CHAPTER 4

STUDY OF EACH INTERCHANGE

4.1 DESIGN STANDARD AND TYPE OF SUPER STRUCTURE

4.1.1 Design Standard for Highway and Flyover

The consultant prepared proposed up-dated design standards for highways and flyovers. This had taken into consideration a review of previous design standards which had been used in the previous detailed design of highways and flyovers. The proposed design standards of highway and flyovers were discussed and confirmed with the BOD Highway and Bridge Divisions.

Major changes between previous and updated design standards as well as Highway Design Standards and Flyover Design Standards are shown in **Table 4.1-1** and **Table 4.1-2**, respectively. The major Changes are summarized as follows:

	Previous	Updated
Highway Design Standards		
(1) Daview Second	70km/h for EDSA and	60km/h Desired,
(1) Design Speed	60km/h for C3 and C5	50km/h minimum
(2) Width of Service Road	3.35m	3.05m
(3) Hydrology Design		
Frequency Level	10 years	15 years
Pipe Culvert		
Flyover Design Standards		
(1) Seismic Acceleration	0.4g	0.5g

Among these, the notable significant change is the increase of seismic acceleration coefficient from 0.4g to 0.5g which will require for bigger structural dimensions and increase reinforcing steel bars.

According to DPWH BOD, the ASEP (Association of Structural Engineering of the Philippines) is planning to issue a new version of seismic design code in the near future and the application to actual structural design will take place sometimes. In view of this, the BOD has advised consultant to adopt higher seismic acceleration coefficient for future design as a temporary measure. Table 4.1-1 Highway Design Standards

DESCRIPTION	C-3 THROUGH	EDSA THROUGH	C-5 THROUGH	WEST AVE NORTH AVE. THROUGH	SERVICE LANE AT GRADE	MMICP VI Design Standard	
Design Condition						Through Service lane	e la ne
Design Speed	60 kph	70 kph	60 kph	40 kph	40 kph	60kph : desirable 40kph 50kph : minimum	hq
Minimum Radius Curvature (Hor.)	150 m	200 m	150 m	60 m	60 m	150 m : 60kph 90 m : 50 kph 60 m	E
Maximum Superelevation	4.00%	6.0%		6.0%	6.0%	6.0% 6.0%	%
Min. Transition (Clothoid) Curve Length : L		60 m		25 m	25 m	60 m 25 m	E
Min. Clothoid Parameter : A		110		37.5	37.5	110 37.5	5
Maximum Vertical Grade	6.00%	6.0%	6.0%	6.0%	6.0%	6.0% 6.0%	%
Minimum Vertical Grade	0.35%	0.35%	0.35%	0.35%	0.35%	0.35% 0.35%	%
Minimum Stopping Sight Distance	85 m	100 m	85 m	45 m	45 m	65m : 50kph 85m : 60kph 45 m	в
Critical Length of Vertical Grade		3.0% - 500 m			•	3.0% - 500 m	
		4.0% - 340 m				4.0% - 340 m	
		5.0% - 240 m		5.0% - 340 m		5.0% - 240 m	
		6.0% - 200 m		6.0% - 280 m		6.0% - 200 m	
Length of Taper (S : design speed, W : offset)		0.6SW		WS ² /155	WS ² /155	0.6SW WS ² /155	155
Minimum Length of Vertical Curve		e0 m		60 m			
K value @ Crest :		$\mathbf{K} = 22$		$\mathbf{K} = 5$	$\mathbf{K} = 5$	K = 11 K = 5	5
K value @ Sag :		$\mathbf{K} = 20$		$\mathbf{K} = 8$	$\mathbf{K} = 8$	K = 18 $K = 8$	8
Vertical Clearance		5.0 m		5.0 m	5.0 m	5.0 m 5.0 m	E
Cross Section							
Lane Width	3.25 m	3.35 m	3.25 m	3.35 m	3.35 m	3.35 m 3.05m	m
Lane Cross Slope	1.50%	1.50%	1.50%	1.50%	1.50%	$1.5\% \le 2$ lanes $2.0\% \ge 3$ lanes 1.50%	%
Sidewalk Cross Slope	•				2.0%	2.0%	%
Hydrology Design Frequency Level							
Inlet	2 Years	2 Years	2 Years	2 Years	2 Years	2 Years	
Ditches	5 Years	5 Years	5 Years	5 Years	5 Years	5 Years	
Pipe Culverts	10 Years	10 Years	10 Years	10 Years	10 Years	15 Years w/ adequate freeboard to contain 25 year flood	ar flood
Box Culverts	25 Years	25 Years	25 Years	25 Years	25 Years	25 Years w/ adequate freeboard to contain 50 year flood	ar flood
Bridges - small rivers (<40 sq. km catchment)	50 years	50 years	50 years	50 years	50 years	25 Years w/ adequate freeboard to contain 50 year flood	arflood
Bridges - major rivers (<u>></u> 40 sq. km catchment)	50 years	50 years	50 years	50 years	50 years	50 years w/ adequate freeboard to contain 100 year flood	ar flood

Material Properties 28.0 Mpa ConcreteSubstructure 28.0 Mpa 28.0 Mpa Bored Pile 28.0 Mpa 28.0 Mpa 28.0 Mpa Bored Pile 28.0 Mpa 28.0 Mpa 28.0 Mpa PCDG Griders $ 34.1 \text{ Mpa}$ 28.0 Mpa Column to PC Slab $ 34.1 \text{ Mpa}$ Coping Beam to PC Slab $ 34.5 \text{ Mpa}$ Coping Beam to PC Slab 34.5 Mpa 34.1 Mpa Coping Beam to PC Slab 34.5 Mpa 34.1 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa PC Voided Slab 34.5 Mpa 34.5 Mpa Protocores 34.5 Mpa <td< th=""><th>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 28.0 Mpa (25 mm) 34.0 Mpa (25 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) - - Grade 60 -<th>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (25 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -</th><th>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm)</th></th></td<>	28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 28.0 Mpa (25 mm) 34.0 Mpa (25 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) - - Grade 60 - <th>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (25 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -</th> <th>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm)</th>	28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (25 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -	28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm)
Substructure 28.0 Mpa Bored Pile 28.0 Mpa Bored Pile 28.0 Mpa PCDG Girders $-$ PCDG Girders $-$ Column to RC Slab $-$ Oping Beam to RC Slab $-$ Oping Beam to RC Slab $-$ Dyted Slab 34.5 Mpa Column to PC Slab $-$ Ovided Slab 34.5 Mpa Column to PC Slab $-$ Dyted Slab $-$ Coluded Slab $-$ Steel $-$ Colude Slab $-$ Steel $-$ Steel $-$ <t< td=""><td></td><td>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm) 28.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm)</td><td>28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm)</td></t<>		28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm) 28.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm)	28.0 Mpa (20 mm) 28.0 Mpa (25 mm) 34.0 Mpa (20 mm)
28.0 Mpaders-ers-RC Slab-PC Slab-PC Slab-C Slab-C Slab-C Slab-34.5 MpaC Slab-34.5 MpaC Slab-C Slab-Slab-State		28.0 Mpa (25 mm) 34.0 Mpa (20 mm) 28.0 Mpa (20 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -	28.0 Mpa (25 mm) 34.0 Mpa (20 mm)
ders-RC Slab-PC Slab-PC Slab-C Slab34.5 MpaC Slab34.5 MpaSlabCfrade 40 & 60C SlabCfrade 570 and low relaxation with an ultimate strength Fu = 1,860 MpaASHTO M270 (ASTM A36)100% virgin chloroprene pads with honoreorrosive mild steel sheetsSeses24.0 kn/m ³ Seses24.0 kn/m ³ Course-Course19.0 kn/m ³ Course19.0 kn/m ³ ASHTO MS18 (HS20-44)ASHTO MS18 (HS20-44)		34.0 Mpa (20 mm) 28.0 Mpa (20 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 	34.0 Mpa (20 mm)
RC Slab-PC Slab-C Slab-C Slab-C Slab-C Slab-S4.5 MpaS4.5 Mpa34.5 Mpa34.6 Mpa100% virgin chloroprene pads with honneter hardness 60 and laminated with honne		28.0 Mpa (20 mm) 34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 	
PC Slab-C Slab-C Slab-C Slab-C Slab-C Slab-34.5 Mpa34.5 Mpa34.6 Mpa34.6 Vpa34.0 kn/m3356356357358358358359350350350350351351352352353354355355356357358358358358359359350350351351351351351351351351351351 <td></td> <td>34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -</td> <td>28.0 Mpa (20 mm)</td>		34.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -	28.0 Mpa (20 mm)
C Slab - C Slab 34.5 Mpa C Slab 34.5 Mpa 34.5 Mpa 21.0 Mpa ASHTO M270 (ASTM A36) 100% virgin chloroprene pads with durometer hardness 60 and laminated with hon-corrosive mild steel sheets sses 24.0 kn/m ³ ce 24.0 kn/m ³ course 77.0 kn/m ³ course 19.0 kn/m ³ AASHTO MS18 (HS20-44)		34.0 Mpa (20 mm) 41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm)	34.0 Mpa (20 mm)
C Slab 34.5 Mpa 34.5 Mpa 34.5 Mpa 21.0 Mpa 21.0 Mpa 71.0 Mpa 60 Grade 270 and low relaxation with an ultimate strength Fu = 1,860 Mpa AASHTO M270 (ASTM A36) 100% virgin chloroprene pads with durometer hardness 60 and laminated with hurometer hardness 60 and laminated with sees 24.0 kn/m ³ course 77.0 kn/m ³ course 77.0 kn/m ³ course 19.0 kn/m ³ AASHTO MS18 (HS20-44)		41.0 Mpa (20 mm) 34.0 Mpa (20 mm) 41.0 Mpa (20 mm)	34.0 Mpa (20 mm)
34.5 Mpa 34.5 Mpa 34.5 Mpa 34.5 Mpa 34.5 Mpa 34.5 Mpa 21.0 Mpa 21.0 Mpa 0.0 Grade 40 & 60 Grade 270 and low relaxation with an ultimate strength Fu = 1,860 Mpa $AASHTO M270 (ASTM A36)$ $100%$ virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheetsssessses 24.0 kn/m ³ tee 24.0 kn/m ³ tee 77.0 kn/m ³ tei 77.0 kn/m ³		34.0 Mpa (20 mm) 41.0 Mpa (20 mm) -	41.0 Mpa (20 mm)
34.5 Mpa 34.5 Mpa 21.0 Mpa 21.0 Mpa 50 Grade 40 & 60 Grade 270 and low relaxation with an ultimate strength Fu = 1,860 Mpa AASHTO M270 (ASTM A36) 100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheets sses 24.0 kn/m ³ ete 24.0 kn/m ³ vourse 77.0 kn/m ³ ion with an ultimate 19.0 kn/m ³		41.0 Mpa (20 mm) -	34.0 Mpa (20 mm)
21.0 MpaCirade 40 & 60Grade 270 and low relaxation with an ultimate strength Fu = 1,860 MpaAASHTO M270 (ASTM A36)100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheetssses24.0 kn/m ³ cie-course-course19.0 kn/m ³ AASHTO MS18 (HS20-44)			41.0 Mpa (20 mm)
Grade 40 & 60 Grade 270 and low relaxation with an ultimate strength Fu = 1,860 Mpa AASHTO M270 (ASTM A36) 100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheets sses 24,0 kn/m ³ ete 24,0 kn/m ³ course 77.0 kn/m ³ burse 19.0 kn/m ³ AASHTO MS18 (HS20-44)			21.0 Mpa
Grade 270 and low relaxation with an ultimate strength Fu = 1,860 Mpa AASHTO M270 (ASTM A36)100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheetssses24,0 kn/m ³ curse77.0 kn/m ³ course19.0 kn/m ³ AASHTO MS18 (HS20-44)		Grade 60	Grade 60
ultimate strength Fu = 1,860 Mpa AASHTO M270 (ASTM A36) 100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheets sses 24.0 kn/m ³ ete 24.0 kn/m ³ course 77.0 kn/m ³ in 9.0 kn/m ³ 19.0 kn/m ³		Grade 270 and low relaxation with an	Grade 270 and low relaxation with an
AASHTO M270 (ASTM A36)100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheetssses24.0 kn/m³stee24.0 kn/m³course77.0 kn/m³tourse19.0 kn/m³AASHTO MS18 (HS20-44)	ultimate strength $Fu = 1,860 Mpa$	ultimate strength $Fu = 1,860 Mpa$	ultimate strength $Fu = 1,860$ Mpa
100% virgin chloroprene pads with durometer hardness 60 and laminated with non-corrosive mild steel sheets sses 24.0 kn/m ³ ete 24.0 kn/m ³ course - course 19.0 kn/m ³ AASHTO MS18 (HS20-44)	Minimum yield strength $Fy = 428$ Mpa	Minimum yield strength $Fy = 428$ Mpa	Minimum yield strength $Fy = 428$ Mpa
durometer hardness 60 and laminated with non-corrosive mild steel sheets sses 24.0 kn/m ³ ete 24.0 kn/m ³ ourse 77.0 kn/m ³ 19.0 kn/m ³ 19.0 kn/m ³		100% virgin chloroprene pads with	100% virgin chloroprene pads with
non-corrosive mild steel sheets 24.0 kn/m ³ se 77.0 kn/m ³ 19.0 kn/m ³ AASHTO MS18 (HS20-44)	dur	urometer hardness 60 and laminated with	durometer hardness 60 and laminated with
se 24.0 kn/m ³ se 77.0 kn/m ³ 19.0 kn/m ³ AASHTO MS18 (HS20-44)	non-corrosive mild steel sheets	non-corrosive mild steel sheets	non-corrosive mild steel sheets
orced Concrete24.0 kn/m³alt Wearing Course77.0 kn/m³>bacted Earth19.0 kn/m³LoadAASHTO MS18 (HS20-44)			
alt Wearing Course - 77.0 kn/m ³ pacted Earth 19.0 kn/m ³ coad AASHTO MS18 (HS20-44)	24.5 kn/m ³	24.5 kn/m ³	24.5 kn/m3
77.0 kn/m³ Dated Earth 19.0 kn/m³ Load AASHTO MS18 (HS20-44)	22.0 kn/m ³	22.0 kn/m ³	22.0 kn/m3
d Earth 19.0 kn/m ³ AASHTO MS18 (HS20-44)	77.0 kn/m ³	77.0 kn/m ³	77.0 kn/m3
AASHTO MS18 (HS20-44)	19.0 kn/m ³	19.0 kn/m ³	19.0 kn/m3
	AASHTO MS18 (HS20-44)	AASHTO MS18 (HS20-44)	AASHTO MS18 (HS20-44) Permit Load
Seismic Load			
Seismic Performance Category D	D	D	D
Soil Profile -	Type II	Type II	Site Specific
Seismic Acceleration 0.4 g	0.4 g	0.4 g	0.5g
Site Coefficient -	1.2	1.2	Site Specific

Standards	
ructural Design	
Table 4.1-2 St	

4.1.2 Type of Super Structure

Based on the comparison of flyover deck types presented hereunder and the DPWH comments for further consideration of aesthetic view, a PC Voided Slab is proposed to be utilized in this project.

Deck Type		<u> ∧ /</u> <u>√00000000</u> /
	Type 1 – PC Girder & Slab	Type 2 – PC Voided Slab
Construction Cost	Typically more economical than Type 2	Typically more expensive than Type 1
Constructability	Girders cast in advance in casting yard.	Requires shoring for complete in-situ
	Pre-stressing done in casting yard.	construction.
	Shoring not required for girders.	Shoring will partially occupy traffic lanes and
	Easy to construct span by span with	will require greater traffic management during
	conventional crane.	construction particularly at intersection.
	Erection of girder at night minimizes impact on	In-situ post-tensioning required.
	traffic during construction.	Greater quality control on site required than
	Deck slab and diaphragms require in-situ	Type 1.
	concrete construction.	
	Quality control on site easier than Type 2	
Construction Time	Shorter construction period than Type 2 - about	Longer construction period than Type 1 - about
	2 weeks less for typical flyover	2 weeks more for typical flyover
Structural Aspect	Depth of deck greater than Type 2.	Shallower deck than Type 1.
	Can be made structurally continuous for live	Fully continuous for dead load and live load.
	load over the pier. However this requires full	Expansion joints minimized.
	depth pier coping beneath deck which is not	Deck can be made monolithic with piers
	favored.	allowing maximum structural optimization.
	Not torsionally stiff. Not suitable for highly	Substantial torsional stiffness. Suitable for
	curved alignments. Requires diaphragms to	short radius alignments. Do not require
	distribute loads transversely.	diaphragms to distribute loads transversely.
	Requires bearings at each girder end.	Requires reduced number of bearings than
	All aspects less favorable than Type 2.	Type 1.
Maintenance	Maintenance aspects similar - concrete construction	on offers minimal maintenance obligations.
Aesthetics	Very poor utilitarian visual impact. Strongly	Deck shape provides a highly attractive
	disfavored in an urban setting.	sculpted form. Highly favored in an urban
		setting.
Remark	Not recommended	Recommended

 Table 4.1-3
 Comparison of Flyover Deck Types

Source: JICA study team.

4.2 C-3/E. Rodriguez Avenue

4.2.1 Review of Previous Detailed Design

The detailed design of the interchange was prepared by Nippon Engineering Consultant Co., Ltd. in association with DCCD Engineering Corporation and Pertconsult International in February 2005 (original contract) and July 2006 (Supplemental Contract).

(1) Topographic Condition

The project area has the following topographic conditions and features:

- The alignment of C-3 (Circumferential Road 3) runs in a north–south direction while E. Rodriguez Avenue runs in an east–west direction.
- 2) At standard sections, there are 6 lanes along C-3 and 4 lanes along E. Rodriguez Avenue.
- 3) The alignment of C-3 has a gentle left curve from the north to southbound direction at the intersection.
- 4) E. Rodriguez Avenue has a gentle light curve from east to westbound direction at the intersection.
- 5) Both roads have about 85 degrees of skew at the intersection due to (c) and (d) above.
- 6) The lower section among the four road directions from the intersection is located along C-3 northbound. The length of the lower section between the intersection and the same elevation of the intersection along C-3 northbound (to Quezon Avenue) is 590m.
- 7) There is the area which is surrounded by the higher land on north, south and west sides and by the bank of the San Juan River on east side. There will be flooded easily when it rains heavily as it becomes like a collecting basin without spillways.
- About 45m of the width of San Juan River crosses E. Rodriguez Avenue at approximately 134m from the center of the intersection.
- 9) The roadsides are lined with houses and commercial buildings.

There are no significant changes noted in the topographic conditions of the area during the time of the said detailed design up to the present.

(2) Geotechnical Conditions

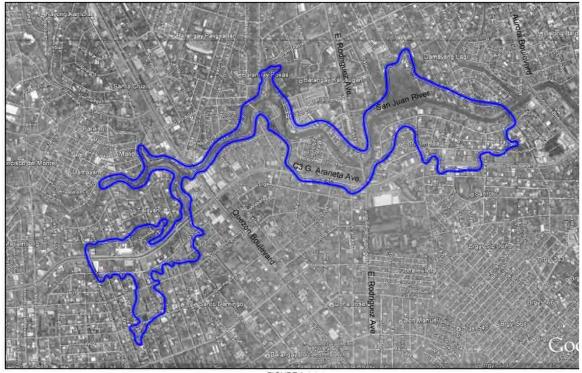
The proposed area is located on the west in the center part of the Central Plateau, which is underlain by tuffs and tuffaceous sediments of the Pliocene-Pleistocene or the Holocene.

Tuffs (tuffaceous rock sequence) consist of siltstone, sandstone and high plastic soils, belonging to the Guadalupe formation of the Pliocene-Pleistocene. Tuffaceous sediments overlying the tuffs consist of pyroclastic flow deposits and lahar deposits (tuffaceous reworked deposits) of the Pleistocene-Holocene. Pyroclastic flow deposits are mainly composed of clayey gravel and lahar deposits are mainly composed of inorganic clay, silt and clayey sand.

The lower tuffaceous rock sequence is a stable bearing stratum for the important structures such as bridges, because the "N-value is over 50 generally" and "unconfined compression strength (qu) is 800-5200 kPa (corresponding to the soft rock)". But it is difficult that the upper tuffaceous sediments are stable bearing stratum for the important structures because pyroclastic flow deposits are changing to laharic deposits which have N-value of less than 10 laterally. Therefore, the bearing stratum in the proposed area is tuffaceous rock sequence that underlie deeper than 2–7m from ground surface.

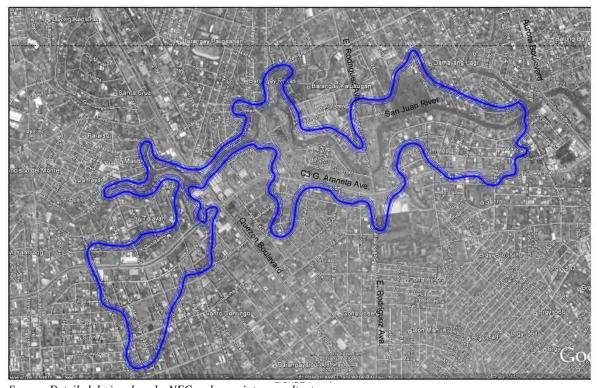
The depth of bearing stratum and type of foundations at each borehole are shown in Table 4.2-1.

Borehole No.	Depth of Bearing Stratum	Sub-Structure	Type of Foundations
BH - 1A	2.80m	-	Spread footing
BH - A	2.80m	A-A	Spread footing
BH - P1	1.80m	P-1,2	Spread footing
BH - P2	2.75m	P-3	Spread footing
BH - P3	2.00m	P-4	Spread footing
BH - P4	3.00m	P-5	Spread footing
BH - P5	4.00m	P-6,7	Spread footing
BH - P6	4.00m	P-8	Spread footing
BH - B	7.30m	P-9	Pile foundation
BH - 2A	5.90m	A-B	Pile foundation


 Table 4.2-1
 Depth of Bearing Stratum and Type of Foundations

Source: Detailed design done by NEC and associate consultants Feb 2005.

(3) Hydrological Conditions


The proposed area is flooded frequently by flooding of the San Juan River. The results of analysis of the flooding area for 2, 5, 10, 25 and 50 years return periods are shown in **Figures 4.2-1** – **4.2-5**. Comparison between the said figures and the flooding area identified from interviews with local residents (See **Figure 4.2-6**) shows that the flooding area for the 2 years return period is generally consistent with the flooding area based on the interviews which were conducted along the selected area of C-3. Therefore, the proposed area is flooded frequently based on the following flooding scales:

- Along E. Rodriguez Avenue, flood elevation for the 10 years return period is 6.062m. The section of about 770m in length of E. Rodriguez Avenue is inundated with this flood. Flood elevation for the 50 years return period is 7.090m.
- Along C-3, flood elevation for 10 years return period is 6.820m. The section of about 860m in length of C-3 is inundated with this flood.

Source: Detailed design done by NEC and associate consultants.

Figure 4.2-1 (C-3) Araneta Ave. – E. Rodriguez Ave. Flooding Study 2 Years Return Period Flooding

Source: Detailed design done by NEC and associate consultants. Figure 4.2-2 (C-3) Araneta Ave. E. Rodriguez Ave. Flooding Study 5 Years Return Period Flooding

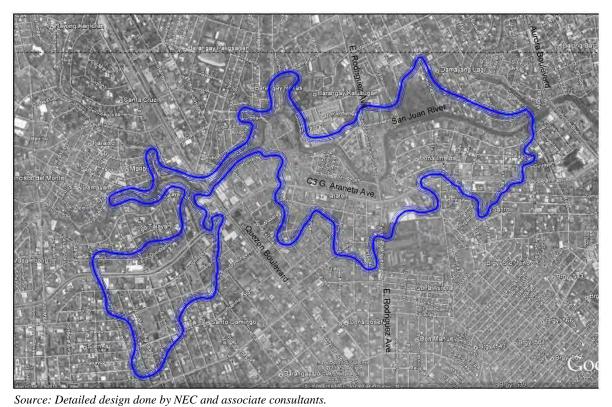
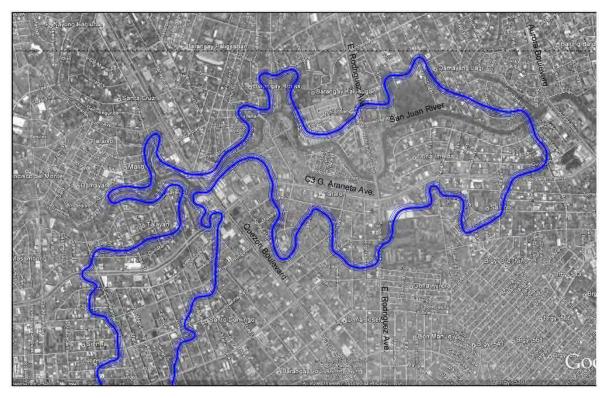
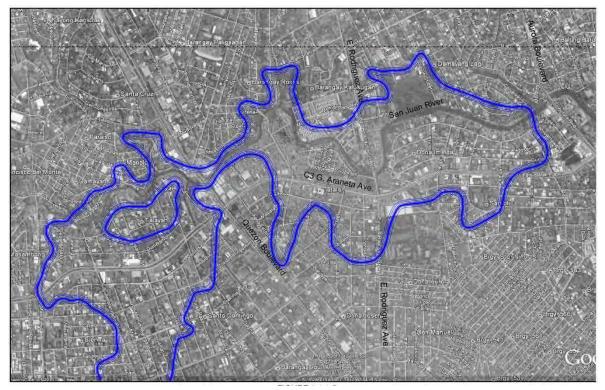
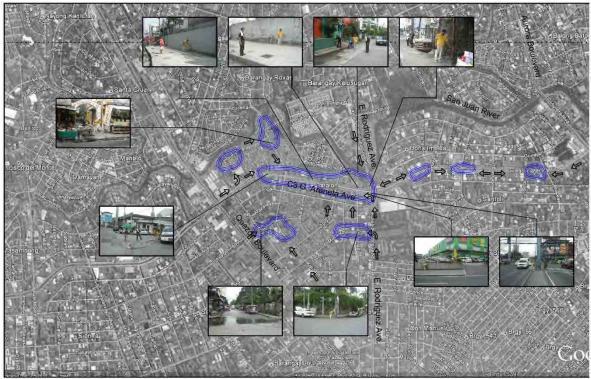




Figure 4.2-3 (C-3) Araneta Ave. E. Rodriguez Ave. Flooding Study 10 Years Return Period Flooding



Source: Detailed design done by NEC and associate consultants. Figure 4.2-4 (C-3) Araneta Ave. E. Rodriguez Ave. Flooding Study 25 Years Return Period Flooding

Source: Detailed design done by NEC and associate consultants.

Figure 4.2-5 (C-3) Araneta Ave. E. Rodriguez Ave. Flooding Study 50 Years Return Period Flooding

Source: Detailed design done by NEC and associate consultants.

Figure 4.2-6 (C-3) Araneta Ave. E. Rodriguez Ave. Flooding Study Flooding Area Based on Interviews

(4) Design Standards

Major design standards are as follows:

1) Highway Design

ood,
n an
ı an
ı an
n an
c

\Rightarrow Loads and Allowand	ce Stresses		
Live Load	:	AASH	TO MS-18 (HS20-44)
• Earthquake Load			
 Ground Accelerat 	tion Coefficient :	0.4g	
 Seismic Performa 	ince Category :	D	
• Earth Pressure			
> Normal Time	:	Coulu	nb's Formula
 Earthquake Time 	:	Monor	nobe-Okabe
• Weight			
> Concrete Plan or	Reinforced :	24.0KI	N/m ³
> Steel	:	77.0KI	N/m ³
 Compacted Sand 	and Earth :	19.0KI	N/m ³

(5) Road Alignment and Structural Conditions

The road alignment and structural design of C-3 and E. Rodriguez Avenue shall have the following conditions and characteristics:

Along C-3

- The total length of the project section along this road segment is 2,105m, consisting of 275m of flyover, 205m of approach roads and 1,625m of embankment roads.
- 2) The horizontal alignment has 250m radius curve with 90cm widening and vertical grade of viaduct is 6.0%.
- 3) The difference in elevation between original ground and the proposed elevation at the center of the intersection is 1.043m.
- 4) The flyover has four lanes. Original ground and proposed road elevation at the center of the interchange is 5.290m and 6.333m, respectively (embankment height is 1.043m).
- The highest embankment height along C-3 Quezon City direction is 2.504m, which is located at STA 6+620, 520m from the center of the intersection.
- 6) The highest embankment height along C-3 Sta. Mesa direction is 1.847m, which is located at STA 5+500, 600m from the center of the intersection.
- 7) The total length, number of spans, span length and type of flyover are as follows:
 - \Rightarrow Total Length of Flyover : 275.0m
 - \Rightarrow No. of Spans : 10
 - \Rightarrow Span Length and Type of Flyover
 - 3 span continuous PC voided slab, 25.0m + 25.0m + 24.2m = 74.2m (Sta. Mesa side)
 - 3 span continuous PC box girder, 29.2m + 40.0m + 29.2m = 98.4m (center)

- 4 span continuous PC voided slab, 24.2m + 3@25.0m = 99.2m (Quezon Ave. side)
- 8) Foundations are spread type (for abutment A and piers 1 to 8) and 1.5m diameter of bored pile (for pier 9 and abutment B).
- 9) The type of column is circular, 3.0m and 3.5m in diameter.
- 10) Shoring works are needed on all sections of the superstructure. These will entail longer construction period, disrupt traffic during construction and require the proposed road elevation to be higher due to the 3.0m height of shoring structure.

Along E. Rodriguez Avenue

- 1) The road has a total length of 827m and with a four lanes total width of 20.0m.
- 2) The highest embankment height along E. Rodriguez Avenue Cubao direction is 1.55m, which is located at STA 7+100, and 370m from the center of the intersection.
- The highest embankment height along E. Rodriguez Avenue Quiapo direction is 1.118m, which is located at STA 6+680, and 50m from center of intersection.
- 4) The highest elevation of the new Mariabolo Bridge is 7.851m, which is about 2.40m higher than the elevation of the existing bridge.
- 5) The type, length, span configuration and type of foundation of the Mariabolo Bridge are follows:

⇔	Type of Bridge	: 9 span continuous RC slab
⇔	Total Bridge Length	: 102.00m
⇔	No. of Spans and Span Length	: $9.00m + 7@12.00m + 9.00m = 102.00m$
⇒	Type of Substructure	: 1.2m diameter bored pile

6) There is no provision for widening of the river that will correspond to the increase in bridge length from the existing 45.0m to 102.0m.

(6) Environmental and Social Conditions

An Environmental Compliance Certificate (ECC) had been issued by the Department of Environmental and Natural Resources, Environmental Management Bureau (DENR-EMB) in January 2005. The conditions imposed on the issued ECC by the DENR-EMB did not include any specific requirements. Although the ECC was thought to be applied with the Initial Environmental Examination (IEE) and the Land Acquisition Plan and Resettlement Action Plan (LAPRAP), the JICA Study Team could only obtain the LAPRAP.

1) LAPRAP (December 2005)

According to LAPRAP, the Project Affected Persons (PAPs) due to this interchange project are summarized as follows.

> 94 informal settlers (PAPs) encroaching along the Right of Way (ROW)

- > 2 barangays (Barangay Tatalon and Barangay Doña Imelda) to be affected
- > Only PAPs' residential structures in Tatalon would be severely affected
 - \checkmark 11 single detached structures
 - ✓ 11 shanties
 - ✓ 72 apartment structures
- Estimated total cost of compensation for the PAPs was about PhP 2,368,706.65 which included replacement costs for fixed structures, value of trees and income loss.
- There would be no relocation site in Quezon City. Availability of relocation sites was to be properly coordinated with the inter-government agencies such as Urban Poor Affairs Office, Presidential Commission for Urban Poor and National Housing Authority.
- 2) Relocation Program implemented by Metropolitan Manila Development Authority

Informal settlers encroached in the ROW along C-3 (G. Araneta Avenue) including the aforementioned PAPs had been relocated by the Metropolitan Manila Development Authority (MMDA) in 2007. The details of the relocation program, namely, "METRO GWAPO project" are presented in Section 7.2.

(7) Identified Problems and Recommendations

Identified Problems

- There has been no study yet on the possible impacts of flooding on the people, livelihood within the vicinity of the project area after the proposed raising of the current road elevation. Following two concerns have to be looked into:
 - \Rightarrow Accessibility of the new road elevation;
 - ⇒ Further effect(s) of the new road elevation on flooding already being experienced by the people.
- There are no documents showing public acceptance of the increase of road elevation (1.043m at the center of the intersection and 2.504m of the highest embankment height).
- 3) The superstructures are all cast-in-place type, which will entail longer construction works at site and a longer total construction period.
- 4) Shoring height of the center span is 3.0m, which requires longer total grade separation and steeper vertical grade (6.0%).
- 5) Bridge length of Mariabolo was increased, from the existing 45.0m to the proposed 102.0m, but there has been no provision for widening of the river.
- 6) There are still no further details or discussion on road right-of-way and the construction limits.

Recommendations

- 1) Hydrological study should be conducted and this should particularly focus on the flood problem of the area how frequently flooding occurs, what causes it, where it comes from.
- 2) The most appropriate countermeasure(s) against flood, such as raising present road elevations further, should be thoroughly studied.
- 3) The type of superstructure and type of shoring that will minimize the effects on traffic during construction, reduce the cost and provide better vertical alignment should be determined with a more detailed study.
- 4) Further study of the length of Mariabolo Bridge should also be made.
- 5) A study should be undertaken to confirm road right-of-way parameters and whether the required ROW should be subject to public hearings for acceptance of ROW acquisition.

4.2.2 Preliminary Design of Interchange

(1) Study and Countermeasure against Flood

The proposed area is frequently flooded caused by the overflow of the San Juan River during continuous rains or strong typhoons. The flood elevation of 10 years return period is 6.062m at E. Rodriguez Avenue (including Mariablo Bridge) while the flood elevation of 50 years return period is 7.090m. This is based on the results of the hydrological analysis that was carried out during the Detailed Engineering Design of C-3/Quezon Ave. and C-3/E. Rodriguez Sr. Ave. Interchange Projects Supplemental Agreement No.1, Proposed Improvement of Flood-Prone Road Sections along C-3 and along E. Rodriguez Sr. Ave. conducted by Nippon Engineering Consultants Co., Ltd. (NEC) in association with DCCD Engineering Corporation, Pertconsult, International completed in December 2005.

Moreover, there are other studies carried out before the above mentioned analysis. These studies include the "Flood Control and Drainage Study on the San Juan River Watershed" completed in August 1979 by Basic Technology and Management Corporation (BTMC), the "Detailed Engineering Design of Pasig-Marikina River Channel Improvement Project and Study on Comprehensive River Management" completed in March 2002 by the CTI Engineering Co., Ltd. in association with Nikken Consultants, Inc., Woodfields Consultants, Inc.. These two studies took into consideration river channel improvement (dredging and widening of the river channel). The design high water level determined by these studies was as follows:

- ➢ B T M C (August 1979) : 4.40m (30 years return period)
 - Dredging depth = 1.50m
 - Widening = 0 m
- CTI and others (March 2002) : 4.90m (50 years return period)
 - Dredging depth = 0.94m
 - Widening to = 53.5m (about 9m widening of existing river width)

The above design high water levels are notably lower than the road surface elevation of Mariablo Bridge (5.2-5.4m), and it shows that the problem of flooding will be mitigated if the river channel improvement is done. However, the implementation schedule of river channel improvement is undermined for now.

On the other hand, the approved detailed design shows that the road surface elevations of C-3 and E. Rodriguez Avenue are elevated to prevent flooding. Based on the result of hydrological analysis, the embankment section used flood elevation of 10 years return period while the bridge section used flood elevation of 50 years return period. It should be noted that when the road surface elevations are raised, the following issues will be a major concern:

- > The access of the public/residents to the road from the roadside land will be difficult.
- The inundation inside a levee will be increased at the upstream side of the road because the elevated roads obstruct the surface flow as the dam (See Figure 4.2-7).

Source: JICA study team. **Figure 4.2-7** Direction of the Surface Flow at around Intersection

In conclusion, the problem of flooding has not been paid any attention in the proposed elevated highway but should be properly addressed by a flood control management project in the future.

(2) Comparative Study

Based on the review of detailed design, updated site and traffic conditions, a comparative study was undertaken to consider the following basic conditions;

• Problem of frequent flood conditions along C3 alignment especially from the intersection towards Quezon Ave., are to be addressed through an appropriate flood control project.

- Elevated road embankment along E. Rodriguez Ave. will not be considered for implementation since it will affect a significant number of people and key business establishments along the road.
- Based on the above two conditions, the comparative study will be concentrated on the provision of a flyover along C3.
- Type of superstructure to be designed as voided slab type to provide an aesthetic view of the flyover.
- Road has a combination of 4 lanes with 2 lanes each direction.

The following three (3) alternatives are proposed as the most suitable schemes for comparison based on the site conditions such as topographic, geological, traffic, roadside business and structural conditions with required span length:

- Scheme-1 : 275.0m long flyover with 2 lanes per direction (PC Box and Voided Slab Bridge) and 630m long 6 lanes additional approach road (Original Design).
- Scheme-2 : 280.0m long (PC Box and Voided Slab Bridge) with 2 lanes per direction. No additional approach.
- Scheme-3 : 280.0m long PC Box and Voided Slab Bridge with 2 lanes per direction and 690m long 4 lanes additional approach road.

Among the three (3) schemes, scheme-3 was selected even with an approximate of 22% expensive than scheme-2 due to the 690m extent of elevated road to prevent from flood during heavy rain and typhoon and this scheme can provide 2-lanes per direction of service road at-grade section which sufficient for any activity of the people along this road section.

Detailed scheme comparison are shown in Table 4.2-2 and plan profile of each scheme are shown in Figures $4.2-8 \sim 13$.

Scheme	SCHEME-1 ORIGINAL DESIGN (6-Lane Additional Approach)		SHEME - 2 No Additional Approach		Scheme-3 4-LANES ADDITIONAL APPROACH	
	4-Lane Flyover: L= 275.0m		4-Lane Flyover: L= 280.0m		4-Lane Flyover : L= 280.0m	
Structure	PC VOIDED SLAB: 7@25.0m		RC VOIDED SLAB : 10@18.0m=180.0m		RC VOIDED SLAB : 10@18.0m=180.0m	
Sche mes	PC Box Girder $2(30.0 \text{m} + 40.0 \text{m})$		PC Box Girder : 2@30.0m+40.0m=100.0		PC Box Girder : 2@30.0m+40.0m=100.0	
	Approach Road : L=630m(6-lane)		Approach Road : L=207.7m		Approach Road : L=598.0m	
	Flyover: MP 343.8 (P1,250,000/m)		Flyover : MP 350.0 (P1,250,000/m)		Flyover: MP 350.0 (P1,250,000/m)	
Construction	Construction Approach : MP 163.8 (P260,000/m)	<	Approach: MP 37.4 (P180,000/m)		Approach: MP 124.4 (P180,000/m)	C
Cost	Others MP 19.0	1	Others MP 15.0	9	Others MP 17.5)
	Total MP 526.6 (130.9%)		Total MP 402.4 (P100.0 %)	-	Total MP 491.9 (122.2%)	
	18 Months		14 Months		17 Months	
Construction Do do manago and	O Construction method and procedure is standard	<	• Construction method and procedure is standard		O Construction method and procedure is standard	C
renomiance and Dumbion	 Total 6-lanes embankment road construction affects 	1	• Less impact to traffic during construction due to no	0	• Small impact to traffic during construction due to)
Duration	to existing traffic during construction		additional embankment approach		4-lanes additional approach	
	 Requires R.O.W acquisition near I/C due to 		• No R.O.W acquisition due to improvement I/C		• No R.O.W acquisition due to improvement	
Environmental	improvement of I/C (Demolish 3 building at I/C)	<	is within R.O.W.	(of I/C is within R.O.W.	0
anu sociai Condition	 The people on each side of C-3 disconnected from 	1	• The people on each side of C-3 is still connected from	9	• The people on each side of C-3 disconnected from)
	each other due to 630m extent of elevated thru road		each other as almost same condition as present		each other can be prevented due to provide RCBC	
	• No overflow of road during flood		 No improvement against flood (road overflows 		• No overflow of road during flood	
Tueffic Condition	 No direct access to elevated road section from 	<	during flood)	<	• Can provide 2-lanes each side road on both directions	6
	side road due to no side road.	1	(Average unpassable day per year is 2 or 3 days)	٦	 No direct side road traffic access due to 600m)
					extent of elevated thru road section	
	 More Expensive than other 2-schemes 		• Cheapest among the schemes		• Expensive than scheme-2	
	 Requires R.O.W acquisition 					

Table 4.2-2 Scheme Comparative Table of C-3/E. Rodriguez Interchange

0

Can provide 2-lanes each side road on both directions No flood on thru road permanently

O No R.O.W acquisition
Can provide 2-lanes eacl
N of flood on thru road pe side road access

• 600m extent of elevated thru road prevents direct

0

No traffic improvement during flood (road overflows

Can provide direct access to road
 No R.O.W acquisition
 No traffic improvement during floo

4

from side road and disconnects the community No direct access to elevated road section

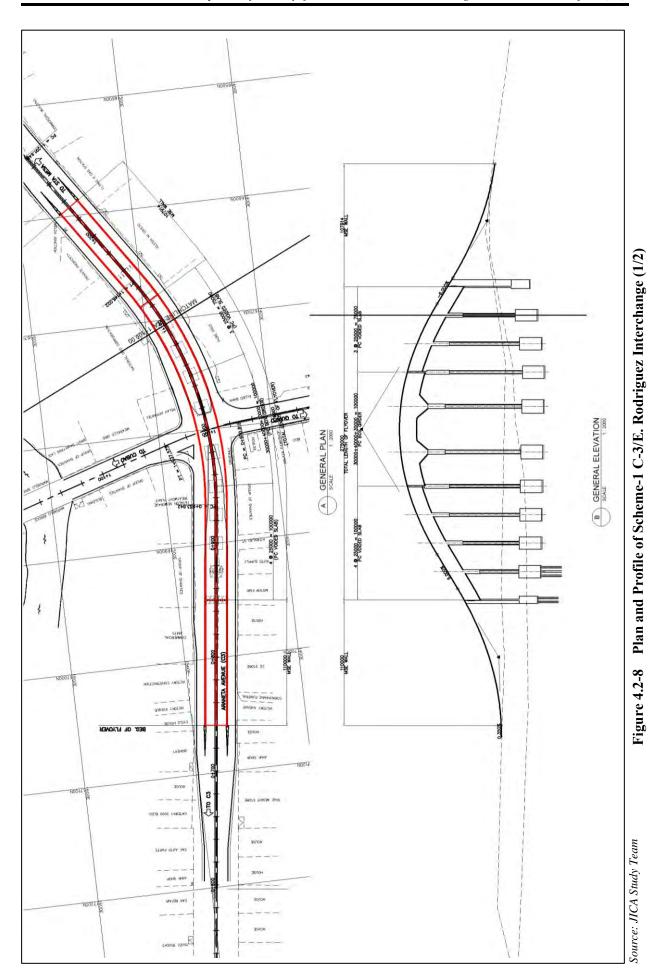
Big impact on traffic during construction due to 6-kanes additional approach No flood on thru road permanently

