Appendix-3 Hydrologic Study of Chincha River Basin

С

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS IN THE REPUBLIC OF PERU

HYDROLOGY OF MAXIMUM FLOODS IN CHINCHA RIVER

Appendix-3

December 2012

HYDROLOGY OF MAXIMUM FLOODS IN CHINCHA RIVER

CONTENTS

I.	INT	RODUCTION	1						
II.	GEN	ENERAL ASPECTS							
	2.1	Location							
		2.1.1 Political Location	1						
		2.1.2 Geographic Location	1						
	2.2	Background	2						
	2.3	Justification of the Project	2						
	2.4	Objectives of the Study	2						
III.	PRC	DJECT DESCRIPTION	3						
	3.1	Hydrographic System of Chincha River	3						
		3.1.1 General Description of the Basin	3						
		3.1.2 Hydrography of the Chincha River Basin	4						
	3.2	Climatology	5						
		3.2.1 Rainfall	5						
		3.2.2 Temperature	1						
	3.3	Hydrometry	2						
	3.4	Comments on the hydrologic and meteorologic network in the Chincha							
		River Catchement.	24						
		3.4.1 On Pluviometric Stations.	24						
		3.4.2 On Hydrometric Stations.	24						
		3.4.3 Recommendations	25						
IV.	HYI	DROLOGY OF MAXIMUM FLOOD	28						
	4.1	Preliminary Considerations	28						
	4.2	Hydrology characterization, analysis of rainfall and river information	29						
		4.2.1 Hydrology Characterization	29						
		4.2.2 Maximum Rainfall in 24 Hour Analysis	29						
		4.2.2.1 Distribution Functions	30						
		4.2.2.2 Calculation of Adjustment and Return Period for Maximum							
		Rainfall in 24 Hours	33						
		4.2.2.3 Selection of Distribution Theory with better Adjustment to the							
		Series Record Rainfall in 24 Hours	33						

	4.2.2.4 Determination of Maximum 24-Hours Rainfall for Different							
	Return Periods in the Base Point	41						
	4.2.2.5 Determination of Maximum 24-hours Rainfalls for Different							
	Return Period in the Chincha River Subwatersheds	41						
	4.2.3 Maximum Daily Discharge Analysis	44						
	4.2.4 Simulation Model, Application of HEC-HMS Software	45						
	4.2.4.1 Hydrological Model	45						
	4.2.4.2 HEC – HMS Modeling	49						
4.3	Results of the Simulation, Peak Flows in the Base Point	63						
V. REF	ERENCES	63						
ANNEXES	ANNEXES							

HYDROLOGY OF MAXIMUM FLOODS IN CHICNHA RIVER

LIST OF TABLES

Table Nº 3.1. Characteristics of Rainfall Stations in the Chincha River	
Basin and Surrounding Basins	6
Table Nº 3.2. Characteristics of Rainfall Stations in the Chincha River	
Basin and Surrounding Basins	8
Table Nº 3.3.Results of the linear fit equation of Carania and	
Huangascar station	9
Table N° 3.4. Monthly Half Temperature (C°) of the Stations of the	
Chincha River Basin and Adjacent Basins	2
HLM = Hydrometric Station with staff gauge. It records water level	
manually (at 06:00, 10:00, 14:00 and 18:00 hours) to calculate	
daily discharges.	3
Table Nº 4.1. Geomorphological Characteristics of the Basis Point	
Watershed (station Conta)	29
Table Nº 4.2. Maximum Rainfall in 24 Hours Annual for Stations located	
within the Study Scope	29
Table Nº 4.3. Determination Coefficient for each Distribution Function	
and for each Rainfall Station	33
Table Nº 4.4. Maximum 24-hours rainfall for each Return Period	34
Table Nº 4.5. Maximum Areal 24 Hours Rainfall at the Point Base	
(Station Conta) for each Return Period	41
Table Nº 4.6. Rainfall for Different Return Periods in each river Basin of	
Chincha	43
Table Nº 4.7. Maximum Daily Discharge of station Conta, Chincha River	
(m3/s)	44
Table Nº 4.8. Maximum Discharges for each Return Period at te Station	
Conta, Chincha River (m3/s)	45
Table Nº 4.9. Concentration ans Travel Times for the Base Point (station	
Conta)	46
Table Nº 4.10. Maximum Rainfall according to Dick - Peschke	47
Table Nº 4.11. Hyetograph for different Return Period	47
Table Nº 4.12. Curve Number CN Based on Land Use and Soil	
Hydrological	48

Table Nº 4.13. Estimated Value of Curve Number (CN) for initial	
calibratión of HEC-HMS Model	48
Table Nº 4.14. Generated Flood Hydrograph with HEC-HMS Model for	
a Return Period of 2 Years	52
Table Nº 4.15. Generated Flood Hydrograph with HEC-HMS Model for	
a Return Period of 5 Years	54
Table Nº 4.16. Generated Flood Hydrograph with HEC-HMS Model for	
a Return Period of 10 Years	56
Table Nº 4.17. Generated Flood Hydrograph with HEC-HMS Model for	
a Return Period of 25 Years	58
Table Nº 4.18. Generated Flood Hydrograph with HEC-HMS Model for	
a Return Period of 50 Years	60
Table Nº 4.19. Generated Flood Hydrograph with HEC-HMS Model for	
a Return Period of 100 Years	62
Table Nº 4.20. Summary of Peak Flows at the Base Point for each Return	
Period	63

HYDROLOGY OF MAXIMUM FLOODS IN CHINCHA RIVER

LIST OF FIGURES

Figure Nº 3.1. Location Map of the Chincha River Basin	4
Figure N° 3.2. Period and longitude of the available information of the	
rainfall stations	6
Figure N ^o 3.3. Location of the Rainfall Stations in Chincha River Basin	
and Adjacent Basins	7
Figure Nº 3.4. Monthly Histogram of Rainfall Stations considered within	
the Study Scope	8
Figure N° 3.5. Annual Rainfall Trends at the Stations considered within	
the Study Scope	10
Figure Nº 3.6. Isohyets for Mean Monthly Rainfall in the Chincha Basin,	
in January	11
Figure Nº 3.7. Isohyets for Mean Monthly Rainfall in the Chincha Basin,	
in February	12
Figure Nº 3.8. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
March	13
Figure Nº 3.9. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
April	14
Figure Nº 3.10. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
May	15
Figure Nº 3.11. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
June	16
Figure Nº 3.12. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
July	17
Figure Nº 3.13. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
August	18
Figure Nº 3.14. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
September	19
Figure Nº 3.15. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
October	20
Figure Nº 3.16. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
November	21

Figure Nº 3.17. Isohyets Mean Monthly Rainfall in the Chincha Basin, in	
December	22
Figure Nº 3.18. Isohyets Annual Mean Monthly Rainfall in the Chincha	
Basin	23
Figure N ^o 3.19. Distribution of the Monthly Half Temperature of the	
Weather Stations Located in the Chincha River Basin	2
Figure N^o 3.20. Period and longitude of the available information in	
Hydrometric Station Conta	3
Figure Nº 3.21. Location of the hydrometric station Conta in Chincha	
River basin	8
Figure Nº 4.1. Rainfall Stations considered for HEC - HMS Software	
application	29
Figure Nº 4.2. Isohyets for the 2 - Years Return Period Maximum 24-	
Hours Rainfall in the Chincha Basin	35
Figure Nº 4.4. Isohyets for the 5 - Years Return Period Maximum 24-	
Hours Rainfall in the Chincha Basin	36
Figure Nº 4.5. Isohyets for the 10 - Years Return Period Maximum 24-	
Hours Rainfall in the Chincha Basin	37
Figure Nº 4.6. Isohyets for the 25 - Years Return Period Maximum 24-	
Hours Rainfall in the Chincha Basin	38
Figure Nº 4.7. Isohyets for the 510 - Years Return Period Maximum 24-	
Hours Rainfall in the Chincha Basin	39
Figure Nº 4.8. Isohyets for the 100 - Years Return Period Maximum 24-	
Hours Rainfall in the Chincha Basin	40
Figure Nº 4.8. Chincha River Subbasin	42
Figure Nº 4.9. Model Chincha River Basin in the HEC-HMS Software	51
Figure Nº 4.10. Hydrograph Rainfall – Runoff models of the Chincha	
River basin, Return Period of 5 years	51
Figure Nº 4.11.Results Model Simulation of Rainfall – Runoff Chincha	
River, Return Period of 5 years	52
Figure Nº 4.12. Hydrograph Rainfall – Runoff models of the Chincha	
River basin, Return Period of 5 years	53
Figure Nº 4.13. Results Model Simulation of Rainfall – Runoff Chincha	
River, Return Period of 5 years	53

Figure Nº 4.14. Hydrograph Rainfall – Runoff models of the Chincha	
River basin, Return Period of 10 years	55
Figure Nº 4.15. Results Model Simulation of Rainfall – Runoff Chincha	
River, Return Period of 10 years	55
Figure Nº 4.16. Hydrograph Rainfall – Runoff models of the Chincha	
River basin, Return Period 25 years	57
Figure Nº 4.17. Results Model Simulation of Rainfall – Runoff Chincha	
River, Return Period of 25 years	57
Figure Nº 4.18. Hydrograph Rainfall – Runoff models of the Chincha	
River basin, Return Period 50 years	59
Figure Nº 4.19. Results Model Simulation of Rainfall – Runoff Chincha	
River, Return Period of 50 years	59
Figure Nº 4.20. Hydrograph Rainfall – Runoff models of the Chincha	
River basin, Return Period 100 years	61
Figure Nº 4.21. Results Model Simulation of Rainfall – Runoff Chincha	
River, Return Period of 100 years	61

HYDROLOGY OF MAXIMUM FLOODS IN CHINCHA RIVER

I. INTRODUCTION

In the last two extraordinary events (El Niño) occurred in 1983 and 1998, rainfall was very intense in the study area, which resulted in the activation of a number of rivers and streams adjacent to the Chincha River, causing severe damage in populated areas, irrigation and drainage infrastructure, agricultural lands, likewise, floods with catastrophic damage in the areas of El Carmen, San Regis, Pedregal, San Francisco y Chincha Baja.

El Niño is defined as the presence of abnormally warmer waters in the west coast of South America for a period longer than 4 consecutive months, and has its origin in the Central Equatorial Pacific. The phenomenon is associated with abnormal conditions of the atmospheric circulation in the Equatorial Pacific region. Abnormal conditions are considered when the equatorial circulation scheme takes the following three possibilities: may intensify, weaken or change direction.

This study contains a diagnosis of the problem, in order to explain the causes of the event and guide the actions to be implemented to provide greater security to the population, irrigation infrastructure, agricultural areas, etc. The report contains the hydrologic analysis to allow the characterization of the event in technical terms. With these analyses it has been possible to outline alternative structural solutions and no structural measures.

II. GENERAL ASPECTS

2.1 Location

2.1.1 Political Location

The study area is located in the province of Chincha and Pisco in the Department of Ica and the province of Castrovirreyna in the Department of Huancavelica.

2.1.2 Geographic Location

The study area is located approximately at coordinates UTM at 366,306 y 463,710 in East Coordinates, and 8'492,815 y 8'586,315 in North Coordinates (Zone 18).

2.2 Background

As part of the project: "Protection of Rural Areas and Valleys and Flood Vulnerable", it requires a supporting technical document of the maximum flooding of the Chincha River, to define planning proposals hydrologic and hydraulic Chincha River system.

The occurrence of extreme events such as El Niño in the northern and southern coast of Peru has resulted in the presence of heavy rains, increased river flows and streams activation of contributors to the main course, such as occurred in the last two events of 1983 and 1998. The Chincha River overflowed causing flooding of extensive crop areas and cities such as El Carmen, San Regis, Pedregal, San Francisco and Chincha Baja, and resulting in damage to agriculture, road infrastructure, housing, irrigation infrastructure and drainage. Currently there are vulnerable areas in river sections that require the application of structural measures for flood mitigation.

An assessment of maximum floods has been made based on data from the hydrometric station Conta. With the results obtained, the hydraulic box of the will be size base to the return period chosen in specific areas and also the design of protective structures.

2.3 Justification of the Project

Chincha River allows drainage of floods from rainfalls and inflows from the watershed.

The presence of normal hydrological events causes some damage in agricultural areas, irrigation and drainage infrastructure, service roads and towns, therefore it requires structural measures that allow the mitigation of extreme events up to some degree magnitude.

2.4 Objectives of the Study

The objective of the study is to determine the maximum instant Chincha River floods for different return periods, to allow an appropriate measurement of the hydraulic section of river channelization and the design of protection works, mitigating the potential damage from extreme hydrological events.

III. PROJECT DESCRIPTION

3.1 Hydrographic System of Chincha River

3.1.1 General Description of the Basin

Politically, the Chincha River basin is part of the provinces of Chincha and Pisco and Castrovirreyna belonging to the departments of Ica and Huancavelica respectively.

Its boundaries are: on the north by the Mantaro river basins, and interbasin Topará Cañete, south to Pisco River Basin, on the east by the Mantaro River Basins and Pisco and west by the Pacific Ocean.

It has a total area of 4,388.63 km2 and its waters drain into the Pacific Ocean with a tour of the main course predominantly southwesterly.

Chincha Valley, an area affected by the floods, is located in the lower basin between latitudes 13° 12'- 13° 37' South and longitude 76° 00'- 76° 15' West. Politically it belongs to the province of Chincha and Ica. This basically consists of a range river 25 km wide at its center, extending from sea level to 2000 m elevation, covering an area of 25.73 km2 and was established as the most important agricultural area of the San River Basin Juan

Figure 3.1 shows the location and area of the Chincha River Basin.

Figure Nº 3.1. Location Map of the Chincha River Basin

3.1.2 Hydrography of the Chincha River Basin

The Andes Mountains catchment areas to the country divided into two main branches that drain their waters into the Pacific and Atlantic Oceans, respectively, thus forming the continental divide of the waters. There is also a third strand in the south-east of the country, consisting of a high inter-Andean basin whose waters drain into Lake Titicaca

The basin of the Pacific or Western has an approximate area of 290.000 km², equivalent to 22% of the total area of the country. As a result of rainfall and melting snow and glaciers in the upper part, 52 rivers, in some importance, run to the Pacific Ocean predominantly towards the southwest. Chincha River is one of them, being located in the central region of this side.

Chincha River has an intermittent regimen and torrential character; its discharges are presented in the months of January to April. The maximum monthly discharge has been appraised of 494.19 m3 / s (February-1967) and a low of 0.00 m3 / s, with a mean annual discharge of 15.46 m3 / s equivalent to

an average annual volume of 480.71 MMC. In the dry season the river is not carrying water for an average of three months

The supply of water to the valley of Chincha is partially regulated, due to intermittent regimen Chincha River which has downloads only between the months of January to April, during the remainder of the river dries up completely. During this period, the dry season, water is discharged regulation of the gap between the months of August through December

3.2 Climatology

3.2.1 Rainfall

The rainfall, as a main parameter of the runoff generation is analyzed considering the available information of the stations located in the interior of the Chincha Basin, and in the neighboring Cañete, Mantaro y Pisco.

Rainfall information is available from 10 pluviometric stations located in the vicinity of the study area, these are located in the Chincha River Basin and surrounding basins. These stations are operated and maintained by the Peruvian National Service of Meteorology and Hydrology (SENAMHI by their initials in Spanish)

Table No. 3.1, shows the relationship of stations with their respective characteristics of code, type, location, etc. Historical records of monthly total rainfall and their histograms are presented in Annexes I and II respectively. Figure N° 3.2, shows the period and the length of the data available from meteorological stations and Figure No. 3.3 shows the locations in the Chincha Basin and adjacent watersheds.

Table Nº 2.1	Characteristics	f Dainfall Station	a in the C	hinche Diver	Docin and Su	mounding Pasing
Table IN 5.1.	Characteristics (n Kamian Station	is in the U	ппспа кіуег	Dasili allu Su	in rounding Dashis

CODE	STATION	DEPARTAMENT	LONGITUDE	LATITUDE	ENTITY
156119	TOTORA	HUANCAVELICA	75° 19'1	13° 07'1	SENAMHI
156117	TICRAPO	HUANCAVELICA	75° 26'1	13° 23'1	SENAMHI
643	COCAS	HUANCAVELICA	75° 22'1	13° 16'1	SENAMHI
156115	SAN PEDRO DE HUACARPANA 2	ICA	75° 39'1	13° 03'1	SENAMHI
857	SAN PEDRO DE HUACARPANA	ICA	75° 39'39	13° 03'3	SENAMHI
156113	CHINCHA DE YANAC	ICA	75° 47'47	13° 13'13	SENAMHI
791	FONAGRO (CHINCHA)	ICA	76° 08'8	13° 28'28	SENAMHI
156219	CONTA	ICA	75° 58'0	13° 26'0	SENAMHI
641	VILLA DE ARMAS	HUANCAVELICA	75° 08'1	13° 08'1	SENAMHI
151503	HUACHOS	HUANCAVELICA	75° 32'32	13° 13'13	SENAMHI

Figure Nº 3.2. Period and longitude of the available information of the rainfall stations

Figure N° 3.3. Location of the Rainfall Stations in Chincha River Basin and Adjacent Basins

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

2

Table N° 3.2 shows mean monthly values for the stations that have been taken into account in the study, and Figure N° 3.4 shows the mean monthly variation for rainfall in each station; the Annex shows the historical series for each station, as well as the monthly and annual variation graphs for each station.

Table Nº 3.2. Characteristics of Rainfall Stations in the Chincha River Basin and Surrounding Basins

ESTACION	Mes												Total
Laración	Ene	Feb	Mar	Abr	Мау	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
TOTORA	125.39	133.76	104.56	46.33	18.20	4.07	4.90	7.76	24.24	32.59	41.47	81.67	624.95
TICRAPO	54.24	75.45	73.35	14.10	0.44	0.20	0.03	0.45	0.98	3.99	5.05	24.32	252.60
COCAS	94.93	111.50	138.93	29.87	5.31	0.26	0.36	1.54	6.70	11.83	16.61	40.73	458.57
SAN PEDRO DE HUACARPANA 2	114.93	137.80	161.96	50.64	5.30	0.38	0.23	2.25	5.51	17.68	30.93	58.94	586.56
SAN PEDRO DE HUACARPANA	121.19	136.68	139.80	34.99	2.64	0.00	0.04	2.53	7.24	12.94	27.45	64.52	550.02
CHINCHA DE YANAC	27.03	37.28	39.98	6.97	0.27	0.00	0.10	0.02	0.76	2.81	2.11	14.08	131.41
FONAGRO (CHINCHA)	0.42	1.08	0.34	0.07	0.48	1.23	1.34	0.83	0.68	0.38	0.21	0.56	7.60
CONTA	1.84	3.24	0.81	0.31	0.01	0.03	0.06	0.04	0.05	0.18	0.14	0.24	6.95
VILLA DE ARMAS	133.69	136.26	148.26	39.55	2.82	0.00	0.01	1.57	8.52	10.84	22.17	59.92	563.61
HUACHOS	98.45	120.27	119.57	29.42	1.90	0.23	0.25	1.01	1.73	6.74	15.33	57.08	451.98

Figure Nº 3.4. Monthly Histogram of Rainfall Stations considered within the Study Scope

Table N° 3.2 and Figure N° 3.4 show that heaviest rainfalls are from October to April, and east rainfalls are from May to September. In addition, annual rainfall in the Chincha River Basin is noted to vary from 625.95mm (Totora Station) to 6.95 mm (Conta Station).

Figure N° 3.5 shows total annual rainfall variation for the stations included in this study, with their relevant trends.

Taking into account only stations Totora, Huacarpana and Huachos we established a linear equation: P = mt + b, where P is annual rainfall and t is time in years, m and b are the variables that provide the best fit in a linear equation. The results are presented in Table 3.3, giving the following values of the trends:

<u>.</u>	Sites of the inear in equation of Carama and Huangasear statio										
	Estación	m	b	R2							
	Totora	-11.76	775.0	0.189							
	Huacarpana	-12.60	651.0	0.173							
	Huachos	3.53	431.7	0.052							

Table Nº 3.3.Results of the linear fit equationof Carania and Huangascar station

The value of the regression coefficients (R^2) is very low. For Totora and Huacarpana Stations would be a seasonally weak downward trend and for Huachos Station a very weak upward trend. R^2 values indicate that the trends are not significant and can be said that even in these stations with maximum numbers of data there is no clear trend to increase or decrease regarding the rainfall.

Information shown in Table N° 3.2 and support from ArcGIS software have allowed for generating monthly isohyets maps (from January to December) and annual isohyets maps , as shown in Figures N° 3.6 – N° 3.17, and N° 3.18, respectively.

Isohyets show that heaviest rainfalls in the basin are in February and March, and they vary between 20 mm and 160 mm. The least rainfalls are in July, and they vary between 10 mm in the basin's higher area and 0 mm in the basin's lower area.

Total annual rainfall in the Cañete River Basin varies between 1,000 mm and 200 mm, as shown in Figure N° 3.18.

Figure Nº 3.5. Annual Rainfall Trends at the Stations considered within the Study Scope

II/

/12

/13

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

|14

/15

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

91/

152

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

2I/

/18

154

6I/

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

/20

|21

/22

159

3.2.2 Temperature

The temperature of air and its daily and seasonal variations are very important for development of plants, being one of the main factors that directly affect the growth rate, length of growing cycle and stages of development of perennial plants.

In the area of Chincha Basin, the climate variable is measured by a network of meteorological stations, which are summarized in Table No. 3.2. This shows the historical averages of monthly mean temperature at stations of Fonagro, Chincha de Castrovirreyna, Chincha de Yanac, Villa de Arma y San Pedro de Huacarpana located within the basin, and Huáncano, Agnococha to neighboring basins of Pisco.

From the information shown in the Table No. 3.4., there is an inverse relationship between temperature and altitude, this is the effect of reduced atmospheric pressure due to higher altitude, likewise observed that annual average temperatures are higher in the Fonagro stations (20, 3) and Huancano (20.6) and minima occur in the Acnococha stations (2.8).

Figure N° 3.19 shows the distribution of the monthly average temperature from weather stations located in the Chincha Basin, where we note that the monthly average temperatures are higher in the station San Juan and the minimum occurs at the station Acnococha.

