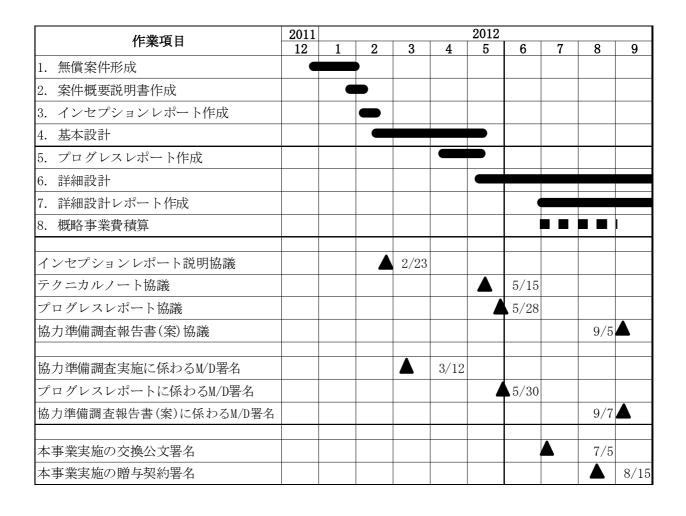
資料編

資料1	調査団氏名・所属資料	斗 1-1
資料2	調査工程資料	와 2-1
資料3	面会者リスト資料	斗 3-1
資料 4	討議議事録資料	와 4-1
資料 5	ソフトコンポーネント計画書資料	斗 5-1
資料6	参考資料	
資料(6-1 モニタリングフォーム (案)資料	6-1-1
資料(6-2 水門設備検討書資料	6-2-1
資料 7	収集文献リスト資料	斗 7-1
資料8	テクニカルノート資料	왕 8-1
資料 9	設計図	斗 9-1


調查団氏名 • 所属

資料 1 調査団氏名・所属

	担当業務	氏名	所属
(1)	業務主任/総合治水計画	松本良治/三品孝洋	株式会社建設技研インターナショナル
(2)	副業務主任/河川施設計画	三品孝洋/石井昌樹	株式会社建設技研インターナショナル
(3)	施設設計(無償)(1) 水門施設設計 I	我妻康弘	日本工営株式会社
(4)	施設設計(無償)(2) 水門施設設計 II	梶浦建樹	日本工営株式会社
(5)	施設設計(無償)(3) 水門施設設計 III	石井昌樹/伊藤達二	株式会社建設技研インターナショナル
(6)	施設設計(無償)(4) 水門機械設備計画 I	山口 新	日本工営株式会社
(7)	施設設計(無償)(5) 水門機械設備計画 II	山本正宏	日本工営株式会社
(8)	施設設計(無償)(6) 水門電気設備計画	斉藤正義	日本工営株式会社
(9)	施行計画・積算(無償)(1) 水門施設	君島 実	株式会社建設技研インターナショナル

調査工程

調査工程

面会者リスト

面会者リスト 機関名(所属)/氏名

Royal Irrigation Department (RID), Ministry of Agriculture and Cooperatives

氏名	所属
Mr. Lertviroj Kowattana	Director General
Mr. Suthep Noipairoj	Deputy Director General for Operation and Maintenance
Mr. Chachawal Punyavateenun	Deputy Director General for Engineering
Mr. Somkiet Prajumwong	Director of Project Management Office
Mr. Kosol Tienthongnukul	Director of Office of Engineering Topographical and Geotechnical Survey
Mr. Chatchai Boonlue	Director of Foreign Financed Project Administration Division
Mr. Panuphan Artsalee	Expert in Civil Engineering (Design)
Mr. Krairerk Inchayanunth	Chief of Design Standard Group
Mr. Thanet Somboon	Hydrologist in Experienced Level
Mr. Thongpeaw Kongjun	Director of Office of Engineering and Architecture Design
Mr. Songsak Soawung	Director of Public Participatory Promotion
Mr. Ugrid Thawonklaikool	Director of Operation and Maintenance Division of Regional Irrigation Office 10
Mr. Jamnong Phungpuk	Director of Office of the National Economic and Social Development Board (NESDB)
Mr. Jirawat Ratisunthorn	Director of Water Crisis Prevention Center
Mr. Prasit Sitho	Chief Engineer (Executive Advisor in Survey and Design)
Mr. Phuwanade Thongrungroj	Chief Engineer (Executive Advisor in Water Allocation and Maintenance)
Mr. Kanchadin Srapratum	Chief of Foreign Financed Project Administration Division
Mr. Noppadol Kosuwant	Chief of Improvement and Maintenance Division
Ms. Sukontha Airkarat	Representative of Director Bureau of Coordination for International Cooperation
Mr. Pinyo Gessa	Plan and Policy Analyst, Senior Professional Level
Ms. Kobkul Rangsiyaroj	Engineer, Professional Level
Mr. Weerawot Sirikul	Chief Engineer of Regional Irrigation Office 10
Mr. Suparat Kosumapinan	Chief of Design Group of Regional Irrigation Office 10
Mr. Chensak Suphakul	Engineer of Regional Irrigation Office 10
Mr. Prasit Sithiyos	Geologist of Regional Irrigation Office 10
Mr. Athaporn Punyachom	Head of Water Management Division of Regional Irrigation Office 10
Mr. Sittiwat Saengsiripaibool	Boundary Survey and Cadastral Survey Coordination of Water Management of Regional Irrigation Office 10

Mr. Prasert Lakrungroungkit	Boundary Survey and Cadastral Survey Coordination of Water Management of Regional Irrigation Office 10
Mr. Maitree Pitinanon	Director of Ayutthaya Irrigation Project Office
Mr. Chatchai Kerdpudpiam	Engineer of Ayutthaya Irrigation Project Office
Mr. Boontham Ponwang	Ayutthaya Irrigation Project Office
Mr. Natthaphong Kosuma	Ayutthaya Irrigation Project Office

State Railway of Thailand

氏名	所属
Mr. Paiboon Sujirangkul	Acting Chief Engineer of Department of Civil Engineering
Mr. Somchart Unsap	Chief of Phra Nakhon Si Ayutthaya Permanent Way Inspector
Mr. Sompot Artca	Assistant Chief of Phra Nakhon Si Ayutthaya Permanent Way Inspector

Committee of Damrongtham Center of Phra Nakhon Si Ayutthaya Province

氏名	所属
Mr. Withaya Pewpong	Governor of Phra Nakhon Si Ayutthaya Province
Dr. Thawee Naritsirikul	Vice Governor of Phra Nakhon Si Ayutthaya Province
Mr. Praphon Aiamsunthorn	Public Works and Town & Country Planning of Phra Nakhon Si Ayutthaya Province
Mr. Surachai Ajonboon	Director of Office of the Natural Resources and Environment of Phra Nakhon Si Ayutthaya Province
Ms. Bubpanat Chindet	Treasury of Phra Nakhon Si Ayutthaya Province
Mr. Sutham Noungam	Land Office of Phra Nakhon Si Ayutthaya Province
Mr. Sahaphum Phumtaritrat	Director of 3rd Regional Office of Fine Arts of Phra Nakhon Si Ayutthaya Province
Mr. Ratchata Pakafung	Director of Marine Department of Phra Nakhon Si Ayutthaya Province
Mr. Chaicharn Pondokmai	Chief of Ayutthaya Railway Station of SRT
Mr. Somsong Sappakosolkul	Mayor of Ayutthaya City Municipality
Mr. Narong Danchaiwiroj	Mayor of Ayothaya Town Municipality
Mr. Adisak Boonrod	Chief Executive of Han Tha Sub District Administrative Organization
Mr. Lamduan Kaisamrit	Chief Executive of Ko Rian Sub District Administrative Organization
Mr. Somboon Imsuwan	Chief Executive of Ban Ko Sub District Administrative Organization
Mr. Chalieow Sukprasert	Chief Executive of Tanoo Sub District Administrative Organization

討議議事録

MINUTES OF DISCUSSIONS

ON

THE PREPARATORY SURVEY

FOR

THE FLOOD PREVENTION PROJECT OF EAST SIDE OF THE PASAK RIVER IN AYUTTHAYA IN THE KINGDOM OF THAILAND (EXPLANATION OF DRAFT REPORT)

According to the Minutes of Discussions on the Preparatory Survey (hereinafter referred to as "The Survey") on "the Flood Prevention Project of East Side of the Pasak River in Ayutthaya" (hereinafter referred to as "the Project") on March 12, 2012, JICA Survey Team conducted series of field survey and discussion among related organization, and finally prepared the draft report of the survey.

In order to explain and consult with Royal Irrigation Department (hereinafter referred to as "RID") on the components of the draft report, JICA sent the Draft Report Explanation Team (hereinafter referred to as "the Team"), headed by Mr. Kazuhiro Yoneda, Chief Representative, JICA Thailand Office, from September 5 to 7, 2012.

As a result of the discussions, both parties confirmed the items described on the attached sheets.

Bangkok, September 7, 2012

Mr. Kazuhiro Yoneda

Leader

Draft Report Explanation Team

Japan International Cooperation Agency

15/11-3/

Mr. Lertviroj Kowattana

Director General

Royal Irrigation Department,

Ministry of Agriculture and Cooperatives

Attachment

1. Components of the draft report and related documents

RID agreed and accepted the contents of the draft report and the related document prepared by the JICA survey team. The Japanese side will finalize the Final Report according to the comments from RID.

2. Tentative Schedule of the Project

The Team explained and RID agreed the tentative implementation schedule as shown in Annex-2.

3. Japan's Grant Aid Scheme

RID understood Japan's Grant Aid Scheme and the necessary measures to be taken by the Government of Thailand as explained by the Team which was described in the Minutes of Discussions signed on March 12, 2012.

4. Confidentiality on Detailed Specification

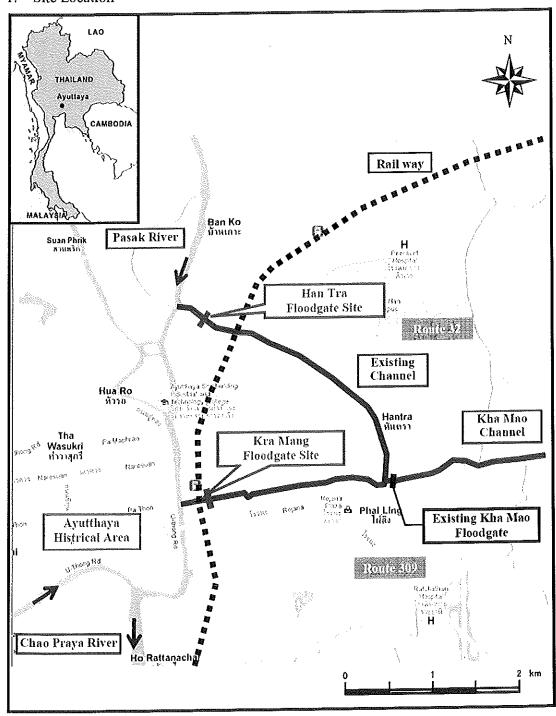
Both sides confirmed all the information related to the Project including technical specifications and drawings and other technical information shall not be released to any other party(ies) before the signing of all the Contract(s) for the Project.

- 5. Undertakings of Government of Thailand
 - 5-1 To provide required information and documents to carry out the Project,
 - 5-2 To provide required land for office, storage, stock yard, temporary spoil bank, coffering, temporary access road, etc.,
 - 5-3 Explanation of the Project and construction works, and request for cooperation to construction works to the stakeholders through the stakeholders meeting,
 - 5-4 To establish implementation framework including budget and staff member for compensation of land acquisition, resettlement and its implementation,
 - 5-5 To establish implementation framework for conducting the Project including budget and staff (with counterpart) and its implementation (including relocation cost of water pipe, electricity line, etc.),
 - 5-6 To open an account in a designated bank in Japan for the Banking Arrangement (B/A), and issue the Authorization to Pay (A/P), bear the advising commission of the A/P and the payment commissions to the bank,

Julory

- 5-7 To take necessary measures to ensure prompt unloading and Customs clearance upon entry into Thailand and transportation inside Thailand for the goods procured for the implementation of the Project,
- 5-8 To take necessary measures to exempt the contractor and the consultant from Customs duties, internal taxes and other fiscal levies imposed in Thailand for their supply of goods, services, and equipment,
- 5-9 Special treatment related to the entry and the resident in Thailand for the persons who are assigned to the Project based on the authorized contract,
- 5-10 Providing the required permission, authorization, right, etc., to carry out the Project,
- 5-11 The budget and sufficient number of staffs for the operation and maintenance to the floodgates constructed by the Japan Grant Aid,
- 5-12 Quick action to settle the problems from third parties and non-related people to the Project during the construction works, and
- 5-13 To secure the safety from the conflict, disturbance, rioting, rebellion, etc. to the Japanese citizen to be engaged in the Project.
- Necessary measures and schedule of land acquisition
 The team requested RID to take necessary measures in time to meet the following

deadlines, and explained that JICA can not verify a process of contract otherwise.


- 6-1 Agreement on land acquisition and/or resettlement with land owner(s) and/or resident(s) with any types of document shall be secured by the time of Bid Announcement or the middle of October.
- 6-2 Land acquisition and/or resettlement shall be completed by the Contract Agreement with a contractor.

RID agreed and promised to take necessary measures for those mentioned above (6-1 and 6-2).

A

The Contents of the Project

1. Site Location

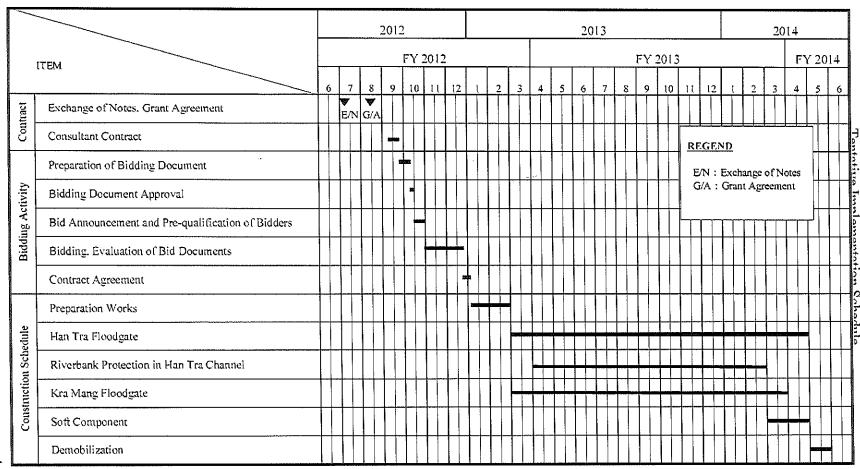
Location Map

Justing

A .

2. Contents of the Project

Facilities and Equipment


Items	Dimensions	
1. Han Tra Floodgate		
Туре	Stainless Steel type Roller Gate	
Span	6 m	
Number of Gate	3 nos.	
Top Elevation of Gate	EL.+4.6 m	
Bottom Elevation of Gate	EL2.5 m	
Top Elevation of Floodgate	EL.+7.5 m	
Foundation	Pile foundation	
2. Kra Mang Floodgate		
Туре	Stainless Steel type Roller Gate	
Span	6 m	
Number of Gate	3 nos.	
Top Elevation of Gate	EL.+4.6 m	
Bottom Elevation of Gate	EL0.5 m	
Top Elevation of Floodgate	EL.+7.5 m	
Foundation	Pile Foundation	
3. Riverbank Protection in Han Tra	a Canal	
Туре		
Length	212 m (Left)+272 m (Right)=484 m (Total)	
Elevation of Pile Coping	EL.+2.5 m	
Slope	1:2.0	
Top Elevation of Fili	EL.+4.5 m	
4. Drainage Pump with Truck		
Drainage Capacity	0.5 m³/sec/unit (30 m³/min/unit)	
Head	10 m	
Type of Pump	Submersible Pump	
Generator	Diesel Generator	
Truck Size	8 ton Class Truck	
Number	10 numbers	

Soft Component Plan

	Activities	Content
1	Preparation of coordinated gate operation and pump operation manual	Necessity of coordinated operation method, method of operation, operation record sheet, formation of communication network, communication method of each gate, pump, drain pump truck and office, communication record sheet
2	Guidance of coordinated gate operation and pump operation	Communication training, coordinated gate operation training

(A)

fe to sight or other

Lunder ?

MINUTES OF MEETING

ON

FINAL REPORT MEETING

FOR

The Flood Prevention Project
of
East Side of The Pasak River in
Ayutthaya
in
The Kingdom of Thailand

Final report

(Draft)

September 5, 2012

Between

Japan International Cooperation Agency

And

Royal Irrigation Department

Minutes of Meeting for Final Report

I. Introduction

The Record of discussion on Project for Comprehensive Flood Management Plan for the Chao Phraya River Basin was concluded on 13 January 2012. The Study Team of Japan International Cooperation Agency (hereinafter referred to as "JICA") submitted a Final Report (Draft) to Royal Irrigation Department (hereinafter referred to as "RID") on 5 September 2012 for "Flood Prevention Project of East Side of The Pasak River in Ayutthaya in The Kingdom of Thailand" (hereinafter referred to as the Study).

The major items discussed in the Technical meeting are summarized as follows:

II. Major Items Discussed

Major discussions made in the Technical Meeting among RID and JICA are as follows:

1. ITEM 1: Introduction

RID Mr. Suthep Noipairoj (Deputy Director General for Operation and Maintenance and also the chairman of this meeting updated the progress of Kra Mang Floodgate and Han Tra Floodgate Construction Projects.

 The Consultant Team has adjusted the Floodgate drawings in accordance with requesting of RID last meeting.

2. ITEM 2: Report of Records of Discussion and substantial issues

RID Mr. Suthep Noipairoj (Deputy Director General for Operation and Maintenance and also the chairman of this meeting) updated the progress of Kra Mang Floodgate and Han Tra Floodgate Construction Projects.

RID has 3 items to be discussed with JICA and Consultant Team

- 1) RID has agreed with the drawings except the pile. RID is worried about the quality of timber pile, which is used for permanent structure of floodgate construction. RID recommended the consultant team to use concrete pile instead of timber pile because the timber is made from Eucalyptus in Thailand. It is soft wood and not good quality. Moreover, it is more expensive than concrete pile. The consultant team informed RID about the timber pile in Japan. It is popular in Japan to use for floodgate construction. The timber pile in Japan is different from the timber in Thailand because the timber pile is made from Pine wood in Japan but the timber in Thailand made from Eucalyptus. The consultant team agreed to change the timber pile to concrete pile.
- RID will process the land procurement and compensation for affected people for Kra Mang floodgate and Han Tra floodgate construction projects. RID agreed to submit the

Minutes of Meeting for Final Report

agreement between RID and affected people within the mid of October 2012.

RID is so worried about land use of State Railway of Thailand. It is so hard to deal with this agency in Thailand because it is the one of State Enterprise in Thailand. It takes time to get the permission or result of land use of State Railway of Thailand. If RID has any problems with State Railway of Thailand RID will request JICA to assist them.

3) To propose the letter to government agencies for relocation and cost estimation of utilities, RID would like Regional Irrigation Office 10 in Ayutthaya to take responsibility to submit letters to agencies.

RID has already issued the letters for 4 government agencies, State Railway of Thailand, Thetsaban Nakhon Nakhon Si Ayutthaya Waterworks, Provincial Waterworks Authority in Ayutthaya and Provincial Electricity Authority in Ayutthaya. The consultant team and the officer from Regional Irrigation Office 10 in Ayutthaya will go to submit the letter to those agencies on Friday 7, September 2012 at 3.00 p.m.

3. ITEM 3: Report of operation process for construction area preparation

RID Mr. Ugrid Thawonklaikool (Director of Operation and Maintenance Division of Regional Irrigation Office 10 and also a counterpart of this project)

- RID and the consultant team had meeting with Chief, Phra Nakhon Si Ayutthaya Permanent Way Inspector and his staff to request them to survey land use of State Railway of Thailand on Thursday 19 July, 2012 at 10.00 a.m.
- Phra Nakhon Si Ayutthaya Permanent Way Inspector has sent the request documents to Nakhon Sawan Permanent Way Inspector.
- Regional Irrigation Office 10, Mr. Ugrid has contacted to Mr. Nattha (Officer of Nakhon Sawan Permanent Way Inspector) to check about the progressive operation on Tuesday 4 September, 2012. He said that this issue is still on process for consideration at Nakhon Sawan and he will let us know when he has to send the documents to the center of State Railway of Thailand.

4. ITEM 4: Report of the progress of JICA related projects

The Consultant Team Mr. ISHII Masaki (Deputy Team Leader) updated the progress of JICA related projects.

- The grant aid project reached an agreement with JICA and RID and identified projects to assist.
- The Consult Team agreed to change timber pile to concrete pile in accordance with RID suggestion.

5. ITEM 5: Explanation of Draft Report

JICA MR. MATSUMOTO Hideaki (Deputy Director Disaster Management Division 1) Global Environment Department

- JICA asked RID about the Panya Consultant team:
 Does RID still need some help from Panya Consultant team?

 The chairman of the meeting doesn't want any help from consultant team because the process of land procurement and compensation should be responsible by RID.
- JICA asked RID about the State Railway of Thailand process.
 RID explained the State Railway of Thailand process as follow:
 - The local agency of State Railway of Thailand for this project is Phra Nakhon Si
 Ayutthaya Permanent Way Inspector will inspect area and send the documents to
 Nakhon Sawan Permanent Way Inspector for consideration.
 - 2) After consideration, Nakhon Sawan Permanent Way Inspector will send the documents to the center of State Railway of Thailand in Bangkok
 - 3) The State Railway of Thailand in Bangkok will send the documents to involved agencies to do the cost estimation and relocation of communication line, and then they will send all the documents back to Nakhon Sawan Permanent Way Inspector
 - 4) The last stage will be ended at Phra Nakhon Si Ayutthaya Permanent Way Inspector Remark: Before the operation process of relocation communication line of State Railway of Thailand, RID has to pay for the expenditure first otherwise they won't do anything.
- He has explained the draft report to RID.

6. ITEM 6: Additional item for Final Report

The Consultant Team Mr. MISHINA Takahiro (Team Leader)

 Mr. MISHINA mentioned item 5-5 (To establish implementation framework for conducting the Project including budget and staff (with counterpart) and its implementation (including relocation cost of water pipe, electricity line, etc.) is the only one additional item for final report (draft) of Consultant Contract between RID and Consultant Team.

7. ITEM 7: Requested Information

RID Mr. Kanchadin Srapratum (Chief of Loan Projects)

• Mr. Kanchadin requested JICA and Consultant Team to submit the contract agreement

Minutes of Meeting for Final Report

(draft) between RID and Consultant Team in Thai version to Procurement and Supply Division before the signed contract date.

Mr. ISHII will send the contract agreement (draft) between RID and Consultant Team in Thai version to Procurement and Supply Division during 10-14 September, 2012.

 Mr. Kanchadin asked JICA and Consultant Team to change the Tentative Implementation Schedule, Item Consultant Contract to third week of September (Thursday 20 September, 2012).

8. ITEM 8: Confirm the Minutes of Discussions (Draft Report)

RID Mr. Suthep Noipairoj (Deputy Director General for Operation and Maintenance and also the chairmau of this meeting)

 Mr. Suthep has confirmed the signing between RID and JICA about the Minutes of Discussions on the Preparatory Survey on The Flood Prevention Project of East Side of The Pasak River in Ayutthaya in The Kingdom of Thailand on Friday 7 September, 2012 at 11.30 a.m. at Royal Irrigation Department (Samsen).

8.1 Presentation of Work Plan

Suggestion for the studies to include following:

- 4) Study based on topographic data for appropriate design of dykes and flood walls.
- 5) Concept of shelter that is accessible and away from potential flood area
- 6) RID would like to know the scope of work and the role of RID

9. ITEM 9: Other Business (if any)

The meeting was adjourned at 12.10 p.m.

