REPUBLIC OF SERBIA THE CITY OF BELGRADE BELGRADE LAND DEVELOPMENT PUBLIC AGENCY (LDA) BELGRADE WATERWORKS AND SEWERAGE (BVK)

PREPARATORY SURVEY REPORT ON THE SEWERAGE SYSTEM IMPROVEMENT PROJECT FOR THE CITY OF BELGRADE IN REPUBLIC OF SERBIA

VOLUME II APPENDIX-I

MAY 2013

JAPAN INTERNATIONAL COOPERATION AGENCY

TEC INTERNATIONAL CO., LTD.

7R CR(5) 13-018

REPUBLIC OF SERBIA THE CITY OF BELGRADE BELGRADE LAND DEVELOPMENT PUBLIC AGENCY (LDA) BELGRADE WATERWORKS AND SEWERAGE (BVK)

PREPARATORY SURVEY REPORT ON THE SEWERAGE SYSTEM IMPROVEMENT PROJECT FOR THE CITY OF BELGRADE IN REPUBLIC OF SERBIA

VOLUME II APPENDIX-I

MAY 2013

JAPAN INTERNATIONAL COOPERATION AGENCY

TEC INTERNATIONAL CO., LTD.

EXCHANGE RATE

1 Euro	115.00	Serbian Dinar
1 Euro	105.00	Japanese Yen

as of January 2013

VOLUME I SUMMARY & MAIN REPORT

VOLUME II

APPENDIX-I

VOLUME III APPENDIX-II (PRE EIA & LARAP)

> VOLUME IV DRAWINGS

Preparatory Survey Report on the Sewerage System Improvement Project for the City of Belgrade in Republic of Serbia

Volume II Appendix-I

Table of Contents

Chapter 2 Project Background and Basic Information

1.	Bylaws Related to Emission Limit Values (ELV)1
2.	Bylaws Related to Limit Values of Surface Water

Chapter 4 Facilities Planning of Interceptor

1.	Adopted unit cost for comparison of Interceptor No.1 and No.2	1
2.	Brake down cost for comparison of Interceptor No.1 and No.2	3
3.	Soil condition of Interceptor No.6 and No.10	6

Chapter 5 Facilities Planning of Pumping Station

1. Design calculation of New Usce PS......1

Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

1.	Comparison of Sewage Treatment Process1
1.1	Anaerobic Anoxic Oxic Process (A2O)1
1.2	Step Feed Type Nitrification Denitrification Process with Coagulant (SFNDP)2
1.3	Carrier Added Activated Sludge Process (CAASP)
2.	Performance Analysis of Sewage Treatment Process
2.1	Wastewater Treatment Plant
2.2	Annual Average Qualities
3.	Design Calculation of Veliko Selo WWTP
3.1	Basics for Planning11
3.2	Design Calculation of Sewage Treatment Facilities11

3.3	Design Calculation of Aeration Requirement	13
3.4	Design Calculation of Sludge Treatment Facilities	14
3.5	Calculations	17
4.	Soil Condition	25

Chapter 7 Cost Estimation and Implementation Schedule

1.	Estimated Project Cost of All Component1
2.	Estimated Project Cost of Phase-1 Project

Chapter 8 Financial Analysis and Economic Analysis and Institution

1.	Willingness To Pay Survey Formats
2.	Willingness To Pay Survey Results

Chapter 9 Current Engagement with CDM

1	Project Design Document (PDD)
1.	r toject Design Document (I DD)

Chapter 2 Project Background and Basic Information

1. Bylaws Related to Emission Limit Values (ELV)

Table 1ELV for Certain Categories of Pollutants for Process Water before Discharge to
the Public Sewer

No.	Parameters	Unit	ELV
1	pH		6.5-9.5
2	COD	mg/l	1000 ^(VII)
3	BOD	mg/l	500 (VII)
4	Total non organic N (NH ₄ -N, NO ₃ -N, NO ₂ -N)	mg/l	120
5	Total N	mg/l	150
6	Ammonium, expressed in N (NH ₄ -N)	mg/l	100 ^(I)
7	Sedimentation materials after 10 minutes	mg/l	150 ^(II)
8	Total P	mg/l	20
9	Extract organic solvents (oil, fat)	mg/l	50 ^(III)
10	Mineral oil ^(IV)	mg/l	30
11	Phenols	mg/l	50
12	Tar	mg/l	5
13	Total Fe	mg/l	200
14	Total Mn	mg/l	5
15	Sulphides	mg/l	5
16	Sulphates	mg/l	400 ^(IX)
17	Active chloral	mg/l	30
18	Total salts	mg/l	5000 ^(VIII, X)
19	Fluorides	mg/l	50
20	Total arsenic (VI)	mg/l	0.2
21	Total Ba	mg/l	0.5
22	Cyanides (easy volatile)	mg/l	0.1
23	Total cyanides	mg/l	1
24	Total silver	mg/l	0.2
25	Total Hg ^(VI)	mg/l	0.05
26	Total Zn ^(VI)	mg/l	2
27	Total Cd ^(VI)	mg/l	0.1
28	Total Cobalt	mg/l	1
29	Cr ^(VI)	mg/l	0.5
30	Total Cr ^(VI)	mg/l	1
31	Total Pb	mg/l	0.2
32	Total Sn	mg/l	2
33	Total Cu ^(VI)	mg/l	2
34	Total Ni ^(VI)	mg/l	1
35	Total Mo	mg/l	0.5
36	BTEX (benzene, toluene, ethylbenzene, and xylene)	$10^{-3}m_3/m_3^{(v)}$	0.1
37	Organic solvent	$10^{-3}m_3/m_3^{(V)}$	0.1
38	Asbestos	mg/l	30
39	Toxicity		ratio of dilution LC50%
			(toxicity test with fish or

No.	Parameters	Unit	ELV
			daphnia)
40	Temperature	°C	40

(I) Determined for 24h average composite sample

(II) It is determined only in the case if the volume of sediment matters, after 10 minutes of the sedimentation higher than 5×10^3 m³/m³

(III) In the case of daily flow of 100m3/day for materials of biological or animal origin the value is triple and above that double

(IV) Above 10m3/day

(V) Limit value is given in 10^{-3} m3/m3

(VI) In the case of usage of waste water treatment residue generated in central facility, limit values can be stringent or if it is determined that there is disturbance in work on central treatment due to the big number of connected industries, it is necessary to reconsider given values, just in case

(VII) These values can be reconsidered taking in consideration technical, technological and economical factors that impact selection of joint communal and industrial treatment in the city waste water treatment plant, as well as infiltration of groundwater in the sewer resulting in the organic matters concentration in the influent to be low

(VIII) These values could be reconsidered taking in consideration technological factors that impact selection of joint treatment of communal and industrial waste water in the city wwtp

(IX) In the case when the discharge pipes are concrete, limit value for sulphates is 200mg/l

(X) In the case when the discharge pipes are concrete, limit value for chloride is 1000mg/l

Table 2 ELV for Communal Wastewater Discharge to the Recipient

Parameter	ELV	The lowest reduction percentage ^(I)			
a) ELV on the secondary treatment stage					
BOD (II,VI,VII)	25mg/l O ₂	70-90			
	$40 mg/l O_2^{(III)}$				
COD (VI)	125mg/l O ₂	75			
Total suspended	35mg/l (more than 10,000PE)	90			
solids ^(IV, VIII) 60mg/l (2,000 to 10,000 PE)		70			
b) ELV on the tertiary	treatment stage				
Total P	2mg/l P (10,000 to 100,000 PE)	80			
	1mg/l P (more than 100,000 PE)				
Total N ^(V) 15mg/l N (10,000 to 100,000 PE)		70-80			
	10mg/l N (more than 100,000 PE)				

(I) Reduction in relation to the load of influent

(II) Parameter can be replaced with some other parameter: total organic carbon (TOC) or total chemical oxygen demand (COD total) if the relation between BOD and these parameters can be determined

(III) If it is proven that discharged treated waste water will not have negative impact on the water quality

(IV) Suspended solids are not obligatory parameter

(V) Total nitrogen: organic N+NH4-N+NO3-N+NO2-N

(VI) Homogenized, non filtrated, non decanted sample

(VII) Adding inhibitor of nitrification

(VIII) By filtration of representative sample through the membrane filter 0.45µm. Drying on 105°C and weighting

WWTP	COD (III)		BOD (II, III)		Total SS (III)		Total P		Total N mg/l	
		0/	···· ~ /1	0/		0/		0/	1.V-	16.XI-
capacity PE	mg/1	%	mg/1	%	mg/1	%	mg/1	%	15.IX	30.IV
<600	(IV)	70	80 ^(IV)	75	100	-	(IV)	(IV)	(IV)	(IV)
601-2000	(IV)	75	50 ^(IV)	80	75	-	(IV)	(IV)	(IV)	(IV)
2001-10000	125	75	25	70-90	60	70	(IV)	(IV)	(IV)	(IV)
10001-100000	125	75	25	70-90	35	90	2 ^(V)	80	15 ^(V)	25 ^(V)
>100000	125	75	25	70-90	35	90	1 ^(V)	80	10 ^(V)	20 ^(V)

 Table 3
 ELV^(I) for Communal Wastewater According to the WWTP Capacity^(VI)

(I) It is necessary to comply with either limit value for (average daily) concentration (mg/l) or reduction percentage (%)

(II) Parameter can be replaced by other parameter; total organic carbon TOC or total COD if the relation between BOD and these parameters can be determined

(III) In the case of determine effluent from lagoons COD and BOD should be determined in filtrated sample, but total content of suspended solids cannot exceed 150mg/l

(IV) If needed,(water with small capability for self treatment) responsible authority can determine the values for that particular case, that can be more stringent than the given value

(V) These limit values need to be secured for the sensitive area for nitrate, when capacity of the plant is above 10000PE

(VI) In the case of mixed discharge and treatment of communal and industry water, by the public sewerage system, it is needed to ass ELV for hazardous materials, from industry, agriculture and other activities by using the given limit values for each industry analyzed in the EIA study

Table 4ELV of the Treated Communal Wastewater Discharge to the Surface Water, Used
for Bath and Recreation, Water Supply and Irrigation

Parameters	Units	ELV
Coliform bacteria	number in 100ml	10,000
Coliform bacteria from feces	number in 100ml	2,000
Streptococcus from feces	number in 100ml	400

Table 5 Minimum Number of Samples of Treated Communal Wastewater Dependent of
Plant Capacity

Plant size	Annual sample numbers ⁽¹⁾
2,000-9,999 PE	12
	If in the first year is proved that quality of treated waste water does not exceed
	the ELV given in this regulation, next year only 4 is needed.
	If during the one of the following years, one of the 4 samples does not fulfill
	ELV for pollutants listed in this regulation, it returns to the 12 annual samples.
10,000-49,999PE	12
>50,000 PE	24

(I) 24h average value composite samplers are analyzed proportional flow or time are analyzed

Number of samples taken during one year	Max sample number exceeding ELV (II,III)	Number of samples taken during one year	Max sample number exceeding ELV (II,III)
4-7	1	172-1887	14
8-16	2	188-203	15
17-28	3	204-219	16
29-40	4	220-235	17
41-53	5	236-251	18
54-67	6	252-268	19
68-81	7	269-284	20
82-95	8	285-300	21
96-110	9	301-317	22
111-125	10	318-334	23
126-140	11	335-350	24
141-155	12	351-365	25
156-171	13		

Table 6Max Number of Samples That Can Divert from the ELV for the Treated
Communal Wastewater Depending of Total Sample Number ^(I)

(I) In the given evaluation of the results, the extreme values that occur a result of extraordinary circumstances (for example heavy rain above average are not taken into consideration)

 (II) under the normal conditions, content of organic matters expressed by BOD5 and COD in any case cannot exceed required value by 100%, for suspended solids by 150%

(III) annual mean value concentration of N and P cannot exceed required value

Descentes	н . : (I)	ELV			
Parameter	Unit	Agriculture use (II)	Other use (III)		
<non material="" organic=""></non>					
Pb	mg/kg	120	1,200		
Cd	mg/kg	2.5	40		
Cr	mg/kg	100	1,000		
Ni	mg/kg	60	400		
Hg	mg/kg	1.6	25		
Cu	mg/kg	700	1,750		
Zn	mg/kg	1,500	4,000		
As	mg/kg	15	75		
<organic material=""></organic>					
Adsorbing organic halogens (V)	mg/kg	400	500		
PCB (VI)	mg/kg	0.1 (per congener)	0.2 (per congener)		
PCCD/F ^(VII)	ng/kg DS	30	30		

