5. References

			-	-
	Name	Date	Туре	Issue/Writer
1	2010-2011 Financial Statement Budget Document No.3	2010	Book	Ministry of Finance, Government of Malawi
2	Draft Estimates of Expenditure on Recurrent and Capital Budget for the Financial Year 2010/2011 Vol.2 Budget Document No.4	2010	Сору	Ministry of Finance, Government of Malawi
3	Approved Estimates of Expenditure on Recurrent and Capital Budget for the Financial Year 2009/10 Vol.3 Budget Document No.5	2009	Сору	Ministry of Finance, Government of Malawi
4	Approved Estimates of Expenditure on Recurrent and Capital Budget for the Financial Year 2008/09 Vol.VII Budget Document No.4	2009	Сору	Ministry of Finance, Government of Malawi
5	Approved Estimates of Expenditure on Recurrent and Capital Budget for the Financial Year 2007/08 Vol.VIII Budget Document No.4	2008	Сору	Ministry of Finance, Government of Malawi
6	Guidelines for Environmental Impact Assessment	1997.12	Book	Ministry of Forestry, Fisheries and Environmental Affairs Environment Affairs Department
7	CONSTRUCTION OF PHALOMBE TEACHER TRAINING COLLEGE BIDDING DOCUMENT 1 OF 4	2011	Сору	Ministry of Education Science and Technology
8	Senior Secondary School Teaching Syllabus (Biology)	2001.2	Сору	Ministry of Education, Science and Technology
9	Junior Secondary School Teaching Syllabus (Biology)	1998.12	Сору	Ministry of Education, Science and Technology
10	Senior Secondary School Teaching Syllabus (Physical Science Form 3 - 4)	2001.1	Сору	Ministry of Education, Science and Technology
11	Junior Secondary School Teaching Syllabus (Physical Science)	1998.12	Сору	Ministry of Education, Sports and Culture
12	Physics Lab. Manual (Year-1_3), Diploma of Education, Department of Physical Science	2004.4	Сору	Domasi College of Education Malawi World University Service of Canada
13	Biology Lab. Manual (Year-1_3), Diploma of Education, Department of Physical Science	2005.1	Сору	Domasi College of Education Malawi
14	Chemistry Lab. Manual (Year-1_3), Diploma of Education, Department of Physical Science	2005. 1	Сору	Domasi College of Education Malawi Japan International Cooperation Agency
15	University of Malawi Chancellor College Organization Structure	2010	Сору	University of Malawi Chancellor College

6. Other Relevant Data

- 6-1 Topographical Survey Reports
- 6-2 Geotechnical Investigation Reports(Extract)
- 6-3 Borehole Investigation Reports

6-2 Geotechnical Investigation Reports (Extract)

MALAWI POLYTECHNIC CIVIL ENGINEERING DEPARTMENT

REPORT ON GEOTECHNICAL INVESTIGATIONS ON THE PROJECT FOR CONSTRUCTION OF A TEACHER TRAINING COLLEGE FOR SECONDARY SCHOOL TEACHERS IN LILONGWE

TO: MATSUDA INTERNATIONAL CONSULTANTS

PREPARED BY: TUTULE MSUKWA, MPhil, BSc Civil Eng, Reng. Geotechnical Engineer

May 2011

INTRODUCTION General

Matsuda International Consultant contacted Malawi Polytechnic, Civil Engineering Department to conduct geotechnical investigations and recommend appropriate bearing capacity of structures on various sites in Malawi, namely; Nalikule Forests in Lilongwe District.

Site reconnaissance, insitu testing and soil sampling for all the sites were carried out from 24th March 2011 to 31st March 2011. Laboratory testing proceeded immediately at the Malawi Polytechnic Laboratory in Blantyre.

Project Description

It is our understanding that the project involves the construction of a full Teachers Training college at Nalikule forests in Lilongwe. From our knowledge of schools structures in Malawi it is our understanding that the structures to be built will be ground level structures with no storeys and that the structures will be mainly load bearing walls resting on standard mass concrete strip footings.

Objectives of the Soil Investigation

The purpose of the geotechnical exploration exercise was to:

- 1. To determine the subsoil conditions under the proposed sites for the construction of tanks.
- 2. To determine the engineering properties of the subsoil.
- 3. To comment on the type of foundation to be adopted.
- 4. To assess the bearing capacity of the soil in line with standard strip footings of width 690mm.

Soil Sampling and Testing

In all there were eight sites. In all the sites, trial pits were dug in order to reveal the soil profile, carry out insitu tests and get samples for laboratory testing. Location for trial pits were agreed with Matsuda Consultants. The trial pits were approximately two metres deep.

Insitu tests carried out, were Water Penetration test (WPT) and Dynamic Cone Penetration Test (DCP). The soil samples recovered from the trial pits were taken to the Polytechnic laboratory, and examined to confirm the field descriptions. Representative samples were then selected for classification tests (plasticity and grading test) and compaction test. Where possible undisturbed samples for triaxial testing were collected.

Nalikule Forests

Eighteen trial pits for sample collection and testing evenly distributed were dug on Nalikule Forests. In addition six more pits were dug for Water penetration test. Furthermore 161 points were selected for DCP testing.

Observations on trial pits at 2m depth and classification tests indicated that the soils were alternating between light red lateritic firm sandy clays to decomposed light grey rock dominated by gravelly sand. From the triaxial test, the worst case scenario was observed on Pit no. 17 which gave an angle of friction of 6 degrees and cohesion intercept of 45kN/m². Using Terzaghis Ultimate bearing capacity equation and assuming a 1m deep foundation and 690mm wide strip footing, the ultimate bearing capacity is 154kN/m².

From the DCP test it was observed that very few areas had a Penetration Index (PI) of more than 20mm/blow (approx CBR of 10). This indicates that averagely Nalikule forest has a quite strong and stable ground condition which can ably accommodate normal foundation loads from buildings. In areas where the PI is greater than 20mm/blow, the areas can be recompacted to improve their bearing capacity or otherwise they can be avoided.

The water penetration results gave an average percolation value of 0.8mm/min.

RECOMMENDATIONS

The soil conditions at the proposed CDSS are adequate for Nalikule Forest (safe bearing capacity for a strip footing of 690mm greater than 150kN/m²).

References

- 1. Soil mechanics by R.F. Graig
- 2. Elements of Soil mechanics by G.N. Smith

Appendices

- 1. Site Location
- 2. Summary Report on Geotechnical Investigations
- 3. Triaxial Test Results
- 4. DCP Test results

Appendices

- 1. Site Location
- 2. Summary Report on Geotechnical Investigations
- 3. Triaxial Test Results
- 4. DCP Test results

1. Site Location

Appendix 2 TTC-L

2. Summary Report on Geotechnical Investigations

UNIVERSITY OF MALAWI

PRINCIPAL Grant Kululanga, PhD. Eng., MSe. Eng., BSe. Eng., MASCE

Our Ref.:

Your Ref:

Date: 15th June, 2011

ATT: Matsuda International Consultants

Please address all correspondence to the Principal The Malawi Polytechnic Private Bag 303 Chichiri Blantyre 3 MALAWI Tel: (265) 01 870 471 Pax: (265) 01 870 578 E-Mal: Pnincipa@ody.ac.mw

SUMMARY REPORT ON GEOTECHNICAL INVESTIGATIONS

SITE	SOIL TYPE	PENETRATION RATE OF WATER (mm/min)	DCP PENETRATION INDEX	APPROXIMATE COMPARATIVE CBR	DEGREE OF COMPACTION	COMMENTS & RECOMMENDATIONS
NALIKULE FOREST	Light red lateritic firm sandy clay to decomposed light grey rock & gravelly sand	0.8 (Low Permeability)	<20 mm/blow	10	STIFF Strong and stable ground	Can ably accommodate normal foundation loads from buildings & >20mm/blow points to be recompacted to improve bearing capacity or be avoided.

