Appendix 6: Other Relevant Data

Data 1.	Result of Boring Survey in Nyaunghnapin First Phase WTPAppendix-51
Data 2.	Result of Trial Excavation Survey in Yankin TownshipAppendix-53
Data 3.	Study on Water Hammer for Transmission and Distribution Pump in Nyaunghnapin First
	Phase WTP (Analysis of Water Hammer Prevention)Appendix-63
Data 4.	Replacement of distribution network in Block 1 to 6 in Yankin TownshipAppendix-77
Data 5.	Result of Hydraulic Calculation of Distribution Network in Block 1 to 6 in Yankin
	TownshipAppendix-82
Data 6.	Minutes of Stakeholder MeetingAppendix-99

Data 1. Result of Boring Survey in Nyaunghnapin First Phase WTP

The number of the target locations for boring survey is 5 and the soil boring log is shown in Figure 6.1.2. The N value of silty clay layer with depth 5 to 6 meters ranges N2 to N9 and it is soft soil layer. It is assumed that the supporting layer is silty sand layer 16 to 17 meters deep. In this location, since the soil condition is soft and depth of the supporting layer is deep, it is necessary to consider pipe foundation.

The groundwater level in 5 locations for boring survey ranges 1.9 to 2.3 meters under surface. This survey was carried out in dry season and it is assumed that the groundwater level is deep. There are ponds and paddy field in the surrounding area and it is assumed that the groundwater level is raised in rainy season. Moreover, it is poorly drained and it might be flood in the rainy season. Therefore, it is necessary to study floor level to prevent flood.

Figure 6.1.1 Location of Boring Survey (Nyaunghnapin First Phase WTP)

Figure 6.1.2 Soil Boring Log (Nyaunghnapin First Phase WTP)

Data 2. Result of Trial Excavation Survey in Yankin Township

In order to understand the excavated soil condition in the time of pipe laying work, the trial excavation was carried out in 7 locations along with the route of pipe renewal in Yankin Township. The location map for trial excavation is shown below.

Figure 6.2.1 Location Map of Trial Excavation

According to the result of trial excavation, it consists mostly of silty clay. In pipe laying work, the excavation of rock is not considered. The groundwatrer is observed; however, it is judged that dewatering work is not required.

	-	and the second second
Irial	Pit	I oddind
TTTA		Logging

Project	: The Improvement Of Water Supply	Date	: 17. 03. 2013
Location	: Yankin Township	Trial Pit No	: TP - 01
Coordinates	: N 1864286.4, E 197414.95	Trial Pit Depth (m)	: 1.5 m
Elevation (m)	: 12.38 m	Water Level (m)	: Nil
Excavation Method	: By Hand	Logged By	: Soe Min Naing

٦

Depth (m)	Graphic Log	Sample photo	Elevation (m)	Soil and Rock Description	Remark
0.1 0.2 0.3 0.4 0.4 0.5 0.6 0.6 0.6 0.7 0.7 0.8 0.9 0.9 0.9			11.48	Top Soil layer landfill with some roots. (0.0 m ~ 0.9 m)	Excavation effort is difficult.
1.0 1.2 1.2	•		11.18	Yellowish brown,dry, medium plastic, Silty CLAY with lateritic soil. (0.9 m ~ 1.2 m)	Excavation effort is difficult.
1.5			10.88	Reddish brown,dry, medium plastic, Silty CLAY with lateritic soil. (1.2 m ~1.5 m)	Excavation effort is difficult.
			Dep	th to bottom of hole : 1.5 m.	

Figure 6.2.2 Result of Trial Excavation (TP-01)

Project Location Coordinate Elevation (Excavatior	es (m)	: The Impr : Yankin Te : N 186340 : 11.29 : By Hand	ovement Of N ownship 06.74, E 1972	Trial Pit Logging Vater Supply I 275.01 T V L	Date Trial Pit No Trial Pit Depth (m) Vater Level (m) ogged By	: 17. 03. 2013 : TP - 02 : 1.5 m : 1.0 m : PHYO KO KO Oo
Depth (m)	Graphic Log	Sample Photo	Elevation (m)	Soil and Rock Des	cription	Remark
0.2 0.2			11.09	Reddish brown, dry, top soi (0.0 m ~ 0.2 r	l layer is landfill. n)	Excavation effort is difficult.
0.3	8 - - 5		10.79	Grey, moist, mediun Silty CLAY with some I (0.2 m ~ 0.5 r	n plastic, ateritic soil. n)	Excavation effort is moderate.
		Re- Marine		Grey, wet, medium Silty CLAY with late (0.5 m ~ 1.5 r	plastic, ritic soil. n)	Excavation effort is moderate.
1.0 p 1.0	- [[]]]]]		0.70	nth to bottom of bolo : 1.5 ~		
			De	put to bottom of hole . 1.5 III.	2	

Figure 6.2.3 Result of Trial Excavation (TP-02)

Coordinate Elevation (I Excavation Method	s m)	: Yankin T : N 18628 : 15.93 : By Hand	ovenient Of W ownship 16.39, E 1971	Trial Pit No 73.24 Trial Pit De Water Leve Logged By	: 17. 03. 2013 : TP - 03 pth (m) : 1.5 m el (m) : 1.2 m : Phyo Ko Ko Oo
Depth (m)	Graphic Log	Sample Photo	Elevation (m)	Soil and Rock Description	Remark
0.2 0.2			15.73	Grey, dry, non plastic, Silty SAND with some roots. (0.0 m ~ 0.2 m)	Excavation effort is easy.
0.5 0.5			15.43	Grey, moist, non plastic, Silty SAND . (0.2 m ~ 0.5 m)	Excavation effort is easy.
0.6			15.03	Reddish brown, moist, medium plas Clayey SILT with a little amount of s (0.5 m ~ 0.9 m)	stic, Excavation effort and. is easy.
1.0 1.1 1.2 1.3 1.4 1.5		のために見	14.43	Reddish brown, wet, medium plast Clayey SILT with a little amount of s (0.9 m ~ 1.5 m)	iic, Excavation effort and. is easy.
			11.40		

Figure 6.2.4 Result of Trial Excavation (TP-03)

Project Location Coordinate Elevation (I Excavation Method	s m)	: The Impr : Yankin T : N 186266 : 11.30 (C : By Hand	ovement Of W. ownship 30.19, E 19768 D)	Trial Pit Logging ater Supply Date Trial Pit No 5.02 Trial Pit De Water Leve Logged By	: 17. 03. 2013 : TP - 04 apth (m) : 1.5 m el (m) : Nil : Wai Phyo Aung
Depth (m)	Graphic Log	Sample Photo	Elevation (m)	Soil and Rock Description	Remark
0.2 0.2		1	11.10	Reddish brown, dry, top soil layer landfill. (0.0 m ~ 0.2 m)	Excavation effort is difficult.
0.3 0.4 0.5 0.6 0.7 0.7 0.9 1.0 1.1 1.1 1.2 1.3 1.3 1.4 1.5 1.5			9.80	Reddish brown, dry, medium plastic, Clayey SILT and lateritic s (0.2 m ~ 1.5 m)	oil. Excavation effort is moderate.
			Der	th to bottom of hole : 1.5 m	

Figure 6.2.5 Result of Trial Excavation (TP-04)

Project Location Coordinate Elevation (Excavation Method	es m)	: The Impr : Yankin T : N 186218 : 9.39 m : By Hand	ovement Of \ ownship 59.64, E 1975	Vater Supply	Date Trial Pit No Trial Pit Depth (m) Water Level (m) Logged By	: 17. 03. 2013 : TP - 05 : 1.5 m : 0.6 m : Wai Phyo Aung
Depth (m)	Graphic Log	Sample Photo	Elevation (m)	Soil and Rock De	escription	Remark
0.2 0.2		14	9.19	Dark grey, moist, r Silty SAND with some (0.0 m ~ 0.2	non plastic, peat and roots. 2 m)	Excavation effort is easy.
0.3 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 0.9			8.39	Yellowish brow medium plastic, Silty S (0.2 m ~ 1.0	vn, wet, SAND with clay. 0 m)	Excavation effort is easy.
1.1 1.2 1.3			7.00	Yellowish brow medium plastic, Silty SAN (0.2 m ~ 1.0	vn, wet, ID with some clay.) m)	Excavation effort is easy.

Trial Pit Logging

Figure 6.2.6 Result of Trial Excavation (TP-05)

Project Location Coordinate Elevation (Excavation Method	es m)	: The Impr : Yankin to : N 186202 : 8.29 : By Hand	ovement Of N wnship, 26.42, E 1987	Trial Pit Logging Water Supply	Date Trial Pit No Trial Pit Depth (m) Water Level (m) Logged By	: 17. 03. 2013 : TP - 06 : 1.5 m : 1.0 m : Wai Phyo Aung
Depth (m)	Graphic Log	Sample Photo	Elevation (m)	Soil and Rock D	escription	Remark
0.2 0.2			8.09	Reddish brown, non plast fine gravels, peat ar (0.0 m ~ 0.	tic, Silty SAND with Id some roots. 2 m)	Excavation effort is easy.
0.3 0.4 0.5 0.6 0.6 0.7 0.8 0.9 1.0 1.1 1.1 1.2 1.3 1.3 1.4 1.5 1.5			6.79	Yellowish brown, m Silty CLAY with (0.2 m ~ 1.	edium plastic, little sand. 5 m)	Excavation effort is easy.
			D	epth to bottom of hole : 1.5	m.	