Table 7ELV for Residues of Wastewater Treatment

Doromotor	Unit (I)	ELV		
Parameter	Unit	Agriculture use (II)	Other use (III)	
<pathogens <sup="">(IV)></pathogens>				
Salmonella	MPN/10g DS (VIII)	0-10		
Enterovirus	MPCN/10g DS (IX)	3		

(I) Related to the dry residue from treatment DS

- (III) Residues from the treatment process can be used to cover landfill, green area in parks, improvement of soil quality when the soil will not at least one year be used for planting and cattle feeding, for landscaping. For all these cases soil pH value should be between 6 or 7
- (IV) By specific use of the soil, used for example for vegetables or cattle, limitation are due to the health risk from remained pathogens. In that case residues are treated before use in order to reduce pathogens on the acceptable level.
- (V) Adsorbing organic halogen AOH
- (VI)PCB, each of 6 individual PCB (28,52,101,138,153 and 180) according to IUPAC nomenclature 2,4,4'Trichlorobiphenyl,
2,2'5,5'-Tetrachlorobiphenyl,
2,2'4,5,5'-Pentachlorobiphenyl,
2,2,4,4',5,5'-Hexachlorobiphenyl,
2,2',3,4,4',5,5'-Heptachlorobiphenyl,2,2'3,4,4',5'-Hexachlorobiphenyl,
2,2'3,4,4',5,5'-Heptachlorobiphenyl,

(VII) PCCD/F- polychlorinated 2benzo dioxin and furan

(VIII) MPN –most probable number

(IX) MPCN- most probable number causing cytopathogenic effect

⁽II) If used in agriculture, particular attention should be on plant seasons, where pH of soil is between 6 and7. If the residues are used on the soil with pH lower than 6, it should be taken in consideration capability the increasing mobility of metals and of plants to absorb metals, thus lower limit values should be taken in that case. Residues from the treatment are used in that way to consider plant needs for nutrients, soil quality and not to pollute surface water and ground water

2. Bylaws Related to Limit Values of Surface Water

Table 8 Limit Values of Pollutant for Surface Water

		Limit Values ⁽¹⁾				
Parameter	Unit	Class I ⁽²⁾	Class II ⁽³⁾	Class III (4)	Class IV	Class V ⁽⁶⁾
<general></general>						
pH ⁽¹²⁾		6.5-8.5	6.5-8.5	6.5-8.5	6.5-8.5	<6.5 or <8.5
Suspended solids ^{(9) (12)}	mg/l	25	25	-	-	-
<oxvgen regime=""></oxvgen>	Ŭ					
Dissolved oxygen	mg O ₂ /l	- ⁽⁸⁾ (or PN)	_ (8)	5	4	<4
Oxygen saturation	%					
Epilimnion		90-110	70-90	50-70	30-50	<30
Hipolimnion		70-90	70-50	30-50	10-30	<10
Nonstrati		70-90	50-70	30-50	10-30	<10
BOD.	$mg \Omega_{a}/l$	$-^{(8)}$ (or PN)		7	25	>25
COD (bichromate	$mg O_2/1$	10 (or PN)	15	30	125	>125
method)	$\lim_{n \to \infty} O_2/1$	10 (01 1 14)	15	50	125	>125
COD (permanganate	$mg \Omega_{\rm c}/l$	5 (or PN)	10	20	50	>50
method)	$\lim_{n \to \infty} O_2/1$	5 (01110)	10	20	50	250
Total organic carbon	mg/l	(8) (or PN)	(8)	15	50	>50
(TOC)	mg/1	- (01110)	-	15	50	>50
(10c)						
Total N	mg N/l	1 (or PN)	2	8	15	>15
Nitrate	mg N/I	$= \frac{(8)}{(0r PN)}$	(8)	6	15	>15
Nitrito	mg N/I	- (011N)	0.03	0.12	0.3	>0.3
Ammonium ion	mg N/I	$\frac{0.01 (01 \text{ FIN})}{(8)}$	(8)	0.12	0.5	>0.5
		- (01 PN)	0.025	0.0	1.3	>1.5
Non 10n1sed	mg/1 NH ₃	0.005	0.025	-	-	-
		(8) (a. a. DN I)	(8)	0.4	1	> 1
Total P	mg P/I	$-\frac{(0)}{(0)}$ (or PN)	(8)	0.4	1	>1
orthophosphate	IIIg P/I	- (of PN)	- * *	0.2	0.3	>0.5
<saimity></saimity>		50 (an DNI)	(8)	150	250	> 250
		50 (OF PN)	- 005	150	250	>250
Total residue chior	mg/I HOCI	0.005	0.005	-	-	-
Sulphates	mg/l	50 (or PN)	100	200	300	>300
Total mineralization	mg/I	<1,000 (or PN)	1,000	1,300	1,500	>1,500
Conductivity on 20°C	µS/cm	<1,000 (or PN)	1,000	1,500	3,000	>3,000
		5 (D) D	10	50	100	100
Arsen	µg/l	<5 (or PN)	10	50	100	>100
Bor	µg/l	300 (or PN)	1,000	1,000	2,500	>2,500
Cu	µg/l	5 (T=10)	5 (T=10)	500	1,000	>1,000
		22 (T=50)	22 (T=50)			
		40 (T=100)	40 (T=100)			
		112 (T=300)	112 (T=300)			
Zn	µg/l	30 (T=10)	300 (T=10)	2,000	5,000	>5,000
		200 (T=50)	700 (T=50)			
		300 (T=100)	1,000 (T=100)			
		500 (T=300)	2,000 (T=300)			
Cr(total)	µg/l	25 (or PN)	50	100	250	>250
Fe(total)	µg/l	200	500	1,000	2,000	>2,000
Mn(total)	µg/l	50	100	300	1,000	>1,000
<organic materials=""></organic>						
Phenol compounds	µg/l	<1	1	20	50	>50
(such as C_2H_5OH)						
Oil carbohydrates ⁽⁹⁾		(10)	(10)	-	-	-
Surface active materials	μg/l	100	200	300	500	>500
(such as lauryl						
sulphate)						

		Limit Values ⁽¹⁾						
Parameter	Unit	Class I ⁽²⁾	Class II ⁽³⁾	Class III (4)	Class IV	Class V ⁽⁶⁾		
AOH (ascorbic organic	µg/l	10	20	100	250	>250		
halogens)								
<microbiological< td=""><td></td><td></td><td></td><td></td><td></td><td></td></microbiological<>								
parameters>								
Fecal Coliforms	cfu/100ml	100	1,000	10,000	100,000	>100,000		
Total Coliforms	cfu/100ml	500 (11)	10,000	100,000	1,000,000	>1,000,000		
Itestinal enterococci	cfu/100ml	200	400	4,000	40,000	>40,000		
Number of aerobic	cfu/100ml	500	10,000	100,000	750,000	>750,000		
heterotrophs (method								
Kohl)								

T: hardness of the water (mg/l CaCO₃)

PN: natural level

- (1) If not otherwise stated, values are given as total concentration in taken sample
- (2) Description of the class corresponds excellent ecological status according to the classification given in the regulation on determination of parameters of ecological and chemical status of surface water. Surface water that belongs to this class ensure on the basis of limit values of elements qualitative conditions for functioning of ecosystem, life and fish protection (salmonidae and cyprinids) and can be used in the following purpose: potable water supply with prior treatment by filtration and disinfection, bathing and recreation, watering, industrial purpose (process and cooling water)
- (3) Class description corresponds to good ecological status according to the classification given in the regulation that determine parameters of ecological and chemical status for surface water. Surface water that belongs to this class determine on the basis of limit values of elements qualitative conditions for functioning of ecosystem, life and fish protection (cyprinids) and can be used for the same purpose and under same conditions as surface water that belongs to the class i
- (4) Class description corresponds to moderate ecological status according to the classification given in the regulation that determine parameters of ecological and chemical status for surface water. Surface water that belongs to this class provide on the basis of limit values of qualitative elements conditions for life and Cyprinidae protection and can be used for following purposes: potable water supply with prior pre-treatment by coagulation, flocculation, filtration and disinfection, bath and recreation, watering, industrial purpose (process and cooling water).
- (5) Class description corresponds to weak ecological status according to the classification given in the regulation that determine parameters of ecological and chemical status for surface water. Surface water that belong to this class on the basis of limit values of elements quality can be used in following purposes: potable water supply with combination of the prior stated treatments and advances treatments methods, watering, industrial purpose (process and cooling water)
- (6) Class description corresponds to bad ecological status according to the classification given in the regulation that determine parameters of ecological and chemical status for surface water. Surface water that belongs to this class cannot be used for any other purpose.
- (7) Total phosphate is analysed from filtrate, eg from diluted phase that is given by filtration through 0,45µm filter
- (8) Please look at the annex 1, table 2 and table 3, in which are given limit values of pollutants for I and II class of surface water
- (9) Parameters are monitored only in water surface that are defined as salmonidae and cyprinid.
- (10) Oil products cannot be present in the water in such quantity to:
 - form visible film layer on surface water or layers on the river and lake banks
 - give the distinctive "hydrocarbon" taste to fishes
 - cause damages to fishes
- (11) Based on 95% estimation
- (12) Allowed deviation of the limit values in the case of special geographical conditions

Types of surface water	рН	DO (mg/l)	BOD (mg/l)	Total organic carbon (mg/l)	Ammoniu m ion (NH ₄ -N) (mg/l)	Nitrates (NO ₃ -N) (mg/l)	Orthophos phates (PO ₄ ³⁻) (mg/l)	Total phosphate (P) (mg/l)	Chlorides (Cl) (mg/l)
Big river in low areas, dominated fine sediment (type 1)	6.5-8.5	8.5 (2)	2.0	2.0	0.10	1.0	0.02	0.05	50
Big rivers, dominated middle sediment, exception river in Pannonia basin (type 2)	6.5-8.5	8.5	1.8	2.0	0.05	1.5	0.02	0.05	50
Small and middle water courses, level above sea up to 500m, dominated big ground base (type 3)	6.5-8.5	8.5	1.5	2.0	0.05	1.5	0.02	0.05	50
Small and middle water courses, level above sea above 500m, dominated big ground base (type 4)	6.5-8.5	8.5	1.8	2.0	0.10	1.5	0.0	0.05	50
Water courses in Pannonia basin except those that are under type 1 (type 5)	6.5-8.5	8.0	2.5	3.0	0.20	1.5	0.10	0.15	50
Small water courses out of Pannonia basin that are not under type 3 and type 4, as water courses that are not determined by the Regulation on determination of water bodies of surface and ground water (Official Gazette 96/10) (type 6)	6.5-8.5	8.5	1.5	2.0	0.05	1.0	0.0	0.05	50
Lakes above the sea level up to 200 m asl, all shallow lakes (up to 10m), all paddle and swamp ecosystems	6.5-8.5	8.5 ⁽²⁾	2.0	2.0	0.10	1.0	0.02	0.05	50
Lakes above the sea level above 200 m asl, middle deep lakes (depth 10-30m) and deep (depth>30m)	6.5-8.5	8.5 ⁽²⁾	1.5	2.0	0.05	1.5	0.02	0.05	50

(1) Class description corresponds to the excellent ecological status according to the classification given in the regulation that determine parameters of ecological and chemical status for surface water. Surface water that belong to this class are provided on the basis of limit values of quality elements conditions for ecosystem functioning, life and fish protection (salmonidae and cyprinidae) and can be used in the following purposes: water supply for potable water with prior pretreatment by filtration and disinfection, bathing and recreation, watering, industrial use (process and cooling)

