |          |     |
| KN4        | Self weight, Remove Wet Concrete, Remove Support.                          | 10       | 3               |      | r        |          | 1        | 1        | <b> </b> |     |           | ·        |       | l        | <b></b>  |          | l        |          | ·        | KNB |
|            | Remove traveler, PT, CS                                                    |          |                 |      |          |          | I        |          |          |     |           |          |       |          |          |          |          |          |          |     |
| KT4        | Self weight, moving traveler, PT, CS                                       | 30       | 10              |      |          |          |          |          |          |     |           |          |       |          |          |          |          |          | K14      |     |

#### Table 8.3.6-6 Construction Sequence simulated in Structural Analysis

## Source: Study Team

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.





Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.





Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.



Source: Study Team

Figure 8.3.6-6 Models corresponding to Construction Sequence (3)

(4) Result of Analysis Sectional Forces 1) 19312 Max ..... Min (a) Shear Force (Service Limit State) 30084 ny... INZ Max 111082 Min (b) Bending Moment (Service Limit State) 25248 Max 89 24373 Min ..... (c) Shear Force (Strength Limit State) 366182 ЮШИ Max ..... Min (d) Bending Moment (Strength Limit State) Source: Study Team





i guie 0.3.0-0 FIDEI SILE

## (5) Reinforcement

#### 1) Reinforcement for Bending Moment in Longitudinal Direction

The nominal flexural resistance of the girder according to the formula 5.7.3.2.2-1 of the specification for bridge design 22TCN272-05 with minimum reinforcement is always larger than the 1.33 times the factored moment required by applicable strength load combinations specified in Section 8.1.3. Therefore, minimum reinforcement, approximately 0.3% of gross area in accordance with the formula 5.7.3.3.2-1 of 22TCN272-05, is applied for the main girder.

#### 2) Reinforcement for Shear Force in Longitudinal Direction

The required amount of reinforcement is summarized in the table below.

|                | the second se | 127               | 00                   |                                  |                            |                            |     |
|----------------|-----------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------------------|----------------------------|----------------------------|-----|
| NT IT INT      | 14 k13 k12 kt k10 k9 k8 k7                                                                                      | 45 k5 k4 k3 k2 k1 | kg1 2 k1 k2 k3 k4 k3 | i k6 k7 k8 k9 k10 k1 k12 k13 k14 | N2 k14 k13 k12 k1 k10 k9 j | k8 k7 k5 k5 k4 k3 k2 k1    | k02 |
| 1000 1000 1770 | 94770<br>4/85000#20000 5/84200#21000                                                                            | 5/03500#17500     | AVA 58350947590      | 564200921000 4/8500920000        | 150000                     | 10#21000 5/83500#17500 xxx | A-4 |
| 1              |                                                                                                                 |                   | 078                  |                                  |                            |                            | 0   |

| Section | Factored<br>Shear Force<br>Vu min (kN) | Factored<br>Shear Force<br>Vu max (kN) | Component of<br>Prestressing<br>Force<br>Vp (kN) | Nominal Shear<br>Resistance of<br>Concrete<br>Vc (KN) | Required Shear<br>Resistance by<br>Reinforcement<br>Vs (kN) | Required Area of<br>Reinforcement<br>As (cm <sup>2</sup> )* |
|---------|----------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| S1      | -7170                                  | -12541                                 | 2469                                             | 2797                                                  | 8669                                                        | 12.6                                                        |
| S2      | -5671                                  | -10600                                 | 1695                                             | 2871                                                  | 7213                                                        | 11.1                                                        |
| S3      | 1213                                   | -2663                                  | -368                                             | 2583                                                  | 744                                                         | 1.8                                                         |
| S4      | 2767                                   | -1265                                  | -1126                                            | 2425                                                  | 0                                                           | 1.8                                                         |
| S5      | 5136                                   | 1091                                   | -989                                             | 2350                                                  | 2368                                                        | 3.4                                                         |
| S6      | 7358                                   | 3180                                   | -1228                                            | 2645                                                  | 4303                                                        | 4.6                                                         |
| S7      | 9621                                   | 5168                                   | -1211                                            | 3231                                                  | 6247                                                        | 4.5                                                         |
| S8      | 11935                                  | 7096                                   | -2904                                            | 3531                                                  | 6826                                                        | 5.0                                                         |
| S9      | 14050                                  | 8808                                   | -2666                                            | 3678                                                  | 9266                                                        | 8.3                                                         |
| S10     | 16193                                  | 10523                                  | -3638                                            | 3821                                                  | 10534                                                       | 8.9                                                         |
| S11     | 18390                                  | 12270                                  | -4954                                            | 4035                                                  | 11445                                                       | 9.3                                                         |
| S12     | 21028                                  | 14444                                  | -5217                                            | 5954                                                  | 12193                                                       | 9.7                                                         |
| S13     | 23439                                  | 16440                                  | -5853                                            | 6317                                                  | 13873                                                       | 10.7                                                        |
| S14     | 25512                                  | 18168                                  | -6983                                            | 6736                                                  | 14628                                                       | 10.5                                                        |
| S15     | 27652                                  | 19977                                  | -7873                                            | 7164                                                  | 15688                                                       | 10.4                                                        |
| S16     | 29859                                  | 21867                                  | -9177                                            | 7589                                                  | 16411                                                       | 10.1                                                        |
| S17     | 32133                                  | 23841                                  | -11979                                           | 8046                                                  | 15679                                                       | 8.9                                                         |
| S18     | 34479                                  | 25933                                  | -14151                                           | 8537                                                  | 15622                                                       | 7.3                                                         |
| S21     | 34798                                  | 26196                                  | -13729                                           | 8606                                                  | 16330                                                       | 7.8                                                         |