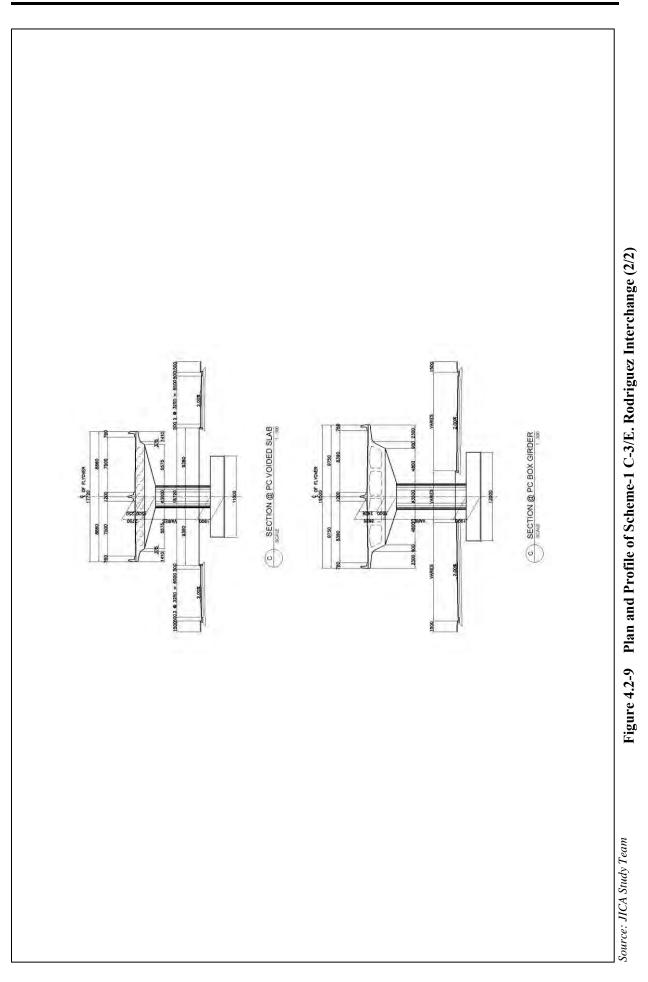
• 0

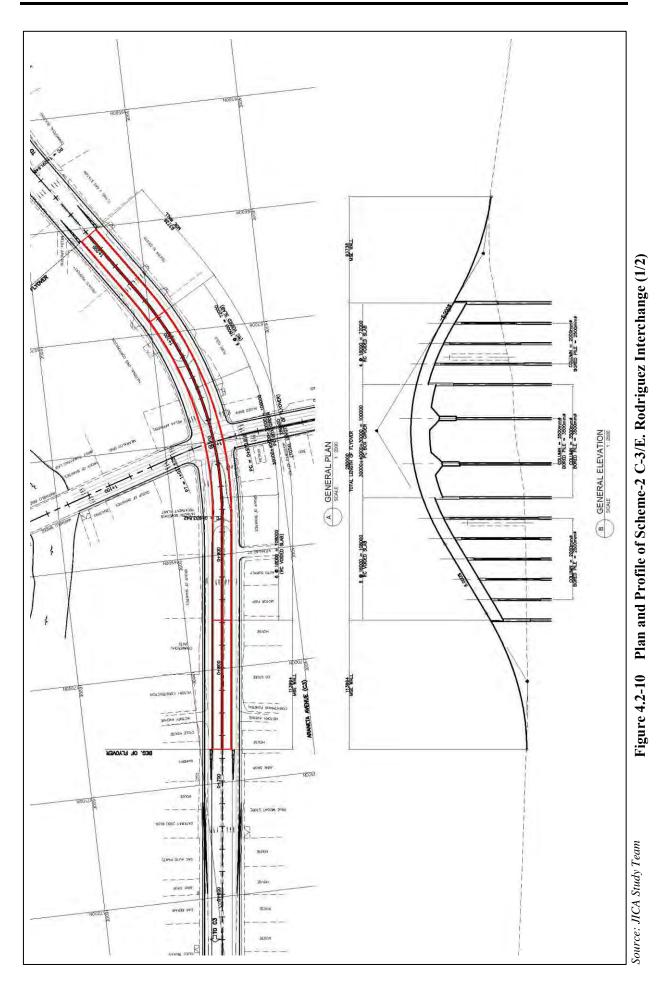
Over all Evaluation

4-17

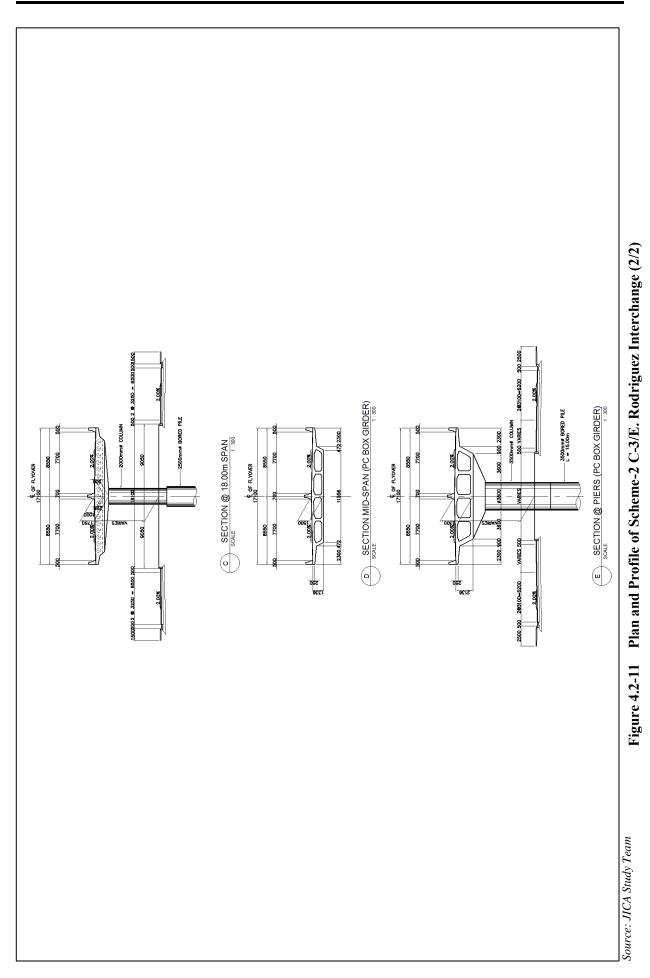
dis adv antage adv antage

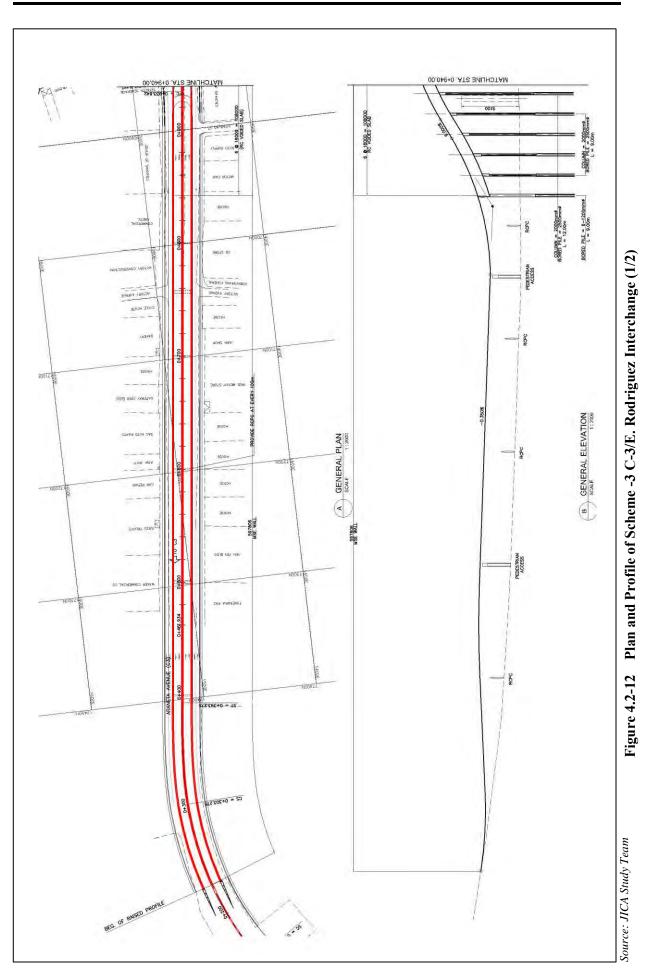

0•

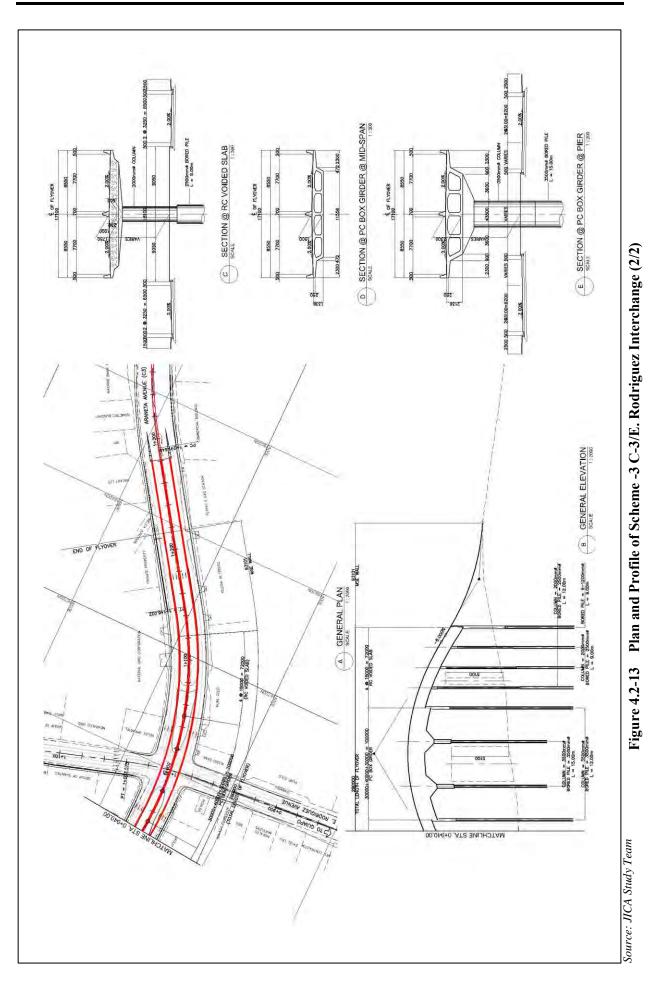

LEGEND :


Source: JICA Study Team

(average unpassable day per year is 2 or 3 days)

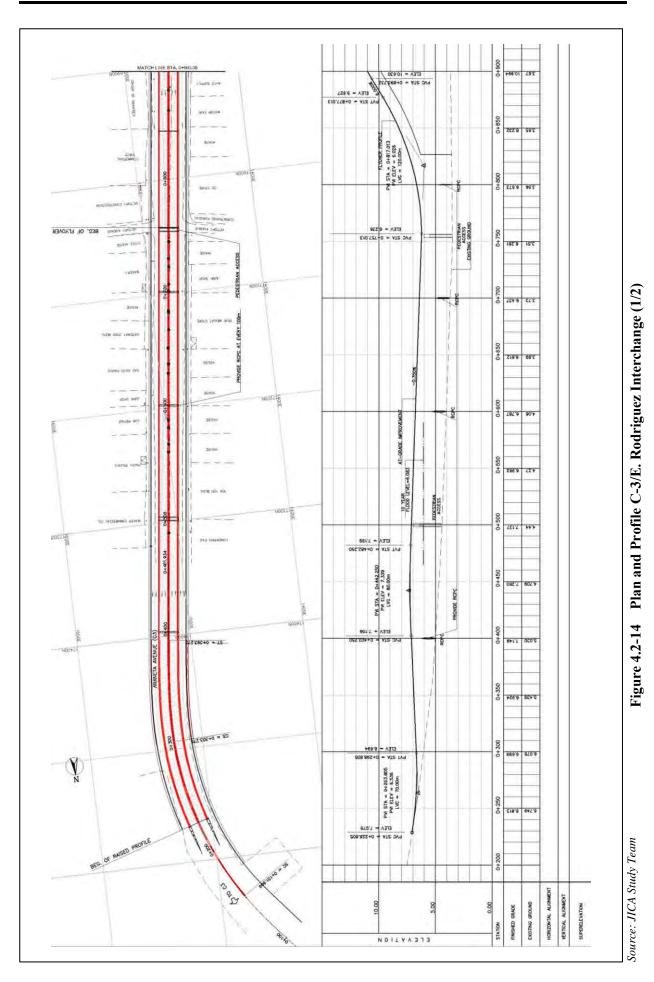

during flood)

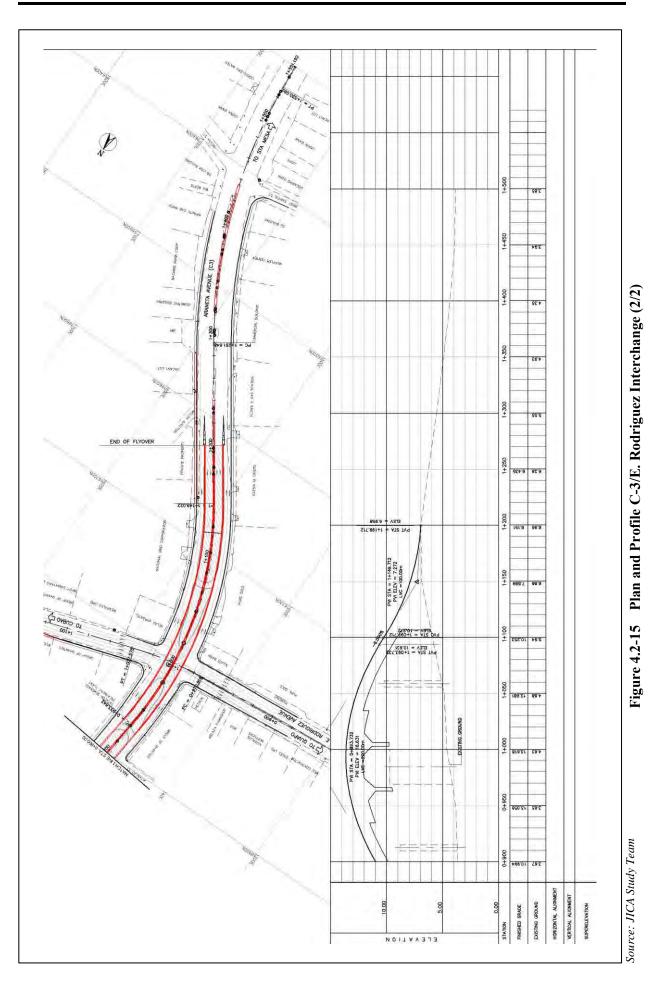


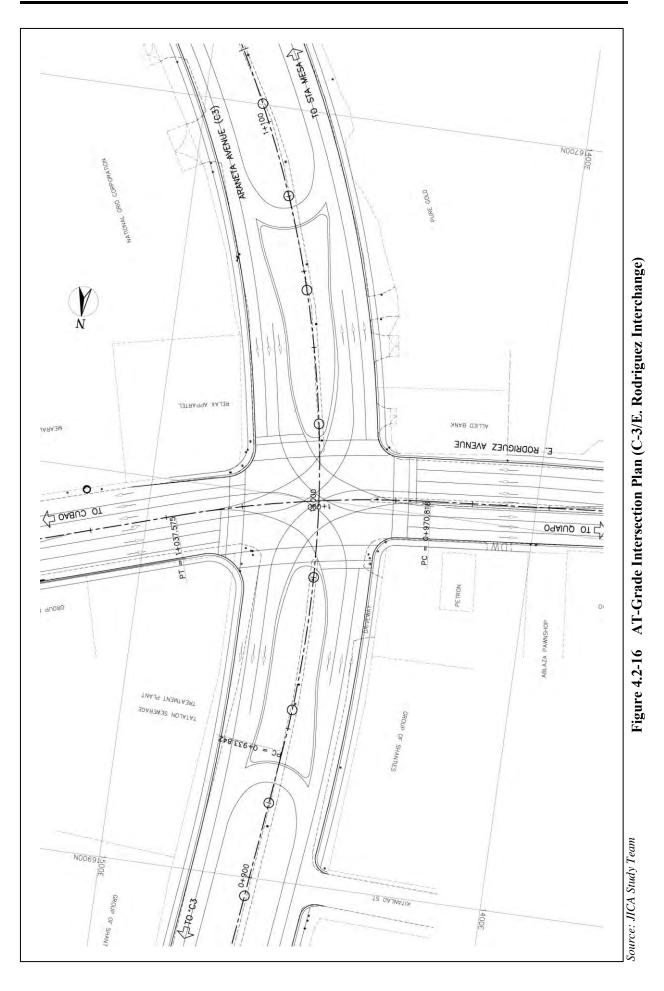


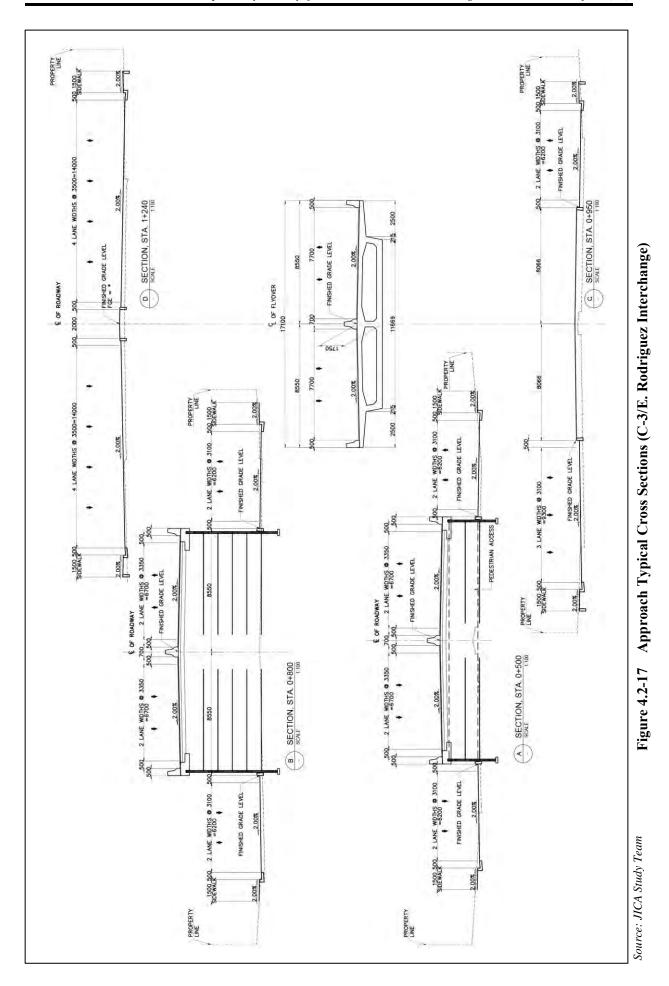
Final Report

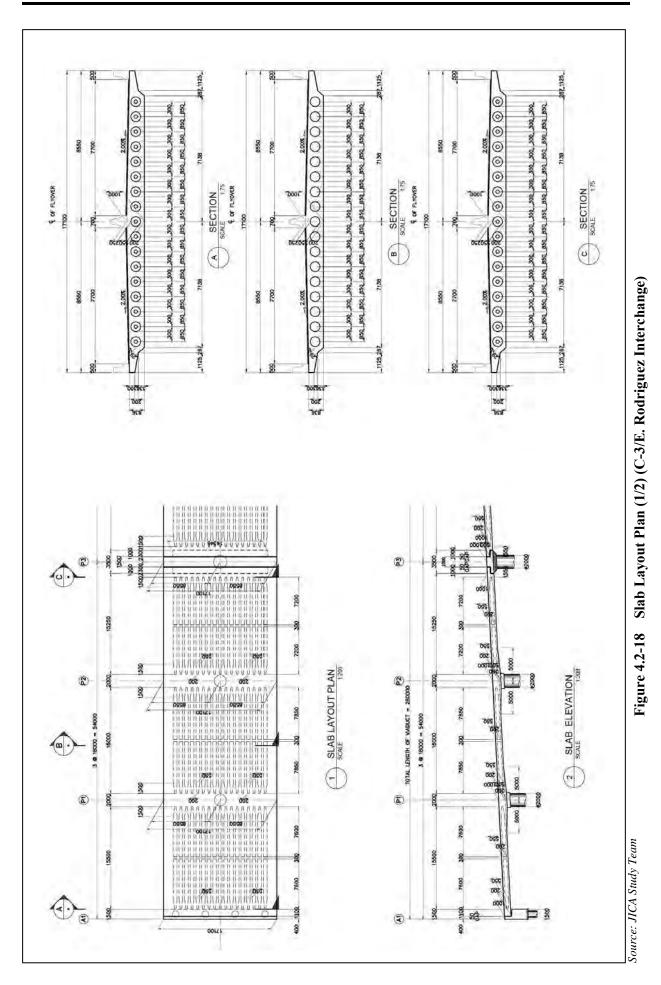
(3) Preliminary design of Selected Scheme

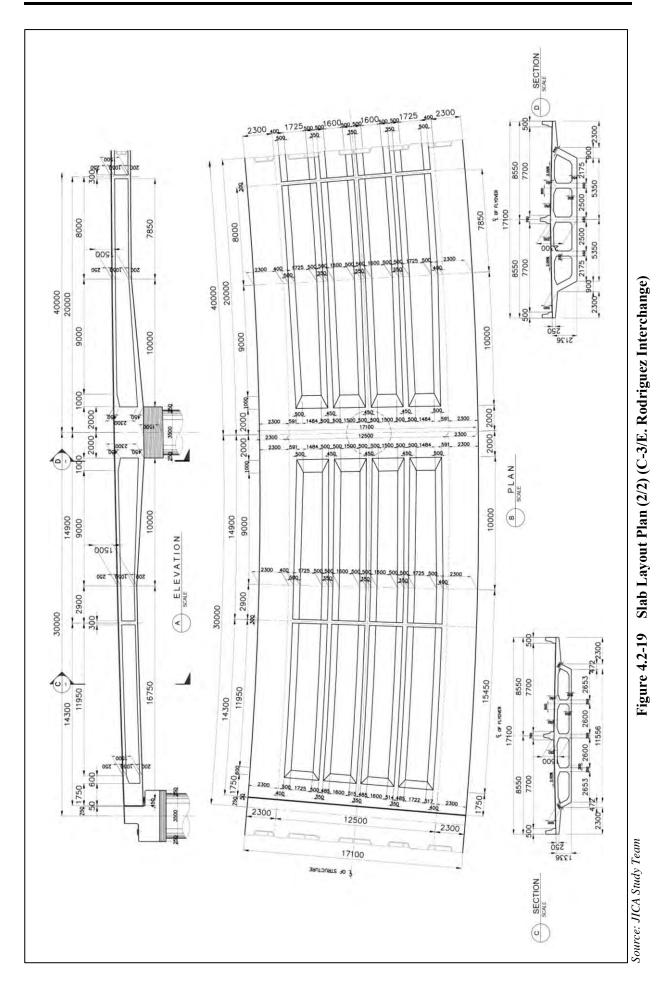

Scheme-3, RC voided slab and PC box girder type flyover with four (4) lanes embankment approach was selected based on the comparison study. Concepts of the preliminary design of the selected scheme are as follows;

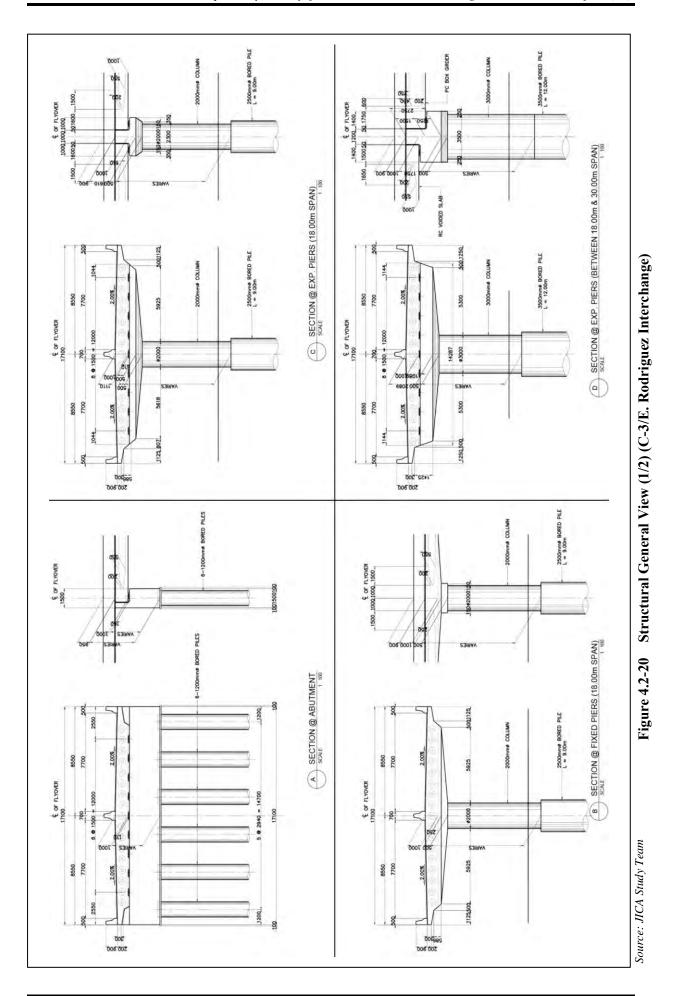

- 1) Voided slab type and box girder type should be adopted for superstructure to consider aesthetic view of flyover.
- 2) One (1) column type pier foundation should be adopted to maximize the usage of under flyover.
- 3) 6% of vertical grade should be adopted for both side of flyover approaches to minimize the flyover length.
- 4) MSE wall should be adopted as retaining wall along embankment approach to maintain two(2) lanes service roads for both directions.
- 5) To provide RCBC under the embankment approach for the use of pedestrians.
- 6) To provide left turn lane at the intersection along E. Rodriguez Avenue (total 7 lanes) to maximize the traffic capacity.
- 7) To provide four (4) phase signalization plan at the at-grade intersection.
- 8) All of the at-grade plan and design to be done within RROW.

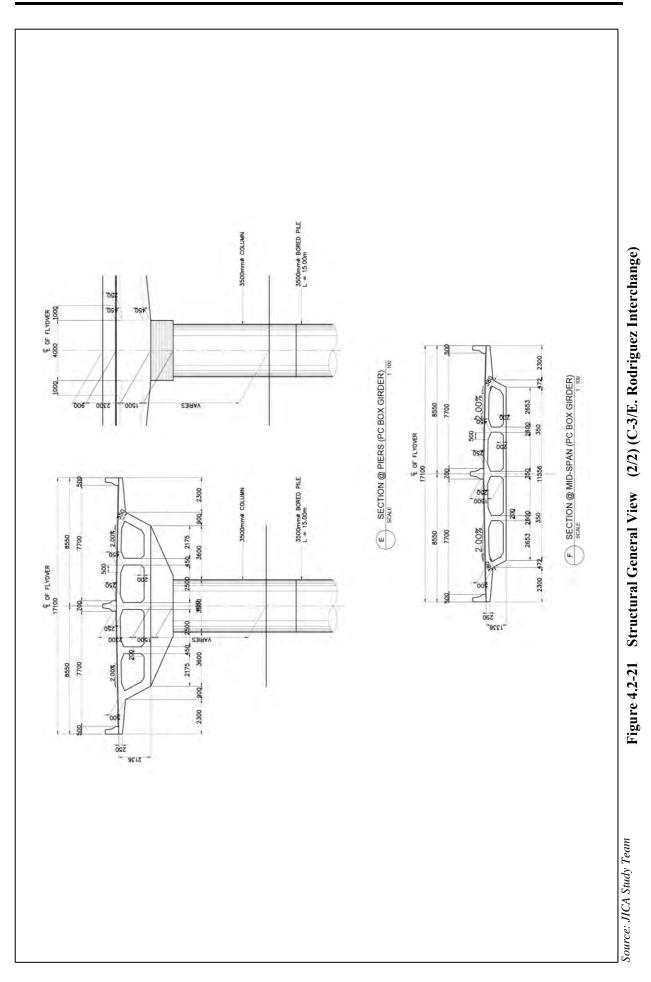

Preliminary design was carried out based on the above basic concepts. Plan and profile, at-grade intersection plan, typical cross sections of embankment approach, typical cross sections, slab layout plan and structural general view are shown in **Figures 4.2-14** ~21.

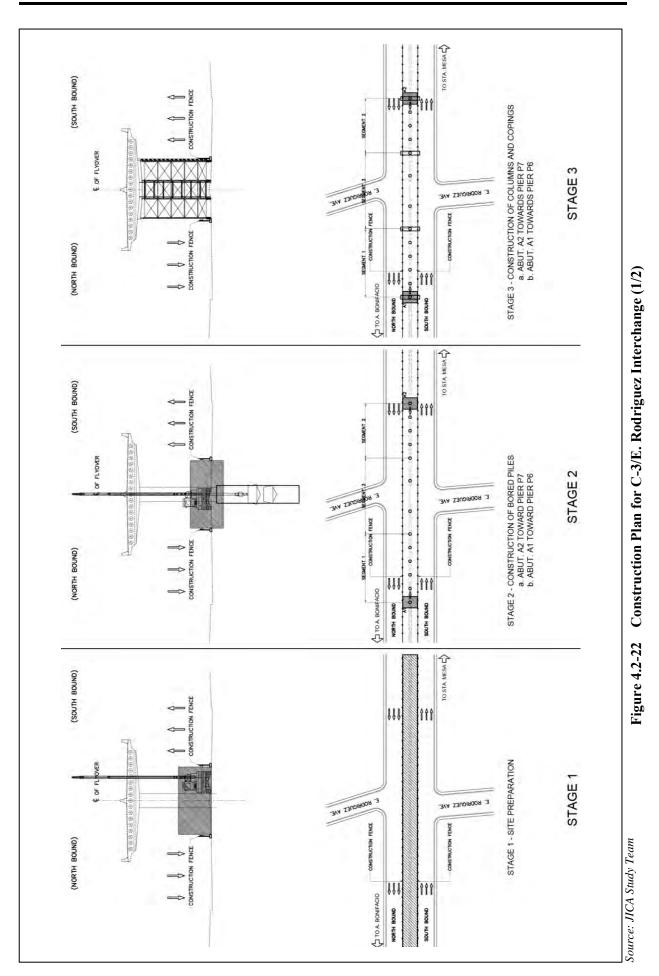

(4) Construction Plan and Traffic Management during Construction

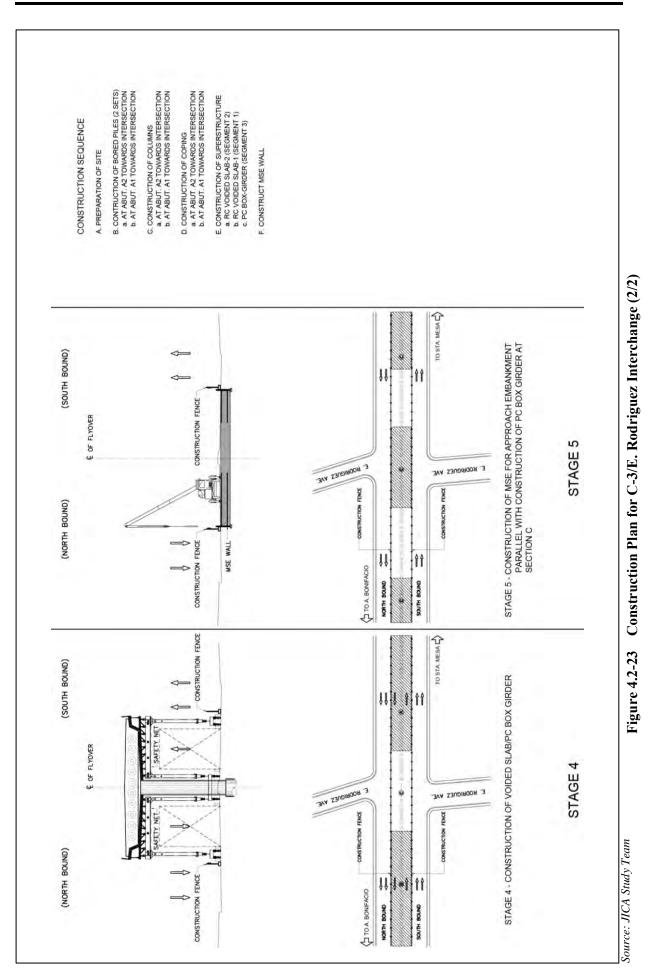

- Construction Plan and PERT CPM for the C3/E. Rodriguez interchange are presented in the Figures 4.2-22 ~ 24
- Traffic Management plan during construction for the C3/Rodriguez interchange is shown in Figure 4.2-25

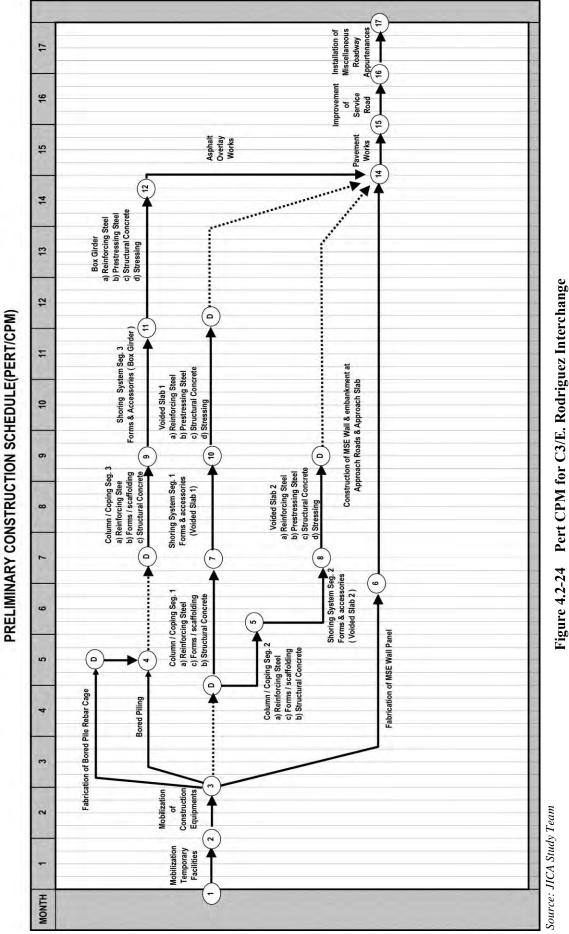


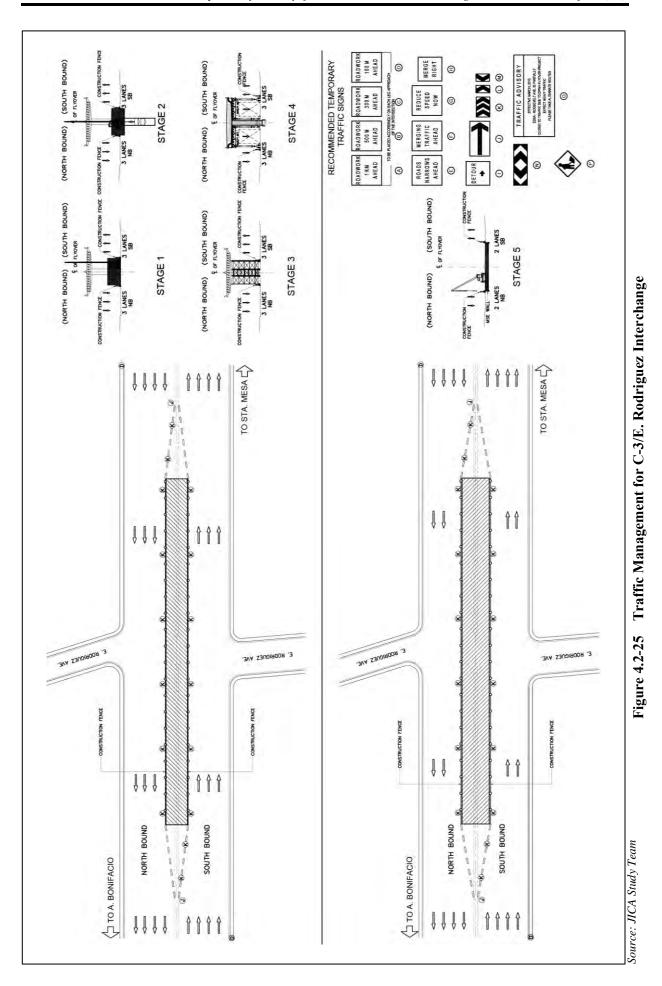












PREPARATORY SURVEY ON METRO MANILA INTERCHANGE CONSTRUCTION PROJECT PHASE VI C3 / E. RODRIGUEZ AVE. QUEZON CITY

(5) Bill of Quantity and Cost Estimate

The Civil Work cost estimate was estimated based on several factors as follows:

- Unit price used for similar GOP and BOT projects implemented or tendered from 2010-2011 was applied and also unit price for major item was estimated based on 2011 prices.
- Procedures and composition of base construction cost were derived from similar projects;
- 1) The Civil Work cost was divided into two components:
 - a) General requirement;
 - b) Interchange Construction with Viaduct;
- 2) Procedure of Construction Cost Estimate

The procedure for cost estimate uses unit price for the "base cost" approach, which is generally adopted for similar projects and some major item is estimated. From the previous similar projects, preliminary quantity takeoffs for construction item for the earth work, approach ramp and viaducts, drainage and slope protection, and other works are estimated. The cost estimate is based on the estimated quantity takeoffs from preliminary design and current market prices.

3) Procedure of Base Construction Cost Estimate

The following procedures were used to derive the base construction cost;

- a) Assumptions necessary for the estimate were naked based on the results of the preliminary studies, market research, site investigation, and unit prices of recent similar projects;
- b) Three (3) direct cost elements were identified:
 - ✓ Labor Costs
 - ✓ Material Costs (foreign/imported materials and local materials)
 - ✓ Equipment costs (Association of Carriers and Equipment Lessors, ACEL)
 - ✓ Note: ACEL is used for all of the foreign assisted and local DPWH projects.
- c) The project was broken into its component activities and a list of corresponding work items including field activities were prepared in accordance with internationally accepted specifications and concept designs proposed for the Interchanges.
- d) Based on the constraints or requirements and results obtained from the site investigation, standard construction sequences and methods for each work item were studied and formulated. The construction technology, sequences, and methods to be employed, approximate number of labor and equipment requirements, and other items were considered.

Condition of Unit Price 4)

The construction cost estimate is basically composed of the direct cost and indirect cost. The computations are in accordance with the DPWH Standard Specifications implementing guidelines and memorandum order relative to unit price analysis.

Cost of Material a)

> Materials are classified into two groups: commercial materials, available in the international and/or local markets (referred to as purchased materials) and material produced by the contractor (referred to as processed materials). The price of purchased materials are based on the quotations of various suppliers or agencies such as the Price Stabilization Council, the local markets, international and/or local prices of selected materials, the National Steel Corporation, and other private sector sources. The cost of transportation to the site is added to these costs. The cost of processed materials are estimated based on the analysis of outputs of necessary equipment, labor, royalties, and other items in accordance with recommended construction procedures.

b) Cost of Equipment

> The cost of equipment is based on "ACEL" rental rates which include operator's wages, fringe benefits, fuel, oil, lubricants and equipment maintenance.

c) Cost of Labor

> Labor costs used in the analysis are the wages authorized by the Department of Labor and Employment. All fringe benefits such as vacation and sick leaves, Workmen's Compensation Act, GSIS and SSS contributions, allowances, and bonus, are taken into account.

5) Indirect Costs

> According to the Department Order No. 29/2011 of DPWH, the indirect cost consider following conditions:

- Mobilization and demobilization (1% of direct cost) a)
- Value Added Tax (VAT):12% of total Direct and Indirect Cost b)
- c) Mark-Up (14% of Estimated Direct Cost)
 - Overhead Expenses : 5% of Estimated Direct Cost \checkmark Contingencies : 0.5% of Estimated Direct Cost Miscellaneous Expenses : 0.5% of Estimated Direct Cost \checkmark ✓ Profit
 - : 8% of Estimated Direct Cost

6) Civil Works Cost Estimate

Civil Works Cost for C3/E. Rodriguez IC has been estimated based on the above conditions as well as procedures and the result is shown in **Table 4.2-3**.

Table 4.2-3 Civil Works Cost Estimate for C3/E. Rodriguez IC

PAY ITEM NO.	DESCRIPTION	QUANTITY	UNIT	Unit Cost	Civil Work Cost	Remarks
1.0	GENERAL REQUIREMENTS					
Α	FACILITIES FOR THE ENGINEER	1.00	l.s.	10,000,000.00	10,000,000.00	
	SUB-TOTAL (PART A)				10,000,000.00	
В	OTHER GENERAL REQUIREMENTS					
SPL B.2.1	Construction Health and Safety	1.00	P.s	2,400,000.00	2.400.000.00	
SPL B.2.1 SPL B.2.2	Mobilization / Demobilization (1.0% of Civil Works)	1.00	P.s	4,295,116.12	4,295,116.12	
	Traffic Management During Construction	1.00	P.s	5,000,000.00	5,000,000.00	
	Dayworks	1.00	P.s	5,000,000.00	5,000,000.00	
SPL B.2-5	Removal, Relocation of Utilities	1.00	P.s	10,000,000.00	10,000,000.00	
SPL B.3.1	Environmental Monitoring Action Plan	1.00	P.s	2,000,000.00	2,000,000.00	
	SUB-TOTAL (PART B)				28,695,116.12	
	SUB-TOTAL GENERAL REQUIREMENTS				38,695,116.12	
2.0	INTERCHANGE CONSTRUCTION WITH VIADUCT					
С	EARTHWORKS					
100(1)		0.40	ha	90,846.53	26 220 61	
100(1)	Clearing and Grubbing Individual Removal Trees (Small)	5.00	ha. ea.	1,013.26	36,338.61 5,066.30	
100(3)	Individual Removal Trees (Sinal)	2.00	ea.	1,427.27	2,854.54	
100(5)	Removal and Earth Balling of Trees	30.00	ea.	1,000.00	30,000.00	
101(1)	Removal of Structures and Obstruction	1.00	l.s.	500,000.00	500,000.00	
101(3)a	Removal of Existing PCCP	3,132.08	sq.m.	245.78	769,802.62	
101(3)b	Breaking of Existing PCCP	10,347.98	sq.m.	335.00	3,466,573.30	
101(4)a	Removal of Existing Concrete Curb	1,138.12	l.m.	60.00	68,287.20	
101(4)b	Removal of Existing Concrete Curb & Gutter	2,702.24	l.m.	110.00	297,246.40	
101(4)c	Removal of Existing Sidewalk and Median	5,744.07	sq.m. l.m.	120.00 200.00	689,288.40	
101(4)d 101(4)e	Removal of Existing RCPC Removal of Existing Covered canal	1,628.69	1.m. 1.m.	150.00	325,738.00	
105(1)	Subgrade Preparation	4,961.33	sq.m.	37.18	184,462.25	
	SUB-TOTAL (PART C)				6,375,657.62	
D	SUBBASE AND BASE COURSE					
		4.610.04		879.97	40(4(1)(7)	
200	Sub Base Course	4,619.04	cu.m.	8/9.9/	4,064,616.63	
	SUB-TOTAL (PART D)				4,064,616.63	
E	SURFACE COURSES					
302(2)	Bituminous Tack Coat, Emulsified Asphalt, SS-1 (0.45 L/m2)	10.46	tonne	65,971.81	690,065.13	
310 (2)	Bituminous Concrete Wearing Course, Hot Laid (t=50mm)	14,952.01		924.31	13,820,292.36	
311	Portland Cement Concrete Pavement t=300 mm	14,320.68	sq.m	2,887.66	41,353,254.81	
	SUB-TOTAL (PART E)				55,863,612.30	
F	BRIDGE CONSTRUCTION					
	Approch Ramp					
103(1)	Structure Excavation	3,121.70	cu.m.	586.00	1,829,316.20	
103(2)	Structural Backfilling	2,631.03	cu.m.	565.00	1,486,531.95	
104(2)	Embankment, Selected Borrow	15,980.51	cu.m.	984.09	15,726,260.09	
401(a)	Cast in Place Concrete Railing	1,381.81	l.m.	5,006.92	6,918,612.13	
404(1)a 404(2)a	Reinforcing steel, Grade 40 (Minor/Substructure) Reinforcing steel, Grade 60 (Minor/Substructure)	171,162.75 30,832.45	kg. kg.	62.70 68.25	10,731,904.43 2,104,314.71	
	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	1,271.25	cu.m.	9,548.08	12,137,977.60	
		· · · · · · · · · · · · · · · · · · ·	cu.m.	6,233.40	320,396.76	
405(1)a 405(1)b	Approach Slab	51.40	CU.III. 1			
405(1)a	Approach Slab Concrete Leveling Pad	51.40 68.70	cu.m.	80,462.16	5,527,750.39	
405(1)a 405(1)b		······				

	E ula turatura					
100/17	Substructure	100.00	1	44.660.000	4.024.220.40	
400(17)a	Concrete Piles Cast in Drilled Holes, Ø1200 mm	108.00	l.m.	44,668.80	4,824,230.40	
400(17)b	Concrete Piles Cast in Drilled Holes, Ø2500 mm	78.00	l.m.	106,248.81	8,287,407.18	
00(17)c	Concrete Piles Cast in Drilled Holes, Ø3500 mm	54.00	l.m.	266,675.42	14,400,472.68	
00(22)a	Pile Integrity Test	14.00	ea.	43,784.56	612,983.84	
00(22)b	Pile Dynamic Test	7.00	ea.	583,087.25	4,081,610.75	
404(1)a	Reinforcing steel, Grade 40 (Minor/Substructure)	158.40	kg.	62.70	9,931.68	
404(2)a	Reinforcing steel, Grade 60 (Minor/Substructure)	422,077.70	kg.	68.25	28,806,803.03	
405(1)a	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	1,287.96	cu.m.	14,057.94	18,106,022.23	
405(6)	Lean Concrete	5.88	cu.m.	4,111.70	24,176.80	
407(1)a	Anchor Bar Ø36mm x 1500mm long, complete	200.00	ea.	1,800.00	360,000.00	
407(1)b	Anchor Bar Ø36mm x 1000mm long, complete	36.00	ea.	1,200.00	43,200.00	
	Superstructure					
401(a)	Cast in Place Concrete Railing	560.00	l.m.	5,006.92	2,803,875.20	
404(1)b	Reinforcing steel, Grade 40 (Superstructure)	45,132.00	kg.	62.70	2,829,776.40	
404(2)b	Reinforcing steel, Grade 60 (Superstructure)	621,230.00	kg.	68.25	42,398,947.50	
404(2)c	Prestressing steel	24,431.80	kg.	152.90	3,735,622.22	
405(1)b	Structural Concrete, Class A (Hollow Slab) 27.6 Mpa	2,092.79	cu.m.	16,971.01	35,516,760.02	
405(1)c	Structural Concrete Class P 34Mpa for PC Box	1,447.25	cu.m.	18,900.00	27,353,025.00	
403(1)c 412(1)a	Elastomeric Bearing Pad (500 x 400 x 60 mm)	54.00	ea.	14,500.00	783,000.00	
	j	48.00	······			
412(1)b	Elastomeric Bearing Pad (400 x 400 x 50 mm)		ea.	12,000.00	576,000.00	
413(1)	Expansion Joint	128.80	l.m.	29,418.63	3,789,119.54	
SPL 414	Concrete Barrier	280.00	l.m.	4,660.55	1,304,954.00	
SPL 415	Waterproofing	4,788.00	sq.m.	1,800.00	8,618,400.00	
					200 100 515 10	
	SUB-TOTAL (PART F)				309,100,765.48	
_						
G	DRAINAGE AND SLOPE PROTECTION STRUCTURES					
404(1)b	Reinforcing steel, Grade 40 (Box Culvert)	18,777.00	kg.	62.70	1,177,317.90	
405(1)b	Structural Concrete, Class A (Box Culvert) 27.6 Mpa	125.18	cu.m	8,480.81	1,061,627.80	
500(1)a	RCPC, Class II	1,580.00	l.m.	3,082.45	4,870,271.00	
500(1)b	RCPC, Class IV	103.00	l.m.	7,005.56	721,572.68	
502(2)a	Storm Deck Drain with Grating	152.00	ea.	19,679.57	2,991,294.64	
502(2)b	Curb Inlet Manhole	96.00	ea.	25,000.00	2,400,000.00	
502(3)	Catch Basins	-	ea.	35,000.00	-	
502(4)	Junction Box	-	ea.	5,000.00	-	
SPL 512	Collector Pipe	1,093.18	l.m.	1,153.20	1,260,655.18	
	L	,			,,	
	SUB-TOTAL (PART G)				14,482,739.19	
					11,102,109119	
Н	MISCELLANEOUS STRUCTURES					
	MISCHLIAR ROOTS STRUCTURES					
(00(1)	Oraciente Orali	2 111 (2	1	1 222 21	2 815 222 00	
600(1)	Concrete Curb	2,111.62	l.m.	1,333.21	2,815,232.90	
600(3)a	Concrete Curb and Gutter	2,492.14	l.m.	1,661.30	4,140,192.18	
600(3)b	Concrete Side Strip	1,058.57	sq.m.	350.00	370,499.50	
601(1)a	Concrete Sidewalk	3,119.30	sq.m.	1,560.60	4,867,979.58	
601(1)b	Concrete Median	4,245.17	sq.m.	1,560.60	6,625,012.30	
605(1)	Warning Sign	3.00	set	34,912.46	104,737.38	
605(2)	Regulatory Sign	8.00	set	34,912.46	279,299.68	
605(3)a	Informatory Sign, Gantry Support	2.00	set	905,733.18	1,811,466.36	
605(3)b	Informatory Sign, Butterfly Support	2.00	set	431,481.05	862,962.10	
605(3)c	Informatory Sign, Cantilever Support	4.00	set	388,956.44	1,555,825.76	
605(3)d	Informatory Sign, Double Post	7.00	set	42,944.99	300,614.93	
612(1)	Reflectorized Thermoplastic Pavement Markings, White	1,524.49	sq.m.	1,092.83	1,666,008.41	
<u>``</u> _ <u>``</u>		-,021.19		-,	-,	
	SUB-TOTAL (PART H)				25,399,831.08	
					-0,077,001.00	
J	SPECIAL ITEM					
<u>v</u>						
SPL 1	Om Pala. Single arm complete	100.00	act	86,228.98	8,622,898.00	
	9m Pole, Single arm complete		set	~~~~~		
CDI 2	9m Pole, Double arm complete	49.00	set	90,000.00	4,410,000.00	
SPL 2	Lighting system, (under carriageway)	12.00	set	59,290.99	711,491.88	
SPL 3		6.00	set	80,000.00	480,000.00	
SPL 3 SPL 4	Flood lights	-			-	
SPL 3	Flood lights Traffic Signal Light	-	P.s	2,000,000.00		
SPL 3 SPL 4	Traffic Signal Light		P.s	2,000,000.00		
SPL 3 SPL 4			P.s	2,000,000.00	14,224,389.88	
SPL 3 SPL 4	Traffic Signal Light	-	P.s	2,000,000.00		

Source: JICA study team

Note: Implementation of the C3/E. Rodriguez Interchange was cancelled by the DPWH to give priority to the construction of Skyway Stage 3, second level, along C3 under BOT scheme.

4.3 EDSA-ROOSEVELT AVENUE/CONGRESSIONAL AVENUE

4.3.1 Review of Previous Detailed Design

The detailed design of the project was done by Katahira & Engineers International in association with Proconsult, Inc. and United Technologies, Inc. in February 2001.

(1) Topographic Conditions

The project road sections have the following topographic features:

- 1) The horizontal alignment has 1055m radius curve before the intersection from Cubao.
- 2) The vertical grade of the original ground elevation from Cubao side going Monumento gradually drops continuously.
- 3) The maximum vertical grade going down to north direction is 3.6%.

There are no significant changes in the topographic conditions of the area from the time of the detailed design to the present, except for the construction of MRT 3, Muñoz Station and the bus stop lanes on both directions.

(2) Geotechnical Conditions

The proposed area is located on the north in the center part of the Central Plateau, which is underlain by tuffs and tuffaceous sediments of the Pliocene-Pleistocene or the Holocene.

Tuffs (tuffaceous rock sequence) consist of siltstone (including claystone) and sandstone, belonging to the Guadalupe formation of the Pliocene-Pleistocene. Tuffaceous sediments overlying the tuffs consist of pyroclastic flow deposits and lahar deposits (tuffaceous reworked deposits) of the Pleistocene-Holocene. Pyroclastic flow deposits are mainly composed of gravelly silt and gravelly sand, and lahar deposits are mainly composed of inorganic clay and silt.