(2) Values of parameters can be lower if the natural value is lower

Table 9 Limit Values of Pollutant for Class $\mathbf{I}^{(1)}$ of Surface Water

Types of surface water	рН	DO (mg/l)	BOD (mg/l)	Total organic carbon (mg/l)	Ammonium ion (NH4-N) (mg/l)	Nitrates (NO ₃ -N) (mg/l)	Orthopho sphates (PO ₄ ³⁻) (mg/l)	Total phosphate (P) (mg/l)	Chlorides (Cl) (mg/l)
Big river in low areas, dominated fine sediment (type 1)	6.5-8.5	7.0	5.0	5.0	0.30	3.0	0.10	0.20	100
Big rivers, dominated middle sediment, exception river in Pannonia basin (type 2)	6.5-8.5	7.0	4.5	5.0	0.10	3.0	0.10	0.20	100
Small and middle water courses, level above sea up to 500m, dominated big ground base (type 3)	6.5-8.5	7.0	5.0	6.0	0.10	3.0	0.10	0.20	100
Small and middle water courses, level above sea above 500m, dominated big ground base (type 4)	6.5-8.5	7.0	4.0	5.0	0.30	3.0	0.05	0.10	100
Water courses in Pannonia basin except those that are under type 1 (type 5)	6.5-8.5	6.0	5.0	6.0	0.40	3.0	0.20	0.30	100
Small water courses out of Pannonia basin that are not under type 3 and type 4, as well as water courses that are not determined by the Regulation on determination of water bodies of surface and ground water (Official Gazette 96/10) (type 6)	6.5-8.5	7.0	4.0	5.0	0.10	3.0	0.10	0.15	100
Lakes above the sea level up to 200 m asl, all shallow lakes (up to 10m), all paddle and swamp ecosystems	6.5-8.5	7.0	5.0	6.0	0.30	3.0	0.10	0.20	100
Lakes above the sea level up to 200 m asl, medium depth (up to 10-30m) and deep (depth>30m)	6.5-8.5	7.0	5.0	6.0	0.10	3.0	0.10	0.20	100
Accumulations formed on water body type 1	6.5-8.5	7.0	5.0	6.0	0.30	3.0	0.10	0.20	100
Accumulations formed on water body type 2	6.5-8.5	7.0	4.5	5.0	0.10	3.0	0.10	0.20	100

Table 10 Limit Values of Pollutant for Class $\mathbf{II}^{(1)}$ of Surface Water

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 2 Project Background and Basic Information

Types of surface water	pН	DO (mg/l)	BOD (mg/l)	Total organic carbon (mg/l)	Ammonium ion (NH ₄ -N) (mg/l)	Nitrates (NO ₃ -N) (mg/l)	Orthopho sphates (PO ₄ ³⁻) (mg/l)	Total phosphate (P) (mg/l)	Chlorides (Cl) (mg/l)
Accumulations formed on water body type 3 and type 4	6.5-8.5	8.5 ⁽¹⁾	1.5	2.0	0.05	1.5	0.02	0.05	100
Accumulations formed on water body type 5 and type 6	6.5-8.5	5.0	4.0	5.0	0.40	4.0	0.10	0.15	100
Artificial water bodies	6.5-8.5	5.0	6.0	7.0	0.20	3.0	0.20	0.30	100

(1) Class description correspond to good ecological status according to the classification given in the regulation that determine parameters of ecological and chemical status for surface water. Surface water that belong to this class ensure on the basis of the limit values of quality elements, conditions for functioning of ecosystems, life and fish protection (cyprinidae) and can be used for the same purpose and under same conditions as surface water that belongs to the class

Chapter 4 Facilities Planning of Interceptor

1. Adopted unit cost for comparison of Interceptor No.1 and No.2

(1) Micro-tunneling Cost

Costs are decided by the Actual cost at Belgrade and estimated cost by Preliminary design of New Usce PS in 2009.

Shape	Estimated Cost (Euro/m)	Remarks
Dia 1500mm	5,000	1.2times in case of Arc-line
Dia 2800mm	8,000	340euro/m extra in case of mortar filling inside casing
Dia 3500mm	9,500	
Dia 4000mm	11,000	

(2) Jacking Cost for pipe protection by iron outer pipe

Costs are considered by the hearing of LDA

Shape	Estimated Cost (Euro/m)	Remarks
Dia 1500mm	1,700	Including iron pipe and jagging work
Dia 2000mm	2,300	ditto

(3) Horizontal Direction Drilling Cost

Cost estimated by Preliminary design is adopted. 275,0000euro (in 2009) x 1.3 = 3,575,000 Euro.

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 4 Facilities Planning of Interceptor

(4) Pipe lying cost inside Casing pipe or Pipe gallery

Shape	Construction Cost (Euro/m)		Re	emarks		
Dia 1000mm x 2Line	640	Including material	two	pipes	and	fixing

(5) Pipe lying cost at road

Shape	Construction Cost (Euro/m)	Remarks
Dia 1400mm x 1Line	1,350	Including a pipe material, asphalt demolition, excavation and backfilling, paving, earth retaining, and pumping work.

(6) Maintenance cost

	Cost (Euro/time)	
Inspection	20,000	Including sewer discharge and ventilation inside pipe. Inspection by Human or TV camera.

							Ca	se-1-1								Cas	e-1-2			
							q	1500								Φ	1500			
							Micro	tunneling							Ν	licro t	tunneling			
s	Plan and Section	PNe	J. J. Sow Usc	e PS		RC D Sava	1500 I	_=425	Railwa	HDPE 1400 L=950	(P)N	Jew Us	ce PS		RC D15	iver	-425	Railway	HDPE 14 L=950	- → 400
			<	7	ť	385 Sava 58.5m	River	Raily Raily T	tom ★ vay ▼ teel Pip 22000 x	950m +76.0m to for Protection 1 line	- Y	← +76.0m			385m Sava R 8.5m	iver	₹40 Railwa	m y y Steel Pipe P 2000 x	950m 76.0m 9 for Protection 1 line	on
Condition	of construction	•Deep sha frequency. •Pipe can arc-shape	fts nea be laie line(C	ar River a ed straight ase-1-2)	re require t line by s	ed, Pump shield or	ing up jaggin	and treatment for gr	oundwa much e	ter with easier than	•Shallow difficult to •When pip	shafts c cont pe cro	are easily roal the ma ss the railw	to constru chine in t ay, a casi	uct, but m his short ng steel p	icro t sectio pipe is	cunneling works with on. 5 necessary to cover	arc line is	s too e main.	
Oper Mair	ration and ntenance	Because periodically Cleaning and also w and long s If pipe will	of the y to ex may be entilati pan. Il be da	only one ttend the p e consider ion. Howey amaged, N	line, it sho pipe life. red by the ver it is v lew pipe s	ould be r e worker ery diffic should be	necess s, it is cult to e insta	ary to carry out insp necessary to drain th remove the sludge be lled immidiately.	ection a ne sewa ecause	nd cleaning ge inside pipe, of deep depth	•Because to extend •It is very pipe. Flash because I •If pipe w	of the p the p diffic hing of arge d all be o	e one line ir ipe life. ult to inspe r Poly-pig o iameterr. damaged, No	nstallation ect and cle can be cor ew pipe sl	, it need t ean the pi nsidered, i hould be i	to car pe by but th nstall	ry out inspection an human power becau lese equipments are ed immidiately.	d cleaning use of the very exp	g periodically arc-shaped ensive	All the second second
		RC	Dia	1500 mm	L=	385	m x	5.000 Euro/m	=	1,925,000 Euro	RC	Dia	1500 mm	L=	385 r	n x	6,000 Euro/m	=	2,310,000	Euro
	Dina	HDPE	Dia	1400 mm	L=	950	m x	1,350 Euro/m	=	1,282,500 Euro	HDPE	Dia	1400 mm	L=	950 r	n x	1.350 Euro/m	=	1,282,500	Euro
Sha 10.2	Fipe	Steel	Dia	2000 mm	L=	40	m x	2,300 Euro/m	=	92,000 Euro	Steel	Dia	2000 mm	L=	40 r	n x	2,300 Euro/m	=	92,000	Euro
ank								Sub-	Total	3,299,500 Euro							Sub-	Total	3,684,500	Euro
ucti eft b			H=	23 m		1	n x	522,000 Euro/nos	=	522,000 Euro		H=	8 m		3	n x	110,000 Euro/nos	=	330,000	Euro
o Inter	Shaft		H=	15 m		2	n x	378,000 Euro/nos	=	756.000 Euro										
E #								Sub-	Total	1,278,000 Euro							Sub-	Total	330,000	Euro
	Total									4,577,500 Euro									4,014,500	Euro
Ce	Inspection	Inspection	1		(not po	ossible)					Inspection	n		(not pos	ssible)					
inar	Cleaning	Cleaning			(not po	ossible)					Cleaning			(not pos	ssible)					
inta	and Repairing	Repairing			(not po	ossible)					Repairing			(not pos	ssible)					
Ma	Total									- Euro									-	Euro
				RC Pipe		50	yrs			64,100 Euro/year			RC Pipe		50 yı	rs			52,800	Euro/year
	Construction	Survice		HDPE		80	yrs			16,000 Euro/year	Survice		HDPE		80 yr	rs			16,000	Euro/year
100	cost	Life		Steel		40	yrs			2,300 Euro/year	Life		Steel		40 yr	rs			2,300	Euro/year
LCC				-Cost of s	haft includ	ling RC pi	pe						-Cost of	shaft inclu	uding RC	pipe				4002909-80-55
	Maintainance									- Euro/year	/year					-	Euro/year			
	Total									82,400 Euro/vear									71,100	Euro/year
											· · · · · · · · · · · · · · · · · · ·									

ы Brake down cost for comparison of Interceptor No.1 and No.2

(1) Case1-1 and 1-2

%Repairing cost are estimated 5% of total length of pipe where person will be able to access in river crossing section

