The Federative Republic of Brazil

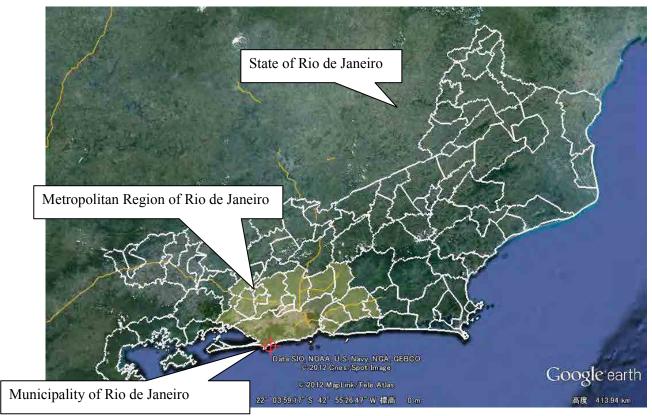
Rio de Janeiro State Secretariat of Transportation - SETRANS Rio Rio de Janeiro Municipal Secretariat of Transportation - SMTRio Federal District Secretariat of Transportation - SETRANS-DF Traffic Department of Federal District - DETRAN DF

Study On The Introduction of Intelligent Transport Systems In The Federative Republic of Brazil

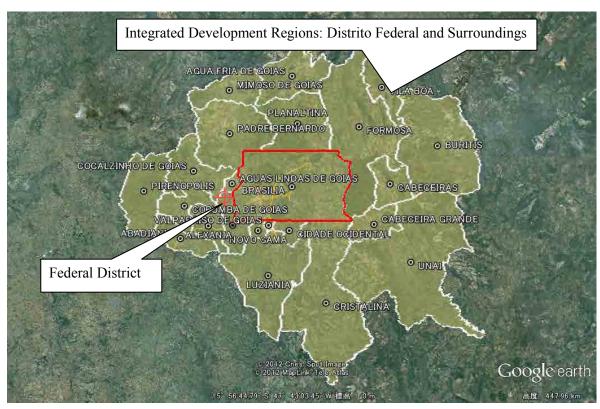
FINAL REPORT

June, 2013

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)


NIPPON KOEI CO., LTD.
NIPPON KOEI LATIN AMERICA - CARIBBEAN Co., Ltd.

LOCATION MAP


Source: Open Street Map

Location Map of the Study Area 1 - Entire Brazil

Source: JICA Study Team

Location Map of the Study Area 2 - Rio de Janeiro

Source: JICA Study Team

Location Map of the Study Area 3 - Federal District

TABLE OF CONTENTS

Figure and Table List

Abbreviations

CHAPTER 1	INTRODUCTION	1-1
1.1 STU	JDY BACK GROUND	1-1
1.2 OB.	JECT AND STUDY AREA	1-1
1.3 SC	OPE OF WORKS	1-3
1.4 SCI	HEDULE OF THE STUDY AND PROGRESS	1-5
CHAPTER 2	CLARIFICATION OF CURRENT INTELLIGENT TRANSPORT	SYSTEMS
	CONDITION IN RIO DE JANEIRO	2-1
2.1 REG	GIONAL CHARACTERISTICS OF RIO DE JANEIRO	2-1
2.1.1	Administration	2-1
2.1.2	Economy	2-3
2.1.3	Global Competitiveness	2-16
2.1.4	Sightseeing Resources and Statistics	2-18
2.1.5	Current Condition of Telecommunications	2-37
2.2 TR	AFFIC/TRANSPORTATION CHARACTERISTICS IN RIO DE JANEIRO	2-49
2.2.1	Overall Condition.	2-49
2.2.2	Traffic Conditions	2-55
2.2.3	Transport Condition	2-112
2.3 CU	RRENT CONDITION OF ITS IN RIO DE JANEIRO	2-141
2.3.1	ITS-Related Agencies of Rio De Janeiro Metropolitan Area	2-141
2.3.2	Current Condition of ITS Facilities	2-147
2.4 PL	ANS IN RIO DE JANEIRO METROPOLITAN AREA	2-176
2.4.1	Traffic/Transportation Related Plan	2-176
2.4.2	Urban Development Plan	2-183
2.4.3	ITS-Related Plan	2-194
CHAPTER 3	SUPPLEMENTARY TRAFFIC SURVEY	3-1
3.1 RE	VIEW OF EXISTING TRANSPORT MASTER PLANS	3-1
3.1.1	PDTU/RMRJ 2005	3-1
3.1.2	PDTU/RMRJ 2011	3-3
3.1.3	Rio 2016 Transport Strategy	3-6
3.1.4	Update of the Strategic Transport Plan for the Olympic and Paralympic O	Games 2016
		3-10
3.2 SUI	PPLEMENTARY TRAFFIC SURVEY	3-11
3.2.1	Objectives and Survey Methodology	3-11
3.2.2	Survey Result	3-36

3.3 TR	AFFIC DEMAND FORECAST	3-63
3.3.1	Context of Traffic Demand Forecast	3-63
3.3.2	Review of Existing Transport Master Plans	3-64
3.3.3	Methodology	3-66
3.3.4	Validation of Current Traffic Condition and Analysis of Future Data	3-75
3.3.5	Analysis of Future Traffic Condition	3-83
3.3.6	Evaluation of ITS Installation	3-90
3.4 Oly	mpic GAMES Transport Study	3-102
3.4.1	Background Demand Characteristics in 2016	3-102
3.4.2	Olympic Games Transport Characteristics	3-105
3.4.3	Transport for Olympic Games Family Demand	3-108
3.4.4	Transport for Spectators Demand	3-110
3.4.5	ITS Services for Olympic Games Transport	3-126
3.4.6	Venue Plan	3-126
3.5 AC	ESSIBILITY SURVEY	3-145
3.5.1	Overview	3-145
3.5.2	SURVEY RESULTS	3-146
3.5.3	COMPARISON SUMMARY	3-152
3.5.4	CONCLUSIONS	3-153
CHAPTER 4	COMPARATIVE ANALYSIS AMONG MEGACITIES, OLYMPIC	HOST
	CITIES, AND RIO DE JANEIRO	4-1
4.1 ME	EGACITIES COMPARATIVE ANALYSIS	4-1
4.1.1	Megacities Selection Process	4-1
4.1.2	Aerial Photo Comparison	4-2
4.1.3	Basic Public Transport Characteristics	4-4
4.1.4	Modal Split Characteristics	4-15
4.1.5	Summary of Basic Socioeconomic and Public Transportation Characteristics	4-16
4.1.6	Main ITS Features	4-17
4.1.7	Megacities ITS Trends and Projections	4-20
4.1.8	Comparative Summary of Rio De Janeiro	4-22
4.2 Co	mparative analysis of Olympic Cities	4-23
4.2.1	Selection of Target Cities	4-23
4.2.2	Basic Information on the Sydney 2000 Olympic Games	4-24
4.2.3	Basic Information on the Athens 2004 Olympic Games	4-26
4.2.4	Basic Information on the Beijing 2008 Olympic Games	4-27
4.2.5	Basic Information on the London 2012 Olympic Games	4-29
4.2.6	Basic Information on the Rio 2016 Olympic Games	4-31
4.2.7	The Key to Olympic Success	4-32

5.1 SUI	RVEY ON ITS NEEDS OF USERS	5-1
5.1.1	Objective and Survey Methodology	5-1
5.1.2	Survey Results	5-19
5.1.3	Summary	5-74
5.2 INT	TERVIEWS ON ITS NEEDS OF TRANSPORTATION AGENCIES	5-75
5.2.1	Objective and Survey Methodology	5-75
5.2.2	Survey Results	5-79
5.2.3	Summary	5-81
CHAPTER 6	FRAMEWORK SETTING FOR THE INTELLIGENT TRANSPORT	SYSTEMS
	MASTER PLAN OF RIO DE JANEIRO METROPOLITAN AREA	6-1
6.1 RE	VIEW AND ANALYSIS OF ITS ARCHITECTURES IN MAJOR COUNTRI	ES6-2
6.1.1	Review and Analysis of ITS Architectures in Major Countries	6-2
6.1.2	Analysis of the Structure of ITS Architecture	6-3
6.2 FR	AMEWORK SETTING FOR THE ITS MASTER PLAN OF RIO DE	JANEIRO
ME	TROPOLITAN AREA	6-14
6.2.1	Analysis of Current Conditions	6-14
6.2.2	Framework Setting for the Development of the ITS Master Plan of Rio	de Janeiro
	Metropolitan Area	6-15
CHAPTER 7	FORMULATION OF THE INTELLIGENT TRANSPORT SYSTEM	MASTER
	PLAN OF RIO DE JANEIRO	7-1
7.1 DE	FINITION OF THE ITS MASTER PLAN DEVELOPMENT POLICY	7-1
7.1.1	Strategic Plan 2012-2031	7-1
7.1.2	Transport Strategic Plan for Rio 2016 Olympic and Paralympic Games	7-2
7.1.3	Policy Setting for the ITS Master Plan of Rio de Janeiro Metropolitan Area	7-3
7.2 FOI	RMULATION OF THE ITS MASTER PLAN OF RIO DE JANEIRO	7-4
7.2.1	Clarification of Functional Requirement	7-5
7.2.2	Matching with User Services	7-7
7.2.3	Clarification of Relationship between User Service Bundles and Service Pacl	kages7-10
7.2.4	Conceptual Design for ITS Projects	7-20
7.2.5	Deployment Plan for ITS Projects Equipment	7-35
7.2.6	Rough Cost Estimates	7-77
7.2.7	Economic Analysis	
7.2.8	Implementation Schedule	7-97
CHAPTER 8	SELECTION OF SHORT-TERM INTELLIGENT TRANSPORT	SYSTEM
	MENUS	8-1
	LECTION POLICY FOR SHORT-TERM ITS PROJECTS	
8.2 SHO	ORT-TERM ITS PROJECTS	8-1
CHAPTER 9	PRELIMINARY DESIGN FOR SHORT-TERM PROJECT	9-1
9.1 OU	TLINE OF THE PRELIMINARY design	9-1

9.2 project cost	
9.3 ImplEmentation plan	
9.4 PROJECT PACKAGE 1	
9.4.1 Grand Design	
9.4.2 Basic Design	
9.5 PROJECT PACKAGE 2	
9.5.1 Grand Design	
9.5.2 Basic Design	
9.6 PROJECT PACKAGE 3	
9.6.1 Grand Design	
9.6.2 Basic Design	
CHAPTER 10 CLARIFICATION OF CURRENT ITS CONDITION IN THE FEI	
DISTRICT	
10.1 REGIONAL CHARACTERISTICS OF THE FEDERAL DISTRICT	
10.1.1 Administration	
10.1.2 Economy of DF	
10.1.3 Population in DF	
10.1.4 Sightseeing Resources and Statistics	
10.1.5 Geography and Natural Environment	
10.2 TRAFFIC/TRANSPORT CHARACTERISTICS IN THE DF	
10.2.1 Overall Condition	
10.2.2 Traffic Condition	
10.2.3 Public Transport Conditions	
10.2.4 Accessibility Survey in the DF	
10.3 CURRENT CONDITION OF ITS IN THE DF	
10.3.1 ITS-Related Agencies of the DF	
10.3.2 Current Condition of ITS Facilities	
10.4 PLANS IN THE DF	
10.4.1 Traffic/Transport-Related Plan	
10.4.2 Urban Development Plan	
CHAPTER 11 PRELIMINARY INTELLIGENT TRANSPORT SYSTEM MASTER PLAI THE FEDERAL DISTRICT	
11.1 DEFINITION OF THE PRELIMINARY ITS MASTER PLAN DEVELOPMENT PO	
11.2 CLARIFICATION OF FUNCTIONAL REQUIREMENT	
11.2 CLARIFICATION OF FUNCTIONAL REQUIREMENT	
11.2.1 Study Flow of Functional Requirements	
11.2.2 Functional Requirements Diagram	11-5

11.3.1	Study on Essential ITS Projects for DF	11-6
11.3.2	Conceptual Design for ITS Projects	11-7
11.3.3	Rough Cost Estimates for Short-term Projects	11-19
11.4 PRO	POSAL FOR DEVELOPMENT SCHEDULE	11-23
CHAPTER 12	CONCLUSIONS AND RECOMMENDATIONS	12-1
12.1 CON	CLUSIONS	12-1
12.1.1	Formulation of the ITS Master Plan for Rio de Janeiro	12-1
12.1.2	Preliminary design for short term project	12-3
12.1.3	Prelimiary ITS Master Plan for Federal District	12-5
12.2 REC	OMMENDATIONS	12-6
12.2.1	Consideration of Major Aspects for ITS Project Implementation	12-6
12.2.2	Smooth Implementation of Project Packages and Effective Usage of IT	TS on Rio de
	Janeiro ITS Short Term Project	12-6
12.2.3	Next Step for the DF ITS Preliminary Master Plan	12-7
	•	

APPENDIX

FIGURE AND TABLE LIST

П	Figure	List	1
1.	iguic	LIBU	

Figure 1-1 Location Map of the Study Area (Rio de Janeiro)	1-2
Figure 1-2 Location Map of the Study Area (Federal District)	1-2
Figure 2-1 Location of Rio de Janeiro	2-1
Figure 2-2 Administrative Boundaries of Rio de Janeiro	2-2
Figure 2-3 GDP (Current Prices) in 2011 and 2017 (Estimated)	2-3
Figure 2-4 GDP (Current Prices) Trend in Brazil	2-4
Figure 2-5 GDP (Current Prices) Trend in Rio de Janeiro	2-5
Figure 2-6 GDP (Current Prices) per Capita in 2010	2-6
Figure 2-7 Trend of GDP (Current Prices) per Capita in Brazil	2-7
Figure 2-8 Trend of GDP (current prices) per Capita in Rio de Janeiro	2-8
Figure 2-9 Trend of GDP (Current Prices) per Capita in Rio de Janeiro	2-9
Figure 2-10 Population in the World	2-10
Figure 2-11 Future Population in the World	2-10
Figure 2-12 Population Trend in Brazil	2-11
Figure 2-13 Population Distribution of States in Brazil	2-12
Figure 2-14 Population Trend in Rio de Janeiro	2-13
Figure 2-15 Population Distribution of Cities in Rio de Janeiro	2-14
Figure 2-16 Population Density of Brazil and Japan	2-15
Figure 2-17 Competitiveness Ranking (High-ranked Countries, G8 Countries, and BRICs)	2-16
Figure 2-18 Competitiveness Index of Brazil	2-17
Figure 2-19 Main Sightseeing Locations in the State of Rio de Janeiro	2-18
Figure 2-20 Main Sightseeing Locations in the City of Rio de Janeiro	2-19
Figure 2-21 Trend of Inbound Tourists to Brazil	2-20
Figure 2-22 Number of Inbound Tourists to Brazil by Country of Origin	2-20
Figure 2-23 Inbound Tourists by Destination State in Brazil	2-21
Figure 2-24 Inbound Tourists to the State of Rio de Janeiro by Country of Origin	2-22
Figure 2-25 Monthly Tourist Arrivals to the State of Rio de Janeiro	2-22
Figure 2-26 Characteristics of International Events in the City of Rio de Janeiro	2-23
Figure 2-27 Contours in Rio de Janeiro	2-27
Figure 2-28 Topographic Characteristics in Rio de Janeiro	2-28
Figure 2-29 Temperatures in Rio de Janeiro and Tokyo	2-29
Figure 2-30 Precipitation Comparison in Rio de Janeiro and Tokyo	2-29
Figure 2-31 Land Cover in Rio de Janeiro	2-30
Figure 2-32 Photos of the Disaster in Rio de Janeiro	2-31
Figure 2-33 Map of the Landslide Risk and Rain Gauge Stations	2-33

Figure 2-34 Monitoring Stations for Air Quality by INEA	2-34
Figure 2-35 Monitoring Areas for Air Quality by SMAC	2-36
Figure 2-36 Development Plan of Optical Fiber National Network	2-37
Figure 2-37 Access and Density of Fixed Telephone in Brazil	2-38
Figure 2-38 Density of Fixed Telephone in Each State	2-39
Figure 2-39 Access and Density of Mobile Telephone in Brazil	2-39
Figure 2-40 Access and Density of Mobile Telephone in Each State	2-40
Figure 2-41 Google Map with Smartphone	2-41
Figure 2-42 Smartphone with One-Seg TV	2-42
Figure 2-43 System Architecture of Experiment	2-43
Figure 2-44 Access and Density of Multimedia (Internet) in Brazil	2-44
Figure 2-45 Access and Density of Multimedia in Each State	2-44
Figure 2-46 Access and Density of TV in Brazil	2-45
Figure 2-47 Access and Density of TV in Each State	2-45
Figure 2-48 Digital TV Broadcasting Image	2-46
Figure 2-49 Navigation Terminal in Cars	2-47
Figure 2-50 Number of Trips in the Metropolitan Region of Rio de Janeiro	2-49
Figure 2-51 Modal Shares in Rio and Tokyo	2-50
Figure 2-52 Modal Share in Macro Zones	2-51
Figure 2-53 Internal and External Trips in Each Municipality	2-52
Figure 2-54 Trip Rate (/day/person) in Each Municipality	2-53
Figure 2-55 Number of Fleets in Rio	2-54
Figure 2-56 Current Road Network in RMRJ by Administrators	2-56
Figure 2-57 Concession Road Network in RMRJ	2-58
Figure 2-58 Length of Roads in the Metropolitan Region of Rio de Janeiro	2-60
Figure 2-59 Pavement Condition in the Metropolitan Region of Rio de Janeiro	2-61
Figure 2-60 Length of Bridge and Tunnel in the Metropolitan Region of Rio de Janeiro	2-62
Figure 2-61 Location of Bridges and Tunnels in the Metropolitan Region of Rio de Janeir	o2-63
Figure 2-62 Location of Traffic Sign for "Sharp Curve" and "Winding Road" in the Metr	opolitan
Region of Rio de Janeiro	2-64
Figure 2-63 Planned Road Network in RMRJ	2-65
Figure 2-64 Number of Cars in Rio and the World	2-66
Figure 2-65 Car Registration in Rio.	2-67
Figure 2-66 Driving License Registration in the State of Rio de Janeiro	2-67
Figure 2-67 Traffic Volume	2-69
Figure 2-68 Traffic Condition in the City of Rio de Janeiro	2-70
Figure 2-69 Traffic Condition in Central Rio	2-71
Figure 2-70 Photo of COR	2-72
Figure 2-71 Daily Bulletin from COR	2-72

Figure 2-72 Number of Traffic Accidents in Rio de Janeiro	2-78
Figure 2-73 Number of Victims of Accident in Rio de Janeiro	2-78
Figure 2-74 Distribution of Traffic Accidents in Rio de Janeiro	
Figure 2-75 Traffic Accidents by Roads and Road Types in Rio de Janeiro	2-80
Figure 2-76 Traffic Accidents by Types in Rio de Janeiro	2-81
Figure 2-77 Traffic Signals in the City of Rio de Janeiro	2-83
Figure 2-78 Cameras in the City of Rio de Janeiro	2-85
Figure 2-79 VMS in the City of Rio de Janeiro	2-87
Figure 2-80 Speed Monitoring in the City of Rio de Janeiro	2-89
Figure 2-81 Number of Speed Monitoring Equipment by Area in the City of Rio de Janeir	o2-90
Figure 2-82 Special Control Routes in the City of Rio de Janeiro	2-91
Figure 2-83 Speed Monitoring in the State of Rio de Janeiro	2-94
Figure 2-84 Cameras and VMS in the State of Rio de Janeiro	2-96
Figure 2-85 Speed Monitoring Equipment of DNIT in the State of Rio de Janeiro	2-97
Figure 2-86 Simultaneous Signal Control along Av. Nossa Senhora de Copacabana	2-98
Figure 2-87 Counting Green Time for Pedestrian Crossing along Av. Nossa Senl	nora de
Copacabana	2-98
Figure 2-88 Example of Reversible Lane in Copacabana Area	2-99
Figure 2-89 Location of Sections for Road Closure in the City of Rio de Janeiro	2-100
Figure 2-90 Photos of BRS	2-101
Figure 2-91 Maps of BRS	2-102
Figure 2-92 Map of BRT	2-103
Figure 2-93 Photo of BRS	2-103
Figure 2-94 Photos of Road Flooding	2-104
Figure 2-95 Photos at the Toll Gates	2-104
Figure 2-96 Photos at the Bus Stop	2-105
Figure 2-97 Photos at the Pedestrian Lane	2-105
Figure 2-98 Photos of Road Construction.	2-106
Figure 2-99 Location of Parking Areas	2-107
Figure 2-100 Types of Parking.	2-108
Figure 2-101 Cycle Road Network Map in the City of Rio de Janeiro	2-109
Figure 2-102 BRT Lane	2-110
Figure 2-103 Example of Obstacle Location for Emergency Vehicles	2-110
Figure 2-104 Number of Fines in the State of Rio de Janeiro	2-111
Figure 2-105 Network of Public Transport in the Metropolitan Region of Rio de Janeiro	2-113
Figure 2-106 Rail Network Map	2-114
Figure 2-107 Average Daily Passengers of Rail	2-114
Figure 2-108 Railway Crossing of SuperVia	2-115
Figure 2-109 Metro Network Map.	2-116

Figure 2-110 Average Daily Passengers of Metro.	2-116
Figure 2-111 Photo and Location of Corcovado Tram	2-117
Figure 2-112 Photo of Santa Teresa Tram	2-117
Figure 2-113 Network and Photo of the Cable Car	2-118
Figure 2-114 Photos of Boats	2-119
Figure 2-115 Average Daily Demand in Novo Rio Terminals	2-120
Figure 2-116 Location and Photo of Novo Rio Terminal	2-120
Figure 2-117 Average Number of Passengers of Local Buses	2-121
Figure 2-118 Local Bus Line in the City of Rio de Janeiro	2-122
Figure 2-119 Average Operation Length of Bus Services	2-122
Figure 2-120 Location of Bus Stops in the City of Rio de Janeiro	2-123
Figure 2-121 Maps of BRS	2-124
Figure 2-122 Daily Passengers of BRT.	2-126
Figure 2-123 Daily Passengers of BRT by Station (Average between 1-23 September 201	2) 2-126
Figure 2-124 Hourly Average Number of Passengers of BRT (Average between 1-23 Se	ptember
2012)	2-127
Figure 2-125 Maps of BRT	2-128
Figure 2-126 Number of Buses Authorized by ANTT	2-130
Figure 2-127 Number of Passengers Transported by Interstate and International Buses	2-130
Figure 2-128 Location of Airports in the State of Rio de Janeiro	2-131
Figure 2-129 Yearly Aircraft, Passenger, and Cargo Movement in Galeao Airport	2-131
Figure 2-130 Yearly Aircraft, Passenger, and Cargo Movement in Santos Dumont Airport	2-132
Figure 2-131 Yearly Aircraft, Passenger and Cargo Movement in Roberto Marinho Airpor	rt .2-132
Figure 2-132 Yearly Aircraft, Passenger and Cargo Movement in Macae Airport	2-132
Figure 2-133 Yearly Aircraft, Passenger, and Cargo Movement in Campos Airport	2-133
Figure 2-134 Photo Images of Pier Maua	2-134
Figure 2-135 Location and Passengers of Pier Maua.	2-134
Figure 2-136 Location of Ports for Cargoes in the State of Rio de Janeiro	2-135
Figure 2-137 Yearly Cargo Volume of Port of Rio de Janeiro	2-135
Figure 2-138 Yearly Cargo Volume of Port of Itaguai	2-136
Figure 2-139 Yearly Cargo Volume of Port of Angra dos Reis	2-136
Figure 2-140 Yearly Cargo Volume of Port of Niteroi	2-136
Figure 2-141 Location of Port for Containers in the State of Rio de Janeiro	2-137
Figure 2-142 Yearly Container Volume of Port of Rio de Janeiro	2-137
Figure 2-143 Yearly Container Volume of Port of Itaguai	2-137
Figure 2-144 Map of Weighing Points	2-138
Figure 2-145 General Information of MRS Railway	2-139
Figure 2-146 MRS Rail Network in the Metropolitan Region of Rio de Janeiro	2-139
Figure 2-147 Production (tku, 10^9) of MRS Railway	2-140

Figure 2-148 Security Indicator (Train Accidents per million Train km) of MRS Railway	2-140
Figure 2-149 Hierarchy of the ITS-Related Agencies and Companies	2-144
Figure 2-150 Outline of DSRC Probe System	2-149
Figure 2-151 Overall System Diagram	2-151
Figure 2-152 Example of PDTU Report	2-177
Figure 2-153 Example of Transport Strategic Plan 1/4	2-179
Figure 2-154 Example of Transport Strategic Plan 2/4	2-180
Figure 2-155 Example of Transport Strategic Plan 3/4	2-181
Figure 2-156 Example of Transport Strategic Plan 4/4	2-182
Figure 2-157 PAC2 Projects	2-184
Figure 2-158 Example of Strategic Plan 2012–2031 1/2	2-188
Figure 2-159 Example of Strategic Plan 2012–2031 2/2	2-189
Figure 2-160 Example of Strategic Plan 2009–2012	2-191
Figure 2-161 Plan of CICC and Image of Emergency Center	2-197
Figure 2-162 Outline of Existing INFOVIA.RJ	2-199
Figure 2-163 Context Diagram for SITRANS	2-200
Figure 2-164 Examples of ITS Integration Using NTCIP	2-204
Figure 2-165 Alignment of Work Groups	2-205
Figure 3-1 Structure of the Study	3-2
Figure 3-2 Future Network Proposal in the PDTU/RMRJ 2011	3-4
Figure 3-3 Planned Infrastructure for Rio 2016	3-7
Figure 3-4 Olympic Lane for Rio 2016	3-7
Figure 3-5 Spectator Demand for Rio 2016	3-8
Figure 3-6 Comparison between Survey Locations and PDTU/Rio 2016	3-12
Figure 3-7 Location Map of Survey Stations	3-13
Figure 3-8 Counting Layout at Location 1	3-14
Figure 3-9 Counting Layout at Locations 2 and 3	3-15
Figure 3-10 Counting Layout at Locations 4 and 5	3-16
Figure 3-11 Counting Layout at Locations 6 and 7	3-17
Figure 3-12 Counting Layout at Locations 8 and 9	3-18
Figure 3-13 Counting Layout at Locations 10 and 11	3-19
Figure 3-14 Counting Layout at Location 12	3-20
Figure 3-15 Location Comparison between Survey Routes and PDTU/Rio 2016	3-21
Figure 3-16 Location Map of Survey Routes	3-23
Figure 3-17 Instructions for Travel Time Survey	3-24
Figure 3-18 Data Collection Points Map Provided by CET-Rio	3-31
Figure 3-19 Data Collection Points Map Provided by SMTR	3-33
Figure 3-20 CCTV Data Provided by CET-Rio	3-34
Figure 3-21 Sample Image of Vitracom Siteview	3-34