The lower tuffaceous rock sequence is stable bearing stratum for the important structures such as bridges, because "N-value is over 50 generally" and "Unconfined compression strength (qu) is 1200-6600 kPa (corresponding to the soft rock)". But it is difficult that upper tuffaceous sediments are stable bearing stratum for the important structures because pyroclastic flow deposits are changing to laharic deposits which have N-value of less than 10 laterally. Therefore, the bearing stratum in the proposed area is tuffaceous rock sequence that underlie deeper than 1- 6m from ground surface.

The depth of bearing stratum and the assumed type of foundations at each borehole are shown in **Table 4.3-1**.

Borehole No.	Depth of Bearing Stratum	Type of Foundations
BH - 2	2.20m	Spread footing
BH - 3	2.00m	Spread footing
BH - 4	3.20m	Spread footing
BH - 5	1.10m	Spread footing
BH - 6	1.00m	Spread footing
BH - 7 2.00m		Spread footing
BH - 8	6.00m	Pile foundation

 Table 4.3-1
 Depth of Bearing Stratum and Type of Foundations

Source: Detailed design done by KEI and associate consultants Feb 2001

(3) Hydrological Conditions

A river, the San Francisco River, crosses the road (EDSA) at 50m Balintawak side from EDSA– Roosevelt Avenue/Congressional Avenue intersection. Its width is 13–15m; depth is 5–6m. San Francisco River is equal to the tributary of the San Juan River and outcrops of the tuffs (sandstone and siltstone) are seen in both sides. The downward erosion of the river is remarkable from the outcrop conditions, which indicate that the riverbed is expected to decline.

From the available data (Figure 7.1.5-1 Flood Potential Area, "The Study of Master Plan on High Standard Highway Network Development in the Republic of the Philippines", Final Report, by CTI and associated firms), it can also be said that flooding will not occur in the project area.

Therefore, there are no specific issues on the hydrological conditions in the proposed area, except in the event of tunnel construction under the river. In addition, existing detailed designs provide only standard drainage system for the flyover and road.

(4) Design Standards

Major design standards are as follows:

1) Highway Design

Elements of Design	EDSAthrough ⇒	Roosevelt– Congressional Avenues
Design Speed	70km/h	40km/h
Minimum Radius Curvature	200m	60m
Maximum Vertical Grade	6.0%	6.0%
Minimum Vertical Grade	0.35%	0.35%
Minimum Stopping Sight Distance	100m	45m
Minimum Vertical Clearance	5.0m	5.0m
Lane Width	3.35m	3.35m
Standard Superelevation	1.50%	1.50%

Source: Retailed design done by KEI and associate consultants Feb 2001

- 2) Hydrology and Hydraulics
 - ✓ Design Frequency Level
 - Inlet

: 2 years

• Ditches	: 5 years
• Pipe Culverts	: 10 years
Box Culverts	: 25 years
• Bridges	: 50 years or maximum observed flood,
	whichever is greater
✓ Peak Runoff Rate	: Rational Method
✓ Hydra Flow	: Manning Formula
3) Structural Design	
✓ Clearance to MRT	
• MRT Guideway Structure Envelope	: 9.0m wide
MRT Station Structure Envelope	: 9.0m wide
• Structure Gap between MRT and Flyover	r : 15.0cm
• Headroom Clearance above MRT Rail Le	evel to Flyover : 5.6m
✓ Material Properties	
• Concretes	
> Substructure	: 28Mpa (20mm)
> Bored Pile	: 28Mpa (25mm)
 PCDG Girders 	: 34Mpa (20mm)
Column to RC Slab	: 28Mpa (20mm)
Column to PC Slab	: 34Mpa (20mm)
 Coping Beam to RC Slab 	: 34Mpa (20mm)
 Coping Beam to PC Slab 	: 41Mpa (20mm)
 RC Voided Slab 	: 34Mpa (20mm)
> PC Voided Slab	: 41Mpa (20mm)
Reinforcing Steel	: Grade 60
Prestressing Steel	: Grade 270 and low relaxation with an
	ultimate strength $Fu = 1,860Mpa$
Structural Steel	: Minimum yield strength $fy = 248Mpa$
Elastomeric Bearing Pads	: 100% virgin chloroprene pads with durometer
	hardness 60 and laminated with non-corrosive
	mild steel sheets
\checkmark Loads and Allowable Stresses	
Reinforced Concrete	: 24.5kn/m^3
Asphalt Wearing Course	: 22.0kn/m^3
• Steel	: 77.0kn/m ³
Compacted Earth	: 19.0kn/m ³
• Live Load	: AASHTO MS18 (HS20-44)

Description	Group I Load	Group VII Load	
Soil Internal Angle of Friction	30 degrees	15 degrees	
Wall to Soil Friction Angle	0 degrees	0 degrees	
Active Earth Pressure	0.297	0.452	
Live Load Surcharge	0.6m of soil	none	
Seismic Load			
> Seismic Performance Category	: D		
 Soil Profile 	: Type II		

• Earth Pressure

> Seismic Acceleration

> Site Coefficient

(5) Road Alignment and Structural Conditions

Road alignment and structural conditions are as follows:

<u>Northbound</u>

 The northbound section has three lanes and horizontal alignment is passing thru the right side of MRT 3 with 1,075m radius curve at before intersection. Vertical grade at each side of the approach sections is 5.0%.

: 0.4

: 1.2

- 2) Total length of the project section is 729m; total length of flyover is 502m.
- 3) The type, number of spans and span length and type of foundation of the flyover are as follows:
 - ✓ Type of flyover and span configuration:
 - 3 span continuous voided RC slab, 2x3@15.00m = 90.00m
 - 5 span continuous voided RC slab, 5@15.00m = 75.00m
 - 3 span continuous voided PSC slab, 20.00m + 2@22.275m = 66.55m
 - 3 span continuous voided PSC slab, 30.00m + 35.00m + 30.00m = 95.00m
 - 2 span continuous voided PSC slab, 2@27.50m = 55.00m
 - 5 span continuous voided RC slab, 5@15.00m = 75.00m
 - 3 span continuous voided RC slab, 3@15.00m = 45.00m
 - ✓ Type of foundation : 1.00m, 2.50m, 3.00m and 4.00m diameter bored piles

Southbound

- The southbound section has three lanes and horizontal alignment is passing thru the left side of MRT 3 with 1,055m radius curve at before intersection. Vertical grade of each side of the approach sections is 5.0%.
- 2) Total length of the project section is 729.000m; total length of flyover is 500.000m.
- 3) The type and number of spans of the flyover are as follows:

- ✓ Type of flyover and span configuration:
 - 2x3 span continuous voided RC slab, 2x3@15.00m = 90.00m
 - 5 span continuous voided RC slab, 5@15.00m = 75.00m
 - 3 span continuous voided PSC slab, 3@20.00m = 60.00m
 - 3 span continuous voided PSC slab, 30.00m + 35.00m + 30.00m = 95.00m
 - 2 span continuous voided PSC slab, 2@30.00m = 60.00m
 - 5 span continuous voided RC slab, 5@15.00m = 75.00m
 - 3 span continuous voided RC slab 3@15.00m = 45.00m
- Type of foundation : 1.00m, 2.50m, 3.00m and 4.00m diameter bored piles

(6) Environmental and Social Conditions

The ECC for EDSA/North Avenue-West Avenue and EDSA/Roosevelt/Congressional Interchanges Project had been issued by DENR-EMB in January 2002. The conditions imposed on the issued ECC by the DENR-EMB did not include any specific requirements. Although the ECC was thought to be applied with the Environmental Impact Statement (EIS), the JICA Study Team could not obtain the EIS and RAP documents so that these can be reviewed.

According to Right-of-Way and Utility Maps (2001), the number of lots affected along EDSA is 5 whereas in Roosevelt Avenue and Congressional Avenue are 4 and 4, respectively. The affected area is approximately 1,769 sq. m.

1) Environmental conditions

Environmental conditions including socio-economic environment will be reviewed when the EIS is obtained.

2) Social conditions

According to LAPRAP (2005), the Project Affected Persons (PAPs) on this interchange project are summarized as follows:

The PAPs and socio-economic conditions of project affected areas will be reviewed when RAP report is obtained. According to Right-of-Way and Utility Maps (2001), the number of lots affected along EDSA is 5, whereas in Roosevelt Avenue and Congressional Avenue these are 4 and 4, respectively. The affected area is approximately 1,769 sq. m.

(7) Identified Problems and Recommendation

Identified Problems

No problems were identified in the completed plans and detailed design of this interchange, but total re-planning and redesign will be required specially for the vertical and horizontal clearance due to the constructed MRT 3 and Muñoz Station as well as the Pedestrian Bridges at the intersection.

Recommendations

A careful study of the vertical and horizontal clearances against the constructed Muñoz Station and MRT 3 should be made.

4.3.2 Preliminary Design of Interchange

(1) Comparative Study

Based on the review of detailed design, updated site and traffic conditions, comparative study will be implemented with careful attention to the following three (3) subjects:

- Vertical clearance under Muñoz station and pedestrian bridges.
- Pier column of LRT-1 which are located within the intersection.
- Bus stops which are located along side of EDSA Munoz station.

North and south bound of the flyover are to be constructed individually due to existing LRT-1 located along the median of EDSA.

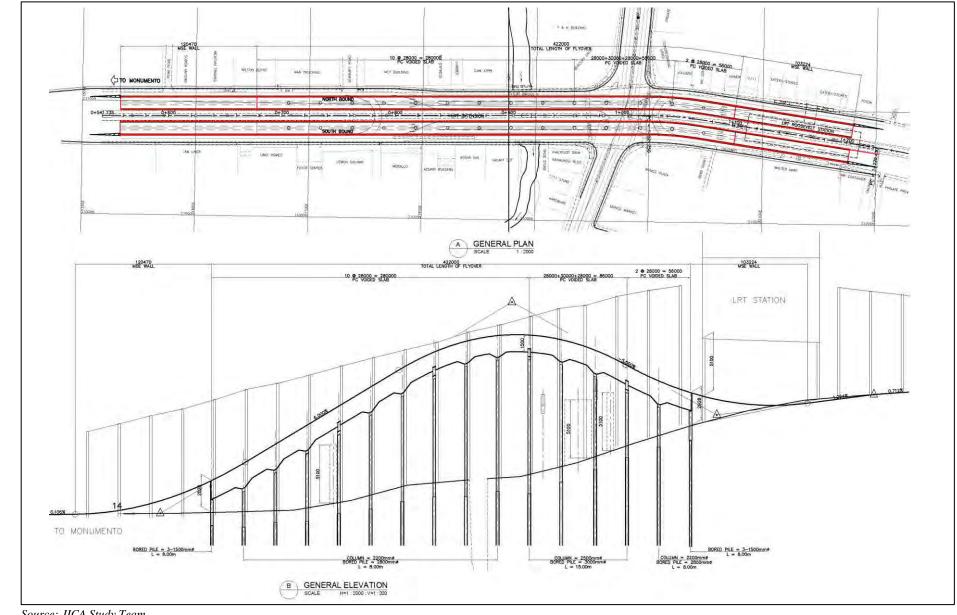
The following three (3) alternatives are proposed as the most suitable schemes for comparison based on the site conditions such as topographic and geological conditions, traffic conditions, roadside business and structural conditions with required span length;

- Scheme-1 : Flyover (maintain vertical clearance of all pedestrian bridges) 422m long and 3 lanes per direction. Superstructure is PC voided slab
- Scheme-2 : Flyover (No pedestrian bridge near Munoz station) 366m long and 3 lanes per direction. Superstructure is PC voided slab
- Scheme-3 : Flyover (maintain all pedestrian bridge and improve at grade intersection) 719m(NB) and 880m(SB) long and 3 lanes per direction. Superstructure is steel box girder and PC voided slab

Among the three (3) alternatives, scheme-2 was selected due to following reasons;

- Cheapest construction cost
- Shorter construction duration
- Superior vertical grade

Not regular traffic flow alignment at the intersection due to pier of LRT-1 was located within intersection but still manageable by 4-phase signalization. (note: this issue is common to the other schemes) The detailed scheme comparison is shown in **Table 4.3-2** and the Plan and Profile of each of the schemes are shown in **Figures 4.3-1**~6.

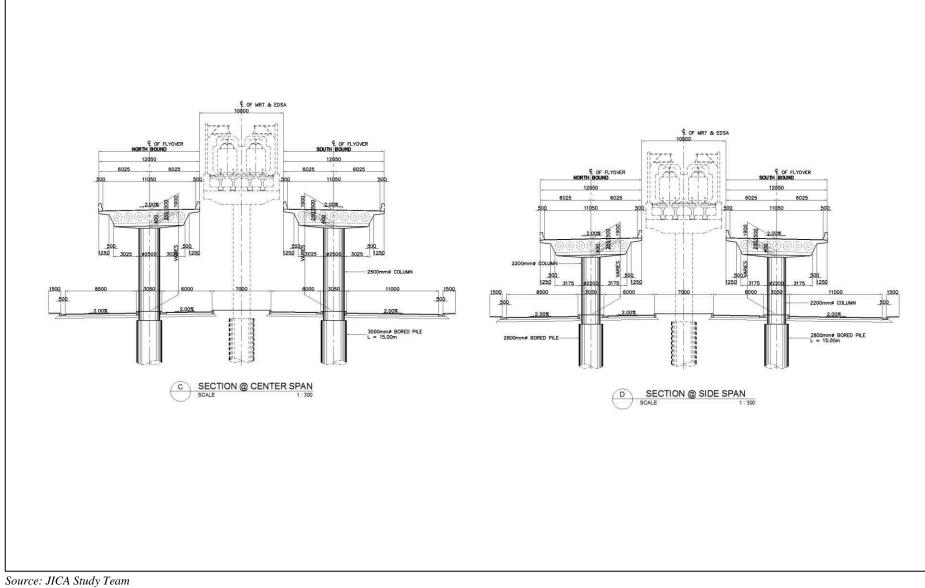

Table 4.3-2	Scheme Comparison	Table of EDSA/Roosevelt	/Congressional Interchange

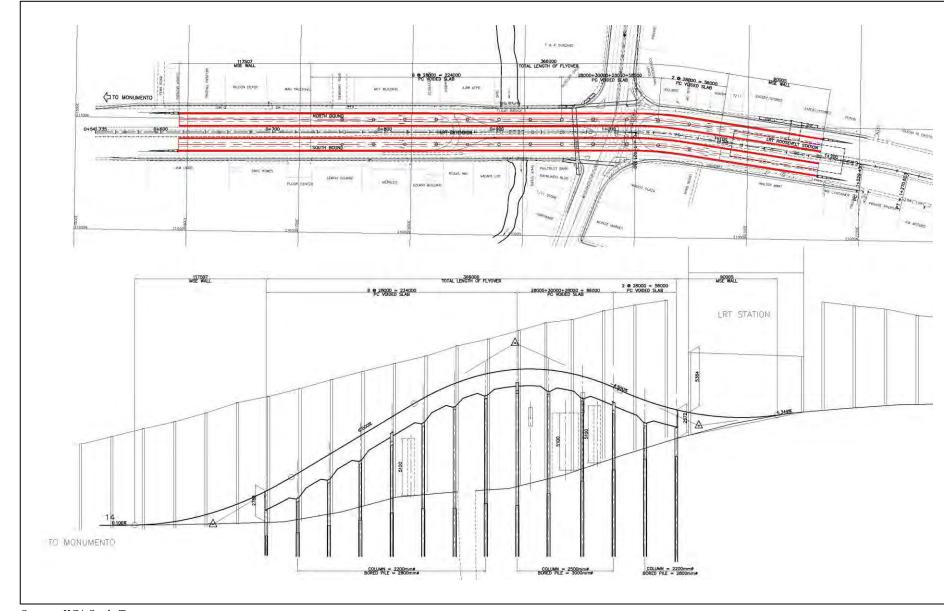
Schemes	es SCHEME-1 FLYOVER (Maintain all Pedestrian Bridges)		SHEME - 2 FLYOVER (No Pedestrian Bridge near Muñoz Station)		SHEME - 3 FLYOVER (Maintain all Pedestrian Bridges and Improve At-grade Interso	ection)
3-Lane Flyover : 14@28.0m+30.0m=422.0m (PC Voided Slab) Approach Road : 223.7m 4-Pedestrian Bridges : 150m Same structures between South and North bound			3-Lane Flyover : 12@28.0m+30m=366.0m (PC Voided Slab) Approach Road : 207.5m 3-Pedestrian Bridges : 95m Same structures between South and North bound	3-Lane Flyover : 18@28.0m+2@40m+3@45m=719.0m (N.B) 24@27.9m+5@42.2m=880.5 (S.B) Approach Road : 291.5m(NB) +261.0m(SB)=552.5m 4-Pedestrian Bridges : 150m		
Construction Cost	Flyover MP 633.6 (P1,500,000/ m /6 Lane) Approach MP 53.7 (P240,000/ m /6 Lane) Pedestrian Bridge MP 15.0 (P100,000/ m) Others MP 25.0 Total MP 727.3	0	Flyover MP 549.0 (P1,500,000/m/6 Lane) Approach MP 49.8 (P240,000/m/6 Lane) Pedestrian Bridge MP 9.5 (P100,000/m) Others MP 21.7 Total MP 630.0 (100.0%)	0	Flyover MP 1.439.6 (P900,000/m/3 Lane) Approach MP 66.3 (P120,000/m/3 Lane) Pedestrian Bridge MP 15.0 (P100,000/m) Others MP 54.0 (250.0%)	4
Construction Performance and Duration	 23 Months Construction method and procedure is standard Requires demolition and reconstruction of 4 existing pedestrian bridges 	0	 22 Months Construction method and procedure is standard Requires demolition of 4 existing pedestrian bridges but reconstructionis only 3 Pedestrian Bridges. (Can't construct one bridge at near side of Muñoz Station, due to lower vertical grade) 	0	 30 Months Construction method and procedure is standard Requires demolition and reconstruction of 4 existing pedestrian bridges Too closer construction activities to existing Muñoz Station 	
Environmental and Social Condition	 No additional R.O.W Lower volume of exhaust fumes than Scheme-3 	0	 No additional R.O.W Low volume of exhaust fumes and noise due to lowest vertical grade 	0	 No additional R.O.W Very high volume of exhaust fumes and noise due to longer vertical grade 	
Traffic Condition at Grade I/C	• No regular traffic flow alignment at the at-grade I/C due to pier of Line 1 was located within I/C but still manageable by 4 phase-signalization	0	 No regular traffic flow alignment at the at-grade I/C due to pier of Line 1 was located within I/C but still manageable by 4 phase- signalization Long route for pedestrian over EDSA given us no construction of pedestrianbridge at near side of Muñoz Station but pedestrian can utilize Muñoz Station 	۵	• Better traffic flow alignment at grade movement compare to other 2 schemes	(
Over all Evaluation	 Expensive than Scheme -2 Reconstruction of 4 Pedestrian Bridges Higher volume of exhaust fumes and noisier than Scheme - 2 due to higher vertical grade 	0	 Cheapest among the schemes Shorter construction duration Reconstruct 3-pedestrian bridges but no construction of pedestrian bridge at near side of Muñoz Station Lower vertical grade among the schemes 	0	 Most expensive among the schemes Reconstruct of 4 pedestrian bridges Heavily affects traffic during construction of high pier and construction activities are too closer to existing Muñoz Sta. Longer Construction duration 	

• disadvantage

Source: JICA Study Team

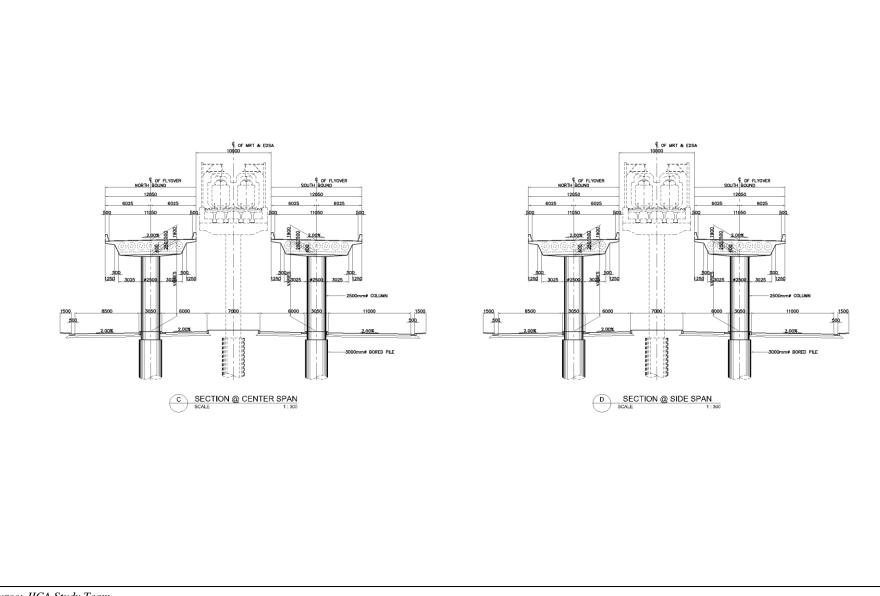
4-47




Final Report

Source: JICA Study Team

Figure 4.3-1 Plan and Profile of Scheme-1 (EDSA/Roosevelt/Congressional Interchange) (1/2)



Source: JICA Study Team

Figure 4.3-3 Plan and Profile of Scheme -2 (EDSA/Roosevelt/Congressional Interchange) (1/2)

Source: JICA Study Team

Figure 4.3-4 Plan and Profile of Scheme -2 (EDSA/Roosevelt/Congressional Interchange) (2/2)

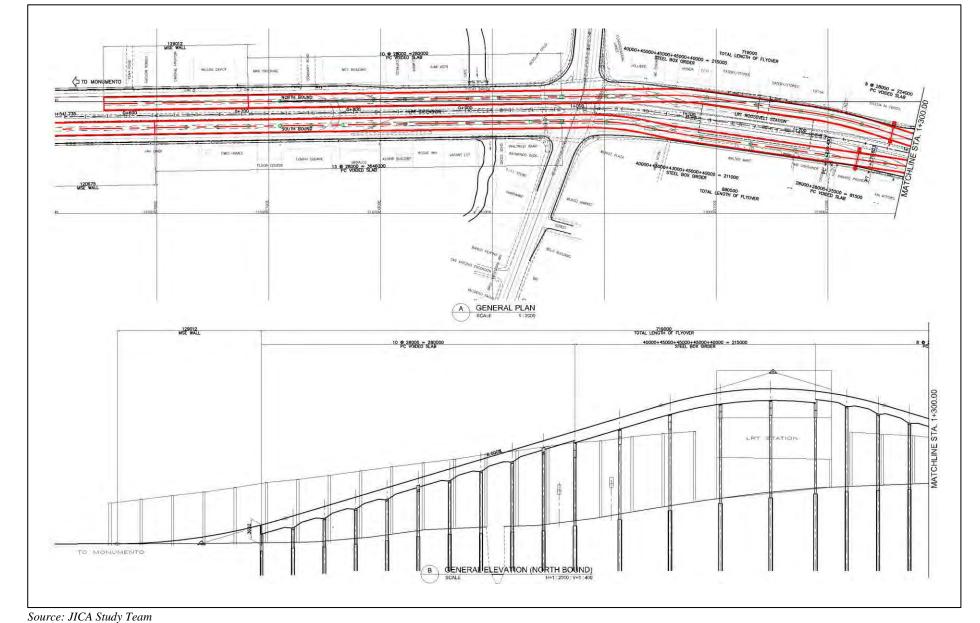
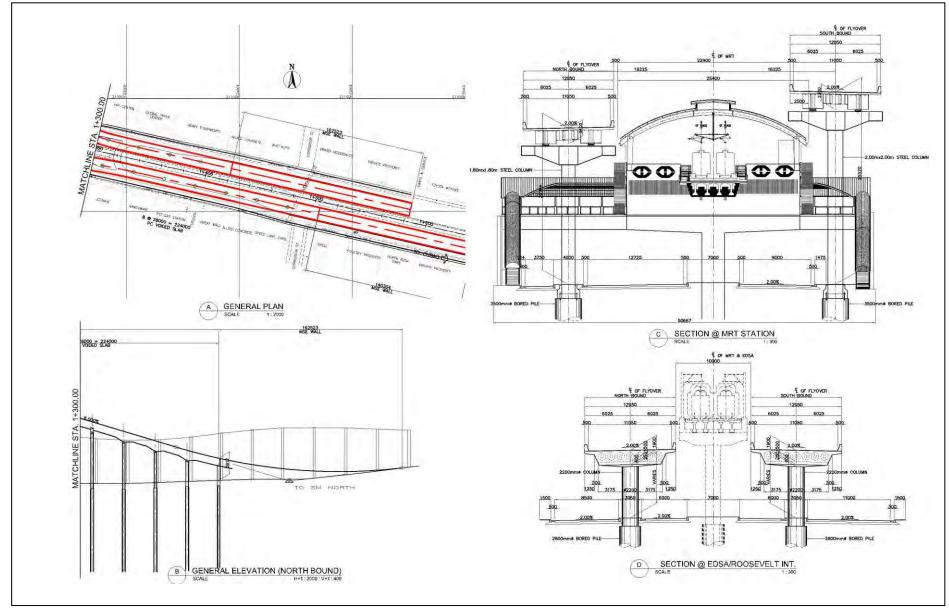



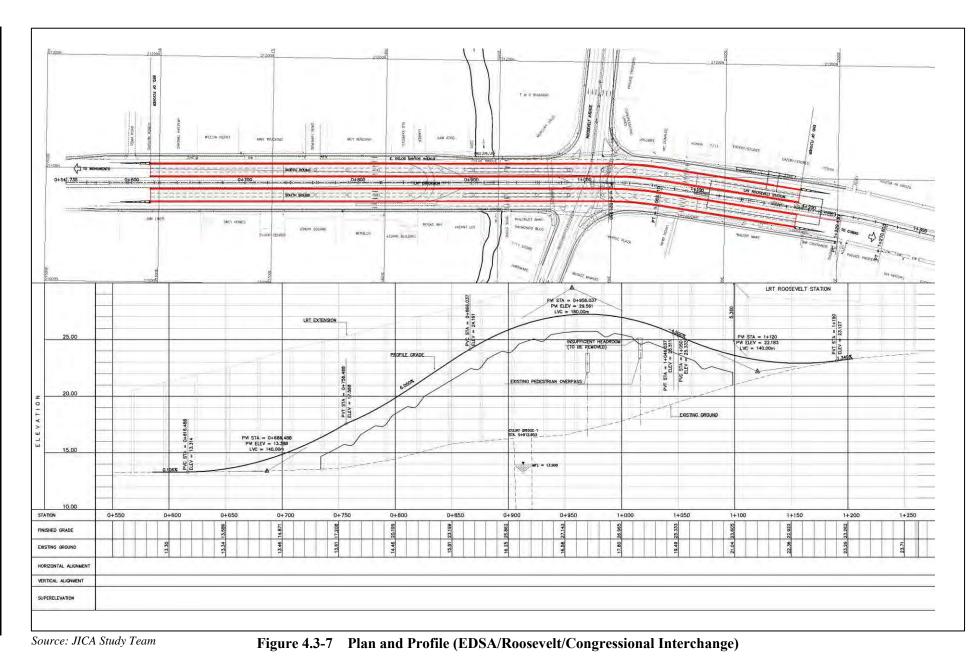
Figure 4.3-5 Plan and Profile of Scheme -3 (EDSA/Roosevelt/Congressional Interchange) (1/2)

Source: JICA Study Team

Figure 4.3-6 Plan and Profile of Scheme -3 (EDSA/Roosevelt/Congressional Interchange) (2/2)

(2) Preliminary Design of Selected Scheme

Scheme-2, PC voided slab type flyover with no construction of a pedestrian bridge near Muñoz station was selected in the comparative study. The concepts of the preliminary design of the selected scheme are as follows;


- 1) Voided slab type should be adopted for superstructure to consider aesthetic view of the flyover.
- 2) One (1) column type pier foundation should be adopted to maximize the usability and usage of the area underneath the flyover.
- 3) MSE wall should be adopted as retaining wall at both side of approach sections to minimize the effects to traffic during construction as well as provide aesthetic view.
- 4) Three (3) directions of pedestrian bridges (except one bridge near Munoz station) should be reconstructed.
- 5) To provide four (4) phases signalization plan at grade intersection.
- 6) All of the at-grade plan and design should be done within the RROW.

Preliminary design was carried out based on the above basic concepts. Plan and profile, at grade intersection plan, typical cross sections, slab layout plan and structural general view of bridge are shown in Figures $4.3-7 \sim 11$.

(3) Construction Plan and Traffic Management during Construction

- 1) The Construction Plan and PART CPM for EDSA/Roosevelt/Congressional interchange has been evaluated and these are presented in the **Figure 4.3-12** and **Figure 4.3-13**.
- 2) The Traffic Management plan during construction for EDSA/Roosevelt/Congressional interchange has been studied and is shown in **Figure 4.3-14**

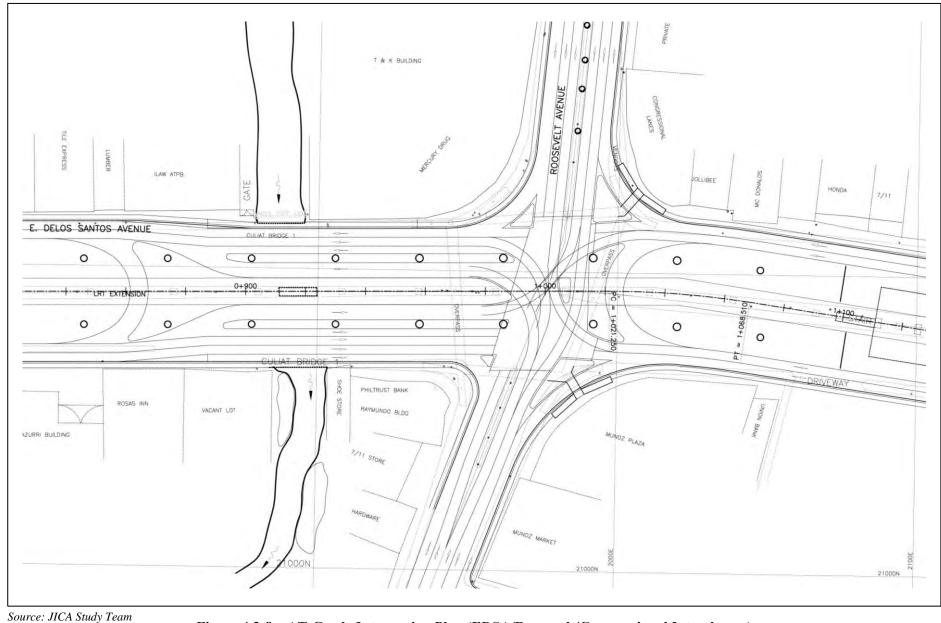


Figure 4.3-8 AT-Grade Intersection Plan (EDSA/Roosevelt/Congressional Interchange)

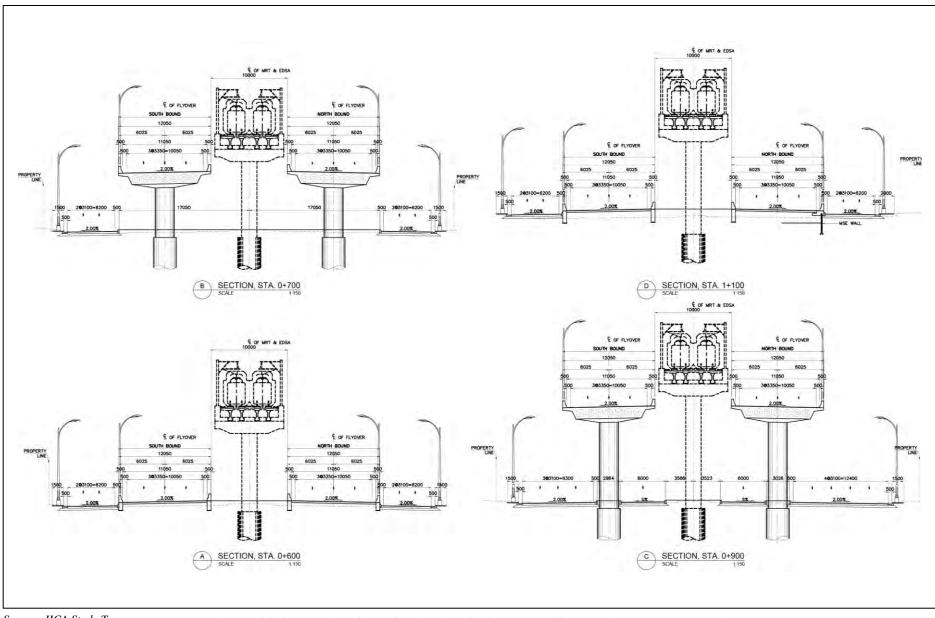
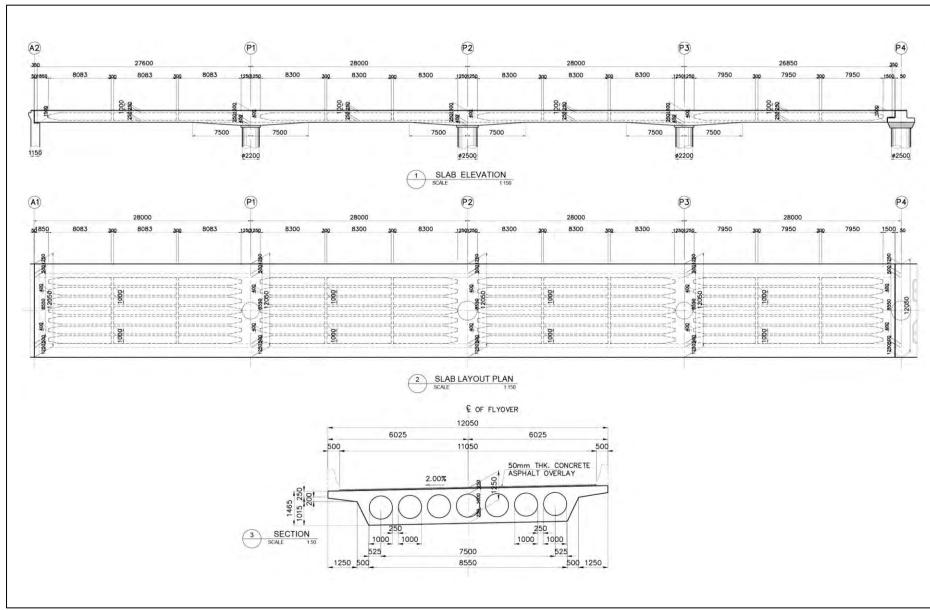



Figure 4.3-9 Typical Cross Section (EDSA/Roosevelt/Congressional Interchange)

4-57

Source: JICA Study Team

Figure 4.3-10 Slab Layout Plan (EDSA/Roosevelt/Congressional Interchange)

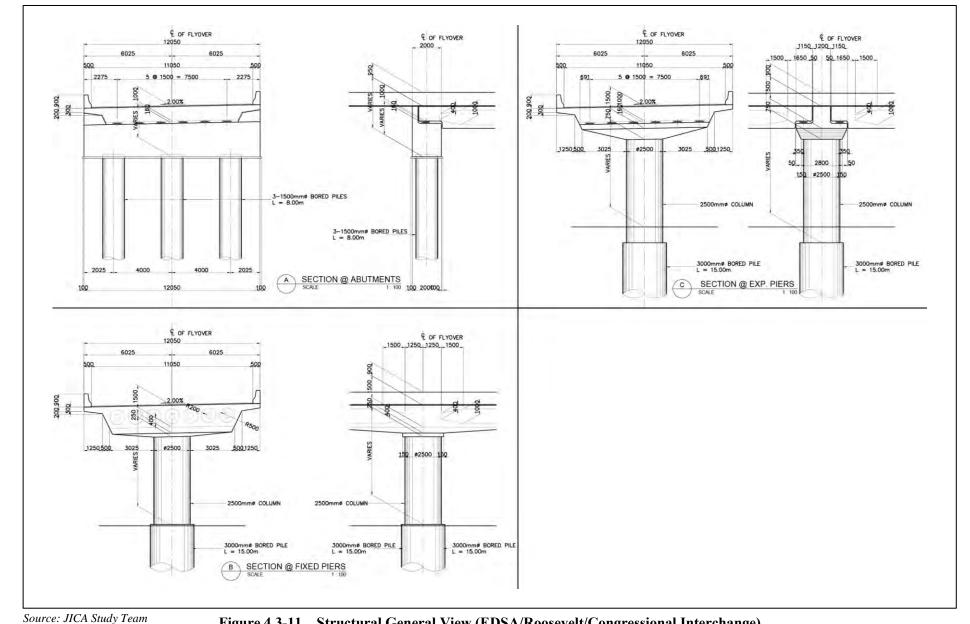
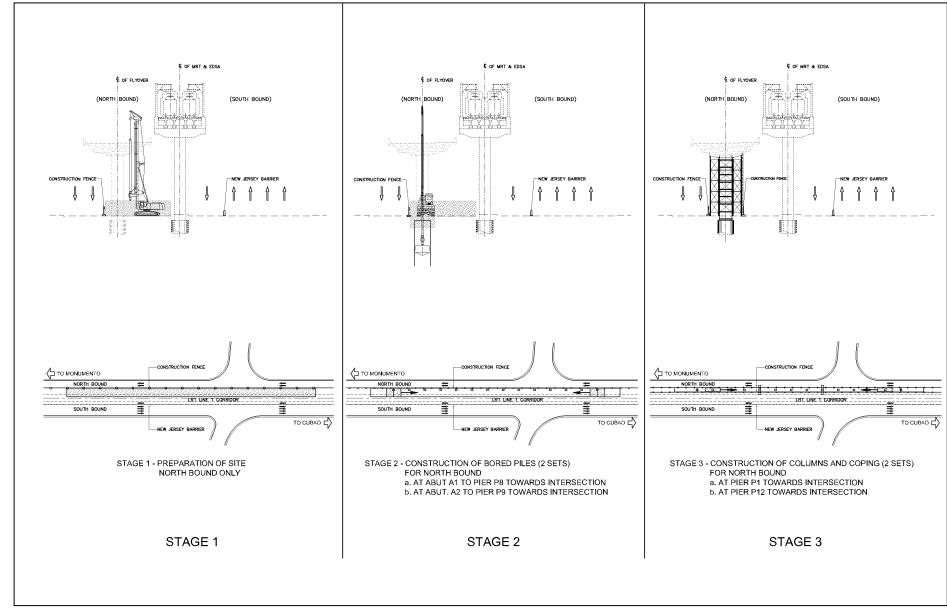
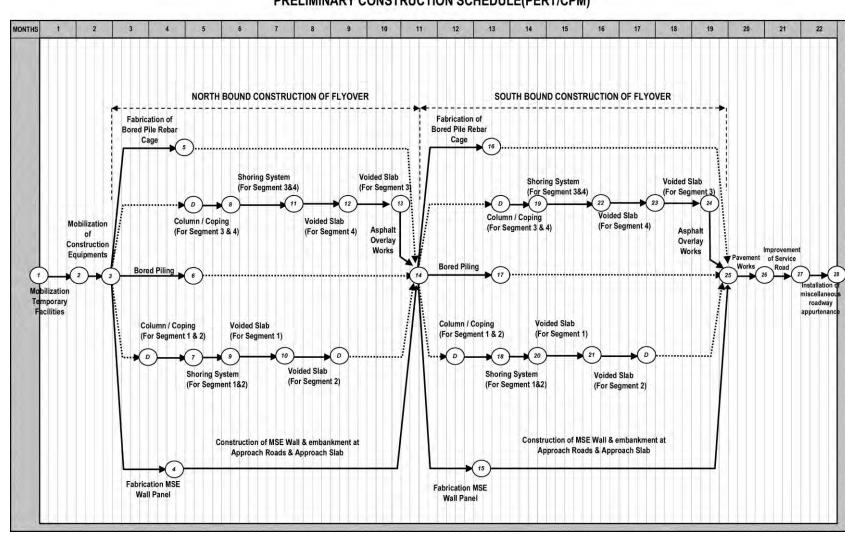



Figure 4.3-11 Structural General View (EDSA/Roosevelt/Congressional Interchange)

Source: JICA Study Team

Figure 4.3-12 Construction Plan for EDSA/Roosevelt/Congressional Interchange (1/2)



Source: JICA Study Team

Figure 4.3-13 Construction Plan for EDSA/Roosevelt/Congressional Interchange (2/2)

4-61

PREPARATORY SURVEY ON METRO MANILA INTERCHANGE CONSTRUCTION PROJECT PHASE VI C4 / ROOSEVELT AVE. QUEZON CITY PRELIMINARY CONSTRUCTION SCHEDULE(PERT/CPM)

Source: JICA Study Team

Figure 4.3-14 Pert CPM for EDSA/E. Roosevelt/Congressional Interchange

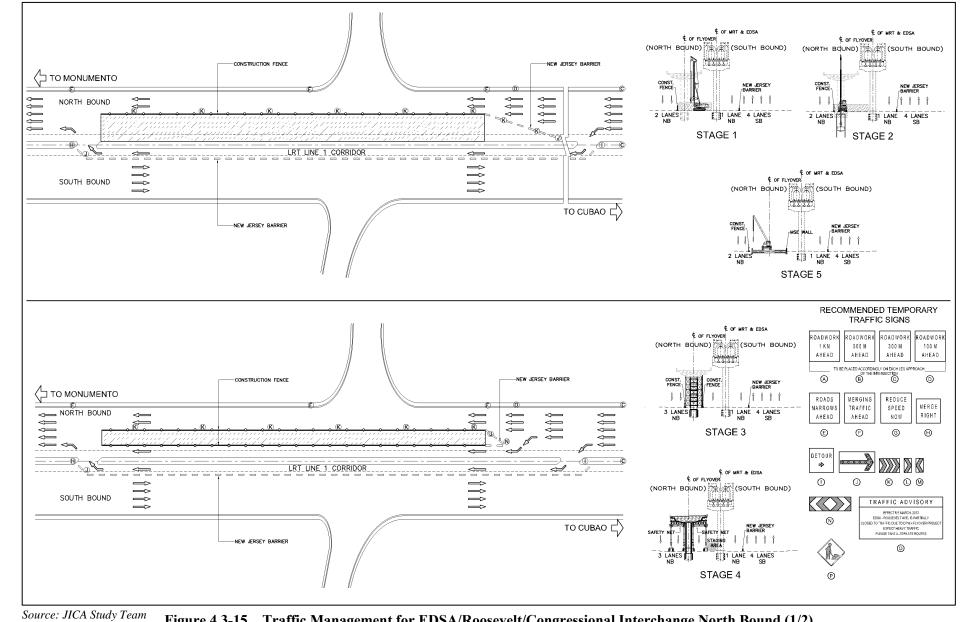
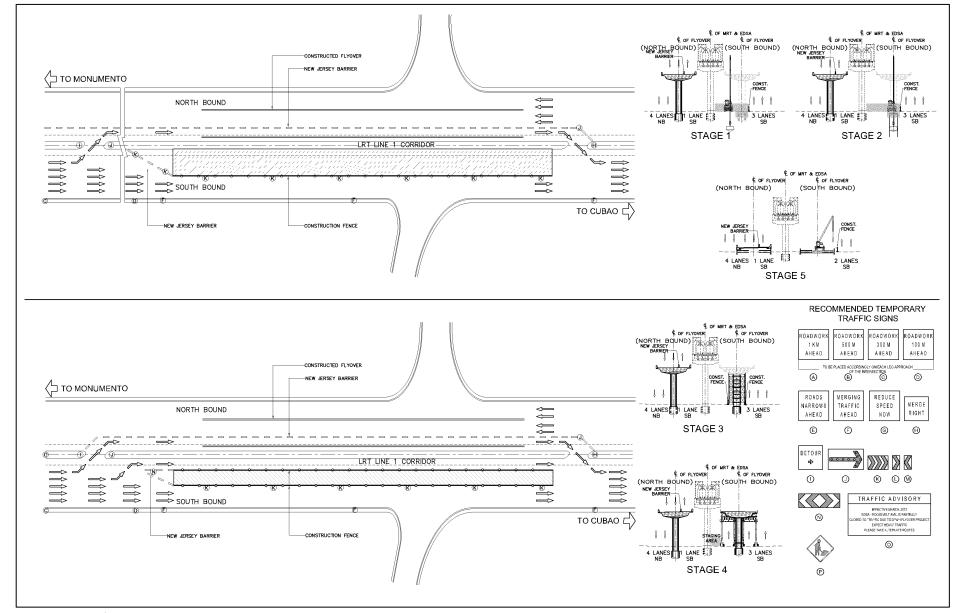



Figure 4.3-15 Traffic Management for EDSA/Roosevelt/Congressional Interchange North Bound (1/2)

Source: JICA Study Team Figure 4.3-16 Traffic Management for EDSA/Roosevelt/Congressional Interchange South Bound (2/2)

4-64

(4) Bill of Quantity and Cost Estimate

Civil Works Cost for EDSA/Roosevelt/Congressional IC has been estimated based on same condition of C-3/E. Rodriguez IC and its result is shown in **Table 4.3-3**

 Table 4.3-3
 Civil Works Cost Estimate for EDSA/Roosevelt/ Congressional IC

PAY ITEM NO.	DESCRIPTION	QUANTITY	UNIT	Unit Cost	Civil Work Cost	Remark
1.0	GENERAL REQUIREMENTS					
A	FACILITIES FOR THE ENGINEER	1.00	l.s.	10,000,000.00	10,000,000.00	
	SUB-TOTAL (PART A)				10,000,000.00	
B	OTHER GENERAL REQUIREMENTS					
SPL B.2.1	Construction Health and Safety	1.00	Da	2,400,000.00	2,400,000.00	
	Mobilization / Demobilization (1.0% of Civil Works)	1.00	P.s P.s	5,602,420.48	5,602,420.48	
	Traffic Management During Construction	1.00	P.s	5,000,000.00	5,000,000.00	
SPL B.2-4	Dayworks	1.00	P.s	5,000,000.00	5,000,000.00	
	Removal, Relocation of Utilities	1.00	P.s	10,000,000.00	10,000,000.00	
SPL B.3.1	Environmental Monitoring Action Plan	1.00	P.s	2,000,000.00	2,000,000.00	
	SUB-TOTAL (PART B)				30,002,420.48	
	SUB-TOTAL GENERAL REQUIREMENTS				40,002,420.48	
2.0	INTERCHANGE CONSTRUCTION WITH VIADUCT					
С	EARTHWORKS					
				00.04/ 72		
100(1)	Clearing and Grubbing		ha.	90,846.53	-	
100(3) 100(4)	Individual Removal Trees (Small) Individual Removal Trees (Large)	-	ea. ea.	1,427.27	-	
100(4)	Removal and Earth Balling of Trees		ea.	1,000.00	-	
101(1)	Removal of Structures and Obstruction	1.00	l.s.	500,000.00	500,000.00	
101(3)a	Removal of Existing PCCP	1,605.68	sq.m.	245.78	394,644.03	
101(3)b	Breaking of Existing PCCP	11,971.40	sq.m.	335.00	4,010,419.00	
101(4)a	Removal of Existing Concrete Curb	1,030.00	l.m.	60.00	61,800.00	
101(4)b	Removal of Existing Concrete Curb & Gutter	-	l.m.	110.00	-	
101(4)c	Removal of Existing Sidewalk	-	sq.m.	120.00	-	
101(4)d	Removal of Existing RCPC	-	l.m.	200.00	-	
101(4)e	Removal of Existing Covered canal	-	l.m.	150.00	-	
105(1)	Subgrade Preparation	-	sq.m.	37.18	-	
	SUB-TOTAL (PART C)				4,966,863.03	
D	SUBBASE AND BASE COURSE					
200	Sub Base Course	1,903.42	cu.m.	879.97	1,674,952.50	
	SUB-TOTAL (PART D)				1,674,952.50	
Е	SURFACE COURSES					
				(******	(22, 122, 12	
302(2) 310 (2)	Bituminous Tack Coat, Emulsified Asphalt, SS-1 (0.45 L/m2) Bituminous Concrete Wearing Course, Hot Laid (t=50mm)	9.45 13,501.78	tonne	65,971.81 924.31	623,433.60 12,479,830.27	
311	Portland Cement Concrete Pavement t=300 mm	4,530.64	sq.m sq.m	2,887.66	13,082,947.90	
	SUB-TOTAL (PART E)				26,186,211.78	
F	BRIDGE CONSTRUCTION					
-						
103(1)	Approch Ramp Structure Excavation	1,792.56	cu.m.	586.00	1,050,440.16	
103(2)	Structural Backfilling	1,583.04	cu.m.	565.00	894,417.60	
104(2)	Embankment, Selected Borrow	2,711.73	cu.m.	984.09	2,668,586.38	
401(a)	Cast in Place Concrete Railing	776.88	l.m.	5,006.92	3,889,776.01	
404(1)a	Reinforcing steel, Grade 40 (Minor/Substructure)	58,068.45	kg.	62.70	3,640,891.82	
404(2)a	Reinforcing steel, Grade 60 (Minor/Substructure)	15,906.00	kg.	68.25	1,085,584.50	
405(1)a	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	387.12	cu.m.	9,548.08	3,696,281.37	
405(1)b	Approach Slab	72.30	cu.m.	6,233.40	450,674.82	
405(1)c 405(6)	Concrete Leveling Pad Lean Concrete	- 143.90	cu.m. cu.m.	80,462.16 4,111.70	- 591,673.63	
405(6) SPL 414	Concrete Barrier	145.90	l.m.	4,111.70	391,0/3.03	
	Concrete Barrier Earthquake Resistant Type Mechanically Stabilized Earthwall	- 724.00	I.m. sq.m.	4,660.55	- 10,254,012.00	