4

વ

Case2-1 and 2-2

							Case	e-2-3							Cas	se-2-4				
					đ	Þ 1000×2L	_ine(Φ	3500 Pipe gallery)						Φ1000	2Line(¢	4000 Pipe galle	ery)			
							Micro t	tunneling							Micro	tunneling				
De	escription	PNe	w Usce	PS	D 1000 x	2 Line(D3 Sava F	3500 Pi	ipe Gallery) L=425m	Railway	D1400 x 1 Line L=950m	PN	Jew Us	ce PS	D1000 x 2 Line(D4000 P a River	ripe Gallery) L=4	425m/	Railway	D1400 x 1 Line L=950	Om
			6.0m	~		425+ Sava I 58.5m	n River	Rail	way V ⁺	760m		-76.0m	-	4: Sav ∳58.5m	a River		Railw		-76.0m	10.0m 20.0m
ndition	of construction	•Deep shaf frequency. •One large	ts near diamter	the river r pipe will	are requi be instal	ired pump lled instea	oing up ad of tv	and treatment for g	roundwat by micro t	er with tunneling.	Deep sha frequency. One large	afts nea e diamt	ar the river er pipe <mark>wi</mark> ll	are required pu be installed ins	mping up	o and treatment two pipe installa	for gr	oundwat	er with	
Operation and Maintenance											100000000000000000000000000000000000000								controlling.	
Ope Mai	ration and intenance	Cleaning of sewage to g Visually in Other utili Light and	an be c get the s spection ties suc Ventilat	considered sufficient n of the o ch as opti- tion are no	d by the f flow velo outside pi cal cable: ecesary t	flashing, c ocity. pes is po s can be to maintai	one pipe ssible f installe in in th	e close by using val- from the pipe gallery ed at dead spaces le pipe gallery	ve and pu r.	mp up the	Cleaning sewage to Visually in Other util If pipe wil Light and	can be get th inspect ilities s ill be da Ventil	considered e sufficient ion of the o uch as option amaged, the ation are no	d by the flashing flow velocity. butside pipes is cal cables can be see pipe can be ecesary to main	, one pip possible e install replaced tain in th	from the pipe g ed at dead space I without any dif he pipe gallery	ng valve callery. ces fficulty	e and pu	mp up the	
Ope Mai	ration and intenance	Cleaning of sewage to a Visually in Other utili Light and RC	an be c get the s spection ties suc Ventilat Dia 3	considered sufficient n of the o ch as opti- tion are n 500 mm	d by the f flow velo outside pij cal cable: ecesary t L=	flashing, c ocity. pes is po s can be to maintai 425	ssible f installe in in th m x	e close by using valv from the pipe gallery ed at dead spaces ie pipe gallery 9.500 Euro/m	ve and pu r. =	mp up the 4.037.500 Euro	Cleaning sewage to Visually in Other util If pipe will Light and RC	can be get th inspect ilities s ill be da Ventil Dia	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm	d by the flashing flow velocity. nutside pipes is cal cables can be ecesary to main L= 42	, one pip possible replaced tain in th 5 m x	from the pipe g ed at dead spac l without any dif he pipe gallery 11.000 Euro	allery. ces fficulty	e and pu =	4,675,000 Euro	
Ope Mai	ration and intenance	Cleaning c sewage to g Visually in Other utili Light and RC HDPE	an be c get the spection ties suc Ventilat Dia 3 Dia 1	sonsidered sufficient n of the o ch as opti- tion are no 500 mm 000 mm/2	d by the f flow velo butside pij cal cables ecesary t L= L=	flashing, c pocity. pes is por s can be to maintai 425 425	one pipe ssible f installe in in th m x m x	e close by using value from the pipe gallery ad at dead spaces the pipe gallery 9.500 Euro/m 640 Euro/m	ve and pu r. = =	4.037.500 Euro 272.000 Euro	Cleaning sewage to Visually in Other util If pipe will Light and RC HDPE	can be get th inspect ilities s ill be da Ventil Dia Dia	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1000 mmx2	d by the flashing flow velocity. untside pipes is cal cables can be eccesary to main L= 42 L= 42	, one pip possible replaced tain in th 5 m x 5 m x	from the pipe g ed at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro	ag valve callery. ces fficulty /m /m	e and pu = =	4.675.000 Euro 272.000 Euro	
Ope Mai	ration and intenance Pipe	Cleaning c sewage to p · Visually in · Other utili · Light and RC HDPE HDPE	can be c get the spection ties suc Ventilat Dia 3 Dia 1 Dia 1	sonsidered sufficient n of the o ch as opti- tion are no 500 mm 000 mmx2 400 mm	d by the f flow velo outside pij cal cable: ecesary t L= L= L=	flashing, c pes is po s can be to maintai 425 425 950	one pipe ssible f installe in in th m x m x m x	e close by using value from the pipe gallery ad at dead spaces he pipe gallery 9,500 Euro/m 640 Euro/m 1,350 Euro/m	ve and pu r. = = =	4,037,500 Euro 272,000 Euro 1,282,500 Euro	Cleaning sewage to Visually in Other util If pipe will Light and RC HDPE HDPE	can be get th inspect ilities s ill be da Ventil Dia Dia Dia	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1000 mmx2 1400 mm	d by the flashing flow velocity. intride pipes is cal cables can be ecesary to main L= 42 L= 42 L= 95	, one pip possible replaced tain in th 5 m x 5 m x 0 m x	from the pipe g ed at dead space without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro	gallery. ces fficulty /m /m /m	e and pu = = =	4.675,000 Euro 272,000 Euro 1,282,500 Euro	
nk Shaft ar NO.2) Bed O	ration and intenance Pipe	Cleaning c sewage to p · Visually in · Other utili · Light and RC HDPE HDPE	can be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1	sonsidered sufficient n of the o ch as opti- tion are no 500 mm 000 mmx2 400 mm	d by the f flow velo outside pij cal cables ecesary t L= L= L=	flashing, c pes is po s can be to maintai 425 425 950	ssible f installe in in th m x m x m x m x	e close by using vah from the pipe gallery ed at dead spaces e pipe gallery 9.500 Euro/m 640 Euro/m 1.350 Euro/m Sub-	ve and pu r. = = = -Total	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro	Cleaning sewage to Visually in Other util If pipe will Light and RC HDPE HDPE	can be get th inspect ilities s ill be da Ventil Dia Dia Dia Dia	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1000 mmx2 1400 mm	d by the flashing flow velocity. nutside pipes is cal cables can t see pipe can be ecesary to main L= 42 L= 42 L= 95	, one pip possible reinstall replaced tain in th 5 m x 5 m x 0 m x	from the pipe g ed at dead space without any diff he pipe gallery 11.000 Euro 640 Euro 1.350 Euro	g valve gallery. ces fficulty /m /m /m Sub-1	e and pu = = Fotal	4.675.000 Euro 272.000 Euro 1.282.500 Euro 6.229.500 Euro	
eptor NO.2) E M	Pipe	• Cleaning c sewage to p • Visually in • Uight and RC HDPE HDPE	can be c get the spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H=	sonsidered sufficient n of the o ch as opti- tion are n 500 mm 000 mm 400 mm 30 m	d by the f flow velc outside pi cal cables ecesary t L= L= L=	flashing, c pocity. pes is po s can be to maintai 425 425 950 1	ne pipe ssible f installe in in th m x m x m x m x	e close by using vah from the pipe gallery ed at dead spaces e pipe gallery 9.500 Euro/m 640 Euro/m 1.350 Euro/m Sub- 756.000 Euro/nos	ve and pu 	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro	Cleaning sewage to Visually in Other util If pipe will Light and RC HDPE HDPE	can be get th inspect ilities s ill be da il Ventil Dia Dia Dia H=	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1000 mmx2 1400 mm	d by the flashing flow velocity. uutside pipes is cal cables can b se pipe can be cesary to main L= 42 L= 42 L= 95	; one pip possible replaced tain in th 5 m x 5 m x 0 m x 0 m x	from the pipe g ed at dead space l without any diff he pipe gallery 11,000 Euro 640 Euro 1,350 Euro 756,000 Euro	ag valve gallery, ces fficulty /m /m Sub-1 /nos	e and pu = = Fotal =	4.675,000 Euro 272,000 Euro 1.282,500 Euro 6.229,500 Euro 756,000 Euro	
Lent bank Shaft erceptor NO.2) M O	ration and intenance Pipe Shaft	Cleaning c sewage to p Visually in Other util Light and RC HDPE HDPE	can be c get the spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H=	considered sufficient n of the o ch as opti- cion are n 500 mm 600 mm 400 mm 30 m 20 m	d by the f flow velc outside pin cal cables ecesary t L= L= L=	flashing, c pocity. pes is po s can be to maintai 425 425 950 1 1	me pipe ssible f installe in in th m x m x m x m x n x	e close by using vah from the pipe gallery gd at dead spaces ie pipe gallery 9,500 Euro/m 640 Euro/m 1,550 Euro/m 550,000 Euro/nos 500,000 Euro/nos	ve and pu r. = = = -Total = =	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 500.000 Euro	Cleaning sewage to Visually in Other util If pipe will Light and RC HDPE HDPE	can be get th inspect ilities s ill be da i Ventil Dia Dia Dia H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1000 mmx2 1400 mm 30 m 20 m	d by the flashin flow velocity. uutside pipes is cal cables can t se pipe can be ecesary to main L= 42 L= 42 L= 95	, one pip possible replaced tain in t 5 m x 5 m x 0 m x 1 n x 1 n x	de close by usin from the pipe g d at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756,000 Euro 500,000 Euro	ag valve callery. ces fficulty /m /m Sub-1 /nos /nos	e and pu - - - - - - - - - - - - - - - - - -	4.675.000 Euro 272.000 Euro 1.282.500 Euro 6.229.500 Euro 756.000 Euro 500.000 Euro	
rom Left bank Shaft b Interceptor NO.2) E. ad e. ad	ration and intenance Pipe Shaft	Cleaning c sewage to g Visually in Other utili Light and RC HDPE HDPE	can be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H=	considered sufficient n of the o ch as opti cion are no 5500 mm 000 mm 2500 mm 300 m 20 m	d by the f flow velo utside pi cal cables ecesary t L= L= L=	flashing, c pecity. pes is po s can be to maintai 425 425 950 1 1	m x m x m x m x m x m x m x m x	e close by using val- from the pipe gallery ed at dead spaces ie pipe gallery 9.500 Euro/m 1.350 Euro/m 1.350 Euro/m 500.000 Euro/nos 500.000 Euro/nos 500.000 Euro/nos	ve and pu = = = -Total = = -Total	4,037.500 Euro 272.000 Euro 1.282.500 Euro 5,592.000 Euro 756.000 Euro 500.000 Euro 1.256,000 Euro	•Cleaning sewage to •Visually in •Other util •If pipe wil •Light and RC HDPE HDPE	can be get th inspect ilities s ill be da Ventil Dia Dia Dia H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1000 mms2 1400 mm 30 m 20 m	d by the flashin flow velocity. uutside pipes is cal cables can t se pipe can be ecesary to main L= 42 L= 42 L= 95	, one pip possible replaced tain in th 5 m x 5 m x 0 m x 1 n x 1 n x	ee close by usin from the pipe g d at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756,000 Euro 500,000 Euro	rallery. ces fficulty /m /m /m Sub-1 /nos /nos Sub-1	e and pu = = Fotal = Fotal	4.675.000 Euro 272.000 Euro 1.282.500 Euro 6.229.500 Euro 756.000 Euro 500.000 Euro	
(From Left bank Shaft to Interceptor NO.2) M O	ration and intenance Pipe Shaft Other	·Cleaning c sewage to / ·Visually in ·Other utili ·Light and RC HDPE HDPE (Venilation.	can be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H= H=	considered sufficient n of the o h as opti- cion are no 500 mm 200 mm 20 m 20 m	d by the f flow velc putside pin cal cables ecesary t L= L= L=	flashing, c ocity. pes is po s can be to maintai 425 425 950 1 1	ne pip ssible f installe in in th m x m x m x n x n x	e close by using vah from the pipe gallery ad at dead spaces e pipe gallery 9.500 Euro/m 640 Euro/m 1.350 Euro/m 500,000 Euro/nos 500,000 Euro/nos 500,000 Euro/nos Sub-	ve and pu r. = = -Total = -Total -Total	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 500.000 Euro 1.256.000 Euro 100.000 Euro	Clearing sewage to ·Visually in ·Other uti ·If pipe will ·Light and RC HDPE HDPE (Venilation	can be get th inspect ilities s ill be da d Ventil Dia Dia Dia H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are m, 4000 mm 1000 mm 20 m 20 m etc)	d by the flashin flow velocity. uutside pipes is cal cables can ts ecesary to main L= 42 L= 42 L= 95	, one pip possible e install replaced tain in th 5 m x 5 m x 0 m x 1 n x 1 n x	ee close by usin from the pipe g ed at dead space without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 500.000 Euro	g valve gallery. ces fficulty /m /m Sub-1 /nos /nos Sub-1 Sub-1	e and pu = = Fotal = Fotal Fotal	4.675.000 Euro 272.000 Euro 1.282.500 Euro 6.229.500 Euro 500.000 Euro 1.256.000 Euro 1.256.000 Euro	
(From Left bank Shaft to Interceptor NO.2) M O	ration and intenance Pipe Shaft Other Total	Cleaning c sewage to 0 Visually in Other util Light and RC HDPE HDPE (Venilation,	can be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H= Light ef	considered sufficient n of the o ch as opti- tion are no 500 mm 200 mm 20 m tc)	d by the f flow velc putside pin cal cables ecesary t L= L= L=	flashing, c ocity. pes is po s can be to maintai 425 425 950 1 1	me pipe ssible f installe in in th m x m x m x n x n x	e close by using vah from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1,350 Euro/m 756.000 Euro/nos 500.000 Euro/nos 500.000 Euro/nos Sub- Sub-	ve and pu r. = = -Total = -Total -Total	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 500.000 Euro 1.256,000 Euro 1.00.000 Euro 6.948,000 Euro	Cleaning Sewage to Visually in Other util If pipe will Light and RC HDPE HDPE (Venilation	can be get th inspect ilities s ilities s d Ventil Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- imaged, the ation are no 4000 mm 1000 mms2 1400 mm 20 m etc.)	d by the flashin flow velocity. utside pipes is cal cables can be accesary to main L= 42 L= 42 L= 95	, one pip possible replaced tain in th 5 m x 5 m x 0 m x 1 n x 1 n x	ee close by usin from the pipe g ed at dead spac l without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756,000 Euro 500.000 Euro	g valve ces fficulty /m /m /m Sub-1 /nos /nos Sub-1 Sub-1	e and pu = = Fotal Fotal Fotal	4.675.000 Euro 272.000 Euro 1.282.500 Euro 6.229.500 Euro 500.000 Euro 1.256,000 Euro 1.256,000 Euro 1.00.000 Euro 7.585,500 Euro	
ce (From Left bank Shaft to Interceptor NO.2) M O	Pipe Shaft Other Total	Cleaning c sewage to p Visually in Other utili Light and RC HDPE (Venilation. Inspection	ean be c get the s spection Ventilat Dia 3 Dia 1 Dia 1 H= H= Light eff	sonsidered sufficient nof the och as opti- cion are no 500 mm 000 mm 20 m 20 m tc)	d by the f flow velc outside pip cal cables ecesary t L= L= L=	Alashing, cocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs	me pipe ssible f installe in in th m x m x m x n x n x	e close by using vah from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 756.000 Euro/nos 500.000 Euro/nos 500.000 Euro/nos Sub- Sub- 20.000 Euro/time	ve and pu 	4,037.500 Euro 272.000 Euro 1,282.500 Euro 5,592,000 Euro 756.000 Euro 1,256,000 Euro 1,256,000 Euro 1,00,000 Euro 1,00,000 Euro 2,000 Euro	- Cleaning - Visually in - Visually in - Visually in - Uther uti - Light and - RC - HDPE - HDPE	can be get th inspect illies s ill be da i Ventil Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- imaged, the ation are no 4000 mm 1000 mms2 1400 mm 20 m etc.)	d by the flashing flow velocity. utside pipes is cal cables can be eccesary to main L= 42 L= 42 L= 95	c one pip possible replaced tain in th 5 m x 5 m x 0 m x 1 n x 1 n x	ee close by usin from the pipe g ed at dead spac without any dif ne pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 500.000 Euro 20.000 Euro	ng valve callery. ces fficulty /m /m /m Sub-1 /nos /nos Sub-1 Sub-1	e and pu = = Fotal = Fotal Fotal	4.675.000 Euro 272.000 Euro 1.282.500 Euro 6.229.500 Euro 500.000 Euro 1.256.000 Euro 1.256.000 Euro 7.585.500 Euro 2.000 Euro))) /yea
the form tert bank shart the form tert bank shart to interceptor NO.2)	ration and intenance Pipe Shaft Other Total Inspection, Cleaning	Cleaning c sewage to p Visually in Other utili Light and RC HDPE HDPE (Venilation, Inspection Cleaning	ean be c get the s spection Ventilat Dia 3 Dia 1 Dia 1 H= H= Light eff	sonsidered sufficient n of the o h as opti- tion are n 500 mm 000 mm 20 m 30 m 20 m tc)	d by the f flow velc outside pip cal cables ecesary t L= L= L= every 10 By flash	Aashing, cocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs	me pipe ssible f installe in in th m x m x m x n x n x	e close by using value from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 756.000 Euro/nos 500.000 Euro/nos 500.000 Euro/sub- Sub- 20.000 Euro/time	ve and pu 	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 1.256.000 Euro 1.00.000 Euro 6.948.000 Euro/year 0 Euro/year	Cleaning sewage to -Visually in -Visually in	can be get th inspect ilities s ill be da Ventil Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are n 4000 mm 1000 mm 20 m 20 m etc)	d by the flashing flow velocity. utside pipes is cal cables can t se pipe can be ecesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing	, one pip possible e install replaced tain in t 5 m x 5 m x 0 m x 1 n x 1 n x	ee close by usin from the pipe g d at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 20.000 Euro	ig valve (allery,) ces fficulty /m /m Sub-1 /nos Sub-1 /time	e and pu = = Fotal Fotal Fotal	4.675,000 Euro 272,000 Euro 1.282,500 Euro 6.229,500 Euro 500,000 Euro 1.256,000 Euro 7.585,500 Euro 7.585,500 Euro 2.000 Euro 0 Euro	y y yea