3. Triaxial Test Results

UNIVERSITY OF MALAWI – THE POLYTECHNIC DEPARTMENT OF CIVIL ENGINEERING

DATE : 03rd May.2011

SUMMARY OF RESULTS FOR SOIL INVESTIGATIONS - MATSUDA INTERNATIONAL CONSULTANTS

SITE	PIT NO	GRADING	AT	TERBERG	LIMITS	TRIAXIA	L TEST
SILE		GRADING	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	COHENSION INTERCEPT (C')	ANGLE OF SHEARING (Ø)
C. T. D. L. D. L.	1	DONE	38.0	24.0	14.0	70 kN/m ²	26.6°
NALIKULE	2	DONE	48.0	21.0	27.0	57 kN/m ²	18.3°
FOREST	3	DONE	NP	NP	NP	Decompos	ed Rock
(LILONGWE)	- 4	DONE	NP	NP	NP	Decompos	ed Rock
Normal States	5	DONE	NP	NP	NP	Decompos	sed Rock
	6	DONE	39.0	23.8	15.2	58 kN/m ²	10.2°
	7	DONE	NP	NP	NP	Decomposed Rock	
	8	DONE	NP	NP	NP	Decomposed Rock	
	9	DONE	NP	NP	NP	Decompos	sed Rock
	10	DONE	36.8	20.8	16.0	66 kN/m ²	21.8°
	11	DONE	25.8	12.8	13.0	73 kN/m ²	20.3°
	12	DONE	NP	NP	NP	Decompos	ed Rock
	13	DONE	NP	NP	NP	Decompos	ed Rock
	14	DONE	NP	NP	NP	Decompos	ed Rock
	15	DONE	40.9	19.9	21.0	55 kN/m ²	14.6°
	16	DONE	NP	NP	NP	Decompos	ed Rock
	17	DONE	43.3	20.3	23.0	45 kN/m ²	5.7°
	18	DONE	32.0	16.8	15.2	70 kN/m ²	6.0°

4. DCP Test results

UNIVERSITY OF MALAWI

PRINCIPAL

Grant Kululanga, PhD. Eng., MSc. Eng., BSc. Eng., MASCE

Our Ref.:

Your Ref:

Date: 07th July, 2011

ATT: Matsuda Consultants International

Please address all correspondence to the Principal

The Malawi Polytechnic Private Bag 303 Chichiri Blantyre 3 MALAWI Tel: (265) 01 870 411

Fax: (265) 01 870 578

E-Mail: principal@poly.ac.mw

DCP TEST RESULTS FOR NALIKULE FOREST IN LILONGWE

	TOTAL NO	PENETRATION	DCP NUMBER	IN SITU
POINT	OF BLOWS	(mm)	(mm/blow)	CBR
1	106	2000	19	10
2	104	2000	19	10
3	94	2000	21	9
4	96	2000	21	9
5	110	2000	18	11
6	89	2000	22	8
7	78	2000	26	7
8	84	2000	24	7
9	96	2000	21	9
10	84	2000	24	7
11	77	2000	26	7
12	82	2000	24	7
13	110	2000	18	11
14	230	2000	9	25
15	220	2000	9	25
16	225	2000	9	25
17	180	2000	11	20
18	184	2000	11	20
19	200	2000	10	22
20	235	2000	9	25
21	335	2000	6	45
22	330	2000	6	45
23	280	2000	7	35
24	295	2000	7	35
25	300	2000	7	35
26	300	2000	7	35
27	335	2000	6	45

28	315	2000	6	45
29	300	2000	7	35
30	315	2000	6	45
31	115	2000	17	12
32	120	2000	17	12
33	130	2000	15	14
34	130	2000	15	14
35	130	2000	15	14
36	120	2000	17	12
37	125	2000	16	13
38	130	2000	15	14
39	145	2000	14	15
40	150	2000	13	16
41	180	2000	11	20
42	235	2000	9	25
43	230	2000	9	25
44	230	2000	9	25
45	235	2000	9	25
46	280	2000	7	35
47	300	2000	7	35
48	335	2000	6	45
49	320	2000	6	45
50	330	2000	6	45
51	250	2000	8	30
52	155	2000	13	16
53	160	2000	13	16
54	145	2000	14	15
55	160	2000	13	16
56	127	2000	16	13
57	135	2000	15	14
58	140	2000	14	15
59	165	2000	12	18
60	170	2000	12	18
61	150	1000	1	35
62	120	1000	8	30
63	215	1000	5	33 75
64	230	1000	4	/5
65	220	1000	3	<u> </u>
00	155	1000	/	35
0/	125	1000	8	30
08 60	1/3	1000	0	45
<u> </u>	200	1000	5	43
70	200	1000		
71	100	1000	4 5	55
72	190	1000	5	55
73	255	1000		75
75	105	1000	4 5	55
76	195	1000	5	55
77	185	1000	5	55
78	105	1000	5	55
79	175	1000	6	45
80	165	1000	6	45
81	155	1000	7	35
82	200	1000	5	55
83	225	1000	4	75
84	220	1000	5	55

85	225	1000	4	75
86	180	1000	6	45
87	190	1000	5	55
88	205	1000	5	55
89	210	1000	5	55
90	160	1000	6	45
91	160	1000	6	45
92	195	1000	5	55
93	200	1000	5	55
94	235	1000	4	75
95	200	1000	5	55
96	185	1000	5	55
97	205	1000	5	55
98	180	1000	6	45
99	165	1000	6	45
100	230	1000	4	75
101	230	1000	4	75
102	232	1000	4	75
103	166	1000	6	45
104	180	1000	6	45
105	198	1000	5	55
106	208	1000	5	55
107	210	1000	5	55
108	185	1000	5	55
109	165	1000	6	45
110	200	1000	5	55
111	210	1000	5	55
112	205	1000	5	55
113	210	1000	5	55
114	215	1000	5	55
115	225	1000	4	75
116	235	1000	4	75
117	190	1000	5	55
118	190	1000	5	55
119	200	1000	5	55
120	205	1000	5	55
121	1/5	1000	6	45
122	235	1000	4	75
123	230	1000	4	/5
124	235	1000	4	/5
125	230	1000	4	/5
120	240	1000	4	/5
12/	L33	1000	4	/ 3
128	185	1000	0	45
129	190	1000	5	33
130	185	1000	0	45
131	100	1000	<u> </u>	43
132	133	2000	13	10
133	120	2000	1/	12
134	133	2000	13	10
135	143	2000	14	15
130	145	2000	14	13
13/	150	2000	15	10
130	103	2000	12	10
1/0	170	2000	12	10
140	165	2000	12	10
171	105	2000	12	10

142	155	2000	13	16
143	175	2000	11	20
144	180	2000	11	20
145	165	2000	12	18
146	165	2000	12	18
147	167	2000	12	18
148	155	2000	13	16
149	150	2000	13	16
150	180	2000	11	20
151	155	2000	13	16
152	180	2000	11	20
153	190	2000	11	20
154	200	2000	10	22
155	235	2000	9	25
156	230	2000	9	25
157	245	2000	8	30
158	250	2000	8	30
159	155	2000	13	16
160	165	2000	12	18

LEGEND:

***DCP NUMBER (mm/blow) :** Is found by dividing total penetration (2000mm) by total number of blows.

* **BLOW(S)** : Counting the freely falling force applied to the DCP to attain penetration.

* **IN SITU CBR :** Comparative values with the DCP NUMBER found on the chart provided by the suppliers of the DCP machine.

Hoping this is in order.

Thanks for doing good business with us.