Figure 3-22 CCTV Location Map for Image Processing	3-35
Figure 3-23 Total Flow per day at Each Point (Weekday)	3-36
Figure 3-24 Total Flow per Day at Each Point (Weekend)	3-37
Figure 3-25 Share of Vehicle Types per Day at Each Point (Weekday)	3-38
Figure 3-26 Share of Vehicle Types per Day at Each Point (Weekend)	3-39
Figure 3-27 Travel Speed in Each Link	3-40
Figure 3-28 Travel Speed in Each Link	3-41
Figure 3-29 Twenty Selected Lowest-speed Roads	3-42
Figure 3-30 Twenty Selected Lowest-speed Links	3-43
Figure 3-31 Twenty Selected Lowest-speed Links in the Morning and Evening	3-44
Figure 3-32 Traffic Count Points	3-45
Figure 3-33 Scatter Diagram between Traffic Volume and Speed	3-46
Figure 3-34 Traffic Volume during Weekday	3-48
Figure 3-35 Traffic Volume during Weekend	3-49
Figure 3-36 Traffic Volume at Peak Times during Weekday	3-50
Figure 3-37 Ratio of Daytime and Nighttime Volumes	3-51
Figure 3-38 Ratio of Weekday and Weekend Volumes	3-52
Figure 3-39 Average Number of Passengers	3-54
Figure 3-40 Time Proportion.	3-55
Figure 3-41 Modal Share Derived from Cross sectional Traffic Volume	3-55
Figure 3-42 Comparison of Traffic Count Results from Image Processing and Visu	al Counting
	3-56
Figure 3-43 Traffic Count Result by Image Processing for Point No. 291 (in vehicle/5	min)3-57
Figure 3-44 Traffic Count Result by Image Processing for Point No. 351 (in vehicle/5	min)3-58
Figure 3-45 Traffic Count Results by Image Processing for Point No. 378 (in vehicle/	5 min).3-59
Figure 3-46 Traffic Count Results by Image Processing for Point No. 401 (in vehicle/	5 min).3-59
Figure 3-47 Traffic Count Results by Image Processing for Point No. 498 (in vehicle/	5 min).3-60
Figure 3-48 Traffic Count Results by Image Processing for Point No. 540 (in vehicle/	5 min).3-61
Figure 3-49 Traffic Count Results by Image Processing for Point No. 546 (in vehicle/	5 min).3-62
Figure 3-50 Methodology for Macro-scale Analysis: Four-step Method	3-63
Figure 3-51 Data Used to Estimate Gross Traffic Growth from 2003 to 2011	3-67
Figure 3-52 Existing Network for Traffic Modeling	3-70
Figure 3-53 Minimum Network in 2016	3-71
Figure 3-54 Proposed Network in 2021	3-71
Figure 3-55 Planned Network in the DER's Map	3-72
Figure 3-56 Olympic Lanes	3-73
Figure 3-57 CET-Rio Traffic Count Points Map	3-75
Figure 3-58 Assignment Accuracy in "Arterial Road" Case	3-76
Figure 3-59 Assignment Accuracy in "Multilane Arterial Road" Case	3-76

Figure 3-60 Zone Map	3-77
Figure 3-61 Total Trips.	3-77
Figure 3-62 Distribution of OD Data	3-78
Figure 3-63 Spectators Demand during Critical Days	3-80
Figure 3-64 Spectators Demand + Background Demand during Critical Days	3-80
Figure 3-65 Distribution of Spectators Demand during Critical Days	3-81
Figure 3-66 Assignment Result of 2021 Day OD	3-82
Figure 3-67 Assignment Result of Day OD	3-84
Figure 3-68 Difference of Assignment Result between Existing and Future	3-85
Figure 3-69 Assignment Result of 8 a.m. OD	3-86
Figure 3-70 Assignment Result of 6 p.m. OD	3-87
Figure 3-71 Assignment Result of Olympic Case (Volume)	3-88
Figure 3-72 Assignment Result of Olympic Case (Occupancy)	
Figure 3-73 Evaluation Area for Lane Management	3-91
Figure 3-74 Evaluation Area for ERP	3-92
Figure 3-75 Evaluation Area for Dynamic Traffic Information Provision	3-93
Figure 3-76 Evaluation Area for Bus Signal Optimization	3-94
Figure 3-77 Evaluation Area for Bus Location	3-95
Figure 3-78 Evaluation Area for ETC	3-96
Figure 3-79 Traffic Volume With and Without Reversible Lane Management	3-97
Figure 3-80 Occupancy With and Without Reversible Lane Management	3-98
Figure 3-81 Difference of Traffic Volume With and Without Reversible Lane Management	nent3-98
Figure 3-82 Occupancy With and Without ERP	3-99
Figure 3-83 Difference of Traffic Condition With and Without ERP	3-100
Figure 3-84 Demand Characteristics in the City of Rio de Janeiro in 2016	3-102
Figure 3-85 Demand Characteristics in the Metropolitan Region of Rio de Janeiro in 2	0163-103
Figure 3-86 Image of Demand Characteristics in Rio	3-104
Figure 3-87 Key Issues on Background Demand in Rio	3-104
Figure 3-88 Olympic Areas	3-105
Figure 3-89 Peak Spectators Demand	3-106
Figure 3-90 Key Issues on Olympic Demand	3-106
Figure 3-91 Main Flow of Olympic Games Family Demand	3-108
Figure 3-92 Venues and Zones	3-110
Figure 3-93 Main Flow of Spectators in Barra Zone	3-111
Figure 3-94 Transport System of Rio Olympic Park	3-112
Figure 3-95 Transport System of RioCenter	3-112
Figure 3-96 Main Flow of Spectators in Maracana Zone	3-113
Figure 3-97 Transport System of Maracana Stadium	3-114
Figure 3-98 Transport System of Sambodromo	3-114

Figure 3-99 Main Flow of Spectators in Rio Stadium	3-115
Figure 3-100 Transport System of Rio Stadium	3-116
Figure 3-101 Main Flow of Spectators in Copacabana Zone	3-117
Figure 3-102 Transport System of Copacabana Stadium	3-118
Figure 3-103 Transport System of Fort Copacabana	3-118
Figure 3-104 Transport System of Lagoa Rodrigo de Freitas	3-119
Figure 3-105 Transport System of Marina da Gloria	3-119
Figure 3-106 Transport System of Flamengo Park Cluster	3-120
Figure 3-107 Main Flow of Spectators in Deodoro Zone	3-121
Figure 3-108 Transport System of Deodoro Arena, Deodoro Modern Pentathlon Par	k, and
National Shooting Center	3-122
Figure 3-109 Transport System of National Equestrian Center	3-122
Figure 3-110 Transport System of X Park Precinct	3-123
Figure 3-111 Main Integration Points for Spectators Demand	3-125
Figure 3-112 Requirement for ITS Services for Olympic Games Transport Management	3-126
Figure 3-113 Metro, Rail, Cable Car, Ferry, BRS and BRT Stations	3-145
Figure 3-114 Key Observations at Rail Stations	3-146
Figure 3-115 Key Observations at Metro Stations	3-147
Figure 3-116 Key Observations at Ferry Stations	3-147
Figure 3-117 Key Observations at Cable Car	3-148
Figure 3-118 Key Observations at BRS Stops	3-148
Figure 3-119 Key Observations at BRT Stops	3-149
Figure 3-120 Key Observations at Roberto Silveira Bus Terminal	3-150
Figure 3-121 Key Observations at Novo Rio Bus Terminal	3-150
Figure 3-122 Key Observations at Bike Rio Stations	3-151
Figure 3-123 BRT – Example of Good Accessibility and Information for Users	3-152
Figure 3-124 Accessibility and Information for Public Transport Users – London Example.	3-153
Figure 5-1 Map of Survey Locations	5-2
Figure 5-2 ITS Service Domains	5-3
Figure 5-3 Samples	5-19
Figure 5-4 Gender	5-20
Figure 5-5 Age	5-20
Figure 5-6 Employment Status	5-21
Figure 5-7 Home Address	5-21
Figure 5-8 Origin of This Trip	5-22
Figure 5-9 Final Destination of This Trip	5-22
Figure 5-10 Transportation Used for This Trip	5-23
Figure 5-11 Purpose of This Trip	5-23
Figure 5-12 Car Use	5-24

Figure 5-13 ITS Needs of Car Users	5-24
Figure 5-14 Need for Travel Time Information for Road Traffic	5-25
Figure 5-15 Need for Congestion Information in the Road Network	5-26
Figure 5-16 Need for Optimized Route Navigation	5-27
Figure 5-17 Need for Dynamic Lane Control	5-28
Figure 5-18 Need for Traffic Signal Optimization	5-29
Figure 5-19 Need for Danger Warning of Vehicles Ahead (Accident, Obstacle, o	r Opposing
Vehicle)	5-30
Figure 5-20 Need for Information of Parking Lot Occupation	5-31
Figure 5-21 Need for Information of Road Construction	5-32
Figure 5-22 Public Transport Use	5-33
Figure 5-23 ITS Needs of Public Transport Users	5-33
Figure 5-24 Need for Travel Time Information for Public Transport	5-34
Figure 5-25 Need for Cashless Payment	5-35
Figure 5-26 Need for Information of Service Condition (e.g., Delay, Suspend,	Cancel, and
Headway)	5-36
Figure 5-27 Need for Approaching Information (Location Information of the Next	Bus/Train)
	5-37
Figure 5-28 Need for Information of the Level of Occupation in Cars (Bus and Train)	5-38
Figure 5-29 Need for Priority Traffic Signal Control for the Bus	5-39
Figure 5-30 Event Visitors	5-40
Figure 5-31 ITS Needs for Large-Scale Events	5-40
Figure 5-32 Need for Information of the Event Provided around the Venues	5-41
Figure 5-33 Need for Information of Traffic Congestion on the Way to the Venues	5-42
Figure 5-34 Need for Information of Public Transport Timing around the Venues	5-43
Figure 5-35 ITS Needs in case of Natural Disaster	5-44
Figure 5-36 Need for Information of the Water Level of the River	5-45
Figure 5-37 Need for Disaster Risk Information in the Concerned Area	5-45
Figure 5-38 Need for Traffic/Transport Closure Information due to Disaster	5-46
Figure 5-39 Samples	5-47
Figure 5-40 Gender	5-48
Figure 5-41 Age	5-48
Figure 5-42 Employment Status	5-49
Figure 5-43 Home Address	5-49
Figure 5-44 Origin of This Trip	5-50
Figure 5-45 Final Destination of This Trip	5-50
Figure 5-46 Transportation Used for This Trip	5-51
Figure 5-47 Purpose of This Trip	5-51
Figure 5 48 Cor Use	5 52

Figure 5-49 ITS Needs of Car Users	5-52
Figure 5-50 Need for Travel Time Information for Road Traffic	5-53
Figure 5-51 Need for Congestion Information in the Road Network	5-54
Figure 5-52 Need for Optimized Route Navigation	5-55
Figure 5-53 Need for Dynamic Lane Control	5-56
Figure 5-54 Need for Traffic Signal Optimization	5-57
Figure 5-55 Need for Danger Warning of Vehicles Ahead (Accident, Obstacle, o	or Opposing
Vehicle)	5-58
Figure 5-56 Need for Information of Parking Lot Occupation	5-59
Figure 5-57 Need for Information of Road Construction	5-60
Figure 5-58 Public Transport Use	5-61
Figure 5-59 ITS Needs of Public Transport Users	5-61
Figure 5-60 Need for Travel Time Information for Public Transport	5-62
Figure 5-61 Need for Cashless Payment	5-63
Figure 5-62 Need for Information of Service Condition (e.g., Delay, Suspend,	Cancel, and
Headway)	5-64
Figure 5-63 Need for Approaching Information (Location Information of the Next	Bus/Train)
	5-65
Figure 5-64 Need for Information of the Level of Occupation in Cars (Bus, Train)	5-66
Figure 5-65 Need for Priority Traffic Signal Control for the Bus	5-67
Figure 5-66 Event Visitors	5-68
Figure 5-67 ITS Needs for Large-Scale Events	5-68
Figure 5-68 Need for Information of the Event Provided around the Venues	5-69
Figure 5-69 Need for Information of Traffic Congestion on the Way to the Venues	5-70
Figure 5-70 Need for Information of Public Transport Timing around the Venues	5-71
Figure 5-71 ITS Needs in case of Natural Disaster	5-72
Figure 5-72 Need for Information of the Water Level of the River	5-73
Figure 5-73 Need for Disaster Risk Information in the Concerned Area	5-73
Figure 5-74 Need for Traffic/Transport Closure Information Due to Disaster	5-74
Figure 5-75 ITS Service Domains	5-77
Figure 5-76 ITS Needs of Transportation Agencies	5-81
Figure 6-1 ITS Architecture Relationships	6-3
Figure 6-2 General Composition of ITS Architecture	6-4
Figure 6-3 User Service Example – ISO Reference Model	6-4
Figure 6-4 Definition of Logical Architecture (1/2)	6-4
Figure 6-5 Definition of Logical Architecture (2/2)	6-5
Figure 6-6 Highest-Level Logical Architecture	6-6
Figure 6-7 High-Level Logical Architecture	6-7
Figure 6-8 Definition of Physical Architecture	6-8

Figure 6-9 High-Level Physical Architecture	6-8
Figure 6-10 Layers of the U.S. National ITS Architecture	6-10
Figure 6-11 Transportation Layer	6-10
Figure 6-12 Composition of the FRAME Architecture	6-12
Figure 6-13 Current Condition of ITS Architecture in Brazil	6-14
Figure 6-14 Consistency Check between the ISO Reference Model and the N	lational ITS
Architecture of the U.S.	6-15
Figure 7-1 Ten Essential Aspects for Future Development of Rio de Janeiro State	7-1
Figure 7-2 Summary of Essential Aspects and Keywords for Setting a Policy for ITS	Master Plan
	7-3
Figure 7-3 ITS Master Plan Study Flow	7-4
Figure 7-4 Matching Process Source: JICA Study Team	7-6
Figure 7-5 Outline of the Matching Process	7-7
Figure 7-6 Results of the Matching Process Source: JICA Study Team	7-8
Figure 7-7 User Service Bundles and Service Packages	7-11
Figure 7-8 Relativity of User Service Bundles and Service Packages (1/8)	7-12
Figure 7-9 Relativity of User Service Bundles and Service Packages (2/8)	7-13
Figure 7-10 Relativity of User Service Bundles and Service Packages (3/8)	7-14
Figure 7-11 Relativity of User Service Bundles and Service Packages (4/8)	7-15
Figure 7-12 Relativity of User Service Bundles and Service Packages (5/8)	7-16
Figure 7-13 Relativity of User Service Bundles and Service Packages (6/8)	7-17
Figure 7-14 Relativity of User Service Bundles and Service Packages (7/8)	7-18
Figure 7-15 Relativity of User Service Bundles and Service Packages (8/8)	7-19
Figure 7-16 Developing Process of ITS Projects	7-20
Figure 7-17 ITS Physical Architecture	7-35
Figure 7-18 Connection of Targets and Service Types	7-36
Figure 7-19 Information Collection and User (Road Traffic)	7-37
Figure 7-20 Information Collection and User (Public Transport - Taxi)	7-37
Figure 7-21 Information Collection and User (Public Transport – Bus and Bus R	apid Transit
(BRT))	7-38
Figure 7-22 Information Collection and User (Public Transport – Rail, Metro, and	d Cable Car)
	7-39
Figure 7-23 Information Collection and User (Public Transport – Boat)	7-39
Figure 7-24 Information Collection and User (Land Freight Transport - Truck)	7-40
Figure 7-25 Information Collection and User (Land Freight Transport - Rail)	7-40
Figure 7-26 Information Collection and User (Safety and Security - Police)	7-41
Figure 7-27 Information Collection and User (Safety and Security – Civil Defense)	7-41
Figure 7-28 Information Collection and User (Safety and Security – Fire Brigade	and Rescue)
	7-42

Figure 7-29 Information Collection and User (Safety and Security – Ambulance)	7-42
Figure 7-30 Deployment Plan (Landslide Detection)	7-49
Figure 7-31 Deployment Plan (Wind Speed and Visibility Meter)	7-49
Figure 7-32 Deployment Plan (Weather Monitoring - RMRJ)	7-50
Figure 7-33 Deployment Plan (Weather Monitoring – Cover Area)	7-50
Figure 7-34 Deployment Plan (Traffic Counter - RMRJ)	7-52
Figure 7-35 Deployment Plan (Traffic Counter – Central Rio)	7-52
Figure 7-36 Deployment Plan (Speed Monitoring)	7-53
Figure 7-37 Deployment Plan (CCTV)	7-53
Figure 7-38 Deployment Plan (GPS)	7-54
Figure 7-39 Deployment Plan (VMS for Road Traffic - RMRJ)	7-56
Figure 7-40 Deployment Plan (VMS for Road Traffic – Central Rio)	7-56
Figure 7-41 Deployment Plan (VMS for Parking Information)	7-57
Figure 7-42 Deployment Plan (Traffic Signal for Adaptive Control - RJ)	7-57
Figure 7-43 Deployment Plan (Traffic Signal for BRT Priority)	7-58
Figure 7-44 Deployment Plan (ETC)	7-58
Figure 7-45 Deployment Plan (ERP)	7-59
Figure 7-46 Traveler Kilometer per Area in 2011 Day	7-59
Figure 7-47 Bus Lines and Stops	7-66
Figure 7-48 Bus Terminals and Stops	7-68
Figure 7-49 Route Map of SuperVIA	7-70
Figure 7-50 New Vehicle	7-70
Figure 7-51 Deployment Plan (Safety at the Crossing)	7-71
Figure 7-52 Route Map of Metro	7-72
Figure 7-53 Route Map of Cable Car	7-72
Figure 7-54 Location of the Port	7-74
Figure 7-55 Deployment Plan (Weighing Point)	7-76
Figure 7-56 Deployment Plan (Safety at the Crossing)	7-76
Figure 7-57 Travel Speed and Unit VOC in 2011 Prices	7-88
Figure 7-58 Simulation Area of Each Project	7-90
Figure 7-59 Result of Micro Simulation	7-90
Figure 7-60 Implementation Schedule	7-97
Figure 8-1 Short-Term ITS Projects and Their Implementation Schedule	8-1
Figure 9-1 Overall System Diagram	9-2
Figure 9-2 Sample Contents of Project Package 1 (1/7)	9-16
Figure 9-3 Sample Contents of Project Package 1 (2/7)	9-17
Figure 9-4 Sample Contents of Project Package 1 (3/7)	9-18
Figure 9-5 Sample Contents of Project Package 1 (4/7)	9-19
Figure 9-6 Sample Contents of Project Package 1 (5/7)	9-20

Figure 9-7 Sample Contents of Project Package 1 (6/7)	9-21
Figure 9-8 Sample Contents of Project Package 1 (7/7)	9-22
Figure 9-9 Conceptual Diagram of Communication Network	9-24
Figure 9-10 System Diagram of ITS Center and Related Systems	9-33
Figure 9-11 Flow of Data Gathering	9-34
Figure 9-12 Flow of Data Processing	9-36
Figure 9-13 Flow of Information Provision	9-38
Figure 9-14 Proposed Organization for the ITS Center	9-43
Figure 9-15 Sample Contents of Project Package 2	9-46
Figure 9-16 Deployment of Information Provision Panel at Bus Stop	9-47
Figure 9-17 Deployment of Information Provision Board at Bus Terminals	9-49
Figure 9-18 Jurisdiction Area of InterNorte and InterSul	9-49
Figure 9-19 Buses Proposed for the Introduction of Inside Bus Information Monitor	9-50
Figure 9-20 System Diagram of Bus Condition Information Provision	9-52
Figure 9-21 Data Flow of Bus Condition Information Provision	9-53
Figure 9-22 Sample Contents of Project Package 3	9-58
Figure 9-23 Deployment of Adaptive Signal Control	9-59
Figure 9-24 Deployment of VMS	9-61
Figure 9-25 System Diagram of Dynamic Signal Optimization	9-64
Figure 9-26 System Diagram of Variable Message Signboard System	9-64
Figure 9-27 Data Flow of Dynamic Signal Optimization	9-65
Figure 9-28 Data Flow of Variable Message Signboard System	9-65
Figure 9-29 Schematic Diagram of Preliminary Design for ITS Project (1/11)	9-68
Figure 9-30 Schematic Diagram of Preliminary Design for ITS Project (2/11)	9-69
Figure 9-31 Schematic Diagram of Preliminary Design for ITS Project (3/11)	9-70
Figure 9-32 Schematic Diagram of Preliminary Design for ITS Project (4/11)	9-71
Figure 9-33 Schematic Diagram of Preliminary Design for ITS Project (5/11)	9-72
Figure 9-34 Schematic Diagram of Preliminary Design for ITS Project (6/11)	9-73
Figure 9-35 Schematic Diagram of Preliminary Design for ITS Project (7/11)	9-74
Figure 9-36 Schematic Diagram of Preliminary Design for ITS Project (8/11)	9-75
Figure 9-37 Schematic Diagram of Preliminary Design for ITS Project (9/11)	9-76
Figure 9-38 Schematic Diagram of Preliminary Design for ITS Project (10/11)	9-77
Figure 9-39 Schematic Diagram of Preliminary Design for ITS Project (11/11)	9-78
Figure 10-1 Location of DF	10-1
Figure 10-2 Administrative Boundaries of RIDE from DF and Surrounding Areas	10-3
Figure 10-3 GDP (Current Prices) Trend in the DF	10-4
Figure 10-4 Trend of GDP (Current Prices) per Capita in the DF	10-5
Figure 10-5 2011 GDP per Capita in 2011 of the DF RAs	10-6
Figure 10-6 Trend of GDP (Current Prices) per Capita in the DF	10-7

Figure 10-7 Population Trend in DF	10-8
Figure 10-8 Population Distribution of Cities in RIDE	10-9
Figure 10-9 Population Density of Brazil and Japan	10-10
Figure 10-10 Population and Main Shopping Centers of DF	10-12
Figure 10-11 Main Sightseeing Locations in the DF	10-13
Figure 10-12 Inbound Tourists to the DF by Country of Origin	10-14
Figure 10-13 Monthly Tourist Arrivals to the DF	10-14
Figure 10-14 Characteristics of International Events in Brazil	10-15
Figure 10-15 Location of Parque de Exposições Granja do Torto	10-15
Figure 10-16 Contours in RIDE and DF	10-17
Figure 10-17 Topographic Characteristics of the DF	10-18
Figure 10-18 Temperatures in DF and Tokyo	10-19
Figure 10-19 Precipitation Comparison in the DF and Tokyo	10-19
Figure 10-20 Air Quality Monitoring Result	10-21
Figure 10-21 Modal Split in RIDE and Tokyo	10-22
Figure 10-22 Transportation Demand Related to the DF	10-23
Figure 10-23 Number of Vehicles	10-26
Figure 10-24 Increase in the Number of Vehicles per Year	10-26
Figure 10-25 Road Network in DF	10-28
Figure 10-26 Bridges in DF	10-29
Figure 10-27 Traffic Volume Counted by Electronic Barrier	10-30
Figure 10-28 Traffic Volume Counted by Electronic Surveillance	10-31
Figure 10-29 Traffic Volume of Local Road	10-32
Figure 10-30 Travel Speed in DF	10-33
Figure 10-31 Rates of Traffic Accidents in the DF	10-34
Figure 10-32 Traffic Accidents in the DF by Accident Type and by Road Type	10-34
Figure 10-33 Traffic Accidents in the DF by Road	10-35
Figure 10-34 Location of Cameras in the DF	10-36
Figure 10-35 Location of Speed Monitoring Equipment in the DF	10-37
Figure 10-36 Traffic Light Locations in the DF	10-38
Figure 10-37 Red Light Running Camera Locations in the DF	10-39
Figure 10-38 Speed Radar Locations in the DF	10-40
Figure 10-39 Locations of Electronic Barriers in the DF	10-41
Figure 10-40 Photos of Cars Parked around Buildings	10-42
Figure 10-41 Public Transport Network in the DF	10-45
Figure 10-42 Public Transport Demand in the DF	10-46
Figure 10-43 Metro Passengers per Day by Station	10-47
Figure 10-44 Metro Passengers per Hour	10-48
Figure 10-45 Location of Bus Terminals	10-50

Figure 10-46 Number of Buses Authorized by ANTT	.10-53
Figure 10-47 Number of Passengers Transported by Interstate and International Buses	.10-53
Figure 10-48 Parking Situation at the Stadium	.10-54
Figure 10-49 Photos of the Operation Center of a Taxi Union	.10-55
Figure 10-50 Demand Characteristics of Brasilia International Airport	.10-56
Figure 10-51 Location of the Brasilia International Airport	.10-56
Figure 10-52 Route Map of the Airport Bus Service	.10-57
Figure 10-53 Metro System – Accessibility at the Stations	.10-59
Figure 10-54 Metro System – Available User Information	.10-60
Figure 10-55 Metro System – ITS Services	.10-60
Figure 10-56 Metro System – Potential Safety Hazards	.10-61
Figure 10-57 Bus Stop Infrastructure	.10-61
Figure 10-58 Brasilia Municipal Terminal Infrastructure	.10-62
Figure 10-59 Brasilia Interstate Terminal Infrastructure	.10-63
Figure 10-60 Infrastructure of Other Bus Terminals	.10-63
Figure 10-61 Bus Interior and Exterior	.10-64
Figure 10-62 Overall System Diagram	.10-69
Figure 10-63 Example of PDTU Report	.10-80
Figure 10-64 PAC2 Projects	.10-82
Figure 10-65 Example of PPA	.10-84
Figure 10-66 BRT South	.10-85
Figure 10-67 Network Extension of Metro-DF and LRT	.10-85
Figure 10-68 ITS Brasilia Communication Equipment	.10-87
Figure 11-1 Essential Aspects of DF Transportation-related Plans	11-2
Figure 11-2 DF Preliminary ITS Master Plan Study Flow	11-3
Figure 11-3 DF System Functional Requirement Matching Diagram	11-5
Figure 11-4 DF ITS Subsystems Organization	11-8
Figure 12-1 ITS Projects and Implementation Schedule	12-3
Figure 12-2 Design Diagram of T2MC	12-5
Figure 12-3 Implementation Schedule	12-6