trainance (from Left bank Shaft to Interceptor NO.2) W O	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing	Cleaning c sewage to p Visually in Other utili Light and RC HDPE HDPE (Venilation, Inspection Cleaning Repairing	an be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H= Light ef	sonsidered sufficient n of the o h as opti- tion are n 500 mm 200 mm 20 m tc)	d by the f flow velc utside pi cal cables ecesary t L= L= L= L= By flash (not po	Alashing, cocity, pes is po s can be to maintai 425 425 950 1 1 0 yrs iing pssible)	me pip ssible f installe m x m x m x m x n x n x	e close by using value from the pipe gallery ed at dead spaces 9,500 Euro/m 640 Euro/m 1,350 Euro/m 756,000 Euro/nos 500,000 Euro/nos 500,000 Euro/nos Sub- 20,000 Euro/time	ve and pu r. = = -Total = -Total -Total	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 1.256.000 Euro 1.00,000 Euro 2.000 Euro 2.000 Euro/year 0 Euro/year - Euro/year	Cleaning Coloning Coloning Coloning Coloning Coloning Coloning Coloning Coloning Cleaning	can be get th inspect ilities s ill be da d Ventil Dia Dia Dia H= H=	considered e sufficient ion of the o uch as optimized, the ation are n 4000 mm 1000 mm 20 m 20 m etc.)	d by the flashing flow velocity. utside pipes is cal cables can t se pipe can be ecesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 10 yrs	, one pip possible e install replaced tain in t 5 m x 5 m x 0 m x 1 n x 1 n x	de close by usin from the pipe g e dat dead space l without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 20.000 Euro 14.000 Euro	ng valve rallery. res fficulty /m /m Sub-1 /nos Sub-1 /nos Sub-1 /time	e and pu = = Fotal Fotal	4,675,000 Euro 272,000 Euro 1,282,500 Euro 6,229,500 Euro 500,000 Euro 1,256,000 Euro 1,256,000 Euro 7,585,500 Euro 2,000 Euro 0 Euro 280 Euro	/yea /yea
Maintainance (From Left bank Shaft to Interceptor NO.2) g ad	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total	Cleaning c sewage to f Visually in Visually in Visually in Visually in Visually in Visually in Visually in RC HDPE HDPE (Venilation, Inspection Cleaning Repairing	an be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H= Light ef	sonsidered sufficient n of the o ch as opti- cion are n 5500 mm 000 mm2 400 mm 30 m 20 m tc)	d by the f flow velc utside pi cal cables ecesary t L= L= L= L= By flash (not po	Alashing, cocity, pes is po s can be to maintai 425 425 950 1 1 0 yrs ing possible)	ne pipe ssible f installe m x m x m x n x n x	e close by using value from the pipe gallery ed at dead spaces ie pipe gallery 9.500 Euro/m 640 Euro/m 1.350 Euro/m Sub- 756.000 Euro/nos 500.000 Euro/nos 500.000 Euro/nos Sub- 20.000 Euro/time	ve and pu r. = = -Total = -Total -Total	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 1.256.000 Euro 1.00.000 Euro 2.000 Euro 2.000 Euro/year 0 Euro/year - Euro/year	Cleaning sewage to Visually in Other util If pipe will Light and RC HDPE HDPE (Venilation Inspection Cleaning Repairing	can be get th inspect ilities s il be di bia Dia Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are n 4000 mm 1000 mm 20 m 20 m etc.)	d by the flashing flow velocity. uutside pipes is cal cables can tese pipe can be ecesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs	; one pip possible e install replaced tain in th 5 m x 5 m x 0 m x 1 n x 1 n x	ee close by usin from the pipe g d at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 20.000 Euro 14.000 Euro	ng valve yallery. bes fficulty /m /m ym /m Sub-1 /nos Sub-1 /nos Sub-1 /time	e and pu = = = Fotal Fotal	4.675,000 Euro 272,000 Euro 272,000 Euro 1.282,500 Euro 6.229,500 Euro 500,000 Euro 1.256,000 Euro 1.256,000 Euro 2.000 Euro 0 Euro 280 Euro 280 Euro 280 Euro	/yea /yea /yea
Maintainance (From Left bank Shaft to Interceptor NO.2) E ad	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total	Cleaning c sewage to f Visually in Visually in Vire util Light and RC HDPE HDPE (Venilation, Inspection Cleaning Repairing	an be c get the s spection ties suc Ventilat Dia 3 Dia 1 Dia 1 H= H= Light et	considered sufficient n of the o ch as opti- cion are n (500 mm 000 mm/ 400 mm 30 m 20 m tc) RC Str.	d by the f flow velcoutside pin cal cables eccesary t L= L= L= every 10 By flash (not po	Alashing, c ocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs ning ossible)	ne pipu installe in in th m x m x m x n x n x	e close by using vah from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 756.000 Euro/nos 500,000 Euro/nos 500,000 Euro/nos Sub- 20,000 Euro/time	ve and pu 	4,037,500 Euro 272,000 Euro 1,282,500 Euro 5,592,000 Euro 756,000 Euro 1,256,000 Euro 1,256,000 Euro 1,256,000 Euro 1,256,000 Euro 1,00,000 Euro 2,000 Euro/year 0 Euro/year 2,000 Euro/year 52,200 Euro/year	Cleaning Cleaning Cleaning Repairing	can be get th inspect ilities s il be di bia Dia Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1400 mm 30 m 20 m etc.) RC Str.	d by the flashing flow velocity. utside pipes is cal cables can be eccesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs 100	yrs	ee close by usin from the pipe g ed at dead spac l without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756,000 Euro 20.000 Euro 14.000 Euro	ig valve callery. ces fficulty /m /m Sub-1 /time /time	= = = Fotal Fotal Fotal	4.675.000 Euro 272.000 Euro 272.000 Euro 6.229.500 Euro 500.000 Euro 1.256.000 Euro 1.256.000 Euro 2.000 Euro 2.000 Euro 2.280 Euro 2.280 Euro 59.300 Euro	/yea /yea /yea
Maintainance (From Left bank Shaft to Interceptor NO.2) E. e.	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total	Cleaning c sewage to f Visually in Other utili Dight and RC HDPE (Venilation, Inspection Cleaning Repairing	ran be c get the : tites suc Ventilat Dia 3 Dia 1 Dia 1 H= H= Light ef	considered sufficient n of the o h as opti- cion are m 500 mm 30 m 20 m 30 m 20 m tc) RC Str. HDPE	d by the f flow velc outside pin cal cables ecesary t L= L= L= L= By flash (not po	flashing, c ocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs ning possible) 100 80	m pipe pinstalle m x m x m x n x n x yrs	e close by using vah from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 500.000 Euro/nos 500.000 Euro/nos 500.000 Euro/nos Sub- Sub- 20,000 Euro/time	ve and pu r. = = -Total -Total -Total	4,037,500 Euro 272,000 Euro 1,282,500 Euro 5,592,000 Euro 756,000 Euro 100,000 Euro 1,00,000 Euro 2,000 Euro/year 2,000 Euro/year 2,000 Euro/year 2,000 Euro/year 52,900 Euro/year 19,400 Euro/year	Cleaning Sevage to Visually in Visually i	can be get th inspect illities s ill be di Ventil Dia Dia Dia Dia H= H= Light	considered e sufficient ion of the o uch as opti- maged, the ation are nu- 4000 mm 1000 mms2 1400 mm 30 m 20 m etc) RC Str. HDPE	d by the flashing flow velocity. utside pipes is cal cables can be eccesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs 100 80	c one pip possible e install 5 m x 5 m x 0 m x 1 n x 1 n x 1 n x yrs yrs	ee close by usin from the pipe g ed at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 500.000 Euro 20.000 Euro 14.000 Euro	ig valve callery. ces fficulty /m /m Sub-1 /time /time	e and pu = = Fotal Fotal	4.675.000 Euro 272.000 Euro 1.282.500 Euro 5.229.500 Euro 5.00.000 Euro 1.256.000 Euro 1.256.000 Euro 2.000 Euro 0 Euro 2.800 Euro 2.800 Euro 5.9.300 Euro 5.9.300 Euro 5.9.300 Euro	/yea /yea /yea
Maintainance (From Left bank Shaft to Interceptor NO.2) E. ad	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total Construction cost	Cleaning c sewage to p Visually in Other utili Light and RC HDPE HDPE (Venilation. Inspection Cleaning Repairing Survice Life	can be c get the spection Uentilat Dia 3 Dia 1 Dia 1 Dia 1 H= H= Light eff	sonsidered sufficient n of the o sh as opti- ison are n 500 mm 000 mm ² 400 mm 30 m 20 m tc) RC Str. HDPE	d by the f flow velc outside pip cal cables ecesary t L= L= L= L= By flash (not po	flashing, c ocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs ning ossible) 100 80	yrs	e close by using vah from the pipe gallery ed at dead spaces 9.500 Euro/m 1.350 Euro/m 756.000 Euro/nos 500.000 Euro/nos 500.000 Euro/nos Sub- Sub- Sub-	ve and pu r. = = -Total = -Total -Total	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 1.256.000 Euro 1.00,000 Euro 6.948.000 Euro/year - Euro/year 2.000 Euro/year 52.900 Euro/year 9.4000 Euro/year	Cleaning Servage to Visually in Other util If pipe will Light and RC HDPE HDPE (Venilation Cleaning Repairing Survice Life	can be get th inspect illities s ill be di d Ventil Dia Dia Dia Dia H= H= t.Light	considered e sufficient ion of the o uch as opti- maged, the ation are m 4000 mm 1000 mms2 1400 mm 30 m 20 m etc) RC Str. HDPE	d by the flashing flow velocity. utside pipes is cal cables can to see pipe can be eccesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs 100 80 100	c one pip possible einstall replaced tain in th 5 m x 5 m x 5 m x 0 m x 1 n x 1 n x 1 n x yrs yrs yrs	ee close by usin from the pipe g d at dead spac l without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 20.000 Euro 14.000 Euro	rg valve gallery, ces fficulty /m /m Sub-1 /time /time	e and pu = = = Total Total	4,675,000 Euro 272,000 Euro 1,282,500 Euro 6,229,500 Euro 500,000 Euro 1,256,000 Euro 1,256,000 Euro 7,585,500 Euro 2,000 Euro 0 Euro 2,280 Euro 59,300 Euro 16,000 Euro 2,200 Euro 2,200 Euro	/yea /yea /yea /yea
O Maintainance (From Left bank Shaft to Interceptor NO.2) E. 40	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total Construction cost	Cleaning c sewage to f Visually in Other utili Light and RC HDPE HDPE (Venilation, Inspection Cleaning Repairing Survice Life	can be c get the spection Uentilat Dia 3 Dia 1 Dia 1 Dia 1 H= H= Light ef	considered sufficient n of the o sh as opti- ision are n 5500 mm 000 mms2 400 mm 30 m 20 m tc) RC Str. HDPE Other	d by the f flow velo outside pip cal cables eccesary t L= L= L= L= By flash (not po	flashing, c ocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs ning possible) 100 80	yrs	e close by using value from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 756.000 Euro/nos 500.000 Euro/nos Sub- Sub- 20.000 Euro/time	ve and pu 	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5.592.000 Euro 756.000 Euro 1.256.000 Euro 1.00,000 Euro 1.00,000 Euro 2.000 Euro/year 0 Euro/year - Euro/year 52.900 Euro/year 52.900 Euro/year 52.900 Euro/year 6,700 Euro/year 6,700 Euro/year	Cleaning sewage to Visually in Visually i	can be get th inspect lities s d Ventil Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are n 4000 mm 1000 mms2 1400 mm 30 m 20 m etc) RC Str. HDPE HDPE HDPE HDPE Other	d by the flashing flow velocity. utside pipes is cal cables can t se pipe can be ecesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs 100 80 100 15	c one pip possible einstall replaced tain in th 5 m x 5 m x 5 m x 0 m x 1 n x 1 n x 1 n x yrs yrs yrs yrs	ee close by usin from the pipe g d at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 20.000 Euro 14.000 Euro	ng valve gallery, bes fficulty /m /m Sub-1 /time /time	e and pu = = = = = = = = = = = = = = = = = = =	4.675,000 Euro 272,000 Euro 1.282,500 Euro 6.229,500 Euro 500,000 Euro 1.256,000 Euro 7.565,500 Euro 2.000 Euro 2.000 Euro 2.000 Euro 2.280 Euro 59,300 Euro 16,000 Euro 2.700 Euro 2.700 Euro	/yea /yea /yea /yea
O Maintainance (From Left bank Shaft to Interceptor NO.2) E dO	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total Construction cost	Cleaning c sewage to p Visually in Visually in Visual	an be c get the spection Ventilat Dia 3 Dia 1 Dia 1 H= H= Light ef	considered sufficient n of the o h as opti ion are n 500 mm 20 m 30 m 20 m tc) RC Str. HDPE Other	d by the f flow velo outside pin cal cables eccesary t L= L= L= E= By flash (not po	flashing, c ocity. pes is po s can be to maintai 425 425 950 1 1 1 0 yrs ing sssible) 100 80 15	yrs	e close by using value from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 756.000 Euro/nos 500.000 Euro/nos Sub- Sub- 20,000 Euro/time	ve and pu 	4.037,500 Euro 272,000 Euro 1.282,500 Euro 5.592,000 Euro 5.592,000 Euro 1.256,000 Euro 1.00,000 Euro 1.00,000 Euro 2.000 Euro/year 2.000 Euro/year 2.000 Euro/year 52.900 Euro/year 19.400 Euro/year 6.700 Euro/year 6.700 Euro/year	Cleaning sevage to •Visually in •Other util •If pipe will HDPE HDPE (Venilation Inspection Cleaning Repairing Survice Life	can be get th inspect lities s d Ventil Dia Dia Dia H= H= H=	considered e sufficient ion of the o uch as opti- maged, the ation are n 4000 mm 1000 mm 20 m 20 m etc) RC Str. HDPE HDPE Other	d by the flashing flow velocity. utside pipes is cal cables can t se pipe can be ecesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs 100 80 100 15	c one pip possible e installar replaced tain in ti 5 m x 5 m x 0 m x 1 n x 1 n x 1 n x yrs yrs yrs yrs yrs	ee close by usin from the pipe g e d at dead spac without any dif he pipe gallery 11.000 Euro 640 Euro 1.350 Euro 756.000 Euro 20.000 Euro 14.000 Euro	rg valve (allery. 2es fficulty /m /m /m /m /m /m /m /m Sub-1 /time /time	e and pu	4,675,000 Euro 272,000 Euro 1,282,500 Euro 6,229,500 Euro 500,000 Euro 1,256,000 Euro 1,256,000 Euro 2,000 Euro 0 Euro 280 Euro 280 Euro 280 Euro 59,300 Euro 16,000 Euro 2,700 Euro 2,700 Euro 6,700 Euro 2,280 Euro	/yea /yea /yea /yea /yea
A Maintainance (From Left bank Shaft to Interceptor N0.2) E d	ration and intenance Pipe Shaft Other Total Inspection, Cleaning and Repairing Total Construction cost	Cleaning c sewage to f Visually in Visually in Vire util Light and RC HDPE HDPE (Venilation, Inspection Cleaning Repairing Survice Life	an be c get the spection Ventilat Dia 3 Dia 1 Dia 1 H= H= Light ef	considered sufficient n of the o h as opti- tion are n 500 mm 000 mm 20 m 30 m 20 m tc) RC Str. HDPE Other	d by the f flow velo utside pip cal cables cessary t L= L= L= By flash (not po	flashing, c ocity. pes is po s can be to maintai 425 950 1 1 0 yrs ing sssible) 100 80	yrs	e close by using val- from the pipe gallery ed at dead spaces 9.500 Euro/m 640 Euro/m 1.350 Euro/m 500.000 Euro/nos 500.000 Euro/nos Sub- 20.000 Euro/time	ve and pu 	4.037.500 Euro 272.000 Euro 1.282.500 Euro 5,592.000 Euro 756.000 Euro 1.256.000 Euro 1.00.000 Euro 6.948,000 Euro 2.000 Euro/year - Euro/year 2.000 Euro/year 52.900 Euro/year 6.700 Euro/year 6.700 Euro/year 8.1000 Euro/year	Cleaning sewage to Visually in Visually in Vistreverse in Visually in Visuall	can be get th inspect illities s ill be d d Ventil Dia Dia Dia Dia Dia H= H= h. Light	considered e sufficient ion of the o uch as opti- maged, the ation are no 4000 mm 1400 mm 20 m 20 m etc.) RC Str. HDPE HDPE Other	d by the flashing flow velocity. utside pipes is cal cables can be eccesary to main L= 42 L= 42 L= 95 every 10 yrs By flashing every 50 yrs 100 80 100 15	c one pip possible e installat replaced tain in tl 5 m x 5 m x 0 m x 1 n x 1 n x 1 n x 1 n x yrs yrs yrs yrs	pe close by usin from the pipe g ed at dead space l without any dif he pipe gallery 11.000 Euro 1.350 Euro 756.000 Euro 500.000 Euro 20.000 Euro 14.000 Euro	allery. (allery. ces fficulty /m /m /m Sub-1 /nos Sub-1 /time /time	e and pu = = = Fotal = Fotal Fotal	4.675,000 Euro 272,000 Euro 272,000 Euro 1.282,500 Euro 6.229,500 Euro 500,000 Euro 1.256,000 Euro 1.256,000 Euro 2.000 Euro 2.80 Euro 2.80 Euro 2.700 Euro 16,000 Euro 2.700 Euro 6.700 Euro 6.700 Euro 6.700 Euro 8.6 980 Euro	/yes /yes /yes /yes /yes

