SOCIALIST REPUBLIC OF VIET NAM PROJECTS MANAGEMENT UNIT NO.2

FINAL REPORT

FOR ROAD & BRIDGE PORTION ON LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

(Vol. 1 of 2)

MARCH 2013

Japan International Cooperation Agency (JICA)

ORIENTAL CONSULTANTS CO., LTD. (OC) NIPPON KOEI CO., LTD. (NK) PADECO CO., LTD. (PADECO) JAPAN BRIDGE & STRUCTURE INSTITUTE, INC. (JBSI) THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

CONTENTS

CHAPTE	R 1 GENERAL	1-1
1.1	INTRODUCTION	
1.1.1	Background	
1.1.2	Outline of Design Study	
1.1.3	Study Arca	
1.2	SCOPE OF DESIGN STUDY	
1.2.1	Scope of Design Study	1-4
1.2.2	Work Schedule	
1.2.3	Main History of the Study	1 - 7
CHAPTEI	R 2 TOPOGRAPHIC AND HYDROLOGICAL SURVEY	2-1
2.1	TODOOD ADDIO SUDVEY	7 _1
2.1 2.1.1	Scope and Purpose of Survey	2-1
2.1.1 2.1.2	Applied Standards	2-1
2.1.2	Work Volume	·····2-1 2_2
2.1.5	Fauinment for Survey	
2.1.4	Control Point Survey	2_3
2.1.5	Route Survey for Road Portion	2_13
2.1.0 2.1.7	Route Survey for Bridge Portion	2_14
2.1.7	Positioning of Boring Pits	2-16
219	Survey Results	2-21
2.1.10	Points to be Noted for Drawings	
2.2	HYDROLOGICAL SURVEY	
2.2.1	General	
2.2.2	Review of Hydrological Survey Report in FS Stage	
2.2.3	Supplemental Hydrological Survey	2-31
		3_1
		2 1
3.1 2.2	STRATING CLASSIFICATION	
3.2	STRATUM CLASSIFICATION	
3.5	SUBSUL CONDITIONS OF APPROACH ROAD AREA IN HAI AN SIDE	
222		
3.3.2	N-Value	
3.3.3	Soil Parameters for Design	J=7 3 16
3.5.4	SUBSOIL CONDITIONS OF REDGE A DEA	
3.41	Subsult Conditions of Bridde AREA	3_17
342	N-value	3_21
343	Soil Parameters	
344	Rock Parameters	3_28
345	Soil and Rock Parameters for Design	3_31
3 5	SUBSOIL CONDITIONS OF APPROACH ROAD AREA IN CAT HAI SIDE	3-32
3.5.1	Stratum Classification	
3.5.2	N-value	
3.5.3	Soil Parameters	
3.5.4	Soil Parameters for Design	

Volume 1/2

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

3.6	CONCLUSIONS AND RECOMMENDATIONS	3-50
3.6.1	Conclusions	
3.6.2	Recommendations	

CHAPTER 4 MATERIAL SURVEY4-1

4.1	INTRODUCTION	4-1
4.1.1	General	4-1
4.1.2	Objectives of Survey	4-1
4.2	MATERIAL QUANTITIES REQUIRED FOR THE PROJECT	
4.3	CONDITIONS OF SURVEY	
4.3.1	Standards to be applied	
4.3.2	Procedures of Survey	4-4
4.3.3	Contents of Survey	
4.3.4	Quantities of Survey	
4.4	RESULTS OF SURVEY	
4.4.1	List of Material Sources	
4.4.2	Borrow Pits	4-7
4.4.3	Sand Resources for Embankment	
4.4.4	Sand Resources for Soft Soil Treatment	
4.4.5	Rock Quarries for Asphalt Concrete and Cement Concrete	
4.4.6	Fine Aggregate for Asphalt Concrete and Cement Concrete	
4.4.7	Asphalt and Cement Concrete Mixing Plants	
4.5	CONCLUSIONS AND RECOMMENDATIONS	
4.5.1	Conclusions	
4.5.2	Recommendations	4-21

CHAPTE	R 5 HIGHWAY DESIGN	5 - 1
5.1	DESIGN CONDITION OF HIGHWAY	
5.1.1	Future development plan of Dinh Vu - Cat Hai Economic Zone	
5.1.2	Design concept in Cat Hai area	5-7

CHAPTER 6 6.1 6.2 6.3 6.4 6.4.1 6.4.2 6.5 6.5.1 6.5.2 6.6 6.7

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM
FINAL REPORT

CHAPTE	R 7 HIGHWAY DESIGN	7-1
7.1	HIGHWAY DESIGN	7-1
7.1.1	Design Standard	7- 1
7.1.2	Basic Design Concept	7-1
7.1.3	Typical Cross Section	
7.1.4	Land acquisition and ROW	
7.1.5	Horizontal and Longitudinal Alignment	
7.1.6	Local Approach Road Design	7-17
7.2	PAVEMENT DESIGN	7-24
7.2.1	Design Condition	
7.2.2	Design Result	7-25
7.2.3	Design Sheet	
7.3	INTERCHANGE/INTERSECTION DESIGN	7 -4 4
7.3.1	Location of Interchange/Intersections	7-44
7.4	DRAINAGE DESIGN	
7.4.1	Road Surface Drainage	
7.4.2	Irrigation	7 - 74
7.5	SOFT SOIL TREATMENT	7-78
7.5.1	Design Criteria	7-78
7.5.2	Method of analysis	7-80
7.5.3	Result of the analysis	
7.5.4	Typical Cross Section of Soft Soil Treatment	
7.6	ROAD STRUCTURE DESIGN	7-95
7.6.1	Road Structures	
7.7	TRAFFIC SAFETY	
7.7.1	Guardrail	
7.7.2	Guard post	
7.7.3	Concrete curb	
7.7.4	Delineators	
7.7.5	Trattic signs	
7.7.6	Road marking	7-106

CHAPTE	R 8 DESIGN OF BRIDGES	
8.1	DESIGN CONDITIONS	
8.1.1	Basic Conditions	
8.1.2	Material to be used	
8.1.3	Conditions of Design Load	
8.1.4	Load Modifier Factors and Load Combinations	
8.1.5	Concrete Cover	
8.1.6	Site Condition	
8.1.7	Concept on Comparative Study for Structure Optimization	
8.2	SPAN LENGTH AND SPAN ARRANGEMENT	
8.2.1	Study on Span Length of Main Bridge	
8.2.2	Study on Span Length of Approach Bridge	
8.2.3	Study on Number on Continuous Spans of Approach Bridge	
8.2.4	Study on Span Length of Flyover Bridge	
8.2.5	Recommended Span Arrangement in Bridge Section	
8.3	Study of Main Bridge	
8.3.1	Selection of Type of Main Bridge	
8.3.2	Selection of Erection Method for Main Bridge	
8.3.3	Superstructure of Main Bridge	
8.3.4	Substructure of Main Bridge	

-8.4.5 : Volume 1/2

8.5 - : Volume 2/2

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

8.3.5	Study on Main Bridge Foundation	
8.3.6	Detailed Design of Main Bridge	
8.4	DESIGN OF APPROACH BRIDGE	
8.4.1	Study on Structure of Approach Bridge	
8.4.2	Substructure of Approach Bridge	
8.4.3	Study on Foundation	
8.4.4	Study on Type of Bridge Foundation	
8.4.5	Detailed Design of Approach Bridge	
8.5	DESIGN OF CAM RIVER BRIDGE	
8.5.1	Background	
8.5.2	General Plan and Site Conditions of Cam River Bridge	
8.5.3	Design of Superstructure	
8.5.4	Design of Substructure	
8.5.5	Precast T Girder Erection Method	
8.6	STUDY ON BRIDGE ACCESSORIES	
8.6.1	Bearings	
8.6.2	Expansion Joint	
8.6.3	Railing	

CHAPTE	R 9 ELECTRIC WIRING AND LIGHTING FACILITY	
91	GENERAL	9_1
9.1.1	Design concept for Electric Wiring.	
9.1.2	Scope of Works	
9.2	DESIGN STANDARDS	
9.3	DESIGN CONDITIONS	
9.3.1	Service conditions	
9.3.2	Design criteria	
9.4	EQUIPMENT AND MATERIAL	
9.4.1	General	
9.4.2	Equipment	
9.4.3	Material	
9.5	INSPECTION AND TEST	
9.6	DRAWINGS	
9.7	FIGURES	

CHAPTER 10 CONSTRUCTION PLANNING	
10.1 PROJECT OUTLINE	
10.1.1 Work Content	
10.1.2 Major Work Quantity	
10.1.3 Major Materials to be incorporated in the works	
10.2 TEMPORARY FACILITIES	
10.2.1 Temporary Facilities Outline	
10.2.2 Summary of Temporary Facilities	
10.2.3 Temporary Access Road	
10.2.4 Navigation Channel Safety	
10.2.5 Existing Utilities and Connection	
10.2.6 Access to and Possession of Site	
10.3 SOFT SOIL TREATMENT AND EMBANKMENT WORK	
10.3.1 Soft Soil Treatment Works	
10.3.2 Geo-textile Sheet Spreading Works	
10.4 ROAD WORKS	
10.4.1 Road Works Outline	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM	
FINAL REPORT	-

10.4.2	Sub grade, Sub -base course and Base- course Works	
10.4.3	Asphalt Treated Base Course and Pavement Works	
10.5	APPROACH BRIDGE	
10.5.1	Approach Bridge Works Outline	
10.5.2	Approach Bridge (SBS Method) Working Sequence	
10.5.3	Sub Structure Works	
10.5.4	Fabrication of PC Segments	
10.5.5	Segment Erection Work (Span By Span Method)	
10.5.6	Cast in-place Cantilever Method	
10.6	MAIN BRIDGE	
10.6.1	MAIN BRIDGE WORK OUTLINE	
10.6.2	Main Bridge Overall Working Program	
10.6.3	Main Bridge Sub-structure Construction Method	
10.6.4	Pier Head construction	
10.6.5	Main Bridge Girder Construction Method	
10.7	PROGRAM	
10.7.1	Total construction period	
10.7.2	Basis of program	
10.7.3	Construction Program	
10.7.4	Network Program	
10.7.5	Work Days Calculation	
10.8	MACHINE LIST	
10.8.1	Machinery selection study	
10.8.2	Machine list	

11.1 \$	SAFETY PLAN	
11.1.1	Introduction	
11.1.2	Objectives	
11.1.3	Safety Organization Chart and Responsibility	
11.1.4	Safety Training	
11.1.5	Safety Meeting	
11.1.6	Personal Protective Equipment	
11.1.7	Access Control on Site	
11.1.8	Safety Control and Activity	
11.1.9	Safety Inspection / Remedying Defects	
11.1.10	Penalties for Safety Violations / Failure to Comply	
11.1.11	First Aid	
11.1.12	Special Obligations and Care of the works	
11.1.13	Working under Extreme Conditions	
11.1.14	Emergency Preparedness	
11.1.15	Triggering must be done to conform to the following conditions:	
11.1.16	Motivation	
11.1.17	Effective Communication for Safety	
11.1.18	Safety Reports and Notification of Accidents	
11.2 \$	SAFETY WORKING PRACTICES	
11.2.1	Objectives	
11.2.2	Statutory Requirements on Safe Practices	
11.2.3	Preliminary Works / Typical Erection Works	
11.2.4	Excavation and Backfilling	
11.2.5	Road Works	
11.2.6	Temporary Jetty Work	
11.2.7	Bored Piling Work	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

11.2.8	Sheet Pile Work	
11.2.9	Pile Cap / Pier Column Work	
11.2.10	Construction of Bridge Superstructure (Main Bridge)	
11.2.11	Construction of Bridge Superstructure (Approach Bridge)	
11.2.12	Breach of Safety Plan	

12.1	OBJECTIVES OF ENVIRONMENTAL AND SOCIAL CONSIDERATIONS AND REQUIRED	DACTIONS
1211	Objectives of the tasks on environmental and social considerations	12-1
12.1.1	REVIEW OF EIA REPORT	12-5
12.21	Brief description on the approval of the EIA Report	12-5
12.2.2	Deficiencies found in the EIA Report and proposed actions	
12.2.2	to improve deficiencies	
12.2.3	Impacts to living and livelihood of local residents	
12.2.4	Impacts to air ambient and noise	
12.2.5	Impacts to surface water quality	
12.2.6	Impacts of solid wastes, and waste soils	
12.2.7	Impacts caused by the waste soils dumping sites	
12.2.8	Impacts to local traffic, local topography, traffic accidents, etc	
12.2.9	Impacts to ecosystem	
12.2.10	0 Restoration of construction sites and yards after completion of construction	
12.3	ENVIRONMENTAL MANAGEMENT PLAN	
12.3.1	Objectives	
12.3.2	EMP Implementing Organization	
12.3.3	Impact mitigation measures	
12.3.4	Site environmental supervision	
12.3.5	Complaint Procedure	
12.3.6	Reporting	
12.3.7	Environmental Monitoring Plan	
12.3.8	EMP implementing schedule	
12.4	OPERATION PHASE EMP	12 - 54
12.5	RAP MONITORING PLAN	
12.5.1	Objectives of RAP Monitoring Plan	
12.5.2	Various stages to be covered by the RAP Monitoring Plan	
12.5.3	Scope of RAP Monitoring Plan	
12.5.4	Reports and Reporting	
12.5.5	Data Management	
12.6	INFORMATION DISSEMINATION AND PUBLIC CONSULTATIONS	
12.7	ESTIMATED COST FOR ENVIRONMENTAL MANAGEMENT	
12.8	SUPPLEMENTARY EIA DUE TO DREDGING WORKS	

CHAPTE	R 13 HIV/AIDS PREVENTION PROGRAM	13-1
13.1	INTRODUCTION	
13.1.1	Situation in Vietnam	
13.1.2	Situation in the Project Sites	
13.2	ISSUES	
13.3	DESIGN AND IMPLEMENTATION STRATEGY	
13.4	SCOPE OF THE PROGRAM	
13.4.1	Program Title	
13.4.2	The Program Period and Schedule	
13.4.3	Supervision, Implementing Agencies, and Manager/Service Providers	

	FINAL REPORT
13.4.4	Site and Immediate Community
13.5	EXPECTED ACTIVITIES
13.5.1	Implementation Arrangement
13.5.2	Advocacy and Capacity Building
13.5.3	Information, Education, Communication (IEC)
	and Behavior Change Communication (Peer Education) 13-12
13.5.4	Provision of Health Service and Counseling
13.5.5	Monitoring and Evaluation
13.6	NOTES FOR DESIGN ADJUSTMENT AND IMPLEMENTATION
13.7	COST ESTIMATES
13.8	ANNEXES
13.8.1	Annex-1: Draft Program Design and Monitoring Framework 13-15
13.8.2	Annex-2: Tentative Plan of Operation
13.8.3	Annex-3: Sample Implementation Guide13-25
13.8.4	Annex-4: TOR for Management and Monitoring Consultants (Roads & Bridge)13-30
13.8.5	Annex-5: Sample TOR for Service Provider
13.8.6	Annex-6: Sample HIV Clause for Inclusion in Construction Contracts
13.8.7	Annex-7: Cost estimates
13.8.8	Annex-8: Abbreviations

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

CHAPTER 14 OPERATION AND MAINTENANCE PLAN	4-1
14.1 OUTLINE OF CONSTRUCTED ROAD1	.4-1
14.1.1 Legislation Related to the Route1	.4-1
14.1.2 Details of the Road Facilities1	4-2
14.1.3 Ambient Circumstances of Route1	.4-3
14.2 EXISTING STATE OF THE ROAD OPERATION AND MAINTENANCE1	4-4
14.2.1 Outline of Responsible Organization for the Operation and Maintenance	4-4
14.2.2 Recent Topics Related to Road Maintenance14	-23
14.2.3 Technical Level of Operation and Maintenance Work14	-27
14.3 FINANCIAL AND BUDGET SITUATION OF ROAD OPERATION AND MAINTENANCE	
ORGANIZATION14	-30
14.3.1 Legislation of National Budget Related to Road Operation and Maintenance	-30
14.3.2 National Budget Related to Road Operation and Maintenance14	-31
14.4 PROPOSAL OF OPERATION AND MAINTENANCE TO CONSTRUCTED ROAD14	-37
14.4.1 Proposal of Management Organization for Operation and Maintenance14	I- 37
14.4.2 Proposal of Organization and Activities in the Management Organization14	-40
14.4.3 Contract Method for Operation and Maintenance Works14	-49
14.4.4 Estimated Cost for Operation and Maintenance Activities	-4 9
CHAPTER 15 COST ESTIMATE AND PROCUREMENT	5-1

15.1 THE POLICY OF THE COST ESTIMATE FOR ROAD AND BRIDGE PORTION	
15.1.1 Application Standard and Related Laws and Regulations	
15.1.2 Construction Cost Structure	
15.1.3 Conditions of Cost Estimate	
15.2 PROJECT COST	
15.2.1 Structure of Project Cost	
15.2.2 Project Cost	
15.3 ANNUAL FUND REQUIREMENT	
15.4 PROCUREMENT RATIO FROM JAPAN	15-19
15.5 THE DETAILED EXPLANATION OF COST ESTIMATE	
15.5.1 General Items	
15.5.2 Borrow Pit for Earth Work	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

15.5.3	Quarry site for Pavement Work and Concrete Work	15-26
15.5.4	SBS Erection Method	15-29
15.5.5	Temporary expense contained in Pay-item "Concrete 50Mpa for Segment"	15-31
15.5.6	Temporary expense contained in Pay-item	
	"concrete 50Mpa for Pier Head Cast in Place"	15-55
15.5.7	Temporary expense contained in Pay-item "Erection of Segment"	15-56
15.5.8	Depreciation of Steel Sheet Pile	15-70
CHAPTEI	R 16 PROJECT EFFECTIVENESS	16-1
16.1	GENERAL	16-1
16.2	ECONOMIC ANALYSIS	16-1
16.2.1	Review of the Existing Studies	16-1
16.2.2	Preconditions of the Analysis	16-2
16.2.3	Evaluation of Project Benefits	16-7
16.2.5	Evaluation of Project Benefits	16-12
16.2.1	MONITORING OF PROJECT PERFORMANCE	16-15
16.3.1	Qualitative Benefit of the Project	16-15
16.3.2	Indicators and Targets	16-16
10.5.2		10 10
CHAPTE	R 17 ROJECT IMPLEMENTATION PLAN	17-1
171	I OAN A GREEMENT	17_1
17.1	IMPLEMENTATION STRUCTURE	17_1
17.2 17.2.1	Related Organizations	17-1 17-1
17.2.1	Impl Ementation Schedul E	17-1 17-1
17.3	Pre-construction Works	17-1 17-1
17.3.1	Construction Works	17_2
17.3.2	Implementation Program (I/P)	17.2
17.3.3	CONSTRUCTION DACK ACING DI AN	17 <u>-</u> 2
17.41	Background	17-4
17.4.1	Alternatives of Dealeging Plans	17-4
17.4.2	Componentivo Study	170
17.4.5	Comparative Study	17-8
		40.4
CHAPTE	R 18 FUTURE UPGRADE PLAN	18-1
18.1	GENERAL	18-1
18.1.1	Basic Concept	18-1
18.1.2	Expected Timing of Second Stage	18-1
18.2	FUTURE UPGRADE PLAN OF ROAD SECTION	18-2
18.2.1	Second Stage	18-2
18.3	FUTURE UPGRADE PLAN OF BRIDGE SECTION	18-3
18.3.1	Abutment	18-3
18.3.2	Approach Bridge	18-3
18.3.3	Main Bridge	18 - 4
18/	FUTURE LIPGRADE PLAN OF TAN VU INTERCHANGE	18-6

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

18.4.1

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

CHAPTE	R 19 PREPARATION OF TENDER DOCUMENTS	19-1
19.1	PREQUALIFICATION DOCUMENTS	
19.1.1	Descriptions	19-1
19.1.2	Types of Contract	
19.1.3	Prequalification Documents	19-1
19.2	BIDDING DOCUMENTS	
19.2.1	Descriptions	
19.2.2	Sample Bidding Documents Under Japanese ODA Loans	19-2
19.2.3	Bidding Documents for the Project	