Yours truly,

D.B.Kasimpha For Civil Engineering Laboratory

6-3 Borehole Investigation Reports

6-3 BOREHOLE INVESTGATION REPORT AT TTCL (Nalikure Site)

1. Results of the Test Drilling and Pumping Survey

1-1. Purpose and Methods of the Survey

A test drilling and pumping survey was implemented for the purpose of confirming whether or not there was a groundwater source required for the construction of a water supply facility at the Nalikure Teacher Training College (TTCL) Site of the Project for Construction of a Teacher Training College for Secondary School Teachers in Lilongwe (hereafter the Project). A local (Malawian) drilling company which had been selected as the subcontractor for the test drilling implemented the test drilling. The quality of the water from the boreholes constructed in the test drilling was analysed for its suitability for drinking at the Water Quality Laboratory of the Ministry of Agriculture, Irrigation and Water Development of the Republic of Malawi.

1-2. Survey Period

The test drilling and pumping, including drilling at the four sites of the Project for Re-Construction and Expansion of Selected Community Day Secondary Schools (Phase II) (CDSS-II) was scheduled for a two-month period between early September and late October 2011. The test drilling and pumping at the TTCL Site began in early October and was completed within an approximately one-month period. However, the schedule for the test drilling and pumping at the CDSS sites had to be postponed for a significant length of time because of the nationwide shortage of motor fuel.

1-3. Summary of the Survey Results

(1) Evaluation of Yields and Water Quality at the TTCL (Nalikure) Survey Site

The results of the test drilling and pumping survey are summarised in Table-2 below. The availability of groundwater as a source of water supply was confirmed as a borehole, TTC No. 2, yielded a small quantity of water and TTC Nos. 3 and 4 yielded fair quantities of water, though TTC No. 1 yielded no water. However, it is difficult to meet the anticipated water demand of 75 m^3/day with the yields of those wells. The results of the hydrogeological evaluation of the results of the test drilling and pumping survey will be used for the preparation of a technical recommendation required for satisfying the water demand. An officer in charge of the Water Quality Laboratory of the Ministry of Agriculture, Irrigation and Water Development of Malawi collected samples for the samples using the drinking water specifications of Malawi and the Guidelines for Drinking-Water Quality of WHO as criteria. The analysis proved that the quality of the groundwater obtained from all the three test boreholes was ideal for drinking.

Figure-1 shows the locations of the test drilling sites in the TTCL Survey Site. The approximate locations of the drilling sites were marked on a Google Earth map using the latitudes and longitudes of

the sites observed with a GPS device.

	Test	Location of th	ne drilling site	Well depth	Evaluation of
lest drilling site	borehole	Latitude (south)	Longitude (east)	(Drilling depth)	water quality
1.TTCL Nalikure	TTC No. 1	13°49′17.5″S	33°51′38.6″E	— (53 m)	×
	TTC No. 2	13°49′10.2″S	33°51′38.3″E	54 m (54 m)	Δ
	TTC No. 3	13°49′7.0″S	33°51′37.3″E	61 m (61 m)	0
	TTC No. 4	13°49′00.7″S	33°51′38.3″E	70 m (70 m)	0

Table-1: Results of the test drilling and pumping survey in the TTCL Site

Figure-1: Locations of the test drilling and pumping sites at the TTCL (Nalikure) Site

- Legend: 1) The red circles (TTC Nos. 1-4) indicate the locations of the four test drilling and pumping sites.
 - 2) The four yellow 'VES' indicate the locations where the electrical prospecting (vertical electric sounding) was conducted.
 - The white circles (E01A E10) indicate the locations of the boundary markers of the TTC premises.
 - 4) The red line at the bottom of the figure is a scale bar representing 100 m.
 - 5) The imagery data was created by marking the locations of the drilling sites obtained with the GPS observation on a Google Earth map.

(2) Specifications for the Test Drilling and Pumping Survey

The test drilling and pumping survey was implemented by the subcontracted local drilling company (WATEC) in accordance with the standard specifications for water wells of Malawi described in Table-3 below.

Table-2: Specifications for the survey using test drilling wells

1	Borehole finishing diameter: φ 6 inches, Average drilling depth: 60 m
2	Screen and casing diameter: φ 6 inches (external diameter: 160 mm), PVC
3	Screens installed in the aquifer
4	Void between the borehole wall and screens packed with gravel
5	Borehole development
6	Pumping test (Step drawdown pumping test: pumping for 2 hours/step x 4 steps,
	a total of 8 hours, Constant rate pumping test: continuous for 24 hours, Recovery test:
	for 6 hours or until the water head recovery of 90 % or more)
$\overline{\mathcal{T}}$	Water quality analysis (in accordance with the guidelines for drinking-water quality of
	Malawi and WHO) for the suitability for drinking
8	Analysis of water samples on the 21 parameters including coliform bacteria count and
	standard plate count at a public institution in Malawi engaged in water quality
	analysis

(3) Specifications for the Water Quality Analysis of the Water Sampled at the Survey Site The water quality analysis of the samples taken at the Survey Site was carried out at a public institution for water quality analysis, the Water Quality Laboratory (in the capital Lilongwe) of the Ministry of Agriculture, Irrigation and Water Development, in accordance with the "Guidelines for Drinking-Water Quality" of WHO and "Malawi Standard: Drinking Water - Specification" (2005) of Malawi. The samples were tested for the standard 21 parameters of Malawi shown in the table below

(Table-4) and proven to have no problem to be used for drinking. (See Table-15 for reference.)

	Water quality parameter	WHO	Malawi		Water quality parameter	WHO	Malawi
1	TDS	1,000	2,000	12	Alkalinity	-	-
2	Turbidity	-	25	13	Chloride	250	750
3	pH Value	6.5-8.5	6.0-9.5	14	Sulphate	250	800
4	Silicate	-	-	15	Nitrate	50	100
5	Sodium (Na)	200	500	16	Carbonate	-	-
6	Potassium (K)	-	-	17	Fluorine	1.5	3.0
7	Magnesium (Mg)	0	200	18	Electric	-	3,500

Table-3: Guidelines for drinking-water quality of WHO and Malawi (unit: mg/L)

					conductivity		
8			19 Coliform		0/100I	50/100mJ	
	Calcium (Ca)	-	250		bacteria count	0/100mL	50/100mL
9	Iron (Fe)	0.3	3.0	20	Bicarbonate	-	-
10	Tetal handu and	200	800	21	Standard plate		0
	Total nardness	200	800		count	-	0
11	Suspended solids						
	(SS)	-	-				

(4) Hydrogeological Evaluation of the Four Drilling Sites in the Survey Site

In terms of hydrogeology, the Survey Site is in a small water system located in the uppermost reaches of a small water catchment area where intermittent streams (wetland) appear only at the time of rainfall during the rainy season. These streams are devoid of water during the dry season. When they have water, it flows from south to north. The test drilling was carried out at four locations, TTC Nos. 1 to 4, located in the order of the upper reaches to the lower reaches, in the area where the results of the analysis of the electric prospecting (horizontal and vertical electric sounding) data had suggested a high probability of the existence of groundwater, for the evaluation of groundwater potential and the hydrogeological evaluation of the Survey Site.

While the borehole, TTC No. 1, in the uppermost reaches was non-productive, the others were productive. A natural tendency of boreholes in the lower reaches having higher yields was observed. Existence of groundwater in granite pegmatite was expected on the basis of the geological observation that highly-weathered granitic gneiss outcrops were found on the ground surface. However, groundwater was not found either in a weathered zone or on a surface of unconformity of the pegmatite. Instead, pressurized groundwater was found in a fissure zone of the fresh and dark-grey biotite gneisses further below the ground.