ESTACION	ALTITUD						AÑO PR	OMEDIO						MEDIA
METEOROLOGICA	msnm	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	0 ct	Nov	Dic	ANUAL
FONAGRO	50	23.6	24.3	23.8	22.3	19.9	17.9	17.4	17.4	17.5	18.4	19.4	21.6	20.3
HUANCANO (*)	1006	22.4	22.8	22.9	22.4	20.4	18.3	17.9	18.4	19.7	20.3	20.3	21.1	20.6
SAN JUAN DE CASTROVIRREYNA	2150	19.7	19.3	19.9	19.4	19.8	18.9	19.5	19.3	19.6	19.4	19.2	19.4	19.4
SAN JUAN DE YANAC	2400	14.8	14.9	15.0	14.9	15.9	15.5	15.5	16.1	15.8	15.8	15.4	16.1	15.5
HUACHOS	2680	15.1	14.7	14.7	14.7	15.2	15.2	14.9	15.9	15.8	15.8	15.1	16.0	15.2
VILLA DE ARMA	3280	11.8	10.4	11.3	12.0	12.6	12.3	13.0	12.6	13.2	12.8	11.7	11.4	12.1
S.P.HUACARPANA	3680	9.1	8.6	9.5	9.4	9.8	9.3	9.6	9.2	9.5	10.2	9.6	10.1	9.5
AGNOCOCHA (*)	4650	3.7	3.6	3.8	3.4	2.8	2.0	1.3	1.6	2.2	3.2	3.1	3.3	2.8

Table Nº 3.4	Monthly Half	Tomnoratura (C ^o)) of the Stations	of the Chinche R	iver Resin and A	diacont Racine
1 4010 11 3.7.	withing man) of the stations	o or the Chinena N	nver Dasin and r	Mujacent Dasms

Source: Assessment and Management of Water Resources of the Chincha River Basin. IRH-INRENA-MINAG, 2003

Figure N° 3.19. Distribution of the Monthly Half Temperature of the Weather Stations Located in the Chincha River Basin

Source: Assessment and Management of Water Resources of the Chincha River Basin. IRH-INRENA-MINAG, 2003

3.3 Hydrometry

Discharges information of river Pisco is available from the hydrometric station Conta located in the district of Alto Laran, province of Chincha and department of Ica. This station, operated and maintained by the Ministry of Agriculture, is located downstream of the "wet basin" of the catchment, therefore flows registered in this station are practically the same discharge that flows to the Pacific Ocean. Table No. 3.5, shows the list of stations included in this study with their respective characteristics, such as code, name, and location. Historical records of monthly total rainfall and their histograms are presented in the Annex.

Table Nº 3.5. Location of Hydrometric Station Conta

CODE	STATION NAME	CATEGORY* CAT	CATCHMENT	ATCHMENT DEPARTAMENT	PROVINCE	DISTRICT	LONGITUDE	LATITUDE	ELEVATION	CONDITION	WORKING PERIOD	
			CATCHINENT								START	END
203501	CONTA	HLM	SAN JUAN	ICA	CHINCHA	ALTO LARAN	75° 59'59	13° 27'27	280	Operating	1922-09	2010-12

HLM = Hydrometric Station with staff gauge. It records water level manually (at 06:00, 10:00, 14:00 and 18:00 hours) to calculate daily discharges.

Figure N° 3.20, shows the period and length of the data available in Hydrometric Station Conta and Figure No. 3.21 shows its location in Chincha Basin.

Figure Nº 3.20. Period and longitude of the available information in Hydrometric Station Conta

163

The information of the hydrometric station Conta will be used for calibration of the hydrologic model to be described in item 4.2.4. This station is located downstream of the "wet basin" of the catchment, therefore flows registered in this station are practically the same discharge that flows to the Pacific Ocean.

3.4 Comments on the hydrologic and meteorologic network in the Chincha River Catchement.

3.4.1 On Pluviometric Stations.

As it was stated previously the pluviometric information used in the analysis has been provided by SENAMHI. From the 10 stations, 5 stations have data until year 2010, 1 station has data until 1998, 1 station has data until 1996, 1 station has data until 1989, 1 station has data until 1988, and 1 station has data until 1981. The stations with information previously to 1999 are not operative anymore; the remaining stations are currently operative. Although the information coming from stations which have data until years previously to 1992 could be considered somewhat old, this data have been used because their period of information are longer than 12 years and still could be used for statistical analysis. An exception has been done for Conta station which although having just 7 years of records has been considered because of the lack of other pluviometric station for describing the sector where it is located.

Rainfall records are done using manual rain gages, these devices accumulate rain for a certain length of time after which the accumulated height of rain is measured manually. In some cases, the readings are made once a day (at 7 am); in others, twice a day (at 7 am and 7 pm), the exact interval or readings for the pluviometric stations used in the present analysis is not available.

3.4.2 On Hydrometric Stations.

Although this station is operated and maintained by SENAMHI, the hydrometric information used in the analysis was provided by The General Directorate of Water Infrastructure (DGIH) of the Ministry of Agriculture.

The Conta station has a widespread data, the information is from 1922 to 2010.

In this station water levels are measured by reading the level in a staff gage (or ruler), lectures are transferred to a notebook and discharges are found using an equation of the type:

 $O = aH^b$

Where Q is the discharge in m^3/s and H is the reading in meters. These types of stations don't register maximum instantaneous discharge, because recordings are not continuous and automatic, but manual. Four readings a day are taken. Readings are taken at 6 am, 10 am, 14 pm and 18 pm. The largest of all readings is called the daily maximum discharge, but this value is not the maximum instantaneous daily discharge.

3.4.3 Recommendations

From a technical viewpoint, the following main recommendations can be given:

On the Equipment

- In order to consider the possible differences in climates along the catchment due to orographic effects, the number of weather and hydrometric stations networks should be increased.
- In order to register the maximum instantaneous values of rainfall and discharges, the existing manual weather and hydrometric stations should be automated.
- The limnigraphic equipment of the hydrometric stations should be upgraded from the conventional paper band type to the digital band type
- Having the collected data available in real time is desirable.
- Study the possibility of establishing an early warning system based on improving and increasing the number of existing hydrometric and pluviometric stations.

- For complementary studies, it is advisable to acquire:

•Equipment to sample sediment material.

- •Equipment for measuring of physical parameters for water quality control (pH, DO, turbity and temperature)
- Establishment of Bench Mark (BM) for each weather and hydrometric station using a differential GPS. This information will be useful to replenish the station in case of its destruction by vandalism or natural disasters.

On the Operation and Maintenance of the Equipments

- Weather and hydrometric stations in the study areas should be inspected frequently.
- Maintenance of equipment should be in charge of qualified technicians that are certified by the manufacturers.
- Periodic calibration of the equipment should be done according to the hours of use.

On the Quality of the Measured Data

- Data taken manually by SENAMHI operators should be verified independently.
- In order to guarantee the quality of the information collected in previous years a verification study program of the data should be done by the government.
- Redundant equipment should be available in the main weather stations.
 This means that duplicate equipment should be installed in selected stations to compare readings with pattern equipment.
- When automatic stations are available they should operate simultaneously with manual stations at least for one year to verify the consistency of the data registered automatically.

166

It is necessary to mention that there is currently an agreement between Peru's National Water Authority (ANA) and SENAMHI to provide equipment to SENAMHI weather stations financed by an external source, it is recommended that action be taken in order to include Chincha Basin in this agreement.

IV. HYDROLOGY OF MAXIMUM FLOOD

4.1 **Preliminary Considerations**

This chapter describes the methodology of work developed for the generation of flood flows in the so-called Base Point (point of interest, Conta station) for return periods of 2, 5, 10, 25, 50, and 100 years.

The estimated maximum discharge was made from the information of rainfall up to 24 hours with a rainfall - runoff models, using the HEC-HMS Software. The model was calibrated using historical records of annual maximum daily flow of the station Conta.

Field Reconnaissance:

The field survey has included a review of the general characteristics of the Conta hydrometric station and the base point (point of interest, where an estimated peak discharges), the major topographic features and land use in the watershed to the study area, which has supported the definition of some parameters to consider for the generation of flood flows.

Methodology and Procedures:

Methodology and procedures developed for maximum discharge estimations are summarized below:

- Identification and delimitation of the sub watershed to the point of interest (Hydromeetric Station Conta), based on Charts at 1:100000 and / or 1:25000 scale, and satellite images.
- Selection of existing pluviometer stations in the study area and collections of historical record of 24 – hour maximum rainfall.
- Frequency analyses of 24 hour maximum rainfalls for each station and selection of the distribution function showing the best adjustment.
- Areal rainfall calculation of the watershed to the interest point from the isohyetal line maps that were prepared for the 2, 5, 10, 25, 50, and 100 – year return periods

- Establishment of the maximum rainfall for a storm's duration no less than the concentration time (time in which the entire basin inputs to the discharge) through the Dick and Peschke model.
- The rainfall runoff model generates flood flows for 2, 5, 10, 25, 50, and 100 year return periods, by using the HEC HMS software, and modeled the basin based on the following steps:
 - Based on the daily maximum annual flow historical series, the flow frequency law is calculated by means of statistical methods.
 - Calibration of the rainfall runoff model based on the flow frequency law.

4.2 Hydrology characterization, analysis of rainfall and river information

4.2.1 Hydrology Characterization

The geomorphological characteristics of the basis point watershed (station Conta) shown in Table N° 4.1.

Table Nº 4.1. Geomorphological Characteristics of the Basis Point Watershed (station Conta)

Caracteristica	Valor
Area de la Cuenca (km2)	2,981.000
Longitud Max. De Recorrido (km)	121.250
Cota Mayor (msnm)	4,725.000
Cota Menor (msnm)	323.000
Pendiente (m/m)	0.036

4.2.2 Maximum Rainfall in 24 Hour Analysis

Table N° 3.1 and Figure N° 3.3 show the stations located within the study scope (the Chincha River Basin and adjacent basins). Maximum 24 – hour annual rainfall in these stations are shown in Table N° 4.2; daily and maximum 24- hour information is shown in the Annex.

From the information shown in Table No. 4.2 and Figure No.3.3 we conclude that the stations are distributed throughout the study area, except station of Villa Arma which is very far to the Chincha River Basin.

Table Nº 4.2. Maximum Rainfall in 24 Hours Annual for Stations located within the Study Scope

				I	Pluviometric Stat	tions				
Year	TOTORA	TICRAPO	COCAS	SAN PEDRO DE HUACARPANA 2	SAN PEDRO DE HUACARPANA	CHINCHA DE YANAC	FONAGRO (CHINCHA)	CONTA	VILLA DE ARMAS	HUACHOS
1960										
1961										
1962										
1963										
1964		21.50	19.80							
1965	24.00	20.70	21.60	15.00						
1966	15.00	12.60	20.20	5.20						
1967	24.00	24.40	36.00	31.00					59.60	
1968	20.00	10.00		16.00						
1969	22.00	35.80		24.50						
1970	23.00	40.20	22.10	24.50					24.90	
1971	21.00	28.40	29.40	20.00		10.00			31.00	
1972	27.00	32.00	30.80	26.00		12.80			29.60	
1973	25.00	44.31	36.80	21.10		0.00			42.40	
1974	22.00	14.00	20.60	14.50		8.20			36.00	
1975	19.00	19.50	22.40	22.50		10.30			35.60	
1970	20.00	23.30	21.40	17.00					36.00	
1977	20.00	5.40	20.00	26.00					61.80	
1970	20.01	18.00	27.40	32.00					27.40	
1980	35.00	24.10	27.40	19.50					43.00	33.20
1981	29.00	33.00		32.00					35.00	20.80
1982	29.00	10.90		18.00					30.00	25.80
1983	24.01	30.00		10.00					11.80	19.90
1984	37.01	20.80							11.80	29.20
1985	30.00	18.00							20.80	25.50
1986	27.00	26.80		24.00			0.30		20.00	28.50
1987	13.01						0.20		19.00	20.10
1988	25.01			32.00			0.70		20.00	33.50
1989				27.00		6.80	3.00		10.80	19.80
1990				24.00		5.50	2.00		20.00	23.20
1991				33.00					28.00	24.30
1992										
1993				23.00					26.00	
1994				30.00					21.40	26.10
1995				25.00		10.30	2.30		28.40	23.10
1996				24.00		0.40	0.90		48.60	25.40
1997					23.60	2.50	0.80		30.40	16.20
1998					25.00	11.30	1.50			38.50
1999					28.00	15.90	6.00			41.60
2000					24.20	14.00	1.50			20.50
2001					24.20	9.70	1.10			23.80
2002					30.00	14.60	1.10			37.00
2003					20.60	9.51	0.50	0.60		15.20
2004					28.70	7.20	1.21	0.40		44.20
2005					16.00	16.50	0.91	1.00		28.60
2006					27.80	37.40	3.21	6.00		25.60
2007					16.00	14.20	1.00	4.00		20.50
2008					22.60	14.70	1.90	0.80		23.80
2009					16.40	15.90	2.20	0.30		
2010						23.80				

Figure N° 4.1 shows the stations included in the following analyses, as applied to HEC – HMS software.

171

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

/29

Each maximum annual rainfall series for all eight (8) selected rainfall stations will be adjusted to a specific distribution type. In this sense, most common distribution functions are described, as applied to the extreme event hydrological studies.

4.2.2.1 Distribution Functions

The following describes the distribution functions:

1. Distribution Normal or Gaussiana

It is said that a random variable X has a normal distribution if its density function is,

$$f(x) = \frac{1}{\sqrt{2\pi S}} EXP \left[-\frac{1}{2} \left(\frac{x - X}{S} \right)^2 \right]$$

To $-\infty < x < \infty$

Where:

f(x) = Normal density function of the variable x.

x = Independent Variable.

X = Location parameter equal to the arithmetic mean of x.

- S = Scale parameter equal to the standard deviation of x.
- EXP = Exponential function with base e of natural logarithms.
- 2. Two-Parameter Log-normal Distribution

When the logarithms, ln(x) of a variable x are normally distributed, then we say that the distributivo of x is the probability distribution as log-normal probability function log-normal f(x) is represented as:

$$f(x) = \frac{1}{x\sigma_y \sqrt{2\pi S}} EXP\left\{-\frac{1}{2} \left[\frac{\ln x - \mu_y}{\sigma_y}\right]^2\right\}$$

To $0 < x < \infty$, must be $x \sim \log N(\frac{\mu_y}{y}, \frac{\sigma_y}{2})$

Where:

- μ_y , σ_y = Are the mean and standard deviation of the natural logarithm of x, i.e. de ln(x), representing respectively the scale parameter and shape parameter distribution.
- 3. Log-Normal Distribution of Three Parameters

Many cases the logarithm of a random variable x, the whole are not normally distributed but subtracting a lower bound parameter xo, before taking logarithms, we can get that is normally distributed.

The density function of the three-parameter lognormal distribution is:

$$f(x) = \frac{1}{(x - x_o)\sigma_y \sqrt{2\pi}} EXP\left\{-\frac{1}{2}\left[\frac{\ln(x - x_o) - \mu_y}{\sigma_y}\right]^2\right\}$$

To x₀≤x<∞

Where:

xo = Positional parameter in the domain x

 μ_{y} , = Scale parameter in the domain x.

 $\sigma_{\rm w}^2$ = Shape parameter in the domain x

4. Two-Parameter Gamma Distribution

It is said that a random variable X has a 2-parameter gamma distribution if its probability density function is:

$$f(x) = \frac{x^{\gamma - \mathbf{i}} e^{-\frac{x}{\beta}}}{\beta^{\gamma} \Gamma_{\gamma}}$$

To: 0≤x<∞ 0<y<∞ 0<β<∞ As:

- γ = Shape parameter (+)
- β = Scale Parameter (+)
- $\Gamma_{(\gamma)}$ = Complete gamma function, defined as:

$$\Gamma_{(\gamma)} = \int x^{\gamma-1} e^{-x} dx$$
, which converges if $\gamma > 0$

5. Three- Parameter Gamma Distribution or Pearson Type III

The Log-Pearson type 3 (LP3) is a very important model in statistical hydrology, especially after the recommendations of the Water Resources of the United States (Water Resources Council - WRC), to adjust the distribution Pearson Type 3 (LP3) to the logarithms of the maximum flood. Well, the LP3 distribution is a flexible family of three parameters can take many different forms, therefore it is widely used in modeling annual maximum flood series of unprocessed data.

It is said that a random variable X has a gamma distribution 3parameter or Pearson Type III distribution, if its probability density function is:

$$f(x) = \frac{(x - x_o)^{\gamma - 1} e^{\frac{(x - x_o)}{\beta}}}{\beta^{\gamma} \Gamma_{\gamma}}$$

То

-∞<x°<∞

 $0 < \beta < \infty$

 $\infty > \gamma > 0$

4.2.2.2 Calculation of Adjustment and Return Period for Maximum Rainfall in 24 Hours

Frequency of maximum rainfall in 24 hours in each station (see Table N° 4.2) was analyzed by using the "CHAC" Extreme Hydrological Events Software (developed by CEDEX - Spain),. This software calculates Maximum 24 – hour rainfall for different return periods, based on the probability distribution functions, such as: Normal, 2 or 3 parameter Log - Normal, 2 or 3 parameter Gamma, log - Pearson III, Gumbel, Log – Gumbel, and Widespread Extreme Values.

From the information that has been generated for each distribution function, results showing best adjustment based on the Kolgomorov – Smirnov goodness – of - fit test will be chosen. Return periods taken into account for this study are 2, 5, 10, 25, 50, and 100 years.

4.2.2.3 Selection of Distribution Theory with better Adjustment to the Series Record Rainfall in 24 Hours

According to the analysis with the software CHAC note that the data fit the distribution function of Generalized Extreme Value (GEV) as the distribution coefficient, see Table No 4.3. The values for each return period are shown in Table No 4.4.

Station	Determination C	Determination Coefficient for Each Distribution Function								
Station	Log Pearson III	GEV	SQRT	Gumbel	Log-Normal					
Totora	0.88	0.97	0.91	0.90	0.87					
Ticrapo	0.80	0.95	0.88	0.90	0.93					
Cocas	0.82	0.95	0.89	0.93	0.92					
San Pedro de Huacarpana	0.89	0.95	0.91	0.90	0.93					
San Juan de Yanac	0.93	0.94	0.92	0.92	0.91					
Fonagro (Chincha)		0.95	0.93	0.93	0.92					
Conta	0.93	0.95	0.92	0.92	0.89					
Villa de Armas	0.90	0.92	0.89	0.90	0.92					
Huachos	0.92	0.93	0.92	0.90	0.90					

Table Nº 4.3. Determination Coefficient for each Distribution Function and for each Rainfall Station

NAME OF STATION	RETURN PERIOD T [YEARS]								
NAME OF STATION	PT_2	PT_5	PT_10	PT_25	PT_50	PT_100	PT_200		
COCAS	22.0	30.0	34.0	38.0	40.0	42.0	43.0		
CONTA	1.0	2.0	4.0	6.0	9.0	13.0	18.0		
FONAGRO	1.0	2.0	3.0	4.0	5.0	7.0	8.0		
HUACHOS	24.0	31.0	36.0	42.0	48.0	53.0	59.0		
CHINCHA DE YANAC	11.0	18.0	23.0	30.0	34.0	39.0	44.0		
SAN PEDRO DE HUACARPANA	23.0	29.0	32.0	35.0	36.0	37.0	38.0		
TICRAPO	20.0	31.0	37.0	45.0	50.0	55.0	60.0		
TOTORA	24.0	29.0	32.0	36.0	38.0	40.0	42.0		

Table Nº 4.4. Maximum 24-hours rainfall for each Return Period

Information shown in Table N° 4.4 and the Interpolate to Raster's IDW (Inverse Distance Weighted) tool in the ArcGIS Spatial Analyst module have allowed to generate spatial rainfall distribution for each return period.

To generate maps isohyets tool has been used Contour Surface Analysis of Spatial Analyst module of ArcGIS Software, whose results are shown in Figures N° 4.2 to 4.7.

Based on the isohyet maps for each return period, maximum rainfall for the basin area has been estimated, as established for the Base Point (Conta Station). Methodology and results are described under 4.2.2.4.

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

/35

|37

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

/39

|40|

4.2.2.4 Determination of Maximum 24-Hours Rainfall for Different Return Periods in the Base Point

Isohyet maps for each return period (2, 5, 10, 25, 50, and 100 years) and the Zonal Statistics tool from the ArcGIS software's Spatial Analyst module have allowed for calculating maximum 24 – hour areal rainfall at the base point (Conta Station) for each return period. Results are shown in Table N° 4.5.

Table Nº 4.5. Maximum Areal 24 Hours Rainfall at the Point Base (Station Conta) for each Return Period

Return Period "T" [Years]	Maximum Areal 24 Hours Rainfall [mm]
2	17.00
5	23.40
10	27.39
25	32.22
50	35.56
100	39.06

4.2.2.5 Determination of Maximum 24-hours Rainfalls for Different Return Period in the Chincha River Subwatersheds

In addition to the hydrological study of the flow in the river Chincha is required to estimate the maximum rainfall for different return periods in the Chincha river basins. It has been estimated from isohyet maps shown in Figures N° 4.2. to N° 4.7 and the methodology that is briefly described under 4.2.2.4.

Figure N° 4.8 shows the Chincha river subbasins to which it has been estimated maximum rainfall for each return period and for each subbasin. Table N° 4.6 shows the values of rainfall for each subbasin.