%Repairing cost are estimated 5% of total length of pipe where person will be able to access in river crossing section

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 4 Facilities Planning of Interceptor

3. Soil condition of Interceptor No.6 and No.10

(1) Interceptor No.6

_																			
Ge ag	ol. B G	enesis	5	Mark and the symbol	ті	tle			Numeri	ical values	s of physica	I and med	hanical pr	operties				Indica	ators of physical and mechanical prop
					Embankment		CaCO ₃	w	WL	Jc	% ∖Åq	J	φ/c	0,5 -1,0	/le 1,0 -2,0	$V_{\rm P}/V_{\rm s}$	CaCO (%)	^{ta} Th	e content of carbonates
	Bn se	ooks ri dimen	river nts		Dusty clay		2 - 20	21 - 25	31 - 50	0,6 - 0,8 (10)	<u>1.70 - 2.15</u> 1,45 - 1,79	< 2,0	<u>15° - 18°</u> 0,2 - 0,3	53 - 59	69 -110	1070	W (%)	Na	itural moisture
	Ae de	olian posit		HHHHHHHH	Loess		5 - 10	20 - 25	35 - 40	0,4 - 0,9	<u>1,70 - 1,95</u> 1,45 - 1,70	< 1,5	20° - 25° 0,2			200 - 400 100 - 200	Wi (%)	Liq	quid limit
ę	B Sk	ope		5555556	Loessial clay		10 - 20	18 - 25	45 - 50	0,8 - 1,0	1,95 - 2,00	0,7*- 4,0	15				Jo	hd	dex of consistence
	se (di	aimen luvium	ns n)		Clays of Tertiary origin		1	*stre	ngth redu	ed under	the influen	ce of frac	ure poros	ty in the s	ample		Y (Mo/m) Bui	lk density in the wet state
					Changed and fragmented with oxidation	I and a start and a set of a set of a set	40.50	20 - 46	50 - 92	0,9-1.05	1,78 - 1,98	2,1-3,25 (10)	4* - 9* 0,25-0,95	oxidation	n zone	440 -1335 165 - 220	¥d (Mp/m	3) Bui	Ik density in the dry state
					Primary	Carrinaleo, many cay and man	18 - 52	15 - 42	37 - 68	1,0 - 1,05	1,91 - 2,23	7 - 15 (10)	16° - 24° 2,18-4,3	primary :	zone	1250-2400 315 - 790	J (kp/cm	n) Un	iaxial strength
				****	Bentonite	•	15 - 30	45	90 - 105	1,10	1,65						φ/c (kp/cm	n) Co	e angle of Internal friction shesion
		armat		LIBLIKSER	Changed and fragmented with oxidation	Colliderate also and and	45 - 52		42 - 71	0,9 - 1,05	2,01 - 2,07			oxidation	n zone		Ms (kp/cm	ő ^{mo}	odul of compressibility
		ň	inents		Primary	Solid many day and man	12 - 69	18 - 22	43 - 80	0,9 - 1,20	1,79 - 2,12	7 - 28	20° - 25° 2,3 - 2,4	primary :	zone		V _v (m/sec	;) Th	e speed of propagation of longitudina
			ne sedi		Sand				*va	ues of ca	vernous cla	yed and I	mestone				V. (m/sec) Th	e speed of propagation of transverse
	CI IIII		r marir		Limestone						2,33 - 2,49 1,65 - 1,17	534-1068 179-637 63 - 85*		E = 178 0 Ed=50 00 300 000~	00 0-70 000' 480 000	1800-2670 600 - 830	E/Ea (kp/cm	о ^{Мо}	Static Dynamic
			pwate	経営設置	Change of sandstone, ma	rl, clay, marl and bentonite	35 - 45*	10 - 22	40 - 68 de	0,8-1,20* a obtaine	2,37 - 2,64 2,07 - 2,30 d in clav co	444 - 80 5 - 30* mplexes	25" 5,20 arties			2670			
	Γ		Dec	<i>V7Y7Y7</i> Y	Changed and fragmented with oxidation		22 - 36	33 - 45	58 - 85	0,8	1,70 - 1,90			oxidation	n zone	45 - 52			
		5			Primary	Laminated many clays and man	12 - 46	21 - 28	38 - 40 80 - 90	1,08 - 1,2	1,90 - 2,14			primary :	zone	45 - 52			
		eto_			Changed and fragmented with oxidation	Callid mode also and mod													
					Primary	sono many ciay and man		25 - 37	44 - 70	0,95 - 1,2	1,86 - 2,2	11 - 13 30 - 45	28° - 30° 0,36 - 15			1540-2100 420 - 860			

and mechanical properties
ponates
æ
wet state
dry state
al friction
ibility
agation of longitudinal waves
agation of transverse waves
Static V Dynamic

37.00

37.50

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-1 Chapter 4 Facilities Planning of Interceptor

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 4 Facilities Planning of Interceptor