Figure 6.2.7 Result of Trial Excavation (TP-06)

Depth (m) $\frac{9}{6}$ $\frac{5}{9}$ $\frac{5}{9}$ $\frac{Sample}{Photo}$ Elevation (m)Soil and Rock DescriptionRemark0.10.10.19.72Reddish brown, Top Soil landfill. $(0.0 \text{ m} \sim 0.1 \text{ m})$ Excavation efficient.0.10.19.72Grey, dry, non plastic, Silty SAND with fine gravels and roots. $(0.1 \text{ m} \sim 0.7 \text{ m})$ Excavation efficient.0.30.49.72Grey, dry, non plastic, Silty SAND with fine gravels and roots. $(0.1 \text{ m} \sim 0.7 \text{ m})$ Excavation efficient.0.60.70.79.129.121.01.01.0Grey, moist, non plastic, Silty SAND with fine gravels and roots. $(0.7 \text{ m} \sim 1.5 \text{ m})$ Excavation efficient fill is moderate	Project Location Coordinate Elevation (Excavatior Method	es m)	: The Impr : Yankin to : N 186280 : 9.82 m : By Hand	ovement Of V ownship, 05.23, E 1980	Trial Pit Logging Vater Supply 28.89	Date Trial Pit No Trial Pit Depth (m) Water Level (m) Logged By	: 17. 03. 2013 : TP - 07 : 1.5 m : 1.2 m : Phyo Ko Ko Oo
0.1 0.1 0.1 0.1 9.72 Reddish brown, Top Soil landfill. (0.0 m ~ 0.1 m) Excavation eff is difficult. 0.2 0.3 0.4 0.5 0.6 Excavation eff is moderate 0.4 0.5 0.6 0.1 m ~ 0.7 m) Excavation eff is moderate 0.7 0.7 9.12 9.12 Excavation eff is moderate 1.0 1.1 Grey, moist, non plastic, Silty SAND with fine gravels and roots. (0.7 m ~ 1.5 m) Excavation eff is moderate 1.5 1.5 8.32 Sauce Sauce	Depth (m)	Graphic Log	Sample Photo	Elevation (m)	Soil and Rock De	scription	Remark
$\begin{array}{ c c c c c c } \hline 0.2 \\ \hline 0.3 \\ \hline 0.4 \\ \hline 0.5 \\ \hline 0.6 \\ \hline 0.6 \\ \hline 0.7 \\ \hline 0.7 \\ \hline 0.7 \\ \hline 0.8 \\ \hline 0.9 \\ \hline 1.0 \\ \hline 1.1 \\ \hline 1.2 \\ \hline 1.3 \\ \hline 1.4 \\ \hline 1.5 \\ \hline 1$	0.1 0.1		16	9.72	Reddish brown,Top (0.0 m ~ 0.1	Soil landfill. m)	Excavation effort is difficult.
Grey, moist, non plastic, Silty SAND with 1.1 1.2 1.3 1.4 1.5 8.32 Grey, moist, non plastic, Silty SAND with fine gravels and roots. (0.7 m ~ 1.5 m) Excavation efficiency is moderate	0.2 0.3 0.4 0.5 0.6 0.6	-		9.12	Grey, dry, non plastic, S fine gravels and (0.1 m ~ 0.7	Silty SAND with d roots. m)	Excavation effort is moderate.
1.5 = 1.5					Grey, moist, non plastic, fine gravels and (0.7 m ~ 1.5	Silty SAND with d roots. m)	Excavation effort is moderate.
Depth to bottom of hole : 1.5 m.	1.5 = 1.5			8.32 De	pth to bottom of hole : 1.5 m	1.	1

Figure 6.2.8 Result of Trial Excavation (TP-07)

							SOIL 1	TEST	RESL	JLTS									
ē	act	: The Improvement Of Water	Supply I	Project													Date	: 2 . 4 .201:	_
ö	tion	: YANKIN Township																	
-				0	Srain Size	e Analysis		uoc				ity	ţ۸	Available Nutrient			Exchar rr	ngeable Ca neq/100gm	tions
1011 110	Pit Hole. No	Description of Soil	snwnH	Gravel	Sand	Silt	Clay	Oranic Carb	Ŧ	ß	enuteioM	isnsb Xlu8	Dry densi	K2O	Water Soluble CI	Water Soluble SO4	Ca	ğ	×
-			(%)	(%)	(%)	(%)	(%)	(%)			(%)	g/cm ³	g/cm ³	mg/100g	meq/100gm	meq/100gm			
	г 1	Silty CLAY with little amount Sand .	0.483	0.50	12.20	87.	30	0.280	5.55	0.101	12.43	1.510	1.340	17.82	0.358	0.634	12.650	2.664	0.379
	TP - 2	Silty CLAY with sand and trace amount of gravels.	0.069	2.90	31.80	65.	30	0.040	5.46	0.133	20.97	1.800	1.490	16.51	0.438	0.733	10.650	0.666	0.351
-	TP - 3	Clayey SILT with sand and trace amount of gravels	1.560	0.60	28.70	70.	70	0.906	6.16	0.107	16.86	1.490	1.280	7.87	0.358	0.654	8.66	0.666	0.167
-+	TP - 4	Clayey SILT with a little amount Sand.	0.412	0.00	6.90	93.	10	0.239	3.79	0.127	12.15	1.520	1.360	17.17	0.716	0.634	6.660	1.330	0.366
10	TP - 5	Silty SAND with some clay	0.269	0.00	57.30	42.	70	0.156	6.08	0.104	22.34	1.610	1.320	4.81	0.557	0.673	6.670	0.660	0.102
	TP - 6	Silty CLAY with sand and trace amount of gravels.	0.612	4.70	30.80	64.	50	0.355	5.31	0.140	21.23	1.530	1.260	8.50	0.438	0.812	9.99	0.660	0.181
~	TP - 7	Silty CLAY with a little amount Sand.	0.746	0.00	5.90	94.	10	0.433	4.01	0.113	18.95	1.670	1.40	7.27	0.498	0.773	5.33	1.998	0.155

Table 6.2.1Result of Trial Excavation (1)

0 0	ation	: The Improvement Of Water S : YANKIN Township	upply Project					Date	: 2 . 4
-	1.18					Available Nutrient	Excha	ngeable Cations meq/	100gm
'ON 'JS	Pit Hole. No	Description of Soil	Æ	ы	Oranic Carbon	K20	ß	БW	
-	TP - 1	Silty CLAY with little amount Sand .	Moderately Acid	Very Low	Very Low	Medium	High	Medium	Σ
2	TP - 2	Silty CLAY with sand and trace amount of gravels.	Moderately Acid	Very Low	Very Low	Medium	High	Low	Ž
3	TP - 3	Clayey SILT with sand and trace amount of gravels	Slightly Acid	Very Low	Very Low	Low	Medium	row	
4	TP - 4	Clayey SILT with a little amount Sand.	Extremely Acid	Very Low	Very Low	Medium	Medium	row	Me
ŝ	TP - 5	Silty SAND with some clay	Slightly Acid	Very Low	Very Low	Low	Medium	Low	1
9	TP - 6	Silty CLAY with sand and trace amount of gravels.	Moderately Acid	Very Low	Very Low	Low	Medium	Low	
N	TP - 7	Silty CLAY with a little amount Sand.	Extremely Acid	Very Low	Very Low	Low	Medium	Medium	

Table 6.2.2Result of Trial Excavation (2)

Data 3. Study on Water Hammer for Transmission and Distribution Pump in Nyaunghnapin First Phase WTP (Analysis of Water Hammer Prevention)

Water Hammer Analysis and Countermeasure

1. General

The Water/Transmission/Distribution Pump Station in Nyaunghnapin First phase WTP supplies water to the Yangon downtown area at a distance of about 40 km through the water transmission pipeline. When power failure has happens, the water transmission pumps stops suddenly. Then water hammer generates in the water transmission pipeline and result in water column separation and backflow. As a result of it, the said pump station and pipeline are damaged.

In order to avoid such damages, the water hammer analysis is made and water hammer preventive measures are made based on the water hammer analysis.

2. Water Transmission Pipeline Route and Pipeline Materials

The water transmission pipeline route is shown below. On the elevation of the pipeline essential for water hammer analysis between the pump station and the maximum highest point (Node 4'), topographic survey was made. Meanwhile on the elevation of the pipeline between maximum highest point and the end points (Node 6, 7 & 8), GIS data were used for water hammer analysis. The materials for the pipeline are as follows;

-Main pipeline from Pump Station to Node 1: Steel Pipe
-Main pipeline from Node 1 to the ends (Node 6, 7 & 8): Pre-stressed Concrete Pipe
-Branch pipeline from Node 2 to Node 3: Ductile Iron Pipe
The water analysis was made based on the abovementioned materials.

3. Existing Water Transmission/Distribution Pump Station

The schematic plan for the existing pump station system is shown below.

Nyaunghnapin First phase WTP Water Transmission/Distribution Pump Station System

As shown in the above figure, the existing pump station has two air vessels for water hammer prevention. Therefore water hammer analysis for the existing pump station is made with these two air vessels.

4. Flow Rate of Water Transmission/Distribution Pipeline

The flow rates were measured at a few points of the water treatment plant and the water transmission pipeline in order to grasp the flow rate in the water transmission pipeline. The flow rate of each Node was estimated based on the measured data and the capacity (204,500 m^3/day) of the water treatment plant. The result of it is shown below;

-Node 2: 1,313 m³/hr -Node 3: 3,333 m³/hr -Node 6: 979 m³/hr -Node 7: 1,033 m³/hr -Node 8: 1,863 m³/hr

The water hammer analysis is made based on the above flow rate.

5. Water Hammer Analysis for Existing Water Transmission/Distribution System

The water hammer analysis for the existing water transmission/distribution system was made based on the above clause 3 & 4. The result of water hammer analysis for water transmission pipeline up to each Node is shown in Figure 6.3.1 to 6.3.4. The location where the maximum negative pressure occurs and its value are shown the below table.

Pipeline Route of Water	Location of Max. Negative Pressure	Max.		Rema	rks
Hammer Analysis		Negative			
		Pressure			
From Pump Station to Node 3	Around Node 2	- 7.9m	Refer	to	Attachment
			(Figure-6	.3.4)	
From Pump Station to Node 6	Around Node 4' (Highest Point)	- 9.7m	Refer	to	Attachment
			(Figure-6	.3.1)	
	Around 7 km upper stream from Node 6	- 7.0m	Refer	to	Attachment
			(Figure-6	.3.1)	
From Pump Station to Node 7	Around Node 4' (Highest Point)	- 9.7m	Refer	to	Attachment
			(Figure-6	.3.2)	
	Around 6.5 km upper stream from Node 7	- 7.0m	Refer	to	Attachment
			(Figure-6	.3.2)	
From Pump Station to Node 8	Around Node 4' (Highest Point)	- 9.7m	Refer	to	Attachment
			(Figure-6	.3.3)	

From the above table, the locations where water column separation may occur are four places as shown below;

- 1) Around Node 2 (Max. negative pressure: 7.9 m)
- 2) Around Node 4'(Highest point) (Max. negative pressure: 9.7 m)
- 3) Around 7 km upper stream from Node 6 (Max. negative pressure: 7.0 m)
- 4) Around 6.5 km upper stream from Node 7 (Max. negative pressure: 7.0 m)

6. Countermeasure for Water Hammer Prevention

When the temperature of clear water is 30, clear water evaporates below - 9.9m of negative pressure. However, countermeasures for water hammer prevention are taken when water pressure becomes below - 7.0 m of negative pressure taking safety factor into consideration.