184

|42

Table N ^o	461	Rainfall fo	r Different	Return	Periods in	each r	iver	Basin of	Chincha
	T.U. I	Nannan 10	Different	IXCLUI II	I throus m	cach i	IVCI	Dasin UI	Cinnena

	AREA		PERIOD	O DE RETOR	NO T [AÑOS]	
SUBCUENCA	[m²]	PT_5	PT_10	PT_25	PT_50	PT_100
0-1	72,853,800	2.6	3.9	5.1	6.5	8.8
0-2	95,339,100	2.8	4.4	6.1	8.1	11.1
0-3	241,533,000	4.4	6.4	8.6	11.2	14.7
1	73,531,600	17.8	22.1	27.8	31.5	35.9
10	22,517,800	27.9	31.3	35.1	37.1	39.0
10-1	158,721,000	27.3	30.9	34.8	36.8	38.9
11	26,871,500	27.2	30.7	34.7	36.9	39.1
1-1	39,902,900	10.8	13.9	17.7	20.9	24.8
11-1	38,959,800	27.7	31.2	35.2	37.5	39.7
12	24,616,300	26.8	30.4	34.6	37.0	39.4
12-1	6,292,700	27.1	30.7	34.9	37.3	39.7
13	35,532,500	26.7	30.4	34.7	37.2	39.8
14	61,041,700	26.7	30.4	34.8	37.5	40.2
14-1	6,477,230	27.0	30.7	35.0	37.6	40.1
15	8,361,510	27.1	30.8	35.2	37.9	40.6
16	89,357,900	27.3	31.0	35.5	38.2	40.9
16-1	61,093,700	27.4	31.1	35.4	37.9	40.5
17	129,350,000	27.7	31.4	35.9	38.6	41.3
17-1	19,473	27.7	31.4	35.9	38.6	41.3
18	41,751,000	28.2	31.8	36.3	39.0	41.6
18-1	7,304,390	27.8	31.6	36.0	38.8	41.5
19	16,081,300	28.0	31.7	36.2	39.0	41.7
2	60,158,900	20.2	24.6	30.3	34.1	38.4
20	34,374,300	28.4	32.2	36.8	39.7	42.5
20-1	78,404,600	29.2	33.6	38.7	42.8	46.4
21	16,100,800	28.3	32.2	36.8	39.9	42.8
2-1	16,088,800	17.1	21.0	25.9	29.4	33.5
21-1	16,247,300	28.7	32.9	37.9	41.6	45.0
22	102,595,000	28.3	32.2	36.8	39.9	42.8
2-2	127,871,000	24.3	28.7	34.3	38.3	42.4
22-1	86,095,700	28.0	31.5	35.5	37.6	39.8
23	53,727,200	28.1	31.9	36.4	39.3	42.1
23-1	58,386,900	28.9	33.4	38.8	43.3	47.4
24	61,672,300	29.6	33.9	39.1	43.1	46.7
24-1	30,060,500	30.6	35.5	41.3	47.0	51.8
25	63,550,100	29.8	34.3	39.6	43.5	47.2
25-1	39,100,800	30.2	35.1	40.9	46.5	51.2
26	90,912,100	29.5	34.3	40.1	44.9	49.2
27	145,480,000	27.1	31.8	37.7	42.0	46.1
27-1	59,892,800	26.7	31.3	37.0	41.3	45.5
28	99,243,900	17.2	20.9	25.3	28.7	32.6
28-1	115,811,000	19.3	23.3	28.2	31.8	35.8
29	18,457,100	12.1	15.2	18.8	22.0	25.8
29-1	39,563,500	10.3	13.2	16.7	19.8	23.7
3	10,377,500	17.7	22.2	28.3	31.9	36.5
4	29,705,300	18.7	23.3	29.5	33.2	37.8
4-1	113,323,000	12.3	15.7	20.0	23.3	27.3
5	77,743,400	20.0	24.2	29.8	33.2	37.2
6	16,818,500	20.1	24.6	30.7	34.2	38.5
7	18,266,100	23.8	27.7	32.4	35.1	38.2
7-1	26,661,000	22.0	26.2	31.6	34.8	38.5
8	43,345,000	26.3	29.8	33.8	35.8	38.0
9	17,234,000	27.2	30.6	34.3	36.1	38.0
9-1	279,704,000	18.0	22.3	28.0	31.5	35.8

4.2.3 Maximum Daily Discharge Analysis

For the analysis of Maximum Daily Discharges of River Chincha, the information of the hydrometric station Conta has been used. This station has a contribution area of 2981.5 km². Figure 3.21 shows its location in the river Chincha catchment.

The Directorate General of Water Infrastructure (DGIH) of the Ministry of Agriculture has provided information on annual maximum daily discharge of Conta station whose values are shown in Table N° 4.7

Table Nº 4.7.Maximum Daily Discharge of station Conta, Chincha River (m3/s)

٨ÑO	SENAMHI		JUNTA DE USUARIOS		Combinados
ANO	Total	Rio Chico	Rio Matagente	Total	Combinados
1950	155.43	-	-	-	155.43
1951	395.75	-	-	-	395.75
1952	354.00	-	-	-	354.00
1953	1,268.80	-	-	-	1,268.80
1954	664.40	-	-	-	664.40
1955	241.45	-	-	-	241.45
1956	227.83	-	-	-	227.83
1957	226.53	-	-	-	226.53
1958	88.36	35.34	53.02	88.36	88.36
1959	301.42	120.57	180.85	301.42	301.42
1960	245.17	98.07	147.10	245.17	245.17
1961	492.83	197.13	295.69	492.82	492.82
1962	395.06	158.02	237.03	395.05	395.05
1963	337.84	135.14	202.70	337.84	337.84
1964	66.95	26.78	40.17	66.95	66.95
1965	154.12	61.65	92.47	154.12	154.12
1966	139.13	55.65	83.48	139.13	139.13
1967	1,202.58	481.03	721.55	1,202.58	1,202.58
1968	43.92	17.57	26.35	43.92	43.92
1969	72.14	28.86	43.28	72.14	72.14
1970	271.57	108.63	162.94	271.57	271.57
1971	497.84	199.13	298.71	497.84	497.84
1972	784.16	313.66	470.50	784.16	784.16
1973	137.53	55.01	82.52	137.53	137.53
1974	215.66	86.26	129.40	215.66	215.66
1975	246.87	98.75	148.12	246.87	246.87
1976	311.13	124.45	186.68	311.13	311.13
1977	97.10	38.84	58.26	97.10	97.10
1978	33.00	13.20	19.80	33.00	33.00
1979	51.90	20.76	31.14	51.90	51.90
1980	33.70	13.48	20.22	33.70	33.70
1981	83.95	33.58	50.37	83.95	83.95
1982	183.60	73.44	110.16	183.60	183.60
1983	81.20	32.48	48.72	81.20	81.20
1984	292.87	117.15	175.72	292.87	292.87
1985	71.42	51.88	77.82	129.70	129.70
1986	106.26	46.00	69.00	115.00	115.00
1987	-	42.00	63.00	105.00	105.00
1988	-	28.51	42.76	71.27	71.27
1989	-	71.38	107.07	178.45	178.45
1990	24.34	9.74	14.60	24.34	24.34
1991	-	41.00	61.49	102.49	102.49
1992	-	5.95	8.92	14.87	14.87
1993	-	51.73	77.59	129.32	129.32
1994	-	75.61	113.41	189.02	189.02
1995	-	121.47	182.21	303.68	303.68
1996	-	49.85	74.77	124.62	124.62
1997	-	10.60	15.89	26.49	26.49
1998	-	112.00	168.00	280.00	280.00
1999	-	165.74	248.61	414.35	414.35
2000	-	114.93	172.39	287.32	287.32

2001	-	81.72	122.59	204.31	204.31
2002	-	47.65	71.48	119.13	119.13
2003	-	52.38	78.57	130.95	130.95
2004	-	63.73	95.60	159.33	159.33
2005	-	14.24	21.36	35.60	35.60
2006	-	62.48	93.72	156.20	156.20

These values have been analyzed with different distribution functions described in item 4.2.1.1. and evidence of Kolmogrov - Smirnov best fits the Log - Pearson 3 parameters. The results are shown in Table No 4.8.

Table Nº 4.8. Maximum Discharges for each Return Period at te Station Conta, Chincha River (m3/s)

Periodo de Retorno	Caudal Máximo
(Años)	
2	178.60
5	378.22
10	535.94
25	762.80
50	951.24
100	1,155.95

4.2.4 Simulation Model, Application of HEC-HMS Software

4.2.4.1 Hydrological Model

Time of Concentration and Travel Time

USDA/SCS Unit Synthetic Hydrograph model was used to calculate the following parameters:

Concentration time (Tc) with the Bransby-Williams formula

$$Tc = 0.95 * (L^3/H)^{0.385}$$

Where:

L = The largest raindrop route at the main river bed (km)

H = Head(m)

Tc = Concentration time (Hr)

Travel time (Tv) = 0.6*Tc

Table N ^o	49 (oncentration	ans Tra	vel Times	for the	Base 1	Point (station (Conta)
		.oncenti ation	ans 11a	ver rimes	ior the	Dase	i onni (station v	conta)

L =	121.25	Km
Η =	4,402.00	Mts
Tc =	9.58	Hrs
Tv =	5.75	Hrs

Maximum Rain Storm Duration

Because the information of storms given by SENAMHI was provided in a daily basis, the information about the duration of the storm was not known. For this reason, based on the information of duration of storms in Perú, mentioned in the "Study of the Hydrology of Peru" (Refence "d"), a duration of 10 hours was adopted.

This value exceeds the time of concentration of 9.58 hours calculated in the previous item, it indicates that the peak values to be estimated in the hydrometric station Conta will correspond to the simultaneous contribution of runoff of the the whole catchement of the river Pisco until the Conta hydrometric station.

Storm Depth

The storm depths for a duration of 10 hours were calculated using the equation of Dick and Peschke (Reference "c") which allows to estimate the maximum rainfall for a given storm duration from a 24-hour maximum rainfall. The values of 24 hour maximum rainfall showed in Table 4.5 were used for the calculations, these values correspond to an spatial average rainfall for the catchment until hydrometric station Letrayoc.

Dick and Peschke equation :

 $Pd = Pd_{24}*(Tc/1440)^{0,25}$

Where:

Pd = Maximum rainfall for a duration d

 $Pd_{24}=24 - hour maximum rainfall$

Tc= Concentration time (minutes)

Table	Nº 4.10.	Maximum	Rainfall	according	to Dick	x - Peschke

T [Años]	Pp Areal Max 24 Horas [mm]	Pp Max, dura- cion igual Tc [mm]
2	17.00	13.66
5	23.40	18.80
10	27.39	22.01
25	32.22	25.89
50	35.56	28.57
100	39.06	31.38

The maximum daily rainfall for return periods of 2, 5, 10, 25, 50, and 100 year are 17, 23, 27, 32, 36 and 39 mm, respectively, and rainfalls for a duration of 10 hours storm are 14, 19, 22, 26, 29, and 31 mm, respectively.

In the study cited above (Study of the Hydrology Service of Peru, 1982), for a frequency interval 1 hour storm duration for up to 10 hours, has the intensity distribution, see Table N° 4.11.

	Return	Hour							Total			
Period [Years]	Period [Years]	1	2	3	4	5	6	7	8	9	10	Rainfall [mm]
	2	1	1	2	3	2	2	1	1	1	1	13.66
	5	1	2	2	4	3	2	2	2	1	1	18.80
	10	1	2	3	4	3	3	2	2	1	1	22.01
	25	1	2	3	5	4	3	3	2	2	1	25.89
ſ	50	1	3	4	5	4	3	3	2	2	1	28.57
	100	2	3	4	6	4	4	3	3	2	1	31.38

Table Nº 4.11. Hyetograph for different Return Period

Selection of Curve Number

When maximum flood records are available at local or regional hydrometric stations, curve numbers can be calculated from calibration.

Typically, selection of the curve number (CN) is done based on the hydrologicsoil group and the land use description.

Four hydrological soil groups have been defineds:

Group A: Deep sand, deep wind – deposited soils, aggregate silts.

- **Group B:** Shallow wind deposited soils, sandy marl.
- Group C: Clayey marls, sandy shallow marls, soils with high clay contents.
- **Group D:** Expansive soils, highly plastic clays.

Table N° 4.12 shows the CN as a function of hydrologic soil group and land uses.

/Table N ^o	^o 4.12.	Curve N	lumber (CN Base	ed on Lar	nd Use a	nd Soil H	vdrological
1 4010 11		Cui i C I i	amou	CI I DUDU	a on La	ia coca	ind Don in	., al ological

	11. 4.1 0. 4.			Grupo hidrológico del suelo			
	Uso del Sucio		A	В	С	D	
T' 14' 1	72	81	88	91			
Tierras cunivadas	con tratamiento de conse	ervación	62	71	78	81	
Dastinulas	condiciones pobres		68	79	86	89	
Fasuzaies	condiciones óptimas		39	61	74	80	
Praderas (Vegas de t	ios: condiciones óptimas)	· · · · · · · · · · · · · · · · · · ·	30	58	71	78	
D	troncos delgados, cubier	ta pobre, sin hierbas	45	66	77	83	
Bosques	cubierta buena	25	55	70	77		
Espácios abiertos, césped, parques,	óptimas condiciones: cubierta de pasto en el 75% o más			61	74	80	
campos de golf, cementerios, etc.	condiciones aceptables: cubierta de pasto en el 50 al 75%			69	79	84	
Áreas comerciales de negocios (85% impermeables)				92	94	95	
Zonas industriales (7	2% impermeables)		81	88	91	93	
0 - D - D - C - C - C - C - C - C - C - C	Tamaño lote (m ²)	% impermeable			-	1.5	
	500	65	77	85	90	92	
Zana and Institute	1000	38	61	75	83	87	
Zonas residenciales	1350	30	57	72	81	86	
	2000	25	54	70	80	85	
	4000	20	51	68	79	84	
Parqueaderos pavimo	entados, techos, accesos, e	le.	98	98	98	98	
	pavimentados con cunet	as y alcantarillados	98	98	98	98	
Calles y carreteras	grava		76	85	89	91	
	tierra			82	87	89	

Based on land uses, and adopting the hydrologic soil group C for the whole catchment, an initial areal averaged curve number of 85.5 was adopted for Chincha Basin. In Table 4.13 the estimated percentages of land use with their respective values of curves of number for river Chincha are shown.

Table Nº 4.13. Estimated Value of Cur	ve Number (CN) for initial calibratión of HEC-HMS Mod	Iodel
---------------------------------------	---	--------------

Uso del Suelo					
Sin Tratamiento de Consevacion	40.00	88.0			
Con Tratamiento de Consevacion	5.00	78.0			
Condicones Pobres	30.00	86.0			
Condicones Optimas	5.00	74.0			
Praderas					
Troncos delgados	5.00	77.0			
Cubierta Buena	1.00	70.0			
Area comerciales					
	Uso del Suelo Sin Tratamiento de Consevacion Con Tratamiento de Consevacion Condicones Pobres Condicones Optimas Praderas Troncos delgados Cubierta Buena Area comerciales	Uso del Suelo%Sin Tratamiento de Consevacion40.00Con Tratamiento de Consevacion5.00Condicones Pobres30.00Condicones Optimas5.00Praderas4.00Troncos delgados5.00Cubierta Buena1.00Area comerciales1.00			

	1.00	91.0	
Z	5.00	81.0	
0.1	Pavimentadas con cunetas	1.00	98.0
Calles y	Grava	1.00	89.0
carreteras	Tierra	2.00	87.0
Curva	101.00	85.5	

After the process of calibration of the model HEC-HMS, this value was adjusted to 91.

4.2.4.2 HEC – HMS Modeling

The U.S. Engineer Corps' Hydrological Engineering Center designed the *Hydrological Modeling System (HEC – HMS)* computer program. This program provides a variety of options to simulate rainfall – runoff processes, flow routes, etc. (US Army, 2000).

HEC-HMS includes a graphic interface for the user (GUI), hydrological analysis components, data management and storage capabilities, and facilities to express results through graphs and reports in charts. The Guide provides all necessary means to specify the basin's components, introduce all relevant data of these components, and visualize the results (Reference "e").

Conta Basin Model.- SCS's Curve Number method was used to estimate losses. SCS's Unit Hydrograph method was used to transform actual rainfall into flow. In addition, the 2981 km² basin area is taken into account as basic information. Due to the small averages discharges generally observed in river Pisco it was assumed that there was no base flow previous to the occurrence of the flood flows.

Meteorological Model.- Based on calculation under N° 3.2 Pluviometer Information Analysis and Frequency Law, hyetographs are introduced in the meteorological model for a 2, 5, 10, 25, 50, and 100 – year floods, and a storm duration of 10 hours.

Control Specifications.- Starting and ending dates are specified for the flood simulation to be carried out. Simulation results and flood

hydrograph will be submitted. In this case, starting date is February 2nd, 2010, 00:00, and end date is February 4th, 2010, 12:00 pm. Based on the recommendation of the HEC-HMS Technical Reference Manual the minimum computational time interval is calculated as 0.29 times the Lag Time. Approximating the Lag Time as 0.6 times the Concentration Time, a lag time of 5.75 hours and a minimum computational time interval of 1.67 hours are obtained. For the simulation a computational time interval of 1 hour was used.

Calibration of the Model. Due to the fact that there was no available information on simultaneous storm hyetographs and flood hydrographs which would allow to calibrate model parameters for doing forecasts, the model was calibrated based on information of estimated daily discharges.

The concept of the calibration was to adjust a curve number which produce peak discharges values similar to the estimated maximum daily discharge. Following this procedure a curve number of 91 was obtained.

Below, Figure N° 4.9 shows the watershed considered by HEC-HMS model for the simulation. Figures N° 4.10 to 4.21 show the results of the simulations for the floods of 2, 5, 10, 25, 50 and 100 years return period.

Figure Nº 4.9. Model Chincha River Basin in the HEC-HMS Software

Figure Nº 4.10. Hydrograph Rainfall – Runoff models of the Chincha River basin, Return Period of 5 years

In the upper part of Figure 4.10 the design hyetograph is shown, the red portion corresponds to the infiltrated rainfall, the blue portion corresponds to the effective rainfall, the infiltration have been computed by the software HEC-HMS using the Curve Number method from the U.S. Ex-Soil Conservation Service.

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 24 hours after it got started.

Ħ	🛙 Summary Results for Subbasin "SubCuenca Conta" 📃 💼
	Project: CHINCHA NIPPON Simulation Run: Run 1 Subbasin: SubCuenca Conta
	Start of Run:04feb2010, 00:00Basin Model:Cuenca ChinchaEnd of Run:06feb2010, 12:00Meteorologic Model:Met. Nº 01Compute Time:08feb2011, 16:45:31Control Specifications:Control Nº 01
	Volume Units: () MM () 1000 M3
	Computed Results Peak Discharge : 203,6 (M3/S) Date/Time of Peak Discharge : 04feb2010, 13:00 Total Precipitation : 14,00 (MM) Total Loss : 11,64 (MM) Total Excess : 2,36 (MM) Discharge : 2,36 (MM)

Figure Nº 4.11.Results Model Simulation of Rainfall – Runoff Chincha River, Return Period of 5 years

In Figure N° 4.11 is the maximum flow is calculated for a return period of 2 years of 203.6 m^3/s . The maximum discharge spends approximately 13 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.14 shows the values of the hydrograph of the flood return period of 2 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
04-Feb-10	01:00	1,00	1,00	0,00	0,0
04-Feb-10	02:00	1,00	1,00	0,00	0,0
04-Feb-10	03:00	2,00	2,00	0,00	0,0
04-Feb-10	04:00	2,00	1,96	0,04	0,3
04-Feb-10	05:00	2,00	1,72	0,28	2,8
04-Feb-10	06:00	2,00	1,49	0,51	11,1
04-Feb-10	07:00	1,00	0,67	0,33	27,8
04-Feb-10	08:00	1,00	0,63	0,37	55,0
04-Feb-10	09:00	1,00	0,59	0,41	90,6
04-Feb-10	10:00	1,00	0,56	0,44	129,0
04-Feb-10	11:00	0,00	0,00	0,00	163,8
04-Feb-10	12:00	0,00	0,00	0,00	190,5
04-Feb-10	13:00	0,00	0,00	0,00	203,6
04-Feb-10	14:00	0,00	0,00	0,00	199,0
04-Feb-10	15:00	0,00	0,00	0,00	179,7
04-Feb-10	16:00	0,00	0,00	0,00	153,9
04-Feb-10	17:00	0,00	0,00	0,00	125,7
04-Feb-10	18:00	0,00	0,00	0,00	99,1
04-Feb-10	19:00	0,00	0,00	0,00	75,4
04-Feb-10	20:00	0,00	0,00	0,00	57,5
04-Feb-10	21:00	0,00	0,00	0,00	44,5
04-Feb-10	22:00	0,00	0,00	0,00	34,5
04-Feb-10	23:00	0,00	0,00	0,00	26,5

 Nº 4.14. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 2 Years

05-Feb-10	00:00	0,00	0,00	0,00	20,3
05-Feb-10	01:00	0,00	0,00	0,00	15,7
05-Feb-10	02:00	0,00	0,00	0,00	12,1
05-Feb-10	03:00	0,00	0,00	0,00	9,3
05-Feb-10	04:00	0,00	0,00	0,00	7,2
05-Feb-10	05:00	0,00	0,00	0,00	5,5
05-Feb-10	06:00	0,00	0,00	0,00	4,3
05-Feb-10	07:00	0,00	0,00	0,00	3,4
05-Feb-10	08:00	0,00	0,00	0,00	2,6
05-Feb-10	09:00	0,00	0,00	0,00	2,0
05-Feb-10	10:00	0,00	0,00	0,00	1,5
05-Feb-10	11:00	0,00	0,00	0,00	1,1
05-Feb-10	12:00	0,00	0,00	0,00	0,7
05-Feb-10	13:00	0,00	0,00	0,00	0,5
05-Feb-10	14:00	0,00	0,00	0,00	0,3
05-Feb-10	15:00	0,00	0,00	0,00	0,1
05-Feb-10	16:00	0,00	0,00	0,00	0,0

Figure Nº 4.12. Hydrograph Rainfall – Runoff models of the Chincha River basin, Return Period of 5 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 24 hours after it got started.