#### Table 8.3.6-7 Required Reinforcement for Shear Force in Longitudinal Direction

\* Spacing of Stirrup : 0.15m, number of stirrup in a section: 4

Source: Study Team

## 8.3.6.3 Design of Superstructure in Transversal Direction

## (1) Sections for Analysis

The design calculation was performed for the two unfavorable sections, Section 3 with 450mm web at the center of the span and Section 12 with 600mm, shown in the following figure.



Source: Study Team

Figure 8.3.6-9 Sections for Transversal Analysis

#### (2) Model of Analysis

The conditions of the model of analysis is as follows,

- The members of the structure are modeled into frame elements at the positions of the centroid.

- The rigid zones are considered at the connections between the upper slab and the webs, and, lower slab and webs.

- The both ends of lower slab are fixed in vertical direction, movable in horizontal direction.

The structural model for the analysis is shown in the figure below.



(a) Section 3

(b) Section 12

Source: Study Team

Figure 8.3.6-10 Model for Transversal Analysis

#### (3) Loading Conditions

The loading conditions for Limit States are based on Chapter 3 in Specification for Bridge Design, 22TCN272-05, summarized in the article 8.1.3 in this report.

1) Dead Load:

Weight of components: DC

Unit weight of reinforced concrete is assumed as 24.5 kN/m<sup>3</sup>.

Weight of Wearing Course: DW

Depth of wearing course is : 75.00 mm

Unit weight of wearing course is :  $22.5 \text{ kN/m}^3$ 

Uniform load for wearing course is : 1.688 kN/m

Curb Concrete and Handrail: 8.54kN at each end

Water Pipe: 2.25kN at 3050mm from each end

2) Live Load:

Live Load: LL

As specified in the article 3.6.1.2 of 22TCN272-05, Design Truck and Lane Load were simultaneously loaded. Equivalent Interior Strips based on the article 4.6.2.1 of 22 TCN272-05 were assumed for loading Design Truck in transversal direction.

Dynamic Load Allowance: IM

Dynamic load allowance is 25% based on Table 3.6.2.1-1 of 22TCN272-05.

The conditions for LL including IM for the transversal analysis are illustrated in the figures on the next page.



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

- (4) Result of Analysis
  - 1) Service Limit State

All the resultant stresses in the upper slab in Service Limit State are less than the limit stress of full prestressing, 3.2 MPa. The following figure shows the results of fiber stress in one of the unfavorable combinations in the Service Limit.





## (5) Reinforcement

1) Reinforcement for Bending Moment in Transversal Direction

The required amount of reinforcement is summarized in the table below.