Based on water hammer analysis described in the above clause 5, air valves at four places, where water column separation may occur, are installed. Accordingly water pressure at four places increase and no column separation occurs.

Meanwhile, the negative pressure between the pump station and the air vessels shows - 3.0 m, Although no water column separation occurs at this place, the air valves shall be provided as back-up of air supply by the air vessels.

Finally the air valves are installed at five places. The installation places of the air valves are shown below.

Number of Air Valve	Installation Place
Air Valve1	Between Pump Station and Air Vessels
Air Valve2	Approx. 0.5 m upstream from Node 2
Air Valve3	Around Node 4 [•] (highest elevation of pipeline)
Air Valve4	Approx. 7 km upstream from Node 6
Air Valve5	Approx. 6.5 km upstream from Node 7

Meanwhile, when power failure happens at the pump station, backflow is generated and water

Appendix-66

hammer occurs by delay of shutoff of the check valve. As a result of it, water pressure is increased at upstream of the check valve. To avoid it, the swing type quick shutoff water hammer free check valve with counterweight and bypass valve is used instead of the existing swing type check valve. The water hammer free check valve has no pressure increase due to backflow when power failure happens.

7. Water Hammer Analysis after Countermeasure for Water Hammer Prevention

When the countermeasure shown in the above clause 6 is taken, the analysis of water hammer is made from the pump station to each Node. The result of analysis is shown in Figure 6.3.5 to 6.3.8 of the attachment. The maximum negative pressure and its place are shown below.

Pipeline Route of Water	Location of Max. Negative Pressure	Max. Negative	Remarks
Hammer Analysis		Pressure	
From Pump Station to Node 3	Around Node 2	-0.0 m	Refer to Attachment (Figure-6.3.8)
From Pump Station to Node 6	Approx. 5.0 km upstream from Node 4	-2.5 m	Refer to Attachment (Figure-6.3.5)
	Approx. 10.5 km upper stream from Node 6	-3.6 m	Refer to Attachment (Figure-6.3.5)
From Pump Station to Node 7	Approx. 5.0 km upstream from Node 4	-2.5 m	Refer to Attachment (Figure-6.3.6)
	Approx, 10 km upper stream from Node 7	-3.8 m	Refer to Attachment (Figure-6.3.6)
From Pump Station to Node 8	Approx. 10.0 km upstream from Node 8	-1.8 m	Refer to Attachment (Figure-6.3.7)

From the above table, the maximum negative pressure is -3.8 m and there is no water column separation even if power failure happens.

8. Conclusion

As a result of the above water hammer analysis and countermeasure, water column separation and water pressure increase due to water hammer when power failure happens can be avoided. The summary of countermeasure for water hammer is described below;

- 1) The existing air vessels are used as it is.
- 2) The air values are installed on five places of the water transmission pipeline so that the maximum negative pressure can become over -7.0 m. Two air values are installed at one place because the air value is required to take maintenance work periodically to keep proper function.
- 3) The swing type quick shutoff water hammer free check valve with counterweight and bypass valve is used instead of the existing swing type check valve. The water hammer free check valve has no pressure increase due to backflow when power failure happens.

9. Attachment

- 1) Figure 6.3.1 Water Hammer Analysis (without countermeasure): Node 6
- 2) Figure 6.3.2 Water Hammer Analysis (without countermeasure): Node 7

- 3) Figure 6.3.3 Water Hammer Analysis (without countermeasure): Node 8
- 4) Figure 6.3.4 Water Hammer Analysis (without countermeasure): Node 3
- 5) Figure 6.3.5 Water Hammer Analysis (with countermeasure): Node 6
- 6) Figure 6.3.6 Water Hammer Analysis (with countermeasure): Node 7
- 7) Figure 6.3.7 Water Hammer Analysis (with countermeasure): Node 8
- 8) Figure 6.3.8 Water Hammer Analysis (with counter measure): Node 3

Appendix-71

Appendix-72

Appendix-73

Appendix-74

Appendix-75

Appendix-76

Data 4. Replacement of distribution network in Block 1 to 6 in Yankin Township

(1) Target Year

The target year of replacement of distribution network is recommended as the completion year of this construction work; however, in order to meet the future water demand, the diameter of pipeline shall be made larger and replacement work shall be implemented again. Therefore, to avoid such a situation, the water distribution pipeline in Yankin Township is designed based on the target year planned as year 2025 which is after 10 years from completion year.

(2) Planned population served and Planned water supply amount

Based on the planned water supply amount in 2025 estimated in "The Preparatory Survey Study for the Improvement of Water Supply, Sewerage and Drainage System in Yangon City, the planned water supply amount in Block 1 to 6 where it is target area in the Project. The result of estimation is shown in the Table 6.4.2. The Table 6.4.1 shows design criteria for estimation of planned water supply amount.

Items	Year	2011	2025
Per capita water supply	lpcd	139	150
Rate of population served	%	85%	100%
Rate of domestic water supply and non-domestic water supply	%	60:40	60:40
Rate of water leakage	%	50	25

 Table 6.4.1
 Design criteria for estimation of planned water supply amount

Table 6.4.2	Estimation of the	planned water supply	v in Block 1	to 6 in	Yankin Township

Items	Population		Population served		Daily average water supply (m ³ /d)		Daily maximum water supply (m ³ /d)	
	2011	2025	2011	2025	2011	2025	2011	2025
Whole Yankin Township	107,023	125,909			49,586	41,969	54,545	46,166
Block 1 to 6	19,888	23,398	19,832	23,332	9,189	7,777	10,108	8,555

Daily maximum coefficient: 1.1

(3) Planned water supply pressure

The planned minimum water pressure in this Project is 0.15Mpa.

(4) Distribution network analysis and flow system

The network analysis software EPANET2 of the US EPA is used to decide the diameters of the water transmission and distribution system. The Hazen-Williams equation below is used for loss calculations for pipelines.

- H = $10.666 \text{ C}^{-1.85} \text{ D}^{-4.87} \text{ Q}^{1.85} \cdot \text{L}$
- H: Friction loss (m)
- Q : Flow rate (m^3/sec)
- D: Pipeline diameter (m)
- L: Pipeline length (m)
- C = Hazen-Williams Head Loss Coefficient (110 used for new pipes for the project)
- (5) Setting of DMAs (District Metering Area)

The whole distribution network in the Project area is divided into the DMAs from the viewpoint of administrative district boundaries, topography and geography

The whole distribution network in the Project area is divided into the DMAs from the viewpoint of administrative district boundaries, topography and geography. The setting of DMA is done by followings. As for a scale of

DMA, according to Non-Revenue Water Control in World Bank Project or other similar Project, the recommended number of house connections is 2,000.

Figure 6.4.1 Setting of DMA and Location of branch pipe

The number of house connections is 4,350 and if the number of house connections per DMA is assumed 2,000, the total number of DMAs in Block 1 to 6 is 2. Considering viewpoints of topography and condition of the road, the planning of 2 DMAs is appropriate. The result of the study of setting of DMAs was reported to YCDC and the result was approved.

In each DMA, the distribution network to supply enough amount of water for peak demand is planned and it targets 24 hours water supply. If it reaches 24 hours water supply, it is possible to remove private wells, private pumps and roof tanks in each household. Furthermore, interfusion of sewage by negative pressure can be avoided and it is possible to carry out safety water supply.

Water supply to Block 1 to 6 in Yankin Township where it is the target area in this Project is shown in the Figure 6.4.2 and started from transmission and distribution pipe (dia. 1,400mm) of Yegu

pumping station. Red marks in Figure 6.4.1 shows branch points from φ 1400mm pipeline to each DMA.

(6) Distribution network plan

Based on the result of distribution network analysis, the replacement length of distribution network is estimated and shown in the following.

Township								
Diameter	Length(m)							
(mm)	DMA1	DMA2	Total(m)					
400	30	30	60					
350	2,770	2,490	5,260					
200	3,620	1,100	4,720					
150	1,750	320	2,070					
100	5,310	5,240	10,550					
Total (m)	13,480	9,180	22,660					

Table 6.4.3	Outline length of replacement of distribution network in Block 1 to 6 in Yankin

The pipe material with diameter of upper 200mm is ductile iron pipe (DIP) and the pipe material with diameter of 150mm and 100mm is polyvinyl chloride pipe (PVC, rubber ring type). In the existing distribution network, old type of cast-iron pipe, steel pipe and PVC pipe are mainly installed; however, DIP is adopted because it is generally used, high intensity and high workability. The pipe material with small diameter is PVC; however, the joint method of pipe is changed from an existing joint by adhesion bond to push-on joint by rubber ring to reduce water leakage by construction failure. The planned distribution network route is shown in Figure 6.4.2.

Figure 6.4.2 Planned distribution networks in Block 1 to 6 in Yankin Township

(7) Selection of the installation method of distribution pipe.

It is difficult to stop transmission and distribution water from Yegu pumping station in the time of implementation of connection construction for branch pipe which is starting point of replacement of distribution network, from the existing pipeline with diameter of 1400mm. Thus, the under pressure tapping method is adopted for this construction method. The number of lanes for the main road in the target area of a replacement of distribution network is 2 lanes each way. The main pipeline with diameter of 350mm is installed at the side of main road and the laying work is implemented by open cut method after transportation is controlled. As for crossing main road of pipeline with diameter of 200mm, open cut method is adopted for laying work in the time when a volume of traffic is low. According to the result of considering method for crossing drainage and pipeline with diameter of 1400mm has disadvantage from an economical and technical standpoint and Water Pipe Bridge is adopted. The types of Water Pipe Bridge are pipe beam type, if crossing length above drainage and pipe is short and π stiffening type, if it is long and it needs support intensity. The followings show diameter and length of Water Pipe Bridge.