Apppendix-1

Record of Discussions in Final Report (Draft) Meeting on Wednesday 5 September, 2012

I. Participants

Thai Attendants (Royal Irrigation Department)

NAME-SURNAME	IN CHARGE	ORGANIZATION	CONTACT NUMBER
Mr. Suthep Noipairoj	Deputy Director General for Operation and Maintenance	Royal Irrigation Department (Samsen)	084-700-0522
Mr. Chatchai Boonleu	Director of Foreign Financed Project Administration Division	Royal Irrigation Department (Samsen)	084-700-5327
Mr. Kanchadin Srapratum	Chief of Loan Projects	Royal Irrigation Department (Samsen)	081-721-0034
Mr. Panuphan Artsalee	Expert on Civil Engineering (Design)	Royal Irrigation Department (Samsen)	081-923-7897
Mr. Krairerk Inchayanunth	Chief of Design Standards Group	Royal Irrigation Department (Samsen)	089-121-1146
Mr. Thanet Somboon	Hydrologist (Experienced Level)	Royal Irrigation Department (Samsen)	084-725-4777

Minutes of Meeting for Final Report

Thai Attendants (Regional Irrigation Office)

NAME-SURNAME	IN CHARGE	ORGANIZATION	CONTACT NUMBER
Mr. Maitree Pitinanon	Director of Phra Nakhon Si Ayutthaya Provincial Irrigation Office	Regional Irrigation Office 10 (Ayutthaya)	081-817-9155
Mr. Chatchai Kertputpium	Chief of Engineering Branch	Regional Irrigation Office 10 (Ayutthaya)	087-118-3499
Mr. Ugrid Thawonklaikool	Director of Operation and Maintenance Project	Regional Irrigation Office 10 (Lop Buri)	081-853-3063
Mr. Attaporn Panyachohm	Chief of Water Management Branch	Regional Irrigation Office 10 (Lop Buri)	081-829-5753

Minutes of Meeting for Final Report

Japanese Attendants

NAME-SURNAME	INCHARGE	ORGANIZATION	CONTACT NUMBER
Mr. MATSUMOTO Hideaki	Deputy Director Disaster Management Division 1	JICA	
Mr. MISHINA Takamiro	Team Leader	JICA Study Team	086-075-7961
Mr. ISHII Masaki	Deputy Team Leader	JICA Study Team	084-712-7480
Mr. Kobchai Songsrisanga	Interpreter	JICA	02-261-5250
Mr. Chawalit Chanamai	Engineer	JICA Study Team	087-678-8046
Ms. Kamolnit Ariyakamolpat	Interpreter	JICA Study Team	087-029-2288

MINUTES OF MEETINGS ON THE PREPARATORY SURVEY ON THE FLOOD PREVENTION PROJECT OF EAST SIDE OF THE PASAK RIVER IN AYUTTHAYA IN THE KINGDOM OF THAILAND

According to the Minutes of Discussions on the Preparatory Survey on "the Flood Prevention Project of East Side of the Pasak River in Ayutthaya" (hereinafter referred to as "the Project") on February 29, 2012, JICA Study Team conducted series of field survey and discussion among related organization, and finally made Progress Report as attached.

On this occasion, the JICA Preparatory Survey Team (hereinafter referred to as "the Team"), which was headed by Mr. Kazuhiro Yoneda, Chief Representative, JICA Thailand Office and Royal Irrigation Department (hereinafter referred to as "RID") had discussions on the contents of the Progress Report, and reached to the agreement.

The contents of the discussions are attached as the Annex.

Bangkok, May 30, 2012

Mr. Kazuhiro Yoneda

Leader

Preparatory Survey Team

Japan International Cooperation Agency

141,-11-32

Mr. Lertviroj Kowattana

Director General

Royal Irrigation Department,

Ministry of Agriculture and Cooperatives

1. Technical Issue

The Thai side basically understood and agreed on the Technical Note as the Attachment-2 of the Progress Report as main points of technical issues and preliminary design of the floodgates, related structures and facilities.

2. Obligation of Thai side

The Team explained the obligations of Thai side and Thai side agreed on the contents as follow.

- (1) To provide required information and documents to carry out the Project,
- (2) To provide required land for office, storage, stock yard, temporary spoil bank, coffering, temporary access road, etc.,
- (3) Explanation of the Project and construction works, and request for cooperation to construction works to the stakeholders through the stakeholders meeting,
- (4) To establish implementation framework including budget and staff member for compensation of land acquisition, resettlement and its implementation,
- (5) To establish implementation framework for conducting the Project including budget and staff (with counterpart) and its implementation,
- (6) To open an account in a designated bank in Japan for the Banking Arrangement (B/A), and issue the Authorization to Pay (A/P), bear the advising commission of the A/P and the payment commissions to the bank,
- (7) To take necessary measures to ensure prompt unloading and Customs clearance upon entry into Thailand and transportation inside Thailand for the goods procured for the implementation of the Project,
- (8) To take necessary measures to exempt the contractor and the consultant from Customs duties, internal taxes and other fiscal levies imposed in Thailand for their supply of goods, services, and equipment,
- (9) Special treatment related to the entry and the resident in Thailand for the persons who are assigned to the Project based on the authorized contract,
- (10) Providing the required permission, authorization, right, etc., to carry out the Project,
- (11) The budget and sufficient number of staffs for the operation and maintenance to the floodgates constructed by the Japan Grant Aid,
- (12) Quick action to settle the problems from third parties and non-related people to the Project during the construction works, and
- (13) To secure the safety from the conflict, disturbance, rioting, rebellion, etc. to the Japanese citizen to be engaged in the Project.

Justing &

3. Environmental Consideration

Both sides basically agreed on the draft of Initial Environmental Examination Report for the Project. Although the result of evaluation will not be changed from the draft version, it needs some modification on the wording according to the comments from the section/department in charge of the environmental issue of the both sides. The report will be finalized and RID will submit the report to JICA within three weeks.

4. Social Consideration

4-1 Resettlement Action Plan

The Team requested to RID to finalize Resettlement Action Plan by the beginning of July with the support of the Team. RID answered that RID will finalize the Plan as requested by referring the laws and regulations of the Government of Thailand.

4-2 Building consensus on the resettlement with residents

The Team requested to RID to build consensus on the resettlement of the residents one by one by the middle of October. RID answered that RID will manage to make consensus to be in time.

5. Land Acquisition for temporary stockyard and access road

5-1 Negotiation with the people

RID questioned to the Team regarding the responsibility of the negotiation with the people. The Team answered that RID is responsible for the negotiation with and explanation to the people even it is the land for temporary use.

The Team explained that the location described in the Progress Report was the tentative proposal and it could be changed by RID as long as it had enough space.

5-2 Expenses

RID questioned to the Team whether the expenses for land acquisition for temporary stockyard and access road can be included into the Japanese Grant Aid Project or not. The Team answered that expenses for land acquisition for temporary stockyard and access road can not be covered by the Japanese Grant Aid Project.

MINUTES OF DISCUSSIONS ON THE PREPARATORY SURVEY ON THE FLOOD PREVENTION PROJECT OF EAST SIDE OF THE PASAK RIVER IN AYUTTHAYA IN THE KINGDOM OF THAILAND

In response to a request from the Government of the Kingdom of Thailand (hereinafter referred to as "GOT"), the Government of Japan decided to conduct a Project for Comprehensive Flood Management Plan for the Chao Phraya River Basin (hereinafter referred to as "the umbrella Project") which consists of (i) Comprehensive flood management plan (Component 1), (ii) Outline design for Japanese Grant Aid (Component 2) and (iii) Pilot projects for emergency rehabilitation (Component 3). The Japan International Cooperation Agency (hereinafter referred to as "JICA") has started the umbrella Project since December 2011, and had series of discussions on the project selection of Component 2 among organization concerned. Finally, a project titled "The Flood Prevention Project of East Side of the Pasak River in Ayutthaya" (hereinafter referred to as "the Project") has been selected by Royal Irrigation Department, Ministry of Agriculture and Cooperatives (hereinafter referred to as "RID") and JICA. Necessary procedures and arrangements are in progress in respective governments.

According to the Record of Discussions of the umbrella Project signed on January 13, 2012, JICA sent the Preparatory Survey Team (hereinafter referred to as "the Team"), which was headed by Mr. Kazuhiro Yoneda, Chief Representative, JICA Thailand Office, and was scheduled to stay in the country from February 23 to the end of August 2012. The Team held discussions with the officials concerned of GOT and conducted a field survey in the study area.

In the course of discussions and field survey, both parties confirmed the main items described on the attached sheets. The Team will proceed to further works and prepare the Preparatory Survey Report.

Bangkok, March 12, 2012

Trest ma

Mr. Kazuhiro Yoneda

Leader

Preparatory Survey Team

Japan International Cooperation Agency

4,141-32

Mr/Lertviroj Kowattana

Deputy Permanent Secretary

Acting for Director General

Royal Irrigation Department

Ministry of Agriculture and Cooperatives

ATTACHMENT

1. Background

October 2012 The flood of the Chao Phraya River began to affect the people and

economy of the Kingdom of Thailand.

November 7, 2011 Government of Thailand (Ministry of Foreign Affairs) officially

requested the umbrella Project proposed by the RID and DWR.

December 22, 2011 Minutes of Meetings which described basic understanding both sides

about framework, contents and important issues to be concerned of the umbrella Project was signed and exchanged by RID, DWR and JICA witnessed by the National Economic and Social Development

Board (hereinafter referred to as "NESDB").

December 22, 2011 Consultant Team of the umbrella Project was assigned by JICA.

January 13, 2012 Record of Discussion (hereinafter referred to as "R/D") which

stipulated contents of the umbrella Project was signed and

exchanged by NESDB, RID, DWR and JICA.

2. Outline of the umbrella Project

Component 1: Comprehensive flood management plan considering the effect of the climate

change and land development. This component consists of two (2) sub-

components as follows;

Sub-component I-1: Preparation of a detailed map necessary for reviewing

the M/P of 1999 (Sub-component 1-2)

Sub-component 1-2: Review of the "Study on integrated plan for flood

mitigation in Chao Phraya River Basin" (hereinafter

referred to as "M/P")

Component 2: Outline design for Japanese Grant Aid for Disaster Prevention and

Reconstruction

Component 3: Pilot projects of emergency rehabilitations and/or urgent countermeasures to

protect the priority area such as the industrial complex and/or Bangkok are

implemented

• This Preparatory Survey will be conducted under the Component 2.

3. Project Title

Both sides agreed that the project title for this survey was "the Flood Prevention Project of East

Side of the Pasak River in Ayutthaya".

4. Objective of the Project

The objective of the Project is to mitigate the risk of damages from flood in the downstream area of the Khao Mao canal including Bangkok and industrial complexes by constructing regulators in Ayutthaya.

5. Project site

. . .

The site of the Project is located on east side of the Pasak River in Ayutthaya as shown in ANNEX 1.

6. Responsible and Implementing Agency

The responsible and implementing entity for the Project is the Royal Irrigation Department, Ministry of Agriculture and Cooperatives.

7. Items requested by the Government of Thailand

Through discussions between RID and the Team, the requested components were confirmed as below.

- > New construction of two main bodies of regulators
- > Production of gates and installation to the main bodies
- > New construction of their related structures such as revetment

In addition to the above items, RID requested to consider pump(s) for drainage water inside of the regulators when the gates of regulators were closed.

Appropriateness and necessity of each item of the request including pumps will be assessed and specifications of each item of the request will be decided based on the result of the Preparatory Survey and additional survey done by the JICA's consultant in consideration with budget availability of Japan's Grant Aid and operation and maintenance capacity of RID.

8. Japan's Grant Aid Scheme

- 8-1 Thai side understands the Japan's Grant Aid Scheme explained by the Team, as described in ANNEX 2. Thai side also understands that the procedure for the Project is specially arranged due to emergency treatment.
- 8-2 Thai side will take the necessary measures, as described in ANNEX 3, for smooth implementation of the Project.

9. Schedule of the Survey

- 9-1 The Team will proceed for further studies in Thailand until the end of August, 2012.
- 9-2 The Team will prepare the progress report of the Preparatory Survey in English. JICA will dispatch a mission to explain its contents in May.

Contents of the progress report will consist of technical notes, preliminary design, undertakings and inputs from each Government and necessary measures for environmental

Justing

and social consideration.

9-3 JICA will prepare the final report of the Preparatory Survey and dispatch a mission to explain its contents in August.

Contents of the final report will be detailed design, implementation plan, cost estimation, and maintenance and monitoring plan.

In addition to the final report, a set of reference documents for making bid documents will be prepared.

9-4 JICA will finalize the final report and send it to the GOT by the end of August, 2012.

10. Other relevant issues

10-1 Responsibility for the detailed design and bid document

Through the Preparatory Survey and additional survey, JICA will prepare detailed design and related documents just as reference documents for conducting bidding procedure. GOT has to take necessary procedure to authorize the detailed design and the bid document after receiving reference documents.

10-2 Land Clearance and Provision of Disposal Area of Construction Debris

Both sides confirmed that land clearance of construction area would be undertaken by the Thai side and completed before the commencement of the construction work.

That side agreed to provide the disposal area of construction debris at own cost and take necessary measures according to the related law before the commencement of the construction work.

10-3 Removal of residences in the site

That side agreed to undertake a responsibility of removal of residences in the project site before the commencement of the construction work, if any.

10-4 Environmental and Social Considerations

Both sides agreed that it is not necessary to take procedures for the approval of Environmental Impact Assessment (hereinafter referred to as "EIA") for the Project according to the laws and regulations of Thailand.

The Team explained that the Project is temporally categorized as "B" based on JICA's Guidelines for Environmental and Social Considerations (April, 2010) because the Project does not have significant adverse impact but needs careful consideration for environmental and social impact as it is new construction project. Thus Imitial Environmental Examination (hereinafter referred to as "IEE") shall be conducted for the Project. In addition, it is necessary to make a Resettlement Action Plan (hereinafter referred to as "RAP") if any resettlement will be take place by the Project.

Both sides agreed that IEE procedure and RAP will be completed by the RID with support

from the Team by the time of discussion on the progress report of the Preparatory Survey. GOT shall have a full responsibility for explanation to stakeholders about environmental impacts of the Project.

Also GOT is requested to take actions such as preparing environmental check list as shown in ANNEX 4 as a brank form and taking the monitoring procedure in accordance with the monitoring form as shown in ANNEX 5.

The environmental check list and the monitoring form have to be prepared by the time of discussion on the progress report of the Preparatory Survey.

10-5 Design Policy and Condition

Both sides agreed on the design policy and condition as shown in the Inception Report. If any changes and/or detailed technical issue to be confirmed between both sides arise, technical note will be made, signed and exchanged by both sides. Representative of JICA side for this technical matter is a leader of consultant team, and representative of Thai side is Director of Region 10 of RID.

10-6 Arrangement for the Survey

As response to the request by the Team, Thai side agreed to arrange following items:

- (1) To provide the Team with available data, information and materials necessary for the execution of the Survey which was agreed in R/D.
- (2) To prepare the answers for the Questionnaires presented by the Team,
- (3) To assign full-time counterparts to the Team during their stay in Thailand and to play the following roles as the coordinator to the Team:
 - 1) To make the appointments and to set up the meetings with the authorities, departments and all other factories and firms whatever the Team intends to visit,
 - 2) To attend site survey and any other visiting place with the Team and to make any convenience on accommodation, working room, adequate transportation, getting the permissions if required, etc., and
 - 3) To assist and to advise the Team for their collection of data and information,
- (4) To secure the permission to photograph and enter into private properties and restricted areas for the Team for proper execution of the Survey, if necessary,
- (5) To take any necessary measures deemed necessary to secure the safety of the members of the Team, and
- (6) To make arrangements to allow the Team to bring back to Japan any necessary data, maps and materials related to the Survey, subject to approval by the GOT, in order to prepare the report.

10-7 Operation and Maintenance cost

Necessary cost for operation and maintenance of the project after the completion of the

Project will be surveyed through the Preparatory Survey.

10-8 Confidentiality of the Project

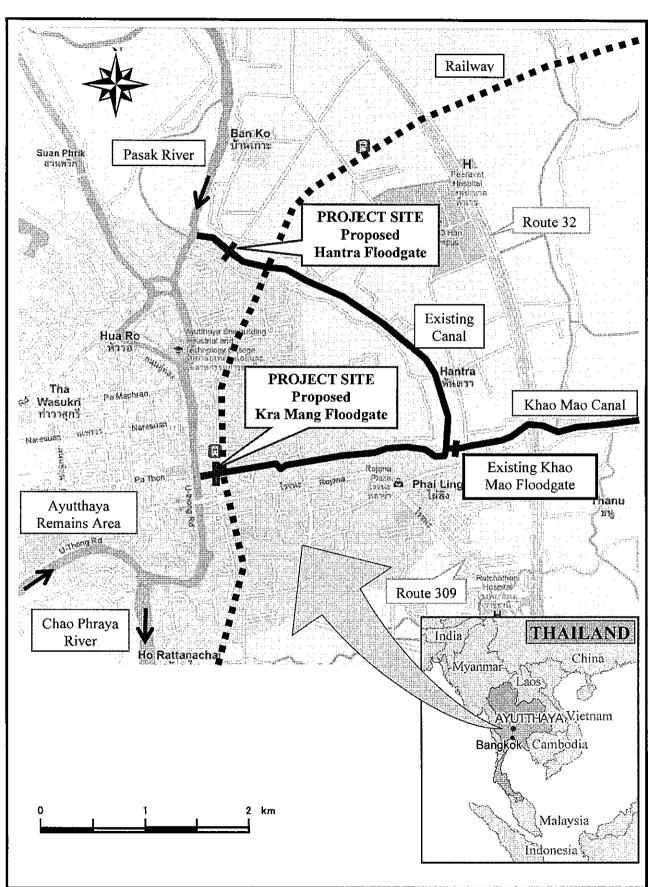
All the information related to the Project such as detailed drawings, specifications, and the result of cost estimation shall not be released to a third party before conclusion of all the contract(s) for the Project, because they are confidential documents that contain information related to the tender.

10-9 Tax Exemption

The tax exemption including Value Added Tax (VAT), custom duty, and any other taxes and fiscal levies in Thailand which is to be arisen from the Project activities will be ensured by RID. RID and the Thailand International Development Cooperation Agency will take any procedures necessary for tax exemption with the Ministry of Finance of Thailand at their responsibility.

futhing of

Annex 1: Project Site


Annex 2: Grant Aid Scheme JAPAN'S GRANT AID

Annex 3: Major Undertakings to be taken by Each Government

Annex 4: Environmental Checklist

Annex 5: Monitoring Form

Related Document to this Minutes of Discussions: Inception Report

LOCATION MAP

fulling &

Grant Aid Scheme JAPAN'S GRANT AID

The Government of Japan (hereinafter referred to as "the GOJ") is implementing the organizational reforms to improve the quality of ODA operations, and as a part of this realignment, a new JICA law was entered into effect on October 1, 2008. Based on this law and the decision of the GOJ, JICA has become the executing agency of the Grant Aid for General Projects, for Fisheries and for Cultural Cooperation, etc.

The Grant Aid is non-reimbursable fund provided to a recipient country to procure the facilities, equipment and services (engineering services and transportation of the products, etc.) for its economic and social development in accordance with the relevant laws and regulations of Japan. The Grant Aid is not supplied through the donation of materials as such.

1. Grant Aid Procedures

The Japanese Grant Aid is supplied through following procedures:

- · Preparatory Survey
 - The Survey conducted by JICA
- · Appraisal & Approval
 - -Appraisal by the GOJ and JICA, and Approval by the Japanese Cabinet
- · Authority for Determining Implementation
 - -The Notes exchanged between the GOJ and a recipient country
- · Grant Agreement (hereinafter referred to as "the G/A")
 - -Agreement concluded between JICA and a recipient country
- · Implementation
 - -Implementation of the Project on the basis of the G/A

2. Preparatory Survey

(1) Contents of the Survey

The aim of this Preparatory Survey is to provide reference documents for making bid document for the contract of the Project. The contents of the Survey are as follows:

- Confirmation of the background, objectives, and benefits of the Project and also institutional capacity of relevant agencies of the recipient country necessary for the implementation of the Project.
- Evaluation of the appropriateness of the Project to be implemented under the Grant Aid Scheme from a technical, financial, social and economic point of view.
- Confirmation of items agreed between both parties concerning the basic concept of the Project.
- Preparation of an outline design and detailed design of the Project.
- Estimation of costs of the Project.

The contents of the original request by the recipient country are not necessarily approved in their initial form as the contents of the Grant Aid project. The Detailed Design of the Project is confirmed based on the guidelines of the Japan's Grant Aid scheme.

JICA requests the Government of the recipient country to take whatever measures necessary to achieve its self-reliance in the implementation of the Project. Such measures must be guaranteed even though they may fall outside of the jurisdiction of the organization of the recipient country which actually implements the Project. Therefore, the implementation of the Project is confirmed by all relevant organizations of the recipient country based on the Minutes of Discussions.

futhing

(2) Selection of Consultants

For smooth implementation of the Survey, JICA employs (a) registered consulting firm(s). JICA selects (a) firm(s) based on proposals submitted by interested firms.

(3) Result of the Survey

JICA reviews the Report on the results of the Survey and transfers it to the Government of recipient country.

3. Japan's Grant Aid Scheme

(1) The E/N and the G/A

After the Project is approved by the Cabinet of Japan, the Exchange of Notes (hereinafter referred to as "the E/N") will be singed between the GOJ and the Government of the recipient country to make a pledge for assistance, which is followed by the conclusion of the G/A between JICA and the Government of the recipient country to define the necessary articles to implement the Project, such as payment conditions, responsibilities of the Government of the recipient country, and procurement conditions.

(2) Selection of Consultants

In order to maintain technical consistency, the consulting firm(s) which conducted the Survey will be recommended by JICA to the recipient country to continue to work on the Project's implementation after the E/N and G/A.

(3) Eligible source country

Under the Japanese Grant Aid, in principle, Japanese products and services including transport or those of the recipient country are to be purchased. When JICA and the Government of the recipient country or its designated authority deem it necessary, the Grant Aid may be used for the purchase of the products or services of a third country. However, the prime contractors, namely, constructing and procurement firms, and the prime consulting firm are limited to "Japanese nationals".

(4) Necessity of "Verification"

The Government of the recipient country or its designated authority will conclude contracts denominated in Japanese yen with Japanese nationals. Those contracts shall be verified by JICA. This "Verification" is deemed necessary to fulfill accountability to Japanese taxpayers.

(5) Major undertakings to be taken by the Government of the Recipient Country

In the implementation of the Grant Aid Project, the recipient country is required to undertake such necessary measures as Annex 3.

(6) "Proper Use"

The Government of the recipient country is required to maintain and use properly and effectively the facilities constructed and the equipment purchased under the Grant Aid, to assign staff necessary for this operation and maintenance and to bear all the expenses other than those covered by the Grant Aid.

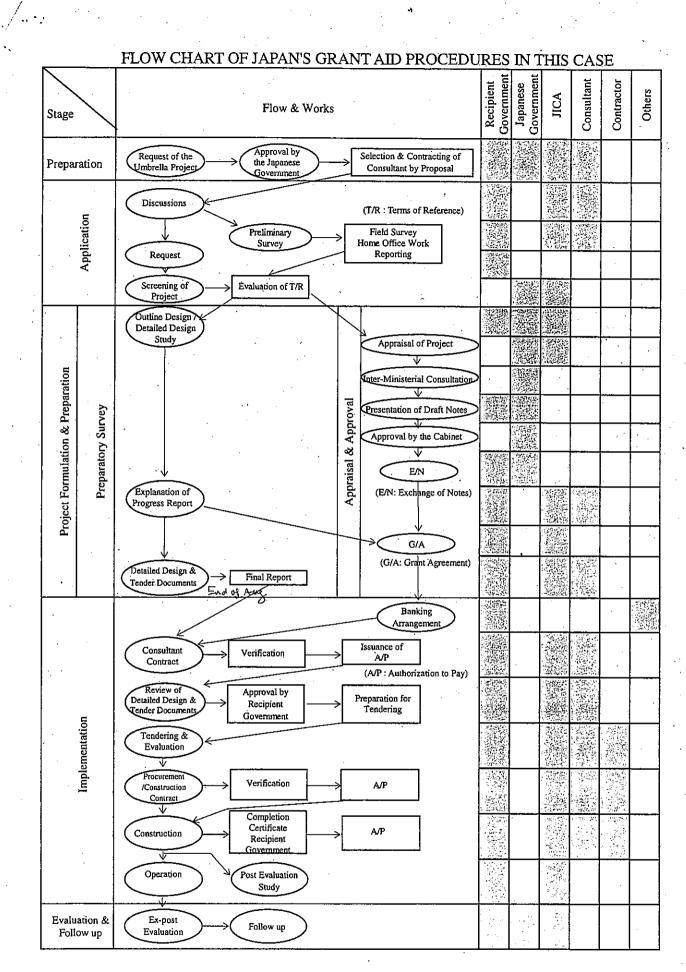
(7) "Export and Re-export"

The products purchased under the Grant Aid should not be exported or re-exported from the recipient country.