FFF 1 1	T
[Table	101
1 1 41 11 12	1 /151

Table 1-1 Phase of the Study	1-5
Table 2-1 Administrative Division in Brazil	2-2
Table 2-2 GDP (Current Prices) in 2011 and 2017 (Estimated)	2-3
Table 2-3 GDP (Current Prices) per Capita in 2010 and 2017 (Estimated)	2-6
Table 2-4 Annual Big Events in the City of Rio de Janeiro	2-24
Table 2-5 Upcoming Large-scale Events in the City of Rio de Janeiro	
Table 2-6 Experiences in Rio's Annual Large-Scale Events	
Table 2-7 Area by Land Cover in the City of Rio de Janeiro	2-30
Table 2-8 Monitoring Results by INEA on 3 October 2012 (Example)	
Table 2-9 Monitoring Result by SMAC on 3 October 2012 (Example)	
Table 2-10 The density and the increasing rate by each devices	
Table 2-11 Road Administrators in the Metropolitan Region of Rio de Janeiro	2-55
Table 2-12 Concession Road in the Metropolitan Region of Rio de Janeiro	
Table 2-13 Length of Roads in the Metropolitan Region of Rio de Janeiro	2-59
Table 2-14 Length of Planned Roads in the Metropolitan Region of Rio de Janeiro	2-65
Table 2-15 List of Traffic Signals by Type in the City of Rio de Janeiro	2-84
Table 2-16 List of Cameras by Type in the City of Rio de Janeiro	2-86
Table 2-17 List of VMS by Type in the City of Rio de Janeiro	2-88
Table 2-18 List of Speed Monitoring Equipment by Type in the City of Rio de Janeiro	
Table 2-19 List of Special Control Routes in the City of Rio de Janeiro	2-92
Table 2-20 List of Speed Monitoring Equipment in the City of Rio de Janeiro	2-95
Table 2-21 List of Cameras and VMS Equipment in the City of Rio de Janeiro	2-96
Table 2-22 List of Speed Monitoring Equipment of DNIT in the State of Rio de Janeiro	2-97
Table 2-23 List of Sections for Reversible Lane in the City of Rio de Janeiro	2-99
Table 2-24 List of Sections for Road Closure in the City of Rio de Janeiro	2-100
Table 2-25 Existing Transportation Modes in the Metropolitan Region of Rio de Janeiro	2-112
Table 2-26 Existing Rail Condition	2-114
Table 2-27 Existing Condition of the Metro	2-116
Table 2-28 Existing Condition of the Tram	2-117
Table 2-29 Existing Condition of Cable Car	2-118
Table 2-30 Number of Passengers of Cable Car	2-118
Table 2-31 Existing Condition of Boat	2-119
Table 2-32 Average Number of Boat Passengers	2-119
Table 2-33 Existing Condition of Intercity Bus	2-120
Table 2-34 Existing Conditions of Local Buses	2-121
Table 2-35 Bus Stops in the City of Rio de Janeiro	
Table 2-36 Existing BRT Condition	2-125
Table 2-37 Actual Passengers of BRT	2-125

Table 2-38 Planned Passengers of BRT	2-125
Table 2-39 Stations and Terminals of BRT	2-128
Table 2-40 Existing Taxi Condition	2-129
Table 2-41 Number of Taxi Vehicles Permitted by the Municipality (Example)	2-129
Table 2-42 Existing Long Distance Bus Condition	2-130
Table 2-43 Existing Airport Condition	2-131
Table 2-44 Existing Sea Port Condition	2-134
Table 2-45 Existing Freight Transport Condition	2-138
Table 2-46 Number of Trucks Registered by ANTT	2-138
Table 2-47 Federal Government Organizations on ITS-Related Agencies	2-141
Table 2-48 State Government Organizations on ITS-Related Agencies	2-142
Table 2-49 State Government Organization on ITS-Related Agencies	2-143
Table 2-50 Role of ITS-Related Agencies	2-145
Table 2-51 Meteorological and Atmospheric Sensors	2-149
Table 2-52 Information to be Collected by Related Agencies	2-152
Table 2-53 Information to be Distributed	2-153
Table 2-54 Summary of PDTU/RMRJ	2-176
Table 2-55 Summary of Transport Strategic Plan	2-178
Table 2-56 Summary of PAC	2-183
Table 2-57 Summary of PAC2	2-183
Table 2-58 Summary of PPA	2-185
Table 2-59 Summary of Strategic Plan 2012 -2031	2-187
Table 2-60 Summary of Strategic Plan 2009-2012	2-190
Table 2-61 Summary of Development Map in the State of Rio de Janeiro	2-192
Table 2-62 Example of Indicators	2-201
Table 2-63 Comparison of Standard and Application Area	2-206
Table 3-1 Contents of PDTU/RMRJ 2005	3-1
Table 3-2 Contents of PDTU/RMRJ 2011	3-3
Table 3-3 Contents of Rio 2016 Transport Strategy	3-6
Table 3-4 Contents of Rio 2016 Transport Strategy Update	3-10
Table 3-5 Survey Stations List	3-12
Table 3-6 Survey Routes List	3-22
Table 3-7 Data Collection Points List Provided by CET-Rio	3-26
Table 3-8 List of Data Collection Points Provided by SMTR	3-32
Table 3-9 CCTV Locations for Image Processing	3-35
Table 3-10 Data Collection Points List Provided by SMTR	3-53
Table 3-11 Comparison of Existing Transport Master Plans	3-65
Table 3-12 Analysis Periods for Olympic Games Scenario	3-68
Table 3-13 OD Summary Results	3-69

Table 3-14 Setting of Road Capacity	3-74
Table 3-15 OD Summary Results	3-79
Table 3-16 Basic Assignment Cases	3-83
Table 3-17 List of Reversible Lane Sections in the City of Rio de Janeiro	3-91
Table 3-18 Comparison of Traffic Indicators between With and Without Cases	3-101
Table 3-19 Olympic Games Family Demand	3-105
Table 3-20 Main OD of Olympic Games Family Demand	3-108
Table 3-21 Venues in Barra Zone	3-111
Table 3-22 Venues in Maracana Zone	3-113
Table 3-23 Venues in Rio Stadium	3-115
Table 3-24 Venues in Copacabana Zone	3-117
Table 3-25 Venues in Deodoro Zone	3-121
Table 3-26 Comparison Summary between Modes	3-152
Table 5-1 Survey Locations and Number of Samples	5-1
Table 5-2 ITS Services Referred to in the Questionnaire	5-4
Table 5-3 Related Stakeholders and ITS Needs Survey Targets	5-76
Table 5-4 ITS Services Referred to in the Interview	5-78
Table 5-5 ITS Needs of Each Stakeholder	5-79
Table 6-1 ITS Architectures in Major Countries	6-2
Table 6-2 ITS Architecture Outline	6-9
Table 6-3 Consistency Check between the ISO Reference Model and the Nation	ıal ITS
Architecture of the U.S.	6-16
Table 7-1 ITS Projects	7-21
Table 7-2 Concept of Deployment (Road Traffic)	7-43
Table 7-3 Concept of Deployment (Land Public Transport - Taxi)	7-44
Table 7-4 Concept of Deployment (Land Public Transport – Bus and BRT)	7-44
Table 7-5 Concept of Deployment (Land Public Transport – Rail, Metro, and Cable Car)	7-45
Table 7-6 Concept of Deployment (Land Public Transport – Boat)	7-45
Table 7-7 Concept of Deployment (Land Freight Transport – Truck)	7-45
Table 7-8 Concept of Deployment (Land Freight Transport – Rail)	7-46
Table 7-9 Concept of Deployment (Safety and Security – Police)	7-46
Table 7-10 Concept of Deployment (Safety and Security – Civil Defense)	7-46
Table 7-11 Concept of Deployment (Safety and Security – Fire Brigade and Rescue)	7-47
Table 7-12 Concept of Deployment (Safety and Security – Ambulance)	7-47
Table 7-13 Current Condition (Road Traffic)	7-48
Table 7-14 Methodology of Deployment (Road Traffic)	7-48
Table 7-15 Current Condition (Road Traffic)	7-51
Table 7-16 Methodology of Deployment (Road Traffic)	7-51
Table 7-17 Road Length	7-54

Table 7-18 Current Condition (Road Traffic)	7-55
Table 7-19 Methodology of Deployment (Road Traffic)	7-55
Table 7-20 Current Condition (Land Public Transport)	7-60
Table 7-21 Methodology of Deployment (Land Public Transport)	7-60
Table 7-22 Number of Taxis	7-61
Table 7-23 Related Organizations	7-61
Table 7-24 Current Condition (Land Public Transport)	7-62
Table 7-25 Methodology of Deployment (Land Public Transport)	7-63
Table 7-26 Number of Terminals	7-64
Table 7-27 Number of Bus Lines using the NOVO RIO Terminal	7-64
Table 7-28 Number of Terminals, Lines, and Buses	7-65
Table 7-29 Name of Terminals, Bus Stops, and Buses	7-66
Table 7-30 Names of Terminals	7-67
Table 7-31 Population in 2010	7-67
Table 7-32 Current Condition (Land Public Transport)	7-69
Table 7-33 Methodology of Deployment (Land Public Transport)	7-69
Table 7-34 Current Condition (Land Public Transport)	7-73
Table 7-35 Methodology of Deployment (Land Public Transport)	7-73
Table 7-36 Current Condition (Land Freight Transport)	7-75
Table 7-37 Methodology of Deployment (Land Freight Transport)	7-75
Table 7-38 Rough Cost Estimates of ITS Projects	7-77
Table 7-39 Conditions and Assumptions for Individual ITS Projects	7-78
Table 7-40 ITS Related Organizations	7-80
Table 7-41 TTC in 2011 Prices	7-88
Table 7-42 Condition of Macro/Meso/Micro Simulation	7-89
Table 7-43 Estimated Benefits	7-91
Table 7-44 Cost-Benefit Stream (Bus Information Provision)	7-93
Table 7-45 Cost-Benefit Stream (ITS Center)	7-93
Table 7-46 Cost-Benefit Stream (BRT Priority System)	7-94
Table 7-47 Cost-Benefit Stream (ETC)	7-94
Table 7-48 Cost-Benefit Stream (ERP)	7-95
Table 7-49 Results of Sensitivity Analysis (EIRR): Bus Information Provision	7-95
Table 7-50 Results of Sensitivity Analysis (EIRR): ITS Center	7-95
Table 7-51 Results of Sensitivity Analysis (EIRR): BRT Priority System	7-96
Table 7-52 Results of Sensitivity Analysis (EIRR): ETC	7-96
Table 7-53 Results of Sensitivity Analysis (EIRR): ERP	7-96
Table 9-1 Project Package	9-1
Table 9-2 Project Cost	9-4
Table 9-3 Implementation Plan	9-5

Table 9-4 Definition of Data/Information	9-7
Table 9-5 Data Gathering Process	9-9
Table 9-6 Categorizing the Processed Data	9-14
Table 9-7 Essential Equipment and Functional Requirement	9-25
Table 9-8 Quantity of Essential Equipment	9-32
Table 9-9 Cost of Project Package 1	9-39
Table 9-10 Implementation Schedule for Project Package 1	9-41
Table 9-11 Cost for Operation.	9-44
Table 9-12 Definition of Data/Information	9-46
Table 9-13 Number of Equipment to be Deployed in the Short Term	9-47
Table 9-14 Proposed Bus Stops for Information Provision Panel	9-48
Table 9-15 Essential Equipment and Functional Requirement	9-51
Table 9-16 Cost of Project Package 2	9-53
Table 9-17 Implementation Schedule of Project Package 2	9-55
Table 9-18 Number of Equipment to be Deployed in the Short Term	9-59
Table 9-19 Proposed Intersections for Adaptive Signal Control	9-60
Table 9-20 Proposed Location of VMSs	9-61
Table 9-21 Essential Equipment and Functional Requirement	9-62
Table 9-22 Essential Equipment and Functional Requirement	9-62
Table 9-23 Cost of Project Package 3	9-66
Table 9-24 Implementation Schedule of Project Package 3	9-67
Table 10-1 Administrative Division in DF	10-2
Table 10-2 DF RAs Demographic Information	10-11
Table 10-3 Upcoming Large-scale Events in the DF	10-16
Table 10-4 Population x Job Comparison	10-24
Table 10-5 Auto and Public Transport Attraction and Production	10-25
Table 10-6 Federal Road (BR Road) in DF	10-27
Table 10-7 State Road (DF Road) in DF	10-27
Table 10-8 Road Density and Road Length per Capita	10-28
Table 10-9 Stakeholders ITS Needs	10-43
Table 10-10 Public Transport Services in the DF	10-44
Table 10-11 Number of Bus Lines in DF	10-49
Table 10-12 List of Bus Terminals in the DF	10-51
Table 10-13 Number of Bus Passengers	10-52
Table 10-14 Characteristics of Local Bus Services in Surrounding Municipalities in 2009	
Table 10-15 Stakeholders ITS Needs	10-58
Table 10-16 Federal Government Organization on ITS-Related Agencies	10-65
Table 10-17 DF Organization on ITS-Related Agencies.	10-66
Table 10-18 Role of ITS-Related Agencies	10-67

Table 10-19 Information Collected by ITS-related Agencies	10-70
Table 10-20 Summary of PDTU/DF	10-79
Table 10-21 Summary of PAC	10-81
Table 10-22 Summary of PAC2	10-81
Table 10-23 Summary of PPA	10-83
Table 10-24 ITS-Related Plans	10-86
Table 11-1 Summary of Current Conditions and Needs	11-4
Table 11-2 Current Stakeholder in ITS Systems	11-6
Table 11-3 Rough Cost Estimates of ITS Projects	11-19
Table 11-4 Conditions and Assumptions for Short-term ITS Projects	11-20
Table 11-5 Related Organizations for Short-term ITS System	11-20
Table 11-6 DF Implementation Plan	11-24
Table 11-7 Work Plan	11-25
Table 12-1 ITS Projects for Rio de Janeiro	12-1
Table 12-2 Result of Economic Analysis for ITS Project	12-2
Table 12-3 Project Package	12-3
Table 12-4 Project Cost	12-4
Table 12-5 Implementation Plan	12-4

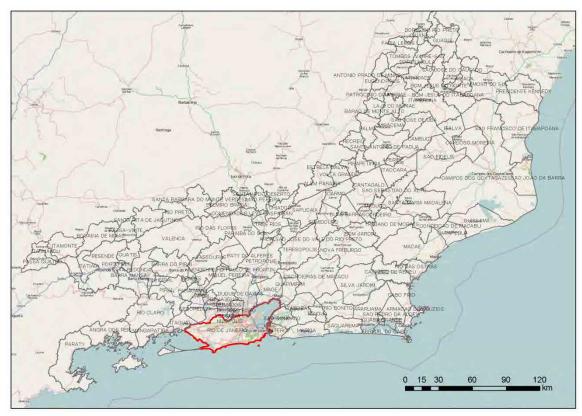
ABBREVIATIONS

Abbreviations	Long Title
ABC	Agência Brasileira de Cooperação
BRT	Bus Rapid Transit
CCTV	Closed Circuit Television
CET-Rio	Companhia de Engenharia de Tráfego
CO2	Carbon Dioxide
DENATRAN	Departamento Nacional de Trânsito
DER DF	Departamento de Estrada de Rodagem do Distrito Federal
DETRAN	Departamento Estadual de Trânsito
DFTRANS	Transporte Urbano do Distrito Federal
DF	Distrito Federal
DF/R	Draft Final Report
DSRC	Dedicated Short Range Communication
ETC	Electronic Toll Collection
F/R	Final Report
FETRANPOR	Federation of the Companies of Transports of Passengers of the State
	of Rio de Janeiro
FIFA	Federation Internationale de Football Association
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile communications
IBGE	Instituto Brasileiro de Geografia e Estatstica
IC/R	Inception Report
ISO	International Organization for Standardization
IT/R	Interim Report
ITACA	Intelligent Traffic Adaptive Control Area
ITS	Intelligent Transportation Systems
JCC	Joint Coordination Committee
JICA	Japan International Cooperation Agency
METRO DF	Companhia do Metropolitano do Distrito Federal
O&M	Operation and Maintenance
OCR	Optical Character Reader
PAC	Programa de Aceleração do Crescimento
PC	Personal Computer

PCU	Passenger Car Unit								
PDTU	Plano Diretor de Transporte Urbano e Mobilidade do Distrito Federal								
	e Entorno.								
RFID	Radio Frequency Identification								
RJ	Rio De Janeiro								
RMRJ	Região Metropolitana do Rio de Janeiro								
SETRANS	Rio de Janeiro Seretaria de Estado de Transportes								
SIMRAV	Sitema Integrado de Monitoramento e Registo Automatico de								
	Vehiculos								
SINIAV	Sistema Nacional de Identificacao Automatica de Vehiculos								
SMTR	Secretaria Municipal de Transportes								
TOR	Terms of Reference								
VMS	Variable Message Sign								

CHAPTER 1 INTRODUCTION

1.1 STUDY BACK GROUND


Brazil, as its stable and healthy economic development, shows GDP growth rate at 7.5% in 2010. After Lehman's fall, Brazilian economy quickly recovered by their strong economic potentials such as high domestic consumption, various types of export industries, vast agricultural land and abundant natural resources. Brazil is not only agricultural country but also industrial country as typified by small jet industry which is the highest ranked in the world and has full-set industrial base.

Gracing at transportation figures, the domestic sales of new cars in 2011 is over 3.4 million, and it's ranked at No. 4 in the world, next to Japan. The rapid growth of number of vehicles is one of the major causes of the serious congestion in the major cities in Brazil.

Brazilian government is urgently developing city and transportation infrastructure for upcoming well-known international events such as FIFA World Cup at 12 Brazilian cities in 2014 and Olympic Games in 2016 at Rio de Janeiro. Rio de Janeiro, the second largest city in Brazil, has 11 million population in the metropolitan area and 6 million in the city. They are now preparing for these two big events. The mass-transit network such as subway and bus are already well developed. However the traffic congestion becomes quite serious during the rush hour in the morning and evening, which is known as social problem. Thus, it's not enough to accommodate all traffic/transport demand. In addition, frequent flood occurs in recent years due to the weakness of infrastructure. Hence, proper information management and provision to the users is urgently needed to achieve risk and crisis management, together with overcoming the weakness of existing infrastructure.

1.2 OBJECT AND STUDY AREA

The objective of the study is to assist the Rio De Janeiro Metropolitan Area and Federal District to improve and modernize the traffic and transportation system in each city by applying ITS, through formulating a Master Plan for ITS development and prioritizing ITS projects in Rio De Janeiro Metropolitan Area that could be implemented in a phased manner and assist for preliminary design for the Short Term Plan. The study area is shown in Figure 1-1 and Figure 1-2.

Source: JICA Study Team

SOBRADINHO

BRASILIA

LAGO NORTE

CEILÂNDIA

CEILÂNDIA

CEILÂNDIA

CEILÂNDIA

CEILÂNDIA

CEILÂNDIA

CEILÂNDIA

CANDANGOICANDIA

CANDANGOICANDI

Figure 1-1 Location Map of the Study Area (Rio de Janeiro)

Source: JICA Study Team

0 3.75 7.5

Figure 1-2 Location Map of the Study Area (Federal District)

1.3 SCOPE OF WORKS

The five technical approaches are set out in order to fulfill the objectives of the study.

Approach1: Preparation of ITS Master Plan Based on ITS Architecture

Approach2: ITS Study Based on Brazilian- Japanese Technology Exchange

Approach3: Study for Disaster-Related ITS

Approach4: Study on Short Term ITS Menus

Approach5: Area-Wise Traffic/Transportation Analysis and Evaluation of ITS Menus

[Approach1]: <u>Preparation of ITS Master Plan Based on ITS Architecture</u>

The scope of the Study, according to the TOR, is i) Formulation of ITS Master Plan in the Rio De Janeiro Metropolitan Area, ii) Preliminary Design for Short Term Plan iii) Formulation of Preliminary ITS Master Plan in Federal District. However the ITS Master Plan covers the area ITS which are consisted of the different systems operated by a number of different agencies, and some ITS facilities are already installed or under planning. Therefore it is important to organize a basic framework to assure a consistency of the entire system and efficiency for future expansion. In order to secure this, the ITS architecture for the Rio De Janeiro metropolitan area will be prepared for the basic framework for the Master Plan.

[Approach 2]: ITS Study Based on Brazilian- Japanese Technology Exchange

Brazil has introduced Japanese system as their terrestrial digital broadcasting. Comparing with the analog broadcasting, the terrestrial digital broadcasting can deal with not only high quality video and sounds but also data broadcasting. It is also compatible for information provision to moving object. Therefore, if the devices compatible with the terrestrial digital broadcasting grow popular, more value added information can be provided.

Regarding this, the study team will investigate the possibility to utilize the technological feature of the terrestrial digital broadcasting between both countries.

[Approach 3]: Study for Disaster-Related ITS

The study team will carry out study for disaster-related ITS, particularly in regard of the background of the establishment of the information integration center. The interview survey will also be conducted to find out the current operation procedures to propose and formulate the disaster-related ITS menus. The figure below shows that question items of interview.

[Approach 4]: Study on Short Term ITS Menus

It is necessary to promptly study on ITS menus for upcoming large scale event. The study team will commence study on ITS menus as Short Term Plan in early terms. The cutting edge technology shall be utilized for the Short Term Plan to reduce traffic congestion and provide the essential information. ITS menus as Short Term Plan and these menus also could be converted the upcoming large scale events which are based on three perspectives;

- 1. Real-Time Congestion Monitoring,
- 2. Enhancement of Effectiveness of Mass-Transit and
- 3. Direct and Dynamic Information Provision to Large Scale Event Participant.

[Approach 5]: <u>Examination of Hourly Traffic Condition in Whole Metropolitan Area and Evaluation</u> on the Effect of ITS Menus

(1) Traffic survey for the evaluation on the effect of ITS menus

It is necessary to understand hourly traffic condition in the whole metropolitan area and traffic problems in order to formulate ITS master plan. In this study, the traffic survey will be conducted for the evaluation on the effect of ITS menus.

The study result on present and future traffic conditions conducted by the past studies will be referred. In Addition, it is considered to use the data provided by CCTV which is developed in the metropolitan region and provided by the transportation operators.

(2) Traffic study for the evaluation on the effect of ITS master plan

The aim of ITS menus is to alleviate the traffic congestion in urban areas. For example, "Electric Tall Collection" on expressways, "Traffic Information" and "Intelligent Traffic Signal Control", "Increasing the Convenience of Public Transport such as Bus Location System" and "Congestion Charge" on ordinary roads are possible. These menus are effect for hourly traffic, not daily traffic.

It is necessary to estimate hourly traffic flow in order to evaluate the effect of ITS menus implemented. Therefore, estimating traffic volume, examining traffic problems and evaluating the effect of ITS menus will be conducted at "Macro Level", "Micro Level" and "Meso Level," which is the intermediate scale level between "Macro" and "Meso."

(3) Traffic study for the evaluation on the effect of ITS menus in large-scale event

The target year of traffic demand forecast and the point of view of traffic study is determined, considering the large-scale events in the future in Rio de Janeiro.

<Large-scale events in Rio de Janeiro>

2012 - United Nations Conference on Sustainable Development
2014 - FIFA World Cup
2016 - Olympic Games

1.4 SCHEDULE OF THE STUDY AND PROGRESS

The entire work period of this Study is approximately 12 months beginning with the preparatory work at the beginning of July 2012, and completing with the submission of the final report in the middle of May 2013, as shown below.

The Study is divided into two stages with the following objectives:

Phase-1: Formulation of ITS Master Plan for Rio de Janeiro

Phase-2: Preparation of Preliminary Design for Short Term Plan for Rio de Janeiro and Preliminary ITS Master Plan for Federal District

The workshop will be held at the following period:

1st Seminar: At the end of Formulation of Draft ITS Master Plan for Rio de

Janeiro

2nd Seminar: At the end of Preparation of Preliminary Design for Short Term

Plan for Rio de Janeiro and Preliminary ITS Master Plan for

Federal District

Table 1-1 Phase of the Study

Itama	2012							2013						
Items		Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	
Study Phase														
1.ITS Master Plan Formulation for RJ														
2.Preliminary ITS Master Plan for DF								-		-	i			
3.Preliminary Design for Short Term Plan														
Report Submission		∇ IC	/R				\triangle I.	T/R		DF/R	\triangleright	∇	F/R	
Training														
Seminar						▼1	st				▼ 2r	ıd		

Source: JICA Study Team

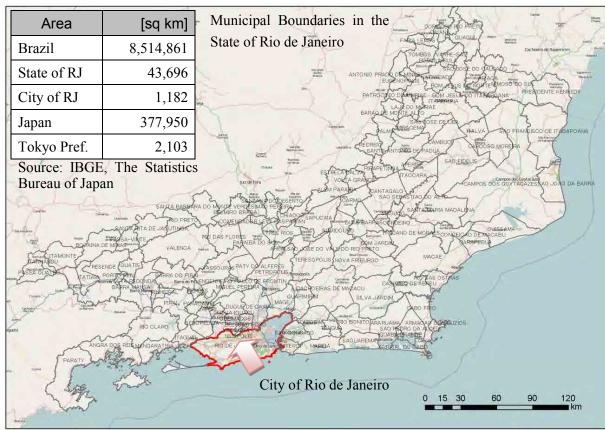
Counterparts of this project are below;

-SETRANS Rio (Coordinator: Mr. Henrique Futuro)

-SMTR (Coordinator: Mr. Alberto Nygaard)

-SETRANS DF (Coordinator: Mr. Umberto Menezes)

-DETRAN DF (Coordinator: Ms. Yara Geraldini)


CHAPTER 2 CLARIFICATION OF CURRENT INTELLIGENT TRANSPORT SYSTEMS CONDITION IN RIO DE JANEIRO

2.1 REGIONAL CHARACTERISTICS OF RIO DE JANEIRO

2.1.1 Administration

The state of Rio de Janeiro is located in the southeast of Brazil. The map is shown in Figure 2-1.

Source: Google Earth, OpenStreetMap

Figure 2-1 Location of Rio de Janeiro

Brazil is divided into administrative divisions, which consists of 26 states and one federal district. The state of Rio de Janeiro consists of 92 municipalities. The Metropolitan Region of Rio de Janeiro is shown in Figure 2-2. In Brazil, there are 32 metropolitan regions (*Regiões Metropolitanas*: RM), three integrated development regions (RIDE), and four urban agglomerations, as shown in Table 2-1.

