ESTUDIO PREPARATORIO SOBRE EL

PROGRAMA DE PROTECCIÓN DE VALLES Y POBLACIONES RURALES Y VULNERABLES ANTE INUNDACIONES

EN

LA REPÚBLICA DEL PERÚ

INFORME FINAL INFORME DEL ESTUDIO DE PREFACTIBILIDADT

II-2 INFORME DEL PROYECTO (RÍO CHIRA)

II-3 INFORME DEL PROYECTO (RÍO CAÑETE)

II-4 INFORME DEL PROYECTO (RÍO CHINCHA)

II-5 INFORME DEL PROYECTO (RÍO PISCO)

II-6 INFORME DEL PROYECTO (RÍO YAUCA)

II-7 INFORME DEL PROYECTO (RÍO MAJES-CAMANÁ)

(Versión Pública)

Marzo de 2013

Agencia de Cooperación Internacional del Japón

Yachiyo Engineering Co., Ltd. Nippon Koei Co., Ltd Nippon Koei Latin America – Caribbean Co., Ltd.

Ministerio de Agricultura República de Perú

ESTUDIO PREPARATORIO SOBRE EL PROGRAMA DE PROTECCIÓN DE VALLES Y POBLACIONES RURALES Y VULNERABLES ANTE INUNDACIONES EN LA REPÚBLICA DEL PERÚ

INFORME FINAL INFORME DEL ESTUDIO DE PREFACTIBILIDAD II-2 INFORME DEL PROYECTO (RÍO CHIRA) (Versión Pública)

Marzo de 2013

Agencia de Cooperación Internacional del Japón

Yachiyo Engineering Co., Ltd.
Nippon Koei Co., Ltd
Nippon Koei Latin America – Caribbean Co., Ltd.

Mapa del Área del Estudio

Abreviaturas

Apreviaturas			
Abreviaturas	Nombre oficial o significado		
ANA	Autoridad Nacional del Agua		
ALA	Autoridad Local del Agua		
B/C	Relación Costo Beneficio (Costo Benefit Ratio)		
GDP	PBI (Producto Bruto Interno) (Gross Domestic Product)		
GIS	Sistema de información geográfica		
	(Geographic Information System)		
DGAA	Dirección General de Asuntos Ambientales		
DGFFS	Dirección General de Forestal y de Fauna Silvestre		
DGIH	Dirección General de Infraestructura Hidráulica		
DGPM	Dirección General de Programación Multianual del Sector Público		
DNEP	Dirección Nacional de Endeudamiento Público		
DRA	Dirección Regional de Aguricultura		
EIA	Estudio de impacto ambiental (Environmental Impact Assessment)		
FAO	Organización de las Naciones Unidas para la Agricultura y la		
	Alimentación		
	(Food and Agriculture Organization of the United Nations)		
F/S	Estudio de Factibilidad (Feasibility Study)		
GORE	Gobiernos Regionales		
HEC-HMS	Sistema de Modelado Hidrológico del Centro de Ingeniería		
	Hidrológica		
HEC-RAS	Sistema de Análisis de Ríos del Centro de Ingeniería Hidrológica		
	(Hydrologic Engineering Centers River Analysis System)		
IGN	Instituto Geográfico Nacional		
IGV	Impuesto General a Ventas		
INDECI	Instituto Nacional de Defensa Civil		
INEI	Instituto Nacional de Estadística		
INGEMMET	Instituto Nacional Geológico Minero Metalúrgico		
INRENA	Instituto Nacional de Recursos Naturales		
IRR	Tasa Interna de Retorno (Internal Rate of Return - IRR)		
JICA	Agencia de Cooperación Internacional del Japón		
	(Japan International Cooperation Agency)		
JNUDRP	Junta Nacional de Usuarios de los Distritos de Riego del Perú		

L/A	Acuerdo de Préstamo (Loan Agreement)
MEF	Ministerio de Economía y Finanzas
MINAG	Ministerio de Agricultura
M/M	Minuta de Discusiones (Minutes of Meeting)
NPV	VAN (Valor Actual Neto) (NET PRESENT VALUE)
O&M	Operación y mantenimiento (Operation and maintenance)
OGA	Oficina General de Administración
ONERRN	Oficina Nacional de Evaluación de Recursos Naturales
OPI	Oficina de Programación e Inversiones
PE	Proyecto Especial Chira-Piura
PES	PSA (Pago por Servicios ambientales) (Payment for Enviromental
	Services)
PERFIL	Estudio del Perfil
Pre F/S	Estudio de prefactibilidad
PERPEC	Programa de Encauzamiento de Ríos y protección de Estructura de
	Captación
PRONAMACH	Programa Nacional de Manejo de Cuencas Hidrográficas y
IS	Conservación de Suelos
PSI	Programa de Sub Sectorial de irrigaciones
SCF	Factor de conversión estándar
SENAMHI	Servicio Nacional de Meteorología y Hidrología
SNIP	Sistema Nacional de Inversión Pública
UF	Unidades Formuladoras
VALLE	Llanura aluvial, llanura de valle
VAT	Impuesto al valor agregado (Value added tax)

ESTUDIO PREPARATORIO

SOBRE EL

PROGRAMA DE PROTECCIÓN DE VALLES Y POBLACIONES RURALES Y VULNERABLES ANTE INUNDACIONES

EN

LA REPÚBLICA DEL PERÚ

Informe Final Informe del Estudio de Prefactibilidad II-1 Informe del Proyecto (Río Chira)

<u>ÍNDICE</u>

Mapa del Área del Estudio

Abreviaturas

. F	RESUMEN EJECUTIVO	1-1
1.1	Nombre del Proyecto	1-1
1.2	Objetivo del Proyecto	1-1
1.3	Balance Oferta y Demanda	1-1
1.4	Medidas estructurales	1-2
1.5	Medidas no estructurales	1-3
1.	5.1 Reforestación y recuperación vegetal	1-3
1.	5.2 Plan de control de sedimentos	1-3
1.	5.3 Sistema de alerta temprana del Río Chira	1-4
1.6	Asistencia técnica	1-4
1.7	Costos	1-4
1.8	Resultados de la evaluación social	1-4
1.9	Sostenibilidad del PIP	1-6
1.1	0 Impacto Ambiental	1-7
1.1	1 Plan de ejecución	1-8
1.1	2 Instituciones y administración	1-9
1.1	3 Marco Lógico	1-10
2. A	ASPECTOS GENERALES	2-1
2.1	Nombre del Proyecto	2-1
2.2	Unidades Formuladora y Ejecutora	2-1

	2.3	Participación de las Entidades Involucradas y de los Beneficiarios	2-1
	2.4	Marco conceptual (marco de afinidad)	2-4
	2.4.1	Antecedentes	2-4
	2.4.2	Leyes y reglamentos, políticas y guías relacionadas con el Programa	2-6
3.	IDE	NTIFICACIÓN	3-1
	3.1	Diagnóstico de la Situación Actual	3-1
	3.1.1	Naturaleza	3-1
	3.1.2	Condiciones socioeconómicas del Área del Estudio	3-2
	3.1.3	Agricultura	3-9
	3.1.4	Infraestructuras	3-13
	3.1.5	Daños reales de las inundaciones	3-15
	3.1.6	Resultados de las visitas a los sitios del Estudio	3-17
	3.1.7	Situación actual de la vegetación y reforestación	3-25
	3.1.8	Situación actual de la erosión del suelo	3-29
	3.1.9	Análisis de descarga	3-40
	3.1.1	0 Análisis de inundaciones	3-45
	3.1.1	1 Sistemas Información de Alerta Temprana	3-50
	3.2	Definición de Problema y Causas	3-54
	3.2.1	Problemas de las medidas de control de inundaciones en el Área del Estudio	3-54
	3.2.2	Causas de los problemas	3-54
	3.2.3	Efectos de los problemas	3-55
	3.2.4	Árbol de causas y efectos	3-56
	3.3	Objetivo del Proyecto	3-58
	3.3.1	Medidas de solución al problema principal	3-58
	3.3.2	Impactos esperados por el cumplimiento del objetivo principal	3-58
	3.3.3	Árbol de medidas – objetivos – impactos	3-59
4.	FOR	MULACIÓN Y EVALUACIÓN	4-1
	4.1 I	Definición del Horizonte de Evaluación del Proyecto	4-1
	4.2	Análisis de Demanda y oferta	4-1
	4.3 I	Planeamiento Técnico de las Alternativas	4-5
	4.3.1 N	Medidas estructurales	4-5
	4.3.2	Medidas no estructurales	4-15
	4.3.	2.1 Reforestación y recuperación vegetal	4-15
	4.3.	2.2 Plan de control de sedimentos	4-18
	4.3.	2.3 Sistemas Información de Alerta Temprana	4-20
	122	A sistencia tácnica	1-26

4.4 Costos	4-29
4.4.1 Estimación de costos (a precios privados)	4-29
4.4.2 Estimación de costos (a precios sociales)	4-30
4.5 Resultados de la evaluación social	4-30
4.5.1Costos a precios privados	4-30
4.5.2 Costos a precios sociales	4-35
4.5.3 Conclusiones de la evaluación social	4-36
4.6 Análisis de sensibilidad	4-36
4.7 Sostenibilidad del PIP	4-39
4.8 Impacto Ambiental	4-39
4.8.1 Metodología	4-40
4.8.2 Identificación, Descripción y Evaluación de Impactos Socio ambientales	4-41
4.8.3 Planes de Manejo Socio ambiental	4-43
4.8.4 Plan de Seguimiento y Control	4-44
4.8.5 Presupuesto para la gestión de impacto ambiental	4-47
4.8.6 Conclusiones y recomendaciones	4-47
4.9 Plan de ejecución	4-48
4.10 Instituciones y administración	4-50
4.11 Marco lógico de la opción seleccionada finalmente	4-56
4.12 Plan a Mediano y Largo Plazo	4-57
4.12.1 Plan general de control de inundaciones	4-57
4.12.2 Plan de Reforestación y Recuperación de la Vegetación	4-69
4.12.3 Plan de control de sedimentos	4-71
5. CONCLUSIONES	5-1

Lista de Tablas

Tabla 1.3-1	Análisis de Demanda y oferta	1-1
Tabla 1.8-1	Monto medio correspondiente a la reducción de daños al año (costos a precios privados)	
Tabla 1.8-2	Monto medio correspondiente a la reducción de daños al año (costos a precios sociales)	
Tabla 1.8-3	Evaluación social (B/C, VAN, TIR) (A precios privados)	1-5
Tabla 1.8-4	Evaluación social (B/C, VAN, TIR) (A precios sociales)	1-6
Tabla 1.9-1	Presupuesto de las comisiones de regantes	1-7
Tabla 1.11-1	Plan de ejecución	1-8
	Marco lógico de la alternativa seleccionada definitivamente	1-10
Tabla 3.1.2-1	Distritos alrededor del Río Chira y su área	3-2
Tabla 3.1.2-2	Variación de la población urbana y rural	3-3
Tabla 3.1.2-3	Número de hogares y de familias	3-3
Tabla 3.1.2-4	Ocupación	3-4
Tabla 3.1.2-5	Índice de la pobreza	3-4
Tabla 3.1.2-6	Tipo de viviendas (sullana)	3-5
Tabla 3.1.2-7	Tipo de viviendas (Paita)	3-6
Tabla 3.1.2-8	Variación del PIB por cápita (2001-2009)	3-9
Tabla 3.1.3-1	Datos básicos de las comisiones de regantes	3-10
Tabla 3.1.3-2	Siembra y ventas de los principales cultivos	3-11
Tabla 3.1.4-1	Datos básicos de infraestructuras viales	3-13
Tabla 3.1.4-2	Proyectos Implementados por PERPEC	3-14
Tabla 3.1.5-1	Situación de los daños de inundaciones	3-15
Tabla 3.1.5-2	Datos de daños	3-16
Tabla 3.1.5-3	Desastres en la Región de Piura	3-16
Tabla 3.1.7-1	Lista de las formaciones vegetales representativas de la Cuenca del Río Chira	3-25
Tabla 3.1.7-2	Superficie de las formaciones vegetales frente a la superficie de la cuenca (Río Chira)	
	3	3-26
Tabla 3.1.7-3	Porcentaje de las zonas de vida ecológicas frente a la superficie de las cuencas (Río Ch	nira)
		3-26
Tabla 3.1.7-4	Superficie forestal perdida hasta 2005	3-26
Tabla 3.1.7-5	Reforestación ejecutada entre 1994 y 2003	3-27
Table 2.1.9.1	Lista de informaciones recolectadas	3_20

Tabla 3.1.8-2	Superficie según altitudes	3-30
Tabla 3.1.8-3	Pendientes y superficie	3-30
Tabla 3.1.8-4	Pendiente del lecho y longitud total de la quebrada	3-31
Tabla 3.1.8-5	Pendientes según altitudes – aguas arriba de la presa del Río Chira	3-34
Tabla 3.1.8-6	Pendientes según altitudes – aguas abajo de la presa del Río Chira	3-34
Tabla 3.1.9-1	Lista de estaciones de monitoreo pluvial (cuenca del Río Chira)	3-40
Tabla 3.1.9-2	Período de toma de datos pluviales (cuenca del Río Chira)	3-41
Tabla 3.1.9-3	Precipitaciones con período de retorno de 24 horas (cuenca del Río Chira)	3-43
Tabla 3.1.9-4	Caudal probable en los puntos de control	3-44
Tabla 3.1.9-5	Caudal de inundaciones según períodos de retorno (Caudal pico: Punto de referencia)	3-44
Tabla 3.1.10-1	Datos básicos del levantamiento de los ríos	3-45
Tabla 3.1.10-2	Metodología análisis de desbordamiento	3-46
Tabla 3.1.11-1	Estaciones Hidrométricas en actual operación en la cuenca del río Chira Piura	3-52
Tabla 3.1.11-2	Estaciones Meteorológicas en actual operación en la cuenca del rio Chira	3-52
Tabla 3.2.1-1	Problemas y medidas de conservación de las obras de control de inundaciones	3-54
Tabla 3.2.1-2	Causas directas e indirectas del problema principal	3-55
Tabla 3.2.3-1	Efectos directos e indirectos del problema principal	3-56
Tabla 3.3.1-1	Medidas de solución directas e indirectas al problema	3-58
Tabla 3.3.2-1	Impactos directos e indirectos	3-59
Tabla 4.2-1 A	análisis de la demanda y oferta	4-1
Tabla 4.2-2 D	Demanda y oferta según puntos	4-2
Tabla 4.3.1-1	Perfil del levantamiento topográfico	4-6
Tabla 4.3.1-2	Aspectos y criterios de evaluación	4-7
Tabla 4.3.1-3	Fundamentos de los tramos seleccionados para ejecutar obras (Río Chira)	4-9
Tabla 4.3.1-4	Comparación de alternativas (Río Chira)	4-10
Tabla 4.3.1-5	Caudal de crecidas de diseño y libre bordo	4-13
Tabla 4.3.1-6	Planificación y diseño de las obras prioritarias de control de inundaciones	4-14
Tabla 4.3.2.1-1	Criterios de evaluación para la elección de las especies forestales	4-16
Tabla 4.3.2.1-2	Elección de las especies forestales	4-17
Tabla 4.3.2.1-3	Metrado para el plan de forestación y recuperación de cobertura vegetal (A lo largo d	lel
río)		4-17
Tabla 4.3.2.1-4	Costo unitario de las plantas	4-18
Tabla 4.3.2.1-5	Costo de ejecución de reforestación	4-18
Tabla 4.3.2.2-1	Lineamientos básicos del Plan de Control de Sedimentos	4-19
Tabla 4.3.2.3-1	Estaciones de monitoreo del caudal del sistema de alerta temprana	4-21

Tabla 4.3.2.3-2 E staciones meteorológicas del sistema de alerta temprana
Tabla 4.3.2.3-3 Costo del sistema de alarma 4-26
Tabla 4.3.3-1 Presupuesto de la Asistencia Técnica 4-28
Tabla 4.4.1-1 Tabla de resumen de costo directo de obras (a precios privados) 4-29
Tabla 4.4.1-2 Costo de Proyecto (a precios privados)
Tabla 4.4.2-1 Tabla resumen del costo directo de obras (a precios sociales)
Tabla 4.4.2-2 Costo de Proyecto (a precios sociales)
Tabla 4.5.1-1 Variables del cálculo del monto de pérdidas de inundaciones
Tabla 4.5.1-2 Monto estimado de pérdidas (a precios privados)
Tabla 4.5.1-3 Estimación del monto medio anual de de reducción de pérdidas
Tabla 4.5.1-4 Resultados del cálculo del monto medio anual de pérdidas que se espera reducir con el
Proyecto (Precios privados)
Tabla 4.5.1-5 Indicadores de evaluación del análisis de la relación costo-beneficio y sus características 4-34
Tabla 4.5.1-6 Evaluación social (B/C, VAN, TIR) (A precios privados)
Tabla 4.5.2-1 Monto estimado de pérdidas (a precios sociales)
Tabla 4.5.2-2 Monto medio anual de pérdidas que se espera reducir con el Proyecto (a precios sociales)
4-36
Tabla 4.5.2-3 Evaluación social (B/C, VAN, TIR) (A precios sociales)
Tabla 4.6-1 Métodos del análisis de sensibilidad
Tabla 4.6-2 Casos sometidos al análisis de sensibilidad e indicadores económicos
Tabla 4.6-3 Resultados del Análisis de Sensibilidad de TIR, B/C y VAN
Tabla 4.7-1 Presupuesto del Proyecto de las comisiones de regantes
Tabla 4.8-1 Puntos de Obras
Tabla 4.8.1-1 Criterio de Evaluación - Matriz de Leopold
Tabla 4.8.1-2 Grados de significancia de impactos (Valor de los Impactos)
Tabla 4.8.2-1 Matriz de Reconocimiento del Impacto Ambiental (Período construcción) 4-41
Tabla 4.8.2-2 Matriz de Reconocimiento del Impacto Ambiental - Río Chira (Período de operación y
mantenimiento)
Tabla 4.8.2-3 Matriz de Evaluación del Impacto Ambiental (Período de construcción) – Cuenca del río
Chira
Tabla 4.8.2-4 Matriz de Evaluación del Impacto Ambiental (Período de operación y mantenimiento)
Cuenca del río Chira
Tabla 4.8.3-1 Impactos Ambientales Identificados y sus medidas propuestas
Tabla 4.8.4-1 Monitoreo de Calidad del Agua y Parámetros Biológicos
Tabla 4.8.4-2 Monitoreo de Calidad del Aire
Tabla 4.8.4-3 Monitoreo de Calidad del Ruido 4-46

Tabla 4.8.4-4 Monitoreo de Calidad del Agua (Etapa de Operación)	4-46
Tabla 4.8.5-1 Costos directos de medidas de gestión de impacto ambiental	4-47
Tabla 4.9-1 Plan de ejecución	4-50
Tabla 4.10-1 Presupuesto del PSI (2011)	4-54
Tabla 4.10-2 Planilla del PSI	4-54
Tabla 4.11-1 Marco lógico de la alternativa seleccionada definitivamente	4-56
Tabla 4.12.1-1 Plan de construcción de diques en cada cuenca	4-60
Tabla 4.12.1-2 Costo directo de obras (a precios privados)	4-62
Tabla 4.12.1-3 Costo de Proyecto (a precios privados)	4-63
Tabla 4.12.1-4 Costo de Proyecto (a precios sociales)	4-63
Tabla 4.12.1-5 Tramos cuyo lecho debe ser excavado en forma programada	4-64
Tabla 4.12.1-6 Costo de obras de excavación de lecho para 50 años (a precios privados)	4-66
Tabla 4.12.1-7 Costo de obras de excavación de lecho para 50 años (a precios sociales)	4-66
Tabla 4.12.1-8 Monto de daños para inundaciones de diferentes períodos de retorno (a precios privad	los
	4-67
Tabla 4.12.1-9 Promedio anual de reducción de daños	4-68
Tabla 4.12.1-10 Resultados de la evaluación económica (costos a precios privados)	4-68
Tabla 4.12.1-11 Monto de daños de las inundaciones de diferentes períodos de retorno (a precios soc	iales)
	4-68
Tabla 4.12.1-12 Promedio anual de reducción de daños	4-69
Tabla 4.12.1-13 Resultados de la evaluación económica (costos a precios sociales)	4-69
Tabla 4.12.2-1 Plan General de la forestación en aguas arriba de las Cuencas	4-70
Tabla 4.12.3-1 Costos estimados de ejecución de obras de control de sedimentos en la cuenca alta	4-71

Lista de Figuras

Figura 1.12-1	Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)	1-9
Figura 1.12-2	Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y	
mantenimiento	posterior a la inversión)	1-9
Figura 3.1.1-1	Ríos seleccionados para el Estudio	3-1
Figura 3.1.2-1	Tasa de crecimiento del PIB según regiones (2009/2008)	3-7
Figura 3.1.2-2	Contribución de las regiones al PIB	3-8
Figura 3.1.2-3	PIB per cápita (2009)	3-8
Figura 3.1.3-1	Área sembrada	3-12
Figura 3.1.3-2	Rendimiento	3-12
Figura 3.1.3-3	Ventas	3-12
Figura 3.1.6-1	Visita al Sitio del Estudio (Río Chira)	3-21
Figura 3.1.6-2	Condiciones locales relacionadas con el Desafío 1 (Río Chira)	3-22
Figura 3.1.6-3	Condiciones locales relacionadas con el Desafío 2 (Río Chira)	3-23
Figura 3.1.6-4	Condiciones locales relacionadas con el Desafío 3 (Río Chira)	3-24
Figura 3.1.7-1	Mapa forestal de la Cuenca del Río Chira	3-28
Figura 3.1.8-1	Superficie según altitudes	3-30
Figura 3.1.8-2	Pendientes y superficie	3-31
Figura 3.1.8-3	Pendiente del lecho y longitud total de la quebrada	3-31
Figura 3.1.8-4	Pendiente del lecho y longitud total de la quebrada	3-32
Figura 3.1.8-5	Mapa de Isoyetas de la Cuenca del Río Chira	3-32
Figura 3.1.8-6	Relación entre el volumen de erosión del suelo y las diferentes causas	3-33
Figura 3.1.8-7	Pendientes según altitudes – aguas arriba del a presa Poechos del Río Chira	3-34
Figura 3.1.8-8	Pendientes según altitudes – aguas abajo del a presa Poechos del Río Chira	3-35
Figura 3.1.8-9	Tierras andesíticas y basálticas derrumbadas	3-36
Figura 3.1.8-10	Producción de sedimentos de las rocas sedimentarias	3-36
Figura 3.1.8-11	Invasión de cactus	3-36
Figura 3.1.8-12	Movimiento de los sedimentos en el cauce	3-37
Figura 3.1.8-13	Producción y arrastre de sedimentos en un año ordinario	3-38
Figura 3.1.8-14	Producción y arrastre de sedimentos durante las lluvias torrenciales de magnitud sim	iilar
al de fenómeno	de El Niño (período de retorno de 1:50 años)	3-39
Figura 3.1.8-15	Producción de sedimentos de sedimentos en grandes crecidas (escala geológica)	3-40
Figura 3.1.9-1	Mapa de ubicación de las estaciones de monitoreo (cuenca del Río Chira)	3-41
Figure 3 1 0-2	Mana de isovetas (cuenca del Río Chira)	3_42

Figura 3.1.9-3	Mapa de isoyetas de precipitaciones con período de retorno de 50 años (cuenca del Ri	ίο
Chira)		3-43
Figura 3.1.9-4	Hidrograma del Río Chira	3-44
Figura 3.1.10-1	Idea del modelo unidimensional	3-45
Figura 3.1.10-2	Esquema conceptual del modelo de análisis de desbordamiento	3-47
Figura 3.1.10-3	Capacidad hidráulica actual del Río Chira	3-48
Figura 3.1.10-4	Alcance de desbordamiento del Río Chira (inundaciones con período de 50 años)	3-49
Figura 3.1.11-1	Sistema de alerta temprana en la cuenca del Río Piura	3-51
Figura 3.1.11-2	Ubicación de las estaciones de monitoreo en la cuenca del Río Chira	3-53
Figura 3.2.4-1	Árbol de causas y efectos	3-57
Figura 3.3.3-1	Árbol de medidas – objetivos – impactos	3-60
_	Resultados de selección de las obras prioritarias de control de inundación en el río Ch	
Figura 4.3.1-2	Obras prioritarias de control de inundaciones en el Río Chira	4-8 4-11
Figura 4.3.1-3	Sección normal del dique	4-13
Figura 4.3.2.1-1	Diagrama Conceptual Forestación en las estructuras ribereñas	4-15
Figura 4.3.2.1-2	Ubicación del diseño del plan de forestación en la estructura ribereña	4-16
Figura 4.3.2.2-1	Obras de control de sedimentos	4-20
Figura 4.3.2.3-1	Ubicación del sistema de alerta temprana	4-23
Figura 4.3.2.3-1	Algunos ejemplos de equipos de monitoreo	4-25
Figura 4.3.2.3-3	Sistema de alerta temprana	4-26
Figura 4.9.1-1	Ciclo de proyecto en SNIP	4-49
Figura 4.9.1-2	Instituciones relacionadas con SNIP	4-49
Figura 4.10-1	Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)	4-52
Figura 4.10-2	Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y	
mantenimiento j	posterior a la inversión)	4-52
Figura 4.10-3	Organigrama del PSI	4-55
Figura 4.12.1-1	Definición de la alineación del dique	4-58
Figura 4.12.1-2	Plano do del Río Chira	4-59
Figura 4.12.1-3	Sección longitudinal del Río Chira	4-60
Figura 4.12.1-4	Alcance de las obras de construcción de diques en el Río Chira	4-61
Figura 4.12.1-5	Tramo que requiere de mantenimiento (Río Chira)	4-65
Figura 4.12.3-1	Ubicación de las obras de control de sedimentos de la cuenca del Río Chira	4-72

1. RESUMEN EJECUTIVO

1.1 Nombre del Proyecto

"Programa de Protección de Valles y Poblaciones Rurales Vulnerables ante Inundaciones, Implementación de Medidas de Prevención para el Control de Desbordes e Inundaciones del Río Chira, Departamento Piura"

1.2 Objetivo del Proyecto

El impacto final que el Proyecto contempla alcanzar es aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones y fomentar el desarrollo socioeconómico local.

1.3 Balance Oferta y Demanda

Se calculó el nivel de agua teórico en el caso de discurrir el caudal de inundaciones de diseño basándose en los datos del levantamiento transversal del río ejecutado con un intervalo de 500m, en la cuenca del río Chira, suponiendo un caudal de inundaciones de diseño igual al caudal de inundaciones con un período de retorno de 50 años. Luego, se determinó la altura del dique como la suma del nivel de agua de diseño más el libre bordo del dique.

Ésta es la altura requerida del dique para controlar los daños provocados por las inundaciones de diseño y constituye el indicador de la demanda de la comunidad local.

La altura del dique existente o la altura del terreno actual es la altura requerida para controlar los daños de las inundaciones actuales, y constituye el indicador de la oferta actual.

La diferencia entre la altura del dique de diseño (demanda) y la altura del dique o terreno actual constituye, la diferencia o brecha que hay entre la demanda y la oferta.

En la Tabla 4.2-2 se presentan los promedios del nivel de agua de inundaciones calculado con período de retorno de 50 años; de la altura requerida del dique (demanda) para controlar el caudal sumando el nivel de agua de diseño más el libre bordo del dique; de la altura del dique o del terreno actual (oferta), y la diferencia entre estas dos últimas (diferencia entre demanda-oferta) del río. Luego, en la Tabla 1.3-1 se presentan los valores en cada punto. La altura del dique o del terreno actual es mayor que la altura requerida del dique, en determinados puntos. En estos, la diferencia entre la oferta y demanda se consideró nula.

Tabla 1.3-1 Análisis de la demanda y oferta

Cuenca		ique / terreno al (oferta)	Nivel de agua teórico con período de	Borodo libre dique	Altura requerida dique	Dif. Demanda/oferta						
	M. izquierda M. derecha retorno de 50		retorno de 50 años	uique	(demanda)	M. izquierda	M. derecha					
	1 2 3	4	5=3+4	6=5-1	7=5-2							
Chira	31.85	29.27	31.38	1.20	32.58	2.71	3.53					

1.4 Medidas estructurales

Las medidas estructurales constituyen un tema que deben ser analizados en el plan de control de inundaciones que abarque toda la cuenca. Los resultados del análisis se presentan en el apartado 4.12 "Plan de mediano y largo plazo". Dicho plan propone construir diques para el control de inundaciones de toda la cuenca. Sin embargo, en el caso de la cuenca del río Chira, se requiere implementar un gran proyecto invirtiendo un costo sumamente alto, mucho más allá del presupuesto del presente Proyecto, lo que hace que sea poco viable adoptar esta propuesta. Por lo tanto, suponiendo que los diques para controlar las inundaciones de toda la cuenca serán construidos progresivamente dentro de un plan de mediano y largo plazo, aquí se enfocó el estudio en las obras más urgentes y prioritarias para el control de inundaciones.

(1) Caudal de inundaciones de diseño

La Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas elaborada por la Dirección General de Programación Multianual del Sector Público (DGPM) del Ministerio de Economía y Finanzas (MEF) recomienda realizar el análisis comparativo de diferentes períodos de retorno: 25 años, 50 años y 100 años para el área urbana, y 10 años, 25 años y 50 años para el área rural y las tierras agrícolas.

Considerando que el presente Proyecto se orienta a la protección del área rural y de las tierras agrícolas, el caudal de inundaciones de diseño se determinó en el valor establecido para las inundaciones con período de retorno de 50 años en la Guía mencionada.

(2) Selección de las obras de control de inundaciones prioritarias

Se aplicaron los cinco criterios siguientes para la selección de las obras de control de inundaciones prioritarias.

- > Demanda de la comunidad local (basada en los daños históricos de inundaciones)
- Falta de la capacidad hidráulica (incluyendo los tramos afectados por la socavación)
- Condiciones de la zona adyacente (condiciones del área urbana, tierras de cultivo, etc.)
- Condiciones de inundación (extensión de del agua desbordada conforme los resultados del análisis de inundaciones)
- Condiciones sociales y ambientales (infraestructuras locales importantes)

Los resultados del levantamiento del río Chira, del reconocimiento en sitio, del estudio de la capacidad hidráulica, del análisis de inundaciones, y de las entrevistas a la comunidad local (necesidades de las comisiones de regantes, gobiernos locales, daños históricos de inundaciones, etc.) fueron sometidos a una evaluación integral, aplicando los cinco criterios de evaluación antes indicados. Así se seleccionaron en total cuatro puntos críticos (con mayor puntaje en la evaluación) que necesitan de medidas de control de inundaciones.

Concretamente, dado que el levantamiento del río, la evaluación de la capacidad hidráulica y el

análisis de desbordamiento han sido realizados a cada 500 metros de intervalo (sección), la evaluación integral se realizó también para tramos de 500 metros. Estos tramos fueron evaluados en escalas de 1 a 3 (0 punto, 1 punto y 2 puntos), y los tramos cuya suma superaron 6 puntos, han sido seleccionados como sitios prioritarios. El límite interior (6 puntos) ha sido determinado tomando en cuenta también el presupuesto disponible del Proyecto en general.

1.5 Medidas no estructurales

1.5.1 Reforestación y recuperación vegetal

(1) Políticas básicas

El plan de reforestación y recuperación de la vegetación que responde al objetivo del presente Proyecto puede ser dividido en: i) la reforestación a lo largo de las estructuras fluviales, y ii) la reforestación en la cuenca alta. La primera tiene efecto directo sobre la prevención de inundaciones manifestando su impacto en corto tiempo, mientras que la segunda requiere de alto costo y largo período para su implementación, tal como se indicará más tarde en el apartado 4.12 "Plan de mediano y largo plazo", y es poco viable para ser ejecutada en el marco del presente Proyecto. Por lo tanto, aquí se enfocó el estudio en la primera alternativa.

(2) Sobre la reforestación a lo largo de las estructuras fluviales

Esta alternativa propone plantar árboles a lo largo de las estructuras fluviales, incluyendo los diques y las obras de protección de márgenes.

- Objetivo: Reducir el impacto del desbordamiento del río cuando ocurre una crecida inesperada o por el estrechamiento del río por la presencia de obstáculos, mediante franjas de vegetación entre el río y los elementos a ser protegidos.
- Metodología: Crear franjas vegetales de un determinado ancho entre las estructuras fluviales y el río.
- Ejecución de obras: Plantar vegetación en una parte de las estructuras fluviales (diques, etc.)
- Mantenimiento después de la reforestación: El mantenimiento será asumido por las comisiones de regantes a su iniciativa propia.

El ancho, el largo y la superficie de la reforestación a lo largo de las estructuras fluviales son, 11m, 7,5km y 5,8ha respectivamente.

1.5.2 Plan de control de sedimentos

El plan de control de sedimentos debe ser analizado dentro del plan general de la cuenca. Los resultados del análisis se presentan en el apartado 4.12 "Plan de mediano y largo plazo". En resumen el plan de control de sedimentos de la cuenca entera requiere de un elevado costo de inversión, que va mucho más allá del presupuesto del presente Proyecto, lo que hace que sea poco viable adoptar este plan.

En la cuenca alta del Río Chira existe la Presa Poechos que retiene la mayor parte de los sedimentos arrastrados en su embalse, por lo que la incidencia hacia la cuenca baja es muy reducida. Por lo tanto, se considera que no es necesario tomar una medida especial de control de sedimentos.

1.5.3 Sistema de alerta temprana del Río Chira

Como un caso modelo, se propone instalar el sistema de alerta temprana en el río Chira.

1.6 Asistencia técnica

Con base en las propuestas técnicas de medidas estructurales y no estructurales, se propone incorporar también en el presente Proyecto la asistencia técnica a modo de reforzar las medidas tomadas.

El objetivo de la asistencia técnica es "mejorar la capacidad y el nivel técnico de la comunidad local, como medida de gestión de riesgos para reducir los daños de inundaciones en los valles seleccionados".

Se propone diseñar la asistencia técnica propia de la cuenca del río Chira, con el fin de ofrecer capacitación adaptada a las características propias de esta cuenca. Los beneficiarios serán los representantes de las comisiones y grupos de regantes de la cuenca del río Chira, los empleados de los gobiernos locales (provinciales y distritales), representantes de la comunidad local, etc.

Se seleccionarán como participantes de la capacitación, a las personas con capacidad de replicar y difundir lo aprendido en los cursos a los demás miembros de la comunidad, a través de las reuniones de las organizaciones a las que pertenecen.

1.7 Costos

A continuación se detallan los costos del presente Proyecto

1.8 Evaluación social

(1) Beneficios

Los beneficios del control de inundaciones vienen a ser la reducción de las pérdidas de inundaciones que se lograría con la implementación del Proyecto y se determina por la diferencia entre los montos de pérdida sin y con el Proyecto. Concretamente, para determinar los beneficios, se calcula primero el monto de pérdidas por inundaciones de diferentes períodos de retorno (entre 2 y 50 años), suponiendo que las obras de control de inundaciones tendrán una vida útil de 50 años, y luego se determina el monto medio anual de reducción de pérdidas a partir de los montos de

pérdidas de diferentes períodos de retorno. En las Tablas 1.8-1 y 1.8-2 se presentan los montos medio anuales de reducción de pérdidas que se lograrían al implementar el presente Proyecto, expresados en los costos a precios privados y costos a precios sociales.

Tabla 1.8-1 Monto medio correspondiente a la reducción de daños al año (costos a precios privados)

									s/1000
			被害額 (0)	años Totelles - m	lles de S/J				
運域 Culence	流量規模 Periodo de	超過程率 Probabilidad	事業を実施しな い場合①	事業を実施した 場合(2)	軽減額 ②=①−②	区間平均 被害 類 ④	区階級率 ⑤ Velor	年平均被害職 ④×⑤ Valor Promedio	キ平均被書類の果 計=年平均被書軽 建設海額
Colonica	retorno	Procedurac	Sin Proyecto	Con Proyecto	Defice mitigados 2-10-2	Promedio de Defios	Incremental de la probabilidad	del Rujo de De Ros	Defic Medic Anual
	1	1.000	0	0	0			0	0
	2	0.500	0	0	0	0	0.500	0	0
	5	0.200	349,698	333,585	16,113	8,056	0.300	2,417	2,417
CHIRA	10	0.100	427,001	411,472	15,529	15,821	0.100	1,582	3,999
	25	0.040	485,714	471,293	14,421	14,975	0.060	898	4,897
	50	0.020	562,385	525,002	37,382	25,901	0.020	518	5,415

Tabla 1.8-2 Monto medio correspondiente a la reducción de daños al año (costos a precios sociales)

s/1000 被害額 (Defice Totales - miles de S/) 区間平均被害 区間確率 年平均被害職 事業 を実施した 事業を実施しな 経滅薬 流量規模 6 **⊕**×**⑤** 流域 解過藏事 計= 年平均被害都 3=11-2 い場合① 場合② 4 Velor Promedio de retorno omental de iel Flujo de De Daffos Daño Medilo Anua Sin Proyecto Con Proyecto Diefics Le probabilidad files nitigados Œ (2) **2**=0−2 1.000 0 0 0 0.500 0 0.500 0 0.200 407,180 384,769 2:2,410 11,205 0.300 3,362 3,362 494,866 5,544 10 0.100 473,618 21,248 21,829 0.100 2,183 CHIRA 544,283 6,771 2.5 0.040 563,929 1:9.646 20,447 0.060 1.227 50 0.020 605,046 4.4,043 31,844 0.020 7,408 649,089 637

(2) Resultados de la evaluación social

El objetivo de la evaluación social en el presente Estudio es evaluar la eficiencia de las inversiones en las medidas estructurales aplicando el método de análisis de la relación costo-beneficio (B/C) desde el punto de vista de la economía nacional. Para ello, se determinaron los indicadores de evaluación económica (relación B/C, Valor Actual Neto –VAN, y tasa interna de retorno económico –TIR).

Se estimaron los beneficios del período objeto de la evaluación, de los primeros 15 años desde el inicio del Proyecto. Dado que de estos 15 años, dos corresponden al período de ejecución de las obras, la evaluación se realizó para los 13 años siguientes a la terminación de las obras.

En las Tablas 1.8-3 y 1.8-4 se muestran los costos a precios privados y los costos a precios sociales arrojados en la evaluación social del presente Proyecto. Se observa que el proyecto arrojará suficiente efecto económico.

Tabla 1.8-3 Evaluación social (B/C, VAN, TIR) (costos a precios privados)

Tabla 1.8-4 Evaluación social(B/C, VAN, TIR) (costos a precios sociales)

La evaluación social puso de manifiesto que el proyecto de la cuenca del Río Chira no arrojará impacto económico palpable en términos de costos a precios sociales. A continuación se presentan los efectos positivos del Proyecto que son difícilmente cuantificables en valores económicos.

- ① Contribución al desarrollo económico local al aliviar el temor por la suspensión de las actividades económica y daños.
- 2 Contribución al incremento de oportunidades de empleo local por las obras de construcción del proyecto.
- ③ Refuerzo de la conciencia de la población local por los daños de las inundaciones y otros desastres.
- ④ Contribución al incremento de ingresos por la producción agrícola estable, al aliviarse los daños de inundaciones.
- ⑤ Subida del precio de las tierras de cultivo

Así, la evaluación social pone de manifiesto que el proyecto no arrojará un impacto económico palpable, y aun cuando se tome en cuenta otros impactos no cuantificables monetariamente, se considera poco viable ejecutar el Proyecto.

1.9 Análisis de la sostenibilidad

El presente Proyecto será cogestionado por el gobierno central (a través de la DGIH), comisiones de regantes y los gobiernos regionales, y el costo del Proyecto será cubierto con los respectivos aportes de las tres partes. Por lo general el gobierno central (en este caso, la DGIH) asume el 80 %, las comisiones de regantes el 10 % y los gobiernos regionales el 10 %. Sin embargo, los porcentajes de los aportes de estas dos últimas son decididos mediante discusiones entre ambas partes. Por otro lado, la operación y mantenimiento (OyM) de las obras terminadas es asumida por las comisiones de regantes. Por lo tanto, la sostenibilidad del Proyecto depende de la rentabilidad del Proyecto y de la capacidad de OyM de las comisiones de regantes.

(1) Rentabilidad

El costo del Proyecto de la cuenca del Río Chira se estima en 64,0 millones de soles. El impacto económico en términos de costos a precios sociales es de B/C = 0,94, VAN = -2,9 millones de soles y TIR = 9%. Por lo tanto, se concluye que el proyecto no arrojará un impacto económico positivo.

(2) Costo de operación y mantenimiento

El costo anual de operación y mantenimiento requerido para el proyecto, teniendo como año base al año 2008 se estima en 263.000 soles, que corresponde al 0,5 % del costo de construcción del proyecto en la cuenca del Río Chira. Por otro lado, el promedio de los gastos de operación en los últimos cuatro años de las comisiones de regantes es de 2.463.008.

Al considerar que el costo anual de operación y mantenimiento representa un 10.75 % del presupuesto anual de las comisiones de regantes, el proyecto sería suficientemente sostenible a juzgar de la capacidad financiera de estas comisiones para mantener y operar las obras construidas.

Sin embargo dado que el proyecto no arroja un impacto económico, es poco viable implementar el proyecto.

				0	
Ríos		Presupuesto a	ınual		(Unidad/S)
	2006	2007	2008	2009	Promedio de
					cuatro años
Chira	30.369.84	78.201.40	1.705.302.40	8.037.887.44	2.463.008

Tabla 1.9-1 Presupuesto de las comisiones de regantes

1.10 Impacto Ambiental

Se revisó y se evaluó el impacto ambiental positivo y negativo asociado la implementación del presente Proyecto y se plantearon las medidas de prevención y mitigación de dichos impactos. La evaluación ambiental preliminar (EAP) se llevó a cabo entre diciembre de 2010 y enero de 2011 por una firma consultora registrada en el Ministerio de Agricultura (CIDES Ingenieros S.A.) en la cuenca del Río Chira. El informe de dicha evaluación está siendo evaluada actualmente por la Dirección General de Asuntos Ambientales (DGAA) del Ministerio de Agricultura.

Los procedimientos de revisión y evaluación del impacto al entorno natural y social del Proyecto son los siguientes. En primer lugar, se revisó el calendario de ejecución de las obras de construcción de las estructuras fluviales, y se procedió a elaborar la matriz de Leopold.

Se evaluó el impacto a nivel ambiental (entorno natural, biológico y social) y a nivel del Proyecto (fase de construcción y fase de mantenimiento). Se determinaron los niveles cuantitativos del impacto ambiental cuantificando el impacto en términos de la naturaleza del impacto, posibilidad de manifestación, magnitud (intensidad, alcance, duración y reversibilidad).

El EAP puso de manifiesto que el impacto ambiental que se manifestaría por la implementación del presente Proyecto en las fases de construcción y de mantenimiento, en su mayoría, no es muy marcado, y aunque lo fuera, éste puede ser prevenido o mitigado al implementar adecuadamente el plan de gestión del impacto ambiental.

Por otro lado, el impacto positivo es muy marcado en la fase de mantenimiento, lo cual se

manifiesta a nivel socioeconómico y ambiental, concretamente, en la mayor seguridad y menor vulnerabilidad, mejor calidad de vida y utilización de tierras.

1.11 Plan de ejecución

La Tabla 1.11-1 presenta el plan de ejecución del Proyecto.

Tabla 1.11-1 Plan de ejecución

175140		2	2010		2011				20	12	2013				2014					20	15			.6	
	ITEMS		9	12	3	6	9 12	3	6	9 12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9 12
1	ESTUDIO PERFIL/EVALUACIÓN SNIP	ESTU	JDIO	Η	\pm	<u> </u>	\pm		EV	ALUACIO	ÓN			-											
2	ESTUDIO FACTIBILIDAD/EVALUACIÓN SNIP			ES	STUDI	10				EVA	ALUA	CIÓ	ÓΝ												
3	NEGOCIACIÓN DE CREDITO EN YENES											=		1											
4	SELECCIÓN DE CONSULTOR												=	T											
5	SERVICIO DE CONSULTOR (DISEÑO DETALLADO, ELABORACIÓN DE DOCUMENTOS PARA LICITACIÓN)							DI	SEÑ	io/Doc	UME	NT	O DE	LIC	CITA	CIÓ	N		SU	PER	VISI	ÓN	DE C	DBR	4
6	SELECCIÓN DE CONSTRUCTOR														ı										
7	EJECCIÓN DE OBRAS																								
1)	CONSTRUCCIÓN DE ESTRUCTURAS																					_			
2)	REFORESTACIÓN															-	-		_ -		.	-1	!	-[
3)	SISTEMA DE ALERTA TEMPRANA													T		i					_ 		I		
4)	CAPACITACIÓN PREVENTIVA DE DESASTRES													T		ı						-	. 	-1	
8	CULMINACIÓN DE OBRAS/ENTREGA A JUNTAS DE U	SUAR	IOS											1										•	-

1.12 Instituciones y administración

Las instituciones y su administración en la etapa de inversión y la de operación y mantenimiento luego de la inversión se presentan en las Figura 1.12-1 y 1.12-2.

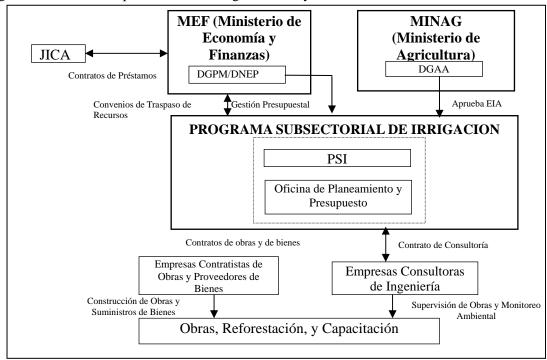


Figura 1.12-1 Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)

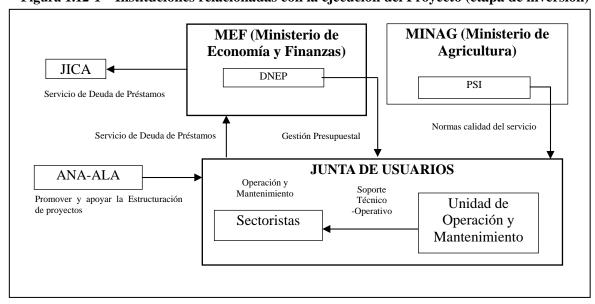


Figura 1.12-2 Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y mantenimiento posterior a la inversión)

1.13 Marco Lógico

En la Tabla 1.13-1 se presenta el marco lógico de la alternativa seleccionada definitivamente.

Tabla 1.13-1 Marco lógico de la alternativa seleccionada definitivamente

Resumen narrativo	Indicadores verificables	Medios de verificación de indicadores	Condiciones preliminares
Meta superior			
Promover el desarrollo socioeconómico local y contribuir al bienestar social de la población.	Mejorar la productividad local, generar más empleos, aumentar ingresos de la población y reducir el índice de la pobreza	Datos estadísticos publicados	Estabilidad socioeconómica y política
Objetivos			
Aliviar la alta vulnerabilidad de los valles y de la comunidad local ante las inundaciones	Tipos, cantidad y distribución de las obras de control de inundaciones, población y á rea beneficiaria	Monitoreo del calendario anual de obras y del plan financiero, fiscalización de ejecución de presupuesto.	Asegurar el presupuesto necesario, intervención activa de los gobiernos central y regional, municipalidades, comisiones de regantes, comunidad local, etc.
Resultados esperados			
Reducción de los sectores y á rea anegable, mejoramiento funcional de las bocatomas, prevención de destrucción de caminos, protección de canales de riego, control de la erosión de márgenes, seguridad de la Presa	Número de sectores y área anegable, variación del caudal de toma de agua, frecuencia de destrucción de caminos,	Visitas al sitio, revisión del plan de control de inundaciones y de informes de obras de control de inundaciones, monitoreo rutinario por los habitantes locales	Monitoreo de mantenimiento por los gobiernos regionales, municipalidades y la comunidad local, información oportuna a los organismos superiores.
Actividades	D 1 1 22 1 1 1		
Componente A: Medidas estructurales	Rehabilitación de diques, obras de protección de má rgenes y bocatomas, prevenci ón de daños a los caminos, construcción de 28 obras, incluyendo las destinadas a la seguridad de la presa	Revisión del Diseño Detallado, informes de obras, gastos ejecutados	Asegurar el presupuesto de obras, Diseño Detallado/ejecución de obras/supervisión de obras de buena calidad
Componente B: Medidas no			
estructurales			
B-1 Reforestación y recuperación vegetal	Área reforestada, área de bosques ribereños	Informes de avance de obras, monitoreo rutinario por la comunidad local	Apoyo de consultores, ONGs, comunidad local, concertación y cooperación de la comunidad de la cuenca baja
B-2 Sistema de alerta temprana	Equipos instalados, estado de operación, frecuencia de alertas emitidas, estado de transmisión de información	Informes de avance de obras, monitoreo por entidad pública y comunidad local	Funcionamiento adecuado de equipos, debida capacitación del personal, comunicación y promoción, OyM de equipos y programas
Componente C: Educación en prevención de desastres y desarrollo de capacidades	Número de sesiones de seminarios, prácticas, capacitación, taller,	Informes de avance, monitoreo por gobiernos locales y comunidad	Predisposición de los actores a participar, asesoría por consultores y ONGs
Gestión de ejecución del Proyecto			
Gestión del Proyecto	Diseño Detallado, orden de inicio de las obras, supervisió n de obras, operación y mantenimiento	Planos de diseño, plan de ejecución de obras, pliego de estimación de costos, especificaciones de las obras, contratos, informes de gestión de obras, manuales de mantenimiento	Selección de consultores y contratistas de alto nivel, participación de la población beneficiaria en operación y mantenimiento

2. ASPECTOS GENERALES

2.1 Nombre del Proyecto

"Programa de Protección de Valles y Poblaciones Rurales Vulnerables ante Inundaciones, Implementación de Medidas de Prevención para el Control de Desbordes e Inundaciones del Río Chira, Departamento Piura"

2.2 Unidades Formuladora y Ejecutora

(1) Unidad formuladora

Nombre: Dirección General de Infraestructura Hidráulica, Ministerio de Agricultura

Responsable: Orlando Hernán Chirinos Trujillo

Director General de Dirección General de Infraestructura Hidráulica

Dirección: Av. Benavides Nº 395 Miraflores, Lima12 – Perú

Teléfono: (511)4455457/6148154 Correo electrónico: ochirinos@minag.gob.pe

(2) Unidad ejecutora

Nombre: Programa Subsectorial de Irrigaciones, Ministerio de Agricultura

Responsable: Ing. Jorge Zúñiga Morgan

Director Ejecutivo

Dirección: Jr. Emilio Fernandez Nº 130 Santa Beatriz, Lima-Perú

Teléfono: (511)4244488

Correo electrónico: postmast@psi.gob.pe

2.3 Participación de las Entidades Involucradas y de los Beneficiarios

A continuación se indican las instituciones y entidades involucradas en el presente Proyecto, así como los beneficiarios.

(1) Ministerio de Agricultura (MINAG)

El MINAG, como gestor de los recursos naturales de las cuencas para impulsar el desarrollo agrícola en cada una de ellas, asume la responsabilidad de mantener la sostenibilidad económica, social y ambiental en beneficio del desarrollo de la agricultura.

Para cumplir efectiva y eficientemente dicho objetivo, el MINAG está emprendiendo desde 1999 el Programa de Encauzamiento de Ríos y Protección de Estructuras de Captación (PERPEC). Los programas de prevención de desastres fluviales que están llevando a cabo los gobiernos regionales son financiados con los recursos del PERPEC.

- 1) Oficina de Administración (OA)
- Asume la gestión y ejecución del presupuesto del Programa.
- Planifica la preparación de las guías de gestión y de asuntos financieros.
- 2) Dirección General de Infraestructura Hidráulica, DGIH)

- Asume el estudio, control e implementación del programa de inversión.
- Elabora las guías generales del programa en colaboración con la OPI.
- 3) Oficina de Planeamiento e Inversiones (OPI)
- Realiza la evaluación preliminar el programa de inversión.
- Asume la gestión del programa y la ejecución del presupuesto del programa.
- Planifica la preparación de las guías de gestión y de asuntos financieros.
- 4) Programa Subsectorial de Irrigaciones (PSI)
- Ejecuta el programa de inversión aprobado por la OPI y DGPM.

(2) Ministerio de Economía y Finanzas (MEF)

1) Dirección General de Programación Multianual del Sector Público (DGPM)

Se encarga de aprobar las obras de inversión pública conforme los procedimientos del Sistema Nacional de Inversión Pública (SNIP) para evaluar la relevancia y la factibilidad, de tramitar la solicitud del desembolso del presupuesto estatal y el préstamo de JICA.

(3) Agencia de Cooperación Internacional del Japón (JICA)

Es una institución del gobierno del Japón cuyo objetivo es contribuir al desarrollo socioeconómico de los países en desarrollo a través la cooperación internacional. JICA ha extendido la asistencia financiera para la ejecución de los estudios de prefactibilidad y de factibilidad del presente Proyecto.

(4) Gobiernos Regionales (GORE)

Los gobiernos regionales asumen el fomento del desarrollo regional integral y sostenible siguiendo los planes y programas estatales y regionales, procurando aumentar las inversiones públicas y privadas, generar oportunidades de empleo, defender los derechos de los habitantes y garantizar la igualdad de oportunidades.

La participación de los gobiernos regionales con su posible aporte financiero, es un factor indispensable para asegurar la sostenibilidad del Proyecto.

El Proyecto Especial Chira Piura, Gobierno Regional Piura implementado por el gobierno regional de Piura incluye también el Río Chira que es el Área del presente Estudio.

(5) Comisión de Regantes

Existen actualmente 6 comisiones de regantes en la Cuenca del Río Chira, quienes han manifestado su fuerte deseo porque se ejecuten las obras de construcción de diques, protección de márgenes, reparación de las bocatomas, etc. ya que actualmente están sufriendo grandes daños por las inundaciones de los ríos. A continuación se presenta una breve reseña de las comisiones en la Cuenca del Río Chira (Para más detalles, véase el apartado 3.1.3). Actualmente, la operación y mantenimiento de los diques, obras de protección de márgenes, bocatomas y canales de riego relacionados con las tierras agrícolas y los sistemas de riego en la cuenca, son realizados principalmente por las comisiones de regantes y sus integrantes, asistidos por los gobiernos

locales.

Número de bloques de riego: 6

Número de comisiones de regantes: 6

Área bajo riego: 48.676 ha

Beneficiarios: 18.796 productores

(6) Servicio Nacional de Meteorología e Hidrología (SENAMHI)

Es un organismo adscrito al Ministerio del Ambiente, y tiene a su cargo realizar todas las actividades relacionadas con la meteorología, hidrología, medio ambiente y meteorología agrícola. Participa en el monitoreo de aire a nivel global, contribuyendo al desarrollo sostenible, seguridad y bienestar nacional, y recopila las informaciones y datos de las estaciones de observación meteorológica e hidrológica.

(7) Instituto Nacional de Defensa Civil (INDECI)

INDECI es el ente rector y coordinador del Sistema Nacional de Defensa Civil y asume la responsabilidad de organizar y coordinar la comunidad, elaborar planes y controlar el desarrollo de los procesos de la gestión de riesgos de desastres. Tiene como objetivo evitar o aliviar la pérdida de la vida humana por desastres naturales y humanos y prevenir la destrucción de bienes y del medio ambiente.

(8) Autoridad Nacional del Agua (ANA)

La Autoridad Nacional del Agua (ANA) es un ente técnico-normativo a cargo de promover las políticas, planes, programas y reglamentos relacionados con el uso sostenible de los recursos hídricos en todo el país.

Sus funciones abarcan la gestión sostenible de estos recursos, así como el mejoramiento del marco técnico y legal sobre el monitoreo y evaluación de las operaciones de acueducto en cada región. A la par de mantener y promover el uso sostenible de los recursos hídricos, se encarga de llevar a cabo los estudios necesarios y elaborar los principales planes de mantenimiento, programas de cooperación económica y técnica nacional e internacional.

(9) Direcciones Regionales de Agricultura (DRAs)

Las direcciones regionales de agricultura cumplen las siguientes funciones bajo el respectivo gobierno regional.

- Elaborar, aprobar, evaluar, implementar, controla y administrar las políticas nacionales de agricultura, planes sectoriales, así como los planes y políticas regionales propuestas por las municipalidades.
- 2) Controlar las actividades y servicios agrícolas ajustándolos a las políticas y reglamentos relacionados, así como al potencial regional.
- 3) Participar en la gestión sostenible de los recursos hídricos de acuerdo con el marco general

de la cuenca, así como con las políticas de la Autoridad Nacional del Agua (ANA).

- 4) Promover la reconversión de rubros, desarrollo del mercado, exportación y consumo de los productos agrícolas e agroindustriales.
- 5) Promover la gestión del programa de riego, obras de construcción y reparación de riego, así como el manejo adecuado y la conservación de los recursos hídricos y del suelo.

2.4 Marco conceptual (marco de afinidad)

2.4.1 Antecedentes

(1) Trasfondo del Estudio

La República del Perú (en lo sucesivo "Perú") es un país expuesto al alto riesgo de desastres naturales como terremotos, Tsunami, etc., entre las que se figuran las inundaciones. En particular, El Niño que se produce con un intervalo de varios años ha ocasionado los mayores desbordes de ríos y avalanchas en diferentes lugares del país. El desastre más grave que se ha tenido en los últimos años a raíz de El Niño, ocurrió en la época de lluvias 1982-1983 y 1997-1998. En particular, en el período 1997-1998, las inundaciones, derrumbes etc. dejaron pérdidas del orden de 3.500 millones de dólares en todo el país. Las inundaciones más recientes ocurrieron a finales de enero de 2010, en la cercanía del patrimonio mundial Machupichu a raíz de intensas lluvias que interrumpieron el tránsito de la vía férrea y de las carreteras, dejando aisladas a aproximadamente 2.000 personas.

En este contexto, el gobierno central ha implementado los Planes de Contingencia Fenómeno el Niño I y II en los años 1997-1998, a través del Ministerio de Agricultura y Ganadería (MINAG) con el fin de reconstruir las infraestructuras hidráulicas arrasadas por dicho fenómeno. Luego, la Dirección General de Infraestructura Hidráulica (DGIH) del Ministerio de Agricultura (MINAG) inició en 1999 el Programa de Encauzamiento de Ríos y Protección de Estructura de Captación (PERPEC) con el fin de proteger los poblados, tierras de cultivo, infraestructuras agrícolas, etc. ubicados dentro de las zonas de riesgo de inundaciones. Dicho programa consistió en el apoyo financiero al gobierno regional para ejecutar las obras de protección de márgenes. En el plan multianual de PERPEC entre 2007-2009 se habían propuesto ejecutar un total de 206 obras de protección de márgenes en todo el país. Dichos proyectos habían sido diseñados para soportar las inundaciones con un período de retorno de 50 años, pero todas las obras han sido pequeñas y puntuales, sin llegar a dar una solución cabal e integral para el control de inundaciones. Así, todavía se sigue sufriendo daños cada vez que ocurren inundaciones en diferentes lugares.

Así, el MINAG elaboró el Proyecto de Protección de Valles y Poblaciones Rurales y Vulnerables ante Inundaciones" dirigidos a nueve cuencas hidrográficas de las cinco regiones. Sin embargo, ante la limitada disponibilidad de las experiencias, técnicas y recursos financieros para implementar un estudio de preinversión para un proyecto de control de inundaciones de tal magnitud, solicitó el apoyo a JICA para la implementación de dicho estudio. En respuesta a dicha solicitud, JICA y el MINAG sostuvieron discusiones, bajo la premisa de implementarlo en el esquema del estudio preparatorio para la formulación de un proyecto de préstamo de AOD de JICA, sobre el contenido y

el alcance del estudio, el calendario de implementación, las obligaciones y compromisos de ambas partes, etc. plasmando las conclusiones en las Minutas de Discusiones (en lo sucesivo, "M/D") que fueron firmadas el 21 de enero y el 16 de abril de 2010. El presente Estudio fue implementado fundamentándose en dichas M/D.

(2) Antecedentes

El Informe del Estudio de Perfil a nivel del Programa para el presente Proyecto dirigido a **nueve cuencas** de cinco regiones ha sido elaborado por la DGIH y entregado a la Oficina de Planeamiento e Inversiones (OPI) el 23 de diciembre de 2009, y aprobado el 30 del mismo mes. Posteriormente, la DGIH presentó el informe al Dirección General de Programación Multianual del Sector Público (DGPM) del Ministerio de Economía y Finanzas (MEF) el 18 de enero de 2010. El 19 de marzo la DGPM comunicó a la DGIH los resultados de la revisión y las correspondientes observaciones.

El Equipo de Estudio de JICA inició el estudio en Perú el 5 de septiembre de 2010. Al inicio, el se había propuesto incluir en el estudio a nueve cuencas, de las cuales una, la del Río Ica, fue excluida a propuesta del Perú, quedando ocho cuencas. Estas ocho cuencas fueron divididas en dos grupos: cinco cuencas del Grupo A y tres cuencas del Grupo B. El estudio para el primer grupo fue asignado a JICA y el segundo a la DGIH. El Grupo A incluye las cuencas de los ríos Chira, Cañete, Chincha, Pisco y Yauca, mientras que el Grupo B incluye las de los ríos Cumbasa, Majes y Camana.

El Equipo de Estudio de JICA realizó el estudio de perfil de las cinco cuencas del Grupo A, con un nivel de precisión del prefactibilidad y entregó a DGIH el Informe del Programa del grupo A y los informes de los proyectos de las cinco cuencas a finales de junio de 2011. Asimismo, ya se inició el estudio de factibilidad, omitiendo el estudio de prefactibilidad.

En cuanto a las cuencas del Grupo B cuyo estudio le corresponde a DGIH, se realizó el estudio de perfil entre mediados de febrero y principios de marzo de 2011 (y no a nivel de prefactibilidad como se había establecido en la Minuta de Reuniones), donde la cuenca del río Cumbaza fue excluido porque se vio que no manifestaría un efecto económico. El informe sobre las cuencas de los ríos Camaná y Majes fue entregado a OPI, y se recibieron las observaciones oficiales de OPI a través de DGIH el 26 de abril, indicando que el estudio realizado para estas dos cuencas no satisfacía el nivel de precisión requerido y que era necesario realizar nuevamente el estudio. Asimismo, se indicó realizar un solo estudio para ambos ríos por pertenecer a una sola cuenca hidrográfica (Majes-Camaná).

Por otro lado, debido a la política de austeridad anunciada el 31 de marzo, previo a la asunción del gobierno por el nuevo presidente el 28 de julio, se ha visto que es sumamente difícil obtener nuevo presupuesto, la DGIH ha solicitado a JICA el 6 de mayo para que se realizara los estudios de prefactibilidad y factibilidad de la cuenca Majes-Camaná.

JICA aceptó esta solicitud y decidió llevar a cabo el estudio de la cuenca mencionada modificando

por segunda vez la Minuta de Reuniones (véase la Segunda Enmienda de la Minuta de Reuniones sobre el Informe Inicial, Lima, 22 de julio de 2011.)

Así, el Equipo de Estudio de JICA inició en agosto el estudio de prefactibilidad para la cuenca mencionada, terminándolo a finales de noviembre.

El presente informe corresponde al estudio de prefactibilidad del proyecto de la cuenca Chira, de cinco cuencas del Grupo A. Se contempla terminar el estudio de factibilidad de la cuenca Majes-Camaná a mediados de enero de 2012, y también el estudio de factibilidad para todas las cuencas seleccionadas en las mismas fechas.

Cabe recordar que la DGIH tramitó el 21 de julio, el registro a SNIP de las cuatro de las cinco cuencas correspondientes a JICA (excepto Yauca), fundamentándose en los informes de proyectos a nivel de prefactibilidad (según cuencas). La DHIG decidió descartar el río Yauca por considerar que su impacto económico es bajo.

2.4.2 Leyes y reglamentos, políticas y guías relacionadas con el Programa

El presente programa ha sido elaborado de conformidad con las siguientes leyes y reglamentos, políticas y guías.

(1) Ley de Recursos Hídricos Nº 29338

Artículo 75.- Protección del agua

La Autoridad Nacional, con opinión del Consejo de Cuenca, debe velar por la protección del agua, que incluye la conservación y protección de sus fuentes, de los ecosistemas y de los bienes naturales asociados a ésta en el marco de la Ley y demás normas aplicables. Para dicho fin, puede coordinar con las instituciones públicas competentes y los diferentes usuarios.

La Autoridad Nacional, a través del Consejo de Cuenca correspondiente, ejerce funciones de vigilancia y fiscalización con el fin de prevenir y combatir los efectos de la contaminación del mar, ríos y lagos en lo que le corresponda. Puede coordinar, para tal efecto, con los sectores de la administración pública, los gobiernos regionales y los gobiernos locales.

El Estado reconoce como zonas ambientalmente vulnerables las cabeceras de Cuenca donde se originan las aguas. La Autoridad Nacional, con opinión del Ministerio del Ambiente, puede declarar zonas intangibles en las que no se otorga ningún derecho para uso, disposición o vertimiento de agua.

Artículo 119.- Programas de control de avenidas, desastres e inundaciones

La Autoridad Nacional, conjuntamente con los Consejos de Cuenca respectivos, fomenta programas integrales de control de avenidas, desastres naturales o artificiales y prevención de daños por inundaciones o por otros impactos del agua y sus bienes asociados, promoviendo la coordinación de acciones estructurales, institucionales y operativas necesarias.

Dentro de la planificación hidráulica se fomenta el desarrollo de proyectos de infraestructura

para aprovechamientos multisectoriales en los cuales se considera el control de avenidas, la protección contra inundaciones y otras medidas preventivas.

(2) Reglamento de la Ley de Recursos Hídricos Ley Nº 29338

Artículo 118°.- De los programas de mantenimiento de la faja marginal

La Autoridad Administrativa del Agua, en coordinación con el Ministerio de Agricultura, gobiernos regionales, gobiernos locales y organizaciones de usuarios de agua promoverá el desarrollo de programas y proyectos de forestación en las fajas marginales para su protección de la acción erosiva de las aguas.

Artículo 259°.- Obligación de defender las márgenes

Constituye obligación de todos los usuarios defender, contra los efectos de los fenómenos naturales, las márgenes de las riberas de los ríos en toda aquella extensión que pueda ser influenciada por una bocatoma, ya sea que ésta se encuentre ubicada en terrenos propios o de terceros. Para este efecto, presentarán los correspondientes proyectos para su revisión y aprobación por la Autoridad Nacional del Agua.

(3) Ley de Agua

Artículo 49. Las inversiones en las medidas preventivas para la protección de cultivos son menores que los costos de medidas de recuperación y de rehabilitación. Es importante dar mayor prioridad a estas medidas de protección que son más económicas y muy beneficiosas para el Estado, y que contribuye al ahorro de los gastos públicos.

- Artículo 50. En el caso de que el costo de las medidas de protección de diques y canales de riego corre a cargo de las unidades productivas familiares o cuando supera la capacidad de pago de los usuarios, el Gobierno podrá sufragar parte de este costo.
- (4) Plan Estratégico Sectorial Multianual del Ministerio de Agricultura para el período 2007-2011 (RM Nº 0821-2008-AG)

Promueve las obras de construcción y reparación de las infraestructuras de riego con la premisa de disponer de recursos hídricos suficientes y su uso adecuado.

- (5) Ley Orgánica de Ministerio de Agricultura, Nº 26821
 En su Artículo 3 se estipula que el sector agrícola asume la responsabilidad de ejecutar las obras fluviales y el manejo de aguas agrícolas. Esto supone que las obras fluviales y el manejo de recursos hídricos con fines agrícolas correrán a cargo de dicho sector.
- (6) Lineamientos de Política Agraria para el Perú 2002, por la Oficina de Políticas del MING)

Título 10 Políticas sectoriales

"La agricultura constituye una actividad productiva de alto riesgo por su vulnerabilidad frente a los fenómenos climáticos, que puede ser previsto y mitigado. ... El costo de los daños a las infraestructuras, cultivos y el ganado puede ser un impedimento para el desarrollo de la agricultura, y como consecuencia, redunda en el empeoramiento del entorno local, regional y nacional.

(7) Programa de Encauzamiento de Ríos y Protección de Estructuras de Captación, PERPEC La DGIH del MINAG ha iniciado en 1999 el Programa de Encauzamiento de Ríos y Protección de Estructuras de Captación (PERPEC) con el fin de proteger a las comunidades, tierras e instalaciones agrícolas y otros elementos de la región de los daños de las inundaciones, extendiendo el apoyo financiero a las obras de protección de márgenes ejecutadas por los gobiernos regionales.

3. IDENTIFICACIÓN

3.1 Diagnóstico de la Situación Actual

3.1.1 Naturaleza

(1) Ubicación

En la Figura 3.1.1-1 se presenta el mapa de ubicación de la cuenca del Río Chira, incluida en el Área del presente Estudio.

Figura 3.1.1-1 Ríos objeto del presente el Estudio

(2) Descripción general de las cuencas

El Río Chira recorre aprox. a 850 km al norte de la Capital Lima, y su manejo es asumido por la Región de Piura. Es un río internacional ya que una parte de su cuenca alta pertenece al Ecuador. A 100 km aguas arriba desde la desembocadura se ubica la presa más grande del Perú, Poechos con una capacidad total de 800 millones de metros cúbicos (presa multipropósito para el control de inundaciones, generación eléctrica y de otras

utilizaciones). El área de la cuenca hidrográfica es de aprox. 13.000 km² aguas arriba de la Presa Poechos (de las cuales 6.500 km² pertenecen al Ecuador), y de aproximadamente 4.000 km² aguas abajo de la misma. El tramo de 100 km aguas debajo de la presa que constituye el Área del Estudio, se caracteriza por su pendiente relativamente suave (1/1400) con un ancho entre 500 y 1.500 metros.

Las precipitaciones anuales oscilan entre 100 y 1000 mm a altitudes menores a 500 msnm, y entre 600 y 1600 mm a altitudes mayores a 3.000 msnm. Esta tendencia de aumentar las precipitaciones a mayores altitudes es similar en otras cuencas hidrográficas, pero el Río Chira se destaca por altas precipitaciones medias.

En cuanto a su vegetación, el 90 % de la cuenca está cubierta por matorrales y bosques secos, con excepción de una parte de la cuenca más alta que está cubierta por el bosque tropical. Por otro lado, la cuenca baja (aguas debajo de la Presa Poechos) también está cubierta por los matorrales y bosques secos en su 80 %, y por tierras de cultivo en el 20 % restante. La cuenca del Río Chira pertenece a la zona de clima tropical, con altas precipitaciones y pocas zonas áridas. Las actividades agrícolas se concentran en la plantación del banano y caña de azúcar. Su cuenca baja también es escenario del desarrollo de depósitos de gas natural.

3.1.2 Condiciones socioeconómicas del Área del Estudio

(1) División administrativa y superficie

El Río Chira se ubica en las provincias Sullana y Paita de la Región de Piura.

En la Tabla 3.1.2-1 se muestran los distritos alrededor del Río Chira y su respectiva área.

Región	Provincia	Distrito	Área (km²)
		Sullana	488.01
		Ignacio Escudero	306.53
	Sullana	Marcavelica	1687.98
		Querocotillo	270.08
Piura		Salitral	28.27
		Amotape	90.82
		Colán	124.93
	Paita	La Huaca	599.51
		Tamariodo	63.36

Tabla 3.1.2-1 Distritos alrededor del Río Chira y su área

(2) Población y el número de hogares

En la Tabla 3.1.2-2 se muestra la variación de la población en el período 1993-2007.

De la población total de Sullana de 231.043 habitantes (2007), el 93 % (215.069 habitantes) vive en la zona urbana, y el 7 % (15.974 habitantes) en la zona rural. Asimismo, de la población total de Paita de 29.906 habitantes, el 89 % (26.494 habitantes) vive en la zona urbana y el 11 % (3.412 habitantes) en la zona rural. En ambos distritos, la población está

aumentando. En particular, Sullana se destaca dentro de la cuenca por su rápido incremento de la población de aprox. 35.000 habitantes.

En cuanto a la variación de la población entre 1993 y 2007, la población rural y urbana de Sullana, y la zona urbana de Paita registraron un aumento entre 1,0 y 1,6 %, mientras que la zona rural de Paita ha tenido una reducción de 1,3 %.

Tabla 3.1.2-2 Variación de la población urbana y rural

Duraninaia	Distrits	1	Pobla	ción Tota	1 2007	7]	Pobla	ción Tota	ıl 199	3	Variac	ión (%)
Provincia	Distrito	Urbana	%	Rural	%	Total	Urbana	%	Rural	%	Total	Urbana	Rural
	Sullana	145.882	93%	10.719	7%	156.601	115.484	95%	6.410	5%	121.894	1,7%	3,7%
	Ignacio												
G 11	Escudero	17.202	96%	660	4%	17.862	13.486	95%	689	5%	14.175	1,8%	-0,3%
Sullana	Marcavelica	24.462	94%	1.569	6%	26.031	19.406	92%	1.586	8%	20.992	1,7%	-0,1%
	Querocotillo	21.916	90%	2.536	10%	24.452	19.218	86%	3.219	14%	22.437	0,9%	-1,7%
	Salitral	5.607	92%	490	8%	6.097	4.075	81%	979	19%	5.054	2,3%	-4,8%
То	tal	215,069	93%	15.974	7%	231.043	171.669	93%	12.883	7%	184.552	1,6%	1,5%
	Amotape	2.139	93%	166	7%	2.305	2.135	96%	87	4%	2.222	0,0%	4,7%
D. S.	Colan	11.343	92%	989	8%	12.332	10.753	92%	908	8%	11.661	0,4%	0,6%
Paita	La Huaca	8.876	82%	1.991	18%	10.867	6.408	70%	2.756	30%	9.164	2,4%	-2,3%
	Tamarindo	4.136	94%	266	6%	4.402	3.643	91%	345	9%	3.988	0,9%	-1,8%
То	tal	26.494	89%	3.412	11%	29.906	22.939	85%	4.096	15%	27.035	1,0%	-1,3%

Fuente: Elaboración Equipo de estudio JICA, Instituto Nacional de Estadística –INEI, Censos de Población y Vivienda, 2007 y 1993.

En la Tabla 3.1.2-3 se muestra el número de hogares y de miembros por familia. Cada hogar tiene un promedio de 4,0 a 4,5 miembros. Cada familia tiene entre 3,8 y 4,3 miembros.

Tabla 3.1.2-3 Número de hogares y de familias

Variables			Distrito		
variables	Sullana	Ignacio escudero	Marcavelica	Querocotillo	Salitral
Población (habitantes)	156,601	17,862	26,031	24,452	6,097
Número de hogares	34,218	4,024	6,309	5,730	1,468
Número de familias	36,386	4,248	6,504	6,011	1,555
Miembros por hogar (personas/hogar)	4.58	4.44	4.13	4.27	4.15
Miembros por familia (personas/familia)	4.30	4.20	4.00	4.07	3.92

Variables		Dis	trito	
variables	Amotape	Colan	La Huaca	Tamarindo
Población (habitantes)	2,305	12,332	10,867	4,402
Número de hogares	544	2,725	2,422	1,075
Número de familias	573	2,874	2,608	1,146
Miembros por hogar (personas/hogar)	4.24	4.53	4.49	4.09
Miembros por familia (personas/familia)	4.02	4.29	4.17	3.84

(3) Ocupación

En la Tabla 3.1.2-4 se muestra la lista de las ocupaciones de los habitantes locales desglosadas según sectores. En Sullana ha aumentado los trabajadores del sector terciario hasta 71,8 %, pero en los demás distritos el sector primario sigue absorbiendo un elevado porcentaje de mano de obra (entre 40 y 80 %).

Distrito Ignacio escudero Sullana Marcavelica Querocotillo Salitral Personas Personas Personas Personas % Personas % % Pob. Econó 52,662 100 5,042 100 7,897 100 100 100 micamente activa 3,920 2,211 Serctor primario 8,230 15.6 2,813 55.8 4.195 53.1 3,231 82.4 1,065 48.2 10.3 Sector secundario 6,636 12.6 616 12.2 716 9.1 69 1.8 227 Sector terciario 37,796 71.8 1,613 32.0 2,986 37.8 620 15.8 919 41.6

Tabla 3.1.2-4 Ocupación

4) Índice de la pobreza

En la Tabla 3.1.2-5 se muestra el índice de la pobreza. El 39,6 % de la población total de Sullana (231.043 habitantes) pertenece al segmento de pobres y el 6,7 % (15.536 habitantes) al segmento de la extrema pobreza. En Paita, el 43,3 % de la población (12.955 habitantes) pertenece al segmento de pobres, y el 4,8 % (1.447 habitantes) al segmento de la extrema pobreza. En particular, el segmento pobre y de extrema pobreza del distrito Colan es de 49,8 % y de 6,5 %, respectivamente, representando casi la mitad de la población total.

Sullana Sullana Ignacio Escudero Marcavelica Querecotillo Salitral % Personas Personas % Personas Personas Total % % Personas % Población regional 100 100 100 100 231,043 100 156,601 17,862 26,031 100 24,452 6,097 En pobre 6,197 65,747 42.0 34.7 9,566 36.7 8,013 32.8 2,008 32.9 91,531 39.6 n extrema pobreza 13,269 538 3.0 983 124 15,536 8.5 3.8 2.5 2.0 6.7

Tabla 3.1.2-5 Índice de la pobreza

				Pa	nita					
	Amota	pe	Cola	n	La Hua	aca	Tamari	ndo		
	Personas	%	Personas	%	Personas	%	Personas	%	Total	%
Población regional	2,305	100	12,332	100	10,867	100	4,402	100	29,906	100
En pobre	858	37.2	6,081	49.3	4,538	41.8	1,478	33.6	12,955	43.3
En extrema pobreza	91	3.9	801	6.5	465	4.3	90	2.0	1,447	4.8

5) Tipo de viviendas

En Sullana, las paredes de las viviendas están construidas en un 48 % con ladrillos o cemento, y un 34 % con adobe y barro. En cuanto a los materiales del piso, el 97 % es de

^{*} Sector primario: agricultura, ganadería, forestal y pesca; secundario: minería, construcción, manufactura; terciario servicios y otros

tierra o cemento.

La cobertura de servicio público de agua potable supera el 50 %, excepto Ignacio Escudero y Querocotillo, mientras que la cobertura del servicio público de alcantarillado supera el 60 % en **Sullana y Salitral.** La electrificación está en 82 % en promedio.

En Paita, las paredes de las viviendas están construidas en un 47 % con ladrillo o cemento y un 46 % con adobe y barro. El piso es de tierra o cemento en un 96 %.

La cobertura de servicio público de agua potable supera el 60 %, excepto La Huaca, mientras que la cobertura del servicio público de alcantarillado es de menos de 50 %. La electrificación alcanza un 70 % en promedio.

Tabla 3.1.2-6 Tipo de viviendas (Sullana)

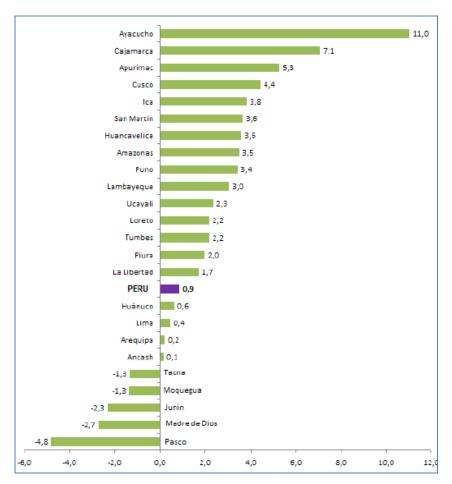
					Distrito	s				
Variable/Indicador	Sulla	na	Ignacio es	cudero	Marcav	elica	Queroco	tillo	Salitr	al
	Hogares	%	Hogares	%	Hogares	%	Hogares	%	Hogares	%
Número de hogares										
Viviendas comunes con residentes	34.218	94,6	4.024	94,5	6.309	94,9	5.730	92,7	1.468	93
Materiales de las paredes										
Ladrillos o cemento	18.384	53,7	1.108	27,5	1.769	28	1.308	22,8	391	26,6
Adobe y barro	7.930	23,2	2.200	54,7	1.353	21,4	1.611	28,1	96	6,5
Bambúes + barro o madera	6.662	19,5	664	16,5	3.041	48,2	2.777	48,5	974	66,3
Otros	1.242	3,6	52	1,3	146	2,3	34	0,6	7	0,5
Materiales del piso										
Tierra	14.564	42,6	2.194	54,5	4.096	64,9	3.707	64,7	943	64,2
Cemento	16.772	49	1.746	43,4	2.086	33,1	1.927	33,6	479	32,6
Cerámicas, parquet, madera de calidad	2.706	7,9	50	1,2	107	1,7	83	1,4	41	2,8
Otros	176	0,5	34	0,8	20	0,3	13	0,2	5	0,3
Sistema de agua potable										
Red pública dentro de la vivienda	22.703	66,3	1.847	45,9	3.207	50,8	2.240	39,1	1.085	73,9
Red pública dentro del edificio	1.187	3,5	119	3	487	7,7	90	1,6	21	1,4
Pilones de uso público	960	2,8	642	16	31	0,5	449	7,8	8	0,5
Alcantarillado y letrinas										
Red alcantarillado dentro de la										
vivienda	21.836		643	16	1.351	21,4	1.860	32,5	645	
Red alcantarillado dentro del edificio	842	2,5	99	2,5	138	2,2	78	1,4	22	1,5
Pozo negro o ciego	6.002	17,5	1.669	41,5	1.769	28	2.321	40,5	437	29,8
Electricidad										
Servicio eléctrico público	28.198	82,4	3.243	80,6	4.769	75,6	5.084	88,7	1.079	73,5
Número de miembros										
Viviendas comunes con residentes	36.386	100	4.248	100	6.504	100	6.011	100	1.555	100
Artefactos electrodomésticos										
Más de tres	13.559	37,3	931	21,9	1.543	23,7	1.188	19,8	379	24,4
Servicios de comunicación										
Teléfonos fijos y móviles	28.020	77,0	1.670	39,3	3.202	49,2	2.179	36,3	668	43,0

Fuente: Elaboración Equipo de estudio JICA, Instituto Nacional de Estadística –INEI, Censo de Población y Vivienda, 2007.

Tabla 3.1.2-7 Tipo de viviendas (Paita)

				Dist	ritos			
Variable/Indicador	Amot	ape	Cola	n	La Hu	aca	Tamari	ndo
	Hogares	%	Hogares	%	Hogares	%	Hogares	%
Número de hogares								
Viviendas comunes con residentes	544	92,4	2.725	82,3	2.422	90,4	1.075	90,
Materiales de las paredes								
Ladrillos o cemento	188	34,6	958	35,2	683	28,2	202	18,
Adobe y barro	14	2,6	428	15,7	383	15,8	115	10,
Bambúes + barro o madera	337	61,9	1.304	47,9	1.323	54,6	745	69,
Otros	5	0,9	35	1,3	33	1,4	13	1,
Materiales del piso								
Tierra	291	53,5	1.891	69,4	1.499	61,9	680	63,
Cemento	242	44,5	779	28,6	885	36,5	388	36,
Cerámicas, parquet, madera de calidad	10	1,8	52	1,9	29	1,2	6	0
Otros	1	0,2	3	0,1	9	0,4	1	0
Sistema de agua potable								
Red pública dentro de la vivienda	386	71	1.660	60,9	1.126	46,5	656	6
Red pública dentro del edificio	7	1,3	69	2,5	44	1,8	8	0,
Pilones de uso público	11	2	21	0,8	12	0,5	3	0.
Alcantarillado y letrinas								
Red alcantarillado dentro de la vivienda	4	0,7	977	35,9	332	13,7	500	46,
Red alcantarillado dentro del edificio			68	2,5	45	1,9	25	2.
Pozo negro o ciego	149	27,4	843	30,9	839	34,6	116	10.
Electricidad								
Servicio eléctrico público	363	66,7	1.841	67,6	1.743	72	711	66,
Número de miembros								
Viviendas comunes con residentes	573	100	2.874	100	2.608	100	1.146	10
Artefactos electrodomésticos								
Más de tres	134	23,4	463	16,1	544	20,9	242	21,
Servicios de comunicación								
Teléfonos fijos y móviles	154	26,9	1.028	35,8	1.049	40,2	346	30,

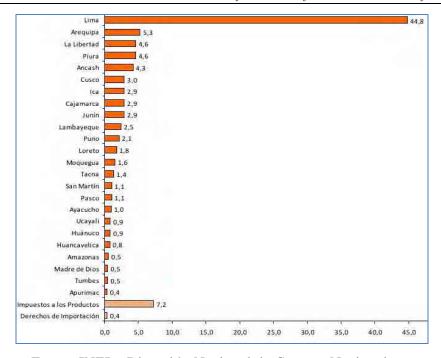
Fuente: Elaboración Equipo de estudio JICA, Instituto Nacional de Estadística –INEI, Censo de Población y Vivienda, 2007.


6) PIB

El PIB del Perú en 2009 ha sido de S./392.565.000.000.

La tasa de crecimiento del mismo año ha sido de + 0,9 % comparado con el año precedente que ha sido el pésimo nivel alcanzado en los últimos 11 años.

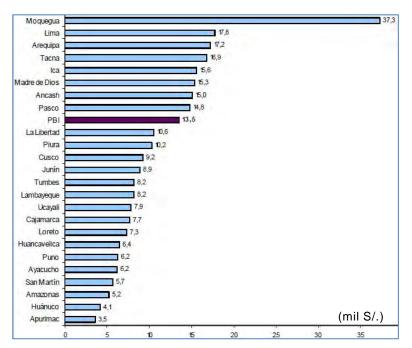
Desglosado según regiones, Ica registró un crecimiento del 3,8 %, Piura 2,0 %, Lima 0,4 %


y Arequipa 0,2 %. En particular las regiones Ica y Piura registraron cifras que superaron el promedio nacional.

Fuente INEI - Dirección Nacional de Cuentas Nacionales

Figura 3.1.2-1 Tasa de crecimiento del PIB según regiones (2009/2008)

A continuación se muestra la contribución de cada región al PIB. La Región de Lima representa casi la mitad del total, es decir 44,8 %. Arequipa contribuyó 5,3 %, Pira 4,6 % e Ica 2,9 %. Los impuestos y aranceles contribuyeron 7,2 % y 0,4 %, respectivamente



Fuente INEI – Dirección Nacional de Cuentas Nacionales

Figura 3.1.2-2 Contribución de las regiones al PIB

El PIB per cápita en 2009 ha sido de S/.13.475.

Según regiones, se tienen los siguientes datos: Lima S/.17.800, Arequipa S/.17.200, Ica S/.15.600 y Piura S/.10.200. Las tres primeras regiones superaron el promedio nacional, no así Piura.

Fuente INEI – Dirección Nacional de Cuentas Nacionales

Figura 3.1.2-3 PIB per cápita (2009)

En la Tabla 3.1.2-8 se muestra la variación a lo largo del año el PIB per cápita según regiones, en los últimos 9 años (2001-2009)

El promedio nacional del PIB aumentó un 44 % en los nueve años desde 2001 hasta 2009. Las cifras según regiones son: +83,9 % para Ica, +54,2 % para Arequipa, +48,3 % para Piura y +42,9 % para Lima.

Las cifras de la Tabla 3.1.2-8 han sido determinadas teniendo como año base a 1994.

Tabla 3.1.2-8 Variación del PIB por cápita (2001-2009)

(Año base 1994, S/.)

Departamentos	2001	2002	2003	2004	2005	2006	2007P/	2008P/	2009E/	Crecimiento Acumulado 2001-2009 (%)
Cusco	2 194	2 086	2 195	2 565	2 768	3 071	3 340	3 554	3 685	67,9
Ica	4 055	4 259	4 343	4 663	5 214	5 582	6 025	7 265	7 457	83,9
La Libertad	3 162	3 316	3 483	3 410	3 697	4 216	4 586	4 874	4 895	54,8
Ucayali	3 063	3 149	3 203	3 411	3 584	3 754	3 846	4 007	4 039	31,9
Moquegua	10 405	11 967	12 670	13 455	13 882	13 794	13 606	14 201	13 865	33,3
Areguipa	5 387	5 766	5 895	6 143	6 488	6 807	7 786	8 379	8 308	54,2
Apurimac	1 216	1 278	1 334	1.400	1 494	1 619	1 653	1 691	1 770	45,5
Piura	2 733	2 780	2 847	3 049	3 192	3 472	3 780	4 007	4 052	48,3
San Martin	2 026	2 059	2 094	2 232	2 393	2 476	2 655	2 870	2 928	44,5
Ayacucho	1 788	1 870	1 942	1 900	2 045	2 207	2 448	2 640	2 896	61,9
Amazonas	1 835	1 910	1 996	2 081	2 212	2 349	2 510	2 684	2 761	50,5
Madre de Dios	4 441	4 708	4 550	4 846	5 171	5 215	5 617	5 878	5 564	25,3
Cajamarca	2 493	2 731	2 947	2 968	3 165	3 113	2 864	3 094	3 295	32,2
Ancash	4 037	4 703	4772	4 876	4 999	5 089	5 408	5 852	5 827	44,3
Tumbes	2 744	2 802	2873	3 018	3 385	3 212	3 427	3 594	3 611	31,6
Lima	6 451	6 579	6 700	6 925	7 284	7 817	8 520	9 314	9 220	42,9
Puno	2 105	2 236	2 234	2 270	2 365	2 460	2 617	2 731	2 800	33,0
Lambayeque	2 941	3 046	3 132	2 959	3 164	3 300	3 615	3 882	3 963	34,8
Junín	3 245	3 311	3 350	3 527	3 505	3 856	4 072	4 379	4 248	30,9
Loreto	2 827	2 917	2 936	2 995	3 079	3 192	3 287	3 402	3 429	21,3
Huánuco	1 678	1 694	1 833	1 866	1 890	1 915	1 942	2 050	2 044	21,8
Pasco	5 137	5 552	5 481	5 634	5 644	6 062	6 711	6 729	6 349	23,6
Tacna	6 004	6 124	6 382	6 643	6 782	6 941	7 256	7 458	7 253	20,8
Huancavelica	2 700	2 632	2 683	2 697	2 864	3 014	2 903	2 959	3 039	12,5
PBI	4 601	4 765	4 890	5 067	5 345	5 689	6 121	6 643	6 625	44,0

Fuente INEI – Dirección Nacional de Cuentas Nacionales

3.1.3 Agricultura

A continuación se resumen la situación actual de la agricultura en cada cuenca, incluyendo las comisiones de regantes, rubros de cultivo, el área sembrada, rendimiento, ventas, etc.

(1) Sectores de Riego

En la Tabla 3.1.3-1 se presentan los datos básicos de las comisiones de regantes. En la Cuenca del Río Chira existen seis sectores de riego, seis comisiones de regantes y 18.796 beneficiarios. La superficie manejada por estos sectores suma un total de 48.676 hectáreas.

Tabla 3.1.3-1 Datos básicos de las comisiones de regantes

		Áreas baj	o Riego	Nº de	
Sectores de Riego	Comisión de regantes	ha	0/0	Beneficiarios (Persona)	Río
Miguel Checa	Miguel Checa	12.701	26 %	8.499	
El Arenal	El Arenal	3.608	7 %	2.045	
Poechos - Pelados	Poechos - Pelados	4.433	9 %	1.719	Chira
Cieneguillo	Cieneguillo	6.859	14 %	1.451	Cnira
Margen Derecha	Margen Derecha	12.415	26 %	3.755	
Margen Izquierda	Margen Izquierda	8.660	18 %	1.327	
7	otal otal	48.676	100 %	18.796	

Fuente: Elaboración Equipo de estudio JICA, Junta de Usuarios de Chira, Octubre 2010

(2) Principales cultivos

En la Tabla 3.1.3-2 se muestra la evolución temporal del área sembrada y del rendimiento de los principales cultivos entre 2005 y 2010.

Los principales cultivos de la cuenca del Río Chira habían sido el banano y limón. Sin embargo, en 2009 se inició el cultivo de caña de azúcar para la producción de etanol, cuyas ventas superaron las de limón en 2009 – 2010. Así, la caña de azúcar se agregó entre la lista de los principales cultivos de la cuenca del Río Chira.

El área de siembra y las ventas, varían dependiendo del año.

Tabla 3.1.3-2 Siembra y ventas de los principales cultivos

	Variables	2005-2006	2006-2007	2007-2008	2008-2009	2009-2010	Total
	Sup. sembrada (ha)	16,769	21,943	23,921	22,226	19,973	104,832
	Rendimiento unitario (kg/Ha)	9,882	9,764	9,785	9,588	9,753	
Arroz	Cosecha (Kg)	165,711,258	214,251,452	234,066,985	213,102,888	194,796,669	1,021,929,252
	Precio unitario (S/./kg)	0.81	0.93	1.12	0.76	0.81	
	Ventas (S/.)	134,226,119	199,253,850	262,155,023	161,958,195	157,785,302	915,378,489
	Sup. sembrada (ha)	4,595	5,280	5,096	5,096	5,096	25,163
	Rendimiento unitario (kg/Ha)	44,406	41,787	41,608	42,453	43,984	
Banano	Cosecha (Kg)	204,045,570	220,635,360	212,034,368	216,340,488	224,142,464	1,077,198,250
	Precio unitario (S/./kg)	0.40	0.55	0.63	0.67	0.63	
	Ventas (S/.)	81,618,228	121,349,448	133,581,652	144,948,127	141,209,752	622,707,207
	Sup. sembrada (ha)				565	5,482	6,047
	Rendimiento unitario (kg/Ha)				138,969	139,859	
Caña de	Cosecha (Kg)				78,517,485	766,707,038	845,224,523
azúcar	Precio unitario (S/./kg)				0.07	0.07	0 10,22 1,620
	Ventas (S/.)				5,496,224	53,669,493	59,165,717
	Sup. sembrada (ha)	3,146	1,932	1,932	1,932	1,932	10,874
	Rendimiento unitario (kg/Ha)	31,856	42,425	38,238	31,034	31,500	10,074
Limón	Cosecha (Kg)	100,218,976	81,965,100	73,875,816	59,957,688	60,858,000	376,875,580
Limon	Precio unitario (S/./kg)	0.36	0.43	0.64	0.46	0.58	370,073,300
	Ventas (S/.)	36,078,831	35,244,993	47,280,522	27,580,536	35,297,640	181,482,523
	Sup. sembrada (ha)	1,156	1,472	1,677	1,255	1,069	6,629
	Rendimiento unitario (kg/Ha)	5,216	5,177	5,266	5,320	5,141	0,022
Maíz	Cosecha (Kg)	6,029,696	7,620,544	8,831,082	6,676,600	5,495,729	34,653,651
I III	Precio unitario (S/./kg)	0.55	0.77	0.76	0.78	0.85	34,033,031
	Ventas (S/.)	3,316,333	5,867,819	6,711,622	5,207,748	4,671,370	25,774,892
	Sup. sembrada (ha)	537	646	646	646	610	3,085
	Rendimiento unitario (kg/Ha)	25,000	28,855	26,550	26,570	28,292	3,063
Mango	Cosecha (Kg)	13,425,000	18,640,330	17,151,300	17,164,220	17,258,120	92 629 070
iviango	Precio unitario (S/./kg)	0.42	0.29	0.71	0.65	0.44	83,638,970
	Ventas (S/.)	5,638,500	5,405,696	12,177,423	11,156,743	7,593,573	41,971,935
	Sup. sembrada (ha)			279	303	, ,	, ,
	Rendimiento unitario (kg/Ha)	366 1,399	674 1,480	1,743	1,780	1,589	1,894
Legumbre	(8)		997,520	486,297	539,340	432,208	2,967,399
Legumble	Cosecha (Kg) Precio unitario (S/./kg)	512,034					2,907,399
	, ,	906,300	1,865,362	1.98 962,868	1,100,254	2.00 864,416	5,699,200
	Ventas (S/.) Sup. sembrada (ha)	,	, ,		, ,	,	, ,
	• , ,	7 212	372	254	309	191	1,193
Maíz	Rendimiento unitario (kg/Ha) Cosecha (Kg)	7,313 489,971	7,363 2,739,036	6,996 1,776,984	7,010	7,543	9 (12 704
Water	, 3				2,166,090	1,440,713	8,612,794
	Precio unitario (S/./kg) Ventas (S/.)	0.64 313,581	0.68 1,862,544	0.80 1,421,587	0.84 1,819,516	0.82 1,181,385	6,598,613
	Sup. sembrada (ha)						
	-	319 45,824	183 57 160	181 46,442	77 790	75 268	1,030
Pastos	Rendimiento unitario (kg/Ha) Cosecha (Kg)	14,617,856	57,169 10,461,927	8,406,002	77,790 14,079,990	75,268 12,494,488	60,060,263
1 ustos					0.20	0.20	00,000,203
	Precio unitario (S/./kg) Ventas (S/.)	0.15 2,192,678	0.19 1,987,766	0.15 1,260,900	2,815,998	2,498,898	10,756,240
	Sup. sembrada (ha)	160	1,987,700	1,200,900		160	800
	Rendimiento unitario (kg/Ha)	3,519	3,056	3,131	2,867	3,667	000
Ciruelas		563,040	488,960	500,960	458,720	586,720	2,598,400
Chucias	Cosecha (Kg) Precio unitario (S/./kg)	0.40	0.35	0.33	0.49	0.44	4,370,400
	Ventas (S/.)	225,216	171,136	165,317	224,773	258,157	1,044,598
Otros	Sup. sembrada (ha)		3,004		·	·	15,883
Otros	Sup. sembrada (ha)	4,013 31,128	35,666	3,129 37,275	2,851 35,524	2,886 37,837	177,430
Total	Cosecha (Kg)	505,613,401	557,800,229	557,129,794	609,003,509	1,284,212,149	3,513,759,082
Total	Ventas (S/.)	264,515,787	373,008,615	465,716,915	362,308,113	405,029,984	1,870,579,415
	ventas (5/.)	204,313,767	373,000,013	+05,710,713	302,300,113	+05,047,704	1,070,379,413

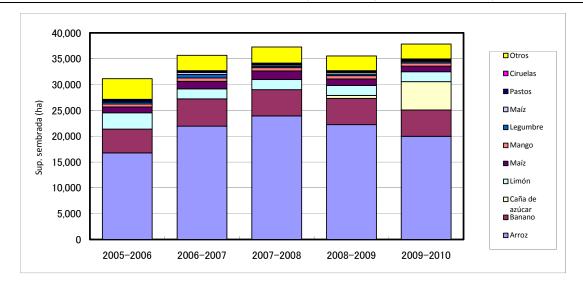


Figura 3.1.3-1 Superficie sembrada

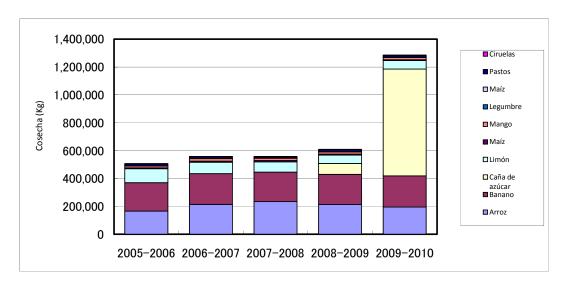


Figura 3.1.3-2 Cosecha

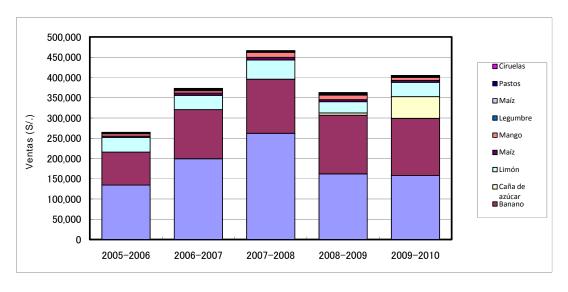


Figura 3.1.3-3 Ventas

3.1.4 Infraestructuras

(1) Infraestructuras viales

En la Tabla 3.1.4-1 se presentan los datos básicos de las infraestructuras viales de la Región de Piura. En total existen 4.398 km de caminos, de los cuales 857,0 km (19,5 %) son carretera nacional, 578,2 km (13,1 %) caminos regionales y 2.962,8 km (67,4 %) caminos municipales.