Table 8.3.6-8 Required Reinforcement in Transversal Direction

| Location    | Required Amount    | of reinforcement  | Adopted Amount of Reinforcement |                                  |  |
|-------------|--------------------|-------------------|---------------------------------|----------------------------------|--|
|             | Section 3          | Section 12        | Section 3                       | Section 12                       |  |
| 1-1         | -                  | -                 | $D14@150mm = 10cm^{2}$          | D14@150mm = 10cm <sup>2</sup>    |  |
| 2-2         | -                  | -                 | $D14@150mm = 10cm^{2}$          | D14@150mm = 10cm <sup>2</sup>    |  |
| 3-3         | -                  | -                 | $D14@150mm = 10cm^{2}$          | D14@150mm = 10cm <sup>2</sup>    |  |
| 4-4         | 16cm <sup>2</sup>  | 12cm <sup>2</sup> | D18@150mm = 17cm <sup>2</sup>   | D16@150mm = 13cm <sup>2</sup>    |  |
| 5-5         | 5cm <sup>2</sup>   | 5cm <sup>2</sup>  | $D14@150mm = 10cm^{2}$          | D14@150mm = 10cm <sup>2</sup>    |  |
| 6-6 inside  | 11 cm <sup>2</sup> | 9cm <sup>2</sup>  | $D16@150mm = 13cm^{2}$          | D16@150mm = 13cm <sup>2</sup>    |  |
| 7-7 inside  | 10cm <sup>2</sup>  | 8cm <sup>2</sup>  | $D16@150mm = 13cm^{2}$          | $D16@150mm = 13cm^{2}$           |  |
| 8-8 inside  | 11 cm <sup>2</sup> | 10cm <sup>2</sup> | $D16@150mm = 13cm^{2}$          | D16@150mm = 13cm <sup>2</sup>    |  |
| 9-9 inside  | 12cm <sup>2</sup>  | 13cm <sup>2</sup> | $D16@150mm = 13cm^2$            | $D16@150mm = 13cm^{2}$           |  |
| 6-6 outside | 21cm <sup>2</sup>  | 17cm <sup>2</sup> | $D22@150mm = 25cm^2$            | D18@150mm = 17cm <sup>2</sup>    |  |
| 7-7 outside | 22cm <sup>2</sup>  | 17cm <sup>2</sup> | $D22@150mm = 25cm^2$            | D18@150mm = 17cm <sup>2</sup>    |  |
| 8-8 outside | 20cm <sup>2</sup>  | 7cm <sup>2</sup>  | $D22@150mm = 25cm^2$            | D18@150mm = $17$ cm <sup>2</sup> |  |
| 9-9 outside | 5cm <sup>2</sup>   | 5cm <sup>2</sup>  | $D22@150mm = 25cm^2$            | D18@150mm = 17cm <sup>2</sup>    |  |

Source: Study Team

2) Reinforcement for Shear Force in Transversal Direction

It was verified that the capacities of the sections are beyond the maximum shear forces.

## 8.3.6.4 Design of Substructure of Main Bridge

## (1) Structural Analysis

The results of structural analysis for longitudinal direction presented in Section 8.3.6.2 are alSourced for designing the substructure.

- (2) Conditions of Analysis
  - 1) Cross Section of Piers

The geometric parameters are as presented in the previous section. The cross sections of piers are shown in the figure below. As shown in the figure, 18 PC tendons are installed in the V-shaped walls for avoiding cracking in Service Limit State.



(a) Transversal Section of Pier



Source: Study Team

Figure 8.3.6-14 Arrangement of PC Tendons

- (3) Result of Analysis
  - 1) Sectional Forces



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.



(b) Bending Moment

Source: Study Team

Figure 8.3.6-17 Sectional Forces in Extreme Event Limit State

2) Fiber Stress







(b) Bottom Fiber

Source: Study Team







Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

## (4) Reinforcement of Piers

## 1) Reinforcement of V-shaped Wall

section 16-16(Scale: 1/100)

The reinforcement in the V-shaped wall is shown in the figure below. The relationships between the resistance capacity and sectional forces by unfavorable loading combinations in Strength Limit State are shown in the following figure.



Source: Study Team

Figure 8.3.6-21 Reinforcement of V-shaped Wall



(a) Bottom Section of V-shaped Wall

(b) Top Section of V-shaped Wall

Source: Study Team

Figure 8.3.6-22 Relationships between resistance capacity and sectional force in Pier Members

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.
#### Reinforcement of Lower Pier Column 2)

The reinforcement in the lower pier column is shown in the figure below. The relationships between the resistance capacity and sectional forces by unfavorable loading combinations in Strength Limit State are shown in the following figure.