💷 Summary Result	ts for Subbasin "Sul	bCuenca Conta"						
	Project: Simulation Run: Rur	: CHINCHA NIPPON 1 Subbasin: SubCuenca	a Conta					
Start of Run End of Run: Compute Tim	: 04feb2010,00:00 06feb2010,12:00 ne: 23dic2010,09:50 Volume Unit	0 Basin Model: 0 Meteorologic Model: 1:55 Control Specificati ts: () MM () 1000 M3	Cuenca Chincha el: Met. Nº 01 ions: Control Nº 01					
Computed Resul	Computed Results							
Peak Discharge Total Precipitati Total Loss : Total Excess :	: 472,6 (M3/S) on : 20,00 (MM) 14,41 (MM) 5,59 (MM)	Date/Time of Peak Disch Total Direct Runoff : Total Baseflow : Discharge :	harge: 04feb2010, 13:00 5,59 (MM) 0,00 (MM) 5,59 (MM)					

Figure Nº 4.13.Results Model Simulation of Rainfall – Runoff Chincha River, Return Period of 5 years

In Figure N° 4.13 is the maximum flow is calculated for a return period of 5 years of 472 m^3/s . The maximum discharge spends approximately 13 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.15 shows the values of the hydrograph of the flood return period of 5 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
04-Feb-10	01:00	1,00	1,00	0,00	0,0
04-Feb-10	02:00	2,00	2,00	0,00	0,0
04-Feb-10	03:00	2,00	2,00	0,00	0,0
04-Feb-10	04:00	4,00	3,46	0,54	3,9
04-Feb-10	05:00	3,00	2,03	0,97	18,5
04-Feb-10	06:00	2,00	1,15	0,85	50,3
04-Feb-10	07:00	2,00	1,03	0,97	106,2
04-Feb-10	08:00	2,00	0,92	1,08	185,2
04-Feb-10	09:00	1,00	0,42	0,58	273,7
04-Feb-10	10:00	1,00	0,40	0,60	360,5
04-Feb-10	11:00	0,00	0,00	0,00	430,6
04-Feb-10	12:00	0,00	0,00	0,00	469,9
04-Feb-10	13:00	0,00	0,00	0,00	472,6
04-Feb-10	14:00	0,00	0,00	0,00	440,3
04-Feb-10	15:00	0,00	0,00	0,00	385,0
04-Feb-10	16:00	0,00	0,00	0,00	321,1
04-Feb-10	17:00	0,00	0,00	0,00	256,3
04-Feb-10	18:00	0,00	0,00	0,00	199,5
04-Feb-10	19:00	0,00	0,00	0,00	152,5
04-Feb-10	20:00	0,00	0,00	0,00	117,1
04-Feb-10	21:00	0,00	0,00	0,00	90,4
04-Feb-10	22:00	0,00	0,00	0,00	69,8
04-Feb-10	23:00	0,00	0,00	0,00	53,8
05-Feb-10	00:00	0,00	0,00	0,00	41,3
05-Feb-10	01:00	0,00	0,00	0,00	31,9
05-Feb-10	02:00	0,00	0,00	0,00	24,6
05-Feb-10	03:00	0,00	0,00	0,00	18,9
05-Feb-10	04:00	0,00	0,00	0,00	14,6
05-Feb-10	05:00	0,00	0,00	0,00	11,3
05-Feb-10	06:00	0,00	0,00	0,00	8,8
05-Feb-10	07:00	0,00	0,00	0,00	6,8
05-Feb-10	08:00	0,00	0,00	0,00	5,3
05-Feb-10	09:00	0,00	0,00	0,00	4,0
05-Feb-10	10:00	0,00	0,00	0,00	3,0
05-Feb-10	11:00	0,00	0,00	0,00	2,1
05-Feb-10	12:00	0,00	0,00	0,00	1,3
05-Feb-10	13:00	0,00	0,00	0,00	0,8
05-Feb-10	14:00	0,00	0,00	0,00	0,4
05-Feb-10	15:00	0,00	0,00	0,00	0,1
05-Feb-10	16:00	0,00	0,00	0,00	0,0

 Table Nº 4.15. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 5 Years

Figure Nº 4.14. Hydrograph Rainfall – Runoff models of the Chincha River basin, Return Period of 10 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 26 hours after it got started.

Summary Results fo	or Subbasin "Sub	Ouenca Letra	уос"					
Project: PISCONIPPON Simulation Run: SIM 01 Subbasin: Sub Cuenca Letrayoc								
Start of Run: End of Run: Compute Time:	02feb2010, 00:00 04feb2010, 12:00 04nov2010, 09:3 Volume Unit	0 Basin 0 0 Meteo 15:39 Contro s:	Model: rologic Model: ol Specifications: 1000 M3	Cuenca Pisco MET 01 : Control 1				
Computed Results Peak Discharge : Total Precipitation Total Loss : Total Excess :	451,3 (M3/S) : 26,00 (MM) 21,31 (MM) 4,69 (MM)	Date/Time of F Total Direct Ru Total Baseflow Discharge :	Peak Discharge : unoff : / :	02feb2010, 12:00 4,69 (MM) 0,00 (MM) 4,69 (MM)				

Figure Nº 4.15. Results Model Simulation of Rainfall – Runoff Chincha River, Return Period of 10 years

In Figure N° 4.15 is the maximum flow is calculated for a return period of 10 years of 579 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.16 shows the values of the hydrograph of the flood return period of 10 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
04-Feb-10	00:00				0,0
04-Feb-10	01:00	1,00	1,00	0,00	0,0
04-Feb-10	02:00	2,00	2,00	0,00	0,0
04-Feb-10	03:00	3,00	2,96	0,04	0,3
04-Feb-10	04:00	4,00	3,21	0,79	6,4
04-Feb-10	05:00	3,00	1,90	1,10	26,1
04-Feb-10	06:00	3,00	1,58	1,42	70,2
04-Feb-10	07:00	2,00	0,92	1,08	145,4
04-Feb-10	08:00	2,00	0,83	1,17	248,0
04-Feb-10	09:00	1,00	0,38	0,62	360,7
04-Feb-10	10:00	1,00	0,36	0,64	465,1
04-Feb-10	11:00	0,00	0,00	0,00	541,8
04-Feb-10	12:00	0,00	0,00	0,00	579,6
04-Feb-10	13:00	0,00	0,00	0,00	572,2
04-Feb-10	14:00	0,00	0,00	0,00	526,1
04-Feb-10	15:00	0,00	0,00	0,00	454,0
04-Feb-10	16:00	0,00	0,00	0,00	375,3
04-Feb-10	17:00	0,00	0,00	0,00	298,5
04-Feb-10	18:00	0,00	0,00	0,00	232,3
04-Feb-10	19:00	0,00	0,00	0,00	177,8
04-Feb-10	20:00	0,00	0,00	0,00	136,5
04-Feb-10	21:00	0,00	0,00	0,00	105,4
04-Feb-10	22:00	0,00	0,00	0,00	81,3
04-Feb-10	23:00	0,00	0,00	0,00	62,7
05-Feb-10	00:00	0,00	0,00	0,00	48,2
05-Feb-10	01:00	0,00	0,00	0,00	37,2
05-Feb-10	02:00	0,00	0,00	0,00	28,7
05-Feb-10	03:00	0,00	0,00	0,00	22,1
05-Feb-10	04:00	0,00	0,00	0,00	17,0
05-Feb-10	05:00	0,00	0,00	0,00	13,2
05-Feb-10	06:00	0,00	0,00	0,00	10,3
05-Feb-10	07:00	0,00	0,00	0,00	8,0
05-Feb-10	08:00	0,00	0,00	0,00	6,2
05-Feb-10	09:00	0,00	0,00	0,00	4,7
05-Feb-10	10:00	0,00	0,00	0,00	3,4
05-Feb-10	11:00	0,00	0,00	0,00	2,3
05-Feb-10	12:00	0,00	0,00	0,00	1,5
05-Feb-10	13:00	0,00	0,00	0,00	0,8
05-Feb-10	14:00	0,00	0,00	0,00	0,4
05-Feb-10	15:00	0,00	0,00	0,00	0,2
05-Feb-10	16:00	0,00	0,00	0,00	0,0

Table Nº 4.16. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 10 Years

Figure Nº 4.16. Hydrograph Rainfall – Runoff models of the Chincha River basin, Return Period 25 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 26 hours after it got started.

I	Summary Results fo	or Subbasin "Sub	Cuenca Conta"	
	Sir	Project: mulation Run: Run	CHINCHA NIPPON 1 Subbasin: SubCuenca Cor	nta
	Start of Run: 0 End of Run: 0 Compute Time: 1)4feb2010, 00:00)6feb2010, 12:00 l2nov2010, 08:11:	Basin Model: Meteorologic Model: 53 Control Specifications:	Cuenca Chincha Met. Nº 01 : Control Nº 01
		Volume Units	s: 💿 MM 💿 1000 M3	
	Computed Results			
	Peak Discharge : Total Precipitation Total Loss : Total Excess :	806,7 (M3/S) : 26,00 (MM) 16,46 (MM) 9,54 (MM)	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 04feb2010, 12:00 9,54 (MM) 0,00 (MM) 9,54 (MM)

Figure Nº 4.17. Results Model Simulation of Rainfall – Runoff Chincha River, Return Period of 25 years

In Figure N° 4.17 is the maximum flow is calculated for a return period of 25 years of 806 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.17 shows the values of the hydrograph of the flood return period of 25 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
04-Feb-10	00:00				0,0
04-Feb-10	01:00	1,00	1,00	0,00	0,0
04-Feb-10	02:00	2,00	2,00	0,00	0,0
04-Feb-10	03:00	3,00	2,96	0,04	0,3
04-Feb-10	04:00	5,00	3,89	1,11	8,7
04-Feb-10	05:00	4,00	2,31	1,69	37,2
04-Feb-10	06:00	3,00	1,42	1,58	98,1
04-Feb-10	07:00	3,00	1,21	1,79	203,0
04-Feb-10	08:00	2,00	0,71	1,29	343,4
04-Feb-10	09:00	2,00	0,65	1,35	497,7
04-Feb-10	10:00	1,00	0,30	0,70	642,2
04-Feb-10	11:00	0,00	0,00	0,00	750,5
04-Feb-10	12:00	0,00	0,00	0,00	806,7
04-Feb-10	13:00	0,00	0,00	0,00	800,1
04-Feb-10	14:00	0,00	0,00	0,00	735,2
04-Feb-10	15:00	0,00	0,00	0,00	637,2
04-Feb-10	16:00	0,00	0,00	0,00	526,3
04-Feb-10	17:00	0,00	0,00	0,00	419,7
04-Feb-10	18:00	0,00	0,00	0,00	325,1
04-Feb-10	19:00	0,00	0,00	0,00	248,4
04-Feb-10	20:00	0,00	0,00	0,00	190,9
04-Feb-10	21:00	0,00	0,00	0,00	147,4
04-Feb-10	22:00	0,00	0,00	0,00	114,0
04-Feb-10	23:00	0,00	0,00	0,00	87,6
05-Feb-10	00:00	0,00	0,00	0,00	67,4
05-Feb-10	01:00	0,00	0,00	0,00	52,1
05-Feb-10	02:00	0,00	0,00	0,00	40,1
05-Feb-10	03:00	0,00	0,00	0,00	30,9
05-Feb-10	04:00	0,00	0,00	0,00	23,8
05-Feb-10	05:00	0,00	0,00	0,00	18,4
05-Feb-10	06:00	0,00	0,00	0,00	14,4
05-Feb-10	07:00	0,00	0,00	0,00	11,1
05-Feb-10	08:00	0,00	0,00	0,00	8,6
05-Feb-10	09:00	0,00	0,00	0,00	6,5
05-Feb-10	10:00	0,00	0,00	0,00	4,8
05-Feb-10	11:00	0,00	0,00	0,00	3,3
05-Feb-10	12:00	0,00	0,00	0,00	2,1
05-Feb-10	13:00	0,00	0,00	0,00	1,2
05-Feb-10	14:00	0,00	0,00	0,00	0,6
05-Feb-10	15:00	0,00	0,00	0,00	0,2
05-Feb-10	16:00	0,00	0,00	0,00	0,0

Table Nº 4.17. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 25 Years

Figure Nº 4.18. Hydrograph Rainfall – Runoff models of the Chincha River basin, Return Period 50 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 26 hours after it got started.

Summary Results for	r Subbasin "Sub(Cuenca Conta"		
Project: CHINCHA NIPPON Simulation Run: Run 1 Subbasin: SubCuenca Conta				
Start of Run: 04 End of Run: 06 Compute Time: 12	feb2010, 00:00 ifeb2010, 12:00 nov2010, 08:15:	Basin Model: Meteorologic Model: 16 Control Specifications:	Cuenca Chincha Met. Nº 01 Control Nº 01	
	Volume Units	: 💿 MM 💿 1000 M3		
Computed Results				
Peak Discharge : Total Precipitation : Total Loss : Total Excess :	916,8 (M3/S) 28,00 (MM) 17,02 (MM) 10,98 (MM)	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 04feb2010, 12:00 10,98 (MM) 0,00 (MM) 10,98 (MM)	

Figure Nº 4.19. Results Model Simulation of Rainfall – Runoff Chincha River, Return Period of 50 years

In Figure N° 4.19 is the maximum flow is calculated for a return period of 50 years of 916 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.18 shows the values of the hydrograph of the flood return period of 50 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
04-Feb-10	00:00				0,0
04-Feb-10	01:00	1,00	1,00	0,00	0,0
04-Feb-10	02:00	3,00	3,00	0,00	0,0
04-Feb-10	03:00	4,00	3,68	0,32	2,3
04-Feb-10	04:00	5,00	3,39	1,61	18,2
04-Feb-10	05:00	4,00	2,06	1,94	61,7
04-Feb-10	06:00	3,00	1,27	1,73	146,1
04-Feb-10	07:00	3,00	1,10	1,90	279,3
04-Feb-10	08:00	2,00	0,65	1,35	444,2
04-Feb-10	09:00	2,00	0,59	1,41	614,3
04-Feb-10	10:00	1,00	0,28	0,72	765,2
04-Feb-10	11:00	0,00	0,00	0,00	870,9
04-Feb-10	12:00	0,00	0,00	0,00	916,8
04-Feb-10	13:00	0,00	0,00	0,00	894,6
04-Feb-10	14:00	0,00	0,00	0,00	813,1
04-Feb-10	15:00	0,00	0,00	0,00	700,1
04-Feb-10	16:00	0,00	0,00	0,00	576,3
04-Feb-10	17:00	0,00	0,00	0,00	458,7
04-Feb-10	18:00	0,00	0,00	0,00	355,2
04-Feb-10	19:00	0,00	0,00	0,00	271,5
04-Feb-10	20:00	0,00	0,00	0,00	208,7
04-Feb-10	21:00	0,00	0,00	0,00	161,2
04-Feb-10	22:00	0,00	0,00	0,00	124,5
04-Feb-10	23:00	0,00	0,00	0,00	95,8
05-Feb-10	00:00	0,00	0,00	0,00	73,7
05-Feb-10	01:00	0,00	0,00	0,00	56,9
05-Feb-10	02:00	0,00	0,00	0,00	43,8
05-Feb-10	03:00	0,00	0,00	0,00	33,7
05-Feb-10	04:00	0,00	0,00	0,00	26,0
05-Feb-10	05:00	0,00	0,00	0,00	20,2
05-Feb-10	06:00	0,00	0,00	0,00	15,7
05-Feb-10	07:00	0,00	0,00	0,00	12,2
05-Feb-10	08:00	0,00	0,00	0,00	9,4
05-Feb-10	09:00	0,00	0,00	0,00	7,0
05-Feb-10	10:00	0,00	0,00	0,00	5,1
05-Feb-10	11:00	0,00	0,00	0,00	3,5
05-Feb-10	12:00	0,00	0,00	0,00	2,2
05-Feb-10	13:00	0,00	0,00	0,00	1,2
05-Feb-10	14:00	0,00	0,00	0,00	0,6
05-Feb-10	15:00	0,00	0,00	0,00	0,2
05-Feb-10	16:00	0,00	0,00	0,00	0,0

Table Nº 4.18. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 50 Years

Figure Nº 4.20. Hydrograph Rainfall – Runoff models of the Chincha River basin, Return Period 100 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 26 hours after it got started.

Ħ	Summary Results for Subbasin "SubCuenca Conta"
	Project: CHINCHA NIPPON Simulation Run: Run 1 Subbasin: SubCuenca Conta
	Start of Run:04feb2010, 00:00Basin Model:Cuenca ChinchaEnd of Run:06feb2010, 12:00Meteorologic Model:Met. Nº 01Compute Time:12nov2010, 08:17:48Control Specifications:Control Nº 01
	Volume Units: 💿 MM 💿 1000 M3
	Computed Results
	Peak Discharge : 1171,1 (M3/S) Date/Time of Peak Discharge : 04feb2010, 12:00 Total Precipitation : 32,00 (MM) Total Direct Runoff : 13,97 (MM) Total Loss : 18,03 (MM) Total Baseflow : 0,00 (MM) Total Excess : 13,97 (MM) Discharge : 13,97 (MM)

Figure Nº 4.21. Results Model Simulation of Rainfall – Runoff Chincha River, Return Period of 100 years

In Figure N° 4.21 is the maximum flow is calculated for a return period of 100 years of 1,171 m³/s. The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.19 shows the values of the hydrograph of the flood return period of 100 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
04-Feb-10	00:00				0,0
04-Feb-10	01:00	2,00	2,00	0,00	0,0
04-Feb-10	02:00	3,00	3,00	0,00	0,0
04-Feb-10	03:00	4,00	3,46	0,54	3,9
04-Feb-10	04:00	6,00	3,71	2,29	27,9
04-Feb-10	05:00	4,00	1,84	2,16	87,7
04-Feb-10	06:00	4,00	1,50	2,50	202,4
04-Feb-10	07:00	3,00	0,95	2,05	376,4
04-Feb-10	08:00	3,00	0,84	2,16	588,0
04-Feb-10	09:00	2,00	0,50	1,50	803,8
04-Feb-10	10:00	1,00	0,24	0,76	992,1
04-Feb-10	11:00	0,00	0,00	0,00	1121,0
04-Feb-10	12:00	0,00	0,00	0,00	1171,1
04-Feb-10	13:00	0,00	0,00	0,00	1130,8
04-Feb-10	14:00	0,00	0,00	0,00	1021,8
04-Feb-10	15:00	0,00	0,00	0,00	873,4
04-Feb-10	16:00	0,00	0,00	0,00	716,3
04-Feb-10	17:00	0,00	0,00	0,00	566,6
04-Feb-10	18:00	0,00	0,00	0,00	437,6
04-Feb-10	19:00	0,00	0,00	0,00	334,9
04-Feb-10	20:00	0,00	0,00	0,00	257,7
04-Feb-10	21:00	0,00	0,00	0,00	199,1
04-Feb-10	22:00	0,00	0,00	0,00	153,5
04-Feb-10	23:00	0,00	0,00	0,00	118,2
05-Feb-10	00:00	0,00	0,00	0,00	91,0
05-Feb-10	01:00	0,00	0,00	0,00	70,2
05-Feb-10	02:00	0,00	0,00	0,00	54,1
05-Feb-10	03:00	0,00	0,00	0,00	41,6
05-Feb-10	04:00	0,00	0,00	0,00	32,1
05-Feb-10	05:00	0,00	0,00	0,00	25,0
05-Feb-10	06:00	0,00	0,00	0,00	19,4
05-Feb-10	07:00	0,00	0,00	0,00	15,1
05-Feb-10	08:00	0,00	0,00	0,00	11,5
05-Feb-10	09:00	0,00	0,00	0,00	8,7
05-Feb-10	10:00	0,00	0,00	0,00	6,2
05-Feb-10	11:00	0,00	0,00	0,00	4,2
05-Feb-10	12:00	0,00	0,00	0,00	2,6
05-Feb-10	13:00	0,00	0,00	0,00	1,4
05-Feb-10	14:00	0,00	0,00	0,00	0,7
05-Feb-10	15:00	0,00	0,00	0,00	0,2
05-Feb-10	16:00	0,00	0,00	0,00	0,0

Table Nº 4.19. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 100 Years

4.3 Results of the Simulation, Peak Flows in the Base Point

Table 4.20 summarizes the peak flows for different return periods obtained with the application of the software HEC-HMS in Chincha river basin for the location of hydrometric station Conta.

Table Nº 4.20. Summary of Peak Flows at the Ba	ase Point for	each Return	Period

T [Años]	Q [m³/s]
2	203.0
5	472.6
10	579.6
25	806.7
50	916.8
100	1,171.1

Peak flows at the base point obtained with HEC-HMS model for the return periods of 2, 5, 10, 25, 50 and 100 years have been estimated from the maximum rainfall generated for these return periods, a number curve and geomorphological parameters of the basin. These peak flows have been obtained with the same number of curve (equal to 91).

As it was considered in the calibration, peak discharges obtained with HEC-HMS model for different return periods are similar to the correspondent maximum daily discharges showed in Table 4.8.

V. REFERENCES

- a) Association BCEOM-SOFI CONSULT S.A., "Hydrology and Meteorology Study in the Catchments of the Pacific Littoral of Perú for Evaluation and Forecasting of El Niño Phenomenon for Prevention and Disaster Mitigation", 1999.
- b) Chow, Maidment and Mays, "Applied Hydrology", 1994.
- c) Guevara, Environmental Hydrologyl, 1991.
- d) IILA-SENAMHI-UNI, "Study of the Hydrology of Perú", 1982.
- e) U.S. Corp of Engineers, "Manual of Technical References of HEC-HMS Software", 2000.