Source: JICA Study Team

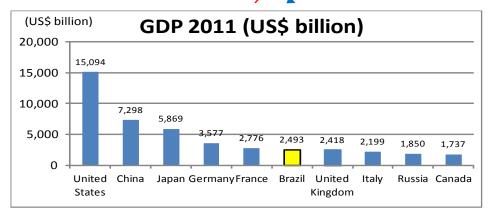
Figure 2-2 Administrative Boundaries of Rio de Janeiro

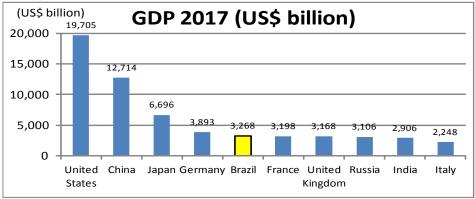
Table 2-1 Administrative Division in Brazil

States (26+1) Metropolitan Regions (RM) and Integrated Development Regions (RIDE) (39)						ons (RIDE) (39)
1	Acre		1	Aglomeração Urbana do Litoral Norte Rio Grande do Sul	28	RM Natal
2	Alagoas		2	Aglomeração Urbana do Nordeste Rio Grande do Sul	29	RM Norte/Nordeste Catarinense
3	Amapá		3	Aglomeração Urbana do Sul Rio Grande do Sul	30	RM Porto Alegre
4	Amazonas		4	'Aglomerado Urbano Cuiabá-Várzea Grande	31	RM Recife
5	Bahia		5	RIDE Distrito Federal e Entorno	32	RM Rio de Janeiro
6	Ceará		6	RIDE Pólo Petrolina/PE e Juazeiro/BA	33	RM Salvador
7	Distrito Federal		7	RIDE Grande Teresina	34	RM São Paulo
8	Espírito Santo		8	RM Aracaju	35	RM Sudoeste Maranhense
9	Goiás		9	RM Baixada Santista	36	RM Tubarão
10	Maranhão	1	10	RM Belém	37	RM Vale do Aço
11	Mato Grosso		11	RM Belo Horizonte	38	RM Vale do Itajaí
12	Mato Grosso do Sul		12	RM Campinas	39	RM Vale do Rio Cuiabá
13	Minas Gerais		13	RM Carbonífera		
14	Pará		14	RM Cariri		
15	Paraíba		15	RM Curitiba		
16	Paraná		16	RM Florianópolis		
17	Pernambuco		17	RM Fortaleza		
18	Piauí		18	RM Foz do Rio Itajaí		
19	Rio de Janeiro		19	RM Goiânia		
20	Rio Grande do Norte	2	20	RM Grande São Luís		
21	Rio Grande do Sul	2	21	RM Grande Vitória		
22	Rondônia	2	22	RM João Pessoa		
23	Roraima	2	23	RM Londrina		
24	Santa Catarina	2	24	RM Macapá		
25	São Paulo	2	25	RM Maceió		
26	Sergipe	2	26	RM Manaus		
27	Tocantins	2	27	RM Maringá		

Source: JICA Study Team

2.1.2 Economy

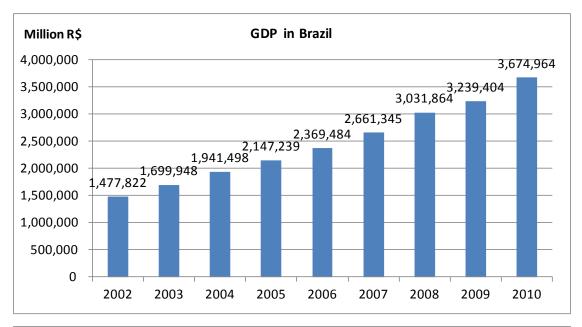

(1) Gross Domestic Product


1) Position in World Economy

Brazil is the sixth largest world economy in terms of gross domestic product (GDP). By 2017, Brazil will become the world's fifth largest economy based on estimated data.

2011 2017 GDP (US\$ in GDP (US\$ in Rank Country Country billions) billions) 15,094 19,705 United States United States 1 2 7,298 China 12,714 China 3 5,869 6,696 Japan Japan 4 3,577 3,893 Germany Germany 5 France 2,776 **Brazil** 3,268 6 **Brazil** 2,493 France 3,198 7 United Kingdom 2,418 United Kingdom 3,168 8 2,199 3,106 Italy Russia 9 2,906 Russia 1,850 India 10 Canada 1,737 Italy 2,248

Table 2-2 GDP (Current Prices) in 2011 and 2017 (Estimated)



Source: Economic Outlook Database April 2011 (IMF)

Figure 2-3 GDP (Current Prices) in 2011 and 2017 (Estimated)

2) Trend in Brazil

The GDP (current prices) in Brazil has been increasing in the last nine years. GDP in 2010 was about 2.5 times higher than in 2002.

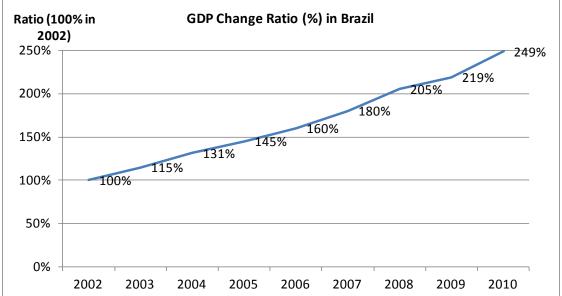
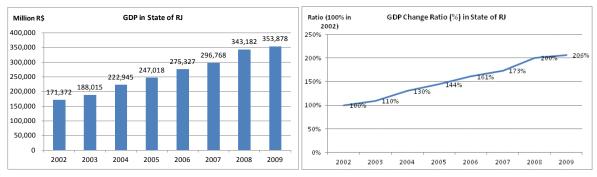
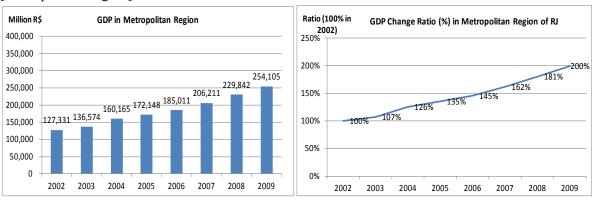



Figure 2-4 GDP (Current Prices) Trend in Brazil


3) Trend in Rio de Janeiro

The GDP (current prices) in Rio de Janeiro has also been increasing in the last eight years. GDP in 2009 was almost twice the GDP in 2002.

[State]

[Metropolitan Region]

[City]

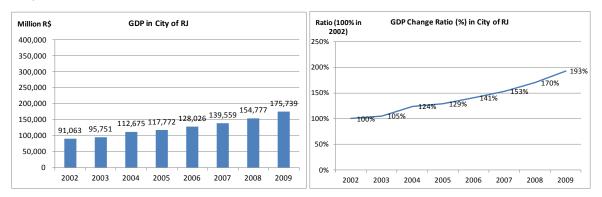
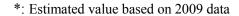
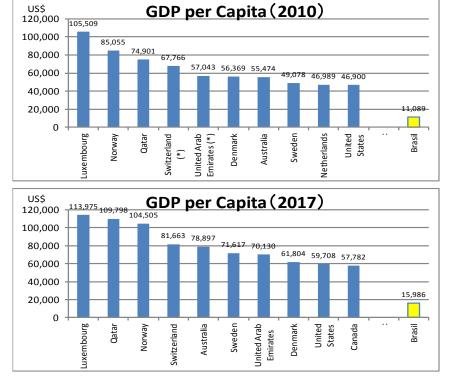


Figure 2-5 GDP (Current Prices) Trend in Rio de Janeiro

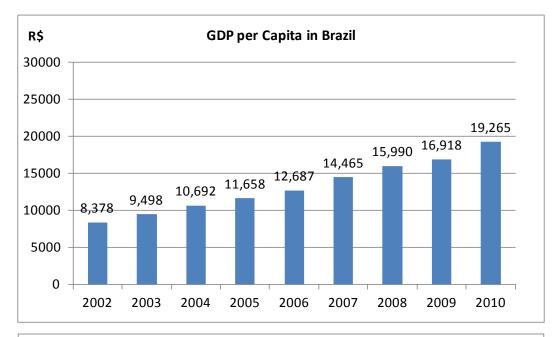

(2) GDP per Capita


1) Position in World Economy

In terms of GDP (current prices) per capita, Brazil is the 54th largest economy. By 2017, Brazil will become the world's 55th largest economy based on GDP estimated data.

Rank 2010 2017 GDP per GDP per Country Country capita (US\$) capita (US\$) 1 Luxembourg 105,509 113,975 Luxembourg 2 109,798 Norway 85,055 Qatar 3 74,901 Norway Qatar 104,505 4 Switzerland (*) 67,766 Switzerland 81,663 United Arab Australia 78,897 5 57,043 Emirates (*) 6 56,369 71,617 Denmark Sweden United Arab 70,130 7 Australia 55,474 **Emirates** Sweden 8 49,078 Denmark 61,804 9 46,989 59,708 Netherlands **United States** 10 **United States** 46,900 Canada 57,782 54 Brazil 11,089 55 **Brazil** 15,986

Table 2-3 GDP (Current Prices) per Capita in 2010 and 2017 (Estimated)



Source: Economic Outlook Database April 2011 (IMF)

Figure 2-6 GDP (Current Prices) per Capita in 2010

2) Trend in Brazil

The GDP per capita in Brazil has also been increasing in the last nine years. GDP per capita in 2010 was about 2.3 times higher than in 2002.

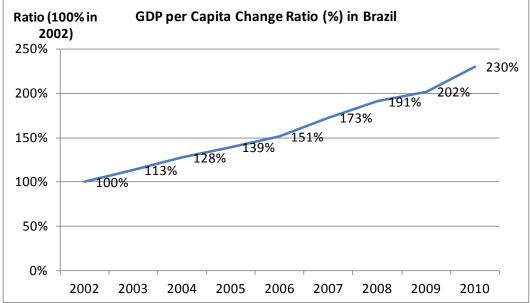
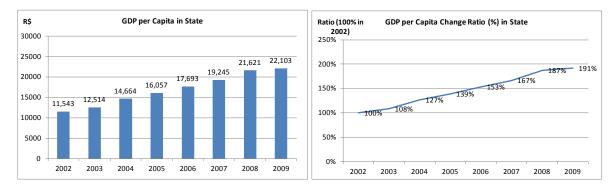
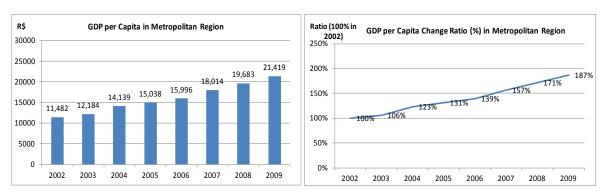



Figure 2-7 Trend of GDP (Current Prices) per Capita in Brazil


3) Trend in Rio de Janeiro

The GDP (current prices) per capita in Rio de Janeiro has also been increasing in the last eight years. GDP in 2009 was almost twice the GDP in 2002.

[State]

[Metropolitan Region]

[Municipality]

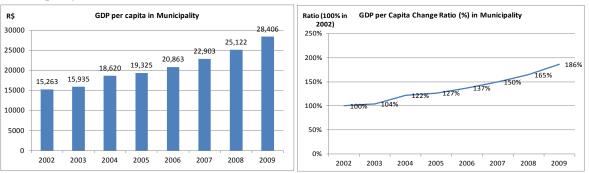
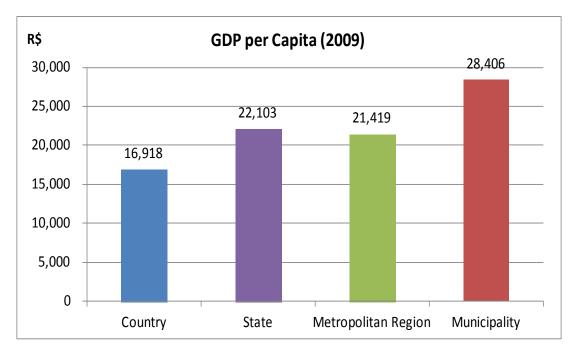



Figure 2-8 Trend of GDP (current prices) per Capita in Rio de Janeiro

4) Comparison of GDP Data in Brazil

Comparing the GDP (current prices) per capita among country, state, metropolitan region, and municipality of Rio de Janeiro, the municipality earned the biggest growth. However, the state and metropolitan region have grown faster than the municipality. According to this data, Rio de Janeiro, as a whole, has great potential and economy is expanding very fast.

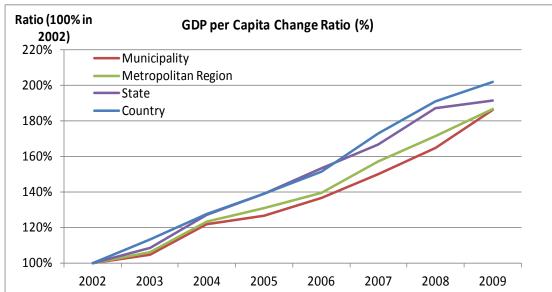
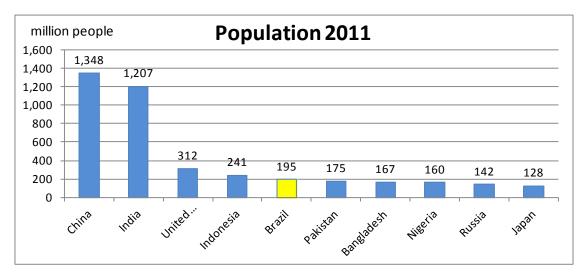



Figure 2-9 Trend of GDP (Current Prices) per Capita in Rio de Janeiro

(3) Population

1) Population in the World

Brazil is the fifth largest country in terms of population based on 2011 data as shown in Figure 2-10, whereas, Japan is the tenth largest in population. The forecast shows that Brazil's population will increase by 13% in the next 20-40 years.

Source: Economic Outlook Database, April 2011 (IMF)

Population in the Future 1,600 300% **2011 2030 2050** Change Ratio(2011 -> 2050) 1,400 250% 241% 1,200 200% 1,000 155% 150% 800 136% 129% 129% 121% 600 113% 100% 96% 88% 400 50% 200 0 0% China India U.S.A. Indonesia Brazil Pakistan Nigeria Bangladesh Russia Japan 3 5 8 9 10

Figure 2-10 Population in the World

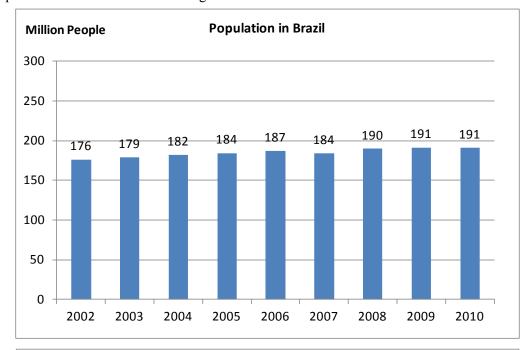

Source: Statistics Bureau of Japan

Figure 2-11 Future Population in the World

2) Population of Brazil

i) Trend

According to the Brazilian Institute of Geography and Statistics (IBGE: *Instituto Brasileiro de Geografia e Estatística*), population in Brazil has been increasing in recent years. In the comparison between 2002 and 2010 population, there was a growth of 8%, reaching around 191 million people. The population transition is shown in Figure 2-12.

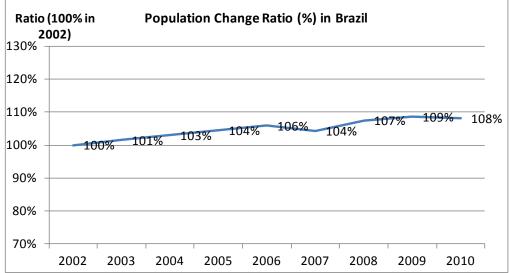
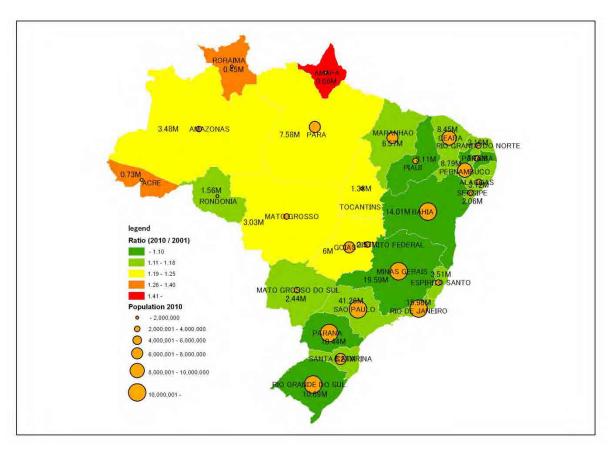
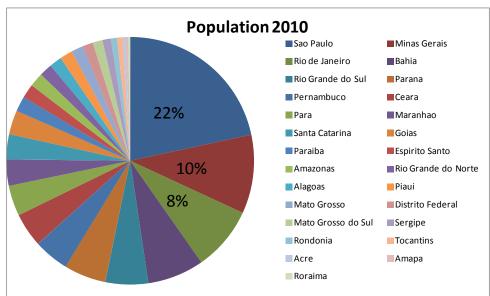
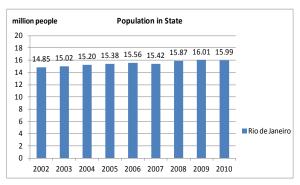




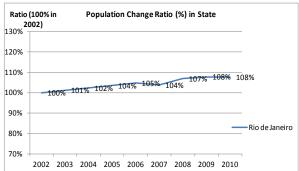
Figure 2-12 Population Trend in Brazil

ii) Distribution

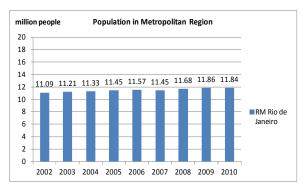
In terms of population, the state of Rio de Janeiro has the third largest in Brazil. The population growth ratio in the state of Rio de Janeiro between 2001 and 2011 is relatively low, reaching the range from 1.11 to 1.18.

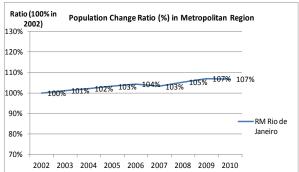
Source: IBGE, Figure is made by the JICA Study Team

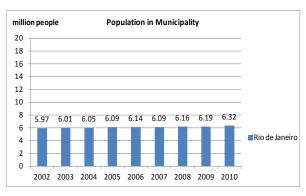

Figure 2-13 Population Distribution of States in Brazil


3) Trend in Rio de Janeiro

i) Trend


The population increase ratio in Rio de Janeiro is equal to the level of Brazil. Based on the data, the population outside the municipality of Rio has increased significantly compared to the population living within the municipality.


[State]



[Metropolitan Region]

[Municipality]

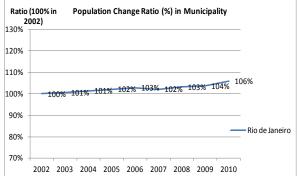
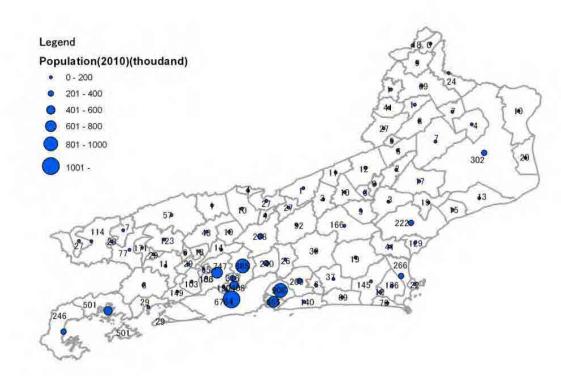
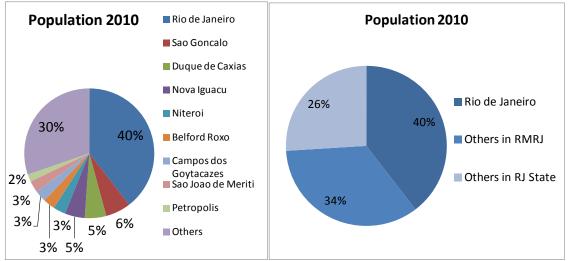
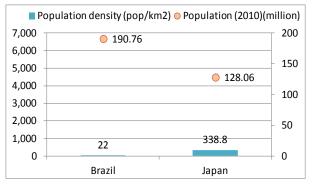
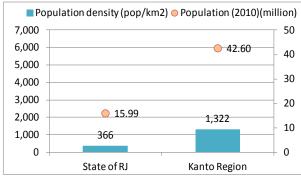




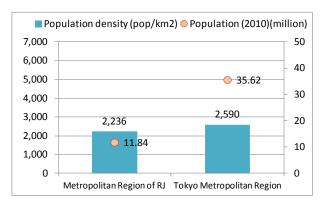
Figure 2-14 Population Trend in Rio de Janeiro

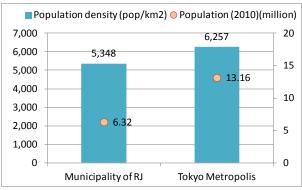
ii) Distribution

The population of the state of Rio de Janeiro is concentrated in the Metropolitan Region. In the state of Rio de Janeiro, the population share of the municipality of Rio de Janeiro is about 40%, while the Metropolitan Region contributes about 74% of the whole state population.




Source: IBGE, Figure is made by the JICA Study Team


Figure 2-15 Population Distribution of Cities in Rio de Janeiro


(4) Population Density

The population density was compared between Brazil and Japan and between Rio de Janeiro and Kanto/Tokyo. For the country scale, state scale, and metropolitan region scale, the population density of Japan is higher than Brazil. However, population densities of Rio de Janeiro and Tokyo are almost at the same level. The rise in population of the city of Rio de Janeiro is quite remarkable in recent years.

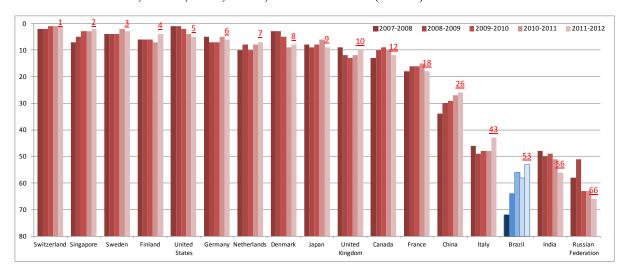

Source: IBGE, Statistics Bureau of Japan

Figure 2-16 Population Density of Brazil and Japan

2.1.3 Global Competitiveness

(1) Global Competitiveness Ranking

Based on the global competitiveness ranking assessed by the World Economic Forum, Brazil ranked 53rd in the world. However, in the last five years, Brazil has grown rapidly compared with other countries which take part in the Group of Eight (G8) and in the association of emerging national economies: Brazil, Russia, India, China, and South Africa (BRICs).

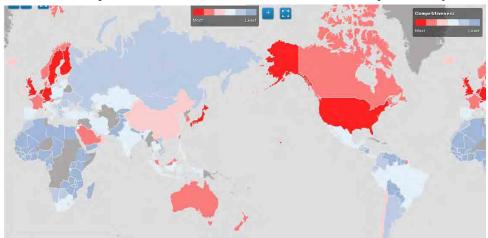
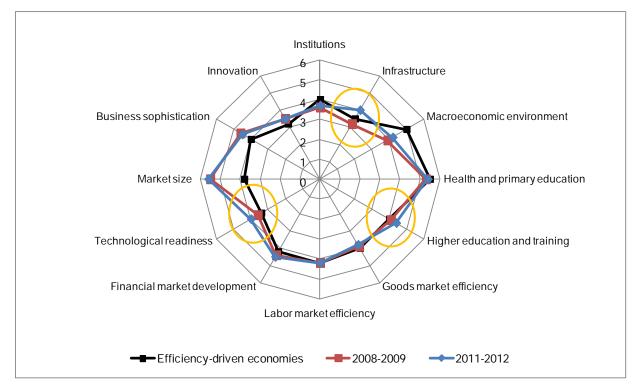

Source: The Global Competitiveness Report (World Economic Forum)

Figure 2-17 Competitiveness Ranking (High-ranked Countries, G8 Countries, and BRICs)

[The Global Competitiveness Report - World Economic Forum]

- The World Economic Forum

 An independent international organization committed in improving the state of the world by engaging business, political, academic, and other leaders of society to shape global, regional, and industry agendas.
- ➤ The Global Competitiveness Report
 Since 2005, the World Economic Forum has based its competitiveness analysis on the Global
 Competitiveness Index (GCI), a comprehensive tool that measures the microeconomic and
 macroeconomic foundations of national competitiveness. Competitiveness has been defined as
 the set of institutions, policies, and factors that determine the level of productivity of a country.



http://www.weforum.org/issues/global-competitiveness

(2) Competiveness Index of Brazil

The index shows the advantages and growing domains of Brazil. The advantages of Brazil seem to be "health and primary education", "financial market development", "market size", and "business sophistication". The growing domains are "infrastructure", "higher education and training", and "technological readiness".

[Comparison between 2008 and 2011]

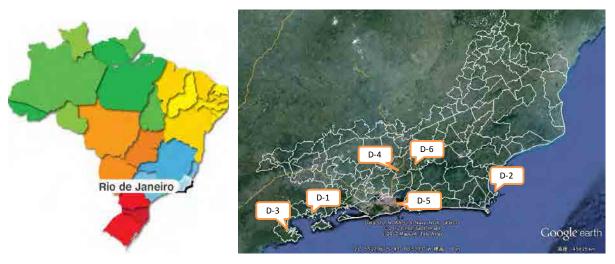

Source: The Global Competitiveness Report (World Economic Forum)

Figure 2-18 Competitiveness Index of Brazil

2.1.4 Sightseeing Resources and Statistics

(1) Sightseeing Resources Location

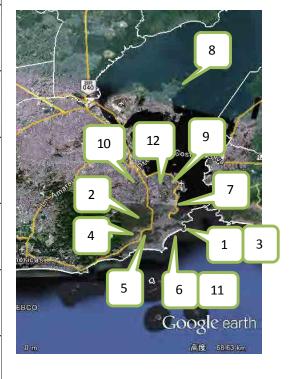
On the website of the Ministério do Turismo, it is possible to search main tourist destinations. The sightseeing resources locations in the state of Rio de Janeiro shown on the website are as follows:

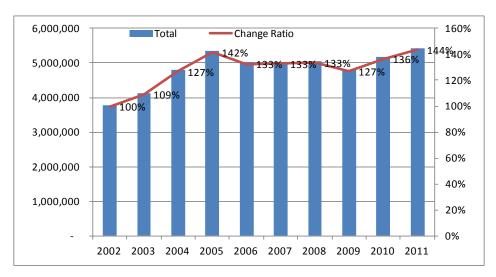
No	Theme	Destination	Photo
D-1	Sun and Beach, Social	Angra dos Reis	NO A
D-2	Sun and Beach, Culture, Nature	Armacao de Buzios	
D-3	Sun and Beach, Culture, Eco Tourism, Social, Natural	Paraty	
D-4	Culture, Eco Tourism	Petropolis	* †
D-5	Sun and Beach, Culture, Nature, Business, Events	Rio de Janeiro	714.20
D-6	- s	Parque Nacional Serra dos Orgaos	-

Figure 2-19 Main Sightseeing Locations in the State of Rio de Janeiro

In addition, sightseeing resources locations in the city of Rio de Janeiro shown on the website are as follows:

No	Туре	Destination	Photo
1.	Hill	Pao de Acucar	A ' f
2	Hill	Morro do Corcovado	T
3	Hill	Morro da Urca	
4	Park	Jardim Botanico (Botanical Garden)	
5	Lake	Lagoa Rodrigo de Freitas	
6	Sea	Boardwalk on Copacabana Beach	
7	Sea	View of the beach in the city of Rio	with A
8	Sea	Guanabara Bay	
9	Architecture	Lapa	
10	Sport	Estadio do Maracana (Maracana Stadium)	
11	Event	New Year's Eve on Copacabana beach Fireworks at Copacabana	· omin
12	Event	Carnival in Rio	




Figure 2-20 Main Sightseeing Locations in the City of Rio de Janeiro

(2) Number of Tourists

1) Inbound tourists to Brazil

i) Trend

The number of inbound tourists to Brazil is more than 5 million and has been increasing since 2002.