Source: Study Team

Figure 8.3.6-23 Reinforcement of Lower Pier Column and Pile Cap



(a) Bottom Section of Lower Pier Column Source: Study Team



(b) Top Section of Lower Pier Column

Figure 8.3.6-24 Relationships between resistance capacity and sectional force in Pier Members

## 8.3.6.5 Design of Foundation of Main Bridge

- (1) General
  - 1) Design Results

Figure 8.3.6-1 shows major dimensions and materials of Steel sheet pipe pile foundations for P76~78 as design results. Dimensions and materials of steel pipe sheet pile for all foundation are same, only thickness of exterior pile at permanent part is different (t=19 for P77 & P78, t=16 for P76). Due to change of corrosion speed, the thickness of steel pipe pile will be changed at under the design scour depth (t=19 to 16 for P77 & P78, t=16 to 14 for P76).

Material of steel pipe sheet piles is SKY400 except exterior sheet pile at permanent part is SKY490.



Source: Study Team

Figure 8.3.6-25 Major Dimension and Materials used for SPSP Foundation for P76~P78

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

## 2) Construction Step

The section design of external sheet pile, it was required to combine pile stress at during construction and at after construction. Therefore, in order to reduce residual stress in external sheet piles due to hydrostatic with soil pressure during construction, construction step was planed to cast the bottom slab concrete by keeping water inside cofferdam at +1.97m (assumed construction water level) at before the draining inside cofferdam.

In the scour depth at during construction, it was neglected due to safety design.



Source: Study Team



Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

# (2) Design Results

# 1) Design steel pipe sheet pile

A summary of calculation results for steel pipe sheet pile foundation is shown as following tables. And the stress diagrams of exterior sheet piles is shown as following figures.

# Longitudinal direction

| Itom                               |                            |                       | I Init  | P76       |           | P7        | 17        | P78       |           |  |
|------------------------------------|----------------------------|-----------------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|                                    | Item                       |                       | Unit    | Ordinary  | Seismic   | Ordinary  | Seismic   | Ordinary  | Seismic   |  |
| Vo                                 |                            | Vo                    | kN      | 127,238.5 | 126,156.5 | 126,828.0 | 122,009.0 | 120,699.7 | 121,049.7 |  |
| Forces <sup>*2</sup>               |                            | Ho                    | kN      | 5,311.0   | 22,663.0  | 1,798.0   | 19,890.0  | 7,759.0   | 21,844.0  |  |
|                                    |                            | Мо                    | kN.m    | 52,921.0  | 252,181.0 | 7,783.0   | 162,160.0 | 49,478.0  | 220,995.0 |  |
| Displaceme                         | ent <sup>*2</sup>          |                       |         |           |           |           |           |           |           |  |
| At Top<br>of                       | Displacement               | δ1                    | cm      | 0.762     | 2.524     | 0.207     | 1.785     | 1.160     | 2.510     |  |
| Top Slab                           | Allowable                  | δa                    | cm      | 5.000     | 5.000     | 5.000     | 5.000     | 5.000     | 5.000     |  |
| Pile Beari                         | ng <sup>*2</sup> (L=47.5m) | )                     |         |           |           |           |           |           |           |  |
|                                    | Max                        | Rmax                  | kN/pile | 2,547     | 3,319     | 2,504     | 3,199     | 2,731     | 3,549     |  |
| Vertical                           | Min                        | Rmin                  | kN/pile | 2,088     | 1,277     | 2,355     | 1,476     | 1,893     | 1,089     |  |
| Reaction                           | Bearing                    | Ra                    | kN/pile | 3,446     | 5,169     | 3,046     | 4,569     | 3,520     | 5,353     |  |
|                                    | Pull-out                   | Ра                    | kN/pile | -926      | -1,417    | -1,193    | -1,728    | -939      | -1512     |  |
| Pile Stresse                       | es                         |                       |         |           |           |           |           |           |           |  |
|                                    | Thickness                  | t                     | mm      | 16 19     |           |           |           |           |           |  |
| Exterior                           | After<br>Construction      | $\sigma_1^{*2}$       | MPa     | 85.33     | 137.74    | 57.65     | 93.61     | 67.88     | 107.91    |  |
| (SKY490)                           | During<br>construction     | σ2                    | MPa     | 87.55     | 87.55     | 90.04     | 90.04     | 97.41     | 97.41     |  |
|                                    | Combined                   | $\sigma_{\text{max}}$ | MPa     | 172.87    | 225.29    | 147.68    | 183.65    | 165.29    | 205.32    |  |
|                                    | Allowable                  | σa                    | MPa     | 185.00    | 280.00    | 185.00    | 280.00    | 185.00    | 280.00    |  |
| Bulkhead <sup>*2</sup><br>(SKY400) | After<br>Construction      | $\sigma_1$            | MPa     | 96.64     | 137.16    | 58.79     | 97.20     | 76.69     | 119.36    |  |
| t=14mm                             | Allowable                  | σa                    | MPa     | 140.00    | 210.00    | 140.00    | 210.00    | 140.00    | 210.00    |  |