Appendix-4 Hydrologic Study of Pisco River Basin

С

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS IN THE REPUBLIC OF PERU

HYDROLOGY OF MAXIMUM FLOODS IN PISCO RIVER

Appendix-4

December 2012

CONTENTS

I.	INTRODUCTION				
II.	GEN	VERAL ASPECTS	1		
	2.1	Location	1		
		2.1.1 Political Location	1		
		2.1.2 Geographic Location	1		
	2.2	Background	2		
	2.3	Justification of the Project	2		
	2.4	Objectives of the Study	2		
III.	PRO)JECT DESCRIPTION	3		
	3.1	Hydrographic System of Pisco River	3		
		3.1.1 General Description of the Basin	3		
		3.1.2 Hydrography of the Pisco River Basin	4		
	3.2	Climatology	6		
		3.2.1 Rainfall	6		
		3.2.2 Temperature	1		
	3.3	Hydrometry	2		
	3.4	Comments on the meteorologic and hydrometric and network in the			
		Pisco River Catchement.	25		
		3.4.1 On Pluviometric Stations.	25		
		3.4.2 On Hydrometric Stations.	25		
		3.4.3 Recommendations	26		
IV.	HYI	DROLOGY OF MAXIMUM FLOOD	28		
	4.1	Preliminary Considerations	28		
	4.2	Hydrology characterization, analysis of rainfall and river information	29		
		4.2.1 Hydrology Characterization	29		
		4.2.2 Maximum 24-Hours Rainfall Analysis	30		
		4.2.2.1 Distribution Functions	31		
		4.2.2.2 Calculation of Adjustment and Return Period for Maxin	пит		
		Rainfall in 24 Hours	33		
		4.2.2.3 Selection of Distribution Theory with better Adjustment to	the		
		Series Record Rainfall in 24 Hours	34		

		4.2.2.4 Determination of Maximum 24-Hours Rainfall for	Different
		Return Periods in the Base Point	42
		4.2.2.5 Determination of Maximum 24- Hours Rainfalls for	Different
		Return Period in the Pisco River Subwatersheds	42
		4.2.3 Maximum Daily Discharge Analysis	45
		4.2.4 Simulation Model, Application of HEC-HMS Software	46
		4.2.4.1 Hydrological Model	46
		4.2.4.2 HEC – HMS Modeling	50
	4.3	Results of the Simulation, Peak Flows in the Base Point	64
V.	REF	TERENCES	64
ANN	JEXE	S	65

LIST OF TABLES

Table Nº 3.1. Period and longitude of the available information of the Rainfall stations	7
Table Nº 3.2. Average Monthly Rainfall Stations Considered in the Study Area	9
Table Nº 3.3.Results of the linear fit equation of Totora and Acnococha station	10
Table N° 3.4. Monthly half temperature (C°) of the stations of the Pisco River basin and adjace basins	ent 2
Table N ^o 3.5. Characteristics of Hydrometric Stations in the Pisco River Basin a Surrounding Basins	nd 3
Table Nº 4.1. Geomorphological Characteristics of the basis point watershed (station Letrayo) 29
Table Nº 4.2. Maximum 24-hours rainfall Annual for Stations located within the Study Scope	30
Table N° 4.3. Determination Coefficient for each Distribution Function and for each Rainfor Station	all 34
Table Nº 4.4. Maximum 24-hours rainfall of each Rainfall Station for each Return Period	35
Table Nº 4.5. Maximum Areal 24- Hours Rainfall at the Base Point (Letrayoc Station) for ea	ch 42
Table Nº 4.6. Rainfall for Different Return Periods in each river Basin of Pisco	44
Table N° 4.7. Maximum Daily Discharge of station Letrayoc, Pisco River (m^{3}/s)	45
Table N° 4.8. Maximum Daily Discharges for each Return Period at te Station Letrayoc, Pis River (m^3/s)	'co 46
Table Nº 4.9. Concentration and Travel Times for the Base Point (station Letrayoc)	46
Table Nº 4.10. Maximum Rainfall according to Dick - Peschke	47
Table Nº 4.11. Hyetograph for different Return Periods	48
Table Nº 4.12. CN Based on Land Use and Soil Hydrological	48
Table Nº 4.13. Estimated Value of Curve Number (CN) for initial calibration of HEC-HN Model	∕S ∕0
WOULL .	77

Table Nº 4.14. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 2
Years 53
Table Nº 4.15. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 5Years55
Table Nº 4.16. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 10Years57
Table N° 4.17. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 25Years59
Table Nº 4.18. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 50Years61
Table N° 4.19. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 100Years63
Table 4.20 summarizes the peak flows for different return periods obtained with the application
of the software HEC-HMS in Pisco river basin for the location of hydrometric station Letrayoc.
64
Table Nº 4.21. Summary of Peak Flows at the Base Point for each Return Period64

LIST OF FIGURES

Figure Nº 3.1. Location Map of the Pisco River Basin	5
Figure N° 3.2. Period and longitude of the available information of the rainfall stations	7
Figure Nº 3.3. Location of the rainfall stations in Pisco River basin and adjacent basins	8
Figure Nº 3.4. Monthly Histogram of Rainfall Stations considered within the Study Scope	9
Figure Nº 3.5. Annual Rainfall Trends at the Stations considered within the Study Scop	11
Figure Nº 3.6. Isohyets for Mean Monthly Rainfall in the Pisco Basin, in January	12
Figure Nº 3.7. Isohyets for Mean Monthly Rainfall in the Pisco Basin, in February	13
Figure Nº 3.8. Isohyets Mean Monthly Rainfall in the Pisco Basin, in March	14
Figure Nº 3.9. Isohyets Mean Monthly Rainfall in the Pisco Basin, in April	15
Figure Nº 3.10. Isohyets Mean Monthly Rainfall in the Pisco Basin, in May	16
Figure Nº 3.11. Isohyets Mean Monthly Rainfall in the Pisco Basin, in June	17
Figure Nº 3.12. Isohyets Mean Monthly Rainfall in the Pisco Basin, in July	18
Figure Nº 3.13. Isohyets Mean Monthly Rainfall in the Pisco Basin, in August	19
Figure Nº 3.14. Isohyets Mean Monthly Rainfall in the Pisco Basin, in September	20
Figure Nº 3.15. Isohyets Mean Monthly Rainfall in the Pisco Basin, in October	21
Figure Nº 3.16. Isohyets Mean Monthly Rainfall in the Pisco Basin, in November	22
Figure Nº 3.17. Isohyets Mean Monthly Rainfall in the Pisco Basin, in December	23
Figure Nº 3.18. Isohyets Annual Mean Monthly Rainfall in the Pisco Basin	24
Figure N° 3.19. Distribution of the monthly half temperature of the weather stations locate the Pisco River basin	ed in 2
Figure Nº 3.20. Period and longitude of the available information of the Hydrometric Station	ıs 3
Figure Nº 3.21. Location of the hydrometric station Letrayoc in Pisco River basin	8
Figure Nº 4.1. Rainfall Stations considered for HEC - HMS Software application	30
Figure Nº 4.2. Isohyets for the 2 - Years Return Period Maximum 24-Hours Rainfall in the F	Pisco
Basin	36

Figure N° 4.3. Isohyets for the 5 - Years Return Period Maximum 24-Hours Rainfall in the Pisco Basin 37
Figure N° 4.4. Isohyets for the 10 - Years Return Period Maximum 24-Hours Rainfall in the Pisco Basin 38
Figure N° 4.5. Isohyets for the 25 - Years Return Period Maximum 24-Hours Rainfall in the Pisco Basin 39
Figure N° 4.6. Isohyets for the 50 - Years Return Period Maximum 24-Hours Rainfall in thePisco Basin40
Figure N° 4.7. Isohyets for the 100 - Years Return Period Maximum 24-Hours Rainfall in the Pisco Basin 41
Figure Nº 4.8. The Pisco River Subbasin 43
Figure Nº 4.9. Model Pisco River Basin in the HEC-HMS Software 52
Figure Nº 4.10. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period of 2 years 52
Figure N° 4.11.Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 2 years 53
Figure Nº 4.12. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period of 5 years 54
Figure N° 4.13.Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 5 years 55
Figure Nº 4.14. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period of 10 years 56
Figure N° 4.15. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 10 years 56
Figure Nº 4.16. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period 25 years 58
Figure Nº 4.17. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 25 years 58
Figure Nº 4.18. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period 50 years 60

Figure Nº 4.19. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 50 years 60

Figure N° 4.20. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period 100 years 62

Figure Nº 4.21. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 100years62

I. INTRODUCTION

In the last two extraordinary events (El Niño) occurred in 1983 and 1988, rainfall was very intense in the study area, which resulted in the activation of a number of rivers and streams adjacent to the Pisco River, causing severe damage in populated areas, irrigation and drainage infrastructure, agricultural lands, likewise, floods with catastrophic damage in the areas of Pisco, San Clemente and Humay.

El Niño is defined as the presence of abnormally warmer waters in the west coast of South America for a period longer than 4 consecutive months, and has its origin in the Central Equatorial Pacific. The phenomenon is associated with abnormal conditions of the atmospheric circulation in the Equatorial Pacific region. Abnormal conditions are considered when the equatorial circulation scheme takes the following three possibilities: may intensify, weaken or change direction.

This study contains a diagnosis of the problem, in order to explain the causes of the event and guide the actions to be implemented to provide greater security to the population, irrigation infrastructure, agricultural areas, etc. The report contains the hydrologic analysis to allow the characterization of the event in technical terms. With these analyses it has been possible to outline alternative structural solutions and no structural measures.

II. GENERAL ASPECTS

2.1 Location

2.1.1 Political Location

The study area is located in the districts of Pisco, San Clemente, Tupac Amaru Inca, San Andres, Humay and Independencia of the province of Pisco, in the Department of Ica.

2.1.2 Geographic Location

The study area is located approximately at coordinates UTM at 365,978 y 495,455 in East Coordinates, and 8'473, 994 and 8'576, 196 in North Coordinates (Zone 18).

2.2 Background

As part of the project: "Study on Flood Control of Valley Village In West Coast of Republic of Peru " Protection of Rural Areas and Valleys and Flood Vulnerable", it is required a supporting technical document of the maximum flood flows on Pisco River, to define the hydrologic and hydraulic proposals for Pisco River system.

The occurrence of extreme events such as El Niño in the northern and southern coast of Peru has resulted in the presence of heavy rains, increased river flows and streams activation of contributors to the main course, such as occurred in the last two events of 1983 and 1998. The Pisco River overflowed causing flooding of extensive crop areas and cities such Pisco, San Clemente, Humay and San Andres, and resulting in damage to agriculture, road infrastructure, housing, irrigation infrastructure and drainage. Currently there are vulnerable areas in river sections that require the application of structural measures for flood mitigation.

An assessment of maximum floods has been made based on data from the hydrometric station Letrayoc. With the results obtained, the hydraulic box of the will be size base to the return period chosen in specific areas and also the design of protective structures.

2.3 Justification of the Project

Pisco River allows drainage of floods from rainfalls and inflows from the watershed.

The presence of normal hydrological events causes some damage in agricultural areas, irrigation and drainage infrastructure, service roads and towns, therefore it requires structural measures that allow the mitigation of extreme events up to some degree magnitude.

2.4 Objectives of the Study

The objective of the study is to determine the maximum instant Pisco River floods for different return periods, to allow an appropriate measurement of the hydraulic section of river channelization and the design of protection works, mitigating the potential damage from extreme hydrological events.

III. PROJECT DESCRIPTION

3.1 Hydrographic System of Pisco River

3.1.1 General Description of the Basin

Politically, the Pisco River basin is part of the provinces of Pisco (districts: Paracas, Pisco, San Andres, Tupac Amaru Inca, San Clemente, Independencia, Humay and Huáncano) and Castrovirreyna (districts: Ticrapo, Mollepampa, Cokes, and Santa Castrovirryena Ana), and belongs to the departments of Ica and Huancavelica, respectively, covering an area of 4,122.38 Km².

Geographically, its endpoints are located between Parallel 12 ° 52 'and 13 ° 48' South latitude and 75 ° 02 'and 76 ° 13' West Longitude. In the projection UTM - WGS84 its extreme points are between Parallel 365.978 and 495.455 of Coordinates East and 8'473, 994 and 8'576, 196 of North Coordinate.

In altitude ranges from sea level to the line of peaks of the Cordillera Occidental of the Andes, this is the continental divide of the waters. The highest point is Cerro San Juan de Dios (5.218 m).

The valley of Pisco (23,356.02 ha of agricultural area under irrigation, PROFODUA report - Pisco Valley, 2004), is located on the Central Coast of Peru, in the central sector of the department of Ica. In Physiographical terms, this valley is formed mainly by the Pisco River floodplain, and by their fans and ecological and marine landscapes.

The Pisco River Valley is connected to the capital of the Republic and other major towns in the South Coast of the country by the Panamericana Highway, the most important route of the road network in the country. This fully paved road crosses the valley along its coastal zone, connecting the cities of Lima and Pisco through a 243 Km asphalt section.

Another important roadway for the area is the longitudinal highway of the basin, known as "Via de los Libertadores ". This road of 364 Km long starts at Km 233.3 of the Panamericana Highway, just before the Huamaní Bridge over the Pisco River. This road links the towns of Pisco, Independencia, Humay, Huáncano, Ticrapo, Castrovirreyna, Santa Ines and Ayacucho.

Figure 3.1 shows the location and area of the Pisco River Basin.

3.1.2 Hydrography of the Pisco River Basin

The Andes Mountains divides the country in hydrographic terms. Two main branches drain their waters into the Pacific and Atlantic Oceans, respectively, thus forming the Continental Divide of the waters. There is also a third branch in the south-east of the country, consisting of a high inter-Andean basin whose waters drain into Titicaca Lake.

The basin of the Pacific or Western has an approximate area of 290.000 km², equivalent to 22% of the total area of the country. As a result of rainfall and melting snow and glaciers in the upper part, 52 rivers, in some importance, run to the Pacific Ocean predominantly towards the southwest. Pisco River is one of them, being located in the central region of this side.

Figure Nº 3.1. Location Map of the Pisco River Basin

Pisco River Basin has a sui generis form, with some semblance of a crescent. The basin bounds on the north by the San Juan River basin, on the south with the Ica River basin, on the east with the Mantaro and Pampas river basins and to the western the Pacific Ocean.

Pisco River Basin has a drainage area of 4,122.38 km², of which 62% (2.376 km²) located above the 2.500 msnm corresponds to the wet or hydrographical basin.

The Pisco River is a main drain of the runoff of the basin, begins at the confluence of the rivers Huaytará and Chiris, near the city of Pompano. Chiris River, the main tributary, in turn starts in the highest part of the basin at the confluence of the rivers Santa Ana and Luicho, which born in a series of small lakes, among these are the Pultoc, Acnococha and Tacococha lakes.

The Pisco River and their tributaries have a longitudinal development of about 472 km from its source to its mouth with an average slope of 3% which becomes more pronounced in some sectors, reaching 8%, especially in the section between the headwaters of Sanctuary River and its confluence with the Chiris River and the Veladero gully, right bank tributary of the Pisco River.

From its origin, downstream Pampano, the Pisco River presents a somewhat winding course up to the vicinity of the town of Huáncano, where takes a general east-west direction.

Downstream of the town of Humay, the valley widens considerably and the slope of the river is much softer, allowing the deposition of suspended materials which results in the formation of a small alluvial plain or alluvial fan, which extends to the coastline.

The Pisco River, similar to all the rivers of the coast, has a very irregular and torrential regime. Based on rainfall information, this regime is concentrated from December to April, while the extreme drought period is from July to November.

3.2 Climatology

3.2.1 Rainfall

The rainfall, as a main parameter of the runoff generation is analyzed considering the available information of the stations located in the interior of the Pisco Basin, and in the neighboring San Juan, Mantaro, Pampas and Ica river basins.

Rainfall information is available from 12 control pluviometric stations located in the vicinity of the study area; these are located in the Pisco River Basin and surrounding basins. These stations are operated and maintained by the Peruvian National Service of Meteorology and Hydrology (SENAMHI by their initials in Spanish)

Table No. 3.1, shows the list of stations included in this study with their respective characteristics, such as code, name, and location. Historical records of monthly total rainfall and their histograms are presented in the Annex. Figure N° 3.2, shows the period and the length of the data available from meteorological stations and Figure No. 3.3 shows the locations in the Pisco Basin and adjacent watersheds.

Table Nº 3.1. Period and longitude of the available information of the Rainfall stations

	8				
CODE	STATION	DEPARTMENT	LONGITUDE	LATITUDE	ENTITY
646	ACNOCOCHA	HUANCAVELICA	75° 05'1	13° 13'1	SENAMHI
156130	CHOCLOCOCHA	HUANCAVELICA	75° 02'1	13° 06'1	SENAMHI
643	COCAS	HUANCAVELICA	75° 22'1	13° 16'1	SENAMHI
156121	CUSICANCHA	HUANCAVELICA	75° 18'18	13° 29'29	SENAMHI
156131	PARIONA	HUANCAVELICA	75° 04'1	13° 32'1	SENAMHI
156114	SAN JUAN DE CASTROVIRREYNA	HUANCAVELICA	75° 38'38	13° 12'12	SENAMHI
156122	ТАМВО	HUANCAVELICA	75° 16'16	13° 41'41	SENAMHI
156117	TICRAPO	HUANCAVELICA	75° 26'1	13° 23'1	SENAMHI
156119	TOTORA	HUANCAVELICA	75° 19'1	13° 07'1	SENAMHI
647	TUNEL CERO	HUANCAVELICA	75° 05'5	13° 15'15	SENAMHI
650	HACIENDA BERNALES	ICA	75° 57'57	13° 45'45	SENAMHI
640	HUAMANI	ICA	75° 35'35	13° 50'50	SENAMHI

Figure Nº 3.2. Period and longitude of the available information of the rainfall stations

 ∞

000'515'8

500,000

000'055'8

HOCI OCOCH

ACHOČOCHA TUNE LCERO 8'252'000

000'005'8

PARIONA

000'005'8

000'9/+*8

500,000

475,000

450,000

425,000

400,000

375,000

000'9/+'8

HACIENDABERNALES

TAMBO

Table N° 3.2 shows mean monthly values for the stations that have been taken into account in the study, and Figure N° 3.4 shows the mean monthly variation for rainfall in each station; the Annex shows the historical series for each station, as well as the monthly and annual variation graphs for each station.

Table Nº 3.2. Average Monthly Rainfall Stations Considered in the Study Area

ESTACION	Mes							Total					
LUTACIÓN	Ene	Feb	Mar	Abr	Мау	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Total
ACNOCOCHA	139.08	145.04	129.35	56.57	17.74	8.18	5.65	13.73	21.69	40.59	52.30	83.59	713.51
CHOCLOCOCHA	147.66	161.73	156.09	80.13	26.52	14.25	8.03	22.18	35.24	59.48	68.69	103.97	883.97
COCAS	94.93	111.50	138.93	29.87	5.31	0.26	0.36	1.54	6.70	11.83	15.36	40.73	457.31
CUSICANCHA	74.40	88.26	104.57	33.77	1.74	0.00	0.01	0.71	3.48	4.85	12.38	36.37	360.55
PARIONA	161.82	155.42	174.45	68.15	13.61	3.06	3.12	4.02	16.39	32.52	54.23	90.91	777.70
SAN JUAN DE CASTROVIRREYNA	49.69	54.27	46.95	8.78	0.96	0.09	0.17	0.67	0.95	3.50	7.06	19.24	192.34
ТАМВО	82.19	120.28	130.42	32.03	3.95	0.00	0.12	0.51	0.88	9.53	11.48	40.40	431.78
TICRAPO	54.24	75.45	73.35	14.10	0.44	0.20	0.03	0.45	0.98	3.99	5.05	24.32	252.60
TOTORA	125.39	133.76	104.56	46.33	18.20	4.07	4.90	7.76	24.24	32.59	41.47	81.67	624.95
TUNEL CERO	163.61	162.53	150.68	72.29	20.96	7.59	6.98	14.51	29.20	56.12	72.29	121.55	878.32
HACIENDA BERNALES	0.84	1.50	0.05	0.03	0.07	0.14	0.08	0.08	0.02	0.01	0.03	0.09	2.93
HUAMANI	3.08	3.75	3.45	0.05	0.00	0.00	0.01	0.00	0.08	0.00	0.00	0.17	10.60

Figure Nº 3.4. Monthly Histogram of Rainfall Stations considered within the Study Scope

Table N° 3.3 and Figure N° 3.4 show that heaviest rainfalls are from October to April, and east rainfalls are from May to September. In addition, annual rainfall in the Pisco River Basin is noted to vary from 884 mm (Choclococha Station) to 2.93 mm (Hacienda Bernales).

Figure N° 3.5 shows total annual rainfall variation for the stations included in this study, with their relevant trends.

Taking into account only stations Totora and Acnococha with approximately 20 years of record, we established a linear equation: P = mt + b, where P is annual rainfall and t is time in years, m and b are the variables that provide the best fit in a linear equation. The results are presented in Table 3.3, giving the following values of the trends:

Station	m	b	\mathbf{R}^2		
Totora	-12.08	777.5	0.212		
Acnococha	6.80	638.1	0.075		

Table Nº 3.3. Results of the linear fit equation of Totora and Acnococha station

The value of the regression coefficients (\mathbb{R}^2) is very low. For Totora Station would be a seasonally weak downward trend and for Acnococha Station a very weak upward trend. \mathbb{R}^2 values indicate that the trends are not significant and can be said that even in these stations with maximum numbers of data there is no clear trend to increase or decrease regarding the rainfall.

Information shown in Table N° 3.3 and support from ArcGIS software have allowed for generating monthly isohyets maps (from January to December) and annual isohyets maps, as shown in Figures N° $3.6 - N^{\circ} 3.17$, and N° 3.18, respectively.

Isohyets show that heaviest rainfalls in the basin are in February and March, and they vary between 20 mm and 160 mm. The least rainfalls are in July, and they vary between 10 mm in the basin's higher area and 0 mm in the basin's lower area.

Total annual rainfall in the Pisco River Basin varies between 800 mm and 100 mm, as shown in Figure N $^{\circ}$ 3.18.

Figure Nº 3.5. Annual Rainfall Trends at the Stations considered within the Study Scop

12

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

Figure N° 3.7. Isohyets for Mean Monthly Rainfall in the Pisco Basin, in February

Hydrology of Maximum Floods in Pisco River

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

I3

Figure N^{o} 3.8. Isohyets Mean Monthly Rainfall in the Pisco Basin, in March

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

230

Figure N° 3.9. Isohyets Mean Monthly Rainfall in the Pisco Basin, in April

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

Figure N^{o} 3.10. Isohyets Mean Monthly Rainfall in the Pisco Basin, in May

232

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

Hydrology of Maximum Floods in Pisco River

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

19

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

20

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

2I

22

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

23

Hydrology of Maximum Floods in Pisco River

239

24

3.2.2 Temperature

The temperature of air and its daily and seasonal variations are very important for development of plants, being one of the main factors that directly affect the growth rate, length of growing cycle and stages of development of perennial plants.

In the area of Pisco Basin, the climate variable is measured by a network of meteorological stations, which are summarized in Table No. 3.4., this shows the historical averages of monthly mean temperature at stations of Pisco, Bernales, Huáncano, Cokes, and Acnococha Castrovirreyna located within the basin, and Huamaní, Acora, Tunnel Zero and San Pedro de Huacarpana to neighboring basins of Ica, Pampas and San Juan.

From the information shown in the Table No. 3.4., there is an inverse relationship between temperature and altitude, this is the effect of reduced atmospheric pressure due to higher altitude, likewise observed that annual average temperatures are higher in the Huamani stations (20, 5) and Huancano (20.6) and minima occur in the stations Tunel Cero (3.7) and Acnococha (2.8).

Figure N° 3.19 shows the distribution of the monthly average temperature from weather stations located in the Pisco Basin, where we note that the monthly average temperatures are higher in the stations of Pisco, and Huancano Bernales, and the minimum occurs at the station Acnococha.