Diameter	Outline length of
(mm)	Water Pipe Bridge (m)
350	25
350	20
350	20
350	20
350	20
200	10

 Table 6.4.4
 Diameter and length of Water Pipe Bridge

Data 5. Result of Hydraulic Calculation of Distribution Network in Block 1 to 6 in Yankin Township(1) Network model

(2) Result of network analysis

Node

ID	Elevation	Demand	Head	Pressure	ID	Elevation	Demand	Head	Pressure
ID	m	m3/d	m	m	ID	m	m3/d	m	m
Junc 3	10.8	0.00	32.85	22.05	Junc 151	9.8	61.95	32.52	22.72
Junc 4	10.8	0.00	32.83	22.03	Junc 152	9.5	61.95	32.52	23.02
Junc 5	10.4	61.95	32.82	22.42	Junc 153	9.5	61.95	32.53	23.03
Junc 6	10.1	61.95	32.63	22.53	Junc 154	9.5	61.95	32.53	23.03
Junc 7	10.2	0.00	32.70	22.50	Junc 155	9.7	61.95	32.52	22.82
Junc 8	10.5	0.00	32.63	22.13	Junc 156	9.7	61.95	32.52	22.82
Junc 9	10.6	0.00	32.62	22.02	Junc 157	10.0	61.95	32.52	22.52
Junc 10	10.6	0.00	32.61	22.01	Junc 158	10.2	61.95	32.51	22.31
Junc 11	10.6	0.00	32.60	22.00	Junc 159	10.2	61.95	32.51	22.31
Junc 12	10.6	61.95	32.59	21.99	Junc 160	10.3	61.95	32.51	22.21
Junc 14	10.7	0.00	32.59	21.89	Junc 161	10.8	61.95	32.51	21.71
Junc 15	10.5	61.95	32.59	22.09	Junc 162	10.7	61.95	32.52	21.82
Junc 17	10.5	0.00	32.58	22.08	Junc 163	10.7	61.95	32.52	21.82
Junc 18	10.6	61.95	32.57	21.97	Junc 164	11.0	61.95	32.52	21.52
Junc 19	10.1	0.00	32.57	22.47	Junc 165	10.9	0.00	32.52	21.62
Junc 21	10.1	61.95	32.57	22.47	Junc 167	11.1	61.95	32.52	21.42
Junc 22	9.7	61.95	32.53	22.83	Junc 169	10.9	61.95	32.53	21.63
Junc 23	9.4	61.95	32.52	23.12	Junc 171	11.0	61.95	32.55	21.55
Junc 24	9.4	0.00	32.56	23.16	Junc 172	10.4	61.95	32.61	22.21
Junc 25	8.9	0.00	32.56	23.66	Junc 173	9.4	61.95	32.52	23.12
Junc 26	9.0	61.95	32.56	23.56	Junc 174	8.9	61.95	32.50	23.60
Junc 27	9.0	61.95	32.53	23.53	Junc 175	9.1	61.95	32.50	23.40
Junc 28	9.0	61.95	32.54	23.54	Junc 176	9.6	61.95	32.50	22.90
Junc 29	9.7	61.95	32.57	22.87	Junc 177	10.6	0.00	31.58	20.98
Junc 30	10.2	61.95	32.57	22.37	Junc 178	9.3	61.95	31.50	22.20
Junc 31	10.4	0.00	32.57	22.17	Junc 179	9.1	0.00	31.52	22.42
June 32	10.4	61.95	32.57	22.17	Junc 180	9.2	61.95	31.52	22.32
June 33	10.8	61.95	32.57	21.77	Junc 181	9.2	0.00	31.49	22.29
Junc 35	11.8	61.95	32.55	20.75	Junc 182	9.0	61.95	31.45	22.45
Junc 36	13.0	0.00	32.58	19.58	Junc 183	9.0	61.95	31.45	22.45
Junc 37	12.7	61.95	32.55	19.85	Junc 184	8.6	61.95	31.46	22.86
Junc 38	12.4	0.00	32.58	20.18	Junc 185	8.5	0.00	31.47	22.97
Junc 39	12.5	61.95	32.58	20.08	Junc 187	8.3	61.95	31.45	23.15
Junc 41	12.5	0.00	32.58	20.08	Junc 188	8.2	0.00	31.46	23.26
Junc 42	13.3	61.95	32.59	19.29	Junc 190	8.3	61.95	31.45	23.15
Junc 43	14.1	61.95	32.57	18.47	Junc 191	8.3	0.00	31.46	23.16
Junc 44	14.6	61.95	32.57	17.97	Junc 192	8.0	61.95	31.44	23.44
Junc 45	14.7	61.95	32.57	17.87	Junc 193	7.7	61.95	31.43	23.73
Junc 46	15.0	61.95	32.60	17.60	Junc 194	8.1	61.95	31.45	23.35
Junc 47	14.5	61.95	32.59	18.09	Junc 195	7.8	0.00	31.45	23.65
Junc 48	15.0	0.00	32.60	17.60	Junc 197	8.2	61.95	31.45	23.25
Junc 49	14.7	61.95	32.60	17.90	Junc 198	7.9	0.00	31.45	23.55
Junc 50	14.7	0.00	32.61	17.91	June 200	8.1	61.95	31.45	23.35
Junc 51	14.9	0.00	32.61	17.71	June 201	8.0	0.00	31.45	23.45

ID	Elevation	Demand	Head	Pressure	ID	Elevation	Demand	Head	Pressure
ID	m	m3/d	m	m	ID	m	m3/d	m	m
Junc 52	14.8	61.95	32.61	17.81	Junc 203	8.5	61.95	31.45	22.95
Junc 53	14.7	61.95	32.61	17.91	Junc 204	8.2	0.00	31.45	23.25
Junc 54	14.0	61.95	32.65	18.65	June 205	9.8	61.95	31.44	21.64
Junc 55	14.3	0.00	32.64	18.34	June 206	10.7	61.95	31.45	20.75
Junc 56	14.4	61.95	32.64	18.24	Junc 207	12.5	0.00	31.46	18.96
Junc 57	14.0	0.00	32.65	18.65	Junc 208	9.7	61.95	31.45	21.75
Junc 58	14.0	0.00	32.65	18.65	Junc 209	10.3	0.00	31.48	21.18
Junc 59	14.0	61.95	32.65	18.65	June 210	10.0	61.95	31.48	21.48
Junc 60	13.1	61.95	32.67	19.57	Junc 211	10.4	0.00	31.48	21.08
Junc 61	13.2	61.95	32.65	19.45	Junc 212	10.1	61.95	31.48	21.38
Junc 62	13.2	0.00	32.68	19.48	June 213	11.0	0.00	31.50	20.50
Junc 63	13.3	0.00	32.73	19.43	Junc 214	10.5	61.95	31.47	20.97
Junc 64	13.3	61.95	32.66	19.36	June 215	10.2	61.95	31.47	21.27
Junc 65	12.9	61.95	32.73	19.83	Junc 216	10.4	0.00	31.52	21.12
Junc 66	11.3	0.00	32.77	21.47	Junc 217	10.0	61.95	31.51	21.51
Junc 67	10.5	61.95	32.62	22.12	Junc 219	10.0	0.00	31.53	21.53
Junc 68	10.5	61.95	32.60	22.10	June 220	10.0	61.95	31.53	21.53
Junc 69	10.5	61.95	32.59	22.09	Junc 221	9.8	0.00	31.56	21.76
Junc 70	10.5	61.95	32.58	22.08	Junc 222	9.3	61.95	31.41	22.11
Junc 71	10.9	61.95	32.57	21.67	June 223	9.1	61.95	31.36	22.26
Junc 72	10.5	61.95	32.60	22.10	Junc 224	8.9	61.95	31.37	22.47
Junc 73	10.5	61.95	32.59	22.09	June 225	9.1	61.95	31.39	22.29
Junc 74	10.7	61.95	32.58	21.88	June 226	9.1	61.95	31.37	22.27
Junc 75	10.8	61.95	32.57	21.77	June 227	9.1	61.95	31.36	22.26
Junc 76	11.0	61.95	32.56	21.56	Junc 228	9.1	61.95	31.35	22.25
Junc 77	11.3	61.95	32.57	21.27	Junc 229	9.2	61.95	31.33	22.13
Junc 79	11.0	61.95	32.56	21.56	June 230	9.1	61.95	31.34	22.24
Junc 80	10.5	61.95	32.56	22.06	Junc 231	9.1	61.95	31.34	22.24
Junc 82	10.8	61.95	32.56	21.76	June 232	9.1	61.95	31.34	22.24
Junc 83	10.2	61.95	32.56	22.36	June 233	9.1	61.95	31.34	22.24
Junc 84	11.5	61.95	32.56	21.06	Junc 234	9.0	61.95	31.33	22.33
Junc 85	11.5	61.95	32.56	21.06	June 235	8.6	61.95	31.33	22.73
Junc 86	11.4	61.95	32.56	21.16	Junc 236	8.6	61.95	31.33	22.73
Junc 87	11.0	61.95	32.56	21.56	June 237	8.5	61.95	31.34	22.84
Junc 88	11.5	61.95	32.54	21.04	Junc 238	8.4	61.95	31.30	22.90
Junc 89	12.0	61.95	32.54	20.54	Junc 239	8.4	61.95	31.30	22.90
Junc 90	12.0	61.95	32.55	20.55	Junc 240	8.3	61.95	31.29	22.99
Junc 91	10.0	61.95	32.55	22.55	Junc 241	9.0	61.95	31.32	22.32
Junc 92	10.2	61.95	32.55	22.35	Junc 242	8.8	61.95	31.32	22.52
Junc 93	10.4	61.95	32.53	22.13	Junc 243	9.1	61.95	31.34	22.24
Junc 94	11.7	61.95	32.58	20.88	Junc 244	9.0	61.95	31.34	22.34
Junc 95	11.8	61.95	32.58	20.78	June 245	8.7	61.95	31.31	22.61
Junc 96	11.3	61.95	32.57	21.27	Junc 246	8.4	61.95	31.29	22.89
Junc 97	11.5	61.95	32.55	21.05	Junc 247	8.8	61.95	31.29	22.49
Junc 100	12.6	61.95	32.57	19.97	Junc 248	8.2	61.95	31.28	23.08
Junc 102	13.3	61.95	32.58	19.28	Junc 249	8.1	61.95	31.28	23.18
June 103	13.2	61.95	32.58	19.38	June 250	9.0	61.95	31.35	22.35