| TH AAAA T            | D 14    | (0000   |       |              | D' ('     |
|----------------------|---------|---------|-------|--------------|-----------|
| Table 8.3.6-9 Design | Results | of SPSP | tor I | Longitudinal | Direction |

\*1:Designed by Well Model according

\*2:due to after construction loads

Source: Study Team



Figure 8.3.6-27 Stress Diagram of SPSP for P76

| Item                               |                           |                 | Unit    |           | 76        |          | 77       | P78       |           |
|------------------------------------|---------------------------|-----------------|---------|-----------|-----------|----------|----------|-----------|-----------|
|                                    |                           |                 | Unit    | Ordinary  | Seismic   | Ordinary | Seismic  | Ordinary  | Seismic   |
|                                    |                           | Vo              | kN      | 127,238.5 | 126,156.5 | 119914.0 | 122009.0 | 113,881.7 | 121,049.7 |
| Forces <sup>*2</sup>               |                           | Но              | kN      | 1,495.0   | 11,356.0  | 3027.0   | 20317.0  | 5,424.0   | 15,920.0  |
|                                    |                           | Mo              | kN.m    | 2,613.0   | 263,971.0 | 3742.0   | 484289.0 | -7,314.0  | 331,268.0 |
| Displacement*2                     |                           |                 |         |           |           |          |          |           |           |
| At Top of                          | Displacemen<br>t          | δ1              | cm      | 0.174     | 1.819     | 0.344    | 4.080    | 0.753     | 3.274     |
| Top Slab                           | Allowable                 | ба              | cm      | 5.000     | 5.000     | 5.000    | 5.000    | 5.000     | 5.000     |
| Pile Bearin                        | ng <sup>*2</sup> (L=47.5m | )               |         |           |           |          |          |           |           |
|                                    | Max                       | Rmax            | kN/pile | 2,338     | 2,431     | 2347     | 2991     | 2,300     | 2,807     |
| Vertical                           | Min                       | Rmin            | kN/pile | 2,296     | 2,164     | 2247     | 1684     | 2,064     | 1,831     |
| Reaction                           | Bearing                   | Ra              | kN/pile | 3,446     | 5,169     | 3,046    | 4,569    | 3,520     | 5,353     |
|                                    | Pull-out                  | Pa              | kN/pile | -870      | -1,417    | -1,193   | -1,728   | -939      | -1512     |
| Pile Stresse                       | S                         |                 |         |           |           |          |          |           |           |
|                                    | Thickness                 | t               | mm      | 16 19     |           |          |          |           |           |
| Exterior                           | After<br>Construction     | $\sigma_1^{*2}$ | MPa     | 71.67     | 132.92    | 55.01    | 148.57   | 52.69     | 120.78    |
| (SKY490)                           | During construction       | σ <sub>2</sub>  | MPa     | 92.39     | 92.39     | 95.69    | 95.69    | 103.08    | 103.08    |
|                                    | Combined                  | $\sigma_{max}$  | MPa     | 164.06    | 225.31    | 150.70   | 244.26   | 155.77    | 223.86    |
|                                    | Allowable                 | σa              | MPa     | 185.00    | 280.00    | 185.00   | 280.00   | 185.00    | 280.00    |
| Bulkhead <sup>*2</sup><br>(SKY400) | After<br>Construction     | $\sigma_1$      | MPa     | 87.96     | 136.93    | 57.23    | 142.13   | 61.00     | 124.35    |
| t=14mm                             | Allowable                 | σa              | MPa     | 140.00    | 210.00    | 140.00   | 210.00   | 140.00    | 210.00    |

#### Transversal direction



\*1:Designed by Well Model according





# 2) Design of top slab

A summary of calculation results for Top Slab is shown as following tables.