N°	ESTACION	ALTITUD		AÑO PROMEDIO								MEDIA			
	METEOROLOGICA	msnm	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Set	Oct	Nov	Dic	ANUAL
1	PISCO	7	21.5	22.2	22.0	20.4	18.3	16.7	15.9	15.8	16.3	17.1	18.2	20.0	18.7
2	BERNALES	250	22.6	22.9	22.2	20.6	17.8	15.7	15.2	15.5	16.3	17.4	18.5	20.6	18.8
3	HUAMANI	800	23.0	23.8	23.7	22.0	20.1	17.5	16.6	17.5	18.8	19.9	20.7	22.0	20.5
4	HUANCANO	1006	22.4	22.8	22.9	22.4	20.4	18.3	17.9	18.4	19.7	20.3	20.3	21.1	20.6
5	ACORA	1800	17.2	17.4	17.8	17.3	16.7	16.2	16.5	16.6	16.8	17.3	17.2	17.5	17.0
6	COCAS	3246	10.9	11.0	10.8	11.2	11.2	11.0	11.5	11.7	11.9	12.2	12.3	12.2	11.5
7	S.P.HUACARPANA	3680	9.1	8.6	9.5	9.4	9.8	9.3	9.6	9.2	9.5	10.2	9.6	10.1	9.5
8	CASTROVIRREYNA	3956	7.8	7.3	7.1	7.4	6.7	6.3	5.9	6.1	7.1	7.0	7.1	7.0	6.9
9	TUNEL CERO	4425	4.3	4.4	4.5	4.1	3.5	2.5	2.3	2.9	3.5	4.1	4.5	4.4	3.7
10	AGNOCOCHA	4650	3.7	3.6	3.8	3.4	2.8	2.0	1.3	1.6	2.2	3.2	3.1	3.3	2.8

Table Nº 3.4. Monthly half temperature (C°) of the stations of the Pisco River basin and adjacent basins

Source: Assessment and Management of Water Resources of the Pisco River basin. IRH-INRENA-MINAG, 2003

Figure Nº 3.19. Distribution of the monthly half temperature of the weather stations located in the Pisco River basin Source: Assessment and Management of Water Resources of the Pisco River basin. IRH-INRENA-MINAG, 2003

3.3 Hydrometry

There are 5 hydrometric stations located along the River Pisco catchment and surrounding basins. These stations are operated and maintained by the Peruvian National Service of Meteorology and Hydrology (SENAMHI by their initials in Spanish).

Table No. 3.5, shows the list of stations included in this study with their respective characteristics, such as code, name, and location. Historical records of monthly total rainfall and their histograms are presented in the Annex.

Table Nº 3.5. Characteristics of Hydrometric Stations in the Pisco River Basin and Surrounding Basins

STATION NAME	CATECODV*	CATCUMENT	DEDADTAMENT	DDOVINCE	DISTRICT	LONGITUDE			CONDITION	WORKING	G PERIOD
STATION NAME	CATEGORT	CATCHIMENT	DEFAILTAWENT	FROVINCE	DISTRICT	LONGITUDE	LATTODE	LLLVATION	CONDITION	START	END
LETRAYOC	HLM	PISCO	ICA	PISCO	HUANCANO	75° 43'43	13° 39'39	1304	Operating	1922-01	2010-12
LETRAYOC	EHA	PISCO	ICA	PISCO	HUMAY	75° 45'1	13° 40'1	1020	Operating	2000-12	2009-05
RESERVORIO LAGUNA ACNOCOCHA	HLG	PISCO	HUANCAVELICA	CASTROVIRREYNA	SANTA ANA	75° 11'1	13° 06'1	4734	Paralyzed	Not Av	ailable
RESERVORIO LAGUNA PALCOCOCHA	HLG	PISCO	HUANCAVELICA	CASTROVIRREYNA	CASTROVIRREYNA	75° 18'1	13° 13'1	4533	Paralyzed	Not Av	ailable
DIQUE ORCOCOCHA	HLG	PISCO	HUANCAVELICA	CASTROVIRREYNA	CASTROVIRREYNA	75° 12'1	13° 16'1	4552	Closed	1968-09	1975-11

HLM = Hydrometric Station with staff gauge. It records water level manually (at 06:00, 10:00, 14:00 and 18:00 hours) to calculate daily discharges. HLG = Hydrometric Station with staff gauge and Limnigraph (floater type). It records water level manually (at 06:00, 10:00, 14:00 and 18:00 hours) to

calculate daily discharges. I also it records continuously (hourly) water level data graphed in a recording paper.

EHA = Automatic Hydrometric Station (hourly data of water level using sensors).

Figure N° 3.20, shows the period and the length of the data available from the hydrometric stations and Figure No. 3.21 shows the locations in the Pisco Basin and adjacent watersheds.

The information of the hydrometric station Letrayoc will be used for calibration of the hydrologic model to be described in item 4.2.4. This station is located downstream of the "wet basin" of the catchment, therefore flows registered in this station are practically the same discharge that flows to the Pacific Ocean.

 ∞

Figure Nº 3.21. Location of the hydrometric station Letrayoc in Pisco River basin

Hydrology of Maximum Floods in Pisco River

3.4 Comments on the meteorologic and hydrometric and network in the Pisco River Catchement.

3.4.1 On Pluviometric Stations.

As it was stated previously the pluviometric information used in the analysis has been provided by SENAMHI. From the 12 stations, 6 stations have data until year 2010, 03 station has data until 1990, 01 station has data until 1989 and 01 stations has data until 1987, and 01 station has data until 1981.

The stations with information previously to 1990 are not operative anymore, although we don't have the exact information, it is possible that the remaining stations are currently operative. Also although the information coming from stations which have data until years previously to 1990 could be considered somewhat old, this data have been used because their period of information are longer than 12 years and still could be used for statistical analysis. All stations were used for the flood peak discharges analysis, the remaining were not used to their short period of information or the bad quality of their data.

Rainfall records are done using manual rain gages, these devices accumulate rain for a certain length of time after which the accumulated height of rain is measured manually. In some cases, the readings are made once a day (at 7 am); in others, twice a day (at 7 am and 7 pm), the exact interval or readings for the pluviometric stations used in the present analysis is not available.

3.4.2 On Hydrometric Stations.

Although these stations were operated and maintained by SENAMHI, the hydrometric information used in the analysis was provided by The General Directorate of Water Infrastructure (DGIH) of the Ministry of Agriculture. From the 5 stations, one station has data until year 2010, 01 station has data until 2009, 01 station has data until 1975, the data from the remaining two stations was not available.

For the purpose of the present study the information of hydrometric station Letrayoc was used. In this station water levels are measured by reading the level in a staff gage (or ruler), lectures are transferred to a notebook and discharges are found using an equation of the type:

$Q = aH^b$

Where Q is the discharge in m³/s and H is the reading in meters. These types of stations don't register maximum instantaneous discharge, because recordings are not continuous and automatic, but manual. Four readings a day are taken. Readings are taken at 6 am, 10 am, 14 pm and 18 pm. The largest of all readings is called the daily maximum discharge, but this value is not the maximum instantaneous daily discharge.

3.4.3 Recommendations

From a technical viewpoint, the following main recommendations can be given:

On the Equipment

- In order to consider the possible differences in climates along the catchment due to orographic effects, the number of weather and hydrometric stations networks should be increased.
- In order to register the maximum instantaneous values of rainfall and discharges, the existing manual weather and hydrometric stations should be automated.
- The limnigraphic equipment of the hydrometric stations should be upgraded from the conventional paper band type to the digital band type
- Having the collected data available in real time is desirable.
- Study the possibility of establishing an early warning system based on improving and increasing the number of existing hydrometric and pluviometric stations.

- For complementary studies, it is advisable to acquire:

•Equipment to sample sediment material.

- •Equipment for measuring of physical parameters for water quality control (pH, DO, turbity and temperature)
- Establishment of Bench Mark (BM) for each weather and hydrometric station using a differential GPS. This information will be useful to replenish the station in case of its destruction by vandalism or natural disasters.

On the Operation and Maintenance of the Equipments

- Weather and hydrometric stations in the study areas should be inspected frequently.
- Maintenance of equipment should be in charge of qualified technicians that are certified by the manufacturers.
- Periodic calibration of the equipment should be done according to the hours of use.

On the Quality of the Measured Data

- Data taken manually by SENAMHI operators should be verified independently.
- In order to guarantee the quality of the information collected in previous years a verification study program of the data should be done by the government.
- Redundant equipment should be available in the main weather stations.
 This means that duplicate equipment should be installed in selected stations to compare readings with pattern equipment.
- When automatic stations are available they should operate simultaneously with manual stations at least for one year to verify the consistency of the data registered automatically.

247

It is necessary to mention that there is currently an agreement between Peru's National Water Authority (ANA) and SENAMHI to provide equipment to SENAMHI weather stations financed by an external source, it is recommended that action be taken in order to include Pisco Basin in this agreement..

IV. HYDROLOGY OF MAXIMUM FLOOD

4.1 **Preliminary Considerations**

This chapter describes the methodology of work developed for the generation of flood flows with in the so called point (point of interest, Letrayoc station) for return periods of 2, 5, 10, 25, 50, and 100 – years.

The estimated maximum discharge was made from the information of rainfall up to 24 hours with a rainfall - runoff models, using the HEC-HMS Software. The model was calibrated using historical records of annual maximum daily flow of the station Letrayoc.

Field Reconnaissance:

Reconnaissance has involved revising general characteristics of the Letrayoc hydrometric station and the interest point for discharges to be generated, the major topographic and characteristics and the land use characteristic of the watershed to the study area. This has supported the definition of some parameters to be taken into account for flood flow generations.

Methodology and Procedures:

Methodology and procedures developed for maximum discharge estimations are summarized below:

- Identification and delimitation of the sub watershed to the point of interest (Letrayoc Station), based on Charts at 1:100000 and / or 1:25000 scale, and satellite images.
- Selection of existing pluviometric stations in the study area and 24 hour maximum rainfall historical record collections.
- Frequency analyses of 24 hour maximum rainfalls for each station and selection of the distribution function showing the best adjustment.
- Areal rainfall calculation of the watershed to the interest point from the isohyetal line maps that were prepared for the 2, 5, 10, 25, 50, and 100 year return periods
- Establishment of the maximum rainfall for a storm's duration no less than the concentration time (time in which all the basin inputs to the discharge) through the Dick and Peschke model.
- The rainfall runoff model generates flood flows for 2, 5, 10, 25, 50, and 100 year return periods, by using the HEC HMS software, and modeled the basin based on the following steps:
 - Based on the daily maximum annual flow historical series, the flow frequency law is calculated by means of statistical methods.
 - $\circ~$ Calibration of the rainfall runoff model based on the flow frequency law.

4.2 Hydrology characterization, analysis of rainfall and river information

4.2.1 Hydrology Characterization

The geomorphological characteristics of the basis point watershed (station Letrayoc) shown in Table N° 4.1.

Caracteristic	Value
Catchment Area (km ²)	3,096.000
Major water course length (km)	113.400
Maximum Altitude (msnm)	4,758.000
Minimum Slope (msnm)	630.000
Average Slope (m/m)	0.036

Fahla Nº 4.1 Coomorphological	Characteristics of the basis	naint watershed (station Letrave	(n
able in 4.1. Ocomor photogical	Characteristics of the basis	point water sneu (station Lettayo	i c j

4.2.2 Maximum 24-Hours Rainfall Analysis

Table N° 3.1 and Figure N° 3.3 show the stations located within the study scope (the Pisco River Basin and adjacent basins). Maximum 24 – hours annual rainfall in these stations are shown in Table N° 4.2; daily and maximum 24- hours information is shown in the Annex.

From the Information show in Table N° 4.2 and observing Figure N° 3.3,we conclude that the stations are located throughout the area of study and that the reporting period is greater than 10 years, so that in subsequent analysis uses information from all stations.

					Pluv	viometric Stations						
Year	АСNOCOCHA	CHOCLOCOCHA	COCAS	CUSICANCHA	PARIONA	SAN JUAN DE CASTROVIRREYNA	ТАМВО	TICRAPO	TOTORA	TUNEL CERO	HACIENDA BERNALES	HUAMANI
1960												
1961												
1962												
1963												
1964			19.80					21.50				
1965			21.60				35.00	20.70				
1966			20.20	18.70				12.60	15.00			
1967			36.00	23.50		20.10		24.40	24.00			25.50
1968				12.30			24.00	10.00	20.00			0.00
1969				23.00				35.80	22.00			1.60
1970			22.10	25.30		33.30	13.30	40.20	23.00			33.50
1971	32.30		29.40	28.60		13.70	18.20	28.40	21.00	30.70		1.70
1972	29.20		30.80	26.90	40.01	28.00	30.70	32.00	27.00	28.20	29.50	18.80
1973	24.60		36.80	13.10	37.80	23.00			25.00	34.60	1.60	2.11
1974	31.10		20.60	9.70	36.90	12.10	21.00	14.00	22.00	24.20	0.00	4.11
1975	24.10	27.40	22.40	6.60	39.10	17.00	42.40	19.50	19.00	29.20	0.00	23.00
1976	26.40	36.10	21.40	6.60	34.40	17.20	40.00		20.00	22.80	20.80	12.50
1977	26.90		20.60	24.20	29.70	15.50	20.50	24.00	25.00	31.30	0.00	0.00
1978	28.10	22.90	14.40	20.00	20.61	7.80	32.00	5.40	20.01	19.50	0.60	0.00
1979	22.30	15.40	27.40		25.40	21.60	20.40	18.00	25.01	33.20	0.00	0.20
1980	23.00	14.80		19.00	44.40	40.00	21.20		35.00	27.30	0.00	0.30
1981	22.60	13.50		20.00	28.50		25.60	33.00	29.00	35.90		0.00
1982	32.10			10.10		17.10	15.70	10.90	29.01	52.20		0.00
1983	30.10	26.50		5.00		28.00	35.00	30.00	24.01		0.00	0.00
1984	28.70			20.00		24.00	40.00	20.80	37.01	38.30	0.00	0.40
1985	26.50	19.00		11.00	26.50	11.50	30.00	18.00	30.00	22.70	0.00	7.50
1986	29.20	36.00				14.70	30.00		27.00	35.30	0.00	
1987	22.40	24.40			14.80	12.30	20.00		13.01	23.10	0.00	0.00
1988	26.90	39.10			28.00	13.50	17.00			27.80	0.00	
1989	20.30					31.80	36.70			31.90	0.00	0.00
1990		39.50				13.10	29.00			54.50	0.00	
1991				21.00		11.00	40.00				0.00	0.00
1992												
1993		39.30		29.00	1	13.70				36.50	0.00	

Table Nº 4.2. Maximum 24-hours rainfall Annual for Stations located within the Study Scope

	1	1 1	1 1	1	 		
1994	37.30	17.80	12.3	0 22.00	30.50	0.00	
1995	28.10	14.30	12.0	0 43.20	26.20	0.00	
1996	35.90	10.80	19.2	0 42.00	27.30	0.00	
1997	67.50	22.20	10.5	0 30.00	21.60	0.00	
1998	55.50	42.00	37.9	0 40.00	25.10	0.00	
1999	34.40	25.70	25.0	0 23.00	26.10	0.50	
2000	38.00	20.10	18.8	0 26.00		0.30	2.50
2001	29.30	28.40	23.2	0 16.00	29.60	1.30	2.20
2002	30.70		19.5	1	23.70	0.50	3.10
2003	57.70	18.90	10.5	0 22.00	27.40	0.02	2.70
2004	45.00	9.90	10.3	0 16.00	28.70	0.40	0.01
2005	36.10	12.40	16.1	0 27.00	47.80	4.60	13.00
2006	36.70	27.70	21.4	0 38.00	25.00	3.20	4.21
2007		18.80	18.4	0 16.50	35.80		0.01
2008	24.60	20.60) 14.5	0 26.00	28.60	5.10	6.20
2009	58.40	19.20	17.2	0 38.00	36.20	1.30	8.30
2010							

Figure N° 4.1 shows the stations included in the following analyses, as applied to HEC – HMS software.

30

Each maximum annual rainfall series for all twelve (12) selected rainfall stations will be adjusted to a specific distribution type. In this sense, most common distribution functions are described, as applied to the extreme event hydrological studies.

4.2.2.1 Distribution Functions

The following describes the distribution functions:

1. Distribution Normal or Gaussiana

It is said that a random variable X has a normal distribution if its density function is,

$$f(x) = \frac{1}{\sqrt{2\pi S}} EXP \left[-\frac{1}{2} \left(\frac{x - X}{S} \right)^2 \right]$$

 $\infty > x > \infty - \alpha T$

Where:

f(x) = Normal density function of the variable x.

x = Independent Variable.

X = Location parameter equal to the arithmetic mean of x.

- S = Scale parameter equal to the standard deviation of x.
- EXP = Exponential function with base e of natural logarithms.
- 2. Two-Parameter Log-normal Distribution

When the logarithms, ln(x) of a variable x are normally distributed, then we say that the distributive of x is the probability distribution as log–normal probability function log–normal f(x) is represented as:

$$f(x) = \frac{1}{x\sigma_y \sqrt{2\pi S}} EXP \left\{ -\frac{1}{2} \left[\frac{lnx - \mu_y}{\sigma_y} \right]^2 \right\}$$

To $0 < x < \infty$, must be $x \sim \log N(\frac{\mu_y}{\sqrt{y}}, \frac{\sigma_y}{2})$

Where:

- **\mu_y**, σ_y = Are the mean and stabdard deviation of the natural logarithm of x, i.e. de ln(x), representing respectively the scale parameter and shape parameter distribution.
- 3. Log-Normal Distribution of Three Parameters

Many cases the logarithm of a random variable x, the whole are not normally distributed but subtracting a lower bound parameter xo, before taking logarithms, we can get that is normally distributed.

The density function of the three-parameter lognormal distribution is:

$$f(x) = \frac{1}{(x - x_o)\sigma_y \sqrt{2\pi}} EXP \left\{ -\frac{1}{2} \left[\frac{\ln(x - x_o) - \mu_y}{\sigma_y} \right]^2 \right\}$$

To x₀≤x<∞

Where:

xo = Positional parameter in the domain x

 μ_{y} , = Scale parameter in the domain x.

 σ_{y}^{2} = Shape parameter in the domain x

4. Two-Parameter Gamma Distribution

It is said that a random variable X has a 2-parameter gamma distribution if its probability density function is:

$$f(x) = \frac{\chi^{\gamma-1} e^{-\frac{\chi}{\beta}}}{\beta^{\gamma} \Gamma_{\nu}}$$

To:

0≤x<∞

0<y<∞

 $0 < \beta < \infty$

As:

- = Shape parameter (+)γ
- β = Scale Parameter (+)
- $\Gamma_{(\gamma)}$ = Complete gamma function, defined as:

$$\Gamma_{(\gamma)} = \int x^{\gamma-1} e^{-x} dx$$
, which converges if $\gamma > 0$

5. Three- Parameter Gamma Distribution or Pearson Type III

The Log-Pearson type 3 (LP3) is a very important model in statistical hydrology, especially after the recommendations of the Water Resources of the United States (Water Resources Council -WRC), to adjust the distribution Pearson Type 3 (LP3) to the logarithms of the maximum flood. Well, the LP3 distribution is a flexible family of three parameters can take many different forms, therefore it is widely used in modeling annual maximum flood series of unprocessed data.

It is said that a random variable X has a gamma distribution 3parameter or Pearson Type III distribution, if its probability density function is:

$$f(x) = \frac{(x - x_o)^{\gamma - 1} e^{\frac{(x - x_o)}{\beta}}}{\beta^{\gamma} \Gamma_{\gamma}}$$

 $x_0 \le x < \infty$ $-\infty < x_0 < \infty$ 0<β<∞ ∞>γ>0

То

4.2.2.2 Calculation of Adjustment and Return Period for Maximum Rainfall in 24 Hours

Frequency of maximum 24-hours rainfall in each station (see Table N° 4.2) was analyzed by using the "CHAC" Extreme Hydrological Events Software (developed by CEDEX - Spain),. This software calculates Maximum 24 – hour rainfall for different return periods, based on the probability distribution functions, such as: Normal, 2 or 3 parameter Log - Normal, 2 or 3 parameter Gamma, log - Pearson III, Gumbel, Log – Gumbel, and Widespread Extreme Values.

From the information that has been generated for each distribution function, results showing best adjustment based on the Kolgomorov – Smirnov goodness – of - fit test will be chosen. Return periods taken into account for this study are 2, 5, 10, 25, 50, and 100 years.

4.2.2.3 Selection of Distribution Theory with better Adjustment to the Series Record Rainfall in 24 Hours

According to the analysis with the software CHAC note that the data fit the distribution function of Generalized Extreme Value (GEV) as the distribution coefficient, see Table No 4.3. The values for each return period are shown in Table No 4.4.

Table Nº 4.3. Determination Coefficient for each Distribution Function and for each Rainfall Station

Quartian	Determination Co	effcien	t for Ead	ch Distribu	ution Function
Station	Log Pearson III	GEV	SQRT	Gumbel	Log-Normal
Acnococha	0.88	0.97	0.91	0.90	0.87
Choclococha	0.80	0.95	0.88	0.90	0.93
Cocas	0.82	0.95	0.89	0.93	0.92
Cusicancha	0.88	0.93	0.92	0.92	0.90
Pariona	0.93	0.94	0.90	0.89	0.89
San Juan de Castrovirreyna	0.93	0.95	0.94	0.93	0.89
Tambo	0.95	0.96	0.92	0.92	0.91
Ticrapo	0.96	0.96	0.94	0.92	0.89
Totora	0.90	0.93	0.90	0.89	0.91
Tunel Cero	0.92	0.93	0.90	0.92	0.90
Hacienda Bernales	0.89	0.93	0.88	0.90	0.89
Huamani	0.83	0.90	0.88	0.88	0.87

			RE	TURN PERIO	D T [YEARS]		
NAME OF STATION	PT_2	PT_5	PT_10	PT_25	PT_50	PT_100	PT_200
ACNOCOCHA	27.0	30.0	32.0	34.0	35.0	36.0	37.0
CHOCLOCOCHA	30.0	43.0	51.0	60.0	66.0	71.0	76.0
COCAS	22.0	30.0	34.0	38.0	40.0	42.0	43.0
CUSICANCHA	19.0	26.0	29.0	33.0	35.0	37.0	39.0
HACIENDA BERNALES	0.0	1.0	3.0	6.0	11.0	19.0	34.0
HUAMANI	2.0	7.0	13.0	25.0	39.0	61.0	93.0
PARIONA	33.0	40.0	43.0	46.0	48.0	49.0	50.0
SAN JUAN DE CASTROVIRREYNA	17.0	23.0	29.0	36.0	42.0	49.0	56.0
ТАМВО	26.0	35.0	40.0	46.0	49.0	52.0	55.0
TICRAPO	20.0	31.0	37.0	45.0	50.0	55.0	60.0
TOTORA	24.0	29.0	32.0	36.0	38.0	40.0	42.0
TUNEL CERO	29.0	36.0	41.0	48.0	54.0	61.0	67.0

Table Nº 4.4. Maximum 24-hours rainfall of each Rainfall Station for each Return Period

Information shown in Table N° 4.4., and the Interpolate to Raster's IDW (Inverse Distance Weighted) tool in the ArcGIS Spatial Analyst module have allowed to generate spatial rainfall distribution for each return period.