Tabla 3.1.4-1 Datos básicos de infraestructuras viales

Caminos	Longit	ud total		Pav	imentación	
			Asfaltado	Compactado	No compactado	Ripios, tierra
Carretera nacional	857,0	19,5 %	664,5	126,5	29,0	37,0
Caminos regionales	578,2	13,1 %	144,8	159,0	68,1	206,3
Caminos municipales	2962,8	67,4 %	134,3	51,7	313,6	2463,2
Total	4398,0	100,0 %	943,6	337,2	410,7	2706,5

(2) Canales de riego

En cuanto a los canales de riego según las comisiones de riego, se obtuvieron los datos del tipo, nombre, ubicación, materiales utilizados, condiciones de operación y mantenimiento de las obras, y otros detalles de los canales, no así los datos sobre la discriminación de los canales de derivación, primer, segundo y tercer orden, longitud, estructura. Sobre los datos generales, véase el Libro de Datos.

(3) PERPEC

En la Tabla 3.1.4-2 se muestran los proyectos implementados por PERPEC entre 2006 y 2009.

Tabla 3.1.4-2 Proyectos implementados por PERPEC

	2,	-		Ubicación	ción					Costo Total
e Z	ANO	Nombre de la obra	Departamento	Provincia	Distrito	Localidad	Descripcion	u		(S/.)
-	7008	Limpieza y Descolmatacion del Dren Troncal El Litoral	Piura	Paita	Colan	Pueblo Nuevo de Colan	Descolmatación de dren	8.4	Km	289,724.70
2	2006	Limpieza y Descolmatacion Dren Troncal El Rosario	Piura	Paita	Colan	Pueblo Nuevo de Colan	Descolmatación de dren	6.28	Km.	195,520.00
3	2006	Limpieza y Descolmatacion Dren Troncal Santa Elena	Piura	Paita	Colan	Pueblo Nuevo de Colan	Descolmatación de dren	7.92	Km.	240,640.00
4	2007	Defensa Ribereña rio Chira sector la Jaguay de Poechos-Querecollilo-Sullana- Piura	. Piura	Sullana	Querecotillo	Jaguey de Poechos	Dique con Enrocado	9.0	Km	480,104.00
5	2007	Defensa Riberena rio Chira sector La Cuarta de Mallares Marcavelica-Sullana- Piura	Piura	Sullana	Marcavelica	La cuarta Mallares	Dique con Enrocado	0.5	Km	491,151.00
9	2007	Defensa Ribereña rio Chira sector La Playa-Garabato-Marcavelica-Sullana- Piura	Piura	Sullana	Marcavelica	Playa Garabato	Espigones con Roca	0.1	Km	187,202.00
7	2008	Recuperación de la Sección Hidraulica del Sistema de Drenaje Colector 1 . Pueblo Nuevo de Colan (Contingencia)	Piura	Paita	Colan	Pueblo Nuevo de Colan	Recuperación de la seción hidraulica del Dren	4.9	Km	217,414.00
8	8008	Recuperación de la sección hidraulica del dren Mambre-La Bocana- Marcavelica (Contingencia)	Piura	Sullana	Marcavelica	Mallares	Recuperación de sección hidraúlica Dren	7.02	Km	183,863.15
6	2008	Recuperación de la sección hidraulica del dren el Monte-Mallares-Marcavelica (Contingencia)	Piura	Sullana	Marcavelica	Mallares	Recuperación de sección hidraúlica Dren	6.64	Km	167,832.88
10	8008	Rehabilitación de enrocado La Huaca II etapa La Huaca-Palta (Contingencia)	Piura	Sullana	La Huaca	La Polvareda	Rehabilitación de talud humedo con acomodo de roca	0.33	Km	258,772.00
11	8008	Recuperación de la sección hidraulica de los drenes Viviate y Chira Palma - La Huaca (Contingencia)	Piura	Paita	La Huaca	Viviate	Recuperación de la sección hidraulica dren Viviate y Chira Palma	3.9	Km	50,074.00
12	8007	Construcción defensa riberena río Chira margen izquierda sector Santa Marcela - Viviate - La Huaca - Palta - Plura (Contingencia)	Piura	Paita	La Huaca	Viviate	Recuperación de la sección hidraulica del dren	3900	Km	245,956.00
13	2008	Rehabilitación de Canal 4219C Cieneguillo centro de Sullana Piura (Contingencia)	Piura	Sullana	Sullana	Cineguillo	Rehabilitacion de canal revestido	089	ш	146,993.00
14	2008	Construcción de Defensa Ribereña Rio Chira Margen Izquierda Sector La Polvadera, San Isidro, Pucusula - La Huaca - Paila - Piura (Prevención)	Piura	Paita	La Huaca	La Polvadera, San Isidro, Pucusula-La Huaca	Construcción de espigones de roca 04 unid.	0.206	km	470,816.00
15	2008	Construccion de defensa riberena Quebrada Saman - Sector Mallares - distrito de Marcavelica- provincia de Sulana (Prevención)	Piura	Sullana	Marcavelica	Mallares	Construccion de espigon de roca	2	km	465,266.00

3.1.5 Daños reales de las inundaciones

(1) Daños a nivel nacional

En la Tabla 3.1.5-1 se muestra la situación actual de los daños de inundaciones en los últimos cinco años (2003-2007) en todo el país. Como se puede observar, anualmente decenas a centenas de miles de habitantes se ven perjudicados por las inundaciones.

Tabla 3.1.5-1 Situación de los daños de inundaciones

		Total	2003	2004	2005	2006	2007
Desastres ocurridos	Casos	1,458	470	234	134	348	272
Víctimas	personas	373,459	118,433	53,370	21,473	115,648	64,535
Victimas de pérdida de viviendas	personas	50,767	29,433	8,041	2,448	6,328	4,517
Fallecidos	personas	46	24	7	2	9	4
Viviendas destruidas parcialmente	Viviendas	50,156	17,928	8,847	2,572	12,501	8,308
Viviendas destruidas totalmente	Viviendas	7,951	3,757	1,560	471	1,315	848

Fuente : Compedio estadisticos de SINADECI

Perú ha sido azotado por grandes desastres de las lluvias torrenciales provocadas por el fenómeno de El Niño. En la Tabla 3.1.5-2 se muestran los daños sufridos en los años 1982-1983 y 1997-1998 cuyo efecto ha sido sumamente grave. El número de víctimas ha sido de aproximadamente 6.000.000 habitantes y la pérdida económica alcanzó un total de aproximadamente US\$ 1.000.000.000 en 1982-1983. Asimismo, el número de víctimas en 1997-1998 ha alcanzado aproximadamente 502.461 habitantes con una pérdida económica de US\$ 1.800.000.000. Cabe recalcar que los daños de 1982-1983 han sido tan serios que provocó una reducción del 12 % del PNB.

Tabla 3.1.5-2 Datos de daños

Daños	1982-1983	1997-1998
Personas que perdieron viviendas	1.267.720	_
Número de victimas	6.000.000	502.461
Lesionados	_	1.040
Fallecidos	512	366
Desaparecidos	_	163
Viviendas destruidas parcialmente	_	93.691
Viviendas destruidas totalmente	209.000	47.409
Escuelas destruidas parcialmente	_	740
Escuelas destruidas totalmente	_	216
Hospitales y centros de salud destruidos parcialmente	_	511
Hospitales y centros de salud destruidos totalmente		69
Tierras agrícolas dañadas (ha)	635.448	131.000
Cabezas de ganado perdidas	2.600.000	10.540
Puentes		344
Caminos (km)	_	944
Pérdida económica (\$)	1.000.000.000	1.800.000.000

[&]quot;-": Sin datos

(2) Desastres en las cuencas objeto del presente Estudio

En la Tabla 3.1.5-3 se resumen los daños de desastres ocurridos en la región de Piura, a la que pertenece el presente Estudio.

Tabla 3.1.5-3 Desastres en la Región de Piura

Años	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Total	Media
ALUD																	0	
ALUVION																	0	
DERRUMBE									6	1	2	1		1			11	
DESLIZAMIENTO		1		2		1	4		5		1	6	5	7	5	3	40	
HUAYCO				1				1	1			1					4	
TOTAL DESASTRES DE SEDIMENTOS	0	1	0	3	0	1	4	1	12	1	3	8	5	8	5	3	55	3
TOTAL INUNDACIONES	0	0	5	51	9	3	5	14	3	5	6	14	8	22	0	1	146	9

3.1.6 Resultados de las visitas a los sitios del Estudio

El Equipo de Estudio de JICA realizó varias visitas técnicas a las cuencas seleccionadas, e identificó los desafíos para el control de inundaciones a través de estas visitas técnicas y las entrevistas a las autoridades de los gobiernos regionales y a las asociaciones de regantes sobre los daños sufridos en el pasado y los problemas que afrontan cada cuenca.

(1) Entrevistas

(Sobre los puntos críticos)

- ➤ El Proyecto Especial Chira Piura fue elaborado hace cuarenta años.
- > Se está operando la Presa Poechos para la generación hidráulica, suministro de agua potable, agua de riego y para el cultivo de tirapia.
- ➤ Uno de los objetivos de la presa es proteger las comunidades de Chira y Piura contra las inundaciones.
- Las comunidades fueron afectadas en 1983 por las inundaciones causadas por El Niño, y como medidas de solución, se han construido los diques. En las inundaciones de 1998, también causadas por El Niño, las comunidades no sufrieron casi ningún daño, pero los diques fueron erosionados por un total de 5 km. Existen obras que siguen siendo "provisionales "debido a la falta de recursos económicos.
- ➤ El caudal de diseño fue modificado de 5.000 m³/s a 7.600m³/s (período de retorno de 100 años).
- ➤ La boca de descarga de la Presa Poechos está deteriorada por efectos del flujo que cae desde la compuerta y ésta constituye uno de los puntos críticos.

(Condiciones actuales del sitio: al momento de la visita técnica)

- ∘ Tramo del dique erosionado por El Niño (D1011∼D1013)
 - Se percató durante la visita técnica, que el tramo afectado había sido construido y reparado en su totalidad.
- o Tramo del dique erosionado por El Niño (D1020)
 - Se percató durante la visita técnica, que el tramo afectado había sido reparado casi en su totalidad, pero con algunas márgenes no estaban protegidas.
 - Los elementos protegidos son las tierras agrícolas (hortalizas y algodón), áreas de producción de gas natural. Las instalaciones de gas natural pertenecen al sector privado, pero este recurso es utilizado en la planta de generación térmica cercana.
 - ➤ El lecho de la zona se redujo 2 metros debido a las inundaciones de 1998.
 - ➤ Para las inundaciones, es importante tomar medidas no solo para soportar el caudal pico sino también para un caudal de 3.000 m³/s porque el río mantiene este caudal por un tiempo relativamente largo.

- La marea provoca una variación de entre 1 y 1,2 metros
- o Tramo del dique erosionado por El Niño (D2040)
 - > Se percató durante la visita técnica, que el tramo afectado había sido construido y reparado casi en su totalidad, pero con algunas márgenes no estaban protegidas.
- o Tramo del dique erosionado por El Niño (D2052)
 - ➤ Se percató durante la visita técnica, que existe un tramo (km 24,5 27) cuyo dique aún sigue siendo provisional y que las márgenes no estaban lo suficientemente protegidas.
- o Tramo del dique erosionado por El Niño (D3110, D4130)
 - > Se percató durante la visita técnica, que el tramo afectado había sido construido y reparado casi en su totalidad, pero con algunas márgenes que no estaban protegidas.
- Margen erosionada 1 (km 11,5 –12,5, margen derecha)
 - El sector erosionado se extendió por las inundaciones de 2008. Existe a lo largo del río el único camino que conecta las comunidades de la cuenca más baja (Vichayal, Miramar y Vista Florida), propenso a dañarse por las futuras inundaciones.
- o Margen erosionada 2 (km 73, margen derecha)
 - Aquí se extiendes grandes plantaciones de banano a lo largo del río.
 - ➤ Hay un tramo de aproximadamente 5 km donde se han perdido las tierras de cultivo debido a la erosión de márgenes.
- o Margen erosionada 3 (km 98, margen derecha)
 - Se tiene construido el Canal Miguel Checa a lo largo del río para fines de riego, con un caudal de 70 m³/s.
 - La erosión sigue agravándose y es probable que el canal sea erosionado por las futuras inundaciones.
- o Bocatoma Sullana (km 64)
 - Durante el reconocimiento en campo, se percató que en la margen derecha, entre las presas fijas para el control de inundaciones estaba acumulando los sedimentos y que había una densa vegetación. De no tomarse medidas adecuadas, el agua no fluiría por las presas fijas, pudiendo sobrecargar la presa móvil (bocatoma) de la arenisca y deteriorar su funcionamiento.
- o Erosión debajo de la presa Poechos (km 99,5)
 - Durante el reconocimiento en campo, se percató que la margen izquierda inmediatamente debajo de la boca de descarga estaba extensamente erosionada, con el riesgo de colapsar la misma presa si no se toman las medidas adecuadas. Actualmente, las partes afectadas inmediatamente debajo de la presa han sido reparadas provisionalmente (protección de

márgenes, etc.)

(Otros)

- o Entrevistas sobre la Presa Poechos
 - Existen tres compuertas. El caudal máximo de descarga oscila entre 5.000 y 5.500 m³/s. La disipación de energía se hace mediante saltos de esquí. Inmediatamente debajo de la boca de descarga se halla socavado 25 metros.
 - ➤ Durante las inundaciones provocadas por El Niño se descargaron 3800 m³/s. El caudal en el municipio de Sullana aguas abajo en dicho momento estaba entre 6.000 y 6.500 m³/s.
 - Para la generación eléctrica se está descargando 200 m³/s, y esta misma agua es utilizada para el riego en la cuenca más baja.
 - Se suministra 80 m³/s a Piura para el uso agrícola, industrial y consumo humano.
 - Anteriormente existían espigones inmediatamente aguas debajo de la presa, los cuales fueron destruidos por la descarga de agua.
 - Es la presa más grande del país, con una capacidad de almacenamiento de 800 millones de TM.
 - ➤ Un 50 % de la Presa Poechos está sedimentado alcanzando un nivel crítico (400 millones de TM de sedimentos frente a la capacidad total de 800 millones de TM), sin que exista ninguna medida concreta para su solución.
 - > Se está realizando el levantamiento periódico de la sedimentación.
- o Resultados de las entrevistas sobre las obras de construcción de diques
 - Los materiales de subbase de la corona han sido obtenidos de la Macacara. Los demás materiales fueron obtenidos de las tierras agrícolas de ambas márgenes.
 - Las piedras de protección del dique fueron obtenidas del Cabo la Mesa.
- o Resultados de las entrevistas sobre el sistema de alerta temprana
 - Existe el sistema de alerta temprana para el Río Piura. Sin embargo, para el Río Chira no se tiene aún ni el plan.
 - (A continuación, se presenta la información recogida a través de las entrevistas sobre el sistema del Río Piura.)
 - Existen 12 estaciones dentro de la cuenca del Río Piura (7.500 km²).
 - Las 12 estaciones están dotadas de pluviómetros automáticos con telemetría satelital.
 - Además de las 12 estaciones mencionadas, existen 30 estaciones tipo manual, con sistema de radiocomunicación.
 - Los datos son analizados con el programa NAXOS.
 - El sistema actual que emite alerta dentro de las 48 horas, es utilizado

desde 2002.

- Hasta 2008 se utilizaba el sistema de comunicación por radio, pero en 2008 fueron robados los panales solares de la estación central, en la que se centralizaban los datos de las demás estaciones, quedando inoperativo el sistema de radiocomunicación. Así es como se instaló el sistema de telemetría satelital.
- Actualmente, los datos de las estaciones son transmitidos vía satélite.
- Las aguas precipitadas en la cuenca alta del Río Piura se demora en llegar, por lo que el sistema predice el nivel de agua en la cuenca baja 48 horas después de la ocurrencia de lluvias. En el caso de 2.000 m³/s, el tiempo de llegada es aproximadamente de 12 horas.
- La alerta es emitida cuando el caudal supera los 1.500 m³/s.
- El sistema divide la cuenca del Río Piura en 720 segmentos.
- En las inundaciones ocurridas en 2002 con un caudal de 3.800 m³/s, el caudal previsto había sido de 3.600 m³/s.
- Los datos de las inundaciones son transmitidos desde el Proyecto Especial Chira Piura a la Defensa Civil.
- ➤ La mitad de la cuenca de la presa pertenece al Ecuador, por lo que es deseable instalar pluviómetros también en este país.
- El mayor problema existente es el robo de los paneles solares. Actualmente, se han contratado vigilantes en dos estaciones afectadas, además de asegurar estos elementos contra el robo.
- (2) Descripción de la visita a los sitios del Estudio

En la Figura 3.1.6-1 se presentan las fotografías de los principales sitios visitados.

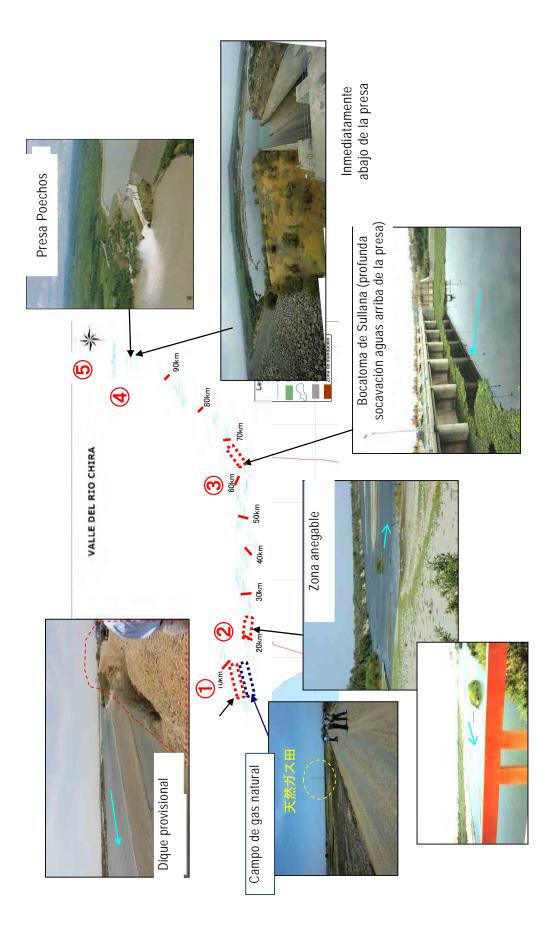


Figura 3.1.6-1 Visita al Sitio del Estudio (Río Chira)

(3) Desafíos y medidas

A continuación se plantean los desafíos y posibles medidas de solución para el control de inundaciones que se conciben en este momento, con base en los resultados de las visitas técnicas realizadas.

1) Desafío 1: Frecuentes erosiones de las márgenes por las inundaciones causadas por El Niño

Situación actual y desafíos	 Se tomaron medidas necesarias en las zonas afectadas por El Niño en 1983. En el evento de 1998 también ocasionado por El Niño no produjo inundaciones, poro el dique fue erosionado. Actualmente se está revisando el diseño con caudal de diseño modificado, pero a falta de recursos económicos, se está controlando la situación con el dique provisional.
	• Existen ocho tramos del dique afectados que solo han sido estudiados, y su medida constituye un gran desafío.
Principales	Tierras de cultivo (principales cultivos: algodón y plátano)
elementos a conservar	• Campos de gas natural (12 campos explotados actualmente cuyos recursos son utilizados para la generación eléctrica de la zona).
Medidas básicas	• Elevar la altura del dique provisional y ejecutar las obras de protección de márgenes
	 Protección de piso (medida contra la reducción de la altura del lecho)

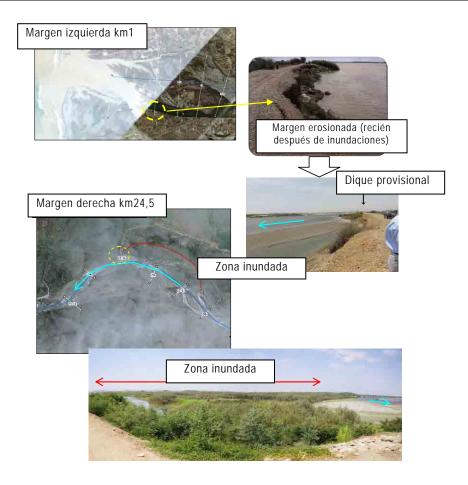


Figura 3.1.6-2 Condiciones locales relacionadas con el Desafío 1 (Río Chira)

2) Desafío 2 : Frecuentes erosiones de las márgenes por las inundaciones causadas por El Niño

Situación actual y desafíos	 Ocurrieron varios daños de erosión de márgenes por las inundaciones de El Niño de 1998. Existen varias tierras agrícolas, caminos y canales de riego desprotegidos, propensos a ser seriamente dañados si la erosión continua extendiéndose.
Principales elementos a conservar	Tierras de cultivo (principales cultivos: banano)Camino regional principalPrincipales canales de riego
Medidas básicas	• Se requiere proteger las márgenes para controlar la expansión de la erosión.

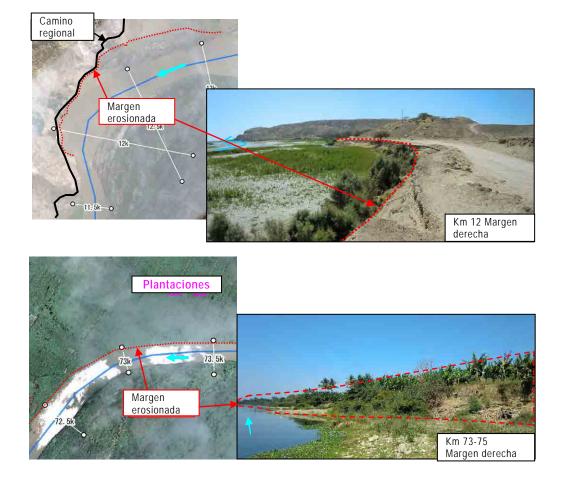


Figura 3.1.6-3 Condiciones locales relacionadas con el Desafío 2 (Río Chira)

3) Desafío 3: Erosión directa del dique por la descarga de agua

Situación actual y desafíos	 La margen izquierda inmediatamente debajo de la presa ha sido erosionada durante la descarga de agua de inundaciones. Es probable que la presa se vea afectada si ocurren inundaciones de la misma magnitud que las que se produjeron por el fenómeno de El Niño.
	 Actualmente, se está ejecutando la reparación provisional del sector erosionado inmediatamente abajo de la presa (obras de protección de márgenes).
Principales elementos a conservar	· Cuerpo de la presa
Medidas básicas	 Protección de en la margen izquierda de la boca de descarga de la presa. Se requiere realizar excavación del cauce u otras obras necesarias para impedir la entrada del agua de descarga en la margen izquierda inmediatamente abajo de la presa.

Figura 3.1.6-4 Condiciones locales relacionadas con el Desafío 3 (Río Chira)

3.1.7 Situación actual de la vegetación y reforestación

(1) Vegetación actual

De acuerdo con el Mapa Forestal 1995 y sus aclaratorias, se caracteriza por la predominancia del bosque seco. Existen tres tipos de este bosque dentro de la cuenca: i) Bosque seco tipo sabana (Bs sa), ii) Bosque seco de colinas (Bs co), y iii) bosque seco de montaña (Bs mo), que se distribuyen según las altitudes (véase la Tabla 3.1.7-1). La principal especie que constituye el bosque seco tipo sabana es el algarrobo (*Prospis pallida*). Por lo general, estos bosques están constituidos por árboles altos y monte bajo (matorral). Las especies que forman el bosque seco de colinas y de montaña son casi similares, con predominancia de árboles de hojas caducas de 12 m aproximadamente de altura. En las orillas de los ríos, también crecen los árboles siempreverdes con más de 10 cm de DAP, debido a la existencia de la napa freática a pocas profundidades. El bosque seco una vez destruido es difícil de recuperar por proceso natural, debido a que las condiciones son sumamente desfavorables. El bosque húmedo de montaña se caracteriza por la abundancia de las especies constituyentes, pero la mayoría son de menos de 10 m de altura.

Tabla 3.1.7-1 Lista de las formaciones vegetales representativas de la Cuenca del Río Chira

Bosque seco			Vegetación representativa
tipo sabana	0 y 500 msnm	160 y 240mm	Bosques de algarrobo (siempreverde). En las
			alturas, también se
			distribuyen árboles de hojas
			caducas, matorrales y
			cactus.
Bosque seco de	400 y 700 msnm	230 y 1,000mm	Similar al bosque seco de
colinas			montaña.
Bosque seco de	500 y 1,200 msnm	230 y 1,000mm	Principalmente árboles de
montaña			hojas formando bosques
			altos de 12 m
			aproximadamente.
Bosque	Entre las zonas altas de la	Frecuentes neblinas dan	Abundante vegetación
húmedo de	región amazónica hasta el	formación a los bosques	incluyendo árboles de
montanas	norte del país: hasta 3.200	nubosos.	estrato alto (10 m aprox.),
	msnm.		palmeras de entre 2 y 4 m,
	En la región centro sur del		especies herbáceas.
	Perú: vertiente este de los		
	Andes hasta 3.800 msnm.		
H C H	Bosque seco de colinas Bosque seco de montaña Bosque númedo de montanas	Bosque seco de colinas Bosque seco de montaña Bosque Entre las zonas altas de la región amazónica hasta el norte del país: hasta 3.200 msnm. En la región centro sur del Perú: vertiente este de los Andes hasta 3.800 msnm.	Bosque seco de de do y 700 msnm 230 y 1,000mm 240 protection and a secondario de montanas 250 protection anazónica hasta el morte del país: hasta 3.200 protection anazónica hasta

Fuente: Elaborada por el Equipo de Estudio de JICA con base en el Mapa Forestal 1995.

(2) Superficie de las formaciones vegetales

En el presente Estudio se determinó el porcentaje de la superficie que ocupa cada formación vegetal frente a la superficie total de la cuenca, sobreponiendo los resultados del estudio de INRENA de 1995 al GIS (véase las Tablas 3.1.7-2 y las Figuras 3.7.2-1). Luego, se calculó la suma de las superficie de cada zona de vida ecológica, distinguiendo el desierto costero (Cu, Dc), matorral seco (Ms), matorrales (Msh, Mh), bosque seco (Bs-sa, Bs-co, Bs-mo), bosque húmedo de montaña (Bh-mo), césped altoandino y pajonal (C-A, Pj). En la Tabla 3.1.7-3 se muestra el porcentaje década zona de vida ecológica frente a la superficie total de cada cuenca.

Tabla 3.1.7-2 Porcentaje de las formaciones vegetales frente a la superficie de la cuenca (Río Chira)

		Formaciones vegetales										
	Cu	Dc	Ms	Msh	Mh	Bs-sa	Bs-co	Bs-mo	Bh-mo	C-A*	Pj	Total
(Superfic	(Superficie de la cobertura vegetal: hectáreas)											
Cuenca alta	714,92	105,81	59,34	142,28	139,47	2.668,16	185,40	222,87	0,00	0,00	0,00	4.238,25
Cuenca baja	31,70	0,00	0,00	1.205,16	1.021,28	1.889,54	473,16	1.164,53	401,54	90,25	112,57	6.389,73
Total	746,62	105,81	59,34	1.347,44	1.160,75	4.557,70	658,56	1.387,40	401,54	90,25	112,57	10.627,98
(Porcenta	aje frente a	la superfici	e de la cuer	nca: %)								
Cuenca alta	16,9	2,5	1,4	3,4	3,3	63,0	4,4	5,3	0,0	0,0	0,0	100,2
Cuenca baja	0,5	0,0	0,0	18,9	16,0	29,6	7,4	18,2	6,3	1,4	1,8	100,1
Total	7,0	1,0	0,6	12,7	10,9	42,9	6,2	13,1	3,8	0,8	1,1	100,1

Nota) C-A = Cuerpo Agua (continental)

(Fuente: Preparado por el Equipo de Estudio de JICA con base en el informe de INRENA 1995)

Tabla 3.1.7-3 Porcentaje de las zonas de vida ecológicas frente a la superficie de la cuenca (Río Chira)

		Zonas de vida ecológica										
Zonas	Desiertos (Cu, Dc)	(Cu, Dc) secos (Ms) (Msh, M		Bosques secos (Bs-sa, -co, -mo)	secos húmedos de Bs-sa, -co, montaña		Pajonales (Pj)	Total				
(Porcenta	orcentaje frente a la superficie de la cuenca: %)											
Cuenca alta	19,4	1,4	6,6	72,6	0,0	0,0	0,0	100,0				
Cuenca baja	0,5	0,0	34,8	55,2	6,3	1,4	1,8	100,0				
Total	8,0	0,6	23,6	62,1	3,8	0,8	1,1	100,0				

Nota) C-A = Cuerpo Agua (continental)

(Fuente: Preparado por el Equipo de Estudio de JICA con base en el informe de INRENA 1995)

En la Tabla anterior, se observa que el desierto costero ocupa un porcentaje bajo (aprox. 10 %), y el matorral seco no alcanza ni el 1 %. Los demás matorrales ocupan aprox. el 20 %. El bosque seco representa un 60 % y esto es lo que le caracteriza la vegetación de la cuenca del Río Piura.

(3) Variación de la superficie forestal

Hasta ahora no se ha realizado un estudio detallado sobre la variación de la superficie forestal en el Perú. Sin embargo, en el Plan Nacional de Reforestación Perú 2005 – 2024 (Anexo 2) del INRENA, aparece la superficie forestal desaparecida según departamentos hasta el año 2005. En la Tabla 3.1.7-4 se presenta la superficie forestal desaparecida (total acumulado) de la Región de Piura.

Tabla 3.1.7-4 Superficie forestal perdida hasta 2005

		Superficie forestal pérdida	Uso poste	erior a la corta
Departamentos	Superficie (ha)	acumulada (ha) y porcentaje de la superficie perdida frente a la superficie departamental	Superficie subutilizada (ha)	Superficie utilizada (ha)
Piura	3.580.750	9.958 (0,3 %)	5.223	4.735

(Fuente: Plan Nacional de Reforestación, INRENA, 2005)

(4) Situación actual de la reforestación

En las cuencas baja y media, se plantan los árboles principalmente para tres objetivos: 1) reforestación a lo largo del río para la prevención de desastres; ii) para proteger las tierras agrícolas de los vientos y arena; y, iii) como cercos perimetrales de las viviendas. En todo caso, la superficie es sumamente reducida. La especie más plantada es eucalipto, y le sigue Casuarinaceae. Es muy poco común el uso de especies nativas. Por otro lado, en la zona altoandina, se realizan la reforestación para la producción de leñas, protección de las tierras agrícolas (contra el frío y la entrada del ganado), y para la protección de las áreas de recarga de acuíferos. Las especies plantadas son en su mayoría eucalipto y pino. Muchos de los proyectos de reforestación en la zona altoandina han sido ejecutados en el marco del programa de PRNAMACHIS (actualmente, AGRORURAL). Dicho programa consiste en la entrega de plantones a la comunidad por AGRORURAL, los cuales son plantados y manejados por los productores. Existe también un programa de reforestación implementado por el gobierno regional, pero de magnitud reducida. En este caso, el programa establece que la necesidad de lograr el consenso de la comunidad para la selección de las áreas a reforestar. Sin embargo, por lo general, la mayoría de los agricultores quieren tener mayor extensión de tierra para cultivar, y se demora en lograr el consenso para emprender la reforestación. Otro factor de limitación es el clima frío en las altitudes de 3.800 msnm o más. En general, casi no se ha podido recolectar información sobre los proyectos de reforestación ejecutados hasta la fecha, ya que los archivos no estaban disponibles debido al proceso de la reforma institucional.

En el Plan Nacional de Reforestación (INRENA, 2005) aparece los datos de la reforestación realizada entre 1994 y 2003 según departamentos (antigua división administrativa). Se extrajeron los datos de los antiguos departamentos que se incluyen en el presente Estudio (Tabla 3.1.7-5). Se observa que la superficie reforestada aumentó en 1994, para luego decrecer drásticamente.

Tabla 3.1.7-5 Reforestación ejecutada entre 1994 y 2003

(Unidad: ha)

Departamentos	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Total
Piura	7.449	971	2.407	3.144	19.070	2.358	270	1.134	789	48	37.640

Fuente: Plan Nacional de Reforestación, INRENA, 2005

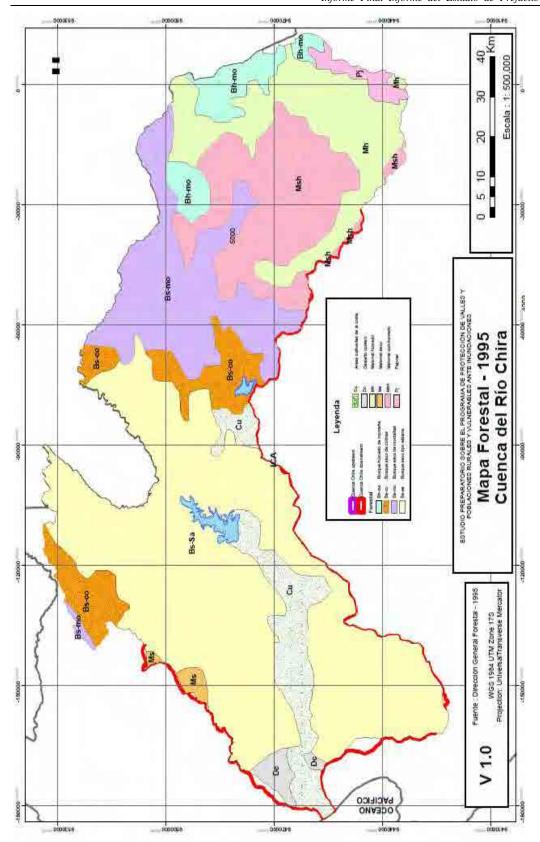


Figura 3.1.7-1 Mapa forestal de la Cuenca del Río Chira

3.1.8 Situación actual de la erosión del suelo

- (1) Recolección de información y elaboración de datos básicos
 - 1) Recolección de información

En el presente Estudio se recolectaron los datos e informaciones que se indican en la siguiente Tabla 3.1.8-1 con el fin de conocer la situación actual de la producción de sedimentos dentro del Área del Estudio.

Tabla 3.1.8-1 Lista de informaciones recolectadas

	Formatos	Elaborado por:
Mapa topográfico (Escala 1/50.000)	Shp	INSTITUTO GEOGRAFICO NACIONAL
Mapa topográfico (Escala 1/100.000)	Shp,dxf	INSTITUTO GEOGRAFICO NACIONAL
Mapa geológico (Escala 1/250.000)	SHP	Geologic data systems
Mapa geológico (Escala 1/100.000)	Shock Wave	INGEMMET
Datos de malla de 30 m	Text	NASA
Datos de los ríos	SHP	ANA
Datos de las cuencas	SHP	ANA
Mapa de riesgo potencial de erosión	SHP	ANA
Mapa de suelos	SHP	INRENA
Mapa de cobertura vegetal	SHP2000 PDF1995	DGFFS
Datos de precipitación	Text	Senami

2) Elaboración de datos básicos

Se elaboraron los siguientes datos utilizando los materiales recolectados. Los detalles se presentan en el Anexo 6.

- Mapa de cuencas hidrográficas (zonificación por valles de tercer orden)
- · Mapa de pendiente
- Mapa geológico
- Mapa de erosión y de pendientes
- · Mapa de erosión y órdenes de los valles
- · Mapa de suelos
- · Mapa de isoyetas

(2) Análisis de las causas de la erosión del suelo

- 1) Características topográficas
 - i) Superficie según altitudes

En la Tabla 3.1.8-2 y en la Figura 3.1.8-1 se presenta la superficie según altitudes de la cuenca del Río Chira. Aquí, el mayor porcentaje es ocupado por las altitudes entre 0 y 1.000 msnm. En la Tabla 3.1.8-2, "Chira-aguas arriba" significa aguas arriba de la presa Poechos y "Chira-aguas abajo" significa aguas abajo de la misma presa.

Tabla 3.1.8-2 Superficie según altitudes

	Área (Km²)			
	h '			
Altitud	Chira-	Chira- aguas		
(msnm)	aguas arriba	abajo		
0 - 1000	3262,43	3861,54		
1000 - 2000	1629,48	207,62		
2000 - 3000	1153,61	43,24		
3000 – 4000	313,74	156,11		
4000 – 5000	0,22	0,00		
5000 – Más	0,00	0,00		
TOTAL	6359,48	4268,51		
Altitud máxima	4110,00			

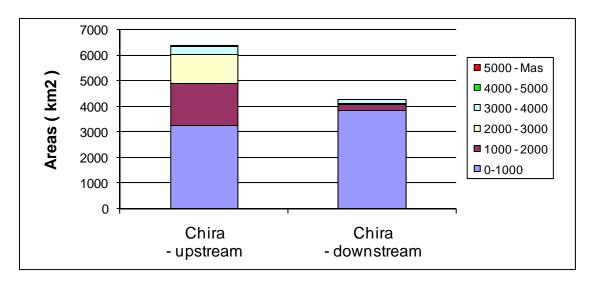


Figura 3.1.8-1 Superficie según altitudes

ii) Zonificación según pendientes

En la Tabla 3.1.8-3 y en la Figura 3.1.8-2 se muestran las pendientes de cada cuenca.

Tabla 3.1.8-3 Pendientes y superficie

Pendiente de la	Cuenca alta Chira		Cuenca baja Chira		
cuenca	Área (km²)	Porcentaje	Área (km²)	Porcentaje	
		Ž		Š	
0-2	131,62	2%	651,28	15%	
2 - 15	2167,69	34%	2859,35	67%	
15 - 35	1852,79	29%	465,86	11%	
Más de 35	2237,64	35%	261,76	6%	
TOTAL	6389,74	100%	4238,25	100%	

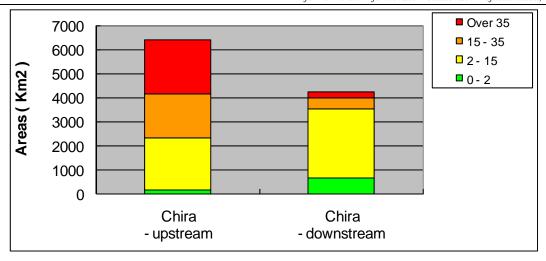


Figura 3.1.8-2 Pendientes y superficie

iii) Pendiente del lecho

En la Tabla 3.1.8-4 y la Figura 3.1.8-3 se muestran la pendiente del Río Chira y la longitud de las quebradas incluyendo los tributarios. En la Figura 3.1.8-4 se muestra la relación general del movimiento de los sedimentos y la pendiente del lecho. Se dice que los tramos con más de 33,3 % de inclinación tienden a producir mayor cantidad de sedimentos, y en las laderas con pendientes entre 3,33 % y 16,7 %, se acumulan los sedimentos con mayor facilidad.

	Chira	Chira
Pendiente del	- aguas	- aguas
lecho (%)	arriba	abajo
0,00 - 1,00	6,00	233,34
1,00 - 3,33	345,77	471,67
3,33 - 16,67	2534,14	1751,16
16,67 - 25,00	435,46	97,84
25,00 - 33,33	201,72	37,51
33,33 - Más	318,46	42,72
TOTAL	3841,55	2634,24

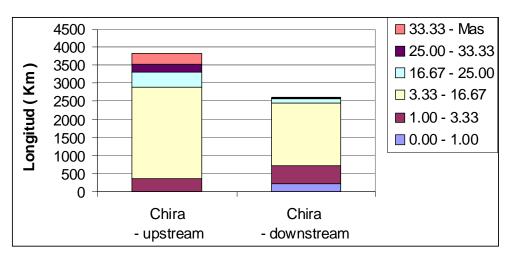
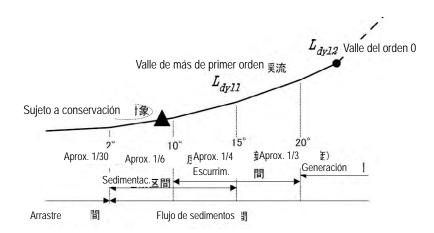
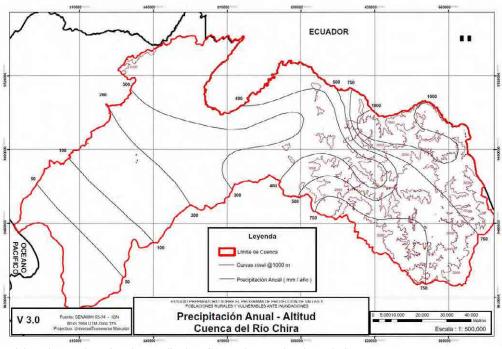


Figura 3.1.8-3 Pendiente del lecho y longitud total de las quebradas




Figura 3.1.8-4 Pendiente del lecho y patrón de movimiento de sedimentos

2) Precipitaciones

En el litoral del Pacífico se extiende una zona árida (Costa) de entre 30 y 50 km de ancho y aprox. 3.000 km de largo. Esta región pertenece a la zona de clima Chala donde la temperatura media anual rodea los 20 °C, y casi no llueve a lo largo del año.

Las altitudes entre 2.500 y 3.000 msnm pertenece al clima Quechua, donde presentan precipitaciones anuales entre 200 y 300 mm. Más allá de esta zona, entre las altitudes de 3.500 y 4.500 msnm se extiende una región natural denominada Suni, caracterizada por su esterilidad. Las precipitaciones en esta región ocurren anualmente 700 mm de lluvias.

En la Figura de 3.1.8-5 se presentan los mapas de isoyetas (precipitaciones anuales) de la cuenca del Río Chira.

Fuente: Elaborado por el Equipo de Estudio de JICA con base en los datos de SENAMHI

Figura 3.1.8-5 Mapa de Isoyetas de la Cuenca del Río Chira

Las precipitaciones anuales en el área sujeta al análisis de inundaciones oscilan entre 0 y 25 mm. Las precipitaciones medias anuales en la zona de 4000 msnm de la parte norte oscilan entre 750 y 1.000 mm.

3) Erosión

A continuación se presentan las características de erosión de las cuencas en general.

Las cuencas se dividen en tres grandes regiones naturales: Costa, Sierra/Suni, y Puna. En la Figura 3.1.8-6 se muestra el respectivo clima y las precipitaciones. Se observa que la región más susceptible a la erosión es Sierra/Suni donde predomina la topografía acentuada sin cobertura vegetal.

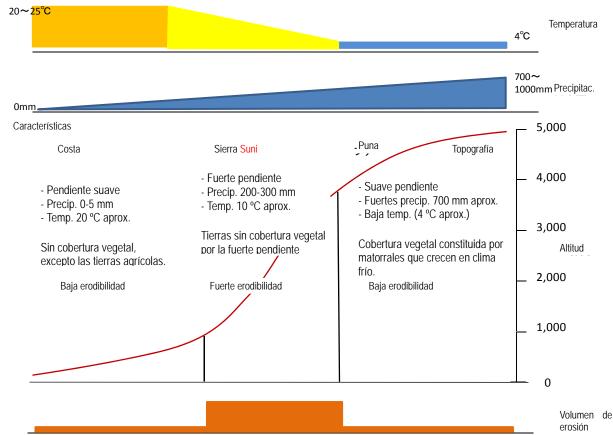


Figura 3.1.8-6 Relación entre el volumen de erosión del suelo y las diferentes causas

(3) Identificación de las zonas más erodibles

El mapa de erosión preparado por Ana toma en cuenta la geología, pendiente de laderas y precipitaciones. Se dice que la profundidad de erosión depende de la pendiente de laderas, y en este sentido el mapa de erosión y el mapa de pendientes son congruentes. Así, se deduce que las zonas erodibles según el mapa de erosión son donde se produce con mayor frecuencia la erosión dentro de la correspondiente cuenca. A continuación se describen las tendencias según cuencas.

En la Tabla 3.1.8-5 y 3.1.8-6 y Figura 3.1.8-7 y 3.1.8-8 se presenta la distribución porcentual de pendientes según altitudes del Río Chira. Aguas arriba de la Presa Poechos, entre 1.000 y 3.000 msnm se encuentran numerosas laderas con más de 35 grados de inclinación. Coincide con la cuenca más alta del Río Chira. En contraste, aguas abajo de la Presa Poechos, las laderas son menos acentuadas, con pendientes entre 2 y 15 grados, poco susceptibles a la erosión.

Tabla 3.1.8-5 Pendientes según altitudes – aguas arriba de la presa del Río Chira

	Pendiente				TD 4.1
Altitude	0-2	2 - 15	15 - 35	Más de 35	Total
0 - 1000	647.61	2777.68	300.77	100.13	3826.19
Ratio	17%	73%	8%	3%	100%
1000 - 2000	0.21	12.58	87.38	108.92	209.09
Ratio	0%	6%	42%	52%	100%
2000 - 3000	0.13	6.7	10.34	31.86	49.03
Ratio	0%	14%	21%	65%	100%
3000 - 4000	3.33	62.39	67.37	20.85	153.94
Ratio	2%	41%	44%	14%	100%
4000 - 5000	0	0	0	0	0
Ratio					
5000 - Mas	0	0	0	0	0
Ratio					
Total	651.28	2859.35	465.86	261.76	4238.25
Ratio	15%	67%	11%	6%	100%

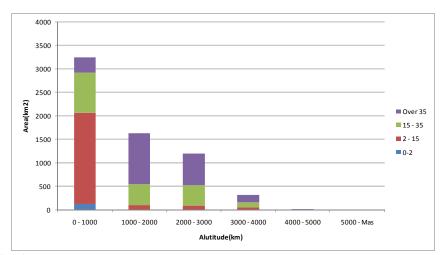


Figura 3.1.8-7 Pendientes según altitudes – aguas arriba del a presa Poechos del Río Chira

Tabla 3.1.8-6 Pendientes según altitudes – aguas abajo de la presa del Río Chira

	Pendiente			Total	
Altitude	0-2	2 - 15	15 - 35	Más de 35	Total
0 - 1000	647.61	2777.68	300.77	100.13	3826.19
Ratio	17%	73%	8%	3%	100%
1000 - 2000	0.21	12.58	87.38	108.92	209.09
Ratio	0%	6%	42%	52%	100%
2000 - 3000	0.13	6.7	10.34	31.86	49.03
Ratio	0%	14%	21%	65%	100%
3000 - 4000	3.33	62.39	67.37	20.85	153.94
Ratio	2%	41%	44%	14%	100%
4000 - 5000	0	0	0	0	0
Ratio					
5000 - Mas	0	0	0	0	0
Ratio					
Total	651.28	2859.35	465.86	261.76	4238.25
Ratio	15%	67%	11%	6%	100%

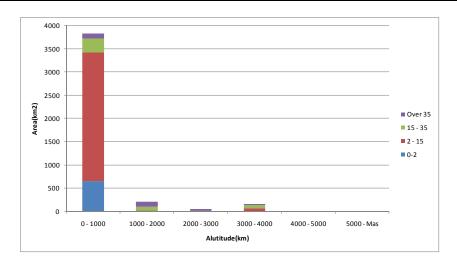


Figura 3.1.8-8 Pendientes según altitudes – aguas abajo del a presa Poechos del Río Chira

- (4) Producción de los sedimentos
 - 1) Resultados del estudio geológico

En la Cuenca alta del Río Chira se encuentra la Presa Poechos donde se acumulan los sedimentos, por lo que no hay aporte de sedimentos aguas abajo. Los resultados del estudio son los siguientes.

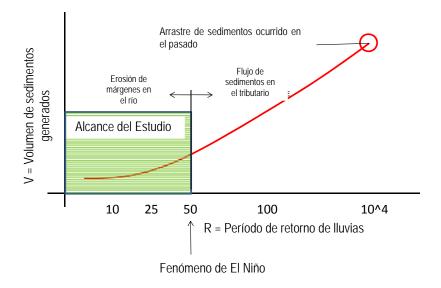
- En la ladera de las montañas se observan la formación de depósito de materiales clásticos desprendidos por el derrumbe o por la erosión eólica.
- Los patrones de producción se difieren según la geología de la roca base. Si la roca base es andesítica o basáltica, el mecanismo consiste principalmente en la caída de grandes gravas y fracturación (véase la Figura 3.1.8-9 y Figura 3.1.8-10).
- No se observa vegetación enraizada (Figura 3.1.8-11) probablemente por el arrastre de sedimentos en tiempo ordinario. En las diaclasas de la capa de roca andesítica, etc. donde ocurre poco movimiento de sedimentos, se ha observado el desarrollo de algas y cactus.
- En casi todos los cauces se observó la formación de las terrazas bajas. En estos lugares, los sedimentos arrastrados de las laderas no entran directamente al cauce, sino que se depositan sobre la terraza. Por este motivo, la mayor parte de los sedimentos que entran al río, probablemente sean aportados por los depósitos de las terrazas erosionados o sedimentos acumulados debido a la alteración del lecho (véase la Figura 3.1.8-12).
- En la cuenca alta se observó menos terrazas y los sedimentos arrastrados de las laderas entran directamente al río, aunque su cantidad es sumamente reducida.

Figura 3.1.8-9 Tierras andesíticas y basálticas derrumbadas

Figura 3.1.8-10 Producción de sedimentos de las rocas sedimentarias

Figura 3.1.8-11 Invasión de cactus

Figura 3.1.8-12 Movimiento de los sedimentos en el cauce


2) Movimiento de los sedimentos (en el cauce)

En las quebradas se desarrollan las terrazas. El pie de estas terrazas se contactan directamente con los canales y desde estos lugares los sedimentos vuelven a ser arrastrados y transportados con un caudal ordinario (incluyendo pequeñas y medianas crecidas en la época de lluvias).

3) Proyección de la producción y arrastre de sedimentos

Se prevé que la cantidad de producción y arrastre de sedimentos varía dependiendo de la magnitud de los factores como las precipitaciones, caudal, etc.

Dado que no se ha realizado un levantamiento secuencial cuantitativo, ni un estudio comparativo, aquí se presentan algunas observaciones cualitativas para un año ordinario, un año con precipitaciones de la magnitud de fenómeno de El Niño y un año con crecidas extraordinarias. El alcance del presente Estudio está enfocado a las precipitaciones con período de retorno de 50 años, tal como se indica en la siguiente Figura, lo cual equivale a precipitaciones que producen el flujo de sedimentos desde los tributarios.

i) Un año ordinario

- Casi no se producen los sedimentos desde las laderas.
- Los sedimentos se producen por el choque de la corriente de agua contra el depósito de sedimentos desprendidos de las laderas y depositados al pie de las terrazas.
- Se considera que el arrastre de sedimentos se produce por el siguiente mecanismo: los sedimentos acumulados en los bancos de arena dentro del cauce son empujados y transportados aguas abajo por el cambio del cauce durante las crecidas pequeñas (véase la Figura 3.1.8-13).

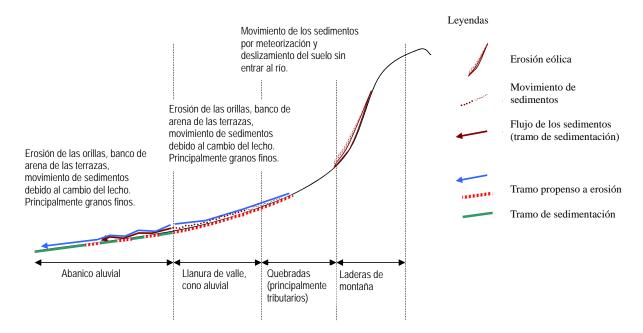


Figura 3.1.8-13 Producción y arrastre de sedimentos en un año ordinario

ii) Cuando ocurren lluvias torrenciales de similar magnitud a El Niño (período de retorno de 50 años)

De acuerdo con las entrevistas realizadas en la localidad, cada vez que ocurre el fenómeno de El Niño se produce el flujo de sedimentos en los tributarios. Sin embargo, dado que el cauce tiene suficiente capacidad para regular los sedimentos, la influencia en la cuenca baja es reducida.

- La cantidad de los sedimentos arrastrada varía dependiendo de la cantidad de agua que discurre por las laderas.
- El flujo de sedimentos desde los tributarios llega a entrar al río principal.
- Dado que el cauce tiene suficiente capacidad para regular los sedimentos, la influencia en la cuenca baja es reducida.

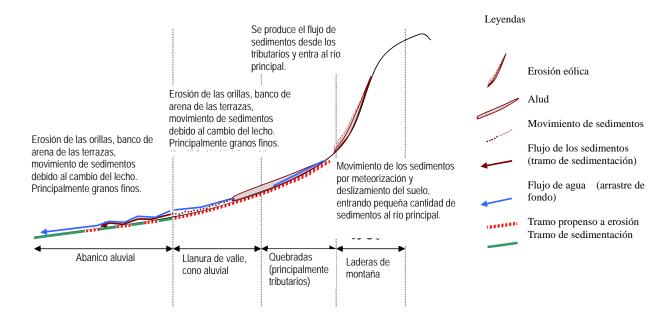


Figura 3.1.8-14 Producción y arrastre de sedimentos durante las lluvias torrenciales de magnitud similar al de fenómeno de El Niño (período de retorno de 1:50 años)

iii) Crecidas de enorme magnitud (que puedan dar lugar a la formación de terrazas similares a las existentes actualmente), con período de retorno de 1:10.000 años

En la región de Costa, las precipitaciones diarias con 100 años de probabilidad son de aproximadamente 50 mm, por lo que actualmente muy raras veces se producen el movimiento de tierras arrastras por el agua. Sin embargo, precisamente porque ordinariamente ocurren pocas lluvias, una vez ocurridas las lluvias torrenciales, existe un alto potencial de arrastre de sedimentos por las aguas.

Si suponemos que ocurren lluvias con extremadamente bajas probabilidades, por ejemplo, 1:10.000 años, se estima que se generaría la siguiente situación (véase la Figura 3.1.8-15).

- · Arrastre de sedimentos de las laderas, por la cantidad congruente con la cantidad de agua.
- Arrastre de sedimentos excedentes desde el talud y pie de las laderas por la cantidad congruente con la cantidad de agua, provocando movimiento de tierras que puedan cerrar las quebradas o cauces.
- Destrucción de las presas naturales de los cauces cerrados por los sedimentos, flujo de sedimentos por la destrucción de bancos de arena.
- Formación de terrazas y aumento de sedimentos en los cauces en la cuenca baja debido a la entrada de gran cantidad de sedimentos.
- Desbordamiento de agua en el tramo entre el cono aluvial y las secciones críticas, que puede alterar el cauce.

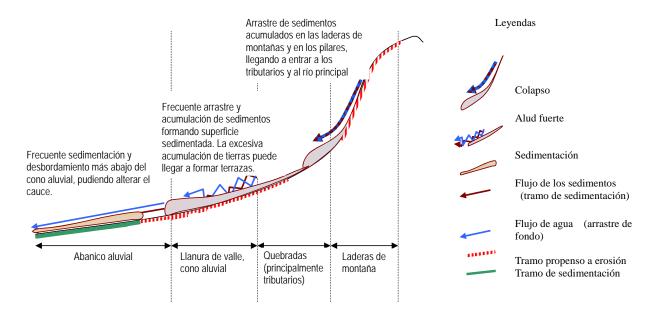


Figura 3.1.8-15 Producción de sedimentos de sedimentos en grandes crecidas (escala geológica)

3.1.9 Análisis de descarga

- (1) Datos de precipitaciones
- 1) Sistema de monitoreo actual de precipitaciones

Se revisó el sistema actual de la toma de datos de precipitaciones que se utilizan en el análisis de descarga, a la par de recoger y procesar los datos pluviales necesarios para dicho análisis. Los datos de las precipitaciones fueron obtenidos de SENAMHI y de ELECT.PERU.

En las Tablas Tabla 3.1.9-1~2 y en la Figura 3.1.9-1 se indican los puntos de monitoreo de precipitaciones y los datos recogidos según período.

En la cuenca del Río Chira se ha realizado hasta ahora el monitoreo en 14 estaciones (incluyendo las inoperativas actualmente), por un periodo máximo de 47 años desde 1964 hasta 2010.

Tabla 3.1.9-1 Lista de estaciones de monitoreo pluvial (cuenca del Río Chira)

CODIGO	ESTACION	DEPARTAMENTO	LONGITUD	LATITUD
152202	ARDILLA (SOLANA BAJA)	PIURA	80° 26'1	04° 31'1
150003	EL CIRUELO	PIURA	80° 09'1	04° 18'1
152108	FRIAS	PIURA	79° 51'1	04° 56'1
230	LA ESPERANZA	PIURA	81° 04'4	04° 55'55
152125	LAGUNA SECA	PIURA	79° 29'1	04° 53'1
152104	LAS LOMAS 1	PIURA	80° 15'1	04° 38'1
140	LAS LOMAS 2	PIURA	80° 15'1	04° 38'1
208	MALLARES	PIURA	80° 44'44	04° 51'51
152144	MONTERO	PIURA	79° 50'1	04° 38'1
152101	PANANGA	PIURA	80° 53'53	04° 33'33
152135	SAN JUAN DE LOS ALISOS	PIURA	79° 32'1	04° 58'1
203	SALALA	PIURA	79° 27'27	05° 06'6
152110	SANTO DOMINGO	PIURA	79° 53'1	05° 02'1

Tabla 3.1.9-2 Período de toma de datos pluviales (cuenca del Río Chira)

PERIODO Y LONGITUD DE LA INFORMACION DISPONIBLE DE LAS ESTACIONES PLUVIALES

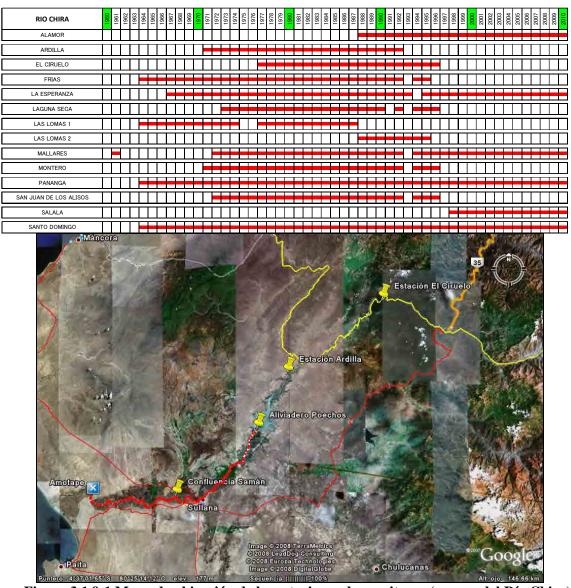


Figura 3.1.9-1 Mapa de ubicación de las estaciones de monitoreo (cuenca del Río Chira)

2) Mapa de isoyetas

A continuación se presentan los mapas de isoyetas de la precipitación anual (promedio de diez años) elaborados por SENAMHI utilizando los datos recogidos en el período 1965 –1974.

En la Figura 3.1.9-2 se presenta el mapa de isoyetas de la cuenca del Río Chira.

En la cuenca del Río Chira e observa que la precipitación anual varía considerablemente dependiendo de las zonas, con un mínimo de 50 mm y máximo de 1000 mm. La precipitación es baja en la cuenca baja y se va incrementando a medida que se va acercando a la cuenca alta, aumentando las altitudes.

La precipitación anual en la cuenca baja, sujeta a control de inundaciones, no es muy intensa, con una variación entre 50 y 200 mm. Sin embargo, es la cuenca con mayor precipitación en la cuenca baja de entre las cinco cuencas seleccionadas.

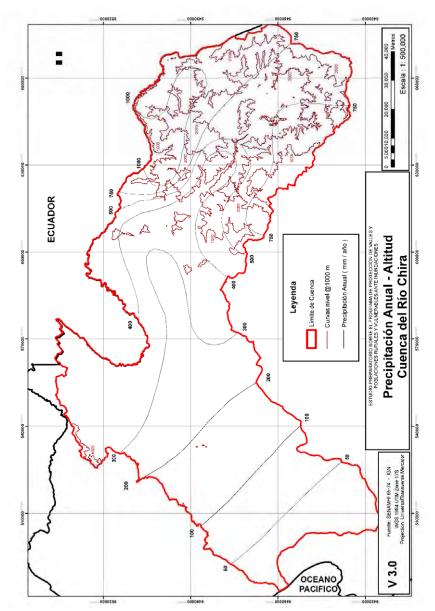


Figura 3.1.9-2 Mapa de isoyetas (cuenca del Río Chira)

(2) Análisis de precipitaciones

1) Metodología

Se realizó el cálculo estadístico hidrológico utilizando los datos de precipitaciones recogidos de las diferentes estaciones, para determinar la precipitación con período de retorno de 24 horas en cada estación.

Se probaron varios modelos de distribución de períodos de retorno y se adoptó el modelo más apropiado. Así, la precipitación con período de retorno de 24 horas se determinó con este modelo. Los modelos de estadísticas hidrológicas probados fueron los siguientes.

- Distribución normal o gaussiana
- Distribución log-normal de 3 parámetros
- Distribución log-normal de 2 parámetros
- Distribución gamma de 2 ó 3 parámetros
- Distribución Log Pearson Tipo III
- Distribución de Gumbel
- Distribución generalizada del valor extremo

2) Resultados de análisis de precipitaciones del período de retorno – t

A continuación se presenta las precipitaciones en diferentes estaciones y en el punto de referencia de cada cuenca, según períodos de retorno.

La precipitación observada en las estaciones de la cuenca del Río Chira, ha sido mayor de 100 mm con un máximo de 339 mm.

En la Tabla 3.1.9-3 se presenta los puntos de monitoreo y las precipitaciones con período de retorno de 24 horas en el punto de referencia. En la Figura 3.1.9-3 se presenta el mapa de isoyetas de precipitaciones con período de retorno de 50 años.

Tabla 3.1.9-3 Precipitaciones con período de retorno de 24 horas (cuenca del Río Chira)

			_	Return period (in years)						
H	Station	Elevation (m.a.s.l.)	No. of Records	25	50	100	500	Registered	Assumed Distribution	
1	Моггоро́в	172	10	134,81	158,52	178,27	228,53	90,40 (*)	Gumbel	
2	M alacasi	128	9	287,08	339,22	390,99	510,63	251,20	Gumbel	
									Log	
3	Virrey	230	27	231,55	290,51	347,08	464,48	230,70	Pearson III	
4	Chignia	360	19	146,24	170,47	194,53	250,12	184,40	Gumbel	
5	Barrios	310	19	135,34	153,85	172,23	214,69	119,70	Gumbel	
6	Huarmaca	2180	43	112,54	128,58	140,48	172,64	111,40	Gumbel	
7	Can chaque	1200	19	184,58	189,45	214,18	271,24	137,30	Gumbel	

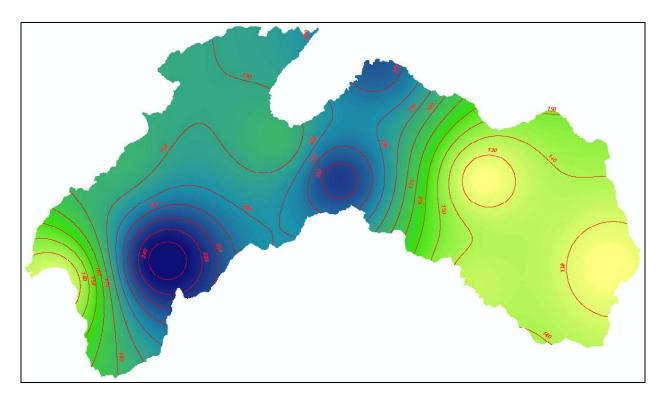


Figura 3.1.9-3 Mapa de isoyetas de precipitaciones con período de retorno de 50 años (cuenca del Río Chira)

- (3) Análisis de caudal de descarga
- 1) Monitoreo de caudal

Se revisó el sistema actual de la toma de datos del caudal que se utilizan en el análisis de descarga, a la par de recoger y procesar los datos de monitoreo de caudal necesarios para dicho análisis.

Se recogieron los datos de caudal de DGIH, comisiones de regantes, Autoridad Nacional del Agua, ANA y del Proyecto Especial Chira – Piura.

2) Análisis de caudal de descarga

Se realizó el cálculo estadístico hidrológico utilizando los datos de la descarga máxima anual recogidos y procesados en los puntos de referencia, para determinar el caudal con diferentes probabilidades. En la Tabla 3.1.9-4 se muestra el caudal probable con períodos de retorno entre 2 y 100 años.

Tabla 3.1.9-4 Caudal probable en los puntos de control

 (m^3/s)

Ríos	Períodos de retorno								
Rios	2 años	5 años	10 años	25 años	60 años	100 años			
Río Chira Puente Sullana	888	1.726	2.281	2.983	3.503	4.019			

3) Análisis de caudal de crecidas con período de retorno t-años

a) Metodología

El caudal probable de inundación se analizó utilizando el modelo HEC-HMS, con el que se preparó la hietografía de diferentes períodos de retorno, y se calculó el caudal pico.

Para la precipitación utilizada en el análisis, se utilizó la hietografía de diferentes períodos de retorno preparada en el análisis de precipitación. La hietografía se determinó tomando como referencia el caudal pico estimado en el análisis de descarga.

Para el Río Chira, se tomó en cuenta el efecto regulador de inundaciones de la Presa Poechos ubicada en la cuenca alta.

b) Resultados de análisis

En la Tabla 3.1.9-5 se muestra el caudal de inundaciones con períodos de retorno de entre 2 y 100 años de la cuenca del Río Chira.

Asimismo en la Figura 3.1.9-4 se muestra la hidrografía de inundaciones probables de la cuenca del Río Chira.

Dado que las cifras de las Tablas 3.1.9-4 y 3.1.9-5 son muy similares, para el análisis de inundaciones se aplicaron las cifras de la Tabla 3.1.9-5 que coinciden con la hidrografía.

Tabla 3.1.9-5 Caudal de inundaciones según períodos de retorno (Caudal pico: Punto de referencia)

 (m^3/s)

						(-		
		Períodos de retorno						
Ríos	2 años	5 años	10 años	25 años	50 años	100 años		
Río Chira Puente Sullana	890	1.727	2.276	2.995	3.540	4.058		

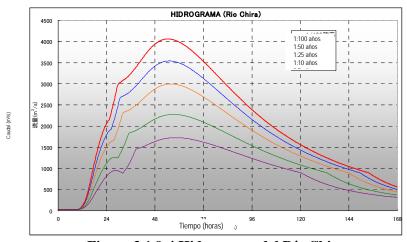


Figura 3.1.9-4 Hidrograma del Río Chira

3.1.10 Análisis de inundaciones

(1) Levantamiento de los ríos

Previo al análisis de inundaciones, se llevó a cabo el levantamiento transversal del Río Cañete s y el levantamiento longitudinal de los diques. En la Tabla 3.1.10-1 se presentan los resultados del levantamiento de los cinco ríos objeto del Estudio.

Con el fin de obtener los datos topográficos para el análisis de las zonas de inundación, se utilizaron complementariamente los resultados de la medición real indicados en la Tabla 3.1.10-1 utilizando los datos de imágenes satelitales.

TO 11 24 40 4	T	111 /		1 /
Tabla 3.1.10-1	Datas hasiras	dal lavant	ah atraimet	Inc rinc
141/14 2.1.11/-1	Daws Dasicus	uci icvaiii	tannichter uc	105 1105

Tubia 5:1:10 1 Dutos basicos del le vantalmento de los 1105						
Levantamiento	Unidad	Cantidad	Notas			
1. Levantamiento de pur	ntos de cor	ntrol				
Río Chira	No.	10				
2. Levantamiento transv	ersal de di	ques	Intervalo de 250 m, solo una mergen			
Río Chira	km	100				
3. Levantamiento transv	ersal de lo	s ríos	Intervalo 500 m			
Río Chira	km	120.0	200 líneas x 0.60 km (largo medio de línea			
4. Mojones						
Tipo A	No.	10	Cada uno de los puntos de control			
Tipo B	No.	100	273 km x un punto/ km			

(2) Métodos de análisis de inundaciones

Dado que la DGIH realizó el análisis de inundación del estudio de perfil a nivel de programa utilizando el modelo HEC-RAS, se decidió para el presente Estudio, revisar y modificar, si es necesario, y utilizar este método.

- 1) Bases de análisis Normalmente, para el análisis de desbordamiento se utilizan tres métodos siguientes.
- ① Modelo unidimensional de flujo variado
- ② Modelo de tanques

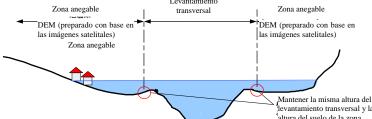


Figura 3.1.10-1 Idea del modelo unidimensional

③ Modelo bidimensional horizontal de flujo variado

El tiempo y el costo requerido por cada método varían considerablemente, por lo que se seleccionará el método más eficiente que garantice el grado de precisión requerido para la elaboración del mapa de zonas anegables.

En la Tabla 3.1.10-2 se muestran las características de cada método de análisis. De los resultados de simulación realizada por DGIH, se sabe que los ríos tienen una pendiente entre 1/100 y 1/300, por lo que inicialmente se había seleccionado el modelo unidimensional de flujo variado suponiendo que las inundaciones son del tipo gravedad. Sin embargo, se consideró la posibilidad de que el agua desbordada se extienda dentro de la cuenca en la cuenca baja, por lo que para este estudio se decidió utilizar el modelo bidimensional horizontal de régimen variable para obtener resultados más precisos.

Tabla 3.1.10-2 Metodología análisis de desbordamiento

Tabla 3.1.10-2 Metodología análisis de desbordamiento							
Métodos de	Modelo unidimensional de	M- d-1- d- 4	Modelo bidimensional				
análisis	flujo variado	Modelo de tanques	horizontal de flujo variado				
Concepto básico de la definición de la zona de inundación	En este método se considera que la zona de inundación forma parte del cauce del río, y se determina la zona de inundación calculando el nivel de agua del cauce en función del caudal máximo de inundación.	En este método se manejan la zona de inundación y el cauce separadamente, y se considera la zona de inundación como un cuerpo cerrado. A este cuerpo de agua cerrado se le denomina "taque" (pond) en el que el nivel de agua es uniforme. Se determina la zona de inundación en función de la relación entre el caudal desbordado del río y entrado a la zona de inundación, y las características topográficas de dicha zona (nivel de agua – capacidad – superficie).	En este método se manejan la zona de inundación y el cauce separadamente, y se determina la zona de inundación analizando el flujo bidimensional del comportamiento del agua desbordada que entró a la zona de inundación.				
Planteamiento	El cauce y la zona de inundación como un conjunto Zona de inundación Cauce	Zona de inundación	Limite Zona de inundación Cauce				
Características	Es aplicable a las inundaciones en el que el agua desbordada discurre por la zona de inundación por gravedad; es decir, a las inundaciones tipo corriente. En este método se debe manejar el área de análisis como una área desprotegida (sin diques).	Aplicable a las inundaciones tipo estancadas en las que el agua desbordada no se extienden por la presencia de montañas, colinas, terraplenes, etc. El nivel de agua dentro de este cuerpo cerrado se mantiene uniforme, sin pendiente ni velocidad de flujo. En el caso de existir varios terraplenes continuo dentro de la misma zona de inundación, puede ser necesario aplicar el modelo de tanques en serie distinguiendo la región interna.	Básicamente, es aplicable a cualquier tipo de inundaciones. Además del área máxima de inundación y el nivel de agua, este método permite reproducir la velocidad de flujo y su variación temporal. Es considerado como un método preciso en comparación con otros métodos, y como tal, es aplicado frecuentemente en la elaboración de los mapas de riesgo de inundaciones. Sin embargo, por su naturaleza, la precisión de análisis está sujeto al tamaño de las cuadrículas del modelo de análisis.				

2) Método de análisis de desbordamiento

En la Figura 3.1.10-2 se muestra el esquema conceptual del modelo bidimensional horizontal del régimen variable.

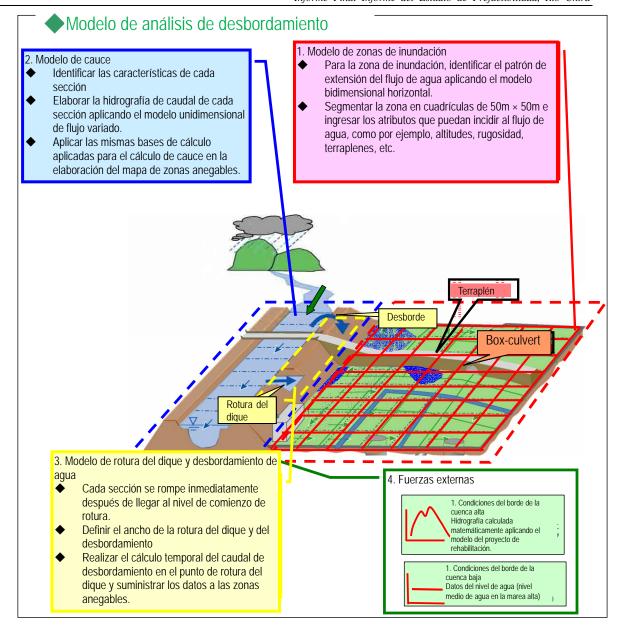
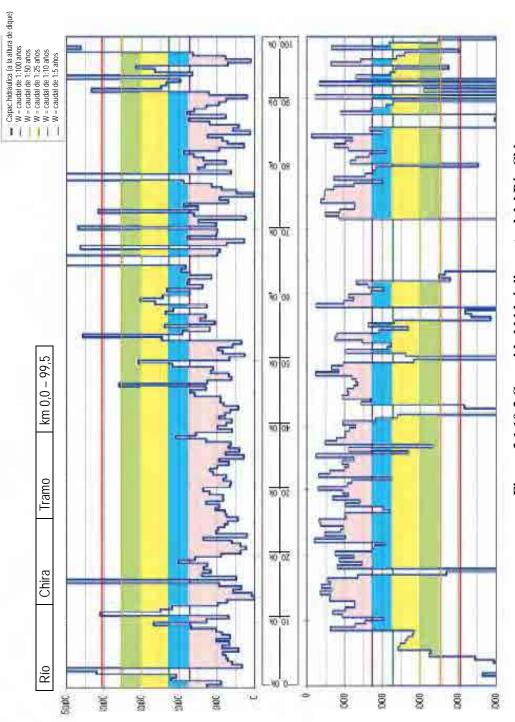



Figura 3.1.10-2 Esquema conceptual del modelo de análisis de desbordamiento

(3) Análisis de caudal de descarga

Se estimó la capacidad hidráulica actual de los cauces con base en los resultados del levantamiento de los ríos y aplicando el método HEC-RAS, cuyos resultados se muestran en la Figura 3.1.10-3. En esta figura se presenta también los caudales de inundaciones de diferentes períodos de retorno, lo que permite evaluar en qué lugares de la cuenca de Río Chira de pueden ocurrir desbordamiento con qué magnitud de caudal de inundaciones.

Capacidad hidráulica, margen derecha $m^{3/5}$)

Figura 3.1.10-3 Capacidad hidráulica actual del Río Chira

Capacidad hidráulica, margen derecha (m³/s)

(4) Alcance del desbordamiento

A modo de referencia, en las 3.1.10-4 se muestran los resultados del cálculo de alcance de desbordamiento en la cuenca del Río Chira frente al caudal de inundaciones con un período de retorno de 50 años.

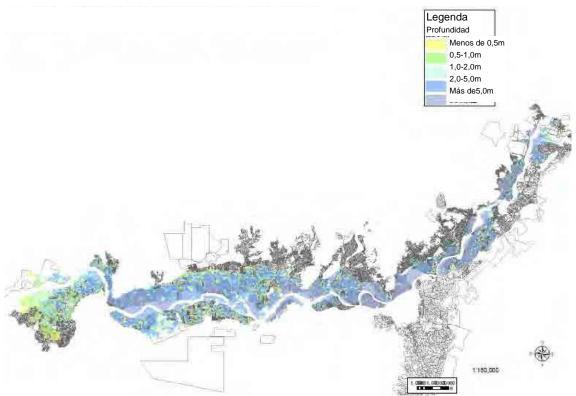


Figura 3.1.10-4 Alcance de desbordamiento del Río Chira (inundaciones con período de 50 años)

3.1.11 Sistemas Información de Alerta Temprana

(1) Cuenca del río Piura

Existe un Sistema de Alerta Temprana SIAT, para la cuenca del río Piura, desarrollado en el Estudio Definitivo para la Reconstrucción y Rehabilitación del Sistema de Defensas contra Inundaciones en el Bajo Piura, y que fue instalado en el año 2001, con financiamiento del convenio del Gobierno Alemán a través de GTZ y el Consejo Transitorio de Administración Regional de Piura CTAR-Piura.

Los objetivos de este proyecto son:

- Planificación y organización del trabajo de las instituciones comprometidas en el Sistema de Alerta Temprana.
- Instalación de una Red de Telemetría en puntos estratégicos del río Piura
- Implementación y funcionamiento del Modelo Hidrológico NAXOS como base para el pronóstico de avenidas
- Investigación sobre el comportamiento pluvial del fenómeno El Niño en la Cuenca del río Piura.
- Asistencia técnica y apoyo en la elaboración de Planes de Contingencia y de Reducción de Vulnerabilidad a nivel distrital y en los sectores de salud y agricultura

La Operación del Sistema del Sistema del Sistema de Alerta Temprana SIAT, El funcionamiento del SIAT, se realiza a través de: un total de 30 estaciones Pluviométricas e Hidrométricas, que operan coordinadamente entre el SENAMHI, el PECH y la DIRESA, envían datos en tiempo real al Centro de Operaciones instalado en el Proyecto Chira Piura.

Los datos de precipitaciones son recibidos, analizados y procesados con el Modelo Hidrológico NAXOS.

Los resultados del Modelo permiten realizar el pronóstico de avenidas en la Cuenca del río Piura. La alerta se transmite oportunamente al Centro de Información Regional (CIR) en el CTAR- PIURA, para la toma de decisiones a través de sus organismos y al Sistema de Defensa Civil, apoyando en las decisiones, para mitigar el impacto negativo en las zonas más vulnerables.

La ejecución del SIAT es a través de un Convenio Interinstitucional y participan en este convenio:

- Gobierno Regional Piura(GRP)
- · Cooperación Alemana al Desarrollo (GTZ)
- Servicio Nacional de Meteorología e Hidrología (SENAMHI)
- · Dirección Regional de Salud de Piura (DIRESA)
- Universidad de Piura (UDEP)
- · Consejo Consultivo Científico y Tecnológico del Gobierno Regional de Piura (CCCTEP)
- Proyecto Especial Chira-Piura (PECHP)

La red del SIAT funciona a través de sistema de comunicación inicialmente telemétrico y ahora por vía satelital. En el Plano N° 4 se muestra el Sistema Información de Alerta Temprana Instalado en la cuenca del río Piura y su forma de conexión para su operación.

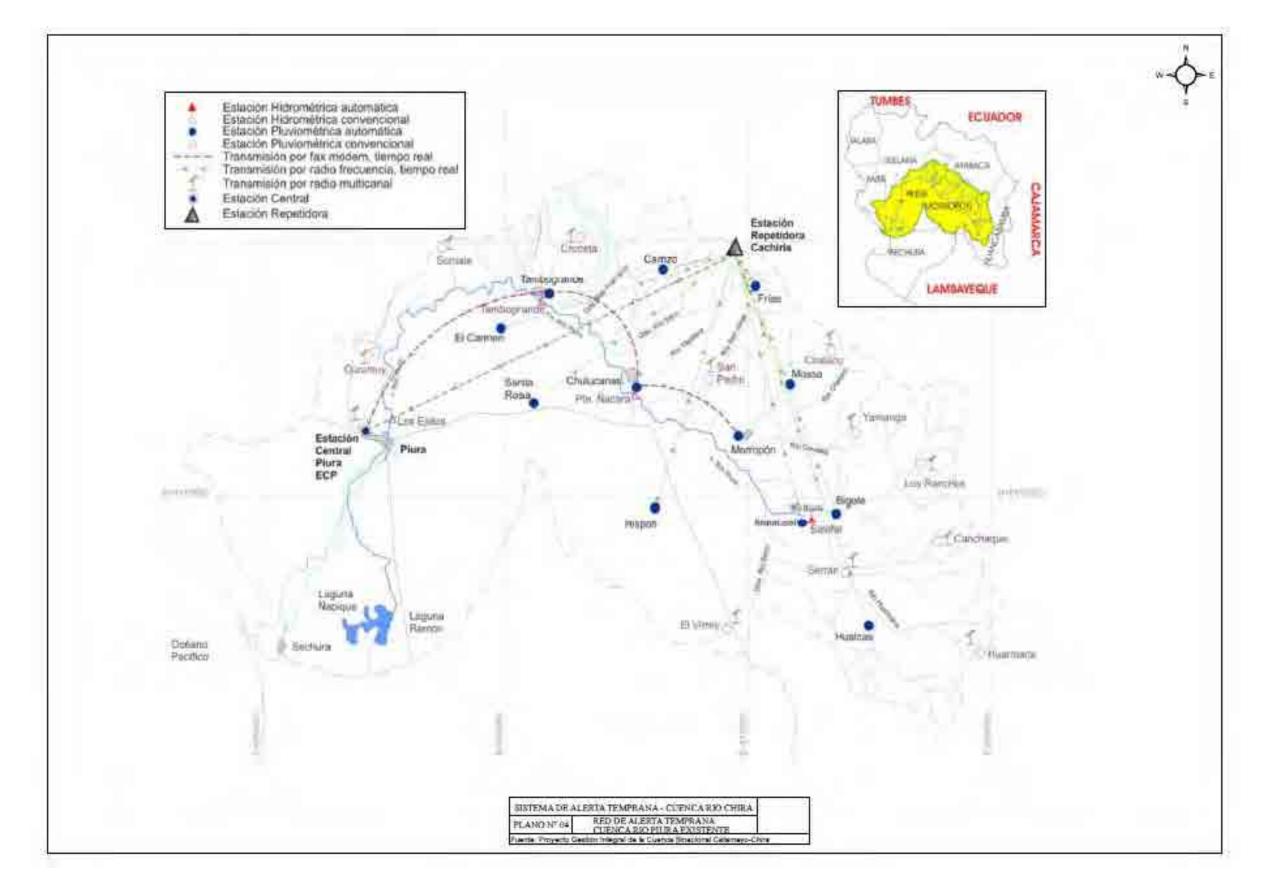


Figura 3.1.11-1 Sistema de alerta temprana en la cuenca del Río Piura

(2) Cuenca del río Chira

El Proyecto Chira Piura, tiene un sistema de obtención de información para la operación del sistema Chira Piura y en especial la operación de la Represa de Poechos, esta se realiza en base a la red construida a partir del año de 1971, que comprende 8 estaciones meteorológicas y 7 hidrométricas, las comunicaciones de todas son vía radio multicanal y vía telefónica en los cuadros N°6 y N° 7 se indican las estaciones y en el plano N° 5 se ubican las estaciones respectivamente; este procedimiento de toma de información y transmisión de datos se usa desde la construcción de las obras del proyecto en su primera etapa.

Este es un Proceso preliminar de Sistema de Información de Alerta Temprana, que se viene utilizando en la actualidad, transmitiéndose los datos, a través de un Sistema Radial Multicanal en forma diaria, a las 7:00 y 19:00 horas, a la estación base Piura que consolida toda la información del sistema Chira Piura y esta a su vez las retransmite a la represa Poechos y a Puente Sullana; la secuencia de transmisión es la siguiente:

- Radio transmisor-receptor Estación hidrometeorológica
- Radio transmisor-receptor Estación Base
- Ingreso de información al CP base de datos

No tienen modelo de precipitación escorrentía para la cuenca, pero si usan información de isócronas para el traslado de los valores de descargas de la cuenca alta y a su vez para las zonas bajas y esporádicamente están usando información satelital.

Tabla 3.1.11-1 Estaciones Hidrométricas en actual operación en la cuenca del río Chira Piura.

	4 101 to						
Nº	Estacion	Coordena	adas UTM	DIO.	Candiaian		
	Estacion	N	E	RIO	Condicion		
1	Paraje Grande	9488151	620548	Quiroz	Existente		
2	Pte. Internacional	9515414	616512	Macara	Existente		
3	Alamor	9529244	589330	Alamor	Existente		
4	El Ciruelo	9524654	594327	Chira	Existente		
5	Ardilla	9503620	567918	Chira	Existente		
6	Poechos	9482714	552473	Chira	Existente		
7	Pte. Sullana	9459530	534271	Chira	Existente		

Tabla 3.1.11-2 Estaciones Meteorológicas en actual operación en la cuenca del rio Chira

N°	TOTACION DROV		DIST SUB CUENCAS	Coordenadas UTM		AL TITLID	CATEGORIA	INSTITUCION	
N.	ESTACION	PROV	DIST	DIST SUB CUENCAS	N	E	ALTITUD	CATEGORIA	QUE OPERA
1	Ayabaca	Ayabaca	Ayabaca	Quiroz	9487823	642699	2700	MAO	SENAMHI
2	Chilaco	Sullana	Sullana	Chira	9480963	554900	90	MAO	PECHP
3	El Ciruelo	Ayabaca	Suyo	Chira	9524654	594327	202	PV-PG	PECHP
4	Pte.Internac.	Ayabaca	Suyo	Macará	9515414	616512	408	PV-PG	PECHP
5	Paraje Grande	Ayabaca	Paimas	Quiroz	9488151	620548	555	PV	PECHP
6	Sapillica	Ayabaca	Sapillica	Chipillico	9471196	612750	1446	PV	SENAMHI
7	El Partidor	Piura	Las Lomas	Chipillico	9477296	580134	255	СО	SENAMHI
8	Alamor	Sullana	Lancones	Chira	9505457	566997	125	PV	SENAMHI

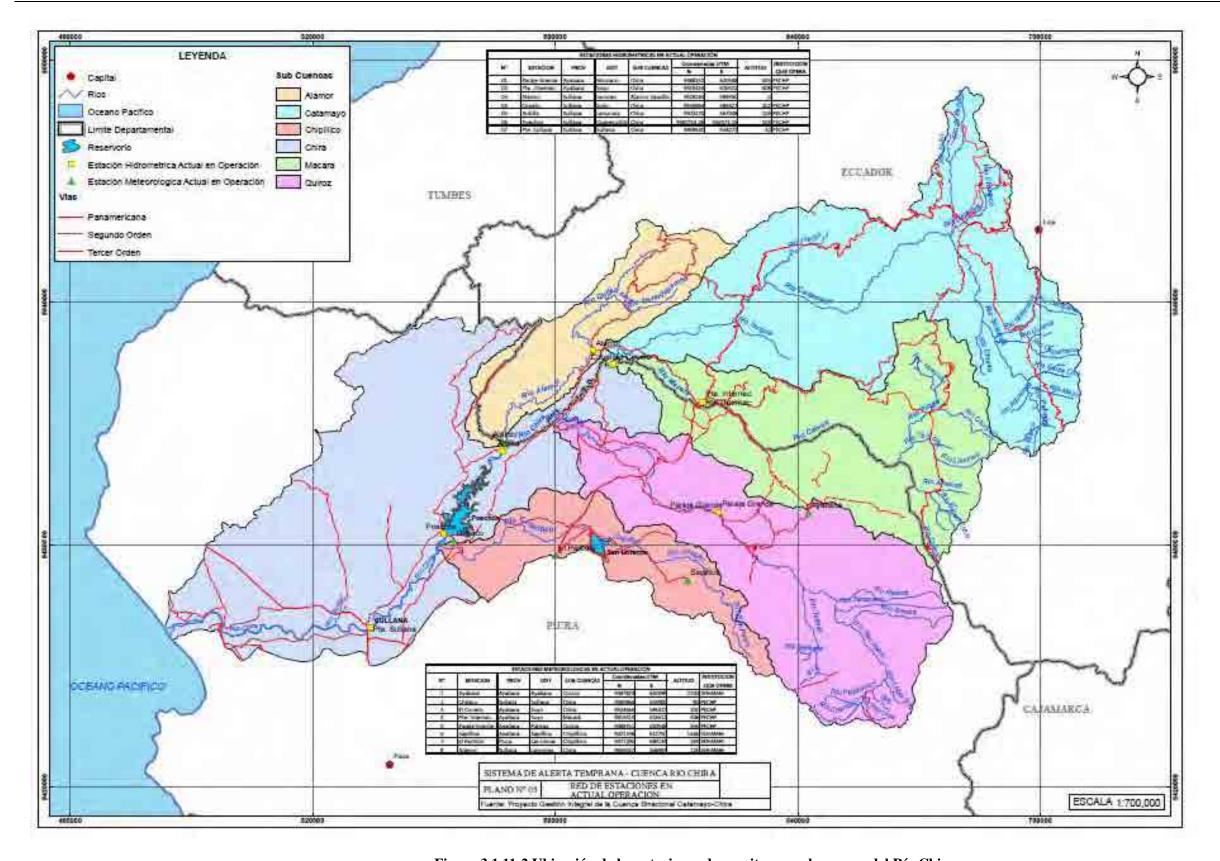


Figura 3.1.11-2 Ubicación de las estaciones de monitoreo en la cuenca del Río Chira

3.2 Definición de Problema y Causas

3.2.1 Problemas de las medidas de control de inundaciones en el Área del Estudio

Con base en los resultados del estudio en el Río Chira, se identificaron el problema principal sobre el control de inundaciones, así como las estructuras a ser protegidas, cuyos resultados se resumen en la Tabla 3.2.1-1.

Tabla 3.2.1-1 Problemas y medidas de conservación de las obras de control de inundaciones

		Desbordamiento			Erosión	Erosión	Bocatoma	Obra de
Problemas		C:- C-J:		del dique	de márgenes	inoperativa	derivación inoperativa	
	Tierras agrícolas	0	0	0	0	0	0	0
	Canales de riego					0	0	
Estructuras	Área urbana	0		0				0
a ser	Carreteras					0		
protegidas	Puentes		0					
	Diques de presa					0		
	Depósito de gas natural				0			

3.2.2 Causas de los problemas

A continuación se indican el problema principal, así como sus causas directas e indirectas para el control de inundaciones en el Área del Estudio.

- (1) Problema principal
 - Valles y comunidades locales altamente vulnerables ante inundaciones
- (2) Causas directas e indirectas

En la Tabla 3.2.2-2 se muestran las causas directas e indirectas del problema principal.

Tabla 3.2.2-2 Causas directas e indirectas del problema principal

	Tabla 3.2.2-2 Causa	is airectas e inairec	tas dei problema pi	rıncıpaı
Causa directa	Caudal excesivo de inundaciones	2. Desbordamiento	3.Mantenimiento insuficiente de las obras de control	4. Insuficientes actividades comunitarias para el control de inundaciones
Causas indirectas	1.1 Frecuente ocurrencia de clima extraordinaria (El Niño, etc.)	2.1 Falta de obras de control de inundaciones	técnicas de mantenimiento	4.1 Falta de conocimientos y técnicas de prevención de inundaciones
	1.2 Precipitaciones extraordinarias en las cuencas alta y media	2.2 Falta de recursos para la construcción de las obras	3.2 Falta de capacitación en mantenimiento	4.2 Falta de capacitación en prevención de inundaciones
	alta y media	2.3 Falta de planes de control de inundaciones en las cuencas	márgenes	4.3 Falta del sistema de alerta temprana
	1.4 Excesivo arrastre de sedimentos desde las cuencas alta y media	2.4 Falta de diques	3.4 Falta de reparación de obras de toma y de derivación	4.4 Falta de monitoreo y recolección de datos hidrológicos
	1.5 Reducción de la capacidad hidráulica de los ríos por alteración de pendientes, etc.	2.5 Falta del ancho del cauce	3.5 Uso ilegal del lecho para fines agrícolas	
		2.6 Acumulación de sedimentos en los lechos	3.6 Falta de presupuesto de mantenimiento	
		 2.7 Falta de ancho en el punto de construcción del puente 		
		2.8 Elevación del lecho en el punto de construcción del puente		
		2.9 Erosión de los diques y márgenes2.10 Falta de capacidad		
		para el diseño de las obras		

3.2.3 Efectos de los problemas

- (1) Problema principal
 - Valles y comunidades locales altamente vulnerables ante inundaciones.
- (2) Efectos directos e indirectos
 - En la Tabla 3.2.3-1 se muestran los efectos directos e indirectos del problema principal.

Tabla 3.2.3-1 Efectos directos e indirectos del problema principal

				•
Efectos	Daños agrícolas	2. Daños directos	3. Daños de las	4. Otros daños
directos		a la comunidad	infraestructuras sociales	económicos
	1.1 Daños de cultivos y ganado	2.1 Pérdida de viviendas y propiedades privadas	3.1 Destrucción de caminos	4.1 Interrupción de tráfico
	1.2 Pérdida de las tierras agrícolas	2.2 Pérdida de establecimientos industriales y existencias	3.2 Pérdida de puentes	4.2 Costos de prevención de inundaciones y evacuación
Efectos indirectos	1.3 Destrucción de los canales de riego	2.3 Accidentes y pérdida de la vida humana	3.3 Daños en las infraestructuras de agua potable, electricidad, gas y comunicación	4.3 Costos de reconstrucción y medidas de emergencia
	1.4 Destrucción de las obras de toma y derivación	2.4 Pérdida comercial		4.4 Pérdida de trabajo por los habitantes locales
	1.5 Erosión de diques y márgenes			4.5 Reducción de ingresos de la comunidad
				4.6 Degradación de la calidad de vida
				4.7 Pérdida del dinamismo económico

(2) Efecto final

El efecto final del problema principal es el Impedimento del desarrollo socioeconómico comunitario de la zona afectada.

3.2.4 Árbol de causas y efectos

En la Figura 3.2.4-1 se presenta el árbol de causas y efectos elaborado con base en los resultados del análisis mencionado.