Longitudinal direction

b = 100.0 (cm), h = 400.0 (cm)The lower tensile(  $As = 228.000 (cm^2)$  ) reinforcement cover, 130 (mm) D38 @ 150 **3**layers The upper tensile(  $As = 76.000 (cm^2)$  ) 11ayer reinforcement cover, 100 (mm) D38 @ 150

| Table 8 3 6-11 | Design | Results of  | Ton Slah | for I or | naitudinal | Direction |
|----------------|--------|-------------|----------|----------|------------|-----------|
|                | Design | r courto or | TOP Olub |          | igituaniai | Direction |

|                     |                                                       |          | P76                                    |                   | Р                | 77                | P78               |                   |                   |
|---------------------|-------------------------------------------------------|----------|----------------------------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|
|                     |                                                       |          | Unit                                   | Ordinary          | Seismic          | Ordinary          | Seismic           | Ordinary          | Seismic           |
|                     | Bending moment                                        | MA       | kN.m                                   | 6934.0            | 10072.0          | 6857.0            | 9339.0            | 7529.0            | 10284.0           |
| Lower               | Necessary reinforcement                               | Asr      | cm <sup>2</sup>                        | 115.856           | 00.327           | 129.561           | 92.717            | 142.920           | 102.531           |
|                     | Neutral axis                                          | X        | cm                                     | 130.0             | 30.0             | 130.0             | 130.0             | 130.0             | 130.0             |
| tensile             | Stresses                                              | σc<br>σs | N/mm <sup>2</sup><br>N/mm <sup>2</sup> | 3.20<br>94.74     | 4.64<br>137.61   | 3.16<br>93.69     | 4.30<br>127.61    | 3.47<br>102.86    | 4.74<br>140.51    |
| n                   | Resultant tensile force<br>Reinforcement requirements | T<br>As  | kN<br>cm <sup>2</sup>                  | 3081.7<br>171.203 | 476.3<br>149.209 | 3047.6<br>190.474 | 4150.8<br>138.361 | 3346.0<br>209.126 | 4570.5<br>152.349 |
|                     | Bending moment                                        | MA'      | kN.m                                   | 5166.0            | 1901.0           | 6492.0            | 3406.0            | 5565.0            | 2854.0            |
| h                   | Necessary reinforcement                               | Asr      | cm <sup>2</sup>                        | 0.000             | 0.000            | 0.000             | 0.000             | 0.000             | 0.000             |
| Upper               | Neutral axis                                          | х        | cm                                     | 7.5               | 7.5              | 7.5               | 7.5               | 7.5               | 7.5               |
| tensile             | Stresses                                              | σc<br>σs | N/mm <sup>2</sup><br>N/mm <sup>2</sup> | 0.00<br>0.00      | 0.00<br>0.00     | 0.00<br>0.00      | 0.00<br>0.00      | 0.00<br>0.00      | 0.00<br>0.00      |
| ň                   | Resultant tensile force                               | Т        | kN                                     | 0.0               | 0.0              | 0.0               | 0.0               | 0.0               | 0.0               |
|                     | Reinforcement requirements                            | As       | cm <sup>2</sup>                        | 0.000             | 0.000            | 0.000             | 0.000             | 0.000             | 0.000             |
|                     | Allowable stresses                                    |          | $N/mm^2$                               | 9.00              | 14.00            | 9.00              | 14.00             | 9.00              | 14.00             |
|                     |                                                       | σsa      | N/mm <sup>2</sup>                      | 180.00            | 300.00           | 160.00            | 300.00            | 160.00            | 300.00            |
| A                   | verage shearing force                                 | QB       | KN<br>N/mm <sup>2</sup>                | 1676.0            | 2330.0           | 1614.0            | 2128.0            | 1/15.0            | 2303.0            |
|                     | verage shearing force                                 | τal'     | $N/mm^2$                               | 0.44              | 1.08             | 0.43              | 0.30<br>1.08      | 0.40              | 1.08              |
|                     |                                                       | S        | kN                                     | 1801.0            | 517.0            | 1692.0            | 2237.0            | 1838.0            | 2469.0            |
| A                   | verage shearing force                                 | τm       | N/mm <sup>2</sup>                      | 0.48              | 0.67             | 0.45              | 0.59              | 0.49              | 0.65              |
|                     |                                                       | τal'     | N/mm <sup>2</sup>                      | 0.72              | 1.08             | 0.72              | 1.08              | 0.72              | 1.08              |
| Shearin             | g force carried by concrete                           | Sca      | kN                                     | 2714.0            | 4071.0           | 2714.0            | 4071.0            | 2714.0            | 4071.0            |
|                     | Shearing force                                        | Sh'      | kN                                     | 0.0               | 0.0              | 0.0               | 0.0               | 0.0               | 0.0               |
|                     | Longitudinal spacing                                  | s        | cm                                     | 90.0              | 90.0             | 90.0              | 90.0              | 90.0              | 90.0              |
| Diagonal<br>tension | Reduction coefficient                                 | Cds      | _                                      | 0.455             | 0.455            | 0.455             | 0.455             | 0.455             | 0.455             |
| reinforce<br>ment   | Allowable tensile stresses                            | σsa      | N/mm <sup>2</sup>                      | 180.00            | 300.00           | 160.00            | 300.00            | 160.00            | 300.00            |
|                     | Used reinforcement                                    | Aw       | cm <sup>2</sup>                        | 2.207             | 2.207            | 2.207             | 2.207             | 2.207             | 2.207             |
|                     | Necessary reinforcement                               | Awreq    | cm <sup>2</sup>                        | 0.000             | 0.000            | 0.000             | 0.000             | 0.000             | 0.000             |