	S-h-tt					
400(17)	Substructure	1.00.00	1	25.000.07	5 (15 022 (0	
400(17)a	Concrete Piles Cast in Drilled Holes, Ø1000 mm	160.00	l.m.	35,098.96	5,615,833.60	
400(17)b	Concrete Piles Cast in Drilled Holes, Ø2500 mm	288.00	l.m.	146,178.83	42,099,503.04	
400(17)c	Concrete Piles Cast in Drilled Holes, Ø3000 mm	144.00	l.m.	202,409.64	29,146,988.16	
400(22)a	Pile Integrity Test	14.00	ea.	43,784.56	612,983.84	
400(22)b	Pile Dynamic Test	5.00	ea.	583,087.25	2,915,436.25	
404(1)a	Reinforcing steel, Grade 40 (Minor/Substructure)	724.68	kg.	62.70	45,437.44	
404(2)a	Reinforcing steel, Grade 60 (Minor/Substructure)	831,977.85	kg.	68.25	56,782,488.26	
405(1)a	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	1,973.95	cu.m.	14,057.94	27,749,670.66	
405(6)	Non Shrink Grout 41Mpa including wiremesh for Girder Riser	1.30	cu.m.	80,462.16	104,600.81	
405(6)	Lean Concrete	8.34	cu.m.	4,111.70	34,291.58	
407(1)a	Anchor Bar Ø36mm x 1500mm long, complete	-	ea.	1,800.00	-	
407(1)b	Anchor Bar Ø36mm x 1000mm long, complete	-	ea.	1,200.00	-	
	Superstructure					
401(a)	Cast in Place Concrete Railing	1,464.00	l.m.	5,006.92	7,330,130.88	
404(1)b	Reinforcing steel, Grade 40 (Superstructure)	-	kg.	62.70	-	
404(2)b	Reinforcing steel, Grade 60 (Superstructure)	1,932,940.00	kg.	68.25	131,923,155.00	
404(2)c	Prestressing steel	-	kg.	152.90	-	
405(1)b	Structural Concrete, Class A (Hollow Slab) 27.6 Mpa	7,731.76	cu.m.	16,971.01	131,215,776.28	
412(1)a	Elastomeric Bearing Pad (500 x 400 x 60 mm)	60.00	ea.	14,500.00	870,000.00	
412(1)b	Elastomeric Bearing Pad (400 x 400 x 50 mm)	-	ea.	12,000.00	-	
413(1)	Expansion Joint	192.80	l.m.	29,418.63	5,671,911.86	
SPL 414	Concrete Barrier	1,098.00	l.m.	4,660.55	5,117,283.90	
SPL 415	Waterproofing	8,820.60	sq.m.	1,800.00	15,877,080.00	
		5,020.00	- 1	1,000.00		
	SUB-TOTAL (PART F)				491,334,909.84	
G	DRAINAGE AND SLOPE PROTECTION STRUCTURES					
500(1)	DODG CL H		,	2 002 45		
500(1)a	RCPC, Class II	-	l.m.	3,082.45	-	
500(1)b	RCPC, Class IV	1,000.00	l.m.	7,005.56	7,005,560.00	
502(2)a	Storm Deck Drain with Grating	74.00	ea.	19,679.57	1,456,288.18	
502(2)b	Curb Inlet Manhole	56.00	ea.	25,000.00	1,400,000.00	
502(3)	Catch Basins	28.00	ea.	35,000.00	980,000.00	
502(4)	Junction Box	-	ea.	5,000.00	-	
SPL 512	Collector Pipe	958.35	l.m.	1,153.20	1,105,169.22	
	SUB-TOTAL (PART G)				11,947,017.40	
Н	MISCELLANEOUS STRUCTURES					
	MISCIELEANEDUS STRUCTURES					
600(1)	Concrete Curb	1,416.00	l.m.	1,333.21	1,887,825.36	
600(3)a	Concrete Curb and Gutter	243.00	l.m.	1,661.30	403,695.90	
600(3)b	Concrete Side Strip	-	sq.m.	350.00	-	
601(1)a	Concrete Sidewalk	-	sq.m.	1,560.60	-	
601(1)b	Concrete Median	7,295.00	sq.m.	1,560.60	11,384,577.00	
605(1)	Warning Sign	4.00	set	34,912.46	139.649.84	
605(2)	Regulatory Sign	8.00	set	34,912.46	279,299.68	
605(3)a	Informatory Sign, Gantry Support	2.00	set	905,733.18	1,811,466.36	
605(3)a 605(3)b	Informatory Sign, Butterfly Support	2.00	set	431,481.05	862,962.10	
605(3)c	Informatory Sign, Cantilever Support	2.00	set	388,956.44	777,912.88	
605(3)d	Informatory Sign, Double Post	6.00	set	42,944.99	257,669.94	
612(1)	Reflectorized Thermoplastic Pavement Markings, White	806.37	set sq.m.	42,944.99	881,225.33	
	SUB-TOTAL (PART H)					
	SUD-IVIAL (FAKI H)				18,686,284.39	
J	SPECIAL ITEM					
SPL 1	9m Pole, Single arm complete	36.00	set	86,228.98	3,104,243.28	
SPL 2	9m Pole, Double arm complete	-	set	90,000.00	-	
SPL 3	Lighting system, (under carriageway)	26.00	set	59,290.99	1,541,565.74	
SPL 4	Flood lights	10.00	set	80,000.00	800,000.00	
SPL 5	Traffic Signal Light	-	P.s	2,000,000.00	-	
	SUB-TOTAL (PART J)				5,445,809.02	
					2, 110,007.02	
	TOTAL				600,244,468.44	

Source: JICA study team

4.4 EDSA/ NORTH AVENUE/ WEST AVENUE/ MINDANAO AVENUE

4.4.1 Review of Previous Detailed Design

The detailed design of this proposed interchange was prepared by Katahira & Engineers International in association with Proconsult, Inc. and United Technologies, Inc. in February 2001.

(1) Topographic Conditions

The project coverage area has the following topographic conditions and characteristics:

- The horizontal alignment of EDSA has about 240m radius curve from right to left from Makati toward Monumento at the intersection.
- The horizontal alignment of West Avenue intersects with about 40 degrees skew to EDSA -Makati direction.
- The horizontal alignment of North Avenue intersects with about 40 degrees skew to EDSA -Makati direction.
- 4) The lowest ground elevation of 31.55m along EDSA, North Avenue and West Avenue is located almost at the center of the intersection.
- 5) The ground elevation from the lowest point at the center of the intersection toward Cubao gently increases continuously.
- 6) The highest elevation of about 33.92m along EDSA toward the Monumento direction is located 260m from the center of the intersection and elevation gently decreases toward the direction of Monumento after the highest point.
- 7) The ground elevation from the intersection toward North Avenue gently increases continuously.
- 8) The ground elevation from the intersection toward West Avenue are gently repeating up and down.
- 9) Commercial buildings are continuously lined alongside the four directional roads.
- 10) There are no significant changes in the topographic conditions from the time of the detailed design to present, except for the construction of pedestrian bridges and bus stop lanes at the intersections and the developments in front of SM North within its properties.

(2) Geotechnical Conditions

The proposed area is located on the north in the center part of the Central Plateau, which is underlain by tuffs and tuffaceous sediments of the Pliocene-Pleistocene or the Holocene.

Tuffs (tuffaceous rock sequence) consist of siltstone (including claystone) and sandstone, belonging to the Guadalupe formation of the Pliocene-Pleistocene. Tuffaceous sediments

overlying the tuffs consist of pyroclastic flow deposits and lahar deposits (tuffaceous reworked deposits) of the Pleistocene-Holocene. Pyroclastic flow deposits are mainly composed of gravelly silt and gravelly sand, and lahar deposits are mainly composed of inorganic clayey silt, and silty sand.

The lower tuffaceous rock sequence is stable bearing stratum for the important structures such as bridges, because "N-value is over 50 generally" and "Unconfined compression strength (qu) is 900-7900 kPa (corresponding to the soft rock)". But it is difficult that upper tuffaceous sediments are stable bearing stratum for the important structures because pyroclastic flow deposits are changing to laharic deposits which have N-value of less than 10 laterally. Therefore, the bearing stratum in the proposed area is tuffaceous rock sequence that underlie deeper than 1-4m from ground surface.

The depth of bearing and the assumed type of foundations at each borehole are shown in **Table 4.4-1**.

	=		
Borehole No.		Depth of Bearing Stratum	Type of Foundations
	BH - 1	3.00m	
	BH - 2	3.00m	
5 1 1	BH - 3	3.00m	
Boreholes along EDSA	BH - 4	3.50m	
along LDSA	BH - 5	2.00m	
	BH - 6	1.00m	
	BH - C	2.00m	
	BH - B	3.20m	
	BH - 10	3.50m	
Boreholes	BH - 11	1.00m	Spread footing
along North Avenue	BH - 12	1.00m	
	BH – D	2.00m	
		6.00m	
	BH - F	1.00m	
	BH - E	2.00m	
Boreholes along	BH - 7	4.00m	
West Avenue	BH - 8	3.00m	
	BH - 9	4.00m	
	BH - A	3.00m	

 Table 4.4-1
 Depth of Bearing Stratum and Type of Foundations

Source: Detailed design done by KEI and associate consultants Feb 2001

(3) Hydrological Conditions

There are no rivers and creeks nearby the project area and elevations of the proposed area are higher than the surrounding areas.

From the available data (Figure 7.1.5-1 Flood Potential Area, "The Study of Master Plan on High Standard Highway Network Development in the Republic of the Philippines", Final Report, by CTI and associated firms), it can also be said that flooding will not occur in the project area.

Therefore, there are no specific issues on the hydrological conditions in the proposed area. In addition, existing detailed designs provide only standard drainage system for the flyover and road.

(4) Design Standards

Major design standards are shown hereunder.

1) Highway Design

Elements of Design	EDSA through	West Avenue–North Avenue through	Left Turn Flyover
Design Speed	70km/h	40km/h	40km/h
Minimum Radius Curvature	200m	60m	60m
Maximum Superelevation	6.0%	6.0%	6.0%
Maximum Vertical Grade	6.0%	6.0%	6.0%
Minimum Vertical Grade	0.35%	0.35%	0.35%
Minimum Stopping Sight Distance	100m	45m	45m
Minimum Vertical Clearance	5.0m	5.0m	5.0m
Lane Width	3.35m	3.35m	3.35m
Standard Superelevation	1.50%	1.50%	1.50%

Source: JICA study team

2) Hydrology and Hydraulics

✓	Design Frequency Level		
•	Inlet	:	: 2 years
•	Ditches	:	: 5 years
•	Pipe Culverts	:	: 10 years
•	Box Culverts	:	: 25 years
•	Bridges	:	: 50 years or maximum observed flood,
			whichever is greater
\checkmark	Peak Runoff Rate	:	: Rational Method
\checkmark	Hydra Flow	:	: Manning Formula
) S	tructural Design		
\checkmark	Clearance to MRT		
•	MRT Guideway Structure Envelope		: 9.0m wide
•	MRT Station Structure Envelope		: 9.0m wide
•	Structure Gap between MRT and Flyover		: 15.0cm
•	Headroom Clearance above MRT Rail Le	vel to Flyover : 5.6m	
\checkmark	Material Properties		

3)

• Concretes				
> Substructure	: 28Mpa (20mm)			
 Bored Pile 	: 28Mpa (25mm)			
 PCDG Girders 	: 34Mpa (20mm)			
 Column to RC Slab 	: 28Mpa (20mm)			
> Column to PC Slab	: 34Mpa (20mm)			
 Coping Beam to RC Slab 	: 34Mpa (20mm)			
 Coping Beam to PC Slab 	: 41Mpa (20mm)			
 RC Voided Slab 	: 34Mpa (20mm)			
 PC Voided Slab 	: 41Mpa (20mm)			
Reinforcing Steel	: Grade 60			
Prestressing Steel	: Grade 270 and low relaxation with an			
	ultimate strength Fu = 1,860Mpa			
Structural Steel	: Minimum yield strength $fy = 248Mpa$			
Elastomeric Bearing Pads	: 100% virgin chloroprene pads with			
	durometer hardness 60 and laminated with			
	non-corrosive mild steel sheets			
✓ Loads and Allowable Stresses				
Reinforced Concrete	: 24.5kn/m^3			
Asphalt Wearing Course	: 22.0kn/m^3			
• Steel	: 77.0kn/m^3			
Compacted Earth	: 19.0kn/m ³			
• Live Load	: AASHTO MS18 (HS20-44)			

- Live Load
- Earth Pressure

Description	Group I Load	Group VII Load
Soil Internal Angle of Friction	30 degrees	15 degrees
Wall to Soil Friction Angle	0 degrees	0 degrees
Active Earth Pressure	0.297	0.452
Live Load Surcharge	0.6m of soil	None

• Seismic Load > Seismic Performance Category : D : Type II > Soil Profile > Seismic Acceleration : 0.4 > Site Coefficient : 1.2

(5) Road Alignment and Structural Conditions

The road alignments and structural conditions have the following characteristics:

EDSA Southbound

- This section has three lanes and its horizontal alignment is passing thru the right side of MRT
 3 with 230m radius curve at the intersection. Vertical grade at each side of the approach sections is 5.0%.
- Total length of the project section is 854m; total length of flyover is 361m; length of retaining wall for depressed section is 367m.
- 286m of the length of the left turn flyover (EDSA-North Avenue) between P1N and P19N is located above the EDSA northbound flyover (3rd level).
- 4) The type, number of spans and span length and type of foundation of the flyover are as follows:
 - ✓ Type of flyover and span configuration:
 - 4 span continuous RC voided slab, 4@15.00m = 60.00m
 - 3 span continuous PSC voided slab, 15.00m + 20.00m + 30.00m = 65.00m
 - 3 span continuous PSC voided slab, 30.00m + 40.00m + 30.00m = 100.00m
 - 2 span continuous PSC voided slab, 2@30.00m = 60.00m
 - 5 span continuous RC voided slab, 5@15.00m = 75.00m
 - ✓ Type of foundation : 1.00m, 2.50m, 3.00m and 4.00m diameter bored piles

EDSA Northbound

- This section has three lanes and its horizontal alignment is passing thru the left side of MRT
 3 with 241m radius curve at the intersection. Vertical grade at each side of the approach sections is 5.0%.
- 2) Total length of the project section and the flyover are 569m and 343m, respectively.
- 3) The type of flyover, number of spans and span length and type of foundation are as follows:
 - ✓ Type of flyover and span configuration:
 - 4 span continuous RC voided slab, 4@15.00m = 30.00m
 - 2 span continuous PSC voided slab, 2@24.586m = 49.172m
 - 3 span continuous PSC voided slab, 30.00m + 38.00m + 30.00m = 98.00m
 - 2 span continuous PSC voided slab, 2@30.00m = 60.00m
 - 5 span continuous RC voided slab, 5@15.00m = 75.00m
 - ✓ Type of foundation : 1.00m, 2.50m, 3.00m and 4.00m diameter bored piles

EDSA–North Avenue Left Turn Flyover

 The flyover has two lanes and its horizontal alignment is almost straight and passing thru above EDSA northbound. Vertical grade at the north and south side approaches are 6.0% and 5.535%, respectively.

- 2) Lengths of the project sections and flyovers are as follows:
 - ✓ North Avenue Straight
 Total length of project section : 1,228.1m
 Total length of flyover : 1,011.5m
 ✓ North Avenue–Mindanao Avenue
 Total length of project section : 306.4m
 Total length of flyover : 180.0m
- 3) The type of flyover, number of spans and span length and type of foundation are as follows:
 - ✓ Type of flyover and span configuration

North Avenue

- 4x4 span continuous RC voided slab, 4@15.00m x 4 = 240.00m
- 3 span continuous PSC voided slab, 15.00m + 20.00m + 18.50m = 53.50m
- 3 span continuous PSC voided slab, 30.00m + 2@22.217m = 80.434m
- 2 span continuous PSC voided slab, 2@27.00m = 54.00m
- 3 span continuous PSC voided slab, 3@27.00m = 81.00m
- 4 span continuous RC voided slab, 4@25.035m = 100.140m
- 4 span continuous RC voided slab, 4@15.00m = 60.00m
- 6 span continuous RC voided slab, 6@15.00 = 90.00m
- 5 span continuous RC voided slab, 5@15.00m = 75.00m
- 3 span continuous PSC voided slab, 28.00m + 37.00m + 28.00m = 93.00m
- 3 span continuous PSC voided Slab, 3@28.00 = 84.00m

North Avenue–Mindanao Avenue

- 3 span continuous PSC voided slab, 3@30.00m = 90.00m
- 6 span continuous RC voided slab, 6@15.00m = 90.00m
- ✓ Type of foundation : 1.00m, 2.50m, 3.00m and 4.00m diameter bored piles

West Avenue–North Avenue Flyover

- The flyover has two lanes and horizontal alignment of 80m radius right curve at the intersection which merges with EDSA–North Avenue Left Turn Flyover after the curve. Vertical grade at Quiapo side is 6.0%.
- 2) Lengths of the project section and flyover are 483m and 392m, respectively.
- 3) The type of flyover, number of spans and span length and foundation type are as follows:
 - \checkmark Type of flyover and span configuration
 - 3 span continuous RC voided slab, 3@15.00m = 45.00m
 - 2x4 span continuous RC voided slab, 4@15.00m x 2 = 120.00m

- 3x2 span continuous PSC voided slab, 2@30.00 x 3 = 180.00m
- 2 span continuous RC voided slab, 2@23.5m = 47.00m
- ✓ Type of foundation : 1.00m, 2.50m, 3.00m and 4.00m diameter bored piles

(6) Environmental and Social Conditions

The ECC for EDSA/North Avenue-West Avenue and EDSA/Roosevelt Interchanges Project had been issued by DENR-EMB in January 2002. The conditions imposed on the issued ECC by the DENR-EMB did not include any specific requirements. Although the ECC was thought to be applied with the EIS, the JICA Study Team could not obtain the EIS and RAP documents to be reviewed.

According to Right-of-Way and Utility Maps (2001), the number of lots affected along EDSA is 14 while in West Avenue and North Avenue are 2 and 2, respectively. The affected area is approximately 5,768 sq. m.

1) Environmental conditions

Environmental conditions including socio-economic environment will be reviewed when the EIS is obtained.

2) Social conditions

The PAPs and socio-economic conditions of project affected areas will be reviewed when the RAP report is obtained. According to Right-of-Way and Utility Maps (2001), the number of lots affected along EDSA is 14 while in West Avenue and North Avenue are 2 and 2, respectively. The affected area is approximately 5,768 sq. m.

(7) Identified Problems and Recommendations

Identified Problems

- 1) The constructed LRT 1 horizontal alignment was not the same as the agreed alignment between DPWH and DOTC.
- 2) No problems were identified in the completed plans and detailed design of this interchange but total re-planning and redesign are required due to the planned construction of a new station, the Common Station along LRT 1 in front of SM North, and of the proposed MRT 7 which will pass along North Avenue. Said Common Station will not only be a station along LRT 1 but will also serve as the first station of MRT 7 in the north.
- 3) The construction of a Left Turn Flyover from EDSA to North Avenue will not be possible with the planned construction of the Common Station.

Recommendations

1) Proper coordination and discussions with the Department of Transportation and

Communications (DOTC), the Light Rail Transit Authority (LRTA) and other concerned agencies should be made and as built plans of MRT 3 and LRT Line 1 extension and detailed design of the Common Station and MRT 7 should be obtained in order for the flyover to be appropriately designed, but also for its design to be properly coordinated and harmonized with the design of the Common Station and MRT7.

2) Based on the foregoing traffic survey and analysis, the Consultant will prepare a new conceptual design of the flyover as soon as possible in order for its feasibility study to be finished on time.

4.4.2 Preliminary Design (EDSA/North/West Interchange)

(1) Comparative study

Based on the review of detailed design, updated site and traffic conditions, the added issue of a Common station along LRT-1 and proposed construction plan of MRT-7, the comparative study will be undertaken with following conditions:

- Proposed location of the Common station will be maintained at the same location with the concept design.
- Alignment and structural plans of MRT-7 should be adjusted properly with the flyover plan and design.
- Number of the lane is 3 lanes in each direction and north and south bound structures will be planned individually due to LRT-1 operating along the middle of EDSA.
- Type of superstructure shall be designed as voided slab type to provide aesthetic view of the flyover.

The following two (2) alternatives schemes are proposed as the most suitable for comparable purposes based on the above conditions and site and traffic conditions.

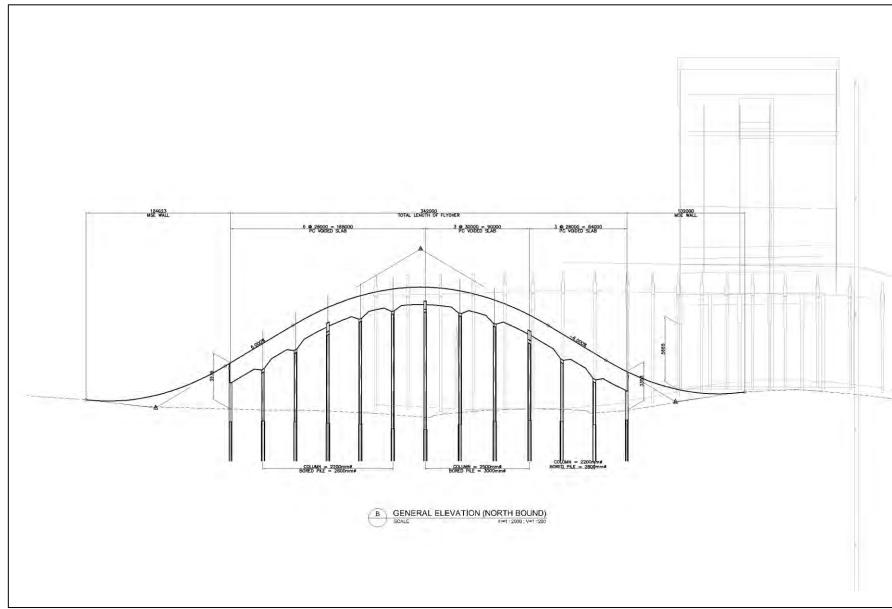
Scheme-1 : Flyover, 342m long north bound and 319m long south bound.

Scheme-2 : Cut and cover tunnel, 231m long north bound and 131m long south bound.

Between the two (2) schemes of flyover and cut and cover tunnel, flyover scheme was selected due to following reasons;

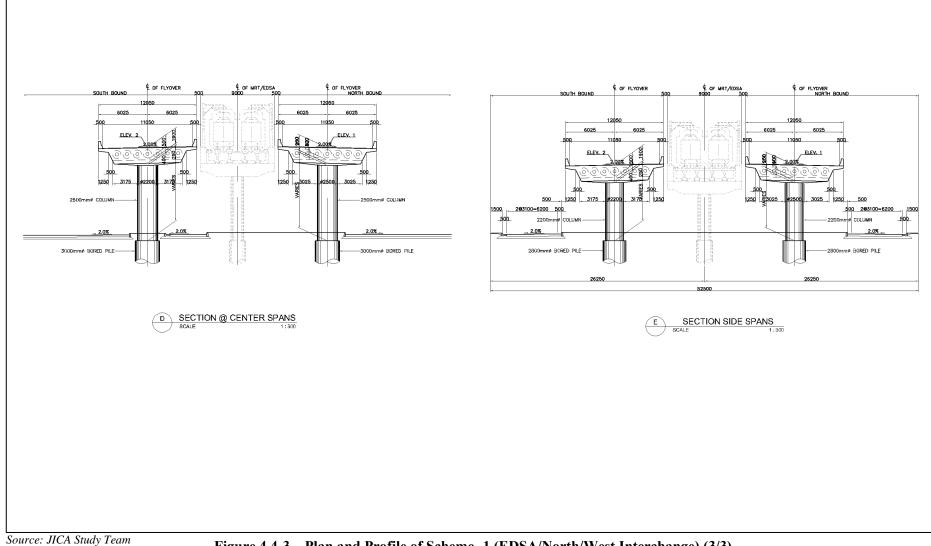

- Construction cost is much cheaper than scheme-2.
- No ROW acquisition.
- Construction duration is shorter and traffic will be easier to manage during the construction.
- No specific O & M.

The Detailed Scheme comparison is shown in **Table 4.4-2** and Plan and Profile of each of the Schemes presented in **Figures 4.4-1** ~ **4**.


Table 4.4-2 Scheme Comparison Table of EDSA/North/West Interchange

Description	Scheme-1 Flyover		Scheme-Cut and Cover Tunnel			
Structure	3-lane flyover North Bound : 9@28.0m+3@ 30.0m (pc voided slab)=342.0m South Bound: 7@28.0m+3@ 26.0m+2@22.5m(pc voided slab)=319.0m Approved Section : North Bound: 226.6m South Bound: 244.6m		3-laneNorth Bound Tunnel: 231.4mApproach:523.6m3-laneSouth Bound Tunnel: 131.3mApproach:535.9m			
Construction Cost	Flyover: MP 528.8 (P800,000/m/3-lane) Approach: MP 56.5 (P120,000/m/3-lane) Others MP 9.7 Total MP 595.0 (100.0%)	0	Tunnel MP 2,214.8 (included approach section) Sump Pit MP 30.0 (H=10.0m) R.O.W MP 20.0 (20m x 20m x P50,000/m ²) Total MP 2,264.8 (381.3%) ● Requires 4-line tunnel revetment due to North and South bound has individual alignment	^		
Construction Performance and Duration	 22 months Construction method and procedure is standard Provide at least 2-lanes traffic per direction during construction 	0	 30 Months Requires to find dumping place for 84,800m³ of excavated soil Requires special construction method and procedure for construction of sump pit and cross pipe about 10m deep under ground Provide 1.5 lane per direction only during construction 			
Environmental and Social Condition	• No R.O.W acquisition • Traffic noise is severe than scheme-2 but not concentrated	 Aesthetic view of area will be preserved Requires about 400m² R.O.W acquisition for sump pit Greater Impact on traffic due to longer construction duration Noise and exhaust funs are concentrated at both entrance 		۷		
Traffic Condition at Grade I/C	• Easier traffic management during construction	0	• Difficult traffic management during construction	0		
O & M	• No specific O & M required	0	• Requires periodic monitoring and maintenance of sump pit drain water pump up system and illumination	С		
	 Much cheaper than scheme-2 Shorter construction duration and easier to manage existing traffic during construction No specific O & M required No R.O.W. acquisition 	0	 More than 3-times expensive than scheme-1 Longer construction duration and hard to manage existing traffic during construction Sump pit requires 400m² of R.O.W and difficult construction method and sequence 			

Source: JICA Study Team



Preparatory Survey for Metro Manila Interchange Construction Project (VI)

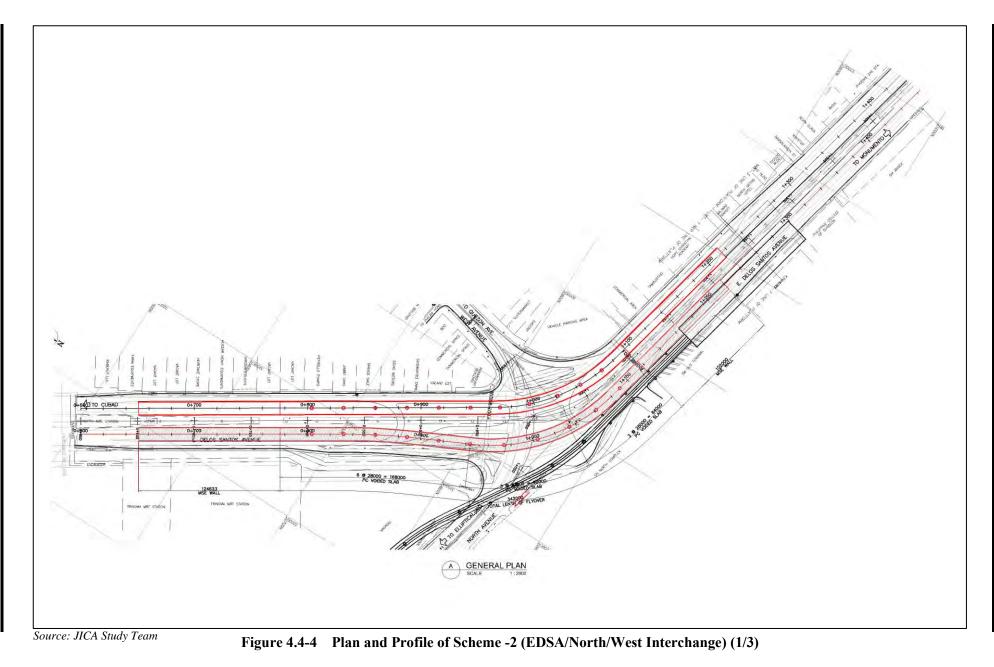

Source: JICA Study Team

Figure 4.4-2 Plan and Profile of Scheme -1 (EDSA/North/West Interchange) (2/3)

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

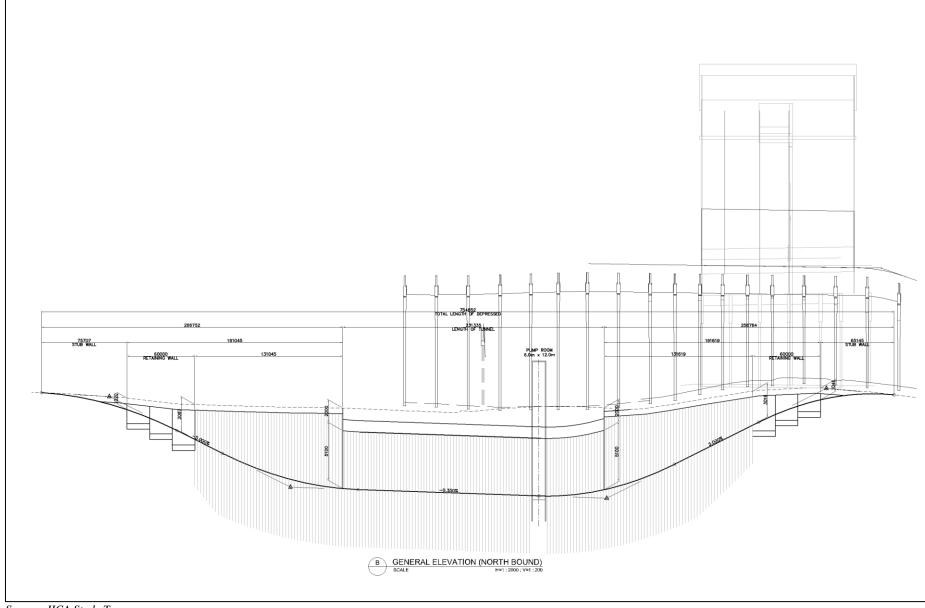
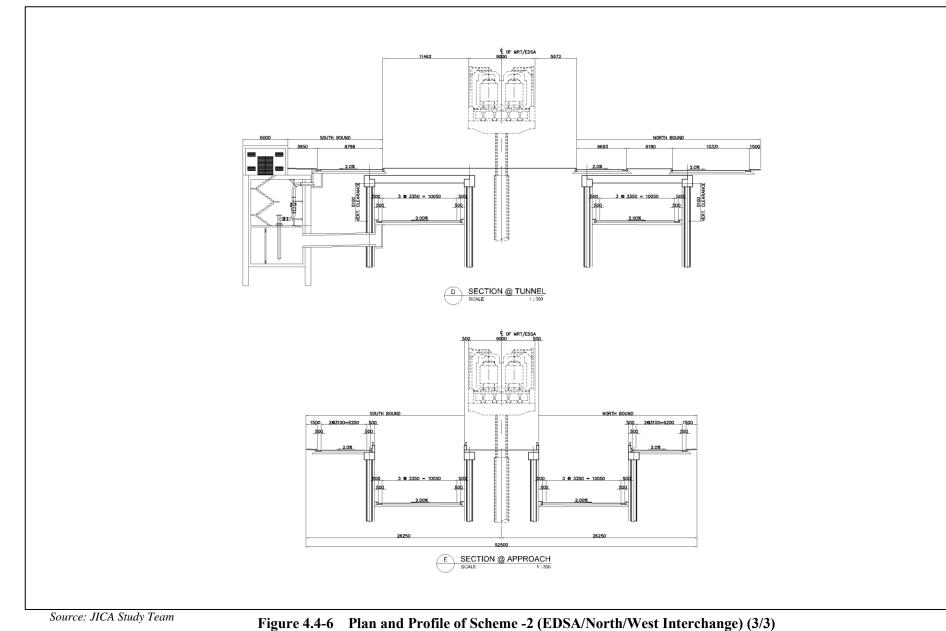
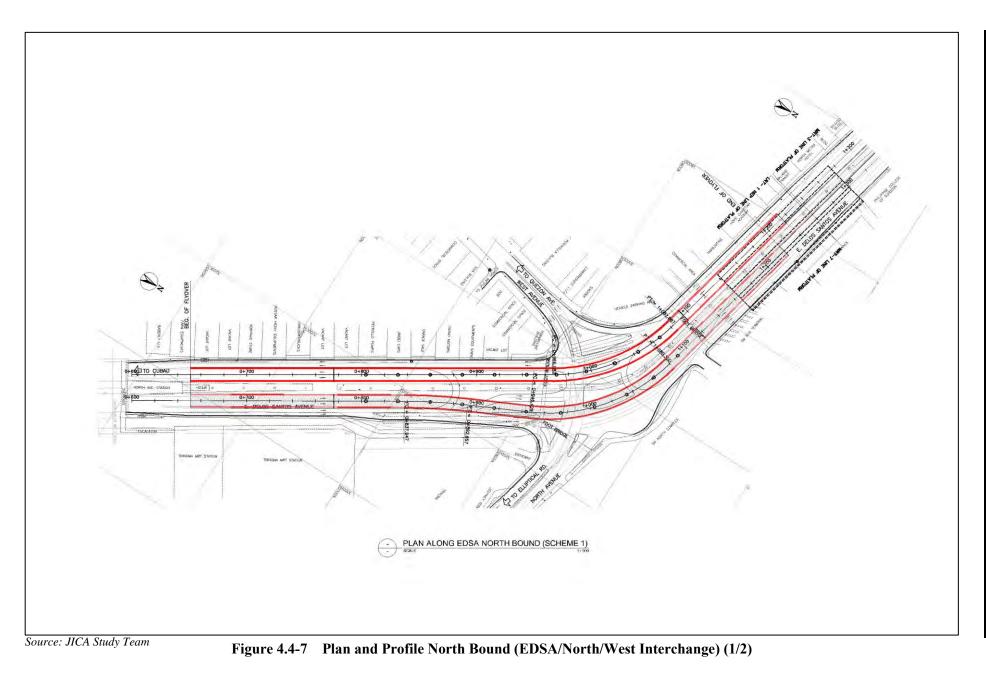



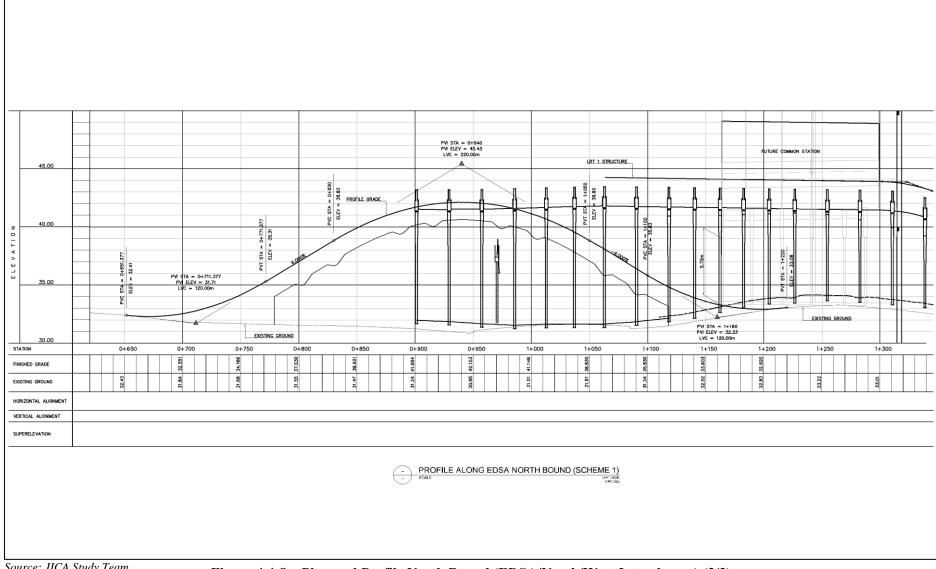
Figure 4.4-5 Plan and Profile of Scheme -2 (EDSA/North/West Interchange) (2/3)

Final Report

P reliminary Design of Selected Scheme (EDSA/North/West Interchange)

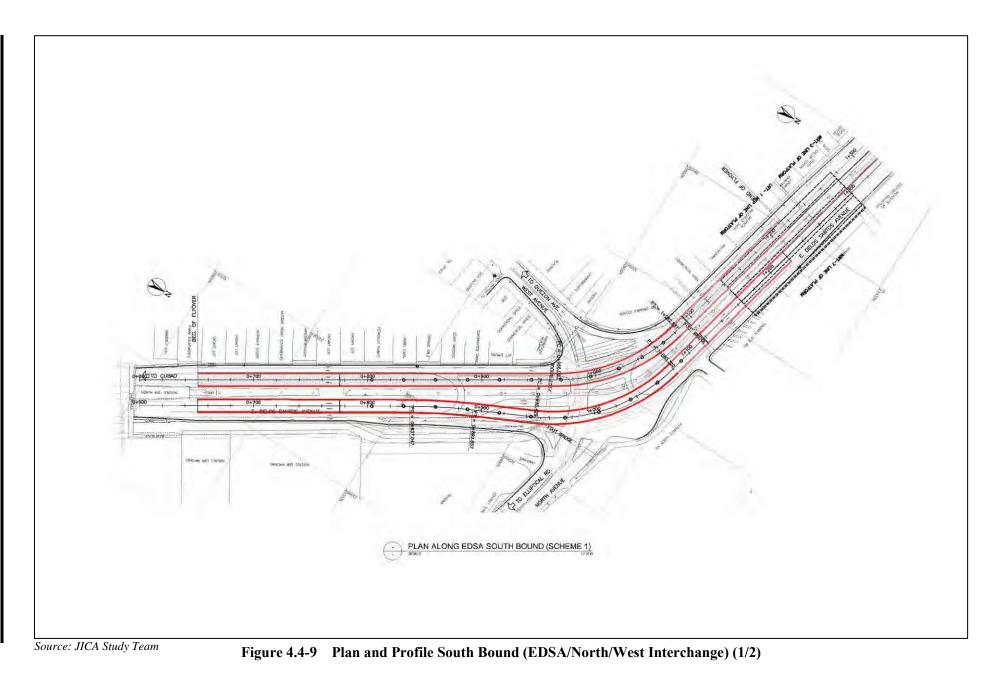

Scheme-1, PC voided slab type flyover was selected based on the comparative study. Concepts of the preliminary design of selected scheme are as follows:

- 1) Voided slab type should be adopted for superstructure to consider aesthetic view of flyover.
- 2) One (1) column type pier foundation should be adopted to maximize usability and usage of the area underneath the flyover.
- 6% of vertical grade should be adopted for both sides of the flyover approaches to minimize flyover length.
- 4) MSE wall should be adopted as retaining wall on both side of flyover approaches to minimize the effects to traffic during construction as well as provide an aesthetic view.
- 5) To provide four (4) phase signalization plan at the at-grade intersection.
- 6) All of the at-grade plan and design to be done within RROW.


Preliminary design was carried out based on the above basic concepts. Plan and profile, at-grade intersection plan, typical cross sections, slab layout plan and structural general view are shown in **Figures 4.4-5** \sim 10.

(2) Construction Plan and Traffic Management during Construction

- Construction Plan and PART CPM for EDSA/North/West interchange have been studied as shown in Figures 4.4-11 ~ 13.
- 2) Traffic Management plan during construction for EDSA/North/West have likewise been studied as shown in **Figure 4.4-14**.