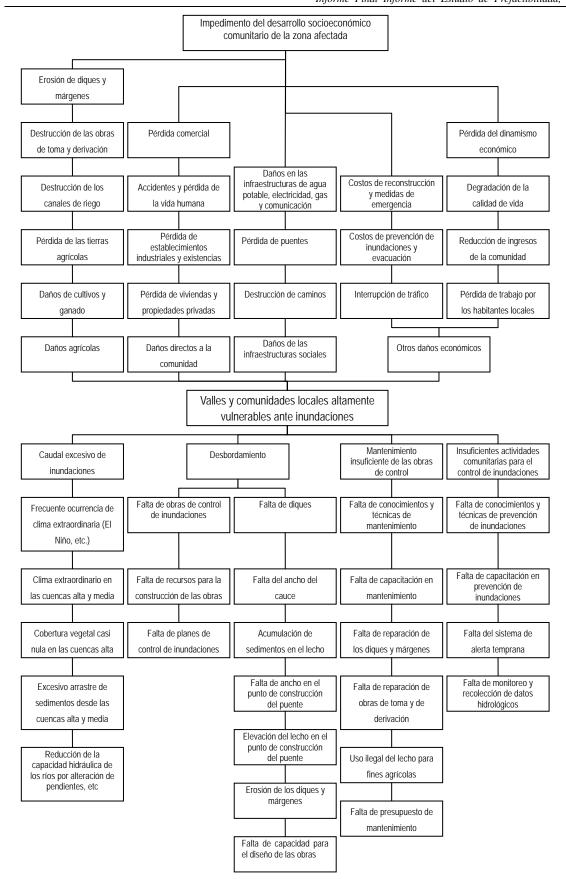


Figura 3.2.4-1 Árbol de causas y efectos

3.3 Objetivo del Proyecto

El impacto final que el Proyecto contempla alcanzar es aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones y fomentar el desarrollo socioeconómico local.

3.3.1 Medidas de solución al problema principal

(1) Objetivo principal

Aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones.

(2) Medidas directas e indirectas

En la Tabla 3.3.1-1 se plantean las medidas de solución directas e indirectas al problema.

Tabla 3.3.1-1 Medidas de solución directas e indirectas al problema

			,	
Medida directa	Analizar y aliviar el caudal excesivo de inundaciones	2. Prevenir desbordamiento	3. Cumplimiento cabal de mantenimiento de las obras de control de inundaciones	4. Incentivar la prevención de inundaciones comunitaria
Medidas indirectas	1.1 Analizar el clima extraordinaria (El Niño, etc.)	2.1 Construir obras de control de inundaciones	3.1 Reforzar conocimientos y técnicas de mantenimiento	4.1 Reforzar conocimientos y técnicas de prevención de inundaciones
	1.2 Analizar precipitaciones extraordinarias en las cuencas alta y media	2.2 Proporcionar recursos para la construcción de las obras	3.2 Reforzar capacitación en mantenimiento	4.2 Ejecutar capacitación en prevención de inundaciones
	1.3 Plantar vegetación en las cuencas alta y media	2.3 Elaborar planes de control de inundaciones en las cuencas	3.3 Mantener y reparar los diques y márgenes	4.3 Construir el sistema de alerta temprana
	1.4 Aliviar el excesivo arrastre de sedimentos desde las cuencas alta y media	2.4 Construir diques	3.4 Reparar las obras de toma y de derivación	4.4 Reforzar el monitoreo y recolección de datos hidrológicos
	1.5 Tomar medidas para aliviar la reducción de la capacidad hidráulica de los ríos por alteración de pendientes, etc.	2.5 Ampliar el ancho del cauce	3.5 Controlar el uso ilegal del lecho para fines agrícolas	
		2.6 Excavación del lecho	3.6 Aumentar el presupuesto de mantenimiento	
		2.7 Ampliar el río en el punto de construcción del puente		
		2.8 Dragado en el punto de construcción del puente		
		2.9 Controlar la erosión de los diques y márgenes 2.10 Reforzar la		
		capacidad para el diseño de las obras		

3.3.2 Impactos esperados por el cumplimiento del objetivo principal

(1) Impacto final

El impacto final que el Proyecto contempla alcanzar es aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones y fomentar el desarrollo socioeconómico local.

(2) Impactos directos e indirectos

En la Tabla 3.3.2-1 se plantean los impactos directos e indirectos esperados al cumplir el objetivo principal para el logro del impacto final.

Tabla 3.3.2-1 Impactos directos e indirectos

Impactos	1. Alivio de los daños	2. Alivio de los daños	3. Alivio de los daños	4. Alivio de otros daños
directos	agrícolas	directos a la comunidad	infraestructuras sociales	económicos
Impactos	1.1 Alivio de los daños	2.1 Prevención de la	3.1 Prevención de la	4.1 Prevención de la
indirectos	de cultivos y ganado	pérdida de viviendas y	destrucción de caminos	interrupción de tráfico
		propiedades privadas		
	1.2 Alivio de la pérdida	2.2 Prevención de la	3.2 Prevención de la	4.2 Reducción de costos
	de tierras agrícolas	pérdida de	pérdida de puentes	de prevención de
		establecimientos		inundaciones y
		industriales y		evacuación
		existencias		
	1.3 Prevención de la	2.3 Prevención de	3.3 Alivio de los daños	4.3 Reducción de los
	destrucción de los	accidentes y de la	en las infraestructuras	costos de reconstrucción
	canales de riego	pérdida de la vida	de agua potable,	y medidas de
		humana	electricidad, gas y	emergencia
			comunicación	
	1.4 Prevención de la	2.4 Alivio de la pérdida		4.4 Aumento del
	destrucción de las obras	comercial		empleo de la comunidad
	de toma y derivación			local
	1.5 Alivio de la erosión			4.5 Aumento ingresos
	de diques y márgenes			de la comunidad
				4.6 Mejoría de la
				calidad de vida
				4.7 Desarrollo de las
				actividades económicas

3.3.3 Árbol de medidas – objetivos – impactos

En la Figura 3.3.3-1 se presenta el árbol de medidas — objetivos — impactos.

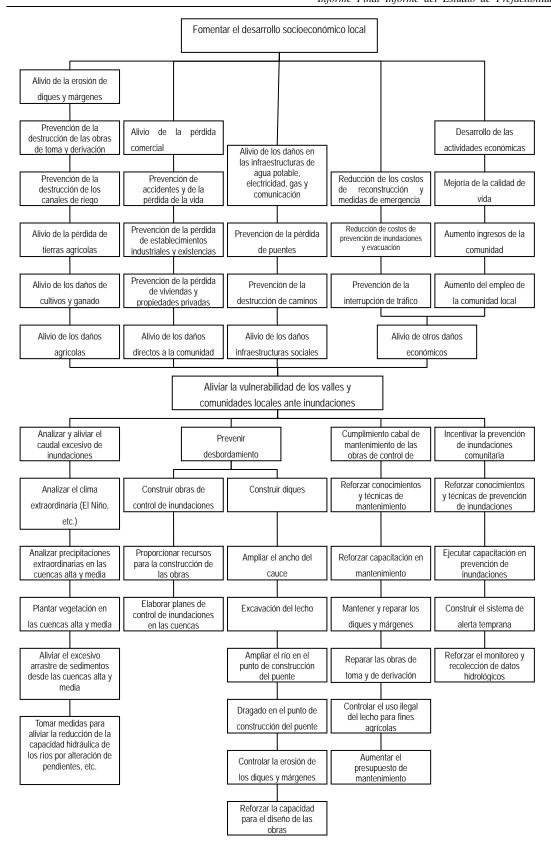


Figura 3.3.3-1 Árbol de medidas – objetivos – impactos

4. FORMULACIÓN Y EVALUACIÓN

4.1 Definición del Horizonte de Evaluación del Proyecto

El horizonte de evaluación del Proyecto será de 15 años al igual que el horizonte aplicado en el Informe de Perfil del Programa.

4.2 Análisis de Demanda y oferta

Se calculó el nivel de agua teórico en el caso de discurrir el caudal de inundaciones de diseño basándose en los datos del levantamiento transversal del río ejecutado con un intervalo de 500m, en la cuenca del cada río, suponiendo un caudal de inundaciones de diseño igual al caudal de inundaciones con un período de retorno de 50 años. Luego, se determinó la altura del dique como la suma del nivel de agua de diseño más el libre bordo del dique.

Ésta es la altura requerida del dique para controlar los daños provocados por las inundaciones de diseño y constituye el indicador de la demanda de la comunidad local.

La altura del dique existente o la altura del terreno actual es la altura requerida para controlar los daños de las inundaciones actuales, y constituye el indicador de la oferta actual.

La diferencia entre la altura del dique de diseño (demanda) y la altura del dique o terreno actual constituye, la diferencia o brecha que hay entre la demanda y la oferta.

En la Tabla 4.2-1 se presentan los promedios del nivel de agua de inundaciones calculado en "3.1.9 Análisis de descarga" con período de retorno de 50 años; de la altura requerida del dique (demanda) para controlar el caudal sumando el nivel de agua de diseño más el libre bordo del dique; de la altura del dique o del terreno actual (oferta), y la diferencia entre estas dos últimas (diferencia entre demanda-oferta) del río. Asimismo, en la Tabla 4.2-2 se presentan, a modo de ejemplo, estos valores en cada punto. La altura del dique o del terreno actual es mayor que la altura requerida del dique, en determinados puntos. En estos, la diferencia entre la oferta y demanda se consideró nula.

Tabla 4.2-1 Análisis de la demanda y oferta

	Cuenca		ique / terreno al (oferta)	Nivel de agua teórico con período de	Borodo libre dique	Altura requerida dique	Dif. Demanda/oferta	
		M. izquierda	M. derecha	retorno de 50 años	'	(demanda)	M. izquierda	M. derecha
ı		1	2	3	4	5=3+4	6=5-1	7=5-2
	Río Chira	31.85	29.27	31.38	1.20	32.58	2.71	3.53

Tabla 4.2-2 Demanda y oferta según puntos

Marca de	Altura diqu		Nivel de agua teórico con período de	Borodo libre dique	Altura requerida dique	Dif. Dema	nda/oferta
Kilometraje	M. izquierda	M. derecha	retorno de 50 años		(demanda)	M. izquierda	M. derecha
(km)	(1)	(2)	3	(4)	(5)=(3)+(4)	6=5-1	(7)=(5)-(2)
0.0	1.43	0.48	2.10	1.20	3.30	1.88	2.82
0.5	3.78	1.37	2.34	1.20	3.54	0.00	2.17
1.0	4.16	1.44	2.60	1.20	3.80	0.00	2.36
1.5	4.70	2.58	2.85	1.20	4.05	0.00	1.47
2.0	3.94 4.40	2.68	3.14 3.36	1.20 1.20	4.34 4.56	0.40	1.66
3.0	4.40	3.95 5.77	3.65	1.20	4.85	0.16 0.36	0.61 0.00
3.5	5.18	2.02	3.90	1.20	5.10	0.00	3.08
4.0	5.58	2.73	4.27	1.20	5.47	0.00	2.75
4.5	5.98	3.30	4.70	1.20	5.90	0.00	2.60
5.0	6.17	3.46	5.15	1.20	6.35	0.18	2.89
5.5	6.47	3.84	5.74	1.20	6.94	0.47	3.10
6.0 6.5	6.92 7.29	3.31 4.66	6.52 7.24	1.20 1.20	7.72 8.44	0.80 1.15	4.41 3.78
7.0	7.52	4.40	7.29	1.20	8.49	0.98	4.09
7.5	7.79	5.37	7.70	1.20	8.90	1.11	3.54
8.0	8.08	4.73	7.95	1.20	9.15	1.07	4.43
8.5	8.21	5.28	8.10	1.20	9.30	1.08	4.02
9.0	4.85	5.67	8.15	1.20	9.35	4.50	3.68
9.5	6.23	6.84	8.30	1.20	9.50	3.27	2.66
10.0 10.5	6.78 7.71	8.22 6.69	8.40 8.44	1.20 1.20	9.60 9.64	2.82 1.94	1.38 2.95
11.0	6.39	5.90	8.44	1.20	9.64	3.60	4.08
11.5	6.48	10.02	9.00	1.20	10.20	3.72	0.18
12.0	7.21	8.85	9.22	1.20	10.42	3.21	1.57
12.5	7.62	8.62	9.30	1.20	10.50	2.88	1.88
13.0	7.65	7.25	9.36	1.20	10.56	2.91	3.31
13.5	6.89	7.10	9.36	1.20	10.56	3.67	3.46
14.0 14.5	7.16 6.53	4.67 5.20	9.76 9.95	1.20 1.20	10.96 11.15	3.80 4.62	6.29 5.95
15.0	7.82	7.57	10.49	1.20	11.69	3.87	4.12
15.5	7.32	7.17	10.93	1.20	12.13	4.81	4.96
16.0	8.19	8.78	11.17	1.20	12.37	4.17	3.59
16.5	8.35	15.27	11.31	1.20	12.51	4.16	0.00
17.0	10.28	8.03	11.66	1.20	12.86	2.58	4.84
17.5 18.0	14.24 34.72	10.59 10.34	12.33 12.84	1.20 1.20	13.53 14.04	0.00	2.94 3.70
18.5	9.67	10.89	12.97	1.20	14.17	4.50	3.70
19.0	11.28	10.86	13.14	1.20	14.34	3.06	3.48
19.5	10.21	12.41	13.27	1.20	14.47	4.26	2.06
20.0	11.30	11.88	13.62	1.20	14.82	3.53	2.94
20.5	11.00	11.31	13.86	1.20	15.06	4.07	3.75
21.0 21.5	13.85 14.24	10.33 9.88	14.69 15.42	1.20 1.20	15.89	2.04	5.56 6.74
22.0	14.24	10.66	15.42	1.20	16.62 16.80	1.98	6.14
22.5	10.06	11.63	15.66	1.20	16.86	6.80	5.24
23.0	12.96	13.73	16.06	1.20	17.26	4.30	3.54
23.5	11.55	10.33	16.26	1.20	17.46	5.91	7.13
24.0	13.59	13.89	16.15	1.20	17.35	3.75	3.45
24.5	14.03	13.98	16.95	1.20	18.15	4.12	4.17
25.0 25.5	12.22 12.14	13.66 13.49	17.31 17.37	1.20 1.20	18.51 18.57	6.29 6.43	4.85 5.08
26.0	14.51	12.67	17.40	1.20	18.60	4.09	5.94
26.5	14.53	13.79	17.42	1.20	18.62	4.09	4.83
27.0	17.09	14.09	17.46	1.20	18.66	1.57	4.57
27.5	16.97	14.95	17.49	1.20	18.69	1.72	3.75
28.0	15.03	14.79	17.56	1.20	18.76	3.72	3.97
28.5 29.0	16.01 14.75	15.74 15.11	17.53 17.65	1.20 1.20	18.73 18.85	2.72 4.10	2.99 3.74
29.0	15.95	15.11	18.20	1.20	19.40	3.45	4.07
30.0	15.81	16.33	18.49	1.20	19.69	3.88	3.37
30.5	14.10	16.91	19.02	1.20	20.22	6.12	3.31
31.0	16.48	15.29	19.01	1.20	20.21	3.73	4.92
31.5	16.94	15.38	19.57	1.20	20.77	3.83	5.39
32.0	19.58	16.29	19.63	1.20	20.83	1.25	4.54
32.5 33.0	14.61 16.00	16.28 17.47	20.29 20.65	1.20 1.20	21.49 21.85	6.88 5.85	5.21 4.38
აა.0	10.00	17.47	∠0.05	1.20	∠1.65	5.65	4.38

33.5 17.31 17.76 20.77 1.20 21.97 4.66 34.0 17.93 17.63 20.83 1.20 22.03 4.10 34.5 17.70 16.95 21.14 1.20 22.34 4.64 35.0 18.56 17.79 21.30 1.20 22.50 3.94 35.5 15.47 15.63 21.32 1.20 22.52 7.05	4.21 4.40 5.39
34.5 17.70 16.95 21.14 1.20 22.34 4.64 35.0 18.56 17.79 21.30 1.20 22.50 3.94	
35.0 18.56 17.79 21.30 1.20 22.50 3.94	5.39
35.0 18.56 17.79 21.30 1.20 22.50 3.94	
	4.71
35.5 15.47 15.65 21.52 1.20 22.52 7.05	
	6.89
36.0 21.32 17.51 21.32 1.20 22.52 1.20	5.01
36.5	5.76
37.0 23.95 18.53 22.19 1.20 23.39 0.00	4.86
37.5 18.08 18.56 22.65 1.20 23.85 5.78	5.29
38.0 19.29 20.59 23.15 1.20 24.35 5.06	3.76
38.5 20.13 22.45 23.35 1.20 24.55 4.42	2.10
39.0 20.34 21.60 23.74 1.20 24.94 4.60	3.35
39.5 20.69 19.15 23.77 1.20 24.97 4.28	5.82
40.0 21.32 20.54 24.01 1.20 25.21 3.88	4.67
40.5 21.20 20.54 23.90 1.20 25.10 3.91	4.56
41.0 23.56 20.27 24.66 1.20 25.86 2.30	5.59
41.5 24.89 21.57 25.02 1.20 26.22 1.33	4.65
42.0 31.86 21.40 25.09 1.20 26.29 0.00	4.89
42.5 37.02 21.16 25.47 1.20 26.67 0.00	5.51
43.0 27.98 20.48 25.73 1.20 26.93 0.00	6.45
43.5 23.52 21.90 25.85 1.20 27.05 3.53	5.15
44.0 24.10 22.25 25.87 1.20 27.07 2.97	4.82
44.5 22.56 22.45 26.17 1.20 27.37 4.81	4.92
45.0 23.08 24.17 26.36 1.20 27.56 4.48	3.39
45.5 23.18 24.53 26.38 1.20 27.58 4.40	3.05
46.0 24.00 24.07 26.55 1.20 27.75 3.75	3.68
46.5 24.59 27.88 26.82 1.20 28.02 3.43	0.14
47.0 24.69 24.60 27.03 1.20 28.23 3.54 3.54	3.63
47.5 25.00 23.54 27.09 1.20 28.29 3.29	4.75
48.0 22.35 24.08 27.46 1.20 28.66 6.31	4.58
48.5 24.80 25.61 28.05 1.20 29.25 4.45	3.64
49.0 24.46 25.71 28.58 1.20 29.78 5.32	4.07
49.5 25.58 28.08 28.72 1.20 29.92 4.34	1.84
50.0 29.39 29.77 29.19 1.20 30.39 1.00	0.62
50.5 41.99 25.10 29.33 1.20 30.53 0.00	5.43
51.0 29.20 23.78 29.40 1.20 30.60 1.40	6.82
51.5 26.38 25.91 29.58 1.20 30.78 4.40	4.87
52.0 28.69 26.32 29.81 1.20 31.01 2.32	4.69
52.5 29.06 25.39 30.13 1.20 31.33 2.27	5.94
53.0 27.82 24.56 30.28 1.20 31.48 3.66	6.92
53.5 26.29 30.30 30.50 1.20 31.70 5.41	1.40
54.0 26.71 33.91 31.05 1.20 32.25 5.54	0.00
54.5 29.67 29.65 31.26 1.20 32.46 2.79	2.81
55.0 31.29 28.20 31.43 1.20 32.63 1.34	4.43
55.5 30.31 31.63 31.77 1.20 32.97 2.66	1.34
56.0 31.64 29.27 32.09 1.20 33.29 1.65	4.02
56.5 35.26 30.28 32.57 1.20 33.77 0.00	3.50
57.0 34.64 30.04 32.61 1.20 33.81 0.00	3.77
57.5 36.39 33.42 33.70 1.20 34.90 0.00	1.48
58.0 58.58 34.00 34.42 1.20 35.62 0.00	1.62
58.5 28.33 32.15 35.15 1.20 36.35 8.02	4.20
59.0 31.38 35.27 35.27 1.20 36.47 5.09	1.20
59.5 32.22 36.10 35.45 1.20 36.65 4.43	0.56
60.0 32.00 34.99 35.38 1.20 36.58 4.58	1.59
60.5 33.67 33.70 35.77 1.20 36.97 3.30	3.27
61.0 34.42 35.01 35.82 1.20 37.02 2.60	2.01
61.5 33.54 32.93 35.85 1.20 37.05 3.51	4.12
	3.23
62.5 37.71 34.00 36.18 1.20 37.38 0.00	3.38
63.0 37.27 32.51 36.21 1.20 37.41 0.14	4.90
63.5 37.55 34.05 36.32 1.20 37.52 0.00	3.47
64.0 60.11 36.40 38.32 1.20 39.52 0.00	3.12
64.5 60.11 37.30 39.12 1.20 40.32 0.00	3.02
	0.00
1 65 (1 51 58 1 41 61 39 46 1 120 1 40 66 1 100 1	0.00
65.0 51.58 41.61 39.46 1.20 40.66 0.00 65.5 51.58 41.75 39.97 1.20 41.17 0.00	0.00
65.0 51.58 41.61 39.46 1.20 40.66 0.00 65.5 51.58 41.75 39.97 1.20 41.17 0.00 66.0 51.58 44.00 40.22 1.20 41.42 0.00	0.00 0.00

67.0								
67.5 65.36 42.37 41.52 1.20 42.25 0.00 4.27 68.6 65.36 53.36 33.72 41.75 1.20 42.95 0.00 4.27 68.6 65.36 55.36 37.76 41.91 1.20 43.11 0.00 2.88 68.6 65.36 57.76 41.91 1.20 43.11 0.00 2.88 68.0 65.36 37.76 41.91 1.20 43.22 0.00 2.88 69.0 70.76 33.82 42.43 1.20 43.27 0.00 3.8 70.5 70.76 33.82 42.50 1.20 43.77 0.00 3.8 70.5 70.76 43.43 42.50 1.20 43.77 0.00 3.8 70.5 70.76 43.43 42.50 1.20 43.78 0.00 3.7 71.0 67.10 40.21 42.74 1.20 43.98 0.00 3.7 71.1 67.10 43.60 42.27 1.20 43.98 0.00 3.7 71.2 67.10 43.60 43.27 1.20 44.47 0.00 3.7 71.5 67.10 44.67 44.67 1.20 44.47 0.00 3.7 72.5 39.42 44.65 44.07 1.20 44.53 4.53 5.59 73.5 41.35 44.78 44.17 1.20 45.53 4.55 4.65 3.6 73.5 41.35 44.78 44.17 1.20 45.53 4.55 4.65 3.6 73.5 41.25 42.86 46.66 1.20 45.27 4.41 3.8 73.5 42.28 42.84 45.47 1.20 45.27 4.41 3.8 73.5 42.28 42.84 45.47 1.20 45.27 4.41 3.8 73.5 42.28 42.84 44.67 1.20 45.27 4.41 3.8 73.5 42.28 42.84 44.67 1.20 45.27 4.41 3.8 73.6 42.85 44.66 1.20 47.72 4.41 3.8 73.6 42.85 44.60 1.20 47.72 4.41 3.8 73.6 42.85 44.66 1.20 47.72 4.41 3.8 73.6 42.85 44.67 1.20 45.53 4.51 4.45 3.4 74.5 42.28 42.84 45.47 1.20 45.57 4.41 3.8 75.5 42.28 44.84 44.67 1.20 47.72 4.41 3.8 75.6 42.28 44.84 44.67 1.20 47.73 44.45 44.6 44.67	66.5	51.58	37.56	40.39	1.20	41.59	0.00	4.03
68.6 65.5 65.2 38.72 41.75 1.20 42.95 0.00 4.22 68.6 65.5 65.36 37.76 41.91 1.20 43.11 0.00 5.33 68.6 65.5 65.36 37.76 41.91 1.20 43.11 0.00 5.33 68.6 65.36 40.42 42.02 1.20 43.22 0.00 3.8 68.6 65.36 40.42 42.02 1.20 43.36 0.00 3.8 70.0 70.76 33.82 42.55 1.20 43.378 0.00 0.33 70.0 70.76 33.82 42.55 1.20 43.378 0.00 0.33 70.1 67.10 40.21 42.74 1.20 44.374 0.00 3.4 71.0 67.10 40.21 42.74 1.20 44.47 0.00 3.4 71.0 67.10 40.21 42.74 1.20 44.47 0.00 3.4 71.0 67.10 40.21 42.74 1.20 44.67 0.00 3.4 71.0 40.21 34.70 44.47 1.20 44.57 4.39 0.00 71.0 40.21 34.70 44.47 1.20 44.57 4.39 0.00 3.8 71.0 40.21 34.70 44.47 1.20 44.57 4.39 4.30 1.20 4.55 4.30 4.30 71.0 40.41 41.65 44.77 1.20 44.57 4.57 4.35 4.35 3.85 71.0 40.42 34.75 44.17 1.20 45.57 4.41 3.58 71.0 41.81 42.85 45.06 1.20 45.57 4.41 3.8 71.0 42.27 42.84 45.47 1.20 46.26 4.45 3.4 71.0 42.85 43.61 40.02 1.20 47.22 4.37 3.6 75.5 42.25 43.61 40.02 1.20 47.22 4.37 3.6 75.5 42.25 43.61 40.62 1.20 47.23 4.37 3.6 75.6 42.30 42.85 46.16 1.20 47.23 4.31 3.5 77.0 44.33 44.17 46.57 1.20 47.79 4.49 4.45 3.5 77.0 44.33 44.17 46.57 1.20 47.70 3.44 3.5 77.0 44.33 44.17 46.57 1.20 47.70 3.44 3.5 77.0 44.52 45.82 47.72 1.20 48.49 2.83 3.2 80.0 48.20 45.82 47.72 1.20 48.49 2.83 3.2 80.0 48.20 45.82 47.59 1.20 47.70 3.08 0.00 70.0 45.57 45.58 45.59 45.50 1.20 47.70 3.08 0.00 70.0 45.56 45.32 47.72 1.20 47.70 3.08 0.00 70.0 45.56 45.32 47.59 1.20 47.70 3.08 0.00 70.0 45.57 45.58 45.59 45.50 1.20 45.50	67.0	51.58	38.19	40.84	1.20	42.04	0.00	3.85
68.6 65.5 65.2 38.72 41.75 1.20 42.95 0.00 4.22 68.6 65.5 65.36 37.76 41.91 1.20 43.11 0.00 5.33 68.6 65.5 65.36 37.76 41.91 1.20 43.11 0.00 5.33 68.6 65.36 40.42 42.02 1.20 43.22 0.00 3.8 68.6 65.36 40.42 42.02 1.20 43.36 0.00 3.8 70.0 70.76 33.82 42.55 1.20 43.378 0.00 0.33 70.0 70.76 33.82 42.55 1.20 43.378 0.00 0.33 70.1 67.10 40.21 42.74 1.20 44.374 0.00 3.4 71.0 67.10 40.21 42.74 1.20 44.47 0.00 3.4 71.0 67.10 40.21 42.74 1.20 44.47 0.00 3.4 71.0 67.10 40.21 42.74 1.20 44.67 0.00 3.4 71.0 40.21 34.70 44.47 1.20 44.57 4.39 0.00 71.0 40.21 34.70 44.47 1.20 44.57 4.39 0.00 3.8 71.0 40.21 34.70 44.47 1.20 44.57 4.39 4.30 1.20 4.55 4.30 4.30 71.0 40.41 41.65 44.77 1.20 44.57 4.57 4.35 4.35 3.85 71.0 40.42 34.75 44.17 1.20 45.57 4.41 3.58 71.0 41.81 42.85 45.06 1.20 45.57 4.41 3.8 71.0 42.27 42.84 45.47 1.20 46.26 4.45 3.4 71.0 42.85 43.61 40.02 1.20 47.22 4.37 3.6 75.5 42.25 43.61 40.02 1.20 47.22 4.37 3.6 75.5 42.25 43.61 40.62 1.20 47.23 4.37 3.6 75.6 42.30 42.85 46.16 1.20 47.23 4.31 3.5 77.0 44.33 44.17 46.57 1.20 47.79 4.49 4.45 3.5 77.0 44.33 44.17 46.57 1.20 47.70 3.44 3.5 77.0 44.33 44.17 46.57 1.20 47.70 3.44 3.5 77.0 44.52 45.82 47.72 1.20 48.49 2.83 3.2 80.0 48.20 45.82 47.72 1.20 48.49 2.83 3.2 80.0 48.20 45.82 47.59 1.20 47.70 3.08 0.00 70.0 45.57 45.58 45.59 45.50 1.20 47.70 3.08 0.00 70.0 45.56 45.32 47.72 1.20 47.70 3.08 0.00 70.0 45.56 45.32 47.59 1.20 47.70 3.08 0.00 70.0 45.57 45.58 45.59 45.50 1.20 45.50	67.5	55.36	42.37	41.52	1.20	42.72	0.00	0.36
88.5 55.36 37.76 41.91 1.20 43.11 0.00 2.8 88.6 55.36 37.76 41.91 1.20 43.22 0.00 2.8 88.5 70.76 39.82 42.43 1.20 43.63 0.00 3.8 70.5 70.76 39.82 42.45 1.20 43.70 0.00 3.8 70.5 70.76 43.43 42.55 1.20 43.70 0.00 0.3 70.5 70.76 43.43 42.55 1.20 43.70 0.00 0.3 71.5 67.10 40.21 42.74 1.20 43.78 0.00 0.3 71.5 67.10 41.05 42.74 1.20 43.78 0.00 3.7 71.5 67.10 41.05 43.27 1.20 44.47 0.00 3.4 71.5 67.10 41.05 43.27 1.20 44.47 0.00 3.4 71.5 39.42 41.65 44.07 1.20 44.47 0.00 3.4 71.5 39.42 41.65 44.07 1.20 45.27 5.85 3.6 73.5 44.36 41.75 44.38 1.20 44.65 4.29 5.8 73.5 44.36 44.78 44.47 1.20 45.27 5.85 3.6 73.5 44.36 44.78 44.37 1.20 45.56 4.22 3.8 73.5 44.36 44.78 44.57 1.20 45.56 4.22 3.8 73.6 42.27 42.84 45.47 1.20 46.67 4.41 3.8 73.6 42.28 42.84 45.47 1.20 46.67 4.41 3.8 73.6 42.28 42.84 45.47 1.20 46.67 4.41 3.8 73.6 42.84 44.87 44.60 4.20 4.73 4.45 4.5 73.6 44.84 44.87 44.67 4.70 4.73 4.84 4.5 4.5 73.6 44.84 44.87 44.67 4.70 4.73 4.84 4.5 4.5 73.6 44.84 44.87 44.67 4.70 4.73 4.84 4.5								
68.0 65.3								
68.6 70.76 39.82 42.43 1.20 43.63 0.00 3.8 70.5 70.76 43.43 42.59 1.20 43.76 0.00 0.3 70.5 70.76 43.43 42.59 1.20 43.78 0.00 0.3 71.5 67.10 40.21 42.74 1.20 43.78 0.00 0.3 71.5 67.10 41.06 43.27 1.20 44.47 0.00 3.4 72.0 44.21 38.70 43.40 1.20 44.47 0.00 3.4 72.0 44.21 38.70 43.40 1.20 44.60 4.39 5.9 72.5 38.42 41.65 44.07 1.20 44.57 4.91 0.5 73.3 40.46 44.76 44.17 1.20 45.37 4.91 0.5 73.5 41.33 41.75 44.38 1.20 45.58 4.23 3.8 74.0 41.81 42.65 45.06 1.20 46.26 4.45 3.4 74.1 41.81 42.65 45.06 1.20 46.26 4.45 3.4 75.5 42.28 43.61 46.02 1.20 47.22 4.37 3.6 75.5 42.28 43.61 46.02 1.20 47.22 4.37 3.6 76.6 42.29 42.25 46.18 1.20 47.36 45.1 76.0 42.30 42.65 46.18 1.20 47.36 45.1 77.0 44.33 44.17 46.57 1.20 47.77 3.44 3.6 77.0 44.33 44.17 46.57 1.20 47.79 3.44 3.6 77.5 43.59 48.49 46.70 1.20 47.79 3.44 3.6 77.5 43.59 48.49 46.70 1.20 47.79 3.44 3.6 77.0 44.33 44.17 46.57 1.20 47.79 3.44 3.6 77.5 45.28 45.12 46.63 1.20 47.79 3.44 3.6 77.5 45.28 45.12 46.63 1.20 47.79 3.44 3.6 77.5 45.28 45.12 46.63 1.20 47.79 3.4 3.6 77.5 45.28 45.12 46.63 1.20 47.79 3.8 0.0 78.5 44.89 45.72 47.22 1.20 48.42 2.96 47.79 79.0 45.47 43.72 47.22 1.20 48.42 2.96 47.79 79.1 45.47 43.72 47.22 1.20 48.42 2.96 47.79 81.5 46.68 45.38 1.20 49.88 40.2 47.79 81.5 45.66 45.32 47.50 1.20 50.57 0.00 49.88 80.5 54.56 44.82 48.86 53.81 1.20 50.57 0.00 49.88 80.5 54.56 56.66 56.67 57.72 1.20 56.58 0.00 3.8 85.5 51.82 48.86 53.81 1.20 55.56 0.00 3.8 85.5 55.86 56.87 57	68.5	55.36	37.76	41.91	1.20	43.11	0.00	5.35
TOO	69.0	55.36	40.42	42.02	1.20	43.22	0.00	2.80
TOO	69.5	70.76	39.82	42.43	1.20	43.63	0.00	3.80
70.5 70.76				42.50				
Th.								
77.15								
72.0 40.21 33.70 43.40 1.20 44.60 4.39 5.98 72.5 39.42 41.66 44.78 44.17 1.20 45.37 4.91 0.55 73.0 40.46 44.78 44.17 1.20 45.37 4.91 0.55 73.5 41.36 44.78 44.17 1.20 46.58 4.23 3.88 74.0 41.81 42.85 45.06 1.20 46.26 4.45 3.4 75.0 42.85 45.01 46.07 1.41 3.88 75.0 42.85 44.51 1.20 46.72 4.41 3.36 75.5 42.85 44.51 1.20 47.36 4.51 6.11 6.07 4.41 3.36 75.5 42.85 44.22 46.16 1.20 47.39 4.49 4.5 77.0 44.28 44.41 46.57 1.20 47.77 3.44 3.6 77.5 45.28	71.0	67.10	40.21	42.74	1.20	43.94	0.00	3.73
Text Text	71.5	67.10	41.06	43.27	1.20	44.47	0.00	3.41
Text Text	72.0	40.21	38 70	43 40	1 20	44 60	4 39	5 90
T310								
73.5								
74.0								
74.5	73.5	41.35	41.75	44.38	1.20	45.58	4.23	3.83
75.0 42.85 43.61 46.02 1.20 47.22 4.37 3.6 75.5 42.85 44.12 46.16 1.20 47.39 4.49 4.51 76.5 43.41 43.66 46.36 1.20 47.56 4.16 3.9 77.0 44.31 43.66 46.36 1.20 47.77 3.44 3.66 77.5 45.28 45.12 46.63 1.20 47.83 2.55 2.7 78.0 43.59 48.49 46.70 1.20 47.93 3.08 0.00 78.5 44.89 48.49 46.77 1.20 47.97 3.08 0.00 78.0 45.74 43.72 47.22 1.20 48.42 2.86 3.27 78.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 48.26 45.22 47.50 1.20 48.70 0.44 3.3 80.5 45.56	74.0	41.81	42.85	45.06	1.20	46.26	4.45	3.41
75.0 42.85 43.61 46.02 1.20 47.22 4.37 3.6 75.5 42.85 44.12 46.16 1.20 47.39 4.49 4.51 76.5 43.41 43.66 46.36 1.20 47.56 4.16 3.9 77.0 44.31 43.66 46.36 1.20 47.77 3.44 3.66 77.5 45.28 45.12 46.63 1.20 47.83 2.55 2.7 78.0 43.59 48.49 46.70 1.20 47.93 3.08 0.00 78.5 44.89 48.49 46.77 1.20 47.97 3.08 0.00 78.0 45.74 43.72 47.22 1.20 48.42 2.86 3.27 78.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 48.26 45.22 47.50 1.20 48.70 0.44 3.3 80.5 45.56	74.5	42 27	42 84	45 47	1 20	46 67	4 41	3 83
75.5								
76.0 42.90 42.85 46.19 1.20 47.39 4.49 4.5 76.5 43.41 43.66 46.36 1.20 47.77 3.44 3.66 77.70 44.33 44.17 46.67 1.20 47.77 3.44 3.66 77.5 45.28 45.12 46.63 1.20 47.83 2.55 2.7 78.6 44.89 49.99 46.70 1.20 47.99 4.31 0.00 79.5 44.89 49.99 46.77 1.20 47.97 3.08 0.0 79.5 45.66 45.28 47.22 1.20 48.42 2.96 4.77 79.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 48.26 45.32 47.50 1.20 48.70 0.44 3.3 80.5 45.66 44.82 48.38 1.20 48.70 4.06 3.9 81.5 48.26								
76.6	75.5	42.85	41.22	46.16	1.20	47.36	4.51	6.14
77.0	76.0	42.90	42.85	46.19	1.20	47.39	4.49	4.54
77.0	76.5	43.41	43.66	46.36	1.20	47.56	4.16	3.90
77.5								
78.0 43.59 48.49 46.70 1.20 47.97 3.08 0.00 78.5 44.89 49.89 46.77 1.20 47.97 3.08 0.00 79.0 45.47 43.72 47.22 1.20 48.42 2.96 4.77 79.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 48.26 45.32 47.50 1.20 48.70 0.44 3.33 80.5 45.56 44.82 48.38 1.20 49.58 4.02 4.77 81.0 46.31 46.40 49.17 1.20 50.47 3.46 3.5 82.0 48.12 47.87 49.35 1.20 50.47 3.46 3.5 82.5 47.49 47.13 50.93 1.20 50.55 2.42 2.6 82.5 47.49 47.13 50.93 1.20 50.55 2.42 2.6 83.0 47.63								
78.5 44.89 49.89 46.77 1.20 47.97 3.08 0.00 79.0 45.47 43.72 47.22 1.20 48.42 2.96 4.77 79.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 48.26 45.32 47.50 1.20 48.70 0.44 3.3 81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.57 3.46 3.5 82.0 48.12 47.87 49.35 1.20 50.55 2.42 2.68 82.5 47.49 47.13 50.93 1.20 53.50 4.68 5.3 83.6 48.62 46.12 52.30 1.20 53.50 4.68 5.3 84.5 47.57								
79.0 45.47 43.72 47.22 1.20 48.42 2.96 4.7 79.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 48.26 45.32 47.50 1.20 48.70 0.44 3.3 80.5 45.56 44.82 48.38 1.20 49.58 4.02 4.7 81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.47 3.46 3.5 82.0 48.12 47.87 49.55 1.20 50.55 2.42 2.6 83.5 47.49 47.13 50.93 1.20 52.13 4.64 5.0 83.5 47.63 46.29 51.60 1.20 53.50 4.68 5.3 84.0 49.54 48.83 52.60 1.20 53.50 4.8 5.3 84.5 47.57 <td< td=""><td>78.0</td><td>43.59</td><td>48.49</td><td>46.70</td><td>1.20</td><td>47.90</td><td>4.31</td><td>0.00</td></td<>	78.0	43.59	48.49	46.70	1.20	47.90	4.31	0.00
79.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 46.26 45.32 47.50 1.20 48.70 0.44 3.3 80.5 45.56 44.82 48.38 1.20 49.58 4.02 4.7 81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.47 3.46 3.5 82.0 48.12 47.67 49.35 1.20 50.55 2.42 2.6 82.5 47.49 47.13 50.39 1.20 52.13 4.64 5.00 83.0 47.63 46.29 51.60 1.20 52.80 5.17 6.5 83.5 48.82 48.12 52.30 1.20 53.80 4.68 5.3 84.0 49.54 48.83 52.60 1.20 53.80 4.68 5.3 84.0 49.54 <	78.5	44.89	49.89	46.77	1.20	47.97	3.08	0.00
79.5 45.66 45.28 47.29 1.20 48.49 2.83 3.2 80.0 46.26 45.32 47.50 1.20 48.70 0.44 3.3 80.5 45.56 44.82 48.38 1.20 49.58 4.02 4.7 81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.47 3.46 3.5 82.0 48.12 47.67 49.35 1.20 50.55 2.42 2.6 82.5 47.49 47.13 50.39 1.20 52.13 4.64 5.00 83.0 47.63 46.29 51.60 1.20 52.80 5.17 6.5 83.5 48.82 48.12 52.30 1.20 53.80 4.68 5.3 84.0 49.54 48.83 52.60 1.20 53.80 4.68 5.3 84.0 49.54 <	79.0	45.47	43.72	47.22	1.20	48.42	2.96	4.70
80.0 48.26 45.32 47.50 1.20 48.70 0.44 3.3 80.5 45.56 44.82 48.38 1.20 49.58 4.02 4.77 81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.47 3.46 3.5 82.0 48.12 47.87 49.35 1.20 50.55 2.42 2.6 82.5 47.49 47.13 50.93 1.20 55.15 2.42 2.6 83.0 47.63 46.29 51.60 1.20 52.80 5.17 6.5 83.5 48.82 48.12 52.30 1.20 53.50 4.68 5.3 84.0 49.54 48.83 52.60 1.20 53.80 4.26 4.9 84.5 47.57 50.20 52.82 1.20 54.02 6.45 3.8 85.0 51.69 <								
80.5 45.56 44.82 48.38 1.20 49.58 4.02 4.7 81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.47 3.46 3.5 82.0 48.12 47.87 49.35 1.20 50.55 2.42 2.6 83.0 47.63 46.29 51.60 1.20 52.80 5.17 6.5 83.5 48.82 48.12 52.30 1.20 53.50 4.68 5.33 84.0 49.54 48.83 52.60 1.20 53.80 4.26 4.9 84.5 47.57 50.20 52.82 1.20 54.02 6.45 3.8 85.0 51.69 48.16 53.21 1.20 54.41 2.72 6.22 85.5 51.82 49.96 53.81 1.20 55.01 3.19 5.0 85.0 51.69								
81.0 46.31 46.40 49.17 1.20 50.37 4.06 3.9 81.5 47.01 46.93 49.27 1.20 50.47 3.46 3.5 82.0 48.12 47.87 49.35 1.20 50.55 2.42 2.66 82.5 47.49 47.13 50.93 1.20 52.13 4.64 5.00 83.5 48.82 48.12 52.30 1.20 52.80 5.17 6.5 84.0 49.54 48.83 52.60 1.20 53.80 4.26 4.9 84.5 47.57 50.20 52.82 1.20 54.02 6.45 3.8 85.0 51.69 48.16 53.21 1.20 54.01 2.72 6.22 85.5 51.82 49.96 53.81 1.20 55.01 3.19 5.0 86.0 63.61 50.00 54.19 1.20 55.80 0.00 3.8 87.0 56.61								
81.5	80.5	45.56	44.82	48.38	1.20	49.58	4.02	4.76
82.0	81.0	46.31	46.40	49.17	1.20	50.37	4.06	3.97
82.0	81.5	47 01	46 93	49 27	1 20	50 47	3.46	3 54
82.5								
83.0 47.63 46.29 51.60 1.20 52.80 5.17 6.5 83.5 48.82 48.12 52.30 1.20 53.50 4.68 5.3 84.0 49.54 48.83 52.60 1.20 53.80 4.26 4.9 84.5 47.57 50.20 52.82 1.20 54.02 6.45 3.8 85.0 51.69 48.16 53.21 1.20 54.41 2.72 6.22 85.5 51.82 49.96 53.81 1.20 55.39 0.00 5.3 86.0 63.61 50.00 54.19 1.20 55.39 0.00 5.3 86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.8 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.9 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 <								
83.5								
84.0	83.0	47.63	46.29	51.60	1.20	52.80	5.17	6.51
84.5 47.57 50.20 52.82 1.20 54.02 6.45 3.8 85.0 51.69 48.16 53.21 1.20 54.41 2.72 6.22 85.5 51.82 49.96 53.81 1.20 55.01 3.19 5.00 86.0 63.61 50.00 54.19 1.20 55.39 0.00 5.33 86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.86 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.00 87.5 70.38 53.01 56.75 1.20 56.57 0.00 4.9 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.22 89.5 57.20	83.5	48.82	48.12	52.30	1.20	53.50	4.68	5.38
84.5 47.57 50.20 52.82 1.20 54.02 6.45 3.8 85.0 51.69 48.16 53.21 1.20 54.41 2.72 6.22 85.5 51.82 49.96 53.81 1.20 55.01 3.19 5.00 86.0 63.61 50.00 54.19 1.20 55.39 0.00 5.33 86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.86 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.00 87.5 70.38 53.01 56.75 1.20 56.57 0.00 4.9 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.22 89.5 57.20			48 83					
85.0 51.69 48.16 53.21 1.20 54.41 2.72 6.21 85.5 51.82 49.96 53.81 1.20 55.01 3.19 5.00 86.0 63.61 50.00 54.19 1.20 55.39 0.00 5.33 86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.81 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.01 87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.9 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.33 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 69.09 0.00 4.22 90.5 55.90								
85.5 51.82 49.96 53.81 1.20 55.01 3.19 5.00 86.0 63.61 50.00 54.19 1.20 55.39 0.00 5.33 86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.81 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.01 87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.96 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.33 88.5 55.92 55.78 57.72 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.51 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.77 60.55 1.20 61.75 5.85 5.96 91.0 76.15 58.17								
86.0 63.61 50.00 54.19 1.20 55.39 0.00 5.33 86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.81 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.01 87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.99 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.55 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.99 91.0 76.15	85.0	51.69	48.16	53.21		54.41	2.72	6.25
86.5 69.13 51.94 54.60 1.20 55.80 0.00 3.86 87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.00 87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.99 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.37 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.2 89.5 57.20 55.74 58.09 1.20 59.07 2.36 3.2 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.5 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.9 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.6 91.5 60.48	85.5	51.82	49.96	53.81	1.20	55.01	3.19	5.05
87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.00 87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.9 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.2 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.5 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.2 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.9 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.6 91.5 60.48 61.40 60.79 1.20 62.77 0.00 2.0 92.5 58.64 <	86.0	63.61	50.00	54.19	1.20	55.39	0.00	5.39
87.0 56.61 53.49 55.37 1.20 56.57 0.00 3.00 87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.9 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.2 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.5 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.2 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.9 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.6 91.5 60.48 61.40 60.79 1.20 62.77 0.00 2.0 92.5 58.64 <	86.5	69 13	51 94	54 60	1 20	55.80	0.00	3 86
87.5 70.38 53.01 56.75 1.20 57.95 0.00 4.99 88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3' 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1- 89.0 56.71 55.79 57.87 1.20 59.29 2.09 3.5' 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.5' 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.2' 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.99 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.6' 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.5' 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0' 92.5 58.64								
88.0 53.86 55.45 57.62 1.20 58.82 4.96 3.3 88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.1 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.5 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.99 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.60 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.11 93.0 64.36								
88.5 55.92 55.78 57.72 1.20 58.92 3.00 3.14 89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.55 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.99 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.66 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.11 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.25 93.5 61.19		70.38		56.75				
89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.53 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.99 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.66 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.1 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.5 93.5 61.19 63.94 62.99 1.20 64.76 2.22 2.7 94.0 62.54	88.0	53.86	55.45	57.62	1.20	58.82	4.96	3.37
89.0 56.71 55.79 57.87 1.20 59.07 2.36 3.21 89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.53 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.99 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.66 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.1 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.5 93.5 61.19 63.94 62.99 1.20 64.76 2.22 2.7 94.0 62.54	88.5	55.92	55.78	57.72	1.20	58.92	3.00	3.14
89.5 57.20 55.74 58.09 1.20 59.29 2.09 3.55 90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.23 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.96 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.66 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.11 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.55 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.77 94.5 63.79								
90.0 63.07 56.69 59.78 1.20 60.98 0.00 4.22 90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.90 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.63 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.11 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.54 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.77 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.7 95.0 65.13								
90.5 55.90 55.77 60.55 1.20 61.75 5.85 5.90 91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.60 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.55 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.12 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.54 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.77 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.77 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58								
91.0 76.15 58.17 60.60 1.20 61.80 0.00 3.66 91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.53 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.12 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.54 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.2 94.0 62.54 62.02 63.66 1.20 64.76 2.22 2.7 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.7 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.4 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.2 96.0 65.68								4.29
91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.56 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.1 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.51 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.7 94.5 63.79 63.98 64.48 1.20 66.68 1.89 1.7 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.4 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.2 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.1 96.5 67.11	90.5	55.90	55.77	60.55	1.20	61.75	5.85	5.98
91.5 60.48 61.40 60.79 1.20 61.99 1.51 0.56 92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.1 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.51 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.7 94.5 63.79 63.98 64.48 1.20 66.68 1.89 1.7 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.4 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.2 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.1 96.5 67.11	91.0	76.15	58.17	60.60	1.20	61.80	0.00	3.63
92.0 63.03 60.76 61.57 1.20 62.77 0.00 2.0 92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.1 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.5 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.2 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.7 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.7 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.4 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.2 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.1 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.2 97.0 67.67 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
92.5 58.64 61.19 62.11 1.20 63.31 4.67 2.11 93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.56 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.23 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.77 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.77 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.29 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.12 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.22 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.00 97.5 69.14								
93.0 64.36 61.35 62.73 1.20 63.93 0.00 2.56 93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.73 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.77 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.22 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.12 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.21 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.00 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73								
93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.73 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.70 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.22 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.12 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.20 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.00 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48	92.5	58.64	61.19	62.11	1.20	63.31	4.67	2.12
93.5 61.19 63.94 62.99 1.20 64.19 3.00 0.22 94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.73 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.70 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.22 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.12 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.20 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.00 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48	93.0	64.36	61.35	62.73	1.20	63.93	0.00	2.58
94.0 62.54 62.02 63.56 1.20 64.76 2.22 2.77 94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.70 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.68 64.65 66.74 1.20 67.94 3.36 3.22 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.12 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.22 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.0 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.0 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.0 99.0 70.30	93.5	61.19	63.94	62.99	1.20	64.19	3.00	0.25
94.5 63.79 63.98 64.48 1.20 65.68 1.89 1.70 95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.29 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.11 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.21 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.09 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59								
95.0 65.13 64.80 65.00 1.20 66.20 1.07 1.44 95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.29 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.11 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.21 97.0 67.67 66.58 68.47 1.20 69.87 2.00 3.09 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00								
95.5 64.58 64.65 66.74 1.20 67.94 3.36 3.2: 96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.1: 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.2: 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.0: 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.0: 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.0: 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.0: 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.0:								
96.0 65.68 63.40 67.32 1.20 68.52 2.83 5.1: 96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.2: 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.0: 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.0: 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.0: 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.0: 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.0:								1.40
96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.20 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.00 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00	95.5	64.58	64.65	66.74	1.20	67.94	3.36	3.29
96.5 67.11 65.02 68.08 1.20 69.28 2.17 4.20 97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.00 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00	96.0	65.68	63.40	67.32	1.20	68.52	2.83	5.12
97.0 67.67 66.58 68.47 1.20 69.67 2.00 3.0 97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.0 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.0 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.0 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00								
97.5 69.14 77.54 68.67 1.20 69.87 0.73 0.00 98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00								
98.0 65.73 69.83 68.95 1.20 70.15 4.41 0.3 98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00								3.09
98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00	97.5	69.14	77.54	68.67	1.20	69.87	0.73	0.00
98.5 68.48 71.57 69.64 1.20 70.84 2.36 0.00 99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00	98.0	65.73	69.83	68.95	1.20	70.15	4.41	0.31
99.0 70.30 80.96 70.32 1.20 71.52 1.22 0.00 99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00								
99.5 71.59 85.56 70.58 1.20 71.78 0.19 0.00								
Promedio 31.85 29.27 31.38 1.20 32.58 2.71 3.5	00.5	71 59	l 85.56	70.58	1.20	71.78	0.19	0.00
	99.5	71.00						

4.3 Planeamiento Técnico de las Alternativas

4.3.1 Medidas estructurales

Como medidas estructurales, ha sido necesario elaborar un plan de control de inundaciones para toda la cuenca. En la sección posterior 4.12 "Plan de mediano y largo plazo", 4.12.1 "Plan General de Control de Inundaciones" se detallan los resultados del análisis. Dicho plan propone construir diques para el control de inundaciones de toda la cuenca. Sin embargo, en el caso de la cuenca del río Majes-Camaná, se requiere implementar un gran proyecto invirtiendo un costo sumamente alto, mucho más allá del presupuesto del presente Proyecto, lo que hace que sea poco viable adoptar esta propuesta. Por lo tanto, suponiendo que los diques para controlar las inundaciones de toda la cuenca serán construidos progresivamente dentro de un plan de mediano y largo plazo, aquí se enfocó el estudio en las obras más urgentes y prioritarias para el control de inundaciones.

(1) Caudal de inundaciones de diseño

La Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas elaborada por la Dirección General de Programación Multianual del Sector Público (DGPM) del Ministerio de Economía y Finanzas (MEF) recomienda realizar el análisis comparativo de diferentes períodos de retorno: 25 años, 50 años y 100 años para el área urbana, y 10 años, 25 años y 50 años para el área rural y las tierras agrícolas.

Considerando que el presente Proyecto se orienta a la protección del área rural y de las tierras agrícolas, el análisis comparativo se hará para las inundaciones de diseño con períodos de retorno de 10, 25 y 50 años. El caudal de inundaciones de diseño se definió en las inundaciones máximas de período de retorno de 50 años siguiendo lo estipulado en la Guía.

Período de retorno de 10 años 2.276 m³/s Período de retorno de 25 años 2.995 m³/s Período de retorno de 50 años 3.540 m³/s

(2) Levantamiento topográfico

Se llevó a cabo el levantamiento topográfico en los lugares seleccionados para la ejecución de las medidas estructurales (Tabla 4.3.1-1). El diseño preliminar de las obras de control se basó en estos resultados de levantamiento topográfico.

Tabla 4.3.1-1 Perfil del levantamiento topográfico

Ríos	Ubicación	Instalaciones	•	Levantamie	nto transversa	al (S=1/200)
11105	(No.)	Instalaciones	(S=1/2,000)	No. de línea	Long. media(m)	Long. total(m
Chira	Chira — 1	Protección de márgenes	75	151	50	7,550
	Chira-2	Protección de márgenes	75	151	50	7,550
	Chira-3	Diques y protección de márgenes	52.5	106	50	5,300
	Chira-4	Descolmataci ón delcauce	20	41	50	2,050
	Chira-5	Protección de márgenes	20	11	50	550
	Chira-6	Protección de presa	12	13	100	1,300
Total			254.5	460		24,300

(3) Selección de las obras de control de inundaciones prioritarias

1) Lineamientos básicos

Para la selección de las obras prioritarias de control de inundaciones, se basaron en los siguientes elementos.

- Demanda de la comunidad local (basada en los daños históricos de inundaciones)
- Falta de la capacidad hidráulica (incluyendo los tramos afectados por la socavación)
- · Condiciones de la zona advacente (condiciones del área urbana, tierras de cultivo, etc.)
- Condiciones de inundación (extensión de del agua desbordada conforme los resultados del análisis de inundaciones)
- Condiciones sociales y ambientales (importantes instalaciones locales, etc.)

Se realizó una evaluación integral de los cinco elementos antes mencionados tomando en cuenta los resultados del levantamiento del río, estudio en campo, evaluación de la capacidad hidráulica, análisis de desbordamiento, entrevistas (a las comisiones de regantes, autoridades locales, datos históricos de los daños de inundación, etc.) y se seleccionaron los sitios donde se deben ejecutar las obras prioritarias de control de inundación (sitios que han tenido mayor puntaje en la evaluación integral).

Concretamente, dado que el levantamiento del río, la evaluación de la capacidad hidráulica y el análisis de desbordamiento han sido realizados a cada 500 metros de intervalo (sección), la evaluación integral se realizó también para tramos de 500 metros. Estos tramos fueron evaluados en escalas de 1 a 3 (0 punto, 1 punto y 2 puntos), y los tramos cuya suma superaron 6 puntos, han sido seleccionados como sitios prioritarios. El límite interior (6 puntos) ha sido determinado tomando en cuenta también el presupuesto disponible del Proyecto en general.

En la Tabla 4.3.1-2 se presentan los aspectos evaluados y los criterios de evaluación.

Tabla 4.3.1-2 Aspectos y criterios de evaluación

Aspectos de evaluación	Descripción	Criterios de evaluación
Demanda de los habitantes locales	 Daños de inundaciones en el pasado Demanda de los habitantes y productores locales 	 Tramos que han tenido grandes inundaciones en el pasado y que hay una gran demanda por parte de la comunidad local (2 puntos) Demanda de los habitantes locales (1 punto)
Falta de capacidad hidráulica del río (tramos socavados)	 Posibilidad de desbordarse el río por falta de la capacidad hidráulica Posibilidad de derrumbarse el dique por socavación. 	 Tramos de capacidad hidráulica particularmente reducida (que se desborda con crecidas con período de retorno de 10 años o menos) (2 puntos) Tramos de reducida capacidad hidráulica (período de retorno de menos de 25 años) (1 punto)
Condiciones de las áreas circundantes	 Tierras de cultivo grandes, etc. Zona urbana, etc. Evaluación de las tierras e infraestructuras cercanas al río. 	 Tramos donde se extienden grandes tierras de cultivo (2 puntos) Tramos donde existen tierras de cultivo con poblados mezclados, o gran área urbana (2 puntos) La misma configuración que lo anterior, pero con menor escala (1 punto)
Condiciones de desbordamiento	Magnitud de desbordamiento	 Donde el desbordamiento se extiende en superficie extensa (2 puntos) Donde el desbordamiento se limita en una determinada área (1 punto)
Condiciones socio-ambientales (estructuras importantes)	 Bocatomas del sistema de riego, agua potable, etc. Puentes y caminos principales (Carretera Panamericana, etc.) 	 Donde existen infraestructuras importantes para la zona (2 puntos) Donde existen infraestructuras importantes (pero menos que las primeras) para la zona (caminos regionales, pequeñas bocatomas, etc.) (1 punto)

Para Chira-5, inicialmente estaba proyectado construir una obra de protección del canal de riego contra la erosión, dada su cercanía con el río. Sin embargo, en vista de que se decidió cambiar el cauce mediante la obra de protección del tramo inferior de la Presa Poechos, en Chira-6, con lo cual el canal de riego mencionado confluirá con el río en su extremo inferior, quedó innecesario ejecutar la obra de Chira-5. Así, ésta fue descartada del presente Estudio. Asimismo, la obra de Chira-6 fue descartado de este Estudio, puesto que un proyecto similar será ejecutado por el gobierno regional de Piura.

2) Resultados de selección

En la Figura 4.3.1-1 se muestran los resultados de la evaluación en cada tramo del río, así como los resultados de selección de las obras prioritarias de control de inundación.

3) Fundamentos de selección

En la Tabla 4.3.1-3 se presentan los fundamentos de selección de cada obra.

4) Comparación de alternativas

Para la selección de las obras prioritarias de control de inundaciones se ha realizado el análisis de las diferentes propuestas indicadas en la Tabla 4.3.1-4.

Para más detalles, véase el Informe de Apoyo (Anexo 4 Plan de Control de Inundaciones)

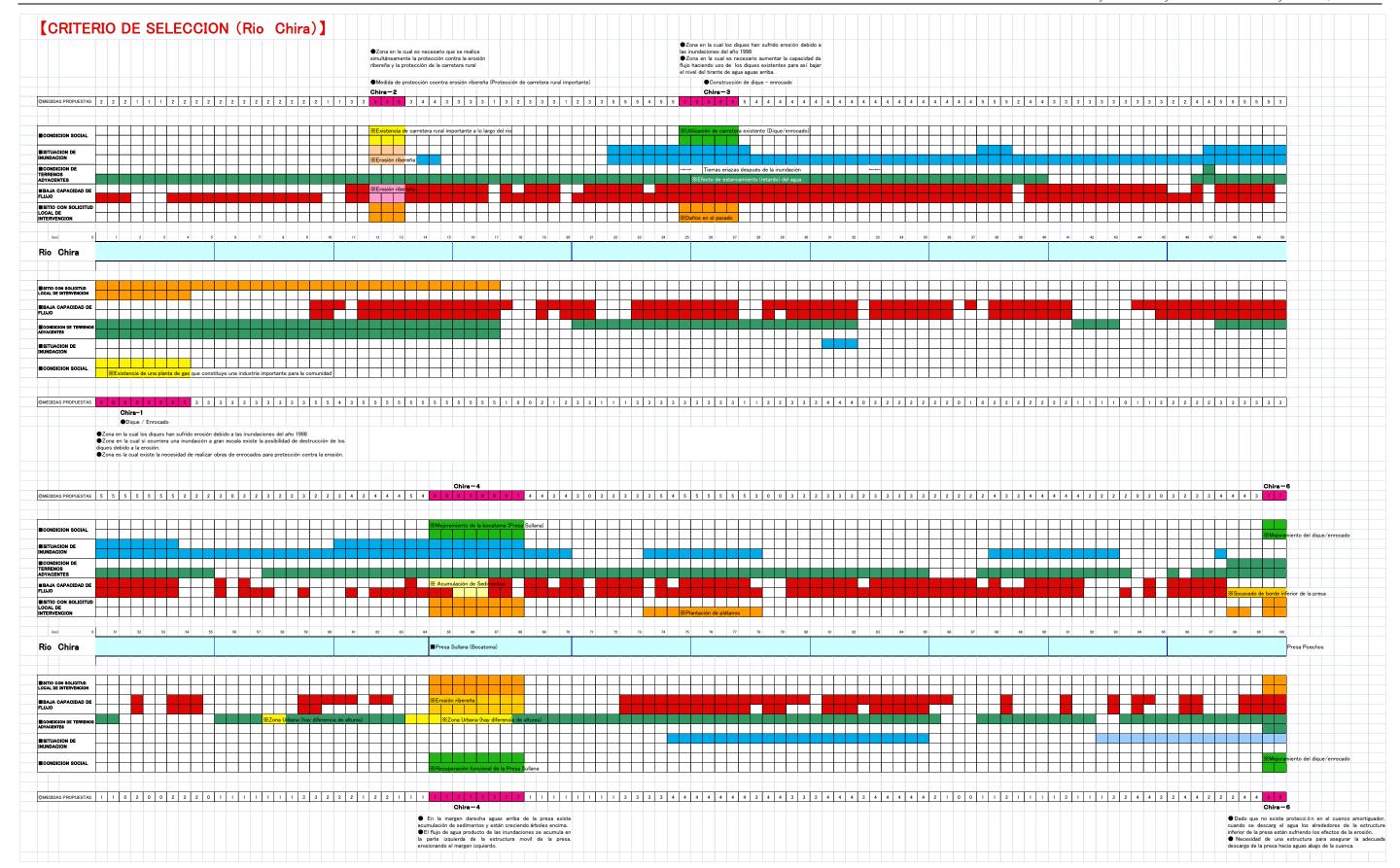


Figura 4.3.1-1 Resultados de selección de las obras prioritarias de control de inundación en el río Chira

Tabla 4.3.1-3 Fundamentos de los tramos seleccionados para ejecutar obras (Río Chira)

No	Ubicación de	Fundamentos de selección Fundamentos de selección
110	obras	Tundamentos de selección
Chira-1	km0,0-km4,0 (margen izquierda)	El Río Chira se caracteriza por la falta de la capacidad hidráulica, produciéndose desbordamiento en todos los tramos. El flujo de agua llega a inundar las tierras bajas y llanas a lo largo del río. Sin embargo, en el caso del Río Chira, la presencia de la Presa Poechos puede contribuir a solucionar los problemas en caso de ocurrir inundaciones del orden mediano y pequeño. Sin embargo, en el caso de ocurrir crecidas de magnitud que supera la capacidad de la presa, es probable que se produzcan grandes daños. Por lo tanto, para controlar las inundaciones en este río, es importante ir construyendo los diques empezando desde la cuenca alta, a la par de localizar las obras estratégicamente tomando en cuenta las condiciones de las tierras afectadas por grandes daños. Este tramo tiene diques construidos pero las márgenes no están protegidas. Las inundaciones de 1998 han causado erosión de los diques. Por lo tanto, en el caso de que las crecidas duren un tiempo prolongado causando erosión y destrucción del dique, se producirán grandes daños a las infraestructuras cercanas (depósito de gas, tierras de cultivo, etc.). Este tramo tiene espigones en lugar de obras de protección de márgenes. Si bien es cierto que los espigones pueden frenar el oleaje, se consideró necesario ejecutar las obras de protección de márgenes considerando la existencia de infraestructuras importantes (depósito de gas natural, etc.) que deben ser protegidos.
		 [Características del tramo en cuestión] Tramo donde el dique fue erosionado por las inundaciones de 1998. Tramo en el que el dique erosionado puede colapsar en caso de ocurrir grandes inundaciones. Tramo cuya margen debe ser protegida contra la erosión.
		[Elementos a proteger] OGrandes tierras de cultivo, campo de gas natural, etc. de la margen izquierda del tramo en cuestión.
Chira-2	km11,75-km12,75 (margen derecha)	Este tramo traza una gran curva, causando fuerte erosión en la margen derecha, dando lugar a la actual sección de curso del río. De no tomarse alguna medida adecuada, es muy probable que se destruya el camino rural ubicado en la margen derecha. Se considera importante ejecutar las obras de protección de márgenes manteniendo en lo posible la sección actual del curso del río para mantener el efecto almacenador del lecho actual y al mismo tiempo, proteger el camino (ya que su destrucción tendrá un impacto fuerte a la economía regional).
		 [Características del tramo en cuestión] Tramo donde la erosión de las márgenes durante las inundaciones puede provocar la destrucción del camino regional. Tramo en el que debe realizar simultáneamente las obras de control de erosión de márgenes y de conservación del funcionamiento del camino regional.
		[Elementos a proteger] • Camino regional de la margen derecha del tramo en cuestión.
Chira-3	km24,5-km27,0 (margen derecha)	Es un tramo cuya margen derecha fue fuertemente afectada por los daños de las inundaciones del pasado. Actualmente tiene un dique provisional (que sirve también de camino). Se considera importante utilizar efectivamente esta obra disponible. El dique provisional existente ha sido construido con suficiente anchura, y

		como tal tiene un efecto retardador de inundaciones, y de reducir el nivel de agua del tramo superior. Para controlar mejor las inundaciones del Río Chira, es importante crear varios tramos como éste que sirvan de reservorio natural, para reducir el nivel de agua en todo el río. El dique existente en este tramo es provisional y no tiene la altura suficiente como para maximizar el efecto retardador de la crecida. Por lo tanto, se propone incrementar la altura del dique actual a manera de maximizar el efecto retardador.
		[Características del tramo en cuestión] •Tramo donde el dique fue erosionado por las inundaciones de 1998. •Tramo en el que debe reducir el nivel de agua incrementando el efecto de retardación utilizando el dique provisional existente.
		[Elementos a proteger] • Tierras agrícolas de la margen derecha del tramo en cuestión.
Chira-4	km64,0-km68,0 (total)	La bocatoma Sullana tiene acumulados los sedimentos en la parte fija de la margen derecha, la cual está siendo cubierta por vegetación. Como consecuencia, se produce la erosión de la margen izquierda. De no tomarse una medida adecuada, la vegetación de la margen derecha aumentará su densidad agravando aún más su impacto hacia la margen izquierda. Tomando en cuenta la importancia de la bocatoma y para mantener la seguridad de la margen izquierda, se considera necesario eliminar la vegetación y los sedimentos acumulados de la presa fija de la margen derecha para estabilizar el régimen hídrico durante la crecida. Esta medida también es importante para el mantenimiento de las estructuras existentes. [Características del tramo en cuestión] •Tramo donde se acumularon sedimentos en la margen derecha de la bocatoma, y están cubiertos de vegetación densa. •Tramo en el que las crecidas se concentran en la presa móvil de la margen izquierda, provocando erosión de la margen. [Elementos a proteger]
		oBocatoma (Sullana)

Tabla 4.1.3-4 Comparación de alternativas (Río Chira)

No	Ubicación de obras	Propuesta adoptada	Propuesta rechazada
Chira-1	km0,0-km4,0 (margen izquierda)	Propuesta de conformar el dique Mejorar el dique utilizando efectivamente la estructura existente para asegurar la capacidad hidráulica necesaria.	Ninguna otra alternativa Porque la opción óptima es aprovechar la estructura existente.
Chira-2	km11,75-kmkm12,75 (margen derecha)	Propuesta de proteger márgenes Proteger básicamente la margen erosionada por el desastre.	Propuesta de conformar el dique Consiste en construir dique y proteger la margen siguiendo el curso del río antes del desastre. Dado que es necesario construir la parte frontal del dique, el volumen de terraplén en el dorso va a ser enorme.
Chira-3	km24,5-km27,0 (margen derecha)	Propuesta de conformar el dique Consiste en elevar la base del dique camino construido después	Propuesta de descolmatación Consiste en dragar el lecho y asegurar la capacidad hidráulica.

		del desastre para asegurar la capacidad hidráulica necesaria y el efecto de retardación.	Dado que el río es demasiado angosto frente al caudal que se quiere reducir, debe dragar gran cantidad.
Chira-4	km64,0-km68,0 (total)	Propuesta de descolmatación Consiste en eliminar la densa sedimentación y los sedimentos acumulados en la margen derecha aguas arriba de la bocatoma para asegurar la capacidad hidráulica aguas arriba de la bocatoma Sullana.	Ninguna otra alternativa Por ser un trabajo que debe realizarse en todo caso como parte del mantenimiento de la obra.

(4) Ubicación de las obras prioritarias de control de inundaciones

En la Figura 4.3.1-2 se indica la ubicación de las obras prioritarias de control de inundaciones en la cuenca de Río Chira.

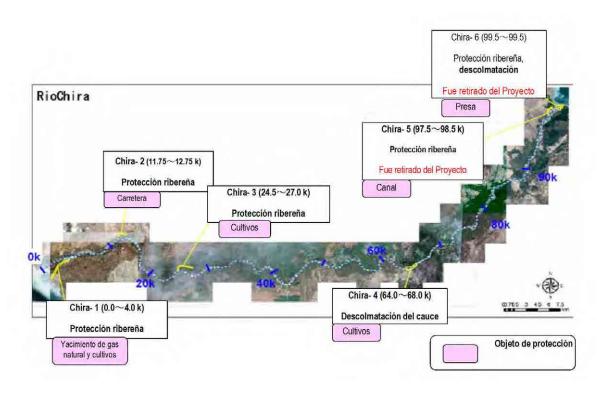


Figura 4.3.1-2 Obras prioritarias de control de inundaciones en el Río Chira

(5) Planificación y diseño de obras

- 1) Sección normal del dique
- i) Ancho de la corona

El ancho de la corona del dique se definió en 4 metros, considerando la estabilidad del dique frente a las crecidas de diseño, ancho del dique existente, ancho del camino de acceso o de comunicación local.

ii) Estructura de los diques

La estructura del dique ha sido diseñada en forma empírica, tomando en cuenta los desastres históricos, condiciones del suelo, condiciones de las zonas circundantes, etc.

Los diques son de tierra en todas las cuencas. Si bien es cierto que se observa alguna diferencia en su estructura según zonas, se puede resumir de la siguiente manera, con base en la información proporcionada por los administradores entrevistados.

- ① La pendiente del talud es en su mayoría de 1:2 (relación vertical: horizontal), pudiendo variar su forma según ríos y zonas.
- ② Los materiales del dique son obtenidos del lecho del río de la zona. Por lo general son de arena/ grava ~ suelo arenoso con grava, de reducida plasticidad. En cuanto a la resistencia de los materiales, no se puede esperar un alto grado de cohesividad.
- 3 La cuenca del Río Cañete está constituido por suelo gravoso con pedrecillas de tamaño variado, relativamente bien compactado.
- ④ El tramo inferior de la presa Sullana del Río Chira está constituido por suelo arenoso con limo. Los diques han sido diseñados con estructura tipo "zonal" donde se colocan los materiales relativamente poco permeables entre el dique y el río, y los materiales altamente permeables detrás del dique. Sin embargo, en realidad dada la dificultad de obtener los materiales poco permeables, se escuchó que no se está haciendo una rigurosa clasificación granulométrica de materiales al momento de la ejecución de las obras.
- ⑤ Al investigar los tramos afectados, no se han encontrado diferencias significativas en los materiales del dique o en el suelo entre los tramos rotos y no rotos del dique. Por lo tanto, la principal causa de la destrucción ha sido el desbordamiento del agua.
- ⑥ Existen espigones en los ríos Chira y Cañete, y muchos de ellos están destruidos. Estos están constituidos por grandes piedras, con relleno de arena y tierra en algunos casos, por lo que la destrucción puede haber sido provocado por la pérdida del material de relleno.
- Texisten obras de protección de márgenes ejecutadas con grandes piedras en la desembocadura del Río Pisco. Esta estructura es sumamente resistente según la información del administrador. Los materiales han sido obtenidos de canteras que están a 10 km aproximadamente del sitio.

Por lo anterior, se propone que el dique tenga la siguiente estructura.

- ① Los diques serán conformados con los materiales disponibles localmente (lecho o márgenes del río). En este caso, el material sería suelo de arena y grava o suelo arenoso con grava, de alta permeabilidad.
- ② La pendiente de talud del dique será de entre 30° ~ 35° (ángulo de fricción interna) si se va a trabajar con suelo arenoso poco cohesivo. La pendiente estable de talud de un terraplén ejecutado con materiales no cohesivos se determina como: $\tan\theta = \tan\phi/n$ (Donde " θ " es pendiente de talud; " ϕ " es ángulo de fricción interna y "n" es factor de seguridad 1,5).
 - La pendiente estable necesaria para un ángulo de fricción interna de 30° se determina como: V:H=1:2.6 (tan θ =0.385).
 - Tomando en cuenta este valor teórico, se adoptó una pendiente de talud de 1:3,0 que es menos inclinado que los diques existentes, considerando los resultados del análisis de descarga, el tiempo prolongado del caudal de crecidas de diseño (más de 24 horas), el hecho de que muchos de los diques con pendiente de 1:2 han sido destruidos, y la resistencia relativa en caso de desbordamiento por crecidas anormales.
- ③ El talud del dique por el lado del río deberá ser protegida, porque debe soportar un flujo de agua veloz debido a la pendiente relativamente acentuada del lecho. Esta protección será ejecutada utilizando bolones o piedras grandes que son fáciles de conseguir localmente, dado que es difícil conseguir bloques de hormigón continuos.
 - El tamaño del material se determinó entre 30cm y 1m de diámetro, con un espesor mínimo de protección de 1m, aunque estos valores serán determinados en base en la velocidad de flujo de cada río.

iii) Libre bordo del dique

El dique es conformado con materiales de tierra, y como tal, por lo general es una estructura sumamente débil ante desbordamiento. Por lo tanto, se requiere prevenir que el agua se desborde, a una crecida menor a la crecida de diseño, siendo necesario mantener un determinado libre bordo ante un eventual aumento de nivel de agua por las olas producidas por el viento durante las crecidas, oleaje, salto hidráulico, etc. Asimismo, es necesario que los diques tengan suficiente altura para garantizar la seguridad de las actividades de vigilancia y control de inundaciones, eliminación de troncos y otros materiales arrastrados, etc.

En la Tabla 4.3.1-5 se muestran las pautas aplicadas en Japón en relación con el libre bordo. Si bien es cierto que en el Perú no existe una norma sobre el libre bordo, se ha decidido aplicar las mismas normas aplicadas en Japón considerando que los ríos de ambos países se asemejan.

Tabla-4.3.1-5	Caudal	de	crecidas	de (diseño	y	libre	bord	0
---------------	--------	----	----------	------	--------	---	-------	------	---

Caudal de crecidas de diseño	Altura a agregar al nivel de crecidas de diseño
Menos de 200 m ³ /s	0,6m
Más de $200 \text{ m}^3/\text{s}$, menos de $500 \text{ m}^3/\text{s}$	0,8m
Más de $500 \text{ m}^3/\text{s}$, menos de $2,000 \text{ m}^3/\text{s}$	1,0 m
Más de $2,000 \text{ m}^3/\text{s}$, menos de $5,000 \text{ m}^3/\text{s}$	1,2 m
Más de $5,000 \text{ m}^3/\text{s}$, menos de $10,000 \text{ m}^3/\text{s}$	1,5 m
Más de $10,000 \text{ m}^3/\text{s}$	2,0 m

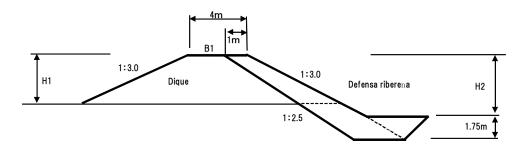


Figura 4.3.1-3 Sección normal del dique

2) Principales pautas de la planificación y diseño de las obras prioritarias de control de inundaciones

En la Tabla 4.3.1-6 se presentan las principales pautas de planificación y diseño de las obras prioritarias de control de inundaciones.

Tabla 4.3.1-6 Planificación y diseño de las obras prioritarias de control de inundaciones

	Tabla 4.3.1-6 Planificación y diseño de las obras prioritarias de control de inundaciones						
Ríos		Puntos críticos		Problemas	Elementos a proteger	Medidas propuestas	Descripción del plan y diseño de cada obra
	1	0.0k-4.0k	Protección de margenes	Tramo donde el dique fue erosionado por las inundaciones de 1998.	Cultivos Depósito del Gas Natural		El Rio Chira se caracteriza por la faita de la capacidad hidráulica, produciéndose desbordamiento en todos los tramos. El flujo de agua ilega a inundar las lieras bajas y lienas a lo largo del rio. Sin embargo, en el caso del Rio Chira, la presencia de la Presa Poechos puede contribuir a solucionar los problemes en caso de ocurrir inundaciones del orden mediano y equeuno. Sin embargo, en el caso del ocurrir crecidas de magnitud que supera la capacidad de la presa, es probable que se produzcan grandes daños. Por lo banto, para controlar las inundaciones en este rio, es importante ir construyendo los diques empezando desde la cuenca alla, a la par de localizar las obras estratégiciamente bimando en cuenca las condiciones de las terras alectadas por grandes daños. Este tramo liene diques construidos pero las margenes no están protegidas. Las inundaciones de 1998 han causado erosión de del diques. Por lo hanto, en el caso de que las crecidas dureu na tiempo protongado causando erosión y destrucción del dique, se producirán grandes daños a las intraestructuras cercanas (depósito de gas, terras de cullito, etc.). Este tramo fene espignoses en lugar de obras de protección de margenes. Si bien es cierto que los espigones pueden feran el oleaje, se consideró necesario ejecutar las obras de protección de margenes considerando la existencia de infraestructuras importantes (depósito de gas natural, etc.) que deben ser protegidos. Tramo donde el dique eversionado puede colopsar en caso de ocurrir grandes inundaciones. Tramo donde el dique eversionado puede colopsar en caso de ocurrir grandes inundaciones.
Rio Chira	2	11.75k- 12.75k		Tramo donde la erosión de las márgenes durante las hundaciones puede provocar la destrucción del camino regional.	Carretera	Protección de márgenes	Este tamo traza una gran curva, causando fuerte erosión en la margen derecha, dando lugar a la actual sección de curso del río. De no tomarse alguna medida adecuada, es mu probable que se destruya el camino rural ubicado en la margen derecha. Se considera importante ejecutar las obras de protección de márgenes manteniendo en lo posible la sección actual del curso del río para mantener el efech almacenador del lecho actual y al mismo tempo, proteger el camino (ya que su destrucción tendrá un impacto fuerte a la economía regional). Tramo donde la erosión de las márgenes durante las inundaciones puede provocar la destrucción del camino regional. Tramo en el que debe realizar simultáneamente las obras de control de erosión de márgenes y de conservación del funcionamiento del camino regional.
	3	24.5k-27.0k	Protección de márgenes	Tramo donde el dique fue erosionado por las inundaciones de 1998.	Cultivos		Es un tramo cuya margen derecha fue fuertemente alectada por los daños de las inundaciones del pasado. Actualmente flene un dique provisional (que sirve también de camino). Se considera importante utilizar efectivamente esta obra disponible. El dique provisional existente ha sido construido con suficiente anchura, y como lat liene un efecto retardador de inundaciones, y de reducir el niele de agua el termo superior. Para controlar mejor las inundaciones del Rio Chira, es importante crear varios tramos como éste que sirvan de reservorio natural, para reducir el niele de agua en todo el río. El dique existente en este tramo es provisional y no fiene la altura suficiente como para maximizar el edecto retardado de la crecida. Por lo tento, se propone incrementra la atura del dique actual a manera de maximizar el efecto retardador de la crecida. Por lo tento, se propone incrementra la atura del dique actual a manera de maximizar el efecto retardador. Tramo donde el dique fue erosionado por las inundaciones de 1998. Tramo en el que debe reducir el nivel de agua incrementando el efecto de retardación utilizando el dique provisional existente.
	4	64.0k-68.0k		Tramo donde se acumularon sedimentos en la margen derecha de la bocatoma, y las crecidas se concentran en la presa móvil de la margen Izquierda	Cultivos	Descolmatación de cauce	La bocatoma Sullana fene acumulados los sedimentos en la parte fija de la margen derecha, la cual está siendo cubierta por vegetación. Como consecuencia, se produce la erosión de la margen tzquierda. De no tomarse una medida adecuada, la vegetación de la margen derecha aumentará su densidad agravando aún más su impacto hacia la margen tzquierda. Tomando en cuenta la importancia de la bocatoma y para mantener la seguridad de la margen tzquierda, se considera necesario eliminar la vegetación y fos sedimentos acumulados de la presa fija de la margen derecha para estabilizar el regimen hidrico durante la crecida. Esta medida también es importante para el mantenimiento de las estructuras existentes. Tramo donde se acumularon sedimentos en la margen derecha de la bocatoma, y están cubiertos de vegetación densa. Tramo en el que las crecidas se concentra en la presa móvil de la margen tzquierda, provocando erosión de la margen.
	6 (excluida del presente Proyecto)	Alrededor de km99,0- km99,5 (total)	Terrapién de la presa	Erosión de la presa por la descarga de agua a falta del disipador de energía	Terrapién de la presa, margen izquierda, tierras de cultivo	Protección de má rgenes , descolmatación	La corriente de descarga de la presa en la margen izquierda inmediatamente debajo de la presa está afectando negalvamente al terraplén de la presa por falta de un disipador de energia o canal de aducción. El caudal descargado de la presa en el passado se desbordo en el tramo inferior inundando las terras de culho y causando grandes pérdidas. Por lo tanto, es necesario construir una obra de protección de márgenes en la arenisca inmediatamente bajo de la presa, o un canal verbedor que haga flur adecuadamente le claudal descargado de la presa hacia el tramo inferior. La presa y la conducción adecuada del caudal de descarga de la presa es un problema sumamente importante para esta zono. Tramo erosionado en el extremo aguas abajo del terraplen de la presa por el caudal de descarga, a talta del dispador de energia. Tramo que requiere de una obra que haga flur adecuadamente aguas abajo el caudal de descarga de la presa. Se descarte este componente del presente Proyecto dado que un similar proyecto está siendo implementado actualmente por el gobierno regional de Plura.

4.3.2 Medidas no estructurales

4.3.2.1 Reforestación y recuperación vegetal

(1) Políticas básicas

El Plan de Reforestación y Recuperación Vegetal que satisfaga el objetivo del presente Proyecto puede clasificarse en: i) la reforestación a lo largo de las obras fluviales; y ii) la reforestación en la cuenca alta. La primera contribuye directamente al control de inundaciones y manifiesta su efecto en corto tiempo. La segunda requiere de una enorme inversión y un tiempo prolongado, tal como se detallará en el apartado posterior 4.12 "Plan de mediano y largo plazo", 4.12.2 "Plan de Reforestación y Recuperación Vegetal", lo que hace que sea poco viable implementar en el marco del presente Proyecto. Por lo tanto, aquí se enfoca el análisis solo en la opción i).

(2) Plan de reforestación a lo largo de las estructuras fluviales

Esta propuesta consiste en plantar los árboles a lo largo de las estructuras fluviales, tales como obras de protección de márgenes, diques, etc.

- (i) Objetivo: Reducir el impacto del desbordamiento del río cuando ocurre una crecida inesperada o por el estrechamiento del río por la presencia de obstáculos, mediante franjas de vegetación entre el río y los elementos a ser protegidos.
- (ii) Metodología: Crear franjas vegetales de un determinado ancho entre las estructuras fluviales y el río.
- (iii) Ejecución de obras: Plantar vegetación en una parte de las estructuras fluviales (diques, etc.)
- (iv) Mantenimiento después de la reforestación: El mantenimiento será asumido por las comisiones de regantes a su iniciativa propia.

Figura 4.3.2.1-1 Diagrama Conceptual Forestación en las estructuras ribereñas (Tipo A) (Fuente: Equipo de Estudio de JICA)

(3) Metrado para el plan de forestación

1) Estructura (ubicación de la forestación)

En el Perú la ubicación de la forestación más comunes es la de triángulos equiláteros, en el presente proyecto también utiliza este modelo plantando los árboles en un intervalo de 3 metros En caso que se realice este método, se espera que los árboles lleguen a tener la función de detener o amortiguar hasta piedras de 1m de diámetro, por lo que se cuadruplicará las filas aumentando la efectividad. Sin embargo el objetivo principal es evitar las inundaciones que sobrepase el límite, en caso que la inundación choque directamente con los plantones sembrados, se podría esperar buenos resultados.

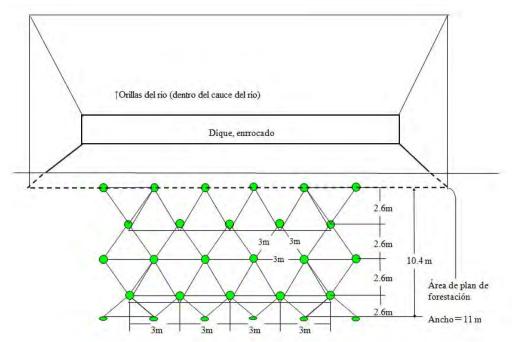


Figura 4.3.2.1-2 Ubicación del diseño del plan de forestación en la estructura ribereña (Fuente: Equipo de Estudio de JICA)

2) Especies a forestar

Se seleccionaron las especies a plantar a lo largo de los ríos aplicando los siguientes criterios y sometiendo a una evaluación integral.

- 1 Que sean especies arbóreas que por sus propiedades puedan crecer a lo largo del río (preferentemente especies autóctonas de la zona);
- 2 que sean especies cuyos plantones puedan producirse en almácigos;
- 3 que sean especies de madera o frutas útiles;
- 4 que sean especies demandadas por la comunidad loca
- 5 que sean especies nativas (preferentemente pero no indispensable)

Después de realizar el reconocimiento en campo, se elaboró, primero, una lista de las especies plantadas o autóctonas de cada zona, y luego una lista de las especies cuyos plantones puedan producirse en almácigos, según las entrevistas a los productores de plantones.

Se dio prioridad a la aptitud a las condiciones locales y a los antecedentes de producción de plantones, dejando al segundo plano su utilidad y demanda o si son especies nativas o no. En la Tabla 4.3.2.1-1 se muestran los criterios de evaluación.

Tabla 4.3.2.1-1 Criterios de evaluación para la elección de las especies forestales

		Criterios para la evaluación						
		1. Adaptación a la zona	2.Experiencia de producción de plantones	3. Uso	4. necesidad de los pobladores	5.Especie local		
ión	A	Verificación in situ (crecimiento natural o reforestada)	Mayor producción	Posibilidad de uso como madera y obtención de los frutos	Necesidad por el comité de Usuarios de agua, entre otros	Especie local		
de evaluación	В	No se ha verificado el crecimiento in situ, sin embargo se adapta en la zona	Producción esporádica	Posibilidad de uso como madera u obtención de los frutos	NO hay necesidad por el Comité de Usuarios de agua	No es especie local		
Puntos	С	Ninguna de las anteriores	Posible la reproducción pero no es usual	No tiene uso como madera ni fruto	_	_		
	D	Desconocido	No se producen	Desconocido	_	_		

(Fuente: Equipo de Estudio de JICA)

Los resultados de la evaluación para la selección de las especies forestales se muestran en la tabla 4.3.2.1-2. El símbolo © marca las principales especies, o son las especies que se plantarían con una proporción de 30% a 50%. Esta proporción es para evitar daños irreversibles como es el caso de las plagas lo cuales pueden aniquilar todos los árboles.

Tabla 4.3.2.1-2 Elección de las especies forestales

Cuenca de Chira: Algarrobo (\bigcirc), Támarix (\circ), Casuarina (\circ)

(Fuente: Equipo de Estudio de JICA)

En la cuenca de río Chira la especie representativa es el Algarrobo y además tiene mayor experiencia de forestación. El Algarrobo es una especie nativa de la costa norte del Perú, por haber en la localidad los pobladores se encuentran familiarizados con el mismo. Támarix tiene casi las mismas cualidades que el Algarrobo y el fruto es comestible. La Casuarina requiere de poca agua y soporta aguas salinas, por lo tanto se foresta en zonas cercanas al mar.

3) Metrado del Plan de forestación

En los sitios de obras de protección de márgenes, diques y embalses de arena que serán construidos a lo largo de los ríos, se proyecta reforestar adoptando la disposición descrita en el literal apartado (a). El bosque tendrá 11 metros de ancho, y dentro del embalse de arena, se plantarán los árboles a excepción de la ruta normal de agua.

El volumen de Reforestación y Recuperación vegetal según cuencas se muestra en la Tabla 4.3.2.1-3.

Tabla 4.3.2.1-3 Metrado para el plan de forestación y recuperación de cobertura vegetal (A lo largo del río)

N°	Ubic	Largo	Ancho	Área	Cantidad	Distr	Distribución según especies (unidades)			
IN	(margen)	(m)	(m)	(ha)	(unid)	Algarrobo	Algarrobo	Algarrobo	Algarrobo	
Chira-1	Izquierdo	4.000	11	4,4	13.024	2.605	1.302	9.117	13.024	
Chira-2	Derecho	1.000	11	1,1	3.256	1.628	977	651	3.256	
Chira-3	Derecho	2.500	1	0,3	888	444	266	178	888	
Chira-4	ambos lados			0,0	0	1	_	_	_	
Cuenca Chira Total		7.000		5,8	17.168	4.677	2.545	9.946	17.168	

4) Lugares sujetos al Plan de Reforestación y Recuperación Vegetal

En los lugares sujetos al Plan de Reforestación/Recuperación Vegetal a lo largo de las obras fluviales, la disposición de las estructuras es similar en todos los sitios. Para su disposición, véase el apartado 4.3.1.3(2).

5) Costos de ejecución del Plan de Reforestación y Recuperación Vegetal

Los costos de ejecución de obras para el Plan de Reforestación y Recuperación Vegetal fueron estimados de la siguiente manera:

- Costo unitario de los plantones (precio unitario de plantón + transporte)
- Costo de mano de obra

Los proveedores de plantones pueden ser i) AGRORURAL o ii) proveedores privados. Para la reforestación a lo largo de los ríos se comprarán a los proveedores privados.

Para la estimación del costo unitario de mano de obra, se propone aplicar el costo unitario de mano de obra común para la reforestación de las riberas.

(i) Costo unitario de los plantones

El costo unitario de los plantones se definió como se indica en la Tabla 4.3.2.1-4, con base en la

información obtenida a través de las entrevistas a los proveedores privados. Dado que los precios de los plantones y el costo de transporte varía dependiendo de las empresas, se aplicó el promedio.

Tabla 4.3.2.1-4 Costo unitario de las plantas

(ii) Costo de mano de obra

El rendimiento del trabajo de reforestación se determinó en 40 árboles / persona día, según la información recogida a través de las entrevistas a AGRORURAL y a las comisiones de regantes. En la reforestación de riberas, el costo unitario de mano de obra será de 33,6 soles / hombre-día, en la cuenca alta se determinó en 16,8 soles / hombre – día, que corresponde a la mitad de la primera.

(iii) Costo de ejecución de reforestación

En la Tabla 4.3.2.1-5 se muestra el costo directo de ejecución de obras necesarias para el Plan de Reforestación y Recuperación Vegetal en las riberas.

Tabla 4.3.2.1-5 Costo de ejecución de reforestación

6) Calendario de trabajo

Dado que los bosques ribereños forman parte de las estructuras fluviales, su reforestación estará sujeta al mismo plan de ejecución de obras. Lo ideal es iniciar la plantación inmediatamente antes o al inicio de la época de lluvias, y terminar un mes antes de esta época para favorecer la supervivencia de las plantas. Sin embargo dado que casi no llueve en la zona ribereña, en este caso no existe gran diferencia entre la época de lluvias y seca. Por lo tanto, si bien es cierto que convendría realizar el trasplante en las fechas cuando suben el nivel de agua del río, tampoco habría problema aunque se realizara este trabajo cuando el nivel de agua esté bajo, si por razones del calendario de ejecución de las estructuras fluviales así lo requiera. Solo se requerirá regar durante tres meses después del trasplante utilizando un sistema sencillo de riego por gravedad (con mangueras), hasta que suba el nivel de agua del río.

4.3.2.2 Plan de Control de Sedimentos

(1) Importancia del Plan de Control de Sedimentos

A continuación se presentan los problemas de control de inundaciones en las cuencas seleccionadas. Algunos de ellos se relacionan con el control de sedimentos. En el presente Proyecto se está elaborando un plan de control de inundaciones integral que cubre tanto la cuenca alta como la cuenca baja. El estudio para la elaboración del Plan de Control de Sedimentos abarcó la totalidad de la cuenca.

- Las crecidas provocan el desbordamiento e inundaciones.
- Los ríos tienen una pendiente acentuada de entre 1/30 y 1/300. La velocidad de flujo es alta, así también la capacidad de transporte de sedimentos.
- La acumulación de gran cantidad de sedimentos arrastrados y la consecuente elevación del lecho agravan más los daños de inundaciones.
- Hay una gran cantidad de sedimentos acumulados sobre el lecho formando doble banco de arena. La ruta de agua y el sitio de mayor impacto de las aguas son inestables, provocando alteración de rutas y consecuentemente, también del sitio de mayor impacto de las aguas.
- Las riberas son muy erodibles, provocando la reducción de las tierras agrícolas adyacentes, destrucción de los caminos regionales, etc., por lo que deben ser debidamente protegidas.
- Las grandes piedras y rocas causan daños o destrucción de las bocatomas.

(2) Plan de Control de Sedimentos (medidas estructurales)

Se analizó el plan de control de sedimentos apropiado para el patrón actual de movimiento de los sedimentos. En la Tabla 4.3.2.2-1 se plantean los lineamientos básicos.

Iddit	4.5.2.2 1 Emeanmentos basicos del 1	ian de Control de Sedimentos
Condiciones	Año ordinario	Precipitaciones de período de
		retorno de 50 años
Arrastre de	Erosión de márgenes y variación del	Erosión de márgenes y variación del
sedimentos	lecho	lecho
		Flujo de sedimentos desde las
		quebradas
Medidas	Control de erosión→Protección	Control de erosión→ protección de
	márgenes	márgenes
	Control de variación de lecho→	Control de variación de
	compactación de piso, bandas	lecho→compactación de piso,
	(compactación de piso en el cono	bandas
	aluvial, bandas)	(compactación de piso en el cono
		aluvial, bandas)
		Flujo de sedimentos→ protección de
		ladera, presas de control de
		sedimentos

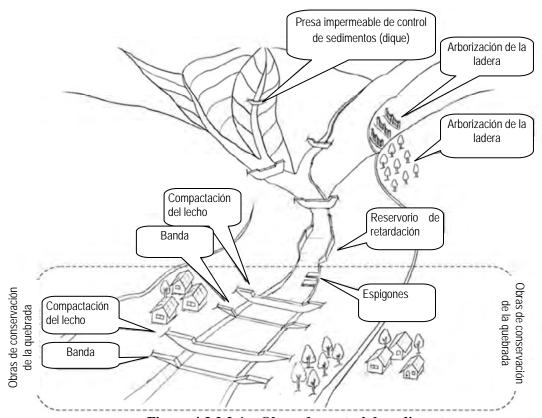


Figura 4.3.2.2-1 Obras de control de sedimentos

1) Plan de control de sedimentos en la cuenca alta

En la sección posterior 4.12 "Plan de mediano y largo plazo" 4.12.3 "Plan de control de sedimentos" se detalla sobre el plan de control de sedimentos que cubre toda la cuenca alta. Este plan requerirá de un tiempo sumamente largo y un enorme costo, lo que hace que sea poco viable su implementación. Por lo tanto, deberá ser ejecutado de manera progresiva en mediano y largo plazo.

2) Plan de control de sedimentos en la cuenca baja

Se observó que en el caso de construir las presas de control de sedimentos que cubre toda la cuenca, se requerirá invertir un enorme costo. Por lo tanto, se realizó el mismo cálculo reduciendo el alcance solo a la cuenca baja del río. En este proceso, se tomaron en cuenta los resultados del análisis de variación de lecho, también incluido en el presente Estudio.

A continuación se presentan los resultados del análisis de variación del lecho aguas abajo de la Presa Poechos en el Río Chira.

Volumen total de sedimentos arrastrados (en miles de m³) 5.000

Promedio anual de sedimentos arrastrados (en miles de m³) 100

Volumen total de variación de lecho (en miles de m³) - 1.648

Promedio anual de variación de la altura del lecho (m) - 0,01

Dado que la mayor parte de los sedimentos arrastrados de la cuenca más alta que la Presa Poechos será retenido, no afectando el lecho de la cuenca baja. Así, se concluye que no es necesario tomar medidas especiales para controlar los sedimentos.