(8) Banking Arrangements (B/A)

- a) The Government of the recipient country or its designated authority should open an account under the name of the Government of the recipient country in a bank in Japan (hereinafter referred to as "the Bank"). JICA will execute the Grant Aid by making payments in Japanese yen to cover the obligations incurred by the Government of the recipient country or its designated authority under the Verified Contracts.
- b) The payments will be made when payment requests are presented by the Bank to JICA under an Authorization to Pay (A/P) issued by the Government of the recipient country or its designated authority.

(9) Authorization to Pay (A/P)


The Government of the recipient country should bear an advising commission of an Authorization to Pay and payment commissions paid to the Bank.

(10) Social and Environmental Considerations

A recipient country must carefully consider social and environmental impacts by the Project and must comply with the environmental regulations of the recipient country and JICA's Guidelines for Environmental and Social Considerations (April, 2010).

faithir)

資料4-28

Justing &

Annex 3

Major Undertakings to be taken by Each Government

No.	Items	To be covered by Grant Aid	To be covered by Recipient Side
1	to secure [a lot] /[lots] of land necessary for the implementation of the Project and to clear the [site]/[sites];		•
2	To ensure prompt customs clearance of the products and to assist internal transportation of the products in the recipient country		
	1) Marine (Air) transportation of the Products from Japan to the recipient country	•	
	2) Tax exemption and custom clearance of the Products at the port of disembarkation		•
	3) Internal transportation from the port of disembarkation to the project site	(●)	(●)
3	To ensure that customs duties, internal taxes and other fiscal levies which may be imposed in the recipient country with respect to the purchase of the products and the services [be exempted] / [be borne by the Authority without using the Grant]		•
4	To accord Japanese nationals whose services may be required in connection with the supply of the products and the services such facilities as may be necessary for their entry into the recipient country and stay therein for the performance of their work		•
5	To ensure that the Facilities be maintained and used properly and effectively for the implementation of the Project		•
6	To bear all the expenses, other than those covered by the Grant, necessary for the implementation of the Project		•
7	To bear the following commissions paid to the Japanese bank for banking services based upon the B/A		
	1) Advising commission of A/P		•
	2) Payment commission		•
8	To give due environmental and social consideration in the implementation of the Project.		•

(B/A: Banking Arrangement, A/P: Authorization to pay)

Environmental Checklist: 11. River and Sand Erosion Control

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
1 Pormite and	(1) EIA and Environmental Permits	 (a) Have EIA reports been already prepared in official process? (b) Have EIA reports been approved by authorities of the host country's government? (c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government? 	(a) (b) (c) (d)	(a) (b) (c) (d)
1 Permits and Explanation	(2) Explanation to the Local Stakeholders	(a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the project design?	(a) (b)	(a) (b)
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental considerations?	(a)	(a)
	(1) Water Quality	(a) Is there a possibility that changes in river flow downstream (mainly water level drawdown) due to the project will cause areas that do not comply with the country's ambient water quality standards?	(a)	(a)
2 Pollution Control	(2) Wastes	(a) In the case of that large volumes of excavated/dredged materials are generated, are the excavated/dredged materials properly treated and disposed of in accordance with the country's standards?	(a)	(a)
	(3) Subsidence	(a) Is there a possibility that the excavation of waterways will cause groundwater level drawdown or subsidence? Are adequate measures taken, if necessary?	(a)	(a)
3 Natural Environment	(1) Protected Areas	(a) Is the project site located in protected areas designated by the country's laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a)	(a)

John

	(2) Ecosystem	 (a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) If significant ecological impacts are anticipated, are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Is there a possibility that hydrologic changes, such as reduction of the river flow, and seawater intrusion up the river will adversely affect downstream aquatic organisms, animals, vegetation, and ecosystems? (e) Is there a possibility that the changes in water flows due to the project will adversely affect aquatic environments in the river? Are adequate measures taken to reduce the impacts on aquatic environments, such as aquatic organisms? 	(a) (b) (c) (d) (e)	(a) (b) (c) (d) (e)
3 Natural	(3) Hydrology	(a) Is there a possibility that hydrologic changes due to the project will adversely affect surface water and groundwater flows?	(a)	(a)
Environment	(4) Topography and Geology	(a) Is there a possibility that excavation of rivers and channels will cause a large-scale alteration of the topographic features and geologic structures in the surrounding areas?	(a)	(a)
4 Social Environment	(1) Resettlement	 (a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement? (b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement? (c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement? (d) Is the compensations going to be paid prior to the resettlement? (e) Is the compensation policies prepared in document? (f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, people below the poverty line, ethnic minorities, and indigenous peoples? (g) Are agreements with the affected people obtained prior to resettlement? (h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? (j) Is the grievance redress mechanism established? 	(a) (b) (c) (d) (e) (f) (g) (h) (i)	(a) (b) (c) (d) (e) (f) (g) (h) (i)

forming

	(2) Living and Livelihood	 (a) Is there a possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary? (b) Is there a possibility that the amount of water (e.g., surface water, groundwater) used by the project will adversely affect the downstream fisheries and other water uses? (c) Is there a possibility that water-borne or water-related diseases (e.g., schistosomiasis, malaria, filariasis) will be introduced? 	(a) (b) (c)	(a) (b) (c)
(3) Heritage		(a) Is there a possibility that the project will damage the local archeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a)	(a)
	(4) Landscape	(a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?	(a)	(a)
	(5) Ethnic Minorities and Indigenous Peoples	(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources to be respected?	(a)(b)	(a)(b)
4 Social Environment	(6) Working Conditions	 (a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents? 	(a) (b) (c) (d)	(a) (b) (c) (d)
5 Others	(1) Impacts during Construction	 (a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)? (b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce impacts? (c) If construction activities adversely affect the social environment, are adequate measures considered to reduce impacts? 	(a) (b) (c)	(a) (b) (c)

X

fishing

	(2) Monitoring	 (a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts? (b) What are the items, methods and frequencies of the monitoring program? (c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)? (d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities? 	(a) (b) (c) (d)	(a) (b) (c) (d)
	Reference to Checklist of Other Sectors	(a) Where necessary, pertinent items described in the Forestry checklist should also be checked.	(a)	(a)
6 Note	Note on Using Environmental Checklist	(a) If necessary, the impacts to transboundary or global issues should be confirmed (e.g., the project includes factors that may cause problems, such as transboundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a)	(a)

1) Regarding the term "Country's Standards" mentioned in the above table, in the event that environmental standards in the country where the project is located diverge significantly from international standards, appropriate

environmental considerations are required to be made.

In cases where local environmental regulations are yet to be established in some areas, considerations should be made based on comparisons with appropriate standards of other countries (including Japan's experience).

2) Environmental checklist provides general environmental items to be checked. It may be necessary to add or delete an item taking into account the characteristics of the project and the particular circumstances of the

country and locality in which the project is located.

fisting

MONITORING FORM

- -If environmental reviews indicate the need of monitoring by JICA, JICA undertakes monitoring for necessary items that are decided by environmental reviews. JICA undertakes monitoring based on regular reports including measured data submitted by the project proponent. When necessary, the project proponent should refer to the following monitoring form for submitting reports.
- -When monitoring plans including monitoring items, frequencies and methods are decided, project phase or project life cycle (such as construction phase and operation phase) should be considered.

1. Responses/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period
ex.) Responses/Actions to Comments and	
Guidance from Government Authorities	

2. Mitigation Measures

- Air Quality (Emission Gas / Ambient Air Quality)

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Referred International Standards	Remarks (Measurement Point, Frequency, Method, etc.)
SO ₂						
NO 2						
CO				•		
O 3						
Soot and						
dust						
SPM						
Dust						

- Water Quality (Effluent/Wastewater/Amhient Water Quality)

I. II. III. Item	1. 2. 3.	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standard	Referred International Standards	Remarks (Measurement Point, Frequency, Method, etc.)
pН							
SS							
(Suspended							
Solid)							
BOD/COD							
DO							
Total							
Nitrogen							

furning &

Total			
Phosphorus			
Heavy Metals			
Hydrocarbons / Mineral Oils			
/ Mineral Oils		 	
Phenols			
Cyanide			
Temperature			

- Waste

Monitoring Item	Monitoring Results during Report Period

- Noise / Vibration

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Referred International Standards	Remarks (Measurement Point, Frequency, Method, etc.)
Noise level						
Vibration level						

- Odor

O401	
Monitoring Item	Monitoring Results during Report Period
•	
	ļ .

3. Natural Environment

- Ecosystem

Monitoring Item				Monitoring Results during Report Period
ex.) Negative	effects/Actions	to	Valuable	
species				

4. Social Environment

- Resettlement

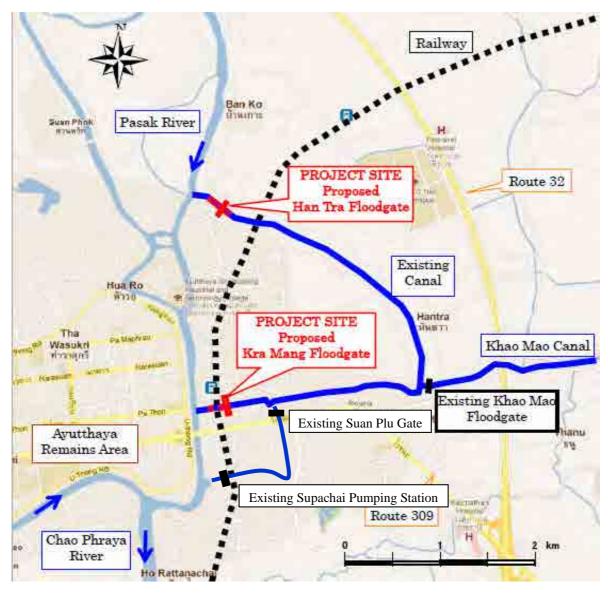
Monitoring Item	Monitoring Results during Report Period

- Living / Livelihood

Monitoring Item	Monitoring Results during Report Period

Justin's

資料 5


ソフトコンポーネント計画書

1 ソフトコンポーネントを計画する背景

(1) 背景

ハントラ、クラマン両水門を新設することにより、パサック川左岸地域で洪水時のパサック川からの逆流を遮断し、①県道 3053 号線の東側地域の洪水防御を図ることにより住民生活と資産の安全を確保し、②工業団地の浸水被害を軽減する事を目的としている。

しかしながら、水門建設位置のハントラ水路、クラマン水路は既存水門のあるカマオ(Khao Mao)水路と接続されており、かつクラマン水門地点上流ではソンプルー(Suan Plu)水路が南に分流し、そのチャオプラヤ川合流地点にはアヨタヤ町管理のスパチャイ(Supachai)排水機場が設けられている。図-1にこれらの位置関係を示す。

出典: JICA 調査団

図-1 構造物位置図

(2) 現状の運用

現状の運用は、洪水時にチャオプラヤ川の水位がスパチャイ排水機場地点で EL. +2.6m

(MSL)に達すると、国道 309 号線を横断する手前でソンプルー水路に設けられたアヨタヤ町管理のソンプルー水門を閉じ、スパチャイ排水機場(12m³/sec/水中ポンプ 4 基)を運転することにより内水排除を行っている。RID 管理のカマオ水門はパサック川の逆流を防ぎ上流側水路の HWL が EL. +3.5m(MSL)を越えない様ゲート開度調整する事になっている。このため、クラマン水路、ハントラ水路沿いの標高の低い所にある住居は頻繁に浸水被害を受けている状況である。

(3) 施設の連携運用の必要性

本事業は、クラマン水路およびパサック水路内に水門施設を建設し、3053 号線より東側の地域に対してパサック川の逆流による洪水被害を軽減する事であるが、図-1 に示す様に一つの水路システム内に複数の構造物が存在する事になるため、これらの構造物と今回機材調達で納入される排水ポンプ車 10 台 $(0.5 \text{m}^3/\text{sec}/\text{台} \text{ x } 10$ 台 $=5 \text{m}^3/\text{s})$ の最適運用を検討し、それに沿った水門、排水機場、排水ポンプ車の連携運用を図る事により、本無償事業の効果が最大限発揮される事になる。

2 ソフトコンポーネントの目標

タイ国側実施機関が我が国による無償資金協力終了後も、持続的な運営維持管理活動を実施することになっている。このため、運営維持管理の実施機関である王室灌漑局第 10 地域灌漑事務所、同アユタヤ灌漑事業所、アヨタヤ町、アユタヤ市、アユタヤ郡、アユタヤ県の各自治体の治水担当職員が本コンポーネントを通じ、以下の状態まで施設等の運用について習熟する事を目標とする。

- ① ハントラ水門、クラマン水門のゲート操作が円滑に行われる事。
- ② 洪水時に、新設、既存水門ゲート、排水機場および排水ポンプ車の円滑な連携運用が行われる事。
- ③ 洪水被害の軽減に係わる行政サービスが向上される事。

3 ソフトコンポーネントの成果

成果として、施設の運用支援に関するソフトコンポーネント完了時に運営維持管理実施機関の職員が、以下の状況に迅速な対応が可能となっている事である。

- 成果 1) どんな状況でも、ハントラ水門、クラマン水門で管理者の指示に基づいて適切なゲート操作が行える。
- 成果 2) どんな状況でも、ハントラ水門、クラマン水門、カマオ水門、ソンプルー水門、スパチャイ排水機場および排水ポンプ車の管理者がゲート操作およびポンプ運転のためのネットワークが構築され、適切な連携運用が行える。

4 成果達成度の確認方法

施設の運用支援のソフトコンポーネントの成果達成度の確認方法は以下の通りである。

- 成果 1) 様々なケースを想定しハントラ水門、クラマン水門の担当者によって試験運用を実施する。チェックリストを事前に作成し水門の運用の熟度を確認する。
- 成果 2) 洪水の考えうるケースを想定し、各水門、排水機場、ポンプ車の連携に関する試験運

用を実施する。まずネットワークの構築がなされたかを確認した上で、連携運用を実施する。これについても、チェックリストを事前に作成し、連携運用の熟度を確認する。

さらに、コンサルタントのチェックリストによる評価に加えて、参加者自身にチェックリストによる評価及びアンケートに答えてもらい、参加者の運用の熟度及び理解度を確認する。

5 ソフトコンポーネントの活動(投入計画)

上記の成果の達成のために必要な活動を以下の通り計画する。各活動の具体的内容、対象者、実施方法、実施リソース、活動期間、成果品の各項目について、後に添付する表-1に示した。施設の維持管理支援の概要は下記のとおりである。

- ① 施設運用規則の作成
- ② 関連水門、排水機場との連携操作指導

6 ソフトコンポーネントの実施リソースの調達方法

実施する施設の維持管理支援については、コンサルタント要員が支援する事とする。その 他、カウンターパート1名は下記のとおり計画する。

① 邦人コンサルタント要員:1名(施設運用規則指導)

対象地域内に設けられた治水施設の連携運用に係わる施設運用規則を指導する。このため、RIDならびに地元自治体の治水担当者との協議を通じ、水門、排水機場、排水ポンプ車の効果的な連携運用規則を提案する。提案内容についてはセミナーを通じて説明し、その際の相互意見交換を反映させることにより最終化する。各作業内容については、日本側関係機関へ報告する。

② 実施機関カウンターパート:王室灌漑局第 10 地域灌漑事務所の治水施設管理担当から 1 名。

タイ国側のカウンターパートは、邦人コンサルタントと協力してタイ国側関係機関 との調整を行う。

7 ソフトコンポーネントの実施工程

ソフトコンポーネント計画の実施工程は、2014年3月3日(月)~5月1日(木)(案)の60日間とする。これは、当該無償資金協力事業の水門施設の完成と排水ポンプ車の調達を待つもので、2014年5月が完工期限でもあることから逆算するものである。施設運用規則(案)については4月初旬までに作成し、同初旬から中旬に行うセミナー及び訓練を通じた関係者相互の意見交換を反映させて最終化させる。最終化したものを用いて再度訓練を行い関係者の熟度を確認する。コンサルタントの必要人月は2M/Mである。

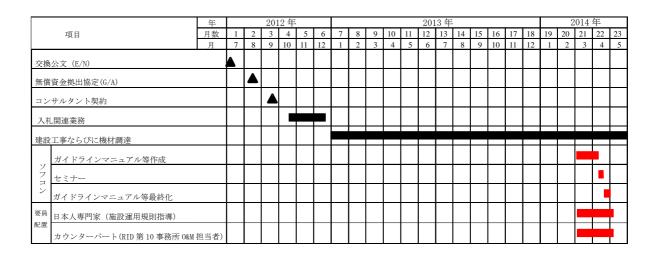


図-2 実施工程(案)

8 ソフトコンポーネントの成果品

ソフトコンポーネントの成果品は以下の通りである

- ① 施設運用規則(ハントラ水門、クラマン水門、カマオ水門、ソンプルー水門、スパチャイ排水機場、排水ポンプ車の各治水施設・機材の連携運用)(英文)
- ② セミナー資料 (英文)
- ③ ソフトコンポーネント計画完了報告書(和文)

9 ソフトコンポーネント事業費

ソフトコンポーネントの概算事業費は以下のとおりである。

項目	人工	概算事業費
施設運用規則指導(O&M Expert)	2M/M	
直接人件費		1, 252, 000
直接経費		1, 484, 000
間接費		1, 603, 000
合計		4, 339, 000

10 相手国側負担事項

本事業で新設される水門は、タイ国側実施機関が運営維持管理を実施する。上記のソフトコンポーネントの目標達成にあたり、この前提条件に基づいて、タイ国側が責任を持って実施すべき活動内容は、以下のとおりである。

- ① カウンターパート(1名)の提供を行う。(王室灌漑局第10地域灌漑事務所治水施設管理担当から1名)
- ② 水門、排水機場、排水ポンプ車の連携運用に対してタイ国側の研修担当者を選定し、研修に参加させる。研修員は下記の事務所から計 15 名を想定する。
 - 王室灌溉局第 10 地域灌溉事務所治水施設管理担当部署
 - 王室灌漑局第10地域灌漑事務所アユタヤ灌漑事業所

- アヨタヤ町治水担当部署
- アユタヤ県治水担当部署
- アユタヤ郡治水担当部署
- アユタヤ市治水担当部署
- ③ ゲート操作運用指導によるゲート開閉に対する許可を与える。

- 6 -資料5-6

表-1 ソフトコンポーネント活動計画

活動内容		対象者	実施方法	期間	事業主体	Ż	成果品
					日本国	タイ国	
施設の運用支援							
(1) 施設運用規則	施設運用規則は、対象	王室灌漑局	対象地域内のパサック川、チャオプ	57 日間	0		施設運用規則
の作成	地域内の水門、排水機	- 第 10 地域灌	ラヤ川の水位、降雨、土地利用、既		邦人コ		
	場、排水ポンプ車を対	溉事務所	存施設の現況操作規則を基に、洪水		ンサル		
	象とする。これらの効	- 同上アユタ	被害を軽減するため、治水施設の連		タント		
	率的な連携運用を考	ヤ灌漑事業所	携運用を施設運用規則として取り				
	えて作成する。	- アヨタヤ町	まとめ提案する。				
(2) セミナーの開	施設運用規則(案)を	治水担当部署	RID 第 10 地域灌漑事務所、あるいは	3日間	0	0	セミナー資料
催	基に、連携運用(各施	- アユタヤ市	同アユタヤ灌漑事業所で、施設運用		邦人コ	各事務	
	設・機材の運用) に係	治水担当部署	規則のセミナーを行う。		ンサル	所員	
	わる提案内容を説明	- アユタヤ郡			タント		
	し、関係機関相互の意	治水担当部署					
	見交換を行う。	- アユタヤ県					
		治水担当部署					
		(計 15 名)					

資料 6

参考資料

資料 6-1

モニタリングフォーム (案)

TENTATIVE MONITORING FORM

Monitoring Form (Land Expropriation and Resettlement)

Preparation of Resettlement Site (where necessary)

No.	Expropriation of the site (e.g. Area no. of resettlement HH, etc.)	Status (Completed (date)/not done)	Details (e.g. Site selection, identification of candidate site, discussion with PAPs, Development of the site, etc.)	Expected date of completion
1	, ,			•
2				

Public Consultation

No.	Date	Place	Contents of the consultation/main comments and answers
1			
2			
3			

			Progress in quantity			Progress in %		Expected	
Resettlement activities	Planned total	Unit	During the quarter	Till the last quarter	Up to the quarter	Till the last quarter	Up to the quarter	date of completion	Responsible organization
Preparation of RAP									
Employment of consultants		MM							
Implementation of census survey (incl. socio-economic survey)									
Approval of RAP									
Finalization of PAPs list		No. of PAPs							
Progress of compensation payment									
Lot 1									
Lot 2		No. of HHs							
Lot 3									
Lot 4									
Progress of land expropriation									
Lot 1									
Lot 2		m ² /ha/							
Lot 3									
Lot 4									
Progress of asset replacement									
Lot 1									
Lot 2		No. of HHs							
Lot 3									
Lot 4									
Progress of relocation of people									
Lot 1									
Lot 2		No. of HHs							
Lot 3									
Lot 4									

Monitoring Form (Construction Phase)

1. Responses/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period
Responses/Actions to Comments and Guidance from Government Authorities	
Explanation regarding the Project asking	
from residents etc.	

2. Mitigation Measures

- Air Quality (Emission Gas / Ambient Air Quality)

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Referred International Standards (Japan)	Remarks (Measurement Point, Frequency, Method)
SO_2	ppm			0.12 ppm	0.04 ppm	1 site including sensitive receptors near
NO_2	ppm			0.17 ppm	0.06 ppm	the project site or others Frequency: See *1
СО	ppm			30 ppm	10 ppm	Method: Authorized methods in Thailand.
TSP	mg/m ³			0.33 mg/m ³	-	WHO or JIS

^{*1:} Quarterly, or adjusted based on air pollutant-generating activities. Semi-annually in 2 years (in-use).

- Water Quality (Effluent/Wastewater/Ambient Water Quality)

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards*1	Referred International Standards (Japan)	Remarks (Measurement Point, Frequency, Method)
рН	-			5-9	6.5-8.5	Each up & downstream
SS (Suspended Solid)	mg/l			-	<50 mg/l	of the center of construction (2 points in total)
BOD	mg/l			<4 mg/l	<5 mg/l	Frequency: See*2 Method: Authorized
DO	mg/l			>2 mg/l	>5 mg/l	methods in Thailand,
ТСВ	MPN /100ml			<20,000 MPN/100ml	<5,000 MPN/100ml	WHO or JIS (For surface water
Oil	mg/l			-	No detected	observation, describe observation record)
Surface water	-			-	-	

^{*1:} Criteria in Class 4 are applied. In case of no criterion in country's standards, the referred standard is applied (TCB applies criterion in Class 3).

- Waste

Monitoring Item	Monitoring Results during Report Period
Content of complains from residents and	
its handling	

^{*2:} Quartery, or in case that a problem occurs (at-work), Semiannually in 2 years (in-use)

- Noise / Vibration

Item	Unit	Measured Value (Mean)	Measured Value (Max.)	Country's Standards	Referred International Standards (Japan)	Remarks (Measurement Point, Frequency, Method)
Noise level	dB(A)			70dB(A)	45-65dB(A)	1 sites including sensitive receptors near the project site or others
				(115dB(A))	(85dB(A))	Frequency: See *1
Vibration level	dB			-	75dB	Method: Authorized methods in Thailand, WHO or JIS (Vibration applies Japanese Criterion)

^{*1:} Quarterly, or adjusted based on noise-generating activities (at-work). Once during test operation (in-use).