ID	Elevation	Demand	Head	Pressure	ID	Elevation	Demand	Head	Pressure
ID	m	m3/d	m	m	ID	m	m3/d	m	m
Junc 104	14.0	61.95	32.59	18.59	Junc 251	8.9	61.95	31.36	22.46
Junc 105	13.2	61.95	32.56	19.36	Junc 252	9.2	61.95	31.34	22.14
Junc 106	13.4	61.95	32.61	19.21	June 253	8.7	61.95	31.40	22.70
Junc 107	11.2	61.95	32.63	21.43	Junc 254	9.2	61.95	31.35	22.15
Junc 110	13.2	61.95	32.67	19.47	June 255	8.9	61.95	31.37	22.47
Junc 111	11.2	61.95	32.66	21.46	Junc 256	8.7	61.95	31.39	22.69
June 112	12.0	61.95	32.70	20.70	June 257	9.2	61.95	31.39	22.19
Junc 113	13.0	61.95	32.70	19.70	Junc 258	8.7	61.95	31.41	22.71
Junc 114	12.5	61.95	32.70	20.20	Junc 259	9.0	61.95	31.42	22.42
Junc 115	11.9	61.95	32.71	20.81	Junc 260	9.7	61.95	31.45	21.75
Junc 116	11.2	61.95	32.77	21.57	Junc 261	9.3	61.95	31.45	22.15
Junc 117	10.4	61.95	32.79	22.39	Junc 262	10.1	61.95	31.47	21.37
Junc 122	15.0	61.95	32.58	17.58	Junc 263	10.1	61.95	31.47	21.37
June 123	14.8	61.95	32.59	17.79	Junc 264	10.0	61.95	31.47	21.47
Junc 124	14.7	61.95	32.60	17.90	Junc 265	9.8	61.95	31.47	21.67
June 125	14.8	61.95	32.59	17.79	Junc 266	9.5	61.95	31.45	21.95
Junc 126	14.9	61.95	32.59	17.69	Junc 274	10.1	61.95	31.47	21.37
Junc 127	15.1	61.95	32.59	17.49	Junc 275	10.3	61.95	31.46	21.16
Junc 128	15.2	61.95	32.59	17.39	Junc 276	10.4	61.95	31.46	21.06
Junc 129	15.7	61.95	32.59	16.89	Junc 277	10.3	61.95	31.46	21.16
Junc 130	16.1	61.95	32.59	16.49	Junc 278	10.2	61.95	31.46	21.26
Junc 136	13.9	61.95	32.63	18.73	Junc 279	10.1	61.95	31.48	21.38
Junc 137	14.0	61.95	32.60	18.60	Junc 280	10.1	61.95	31.48	21.38
Junc 138	10.5	0.00	32.64	22.14	Junc 281	10.1	61.95	31.48	21.38
Junc 139	10.2	61.95	32.62	22.42	Junc 282	10.1	61.95	31.44	21.34
Junc 140	10.2	61.95	32.61	22.41	Junc 290	9.8	61.95	31.55	21.75
Junc 141	10.8	61.95	32.57	21.77	Junc 293	10.3	61.95	31.54	21.24
Junc 142	10.7	61.95	32.55	21.85	Junc 34	9.5	61.95	31.31	21.81
Junc 143	10.9	61.95	32.54	21.64	Junc 119	10.8	0.00	31.46	20.66
Junc 144	10.8	61.95	32.53	21.73	Junc 13	10.8	0.00	32.57	21.77
Junc 145	10.5	61.95	32.52	22.02	Junc 16	10.5	61.95	32.58	22.08
Junc 146	10.5	61.95	32.52	22.02	Junc 20	10.5	61.95	32.58	22.08
Junc 147	10.6	61.95	32.52	21.92	Junc 40	10.5	61.95	32.58	22.08
Junc 148	10.1	61.95	32.52	22.42	Junc 98	10.5	0.00	32.80	22.30
Junc 149	10.0	61.95	32.52	22.52	Junc 99	10.2	61.95	32.80	22.60
June 150	10.0	61.95	32.52	22.52	Junc 78	9.4	61.95	32.50	23.10
					Junc 81	9.2	0.00	32.51	23.31

Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss	Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss
	m	mm		m3/d	m/s	m/km		m	mm		m3/d	m/s	m/km
Pipe 2	28.8	400	110	7929.6	0.7	1.8	Pipe 210	174.9	350	110	680.1	0.1	0.0
Pipe 3	17.4	350	110	3953.4	0.5	1.0	Pipe 211	59.0	350	110	530.0	0.1	0.0
Pipe 4	145.9	350	110	3717.8	0.5	0.9	Pipe 212	57.9	350	110	-176.2	0.0	0.0
Pipe 5	72.6	350	110	3717.8	0.5	0.9	Pipe 213	50.4	350	110	-281.9	0.0	0.0
Pipe 6	14.2	350	110	2600.1	0.3	0.5	Pipe 215	3.4	150	110	207.5	0.1	0.3
Pipe 7	46.7	350	110	2049.9	0.3	0.3	Pipe 216	86.3	150	110	91.1	0.1	0.1
Pipe 8	44.7	350	110	1948.8	0.2	0.3	Pipe 217	158.5	150	110	-76.2	0.1	0.0
Pipe 9	54.7	350	110	1851.5	0.2	0.2	Pipe 218	70.2	150	110	-138.2	0.1	0.1
Pipe 10	59.9	350	110	1440.1	0.2	0.2	Pipe 219	183.5	100	110	29.9	0.0	0.1
Pipe 11	53.7	350	110	1361.7	0.2	0.1	Pipe 220	116.3	100	110	-32.1	0.1	0.1
Pipe 12	93.2	350	110	1229.9	0.2	0.1	Pipe 221	375.8	350	110	-721.5	0.1	0.0
Pipe 13	182.9	350	110	815.2	0.1	0.1	Pipe 222	57.4	350	110	-1006.2	0.1	0.1
Pipe 14	179.7	350	110	-235.3	0.0	0.0	Pipe 223	203.7	350	110	-1146.5	0.1	0.1
Pipe 15	225.4	350	110	-630.9	0.1	0.0	Pipe 224	186.7	350	110	-1146.5	0.1	0.1
Pipe 16	76.7	350	110	-445.7	0.1	0.0	Pipe 225	101.2	350	110	-1336.2	0.2	0.1
Pipe 17	111.6	350	110	-500.8	0.1	0.0	Pipe 226	85.9	350	110	-1947.9	0.2	0.3
Pipe 19	98.5	350	110	-575.6	0.1	0.0	Pipe 227	91.2	350	110	-2146.4	0.3	0.3
Pipe 20	53.9	350	110	-715.6	0.1	0.0	Pipe 228	5.6	200	110	611.7	0.2	0.5
Pipe 21	84.9	350	110	-715.6	0.1	0.0	Pipe 229	117.8	200	110	562.4	0.2	0.4
Pipe 22	187.0	350	110	-1125.9	0.1	0.1	Pipe 230	10.4	200	110	422.9	0.2	0.2
Pipe 23	38.2	350	110	-1418.7	0.2	0.2	Pipe 231	21.2	200	110	361.0	0.1	0.2
Pipe 24	28.0	350	110	-1575.8	0.2	0.2	Pipe 232	28.7	200	110	232.5	0.1	0.1
Pipe 25	123.0	350	110	-1776.1	0.2	0.2	Pipe 233	53.8	200	110	108.2	0.0	0.0
Pipe 26	34.2	350	110	-1915.5	0.2	0.3	Pipe 234	32.7	200	110	25.1	0.0	0.0
Pipe 27	4.0	350	110	-1967.0	0.2	0.3	Pipe 235	36.2	200	110	-36.9	0.0	0.0
Pipe 28	94.2	350	110	-2034.9	0.2	0.3	Pipe 236	71.6	200	110	-160.8	0.1	0.0
Pipe 29	122.2	350	110	-2597.5	0.3	0.5	Pipe 237	4.2	200	110	-284.7	0.1	0.1
Pipe 30	67.3	350	110	-2913.2	0.4	0.6	Pipe 238	5.6	150	110	198.5	0.1	0.2
Pipe 32	48.4	200	110	550.2	0.2	0.4	Pipe 254	6.1	100	110	189.7	0.3	1.6
Pipe 33	47.6	200	110	488.2	0.2	0.3	Pipe 255	107.7	100	110	103.3	0.2	0.5
Pipe 34	26.0	200	110	426.3	0.2	0.2	Pipe 256	8.0	100	110	-20.6	0.0	0.0
Pipe 35	46.9	200	110	403.5	0.2	0.2	Pipe 257	26.9	100	110	-5.0	0.0	0.0
Pipe 36	55.2	200	110	376.9	0.1	0.2	Pipe 258	29.8	100	110	-0.4	0.0	0.0
Pipe 37	16.3	200	110	253.0	0.1	0.1	Pipe 259	94.8	100	110	-62.3	0.1	0.2
Pipe 38	39.6	200	110	360.1	0.1	0.2	Pipe 260	79.0	100	110	62.0	0.1	0.2
Pipe 41	92.2	100	110	-28.7	0.0	0.1	Pipe 261	91.6	100	110	-77.6	0.1	0.3
Pipe 42	40.5	200	110	-226.2	0.1	0.1	Pipe 262	94.0	100	110	-66.5	0.1	0.2
Pipe 43	35.7	200	110	-288.1	0.1	0.1	Pipe 264	105.6	100	110	86.3	0.1	0.4
Pipe 44	5.2	200	110	-414.8	0.2	0.2	Pipe 275	104.8	100	110	62.0	0.1	0.2
Pipe 45	48.8	100	110	-39.2	0.1	0.1	Pipe 276	63.5	100	110	21.1	0.0	0.0
Pipe 46	45.0	100	110	-101.1	0.2	0.5	Pipe 277	64.7	100	110	-40.8	0.1	0.1
Pipe 47	47.8	100	110	-35.3	0.1	0.1	Pipe 278	4.0	100	110	-140.4	0.2	0.9
Pipe 48	46.6	100	110	-97.3	0.1	0.5	Pipe 279	136.3	100	110	37.6	0.1	0.1
Pipe 49	35.3	150	110	-169.1	0.1	0.2	Pipe 280	139.7	100	110	62.0	0.1	0.2