Final Report

Source: JICA Study Team

Figure 4.4-8 Plan and Profile North Bound (EDSA/North/West Interchange) (2/2)

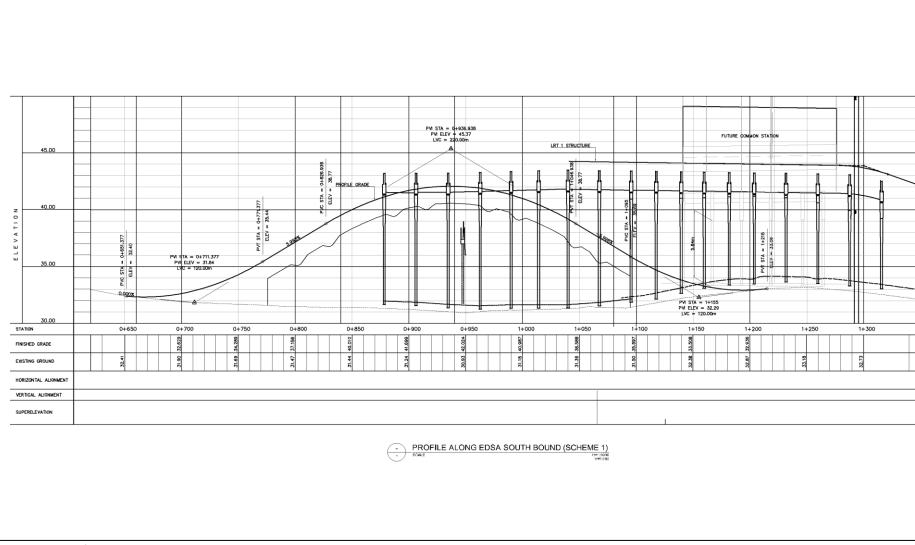
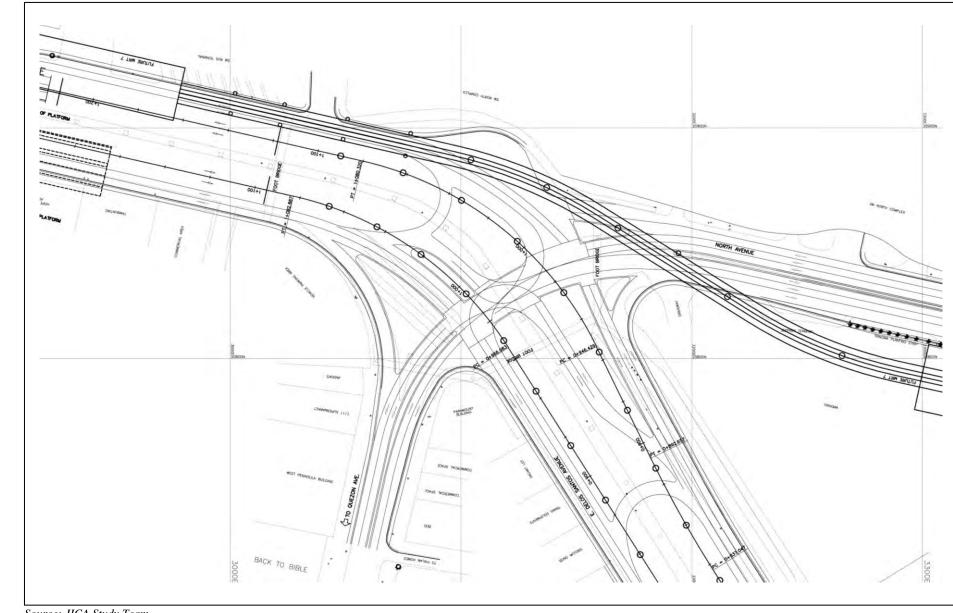
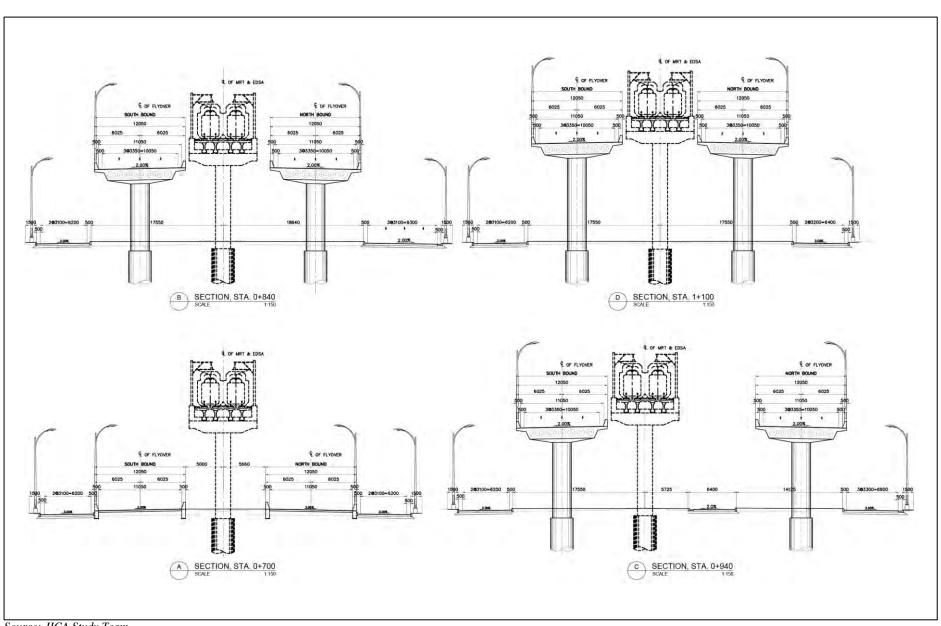
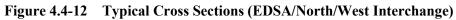



Figure 4.4-10 Plan and Profile South Bound (EDSA/North/West Interchange) (2/2)


Source: JICA Study Team


Figure 4.4-11 AT-Grade Intersection (EDSA/North/West Interchange)

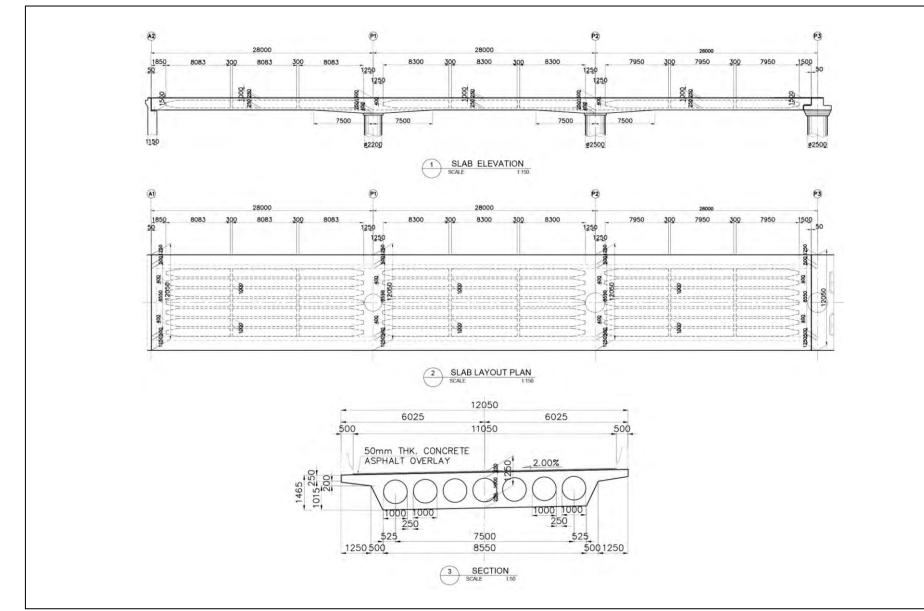
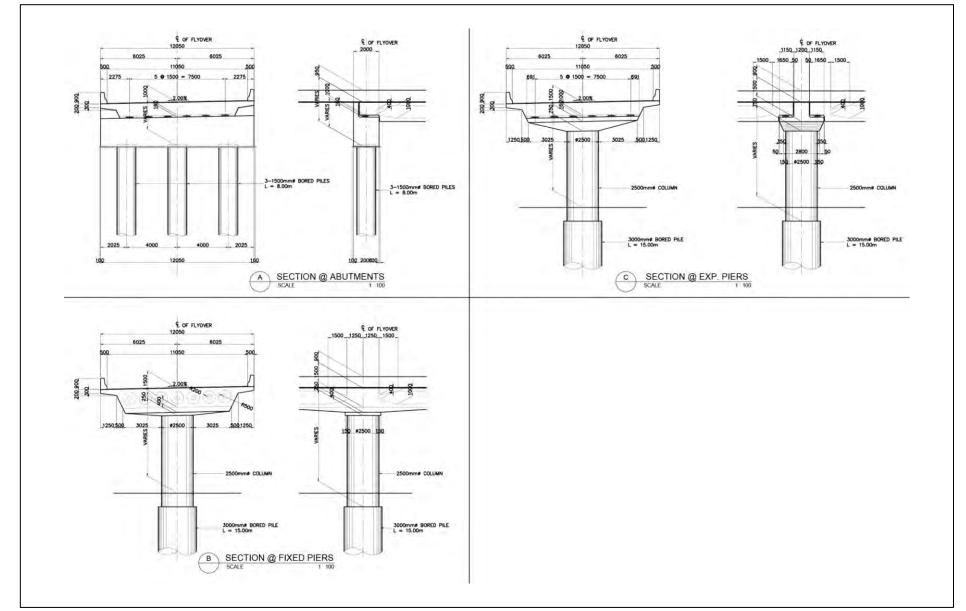
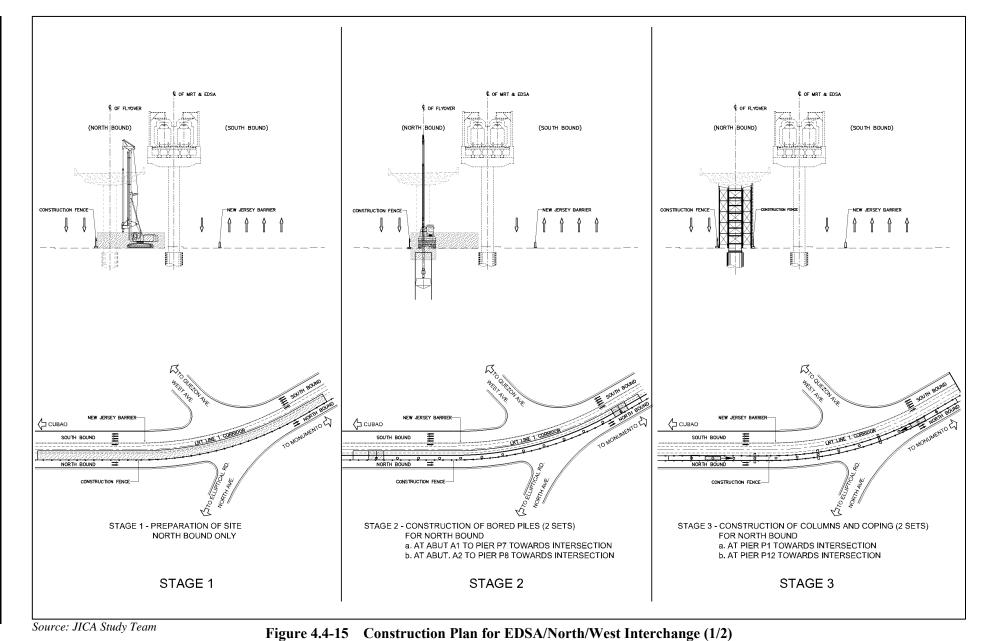




Figure 4.4-13 Slab Layout Plan (EDSA/North/West Interchange)

Source: JICA Study Team

Figure 4.4-14 Structural General View (EDSA/North/West Interchange)

Final Report

4-91

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

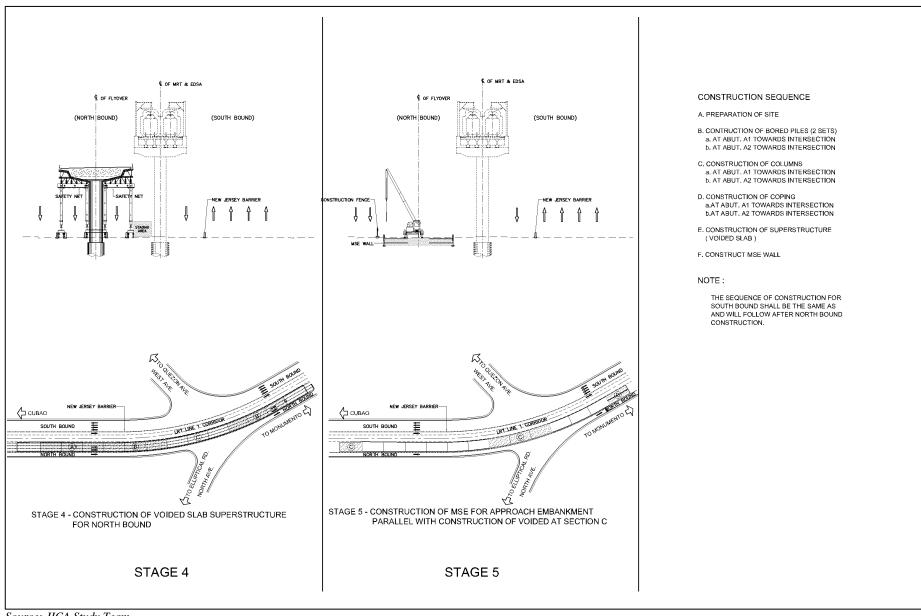


Figure 4.4-16 Construction Plan for EDSA/North/West Interchange (2/2)

PREPARATORY SURVEY ON METRO MANILA INTERCHANGE CONSTRUCTION PROJECT PHASE VI

Final Report

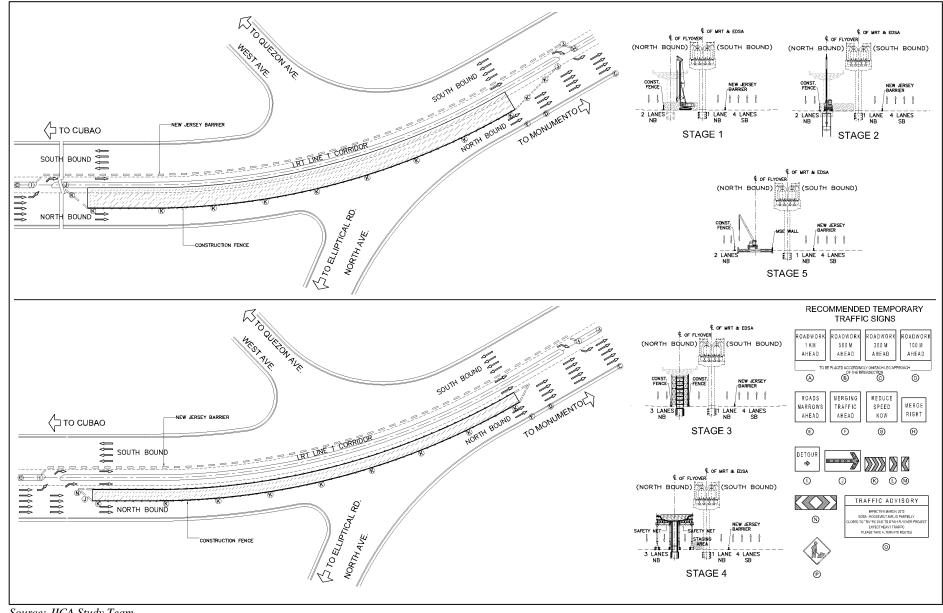
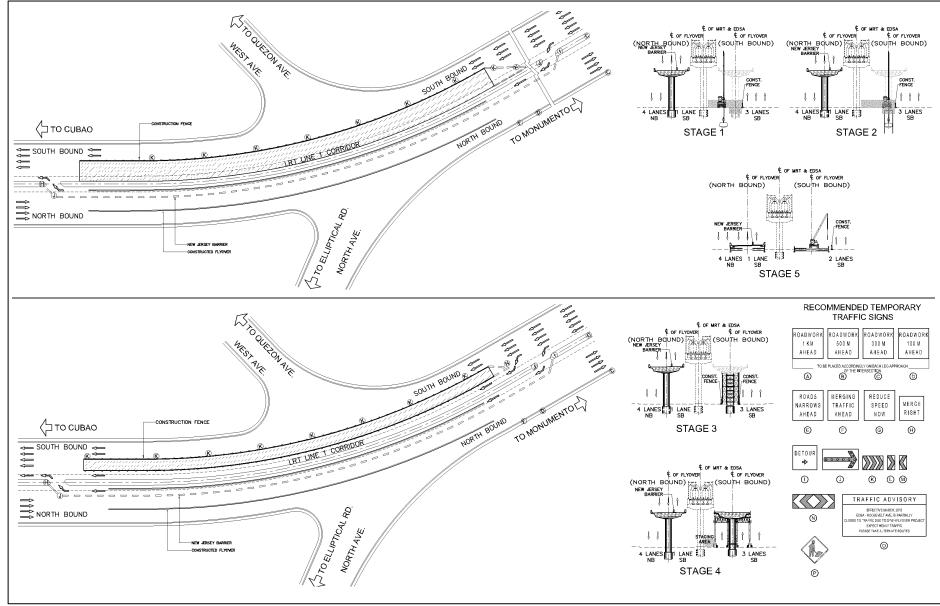



Figure 4.4-18 Traffic Management for EDSA/North/West Interchange (1/2)

Source: JICA Study Team

Figure 4.4-19 Traffic Management for EDSA/North/West Interchange (2/2)

4.4.3 Preliminary Design (North/Mindanao Interchange)

(1) Comparative study

Based on the review of detailed design, up-dated site and traffic conditions and the added issue of proposed construction plan of MRT-7, comparative study considered the following conditions:

- Proposed construction of MRT-7 alignment and station in-front of Trinoma should be properly adjusted to consider the flyover and tunnel plan and design.
- The number of the traffic lanes for each of the schemes are 2 lanes.
- Type of superstructure should be designed as voided slab type to provide an aesthetic view of the flyover.

The following two (2) alternative schemes are proposed as the most suitable for comparison based on the above conditions and site and traffic conditions:

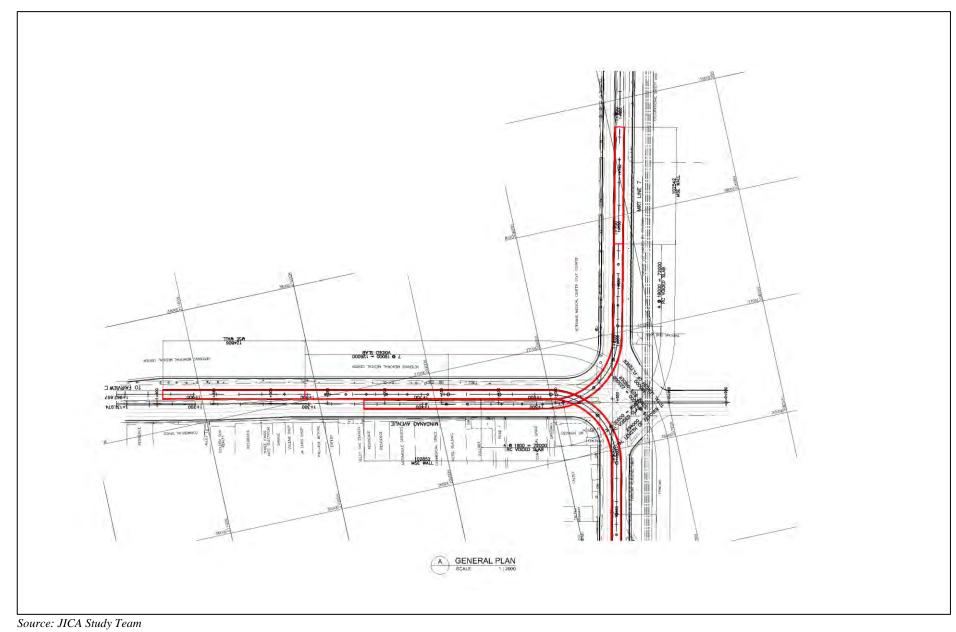
- Scheme-1 : Left turn flyover from North Ave to Mindanao Ave (3rd level) and left turn flyover from Mindanao Ave to North Ave (2nd level)
- Scheme-2 : Left turn cut and cover tunnel from North Ave to Mindanao Ave (under pass) and left turn flyover from Mindanao Ave to North Ave (2nd level)

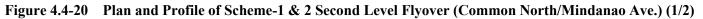
Between two (2) schemes, scheme-2 was selected due to following reasons:

- Construction cost is cheaper
- Environment related conditions are better (aesthetic, noise and exhaust fumes)
- Traffic conditions are better (ensuring access to The Block SM North, EDSA)

The comparison of Detailed Scheme is shown in Table 4.4-3 and Plan and Profile of each scheme is shown in Figures $4.4-16 \sim 21$

Table 4.4-3 Scheme Comparison of North Ave. / Mindanao Ave. Interchange


Final	
Report	


Description	Scheme-1 Left Turn Flyover North-Mindanao (3rd Level)		Scheme-2 Left Turn North-Mindanao (Underpass)	
Description	Left Turn Flyover Mindanao-North (2nd Level)		Left Turn Flyover Mindanao-North (2nd Level)	
	Flyover (N-M): 495.0m 15@18.0m+5@45.0m (RC voided and steel box)		Tunnel : 95m+open section 363.5m	
	Approach: 214.5m		Flyover (M-N) : 318m, 11@18.0m+4@30.0m (RC and PC voided slab)	
Structure	Flyover (M-N): 318m, 11@18.0m+4@30.0m (RC and PC voided slab)		Approach : 205.4m	
	Approach: 205.4m			
	Flyover (N-M) : MP 402.3 (P960,000/m Steel, P720,000/m RC)		Tunnel : MP 347.9	
	Flyover (M-N) : MP 190.8 (P600,000/m)		Sump Pit : MP 20.0 (height:10m)	
Construction Cost			ROW : MP 4.0 (10m x 10m x P40,000)	
Construction Cost	Approach : MP 25.2 (P60,000/m)	0	Flyover : MP 190.8 (MP 600,000/m)	6
	R.O.W. : MP 6.0 (5m x 30m x P40,000)		Approach : MP 12.3 (MP 60,000/m)	
	Total MP 624.3 (109.0%)		Total MP 575.0 (100.0%)	
Construction	26 months		24 months	
Performance and	 Construction method is standard but complicated due to double flyovers 	Δ	• Construction method is standard but complicated due to 2-layer of structure	(
Duration	 Requires steel box girder due to over the 3rd level flyover 	_	Requires special construction method and procedure for const. of sump pit	
Environmental and	• Aesthetic view is worthier than scheme-2		• Aesthetic view is better than scheme-1	
Social Condition	 Requires R.O.W at the entrance of 3rd level flyover along North Ave. 	Δ	• Requires R.O.W acquisition for sump pit location	0
Social Condition	• Noise and exhaust fumes are greater than scheme-2 due to long and steep slope		• Noise an exhaust fumes are smaller than scheme-1	
Traffic Condition at	Close access to The Block SM Edsa	Δ	• No close access to The Block SM North Edsa	
Grade I/C	 Restrict section is longer than scheme-2 		• Restict section is shorter than Scheme-1	(
O & M	• Requires painting for steel members which is harder due to above road and flyover	0	Requires periodic monitoring and maintenance of water pump up system	(
	Construction cost expensive than scheme-2		• Construction cost is cheaper than scheme-1	
	 Construction of 3rd level steel box girder is complicated 	0		
Overall Evaluation	 Environmental condition is worthier than scheme-2 	\sim	Requires special construction method and procedure for const. of sump pit	
	 Traffic condition is worthier than scheme-2 		• Environmental issue is much better than scheme-1	
			• Traffic condition is better than scheme-1	

disadvantage

Source: JICA Study Team

102852 MSE WALL 234000 TOTAL LENGTH OF FLYOVER 102542 MSE WALL 4 @ 18000 = 72000 RC VOIDED SLAB 3 9 30000 = 90000 PC VOIDED SLAB 4 @ 18000 = 72000 RC VOIDED SLAB BORED PILE = 3-1000mm# BORED PILE = 3-1000mm# COLUMN = 1500mm# BORED PILE = 2000mm# COLUMN = 2000mmø BORED PILE = 2500mmø COLUMN = 1500mm# BORED PILE = 2000mm# OF FLYOVER 4350 2011 OF FLYOVER € OF FLYOVER COF FLYOVER 4350 4350 4350 500 203350-6700 STEEL COLI m¢ COLUM m# COLUMN 03100-6 2.0% 500mm# BORED PILE 00mm# BORED PILE 500mm# BORED PILL 000mm# BORED PILE D SECTION NEAR STA. 1 + 700.00 E SECTION NEAR STATION 1 + 500.00 SCALE 1:300 C SECTION NEAR STA. 1 + 600.00 SCALE 1: 300 SCALE 1:300

Source: JICA Study Team

Figure 4.4-21 Plan and Profile of Scheme -1 & 2 Second Level Flyover (Common North/Mindanao Ave.) (2/2)

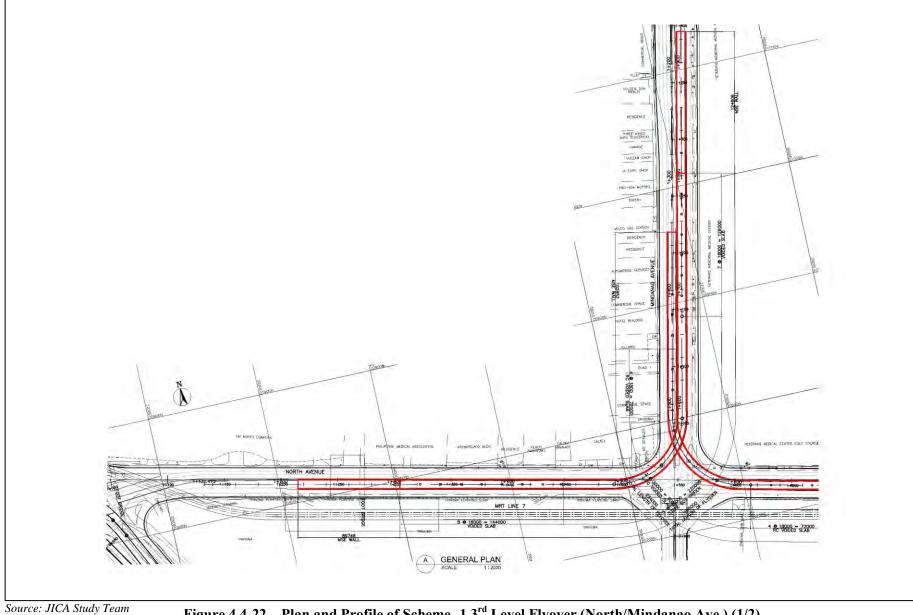
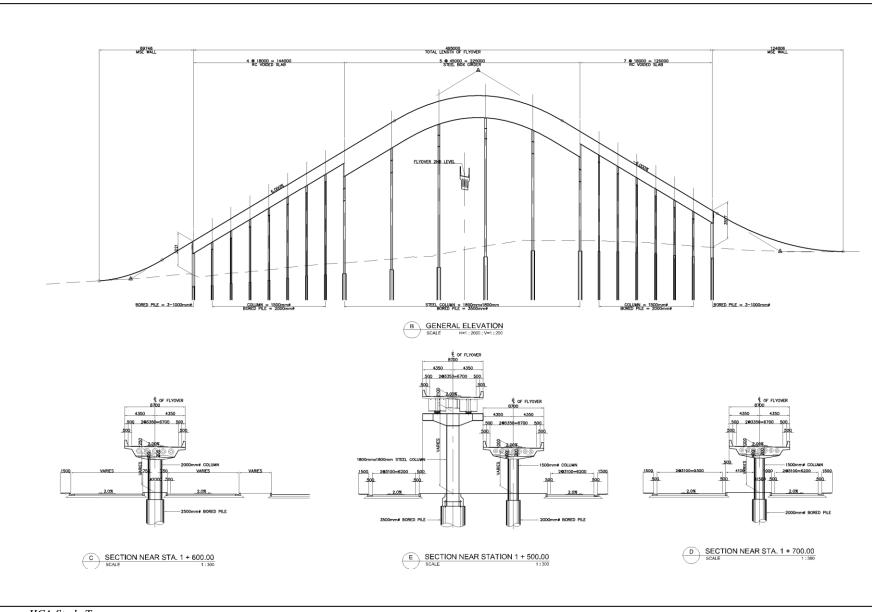
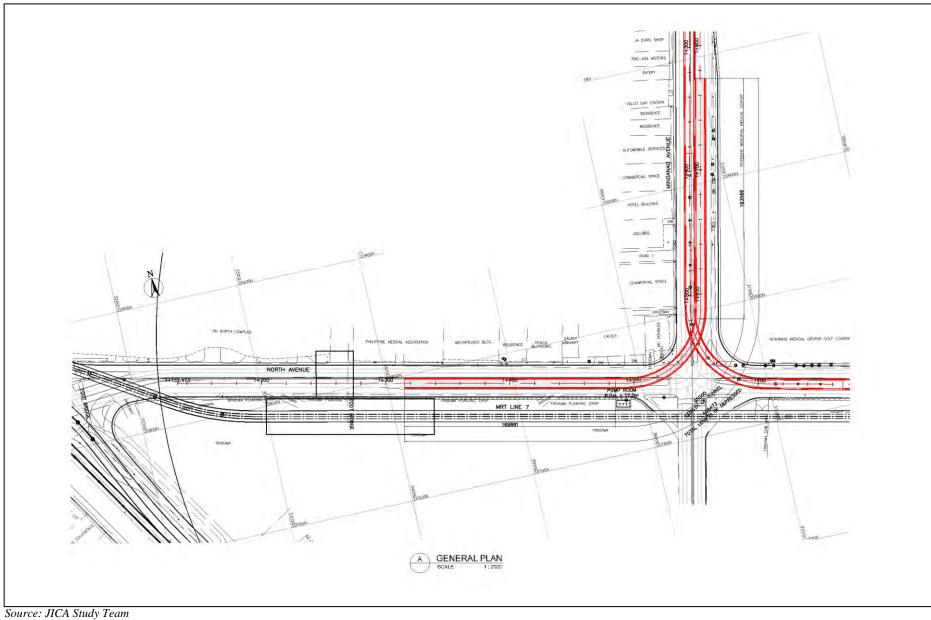
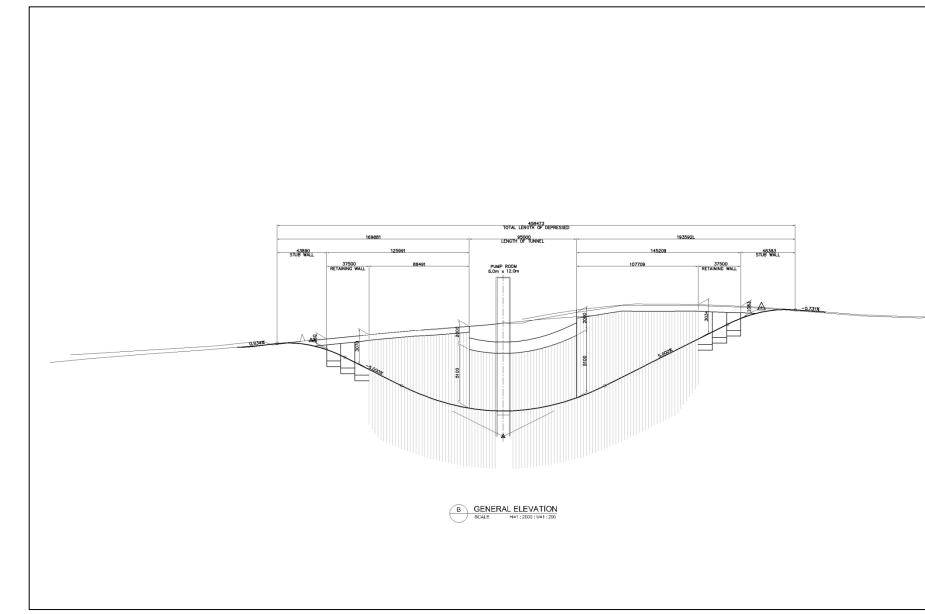
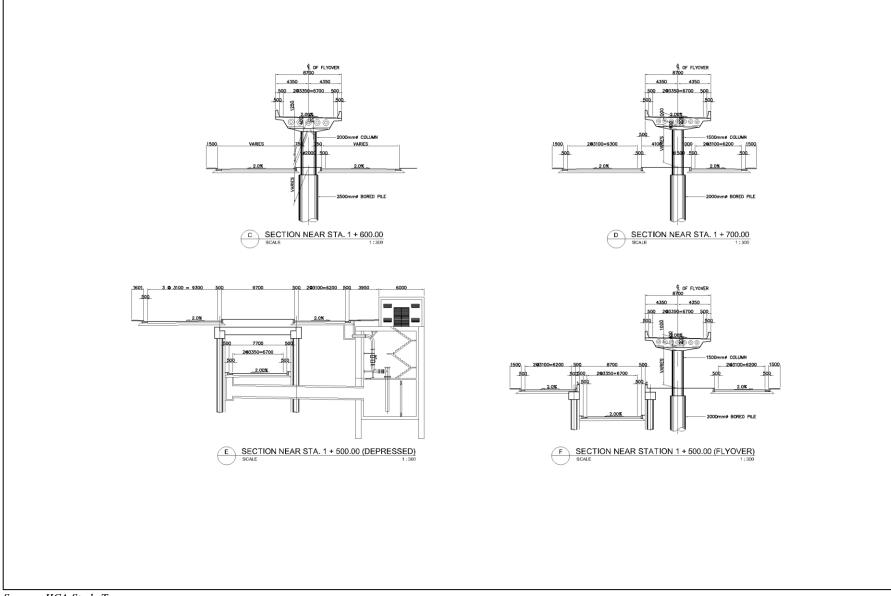



Figure 4.4-22 Plan and Profile of Scheme -1 3rd Level Flyover (North/Mindanao Ave.) (1/2)

Source: JICA Study Team

Figure 4.4-23 Plan and Profile of Scheme -1 3rd Level Flyover (North/Mindanao Ave.) (2/2)


Figure 4.4-24 Plan and Profile of Scheme -2 Cut and Cover Tunnel (North/Mindanao Ave.) (1/3)

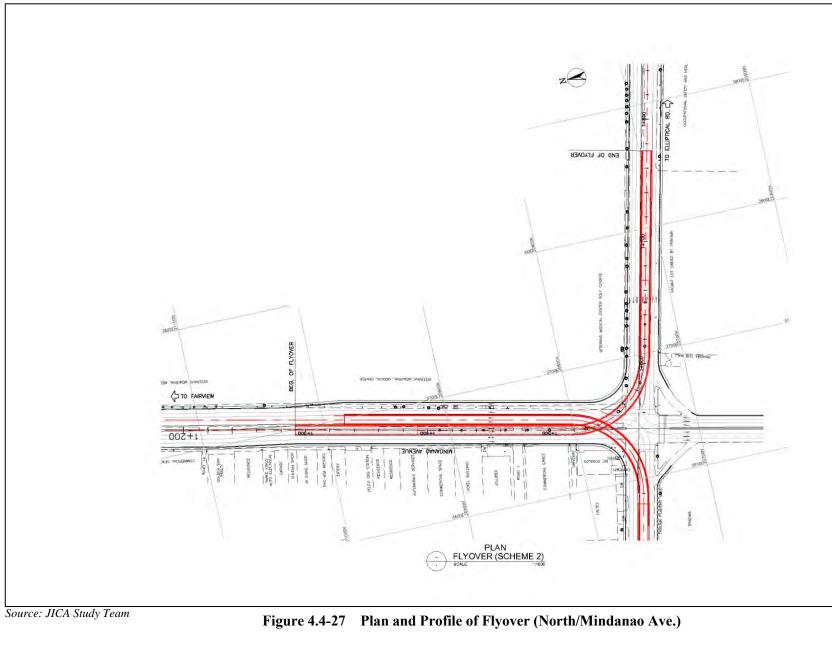
Source: JICA Study Team

Figure 4.4-25 Plan and Profile of Scheme -2 Cut and Cover Tunnel (North/Mindanao Ave.) (2/3)

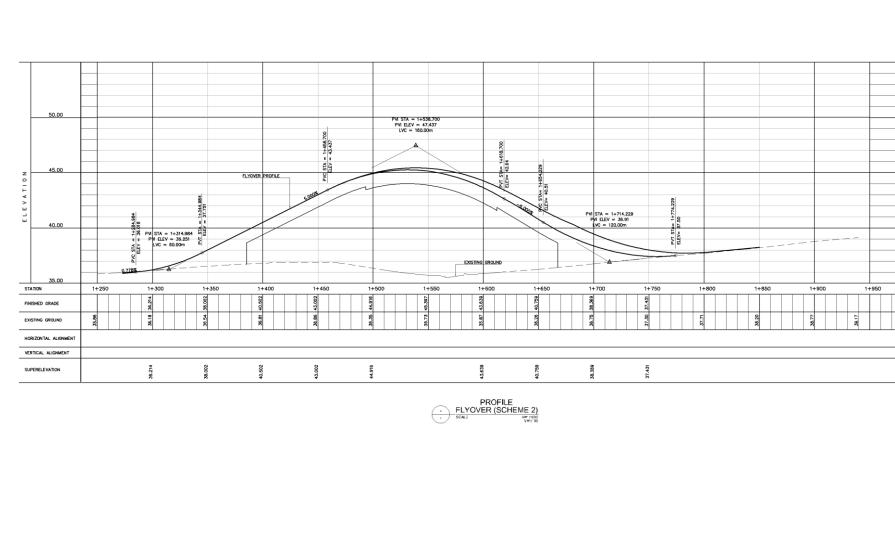
Source: JICA Study Team

(2) Preliminary Design of Selected Scheme

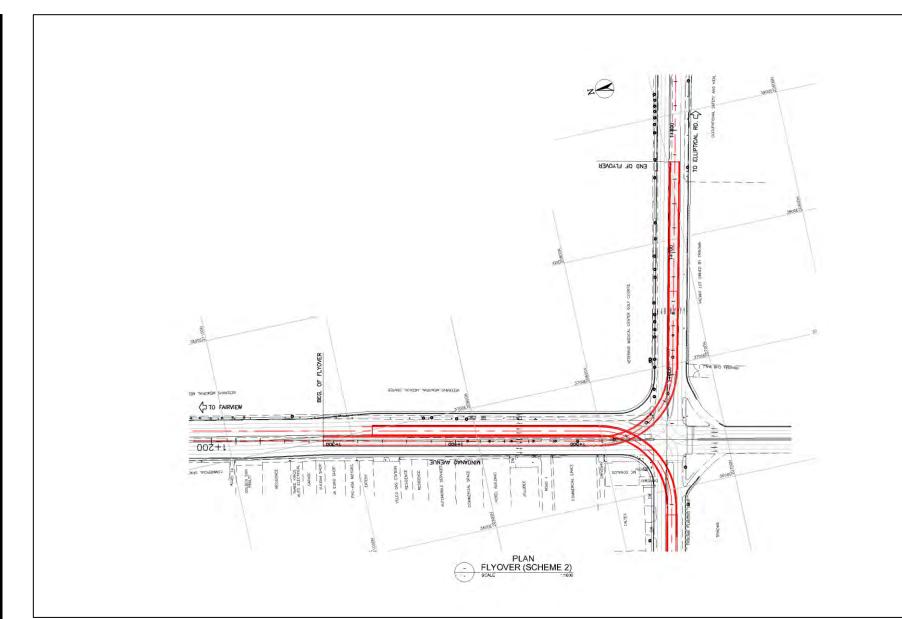
Scheme-2, combination of left turn flyover from Mindanao Avenue to North Avenue and left turn cut and cover tunnel from North Avenue to Mindanao Avenue was selected based on the comparative study. The concept of preliminary design of the selected scheme is as follows:


- Voided slab type bridge should be adopted for superstructure to consider aesthetic view of flyover.
- 2) One (1) column type pier foundation should be adopted for the flyover design to maximize the usability and usage of the spaces underneath the flyover.
- 3) 6% of vertical grade should be adopted for both sides of the flyover approaches to minimize the flyover length.
- 4) 5% of vertical grade should be adopted for both sides of the tunnel approaches to consider traffic safety (less sight distance compared to flyover).
- 5) MSE wall should be adopted as retaining wall at both sides of the flyover approaches to minimize its affects on traffic during construction as well as provide an aesthetic view.
- 6) Provide signalized traffic management at the at-grade intersection.
- 7) Minimize RROW requirement for sump pit construction.

Plan and profile, at-grade intersection plan, typical cross sections, slab layout plan and structural general view are shown in Figures $4.4-22 \sim 28$


(3) Construction Plan and Traffic Management during Construction

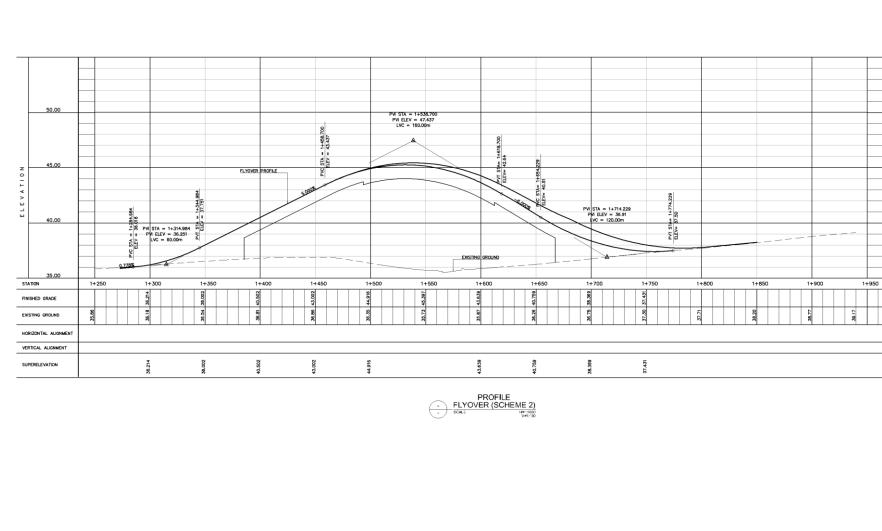
- Construction Plan and PERT CPM for North/Mindanao interchange have been studied as shown in Figures 4.4-29 ~ 32
- 2) Traffic Management plan during construction for North/Mindanao interchange have been studied as presented in Figure 4.4-33.



Preparatory Survey for Metro Manila Interchange Construction Project (VI)

Source: JICA Study Team

Figure 4.4-28 Plan and Profile of Cut and Cover Tunnel (North/Mindanao Ave.)



Preparatory Survey for Metro Manila Interchange Construction Project (VI)

Source: JICA Study Team

Figure 4.4-29 Plan and Profile of Flyover (North/Mindanao Ave.) (1/2)

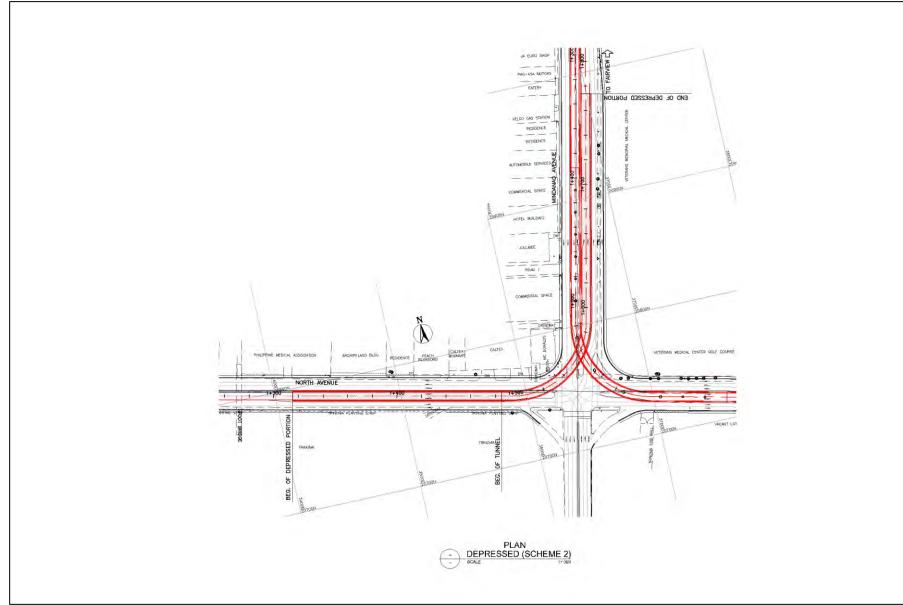


Figure 4.4-31 Plan and Profile of Cut and Cover Tunnel (North/Mindanao Ave.) (1/2)

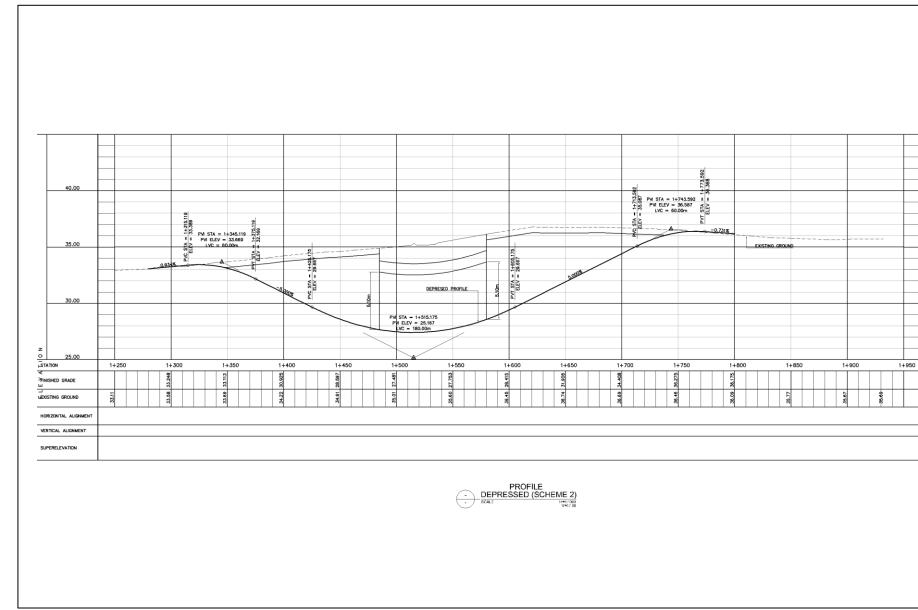


Figure 4.4-32 Plan and Profile of Cut and Cover Tunnel (North/Mindanao Ave.) (2/2)

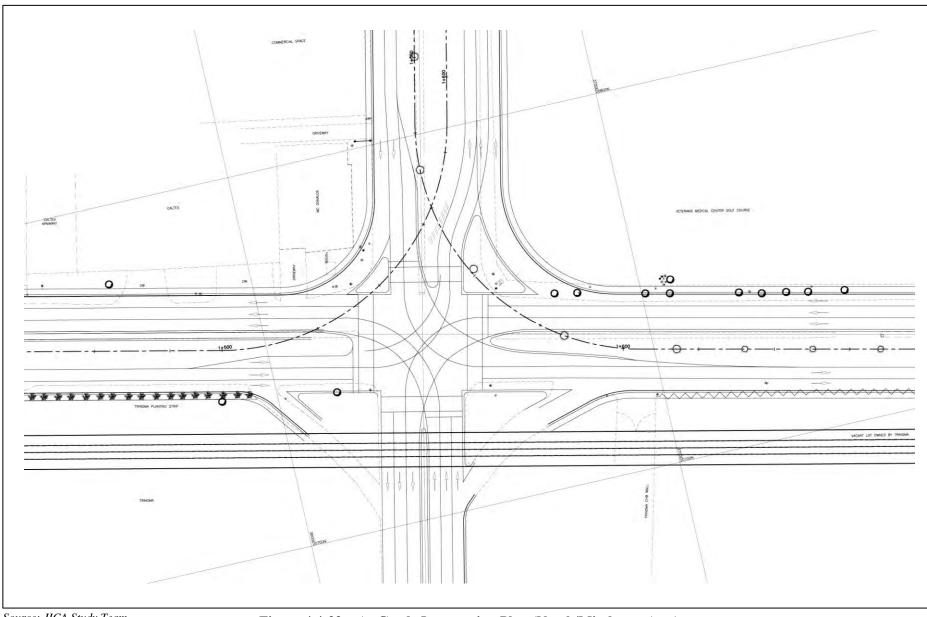


Figure 4.4-33 At-Grade Intersection Plan (North/Mindanao Ave.)

4-112

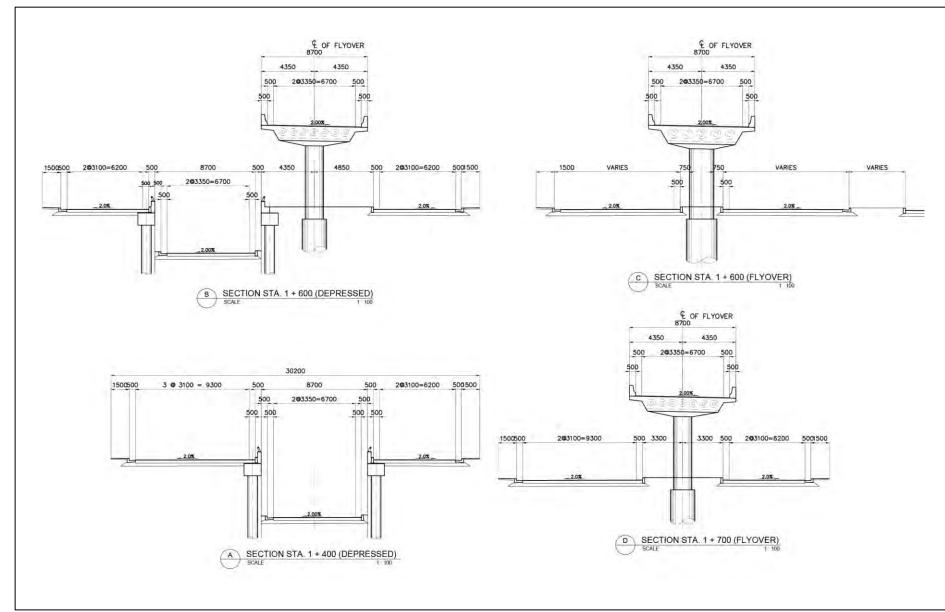
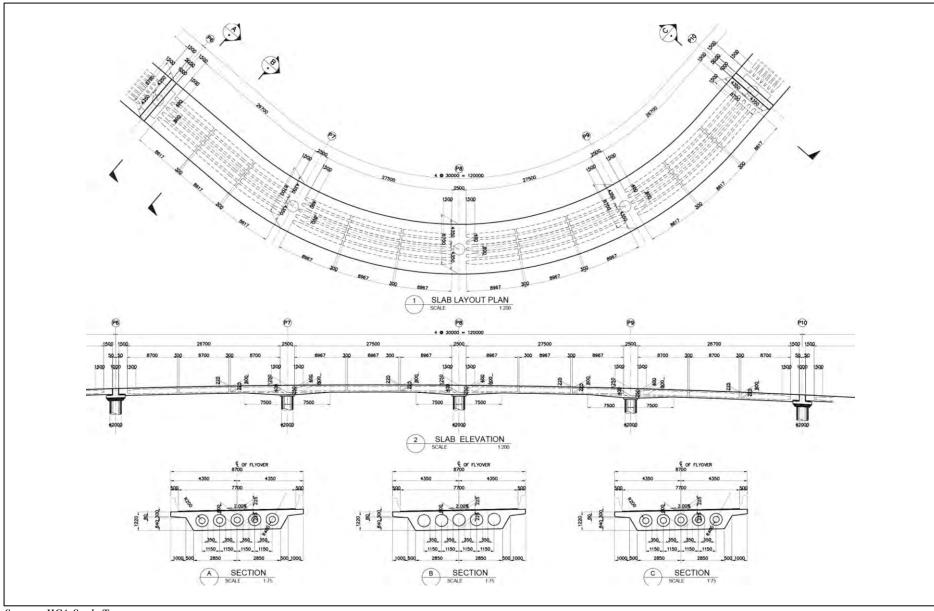



Figure 4.4-34 Typical Cross Section (North/Mindanao Ave.)

Source: JICA Study Team

Figure 4.4-35 Slab Layout Plan-PC Voided (North/Mindanao Ave.)

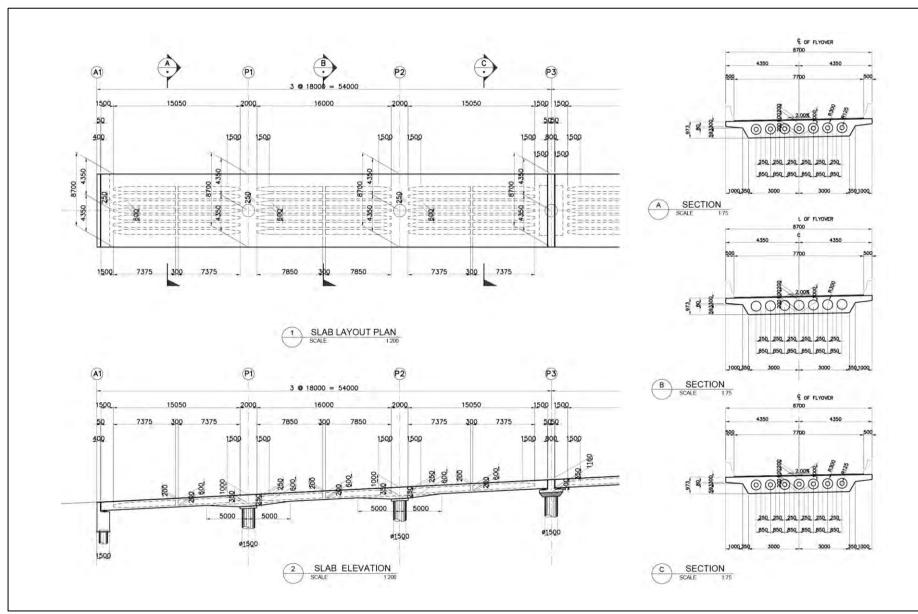
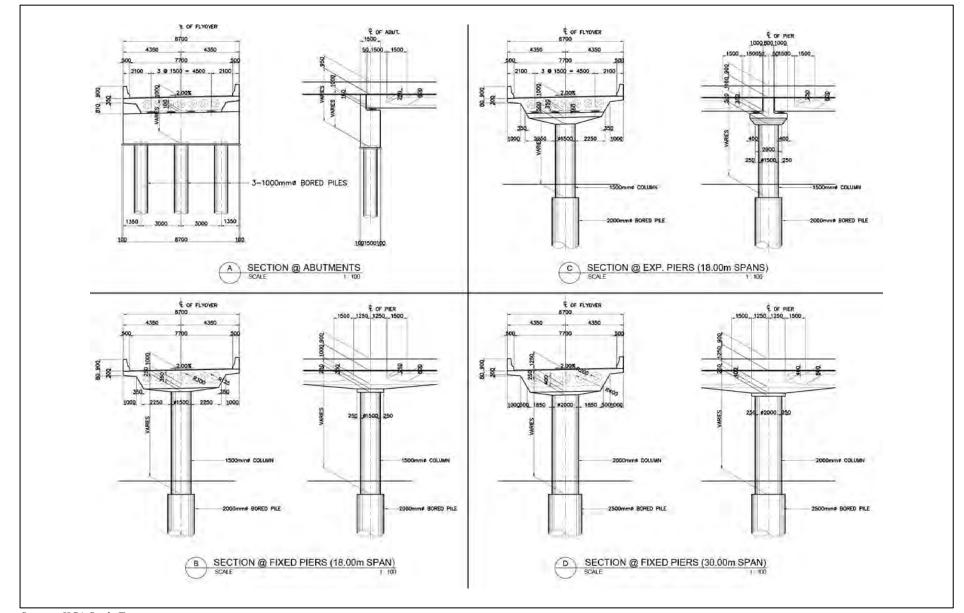



Figure 4.4-36 Slab Layout Plan-PC Voided (North/Mindanao Ave.)