4.3.2.3 Sistema de alerta temprana

(1) Objetivos

Los objetivos del estudio sobre el sistema de alerta temprana son los siguientes.

- Estaciones de precipitación, estaciones de caudal, sistema de transmisión de datos, centro de alerta temprana, sistema de comunicación a la comunidad;
- pronóstico de la ocurrencia de inundaciones, caudal, forma de onda de las inundaciones, tiempo de arribo, etc. a tiempo real con base en el monitoreo y registro de precipitaciones y caudal;
- · conocer los fenómenos hidrológicos de la cuenca en términos del lugar y tiempo
- · emisión de pronósticos y alerta temprana de los riesgos de inundaciones a la comunidad local;
- formación de grupos para la evacuación de la comunidad y de prevención de los daños de inundaciones.
- entrenamiento y desarrollo de capacidades al personal del centro de alerta temprana, en las medidas y respuestas ante inundaciones.
- · capacitación y educación de la comunidad en el tema de la prevención de desastres.

(2) Estaciones de monitoreo de lluvias y de caudal

Actualmente existe en la cuenca Chira – Piura varias estaciones de observación del Proyecto Especial Chira – Piura y de SENAMI, las cuales presentan condiciones adecuadas de operación y que podrían ser utilizadas en el sistema de alerta temprana. Todas las estaciones de la cuenca del Río Chira están siendo operadas desde 1972 o inclusive antes. Las siete estaciones de monitoreo del caudal y ocho estaciones meteorológicas que integrarán el sistema de alerta temprana se presentan en la Tabla 4.3.2.3-1 y Tabla 4.3.2.3-2, respectivamente. Asimismo en la Figura 4.3.2.3-1 se presenta su ubicación.

Estas estaciones han sido construidas después de 1963 y después de 1972. El trabajo de monitoreo es realizado por el personal capacitado y experimentado, por lo que la calidad de los datos proporcionados es buena, precisa, y por lo tanto confiable. Toda la información, incluyendo los datos de hace más de 30 años, ha sido digitalizada.

Tabla 4.3.2.3-1 Estaciones de monitoreo del caudal del sistema de alerta temprana

N°	ESTACION	DDO.	DICT	DICT CLID CLIENCAS		Coordenadas UTM		CATEGORIA	INSTITUCION
N	ESTACION	PROV	DIST	SUB CUENCAS	N	E	ALTITUD	CATEGORIA	QUE OPERA
1	El Ciruelo	Ayabaca	Suyo	Chira	9524654	594327	202	Hg	PECHP
2	Ardilla	Sullana	Sullana	Chira	9503270	567048	106	Hg	PECHP
3	Pte.Internac.	Ayabaca	Suyo	Macará	9515414	616512	408	Hg	PECHP
4	Paraje Grande	Ayabaca	Paimas	Quiroz	9488151	620548	555	Hg	PECHP
5	Sapillica	Ayabaca	Sapillica	Chipillico	9471196	612750	1446	Hg	SENAMHI
6	Alamor	Sullana	Lancones	Chira	9505457	566997	125	Hg	PECHP
7	El Arenal	Paita	El Arenal	Chira	9459524	529062	62	Hg	PECHP

Tabla4.3.2.3-2 Estaciones meteorológicas del sistema de alerta temprana

N°	FETACION	PROV	DICT	SUB CUENCAS	Coordenadas UTM				CATECORIA	INSTITUCION
IN	ESTACION	PROV	DIST	SUB CUENCAS	N	Е	ALIIIUD	CATEGORIA	QUE OPERA	
1	Ayabaca	Ayabaca	Ayabaca	Quiroz	9487823	642699	2700	MAO	SENAMHI	
2	Chilaco	Sullana	Sullana	Chira	9480963	554900	90	MAO	PECHP	
3	El Ciruelo	Ayabaca	Suyo	Chira	9524654	594327	202	PV-PG	PECHP	
4	Pte.Internac.	Ayabaca	Suyo	Macará	9515414	616512	408	PV-PG	PECHP	
5	Paraje Grande	Ayabaca	Paimas	Quiroz	9488151	620548	555	PV	PECHP	
6	Sapillica	Ayabaca	Sapillica	Chipillico	9471196	612750	1446	PV	SENAMHI	
7	El Partidor	Piura	Las Lomas	Chipillico	9477296	580134	255	СО	SENAMHI	
8	Alamor	Sullana	Lancones	Chira	9505457	566997	125	PV	SENAMHI	

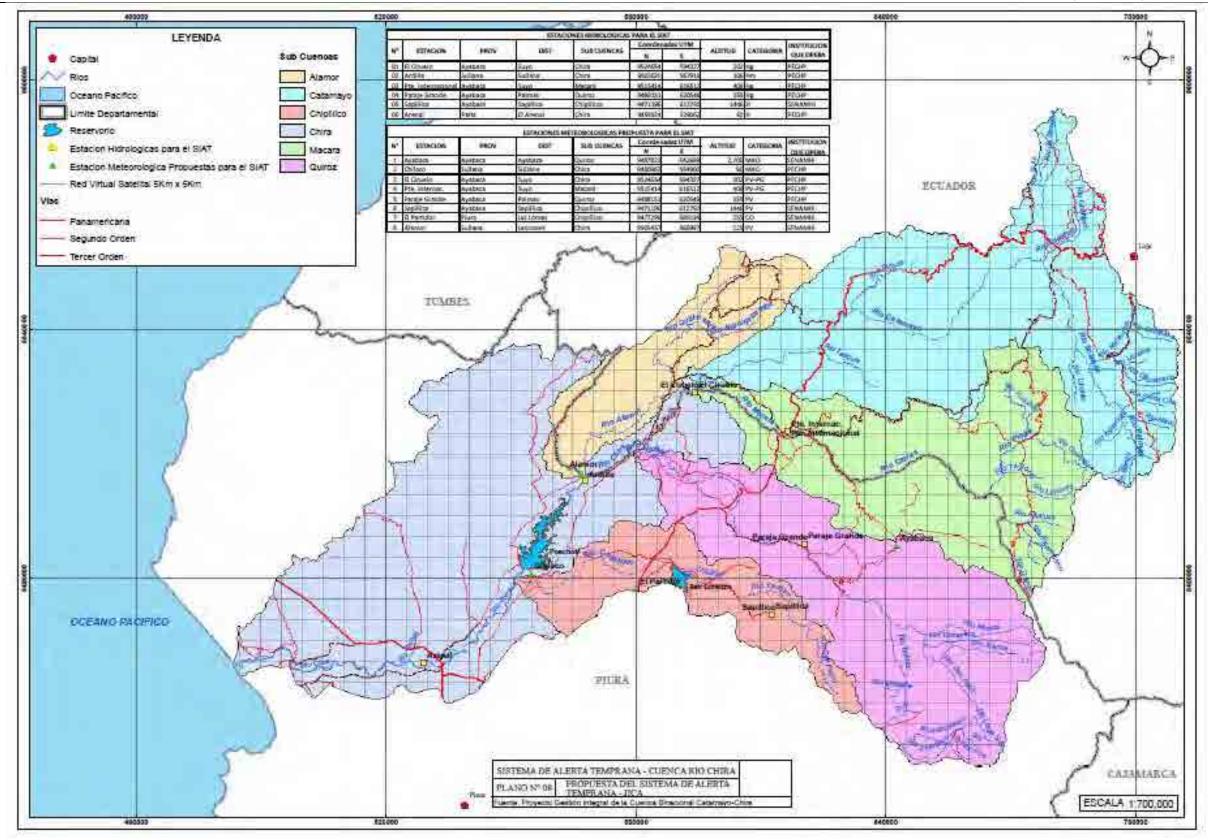


Figura 4.3.2.3-1 Ubicación del sistema de alerta temprana

(3) Renovación de los equipos de monitoreo

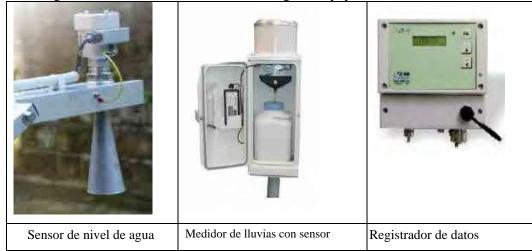
1) Condiciones actuales y justificación de renovar

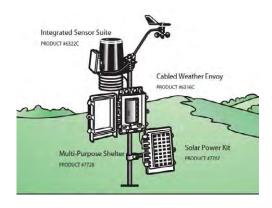
Los equipos de las siete estaciones de observación de caudal y ocho estaciones meteorológicas que integran el sistema de alerta temprana del Río Chira están operativos. Sin embargo, son equipos obsoletos, y puede presentar problemas de capacidad o funcionamiento (mantenimiento) en cualquier momento. Se recomienda renovar estos equipos aprovechando esta oportunidad en que se va a instalar un nuevo sistema de alerta temprana, para normalizar los equipos integrantes y reforzar su capacidad.

2) Tipos de los equipos a renovar

i) Estaciones de monitoreo de caudal

Se propone renovar los equipos de las siete estaciones de monitoreo de caudal, que incluyen los siguientes.


- · Sensores de datos meteorológicos
- · Sensores de nivel de agua
- · Sistema de almacenamiento digital para la transmisión de información digital
- Sistema de comunicación satelital
- Panel fotovoltaico para el almacenamiento de energía
- Pararrayos
- · Obras de instalación y cercos de protección


ii) Estaciones meteorológicas

Se propone renovar los siguientes equipos para las ocho estaciones meteorológicas.

- · Equipos automáticos de monitoreo meteorológico
- Registrador de datos

En la Figura 4.3.2.3-2 se muestran las fotos de algunos equipos.

Equipo de monitoreo meteorológico

Figura 4.3.2.3-2 Algunos ejemplos de equipos de monitoreo

(4) Sistema de transmisión de datos

El sistema de alerta temprana debe ser operado a tiempo real. Así, para la transmisión de los datos a tiempo real se seguirán los siguientes procedimientos.

- 1) Registrar los datos recogidos en las estaciones automáticas.
- Transmitir los datos registrados y recopilados a la estación base mediante transmisión satelital o telefónica.
- 3) Transmitir los datos procesados en la estación base a los ministerios e instituciones relevantes a través del sistema de comunicación de alerta temprana.

(5) Creación del centro de alerta temprana

Se propone crear un centro de alerta temprana como la estación base, donde se recibirán todos los datos recogidos en campo y se realizarán el monitoreo de las precipitaciones y del caudal para pronosticar el caudal de inundaciones, emitiendo la alerta a las instituciones relevantes cuando sea necesario. El Centro de alerta temprana deberá ubicarse en un punto estratégico en función de las estaciones de monitoreo, por ejemplo dentro del Área del Proyecto Especial Chira – Piura, en el sitio de la Presa Poechos, o en la oficina de administración de la presa de Sullana.

El sistema de alerta temprana de la cuenca del Río Piura está siendo operado y mantenido sin ningún problema. Los ríos Chira y Piura están cerca, y se ubican en la misma región de Piura. Por lo tanto, se considera pertinente, desde el punto de vista de la organización y capacidad, integrar el sistema de alerta temprana del Río Chira con el del Río Piura para que el Proyecto Especial Chira-Piura del Gobierno Regional asuma la gestión y operación de ambos sistemas.

La estación base estará equipado de receptores de datos, decodificadores, PC, tablero de información, y otros equipos que sean necesarios.

En la Figura 4.3.2.3-3 se esquematiza el sistema de alerta temprana.

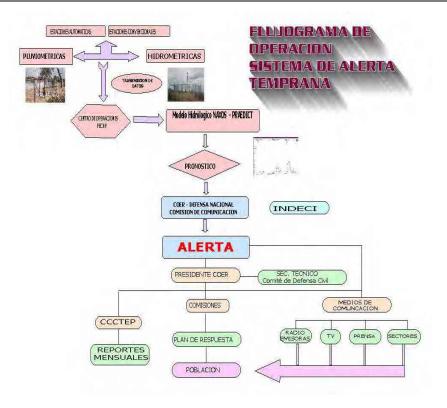


Figura 4.3.2.3-3 Sistema de alerta temprana

(6) Dotación del software para el pronóstico de inundaciones

Se propone dotarse del software para pronosticar el caudal máximo y la forma de olas de las inundaciones a partir de los datos de precipitaciones y de caudal en la cuenca (por ejemplo, NAXOS), actualizándolo oportunamente.

(7) Construcción del sistema de transmisión de la alerta a la comunidad

Se propone dotarse del sistema y de los equipos de transmisión de la alerta a los gobiernos locales, sistema de prevención de desastres privado, y a la comunidad local, paralelamente con la implementación del presente Proyecto.

(8) Entrenamiento y desarrollo de capacidades del personal del centro de alerta temprana

(9) Educación en prevención de desastres y entrenamiento práctico de la comunidad local y del personal de los gobiernos locales

(10) Costos

En la Tabla 4.3.2.3-3 se muestra el costo necesario para la construcción del sistema de alerta temprana, el cual se estima en US\$ 550.000.

Tabla 4.3.2.3-3 Costo del sistema de alarma

Item	Descripcion	Unidad	Cantidad	PU	Costo Parcial	Subtotal USD
1	Equipamiento Equipo hidrometeorológico					
1.1	Equipamiento					
	E. Hidrometrico	Unidad	7.00	10,000.00	70,000.00	
	E. Meteorologico (Nuevo y repotenciacion)	Unidad	15.00	8,000.00	120,000.00	
1.2	Instalación					
	E Hidrometrico	Unidad	7.00	13,000.00	91,000.00	
	E Meteorologico (repotenciacion)	Unidad	8.00	3,000.00	24,000.00	
2	Sistema de Transmisión de datos					
	Equipo de transmisión H/M	Unidad	7.00	7,000.00	49,000.00	
3	Estación base					
3.1	Equipamiento	Global	1.00	50,000.00	50,000.00	
3.2	Local (Pry. Chira-Piura)					
4	Modelo Hidrológico					
4.1	Adaptación del sistema (Implementación)		1.00	20,000.00	20,000.00	
4.2	Software		1.00	30,000.00	30,000.00	
4.3	As es or e Investigación	mes	3.00	15,000.00	45,000.00	499,000.00
5	Gestión Institucional					
5.1	Capacitación civil	Global			2,500.00	
5.2	Capacitación operación Poechos	Global			2,500.00	5,000.00
5.3	Mantenimiento (costo anual)					
5.4	Estación hidrometeorológica	mes	2.00	1,000.00	2,000.00	
5.5	Estación Base	mes	2.00	1,000.00	2,000.00	
5.6	Conexión satelital (08 estaciones)	mes	72.00	500.00	36,000.00	
5.7	Asistencia técnica (planes de contingencia)	Global			4,000.00	_
5.8	Equipos y herramientas de prevención	Global			2,000.00	46,000.00
	TOTAL us	id .				550,000.00

4.3.3 Asistencia Técnica

En base a las propuestas de medidas para la prevención contra las inundaciones, propone un componente de asistencia técnica para realizar el fortalecimiento de capacidades para la gestión de riesgo por inundaciones en el Programa.

(1) Objetivo del Componente

El objetivo del componente es "Capacidad adecuada de poblaciones locales y técnicos en aplicación de la gestión de riesgo para reducir daños por inundaciones en las cuencas" en el Programa.

(2) Área de Objetivos

El área objetivo de la implementación del presente componente es Chira.

En la etapa de la ejecución hay que coordinar la implementación entre las autoridades de las cinco cuencas. Sin embargo, cada autoridad tiene que ejecutar las actividades en consideración con las características de cada cuenca para realizar la implementación adecuada.

(3) Poblaciones Objetivos

Las poblaciones serán representantes de las asociaciones de regantes y otros grupos comunitarios, los gobiernos provinciales y distritales y de la comunidad local de la cuenca del Río Chira, considerando la limitada capacidad para recibir a los beneficiarios de este componente.

Los participantes son quienes tienen una capacidad para difundir los contenidos de la asistencia

técnica a las poblaciones locales en las cinco cuencas.

Además hay que considerar la participación de mujeres porque pocas mujeres participan en las oportunidades de la asistencia técnica hasta ahora.

(4) Actividades

Para realizar el objetivo de la asistencia técnica, las cuatro actividades propone los siguientes: "Curso de conocimiento para actividades de defensa ribereña", "Curso para prevención y comportamiento post-inundaciones", "Curso para manejo de cuencas (laderas) para medidas contra sedimentación fluvial" y "Curso para red de informaciones de gestión de riesgos ante inundaciones" en este componente.

- 1) Actividad 1 "Curso de conocimiento para actividades de defensa ribereña"
 - · Curso/Taller: Operación y mantenimiento de Obras

El objetivo de esta actividad es capacitar los locales relacionados sobre una adecuada operación y mantenimiento de las obras de protección ribereña que se ejecuten con el Programa de Infraestructura de prevención y protección de valles.

· Curso-Taller: Manejo de plantas ribereñas

(Prevención y mitigación de tipos de erosión)

(Manejo de recursos naturales)

Ejecutar una sensibilización a la población vulnerable para proteger la flora en los ríos. En particular hay que considerar una actividad de ganaderos porque los ganados afectan mucho a la flora como los cebos de ganados.

- 2) Actividad 2 "Curso para prevención y comportamiento post-inundaciones"
 - · Reunión-Taller: Formular el Plan de Gestión de Riesgo

Para realizar gestión de riesgo de inundaciones, los beneficiarios como la Población Local, Junta de Usuarios, Gobiernos Distritales, Provinciales y Regionales tienen que elaborar un plan de gestión de riesgo en consideración de las características locales de cada cuenca.

Curso detallado

(Zonificación Ecológica)

(Gestión de Riesgos)

(Gestión de Recursos)

(Formulación de Proyectos)

(Manejo de estaciones Meteorológicas)

(Manejo de estaciones Hidrológicas)

- 3) Actividad 3 "Curso para manejo de cuencas (laderas) para medidas contra sedimentación fluvial"
 - Técnicas de conservación de valles (laderas)

(Producción de Plantones Forestales)

(Instalación de Plantaciones Forestales)

(Manejo y Conservación de Recursos Forestales)

En vista que el arrastre de los suelos erosionados en las laderas, contribuyen en la colmatación de los cauces de los ríos, se es necesario realizar acciones de capacitación y sensibilización a las poblaciones asentadas en las partes medias y bajas de la cuenca a efectos que ejecuten actividades de conservación de suelos en coordinación con el Programa.

· Difusión de afiches y tríptico

Difundir esta técnica mediante la distribución de afiches (almanaques y otras presentaciones) y trípticos a full color para complementar las actividades de 'Días de campo en ejecución de técnicas de conservación de laderas'.

4) Actividad 4 "Curso para red de informaciones de gestión de riesgos ante inundaciones"

- Curso sobre Gestión de Riesgo y utilidades de alerta temprana
- · Reuniones Taller con Autoridades locales

Esta actividad es para la cuenca de Chira especialmente en el Programa porque se propone la medida de alerta temprana sólo en cuenca de Chira.

No sólo población vulnerable sino también los Gobiernos Locales y Juntas de Usuarios van a participar en la preparación sobre una Gestión de Riesgo de Inundaciones con el sistema de alerta temprana.

(5) Costos y Período

Los costos de las actividades se presentan en la Tabla 4.3.3-1. El monto del costo es S. / 185.275 en total.

El período de las actividades es dos años aproximadamente aunque hay que considerar los procesos de las medidas Estructurales y No-Estructurales para la prevención contra inundaciones en el Programa.

Tabla4.3.3-1 Presupuesto de la Asistencia Técnica

(6) Plan de la Implementación

La Dirección de General de Infraestructura Hidráulica (DGIH-MINAG) ejecuta este componente como la unidad ejecutora en cooperación con Dirección Regional de Agricultura (DRA), las Juntas de Usuarios y las Instituciones relacionadas. Para ejecutar las actividades eficientemente hay que considerar los siguientes:

- Para la implementación del presente componente, la DGIH-MINAG coordinará acción con la Unidad de Gestión Central responsable de cada cuenca, y las direcciones regionales de agricultura (DRA).
- Para la administración y gestión del Proyecto, la DGIH-MINAG coordinará acciones con PSI-MINAG (Programa Subsectorial de Irrigaciones que tiene ricas experiencias en proyectos similares.
- Considerando que existen algunos gobiernos locales que han iniciado la elaboración del plan de gestión de crisis similar a través del respectivo comité de defensa civil, bajo el asesoramiento del Instituto Nacional de Defensa Civil (INDECI) y gobiernos locales, la DGIH-MINAG deberá realizar la coordinación para que estos planes sean congruentes con los planes existentes en cada cuenca.
- Los cursos de capacitación serán gestionados y administrados por las asociaciones de regantes (en particular la unidad de desarrollo de capacidades y comunicación) con la colaboración de los gobiernos locales de cada cuenca, para apoyar el desarrollo oportuno en cada localidad.
- Los instructores y los facilitadores de los cursos serán asumidos por los expertos de las direcciones de atención a desastres de cada gobierno provincial, ANA, AGRORURAL, INDECI, etc. y los consultores (nacionales e internacionales)

4.4 Costos

4.4.1 Estimación de costos (a precios privados)

(1) Componentes de los costos del Proyecto

Los costos del Proyecto incluyen los siguientes componentes:

- ① Costos directos de obras = Suma total de la cantidad de obras según tipos × precio unitario
- ② Obras provisionales comunes = $1 \times 10 \%$
- ③ Costo de construcción 1 = ①+②
- 4 Misceláneos = 3 x 15%
- \bigcirc Beneficios = \bigcirc x 10%
- 6 Costo de construcción -2 = (3+4)+(5)
- \bigcirc Impuestos = $\bigcirc \times 18 \%$ (IGV)
- 8 Costo de construcción = 6+7
- 9 Costo de medidas ambientales = 8 x 1%
- ① Costo de diseño detallado = ② x 5%
- ① Costo de supervisión de obras = ⑧ x 10%
- (12) Costo del Proyecto = (8 + 9 + 10 + 11)

(2) Costos directos de obras

En la Tabla 4.4.1-1 se presenta la tabla de resumen del costo directo de obras de las medidas estructurales para la cuenca del Río Chira. La medida estructural "Chira-5" consiste en la defensa ribereña para proteger los canales de riego. En el estudio en campo más reciente se constató que la ejecución de la obra "Chira-6" implica el cambio de curso del río a lo largo de la obra "Chira-5", confluyendo con el curso actual en el extremo aguas abajo de la obra de defensa ribereña propuesta para "Chira-5". Así se decidió descartar ésta última, por considerar innecesaria. El Chira 6 ha sido excluido del presente Proyecto puesto que un similar proyecto ha sido iniciado por el gobierno regional de Piura.

(3) Costos del Proyecto

El costo del Proyecto se estima en 64,0millones de soles tal como se muestra en la Tabla 4.4.1-2. Aquí se incluyen los costos de reforestación y recuperación vegetal, construcción del sistema de alerta temprana y de asistencia técnica. El costo de operación y mantenimiento anual de las obras terminadas se supone en 0,5 % del costo del Proyecto.

Tabla 4.4.1-1 Tabla de resumen de costo directo de obras (a precios privados)

Tabla 4.4.1-2 Costo de Proyecto (a precios privados)

4.4.2 Estimación de costos (a precios sociales)

(1) Costos directos de obras

En la Tabla 4.4.2-1 se presenta la tabla de resumen del costo directo de obras de las medidas estructurales para la cuenca del Río Chira. El costo directo de obras a precios privados fueron convertidos en precios sociales aplicando el factor de conversión.

(2) Costos del Proyecto

El costo del Proyecto se estima en 51,7 millones de soles tal como se muestra en la Tabla 4.4.2-2. Aquí se incluyen los costos de reforestación y recuperación vegetal, construcción del sistema de alerta temprana y de asistencia técnica, previa conversión desde los precios privados.

Tabla 4.4.2-1 Tabla resumen del costo directo de obras (a precios sociales)

Tabla 4.4.2-2 Costo de Proyecto (a precios sociales)

4.5 Evaluación social

4.5.1 Costos a precios privados

(1) Beneficios

Los beneficios del control de inundaciones vienen a ser la reducción de las pérdidas de inundaciones que se lograría con la implementación del Proyecto y se determina por la diferencia entre los montos de pérdida sin y con el Proyecto. Concretamente, para determinar los beneficios que se lograrían con la construcción de obras, se calcula primero el monto de pérdidas por inundaciones de diferentes períodos de retorno (entre 2 y 50 años), suponiendo que las obras de control de inundaciones tendrán una vida útil de 50 años, y luego se determina el monto medio anual de reducción de pérdidas a partir de los montos de pérdidas de diferentes períodos de retorno. La Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas, 4.1.2p-105) establece similares procedimientos.

A continuación se describen los procedimientos para determinar los beneficios concretos.

- ① Determinar el monto de pérdidas de inundaciones en el área anegable analizando la magnitud de desbordamiento que ocurre sin el Proyecto para cada período de retorno (entre 2 y 50 años).
- 2 Luego, determinar el monto de pérdidas de inundaciones en el área anegable analizando la magnitud de desbordamiento que ocurre al construir las obras prioritarias de control de inundaciones (Chira 1 al 6, sin incluir la obra de Chira-5).
- ③ Determinar la diferencia entre el ① y el ②. A esto se le suman los beneficios de otras obras diferentes a los diques (bocatomas, protección de caminos y presas, etc.) para determinar el total de beneficios.

Se considerarán como "beneficios del Proyecto" a la suma del monto de pérdidas directas provocadas por el desbordamiento y de las pérdidas indirectas provocadas por la destrucción de las estructuras en los tramos vulnerables (pérdida de tierras de cultivo, interrupción del tráfico, etc.).

1) Método de cálculo del monto de pérdidas

En el presente Estudio se determinó el monto de pérdida por daños directos e indirectos para las variables que se indican en la Tabla 4.5.1-1.

Tabla 4.5.1-1 Variables del cálculo del monto de pérdidas de inundaciones

Pérdidas	Variables	Descripción
(1) Directas	① Cultivos	 Cultivos de la época de crecidas. El monto de pérdida de cultivo por las inundaciones se determina multiplicando el % de daños según la profundidad de agua y el número de días inundadas. Tierras agrícolas e infraestructuras agrícolas (canales, etc.) Se determina el monto de pérdida de los cultivos multiplicando el % de daños según la profundidad de agua y el número de días de inundación por el monto de bienes agrícolas afectados por el arrastre de sedimentos.
	② Obras hidráulicas	 Monto de pérdida debido a la destrucción de las estructuras hidráulicas (bocatomas, canales, etc.)
	③ Infraestructuras viales	 Los daños de inundación relacionados con las infraestructuras viales se determina por los daños sufridos en el sector de transporte.
	④ Viviendas	 Edificaciones residenciales e industriales Se calcula aplicando el coeficiente de pérdida según la profundidad de inundación. Viviendas: edificaciones residenciales e industriales Artículos domésticos: muebles, artefactos electrodomésticos, ropa, vehículos, etc. Los daños de inundación sufridos por las viviendas, edificaciones comerciales, activos y existencias se determinan aplicando el coeficiente de pérdida según la profundidad de inundación.
	⑤ Infraestructuras públicas⑥ Servicios públicos	 Determinar el monto de pérdida de los caminos, puentes, alcantarillado, infraestructuras urbanas, centros educativos, iglesias y otros establecimientos públicos. Determinar el monto de pérdida de las obras públicas aplicando al monto de pérdida de activos generales el coeficiente correspondiente Infraestructuras de energía eléctrica, gas, agua potable, ferrocarril,
(2) Indirectas	① Agricultura	 comunicación telefónica, etc. Estimar la pérdida ocasionada por la interrupción de suministro de agua de riego por los daños de las estructuras hidráulicas. Determinar el costo de construcción y reparación de las estructuras hidráulicas como costo de años directos.
	② Interrupción de tránsito	 Estimar la pérdida ocasionada por la interrupción de tránsito debido a los daños de los caminos inundados. Determinar el costo de reparación y construcción de caminos como costo directo de daños.

A. Pérdida directa

La pérdida directa se determina multiplicando el coeficiente de daños según profundidad de inundación al valor de activos.

B. Pérdida indirecta

La pérdida indirecta se determina tomando en cuenta el impacto de las bocatomas y caminos dañados. A continuación se presenta los procedimientos del cálculo.

a. Daños de las presas

El monto de pérdida debido a los daños de la presa se calcula sumando la pérdida directa (rehabilitación y construcción de la presa) más el monto de pérdida indirecta (pérdida de cosecha debido la interrupción del suministro de agua de riego).

①Cálculo del costo de infraestructuras

Costo de la obra = costo de construcción por unidad de agua tomada × tamaño (caudal,

longitud de la obra)

Costo unitario de construcción de la obra: para las bocatomas y canales, se requiere recoger información sobre el volumen de toma de agua de la obra existente, y el costo de ejecución de obras (construcción o reparación) y se calcula el costo unitario analizando la correlación entre los dos.

Se dedujo que la obra se destruye totalmente por el caudal con período de retorno caudal de 10 años.

② Pérdida de cultivo

Se determina las ganancias anuales según cultivos producidos en el distrito de riego correspondiente

Beneficio anual = (venta de los cultivos – costo) × frecuencia de cosecha al año

Venta de cosechas = área sembrada (ha) \times rendimiento (kg/ha) \times precio unitario de transacción

Costo = costo unitario (s./ha) \times área sembrada (ha)

b. Daños de las infraestructuras viales

Se determina la pérdida debido a la interrupción del tránsito.

Monto de pérdida = pérdida directa + pérdida indirecta

Pérdida directa: costo de construcción de los caminos (construcción, rehabilitación)

Pérdida indirecta: costo de pérdida de oportunidad debido a los daños de los caminos (depreciación del vehículo + pérdida por los gastos del personal)

Se deduce un período intransitable de 5 días (en el Perú, por lo general se demora cinco días para terminar de rehabilitar un camino provisional)

2) Monto de pérdidas según períodos de retorno

En la Tabla 4.5.1-2 se muestran los montos de pérdidas generadas por desastres de diferentes períodos de retorno, con y sin el Proyecto, en la Cuenca del río Chira.

Chira 2 0 5 349.698 Sin Proyecto 10 427,001 事業を実施 25 485.714 しない場合 50 562,385 **Total** 1.824.797 2 0 5 333,585 Con Proyecto 10 411,472 事業を実施 25 471,293 50 525,002 1.741.353 Total

Tabla 4.5.1-2 Monto estimado de pérdidas (a precios privados)

3) Monto de pérdidas (promedio anual) que se espera reducir con el Proyecto

Se determinó el monto medio anual de pérdidas que se espera reducir con el Proyecto por la suma total del monto anual medio de pérdida según caudal ocurrido multiplicando el monto de reducción de pérdida según caudal ocurrido por las probabilidades de crecidas correspondientes.

Considerando que las inundaciones ocurren probabilísticamente, el beneficio anual se determina como promedio del monto anual de reducción de pérdidas. A continuación se presentan los procedimientos del cálculo.

Tabla4.5.1-3 Estimación del monto medio anual de de reducción de pérdidas

		Monto de pérdida				Monto medio
Probabilidades	Sin Proyecto	Con Proyecto	Reducción de pérdidas	Pérdida media del tramo	Probabilidades del tramo	anual de reducción de pérdidas
1/1			$D_0 = 0$			
	ī	7	<u> </u>	$(D_0 + D_1)/2$	1-(1/2) = 0,500	$d_1 = (D_0 + D_1)/2$ x 0,67
1/2	L_1	L_2	$D_1 = L_1 - L_2$	$(D_1+D_2)/2$	(1/2)- $(1/5)$ = 0,300	$d_2 = (D_1 + D_2)/2$ x 0,300
1/5	L_3	L_4	$D_2 = L_3 - L_4$	$(D_2+D_3)/2$	(1/5)-(1/10) = 0.100	$d_3 = (D_2 + D_3)/2$ x 0,100
1/10	L_5	L_6	$D_3 = L_5 - L_6$	$(D_3+D_4)/2$	(1/10)-(1/20) = 0.050	$d_4 = (D_3 + D_4)/2$ x 0.050
1/20	L_7	L_8	$D_4 = L_7 - L_8$		(1/20)-(1/30) =	$d_5 = (D_4 + D_5)/2$
1/30	L_9	L_{10}	$D_5 = L_9 - L_{10}$	$(D_4+D_5)/2$	0,017	x 0,017
				$(D_5 + D_6)/2$	(1/30)- $(1/50)$ = 0,013	$d_6 = (D_5 + D_6)/2$ x 0,013
1/50	L_{11}	L_{12}	$D_6 = L_{11}$ - L_{12}	$(D_6+D_7)/2$	(1/50)-(1/100)	$d_7 = (D_6 + D_7)/2$
1/100	L_{13}	L_{14}	$D_7 = L_{13}$ - L_{14}	(20.27)/2	= 0,010	x 0,010
Monto medio pérdidas	previsto anual d	e reducción de		$d_1 + d_2 + d_3 + a_4$	$l_4+d_5+d_6+d_7$	<u> </u>

En la Tabla 4.5.1-4 se presentan los resultados del cálculo del monto de pérdidas (promedio anual) que se espera reducir al implementar el Proyecto en la cuenca del Río Chira.

Tabla 4.5.1-4 Resultados del cálculo del monto medio anual de pérdidas que se espera reducir con el Proyecto (Precios privados)

s/1000

	流量規模 Periodo de retorno		被害額 (Daños Totales - miles de S/.)						
流域 Cuenca		Periodo de Probabilidad	事業を実施しな い場合①	事業を実施した 場合②	軽減額 3=1-2	区間平均被害 区間確率 額	_	年平均被害額 ④×⑤ Valor Promedio	年平均被害額の累 計=年平均被害軽 減期待額
			retorno	Frobabilidad	Sin Proyecto	Con Proyecto	Daños mitigados 3=1)-2	Promedio de Daños	
	1	1.000	0	0	0			0	0
	2	0.500	0	0	0	0	0.500	0	0
	5	0.200	349,698	333,585	16,113	8,056	0.300	2,417	2,417
CHIRA	10	0.100	427,001	411,472	15,529	15,821	0.100	1,582	3,999
	25	0.040	485,714	471,293	14,421	14,975	0.060	898	4,897
	50	0.020	562,385	525,002	37,382	25,901	0.020	518	5,415

(2) Evaluación social

1) Objetivo e indicadores de evaluación

El objetivo de la evaluación social en el presente Estudio es evaluar la eficiencia de las inversiones en las medidas estructurales aplicando el método de análisis de la relación costo-beneficio (B/C) desde el punto de vista de la economía nacional. Para ello, se determinaron los indicadores de evaluación económica (relación B/C, Valor Actual Neto –VAN, y tasa interna de retorno económico –TIR). La tasa interna de retorno (TIR) es un indicador que expresa la eficiencia de la inversión en el proyecto. Se define como la tasa de descuento para equiparar el valor actual del costo generado por el proyecto al valor actual de beneficio. Es la tasa de descuento necesario para que el Valor Actual Neto (VAN) sea de cero y la relación de B/C de uno, e indica el porcentaje de beneficio que genera dicha inversión. La tasa interna de retorno utilizada en la evaluación económica se denomina "tasa interna de retorno económico (TIRE). El precio del mercado es convertido en el precio económico (costos a precios

sociales) eliminando el impacto de la distorsión del mercado.

La TIR, relación B/C y el VAN se determinan aplicando las expresiones matemáticas indicadas en la siguiente Tabla. Cuando la TIR haya sea mayor que la tasa social de descuento, la relación B/C sea mayor a uno y el VAN mayor a cero, se considera que dicho proyecto es eficiente desde el punto de vista del crecimiento de la economía nacional.

Tabla 4.5.1-5 Indicadores de evaluación del análisis de la relación costo-beneficio y sus características

Indicadores	Definición	Características
Valor Actual Neto (VAN)	$NPV = \sum_{i=1}^{n} \frac{B_i}{(1+r)^i} - \sum_{i=1}^{n} \frac{C_i}{(1+r)^i}$	 Permite comparar la magnitud del beneficio neto generado con el proyecto. Varía dependiendo de la tasa social de descuento.
Relación costo-beneficio (B/C)	$B/C = \sum_{i=1}^{n} \frac{B_{i}}{(1+r)^{i}} / \sum_{i=1}^{n} \frac{C_{i}}{(1+r)^{i}}$	 Permite comparar la eficiencia de la inversión por la magnitud de beneficio por unidad de inversión. Varía dependiendo de la tasa social de descuento.
Tasa de retorno interno económica (TIR)	$\sum_{i=1}^{n} \frac{B_{i}}{(1+r)^{i}} = \sum_{i=1}^{n} \frac{C_{i}}{(1+r)^{i}}$	 Permite conocer la eficiencia de la inversión comparando con la tasa social de descuento. No varía dependiendo de la tasa social de descuento.
Donde, Bi: beneficio al año "i"	'/ Ci: costo al año "i" / r: tasa social de	e descuento (11 %) / n: años de evaluación.

2) Precondiciones

A continuación se plantean las precondiciones de cada uno de los indicadores utilizados en la evaluación económica.

i) Período de evaluación

El período de evaluación se define entre 2013 y 2027 (15 años después de iniciadas las obras de construcción). El cronograma tentativo de la ejecución del Proyecto es el siguiente.

2012: Diseño Detallado

2013-2014: Construcción

2013-2027: Período de evaluación

ii) Factor de conversión estándar (FCE)

El factor de conversión estándar (FCE) es la relación entre los precios socioeconómicos establecidos en la frontera y los precios privados nacionales de todos los bienes de la economía de un país, sirve para convertir los precios de los bienes y servicios comprados en el mercado local en precios económicos. En el presente Estudio se utilizaron los siguientes valores de FCE.

Diques 0,804

Gaviones 0.863

Bocatomas 0,863

En la conversión de los precios del mercado a los precios socioeconómicos, no se tomó en cuenta el IGV.

iii) Otras condiciones preliminares

Nivel de precios: 2011

Tasa social de descuento: 10 %

Costo anual de mantenimiento: 0,5 % del costo de construcción

3) Análisis de la relación costo-beneficio (B/C)

Se compararon el costo total y el beneficio total de las obras de control de inundaciones convertidos en valores actuales aplicando la tasa social de descuento. En este caso el costo total es la suma del costo de construcción y de operación y mantenimiento de las obras, y el beneficio total es el monto de pérdida que se redujo gracias a las obras. Para ello, se estableció como año base para la conversión en el valor actual al momento en que se efectuará la evaluación, y el período de evaluación durante los siguientes 15 años desde el comienzo de las obras del Proyecto. Se determinó el costo total sumando el costo de construcción y el costo de operación y mantenimiento de las obras convertidas en valores actuales; y el beneficio total sumando el promedio del monto anual de reducción de pérdidas convertido en valores actuales.

En la Tabla 4.5.1-6 se presentan los resultados del cálculo de B/C, VAN y TIR a precios privados.

Tabla 4.5.1-6 Evaluación social (B/C, VAN, TIR) (A precios privados)

4.5.2 Costos a precios sociales

(1) Beneficios

1) Monto estimado de perdidas según desastres de diferentes períodos de retorno

En la Tabla 4.5.2-1 se presentan los montos de pérdidas con y sin el Proyecto, estimados para desastres de diferentes períodos de retorno en la cuenca del Río Chira.

Tabla 4.5.2-1 Monto estimado de pérdidas (a precios sociales)

Caso	+	Precios
ケース	Č	Chira
	2	0
Sin Proyecto	5	407,180
sin Proyecto 事業を実施 しない場合	10	494,866
	25	563,929
しない物口	50	649,089
	Total	2,115,064
	2	0
Can Drayanta	5	384,769
Con Proyecto 事業を実施 した場合	10	473,618
	25	544,283
	50	605,046
	Total	2,007,716

2) Monto de pérdidas (promedio anual) que se espera reducir con el Proyecto

En la Tabla 4.5.2-2 se presentan los resultados del cálculo del monto de pérdidas (promedio anual) que se espera reducir al implementar el Proyecto en la cuenca del Río Chira.

Tabla 4.5.2-2 Monto medio anual de pérdidas que se espera reducir con el Proyecto (a precios sociales)

s/1000

流域 Cuenca	流量規模 Periodo de retorno		被害額(Da	被害額 (Daños Totales - miles de S/.)					
		アeriodo de Probabilidad P	事業を実施しな い場合①	事業を実施した 場合②	軽減額 ③=①-②	区間平均被害 額 ④	区間確率 ⑤ Valor		年平均被害額の累 計=年平均被害軽 減期待額
			no	Sin Proyecto	Con Proyecto	Daños mitigados ③=①-②	Promedio de Daños	incremental de la probabilidad	del Flujo de Da ños
	1	1.000	0	0	0			0	0
	2	0.500	0	0	0	0	0.500	0	0
	5	0.200	407,180	384,769	22,410	11,205	0.300	3,362	3,362
CHIRA	10	0.100	494,866	473,618	21,248	21,829	0.100	2,183	5,544
CHIRA	25	0.040	563,929	544,283	19,646	20,447	0.060	1,227	6,771
	50	0.020	649,089	605,046	44,043	31,844	0.020	637	7,408
									l

(2) Evaluación social

En la Tabla 4.5.2-3 se presentan los resultados del cálculo de B/C, VAN y TIR a precios sociales.

Tabla 4.5.2-3 Evaluación social (B/C, VAN, TIR) (A precios sociales)

4.5.3 Conclusiones de la evaluación social

La evaluación social puso de manifiesto que el proyecto de la cuenca del Río Chira no arrojará impacto económico palpable en términos de costos a precios sociales. A continuación se presentan los efectos positivos del Proyecto que son difícilmente cuantificables en valores económicos.

- ① Contribuye al desarrollo económico local al reducirse el temor por el estancamiento o daños de las actividades económicas.
- 2 contribuye a la generación de oportunidades de empleo por la ejecución de obras contempladas en el Proyecto.
- 3 Mayor conciencia de la comunidad local sobre los riesgos de las inundaciones y otros desastres.
- 4 Incremento del ingreso por agricultura más estable, gracias a la reducción de los daños de inundaciones.
- ⑤ Subida del precio de las tierras de cultivo

Así, la evaluación social pone de manifiesto que el proyecto no arrojará un impacto económico palpable, y aun cuando se tome en cuenta otros impactos no cuantificables monetariamente, se considera poco viable ejecutar el Proyecto.

4.6 Análisis de sensibilidad

(1) Objetivo

Se realizó el análisis de sensibilidad con el fin de responder a la incertidumbre por el posible cambio de las condiciones socioeconómicas en el futuro. Para el análisis costo beneficio, se requiere prever la variación del costo y del beneficio del proyecto, sujeto a la evaluación, hacia el futuro. Sin embargo, no es una tarea fácil realizar proyectar de manera acertada de un proyecto público, puesto que éste se caracteriza porque el largo período requerido desde su planificación hasta la puesta en

operación, y por la larga vida útil de las obras puestas en operación, a lo que se suman la intervención de un sin número de factores inciertos que afectan el futuro costo y beneficio del proyecto. Así, no pocas veces se obtienen resultados de análisis discordantes con la realidad cuando las precondiciones o la hipótesis aplicadas no concuerdan con la realidad. Por lo tanto, para compensar la incertidumbre del análisis de costo beneficio, conviene reservar un amplio margen de tolerancia, evitando un resultado absoluto y único de un solo escenario. El análisis de sensibilidad constituye una respuesta a esta situación.

El objetivo del análisis de sensibilidad es dar a los resultados del análisis costo beneficio un determinado margen que permita gestionar adecuadamente la implementación del proyecto, rendir cuentas ante la población, y lograr mayor precisión y fiabilidad de los resultados de la evaluación del proyecto.

(2) Análisis de sensibilidad

1) Descripción general del análisis de sensibilidad

Existen tres métodos del análisis de sensibilidad, como las que se indican en la Tabla 4.6-1.

Tabla 4.6-1 Métodos del análisis de sensibilidad

Tabla 4.0-1 Metodos del anansis de sensibilidad						
Métodos	Descripción	Productos				
Análisis de sensibilidad de las variables	Consiste en cambiar una solo variable (precondición o hipótesis) predeterminada, para evaluar cómo afecta al resultado del análisis.	Margen de los valores arrojados por el análisis al variar una precondición o hipótesis.				
Alternativas mejores y peores	Consiste en definir los casos en que se empeoran o se mejoran los resultados del análisis al cambiar las principales precondiciones e hipótesis preestablecidas, para evaluar el margen de los resultados del análisis.	Margen de los valores arrojados por el análisis al variar las principales precondiciones o hipótesis				
Monte Carlo	Consiste en conocer la distribución de probabilidad de los resultados del análisis usando la simulación Monte Carlo de números aleatorios de las precondiciones e hipótesis preestablecidas.	Distribución probabilística de los resultados al varía todas las principales precondiciones e hipótesis				

2) Descripción del análisis de sensibilidad

En el presente Proyecto se adoptó el método de análisis de sensibilidad de las variables utilizado comúnmente en las inversiones en obras públicas. A continuación se presentan los escenarios y los indicadores económicos que se utilizaron en el análisis de sensibilidad.

Tabla 4.6-2 Casos sometidos al análisis de sensibilidad e indicadores económicos

Indicadores	Margen de variación según factores	Indicadores económicos a evaluarse
Costo de	En caso de aumentar el costo de	TIR, VAN, B/C
construcción	construcción por 5 % y 10 %	
Beneficio	En caso de reducirse el beneficio por	TIR, VAN, B/C
	5 % y 10 %	
Tasa social de	En caso de aumentar y reducirse la tasa	VAN, B/C
descuento	social de de descuento por 5 %,	
	respectivamente.	

3) Resultados del análisis de sensibilidad

En la Tabla 4.6-3 se muestran los resultados del análisis de sensibilidad de cada caso evaluado, a precios privados y sociales.

Tabla 4.6-3 Resultados del análisis de sensibilidad de TIR, B/C y VAN

	~	-	▼	Caso 1	Caso 2	Caso 3	Caso 4	Caso 5 ▼	Caso 6
	Cuenca	Variables	Caso base	Incremento de costos 5%	Incremento de costos 10%	Reducción de beneficios 5%	Reducción de beneficios 10%	Incremento de tasa de descuento 5%	Reducción de tasa de descuento 5%
Precios		IRR (%)	0.6%	-	-1%	-	1	0.6%	0.6%
privados	CHIRA	B/C	0.55	0.53	0.50	0.53	0.50	0.43	0.74
		NPV(s)	-25,662,760	-28,535,476	-31,408,193	-27,252,338	-28,841,917	-30,786,945	-15,812,908
Precios		IRR (%)	9%	8%	7%	8%	7%	9%	9%
sociales	CHIRA	B/C	0.94	0.89	0.85	0.89	0.84	0.72	1.26
		NPV(s)	-2,911,709	-5,231,797	-7,551,886	-5,086,212	-7,260,715	-12,054,326	13,085,346

(3) Evaluación del análisis de sensibilidad

Se realizó el análisis de sensibilidad del impacto del proyecto ante la variación de las condiciones socioeconómicas, en términos de costos a precios privados y sociales. De acuerdo con dicho análisis, ante una determinada fluctuación de los beneficios y de la tasa de descuento, su incidencia sobre los valores de TIR, B/C y de VAN es muy reducida, además que el impacto económico es muy poco palpable. Como un caso excepcional, el Caso 6 (tasa de descuento = 5%) arrojó un determinado impacto económico en términos de costos a precios sociales.

4.7 Análisis de sostenibilidad

El presente Proyecto será cogestionado por el gobierno central (a través de la DGIH), comisiones de regantes y los gobiernos regionales, y el costo del Proyecto será cubierto con los respectivos aportes de las tres partes. Por lo general el gobierno central (en este caso, la DGIH) asume el 80 %, las comisiones de regantes el 10 % y los gobiernos regionales el 10 %. Sin embargo, los porcentajes de los aportes de estas dos últimas son decididos mediante discusiones entre ambas partes. Por otro lado, la operación y mantenimiento (OyM) de las obras terminadas es asumida por las comisiones de regantes. Por lo tanto, la sostenibilidad del Proyecto depende de la rentabilidad del Proyecto y de la capacidad de OyM de las comisiones de regantes.

En la Tabla 4.7-1 se presentan los datos del presupuesto de las comisiones de regantes en los últimos años.

Tabla 4.7-1 Presupuesto del Proyecto de las comisiones de regantes

Ríos	Presupuesto anual (En soles)				
	2006	2007	2008	2009	Promedio de 4
					años
Chira	30.369,84	78.201,40	1.705.302,40	8.037.887,44	2.463.008

1) Rentabilidad

El costo del Proyecto de la cuenca del Río Chira se estima en 64,0 millones de soles. El impacto económico en términos de costos a precios sociales es de B/C = 0,94, VAN = -2,9 millones de soles y TIR = 9%. Por lo tanto, se concluye que el proyecto no arrojará un impacto económico positivo.

2) Costo de operación y mantenimiento

El costo anual de operación y mantenimiento requerido para el proyecto, teniendo como año base al año 2008 se estima en 263.000 soles, que corresponde al 0,5 % del costo de construcción del proyecto en la cuenca del Río Chira. Por otro lado, el promedio de los gastos de operación en los últimos cuatro años de las comisiones de regantes es de 2.463.008.

Al considerar que el costo anual de operación y mantenimiento representa un 10.75 % del presupuesto anual de las comisiones de regantes, el proyecto sería suficientemente sostenible a juzgar de la capacidad financiera de estas comisiones para mantener y operar las obras construidas.

Sin embargo dado que el proyecto no arroja un impacto económico, es poco viable implementar el proyecto.

4.8 Impacto Ambiental

En este acápite se desarrollará la identificación, descripción y evaluación de los impactos positivos y negativos de los proyectos y el planeamiento de medidas de mitigación de los mismos. La Evaluación Ambiental Preliminar (EAP) del Proyecto ha sido realizado por una firma consultora registrada (CIDES Ingenieros S.A.) para las seis cuencas desde diciembre de 2010 hasta enero de 2011 y desde septiembre hasta octubre de 2011. Actualmente está siendo evaluada por Dirección General de Asuntos Ambientales (DGAA) del Ministerio de Agricultura. Este acápite está elaborado con los datos y resultados de las EAPs de cada cuenca, y por las visitas de campo por parte del Equipo de Estudios de JICA.

Las obras planeadas son Mejoramiento de diques existentes, Conformación de dique, Descolmatación de cauces, Defensa contra socavación, Mejoramiento/Reparación de bocatomas y partidor, y Ampliación de cauce. En la Tabla 4.8-1 se describe los "Puntos de Obras" a considerarse en el presente acápite de Impacto Ambiental de la cuenca del Río Chira en estudio.

Tabla 4.8-1 Puntos de Obras

	Puntos de Obras		Objetos	Medidas	Dimensiones	Ámbito objeto	
	Chira 1	0.0k-4.0k	Erosión ribereña	Cultivos Depósito del Gas Natural	Mejoramiento de dique	Altura; 2.0m Gradiente; 1:2 Longitud; 4,000m	0.0km ~ 4.0km (Margen.I.)
Chira	Chira 2	11.75k-12.75k	Erosión ribereña	Carretera		Altura ; 2.0m Gradiente ; 1:2 Longitud ; 1,000m	11.75km~12.75km (M.D.)
Rio	Chira 3	24.5k-27.0k	Erosión ribereña	Cultivos		Altura ; 2.0m Gradiente ; 1:2 Longitud ; 2,500m	24.5km~27.0km (M.D.)
	Chira 4	64.0k-68.0k	Bocatoma	Cultivos	Descolmatación del cauce	Ancho de la excavación ; 100m Profundidad de la excavación ; 1.0m Longitud ; 1,000m	64.0km ~ 68.0km (totalidad)

Fuente: Equipo Estudios de JICA

4.8.1 Metodología

Para la identificación de los impactos ambientales de las obras a ejecutarse en las diversas cuencas, se procedió a desarrollar matrices de identificación de impactos por cuenca.

Primero se determinó las operaciones y actividades de cada proyecto en base a las actividades típicas de construcción de "obras hidráulicas" y posteriormente se determinó el tipo de actividades concretas que se ejecutarían para cada una de las obras que se desarrollarán a lo largo de las cuencas. Luego para evaluación de los Impactos Socio-Ambientales se empleó la matriz de tipo "Leopold".

La identificación se desarrolló a nivel ambiental y a nivel de proyecto; y la evaluación tomó en cuenta a la naturaleza, probabilidad de ocurrencia, magnitud, valor total del impacto y dio como resultado el valor o grado de significancia de los Impactos. En las Tablas 4.8.1-1 se aprecia la escala de valoración empleada:

Tabla 4.8.1-1 Criterio de Evaluación - Matriz de Leopold

	1abla 4.8.1-1 Criterio de Evaluación - Matriz de Leopold							
Índice		Descripción	Valoración					
Naturaleza "Na"		Establece si el cambio de cada acción sobre el	Positivo (+): beneficioso					
	Naturaleza Na	medio es positivo o negativo.	Negativo (-): perjudicial					
Drok	abilidad da agurranaia	Incorpora la probabilidad de ocurrencia del	Alta (> 50%) = 1,0					
FIOL	"P.O"	impacto sobre el componente.	Media $(10 - 50\%) = 0.5$					
	1.0	impacto sobre el componente.	Baja (1–10%) = 0,2					
		Indica la magnitud del cambio del factor	Insignificante (2)					
	Intensidad "In"	ambiental. Refleja el grado de alteración del factor sobre su condición base.	Intensidad moderada (5).					
			Alteración extrema (10).					
		Expresa la superficie afectada por las acciones del proyecto o el alcance global sobre el factor ambiental.	Área de influencia indirecta: 10					
g	Extensión "Ex"		Área de influencia directa: 5					
nit] it		Área que ocupa la obra: 2					
Magnitud		Se refiere al periodo de tiempo durante el cual	> 10 años: 10					
2	Duración "Du"	persisten los cambios ambientales.	5 – 10 años: 5					
			1 – 5 años: 2					
		Se refiere a la capacidad del sistema de retornar a una situación de equilibrios similar o	Irreversible: 10					
	Reversibilidad "Rev"		Parcialmente: 5					
		equivalente a la inicial	Reversible: 2					

Fuente: Elaboración Propia en base de EAPs de 5 cuencas

Tabla 4.8.1-2 Grados de significancia de impactos (Valor de los Impactos)

SIA	Grado de significancia
≤15	Poco significativo
15,1 – 28	Significativo
≥ 28	Muy significativo

Fuente: Elaboración Propia en base de EAPs

4.8.2 Identificación, Descripción y Evaluación de Impactos Socio ambientales

En la siguiente matriz de percepción de impactos (en las etapas de construcción /operación) en la cuenca del Rio Chira, elaborada con base en el análisis del informe de la Evaluación Ambiental Preliminar

En la cuenca del río Chira, de acuerdo a los resultados de identificación de impactos para la etapa constructiva, se han hallado un total de 64 interacciones, de las cuales 62 (97%) corresponden a impactos cuyo efecto será percibido de manera negativa y 2 (3%), cuyos efectos serán percibidos de manera positiva. Cabe señalar que de los 62 impactos negativos sólo 15 han sido cuantificados como significativos y 2 como muy significativos. Para la identificación y obtención de los resultados presentados de la evaluación de los impactos de la etapa de construcción de cada una de las obras desarrolladas en la cuenca del río Chira se desarrolló la siguiente matriz de identificación de impactos en la Tabla 4.8.2-1, donde "P" significa: Impacto Positivo y N: Impacto Negativo.

Tabla 4.8.2-1 Matriz de Reconocimiento del Impacto Ambiental (Período construcción)

						I CI IU	uo c	OHBU	ucci	U11)						
			Obra	1-6	1-6	1-6	4	1,4,5	1 y 4	1-6	1-6	1-6	1-6	1-6		
Medio	Componente	Factores ambientales	Actividad	Contratación de MO	Preparación de sitios de obra (Desbroce, perfilado y nivelado)	Desviación de cauces (ataguias)	Excavacion y relleno en riberas	Excavacion y relleno en cauces	Obras civiles (Colocación de concreto)	I&O de canteras, y plantas de producción de materiales	I&O de DME	I&O de campamentos	Transporte de personal	Transporte de maquinaria, equipos, materiales e insumos	Total negativos	Total positivos
	Aire	PM-10 (Material partic	culado		N	N	Ν	N		N	Ν		N	N	8	0
	Aire	Emisiones gaseosas			N	N	N	N	N	N	N		N	N	9	0
	Ruido	Ruido			N	N	N	N	N	N	N	N	N	N	10	0
	Suelo	Fertilidad			N					N	Ν				3	0
Físico	ouelo	Capacidad de uso ma	ayor		N					N	N				3	0
	Agua	Calidad del agua superficial				N	N	N		N					4	0
	Agua	Cantidad de agua superficia							N			N			2	0
	Fisiografía	Morfología fluvial				N	N	N		N					4	0
	risiografia	Morfología terrestre			N						N				2	0
	Flora	Flora terrestre			N						N				2	0
Biótico	Fiora	Flora acuática				N	N	N		N					4	0
Biotico	Fauna	Fauna terrestre			N						N				2	0
	Faulia	Fauna acuática				N	N	N		N					4	0
	Estético	Paisaje visual								N	N				2	0
Socio	Social	Calidad de vida		Р								N	N	N	3	1
económic	occiai	Vulnerabilidad - Segu	ridad												0	0
0	Económico	PEA		Р				ļ							0	1
T. (- 1	Uso actual de la tierra								_		_	_		_	0	0
Total				2	8	7	7	7	3	10	9	3	4	4	62	2
Porcenta	je de negativ	os y positivos													97 %	3 %

Fuente: "Evaluación Ambiental Preliminar del Proyecto Construcción de Defensas Ribereñas para el Control de Despordes e Inundaciones del Río Chira, Provincia de Sullana-Paita, Región Piura" (2011) elaborado por CIDES Ingenieros S.A.

De acuerdo a los resultados de la identificación de impactos, se han encontrado para la etapa de operación un total de 14 interacciones, de las cuales 4 (29%) corresponden a impactos cuyo efecto será percibido de manera negativa y 10 (79%), cuyos efectos serán percibidos de manera positiva. Cabe señalar que de los 4 impactos negativos sólo 2 han sido cuantificados como significativos y 2 como muy significativos. El método de cálculo es el mismo aplicado para la fase de construcción, antes indicado.

Tabla 4.8.2-2 Matriz de Reconocimiento del Impacto Ambiental - Río Chira (Período de operación y mantenimiento)

		- Kio Cilita (I Ci			J		<u>, </u>		
Medio	Componente	Factores ambientales	Obra	Dique Punto 1	Cauce descolmatado Punto 2	Defensa - Márgen derecha Punto 3	Dique y Cauce descolmatado Punto 4	Total negativos	Total positivos
	Aire	PM-10 (Material particula	ado)					0	0
	Alle	Emisiones gaseosas						0	0
	Ruido	Ruido						0	0
	Suelo	Estabilidad			Р		0	1	
Físico	Suelo	Capacidad de uso mayor	r					0	0
	Agua	Calidad del agua superfi			Р		0	1	
	Agua	Cantidad de agua superf	icial	Р	Р		Р	0	3
	Fisiografía	Morfología fluvial		N	N		N	3	0
	i isiografia	Morfología terrestre						0	0
	Flora	Flora terrestre						0	0
Biótico	Tiola	Flora acuática						0	0
Biotico	Fauna	Fauna terrestre						0	0
	i aulia	Fauna acuática		N	N		N	3	0
	Estético	Paisaje visual		Р	Р	Р	Р	0	4
Socio	Social	Calidad de vida		Р	Р	Р	Р	0	4
económico		Vulnerabilidad - Segurida	ad	Р	Р	Р	Р	0	4
Económico PEA Uso actual de la tierra				P	P	P	Р	0	0 4
Total	7	7	6	7	6	21			
	de negativos y	nositivos		•	,		,	22 %	78 %
. orcentaje	ac riegativos y	positivos						ZZ /0	10 /0

Tabla 4.8.2-3 Matriz de Evaluación del Impacto Ambiental (Período de construcción) – Cuenca del río Chira

			Juci	ica	uci	110	Cuenc	a de Río	o Chira				
							tapa de	e Const	trucció	n			
Medio	Componente	Acciones del proyecto	Contratación de MO	Preparación de sitios de obra (Desbroce, perfilado y nivelado)	Desviación de cauces (ataguias)	Excavacion y relleno en riberas	Excavacion y relleno en cauces	Obras civiles (Colocación de concreto)	I&O de canteras, y plantas de producción de materiales	I&O de DME	I&O de campamentos	Transporte de personal	Transporte de maquinaria, equipos, materiales e insumos
		Puntos de Obras: Factores Ambientales	Chi 1 - 6	Chi 1 - 6	Chi 1 - 6	Chi 1 - 6	Chi 1, 2, 3, 4 y 6	Chi 1, 2, 3 y 5	Chi 1 - 6	Chi 1 - 6	Chi 1 - 6	Chi 1 - 6	Chi 1 - 6
		PM-10 (Material particulado)	0.0	-12.0	-12.0	-12.0	-12.0	0.0	-18.0	-18.0	0.0	-12.0	-12.0
	Aire	Emisiones gaseosas	0.0	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	0.0	-11.5	-11.5
	Ruido	Ruido	0.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0
o.	Suelo	Estabilidad	0.0	-11.5	0.0	0.0	0.0	0.0	-14.2	-14.2	0.0	0.0	0.0
Físico	Suelo	Capacidad de uso mayor	0.0	-14.2	0.0	0.0	0.0	0.0	-15.0	-15.0	0.0	0.0	0.0
L L	Agua	Calidad del agua superficial	0.0	0.0	-17.5	-12.0	-23.0	0.0	-15.0	0.0	0.0	0.0	0.0
	Aguu	Cantidad de agua superficial	0.0	0.0	0.0	0.0	0.0	-9.0	0.0	0.0	-15.0	0.0	0.0
	Fisiografía	Morfología fluvial	0.0	0.0	-12.0	-20.0	-31.0	0.0	-23.0	0.0	0.0	0.0	0.0
	o.ograna	Morfología terrestre	0.0	-33.0	0.0	0.0	0.0	0.0	0.0	-28.0	0.0	0.0	0.0
۰	Flora	Flora terrestre	0.0	-28.0	0.0	0.0	0.0	0.0	0.0	-22.5	0.0	0.0	0.0
Biótico		Flora acuática	0.0	0.0	-12.0	-14.5	-14.5	0.0	-14.5	0.0	0.0	0.0	0.0
ä	Fauna	Fauna terrestre	0.0	-24.2	0.0	0.0	0.0	0.0	0.0	-22.5	0.0	0.0	0.0
		Fauna acuática	0.0	0.0	-12.0	-14.5	-22.5	0.0	-15.0	0.0	0.0	0.0	0.0
è	Estético	Paisaje visual	0.0	0.0	0.0	0.0	0.0	0.0	-12.0	-12.0	0.0	0.0	0.0
0 0	Social	Calidad de vida	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-17.5	-17.5	-17.5
io ec m ico		Vulnerabilidad - Seguridad	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Socio econó mico	Económico	PEA	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3		Uso actual de la tierra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Tabla 4.8.2-4 Matriz de Evaluación del Impacto Ambiental (Período de operación y mantenimiento) – Cuenca del río Chira

		ento) – Cuenca u			de Río C							
		Eta	Etapa de Operación									
Medio	Componente	Acciones del proyecto	Chi 1, 2 y 3 (Diques)	Chi 4 (Cauce descolmatado)	Chi 5 (Defensa - Margen derecha)	Chi 6 (Dique y Cauce descolmatado)						
		Puntos de Obras: Factores Am bientales										
		PM-10 (Material particulado)	0.0	0.0	0.0	0.0						
	Aire	Emisiones gaseosas	0.0	0.0	0.0	0.0						
	Ruido	Ruido	0.0	0.0	0.0	0.0						
	Cuala	Estabilidad	0.0	0.0	31.0	0.0						
Físico	Suelo	Capacidad de uso mayor	0.0	0.0	0.0	0.0						
<u> </u>	Agua	Calidad del agua superficial	0.0	0.0	31.0	0.0						
	Agua	Cantidad de agua superficial	26.0	31.0	0.0	31.0						
	Fisiografía	Morfología fluvial	-25.5	-30.5	0.0	-30.5						
	i isiogi alla	Morfología terrestre	0.0	0.0	0.0	0.0						
	Flora	Flora terrestre	0.0	0.0	0.0	0.0						
Biótico	FIUI a	Flora acuática	0.0	0.0	0.0	0.0						
Bió	Fauna	Fauna terrestre	0.0	0.0	0.0	0.0						
		Fauna acuática	-25.5	-30.5	0.0	-30.5						
ý	Estético	Paisaje visual Calidad de vida		36.0	36.0	36.0						
, i	Social			36.0	36.0	36.0						
mico	000101	Vulnerabilidad - Seguridad	36.0	36.0	36.0	36.0						
§ Franámica L		PEA	0.0	0.0	0.0	0.0						
<i>o</i>		Uso actual de la tierra	36.0	36.0	36.0	36.0						

Leyenda General para la escala de colores de la calificación de los impactos de las Tablas 4.8.2-3 a 4.8.2-4

En la cuenca del Río Chira se identificaron 62 interacciones que pueden manifestar impactos negativos durante la etapa de construcción, de las cuales 15 son "fuertes" y 2 "muy fuertes". De las 6 interacciones que pueden manifestar impactos negativos después de entrada en servicio, 2 son "fuertes" y 2 son "muy fuertes".

Durante la etapa de construcción, la división en lotes, la nivelación del suelo y otros trabajos de preparación del sitio pueden incidir negativamente a la topografía local en todos los sitios del proyecto. Después de entrada en servicio, se prevé que la "descolmatación" que se contempla realizar en Chira-4 durante la construcción, tendrá un impacto fuerte sobre la topografía fluvial y los seres acuáticos.

Cabe recordar que, en el apartado 4.8.4 "Plan de Gestión Ambiental" se analizarán las medidas de prevención y de mitigación ante estas interacciones "fuertes" y "muy fuertes".

4.8.3 Planes de Manejo Socio ambiental

El objetivo de los Planes de Manejo Socio ambiental es internalizar los impactos ambientales positivos como negativos significativos y muy significativos, asociados a las etapas de construcción y operación del proyecto, de manera que se garantice la prevención y/o mitigación de los impactos negativos

significativos y muy significativos, la conservación del patrimonio ambiental y la sostenibilidad de los proyectos.

En la etapa de construcción, en los proyectos de la Cuenca del río Chira se han planteado las siguientes medidas: "Programa de contratación local", "Programa de manejo y control de sitios de obra", "Programa de desviación de cauces", "Manejo de excavaciones y relleno en riberas", "Manejo de excavaciones y relleno en cauces", "Manejo de canteras", "Manejo de DME", "Normas de campamento y estadía en obra" y "Manejo de actividades de transporte". Durante las etapas de operación, se han considerado el desarrollo de actividades en relación al "Manejo de cauces y fauna acuática" donde se deberá desarrollar acciones de acondicionamiento de cauce aguas debajo de los puntos de intervención para reducir probabilidad de erosión y brindar condiciones de habitabilidad para especies de fauna acuática.

A continuación se presentan las medidas de mitigación asociadas a los impactos negativos que mitigan o los impactos positivos que potencian. Se deberán tomar estos Planes de Manejo Socio ambiental correspondientes a los puntos de obras donde se generarán los impactos negativos significativos/muy significativos.

Tabla 4.8.3-1 Impactos Ambientales Identificados y sus medidas propuestas

Componente	Descripción del Impacto	Medidas	Periodo				
	Afectación a la Calidad del agua superficial	Programa de Desviación de Cauces Manejo de excavaciones y relleno de rivera Manejo de excavaciones y relleno de cauce					
Físico	Afectación a la Morfología fluvial	Manejo de excavaciones y relleno de rivera Manejo de excavaciones y relleno de cauce Manejo de Canteras	Etapa de construcción				
	Afectación a la Morfología terrestre	Programa de Manejo y control de sitios de obra Manejo de DME					
	Emisiones de Material particulado (PM-10)	Manejo de Canteras Manejo de DME					
	Afectación a la Fauna acuática	Manejo de excavaciones y relleno de cauce	Etapa de Operación y Mantenimiento				
Biológico	Afectación a la Fauna terrestre	Programa de Manejo y control de sitios de obra Manejo de DME					
	Afectación a la Flora terrestre	Programa de Manejo y control de sitios de obra Manejo de DME	Etapa de				
Social	Afectación a la Calidad de vida	Normas de Campamento y Estadía de Obra Manejo de Actividades de Transporte					
Social	Mejora de la Calidad de vida	Programa de Contratación de M.O. Local					
	Incremento de la PEA	Programa de Contratación de M.O. Local					

4.8.4 Plan de Seguimiento y Control

El plan de seguimiento y control tiene 2 tipos de actividades:

- 1. Seguimiento: constituyen actividades de verificación de las medidas de manejo planteadas
- 2. Control: Comprenden las actividades de monitoreo y medición para el cumplimiento de la normativa ambiental sean Estándares de Calidad Ambiental (ECAs) o Límites Máximos Permitibles (LMAs).

Y el seguimiento y control se deben ejecutar por la responsabilidad del titular del proyecto o un tercero bajo la supervisión del titular¹.

¹ Ley General del Ambiente (Ley No. 28611), Artículos 74 y 75 determinen que todo titular de operaciones de proyecto es es responsable por las emisiones, efluentes, descargas y demás impactos negativos que se generen sobre el ambiente, la salud y los recursos naturales, como consecuencia de sus actividades, y deben adoptar prioritariamente medidas de prevención del riesgo y daño ambiental en la fuente generadora de los mismos Esta responsabilidad incluye los riesgos y daños

Etapa de Construcción

Durante la etapa de construcción de los proyectos a realizarse en las cuencas, el Plan de Seguimiento y Control será dirigido a la verificación del cumplimiento de las medidas diseñadas como parte del plan de manejo ambiental y a la verificación del cumplimiento de las normas y reglamentos en materia ambiental existentes en la legislación peruana. Se resaltan los siguientes parámetros de monitoreo:

Calidad del Agua y Parámetros Biológicos:

Se deberá hacer un control de calidad de agua y de parámetros biológicos, aguas de cerca y aguas debajo de los puntos de intervención. En la Tabla 4.8.4-1 se aprecia las especificaciones a seguir:

Tabla 4.8.4-1 Monitoreo de Calidad del Agua y Parámetros Biológicos

Indicador	Detalle
	Caudal
Parámetros de evaluación	Calidad: Temperatura, pH, oxígeno disuelto (OD), demanda bioquímica de oxigeno (DBO), sólidos disueltos totales, sólidos suspendidos totales (ECAS Categoría 4)
	Biológico: Índices de diversidad: Shannon; Pielou; riqueza y abundancia.
	50 metros aguas arriba de puntos de intervención
Puntos de evaluación	50 metros aguas abajo de puntos de intervención
	100 metros aguas abajo de puntos de intervención
Frecuencia de evaluación	Trimestral
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.

Fuente: Elaboración Propia

Calidad de Aire:

Durante el análisis de impactos, en los proyectos a desarrollarse en las cuencas, no se registraron impactos significativos en las actividades concernientes a las obras de infraestructura hidráulica, no obstante, el levantamiento de polvo y las emisiones de contaminantes atmosféricos siempre llega a afectar el área de trabajo y por ende la salud de los trabajadores y habitantes de la zona. Eso por esto que se plantea el monitoreo de la Calidad del aire como un punto indispensable en el plan de control.

Tabla 4.8.4-2 Monitoreo de Calidad del Aire

Tubia 4.0.4 2 Nonitoreo de Candad del Aire								
Indicador	Detalle							
Puntos de monitoreo	Un punto en zonas de trabajos. Un punto en una cantera alejada del río (la más grande y/o cercano a un zonas de viviendas) Un punto en un D.M.E. (El más grande y/o cercano a un zonas de viviendas)							
Colocación de Puntos	Dos estaciones por punto de monitoreo: En barlovento y Sotavento (A favor y encontra del viento)							
Parámetro a evaluar	 Material particulado con diámetro menor o igual a 10 micras (PM-10) / 2,5 micras (PM-2,5) Monóxido de carbono (CO) Dióxido de nitrógeno (NO₂) Ozono (O₃) Plomo (Pb) Dióxido de azufre (SO₂) Sulfuro de hidrógeno (H₂S) 							
Frecuencia de medición	Trimestral							
Normas de comparación o referencia	D.S N° 074-2001-PCM, Estándares nacionales de calidad ambiental de aire							
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.							

Fuente: Elaboración Propia

Calidad de ruido

Del mismo modo, se plantea un monitoreo de la calidad del ruido en los receptores potenciales

ubicados en las cercanías de los puntos de emisión de ruido por cada frente de trabajo, en el cuadro siguiente (Tabla 4.8.4-3) se aprecia las especificaciones a seguir:

Tabla 4.8.4-3 Monitoreo de Calidad del Ruido

Indicador	Detalle
Puntos de monitoreo	El monitoreo de los niveles de contaminación acústica, se realizará en los receptores potenciales ubicados en las cercanías de los puntos de emisión de ruido por cada frente de trabajo. Se monitoreará un punto por cada receptor potencial.
Parámetro a evaluar	Nivel de presión sonora continuo equivalente: "Leq ", expresado en decibeles dB
Normas recomendadas por los	IEC 651/804 - Internacional
especialistas ambientales que deberá cumplir la	IEC 61672- Nueva Norma: Sustituye a las IEC651/804
instrumentación a utilizar para la	ANSI S 1.4 – América
Frecuencia de medición	El monitoreo de ruido se realizará cada dos meses hasta finalizar las obras
Normas de comparación o referencia	Estándares nacionales de calidad ambiental para ruido (ECA) - D.S. N° 085-2003- PCM
Zona de Aplicación Según Reglamento	Zona Residencial
Valores máximos permitidos en	Horario Diurno (7:01 - 22:00 hrs.): 60 decibeles
zona residencial (Expresados en LAegT*)	Horario Nocturno (22:01 - 7:00 hrs.): 50 decibeles
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.

Fuente: Elaboración Propia

Etapas de operación

En las etapas de operación, de todos los proyectos, se recomienda principalmente un seguimiento de parámetros biológicos y de calidad de agua, aguas debajo de los puntos de intervención que afectan negativamente la morfología acuática y la fauna acuática. En el cuadro siguiente (Tabla 4.8.4-4) se aprecia los detalles indicados:

Tabla 4.8.4-4 Monitoreo de Calidad del Agua (Etapa de Operación)

Indicador	Detalle
	Caudal
Parámetros de evaluación	Calidad: Temperatura, pH, oxígeno disuelto (OD), demanda bioquímica de oxigeno (DBO), sólidos disueltos totales, sólidos suspendidos totales (ECAS Categoría 4)
	Biológico: Índices de diversidad: Shannon; Pielou; riqueza y abundancia.
	50 metros aguas arriba de puntos de intervención
Puntos de evaluación	50 metros aguas abajo de puntos de intervención
	100 metros aguas abajo de puntos de intervención
Duración	Durante la operación
Frecuencia de evaluación	Primeros 2 años: trimestral
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.

Fuente: Elaboración Propia

(2) Plan de Cierre o Abandono

Se han realizado Planes de Cierre o Abandono para cada cuenca, los cuales se ejecutarán al término de las actividades constructivas y consiste en la desinstalación de todas las obras temporales y la restauración de las áreas intervenidas y/o afectadas a consecuencia de la ejecución de las obras. La restauración comprende el retiro de suelos contaminados, la disposición final del material de desecho, la restitución de la morfología del suelo y la restauración con cobertura vegetal de los sitios intervenidos.

(3) Participación Ciudadana

Se han realizado Planes de participación ciudadana para cada cuenca, los cuales deberán ejecutarse antes y durante las construcción, así como al finalizar las obras. Las actividades a recomendarse serían:

- Antes de actividades de construcción:
 - o Talleres de difusión en las localidades del área de influencia acerca del proyecto y los beneficios que tendrá para la población local.
 - o Adicionalmente en los lugares públicos se podrán afiches indicando el periodo de ejecución del proyecto, sus principales objetivos y los beneficiados.

• Durante la construcción:

- O Difusión de los avances en la construcción de las obras en coordinación con la población local en asambleas u otros espacios de comunicación.
- o Identificación e implementación de propuestas de solución a posibles quejas de la población que pudieran presentarse durante la ejecución de las obras. Las medidas de solución propuestas deberán ser consensuadas previamente con la población.

• Al finalizar las obras

O Talleres para informar acerca del término de la obra. Se invitará a autoridades locales y público en general y se efectuará una transferencia de los bienes, es decir se entregará la obra culminada a la población.

4.8.5 Presupuesto para la gestión de impacto ambiental

A continuación se presentan los costos directos de las medidas propuestas anteriormente para mitigar los impactos ambientales en la cuenca del Río Chira. En todo caso, es necesario calcular más detalladamente el presupuesto de estas medidas para cada cuenca en la etapa del diseño detallado.

Tabla 4.8.5-1 Costos directos de medidas de gestión de impacto ambiental

4.8.6 Conclusiones y recomendaciones

(1) Conclusiones

Según las Evaluaciones Ambientales Preliminares, en relación a los impactos en la etapa de construcción y en la etapa de operación, la mayoría de los impactos identificados se caracterizan por ser de significancia leve. Los de impacto negativo significativos y muy significativos son controlables o mitigables, siempre que se realicen los Planes de Manejo Ambiental de la manera adecuada.

Asimismo, se tienen impactos positivos significativos, especialmente en la etapa de operación. Estos son: la mejora en la seguridad y reducción de vulnerabilidad a nivel social y ambiental, la mejora de la calidad de vida de la población del área de influencia y la mejora del "Uso actual de la tierra".

(2) Recomendaciones

- 1) En cuanto al calendario de ejecución de obras, se recomienda iniciar el Proyecto en la época seca. Mientras que el río Chira mantiene su flujo a lo largo del año (con variación estacional).
 - Asimismo, es importante elaborar el calendario de ejecución de obras tomando en cuenta el ciclo agrícola de la zona, puesto que muchos de los sitios se encuentran cerca de las tierras de cultivo. De esta manera, se puede minimizar el impacto sobre los habitantes locales que deben transportar las maquinarias agrícolas y los cultivos.
- 2) En cuanto al impacto al ecosistema, es importante tomar en cuenta que al Río Chira llegan anualmente (en la época de crecidas, entre noviembre y marzo) los flamencos aunque en poca cantidad. El impacto sobre estas aves puede ser mitigado evitando ejecutar las obras en esta época.
- 3) En cuanto al tema de los terrenos, se debe tomar las siguientes medidas en el caso de que no se tenga claramente identificados los tramos donde se ejecutarán las obras. La DGIH del MINAG, como ejecutor del Proyecto, deberá: ① definir claramente los tramos de proyecto, inmediatamente después de terminar el E/F; y ② identificar las tierras y los usuarios incluidos en los terrenos a ser utilizados para el Proyecto. Posteriormente, deberá obtener los terrenos necesarios cumpliendo los

procedimientos estipulados en la Ley General de Expropiación. En el caso de que el terreno sea de propiedad comunitaria, se deberá negociar con la comunidad local correspondiente y lograr un consenso.

- 4) En cuanto a los procedimientos relacionados con la conservación del patrimonio cultural, la DGIH deberá obtener el CIRA antes de iniciar el Proyecto, cumpliendo los trámites estipulados para tal fin, inmediatamente después de la terminación del E/F.
- 5) En cuanto al enfoque de género, hasta ahora se ha visto que hay un determinado porcentaje de mujeres que participan en las actividades de las comisiones de regantes, no así en los talleres de desarrollo de capacidades. Por lo tanto, es necesario tomar alguna medida para promover la participación de la mujer en los componentes del presente Proyecto, como por ejemplo, la educación en prevención de desastres, desarrollo de capacidades, etc. Por ejemplo, tomando en cuenta que existen algunos grupos de mujeres en todas las cuencas del Proyecto, se puede convocar a las mujeres en los talleres que se organicen a través de estos grupos. También es necesario considerar el horario de trabajo de las mujeres y escoger las fechas y horas que les sean fáciles para ellas participar.
- 6) Finalmente, se indican las acciones que deben realizar para que DGIH obtenga la licencia ambiental necesaria para el Proyecto. Al mes de abril de 2011, la DGAA –MINAG está evaluando el informe de la evaluación ambiental preliminar (EAP) para determinar la categoría del Proyecto. En el caso de que sea clasificado como Categoría I, será expedida la licencia ambiental. En el caso de que sea clasificado como Categoría II ó III, se requiere realizar la EIA-sd o EIA-d según indique la DGAA, debiendo obtener la licencia ambiental antes de finalizar la etapa de E/F.

4.9 Plan de ejecución

En el plan de ejecución del Proyecto se revisará el cronograma preliminar que incluye los siguientes componentes. Para la etapa de pre-inversión: ① la ejecución completa de los estudios de pre-factibilidad y de factibilidad para obtener la aprobación de SNIP en la etapa de pre-inversión; Para la etapa de inversión: ② la firma del acuerdo de préstamos (L/A), ③ la selección de consultor, ④ servicio de consultoría (diseño detallado y elaboración de especificaciones técnicas), ⑤ selección de constructor y ⑥ ejecución de obras. Para la etapa post-inversión: ⑦ terminación y entrega de las obras a las asociaciones de regantes y comienzo de la etapa de operación y mantenimiento.

(1) Examen por el Sistema Nacional de Inversión Pública (SNIP)

En Perú está en operación el Sistema Nacional de Inversión Pública (en adelante llamado SNIP) que examina la justificación y factibilidad de los proyectos de inversión pública, y será aplicado al presente Proyecto.

En SNIP, entre los estudios previos a una investigación, que se realizarán en 3 etapas: estudio de perfil (estudio sobre el resumen de proyecto), pre-factibilidad y factibilidad. SNIP fue creado según la Ley No.27293 (publicada el 28 de junio de 2000) con el propósito de lograr un uso eficiente de los recursos públicos en la inversión pública y establece los principios, procedimiento, métodos y reglamentos técnicos a cumplir por los gobiernos central/regionales en los planes de inversión pública planeados y ejecutados por los mismos.

SNIP, como se describe abajo, a todos los proyectos de obras públicas les obliga realizar en 3 etapas estudios previos a la inversión: estudio de perfil, pre-factibilidad y factibilidad), y tenerlos aprobados. Sin embargo, a raíz de la modificación de la Ley en abril de 2011, se consideró innecesaria la ejecución del estudio de pre-factibilidad de la etapa intermedia, y a cambio se exige realizar un estudio basado en la información primaria durante el estudio de perfil. El grado de precisión requerido a lo largo de todas las etapas del estudio casi no ha variado antes y después de esta modificación.

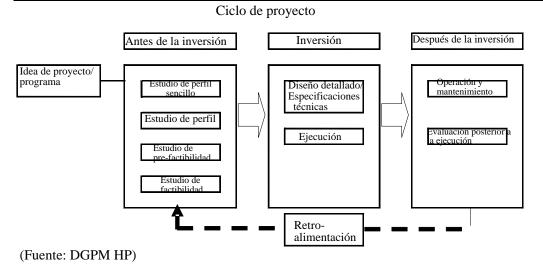
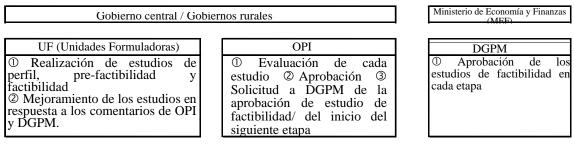



Figura 4.9-1 Ciclo de proyecto en SNIP

Para llevar adelante el presente Proyecto, que es un proyecto compuesto de varios programas, se requiere realizar estudios previos a la inversión a nivel de programa y tenerlos aprobados.

Aunque el procedimiento es algo distinto en cada etapa, en los trámites de SNIP, la unidad de formación de proyectos (UF) lleva a cabo los estudios de cada etapa, la Oficina de Planeamiento e Inversiones (OPI) evalúa y aprueba los estudios presentados de UF y solicita a la Dirección General de Programación Multianual del Sector Publico (en adelante llamada DGPM) la aprobación de los estudios de factibilidad y del inicio de siguientes estudios. Finalmente DPGM evalúa, determina y aprueba la justificación de la inversión pública en cuestión.

(Véase Directiva No.001-2009-EF/68.01.)

Figura 4.9-2 Instituciones relacionadas con SNIP

Ante los comentarios de las autoridades examinadoras (OPI y DGPM) dados a UF, es necesario que ésta prepare las respuestas correspondientes y mejore los estudios. Puesto que dichas autoridades admiten oficialmente las solicitudes una vez obtenidas las respuestas definitivas, hay muchos casos en que tardan varios meses desde la terminación del informe de los estudios hasta la finalización del examen.

(2) Contrato de préstamo en yen

Una vez presentados los informes de los estudios de factibilidad y examinados en SNIP, se inician las deliberaciones sobre el préstamo en yen. Se supone un periodo de 6 meses para los trámites de aplicación.

(3) Procedimiento de la ejecución del proyecto

Luego de la evaluación de los documentos por el SNIP y firmado un acuerdo de préstamo entre Japón (JICA) y la contraparte peruana, se seleccionará un consultor. El servicio de consultoría comprende la elaboración de diseño detallado y de las especificaciones técnicas, la selección de constructor y la supervisión de las obras. A continuación se presenta el período requerido para cada proceso. En la Tabla 4.9-1 se presenta el cronograma general del Proyecto.

- (1) Selección de consultor: 3 meses, selección de constructor: 3 meses
- (2) Elaboración de diseño detallado y especificaciones técnicas y periodo de la obra
 - ① Obras fluviales y reforestación a lo largo de estas obras

Elaboración de diseño detallado y especificaciones técnicas: 6 meses

Periodo de la obra: 2 años

② Sistema de alarma para el río Chira

Se ejecutará en el mismo periodo de obra de instalaciones fluviales.

Elaboración de diseño detallado y especificaciones técnicas: 6 meses

Periodo de la obra: 2 años

3 Fortalecimiento de las capacidades

Se ejecutará en el mismo periodo de obra de instalaciones fluviales.

Elaboración de diseño detallado y especificaciones técnicas: 6 meses

Periodo de la obra: 2 años

Tabla 4.9-1 Plan de ejecución

																											_
	ITEMS		2010			2011			2012				20	13		2014				2015					201	.6	
TILIVIS		3	6	9 1	2	3 6	9	12	3	6	9 1	2 3	6	9	12	3	6	9	12	3	6	9 :	12	3	6	9 :	2
1	1 ESTUDIO PERFIL/EVALUACIÓN SNIP			ю		÷	<u> </u>			EVA	LUAC	IÓN															
2	ESTUDIO FACTIBILIDAD/EVALUACIÓN SNIP				EST	UDIC	<u> </u>				E۱	/ALL	JACI	ÓN													
3	NEGOCIACIÓN DE CREDITO EN YENES				I						F	F	$\frac{1}{1}$										T				
4	SELECCIÓN DE CONSULTOR											Π															
5	SERVICIO DE CONSULTOR (DISEÑO DETALLADO, ELABORACIÓN DE DOCUMENTOS PARA LICITACIÓN)								DI	SEÑ	D/DO	CUN	JMENTO DE LICITACIÓ			N		SUPER			SIÓN DE OI		BRA	4			
6	SELECCIÓN DE CONSTRUCTOR																										
7	EJECCIÓN DE OBRAS				Ι							Г															
1)	CONSTRUCCIÓN DE ESTRUCTURAS																						I				
2)	REFORESTACIÓN																	=				_ _	. I	. 	-		
3)	SISTEMA DE ALERTA TEMPRANA											Г										 		. 	-{		
4)	CAPACITACIÓN PREVENTIVA DE DESASTRES											Τ									 		. I	. 	-1		_
8	CULMINACIÓN DE OBRAS/ENTREGA A JUNTAS DE U	SUA	RIO	s								Γ													•	•	
					Τ							Τ											1				Ī

4.10 Instituciones y administración

(1) Perfil del organismo ejecutor

Las instituciones peruanas relacionadas con la ejecución y administración del Proyecto son el Ministerio de Agricultura, Ministerio de Economía y Finanzas y Comisión de Regantes, siendo los siguientes los roles de cada institución.

Ministerio de Agricultura (MINAG)

- El Ministerio de Agricultura (MINAG) es el responsable de la ejecución de los programas y la Dirección General de Infraestructura Hidráulica (DGIH) se encarga de la administración técnica de los programas. La Dirección General de Infraestructura Hidráulica (DGIH) se dedica a la coordinación, administración y supervisión de los programas de inversión.
- En la etapa de inversión, la dirección de proyectos de DGIH se dedica al cálculo del costo de proyectos, diseño detallado y supervisión de la ejecución de obras. La dirección de estudios realiza estudios para la formación de proyectos y planeamiento.
- La Oficina de Planeamiento e Inversiones (OPI) del Ministerio de Agricultura es el ente responsable de los exámenes de estudios de pre-factibilidad y factibilidad en la etapa previa a la inversión en proyectos de DGIH y solicita la aprobación a la Dirección General de Programación Multianual del Sector Publico (DGPM) del Ministerio de Economía y Finanzas (MEF).
- La Oficina General de Administración del Ministerio de Agricultura (OGA-MINAG) junto con la Dirección Nacional de Endeudamiento Público (DNEP) del Ministerio de Economía y Finanzas se dedica a la administración financiera. Asimismo, ejecuta el presupuesto para las licitaciones, encargo de obras, contratación, adquisición, etc. del Ministerio de Agricultura.
- La Dirección General de Asuntos Ambientales (DGAA) se encarga de examinar y aprobar la evaluación del impacto medioambiental en la etapa de inversión.

Ministerio de Economía y Finanzas (MEF)

- La Dirección General de Programación Multianual del Sector Publico (DGPM) aprueba los estudios de factibilidad. También confirma y aprueba las condiciones de los contratos de préstamo en yen. En la etapa de inversión, da comentarios técnicos antes de la ejecución de proyectos.
- La administración financiera está a cargo de la Dirección Nacional del Endeudamiento Público (DNEP) del Ministerio de Economía y Finanzas y la Oficina General de Administración del Ministerio de Agricultura (OGA-MINAG).
- La Dirección Nacional del Endeudamiento Público (DNEP) del Ministerio de Economía y Finanzas administra los egresos en la etapa de inversión y la de operación posterior a la inversión.

Comisión de Regantes

• Se encarga de la operación y mantenimiento de las instalaciones en la etapa de operación posterior a la inversión.

La relación entre las instituciones involucradas en la ejecución del Proyecto se muestra en las Figura 4.10-1 y 4.10-2.

En el presente Proyecto, la etapa de inversión (ejecución del Proyecto) le corresponde al PSI del MINAG. El PSI está realizando actualmente los proyectos de JBIC, etc. y en el caso de iniciar un nuevo proyecto, conforma la Unidad de Gestión del Proyecto (UGP) correspondiente, quien se encarga de seleccionar a la firma consultora, contratar los servicios de construcción, supervisar las obras, etc. En la siguiente figura se describe la estructuración de las diferentes instancias que intervienen en la etapa de ejecución del Proyecto.

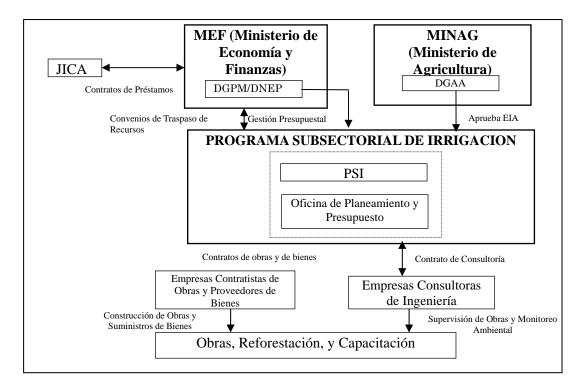


Figura 4.10-1 Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)

Las principales operaciones en la etapa post-inversión, consisten en la operación y mantenimiento de las obras construidas y el reembolso del préstamo. La OyM de las obras será asumida por la respectiva comisión de regantes. Asimismo, ellas deben sufragar los costos de construcción en modalidad de créditos. A continuación se esquematiza la relación de las diferentes organizaciones que intervienen en la etapa posterior a la implementación del Proyecto.

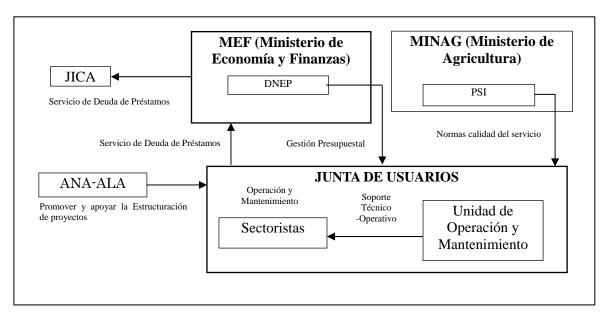


Figura 4.10-2 Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y mantenimiento posterior a la inversión)

(2) DGIH

1) Rol y funciones

La Dirección General de Infraestructura Hidráulica es la encargada de proponer las políticas públicas, la estrategia y los planes orientados al fomento del desarrollo de la infraestructura hidráulica, en concordancia con la Política Nacional de Recursos Hídricos y la Política Nacional del Ambiente.

El desarrollo de Infraestructura Hidráulica comprende estudios, obras, operación, mantenimiento y gestión de riesgos en la construcción, habilitación, mejoramiento y ampliación de presas, bocatomas, cauces fluviales, canales de riego, drenes, medidores, tomas, pozos de agua subterránea y modernización de riego parcelario.

2) Principales funciones a su cargo

- a. Coordinar con las oficinas de planificación y presupuesto para el desarrollo de la infraestructura hidráulica y proponer las políticas sectoriales y de gestión sobre el desarrollo de infraestructura. Monitorizar y evaluar la implementación de las políticas sectoriales relacionadas con el desarrollo de la infraestructura hidráulica.
- b. Proponer las normas de intervención del gobierno, región o provincias como parte de las políticas sectoriales.
- c. Verificar y priorizar las necesidades de la infraestructura hidráulica.
- d. Promover y desarrollar los proyectos de inversión pública a nivel de perfil de la infraestructura hidráulica.
- e. Elaborar las normas técnicas para la ejecución de los proyectos de infraestructura hidráulica.
- f. Promover el desarrollo tecnológico de la infraestructura hidráulica.
- g. Elaborar las normas técnicas de operación y mantenimiento de la infraestructura hidráulica.

(3) **PSI**

1) Función

El Programa Subsectorial de Irrigaciones (PSI) se encarga de ejecutar los proyectos de inversión. Para cada proyecto se conforma su respectiva unidad de gestión.

2) Principales funciones a su cargo

- a. El Programa Subsectorial de Irrigaciones PSI, adscrito al ministerio de Agricultura, es un organismo con autonomía administrativa y financiera. Asume la responsabilidad de coordinar, gestionar y administrar las instituciones participantes en los proyectos con el fin de cumplir las metas y objetivos propuestos en los proyectos de inversión
- b. Asimismo, coordina los desembolsos frente al financiamiento de los organismos de cooperación externa, como JICA.
- c. La Oficina de Planeamiento, Presupuesto y Seguimiento del PSI se encarga de contratar servicios, elaborar los programas de inversión, así como los planes de ejecución de proyectos. Estos trabajos de preparación de proyectos son ejecutados contratando los consultores "inhouse".
- d. Asimismo, convoca a los contratistas, y realiza la licitación, ejecuta las obras, e implementa los proyectos de suministro, etc.
- e. La gestión de contratos es asumida por la Oficina de Planeamiento, Presupuesto y Seguimiento.

3) Presupuesto

En la Tabla 4.10-1 se muestra el presupuesto del PSI para el año 2011.

Tabla 4.10-1 Presupuesto del PSI (2011)

Programas / Proyectos / Actividades	PIM (S/.)
Programa JBIC (Acuerdo de Préstamo EP-P31)	69.417.953
Programa - PSI Sierra (Acuerdo de Préstamo 7878-PE)	7.756.000
Obras por administración directa	1.730.793
Fondo de Reconstrucción del Sur (FORSUR)	228.077
Proyecto de Conversión de Cultivos (ARTRA)	132.866
Programa de Riego Tecnificado (PRT)	1.851.330
Actividad- 1.113819 pequeños agricultores	783.000
Gestión del Programa de PSI (Gastos corrientes)	7.280.005
TOTAL	89.180.024

4) Organización

El PSI está integrado por 235 empleados, de los cuales 14 son asignados para los proyectos de JBIC, y bajo ellos están trabajando 29 técnicos y asistentes.