In order to meet the anticipated water demand at the survey site of 75 m³/day on the assumption that an engine pump was to be operated for eight to ten hours per day, pump discharge of 7.5 - 9.4 m³/hour or 2.1 - 2.6 L/second is required. If the demand is to be satisfied with yields from three wells, each of them will have to have groundwater potential of 25 m³/day allowing pump discharge of 2.5 - 3.1 m³/day or 0.7 - 0.9 L/second. The results of the evaluation of groundwater potentials and discharges of the four test boreholes are summarised in Tables-5 to -8.

Table-6 shows the results of the constant flow rate (continuous) pumping test. Among the four test boreholes, TTC No. 3 (43.2 m³/day) and TTC No. 4 (20.7 m³/day) have good yields and water quality and, thus, can be equipped with engine pumps and used as the deep-well sources of a water supply system. Meanwhile, TTC No. 1 is a completely dry hole and it seems very difficult to use TTC No. 2 as a water source because the pumping test has revealed a very small yield (2.3 m³/day) of groundwater from it. In the recovery test, while good recovery rates of 98.3 % and 99.0 % in 4.5 hours were observed in TTCs No. 3 and 4, respectively, large drawdowns of 34.67 m and 48.04 m

were observed in TTC Nos. 3 and 4, respectively.

Table-7 shows the results of the estimation of the available discharges based on the results of the hydrogeological evaluation of the pumping test data and using the drawdown of 20 m as a standard in the estimation of groundwater potential from specific capacity. The available discharges of TTC Nos. 3 and 4 were estimated at 24.96 m³/day and 14.4 m³/day, respectively, in this table. Meanwhile, Table-5 shows the results of the estimation of the available discharges on the condition that engine pumps are installed at depths determined on the basis of the actual structural drawings of the test boreholes (Figures-7 and -11) and operated at the maximum drawdowns. On this condition, TTC No. 3 is estimated at 21.8 m³/day and TTC No. 4 at 15.1 m³/day. As an engine pump is not usually installed at a depth where a screen for collecting groundwater is installed because of the interaction between structure of borehole and an aquifer, the depths of pump installation of 56 m and 65 m were used in the estimation of the available discharges of TTC Nos. 3 and 4, respectively.

The results of the analyses mentioned above show that the total available discharge estimated from the groundwater potential of the three productive wells in the site at present is *ca*. 50 m³/day, which is significantly smaller than the anticipated water demand of 75 m³/day. The analysis of the current situation suggests the need for the construction of additional boreholes. The results of the test drilling and pumping survey have narrowed down the area with a high probability of the existence of groundwater to the area close to TTC Nos. 3 and 4 and revealed that the water from them has the quality ideal for drinking. In the test drilling and pumping survey, the area for the groundwater prospecting was limited within the premises of the TTCL Site, in principle. It is considered possible to construct two additional deep wells with yields larger than those of TTC Nos. 3 and 4 by drilling boreholes to an average depth of 65 m in the area north of the boundary area where there is some extra reserve of groundwater for the supply of groundwater in the actual project.

Test drilling site	Static water level (m)	Pump set level (m)	Pumping water level (maximum) (m)	Drawdown (maximum) (m)	Specific capacity (m ³ /hr/m)	Discharge (maximum) (m ³ /hr)	Available discharge (m ³ /day) with 8 hrs/day of pumping	Evaluation of the yield
Symbol	Е	М	0	Р=О-Е	H=D/G	Q=HxP	R8=Qx8hr	S
1.TTC No. 1	-	-	-	-	-	-	-	×
2.TTC No. 2	9.5	37 m	37 m	27.5	0.022	0.61	4.9	×
		47 m	47 m	37.5	0.022	0.83	6.4	Δ
3.TTC No. 3	3.49	38 m	38 m	34.5	0.052	1.79	14.3	0
		56 m	56 m	52.5	0.052	2.73	21.8	0
4.TTC No. 4	1.96	32 m	32 m	30.0	0.03	0.9	7.2	Δ
		41 m	41 m	39.0	0.03	1.17	9.4	Δ
		65 m	65 m	63.0	0.03	1.89	15.1	0

Table-4: Depths of pump installation and available discharges deduced from the borehole structures

- Note 1) An available discharge (R8) estimated on the condition that a pump was operated for eight hours per day at the discharge (maximum) (Q) was evaluated. Q was estimated from the specific capacity (H) obtained in the hydrogeological evaluation shown in Table-8 and the drawdown (maximum) calculated using the pump installation depth determined on the basis of the borehole structure.
- Note 2)
 Evaluation of the yield
 ©: The estimated available discharge of TTC No. 3 (21.8 m³/day)

 •: The estimated available discharge of TTC No. 4 (15.1 m³/day)

 Δ : The estimated available discharge of TTC No. 2 (6.4 m³/day)

Table-5: Results of the constant flow rate (continuous) pumping test (for 24 hours) and the recovery

test

Drilling site	Constant flow rate of (continuous) discharge (m ³ /hr)	Duration of the pumping test (hr)	Discharge (m ³)	Drawdown (m)	Recovery test (% recovery)	Recovery time (hr)	Specific capacity (m ³ /hr/m)	Evaluation of the yield
Symbol	D	Т	S=DxT	G=F-E	U	V	H=D/G	W
1.TTC No. 1	Dry	-	-	-	-	-	-	×
2.TTC No. 2	0.90	2.3	2.1	40.5	100%	4.0	0.022	Δ
3.TTC No. 3	1.8	24	43.2	34.67	98.3%	4.5	0.052	0
4.TTC No. 4	1.48	14	20.7	48.04	99.0%	4.5	0.03	0

Note 1) The test boreholes were evaluated on the bases of the results of the (constant flow rate continuous) pumping test

Note 2) Evaluation of the yield

- \odot : The discharge of TTC No. 3 estimated from the results of the pumping test (43.2 m³/day)
- o: The estimated discharge of TTC No. 4 (20.7 m^3/day)
- Δ : The estimated discharge of TTC No. 2 (2.1 m³/day)

Pumping water Drawdown Specific Static water Groundwater Available Drilling Borehole Pump Discharge Survey site potential (m³/h) depth depth level discharge installation Evaluation level (maximum) (maximum) capacity Borehole No. (m^3/hr) (m^3/day) depth (m) (m) (m) (m) $(m^3/hr/m)$ (m) (m) С В D Е F K=Hx20m L=Kx24hr Ν Symbol G=F-E H=D/G Μ 1.TTC No. 1 53 _ _ Х 2.TTC No. 2 54 9.5 0.022 54 0.9 50 40.5 0.44 10.56 47m Δ 3.TTC No. 3 61 61 1.8 3.49 38.16 34.67 0.052 1.04 24.96 \bigcirc 56m 4.TTC No. 4 0.03 70 70 1.44 1.96 50.0 48.04 0.60 14.4 65m 0

Table-6: Evaluation of groundwater potentials and discharges

- Note 1) The available discharge of each borehole estimated from the groundwater potential obtained from the results of the pumping test and the standard drawdown of 20 m was within a range between 10 and 25 m^3 per day.
- Note 2) Evaluation
 - ©: TTC No. 3 can be satisfactorily used as a water source of a water supply system because it has the available discharge of *ca*. 25 m³/day.
 - •: TTC No. 4 may be satisfactorily used as a water source of a water supply system because it has the available discharge of 14.4 m³/day.
 - Δ : Although the available discharge of 10.56 m³/day estimated from the groundwater potential seems to suggest that TTC No. 2 may be used as a water source of a water supply system, it is quite difficult to do so because the actual discharge obtained from the results of the pumping test is only 2.1 m³/day as shown in the column under the symbol 'S' in Table-6.