- Odor

Monitoring Item	Monitoring Results during Report Period
Content of complains from residents and	
its handling	

3. Social Environment

- Living / Livelihood

Monitoring Item	Monitoring Results during Report Period
Content of complains from residents and	
its handling	

- Resettlement

Monitoring Item	Monitoring Results during Report Period
Confirmation of monitoring items on	
resettlement and measures in case of	
problems	
(Process of resettlement, Arrangement of	
relocated place, Condition of	
household/property)	
Condition of livelihood and handling of	
complains	

Monitoring Form (Operation Phase)

1. Response/Action to Comments and Guidance from Persons Resettled and Authorities

Monitoring Item	Monitoring Results during Report Period	Frequency
No. and contents of		
formal comments made		Upon
by persons resettled		receipt of
No. and contents of		comments/
responses from		complaints
authorities		

2. Natural Environment

- Water Quality

Monitoring Item	Monitoring Results during Report Period	Measures to be Taken	Frequency
pH, DO, SS, BOD,			Semiannually
Oil, E.coli(TCB),			-
Observation of			(2 years after
surface water			the service)

 $Reference\ standards:\ 5-9(pH), > 2mg/l(DO), < 4mg/l(BOD), < 20,000MPN/100ml(TCB)\ employing\ Thai\ standards.$

- Noise & Vibration

Monitoring Item	Monitoring Results during Report Period	Measures to be Taken	Frequency
Leq, Lmax			Once
Vibration level			(During test
			operation)

資料 6-2

水門設備検討書

ハントラ水門、クラマン水門 水門設備検討書

目 次

1	設計方針	t	1
2	基本計画	可(施設設計/機材計画)	4
	2.1 基本	〜条件の検討	4
	2.1.1	設計条件	4
	2.1.2	設計荷重	6
	2.1.3	基本諸元	10
	2.1.4	水門扉形式の検討	12
	2.2 詳細	田事項の検討	18
	2.2.1	扉体	18
	2.2.2	使用部材の検討	21
	2.2.3	開閉装置の検討	27
	2.2.4	角落し	35
	2.2.5	操作制御設備	36
	2.2.6	電源供給設備	37

1 設計方針

(1) 基本方針

カマオ水路は、通常、バサック川東側の低地部(アユタヤ県、ロジャナ工業団地の北側の地域)の雨水をバサック川に導く『排水路』としての機能を有している。2011 年の洪水時、バサック川からカマオ水路への洪水流の逆流を防ぐため既設カマオ水門を閉じた。しかしながら、既設水門のゲート高さが十分でなく、ゲート天端を越流するなど水門自体が危険な状況となったため、ゲートを開けざるを得なくなった。このため、洪水流はカマオ水路を逆流、堤防を越流し水路南側に位置する多くの工業集積地を含む地域の浸水被害の直接の原因となった。

主管官庁である農業組合省 王室灌漑局(RID)は、既設カマオ水門のゲート本体を 1m 程度継ぎ足すことを計画している。ただし、この対応は 2012 年洪水期までに実施する緊急対応であり、今後、恒久的対策を実施することが必須の状況である。

本無償資金協力は、2011年の洪水により大きな被害を受けた箇所を復旧する防災・災害復興支援として位置づけられ、洪水期のバサック川からカマオ水路への洪水流入防止のため、カマオ水路への連絡水路入り口付近(バサック川からの分岐点付近)に2基の水門を建設する。また、水門設置箇所上下流の護岸整備を実施する。現地調査および相手側実施期間との協議結果を踏まえて、以下の実施方針に基づき計画する。

1) 水門機械関係

- ① カーテンウォール方式(四方水密)は、全面を扉体とする方式(三方水密)に比べ、流下能力上必要のない部分をカーテンウォールとすることにより、ゲートの高さを抑えることができ、門柱高さを低くすることが可能であり、これにより、工事費を大きく低減することができる。
- ② 水門の形式については、タイ国で多く採用されている鋼製ローラゲートを選定する。ア ユタヤ地区およびバンコク市内でローラゲート以外の水門は見受けられず、将来的な維 持管理を考慮するとローラゲートが最も望ましい形式となる。
- ③ 開閉装置の形式については、信頼性が高く維持管理性に優れるワイヤロープウインチ式を選定する。また、ワイヤロープウインチ式の適用範囲から 1M2D (1 モータ 2 ドラム) が最も経済性の高い形式となることから 1M2D を選定する。なお、現地調査からタイ 国で採用されている水門のほとんどが径間 6.0m 程度であることから 1M2D となっている。(アユタヤ地区およびバンコク市内の水門を 20 ヶ所以上視察したが、1M2D およびスピンドル式以外の形式は見受けられなかった。)
- ④ タイ国では、ゲート設備への定期的な維持管理(塗装および給油)がまったくなされていない状況を考慮し、LCC(ライフサイクルコスト)の検討を行い、扉体へのステンレス鋼の採用およびステンレスワイヤロープの採用等のメンテナンスフリーとなる設備の導入を行い、コスト縮減を図る。
- ⑤ 本施設の設置目的は洪水防御であるため、常時開とし機側からの電動操作および扉体の 自重降下で扉体を全閉させる。洪水が去った後、電動操作で全開させるが予備動力は設 置せず、万が一、電動機が故障した場合には予備電動機を設置せず手動切替装置により

人力操作を行う。なお、タイ国内のワイヤロープウインチ式開閉装置(1M2D)の予備動力はすべて人力操作である。

- ⑥ 洪水の場合は、しばしば商用電源を喪失することが懸念され、予備発電機(可搬式)を 1 台設置する。
- ⑦ 本施設の上下流側に多段式の鋼製角落しゲートを設置する。なお、吊り込み方式は門柱 にリフティングビームを設置し横行式手動チェーンブロックによる簡易なモノレール ホイスト方式とする。角落しの天端高さについては、上下流共、水路の N.S.L.である E.L.+2.000m とし余裕高は設けない。なお、角落しゲート1枚の扉高は1.0m とする。
- ⑧ 水門の水圧方向は洪水防御であることから基本的にパサック川側(下流側)であるが、水路側(上流側)の水位調節をおこなうことも考えられることから上下流から水圧を受ける水密構造とする。なお、現地調査結果から、水密ゴムの形状はP型ゴムが多く採用されており、将来の維持管理性を考慮してP型ゴムを選定する。
- ⑨ 現地調査結果から、タイ国の開閉装置については非常にシンプルな機器構成となっており、日本国内のゲート設計基準に規定されている安全装置、保護装置機能が不足している。したがって、将来的な操作の信頼性および安全性を確保するため機材は日本のゲートメーカーから調達する。
- ⑩ 機材は陸上輸送が可能である。扉体は輸送車両の制約から 3 分割構造とし、現地で 25 ~50ton 程度のクレーンを使用し据付ける。河床はドライ施工とし重機を設置し最少作業半径で施工を実施する。なお、タイ国では、日本製の重機が多く出回っており 25~50ton のクローラクレーンおよびラフテレーンクレーンの現地調達は問題ない。

2) 水門電気関係

水門設備の電源は、電力会社より 3ϕ 4W380-220V で受電し、必要な分岐回路を設けて、供給する。なお、停電時の水門操作に必要な非常用電源を設置するものとし、電源供給設備の設計方針は以下のとおりとする。

- ① 各水門とも複数門の扉体が設置されるが、同時稼働は行わず1門ずつ操作する。
- ② 非常用電源として発電機は設置するが、停電時の自動は行わず、機側操作盤で手動操作とする。
- ③ 巻き上げ機の始動方式は、直入れ方式とする。
- ④ 操作台には屋根設置され、メンテナンス用として照明灯を取り付ける。
- ⑤ 水位計を上下流側に設置し、データロガー等でデータを蓄積する方針である。なお、データの収集は月1回程度、現地で実施(収集)する。

2 基本計画(施設設計/機材計画)

2.1 基本条件の検討

2.1.1 設計条件

カマン水門およびハントラ水門は、洪水から背後地を守るための洪水防御水門として、設置されるものである。設計条件を以下に示す。

(1) 水位条件

1)	設計洪水位(H.W.L)	E	.L. +6.000m
2)	水路側最高水位(H.W.L)	E	.L. +3.500m
3)	水路側低水位(L.W.L)	E	.L. +1.000m
4)	水路側最低水位(L.L.W.	L) E	.L. +0.500m
5)	本川堤防高さ	E	.L. +6.500m
6)	水門敷高(クラマン水門)	E	. L0.500m
7)	水門敷高(ハントラ水門)	E	. L2.500m
	バサック川側(下流側)		水路側(上流側)
	堤防高さ	E.L. +6.500r	n
	設計洪水位(H.W.L.)	E.L. +6.000n	n

図 2-1 水位条件

(2) 設計水位

設計水位は、扉体の強度計算を行う水位であり、ゲートが閉状態で最も不利な条件により設定 されるケースが多い。

水門の設計水位は一般的に「ダム・堰施設技術基準(案) P60」(下記参照) により決定される。本水門の場合には、「自己流堤による支川処理方式で処置される水門」に該当する。

表 2-1 設計水位条件

	施設の種類・区分	水門設計の水位乳	条件	地震による波浪を
	旭成 沙	外 水 位	内 水 位	考慮した水位
水	セミバック堤による支川処 理方式で処置される水門	本川の H.W.L. (高潮区間においては計画高潮位)	ゲート敷高または 支川の L.W.L.	
	自己流堤による支川処理方 式で処置される水門	本川の H.W.L. (高潮区間においては計画高潮位)	ゲート敷高または 支川の L.W.L.	本川の水位につい ては、洪水時以外の
	分流点等に設置される水門	本川の H.W.L. (高潮区間においては計画高潮位)	ゲート敷高	常時の管理水位あるいは平水位に地
門	高規格堤防区間に設置され る水門	高規格堤防設計水位	ゲート敷高または 支川の L.W.L.	震による波浪高さを加算した水位。
樋	自己流堤による支川処理法 式で設置される樋門	本川の H.W.L. (高潮区間においては計画高潮位)	ゲート敷高または 支川の L.W.L.	支川の水位については、洪水時以外の
	排水機場の樋門 (強制排水専用)	本川の H.W.L. (高潮区間においては計画高潮位)	ゲート敷高	常時の管理水位あ るいは平水位に地
	排水機場の樋門 (自然排水兼用)	本川の H.W.L. (高潮区間においては計画高潮位)	ゲート敷高または 支川の L.W.L.	震による波浪高さ を減算した水位。
門	高規格堤防区間に設置され る樋門	高規格堤防設計水位	ゲート敷高または 支川の L.W.L.	

⁽注) ゲート敷高は一般に計画河床とする場合が多いが、特に支川処理の一手法として水門または樋門を設置する場合は、将来の本川の河床低下、現在の最深河床等を勘案して計画河床以下に設定することもある。

出典:「ダム・堰施設技術基準(案) 同解説」 P60

上表に従い、本設備において、外水位は計画洪水位とする。

内水位は、ゲート敷高とした方が不利な条件であるが、内水側に水位がないといったケースは考えにくい。そこで、最も不利な条件、すなわち、「ゲートを閉状態にし、その後、外水位は設計洪水位となり、内水側は最低水位(L.L.W.L)となった場合」で設定する。

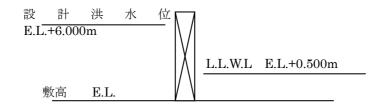


図 2-2 設計水位

 外水位=計画洪水位(H.W.L)
 E.L. +6.000m

 内水位=最低水位(L.L.W.L)
 E.L. +0.500m

(3) 操作水位

操作水位は、開閉装置の計算を行う水位であり、ゲートを操作する上で最も不利な条件により 設定されるケースが多い。

水門の操作水位は一般的に「ダム・堰施設技術基準(案) P160」 (下記参照) により決定される。

表 2-2 操作水位条件

水位条件		開]時	閉時			
施設の種類・区分		外水位	内水位	外水位	内水位		
	セミバック堤によ	本川のHWL	本川のHWL	本川のHWL	本川のHWL		
	る支川処理方式で	-1.0 m			-1.0m		
	処置される水門						
水	自己流堤による支	支川の堤防高	支川の堤防高	本川の堤防高	支川の堤防高		
門	川処理方式で処置	—1.0m					
	される水門						
	分流点等に設置さ	水門の操作方法によって異なるが、安全サイドで設計する。					
	れる水門						
	自己流堤による支	支川と堤防高	支川の堤防高	本川の堤防高	支川の堤防高		
	川処理方式で処置	-1.0 m					
l>→	される樋門						
樋門	排水機場の樋門(強	本川のHWL	ゲート敷高	本川のHWL	本川のHWL		
	制排水専用)				-1.0m		
	排水機場の樋門(自	支川の堤防高	支川の堤防高	本川の堤防高	支川の堤防高		
	然排水兼用)	-1.0 m					

出典 : 「ダム・堰施設技術基準 (案) 同解説」 P160

以下に本水門の操作条件を検討し、最も不利な条件を検討し、操作水位を決定するものとする。

1) 開時操作水位

以下に示す開操作条件が厳しい場合を開時操作水位とする。

 外水位=水路側最高水位
 -1.0m
 ; E.L.+2.500m

 内水位=水路側最高水位
 E.L.+3.500m

ゲートを閉鎖させた場合、内外水位が共に上昇する。その後、外水<内水になりゲートを開 操作する場合の最も不利な条件としては下図となる。

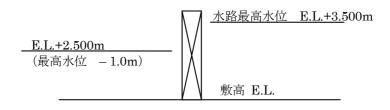


図 2-3 開操作水位

2) 閉時操作水位

想定閉操作時の2ケースで、操作遅れに対する閉操作の確実性を確保するため、 Case 2 とする。

外水位=本川堤防高	E.L. +6.500m
内水位=最高水位	E.L. +3.500m

【Case 1】: 通常操作

洪水時、水門閉鎖水位で閉操作する。(内外水位バランス)

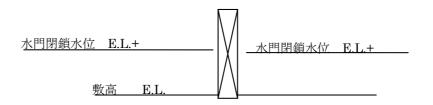


図 2-4 閉操作水位 (Case 1)

【Case 2】: 操作遅れ

洪水時、ゲートの操作遅れで、閉操作しなくてはならなくなった場合の水位とする。

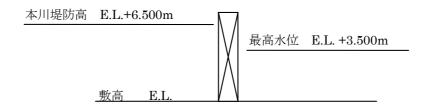


図 2-5 閉操作水位 (Case 2)

(4) その他の設計条件

1) 敷高 クラマン水門 E.L. -0.500m、ハントラ水門 E.L. -2.500m

敷高は水門設置地点の測量結果から計画河床高に合致させた。

2) カーテンウォール下端高 E.L. +4.500m

門柱の高さを低く抑えるために水路側最高水位 E.L.+3.500m に余裕高 1.000m を見込み、E.L.+4.500m とした。

3) 地震による波浪高さ 外水側 : 0.127 m (クラマン水門)

: 0.145 m (ハントラ水門)

地震による波浪高は「ダム堰施設技術基準 p52」の佐藤 清一により算出した。

he =
$$\frac{\text{Kh} \cdot \tau}{2 \pi} \sqrt{\text{g} \cdot \text{H}}$$

ここに、 he : 全波高 (m)

Kh : 設計水平震度 (0.1 タイ国文献より)

τ : 地震周期 (1.0S)

H:設計水位から床板敷高までの深さ

(クラマン水門 6.5m) (ハントラ水門 8.5m)

4) 水質条件 内水側 : 9.8 kN/m³ (淡水)

外水側 : 9.8 kN/m³ (淡水)

2.1.2 設計荷重

設計荷重は「ダム・堰施設技術基準 (案) 同解説 P50」により、原則として考慮する荷重 (静水圧、自重、開閉力、地震時動水圧、地震時慣性力) の他、その他必要に応じて考慮する荷重 として波圧および風荷重を考慮するものとする。

表 2-3 水門扉の設計荷重

原則として考慮する荷重	その他必要に応じて考慮する荷重
静水圧、自重、開閉力	泥圧、波圧、浮力、風荷重
地震時動水圧	雪荷重、温度荷重、氷圧
地震時慣性力	水撃圧、その他の荷重

出典 : 「ダム・堰施設技術基準 (案) 同解説」 P50

以下に「その他必要に応じて考慮する荷重」について、本設備の設計荷重として考慮するのか検討を行う。

(1) 泥圧

本設備は常時開状態にあり、堆砂高及び泥圧による設計荷重は考慮しないものとする。

(2) 風荷重

「ダム・堰施設技術基準 (案) 同解説」によれば鉛直投影面積に対して $3.0 \mathrm{kN/m^2}$ と記されており、本ゲートにおいても $3.0 \mathrm{kN/m^2}$ とする。

(3) 雪荷重、氷圧、水撃圧

設置環境条件から判断して考慮しないものとする。

(4) 温度荷重

サイドローラに適正な隙間を設けるなど、温度荷重が作用しない構造とするため考慮しない。

(5) 波圧

クラマン水門およびハントラ水門は、チャオプラヤ川上流域にあり、河道形状等より静穏域に あることから、構造設計において波圧は考慮しない。

2.1.3 基本諸元

【クラマン水門】

(1) 門数 3門

(2) 形式 ステンレス製ローラゲート (カーテンウォールタイプ)

(3) 純径間 6.0 m

(4) 扉高 5.1 m (5.0+水密幅 0.1m)

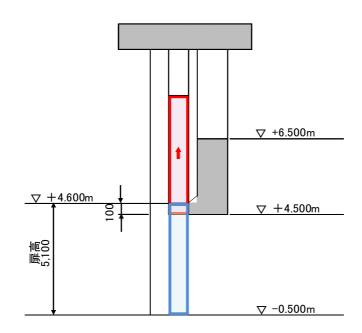
(5) 敷高 E.L. -0.500 m

(6) 開閉方式 ワイヤロープウインチ式

(7) 開閉速度 常時: 0.3 m/min.

急降下時: 1.5 m/min.

(8) 揚程 常時:5.0 m、非常時:6.5m


(9) 余裕厚 淡水側接水面 0.0mm

(ダム・堰施設技術基準に準拠)

(10) 操作方式 機側操作

(11) 水密方式 後面四方ゴム水密(外水側水密)

(12) 電源 動力用電源: 3相4線380V50Hz

【ハントラ水門】

(1) 門数 3門

(2) 形式 ステンレス製ローラゲート (カーテンウォールタイプ)

(3) 純径間 6.0 m

(4) 扉高 7.1 m (7.0m+水密幅 0.1m)

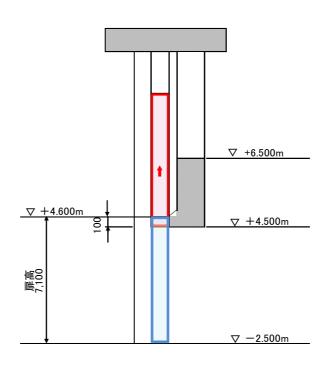
(5) 敷高 E.L. -2.500 m

(6) 開閉方式 ワイヤロープウインチ式

(7) 開閉速度 常時: 0.3 m/min.

急降下時: 1.5 m/min.

(8) 揚程 常時: 7.0 m、非常時: 8.5m


(9) 余裕厚 淡水側接水面 0.0mm

(ダム・堰施設技術基準に準拠)

(10) 操作方式 機側操作

(11) 水密方式 後面四方ゴム水密(外水側水密)

(12) 電源 動力用電源: 3相4線380V50Hz

2.1.4 水門扉形式の検討

(1) 水門扉形式

水門や樋門の設置目的やその用途などから必要とする機能に対して、使用可能な門扉の「標準 形式」の目安を表 2-4 及び表 2-5 に示す。

表 2-4 水門・樋門等の門扉の形式

	設置目的		設備の形式 (標準)	水門扉の用途	水門扉の形式 (標準)
	分流		制水	制水	ローラ、起伏、ヒンジ式 (メ゙イイザ、マイタ)、フローティング
	水門	逆流防止	舟通し用閘門	制水、舟通し	ローラ、ヒンジ式(マイタ、スイング、セクタ、バイザ)
水		排水	排水	制水	ローラ、スライド、ヒンジ式(マイタ、上端ヒンジフラップ)
	樋門	逆流防止	取水	制水、取水	ローラ、スライド
門		用水	舟通し用閘門	制水、舟通し	ローラ、ヒンジ式(マイタ、スイング、セクタ、バイザ)
	防潮水門	防潮	制水	制水	ローラ、シェル構造ローラ、超犬、ヒンジ式(マイタ、スイング、セクタ)
等		津波防止	舟通し用閘門	制水、舟通し	ローラ、ヒンジ式(マイタ、スイング、セクタ、バイザ)
	遊水池 調節池		洪水調節用	制水、流量調節	ローラ、起伏、2段式ローラ
修理	修理用ゲート 修理用		修理用	ゲート補修時の水位維持	フローティング式、支柱支持式、橋梁支持式、角落し式、楯式

出典:「ダム・堰施設技術基準(案)」(設備計画マニュアル編) 4-1 【解説】表 3.1-1(P.277)

出典:「ダム・堰施設技術基準(案)」(設備計画マニュアル編) 4-3 ゲートの選定 【解説】1.2.(P.279)

表 2-5 水門扉の種類と設置場所および使用目的

設置場所	取水堰・河口堰								
使用目的水門扉の種類	洪水 吐き ゲート	土砂 吐き ゲート	流量 調節 ゲート	取水口 沈砂池 導入路 ゲート	魚道	水門 樋門 伏せ越し	開門	防潮	修理用
ローラゲート	0	0	0	0	0	0	0	0	
シェル構造ローラゲート	0	0	\circ			0		0	
スライドゲート		0		0		0			
起伏ゲート	0		0	0	0			0	
フラップゲート				0				0	
マイタゲート						0	0	0	
セクタゲート							0		
バイザゲート								0	
ローリングゲート	0	0							
角 落 と し									0
横引ゲート								0	
フローティングゲート									0
スイングゲート						0	0	0	
楯 式 ゲ ー ト									0
ライジングセクタゲート	0		0		0	0	0	0	

(ダム・堰施設技術基準(案) P306より)

(2) 水門扉比較案の抽出

表 2-4 及び表 2-5 から、洪水防御水門に適応可能な形式は以下のとおりである。

- ・ローラゲート
- シェル構造ローラゲート
- ・ 起伏ゲート
- フラップゲート
- マイタゲート
- ・バイザゲート
- ・ 横引ゲート
- スイングゲート
- ・ ライジングセクタゲート

上記の水門形式のうち、起伏ゲートおよびバイザゲートは今回のゲート規模に適さないこと、フラップゲートについては、本ゲートは流量調節をする場合も考えられることから適さないこと、横引ゲートについては、土木躯体が大規模になることから比較対象外とした。

表 2-6 に比較検討結果を示す。

表 2-6 ゲート形式の選定

比較	表	第1案	第2案	第3案	第4案
ゲート ヨ	形式	ローラゲート	スイングゲート	マイタゲート	ライジングセクターゲート
概略 図					THE STATE OF THE S
概	角	・扉体両側にローラが取付けられており、戸溝内のローラレールに沿って上下する構造である。・ゲート全開時、扉体は水面上に上がっている。・河床に戸溝や落差は不要である。・最も一般的なゲート形式であり、広範囲に使用されている。	・扉体側部のヒンジを中心として、水平方向に回転する構造である。 ・ゲート全開時、扉体は側壁の戸袋内に格納されるが、河床には止水用の段差が必要である。 ・閘門等に使用されることが多い。	中央で左右の扉体が合掌し止水を行う構造である。	・ 原体は端部の円盤を介して中心軸と連結されており、この軸を回転することによって原体を回転昇降させる構造である。 ・ ゲート全開時、原体は河床の掘り込みに入っている。 使用実績は少ないが、比較的長径間の防潮用水門として採用される場合がある。
維持管	車	・扉体は常時、水面上(空中)に位置しており、また水中には作動部がないので維持管理は容易である。	・扉体は常に水中に没しており、維持管理は困難である。しかしながら、接水部をSUS製とすることにより腐食に対しての対応は可能である。 ・開閉装置は水上に配置が可能である。 ・下部支承部は、常時没水しており、維持管理が極めて困難であり、維持管理性に劣る。	・扉体は常に水中に没しており、維持管理は困難である。接水部をSUS製とすることにより腐食に対しての対応は可能である。 ・開閉装置は水面上に配置が可能である。 ・下部支承部は、常時没水しており、維持管理が極めて困難であり、維持管理性に劣る。	・両側円盤は常時没水しており、維持管理がやや困難である。 ・両側円盤と門柱の隙間に堆砂浸入、異物噛込み等を生じて動作障害が発生する恐れがある。
洪水防御ゲートの 信 頼		 ・非常時には自重での締め切りが可能である。 ・停電時、電動機の故障時でも手動でブレーキを開放することにより、閉操作は確実に可能である。 ・河床に戸溝や落差が不要であるため、堆砂が発生しにくく、開閉操作の信頼性が高い。 ・波浪による揚圧力などの作用は無く、扉体の安定性が高い 	・下部止水用の段差に堆砂があると、ゲートの閉操作(旋回)が出来なくなる可能性がある。 ・水圧方向がゲートの閉操作方向となるため、防潮時閉操作の信頼性は高い。 ・波浪や逆水圧作用時には水圧により開動作する可能性があり、ロック機構が必要となる。	・下部止水用の段差に堆砂があると、ゲートの閉操作(旋回)が出来ない。 ・水圧方向がゲートの閉操作方向となるため、防潮時閉操作の信頼性は高が、逆水圧作用時には水圧により開動作する。ロック機構が必要となる。 ・両側壁支承による片持ち門扉であり、波浪に対しては比較的安定するが、引き波に対して弱い。ロック機構が必要。	・扉体は河床より引き上げられるので、多少の堆砂では信頼性に影響はない。 ・波浪に対しては、安定している。
実	績	・最も多い。	・タイ国内ではあまり見られない。	・タイ国内ではあまり見られない。	・タイ国内では見られない。
経 済 性	比較	1. 0	0.9	0.9	1. 3 ×
		0	×	×	×
評価		・洪水防御ゲートとして多く採用されており、自重降下が可能という面からも操作の信頼性が最も高い。・維持管理が容易である。・経済性に優れる。・タイ国内での実績が非常に多い。	・維持管理が困難である。	・同左	・今回のゲート規模への対応は可能であるが、端板が大きくなり経済性で不利。 ・維持管理が困難である。