Tabla 4.10-2 Planilla del PSI

	Dat	tos del 31 de mayo d	le 2011
Nivel central	CAS	Servic. y Consult.	TOTAL
Sede central	61	43	104
Oficina Zonal LIMA	12	24	36
Oficina Zonal AREQUIPA	14	12	26
Oficina Zonal CHICLAYO	17	13	30
Oficina Zonal TRUJILLO	13	26	39
TOTAL	117	118	235

En la Figura 4.10-3 se presenta el organigrama del PSI:

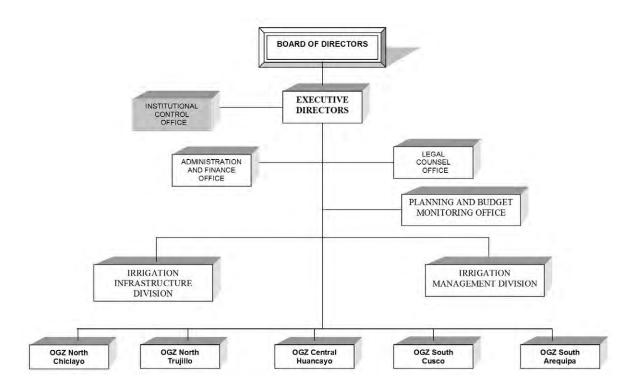


Figura 4.10-3 Organigrama del PSI

4.11 Marco lógico de la opción seleccionada finalmente

En la Tabla 4.11-1 se presenta el marco lógico de la alternativa seleccionada definitivamente.

Tabla 4.11-1 Marco lógico de la alternativa seleccionada definitivamente

<u>Tabla 4.11-1</u>	Marco logico de la ali	ernativa seleccionada de	le l		
Resumen narrativo	Indicadores verificables	Medios de verificación de indicadores	Condiciones preliminares		
Meta superior					
Promover el desarrollo socioeconómico local y contribuir al bienestar social de la población.	Mejorar la productividad local, generar más empleos, aumentar ingresos de la población y reducir el índice de la pobreza	Datos estadísticos publicados	Estabilidad socioeconómica y política		
Objetivos					
Aliviar la alta vulnerabilidad de los valles y de la comunidad local ante las inundaciones	Tipos, cantidad y distribución de las obras de control de inundaciones, población y á rea beneficiaria	Monitoreo del calendario anual de obras y del plan financiero, fiscalización de ejecución de presupuesto.	Asegurar el presupuesto necesario, intervención activa de los gobiernos central y regional, municipalidades, comisiones de regantes, comunidad local, etc.		
Resultados esperados					
Reducción de los sectores y á rea anegable, mejoramiento funcional de las bocatomas, prevención de destrucción de caminos, protección de canales de riego, control de la erosión de márgenes, seguridad de la Presa Poechos	Número de sectores y área anegable, variación del caudal de toma de agua, frecuencia de destrucción de caminos, avance de la erosión de má rgenes, erosión aguas abajo de la presa.	Visitas al sitio, revisión del plan de control de inundaciones y de informes de obras de control de inundaciones, monitoreo rutinario por los habitantes locales	Monitoreo de mantenimiento por los gobiernos regionales, municipalidades y la comunidad local, información oportuna a los organismos superiores.		
Actividades					
Componente A: Medidas estructurales	Rehabilitación de diques, obras de protección de má rgenes y bocatomas, prevenci ón de daños a los caminos, construcción de 28 obras, incluyendo las destinadas a la seguridad de la presa	Detallado, informes de obras, gastos ejecutados	Asegurar el presupuesto de obras, Diseño Detallado/ejecución de obras/supervisión de obras de buena calidad		
Componente B: Medidas no estructurales					
B-1 Reforestación y recuperación vegetal	Área reforestada, área de bosques ribereños	Informes de avance de obras, monitoreo rutinario por la comunidad local	Apoyo de consultores, ONGs, comunidad local, concertación y cooperación de la comunidad de la cuenca baja		
B-2 Sistema de alerta temprana	Equipos instalados, estado de operación, frecuencia de alertas emitidas, estado de transmisión de información	Informes de avance de obras, monitoreo por entidad pública y comunidad local	Funcionamiento adecuado de equipos, debida capacitación del personal, comunicación y promoción, OyM de equipos y programas		
Componente C: Educación en prevención de desastres y desarrollo de capacidades	Número de sesiones de seminarios, prácticas, capacitación, taller,	Informes de avance, monitoreo por gobiernos locales y comunidad	Predisposición de los actores a participar, asesoría por consultores y ONGs		
Gestión de ejecución del Proyecto					
Gestión del Proyecto	Diseño Detallado, orden de inicio de las obras, supervisió n de obras, operación y mantenimiento	Planos de diseño, plan de ejecución de obras, pliego de estimación de costos, especificaciones de las obras, contratos, informes de gestión de obras, manuales de mantenimiento	Selección de consultores y contratistas de alto nivel, participación de la población beneficiaria en operación y mantenimiento		

4.12 Plan de mediano y largo plazo

Hasta aquí se han propuesto solo las medidas de control de inundación que deben ser ejecutadas con mayor urgencia, debido a la limitación del presupuesto disponible para el presente Proyecto. Sin embargo, existen otras medidas que deben ser realizadas oportunamente en el marco del plan a largo plazo. En esta sección se hablará sobre el plan de control de inundaciones de mediano y largo plazo.

4.12.1 Plan general de control de inundaciones

Existen diversas formas de controlar las inundaciones en toda la cuenca, como por ejemplo, la construcción de presas, reservorios, diques o combinación de estos.

Se considera que no es viable la opción de construir una presa, puesto que ya existe la Presa Poechos en la cuenca más alta del Río Chira, y aguas debajo de dicha presa se extiende una llanura de inundación.

Tampoco es viable la opción de construir un embalse de retardación porque para poder reducir el caudal máximo de inundación con período de retorno de 50 años hasta de 10 años, se necesita un embalse de 1,5 millones de m³. La mayor parte del área aguas debajo de la Presa Poechos está ocupada por las tierras de cultivo, y no existe un sitio idóneo para construir el embalse. Por este motivo, se descarta también la opción de construir el embalse de retardación del presente Estudio.

Por lo tanto, enfocaremos nuestro estudio en la construcción de diques por ser la opción más viable.

(1) Plan del curso del río

1) Capacidad hidráulica

Se calculó la capacidad hidráulica del actual cauce del río con base en los resultados del levantamiento longitudinal y transversal del río, cuyos resultados se presentan en la Figura 3.1.10-3, 3.1.10.

2) Características del desbordamiento

Se realizó el análisis de desbordamiento del cada río. En la Figura 3.1.10-9, 3.1.10 se muestran las condiciones de desbordamiento para caudales con probabilidades de 50 años. A falta de la capacidad hidráulica, se desborda el agua en todos los tramos, inundando las tierras bajas y planas a lo largo del río.

3) Nivel de crecidas de diseño y la sección estándar del dique

El nivel de crecidas de diseño se determinó en el nivel de agua de crecidas con período de retorno de 50 años, y la sección estándar del dique será como se determina en el apartado 4.3.1, 5), 1). En la Tabla 4.2-2, 4.2 se muestra el nivel teórico de crecidas de diseño y la altura requerida de la corona del dique.

4) Alineación de los diques

Considerando las condiciones actuales de los diques existentes se definió la alineación de los nuevos diques. Básicamente, se adoptó el ancho del río más amplio posible con el fin de incrementar la capacidad hidráulica y el efecto de retardación. En la Figura 4.12.1-1 se explica esquemáticamente el cauce actual y el método de definición de la alineación de un tramo donde el cauce actual tiene mayor anchura. En un tramo normal, la corona del dique tendrá una altura igual al nivel de agua de crecidas con un período de retorno de 50años más el libre bordo, mientras que en los tramos donde el río tiene mayor anchura, se construirán doble diques, con la alineación del dique interior congruente y continuo con los tramos normales aguas arriba y abajo. La altura de la corona será igual al nivel de agua de inundaciones con período de retorno de 50 años. La altura de la corona del dique externo será igual al nivel de agua de crecidas con período de retorno de 50 años, de tal manera que en el caso de que el río se desborde del dique interno, el espacio abierto entre los dos diques sirva para almacenar los sedimentos y retardar el agua.

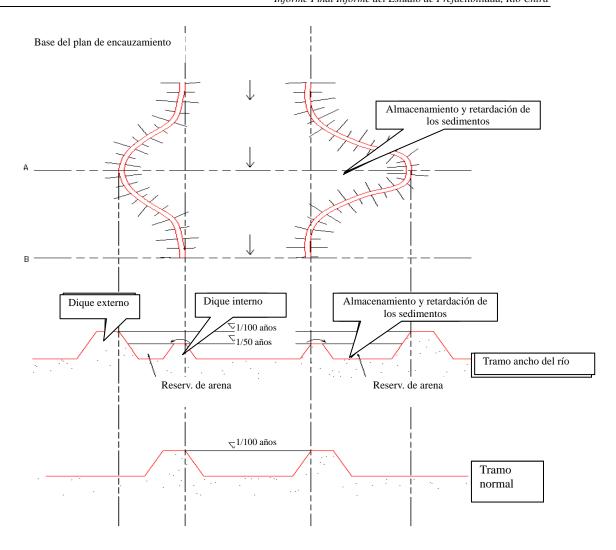


Figura 4.12.1-1 Definición de la alineación del dique

5) Plano de planta y sección del río

En las Figuras Figura 4.12.1-2 y Figura 4.13.1-3 se presenta el plano de planta y la sección longitudinal del río Chira.

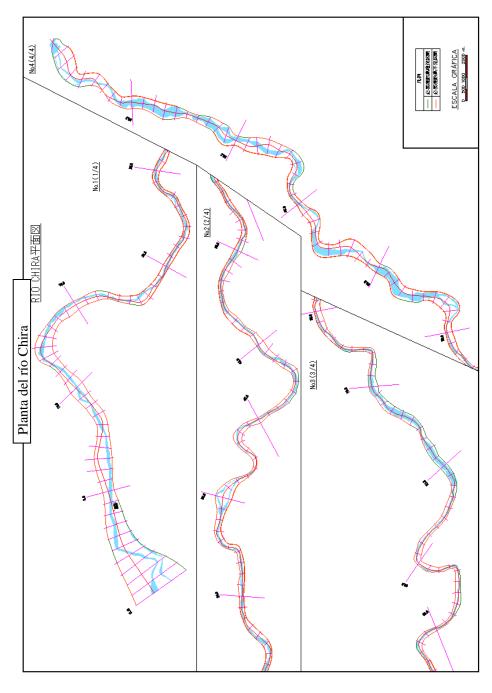


Figura 4.12.1-2 Plano do del Río Chira

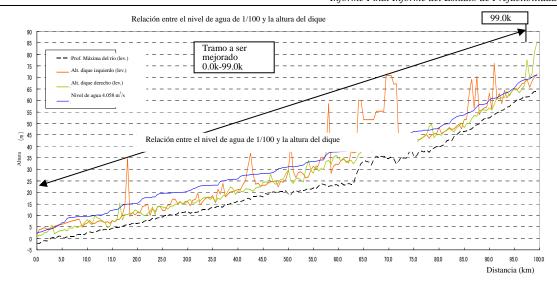


Figura 4.12.1-3 Sección longitudinal del Río Chira

6) Plan de construcción de diques

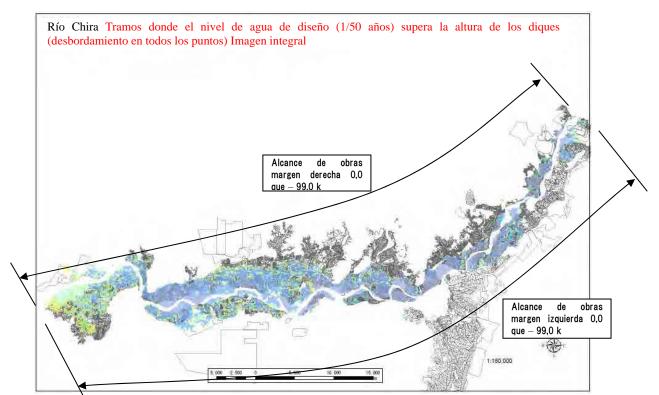
A continuación se plantean las políticas básicas del plan de construcción de diques en la cuenca de cada cuenca.

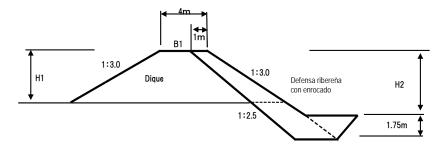
- ① Construir los diques que permitan el paso de manera segura del caudal de inundaciones con período de retorno de 50 años.
- ② Los diques serán construidos en las zonas donde se extenderá el agua desbordada hacia el interior del dique, según la simulación de inundaciones.
- 3 Los diques serán dispuestos en los tramos arriba mencionados, donde el nivel de agua de diseño supera la altura del dique existente o la altura del suelo dentro del dique.
- 4 La altura del dique se define en el nivel de agua de crecidas con período de retorno de 50 años más el libre bordo.

En la Tabla 4.12.1-1 y la Figura-4.12.1-4 se presenta el plan de construcción de diques en cada cuenca.

Tabla 4.12.1-1 Plan de construcción de diques en cada cuenca

Río	Tramos a se	er mejorados	Promedio	Tamaño	Long. de
			de altura	propuesto de	diques
			faltante de	diques	(km)
			diques		
			(m)		
Chira	M. izquierda	0,0k-99,0k	3,80	Altura de diques	77,5
	M. derecha	0,0k-99,0k	4,17	$= 4.0 \mathrm{m}$	89,5
				Altura de las	
				obras de	
	Total		4,00	protección de	167
				márgenes =	
				4,0m	




Figura 4.12.1-4 Alcance de las obras de construcción de diques en el Río Chira

7) Costo del Proyecto

En las Tablas Tabla 4.12.1-2 y 4.13.1-5 se presentan los costos directos de obras en precios privados, y el costo del Proyecto. Asimismo, el costo del Proyecto en precios sociales se presenta en la Tabla 4.12.1-5.

Tabla 4.12.1-2 Costo directo de obras (a precios privados)

Construcción d	e dique			Defensa ribere	eña		
B1	H 1	B2	Α	B1	H 2	B2	А
3.0	1.0	8.5	5.8	1.0	1.0	2.4	10.8
3.0	2.0	14.0	17.0	1.0	2.0	2.9	13.4
3.0	3.0	19.5	33.8	1.0	3.0	3.4	16.5
3.0	4.0	25.0	56.0	1.0	4.0	3.9	20.1
3.0	5.0	30.5	83.8	1.0	5.0	4.4	24.3
3.0	1.5	11.3	10.7	1.0	6.0	4.9	28.9
				1.0	1.5	2.6	12.0
				1.0	10.0	6.9	52.4

Cuenca	Obras	Cantidad	Unidad	Precio unitario (en soles)	Costo directo de obras/m	Costo directo de obras/km	Long. de diques(km)	Costo directo de obras (en mil soles)
	Diques	56.0	m 3	10.0	560.0	560.0		93,520.00
Chira	Protección de má rgenes	20.1	m3	100.0	2014.1	2014.1	167.0	336,348.40
		Total			2,574.10	2,574.10		429,868.40

Tabla 4.12.1-3 Costo del plan de control completo de inundaciones (a precios privados)

						事業	事業費(民間価格)					
Nombre de		直接費					間接費	#1111				INFRAESTRUCTURA
a 2	Costo Directo	Costo de Obras Temporales	Costo de Obras	Gastos Operativos	Utilidad	Costo Total Infraestructura	NDI	Costo Total Obra	Impacto Ambiental	Expediente Tecnico	Supervisión	HIDRAULICA Costo Total
流域名	直接工事費計 (1)		共通仮設費 工事費 諸経賽(2)=0.1 x(1) (3)=(1)+(2) (4)=0.15	諸経費 (4) = 0.15 x (3)	利益 (5) = 0.1 x (3)	妻 利益 構造物工事費 x(3)(5)=0.1 x(3)(6)=(3)+(4)+(5)	税金 (7) = 0.18 x (6)	建設費 (8) = (6)+(7)	環境影響 (9)=0.01 x (8)	詳細設計 (10) = 0.05 x (8)	施工管理費 (11) = 0.1 x (8)	施工管理費 構造物·事業費 (11)=0.1 x(8) (12)=(8)+(9)+(10)+(11)
+5∭	429,868,400		42,986,840 472,855,240	70,928,286	47,285,524	591,069,050	106,392,429	697,461,479	6,974,615	34,873,074	69,746,148	809,055,316

Tabla 4.12.1-4 Costo del plan de control completo de inundaciones (a precios sociales)

						事業費	事業費(社会価格)					
Nombre de		直接費					間接費					INFRAESTRUCTURA
	Costo Directo	Costo de Obras Temporales	Costo de Obras	Gastos Operativos	Utilidad	Costo Total Infraestructura	ΛÐΙ	Costo Total Obra	Impacto Ambiental	Expediente Tecnico	Supervisión	HIDRAULICA Costo Total
流域名	直接工事費計	共通仮設費	工事費	諸経費	相	構造物工事費	税金	建設費	環境影響	詳細設計	施工管理費	構造物·事業費
	(1)	$(2) = 0.1 \times (1)$	$(2) = 0.1 \times (1)$ $(3) = (1) + (2)$ $(4) = 0.15$	$(4) = 0.15 \times (3)$	$(5) = 0.1 \times (3)$	\times (3) (5) = 0.1 \times (3) (6) = (3)+(4)+(5)	$(7) = 0.18 \times (6)$	(8) = (8)+(7)	(9)=0.01 × (8)	(10) = 0.05 x (8)	$(11) = 0.1 \times (8)$	(12) = (8)+(9)+(10)+(11)
CHIRA	345,614,194	34,561,419	34,561,419 380,175,613	57,026,342	38,017,561	475,219,516	85,539,513	560,759,029	5,607,590	28,037,951	56,075,903	650,480,474

(2) Plan de operación y mantenimiento

El costo de operación y mantenimiento fue estimado identificando la tendencia de sedimentación y erosión del lecho con base en los resultados del análisis unidimensional de la variación de lecho, y se planteó un plan de operación y mantenimiento de largo plazo.

El curso actual del río presenta algunos tramos angostos donde existen los puentes, obras agrícolas (bocatomas), etc. y se observa una tendencia de acumularse los sedimentos aguas arriba de estos tramos. Por lo tanto, en el presente Proyecto se plantea incrementar la capacidad hidráulica de estos tramos angostos para evitar en la medida de lo posible la sedimentación aguas arriba y en el lecho (parte principal), a la par de almacenar en lo posible los sedimentos cuando ocurren inundaciones que superen un período de retorno de 50 años.

1) Análisis de la variación de lecho

En la Figura 4.12.1-5 se presentan los resultados del análisis de la variación del lecho del Río Chira en los próximos cincuenta años. A partir de esta figura se puede proyectar la tendencia de la sedimentación y erosión del lecho, así como su respectivo volumen.

2) Tramos que necesitan de mantenimiento

En la Tabla 4.12.1-5 se presentan los posibles tramos que requerirán someter a un proceso de mantenimiento a largo plazo en la cuenca del Río Chira.

3) Costo de operación y mantenimiento

A continuación se presenta el costo directo de obras a precios privados para el mantenimiento (excavación del lecho) requerido en los próximos 50 años en cada cuenca.

Costo directo de obras

A precios privados: $2.500.000 \text{ m}^3 \text{ x } 10 \text{ soles} = 25.000 \text{ mil soles}$

En la Tabla 4.12.1-6 y Tabla 4.12.1-7 se presenta el costo del Proyecto de 50 años a precios privados y sociales.

Tabla 4.12.1-5 Tramos cuyo lecho debe ser excavado en forma programada

Río	Ext	ensión de la excavación	Método de mantenimiento
Río Chira	1 tramo	Tramo: 64,0 km-68,0 km Volumen: 2.500.000 m ³	Se considera necesario eliminar periódicamente los sedimentos que se acumularán aguas arriba de la presa Sullana. Dado que va a ser imposible eliminar la totalidad de los sedimentos por su elevado volumen, se dará mayor prioridad a la parte inmediatamente arriba de la presa fija por su importancia.

^{*} Volumen de sedimentos que se acumularán en 50 años

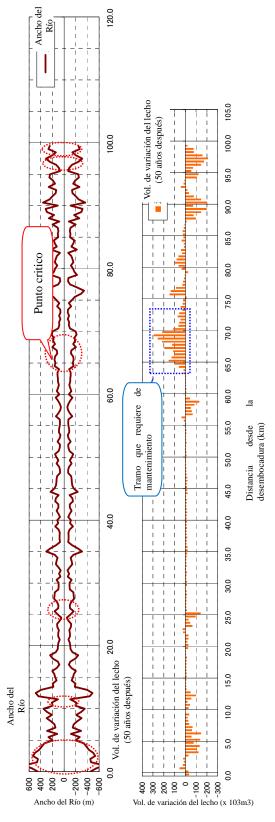


Figura 4.12.1-5 Tramo que requiere de mantenimiento (Río Chira)

Tabla 4.12.1-6 Costo de obras de excavación de lecho (a precios privados)

-		_	
Costo Total	事業費	(7) = 0.18 * (6) $ (8) = (6) + (7) $ $ (9) = 0.01 * (8) $ $ (10) = 0.05 * (8) $ $ (11) = 0.1 * (8) $ $ (12) = (8) + (9) + (10) + (11)$	47,053
Supervisión	施工管理費	(11) = 0.1*(8)	4,056
Expediente Tecnico	詳細設計	(10) = 0.05*(8)	2,028
Impacto Ambiental	環境影響	(9)=0.01*(8)	406
Costo Total Obra	建設費	(2) = (8)	40,563
IGV	税金	(7) = 0.18*(6)	6,188
Costo Total Infraestructura	構造物工事費	(6) = (3)+(4)+(5)	34,375
Utilidad	利益	(5) = 0.1 * (3)	2,750
Gastos Operativos	諸経費	(4) = 0.15*(3)	4,125
Costo de Obras	工事費	(3) = (1) + (2)	27,500
Costo de Obras Temporales	共通仮設費	(2) = 0.1*(1)	2,500
Costo Directo (soles)	直接工事費計	(1)	25,000
Nombre de la Cuenca	流域名		+5川

Tabla 4.12.1-7 Costo de obras de excavación de lecho (a precios sociales)

Costo Total	事業費 (13) = (9)×(10)×(11)×(12)	37,830
Supervisión	施工管理費 (12) = 0.1*(9)	3,261
Expediente Tecnico	詳細設計 (11) = 0.05*(9)	1,631
Impacto Ambiental	環境影響 詳細設計 施工管理費 (10)=0.01*(9) (11)=0.05*(9) (12)=0.1*(9)	326
Costo Total Obra	建設費 (9) = fc*(8)	32,612
Factor de Corrección	修正係数 fc	0.804
Costo Total Obra	税金 建設費 () = 0.18*(6) (8) = (6)+(7)	40,563
ŊĎĬ	税金 (7) = 0.18*(6)	6,188
Costo Total Infraestructura	構造物工事費 (6)= (3)+(4)+(5)	
Utilidad	利益 (5) = 0.1*(3)	2,750
Gastos Operativos		4,125
Costo de Obras	工事費 (3)=(1)+(2) (4)=0.15*(3)	27,500
Costo de Obras Temporales	共通仮設費 (2) = 0.1*(1)	2,500
Costo Directo (soles)	直接工事費計 (1)	25,000
Nombre de la Cuenca	流域名	#5111

(3) Evaluación social

1) Costos a precios privados

i) Monto de daños

En la Tabla 4.12.1-8 se presenta el monto de daños calculado analizando el desbordamiento provocado por inundaciones con períodos de retorno entre 2 y 50 años en la Cuenca del río Chira.

Tabla 4.12.1-8 Monto de daños para inundaciones de diferentes períodos de retorno

(a precios privados)

	Daños en miles de S/. 被害額(千ソーレス)
確率年(t)	Chira
2	122,963
5	361,437
10	441,350
25	502,673
50	582,821

ii) Promedio anual de reducción de daños

En la Tabla 4.12.1-9 se presenta el promedio anual de reducción de daños encada cuenca calculado con los datos de la Tabla 4.12.1-8.

iii) Costo del Proyecto y el costo de operación y mantenimiento

En la Tabla 4.12.1-3 se presenta el costo del Proyecto. Asimismo en la Tabla se presenta el costo anual de operación y mantenimiento (OyM) de los diques y de las obras de protección de márgenes, calculado en el 0,5 % del costo de construcción, más el promedio anual del costo de excavación del lecho indicado en la Tabla 4.12.1-6.

iv) Evaluación económica

En la Tabla 4.12.1-10 se presentan los resultados de la evaluación económica.

Tabla 4.12.1-9 Promedio anual de reducción de daños

s/1000

									3/ 1000
		民	間価格∶流域全	体 (Precios Priv	ados para las c	uencas en su T	OTALIDAD)		
			被害額(Da	ños Totales – m	niles de S/.)			年平均被害額	
流域 Cuenca	流量規模 Periodo de	超過確率 Probabilidad	事業を実施し ない場合①	事業を実施した場合②	軽減額 ③=①-②	区間平均被害 額 ④	区間確率 ⑤ Valor	④×⑤ Valor Promedio	年平均被害額の 累計=年平均被 害軽減期待額
Ouchica	retorno	TTODADIIIdad	Sin Proyecto	Con Proyecto	Daños mitigados 3=1-2	Promedio de Daños	incremental de la probabilidad	del Fluio de	Daño Medio Anual
	1	1.000	0	0	0			0	0
	2	0.500	122,963	0	122,963	61,482	0.500	30,741	30,741
CHIRA	5	0.200	361,437	0	361,437	242,200	0.300	72,660	103,401
CHIKA	10	0.100	441,350	0	441,350	401,394	0.100	40,139	143,540
	25	0.040	502,673	0	502,673	472,012	0.060	28,321	171,861
	50	0.020	582,821	0	582,821	542,747	0.020	10,855	182,716

Tabla 4.12.1-10 Resultados de la evaluación económica (costos a precios privados)

				,	•		
流域名	年平均被害軽減額	評価期間被害 軽減額(15年)	事業費	維持管理費	B/C	NPV	IRR(%)
Guenca	Promedio anual de reducción de daños	Reducción de daños en el período de evaluación (15 años)	Costo del Proyecto	Costo de OyM	Relación B/C	Valor actual neto (VAN)	Tasa interna de retorno (TIR (%)
Chira	2,375,308,338	1,072,642,163	809,055,316	59,450,746	1.46	338,327,966	18%

2) Costos a precios sociales

i) Monto de daños

En la Tabla 4.12.1-11 se presenta el monto de daños calculado analizando el desbordamiento provocado por inundaciones con períodos de retorno entre 2 y 50 años en cada cuenca.

Tabla 4.12.1-11 Monto de daños de las inundaciones de diferentes períodos de retorno (a precios sociales)

	Daños en miles de S/. 被害額(千ソーレス)
確率年(t)	Chira
2	145,252
5	422,989
10	514,404
25	587,103
50	676,724

ii) Promedio anual de reducción de daños

En la Tabla 4.12.1-12 se presenta el promedio anual de reducción de daños encada cuenca calculado con los datos de la Tabla 4.12.1-11.

iii) Costo del Proyecto y el costo de operación y mantenimiento

En la Tabla 4.12.1-4 se presenta el costo del Proyecto. Asimismo en la Tabla se presenta el costo anual de operación y mantenimiento (OyM) de los diques y de las obras de protección de márgenes, calculado en el 0,5 % del costo de construcción, así como el promedio anual

de costo de excavación del lecho indicado en la Tabla 4.12.1-7.

iv) Evaluación económica

En la Tabla 4.12.1-13 se presentan los resultados de la evaluación económica.

Tabla 4.12.1-12 Promedio anual de reducción de daños (a precios sociales)

s/1000

社会価格:流域全体									
	流量規模 Periodo de retorno	de 超適傩學	被害額 (Daños Totales - miles de S/.)			ᅙᄩᇎᄮᄺᆂ	豆眼	年平均被害額	左正比林中姓の
流域 Cuenca			事業を実施し ない場合①	事業を実施した場合②	軽減額 ③=①-②	区間平均被害額 ④ Promedio de Daños	区間確率 ⑤ Valor incremental de la probabilidad	②×⑤ Valor Promedio	年平均被害額の 累計=年平均被 害軽減期待額 Daño Medio Anual
Guerica			Sin Proyecto	Con Proyecto	Daños mitigados 3=1)-2				
	1	1.000	0	0	0			0	0
	2	0.500	145,252	0	145,252	72,626	0.500	36,313	36,313
CHILDY	5	0.200	422,989	0	422,989	284,120	0.300	85,236	121,549
CHIRA	10	0.100	514,404	0	514,404	468,696	0.100	46,870	168,419
	25	0.040	587,103	0	587,103	550,753	0.060	33,045	201,464
	50	0.020	676,724	0	676,724	631,914	0.020	12,638	214,102

Tabla 4.12.1-13 Resultados de la evaluación económica (costos a precios sociales)

流域名 Cuenca	年平均被害軽減額	評価期間被害 軽減額(15年)	事業費	維持管理費	B/C	NPV	IRR(%)
	Promedio anual de	Reducción de daños en el período de evaluació n (15 años)	Costo del Proyecto	Costo de OyM	Relación B/C	Valor actual neto (VAN)	Tasa interna de retorno (TIR (%)
Chira	2,783,328,667	1,256,896,056	650,480,474	47,798,400	2.13	666,507,441	27%

(4) Conclusiones

Los resultados de la evaluación económica demuestra que el Proyecto arroba impacto económico positivo en términos del costo a precios tanto privados como sociales, pero el costo requerido a precios privados es sumamente elevado (de 809,1 millones de soles, equivalentes a 24.270 millones de yenes), concluyéndose que es poco viable adoptarse en el presente Proyecto.

4.12.2 Plan de Reforestación y Recuperación de la Vegetación

(1) Reforestación de la cuenca alta

Se recomienda, a largo plazo, reforestar en todas las zonas consideradas críticas de la cuenca alta. Por lo tanto, aquí se profundizará en el análisis de esta alternativa.

1) Políticas básicas

- Objetivos: Mejorar la capacidad de infiltración del área de fuente de agua, disminuir el flujo de agua en suelos superficiales, y a su vez aumentar el flujo de agua en suelos intermedios y la napa freática. Por todo lo mencionado, se corta el flujo de agua en temporada alta de inundación, aumenta el recurso hídrico en áreas montañosas, se reduce y evita la inundación aumentando así la cantidad y mayor flujo de aguas subterráneas, reduciendo y previniendo las inundaciones.
- ② <u>Área de forestación</u>: Forestar en áreas con posibilidad de sembrar en las cuencas con fuentes de agua o en áreas donde ha disminuido el área boscosa.

- Método de forestación: Plantaciones por los pobladores locales. El mantenimiento por cuenta propia de los promotores, la supervisión y asesoramiento será llevado por organizaciones no gubernamentales.
- Mantenimiento después de la forestación: Realizar el mantenimiento por el responsable del sembrado de la comunidad, para ello se creará un sistema de pago (Pago por servicios ambientales) por los beneficiarios de aguas abajo
- ⑤ Observaciones: Luego de cada raleo se tendrá que reforestar el área, manteniendo y conservando de manera sostenible a largo plazo. Se deberá diseñar incentivo para los pobladores que viven aguas arriba de la cuenca.

Manteniendo el bosque y reforestando luego del raleo, se conserva el bosque, se amortigua y previene la inundación. Para ello, es necesario que los pobladores locales se concienticen, incentivar a los pobladores aguas abajo, promocionar y difundir durante la ejecución del proyecto la importancia del bosque en el Perú.

2) Selección de las áreas a reforestar

(Proyecto existente de Reforestación de la Cuenca del Río Chira): Actualmente se está llevando a cabo el Proyecto Binacional Catamayo – Chira con base en el estudio de cooperación Perú – Ecuador. Este Proyecto incluye algunas actuaciones para la conservación del suelo y de los bosques de reserva de agua. Este Proyecto se está implementando con financiamiento de España (70 %), Perú (15 %) y Ecuador (15 %), que incluye también el componente reforestación. El área seleccionada para la reforestación y conservación forestal en dicho proyecto es justamente las importantes zonas de recarga de acuífero, las cuales coinciden con el componente reforestación del presente Proyecto, y no se considera pertinente invertir esfuerzos donde ya hay otros donantes actuando.

3) Tiempo requerido para el provecto de reforestación

Dado que la población en sí es muy reducida, la disponibilidad de la fuerza laboral es reducida. Así, el trabajo que se puede realizar al día es limitado, y la eficiencia de trabajo será muy baja. El Equipo de Estudio de JICA estimó el tiempo que se requiere para reforestar la totalidad del área a partir de la población de las zonas sujetas al plan de reforestación, el número de plantas, la eficiencia de trabajo, etc. De acuerdo a esta estimación, se demorarán 11 años en la Cuenca del Río Chira (cuencas alta y baja).

4) Volumen total de reforestación en la cuenca alta, período y costo del proyecto

Se ha estimado la superficie que requiere ser reforestada en la cuenca del Río Chira, así como el costo de ejecución Según esta estimación, el área a reforestarse suma un total de 35 mil hectáreas aproximadamente, el período requerido es de 9 años, y el costo se calcula en 95,2 millones de soles. Es decir, se requiere invertir gran cantidad de tiempo y costo para reforestar.

Tabla 4.12.2-1 Plan de reforestación de las cuencas altas

Cuenca	Superficie a reforestar (ha)	Tiempo requerido (años)	Costo requerido (soles)
Chira cuenca baja	7,442	2	20,086
Chira cuenca alta	27,835	9	75,130
Total	35,277	_	95,216

(Fuente: Equipo de Estudio de JICA)

5) Conclusiones

El objetivo del presente Proyecto es ejecutar las obras más urgentes, y destinar un período tan

largo para la reforestación que tiene un efecto indirecto cuyo impacto se demora en manifestarse no sería congruente con el objetivo propuesto para el Proyecto. Al considerar que se requiere invertir nueve años y 95,2 millones de soles, se concluye que es poco viable implementar esta alternativa en el presente Proyecto, y que debería de ejecutarse oportunamente en el marco de un plan de largo plazo después de concluido el presente Proyecto.

4.12.3 Plan de control de sedimentos

Para el plan de control de sedimentos a largo plazo, se recomienda ejecutar las obras necesarias en la cuenca alta.

El Plan de Control de Sedimentos en la cuenca alta consistirá principalmente en la construcción de las presas de control de sedimentos y de las obras de protección de márgenes. En la Figura 4.12.3-1 se presenta la disposición de las obras de control de sedimentos que se propone ejecutar en toda la cuenca. Se estimó el costo de las obras de la cuenca del Río Chira, suponiendo: a) cubrir la totalidad de la cuenca; y b) cubrir solo las zonas prioritarias, analizando la disposición de las obras para cada caso. Los resultados se muestran en la Tabla 4.12.3-1.

Dada la extensión de la cuenca del Río Chira, el costo de construcción para todas las alternativas sería demasiado elevado en caso de disponer las obras de protección de márgenes, presas de control de erosión, etc., además que se requerirá de un tiempo sumamente largo. Esto implica que el Proyecto se demorará en manifestar sus efectivos positivos. Así, se concluye que es poco viable ejecutar esta alternativa dentro del presente Proyecto, debiendo ser ejecutada oportunamente en el marco de un plan a largo plazo, después de terminado el presente Proyecto.

Tabla 4.12.3-1 Costos estimados de ejecución de obras de control de sedimentos en la cuenca alta

Cuenca Alcance		Protección de márgenes		Bandas		Presa de control de sedimentos		Total costo	Costo del
	Alcance	Vol. (km)	Costo directo (Millones S/.)	Vol. (unidades)	Costo directo (Millones S/.)	Vol. (unidades)	Costo directo (Millones S/.)	directo de obras	Proyecto (Millones S/.)
CI.	Toda la cuenca	0	S/.0	0	S/.0	272	S/.423	S/.423	S/.796
Chira	Tramo prioritario	0	S/.0	0	S/.0	123	S/.192	S/.192	S/.361

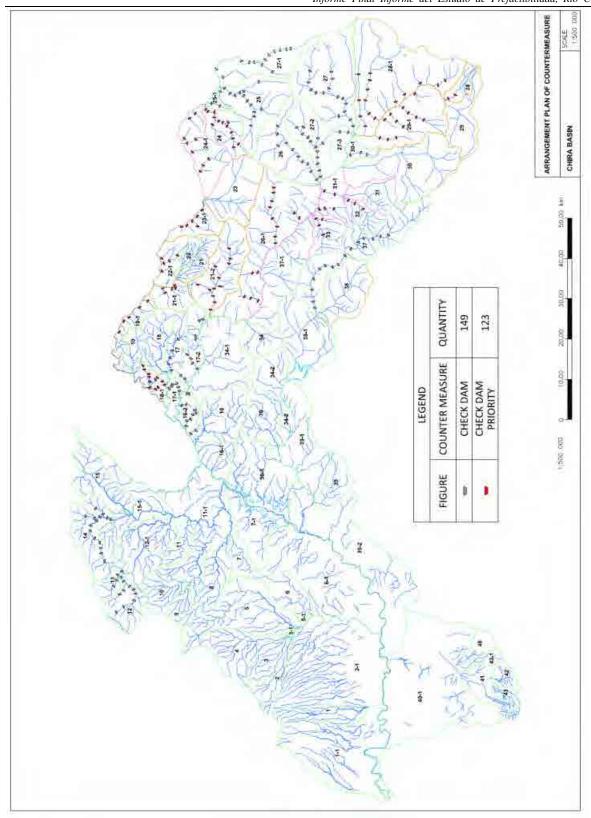


Figura 4.12.3-1 Ubicación de las obras de control de sedimentos de la cuenca del Río Chira

5. CONCLUSIONES

La alternativa seleccionada en el presente Estudio es estructuralmente segura, además que la evaluación social arrojó un valor económico suficientemente alto. Su impacto al medio ambiente es reducido. Sin embargo, ante el fuerte requerimiento de la comunidad local, y considerando que el presente Proyecto aliviará la alta vulnerabilidad a las inundaciones de la cuenca del Río Chira y de la comunidad local, contribuyendo al desarrollo socioeconómico de esta zona, el Gobierno deberá invertir esfuerzos por hacer realidad este proyecto buscando otro financiamiento.

Ministerio de Agricultura República de Perú

ESTUDIO PREPARATORIO SOBRE EL

PROGRAMA DE PROTECCIÓN DE VALLES Y POBLACIONES RURALES Y VULNERABLES ANTE INUNDACIONES

EN

LA REPÚBLICA DEL PERÚ

INFORME FINAL INFORME DEL ESTUDIO DE PREFACTIBILIDAD II-3 INFORME DEL PROYECTO (RÍO CAÑETE) (Versión Pública)

Marzo de 2013

Agencia de Cooperación Internacional del Japón

Yachiyo Engineering Co., Ltd.
Nippon Koei Co., Ltd
Nippon Koei Latin America – Caribbean Co., Ltd.
Nippon Koei Latin America – Caribbean Co., Ltd.

Mapa del Área del Estudio

Abreviaturas

Apreviaturas		
Abreviaturas	Nombre oficial o significado	
ANA	Autoridad Nacional del Agua	
ALA	Autoridad Local del Agua	
B/C	Relación Costo Beneficio (Costo Benefit Ratio)	
GDP	PBI (Producto Bruto Interno) (Gross Domestic Product)	
GIS	Sistema de información geográfica	
	(Geographic Information System)	
DGAA	Dirección General de Asuntos Ambientales	
DGFFS	Dirección General de Forestal y de Fauna Silvestre	
DGIH	Dirección General de Infraestructura Hidráulica	
DGPM	Dirección General de Programación Multianual del Sector Público	
DNEP	Dirección Nacional de Endeudamiento Público	
DRA	Dirección Regional de Aguricultura	
EIA	Estudio de impacto ambiental (Environmental Impact Assessment)	
FAO	Organización de las Naciones Unidas para la Agricultura y la	
	Alimentación	
	(Food and Agriculture Organization of the United Nations)	
F/S	Estudio de Factibilidad (Feasibility Study)	
GORE	Gobiernos Regionales	
HEC-HMS	Sistema de Modelado Hidrológico del Centro de Ingeniería	
	Hidrológica	
HEC-RAS	Sistema de Análisis de Ríos del Centro de Ingeniería Hidrológica	
	(Hydrologic Engineering Centers River Analysis System)	
IGN	Instituto Geográfico Nacional	
IGV	Impuesto General a Ventas	
INDECI	Instituto Nacional de Defensa Civil	
INEI	Instituto Nacional de Estadística	
INGEMMET	Instituto Nacional Geológico Minero Metalúrgico	
INRENA	Instituto Nacional de Recursos Naturales	
IRR	Tasa Interna de Retorno (Internal Rate of Return - IRR)	
JICA	Agencia de Cooperación Internacional del Japón	
	(Japan International Cooperation Agency)	
JNUDRP	Junta Nacional de Usuarios de los Distritos de Riego del Perú	

L/A	Acuerdo de Préstamo (Loan Agreement)
MEF	Ministerio de Economía y Finanzas
MINAG	Ministerio de Agricultura
M/M	Minuta de Discusiones (Minutes of Meeting)
NPV	VAN (Valor Actual Neto) (NET PRESENT VALUE)
O&M	Operación y mantenimiento (Operation and maintenance)
OGA	Oficina General de Administración
ONERRN	Oficina Nacional de Evaluación de Recursos Naturales
OPI	Oficina de Programación e Inversiones
PE	Proyecto Especial Chira-Piura
PES	PSA (Pago por Servicios ambientales) (Payment for Enviromental
	Services)
PERFIL	Estudio del Perfil
Pre F/S	Estudio de prefactibilidad
PERPEC	Programa de Encauzamiento de Ríos y protección de Estructura de
	Captación
PRONAMACH	Programa Nacional de Manejo de Cuencas Hidrográficas y
IS	Conservación de Suelos
PSI	Programa de Sub Sectorial de irrigaciones
SCF	Factor de conversión estándar
SENAMHI	Servicio Nacional de Meteorología y Hidrología
SNIP	Sistema Nacional de Inversión Pública
UF	Unidades Formuladoras
VALLE	Llanura aluvial, llanura de valle
VAT	Impuesto al valor agregado (Value added tax)

ESTUDIO PREPARATORIO

SOBRE EL

PROGRAMA DE PROTECCIÓN DE VALLES Y POBLACIONES RURALES Y VULNERABLES ANTE INUNDACIONES

EN

LA REPÚBLICA DEL PERÚ

Informe Final Informe del Estudio de Prefactibilidad II-3 Informe del Proyecto (Río Cañete)

<u>ÍNDICE</u>

Mapa del Área del Estudio

Abreviaturas

1. RES	SUMEN EJECUTIVO	1-1
1.1	Nombre del Proyecto	1-1
1.2	Objetivo del Proyecto	1-1
1.3	Balance Oferta y Demanda	1-1
1.4	Medidas estructurales	1-2
1.5	Medidas no estructurales	1-3
1.5.1	Reforestación y recuperación vegetal	1-3
1.5.2	Plan de control de sedimentos	1-3
1.6	Asistencia técnica	1-4
1.7	Costos	1-4
1.8	Resultados de la evaluación social	1-4
1.9	Sostenibilidad del PIP	1-6
1.10	Impacto Ambiental	1-7
1.11	Plan de ejecución	1-8
1.12	Instituciones y administración	1-9
1.13	Marco Lógico	1-10
2. ASI	PECTOS GENERALES	2-1
2.1	Nombre del Proyecto	2-1
2.2	Unidades Formuladora y Ejecutora	2-1
2.3	Participación de las Entidades Involucradas y de los Beneficiarios	2-1

	2.4	Marco conceptual (marco de afinidad)	2-4
	2.4.1	Antecedentes	2-4
	2.4.2	Leyes y reglamentos, políticas y guías relacionadas con el Programa	2-6
3.	IDEN	ITIFICACIÓN	3-1
	3.1	Diagnóstico de la Situación Actual	3-1
	3.1.1	Naturaleza	3-1
	3.1.2	Condiciones socioeconómicas del Área del Estudio	3-2
	3.1.3	Agricultura	3-8
	3.1.4	Infraestructuras	3-12
	3.1.5	Daños reales de las inundaciones	3-15
	3.1.6	Resultados de las visitas a los sitios del Estudio	3-17
	3.1.7	Situación actual de la vegetación y reforestación	3-23
	3.1.8	Situación actual de la erosión del suelo	3-28
	3.1.9	Análisis de descarga	3-39
	3.1.10	Análisis de inundaciones	3-46
	3.2	Definición de Problema y Causas	3-52
	3.2.1	Problemas de las medidas de control de inundaciones en el Área del Estudio	3-52
	3.2.2	Causas de los problemas	3-52
	3.2.3	Efectos de los problemas	3-53
	3.2.4	Árbol de causas y efectos	3-54
	3.3	Objetivo del Proyecto	3-56
	3.3.1	Medidas de solución al problema principal	3-56
	3.3.2	Impactos esperados por el cumplimiento del objetivo principal	3-56
	3.3.3	Árbol de medidas – objetivos – impactos	3-57
1.	FOR	MULACIÓN Y EVALUACIÓN	4-1
	4.1 D	efinición del Horizonte de Evaluación del Proyecto	4-1
	4.2	Análisis de Demanda y oferta	4-1
	4.3 P	laneamiento Técnico de las Alternativas	4-3
	4.3.1 M	ledidas estructurales	4-3
	4.3.2	Medidas no estructurales	4-14
	4.3.2	.1 Reforestación y recuperación vegetal	4-14
	4.3.2	.2 Plan de control de sedimentos	4-17
	4.3.3	Asistencia técnica	4-20
	4.4	Costos	4-23
	4.4.1	Estimación de costos (a precios privados)	4-23
	112	Estimación de costos (a precios sociales)	4-23

4.5	Resultados de la evaluación social	4-24	
4.	4.5.1Costos a precios privados		
4.	5.2 Costos a precios sociales	4-29	
4.	5.3 Conclusiones de la evaluación social	4-30	
4.6	Análisis de sensibilidad	4-30	
4.7	Sostenibilidad del PIP	4-33	
4.8	Impacto Ambiental	4-33	
4.	8.1 Metodología	4-34	
4.	8.2 Identificación, Descripción y Evaluación de Impactos Socio ambientales	4-34	
4.	8.3 Planes de Manejo Socio ambiental	4-38	
4.	8.4 Plan de Seguimiento y Control	4-39	
4.	8.5 Presupuesto para la gestión de impacto ambiental	4-41	
4.	8.6 Conclusiones y recomendaciones	4-42	
4.9	Plan de ejecución	4-42	
4.1	0 Instituciones y administración	4-46	
4.1	1 Marco lógico de la opción seleccionada finalmente	4-50	
4.1	2 Plan a Mediano y Largo Plazo	4-51	
4.	12.1 Plan general de control de inundaciones	4-51	
4.12.2 Plan de Reforestación y Recuperación de la Vegetación		4-63	
4.12.3 Plan de control de sedimentos			
\mathcal{C}	CONCLUSIONES	5-1	

Lista de Tablas

Tabla 1.3-1	Análisis de Demanda y oferta	1-1
Tabla 1.8-1	Monto medio correspondiente a la reducción de daños al año (costos a precios privados)	1-5
Tabla 1.8-2	Monto medio correspondiente a la reducción de daños al año (costos a precios sociales) .	1-5
Tabla 1.8-3	Evaluación social (costos a precios privados)	1-6
Tabla 1.8-4	Evaluación social (costos a precios sociales)	1-6
Tabla 1.9-1	Presupuesto de las comisiones de regantes	1-7
Tabla 1.11-1	Plan de ejecución	1-8
Tabla 1.13-1	Marco lógico de la alternativa seleccionada definitivamente	1-10
Tabla 3.1.2-1	Distritos alrededor del Río Cañete y su área	3-2
Tabla 3.1.2-2	Variación de la población urbana y rural	3-3
Tabla 3.1.2-3	Número de hogares y de familias	3-3
Tabla 3.1.2-4	Ocupación	3-4
Tabla 3.1.2-5	Índice de la pobreza	3-4
Tabla 3.1.2-6	Tipo de viviendas	3-5
Tabla 3.1.2-7	Variación del PIB por cápita (2001-2009)	3-8
Tabla 3.1.3-1	Datos básicos de las comisiones de regantes	3-9
Tabla 3.1.3-2	Siembra y ventas de los principales cultivos	3-10
Tabla 3.1.4-1	Datos básicos de infraestructuras viales	3-12
Tabla 3.1.4-2	Canales de riego existentes	3-12
Tabla 3.1.4-3	Canales de drenaje	3-13
Tabla 3.1.4-4	Proyectos Implementados por PERPEC	3-14
Tabla 3.1.5-1	Situación de los daños de inundaciones	3-15
Tabla 3.1.5-2	Datos de daños	3-15
Tabla 3.1.5-3	Desastres en la Región de Lima	3-16
Tabla 3.1.7-1	Lista de las formaciones vegetales representativas de la Cuenca del Río Cañete	3-23
Tabla 3.1.7-2	Superficie de las formaciones vegetales frente a la superficie de la Cuenca (Cuencas de	l río
Cañete)		3-24
Tabla 3.1.7-3	Porcentaje de las zonas de vida ecológicas frente a la superficie de las cuencas (Cuenca	s del
río Cañete)		3-24
Tabla 3.1.7-4	Superficie forestal perdida hasta 2005	3-24
Tabla 3.1.7-5	Variación de las formaciones vegetales entre 1995 y 2000	3-25
Tabla 3.1.7-6	Reforestación ejecutada entre 1994 y 2003	3-26
Tabla 3.1.8-1	Lista de informaciones recolectadas	3-28

Tabla 3.1.8-2	Superficie según altitudes	3-29
Tabla 3.1.8-3	Pendientes y superficie	3-29
Tabla 3.1.8-4	Pendiente del lecho y longitud total de la quebrada	3-30
Tabla 3.1.8-5	Pendientes según altitudes del Río Cañete	3-34
Tabla 3.1.9-1	Lista de estaciones de monitoreo pluvial (cuenca del Río Cañete)	3-40
Tabla 3.1.9-2	Período de toma de datos pluviales (cuenca del Río Cañete)	3-40
Tabla 3.1.9-3	Precipitaciones con período de retorno de 24 horas (cuenca del Río Cañete)	3-43
Tabla 3.1.9-4	Caudal probable en los puntos de control	3-45
Tabla 3.1.9-5	Caudal de inundaciones según períodos de retorno (Caudal pico: Punto de referencia)	3-46
Tabla 3.1.10-1	Datos básicos del levantamiento de los ríos	3-47
Tabla 3.1.10-2	Metodología análisis de desbordamiento	3-48
Tabla 3.2.1-1	Problemas y medidas de conservación de las obras de control de inundaciones	3-52
Tabla 3.2.1-2	Causas directas e indirectas del problema principal	3-53
Tabla 3.2.3-1	Efectos directos e indirectos del problema principal	3-54
Tabla 3.3.1-1	Medidas de solución directas e indirectas al problema	3-56
Tabla 3.3.2-1	Impactos directos e indirectos	3-57
Tabla 4.2-1 A	Análisis de la demanda y oferta	4-1
Tabla 4.2-2 I	Demanda y oferta según puntos	4-2
Tabla 4.3.1-1	Perfil del levantamiento topográfico	4-4
Tabla 4.3.1-2	Aspectos y criterios de evaluación	4-5
Tabla 4.3.1-3	Fundamentos de los tramos seleccionados para ejecutar obras	4-7
Tabla 4.3.1-4	Comparación de alternativas	4-9
Tabla 4.3.1-5	Caudal de crecidas de diseño y libre bordo	4-12
Tabla 4.3.1-6	Planificación y diseño de las obras prioritarias de control de inundaciones	4-13
Tabla 4.3.2.1-1	Criterios de evaluación para la elección de las especies forestales	4-15
Tabla 4.3.2.1-2	Elección de las especies forestales	4-16
Tabla 4.3.2.1-3	Metrado para el plan de forestación y recuperación de cobertura vegetal (A lo largo d	lel
río)		4-16
Tabla 4.3.2.1-4	Costo unitario de las plantas	4-17
Tabla 4.3.2.1-5	Costo de ejecución de reforestación	4-17
Tabla 4.3.2.2-1	Lineamientos básicos del Plan de Control de Sedimentos	4-18
Tabla 4.3.3-1	Presupuesto de la Asistencia Técnica	4-21
Tabla 4.4.1-1	Tabla de resumen de costo directo de obras (a precios privados)	4-23
Tabla 4.4.1-2	Costo de Proyecto (a precios privados)	4-23
Tabla 4.4.2-1	Tabla resumen del costo directo de obras (a precios sociales)	4-24

Tabla 4.4.2-2 Costo de Proyecto (a precios sociales) 4-24
Tabla 4.5.1-1 Variables del cálculo del monto de pérdidas de inundaciones
Tabla 4.5.1-2 Monto estimado de pérdidas (a precios privados)
Tabla 4.5.1-3 Estimación del monto medio anual de de reducción de pérdidas
Tabla 4.5.1-4 Resultados del cálculo del monto medio anual de pérdidas que se espera reducir con el
Proyecto (Precios privados)
Tabla 4.5.1-5 Indicadores de evaluación del análisis de la relación costo-beneficio y sus características 4-28
Tabla 4.5.1-6 Evaluación social (B/C, VAN, TIR) (A precios privados)
Tabla 4.5.2-1 Monto estimado de pérdidas (a precios sociales)
Tabla 4.5.2-2 Monto medio anual de pérdidas que se espera reducir con el Proyecto (a precios sociales)
4-30
Tabla 4.5.2-3 Evaluación social (B/C, VAN, TIR) (A precios sociales)
Tabla 4.6-1 Métodos del análisis de sensibilidad
Tabla 4.6-2 Casos sometidos al análisis de sensibilidad e indicadores económicos
Tabla 4.6-3 Resultados del Análisis de Sensibilidad de TIR, B/C y VAN
Tabla 4.7-1 Presupuesto del Proyecto de las comisiones de regantes
Tabla 4.8-1 Puntos de Obras
Tabla 4.8.1-1 Criterio de Evaluación - Matriz de Leopold
Tabla 4.8.1-2 Grados de significancia de impactos (Valor de los Impactos)
Tabla 4.8.2-1 Matriz de Reconocimiento del Impacto Ambiental (Período construcción) 4-35
Tabla 4.8.2-2 Matriz de Identificación y Evaluación de Impactos resumida (Etapa de Construcción)
-Cañete
Tabla 4.8.2-3 Matriz de Identificación de Impactos (Etapa de Operación)
Tabla 4.8.2-4 Matriz de Identificación y Evaluación de Impactos resumida (Etapa de Operación) – Cañete
4-37
Tabla 4.8.3-1 Impactos Ambientales Identificados y sus medidas propuestas
Tabla 4.8.4-1 Monitoreo de Calidad del Agua y Parámetros Biológicos
Tabla 4.8.4-2 Monitoreo de Calidad del Aire
Tabla 4.8.4-3 Monitoreo de Calidad del Ruido
Tabla 4.8.4-4 Monitoreo de Calidad del Agua (Etapa de Operación)
Tabla 4.8.5-1 Costos directos de medidas de gestión de impacto ambiental
Tabla 4.9-1 Plan de ejecución
Tabla 4.10-1 Presupuesto del PSI (2011)
Tabla 4.10-2 Planilla del PSI 4-49
Tabla 4.11-1 Marco lógico de la alternativa seleccionada definitivamente
Tabla 4.12.1-1 Plan de construcción de diques en la cuenca del río Cañete

Tabla 4.12.1-2	Costo directo de obras (a precios privados)	4-56
Tabla 4.12.1-3	Costo de Proyecto (a precios privados)	4-57
Tabla 4.12.1-4	Costo de Proyecto (a precios sociales)	4-57
Tabla 4.12.1-5	Tramos cuyo lecho debe ser excavado en forma programada	4-58
Tabla 4.12.1-6	Costo de obras de excavación de lecho para 50 años (a precios privados)	4-60
Tabla 4.12.1-7	Costo de obras de excavación de lecho para 50 años (a precios sociales)	4-60
Tabla 4.12.1-8	Monto de daños para inundaciones de diferentes períodos de retorno (a precios privados	dos)
		4-61
Tabla 4.12.1-9	Promedio anual de reducción de daños	4-62
Tabla 4.12.1-10	Resultados de la evaluación económica (costos a precios privados)	4-62
Tabla 4.12.1-11	Monto de daños de las inundaciones de diferentes períodos de retorno (a precios soc	iales)
		4-62
Tabla 4.12.1-12	Promedio anual de reducción de daños	4-63
Tabla 4.12.1-13	Resultados de la evaluación económica (costos a precios sociales)	4-63
Tabla 4.12.2-1	Plan General de la forestación en aguas arriba de las Cuencas	4-64
Tabla 4.12.3-1	Costos estimados de ejecución de obras de control de sedimentos en la cuenca alta	4-65

Lista de Figuras

Figura 1.12-1	Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)	1-9
Figura 1.12-2	Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y	
mantenimiento	posterior a la inversión)	1-9
Figura 3.1.1-1	Ríos seleccionados para el Estudio	3-1
Figura 3.1.2-1	Tasa de crecimiento del PIB según regiones (2009/2008)	3-6
Figura 3.1.2-2	Contribución de las regiones al PIB	3-7
Figura 3.1.2-3	PIB per cápita (2009)	3-7
Figura 3.1.3-1	Área sembrada	3-11
Figura 3.1.3-2	Rendimiento	3-11
Figura 3.1.3-3	Ventas	3-11
Figura 3.1.6-1	Visita al Sitio del Estudio (Río Cañete)	3-19
Figura 3.1.6-2	Condiciones locales relacionadas con el Desafío 1 (Río Cañete)	3-20
Figura 3.1.6-3	Condiciones locales relacionadas con el Desafío 2 (Río Cañete)	3-21
Figura 3.1.6-4	Condiciones locales relacionadas con el Desafío 3 (Río Cañete))	3-22
Figura 3.1.7-1	Mapa forestal de la Cuenca del Río Cañete	3-27
Figura 3.1.8-1	Superficie según altitudes	3-29
Figura 3.1.8-2	Pendientes y superficie	3-30
Figura 3.1.8-3	Pendiente del lecho y longitud total de la quebrada	3-31
Figura 3.1.8-4	Pendiente del lecho y longitud total de la quebrada	3-31
Figura 3.1.8-5	Mapa de Isoyetas de la Cuenca del Río Cañete	3-32
Figura 3.1.8-6	Relación entre el volumen de erosión del suelo y las diferentes causas	3-33
Figura 3.1.8-7	Pendientes según altitudes del Río Cañete	3-34
Figura 3.1.8-8	Tierras andesíticas y basálticas derrumbadas	3-35
Figura 3.1.8-9	Producción de sedimentos de las rocas sedimentarias	3-35
Figura 3.1.8-10	Invasión de cactus	3-35
Figura 3.1.8-11	Movimiento de los sedimentos en el cauce	3-36
Figura 3.1.8-12	Producción y arrastre de sedimentos en un año ordinario	3-37
Figura 3.1.8-13	Producción y arrastre de sedimentos durante las lluvias torrenciales de magnitud sim	iilar
al de fenómeno	de El Niño (período de retorno de 1:50 años)	3-38
Figura 3.1.8-14	Producción de sedimentos de sedimentos en grandes crecidas (escala geológica)	3-39
Figura 3.1.9-1	Mapa de ubicación de las estaciones de monitoreo (cuenca del Río Cañete)	3-41
Figura 3.1.9-2	Mapa de isoyetas (cuenca del Río Cañete)	3-42
Figure 3 1 0-3	Precipitaciones con período de retorno de 24 horas (cuenca del Río Cañeta)	3_4/

Figura 3.1.9-4 Hidrograma del Río Cañete	3-46
Figura 3.1.10-1 Idea del modelo unidimensional	3-47
Figura 3.1.10-2 Esquema conceptual del modelo de análisis de desbordamiento	3-49
Figura 3.1.10-3 Capacidad hidráulica actual del Río Cañete	3-50
Figura 3.1.10-4 Alcance de desbordamiento del Río Cañete (inundaciones con período de 50 años)	
	3-51
Figura 3.2.4-1 Árbol de causas y efectos	3-55
Figura 3.3.3-1 Árbol de medidas – objetivos – impactos	3-58
Figura 4.3.1-1 Resultados de selección de las obras prioritarias de control de inundación en el río C	'añete
	4-6
Figura 4.3.1-2 Obras prioritarias de control de inundaciones en el Río Cañete	4-10
Figura 4.3.1-3 Sección normal del dique	4-12
Figura 4.3.2.1-1 Diagrama Conceptual Forestación en las estructuras ribereñas	4-14
Figura 4.3.2.1-2 Ubicación del diseño del plan de forestación en la estructura ribereña	4-15
Figura 4.3.2.2-1 Obras de control de sedimentos	4-19
Figura 4.9.1-1 Ciclo de proyecto en SNIP	4-43
Figura 4.9.1-2 Instituciones relacionadas con SNIP	4-44
Figura 4.10-1 Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)	4-47
Figura 4.10-2 Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y	
mantenimiento posterior a la inversión)	4-47
Figura 4.10-3 Organigrama del PSI	4-49
Figura 4.12.1-1 Definición de la alineación del dique	4-52
Figura 4.12.1-2 Plano do del Río Cañete	4-53
Figura 4.12.1-3 Sección longitudinal del Río Cañete.	4-54
Figura 4.12.1-4 Alcance de las obras de construcción de diques en el Río Cañete	4-55
Figura 4.12.1-5 Tramo que requiere de mantenimiento (Río Cañete)	4-59
Figura 4.12.3-1 Ubicación de las obras de control de sedimentos de la cuenca del Río Cañete	4-66

1. RESUMEN EJECUTIVO

1.1 Nombre del Proyecto

"Programa de Protección de Valles y Poblaciones Rurales Vulnerables ante Inundaciones, Implementación de Medidas de Prevención para el Control de Desbordes e Inundaciones del Río Cañete, Departamento Lima"

1.2 Objetivo del Proyecto

El impacto final que el Proyecto contempla alcanzar es aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones y fomentar el desarrollo socioeconómico local.

1.3 Balance Oferta y Demanda

Se calculó el nivel de agua teórico en el caso de discurrir el caudal de inundaciones de diseño basándose en los datos del levantamiento transversal del río ejecutado con un intervalo de 500m, en la cuenca del río Cañete, suponiendo un caudal de inundaciones de diseño igual al caudal de inundaciones con un período de retorno de 50 años. Luego, se determinó la altura del dique como la suma del nivel de agua de diseño más el libre bordo del dique.

Ésta es la altura requerida del dique para controlar los daños provocados por las inundaciones de diseño y constituye el indicador de la demanda de la comunidad local.

La altura del dique existente o la altura del terreno actual es la altura requerida para controlar los daños de las inundaciones actuales, y constituye el indicador de la oferta actual.

La diferencia entre la altura del dique de diseño (demanda) y la altura del dique o terreno actual constituye, la diferencia o brecha que hay entre la demanda y la oferta.

En la Tabla 4.2-2 se presentan los promedios del nivel de agua de inundaciones calculado con período de retorno de 50 años; de la altura requerida del dique (demanda) para controlar el caudal sumando el nivel de agua de diseño más el libre bordo del dique; de la altura del dique o del terreno actual (oferta), y la diferencia entre estas dos últimas (diferencia entre demanda-oferta) del río. Luego, en la Tabla 1.3-1 se presentan los valores en cada punto. La altura del dique o del terreno actual es mayor que la altura requerida del dique, en determinados puntos. En estos, la diferencia entre la oferta y demanda se consideró nula.

Tabla 1.3-1 Análisis de la demanda y oferta

Cuenca Cuenca Cu		•	teórico con período de		***	Dif. Demanda/oferta			
	M. izquierda	M. derecha							
	1	2	3	4	5=3+4	6=5-1	7=5-2		
Cañete	188.40	184.10	184.77	1.20	185.97	1.18	2.03		

1.4 Medidas estructurales

Las medidas estructurales constituyen un tema que deben ser analizados en el plan de control de inundaciones que abarque toda la cuenca. Los resultados del análisis se presentan en el apartado 4.12 "Plan de mediano y largo plazo". Dicho plan propone construir diques para el control de inundaciones de toda la cuenca. Sin embargo, en el caso de la cuenca del río Cañete, se requiere implementar un gran proyecto invirtiendo un costo sumamente alto, mucho más allá del presupuesto del presente Proyecto, lo que hace que sea poco viable adoptar esta propuesta. Por lo tanto, suponiendo que los diques para controlar las inundaciones de toda la cuenca serán construidos progresivamente dentro de un plan de mediano y largo plazo, aquí se enfocó el estudio en las obras más urgentes y prioritarias para el control de inundaciones.

(1) Caudal de inundaciones de diseño

La Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas elaborada por la Dirección General de Programación Multianual del Sector Público (DGPM) del Ministerio de Economía y Finanzas (MEF) recomienda realizar el análisis comparativo de diferentes períodos de retorno: 25 años, 50 años y 100 años para el área urbana, y 10 años, 25 años y 50 años para el área rural y las tierras agrícolas.

Considerando que el presente Proyecto se orienta a la protección del área rural y de las tierras agrícolas, el caudal de inundaciones de diseño se determinó en el valor establecido para las inundaciones con período de retorno de 50 años en la Guía mencionada.

(2) Selección de las obras de control de inundaciones prioritarias

Se aplicaron los cinco criterios siguientes para la selección de las obras de control de inundaciones prioritarias.

- > Demanda de la comunidad local (basada en los daños históricos de inundaciones)
- Falta de la capacidad hidráulica (incluyendo los tramos afectados por la socavación)
- Condiciones de la zona adyacente (condiciones del área urbana, tierras de cultivo, etc.)
- Condiciones de inundación (extensión de del agua desbordada conforme los resultados del análisis de inundaciones)
- Condiciones sociales y ambientales (infraestructuras locales importantes)

Los resultados del levantamiento del río Cañete, del reconocimiento en sitio, del estudio de la capacidad hidráulica, del análisis de inundaciones, y de las entrevistas a la comunidad local (necesidades de las comisiones de regantes, gobiernos locales, daños históricos de inundaciones, etc.) fueron sometidos a una evaluación integral, aplicando los cinco criterios de evaluación antes indicados. Así se seleccionaron en total cinco puntos críticos (con mayor puntaje en la evaluación) que necesitan de medidas de control de inundaciones.

Concretamente, dado que el levantamiento del río, la evaluación de la capacidad hidráulica y el

análisis de desbordamiento han sido realizados a cada 500 metros de intervalo (sección), la evaluación integral se realizó también para tramos de 500 metros. Estos tramos fueron evaluados en escalas de 1 a 3 (0 punto, 1 punto y 2 puntos), y los tramos cuya suma superaron 6 puntos, han sido seleccionados como sitios prioritarios. El límite interior (6 puntos) ha sido determinado tomando en cuenta también el presupuesto disponible del Proyecto en general.

1.5 Medidas no estructurales

1.5.1 Reforestación y recuperación vegetal

(1) Políticas básicas

El plan de reforestación y recuperación de la vegetación que responde al objetivo del presente Proyecto puede ser dividido en: i) la reforestación a lo largo de las estructuras fluviales, y ii) la reforestación en la cuenca alta. La primera tiene efecto directo sobre la prevención de inundaciones manifestando su impacto en corto tiempo, mientras que la segunda requiere de alto costo y largo período para su implementación, tal como se indicará más tarde en el apartado 4.12 "Plan de mediano y largo plazo", y es poco viable para ser ejecutada en el marco del presente Proyecto. Por lo tanto, aquí se enfocó el estudio en la primera alternativa.

(2) Sobre la reforestación a lo largo de las estructuras fluviales

Esta alternativa propone plantar árboles a lo largo de las estructuras fluviales, incluyendo los diques y las obras de protección de márgenes.

- Objetivo: Reducir el impacto del desbordamiento del río cuando ocurre una crecida inesperada o por el estrechamiento del río por la presencia de obstáculos, mediante franjas de vegetación entre el río y los elementos a ser protegidos.
- Metodología: Crear franjas vegetales de un determinado ancho entre las estructuras fluviales y el río.
- Ejecución de obras: Plantar vegetación en una parte de las estructuras fluviales (diques, etc.)
- Mantenimiento después de la reforestación: El mantenimiento será asumido por las comisiones de regantes a su iniciativa propia.

El ancho, el largo y la superficie de la reforestación a lo largo de las estructuras fluviales son, 11m, 3,4km y 3,7ha respectivamente.

1.5.2 Plan de control de sedimentos

El plan de control de sedimentos debe ser analizado dentro del plan general de la cuenca. Los resultados del análisis se presentan en el apartado 4.12 "Plan de mediano y largo plazo". En resumen el plan de control de sedimentos de la cuenca entera requiere de un elevado costo de inversión, que va mucho más allá del presupuesto del presente Proyecto, lo que hace que sea poco viable adoptar este plan.

En la cuenca alta del Río Cañete se construyó el año pasado la presa Plantanal que retiene los sedimentos arrastrados, por lo que se espera que el volumen de sedimentos aportados a la cuenca más baja se reducirá drásticamente y el impacto que recaerá al curso del río del tramo inferior será casi nulo. Por lo tanto, se considera que no es necesario tomar una medida especial de control de sedimentos.

1.6 Asistencia técnica

Con base en las propuestas técnicas de medidas estructurales y no estructurales, se propone incorporar también en el presente Proyecto la asistencia técnica a modo de reforzar las medidas tomadas.

El objetivo de la asistencia técnica es "mejorar la capacidad y el nivel técnico de la comunidad local, como medida de gestión de riesgos para reducir los daños de inundaciones en los valles seleccionados".

Se propone diseñar la asistencia técnica propia de la cuenca del río Cañete, con el fin de ofrecer capacitación adaptada a las características propias de esta cuenca. Los beneficiarios serán los representantes de las comisiones y grupos de regantes de la cuenca del río Cañete, los empleados de los gobiernos locales (provinciales y distritales), representantes de la comunidad local, etc.

Se seleccionarán como participantes de la capacitación, a las personas con capacidad de replicar y difundir lo aprendido en los cursos a los demás miembros de la comunidad, a través de las reuniones de las organizaciones a las que pertenecen.

1.7 Costos

A continuación se detallan los costos del presente Proyecto

1.8 Evaluación social

(1) Beneficios

Los beneficios del control de inundaciones vienen a ser la reducción de las pérdidas de inundaciones que se lograría con la implementación del Proyecto y se determina por la diferencia entre los montos de pérdida sin y con el Proyecto. Concretamente, para determinar los beneficios, se calcula primero el monto de pérdidas por inundaciones de diferentes períodos de retorno (entre 2 y 50 años), suponiendo que las obras de control de inundaciones tendrán una vida útil de 50 años, y luego se determina el monto medio anual de reducción de pérdidas a partir de los montos de pérdidas de diferentes períodos de retorno. En las Tablas 1.8-1 y 1.8-2 se presentan los montos medio anuales de reducción de pérdidas que se lograrían al implementar el presente Proyecto, expresados en los costos a precios privados y costos a precios sociales.

Tabla 1.8-1 Monto medio correspondiente a la reducción de daños al año (costos a precios privados)

s/1000

		超過確率 Probabilidad	被害額(Da	ños Totales – m	niles de S/.)	反眼亚斯地史	豆眼球壶	年平均被害額	左正わが宝箔の
Cuenca Pe	流量規模 Periodo de		事業を実施し ない場合①	事業を実施した場合②	軽減額 ③=①-②	区間平均被害額 ④	⑤ Valor	④×⑤ Valor Promedio	累計=年平均被 累計=年平均被 害軽減期待額
Oddilda	retorno	Trobabilidad	Sin Proyecto	Con Proyecto	Daños mitigados 3=1-2	Promedio de Daños	incremental de la probabilidad	del Fluio de	Daño Medio Anual
	1	1.000	0	0	0			0	0
	2	0.500	1,660	153	1,507	754	0.500	377	377
CAÑETE	5	0.200	6,068	832	5,236	3,372	0.300	1,012	1,388
CANETE	10	0.100	73,407	8,413	64,994	35,115	0.100	3,512	4,900
	25	0.040	98,357	11,776	86,581	75,787	0.060	4,547	9,447
	50	0.020	149,018	16,428	132,589	109,585	0.020	2,192	11,639

Tabla 1.8-2 Monto medio correspondiente a la reducción de daños al año (costos a precios sociales)

s/1000

	流量規模 Periodo de		被害額(Da	ños Totales – m	niles de S/.)	反眼亚斯特史	D 88 7 2 2	年平均被害額	左고사神史영소
流域 Cuenca		超過確率 Probabilidad	┃ ない場合① ┃ た場合② ┃ ③		軽減額 ③=①-②	区間平均被害 額 ④	⑤ Valor	④×⑤ Valor Promedio	年平均被告額の 累計=年平均被 害軽減期待額
Guerica	retorno	TTODADIIIdad	Sin Proyecto	Con Proyecto	Daños mitigados (3=(1)-(2)	Promedio de Daños	incremental de la probabilidad	del Fluio de	Daño Medio Anual
	1	1.000	0	0	0			0	0
	2	0.500	2,582	272	2,311	1,155	0.500	578	578
CAÑETE	5	0.200	10,558	1,024	9,534	5,922	0.300	1,777	2,354
CANETE	10	0.100	105,137	9,908	95,229	52,382	0.100	5,238	7,593
	25	0.040	144,972	14,260	130,712	112,971	0.060	6,778	14,371
	50	0.020	213,134	20,117	193,018	161,865	0.020	3,237	17,608

(2) Resultados de la evaluación social

El objetivo de la evaluación social en el presente Estudio es evaluar la eficiencia de las inversiones en las medidas estructurales aplicando el método de análisis de la relación costo-beneficio (B/C) desde el punto de vista de la economía nacional. Para ello, se determinaron los indicadores de evaluación económica (relación B/C, Valor Actual Neto –VAN, y tasa interna de retorno económico –TIR).

Se estimaron los beneficios del período objeto de la evaluación, de los primeros 15 años desde el inicio del Proyecto. Dado que de estos 15 años, dos corresponden al período de ejecución de las obras, la evaluación se realizó para los 13 años siguientes a la terminación de las obras.

En las Tablas 1.8-3 y 1.8-4 se muestran los costos a precios privados y los costos a precios sociales arrojados en la evaluación social del presente Proyecto. Se observa que el proyecto arrojará suficiente

efecto económico.

Tabla 1.8-3 Evaluación social (costos a precios privados)

Tabla 1.8-4 Evaluación social (costos a precios sociales)

A continuación se presentan los efectos positivos del Proyecto que son difícilmente cuantificables en valores económicos.

- ① Contribución al desarrollo económico local al aliviar el temor por la suspensión de las actividades económica y daños.
- ② Contribución al incremento de oportunidades de empleo local por las obras de construcción del proyecto.
- ③ Refuerzo de la conciencia de la población local por los daños de las inundaciones y otros desastres.
- ④ Contribución al incremento de ingresos por la producción agrícola estable, al aliviarse los daños de inundaciones.
- 5 Subida del precio de las tierras de cultivo

Por los resultados de la evaluación económica anteriormente expuestos, se considera que el presente Proyecto contribuirá sustancialmente al desarrollo de la economía local.

1.9 Análisis de la sostenibilidad

El presente Proyecto será cogestionado por el gobierno central (a través de la DGIH), comisiones de regantes y los gobiernos regionales, y el costo del Proyecto será cubierto con los respectivos aportes de las tres partes. Por lo general el gobierno central (en este caso, la DGIH) asume el 80 %, las comisiones de regantes el 10 % y los gobiernos regionales el 10 %. Sin embargo, los porcentajes de los aportes de estas dos últimas son decididos mediante discusiones entre ambas partes. Por otro lado, la operación y mantenimiento (OyM) de las obras terminadas es asumida por las comisiones de regantes. Por lo tanto, la sostenibilidad del Proyecto depende de la rentabilidad del Proyecto y de la capacidad de OyM de las comisiones de regantes.

(1) Rentabilidad

El proyecto en la cuenca del Río Cañete es suficientemente rentable y por lo tanto la viabilidad del Proyecto es alta. El monto de inversión en esta cuenca se estima en S/ 25,7 millones en costos a precios privados, pero el impacto económico de la implementación del Proyecto en términos de los costos a precios sociales es de B/C = 5,57, TIR = 62% aprox., y VAN = s/. 84,8 millones, indicando

que es un proyecto económicamente efectivo.

(2) Costo de operación y mantenimiento

2.355.539.91

El costo anual de operación y mantenimiento requerido para el proyecto, teniendo como año base al año 2008 se estima en 109.511 soles, que corresponde al 0,5 % del costo de construcción del proyecto en la cuenca del Río Cañete. Por otro lado, el promedio de los gastos de operación en los últimos cuatro años de las comisiones de regantes es de 2.421.157.

Al considerar que el costo anual de operación y mantenimiento representa un 4,5 % del presupuesto anual de las comisiones de regantes, el proyecto sería suficientemente sostenible a juzgar de la capacidad financiera de estas comisiones para mantener y operar las obras construidas.

| Presupuesto anual (Unidad/ S)
| Ríos | 2007 | 2008 | 2009 | 2010 | Promedio de cuatro años

2.331339.69

2.608.187.18

2.421.157

Tabla 1.9-1 Presupuesto de las comisiones de regantes

2.389.561.65

1.10 Impacto Ambiental

Cañete

Se revisó y se evaluó el impacto ambiental positivo y negativo asociado la implementación del presente Proyecto y se plantearon las medidas de prevención y mitigación de dichos impactos. La evaluación ambiental preliminar (EAP) se llevó a cabo entre diciembre de 2010 y enero de 2011 por una firma consultora registrada en el Ministerio de Agricultura (CIDES Ingenieros S.A.) en la cuenca del Río Cañete. El informe de dicha evaluación está siendo evaluada actualmente por la Dirección General de Asuntos Ambientales (DGAA) del Ministerio de Agricultura.

Los procedimientos de revisión y evaluación del impacto al entorno natural y social del Proyecto son los siguientes. En primer lugar, se revisó el calendario de ejecución de las obras de construcción de las estructuras fluviales, y se procedió a elaborar la matriz de Leopold.

Se evaluó el impacto a nivel ambiental (entorno natural, biológico y social) y a nivel del Proyecto (fase de construcción y fase de mantenimiento). Se determinaron los niveles cuantitativos del impacto ambiental cuantificando el impacto en términos de la naturaleza del impacto, posibilidad de manifestación, magnitud (intensidad, alcance, duración y reversibilidad).

El EAP puso de manifiesto que el impacto ambiental que se manifestaría por la implementación del presente Proyecto en las fases de construcción y de mantenimiento, en su mayoría, no es muy marcado, y aunque lo fuera, éste puede ser prevenido o mitigado al implementar adecuadamente el plan de gestión del impacto ambiental.

Por otro lado, el impacto positivo es muy marcado en la fase de mantenimiento, lo cual se manifiesta a nivel socioeconómico y ambiental, concretamente, en la mayor seguridad y menor vulnerabilidad, mejor calidad de vida y utilización de tierras.

1.11 Plan de ejecución

La Tabla 1.11-1 presenta el plan de ejecución del Proyecto.

Tabla 1.11-1 Plan de ejecución

	ITEMAC.	2	010)		201	11		20	12	20	013			20	14		2015				2	2016	,
	ITEMS	3	6 9	12	3	6	9 12	3	6	9 12	3 6	9	12	3	6	9	12	3	6	9	12	3	6 9	9 12
1	ESTUDIO PERFIL/EVALUACIÓN SNIP	EST	UDIC						EV	ALUACIÓ	ÓΝ													
2	ESTUDIO FACTIBILIDAD/EVALUACIÓN SNIP			E	STUE	OIO	\perp	$\Box\Box$		EVA	ALUACI	ÓN												
3	NEGOCIACIÓN DE CREDITO EN YENES									R		Ŧ									T			П
4	SELECCIÓN DE CONSULTOR											F	1								1			
5	SERVICIO DE CONSULTOR (DISEÑO DETALLADO, ELABORACIÓN DE DOCUMENTOS PARA LICITACIÓN)							DI	SEÑ	O/DOC	UMEN	топ	DE LI	CITA	CIÓ	N		SU	PER	VISI	ÓN	DE O	BRA	
6	SELECCIÓN DE CONSTRUCTOR														=									
7	EJECCIÓN DE OBRAS																				П			П
1)	CONSTRUCCIÓN DE ESTRUCTURAS																				 T	$\frac{1}{1}$	₹	
2)	REFORESTACIÓN														ļ	= ;				Ξ.	_ [-	П
3)	SISTEMA DE ALERTA TEMPRANA														ļ					_ <u> </u>	-1		4	П
4)	CAPACITACIÓN PREVENTIVA DE DESASTRES														ļ		. J		 		_ [-	П
8	CULMINACIÓN DE OBRAS/ENTREGA A JUNTAS DE U	SUAR	IOS																		1		-	П
																							T	П

1.12 Instituciones y administración

Las instituciones y su administración en la etapa de inversión y la de operación y mantenimiento luego de la inversión se presentan en las Figura 1.12-1 y 1.12-2.

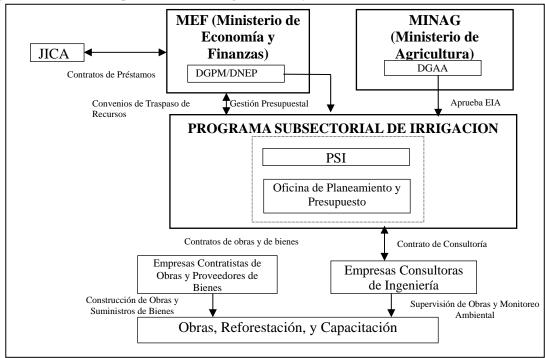


Figura 1.12-1 Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)

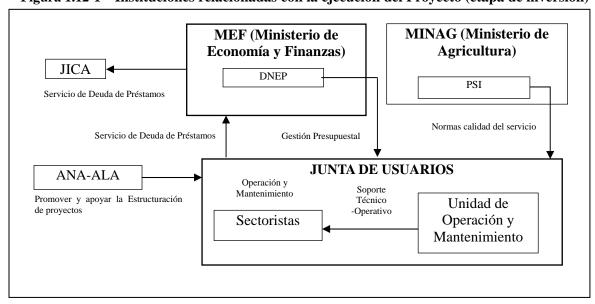


Figura 1.12-2 Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y mantenimiento posterior a la inversión)

1.13 Marco Lógico

En la Tabla 1.13-1 se presenta el marco lógico de la alternativa seleccionada definitivamente.

Tabla 1.13-1 Marco lógico de la alternativa seleccionada definitivamente

Resumen narrativo	Indicadores verificables	Medios de verificación de indicadores	Condiciones preliminares
Meta superior			
Promover el desarrollo socioeconómico local y contribuir al bienestar social de la población.	Mejorar la productividad local, generar más empleos, aumentar ingresos de la población y reducir el índice de la pobreza	Datos estadísticos publicados	Estabilidad socioeconómica y política
Objetivos			
Aliviar la alta vulnerabilidad de los valles y de la comunidad local ante las inundaciones	Tipos, cantidad y distribución de las obras de control de inundaciones, población y á rea beneficiaria	Monitoreo del calendario anual de obras y del plan financiero, fiscalización de ejecución de presupuesto.	Asegurar el presupuesto necesario, intervención activa de los gobiernos central y regional, municipalidades, comisiones de regantes, comunidad local, etc.
Resultados esperados			
Reducción de los sectores y á rea anegable, mejoramiento funcional de las bocatomas, prevención de destrucción de caminos, protección de canales de riego, control de la erosión de márgenes, seguridad de la Presa Poecho	de toma de agua, frecuencia de destrucción de caminos,	Visitas al sitio, revisión del plan de control de inundaciones y de informes de obras de control de inundaciones, monitoreo rutinario por los habitantes locales	Monitoreo de mantenimiento por los gobiernos regionales, municipalidades y la comunidad local, información oportuna a los organismos superiores.
Actividades	D 1 1 22 22 1 12		
Componente A: Medidas estructurales	Rehabilitación de diques, obras de protección de má rgenes y bocatomas, prevenci ón de daños a los caminos, construcción de 28 obras, incluyendo las destinadas a la seguridad de la presa	Revisión del Diseño Detallado, informes de obras, gastos ejecutados	Asegurar el presupuesto de obras, Diseño Detallado/ejecución de obras/supervisión de obras de buena calidad
Componente B: Medidas no			
estructurales			
B-1 Reforestación y recuperación vegetal	Área reforestada, área de bosques ribereños	Informes de avance de obras, monitoreo rutinario por la comunidad local	Apoyo de consultores, ONGs, comunidad local, concertación y cooperación de la comunidad de la cuenca baja
B-2 Sistema de alerta temprana	Equipos instalados, estado de operación, frecuencia de alertas emitidas, estado de transmisión de información	Informes de avance de obras, monitoreo por entidad pública y comunidad local	Funcionamiento adecuado de equipos, debida capacitación del personal, comunicación y promoción, OyM de equipos y programas
Componente C: Educación en prevención de desastres y desarrollo de capacidades	Número de sesiones de seminarios, prácticas, capacitación, taller,	Informes de avance, monitoreo por gobiernos locales y comunidad	Predisposición de los actores a participar, asesoría por consultores y ONGs
Gestión de ejecución del Proyecto			
Gestión del Proyecto	Diseño Detallado, orden de inicio de las obras, supervisió n de obras, operación y mantenimiento	Planos de diseño, plan de ejecución de obras, pliego de estimación de costos, especificaciones de las obras, contratos, informes de gestión de obras, manuales de mantenimiento	Selección de consultores y contratistas de alto nivel, participación de la población beneficiaria en operación y mantenimiento

2. ASPECTOS GENERALES

2.1 Nombre del Proyecto

"Programa de Protección de Valles y Poblaciones Rurales Vulnerables ante Inundaciones, Implementación de Medidas de Prevención para el Control de Desbordes e Inundaciones del Río Cañete, Departamento Lima"

2.2 Unidades Formuladora y Ejecutora

(1) Unidad formuladora

Nombre: Dirección General de Infraestructura Hidráulica, Ministerio de Agricultura

Responsable: Orlando Hernán Chirinos Trujillo

Director General de Dirección General de Infraestructura Hidráulica

Dirección: Av. Benavides Nº 395 Miraflores, Lima12 – Perú

Teléfono: (511)4455457/6148154 Correo electrónico: ochirinos@minag.gob.pe

(2) Unidad ejecutora

Nombre: Programa Subsectorial de Irrigaciones, Ministerio de Agricultura

Responsable: Ing. Jorge Zúñiga Morgan

Director Ejecutivo

Dirección: Jr. Emilio Fernandez Nº 130 Santa Beatriz, Lima-Perú

Teléfono: (511)4244488

Correo electrónico: postmast@psi.gob.pe

2.3 Participación de las Entidades Involucradas y de los Beneficiarios

A continuación se indican las instituciones y entidades involucradas en el presente Proyecto, así como los beneficiarios.

(1) Ministerio de Agricultura (MINAG)

El MINAG, como gestor de los recursos naturales de las cuencas para impulsar el desarrollo agrícola en cada una de ellas, asume la responsabilidad de mantener la sostenibilidad económica, social y ambiental en beneficio del desarrollo de la agricultura.

Para cumplir efectiva y eficientemente dicho objetivo, el MINAG está emprendiendo desde 1999 el Programa de Encauzamiento de Ríos y Protección de Estructuras de Captación (PERPEC). Los programas de prevención de desastres fluviales que están llevando a cabo los gobiernos regionales son financiados con los recursos del PERPEC.

- 1) Oficina de Administración (OA)
- Asume la gestión y ejecución del presupuesto del Programa.
- Planifica la preparación de las guías de gestión y de asuntos financieros.
- 2) Dirección General de Infraestructura Hidráulica, DGIH)

- Asume el estudio, control e implementación del programa de inversión.
- Elabora las guías generales del programa en colaboración con la OPI.
- 3) Oficina de Planeamiento e Inversiones (OPI)
- Realiza la evaluación preliminar el programa de inversión.
- Asume la gestión del programa y la ejecución del presupuesto del programa.
- Planifica la preparación de las guías de gestión y de asuntos financieros.
- 4) Programa Subsectorial de Irrigaciones (PSI)
- Ejecuta el programa de inversión aprobado por la OPI y DGPM.

(2) Ministerio de Economía y Finanzas (MEF)

1) Dirección General de Programación Multianual del Sector Público (DGPM)

Se encarga de aprobar las obras de inversión pública conforme los procedimientos del Sistema Nacional de Inversión Pública (SNIP) para evaluar la relevancia y la factibilidad, de tramitar la solicitud del desembolso del presupuesto estatal y el préstamo de JICA.

(3) Agencia de Cooperación Internacional del Japón (JICA)

Es una institución del gobierno del Japón cuyo objetivo es contribuir al desarrollo socioeconómico de los países en desarrollo a través la cooperación internacional. JICA ha extendido la asistencia financiera para la ejecución de los estudios de prefactibilidad y de factibilidad del presente Proyecto.

(4) Gobiernos Regionales (GORE)

Los gobiernos regionales asumen el fomento del desarrollo regional integral y sostenible siguiendo los planes y programas estatales y regionales, procurando aumentar las inversiones públicas y privadas, generar oportunidades de empleo, defender los derechos de los habitantes y garantizar la igualdad de oportunidades.

La participación de los gobiernos regionales con su posible aporte financiero, es un factor indispensable para asegurar la sostenibilidad del Proyecto.

(5) Comisión de Regantes

Existen actualmente 42 comisiones de regantes en la Cuenca del Río Cañete, quienes han manifestado su fuerte deseo porque se ejecuten las obras de construcción de diques, protección de márgenes, reparación de las bocatomas, etc. ya que actualmente están sufriendo grandes daños por las inundaciones de los ríos. A continuación se presenta una breve reseña de las comisiones en la Cuenca del Río Cañete (Para más detalles, véase el apartado 3.1.3). Actualmente, la operación y mantenimiento de los diques, obras de protección de márgenes, bocatomas y canales de riego relacionados con las tierras agrícolas y los sistemas de riego en la cuenca, son realizados principalmente por las comisiones de regantes y sus integrantes, asistidos por los gobiernos locales.

Número de bloques de riego:

42

7

Número de comisiones de regantes:

22.242 ha

Área bajo riego:

22.242 Ha

Beneficiarios: 5.843 productores

(6) Servicio Nacional de Meteorología e Hidrología (SENAMHI)

Es un organismo adscrito al Ministerio del Ambiente, y tiene a su cargo realizar todas las actividades relacionadas con la meteorología, hidrología, medio ambiente y meteorología agrícola. Participa en el monitoreo de aire a nivel global, contribuyendo al desarrollo sostenible, seguridad y bienestar nacional, y recopila las informaciones y datos de las estaciones de observación meteorológica e hidrológica.

(7) Instituto Nacional de Defensa Civil (INDECI)

INDECI es el ente rector y coordinador del Sistema Nacional de Defensa Civil y asume la responsabilidad de organizar y coordinar la comunidad, elaborar planes y controlar el desarrollo de los procesos de la gestión de riesgos de desastres. Tiene como objetivo evitar o aliviar la pérdida de la vida humana por desastres naturales y humanos y prevenir la destrucción de bienes y del medio ambiente.

(8) Autoridad Nacional del Agua (ANA)

La Autoridad Nacional del Agua (ANA) es un ente técnico-normativo a cargo de promover las políticas, planes, programas y reglamentos relacionados con el uso sostenible de los recursos hídricos en todo el país.

Sus funciones abarcan la gestión sostenible de estos recursos, así como el mejoramiento del marco técnico y legal sobre el monitoreo y evaluación de las operaciones de acueducto en cada región. A la par de mantener y promover el uso sostenible de los recursos hídricos, se encarga de llevar a cabo los estudios necesarios y elaborar los principales planes de mantenimiento, programas de cooperación económica y técnica nacional e internacional.

(9) Direcciones Regionales de Agricultura (DRAs)

Las direcciones regionales de agricultura cumplen las siguientes funciones bajo el respectivo gobierno regional.

- Elaborar, aprobar, evaluar, implementar, controla y administrar las políticas nacionales de agricultura, planes sectoriales, así como los planes y políticas regionales propuestas por las municipalidades.
- 2) Controlar las actividades y servicios agrícolas ajustándolos a las políticas y reglamentos relacionados, así como al potencial regional.
- 3) Participar en la gestión sostenible de los recursos hídricos de acuerdo con el marco general

de la cuenca, así como con las políticas de la Autoridad Nacional del Agua (ANA).

- 4) Promover la reconversión de rubros, desarrollo del mercado, exportación y consumo de los productos agrícolas e agroindustriales.
- 5) Promover la gestión del programa de riego, obras de construcción y reparación de riego, así como el manejo adecuado y la conservación de los recursos hídricos y del suelo.

2.4 Marco conceptual (marco de afinidad)

2.4.1 Antecedentes

(1) Trasfondo del Estudio

La República del Perú (en lo sucesivo "Perú") es un país expuesto al alto riesgo de desastres naturales como terremotos, Tsunami, etc., entre las que se figuran las inundaciones. En particular, El Niño que se produce con un intervalo de varios años ha ocasionado los mayores desbordes de ríos y avalanchas en diferentes lugares del país. El desastre más grave que se ha tenido en los últimos años a raíz de El Niño, ocurrió en la época de lluvias 1982-1983 y 1997-1998. En particular, en el período 1997-1998, las inundaciones, derrumbes etc. dejaron pérdidas del orden de 3.500 millones de dólares en todo el país. Las inundaciones más recientes ocurrieron a finales de enero de 2010, en la cercanía del patrimonio mundial Machupichu a raíz de intensas lluvias que interrumpieron el tránsito de la vía férrea y de las carreteras, dejando aisladas a aproximadamente 2.000 personas.

En este contexto, el gobierno central ha implementado los Planes de Contingencia Fenómeno el Niño I y II en los años 1997-1998, a través del Ministerio de Agricultura y Ganadería (MINAG) con el fin de reconstruir las infraestructuras hidráulicas arrasadas por dicho fenómeno. Luego, la Dirección General de Infraestructura Hidráulica (DGIH) del Ministerio de Agricultura (MINAG) inició en 1999 el Programa de Encauzamiento de Ríos y Protección de Estructura de Captación (PERPEC) con el fin de proteger los poblados, tierras de cultivo, infraestructuras agrícolas, etc. ubicados dentro de las zonas de riesgo de inundaciones. Dicho programa consistió en el apoyo financiero al gobierno regional para ejecutar las obras de protección de márgenes. En el plan multianual de PERPEC entre 2007-2009 se habían propuesto ejecutar un total de 206 obras de protección de márgenes en todo el país. Dichos proyectos habían sido diseñados para soportar las inundaciones con un período de retorno de 50 años, pero todas las obras han sido pequeñas y puntuales, sin llegar a dar una solución cabal e integral para el control de inundaciones. Así, todavía se sigue sufriendo daños cada vez que ocurren inundaciones en diferentes lugares.

Así, el MINAG elaboró el Proyecto de Protección de Valles y Poblaciones Rurales y Vulnerables ante Inundaciones" dirigidos a nueve cuencas hidrográficas de las cinco regiones. Sin embargo, ante la limitada disponibilidad de las experiencias, técnicas y recursos financieros para implementar un estudio de preinversión para un proyecto de control de inundaciones de tal magnitud, solicitó el apoyo a JICA para la implementación de dicho estudio. En respuesta a dicha solicitud, JICA y el MINAG sostuvieron discusiones, bajo la premisa de implementarlo en el esquema del estudio preparatorio para la formulación de un proyecto de préstamo de AOD de JICA, sobre el contenido y

el alcance del estudio, el calendario de implementación, las obligaciones y compromisos de ambas partes, etc. plasmando las conclusiones en las Minutas de Discusiones (en lo sucesivo, "M/D") que fueron firmadas el 21 de enero y el 16 de abril de 2010. El presente Estudio fue implementado fundamentándose en dichas M/D.

(2) Antecedentes

El Informe del Estudio de Perfil a nivel del Programa para el presente Proyecto dirigido a nueve cuencas de cinco regiones ha sido elaborado por la DGIH y entregado a la Oficina de Planeamiento e Inversiones (OPI) el 23 de diciembre de 2009, y aprobado el 30 del mismo mes. Posteriormente, la DGIH presentó el informe al Dirección General de Programación Multianual del Sector Público (DGPM) del Ministerio de Economía y Finanzas (MEF) el 18 de enero de 2010. El 19 de marzo la DGPM comunicó a la DGIH los resultados de la revisión y las correspondientes observaciones.

El Equipo de Estudio de JICA inició el estudio en Perú el 5 de septiembre de 2010. Al inicio, el se había propuesto incluir en el estudio a nueve cuencas, de las cuales una, la del Río Ica, fue excluida a propuesta del Perú, quedando ocho cuencas. Estas ocho cuencas fueron divididas en dos grupos: cinco cuencas del Grupo A y tres cuencas del Grupo B. El estudio para el primer grupo fue asignado a JICA y el segundo a la DGIH. El Grupo A incluye las cuencas de los ríos Chira, Cañete, Chincha, Pisco y Yauca, mientras que el Grupo B incluye las de los ríos Cumbasa, Majes y Camana.

El Equipo de Estudio de JICA realizó el estudio de perfil de las cinco cuencas del Grupo A, con un nivel de precisión del prefactibilidad y entregó a DGIH el Informe del Programa del grupo A y los informes de los proyectos de las cinco cuencas a finales de junio de 2011. Asimismo, ya se inició el estudio de factibilidad, omitiendo el estudio de prefactibilidad.