Source: Study Team

### Transversal direction

b = 100.0 (cm), h = 400.0 (cm)The lower tensile(  $As = 158.840 (cm^2)$  ) layer 1~3 reinforcement cover, 168 (mm), D32 @ 150 The upper tensile(  $As = 52.947 (cm^2)$  ) layer 1 reinforcement cover, 100 (mm), D32 @ 150

|                    |                                                       |            | Р                                      | 76               | Р                | 77                | P78               |                  |                   |
|--------------------|-------------------------------------------------------|------------|----------------------------------------|------------------|------------------|-------------------|-------------------|------------------|-------------------|
|                    |                                                       |            | Unit                                   | Ordinary+<br>W   | Seismic          | Ordinary          | Seismic           | Ordinary         | Seismic           |
|                    | Bending moment                                        | MA         | kN.m                                   | 4610.0           | 6008.0           | 3624.0            | 8130.0            | 3485.0           | 6800.0            |
|                    | Necessary reinforcement                               | Asr        | cm <sup>2</sup>                        | 60.707           | 59.282           | 67.278            | 81.083            | 64.616           | 67.349            |
| Lower              | Neutral axis                                          | Х          | cm                                     | 111.7            | 111.7            | 111.7             | 111.7             | 111.7            | 111.7             |
| tensile            | Stresses                                              | σc<br>σs   | N/mm <sup>2</sup><br>N/mm <sup>2</sup> | 2.46<br>89.61    | 3.20<br>116.77   | 1.93<br>70.38     | 4.32<br>157.92    | 1.85<br>67.69    | 3.62<br>132.09    |
|                    | Resultant tensile force<br>Reinforcement requirements | T<br>As    | kN<br>cm <sup>2</sup>                  | 2049.0<br>91.068 | 2670.1<br>89.002 | 1610.5<br>100.653 | 3613.3<br>120.443 | 1548.8<br>96.797 | 3022.3<br>100.744 |
|                    | Bending moment                                        | MA'        | kN.m                                   | 2510.0           | 1045.0           | 3368.0            | -1003.0           | 3253.0           | 400.0             |
|                    | Necessary reinforcement                               | Asr        | cm <sup>2</sup>                        | 0.000            | 0.000            | 0.000             | 8.804             | 0.000            | 0.000             |
| Upper              | Neutral axis                                          | x          | cm                                     | 7.0              | 7.0              | 7.0               | 71.1              | 7.0              | 7.0               |
| tensile            | Stresses                                              | σc<br>σs   | N/mm <sup>2</sup><br>N/mm <sup>2</sup> | 0.00<br>0.00     | 0.00<br>0.00     | 0.00<br>0.00      | 0.77<br>51.72     | 0.00<br>0.00     | 0.00<br>0.00      |
|                    | Resultant tensile force                               | Т          | kN                                     | 0.0              | 0.0              | 0.0               | 445.8             | 0.0              | 0.0               |
|                    | Reinforcement requirements                            | As         | $cm^2$                                 | 0.000            | 0.000            | 0.000             | 14.860            | 0.000            | 0.000             |
|                    | Allowable stresses of                                 |            | $N/mm^2$                               | 10.00            | 14.00            | 9.00              | 14.00             | 9.00<br>160.00   | 14.00             |
|                    |                                                       | σsa        | N/mm <sup>2</sup>                      | 205.00           | 300.00           | 160.00            | 300.00            | 100.00           | 300.00            |
| Δ                  | verage shearing force                                 | QB         | kN<br>N/mm <sup>2</sup>                | 1923.0           | 2496.0           | 1538.0            | 3416.0            | 1470.0           | 2850.0            |
|                    | verage shearing force                                 | τm<br>τal' | N/mm <sup>2</sup>                      | 0.52<br>1.43     | 1.72             | 0.41              | 0.91              | 0.39             | 0.76              |
|                    |                                                       | S          | kN                                     | 1923.0           | 2496.0           | 1538.0            | 3416.0            | 1470.0           | 2850.0            |
| А                  | verage shearing force                                 | τm         | N/mm <sup>2</sup>                      | 0.52             | 0.67             | 0.41              | 0.91              | 0.39             | 0.76              |
|                    |                                                       | τal'       | N/mm <sup>2</sup>                      | 1.43             | 1.72             | 1.15              | 1.72              | 1.15             | 1.72              |
| Shearir            | g force carried by concrete                           | Sca        | kN                                     | 4281.0           | 6421.0           | 4282.0            | 6423.0            | 4282.0           | 6423.0            |
|                    | Shearing force                                        | Sh'        | kN                                     | 0.0              | 0.0              | 0.0               | 0.0               | 0.0              | 0.0               |
|                    | Longitudinal spacing                                  | S          | cm                                     | 90.0             | 90.0             | 90.0              | 90.0              | 90.0             | 90.0              |
| Diagona<br>tension | Reduction coefficient                                 | Cds        |                                        | 0.181            | 0.181            | 0.181             | 0.181             | 0.181            | 0.181             |
| reinforce          | Allowable tensile stresses                            | σsa        | N/mm <sup>2</sup>                      | 225.00           | 300.00           | 160.00            | 300.00            | 160.00           | 300.00            |
| ment               | Used reinforcement                                    | Aw         | cm <sup>2</sup>                        | 2.207            | 2.207            | 2.207             | 2.207             | 2.207            | 2.207             |
|                    | Necessary reinforcement                               | Awreq      | cm <sup>2</sup>                        | 0.000            | 0.000            | 0.000             | 0.000             | 0.000            | 0.000             |