List of Tables

Table 2.1.2-1	Standards System	2-1
Table 2.1.3-1	Contracted and Actual Work Volume	2-2
Table 2.1.4-1	Equipment for Survey	2-3
Table 2.1.5-1	Parameters in 364:2006 standards	2-5
Table 2.1.5-2	Observation error tolerance in TCXDVN 364:2006 standards	2-5
Table 2.1.5-3	Comparison for D/D stage	2-6
Table 2.1.5-4	Comparison for F/S stage	2-7
Table 2.1.5-5	Comparison for D/D and F/S stages	2 - 7
Table 2.1.5-6	Comparison of Elevation of F/S and D/D stages	2-9
Table 2.1.5-7	Result of quality control of IV class leveling	2-10
Table 2.1.5-8	Dimensions of secondary control point	2-11
Table 2.1.5-9	Results of quality control for Secondary control points	2-12
Table 2.1.8-1	Coordinates of Boring Pits for Road portion	2-16
Table 2.1.8-2	Coordinates of Boring Pits for Bridge portion	2 - 18
Table 2.1.9-1	F inal Results of Grade IV control points	2-21
Table 2.1.9-2	Final Result of Secondary control points	2-22
Table 2.1.9-3	Detail of Drawings of Longitudinal	2-25
Table 2.1.9-4	Detail of Drawings of Cross-section	2-25
Table 2.1.9-5	Detail of Drawings of Plan-metric	2-25
Table 2.1.9-6	Detail of Drawings of Longitudinal	2-26
Table 2.1.9-7	Detail of Drawings of Cross-section	2-26
Table 2.1.9-8	Detail of Drawings of Plan-metric	2-26
Table 2.1.9-9	Detail of Drawings of Plan-metric	2 - 27
Table 2.1.9-10	Detail of Drawings of Cross-section	2-27
Table 2.2.2-1	Scope and Quantities of Hydrological Survey in FS Stage	2-28
Table 2.2.3-1	Highest Water Levels equivalent to frequencies at Hon Dau Station	2-32
Table 2.2.3-2	Highest Water Levels equivalent to frequencies	
in E	Bridge Section (Current Status)	2-32

Table 2.2.3-3	Highest Water Levels equivalent to frequencies in Bridge Section	
(After Dinh V	u Industrial Zone completed)	2-32
Table 2.2.3-4 in 1	Highest Water Levels equivalent to frequencies Road Section Km0-Km4+200	2-33
Table 2.2.3-5	Difference of water level between investigated data	
and	high WLs equivalent to frequencies	2-33
Table 2.2.3-6	Design high water levels along the section	2-33
Table 2.2.3-7	Summary of Design Water Levels at Locations of Drainage Structures	2-34
Table 3.1-1	Contents of Geotechnical Investigation	
Table 3.2-1	Stratum Classification (Main Layer)	3-2
Table 3.3.1-1	Stratum Classification (Hai An side)	3-4
Table 3.3.1-2	Thickness of Each Layer (Hai An side)	3-5
Table 3.3.2-1	N-value of Each Layer (Hai An side)	3-7
Table 3.3.3-1	Soil Characteristics of Each Layer (Hai An side)	3-8
Table 3.3.3-2	Shear Strength of Clay for Short Term Stability (Hai An side)	
Table 3.3.3-3	Shear Strength of Clay for Long Term Stability (Hai An side)	3-11
Table 3.3.3-4	Shear Strength of Sand (Hai An side)	3-11
Table 3.3.3-5	Soil Parameters for Settlement Analysis (Hai An side)	3- 14
Table 3.3.4-1	Soil Parameters for Design (Hai An side)	3-16
Table 3.4.1-1	Stratum Classification (Bridge Area)	3-17
Table 3.4.1-2	Thickness of Each Layer (Bridge Area)	3-18
Table 3.4.2-1	N-value of Each Layer (Bridge Area)	
Table 3.4.3-1	Soil Characteristics of Each Layer (Bridge Area)	
Table 3.4.3-2	Shear Strength of Clay for Short Term Stability (Bridge Area)	
Table 3.4.3-3	Shear Strength of Sand (Bridge Area)	3-24
Table 3.4.3-4	Soil Parameters for Settlement Analysis (Bridge Area)	
Table 3.4.4-1	Results of Rock Test (Bridge Area)	
Table 3.4.4-2	Rock Parameters for Design (Bridge Area)	
Table 3.5.1-1	Stratum Classification (Cat Hai side)	
Table 3.5.1-2	Thickness of Each Layer (Cat Hai side)	3-33
Table 3.5.3-1	Soil Characteristics of Each Layer (Cat Hai side)	3-37
Table 3.5.3-2	Shear Strength of Clay for Short Term Stability (Cat Hai side)	3-39
Table 3.5.3-3	Shear Strength of Clay for Long Term Stability (Cat Hai side)	3-40
Table 3.5.3-4	Shear Strength of Sand (Cat Hai side)	3-41
Table 3.5.3-5	Soil Parameters for Settlement Analysis (Cat Hai side)	3-46
Table 3.5.4-1	Soil Parameters for Design (Cat Hai side)	
Table 3.6.1-1	Stratum Classification (Main Layer)	
Table 3.6.1-2	Soil Parameters for Design (Hai An side)	3-51
Table 3.6.1-3	Soil and Rock Parameters for Design (Bridge Area)	3 - 51
Table 3.6.1-4	Soil Parameters for Design (Cat Hai side)	
Table 3.6.2-1	Additional Geotechnical Investigation in Construction Stage	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VI	ET NAM
FINAL RE	PORT

Table 4.1.2-1	Ouantities of soil, sand and macadam required for the project
Table 4.1.2-2 (Quantities of aggregate for concrete
Table 4.3.1-1	Specification for Soil and Aggregate
Table 4.3.4-1	Quantities of Construction Material Source Survey
Table 4.4.1-1	List of Material Sources
Table 4.4.2-1	List of Material Sources
Table 4.4.2-2	Results of Laboratory Tests of Samples at Borrow Pits
Table 4.4.2-3	Transportation distance
Table 4.4.3-1	Results of Laboratory Tests of Sand Resources for Embankment
Table 4.4.3 - 2	Reserve, Capacities and Transportation Distance
Table 4.4.4-1	Reserve, Capacities and Transportation Distance
Table 4.4.4-2	Results of Laboratory Tests of Sand Resources for Soft Soil Treatment
Table 4.4.5-1	Reserve, Capacities and Transportation Distance
Table 4.4.5-2	Results of Laboratory Tests of Rock Samples
Table 4.4.6-1	Reserve, Capacities and Transportation Distance
Table 4.4.6-2	Results of Laboratory Tests of Sand Samples
Table 4.4.7-1	Location, Actuality, and Technology of Mixing Plants
Table 5.1.1-1	Area of None-Tariff Zone
Table 5.1.1-2	Area of Industrial Zone
Table 5.1.1-3	Area of Industrial Zone
Table 6.4.1-1	FS & SAPROF Target Years
Table 6.4.2-1	Dinh Vu Island Trip Generation/Attraction Variables & Values for FS & SAPROF6-3
Table 6.4.2-2	Cat Hai Island Trip Generation/Attraction Variables & Values for FS & SAPROF 6-3
Table 6.4.2-3	Cat Ba Island Trip Generation/Attraction Variables & Values for FS & SAPROF 6-3
Table 6.4.2-4	Trip Generation & Attraction Rates
Table 6.4.2-5	Comparison of FS & SAPROF Traffic Forecasts
for	Morning Peak Hour (unit: PCU)
Table 6.5.1-1	Dinh Vu Island Trip Generation/Attraction Variables for LH Project
Table 6.5.1-2	Southern Dinh Vu Island Trip Generation/Attraction Variable for LH Project
Table 6.5.1-3	Cat Hai Island Trip Generation/Attraction Variables for LH Project
Table 6.5.1-4	Cat Hai Island Trip Generation/Attraction Variables for LH Project
Table 6.5.2-1	Peak Hour Factors by Vehicle Type
Table 6.5.2-2	PCU Conversion Factors
Table 6.5.2-3	Modal Split of Industrial Employees in Dinh Vu
Table 6.5.2-4	Modal Split of Residents in Dinh Vu6-11
Table 6.5.2-5	Project Road Usage
Table 6.5.2-6	Modal Split for Cat Hai (unit: %)6-12
Table 6.5.2-7	Modal Split for Cat Ba (unit: %)
Table 6.6-1 I	Daily Traffic by Year for Project Area

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Table 6.6-2	Average Annual Growth in Daily Traffic for Project Area	6-13
Table 6.6-3	Daily Traffic by Vehicle Type per Direction for 2015	6-18
Table 6.6-4	Daily Traffic by Vehicle Type per Direction for 2020	6-18
Table 6.6-5	Daily Traffic by Vehicle Type per Direction for 2030	6-18
Table 6.7-1 f	Comparison of FS & LH Project Traffic Forecasts for Morning Peak Hour(unit: PCU)	6-21
Table 6.7-2	Comparison of SAPROF & LH Project Traffic Forecasts for Morning Peak Hour(unit: PCU)	6-21

Table 7.1.2-1	Dimensions for Design Vehicles	7-1
Table 7.1.2-2	Summary of the Geometric Design Criteria for the Highway	7-2
Table 7.1.3-1	Comparison table of Alternatives of Design of Road Cross Section	7 - 6
Table 7.1.3-2	Fill slope gradient	7-8
Table 7.1.5-1	Alignment Elements and Coordinates of IP	7-13
Table 7.1.5-2	Comparative Main Control Points for Longitudinal Design	7 -1 4
Table 7.1.5-3	Summary of additional control points for longitudinal alignment design	7-15
Table 7.1.6-1	vertical clearance for local approach road	7-17
Table 7.1.6-2	Summary of underpass box culvert	7-20
Table 7.1.6-3	Summary of frontage road	7-20
Table 7.1.6-4	Design criteria for local approach road	7-23
Table 7.2.1-1	Summary of Design Values	7 - 24
Table 7.3.1-1	Location of Intersections	7 -4 4
Table 7.3.1-2	Evaluation of Interchange/Intersection Type for Tan Vu Interchange	7-47
Table 7.3.1-3	Capacity Analysis of Tan Vu Interchange	7-48
Table 7.3.1-4	Dimension of Trailer	
Table 7.3.1-5	Intersection Treatment	7-51
Table 7.3.1-6	Minimum Curve Radius for Right Turn Lane	7-52
Table 7.3.1-7	Length of Deceleration Taper	7-52
Table 7.3.1-8	Length of Acceleration Taper	7 - 53
Table 7.3.1-9	Taper and Deceleration lane length	7-55
Table 7.3.1-10	Evaluation of Interchange/Intersection Type for No.1 Interchange	
Table 7.3.1-11	Capacity Analysis of No.1 Interchange	7 - 61
Table 7.3.1-12	Design Speed of No.1 Intersection	7-63
Table 7.3.1-13	Entry Width for No.1 Intersection	7 - 64
Table 7.3.1-14	Flare Length for No.1 Intersection	7-65
Table 7.3.1-15	Entry Angle for No.1 Intersection	7-65
Table 7.4.1-1	Existing and Anticipated Main Land Use along Tan Vu Lach Huyen Highw	ay 7-69
Table 7.4.1-2	Drainage Pipe List	7 - 71
Table 7.4.1-3	Types of Drainage Pipe Outlet	7 - 73
Table 7.4.2-1	List of Irrigation Culvert	7-75
Table 7.4.2-2	Comparison Irrigation Culverts between F/S and D/D	7-76

Table 7.5.1-1	Allowable residual settlement after construction of pavement	7-78
Table 7.5.2-1	Friction angle and Ratio of stress division depending on replacement ratio	7 - 84
Table 7.5.3-1	Sectioning for Detailed Design (Hai An side)	7-86
Table 7.5.3-2	Soil parameters for settlement calculation (Hai An side)	7 - 88
Table 7.5.3-3	Recommended Countermeasures and Applicable Condition in Detailed Desig	gn7 - 90
Table 7.5.3-4	Soft Soil Treatment Methods	7-91
Table 7.5.3-5	Selected countermeasures and result of calculation of the treatment (Hai An s	side). 7 - 92
Table 7.5.3-6	Selected countermeasures and result of calculation of the treatment (Cat Hai	side) 7-93
Table 7.6.1-1	List of Drainage/Irrigation box culvert type	7-96
Table 7.6.1-2	List of Drainage/Irrigation pipe culvert type	7-96
Table 7.6.1-3	Technical comparison for retaining wall between SAPROF and D/D	7 - 98
Table 7.7.1-1	Schedule of guardrail	7-104
Table 8 1 2-1	Specification for PC Cable	8-2
Table 8 1 3_1	Dynamic Load Allowance	
Table 8.1.3-1	Multiple Presence Factor	
Table 8 1 3-3	Temperature Ranges (degree in Celsius)	8-6
Table 8 1 3-4	Wind Velocity	8-0 8-7
Table 8 1 3-5	Correct Coefficient for Wind Zone and Elevation	
Table 8 1 3-6	Acceleration and Seismic Zone	8-8
Table 8 1 3-7	Site Coefficient	
Table 8.1.3-8	Response Modification Factor	
Table 8.1.4-1	Load Modifier Factors	8-11
Table 8.1.4-2	Load Combinations.	
Table 8.1.4-3	Minimum Concrete Cover	
Table 8.1.4-4	Design data for Approach Bridge at Boring NoBB7	
Table 8.1.4-5	Pier Height and Seawater Depth	
Table 8.1.4-6	Correction factor for pier scour	
Table 8.1.4-7	Results of Design Scour Depth	
Table 8.1.5-1	Evaluation Criteria of Alternative Study	8-22
Table 8.1.5-2	Scoring System for Evaluation of Alternative Structure	8-22
Table 8.2.1-1	Comparison Table on Span Length and Shape of Piers of Approach Bridge	
Table 8.2.2-1	Comparison on Number of Continuous Spans of Approach Bridge	
Table 8.2.3-1	Comparison in Flyover Bridge for Intersection No.2	
Table 8.2.3-2	Comparison in Flyover Bridge for Intersection No.3	8-33
Table 8.2.4-1	Recommended Span Arrangement in comparison with SAPROF Study	
Table 8.3.1-1	Comparison on Type of Main Bridge	8-37
Table 8.3.2-1	Comparison between Cast-in-place Cantilever Method	
and Precast Se	gment Method of Main Bridge	8-39
Table 8.3.4-1	Comparison Study on Angle of V-shaped Pier	8-46
Table 8.3.4-2	Comparison Study on Pier Appearance in Longitudinal Direction	8-48

Table 8.3.4-3	Summary of Section Forces* of Pier due to Creep and Shrinkage	8-55
Table 8.3.4-4	Summary of Stress* of Pier due to Creep and Shrinkage	8-56
Table 8.3.4-5	Summary of Bending Moment of Pier due to Pressurization	8-60
Table 8.3.4-6	Summary of Stress of Pier due to Pressurization	8 - 61
Table 8.3.4-7	Summary of Preliminary Cost Estimate of Pressurization Work (One Set)	8-6 1
Table 8.3.5-1	Site Conditions for Study	8-62
Table 8.3.5-2	Comparison on Foundation for Main Bridge	8 - 63
Table 8.3.5-3	Comparison on Foundation Style for Main Bridge	8-65
Table 8.3.5-4	Determined design boring No	8-70
Table 8.3.5-5	Safety Factor for Bearing Capacity and Allowable Stress in Steel Pipe	8-71
Table 8.3.5-6	Properties and Stress Limit of Steel Pipe for Steel Pipe Sheet Pile	8 - 73
Table 8.3.5-7	Design of Estimated Corrosion Thicknesses	8-73
Table 8.3.5-8	Stability Calculation model	8-74
Table 8.3.5-9	Determined design model	8-76
Table 8.3.6-1	Dimensions of Structural Members of Substructure	8-85
Table 8.3.6-2	Dimensions of Structural Members of Superstructure	8-85
Table 8.3.6-3	Properties of Concrete	8-86
Table 8.3.6-4	Properties of Prestressing Steel	8-86
Table 8.3.6-5	Properties of Reinforcing Steel	8-86
Table 8.3.6-6	Construction Sequence simulated in Structural Analysis	8-89
Table 8.3.6-7	Required Reinforcement for Shear Force in Longitudinal Direction	8-95
Table 8.3.6-8	Required Reinforcement in Transversal Direction	8-101
Table 8.3.6-9	Design Results of SPSP for Longitudinal Direction	8-110
Table 8.3.6-10	Design Results of SPSP for Transversal Direction	8-111
Table 8.3.6-11	Design Results of Top Slab for Longitudinal Direction	8-112
Table 8.3.6-12	Design Results of Top Slab for Transverse Direction	8-113
Table 8.3.6-13	Design Results connection between Top Slab and SPSP	. 8-114
Table 8.4.1-1	Comparison on Erection Method for Approach Bridge	. 8-116
Table 8.4.1-2	Comparison on Erection for Approach Bridge (A1-P75)	. 8-118
Table 8.4.1-3	Comparison on Erection for Approach Bridge (P79-A2)	8-119
Table 8.4.1-4	Concrete covering for reinforcing bars (22TCN-272-05)	8-124
Table 8.4.1-5	Approximate dimension of each member	
Table 8.4.1-6	Necessary thickness for arrangement of tendon	
Table 8.4.1-7	Thickness of Lower Slab	8-126
Table 8.4.1-8	Thickness of Web	8-127
Table 8.4.1-9	Temperature Gradient	
Table 8.4.1-10	Load Factor and Load Combination	8-129
Table 8.4.1-11	Properties of Concrete (Main Girder)	
Table 8.4.1-12	Properties of Prestressing Steel (PC Strand Cable)	
Table 8.4.1-13	Properties of Prestressing Steel (PC Bar - SBPR930/1180)	
Table 8.4.1-14	Reinforcing Bars	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Table 8.4.1-15	Spring Constants of Pile	
Table 8.4.1-16	Spring Constants of Shoe	
Table 8.4.1-17	Structure clarification of Main girder	
Table 8.4.1-18	Direct wheel load on Upper slab	
Table 8.4.1-19	Bending moment (Live load) [A]	
Table 8.4.1-20	Designed Bending moment (D+LL+IM+Ps+Cr+SH) [A]	
Table 8.4.1-21	Composite bending fiber stress [A]	
Table 8.4.1-22	Safety factor for ultimate load working state [A]	
Table 8.4.1-23	Bending moment (live load) [B]	
Table 8.4.1-24	Designed Bending moment (D+LL+IM+Ps+Cr+SH) [B]	
Table 8.4.1-25	Arrangement of reinforced bars	
Table 8.4.1-26	Stress of reinforcing bars	
Table 8.4.1-27	Safety factor under ultimate load working state [B]	
Table 8.4.1-28	Bending moment (live load) [C]	
Table 8.4.1-29	Designed bending moment (D+LL+IM+Ps+Cr+SH) [C]	
Table 8.4.1-30	Composite bending stress [C]	
Table 8.4.1-31	Safety factor under ultimate load working state [C]	
Table 8.4.1-32	Bending moment (live load) [D]	
Table 8.4.1-33	Designed bending moment (D+LL+IM+Ps+Cr+SH) [D]	
Table 8.4.1-34	Arrangement of reinforced bars	
Table 8.4.1-35	Stress of reinforcing bars	
Table 8.4.1-36	Safety factor under ultimate load working state [D]	
Table 8.4.1-37	Concrete covering for reinforcing bars (TCXDVN327: 2004)	
Table 8.4.1-38	Approximate dimension of each member	
Table 8.4.1-39	Necessary thickness for arrangement of tendon	
Table 8.4.1-40	Thickness of Lower Slab	
Table 8.4.1-41	Necessary thickness for arrangement of cable	
Table 8.4.1-42	Standard classification of traveler	
Table 8.4.1-43	Length of Pier Table	
Table 8.4.1-44	Relation between segment length and area of main girder	
Table 8.4.1-45	Temperature Gradient	
Table 8.4.1-46	Load Factor and Load Combination	
Table 8.4.1-47	Properties of Concrete (Main Girder)	
Table 8.4.1-48	Properties of Pre stressing Steel (PC Strand Cable)	
Table 8.4.1-49	Properties of Pre-stressing Steel (PC Bar - SBPR930/1180)	
Table 8.4.1-50	Properties of Pre-stressing Steel (Reinforcement Bar)	
Table 8.4.1-51	Spring Constants of Pile	
Table 8.4.1-52	Spring Constants of Shoe	
Table 8.4.1-53	Structure clarification of Main girder	
Table 8.4.1-54	Direct wheel load on Upper deck slab	
Table 8.4.1-55	Bending moment (Live load) [A]	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Table 8.4.1-56	Designed Bending moment (D+LL+IM+Ps+Cr+SH) [A]	
Table 8.4.1-57	Composite bending stress [A]	
Table 8.4.1-58	Safety factor for ultimate load working state [A]	
Table 8.4.1-59	Bending moment (live load) [B]	
Table 8.4.1-60	Designed Bending moment (D+LL+IM+Ps+Cr+SH) [B]	
Table 8.4.1-61	Arrangement of reinforced bars	
Table 8.4.1-62	Stress of reinforcing bars	
Table 8.4.1-63	Safety factor under ultimate load working state [B]	
Table 8.4.1-64	Bending moment (live load) [C]	
Table 8.4.1-65	Designed bending moment (D+LL+IM+Ps+Cr+SH) [C]	
Table 8.4.1 - 66	Composite bending stress [C]	
Table 8.4.1-67	Safety factor under ultimate load working state [C]	
Table 8.4.1-68	Bending moment (live load) [D]	
Table 8.4.1-69	Designed bending moment (D+LL+IM+Ps+Cr+SH) [D]	
Table 8.4.1-70	Arrangement of reinforced bars	
Table 8.4.1-71	Stress of reinforcing bars	
Table 8.4.2-1	Stress of external cable and reinforcing bar	
Table 8.4.3-1	Stress of external cable and reinforcing bar	
Table 8.4.3-2	Length of approach cushion slab	
Table 8.4.3-3	Comparative Study on Pier Sharpe of Approach Bridge	
Table 8.4.3-4	Width of bridge seats	
Table 8.4.3-5	Refer from JSHB	
Table 8.4.4-1	Pier Height and Seawater Depth	
Table 8.4.4-2	Foundation Study Type for Approach Bridge and Main Bridge	
Table 8.4.4-3	Pile arrangement	
Table 8.4.4-4	Connections between pile and pile cap	
Table 8.4.4-5	Comparison for pile diameter of steel pipe pile at Pier	
Table 8.4.4-6	Comparison for pile diameter of steel pipe pile at abutment	
Table 8.4.4-7	Comparison for pile diameter of cast in place pile	
Table 8.4.4-8	Load combination and load factor	
Table 8.4.4-9	The results of Study of Foundation Type	
Table 8.4.5-1	Site Condition for Study of Type-1	
Table 8.4.5-2	Comparison on Foundation Type-1 for Approach Bridge	
Table 8.4.5-3	Site Condition for Study of Type-2	
Table 8.4.5-4	Comparison on Foundation Type-2 for Approach Bridge	
Table 8.4.5-5	Site Conditions for Study of Type-4	
Table 8.4.5-6	Comparison on Foundation type-4 for Approach Bridge	
Table 8.4.6-1	Elevation and Reclamation thickness from bottom of pile cap	
Table 8.4.6-2	Dimension list of Substructure(1/2)	
Table 8.4.6-3	Dimension list of Substructure(2/2)	
Table 8.4.6-4	Grouping of Picr	