Survey Site Borehole No.	Borehole diameter (mm)	Drilling depth (m)	Borehole depth (m)	Discharge (m ³ /hr)	Static water level (m)	Pumping water level (m)	Drawdown (m)	Specific capacity (m ³ /hr/m)	Aquifer	Screen installation depths (m)
Symbol	А	В	С	D	E	F	G=F-E	H=D/G	Ι	J
1. TTC No. 1	160	53	-	-	-	-	-	-	-	Dry hole
2. TTC No. 2	160	54	54	0.9	9.5	50	40.5	0.022	Biotite- Gneiss	24 - 36, 42 - 45
3. TTC No. 3	160	61	61	1.8	3.49	38.16	34.67	0.052	Biotite- Gneiss	40 - 55
4. TTC No. 4	160	70	70	1.44	1.96	50.0	48.04	0.03	Biotite- Gneiss	19 - 31, 34 - 40, 61 - 64

Table-7: Hydrogeological evaluation of the test boreholes in the TTC Site

2. BOREHOLE INVESTIGATION DATA AT TTCL (Nalikure)

2-1. BOREHOLE TTC No.1

Figure-2 TTC No.1 VERTICAL PROFILE (Dry)

2-2. BOREHOLE TTC No.2

Figure-3 TTC No. 2 VERTICAL PROFILE

STEP DRAWDOWN TEST

STEP	DISCHARGE	DYNAMIC LEVEL	DRAWDOWN	SPECIFIC CAPACITY
	Q (m ³ /hr.)	N.D. (m.)	S (m.)	Q/S (m ³ /hr/m.)
FIRST(1st)	0.72	32.05	22.55	0.0319
SECOND(2nd)	1.44	50.00	40.50	0.0356
THIRD(3rd)				
FORTH(4th)				
FIFTH(5th Constant)	0.90	50.00	40.50	0.0222

Figure-4 TTC No. 2 STEP DRAWDOWN TEST

CONSTANT DISCHARGE TEST

Figure-5 TTC No. 2 CONSTANT DISCHARGE TEST

Table-9 TTC No. 2 RECORD OF CONSTANT DISCHARGE TEST

		CON	ISTANT DISCH	ARGE TEST		
NAME OF PROJE	СТ	Mala	wi CDSS and TTC	PHASE 2		
No.		πο	– No. 2	BOREHOLE DEPTH		54 m
NAME OF LOCAT	ION	NAL	IKULE T.T.C	YIELD(L/sec)		0.25 L/S
DISTRICT		LILO	NGWE	STATIC WATER LEV	/EL	9.50 m
	-	T.A.	CHIMUTU	DYNAMIC WATER L	EVEL	50 m
DATA		26 th	/10/2011	PUMP SET		50 m
ACTUAL (Hour: Minute)		TIME t(min)	DISCHARGE (Lit/min)	DYNAMIC (m)	DRAW DOWN (m)	REMARKS
07 00	0	0	0.25L/sec	9.50	0.00	
: 01	1	1	0.25L/sec	9.85	0.35	
: 02	1	2	0.25L/sec	10.25	0.75	
: 03	1	3	0.25L/sec	10.82	2.25	
: 04	1	5	0.250/sec	12.33	2.23	
· 07	2	7	0.251/sec	13.74	4.24	
: 10	3	10	0.25L/sec	15.00	5.50	-
: 13	3	13	0.25L/sec	15.68	6.18	
: 15	2	15	0.25L/sec	16.54	7.04	
: 20	5	20	0.25L/sec	18.50	9.00	
: 25	5	25	0.25L/sec	19.85	10.35	
: 30	5	30	0.25L/sec	21.05	11.55	
: 35	5	35	0.25L/sec	21.98	12.48	
; 40	5	40	0.25L/sec	23.50	14.00	
: 45	5	45	0.25L/sec	24.87	15.37	
: 50	5	55	0.25L/sec	20.00	18.20	
08:00	5	60	0.251/sec	31.10	21.60	
: 10	10	70	0.25L/sec	33.16	23.66	
; 20	10	80	0.25L/sec	35.93	26.43	
: 30	10	90	0.25L/sec	39.30	29.80	
: 40	10	. 100	0.25L/sec	41.67	32.17	
: 50	10	110	0.25L/sec	44.26	34.76	
09:00	10	120	0.25L/sec	49.02	39.53	
: 20	20	140	0.25L/sec	50.00	40.50	
	-					
						1
Tomporture						
remperature :			г п .			
Conductivity :						
-						

WATER LEVEL RECOVERY TEST

Figure-6 TTC No.2

WATER LEVEL RECOVERY TEST

Table-10 TTC No. 2 RECORD OF DISCHARGE TEST (RECOVERY)