To generate maps isohyets tool has been used Contour Surface Analysis of Spatial Analyst module of ArcGIS Software, whose results are shown in Figures N $^{\circ}$ 4.2 to 4.7.

Based on the isohyets maps for each return period, maximum rainfall for the basin area has been estimated, as established for the Base Point (Letrayoc Station), methodology and results are described under 4.2.2.4.

36

37

38

39

40

4I

4.2.2.4 Determination of Maximum 24-Hours Rainfall for Different Return Periods in the Base Point

Isohyets maps for each return period (2, 5, 10, 25, 50, and 100 years) and the Zonal Statistics tool from the ArcGIS software's Spatial Analyst module have allowed for calculating maximum 24 – hour areal rainfall at the base point (Letrayoc Station) for each return period. Results are shown in Table N° 4.5.

Table Nº 4.5. Maximum Areal 24- Hours Rainfall at the Base Point (Letrayoc Station) for each Return Period

Return Period "T" [Years]	Maximum Areal 24 Hours Rainfall [mm]
2	25.00
5	28.90
10	33.23
25	38.78
50	42.59
100	46.92

4.2.2.5 Determination of Maximum 24- Hours Rainfalls for Different Return Period in the Pisco River Subwatersheds

In addition to the hydrological study of the flow in the river Pisco is required to estimate the maximum rainfall for different return periods in the Pisco river basins. It has been estimated from isohyets maps shown in Figures N° 4.2. to 4.7 and the methodology that is briefly described under 4.2.2.4.

Figure N° 4.8 shows the Pisco river subbasins to which it has been estimated maximum rainfall for each return period and for each subbasin. Table N° 4.6 shows the values of rainfall for each subbasin.

PROJECT OF THE PROTECTION OF FLOOD PLAIN AND VULNERABLE RURAL POPULATION AGAINST FLOODS

Hydrology of Maximum Floods in Pisco River

43

Table Nº 4.6. Rainfall for Different Return Periods in each river Basin of Pisco

	AREA		PERIODO DE RETORNO T [AÑOS]				
SUBCUENCA	[m²]	PT_2	PT_5	PT_10	PT_25	PT_50	PT_100
0	774,360,000	5.4	8.3	11.2	15.6	21.2	29.5
1	48,731,800	12.5	17.9	22.0	28.1	34.0	42.3
10	69,819,600	23.8	29.7	33.2	37.7	40.2	42.9
10-1	48,920,900	23.8	29.3	32.6	36.8	39.1	41.4
11	95,251,900	24.1	30.7	34.8	39.8	43.0	46.3
11-1	32,178,400	24.2	30.1	33.6	38.2	40.8	43.4
12	24,316,700	24.5	31.6	35.9	41.2	44.7	48.2
12-1	7,599,270	24.6	31.4	35.6	40.8	44.1	47.4
13	34,377,100	24.8	32.1	36.6	42.1	45.7	49.3
13-1	528,564	24.8	32.0	36.4	41.7	45.2	48.7
14	28,835,500	25.5	33.0	37.6	43.2	46.9	50.5
14-1	736,281	24.9	32.0	36.4	41.7	45.2	48.7
15	6,629,310	25.0	32.2	36.5	41.9	45.3	48.8
15-1	23,888,300	24.9	31.7	36.0	41.1	44.4	47.7
16 1	36,143,600	20.7	30.1	40.3	40.0	50.5	04.4 19 E
10-1	22,308,600	20.2	32.3	30.0	41.0 51.0	45.1	40.0
17.1	02,232,400	20.1	37.9	27.9	43.2	46.9	50.3
17-1	56 833 600	25.0	33.8	38.3	43.7	40.0	50.5
18-1	1 282 460	25.4	32.5	36.8	42.0	45.4	48.7
19	26 733 300	25.7	32.6	36.9	42.1	45.4	48.8
19-1	6.671.040	24.9	31.6	35.6	40.6	43.7	46.8
2	52.919.500	16.1	22.5	27.0	33.2	38.6	45.6
20	56,155,800	25.0	31.3	35.2	40.0	43.0	46.1
20-1	26,253,900	24.2	30.0	33.5	37.9	40.4	43.0
21	43,743,800	24.0	29.9	33.3	37.7	40.1	42.7
2-1	38,110,400	14.0	19.9	24.3	30.7	36.6	44.8
21-1	17,536,300	24.0	29.2	32.3	36.5	38.6	40.7
22	133,682,000	23.5	30.6	34.6	39.3	42.1	45.0
22-1	54,257,600	22.8	29.9	33.7	38.0	40.4	42.8
23	19,208,200	22.0	30.0	34.1	38.3	40.5	42.7
23-1	133,886,000	20.9	30.3	35.4	41.8	45.7	49.6
24	92,053,600	24.5	31.5	35.6	40.6	43.9	47.3
25	21,774,100	27.0	33.4	37.4	42.7	46.6	51.0
26	7,607,610	26.1	32.7	36.8	41.9	45.6	49.6
20-1	92,540,400	21.8	29.0	32.6	37.3	40.1	43.0
27	14,973,200	26.7	33.3	37.4	42.7	46.5	50.7
27-1	30,300,300	20.0	32.2	30.3	41.3	44.0	40.0
28-1	5 232 780	22.0	30.4	34.0	39.7	42.0	40.1
29	30,528,800	23.3	30.7	34.8	39.9	43.1	46.5
29-1	20 459 100	21.8	29.9	34.2	39.6	42.9	46.3
3	256.335.000	18.8	26.4	31.3	37.6	42.4	48.1
30	21.035.900	22.5	30.0	33.9	38.9	42.0	45.2
30-1	8,745,420	21.5	29.5	33.8	39.1	42.3	45.6
31	15,308,000	24.5	31.7	35.6	40.4	43.6	46.9
3-1	52,396,500	15.0	21.3	25.9	32.5	38.5	46.8
31-1	56,037,100	22.3	29.6	33.2	37.8	40.5	43.3
32	81,067,800	26.6	33.7	37.5	42.2	45.3	48.5
33	25,244,000	20.8	28.7	32.6	37.7	40.7	43.9
33-1	10,375,600	20.8	29.5	34.1	40.0	43.6	47.3
34	32,336,100	27.7	34.8	38.4	42.6	45.4	47.9
35	21,253,800	20.4	28.5	32.6	37.9	41.1	44.4
30	13,088,900	19.4	26.5	29.7	33.9	36.1	38.3
36-1	95,476,300	20.3	27.9	31.8	37.0	40.4	44.1
37.1	39,443,900	24.9	32.2	35.9	40.3	43.1	45.8
38	78 763 500	20.0	20.U	31.0	30.1	30.1	41.4
38-1	73 087 100	20.4	20.0 20.6	32.0 31 A	30.0 /1 0	42.1 //5 //	40.0
39	73 029 900	20.4	29.0	32.2	38.0	43.4 41 7	45.0
39-1	10,934 800	19.6	27.4	32.0	38.3	42.8	48.1
4	59,721,300	18.0	25.2	29.9	36.4	41.5	48.0
40	124.547.000	23.0	30.7	34.7	39.8	42.8	45.9
40-1	128,130,000	19.7	27.2	31.8	38.0	42.6	48.3
41	122,639,000	14.5	21.1	26.0	33.6	40.7	50.7
41-1	63,616,900	13.8	20.0	24.6	31.8	38.5	48.0
5	28,398,700	20.5	30.0	35.3	42.1	46.5	51.0
5-1	168,315,000	19.6	28.3	33.3	40.0	44.6	49.8
6	21,153,700	21.3	29.9	34.6	40.3	43.8	47.4
6-1	8,745,420	20.7	30.1	35.4	42.0	46.2	50.5
7	24,532,800	22.6	29.7	33.7	38.3	41.0	43.9
7-1	47,267,500	21.8	30.0	34.3	39.0	41.7	44.4
8	10,938,500	23.0	29.4	33.2	38.0	40.9	44.0
8-1	37,025,500	23.1	29.5	33.3	37.9	40.5	43.3
9	20,817,100	23.3	29.5	33.3	38.0	40.9	43.9

4.2.3 Maximum Daily Discharge Analysis

For the analysis of Maximum Daily Discharges of River Pisco, the information of the hydrometric station Letrayoc has been used. This station has a contribution area of 3096 km². Figure 3.21 shows its location in the river Pisco catchment.

The Directorate General of Water Infrastructure (DGIH) of the Ministry of Agriculture has provided information on annual maximum daily discharge of Letrayoc station whose values are shown in Table N° 4.7.

Table N	* 4.7.Maximum	Daily Discharg	e of station Letr	ayoc, Pisco Rive	er (m ³ /s)
N⁰	Año	Caudal Maximo Diario (m3/s)	Nº	Año	Caudal Maximo Diario (m3/s)
1	1933	227.50	39	1971	194.45
2	1934	264.50	40	1972	509.87
3	1935	311.00	41	1973	293.62
4	1936	360.50	42	1974	194.68
5	1937	956.03	43	1975	141.88
6	1938	253.70	44	1976	237.62
7	1939	328.67	45	1977	231.26
8	1940	155.34	46	1978	80.33
9	1941	212.25	47	1979	213.13
10	1942	326.79	48	1980	91.23
11	1943	301.93	49	1981	252.00
12	1944	295.05	50	1982	274.00
13	1945	250.01	51	1983	273.00
14	1946	528.14	52	1984	485.65
15	1947	144.09	53	1985	200.50
16	1948	765.10	54	1986	355.00
17	1949	148.26	55	1987	146.20
18	1950	156.33	56	1988	369.50
19	1951	289.09	57	1989	272.50
20	1952	208.05	58	1990	49.38
21	1953	427.20	59	1991	325.00
22	1954	536.64	60	1992	47.75
23	1955	403.42	61	1993	118.00
24	1956	330.99	62	1994	312.50
25	1957	256.19	63	1995	354.37
26	1958	169.35	64	1996	190.00
27	1959	378.26	65	1997	150.00
28	1960	312.85	66	1998	800.00
29	1961	272.04	67	1999	355.00
30	1962	423.06	68	2000	215.00
31	1963	255.85	69	2001	240.00
32	1964	238.45	70	2002	300.00
33	1965	162.44	71	2003	176.25
34	1966	710.02	72	2004	215.00
35	1967	521.91	73	2005	137.50
36	1968	189.11	74	2006	350.00
37	1969	314.07	75	2007	250.00
38	1970	454.31	76	2008	300.00

Table Nº 4.7.Maximum Daily Discharge of station Letrayoc, Pisco River (m³/s)

These values have been analyzed with different distribution functions described in item 4.2.1.1. and evidence of Kolmogrov - Smirnok best fits the Log - Pearson 3 parameters. The results are shown in Table No 4.8.

Table Nº 4.8. Maximum Daily Discharges for each Return Period at te Station Letrayoc, Pisco River (m³/s)

Return Period (Años)	Maximum Daily Discharge
2	268.91
5	398.42
10	500.18
25	648.41
50	774.26
100	914.06

4.2.4 Simulation Model, Application of HEC-HMS Software

4.2.4.1 Hydrological Model

<u>Time of Concentration and Travel Time</u>

USDA/SCS Unit Synthetic Hydrograph model was used to calculate the following parameters:

Concentration time (Tc) with the Bransby-Williams formula

$$Tc = 0.95 * (L^3/H)^{0.385}$$

Where:

L = The largest raindrop route at the main river bed (km)

H = Head(m)

Tc = Concentration time (Hr)

Travel time (Tv)=0,6*Tc

Table N° 4.9. Concentration and Travel Times for the Base Point (station Letrayoc	Table Nº 4.9.	Concentration and	Travel Time	s for the Base	Point (station	Letrayoc)
---	---------------	-------------------	-------------	----------------	----------------	-----------

L =	113.40	Km		
Η =	4,128.00	Mts		
Tc =	9.09	Hrs		
Tv =	5.46	Hrs		

Maximum Rain Storm Duration

Because the information of storms given by SENAMHI was provided in a daily basis, the information about the duration of the storm was not known. For this reason, based on the information of duration of storms in Perú, mentioned in the "Study of the Hydrology of Peru" (Refence "d"), a duration of 10 hours was adopted.

This value exceeds the time of concentration of 9.09 hours calculated in the previous item, it indicates that the peak values to be estimated in the hydrometric station Letrayoc will correspond to the simultaneous contribution of runoff of the the whole catchement of the river Pisco until the hydrometric station Letrayoc.

Storm Depth

The storm depths for a duration of 10 hours were calculated using the equation of Dick and Peschke (Reference "c") which allows to estimate the maximum rainfall for a given storm duration from a 24hour maximum rainfall. The values of 24 hour maximum rainfall showed in Table 4.5 were used for the calculations, these values correspond to an spatial average rainfall for the catchment until hydrometric station Letrayoc.

Dick and Peschke equation :

 $Pd = Pd_{24}*(Tc/1440)^{0,25}$

Where:

Pd = Maximum rainfall for a duration d

 $Pd_{24} = 24 - hour maximum rainfall$

Tc= Concentration time (minutes)

Table Nº 4.10. Maximum Rainfall according to Dick - Peschke

T [Años]	Pp Areal Max 24 Horas [mm]	Pp Max, [mm]			
2	25.00	19.56			
5	28.90	22.62			
10	33.23	26.00			
25	38.78	30.35			
50	42.59	33.33			

100 46.92 36.72

The maximum daily rainfall for return periods of 2, 5, 10, 25, 50, and 100 years are 25, 29, 33, 39, 43, and 47 mm, respectively, and for a duration of 10 hour storm are 20, 23, 26, 30, 33 y 37 mm, respectively.

In the study cited above (Study of the Hydrology Service of Peru, 1982), for a frequency interval 1 hour storm duration for up to 10 hours has the intensity distribution, see Table N° 4.11.

Table Nº 4.11. Hyetograph for different Return Periods

	Return	Hour									PP	
	Period [Years]	1	2	3	4	5	6	7	8	9	10	total [mm]
ĺ	2	1	2	3	4	3	2	2	2	1	1	19.56
	5	1	2	3	4	3	3	2	2	1	1	22.62
ĺ	10	1	2	3	5	4	3	3	2	2	1	26.00
	25	2	3	4	6	4	4	3	2	2	1	30.35
	50	2	3	4	6	5	4	3	3	2	1	33.33
	100	2	3	5	7	5	4	4	3	2	1	36.72

Selection of Curve Number

When maximum flood records are available at local or regional hydrometric stations, curve numbers can be calculated from calibration.

Typically, selection of the curve number (CN) is done based on the hydrologicsoil group and the land use description.

- Group A: Deep sand, deep wind deposited soils, aggregate silts.
- Group B: Shallow wind deposited soils, sandy marl.
- Group C: Clayey marls, sandy shallow marls, soils with high clay contents.
- **Group D:** Expansive soils, highly plastic clays.

Table N° 4.12 shows the CN as a function of hydrologic soil group and land uses.

Table Nº 4.12. CN Based on Land Use and Soil Hydrological
	The del Coule		Grup	o hidrold	igico del	suelo
-	Uso del Suelo		A	В	С	D
m ⁴ 1.4 1	sin tratamiento de conse	rvación	72	81	88	91
Tierras cultivadas	con tratamiento de conse	ervación	62	71	78	81
Bartantas	condiciones pobres		68	79	86	89
Pasuzales	condiciones óptimas		39	61	74	80
Praderas (Vegas de r	ios: condiciones óptimas)	a de la composition de la comp	30	58	71	78
D	troncos delgados, cubier	ta pobre, sin hierbas	45	66	77	83
Bosques	cubierta buena	25	55	70	77	
Espácios abiertos, césped, parques,	óptimas condiciones: cu 75% o más	bierta de pasto en el	39	61	74	80
campos de golf, condiciones aceptables: cubierta de pasto en el cementerios, etc. 50 al 75%		49	69	79	84	
Áreas comerciales de	e negocios (85% imperme	ables)	89	92	94	95
Zonas industriales (7	2% impermeables)		81	88	91	93
	Tamaño lote (m ²)	% impermeable			-	
	500	65	77	85	90	92
	1000	38	61	75	83	87
Zonas residenciales	1350	30	57	72	81	86
	2000	25	54	70	80	85
	4000	20	51	68	79	84
Parqueaderos pavimo	entados, techos, accesos, e	tc.	98	98	98	98
Concernant I	pavimentados con cunet	as y alcantarillados	98	98	98	98
Calles y carreteras	grava		76	85	89	91
	tierra		72	82	87	89

Based on land uses, and adopting the hydrologic soil group C for the whole catchment, an initial areal averaged curve number of 82.4 was adopted for Pisco Basin. In Table 4.13 the estimated percentages of land use with their respective values of curves of number for river Pisco are shown.

Table Nº 4.13. Estimated Value of Curve Number (CN) for initial calibratión of HEC-HMS Model

	Uso del Suelo	%	CN
Tierras	Sin Tratamiento de Consevacion	35.00	88.0
Cultivadas	Con Tratamiento de Consevacion	10.00	78.0
Dootizoloo	Condicones Pobres	20.00	86.0
Fasilzales	Condicones Optimas	10.00	74.0
Praderas		5.00	71.0
Pooguoo	Troncos delgados	10.00	77.0
Dosques	Cubierta Buena	5.00	70.0
Area comerciales		0.50	94.0
Zonas Industriales		0.50	91.0
Zonas residensiales	3	0.50	81.0
0 "	Pavimentadas con cunetas	0.50	98.0
Calles y	Grava	1.00	89.0
Ganotoras	Tierra	2.00	87.0
Curva de Numero	de la Cuenca	100.00	82.4

After the process of calibration of the model HEC-HMS, this value was adjusted to 84.

4.2.4.2 HEC – HMS Modeling

The U.S. Engineer Corps' Hydrological Engineering Center designed the *Hydrological Modeling System (HEC – HMS)* computer program. This program provides a variety of options to simulate rainfall – runoff processes, flow routes, etc. (US Army, 2000).

HEC-HMS includes a graphic interface for the user (GUI), hydrological analysis components, data management and storage capabilities, and facilities to express results through graphs and reports in charts. The Guide provides all necessary means to specify the basin's components, introduce all relevant data of these components, and visualize the results (Reference "e").**Letrayoc Basin Model.**-SCS's Curve Number method was used to estimate losses. SCS's Unit Hydrograph method was used to transform actual rainfall into flow. In addition, the 3096 Km² basin area is taken into account as basic information. Due to the small averages discharges generally observed in river Pisco it was assumed that there was no base flow previous to the occurrence of the flood flows.

Metereological Model.- Based on calculation under N° 3.2 Pluviometric Information Analysis and Frequency Law, hyetographs are introduced in the meterological model for a 2, 5, 10, 25, 50, and 100 - year floods, and a storm duration of 10 hours.

Control Specifications.- Starting and ending dates are specified for the flood simulation to be carried out. Simulation results and flood hydrograph will be submitted. In this case, starting date is February 2nd, 2010, 00:00, and end date is February 4th, 2010, 12:00 pm. Based on the recommendation of the HEC-HMS Technical Reference Manual the minimum computational time interval is calculated as 0.29 times the Lag Time. Aproximating the Lag Time as 0.6 times the Concentration Time, a lag time of 5.45 hours and a minimum computational time interval is calculated as computational time interval of 1 hour was used.

Calibration of the Model. Due to the fact that there was no available information on simultaneous storm hyetographs and flood hydrographs which would allow to calibrate model parameters for doing forecasts, the model was calibrated based on information of estimated daily discharges.

The concept of the calibration was to adjust a curve number which produces peak discharges values similar to the estimated maximum daily discharge. Following this procedure a curve number of 84 was obtained.

Below, Figure N° 4.9 shows the watershed considered by HEC-HMS model for the simulation. Figures N° 4.10 to 4.21 show the results of the simulations for the floods of 2, 5, 10, 25, 50 and 100 years return period.

Figure Nº 4.9. Model Pisco River Basin in the HEC-HMS Software

Figure Nº 4.10. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period of 2 years

In the upper part of Figure 4.10 the design hyetograph is shown, the red portion corresponds to the infiltrated rainfall, the blue portion

corresponds to the effective rainfall, the infiltration have been computed by the software HEC-HMS using the Curve Number method from the U.S. Ex-Soil Conservation Service.

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 24 hours after it got started.

🔲 Summary Results for Subbasin "Sub Cuenca Letrayoc" 📃 🔲 🖻								
Project: PISCONIPPON Simulation Run: SIM 01 Subbasin: Sub Cuenca Letrayoc								
Start of Run:02feb2010, 00:00Basin Model:Cuenca PiscoEnd of Run:04feb2010, 12:00Meteorologic Model:MET 01Compute Time:23dic2010, 08:38:15Control Specifications:Control 1								
Volume Units: 💿 MM 💿 1000 M3								
Computed Results								
Peak Discharge : 287,4 (M3/S) Date/Time of Peak Discharge : 02feb2010, 12:00 Total Precipitation : 22,00 (MM) Total Direct Runoff : 2,94 (MM) Total Loss : 19,06 (MM) Total Baseflow : 0,00 (MM) Total Excess : 2,94 (MM) Discharge : 2,94 (MM)								

Figure Nº 4.11.Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 2 years

In Figure N° 4.11 is the maximum flow is calculated for a return period of 2 years of 213.8 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.14 shows the values of the hydrograph of the flood return period of 2 years.