Link

Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss	Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss
	m	mm		m3/d	m/s	m/km		m	mm		m3/d	m/s	m/km
Pipe 50	40.2	150	110	-231.0	0.2	0.3	Pipe 1	4.7	250	110	1336.9	0.3	0.7
Pipe 51	5.2	150	110	-411.5	0.3	0.9	Pipe 281	71.4	200	110	1124.9	0.4	1.5
Pipe 55	6.9	100	110	-78.3	0.1	0.3	Pipe 282	19.0	200	110	944.0	0.4	1.1
Pipe 57	39.8	100	110	-33.2	0.1	0.1	Pipe 283	22.4	200	110	882.1	0.3	0.9
Pipe 58	35.6	100	110	-95.2	0.1	0.4	Pipe 284	16.5	200	110	627.7	0.2	0.5
Pipe 59	6.4	100	110	-131.8	0.2	0.8	Pipe 285	62.1	200	110	441.8	0.2	0.3
Pipe 61	63.4	100	110	62.0	0.1	0.2	Pipe 286	109.7	200	110	204.0	0.1	0.1
Pipe 62	41.7	200	110	298.2	0.1	0.1	Pipe 287	14.5	200	110	-143.0	0.1	0.0
Pipe 63	21.9	200	110	174.3	0.1	0.1	Pipe 288	103.7	200	110	-286.5	0.1	0.1
Pipe 64	47.4	200	110	50.4	0.0	0.0	Pipe 289	20.7	200	110	-410.4	0.2	0.2
Pipe 65	47.6	200	110	-73.5	0.0	0.0	Pipe 290	51.2	200	110	-381.5	0.1	0.2
Pipe 66	76.8	100	110	62.0	0.1	0.2	Pipe 291	73.9	200	110	-505.4	0.2	0.3
Pipe 67	74.8	100	110	62.0	0.1	0.2	Pipe 292	46.0	200	110	-544.0	0.2	0.4
Pipe 68	74.4	100	110	62.0	0.1	0.2	Pipe 293	90.6	200	110	-607.7	0.2	0.5
Pipe 69	3.7	100	110	235.6	0.4	2.3	Pipe 294	3.5	250	110	-706.3	0.2	0.2
Pipe 70	144.5	100	110	173.6	0.3	1.3	Pipe 295	82.8	100	110	62.0	0.1	0.2
Pipe 71	82.4	100	110	100.1	0.2	0.5	Pipe 296	159.8	100	110	88.0	0.1	0.4
Pipe 72	79.8	100	110	38.1	0.1	0.1	Pipe 297	4.3	100	110	301.7	0.4	3.7
Pipe 73	13.8	200	110	1117.7	0.4	1.4	Pipe 298	62.0	100	110	181.9	0.3	1.5
Pipe 74	71.1	100	110	-62.0	0.1	0.2	Pipe 299	41.9	100	110	48.8	0.1	0.1
Pipe 75	53.2	200	110	931.9	0.3	1.0	Pipe 300	75.8	100	110	-118.9	0.2	0.7
Pipe 76	21.1	200	110	808.0	0.3	0.8	Pipe 301	96.7	100	110	35.9	0.1	0.1
Pipe 77	23.5	200	110	684.1	0.3	0.6	Pipe 304	33.0	100	110	-62.0	0.1	0.2
Pipe 78	18.7	200	110	560.2	0.2	0.4	Pipe 305	35.5	100	110	-123.9	0.2	0.7
Pipe 79	44.4	200	110	343.2	0.1	0.2	Pipe 306	3.9	100	110	247.7	0.4	2.6
Pipe 80	51.2	200	110	243.8	0.1	0.1	Pipe 307	62.5	100	110	203.2	0.3	1.8
Pipe 81	57.5	200	110	158.9	0.1	0.0	Pipe 308	46.5	100	110	88.3	0.1	0.4
Pipe 82	80.1	200	110	27.5	0.0	0.0	Pipe 309	11.0	100	110	-60.1	0.1	0.2
Pipe 83	43.1	200	110	-46.1	0.0	0.0	Pipe 310	77.0	100	110	-71.6	0.1	0.3
Pipe 84	27.6	200	110	-120.7	0.0	0.0	Pipe 311	42.3	100	110	105.7	0.2	0.5
Pipe 85	50.3	200	110	-198.1	0.1	0.1	Pipe 312	18.6	100	110	82.2	0.1	0.3
Pipe 86	49.3	200	110	-285.3	0.1	0.1	Pipe 313	43.2	100	110	50.4	0.1	0.1
Pipe 87	28.0	200	110	-386.0	0.1	0.2	Pipe 314	94.5	100	110	71.2	0.1	0.3
Pipe 88	11.4	200	110	602.6	0.2	0.5	Pipe 315	16.9	100	110	192.5	0.3	1.6
Pipe 89	76.3	200	110	230.9	0.1	0.1	Pipe 316	57.6	100	110	38.5	0.1	0.1
Pipe 90	45.0	200	110	168.9	0.1	0.0	Pipe 317	19.6	100	110	92.1	0.1	0.4
Pipe 91	46.0	200	110	145.7	0.1	0.0	Pipe 318	54.6	100	110	30.1	0.0	0.1
Pipe 92	53.1	200	110	109.0	0.0	0.0	Pipe 320	53.7	100	110	104.2	0.2	0.5
Pipe 93	27.3	200	110	62.5	0.0	0.0	Pipe 321	72.9	100	110	62.0	0.1	0.2
Pipe 94	42.2	200	110	13.2	0.0	0.0	Pipe 322	55.8	100	110	124.2	0.2	0.7
Pipe 95	68.4	200	110	-37.1	0.0	0.0	Pipe 323	33.1	100	110	86.7	0.1	0.4
Pipe 96	57.5	150	110	-29.6	0.0	0.0	Pipe 324	56.3	100	110	86.4	0.1	0.4
Pipe 97	54.1	150	110	-68.6	0.0	0.0	Pipe 325	45.7	100	110	24.5	0.0	0.0
Pipe 98	47.9	150	110	-93.1	0.1	0.1	Pipe 326	59.0	150	110	285.0	0.2	0.5
Pipe 99	28.6	150	110	-155.1	0.1	0.2	Pipe 327	57.3	100	110	86.5	0.1	0.4
Pipe 104	80.0	100	110	62.0	0.1	0.2	Pipe 328	26.9	100	110	136.6	0.2	0.9
Pipe 110	34.7	150	110	155.1	0.1	0.2	Pipe 329	119.2	100	110	-19.7	0.0	0.0

Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss	Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss
	m	mm		m3/d	m/s	m/km		m	mm		m3/d	m/s	m/km
Pipe 111	66.1	100	110	37.4	0.1	0.1	Pipe 330	56.8	100	110	-81.6	0.1	0.3
Pipe 112	81.0	100	110	23.0	0.0	0.0	Pipe 331	80.5	100	110	38.3	0.1	0.1
Pipe 113	88.2	200	110	69.4	0.0	0.0	Pipe 332	76.1	100	110	36.3	0.1	0.1
Pipe 114	90.5	100	110	12.7	0.0	0.0	Pipe 333	3.9	100	110	181.3	0.3	1.4
Pipe 115	92.8	100	110	15.5	0.0	0.0	Pipe 334	86.5	100	110	62.0	0.1	0.2
Pipe 116	88.4	100	110	25.2	0.0	0.0	Pipe 335	120.9	100	110	62.0	0.1	0.2
Pipe 117	89.6	100	110	38.8	0.1	0.1	Pipe 336	80.3	100	110	62.0	0.1	0.2
Pipe 118	18.6	150	110	309.8	0.2	0.5	Pipe 337	110.8	100	110	-90.9	0.1	0.4
Pipe 119	85.2	100	110	61.0	0.1	0.2	Pipe 338	92.1	100	110	-104.8	0.2	0.5
Pipe 121	86.1	150	110	-78.3	0.1	0.0	Pipe 339	3.1	100	110	-150.1	0.2	1.0
Pipe 123	4.9	150	110	395.6	0.3	0.9	Pipe 341	85.8	100	110	62.0	0.1	0.2
Pipe 124	51.5	150	110	185.9	0.1	0.2	Pipe 342	54.6	100	110	-23.4	0.0	0.0
Pipe 125	30.3	150	110	62.0	0.0	0.0	Pipe 343	61.2	100	110	-85.3	0.1	0.4
Pipe 126	83.5	100	110	62.0	0.1	0.2	Pipe 344	90.4	100	110	-88.1	0.1	0.4
Pipe 127	85.2	100	110	85.8	0.1	0.4	Pipe 345	4.3	100	110	-105.6	0.2	0.5
Pipe 128	92.1	100	110	62.0	0.1	0.2	Pipe 348	23.3	200	110	1050.5	0.4	1.3
Pipe 129	7.0	200	110	197.7	0.1	0.1	Pipe 349	82.5	100	110	62.0	0.1	0.2
Pipe 131	165.8	200	110	635.6	0.2	0.5	Pipe 350	82.9	100	110	62.0	0.1	0.2
Pipe 132	99.4	200	110	542.1	0.2	0.4	Pipe 351	81.3	100	110	62.0	0.1	0.2
Pipe 133	72.5	200	110	624.8	0.2	0.5	Pipe 352	88.5	100	110	11.7	0.0	0.0
Pipe 134	150.5	200	110	500.9	0.2	0.3	Pipe 353	59.9	100	110	44.3	0.1	0.1
Pipe 135	143.5	200	110	247.1	0.1	0.1	Pipe 354	54.0	100	110	60.7	0.1	0.2
Pipe 136	71.6	100	110	128.9	0.2	0.8	Pipe 355	92.8	100	110	35.4	0.1	0.1
Pipe 137	66.0	100	110	67.0	0.1	0.2	Pipe 356	106.1	100	110	-23.9	0.0	0.0
Pipe 138	45.5	100	110	-31.6	0.1	0.1	Pipe 357	118.4	100	110	26.1	0.0	0.0
Pipe 139	5.2	150	110	315.6	0.2	0.6	Pipe 358	94.2	100	110	22.0	0.0	0.0
Pipe 140	79.4	100	110	134.4	0.2	0.8	Pipe 359	78.1	100	110	4.6	0.0	0.0
Pipe 141	108.9	150	110	231.9	0.2	0.3	Pipe 360	58.9	100	110	-16.7	0.0	0.0
Pipe 142	84.3	150	110	206.7	0.1	0.3	Pipe 361	57.6	100	110	19.9	0.0	0.0
Pipe 143	68.7	150	110	144.7	0.1	0.1	Pipe 362	50.1	100	110	-24.5	0.0	0.0
Pipe 144	91.6	100	110	62.0	0.1	0.2	Pipe 363	329.3	350	110	-489.4	0.1	0.0
Pipe 146	64.7	100	110	-62.0	0.1	0.2	Pipe 364	87.7	350	110	-583.4	0.1	0.0
Pipe 147	125.3	200	110	-124.8	0.1	0.0	Pipe 365	23.8	100	110	-94.0	0.1	0.4
Pipe 148	126.7	200	110	-186.8	0.1	0.1	Pipe 366	132.0	100	110	24.4	0.0	0.0
Pipe 149	59.9	200	110	0.9	0.0	0.0	Pipe 367	101.7	100	110	-61.9	0.1	0.2
Pipe 150	61.9	150	110	130.8	0.1	0.1	Pipe 368	91.4	100	110	-57.4	0.1	0.2
Pipe 151	89.6	150	110	6.9	0.0	0.0	Pipe 369	68.9	100	110	-13.2	0.0	0.0
Pipe 152	81.1	200	110	-191.8	0.1	0.1	Pipe 370	34.5	100	110	-98.0	0.1	0.5
Pipe 157	5.1	150	110	-73.7	0.1	0.0	Pipe 371	48.5	100	110	-15.5	0.0	0.0
Pipe 158	192.2	100	110	11.7	0.0	0.0	Pipe 372	17.8	100	110	10.7	0.0	0.0
Pipe 159	5.6	100	110	140.0	0.2	0.9	Pipe 373	52.6	100	110	-72.4	0.1	0.3
Pipe 163	92.9	100	110	66.5	0.1	0.2	Pipe 374	9.0	100	110	-128.7	0.2	0.8
Pipe 164	71.8	100	110	4.6	0.0	0.0	Pipe 52	58.2	200	110	310.1	0.1	0.1
Pipe 167	115.7	100	110	-62.0	0.1	0.2	Pipe 56	78.9	200	110	186.2	0.1	0.1
Pipe 168	4.1	100	110	157.2	0.2	1.1	Pipe 60	439.5	200	110	106.5	0.0	0.0
Pipe 169	83.3	100	110	62.0	0.1	0.2	Pipe 100	58.6	100	110	11.5	0.0	0.0
Pipe 170	155.2	100	110	48.7	0.1	0.1	Pipe 101	82.8	100	110	-50.5	0.1	0.1

Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss	Link ID	Length	Dia.	Roughn -ess	Flow	Velocity	Unit Headloss
	m	mm		m3/d	m/s	m/km		m	mm		m3/d	m/s	m/km
Pipe 171	4.4	100	110	51.5	0.1	0.1	Pipe 102	151.0	400	110	682.1	0.1	0.0
Pipe 173	81.8	100	110	-10.5	0.0	0.0	Pipe 103	8.6	100	110	-107.6	0.2	0.6
Pipe 174	4.5	200	110	67.9	0.0	0.0	Pipe 105	195.0	400	110	574.5	0.1	0.0
Pipe 177	217.1	150	110	-62.0	0.0	0.0	Pipe 106	80.8	100	110	111.7	0.2	0.6
Pipe 178	88.0	100	110	-66.7	0.1	0.2	Pipe 107	46.4	100	110	49.7	0.1	0.1
Pipe 179	138.5	100	110	72.7	0.1	0.3	Pipe 108	44.9	100	110	-12.2	0.0	0.0
Pipe 180	5.2	100	110	139.4	0.2	0.9	Pipe 109	54.6	100	110	-74.2	0.1	0.3
Pipe 182	105.0	100	110	77.4	0.1	0.3	Pipe 130	56.3	350	110	-3110.9	0.4	0.6
Pipe 183	45.0	150	110	211.0	0.1	0.3	Pipe 153	43.1	350	110	-3976.2	0.5	1.0
Pipe 184	61.5	150	110	149.1	0.1	0.1	Pipe 154	66.5	100	110	-112.6	0.2	0.6
Pipe 185	40.2	150	110	87.1	0.1	0.1	Pipe 155	57.7	100	110	-105.8	0.2	0.5
Pipe 186	20.3	150	110	168.1	0.1	0.2	Pipe 156	5.4	200	110	865.3	0.3	0.9
Pipe 187	20.4	150	110	106.2	0.1	0.1	Pipe 160	24.5	200	110	697.6	0.3	0.6
Pipe 188	85.5	150	110	44.2	0.0	0.0	Pipe 161	85.7	100	110	-74.6	0.1	0.3
Pipe 189	104.3	150	110	-17.8	0.0	0.0	Pipe 162	62.7	100	110	62.0	0.1	0.2
Pipe 195	5.7	150	110	292.8	0.2	0.5	Pipe 18	54.6	100	110	-36.7	0.1	0.1
Pipe 196	72.2	150	110	142.9	0.1	0.1	Pipe 39	37.1	100	110	24.5	0.0	0.0
Pipe 197	87.6	100	110	87.9	0.1	0.4	Pipe 40	48.4	100	110	49.3	0.1	0.1
Pipe 198	24.1	100	110	26.0	0.0	0.0	Pipe 53	28.7	100	110	23.6	0.0	0.0
Pipe 199	42.8	100	110	-36.0	0.1	0.1	Pipe 54	26.6	150	110	186.8	0.1	0.2
Pipe 202	198.5	200	110	434.0	0.2	0.3	Pipe 122	55.8	150	110	140.3	0.1	0.1
Pipe 203	167.4	200	110	372.0	0.1	0.2	Pipe 166	59.5	150	110	16.4	0.0	0.0
Pipe 204	21.2	400	110	4894.1	0.5	0.8	Pipe 172	40.7	150	110	1.0	0.0	0.0
Pipe 205	132.9	350	110	2747.7	0.3	0.5	Pipe 175	92.3	100	110	46.5	0.1	0.1
Pipe 206	177.5	350	110	1410.8	0.2	0.1	Pipe 176	49.9	200	110	-135.5	0.1	0.0
Pipe 207	137.6	350	110	1410.8	0.2	0.1	Pipe 181	59.0	100	110	-48.0	0.1	0.1
Pipe 208	94.1	350	110	1109.1	0.1	0.1	Pipe 190	54.8	100	110	-46.2	0.1	0.1
Pipe 209	78.1	350	110	861.4	0.1	0.1	Pipe 191	59.1	100	110	-105.4	0.2	0.5

Data 6. Minutes of Stakeholder Meeting

Meeting Minutes of Stakeholder Meeting

Date: 11th July 2013 (Thursday) Venue:

Hu San Restaurant, Kabar Aye Pagoda Road Time:

10:00 AM - 11:10 AM Attendance: As attached

Minutes:

- 1. Master announced the opening of the Stakeholder Meeting on the Project for Urgent Improvement of Water Supply System in Yangon City a10:10 am.
- Master called for Opening Speech of Mr. Myo Thein, Assistant Chief Engineer (ACE), YCDC. Mr. Myo Thein gave an opening speech.

He explained that YCDC is cooperating with international countries like Japan, Denmark and Korea in water sector to improve the water supply system in Yangon City. He outlined the objectives and components of the Project supported by JICA, and explained that this meeting is to inform to the customers that during construction not to interrupt water supply as much as possible and asked the cooperation from the customers.

- 3. Master called for Opening Remark of Mr. Masahiro Tanaka, Chief Representative of JICA Myanmar Office. Mr. Tanaka gave an opening remark.
- 4. Master called for the presentation of Ms. Yamada, JICA Study Team and Ms. Yamada presented the details of each component, benefits of customers and possible impacts to the customers which may happen during the construction period. Mr. Myo Thein, ACE, YCDC added the technical explanation in Myanmar.
- 5. Master called for questions from audience.
 - The person made the question: Sometimes, the supplying water in Yankin contains small fishes and shrimps and not clean. It needs to be cleaned.
 Mr. Myo Thein answered: Long ago, YCDC did not have treatment system and the raw water which mainly rain water was the only water source near the forests. In 2005, YCDC built Water Treatment Plant in Nyaungnhapin. Now Second Water Treatment Plant is constructed. Long ago, YCDC could only provide 160 million gallons per day. After the Second Phase has finished, it can give 205 million gallons per day. YCDC can provide 90 million gallons from

first and second water treatment plant and 27 million from Gyobyu at present. YCDC has a plan to use Hlawga Reservoir. Later, only all clean water will arrive to Yangon.

- 2. The person made the question: In second component, the pipeline will be cut. And that will be connected to the new pipeline. There will be stopped for water so many times. How long will water be stopped? And when will you start this project? Ms. Yamada answered: For first question, we estimate maximum around half day. Main pipeline will be installed first, and then the existing line will be cut and reconnected. We expected the water stops around half day. As for second question, this project will be divided into two implementation stages. The first will be pumping station in Nyaungnhapin Water Treatment Plant. That will start in next year. And distribution pipeline, that will be a little late. This may be next year around August. This is still tentative schedule.
- Mr. Myo Myint, Deputy District Chief (Auxiliary Fire Brigade), Myanmar Fire Brigade made the question: How can you plan for 24 hour lines for Fire Brigades in this DMA pilot area?
 Mr. Myo Thein answered: YCDC has the pipelines for Fire Brigades in some places. In Yankin, the water pressure is high but in some places not. It can only provide water about 12

Yankin, the water pressure is high but in some places not. It can only provide water about 12 hours a day. If there is a Fire Brigade in DMA Pilot Area, YCDC will provide 24 hour-line. But 24 hours electricity is necessary as to give 24 hours water supply.

Mr. Phyu Win Maung, Sedona Hotel made the question: If the electricity goes off, how can the pump station be run?
 Mr. Myo Their answered: If the electricity went off, some pump stations also stop. But

Mr. Myo Thein answered: If the electricity went off, some pump stations also stop. But, mostly, electricity went off rarely at these places. There are also 24 hour water supply pump stations like Nyaungnhapin, Phugyi. But, the 24 hour electricity supply is needed for continuous water supply. So water supply and electricity depends upon each other.