Final Report

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

Source: JICA Study Team

Figure 4.4-37 Structural General View (North/Mindanao Ave.)

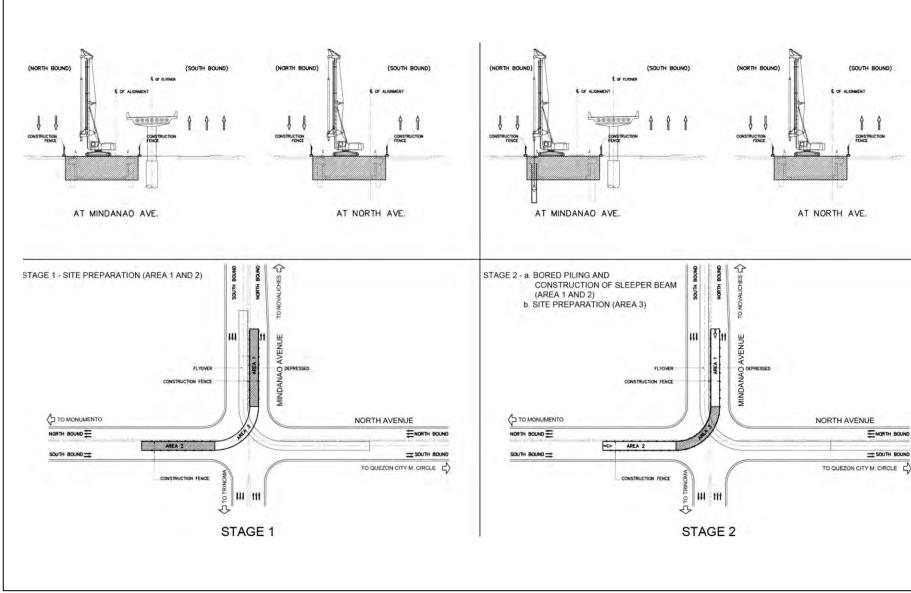


Figure 4.4-38 Construction Plan for North/Mindanao Ave. Interchange (1/4)

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

4-117

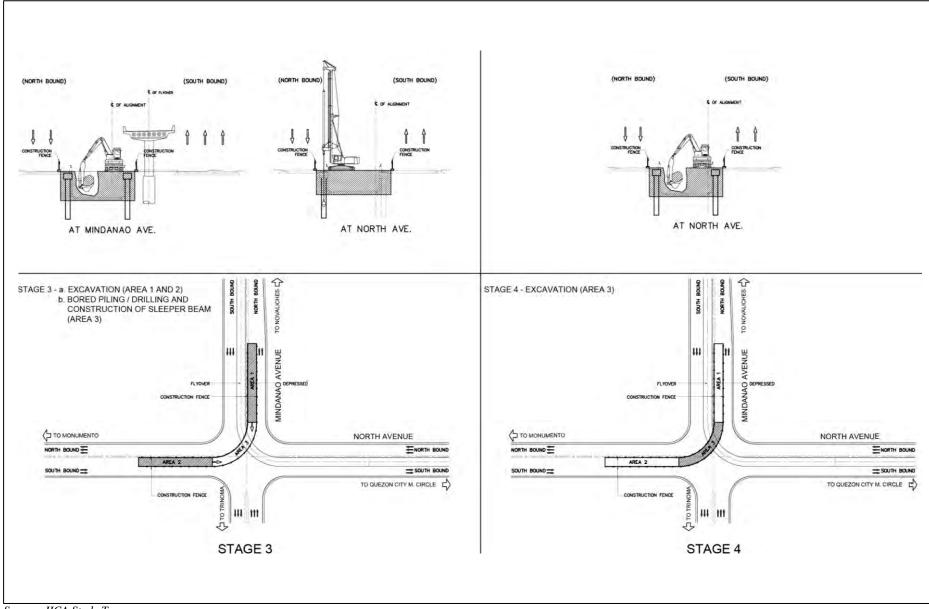


Figure 4.4-39 Construction Plan for North/Mindanao Ave. Interchange (2/4)

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

4-118

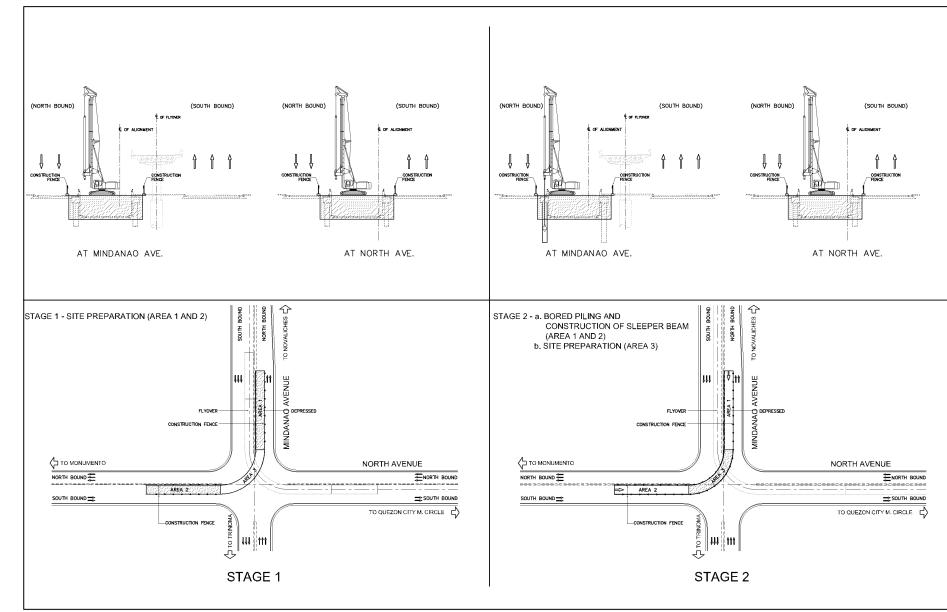


Figure 4.4-40 Construction Plan for North/Mindanao Ave. Interchange (3/4)

Final Report

4-119

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

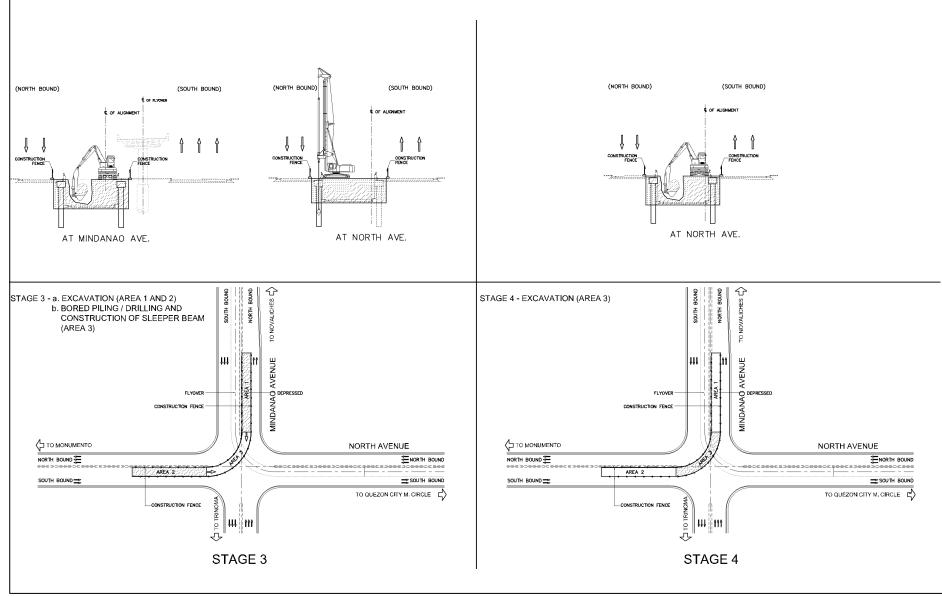
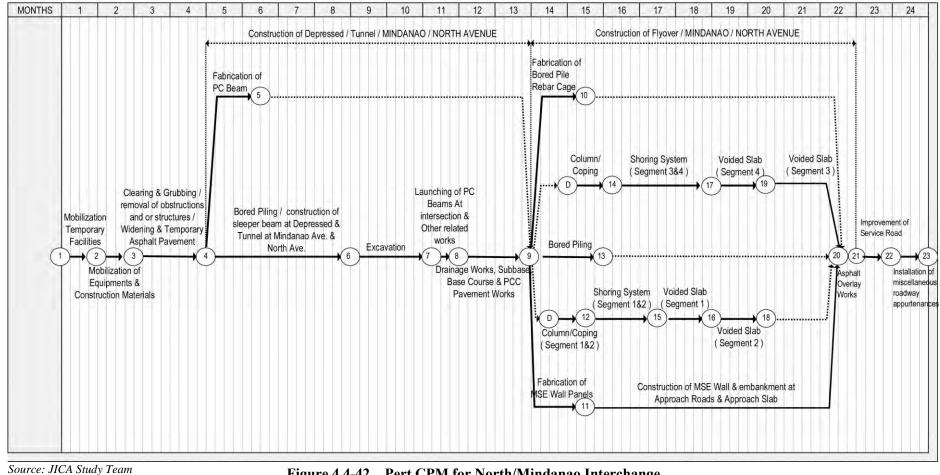
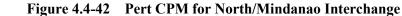




Figure 4.4-41 Construction Plan for North/Mindanao Ave. Interchange (4/4)

4-120

PREPARATORY SURVEY ON METRO MANILA INTERCHANGE CONSTRUCTION PROJECT PHASE VI NORTH / MINDANAO AVENUE, QUEZON CITY PRELIMINARY CONSTRUCTION SCHEDULE (PERT/CPM)

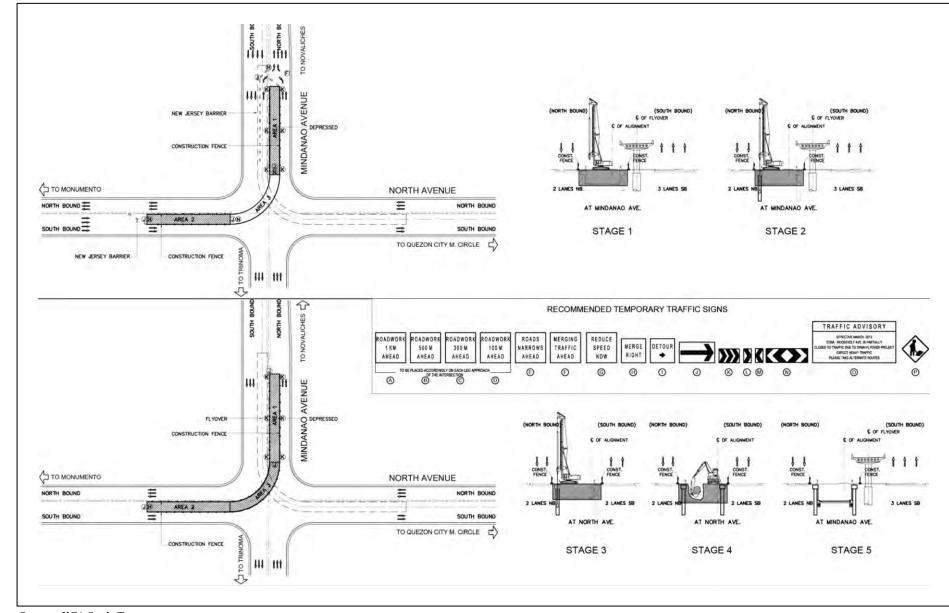
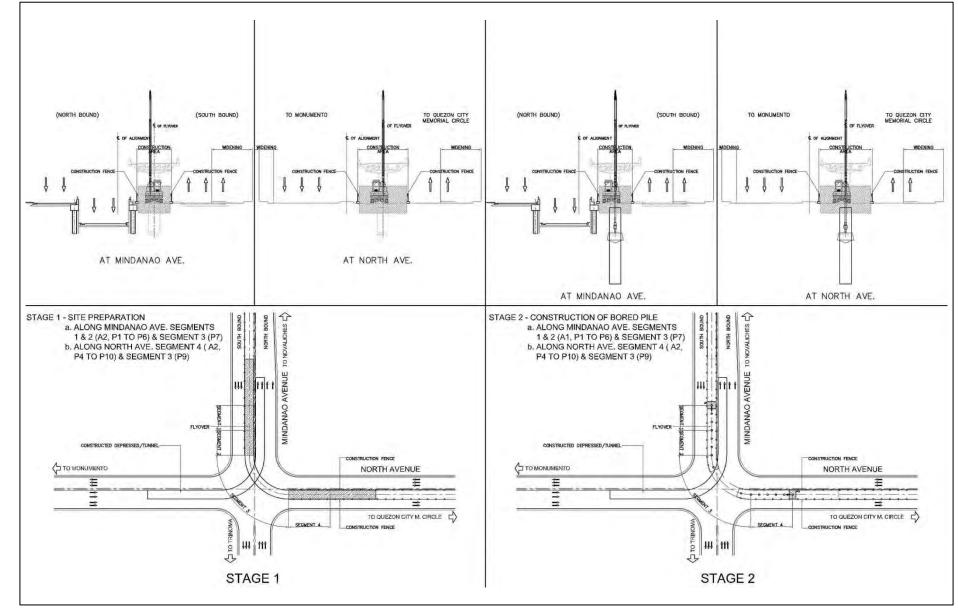



Figure 4.4-43 Traffic Management for North/Mindanao Ave. Interchange

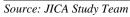


Figure 4.4-44 Traffic Management for North/Mindanao Ave. Interchange (1/4)

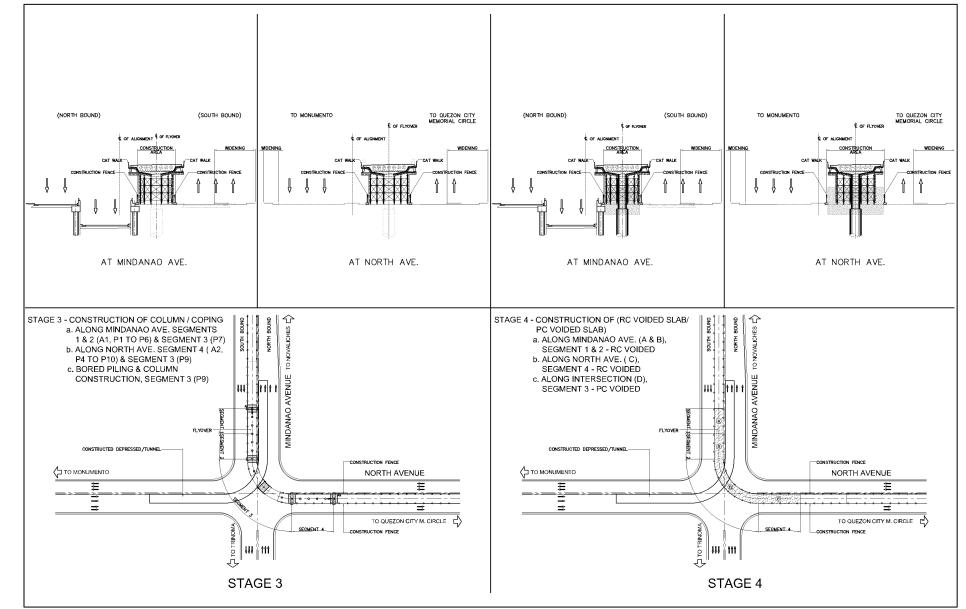
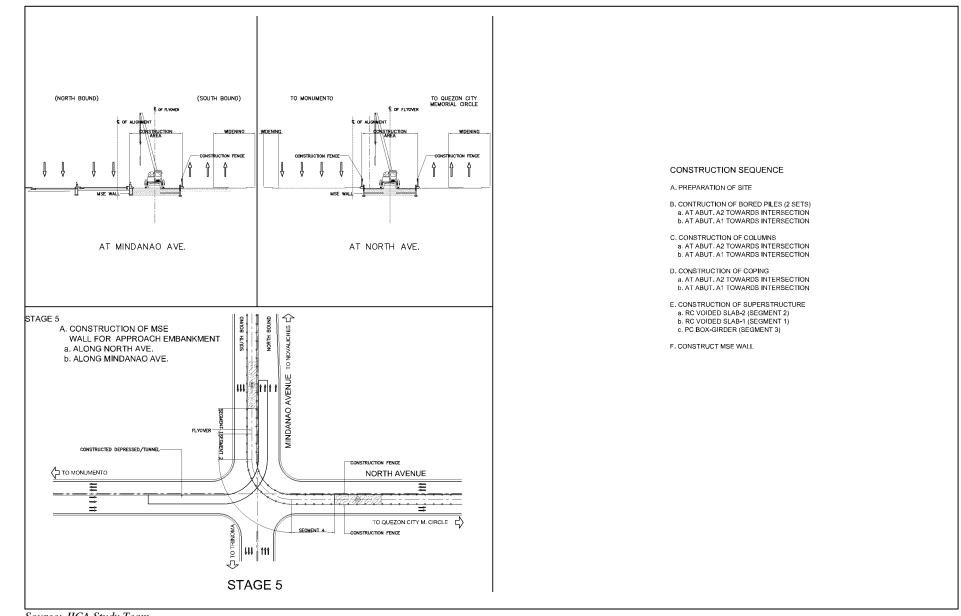



Figure 4.4-45 Traffic Management for North/Mindanao Ave. Interchange (2/4)

4-125

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

Source: JICA Study Team

Figure 4.4-46 Traffic Management for North/Mindanao Ave. Interchange (3/4)

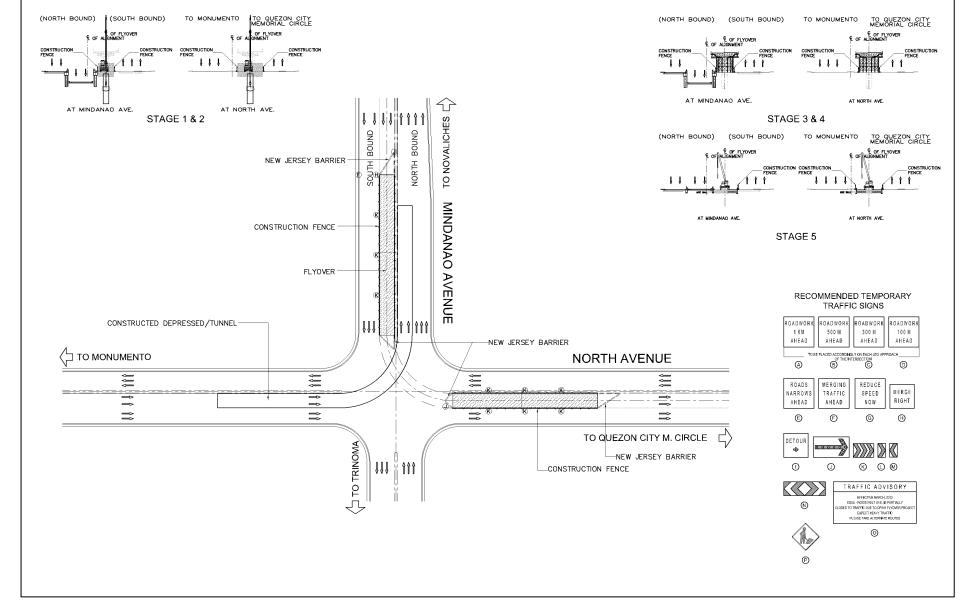


Figure 4.4-47 Traffic Management for North/Mindanao Ave. Interchange (4/4)

(4) Bill of Quantity and Cost Estimate

Civil Works Cost for EDSA/North/West/Mindanao IC had been estimated based on similar conditions of C3/E. Rodriguez IC and is shown in **Table 4.4-4**.