Source: Ministério do Turismo

Figure 2-21 Trend of Inbound Tourists to Brazil

ii) Origin Countries of Tourists

Majority of international inbound tourists to Brazil are from Argentina and the United States.

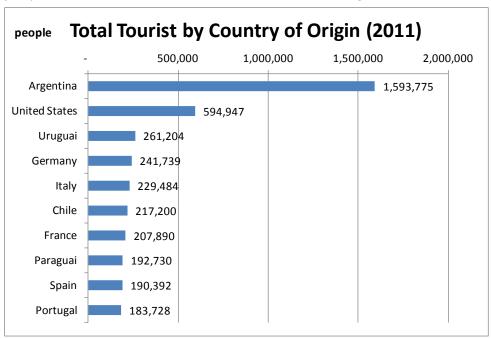


Figure 2-22 Number of Inbound Tourists to Brazil by Country of Origin

iii) Tourists to Each State

Inbound tourists to Brazil mainly go to the states of Sao Paulo, Rio de Janeiro, Parana, and Rio Grande do Sul. The state of Rio de Janeiro is the second major destination for international inbound tourists to Brazil.

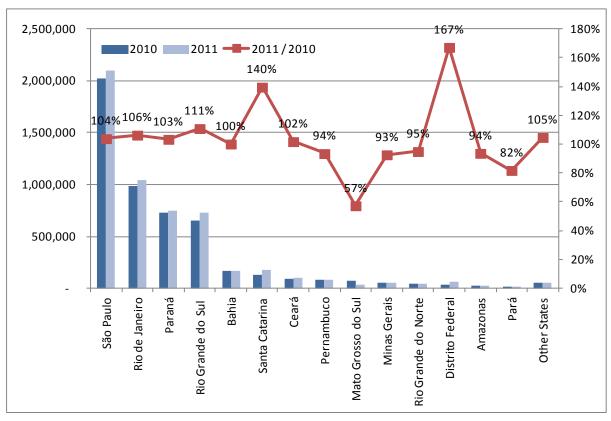
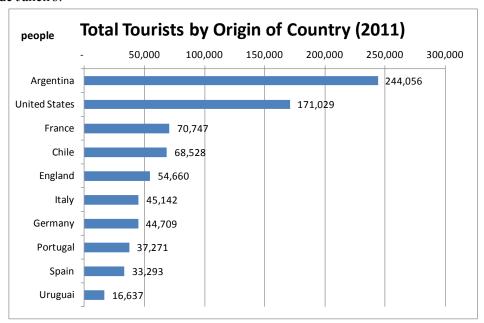



Figure 2-23 Inbound Tourists by Destination State in Brazil

2) Inbound tourist to the State of Rio de Janeiro

i) Origin Countries of Tourists

The majority of international inbound tourists to the state of Rio de Janeiro are from Argentina and the United States. In addition, it is necessary to note that France is the third biggest tourist origin to Rio de Janeiro.

Source: Ministério do Turismo

Figure 2-24 Inbound Tourists to the State of Rio de Janeiro by Country of Origin

ii) Monthly Tourist Arrivals

The state of Rio de Janeiro has two monthly peaks of inbound tourists in December and February because of annual events like New Year's Eve and Carnival.

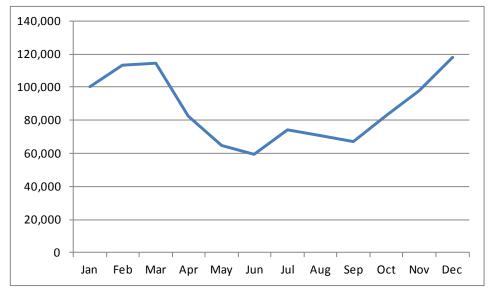
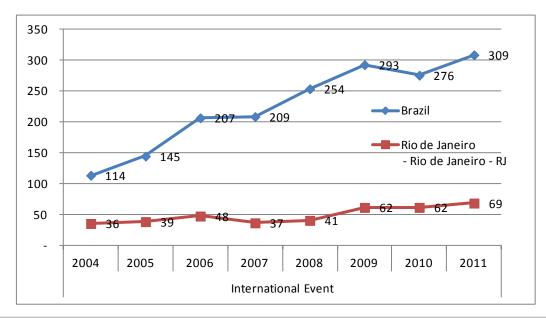



Figure 2-25 Monthly Tourist Arrivals to the State of Rio de Janeiro

(3) International Events (Congress and Conference)

The city of Rio de Janeiro is one of the busiest cities for international events in Brazil.

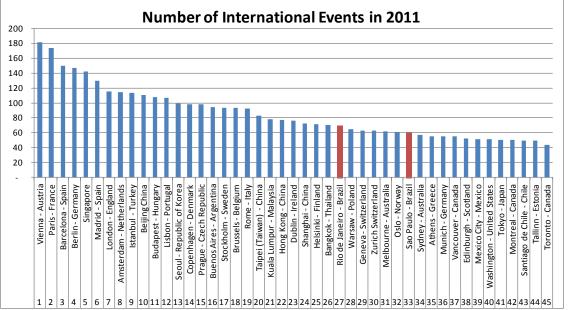


Figure 2-26 Characteristics of International Events in the City of Rio de Janeiro

(4) Annual Big Events and Upcoming Important Big Events

1) Annual Big Events

There are two big events held annually in the city of Rio de Janeiro, as shown in Table 2-4.

Table 2-4 Annual Big Events in the City of Rio de Janeiro

No.	Event	Location	Date	No. of Visitors	
			8-12 Feb. 2013		
1	Carnival	Centro-RJ	28 Feb. 2014	60,000	
			12 Feb. 2015		
	New Year's Eve				
2	(Revéillon de	Copacabana	31-Dec1 Jan.	About 2 million	
	Copacabana)				

Source: JICA Study Team

i) Carnival (http://www.rio-carnival.net/)

Rio Carnival has become world famous through its Samba Parade, which includes a show, display, and competition among Rio samba schools.

ii) Copacabana Reveillon (http://www.rio.rj.gov.br/web/riotur)

This is the party to celebrate the arrival of New Year on the beach of Copacabana held every New Year's Eve. On Copacabana Beach, screens and stages are built for famous artists and bands. Fireworks display usually last about 20 minutes to celebrate New Year.

2) Upcoming Large Scale Events

Four large-scale events are scheduled in the city of Rio de Janeiro in the next five years, as shown in Table 2-5.

Table 2-5 Upcoming Large-scale Events in the City of Rio de Janeiro

No.	Event	Location	Date	No. of Visitors
1	World Youth Day	Rio de Janeiro	23-28 July 2013	Not estimated yet
2	FIFA Confederations Cup	Belo Horizonte, Brasília, Fortaleza, Recife, Rio de Janeiro, Salvador	15-30 June 2013	On average, more than 60,000 fans will watch each of the 16 matches
3	FIFA World Cup	Belo Horizonte, Brasília, Cuiabá, Curitiba, Fortaleza, Manaus, Natal, Porto Alegre, Recife, Rio de Janeiro, Salvador, São Paulo	12 June-13 July 2014	About 3.7 million tourists
4	Olympic Games	Rio de Janeiro	5-21 Aug 2016	More than 10,500 athletes 6.1 million spectators during the games with maximum 470,000 visitors per day

Source: JICA Study Team

i) World Youth Day (http://www.rio2013.com/en)

The World Youth Day, held annually in the dioceses of the world, provides an international meeting of young people with the Pope every two or three years, which lasts about a week.

ii) FIFA(Fédération Internationale de Football Association) Confederations Cup (http://www.fifa.com/confederationscup/index.html)

This competition is held every four years. In recent times, it has been seen as a warm-up event of the host country of the next FIFA World Cup. Matches will be held in six cities including Rio de Janeiro.

iii) FIFA World Cup (http://www.copa2014.gov.br/en)

The FIFA World Cup is one of the biggest sporting events held every four years. Matches will be held in 13 cities including Rio de Janeiro.

iv) Olympic Games (http://www.rio2016.org.br/)

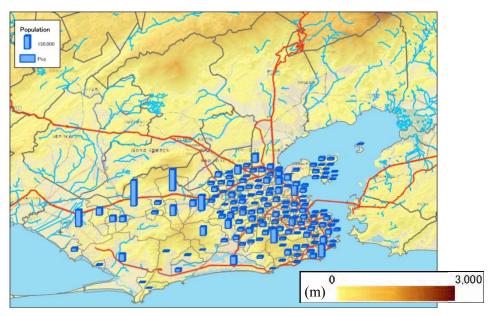
The Olympic Games is held every four years. In 2016, the host city will be Rio de Janeiro. It is anticipated that funding will grow from US\$80 million to at least US\$200 million by 2016 to support a variety of sports infrastructures and program developments.

3) Transportation Plan for the Annual Events

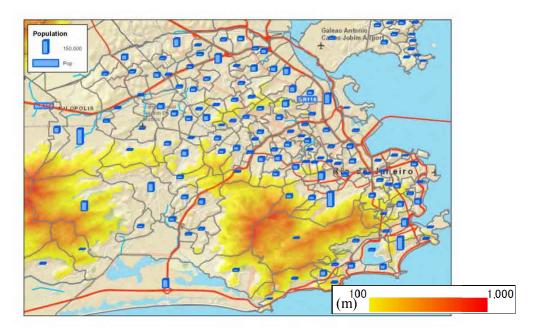
The experiences in traffic and transportation operations during Rio's annual large events, as shown in Table 2-6, should be helpful in making strategies for the upcoming large-scale events. Based on these experiences, public transport and traffic operators should work together in large-scale events.

Table 2-6 Experiences in Rio's Annual Large-Scale Events

Event	Location	Spectators	Public Transport System Serving the Event	Departing Passengers per Hour	Traffic and Transport Supporting Staff	Special Measures
	Copacabana Beach	2,000,000	Metro 36 bus services	90,000	800 municipal traffic staff 60 traffic engineers of CET	120 road closures 152 intersections managed
New Year's Eve	lpanema Beach	500,000	28 bus services	50,000	200 municipal traffic staff	55 road closures 90 intersections managed
	Barra Beach	150,000	15 bus services	25,000	50 municipal traffic staff 10 traffic engineers of CET	8km of road closures
Carnaval	Sambodrómo	60,000	Metro 63 bus services Suburban railway	60,000	60 municipal traffic staff 30 traffic engineers of CET 60 military policemen	94 road closures
Maracana Games	Maracanã	80,000	Metro 47 bus services Suburban railway	60,000	50 municipal traffic staff 30 traffic engineers of CET	6 road closures
Rio Marathon	Barra - South zone - Rio center	-	-	-	30 municipal traffic staff 10 traffic engineers of CET	7 road closures


Source: Transport Strategic Plan for the Rio 2016 Olympic and Paralympic Games

(5) Geographic Conditions


1) Hills and Rivers

Using the meshed altitude data derived from the Space Shuttle Radar contour figures are developed as shown in Figure 2-27. The hills and water areas like rivers and lakes are mixed together as well as those close to populated areas in the city of Rio de Janeiro.

[Metropolitan Region]

[Rio City]

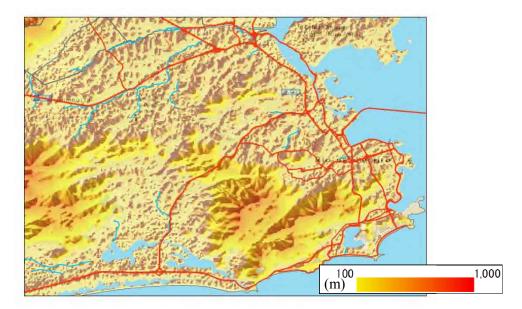
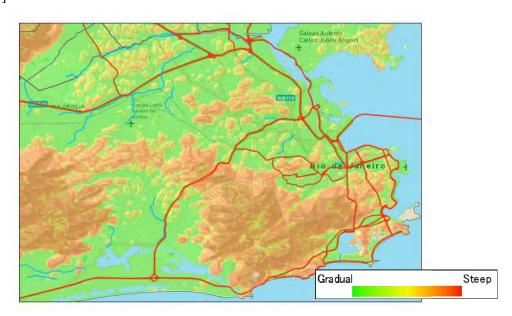

Source: Shuttle Radar Topography Mission (SRTM) (http://www2.jpl.nasa.gov/srtm/) Population data were prepared based on the data provided by SMTR

Figure 2-27 Contours in Rio de Janeiro


2) Topological Features in Central Rio

Through spatial analysis, topological features like hill shade and slope angle are calculated. The ring connecting Centro, Copacabana, Barra da Tijuca, and Meler surrounds the hills area. The area along the border between the hills and urban areas needs to be considered as a high-risk area for natural disasters.

[Hills and Contour]

[Slope]

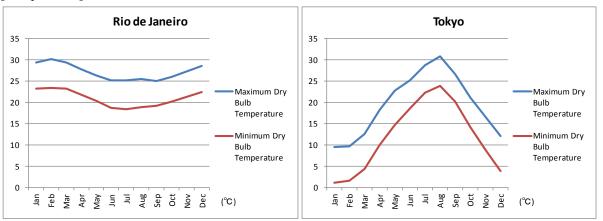
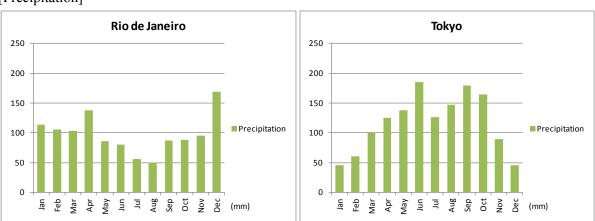

Source: Shuttle Radar Topography Mission (SRTM) (http://www2.jpl.nasa.gov/srtm/)

Figure 2-28 Topographic Characteristics in Rio de Janeiro

(6) Weather Conditions

Aside from the characteristics of topology, there is a feature in the weather conditions of Rio de Janeiro. Rio de Janeiro has two seasons. These are hot season where it is accompanied by rainy season and cool season accompanied by dry season. The hot and rainy season in Rio de Janeiro is from November to April.

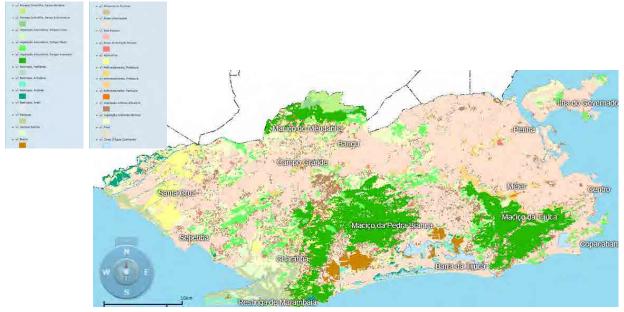

[Temperature]

Source: UNdata (United Nations Statistics Division)

Figure 2-29 Temperatures in Rio de Janeiro and Tokyo

[Precipitation]

Source: UNdata (United Nations Statistics Division)


Figure 2-30 Precipitation Comparison in Rio de Janeiro and Tokyo

(7) Natural Environment

Rio de Janeiro has rich natural resources. Vegetation covers about 30% while the urbanized area covers about 44% of the total land area. In Figure 2-31, land cover is quite complicated especially in the southern area.

Table 2-7 Area by Land Cover in the City of Rio de Janeiro

Land Cover		Area	Share
Areas of	Rain Forest Montana	882 ha	0.7%
vegetation	Rain Forest Submontane	347 ha	0.3%
Atlantic	Secondary vegetation - Early stage	3,096 ha	2.5%
	Secondary vegetation - Middle stage	6,117 ha	5.0%
	Secondary vegetation - Advanced stage	16,500 ha	13.5%
	Restinga	1,959 ha	1.6%
	Mangrove	3,399 ha	2.8%
	Apicum	1,323 ha	1.1%
	Marsh	1,666 ha	1.4%
	Subtotal	35,290 ha	28.9%
Urban	Urban area	53,117 ha	43.5%
and	Agriculture	5,249 ha	4.3%
anthropic	Arboreal vegetation and shrubs	8,662 ha	7.1%
	Grassy-woody vegetation	13,593 ha	11.1%
	Mineral extraction areas	347 ha	0.3%
	Bare soil	68 ha	0.1%
	Subtotal	81,037 ha	66.4%
	Rocky outcrop	759 ha	0.6%
Othor	Waterbody continental	2,131 ha	1.7%
Other classes	Beach	653 ha	0.5%
Classes	Reforestation	2,158 ha	1.9%
	Subtotal	5,805 ha	4.7%
Total Land	Area	122,131 ha	100%

Source: Secretaria Municipal de Meio Ambiente (http://www.rio.rj.gov.br/web/smac/)

Figure 2-31 Land Cover in Rio de Janeiro

(8) Natural Disaster

1) Record of Great Disaster

Due to weather conditions, namely heavy rainfall in a specific period, and due to the mixed land cover between urban areas and hills, a lot of natural disasters have occurred in Rio de Janeiro. In the last two years, three serious natural disasters were recorded, where floods and mudslides took place.

i) January 2010 floods and mudslides

Duration: 30 December 2009-6 January 2010

Fatalities: At least 85 people died

Areas affected: Angra dos Reis and Ilha Grande (State of Rio de Janeiro)

Source: http://www.abc.net.au/news/2010-01-03

ii) April 2010 floods and mudslides

Duration: 5 April 2010-mid-April 2010

Fatalities: About 250 people died

Areas affected: Rio de Janeiro, Niterói, Sao Gonçalo, Paracambi, Engenheiro Paulo de Frontin,

Magé, Nilópolis, Petrópolis, Maricá and Araruama (state of Rio de Janeiro)

Source: http://news.bbc.co.uk/2/hi/americas/8619624.stm

iii) January 2011 floods and mudslides

Duration: 11 January 2011

Fatalities: About 900 people died

Areas affected: Teresópolis, Nova Friburgo, Petrópolis, Sumidouro, and São José do Vale do Rio

Preto (state of Rio de Janeiro)

Source: http://oglobo.globo.com/rio/

Source: Subsecretaria de Defesa Civil do Rio de Janeiro (http://www0.rio.rj.gov.br/defesacivil/)

Figure 2-32 Photos of the Disaster in Rio de Janeiro

2) AlertaRio

i) Alert System of Landslides

The AlertaRio is a system set up to inform relevant authorities of the probability of landslide occurrences when the rain gauges detect rain values that exceed the preset limits of the Institute of Geotechnical (*Fundação Instituto de Geotécnica*: Geo-Rio). Geo-Rio which operates within the Municipal Works (*Secretaria Municipal de Obras*: SMO) is responsible for public safety in terms of geological issues, such as landslides and mudslides. The Department for Civil Defense of the city of Rio de Janeiro utilizes this alert system for disaster management and advises on evacuation.

The probability of landslides is defined in AlertaRio, as follows:

1) Low Probability

Possibility of circumstantial occurrences of landslides (depends on conditions related to natural or anthropogenic effects, such as breakage of pipes, thermal expansion, and vibrations).

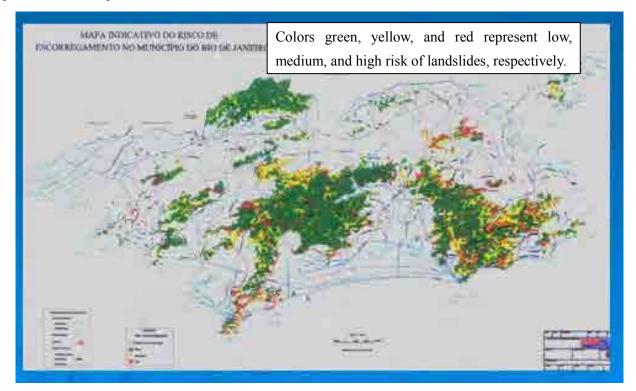
2) Average Probability

Possibility of occasional occurrences of landslides (triggered by rains predominantly on artificial slopes (cut or fill)).

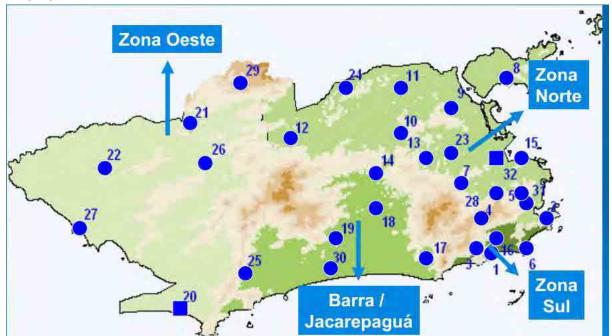
3) High Probability

Occurrence of landslides in sparse areas (triggered by heavy rains in natural and artificial slopes).

4) Very High Probability


Occurrence of widespread landslides (triggered by heavy rains on natural and artificial embankments, especially routes that cut upland).

ii) Probability of Landslides in Rio de Janeiro


The probability of landslide estimated by Geo-Rio is based on the relationship between the rain fall and the risk of landslide.

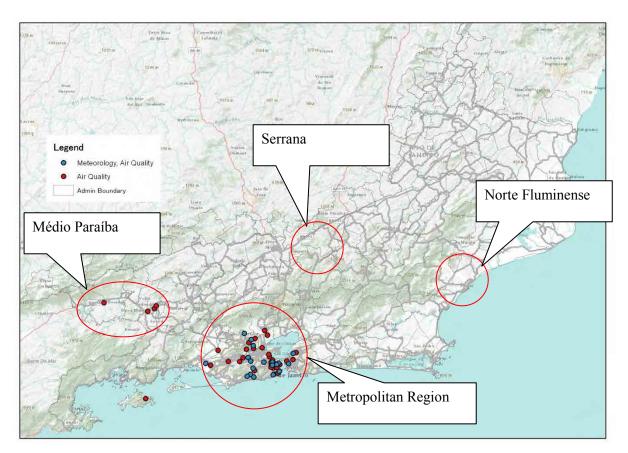
The maps of landslide risk and locations of rain gauge used by AlertaRio are shown in Figure 2-33.

[Risk of landslide]

[Rain gauge stations]

Source: AlertaRio Home Page (http://www0.rio.rj.gov.br/alertario/)

Figure 2-33 Map of the Landslide Risk and Rain Gauge Stations


(9) Air Quality

Air quality is monitored by the state and city related bodies.

1) Quality of Air (INEA)

The State Environmental Institute (*El Instituto Nacional De los Espacios Acuaticos*: INEA) is linked with the Secretary of State for Environment. This organization was created by Law No. 5101 on 04 October 2007. Its objective is to protect, conserve, and restore the environment to promote sustainable development. The INEA publishes the results of air quality monitoring, as well as the water levels of rivers monitored.

The stations for monitoring air quality are shown in Figure 2-34. Some examples of monitoring results are shown below, which are downloaded from the website of INEA. Based on Table 2-8, the air quality is good at this time.

Source: Station points are provided by INEA

Figure 2-34 Monitoring Stations for Air Quality by INEA

Table 2-8 Monitoring Results by INEA on 3 October 2012 (Example)

Automatic network							
Station	Pollutant	Classification					
<u>Médio Paraíba - 03/10/2012</u>							
Barra Mansa - Boa Sorte	PM10	Bom					
<u>Barra Mansa - Bocaininha</u>	PTS	Regular					
Barra Mansa - Roberto Silveira	PTS	Regular					
Barra Mansa - Vista Alegre	PM10	Regular					
Quatis	NO2	Bom					
Resende - Casa Lua	PTS	Regular					
Resende - Cidade Alegre	PTS	Regular					
Volta Redonda - Belmonte	PTS	Regular					
Volta Redonda - Retiro	03	Regular					
Volta Redonda - Santa Cecilia	03	Regular					
	opolitan Region - 03/10/2012						
Duque de Caxias - Sao Bento	PM10	Bom					
Itaguai - Monte Serrat	03	Bom					
Jacarepagua	PM10	Bom					
Japeri	03	Regular					
Niteroi - Icarai	S02	Bom					
Nova Iguacu	03	Bom					
Recreio dos Bandeirantes	03	Bom					
Santa Cruz	03	Regular					
	e Fluminense - 03/10/2012						
<u>Macae - Fazenda Airis</u>	03	Regular					
	SERRANA - 03/10/2012						
Cantagalo - Euclidelandia	PM10	Bom					
Note:	Bulletin updated daily from 15 h.						

IQA - Air Quality Index									
	PTS	PM10	SO2	NO2	O3	со			
Classification	média (24h)	média (24h)	média (24h)	média (1h)	média (1h)	média (8h)	Effects		
	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3	ug/m3			
Bom (0-50)	0-80	0-50	0-80	0-100	0-80	0-5000	Health insurance		
Regular (51-100)	81-240	51-150	81-365	101-320	81-160	5001-10000	Tolerable		
Inadequada (101-199)	241-375	151-250	366-800	321-1130	161-200	10001-17000	Inappropriate welfare		
Má (200-299)	376-625	251-420	801-1600	1131-2260	201-800	17001-34000			
Péssima (300-399)	626-875	421-500	1601-2100	2261-3000	801-1000	34001-46000	Offensive Health		
Crítica (acima de 400)	876-1000	501-600	2101-2620	3001-3750	1001-1200	46001-57500			

Source: JICA Study Team

2) MonitorAr-Rio (SMAC)

In the cities, the Municipal Secretariat of the Environment (*Secretaria Municipal de Meio Ambiente*: SMAC) is in charge of monitoring air quality. This organization is the central organization of the municipal environmental management system.

It also publishes the results of air quality monitoring. An example of monitored results is shown in Table 2-9, which was downloaded from the website of INEA. Based on the table below, air quality is almost good at this time.

Table 2-9 Monitoring Result by SMAC on 3 October 2012 (Example)

	N	laximum Conc	entration Pollu	tants Monitore	d	Air Quality	Classification
Station	SO2	со	MP10	03	NO2	Index (IQA)	
	[µg/m³](3)	(ppm) (2)	(µg/m³)(3)	[µg/m³](1)	[µg/m³](1)		İ
Bangu	3,5	0,7	54,4	<u>170,8</u>	79,8	126	Inadequada
Copacabana	4,0	0,4	<u>58,3</u>	49,5	ND	55	Regular
São Cristóvão	9,3	0,3	30,2	138,0	ND	30	Boa
Unidade Móvel Inhaúma		Ten	nporariamente	desativada par	a reposicionam	ento	
Campo Grande	1,5	0,6	52,9	<u>142,3</u>	91,2	89	Regular
Centro	5,2	0,3	<u>39,4</u>	52,6	ND	39	Boa
Irajá	3,5	0,5	37,6	<u>112,9</u>	81,3	71	Regular
Pedra de Guaratiba	NM	NM	63,4	124,6	NM	78	Regular
Tijuca	1,7	0,7	45,2	<u>80,1</u>	ND	50	Regular
	SO2	со	MP10	О3	NO2	Air Quality	Classification
	[µg/m³](3)	(ppm) (2)	(µg/m³)(3)	(µg/m³)	(µg/m³)(1)	Index (IQA)	
	0 - 80	0 - 4	0 - 50	0 - 80	0 - 100	0 - 50	BOA
Concentration ranges of	81 - 365	4,1 - 9	51 - 150	81 - 160	101 - 320	51 - 100	REGULAR
pollutants to calculate the IQA	366 - 800	9,1 - 15	151 - 250	161 - 200	321 - 1130	101 - 199	INADEQUADA
	801 - 1600	15,1 - 30	251 - 420	201 - 800	1131 - 2260	200 - 299	MÁ
	1601 - 2100	30,1 - 40	421 - 500	801 - 1000	2261 - 3000	> 300	PÉSSIMA

Classification

Meaning of Classification

Witually no health risks.