En cuanto a las cuencas del Grupo B cuyo estudio le corresponde a DGIH, se realizó el estudio de perfil entre mediados de febrero y principios de marzo de 2011 (y no a nivel de prefactibilidad como se había establecido en la Minuta de Reuniones), donde la cuenca del río Cumbaza fue excluido porque se vio que no manifestaría un efecto económico. El informe sobre las cuencas de los ríos Camaná y Majes fue entregado a OPI, y se recibieron las observaciones oficiales de OPI a través de DGIH el 26 de abril, indicando que el estudio realizado para estas dos cuencas no satisfacía el nivel de precisión requerido y que era necesario realizar nuevamente el estudio. Asimismo, se indicó realizar un solo estudio para ambos ríos por pertenecer a una sola cuenca hidrográfica (Majes-Camaná).

Por otro lado, debido a la política de austeridad anunciada el 31 de marzo, previo a la asunción del gobierno por el nuevo presidente el 28 de julio, se ha visto que es sumamente difícil obtener nuevo presupuesto, la DGIH ha solicitado a JICA el 6 de mayo para que se realizara los estudios de prefactibilidad y factibilidad de la cuenca Majes-Camaná.

JICA aceptó esta solicitud y decidió llevar a cabo el estudio de la cuenca mencionada modificando

por segunda vez la Minuta de Reuniones (véase la Segunda Enmienda de la Minuta de Reuniones sobre el Informe Inicial, Lima, 22 de julio de 2011.)

Así, el Equipo de Estudio de JICA inició en agosto el estudio de prefactibilidad para la cuenca mencionada, terminándolo a finales de noviembre.

El presente informe corresponde al estudio de prefactibilidad del proyecto de la cuenca Cañete, de cinco cuencas del Grupo A. Se contempla terminar el estudio de factibilidad de la cuenca Majes-Camaná a mediados de enero de 2012, y también el estudio de factibilidad para todas las cuencas seleccionadas en las mismas fechas.

Cabe recordar que la DGIH tramitó el 21 de julio, el registro a SNIP de las cuatro de las cinco cuencas correspondientes a JICA (excepto Yauca), fundamentándose en los informes de proyectos a nivel de prefactibilidad (según cuencas). La DHIG decidió descartar el río Yauca por considerar que su impacto económico es bajo.

2.4.2 Leyes y reglamentos, políticas y guías relacionadas con el Programa

El presente programa ha sido elaborado de conformidad con las siguientes leyes y reglamentos, políticas y guías.

(1) Ley de Recursos Hídricos Nº 29338

Artículo 75.- Protección del agua

La Autoridad Nacional, con opinión del Consejo de Cuenca, debe velar por la protección del agua, que incluye la conservación y protección de sus fuentes, de los ecosistemas y de los bienes naturales asociados a ésta en el marco de la Ley y demás normas aplicables. Para dicho fin, puede coordinar con las instituciones públicas competentes y los diferentes usuarios.

La Autoridad Nacional, a través del Consejo de Cuenca correspondiente, ejerce funciones de vigilancia y fiscalización con el fin de prevenir y combatir los efectos de la contaminación del mar, ríos y lagos en lo que le corresponda. Puede coordinar, para tal efecto, con los sectores de la administración pública, los gobiernos regionales y los gobiernos locales.

El Estado reconoce como zonas ambientalmente vulnerables las cabeceras de Cuenca donde se originan las aguas. La Autoridad Nacional, con opinión del Ministerio del Ambiente, puede declarar zonas intangibles en las que no se otorga ningún derecho para uso, disposición o vertimiento de agua.

Artículo 119.- Programas de control de avenidas, desastres e inundaciones

La Autoridad Nacional, conjuntamente con los Consejos de Cuenca respectivos, fomenta programas integrales de control de avenidas, desastres naturales o artificiales y prevención de daños por inundaciones o por otros impactos del agua y sus bienes asociados, promoviendo la coordinación de acciones estructurales, institucionales y operativas necesarias.

Dentro de la planificación hidráulica se fomenta el desarrollo de proyectos de infraestructura

para aprovechamientos multisectoriales en los cuales se considera el control de avenidas, la protección contra inundaciones y otras medidas preventivas.

(2) Reglamento de la Ley de Recursos Hídricos Ley Nº 29338

Artículo 118°.- De los programas de mantenimiento de la faja marginal

La Autoridad Administrativa del Agua, en coordinación con el Ministerio de Agricultura, gobiernos regionales, gobiernos locales y organizaciones de usuarios de agua promoverá el desarrollo de programas y proyectos de forestación en las fajas marginales para su protección de la acción erosiva de las aguas.

Artículo 259°.- Obligación de defender las márgenes

Constituye obligación de todos los usuarios defender, contra los efectos de los fenómenos naturales, las márgenes de las riberas de los ríos en toda aquella extensión que pueda ser influenciada por una bocatoma, ya sea que ésta se encuentre ubicada en terrenos propios o de terceros. Para este efecto, presentarán los correspondientes proyectos para su revisión y aprobación por la Autoridad Nacional del Agua.

(3) Ley de Agua

Artículo 49. Las inversiones en las medidas preventivas para la protección de cultivos son menores que los costos de medidas de recuperación y de rehabilitación. Es importante dar mayor prioridad a estas medidas de protección que son más económicas y muy beneficiosas para el Estado, y que contribuye al ahorro de los gastos públicos.

- Artículo 50. En el caso de que el costo de las medidas de protección de diques y canales de riego corre a cargo de las unidades productivas familiares o cuando supera la capacidad de pago de los usuarios, el Gobierno podrá sufragar parte de este costo.
- (4) Plan Estratégico Sectorial Multianual del Ministerio de Agricultura para el período 2007-2011 (RM Nº 0821-2008-AG)

Promueve las obras de construcción y reparación de las infraestructuras de riego con la premisa de disponer de recursos hídricos suficientes y su uso adecuado.

- (5) Ley Orgánica de Ministerio de Agricultura, Nº 26821
 En su Artículo 3 se estipula que el sector agrícola asume la responsabilidad de ejecutar las obras fluviales y el manejo de aguas agrícolas. Esto supone que las obras fluviales y el manejo de recursos hídricos con fines agrícolas correrán a cargo de dicho sector.
- (6) Lineamientos de Política Agraria para el Perú 2002, por la Oficina de Políticas del MING)

Título 10 Políticas sectoriales

"La agricultura constituye una actividad productiva de alto riesgo por su vulnerabilidad frente a los fenómenos climáticos, que puede ser previsto y mitigado. ... El costo de los daños a las infraestructuras, cultivos y el ganado puede ser un impedimento para el desarrollo de la agricultura, y como consecuencia, redunda en el empeoramiento del entorno local, regional y nacional.

(7) Programa de Encauzamiento de Ríos y Protección de Estructuras de Captación, PERPEC La DGIH del MINAG ha iniciado en 1999 el Programa de Encauzamiento de Ríos y Protección de Estructuras de Captación (PERPEC) con el fin de proteger a las comunidades, tierras e instalaciones agrícolas y otros elementos de la región de los daños de las inundaciones, extendiendo el apoyo financiero a las obras de protección de márgenes ejecutadas por los gobiernos regionales.

3. IDENTIFICACIÓN

3.1 Diagnóstico de la Situación Actual

3.1.1 Naturaleza

(1) Ubicación

En la Figura 3.1.1-1 se presenta el mapa de ubicación de la cuenca del Río Cañete, incluida en el Área del presente Estudio.

Figura 3.1.1-1 Ríos seleccionados para el Estudio

(2) Descripción general de las cuencas

El Río Cañete recorre a aproximadamente 130 km al sur de la Capital Lima y es el río más cercano de entre los cinco ríos seleccionados a esta ciudad. Su área alcanza unos 6.100 km². Se caracteriza por la reducida anchura de la cuenca baja y por su gran extensión de las cuencas media y alta. Por ello, aproximadamente el 50 % de la cuenca está constituida por altitudes que superan los 4.000 msnm, y solo un 10 % por altitudes menores a 1.000 msnm.

La cuenca baja, que es el Área del Estudio, el río tiene discurre con una pendiente aproximada de 1/90 con un ancho medio de 200 metros.

Las precipitaciones anuales de la cuenca del Río Cañete varían sustancialmente según las altitudes. Por ejemplo, en las zonas con más de 4.000 msnm, ocurren anualmente 1.000 mm de lluvias, y en las zonas con menos de 500 msnm, en contraste, ocurren apenas 20 mm, favoreciendo la desertización. Sin embargo, la superficie de la cuenca hidrográfica es relativamente extensa, y el caudal es también relativamente abundante.

En cuanto a la vegetación, la mayor parte de las cuencas media y alta está cubierta por pajonal. En la cuenca baja, la mayor parte está constituida por desiertos, con excepción de las tierras de cultivo desarrolladas a ambas márgenes del río. Aquí se cultivan principalmente uva y manzana. Además, el río es utilizado para la captura de camarones, y para el turismo (rafting, canoa, etc.)

3.1.2 Condiciones socioeconómicas del Área del Estudio

(1) División administrativa y superficie

El Río Cañete se ubica en la Provincia de Cañete, Región de Lima.

En la Tabla 3.1.2-1 se muestran los distritos alrededor del Río Cañete y su respectiva área.

	Región	Provincia	Distrito	Área(km²)
			San Vicente de Cañete	513.15
	Lima Cañete		Cerro Azul	105.17
		Cañete	Nuevo Imperial	329.3
			San Luis	38.53
			Lunahuaná	500.33

Tabla 3.1.2-1 Distritos alrededor del Río Cañete v su área

(2) Población y el número de hogares

En la siguiente Tabla 3.1.2-2 se presenta la variación de la población en el período 1993-2007.

De la población de 120.663 habitantes en 2007, el 85 % (102.642 habitantes) vive en la zona urbana y el 15 % (18.021 habitantes) en la zona rural.

En todos los distritos, la población está aumentando. Sin embargo, mientras que en la zona urbana está registrando un incremento medio anual de + 2,7 % superando el promedio nacional, la zona rural está experimentando una reducción del 0,1 %.

Tabla 3.1.2-2 Variación de la población urbana y rural

Distrito		Poblac	ión Total	2007			Pob		Variación (%)			
Distrito	Urbana	%	Rural	%	Total	Urbana	%	Rural	%	Total	Urbana	Rural
San Vicente de Cañete	37.512	81 %	8.952	19 %	46.464	22.244	68 %	10.304	32 %	32.548	3,8 %	-1,0 %
Cerro Azul	5.524	80 %	1.369	20 %	6.893	3.271	64 %	1.853	36 %	5.124	3,8 %	-2,1 %
Imperial	33.728	93 %	2.612	7 %	36.340	28.195	92 %	2.459	8 %	30.654	1,3 %	0,4 %
Nuevo Imperial	15.144	80 %	3.882	20 %	19.026	9.403	72 %	3.733	28 %	13.136	3,5 %	0,3 %
San Luis	10.734	90 %	1.206	10 %	11.940	7.725	76 %	2.434	24 %	10.159	2,4 %	-4,9 %
Total	102.642	85 %	18.021	15 %	120.663	70.838	77 %	20.783	23 %	91.621	2,7 %	-1,0 %

Fuente: Elaboración Equipo de estudio JICA, Instituto Nacional de Estadística –INEI, Censos de Población y Vivienda, 2007 y 1993.

En la Tabla 3.1.2-3 se muestra el número de hogares y de familias en 2007. El número de miembros por hogar ha sido en promedio 4,4 personas, salvo en el Nuevo Imperial que ha tenido una cifra menor de 3,91.

El número de miembros por familia, del mismo modo, oscila alrededor de 4,1 personas, salvo Nuevo Imperial que ha tenido una cifra menor de 3,77.

Tabla 3.1.2-3 Número de hogares y de familias

		Distrito									
Variables	San Vicente de Cañ ete	Cerro Azul	Imperial	Nuevo Imperial	San Luis						
Población (habitantes)	46,464	6,893	36,340	19,026	11,940						
Número de hogares	10,468	1,549	8,170	4,867	2,750						
Número de familias	11,267	1,662	8,922	5,052	2,940						
Miembros por hogar (personas/hogar)	4.44	4.45	4.45	3.91	4.34						
Miembros por familia (personas/familia	4.12	4.15	4.07	3.77	4.06						

Fuente: Elaboración Equipo de estudio JICA, Instituto Nacional de Estadística –INEI, Censo de Población y Vivienda, 2007.

(3) Ocupación

En la Tabla 3.1.2-4 se muestra la lista de ocupaciones de los habitantes locales desglosadas según sectores.

Se destaca el sector primario en todos los distritos absorbiendo entre 27,9 y 56.5 % de la población económicamente activa.

Tabla 3.1.2-4 Ocupación

		Distrito													
	San Vicente de Cañete		Cerro	Cerro Azul		rial	Nuevo Ir	nperial	San Luis						
	Personas	%	Personas	%	Personas	%	Personas	%	Personas	%					
micamente															
activa	19,292	100	2,562	100	15,114	100	7,770	100	4,723	100					
Serctor primario	5,910	30.6	742	29.0	4,213	27.9	4,393	56.5	2,349	49.7					
Sector secundari	2,310	12.0	550	21.5	1,590	10.5	621	8.0	504	10.7					
Sector terciario	11,072	57.4	1,270	49.6	9,311	61.6	2,756	35.5	1,870	39.6					

^{*} Sector primario: agricultura, ganadería, forestal y pesca; secundario: minería, construcción, manufactura; terciario servicios y otros

4) Índice de la pobreza

En la Tabla 3.1.2-5 se muestra el índice de la pobreza. El 34,7 % de la población de todos los distritos (41.840 habitantes), entra en el segmento pobre, y el 3,1 % (3.793 habitantes) al de extrema pobreza. En particular, el distrito Nuevo Imperial se destaca por su alto porcentaje de la pobreza con 42,8 % y de extrema pobreza 4,6 %.

Tabla 3.1.2-5 Índice de la pobreza

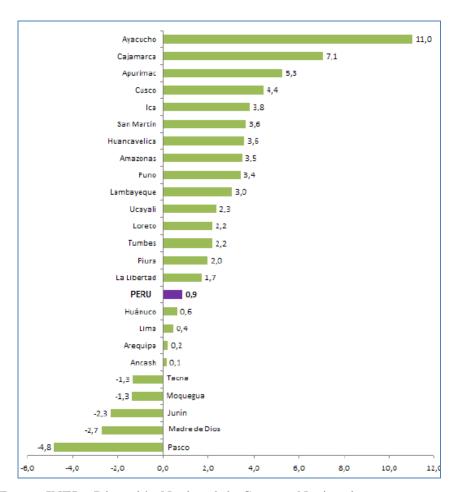
	San Vicente Cerro Azul				Imperial Nuevo Imp			perial San Luis				
	Personas	%	Personas	%	Personas	%	Personas	%	Personas	%	Total	%
Población regional	46,464	100	6,893	100	36,340	100	19,026	100	11,940	100	120,663	100
En pobre	14,068	30.3	2,097	30.4	12,947	35.6	8,152	42.8	4,576	38.3	41,840	34.7
En extrema pobrez	1,382	3.0	129	1.9	1,029	2.8	878	4.6	375	3.1	3,793	3.1

5) Tipo de viviendas

Para las paredes de las viviendas, el 39 % del total se usan ladrillos o cemento. El 42 % adobe y barro. Para el piso, el 94 % es de tierra o cemento. Salvo el distrito Nuevo Imperial, la cobertura de servicio público de agua potable es 58 % en promedio, mientras que la cobertura del servicio público de alcantarillado es de 52 % en promedio. En el caso específico del Nuevo Imperial, se observa una baja cobertura de ambos servicios, con 25,1 % y 11,3 %, respectivamente.

Tabla 3.1.2-6 Tipo de viviendas

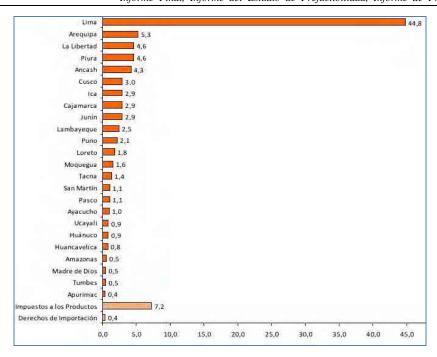
					Distri	to				
Variable/Indicador	San Vic		Cerro A	Azul	Imper	ial	Nuev Impe		San L	uis
	Hogares	%	Hogares	%	Hogares	%	Hogares	%	Hogares	%
Número de hogares										
Viviendas comunes con residentes	10.468	78,8	1.549	45,1	8.170	88,9	4.867	77,1	2.750	84,5
Materiales de las paredes										
Ladrillos o cemento	4.685	44,8	853	55,1	2.661	32,6	1.220	25,1	848	30,8
Adobe y barro	3.518	33,6	210	13,6	4.075	49,9	2.105	43,3	1.145	41,6
Bambúes + barro o madera	783	7,5	288	18,6	161	2,0	650	13,4	183	6,7
Otros	1.482	14,2	198	12,8	1.273	15,6	892	18,3	574	20,9
Materiales del piso										
Tierra	4.196	40,1	661	42,7	4.279	52,4	2.842	58,4	1.501	54,6
Cemento	4.862	46,4	781	50,4	3.432	42	1.925	39,6	1.109	40,3
Cerámicas, parquet, madera de calidad	1.342	12,8	100	6,5	421	5,2	67	1,4	102	3,7
Otros	68	0,6	7	0,5	38	0,5	33	0,7	38	1,4
Sistema de agua potable										
Red pública dentro de la vivienda	5.729	54,7	886	57,2	5.642	69,1	1.220	25,1	1.457	53,0
Red pública dentro del edificio	584	5,6	66	4,3	373	4,6	334	6,9	166	6,0
Pilones de uso público	666	6,4	52	3,4	234	2,9	80	1,6	346	12,6
Alcantarillado y letrinas										
Red alcantarillado dentro de la vivienda	4.987	47,6	824	53,2	5.115	62,6	549	11,3	1.167	42,4
Red alcantarillado dentro del edificio	482	4,6	32	2,1	364	4,5	70	1,4	118	4,3
Pozo negro o ciego	2.002	19,1	317	20,5	1.206	14,8	3.564	73,2	203	7,4
Electricidad										
Servicio eléctrico público	8.373	80	1.217	78,6	6.733	82,4	3.520	72,3	2.110	76,7
Número de miembros										
Viviendas comunes con residentes	11.267	100	1.662	100	8.922	100	5.052	100	2.940	100
Artefactos electrodomésticos										
Más de tres	4.844	43,0	648	39	2.822	31,6	1.237	24,5	1.045	35,5
Servicios de comunicación										
Teléfonos fijos y móviles	9.391	83,3	1.373	82,6	5.759	64,5	2.708	53,6	1.728	58,8


Fuente: Elaboración Equipo de estudio JICA, Instituto Nacional de Estadística –INEI, Censo de Población y Vivienda, 2007.

6) PIB

El PIB del Perú en 2009 ha sido de S./392.565.000.000.

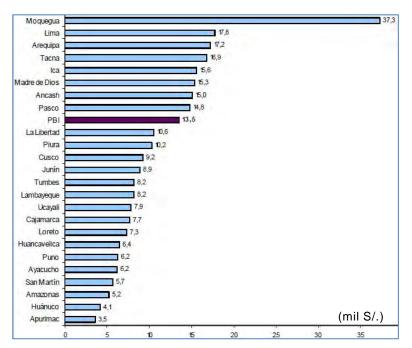
La tasa de crecimiento del mismo año ha sido de + 0,9 % comparado con el año precedente que ha sido el pésimo nivel alcanzado en los últimos 11 años.


Desglosado según regiones, Ica registró un crecimiento del 3,8 %, Piura 2,0 %, Lima 0,4 % y Arequipa 0,2 %. En particular las regiones Ica y Piura registraron cifras que superaron el promedio nacional.

Fuente INEI - Dirección Nacional de Cuentas Nacionales

Figura 3.1.2-1 Tasa de crecimiento del PIB según regiones (2009/2008)

A continuación se muestra la contribución de cada región al PIB. La Región de Lima representa casi la mitad del total, es decir 44,8 %. Arequipa contribuyó 5,3 %, Pira 4,6 % e Ica 2,9 %. Los impuestos y aranceles contribuyeron 7,2 % y 0,4 %, respectivamente



Fuente INEI – Dirección Nacional de Cuentas Nacionales

Figura 3.1.2-2 Contribución de las regiones al PIB

El PIB per cápita en 2009 ha sido de S/.13.475.

Según regiones, se tienen los siguientes datos: Lima S/.17.800, Arequipa S/.17.200, Ica S/.15.600 y Piura S/.10.200. Las tres primeras regiones superaron el promedio nacional, no así Piura.

Fuente INEI – Dirección Nacional de Cuentas Nacionales

Figura 3.1.2-3 PIB per cápita (2009)

En la Tabla 3.1.2-7 se muestra la variación a lo largo del año el PIB per cápita según regiones, en los últimos 9 años (2001-2009)

El promedio nacional del PIB aumentó un 44 % en los nueve años desde 2001 hasta 2009. Las cifras según regiones son: +83,9 % para Ica, +54,2 % para Arequipa, +48,3 % para Piura y +42,9 % para Lima.

Las cifras de la Tabla 3.1.2-7 han sido determinadas teniendo como año base a 1994.

Tabla 3.1.2-7 Variación del PIB por cápita (2001-2009)

(Año base 1994, S/.)

Departamentos	2001	2002	2003	2004	2005	2006	2007P/	2008P/	2009E/	Crecimiento Acumulado 2001-2009 (%)
Cusco	2 194	2 086	2 195	2 565	2 768	3 071	3 340	3 554	3 685	67,9
Ica	4 055	4 259	4 343	4 663	5 214	5 582	6 025	7 265	7 457	83,9
La Libertad	3 162	3 316	3 483	3 410	3 697	4 216	4 586	4 874	4 895	54,8
Ucayali	3 063	3 149	3 203	3 411	3 584	3 754	3 846	4 007	4 039	31,9
Moquegua	10 405	11 967	12 670	13 455	13 882	13 794	13 606	14 201	13 865	33,3
Areguipa	5 387	5 766	5 895	6 143	6 488	6 807	7 786	8 379	8 308	54,2
Apurimac	1 216	1 278	1 334	1.400	1 494	1 619	1 653	1 691	1 770	45,5
Piura	2 733	2 780	2 847	3 049	3 192	3 472	3 780	4 007	4 052	48,3
San Martin	2 026	2 059	2 094	2 232	2 393	2 476	2 655	2 870	2 928	44,5
Ayacucho	1 788	1 870	1 942	1 900	2 045	2 207	2 448	2 640	2 896	61,9
Amazonas	1 835	1 910	1 996	2 081	2 212	2 349	2 510	2 684	2 761	50,5
Madre de Dios	4 441	4 708	4 550	4 846	5 171	5 215	5 617	5 878	5 564	25,3
Cajamarca	2 493	2 731	2 947	2 968	3 165	3 113	2 864	3 094	3 295	32,2
Ancash	4 037	4 703	4 772	4 876	4 999	5 089	5 408	5 852	5 827	44,3
Tumbes	2 744	2 802	2 873	3 018	3 385	3 212	3 427	3 594	3 611	31,6
Lima	6 451	6 579	6 700	6 925	7 284	7 817	8 520	9 314	9 220	42,9
Puno	2 105	2 236	2 234	2 270	2 365	2 460	2 617	2 731	2 800	33,0
Lambayeque	2 941	3 046	3 132	2 959	3 164	3 300	3 615	3 882	3 963	34,8
Junin	3 245	3 311	3 350	3 527	3 505	3 856	4 072	4 379	4 248	30,9
Loreto	2 827	2 917	2 9 3 6	2 995	3 079	3 192	3 287	3 402	3 429	21,3
Huánuco	1 678	1 694	1 833	1 866	1 890	1 915	1 942	2 050	2 044	21,8
Pasco	5 137	5 552	5 481	5 634	5 644	6 062	6 711	6 729	6 349	23,6
Tacna	6 004	6 124	6 382	6 643	6 782	6 941	7 256	7 458	7 253	20,8
Huancavelica	2 700	2 632	2 683	2 697	2 864	3 014	2 903	2 959	3 039	12,5
PBI	4 601	4 765	4 890	5 067	5 345	5 689	6 121	6 643	6 625	44,0

Fuente INEI – Dirección Nacional de Cuentas Nacionales

3.1.3 Agricultura

A continuación se resumen la situación actual de la agricultura en la Cuenca del Río Cañete, incluyendo las comisiones de regantes, rubros de cultivo, el área sembrada, rendimiento, ventas, etc.

(1) Sectores de Riego

En la Tabla 3.1.3-1 se presentan los datos básicos de las comisiones de regantes. En la Cuenca del Río Cañete existen 42 sectores de riego, siete comisiones de regantes con 22.242 beneficiarios. La superficie manejada por estos sectores suma un total de 5.843 hectáreas.

Tabla 3.1.3-1 Datos básicos de las comisiones de regantes

		Áreas bajo	Riego	N° de	
Sectores de Riego	Comisión de regantes	ha	%	Beneficiarios (Persona)	Río
Roma Rinconada. La Huerta					
Lateral A					
Cantera Almenares					
Lateral B					
Lateral T	Canal Nuevo Imperial	7.883	35	2.202	
Túnel Grande					
Quebrada Ihuanca					
Cantagallo-U Campesina					
Caltopa Caltopilla					
Casa Pintada Sn Isidro					
Cerro Alegre Huaca Chivato					
Conde Chico Ungara	Canal Viejo Imperial	3.715	17	1.080	
Josefina Sta. Gliceria					
Tres Cerros					
Montejato					
La Quebrada					
Hualcara	Canal María Angola	1.785	8	470	
Cerro de Oro					
Chilcal					
Montalván-Arona-La QdaTupac					
Lúcumo - Cuiva - Don Germán					a ~ .
Lateral 74-La Melliza-Sta Bárbara	Canal San Miguel	3.627	16	860	Cañete
Casa Blanca - Los Lobos					
Lúcumo - Cuiva - Don Germán					
Huanca Media					
Huanca Baja	Canal Huanca	2.301	10	421	
Huanca Alta					
Gr.9.2 lateral 4					
Gr.9.1 lateral 3					
Gr.8.2 lateral 2					
Gr.8.1 lateral 1					
Gr.7 compuerta 10 Y 11					
Gr.6 compuerta 9					
Gr.5 compuerta 6,7 Y 8	Canal Pachacamilla	928	4	234	
Gr.4 compuerta 5					
Gr.3 compuerta 4 Y 12					
Gr.2 compuerta 2 Y 3					
Gr.11 Basombrio					
Gr.10 Pachacamilla Vieja					
Gr.1 compuerta 1					
Palo	C 1 D 1 W 1	2.002			
Herbay Alto	Canal Palo Herbay	2.003	9	576	
Total		22.242	100	5.843	

Fuente: Elaboración Equipo de estudio JICA, Junta de Usuarios de Cañete, Octubre 2010

(2) Principales cultivos

En la Tabla 3.1.3-2 se muestra la variación entre 2004 y 2009 de la superficie sembrada y del rendimiento de los principales cultivos.

En la Cuenca del Río Cañete, se redujeron el área sembrada, rendimiento y las ventas entre los años 2005 y 2007. Sin embargo, posteriormente comenzó a aumentarse nuevamente, de tal manera que en 2009 logró recuperarse el nivel de los años 2004-2005. Las ganancias de 2008-2009 fueron de 219.095.280(S/.). Los principales cultivos en esta cuenca son el maíz (amarillo), algodón, batata, uva y maíz (fresco).

Tabla 3.1.3-2 Siembra y ventas de los principales cultivos

	Variables	2004-2005	2005-2006	2006-2007	2007-2008	2008-2009
	Sup. sembrada (ha)	10,700	9,203	7,802	11,285	12,188
Maíz	Rendimiento unitario (kg/Ha)	8,225	8,278	8,591	8,711	8,411
(amarillo)	Cosecha (Kg)	88,010,215	76,182,249	67,023,861	98,302,605	102,512,719
(amamo)	Precio unitario (S/./kg)	0.53	0.57	0.69	0.80	0.69
	Ventas (S/.)	46,645,414	43,423,882	46,246,464	78,642,084	70,733,776
	Sup. sembrada (ha)	6,750	6,241	4,146	4,887	1,697
	Rendimiento unitario (kg/Ha)	3,015	3,290	3,295	3,502	3,448
Algodón	Cosecha (Kg)	20,350,647	20,533,219	13,662,388	17,112,523	5,850,911
	Precio unitario (S/./kg)	2.14	2.13	2.77	2.67	1.85
	Ventas (S/.)	43,550,385	43,735,756	37,844,815	45,690,436	10,824,186
	Sup. sembrada (ha)	2,794	1,804	2,823	1,475	3,855
	Rendimiento unitario (kg/Ha)	24,367	24,434	18,953	21,768	20,088
Batata	Cosecha (Kg)	68,088,708	44,081,379	53,500,528	32,112,154	77,429,196
	Precio unitario (S/./kg)	0.24	0.33	0.45	0.58	0.37
	Ventas (S/.)	16,341,290	14,546,855	24,075,238	18,625,049	28,648,803
	Sup. sembrada (ha)	1,725	1,898	1,780	2,100	2,247
	Rendimiento unitario (kg/Ha)	14,891	15,735	17,928	19,088	18,702
Uvas	Cosecha (Kg)	25,685,486	29,857,163	31,911,840	40,077,165	42,023,394
	Precio unitario (S/./kg)	0.62	0.84	1.12	1.11	0.99
	Ventas (S/.)	15,925,001	25,080,017	35,741,261	44,485,653	41,603,160
	Sup. sembrada (ha)	2,617	2,602	2,453	2,796	2,563
	Rendimiento unitario (kg/Ha)	47,095	47,125	48,377	54,848	52,276
Maíz	Cosecha (Kg)	123,224,068	122,623,963	118,683,294	153,333,069	133,957,250
		0.07	0.07	0.08	0.10	0.10
Precio unitario (S/./kg) Ventas (S/.)		8,625,685	8,583,677	9,494,664	15,333,307	13,395,725
	Sup. sembrada (ha)	932	941	814	1,077	1,087
	Rendimiento unitario (kg/Ha)	38,670	41,261	42,913	43,596	SD
Mandarina	Cosecha (Kg)	36,032,706	38,818,349	34,944,056	46,957,252	
	Precio unitario (S/./kg)	0.74	0.64	0.79	0.67	1.19
	Ventas (S/.)	26,664,202	24,843,743	27,605,804	31,461,359	
	Sup. sembrada (ha)	769	802	752	865	833
	Rendimiento unitario (kg/Ha)	20,459	21,884	21,717	22,175	25,526
Manzana	Cosecha (Kg)	15,726,833	17,540,026	16,329,012	19,185,810	21,270,816
	Precio unitario (S/./kg)	0.52	0.63	0.63	0.75	0.75
	Ventas (S/.)	8,177,953	11,050,216	10,287,278	14,389,358	15,953,112
	Sup. sembrada (ha)	1,161	739	772	878	1,053
_	Rendimiento unitario (kg/Ha)	24,700	25,216	23,717	26,687	24,386
Papas	Cosecha (Kg)	28,681,640	18,637,146	18,302,409	23,420,511	25,676,019
	Precio unitario (S/./kg)	0.37	0.44	0.35	0.74	0.43
	Ventas (S/.)	10,612,207	8,200,344	6,405,843		11,040,688
	Sup. sembrada (ha)	686	1,030		717	981
	Rendimiento unitario (kg/Ha)	33,162	33,594	32,856	36,007	37,963
Yuca	Cosecha (Kg)	22,732,551	34,605,179	22,056,233	25,817,019	37,241,703
	Precio unitario (S/./kg)	0.36	0.36	0.42	0.67	0.42
	Ventas (S/.)	8,183,718	12,457,865	9,263,618	17,297,403	15,641,515
	Sup. sembrada (ha)	306	411	403	662	765
Dolto	Rendimiento unitario (kg/Ha) Cosecha (Kg)	5,844 1,790,602	6,064 2,494,123	8,162 3,285,205	5,424 3,589,603	6,129 4,689,298
Palta	Precio unitario (S/./kg)	1,790,602	3.02	3,285,205	3,589,603	4,689,298
	Ventas (S/.)	4,816,718	7,532,252	8,344,421	9,548,345	11,254,315
Otros		3,947	4,839	4,223	5,281	5,296
Otros	Sup. sembrada (ha)					
Total	Sup. sembrada (ha)	32,387	30,509	26,639	32,022	32,564
Total	Cosecha (Kg)	430,323,455	405,372,795	379,698,827	459,907,710	450,651,306
	Ventas (S/.)	189,542,574	199,454,608	215,309,405	292,804,171	219,095,280

Figura 3.1.3-1 Superficie sembrada

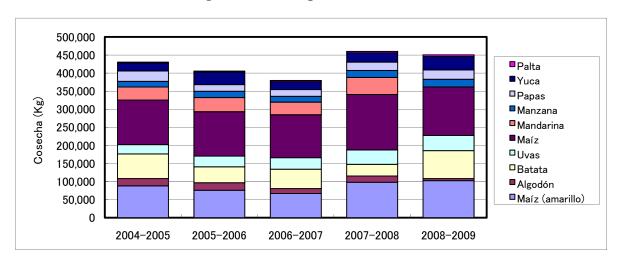


Figura 3.1.3-2 Cosecha

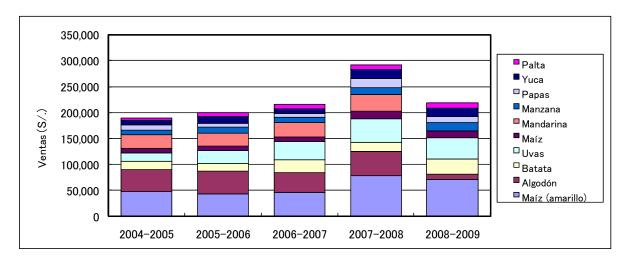


Figura 3.1.3-3 Ventas

3.1.4 Infraestructuras

(1) Infraestructuras viales

En la Tabla 3.1.4-1 se muestran las infraestructuras viales de la cuenca del Río Cañete. En total existen 822,39 km de caminos, de los cuales 265,89 km (32,3 %) son carretera nacional, 59,96 km (7,3 %) caminos regionales y 496,54 km (60,4 %) caminos municipales.

Tabla 3.1.4-1 Datos básicos de infraestructuras viales

(Km)

Caminos	Longitud	total		Pavime	ntación	
Carrillios	Longituu	lulai	Asfaltado	Compactado	No	Ripios, tierra
Carretera nacional	265.89	32.3%	205.75	60.14	0.00	0.00
Caminos regionales	59.96	7.3%	10.40	49.56		
Caminos municipales	496.54	60.4%	39.83	213.18	211.37	32.16
Total	822.39	100.0%	255.98	322.88	211.37	32.16

2) Canales de riego

Bocatomas

En la cuenca del Río Cañete existen cuatro bocatomas, de las cuales Nuevo Imperial, La Fortaleza y Palo Herbay son permanentes.

· Canales de riego

En la Tabla 3.1.4-2 se muestra la longitud acumulada de los canales de riego existentes. Los canales de derivación, de primero, segundo y tercer orden suman en total aproximadamente 1.232 km. De estos unos 80 km están revestidos (6 % del total).

Tabla 3.1.4-2 Canales de riego existentes

		Canales de	e aducción			Canales p	orimarios		Can	ales secunda	rios y tercia	rios
Comisiones de regantes	Cantidad	Con hormigón (Km)	Sin hormigón (Km)	Long. total(Km)	Cantidad	Con hormigón (Km)	Sin hormigón (Km)	Long. total(Km)	Cantidad	Con hormigón (Km)	Sin hormigón (Km)	Long. total (Km)
Canal Nuevo Imperial	10.00	7.75	40.73	48.48	67.00	14.99	108.66	123.65	418.00	7.65	252.85	260.50
Canal Viejo Imperial	1.00	4.42	16.57	20.99	50.00	4.99	42.87	47.86	116.00	0.32	108.64	108.96
Canal San Miguel	5.00	4.74	42.69	47.43	73.00	10.98	70.58	81.56	114.00	12.39	67.46	79.85
Canal Maria Angola	3.00	3.52	24.47	27.99	56.00	2.80	59.29	62.09	68.00	0.42	38.40	38.82
Canal Palo Herbay	6.00	0.00	18.89	18.89	37.00	0.08	49.96	50.04	116.00	0.00	68.33	68.33
Canal Huanca	1.00	0.00	1.96	1.96	6.00	0.00	20.20	20.20	82.00	4.33	83.66	87.99
Canal Pachacamilla	2.00	0.00	5.27	5.27	4.00	0.00	3.42	3.42	15.00	0.00	28.28	28.28
Total	28.00	20.43	150.58	171.01	293.00	33.84	354.98	388.82	929.00	25.11	647.62	672.73

Fuente: Comisión de Regantes de Cañete

• Canales de drenaje

En la Tabla 3.1.4-3 se presenta la longitud total de los canales de drenaje según las comisiones de regantes.

Tabla 3.1.4-3 Canales de drenaje

		Sistem	a de Drenes	
Comision de Regantes	Colector		Secundario	Long.
	Long. (m)	Long. (m)	Long. (m)	Total (m)
Nuevo Imperial	6,830	3,541	1,832	12,203
Viejo Imperial	0	0	0	0
San Miguel	25,164	25,289	8,732	59,185
Maria Angola	3,950	1,960	787	6,697
Palo Herbay	8,925	1,432	0	10,357
Huanca	23,553	5,694	866	30,113
Pachacamilla		992		2,292
VALLE DE CAÑETE	68,422	38,908	12,217	120,847

3) PERPEC

En la Tabla 3.1.4-4 se muestran los proyectos implementados por PERPEC entre 2006 y 2009.

Tabla 3.1.4-4 Proyectos implementados por PERPEC

ON	ĄÑO	Mombro do la obra		Ubicación	ción		Doscripción	5		Costo Total
Ž	ONE .	NOTIBLE DE LA ODIA	Departamento	Provincia	Distrito	Localidad	Describero			(S/.)
1	2006	Defensa Ribereña en el Río Cañete -Sector Huacre	Lima	Cañete	San Vicente de Cañete	Huacre	Conformación de dique	1	Km	250.482,00
2	2007	Rehabiliación de Infraestructura de riego Cuenca Alla del rio Canete	Lima	Cañete	Colonia, Madean, Putinza, Yauyos, Huantan	Varias	Revestimiento de canal	3,48	Km	201.250,00
3	2007	Rehabilitación de Infraestructura de riego Cuenca Media del rio Cañete	Lima	Cañete	Zuñiga , Pacaran, Lunahuana	Varias	Revestimiento de canal	1,66	Km	261.363,00
4	2007	Rehabilitación de Infraestructura de riego Cuenca Baja del rio Cañete	Lima	Cañete	San Vicente de Cañete, San Luis, Nuevo Imperial	Varias	Rehabilitación de canal	12,56	Km	483.522,00
2	2007	Rehabilitacion y Limpieza de drenes en el Valle Cañete	Lima	Cañete	San Luis, San Miguel, Quilmana	Varias	Rehabilitación de caja hidraulica	13,1	Km	169.363,00
9	2007	Rehabilitacion de la Insfraestructura de riego y Drenaje del Valle Mala	Lima	Cañete	Mala-San Antonio	Santa Cruz de Flores, Mala , Sta Cruz de Flores, La Huaca	Revestimiento de canal	1,7	Km	219.502,00
7	2007	Defensa Ribereña en el río Mala sector: Santa Clorinda	Lima	Cañete	Mala	Mala	Dique Enrocado	1	Km	459.280,00
8	8007	Defensa Ribereria Provisional en el Rio Cariete; sectores: Carlos V, Sta. Teresa (Contingencia)	Lima	Cañete	San Vicente de Cañete	Carlos V , Sta Teresa	Limpieza de Cauce	1,6	Km.	282.794,55
6	8007	Defensa Ribereña Provisional en el Rio Mala; sectores: San José, Las Animas (Contingencia)	Lima	Cañete	Mala	San Jose, Las Animas	Limpieza de Cauce	1	Km.	207.713,00
10	2008	Encauzamiento y Defensa Ribereña del Rìo Mala Sector : Correviento - Rinconada (Contingencia)	Lima	Cañete	Mala	Correviento - Rinconada	Dique enrocado	0,56	Km	324.009,64

3.1.5 Daños reales de las inundaciones

(1) Daños a nivel nacional

En la Tabla 3.1.5-1 se muestra la situación actual de los daños de inundaciones en los últimos cinco años (2003-2007) en todo el país. Como se puede observar, anualmente decenas a centenas de miles de habitantes se ven perjudicados por las inundaciones.

Tabla 3.1.5-1 Situación de los daños de inundaciones

		Total	2003	2004	2005	2006	2007
Desastres ocurridos	Casos	1,458	470	234	134	348	272
Víctimas	personas	373,459	118,433	53,370	21,473	115,648	64,535
Victimas de pérdida de viviendas	personas	50,767	29,433	8,041	2,448	6,328	4,517
Fallecidos	personas	46	24	7	2	9	4
Viviendas destruidas parcialmente	Viviendas	50,156	17,928	8,847	2,572	12,501	8,308
Viviendas destruidas totalmente	Viviendas	7,951	3,757	1,560	471	1,315	848

Fuente : Compedio estadisticos de SINADECI

Perú ha sido azotado por grandes desastres de las lluvias torrenciales provocadas por el fenómeno de El Niño. En la Tabla 3.1.5-2 se muestran los daños sufridos en los años 1982-1983 y 1997-1998 cuyo efecto ha sido sumamente grave. El número de víctimas ha sido de aproximadamente 6.000.000 habitantes y la pérdida económica alcanzó un total de aproximadamente US\$ 1.000.000.000 en 1982-1983. Asimismo, el número de víctimas en 1997-1998 ha alcanzado aproximadamente 502.461 habitantes con una pérdida económica de US\$ 1.800.000.000. Cabe recalcar que los daños de 1982-1983 han sido tan serios que provocó una reducción del 12 % del PNB.

Tabla 3.1.5-2 Datos de daños

Daños	1982-1983	1997-1998
Personas que perdieron viviendas	1.267.720	_
Número de victimas	6.000.000	502.461
Lesionados	_	1.040
Fallecidos	512	366
Desaparecidos	_	163
Viviendas destruidas parcialmente	_	93.691
Viviendas destruidas totalmente	209.000	47.409
Escuelas destruidas parcialmente	_	740
Escuelas destruidas totalmente	_	216
Hospitales y centros de salud destruidos parcialmente	_	511
Hospitales y centros de salud destruidos totalmente	_	69
Tierras agrícolas dañadas (ha)	635.448	131.000
Cabezas de ganado perdidas	2.600.000	10.540
Puentes	_	344
Caminos (km)	_	944
Pérdida económica (\$)	1.000.000.000	1.800.000.000

[&]quot;-": Sin datos

(2) Desastres en las cuencas objeto del presente Estudio

En la Tabla 3.1.5-3 se resumen los daños de desastres ocurridos en la región de Lima, a la que pertenece el presente Estudio.

Tabla 3.1.5-3 Desastres en la Región de Lima

Años	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	Total	Media
ALUD																	0	
ALUVION																	0	
DERRUMBE									14	4	17	32	15	22	10	23	137	
DESLIZAMIENTO	1	3	1	4	2	1	3	4	5	4	2	1	5	5	2	7	50	
HUAYCO	6		2	17	17	4	2	11	8	4	0	7		3	3	3	87	
POTAL DESASTRES DE SEDIMENTOS	7	3	3	21	19	5	5	15	27	12	19	40	20	30	15	33	274	17
TOTAL INUNDACIONES	2	2	1	23	21	9	15	5	13	11	7	10	11	4	4	0	138	9

3.1.6 Resultados de las visitas a los sitios del Estudio

El Equipo de Estudio de JICA realizó varias visitas técnicas a las cuencas seleccionadas, e identificó los desafíos para el control de inundaciones a través de estas visitas técnicas y las entrevistas a las autoridades de los gobiernos regionales y a las asociaciones de regantes sobre los daños sufridos en el pasado y los problemas que afrontan cada cuenca.

(1) Entrevistas

(Sobre los puntos críticos)

- ➤ El área bajo control de la Comisión de Regantes comienza desde SOCSI (km 25) hacia abajo.
- ➤ Ocurrieron inundaciones de magnitud 800m³/s por fenómeno de El Niño en 1998. Existe un punto de monitoreo en SOCSI, donde el caudal normal oscila entre 7 y 250m³/s.
- ➤ El puente de la carretera Panamericana quedo intransitable por la acumulación de sedimentos durante el evento. Además, se desbordó el río aguas arriba del puente al elevar el nivel de agua por el puente. El desbordamiento provocó erosión de las tierras agrícolas y el ancho del río se extendió hasta 200 m. Este tramo (solo el tramo crítico) ha sido protegido con dique construido por el PERPEC.
- El ancho del río, aguas debajo de Panamericana está extendiéndose año tras año.
- ➤ Dentro del área de jurisdicción de la Comisión de Regantes existen cuatro bocatomas, de las cuales tres no sufrieron daños importantes por fenómeno de El Niño ya que éstas son de hormigón. La única bocatoma que no es de hormigón está siendo reparada manualmente.
- Existe una planta hidroeléctrica aguas arriba de SOCSI.

(Otros: sitios visitados por el Equipo de Estudio)

- Panamericana (km 4,3)
 - Las inundaciones de 1998 llegaron por encima del puente. El cauce se elevó aproximadamente 2 m debido a este evento.
 - ➤ El puente ha sido reconstruido en los años sesenta. El anterior puente fue destruido por fenómeno de El Niño antes de 1960.
 - Actualmente, se está construyendo un nuevo puente de la carretera Panamericana aguas abajo del actual puente.
- Punto de desbordamiento (km 7,5)
 - ➤ Éste es uno de los tres tramos de desbordamiento que existen en esta zona (Lucumo, Cornelio, y Carlos Quinto). Todos se desbordan en la margen derecha.
 - ➤ El dique construido hace diez años fue arrastrado por las inundaciones, y ha sido reconstruido hace cinco años por la Defensa Civil.

- Las aguas y los sedimentos desbordados se extienden sobre las tierras agrícolas, destruyendo la totalidad de los cultivos.
- La socavación producida por las inundaciones provoca el colapso del dique favoreciendo el desbordamiento.
- o Bocatoma Fortresa: km 10,2)
 - Fue reparada en 2001.
 - Esta bocatoma no ha sufrido serios daños del fenómeno de El Niño.
 - El área beneficiaria alcanza 6.000 hectáreas.
- o Bocatoma Nuevo Imperial: km 24,5)
 - El caudal hasta 150m³/s entra a la bocatoma, y el excedente es derivada naturalmente hacia la margen izquierda.
 - Durante el fenómeno de El Niño de 1998, los sedimentos acumulados en la bocatoma impidieron la entrada de agua, y no se pudo tomar el agua por más de un mes.
 - Las tierras agrícolas de la margen derecha 500 m aguas arriba de la bocatoma fueron inundadas. Es posible que en el siguiente fenómeno de El Niño, las inundaciones erosionen el camino a lo largo del río.
- Estación de observación de caudal (SOCSI: km 27,2)
 - Existe una estación de observación de SENAMI.
 - El caudal en la época de lluvias de un año ordinario es de aprox. 250 m³/s, el que creció hasta 350 m³/s durante el fenómeno de El Niño de 1998.
 - A partir de 1986, se está monitorizando la velocidad de flujo cada año en el puente. (El caudal se calcula midiendo la velocidad de flujo a cada un metro de intervalo sobre el puente). Todos los datos son entregados a SENAMI.
- (2) Descripción de la visita a los sitios del Estudio

En la Figura 3.1.6-1 se presentan las fotografías de los principales sitios visitados.

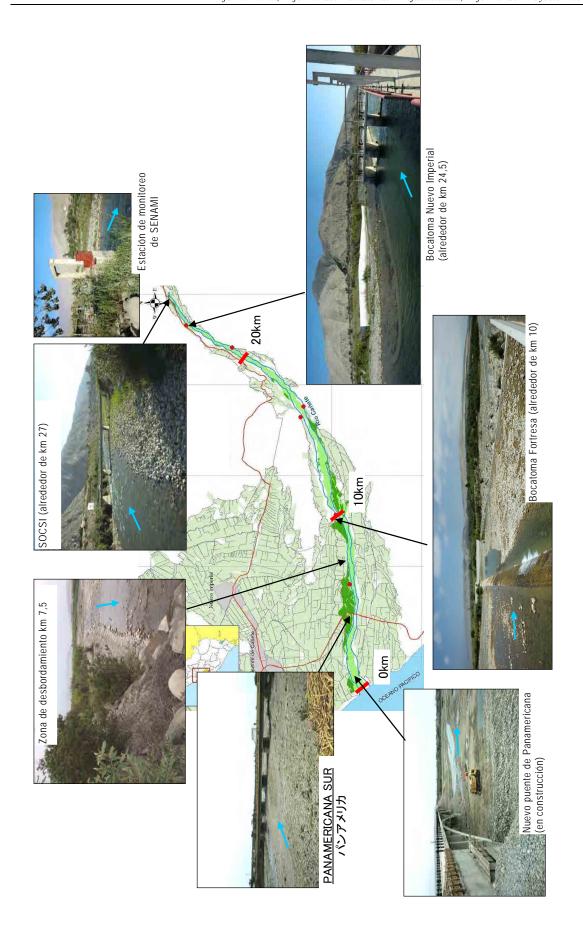


Figura 3.1.6-1 Visita al Sitio del Estudio (Río Cañete)

(3) Desafíos y medidas

A continuación se plantean los desafíos y posibles medidas de solución para el control de inundaciones que se conciben en este momento, con base en los resultados de las visitas técnicas realizadas.

1) Desafío 1: Bocatoma y erosión de márgenes (km 24-25)

Situación actual y desafíos	 Durante las inundaciones de 1998, los sedimentos acumulados en la bocatoma impidieron la toma de agua por más de un mes. Es probable que se repita la misma situación, debiendo, por lo tanto, tomar las medidas para controlar la entrada de sedimentos. Aguas arriba de la presa, las márgenes han sido erosionadas por las crecidas ocurridas en el pasado, provocando la pérdida de las tierras agrícolas. Dado que el tramo erosionado está cerca del camino, las futuras crecidas que puedan ocurrir con la misma
Principales elementos a conservar	magnitud ponen en riesgo de destruir la infraestructura vial. Camino Bocatoma
Medidas básicas	 Construcción de obras de derivación aguas arriba de la bocatoma con el fin de controlar la distribución adecuada del caudal durante las crecidas. Ejecución de medidas contra la erosión de márgenes (espigones, etc.)

Camino principal paralelo al río (km 25, margen derecha)

Tramo erosionado (km 25)

Se aproxima el camino (margen derecha) y el tramo erosionado)

Figura 3.1.6-2 Condiciones locales relacionadas con el Desafío 1 (Río Cañete)

2) Desafío 2 : Zona de desbordamiento (alrededor del km 7,5)

Situación actual y desafíos	 Las inundaciones de 1998 destruyeron el dique provocando pérdidas de los productos agrícolas. En esta zona existen tres tramos destruidos del dique (todos en la margen derecha). En la margen derecha en km 7,5 constituye el sitio de mayor impacto de las aguas. La corriente rápida y voluminosa provoca socavación del lecho y la consecuente destrucción del dique. Actualmente, el dique ha sido reparado, pero sigue exponiéndose al riesgo de destrucción si se producen grandes inundaciones.
Principales elementos a conservar	Tierras de cultivo (principales cultivos: manzana, uvas, algodón)
Medidas básicas	• Construcción de diques y protección de márgenes para el control de la erosión de márgenes

Dique reconstruido

Figura 3.1.6-3 Condiciones locales relacionadas con el Desafío 2 (Río Cañete)

3) Desafío 3: Tramo angosto (km 4,3)

Situación actual y desafíos	 En las inundaciones de 1998 se desbordó el río inundando la carretera Panamericana. La acumulación de sedimentos impidió temporalmente el tránsito. La carretera Panamericana coincide con la parte angosta del río, donde el nivel de agua se eleva aguas arriba acumulando sedimentos y provocando desbordamiento. Solo el tramo crítico (aprox. 200 m) ha sido protegido con el dique, no así el resto de los tramos.
Principales elementos a conservar	 Carretera (Panamericana) Tierras de cultivo (principales cultivos: manzana, uvas, algodón)
Medidas básicas	 No es posible ejecutar las obras de reparación del puente en este momento, por lo que es necesario tomar otras medidas para asegurar la capacidad hidráulica necesaria (perforación del lecho, etc.).

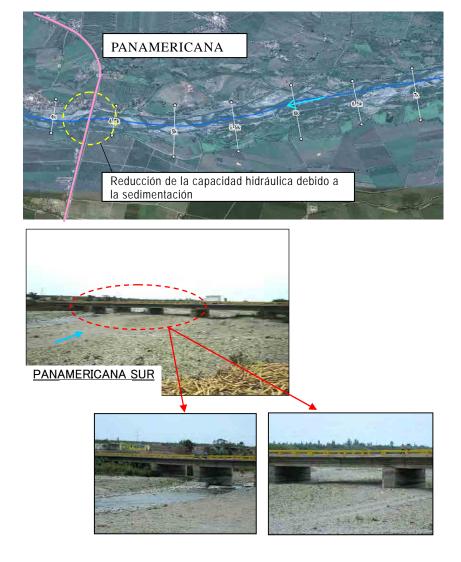


Figura 3.1.6-4 Condiciones locales relacionadas con el Desafío 3 (Río Cañete)

3.1.7 Situación actual de la vegetación y reforestación

(1) Vegetación actual

De acuerdo con el Mapa Forestal 1995 y sus aclaratorias, la Cuenca del Río Cañete se extiende desde las costas hasta la región andina, presentando diferentes coberturas vegetales según las altitudes. Desde la costa hasta 2.500 msnm (Cu, Dc) se caracteriza por su escasa vegetación. Salvo las orillas de los ríos se extienden zonas principalmente de herbáceos y cactus o sin vegetación. En las zonas algo más altas, apenas se distribuyen en forma dispersa los matorrales. Entre 2.500 y 3.500 msnm se desarrollan los matorrales gracias a las precipitaciones que ocurren en estas zonas. Más allá, vuelven a desaparecer la vegetación debido a las bajas temperaturas y se extienden las zonas principalmente de herbáceos. Aún en los matorrales, la altura máxima de los árboles es de 4 metros aproximadamente. Sin embargo, en las orillas de los ríos se desarrollan árboles altos incluso en las zonas áridas.

Tabla 3.1.7-1Lista de las formaciones vegetales representativas de la Cuenca del Río Cañete

Clasific	Denominació	Altitudes	Precipitaciones	Vegetación representativa
ación	n			
1) Cu	Áreas	Región costera	Casi nula	Áreas cultivadas a lo largo
	cultivadas de la			de los ríos
	Región Costera			
2) Dc	Desierto	Entre 0 y 1.500m	Casi nula, con algunas	Casi nula, excepto hierbas
	costero		zonas con frecuentes	en la zona con frecuentes
			neblinas	neblinas
3) Ms	Matorral seco	Entre 1.500 y 3.900m	Entre 120 y 220mm	Cactus e hierbas
4) Msh	Matorral subhúmedo con desarrollo de herbáceo	Centro norte, entre 2.900 y 3.500 msnm Región andina, entre 2.000 y 3.700 msnm	Entre 220 y 1.000 mm	Especies siempreverdes con menos de 4 m de altura.
5) Mh	Matorral húmedo	Norte, entre 2.500 y 3.400 msnm Sur, entre 3.000 y 3.900 msnm	Entre 500 y 2.000 mm	Especies siempreverdes con menos de 4 m de altura.
6) Cp	Césped de puna	3.800 msnm	(Sin datos)	Hierbas gramíneas
7) Pj	Pajonal	Entre 3.200 y 3.300 m Centro sur, hasta 3.800 mm	En la zona lluviosa del sur: menos de 125 mm Vertiente este: más de 4.000 mm	Hierbas gramíneas
8) N	Nevada		_	_

Fuente: Elaborada por el Equipo de Estudio de JICA con base en el Mapa Forestal 1995.

(2) Superficie de las formaciones vegetales

En el presente Estudio se determinó el porcentaje de la superficie que ocupa cada formación vegetal frente a la superficie total de la cuenca, sobreponiendo los resultados del estudio de INRENA de 1995 al GIS (véase las Tablas 3.1.7-2 y las Figuras 3.7.2-1). Luego, se calculó la suma de las superficies de cada zona de vida ecológica, distinguiendo el desierto costero (Cu, Dc), matorral seco (Ms), matorrales (Msh, Mh), y el pajonal/césped de puna (Cp, Pj). En la Tabla 3.1.7-3 se muestra el porcentaje de cada zona de vida ecológica frente a la superficie total de cada cuenca. Se observa que el desierto ocupa un 20 % del total, el matorral seco un 10 % y el pajonal/césped de puna un 50 %. Los matorrales ocupan entre 10 y 20 %. Los matorrales se distribuyen en zonas de condiciones sumamente

desfavorables para el desarrollo de bosques densos, razón por la que la superficie de los matorrales en sí tampoco es extensa. De esta manera se deduce que las condiciones naturales en las cuatro cuencas de los ríos Cañete, Chincha, Pisco y Yauca. En particular, las bajas precipitaciones, el suelo poco fértil y la pendiente acentuada son los factores de limitación para el crecimiento de la vegetación, sobre todo de especies arbóreas altas.

Tabla 3.1.7-2 Superficie de las formaciones vegetales frente a la superficie de la cuenca (Cuencas del río Cañete)

Cuencas	Cobertura vegetal								
Cuelicas	Cu	Dc	Ms	Msh	Mh	Ср	Pj	N	Total
(Superficie de la cober	(Superficie de la cobertura vegetal: hectáreas)								
Cuenca Río Cañete	61,35	1.072,18	626,23	1,024,77	70,39	187,39	2,956,65	66,78	6,065,74
(Porcentaje frente a la superficie de la cuenca: %)									
Cuenca Río Cañete	1,0	17,7	10,3	16,9	1,2	3,1	48,7	1,1	100,0

(Fuente: Preparado por el Equipo de Estudio de JICA con base en el informe de INRENA 1995)

Tabla 3.1.7-3 Porcentaje de las zonas de vida ecológicas frente a la superficie de las cuencas (Cuencas del río Cañete)

	Zonas de vida ecológica						
Cuencas	Desiertos, etc. (Cu, Dc)	Matorrales secos (Ms)	Matorrales (Msh, Mh)	Césped y pajonales (Cp, Pj)	Nevada (N)	Total	
(Porcentaje frente a la superficie de la cuenca: %)							
Cañete	18.7	10.3	18.1	51.8	1.1	100.0	

(Fuente: Preparado por el Equipo de Estudio de JICA con base en el informe de INRENA 1995)

(3) Variación de la superficie forestal

Hasta ahora no se ha realizado un estudio detallado sobre la variación de la superficie forestal en el Perú. Sin embargo, en el Plan Nacional de Reforestación Perú 2005 – 2024 (Anexo 2) del INRENA, aparece la superficie forestal desaparecida según departamentos hasta el año 2005. En lo que respecta a las regiones incluidas en el presente Estudio (Arequipa, Ayacucho, Huancavelica, Ica, Lima, Piura), la información referida solo cubre una parte. En la Tabla 3.1.7-4 se presenta la superficie forestal desaparecida (total acumulado) de las regiones correspondientes. No existen los datos correspondientes al Departamento de Lima.

Tabla 3.1.7-4 Superficie forestal perdida hasta 2005

Superficie forestal p		Superficie forestal pérdida	Uso posterior a la corta		
Departamentos	Superficie (ha)	acumulada (ha) y porcentaje de la superficie perdida frente a la superficie departamental	Superficie subutilizada (ha)	Superficie utilizada (ha)	
Lima	3.487.311	-	-	-	

(Fuente: Plan Nacional de Reforestación, INRENA, 2005)

Se analizó la variación de las formaciones vegetales según cuencas, sobreponiendo los datos del estudio del FAO realizado en 2005 (elaborados a partir de las imágenes de satélite de 2000) y los resultados del estudio de INRENA de 1995 (elaborados con base en las imágenes de satélite de 1995). (Véase la Tabla 3.1.7-5).

Al analizar la variación de la superficie de cada formación vegetal, se observa que se han reducido la vegetación de las s zonas áridas (desierto y cactus: Cu, DC y Ms) y aumentaron los matorrales (Msh, Mh), Césped de puna (Cp) y la Nevada (N).

Tabla 3.1.7-5 Variación de las formaciones vegetales entre 1995 y 2000

Cuencas	Formaciones vegetales									
Cuencas	Cu		Cu		Cu		Cu		Cu	
(Superficie de la	cobertura	vegetal: hectáre	eas)							
Cañete (a)	-13.46	-28.34	-50.22	7.24	23.70	34.89	-2.18	28.37	6,065.74	
Superficie actual (b)	61.35	1,072.18	626.23	1,024.77	70.39	187.39	2,956.65	66.78	6,065.74	
Porcentaje frente a la superficie actual (a/b) %	-21.9	-2.6	-8.0	+0.7	+33.7	+18.7	-0.1	+42.5		

(Fuente: Elaborada por el Equipo de Estudio de JICA con base en los estudios realizados por INRENA (1995), y FAO (2005))

(4) Situación actual de la reforestación

En las cuencas baja y media, se plantan los árboles principalmente para tres objetivos: 1) reforestación a lo largo del río para la prevención de desastres; ii) para proteger las tierras agrícolas de los vientos y arena; y, iii) como cercos perimetrales de las viviendas. En todo caso, la superficie es sumamente reducida. La especie más plantada es eucalipto, y le sigue Casuarinaceae. Es muy poco común el uso de especies nativas. Por otro lado, en la zona altoandina, se realizan la reforestación para la producción de leñas, protección de las tierras agrícolas (contra el frío y la entrada del ganado), y para la protección de las áreas de recarga de acuíferos. Las especies plantadas son en su mayoría eucalipto y pino. Muchos de los proyectos de reforestación en la zona altoandina han sido ejecutados en el marco del programa de PRNAMACHIS (actualmente, AGRORURAL). Dicho programa consiste en la entrega de plantones a la comunidad por AGRORURAL, los cuales son plantados y manejados por los productores. Existe también un programa de reforestación implementado por el gobierno regional, pero de magnitud reducida. En este caso, el programa establece que la necesidad de lograr el consenso de la comunidad para la selección de las áreas a reforestar. Sin embargo, por lo general, la mayoría de los agricultores quieren tener mayor extensión de tierra para cultivar, y se demora en lograr el consenso para emprender la reforestación. Otro factor de limitación es el clima frío en las altitudes de 3.800 msnm o más. En general, casi no se ha podido recolectar información sobre los proyectos de reforestación ejecutados hasta la fecha, ya que los archivos no estaban disponibles debido al proceso de la reforma institucional.

En el Plan Nacional de Reforestación (INRENA, 2005) aparece los datos de la reforestación realizada entre 1994 y 2003 según departamentos (antigua división administrativa). Se extrajeron los datos de los antiguos departamentos que se incluyen en el presente Estudio (Tabla 3.1.7-6). Se observa que la superficie reforestada aumentó en 1994, para luego decrecer drásticamente. Lima se ubica en la zona costera donde ocurren sumamente pocas lluvias, no existiendo áreas reforestables, por lo que se estima que la demanda de reforestación es muy limitada.

Tabla 3.1.7-6 Reforestación ejecutada entre 1994 y 2003

(Unidad: ha)

Departamentos	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Total
Lima	6.692	490	643	1.724	717	1.157	nr	232	557	169	12.381

Fuente: Plan Nacional de Reforestación, INRENA, 2005

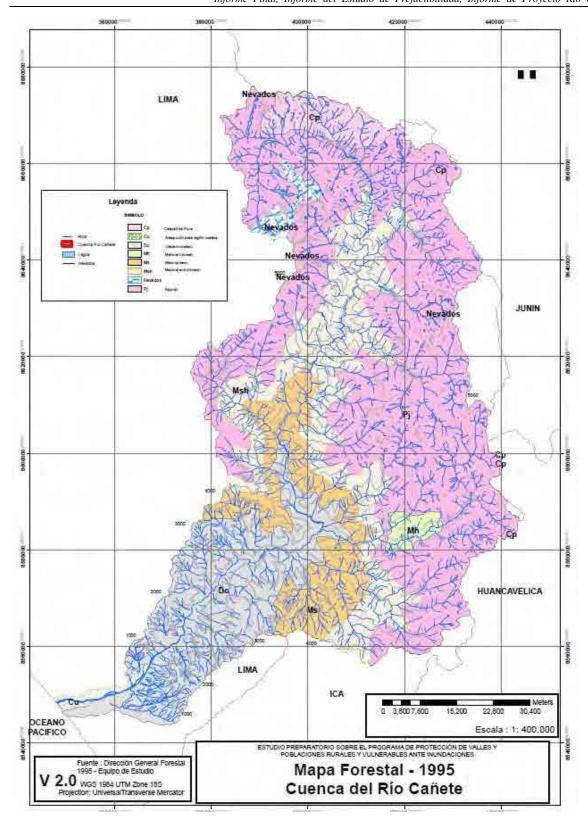


Figura 3.1.7-1 Mapa forestal de la Cuenca del Río Cañete

3.1.8 Situación actual de la erosión del suelo

- (1) Recolección de información y elaboración de datos básicos
 - 1) Recolección de información

En el presente Estudio se recolectaron los datos e informaciones que se indican en la siguiente Tabla 3.1.8-1 con el fin de conocer la situación actual de la producción de sedimentos dentro del Área del Estudio.

Tabla 3.1.8-1 Lista de informaciones recolectadas

	Formatos	Elaborado por:
Mapa topográfico (Escala 1/50.000)	Shp	INSTITUTO GEOGRAFICO NACIONAL
Mapa topográfico (Escala 1/100.000)	Shp,dxf	INSTITUTO GEOGRAFICO NACIONAL
Mapa geológico (Escala 1/250.000)	SHP	Geologic data systems
Mapa geológico (Escala 1/100.000)	Shock Wave	INGEMMET
Datos de malla de 30 m	Text	NASA
Datos de los ríos	SHP	ANA
Datos de las cuencas	SHP	ANA
Mapa de riesgo potencial de erosión	SHP	ANA
Mapa de suelos	SHP	INRENA
Mapa de cobertura vegetal	SHP2000 PDF1995	DGFFS
Datos de precipitación	Text	Senami

2) Elaboración de datos básicos

Se elaboraron los siguientes datos utilizando los materiales recolectados. Los detalles se presentan en el Anexo 6.

- Mapa de cuencas hidrográficas (zonificación por valles de tercer orden)
- · Mapa de pendiente
- · Mapa geológico
- Mapa de erosión y de pendientes
- · Mapa de erosión y órdenes de los valles
- · Mapa de suelos
- · Mapa de isoyetas

(2) Análisis de las causas de la erosión del suelo

1) Características topográficas

i) Superficie según altitudes

En la Tabla 3.1.8-2 y en la Figura 3.1.8-1 se presenta la superficie según altitudes de la cuenca del Río Cañete. En la cuenca del Río Cañete existe un elevado porcentaje de zonas con más de 4.000 msnm. Las laderas en estas zonas son poco acentuadas y se distribuyen numerosas nevadas y reservorios. Esta parte de la cuenca del Río Cañete es extensa y presenta abundantes y caudalosos recursos hídricos en comparación con otras cuencas.

Tabla 3.1.8-2 Superficie según altitudes

abia bilio 2 bape	There began an
Altitud	
(msnm)	Aewa (k m²)
	Cañete
0 - 1000	381,95
1000 - 2000	478,2
2000 - 3000	1015,44
3000 – 4000	1012,58
4000 - 5000	3026,85
5000 – Más	108,95
TOTAL	6023,97
Altitud máxima	5355,00

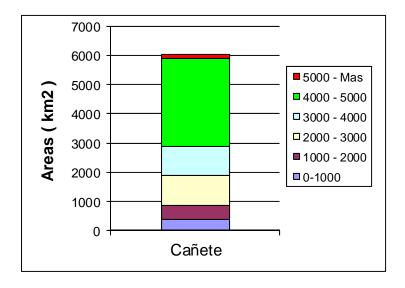


Figura 3.1.8-1 Superficie según altitudes

ii) Zonificación según pendientes

En la Tabla 3.1.8-3 y en la Figura 3.1.8-2 se muestran las pendientes de cada cuenca.

Tabla 3.1.8-3 Pendientes y superficie

Pendiente	Cañete					
de la	,					
cuenca	Área					
(%)	(km ²)	Porcentaje				
0 - 2	36,37	1%				
2 – 15	650,53	11%				
15 - 35	1689,81	28%				
Más de 35	3647,26	61%				
TOTAL	6023,97	100%				

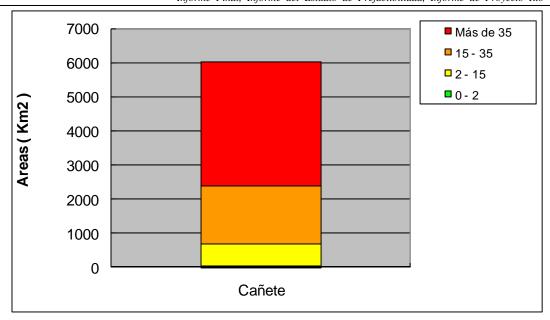


Figura 3.1.8-2 Pendientes y superficie

iii) Pendiente del lecho

En la Tabla 3.1.8-4 y la Figura 3.1.8-3 se muestran la pendiente de cada uno de los ríos y la longitud de las quebradas incluyendo los tributarios. En la Figura 3.1.8-4 se muestra la relación general del movimiento de los sedimentos y la pendiente del lecho. Se dice que los tramos con más de 33,3 % de inclinación tienden a producir mayor cantidad de sedimentos, y en las laderas con pendientes entre 3,33 % y 16,7 %, se acumulan los sedimentos con mayor facilidad.

Tabla 3.1.8-4 Pendiente del lecho y longitud total de la quebrada

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Pendiente del	
lecho (%)	Cañete
0,00 - 1,00	12,82
1,00 - 3,33	173,88
3,33 - 16,67	1998,6
16,67 - 25,00	753,89
25,00 - 33,33	467,78
33,33 - Más	975,48
TOTAL	4382,45

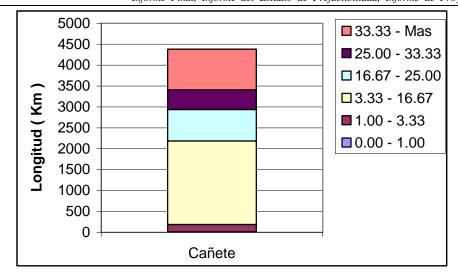
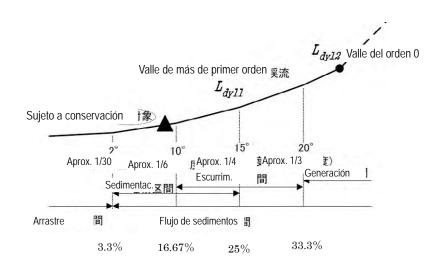
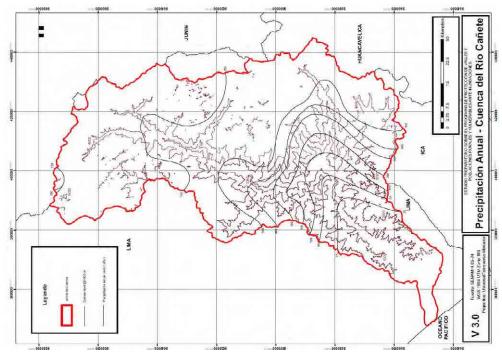


Figura 3.1.8-3 Pendiente del lecho y longitud total de las quebradas




Figura 3.1.8-4 Pendiente del lecho y patrón de movimiento de sedimentos

2) Precipitaciones

En el litoral del Pacífico se extiende una zona árida (Costa) de entre 30 y 50 km de ancho y aprox. 3.000 km de largo. Esta región pertenece a la zona de clima Chala donde la temperatura media anual rodea los 20 °C, y casi no llueve a lo largo del año.

Las altitudes entre 2.500 y 3.000 msnm pertenece al clima Quechua, donde presentan precipitaciones anuales entre 200 y 300 mm. Más allá de esta zona, entre las altitudes de 3.500 y 4.500 msnm se extiende una región natural denominada Suni, caracterizada por su esterilidad. Las precipitaciones en esta región ocurren anualmente 700 mm de lluvias.

En la Figura de 3.1.8-5 se presentan los mapas de isoyetas (precipitaciones anuales) de cada cuenca.

Fuente: Elaborado por el Equipo de Estudio de JICA con base en los datos de SENAMHI Figura 3.1.8-5 Mapa de Isoyetas de la Cuenca del Río Cañete

Las precipitaciones anuales en el área sujeta al análisis de inundaciones oscilan entre 0 y 25 mm. Las precipitación media anual en la zona de 4000 msnm de la parte norte oscilan entre 750 y 1.000 mm.

3) Erosión

A continuación se presentan las características de erosión de las cuencas en general.

Las cuencas se dividen en tres grandes regiones naturales: Costa, Sierra/Suni, y Puna. En la Figura 3.1.8-6 se muestra el respectivo clima y las precipitaciones. Se observa que la región más susceptible a la erosión es Sierra/Suni donde predomina la topografía acentuada sin cobertura

vegetal.

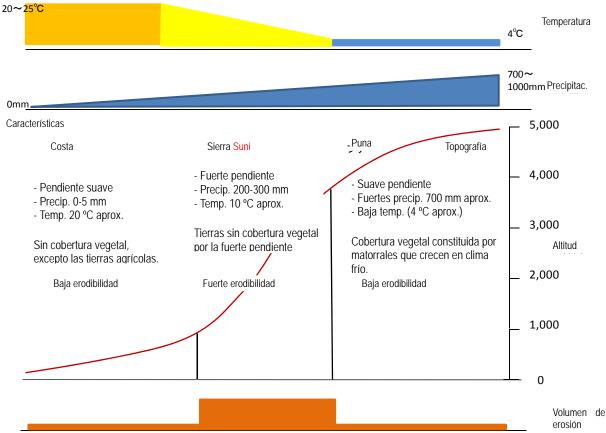


Figura 3.1.8-6 Relación entre el volumen de erosión del suelo y las diferentes causas

(3) Identificación de las zonas más erodibles

El mapa de erosión preparado por Ana toma en cuenta la geología, pendiente de laderas y precipitaciones. Se dice que la profundidad de erosión depende de la pendiente de laderas, y en este sentido el mapa de erosión y el mapa de pendientes son congruentes. Así, se deduce que las zonas erodibles según el mapa de erosión son donde se produce con mayor frecuencia la erosión dentro de la correspondiente cuenca. A continuación se describen las tendencias según cuencas.

Entre 2.000 y 5.000 msnm se encuentran las laderas con más de 35 grados. Se observa que más de 60 % aproximadamente de la cuenca está constituido por laderas con estas pendientes. En particular entre 1.000 y 3.000, más del 80 % de las laderas son de más de 35 grados, y se deduce que son más susceptibles a la erosión.

Tabla 3.1.8-5	Pendientes	segiin	altitudes	del Río	Cañete
1abia 5.1.0-5	1 chalchtes	ocgun	annuucs	uci Mio	Cancic

			ndiente	•	Total
Altitude	0-2	2 - 15	15 - 35	Más de 35	Total
0 - 1000	15.51	111.54	101.99	141.11	370.15
Ratio	4%	30%	28%	38%	100%
1000 - 2000	0.56	18.13	75	435.02	528.71
Ratio	0%	3%	14%	82%	100%
2000 - 3000	0.15	11.1	64.27	604.91	680.43
Ratio	0%	2%	9%	89%	100%
3000 - 4000	0.52	35.27	193.48	751.43	980.7
Ratio	0%	4%	20%	77%	100%
4000 - 5000	8.88	490.68	1252.7	1668.31	3420.57
Ratio	0%	14%	37%	49%	100%
5000 - Mas	0.05	3.26	21.88	59.99	85.18
Ratio	0%	4%	26%	70%	100%
Total	25.67	669.98	1709.32	3660.77	6065.74
Ratio	0%	11%	28%	60%	100%

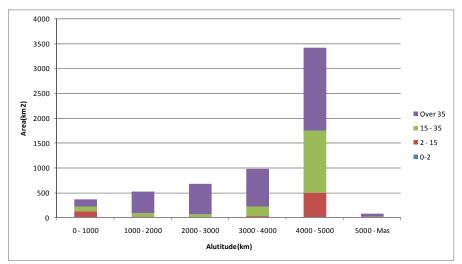


Figura 3.1.8-7 Pendientes según altitudes del Río Cañete

(4) Producción de los sedimentos

1) Resultados del estudio geológico

Se llevó a cabo el estudio de la cuenca alta del río Cañete. A continuación se describen los resultados del estudio.

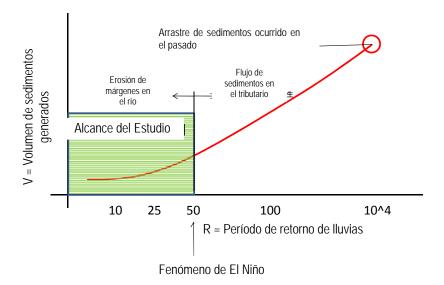
- En la ladera de las montañas se observan la formación de depósito de materiales clásticos desprendidos por el derrumbe o por la erosión eólica.
- Los patrones de producción se difieren según la geología de la roca base. Si la roca base es andesítica o basáltica, el mecanismo consiste principalmente en la caída de grandes gravas y fracturación (véase la Figura 3.1.8-8 y Figura 3.1.8-9).
- No se observa vegetación enraizada (Figura 3.1.8-10) probablemente por el arrastre de sedimentos en tiempo ordinario. En las diaclasas de la capa de roca andesítica, etc. donde ocurre poco movimiento de sedimentos, se ha observado el desarrollo de algas y cactus.
- En casi todos los cauces se observó la formación de las terrazas bajas. En estos lugares, los sedimentos arrastrados de las laderas no entran directamente al cauce, sino que se depositan sobre la terraza. Por este motivo, la mayor parte de los sedimentos que entran al río, probablemente sean aportados por los depósitos de las terrazas erosionados o sedimentos acumulados debido a la alteración del lecho (véase la Figura 3.1.8-11).
- En la cuenca alta se observó menos terrazas y los sedimentos arrastrados de las laderas entran directamente al río, aunque su cantidad es sumamente reducida.

Figura 3.1.8-8 Tierras andesíticas y basálticas derrumbadas

Figura 3.1.8-9 Producción de sedimentos de las rocas sedimentarias

Figura 3.1.8-10 Invasión de cactus

Figura 3.1.8-11 Movimiento de los sedimentos en el cauce


2) Movimiento de los sedimentos (en el cauce)

En las quebradas se desarrollan las terrazas (de más de 10 m de altura en la cuenca del río Cañete). El pie de estas terrazas se contactan directamente con los canales y desde estos lugares los sedimentos vuelven a ser arrastrados y transportados con un caudal ordinario (incluyendo pequeñas y medianas crecidas en la época de lluvias).

3) Proyección de la producción y arrastre de sedimentos

Se prevé que la cantidad de producción y arrastre de sedimentos varía dependiendo de la magnitud de los factores como las precipitaciones, caudal, etc.

Dado que no se ha realizado un levantamiento secuencial cuantitativo, ni un estudio comparativo, aquí se presentan algunas observaciones cualitativas para un año ordinario, un año con precipitaciones de la magnitud de fenómeno de El Niño y un año con crecidas extraordinarias. El alcance del presente Estudio está enfocado a las precipitaciones con período de retorno de 50 años, tal como se indica en la siguiente Figura, lo cual equivale a precipitaciones que producen el flujo de sedimentos desde los tributarios.

i) Un año ordinario

- · Casi no se producen los sedimentos desde las laderas.
- Los sedimentos se producen por el choque de la corriente de agua contra el depósito de sedimentos desprendidos de las laderas y depositados al pie de las terrazas.
- Se considera que el arrastre de sedimentos se produce por el siguiente mecanismo: los sedimentos acumulados en los bancos de arena dentro del cauce son empujados y transportados aguas abajo por el cambio del cauce durante las crecidas pequeñas (véase la Figura 3.1.8-12).

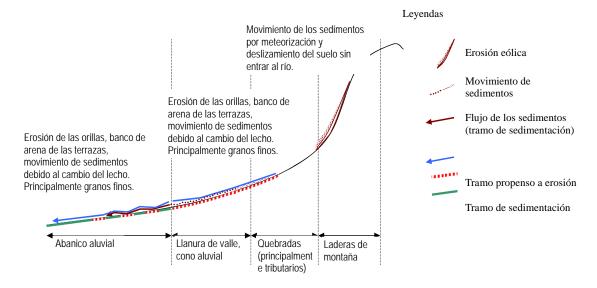


Figura 3.1.8-12 Producción y arrastre de sedimentos en un año ordinario

ii) Cuando ocurren lluvias torrenciales de similar magnitud a El Niño (período de retorno de 50 años)

De acuerdo con las entrevistas realizadas en la localidad, cada vez que ocurre el fenómeno de El Niño se produce el flujo de sedimentos en los tributarios. Sin embargo, dado que el cauce tiene suficiente capacidad para regular los sedimentos, la influencia en la cuenca baja es reducida.

· La cantidad de los sedimentos arrastrada varía dependiendo de la cantidad de agua que

discurre por las laderas.

- El flujo de sedimentos desde los tributarios llega a entrar al río principal.
- Dado que el cauce tiene suficiente capacidad para regular los sedimentos, la influencia en la cuenca baja es reducida.

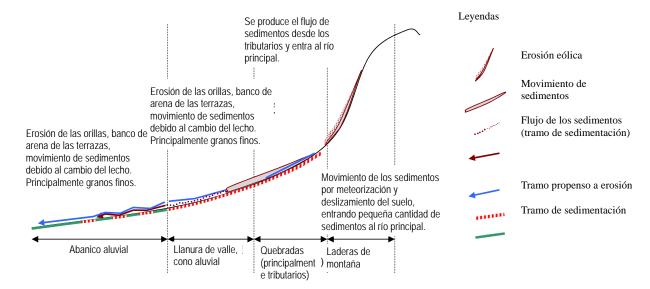


Figura 3.1.8-13 Producción y arrastre de sedimentos durante las lluvias torrenciales de magnitud similar al de fenómeno de El Niño (período de retorno de 1:50 años)

iii) Crecidas de enorme magnitud (que puedan dar lugar a la formación de terrazas similares a las existentes actualmente), con período de retorno de 1:10.000 años

En la región de Costa, las precipitaciones diarias con 100 años de probabilidad son de aproximadamente 50 mm, por lo que actualmente muy raras veces se producen el movimiento de tierras arrastras por el agua. Sin embargo, precisamente porque ordinariamente ocurren pocas lluvias, una vez ocurridas las lluvias torrenciales, existe un alto potencial de arrastre de sedimentos por las aguas.

Si suponemos que ocurren lluvias con extremadamente bajas probabilidades, por ejemplo, 1:10.000 años, se estima que se generaría la siguiente situación (véase la Figura 3.1.8-14).

- · Arrastre de sedimentos de las laderas, por la cantidad congruente con la cantidad de agua.
- Arrastre de sedimentos excedentes desde el talud y pie de las laderas por la cantidad congruente con la cantidad de agua, provocando movimiento de tierras que puedan cerrar las quebradas o cauces.
- Destrucción de las presas naturales de los cauces cerrados por los sedimentos, flujo de sedimentos por la destrucción de bancos de arena.
- Formación de terrazas y aumento de sedimentos en los cauces en la cuenca baja debido a la entrada de gran cantidad de sedimentos.
- Desbordamiento de agua en el tramo entre el cono aluvial y las secciones críticas, que puede alterar el cauce.

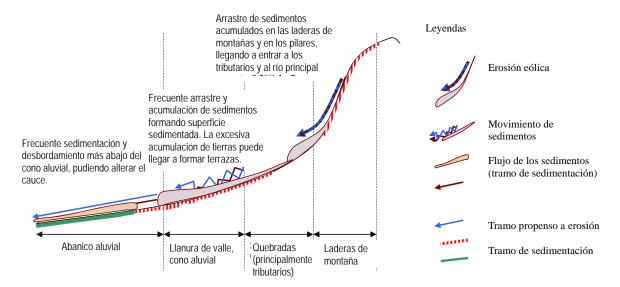


Figura 3.1.8-14 Producción de sedimentos de sedimentos en grandes crecidas (escala geológica)

3.1.9 Análisis de descarga

- (1) Datos de precipitaciones
- 1) Sistema de monitoreo actual de precipitaciones

Se revisó el sistema actual de la toma de datos de precipitaciones que se utilizan en el análisis de descarga, a la par de recoger y procesar los datos pluviales necesarios para dicho análisis. Los datos de las precipitaciones fueron obtenidos de SENAMHI y de ELECT.PERU.

En las Tablas 3.1.9-1~2 y en la Figura 3.1.9-1 se indican los puntos de monitoreo de precipitaciones y los datos recogidos según período en la Cuenca del Río Cañete.

En la cuenca del Río Cañete se está realizando el monitoreo en 13 estaciones (incluyendo las inoperativas actualmente), por un periodo máximo de 47 años desde 1964 hasta 2010.

Tabla 3.1.9-1 Lista de estaciones de monitoreo pluvial (cuenca del Río Cañete)

CODIGO	ESTACION	DEPARTAMENTO	LONGITUD	LATITUD
636	YAUYOS	LIMA	75° 54'38.2	12° 29'31.4
155450	YAURICOCHA	LIMA	75° 43'22.5	12° 19'0
155169	TOMAS	LIMA	75° 45'1	12° 14'1
156106	TANTA	LIMA	76° 01'1	12° 07'1
6230	SOCSI CAÑETE	LIMA	76° 11'40	13° 01'42
638	PACARAN	LIMA	76° 03'18.3	12° 51'43.4
6641	NICOLAS FRANCO SILVERA	LIMA	76° 05'17	12° 53'57
156112	HUANTAN	LIMA	75° 49'1	12° 27'1
156110	HUANGASCAR	LIMA	75° 50'2.2	12° 53'55.8
156107	COLONIA	LIMA	75° 53'1	12° 38'1
156109	CARANIA	LIMA	75° 52'20.7	12° 20'40.8
156104	AYAVIRI	LIMA	76° 08'1	12° 23'1
489	COSMOS	JUNIN	75° 34'1	12° 09'1

Tabla 3.1.9-2 Período de toma de datos pluviales (cuenca del Río Cañete)

Tabia	٥.	ı.	y	-2	ľ	e'	rı	0	ao) (ae) t	O	m	la	a	e	a	at	OS	S]	рı	u	VI.	aı	es	; (cı	ıe	11	ca	C	le.	IJ	K	10	C	æ	n	e	te)						
CAÑETE	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1074	19/1	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1986	1987	1988	1989	1990	1991	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2002	2006	2007	2008	2009	2010
COSMOS																					ŀ		-	Ŧ	F	E												I	I				I	I	I	I	I	
AYAVIRI										Ŧ				F		E							T		F						Ŧ	E					1	Ŧ	-	1			4	=	4	-	4	=
CARANIA										ŧ	Ŧ	Ŧ				E					1	1	1	1		E		=		1	ŧ						1	<u> </u>	₫	1			4	Ⅎ	1	#	₫	3
COLONIA										Ŧ	Ŧ	Ŧ		E	E	E					1	1	1	Ŧ	E													I	I				I			I	I	1
HUANGASCAR										Ŧ	Ŧ			E	E	E	E				1	1	1	Ŧ	E	Е			-	1	Ŧ	E					1	Ŧ	₹	-		-	=	=	4	+	₹	
HUANTAN										Ŧ	Ŧ	Ŧ		ŧ		E						1		1	ŀ													I	Ι				\Box	\Box	\Box	I	Ι	٦
NICOLAS FRANCO SILVERA																																						I	I			ŀ	4	₫	1	Ι	I	Ī
PARARAN										Ŧ	Ŧ	Ŧ	Ŧ	ŧ	F	F	E								ŀ	E		=	1	1	Ŧ	F	E			H	1	Ŧ	Ŧ	1	1		\Box	Ī	=	Ŧ	Ŧ	4
SOCSI												I																										I	I				4	-	1	Ŧ	₫	
TANTA					H					Ŧ	Ŧ	Ŧ		E	E	E	Е			1	1	=	ŀ	1	E	E			=	ŀ	Ε	E					1	<u>Ŧ</u>	₹		1	1	4	₹	\pm	1	₹	Ī
TOMAS																					ŀ	1			F													I	Ι					\Box	\Box	floor	Ι	٦
YAURICOCHA			Ī							Ţ	Ţ	Ţ	Ι	I	Τ								I			E		=	7	1	Ŧ	E	E	Н	Е	H	1	Ŧ	₹	7	=	=	7	=	4	Ŧ	Ŧ	
YAUYOS	Т	Т	Т	Т				=		Ŧ	Ŧ	Ŧ		Ŧ	F	F	F				=	Т	Ŧ		T		П	П	Т	T	Ŧ	F					7	Ŧ	Ŧ	7	4	4	4	7		_	4	Ξ

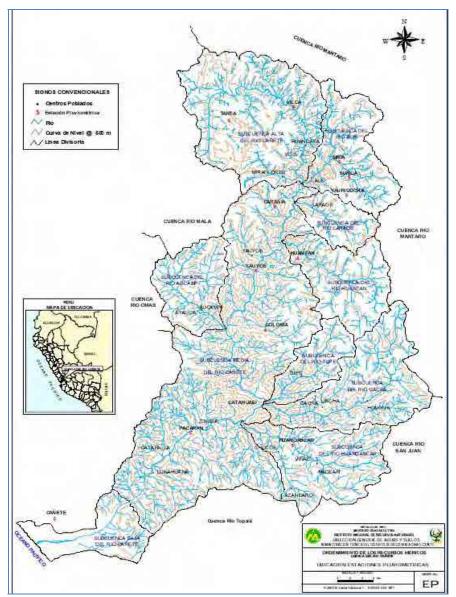


Figura 3.1.9-1 Mapa de ubicación de las estaciones de monitoreo (cuenca del Río Cañete)

2) Mapa de isoyetas

A continuación se presentan los mapas de isoyetas de la precipitación anual (promedio de diez años) elaborados por SENAMHI utilizando los datos recogidos en el período 1965 –1974.

En la Figura 3.1.9-2 se presenta el mapa de isoyetas de la cuenca del Río Cañete.

En la cuenca del Río Cañete se observa que la precipitación anual varía considerablemente dependiendo de las zonas, con un mínimo de 25 mm y máximo de 750 mm. La precipitación es baja en la cuenca baja y se va incrementando a medida que se va acercando a la cuenca alta, aumentando las altitudes.

La precipitación anual en la cuenca baja, sujeta a control de inundaciones, es reducida oscilando entre 25 y 50 mm.

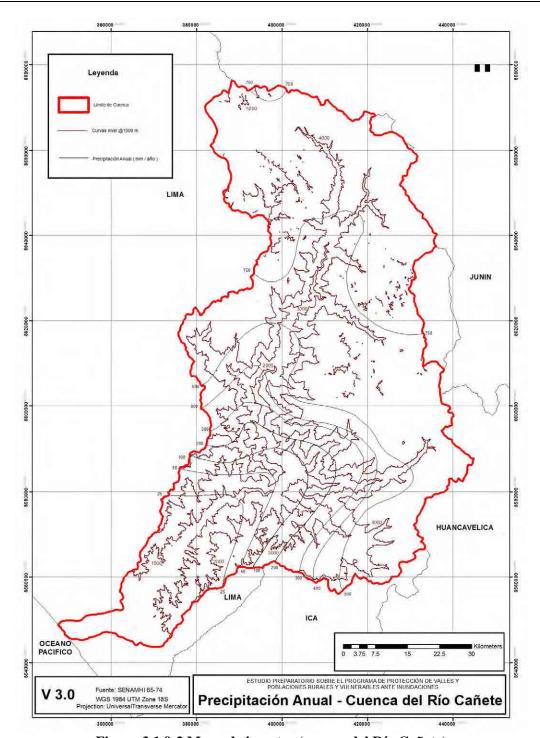


Figura 3.1.9-2 Mapa de isoyetas (cuenca del Río Cañete)

(2) Análisis de precipitaciones

1) Metodología

Se realizó el cálculo estadístico hidrológico utilizando los datos de precipitaciones recogidos de las diferentes estaciones, para determinar la precipitación con período de retorno de 24 horas en cada estación.

Se probaron varios modelos de distribución de períodos de retorno y se adoptó el modelo más apropiado. Así, la precipitación con período de retorno de 24 horas se determinó con este modelo. Los modelos de estadísticas hidrológicas probados fueron los siguientes.

Distribución normal o gaussiana

- Distribución log-normal de 3 parámetros
- Distribución log-normal de 2 parámetros
- Distribución gamma de 2 ó 3 parámetros
- Distribución Log Pearson Tipo III
- Distribución de Gumbel
- Distribución generalizada del valor extremo

2) Resultados de análisis de precipitaciones del período de retorno – t

A continuación se presenta las precipitaciones en diferentes estaciones y en el punto de referencia de cada cuenca, según períodos de retorno.

En la Tabla 3.1.9-3 se presenta los puntos de monitoreo y las precipitaciones con período de retorno de 24 horas en el punto de referencia (Estación Socsi). En la Figura 3.1.9-3 se presenta el mapa de isoyetas de precipitaciones con período de retorno de 50 años.

Tabla 3.1.9-3 Precipitaciones con período de retorno de 24 horas (cuenca del Río Cañete)

NOMBRE DE ESTACION	PERIODO DE RETORNO T [AÑOS]							
NOVIBRE DE ESTACION	PT_2	PT_5	PT_10	PT_25	PT_50	PT_100	PT_200	
AYAVIRI	29.0	35.0	37.0	39.0	40.0	41.0	42.0	
CARANIA	18.0	23.0	27.0	33.0	39.0	45.0	52.0	
COLONIA	21.0	30.0	37.0	48.0	56.0	66.0	77.0	
COSMOS	23.0	31.0	35.0	40.0	43.0	45.0	47.0	
HUANGASCAR	20.0	29.0	35.0	44.0	51.0	59.0	67.0	
HUANTAN	30.0	40.0	48.0	58.0	66.0	75.0	84.0	
PACARAN	4.0	7.0	9.0	12.0	15.0	18.0	21.0	
SOCSI CAÑETE	0.0	1.0	2.0	4.0	7.0	12.0	21.0	
TANTA	23.0	32.0	38.0	46.0	52.0	58.0	65.0	
TOMAS	14.0	18.0	20.0	21.0	22.0	23.0	24.0	
YAURICOCHA	27.0	36.0	43.0	54.0	64.0	75.0	88.0	
YAUYOS	18.0	23.0	27.0	31.0	34.0	37.0	40.0	

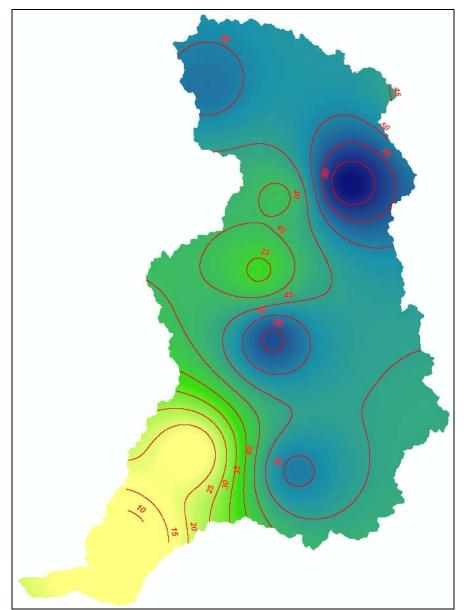


Figura 3.1.9-3 Mapa de isoyetas de precipitaciones con período de retorno de 50 años (cuenca del Río Cañete)

(3) Análisis de caudal de descarga

1) Monitoreo de caudal

Se revisó el sistema actual de la toma de datos del caudal que se utilizan en el análisis de descarga, a la par de recoger y procesar los datos de monitoreo de caudal necesarios para dicho análisis.

Se recogieron los datos de caudal de DGIH, comisiones de regantes y Autoridad Nacional del Agua, ANA.

2) Análisis de caudal de descarga

Se realizó el cálculo estadístico hidrológico utilizando los datos de la descarga máxima anual recogidos y procesados en los puntos de referencia, para determinar el caudal con diferentes probabilidades. En la Tabla 3.1.9-4 se muestra el caudal probable con períodos de retorno entre 2 y 100 años.

Tabla 3.1.9-4 Caudal probable en los puntos de control

 (m^3/s)

Ríos	Períodos de retorno						
Rios	2 años	5 años	10 años	25 años	60 años	100 años	
Río Cañete Socsi	313	454	547	665	753	840	

- 3) Análisis de caudal de crecidas con período de retorno t-años
- a) Metodología

El caudal probable de inundación se analizó utilizando el modelo HEC-HMS, con el que se preparó la hietografía de diferentes períodos de retorno, y se calculó el caudal pico.