Table 8.5.2-1 - : Volume 2/2

		FINAL REPORT
Table 8.4.6-5	List of reinforcement for each type of Pier(1/2)	
Table 8.4.6-6	List of reinforcement for each type of Pier(1/2)	
Table 8.4.6-7	Properties and Stress Limit and used Steel Pipe	
Table 8.4.6-8	Range of thickness and used thickness	
Table 8.4.6-9	Design of Estimated Corrosion Thicknesses	
Table 8.4.6-10	Type of Steel pipe pile	
Table 8.4.6-11	List of Steel pipe pile(1/2)	
Table 8.4.6-12	List of Steel pipe pile(2/2)	
Table 8.4.6-13	Type of Bored pile	
Table 8.4.6-14	List of Bored pile	
Table 8.5.2-1	Hydrological Conditions of Cam River	
Table 8.5.2-2	Soil Condition at Boring No.BA-13 and BA-14	
Table 8.5.2-3	Calculation of Scour Depth	
Table 8.5.2-4	Total Scour Depth	
Table 8.6.1-1	Comparison on Type of Bearing for Main Bridge	
Table 8.6.1-2	Reaction Forces and Displacements at Bearings	
Table 8.6.1-3	Reaction force of rubber bearing	
Table 8.6.1-4	Reaction force of rubber bearing	
Table 8.6.1-5	Amount of Movement at each bearing	
Table 8.6.1-6	Amount of Movement in each support	
Table 8.6.1-7	Allowable value of rubber	
Table 8.6.1-8	Allowable value of Inner Steel Plate	
Table 8.6.1-9	Detail Dimension of Bearing	
Table 8.6.1-10	Longitudinal movement	
Table 8.6.1-11	Check result of stress	
Table 8.6.1-12	Check result of transformation performance	
Table 8.6.1-13	Check result of stress	
Table 8.6.1-14	Check result of transformation performance	
Table 8.6.1-15	The amount of the movement at earthquake	
Table 8.6.1-16	The result of the buckling stress, shearing strain and tensile stress.	
Table 8.6.1-17	Reaction force of rubber bearing	
Table 8.6.1-18	Reaction force of rubber bearing	
Table 8.6.1-19	Amount of Movement in each support	
Table 8.6.1-20	Amount of Movement in each support	
Table 8.6.1-21	Allowable value of rubber	
Table 8.6.1-22	Allowable value of Inner Steel Plate	
Table 8.6.1-23	Detail Dimension of Bearing	
Table 8.6.1-24	Longitudinal movement	
Table 8.6.1-25	Check result of stress	
Table 8.6.1-26	Check result of transformation performance	
Table 8.6.1-27	Check result of stress	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT	
Table 8.6.1-28	Check result of transformation performance
Table 8.6.1-29	The amount of the movement at carthquake
Table 8.6.1-30	The result of the buckling stress, shearing strain and tensile stress
Table 8.6.2-1	Comparison on Type of Expansion
Table 8.6.2-2	Longitudinal Movement at Ends of Main Girders
Table 8.6.2-3	Amount of the movement
Table 8.6.2 - 4	The design movement applied to the expansion joint considers
Т	he movement after the girder
Table 8.6.2-5	The amount of design movement at the abutment and pie
Table 8.6.2-6	Amount of the movement
Table 8.6.2 - 7	The design movement applied to the expansion joint considers
the movement	after the girder
Table 8.6.2-8	The amount of design movement at the abutment and pie
Table 8.6.3-1	Comparison on Type for Handrail
Table 9.1.1-1	Available Product in Vietnam
Table 9.3.2-1	Technical parameters of power receiving and distribution system
Table 10.1.2-1	Major Work Quantity
Table 10.1.3-1	Major Materials10-5
Table 10.2.2-1	Summary of Temporary Facilities10-7
Table 10.2.4-1	Navigation Safety Equipment
Table 10.3.1-1	Soft Soil Treatment and Embankment Work Procedure
Table 10.5.3-1	Approach Bridge Piling Machinery and Working Platform
Table 10.7.2-1	Frequency in Occurrence of Normal Wave Height by Direction10-42
Table 10.7.2-2	Work Limit natural conditions for marine activity
Table 11.1.8-1	Example of Table of Safety Activity
Table 12.1.1-1	Required actions for environmental considerations12-1
Table 12.1.1-2	Required actions on social considerations
Table 12.2.2-1	EIA Report Appraisal Council's major comments
	Deficiencies in the ELA Report found by the UCA D/D Study Team
and	proposed actions to improve
Table 12.2.3-1	Land use in the project-affected wards/communes
Table 12.2.3-2	Population of the wards/communes in the Project area
Table 12.2.3-3	Category of house by its built material and story
Table 12.2.3-4	Coverage of public facilities
Table 12.2.3-5	Land to be acquired for the Project (unit: m ²)
Table 12.2.3-6	Affected structures and households
Table 12.2.3-7	Expected works during construction phase (Road & Bridge Portion)12-21

Table 12.2.4-1	Background air pollution concentration (unit:µg/m3)	
Table 12.2.4-2	Predicted ambient quality (unit: $\mu g/m^3$)	
(at t	he survey point 10m from the road embankment side).	
Table 12.2.4-3	Predicted noise level at survey point A1	
Table 12.2.4-4	Predicted noise level at survey point A2	
Table 12.2.4-5	Predicted noise level at survey point A3	12-28
Table 12.2.4-6	Predicted noise level at survey point A4	12-28
Table 12.2.4-7	Summarization of predicted noise level at 4 survey points	12 - 29
Table 12.2.4-8	Typical Noise Mitigation Measures	
Table 12.2.4-9 and	Location of materials exploitation sources, transportation routes, distance to the Project site	
Table 12.2.5-1	Location of additional site for surface water quality survey	
and	its sampling time	
Table 12.2.5-2	Result of water quality survey at supplemental site	
Table 12.2.9-1	Mangrove trees found in the Project area	
Table 12.3.1-1	Policy, objective, and target of EMP	
Table 12.3.7-1	Coordination of location of sampling sites of ambient air and surface wate	er 12-51
Table 12.3.7-2	Environmental Monitoring – Pre-construction phase	
Table 12.3.7-3	Environmental Monitoring Program - Construction Phase	
Table 12.5.2-1 cove	Stages of resettlement and targeted activities ered by the RAP Monitoring Plan	12-55
Table 12.5.3-1	Indicators to be applied for the internal monitoring	
Table 12.5.3-2	Indicators to be applied for the external monitoring	12-57
Table 12.5.4-1	Proposed reporting cycle for RAP monitoring	
Table 12.7-1	Personnel Training Program	12-61
Table 12.7-2	Estimated Costs for Environmental Protection	12-62
Table 12.7-3	Estimated cost for maintenance of environmental facilities	
(dur	ring the first 2 years of operation phase)	12 - 62
Table 12.7-4	Estimated cost for socio-economic survey	
Table 12.7-5	Estimated cost for environmental sampling survey – direct expenses	12-64
Table 12.7-6	Estimated cost for environmental sampling survey – indirect expenses	12 - 65
Table 12.7-7	Estimated cost for monitoring	
Table 12.7-8	Estimated cost for public consultation and information dissemination	12 - 67
Table 12.7-9	Estimated cost for implementation of RAP	
Table 12.7-10	Total estimated cost for environmental management and monitoring	12-69
Table 13.4.2-1	Program Schedule	13-8
Table 13.4.4-1	Expected Participants in the Program	
Table 13.7-1	Summary Table for Cost Estimates	13-15

Table 14.1.1-1	Law, Regulation, Decree and Circular for the Deve	lopment
of Ta	Can Vu - Lach Huyen Highway	14-1

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Table 14.1.2-1	Outline of Tan Vu - Lach Huyen Highway14-2
Table 14.1.3-1	Ambient Surrounding Tan Vu - Lach Huyen Highway
Table 14.1.3-2	Related Organizations along Tan Vu - Lach Huyen Highway14-4
Table 14.2.1-1	Role and Duties of Representative Departments of DRVN
Table 14.2.1-2	Function of Infrastructure and Road Safety Department14-8
Table 14.2.1-3	Roles in Road Traffic Safety Activities between DRVN and Traffic Police
Table 14.2.1-4	Function of Maintenance and Management Department
Table 14.2.1-5	Expenditure of Road Operation and Maintenance in DRVN (2006 - 2010)
Table 14.2.1-6	RRMUs under DRVN14-10
Table 14.2.1-7	Organizational Profile of RRMU214-11
Table 14.2.1-8	Expenditure of Road Operation and Maintenance in RRMU2 (2006 - 2010)14-12
Table 14.2.1-9	RRMCs under RRMU2
Table 14.2.1-10	Organizational profile of RRMC (240)14-14
Table 14.2.1-11	Expenditures for Road Development and Maintenance in RRMC (240)
Table 14.2.1-12	Organizational Profile of County Unit14-16
Table 14.2.1-13	Organizational Profile of Hai Phong PDOT14-18
Table 14.2.1-14	Expenditures for Road Operations and Maintenance
in Ha	ai Phong PDOT (2006 - 2010)
Table 14.2.1-15	Organizational Profile of RRMC (Overland Road Company)14-20
Table 14.2.1-16	Expenditures for Road Development and Maintenance in RRMC
(Hai	Phong Overland road one member limited Company)
Table 14.2.2-1	Organizational Profile of RRMC (236)
Table 14.2.2-2	Expenditures for Road Development and Maintenance in RRMC (236)
Table 14.2.2-3	Outline of PBMC
Table 14.2.2-4	Monitoring Items of Each Facilities
Table 14.2.2-5	Outline of PBMC Workshop in Vietnam
Table 14.2.3-1	Function of Science, Technology, Environment
	List of Propagad Standards and Spacifications
on R	oad Operation and Maintenance by DRVN14-28
Table 14.2.3-3	Outline of Technical Co-operation Project on Road Maintenance by JICA
Table 14.3.1-1	Law, Regulation, Decree and Circular of Fiscal Resources
for R	oad Development, Operation and Maintenance
Table 14.3.1-2	List of Tax, Fee and Charge for Road Maintenance Fund14-30
Table 14.3.2-1	Analysis Results of Ten Years Plan14-31
Table 14.3.2-2	Government Budget System and Process14-32
Table 14.3.2-3	State Budget for Maintenance, Repair Work and Construction14-35
Table 14.3.2-4	Sufficiency Ratio of the Maintenance Budget14-36
Table 14.4.1-1	Typical Process and Schedule to Determine the Road Operator
Table 14.4.1-2	Options of the Assumed Management Organization14-37
Table 14.4.1-3	Comparison Table of the Maintenance Organization
Table 14.4.2-1	Size of the RRMC's Office by NORM14-42
Table 14.4.2-2	Responsible Organization to Each Maintenance Work14-43

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Table 14.4.2-3	Details of the Site Office	14-43
Table 14.4.2-4	Construction Equipment in RRMC (240) and RRMC (236)	14-44
Table 14.4.2-5	Concrete Activities of the Maintenance Works	14 - 45
Table 14.4.2-6	Needed Operation and Maintenance Technique	
for	Tan Vu - Lach Huyen Highway	14-46
Table 14.4.4-1	Outline of Each Calculation Method for Operation and Maintenance Cost.	
Table 14.4.4-2	Routine Maintenance Annual Cost	
Table 14.4.4-3	Periodic Maintenance Cost for 10 Years	14 - 51
Table 14.4.4-4	Estimate of Future Operation and Maintenance Cost	14-51
Table 14.4.4-5	Routine and Periodic Maintenance Cost Estimation by SAPROF	
Table 14.4.4-6	Routine and Periodic Maintenance Cost Estimation by This Study	14-52
Table 15.1.1-1	Application of a Japanese cost estimate standard	15-2
Table 15.1.1-2	The composition of the labour in SBS construction method	
Table 15.1.3-1	The Currency Classification and The Tax in Project Cost Item	
Table 15.2.1-1	Composition of Bill item of Project cost	15-7
Table 15.2.2-1	Verification Cost of MOC	15-9
Table 15.2.2-2	Approved Cost of DRVN	
Table 15.2.2-3	Project Cost Based On Present Exchange Rate of Road and Bridge Portion	15-12
Table 15.2.2-4	Project Cost based on M/D (19 th March 2010) of Road of each Huven Port Infrastructure Construction Project"	15 13
$T_{able} 15.2.2.5$	Comparison of a direct construction cost (without VAT)	
Table 15.2.2-5	The Dateil Factor of Change	15 15
Table 15.2.2-0	Consultant Recommondation Cost	15-15
Table 15.2.2-7	The output by year (Based on the construction plan)	15 17
Table 15.3-1	Versely Drive Lader	15 17
Table 15.3-2	A group Fride Index	15 10
Table 15.3-3	Annual Fund Requirement.	
Table 15.4-1	Summary of Procurement Ratio from Japan	
Table 15.4-2	Amount of Procurement from Japan	
Table 15.5.1-1	Summary of Temporary Facilities	
Table 15.5.1-2	Temporary Roads and Site Compound	
Table 15.5.1-3	Water Cut-off Expense for Road Construction	
Table 15.5.2-1	The procurement place of filling material	15 - 24
Table 15.5.2-2	Required quantity of filling and procurement distribution	
Table 15.5.3-1	Required quantity of sand and a crushed stone Existing Sand Stockpiles	15-26
Table 15.5.3-2	Summary of Distribution of Sand Pit and Quarry Site	
Table 15.5.3-3	Existing Sand Stockpiles	
Table 15.5.3-4	Existing Quarry Site	15-29
Table 15.5.4-1	The SBS equipment included in pay-items	15-29
Table 15.5.5-1	Quantity of Rail Foundation of Gantry Crane (80t)	15-31
Table 15.5.5-2	Quantity of Rail Foundation of Gantry Crane (7.5t)	15-31
Table 15.5.5-3	Quantity of Shed Rail Foundation	

Table 15.5.5-4	Quantity of Reinforcement assembly stand Foundation
Table 15.5.5-5	Quantity of Short Line Equipment Foundation
Table 15.5.5-6	Quantity of Segment Stockyard Foundation
Table 15.5.5-7	Japan Norm of Rail Equipment installation and Removal (Per 100m)15-36
Table 15.5.5-8	Japan Norm of Gantry crane (80t) assembly and demolition
Table 15.5.5-9	Concrete foundation (per one crane)
Table 15.5.5-10	Japan norm of Tower crane (180t-m) installation and demolition15-38
Table 15.5.5-11	Product Cost of No.1, No.2 Erection Girder (Quotation)15-39
Table 15.5.5-12	Japan norm of Movable shed assemble and demolition
Table 15.5.5-13	Japan Norm of Support Installation and Removal (per 10m)15-41
Table 15.5.5-14	Japan Norm of Reinforcement assembly stand ground assembly
Table 15.5.5-15	Reinforcement assembly stand installation Per 10t
Table 15.5.5-16	Reinforcement assembly stand removal Per 10t15-43
Table 15.5.5-17	Short line form installation and removal Per 1.0t15-43
Table 15.5.5-18	Quantity of Side form main part15-44
Table 15.5.5-19	Quantity of Side form support beam15-44
Table 15.5.5-20	Quantity of Frame of Side form15-45
Table 15.5.5-21	Quantity of Bottom form (for L= 3.000 m)15-45
Table 15.5.5-22	Quantity of Bottom frame support beam (for L=3.000m)15-45
Table 15.5.5-23	Quantity of Frame of bottom form (for L=3.0m)15-46
Table 15.5.5-24	Quantity of Bottom form pillar (replacement type)15-46
Table 15.5.5-25	Quantity of Bottom form rail material15-46
Table 15.5.5-26	Type of Inner Form15-47
Table 15.5.5-27	Quantity of Inner Form Type-115-48
Table 15.5.5-28	Quantity of Inner Form Type-215-48
Table 15.5.5-29	Quantity of Inner Form Type-315-49
Table 15.5.5-30	Quantity of Inner Form Type-415-49
Table 15.5.5-31	Quantity of Inner Form Type-515-50
Table 15.5.5-32	Quantity of Inner form support beam15-50
Table 15.5.5-33	Quantity of Inner form move cart15-51
Table 15.5.5-34	Quantity of Inner form rail material15-51
Table 15.5.5-35	Quantity of Lateral beam parts of Inner form15-52
Table 15.5.5-36	Quantity of Edge form main part15-52
Table 15.5.5-37	Quantity of Frame of edge form
Table 15.5.5-38	List of Hydraulic-machines equipment hire for beam separation
Table 15.5.5-39	Reference norm of Standard Segment production
Table 15.5.5-40	Manufacture yard power supply equipment15-54
Table 15.5.6-1	Japan Norm of Bracket support and scaffold15-55
Table 15.5.6-2	Japan Norm of Segment support on the bracket15-56
Table 15.5.7-1	Japan Norm of Steel Plate Foundation15-56
Table 15.5.7-2	Quantity of Bent Foundation

Table 15.5.7-3	Japan Norm of Driven and pulling cost of H beam pile
Table 15.5.7-4	Japan Norm of foundation installation and removal15-59
Table 15.5.7-5	Japan Norm of Installation and removal of bent equipment15-60
Table 15.5.7-6	Capacity of 150t Crawler Crane
Table 15.5.5-7	Japan Norm of Rail Equipment installation and Removal (Per 100m)15-61
Table 15.5.7-8	Japan Norm of Field preassembling of crection girder15-63
Table 15.5.7-9	Weight of main girder15-63
Table 15.5.7-10	Attached structure
Table 15.5.7-11	Product Cost of No.1, No.2 Erection Girder (Quotation)
Table 15.5.7-12	Product Cost of No.3 Erection Girder (Quotation)15-64
Table 15.5.7-13	Japan Norm of Movement and installation of a SBS girder (per one time) 15-65
Table 15.5.7-14	Compound hire of a gantry crane with a leg width of 30 m
Table 15.5.7-15	Japan Norm of Segment connection15-68
Table 15.5.7-16	Japan Norm of PC steel bar fixation15-68
Table 15.5.7-17	Japan Norm of PC steel bar strain15-69
Table 15.5.8-1	Diversion of The Steel Sheet Pile
Table 15.5.8-2	Diversion Times and Quantity of Steel Sheet Pile15-71
Table 15.5.8-3	Diversion Times of Other Material15-71
Table 16.2.1-1	Comparison of Economic Analysis of the Past Studies and This Study16-1
Table 16.2.2-1	Summary of Project Cases for Evaluation16-3
Table 16.2.2-2	Conditions of Each Section16-4
Table 16.2.2-3	Traffic Volume Used for Benefit Calculation
Table 16.2.2-4	Demand of Barge Transport16-6
Table 16.2.3-1	Benefit Items Considered in This Study16-8
Table 16.2.3-2	Unit Value of VOC16-8
Table 16.2.3-3	Unit Value of Vessel Operating Cost16-9
Table 16.2.3-4	Estimation of Freight Opportunity Cost
Table 16.2.3-5	Unit Value of TTC
Table 16.2.3-6	Summary of Project Benefit
Table 16.2.4-2	Annual Requirement of Economic Project Cost (First Stage)16-12
Table 16.2.4-3	Result of Economic Evaluation
Table 16.2.4-4	Summary of Sensitivity Analysis
Table 16.2.4-5	Result of Lower Container Scenario
Table 16.3.2-1	Proposed Operation Indicators and Benchmarks16-16
Table 17.3.3-1	I mplementation Milestone
Table 17.4.2-1	Alternatives in Procurement Plan and Construction Cost
Table 17.4.3-1	Evaluation Criteria of Alternative Study and Maximum Scores
Table 17.4.3-2	Comparison of Alternatives in Construction Packaging Plan