Source: Study Team

1) Design of connection between Top Slab and Steel Pipe Sheet Pile

A summary of calculation results for connection between Top Slab and Steel Pipe Sheet Pile is shown as following tables.

Design condition

| - Type of steel                 | : SS400,SM400                                                |
|---------------------------------|--------------------------------------------------------------|
| - Type of reinforcing bars      | : SD345 (underwater)                                         |
| - Design strength of concrete   | : $\sigma ck = 27 (N/mm^2)$ *Treated as equivalent to an C28 |
| - Material of sheet pile        | : SKY490                                                     |
| - Diameter of sheet pile        | : $D = 1200.0 \text{ (mm)}$                                  |
| - Section modulus of sheet pile | : $Z = 12859.9 (cm^3)$                                       |
| - Connection method             | : reinforcement stud welding                                 |

#### Table 8.3.6-13 Design Results connection between Top Slab and SPSP

|     | Load     | σsl        | σs2        | σs         | σsa        | nb nba      | τs         | τsa        | ns nsa  |
|-----|----------|------------|------------|------------|------------|-------------|------------|------------|---------|
|     | case     | $(N/mm^2)$ | $(N/mm^2)$ | $(N/mm^2)$ | $(N/mm^2)$ | (nos/layer) | $(N/mm^2)$ | $(N/mm^2)$ | (nos)   |
| P76 | Ordinary | 78.72      | 7.81       | 86.54      | 160.00     | $20 \ge 11$ | 74.61      | 96.00      | 84 ≧ 65 |
| P77 | Wind     | 160.65     | 15.82      | 176.48     | 200.00     | 20 ≧ 18     | 93.89      | 120.00     | 84 ≧ 66 |
| P78 | Ordinary | 104.17     | 11.37      | 115.53     | 160.00     | $20 \ge 15$ | 76.39      | 96.00      | 84 ≧ 67 |

Source: Study Team



#### Source: Study Team

Figure 8.3.6-29 Detail of connection between Top Slab and SPSP