Para la precipitación utilizada en el análisis, se utilizó la hietografía de diferentes períodos de retorno preparada en el análisis de precipitación. La hietografía se determinó tomando como referencia el caudal pico estimado en el análisis de descarga.

b) Resultados de análisis

En la Tabla 3.1.9-5se muestra el caudal de inundaciones con períodos de retorno de entre 2 y 100 años de la cuenca del Río Cañete.

Asimismo en la Figura 3.1.9-4 se muestra la hidrografía de inundaciones probables en la cuenca del Río Cañete.

Se observa que las cifras de las Tablas 3.1.9-4 y 3.1.9-5 son similares. Así, para el siguiente análisis de inundaciones, se decidió aplicar las cifras de la Tabla 3.1.9-5 que coinciden con la hidrografía.

Tabla 3.1.9-5 Caudal de inundaciones según períodos de retorno (Caudal pico: Punto de referencia)

 (m^3/s)

		Períodos de retorno					
Ríos	2 años	5 años	10 años	25 años	50 años	100 años	
Río Cañete Socsi	331	408	822	1.496	2.175	2.751	

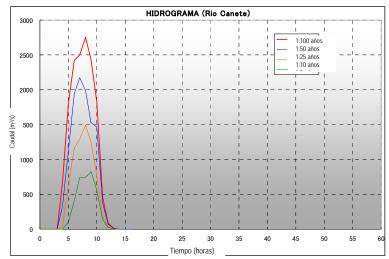


Figura 3.1.9-4 Hidrograma del Río Cañete

3.1.10 Análisis de inundaciones

(1) Levantamiento de los ríos

Previo al análisis de inundaciones, se llevó a cabo el levantamiento transversal del Río Cañete s y el levantamiento longitudinal de los diques. En la Tabla 3.1.10-1 se presentan los resultados del levantamiento de los cinco ríos objeto del Estudio.

Con el fin de obtener los datos topográficos para el análisis de las zonas de inundación, se utilizaron complementariamente los resultados de la medición real indicados en la Tabla 3.1.10-1 utilizando los datos de imágenes satelitales.

Tabla 3.1.10-1 Datos básicos del levantamiento de los ríos

Levantamiento	Unidad	Cantidad	Notas
1. Levantamiento de pur	ntos de cor	ntrol	
Río Cañete	No.	4	
2. Levantamiento transv	ersal de di	ques	Intervalo de 250 m, solo una mergen
Río Cañete	km	33	
3. Levantamiento transv	ersal de lo	s ríos	Intervalo 500 m
Río Cañete	km	46.9	67 líneas x 0.7 km
4. Mojones			
Tipo A	No.	30	Cada uno de los puntos de control
Tipo B	No.	273	33kmx Un punto/km

(2) Métodos de análisis de inundaciones

Dado que la DGIH realizó el análisis de inundación del estudio de perfil a nivel de programa utilizando el modelo HEC-RAS, se decidió para el presente Estudio, revisar y modificar, si es necesario, y utilizar este método.

- 1) Bases de análisis Normalmente, para el análisis de desbordamiento se utilizan tres métodos siguientes.
- ① Modelo unidimensional de flujo variado
- ② Modelo de tanques

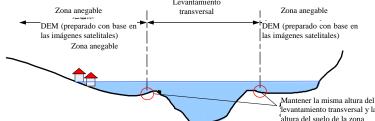


Figura 3.1.10-1 Idea del modelo unidimensional

③ Modelo bidimensional horizontal de flujo variado

El tiempo y el costo requerido por cada método varían considerablemente, por lo que se seleccionará el método más eficiente que garantice el grado de precisión requerido para la elaboración del mapa de zonas anegables.

En la Tabla 3.1.10-2 se muestran las características de cada método de análisis. De los resultados de simulación realizada por DGIH, se sabe que los ríos tienen una pendiente entre 1/100 y 1/300, por lo que inicialmente se había seleccionado el modelo unidimensional de flujo variado suponiendo que las inundaciones son del tipo gravedad. Sin embargo, se consideró la posibilidad de que el agua desbordada se extienda dentro de la cuenca en la cuenca baja, por lo que para este estudio se decidió utilizar el modelo bidimensional horizontal de régimen variable para obtener resultados más precisos.

Tabla 3.1.10-2 Metodología análisis de desbordamiento

Tabla 3.1.10-2 Metodología análisis de desbordamiento								
Métodos de análisis	Modelo unidimensional de flujo variado	Modelo de tanques	Modelo bidimensional horizontal de flujo variado					
Concepto básico de la definición de la zona de inundación	En este método se considera que la zona de inundación forma parte del cauce del río, y se determina la zona de inundación calculando el nivel de agua del cauce en función del caudal máximo de inundación.	En este método se manejan la zona de inundación y el cauce separadamente, y se considera la zona de inundación como un cuerpo cerrado. A este cuerpo de agua cerrado se le denomina "taque" (pond) en el que el nivel de agua es uniforme. Se determina la zona de inundación en función de la relación entre el caudal desbordado del río y entrado a la zona de inundación, y las características topográficas de dicha zona (nivel de agua – capacidad – superficie).	En este método se manejan la zona de inundación y el cauce separadamente, y se determina la zona de inundación analizando el flujo bidimensional del comportamiento del agua desbordada que entró a la zona de inundación.					
Planteamiento	El cauce y la zona de inundación como un conjunto Zona de inundación Cauce	Zona de inundación	Limite Zona de inundación Cauce					
Características	Es aplicable a las inundaciones en el que el agua desbordada discurre por la zona de inundación por gravedad; es decir, a las inundaciones tipo corriente. En este método se debe manejar el área de análisis como una área desprotegida (sin diques).	Aplicable a las inundaciones tipo estancadas en las que el agua desbordada no se extienden por la presencia de montañas, colinas, terraplenes, etc. El nivel de agua dentro de este cuerpo cerrado se mantiene uniforme, sin pendiente ni velocidad de flujo. En el caso de existir varios terraplenes continuo dentro de la misma zona de inundación, puede ser necesario aplicar el modelo de tanques en serie distinguiendo la región interna.	Básicamente, es aplicable a cualquier tipo de inundaciones. Además del área máxima de inundación y el nivel de agua, este método permite reproducir la velocidad de flujo y su variación temporal. Es considerado como un método preciso en comparación con otros métodos, y como tal, es aplicado frecuentemente en la elaboración de los mapas de riesgo de inundaciones. Sin embargo, por su naturaleza, la precisión de análisis está sujeto al tamaño de las cuadrículas del modelo de análisis.					

2) Método de análisis de desbordamiento

En la Figura 3.1.10-2 se muestra el esquema conceptual del modelo bidimensional horizontal del régimen variable.

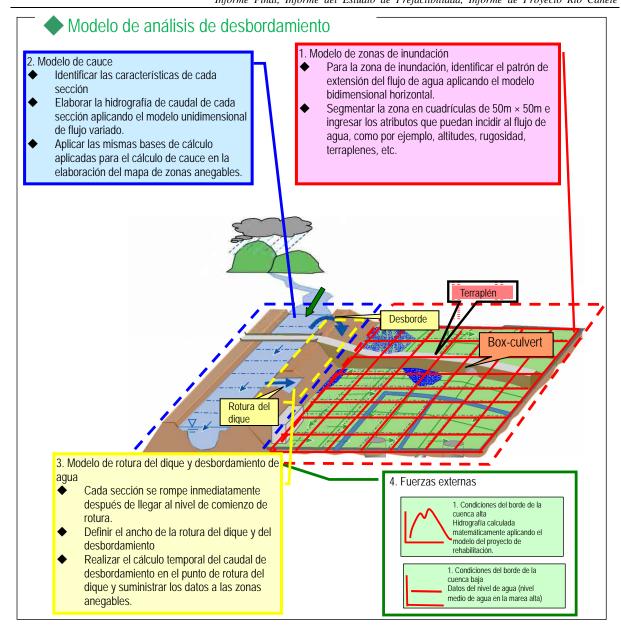
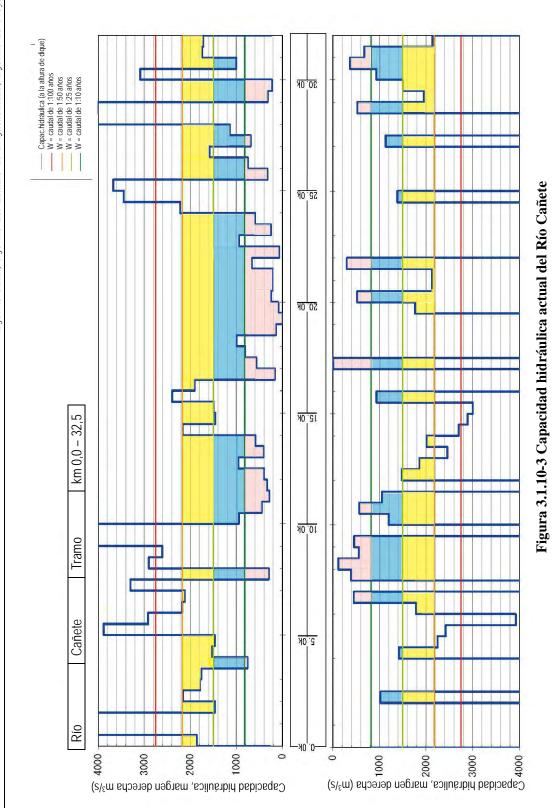



Figura 3.1.10-2 Esquema conceptual del modelo de análisis de desbordamiento

(3) Análisis de caudal de descarga

Se estimó la capacidad hidráulica actual de los cauces con base en los resultados del levantamiento de los ríos y aplicando el método HEC-RAS, cuyos resultados se muestran en la Figura 3.1.10-3. En esta figura se presenta también los caudales de inundaciones de diferentes períodos de retorno, lo que permite evaluar en qué lugares de la cuenca de Río Cañete de pueden ocurrir desbordamiento con qué magnitud de caudal de inundaciones.

3-50

(4) Alcance del desbordamiento

A modo de referencia, en las 3.1.10-4 se muestran los resultados del cálculo de alcance de desbordamiento en cada cuenca frente al caudal de inundaciones con un período de retorno de 50 años.

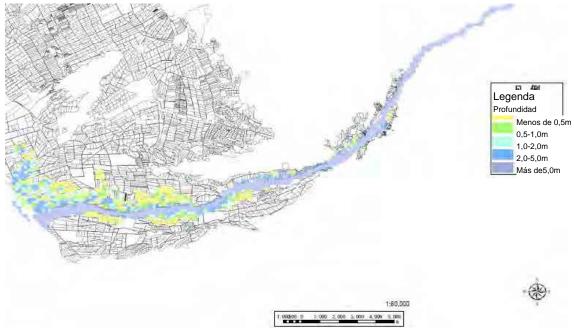


Figura 3.1.10-4 Alcance de desbordamiento del Río Cañete (inundaciones con período de 50 años)

3.2 Definición de Problema y Causas

3.2.1 Problemas de las medidas de control de inundaciones en el Área del Estudio

Con base en los resultados del estudio en el Río Cañete, se identificaron el problema principal sobre el control de inundaciones, así como las estructuras a ser protegidas, cuyos resultados se resumen en la Tabla 3.2.1-1.

Tabla 3.2.1-1 Problemas y medidas de conservación de las obras de control de inundaciones

			Desbordamiento			Erosión	Bocatoma	Obra de
Problemas		Sin diques	Sedimentación en el lecho	Falta de ancho	Erosión del dique	de márgenes	inoperativa	derivación inoperativa
	Tierras agrícolas	0	0	0	0	0	0	0
Estructuras	Canales de riego					0	0	
a ser protegidas	Área urbana	0		0				0
1	Carreteras					0		
	Puentes		0					

3.2.2 Causas de los problemas

A continuación se indican el problema principal, así como sus causas directas e indirectas para el control de inundaciones en el Área del Estudio.

- (1) Problema principal
 - Valles y comunidades locales altamente vulnerables ante inundaciones
- (2) Causas directas e indirectas

En la Tabla 3.2.2-2 se muestran las causas directas e indirectas del problema principal.

Tabla 3.2.2-2 Causas directas e indirectas del problema principal

	1abla 3.2.2-2 Caus	sas directas e indire	ctas dei problema j	principai
Causa directa	Caudal excesivo de inundaciones	2. Desbordamiento	3.Mantenimiento insuficiente de las obras de control	4. Insuficientes actividades comunitarias para el control de inundaciones
Causas indirectas	1.1 Frecuente ocurrencia de clima extraordinaria (El Niño, etc.)	2.1 Falta de obras de control de inundaciones	técnicas de mantenimiento	4.1 Falta de conocimientos y técnicas de prevención de inundaciones
	1.2 Precipitaciones extraordinarias en las cuencas alta y media	2.2 Falta de recursos para la construcción de las obras	3.2 Falta de capacitación en mantenimiento	4.2 Falta de capacitación en prevención de inundaciones
	alta y media	2.3 Falta de planes de control de inundaciones en las cuencas	márgenes	4.3 Falta del sistema de alerta temprana
	1.4 Excesivo arrastre de sedimentos desde las cuencas alta y media	2.4 Falta de diques	3.4 Falta de reparación de obras de toma y de derivación	4.4 Falta de monitoreo y recolección de datos hidrológicos
	1.5 Reducción de la capacidad hidráulica de los ríos por alteración de pendientes, etc.	2.5 Falta del ancho del cauce	3.5 Uso ilegal del lecho para fines agrícolas	
		2.6 Acumulación de sedimentos en los lechos	3.6 Falta de presupuesto de mantenimiento	
		 2.7 Falta de ancho en el punto de construcción del puente 		
		2.8 Elevación del lecho en el punto de construcción del puente		
		2.9 Erosión de los diques y márgenes2.10 Falta de capacidad		
		para el diseño de las obras		

3.2.3 Efectos de los problemas

- (1) Problema principal
 - Valles y comunidades locales altamente vulnerables ante inundaciones.
- (2) Efectos directos e indirectos
 - En la Tabla 3.2.3-1 se muestran los efectos directos e indirectos del problema principal.

Tabla 3.2.3-1 Efectos directos e indirectos del problema principal

Efectos directos	1. Daños agrícolas	2. Daños directos a la comunidad	3. Daños de las infraestructuras sociales	4. Otros daños económicos
	1.1 Daños de cultivos y ganado	2.1 Pérdida de viviendas y propiedades privadas	3.1 Destrucción de caminos	4.1 Interrupción de tráfico
	1.2 Pérdida de las tierras agrícolas	2.2 Pérdida de establecimientos industriales y existencias	3.2 Pérdida de puentes	4.2 Costos de prevención de inundaciones y evacuación
Efectos indirectos	1.3 Destrucción de los canales de riego	2.3 Accidentes y pérdida de la vida humana	3.3 Daños en las infraestructuras de agua potable, electricidad, gas y comunicación	4.3 Costos de reconstrucción y medidas de emergencia
	1.4 Destrucción de las obras de toma y derivación	2.4 Pérdida comercial		4.4 Pérdida de trabajo por los habitantes locales
	1.5 Erosión de diques y márgenes			4.5 Reducción de ingresos de la comunidad
				4.6 Degradación de la calidad de vida
				4.7 Pérdida del dinamismo económico

(2) Efecto final

El efecto final del problema principal es el Impedimento del desarrollo socioeconómico comunitario de la zona afectada.

3.2.4 Árbol de causas y efectos

En la Figura 3.2.4-1 se presenta el árbol de causas y efectos elaborado con base en los resultados del análisis mencionado.

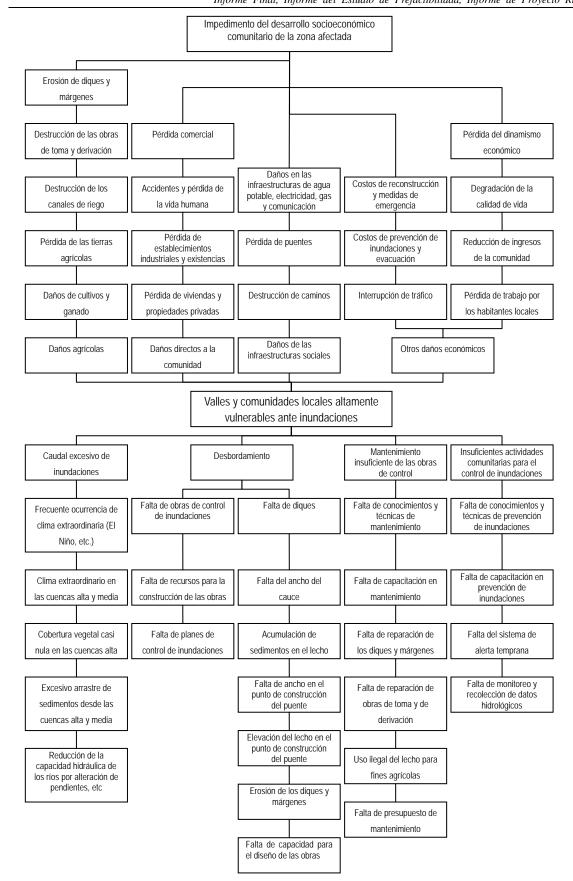


Figura 3.2.4-1 Árbol de causas y efectos

3.3 Objetivo del Proyecto

El impacto final que el Proyecto contempla alcanzar es aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones y fomentar el desarrollo socioeconómico local.

3.3.1 Medidas de solución al problema principal

(1) Objetivo principal

Aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones.

(2) Medidas directas e indirectas

En la Tabla 3.3.1-1 se plantean las medidas de solución directas e indirectas al problema.

Tabla 3.3.1-1 Medidas de solución directas e indirectas al problema

M - J: J -	1	2 D	2 C1::	4 I
Medida directa	Analizar y aliviar el caudal excesivo de	2. Prevenir desbordamiento	3. Cumplimiento cabal de mantenimiento de las	4. Incentivar la prevención de
directa	inundaciones	desoordannento	obras de control de	inundaciones
	mundaciones		inundaciones	comunitaria
Medidas	1.1 Analizar el clima	2.1 Construir obras de	3.1 Reforzar	4.1 Reforzar
indirectas	extraordinaria (El Niño,	control de inundaciones		conocimientos y técnicas
indirectas	etc.)	control de mundaciones	de mantenimiento	de prevención de
	cic.)		de mantenimento	inundaciones
	1.2 Analizar	2.2 Proporcionar	3.2 Reforzar capacitación	
	precipitaciones	recursos para la	en mantenimiento	en prevención de
	extraordinarias en las	construcción de las obras	en mantenimento	inundaciones
	cuencas alta y media	construcción de las oblas		mundaciones
	-	2.3 Elaborar planes de	3.3 Mantener y reparar	4.3 Construir el sistema
	las cuencas alta y media	control de inundaciones	los diques y márgenes	de alerta temprana
		en las cuencas		1
	1.4 Aliviar el excesivo	2.4 Construir diques	3.4 Reparar las obras de	4.4 Reforzar el
	arrastre de sedimentos	_	toma y de derivación	monitoreo y recolección
	desde las cuencas alta y			de datos hidrológicos
	media			
	1.5 Tomar medidas para	2.5 Ampliar el ancho del		
	aliviar la reducción de la	cauce	ilegal del lecho para fines	
	capacidad hidráulica de		agrícolas	
	los ríos por alteración de			
	pendientes, etc.			
		2.6 Excavación del lecho		
			presupuesto de	
			mantenimiento	
		2.7 Ampliar el río en el		
		punto de construcción		
		del puente		
		2.8 Dragado en el punto		
		de construcción del		
		puente		
		2.9 Controlar la erosión		
		de los diques y márgenes		
		2.10 Reforzar la		
		capacidad para el diseño		
		de las obras		

3.3.2 Impactos esperados por el cumplimiento del objetivo principal

(1) Impacto final

El impacto final que el Proyecto contempla alcanzar es aliviar la vulnerabilidad de los valles y de la comunidad local ante las inundaciones y fomentar el desarrollo socioeconómico local.

(2) Impactos directos e indirectos

En la Tabla 3.3.2-1 se plantean los impactos directos e indirectos esperados al cumplir el objetivo principal para el logro del impacto final.

Tabla 3.3.2-1 Impactos directos e indirectos

1				
Impactos	 Alivio de los daños 	2. Alivio de los daños	3. Alivio de los daños	4. Alivio de otros daños
directos	agrícolas	directos a la comunidad	infraestructuras sociales	económicos
Impactos	1.1 Alivio de los daños	2.1 Prevención de la	3.1 Prevención de la	4.1 Prevención de la
indirectos	de cultivos y ganado	pérdida de viviendas y	destrucción de caminos	interrupción de tráfico
		propiedades privadas		
	1.2 Alivio de la pérdida	2.2 Prevención de la	3.2 Prevención de la	4.2 Reducción de costos
	de tierras agrícolas	pérdida de	pérdida de puentes	de prevención de
		establecimientos		inundaciones y
		industriales y		evacuación
		existencias		
	1.3 Prevención de la	2.3 Prevención de	3.3 Alivio de los daños	4.3 Reducción de los
	destrucción de los	accidentes y de la	en las infraestructuras	costos de reconstrucción
	canales de riego	pérdida de la vida	de agua potable,	y medidas de
		humana	electricidad, gas y	emergencia
			comunicación	
	1.4 Prevención de la	2.4 Alivio de la pérdida		4.4 Aumento del
	destrucción de las obras	comercial		empleo de la comunidad
	de toma y derivación			local
	1.5 Alivio de la erosión			4.5 Aumento ingresos
	de diques y márgenes			de la comunidad
				4.6 Mejoría de la
				calidad de vida
				4.7 Desarrollo de las
				actividades económicas

3.3.3 Árbol de medidas – objetivos – impactos

En la Figura 3.3.3-1 se presenta el árbol de medidas — objetivos — impactos.

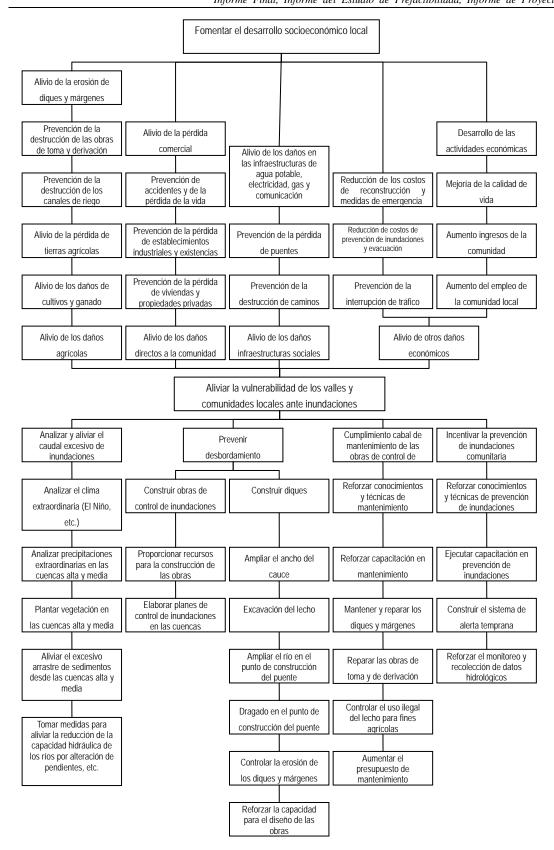


Figura 3.3.3-1 Árbol de medidas – objetivos – impactos

4. FORMULACIÓN Y EVALUACIÓN

4.1 Definición del Horizonte de Evaluación del Proyecto

El horizonte de evaluación del Proyecto será de 15 años al igual que el horizonte aplicado en el Informe de Perfil del Programa.

4.2 Análisis de Demanda y oferta

Se calculó el nivel de agua teórico en el caso de discurrir el caudal de inundaciones de diseño basándose en los datos del levantamiento transversal del río ejecutado con un intervalo de 500m, en la cuenca del cada río, suponiendo un caudal de inundaciones de diseño igual al caudal de inundaciones con un período de retorno de 50 años. Luego, se determinó la altura del dique como la suma del nivel de agua de diseño más el libre bordo del dique.

Ésta es la altura requerida del dique para controlar los daños provocados por las inundaciones de diseño y constituye el indicador de la demanda de la comunidad local.

La altura del dique existente o la altura del terreno actual es la altura requerida para controlar los daños de las inundaciones actuales, y constituye el indicador de la oferta actual.

La diferencia entre la altura del dique de diseño (demanda) y la altura del dique o terreno actual constituye, la diferencia o brecha que hay entre la demanda y la oferta.

En la Tabla 4.2-1 se presentan los promedios del nivel de agua de inundaciones calculado en "3.1.9 Análisis de descarga" con período de retorno de 50 años; de la altura requerida del dique (demanda) para controlar el caudal sumando el nivel de agua de diseño más el libre bordo del dique; de la altura del dique o del terreno actual (oferta), y la diferencia entre estas dos últimas (diferencia entre demanda-oferta) del río. Asimismo, en la Tabla 4.2-2 se presentan, a modo de ejemplo, estos valores en cada punto. La altura del dique o del terreno actual es mayor que la altura requerida del dique, en determinados puntos. En estos, la diferencia entre la oferta y demanda se consideró nula.

Tabla 4.2-1 Análisis de la demanda y oferta

	Cuenca		ique / terreno al (oferta)	Nivel de agua teórico con período de	Borodo libre dique	Altura requerida dique	Dif. Dema	nda/oferta
		M. izquierda	M. derecha	retorno de 50 años	•	(demanda)	M. izquierda	M. derecha
		1	2	3	4	5=3+4	6=5-1	7=5-2
	Río Cañete	188.40	184.10	184.77	1.20	185.97	1.18	2.03

Tabla 4.2-2 Demanda y oferta según puntos

Marca de	Altura diqu actual		Nivel de agua teórico con período de	Borodo libre dique	Altura requerida dique	Dif. Demar	nda/oferta
Kilometraje	M. izquierda	M. derecha	retorno de 50 años		(demanda)	M. izquierda	M. derecha
(km)	1	2	3	4	5=3+4	6=5-1	7=5-2
0.0	3.04	2.42	3.88	1.20	5.08	2.04	2.66
0.5	10.85	6.43	6.69	1.20	7.89	0.00	1.46
1.0 1.5	19.26 23.14	15.46 22.02	11.66 18.55	1.20 1.20	12.86 19.75	0.00	0.00
2.0	28.54	24.14	24.47	1.20	25.67	0.00	0.00 1.53
2.5	29.77	30.43	30.42	1.20	31.62	1.85	1.19
3.0	39.57	36.32	36.54	1.20	37.74	0.00	1.42
3.5	44.29	41.17	41.52	1.20	42.72	0.00	1.55
4.0 4.5	50.87 50.77	44.51 50.90	45.90 51.48	1.20 1.20	47.10 52.68	0.00 1.91	2.59 1.78
5.0	56.72	55.97	56.70	1.20	57.90	1.18	1.78
5.5	61.60	62.63	61.30	1.20	62.50	0.90	0.00
6.0	67.94	67.29	66.75	1.20	67.95	0.01	0.66
6.5	71.98	72.26	72.21	1.20	73.41	1.43	1.15
7.0 7.5	75.91 84.54	77.89 83.93	77.87 83.14	1.20 1.20	79.07 84.34	3.16 0.00	1.18 0.41
8.0	87.14	86.94	89.24	1.20	90.44	3.30	3.50
8.5	92.88	94.92	95.12	1.20	96.32	3.44	1.40
9.0	97.59	99.58	99.95	1.20	101.15	3.55	1.57
9.5	103.52	106.09	104.87	1.20	106.07	2.55	0.00
10.0 10.5	113.17 115.92	112.15 115.66	110.18 116.69	1.20 1.20	111.38 117.89	0.00 1.97	0.00 2.23
11.0	120.02	120.74	121.86	1.20	123.06	3.04	2.32
11.5	126.04	125.46	126.55	1.20	127.75	1.71	2.29
12.0	133.58	131.61	132.64	1.20	133.84	0.26	2.23
12.5	138.25	137.29	138.65	1.20	139.85	1.60	2.56
13.0 13.5	144.87 151.37	144.19 149.50	145.04 151.14	1.20	146.24 152.34	1.37 0.97	2.05
14.0	157.25	155.68	157.32	1.20	158.52	1.27	2.84
14.5	163.04	162.65	162.70	1.20	163.90	0.85	1.24
15.0	169.07	168.02	168.53	1.20	169.73	0.66	1.71
15.5 16.0	174.33 178.76	173.29 179.67	173.80 179.56	1.20 1.20	175.00 180.76	0.67 2.00	1.71
16.5	189.69	184.90	185.00	1.20	186.20	0.00	1.30
17.0	198.92	190.23	192.31	1.20	193.51	0.00	3.28
17.5	204.00	196.35	198.05	1.20	199.25	0.00	2.90
18.0 18.5	208.64 216.02	202.64 208.07	203.68 208.90	1.20 1.20	204.88 210.10	0.00	2.24
19.0	231.58	214.00	215.17	1.20	216.37	0.00	2.37
19.5	234.50	219.81	221.58	1.20	222.78	0.00	2.97
20.0	227.59	225.71	227.83	1.20	229.03	1.44	3.32
20.5	232.17	231.84	233.16	1.20	234.36	2.19	2.51
21.0 21.5	239.69 243.75	238.14 244.32	239.70 245.70	1.20 1.20	240.90 246.90	1.21 3.15	2.76 2.58
22.0	258.48	248.71	251.12	1.20	252.32	0.00	3.61
22.5	261.54	255.90	256.70	1.20	257.90	0.00	2.00
23.0	277.79	260.72	263.17	1.20	264.37	0.00	3.65
23.5 24.0	286.32 293.96	266.55 274.25	268.34 274.19	1.20 1.20	269.54 275.39	0.00	2.99 1.14
24.5	279.29	280.51	279.73	1.20	280.93	1.64	0.42
25.0	305.10	286.83	285.94	1.20	287.14	0.00	0.31
25.5	310.22	289.46	291.96	1.20	293.16	0.00	3.70
26.0	317.26	295.71	297.32	1.20	298.52	0.00	2.81
26.5 27.0	307.24 307.18	302.64 306.25	303.34 308.61	1.20 1.20	304.54 309.81	0.00 2.64	1.90 3.56
27.5	335.69	311.92	313.47	1.20	314.67	0.00	2.75
28.0	342.51	321.75	317.21	1.20	318.41	0.00	0.00
28.5	323.24	329.22	326.63	1.20	327.83	4.59	0.00
29.0 29.5	331.04 335.86	327.61 332.81	331.31 336.85	1.20 1.20	332.51 338.05	1.47 2.19	4.90 5.25
30.0	340.36	343.00	341.99	1.20	343.19	2.83	0.19
30.5	346.28	347.78	349.42	1.20	350.62	4.33	2.84
31.0	352.37	355.00	355.54	1.20	356.74	4.38	1.74
31.5	363.03	362.32	363.14	1.20	364.34	1.31	2.02
32.0 32.5	372.35 375.30	365.18 373.38	368.39 376.70	1.20 1.20	369.59 377.90	0.00 2.60	4.41
02.0	188.40	184.10	184.77	1.20	185.97	1.18	2.03

4.3 Planeamiento Técnico de las Alternativas

4.3.1 Medidas estructurales

Como medidas estructurales, ha sido necesario elaborar un plan de control de inundaciones para toda la cuenca. En la sección posterior 4.12 "Plan de mediano y largo plazo", 4.12.1 "Plan General de Control de Inundaciones" se detallan los resultados del análisis. Dicho plan propone construir diques para el control de inundaciones de toda la cuenca. Sin embargo, en el caso de la cuenca del río Majes-Camaná, se requiere implementar un gran proyecto invirtiendo un costo sumamente alto, mucho más allá del presupuesto del presente Proyecto, lo que hace que sea poco viable adoptar esta propuesta. Por lo tanto, suponiendo que los diques para controlar las inundaciones de toda la cuenca serán construidos progresivamente dentro de un plan de mediano y largo plazo, aquí se enfocó el estudio en las obras más urgentes y prioritarias para el control de inundaciones.

(1) Caudal de inundaciones de diseño

La Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas elaborada por la Dirección General de Programación Multianual del Sector Público (DGPM) del Ministerio de Economía y Finanzas (MEF) recomienda realizar el análisis comparativo de diferentes períodos de retorno: 25 años, 50 años y 100 años para el área urbana, y 10 años, 25 años y 50 años para el área rural y las tierras agrícolas.

Considerando que el presente Proyecto se orienta a la protección del área rural y de las tierras agrícolas, el análisis comparativo se hará para las inundaciones de diseño con períodos de retorno de 10, 25 y 50 años. El caudal de inundaciones de diseño se definió en las inundaciones máximas de período de retorno de 50 años siguiendo lo estipulado en la Guía.

Período de retorno de 10 años 822 m³/s
Período de retorno de 25 años 1.496 m³/s
Período de retorno de 50 años 2.175 m³/s

(2) Levantamiento topográfico

Se llevó a cabo el levantamiento topográfico en los lugares seleccionados para la ejecución de las medidas estructurales (Tabla 4.3.1-1). El diseño preliminar de las obras de control se basó en estos resultados de levantamiento topográfico.

Tabla 4.3.1-1 Perfil del levantamiento topográfico

	TD		Lv. Topo.	Levantamiento transversal (S=1/200				
Ríos	Ubicación (No.)	Instalaciones	(ha)	No. de línea	Long. media (m)	Long. total (m)		
Cañete	Ca-1	Dique & excavación	20.0	11	200.0	2,200		
	Ca-2	Dique	6.0	13	50.0	650		
	Ca-3	Dique & excavación	50.0	11	500.0	5,500		
	Ca-4	Reservorio	15.0	6	300.0	1,800		
	Ca-5	Dique	3.8	9	50.0	450		
Total			94.8	50		10,600		

(3) Selección de las obras de control de inundaciones prioritarias

1) Lineamientos básicos

Para la selección de las obras prioritarias de control de inundaciones, se basaron en los siguientes elementos.

- Demanda de la comunidad local (basada en los daños históricos de inundaciones)
- · Falta de la capacidad hidráulica (incluyendo los tramos afectados por la socavación)
- Condiciones de la zona adyacente (condiciones del área urbana, tierras de cultivo, etc.)
- Condiciones de inundación (extensión de del agua desbordada conforme los resultados del análisis de inundaciones)
- Condiciones sociales y ambientales (importantes instalaciones locales, etc.)

Se realizó una evaluación integral de los cinco elementos antes mencionados tomando en cuenta los resultados del levantamiento del río, estudio en campo, evaluación de la capacidad hidráulica, análisis de desbordamiento, entrevistas (a las comisiones de regantes, autoridades locales, datos históricos de los daños de inundación, etc.) y se seleccionaron los sitios donde se deben ejecutar las obras prioritarias de control de inundación (sitios que han tenido mayor puntaje en la evaluación integral).

Concretamente, dado que el levantamiento del río, la evaluación de la capacidad hidráulica y el análisis de desbordamiento han sido realizados a cada 500 metros de intervalo (sección), la evaluación integral se realizó también para tramos de 500 metros. Estos tramos fueron evaluados en escalas de 1 a 3 (0 punto, 1 punto y 2 puntos), y los tramos cuya suma superaron 6 puntos, han sido seleccionados como sitios prioritarios. El límite interior (6 puntos) ha sido determinado tomando en cuenta también el presupuesto disponible del Proyecto en general.

En la Tabla 4.3.1-2 se presentan los aspectos evaluados y los criterios de evaluación.

Tabla 4.3.1-2 Aspectos y criterios de evaluación

Aspectos de evaluación	Descripción	Criterios de evaluación		
Demanda de los habitantes locales	 Daños de inundaciones en el pasado Demanda de los habitantes y productores locales 	 Tramos que han tenido grandes inundaciones en el pasado y que hay una gran demanda por parte de la comunidad local (2 puntos) Demanda de los habitantes locales (1 punto) 		
Falta de capacidad hidráulica del río (tramos socavados)	 Posibilidad de desbordarse el río por falta de la capacidad hidráulica Posibilidad de derrumbarse el dique por socavación. 	 Tramos de capacidad hidráulica particularmente reducida (que se desborda con crecidas con período de retorno de 10 años o menos) (2 puntos) Tramos de reducida capacidad hidráulica (período de retorno de menos de 25 años) (1 punto) 		
Condiciones de las áreas circundantes	 Tierras de cultivo grandes, etc. Zona urbana, etc. Evaluación de las tierras e infraestructuras cercanas al río. 	 Tramos donde se extienden grandes tierras de cultivo (2 puntos) Tramos donde existen tierras de cultivo con poblados mezclados, o gran área urbana (2 puntos) La misma configuración que lo anterior, pero con menor escala (1 punto) 		
Condiciones de desbordamiento	Magnitud de desbordamiento	 Donde el desbordamiento se extiende en superficie extensa (2 puntos) Donde el desbordamiento se limita en una determinada área (1 punto) 		
Condiciones socio-ambientales (estructuras importantes)	 Bocatomas del sistema de riego, agua potable, etc. Puentes y caminos principales (Carretera Panamericana, etc.) 	 Donde existen infraestructuras importantes para la zona (2 puntos) Donde existen infraestructuras importantes (pero menos que las primeras) para la zona (caminos regionales, pequeñas bocatomas, etc.) (1 punto) 		

2) Resultados de selección

En la Figura 4.3.1-1 se muestran los resultados de la evaluación en cada tramo del río, así como los resultados de selección de las obras prioritarias de control de inundación.

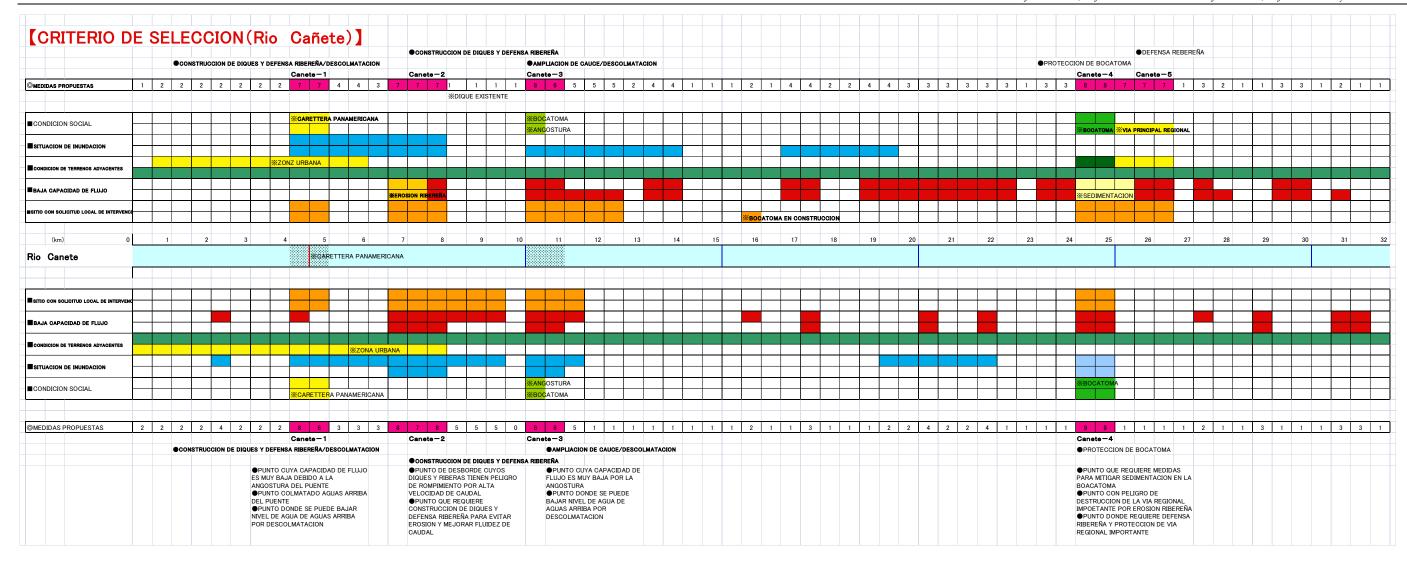


Figura 4.3.1-1 Resultados de selección de las obras prioritarias de control de inundación en el río Cañete

3) Fundamentos de selección

En la Tabla 4.3.1-3 se presentan los fundamentos de selección de cada obra.

Tabla 4.3.1-3 Fundamentos de los tramos seleccionados para ejecutar obras

	Tabla 4.3.1-3 Fundamentos de los tramos seleccionados para ejecutar obras						
No	Ubicación de obras	Fundamentos de selección					
Ca-1	km4,0-km5,0 (margen derecha) + (descolmatación parcial del lecho)	El Río Cañete se caracteriza porque el régimen hídrico cambia drásticamente a la altura de 10 km desde la desembocadura. En el tramo superior desde este punto, el río se desborda por falta de la capacidad hidráulica, pero el agua solo llega a inundar las tierras de cultivo cercanas. Sin embargo, el tramo inferior desde este punto, el área anegable se extiende ampliamente en la margen derecha, provocando graves daños. (El agua desbordada de la margen izquierda también se extiende aunque en menor grado que la margen derecha. El área anegable es más extensa que en el tramo superior.) En la cuenca baja, la capacidad hidráulica es baja entre 6km-9km desde la desembocadura. Hacia más arriba del km10, la capacidad hidráulica de la margen derecha es en general muy reducida. El tramo en cuestión constituye uno de los tramos con más reducida capacidad hidráulica de la cuenca baja del Río Cañete, donde está construido el puente Panamericana. Dado que es imposible reconstruir el puente, se requiere elevar la altura del dique de la margen derecha, y dragar parte del lecho alrededor del puente para incrementar la capacidad hidráulica. [Características del tramo en cuestión] •Tramo angosto (donde está el puente camino) en el que la capacidad hidráulica es reducida. •Tramo en el que se han acumulado los sedimentos en el tramo superior debido a la angostura. •Tramo en el que se puede reducir el nivel de agua en el tramo superior por la descolmatación del lecho. [Elementos a proteger] •Grandes tierras de cultivo que se extienden aguas abajo del tramo en cuestión.					
Ca-2	km6,5-km8,1 (margen derecha) + (margen izquierda)	En la cuenca baja (entre la desembocadura y km10), el agua desbordada se extiende en la margen derecha agravando los daños (El agua desbordada de la margen izquierda también se extiende inundando las tierras agrícolas, aunque en menor grado que la margen derecha. El área anegable es más extensa que en el tramo superior.) La erosión de la margen derecha provocada por las crecidas del pasado ha provocado la destrucción del dique, produciendo graves daños. Asimismo, por su reducida capacidad hidráulica, es considerado como tramo donde se requiere construir el dique para controlar la erosión de las márgenes y mantener la capacidad hidráulica necesaria. [Características del tramo en cuestión] •Tramo donde el flujo de las crecidas es rápido provocando la erosión de las márgenes, destrucción del dique y el desbordamiento de agua. •Tramo donde se requiere construir el dique para controlar la erosión de las márgenes y mantener la capacidad hidráulica necesaria. [Elementos a proteger] •Tierras agrícolas de ambas márgenes del tramo en cuestión.					

Ca-3	km10,0-km11,0 (ampliación cauce en la margen izquierda)	A la altura de 10km desde la desembocadura hacia arriba, el agua desbordada por falta de la capacidad hidráulica del río, se extiende hacia las tierras de cultivo cercanas. Por ser el tramo que mayor daño causa en las tierras de cultivo, (de entre los tramos más arriba desde km10), se considera necesaria alguna medida para aumentar la capacidad hidráulica del río (ampliación, descolmatación, etc.) Por razones del perfil actual del curso del río, el flujo de las crecidas se concentra en la bocatoma que se ubica a la altura de km10, donde se acumulan grandes cantidades de sedimentos después de la crecida, dejando inoperativa la bocatoma. La descolmatación contribuirá a reducir el nivel de agua del curso del río e incrementar la capacidad hidráulica del tramo superior. [Características del tramo en cuestión] •Tramo estrecho en comparación con los tramos superior e inferior, con la capacidad hidráulica reducida. •Tramo donde al realizar la descolmatación se reduciría el nivel de agua en el tramo superior. •Tramo donde se requiere proteger la bocatoma. [Elementos a proteger] •Bocatoma •Tierras agrícolas de la margen izquierda del tramo en cuestión.
Ca-4	km24,25-km24,75 (ampliación cauce en la margen izquierda)	Los sedimentos se acumulan en el sitio de bocatoma cada vez que ocurre una crecida, debiendo realizar la descolmatación para mantener el funcionamiento de la bocatoma. En el caso de que ocurran crecidas de mayor magnitud en el futuro, la bocatoma quedaría inoperativa causando graves daños a las tierras de cultivo, etc. Por lo tanto, es sumamente importante construir una obra de derivación que distribuya adecuadamente el caudal a la bocatoma. [Características del tramo en cuestión] • Tramo donde se requiere controlar la entrada de sedimentos a la bocatoma. [Elementos a proteger] • Bocatoma
Ca-5	km24,75-km26,5 (margen derecha)	Las márgenes han sido erosionadas por las crecidas anteriores y su impacto ha llegado hasta cerca del camino regional. Se considera urgente tomar una medida adecuada, porque de lo contrario, se destruiría el camino afectando la economía local. [Características del tramo en cuestión] •Tramo donde la erosión de la margen puede provocar la destrucción del camino regional. •Tramo en el que debe realizar simultáneamente las obras de control de erosión de márgenes y de conservación del funcionamiento del camino regional. [Elementos a proteger] •Camino regional de la margen derecha del tramo en cuestión.

4) Comparación de alternativas

En la Tabla 4.3.1-4 se presenta una comparación de alternativas par la selección de las obras prioritarias de control de inundaciones.

Tabla 4.3.1-4 Comparación de alternativas

		Tabla 4.3.1-4 Comparación de a	iteinativas
No	Ubicación de obras	Propuesta adoptada	Propuesta rechazada
Ca-1	km4,0-km5,0 (total)	Propuesta de conformar el dique	Propuesta de descolmatación
		Consiste en construir el dique en el tramo donde el dique actual es bajo	Consiste en dragar el lecho donde falta la capacidad hidráulica.
		aprovechando la estructura	No es viable reubicar el puente
		existente para asegurar la	Panamericana que está a la altura de
		capacidad hidráulica.	km4,5.
Ca-2	km6,5-km8,1 (ambas márgenes)	Propuesta de conformar el dique	Propuesta de descolmatación
		Consiste en construir el dique en el	Consiste en dragar el lecho para
		tramo donde el dique es bajo	asegurar la capacidad hidráulica
		aprovechando la estructura	necesaria.
		existente para asegurar la capacidad hidráulica.	Dado que la pendiente es constante aguas arriba y abajo del tramo, es muy
		Es una opción que utiliza la	probable que los sedimentos vuelvan
		estructura existente en la margen	acumularse después de la
		derecha.	descolmatación.
			Además esta opción no hace uso
			efectivo de la estructura existente aguas
Ca-3	km10,0-km11,0 (total)	Propuesta de ampliación del río	arriba y abajo. Propuesta de descolmatación
	(total)	Consiste en ampliar el río porque	Consiste en dragar el río en el tramo
		actualmente se encuentra	extremadamente estrecho para asegurar
		extremadamente estrechada para	la capacidad hidráulica necesaria.
		tomar el agua. Se continuará	Se vuelve difícil tomar el agua porque
		tomando el agua al igual que ahora.	esta opción consiste en dragar el tramo
			inmediatamente arriba de la bocatoma. Además se vuelve difícil dar
			mantenimiento a la bocatoma porque el
			flujo de agua se dirigirá directamente a
			ella.
Ca-4	km24,25-km24,75 (total)	Propuesta de ampliación del río	Propuesta de descolmatación
		Consiste en ampliar el río porque	Consiste en dragar el río en el tramo
		actualmente se encuentra extremadamente estrechada para	extremadamente estrecho para asegurar la capacidad hidráulica necesaria.
		tomar el agua. Se continuará	Se vuelve difícil tomar el agua porque
		tomando el agua al igual que ahora.	esta opción consiste en dragar el tramo
		_	inmediatamente arriba de la bocatoma.
			Además se vuelve difícil dar
			mantenimiento a la bocatoma porque el
			flujo de agua se dirigirá directamente a ella.
Ca-5	km24,75-km26,5 (margen derecha)	Propuesta de conformar el dique	Propuesta de ampliación del río
		Consiste en construir el dique en el	Consiste en aprovechar el camino
		tramo donde el dique actual es bajo	regional de la margen derecha como
		controlar la erosión de la margen	dique.
		derecha y para asegurar la	Existen tierras de cultivo entre el
		capacidad hidráulica necesaria. Se aprovecha efectivamente la	camino y el río, y las entrevistas en campo pusieron de manifiesto que es
		topografía local de la margen	difícil comprar estos terrenos.
		izquierda.	
·			1

(4) Ubicación de las obras prioritarias de control de inundaciones

En la Figura 4.3.1-2 se indica la ubicación de las obras prioritarias de control de inundaciones en la cuenca de Río Cañete.

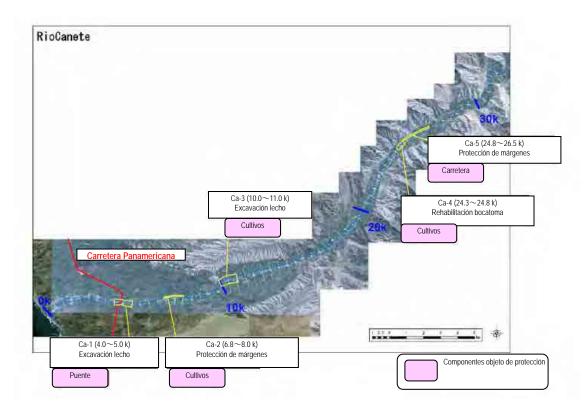


Figura 4.3.1-2 Obras prioritarias de control de inundaciones en el Río Cañete

(5) Planificación y diseño de obras

- 1) Sección normal del dique
- i) Ancho de la corona (Normas para caminos regionales)

El ancho de la corona del dique se definió en 4 metros, considerando la estabilidad del dique frente a las crecidas de diseño, ancho del dique existente, ancho del camino de acceso o de comunicación local.

ii) Estructura de los diques

La estructura del dique ha sido diseñada en forma empírica, tomando en cuenta los desastres históricos, condiciones del suelo, condiciones de las zonas circundantes, etc.

Los diques son de tierra en todas las cuencas. Si bien es cierto que se observa alguna diferencia en su estructura según zonas, se puede resumir de la siguiente manera, con base en la información proporcionada por los administradores entrevistados.

- ① La pendiente del talud es en su mayoría de 1:2 (relación vertical: horizontal), pudiendo variar su forma según ríos y zonas.
- ② Los materiales del dique son obtenidos del lecho del río de la zona. Por lo general son de arena/ grava ~ suelo arenoso con grava, de reducida plasticidad. En cuanto a la resistencia de los materiales, no se puede esperar un alto grado de cohesividad.
- 3 La cuenca del Río Cañete está constituido por suelo gravoso con pedrecillas de tamaño

variado, relativamente bien compactado.

- ④ El tramo inferior de la presa Sullana del Río Chira está constituido por suelo arenoso con limo. Los diques han sido diseñados con estructura tipo "zonal" donde se colocan los materiales relativamente poco permeables entre el dique y el río, y los materiales altamente permeables detrás del dique. Sin embargo, en realidad dada la dificultad de obtener los materiales poco permeables, se escuchó que no se está haciendo una rigurosa clasificación granulométrica de materiales al momento de la ejecución de las obras.
- ⑤ Al investigar los tramos afectados, no se han encontrado diferencias significativas en los materiales del dique o en el suelo entre los tramos rotos y no rotos del dique. Por lo tanto, la principal causa de la destrucción ha sido el desbordamiento del agua.
- ⑥ Existen espigones en los ríos Chira y Cañete, y muchos de ellos están destruidos. Estos están constituidos por grandes piedras, con relleno de arena y tierra en algunos casos, por lo que la destrucción puede haber sido provocado por la pérdida del material de relleno.
- Texisten obras de protección de márgenes ejecutadas con grandes piedras en la desembocadura del Río Pisco. Esta estructura es sumamente resistente según la información del administrador. Los materiales han sido obtenidos de canteras que están a 10 km aproximadamente del sitio.

Por lo anterior, se propone que el dique tenga la siguiente estructura.

- ① Los diques serán conformados con los materiales disponibles localmente (lecho o márgenes del río). En este caso, el material sería suelo de arena y grava o suelo arenoso con grava, de alta permeabilidad.
- ② La pendiente de talud del dique será de entre 30° ~35° (ángulo de fricción interna) si se va a trabajar con suelo arenoso poco cohesivo. La pendiente estable de talud de un terraplén ejecutado con materiales no cohesivos se determina como: tanθ=tanφ/n (Donde "θ" es pendiente de talud; "φ" es ángulo de fricción interna y "n" es factor de seguridad 1,5).
 - La pendiente estable necesaria para un ángulo de fricción interna de 30° se determina como: V:H=1:2,6 (tan θ =0,385).
 - Tomando en cuenta este valor teórico, se adoptó una pendiente de talud de 1:3,0 que es menos inclinado que los diques existentes, considerando los resultados del análisis de descarga, el tiempo prolongado del caudal de crecidas de diseño (más de 24 horas), el hecho de que muchos de los diques con pendiente de 1:2 han sido destruidos, y la resistencia relativa en caso de desbordamiento por crecidas anormales.
- ③ El talud del dique por el lado del río deberá ser protegida, porque debe soportar un flujo de agua veloz debido a la pendiente relativamente acentuada del lecho. Esta protección será ejecutada utilizando bolones o piedras grandes que son fáciles de conseguir localmente, dado que es difícil conseguir bloques de hormigón continuos.
 - El tamaño del material se determinó entre 30cm y 1m de diámetro, con un espesor mínimo de protección de 1m, aunque estos valores serán determinados en base en la velocidad de flujo de cada río.

iii) Libre bordo del dique

El dique es conformado con materiales de tierra, y como tal, por lo general es una estructura sumamente débil ante desbordamiento. Por lo tanto, se requiere prevenir que el agua se desborde, a una crecida menor a la crecida de diseño, siendo necesario mantener un determinado libre bordo ante un eventual aumento de nivel de agua por las olas producidas por el viento durante las crecidas, oleaje, salto hidráulico, etc. Asimismo, es necesario que los diques tengan suficiente altura para garantizar la seguridad de las actividades de vigilancia y control de inundaciones, eliminación de troncos y otros materiales arrastrados, etc.

En la Tabla 4.3.1-5 se muestran las pautas aplicadas en Japón en relación con el libre bordo. Si

bien es cierto que en el Perú no existe una norma sobre el libre bordo, se ha decidido aplicar las mismas normas aplicadas en Japón considerando que los ríos de ambos países se asemejan.

Tabla-4.3.1-5 Caudal de crecidas de diseño y libre bordo

Caudal de crecidas de diseño	Altura a agregar al nivel de crecidas de diseño
Menos de 200 m ³ /s	0,6m
Más de $200 \text{ m}^3/\text{s}$, menos de $500 \text{ m}^3/\text{s}$	0,8m
Más de $500 \text{ m}^3/\text{s}$, menos de $2,000 \text{ m}^3/\text{s}$	1,0 m
Más de $2,000 \text{ m}^3/\text{s}$, menos de $5,000 \text{ m}^3/\text{s}$	1,2 m
Más de $5,000 \text{ m}^3/\text{s}$, menos de $10,000 \text{ m}^3/\text{s}$	1,5 m
Más de $10,000 \text{ m}^3/\text{s}$	2,0 m

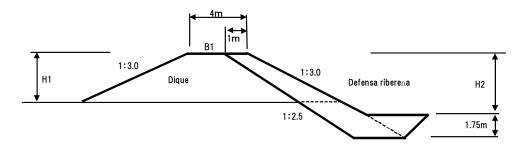


Figura 4.3.1-3 Sección normal del dique

2) Principales pautas de la planificación y diseño de las obras prioritarias de control de inundaciones En la Tabla 4.3.1-6 se presentan las principales pautas de planificación y diseño de las obras prioritarias de control de inundaciones.

Tabla 4.3.1-6 Planificación y diseño de las obras prioritarias de control de inundaciones

					Elementos a	Medidas	
Ríos		Puntos critico	os	Problemas	proteger	propuestas	Descripción del plan y diseño de cada obra
	1	4.3km en el que la capacidad hidrá Tramo en el que se han acu	Tramo angosio (donde está el puente camino) en el que la capacidad hidráulica es reducido. Tramo en el que se han acumulado los sedimentos en el tramo superior debido a la angosiura.	Puente	Puente • Descolmatación de cauce	El Rio Cañele se caracteriza porque el régimen hidrico cambia drásticamente a la altura de 10 km desde la desembocadura 10km. En el tamo superior desde este punto, el rio se desborda por falla de la capacidad hidráulica, pero el agua solo llega a inundar las ferras de cultivo cercanas. Si emetargo, el tamo inferior desde este punto, el frara anegable se exitende ampliamente en la margen derecha, provocando graves daños. (El agua desbordada de la margen izquierda lambién se extiende aunque en menor grado que la margen derecha. El area anegable es más extensa que en el tramo superior.) En la cuenca baja, la capacidad hidráulica es baja entre 6km-9km desde la desembocadura. Hacia más arriba del km10, la capacidad hidráulica de la margen derecha es en general muy reducida. El tramo en cuestión constituy uno de los tramos con más reducida capacidad hidráulica de la cuenca baja del Rio Cañete, donde está construido el puente de la Carretera Panamericana. Dado que es imposible reconstruir el puente, se requiere elevar la altura del dique de la margen derecha, y dragar parte del lecho alrededor del puente para incrementar la capacidad hidráulica.	
							Tramo en el que se han acumulado los sedimentos en el tramo superior debido a la angostura. Tramo en el que se puede reducir el nivel de agua en el tramo superior por la descolmatación del lecho.
Rio Cañete	2	6.8k~8.0k	Plo. de desbordamiento	Tramo donde el flujo de las crecidas es rápido provocando la erosión de las margenes, destrucción del dique y el desbordamiento de agua.		Protección de márgenes	En la cuenca baja (entre la desembocadura y km10), el agua desbordada se extiende en la margen derecha agravando los daños (El agua desbordada de la margen izquierda atmbién se extiende inundando las terras agricolas, aunque en menor grado que la margen derecha. El farea anegable es más extensa que en el atrano superior. La erosión de la margen derecha provocada por las crecidas del pasado ha provocado la destrucción del dique, produciendo graves daños. Asimismo, por su reducida capacidad hidráulica, se es considerado como tamo donde se requiere construir el dique para controlar la erosión de las márgenes y mantener la capacidad hidráulica necesaria. Tramo donde el flujo de las crecidas es rápido provocando la erosión de las márgenes, destrucción del dique y el desbordamiento de agua. Tramo donde se requiere construir el dique para controlar la erosión de las márgenes y mantener la capacidad hidráulica necesaria.
Rio Carree	3	10.25k	Estructura de represa	Tramo estecho en comparación con los tramos superior e inlerior, con la capacidad hidráulica reducida.		Descolmatación de cauce	Al a altura de 10km desde la desembocadura hacia arriba, el agua desbordada por falla de la capacidad hidráulica del río, se extiende hacia las lierras de cultivo cercanas. Por ser el tramo que mayor daño causa en las lierras de cultivo, (de entre los tramos más arriba desde km10), se considera necesario alguna medida para aumentar la capacidad hidráulica del río (ampliación, descolmatación, etc.) La descolmatación contribuirá a reducir el nivel de agua del curso del río e incrementar la capacidad hidráulica del tramo superior. Tramo estrecho en comparación con los tramos superior e inferior, con la capacidad hidráulica reducida. Tramo donde al realizar la descolmatación se reduciria el nivel de agua en el tramo superior.
	4	24.5k	Bocatoma	Tramo donde se requiere controlar la entrada de sedimentos a la bocaloma.		•Obra de derivación	Los sedimentos se acumulan en el sitio de bocatoma cada vez que ocurre una crecida, debiendo realizar la descolmatación para mantener el funcionamiento de la bocatoma. En el caso de que ocurran crecidas de mayor magnitud en el futuro, la bocatoma quedaría inoperativa causando graves daños a las serras de cultifo, etc. Por lo tanto, es sumamente importante construir una obra de derivación que distribuya adecuadamente el caudal a la bocatoma. Tramo donde se requiere controlar la entrada de sedimentos a la bocatoma.
	5	25.0k, 26.25k	Erosión rībereña	Tramo donde la erosión de la margen puede provocar la destrucción del camino regional.	Carretera	Protección de márgenes	Las márgenes han sido erosionadas por las crecidas anleriores y su impacto ha llegado hasta cerca del camino regional. Se considera urgente tomar una medida adecuada, porque de lo contrario, se destruiría el camino afectando la economía local. Tramo donde la erosión de la margen puede provocar la destrucción del camino regional. Tramo el que debe realizar simultáneamente las obras de control de erosión de márgenes y de conservación del funcionamiento del camino regional.

4.3.2 Medidas no estructurales

4.3.2.1 Reforestación y recuperación vegetal

(1) Políticas básicas

El Plan de Reforestación y Recuperación Vegetal que satisfaga el objetivo del presente Proyecto puede clasificarse en: i) la reforestación a lo largo de las obras fluviales; y ii) la reforestación en la cuenca alta. La primera contribuye directamente al control de inundaciones y manifiesta su efecto en corto tiempo. La segunda requiere de una enorme inversión y un tiempo prolongado, tal como se detallará en el apartado posterior 4.12 "Plan de mediano y largo plazo", 4.12.2 "Plan de Reforestación y Recuperación Vegetal", lo que hace que sea poco viable implementar en el marco del presente Proyecto. Por lo tanto, aquí se enfoca el análisis solo en la opción i).

(2) Plan de reforestación a lo largo de las estructuras fluviales

Esta propuesta consiste en plantar los árboles a lo largo de las estructuras fluviales, tales como obras de protección de márgenes, diques, etc.

- (i) Objetivo: Reducir el impacto del desbordamiento del río cuando ocurre una crecida inesperada o por el estrechamiento del río por la presencia de obstáculos, mediante franjas de vegetación entre el río y los elementos a ser protegidos.
- (ii) Metodología: Crear franjas vegetales de un determinado ancho entre las estructuras fluviales y el río.
- (iii) Ejecución de obras: Plantar vegetación en una parte de las estructuras fluviales (diques, etc.)
- (iv) Mantenimiento después de la reforestación: El mantenimiento será asumido por las comisiones de regantes a su iniciativa propia.

Figura 4.3.2.1-1 Diagrama Conceptual Forestación en las estructuras ribereñas (Tipo A) (Fuente: Equipo de Estudio de JICA)

(3) Metrado para el plan de forestación

1) Estructura (ubicación de la forestación)

En el Perú la ubicación de la forestación más comunes es la de triángulos equiláteros, en el presente proyecto también utiliza este modelo plantando los árboles en un intervalo de 3 metros En caso que se realice este método, se espera que los árboles lleguen a tener la función de detener o amortiguar hasta piedras de 1m de diámetro, por lo que se cuadruplicará las filas aumentando la efectividad. Sin embargo el objetivo principal es evitar las inundaciones que sobrepase el límite, en caso que la inundación choque directamente con los plantones sembrados, se podría esperar buenos resultados.

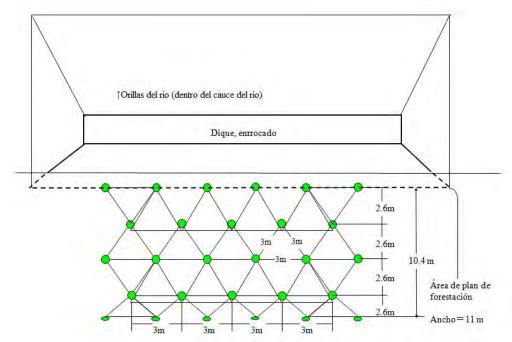


Figura 4.3.2.1-2 Ubicación del diseño del plan de forestación en la estructura ribereña (Fuente: Equipo de Estudio de JICA)

2) Especies a forestar

Se seleccionaron las especies a plantar a lo largo de los ríos aplicando los siguientes criterios y sometiendo a una evaluación integral.

- 1 Que sean especies arbóreas que por sus propiedades puedan crecer a lo largo del río (preferentemente especies autóctonas de la zona);
- 2 que sean especies cuyos plantones puedan producirse en almácigos;
- 3 que sean especies de madera o frutas útiles;
- 4 que sean especies demandadas por la comunidad loca
- 5 que sean especies nativas (preferentemente pero no indispensable)

Después de realizar el reconocimiento en campo, se elaboró, primero, una lista de las especies plantadas o autóctonas de cada zona, y luego una lista de las especies cuyos plantones puedan producirse en almácigos, según las entrevistas a los productores de plantones.

Se dio prioridad a la aptitud a las condiciones locales y a los antecedentes de producción de plantones, dejando al segundo plano su utilidad y demanda o si son especies nativas o no. En la Tabla 4.3.2.1-1 se muestran los criterios de evaluación.

Tabla 4.3.2.1-1 Criterios de evaluación para la elección de las especies forestales

			Cr	iterios para la evaluación		
		1. Adaptación a la zona 2. Experiencia de producción de plantones 3. Uso		4. necesidad de los pobladores	5.Especie local	
ón	A Verificación in situ (crecimiento natural o reforestada) Mayor producción		Posibilidad de uso como madera y obtención de los frutos	Necesidad por el comité de Usuarios de agua, entre otros	Especie local	
s de evaluación	В	No se ha verificado el crecimiento in situ, sin embargo se adapta en la zona	Producción esporádica	Posibilidad de uso como madera u obtención de los frutos	NO hay necesidad por el Comité de Usuarios de agua	No es especie local
Puntos	C Ninguna de las anteriores Posible la reproducción pero no es usual		No tiene uso como madera ni fruto	_	_	
	D	Desconocido	No se producen	Desconocido	_	_

(Fuente: Equipo de Estudio de JICA)

Los resultados de la evaluación para la selección de las especies forestales se muestran en la tabla 4.3.2.1-2. El símbolo © marca las principales especies, o son las especies que se plantarían con una proporción de 30% a 50%. Esta proporción es para evitar daños irreversibles como es el caso de las plagas lo cuales pueden aniquilar todos los árboles.

Tabla 4.3.2.1-2 Elección de las especies forestales

Cuenca de Cañete: Eucalipto (©), Huarango (0), Casuarina (0)

(Fuente: Equipo de Estudio de JICA)

La Cuenca del río Cañete será forestada con Eucalipto. El Eucalipto es un árbol que tiene experiencia de forestación en estas zonas, es una especie que se adapta en la zona y tiene alta demanda por los Comités de Usuarios de agua. El Huarango (*Prosopis limensis*: es como lo conocen en el norte del Perú, proviene de otra semilla) es una especie nativa de la región sur del Perú. Se encuentra plantado a lo largo de la carretera Panamericana. La especia Casuarina se ha plantado por esta zona para la protección de los fuertes vientos y la arena, sobre todo las zonas que se ubican las granjas.

3) Metrado del Plan de forestación

En los sitios de obras de protección de márgenes, diques y embalses de arena que serán construidos a lo largo de los ríos, se proyecta reforestar adoptando la disposición descrita en el literal apartado (a). El bosque tendrá 11 metros de ancho, y dentro del embalse de arena, se plantarán los árboles a excepción de la ruta normal de agua.

El volumen de Reforestación y Recuperación vegetal en la Cuenca del río Cañete se muestra en la Tabla 4.3.2.1-3.

Tabla 4.3.2.1-3 Metrado para el plan de forestación y recuperación de cobertura vegetal (A lo largo del río)

N°	Ubic	Largo	Ancho	Área	Cantidad	Distribución según especies (unidades)			
IN	margen	(m)	(m)	(ha)	(unid)	Eucalipto	Huarango	Casuarina	(m)
Ca-1	General			0,0	0	1	ı	1	_
Ca-2	Derecho	1.600	11	1,8	5.328	2.664	1.598	1.066	5.328
Ca-3	General			0,0	0	-	_	_	_
Ca-4	General			0,0	0	-			_
Ca-5	Derecho	1.750	11	1,9	5.624	2.812	2.812 1.687		5.624
Cuenca Cañete Total		3.350		3,7	10.952	5.476	3.285	2.191	10.952

(Fuente: Equipo de Estudio de JICA)

4) Lugares sujetos al Plan de Reforestación y Recuperación Vegetal

En los lugares sujetos al Plan de Reforestación/Recuperación Vegetal a lo largo de las obras fluviales, la disposición de las estructuras es similar en todos los sitios. Para su disposición, véase el apartado 4.3.1.3(2).

5) Costos de ejecución del Plan de Reforestación y Recuperación Vegetal

Los costos de ejecución de obras para el Plan de Reforestación y Recuperación Vegetal fueron estimados de la siguiente manera:

- Costo unitario de los plantones (precio unitario de plantón + transporte)
- Costo de mano de obra

Los proveedores de plantones pueden ser i) AGRORURAL o ii) proveedores privados. Para la reforestación a lo largo de los ríos se comprarán a los proveedores privados.

Para la estimación del costo unitario de mano de obra, se propone aplicar el costo unitario de mano de obra común para la reforestación de las riberas.

(i) Costo unitario de los plantones

El costo unitario de los plantones se definió como se indica en la Tabla 4.3.2.1-4, con base en la información obtenida a través de las entrevistas a los proveedores privados. Dado que los precios de los plantones y el costo de transporte varía dependiendo de las empresas, se aplicó el promedio.

Tabla 4.3.2.1-4 Costo unitario de las plantas

(ii) Costo de mano de obra

El rendimiento del trabajo de reforestación se determinó en 40 árboles / persona día, según la información recogida a través de las entrevistas a AGRORURAL y a las comisiones de regantes. En la reforestación de riberas, el costo unitario de mano de obra será de 33,6 soles / hombre-día, en la cuenca alta se determinó en 16,8 soles / hombre – día, que corresponde a la mitad de la primera.

(iii) Costo de ejecución de reforestación

En la Tabla 4.3.2.1-5 se muestra el costo directo de ejecución de obras necesarias para el Plan de Reforestación y Recuperación Vegetal en las riberas.

Tabla 4.3.2.1-5 Costo de ejecución de reforestación

6) Calendario de trabajo

Dado que los bosques ribereños forman parte de las estructuras fluviales, su reforestación estará sujeta al mismo plan de ejecución de obras. Lo ideal es iniciar la plantación inmediatamente antes o al inicio de la época de lluvias, y terminar un mes antes de esta época para favorecer la supervivencia de las plantas. Sin embargo dado que casi no llueve en la zona ribereña, en este caso no existe gran diferencia entre la época de lluvias y seca. Por lo tanto, si bien es cierto que convendría realizar el trasplante en las fechas cuando suben el nivel de agua del río, tampoco habría problema aunque se realizara este trabajo cuando el nivel de agua esté bajo, si por razones del calendario de ejecución de las estructuras fluviales así lo requiera. Solo se requerirá regar durante tres meses después del trasplante utilizando un sistema sencillo de riego por gravedad (con mangueras), hasta que suba el nivel de agua del río.

4.3.2.2 Plan de Control de Sedimentos

(1) Importancia del Plan de Control de Sedimentos

A continuación se presentan los problemas de control de inundaciones en las cuencas seleccionadas. Algunos de ellos se relacionan con el control de sedimentos. En el presente Proyecto se está elaborando un plan de control de inundaciones integral que cubre tanto la cuenca alta como la cuenca baja. El estudio para la elaboración del Plan de Control de Sedimentos abarcó la totalidad de la cuenca.

- Las crecidas provocan el desbordamiento e inundaciones.
- Los ríos tienen una pendiente acentuada de entre 1/30 y 1/300. La velocidad de flujo es alta, así también la capacidad de transporte de sedimentos.
- La acumulación de gran cantidad de sedimentos arrastrados y la consecuente elevación del lecho agravan más los daños de inundaciones.
- Hay una gran cantidad de sedimentos acumulados sobre el lecho formando doble banco de arena. La ruta de agua y el sitio de mayor impacto de las aguas son inestables, provocando

- alteración de rutas y consecuentemente, también del sitio de mayor impacto de las aguas.
- Las riberas son muy erodibles, provocando la reducción de las tierras agrícolas adyacentes, destrucción de los caminos regionales, etc., por lo que deben ser debidamente protegidas.
- Las grandes piedras y rocas causan daños o destrucción de las bocatomas.

(2) Plan de Control de Sedimentos (medidas estructurales)

Se analizó el plan de control de sedimentos apropiado para el patrón actual de movimiento de los sedimentos. En la Tabla 4.3.2.2-1 se plantean los lineamientos básicos.

Tabla 4.3.2.2-1 Lineamientos básicos del Plan de Control de Sedimentos

Condiciones	Año ordinario	Precipitaciones de período de
		retorno de 50 años
Arrastre de	Erosión de márgenes y variación del	Erosión de márgenes y variación del
sedimentos	lecho	lecho
		Flujo de sedimentos desde las
		quebradas
Medidas	Control de erosión→Protección	Control de erosión→ protección de
	márgenes	márgenes
	Control de variación de lecho→	Control de variación de
	compactación de piso, bandas	lecho→compactación de piso,
	(compactación de piso en el cono	bandas
	aluvial, bandas)	(compactación de piso en el cono
		aluvial, bandas)
		Flujo de sedimentos→ protección de
		ladera, presas de control de
		sedimentos

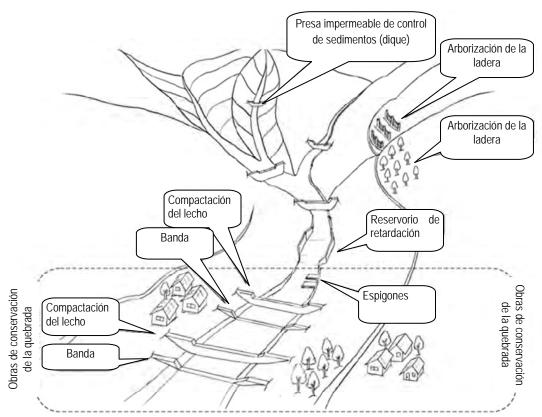


Figura 4.3.2.2-1 Obras de control de sedimentos

1) Plan de control de sedimentos en la cuenca alta

En la sección posterior 4.12 "Plan de mediano y largo plazo" 4.12.3 "Plan de control de sedimentos" se detalla sobre el plan de control de sedimentos que cubre toda la cuenca alta. Este plan requerirá de un tiempo sumamente largo y un enorme costo, lo que hace que sea poco viable su implementación. Por lo tanto, deberá ser ejecutado de manera progresiva en mediano y largo plazo.

2) Plan de control de sedimentos en la cuenca baja

Se observó que en el caso de construir las presas de control de sedimentos que cubre toda la cuenca, se requerirá invertir un enorme costo. Por lo tanto, se realizó el mismo cálculo reduciendo el alcance solo a la cuenca baja del río. En este proceso, se tomaron en cuenta los resultados del análisis de variación de lecho, también incluido en el presente Estudio.

A continuación se presentan los resultados del análisis de variación del lecho aguas abajo de la Presa Poechos en el Río Cañete.

Volumen total de sedimentos arrastrados (en miles de m³) 3.000

Promedio anual de sedimentos arrastrados (en miles de m³) 60

Volumen total de variación de lecho (en miles de m³) 673

Promedio anual de variación de la altura del lecho (m) 0,2

El año pasado se construyó la Presa Plantanal en la cuenca alta del Río Cañete. Se espera que esta presa servirá para retener los sedimentos, tanto es así que se reducirá considerablemente el volumen de sedimentos que serán arrastrados aguas abajo afectando muy poco el curso del río. Por consiguiente, se considera innecesario ejecutar medidas específicas para controlar el arrastre de sedimentos.

4.3.3 Asistencia Técnica

En base a las propuestas de medidas para la prevención contra las inundaciones, propone un componente de asistencia técnica C para realizar el fortalecimiento de capacidades para la gestión de riesgo por inundaciones en el Programa.

(1) Objetivo del Componente

El objetivo del componente es "Capacidad adecuada de poblaciones locales y técnicos en aplicación de la gestión de riesgo para reducir daños por inundaciones en las cuencas" en el Programa.

(2) Área de Objetivos

El área objetivo de la implementación del presente componente es Cañete.

En la etapa de la ejecución hay que coordinar la implementación entre las autoridades de las cinco cuencas. Sin embargo, cada autoridad tiene que ejecutar las actividades en consideración con las características de cada cuenca para realizar la implementación adecuada.

(3) Poblaciones Objetivos

Las poblaciones serán representantes de las asociaciones de regantes y otros grupos comunitarios, los gobiernos provinciales y distritales y de la comunidad local de la cuenca del Río Cañete, considerando la limitada capacidad para recibir a los beneficiarios de este componente.

Los participantes son quienes tienen una capacidad para difundir los contenidos de la asistencia técnica a las poblaciones locales en las cinco cuencas.

Además hay que considerar la participación de mujeres porque pocas mujeres participan en las oportunidades de la asistencia técnica hasta ahora.

(4) Actividades

Para realizar el objetivo de la asistencia técnica, las cuatro actividades propone los siguientes: "Curso de conocimiento para actividades de defensa ribereña", "Curso para prevención y comportamiento post-inundaciones", "Curso para manejo de cuencas (laderas) para medidas contra sedimentación fluvial" y "Curso para red de informaciones de gestión de riesgos ante inundaciones" en este componente.

- 1) Actividad 1 "Curso de conocimiento para actividades de defensa ribereña"
 - · Curso/Taller: Operación y mantenimiento de Obras
 - El objetivo de esta actividad es capacitar los locales relacionados sobre una adecuada operación y mantenimiento de las obras de protección ribereña que se ejecuten con el Programa de Infraestructura de prevención y protección de valles.
 - · Curso-Taller: Manejo de plantas ribereñas
 - (Prevención y mitigación de tipos de erosión)
 - (Manejo de recursos naturales)

Ejecutar una sensibilización a la población vulnerable para proteger la flora en los ríos. En particular hay que considerar una actividad de ganaderos porque los ganados afectan mucho a la flora como los cebos de ganados.

- 2) Actividad 2 "Curso para prevención y comportamiento post-inundaciones"
 - Reunión-Taller: Formular el Plan de Gestión de Riesgo
 Para realizar gestión de riesgo de inundaciones, los beneficiarios como la Población Local,
 Junta de Usuarios, Gobiernos Distritales, Provinciales y Regionales tienen que elaborar un plan de gestión de riesgo en consideración de las características locales de cada cuenca.
 - Curso detallado (Zonificación Ecológica)

(Gestión de Riesgos)

(Gestión de Recursos)

(Formulación de Proyectos)

- 3) Actividad 3 "Curso para manejo de cuencas (laderas) para medidas contra sedimentación fluvial"
 - Técnicas de conservación de valles (laderas)

(Producción de Plantones Forestales)

(Instalación de Plantaciones Forestales)

(Manejo y Conservación de Recursos Forestales)

En vista que el arrastre de los suelos erosionados en las laderas, contribuyen en la colmatación de los cauces de los ríos, se es necesario realizar acciones de capacitación y sensibilización a las poblaciones asentadas en las partes medias y bajas de la cuenca a efectos que ejecuten actividades de conservación de suelos en coordinación con el Programa.

· Difusión de afiches y tríptico

Difundir esta técnica mediante la distribución de afiches (almanaques y otras presentaciones) y trípticos a full color para complementar las actividades de 'Días de campo en ejecución de técnicas de conservación de laderas'.

(5) Costos y Período

Los costos de las actividades se presentan en la Tabla 4.3.3-1. El monto del costo es S. / 129.170 en total.

El período de las actividades es dos años aproximadamente aunque hay que considerar los procesos de las medidas Estructurales y No-Estructurales para la prevención contra inundaciones en el Programa.

Tabla4.3.3-1 Presupuesto de la Asistencia Técnica

(6) Plan de la Implementación

La Dirección de General de Infraestructura Hidráulica (DGIH-MINAG) ejecuta este componente como la unidad ejecutora en cooperación con Dirección Regional de Agricultura (DRA), las Juntas de Usuarios y las Instituciones relacionadas. Para ejecutar las actividades eficientemente hay que considerar los siguientes:

- Para la implementación del presente componente, la DGIH-MINAG coordinará acción con la Unidad de Gestión Central responsable de cada cuenca, y las direcciones regionales de agricultura (DRA).
- Para la administración y gestión del Proyecto, la DGIH-MINAG coordinará acciones con PSI-MINAG (Programa Subsectorial de Irrigaciones que tiene ricas experiencias en proyectos similares.
- Considerando que existen algunos gobiernos locales que han iniciado la elaboración del plan de
 gestión de crisis similar a través del respectivo comité de defensa civil, bajo el asesoramiento
 del Instituto Nacional de Defensa Civil (INDECI) y gobiernos locales, la DGIH-MINAG deberá
 realizar la coordinación para que estos planes sean congruentes con los planes existentes en
 cada cuenca.

- Los cursos de capacitación serán gestionados y administrados por las asociaciones de regantes (en particular la unidad de desarrollo de capacidades y comunicación) con la colaboración de los gobiernos locales de cada cuenca, para apoyar el desarrollo oportuno en cada localidad.
- Los instructores y los facilitadores de los cursos serán asumidos por los expertos de las direcciones de atención a desastres de cada gobierno provincial, ANA, AGRORURAL, INDECI, etc. y los consultores (nacionales e internacionales)

4.4 Costos

4.4.1 Estimación de costos (a precios privados)

(1) Componentes de los costos del Proyecto

Los costos del Proyecto incluyen los siguientes componentes:

- ① Costos directos de obras = Suma total de la cantidad de obras según tipos × precio unitario
- ② Obras provisionales comunes = $1 \times 10\%$
- ③ Costo de construcción 1 = ① + ②
- 4 Misceláneos = $3 \times 15\%$
- \bigcirc Beneficios = \bigcirc x 10%
- 6 Costo de construcción -2 = 3 + 4 + 5
- \bigcirc Impuestos = $\bigcirc \times 18 \%$ (IGV)
- 8 Costo de construcción = 6+7
- Costo de medidas ambientales = 8 x 1%
- ① Costo de diseño detallado = ② x 5%
- ① Costo de supervisión de obras = x 10 %
- (12) Costo del Proyecto = (8 + 9 + 10 + 11)

(2) Costos directos de obras

En la Tabla 4.4.1-1 se presenta la tabla de resumen del costo directo de obras de las medidas estructurales para la cuenca del Río Cañete.

(3) Costos del Proyecto

El costo del Proyecto se estima en 25,7millones de soles tal como se muestra en la Tabla 4.4.1-2. Aquí se incluyen los costos de reforestación y recuperación vegetal, construcción del sistema de alerta temprana y de asistencia técnica. El costo de operación y mantenimiento anual de las obras terminadas se supone en 0,5 % del costo del Proyecto.

Tabla 4.4.1-1 Tabla de resumen de costo directo de obras (a precios privados)

Tabla 4.4.1-2 Costo de Proyecto (a precios privados)

4.4.2 Estimación de costos (a precios sociales)

(1) Costos directos de obras

En la Tabla 4.4.2-1 se presenta la tabla de resumen del costo directo de obras de las medidas estructurales para la cuenca del Río Cañete. El costo directo de obras a precios privados fueron convertidos en precios sociales aplicando el factor de conversión.

(2) Costos del Proyecto

El costo del Proyecto se estima en 20,6 millones de soles tal como se muestra en la Tabla 4.4.2-2. Aquí se incluyen los costos de reforestación y recuperación vegetal, construcción del sistema de alerta temprana y de asistencia técnica, previa conversión desde los precios privados.

Tabla 4.4.2-1 Tabla resumen del costo directo de obras (a precios sociales)

Tabla 4.4.2-2 Costo de Proyecto (a precios sociales)

4.5 Evaluación social

4.5.1 Costos a precios privados

(1) Beneficios

Los beneficios del control de inundaciones vienen a ser la reducción de las pérdidas de inundaciones que se lograría con la implementación del Proyecto y se determina por la diferencia entre los montos de pérdida sin y con el Proyecto. Concretamente, para determinar los beneficios que se lograrían con la construcción de obras, se calcula primero el monto de pérdidas por inundaciones de diferentes períodos de retorno (entre 2 y 50 años), suponiendo que las obras de control de inundaciones tendrán una vida útil de 50 años, y luego se determina el monto medio anual de reducción de pérdidas a partir de los montos de pérdidas de diferentes períodos de retorno. La Guía Metodológica para Proyectos de Protección y/o Control de Inundaciones en Áreas Agrícolas o Urbanas, 4.1.2p-105) establece similares procedimientos.

A continuación se describen los procedimientos para determinar los beneficios concretos.

- ① Determinar el monto de pérdidas de inundaciones en el área anegable analizando la magnitud de desbordamiento que ocurre sin el Proyecto para cada período de retorno (entre 2 y 50 años).
- ② Luego, determinar el monto de pérdidas de inundaciones en el área anegable analizando la magnitud de desbordamiento que ocurre al construir las obras prioritarias de control de inundaciones (Cañete 1 al 5).
- ③ Determinar la diferencia entre el ① y el ②. A esto se le suman los beneficios de otras obras diferentes a los diques (bocatomas, protección de caminos y presas, etc.) para determinar el total de beneficios.

Se considerarán como "beneficios del Proyecto" a la suma del monto de pérdidas directas provocadas por el desbordamiento y de las pérdidas indirectas provocadas por la destrucción de las estructuras en los tramos vulnerables (pérdida de tierras de cultivo, interrupción del tráfico, etc.).

1) Método de cálculo del monto de pérdidas

En el presente Estudio se determinó el monto de pérdida por daños directos e indirectos para las variables que se indican en la Tabla 4.5.1-1.

Tabla 4.5.1-1 Variables del cálculo del monto de pérdidas de inundaciones

Pérdidas	Variables	del cálculo del monto de pérdidas de inundaciones Descripción				
(1) Directas	① Cultivos	 Cultivos de la época de crecidas. El monto de pérdida de cultivo por las inundaciones se determina multiplicando el % de daños según la profundidad de agua y el número de días inundadas. Tierras agrícolas e infraestructuras agrícolas (canales, etc.) Se determina el monto de pérdida de los cultivos multiplicando el % de daños según la profundidad de agua y el número de días de inundación por el monto de bienes agrícolas afectados por el arrastre 				
	② Obras hidráulicas	de sedimentos. Monto de pérdida debido a la destrucción de las estructuras hidráulicas (bocatomas, canales, etc.)				
	③ Infraestructuras viales	Los daños de inundación relacionados con las infraestructuras viales se determina por los daños sufridos en el sector de transporte.				
	④ Viviendas	Edificaciones residenciales e industriales Se calcula aplicando el coeficiente de pérdida según la profundidad de inundación. Viviendas: edificaciones residenciales e industriales Artículos domésticos: muebles, artefactos electrodomésticos, ropa, vehículos, etc. Los daños de inundación sufridos por las viviendas, edificaciones comerciales, activos y existencias se determinan aplicando el coeficiente de pérdida según la profundidad de inundación.				
	Infraestructuras públicas Servicios públicos	 Determinar el monto de pérdida de los caminos, puentes, alcantarillado, infraestructuras urbanas, centros educativos, iglesias y otros establecimientos públicos. Determinar el monto de pérdida de las obras públicas aplicando al monto de pérdida de activos generales el coeficiente correspondiente Infraestructuras de energía eléctrica, gas, agua potable, ferrocarril, 				
(2) I I'	-	comunicación telefónica, etc.				
(2) Indirectas	① Agricultura	 Estimar la pérdida ocasionada por la interrupción de suministro de agua de riego por los daños de las estructuras hidráulicas. Determinar el costo de construcción y reparación de las estructuras hidráulicas como costo de años directos. 				
	② Interrupción de tránsito	 Estimar la pérdida ocasionada por la interrupción de tránsito debido a los daños de los caminos inundados. Determinar el costo de reparación y construcción de caminos como costo directo de daños. 				

A. Pérdida directa

La pérdida directa se determina multiplicando el coeficiente de daños según profundidad de inundación al valor de activos.

B. Pérdida indirecta

La pérdida indirecta se determina tomando en cuenta el impacto de las bocatomas y caminos dañados. A continuación se presenta los procedimientos del cálculo.

a. Daños de las presas

El monto de pérdida debido a los daños de la presa se calcula sumando la pérdida directa (rehabilitación y construcción de la presa) más el monto de pérdida indirecta (pérdida de cosecha debido la interrupción del suministro de agua de riego).

①Cálculo del costo de infraestructuras

Costo de la obra = costo de construcción por unidad de agua tomada × tamaño (caudal, longitud de la obra)

Costo unitario de construcción de la obra: para las bocatomas y canales, se requiere recoger información sobre el volumen de toma de agua de la obra existente, y el costo de ejecución de obras (construcción o reparación) y se calcula el costo unitario analizando la correlación entre los dos.

Se dedujo que la obra se destruye totalmente por el caudal con período de retorno caudal de 10 años.

② Pérdida de cultivo

Se determina las ganancias anuales según cultivos producidos en el distrito de riego correspondiente

Beneficio anual = (venta de los cultivos – costo) × frecuencia de cosecha al año

Venta de cosechas = área sembrada (ha) × rendimiento (kg/ha) × precio unitario de transacción

Costo = costo unitario (s./ha) \times área sembrada (ha)

b. Daños de las infraestructuras viales

Se determina la pérdida debido a la interrupción del tránsito.

Monto de pérdida = pérdida directa + pérdida indirecta

Pérdida directa: costo de construcción de los caminos (construcción, rehabilitación)

Pérdida indirecta: costo de pérdida de oportunidad debido a los daños de los caminos (depreciación del vehículo + pérdida por los gastos del personal)

Se deduce un período intransitable de 5 días (en el Perú, por lo general se demora cinco días para terminar de rehabilitar un camino provisional)

2) Monto de pérdidas según períodos de retorno

En la Tabla 4.5.1-2 se muestran los montos de pérdidas generadas por desastres de diferentes períodos de retorno, con y sin el Proyecto, en la Cuenca del río Cañete.

千ソーレス Caso Cañete 確率年 ケース 1,660 5 6,068 Sin Proyecto 10 73,407 事業を実施 25 98,357 しない場合 50 149,018 328,510 Total 2 153 5 832 Con Proyecto 10 8,413 事業を実施 25 11,776 した場合 50 16,428 Total 37,602

Tabla 4.5.1-2 Monto estimado de pérdidas (a precios privados)

3) Monto de pérdidas (promedio anual) que se espera reducir con el Proyecto

Se determinó el monto medio anual de pérdidas que se espera reducir con el Proyecto por la suma total del monto anual medio de pérdida según caudal ocurrido multiplicando el monto de reducción de pérdida según caudal ocurrido por las probabilidades de crecidas correspondientes.

Considerando que las inundaciones ocurren probabilísticamente, el beneficio anual se determina como promedio del monto anual de reducción de pérdidas. A continuación se presentan los procedimientos del cálculo.

Tabla4.5.1-3 Estimación del monto medio anual de de reducción de pérdidas

		Monto de pérdida				Monto medio
Probabilidades	Sin Proyecto	Con Proyecto	Reducción de pérdidas	Pérdida media del tramo	Probabilidades del tramo	anual de reducción de pérdidas
1/1			$D_0 = 0$			
	ī	ī		$(D_0 + D_1)/2$	1-(1/2) = 0,500	$d_1 = (D_0 + D_1)/2$ x 0,67
1/2	L_1	L_2	$D_1 = L_1 - L_2$	$(D_1+D_2)/2$	(1/2)- $(1/5)$ = 0,300	$d_2 = (D_1 + D_2)/2$ x 0,300
1/5	L_3	L_4	$D_2 = L_3 - L_4$	$(D_2+D_3)/2$	(1/5)-(1/10) = 0.100	$d_3 = (D_2 + D_3)/2$ x 0,100
1/10	L_5	L_6	$D_3 = L_5 - L_6$	$(D_3+D_4)/2$	(1/10)-(1/20) = 0.050	$d_4 = (D_3 + D_4)/2$ x 0.050
1/20	L_{7}	L_8	$D_4 = L_7 - L_8$	$(D_4+D_5)/2$	(1/20)-(1/30) =	$d_5 = (D_4 + D_5)/2$
1/30	L_9	L_{10}	$D_5 = L_9$ - L_{10}		0,017 $(1/30)$ - $(1/50)$ =	$x 0,017$ $d_6 = (D_5 + D_6)/2$
1/50	L_{11}	L_{12}	$D_6 = L_{11} - L_{12}$	$(D_5 + D_6)/2$	0,013	$\begin{array}{c} a_6 - (D_5 + D_6)/2 \\ x \ 0.013 \end{array}$
1/30	LII	<i>L</i> ₁₂	D ₆ - L ₁₁ L ₁₂	$(D_6+D_7)/2$	(1/50)- $(1/100)= 0.010$	$d_7 = (D_6 + D_7)/2$ x 0.010
1/100	L_{13}	L_{14}	$D_7 = L_{13}\text{-}L_{14}$		- 0,010	A 0,010
Monto medio pérdidas	previsto anual d	e reducción de		$d_1 + d_2 + d_3 + a_4$	$l_4+d_5+d_6+d_7$	

En la Tabla 4.5.1-4 se presentan los resultados del cálculo del monto de pérdidas (promedio anual) que se espera reducir al implementar el Proyecto en la cuenca del Río Cañete.

Tabla 4.5.1-4 Resultados del cálculo del monto medio anual de pérdidas que se espera reducir con el Proyecto (Precios privados)

s/1000

流域 Cuenca		o de Probabilidad	被害額 (Daños Totales - miles de S/.)			反眼亚斯特史	E BB Trin str	年平均被害額	
	流量規模 Periodo de		事業を実施し ない場合①	事業を実施した場合②	軽減額 3=1-2	区間平均被害額 ④	区間確率 ⑤ Valor incremental de la probabilidad	(A) × (S) Valor Promedio del Eluio del	年平均被害額の 累計=年平均被 害軽減期待額
	retorno		Sin Proyecto	Con Proyecto	Daños mitigados 3=1-2	Promedio de Daños			Daño Medio Anual
	1	1.000	0	0	0			0	0
	2	0.500	1,660	153	1,507	754	0.500	377	377
CAÑETE	5	0.200	6,068	832	5,236	3,372	0.300	1,012	1,388
CANETE	10	0.100	73,407	8,413	64,994	35,115	0.100	3,512	4,900
	25	0.040	98,357	11,776	86,581	75,787	0.060	4,547	9,447
	50	0.020	149,018	16,428	132,589	109,585	0.020	2,192	11,639

(2) Evaluación social

1) Objetivo e indicadores de evaluación

El objetivo de la evaluación social en el presente Estudio es evaluar la eficiencia de las inversiones en las medidas estructurales aplicando el método de análisis de la relación costo-beneficio (B/C) desde el punto de vista de la economía nacional. Para ello, se determinaron los indicadores de evaluación económica (relación B/C, Valor Actual Neto –VAN, y tasa interna de retorno económico –TIR). La tasa interna de retorno (TIR) es un indicador que expresa la eficiencia de la inversión en el proyecto. Se define como la tasa de descuento para equiparar el valor actual del costo generado por el proyecto al valor actual de beneficio. Es la tasa de descuento necesario para que el Valor Actual Neto (VAN) sea de cero y la relación de B/C de uno, e indica el porcentaje de beneficio que genera dicha inversión. La tasa interna de retorno utilizada en la evaluación económica se denomina "tasa interna de retorno

económico (TIRE). El precio del mercado es convertido en el precio económico (costos a precios sociales) eliminando el impacto de la distorsión del mercado.

La TIR, relación B/C y el VAN se determinan aplicando las expresiones matemáticas indicadas en la siguiente Tabla. Cuando la TIR haya sea mayor que la tasa social de descuento, la relación B/C sea mayor a uno y el VAN mayor a cero, se considera que dicho proyecto es eficiente desde el punto de vista del crecimiento de la economía nacional.

Tabla 4.5.1-5 Indicadores de evaluación del análisis de la relación costo-beneficio y sus características

Indicadores	Definición	Características
Valor Actual Neto (VAN)	$NPV = \sum_{i=1}^{n} \frac{B_i}{(1+r)^i} - \sum_{i=1}^{n} \frac{C_i}{(1+r)^i}$	 Permite comparar la magnitud del beneficio neto generado con el proyecto. Varía dependiendo de la tasa social de descuento.
Relación costo-beneficio (B/C)	$B/C = \sum_{i=1}^{n} \frac{B_{i}}{(1+r)^{i}} / \sum_{i=1}^{n} \frac{C_{i}}{(1+r)^{i}}$	 Permite comparar la eficiencia de la inversión por la magnitud de beneficio por unidad de inversión. Varía dependiendo de la tasa social de descuento.
Tasa de retorno interno económica (TIR)	$\sum_{i=1}^{n} \frac{B_{i}}{(1+r)^{i}} = \sum_{i=1}^{n} \frac{C_{i}}{(1+r)^{i}}$	Permite conocer la eficiencia de la inversión comparando con la tasa social de descuento. No varía dependiendo de la tasa social de descuento.
Donde, Bi: beneficio al año "i"	'/Ci: costo al año "i" / r: tasa social de	e descuento (11 %) / n: años de evaluación.

2) Precondiciones

A continuación se plantean las precondiciones de cada uno de los indicadores utilizados en la evaluación económica.

i) Período de evaluación

El período de evaluación se define entre 2013 y 2027 (15 años después de iniciadas las obras de construcción). El cronograma tentativo de la ejecución del Proyecto es el siguiente.