以上の比較検討結果より、最も信頼性、維持管理性および経済性に優れるローラゲートを選定した。

2.2 詳細事項の検討

2.2.1 扉体

(1) 扉体構造形式

ローラゲートの代表的な扉体構造としては、プレートガーダ構造とシェル構造がある。プレートガーダ構造とシェル構造の適用径間や扉高の区分は一義的には定まらず、個々の条件に基づき検討の上決定するが、実績的には図 2-6 のように区分される。

(ダム・堰施設技術基準(案) 図 2.1.2-7 より)

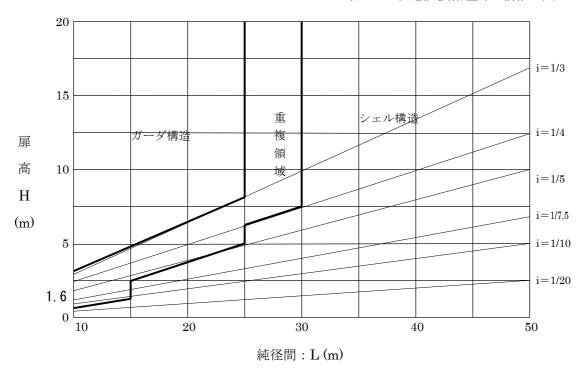


図 2-6 ゲート寸法・構造関係図

扉 高H: 5.1 (m) クラマン水門

: 7.1 (m) ハントラ水門

純径間 L: 6.0 (m) カマン水門およびハントラ水門

クラマン水門: H/L =
$$\frac{5.1}{6.0}$$
 = $\frac{1}{1.18}$

ハントラ水門: H/L =
$$\frac{7.1}{6.0}$$
 = $\frac{1}{0.85}$

シェル構造は、一般的に径間が $10m\sim20m$ 程度以上で、径間 (L) に対する扉高 (H) の比 (H /L) が $1/5\sim1/6$ 程度以下の場合には扉体をシェル構造とすることが多い。

本水門では、径間と径間比の関係から、最も一般的な構造形式であるプレートガーダ構造を選定した。

(2) 主ローラ形式

1) ローラ支持形式

本ゲートに最適な主ローラ形式(ローラ支持形式、軸受形式)を選定する。ローラゲートに 採用されるローラ支持形式は、主ローラ取付方法の違いにより、以下に示すとおり、片持式、 両持式、サドル式、ロッカービーム式に分類される。

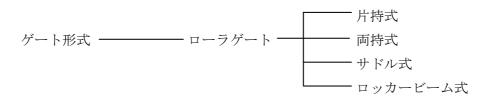


図 2-7 ローラ支持形式

上記4案の内、サドル式およびロッカービーム式については大型の河川ゲートに主に採用される形式であり、本水門規模のゲートとしては片持式、両持式の2案が採用可能と考えられる。 片持式および両持式の比較表を、以下に示す。

表 2-7 主ローラの取付方法

取付形式	略図	特 徴
片 持 式	<u>I</u>	①構造が単純である。 ②両持式に比べ取付け取外しが容易である。 ③サドル式・両持式に比べローラ軸が大きくな る為ローラ抵抗が大きくなる。
両 持 式	<u>*</u>	①ローラ軸は両端支持となり、軸径が小さくなる。②軸や軸受メタルの点検・交換が困難である。③主ローラがフロントローラを兼用できない場合、別途フロントローラ (またはシュー)が必要である。④桁内面は再塗装が困難である。

片持式は両持式に比べメンテナンス性に優れている。軸径が大きくなる分ローラ抵抗が若干 大きくなるが、抵抗力が最も大きくなる流水遮断時においても十分な締切力を有していること を確認している。

したがって、メンテナンス性に優れている片持式を採用する。

2) 軸受形式

主ローラ形式は、構造が単純で経済性、メンテナンス性に優れるすべり軸受の採用が望ましい。

本ゲートでは、洪水時、ゲートの操作遅れで、閉操作しなくてはならなくなった場合の締切力を検討した結果、すべり軸受で締切力を確保できるため、すべり軸受を採用した。

(3) 水密ゴム形状

水密ゴムの形状については、P 形、L 形、平形(板ゴム)等があり、適切なものを選定する。 一般的に、四方水密の樋門ゲートでは、側部および上部にP 形ゴムが使用されている。また、ア ユタヤおよびバンコク市内の水門にはP 形ゴムが多く使用されている。

従って、本水門の水密ゴム形式は、以下の通りとする。

・ 上部及び側部水密ゴム : P形ゴム

・ 底部水密ゴム : 平形ゴム (板ゴム)

(4) 扉体分割の検討

扉体寸法は、 $W6.0m \times H5.1 \sim 7.1m$ であり輸送制限(3.5m)を超えることから分割して現地搬入および吊込みを行う。

扉体分割は、3分割とする。

2.2.2 使用部材の検討

(1) 検討の方針

扉体の材質については、溶接構造用圧延鋼材 (SM400) が一般的な材料となるが、最近はライフサイクルコストを考慮し、耐食性の高いステンレス鋼が使われることもある。よって、以下に普通鋼 (塗装) とステンレス鋼 (SUS304) のライフサイクルコスト比較検討を実施する。

(2) 比較条件

1) イニシャルコスト

各材質におけるイニシャルコストは、それぞれの場合の重量と塗装面積より以下のとおり仮 定した。

表 2-8 概略重量と塗装面積(クラマン水門)

比較案	概略重量 (ton)	塗装面積 (m²)	塗装仕様
普通鋼(SM400+塗装)	13.9	190.0	ポリウレタン樹脂系
ステンレス鋼(SUS304)	13.9	190.0	酸洗い

表 2-9 概略重量と塗装面積(ハントラ水門)

比較案	概略重量 (ton)	塗装面積 (m²)	塗装仕様
普通鋼(SM400+塗装)	20.6	265.6	ポリウレタン樹脂系
ステンレス鋼(SUS304)	20.6	265.6	酸洗い

表 2-10 概略製作費 (クラマン水門)

比較案	材料費(千円)	加工費(千円)	初期塗装費 (千円)	合計 (千円)
普通鋼	2,016	9,730	1,140(塗装費)	12,886
(SM400+塗装)	(145 千円/ton)	(700千円/ton)	(6千円/m²)	
ステンレス鋼	4,309	12,510	760 (酸洗い)	17,579
(SUS304)	(310 千円/ton)	(900千円/ton)	(4千円/m²)	

表 2-11 概略製作費(ハントラ水門)

比較案	材料費(千円)	加工費(千円)	初期塗装費 (千円)	合計 (千円)
普通鋼	2,987	14,420	1,594(塗装費)	19,001
(SM400+塗装)	(145 千円/ton)	(700千円/ton)	(6千円/m²)	
ステンレス鋼	6,386	18,540	1,062 (酸洗い)	25,988
(SUS304)	(310 千円/ton)	(900 千円/ton)	(4千円/m²)	

2) ランニングコスト

各材質におけるランニングコストとして、塗替塗装費を以下のとおり見積もるものとする。

表 2-12 塗替塗装費 (クラマン水門)

比較案	塗装面積(m²)	塗装費用(千円)
普通鋼(SM400+塗装)	190.0	2,850
		(15千円/m²)
ステンレス鋼(SUS304)	_	_

表 2-13 塗替塗装費 (ハントラ水門)

比較案	塗装面積(m²)	塗装費用(千円)
普通鋼(SM400+塗装)	265.6	3,984
		(15 千円/m²)
ステンレス鋼(SUS304)	_	_

(3) ライフサイクルコスト(LCC)の検討

ライフサイクルコスト (LCC) は以下の条件により算出した。

塗装塗替周期 : 10年(河川用ゲート設備点検・整備・更新検討マニュアル(案))

耐用年数: 57年(原価償却資産の耐用年数)

物価上昇率 : 0%

利子率 : 4.5% (河川砂防技術基準 (案) の河川経済調査での利子率を採用)

算出式 : 現在価値法にて算出(以下のとおり)

$$LCC = I_0 + \sum_{n=m}^{k} R(n) \cdot G(n) = I_0 + \sum_{n=m}^{k} C(n) \cdot R(0) \cdot G(n) = I_0 + \sum_{n=m}^{k} \frac{R(0) \cdot (1+C)^n}{(1+i)^n}$$

ここに、

Io : イニシャルコスト

R(0) : 塗替塗装費

 $R(n) = C(n) \times R(0)$: n年目の塗装塗替費 $C(n) = (1+C)^n$: n年目の物価上昇率

G(n)=1/(1+i)n : 建設時点への費用換算係数 (i は利子率)

表 2-14 「塗替塗装費」の現在価値 (PV) への換算係数

年数	物価式	物価係数	PV式	PV 係数
0	$C_0 = (1 + C)^0$	1.00	$G(0)=1/(1+i)^0$	1.000
10	C_{10} =(1+C) ¹⁰	1.00	G(10)=1/(1+i)10	0.644
20	$C_{20}=(1+C)^{20}$	1.00	G(20)=1/(1+i) ²⁰	0.415
30	$C_{30}=(1+C)^{30}$	1.00	G(30)=1/(1+i) ³⁰	0.267
40	$C_{40}=(1+C)^{40}$	1.00	G(40)=1/(1+i) ⁴⁰	0.172
50	$C_{50} = (1 + C)^{50}$	1.00	$G(50)=1/(1+i)^{50}$	0.111

表 2-15 クラマン水門のライフサイクルコスト (千円/基)

年数	SM400 (SM400+塗装)	SUS304
0年目	12,886	17,579
10 年目	14,721	17,579
20 年目	15,904	17,579
30年目	16,665	17,579
40 年目	17,155	17,579
50 年目	17,471	17,579
比較	(1.000)	(1.006)

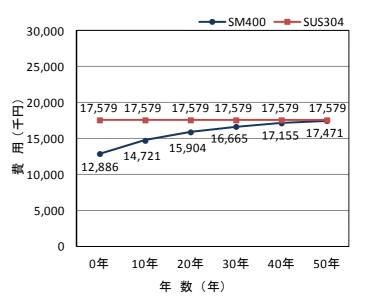
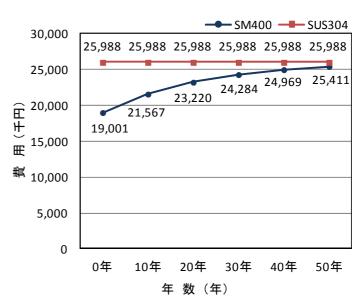



表 2-16 ハントラ水門のライフサイクルコスト (千円/基)

年数	SM400 (SM400+塗装)	SUS304
0年目	19,001	25,988
10年目	21,567	25,988
20年目	23,220	25,988
30年目	24,284	25,988
40年目	24,969	25,988
50年目	25,411	25,988
比較	(1.000)	(1.023)

扉体の材質については、上記のライフサイクルコスト LCC の検討結果より、50 年経過時点で、普通鋼とステンレス鋼の費用がほとんど変わらないことから、ステンレス鋼を選定し扉体のメンテナンスフリー化を図る。

(4) 戸当りの材質

戸当りに使用する材料は常時没水する部材のため、ステンレス鋼を用いることとする。ステンレス鋼のうち、以下の材種について比較検討を行う。

1)	JIS G 4304	SUS304	オーステナイト系	(18Cr-8Ni)
2)	JIS G 4304	SUS316L	オーステナイト系	(18Cr-12Ni -2.5Mo-低 C)
3)	JIS G 4304	SUS430	フェライト系	(18Cr)
4)	JIS G 4304	SUS410	マルテンサイト系	(13Cr)
5)	JIS G 4304	SUS329J4L	オーステナイト・フェ	- ライト系
				(25Cr-6Ni-3Mo-0.2N-低 C)

比較検討の結果を表 2-17 に示す。本水門は淡水域に設置されるため、没水する主要な部材には安価で溶接性に優れる SUS304 を使用するものとする。

表 2-17 ステンレス鋼の比較検討結果

	金属組織	オーステナイト系	オーステナイト系	フェライト系	マルテンサイト系	オーステナイト・フェライト系
		(18Cr-8Ni)	(18Cr-12Ni-2.5Mo-低 C)	(18Cr)	(13Cr)	(25Cr-6Ni-3Mo-0.2N-低 C)
性質	特性	SUS304	SUS316L	SUS430	SUS410	SUS329J4L
	磁性	なし	なし	あり	あり	あり
	熱膨張	普通鋼の約 1.5 倍	普通鋼の約 1.5 倍	普通鋼とほぼ同じ	普通鋼とほぼ同じ	普通鋼の約 1.2 倍
物理的性質	熱伝導	普通鋼の約4分の1	普通鋼の約4分の1	普通鋼の約2分の1	普通鋼の約3分の1	普通鋼の約5分の1
	衝撃と伸び	きわめて良好 成形性に富む	きわめて良好 成形性に富む	オーステナイト系に比べて劣る	オーステナイト系に比べて劣る	常温ではオーステナイトと同程度で 良好
	耐力	205 N/mm ² 以上	205 N/mm ² 以上	205 N/mm ² 以上	205 N/mm ² 以上	450 N/mm ² 以上
	引張強さ	520 N/mm ² 以上	520 N/mm ² 以上	450 N/mm ² 以上	440 N/mm ² 以上	620 N/N/mm ² 以上
	伸び	40 %以上	40 %以上	22 %以上	20 %以上	18 %以上
	耐低温性	-200℃まで靭性が低下しない	-200℃まで靭性が低下しない	-10℃以下ではもろい	-15℃以下ではもろい	-10℃以下で急激に低下する
機械的性質	方向性	方向性はほとんどない	方向性はほとんどない	あり 圧延の目に直角に曲げるようにする	あり	あまり差はない
	焼入れ硬化性	焼入れ硬化性なし	焼入れ硬化性なし	焼入れ硬化性なし	焼入れ硬化性あり 炭素含有量の多いものは冷却後に割 れやすく、焼戻し処理が必要	焼入れ硬化性なし
	加工硬化性	加工硬化性大 気温の変動によって加工変動性の変 化大 ニッケル含有量の多い鋼種は加工硬 化が少ない	加工硬化性大 気温の変動による加工変動性の変化 はない ニッケル含有量の多い鋼種は加工硬 化が少ない		普通鋼と同じ傾向の加工硬化性を示す	素材の段階で硬く、オーステナイト系 に比較して伸びが低く冷間加工で硬 化を受ける
溶接性	溶接性	溶接性は最も良好 550~850℃の温度範囲に長時間加 熱すると耐食性が劣化する	溶接性は最も良好 550~850℃の温度範囲に長時間加熱 すると耐食性が劣化する	溶接性はやや劣る 高温に加熱すると、熱影響部の結晶粒 が粗大化して脆化する	溶接性はよくない 予熱、後熱処理をしないと溶接割れを 生じる	オーステナイト系に比べやや劣る
	耐食性	優れた特性を有している	優れた特性を有している SUS316LはSUS304より耐孔食性に 優れている	内装用としてはさびの心配はないが 屋外の使用には問題がある	オーステナイト系に比べて劣る	Mo、N が添加され、優れた特性を有 している
耐食性	耐大気腐食性	優れた特性を有している	優れた特性を有している	オーステナイト系に比べて劣る	フェライト系に比べて劣る	優れた特性を有している
	耐淡水腐食性	優れた特性を有している	 優れた特性を有している	やや劣る	やや劣る	優れた特性を有している
	耐海水腐食性	 使用条件により鋼種の選定が必要		<u> </u>	やや劣る	優れた特性を有している
経済性	材料費比率	1.0	約 1.8	約 1.0	約 1.0	約 3.0

2.2.3 開閉装置の検討

(1) 開閉装置の形式

開閉装置の形式は、扉体駆動部への動力伝達形式と扉体駆動部の主たる機器及び扉体との連結 媒体との組合せで分類され、図 2-8 に示す形式に大別される。

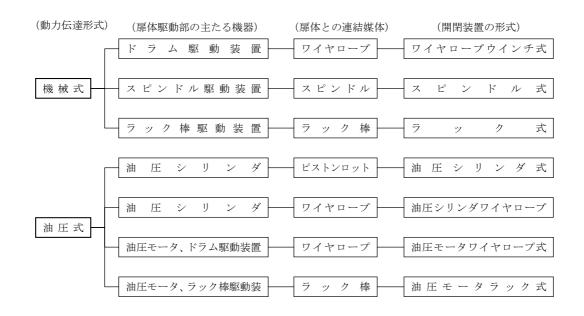
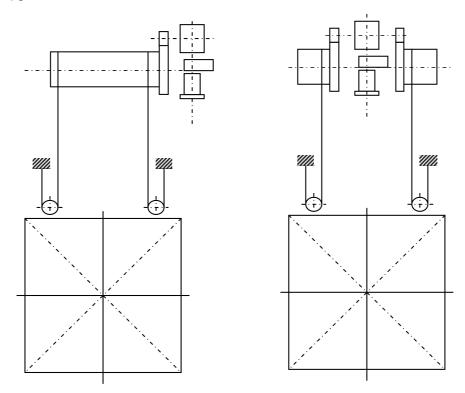


図 2-8 水門扉の種類と開閉装置形式

(ダム・堰施設技術基準(案) P147より)


上記の開閉装置のうち、ゲート規模および形式により、採用可能と考えられる形式は、以下の とおりである。

- ① スピンドル式
- ② ラック式
- ③ ワイヤロープウィンチ式
- ④ 油圧シリンダ式

このうち、「油圧シリンダ式」については、構造上、揚程の高い水門扉には不利であり、また本ゲートに適応させるためには非常に大きな油圧ユニットが必要となることや、タイ国での維持管理の面などから、ワイヤロープウインチ式に比べ技術面、経済面共不利となる。したがって、比較検討対象から除外した。

(2) ワイヤロープウインチ式開閉装置の形式

電動ワイヤロープウインチ式の、電動機とドラムの組み合わせによって、次の 2 形式が考えられる。

1 モータ 1 ドラムウインチ式 (1M-1D) 1 モータ 2 ドラムウインチ式 (1M-2D)

図 2-9 開閉装置形式

なお、その他の形式として 2 モータ 2 ドラムウインチ式(2M-2D)もあるが、一般に河川 ゲートにおける長径間ゲートに採用される形式であることから本検討の対象から除外するものとする。

開閉装置形式についての比較検討を、表 2-18 に示す。

表 2-18 開閉装置形式比較

比較項目	観点	電動スピンドル式開閉装置	電動ラック式開閉装置	電動ワイヤロープウインチ式開閉装置	
比較項目				1 モータ 2 ドラムウインチ (1M-2D)	1 モータ 1 ドラムウインチ (1M-1D)
概要	概要図		Resk Cover	Torque Shaft Drum Motor Wire Rope Gate Leaf	Motor Drum Sheave Wire Rope Gate Leaf
	適用範囲	純径間: 5m 以下 揚程: 6m 以下	純径間: 5m 以下 揚程: 6m 以下	純径間: 5~15m	純径間: 15m~25m
操作性および	容易な操作性お	・維持管理は容易である。	・同左	・同左	・同左
維持管理性	よび維持管理性	・緊急時の自重降下ができない。	・緊急時の自重降下が可能である。	・同左	・同左
経済性	経済性比率	100%	100%	125%	140%
		×	×	0	×
		・緊急時の自重降下ができない。	・ラック棒の強度的な問題(座屈荷重がも	・本施設のような比較的短い純径間のゲー	・比較的長い純径間のゲートに広く採用され
評価		・スピンドルの強度的な問題(座屈荷重がも	たない。) から、本施設のような高揚程の	トに広く採用されている。	ている。
		たない。)から、本施設のような高揚程の	ゲートに対応できない。	・経済性に優れる。	・左案に比べ経済性に劣る。
		ゲートに対応できない。			

タイ国における大形中形河川ゲートへの適用実績のほとんどは「ワイヤロープウインチ式」である。したがって、本水門の開閉装置は「ワイヤロープウインチ式」とする。

また、ワイヤロープウインチ式の形式は、同一規模の水門に実績が多く、経済性に優れる1 モータ2ドラムウインチ式を採用する。

(3) 開閉用予備動力

本ゲートの設置目的は洪水防御であり、緊急時の操作が閉操作でかつ、扉体自重で締切が可能なことから、ゲートの電動機が故障した場合にも開閉操作を可能とする予備の開閉動力は設置せず、手動切替装置による人力操作とする。

(4) 急降下閉鎖装置

本施設のように逆流防止を目的として設置される水門では通常よりも速い速度で自重降下により閉操作を行う必要がある。

本水門では、以下の観点から急降下閉鎖装置を設置する。

- 1) 水門の機能・信頼性を維持する。
- 2) 万が一の停電時、水門の閉操作の信頼性を維持する。

急降下の形式についての比較検討を、表 2-19 に示す。比較検討の結果、遠心ブレーキ式を 採用する。

表 2-19 急降下装置形式

	生とづして	7 - 1 - 1	油口・シェーン
	遠心ブレーキ	ファンブレーキ	油圧ブレーキ
概要	71-27 21-27 21-27	4 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	注射機 送稿プレーキ
	・扉体自重の降下エネルギーをブレーキシューとライニングとの摩擦により 熱エネルギーとして吸収する装置。	・扉体自重の降下エネルギーをファンによる風力エネルギーで吸収する。	・扉体自重の降下エネルギーで油圧ポンプを駆動し、 流量制御弁で速度を制御する。
維持管理性	・構造が単純で、維持管理 が容易。	・構造が単純で、維持管理 が容易。	△ ・油圧配管系統に空気が混入すると速度が制御できなくなるので、日常の点検・整備に注意を要する。
適用性	△ ・制動力が比較的小さいため、中小形の水門扉でラック式開閉装置の用いられる場合が多い。	○ ・制動力が比較的大きく、 中大型の水門扉に採用される。	○ ・制動力が比較的大きく、 中大型の水門扉に採用される。 ・設置スペースがコンパクト。
経済性	0.9	1.0	1.0
騒音	小	大	小
評価	維持管理が容易で、経済性 に優れる。	※ 設置スペースが大きく、操作室に吸排気ダクトの設置が必要となる。 また、騒音が大きい。	↑ △ 別置きとして油圧ユニットが必要であるが、レイアウト上の制約は少なく、開閉操作室がコンパクトにできる。また、騒音が小さい。

注1:油圧ブレーキに使用される作動油の交換周期は、3~8 年とされている。「ダム 用ゲート開閉装置(油圧式)点検整備要領(案)」(ダム堰施設技術協会)

なお、急降下操作は手動にてブレーキ開放を行うものとする。

(5) 開閉速度

水門扉の開閉速度は、一般的な 0.3m/min とし、自重降下による急降下時には、一般的な開閉速度より早い速度を採用し、防潮ゲートの $1.0\sim2.0$ m/min を参考とし 1.5m/min を選定した。

主電動機 : 0.3 m/min.
 急降下時 : 1.5 m/min.