NAME OF PROJECT Malawi CDSS and TTC PHASE 2 No. TTC - No. 2 BOREHOLE DEPTH 54m NAME OF LOCATION NALIKULE TTC YIELD (L/sec) 0.25 l/s DISTRICT LILONGWE STATIC WATER LEVEL 9.50m DATA 26/10/2011 DVMAMIC WATER LEVEL 9.50m TIME (Hour: Minute) Elapsed Time (LU/min) Accumulated time (LU/min) Water Level (m) Recovery (m) Remarks (m) 10 20 0 1440 50.00 40.50 Clean wate 221 1 2 1442 48.65 39.15 237.75 224 1 3 14443 47.25 37.75 24.4 48.65 39.15 235 1 5 1445 45.84 36.34 25.4 26.78 230 3 10 1450 44.04 34.54 24.4 26.78 26.78 26.78 26.78 26.78 26.78 26.78 26.78 26.78 26.78 26.78 26.78 <td< th=""><th></th><th></th><th></th><th>DISC</th><th>HARGE TEST</th><th>(RE</th><th>COVERY)</th><th></th><th></th></td<>				DISC	HARGE TEST	(RE	COVERY)		
No. TTC - No. 2 BOREHOLE DEPTH 54m NAME OF LOCATION NALIKULE TTC YIELD (L/sec) 0.25 l/s DISTRICT LILONGWE STATIC WATER LEVEL 9.50m DATA 26/10/2011 DYNAMIC WATER LEVEL 9.50m DATA 26/10/2011 PUMP SET 50 m TIME t(min) (L/min) (m) (m) 10 : 20 0 0 1440 50.00 40.50 :21 1 1 1441 49.20 39.70 128.75 :22 1 2 1442 48.65 39.15 13.3 1443 47.25 37.75 :23 1 3 1443 44.24 48.65 38.34 14.3 :24 1 4 1444 46.28 36.34 14.3 :25 1 5 1445 43.54 14.3 14.5 32.80 14.5 :26 1 5 14455 42.30 32.70 <t< td=""><td>NAME OF PROJE</td><td>ст</td><td></td><td>Mala</td><td>wi CDSS and TTC</td><td>PH/</td><td>ASE 2</td><td></td><td></td></t<>	NAME OF PROJE	ст		Mala	wi CDSS and TTC	PH/	ASE 2		
NAME OF LOCATION NALIKULE TTC YIELD (L/sec) 0.25 //s DISTRICT LILONGWE STATIC WATER LEVEL 9.50m DATA Z6/10/2011 DYNAMIC WATER LEVEL 9.50m DATA 26/10/2011 PUMP SET 50 m TIME Elapsed Time (t/imin) Accumulated time (Li/imin) Water Level (m) Remarks 10 : 20 0 0 1440 50.00 40.50 Clean wate 22 1 1 1 1441 49.20 39.70 20 Clean wate 22 1 1 2 1442 48.65 39.15 23.75 24.4 1 4 1444 46.28 36.78 25.4 25.4 27.7 1447 44.94 35.44 23.3 23.13 1453 43.20 33.70 23.70 23.70 23.75 24.5 1 5 1445 45.84 33.240 22.80 24.54 23.65 24.54 23.23.70 23.70 23.76 23.260 24.54 23.25	No.			ттс	TTC - No. 2 BOREHOLE DEPTH 5-				
DISTRICT LILONGWE STATIC WATER LEVEL 9.50m DATA Z6/10/2011 DYNAMIC WATER LEVEL 9.50m DATA 26/10/2011 PUMP SET 50 m TIME (Hour, Minute) Elapsed Time (timin) Accumulated time (LiUmin) Water Level (m) Recovery (m) Remarks 10 20 0 0 1440 50.00 40.50 Clean wate 221 1 1 1441 49.20 39.70 Clean wate 222 1 2 1442 48.65 39.15 Clean wate 225 1 5 14445 45.84 36.34 20 225 1 5 14445 45.84 36.34 20 225 2 15 1455 42.30 32.00 37.0 225 2 15 1455 42.30 32.60 140 50 5 30 14770 39.40 29.90 155 10 5 50<	NAME OF LOCAT	IÓN		NALI	KULE TTC	YIE	LD (L/sec)		0.25 l/s
DATA T.A. CHIMUTU DYNAMIC WATER LEVEL DATA 26/10/2011 PUMP SET 50 m TIME (Hour. Minute) Elapsed Time (timin) Accumulated time (LiUmin) Water Level (m) Recovery (m) Remarks 10 : 20 0 0 1440 50.00 40.50 Clean wate :21 1 1 1441 49.20 39.70 Clean wate :22 1 2 1442 48.65 39.15 Clean wate :23 1 3 1443 47.25 37.75 24 1.4 4 1444 46.28 36.78 25 1.5 1445 45.84 36.34 22 2.7 1447 4.94 35.44 33.70 225 2.15 1445 45.84 36.34 22.80 33.70 225 1.45 1445 32.80 33.70 27.58 1.45 32.26 1.45 32.26 1.46 1.30 31.80 1.55 1.30 1.80 1.80 1.80	DISTRICT			1110	NGWE	ST	ATIC WATER LEV	/EL	9.50m
DATA 26/10/2011 PUMP SET 50 m TIME Elapsed Time (fuirmin) Accumulated time (Lil/min) Water Level (m) Recovery (m) Remarks 10 : 20 0 0 1440 50.00 40.50 Clean wate :21 1 1 1441 49.20 39.70 Clean wate :22 1 2 1442 48.65 39.15				TA	CHIMUTU	DY	NAMIC WATER I	EVEL	
TIME (Hour: Minute) Elapsed Time (tmin) Accumulated time (Lil/min) Water Level (m) Recovery (m) Remarks 10: 20 0 0 1440 50.00 40.50 Clean wate :21 1 1 1441 49.20 39.70 239.70 :22 1 2 1443 47.25 37.75 237.75 :24 1 4 1444 46.28 36.78 36.34 :29 2 7 1447 44.94 35.44 36.34 :30 3 10 1455 44.320 33.70 33.70 :25 2 15 1455 42.30 32.80 33.70 :40 5 20 1466 41.30 31.80 31.80 :45 5 25 1465 41.30 31.80 31.80 :45 5 25 1465 41.30 31.80 31.80 :45 5 35 1475 37.08	DATA			26/10)/2011	PU	MP SET		50 m
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
Characterization Characterization Solution 40.50 Clean wate 121 1 1 1440 50.00 40.50 Clean wate 122 1 2 1442 48.65 39.15	TIME (Hour: Minute)		Elapse	ed Time	Accumulated tin (Lit/min)	ne	Water Level (m)	Recovery (m)	Remarks
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10 : 20	0	- c(iiiii)	0	1440	-	50.00	40.50	Clean wate
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 21	1		1	1441		49.20	39.70	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 22	1		2	1442		48.65	39.15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $; 23	1		3	1443		47.25	37,75	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 24	1	-	4	1444		46.28	36.78	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 25	1		5	1445		45.84	36.34	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 29	2		7	1447		44.94	35.44	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 30	3		10	1450		44.04	34.54	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 33	3		13	1453		43.20	33.70	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 25	2		15	1455		42.30	32.80	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 40	5		20	1460		41.65	32:30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $; 45	5		20	1400		30.40	20.00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$. 50	5		35	1470		37.08	23.50	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 : 00	5		40	1475		34.90	25.40	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$: 05	5		45	1485		32.76	23.26	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$; 10	5		50	1490		30.54	21.04	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 15	5		55	1495		28.50	19.00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 20	5		60	1500		26.00	16.50	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 30	10		70	1510		17.94	8.44	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $; 40	10		80	1520		16.57	7.07	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$: 50	10		90	1530		14.93	5.43	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12 : 00	10		100	1540		13.56	4.06	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 10	10		110	1550		12.68	3.18	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 20	10		120	1560		11.74	2.24	
150 15 150 1590 10.82 1.32 13:05 15 165 1605 10.50 1.00 :20 15 180 1620 10.21 0.71 :35 15 195 1635 9.78 0.28 :50 15 210 1650 9.74 0.24 14:05 15 225 1665 9.65 0.15 :20 15 240 1680 9.55 0.05 :35 15 255 1695 9.50 0. 100%	: 35	15		135	1575		11.2/	1.//	
13 15 165 1605 10.50 1.00 : 20 15 180 1620 10.21 0.71 : 35 15 195 1635 9.78 0.28 : 50 15 210 1650 9.74 0.24 14 05 15 225 1665 9.65 0.15 : 20 15 240 1680 9.55 0.05 100% : 35 15 255 1695 9.50 0. 100%	: 50	15		150	1590		10.82	1.02	
10 10 1020 1021 0.71 : 35 15 195 1635 9.78 0.28 : 50 15 210 1650 9.74 0.24 14 05 15 225 1665 9.65 0.15 : 20 15 240 1880 9.55 0.05 : 35 15 255 1695 9.50 0. 100%	13:05	15		180	1605		10.50	0.71	
100 100 3.10 0.20 : 50 15 210 1650 9.74 0.24 14 : 05 15 225 1665 9.65 0.15 : 20 15 240 1880 9.55 0.05 : 35 15 255 1695 9.50 0. 100%	: 20	15		100	1620		0.21	0.71	
14 15 225 1665 9.65 0.15 : 20 15 240 1880 9.55 0.05 : 35 15 255 1695 9.50 0. 100%	- 50	15		210	1650		9.74	0.20	
20 15 240 1680 9.55 0.05 : 35 15 255 1695 9.50 0. 100%	14 : 05	15		225	1665		9.65	0.15	
: 35 15 255 1695 9.50 0. 100%	20	15		240	1680		9.55	0.05	
	: 35	15		255	1695		9.50	0.	100%
Image: Second									
Image: Section of the section of th									· · ·
Image: Section of the section of th									
Image: Section of the section of th									
Image: Section of the section of th					33				

2-3. BOREHOLE TTC No.3

Figure-7 TTC No.3 VERTICAL PROFILE

STEP	DISCHARGE	DYNAMIC LEVEL	DRAWDOWN	SPECIFIC CAPACITY
	Q (m ³ /hr.)	N.D. (m.)	S (m.)	Q/S (m ³ /hr/m.)
FIRST(1st)	1.08	19.30	15.81	0.0683
SECOND(2nd)	2.16	44.14	40.65	0.0531
THIRD(3rd)	2.52	50.00	46.51	0.0542
FORTH(4th)				
FIFTH(5th: Constant)	1.80	38.16	34.67	0.0519