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

 Table 18.1.1-1
 Outline of Stage Construction
 18-1

List of Figures

Figure 1.1.3-1	Study Arca	1-3
Figure 1.2.2-1	Overall Study Schedule (Original)	1 - 6
Figure 1.2.2-2	Overall Study Schedule (Actual)	1-6
Figure 1.2.2-3 for L	Work Schedule of Design Study of Road/Bridge Portion Lach Huyen Port Infrastructure Construction (Original)	1-7
Figure 2.1.5-1	Specifications for a Grade IV control point	2-4
Figure 3.1-1 C	Geotechnical Investigation Area	3-1
Figure 3.3.1-1	Soil Profile of Approach Road Area in Hai An side (1/2)	3-5
Figure 3.3.1-2	Soil Profile of Approach Road Area in Hai An side (2/2)	3-6
Figure 3.3.3-1	Chart of Soil Parameters (Hai An side)	3-9
Figure 3.3.3-2	Determination Method of C and ϕ using $(\sigma_{1f}+\sigma_3)/2$ and $(\sigma_{1f}-\sigma_3)$	3-10
Figure 3.3.3-3	Shear Strength of Clay for Short Term Stability (Hai An side)	3-12
Figure 3.3.3-4	Shear Strength of Clay for Long Term Stability (Hai An side)	3-13
Figure 3.3.3-5	Relationship between Cc and W_{L} (Hai An side)	3-14
Figure 3.3.3-6	e~logP Curve and logP~logCv Curve (Hai An side)	3-15
Figure 3.4.1-1	Soil Profile of Bridge Area (1/2)	3-19
Figure 3.4.1-2	Soil Profile of Bridge Area (2/2)	3-20
Figure 3.4.3-1	Chart of Soil Parameters (Bridge Area)	3-23
Figure 3.4.3-2	Shear Strength of Clay for Short Term Stability (Bridge Area)	3-25
Figure 3.4.3-3	Relationship between Cc and W_{L} (Bridge Area)	3-26
Figure 3.4.3-4	e~logP Curve and logP~logCv Curve (Bridge Area)-1/2	3 - 27
Figure 3.4.3-5	c~logP Curve and logP~logCv Curve (Bridge Area)-2/2	3 - 28
Figure 3.4.4-1	Relationship between Unconfined Strength and Bulk Density (Bridge Area)	3-29
Figure 3.4.4-2	Relationship between Unconfined Strength and Absorption (Bridge Area)	3-30
Figure 3.5.1-1	Soil Profile of Approach Road Area in Cat Hai side (1/2)	3-34
Figure 3.5.1-2	Soil Profile of Approach Road Area in Cat Hai side (2/2)	3-35
Figure 3.5.2-1	N-value of Each Layer (Cat Hai side)	3-36
Figure 3.5.3-1	Chart of Soil Parameters (Cat Hai side)	3-38
Figure 3.5.3-2	Determination Method of C and ϕ using $(\sigma_{1f}+\sigma_3)/2$ and $(\sigma_{1f}-\sigma_3)$	
Figure 3.5.3-3	Shear Strength of Clay for Short Term Stability (Cat Hai side)-1/2	3-42
Figure 3.5.3 - 4	Shear Strength of Clay for Short Term Stability (Cat Hai side)-2/2	3 - 43
Figure 3.5.3-5	Shear Strength of Clay for Long Term Stability (Cat Hai side)-1/2	3 -4 4
Figure 3.5.3-6	Shear Strength of Clay for Long Term Stability (Cat Hai side)-2/2	3-45
Figure 3.5.3-7	Relationship between Cc and W_{L} (Cat Hai side)	3-46
Figure 3.5.3-8	e~logP Curve and logP~logCv Curve (Cat Hai side)-1/2	3-47

THE DE	FINAL REPORT
Figure 3.5.3-9	e~logP Curve and logP~logCv Curve (Cat Hai side)-2/2
Figure 4.4.2-1	Location of Borrow Pits
Figure 4.4.3-1	Location of Sand Resources for Embankment
Figure 4.4.5-1	Location of Rock Quarries
Figure 5.1.1-1	Plan of DVIZ
Figure 5.1.1-2	Plan of NDVIZ
Figure 5.1.1-3	Photo at Zonc-2 (Land development work not started yet)
Figure 5.1.1-4	Crossing Roads
Figure 5.1.1-5	Cross Section of IZ Internal Roads
Figure 6.5.2-1	Future Road Network in 2030
Figure 6.6-1	Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2015
Figure 6.6-2	Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2020
Figure 6.6-3	Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2030
Figure 6.6-4	Peak Hour & Daily PCU & Vehicle Trips for Project Road for 2035
Figure 6.6-5	Peak Hour Turning Movement Traffic Flows at Tan Vu Interchange (2015-2030)6-19
Figure 6.6-6	Peak Hour Turning Movement Traffic Flows at Intersection#1 (2015-2030)
Figure 7.1.2-1	Cross Section (Phase-1)
Figure 7.1.2-2	Cross Section (Phase-2)
Figure 7.1.2-3	Concept of lane shift
Figure 7.1.2-4	Details of transition section
Figure 7.1.3-1	Alternatives for comparison
Figure 7.1.3-2	Slope protection at fish pond section
Figure 7.1.3-3	Slope protection at Residential area and salt field in Cat Hai
Figure 7.1.3-4	Slope protection at sea and dike relocation section
Figure 7.1.3-6	Typical cross section
Figure 7.1.4-1	Concept for land acquisition area and ROW7-11
Figure 7.1.5-1	Plan and Photo at Thon Trung Village, Dong Bai Commune7-12
Figure 7.1.6-1	General Layout of Underpass Box Culvert (4.0x3.2)
Figure 7.1.6-2	Typical Cross Section of Frontage Road7-18
Figure 7.1.6-3	Photos in Hai An district
Figure 7.1.6-4	Plan and photo at Km10+4147-19
Figure 7.1.6-5	Plan and photo at Km13+6007-19
Figure 7.1.6-6	Pavement structure of frontage road7-19
Figure 7.1.6-7	Plan and Photo of Intersection at Km11+520
Figure 7.1.6-8	Plan and Photos of Intersection and Relocated Road at Km15+5767-22
Figure 7.2-1	Pavement Structure
Figure 7.3.1-2	Alternative Interchange/Intersection types

Figure 7.3.1-3	Traffic Demand Forecast for Tan Vu IC in 20207-51
Figure 7.3.1-4	Summary of Right Turn Ramp Design
Figure 7.3.1-5	Length of Left Turn Storage Lane
Figure 7.3.1-6	Storage Lane and Deceleration lane for Left Turn Lane
Figure 7.3.1-7	Radius of Each Turning Path
Figure 7.3.1-8	Plan and Typical Cross Section
Figure 7.3.1-9	Road Sign Plan
Figure 7.3.1-10	No.1 Intersection Proposed in Dinh Vu - Cat Hai Economic Zone Master Plan 7-59
Figure 7.3.1-11	Alternative Intersection types
Figure 7.3.1-12	Geometric Elements
Figure 7.3.1-13	Plan of Local Intersection at Km11+520
Figure 7.3.1-14	Plan of Local Intersection at Km11+576
Figure 7.4.1-1	Envisioned Status of Hai An Section (Phase-1 construction is completed)
Figure 7.4.1-2	Envisioned Status of Hai An Section (Future stage)
Figure 7.4.1-3	Typical Drainage System
Figure 7.4.1-4	Side Ditch
Figure 7.4.1-5	Median Ditch
Figure 7.4.1-6	Drainage Pipe (D=0.75)
Figure 7.4.1-7	Catch Basin Type A1
Figure 7.4.1-8	Catch Basin Type B1
Figure 7.4.1-9	Outlet Type A, B, C7-73
Figure 7.4.2-1	Navigation Area at Km15+100
Figure 7.4.2-2	Photo of Existing Channel (From Km 13+400 to west)
Figure 7.4.2 - 3	Details of relocation channel
Figure 7.5.1-1	Traffic Load Calculation Diagram
Figure 7.5.1-2	Traffic Load Value and Distribution
Figure 7.5.2-1	Exemplary Analysis of Excess Pore Pressure and Settlement
Figure 7.5.2-2	Arrangement and design concept of SCP
Figure 7.6.1-1	Construction procedure of box culvert
Figure 7.6.1-2	Size of Drainage/Irrigation box culvert
Figure 7.6.1-3	Size of Drainage/Irrigation pipe culvert
Figure 7.6.1 - 4	Minimum concrete cover for box culvert
Figure 7.6.1-5	Cost comparison for retaining wall between SAPROF and D/D7-99
Figure 7.6.1-6	Details of Concrete Sheet Pile Wall
Figure 7.6.1-7	Details of piled slab at Cam River Bridge
Figure 7.6.1-8	Details of piled slab at Approach Bridge
Figure 7.7.1-1	Installation of guardrail (cross section)7-104
Figure 7.7.1-2	Guardrail layout7-104
Figure 7.7.2-1	Details of guard post7-105
Figure 7.7.3-1	Details of concrete curb7-105
Figure 7.7.4-1	Details of delineator

	FINAL REPORT
Figure 7.7.5-1 Details of traffic signs	7-106
Figure 8.1.1-1 Width Composition of Superstructure	
Figure 8.1.3-1 Conditions of Live Load	
Figure 8.1.3-2 Response Spectrum	
Figure 8.1.6-1 Soil Profile	
Figure 8.1.6-2 Definition sketch for scour components for a complex pier	
Figure 8.1.6-3 Suspended pier scour ratio.	
Figure 8.1.6-4 Common pier shapes	
Figure 8.1.6-5 Pile cap equivalent width	
Figure 8.1.6-6 Pile spacing factor	
Figure 8.1.6-7 Adjustment factor for number of aligned rows	
Figure 8.2.1-1 Navigation Clearance	
Figure 8.2.1-2 Span Length determined from Navigation Clearance	
Figure 8.2.3-1 Location of Interchange and Intersections	
Figure 8.2.3-2 Typical Cross Section of Dinh Vu Ring Road	
Figure 8.3.1-1 Cross Section of Main Bridge at Pier (Second Stage)	
Figure 8.3.2-1 Erection of Main Girder with Form traveler	
Figure 8.3.3-1 Cross Section for Main Girder of the Initial Stage	
Figure 8.3.3-2 Cross Section for Main Girder for the Second Stage	
Figure 8.3.3-3 Cantilever Segments and Pier Head	
Figure 8.3.3-4 Cast-in-place Segments on False Work	
Figure 8.3.3-5 Arrangement of Longitudinal Cantilever Tendons	
Figure 8.3.4-1 Skelton of V-shaped Piers	
Figure 8.3.4-2 Projected Pier (2.650m) above Mean High Water Level	
and Mean Low Water Level	
Figure 8.3.4-3 Projected Pier (1.050m) above High Water Level and Mean Low Wate	r Level8-51
Figure 8.3.4-4 Corner Arrangement of V-shaped Wall Pier	
Figure 8.3.4-5 Vertical Slit for Aesthetical Aspect	
Figure 8.3.4-6 Span Arrangement and Profile of Main Bridge	
Figure 8.3.4-7 Deformation and Moment due to Creep and Shrinkage	
Figure 8.3.4-8 Longitudinal Displacement* due to Creep and Shrinkage	
Figure 8.3.4-9 Shear Force* due to Creep and Shrinkage	
Figure 8.3.4-10 Bending Moment* due to Creep and Shrinkage	
Figure 8.3.4-11 Stress* of Top Fiber due to Creep and Shrinkage	
Figure 8.3.4-12 Stress* of Bottom Fiber due to Creep and Shrinkage	
Figure 8.3.4-13 Deformation and Moment due to Pressurization (Jacking Force)	
Figure 8.3.4-14 Procedures of Pressurization Method by Jacking Force	
Figure 8.3.4-15 Structure of Pressurization by Jacks	
Figure 8.3.4-16 Longitudinal Displacement due to Pressurization	
Figure 8.3.5-1 Conceptual View of Steel Sheet Pile Foundation	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM

Figure 8.3.5-2 Design Flow for basic design of steel pipe sheet pile foundation
Figure 8.3.5-3 The procedure for construction method of steel pipe sheet pile foundations (1)8-68
Figure 8.3.5-4 The procedure for construction method of steel pipe sheet pile foundations (2)8-69
Figure 8.3.5-5 The procedure for construction method of steel pipe sheet pile foundation
Figure 8.3.5-6 P76 Foundation with Boring No BP- 77 & BP-78
Figure 8.3.5-7 Region where the skin friction force at the inter peripheral surface
of the well portion of the foundation should be taken into account
Figure 8.3.5-8 Calculation Model of Steel Pipe Sheet Pile Foundation
Figure 8.3.5-9 Slippage displacement of Joint Accompanying Shear Deformation
of Imaginary Well
Figure 8.3.5-10 Steel pile sheet pile Foundation
Figure 8.3.5-11 Calculation Model of Imaginary well
Figure 8.3.5-12 Shape of SPSP Foundation
Figure 8.3.5-13 Combined stress for steel pipe sheet pile foundation
Figure 8.3.5-14 Section Calculation Model of Top Slab
Figure 8.3.6-1 Profile of Main Bridge
Figure 8.3.6-2 Arrangement of PC Tendons
Figure 8.3.6-3 Model for Structural Analysis
Figure 8.3.6-4 Models corresponding to Construction Sequence (1)
Figure 8.3.6-5 Models corresponding to Construction Sequence (2)
Figure 8.3.6-6 Models corresponding to Construction Sequence (3)
Figure 8.3.6-7 Sectional Forces
Figure 8.3.6-8 Fiber Stress
Figure 8.3.6-9 Sections for Transversal Analysis
Figure 8.3.6-10 Model for Transversal Analysis
Figure 8.3.6-11 Design Truck and Lane Loading for Transversal Analysis
Figure 8.3.6-12 Stress in Service Limit State (LL1L)
Figure 8.3.6-13 Bending Moment Diagram in Strength Limit State
Figure 8.3.6-14 Arrangement of PC Tendons
Figure 8.3.6-15 Sectional Forces in Service Limit State
Figure 8.3.6-16 Sectional Forces in Strength Limit State
Figure 8.3.6-17 Sectional Forces in Extreme Event Limit State
Figure 8.3.6-18 Fiber Stress (Service Limit State)
Figure 8.3.6-19 Fiber Stress (Strength Limit State)
Figure 8.3.6-20 Fiber Stress (Extreme Event Limit State)
Figure 8.3.6-21 Reinforcement of V-shaped Wall
Figure 8.3.6-22 Relationships between resistance capacity

Figure 8.3.6-24 Relationships between resistance capacity

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET	' NAM
FINAL REP	ORT

and sectional force in Pier Members	
Figure 8.3.6-25 Major Dimension and Materials used for SPSP Foundation for P76~P78	3 8-108
Figure 8.3.6-26 Plan of Construction Step	
Figure 8.3.6-27 Stress Diagram of SPSP for P76	
Figure 8.3.6-28 Calculation results of Steel Pipe Sheet Pile for P7	8-111
Figure 8.3.6-29 Detail of connection between Top Slab and SPSP	8-114
Figure 8.4.1-1 Analysis Model	
Figure 8.4.1-2 Process and the schedule of the structure analysis	
Figure 8.4.1-3 Arrangement of External PC Tendon	
Figure 8.4.1-4 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-5 Stress of Bottom Fiber (Dead Load)	
Figure 8.4.1-6 Stress of Top Fiber (Service Limit State)	
Figure 8.4.1-7 Stress of Bottom Fiber (Service Limit State)	
Figure 8.4.1-8 Bending Moment of Main Girder (Strength Limit State)	
Figure 8.4.1-9 Diagonal tensile stress	
Figure 8.4.1-10 Maximum Shear stress	
Figure 8.4.1-11 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-12 Stress of Bottom Fiber (Dead Load)	
Figure 8.4.1-13 Stress of Top Fiber (Service Limit State)	
Figure 8.4.1-14 Stress of Bottom Fiber (Service Limit State)	
Figure 8.4.1-15 Bending Moment of Main Girder (Strength Limit State)	
Figure 8.4.1-16 Diagonal tensile stress	
Figure 8.4.1-17 Maximum Shear stress	
Figure 8.4.1-18 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-19 Stress of Bottom Fiber (Dead Load)	
Figure 8.4.1-20 Stress of Top Fiber (Service Limit State)	
Figure 8.4.1-21 Stress of Bottom Fiber (Service Limit State)	
Figure 8.4.1-22 Bending Moment of Main Girder (Strength Limit State)	
Figure 8.4.1-23 Diagonal tensile stress	
Figure 8.4.1-24 Maximum Shear stress	
Figure 8.4.1-25 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-26 Stress of Bottom Fiber (Dead Load)	
Figure 8.4.1-27 Stress of Top Fiber (Service Limit State)	
Figure 8.4.1-28 Stress of Bottom Fiber (Service Limit State)	
Figure 8.4.1-29 Bending Moment of Main Girder (Strength Limit State)	
Figure 8.4.1-30 Diagonal tensile stress	
Figure 8.4.1-31 Maximum Shear stress	
Figure 8.4.1-32 General Section for Arrangement of Transversal PC Tendon (ctc500)	
Figure 8.4.1-33 Arrangement of Transversal PC Tendon	
(intermediate support cross section) ctc500mm	
Figure 8.4.1-34 Necessary thickness for anchorage of PC Tendon	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN	VIET NAM
FINAL F	REPORT