(6) ワイヤロープ

ワイヤロープには、普通めっきワイヤロープのほかにメンテナンスフリーのステンレスワイヤロープがある。

普通めっきロープとステンレスロープの経済比較を以下に示す。

1) カマン水門のワイヤロープ

①普通 G 種メッキ IWRC6×WS(37) ϕ 20-45m×2 本 ¥ 234,900 ②ステンレス SUS304 6×37 SB 種 ϕ 18-45m×2 本 ¥ 711,900

2) ハントラ水門のワイヤロープ

①普通 G 種メッキ IWRC6×WS(37) ϕ 22−45m×2 本 ¥ 273,600 ②ステンレス SUS304 6×37 SB 種 ϕ 20−45m×2 本 ¥ 861,300

3) 交換周期

①普通 B 種メッキ : 15 年②ステンレス : 30 年

ワイヤロープ更新時には、ワイヤロープコストに取替費用として、2,000 千円/回を見込む。



図 2-10 クラマン水門の経済比較

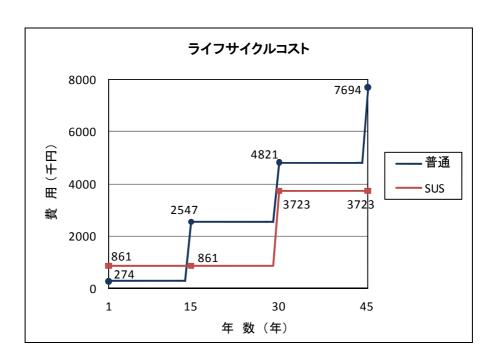


図 2-11 ハントラ水門の経済比較

ゲート設備の扉体材質が SUS である点、またライフサイクルコストの面からも、ステンレスワイヤロープを採用する。

2.2.4 角落し

(1) 設置目的

角落しゲートは、本水門において各設備の点検・整備時に使用し、一時的にゲート設備の代用とし、水位維持、逆流防止等を図るために設ける。角落しの形式については、一般的な多段角落し式とし、点検・整備用として使用するために、何門かのゲートに対して上下流 1 門分を設置する。また、角落しの据付・撤去は、門柱に設置したリフティングビームにモノレールホイストを使用して行う。

(2) 基本諸元

【ハントラ水門用角落しゲート】

1) ゲート形式 : 鋼製スライドゲート

2) 数量 : 角落し2組

3) : 戸当り6組

4) : リフティングビーム1組

5) 純径間 : 6.00m

6) 扉高 : 5.00m (5 枚×1.0m)

7) 設計水深 : 4.50m (E.L.+2.00-(E.L.-2.50))

8) 設計水位 : E.L.+2.00m

9) 敷高 : E.L.-2.50m【クラマン水門用角落しゲート】

10) ゲート形式 : 鋼製スライドゲート

11) 数量 : 角落し2組

12) : 戸当り6組

13) : リフティングビーム1組

14) 純径間 : 6.00m

15) 扉高 : 3.00m (3 枚×1.0m)

16) 設計水深 : 2.50m (E.L.+2.00-(E.L.-0.50))

17) 設計水位 : E.L.+2.00m

18) 敷高 : E.L.-0.50m

2.2.5 操作制御設備

(1) 操作設備

水門の操作設備として、機械室に機側操作盤を設ける。水門の開閉操作は、機側操作盤での 押釦操作で行う。

(2) 制御方式

本水門は、機側からゲートを確実に操作できるものとする。

機側操作設備は、機側においてゲートを的確に操作できるものとしなければならない。 信頼性の高い操作制御の制御方式としては、有接点リレー回路方式とプログラマブル・コントローラ(以下 PLC)方式がある。以下に比較表を示す。

表 2-20 有接点リレー回路と PLC 回路の比較

項目	有接点リレー回路	PLC 回路
	回路が複雑になると部品点数が多くなり	回路が複雑となっても故障の発生率には
	故障の発生が増加する。	あまり影響しない。
信頼性	故障の波及度は、概ね部分的である。補助	PLC 故障の場合にシステム全体に波及し
日积江	リレーやタイマーの故障であれば簡単に	やすい。但し、I/O や電源モジュールの故
	交換可能で、システムとしての信頼性は確	障であれば簡単に交換でき、システムとし
	保できる。	ての信頼性は確保できる。
	接点部分の接触回数に制限がある。部品と	PLC 本体は非接触であるため耐久性が高
部品の	しての故障率は PLC に比べ高い。	く、故障の確率は低い。
信頼性	故障の診断には人手を介すか、別途診断装	CPU とメモリは自己診断機能により初歩
	置を負荷する必要がある。	的な故障診断は可能である。
	プラグイン式の補助リレーやタイマーの	I/O ユニットなどの取替は容易。但し、シ
	故障であれば、高度な知識を必要とせずに	ーケンスのチェックには専用機器と知識
保守性	操作員が交換可能である。	が必要となる。
	多少の互換性がある。	異なる製品間の互換性に難がある。
		設備毎の通信についてはソフトウェアで
		対応可能である。
	補助リレーやタイマーで構成するため、制	PLC 本体と I/O ユニットで構成するため、
回路構成	御量に比例して部品点数が多くなり、制御	制御量が増加しても部品点数はそれほど
四四份从	が複雑になると配線工数も多くなる。	増えない。制御が複雑になってもソフトウ
		ェアで対応するため工数の増加は少ない。
演算機能	演算器を別途設ける必要がある。	PLC 内で演算可能なため、開度演算、流
快奔饭柜		量演算、開度制御が可能である。
操作盤	用途・目的毎に演算器や変換器を必要とす	コンパクト化の期待はあるが、強電部品も
十法	るため、操作機能に比例して操作盤面数、	あり、冗長化させると盤面数、必要面積に
714	必要面積が大きくなる。	はさほど差はない。

水門操作は、全閉、全開の単純な制御回路となるため、リレー方式を採用する。

2.2.6 電源供給設備

(1) 負荷設備の規模・内容

各水門に設置される負荷設備の規模、内容は、下記の通りとする。

1) ハントラ水門

巻き上げ機 3 φ 特殊かご形電動機 380V 2.2kW×3 台(直入れ方式)

同上機側制御盤 1 面(制御電源 0.5kW 相当)

水位計設備 2組(制御電源の容量は、機側操作盤電源容量に含む)

照明設備220V40W×4 台投光器220V250W×4 台

2) クラマン水門

巻き上げ機 3ϕ 特殊かご形電動機 380V 1.5kW×3台(直入れ方式)

同上機側制御盤 1 面(制御電源 0.5kW 相当)

水位計設備 2組(制御電源の容量は、機側操作盤電源容量に含む)

照明設備220V40W×4台投光器220V250W×4台

3) 電源基本構成

当該設備の電源設備の基本構成は、非常時においてもゲート操作が可能なよう非常用発電設備を設置することから、手動で商用電源一発電電源の切替が行えるよう下図の通り、MC-DT(切替器)を設置する構成とする。

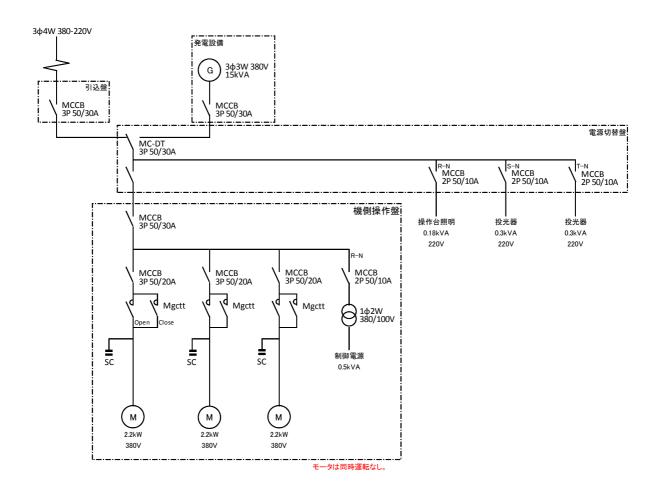


図 2-12 電源基本構成(ハントラ水門)

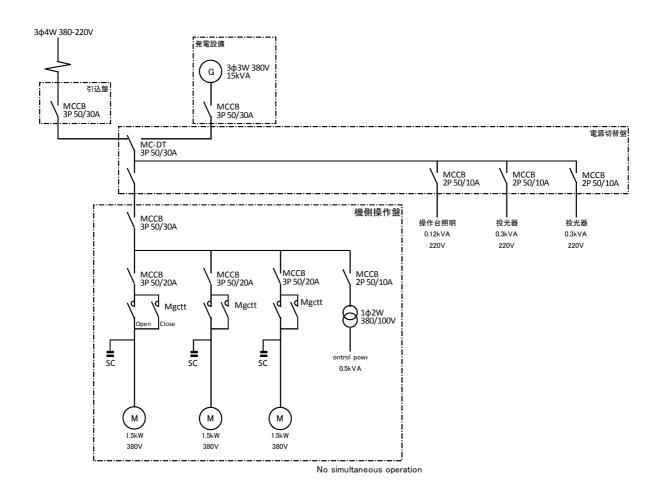
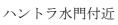



図 2-13 電源基本構成 (クラマン水門)

(2) 商用(常用)電源の受電

ハントラ水門およびクラマン水門とも小規模な需要設備であり、380-220V の電源を受電することになる。設置場所近傍は、22kV もしくは 380-220V 配電線が整備されていることから、 受電に関する大きな課題は無いものと判断する。

クラマン水門付近

図 2-14 水門施設近傍の配電線路状況

また、電源線の引込は、水門施設用地内に引込柱を建柱し、門柱を経由して操作台へ配線する。当該水門設置予定地近隣の水門の受電状況を以下の写真に示す。

図 2-15 既設水門 1 (カマオ水門)

図 2-16 既設水門 2 (アユタヤ市内)

(3) 発電機の検討

1) 基本仕様の検討

発電機の仕様の検討は、原則として日本の規格、設計要領等を参照し決定する。本件においては、「電気通信施設設計要領・同解説(電気編)」(平成 20 年度版)【以下、「設計要領」とする。】を参照することとし、各種基本仕様を選定する。

① 発電機の仕様

本件で導入を計画する発電機は、別途、容量の選定結果から 20kVA となることから、 設計要領に従い、下記の通りとする。

- ▶ 励磁方式は、ブラシレス式とする。
- ➤ 保護形式は、ディーゼル機関では JIS C 4034「回転電気機械-第5部 外被 構造による保護方式の分類」・1999 の、防滴形(IP20)とする。
- ▶ 絶縁の耐熱クラスは、E種以上とする。
- ▶ 極数は4極とする。

② 原動機の選定

一般的に発電機駆動用の原動機は、ガスタービン機関もしくはディーゼル機関の何れかが適用されるが、本設計における発電機容量は小型(20kVA)であり、同容量ではガスタービンが適用外である。したがって、本設計ではディーゼル機関を選定する。

③ 始動方式

始動方式は、電気始動方式と空気始動方式がある。一般に 1000kVA 以下のディーゼル機関の始動方式は、電気始動方式が採用されていることを受け、本設計においても電気方式を採用する。

④ 冷却方式

ディーゼル機関の冷却方式は、標準的にラジエータ式が採用されているため、同方式とする。下記にラジエータ式の特徴を示す。

- ▶ 冷却水の必要量が少なく、水の便が悪い場所に適している。
- ▶ システムがシンプルであり、耐震性に優れている。

2) 電動機の始動方式

始動方式は直入れ始動とする。

3) 発電機容量のための負荷リスト作成

発電機の容量計算は、設計要領に基づき算定を行う。同計算手法では、発電機の対象負荷に対し、以下に事項を想定した各々の負荷一覧表を作成し、発電機出力係数を算定した上で発電機容量を算定する。

① ベース負荷率の算定

負荷出力合計値、および各出力係数を求めるために必要な「ベース負荷需要率」を 算出するために所定様式により「負荷容量一覧表(1)」を作成する。

② 電動機始動時の考慮

電動機の始動時の条件における係数を算出するために所定様式「負荷容量一覧表(2)」 を作成する。

③ 高調波の考慮

「高調波電力合成値(H)」を算出し、高調波発生負荷による条件係数を算出するために所定様式「負荷容量一覧表(3)」を作成する。

当該施設においてはインバータ等の高調波発生機器は、設置されないことから、計算を省略する。

表 2-21 負荷容量一覧表 ハントラ水門(1)

一員	覧表(1)	建物	物名称		ハントラ	ラ水門																								
電設	设備出力計算書	(1	/3)																											
								換算を				***	不	平衡負荷[(W1	需要率□	,dの選定	M ₂ の選	定(RG ₂ 用)	M	₃の選定(R	G ₃ 用)	M ₂ 'の選	定(RE ₂ 用)		М	M₃'の選定(I	RE ₃ 用)		
	負荷名称			負荷 記号	設備 台数	運転台数	出: [V]			出力 換算 係数	出力 mi [kW]	始 方 又 制 方 式 は 御 式	R-S 0.68	S-T	T-R	個別負荷 の需要率 di	di×mi	ks Z'm	$\frac{ks}{Z'm} \times mi$	ks Z' m	$\frac{ks}{Z'm} - 1.47$	$\left(\frac{ks}{Z'm} - 1.47\right)$ $\times mi$	$\frac{ks}{Z'm} \times \cos\theta s$	$\frac{ks}{Z'm} \times \cos \theta s \times mi$	$\frac{ks}{Z'm} \times co$	os θs Z	$\frac{ks}{Z'm} \times \cos \theta s$	$\left(\frac{ks}{Z'm} \times \cos\theta s - 1 \atop \times mi\right)$	備	考
380\	V						.,,	1/1		·	[KW]		0.00	0.00	0.00											\neg				
ゲー	ートモータ機側操作盤																													
1	ハントラ水門 2.2kW	(直入れ始動)	ML	1	1			2.20 kW	1.00	2.20	L				1.00	2.20	7.14	15.71	7.14	5.67	12.47	5.00	11.00	5	00.	4.00	8.80	0	
														ļ					ļ		ļ			ļ		_				
														ļ					ļ					ļ		-				
										ļ									ļ							-		ļ		
2201	v									١									_	1						+				
	7 刃換盤																							 		\dashv				
	1 投光器 0.3kVA			DN	1	1			0.30 kVA	1.00	0.30			0.30		1.00	0.30	1.00	0.30	1.00	0.00		1.00	0.30) 1	.00	0.00			
	2 投光器 0.3kVA			DN	1	1			0.30 kVA	1.00	0.30				0.30	1.00	0.30	1.00	0.30	1.00	0.00		1.00	0.30		.00	0.00			
3	3 操作台照明 0.18kVA			DN	1	1			0.18 kVA	1.00	0.18		0.18			1.00	0.18	1.00	0.18	1.00	0.00		1.00	0.18	3 1	.00	0.00			
	操作盤					ļ																				_				
1	1 制御電源 0.5kVA			DN	1	1			0.50 kVA	1.00	0.50		0.50	ļ		1.00	0.50	1.00	0.50	1.00	0.00		1.00	0.50	1	.00	0.00			
										 	ļ			 		ļ				ļ		ļ		 		-		 	-	
										 	ļ			 	 		-		<u> </u>	 					 	+			+	
																										\dashv				
																									L					
						ļ				ļ		 		ļ						ļ					ļ	\perp				
										ļ	ļ			 						ļ					 					
										<u> </u>				 										 				-		
															_				_	1					1	+				
										· · · · · ·				<u> </u>					 					t		\neg		İ		
														0.30			3.48		15.71			12.47		11.00			Max	8.80		
	合 計 及び 選 定	t ≛						負荷出力	合計値 K			•	最大値 : A	R-S≧S-T 次の値 :B	最小値 : C	D=Σ(di>	≺mi)÷K	mi=M ₂	- 40	(ks/Z'm 最大とな	-1.47)×mi よる mi=M	3	mi=M ₂ '		(ks/Z'm 最大と ^z	n×cos なる n	mi=M ₃ '			
									K=	=Σmi=	3.4	8	0.50	0.30	0.30	D=	1.00	M ₂ =	11.00		M ₃ =	11.00	M ₂ '=	11.00			M ₃ '=	11.00		
ľά	始動方式別係数】															d=	1.00				d ₃ =	1.00	d ₂ '=	1.00		L	d ₃ '=	1.00		
負荷記	ı	方式		ks	Z'm	ks		Cose	s ks	× cos θs		負荷			始動	方式			ks	Z'm	ks	Cosθs	$\frac{ks}{Z'm} \times \cos\theta s$		ベースク	負荷の		dは、それぞれで		
記号						Z' n	n		Z'm			記号									Z'm		Z'm		る負荷r	mıを除		計値にて積算する	0	
			\Box	-				(I)	0.70 5	.00	ł	7/15	可変雷圧	 可変周 	支数制御	RG_2,RE_2	A .		0.00	 		_	0.00	1			$\sum_{i=1}^{n-1}$	$di \times mi$		
	ラインスタート		I.	1.00		7.1	4	2	0.60 4	.28	1		電動機		IPT	RG ₃ ,RE ₃ E			0.00	_	0.00	_		-4			$d = \frac{\sum_{1ii}^{n}}{\sum_{i=1}^{n}}$	<u>1</u>		
	ノインヘクート		"	1.50			-	(3)	0.70							3,1413)	A .		1.00	0.68	1.47	0.85	1.25				Σ	∑ mi		
			\vdash							.57		MM	巻線形電			103,1023)	Ħ		1.00	0.68 0.45	1.47 2.22	0.85 0.70	1.25 1.55	}						
								4	0.40 2	.86		MM DN	電灯・差	込		103,1123)	H		1.00 1.00 1.00	0.68 0.45 1.00	1.47 2.22 1.00	0.85 0.70 1.00	1.25 1.55 1.00							
								41	0.40 2 0.70 3			MM DN CV	電灯・差 静止形UI	込		1103,1113)	Ħ		1.00	0.68 0.45	1.47 2.22	0.85 0.70	1.25 1.55] - - -						
	スターデルタ始動		Y	0.67		4.7	6	4	0.40 2 0.70 3 0.60 2	.86		MM DN CV RF	電灯・差 静止形UI 整流器	込 PS		RG_2,RE_2	H	VP	1.00 1.00 1.00 1.00	0.68 0.45 1.00 0.90	1.47 2.22 1.00 1.11	0.85 0.70 1.00 0.90	1.25 1.55 1.00 1.00							
	スターデルタ始動		Y	0.67		4.7	6	(1) (2)	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1	.86 .33 .86 .38		MM DN CV RF	電灯・差 静止形UI 整流器	込		RG_{2} , RE_{2} , RG_{3} , RE_{3} ,	H H	VF	1.00 1.00 1.00 1.00 1.00	0.68 0.45 1.00 0.90	1.47 2.22 1.00 1.11 1.47	0.85 0.70 1.00 0.90 0.85	1.25 1.55 1.00 1.00 1.25							
	スターデルタ始動		Y	0.67		4.7	6	4 1 2 3 4 1	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1	.86 .33 .86 .38 .90		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI	VF	1.00 1.00 1.00 1.00 1.00 0.00	0.68 0.45 1.00 0.90 0.68	1.47 2.22 1.00 1.11 1.47 0.00	0.85 0.70 1.00 0.90 0.85	1.25 1.55 1.00 1.00 1.25 0.00							
	スターデルタ始動	$ m RG_2 m$	Y	0.67		2.3		4 0 2 3 4 0	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1	.86 .33 .86 .38		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	RG_{2} , RE_{2} , RG_{3} , RE_{3} ,	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
		$\mathrm{RG}_{2}\mathrm{\#}$						4 1 2 3 4 1	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.50 1	.86 .33 .86 .38 .90 .67		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
	スターデルタ始動 クローズドスターデ ルタ始動		Y YC					4 0 2 3 4 0 2 3	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.50 1 0.40 0 0.50 3	.86 .33 .86 .38 .90 .67 .43 .19 .95		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
	クローズドスターデ	RG_3 ,					8	4 0 2 3 4 0 2 3 4 0 2	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.50 1 0.40 0 0.50 1 0.40 0 0.70 3	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
Мт	クローズドスターデ ルタ始動			0.33	0.14	2.3	8	(4) (1) (2) (3) (4) (1) (2) (3) (4) (2) (3) (3) (4) (2) (3) (3) (4) (4) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.50 1 0.40 0 0.70 3 0.60 2 0.50 2	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動	RG_3 ,		0.33	0.14	2.3	8	4 0 2 3 4 0 2 2 3 4 0 0	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.50 0 0.40 0 0.70 3 0.60 2 0.50 2 0.40 1	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86 .38		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動 L	RG_3 ,	YC ·	0.33	0.14	2.3	66	(4) (1) (2) (3) (4) (1) (2) (3) (4) (2) (3) (3) (4) (2) (3) (3) (4) (4) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.60 1 0.60 1 0.50 1 0.60 1 0.50 2 0.40 0 0.70 3 0.60 2 0.40 0 0.70 3 0.60 2 0.40 1 0.70 3	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動	RG_3 ,	YC ·	0.33	0.14	2.3	66	(4) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	0.40 2 0.70 3 0.60 2 0.50 2 0.50 1 0.70 1 0.60 1 0.50 1 0.40 0 0.70 3 0.60 2 0.50 2 0.40 1 0.70 3 0.50 2 0.60 3 0.50 2	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86 .38 .90 .50		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動 L	RG_3 ,	YC ·	0.33	0.14	2.3	66	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.70 1 0.60 1 0.40 0 0.70 3 0.60 2 0.40 0 0.70 3 0.60 2 0.40 1 0.70 3 0.60 3 0.60 3 0.60 3 0.60 3 0.60 3 0.60 3	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86 .38 .90 .50		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
ML	クローズドスターデ ルタ始動 L	RG_3 ,	YC ·	0.33	0.14	2.3	66	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.60 2 0.40 1 0.70 1 0.60 1 0.50 2 0.40 0 0.50 2 0.40 1 0.70 1 0.50 1 0.50 2 0.40 0 0.70 3 0.60 2 0.50 2 0.40 0 0.70 3 0.60 3 0.50 3 0.50 2 0.40 0 0.70 3 0.60 3	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86 .38 .90 .50 .00		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
ML	クローズドスターデ ルタ始動 L	RG_3 ,	YC R	0.33	0.14	2.3	66	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.50 1 0.70 1 0.70 1 0.70 3 0.60 2 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.60 2 0.70 3 0.60 2 0.70 3 0.60 3 0.60 3 0.60 3 0.50 2 0.40 1 0.70 3 0.60 3	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86 .38 .90 .50		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
ML	クローズドスターデ ルタ始動 L リアクトル始動	RG_3 ,	YC R	0.33	0.14	4.7	66	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.50 1 0.50 1 0.60 2 0.50 2 0.40 0 0.50 2 0.40 1 0.70 3 0.60 3 0.50 2 0.40 2 0.40 2 0.40 2 0.50 2 0.60 2 0.60 2 0.50 1	.86 .33 .86 .38 .90 .67 .43 .19 .95 .33 .86 .38 .90 .50 .00		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動 L リアクトル始動	RG_3 ,	R C	0.33	0.14	4.7	6 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.60 2 0.40 1 0.70 1 0.60 1 0.50 2 0.40 0 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 2 0.40 0 0.70 3 0.60 2 0.50 2 0.70 3 0.60 3 0.50 2 0.70 0	.86 .33 .86 .38 .89 .67 .43 .19 .95 .33 .38 .86 .39 .50 .00 .00 .50 .00 .00 .00 .00 .00 .00		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動	$ m RG_3$, $ m RE_2$, $ m RE_3$ $ m H$	R C	0.33 0.67 0.70	0.14	2.3 4.7 5.0	6 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.50 1 0.70 1 0.70 1 0.70 1 0.50 2 0.50 2 0.50 2 0.50 1 0.50 2 0.40 0 0.70 3 0.60 2 0.50 2 0.50 2 0.50 2 0.50 2 0.60 3 0.50 2 0.60 3 0.50 2 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 2 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1	.86 .33 .86 .38 .38 .38 .39 .667 .43 .19 .95 .50 .50 .00 .50 .00 .00 .45 .10 .00 .00 .00 .00 .00 .00 .00 .00 .00		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
ML	クローズドスターデ ルタ始動 L リアクトル始動	\mathbf{RG}_3 , \mathbf{RE}_2 . \mathbf{RE}_3 用	R C	0.33 0.67 0.70	0.14	2.3 4.7 5.0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.50 1 0.70 1 0.70 1 0.70 1 0.70 1 0.50 2 0.40 1 0.70 3 0.60 2 0.50 2 0.40 0 0.70 3 0.60 2 0.50 2 0.40 0 0.70 3 0.60 2 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 1 0.50 0 0.	.86 .33 .86 .38 .89 .90 .67 .43 .19 .95 .33 .38 .38 .90 .50 .00 .00 .00 .00 .00 .00 .00 .00 .0		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動	$ m RG_3$, $ m RE_2$, $ m RE_3$ $ m H$	R C	0.33 0.67 0.70 0.49	0.14	2.3 4.7 5.0 3.5	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.40 1 0.70 1 0.60 1 0.70 1 0.60 0 0.50 1 0.40 0 0.70 3 0.60 2 0.40 0 0.70 3 0.60 2 0.40 1 0.70 3 0.60 2 0.40 1 0.70 3 0.60 2 0.50 2 0.40 1 0.70 2 0.60 2 0.50 2 0.60 0 0.50 1 0.50 0 0.82 2 0.70 2	.86 .33 .86 .38 .38 .38 .39 .667 .43 .19 .95 .50 .50 .00 .50 .00 .00 .45 .10 .00 .00 .00 .00 .00 .00 .00 .00 .00		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
MI	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動	\mathbf{RG}_3 , \mathbf{RE}_2 . \mathbf{RE}_3 用	R C SC	0.33 0.67 0.70 0.49 0.25		2.3 4.7 5.0 3.5	6 0 0 0 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.60 2 0.40 1 0.70 1 0.60 1 0.70 1 0.60 1 0.70 3 0.60 2 0.40 0 0.70 3 0.60 2 0.50 2 0.40 1 0.70 3 0.60 2 0.50 2 0.70 3 0.60 3 0.50 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 3 0.82 2 0.70 0 0.82 1 0.58 1	.86 .33 .86 .990 .67 .43 .995 .33 .86 .38 .990 .000 .500 .000 .500 .000 .75 .75 .75		MM DN CV RF	電灯・差静止形UI 整流器 エレベータ	込 PS · 交流VVV	F	$\begin{array}{c} RG_2, RE_2 \not\models \\ RG_3, RE_3 \not\models \\ RG_2, RG_3 \end{matrix}$	FI FI		1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							
ML	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動 特殊コンドルファ始動	$egin{align*} \mathbf{RG_3}, \\ \mathbf{RE_2}.\mathbf{RE_3} \mathbf{H} \\ \\ \mathbf{RG_2} \mathbf{H} \\ \\ \mathbf{RG_3}, \\ \mathbf{RE_2}.\mathbf{RE_3} \mathbf{H} \\ \\ \end{bmatrix}$	R C SC	0.33 0.67 0.70 0.49 0.25	0.14	2.3 4.7 5.0 3.5 1.8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	0.40 2 0.70 3 0.60 2 0.50 2 0.50 1 0.70 1 0.60 1 0.70 3 0.60 2 0.70 3 0.60 2 0.70 3 0.60 2 0.70 3 0.60 2 0.70 3 0.60 3 0.50 2 0.70 3 0.60 3 0.50 1 0.70 3 0.60 3 0.50 1 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 2 0.70 3 0.50 1	.86 .33 .38 .89 .90 .67 .43 .995 .33 .86 .38 .89 .90 .50 .00 .45 .10 .75 .75 .75 .44 .40 .33		MM DN CV FINE EV	電灯・差U 静止形U 整流器 エレベーク	交流VVV油圧制御	F	$\begin{array}{c} RG_2, RE_2F\\ RG_3, RE_3F\\ RG_2, RG_3\\ RE_2, RE_3H\\ \end{array}$			1.00 1.00 1.00 1.00 1.00 0.00 1.00	0.68 0.45 1.00 0.90 0.68 - 0.34	1.47 2.22 1.00 1.11 1.47 0.00 2.94	0.85 0.70 1.00 0.90 0.85 - 0.80	1.25 1.55 1.00 1.00 1.25 0.00 2.40							