Table Nº 4.14. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 2 Years

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
02-Feb-10	01:00	1,00	1,00	0,00	0,0
02-Feb-10	02:00	2,00	2,00	0,00	0,0
02-Feb-10	03:00	3,00	3,00	0,00	0,0
02-Feb-10	04:00	4,00	3,98	0,02	0,2
02-Feb-10	05:00	3,00	2,69	0,31	3,1
02-Feb-10	06:00	2,00	1,62	0,38	12,0
02-Feb-10	07:00	2,00	1,49	0,51	31,2
02-Feb-10	08:00	2,00	1,39	0,61	64,8
02-Feb-10	09:00	1,00	0,66	0,34	109,2
02-Feb-10	10:00	0,00	0,00	0,00	155,8
02-Feb-10	11:00	0,00	0,00	0,00	194,3
02-Feb-10	12:00	0,00	0,00	0,00	213,8
02-Feb-10	13:00	0,00	0,00	0,00	210,8
02-Feb-10	14:00	0,00	0,00	0,00	190,2
02-Feb-10	15:00	0,00	0,00	0,00	160,3
02-Feb-10	16:00	0,00	0,00	0,00	127,5

02-Feb-10	17:00	0,00	0,00	0,00	97,0
02-Feb-10	18:00	0,00	0,00	0,00	72,7
02-Feb-10	19:00	0,00	0,00	0,00	55,4
02-Feb-10	20:00	0,00	0,00	0,00	42,5
02-Feb-10	21:00	0,00	0,00	0,00	32,6
02-Feb-10	22:00	0,00	0,00	0,00	24,8
02-Feb-10	23:00	0,00	0,00	0,00	18,8
03-Feb-10	00:00	0,00	0,00	0,00	14,3
03-Feb-10	01:00	0,00	0,00	0,00	10,9
03-Feb-10	02:00	0,00	0,00	0,00	8,3
03-Feb-10	03:00	0,00	0,00	0,00	6,4
03-Feb-10	04:00	0,00	0,00	0,00	4,9
03-Feb-10	05:00	0,00	0,00	0,00	3,7
03-Feb-10	06:00	0,00	0,00	0,00	2,9
03-Feb-10	07:00	0,00	0,00	0,00	2,2
03-Feb-10	08:00	0,00	0,00	0,00	1,7
03-Feb-10	09:00	0,00	0,00	0,00	1,3
03-Feb-10	10:00	0,00	0,00	0,00	0,8
03-Feb-10	11:00	0,00	0,00	0,00	0,5
03-Feb-10	12:00	0,00	0,00	0,00	0,2
03-Feb-10	13:00	0,00	0,00	0,00	0,1
03-Feb-10	14:00	0,00	0,00	0,00	0,0

Figure Nº 4.12. Hydrograph Rainfall - Runoff models of the Pisco River basin, Return Period of 5 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 24 hours after it got started.

H	Summary Results for Subbasin "Sub Cuenca Letrayoc" 📃 🔲 💽
	Project: PISCONIPPON Simulation Run: SIM 01 Subbasin: Sub Cuenca Letrayoc
	Start of Run: 02feb2010, 00:00 Basin Model: Cuenca Pisco End of Run: 04feb2010, 12:00 Meteorologic Model: MET 01 Compute Time: 23dic2010, 08:38:15 Control Specifications: Control 1
	Volume Units: 💿 MM 🔘 1000 M3
	Computed Results
	Peak Discharge : 287,4 (M3/S) Date/Time of Peak Discharge : 02feb2010, 12:00 Total Precipitation : 22,00 (MM) Total Direct Runoff : 2,94 (MM) Total Loss : 19,06 (MM) Total Baseflow : 0,00 (MM) Total Excess : 2,94 (MM) Discharge : 2,94 (MM)

Figure Nº 4.13.Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 5 years

In Figure N° 4.13 is the maximum flow is calculated for a return period of 5 years of 287.4 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.15 shows the values of the hydrograph of the flood return period of 5 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
02-Feb-10	01:00	1,00	1,00	0,00	0,0
02-Feb-10	02:00	2,00	2,00	0,00	0,0
02-Feb-10	03:00	3,00	3,00	0,00	0,0
02-Feb-10	04:00	5,00	4,91	0,09	0,7
02-Feb-10	05:00	3,00	2,58	0,42	5,6
02-Feb-10	06:00	3,00	2,29	0,71	20,7
02-Feb-10	07:00	2,00	1,39	0,61	51,1
02-Feb-10	08:00	2,00	1,29	0,71	100,6
02-Feb-10	09:00	1,00	0,61	0,39	162,8
02-Feb-10	10:00	0,00	0,00	0,00	223,0
02-Feb-10	11:00	0,00	0,00	0,00	268,2
02-Feb-10	12:00	0,00	0,00	0,00	287,4
02-Feb-10	13:00	0,00	0,00	0,00	278,0
02-Feb-10	14:00	0,00	0,00	0,00	247,2
02-Feb-10	15:00	0,00	0,00	0,00	205,4
02-Feb-10	16:00	0,00	0,00	0,00	162,4
02-Feb-10	17:00	0,00	0,00	0,00	123,4
02-Feb-10	18:00	0,00	0,00	0,00	92,9
02-Feb-10	19:00	0,00	0,00	0,00	70,8
02-Feb-10	20:00	0,00	0,00	0,00	54,3
02-Feb-10	21:00	0,00	0,00	0,00	41,6
02-Feb-10	22:00	0,00	0,00	0,00	31,6
02-Feb-10	23:00	0,00	0,00	0,00	24,0
03-Feb-10	00:00	0,00	0,00	0,00	18,3
03-Feb-10	01:00	0,00	0,00	0,00	13,9
03-Feb-10	02:00	0.00	0.00	0.00	10.6

Table Nº 4.15. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 5 Years

03-Feb-10	03:00	0,00	0,00	0,00	8,1
03-Feb-10	04:00	0,00	0,00	0,00	6,2
03-Feb-10	05:00	0,00	0,00	0,00	4,8
03-Feb-10	06:00	0,00	0,00	0,00	3,7
03-Feb-10	07:00	0,00	0,00	0,00	2,8
03-Feb-10	08:00	0,00	0,00	0,00	2,2
03-Feb-10	09:00	0,00	0,00	0,00	1,6
03-Feb-10	10:00	0,00	0,00	0,00	1,0
03-Feb-10	11:00	0,00	0,00	0,00	0,6
03-Feb-10	12:00	0,00	0,00	0,00	0,3

Figure Nº 4.14. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period of 10 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 24 hours after it got started.

I	🛛 Summary Results for Subbasin "Sub Cuenca Letrayoc" 👘 💼
	Project: PISCONIPPON Simulation Run: SIM 01 Subbasin: Sub Cuenca Letrayoc
	Start of Run:02feb2010, 00:00Basin Model:Cuenca PiscoEnd of Run:04feb2010, 12:00Meteorologic Model:MET 01Compute Time:04nov2010, 09:35:39Control Specifications: Control 1
	Volume Units: () MM () 1000 M3
	Computed Results Peak Discharge : 451,3 (M3/S) Date/Time of Peak Discharge : 02feb2010, 12:00 Total Precipitation : 26,00 (MM) Total Loss : 21,31 (MM) Total Excess : 4,69 (MM) Discharge : 4,69 (MM)

Figure Nº 4.15. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 10 years

In Figure N° 4.15 is the maximum flow is calculated for a return period of 10 years of 451.3 m^3/s . The maximum discharge spends

approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.16 shows the values of the hydrograph of the flood return period of 10 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
02-Feb-10	00:00				0,0
02-Feb-10	01:00	2,00	2,00	0,00	0,0
02-Feb-10	02:00	2,00	2,00	0,00	0,0
02-Feb-10	03:00	3,00	3,00	0,00	0,0
02-Feb-10	04:00	5,00	4,81	0,19	1,6
02-Feb-10	05:00	4,00	3,24	0,76	11,0
02-Feb-10	06:00	3,00	2,12	0,88	35,8
02-Feb-10	07:00	3,00	1,90	1,10	85,1
02-Feb-10	08:00	2,00	1,16	0,84	160,9
02-Feb-10	09:00	2,00	1,09	0,91	254,8
02-Feb-10	10:00	0,00	0,00	0,00	347,0
02-Feb-10	11:00	0,00	0,00	0,00	417,2
02-Feb-10	12:00	0,00	0,00	0,00	451,3
02-Feb-10	13:00	0,00	0,00	0,00	440,5
02-Feb-10	14:00	0,00	0,00	0,00	394,8
02-Feb-10	15:00	0,00	0,00	0,00	331,6
02-Feb-10	16:00	0,00	0,00	0,00	264,0
02-Feb-10	17:00	0,00	0,00	0,00	202,9
02-Feb-10	18:00	0,00	0,00	0,00	152,0
02-Feb-10	19:00	0,00	0,00	0,00	115,7
02-Feb-10	20:00	0,00	0,00	0,00	88,5
02-Feb-10	21:00	0,00	0,00	0,00	67,9
02-Feb-10	22:00	0,00	0,00	0,00	51,6
02-Feb-10	23:00	0,00	0,00	0,00	39,2
03-Feb-10	00:00	0,00	0,00	0,00	29,9
03-Feb-10	01:00	0,00	0,00	0,00	22,7
03-Feb-10	02:00	0,00	0,00	0,00	17,3
03-Feb-10	03:00	0,00	0,00	0,00	13,3
03-Feb-10	04:00	0,00	0,00	0,00	10,2
03-Feb-10	05:00	0,00	0,00	0,00	7,8
03-Feb-10	06:00	0,00	0,00	0,00	6,0
03-Feb-10	07:00	0,00	0,00	0,00	4,6
03-Feb-10	08:00	0,00	0,00	0,00	3,5
03-Feb-10	09:00	0,00	0,00	0,00	2,6
03-Feb-10	10:00	0,00	0,00	0,00	1,7
03-Feb-10	11:00	0,00	0,00	0,00	1,0
03-Feb-10	12:00	0,00	0,00	0,00	0,5
03-Feb-10	13:00	0,00	0,00	0,00	0,2
03-Feb-10	14:00	0,00	0,00	0,00	0,0

Table Nº 4.16. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 10 Years

Figure Nº 4.16. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period 25 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 24 hours after it got started.

Summary Results for	Subbasin "Sub C	uenca Letrayoc"						
Project: PISCONIPPON Simulation Run: SIM 01 Subbasin: Sub Cuenca Letrayoc								
Start of Run: 02 End of Run: 04 Compute Time: 04	2feb2010, 00:00 4feb2010, 12:00 4nov2010, 09:51:0	Basin Model: Meteorologic Model: 2 Control Specifications:	Cuenca Pisco MET 01 Control 1					
Course that Deputts	Volume Units:	MM						
Peak Discharge : 6	(88.1./M3/S) D	ate/Time of Peak Discharge :	02feb2010_12+00					
Total Precipitation : 3	Total Precipitation : 31,00 (MM) Total Direct Runoff : 7,26 (MM)							
Total Loss : 2 Total Excess : 7	23,74 (MM) T 7,26 (MM) D	otal Baseflow : ischarge :	0,00 (MM) 7,26 (MM)					

Figure Nº 4.17. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 25 years

In Figure N° 4.17 is the maximum flow is calculated for a return period of 25 years of 688.1 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.17 shows the values of the hydrograph of the flood return period of 25 years.

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
02-Feb-10	00:00				0,0
02-Feb-10	01:00	2,00	2,00	0,00	0,0
02-Feb-10	02:00	3,00	3,00	0,00	0,0
02-Feb-10	03:00	4,00	4,00	0,00	0,0
02-Feb-10	04:00	6,00	5,28	0,72	5,9
02-Feb-10	05:00	5,00	3,54	1,46	29,7
02-Feb-10	06:00	4,00	2,40	1,60	85,4
02-Feb-10	07:00	3,00	1,60	1,40	183,8
02-Feb-10	08:00	2,00	0,99	1,01	317,0
02-Feb-10	09:00	2,00	0,93	1,07	462,1
02-Feb-10	10:00	0,00	0,00	0,00	585,9
02-Feb-10	11:00	0,00	0,00	0,00	665,1
02-Feb-10	12:00	0,00	0,00	0,00	688,1
02-Feb-10	13:00	0,00	0,00	0,00	648,7
02-Feb-10	14:00	0,00	0,00	0,00	566,4
02-Feb-10	15:00	0,00	0,00	0,00	466,6
02-Feb-10	16:00	0,00	0,00	0,00	368,5
02-Feb-10	17:00	0,00	0,00	0,00	282,9
02-Feb-10	18:00	0,00	0,00	0,00	212,8
02-Feb-10	19:00	0,00	0,00	0,00	162,1
02-Feb-10	20:00	0,00	0,00	0,00	123,9
02-Feb-10	21:00	0,00	0,00	0,00	94,9
02-Feb-10	22:00	0,00	0,00	0,00	72,1
02-Feb-10	23:00	0,00	0,00	0,00	54,8
03-Feb-10	00:00	0,00	0,00	0,00	41,8
03-Feb-10	01:00	0,00	0,00	0,00	31,8
03-Feb-10	02:00	0,00	0,00	0,00	24,2
03-Feb-10	03:00	0,00	0,00	0,00	18,6
03-Feb-10	04:00	0,00	0,00	0,00	14,2
03-Feb-10	05:00	0,00	0,00	0,00	10,9
03-Feb-10	06:00	0,00	0,00	0,00	8,4
03-Feb-10	07:00	0,00	0,00	0,00	6,4
03-Feb-10	08:00	0,00	0,00	0,00	4,8
03-Feb-10	09:00	0,00	0,00	0,00	3,4
03-Feb-10	10:00	0,00	0,00	0,00	2,1
03-Feb-10	11:00	0,00	0,00	0,00	1,2
03-Feb-10	12:00	0,00	0,00	0,00	0,6
03-Feb-10	13:00	0,00	0,00	0,00	0,2
03-Feb-10	14:00	0,00	0,00	0,00	0,0

Table Nº 4.17. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 25 Years

Figure Nº 4.18. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period 50 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 22 hours after it got started.

🖩 Summary Results for Subbasin "Sub Cuenca Letrayoc" 📃 😑						
Simu	Project lation Run: SIM 01	:: PISCONIPPON Subbasin: Sub Cuenca Letra	ауос			
Start of Run: End of Run: Compute Time:	02feb2010, 00:00 04feb2010, 12:00 04nov2010, 09:53	Basin Model: Meteorologic Model: 3:20 Control Specifications	Cuenca Pisco MET 01 :: Control 1			
Computed Results						
Peak Discharge : Total Precipitation : Total Loss : Total Excess :	855,5 (M3/S) : 34,00 (MM) 25,03 (MM) 8,97 (MM)	Date/Time of Peak Discharge Total Direct Runoff : Total Baseflow : Discharge :	: 02feb2010, 12:00 8,97 (MM) 0,00 (MM) 8,97 (MM)			

Figure Nº 4.19. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 50 years

In Figure N° 4.19 is the maximum flow is calculated for a return period of 50 years of 855.5 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.18 shows the values of the hydrograph of the flood return period of 50 years.

282

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
02-Feb-10	00:00				0,0
02-Feb-10	01:00	2,00	2,00	0,00	0,0
02-Feb-10	02:00	3,00	3,00	0,00	0,0
02-Feb-10	03:00	4,00	4,00	0,00	0,0
02-Feb-10	04:00	7,00	6,05	0,95	7,9
02-Feb-10	05:00	5,00	3,41	1,59	36,7
02-Feb-10	06:00	4,00	2,32	1,68	101,3
02-Feb-10	07:00	4,00	2,04	1,96	216,6
02-Feb-10	08:00	3,00	1,37	1,63	375,1
02-Feb-10	09:00	2,00	0,85	1,15	552,0
02-Feb-10	10:00	0,00	0,00	0,00	712,0
02-Feb-10	11:00	0,00	0,00	0,00	820,8
02-Feb-10	12:00	0,00	0,00	0,00	855,5
02-Feb-10	13:00	0,00	0,00	0,00	810,0
02-Feb-10	14:00	0,00	0,00	0,00	710,6
02-Feb-10	15:00	0,00	0,00	0,00	587,7
02-Feb-10	16:00	0,00	0,00	0,00	463,2
02-Feb-10	17:00	0,00	0,00	0,00	353,6
02-Feb-10	18:00	0,00	0,00	0,00	265,9
02-Feb-10	19:00	0,00	0,00	0,00	202,8
02-Feb-10	20:00	0,00	0,00	0,00	155,2
02-Feb-10	21:00	0,00	0,00	0,00	118,8
02-Feb-10	22:00	0,00	0,00	0,00	90,3
02-Feb-10	23:00	0,00	0,00	0,00	68,7
03-Feb-10	00:00	0,00	0,00	0,00	52,2
03-Feb-10	01:00	0,00	0,00	0,00	39,8
03-Feb-10	02:00	0,00	0,00	0,00	30,4
03-Feb-10	03:00	0,00	0,00	0,00	23,3
03-Feb-10	04:00	0,00	0,00	0,00	17,8
03-Feb-10	05:00	0,00	0,00	0,00	13,7
03-Feb-10	06:00	0,00	0,00	0,00	10,5
03-Feb-10	07:00	0,00	0,00	0,00	8,1
03-Feb-10	08:00	0,00	0,00	0,00	6,1
03-Feb-10	09:00	0,00	0,00	0,00	4,3
03-Feb-10	10:00	0,00	0,00	0,00	2,7
03-Feb-10	11:00	0,00	0,00	0,00	1,6
03-Feb-10	12:00	0,00	0,00	0,00	0,7
03-Feb-10	13:00	0,00	0,00	0,00	0,2
03-Feb-10	14:00	0,00	0,00	0,00	0,0

Table Nº 4.18. Generated Flood Hydrograph with HEC-HMS Model for a Return Period of 50 Years

Figure Nº 4.20. Hydrograph Rainfall – Runoff models of the Pisco River basin, Return Period 100 years

Storm that was analyzed, as rainfall after an infiltration process is transferred as runoff, and it ends around 22 hours after it got started.

💷 Sun	🛛 Summary Results for Subbasin "Sub Cuenca Letrayoc" 📃 💼 📄						
	Simu	Project lation Run: SIM 01	t: PISCO Subba	NIPPON asin: Sub Cuenca Letra;	уос		
	Start of Run: End of Run: Compute Time:	02feb2010, 00:00 04feb2010, 12:00 04nov2010, 09:57)) 7:57	Basin Model: Meteorologic Model: Control Specifications:	Cuenca Pisco MET 01 Control 1		
		Volume Units	:: 💿 MM	4 🔘 1000 M3			
Co	mputed Results						
Pe Te Te Te	eak Discharge : otal Precipitation : otal Loss : otal Excess :	962,7 (M3/S) 36,00 (MM) 25,83 (MM) 10,17 (MM)	Date/Tii Total Di Total Ba Discharg	me of Peak Discharge : rect Runoff : iseflow : ge :	02feb2010, 12:00 10,17 (MM) 0,00 (MM) 10,17 (MM)		

Figure Nº 4.21. Results Model Simulation of Rainfall – Runoff Pisco River, Return Period of 100 years

In Figure N° 4.21 is the maximum flow is calculated for a return period of 100 years of 962.7 m^3/s . The maximum discharge spends approximately 12 hours after the storm started in the tax (for extreme conditions as defined above).

Table No. 4.19 shows the values of the hydrograph of the flood return period of 100 years.

284

Table Nº 4.19. Generated Flo	od Hydrograp	oh with H	EC-HMS N	Model for	r a Return	Period of 1	00 Years
							l

Date	Time	Rainfall (mm)	Loss (mm)	Excess (mm)	Runoff (m³/s)
02-Feb-10	00:00				0,0
02-Feb-10	01:00	2,00	2,00	0,00	0,0
02-Feb-10	02:00	3,00	3,00	0,00	0,0
02-Feb-10	03:00	5,00	4,98	0,02	0,2
02-Feb-10	04:00	7,00	5,80	1,20	10,4
02-Feb-10	05:00	6,00	3,87	2,13	48,3
02-Feb-10	06:00	4,00	2,17	1,83	129,9
02-Feb-10	07:00	4,00	1,91	2,09	270,6
02-Feb-10	08:00	3,00	1,29	1,71	457,6
02-Feb-10	09:00	2,00	0,80	1,20	655,8
02-Feb-10	10:00	0,00	0,00	0,00	826,8
02-Feb-10	11:00	0,00	0,00	0,00	936,2
02-Feb-10	12:00	0,00	0,00	0,00	962,7
02-Feb-10	13:00	0,00	0,00	0,00	902,0
02-Feb-10	14:00	0,00	0,00	0,00	784,4
02-Feb-10	15:00	0,00	0,00	0,00	645,6
02-Feb-10	16:00	0,00	0,00	0,00	507,9
02-Feb-10	17:00	0,00	0,00	0,00	387,9
02-Feb-10	18:00	0,00	0,00	0,00	291,9
02-Feb-10	19:00	0,00	0,00	0,00	222,6
02-Feb-10	20:00	0,00	0,00	0,00	170,4
02-Feb-10	21:00	0,00	0,00	0,00	130,3
02-Feb-10	22:00	0,00	0,00	0,00	99,1
02-Feb-10	23:00	0,00	0,00	0,00	75,4
03-Feb-10	00:00	0,00	0,00	0,00	57,3
03-Feb-10	01:00	0,00	0,00	0,00	43,7
03-Feb-10	02:00	0,00	0,00	0,00	33,3
03-Feb-10	03:00	0,00	0,00	0,00	25,5
03-Feb-10	04:00	0,00	0,00	0,00	19,6
03-Feb-10	05:00	0,00	0,00	0,00	15,0
03-Feb-10	06:00	0,00	0,00	0,00	11,6
03-Feb-10	07:00	0,00	0,00	0,00	8,8
03-Feb-10	08:00	0,00	0,00	0,00	6,6
03-Feb-10	09:00	0,00	0,00	0,00	4,6
03-Feb-10	10:00	0,00	0,00	0,00	2,9
03-Feb-10	11:00	0,00	0,00	0,00	1,6
03-Feb-10	12:00	0,00	0,00	0,00	0,7
03-Feb-10	13:00	0,00	0,00	0,00	0,2
03-Feb-10	14:00	0,00	0,00	0,00	0,0

4.3 Results of the Simulation, Peak Flows in the Base Point

Table 4.20 summarizes the peak flows for different return periods obtained with the application of the software HEC-HMS in Pisco river basin for the location of hydrometric station Letrayoc.

T [Años]	Q [m³/s]		
2	213.0		
5	287.4		
10	451.3		
25	688.1		
50	855.5		
100	962.7		

Table Nº 4.21. Summary of <u>Peak Flows at the Base P</u>oint for each Return Period

Peak flows at the base point obtained with HEC-HMS model for the return periods of 2, 5, 10, 25, 50 and 100 years have been estimated from the maximum rainfall generated for these return periods, a number curve and geomorphological parameters of the basin. These peak flows have been obtained with the same number of curve (equal to 84).

As it was considered in the calibration, peak discharges obtained with HEC-HMS model for different return periods are similar to the correspondent maximum daily discharges showed in Table 4.8.

V. REFERENCES

- a) Association BCEOM-SOFI CONSULT S.A., "Hydrology and Meteorology Study in the Catchments of the Pacific Littoral of Perú for Evaluation and Forecasting of El Niño Phenomenon for Prevention and Disaster Mitigation", 1999.
- b) Chow, Maidment and Mays, "Applied Hydrology", 1994.
- c) Guevara, Environmental Hydrologyl, 1991.
- d) IILA-SENAMHI-UNI, "Study of the Hydrology of Perú", 1982.
- e) U.S. Corp of Engineers, "Manual of Technical References of HEC-HMS Software", 2000.