REGULAR

REGULAR

REGULAR

Reople of sensitive groups may experience dry cough and tiredness. The population in general is not affected.

INADEQUADA

The entire population may have symptoms such as dry cough, fatigue, burning eyes, nose and throat, and thill has shortness of breath and wheeding. More serious effects on the health of sensitive groups.

PESSIMA

The entire population can present serious risks of manifestations of respiratory and cardiovascular diseases. Increase in premature deaths in people sensitive groups.

(1) Average maximum 1 h, (2) Average maximum 8 h, (3) Average 24 h, (4) IQA calculated for the last 24 h, ND - Not available, NM - Not monitored by the station

Source: JICA Study Team

Figure 2-35 Monitoring Areas for Air Quality by SMAC

2.1.5 Current Condition of Telecommunications

(1) Telecommunications in Brazil

1) General

Brazil's telecommunications and technology information has expanded rapidly and is one of the highest worldwide. This is due to the Brazilian economic growth and exploitation mainly by private companies. The main public policy for telecommunications in Brazil is in the National Broadband Program (*Programa Nacional de Banda Larga*: PNBL) established by the Decree 7.175/2010, it was intended to increase the coverage of fast internet in Brazil, reducing the cost to the end user, and increasing the speed of connection.

The PNBL also includes investments in the direct federal government on 31,000 km of Optical Fiber Backbone, which has materialize by the end of 2012 that will extend to major Brazilian cities, reaching almost half of the country's population. The telecommunication sector in Brazil was primarily responsible for the record history of foreign inflows into the country in 2011. The establishment of a National Network that makes use of optical fibers in the field of Union aims to improve the infrastructure for broadband in Brazil and disseminate the service offering. The priority of the National Network is to focus on creating a network for the federal corporate capital, which meets the needs of the government and the public, and offers capacity in locations without communication service providers or with high rates or low economic attractiveness, as well as in low-income areas in the metropolitan regions.

Source: http://www4.planalto.gov.br/brasilconectado/pnbl/implantacao-e-desenvolvimento

Figure 2-36 Development Plan of Optical Fiber National Network

The federal government is conducting these actions for these sectors in order to achieve the following goals by 2015:

- The number of households with access to the internet will be more than double, from 17.4 million to 40 million;
- Growth will be similar with TV subscriptions: it will be 32% of households against the current 18%;
- 70% of the population will use the internet, against 41.7% stated in the survey of 2009;
- Each monthly service of 190 minutes will increase by 75% of the current average;
- All public schools in Brazil will have broadband internet. Today, it is only available in urban schools; and
- •The share of domestic production in the national market for equipment and telecommunication apparatus will rise to 70% between 2017 and 2022.

Another key objective of the PNBL is to take up the countryside compliance with voice and data. To achieve this goal, the government will bid to track a frequency of 450 MHz (Sub-ranges of 451 MHz to 458 MHz and from 461 MHz to 468 MHz) that will be used in reaching remote rural areas with a progressive increase in coverage and speed.

2) Fixed telephone

The number of fixed telephones in Brazil is relatively low and since 2002 this number has been more or less stagnant and even decreasing, losing customers to mobile telephones.

Brazil ended 2011 with 43 million users accessing the Fixed Switched Telephone Service (STFC), a growth of 2.1% over the previous year as detailed in the chart below. With this evolution, density service reached 22 accesses for each group of one hundred residents.

Between 2010 and 2011, the density service in Brazil and the number of hits per hundred residents had a slight increase, from 21.7 to 22.

Source: ANATEL

Figure 2-37 Access and Density of Fixed Telephone in Brazil

Among the units of the federation, Sao Paulo, with 38.6 accesses to every hundred residents, had the highest density service; Maranhão, with six hits to every hundred residents, had the lowest density. Between 2010 and 2011, the highest growth was recorded in Acre, where the density increased by 13.8%, from 9.4 to 10.7. The largest decrease of 14.3% was in Amapá, where the index fell from 9.8 to 8.4. The following chart presents the density of fixed telephones throughout the country.

Source: ANATEL

Figure 2-38 Density of Fixed Telephone in Each State

3) Mobile telephone

Brazil ended 2011 with 242.2 million accesses to the mobile service, a growth of 19.4% in the previous year, when the country had 202.9 million accesses. The following chart shows how the number of mobile accesses has evolved in recent years.

In 2011, the density of the service accesses reached 123.9 operations in every hundred people with an increase of 18.3% compared to 2010, when Brazil surpassed access to the personal mobile service per capita.



Source: ANATEL

Figure 2-39 Access and Density of Mobile Telephone in Brazil

In comparison with 2010, all units of the state had grown in density service at the end of 2011, only Maranhão had not exceeded the goal of a cellular per capita density (80.4), although it registered the highest percentage growth in the previous year.

Between 2010 and 2011, the largest variations in density of personal mobile service occurred in Maranhão (32.2%), Piauí (27.6%), and Pará (27.1%). The smallest variations were recorded in Santa Catarina (13.9%), in the Spirit Ghost (14%), and Rio Grande do Sul (14.2%). The following graph shows the development of density in all Brazilian states between 2010 and 2011.

Source: ANATEL

Figure 2-40 Access and Density of Mobile Telephone in Each State

One of the main characteristics of the mobile service is the rapid technological change associated with the provision of service. In 2010, there were more terminals exclusively for analog (Advanced Mobile Phone System (AMPS) technology) assets in the plant personal mobile service operators. In 2011, the same happened with the accesses of the Time Division Multiple Access (TDMA) digital technology or so called second generation (2G).

The development and bidding for the fourth generation mobile (4G) is one of the priority actions in Brazil since it will expand access to telecommunications mobile high speed broadband. This means that the population will have access to data services with speeds of up to ten times higher than those of today with telephony 3G.

Furthermore, this new technology will be critical to ensure that future needs are met by way of a larger broadband for major sporting events that will be hosted by Brazil like the FIFA Confederations Cup 2013, World Cup in 2014, and Olympics in 2016. The frequency range of 2.5 GHz, which will allow the operation of 4G telephony, will be auctioned this year, with great interest from the sector and a prediction of large investments.

-Smartphone-

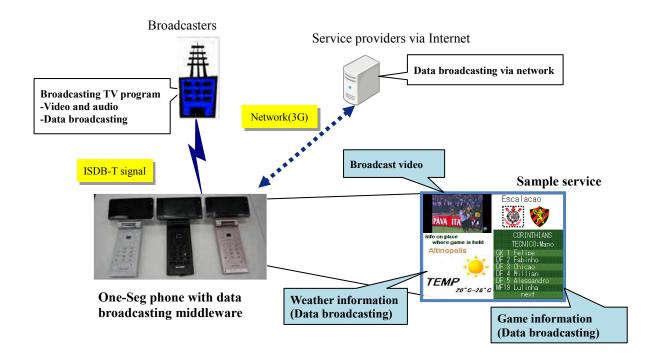
The smartphone market in Brazil has been growing. One of the key factors contributing to this market growth is the declining price of smartphones. The smartphone market in Brazil has also been provided in a number of incentives by the local government for the production of the 4G technology of smartphones in the country.

Recently, many navigation services have been available on smartphones in advanced countries. In Brazil, the Google Map application service has also been introduced. The effectiveness and convenience of the smartphone will improve together with network speed enhancement.

Figure 2-41 Google Map with Smartphone

-Mobile phone with One-Seg TV function-

Due to the implementation of digital TV in Brazil, One-Seg TV function is also available, both on existing/traditional phones and on smartphones. During the London Olympics, many mobile phones with this service were sold to enable users to watch the Olympic Games in Brazil. Since then, the mobile phone with One-Seg TV function has not been so popular. If useful and important information could be accessed by using data broadcasting, it would most certainly be more popular. Currently, there are few services that provide data broadcasting. The data broadcasting specification of One-Seg TV function is Ginga, defined by Forum SBTVD—Brazilian System for Digital Television (*Sistema Brasileiro de Televisão Digital*: SBTVD). See detail in 1.1.5 (1) (6) Digital TV. Figure 2-42 shows a picture of a smartphone with One-Seg TV function in Brazil. The One-Seg TV can be watched in Brazil. When the user activates One-Seg TV function, the data broadcasting service starts to show various information. However, in Brazil, the broadcaster is not always broadcasting it. Besides, the band of data broadcasting is not used effectively. The band can be used for various information services in the future.


Figure 2-42 Smartphone with One-Seg TV

-Experiment project for data broadcasting -

From 2009 to 2010, the Japanese Ministry of Internal Affairs and Communications performed a substantial experiment on data broadcasting in Brazil. The purpose of this experiment is to emulate a real broadcasting system (broadcasting control system, receiving terminal, and interactive service) and the main features of the project are as follows:

- -To contribute in publishing the Operational Guideline for the combined use of broadcasting and interactive services.
- -To accelerate commercial services by showing a built on-site model system based on the above Operational Guideline for broadcast related members.

The conclusion of the project was favorable in relation to interactive services. For this reason, the Brazilian government needs to encourage private companies to import requirements from commercial services into Ginga specifications and the Operational Guideline must be improved to accelerate commercial services in the near future.

Video and images by ©Globo Comunicações e Participações S.A. All rights reserved.

Figure 2-43 System Architecture of Experiment

4) Multimedia (Internet)

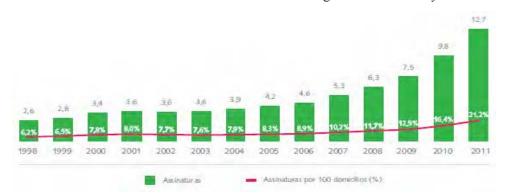
The main telecommunication service to offer fixed access to broadband Internet was the Multimedia Communication Services (*Serviços de Comunicação Multimídia*: SCM) in 2011, with a growth of 16.8% over the previous year. Brazil ended the year with 18.5 million accesses to the service and, as a result of this expansion of supply, there are 30.7 accesses for every hundred households.

Source: ANATEL

Figure 2-44 Access and Density of Multimedia (Internet) in Brazil

Federal District (63.7), São Paulo (53.1), Rio de Janeiro (42.2), Paraná (36.9), Santa Catarina (36.4), and Rio Grande South (31.4) were the six states of the Federation that ended the year with a greater density. The states with the lowest densities of SCM were Amapá (3.1), Maranhão (6.8), Pará (7.0), Piauí (8.8), and Alagoas (10.9). The following chart shows how density service has evolved throughout the country between 2010 and 2011.

Source: ANATEL


Figure 2-45 Access and Density of Multimedia in Each State

This growth in the number of accesses of SCM was the result of providing allied government investment projects, such as the National Broadband Plan and Broadband in Schools Project Public Urban. Besides these 18.5 million accesses of SCM at the end of the year, Brazil had 41.1 million mobile accesses to the Internet with the personal mobile service.

5) Television (TV)

With over 2.9 million additional subscribers, Brazil ended 2011 with 12.7 million subscription services to Pay TV reflecting a growth of 29.6% over the previous year. Considering the IBGE estimate of 3.3 people per home, the pay TV services are available to 42 million Brazilians.

As a result of this growth, 21.2% of households were served by the service by the end of 2011, and the chart below shows the evolution of the number of signatures in recent years.

Source: ANATEL

Figure 2-46 Access and Density of TV in Brazil

Federal District (39), Sydney (38.2), Rio de Janeiro (33.1), Amazonas (22.7), Rio Grande do Sul (22.3), and Santa Catarina (22.1) were the only units of the Federation which closed with an above average performance (21.2) of national density of TV services in 2011. Although it registered the largest percentage change in the number of households served between 2010 and 2011, the Piauí ended the year with the lowest penetration service, with 5.3 subscriptions for every 100 households. In late 2011, São Paulo had more than 5.1 million signatures for pay TV services, which accounted for 40.4% of all accesses. The graph below shows the evolution of density of TV services between 2010 and 2011.

Source: ANATEL

Figure 2-47 Access and Density of TV in Each State

In many countries, the Smart TV services by which users can receive various services on TV via Internet connection, have been introduced in recent years. Current Pay TV services in Brazil are based on cable television (CATV) or satellite broadcasting, but services based on Internet connection are likely to start soon.

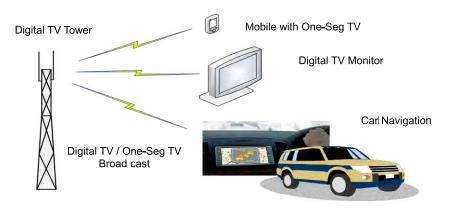
- Digital TV -

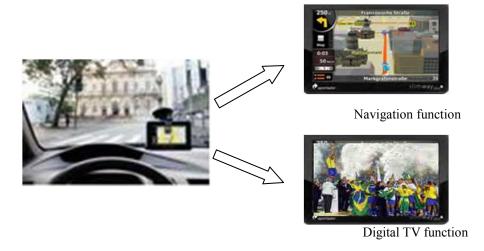
Television is the basic electronic product used in Brazil, with 96.6% presence in the lives of citizens. The Brazilian government chose the Integrated Services Digital Broadcasting - Terrestrial (ISDB-T) International as their broadcasting system. It is based on ISDB-T which is maintained by the Association of Radio Industries and Businesses (ARIB), a Japanese organization and by Forum SBTVD. The choice aimed to benefit society as well as the content production sector and industry, by promoting social inclusion in the country. It took into account the free high-definition (HD) reception and mobility. The system also allows other services to use band spectrum more efficiently. Today ISDB-T is accessible to over 550 million residents in countries with an aggregate GDP of more than US\$7 trillion, ensuring a worldwide market for converters and transmitters at competitive prices. Data broadcasting, coupled with the presence of television in the country, opens up great possibilities of services for the citizens, as well as business opportunities for broadcasters and advertisers. On this line, the government has been supporting initiatives and content innovative digital applications, games or platforms to serve the citizens. In this context, Brazilian Ginga was developed by scientists, as middleware standard for interactivity in the Brazilian digital TV.

Ginga is the specification of Brazilian digital TV. It is managed by Forum SBTVD, and its specifications are released by the Brazilian Association of Technical Standards (Associação Brasileira de Normas Técnicas: ABNT). Ginga contains two subsystems, i.e., Ginga-NCL and Ginga-J. Ginga-NCL is a language to show video, image, and text on digital TV. It can also contain Lua (script language) to describe basic procedure and application. Ginga-J is a language to run Java application on digital TV. Broadcasters can provide interactive and rich services for users by using the above subsystems.

By 2011, digital TV had already reached about 46% of the households in Brazil, which corresponds to more than 87 million people. The switch-off of the analogue signal is expected to be in 2016. Until then, the generating stations and retransmitting of television will use the two forms of transmission.

Owing to the digital TV implementation, digital TV or One-Seg TV can be watched on the mobile, TV monitor, and car navigation as shown below:




Figure 2-48 Digital TV Broadcasting Image

6) Car Navigation System in Brazil

The navigation system is becoming increasingly popular in Brazil. Most new cars coming onto the Brazilian market are not equipped with navigation system, but recently, some Japanese cars have been equipped with the Japanese navigation system upon arrival in Brazil. With the rise of car use in Brazil, navigation systems have been increasing accordingly.

The prices of the systems are from R\$350 to R\$450 for domestic product and R\$600 to R\$900 for international product. The domestic product is more popular and familiar to the Brazilians. The main function of the navigation system is to display a map of where you are and to show the route for your specified destination in 3D or other such display, based on the location data from the Global Positioning System (GPS) receiver. There is no other information on traffic such as traffic jams. Another major function, which is very popular in Brazil, is to be able to watch digital TV and to listen to FM/AM radio.

Due to the increasing popularity of smartphone and its navigation services, the popularity of the car navigation system has not increased recently. See Smartphone Section in 2.1.5(1)3) Mobile telephone as reference.

Source: Maker Home Page

Figure 2-49 Navigation Terminal in Cars

7) Government Network

The communication network serviced by the private telecommunication company is utilized for the communication between the national agency and federal state. This physically dedicated network has never been utilized for government network, but the military is utilizing their frequencies for its dedicated communication network provided by the Brazilian Agency of Telecommunications (*Agência Nacional de Telecomunicações*: ANATEL).

The Brazilian Association of State Entities for Information Technology and Communication (Associação Brasileira de Entidades Estaduais de Tecnologia da Informação e Comunicação: ABEP) has a mission to promote the use of information and communication technologies in public administration. This is aimed at improving governance, service delivery, and citizenship. Under ABEP, an entity is activating in each state to promote the use of information and communication technologies in public administration. In the state, they contract a private telecommunication company to build the public administration network and use the private telecommunication company's network as Virtual Private Network (VPN).

(2) Telecommunications in Rio de Janeiro

The trend of telecommunication in Rio de Janeiro is the same as that of Brazil. Rio de Janeiro (RJ) has been leading the telecommunication growth in Brazil together with the Federation: Brasilia (DF) and San Paulo (SP).

The density and the increasing rate of fixed telephones, mobile phones, multimedia (internet), and TV between 2010 and 2011 are shown in Table 2-10 below.

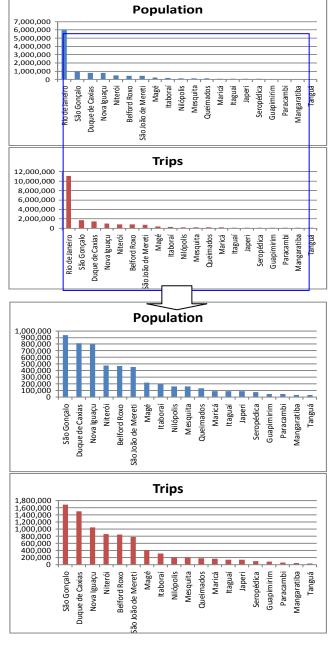
Increasing Rate Item Density 2010 2011 Fixed 33.3 (access/100 population) 33.6 100.9% telephone (access/100 population) Mobile 114.9 (access/100 population) 135.4 118% telephone (access/100 population) Multimedia 42.2(access/100 households) 137% 30.9 (access/100 households) TV 27.8 (access/100 households) 33.1(access/100 households) 119%

Table 2-10 The density and the increasing rate by each devices

Source: JICA Study Team

The density of fixed telephones in Rio de Janeiro (RJ) had a slight increase from 33.3 to 33.6, while the density of mobile phones has rapidly increased from 114.9 to 135.4.

The digital TV was already implemented and has been served for Rio de Janeiro (RJ).


2.2 TRAFFIC/TRANSPORTATION CHARACTERISTICS IN RIO DE JANEIRO

2.2.1 Overall Condition

(1) Demand

1) Number of Trips

The majority of trips in the Metropolitan Region of Rio de Janeiro (*Região Metropolitana do Rio de Janeiro*: RMRJ) are generated by the people living in the municipality of Rio de Janeiro. The next most popular municipalities are Sao Goncalo, Duque de Caxias, Nova Iguacu, Niteroi, Belford Roxo, and São João de Mereti.

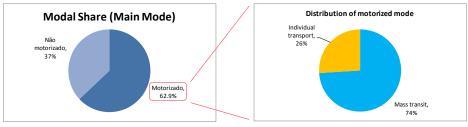
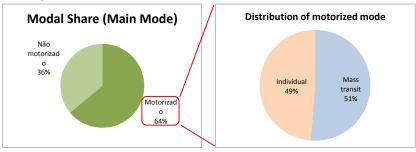

Source: PDTU/RJ 2005

Figure 2-50 Number of Trips in the Metropolitan Region of Rio de Janeiro

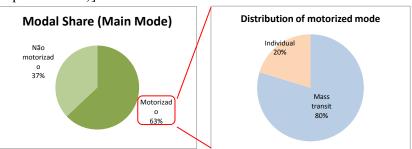
2) Modal Share

For motorized trips, 74% of trips are made by mass transit in RMRJ and 72% in the municipality of Rio de Janeiro compared with Tokyo, where 51% of motorized trips are done by mass transit.

[Metropolitan Region]


Source: PDTU/RJ 2005

[City of Rio (Origin)]


Source: PDTU/RJ 2005

[Tokyo Metropolitan Region]

Source: Tokyo Metropolitan Person Trip Survey

[Central Tokyo (23 special wards)]

Source: Tokyo Metropolitan Person Trip Survey

Figure 2-51 Modal Shares in Rio and Tokyo

These figures show the modal share of trips originating from each zone. The share of mass transit in all motorized trips is around 70%-80 %. However, only Niteroi has a larger proportion of the individual trips.

800,000 1,200,000 1,600,000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Centro Centro Sul 7 Sul m Praça Mauá - Caju Praça Mauá - Caju Tijuca - Vila Izabel Mass transit Tijuca - Vila Izabel 2 Zona da Central Zona da Central Individual transport Jacarepaguá Jacarepaguá Norte Norte Barra - Recreio Barra - Recreio 6 Oeste - Rio Oeste - Rio 400,000 800,000 1,200,000 1,600,000 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Niterói Niterói São Gonçalo São Gonçalo 12 Extremo - Leste 12 Extremo - Leste 13 13 Fundo - Baía Fundo - Baía 14 14 Duque de Caxias Duque de Caxias Baixada - Leste 15 Baixada - Leste Mass transit 16 Baixada - Oeste Baixada - Oeste Individual transport Extremo - Oeste Extremo - Oeste 13 14 16 15 17 11

[Distribution of motorized mode in macro zones (Origin)]

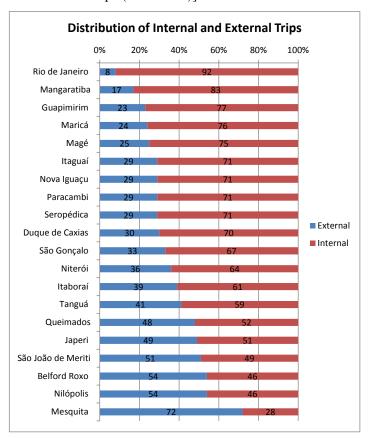

Source: PDTU/RJ 2005

Figure 2-52 Modal Share in Macro Zones

3) Attraction and Generation

In the municipality of Rio de Janeiro, internal trips amount to more than 90% of the total trips generated from the municipality of Rio de Janeiro. In other municipalities surrounding the municipality of Rio de Janeiro, such as Nova Iguacu and Niteroi, the share of external trips is about 30%, which seems that trips generated from these municipalities are coming to the municipality of Rio de Janeiro.

[Distribution of internal and external trips (Motorized)]

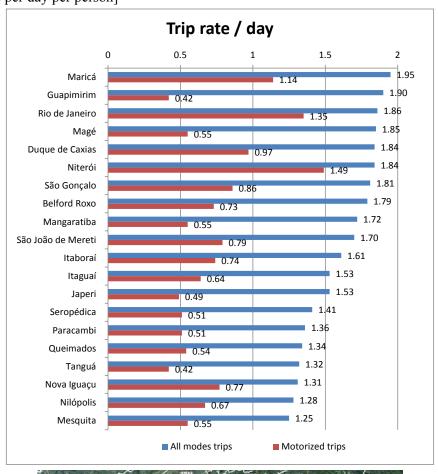

Source: PDTU/RJ 2005

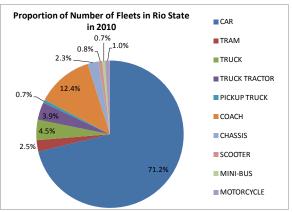
Figure 2-53 Internal and External Trips in Each Municipality

4) Trip Rate

Larger cities show more trip rates. As for motorized trips, Niteroi shows the largest trip rate in RMRJ followed by Rio de Janeiro and Marica.

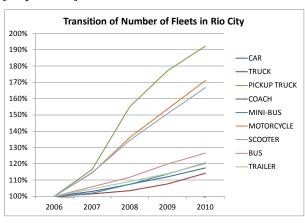
[Trip rate per day per person]

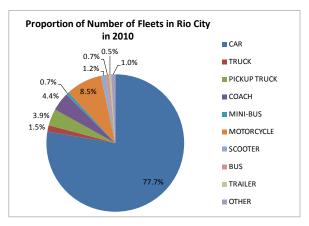
Source: PDTU/RJ 2005


Figure 2-54 Trip Rate (/day/person) in Each Municipality

(2) Number of Fleet

The number of fleets has increased in the last five years. The increased rates in RMRJ are higher than in RJ.


[State of Rio]



Source: DENATRAN

[City of Rio]

Source: DENATRAN

Figure 2-55 Number of Fleets in Rio

2.2.2 Traffic Conditions

(1) Road Network

1) Classification by Administrator

i) Basic Classification

In the Metropolitan Region of Rio de Janeiro, the road networks are administrated by the federal government, state government, and municipal government. In the municipality of Rio de Janeiro, the municipal government is the only road administrator.

Table 2-11 Road Administrators in the Metropolitan Region of Rio de Janeiro

Area	Road Type	No. of	Example	Administrators
		Lines		
City of Rio de	Federal Road	1	BR-101 (Av.	Municipal
Janeiro			Brasil)	Government
				of Rio
	State Road	1	Linha Vermelha	Municipal
				Government
				of Rio
	Municipal	Many	Linha Amarela	Municipal
	Road		Av. das Americas	overnment of
				Rio
Other Cities	Federal Road	5	BR-040, BR-101,	Federal
			BR-116, BR-465,	Government
			BR-493	
	State Road	21	RJ-116, RJ-124	Rio State
			RJ-085, RJ-127	
	Municipal	Many	-	Each
	Road			Municipality

ii) Network

Figure 2-56 shows the trunk road network in the Metropolitan Region of Rio de Janeiro.

Figure 2-56 Current Road Network in RMRJ by Administrators

iii) Concession

In Brazil, the main expressways are operated by private companies. There are eight concession roads existing in the Metropolitan Region of Rio de Janeiro.