Figure-8 TTC No. 3 STEP DRAWDOWN TEST

CONSTANT DISCHARGE TEST

Figure-9 TTC No. 3 CONSTANTDISCHARGE TEST

Table-11 TTC No. 3 RECORD OF CONSTANTDISCHARGE TEST

		CO	NSTANT DISC	HARGE TEST		
NAME OF PROJEC	CT	Ma	lawi CDSS and T	C PHASE 2		
No		· 110	C - No. 3	BOREHOLE DEPTH	-	61m
140.		Leise,				
NAME OF LOCATI	ON	NA	LIKULE T.T.C	YIELD (L/sec)		0.5L/S
DISTRICT			ONGWE	STATIC WATER LEVE		3.49m
DATE		23	/10/2011	PUMP SET		54 m
ACTUAL TIME		TIME t(min)	YIELD (Lit/min)	DYNAMIC (m)	DEPTH (m)	REMARKS
8 : 10	- o	0	5L/10sec	3,49	0	
: 11	1	1		7,73	4.24	
: 12	1	2		8.56	5.07	
: 13	$+\frac{1}{1}$	4		10.25	6.76	
: 15	1	5		11.78	8.29	
:,17	2	7		12.50	9.01	
: 20	3	10		13.55	10.06	
25	2	15		18.49	15.00	
: 30	5	20		21.15	17.66	
: 35	5	25		22.60	19.11	
: 40	5	30		24.62	21.13	
: 45	5	40		27.04	23.55	
: 55	5	45		28.71	25.22	
9:00	5	50		29.58	26.09	
: 05	5	55		30.86	26.93	
: 10	10	70		31.42	27.93	
; 30	10	80		33.32	29.83	
: 40	10	90		34.05	30.56	
: 50	10	100		35.24	31.75	
10:00	10	120		36.02	32.53	
: 30	20	140		36.26	32.77	
: 50	20	160		36.49	33.00	
11:10	20	180		36.68	33.19	
: 50	20	200		36.90	33.41	
12;10	20	240		37.02	33.53	
:40	30	270		37.14	33.65	
13;10	30	300		37.20	33.71	
14 : 10	30	360		37.32	33.83	
: 40	30	390		37.47	33.98	
15 : 10	30	420		37.60	34.11	
16:10	60	480		37.65	34.16	
18:10	60	600		37.76	34.27	
19;10	60	660		37.78	34.29	
20;10	60	720		37.85	34.36	
21: 10	60	780		37.89	34.40	
23: 00	60	900		37,92	34.45	
00: 10	60	960		37.96	34.47	
01; 10	60	1020		37.99	34.50	
02: 10	60	1080		38.04	34.55	
03: 10	60	1140		38.12	34.59	
05 ;10	60	1260		38.14	34.65	
06 ;10	60	1320		38.16	34.67	

Conductivity :

40

WATER LEVEL RECOVERY TEST

DESCRIPTION					
Discharge, Q (m ³ /hr.)	1.80 m ³ /hr.				
Water Level ,∆S (m.)	34.67 m.				
Transmissivity , T (m ² /hr.) T = (2.30 Q)/(4 $\pi\Delta$ S)	0.01 m ² /hr.				
Screen Length , b (m.)	15.00 m.				
Hydraulic Gradient , K (m./hr.) K = T/b	6.335E-04 m./hr.				

Figure-10 TTC No. 3 WATER LEVEL RECOVERY TEST

Table-12 TTC No.3 RECORD OF WATER LEVEL RECOVERY TEST

Final Report

DISCHARGE TEST (RECOVERY)

NAME OF PROJECT	Malawi CDSS and TTC PHASE 2					
No.	TTC - No. 3	BOREHOLE DEPTH	61.0 m			
NAME OF LOCATION	NALIKULE TTC	YIELD (L/sec)	0.5 l/s			
DISTRICT	LILONGWE	STATIC WATER LEVEL	3.49 m			
	T.A. CHIMUTU	DYNAMIC WATER LEVEL	38.16			
DATE	24/10/2011	PUMP SET	54.0m			

lime		Elapsed lime	Accumulated time	Water Level	Recovery	Remarks
(Hour: Minute)		t(min)	(Lit/min)	(m)	(m)	
8 : 14	0	0	1440	38.16	34.67	Clean wate
: 15	1	1	1441	36.33	32.84	
: 16	1	2	1442	35.55	32.06	
; 17	1	3	1443	34.42	30.93	
: 18	1	4	1444	33.14	29.65	
: 19	1	5	1445	31.96	28.47	
: 21	2	7	1447	29.92	26.43	
: 24	3	10	1450	27.04	23.55	
: 27	3	13	1453	24.08	20.59	
: 33	2	15	1455	22.67	19.18	
: 37	5	20	1460	19.30	15.81	
; 44	5	25	1465	16.48	12.99	
: 49	5	30	1470	14.24	10.75	
: 54	5	35	1475	12.55	9,06	
: 59	5	40	1480	11.18	7.69	
09:04	5	45	1485	10.03	6.54	
: 09	5	50	1490	9.01	5.52	
: 14	5	55	1495	7.54	4.05	
: 24	5	60	1500	7.00	3.51	
: 34	10	70	1510	6.55	3.06	
: 44	10	80	1520	5.98	2.49	
54	10	90	1530	5.58	2.09	
10 : 04	10	100	1540	5.30	1.81	
• 14	10	110	1550	5.12	1.63	
: 29	10	120	1560	4.90	1.41	
: 44	15	135	1575	4.73	1.24	
: 59	15	150	1590	4.60	1.11	
11 : 14	15	165	1605	4.52	1.03	
: 29	15	180	1620	4.48	0.99	
• 44	15	195	1635	4.37	0.88	
: 59	15	210	1650	4.30	0.81	
12 . 14	15	225	1665	4.23	0.74	
29	15	240	1680	4.20	0.71	
• 44	15	255	1695	4 12	0.63	
	15	270	1710	4.08	0.59	
. 00		210	1110	4.00	0.00	
	-					
		· · · · · ·				

Figure-11 TTC No. 4 VERTICAL PROFILE

STEP DRAWDOWN TEST

PROYECT NAME	Malawi CDSS & TTC Phase 2		
BOREHOLE No.	TTC No. 4	STATIC WATER LEVEL	1 .9 6 m.
SITE	TTC Nalikule	DATE	27/10/11

STEP	DISCHARGE	DYNAMIC LEVEL	DRAWDOWN	SPECIFIC CAPACITY
	Q (m ³ /hr.)	N.D. (m.)	S (m.)	Q/S (m ³ /hr/m.)
FIRST(1st)	0.86	11.24	9.28	0.0931
SECOND(2nd)	1.48	25.50	23.54	0.0627
THIRD(3rd)	2.23	50.00	48.04	0.0465
FORTH(4th)				
FIFTH(5th Constant)	1.48	50.00	48.04	0.0307

Figure-12 TTC No. 4 STEP DRAWDOWN TEST

CONSTANT DISCHARGE TEST

	DESCRIPTION	
Discharge, Q (m ³ /hr.)	1.48 m³/hr.	
water Level ,∆S (m.)	48.04 m.	
Transmissivity , T (m ² /hr.) T = (2.30 Q)/($4\pi\Delta S$)	0.006 m²/hr.	
Screen Length , b (m.)	21.00 m.	
Hydraulic Gradient , K (m./hr.) K = T/b	2.678E-04 m./hr.	