表 2-21 負荷容量一覧表 ハントラ水門(2)

負荷一覧表(2)	建物名称	ハン	・ラ水門																										
				日中が私引金	D . A ##		F = 1.																						
発電設備出力計算書	(2/	/ 3)		同時始動計算		ことに芽	ŧāŤ																						
				換算を! とする.	必要 λ カ		## ##	始動		始動師	接時		1			1	計算値	<i>1</i> 44	動中						_				
4#24		負荷	運転	又は出		出力	出力 mi	方式	h- h-			ks	R	G ₂ 用		R	:E ₂ 用	703	RG:	用			RE ₃ 用				***	+	
負荷名称		記号	台数	出力		- 換算 係数	[k W]	又は 制御	$\frac{ks}{Z'm}$ $\frac{ks}{Z'n}$	- × mi		× cos θ	ks	ks × mi	ks	ks × mi	$\frac{ks}{\sim} \times \cos \theta s$	$\frac{ks}{}$ × cos θ s	ks	ks × mi	ks	ks × mi	$\frac{ks}{-} \times \cos \theta s$	× c	os As		備:	有	
				[V] [A]	[kVA,kW]		1	方式		2 Z'	m	Z'm × n	z'm	Z'm (9)	Z' m		Z'm Z	Z'm × mi	Z'm	Z'm (6)	Z' m	Z' m (7)	Z'm	Z'm	× mi				
₩ 220٧ 動力分岐盤				[4] [7]			U			2						-	- - - - - - - - - - 	9						-					
ゲートモータ																													
1 ハントラ水門 2.2	kW (直入れ始動)	ML	1		2.20 kW	1.00	2.20	L	7.14	15.71 7.1	14 0.70	11.0	0 0.	00	0.00		0.00		1.47	3.23	1.47	3.23	1.47	0.80	2.59				
														+							 								
		•		•						•				•		•	•												
集					14		0.00			15.71		11.00		0.00	-a [0.00		0.00		0.00		0.00	-	a	J				
at a					Мр	=Σ①=	2.20		Σ②=	15./1	23=	11.00	Σ9	= 0.00	Σ4)=	0.00	Σ(5)=	0.00	26=	3.23	20=	3.23	2	8= 2.5	<u>"</u>				
								-																					
	mi:	mi = Mp =	2.2	0									1																
	7.0	771		4					1 _	1			1 _ 1		_1 _	1 × \(\sigma\)			1 _ 1		_ 1	1 ~5	7						
	RG_2 :		0.1		±07'mn'	±- z			$\overline{Z'mp} = \overline{N}$	$\frac{1}{dp} \times \Sigma $ ②			$\frac{1}{Z'mp} = \frac{1}{M}$	-×29 p	$\overline{Z'mp}$	$=\frac{1}{Mp} \times \Sigma $ (4)			$\frac{1}{Z'mp} = \frac{1}{M_I}$	-×2(b))	$\frac{1}{Z'mp}$	$-\overline{Mp} \times 2$							
		2(2)	4.90g比	炎し、大きい値 の	_Z v Z mp≥	ッシ。													1										
選	RG3:	Z'mp=	0.1	4					$={2}$	1 .20 ×	15.71		= 2.20	-× 0.00	=-	2.20	× 0.00		$=\frac{1}{2.20}$	× 3.23	= -	2.20	× 3.23						
K-2				炎し、大きい値 の	方のZ'mpと	する。			= 0	1			$=\frac{1}{0.00}$	_		0.00			$=\frac{1}{0.68}$	_	l	0.68							
									- 0	.14			0.00		_	0.00			0.68		_	0.68							
定	RE2:		0.1		cos θ s=		700																						
				竣し、大きい値の) 竣し、大きい値の)					$\cos \theta sp = \frac{\sum}{\sum}$	3					$\cos\theta sp =$	Σ					cosθsp	_Σ®							
		200	705H	以し、人さい他の.	JU)COS (J SI	· こりる。			$-\frac{1}{\Sigma}$	2					cos osp –	$\overline{\Sigma}$					cos usp	$={\Sigma }$							
	RE3:	Z'mp=	0.1	4	cos θ s=	= 0.7	700		11	5.71 =	0.700					0.00	= 0.000					2.59	= 0.803						
				改し、大きい値の					= 15	5.71	0.700				=-	0.00	0.000					3.23	= 0.802	•					
		Σ (3) ξ	Σ⑧を比	竣し、大きい値 の	方のcos θ sp	とする。																							
 負荷機器の始動方式別係	数(同時始動の地	場合):											1		1														
				始動瞬時					始動中									始動瞬	拿陆						始動中				
荷	始動方式				_	RG:	2,RE2	_	- 1	RG ₃ ,RI		\vdash	負荷	,4	制御方式					_	1	RG_2, RE_2			RG_3			RE_3	
記	炤動方式		ks	Z'm ks Co	osθs ks	Z'm	ks	Cosθs	ks Z	l'm	ks	Cosθs	記号	π	刊即力式		ks	Z'm _	$\frac{ks}{}$ $\frac{ks}{}$ $\times \cos \theta$, ks	Z'm	ks	$\frac{ks}{-} \times \cos \theta s$	ks	Z'm	-ks ks	Z'm	ks	$\frac{ks}{\sim} \times \cos \theta s$
7				Z'm			Z'm				Z'm							Z	Z'm Z'm			Z'm	Z'm			Z'm		Z'm 2	Z'm
	T	0	-		.70]								ータ 交流VVV ータ 油圧制御			F 0.00 0 Y 1.00 0		0.00 0.00 1.85 0.93			0.00 3.70	0.00 1.85	1.00	0.34 2	2.94 1.00 3.70 1.00			2.35
ラインスタート		L 2	1.00		0.00	0.68	0.00	-	1.00 0	.68	1.47	0.80	エレベ	一ク 油圧制御		- 10	1 1.00 0	0.04 1	1.00 0.93	1.00	0.27	3.70	1.00	1.00	0.21	5.70 1.00	0.40	2.00	2.13
		4		0	.40																								
		0	_	0	.70				各出力が最大のもの	の及びその次に大き	さいものを除く	0.70									-				+		+		
スターデルタ始動		Y 2 3 4			.50	0.68	0.00	0.60	100	.00		0.50									1				+		+		
		4	0.33	2 26 0	.40			0.40	1.00 0		1.47	0.40																	
	T	1		0		」が最大のもの		0.70 定核	各出力が最大のもの	の及びその次に大き	さいものを除く	0.70													1				
クローズドスターラ	デルタ始動	YC ②	1		50	大きいものを						0.60						_						_	+ +		+		
		4		0	.40	0.14	4.76	0.50	0.67 0	.14	4.76	0.40																	
ML		0			.70				T			0.70									\vdash				+		\perp		
リアクトル始動		R 2	0.70	5.00	.50 0.00	0.14	0.00	-	0.70 0	.14	5.00	0.60	 								 				+		+		
		4	<u>L</u>		.40							0.40																	
		0			.70				T			0.70																	
1 1		C 2	0.49		0.00	0.14	0.00	-	0.49 0	.14	3.50	0.60													+				
コンドルファ始動			1		.50							0.50	 - - 					-			1				+ +		+		
コンドルファ始動		4										0.82																	
コンドルファ始動		(4) (1)				1 1	0.00	_	0.42 0	.14	3.00	0.70	\vdash					-			\vdash				+ +		+		
コンドルファ始動特殊コンドルファ始	台動	(4) (1)	0.25	1.79 0	.50 0.00	0.14	0.00					0.08									+				+				
	台動	(4) (1)	0.25	1.79 0.	.50 0.00	0.14	0.00					0.58																	
特殊コンドルファ対連続電圧制御始動		(4) (1) (2) (3)	0.25							.34	2.94	0.58 0.40																	
特殊コンドルファ射 連続電圧制御始動 VF 可変電圧・可変周波		(4) SC (2) (3) (4)	0.14	1.00 0 0.14 0.00 0	.40 0.00 .00 0.00	0.14	0.00	_ 	1.00 0 1.00 0	.68	1.47	0.40 0.85																	
特殊コンドルファ射 連続電圧制御始動 VF 可変電圧・可変周波 MM 巻線形電動機		(4) SC (2) (3) (4)	0.14 0.00 1.00	1.00 0 0.14 0.00 0 0.45 2.22 0	.40 0.00 .00 0.00 .70 0.00	0.14 0.14 0.45	0.00 0.00 0.00	_ 	1.00 0 1.00 0 1.00 0	.68 .45	1.47 2.22	0.40 0.85 0.70																	
特殊コンドルファ射 連続電圧制御始動 VF 可変電圧・可変周波		(4) SC (2) (3) (4)	0.14 0.00 1.00 1.00	1.00 0 0.14 0.00 0	.40 0.00 00 0.00 70 0.00 00 0.00	0.14 0.14 0.45 1.00	0.00 0.00 0.00 0.00		1.00 0 1.00 0 1.00 0 1.00 1	.68	1.47 2.22 1.00	0.40 0.85																	
特殊コンドルファ射 連続電圧制御始動 VF 可変電圧・可変周認 MM 参線形電動機 DN 電灯・差込	支数制御電動機	(4) (1) (2) (3) (4) (VC)	0.14 0.00 1.00 1.00 1.00	1.00 0 0.14 0.00 0 0.45 2.22 0 1.00 1.00 1 0.90 1.11 0 0.68 1.47 0	.40 0.00 .00 0.00 .70 0.00 .00 0.00 .90 0.00 .85 0.00	0.14 0.14 0.45 1.00 0.90 0.68	0.00 0.00 0.00 0.00 0.00 0.00		1.00 0 1.00 0 1.00 0 1.00 1 1.00 0 1.00 0	.68 .45 .00	1.47 2.22 1.00 1.11 1.47	0.40 0.85 0.70 1.00 0.90 0.85																拖設設計要領	

表 2-22 負荷容量一覧表 クラマン水門(1)

発電影	设備出力計算書	(1	/3)																											
									を必要 る入力		出力	始動	不	平衡負荷[kW]	需要率D,	の選定	M ₂ の選5	定(RG₂用)	М	₃の選定(R	G ₃ 用)	M ₂ 'の選定	E(RE₂用)		M₃'თ)選定(R	RE ₃ 用)		
	負荷名称			負荷	設備	運転			出力	出力 換算	mi	方式 又は		T	Π	個別負荷 の需要率		ke	k e	ks	ks.	()	k s	k e	ks.	1		(.)	借	4
	XIII TIV			記号	台数	台数	出		[kVA,kW]	係数		制御方式	R-S	S-T	T-R	di	di×mi	Z'm	$\frac{ks}{Z'm} \times mi$	Z'm	$\frac{RS}{Z'm} - 1.47$	$\left(\frac{\kappa s}{Z'm} - 1.47\right)$ × mi	$\frac{Z'm}{Z'm}$	$Z'm$ $\times \cos \theta s$ $Z'm$	Z'm	θs Z'm	× cos θs -1	$\left(\frac{ks}{Z'm} \times \cos\theta s - 1\right)$ $\times mi$) Pie	,
380	v						[V]	[A]		•	[kW]		0.62	0.30	0.30											+-	_			
	▼ ートモータ機側操作盤																									+				
	クラマン水門 1.5kW	(直入れ始動)	ML	1	1			1.50 kW	1.00	1.50	L				1.00	1.50	7.14	10.71	7.14	5.67	8.51	5.00	7.50	5.0	00	4.00	6.00		
																										+-				
																										-				
220																														
	7美量			DM		1			0.00 1-37 4	1.00	0.20	ļ		0.00	ļ	1.00	0.20	1.00	0.00	1.00	0.00		1.00	0.20	1.0		0.00			
	1 投光器 0.3kVA 2 投光器 0.3kVA			DN DN	1	1			0.30 kVA 0.30 kVA	1.00				0.30	0.30	1.00	0.30	1.00	0.30	1.00			1.00	0.30	1.0		0.00			
	2 投充器 0.3kVA 3 操作台照明 0.12kVA			DN	1	1			0.30 kVA 0.12 kVA	1.00		-	0.12	_	0.30	1.00	0.30	1.00	0.30	1.00	ļ		1.00	0.30	1.0		0.00			
	条作量								0.12 11711	1.00	0.12	1	0.12	 	 	1.00	0.12	1.00	0.12	1.00	0.00		1.00	0.12	1.0	+-				
	1 制御電源 0.5kVA			DN	1	1			0.50 kVA	1.00	0.50		0.50	†		1.00	0.50	1.00	0.50	1.00	0.00		1.00	0.50	1.0	00	0.00			
															<u> </u>	İ														
]	[igsquare			ļ											1				
												-			ļ					ļ									ļ	
															 											+				
								+				 			 	 				·····						+-				
														 	 						l					+				
														ļ	ļ												-			
															-											_	-			
				+											 											+				
															0.30 ≥T-R		2.72	Max	10.71		Max	8.51	Max	7.50			Max	6.00		
	合 計	t						負荷出	l力合計値 K						最小値			が最大と	: なる	(ks/Z'm	<u>-1.47)×</u> mi -3 mi=M	の値が	ks/Z'm×coの値が最大	となる	(ks/Z'm> 最大とな	× cos θ	s-1)×n	miの値が		
	及び 選 定	2		L									: A			D=Σ(di×				取入と	¥a mi=M	3	$mi=M_2$		取入とな	් a mi=	=IVI3			
	~ ~	-							K=	Σmi=	2.7	12	0.50	0.30	0.30	D=	1.00	M ₂ =	11.00		$M_3 =$	11.00	M2'=	11.00			M ₃ '=	11.00		
															_							•		•				•		
																d=	1.00				d ₃ =	1.00	d ₂ '=	1.00			d ₃ '=	1.00		
[始動方式別係数】																												_	
負	ı					ks			be .												ks		ks		ベース負				III -1- 1- 45	
荷記	始動え	方式		ks	Z'm	_		Co	sθs Z'm	× cos θs		負荷 記号			始動	方式			ks	Z'm		$\cos\theta s$	${Z^*m} \times \cos \theta s$					dは、それぞれで h値にて積算する。		
号						Z'n	1														Z'm				公共同…					
								0		00		VF	可変電圧	 可変周 	皮数制御	$\mathrm{RG}_2, \mathrm{RE}_2$			0.00	_	0.00	-	0.00				$\sum d$	$li \times mi$		
1	ラインスタート		L	1.00		7.1	4	2	0.00	28		**	電動機			RG_3,RE_3 用			1.00	0.68	1.47	0.85	1.25			d	!= <u>1ii</u>	di×mi 		
	1							3		57 86			卷線形電						1.00	0.45	2.22	0.70	1.55				<u>></u>	_ mi		
								④		33	ł		電灯・差 静止形UI						1.00	1.00 0.90	1.00	1.00 0.90	1.00							
			H							86	1		整流器						1.00	0.68	1.47	0.85	1.25							
	74		v	0.67		4.5	6	2			J	$\overline{}$				DC DE m			0.00	_	0.00	_	0.00							
	スターデルタ始動		Y	0.67		4.7	6	3	0.50 2.	38		EV	エレベータ	· 交流VVI	/F	RG_2,RE_2 用		VF												
	スターデルタ始動		Y	0.67		4.7	6	2 3 4	0.50 2. 0.40 1.	90		EV	エレベータ	交流VVV	/F	RG_3 , RE_3 用		VF	1.00	0.34	2.94	0.80	2.40							
	スターデルタ始動							2 3 4	0.50 2. 0.40 1. 0.70 1.	90 67				交流VVV		RG_3 , RE_3 用 RG_2 , RG_3 用		OY	1.00	0.34		0.80	2.40							
	スターデルタ始動	$ m RG_2 H$		0.67		2.3		2 3 4	0.50 2. 0.40 1. 0.70 1. 0.60 1.	90						RG_3 , RE_3 用					2.94									
	クローズドスターデ							2 3 4 0 2	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0.	90 67 43 19						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
								2 3 0 0 2 3 4	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3.	90 67 43 19 95 33						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
	クローズドスターデ	RG ₃ ,	YC .		0.14		8	2 3 4 0 2 3 4 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2.	90 67 43 19 95 33 86						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
MI	クローズドスターデ ルタ始動		YC .	0.33	0.14	2.3	8	2 3 4 0 2 3 4 0 0 2 3	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2.	90 67 43 19 95 33						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
MI	クローズドスターデ ルタ始動	RG ₃ ,	YC .	0.33	0.14	2.3	8	2 3 4 0 2 3 4 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2.	90 67 43 19 95 33 86						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
Mi	クローズドスターデ ルタ始動 L	RG ₃ ,	YC •	0.33	0.14	2.3	8	2 3 4 0 2 3 4 0 2 2 3 4 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.50 2. 0.50 3. 0.60 3.	90 67 43 19 95 33 86 38 90 50						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
М	クローズドスターデ ルタ始動	RG ₃ ,	YC •	0.33	0.14	2.3	8	2 3 4 0 2 3 4 0 2 3 4 0 0 2 3 3 4 0 0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.50 2. 0.60 3. 0.60 3.	90 67 43 19 95 33 86 38 90 50						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
М	クローズドスターデ ルタ始動 L	RG ₃ ,	YC •	0.33	0.14	2.3	8	2 3 4 0 2 3 4 0 2 3 4 0 0 2 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.60 3.	90 67 43 19 95 33 86 38 90 50 00 50						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
Mi	クローズドスターデ ルタ始動 L リアクトル始動	RG ₃ ,	YC R	0.33	0.14	4.7	8	2 3 4 0 2 3 4 0 2 3 4 0 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.40 0. 0.70 3. 0.60 3. 0.60 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3.	90 67 43 19 95 33 86 38 90 50						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
м	クローズドスターデ ルタ始動 L	RG ₃ ,	YC R	0.33	0.14	2.3	8	2 3 4 0 2 3 4 0 2 3 4 0 0 2 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.50 2. 0.40 0. 0.70 3.	90 67 43 19 95 33 86 38 90 50 00 50 00						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
Mi	クローズドスターデ ルタ始動 L リアクトル始動	$ m RG_3$, $ m RE_2$, $ m RE_3$, $ m H$	R C	0.33 0.67 0.70	0.14	2.3 4.7 5.0	8 6 0	2 3 4 0 2 3 4 0 2 3 4 0 0 2 3 4 0 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.50 2. 0.60 2. 0.50 2. 0.60 3. 0.60 3. 0.60 3. 0.60 3. 0.60 3. 0.60 3. 0.60 3. 0.60 3. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.50 2. 0.70 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3.	90 67 43 19 95 33 86 38 90 50 00 45 10 75 75						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
MI	クローズドスターデ ルタ始動 L リアクトル始動	RG ₃ ,	R C	0.33	0.14	4.7	8 6 0	2 3 4 0 2 3 4 0 2 3 4 0 2 3 4 0 2 3 4 0 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.70 1. 0.50 1. 0.50 2. 0.40 0. 0.50 2. 0.50 2. 0.50 2. 0.40 3. 0.60 3. 0.60 3. 0.60 3. 0.60 3. 0.60 2. 0.50 2. 0.40 0. 0.70 3. 0.60 3. 0.50 2. 0.40 2. 0.50 2. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3. 0.50 3.	90 67 43 19 95 33 86 38 90 50 00 45 10 75 75 90						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
м	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動	$ m RG_3$, $ m RE_2$, $ m RE_3$ $ m H$	R C	0.33 0.67 0.70 0.49 0.25	0.14	2.3 4.7 5.0 3.5	8 6 0 0 0	2 3 4 0 2 3 4 0 2 2 3 4 0 0 2 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 2. 0.40 0. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.60 2. 0.50 2. 0.40 1. 0.50 2. 0.50 2. 0.40 0. 0.50 2. 0.50 2. 0.50 2. 0.50 3. 0.50 2. 0.50 3. 0.50 2. 0.50 3. 0.50 2. 0.50 3.	90 67 43 19 95 33 86 38 90 50 00 45 10 75 75 90 45						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
мі	クローズドスターデ ルタ始動 L リアクトル始動	RG_3 , RE_2 , RE_3 H RG_2 H RG_3 .	R C	0.33 0.67 0.70	0.14	2.3 4.7 5.0	8 6 0 0 0	2 3 4 0 2 3 3 4 0 0 2 2 3 3 4 0 0 0 2 2 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.50 2. 0.60 3. 0.60 3. 0.60 2. 0.50 2. 0.50 1. 0.70 3. 0.60 3. 0.50 2. 0.70 2. 0.70 2. 0.70 2. 0.70 2. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3. 0.70 3.	90 67 43 19 95 33 86 38 90 50 00 45 10 75 75 90						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
мі	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動	$ m RG_3$, $ m RE_2$, $ m RE_3$ $ m H$	R C	0.33 0.67 0.70 0.49 0.25	0.14	2.3 4.7 5.0 3.5	8 6 0 0 0	2 3 4 0 2 3 4 0 2 2 3 4 0 0 2 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.40 1. 0.70 3. 0.60 2. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.60 3. 0.50 2. 0.40 2. 0.50 1. 0.70 3. 0.60 3. 0.50 2. 0.70 2. 0.60 2. 0.50 1. 0.90 0. 0.82 2. 0.70 2. 0.58 1.	900 667 443 119 995 333 886 388 990 500 000 675 675 6775						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
мі	クローズドスターデルタ始動 L リアクトル始動 コンドルファ始動 特殊コンドルファ始動 連続電圧制御始動	RG_3 , RE_2 , RE_3 H RG_2 H RG_3 RG_3 RG_3 RG_4 RG_2 RG_3 RG_3 RG_4 RG_2 RG_3	R C SC	0.33 0.67 0.70 0.49 0.25 0.42		2.3 4.7 5.0 3.5 1.8 3.0	8 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 4 0 2 3 4 0 2 2 3 4 0 0 2 2 3 4 0 0 2 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.60 3. 0.50 2. 0.70 3. 0.60 3. 0.50 2. 0.70 2. 0.70 2. 0.50 1.	900 667 443 439 995 333 386 388 990 000 000 000 445 110 775 775 775 775 775 775 775 775 775 77						RG_3 , RE_3 用 RG_2 , RG_3 用					2.94									
	クローズドスターデ ルタ始動 L リアクトル始動 コンドルファ始動 特殊コンドルファ始動	$\begin{array}{c} RG_3, \\ RE_2, RE_3 \\ RG_2 \\ RG_3, \\ RG_3, \\ RE_2, RE_3 \\ RG_3, $	R C SC VC	0.33 0.67 0.70 0.49 0.25	0.14	2.3 4.7 5.0 3.5 1.8	8 6 6 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0	2 3 4 0 2 3 4 0 2 2 3 3 4 0 0 2 2 3 3 4 0 0 2 2 3 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 2. 0.40 1. 0.70 1. 0.60 1. 0.50 1. 0.40 0. 0.70 3. 0.60 2. 0.50 2. 0.50 2. 0.40 1. 0.70 3. 0.60 3. 0.60 3. 0.50 2. 0.70 3. 0.60 3. 0.50 2. 0.70 2. 0.70 2. 0.50 1.	990 667 443 443 995 559 990 900 900 900 900 900			エレベータ	油圧制御		RG ₃ ,RE ₃ H RG ₂ ,RG ₃ H RE ₂ ,RE ₅ H				0.20	2.94		2.50							