Figure 8.4.1-35 Segment length-section area	
Figure 8.4.1-36 Segment arrangement	
Figure 8.4.1-37 Analysis Model	
Figure 8.4.1-38 Process and the schedule of the structure analysis	
Figure 8.4.1-39 Arrangement of PC Tendon	
Figure 8.4.1-40 Bending Moment in all Dead load state	
Figure 8.4.1-41 Bending Moment in Service load state	
Figure 8.4.1-42 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-43 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-44 Stress of Bottom Fiber (Dead Load)	
Figure 8.4.1-45 Stress of Top Fiber (Service Limit State)	
Figure 8.4.1-46 Stress of Bottom Fiber (Service Limit State)	
Figure 8.4.1-47 Bending Moment of Main Girder (Strength Limit State)	
Figure 8.4.1-48 Diagonal tensile stress	
Figure 8.4.1-49 Maximum Shear stress	
Figure 8.4.1-50 Bending Moment caused by Dead Load	
Figure 8.4.1-51 Bending Moment in Service	
Figure 8.4.1-52 Stress of Top Fiber (Dead Load)	
Figure 8.4.1-53 Stress of Bottom Fiber (Dead Load)	
Figure 8.4.1-54 Stress of Top Fiber (Service Limit State)	
Figure 8.4.1-55 Stress of Bottom Fiber (Service Limit State)	
Figure 8.4.1-56 Bending Moment of Main Girder (Strength Limit State)	
Figure 8.4.1-57 Diagonal tensile stress	
Figure 8.4.1-58 Maximum Shear stress	
Figure 8.4.1-59 General Section for Arrangement of Transversal PC Tendon (ctc550)	
Figure 8.4.1-60 Arrangement of Transversal PC Tendon	
(intermediate support cross section) ctc500mm	
Figure 8.4.2-1 Flowchart of Designing Cross beam	
Figure 8.4.2-2 End cross beam A1 in FEM mesh	
Figure 8.4.2-3 Restraint Condition of End cross beam A1	
Figure 8.4.2-4 Loading Condition in FEM [A1]	
Figure 8.4.2-5 Cross beam P1 [Model-1] in FEM mesh	
Figure 8.4.2-6 Restraint Condition of P1 [Model-1]	
Figure 8.4.2-7 Load Condition in P1 [Model-1]	
Figure 8.4.2-8 Cross beam P1 [Model-2] in FEM mesh	
Figure 8.4.2-9 Restraint Condition of P1 [Model-2]	
Figure 8.4.2-10 Load Condition in FEM [A1]	
Figure 8.4.3-1 Flowchart of Designing Deviator	
Figure 8.4.3-2 Number of deviators	
Figure 8.4.3-3 Deviator Examination in FEM mesh	
Figure 8.4.3-4 Analysis model for calculation of Stress on longitudinal	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT		
and transverse direction		
Figure 8.4.3-5 The component force of external cable in FEM analysis		
Figure 8.4.3-6 The study result and the amount of reinforcing bar		
of deviator component force		
Figure 8.4.3-7 FEM mesh for examination of bottom slab		
Figure 8.4.3-8 Result of FEM analysis in Lower side of bottom slab		
Figure 8.4.3-9 FEM mesh for examination of bottom slab		
Figure 8.4.3-10 Result of FEM analysis in Upper side of bottom slab		
Figure 8.4.3-11 FEM mesh for examination of deviator		
Figure 8.4.3-12 Result of FEM analysis in Upper side of deviator		
Figure 8.4.3-13 Joint Filler		
Figure 8.4.3-14 Sectional view of Beam		
Figure 8.4.3-15 Arrangement of reinforcement at beam		
Figure 8.4.4-1 Plan Layout for Approach Bridge and Main Bridge		
Figure 8.4.4-2 Plan Layout for Approach Bridge and Main Bridge		
Figure 8.4.4-3 Variations for Pile Cap Elevation		
Figure 8.4.4-4Design of pile foundations for downdrag		
Figure 8.4.4-5Standard Sections of a SL piles		
Figure 8.4.4-6 Downdrag load and the range of SL pile		
Figure 8.4.4-7 Grouping for Foundation Study		
Figure 8.4.5-1 Pile Cap Elevation of Variations 2		
Figure 8.4.5-2 Pile Cap Elevation of Variation 2 or 3		
Figure 8.4.5-3Pile Cap Elevation of Variation 4		
Figure 8.4.5-4 Construction Plan of Alternative-4		
Figure 8.4.6-1 Blockout at A1 abutment		
Figure 8.4.6-2 Blockout at A2 abutment		
Figure 8.4.6-3 Arrangement of Reinforcement at Abutment		
Figure 8.4.6-4 Pile arrangement for Pier		
Figure 8.4.6-5 Pile arrangement for Abutment		
Figure 8.4.6-6 Steel Pipe Pile D=800mm (A2 abutment)		
Figure 8.4.6-7 Steel Pipe Pile D=1100mm (P8,P9,P53)		
Figure 8.4.6-8 Pile Arrangement		
Figure 8.5.1-1 Cam River Box Culvert		
Figure 8.5.2-1 Topographic Profile of Cam River (Km 1+700)		
Figure 8.5.2-2 Soil Profile adjacent to Cam River (Km 1+700)		
Figure 8.5.2-3 General view of Cam River Bridge		
Figure 8.5.3-1 Girder Arrangement		
Figure 8.5.3-2 Arrangement of PC Tendons		
Figure 8.5.3-3 Reinforcement for Web of Girders		
Figure 8.5.3-4 Reinforcement for Flange of Girders		

THE DETA	FINA	L REPORT
Figure 8.5.4-1 D	imensions of Abutment	
Figure 8.5.4-2 D	imensions of Pier	
Figure 8.5.4-3 R	einforcement of Pier	
Figure 8.5.4-4 Re	einforcement of Abutment	
Figure 8.6.1-1 Lo	ocation for installation of Bearings in Main Bridge	
Figure 8.6.1-2 D	imensions of Pot Bearings	
Figure 8.6.1-3 Fl	ow of Bearing Design	
Figure 8.6.1-4 D	imension of End support bearing	
Figure 8.6.1-5 D	imension of middle support bearing	
Figure 8.6.1-6 D	imension of middle support bearing	
Figure 8.6.2-1 Ex	xpansion Joint between Main Bridge and Approach Bridge	
Figure 8.6.2-2 M	ovement of girder end	
Figure 8.6.2-3 M	ovement of girder end	
Figure 8.6.2-4 Ez	xpansion Joint on Approach Bridge	
Figure 8.6.3-1 E ₂	xpansion Joint on Approach Bridge	
Figure 9.7-1 T	YPICAL LIGHTING POLE & HIGH MAST	9-13
Figure 9.7-2 Ll	GHTING POLE MATERIAL	
Figure 9.7-3 ST	FREET LUMINAIRE	
Figure 9.7-4 Ll	GHTING TRANSFORMER STATION	
Figure 9.7-5 N	AVIGATION LIGHT	
Figure 9.7-6 17	7M HIGH MAST	
Figure 9.7-7 25	5M HIGH MAST	9-19
Figure 10.2.3-1	Plan for Entrance Access Road and Site compound No1 and No2	
Figure 10.2.3-2	Plan of Access Road Bridge km 1.7 (near Cam River)	
Figure 10.2.3-3	Plan View of Site Access Roads	
Figure 10.2.3-4	Typical Cross Sections of Site Access Roads	
Figure 10.2.3-5	Dredging Area and Dumping Area	
Figure 10.2.3-6	Temporary Jetty	
Figure 10.4.1-1	Road Work Procedure	
Figure 10.5.2-1	Approach Bridge (SBS Method) Working Sequence	
Figure 10.5.3-1	Construction sequence for Approach Bridge sub structure	
Figure 10.5.4-1	PC segment fabrication sequence	
Figure 10.5.4-2	Segment Fabrication Cycle Time	
Figure 10.5.4-3	Geometry control outline	
Figure 10.5.4-4	Segment fabrication and installation program showing stockpile number.	
Figure 10.5.5-1	Segment Erection Work Cycle Time	
Figure 10.5.6-1	Pier Head Temporary Shoe Detail	
Figure 10.5.6-2	A2-P79 Cantilever Method Working Program	
Figure 10.6.1-1	Construction sequence	

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Figure 10.6.2-1	Main Bridge Overall Program
Figure 10.6.2-2	Main Bridge Foundation Work Program10-33
Figure 10.6.2-3	Main Bridge Pile Cap Work Program10-33
Figure 10.6.2-4	Main Bridge Pier Construction Program10-34
Figure 10.6.2-5	Main Bridge Pier Head Construction Program
Figure 10.6.2-6	Main Bridge Girder Construction Program10-34
Figure 10.6.4-1	Working sequence of Pier head construction
Figure 10.6.5-1	Construction sequence of Main bridge girder
Figure 10.6.5-2	Main Girder Construction Cycle Time10-39
Figure 10.7.4-1	Network Program
Figure 10.7.5-1	Work Days Calculation for Pier 30 Substructure Works10-50
Figure 10.7.5-2	Work Days Calculation Sheet for Pier 75
Figure 10.7.5-3	Time Calculation for Pier 77 Works
Figure 10.7.5-4	Time Calculation for Road Pavement Works
Figure 11.1.3-1	Example of Safety Organization Chart
Figure 11.1.4-1	Emergency Communication Network
Figure 12.2.3-1	Planned wall in front of the Van Co Huong Temple/Pagoda12-17
Figure 12.2.3-2	Planned underpass at Km10+420 and the frontage road12-18
Figure 12.2.3-3	Planned underpass at Km13+600 and the frontage road12-18
Figure 12.2.3-4	Planned intersection at Km11+520 12-19
Figure 12.2.3-5	Planned intersection at Km15+57612-19
Figure 12.2.4-1	Location of air quality and noise survey carried by CASST in August 2008
Figure 12.2.5-1	Location of the additional site for surface water quality survey
Figure 12.2.9-1	Map of sites of survey on ecosystem carried out
C	by the Study Team (Port Portion)12-40
Figure 12.2.9-2	Primary Nurseries in Coastal Water
Figure 12.3.2-1	Proposed Organization Structure for EMP implementation (in construction phase)12-43
Figure 12.3.7-1	Locations of sampling sites of ambient air and surface water
Figure 12.3.8-1	EMP Implementing Schedule
-	
Figure 14.1.2-1	Assumed Limits of the Operation and Maintenance for Tan Vu - Lach Huyen Highway14-2
Figure 14.1.3-1	Plan for Tan Vu - Lach Huyen Highway14-3
Figure 14.2.1-1	Organization Chart of MOT14-5
Figure 14.2.1-2	Classifications of Road Maintenance Activities and Investment Projects
Figure 14.2.1-3	Details of the Activities and the Responsible Organization
-	at Each Stage on Road Maintenance14-6
Figure 14.2.1-4	Organization Chart of DRVN14-7
Figure 14.4.1-1	Road Operator of Trunk Roads in Hai Phong City14-39

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM $FINAL\ REPORT$		
Figure 14.4.1-2	Possible of the Management Organization	
Figure 14.4.2-1	Proposed Organization Chart of RRMC	
Figure 15.5.1-1	Layout of Maintenance and Protection of Traffic	
Figure 15.5.5-2	Quantity of Rail Foundation of Gantry Crane (7.5t)	
Figure 15.5.5-3	Shed Rail foundation	
Figure 15.5.5-4	Quantity of Shed Rail Foundation	
Figure 15.5.5-5	Short Line Equipment Foundation Side View15-33	
Figure 15.5.5-6	Short Line Equipment Foundation Front View15-33	
Figure 15.5.5-7	Soil Stabilization of Segment Fabrication Yard	
Figure 15.5.5-8	Foundation of Segment Stockyard	
Figure 15.5.5-9	Pavement of Segment Stockyard	
Figure 15.5.5-10	Tower erane (180 t-m)	
Figure 15.5.5-11	Movable Shed	
Figure 15.5.5-12	Curing Program	
Figure 15.5.5-13	Japan Norm of Support Installation and Removal (per 10m)	
Figure 15.5.7-1	RNo.1, 2 Erection Girder Installation	
Figure 15.5.7-2	Quantity of Bent Foundation	
Figure 15.5.7-3	Erection Girder	
Figure 15.5.7-4	Construction days of Installation and Demolition15-62	
Figure 15.5.7-5	Erection of No.3 girder	
Figure 15.5.7-6	Segment transshipment gantry crane 80t	
Figure 15.5.7-7	Adhesives coating of Joint	
Figure 16.2.2-1 (Comparison of Passenger Transport PCU16-6	
Figure 17.3.3-1	Estimated Implementation Program	
Figure 17.4.2-1	Alternatives on Construction Packaging Plan	
Figure 18.1.2-1	Future Lane Requirement in JICA's Preparatory Survey	
Figure 18.2.1-1	Typical Cross Section of Road Section	
Figure 18.3.1-1	Cross Section at Abutment	
Figure 18.3.2-1	Plan View of Approach Bridge	
Figure 18.3.2-2	General View of Approach Bridge with Second Stage	
Figure 18.3.3-1	Plan View of Main Bridge	
Figure 18.3.3-2	Cross Section at Pier P77 of Main Bridge including	
- Figure 18.3.3-3	Cross Section for Main Girder for the Second Stage	
Figure 18.4.1-1	Signalized At-grade Intersection	
Figure 18.4.2-1	Separate-grade Interchange	

CHAPTER 1 GENERAL

1.1 Introduction

1.1.1 Background

Owing to the Government's policy "Doi Moi", Vietnam economy has remarkably expanded and, sea-borne trade through the ports in the north of Vietnam has experienced a significant increase both in quantities and kinds of commodities.

Along the area connecting Hai Phong in the northern coastal region of Vietnam and Hanoi, there exist various enterprises that contribute to the development of the region. Major ports supporting commercial activities of these enterprises include Hai Phong and Cai Lan Port, which received JICA's loan assistance in the past for rehabilitation and expansion works. While the capacity of these ports and other ports in the region is planned to cope with total 40.2 million tons of containerized cargo in 2015, the demand is expected to surpass this figure in 2015 and expand to 58.9 million in 2020, making it necessary to build a new port with enough capacity to cover the demand that would overflow. Against this backdrop, the Government of The Socialist Republic of Vietnam (hereinafter referred to as "GOV") carried out a feasibility study on the Lach Huyen Port Infrastructure Construction Project, based on which GOV requested the government of Japan (hereinafter called as "GOJ) to provide a Japanese ODA Yen loan in order to enforce the development plan proposed in its feasibility study.

In response to the request of GOV, the Japan International Cooperation Agency (hereafter referred to as "JICA") conducted the Preparatory Survey for Lach Huyen Port Infrastructure Construction in Vietnam from October 2009 to June 2010. The survey team recommended the development of Lach Huyen Port Infrastructure Construction Project as a priority project under the finance by Japanese Government ODA Loan Project (hereinafter referred to as "the Project")

Responding to the recommendation of the JICA study, GOV requested GOJ to provide an ODA loan for the Project by JICA, and to conduct the Detailed Design Study for Lach Huyen Port Infrastructure Construction Project (hereafter referred to as "the Design Study") by the technical cooperation program of GOJ in June 2010.

GOJ decided to extend Design Study, and JICA and the Ministry of Transport of GOV (hereinafter referred to as "MOT"), a responsible organization for the Design Study in GOV, have agreed that both sides shall sincerely cooperate with each other in implementing the Design Study and confirmed the implementation details of the Design Study.

This report was prepared to show the Detailed Design result as a part of Design Study. The contents of this report has been discussed and confirmed at the initial stage & second stage by the both sides of the Design Study Team and GOV to ensure successful implementation of the Design Study for the Project.
1.1.2 Outline of Design Study

1.1.2.1 Objectives of Design Study

The Design Study is intended to assist the implementing agencies for the Project, Maritime Project Management Unit No.2 (MPMU II) under Vietnam Maritime Administration for the port portion and Project Management Unit No.2 (PMU2) under Directorate of Roads for Vietnam for the road and bridge portion to implement smoothly and successfully Lach Huyen Port Infrastructure Project. The objectives of the Design Study are to prepare the tendering documents and detailed design for the Project. It is confirmed by MOT that the drawing and documents formulated by the Design Study (hereinafter referred to as "the Design Documents") shall be fully utilized for the procurement procedure of the Project.

1.1.2.2 Project Profile

- 1) Name of the Project: Lach Huyen Port Infrastructure Construction Project
- 2) Signing L/A: Under processing
- 3) Proposed Facilities of the Project:

The Project (under the finance by Japanese Government ODA Loan) consists of the construction of land reclamation for two (2) berths of international container terminal and the related port and access road/bridge infrastructures. The following highway facilities and relative equipment are to be provided for the Project.

(Road and Bridge Portion)

Construction of Access Road and Bridges from Tan Vu to Lach Huyen for 15.63 km long, consisting of:

- a) Road of about 10.19 km long,
- b) Bridges of totally 5.44 km long,
- c) 4 lanes of 3.5 m lane width

4) Implementing Agencies

Ministry of Transport (MOT) of GOV

(Road and Bridge): PMU2 under Directorate of Roads for Vietnam (DRVN)

1.1.3 Study Area

Hai An District & Cat Hai Island and their surrounding area in Hai Phong City, Vietnam

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

1.2 Scope of Design Study

1.2.1 Scope of Design Study

In order to achieve the objectives mentioned above, the Design Study shall cover, but not limited to, the following study works.

- (1) Review of previous studies
- (2) Establishment of framework for the detailed design
- (3) Implementation of Design Study (detailed design including cost estimation and preparation of tender documents)

1.2.1.1Review of Previous Studies and Plans

- (1) Review previous master plans, feasibility studies, Environmental Impact Assessment (EIA), Resettlement Action Plan (RAP), and other records and data related to the Project based on the latest information on traffic data, social and economic conditions, traffic forecast of the target year of 2015 in short term and 2020 in medium term among others, and
- (2) Review plans, scope, scale, location or layout, if necessary and appropriate, and operation and maintenance system for the Project.

In the basic design stage, the above said items were completed.

1.2.1.2 Establishment of Design Study Framework

- (1) Establish design criteria and design/technical standards to be applied for the Project.
- (2) Recommend and agree with PMU2 the format and content for the Bills of Quantities and cost estimate for construction of each contract package of the Project.
- (3) Recommend and agree with PMU2 the division of each categorized package for construction,
- (4) Recommend and agree with PMU2 the format and content for prequalification and tender documents for each package of construction,
- (5) Recommend and agree with PMU2 the time schedule for implementation of the detailed design, the Bills of Quantities, cost estimate, prequalification documents and bidding documents to allow the tendering of works and construction for each contract package to commence immediately after the completion of necessary design and documentation work and the gaining of necessary approvals, and,
- (6) Agree with the Technical Advisory Committee of GOV the schedule, item and content of technical aspect for authorization of Design Study and Design Documents

In the basic design, the above said items have been being discussed with Vietnamese relative agencies due to delayed schedule for establishment of Technical Advisory Committee. The results are reflected in this final report.

1.2.1.3 Design Study

The Design Study Team has used the reference documents of previous studies approved by GOV as the basis for the Design Study. The Design Study Team has carried out surveys and investigation, basic design of road and bridge/structures, study of operation and maintenance system, preparation of construction method and schedule, cost estimate, preparation of prequalification documents and tender documents, preparation of implementation program, etc. as listed below:

(1) Conduct the following survey and investigations required for the Design Study (basic and detailed design):

(Field Survey and Investigation)

- Soil investigation at the area along the construction of road and bridges,
- Topographic survey at the area along the construction of road and bridges,
- Evaluation survey on availability and suitability of material sources for road and bridge construction,
- Hydro- and meteoro-logical (Data Collection) Survey
- Environmental survey around the Project site
- (2) Prepare detailed design for roads, bridges and other structures,
- (3) Establish an operation and maintenance system for the Project,
- (4) Prepare the detailed environmental management and monitoring program,
- (5) Monitor the progress of land acquisition and resettlement,
- (6) Recommend appropriate construction methods and prepare a construction schedule,
- (7) Prepare a cost estimate for the Project and study the effectiveness of the Project,
- (8) Prepare prequalification and tender documents
- (9) Prepare and implementation program, and
- (10) Prepare HIV/AIDS prevention program together with the People's Committee of Hai Phong City.

1.2.2 Work Schedule

The Design Study has been commenced immediately after the agreement on the Contract for Design Study in March 2011. The Design Study is scheduled to carry out within 10-month period subject to obtaining comments in time from Technical Advisory Committee to be established by GOV.

The overall Design Study schedule is shown in Figure 1.2.2-1 as the original schedule, and in Figure 1.2.2-2 as the actual design schedule. The detailed study schedules for each portion are indicated in Figure 1.2.2-3.