(2) Interceptor No.10

design" (Information only) The summary of current survey documents "Soil characteristic of Interceptor No.10 in Detailed

SECTON WITH PROFILE III-III'		
(Tp 1/Ip-2(112.50)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} T_{p}-15/1 & T_{p}-15 & 21/18 (118,50) \\ (116,25) & \overline{Q_{2}} \overline{Q_{2}} \\ \hline \\ 116,25 & 116,40 \\ 117,45 \\ \hline \\ 128,155 & 21/47 \\ \hline \\ 128,155 & 21/18 $
	8,89 8,89 8,11 11 11 11 11 11 11 11 11 11 11 11 11	8:50 8:50 8:50 8:50 1440 8:50 8:50 8:50 8:50 8:50 8:50 8:50 8:5
0+3334	₹	scola
	A1 BY GN-206 I-2 SOIL CATEGORY	

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-1 Chapter 4 Facilities Planning of Interceptor

1/Tp-3 (113,40) $(Q_2 d^{pq})$ Q₁dpr)⁻ 36/8-16(106,04) 36/B-13(· 10 Q2dP9 M¥LG M¥GL 37 E 6.9 113,4 113,4 116,8 Q₁dpr — M²₃GL — M²₃L ╡┥╹╴┖╻╻╴┖╶┰╌╌╧╶╴╴╴╴╴╴╴╴╄╋╧╼╤╧ ┍╴┰╶┎╝╢╲═┯╼┑╾╷╌┍╎╾┱╼┥╼╷╴┍┝╖╾┍╞╷╸┍╺┍╼ ┑╶╷╴╙╅╋┰╾╻╢╼┰╼╞╧╷╴╷┑╵═┱╼┝╴╿╱╵╴╹╤┰═╽ (MJL) -ř. M₃K 71.00 103.12 111.80 08.26 76.64 76.43 76.33 26.79 36.26 31.83 0+810.34 0+946.91 1+0 80.18 M¹₃L Marls M²/₂K Organogenic limestones С BY GN-206 II SOIL CATEGORY BY GN-206 II SOIL CATEGORY

	4/C-16 1/Tp-4 (TP	5/SB-2 5/SB-1 (11.00) (11200
4/C-15(104,75)		
PV45107	10 Sta 100	Qdpr
100	1// 208	
		╎╬╄╸┑┲ <u>╋╩┲╾</u> ╔╤┶╩╙╗╫╔╸╬╼╌╓┶╛╬┶┹╫┲╋┝╬╤╓╬╝╬┝╋┝╬╤╎╬┧┸╄╋╙┲╋╖╤╎╬┖╝╫┿╅╄╼╸╓╤╡╬┶╝╬┝┪┡╼╖╖╧╎╬┶╝╬┢╇┝╬╤╓╧╶╬
	07.13	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	66.22 1 10.11	6 09
	20.91 1 25 21 1 25 21 1	27.72
	- *\	
Ø2800 =0.8%	L = 3074.08m	
	2+205.89 	89768 +-

			AFVI ERCITION WITH PROFILE IV-1V	187864 	
Ē	11/B-5 (125,00) 11/B-13 (125,10) 11	/B-4 (125,40)		Takovska Svetogorsk	
ZZZZZE CZC CZCZ CZCZ CZCZ CZCZ CZCZ CZC			Tp-14 14/B-7 (117,90) (117,00) (T	₽29/BT−1	
	₩ <u>₩</u> ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩		P 24 F 13 F1 F1 F1 F2 F2 F2 F2 F2 F2		
	╈╗┿╧╖┿╤╫╷╪╢╺╪╢╺╪╢╼╖┝╤╢╺╪╢╼╢╵╩╺╝┉╖╪╢╶╩╖ ╈╗┿╧╖╧╫╷╪╢╶╪╢╺╪╢╶╧╢┝╝╵╬╖╎┾╢╺╪╢╼╵╢╼╷╎┾╢ ╢╞╌╵╬┑╎╫╢╞╝╹╞╝	光达,全场中游过来进行全体,在10年1月1日,14世,14世,44世,中国中国。 47亿,27月20日,20日,17日,17日,17日,17日,17日,17日,17日,17日,17日,17		Cdpr Latt = 3. 124 - 24	
704020274747	······································	\$*************************************	이 여러, (영화) 언제 등 가 여러, (영화) 언제 등 것 (위 도 14 년 년 14 년 14 년 14 년 14 년 27 년 27 년 1 국 14 년 14		
┷╽╘┨┰╖╧┱┚╢╧┶┽║╼┰╢╽╧ ╴║╘┨┰║╧┱┚╟═┾╴╟╒╉╖║╧ ╾┧┰┍┎┽┝╙╬┟╴┖┶╋╴╔╌┰ ╤╋╴┝┱╋╴╩╲┱╻═╅┥╔╦┱	┫╗┥╧┚┝╧┵╎╘┱╎╘┲╎╞┷╢╴┷╵╒┰┤╘┓╟╧┸╵╤╜╎╧┓╎╧ ┫╗┥╧┚┝╒┶╵╒┱╢╘┲╎╞┷╢╴╼╵╒┰╎╘┱╟╧┸╵╒┰╎╘┱╎ ╟┱╴╺┱╴╒┰╴╔┰╵╒╅╴┶┱╴╞┰╶╔┰╴╟┱╴┲┶╸╢┱╴╵┱╸┍┱ ╟┱╴╺┱╴╒┰╴╔┰╴┍	╩┿┝╤╖┝┲╖╽┶╩╵╤╨╵╒┰╎╘┲╢╧╝╵╤╨╵┲╨╷┶╩╵╞┰╵┾╩╵╌ ╤╵┝╅╵║╩╷┝╉╵╪╝╵╤╢┝┲╢┝╘┚┝╬╵╘╨╎╔╅╵╞╩╵┍╫ ┉╪┙╔╢┍╅╴╪╝╶╧╢╔╢┍╅╵╘╝╷╔╢┝╫╵╩┽╴╔╴	,	7 - 27 - 27 - 17 - 19 - 19 - 17 - 27 - 19 - 19 - 17 - 28 - 17 - 28 - 17 - 28 - 17 - 28 - 17 - 28 - 17 - 28 - 17 - 17 - 28 - 28 - 18 - 18 - 18 - 18 - 18 - 18	<u></u>
╺┎╪╖┠╧╵╚╤┥╚╤┥ ╶┐╪╪┿┿╶╤╷╓┽╵┍╅ ╶┐╪	<mark>╈┝╧┶┶╤┙┾╤╽╬╧┝╧┙┾╤┙┾╤╓┝╩┝╘╧╵┾╦┝┿╤┝</mark> ╪ ┢╅╵┺┥┙╤┑╒┧┍╅┝╝┑╶╖┍╫┍┍╖╺╄┙╶╝╸┍╢╺┾┙╺┶╸ ┍┪╶┨╴┍╫╺┶			╫╧┿╤┿╦╫╦╓╺╧┍┿╧┑┿╧┑┿╧┿┿╧┿┿╪╖┾╤╖┍╤╓╧╝┝╤ ┲┙╧┷╶╔╖┍┰╢┍╪┙╘╩╷╔╧┙╔┧╹┝┙╺╌╢╞╢┍┨┍┰╿╧╖ ┲┙╧┷╴╤╢┍╢┍╪┙╘╩╷╔╧┙╔┧╹┿┙╞┰╢╞╢┍┨╺┟╝╶╧╢	
דער אידער איז				╬╬╬╪╪ ╤╫┿╪╪	▝▛▔▋▔▙▔▙▔▖▖₩▁╵╨▁▁▁▎
6 125.30	2	2 120.60	0 117.10	3 12211	
9.64 75.6	3.63	202 205	180	24 88	
4		₩	4	8	
		^원 V3			
+ 912.01	989 989 981	+0 55 06	+ 107.83	+ 138.40	
	<u> </u>	N	M2 ² K Organogenic limesto	vnes	
			A3		
			BY GN-206 II SOIL CATEGORY		BY C

The categorization for defining the geotechnical conditions of tunneling (categories A, B, C, D, E and F), was performed according to the data obtained on the basis of available research, which can be evaluated differently. It is the entire categorization was conducted for the excavation by the method of mechanized shield.

The characteristics of these categories are given in the following table:

Environment	Chainage	The appearance of water in excavation (m3/dan/m')	JA strength (MPa)	cracked- dividity	swelling (KPa)	GT Categ.	category by GN-200
M31 (K,BR,BL)	0+033,00 0+300,00	+ -	2,05; 35,3-38,2	+++	-	Е	III-IV; V-VI
K14,5(K,BR)	0+300,00 0+680,00	0+420,00 0+680,00 (0,35-1,20)	17,0-52,0	++	-	A1	V, VI, VII
M22K M31L	0+680,00 1+210,00	-	(2,2-10) K (2,5-3,2) L	++	-	С	III-IV
М22К	1+210,00 2+000,00	1+210,00 1+285,00 (0,65-0,85)	1,9-2,6	++	-	В	III-IV
M22K	2+000,00 2+230,00	(245.00)	5,2-8,9	++	-	A3	III-IV
M31K	2+230,00 2+340,00	(255,00-325, 00)	11,2-23,5	+	-	A2	V-VI
M32GL, M32 L	2+340,00 2+470,00	-	1,8	-	107	С	III-IV
dpr M32GL	2+470,00 2+755,00	(0.10)	<1,8	-	100-295	F	III
M32L	2+755,00 2+820,00	-	1,8	-	-	F	III-IV
t1	2+820,00 3+020,00	(0,05-0,10) For sands (,00-10,00)	_	_	-	F	Ш

Geotechnical category "A"

The section with chainages 0 + 300 - 0 + 680 - A1g= 21,7-27,7 kN/m3 f1 = 35 - 49° c1 = 3028- 8034kN/m2 sS=17 000 -52 000 kN/m2 Vp = 2650 - 5360 m/s Vs = 1700 - 2700 m/s Edyn = 16,8 - 52,7 GN/m2

The section with chainages 2 +000-2 +230 - A3 g = 19,6-21,2 kN/m3 $f1 = 31 - 33^{\circ}$ c = 834 - 1545 kN/m2sS=5 289 -8 957 kN/m2 Vp = 1900 - 2160 m/s Vs = 890 - 1000 m/sEdyn = 4,27 - 6,64 GN/m2n = 0.34 - 0.36The section with chainages 2+230-2+340 -A2 g = 23,1 - 25,8 kN/m3f1= 33-37° c1= 3027-4572 kN/m2 sS=11 178 -23 550 kN/m2 Vp = 3160 - 3960 m/s Vs = 1000 - 2250 m/sEdyn = 16,02 - 34,61 GN/m2 n = 0.28 - 0.35

The geotechnical category "b"

The section of chainages 1+210-2+000,00g = 17,5-20,25 kN/m3 f = $30 - 33^{\circ}$ c = 329-405 kN/m2 sS=1 953 -2 663 kN/m2 Vp = 1780 - 2840 m/s Vs = 820 - 1340 m/s Edyn = 3,6 - 9,1 GN/m2 n = 0,34 -0,40

Geotechnical category "C"

The section with chainages 0 +680-1 +210.00 g = 17,2-19,5 kN/m3 Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 4 Facilities Planning of Interceptor

	In the presence of water	Residual	In naturally moist condition			
Choor strongth to st	$\phi = 10-14^{\circ}$	$\phi rez = 7^{\circ}$	$\varphi 1 = 14-16^{\circ}$			
Shear strength test	c = 13-15 kN/m2	crez=0 kN/m2	c1 = 325-380 kN/m2			
Trianial test	$\varphi u = 19-20^{\circ}$					
Triaxial test	Cu = 18-29 kN/m2	-	-			

sB=66 kN/m2 sC=2524 - 3221 kN/m2 $Vp = 1400 - 1560 \text{ m/s} \quad Vs = 650 - 730 \text{ m/s}$ Edyn = 2,37 - 2,85 GN/m2n = 0,36 - 0,38

Geotechnical category "D"

The section with chainages 2+340-2 +470.00

g = 18,5-20,5 kN/m3

	In the presence of water	Residual
Shear strength test	φ = 13-19°	φ rez= 5-9°
	c =15-30 kN/m2	crez=0 kN/m2

By GN-200 standards, the environment belongs to II-III category. According to GN-206 classification the entire complex belongs to II-III category.

Marls M32L- dusty, sporadically clayey. They are gray in color, tabular to massive, hard and brittle. With the loss of humidity they are divided into 2-5cm thick tables. Along the tables, limonite in the form of scum is deposited. In the mass, sub-vertical cracks, rough and of uneven surfaces are present. The environment is virtually incompressible, waterproof.