Figure-13 TTC No. 4 CONSTANT DISCHARGE TEST

Table-13 TTC No. 4 RECORD OF CONSTANT DISCHARGE TEST

		CON	ISTANT DISC	HARC	SE TEST		
NAME OF PROJEC	т	Mala	wi CDSS and	TTC P	HASE 2		
No.				BO	REHOLE DEPTH		70M
	ON	NAL	KULETTC	YIE	LD (Lit/sec)		0.41L/S
THREE OF LOOAT				-			1.08m
DISTRICT			NGWE	STA	ATIC WATER LEV	L	1.96m
		T.A.	CHIMUTU	DY	NAMIC WATER LI	EVEL	50M
DATE		28 /1	1/2011	PUI	MP SET		50M
		TIME			DYNAMIC	DRAWDOWN	REMARKS
(Hour: Minute)		t(min)	(Lit/min)		(m)	(m)	
08: 55	0	0	5L/12sec		1.96	0	
: 56		1			4.50	2.04	
: 57		2			6.17	3.34 A 21	
: 58		3			6.72	4.21	
00:00		4			7.68	5.72	
· 02	2	7			8.42	6.46	
: 05	3	10			8.62	6.66	
: 08	3	13			9.01	7.05	
: 10	2	15			9.49	7.53	
: 15	5	20			10.66	8.70	
: 20	5	25			11.80	9.84	
: 25	5	30			13.62	11.66	
: 30	5	35			14.27	12.31	
; 35	5	40			15.07	13.11	
: 40	5	40			16.75	14 79	
: 50	5	55			17.60	15.64	
: 55	5	60			18.38	16.42	
10:05	10	70			19.37	17.41	
; 15	10	80			20.24	18.28	
: 25	10	90			21.20	19.24	
: 35	10	100			22.00	20.04	
: 45	10	110			23.57	21.61	
: 55	10	120			24.92	22.96	
11:15	20	140			26.37	24.41	
: 35	20	160			27.34	25.56	
12:15	20	200			29.54	27.58	
35	20	200			30.95	28.99	
: 55	20	240	-		31.99	30.03	
13:25	30	270	1		32.94	30.98	
; 55	30	300			34.03	32.07	
14 : 25	30	330			35.01	33.05	
; 55	30	360			35.63	33.67	
15: 25	30	390			36.87	34.91	
: 55	30	420			38.67	36.71	
16:55	60	480			39.02	37.06	
17:55	60	540	_		41.27	39.31	
18:55	60	600			43.08	41.12	
19 ; 55	60	720			48.04	44.00	
20,00	60	780			49.18	47.22	1
22: 55	60	840			50.00	48.04	
							-
Temperature :			PH:				
iomportature :							
Conductivity :							

WATER LEVEL RECOVERY TEST

Figure-14 TTC No. 4 WATER LEVEL RECOVERY TEST

Table-14 TTC No. 4 RECORD OF WATER LEVEL RECOVERY TEST

Final Report

NAME OF PROJE	СТ	Mala	wi CDSS and TT	CF	PHASE 2		
No.				BO	REHOLE DEPTH		70m
NAME OF LOCAT	ION	NALIK	VULE TTC	YIE	LD (Lit/sec)		0.41 l/s
DISTRICT		LILON	IGWE	ST/	ATIC WATER LEV	/L	1.96m
			HIMUTU	DY	NAMIC WATER I	EVEL	50M
DATE	-	20/10	/2011	DI			50M
DATE		29/10	12011	FU			JOW
Time		Elapsed Time	Accumulated tim	ne	Water Level	Recovery	Remarks
(Hour: Minute)		t(min)	(Lit/min)		(m)	(m)	~
00 : 06	0	0	1440		50.00	48.04	Clean wa
: 07	1	1	1441		48.50	46.54	
: 08	1	2	1442		47.28	45.32	
; 09	$+\frac{1}{4}$	3	1443		46.50	44,54	
: 10		4	1444		40.72	43./0	
: 11	1	5	1445		44.10	42.22	
: 15	2	10	1447		37.00	35.00	
- 20	2	13	1450		33.74	31.78	
. 20	2	15	1455		30.52	28.56	
. 21	5	20	1460		27.86	25.90	
: 20	5	20	1465		21 77	19.81	
: 35	5	30	1470		16.80	14.54	
: 40	5	35	1475		13.91	11.95	
: 50	5	40	1480		11.50	9.54	
: 55	5	45	1485		9.07	7.11	
: 01	5	50	1490		7.75	5.79	
: 05	5	55	1495		6.59	4.63	
: 16	5	60	1500		5.75	3.79	
: 23	10	70	1510		3.09	3.13	
; 30	10	80	1520		4.46	2.50	
: 46	10	90	1530		3.83	1.87	
: 36	10	100	1540		3.44	1.48	
02:06	10	110	1550		3.32	1.36	
: 21	10	120	1560		3.15	1.19	
: 36	15	135	1575		2.92	0.96	
: 51	15	150	1590		2.80	0.84	
: 36	15	165	1605		2.72	0.70	
: 51	15	180	1620		2.04	0.08	
03:00	15	195	1030		2.00	0.04	
: 21	15	210	1000		2.50	0.62	
: 50	15	220	1680		2.54	0.57	
04:06	15	240	1695		2.50	0.56	
• 21	15	270	1710	-	2.50	054	
: 36	15	285	1725		2.46	0.50	99%

Table-15 WATER QUALITY TEST RESULT OF B BOREHOLES TTC No. 2~TTC No. 4

4 2011 ULE TTC OLE (BH .3) IMUTU, NGWE RICT 19 1 0	BALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	11 102 11 102 12 102 14 102 14 102 14 102 14 102 14 102 14 102 14 102 14 102 14 102 14 102 822 28/10/2011 10 10	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5 6.0-9.5
4 2011 20	821 28/10/2011 NALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	R DEVELOPMENT	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5
4 2011 ULE TTC OLE (BH .3) IMUTU, NGWE RICT 89 1 0 80 1 0 80 1 0 80 1 0 80 80 1 80 80 80 80 80 80 80 80 80 80	821 28/10/2011 NALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	822 28/10/2011 NALIKULE TTC BOREHOLE (BH No.2) T/A CHIMUTU, LILONGWE DISTRICT 7.64 460	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5
ILE TTC OLE (BH .3) IMUTU, NGWE RICT 1 0	28/10/2011 NALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	28/10/2011 NALIKULE TTC BOREHOLE (BH No.2) T/A CHIMUTU, LILONGWE DISTRICT 7.64 460	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5
ILE TTC OLE (BH .3) IMUTU, NGWE RICT 89 1 0	NALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	NALIKULE TTC BOREHOLE (BH No.2) T/A CHIMUTU, LILONGWE DISTRICT 7.64 460	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5
ILE TTC OLE (BH .3) IMUTU, NGWE RICT 89 1 0	NALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	NALIKULE TTC BOREHOLE (BH No.2) T/A CHIMUTU, LILONGWE DISTRICT 7.64 460	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5
ULE TTC OLE (BH .3) IMUTU, NGWE RICT 89 1 0	NALIKULE TTC BOREHOLE (BH No.4) T/A CHIMUTU, LILONGWE DISTRICT 7.84 390 175	NALIKULE TTC BOREHOLE (BH No.2) T/A CHIMUTU, LILONGWE DISTRICT 7.64 460	MALAWI DRINKING WATER STANDARDS FOR BOREHOLE WATER (MS733:2005) 6.0-9.5
1 0 00	7.84 390 175	7.64 460	6.0-9.5
1 0 00	390 175	460	0 500
0	175		3, 500
00		182	2,000
00			
	30	42	•
2	90	119	-
.2	28	21	750
8	4.49	6,96	800
03	0.199	0.013	100
	-	-	3.0
and the second second			
1	19	15	500
7	4.4	5.5	-
9	35	41.6	250
.3	9.2	13.4	200
53	0.309	0.140	3.0
3	125	159	800
8	123	167	•
)	20	17	-
01	<0.01	2.0	25
10	<0.10	<0.10	25
	0	0	50
ALE COLOR 100 1980	0	0	0
Anahra	sie conducted by	Central Water Labor	ton
	8 03 1 7 9 3 3 5 3 3 8 9 0 1 0 10 10 Analys	8 4.49 03 0.199 - - 1 19 7 4.4 9 35 3 9.2 53 0.309 3 125 8 123 9 20 01 <0.01 10 <0.10 0 0 0 0 0 0	8 4.49 6.96 03 0.199 0.013 - - - 1 19 15 7 4.4 5.5 9 35 41.6 3 9.2 13.4 53 0.309 0.140 3 125 159 8 123 167 9 20 17 01 <0.01 2.0 10 <0.10 <0.10 0 0 0 0 0 0

Figure-15 TTC No.1~No.4 Photograph (Oct.2011)