- 5. Mr. Phyu Win Maung, Sedona Hotel made the question: In some places Like Sedona, when the electricity goes on again, water supply cannot be got from YCDC. Mr. Myo Thein answered: If the duration that the electricity goes off is short, it is not so. But if the duration is about half an hour or an hour, it will be caused like this. Because the transmission line like Gyobyu, the water is distributed by pressure. Only when the water pressure height is about 30 feet, the water can be provided to some townships like Tharketa and Dagon Seikkan. When the duration of electricity failure takes long, the water pressure of the pipelines are lost and thus although the electricity goes on again, we had to wait to get enough water pressure in some places. We heard such comments like that although the electricity goes on, water supply is off. Only when the transmission line has much pressure, distribution line also gets pressure. But, in this pilot area, we will maintain water pressure. But it will not be like with 24 hours water supply station like Nyaungnhapin as it needs continuous 24 hours electricity.
- 6. Mr. Myo Thein made the closing remarks.

Now YCDC is preparing Master Plan with JICA up to 2040 and it is almost finished. The population becomes much more and more so we have to find new raw water source for the expected population of 2040. According to topography, it cannot be possible anymore to build new reservoirs so we have to take river water as raw water like the methods used in international. But

river water has more contamination than reservoir water. So we tried to find the place free from such contamination source and the sea water intrusion, to build the Treatment Plant to provide water to everywhere in Yangon. We are doing these cooperating with JICA.

Next, there is the problem of contamination of piped water. Some pipes are very old even over one hundred years. So, these pipes are decayed and usually cause leakage. And also there are illegal connections somewhere and some places called free connection to where we have to supply freely like the religion buildings. There is also wasting of water as opening the switch bar continuously without using water. So the pressure also decreases. So, there is low pressure in some places. Thus, we are now trying both to find new sources for water source and not to waste unnecessarily by making DMA system cooperating with JICA, Denmark and later also with France dividing the places. Today is to inform about them all of you. JICA usually inform the plans and projects before whatever they do. So today we made this meeting.

7. Master announced the closing of the stakeholder meeting at 11:10 am.

Appendix-I: List of participants

Appendix-II: Comments/questions from the participants and answers

List of Participants	5
----------------------	---

No	Name	Title	Organization				
Tow	nship Officer						
1	U Myint Aye	Yankin EO	Admin, Yankin EO Office				
2	U Aung Min	Mayangone EO (Temporary)	Admin, Mayangone EO Office				
3	U Aung San Win	Second Head of T/S	Yankin Township Office				
4	U Ko Ko Win	Second Head of T/S	Mayangone T/S				
5	U Tun Wai	Admin/Clerk	No 7 Ward, Administrator Office				
6	U Kyaw Win Aung	Myakyunthar	No.1 Ward, North/Okkala				
7	U Myint Swe	Administrator	No.10 Ward, Administrator Office				
8	U Thant Zin Oo	EE	Head of South District (Water and Sanitation)				
9	U Nay Lynn	Head of District(North)	Engineer Department(Water and Sanitation)				
10	U Aung Khin Zaw	AE	Deputy Head of S/D(W/S)				
11	U Khaing Soe Win	Ward Administrator					
	Residents, Hotel, Fac	tory					
12	U Than Oo		10 Ward, Mayangone T/S				
13	U Maung Myint		No.5/6, Yaekuu				
14	U Phyu Win Maung		Sedona Hotel (Yangon)				
15	U Lay Naing	CE	Marina Residence				
16	Ko Ye Aung		Micasa Hotel, No.17, Kabaraye pagoda road				
17	U Zar Ni Aung	CE	Inya Lake Hotel				
18	Ko Tint Swe	Garment Factory (4)	U Tun Nyein Street				
19	U Than Lwin	Factory Director	Militarily factory of Tea-leaf				
	Fire, Militarily, Others	۲					
20	U Myo Myint	Deputy Commander	Fire Station				
21	U Tun Lin Oo		No.1, Higher Communication Militarily				
22	U Mg Mg Than		, , , , , , , , , , , , , , , , , , ,				
	YCDC						
23	U Myo Thein	ACE	Engineer Department(Water and Sanitation)				
24	U Tun Tun Win	Engineer (2)	Engineer Department(Water and Sanitation)				
25	U Min Thant Zin	Junior Engineer	Engineer Department(Water and Sanitation)				
26	U Chit Ko Ko	AE	Engineer Department(Water and Sanitation)				
27	U Aung Htoo Naing	AE	Engineer Department(Water and Sanitation)				
28	U Aung Ko Oo	AE	Pipe (Water and Sanitation)				
	JICA Study Team						
29	Ms. Shoko Yamada	Environmental and Social Considerations	JICA Study Team				
30	Ms. Hsu Mon Win	Interpreter	TEC International				

Comments/questions from the participants by comment sheet and answers

 Mr. Myo Myint, Deputy Division Chief (Auxiliary Fire Brigade), Myanmar Fire Brigade We will also cooperate in this project for supplying water to public by informing about these plans.

But, in water supply, it needs also to arrange and plan for 24 hours pipelines for Fire Brigades to be free from dangers of public.

<Answer>

YCDC has the pipelines for Fire Brigades in some places. In Yankin, the water pressure is high but in some places not. It can only provide water about 12 hours a day. If there is a Fire Brigade in DMA Pilot Area, YCDC will provide 24 hour-line. But 24 hours electricity is necessary as to give 24 hours water supply.

- 2. Mr. Zarni Aung, Chief Engineer, Inya Lake Hotel
 - 1. Estimated Expected Project Starting period?
 - 2. Estimated working period, portion by portion?
 - 3. Estimated water distribution shortage period during 1050mm DI pipe re-connection period?
 - 4. Any increment in water usage cost?
 - Email : zarniaung@inyalakehotel.com

- 1. The design will be started from September of this year and the construction may starts in next year.
- 2. The detail is not fixed yet. The construction will be implemented part by part and expected period is around 9 months.
- 3. Around half day is expected.
- 4. No by this Project. But in future, the water tariff will be increased and this is proposed in another JICA Study.
- 3. Mr. Aung San Win, Deputy Administrator of Township, General Administrative Department (Yankin Township)
- During the period for testing in DMA and Pilot area for exchanging 42" diameter pipe by using Pipe Jacking method, it can be encountered with interruption of water daily. So, will you inform to public about the schedule and the periods for implementation before you do?

- I want to know how long it can take time for implementation in Pilot Area.

<Answer>

- Yes, before the construction starts, the information will be provided to the affected persons.
- This is tentative but around 9 months is expected.
- 4. Mr. Ko Ko Win, Deputy Administrator of Township, General Administrative Department (Mayangone Township)
 - 1. We want you to inform the public to know widely about this project and the benefits of it.
 - 2. Also it needs to arrange and manage in advance not to be traffic-congestion on the roads in the area of project .
 - 3. To inform in advance to public about that water will be stopped for temporarily during construction.

<Answer>

- 1. We will try to disclose the information to wider population.
- 2. The contractor shall arrange and manage and construction plan will be open before construction starts.
- 3. Yes, we will inform you.
- 5. Mr. Than Myaing, Production Expert Grade (4) (Military Tea-leaf Factory)
 - 1. To give clean, clear and healthful water.
 - 2. The existing distribution pipes which come from main pipe are used with iron pipe and the pipes are rusted and the water contains rust.
 - In summer, sometimes there are many times of shortage of water.
 Please carry out to be minimum times of shortage of water as much as you can.

- 1. In another JICA Study, the road map is prepared to provide clean, clear and healthful water.
- 2. Yes. So the new pipe will be ductile cast iron pipe and PVC.
- 3. Yes, we will try it.
- 6. Mr. Myint Swe, No (10) Ward Administrator, Ward Administrative Department (Mayangone Township)
 - 1. Thank you for your good explanation about the water supply system to be implemented by JICA.
 - 2. It needs to inform in advance the public living in the blocks about that the water will be stopped for temporarily.

3. We believe that Yangon city will be developed and improved more because of the cooperation of JICA and YCDC.

<Answer>

- 1. Yes, before the construction starts, more detail information will be provided to the customers.
- 7. Mr. Kyaw Win Aung, Assistant Supervisor (Mya Kyun Thar Park)
- The arrangement and plans of Water & Sanitation Department are good.
- 8. Mr. Htut Lin Oo, Lieutenant Warrant Officer
 - 1. There are a lot of sediments in the iron pipes along the Kabar Aye Road as these pipes are very old.
 - 2. It is found that the force of water is weak when it comes from that iron pipes to households/ row houses/ apartments.
 - 3. It will be more convenient if the old pipes will also be cleaned.

<Answer>

- 1. The replacement of all pipe is better but due to the budget constraint and urgency, 1.7 km of pipeline will be implemented first.
- 2. The pressure will be monitored in DMA. So if DMA is set up, the problem of pressure may be reduced.
- 3. Thank you for your opinion. We agree on your comment.
- 9. Mr. Chit Ko Ko, Assistant Engineer, Department of Engineering (Water & Sanitation)
 - 1. It should be considered to get full power of electricity in renovation of No (1) Pumping Station at Nyaungnhapin.
 - 2. It should be arranged in advance extra generators not to go off the electricity and to get electrical power full time in Yegu Pumping Station concerned with this project.
 - 3. It will be better if the valves which control mainly to water supply from Kokkine Reservoir can be exchanged. If this is implemented, it will be improved more in water supply and the aspect of protection from wasting water.
 - 4. Value of water and about wasting water protection aspect should be informed to public widely until they understand.

- 1. The electricity for pumping station will be taken from the priority electricity line to reduce the risk of electricity failure.
- 2. These prevention measures will be proposed in another JICA Project (Master Plan).

- 3. Thank you for your comment.
- 4. As you suggest, the public awareness is important.
- 10. Mr. Aung Htoo Naing, Section Head, YCDC
- It should be advised to all of public to install water meters and to pay regular water meter charges monthly.
- It should be informed to public about the laws and regulations to be followed by them. (For example advertisements from newspaper and MRTV.)

- Yes we agree on your comment.
- Thank you for your comment.