Table 2-12 Concession Road in the Metropolitan Region of Rio de Janeiro

Road	NI	N	Total Length	Length in	Concession
Admin.	No.	Name	(km)	RMRJ (km)	Company
Federal	DD 116	NovaDutra	402	(4.0	CCR NovaDutra
Government	BR-116	NovaDutra	402	64.8	(Grupo CCR)
	BR-101	BR-101 Ponte	13.2	13.2	CCR Ponte
	DK-101	Ponte	13.2	13.2	(Grupo CCR)
		CONCER	179.9	48.5	CONCER -
					Companhia de
	BR-040				Concessão
					Rodoviária Juíz de
					Fora-Rio
	BR-116	CRT	142.5		CRT -
				39.3	Concessionária
					Rio Teresópolis
					S/A
	BR-101	Fluminense	320.1	135.7	Autopista
					Fluminense
	DK-101				(Grupo OHL
					Brasil)
Rio State	RJ-116	Rota 116	140.4	11.9	Concessionária
					Rota 116 S/A
	RJ-124	ViaLagos	56.0	0.0	CCR ViaLagos
					(Grupo CCR)
Rio City	-	Linha Amarela	17.4	17.4	Linha Amarela
					S/A - LAMSA

Figure 2-57 shows the concession roads in the Metropolitan Region of Rio de Janeiro. Radial roads from the municipality of Rio de Janeiro are operated by private companies.

Figure 2-57 Concession Road Network in RMRJ

2) Length of Road Network

[By administrators]

Table 2-13 shows the length of road networks in RMRJ. In the municipality of Rio de Janeiro, the length of main road is about 300 km.

Table 2-13 Length of Roads in the Metropolitan Region of Rio de Janeiro

Administrators	Type of Management	No. of Roads	Road No.	Total Length (km)	Total Length in RMRJ (km)
Federal	Concession	5	040, 101, 116	1,057.7	301.5
Government	Federal Government (DNIT)	3	101, 465, 493	-	67.8
	City Government (CET-Rio)	1	101 (Rio City)	-	65
Rio State	Concession	2	116, 124	196.4	11.9
	State Government (DER)	19	85, 93, 99, 101, 102, 104, 105, 106, 107, 110, 111, 112, 114, 115, 118, 119, 122, 125, 127	-	390.4
	City Government (CET-Rio)	1	71 (Linha Vermelha)	-	14.1
Rio City	Concession	1	Linha Amarela	17.4	17.4
	City Government (CET-Rio)	Many	-	-	280 (Arterial Road)
Other Municipalities	Government	Many	-	-	172.8 (Arterial Road)

Source: DER - RJ Road Map

[By pavement condition]

In RMRJ, some of the local roads are still unpaved.

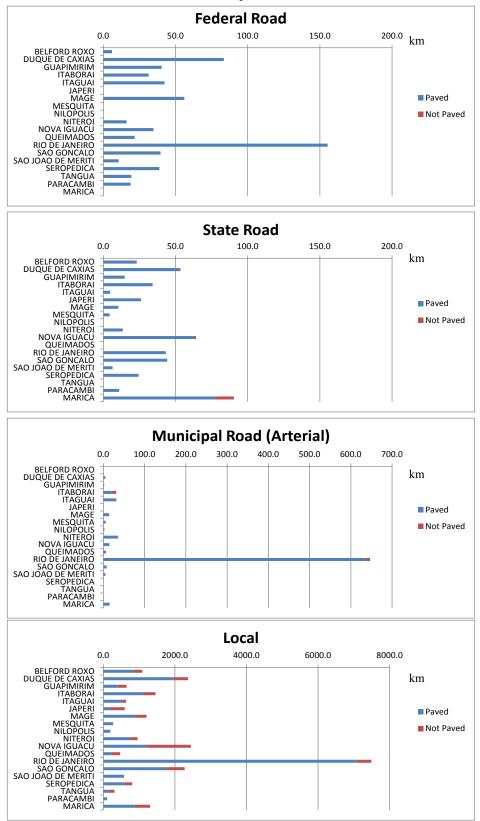


Figure 2-58 Length of Roads in the Metropolitan Region of Rio de Janeiro

[Federal road]

[State road]

[Municipality road (Arterial)]

[Local road]

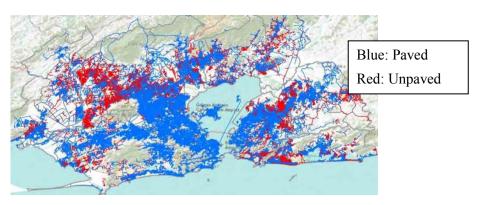


Figure 2-59 Pavement Condition in the Metropolitan Region of Rio de Janeiro

[Bridge and tunnel]

These figures show the length of bridges and tunnels in each municipality. The municipality of Rio de Janeiro has many bridges and tunnels. Strategic maintenance is necessary in these sections.

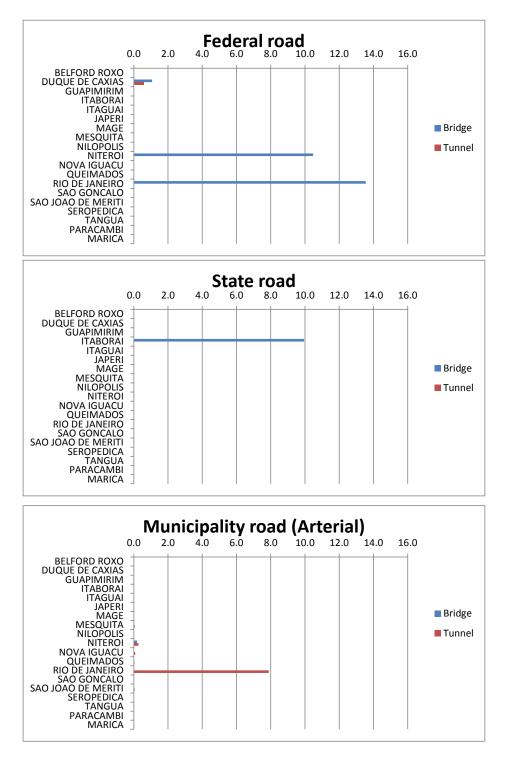


Figure 2-60 Length of Bridge and Tunnel in the Metropolitan Region of Rio de Janeiro

[Federal road, bridge, and tunnel]

[State road, bridge, and tunnel]

No tunnel exists.

[Municipality road, bridge, and tunnel]

Figure 2-61 Location of Bridges and Tunnels in the Metropolitan Region of Rio de Janeiro

[Traffic sign for "sharp curve" and "winding road"]

In the road network of RMRJ many sharp curves and winding roads exist because of its geographic characteristics. In these sections ITS services for road safety are necessary.

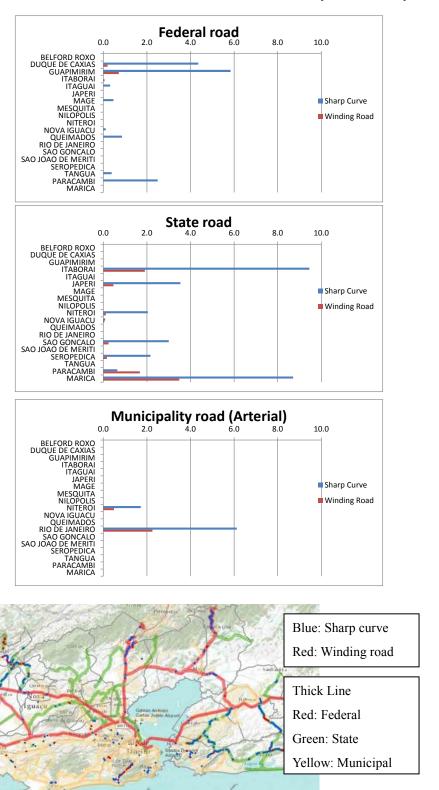


Figure 2-62 Location of Traffic Sign for "Sharp Curve" and "Winding Road" in the Metropolitan Region of Rio de Janeiro

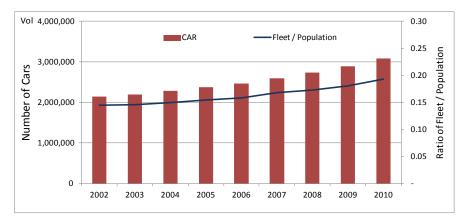
(2) Planned Network

In the RMRJ, new roads of about 200 km long are planned. However, the municipality of Rio de Janeiro does not have a specific plan for a new road network.

Table 2-14 Length of Planned Roads in the Metropolitan Region of Rio de Janeiro

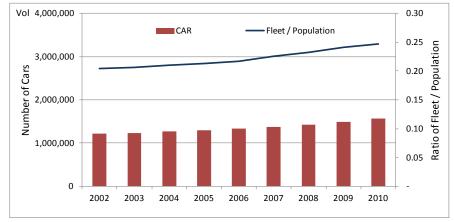
Administrators	No. Of Roads	Road no.	Total Length in RMRJ (km)	
Federal Government	1	BR-493 109 (Outer Ring)	77.1	
Rio State	5	RJ-102 RJ-103 RJ-113 RJ-115 RJ-125	15.4 42.4 14.4 21.0 14.2	107.2
Rio City	1	-	-	
Other Municipalities	3	Mage, Itaborai, Niteroi	8.9	

Source: DER - RJ Road Map

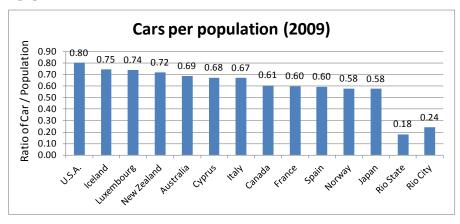

Figure 2-63 Planned Road Network in RMRJ

(3) Traffic Volume

1) Number of Cars

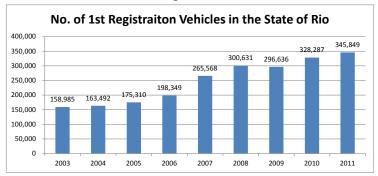

The number of cars in Rio de Janeiro has been increasing, but the number of cars per population is still low compared with industrial countries.

[Number of cars in the state of Rio de Janeiro]


Source: DENATRAN

[Number of cars in the city of Rio de Janeiro]

Source: DENATRAN


[Number of cars/population in the world]

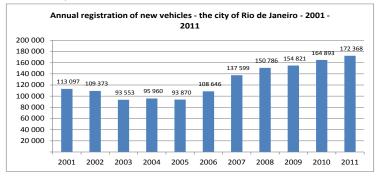
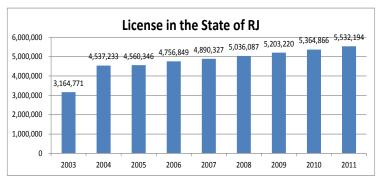

Source: Statictics Bureau of Japan

Figure 2-64 Number of Cars in Rio and the World

[New car registration in the state of Rio de Janeiro]


[New car registration in the city of Rio de Janeiro]

Source: DETRAN - RJ

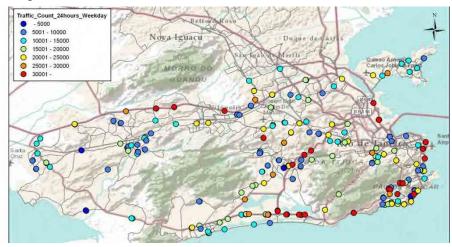
Figure 2-65 Car Registration in Rio

[Driving license in the state of Rio de Janeiro]

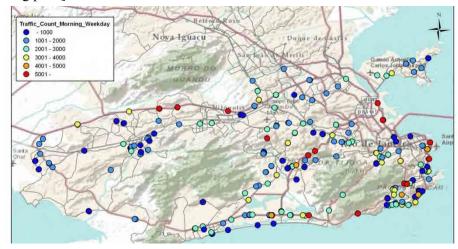
[New driving license in the state of Rio de Janeiro]

Source: DETRAN - RJ

Figure 2-66 Driving License Registration in the State of Rio de Janeiro


2) Traffic Count Data

Traffic count data derived from traffic monitoring equipment is provided by the Traffic Engineering Company of Rio de Janeiro (*Companhia de Engenharia de Tráfego do Rio de Janeiro*: CET-Rio) (http://www.rio.rj.gov.br/web/smtr/exibeconteudo?article-id=107097). Detailed analysis of traffic characteristics is shown in Chapter 3.


Traffic volume for 24 hours (7:00 a.m.–7:00 a.m.), morning peak (7:00 a.m.– 9:00 a.m.), and evening peak (5:00 p.m.– 7:00 p.m.) from the average weekday traffic volume data in May 2012 is shown in Figure 2-67.

Trunk roads like Av. Brasil, Av. das Americas, and Linha Amarela have high traffic volume. Also, the Centro and South Zone of the city of Rio de Janeiro show high traffic volume.

[Weekday 24 hours]

[Weekday morning peak]

[Weekday evening peak]

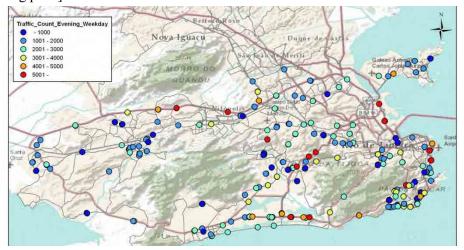


Figure 2-67 Traffic Volume

(4) Travel Speed

These figures show that traffic jams usually occur along arterial roads in the city of Rio de Janeiro and tend to occur in the evening.

[Reference: Traffic condition in the city of Rio de Janeiro (Google)] Tuesday 8:00 a.m.

Tuesday 2:00 p.m.

Tuesday 6:00 p.m.

Source: Google map

Figure 2-68 Traffic Condition in the City of Rio de Janeiro

In particular, traffic jam tends to occur along the road between Barra da Tijuca, Copacabana, and Centro.

[Ref: Traffic condition in the central Rio (Google)]

Tuesday 8:00 a.m.

Tuesday 2:00 p.m.

Tuesday 6:00 p.m.

Source: Google map

Figure 2-69 Traffic Condition in Central Rio

(5) Traffic Monitoring

The Rio Operations Center (*Centro de Operações da Prefeitura do Rio*: COR) was opened in December 2010. The traffic operation center of CET-Rio is located here as well as other organizations, such as the civil defense department and security department.

Bulletins are published every day from COR, and normally there are three bulletins published on its website (http://www.rio.rj.gov.br/web/corio). In these bulletins, traffic conditions are evaluated and relayed to the public.

Figure 2-70 Photo of COR

Source: JICA Study Team

Figure 2-71 Daily Bulletin from COR

An example of a bulletin for traffic conditions is shown below.

[17 October 2012, 6:00 a.m.]

Expressways

Good

Aterro do Flamengo, Autoestrada Lagoa-Barra e Estrada Grajaú-Jacarepaguá. Elevados do Joá, da Perimetral e Paulo de Frontin. Túneis do Joá, de São Conrado, Zuzu Angel, Acústico, Rebouças e Santa Bárbara.

Congested

Avenida Brasil, sentido Centro, de Bangu a Deodoro, Vila Militar, Coelho Neto, Cordovil, Penha, Bonsucesso e Benfica.

Linha Vermelha, sentido Centro, altura da Washington Luiz.

Linha Amarela (Based on concession company information)

Traffic to Barra is slow. Traffic to Centro is good.

Rio-Niteroi Bridge (Based on concession company information)

Traffic is normal in both directions.

<u>Centro</u>

Good

Avenida Presidente Vargas, Avenida Rio Branco e Avenida Passos. Trevo das Forças Armadas. Rua de Santana e Praça da República. Elevado 31 de Março. Avenidas Rodrigues Alves, sentido Centro; General Justo, sentido Centro; e Av. Marechal Câmara.

Zona Oeste

Good

Avenidas Lúcio Costa, Salvador Allende e Ministro Ivan Lins. Largo da Taquara. Avenidas Cesário de Melo e Rua da Feira. Estradas dos Bandeirantes e dos Três Rios. Avenidas Santa Cruz, das Américas, Embaixador Abelardo Bueno, Geremário Dantas e Ayrton Senna.

Zona Sul

Good

Avenidas Epitácio Pessoa, Borges de Medeiros, Delfim Moreira, Vieira Souto, Atlântica. Ruas Jardim Botânico, Barata Ribeiro, Prefeito Mendes de Morais, Lauro Sodré, Venceslau Brás, São Clemente, Humaitá, Voluntários da Pátria, Pinheiro Machado, das Laranjeiras e Corte do Cantagalo

Zona Norte

Good

Avenidas Dom Helder Câmara, Marechal Rondon, Pastor Martin Luther King Jr. e Amaro Cavalcanti. Ruas Uruguai, Hermengarda, Maxwell, Dias da Cruz, Conde de Bonfim, Teodoro da Silva, e Viaduto de Todos os Santos. Praça da Bandeira, Avenida Maracanã e Radial Oeste.

[17 October 2012, 11:00 a.m.]

Expressways

Good

Aterro do Flamengo, Estrada Grajaú-Jacarepaguá. Elevado do Joá. Túneis do Joá, de São Conrado, Acústico.

Congested

Túnel Rebouças. Elevado Paulo de Frontin. Linha Vermelha, sentido Centro, altura da Washington Luiz.

Slow

Túnel Santa Bárbara, sentido Laranjeiras. Autoestrada Lagoa-Barra, sentido Lagoa. Túnel Zuzu Angel, sentido Gávea. Elevado da Perimetral, sentido Aterro. Viaduto do Gasômetro.

Avenida Brasil, sentido Centro, em Brás de Pina, e, na pista lateral, da Penha até Bonsucesso.

Linha Amarela (Based on concession company information)

Traffic is normal.

Rio-Niteroi Bridge (Based on concession company information)

Traffic to Niterói is normal.

Traffic to Rio has slow access to the Perimeter and Novo Rio Bus Terminal

<u>Centro</u>

Good

Avenida Rio Branco e Avenida Passos. Trevo das Forças Armadas. Rua de Santana e Praça da República. Avenidas General Justo, sentido Centro; e Av. Marechal Câmara.

Congested

Avenida Presidente Vargas, sentido Candelária. Avenidas Francisco Bicalho e Rodrigues Alves.

Slow

Avenida 31 de Março, sentido Túnel Santa Bárbara.

Zona Oeste

Good

Avenidas Lúcio Costa, Salvador Allende e Ministro Ivan Lins. Largo da Taquara. Avenidas Cesário de Melo e Rua da Feira. Avenidas Santa Cruz, das Américas e Ayrton Senna.

Congested

Rua André Rocha. Estradas dos Bandeirantes, do Mendanha e dos Três Rios. Avenida Embaixador Abelardo Bueno.

Slow

Avenidas Geremário Dantas e Nelson Cardoso.

Zona Sul

Good

Avenidas Epitácio Pessoa, Delfim Moreira, Vieira Souto, Atlântica. Ruas Jardim Botânico, Barata Ribeiro, Prefeito Mendes de Morais, Lauro Sodré, Venceslau Brás, São Clemente, Voluntários da Pátria, das Laranjeiras.

Congested

Avenida Borges de Medeiros. Ruas Pinheiro Machado, Humaitá e das Laranjeiras.

Slow

Corte do Cantagalo, sentido Copacabana.

Zona Norte

Good

Avenida Marechal Rondon. Ruas Uruguai, Hermengarda, Maxwell, Dias da Cruz, Conde de Bonfim e Viaduto de Todos os Santos. Praça da Bandeira, Avenida Maracanã e Radial Oeste.

Congested

Avenidas Pastor Martin Luther King Jr. e Amaro Cavalcanti. Ruas Teodoro da Silva e São Francisco Xavier.

[17 October 2012, 6:00 p.m.]

Expressways

Good

Aterro do Flamengo.

Congested

Túnel Rebouças. Elevado Paulo de Frontin. Estrada Grajaú-Jacarepaguá. Elevado do Joá. Túneis do Joá, de São Conrado, Acústico.

Slow

Linha Vermelha, sentido Baixada, do Caju à Infraero e, sentido Centro, da Infraero ao acesso à Linha Amarela.

Avenida Brasil, sentido Zona Oeste, altura do Caju, Bonsucesso e Parada de Lucas.

Autoestrada Lagoa-Barra, sentido Barra.

Perimetral, sentido Avenida Brasil.

Linha Amarela (Based on concession company information)

Traffic is slow in both directions.

Rio-Niteroi Bridge (Based on concession company information)

Traffic to Rio is slow until the access to Av. Brasil,

Traffic to Niterói is slow until reaching the toll plaza

Centro

Congested

Avenida Rio Branco e Avenida Passos. Rua de Santana e Praça da República. Avenidas General Justo, sentido Centro; e Av. Marechal Câmara.

Slow

Avenida 31 de Março, sentido Catumbi. Avenida Presidente Vargas, sentido Candelária. Avenidas Francisco Bicalho e Rodrigues Alves, sentido Avenida Brasil. Trevo das Forças Armadas

Zona Oeste

Congested

Rua André Rocha. Estradas dos Bandeirantes, do Mendanha e dos Três Rios. Avenida Embaixador Abelardo Bueno. Avenidas Lúcio Costa, Salvador Allende e Ministro Ivan Lins. Largo da Taquara. Avenidas Cesário de Melo e Rua da Feira. Avenidas Santa Cruz. Avenidas Geremário Dantas e Nelson Cardoso.

Slow

Avenidas das Américas, sentido Recreio, e Ayrton Senna, sentido Linha Amarela. Avenida Lúcio Costa, sentido Recreio, altura da Praça do Ó.

Zona Sul

Congested

Rua Humaitá e das Laranjeiras. Vieira Souto, Atlântica. Barata Ribeiro, Prefeito Mendes de Morais, Lauro Sodré, Venceslau Brás, São Clemente, Voluntários da Pátria, das Laranjeiras.

Slow

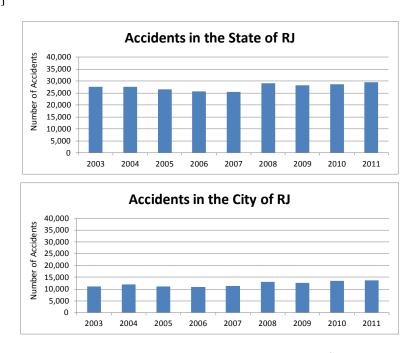
Corte do Cantagalo, sentido Copacabana. Avenida Borges de Medeiros, sentido Túnel Rebouças. Ruas Pinheiro Machado, sentido Túnel Santa Bárbara. Avenidas Epitácio Pessoa, sentido Túnel Rebouças e Delfim Moreira, sentido São Conrado. Rua Jardim Botânico, sentido Gávea.

Zona Norte

Congested

Ruas Teodoro da Silva e São Francisco Xavier. Avenida Marechal Rondon. Ruas Uruguai, Hermengarda, Maxwell, Dias da Cruz, Conde de Bonfim.

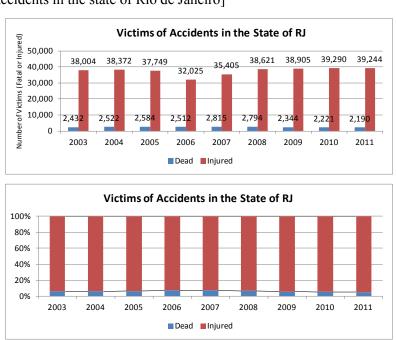
Slow


Avenidas Pastor Martin Luther King Jr. e Amaro Cavalcanti. Viaduto de Todos os Santos. Praça da Bandeira, sentido Méier, Avenida Maracanã, sentido Usina e Radial Oeste, sentido Méier. 24 de Maio, Arquias Cordeiro, altura do Engenhão. Dom Hélder Câmara, sentido Engenho de Dentro.

(6) Traffic Accidents

1) Number of Traffic Accidents

The number of traffic accidents has been constant through the years and it is necessary to reduce this figure.


[Traffic accidents]

Source: DETRAN – RJ provided

Figure 2-72 Number of Traffic Accidents in Rio de Janeiro

[Fatal and injured accidents in the state of Rio de Janeiro]

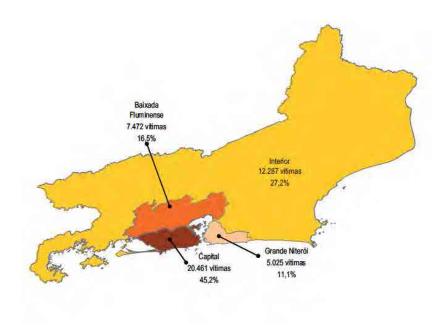
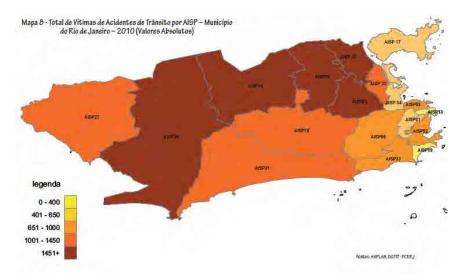

Source: DETRAN - RJ provided

Figure 2-73 Number of Victims of Accident in Rio de Janeiro


2) Location of traffic accidents Figure 2-74 shows that traffic accidents happened more in the city of Rio de Janeiro and along Av. Brasil.

[Distribution of traffic accidents in 2010]

State-wise

City-wise

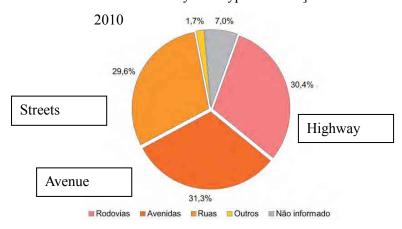
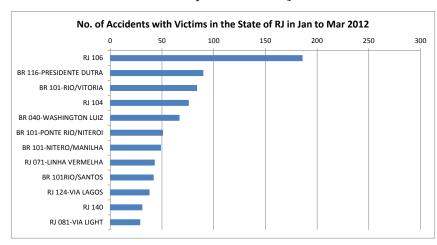
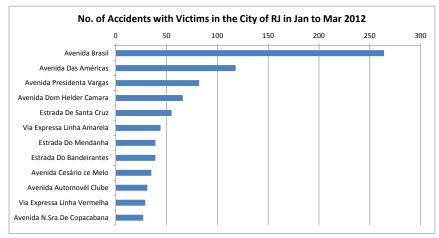

Source: Instituto de Segurança Pública

Figure 2-74 Distribution of Traffic Accidents in Rio de Janeiro

3) Traffic accidents by road type

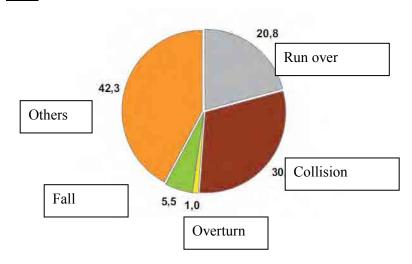

In the state of Rio de Janeiro, traffic accidents happened evenly on highways, avenues and streets. The roads, RJ 106, and Av. Brasil have the largest records of traffic accidents.