 Table 4.4-4
 Civil Works Cost Estimate for EDSA/North/West/Mindanao IC

PAY ITEM NO.	DESCRIPTION	QUANTITY	UNIT	Unit Cost	Civil Work Cost	Remarks
1.0	GENERAL REQUIREMENTS					
A	FACILITIES FOR THE ENGINEER	1.00	l.s.	20,000,000.00	20,000,000.00	
	SUB-TOTAL (PART A)				20,000,000.00	
В	OTHER GENERAL REQUIREMENTS					
CDI D 2 1	Construction Haalth and Sofety	1.00	D a	2 400 000 00	2,400,000.00	
SPL B.2.1 SPL B.2.2	Construction Health and Safety Mobilization / Demobilization (1.0% of Civil Works)	1.00 1.00	P.s P.s	2,400,000.00 10,374,092.47	10,374,092.47	
	Traffic Management During Construction	1.00	P.s	9,000,000.00	9,000,000.00	
~~~~~	Dayworks	1.00	P.s	8,000,000.00	8,000,000.00	
SPL B.2-5	Removal, Relocation of Utilities	1.00	P.s	19,200,000.00	19,200,000.00	
SPL B.3.1	Environmental Monitoring Action Plan	1.00	P.s	4,000,000.00	4,000,000.00	
	SUB-TOTAL (PART B)				52,974,092.47	
	SUB-TOTAL GENERAL REQUIREMENTS				72,974,092.47	
2.0	INTERCHANGE CONSTRUCTION WITH VIADUCT					
С	EARTHWORKS					
100/11				00.046.22		
100(1)	Clearing and Grubbing Individual Removal Trees (Small)	0.69	ha.	90,846.53 1,013.26	62,684.11	
100(3) 100(4)	Individual Removal Trees (Small) Individual Removal Trees (Large)	-	ea. ea.	1,427.27	-	
100(4)	Removal and Earth Balling of Trees	16.00	ea.	1,000.00	16,000.00	
101(1)	Removal of Structures and Obstruction	1.00	l.s.	1,000,000.00	1,000,000.00	
101(3)a	Removal of Existing PCCP	18,463.35	sq.m.	245.78	4,537,922.16	
101(3)b	Breaking of Existing PCCP	-	sq.m.	335.00	-	
101(4)a	Removal of Existing Concrete Curb	4,485.56	l.m.	60.00	269,133.60	
101(4)b	Removal of Existing Concrete Curb & Gutter	2,407.83	l.m.	110.00	264,861.30	
101(4)c	Removal of Existing Sidewalk and Median	8,807.13	sq.m.	120.00 200.00	1,056,855.60	
101(4)d 102(2)	Removal of Existing RCPC Surplus Common Excavation	1,502.41 19,773.01	l.m. cu.m	586.00	300,482.00 11,586,983.86	
105(1)	Subgrade Preparation	9,914.06	sq.m.	37.18	368,604.75	
	SUB-TOTAL (PART C)				19,463,527.38	
D	SUBBASE AND BASE COURSE					
200	Sub Base Course	6,000.37	cu.m.	879.97	5,280,145.59	
200		0,000.37	- cu.m.		5,280,145.59	
	SUB-TOTAL (PART D)				5,200,145.59	
E	SURFACE COURSES					
302(2)	Bituminous Tack Coat, Emulsified Asphalt, SS-1 (0.45 L/m2)	11.40	tonne	65,971.81	752,078.63	
310 (2)	Bituminous Concrete Wearing Course, Hot Laid (t=50mm)	16,294.41	sq.m	924.31	15,061,086.11	
311(1)a 311(1)b	Portland Cement Concrete Pavement t=300 mm CRC Pavement Reinforced	11,671.23 3,071.50	sq.m sq.m	2,887.66 4,935.16	<u>33,702,544.02</u> 15,158,343.94	
	SUB-TOTAL (PART E)				64,674,052.70	
					04,074,032.70	
F	BRIDGE CONSTRUCTION					
103(1)	Approch Ramp Structure Excavation	4,550.83	cu <b>m</b>	586.00	2,666,786.38	
103(1)	Structure Excavation Structural Backfilling	4,550.83	cu.m. cu.m.	565.00	2,666,786.38	
103(2)	Embankment, Selected Borrow	9,157.97	cu.m.	984.09	9,012,266.70	
104(2)	Cast in Place Concrete Railing	1,304.78	l.m.	5,006.92	6,532,929.08	
401(a)	1	103,077.00	kg.	62.70	6,462,927.90	
401(a) 404(1)a	Reinforcing steel, Grade 40 (Minor/Substructure)			68.25	4,257,537.38	
401(a) 404(1)a 404(2)a	Reinforcing steel, Grade 60 (Minor/Substructure)	62,381.50	kg.			
401(a) 404(1)a 404(2)a 405(1)a	Reinforcing steel, Grade 60 (Minor/Substructure) Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	980.31	cu.m.	9,548.08	9,360,078.30	
401(a) 404(1)a 404(2)a 405(1)a 405(1)b	Reinforcing steel, Grade 60 (Minor/Substructure) Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa Approach Slab	980.31 92.06	cu.m. cu.m.	9,548.08 6,233.40	9,360,078.30 573,846.80	
401(a) 404(1)a 404(2)a 405(1)a	Reinforcing steel, Grade 60 (Minor/Substructure) Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	980.31	cu.m.	9,548.08	9,360,078.30	

	Substantation					
00/17	Substructure	<b>7</b> 000.00	1	24.502.02	101 024 542 52	
00(17)a	Concrete Piles Cast in Drilled Holes, Ø800 mm	7,800.00	l.m.	24,592.89	191,824,542.00	
00(17)b	Concrete Piles Cast in Drilled Holes, Ø1000 mm	54.00	l.m.	35,098.96	1,895,343.84	
00(17)c	Concrete Piles Cast in Drilled Holes, Ø1500 mm	108.00	l.m.	60,716.52	6,557,384.16	
00(17)d	Concrete Piles Cast in Drilled Holes, Ø2000 mm	135.00	l.m.	101,704.06	13,730,048.10	
00(17)e	Concrete Piles Cast in Drilled Holes, Ø2500 mm	75.00	l.m.	146,178.83	10,963,412.25	
00(17)f	Concrete Piles Cast in Drilled Holes, Ø2800 mm	270.00	l.m.	177,476.50	47,918,655.00	
00(17)g	Concrete Piles Cast in Drilled Holes, Ø3000 mm	60.00	l.m.	202,409.64	12,144,578.40	
400(22)a	Pile Integrity Test	52.00	ea.	43,784.56	2,276,797.12	*********
	,			***************************************		
400(22)b	Pile Dynamic Test	26.00	ea.	583,087.25	15,160,268.50	
404(1)a	Reinforcing steel, Grade 40 (Minor/Substructure)	212,089.68	kg.	62.70	13,298,022.94	
404(2)a	Reinforcing steel, Grade 60 (Minor/Substructure)	859,498.75	kg.	68.25	58,660,789.69	
405(1)a	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	4,227.85	cu.m.	14,057.94	59,434,861.63	
405(6)	Lean Concrete	147.96	cu.m.	4,111.70	608,367.13	
407(1)a	Anchor Bar Ø36mm x 1500mm long, complete	56.00	ea.	1,800.00	100,800.00	
407(1)b	Anchor Bar Ø36mm x 1000mm long, complete	38.00	ea.	1,200.00	45,600.00	
416	PC Panel	7,729.91	sq.m	1,500.00	11,594,865.00	
410		1,129.91	5q.m	1,500.00	11,574,005.00	
	Superstructure					
401(a)	Cast in Place Concrete Railing	1,958.00	l.m.	5,006.92	9,803,549.36	
404(1)b	Reinforcing steel, Grade 40 (Superstructure)	99,814.00	kg.	62.70	6,258,337.80	
404(2)b	Reinforcing steel, Grade 60 (Superstructure)	1,636,636.00	kg.	68.25	111,700,407.00	
404(2)c	Prestressing steel	159,626.00	kg.	152.90	24,406,815.40	
					147,346,551.57	
405(1)b	Structural Concrete, Class A (Hollow Slab) 27.6 Mpa	8,682.25	cu.m.	16,971.01	147,540,551.57	
405(1)c	Structural Concrete Class P 34M pa for PC Box		cu.m.	18,900.00	-	
412(1)a	Elastomeric Bearing Pad (500 x 400 x 60 mm)	126.00	ea.	14,500.00	1,827,000.00	
412(1)b	Elastomeric Bearing Pad (400 x 400 x 50 mm)	-	ea.	12,000.00	-	
413(1)	Expansion Joint	223.00	l.m.	29,418.63	6,560,354.49	
SPL 414	Concrete Barrier	-	l.m.	4,660.55		
SPL 414	Waterproofing	10,731.65	······	1,800.00	19,316,970.00	
511.415	j waterprovinig	10,751.05	sq.m.	1,000.00	17,310,770.00	
					020 522 050 45	
	SUB-TOTAL (PART F)				838,532,879.45	
G	DRAINAGE AND SLOPE PROTECTION STRUCTURES					
404(1)b	Reinforcing steel, Grade 40 (Box Culvert)	-	kg.	62.70	-	
405(1)b	Structural Concrete, Class A (Box Culvert) 27.6 Mpa	-	cu.m	8,480.81	_	
*****				างการการการการการการการการการการการการการก	0 417 770 22	
500(1)a	RCPC, Class II	2,730.87	l.m.	3,082.45	8,417,770.23	
500(1)b	RCPC, Class IV	8.00	l.m.	7,005.56	56,044.48	
502(2)a	Storm Deck Drain with Grating	98.00	ea.	19,679.57	1,928,597.86	
502(2)b	Curb Inlet Manhole	358.00	ea.	25,000.00	8,950,000.00	
502(3)	Catch Basins	-	ea.	35,000.00	-	
502(3)	Junction Box		ea.	5,000.00	_	
		1 246.05		1,153.20	1 552 264 96	
SPL 512	Collector Pipe	1,346.05	l.m.	1,135.20	1,552,264.86	
	SUB-TOTAL (PART G)				20,904,677.43	
Н	MISCELLANEOUS STRUCTURES			1		
	1		1			
600(1)	Concrete Curb	4,381.38	l.m.	1,333.21	5,841,299.63	
600(3)a	Concrete Curb and Gutter	3,511.57	l.m.	1,661.30	5,833,771.24	
600(3)b	Concrete Side Strip		sq.m.	350.00	-	
601(1)a	Concrete Sidewalk	5,050.15	sq.m.	1,560.60	7,881,264.09	
601(1)b	Concrete Median	15,118.47	sq.m.	1,560.60	23,593,884.28	
605(1)	Warning Sign	12.00	set	34,912.46	418,949.52	
605(2)	Regulatory Sign	26.00	set	34,912.46	907,723.96	
605(3)a	Informatory Sign, Gantry Support	4.00	set	905,733.18	3,622,932.72	
605(3)b	Informatory Sign, Butterfly Support	4.00	set	431,481.05	1,725,924.20	
605(3)c	Informatory Sign, Cantilever Support	9.00	set	388,956.44	3,500,607.96	
605(3)d	Informatory Sign, Double Post	11.00	set	42,944.99	472,394.89	
	Reflectorized Thermoplastic Pavement Markings, White	2,411.91	sq.m.	1,092.83	2,635,807.61	
				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
612(1)		·			56,434,560.10	
	SUR TOTAL (PART H)	}			30,434,500.10	
	SUB-TOTAL (PART H)			f		
612(1)						
	SUB-TOTAL (PART H) SPECIAL ITEM					
612(1)						
612(1)		283.00	set	86,228.98	24,402,801.34	
612(1) J SPL 1	SPECIAL ITEM 9m Pole, Single arm complete	283.00			24,402,801.34	
612(1) J SPL 1 SPL 2	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete	-	set	90,000.00	-	
612(1) J SPL 1 SPL 2 SPL 3	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway)	- 33.00	set set	90,000.00 59,290.99	- 1,956,602.67	
612(1) J SPL 1 SPL 2 SPL 3 SPL 4	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway) Flood lights	- 33.00 22.00	set set set	90,000.00 59,290.99 80,000.00	- 1,956,602.67 1,760,000.00	
612(1) J SPL 1 SPL 2 SPL 3	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway)	- 33.00	set set	90,000.00 59,290.99	- 1,956,602.67	
612(1) J SPL 1 SPL 2 SPL 3 SPL 4	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway) Flood lights	- 33.00 22.00	set set set	90,000.00 59,290.99 80,000.00	- 1,956,602.67 1,760,000.00	
612(1) J SPL 1 SPL 2 SPL 3 SPL 4	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway) Flood lights	- 33.00 22.00	set set set	90,000.00 59,290.99 80,000.00	- 1,956,602.67 1,760,000.00	
612(1) J SPL 1 SPL 2 SPL 3 SPL 4	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway) Flood lights Traffic Signal Light	- 33.00 22.00	set set set	90,000.00 59,290.99 80,000.00	- 1,956,602.67 1,760,000.00 4,000,000.00	
612(1) J SPL 1 SPL 2 SPL 3 SPL 4	SPECIAL ITEM 9m Pole, Single arm complete 9m Pole, Double arm complete Lighting system, (under carriageway) Flood lights Traffic Signal Light	- 33.00 22.00	set set set	90,000.00 59,290.99 80,000.00	- 1,956,602.67 1,760,000.00 4,000,000.00	

# 4.5 C-5/KALAYAAN AVENUE

#### 4.5.1 Review of Previous Detailed Design

The detailed design of the interchange was prepared by Nippon Engineering Consultant Co., Ltd. in association with DCCD Engineering Corporation and Pertconsult International in March 2003.

#### (1) Topographic Conditions

The project area has the following topographic conditions and features:

- 1) The alignment of C-5 (Circumferential Road 5) is almost horizontally straight and vertical grade generally rises continuously from the intersection on both directions.
- 2) The horizontal alignment of Kalayaan Avenue is a gentle right curve towards the intersection from Pateros and a gentle left curve towards EDSA from the intersection.
- 3) The vertical grade along Kalayaan Avenue rises continuously toward EDSA by 2~3%.
- 4) In view of (a), (b) and (c) above, rainfall water flows down to the Pateros direction along Kalayaan Avenue.
- 5) The highest difference of about 10m between road and ground elevation was observed on both sides of the road along C-5 toward south expressway immediately after the intersection.

There were no significant changes noted in the topographic conditions of the area between the time of the detailed design to the present, except for the U-Turn flyovers constructed on both sides of the interchange along C-5 and the on-going construction of another flyover from Bonifacio Global City to C-5 towards Pasig City.

#### (2) Geotechnical Conditions

The proposed area is located on the eastern edge in the center part of the Central Plateau, which is underlain by tuffs and tuffaceous sediments of the Pliocene-Pleistocene or the Holocene.

Tuffs (tuffaceous rock sequence) consist of siltstone and sandstone, belonging to the Guadalupe formation of the Pliocene-Pleistocene. Tuffaceous sediments overlying the tuffs consist of pyroclastic flow deposits and lahar deposits (tuffaceous reworked deposits) of the Pleistocene-Holocene. Pyroclastic flow deposits are mainly composed of silty gravel and gravel, and lahar deposits are mainly composed of silt and silty sand.

The lower tuffaceous rock sequence is stable bearing stratum for important structures such as bridges because N-value is over 50 and it corresponds to the soft rock. But the upper tuffaceous sediments are not stable bearing stratum for the important structures, because pyroclastic flow deposits are changing to laharic deposits which have N-value of less than 30 laterally. Therefore, the bearing stratum in this proposed area is tuffaceous rock sequence that underlie deeper than 1-3m from ground surface.

The depth of bearing and the assumed type of foundations at each borehole are shown in **Table 4.5-1**.

Borehole No.	Depth of Bearing Stratum	Type of Foundations			
<b>BH - 4</b>	3.00m				
BH - 5	1.30m				
BH - 6	1.40m				
BH - 7	1.30m				
BH - 8	1.50m				
BH - 9	1.30m	Spread footing			
BH -10	1.40m				
BH -11	1.50m				
BH -12	1.60m				
BH -13	1.40m				

 Table 4.5-1
 Depth of Bearing Stratum and Type of Foundations

Source: Detailed design done by KEI and associate local consultants. March 2003.

#### (3) Hydrological Conditions

There is a creek located 250m eastside from C-5–Kalayaan intersection. However, it is generally considered that this area is not flooded because elevations of the proposed area are about 5m higher than the ground elevations near the creek.

Therefore, there are no significant issues on the hydrological conditions in the proposed area. However, the design of the rain water tank and the pump up system must be prepared as these have not been covered in the existing detailed designs and these are necessary because the proposed designed of the interchange is an underpass type.

#### (4) Design Standards

Major design standards are as follows:

1) Highway Design

⇒	Design Speed	:	60km/h
⇔	Stopping/Passing Site Distance	:	85.0m / 410m
⇔	Minimum Radius Curvature	:	150.0m
⇔	Maximum/Minimum Vertical Grade	:	6.0% / 0.35%
⇔	Lane Width	:	3.25m
⇔	Cross Slope	:	2.0%
2) H	lydrology and Hydraulics		
⇒	Design Frequency Level		
•	Ditches	:	5 years
•	Pipe Culverts	:	10 years
•	Box Culverts	:	25 years

• Bridges	: 50 years or maximum observed flood, whichever is greater
3) Structural Design	
⇒ Material Properties	
Concretes	
<ul> <li>Concrete Deck Slab on PCDG</li> </ul>	: 35Mpa
> Substructure	: 28Mpa
> Retaining Wall/Slab	: 28Mpa
⇒ Design Load	
Dead Load	
<ul> <li>Concrete Plain or Reinforced</li> </ul>	: 24.0KN/m ³
> Steel or Cast Steel	: 77.0KN/m ³
<ul> <li>Compacted Sand and Earth</li> </ul>	: 19.0KN/m ³
• Live Load	
<ul> <li>Truck Load</li> </ul>	: AASHTO HS-20
> Uniform Load	: Lane Load 9.36KN/m ³
• Earth Pressure	
<ul> <li>Normal Time</li> </ul>	: Coulumb's Equation
> Earthquake Time	: Mononobe-Okabe
Seismic Lateral Load	
<ul> <li>Ground Acceleration</li> </ul>	: 0.4g
<ul> <li>Seismic Performance Category</li> </ul>	: D
⇒ Design Stresses	
Concrete	: 27.6Mpa (Substructure, Superstructure,
	Bored Pile and Bridge Railing)
Reinforced Bar	
> Grade 40	: 276.0Mpa
> Grade 60	: 414.0Mpa

#### (5) Road Alignment and Structural Conditions

A depressed structure is being proposed and designed along C-5. The road alignment and structural designs have the following conditions:

- 490m of depressed structure shall have a horizontal straight alignment with C-5, only 20m length provide 1,000m radius curve almost at the center of intersection.
- 2) 6.0% of vertical alignment was provided at both sides of the depressed section along C-5.
- 3) The standard section along C-5 has three lanes for each direction at the depressed section and

two lanes each for each direction at the ground section.

- 226m and 675m radius curves were provided at before and after intersection along Kalayaan Avenue towards EDSA.
- 5) 2.14% and 3.19% rise in vertical grade were provided at before and after the intersection along Kalayaan Avenue towards EDSA.
- 6) The standard section along Kalayaan Avenue has three lanes for each direction.
- 7) A reverse T-type RC retaining wall with a maximum height of 10.86m was designed at the depressed section along C-5.
- 8) 24.5m long AASHTO type-IV PCDGs were placed over the reverse T-type RC retaining walls at the intersection.

# (6) Environmental and Social Conditions

The ECC for the C-5/Lanuza St.-Julia Vargas St. and C-5/Kalayaan Ave. Interchanges Project had been issued from DENR-EMB in December 2001. The conditions imposed on the issued ECC by the DENR-EMB did not include any specific requirements. Although the ECC was thought to be applied with the EIS, the JICA Study Team could not obtain the EIS and RAP documents to be reviewed.

1) Environmental conditions

Environmental conditions including the socio-economic environment will be reviewed when the EIS is obtained.

2) Social conditions

The PAPs and socio-economic conditions of project affected areas will be reviewed when the RAP report is prepared.

# (7) Identified Problems and Recommendations

# **Identified Problems**

- No problems were identified in the detailed design. However, the U-Turn Flyovers constructed at both sides of the intersection along C-5 are considered to be substandard structures under the prevailing design code.
- 2) Traffic conditions should be observed after completion of the on-going construction of the flyover from Bonifacio Global City towards Pasig City which will merge before the southern side of U-Turn Flyover.

### **Recommendations**

After completion of the flyover under construction, a more comprehensive study of actual traffic at the intersection shall be necessary to ensure that its smooth flow is maintained in accordance with the appropriate technical and economic parameters.

### 4.5.2 Advice on Technical Issue and Design Option

### (1) C-5 Improvement Plan of DPWH

DPWH intends to hire a local consultant to undertake the "Feasibility Study on the Completion of Metro Manila Circumferential Road 5 (C-5) and Other Priority Road/Interchange Projects (PRIP) and Traffic Mitigation Measure Cum Environmental, Social and Gender Aspects (C-5&PRIP)". The major long term goal of this study is to decongest and resolve the traffic problems along the entire section of C-5. Objectives of this study regarding C-5 are as follows;

- To enhance economic efficiency of C-5 road and pursue its completion to support the rapidly expanding population and urbanization of the metropolis and guide sound urbanization development of the Metro Manila outskirts.
- 2) To enhance international competitiveness of the country and export industries via improving, faster and reliable passenger and freight movement through this vital Metro Manila corridor.
- 3) To provide measures for easing traffic congestion of Metro Manila.

The proposed scope of work for C-5 are summarized in **Table 4.5-2~4.5-4** below and the project location map along C-5 road is shown in **Figure 4.5-1**.

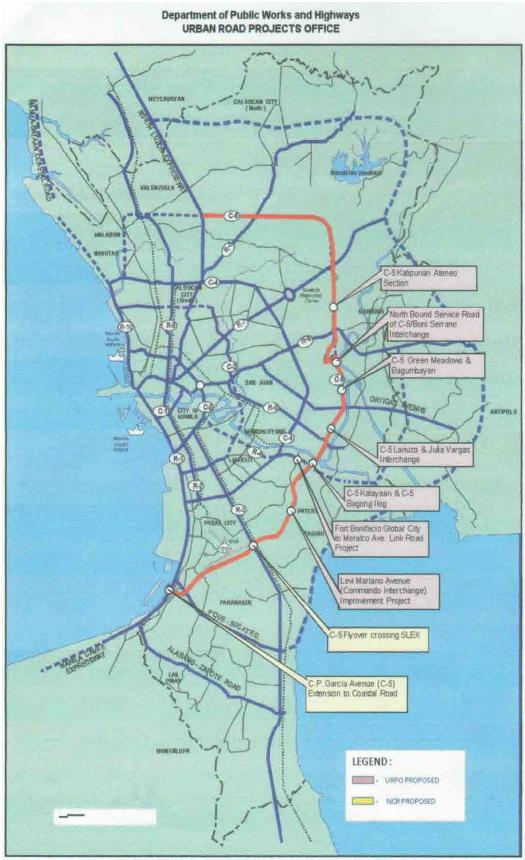
Name of Project	Existing Condition	Current Proposal (Indicative Improvement)	Length
A-1: Construction of	- No connector across SLEX	Flyover crossing SLEX (switch	4.42 m
Flyover/Interchange at		alignment with left turn ramp towards	6.15 km.
C-5/SLEX		SLEX at grade North Bound or without	
		switch alignment to reduce ROW	
A-2: Completion at	Incomplete portion due to	Complete the section	7.035 km
SLEX-Sucat Section	RROW problem		
A-3 Flyover at C-5	At-grade 4-legged intersection	2 nd Level Flyover Structure to bypass	
Multinational Avenue		Multinational Avenue	
A-4: C-5 Existing – R1	Missing link from Quirino	To connect C-5 from Quirino Avenue to	
Coastal Expressway	Avenue/C-5 to Coastal Road	R-1 Coastal Expressway with Flyover	
Connector		structure at Quirino and Interchange	
		ramp at R-1	
A-5: C-5 Multinational-R1	New link with ROW affected	Alternative alignment to connect with	1.52 km and
Coastal Expressway	areas	C-5 at R-1 Expressway	2.10 km
Connector via San			
Dionisio or Pacific			
Avenue			
A-6: C-5- NAIA 1 & 2	Along Multinational and Ninoy	Upgrading and provision of viaduct	
Connectors	Aquino Avenues	connecting C-5 Multinational towards	
		NAIA Terminals 1 & 2	

 Table 4.5-2
 C-5 Segment A: From C-5 SLEX-R1 Coastal Expressway and NAIA Connectors

Source: DPWH, PMO-URPO

### Table 4.5-3 C-5 Segment B: From SLEX to C.P. Garcia Avenue

Name of Project	Existing Condition	Current Proposal (Indicative Improvement)	Length
B-1: Levi Mariano Avenue	3 lanes each direction of C-5 &	Widening of Service Road from 2 to 3	400m EDSA
(Commando	2-lane each direction service road	lanes both directions, two lanes left	& West
Interchange)	North Bound and South Bound.	turning fly-over from Mariano Avenue	Service Rd.
Improvement Project			500 m left
			Turning
			Fly-over
B-2: C-5 Kalayaan and C-5	Two lanes each direction of	Close north bound down ramp and widen	700m
Bagong Ilog Flyover	fly-over from Danny Floro st.	flyover up to Pasig Boulevard Ext. and	
	(formerly Canley St.) up to the	transfer the down ramp.	
	approach of Pasig bridge		
	Three lanes each direction	One lane widening of the bridge south	500m
	crossing Pasig river from West	bound	
	Rembo, Makati City to Bagong		
	Ilog in Pasig City		
B-2a; Fort Bonifacio Global	Existing three lanes each	Construct viaduct/bridge 2 lanes each	2,500m
City to Meraclo Avenue	direction, at Ft. Bonifacio up to	direction crossing Pasig river up to near	
Link Road project	Kalayaan avenue, two lanes each	Meralco Avenue Intersection with	
	direction from kalayaan up to	JuliaVargas Avenue	
	Guadalupe Pateros Road, two		
	lanes at Sta Monica St. Intl. and		
	two lanes in each direction at		


	West Capitol Drive and three lanes sub-standard width at Meralco Avenue up to near		
B-3: C-5 Lanuza to connect	intersection at ULTRA.	Construct four lanes to connect Ortigas	3,000m
to Mercedez Avenue		Center via lanuza at C-5 towards	2,00011
		Mercedes Avenue	
B-4 North Bound Service	2 lanes north bound service road	Widening form 2 to 3 lane Service Road	300m
Road of C-5/Boni	at E. Rodriguez Avenue		
Serrano Interchange	approaches		
B-4: C-5 Katipunan, Ateneo	At grade intersection with three	1. Construct additional one lane at	1000 m
section up to C. P. Garcia Ave	u-turns provision at the gates of Ateneo, Miriam College and	Ateno/Mirriam property with	
Galcia Ave	other subdivision entrances	geometric improvement at entrances street of the subdivision abutting	
	other subdivision entrances	Katipunan Ave.	
		2. Construct viaduct two lanes each	
			1500 m
		direction near the approach of the	1500 m
		existing fly-over at Katipunan and	
		ends after C.P. Garcia Ave.	

Source: DPWH, PMO-URPO

Table 4.5-4 C-5 Segment C. From C.1. Garcia Avenue (C-5) to Windanao Avenue					
Name of Project	Existing Condition	Current Proposal (Indicative Improvement)	Length		
C-1: Congressional Avenue and Visayas Avenue Intersection	Signalized intersection	To explore further improvement as the intersection is potential choke point			
C-2: Congressional Avenue and Mindanao Avenue Intersection	Signalized intersection	To explore further improvement as the intersection is a potential choke point			
C-3: Mindanao Avenue and Tandang Sora Avenue Intersection	U-turn Provision	To explore further improvement as the intersection is a potential choke point			
C-4 Quirino Avenue and Mindanao Avenue Intersection	Currently With ROW constraints	To explore further improvement as the intersection is a potential choke point			
C-5: Commonwealth/ Luzon avenue to Republic Avenue	Two level road with Development & Individual Settler	To provide 6 lane road			
C-6: Republic/Luzon Avenue to Mindanao/NLEX Connector	With several Development & Informal Settler	To provide 6 lane road			


#### Table 4.5-4 C-5 Segment C : From C.P. Garcia Avenue (C-5) to Mindanao Avenue

Source: DPWH, PMO-URPO



PROPOSED IMPROVEMENT CIRCUMFERENTIAL ROAD 5 (C-5)

Source: DPWH, PMO-URPO



These proposed projects are generally categorized into the following three (3) schemes:

- 1) Construction of missing link sections
- 2) Construction of flyovers
- 3) Widening of approach section of existing flyover

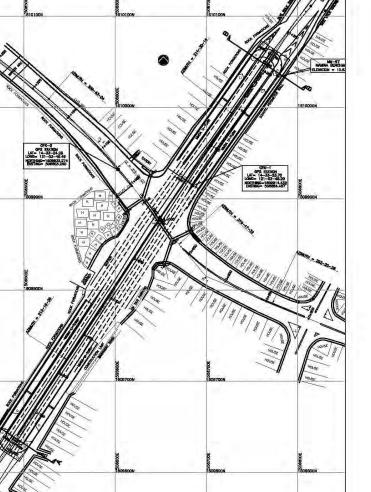
In view of the above, the C-5 improvement projects will not be affected on the proposed flyover projects.

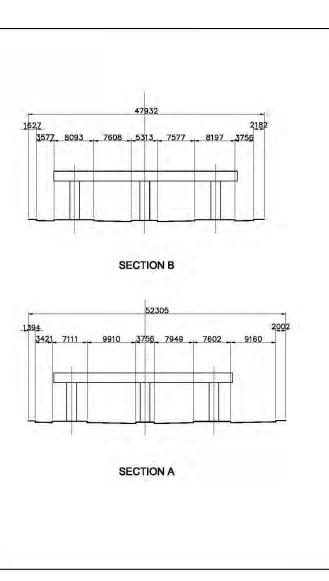
### (2) Site Condition and Traffic survey

Two (2) issues were found during the site investigation and detailed topographic surveys which may cause of bottle neck of C-5 thru traffic at the intersection.

1) Carriageway width of C-5 thru traffic in substandard is as follows:

Survey dimension at the transverse section of U-turn flyover


- South side U-turn flyover section
   Southbound: total width = 9.910m/3-lanes = 3.303m/lane < 3.35m</li>
   Northbound: total width = 7.949m/3-lanes = 2.605m/lane < 3.35m</li>
- North side U-turn flyover section
   Southbound: total width = 7.608m/3-lane = 2.536m/lane < 3.35m</li>
   Northbound: total width = 7.577m/3-lane = 2.525m/lane < 3.35m</li>
   Note: 3.35m is standard carriageway width of national road
- Subtle curve alignments along C-5 thru traffic for both directions were observed around the U-turn flyover.


The Aforementioned survey result is shown in **Figure 4.5-2**.

Traffic survey was conducted after opening of the new flyover from global city to north bound of C-5 road last March 6, 2012. The traffic survey data showed that passing vehicles along the U-turn flyover at south side and north side are about 25,132 vehicles per day and 18,600 vehicles per day, respectively. Summarized and actual traffic intersection flow graphics are presented in **Figures 4.5-3** and **4.5-4**, **Figure 4.5-5** shows the present traffic flow identifying that five (5) are conflicted.

# (3) Technical study to maintain existing U-turn flyover

In maintaining the existing U-turn flyover and from traffic data aforementioned, the summary of available options and findings for improving future traffic flows and capacities are shown in **Table 4.5-5** 

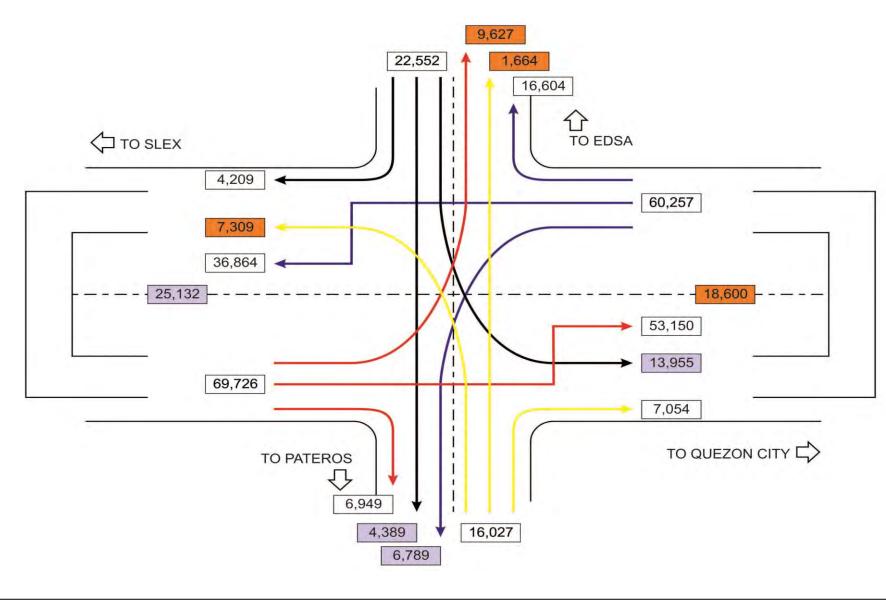
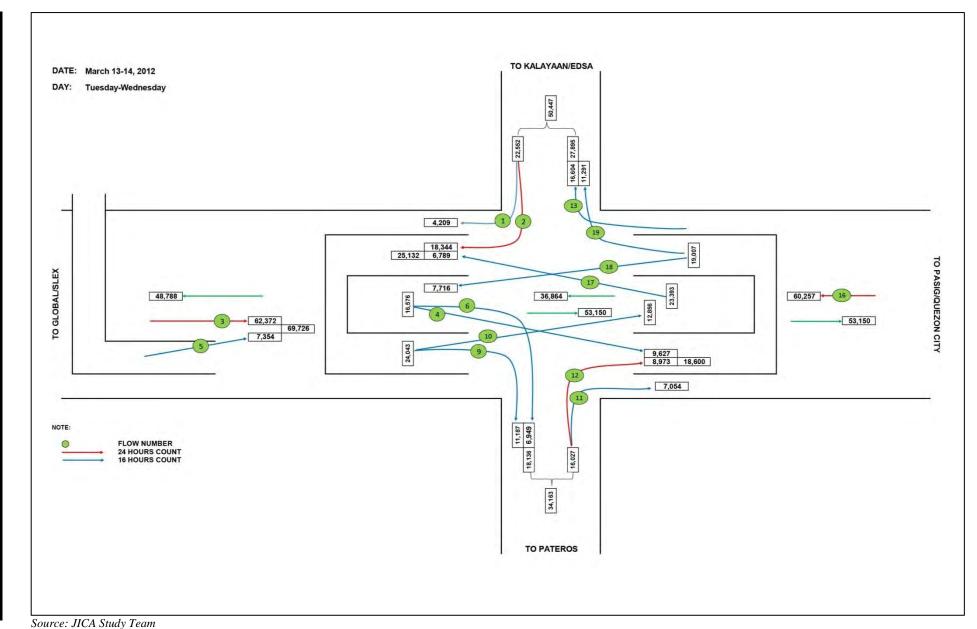


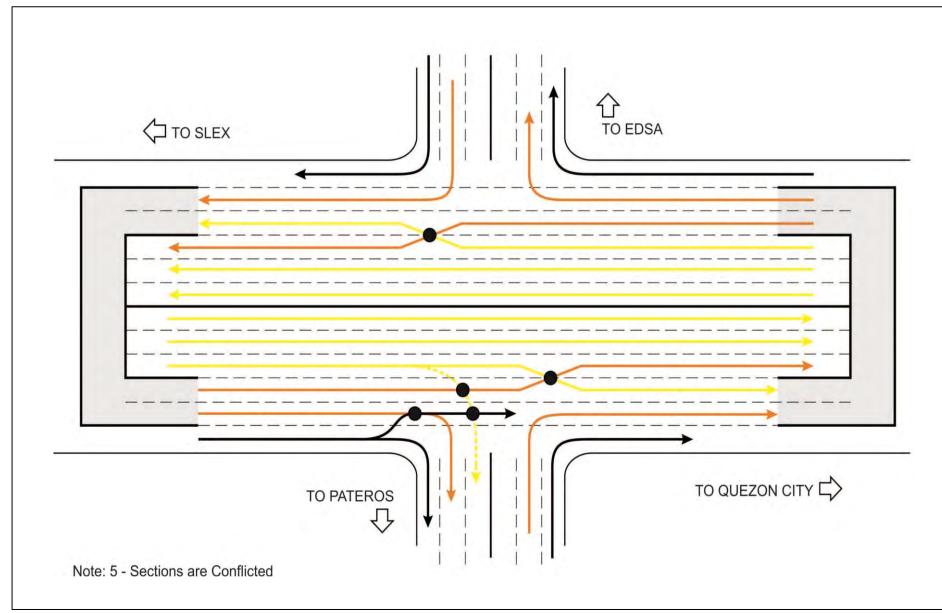


Source: JICA Study Team







Figure 4.5-3 Summarized Intersection Flow Graphic Summary (AADT)



Preparatory Survey

for Metro Manila Interchange Construction Project (VI)

Figure 4.5-4 Intersection Flow Graphic Summary (AADT) Vehicle Type: All Types C5/Kalayaan



Preparatory Survey for Metro Manila Interchange Construction Project (VI)

Figure 4.5-5 Present Traffic Flow

4-141

	Option	AADT	Findings	Reduced Conflict No. (Present conflict is 5)
1	Construct left turn flyover from Kalayaan Avenue to C5 north bound	13,955	Require ROW acquisition but Tibagan elementary is located along C5 north bound.	-2
2	Construct left turn flyover from Pateros to C5 north bound	7, 309	Comparatively traffic volume is small and requires ROW acquisition	-1
3	Construct straight flyover along Kalayaan Ave	6,053	Traffic volume is small	-1
4	Construct left turn flyover from C5 south bound to Pateros	6,789	Not enough transition length	-1
5	Construct left turn flyover from C5 north bound to EDSA	9,627	Not enough transition length	0

 Table 4.5-5
 Proposed Options and Findings

The alignments of the above (5) options are shown in **Figure 4.5-6** and improvement in traffic flow by option are presented in **Figure 4.5-7**.

In summary, the most effective option is to construct a left turn flyover from Kalayaan Avenue to C-5 north direction. However, it should be noted that Tibagan elementary school is located just beside the road along C-5 north direction. Improvement of future traffic flow and capacity for this intersection while maintain existing U-turn flyover will have only two (2) possible options: option 2 and 3 of the above summary. It should further be noted that both options will not be effective due to small traffic volume and improvement traffic flow is small or will only be minimal.

# (4) Technical study with demolition of existing U-turn flyover

The number of traffic lanes along C-5 can be provided six (6) lanes each per direction after demolition of the U-turn flyovers on both sides of the intersection.

New intersection plans provide three (3) lanes in each direction along C-5 thru traffic. Based on traffic volume and traffic flow at the intersection, the following four (4) schemes can be considered as new intersection plans after construction of a six lane (6) underpass structure for thru traffic along C-5 road;

- Scheme-1 : No provision of any structures for grade separation
- Scheme-2 : 2- Left turn flyover from Kalayaan Ave. to C-5 in both directions.
- Scheme-3 : Straight flyover along Kalayaan Ave.
- Scheme-4 : 2- Left turn flyover from both directions of C-5 to Kalayaan Ave

Comparative evaluation of the above four (4) schemes is shown in **Table 4.5-6** and proposed alignments are shown in **Figures 4.5-8** ~ **11**.

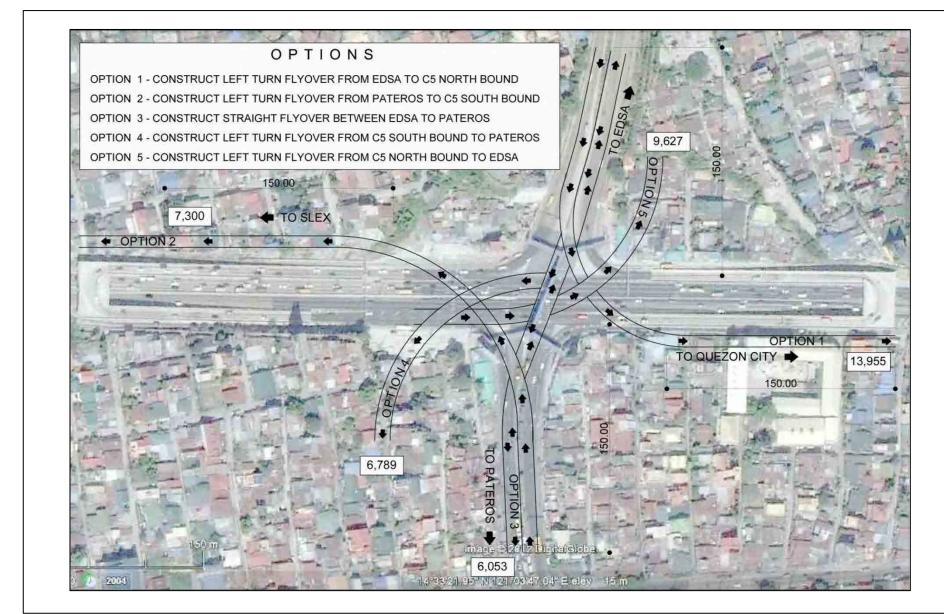
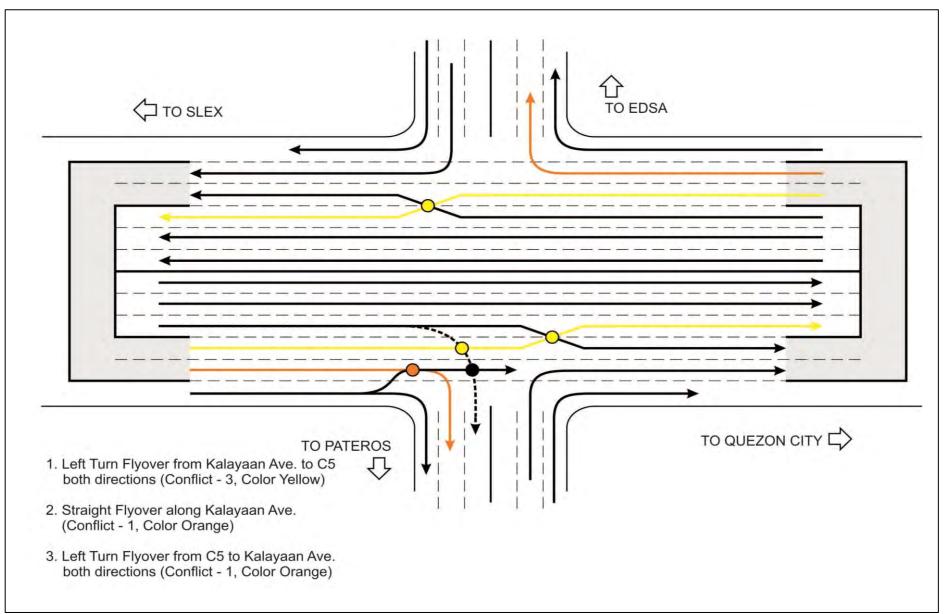
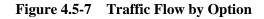
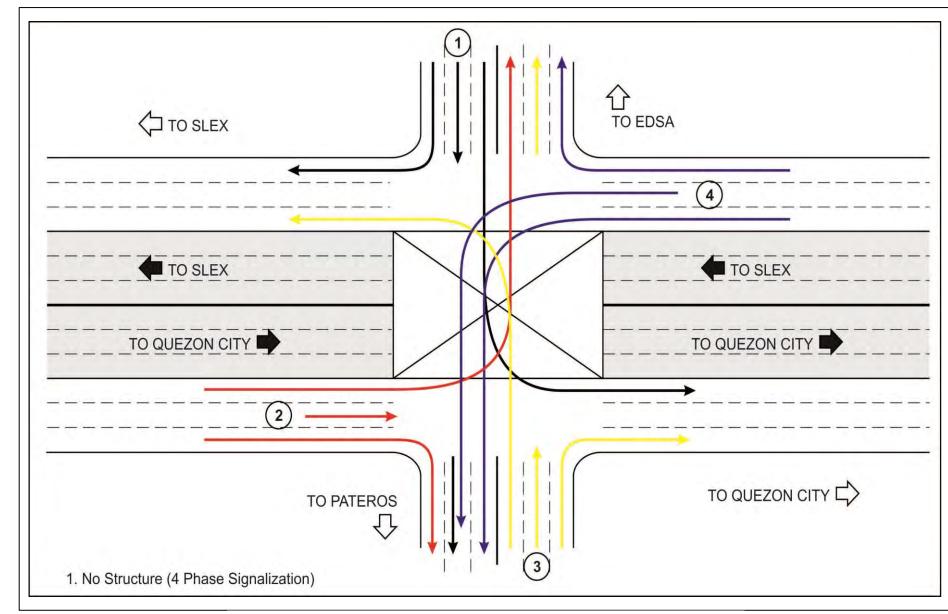





Figure 4.5-6 Alignment of Five Options






Description	Signal Phase	Traffic Reduction Ratio	Length and Cost of Flyover (m)	Overall Evaluation/Ranking			
Scheme-1 No structure for grade separation	4-Phase	$\frac{0}{43.733} = 0\%$	Om MP0	<ul> <li>* Manage 4-phases signalization</li> <li>* No cost, no improvement</li> </ul>	4		
Scheme-2 2-lanes Left turn flyover from Kalayaan Ave. to C5 both direction	3-Phase	$\frac{21.264}{43.733} = 48.6\%$	370m x 2 = 740m MP 444	* Most effective plan due to almost 50% of traffic is free flow	1		
<b>Scheme-3</b> 2-lanes Straight flyover along Kalayaan Ave.	n 3-Phase	$\frac{6.053}{43.733} = 13.8\%$	360m MP 216	* Requires budget is reasonable but effeteness to the traffic flow is small	3		
Scheme-4 2-lanes Left turn flyover from C5 both direction to Kalayaan Ave.	3-Phase	$\frac{16.416}{43.733} = 37.5\%$	370m x 2 =740 m MP 444	* 2nd effective plan due to almost 40% of traffic is free flow	2		