Veer / Month		2011												
i eai / ivioittii	3	4	5	6	7	8	9	10	11	12	1			
Work in Vietnam														
Work in Japan														
Report		∆ IC/R	△ △ IC/R CD/R : Inception Report : : Basic Design Report : : Draft Prequalification Documents				△ PQ/ EIA		R		∆ F/R			
	IC/R CD/R PQ/R	: Inceptie : Basic I : Draft P					EIA/R DF/R F/R	: Draft S : Draft F : Final R	upplemen inal Repo eport	ntal EIA 1 ort	Report			

Figure 1.2.2-1 Overall Study Schedule (Original)

Revised Implementation Program		0																																						
Major Items							20	12											2	013							20)14			201	5			20	16		2017	20	18
major testas	Month	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2 3	3 4	1	5	6	7	8	9 10	11	12	10	20	3Q	4Q	10	20 3	IQ .	40.	10	20	30	4Q	1H 2H	1H	2H
1 Detailed Design (D/D)			T		1																												61							
2 Apprpval of PQ Documents	1			-								-	-			-		-	-	-		1		I																
3 PQ	2.5		1			-					-		l	1	-		1		-		1		I		1		1													
4 Finalize Bid Documents	4.0		1								-			-		-	1	-	-	-		1			1		-													
5 Approval of MOT/JICA	3.7			1							-	1	3		l.					-	1	-	-			-														
6 Tender (Preparation & Submission)	3.0	- Constantion	1		-				-	-		1		1			-	l	-	1				1				-												
7 Tender Evaluation	0.9						0.000100			1	1		-				1						1	100000																
8 Concurrence of Tender Evaluation	0.7	(and	l		1											1		1		-		1							1				un control o							tere training
9 Concurrence of Contract	0.7		-	-		-	0.000				1		010-01	1		1	1			1		-	101010	1	distant,		-				-	tomate						Consequences	Personal survey of	
10 Procurement of C/S consultant	8.0					-						1			-	1	1	1		1	-	1	-	1		1.1		1												
11 Construction Supervision	iner festivation			1	1	1		() and (l	-	1	-	1		1		1	-	1		-		-	denner		denner 1					1010			return (*					
12 Land Acquisition	12		ľ		1		1	inatio	1		1		1		-	-	1			10.000	1	1	1	-				1			arona ta	I								
13 Resettlement	18		1	1	-	1				1	-	1	-	-		1	101010		-	-	- Control				-								1	Ope	n L	7				
14 Construction (Road Portion)	36		-		1	1	-		1	-	1		-	1		l	I	-	1	-	nyoin 3-	ng no	- Personal	-	1	-					inned in			-		/		1		
15 Defect Liability Period (Road Portion)	24		l	1	l	1			l	1	1		ļ	1	-unit	-	-				-		i.	1		1	1									8 8	D			

Figure 1.2.2-2 Overall Study Schedule (Actual)

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

TIME	TASK	REPORTS
	Preparatory Work in Japan	
March 2011	★Collection & analysis of existing data / information	
	★ Preparation of Inception Report (IC/R) & Questionnaires	
April 2011	1st Work in Viet Nam	Inception Report
	★Presentation / Discussion of Inception Report (IC/R)	(IC/R)
	★Existing Data Collection and Review of Previous Studies and Plans	
	\star Review of EIA and monitor land aquisition, etc.	
	★Estabilshment of Framework for Design Study	
	★ Field Surveys for Natural & Environmental Conditions	
	★Basic Design: Establishment of Design Criteria, Road and Bridge Facilities	
	★Preliminary Construction Planning & Time Schedule	
	★Preliminary Cost Estimate of Construction and Procurement Package for Construction	
July 2011	1st Work in Japan	- Resis Desim
	\star Preparation/Finalization of Basic Design Report (CD/R)	Basic Design Report (CD/R)
August 2011	2nd Work in Viet Nam	
	★Presentation / Discussion of Basic Design Report (CD/R)	
	\star Preparation of Confirmation of Details on Design Contents	
	★ Preparation of Prequalification Documents (PQ)	
	★ Detaild Design	Pre qualification
	★Detailed Construction Planning	Documents (PQ)
	★Detailed Project Cost Estimates	
	★Procurement Program of Construction Materials and Equipment	
	★Overall Project Evaluation by Economic Analysis and Financial Analysis	Draft Combined FIA
	★Formulation of Construction Work Safety Program	Supplemental EIA
	★Preparaion of Tender Documents	Keport (EIA)
	★Preparation of Draft Supplemental EIA report (EIA) and Environmental	
	Management/Monitoring Plan	
	★Preparation of HIV/AIDS Prevention Program	l
	★Operation and Management Plan	Draft Final Report
October 2011	★ Preparation of Draft Final Report and Draft Tender Documents (DF/R)	(DF/R)
December 2011	2nd Work in Janan]
20000002011	★Follow-up GOV Comments on DF/R	
January 2012	3rd Work in Viet Nam	- []
Sundary 2012	Finalization of Final Report and Revised Tender Documents (F/R)	Final Report (F/R)

Figure 1.2.2-3 Work Schedule of Design Study of Road/Bridge Portion for Lach Huyen Port Infrastructure Construction (Original)

1.2.3 Main History of the Study

The Design Study Team has executed the kick off meeting at MOT on 23rd March 2011 together with JICA and continuously at PMU-2 on 29th March 2011. The site visit was carried out on 25th March 2011. All previous study data were handed over to the Study Team on 31st March 2011 from PMU-2. The pre-bid meeting for site investigations was held on 30th March 2011 and bid opening was on 6th April 2011. The topographic survey was completed in July 2011 and geotechnical survey was completed in September 2011 including the final reports. Although the all technical issues were studied carefully and the results were submitted as discussion papers to Vietnamese sides and there were numbers of technical meetings held, in order to implement the study work in time, JICA requested MOT to hold the official meeting so that the outstanding matters in the basic design can be settled. The meeting at MOT was held on 7th June and 12th August 2011. After the first meeting at MOT, the TAC was established and main points of design subjects were discussed at TAC meeting

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

and the both sides (JICA Study Team and Vietnamese sides) shared understanding in the all technical issues. The major items which have been discussed and agreed by the both sides are as follows:

- (1) Main bridge's foundation (SPSP) was designed under the assumption of stage construction. It deferred from the Preparatory Study of JICA in 2010. The span component (95m + 2@150m + 95m) and the superstructure construction method (cantilever erection with cast-in-situ) was not changed.
- (2) The span component in the approach bridges was concluded that 60m span length & single wall pier. This plan can be applied to all approach bridges including two (2) flyovers at Hai An side. Construction method for approach bridges was decided that SBS method is for Hai An side and cantilever erection method with cast-in-situ is for Cat Hai side.
- (3) The pile foundation for approach bridges consists of steel pipe piles and bored piles after considering technical issues and economical aspects.
- (4) Based on the discussion results between the Study Team and the local authorities, there are some changes in numbers of box culverts. Major change was that the box culvert at Cam River was changed into three (3) continuous PC girder bridge.
- (5) Tan Vu-IC was designed as at grade intersection with traffic signal control after considering some technical request from VIDIFI.
- (6) Pavement structure was designed based on the Vietnamese Standards that is different from AASHTO which has been adopted in Hanoi Hai Phong Expressway. The pavement structure is bigger than the above expressway.
- (7) Typical cross section of highway was basically not changed, but it was modified a little after considering the environmental impact to the local resident's assets and requests from the local authorities in some areas.
- (8) Retaining wall behind abutments was omitted, and embankment was designed instead of that from economical and technical view points.
- (9) EIA supplementary report was planned at the initial stage of this study. And social & natural EIA works were completed in October 2011. However, new EIA report was required in accordance with the new regulation since the temporary access for construction by dredging was designed in some areas. That supplementary EIA has been carried out in 2012 and the appraisal conference at MOT was held on 15th August 2012 for the approval procedure.
- (10) Operation & maintenance plan was prepared for future O & M organization after opening highway. Due to unknown factors in future plan of the Vietnamese Government (MOT), it was concluded that the Study Team shall propose practical plan as much as possible based on the current conditions.
- (11) HIV/AIDS Prevention was prepared based on technical researches and a numbers of hearings from each authority (not only central government but also local authorities). As the results, the HIV/AIDS prevention program was established in this report and it complies with the national and local framework. Regarding the application of the program to the tender documents including BOQ, the discussion is still under conducting.
- (12) The Project cost increased by some reasons like temporary facilities, temporary road structure, and pavement structure from the Preparatory Study in 2010. As the results, Vietnamese Government requested JICA Study Team to review the all items and the JICA Study Team has re-submitted his cost estimation report in March 2012 for getting the concurrence of total investment decision for implementation of tender stage. However, the study results on effectiveness of the project shows still high level.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

CHAPTER 2 TOPOGRAPHIC AND HYDROLOGICAL SURVEY

2.1 Topographic Survey

2.1.1 Scope and Purpose of Survey

The expected length of the whole project area is approximately 15.63km. The start point (station km0+000) is in Tan Vu Hamlet, Trang Cat Street, Hai An District, Hai Phong City. The end point (station km15+629.937) is in Dong Bai Commune, Cat Hai Island District, Hai Phong City. This project includes a large-scale bridge across the Nam Trieu River.

Location: The route runs through Tan Vu Hamlet (Trang Cat Street, Hai An District, Hai Phong City), Ninh Tiep Hamlet, Minh Hong Hamlet and Trung Lam Hamlet (Nghia Lo and Dong Bai Communes, Cat Hai Island District, Hai Phong City).

The aim is to obtain a full set of data on terrain for the calculation and design of the project, providing survey data in a form compatible with the formatting style requested of the designers. The results of the topographic survey in this stage are used in design, estimate of the volume of site clearance and estimate of the general cost of the project.

2.1.2 Applied Standards

Coordinate system of Vietnam used: VN2000 system, central meridian 105 degree 45 minutes with 3 degree projection zone and the following parameters;

- 1) Reference ellipsoid: WGS 84
 - Major semi-axis: a = 6,378.137km
 - Flatness: f = 1/298.257223563
- 2) Projection: Transverse Mercator
 - Scale factor k = 0.9999

Elevation system used: National elevation system (data from Hon Dau Island - Hai Phong province) The Standards to be applied in this project are as follows;

No.	Code	Title	Issued by				
1	22TCN 263 - 2000	Standards for Motorway Survey	Ministry of Communications and Transport				
2	22TCN 262 - 2000	Standards for Highway Survey and Design on weak ground	Ministry of Communications and Transport				
3	TCXDVN364:2006	Standards for Engineering Survey GPS Monitoring and Processing	Ministry of Construction				
4	96TCN 43 - 90	Standards for Topography Map Survey	Department of Survey and Mapping				
5	QCVN 11:2008 BTNMT	Standards for establishment of leveling network	Ministry of Natural Resources and Environment				

andards System
1

Source : Study Team

All technical requirements by the main Consultant to be used for the project have been applied in accordance with the above standards and approved by the competent organizations

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.1.3 Work Volume

The contracted and actual work volume of the topographic survey is as follows;

Work Items	Contract	Progress	Remarks		
1. Control Point Survey					
1-1 Grade IV control points (GPS)	15 points	15 points			
1-2 Secondary control points (TS)	88 points	88 points			
1-3 IV-class leveling network	25.0 km	34.9 km			
1-4 Technical leveling network	25.0 km	16.4 km			
2. Route Survey for Road Portion					
2-1 Center Line Survey (20m intervals)	13.2 km	10.2 km			
2-2 Longitudinal Survey	13.2 km	10.2 km			
2-3 Cross-section Survey (50m on each side)	660 sections	510 sections			
2-4 Plan metric survey (50m on each side)	120 ha	102 ha			
3. Route Survey for Bridge Portion					
3-1 Longitudinal Survey	5.44 km	5.44 km			
3-2 Cross-section Survey (50m on each side)	109 sections	109 sections			
3-3 Plan metric Survey (50m on each side)	55 ha	55 ha			
4. Positioning of Boring Pits					
4-1 Positioning of Boring Pits	155 points	155 points			
5. Additional Survey					
5-1 Km1+500 - Km2+000	4.9532 ha	4.9532 ha	plan		
5-2 Km12+100 - Km13+300	1.2 ha	1.2 ha	plan		
5-3 Km14+920 - Km15+340	4.0243 ha	4.0243 ha	plan		
5-4 Km3+400 - Km4+000					
5-4-1 Plan-metric survey	12 ha	12 ha			
5-4-2 Cross-section survey	13 sections	13 sections	200m width		

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.1.4 Equipment for Survey

The equipment for the survey was as follows;

No	Equipment	Unit	Qnty.	Remarks
1	GPS receiver	set	4	Topcon HiPer Ga
2	Total station	set	4	Topcon, Sokkia
3	Level	set	4	SDL30,B21,Ni025,Leica
4	Echo sounding instrument	set	1	Bruttour International PTY
5	Hand-held GPS receiver	set	4	Topcon
6	Prism	set	4	Topcon, Sokkia
7	Leveling staff	set	4	
8	Walkie-talkie	set	8	
9	Laptop PC	set	10	

Table 2 1 4-1	Equipment for	Survey
10016 2.1.4-1	Lyupmention	Survey

Source : Study Team

2.1.5 Control Point Survey

2.1.5.1 Survey of Grade IV Control Points

(1) Implementation of Grade IV control point survey

The Grade IV control point survey was performed by the Contractor (Transport Engineering Design Inc.) in April 2011.

- The Grade IV control networks were checked in F/S stage, and after that compared with the requirements of the JICA Consultant regarding quantity / density of Grade IV control points to position new points on the plan at a scale of 1/25,000

- The control points were set at the following important areas;

- Area of start point;
- Area of end point;
- Both ends area of bridge portion;

- The Grade IV control points with the exception of those in the above areas were positioned in accordance with the requirements of the JICA Consultant at equal distances (approximate interval of between 1km and 1.5km) along the route.

- The Grade IV control points were positioned so as to be connected to the original azimuths for secondary traverse networks later.

- The control points in the field were positioned reasonably with regard to distribution and the structure of the survey network, installed on solid foundations as well as sites suitable for the lower control networks in the future.

- The Grade IV control points were established along the centreline within 500m widthwise.

- The Grade IV control points network was connected to two (2) upper national control points.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

- The material specifications for Grade IV control points;

- Top: 40cm x 40cm
- Bottom: 50cm x 50cm
- Height : 50cm
- Foundation: 60cm x 60cm x 10cm
- Material: Concrete
- Core : Porcelain
- Point names assigned were GPS01, GPS02, GPS15 (see Figure 1 below)

- The short name of the project and the Consultant, the point name and date of erection were marked on the top.

Figure 2.1.5-1 Specifications for a Grade IV control point

(2) Rules for GPS observation

- The minimum measurement time at a station (called measurement shift) was between 60 and 90 minutes depending on the number of satellites and quality of received signals.

Length of Baseline (km)	Measurement Shift (minutes)
0 -:- 1	20' -:- 30'
1 -:- 5	30' -:- 60'
5 -:- 10	60' -:- 90'
10 -:- 20	90' -:- 120'

Table 2 1 5-1	Parameters in	364.2006	standards
10010 2.1.3-1	r al al liele i S li I	304.2000	Stanuarus

Source : Study Team

- Information on a receiving-station is written in the field, for example: date, point name, weather, height of antenna, start time, finish time (of a measurement shift) etc.

- Measurement data were transferred to a computer for processing every day.

- Measurement data were processed and calculated on a computer using GP survey 2.35 software. The output was edited / displayed in 7 tables in accordance with the TCXDVN 364:2006 standards.

- Observation errors must comply with the TCXDVN 364:2006 standards.

\D	0.10	0.15	0.20	0.50	1.00	2.00	3.00	4.00
n	km	km	km	km	Km	km	km	km
3	1:8160	1:12200	1:16300	1:40600	1:80000	1:151600	1:210000	1:255000
4	1:9430	1:14100	1:18800	1:46900	1:92400	1:175000	1:242500	1:294500
5	1:10500	1:15800	1:21000	1:52400	1:103400	1:195700	1:271200	1:329200
	1:11500	1:17300	1:23000	1:57400	1:113200	1:214400	1:297000	1:360700

Table 2.1.5-2 Observation error tolerance in TCXDVN 364:2006 standards

(3) Comparison for base line vector of duplication and conclusion

Station name		$\Delta \mathbf{x}$	Δ y	$\Delta \mathbf{z}$
110510	CDG00	2011.473	-85.214	1740.634
118510	GPS02	2011.470	-85.221	1740.653
Difference		0.003	0.007	-0.019
110510	CDS02	-4342.352	-708.881	-1509.251
118510	GPS03	-4342.342	-708.865	-1509.261
Difference		-0.010	-0.016	0.010
CDS04	CDS12	28.111	-152.790	406.798
GPS04	GPS15	28.114	-152.793	406.796
Difference		-0.003	0.003	0.002
CDS06	CDS14	34.995	-111.853	307.216
GPS00	GP514	35.000	-111.850	307.212
Difference		-0.005	-0.003	0.004
CDS15	119529	2674.162	454.240	899.710
GPS15	118528	2674.149 454.255		899.696
Difference		0.013	-0.015	0.014
119529	CDS16	377.787	-328.613	117.585
118528	GPS16	377.779	328.606	1117.577
Difference		0.008	-0.007	0.008
118528	CDC10	-1709.034	-688.862	425.801
	GP318	-1709.037	-688.874	425.800
Difference		0.003	0.012	0.001

Table 2.1.5-3 Comparison for D/D stage

Source : Study Team

Station name		$\Delta \mathbf{x}$	Δ y	Δ z
CDC02	CDC02	2330.910	794.010	-231.346
GPS02	GPS05	2330.897	794.024	-231.353
Difference		0.013	-0.014	0.007
CDS04	CDS05	751.157	438.676	-531.233
01304	GPS05	751.215	438.507	-531.304
Difference		-0.058	0.169	0.071

Table 2.1.5-4 Comparison for F/S stage

Source : Study Team

Station nan	ne		$\Delta \mathbf{x}$	Δ y	Δz
GPS01 GPS02	FS	1659.443	646.039	-371.202	
	GP302	DD	1659.430	646.033	-371.152
Difference			0.013	0.006	-0.050
CDS02	CDS02	FS	-2330.910	-794.010	231.346
GPS02	GPS03	DD	DD -2330.879 -794.095		231.382
Difference			-0.031	0.085	-0.036
	119539	FS	3595.059	766.345	815.634
GPS00	116526	DD	3595.101	766.316	815.676
Difference			-0.042	0.029	-0.042
119539	CDC10	FS	-1924.614	-686.101	256.630
118528	Gr810	DD	-1924.611	-686.150	256.683
Difference		1	-0.003	-0.049	-0.053

Table 2.1.5-5 Comparison for D/D and F/S stages

Source : Study Team

In the comparison table for duplicated baselines in the D/D stage above, the correct results were obtained from the GPS observation data by GPS data processing.

However, in the comparison table for the F/S stage, the following fact has been proved; the data to be compared were from only two (2) baselines, in addition to which the duplicated baseline to be compared between GPS04 and GPS05 was outside the specified limit; and as a result of the comparison of D/D and F/S data, the closing error was too large and outside the specified limit, with the exception of control point GPS01.

Hence, it was decided that only GPS01 would be used as the coordinate for the GPS control point at the F/S stage .

2.1.5.2 IV-class Leveling Network

The IV-class leveling network survey was performed by the Contractor (TEDI) in April 2011 in accordance with the basic specifications of the QCVN 11:2008/BTNMT standards.

(1) Work volume

- Leveling line of the riverside in the direction of Hai An District: ~21.2 km
- Leveling line of the Trieu River between Dinh Vo and Cai Hai Island District: ~5.7 km
- Leveling line of the riverside in the direction of Cai Hai Island District: ~8.0 km

(2) Rules for leveling observation

- The network was measured by the geometric levelling method. The observer took readings on the leveling staff above, below and in the centre of the crosshairs.

- Height closure error $f_h < \pm 20 \text{ mm}\sqrt{L}$ (where L = distance between each pair of GPS points, in km).

- The leveling network was adjusted on the computer using professional software (see results in Grade IV control networks report)

- Cross-leveling at the Trieu River (GPS04A-GPS06A) was performed using the hydrostatic method and the RTK (Real-time kinematic) method because of the very wide (approx. 5 km) river mouth.

(3) Comparison of elevation of F/S and D/D stages

Station	D/D	F/S	Difference	Distance
(HN-HP)20A	Height diff.(m)	Height diff.(m)	(m)	(km)
CDC01	-0.654	-0.677	0.023	14.6
GPS01	0.778	0.793	-0.015	2.7
GPS02A	0.413	0.382	0.031	2.8
GPS03A	-0.455	-0.468	0.013	1.1
GPS04A	-0.509	-0.680	0.171	5.7
GPS06A	-0.102	-0.115	0.013	8.0
GPS10A			0.010	

Table 2.1.5-6 Comparison of Elevation of F/S and D/D stages

Source : Study Team

As a result of the comparison in height difference between GPS04A and GPS06A in the above table, there was found to be a discrepancy of 0.171 m. This discrepancy has been reconfirmed by the following inspection and check survey;

a) The mean value (-0.517 m) of the leveling result of GPS observation and tidal observation results on 21 April 2011.

b) The mean values (-0.517 m and -0.530 m respectively) of check surveys carried out two (2) times by tidal observation on 26 April and 27 May 2011.

In accordance with the above results, the height difference between the Dinh Vo side and Cat Hai Island has been adapted to the elevation value of D/D which was approx. 0.170 m higher than the elevation value of the F/S stage.

(4) Quality control in IV-class leveling

The results of quality control in IV-class leveling are as follows;

Station	Dis.(km)	Go(m)	Back (m)	Diff. (mm)	Tolerance
(HN-HP)20A/GPS01	14.6	-0.648	0.660	12	76
GPS01 / GPS11	0.5	2.571	-2.576	-5	14
GPS11 / GPS02A	2.2	-1.794	1.806	-12	29
GPS02A/GPS12	1.2	-0.116	0.108	-8	21
GPS12 / GPS03A	1.6	0.523	-0.519	4	25
GPS03A / GPS04A	1.1	0.454	-0.451	3	20
GPS04A/GPS13	0.4	0.213	-0.210	3	12
GPS04A / GPS06A	5.3	-0.530	-0.518	-12	46
GPS06A / GPS14	0.4	-0.405	0.403	-2	12
GPS14 / GPS15	1.1	0.629	-0.627	2	20
GPS15 / GPS08A	1.3	0.122	-0.118	4	22
GPS08A / GPS16	1.1	-0.202	0.201	-1	20
GPS16 / GPS17	1.5	-0.068	0.073	5	24
GPS17 / GPS18	2.3	-1.140	1.143	-3	20
GPS18 / GPS10A	0.3	0.953	-0.954	-1	10

Table 2.1.5-7 Result of	quality control	of IV class	leveling
-------------------------	-----------------	-------------	----------

Note: Tolerance of closure error of Elevation is 20 mm \sqrt{L} .

2.1.5.3 Secondary Control Points and Technical Leveling Network

(1) Secondary control points:

Secondary control points were established along the center line and each point was observed using Total Station (Topcon GTS510 or Sokkia SET5 30R3 type, with equivalent accuracy), conforming to the 22 TCN 263-2000 standards.

The average distance between two consecutive control points was approx. 150m. Secondary control points were positioned stable ground and were optimally suited for topographic survey work.