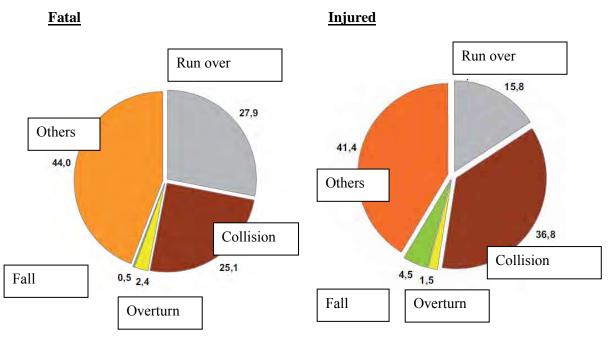

[Traffic accidents in the state of Rio de Janeiro by road types in 2010]

Source: Instituto de Segurança Pública

[Traffic accidents in the state of Rio de Janeiro by roads in 2012]

Source: DETRAN - RJ provided


Figure 2-75 Traffic Accidents by Roads and Road Types in Rio de Janeiro


4) Type of traffic accidents

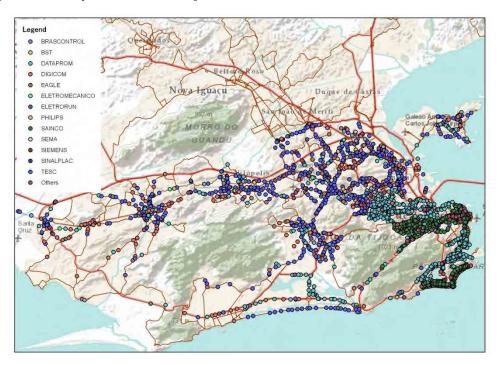
Types of traffic accidents are mainly "collision" and "run over". ITS could assist drivers to reduce these kinds of traffic accidents.

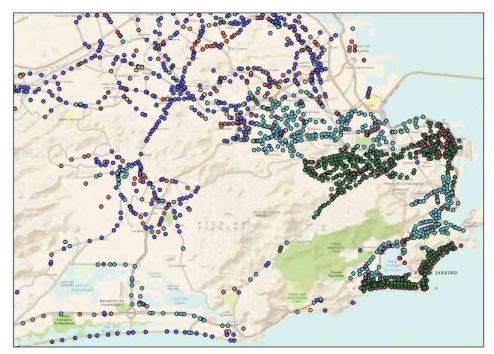
[Traffic accidents in the state of Rio de Janeiro by type in 2010]

Source: Instituto de Segurança Pública

Figure 2-76 Traffic Accidents by Types in Rio de Janeiro

(7) Traffic Control in Rio


1) Operation in the City of Rio de Janeiro


In the city of Rio de Janeiro the municipality operates road traffic. The government company, called CET-Rio, is in charge of the traffic control, such as traffic signals, variable message sign (VMS), and speed monitoring. The location of equipment for traffic operations and conditions of traffic control are described below.

i) Signal

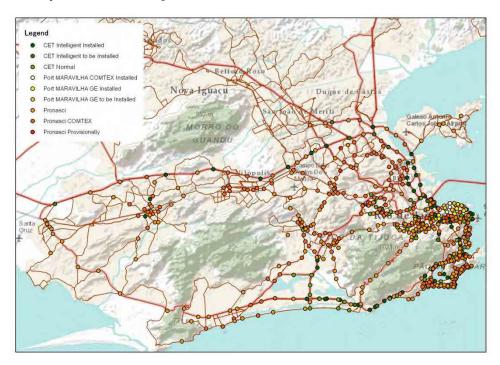
Traffic signals are located all over the city, especially in Centro and South zones.

[Traffic signals in the city of Rio de Janeiro]

Source: CET-Rio provided

Figure 2-77 Traffic Signals in the City of Rio de Janeiro

Table 2-15 List of Traffic Signals by Type in the City of Rio de Janeiro


Type	No. of Signals	Company
BRASCONTROL BTC - 2001	2	BRASCONTROL
BST / RT 87 P	3	BST
DATAPROM / Dataprim	33	DATAPROM
DATAPROM / DP-40	551	DATAPROM
DATAPROM / DP-40 - R2	1	DATAPROM
DIGICOM / CD-100	1	DIGICOM
DIGICOM / CD-200	17	DIGICOM
DIGICOM / CD-200 Plug In	193	DIGICOM
DIGICOM / FCA	5	DIGICOM
EAGLE		EAGLE
ELETROMECANICO	5	ELETROMECANICO
ELETRORUN	11	ELETRORUN
PHILIPS / AD-180		PHILIPS
SAINCO / RMX-Y	483	SAINCO
SEMA	1	SEMA
SIEMENS	2	SIEMENS
SINALPLAC	1	SINALPLAC
TESC / Flexcon II	6	TESC
TESC / Flexcon III	108	TESC
TESC / Flexcon III 4F	52	TESC
TESC / Flexcon III Baby	7	TESC
TESC / Flexcon IIIa	8	TESC
TESC / Flexcon IIIs	318	TESC
TESC / Flexcon IV	5	TESC
TESC / Meng - M2DA	145	TESC
TESC / Meng - M3	3	TESC
(Connected Directly into Light)	1	
(Sub Controller)	254	
(Off)	1	
(No there / Manual Drive)	13	
(No there / Drive by Battalion of PM)	1	
(No there / Drive by Firefighters)	1	
(No there / Signal in Flashing)	1	
Total	2,265	

Company	No. of Signals
BRASCONTROL	2
BST	3
DATAPROM	585
DIGICOM	216
EAGLE	6
ELETROMECANICO	5
ELETRORUN	11
PHILIPS	26
SAINCO	483
SEMA	1
SIEMENS	2
SINALPLAC	1
TESC	652
Total	1,993

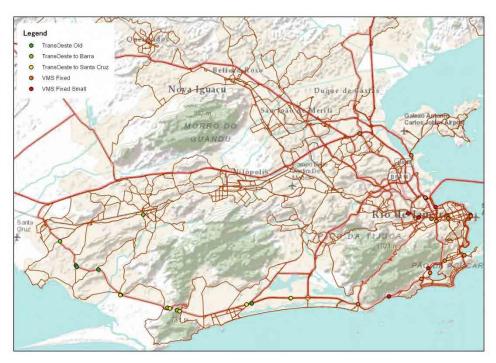
ii) Cameras

Cameras are located all over the city, especially concentrated in Centro and South zones.

[Cameras in the city of Rio de Janeiro]

Source: CET-Rio provided

Figure 2-78 Cameras in the City of Rio de Janeiro


Table 2-16 List of Cameras by Type in the City of Rio de Janeiro

Туре	No. of Cameras
CET Normal	87
CET Intelligent Installed	63
CET Intelligent to be Installed	11
Pronasci	179
Pronasci COMTEX	218
Pronasci Provisionally	3
Port MARAVILHA GE Installed	10
Port MARAVILHA COMTEX Installed	5
Port MARAVILHA GE to be Installed	6
Port MARAVILHA GE to be Installed	6
Installed Total	565
To be installed Total	23
Total	588

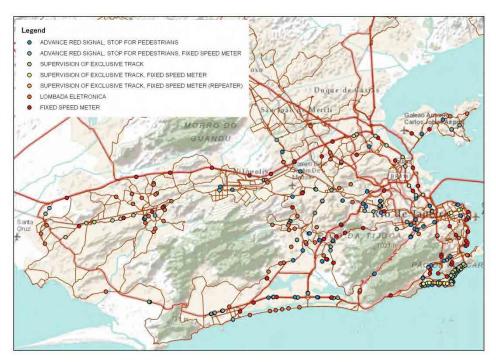
iii) VMS

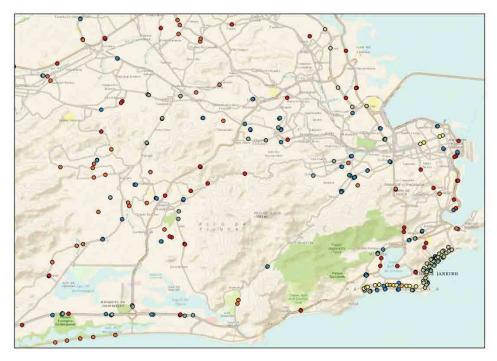
The number of VMS seems insufficient, and in particular, more VMSs need to be deployed in the central area.

[VMS in the city of Rio de Janeiro]

Source: CET-Rio provided

Figure 2-79 VMS in the City of Rio de Janeiro


Table 2-17 List of VMS by Type in the City of Rio de Janeiro


Туре	No. of VMSs
VMS Fixed	15
VMS Fixed Small	5
TransOeste to Barra	5
TransOeste to Santa Cruz	5
Total	30

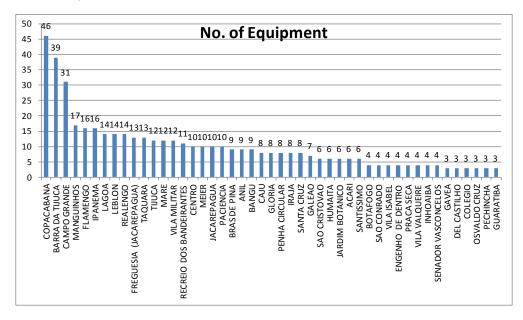
iv) Speed Monitoring

Speed monitoring sensors are located all over the city, especially in Copacabana, Barra da Tijuca, and Campo Grande.

[Speed monitoring in the city of Rio de Janeiro]

Source: CET-Rio provided

Figure 2-80 Speed Monitoring in the City of Rio de Janeiro


Table 2-18 List of Speed Monitoring Equipment by Type in the City of Rio de Janeiro [By location]

Туре	No. of Equipment
Advance Red Signal, Stop for Pedestrians	105
Advance Red Signal, Stop for Pedestrians, Fixed Speed Meter	78
Fixed Speed Meter	224
Supervision of Exclusive Track	49
Lombada Eletronica	68
Supervision of Exclusive Track, Fixed Speed Meter	15
Supervision of Exclusive Track, Fixed Speed Meter (Repeater)	2
Total	541

[By equipment]

Туре	No. of Equipment
Advance Red Signal	183
Stop for Pedestrians	183
Fixed Speed Meter	319
Supervision of Exclusive Track	66
Lombada Eletronica	68
Total	819

[By area]

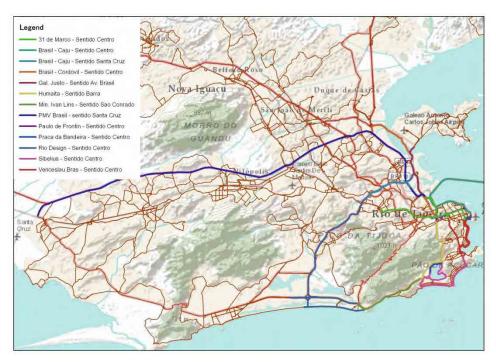

Source: JICA Study Team (Table 2-18 and Figure 2-81)

Figure 2-81 Number of Speed Monitoring Equipment by Area in the City of Rio de Janeiro

v) Special control

The CET-Rio has special traffic control routes where personnel in-charge can allocate field staff and control routes more intensively.

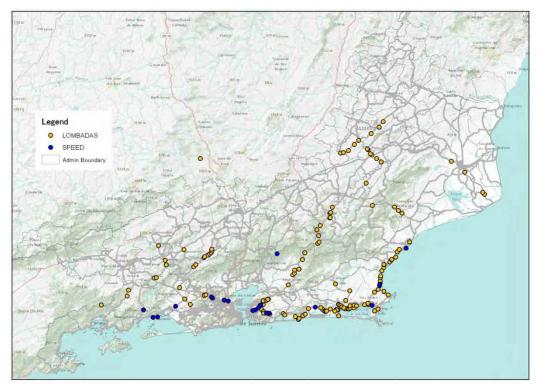
[Special control routes in the city of Rio de Janeiro]

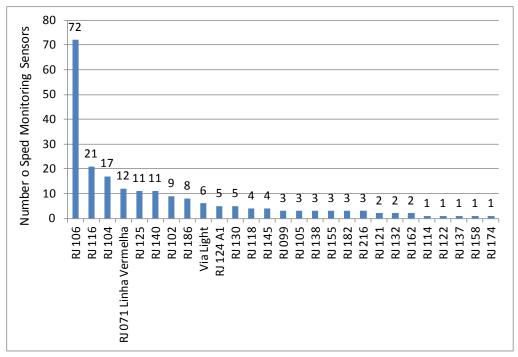
Source: CET-Rio provided

Figure 2-82 Special Control Routes in the City of Rio de Janeiro

Table 2-19 List of Special Control Routes in the City of Rio de Janeiro

Route	Direction	Length (km)
Sibelius	Centro	27.3
Venceslau Bras	Centro	19.8
Praca da Bandeira	Centro	20.6
Rio Design	Centro	63.2
Min. Ivan Lins	Sao Conrado	11.6
Brasil - Cordovil	Centro	32.2
Humaita	Barra	11.7
Gal. Justo	Av. Brasil	15.8
PMV Brasil	Santa Cruz	61.1
Brasil - Caju	Santa Cruz	7.3
Brasil - Caju	Centro	22.2
Paulo de Frontin	Centro	17.2
31 de Marco	Centro	18.3
Total	•	328.2


2) Operation in the State of Rio de Janeiro


In the state of Rio de Janeiro, except for the city of Rio de Janeiro, federal, state, and municipal governments, along with concession companies, manage their road infrastructure and road traffic. Based on an interview with the Department of Roads (*Departamento de Estradas de Rodagem*: DER), DER-RJ operates road traffic using speed monitoring equipment, cameras, and VMS. As for traffic signaling, each municipal government controls their own. Here, the location of equipment for traffic operation and condition of traffic control in state roads are described.

i) Speed monitoring

There are many speed monitoring sensors deployed along RJ 106, RJ 116, and RJ 106.

[Speed monitoring in the state of Rio de Janeiro]

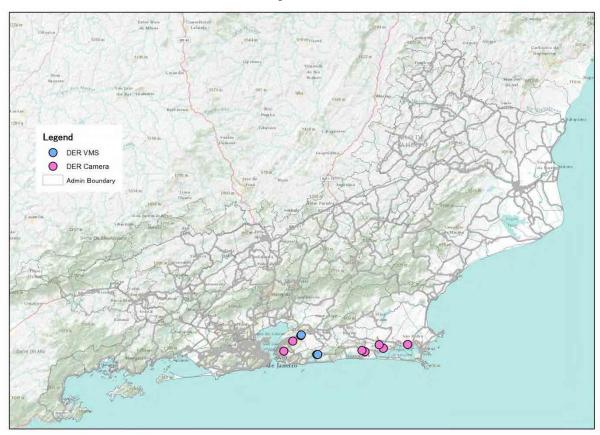
Source: DER - RJ provided

Figure 2-83 Speed Monitoring in the State of Rio de Janeiro

Table 2-20 List of Speed Monitoring Equipment in the City of Rio de Janeiro

[By type]

Туре	No. of Equipment
LOMBADAS	155
SPEED	59
Total	214


[By road]

Road	LOMBADAS	SPEED	No. of Equipment
RJ 071 Linha Vermelha	0	12	12
RJ 099	1	2	3
RJ 102	9	0	9
RJ 104	6	11	17
RJ 105	3	0	3
RJ 106	48	24	72
RJ 114	1	0	1
RJ 116	21	0	21
RJ 118	4	0	4
RJ 121	2	0	2
RJ 122	1	0	1
RJ 124 A1	5	0	5
RJ 125	11	0	11
RJ 130	5	0	5
RJ 132	2	0	2
RJ 137	1	0	1
RJ 138	3	0	3
RJ 140	7	4	11
RJ 145	4	0	4
RJ 155	3	0	3
RJ 158	1	0	1
RJ 162	2	0	2
RJ 174	1	0	1
RJ 182	3	0	3
RJ 186	8	0	8
RJ 216	3	0	3
Via Light	0	6	6
Total	155	59	214

ii) Cameras and VMS

Cameras and VMSs are only deployed along RJ 104 and RJ 106.

[Cameras and VMS in the state of Rio de Janeiro]

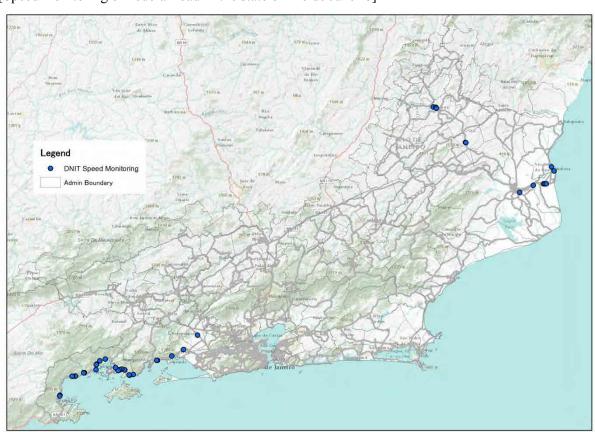
Source: DER - RJ provided

Figure 2-84 Cameras and VMS in the State of Rio de Janeiro

Table 2-21 List of Cameras and VMS Equipment in the City of Rio de Janeiro

Cameras		
Road	KP	
RJ-104	1,5	
RJ-104	14,0	
RJ-104	21,0	
RJ-106	38,0	
RJ-106	70,7	
RJ-106	71,4	
RJ-106	86,6	
RJ-106	107,3	
RJ-106	110,0	

VMS		
Road	KP	
RJ-104		21,0
RJ-106		38,0


3) Operation in the Federal

In the state of Rio de Janeiro, except the city of Rio de Janeiro, federal, state, and municipal governments, along with concession companies, manage their road infrastructure and road traffic. Based on an interview with the National Department of Transport Infrastructure (*Departamento Nacional de Infraestrutura de Transportes*: DNIT), DNIT operate road traffic using speed monitoring equipment. Here, the location of equipment for traffic operation and condition of traffic control in federal roads are described.

i) Speed monitoring

In RMRJ speed monitoring sensors deployed on federal roads are only for BR 101.

[Speed monitoring on federal road in the state of Rio de Janeiro]

Source: DNIT provided

Figure 2-85 Speed Monitoring Equipment of DNIT in the State of Rio de Janeiro

Table 2-22 List of Speed Monitoring Equipment of DNIT in the State of Rio de Janeiro

Road	RMRJ	Other
BR 101	4	30
BR 356	0	12
BR 465	1	0

4) Traffic Measures in Central Rio

i) Traffic signal control

[Description]

The top photo is an example of simultaneous traffic signal control along Av. Nossa Senhora de Copacabana. The bottom photo is an example of a countdown timer of green time for pedestrian.

[Photo]

Source: JICA Study Team

Figure 2-86 Simultaneous Signal Control along Av. Nossa Senhora de Copacabana

Figure 2-87 Counting Green Time for Pedestrian Crossing along Av. Nossa Senhora de Copacabana

ii) Reversible Lane Control

[Description]

In Centro and South zones, reversible lane control is operated.

[Location]

Table 2-23 List of Sections for Reversible Lane in the City of Rio de Janeiro

Location	towards	extension (km)	time (h)	Total Lanes	Lanes reversed
Elevado do Joá	São Conrado	3,3	6h30m às 8h30m	2	+1
Av. Niemeyer	Leblon	3,8	6h30m às 10h30m	1	+1
Orlas de Leblon, Ipanema e Copacabana	Leme	7	7h às 10h	3	+3
Av. Princesa Isabel, Túnel Novo e Túnel Pasmado	Aterro	1,9	7h às 10h	4	+2
Rua Prof. Manoel de Abreu	Centro	1,1	6h30m às 11h	2	+2
Rua Visconde de Niterói	Centro	1,1	6h às 9h	2	+1
Rua Jardim Botânico	Gávea	1,8	17h às 21h	2	+1
Rua Humaitá	Jardim Botânico	0,6	17h às 20h	3	+1
Av. Rodrigues Alves	Av. Brasil	0,7	16h às 20h	3	+1
Rua Teixeira Soares - Radial Oeste	Méier	0,6	16h30m às 20h30m	4	+1

Source: JICA Study Team

[Photo]

Figure 2-88 Example of Reversible Lane in Copacabana Area

iii) Road Closure on Sundays

[Description]

On Sundays, some roads are closed to traffic and open for recreational use.

[Location]

Table 2-24 List of Sections for Road Closure in the City of Rio de Janeiro

no	Road	Lane	Day	Time
1	Avenida Infante Dom Henrique	All	Sunday	7h - 19h
2	Avenida Atlantica	Lane along the coast	Sunday	7h - 19h
3	Avenida Delfim Moreira	Lane along the coast	Sunday	7h - 19h
4	Avenida Vieira Souto	Lane along the coast	Sunday	7h - 19h

Source: JICA Study Team

[Map]

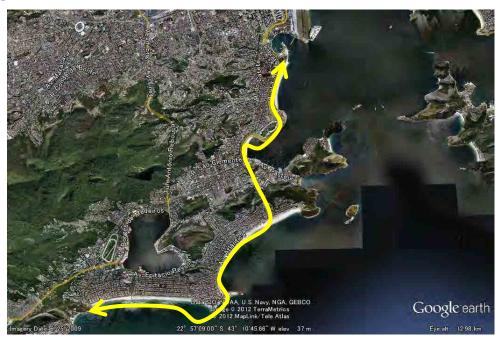


Figure 2-89 Location of Sections for Road Closure in the City of Rio de Janeiro

iv) Bus Priority Operation - Bus Rapid System (BRS)

[Description]

Bus priority operation is conducted along main bus roads between Centro and South zones.

[Location]

Copacabana

Leblon / Ipanema

Pres. Antônio Carlos / 1° de Março

Rio Branco

President Vargas

[Map]

As shown on the next pages

[Photo]

Figure 2-90 Photos of BRS

Copacabana

Leblon/Ipanema

Pres. Antônio Carlos/1° de Março, Rio Branco

President Vargas

> Central

> Marginal

Source: Fetranspor (http://www.fetranspor.com.br/brs/copacabana.php)

Figure 2-91 Maps of BRS

v) Bus Priority Operation - Bus Rapid Transit (BRT)

[Description]

BRT lanes have been built in recent years. In the case of Rio, because a new lane has been built for BRT, there is no impact on the existing road capacity. However, traffic signaling is shared with BRT so traffic signal control should be adapted.

[Map]

Source: JICA Study Team

Figure 2-92 Map of BRT

[Photo]

Figure 2-93 Photo of BRS

(8) Other Problems Observed during the Site Visit

i) Flooding on the Road

When it rains heavily, some urban roads are flooded.

Source: JICA Study Team

Figure 2-94 Photos of Road Flooding

ii) Congestion at the Toll Gate

The number of electronic toll gates as well as the utilization rate of on-board units for electronic toll collection is quite low. This is the reason why traffic jams occur at the toll gates.

Figure 2-95 Photos at the Toll Gates

iii) Blockages by Bus and Vans

Bus approaching information is not provided for users in Rio de Janeiro. Sometimes groups of people leave the sidewalk and bus stop boarding area and stand in the bus lane to look for the oncoming buses. These causes buses and vans to move into the second lane of the road to pass by or pick up passengers that causes traffic jams during normal traffic.

Source: JICA Study Team

Figure 2-96 Photos at the Bus Stop

iv) Steps on the Road and Bus

Road infrastructure needs to be improved with universal design by removing steps at the crossing and bus stops.

Figure 2-97 Photos at the Pedestrian Lane

v) Traffic Jam Caused by Road Construction

Below is an example of a traffic jam caused by a road construction on Av. Nossa Senhora de Copacabana. It is important to provide an advance or real time information on road construction in order to allow time for drivers to choose an alternative route.

Figure 2-98 Photos of Road Construction

(9) Parking

i) Location of Main Parking in the City of Rio de Janeiro

Car parking is plotted using a website provided by a private company. Most parking areas are located in Centro and South zones.

Source: http://www.maplink.com.br/

Figure 2-99 Location of Parking Areas

ii) Parking Type

Three types of car parking are provided for car users in Rio. Parking on the road is operated by CET-Rio and the others are operated by public sectors or private companies contracted by the local government.

[On the road]

[Buildings]

Figure 2-100 Types of Parking

(10) Bicycles

The municipality and state of Rio de Janeiro promote the use of bicycles in order to improve the constant traffic jams and poor air condition. In the municipality, the Municipal Secretariat of the Environment (Secretaria Municipal de Meio Ambiente: SMAC) is in charge of a policy to encourage bicycle use and has published a map of the cycle road network.

The information shown in the website of SMAC is as follows:

"Today, the healthy and sustainable use of bicycle as a means of transportation receives great attention from the Municipal Environment.

The city currently has 290 km of bike paths with the goal of reaching 450 km by 2016."

http://www.rio.rj.gov.br/web/smac

Source: http://www.rio.rj.gov.br/web/smac

Figure 2-101 Cycle Road Network Map in the City of Rio de Janeiro

(11) Safety Issues

1) Infrastructure and Operation - BRT

It was observed that some accidents occurred due to invasion of private cars on BRT lanes.

Source: Rio Onibus

Figure 2-102 BRT Lane

Ambulances are stuck in traffic jams
 The photo below is an example in which an ambulance car is stuck in traffic jams.

[Example]

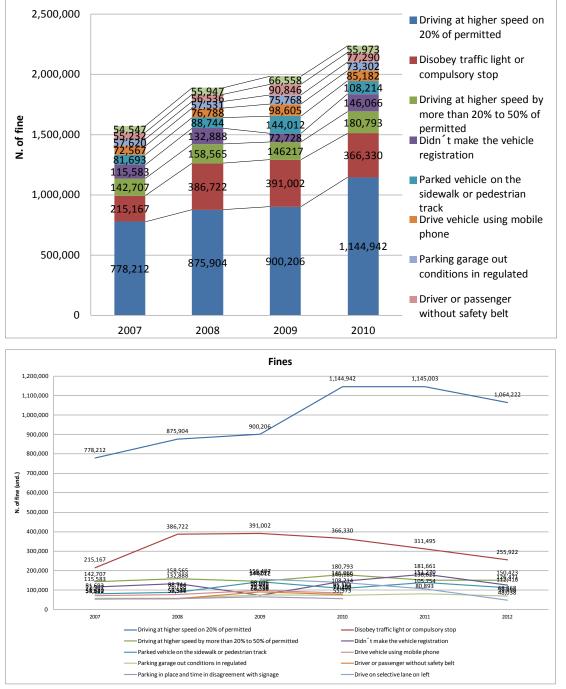
31 Aug 2012 on Av. Rio Branco

Source: Via Certa Natal Trânsito (www.viacertanatal.com)

Figure 2-103 Example of Obstacle Location for Emergency Vehicles

13 September 2012 (Reporter of *Rádio Uirapuru*) Comment from Chief Operating Officer, Lieutenant Paulo Roberto de Souza

"Congestion on Avenida Brazil remains the largest obstacle for fire bombeiros (services)"


"The biggest problem faced by emergency services remains in Brazil Avenue because of traffic jams"

"When the fire fighting vehicle arrives at the traffic lights, few drivers give way."

Source: Rádio Uirapuru (http://www.rduirapuru.com.br/)

(12) Law Enforcement

DER-RJ (Departamento de Estradas de Rodagens: Department of Roads), DETRAN (Departamento de Trânsito: State Traffic Department), and SMTR-RJ (Secretaria Municipal de Transportes- Rio Janeiro: Municipal Secretariat of Transportation) are responsible for the different types of fines in force. Speeding is the well known type of traffic violation fines in Rio, and the amount of fines is increasing.

Source: DETRAN RJ HP(http://www.detran.rj.gov.br/estatisticas.veiculos/09.asp)

Figure 2-104 Number of Fines in the State of Rio de Janeiro