2012: Diseño Detallado 2013–2014: Construcción

2013-2027: Período de evaluación

ii) Factor de conversión estándar (FCE)

El factor de conversión estándar (FCE) es la relación entre los precios socioeconómicos establecidos en la frontera y los precios privados nacionales de todos los bienes de la economía de un país, sirve para convertir los precios de los bienes y servicios comprados en el mercado local en precios económicos. En el presente Estudio se utilizaron los siguientes valores de FCE.

Diques 0,804

Gaviones 0,863

Bocatomas 0,863

En la conversión de los precios del mercado a los precios socioeconómicos, no se tomó en cuenta el IGV.

iii) Otras condiciones preliminares

Nivel de precios: 2011

Tasa social de descuento: 10 %

Costo anual de mantenimiento: 0,5 % del costo de construcción

3) Análisis de la relación costo-beneficio (B/C)

Se compararon el costo total y el beneficio total de las obras de control de inundaciones convertidos en valores actuales aplicando la tasa social de descuento. En este caso el costo total es la suma del costo de construcción y de operación y mantenimiento de las obras, y el beneficio total es el monto de pérdida que se redujo gracias a las obras. Para ello, se estableció como año base para la conversión en el valor actual al momento en que se efectuará la evaluación, y el período de evaluación durante los siguientes 15 años desde el comienzo de las obras del Proyecto. Se determinó el costo total sumando el costo de construcción y el costo de operación y mantenimiento de las obras convertidas en valores actuales; y el beneficio total sumando el promedio del monto anual de reducción de pérdidas convertido en valores actuales.

En la Tabla 4.5.1-6 se presentan los resultados del cálculo de B/C, VAN y TIR a precios privados.

Tabla 4.5.1-6 Evaluación social (B/C, VAN, TIR) (A precios privados)

4.5.2 Costos a precios sociales

(1) Beneficios

1) Monto estimado de perdidas según desastres de diferentes períodos de retorno

En la Tabla 4.5.2-1 se presentan los montos de pérdidas con y sin el Proyecto, estimados para desastres de diferentes períodos de retorno en la cuenca del Río Cañete.

		千ソ一レス
Caso ケース	t 確率年	Cañete
	2	2,582
Sin Proyecto	5	10,558
事業を実施	10	105,137
しない場合	25	144,972
しない 2 日	50	213,134
	Total	476,384
	2	272
Con Proyecto	5	1,024
事業を実施	10	9,908
した場合	25	14,260
した 日	50	20,117
	Total	45,580

Tabla 4.5.2-1 Monto estimado de pérdidas (a precios sociales)

2) Monto de pérdidas (promedio anual) que se espera reducir con el Proyecto

En la Tabla 4.5.2-2 se presentan los resultados del cálculo del monto de pérdidas (promedio anual) que se espera reducir al implementar el Proyecto en la cuenca del Río Cañete.

Tabla 4.5.2-2 Monto medio anual de pérdidas que se espera reducir con el Proyecto (a precios sociales)

s/1000

流域 Cuenca		正台 1回 4年 4年	被害額 (Daños Totales - miles de S/.)			反眼亚斯地名	豆眼球壶	年平均被害額	ケェル神史祭の
	流量規模 Periodo de retorno		事業を実施し ない場合①	事業を実施した場合②	軽減額 ③=①-②	区間平均被害 額 ④ Promedio de Daños	区間確率 ⑤ Valor incremental de la probabilidad	⑤ Valor Promedio incremental de del Fluio de	年平均被害額の 累計=年平均被 害軽減期待額
			Sin Proyecto	Con Proyecto	Daños mitigados (3=(1)-(2)				Daño Medio Anual
	1	1.000	0	0	0			0	0
	2	0.500	2,582	272	2,311	1,155	0.500	578	578
CAÑETE	5	0.200	10,558	1,024	9,534	5,922	0.300	1,777	2,354
CAÑETE	10	0.100	105,137	9,908	95,229	52,382	0.100	5,238	7,593
	25	0.040	144,972	14,260	130,712	112,971	0.060	6,778	14,371
	50	0.020	213,134	20,117	193,018	161,865	0.020	3,237	17,608

(2) Evaluación social

En la Tabla 4.5.2-3 se presentan los resultados del cálculo de B/C, VAN y TIR a precios sociales.

Tabla 4.5.2-3 Evaluación social (B/C, VAN, TIR) (A precios sociales)

4.5.3 Conclusiones de la evaluación social

La evaluación social puso de manifiesto que el proyecto de la cuenca del Río Cañete no arrojará impacto económico palpable en términos de costos a precios sociales. A continuación se presentan los efectos positivos del Proyecto que son difícilmente cuantificables en valores económicos.

- ① Contribuye al desarrollo económico local al reducirse el temor por el estancamiento o daños de las actividades económicas.
- 2 contribuye a la generación de oportunidades de empleo por la ejecución de obras contempladas en el Proyecto.
- 3 Mayor conciencia de la comunidad local sobre los riesgos de las inundaciones y otros desastres.
- (4) Incremento del ingreso por agricultura más estable, gracias a la reducción de los daños de inundaciones.
- ⑤ Subida del precio de las tierras de cultivo

Por los resultados de la evaluación económica anteriormente expuestos, se considera que el presente Proyecto contribuirá sustancialmente al desarrollo de la economía local.

4.6 Análisis de sensibilidad

(1) Objetivo

Se realizó el análisis de sensibilidad con el fin de responder a la incertidumbre por el posible cambio de las condiciones socioeconómicas en el futuro. Para el análisis costo beneficio, se requiere prever la variación del costo y del beneficio del proyecto, sujeto a la evaluación, hacia el futuro. Sin

embargo, no es una tarea fácil realizar proyectar de manera acertada de un proyecto público, puesto que éste se caracteriza porque el largo período requerido desde su planificación hasta la puesta en operación, y por la larga vida útil de las obras puestas en operación, a lo que se suman la intervención de un sin número de factores inciertos que afectan el futuro costo y beneficio del proyecto. Así, no pocas veces se obtienen resultados de análisis discordantes con la realidad cuando las precondiciones o la hipótesis aplicadas no concuerdan con la realidad. Por lo tanto, para compensar la incertidumbre del análisis de costo beneficio, conviene reservar un amplio margen de tolerancia, evitando un resultado absoluto y único de un solo escenario. El análisis de sensibilidad constituye una respuesta a esta situación.

El objetivo del análisis de sensibilidad es dar a los resultados del análisis costo beneficio un determinado margen que permita gestionar adecuadamente la implementación del proyecto, rendir cuentas ante la población, y lograr mayor precisión y fiabilidad de los resultados de la evaluación del proyecto.

(2) Análisis de sensibilidad

1) Descripción general del análisis de sensibilidad

Existen tres métodos del análisis de sensibilidad, como las que se indican en la Tabla 4.6-1.

Tabla 4.6-1 Métodos del análisis de sensibilidad

Tabla 4.0-1 Metodos del anansis de sensibilidad							
Métodos	Descripción	Productos					
Análisis de sensibilidad de las variables	Consiste en cambiar una solo variable (precondición o hipótesis) predeterminada, para evaluar cómo afecta al resultado del análisis.	Margen de los valores arrojados por el análisis al variar una precondición o hipótesis.					
Alternativas mejores y peores	Consiste en definir los casos en que se empeoran o se mejoran los resultados del análisis al cambiar las principales precondiciones e hipótesis preestablecidas, para evaluar el margen de los resultados del análisis.	Margen de los valores arrojados por el análisis al variar las principales precondiciones o hipótesis					
Monte Carlo	Consiste en conocer la distribución de probabilidad de los resultados del análisis usando la simulación Monte Carlo de números aleatorios de las precondiciones e hipótesis preestablecidas.	Distribución probabilística de los resultados al varía todas las principales precondiciones e hipótesis					

2) Descripción del análisis de sensibilidad

En el presente Proyecto se adoptó el método de análisis de sensibilidad de las variables utilizado comúnmente en las inversiones en obras públicas. A continuación se presentan los escenarios y los indicadores económicos que se utilizaron en el análisis de sensibilidad.

Tabla 4.6-2 Casos sometidos al análisis de sensibilidad e indicadores económicos

Indicadores	Margen de variación según factores	Indicadores económicos a evaluarse
Costo de	En caso de aumentar el costo de	TIR, VAN, B/C
construcción	construcción por 5 % y 10 %	
Beneficio	En caso de reducirse el beneficio por	TIR, VAN, B/C
	5 % y 10 %	
Tasa social de	En caso de aumentar y reducirse la tasa	VAN, B/C
descuento	social de de descuento por 5 %,	
	respectivamente.	

3) Resultados del análisis de sensibilidad

En la Tabla 4.6-3 se muestran los resultados del análisis de sensibilidad de cada caso evaluado, a precios privados y sociales.

Tabla 4.6-3 Resultados del análisis de sensibilidad de TIR, B/C y VAN

					Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6
		Cuenca	Variables	Caso base	Incremento de costos 5%	Incremento de costos 10%	Reducción de beneficios 5%	Reducción de beneficios 10%	Incremento de tasa de descuento 5%	Reducción de tasa de descuento 5%
	Precios	CAÑETE	IRR (%)	36%	35%	33%	35%	33%	36%	36%
	privados		B/C	2.96	2.82	2.69	2.81	2.67	2.28	3.99
	rivados		NPV(s)	45,266,114	44,113,123	42,960,132	41,849,817	38,433,521	27,605,013	74,293,435
	Precios		IRR (%)	62%	60%	57%	60%	57%	62%	62%
	CAÑETE	B/C	5.57	5.31	5.07	5.29	5.01	4.29	7.50	
	sociales		NPV(s)	84,817,688	83,890,135	82,962,582	79,649,251	74,480,814	57,014,823	130,016,170

(3) Evaluación del análisis de sensibilidad

Se realizó el análisis de sensibilidad del impacto del Proyecto en términos del cambio socioeconómico, a precios tanto privados como sociales. Según dicho análisis, aun cuando los costos, beneficios y la tasa de descuento sufran un determinado grado de variación, su impacto sobre los niveles de TIR, B/C y VAN es reducido, y sigue siendo un Proyecto con alto impacto económico.

4.7 Análisis de sostenibilidad

El presente Proyecto será cogestionado por el gobierno central (a través de la DGIH), comisiones de regantes y los gobiernos regionales, y el costo del Proyecto será cubierto con los respectivos aportes de las tres partes. Por lo general el gobierno central (en este caso, la DGIH) asume el 80 %, las comisiones de regantes el 10 % y los gobiernos regionales el 10 %. Sin embargo, los porcentajes de los aportes de estas dos últimas son decididos mediante discusiones entre ambas partes. Por otro lado, la operación y mantenimiento (OyM) de las obras terminadas es asumida por las comisiones de regantes. Por lo tanto, la sostenibilidad del Proyecto depende de la rentabilidad del Proyecto y de la capacidad de OyM de las comisiones de regantes.

En la Tabla 4.7-1 se presentan los datos del presupuesto de las comisiones de regantes en los últimos años.

Tabla 4.7-1 Presupuesto del Proyecto de las comisiones de regantes

		(En soles)			
Ríos	2007	2008	2009	2010	Promedio de 4 años
Cañete	2.355.539,91	2.389.561,65	2.331339,69	2.608.187,18	2.421.157

1) Rentabilidad

El proyecto en la cuenca del Río Cañete es suficientemente rentable y por lo tanto la viabilidad del Proyecto es alta. El monto de inversión en esta cuenca se estima en S/ 25,7 millones en costos a precios privados, pero el impacto económico de la implementación del Proyecto en términos de los costos a precios sociales es de B/C = 5,57, TIR = 62% aprox., y VAN = s/. 84,8 millones, indicando que es un proyecto económicamente efectivo.

2) Costo de operación y mantenimiento

El costo anual de operación y mantenimiento requerido para el proyecto, teniendo como año base al año 2008 se estima en 109.511 soles, que corresponde al 0,5 % del costo de construcción del proyecto en la cuenca del Río Cañete. Por otro lado, el promedio de los gastos de operación en los últimos cuatro años de las comisiones de regantes es de 2.421.157.

Al considerar que el costo anual de operación y mantenimiento representa un 4,5 % del presupuesto anual de las comisiones de regantes, el proyecto sería suficientemente sostenible a juzgar de la capacidad financiera de estas comisiones para mantener y operar las obras construidas.

4.8 Impacto Ambiental

En este acápite se desarrollará la identificación, descripción y evaluación de los impactos positivos y negativos de los proyectos y el planeamiento de medidas de mitigación de los mismos. La Evaluación Ambiental Preliminar (EAP) del Proyecto ha sido realizado por una firma consultora registrada (CIDES Ingenieros S.A.) para las seis cuencas desde diciembre de 2010 hasta enero de 2011 y desde septiembre hasta octubre de 2011. Actualmente está siendo evaluada por Dirección General de Asuntos Ambientales (DGAA) del Ministerio de Agricultura. Este acápite está elaborado con los datos y resultados de las EAPs de cada cuenca, y por las visitas de campo por parte del Equipo de Estudios de JICA.

Las obras planeadas son Mejoramiento de diques existentes, Conformación de dique, Descolmatación de cauces, Defensa contra socavación, Mejoramiento/Reparación de bocatomas y partidor, y Ampliación de cauce. En la Tabla 4.8-1 se describe los "Puntos de Obras" a considerarse en el presente acápite de Impacto Ambiental de la cuenca del Río Cañete en estudio.

Tabla 4.8-1 Puntos de Obras

	Puntos de Obras			Objetos	Medidas	Dimensiones	Ámbito objeto
	Ca 1	4.3km	Punto angosto	Puente vial	Descolmatación del cauce	Ancho de la excavación ; 100m Profundidad de la excavación ; 1.0m Longitud ; 1,000m	4.0km ~ 5.0km (totalidad)
e e	Ca 2	6.8k~8.0k	Punto de inundación	Cultivos	Conformación de dique	Altura; 2.0m Gradiente; 1:2 Longitud; 1,200m	6.5km~8.1km (M.D.)
o Cañe	Ca 3	10.25k	Punto angosto		Descolmatación del cauce	Ancho de la excavación ; 100m Profundidad de la excavación ; 1.0m Longitud ; 1,000m	10.0km~11.0km (totalidad)
Rio	Ca 4	24.5k	Bocatoma	. ,	Meioramiento de la bocatoma	Ancho de la presa ; 150m Altura de la presa ; 3.0m Grosor de la presa ; 2.0m	24.25km~24.75km (totalidad)
	Ca 5	25.0k, 26.25k	Erosión ribereña	carretera	Defensa contra la socavación	Altura; 2.0m Gradiente; 1:2 Longitud; 750m	24.75km~26.5km (M.D.)

Fuente: Equipo Estudios de JICA

4.8.1 Metodología

Para la identificación de los impactos ambientales de las obras a ejecutarse en las diversas cuencas, se procedió a desarrollar matrices de identificación de impactos por cuenca.

Primero se determinó las operaciones y actividades de cada proyecto en base a las actividades típicas de construcción de "obras hidráulicas" y posteriormente se determinó el tipo de actividades concretas que se ejecutarían para cada una de las obras que se desarrollarán a lo largo de las cuencas. Luego para evaluación de los Impactos Socio-Ambientales se empleó la matriz de tipo "Leopold".

La identificación se desarrolló a nivel ambiental y a nivel de proyecto; y la evaluación tomó en cuenta a la naturaleza, probabilidad de ocurrencia, magnitud, valor total del impacto y dio como resultado el valor o grado de significancia de los Impactos. En las Tablas 4.8.1-1 se aprecia la escala de valoración empleada:

Tabla 4.8.1-1 Criterio de Evaluación - Matriz de Leopold

	1abla 4.8.1-1 Criterio de Evaluación - Matriz de Leopoid							
	Índice	Descripción	Valoración					
	Naturaleza "Na"	Establece si el cambio de cada acción sobre el	Positivo (+): beneficioso					
	Naturaleza Na	medio es positivo o negativo.	Negativo (-): perjudicial					
Drok	abilidad da agurranaia	Incorpora la probabilidad de ocurrencia del	Alta (> 50%) = 1,0					
PIOL	"P.O"	impacto sobre el componente.	Media (10 – 50%) = 0,5					
	r.0	impacto sobre el componente.	Baja (1–10%) = 0,2					
		Indica la magnitud del cambio del factor	Insignificante (2)					
	Intensidad "In"	ambiental. Refleja el grado de alteración del	Intensidad moderada (5).					
		factor sobre su condición base.	Alteración extrema (10).					
		Expresa la superficie afectada por las acciones	Área de influencia indirecta: 10					
Б	Extensión "Ex"	del proyecto o el alcance global sobre el factor	Área de influencia directa: 5					
Magnitud		ambiental.	Área que ocupa la obra: 2					
lag		Se refiere al periodo de tiempo durante el cual	> 10 años: 10					
2	Duración "Du"	persisten los cambios ambientales.	5 – 10 años: 5					
		persisten los cambios ambientales.	1 – 5 años: 2					
		Se refiere a la capacidad del sistema de retornar	Irreversible: 10					
	Reversibilidad "Rev"	a una situación de equilibrios similar o	Parcialmente: 5					
		equivalente a la inicial	Reversible: 2					

Fuente: Elaboración Propia en base de EAPs de 5 cuencas

Tabla 4.8.1-2 Grados de significancia de impactos (Valor de los Impactos)

SIA	Grado de significancia
≤15	Poco significativo
15,1 – 28	Significativo
≥ 28	Muy significativo

Fuente: Elaboración Propia en base de EAPs

4.8.2 Identificación, Descripción y Evaluación de Impactos Socio ambientales

En la siguiente matriz de percepción de impactos (en las etapas de construcción /operación) en la cuenca del Rio Cañete, elaborada con base en el análisis del informe de la Evaluación Ambiental Preliminar

En la cuenca del Río Cañete, de acuerdo a los resultados de identificación de impactos para la etapa constructiva, se han hallado un total de 64 interacciones, de las cuales 62 (97%) corresponden a impactos cuyo efecto será percibido de manera negativa y 2 (3%), cuyos efectos serán percibidos de manera positiva. Cabe señalar que de los 62 impactos negativos sólo 15 han sido cuantificados como significativos y 2 como muy significativos. Para la identificación y obtención de los resultados presentados de la evaluación de los impactos de la etapa de construcción de cada una de las obras desarrolladas en la cuenca del Río Cañete se desarrolló la siguiente matriz de identificación de impactos en la Tabla 4.8.2-1, donde "P" significa: Impacto Positivo y N: Impacto Negativo.

Tabla 4.8.2-1 Matriz de Identificación de Impactos (Etapa de Construcción)

1abia 4.0.2-1 Mati i				uc i	ucitu	iicaci	on a		Juck	13 (II)	upu	uc c	OHSt	1 ucc	1011)	
		o	bra	1-6	1-6	1-6	4	1,4,5	1 y 4	1-6	1-6	1-6	1-6	1-6		
Medio	Componente	Factores ambientales	Actividad	Contratación de MO	Preparación de sitios de obra (Desbroce, perfilado y nivelado)	Desviación de cauces (ataguias)	Excavacion y relleno en riberas	Excavacion y relleno en cauces	Obras civiles (Colocación de concreto)	I&O de canteras, y plantas de producción de materiales	I&O de DME	I&O de campamentos	Transporte de personal	Transporte de maquinaria, equipos, materiales e insumos	Total negativos	Total positivos
	Aire	PM-10 (Material particulado			N	N	N	N		N	N		N	N	8	0
		Emisiones gaseosas			N	N	N	N	N	N	N		N	N	9	0
	Ruido	Ruido			N	N	N	N	N	N	N	N	N	N	10	0
	Suelo	Fertilidad			N					N	N				3	0
Físico		Capacidad de uso mayor			N					N	N				3	0
	Agua	Calidad del agua superficial				N	N	N		N					4	0
	3	Cantidad de agua supe	erficia						N			N			2	0
	Fisiografía	Morfología fluvial				N	N	N		N					4	0
	. ioiog.aiia	Morfología terrestre			N						N				2	0
	Flora	Flora terrestre			N						N				2	0
Biótico	Tiora	Flora acuática				Ν	Ν	Ν		Ν					4	0
Biotico	Fauna	Fauna terrestre			N						Ν				2	0
	raulia	Fauna acuática				N	N	N		Ν					4	0
	Estético	Paisaje visual								N	N				2	0
Socio	Social	Calidad de vida		Р								N	N	N	3	1
económic	Jocial	Vulnerabilidad - Segurio	dad												0	0
0	Económico	PEA		Р											0	1
Uso actual de la tierra														0	0	
Total				2	8	7	7	7	3	10	9	3	4	4	62	2
Porcenta	je de negativ	os y positivos													97 %	3 %

Fuente: "Evaluación Ambiental Preliminar del Proyecto Construcción de Defensas Ribereñas para el Control de Despordes e Inundaciones del Río Cañete"

Tabla 4.8.2-2 Matriz de Identificación y Evaluación de Impactos resumida (Etapa de Construcción) – Cañete

(Etapa de Construcción) – Canete													
		Cuenca de Río Cañete											
		Acciones del proyecto	Contratación de MO	Preparación de sitios de obra (Desbroce, perfilado y nivelado)	Desviación de cauces (ataguías)	Excavación y relleno en riberas	Excavación y relleno en cauces	Obras civiles (Colocación de concreto)	I&O de canteras, y plantas de producción de materiales	I&O de DME	I&O de campamentos	Transporte de personal	Transporte de maquinaria, equipos, materiales e insumos
		Puntos de Obras: Factores Ambientales	Ca1- 5	Ca1-5	Ca1-5	Ca4,5	Ca1,2 ,3	Ca4,5	Ca1-5	Ca1-5	Ca1-5	Ca1-5	Ca1-5
	Aire	PM-10 (Metal particulado)	0.0	-12.0	-12.0	-12.0	-12.0	0.0	-18.0	-18.0	0.0	-12.0	-12.0
	70	Emisiones gaseosas	0.0	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5	0.0	-11.5	-11.5
	Ruido	Ruido	0.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0
g	Suelo	Estabilidad	0.0	-11.5	0.0	0.0	0.0	0.0	-14.2	-14.2	0.0	0.0	0.0
Físico	040.0	Capacidad de uso mayor	0.0	-14.2	0.0	0.0	0.0	0.0	-15.0	-15.0	0.0	0.0	0.0
1"	Agua	Calidad del agua superficial	0.0	0.0	-17.5	-12.0	-23.0	0.0	-15.0	0.0	0.0	0.0	0.0
	5	Cantidad de agua superficial	0.0	0.0	0.0	0.0	0.0	-9.0	0.0	0.0	-15.0	0.0	0.0
	Fisiografía	Morfología fluvial	0.0	0.0	-12.0	-20.0	-31.0	0.0	-23.0	0.0	0.0	0.0	0.0
		Morfología terrestre	0.0	-33.0	0.0	0.0	0.0	0.0	0.0	-28.0	0.0	0.0	0.0
	Flora	Flora terrestre	0.0	-28.0	0.0	0.0	0.0	0.0	0.0	-22.5	0.0	0.0	0.0
Biótico	1.0.0	Flora acuática	0.0	0.0	-12.0	-14.5	-14.5	0.0	-14.5	0.0	0.0	0.0	0.0
Bió	Fauna	Fauna terrestre	0.0	-24.2	0.0	0.0	0.0	0.0	0.0	-22.5	0.0	0.0	0.0
	1 dana	Fauna acuática	0.0	0.0	-12.0	-14.5	-22.5	0.0	-15.0	0.0	0.0	0.0	0.0
o		Paisaje visual	0.0	0.0	0.0	0.0	0.0	0.0	-12.0	-12.0	0.0	0.0	0.0
con	Social	Calidad de vida	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-17.5	-17.5	-17.5
io ecc mico		Vulnerabilidad-Seguridad	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Socio econó mico	Económico	PEA	17.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
נט	Loononiico	Uso actual de la tierra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Durante el período de operación y mantenimiento se prevén 32 interacciones, de las cuales 6 (19 %) corresponden a impactos negativos, y 26 (81 %) a impactos positivos. De los seis impactos negativos dos son fuertes y cuatro son muy fuertes. El método de conteo de puntajes es el mismo aplicado para el período de ejecución de obras de construcción antes descrito.

	Tabla 4	4.8.2-3 Matriz de Id	lentifica	ición de	Impac	tos (Eta	ıpa de C)peraci	ón)
			Descolmatación del cauce 1	Conformación de dique 2	Descolmatación del cauce 3	Mejoramiento de la bocatoma 4	Defensa contra la socavación 5	Total negativos	Total positivos
	Aire	PM-10 (Metal particulado)						0	0
	Alle	Emisiones gaseosas						0	0
	Ruido	Ruido						0	0
	Suelo	Estabilidad					Р	0	1
Físico	Suelo	Capacidad de uso mayor						0	0
	Agua	Calidad del agua superficial				Р	Р	0	2
	Agua	Cantidad de agua superficial	Р	Р	Р	Р		0	3
	Finia munific	Morfología fluvial	N	N	N			3	0
	Fisiografía	Morfología terrestre						0	0
	El	Flora terrestre						0	0
<u>8</u>	Flora	Flora acuática						0	0
Biótico	F	Fauna terrestre						0	0
	Fauna	Fauna acuática	N	N	N			3	2
		Paisaje visual	Р	Р	Р		Р	0	4
Socio econó mico	Social	Calidad de vida	Р	Р	Р	Р	Р	0	5
		Vulnerabilidad-Seguridad	Р	Р	Р	Р	Р	0	5
	Económico	PEA	_	_	_		_	0	0
Uso actual de la tierra		Р	Р	Р	Р	Р	0	4	
Total			7	7	7	5	6	6	26
%								19 %	81 %

Tabla 4.8.2-4 Matriz de Identificación y Evaluación de Impactos resumida (Etapa de Operación) — Cañete

			Cuenca del Río Cañete						
			Ca1 (Descolmata ción del cauce)	Ca2 (Conformaci 6n de dique)	Ca3 (Descolmata ción del cauce)	Ca4 (Mejorami ento de la bocatoma)	Ca5 (Defensa contra la socavació n)		
	Aire	PM-10 (Metal particulado)	0.0	0.0	0.0	0.0	0.0		
	70	Emisiones gaseosas	0.0	0.0	0.0	0.0	0.0		
	Ruido	Ruido	0.0	0.0	0.0	0.0	0.0		
	Suelo	Estabilidad	0.0	0.0	0.0	0.0	31.0		
Físico	Odelo	Capacidad de uso mayor	0.0	0.0	0.0	0.0	0.0		
ľ	Agua	Calidad del agua superficial	0.0	0.0	0.0	28.0	31.0		
	Agua	Cantidad de agua superficial	31.0	26.0	31.0	26.0	0.0		
	Fisiografí	Morfología fluvial	-30.5	-25.5	-30.5	0.0	0.0		
	а	Morfología terrestre	0.0	0.0	0.0	0.0	0.0		
	Flora	Flora terrestre	0.0	0.0	0.0	0.0	0.0		
9	Flora	Flora acuática	0.0	0.0	0.0	0.0	0.0		
Biótico	Fauna	Fauna terrestre	0.0	0.0	0.0	0.0	0.0		
	raulia	Fauna acuática	-30.5	-25.5	-30.5	0.0	0.0		
O.		Paisaje visual	36.0	36.0	36.0	0.0	36.0		
ómic	Social	Calidad de vida	36.0	36.0	36.0	31.0	36.0		
económico		Vulnerabilidad-Seguridad	36.0	36.0	36.0	31.0	36.0		
Socio 6	Económico	PEA	0.0	0.0	0.0	0.0	0.0		
Š	Economico	Uso actual de la tierra	36.0	36.0	36.0	36.0	36.0		

Leyenda General para la escala de colores de la calificación de los impactos de las Tablas 4.8.2-2 a 4.8.2-4

Impactos positivos				Impac	tos negativos
	0 - 15	Poco significativos		0 - 15	Poco significativos
	15,1 - 28	Significativos		15,1 - 28	Significativos
	28,1 a más	Muy significativos		28,1 a más	Muy significativos

Durante la etapa constructiva las acciones que generarán los impactos negativos más significativos en la Cuenca del Río Cañete son: "Preparación y despeje de sitios de obra", y la "Excavación y relleno en cauces". La "Preparación y despeje de sitios de obra" ocasionará una modificación significativa de la morfología terrestre, mientras que la "Excavación y relleno en cauces" ocasionará la modificación significativa de la morfología fluvial.

Los dos impactos positivos identificados durante la etapa constructiva, para todas las cuencas, están relacionados a la contratación de mano de obra local, la cual ocasionará una mejora de la calidad de vida para los beneficiarios y a su vez una mejora en el indicador de población económicamente activa.

Durante la etapa de operación la obra de infraestructura hidráulica que ocasionará los impactos ambientales negativos más significativos, es la "Descolmatación de cauces", que ocasionará una modificación de la morfología fluvial y con ello una reducción en las condiciones de habitabilidad del río, lo que impactará directamente en la fauna acuática.

Los impactos positivos más significativos están relacionados a todas las obras a construir en la cuenca de los ríos y están relacionados directamente con la mejora de la calidad de vida de la población del área de influencia, la mejora del "Uso actual de la tierra", y la mejora en las condiciones de seguridad y reducción de vulnerabilidad a nivel social y ambiental.

4.8.3 Planes de Manejo Socio ambiental

El objetivo de los Planes de Manejo Socio ambiental es internalizar los impactos ambientales positivos como negativos significativos y muy significativos, asociados a las etapas de construcción y operación del proyecto, de manera que se garantice la prevención y/o mitigación de los impactos negativos significativos y muy significativos, la conservación del patrimonio ambiental y la sostenibilidad de los proyectos.

En la etapa de construcción, en los proyectos de la Cuenca del Río Cañete se han planteado las siguientes medidas: "Programa de contratación local", "Programa de manejo y control de sitios de obra", "Programa de desviación de cauces", "Manejo de excavaciones y relleno en riberas", "Manejo de excavaciones y relleno en cauces", "Manejo de canteras", "Manejo de DME", "Normas de campamento y estadía en obra" y "Manejo de actividades de transporte". Durante las etapas de operación, se han considerado el desarrollo de actividades en relación al "Manejo de cauces y fauna acuática" donde se deberá desarrollar acciones de acondicionamiento de cauce aguas debajo de los puntos de intervención para reducir probabilidad de erosión y brindar condiciones de habitabilidad para especies de fauna acuática.

A continuación se presentan las medidas de mitigación asociadas a los impactos negativos que mitigan o los impactos positivos que potencian. Se deberán tomar estos Planes de Manejo Socio ambiental correspondientes a los puntos de obras donde se generarán los impactos negativos significativos/muy significativos.

Tabla 4.8.3-1 Impactos Ambientales Identificados y sus medidas propuestas

Componente	Descripción del Impacto	Medidas	Periodo	
	Afectación a la Calidad del agua superficial	Programa de Desviación de Cauces Manejo de excavaciones y relleno de rivera Manejo de excavaciones y relleno de cauce		
Físico	Afectación a la Morfología fluvial	Manejo de excavaciones y relleno de rivera Manejo de excavaciones y relleno de cauce Manejo de Canteras	Etapa de construcción	
	Afectación a la Morfología terrestre	tación a la Morfología terrestre Programa de Manejo y control de sitios de obra Manejo de DME		
	Emisiones de Material particulado (PM-10)	Manejo de Canteras Manejo de DME		
	Afectación a la Fauna acuática	Manejo de excavaciones y relleno de cauce	Etapa de Operación y Mantenimiento	
Biológico	Afectación a la Fauna terrestre	Programa de Manejo y control de sitios de obra Manejo de DME		
	Afectación a la Flora terrestre	Programa de Manejo y control de sitios de obra Manejo de DME	Etapa de	
Social	Afectación a la Calidad de vida	Normas de Campamento y Estadía de Obra Manejo de Actividades de Transporte	construcción	
Social	Mejora de la Calidad de vida	Programa de Contratación de M.O. Local		
	Incremento de la PEA	Programa de Contratación de M.O. Local		

Fuente: Equipo Estudios de JICA

4.8.4 Plan de Seguimiento y Control

El plan de seguimiento y control tiene 2 tipos de actividades:

- 1. Seguimiento: constituyen actividades de verificación de las medidas de manejo planteadas
- 2. Control: Comprenden las actividades de monitoreo y medición para el cumplimiento de la normativa ambiental sean Estándares de Calidad Ambiental (ECAs) o Límites Máximos Permitibles (LMAs). Y el seguimiento y control se deben ejecutar por la responsabilidad del titular del proyecto o un tercero bajo la supervisión del titular.

Etapa de Construcción

Durante el período de construcción, además de darle seguimiento al plan de gestión del impacto ambiental, se realizará el monitoreo de los siguientes aspectos.

Calidad del Agua y Parámetros Biológicos:

Se deberá hacer un control de calidad de agua y de parámetros biológicos, aguas de cerca y aguas debajo de los puntos de intervención. En la Tabla 4.8.4-1 se aprecia las especificaciones a seguir:

Tabla 4.8.4-1 Monitoreo de Calidad del Agua y Parámetros Biológicos

Indicador Detalle					
	Caudal				
Parámetros de evaluación	Calidad: Temperatura, pH, oxígeno disuelto (OD), demanda bioquímica de oxigeno (DBO), sólidos disueltos totales, sólidos suspendidos totales (ECAS Categoría 4)				
	Biológico: Índices de diversidad: Shannon; Pielou; riqueza y abundancia.				
	50 metros aguas arriba de puntos de intervención				
Puntos de evaluación	50 metros aguas abajo de puntos de intervención				
	100 metros aguas abajo de puntos de intervención				
Frecuencia de evaluación	Trimestral				
Responsable de Ejecución El titular del proyecto, o un tercero bajo la supervisión del titular.					

Fuente: Elaboración Propia

_

Ley General del Ambiente (Ley No. 28611), Artículos 74 y 75 determinen que todo titular de operaciones de proyecto es es responsable por las emisiones, efluentes, descargas y demás impactos negativos que se generen sobre el ambiente, la salud y los recursos naturales, como consecuencia de sus actividades, y deben adoptar prioritariamente medidas de prevención del riesgo y daño ambiental en la fuente generadora de los mismos Esta responsabilidad incluye los riesgos y daños ambientales que se generen por acción u omisión.

Calidad de Aire:

Durante el análisis de impactos, en los proyectos a desarrollarse en las cuencas, no se registraron impactos significativos en las actividades concernientes a las obras de infraestructura hidráulica, no obstante, el levantamiento de polvo y las emisiones de contaminantes atmosféricos siempre llega a afectar el área de trabajo y por ende la salud de los trabajadores y habitantes de la zona. Eso por esto que se plantea el monitoreo de la Calidad del aire como un punto indispensable en el plan de control.

Tabla 4.8.4-2 Monitoreo de Calidad del Aire

Indicador	Detalle
Puntos de monitoreo	Un punto en zonas de trabajos. Un punto en una cantera alejada del río (la más grande y/o cercano a un zonas de viviendas) Un punto en un D.M.E. (El más grande y/o cercano a un zonas de viviendas)
Colocación de Puntos	Dos estaciones por punto de monitoreo: En barlovento y Sotavento (A favor y encontra del viento)
Parámetro a evaluar	- Material particulado con diámetro menor o igual a 10 micras (PM-10) / 2,5 micras (PM-2,5) - Monóxido de carbono (CO) - Dióxido de nitrógeno (NO ₂) - Ozono (O ₃) - Plomo (Pb) - Dióxido de azufre (SO ₂) - Sulfuro de hidrógeno (H ₂ S)
Frecuencia de medición	Trimestral
Normas de comparación o referencia	D.S N° 074-2001-PCM, Estándares nacionales de calidad ambiental de aire
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.

Fuente: Elaboración Propia

Calidad de ruido

Del mismo modo, se plantea un monitoreo de la calidad del ruido en los receptores potenciales ubicados en las cercanías de los puntos de emisión de ruido por cada frente de trabajo, en el cuadro siguiente (Tabla 4.8.4-3) se aprecia las especificaciones a seguir:

Tabla 4.8.4-3 Monitoreo de Calidad del Ruido

Indicador	Detalle
Puntos de monitoreo	El monitoreo de los niveles de contaminación acústica, se realizará en los receptores potenciales ubicados en las cercanías de los puntos de emisión de ruido por cada frente de trabajo. Se monitoreará un punto por cada receptor potencial.
Parámetro a evaluar	Nivel de presión sonora continuo equivalente: "Leq ", expresado en decibeles dB
Normas recomendadas por los	IEC 651/804 - Internacional
especialistas ambientales que deberá cumplir la	IEC 61672- Nueva Norma: Sustituye a las IEC651/804
instrumentación a utilizar para la	ANSI S 1.4 - América
Frecuencia de medición	El monitoreo de ruido se realizará cada dos meses hasta finalizar las obras
Normas de comparación o referencia	Estándares nacionales de calidad ambiental para ruido (ECA) - D.S. N° 085-2003- PCM
Zona de Aplicación Según Reglamento	Zona Residencial
Valores máximos permitidos en	Horario Diurno (7:01 - 22:00 hrs.): 60 decibeles
zona residencial (Expresados en LAegT*)	Horario Nocturno (22:01 - 7:00 hrs.): 50 decibeles
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.

Fuente: Elaboración Propia

Etapas de operación

En cuanto al impacto de las obras (descolmatación, terraplenado, etc.) sobre la topografía fluvial y al hábitat de los seres acuáticos, se considera necesario realizar el monitoreo de calidad de agua fluvial y la biodiversidad acuática durante el período de mantenimiento.

Tabla 4.8.4-4 Monitoreo de Calidad del Agua (Etapa de Operación)

Indicador	Detalle
	Caudal
Parámetros de evaluación	Calidad: Temperatura, pH, oxígeno disuelto (OD), demanda bioquímica de oxigeno (DBO), sólidos disueltos totales, sólidos suspendidos totales (ECAS Categoría 4)
	Biológico: Índices de diversidad: Shannon; Pielou; riqueza y abundancia.
	50 metros aguas arriba de puntos de intervención
Puntos de evaluación	50 metros aguas abajo de puntos de intervención
	100 metros aguas abajo de puntos de intervención
Duración	Durante la operación
Frecuencia de evaluación	Primeros 2 años: trimestral
Responsable de Ejecución	El titular del proyecto, o un tercero bajo la supervisión del titular.

Fuente: Elaboración Propia

(2) Plan de Cierre o Abandono

Se han realizado Planes de Cierre o Abandono para cada cuenca, los cuales se ejecutarán al término de las actividades constructivas y consiste en la desinstalación de todas las obras temporales y la restauración de las áreas intervenidas y/o afectadas a consecuencia de la ejecución de las obras. La restauración comprende el retiro de suelos contaminados, la disposición final del material de desecho, la restitución de la morfología del suelo y la restauración con cobertura vegetal de los sitios intervenidos.

(3) Participación Ciudadana

Se han realizado Planes de participación ciudadana para cada cuenca, los cuales deberán ejecutarse antes y durante las construcción, así como al finalizar las obras. Las actividades a recomendarse serían:

- Antes de actividades de construcción:
 - o Talleres de difusión en las localidades del área de influencia acerca del proyecto y los beneficios que tendrá para la población local.
 - Adicionalmente en los lugares públicos se podrán afiches indicando el periodo de ejecución del proyecto, sus principales objetivos y los beneficiados.
- Durante la construcción:
 - o Difusión de los avances en la construcción de las obras en coordinación con la población local en asambleas u otros espacios de comunicación.
 - o Identificación e implementación de propuestas de solución a posibles quejas de la población que pudieran presentarse durante la ejecución de las obras. Las medidas de solución propuestas deberán ser consensuadas previamente con la población.
- Al finalizar las obras
 - o Talleres para informar acerca del término de la obra. Se invitará a autoridades locales y público en general y se efectuará una transferencia de los bienes, es decir se entregará la obra culminada a la población.

4.8.5 Presupuesto para la gestión de impacto ambiental

A continuación se presentan los costos directos de las medidas propuestas anteriormente para mitigar los impactos ambientales en la cuenca del Río Cañete. En todo caso, es necesario calcular más detalladamente el presupuesto de estas medidas para cada cuenca en la etapa del diseño detallado.

Tabla 4.8.5-1 Costos directos de medidas de gestión de impacto ambiental

4.8.6 Conclusiones y recomendaciones

(1) Conclusiones

Según las Evaluaciones Ambientales Preliminares, en relación a los impactos en la etapa de construcción y en la etapa de operación, la mayoría de los impactos identificados se caracterizan por ser de significancia leve. Los de impacto negativo significativos y muy significativos son controlables o mitigables, siempre que se realicen los Planes de Manejo Ambiental de la manera adecuada.

Asimismo, se tienen impactos positivos significativos, especialmente en la etapa de operación. Estos son: la mejora en la seguridad y reducción de vulnerabilidad a nivel social y ambiental, la mejora de la calidad de vida de la población del área de influencia y la mejora del "Uso actual de la tierra".

(2) Recomendaciones

- En cuanto al calendario de ejecución de obras, se recomienda iniciar el Proyecto en la época seca.
 Asimismo, es importante elaborar el calendario de ejecución de obras tomando en cuenta el ciclo agrícola de la zona, puesto que muchos de los sitios se encuentran cerca de las tierras de cultivo.
 De esta manera, se puede minimizar el impacto sobre los habitantes locales que deben transportar las maquinarias agrícolas y los cultivos.
- 2) En cuanto al tema de los terrenos, se debe tomar las siguientes medidas en el caso de que no se tenga claramente identificados los tramos donde se ejecutarán las obras. La DGIH del MINAG, como ejecutor del Proyecto, deberá: ① definir claramente los tramos de proyecto, inmediatamente después de terminar el E/F; y ② identificar las tierras y los usuarios incluidos en los terrenos a ser utilizados para el Proyecto. Posteriormente, deberá obtener los terrenos necesarios cumpliendo los procedimientos estipulados en la Ley General de Expropiación. En el caso de que el terreno sea de propiedad comunitaria, se deberá negociar con la comunidad local correspondiente y lograr un consenso.
- 3) En cuanto a los procedimientos relacionados con la conservación del patrimonio cultural, la DGIH deberá obtener el CIRA antes de iniciar el Proyecto, cumpliendo los trámites estipulados para tal fin, inmediatamente después de la terminación del E/F.
- 4) En cuanto al enfoque de género, hasta ahora se ha visto que hay un determinado porcentaje de mujeres que participan en las actividades de las comisiones de regantes, no así en los talleres de desarrollo de capacidades. Por lo tanto, es necesario tomar alguna medida para promover la participación de la mujer en los componentes del presente Proyecto, como por ejemplo, la educación en prevención de desastres, desarrollo de capacidades, etc. Por ejemplo, tomando en cuenta que existen algunos grupos de mujeres en todas las cuencas del Proyecto, se puede convocar a las mujeres en los talleres que se organicen a través de estos grupos. También es necesario considerar el horario de trabajo de las mujeres y escoger las fechas y horas que les sean fáciles para ellas participar.
- 5) Finalmente, se indican las acciones que deben realizar para que DGIH obtenga la licencia ambiental necesaria para el Proyecto. Al mes de abril de 2011, la DGAA –MINAG está evaluando el informe de la evaluación ambiental preliminar (EAP) para determinar la categoría del Proyecto. En el caso de que sea clasificado como Categoría I, será expedida la licencia ambiental. En el caso de que sea clasificado como Categoría II ó III, se requiere realizar la EIA-sd o EIA-d según indique la DGAA, debiendo obtener la licencia ambiental antes de finalizar la etapa de E/F.

4.9 Plan de ejecución

En el plan de ejecución del Proyecto se revisará el cronograma preliminar que incluye los siguientes componentes. Para la etapa de pre-inversión: ① la ejecución completa de los estudios de pre-factibilidad y de factibilidad para obtener la aprobación de SNIP en la etapa de pre-inversión; Para la etapa de inversión: ② la firma del acuerdo de préstamos (L/A), ③ la selección de consultor, ④ servicio de consultoría (diseño detallado y elaboración de especificaciones técnicas), ⑤ selección de constructor y ⑥ ejecución de obras. Para la etapa post-inversión: ⑦ terminación y entrega de las obras a las asociaciones de regantes y comienzo de la etapa de operación y mantenimiento.

(1) Examen por el Sistema Nacional de Inversión Pública (SNIP)

En Perú está en operación el Sistema Nacional de Inversión Pública (en adelante llamado SNIP) que examina la justificación y factibilidad de los proyectos de inversión pública, y será aplicado al presente Proyecto.

En SNIP, entre los estudios previos a una investigación, que se realizarán en 3 etapas: estudio de perfil (estudio sobre el resumen de proyecto), pre-factibilidad y factibilidad. SNIP fue creado según la Ley No.27293 (publicada el 28 de junio de 2000) con el propósito de lograr un uso eficiente de los recursos públicos en la inversión pública y establece los principios, procedimiento, métodos y reglamentos técnicos a cumplir por los gobiernos central/regionales en los planes de inversión pública planeados y ejecutados por los mismos.

SNIP, como se describe abajo, a todos los proyectos de obras públicas les obliga realizar en 3 etapas estudios previos a la inversión: estudio de perfil, pre-factibilidad y factibilidad), y tenerlos aprobados. Sin embargo, a raíz de la modificación de la Ley en abril de 2011, se consideró innecesaria la ejecución del estudio de pre-factibilidad de la etapa intermedia, y a cambio se exige realizar un estudio basado en la información primaria durante el estudio de perfil. El grado de precisión requerido a lo largo de todas las etapas del estudio casi no ha variado antes y después de esta modificación.

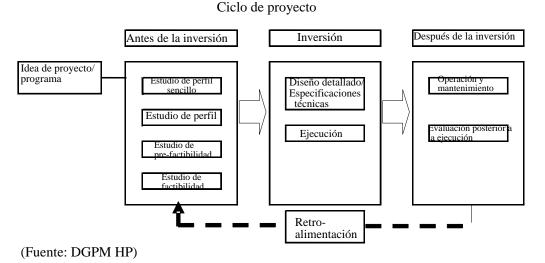



Figura 4.9-1 Ciclo de proyecto en SNIP

Para llevar adelante el presente Proyecto, que es un proyecto compuesto de varios programas, se requiere realizar estudios previos a la inversión a nivel de programa y tenerlos aprobados.

Aunque el procedimiento es algo distinto en cada etapa, en los trámites de SNIP, la unidad de formación de proyectos (UF) lleva a cabo los estudios de cada etapa, la Oficina de Planeamiento e Inversiones (OPI) evalúa y aprueba los estudios presentados de UF y solicita a la Dirección General de Programación Multianual del Sector Publico (en adelante llamada DGPM) la aprobación de los estudios de factibilidad y del inicio de siguientes estudios. Finalmente DPGM evalúa, determina y aprueba la justificación de la inversión pública en cuestión.]

(Véase Directiva No.001-2009-EF/68.01.)

Figura 4.9-2 Instituciones relacionadas con SNIP

Ante los comentarios de las autoridades examinadoras (OPI y DGPM) dados a UF, es necesario que ésta prepare las respuestas correspondientes y mejore los estudios. Puesto que dichas autoridades admiten oficialmente las solicitudes una vez obtenidas las respuestas definitivas, hay muchos casos en que tardan varios meses desde la terminación del informe de los estudios hasta la finalización del examen.

(2) Contrato de préstamo en yen

Una vez presentados los informes de los estudios de factibilidad y examinados en SNIP, se inician las deliberaciones sobre el préstamo en yen. Se supone un periodo de 6 meses para los trámites de aplicación.

(3) Procedimiento de la ejecución del proyecto

Luego de la evaluación de los documentos por el SNIP y firmado un acuerdo de préstamo entre Japón (JICA) y la contraparte peruana, se seleccionará un consultor. El servicio de consultoría comprende la elaboración de diseño detallado y de las especificaciones técnicas, la selección de constructor y la supervisión de las obras. A continuación se presenta el período requerido para cada proceso. En la Tabla 4.9-1 se presenta el cronograma general del Proyecto.

- (1) Selección de consultor: 3 meses, selección de constructor: 3 meses
- (2) Elaboración de diseño detallado y especificaciones técnicas y periodo de la obra
 - ① Obras fluviales y reforestación a lo largo de estas obras Elaboración de diseño detallado y especificaciones técnicas: 6 meses Periodo de la obra: 2 años
 - 2 Fortalecimiento de las capacidades

Se ejecutará en el mismo periodo de obra de instalaciones fluviales. Elaboración de diseño detallado y especificaciones técnicas: 6 meses Periodo de la obra: 2 años

Tabla 4.9-1 Plan de ejecución

ITEMS		2010			2011			2012			Т	2013				2014				2015				2016				
	ITEMS		6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9 12
1	ESTUDIO PERFIL/EVALUACIÓN SNIP	ES	TUE	ю	\pm	\pm	\pm				EV	ALUA	CIÓ	N														
2	ESTUDIO FACTIBILIDAD/EVALUACIÓN SNIP				ES	TUE	OIO	믁	_			H	EVA	LUA	CIĆ	N												
3	NEGOCIACIÓN DE CREDITO EN YENES											F	<u>Т</u>	\pm	=													
4	SELECCIÓN DE CONSULTOR												T			=												
5	SERVICIO DE CONSULTOR (DISEÑO DETALLADO, ELABORACIÓN DE DOCUMENTOS PARA LICITACIÓN)									D	ISEÑ	ŇO/D	oci	JME	NT	O DE	LIC	CITA	ció	N		SU	PER	VISI	ÓN	DE	OBR	A
6	SELECCIÓN DE CONSTRUCTOR																	r	=									
7	EJECCIÓN DE OBRAS											П																
1)	CONSTRUCCIÓN DE ESTRUCTURAS																											
2)	REFORESTACIÓN												1						ļ	=;		=		- = 1			-1	
3)	SISTEMA DE ALERTA TEMPRANA																		Į									
4)	CAPACITACIÓN PREVENTIVA DE DESASTRES												1						ļ		. J		_	!	_ [1	T
8	CULMINACIÓN DE OBRAS/ENTREGA A JUNTAS DE U	SUA	RIC	os																							•	-
						T							T	T														

4.10 Instituciones y administración

(1) Perfil del organismo ejecutor

Las instituciones peruanas relacionadas con la ejecución y administración del Proyecto son el Ministerio de Agricultura, Ministerio de Economía y Finanzas y Comisión de Regantes, siendo los siguientes los roles de cada institución.

Ministerio de Agricultura (MINAG)

- El Ministerio de Agricultura (MINAG) es el responsable de la ejecución de los programas y la Dirección General de Infraestructura Hidráulica (DGIH) se encarga de la administración técnica de los programas. La Dirección General de Infraestructura Hidráulica (DGIH) se dedica a la coordinación, administración y supervisión de los programas de inversión.
- En la etapa de inversión, la dirección de proyectos de DGIH se dedica al cálculo del costo de proyectos, diseño detallado y supervisión de la ejecución de obras. La dirección de estudios realiza estudios para la formación de proyectos y planeamiento.
- La Oficina de Planeamiento e Inversiones (OPI) del Ministerio de Agricultura es el ente responsable de los exámenes de estudios de pre-factibilidad y factibilidad en la etapa previa a la inversión en proyectos de DGIH y solicita la aprobación a la Dirección General de Programación Multianual del Sector Publico (DGPM) del Ministerio de Economía y Finanzas (MEF).
- La Oficina General de Administración del Ministerio de Agricultura (OGA-MINAG) junto con la Dirección Nacional de Endeudamiento Público (DNEP) del Ministerio de Economía y Finanzas se dedica a la administración financiera. Asimismo, ejecuta el presupuesto para las licitaciones, encargo de obras, contratación, adquisición, etc. del Ministerio de Agricultura.
- La Dirección General de Asuntos Ambientales (DGAA) se encarga de examinar y aprobar la evaluación del impacto medioambiental en la etapa de inversión.

Ministerio de Economía y Finanzas (MEF)

- La Dirección General de Programación Multianual del Sector Publico (DGPM) aprueba los estudios de factibilidad. También confirma y aprueba las condiciones de los contratos de préstamo en yen. En la etapa de inversión, da comentarios técnicos antes de la ejecución de proyectos.
- La administración financiera está a cargo de la Dirección Nacional del Endeudamiento Público (DNEP) del Ministerio de Economía y Finanzas y la Oficina General de Administración del Ministerio de Agricultura (OGA-MINAG).
- La Dirección Nacional del Endeudamiento Público (DNEP) del Ministerio de Economía y Finanzas administra los egresos en la etapa de inversión y la de operación posterior a la inversión.

Comisión de Regantes

• Se encarga de la operación y mantenimiento de las instalaciones en la etapa de operación posterior a la inversión.

La relación entre las instituciones involucradas en la ejecución del Proyecto se muestra en las Figura 4.10-1 y 4.10-2.

En el presente Proyecto, la etapa de inversión (ejecución del Proyecto) le corresponde al PSI del MINAG. El PSI está realizando actualmente los proyectos de JBIC, etc. y en el caso de iniciar un nuevo proyecto, conforma la Unidad de Gestión del Proyecto (UGP) correspondiente, quien se encarga de seleccionar a la firma consultora, contratar los servicios de construcción, supervisar las obras, etc. En la siguiente figura se describe la estructuración de las diferentes instancias que intervienen en la etapa de ejecución del Proyecto.

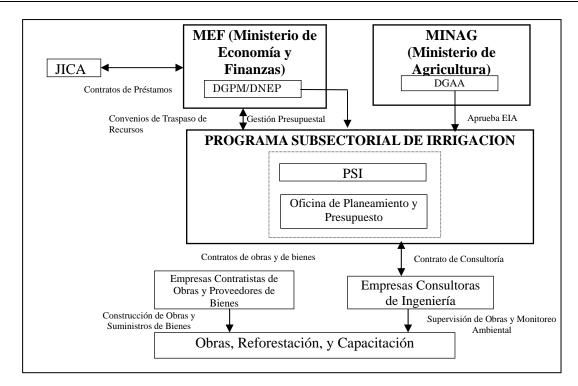


Figura 4.10-1 Instituciones relacionadas con la ejecución del Proyecto (etapa de inversión)

Las principales operaciones en la etapa post-inversión, consisten en la operación y mantenimiento de las obras construidas y el reembolso del préstamo. La OyM de las obras será asumida por la respectiva comisión de regantes. Asimismo, ellas deben sufragar los costos de construcción en modalidad de créditos. A continuación se esquematiza la relación de las diferentes organizaciones que intervienen en la etapa posterior a la implementación del Proyecto.

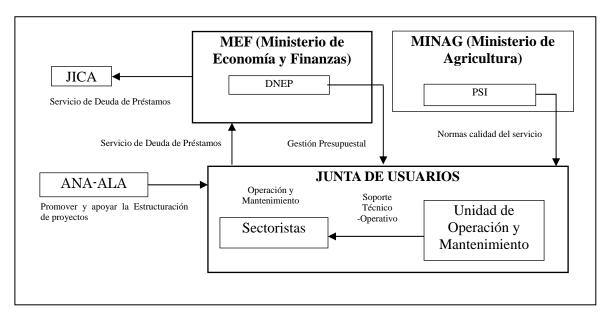


Figura 4.10-2 Instituciones relacionadas con la ejecución del Proyecto (etapa de operación y mantenimiento posterior a la inversión)

(2) DGIH

1) Rol y funciones

La Dirección General de Infraestructura Hidráulica es la encargada de proponer las políticas públicas, la estrategia y los planes orientados al fomento del desarrollo de la infraestructura

hidráulica, en concordancia con la Política Nacional de Recursos Hídricos y la Política Nacional del Ambiente.

El desarrollo de Infraestructura Hidráulica comprende estudios, obras, operación, mantenimiento y gestión de riesgos en la construcción, habilitación, mejoramiento y ampliación de presas, bocatomas, cauces fluviales, canales de riego, drenes, medidores, tomas, pozos de agua subterránea y modernización de riego parcelario.

2) Principales funciones a su cargo

- a. Coordinar con las oficinas de planificación y presupuesto para el desarrollo de la infraestructura hidráulica y proponer las políticas sectoriales y de gestión sobre el desarrollo de infraestructura. Monitorizar y evaluar la implementación de las políticas sectoriales relacionadas con el desarrollo de la infraestructura hidráulica.
- b. Proponer las normas de intervención del gobierno, región o provincias como parte de las políticas sectoriales.
- c. Verificar y priorizar las necesidades de la infraestructura hidráulica.
- d. Promover y desarrollar los proyectos de inversión pública a nivel de perfil de la infraestructura hidráulica.
- e. Elaborar las normas técnicas para la ejecución de los proyectos de infraestructura hidráulica.
- f. Promover el desarrollo tecnológico de la infraestructura hidráulica.
- g. Elaborar las normas técnicas de operación y mantenimiento de la infraestructura hidráulica.

(3) **PSI**

1) Función

El Programa Subsectorial de Irrigaciones (PSI) se encarga de ejecutar los proyectos de inversión. Para cada proyecto se conforma su respectiva unidad de gestión.

2) Principales funciones a su cargo

- a. El Programa Subsectorial de Irrigaciones PSI, adscrito al ministerio de Agricultura, es un organismo con autonomía administrativa y financiera. Asume la responsabilidad de coordinar, gestionar y administrar las instituciones participantes en los proyectos con el fin de cumplir las metas y objetivos propuestos en los proyectos de inversión
- b. Asimismo, coordina los desembolsos frente al financiamiento de los organismos de cooperación externa, como JICA.
- c. La Oficina de Planeamiento, Presupuesto y Seguimiento del PSI se encarga de contratar servicios, elaborar los programas de inversión, así como los planes de ejecución de proyectos. Estos trabajos de preparación de proyectos son ejecutados contratando los consultores "inhouse".
- d. Asimismo, convoca a los contratistas, y realiza la licitación, ejecuta las obras, e implementa los proyectos de suministro, etc.
- e. La gestión de contratos es asumida por la Oficina de Planeamiento, Presupuesto y Seguimiento.

3) Presupuesto

En la Tabla 4.10-1 se muestra el presupuesto del PSI para el año 2011.

Tabla 4.10-1 Presupuesto del PSI (2011)

Programas / Proyectos / Actividades	PIM (S/.)
Programa JBIC (Acuerdo de Préstamo EP-P31)	69.417.953
Programa - PSI Sierra (Acuerdo de Préstamo 7878-PE)	7.756.000
Obras por administración directa	1.730.793
Fondo de Reconstrucción del Sur (FORSUR)	228.077
Proyecto de Conversión de Cultivos (ARTRA)	132.866
Programa de Riego Tecnificado (PRT)	1.851.330
Actividad- 1.113819 pequeños agricultores	783.000
Gestión del Programa de PSI (Gastos corrientes)	7.280.005
TOTAL	89.180.024

4) Organización

El PSI está integrado por 235 empleados, de los cuales 14 son asignados para los proyectos de JBIC, y bajo ellos están trabajando 29 técnicos y asistentes.

Tabla 4.10-2 Planilla del PSI

	Datos del 31 de mayo de 2011									
Nivel central	CAS	Servic. y Consult.	TOTAL							
Sede central	61	43	104							
Oficina Zonal LIMA	12	24	36							
Oficina Zonal AREQUIPA	14	12	26							
Oficina Zonal CHICLAYO	17	13	30							
Oficina Zonal TRUJILLO	13	26	39							
TOTAL	117	118	235							

En la Figura 4.10-3 se presenta el organigrama del PSI:

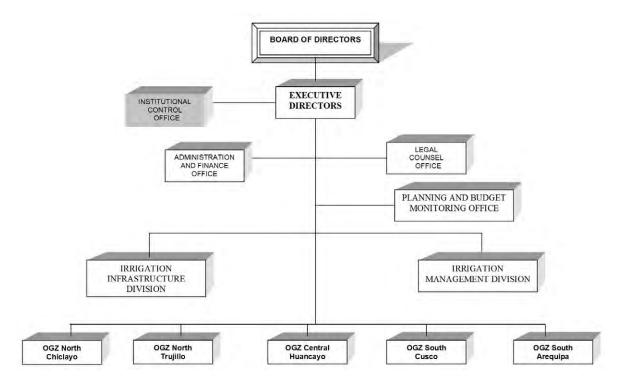


Figura 4.10-3 Organigrama del PSI

4.11 Marco lógico de la opción seleccionada finalmente

En la Tabla 4.11-1 se presenta el marco lógico de la alternativa seleccionada definitivamente.

Tabla 4.11-1 Marco lógico de la alternativa seleccionada definitivamente

Tabla 4.11-1 Marco lógico de la alternativa seleccionada definitivamente								
Resumen narrativo	Indicadores verificables	Medios de verificación de indicadores	Condiciones preliminares					
Meta superior								
Promover el desarrollo socioeconómico local y contribuir al bienestar social de la población.	Mejorar la productividad local, generar más empleos, aumentar ingresos de la población y reducir el índice de la pobreza	Datos estadísticos publicados	Estabilidad socioeconómica y política					
Objetivos								
Aliviar la alta vulnerabilidad de los valles y de la comunidad local ante las inundaciones	Tipos, cantidad y distribución de las obras de control de inundaciones, población y á rea beneficiaria	Monitoreo del calendario anual de obras y del plan financiero, fiscalización de ejecución de presupuesto.	Asegurar el presupuesto necesario, intervención activa de los gobiernos central y regional, municipalidades, comisiones de regantes, comunidad local, etc.					
Resultados esperados								
Reducción de los sectores y á rea anegable, mejoramiento funcional de las bocatomas, prevención de destrucción de caminos, protección de canales de riego, control de la erosión de márgenes, seguridad de la Presa Poechos	Número de sectores y área anegable, variación del caudal de toma de agua, frecuencia de destrucción de caminos, avance de la erosión de má rgenes, erosión aguas abajo de la presa.	Visitas al sitio, revisión del plan de control de inundaciones y de informes de obras de control de inundaciones, monitoreo rutinario por los habitantes locales	Monitoreo de mantenimiento por los gobiernos regionales, municipalidades y la comunidad local, información oportuna a los organismos superiores.					
Actividades								
Componente A: Medidas estructurales	Rehabilitación de diques, obras de protección de má rgenes y bocatomas, prevenci ón de daños a los caminos, construcción de 28 obras, incluyendo las destinadas a la seguridad de la presa	Detallado, informes de obras, gastos ejecutados	Asegurar el presupuesto de obras, Diseño Detallado/ejecución de obras/supervisión de obras de buena calidad					
Componente B: Medidas no estructurales								
Área reforestada, área de bosques ribereños		Informes de avance de obras, monitoreo rutinario por la comunidad local	Apoyo de consultores, ONGs, comunidad local, concertación y cooperación de la comunidad de la cuenca baja					
B-2 Sistema de alerta temprana	•		Funcionamiento adecuado de equipos, debida capacitación del personal, comunicación y promoción, OyM de equipos y programas					
Componente C: Educación en prevención de desastres y desarrollo de capacidades	Número de sesiones de seminarios, prácticas, capacitación, taller,	Informes de avance, monitoreo por gobiernos locales y comunidad	Predisposición de los actores a participar, asesoría por consultores y ONGs					
Gesti ón de ejecución del Proyecto								
Gestión del Proyecto	Diseño Detallado, orden de inicio de las obras, supervisió n de obras, operación y mantenimiento	Planos de diseño, plan de ejecución de obras, pliego de estimación de costos, especificaciones de las obras, contratos, informes de gestión de obras, manuales de mantenimiento	Selección de consultores y contratistas de alto nivel, participación de la población beneficiaria en operación y mantenimiento					

4.12 Plan de mediano y largo plazo

Hasta aquí se han propuesto solo las medidas de control de inundación que deben ser ejecutadas con mayor urgencia, debido a la limitación del presupuesto disponible para el presente Proyecto. Sin embargo, existen otras medidas que deben ser realizadas oportunamente en el marco del plan a largo plazo. En esta sección se hablará sobre el plan de control de inundaciones de mediano y largo plazo.

4.12.1 Plan general de control de inundaciones

Existen diversas formas de controlar las inundaciones en toda la cuenca, como por ejemplo, la construcción de presas, reservorios, diques o combinación de estos.

En cuanto a la propuesta de construir una presa, al suponer que la presa reduzca el caudal máximo de crecidas con período de retorno de 10 años, hasta el caudal de período de retorno de 50 años, la capacidad requerida de la presa sería muy grande, calculándose en 14,6 millones de m³ para el Río Cañete. Aguas arriba del abanico aluvial está conformado por quebradas y es difícil encontrar topografía apta para construir una presa. De esta manera, si se quiere construir una presa, resultaría en una presa sumamente alta, lo que implica un costo sumamente elevado (varios mil millones de soles).

Además, se demoraría entre tres y cinco años para la identificación del sitio de presa, levantamiento, estudio geológico, estudio de materiales y diseño conceptual. El impacto sobre el entorno local es inmenso. Por lo tanto, se considera poco adecuado incluir el análisis de la opción presa dentro del presente Estudio.

De la misma manera, la opción de construir un reservorio sería poco viable por las mismas razones expuestas para la presa, porque se necesitaría construir un reservorio de gran capacidad, y es difícil encontrar un sitio adecuado ya que la mayor parte de las tierras planas a lo largo del río aguas abajo del abanico aluvial está siendo utilizada para fines agrícolas. De este modo, su análisis ha sido descartado del presente Estudio.

Por lo tanto, enfocaremos nuestro estudio en la construcción de diques por ser la opción más viable.

(1) Plan del curso del río

1) Capacidad hidráulica

Se calculó la capacidad hidráulica del actual cauce del río con base en los resultados del levantamiento longitudinal y transversal del río, cuyos resultados se presentan en la Figura 3.1.10-3, 3.1.10.

2) Características del desbordamiento

Se realizó el análisis de desbordamiento del cada río. En la Figura 3.1.10-4, 3.1.10 se muestran las condiciones de desbordamiento para caudales con probabilidades de 50 años. Se desborda el agua a 10 km desde la desembocadura hacia arriba, por falta de la capacidad hidráulica del río, pero inundando solamente las tierras de cultivo cercanas al río. Sin embargo, desde los 10 km de la desembocadura hacia abajo, cuando el agua se desborda, provoca inundaciones en extensas áreas, causando serios daños en particular en la margen derecha.

3) Nivel de crecidas de diseño y la sección estándar del dique

El nivel de crecidas de diseño se determinó en el nivel de agua de crecidas con período de retorno de 50 años, y la sección estándar del dique será como se determina en el apartado 4.3.1, 5), 1). En la Tabla 4.2-1, 4.2 se muestra el nivel teórico de crecidas de diseño y la altura requerida de la corona del dique.

4) Alineación de los diques

Considerando las condiciones actuales de los diques existentes se definió la alineación de los nuevos diques. Básicamente, se adoptó el ancho del río más amplio posible con el fin de incrementar la capacidad hidráulica y el efecto de retardación. En la Figura 4.12.1-1 se explica esquemáticamente el cauce actual y el método de definición de la alineación de un tramo donde el cauce actual tiene mayor anchura. En un tramo normal, la corona del dique tendrá una altura igual al nivel de agua de crecidas con un período de retorno de 50años más el libre bordo,

mientras que en los tramos donde el río tiene mayor anchura, se construirán doble diques, con la alineación del dique interior congruente y continuo con los tramos normales aguas arriba y abajo. La altura de la corona será igual al nivel de agua de inundaciones con período de retorno de 50 años. La altura de la corona del dique externo será igual al nivel de agua de crecidas con período de retorno de 50 años, de tal manera que en el caso de que el río se desborde del dique interno, el espacio abierto entre los dos diques sirva para almacenar los sedimentos y retardar el agua.

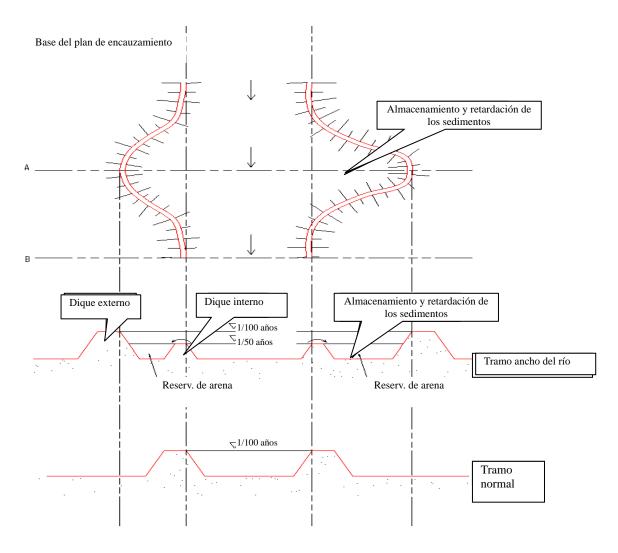


Figura 4.12.1-1 Definición de la alineación del dique

5) Plano de planta y sección del río

En las Figuras Figura 4.12.1-2 y Figura 4.13.1-3 se presenta el plano de planta y la sección longitudinal del río Cañete.

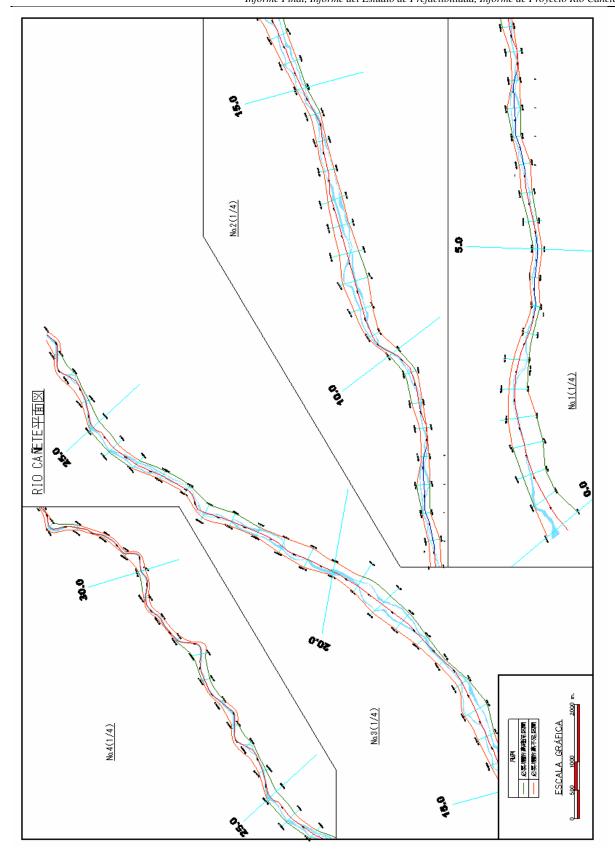


Figura 4.12.1-2 Plano do del Río Cañete

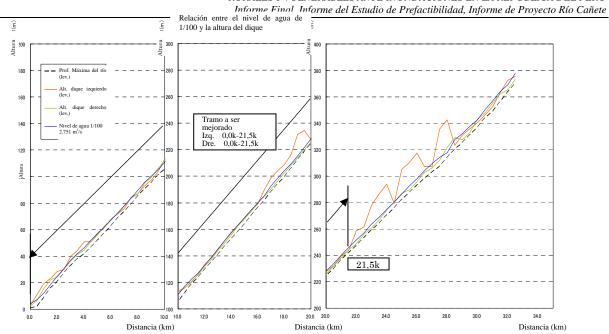


Figura 4.12.1-3 Sección longitudinal del Río Cañete

6) Plan de construcción de diques

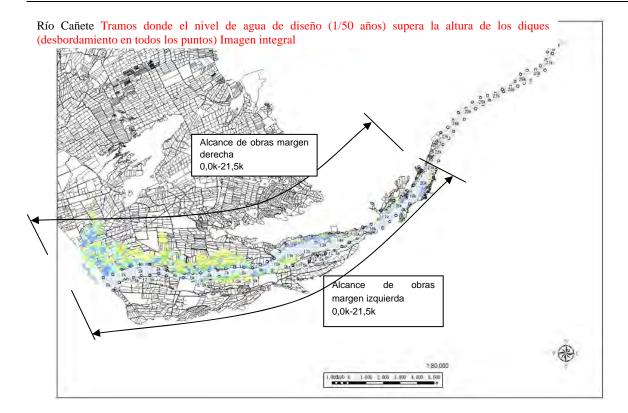
A continuación se plantean las políticas básicas del plan de construcción de diques en la cuenca del río Cañete.

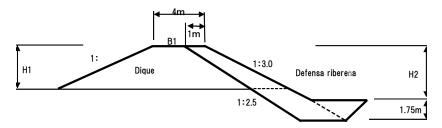
- ① Construir los diques que permitan el paso de manera segura del caudal de inundaciones con período de retorno de 50 años.
- ② Los diques serán construidos en las zonas donde se extenderá el agua desbordada hacia el interior del dique, según la simulación de inundaciones.
- 3 Los diques serán dispuestos en los tramos arriba mencionados, donde el nivel de agua de diseño supera la altura del dique existente o la altura del suelo dentro del dique.
- ① La altura del dique se define en el nivel de agua de crecidas con período de retorno de 50 años más el libre bordo.

En la Tabla 4.12.1-1 y la Figura-4.12.1-4 se presenta el plan de construcción de diques en la cuenca del río Cañete.

Tabla 4.12.1-1 Plan de construcción de diques en la cuenca del río Cañete

Río	Tramos a se	er mejorados	Promedio de altura	Tamaño	Long. de diques
				propuesto de	
			faltante de	diques	(km)
			diques		
			(m)		
Cañete	M. izquierda	0,0k-21,5k	1,20	Altura de diques	12,0
	M. derecha	0,0k-21,5k	1,48	= 1,5m	18,5
				Altura de las	
				obras de	
	Total		1,38	protección de	30,5
				márgenes =	
				3,0m	




Figura 4.12.1-4 Alcance de las obras de construcción de diques en el Río Cañete

7) Costo del Proyecto

En las Tablas Tabla 4.12.1-2 y 4.12.1-4 se presentan los costos directos de obras en precios privados, y el costo del Proyecto. Asimismo, el costo del Proyecto en precios sociales se presenta en la Tabla 4.12.1-5.

Tabla 4.12.1-2 Costo directo de obras (a precios privados)

Construcción	de dique			Defensa ribe	reña		
B1	H1	B2	Α	B1	H2	B2	Α
3.0	1.0	8.5	5.8	1.0	1.0	2.4	10.8
3.0	2.0	14.0	17.0	1.0	2.0	2.9	13.4
3.0	3.0	19.5	33.8	1.0	3.0	3.4	16.5
3.0	4.0	25.0	56.0	1.0	4.0	3.9	20.1
3.0	5.0	30.5	83.8	1.0	5.0	4.4	24.3
3.0	1.5	11.3	10.7	1.0	6.0	4.9	28.9
				1.0	1.5	2.6	12.0
				1.0	10.0	6.9	52.4

Cuenca	Obras	Cantidad	Unidad	Precio unitario	Costo directo de obras/m	Costo directo de obras/km	Long. de diques	Costo directo de obras
				(en soles)	(en soles)	(en mil soles)	(km)	(en mil soles)
Cañete	Diques	17.0	m3	10.0	170.0	170.0	30.5	5,185.0
	Protección de márgenes	16.5	m3	100.0	1,650.0	1,650.0		50,325.0
		Total		_	1,820.0	1,820.0		55,510.0

Tabla 4.12.1-3 Costo del Proyecto (a precios privados)

						事業費	事業費(民間価格)					
Nombre de	0	costo directo	0				COSTO INDIRECTO	IRECTO				
la Cuenca	Costo Directo	Costo de Obras Temporales	Costo de Obras	Gastos Operativos	Utilidad	Costo Total Infraestructura	IGV	Costo Total Obra	Impacto Ambiental	Expediente Tecnico	Supervisión	INFRAESTRUCTURA HIDRAULICA Costo Total
流域名	直接工事費計	共通仮設費	工事費	諸経費	村	構造物工事費	税金	建設費	環境影響	詳細設計	施工管理費	構造物·事業費
	(1)	$(2) = 0.1 \times (1)$	(2) = 0.1 x (1) $(3) = (1) + (2)$ (4) = 0.15	$(4) = 0.15 \times (3)$	$(5) = 0.1 \times (3)$	\times (3) (5) = 0.1 \times (3) (6) = (3)+(4)+(5)	$(7) = 0.18 \times (6)$	(8) = (6)+(7)	(9)=0.01 × (8)	$(10) = 0.05 \times (8)$	$(11) = 0.1 \times (8)$	(10) = 0.05 x (11) = 0.1 x (8) (12) = (8)+(9)+(10)+(11) (8)
CAÑETE	55,510,000		5,551,000 61,061,000	9,159,150	6,106,100	76,326,250	13,738,725	90,064,975	900,650	4,503,249	9,006,498	104,475,371

Tabla 4.12.1-4 Costo del Proyecto (a precios sociales)

						事業費	事業費(社会価格)					
Nombre de	0	costo directo	0				COSTO INDIRECTO	IRECTO				
la Cuenca	Costo Directo	Costo de Obras Temporales	Costo de Obras	Gastos Operativos	Utilidad	Costo Total Infraestructura	IGV	Costo Total Obra	Impacto Ambiental	Expediente Tecnico	Supervisión	INFRAESTRUCTURA HIDRAULICA Costo Total
流域名	直接工事費計	共通仮設費	工事費	諸経費	料	構造物工事費	税金	建設費	環境影響	詳細設計	施工管理費	構造物 事業費
	(1)	$(2) = 0.1 \times (1)$	(2) = 0.1 x (1) $(3) = (1) + (2)$ (4) = 0.15		$(5) = 0.1 \times (3)$	\times (3) (5) = 0.1 \times (3) (6) = (3)+(4)+(5)	$(7) = 0.18 \times (6)$	(8) = (6)+(7)	(9)=0.01 × (8)	$(10) = 0.05 \times (8)$	(11) = 0.1 x (8)	(10) = 0.05 x (11) = 0.1 x (8) (12) = (8)+(9)+(10)+(11) (8)
CAÑETE	44,630,040	4,463,004	49,093,044	7,363,957	4,909,304	61,366,305	11,045,935	72,412,240	724,122	3,620,612	7,241,224	83,998,198

(2) Plan de operación y mantenimiento

El costo de operación y mantenimiento fue estimado identificando la tendencia de sedimentación y erosión del lecho con base en los resultados del análisis unidimensional de la variación de lecho, y se planteó un plan de operación y mantenimiento de largo plazo.

El curso actual del río presenta algunos tramos angostos donde existen los puentes, obras agrícolas (bocatomas), etc. y se observa una tendencia de acumularse los sedimentos aguas arriba de estos tramos. Por lo tanto, en el presente Proyecto se plantea incrementar la capacidad hidráulica de estos tramos angostos para evitar en la medida de lo posible la sedimentación aguas arriba y en el lecho (parte principal), a la par de almacenar en lo posible los sedimentos cuando ocurren inundaciones que superen un período de retorno de 50 años.

1) Análisis de la variación de lecho

En la Figura 4.12.1-5 se presentan los resultados del análisis de la variación del lecho del Río Cañete en los próximos cincuenta años. A partir de esta figura se puede proyectar la tendencia de la sedimentación y erosión del lecho, así como su respectivo volumen.

2) Tramos que necesitan de mantenimiento

En la Tabla 4.12.1-5 se presentan los posibles tramos que requerirán someter a un proceso de mantenimiento a largo plazo en la cuenca del Río Cañete.

3) Costo de operación y mantenimiento

A continuación se presenta el costo directo de obras a precios privados para el mantenimiento (excavación del lecho) requerido en los próximos 50 años en cada cuenca.

Costo directo de obras

A precios privados: $422.000 \text{ m}^3 \text{ x } 10 \text{ soles} = 4.220.000 \text{ soles}$

En la Tabla 4.12.1-6 y Tabla 4.12.1-7 se presenta el costo del Proyecto de 50 años a precios privados y sociales.

Tabla 4.12.1-5 Tramos cuvo lecho debe ser excavado en forma programada

			reavado en forma programada
Río	Ex	tensión de la excavación	Método de mantenimiento
Río Cañete	1 tramo	Tramo: 3,0km-7,0km Volumen: 135.000m ³	Existen tramos desde donde se desbordó el agua del río. Se considera necesario realizar la excavación periódica en estos tramos porque su lecho irá elevándose gradualmente con el tiempo.
	2 tramo	Tramo: 27,0km-31,0km Volumen: 287.000m ³	El lecho en el tramo identificado puede elevarse debido a la falta de capacidad para discurrir suficientemente los sedimentos arrastrados. Se considera necesario realizar la excavación periódica en estos tramos porque su lecho irá elevándose gradualmente con el tiempo.

^{*} Volumen de sedimentos que se acumularán en 50 años

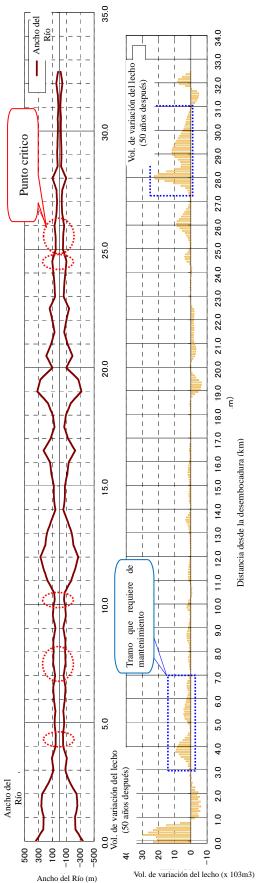


Figura 4.12.1-5 Tramo que requiere de mantenimiento (Río Cañete)

Tabla 4.12.1-6 Costo de obras de excavación de lecho para 50 años (a precios privados)

× MIL SOLES	Costo Total	事業費	(8)+(9)+(10)+(11)
	Supervisión	施工管理費	(11) = 0.1*(8)
	Expediente Tecnico	詳細設計	(10) = 0.05*(8)
	Impacto Ambiental	環境影響	(9)=0.01*(8)
	Costo Total Obra	建設費	(7) = 0.18 * (6)
	IGV	税金	(7) = 0.18*(6)
	Costo Total Infraestructura	構造物工事費	= (9)
	Utilidad	村村	(5) = 0.1*(3)
	Gastos Operativos	諸経費	$(2) = 0.1*(1) \qquad (3) = (1) + (2) \qquad (4) = 0.15*(3) \qquad (5) = 0.1*(3)$
	Costo de Obras	工事費	(3) = (1) + (2)
	Costo de Obras Temporales	共通仮設費	(2) = 0.1*(1)
	Costo Directo (soles)	直接工事費計	(1)
	Nombre de la Cuenca	流域名	

Tabla 4.12.1-7 Costo de obras de excavación de lecho para 50 años (a precios sociales)

ES				6,386
x MIL SOLES	Costo Total	事業費	(13) = (9)+(10)+(11)+(12)	6,3
	0)+(6)	
	Supervisión	施工管理費	(12) = 0.1*(9)	220
	Expediente Tecnico	詳細設計	(11) = 0.05*(9)	275
	npacto nbiental	環境影響	(9) = $f_{c}*(8)$ (10) = 0.01*(9) (11) = 0.05*(9) (12) = 0.1*(9)	22
	Costo Total In Obra	建設費	(9) = fc*(8)	5,505
	Factor de Corrección	修正係数	fc	0.804
	Costo Total Fi	建設費	$0 = 0.18 \times (6)$ (8) = (6)+(7)	6,847
	ΛÐΙ	税金	(7) = 0.18*(6)	1,044
	Costo Total Infraestructura	構造物工事費	(6) = (3)+(4)+(5)	5,803
	Utilidad	利苗	(5) = 0.1*(3)	464
	Gastos Operativos	諸経費	(2) = 0.1*(1) $(3) = (1) + (2)$ $(4) = 0.15*(3)$	969
	Costo de Obras	工事費	(3) = (1) + (2)	4,642
	Costo de Obras Temporales	共通仮設費	(2) = 0.1*(1)	422
	Costo Directo (soles)	直接工事費計	(1)	4,220
	Nombre de la Cuenca	流域名		CAÑETE

(3) Evaluación social

1) Costos a precios privados

i) Monto de daños

En la Tabla 4.12.1-8 se presenta el monto de daños calculado analizando el desbordamiento provocado por inundaciones con períodos de retorno entre 2 y 50 años en la Cuenca del río Cañete.

Tabla 4.12.1-8 Monto de daños para inundaciones de diferentes períodos de retorno (a precios privados)

	Daños en miles de S/. 被害額(千ソーレス)
Período de retorno (t)	Cañete
2	1,660
5	6,068
10	73,407
25	98,357
50	149,018

ii) Promedio anual de reducción de daños

En la Tabla 4.12.1-9 se presenta el promedio anual de reducción de daños encada cuenca calculado con los datos de la Tabla 4.12.1-8.

iii) Costo del Proyecto y el costo de operación y mantenimiento

En la Tabla 4.12.1-3 se presenta el costo del Proyecto. Asimismo en la Tabla se presenta el costo anual de operación y mantenimiento (OyM) de los diques y de las obras de protección de márgenes, calculado en el 0,5 % del costo de construcción, más el promedio anual del costo de excavación del lecho indicado en la Tabla 4.12.1-6.

iv) Evaluación económica

En la Tabla 4.12.1-10 se presentan los resultados de la evaluación económica.

Tabla 4.12.1-9 Promedio anual de reducción de daños

s/1000

									3/ 1000
		民	間価格:流域全	体 (Precios Priv	ados para las c	uencas en su T	OTALIDAD)		
			被害額(Da	ños Totales – m	niles de S/.)	反眼亚拉林宇	ट 88 Tirk के	年平均被害額	ケットが実際の
流域 Cuenca	流量規模 Periodo de	超過確率 Probabilidad	事業を実施し ない場合①	事業を実施した場合②	軽減額 ③=①-②	区間平均被害額 ④	区間確率 ⑤ Valor	④×⑤ Valor Promedio	年平均被害額の 累計=年平均被 害軽減期待額
Guerriou	retorno	Trobubilidad	Sin Proyecto	Con Proyecto	Daños mitigados 3=1)-2	Promedio de Daños	incremental de la probabilidad	del Fluio de	Daño Medio Anual
	1	1.000	0	0	0			0	0
	2	0.500	1,660	0	1,660	830	0.500	415	415
CAÑETE	5	0.200	6,068	0	6,068	3,864	0.300	1,159	1,574
CANETE	10	0.100	73,407	0	73,407	39,737	0.100	3,974	5,548
	25	0.040	98,357	0	98,357	85,882	0.060	5,153	10,701
	50	0.020	149,018	0	149,018	123,687	0.020	2,474	13,175

Tabla 4.12.1-10 Resultados de la evaluación económica (costos a precios privados)

流域名	年平均被害軽減額	評価期間被害 軽減額(15年)	事業費	維持管理費	B/C	NPV	IRR(%)
Guenca	Promedio anual de reducción de daños	Reducción de daños en el período de evaluación (15 años)	Costo del Proyecto	Costo de OyM	Relación B/C		Tasa interna de retorno (TIR (%)
Cañete	171,269,615	77,341,963	104,475,371	8,236,962	0.81	-17,765,825	6%

2) Costos a precios sociales

i) Monto de daños

En la Tabla 4.12.1-11 se presenta el monto de daños calculado analizando el desbordamiento provocado por inundaciones con períodos de retorno entre 2 y 50 años en cada cuenca.

Tabla 4.12.1-11 Monto de daños de las inundaciones de diferentes períodos de retorno (a precios sociales)

	rectos sociares)
	Daños en miles de S/. 被害額(千ソーレス)
確率年(t)	Cañete
2	2,582
5	10,558
10	105,137
25	144,972
50	213,134
Total	476,384

ii) Promedio anual de reducción de daños

En la Tabla 4.12.1-12 se presenta el promedio anual de reducción de daños encada cuenca calculado con los datos de la Tabla 4.12.1-11.

iii) Costo del Proyecto y el costo de operación y mantenimiento

En la Tabla 4.12.1-4 se presenta el costo del Proyecto. Asimismo en la Tabla se presenta el costo anual de operación y mantenimiento (OyM) de los diques y de las obras de protección de márgenes, calculado en el 0,5 % del costo de construcción, así como el promedio anual de costo

de excavación del lecho indicado en la Tabla 4.12.1-7.

iv) Evaluación económica

En la Tabla 4.12.1-13 se presentan los resultados de la evaluación económica.

Tabla 4.12.1-12 Promedio anual de reducción de daños (a precios sociales)

s/1000

社会価格:流域全体									
流域 Cuenca	流量規模 Periodo de retorno	超過確率 Probabilidad	被害額 (Daños Totales - miles de S/.)			克朗亚华林 克	ET BB Trib str	年平均被害額	左正比林中年の
			事業を実施し ない場合①	事業を実施した場合②	軽減額 ③=①-②	区間平均被害 額 ④ Promedio de Daños	区間確率 ⑤ Valor incremental de la probabilidad	④×⑤ Valor Promedio	年平均被害額の 累計=年平均被 害軽減期待額 Daño Medio Anual
			Sin Proyecto	Con Proyecto	Daños mitigados 3=1-2				
	1	1.000	0	0	0			0	0
CAÑETE	2	0.500	2,582	0	2,582	1,291	0.500	646	646
	5	0.200	10,558	0	10,558	6,570	0.300	1,971	2,617
	10	0.100	105,137	0	105,137	57,848	0.100	5,785	8,401
	25	0.040	144,972	0	144,972	125,055	0.060	7,503	15,905
	50	0.020	213,134	0	213,134	179,053	0.020	3,581	19,486

Tabla 4.12.1-13 Resultados de la evaluación económica (costos a precios sociales)

流域名	年平均被害軽減額	評価期間被害 軽減額(15年)	事業費	維持管理費	B/C	NPV	IRR(%)
加坡石 Cuenca	Promedio anual de	Reducción de daños en el período de evaluació n (15 años)	Costo del Proyecto	Costo de OyM	Relación B/C	Valor actual neto (VAN)	Tasa interna de retorno (TIR (%)
Cañete	253,314,406	114,391,764	83,998,198	6,622,517	1.50	37,925,103	18%

(4) Conclusiones

Los resultados de la evaluación económica demuestra que el Proyecto arroba impacto económico positivo en términos del costo a precios tanto privados como sociales, pero el costo requerido es sumamente elevado (de 104,5 millones de soles, equivalentes a 3.140 millones de yenes), concluyéndose que es poco viable adoptarse en el presente Proyecto.

4.12.2 Plan de Reforestación y Recuperación de la Vegetación

(1) Reforestación de la cuenca alta

Se recomienda, a largo plazo, reforestar en todas las zonas consideradas críticas de la cuenca alta. Por lo tanto, aquí se profundizará en el análisis de esta alternativa.

1) Políticas básicas

- Objetivos: Mejorar la capacidad de infiltración del área de fuente de agua, disminuir el flujo de agua en suelos superficiales, y a su vez aumentar el flujo de agua en suelos intermedios y la napa freática. Por todo lo mencionado, se corta el flujo de agua en temporada alta de inundación, aumenta el recurso hídrico en áreas montañosas, se reduce y evita la inundación aumentando así la cantidad y mayor flujo de aguas subterráneas, reduciendo y previniendo las inundaciones.
- <u>Área de forestación</u>: Forestar en áreas con posibilidad de sembrar en las cuencas con fuentes de agua o en áreas donde ha disminuido el área boscosa.
- Método de forestación: Plantaciones por los pobladores locales. El mantenimiento por cuenta propia de los promotores, la supervisión y asesoramiento será llevado por organizaciones no gubernamentales.
- Mantenimiento después de la forestación: Realizar el mantenimiento por el responsable del sembrado de la comunidad, para ello se creará un sistema de pago

(Pago por servicios ambientales) por los beneficiarios de aguas abajo

⑤ Observaciones: Luego de cada raleo se tendrá que reforestar el área, manteniendo y conservando de manera sostenible a largo plazo. Se deberá diseñar incentivo para los pobladores que viven aguas arriba de la cuenca.

Manteniendo el bosque y reforestando luego del raleo, se conserva el bosque, se amortigua y previene la inundación. Para ello, es necesario que los pobladores locales se concienticen, incentivar a los pobladores aguas abajo, promocionar y difundir durante la ejecución del proyecto la importancia del bosque en el Perú.

2) Selección de las áreas a reforestar

Tal como se indicó en el apartado 1), la reforestación en la cuenca alta se realiza con el aporte de mano de obra de la comunidad. En este caso, los habitantes locales participarán en estas actividades en su tiempo libre. Sin embargo, hay que tomar en cuenta que las cuencas altas en su mayoría pertenecen a la Sierra Andina, donde los habitantes están subsistiendo con la agricultura y ganadería bajo severas condiciones naturales. Así se considera que no están en condiciones para realizar la reforestación y, por lo general, el proceso de concertación toma un tiempo sumamente prolongado.

3) Tiempo requerido para el proyecto de reforestación

Dado que la población en sí es muy reducida, la disponibilidad de la fuerza laboral es reducida. Así, el trabajo que se puede realizar al día es limitado, y la eficiencia de trabajo será muy baja. El Equipo de Estudio de JICA estimó el tiempo que se requiere para reforestar la totalidad del área a partir de la población de las zonas sujetas al plan de reforestación, el número de plantas, la eficiencia de trabajo, etc. De acuerdo a esta estimación, se demorarán 14 años para reforestar aproximadamente 40 mil hectáreas de la Cuenca del Río Chincha. Al estimar el tiempo requerido para otras cuencas, aplicando simplemente esta tasa al área de la respectiva cuenca, se tiene que la reforestación de la cuenca del Río Cañete tomará 35 años.

4) Volumen total de reforestación en la cuenca alta, período y costo del proyecto Se ha estimado la superficie que requiere ser reforestada en la cuenca del Río Cañete, así como el costo de ejecución, tomando como referencia, los datos del proyecto de reforestación de la Cuenca del Río Chincha. Según esta estimación, el área a reforestarse suma un total de 110 mil hectáreas aproximadamente, el período requerido es de 35 años, y el costo se calcula en 300 millones de soles. Es decir, se requiere invertir gran cantidad de tiempo y costo para reforestar.

Tabla 4.12.2-1 Plan de reforestación de las cuencas altas

Cuenca	Superficie a reforestar (ha)	Tiempo requerido (años)	Costo requerido (soles)		
Cañete	110.111,72	35	297.206.251		

(Fuente: Equipo de Estudio de JICA)

5) Conclusiones

El objetivo del presente Proyecto es ejecutar las obras más urgentes, y destinar un período tan largo para la reforestación que tiene un efecto indirecto cuyo impacto se demora en manifestarse no sería congruente con el objetivo propuesto para el Proyecto. Al considerar que se requiere invertir 35 años y 300 millones de soles, se concluye que es poco viable implementar esta alternativa en el presente Proyecto, y que debería de ejecutarse oportunamente en el marco de un plan de largo plazo después de concluido el presente Proyecto.

4.12.3 Plan de control de sedimentos

Para el plan de control de sedimentos a largo plazo, se recomienda ejecutar las obras necesarias en la cuenca alta.

El Plan de Control de Sedimentos en la cuenca alta consistirá principalmente en la construcción de las presas de control de sedimentos y de las obras de protección de márgenes. En la Figura 4.12.3-1 se presenta la disposición de las obras de control de sedimentos que se propone ejecutar en toda la cuenca. Se estimó el costo de las obras de la cuenca del Río Cañete, suponiendo: a) cubrir la totalidad de la cuenca; y b) cubrir solo las zonas prioritarias, analizando la disposición de las obras para cada caso. Los resultados se muestran en la Tabla 4.12.3-1.

Dada la extensión de la cuenca del Río Cañete, el costo de construcción para todas las alternativas sería demasiado elevado en caso de disponer las obras de protección de márgenes, presas de control de erosión, etc., además que se requerirá de un tiempo sumamente largo. Esto implica que el Proyecto se demorará en manifestar sus efectivos positivos. Así, se concluye que es poco viable ejecutar esta alternativa dentro del presente Proyecto, debiendo ser ejecutada oportunamente en el marco de un plan a largo plazo, después de terminado el presente Proyecto.

Tabla 4.12.3-1 Costos estimados de ejecución de obras de control de sedimentos en la cuenca alta

Cuenca	Alcance	Protección de márgenes		Bandas		Presa de control de sedimentos		Total costo	Costo del
		Vol. (km)	Costo directo (Millones S/.)	Vol. (unidades)	Costo directo (Millones S/.)	Vol. (unidades)	Costo directo (Millones S/.)	directo de obras	Proyecto (Millones S/.)
Cañete	Toda la cuenca	325	S/.347	32	S/.1	201	S/.281	S/.629	S/.1.184
	Tramo prioritario	325	S/.347	32	S/.1	159	S/.228	S/.576	S/.1.084

Figura 4.12.3-1 Ubicación de las obras de control de sedimentos de la cuenca del Río Cañete

5. CONCLUSIONES

La alternativa seleccionada en el presente Estudio es estructuralmente segura, además que la evaluación social arrojó un valor económico suficientemente alto. Su impacto al medio ambiente es reducido. La implementación del presente Proyecto contribuirá al alivio de la alta vulnerabilidad de los valles y de la comunidad local ante las inundaciones, y al desarrollo socioeconómico local. Por lo tanto, se concluye implementarlo en la mayor brevedad posible.