# Table 4.5-6 Scheme Comparison without U-turn Flyover

Note: 1) Traffic rate : Ratio of number of traffic vehicle pass the flyover against total volume of traffic at intersection except along C5 thru traffic and right turn traffic (total volume of traffic for calculation is 43.733 vehicles)

2) Number of lane for all flyover is 2-lane

3) Cost of flyover : P 300,00/m/lane



Source: JICA Study Team

Figure 4.5-8 Alignment of Scheme-1 without U-Turn Flyover

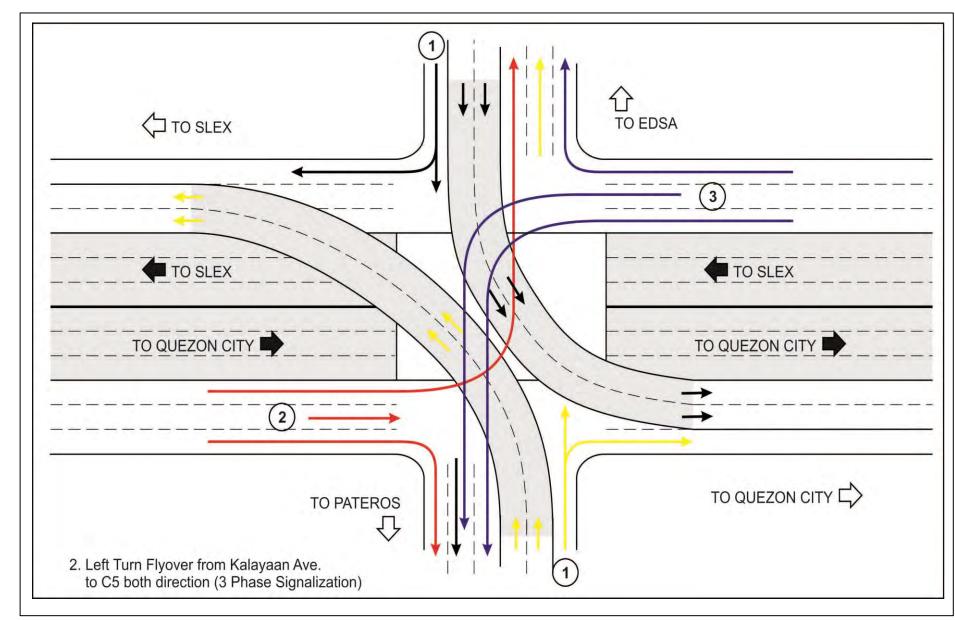
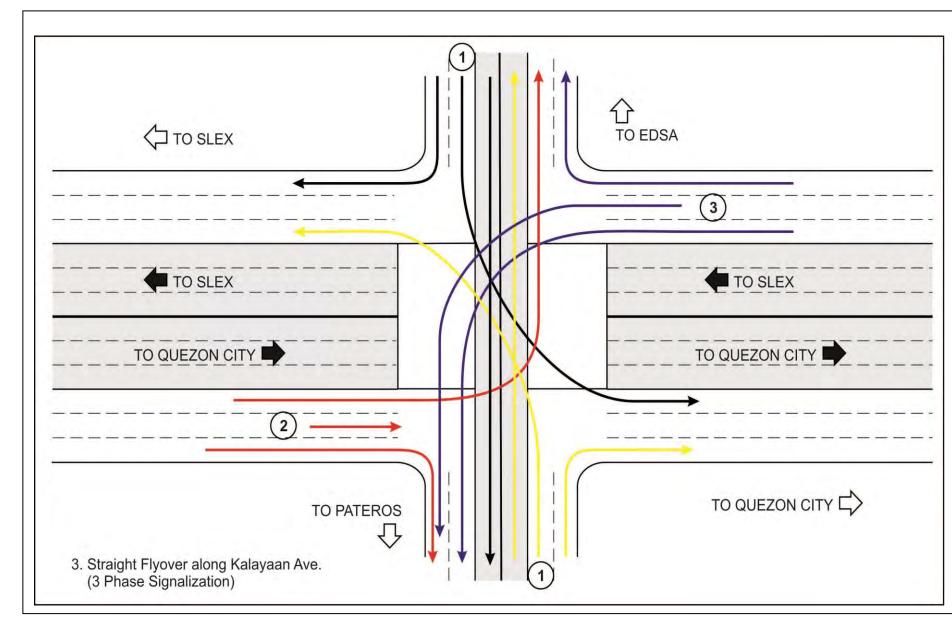




Figure 4.5-9 Alignment of Scheme-2 without U-Turn Flyover



Source: JICA Study Team

Figure 4.5-10 Alignment of Scheme-2 without U-Turn Flyover

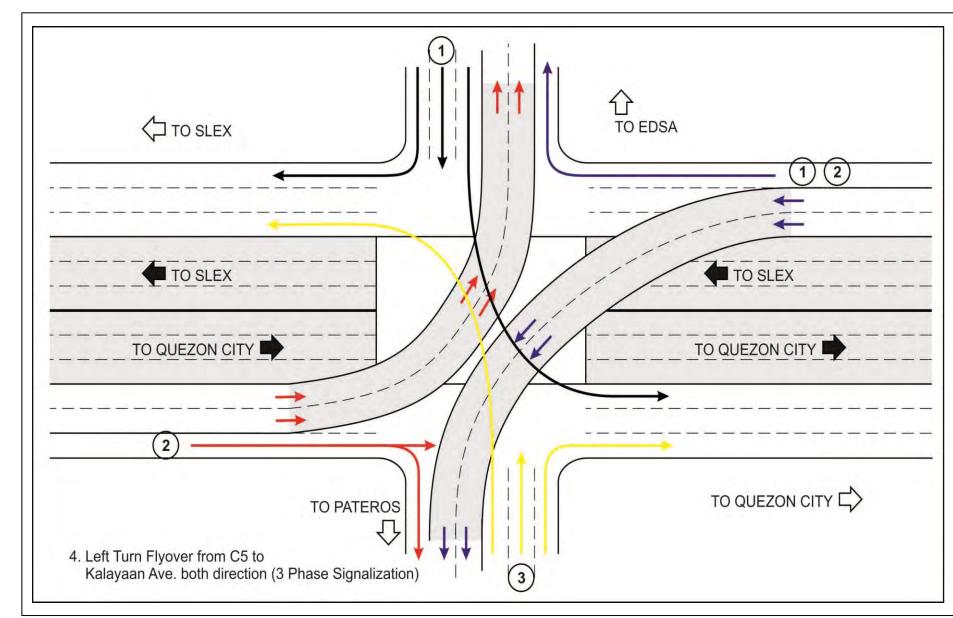



Figure 4.5-11 Alignment of Scheme-4 without U-Turn Flyover

4-149

Preparatory Survey for Metro Manila Interchange Construction Project (VI)

## (5) Overall evaluation

#### With existing U-turn flyover

- Existing substandard carriageway widths and subtle curve alignments are the cause of unsmooth traffic around both sides of the U-turn flyover and that will become bottleneck of C-5 thru traffic and problems with these defects have no remedial measures without demolishing the existing U-turn flyover.
- The most optimum option among the proposed improvement schemes is the construction of a left turn flyover from Kalayaan Ave to C-5 both directions. However, it should be noted that a ROW problem exists (i.e. Tibagan elementary school is located at just beside of C-5 northbound)
- Options 2 and 3 are possible options but will not be effective due to small traffic volume.

## Without existing U-turn flyover

- Construct 3-lanes in each direction with underpass along C-5
- Construct flyover from kalayaan Ave. to C-5 both directions will be the most effective scheme considering that almost 50% of current traffic will become free flow

• Cost requirements are estimated as follows:			
Construction of 2-lanes Flyover (total leng	th 740m) $=$	MP	444
Construction of 6-lanes Underpass structur	e =	MP	520
Demolition of existing U-turn flyover	=	MP	64
Total	=	MP 1	1,028

## (6) Recommendation

•

## With U-turn flyover

• To resolve the ROW problem (Tibagan elementary school) necessary for the improvement of the intersection with the present condition of U-turn flyover.

## Without U-turn flyover

• To construct a 6-lane underpass for thru traffic and 2-lanes left turn flyover from Kalayaan Ave. to C-5 both directions. The traffic flow system to dissolve problems of traffic flow conflict, unsmooth thru traffic alignments and substandard carriageway width.

## **Total Recommendation**

• Implementation of the above without a U-turn flyover is recommended because the study shows that there is no ultimate solution that could fully address the expected yearly increase traffic without demolition of the existing U-turn flyover.

# 4.6 C-5-GREEN MEADOWS AVENUE

## 4.6.1 Review of Previous Detailed Design

The detailed design of the project was prepared by the Japan Overseas Consultants Co., Ltd. in association with TCGI Engineers in October 2004.

# (1) Topographic Conditions

The project area has the following topographic conditions and characteristics:

- The horizontal alignment of this proposed flyover section has a left curve from Ortigas Avenue toward Quezon City, which starts before Industrial Street up to the portion immediately before Eastwood Avenue.
- 2) The highest elevation of about 24.0m and the lowest, which is about 18.5m, are located within the construction limits at Green Meadows Avenue intersection and White Plains Creek, respectively, and average vertical grade of these sections is 0.86%. The average vertical grades before the highest point and after lowest point are 1.8% and 0.2%, respectively.
- 3) C-5 has four lanes on each direction.
- 4) The White Plains Creek, about 12m wide and 4m high, crosses C-5 between Industrial Avenue and Eastwood Avenue.
- 5) Four access roads, namely Green Meadows Avenue, Calle Industria, Eastwood Avenue and Poseidon Street, are located within the construction limits.
- 6) Subdivisions and small commercial shops line on the left side of C-5 towards Quezon City while the right side is lined with big commercial establishments and industrial developments.

# (2) Geotechnical Conditions

The proposed area is located on the eastern edge of the center part of the Central Plateau, which is underlain by "tuffs and tuffaceous sediments" of the Pliocene–Pleistocene or the Holocene. In the section from Green Meadows to Calle Industria, the subsoil is distributed until the depth of 0.7-1.0m below ground surface. For the White Plains Creek to end section, the subsoil (CL/CH sandy, ML sandy silt, and SM silty sand) is distributed until the depth of 12.0m below ground surface. The range of SPT (Standard Penetration Test) of the subsoil varies from 5 to 69. Also, SPT was not carried out in tuffs, but N-value of tuffs is estimated over 100. (As previous detailed design does not have geotechnical data available, above data were obtained by the JICA study team).

# (3) Hydrological Conditions

There is a creek (White Plains creek) which crosses the road (C-5) at 500m Katipunan side from C-5–Green Meadows intersection. The creek consists of both of the high and low water channels.

The high water channel width is about 12m with 4m, depth, and the low water channel width is about 4m, with 2m depth.

The White Plains Creek is located in the basin of the Marikina River. It joins to the Marikina River after flowing down about 600m from the crossing point with the road. However, it is believed that no flooding will be experienced in the proposed area because an elevation of the crossing point with the road is about 5m higher than that of the confluence with Marikina River.

Therefore, there is no specific issue on the hydrological conditions in the proposed area, except if the interchange is constructed as an underpass type. There was also no information on the hydrological conditions in the feasibility study.

# (4) Design Standards

The detailed design did not have a section that particularly discusses the design standards. The following information were gathered from various parts of the design plans:

# 1) Highway Design

$\checkmark$	Lane Width	:	3.25m
$\checkmark$	Maximum Vertical Grade	:	Tunnel = $4.53\%$
$\checkmark$	Standard Super elevation	:	1.5%
$\checkmark$	Vertical Clearance of Tunnel	:	5.0m
$\checkmark$	Minimum Earth Covering of Tunnel	:	2.0m

2) Hydrology and Hydraulics

No information available.

3) Structural Design

No information available.

# (5) Road Alignment and Structural Conditions

The 925m long tunnel will start before Green Meadows Avenue intersection and terminate after Eastwood Avenue intersection from Ortigas Avenue. The tunnel has four lanes, two-directional,  $(3.5m \times 2 \times 2)$  and with 5.0m vertical clearance while the tunnel top has a 2.0m earth covering. The vertical grades be at 2.0% in average and 4.5% at the tunnel exit. The tunnel's first approach is 152m while the second approach is 203m passing through under the existing creek. A 350m radius curve alignment is located almost at the center of the tunnel. About 12m height of Sump pit for drain water pump up system is provided at the lowest point of the tunnel and also ventilation fans are provided at four locations in each direction.

Tunnel structures were designed as concrete retaining wall with ground anchor.

# (6) Environmental and Social Conditions

The detailed design did not cover the environmental aspect of the project. According to the feasibility study report, the following environmental and social issues were addressed.

1) Environmental conditions

Scheme I – Cut and Cover Tunnel is recommended because this would have the least air and noise pollution effects among the alternatives. Aesthetic view of the area would also be preserved.

2) Social conditions

The existing road ROW from sidewalk to sidewalk is 36.0 m and would be enough to accommodate proposed level of improvement. Therefore, no additional property acquisition is needed.

# (7) Identified Problems and Recommendations

## **Identified Problems**

- 1) The detailed design was done and signed only by the consultant. (There was no signature of the plans from DPWH as per DO#50 series 2002).
- 2) Proper widening was not provided at the curve section.
- 3) The tip of the ground anchors were in private lots.
- 4) About 13m height of sump pit was located under the carriageway and sidewalk which would be hard to arrange for traffic management during construction.
- 5) No study on the complicated construction procedure of tunnel underneath the existing creek and construction of sump pit under the carriageway and sidewalk.

## **Recommendations**

The problems identified above should be carefully and thoroughly studied.

# 4.6.2 Preliminary Design of Interchange

## (1) Study of White Plains Creek

There is a creek (White Plains Creek) which crosses the road (C-5) at 500m Katipunan side from C-5/Green Meadows intersection. If the interchange is constructed as underpass, the creek may be moved below the underpass by inverted siphon. However, the proposed inverted siphon cannot be adopted for the following reasons:

1) Rise in water level at upstream side

The calculation result of the loss of head of inverted siphon is 1.3 m. Therefore, at the time of freshet, the water level will rise to 1.3m higher than the present condition at the upstream side of the road and will cause flooding.

2) Blockage due to garbage

It is expected that much garbage will flow at the time of freshet because the creek is flowing through a residential area. Therefore, frequent cleaning of the screen of inverted siphon will be needed.

Moreover, the water level mentioned above was calculated assuming that drainage is not clogged with garbage. Then, its level should be raised further in case that drainage is clogged with garbage.

Therefore, "Underpass passing under the creek" or "Flyover passing over the creek" can both be proposed as alternatives. The following considerations for the construction of both alternatives should be taken into account:

	When a structure crosses under the creek, in order to prevent the influence by scouring of a
Underpass passing	stream bed, a distance between a structure and the creek is required more than 2.0m generally.
under the creek	However, the stream bed of White Plains Creek will not be scoured because it is protected by
	concrete. Thus, the distance is just required for the construction of the structure.
	The arrangement of piers shall be decided so that it will not affect the future improvement of
Flyover passing	the river.
over the creek	The structure shall be planned so that it will not obstruct the surface flow because it traverses
	the road (C-5) at the time of freshet.

## (2) Comparative Study

Based on review of detailed design, updated site and traffic conditions, comparative study was undertaken considering with following basic conditions ;

- Local traffic due to four intersections are located within the proposed construction limit.
- About 100m long 4% of existing steep vertical grade which located at before Green Meadows intersection from Ortigas Ave.
- White Plains creek which located at near Calle Industria intersection.

- The number of lane is 2-lanes for each direction and total 4 lanes in both directions are combined.
- Type of superstructure should be designed as voided slab type to provide aesthetic view of the flyover.

The following three (3) alternatives are proposed as the most suitable for comparison based on the above conditions:

- Scheme-1 : 1098m long flyover and with PC and RC voided slab superstructure
- Scheme-2 : 808m long cut and cover tunnel
- Scheme-3 : 432m long flyover and 80m long cut and cover tunnel

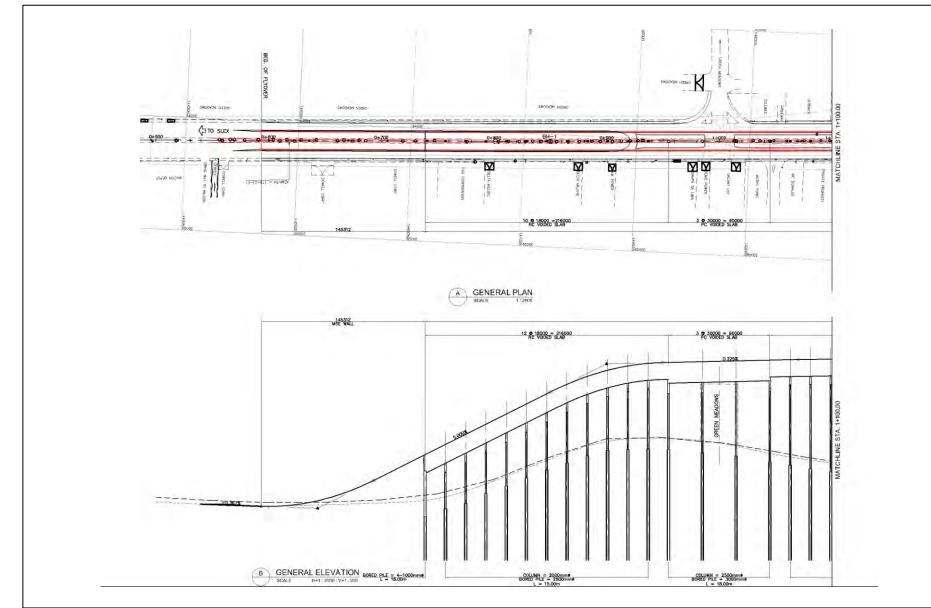
Among the three (3) schemes, scheme-1 was selected due to the following reasons:

- Construction cost is cheaper than schemes
- No ROW acquisition
- Construction is much easier than the other schemes
- Provide four (4) lanes per each direction at-grade along the total stretch underneath the viaduct
- Does not requires specific O&M compared to the other two (2) schemes

The detailed scheme comparison is presented in **Table 4.6-1** and the Plan and Profile for each of the Schemes are shown in **Figures 4.6-1** ~ **9**.

# Table 4.6-1 Scheme Comparison Table of C-5 / Green Meadows / Acropolis / Calle Industria Interchange

Schemes	SCHEME -1 FLYOVER		SCHEME - 2 CUT AND COVER TUNNEL		SCHEME - 3 FLYOVER AND CUT & COVER TUNNEL	
Structure Schemes	4-Lane Flyover : L= 1098m PC Voided Slab : 6@30m=180.0m RC Voided Slab : 51@18m=918.0m Approach Road : 276.4m		4-Lane Tunnel : 807.7m Approach Road : 513.3m		4-Lane Flyover 3@30m+17@18m=432.0m PC Voided Slab : 3@30.0m=90.0m, RC Voided Slab 19@18.0 m=342.0 m 4-Lane Tunnel : 80m + Under Pass Section 559.4m Approach Road : 219.6m	
Construction Cost	Flyover         MP 1.010.2         (P920,000/m)           Approach         MP 33.2         (P120,000/m)           Others         MP 43.3         Total         MP 1097.7         (100.0%)	0	Tunnel         MP 2,456.3         (included approach section)           Ventilation System         MP 60.0         (4 Nos.)           Sump Pit         MP 40.0         (H = 16m)           R.O.W.         MP 20.0         (20m x 20m x P50,000/m ² )           Total         MP 2,576.3         (234.7%)	Δ	Flyover         MP 397.4         (P920,000/m)           Tunnel         MP 706.4         (included under pass section)           Approach         MP 35.1         (P160,000/m)           Sump Pit         MP 30.0         (H=12m)           ROW         MP 20.0         (20 m x 20 m x P50,000/m ² )           Others         MP 47.0           Total         MP 1,235.9	0
Construction Performance and Duration	<ul> <li>24 months</li> <li>No impact on existing creek</li> <li>Construction method and procedure is standard</li> <li>Provide 2-Lanes per each direction during construction</li> </ul>	0	<ul> <li>38 months</li> <li>Requires several construction sequences to maintain creek water flow.</li> <li>Requires to find dumping place for 199.000 m³ of excavated soil</li> <li>Require special method and procedure for construction of sump pit and cross pipe about 12 m deep under ground</li> <li>Provide 1.5 hane per each direction only during construction</li> </ul>	۵	<ul> <li>24 months (Tunnel &amp; Flyover Construction Simultaneously)</li> <li>No impact on existing creek</li> <li>Requires 2-kind equipments and material for tunnel and flyover construction</li> <li>Requires to find dumping place for 62.000m³ of excavated soil</li> <li>Require special construction method and procedure for construction of sump pit and cross pipe about 10 m deep under ground</li> <li>Provide 1.5 lane per each direction only during construction</li> </ul>	С
Environmental and Social Conditions	<ul> <li>No ROW acquisition</li> <li>Traffic noise is severe than scheme 3 but not concentrated.</li> </ul>	0	<ul> <li>Aesthetic view of area will be preserved</li> <li>Requires about 400 m² ROW acquisition for sump pit</li> <li>Greater impact on traffic with longer construction duration</li> <li>Noise and exhaust fumes are concentrated at both entrances</li> </ul>	Δ	<ul> <li>Requires about 400 m² ROW acquisition for sump pit location</li> <li>Higher volume of exhaust fumes due to longer and steep slope section</li> <li>Less traffic noise than Scheme-1 but concetrated at both sides of entrances</li> </ul>	۵
Traffic Condition	<ul> <li>Provide 4-lanes per each direction at grade along entire section of under the viaduct</li> <li>Easiest traffic management during construction</li> </ul>	0	<ul> <li>Provide 4-lanes per each direction at grade along entire section of tunnel</li> <li>Difficult traffic management during construction</li> </ul>	0	<ul> <li>Provide only 2-lanes per each direction at grade tunnel section</li> <li>Not advisable for steep slope (4.0%) with 400m long vertical alignment</li> <li>Very dangerous at the point of change vertical grade between depressed and elevated</li> </ul>	
O & M	• No specific O & M required	0	<ul> <li>Requires daily monitoring and maintenance for tunnel facilities such as ventilation, water supply, water pump system, fire detection, traffic safety, etc.</li> </ul>	Δ	<ul> <li>Requires periodic monitoring and maintenance of water pump up system and illumination</li> </ul>	C
Over all Evaluation	<ul> <li>Cheapest among the schemes</li> <li>No R.O.W. Acquisition</li> <li>Construction is much easier than other 2-schemes</li> <li>Not require specific O &amp; M compared to other two schemes</li> <li>Provide 4-lanes at-grade per each direction at grade</li> </ul>		<ul> <li>Most expensive</li> <li>Longest Construction duration</li> <li>Difficult construction activity due to existing creek and sump pit</li> <li>Requires permanent O &amp; M system</li> <li>Provide 4-lanes at grade per each direction</li> </ul>	<b>\$</b>	<ul> <li>About 12% expensive than scheme-1</li> <li>Sump Pit requires difficult construction method and sequence</li> <li>Requires 400 m² R.O.W. acquisition and periodic monitoring, maintenance of water pump-up system and illumination</li> <li>Provide only 2-lanes for each direction at-grade tunnel and approach section</li> <li>Vertical alignment is very much worse than other 2-Schemes</li> </ul>	c


Final Report

4-156

disadvantage

Source: JICA Study Team

Preparatory Survey for Metro Manila Interchange Construction Project (VI)



Source: JICA Study Team

Figure 4.6-1 Plan and Profile of Scheme-1 (Flyover C-5/Green Meadows) (1/3)

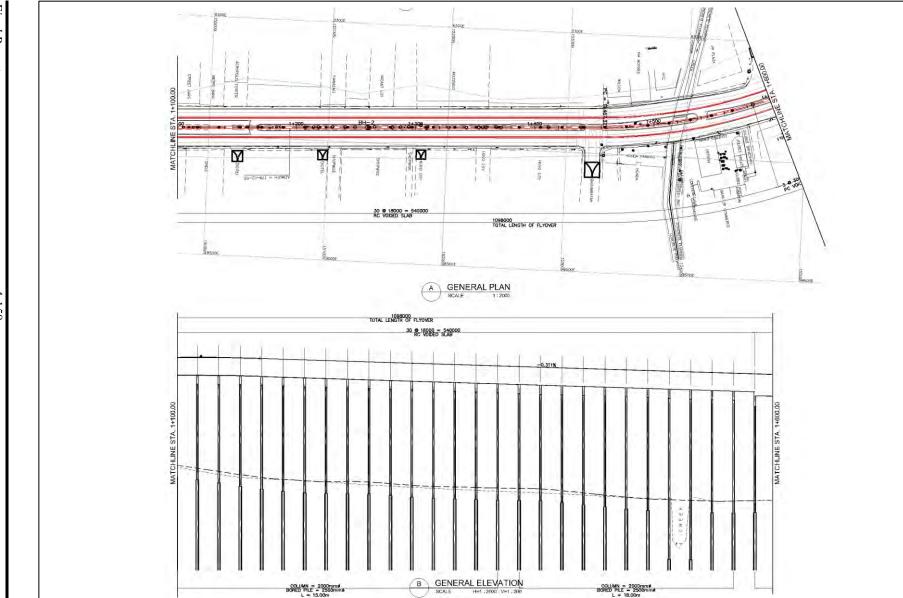
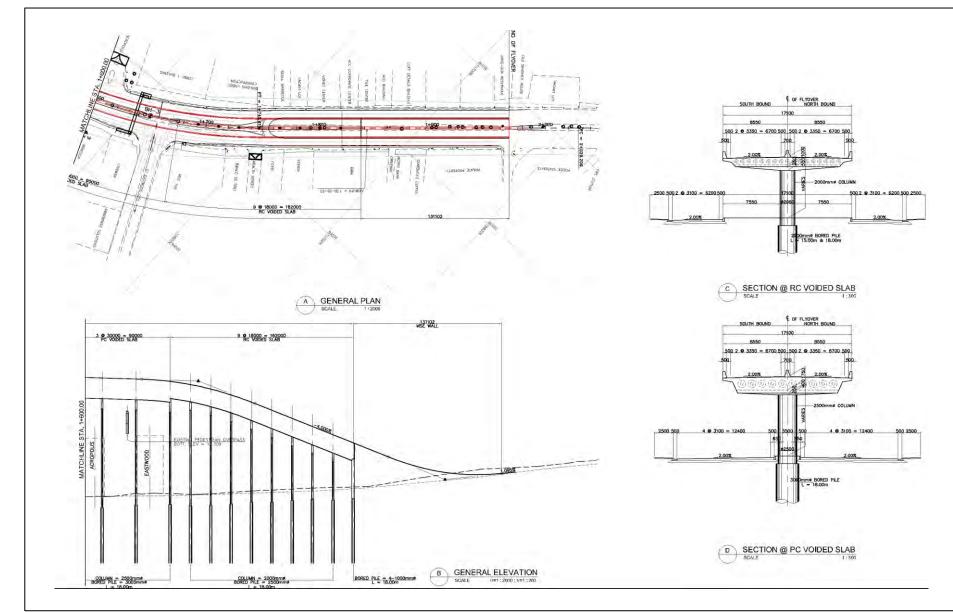




Figure 4.6-2 Plan and Profile of Scheme-1 (Flyover C-5/Green Meadows) (2/3)



Source: JICA Study Team

Figure 4.6-3 Plan and Profile of Scheme-1 (Flyover C-5/Green Meadows) (3/3)

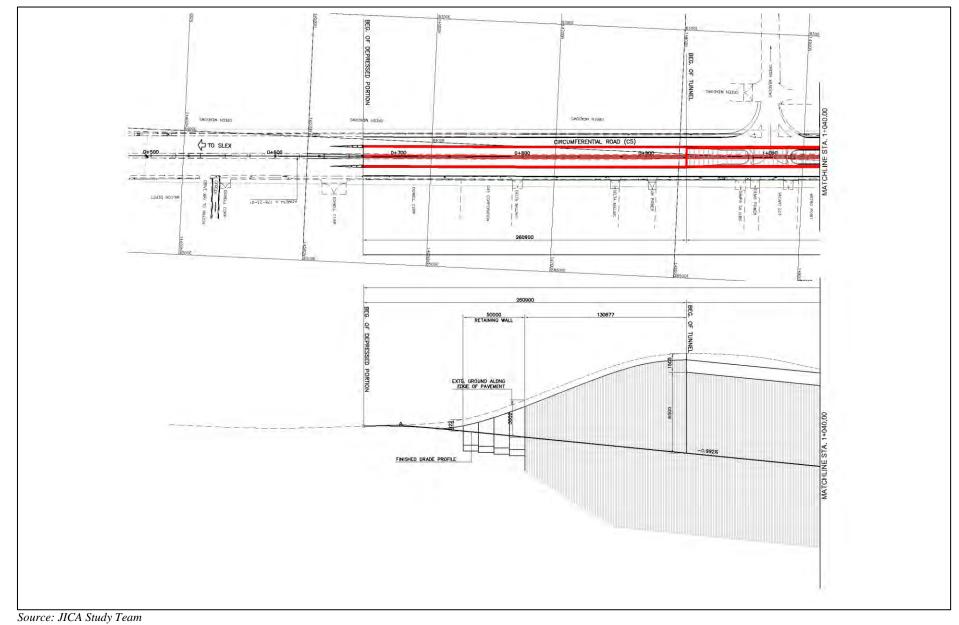



Figure 4.6-4 Plan and Profile of Scheme-2 (Cut and Cover Tunnel C-5/Green Meadows) (1/3)

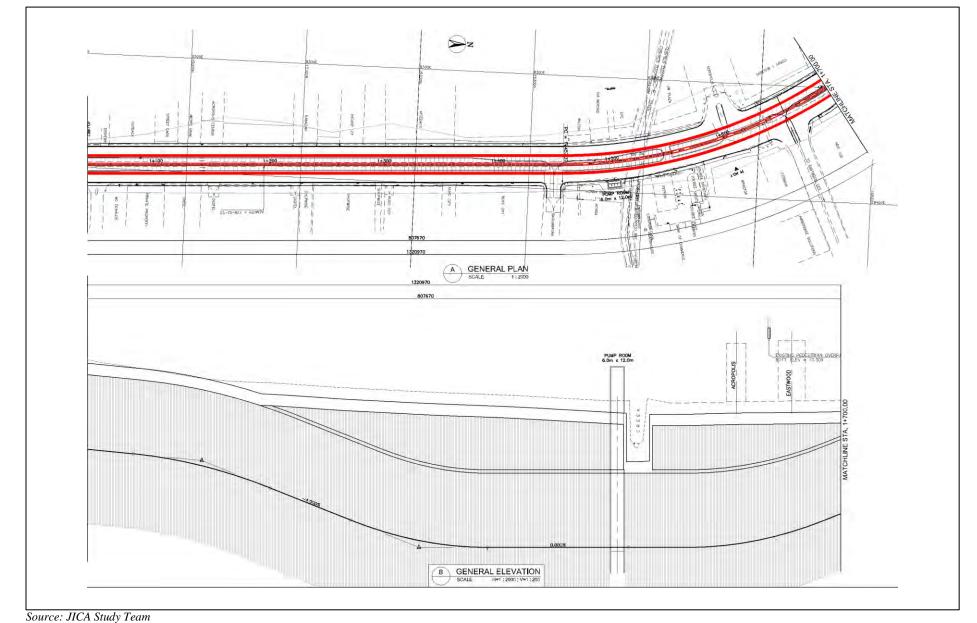
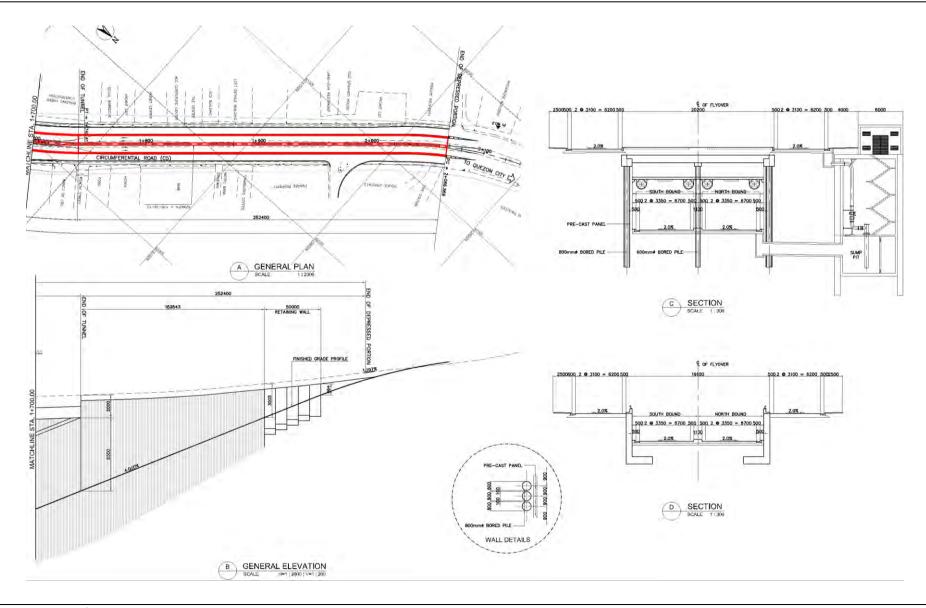




Figure 4.6-5 Plan and Profile of Scheme-2 (Cut and Cover Tunnel C-5/Green Meadows) (2/3)





Source: JICA Study Team

Figure 4.6-6 Plan and Profile of Scheme-2 (Cut and Cover Tunnel C-5/Green Meadows) (3/3)

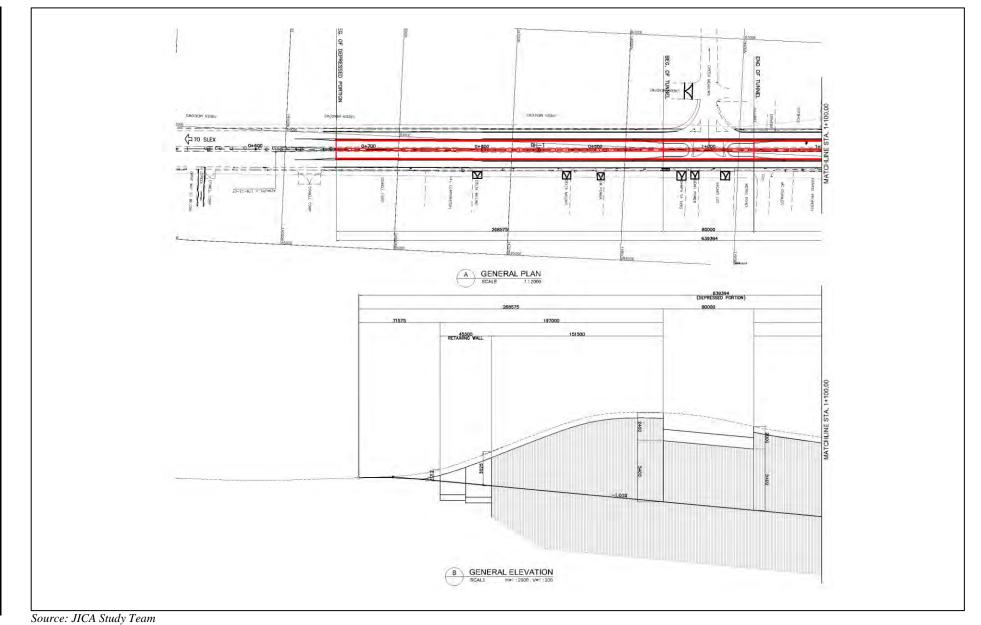



Figure 4.6-7 Plan and Profile of Scheme-3 (Tunnel and Flyover C-5/Green Meadows) (1/3)

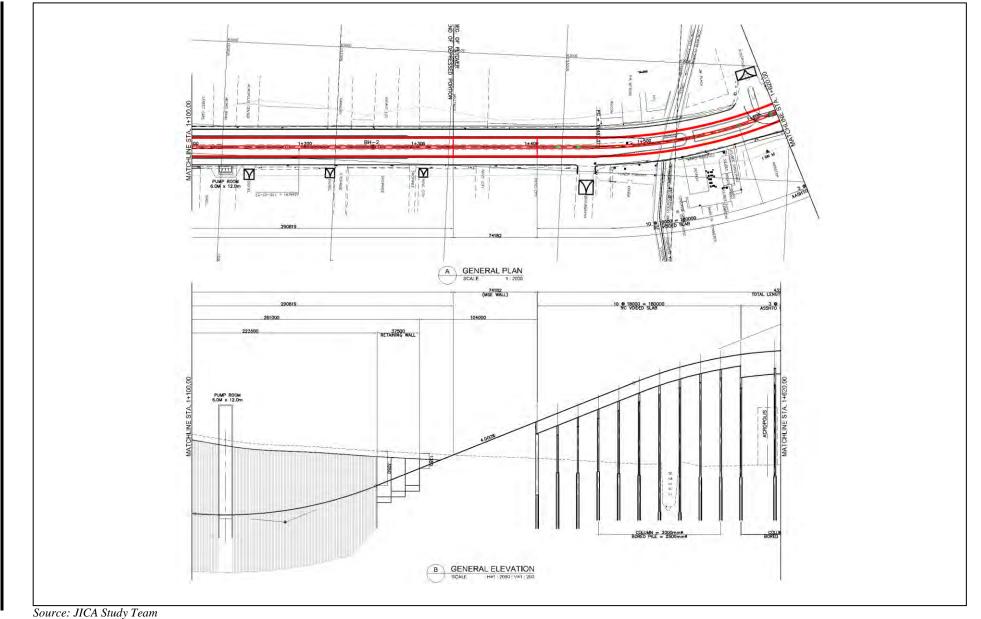
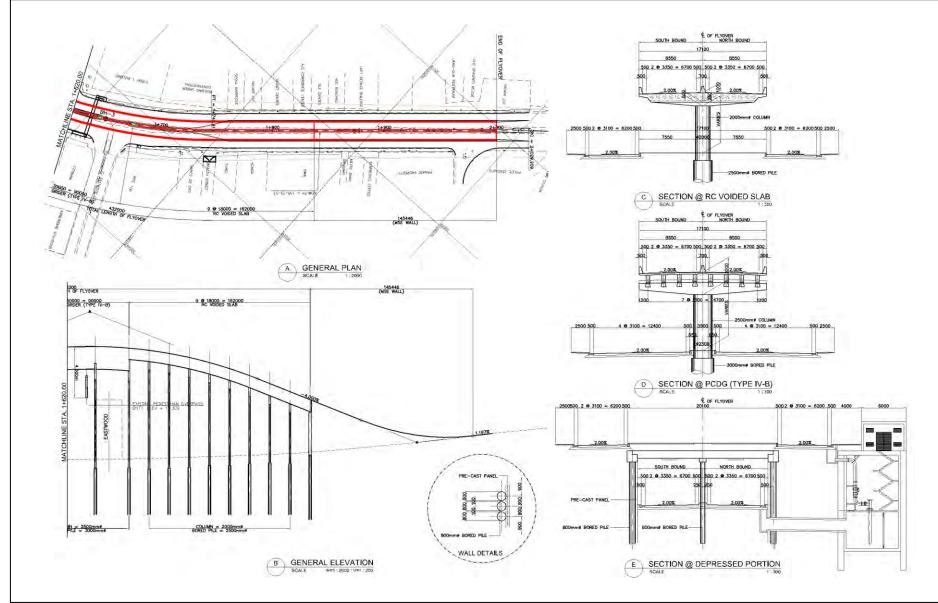




Figure 4.6-8 Plan and Profile of Scheme-3 (Tunnel and Flyover C-5/Green Meadows) (2/3)





Source: JICA Study Team

Figure 4.6-9 Plan and Profile of Scheme-3 (Tunnel and Flyover C-5/Green Meadows) (3/3)

# (3) Preliminary Design of Selected Scheme

Scheme-1, RC and PC voided slab type flyover were selected based on the comparative study. Concepts of the preliminary design of the selected scheme are as follows:

- 1) Voided slab type should be adopted for superstructure to consider aesthetic view of flyover.
- 2) One (1) column type pier and foundation should be adopted to maximize the usability of the area underneath the flyover.
- 3) Maximum 5% vertical grade should be adopted to minimize noise and air pollution due to entire section on the west side of flyover is residential area.
- 4) MSE wall should be adopted as retaining wall at both sides of the flyover approaches to minimize effects on traffic during construction as well as to provide aesthetic view.
- 5) Provide signalized traffic management at the Green Meadows intersection, Calle Industrial intersection and Eastwood intersection.
- 6) All of the at grade plan and design will be done within RROW.
- 7) Plan and profile, at grade intersection plan, typical cross sections, slab layout plan and structural general view are shown in **Figures 4.6-10 ~ 17**.

# (4) Construction Plan and Traffic Management during Construction

- Construction Plan and PERT CPM for C-5/Green Meadows/Acropolis interchange have been studied and are shown in the Figures 4.6-18 ~ 20.
- 2) Traffic Management plan during construction for C-5/Green Meadows/Acropolis Interchange have been studied as shown in **Figures 4.6-21**.



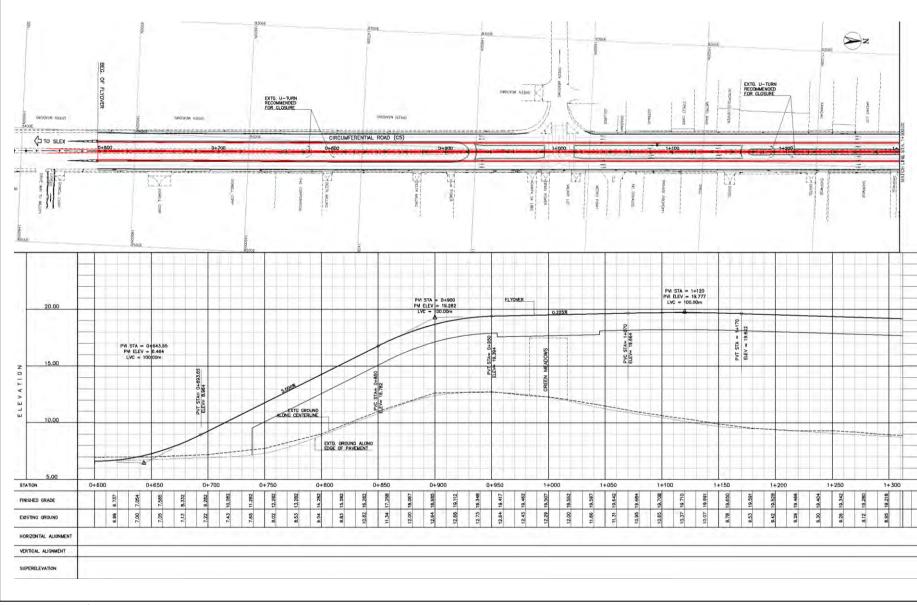
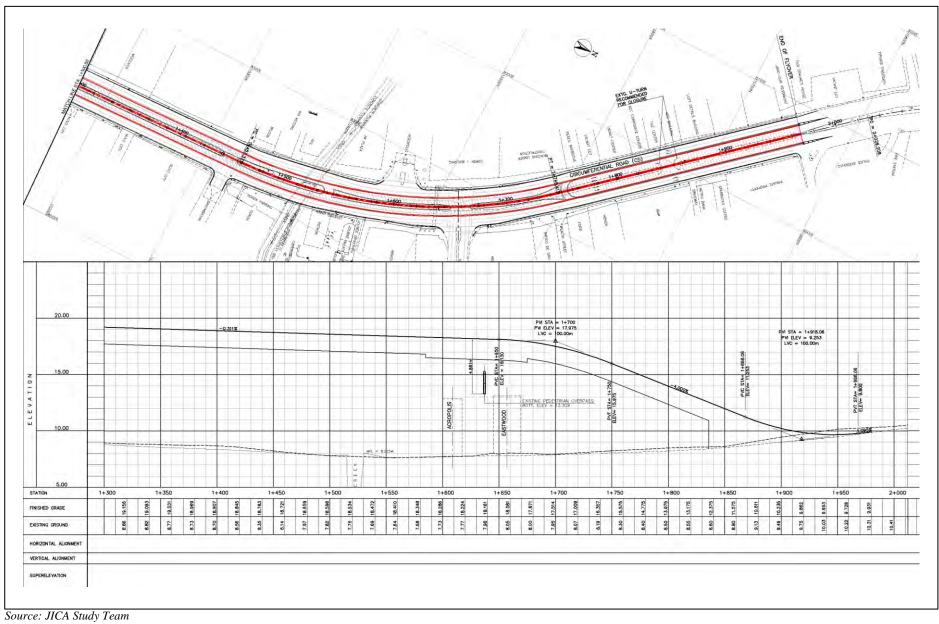




Figure 4.6-10 Plan and Profile (C-5/Green Meadows) (1/2)









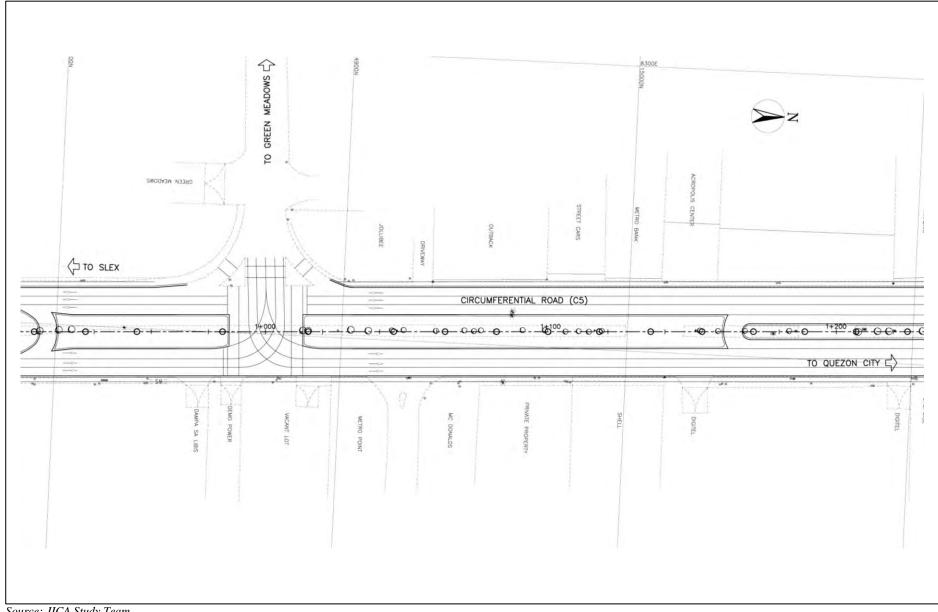
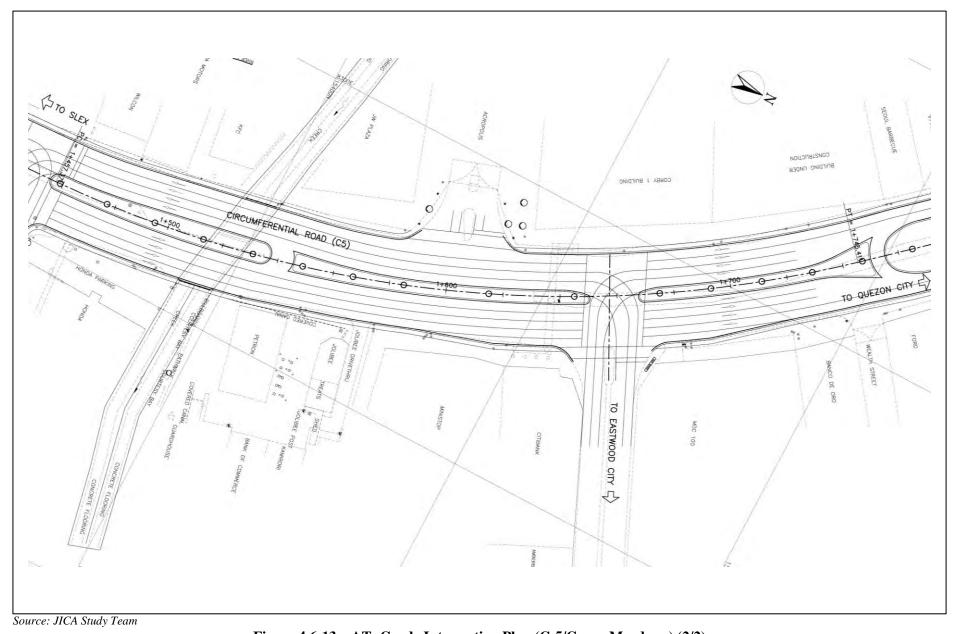
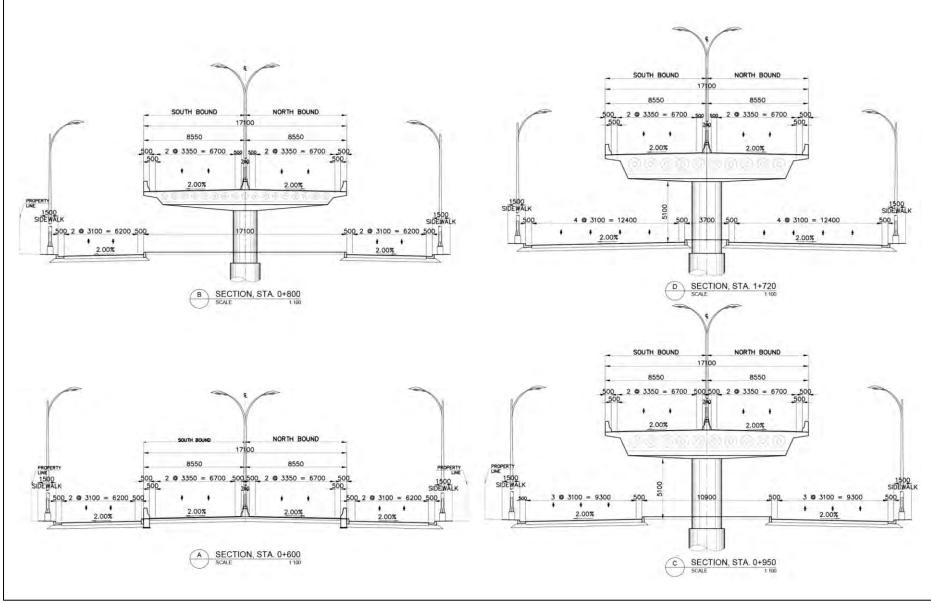





Figure 4.6-12 AT-Grade Intersection Plan (C-5/Green Meadows) (1/2)

4-169






Preparatory Survey for Metro Manila Interchange Construction Project (VI)

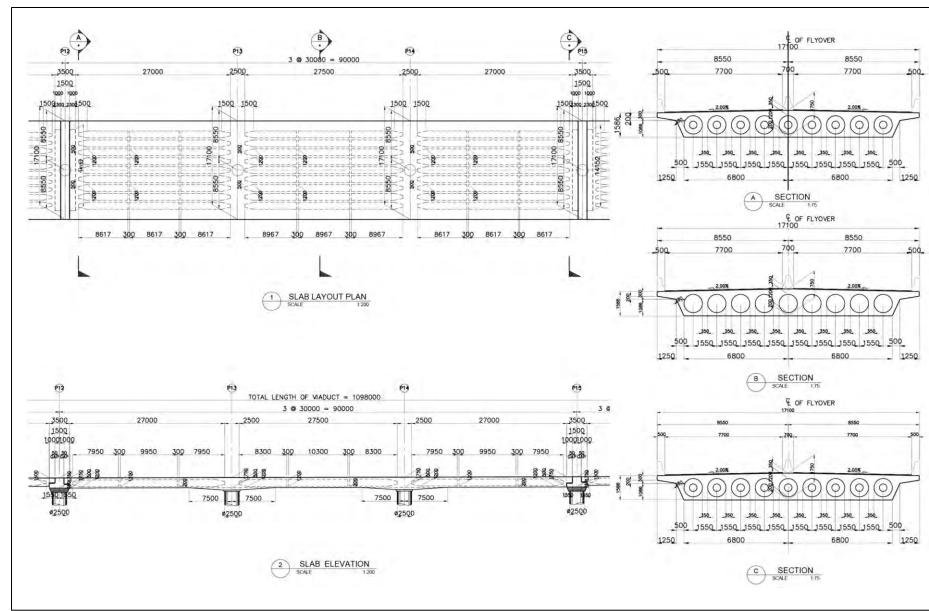
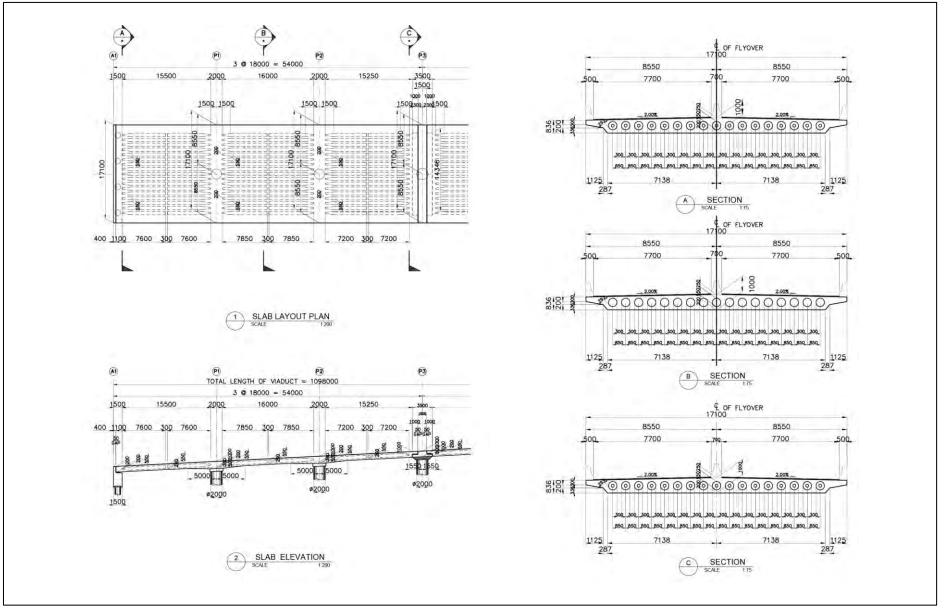


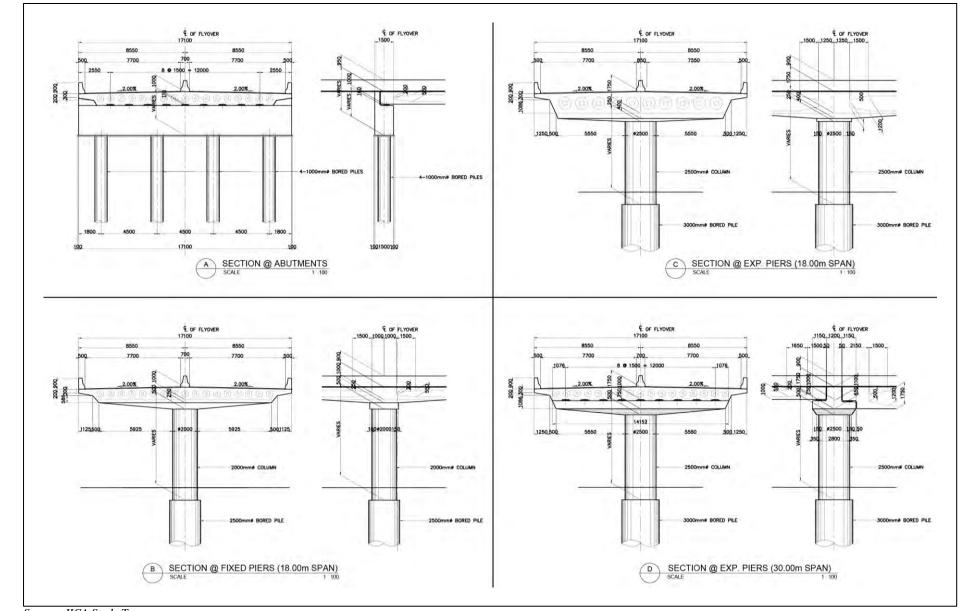




Source: JICA Study Team

Figure 4.6-14 Cross Section (C-5/Green Meadows)

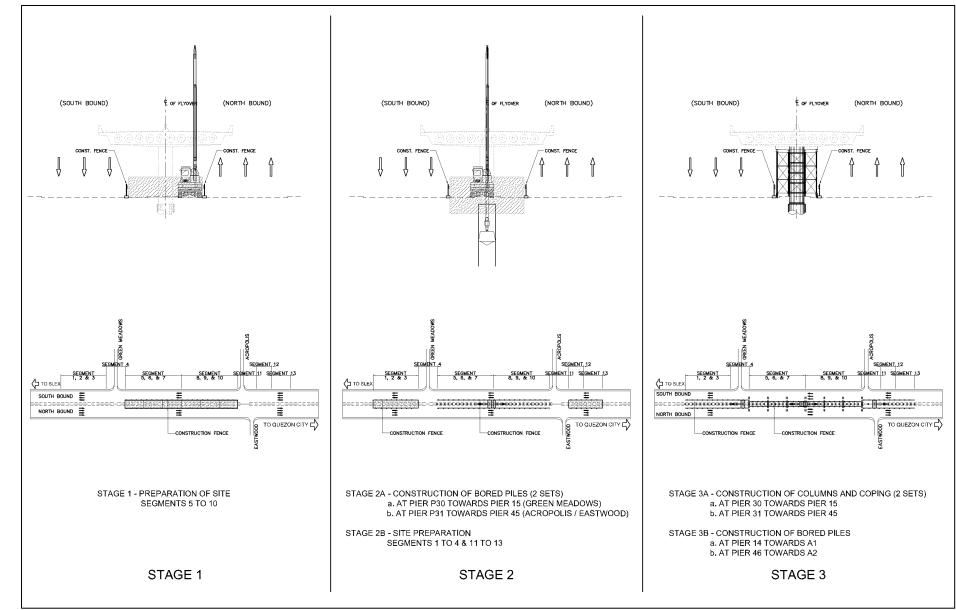





Figure 4.6-15 Slab Layout (PC-Voided) (C-5/Green Meadows)





Source: JICA Study Team


Figure 4.6-16 Slab Layout Plan (RC-Voided) (C-5/Green Meadows)



Source: JICA Study Team

Figure 4.6-17 Structural General View (C-5/Green Meadows)

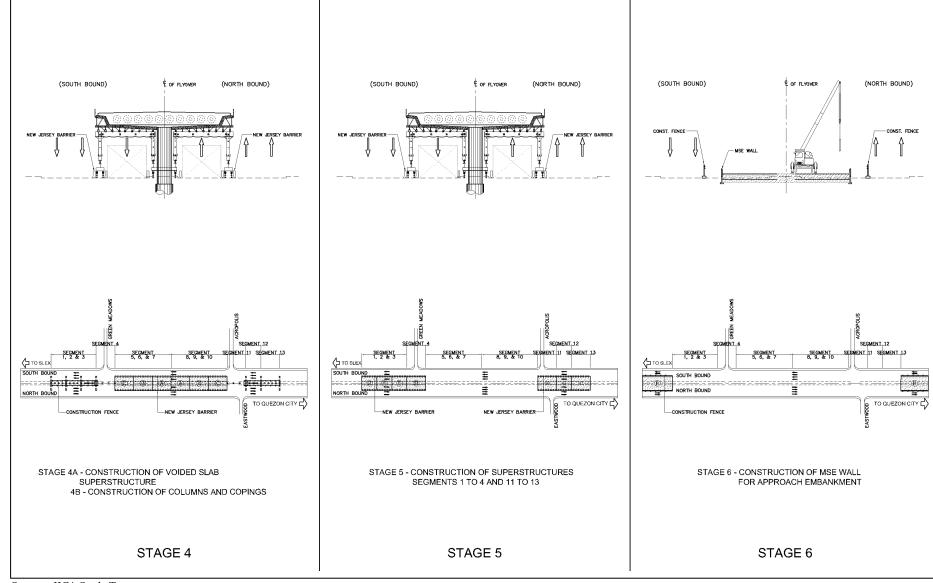
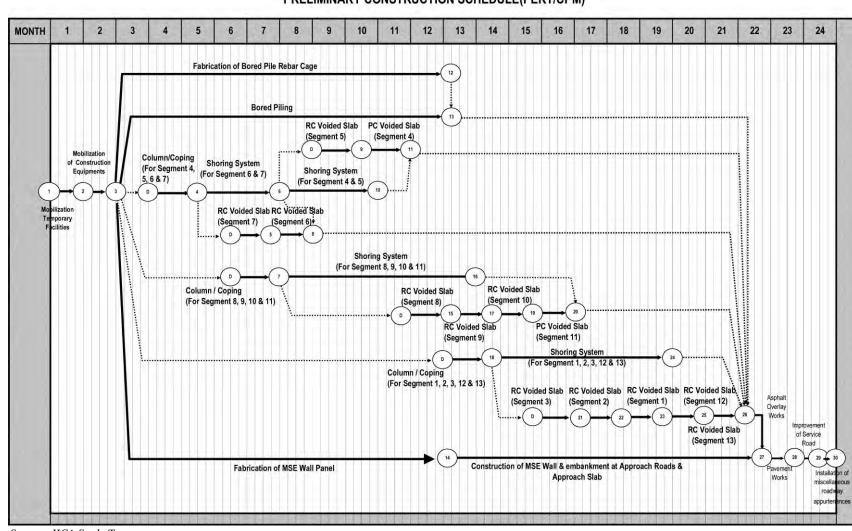
Final Report

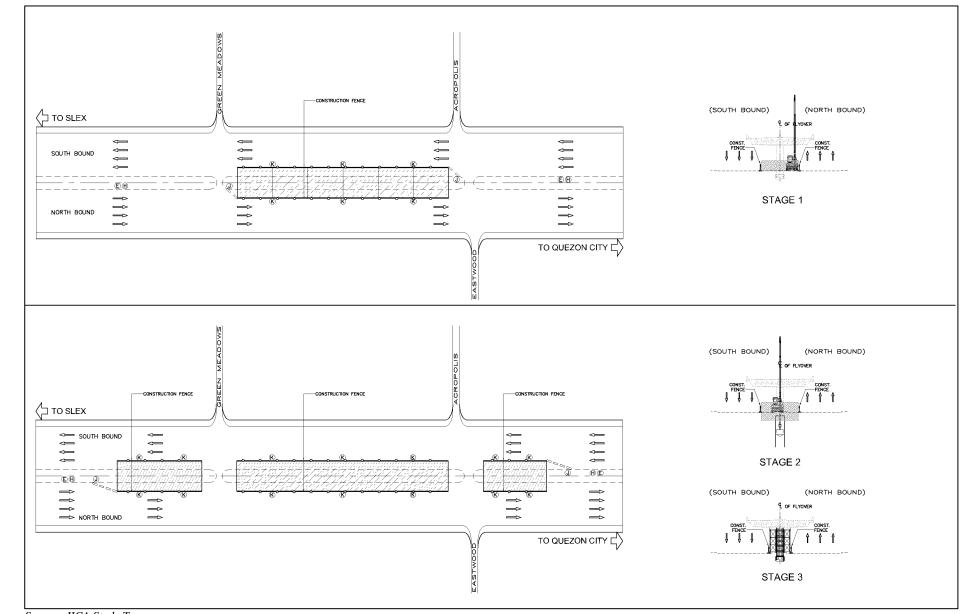


Source: JICA Study Team

Figure 4.6-18 Construction Plan for C-5/Green Meadows Interchange (1/2)

Final Report



Figure 4.6-19 Construction Plan for C-5/Green Meadows Interchange (2/2)



PREPARATORY SURVEY ON METRO MANILA INTERCHANGE CONSTRUCTION PROJECT PHASE VI C5 / GRREN MEADOWS / CALLE INDUSTRIA / EASTWOOD, PASIG CITY PRELIMINARY CONSTRUCTION SCHEDULE(PERT/CPM)

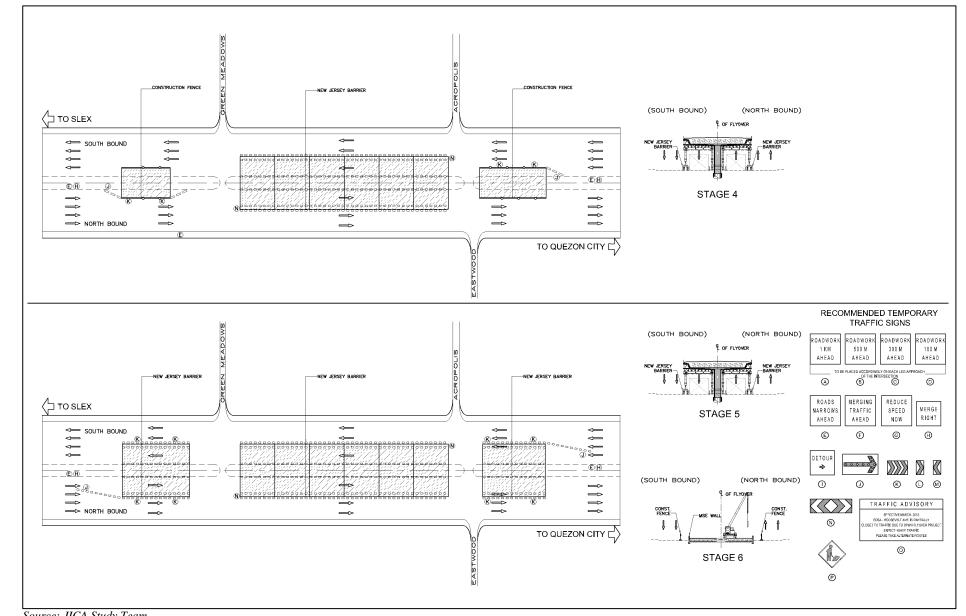

Source: JICA Study Team

Figure 4.6-20 Part CPM for C-5/Green Meadows/Acropolis Interchange



Source: JICA Study Team

Figure 4.6-21 Traffic Management for C-5/Green Meadows Interchange (1/2)



Preparatory Survey for Metro Manila Interchange Construction Project (VI)

Figure 4.6-22 Traffic Management for C-5/Green Meadows Interchange (2/2)

## (5) Bill of Quantity and Cost Estimate

Civil Works Cost for C-5/Green Meadows/Acropolis/Calle Industria Interchange has been estimated based on similar conditions of C3/E. Rodriguez IC and is shown in **Table 4.6-2**.

# Table 4.6-2 Civil Works Cost Estimate for C-5/Green Meadows/Acropolis/Calle Industria IC

PAY ITEM NO.	DESCRIPTION	QUANTITY	UNIT	Unit Cost	Civil Work Cost	Remarks
1.0	GENERAL REQUIREMENTS					
A	FACILITIES FOR THE ENGINEER	1.00	l.s.	20,000,000.00	20,000,000.00	
	SUB-TOTAL (PART A)				20,000,000.00	
	OTHER GENERAL REQUIREMENTS					
		1.00	D	2 400 000 00	2 400 000 00	
	Construction Health and Safety Mobilization / Demobilization (1.0% of Civil Works)	1.00 1.00	P.s P.s	2,400,000.00 9,762,596.00	2,400,000.00 9,762,596.00	
	Traffic Management During Construction	1.00	P.s	8,000,000.00	8,000,000.00	
SPL B.2-4		1.00	P.s	10,000,000.00	10,000,000.00	
SPL B.2-5	Removal, Relocation of Utilities	1.00	P.s	15,000,000.00	15,000,000.00	
SPL B.3.1	Environmental Monitoring Action Plan	1.00	P.s	4,000,000.00	4,000,000.00	
	SUB-TOTAL (PART B)				49,162,596.00	
	SUB-TOTAL GENERAL REQUIREMENTS				69,162,596.00	
2.0	INTERCHANGE CONSTRUCTION WITH VIADUCT					
С	FARTHWORKS					
******	Clearing and Grubbing	0.50	ha.	90,846.53	45,423.27	
	Individual Removal Trees (Small)	10.00	ea.	1,013.26	10,132.60	
	Individual Removal Trees (Large) Removal and Earth Balling of Trees	5.00	ea.	1,427.27	7,136.35	
	Removal of Structures and Obstruction	96.00 1.00	ea. l.s.	500,000.00	96,000.00	
	Removal of Existing PCCP	2,997.09	sq.m.	245.78	736,624.78	
	Breaking of Existing PCCP	12,291.56	sq.m.	335.00	4,117,672.60	
	Removal of Existing Concrete Curb	2,469.80	l.m.	60.00	148,188.00	
	Removal of Existing Concrete Curb & Gutter	2,546.85	l.m.	110.00	280,153.50	
101(4)c	Removal of Existing Sidewalk	454.87	sq.m.	120.00	54,584.40	
101(4)d	Removal of Existing RCPC	100.00	l.m.	200.00	20,000.00	
101(4)e	Removal of Existing Covered canal	42.02	l.m.	150.00	6,303.00	
105(1)	Subgrade Preparation	438.61	sq.m.	37.18	16,307.52	
	SUB-TOTAL (PART C)				6,038,526.02	
D	SUBBASE AND BASE COURSE					
200	Sub Base Course	2,824.20	cu.m.	879.97	2,485,211.27	
	SUB-TOTAL (PART D)				2,485,211.27	
					-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	SURFACE COURSES					
	Bituminous Tack Coat, Emulsified Asphalt, SS-1 (0.45 L/m2)	14.82	tonne	65,971.81	977,702.22	
	Bituminous Concrete Wearing Course, Hot Laid (t=50mm) Portland Cement Concrete Pavement t=300 mm	21,165.91 4,514.68	sq.m sq.m	924.31 2,887.66	19,563,862.27 13,036,860.85	
	SUB-TOTAL (PART E)				33,578,425.35	
	BRIDGE CONSTRUCTION					
	Approch Ramp Structure Excavation	1 201 60		586.00	704 127 (0	
103(1) 103(2)	Structure Excavation Structural Backfilling	1,201.60 939.65	cu.m. cu.m.	565.00	704,137.60 530,902.25	
	Embankment, Selected Borrow	6,616.99	cu.m.	984.09	6,511,713.69	
	Cast in Place Concrete Railing	552.82	l.m.	5,006.92	2,767,925.51	
	Reinforcing steel, Grade 40 (Minor/Substructure)	47,747.70	kg.	62.70	2,993,780.79	
	Reinforcing steel, Grade 60 (Minor/Substructure)	32,098.00	kg.	68.25	2,190,688.50	
405(1)a	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	456.92	cu.m.	9,548.08	4,362,689.62	
405(1)b	Approach Slab	51.40	cu.m.	6,233.40	320,396.76	
	Concrete Leveling Pad	19.16	cu.m.	80,462.16	1,541,654.99	
*****	Lean Concrete	70.02	cu.m.	4,111.70	287,901.23	
SPL 414	Concrete Barrier	276.41 791.42	l.m.	4,660.55	1,288,222.63 11,208,881.46	

	Substructure					
400(17)a	Concrete Piles Cast in Drilled Holes, Ø1200 mm	198.00	l.m.	44,668.80	8,844,422.40	
400(17)b	Concrete Piles Cast in Drilled Holes, Ø2500 mm	777.00	l.m.	106,248.81	82,555,325.37	
400(17)c	Concrete Piles Cast in Drilled Holes, Ø3000 mm	144.00	l.m.	164,602.64	23,702,780.16	
400(22)a	Pile Integrity Test	58.00	ea.	43,784.56	2,539,504.48	
400(22)b	Pile Dynamic Test	29.00	ea.	583,087.25	16,909,530.25	
404(1)a	Reinforcing steel, Grade 40 (Minor/Substructure)	724.68	kg.	62.70	45,437.44	
404(2)a	Reinforcing steel, Grade 60 (Minor/Substructure)	1,047,337.73	kg.	68.25	71,480,799.73	
405(1)a	Structural Concrete, Class A (Minor/Substructure) 27.6 Mpa	1,997.19	cu.m.	14,057.94	28,076,440.45	
405(6)	Lean Concrete	5.88		4,111.70	24,176.80	
	-ii		cu.m.			
407(1)a	Anchor Bar Ø36mm x 1500mm long, complete	32.00	ea.	1,800.00	57,600.00	
407(1)b	Anchor Bar Ø36mm x 1000mm long, complete	208.00	ea.	1,200.00	249,600.00	
	Superstructure					
401(a)	Cast in Place Concrete Railing	2,196.00	l.m.	5,006.92	10,995,196.32	
404(1)b	Reinforcing steel, Grade 40 (Superstructure)	227,256.00	kg.	62.70	14,248,951.20	
404(2)b	Reinforcing steel, Grade 60 (Superstructure)	3,067,486.00	kg.	68.25	209,355,919.50	
404(2)c	Prestressing steel	49,224.60	kg.	152.90	7,526,441.34	
405(1)b	Structural Concrete, Class A (Hollow Slab) 27.6 Mpa	16,473.71	cu.m.	16,971.01	279,575,497.15	
412(1)a	Elastomeric Bearing Pad (500 x 400 x 60 mm)	216.00	ea.	14,500.00	3,132,000.00	
412(1)b	Elastomeric Bearing Pad (400 x 400 x 50 mm)	36.00	ea.	12,000.00	432,000.00	
413(1)	Expansion Joint	450.80	l.m.	29,418.63	13,261,918.40	
SPL 414	Concrete Barrier	1,098.00	l.m.	4,660.55	5,117,283.90	
SPL 415	Waterproofing	18,775.80	sq.m.	1,800.00	33,796,440.00	
	1. arrent of the second s	10,775.00	59.00.	1,000.00	55,770,770.00	
	SUB-TOTAL (PART F)				846,636,159.91	
	SUD-TOTAL (LART L)				040,030,13731	
G	DRAINAGE AND SLOPE PROTECTION STRUCTURES					
u	DRAEMAGE AND SLOTET ROTECTION STRUCTURES					
500(1)	DCDC Class II	50.00		2 002 15	154 100 50	
500(1)a	RCPC, Class II	50.00	l.m.	3,082.45	154,122.50	
500(1)b	RCPC, Class IV	549.00	l.m.	7,005.56	3,846,052.44	
502(2)a	Storm Deck Drain with Grating	220.00	ea.	19,679.57	4,329,505.40	
502(2)b	Curb Inlet Manhole	131.00	ea.	25,000.00	3,275,000.00	
502(3)	Catch Basins	57.00	ea.	35,000.00	1,995,000.00	
502(4)	Junction Box	25.00	ea.	5,000.00	125,000.00	
SPL 512	Collector Pipe	3,281.96	l.m.	1,153.20	3,784,756.27	
	SUB-TOTAL (PART G)				17,509,436.61	
Н	MISCELLANEOUS STRUCTURES					
600(1)	Concrete Curb	2,668.03	l.m.	1,333.21	3,557,044.28	
600(3)a	Concrete Curb and Gutter	2,615.90	l.m.	1,661.30	4,345,794.67	
600(3)b	Concrete Side Strip	1,352.16	sq.m.	350.00	473,256.00	
601(1)a	Concrete Side Ship	1,698.25	sq.m.	1,560.60	2,650,288.95	
	Concrete Sidewaik	1,698.25				
601(1)b	- / /		sq.m.	1,560.60	17,937,514.55	
SPL	Noise Barrier	200.00	lm	48,456.58	9,691,316.01	
605(1)	Warning Sign	3.00	set	34,912.46	104,737.38	
605(2)	Regulatory Sign	29.00	set	34,912.46	1,012,461.34	
605(3)a	Informatory Sign, Gantry Support	2.00	set	905,733.18	1,811,466.36	
605(3)b	Informatory Sign, Butterfly Support	2.00	set	431,481.05	862,962.10	
605(3)c	Informatory Sign, Cantilever Support	3.00	set	388,956.44	1,166,869.32	
605(3)d	Informatory Sign, Double Post	6.00	set	42,944.99	257,669.94	
612(1)	Reflectorized Thermoplastic Pavement Markings, White	1,888.54	sq.m.	1,092.83	2,063,853.17	
	SUB-TOTAL (PART H)				45,935,234.06	
J	SPECIAL ITEM					
(D) -					10.000 000 000	
SPL 1	9m Pole, Single arm complete	140.00	set	86,228.98	12,072,057.20	
	9m Pole, Double arm complete	72.00	set	90,000.00	6,480,000.00	
SPL 2	Lighting system, (under carriageway)	50.00	set	59,290.99	2,964,549.50	
		7.00	set	80,000.00	560,000.00	
SPL 2	Flood lights		P.s	2,000,000.00	2,000,000.00	
SPL 2 SPL 3	Flood lights Traffic Signal Light	1.00	r.5			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SPL 2 SPL 3 SPL 4		1.00	г.5			
SPL 2 SPL 3 SPL 4	Traffic Signal Light	1.00	1.5		24,076,606.70	
SPL 2 SPL 3 SPL 4		1.00	r.s		24,076,606.70	
SPL 2 SPL 3 SPL 4	Traffic Signal Light	1.00	<b>F</b> .5		24,076,606.70 1,045,422,195.92	