Form of Secondary control points: Class 200 concrete was used in the construction of the Secondary control points. The top surface was marked with porcelain. Then, implementing group, date of construction, etc was carved clearly. The dimensions are as follows:

Тор	20cm x 20cm
Bottom	30cm x 30cm
Height	40cm
Benchmark base	40cm x 40cm x 10cm

Table 2.1.5-8 Dimensions of secondary control point

Source : F/S

(2) Technical leveling network:

This conformed to Standard 22 TCN 263-2000.

The technical leveling network coincides with the Secondary control points.

The geometric method was used for observation of the Secondary control points.

The leveling machines used were Leca NA720, Sokkia B21 and other machines of equivalent accuracy. The allowable error was fh < $30 \text{mm}\sqrt{-L}$ (*L* is measured in km).

(3) Quantity

The number of Secondary control points is as follows; Trang Cat and Dong Hai 2 areas: 45 points covering 7.5 km. Cat Hai Island Area: 50 points covering 8.4 km

(4) Results of quality control for Secondary control points are as follows;

		Number of	Closure error of Coor.		Closure error of Elev.	
Station	Distance (km)	Sides (N)	Error (m)	Tolerance (m)	Error (mm)	Tolerance (mm)
GPS01_GPS02A	2.767	21	0.060	0.353	2	41
GPS11_GPS02A	2.176	16	0.013	0.274	-4	36
GPS02A_GPS12	1.169	6	0.016	0.157	4	27
GPS12_GPS03A	1.621	10	0.018	0.202	0	31
GPS03A_GPS04A	1.111	8	0.018	0.162	4	26
GPS06A_GPS15	1.443	12	0.063	0.199	0	30
GPS15_GPS08A	1.327	7	0.007	0.170	4	28
GPS08A_GPS16	1.146	6	0.012	0.156	-1	26
GPS16_GPS17	2.153	13	0.007	0.255	5	36
GPS17_GPS10A	2.791	18	0.020	0.336	2	41

Table 2.1.5-9 Results of quality control for Secondary control points

Note: Tolerance of closure error of coordinates is $10\text{cm}+2\text{cm}\Sigma D\sqrt{N}$, Elevation is $25\text{mm}\sqrt{L}$. Source : Study Team

2.1.6 Route Survey for Road Portion

2.1.6.1 Center Line Survey

The center-line was marked using wooden pegs or long bamboo sticks along the center-line except where there was more than 2m depth of water in a river or fish-pond, or in vegetated areas of a fish pond (km0+60 to km0+500).

The alignment staked out was as follows;

- Start and end point
- 20m interval station
- SC: point of change from spiral to circular curve
- CS: point of change from circular curve to spiral
- TS: point of change from tangent to spiral
- ST: point of change from spiral to tangent

2.1.6.2 Longitudinal Survey

A longitudinal survey was performed along the center-line using Total Station except for several parts of the survey area that are covered by water. The points which were surveyed are station markers, changed terrain, ground objects and culverts, etc.

Distances covered by the longitudinal survey are as follows;

- Trang Cat and Dong Hai 2 areas: approx. 4.50km
- Cat Hai Island area: approx. 5.69km

The drawing scale of the profile chart is as follows;

- Horizontal scale: 1: 1,000
- Vertical scale: 1:100

2.1.6.3 Cross-section Survey

A cross-section survey was performed along the center-line. A RTK system survey by GPS (Topcon Hiper Ga) was carried out between km0+000 and km0+500. The other areas (km0+520 to km4+700, km9+945 to km15+630) were surveyed using Total Station. The width of each cross-section was 50m on each side of the center-line.

The volume of the cross-section survey is as follows;

- Trang Cat and Dong Hai 2 areas : 226 sections
- Cat Hai Island area : 284 sections

The drawing scale of the cross-section chart is as follows;

- Horizontal scale: 1: 200
- Vertical scale: 1: 200

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.1.6.4 Plan-metric Survey

The plan-metric survey was performed along the center-line to a width of 50m on each side. The residential area of Cat Hai Island was surveyed in particular detail. The main specifications for the plan are as follows;

- Plan scale : 1: 1,000
- Surveyed objects: irrigation ditch, sluice gate, high- and low-voltage lines, communication lines, historical sites, temples, pagodas, cemeteries, control points, etc.
- Interval of intermediate contour: 0.5m
- Interval of index contour: per 2.5m

The area covered by the Plan-metric survey is as follows;

- Trang Cat and Dong Hai 2 areas : approx. 45 ha
- Cat Hai Island area : approx. 57 ha

2.1.6.5 Comparison of Feasibility Study (F/S) and Detailed Design(D/D)

The results of the F/S and D/D had the following differences;

- Horizontal position: Some areas on Cat Hai Island were found to have a difference of more than 5m.
- Differences in elevation: The elevations of F/S and D/D do not match each other. Some positions in Trang Cat and Dong Hai 2 area were found to have a significant difference of more than 1m .

2.1.7 Route Survey for Bridge Portion

2.1.7.1 Longitudinal Survey

A longitudinal survey was performed along the center-line.

The length of the longitudinal survey is approx. 5.44km.

The drawing scale of the profile chart is as follows;

- Horizontal scale : 1: 1,000
- Vertical scale : 1: 100

2.1.7.2 Cross-section Survey

A cross-section survey was performed along the center-line at 50m intervals. The width of each cross-section was 50m on each side of the center-line.

The volume of the cross-section survey is 109 sections.

The drawing scale of the cross-section chart is as follows;

- Horizontal scale : 1:200
- Vertical scale : 1: 200

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.1.7.3 Plan-metric Survey

The plan-metric survey was performed along the center-line to a width of 50m on each side. The main specifications for the plan are as follows;

- Plan scale : 1: 1,000
- Interval of intermediate contour: 0.5m
- Interval of index contour: per 2.5m

The area covered by the plan-metric survey is approx. 55ha.

2.1.7.4 Check Survey

The check survey was performed about 22 cross-section lines using GPS RTK system and Echo sounding instrument on 29 June. As the survey result, the each point difference was approximately within 10cm to 30cm.

2.1.7.5 Additional Survey

The additional survey was performed about 4 areas, 1) Km1+500 - Km2+000, 2) Km3+400 - Km4+000, 3) Km12+100 - Km13+300 and 4) approximately Km14+920 - Km15+340. The plan-metric survey was performed about all of the additional area and the cross-section survey was performed about only Km3+400 to Km4+000.

The main specifications for the plan are as follows;

- Plan scale : 1: 1,000
- Interval of intermediate contour: 0.5m
- Interval of index contour: per 2.5m

The drawing scale of the cross-section chart is as follows;

- Horizontal scale : 1: 200
- Vertical scale : 1: 200

2.1.8 Positioning of Boring Pits

The boring pit positioning survey was performed along the center-line.

The coordinates of the boring pits for the Road section are shown in Table 2.1.8-1 below, and the coordinates of the boring pits for the Bridge portion are shown in Table 2.1.8-2 following:

Station	North	East	Station	North	East
BC-1	2301992.317	614119.668	BA-3	2301395.704	604297.562
BC-2	2301997.263	614269.587	BA-4	2301416.136	604446.164
BC-3	2302000.56	614369.532	BA-5	2301429.758	604545.232
BC-4	2302005.506	614519.451	BA-6	2301457.002	604743.367
BC-5	2302010.452	614669.369	BA-7	2301477.435	604891.969
BC-6	2302020.343	614969.206	BA-8	2301497.867	605040.571
BC-7	2302025.289	615119.124	BA-9	2301525.111	605238.707
BC-8	2302030.235	615269.043	BA-10	2301538.733	605337.775
BC-9	2302035.180	615418.961	BA-11	2301559.166	605486.377
BC-10	2302038.477	615518.907	BA-12	2301593.220	605734.046
BC-11	2302045.072	615718.798	BA-13	2301606.842	605833.114
BC-12	2302050.017	615868.717	BA-14	2301620.464	605932.182
BC-13	2302054.963	616018.635	BA-15	2301647.707	606130.318
BC-14	2302061.557	616218.526	BA-16	2301661.329	606229.386
BC-15	2302064.855	616318.472	BA-17	2301681.762	606377.988
BC-16	2302069.800	616468.390	BA-18	2301702.195	606526.589
BC-17	2302079.692	616768.227	BA-19	2301727.939	606724.921
BC-18	2302084.637	616918.146	BA-20	2301738.608	606824.349
BC-19	2302087.935	617018.091	BA-21	2301751.500	606973.790
BC-20	2302094.529	617217.983	BA-22	2301766.462	607273.393
BC-21	2302099.475	617367.901	BA-23	2301771.408	607423.311
BC-22	2302104.420	617517.820	BA-24	2301774.706	607523.257
BC-23	2302111.015	617717.711	BA-25	2301781.300	607723.148

Table 2.1.8-1 Coordinates of Boring Pits for Road portion

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

BC-24	2302114.312	617817.656	BA-26	2301786.246	607873.066
BC-25	2302119.258	617967.575	BA-27	2301791.191	608022.985
BC-26	2302124.203	618117.493	BA-28	2301797.786	608222.876
BC-27	2302129.130	618267.412	BA-29	2301801.083	608322.822
BC-28	2302110.997	618566.216	BA-30	2301806.028	608472.740
BC-29	2302074.887	618711.703			
BC-30	2302020.919	618851.554			
BC-31	2301949.936	618983.585			
BC-32	2301830.776	619143.923			
BC-33	2301761.606	619216.102			
BC-34	2301647.197	619312.959			
BC-35	2301410.172	619461.618			

No.	Station	Offset	North	East
1	Km 4+504.10	+0m	2301810.944	608621.759
2	Km 4+561.30	+8m	2301805.000	608684.189
3	Km 4+621.30	+8m	2301806.978	608744.156
4	Km 4+681.30	+8m	2301808.956	608804.124
5	Km 4+741.30	+8m	2301810.934	608864.091
6	Km 4+801.30	+8m	2301812.913	608924.059
7	Km 4+861.30	+8m	2301814.891	608984.026
8	Km 4+921.30	+8m	2301816.869	609043.993
9	Km 4+981.30	+8m	2301818.848	609103.961
10	Km 5+041.30	+8m	2301820.826	609163.928
11	Km 5+101.30	+8m	2301822.804	609223.895
12	Km 5+152.80	+8m	2301824.502	609275.367
13	Km 5+212.80	+8m	2301826.480	609335.335
14	Km 5+272.80	+8m	2301828.459	609395.302
15	Km 5+332.80	+8m	2301830.437	609455.270
16	Km 5+392.80	+8m	2301832.415	609515.237
17	Km 5+452.80	+8m	2301834.394	609575.204
18	Km 5+512.80	+8m	2301836.372	609635.172
19	Km 5+572.80	+8m	2301838.350	609695.139
20	Km 5+632.80	+8m	2301840.329	609755.107
21	Km 5+692.80	+8m	2301842.307	609815.074
22	Km 5+752.80	+8m	2301844.285	609875.041
23	Km 5+812.80	+8m	2301846.263	609935.009
24	Km 5+872.80	+8m	2301848.242	609994.976
25	Km 5+932.80	+8m	2301850.220	610054.943
26	Km 5+992.80	+8m	2301852.198	610114.911
27	Km 6+052.80	+8m	2301854.177	610174.878
28	Km 6+112.80	+8m	2301856.155	610234.846
29	Km 6+172.80	+8m	2301858.133	610294.813
30	Km 6+232.80	+8m	2301860.111	610354.780
31	Km 6+292.80	+8m	2301862.090	610414.748
32	Km 6+352.80	+8m	2301864.068	610474.715
33	Km 6+412.80	+8m	2301866.046	610534.682
34	Km 6+472.80	+8m	2301868.025	610594.650
35	Km 6+532.80	+8m	2301870.003	610654.617
36	Km 6+592.80	+8m	2301871.981	610714.585

Table 2.1.8-2 Coordinates of Boring Pits for Bridge portion

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN V	IET NAM
FINAL RE	EPORT

37	Km 6+652.80	+8m	2301873.959	610774.552
38	Km 6+712.80	+8m	2301875.938	610834.519
39	Km 6+772.80	+8m	2301877.916	610894.487
40	Km 6+832.80	+8m	2301879.894	610954.454
41	Km 6+892.80	+8m	2301881.873	611014.421
42	Km 6+952.80	+8m	2301883.851	611074.389
43	Km 7+012.80	+8m	2301885.829	611134.356
44	Km 7+072.80	+8m	2301887.808	611194.324
45	Km 7+132.80	+8m	2301889.786	611254.291
46	Km 7+192.80	+8m	2301891.764	611314.258
47	Km 7+252.80	+8m	2301893.742	611374.226
48	Km 7+312.80	+8m	2301895.721	611434.193
49	Km 7+372.80	+8m	2301897.699	611494.160
50	Km 7+432.80	+8m	2301899.677	611554.128
51	Km 7+491.16	+8m	2301901.601	611612.456
52	Km 7+551.16	+8m	2301903.580	611672.423
53	Km 7+611.16	+8m	2301905.558	611732.391
54	Km 7+671.16	+8m	2301907.536	611792.358
55	Km 7+731.16	+8m	2301909.515	611852.326
56	Km 7+791.16	+8m	2301911.493	611912.293
57	Km 7+844.14	+8m	2301913.240	611965.244
58	Km 7+904.14	+8m	2301915.218	612025.212
59	Km 7+964.14	+8m	2301917.196	612085.179
60	Km 8+024.14	+8m	2301919.175	612145.146
61	Km 8+077.12	+8m	2301920.921	612198.098
62	Km 8+130.10	+8m	2301922.668	612251.049
63	Km 8+190.10	+8m	2301924.647	612311.016
64	Km 8+250.10	+8m	2301926.625	612370.983
65	Km 8+310.10	+8m	2301928.603	612430.951
66	Km 8+363.08	+8m	2301930.350	612483.902
67	Km 8+416.06	+8m	2301932.097	612536.853
68	Km 8+476.06	+8m	2301934.075	612596.821
69	Km 8+536.06	+8m	2301936.053	612656.788
70	Km 8+596.06	+8m	2301938.032	612716.755
71	Km 8+649.04	+8m	2301939.779	612769.707
72	Km 8+702.02	+8m	2301941.525	612822.658
73	Km 8+762.02	+8m	2301943.504	612882.625
74	Km 8+822.02	+8m	2301945.482	612942.593

75	Km 8+882.02	+8m	2301947.460	613002.560
76	Km 8+935.00	+8m	2301949.207	613055.511
77	Km 9+030.00	+8m	2301952.339	613150.459
78	Km 9+030.00	-6.25m	2301966.566	613149.990
79	Km 9+180.00	+8m	2301957.285	613300.378
80	Km 9+180.00	-6.25m	2301971.512	613299.908
81	Km 9+330.00	+8m	2301962.231	613450.296
82	Km 9+330.00	-6.25m	2301976.458	613449.826
83	Km 9+425.00	+8m	2301965.363	613545.245
84	Km 9+479.80	+8m	2301967.170	613600.015
85	Km 9+539.80	+8m	2301969.148	613659.982
86	Km 9+599.80	+8m	2301971.127	613719.950
87	Km 9+659.80	+8m	2301973.105	613779.917
88	Km 9+714.60	+8m	2301974.912	613834.687
89	Km 9+769.40	+8m	2301976.719	613889.457
90	Km 9+829.40	+8m	2301978.697	613949.425
91	Km 9+889.40	+8m	2301980.675	614009.392
92	Km 9+944.50	+0m	2301990.479	614063.998

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

Notes: The above coordinates are the original data for the boring pits.

2.1.9 Survey Results

2.1.9.1 Final Results and Index Map of Grade IV Control Points

The final results and index map of the Grade IV control points are as follows;

No	Station	Coordinate	s – VN2000	Elevation	Damarka
INO	Station	North X(m)	East Y(m)	H (m)	Remarks
1	GPSS01	2301233.267	603823.657	1.629	Reference point
2	GPS02A	2301641.111	605596.459	2.407	GPS point
3	GPS03A	2301904.158	608055.811	2.820	GPS point
4	GPS04A	2302299.210	608836.246	3.275	GPS point
5	GPS06A	2301845.710	614097.683	2.766	GPS point
6	GPS08A	2302088.194	616362.090	3.116	GPS point
7	GPS10A	2301287.501	619805.750	2.664	GPS point
8	GPS11	2301663.910	604054.983	4.204	GPS point
9	GPS12	2301795.417	606546.509	2.297	GPS point
10	GPS13	2302734.445	608850.662	3.487	GPS point
11	GPS14	2302174.524	614094.368	2.364	GPS point
12	GPS15	2301942.167	615068.968	2.994	GPS point
13	GPS16	2302192.082	617492.184	2.916	GPS point
14	GPS17	2301958.035	618827.998	2.849	GPS point
15	GPS18	2301467.317	619598.980	1.709	GPS point
16	118510	2303491.361	603683.311		Reference point
17	118528	2300998.527	617766.663		Reference point

Table 2.1.9-1	Final	Results o	f Grade	IV	control	points
10010 2.1.0 1	i initai	11000110	i Oraao		001101	pointo

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.1.9.2 Final Result of Secondary Control Points

The final result of the Secondary control points are as follows;

Na	Station	Coordinates – VN2	2000	Elevation	Demonto
NO	Station	North X(m)	East Y(m)	H (m)	Remarks
1	DC01	2301172.996	603802.907	4.377	SCP point
2	DC02	2301068.822	603987.956	3.136	SCP point
3	DC03	2300995.028	604112.913	2.566	SCP point
4	DC04	2301067.657	604247.731	2.565	SCP point
5	DC05	2301169.465	604299.662	2.465	SCP point
6	DC06	2301273.598	604349.066	2.370	SCP point
7	DC07	2301579.600	604433.597	2.238	SCP point
8	DC07A	2301465.947	604399.860	2.080	SCP point
9	DC08	2301686.634	604459.964	2.362	SCP point
10	DC09	2301794.549	604508.567	2.291	SCP point
11	DC10	2301856.261	604592.008	2.009	SCP point
12	DC11	2301796.152	604668.408	1.901	SCP point
13	DC12	2301760.064	604776.651	2.174	SCP point
14	DC13	2301678.403	604874.577	2.008	SCP point
15	DC14	2301628.624	604973.485	2.533	SCP point
16	DC15	2301524.858	605110.962	2.794	SCP point
17	DC16	2301455.151	605231.932	2.812	SCP point
18	DC17	2301410.845	605344.585	2.779	SCP point
19	DC18	2301387.647	605473.089	2.725	SCP point
20	DC19	2301501.171	605585.916	2.788	SCP point
21	DC21	2301529.370	605777.864	2.990	SCP point
22	DC22	2301818.279	604141.431	4.331	SCP point
23	DC23	2301931.399	604204.096	4.354	SCP point
24	DC24	2302042.894	604264.680	4.230	SCP point
25	DC25	2302067.968	604407.868	2.913	SCP point
26	DC26	2301966.344	604526.424	2.545	SCP point
27	DC27	2301683.430	605973.696	3.204	SCP point
28	DC28	2301835.484	606047.811	2.609	SCP point
29	DC29	2301900.011	606234.444	2.331	SCP point
30	DC30	2301807.788	606374.363	2.281	SCP point
31	DC31	2301898.232	606690.150	1.697	SCP point

Table 2.1.9-2 Final	Result of	Secondary	control	points

32	DC32	2301891.109	606890.860	1.827	SCP point
33	DC33	2301783.858	607062.366	3.087	SCP point
34	DC34	2301785.315	607202.696	3.390	SCP point
35	DC35	2301785.784	607344.320	3.382	SCP point
36	DC36	2301790.613	607511.326	3.452	SCP point
37	DC37	2301801.729	607703.221	3.341	SCP point
38	DC38	2301809.356	607874.430	3.288	SCP point
39	DC39	2301816.973	607999.075	3.346	SCP point
40	DC40	2301820.153	608137.351	3.590	SCP point
41	DC41	2301817.349	608376.795	2.901	SCP point
42	DC42	2301854.266	608529.498	2.881	SCP point
43	DC43	2301953.771	608631.442	2.887	SCP point
44	DC44	2302070.265	608646.965	3.097	SCP point
45	DC45	2302211.120	608660.917	3.441	SCP point
46	DC46	2301864.315	614000.415	2.735	SCP point
47	DC47	2301952.079	614070.818	2.399	SCP point
48	DC48	2301985.997	614175.691	3.436	SCP point
49	DC49	2302107.217	614203.381	1.814	SCP point
50	DC50	2302180.333	614279.145	2.013	SCP point
51	DC51	2302041.741	614415.078	1.815	SCP point
52	DC52	2302049.872	614564.691	1.571	SCP point
53	DC53	2302076.525	614751.633	1.840	SCP point
54	DC54	2301974.781	614888.051	2.001	SCP point
55	DC54A	2301981.520	614978.389	1.831	SCP point
56	DC55	2301945.165	615246.585	3.104	SCP point
57	DC56	2302013.914	615420.687	3.232	SCP point
58	DC57	2302049.297	615592.397	3.388	SCP point
59	DC58	2302021.265	615812.163	1.466	SCP point
60	DC59	2302072.438	616054.505	3.295	SCP point
61	DC60	2302041.009	616228.435	1.587	SCP point
62	DC61	2302056.003	616514.829	1.658	SCP point
63	DC62	2302105.301	616742.975	3.442	SCP point
64	DC63	2302116.134	616912.382	3.435	SCP point
65	DC64	2302125.485	617088.222	3.482	SCP point
66	DC65	2302134.596	617267.882	3.323	SCP point
67	DC66	2302055.721	617584.998	1.613	SCP point
68	DC67	2302099.064	617768.682	1.893	SCP point