表 2-22 負荷容量一覧表 クラマン水門(2)

電設備出力計算書	(2/	73)	同	時始動計	算用:負荷群 3	ごとに集計																								
				換算	「を必要		1,								#±1	草値									T					
				とす	る入力	出力 mi 操算 係数 [kW	」 始動			始動瞬時							始	動中												
負荷名称		負荷	運転	지	は出力	・ 接算 mi	フスは	ks	ks	ks	ks		RG₂用		RE ₂				G₃用			RE ₃ 用						備	考	
		配号	台数	出力	[kVA,kW]	係数 LkW	制御	2'm -	Z'm × mi	× cos θs	$\overline{Z'm} \times \cos \theta s \times mi$	ks	× mi		- × mi	-× cos θs	$\frac{ks}{} \times \cos \theta s$	ks	× 1	i ks		i ×	c os θs	$\frac{ks}{}$ × cos ϵ	9s				•	
				v] [a]	[KVA,KW]	1	方式		2		3	Z' m	Z' m	Z'm Z	m Z':	n	Z'm × mi	Z'm	Z'm	Z' n	Z'm	Z'm		Z'm × n	ni					
220V 動力分岐盤						Ĭ													1											
ゲートモータ																														
1 ゲートモータ 5.5	kW (直入れ始動)	ML	1		1.50 kW	1.00 1.	50 L	7.14	10.71	7.14 0.70	7.50		0.00	0.00	0.0	00		1.	7	.21 1	47 2.2	1 1.47	0.80	1.	76					
																						++								
														+		+			+			++								
			L			L	_	-						<u> </u>		-														
i					Mp=	Σ①= 1.	50	Σ2=	10.71	Σ3=	7.50	Σ	9= 0.00	Σ4)=	0.00	Σ⑤=	0.00	Σ6	= 2.2	Σ 🧷	= 2.2	1	Σ®=	1.76						
	mi:	mi=Mp=	1.50																											
	RG2:	Z'mp= Σ②と			iの方のZ'mpとす	·る。		$\frac{1}{Z'mp}$ =	$=\frac{1}{Mp}\times\Sigma$	C ②		$\frac{1}{Z'mp} = \frac{1}{Z'mp}$	$\frac{1}{Mp} \times \Sigma $ \bigcirc		$\frac{1}{Mp} \times \Sigma \textcircled{4}$			$\frac{1}{Z'mp} = \frac{1}{Z'mp}$	$\frac{1}{dp} \times \Sigma$ ⑥	$\overline{Z'}$	$\frac{1}{mp} = \frac{1}{Mp}$	Σ⑦								
				_					1	× 10.71		= 1	× 0.00		1 50 ×	0.00		= 1	-× 2.21		$=\frac{1}{1.50}$	– × '	2.21							
	RG3:		0.14		_					A 10.71						0.00		1					1							
		Σ 2 b	Σ⑥を比較し	、大きい値	iの方のZ'mpとす	る。		==	0.14			$=\frac{1}{0.0}$	20	=	1			$=\frac{1}{0.68}$	_		$=\frac{1}{0.68}$	_								
	RE_2 :	7'mn_	0.14	_	$\cos \theta s =$	0.700	_		0.14			0.0	00		0.00			0.68			0.68									
	RE2:				cos g s= この方のZ'mpとす		_		_																					
		_	-		iの方のcos θ spと			cos θsp=	$\frac{\Sigma @}{}$					$\cos\theta sp =$	Σ (5)					cos	$g_{sp} = \frac{\Sigma \otimes 1}{\Sigma \circ 7}$									
			0			-, -v		1	$\Sigma^{(2)}$						$\Sigma 4$															
	RE3:	Z'mp=	0.14		$\cos \theta s =$	0.700			7.50	= 0.700					0.00 =	0.000					$=\frac{1.76}{2.21}$	(796							
					iの方のZ'mpとす		_		10.71	_ 5.700					0.00	0.000					2.21	`								
		Σ38	Σ ⑧を比較し	、大きい値	iの方のcos θ spと	とする。																								
 負荷機器の始動方式別値	数(同時地動の世	무슨) ·																												
スパリル 田子 マンプロ おりり 八 八川 に	nax (1円 #17日 #1107 4	ин/ '		. 6 a64 a22 n4-				始動中									17 act a	ust m±s							始動中					
負荷				台動瞬時		$\mathrm{RG}_2, \mathrm{RE}_2$			R	RG_3 , RE_3		自 带					始動	呼			$\mathrm{RG}_2, \mathrm{RE}_2$				RG_3				RE_3	
記	始動方式		ks Z	'm ks	Cosθs ks	Z'm ks	Cosθs	ks	Z'm	ks	Cosθs	記号		制御方式		ks	Z'm	<u>ks</u> <u>ks</u> × c	s θs k	Z'n	ks	$\frac{ks}{2} \times co$	- 0-	ks	Z'm	ks	ks	Z'm	ks	$\frac{ks}{}$ × cos θ
方				Z'm		Z'm	- 1	"		Z'm								$\frac{ks}{Z'm}$ $\frac{ks}{Z'm} \times c$			Z' m	Z'm × co	a (75			Z'm			Z'm	$Z'm$ × cos θ
		1		1	0.70							F/V	ベータ 交流VV					0.00 0.0			0.00	0.0		1.00	0.34		1.00	0.34	2.94	2.35
ラインスタート		L 2	1.00	7.14	0.60 0.00	0.68 0.00) _	1.00	0.68	1.47	0.80	エレ・	ベータ 油圧制御	1	OY	1.00	0.54	1.85 0.9	3 1.0	0.27	3.70	1.8	35	1.00	0.27	3.70	1.00	0.40	2.50	2.13
		3			0.50							\vdash					 -										 			
		1		\vdash	0.70		0.70	定格出力が最大の	もの及びその)次に大きいものを除く	0.70					-	-					+							 	
スターデルタ始動		Y 2			0.60	0.68 0.00	0.60				0.60											1								
ヘクー / ルク炯動					0.50	0.00	0.50	1.00	0.68	1.47	0.50																			
1 1		4	0.33	2.36	0.40 0.70 定格出力が	5最大のもの1578			もの及びその		0.40	\vdash					 -										 			
			0.00	1 1	0.60 その次に大		0.60		J A U-C0)		0.60	\vdash				1	 				_	1					 		 	
	e . 511 e	1	0.00		0.00 その次に大		0.60	1			0.50																			
クローズドスター	デルタ始動	YC (3)	0.00		0.50		, 0.50	0.07	0.14													1								
クローズドスター	デルタ始動	YC 2 3 4			0.50 0.67		0.50	0.07	0.14	4.76	0.40															ļ	 			
クローズドスター:	デルタ始動	YC 2 3 4		14	0.50 0.40 0.70		, 0.50	0.07	0.14	4.76	0.40 0.70									_		 								
クローズドスター: ML リアクトル始動	デルタ 始動	YC 2 3 4		14 5.00	0.50 0.40 0.70		3 0.50 0.40	0.67	0.14	4.76	0.40																			
ML	ドルタ始動	YC 2 3 4 0	0	1 1	0.50 0.40 0.70 0.60 0.50 0.40	0.14 4.70	3 0.50 0.40	0.67		5.00	0.40 0.70 0.60 0.50 0.40																			
ML	デルタ始動	YC 2 3 4 0 R 2 3 4 0 0 0	0	5.00	0.50 0.40 0.70 0.60 0.50 0.40 0.70	0.14 4.70	3 0.50 0.40	0.67		5.00	0.40 0.70 0.60 0.50 0.40																			
ML		YC 2 3 4 0 R 2 3 4 0 0 0	0	5.00	0.50 0.40 0.70 0.60 0.50 0.40 0.70	0.14 4.70	0.50	0.67		5.00	0.40 0.70 0.60 0.50 0.40 0.70																			
ML リアクトル始動		YC 2 3 4 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70	1 1	0.50 0.40 0.70 0.60 0.50 0.40 0.70	0.14 4.70	0.50	0.67	0.14	5.00	0.40 0.70 0.60 0.50 0.40																			
ML リアクトル始動		YC 2 3 4 0 2 3 4 0 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70	5.00	0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.40 0.70 0.60 0.70 0.60 0.70 0.60	0.14 4.70	0.50	0.67	0.14	5.00	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.50 0.50 0.50																			
ML リアクトル始動 コンドルファ始動		YC 2 3 4 C 2 3 4 C 2 2 3 4 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.70	3.50	0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.40 0.70 0.60 0.70 0.60 0.70 0.60	0.14 4.70 0.14 0.00 0.14 0.00	0.50	0.67	0.14	5.00	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50																			
ML リアクトル始動		YC 2 3 4 2 3 4 0 2 3 4 0 2 3 4 0 0 5 C 2 3 0 0 SSC 2 3	0.70	3.50	0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.40 0.70 0.60 0.50 0.50 0.00	0.14 4.70 0.14 0.00 0.14 0.00	3 0.50 0.40) –	0.67	0.14	5.00	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.50																			
ML リアクトル始動 コンドルファ始動 特殊コンドルファタ	台動	YC 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70	3.50	0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.70 0.70 0.60 0.50 0.60 0.50 0.60 0.50 0.60 0.50 0.60	0.14	3 0.50 0.40 0.40	0.67	0.14	3.50	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.60 0.70 0.60 0.50																			
ML リアクトル始動 コンドルファ始動 特殊コンドルファ引 連続電圧制御始動	台動	YC 2 3 4 2 3 4 0 2 3 4 0 2 3 4 0 0 5 C 2 3 0 0 SSC 2 3	0.70 0.49 0.25	3.50 - 1.79	0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.40 0.70 0.60 0.50 0.50 0.00	0.14	3 0.50 0.40 0.40 0.50 -	0.67 0.70 0.49	0.14	3.50 - 3.00 - 2.94	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.50																			
ML リアクトル始動 コンドルファ始動 特殊コンドルファタ	台動	YC 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70 0.49 0.25 0.14 0.00 0.100	1.79 1.00 1.00 1.4 0.00 45 2.22	0.50 0.40 0.70 0.60 0.50 0.40 0.50 0.60 0.50 0.60 0.50 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50	0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00	3	0.67 0.70 0.49 0.42	0.14 0.14 0.14	3.50 - 3.00 - 2.94 1.47	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50																			
ML リアクトル始動 コンドルファ始動 特殊コンドルファ 連続電圧制御始動 VF 可変曜圧・可変開! MM 巻線形電動機 DN 電灯・差込	台動	YC 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70 0.49 0.25 0.14 0.00 0 1.00 0 1.00 1	1.79 1.00 1.00 1.4 0.00 45 2.22 00 1.00	0.50 0.40 0.70 0.60 0.50 0.40 0.70 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.50	0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.15 0.00 1.00 0.00	3	0.67 0.70 0.49 0.42 1.00 1.00 1.00	0.14 0.14 0.14 0.34 0.68 0.45 1.00	3.50	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.70 0.70																			
ML リアクトル始動 コンドルファ始動 特殊コンドルファタ 連続電圧制御始動 VF 可変電圧・可変剛	台動	YC 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.70	3.50 - 1.79 - 1.00 - 14 0.00 - 45 2.22 - 00 1.00 - 90 1.11	0.50 0.40 0.70 0.60 0.50 0.40 0.50 0.60 0.50 0.60 0.50 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50	0.14	3 0.50 0.40	0.67 0.70 0.49 0.42 1.00 1.00 1.00 1.00	0.14 0.14 0.14 0.34 0.68 0.45	3.50	0.40 0.70 0.60 0.50 0.40 0.70 0.60 0.50																			

4) 発電機出力の算定

発電機の出力は、次式により算定する。

 $G = RG \times K \times 0.95$ [kVA]

ただし、 G : 発電機出力 [kVA]

RG : 発電機出力係数 [kVA/kW]

K : 負荷出力合計 [kW]

① 発電機出力係数(RG)

発電機出力係数(RG)は、次の a)~d)に示す 4 つの係数をそれぞれ求めて、その内の最も大きな値を採用する。ただし、本設計においては高調波発生機器が設置されないため、d)の「RG4:許容逆相電流出力係数」の算定は省略する。

a) RG1: 定常負荷出力係数

発電機出力端における定常時負荷出力電流によって定まる係数

b) RG2: 許容電圧降下出力係数

電動機等の始動によって生ずる発電機出力端電圧降下の許容値によって定ま る係数

c) RG3: 短時間過電流耐力出力係数

発電機出力端における過渡時負荷電流の最大値によって定まる係数

d) RG4: 許容逆相電流出力係数

負荷の発生する逆相電流、高調波電流分の関係等によって定まる係数

② 発電機出力の決定

上記の①により求められた発電機出力係数 RG から、所要の発電機出力は、以下のとおりであり、ハントラ水門では下表の最大値を満足する 14.91 kVA 以上とし、クラマン水門では 10.18 kVA 以上とする。

表 2-23 発電機出力の計算結果 (ハントラ水門)

発電機出	力係数	負荷出力合計	RG×K×0.95
RO	3	K[kW]	[kVA]
① RG1	1.57		5.18
\bigcirc RG ₂	4.51	2.40	14.91
③ RG3	3.37	3.48	11.14
④ RG4	1.07		3.54
	必要発電	『 機出力	14.91

表 2-24 発電機出力の計算結果 (クラマン水門)

発電機出 Ri		負荷出力合計 K[kW]	RG×K×0.95 [kVA]
① RG1	1.57		4.07
② RG2	3.94	9.79	10.18
③ RG3	3.06	2.72	9.27
④ RG4	1.15		2.97
	必要発電	『 機出力	10.18

5) 原動機出力の算定

原動機の出力は、次式により算定する。

 $E=RE\times K\times Cp$ [kVA]

ただし、 E: 原動機出力 [kW]

RE: 原動機出力係数

K: 負荷出力合計 [kW] Cp: 原動機出力補正係数

① 原動機出力係数(RE)

原動機出力係数(RE)は、次の a) \sim c)に示す 3 つの係数をそれぞれ求めて、その内の最も大きな値を採用する。

a) RE1: 定常負荷出力係数

定常時負荷によって定まる係数

b) RE2: 許容回転速度変動出力係数

過渡的に生ずる負荷急変時に対する回転速度変動の許容値によって定まる係数

c) RE3: 許容最大出力係数

過渡的に生ずる最大値によって定まる係数

② 原動機出力の決定

上記の①により求められた原動機出力係数 RE から、所要の原動機出力は、以下のとおりであり、ハントラ水門では下表の最大値を満足する 14.59kW 以上とし、クラマン水門では 10.31kW 以上とする。なお、当該箇所は周囲温度が 30 \mathbb{C} を超えているため、原動機出力には周囲温度による補正を加えている。

表 2-25 原動機出力の計算結果 (ハントラ水門)

原動機出 RE		負荷出力合計 K[kW]	出力補正係数 Cp	RE×K×Cp [kW]
① RE1	1.30			4.52
② RE2	4.05	3.48	1.200	14.10
③ RE3	3.80			13.22
			14.10	
	周囲温	度による原動機出力	の補正	14.59

表 2-26 原動機出力の計算結果 (クラマン水門)

原動機出 RE		負荷出力合計 K[kW]	出力補正係数 Cp	RE×K×Cp [kW]
① RE1	1.30			3.54
② RE2	3.67	2.72	1.200	9.97
③ RE ₃	3.47			9.44
			9.97	
	周囲温	度による原動機出力	の補正	10.31

③ 発電機出力および原動機出力の整合

算出された発電機出力および原動機出力により、整合率 (MR) を計算する。MR≥ 1.0 でなければならないが、MR=1 に近くなるようにすることが望ましい。

$$MR = 1.13 \times \frac{E}{G \times Cp}$$

ただし、 MR:整合率

E:原動機出力[kW]

E=14.59(「原動機出力の決定」で求めたハントラ水門の値)

G: 発電機出力[kVA]

G=15.69 (「発電機出力の決定」で求めたハントラ水門の値)

Cp:原動機出力補正係数

Cp=1.200 とする。

したがって、MR は

MR=0.88<1.0 ・・・不適合

整合率 MR<1.0 となってしまう場合は、そのままでは発電機を駆動できない原動機 出力となってしまうため、下記のように MR=1 として原動機出力を逆算して、原動機 出力を求める。 MR=1.0 として逆算した下記式によるハントラ水門の原動機出力は、16.67[kW]となる。

$$E=1.0 \times \frac{G \times Cp}{1.13} = 16.67 \text{ [kW]}$$

クラマン水門についても同様に整合を確認すると MR < 1.0 となり不適合となるので、 MR = 1.0 として逆算した原動機出力を求めると、クラマン水門の原動機出力は 11.39[kW]となる。

資料 7

収集文献リスト

<収集文献リスト>

NO	文献名	発行元
	Report	
	Initial Environment Examination Executive Summary Report:	RID Ministry of
1	Feasibility study of the enhancement of integrated participatory	Agriculture and
1	water management efficiency for the Northern Rangsit, Southern	Cooperative
	Rangsit and Khlong Dam Projects	August 2009
	Initial Environment Examination Report:	TICA
2	The rehabilitation project of the outer Bangkok ring road (East	JICA
	portion) in the Kingdom of Thailand	May 2012
3	Flood protection project of east side of the Pasak in Ayuttaya in	JICA
3	Kingdom of Thailand	May 2012
	The predatory survey on the rehabilitation project of the outer	CTI I CO.,LTD
4	Bangkok ring road (east portion) the Kingdom of Thailand	Nippon Koei. CO.,LTD
	technical note	May 2012
	THE STUDY ON SUPPORTING SYSTEM FOR LOCAL	
5	ADMINISTRATIONS ON NATIONAL RESOURCES AND	JICA
3	ENVILONMENTAL MANAGEMENT IN THE KINGDAM OF	August 2008
	THAILAND:MAIN PERORT, FINAL REPORT	
	Feasibility study on improvement of canal that parallel with	
6	Makhamtao Utung Canal, Chainat. Work load analysis and	
	construction cost estimation	
	Description of Bench Mark Forecast of Correction of Water	
7	Level and Water Volume at Mouth of Chaophraya Project for	RID
	Phatumtani-Samut Prakan (2002) (T)	
8	Cabinet Resolution on Watershed Class Determination and Land	October, 2010
	Use in Watershed Zone	
	Feasibility study on improvement of canal that parallel with	October, 2009
9	Makhamtao Utung Canal, Chainat (Operation, Maintenance, and	Gettobel, 2009
	Water Management Manual for Irrigation Officers)	
	Feasibility study on improvement of canal that parallel with	
10	Makhamtao Utung Canal, Chainat (Compensation for Land and	November, 2009
10	Property Affected from Construction of Klong Makham	
	Tao-Kraseaw Report)	
	Economic Survey on Freight Water Transport in Chao Phraya	
11	River and Pasak River, Fiscal Year 2011	September, 2011
	(Survey on 18th Nov – 3rd Dec 1990, 17th Feb – 4th Mar 2011,	
	and 2nd-17th Jul 2011)	
12	365 Days with Enormous Progress in 2012	2012

NO	文献名	発行元
13	Construction materials	2001
14	Steel Quick Reference	2011
15	Detailed Design of Kra Mang and Han Tra Floodgates (Design Criteria Report)	July,2012
16	Detailed Design of Kra Mang and Han Tra Floodgates	June, 2012
17	Kaeng Sua Ten Dam Feasibility Study Alternative Stage1, Agricultural Dam	October,1985
18	Kaeng Sua Ten Dam Project, Phrae	August, 1997
19	The Study on Integrated Plan for Flood Mitigation In Chao Phraya River Basin, Final Report	August, 1999
20	Description of Bench Mark Forecast of Correlation of Water Level and Water Volume at Mouth of Chao Phraya River Project for Ayuttaya	2001
21	Description of Bench Mark Forecast of Correlation of Water Level and Water Volume at Mouth of Chao Phraya River Project for Phatumtani-Samut Prakarn	2002
22	The Study on Impacted to Environment of Mauk-Lek Reservoir Project, Saraburi	June,2002
23	Feasibility Study and Environmental Impact of Kwai-Noi Dam Project, Phisanulok	November, 1995
24	Project for Comprehensive Flood Management Plan for The Chao Phraya River Basin in Kingdom of Thailand (Work Plan)	February, 2012
25	Construction Estimation	2012
26	Investigation of Land Use Status In Watershed Class1 Project	April, 2011
27	The Pasak Irrigation Project (Kaeng Khoi-Ban Mo Pumping Irrigation)	
	Design Reference	
28	RECOMMENDED PRACTICE FOR THE DESIGN OF CANAL SYSTEM (1954)	RID
29	BUILDING CONSTRUCTION ILLUSTRATED	2005
30	東京都環境物品等調査方針(公共工事)	東京都 平成 23 年度
31	賃金労務実態調査報告書	September, 2009
	Drawings	
32	Phra Nakorn Sri Ayutthaya Irrigation Project Pasak Rivers Dike, Han Tra 17sheets	RID
33	Phra Nakorn Sri Ayutthaya Irrigation Project Pasak Rivers Dike, Klong Mantra Sluiu Gate 29 sheets	RID
34	Phra Nakorn Sri Ayutthaya Irrigation Project Pasak Rivers Dike, Klong Klamng Sluiu Gate General Note	RID

NO	文献名	発行元		
35	Pasak River's Embankment Protection System 10 sheets	RID		
36	Ropburi River Development Project Pac Khlong Bang Phrae Kru Watergate 14 sheets	RID		
37	Bangkadi Industrial Park Flood Protection System (renovation 2012)	CEDA Company Limited		
	Company Brochure			
38	U-MACHINE, general (Brochure)	SNI international Co.,Ltd Jan. 2012-		
39	Construction Machine (Brochure)	Eksawad Co.,Ltd		
40	Construction Machine Brochure	NOI TRACK SERVICE Co.,Ltd		
41	Construction Machine (Brochure)	DKSH Co.,Ltd		
42	Concrete production (Brochure)	AYUTTHAYA CONCRETE CO., LTD		
43	Steel sheet piling (Brochure)	CHAROON THAI CO., LTD		
44	Construction Machine (Brochure)	EK CRANE LOGISTIC CO., LTD		
45	Construction Machine, Rental rate (Brochure)	Thaitec Co.,Ltd		
46	Construction Machine, Rental rate (Brochure)	MTS RENTAL CO., LTD		
47	STEEL PRODUCTS, Structural steel (Brochure)	SIAM YMATO CO., LTD		
48	Ready Mixed Concrete (Brochure)	CAPAC CO., LTD		
49	STEEL PRODUCTS, Re-Bar (Brochure)	SIAM STEEL SYNDICATE PCL		
50	STEEL PRODUCTS, Pipe (Brochure)	Asian Steel Product Co.,Ltd		
51	STEEL PRODUCTS, Wire (Brochure)	Bangkok Steel Wire Co.,Ltd		
52	Cement (Brochure)	TPI CEMENT CO., LTD		
53	Construction Machine (Brochure)	DKSH Co.,Ltd		
54	Concrete production (Brochure)	AYUTTHAYA CONCRETE CO., LTD		
55	Steel sheet piling (Brochure)	CHAROON THAI CO.,		
56	Construction Machine (Brochure)	EK CRANE LOGISTIC CO., LTD		