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

69	DC68	2302236.539	617908.828	1.330	SCP point
70	DC69	2302233.422	618056.954	1.967	SCP point
71	DC70	2302144.370	618063.866	2.407	SCP point
72	DC70A	2302115.803	617986.876	2.425	SCP point
73	DC70B	2302100.060	617894.723	2.207	SCP point
74	DC70C	2301953.119	617911.789	1.364	SCP point
75	DC70D	2302037.216	618084.184	1.363	SCP point
76	DC71	2302121.428	618186.994	1.367	SCP point
77	DC72	2301985.618	618441.708	1.480	SCP point
78	DC73	2301882.074	618606.512	1.387	SCP point
79	DC86	2301987.950	618979.138	2.236	SCP point
80	DC74	2301842.691	619056.029	2.824	SCP point
81	DC87	2301652.003	618992.362	3.800	SCP point
82	DC88	2301560.747	618937.093	3.894	SCP point
83	DC89	2301496.409	618763.415	2.944	SCP point
84	DC90	2301352.171	618674.182	2.600	SCP point
85	DC91	2301185.425	618801.569	2.760	SCP point
86	DC92	2301231.200	618946.427	2.725	SCP point
87	DC93	2301416.622	619050.598	3.933	SCP point
88	DC94	2301517.597	619130.996	3.951	SCP point
89	DC95	2301608.635	619229.799	4.017	SCP point
90	DC75	2301687.517	619324.144	4.062	SCP point
91	DC76	2301537.158	619441.577	1.483	SCP point
92	DC77	2301379.894	619505.425	2.398	SCP point
93	DC78	2301278.141	619621.783	2.180	SCP point
94	DC79	2301167.755	619619.739	2.879	SCP point
95	DC80	2301222.036	619735.674	2.866	SCP point

THE DETAILED DESIGN STUDY FOR LACH HUYEN PORT INFRASTRUCTURE CONSTRUCTION PROJET IN VIET NAM FINAL REPORT

2.1.9.3 Route Survey for Road Potion

(1) Drawings of Longitudinal

As the survey result, the station, changed terrain, ground objects, river, culverts, etc. are summarized in the drawings (H: 1/1000, V: 1/100). Detailed quantity is shown in the table bellow;

Station	Area	Units	Quantities	Remarks
Km0+000 - Km4+501	Hai An District	Km	4.501	
Km9+944 - Km15+630	Cat Hai Island	Km	5.686	
Total		Km	10.187	

Source : Study Team

(2) Drawings of Cross-section

As the survey result, the station, changed terrain, ground objects, river, culverts, house, drainage, etc. are summarized in the drawings (H: 1/200, V: 1/200). Detailed quantity is shown in the table bellow;

Station	Area	Units	Quantities	Remarks
Km0+000 - Km4+501	Hai An District	section	226	20m interval
Km9+944 - Km15+630	Cat Hai Island	section	284	20m interval
Total		section	510	

Table 2.1.9-4 Detail of Drawings of Cross-section

Source : Study Team

(3) Drawings of Plan-metric

As the survey result, the content which are mentioned in 3.1.6.4 Plan-metric Survey, coordinates, annotation, symbols, etc. are summarized in the drawings (Scale: 1/1000). Detailed quantity is shown in the table bellow;

Table 2.1.9-5	Detail of	Drawings	of	Plan-metric
10010 21110 0	Dotan of	Diamigo	0.	

Station	Area	Units	Quantities	Remarks
Km0+000 - Km4+501	Hai An District	ha	45.01	100m width
Km9+944 - Km15+630	Cat Hai Island	ha	56.86	100m width
Total		ha	101.87	

Source : Study Team

2.1.9.4 Route Survey for Bridge Portion

(1) Drawings of Longitudinal

As the survey result, the station, changed terrain, etc. are summarized in the drawings (H: 1/1000, V: 1/100). Detailed quantity is shown in the table bellow;

Station	Area	Units	Quantities	Remarks
Km4+501 - Km9+944	Estuary of Trieu River	Km	5.443	
Total		Km	5.443	

Table 2.1.9-6 De	etail of Drawings	s of Long	itudinal
------------------	-------------------	-----------	----------

Source : Study Team

(2) Drawings of Cross-section

As the survey result, the station, changed terrain, etc. are summarized in the drawings (H: 1/200, V: 1/200). Detailed quantity is shown in the table bellow;

Table 2 1 9-7	Detail of	Drawings	of	Cross-section
10010 2.1.3-1	Detail U	Diawings		01033-3601011

Station	Area	Units	Quantities	Remarks
Km4+501 - Km9+944	Estuary of Trieu River	section	109	50m interval
Total		section	109	

Source : Study Team

(3) Drawings of Plan-metric

As the survey result, the content which are mentioned in 3.1.7.3 Plan-metric Survey, coordinates, annotation, symbols, etc. are summarized in the drawings (Scale: 1/1000). Detailed quantity is shown in the table bellow;

Station	Area	Units	Quantities	Remarks
Km4+501 - Km9+944	Estuary of Trieu River	ha	54.43	100m width
Total		ha	54.43	

Table 2.1.9	-8 Detail c	of Drawings	of Plan-metric
10010 21110	o Dotan e	n Brannigo	

Source : Study Team

2.1.9.5 Additional Survey

(1) Drawings of Plan-metric

As the survey result, the content which are mentioned in 3.1.7.3 Plan-metric Survey, coordinates, annotation, symbols, etc. are summarized in the drawings (Scale: 1/1000). Detailed quantity is shown in the table bellow;

Station	Area	Units	Quantities	Remarks
Km1+500 - Km2+000	Hai An District	ha	4.9532	Cua Cam river
Km3+400 - Km4+000	Hai An District	ha	12.000	Temporary yard
Km12+100 - Km13+300	Cat Hai Island	ha	1.200	10m width
Km14+920 - Km15+340	Cat Hai Island	ha	4.0243	
Total		ha	22.1775	

Table 2.1.9-9 Detail of Drawings of Plan-metric

Source : Study Team

(2) Drawings of Cross-section

As the survey result, the station, changed terrain, etc. are summarized in the drawings (H: 1/200, V: 1/200). Detailed quantity is shown in the table bellow;

Table 2.1.9-10	Detail of I	Drawings o	f Cross-section
10010 21110 10	Dottain of 1	praninge e	

Station	Area	Units	Quantities	Remarks
Km3+400 - Km4+000	Hai An District	section	13	200m width
Total		section	13	

Source : Study Team

2.1.10 Points to be Noted for Drawings

The points to be noted for the drawings are as follows.

- The data of drawing (Km0+000 to approx. Km15+680) of the plan-metric, longitudinal and cross-section were prepared by the Auto CAD software, and the whole data was saved by the Auto CAD data.
- The points of elevation are position of the decimal point, but these points can not move because of these elevation and points are included macro data.
- The data of additional area was combined into main drawings of digital data.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.2 Hydrological Survey

2.2.1 General

In order to grasp the hydrological conditions in TAN VU – LACH HUYEN HIGHWAY PROJECT, a hydrological survey was carried out by JBSI-HYDER-HECO Joint Venture in 2008 for Feasibility Study (FS). The investigation consists of both site survey and investigation into flooding at the locations of the highway approaches and bridges. The site survey involves surveying the River bed and flood plain cross sections for both upstream and downstream of the planned river crossing.

In this section, the existing hydrological survey results of FS stage were reviewed and the outline of supplemental survey conducted in this detailed design study is described.

2.2.2 Review of Hydrological Survey Report in FS Stage

2.2.2.1 Conditions of Hydrological Survey in FS Stage

Based on the survey results of the investigation shown in the table blow, the design water level, wave height, requirement of drainage, impact of scouring were obtained in the condition with,.

- Design frequency of large bridge: P=1%,

- Design road according to design standard TCVN4054-2005 with design speed V=80Km/h, design frequency P=4%.

No.	Description	Unit	Quantity
1	Collecting the drainage data on the Plans on the left and right 'is Route;	Working day	10
2	Collecting and buying data of hydrometeorology*	Station	03
3	Cross-sections	Km	5+5.5+0.5
4	Flood Investigation of Bridges	Point	75

 Table 2.2.2-1 Scope and Quantities of Hydrological Survey in FS Stage

* The items for data collection is as follows,

-Sea-Hydro meteorology data at Hon Dau Station (from 1974 to 2004).

-The largest flow, water level data at Cua Cam Station (1961-1980, 1986-2006).

-Hydro meteorology monitoring document.

-General statement of Lach Huyen - Hai Phong Gateway Port Project.

 -Report on sea and hydro meteorology data collection of Lach Huyen – Hai Phong Gateway Port Project.
 -Report on Study on Wave and Flow Regime Based on Mathematic Model Infrastructure which Port-Water Construction Consulting Company made plan project step for Construction Investment Project of

Nam Dinh Vu Industrial Zone, Hai Phong City implemented in May 2008.

According to the Decision 3139/QD-BGTVT dated 29/10/2010 issued by MOT, the frequency of high water level for road design is P=1% and it is to be applied to road design in detailed design stage.

2.2.2.2 Review on Water Level and Wave Height

(1) Water Level in Bridge Section

The strong points of the F/S report are as follows,

- The marine data at the Hon Dau station and the difference between measured water level (WL) at the Hon Dau station and investigated WL at the bridge were used to calculate the design high water level. It is an acceptable method in the condition of having no any monitoring station at the bridge location and the lack of hydrological data on the upstream river.
- The values of historical high WL up to the year of 2005 which contains the measured and investigated data in the bridge section were considered.
- The design HWL in the case of the Dinh Vu Industrial Zone completed was obtained.
- It was recommended that the historical WLs collected at the left and right banks of river should be used as the design HWLs for the bridge.

However, follows are to be updated,

- The meteorological, hydrological data were not updated up to the calculation time, especially the values of 2005.
- The effect of flow coming from the upstream river was not considered.
- The elevation difference between the National Chart and Sea Chart should be 1.86m (more accurate than 1.90m (FS value)).
- (2) Wave Height in Bridge Section

The followings are to be noted,

- The results of wave calculation in the FS stage are not correct possibly due to the wrong computation of the design wind speed and initial wave height.
- It was recommended that the wave height calculated in the project "Nam Dinh Vu Industrial Zone Infrastructure Construction Project" by TEDI Port in 2008 should be used.
- (3) Water Level in Road Section

The followings are to be noted,

- The design HWL of road was calculated in the same way as the bridge.
- The project goes through the areas that have different hydrological systems. In the FS stage, however, the effects of topographic and hydrological conditions were not considered in detail for each section. For example, the section from Km10+050 to Km14+660 is protected in the dike so that it is flooded by storm events, not affected by sea water.

Therefore, in the detailed design, the alignment should be divided into some specified sections based on the difference conditions of topographic and hydrological systems to detail the design WLs for each section.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.
2.2.2.3 Review on Culverts and Drainage System

The locations and sizes of culverts along the alignment were defined based on the topographic data, the project area map, the aquaculture demand and the calculation of drainage system.

However, it is the preliminary results in the FS stage. In basic design stage, more detailed study was executed (e.g.: surveying the site combine with discussing with local people and authorities to determine the location and the size of culvert; study project area to define the sphere of flood influence based on which we can calculate the suitable size of drainage culvert...)

2.2.2.4 Impact of Scouring

The methods used to calculate the depth of scour at the abutments and piers of bridge are reasonable. These methods are given in "Manual for hydrology and hydraulic computations for roads and bridges" approved by Ministry of Transportation and Communication in 2006 and have being applied widely for many bridge projects in Vietnam. The results given in the report are correct and acceptable

2.2.3 Supplemental Hydrological Survey

2.2.3.1Purpose of Survey

In order to update the results of the hydrological survey in FS stage, supplemental survey and analysis are planned. The items of the survey are base line survey, water level investigations and data collection.

2.2.3.2Scope of survey

(1) Water Level Investigation for Bridge Section

The clusters of maximum flood water level within the scope of bridge's plan (10 clusters) were investigated. Water level groups were allocated in the surveyed area and on 2 river banks. Investigation data in each water level group include:

- Historically highest water level in 3 years
- Average annual flood water level
- Lowest water level
- Peak flood-tide water level, lowest tide
- Water level in survey time.

(2) Water Level Investigation for Road Sections

The clusters of water level along the route were investigated (18 clusters: In Hai An side 8 clusters and in Cat Hai side 10 clusters). On the route on average each km there are 2 groups of water level and calculating at frequencies of 1%, 2%, 4%, and 10% to design elevation of the profile along the route. Each group of water level includes:

- Highest water level of 3 historical flood years caused by rain.
- Regular flood water level
- Lowest water level
- Effect of tide, tidal amplitude.
- Determination of flow, clearance, and elevation of the expected culvert slabs (working with local hydraulic agency and reaching agreement in writing).
- (3) Collection of Data of gauging station, marine station and meteorological station
 - Collection of data of 01 gauging station, 01 marine station for calculation of water level, current, design speed. In the FS stage, the marine data at the Hon Dau station used for the calculation was only up to the year 2004. Data from the year 2005 to 2010 has been added in basic design calculation.
 - Updating, collection of data on meteorology of Phù Lien station up to the year of 2010.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

2.2.3.3Update of Water Level

In this section, update of water level is discussed based on supplemental data collected in this survey. As stated in the review, the alignment is divided into 4 sections based on the different topographic and hydrological conditions of project area, as follows:

- Section 1: Km0 to Km4+200 (Hai An side);
- Section 2: Bridge section;
- Section 3: Km10+060 to Km14+670;
- Section 4: Km14+670 to the End.

(1) Bridge Section

This section is affected not only by tide from the sea but also the flow coming from the upstream of the Bach Dang River.

The high water level in this section is calculated based on the measured data at Hon Dau (marine station) and Do Nghi station (on Bach Dang River). It is also considered in 2 cases of current status (without Dinh Vu Industrial Zone) and Dinh Vu IZ completed.

The progress of calculating high water level is shown in the tables below.

Table 2.2.3-1 Highest Water Levels equivalent to frequencies at Hon Dau Station

Frequency	1%	2%	4%	5%	10%	20%	50%
WL _{Sea Chart}	4.36	4.28	4.21	4.18	4.09	3.99	3.81
WL National Chart	2.50	2.42	2.35	2.32	2.23	2.13	1.95

Table 2.2.3-2 Highest Water	Levels equivalent to fre	equencies in Bridge S	Section (Current Status)
10010 2.2.0 2 1 lightoot Wator	Lovolo oquivalorit to rit	squonoloo in Bhago c	

P%	1%	2%	4%	5%	10%	20%	50%
WL HON DAU	2.50	2.42	2.35	2.32	2.23	2.13	1.95
WL do nghi	2.63	2.57	2.51	2.48	2.40	2.31	2.15
WL BRIDGE	2.57	2.50	<u>2.43</u>	2.40	2.32	2.22	2.05

Table 2.2.3-3 Highest Water Levels equivalent to frequencies in Bridge Section (After Dinh Vu Industrial Zone completed)

Frequency	1%	2%	4%	5%	10%	20%	50%	
WL BRIDGE	2.72	2.65	2.58	2.55	2.47	2.37	2.20	

The major design values are summarized as follows,

Design High Water Level (P = 1%)=2.72 m

High Water Level (P = 5%)=2.55 m

Mean High Water Level=1.97 m

Mean Water Level=0.15 m

Mean Low Water Level=-1.67 m.

* Note: - All above elevation is in the National Chart.

- EL National Chart = EL Sea Chart - 1.86 (m)

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd.,

(2) Road Sections

Section 1 (Km0 to Km4+200) and Section 4 (Km14+670 to the End):

These sections are located in low elevation area. The hydrology regime of the sections is generally affected by tidal wave. During storm events and typhoons, the tidal water level raised which results in inundation.

The high water levels equivalent to frequencies is calculated based on measured data at Hon Dau marine station and shown in the top table on the previous page.

Table 2.2.3-4 Highest Water Levels equivalent to frequencies in Road Section Km0 - Km4+200

Frequency	1%	2%	4%	5%	10%	20%	50%
WL Sea Chart	4.36	4.28	4.21	4.18	4.09	3.99	3.81
WL National Chart	2.50	2.42	2.35	2.32	2.23	2.13	1.95

Section 3: Km10+060 to Km14+670:

The section is located in a protected low land. In the event of a storm or a typhoon, the combination of rising sea water level outside and great volume of rainfall in the region results in inundation.

The high water level in this section is calculated based on the meteorological data at Phu Lien station.

		Te	otal volun	ne of rainf	fall at Phu	Lien (mr		$\Delta 1\%$	Δ ‰	∆4%	Δ5%	Δ10%	
No		X ₂₀₀₅	X _{1%}	X _{2%}	$X_{4\%}$	% X _{5%} X _{10%}		K	(m)	(m)	(m)	(m)	(m)
1	$X_{1ngaymax}$	141	369	330	293	279	239	1.24	0.28	0.23	0.19	0.17	0.12
2	$X_{3ngaymax}$	146	500	455	411	393	344	1.24	0.44	0.38	0.33	0.31	0.25
3	$X_{5ngaymax}$	150	626	559	495	470	401	1.24	<u>0.59</u>	0.51	<u>0.43</u>	0.40	0.31
4	X _{7ngày max}	213	690	617	547	519	443	1.24	0.59	0.50	0.41	0.38	0.29

Table 2.2.3-5 Difference of water level between investigated data and high WLs equivalent to frequencies

	S	tation	Design WL (m)						
Km	+		H _{max2005}	H _{1%}	H _{4%}				
10	+	820.00	1.50	2.09	1.93				
14	+	620.00	1.40	1.99	1.83				
14	+	650.00	1.40	1.99	1.83				

The result of calculating high WL along the alignment is summarized in the table below.

Oriental Consultants Co., Ltd., Nippon Koei Co., Ltd., PADECO Co., Ltd. and Japan Bridge & Structure Institute Inc.

								Sta	ge: FS				Stage: DD								
No		Sta	tion	Stick	Flow	Туре			Size (m)		Туре			Size ((m)		Ι	Design WL (m	1)	Note
	Km	+			direction		No		F (B)		Н		No		F (B)		Н	Hmax2005	H1%	H4%	
	Hai An District																				
1	0	+	780.00		R - L							Box			2.00	x	2.00	2.82	2.50	2.35	Shrimp pond
2	0	+	940.00		L - R	Box			3.00	x	3.00	Box			3.00	x	3.00	2.82	2.50	2.35	Drainage culvert
3	1	+	700.00		L - R	Box	8	x	4.00	x	4.00	Box	8	x	4.00	x	4.00	2.79	2.50	2.35	Cua Cam River
4	2	+	390.00		L - R	Pipe			2.00			Box			2.00	x	2.00	2.84	2.50	2.35	Shrimp pond
5	2	+	650.00		L - R							Box			2.00	x	2.00		2.50	2.35	Shrimp pond
6	4	+	160.00		L - R	Box	3	x	4.00	x	4.00	Box	3	x	3.00	x	3.00	2.83	2.50	2.35	Drainage culvert
	Cat H	lai I	District																		
7	9	+	906.2															2.75	2.72	2.58	At the end point of bridge
8	10	+	90.00		L - R	Pipe			1.25			Pipe			1.25						Ditch
9	10	+	659.00		L - R	Pipe			1.25			Pipe			1.25						Ditch
10	10	+	820.00		L - R	Box	2	x	4.00	x	3.00	Box			3.00	x	3.00	1.50	2.09	1.93	Ditch
11	13	+	980.00		L - R	Pipe			1.25												
12	14	+	620.00		L - R	Pipe						Box			4.00	x	4.00	1.40	1.99	1.83	Pond
13	14	+	650.00			Box			1.50	x	3.00	Box	2	x	2.00	x	4.00	1.40	1.99	1.83	On the dyke (on the left of alignment)
14	14	+	880.00		L - R	Box			3.00	x	3.00	Box			2.00	x	2.00	2.87	2.50	2.35	Ditch
15	15	+	100.00		R - L	Box	3	x	4.00	x	4.00	Box	3	x	4.00	x	6.00	2.87	2.50	2.35	River
16	15	+	520.00		R - L	Pipe			1.25			Pipe			1.25				2.50	2.35	Ditch
													L. S.	1					I	I	

Table 2.2.3-7 Summary of Design Water Levels at Locations of Drainage Structures