The values of physical and mechanical parameters are in the following range:

gΞ	17.9-20.8	kN/m3
5	17,7 20,0	KI (/ III.)

	In the presence of water	In naturally moist
		condition
Sheer strongth test	$\varphi = 10-20^{\circ}$	$\varphi = 13^{\circ}$
Shear strength test	c = 25-35 kN/m2	c = 326 kN/m2
Trianial (and	$\varphi u = 18^{\circ}$	
Triaxiai test	Cu = 28 kN/m2	-

sB= 107 kN/m2 sc= 1800 kN/m2
$Vp = 1640 - 1650 \text{ m/s} \quad Vs = 740 - 800 \text{ m/s}$ Edyn = 3,13 - 3,42 GN/m2 g = 0,35 -0,37

Geotechnical category "E"

The section with chainages 0 +033-0+300.00

g= 17,5-21,0 kN/m3

	In the presence of water	In naturally moist condition
Shear strength test	$\varphi = 21^{\circ}$	$\varphi 1=21^{\circ}$
	c = 4kN/m2	c1=4 kN/m2

 $sc=2\ 050\ kN/m2$ Vp = 1830 m/s Vs = 870 m/s Edyn = 4,35 GN/m2 n = 0,35

Geotechnical category "F"

The section with chainages 2 +470-2 +740 - F2

g = 18,4-19,8 kN/m3

	In the presence of water	Residual
Shoor strongth tost	φ= 11-12°	φrez= 7-10°
Snear strength test	c=14-16 kN/m2	crez=0-7 kN/m2
Triaxial test	-	-

Ms = 7.000-12.000 kN/m2

sB = 100-145 kN/m2

The section with chainages $2\ \mbox{+}740\mbox{-}2\ \mbox{+}820\mbox{-}F1$

g= 17,9-20,8 kN/m3

	In the presence of water	In naturally moist condition
Shaar strongth tast	$\varphi = 10-20^{\circ}$	$\varphi = 13^{\circ}$
Shear strength test	c = 25-35 kN/m2	c = 326 kN/m2
Trianial test	$\varphi u = 18^{\circ}$	
I maxial test	Cu = 28 kN/m2	-

sB= 107 kN/m2 sc= 1800 kN/m2 Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 4 Facilities Planning of Interceptor

 $Vp = 1640 - 1650 \text{ m/s} \quad Vs = 740 - 800 \text{ m/s}$ Edyn = 3,13 - 3,42 GN/m2 n = 0,35 -0,37

The section with chainages 2 +820-3 +020 - F3

g= 18.0-19.0 kN/m3

	In the presence of water	Rezidualno
Shear strength test	φ= 10-20°	φ rez= 8-11°
Shear strength test	c=8-12 kN/m2	crez=0-5 kN/m2
Triavial test	φ= 22°	
IIIaxiai test	c=25 kN/m2	-

Ms= 3.500-8.000 kN/m2 sB= 110 kN/m2

Chapter 5 Facilities Planning of Pumping Station

1. Design calculation of New Usce PS

(1) Capacity Calculation

1) Inlet

	Unit	2031
Flow	(m ³ /s)	3.345
Water depth	(m)	1.06
Width of Channel	(m)	2.00
Hydraulic velocity	(m/s)	1.60

2) Screen channel

	Unit	2031
Flow (Q)	(m ³ /s)	3.345
Number of Channel (N)	(nos)	2
Width and Depth (B×H)	(m)	3.0×0.98
Area (a)	(m ²)	5.10
Velocity (v) = Q/a	(m/s)	0.57

3) Sand pit

The target diameter of sand removal is above 1.0mm in this pumping station.

	Unit	2031
Flow (q)	(m ³ /s)	3.345
Number of Channel (N)	(Line)	2
Size of Channel (B×L×H)	(m)	4.0×13.0×1.2
Area (a)	(m ²)	9.60
Surface Area (A)	(m ²)	104.0
Volume (Vo)	(m ³)	61.2
Load of Surface (r) = Q/A	$(m^3/m^2 \cdot day)$	2,780
Velicoty (v) = Q/a	(m/s)	0.35
Retention time (T) = V_0/Q	(sec)	18.3
Diameter of sand	(mm)	1.0
Sink speed (vo)	(m/s)	0.1
Settling time (t) = H/vo	(sec)	12
Ratio of sand removal $d=1-(1/(1+T/t))$	(%)	60

4) Pump

	Unit	2031
Flow (Q)	(m ³ /s)	3.350
Number of Pump (N)	(nos)	4Duty +1Stand-by
Flow per pump(q)	(m ³ /min)	50.2
Pump Diameter (D)	(mm)	$\frac{600}{146 \times (50.2/1.5 \sim 3.0)^{0.5}}$
Water level of Pump pit	(m)	+69.800
Water level of Outlet MH	(m)	+78.700
Actual head loss	(m)	8.90

Total head loss

Design criteria is listed as below

① BOP at Inflow pipe : +69.80m

② Planned suction level : +69.80m

③ Water level of Outlet MH: +78.70m

(4) Length and Diameter of Pressured pipe : Dia1000 x 2line L=500m,

Dia1400 x 1 line L=950m

Total	head	loss
	Total	Total head

Actual head loss	ha=8.90m
Pipe loss	$hf=10.666 \times 130^{-1.85}$ $\times 1.00^{-4.87} \times 100.4^{1.85}$ $\times 500m=3.31m$ $hf=10.666 \times 110^{-1.85}$ $\times 1.40^{-4.87} \times (200.8)^{1.85}$ $\times 950m=4.40m$ Total 7.71m
Pump loss	hp=2.0m
Confluent loss	ho=1.0m
Total head loss	$H=8.90+7.71+2.0+1.0 = 19.61m \Rightarrow 20.0m$

Chapter 6 Facilities Planning of Veliko Selo WWTP

1. Comparison of Sewage Treatment Process

1.1 Anaerobic Anoxic Oxic Process (A2O)

(1) **Design Calculation of Bioreactor**

Bioreactor	Anaerobic anoxic oxic process
Number of bioreactor tank	48 tanks
Design flow	448,700 m ³ /day
MLSS concentration	3,000 mg/l
Dissolved oxygen	2.5 mg/l
Lowest monthly sewage temperature	10 degree Celsius
ASRT (aerobic solid retention time)	10.7 day
HRT (hydraulic retention time)	21.3 hour
Solid concentration of return sludge	0.9 %
Return sludge ratio	50 %
Circulation ratio	80 %
Dimension of anaerobic tank	10 mW x 9.7 mL x 6 mD
Dimension of anoxic tank	10 mW x 68.0 mL x 6 mD
Dimension of oxic tank	10 mW x 60.8 mL x 6 mD
Diffuser of oixc tank	Ultrafine bubble diffuser
Mixer of anoxic tank	Top-entry agitator
Circulation pump	Low head pump

(2) Design Calculation of Aeration Requirement

Oxygen for oxidation of organic substance	25,398 kg-O ₂ /day
Oxygen for nitrification of NH ₄	48,803 kg-O ₂ /day
Oxygen for endogenous respiration of MLSS	42,035 kg-O ₂ /day
Oxygen for maintaining dissolved oxygen	2,580 kg-O ₂ /day
Total actual oxygen requirement (AOR)	118,816 kg-O ₂ /day
Standard oxygen requirement (SOR)	190,643 kg-O ₂ /day
Oxygen transfer efficiency	32.2 %
Aeration requirement	1,475 m ³ /min
Blower	Multi-stage centrifugal
Specification of blower	270 m ³ /min x 70 kPa x 420 kW
Number of blower	8 nos. (2 standby)

1.2 Step Feed Type Nitrification Denitrification Process with Coagulant (SFNDP)

(1) **Design Calculation of Bioreactor**

Bioreactor	Step feeding nitrification denitrification process				
Number of bioreactor tank	48 tanks				
Design flow	448,700 m ³ /day				
MLSS concentration	3,000 mg/l				
Dissolved oxygen	2.5 mg/l				
Lowest monthly sewage temperature	10 degree Celsius				
ASRT (aerobic solid retention time)	10.7 day				
HRT (hydraulic retention time)	17.7 hour				
Solid concentration of return sludge	0.9 %				
Return sludge ratio	50 %				
Circulation ratio	0 %				
Dimension of anoxic tank (1 st stage)	10 mW x 13.7 mL x 6 mD				
Dimension of oxic tank (1 st stage)	10 mW x 13.7 mL x 6 mD				
Dimension of anoxic tank (2 nd stage)	10 mW x 19.2 mL x 6 mD				
Dimension of oxic tank (2 nd stage)	10 mW x 19.2 mL x 6 mD				
Dimension of anoxic tank (3 rd stage)	10 mW x 25.7 mL x 6 mD				
Dimension of oxic tank (3 rd stage)	10 mW x 25.7 mL x 6 mD				
Diffuser of oixc tank	Ultrafine bubble diffuser				
Mixer of anoxic tank	Top-entry agitator				

(2) Design Calculation of Aeration Requirement

Oxygen for oxidation of organic substance	23,692 kg-O ₂ /day
Oxygen for nitrification of NH ₄	42,036 kg-O ₂ /day
Oxygen for endogenous respiration of MLSS	51,255 kg-O ₂ /day
Oxygen for maintaining dissolved oxygen	1,683 kg-O ₂ /day
Total actual oxygen requirement (AOR)	118,666 kg-O ₂ /day
Standard oxygen requirement (SOR)	190,402 kg-O ₂ /day
Oxygen transfer efficiency	32.2 %
Aeration requirement	1,473 m ³ /min
Blower	Multi-stage centrifugal
Specification of blower	270 m ³ /min x 70 kPa x 420 kW
Number of blower	8 nos. (2 standby)

1.3 Carrier Added Activated Sludge Process (CAASP)

(1) **Design Calculation of Bioreactor**

Bioreactor	Carrier added activated sludge process
Number of bioreactor tank	48 tanks
Design flow	448,700 m ³ /day
MLSS concentration	3,000 mg/l
Dissolved oxygen	3.0 mg/l
Lowest monthly sewage temperature	10 degree Celsius
HRT (hydraulic retention time)	8.0 hour
Solid concentration of return sludge	0.9 %
Return sludge ratio	50 %
Circulation ratio	80 %
Dimension of anaerobic tank	10 mW x 9.7 mL x 6 mD
Dimension of anoxic tank	10 mW x 22.5 mL x 6 mD
Dimension of oxic tank	10 mW x 19.5 mL x 6 mD
Inlet screen	Fine screen
Diffuser of oixc tank	Fine bubble diffuser
Mixer of anoxic tank	Top-entry agitator
Circulation pump	Air lift pump
Outlet screen	Bar screen

(2) Design Calculation of Aeration Requirement

Oxygen for oxidation of organic substance	26,168 kg-O ₂ /day				
Oxygen for nitrification of NH ₄	48,803 kg-O ₂ /day				
Oxygen for endogenous respiration of MLSS	13,461 kg-O ₂ /day				
Oxygen for maintaining dissolved oxygen	3,051 kg-O ₂ /day				
Oxygen for carrier	7,507 kg-O ₂ /day				
Total actual oxygen requirement (AOR)	98,990 kg-O ₂ /day				
Standard oxygen requirement (SOR)	166,590 kg-O ₂ /day				
Oxygen transfer efficiency	16.4 %				
Aeration requirement	2,531 m ³ /min				
Aeration requirement for screen	236 m ³ /min				
Total aeration requirement	2,766 m ³ /min				
Blower	Multi-stage centrifugal				
Specification of blower	510 m ³ /min x 64 kPa x 720 kW				
Number of blower	8 nos. (2 standby)				

2. Performance Analysis of Sewage Treatment Process

2.1 Wastewater Treatment Plant

The WWTPs of each process are listed together with the design capacities in Table 1 and Table 2, respectively.

Code	Prefecture	Name	Design capacity
S01	Hokkaido	Fushikogawa WWTP	61,000 m ³ /day
S02	Hokkaido	Toubu WWTP	160,000 m ³ /day
S03	Miyagi	Hirosegawa WWTP	22,500 m ³ /day
S04	Chiba	Nishiura WWTP	81,000 m ³ /day
S05	Fukui	Tezutsu WWTP	40,925 m ³ /day
S06	Gifu	Kakamigahara WWTP	214,414 m ³ /day
S07	Gifu	Ogakishi WWTP	114,300 m ³ /day
S08	Gifu	Tokishi WWTP	25,200 m ³ /day
S09	Aichi	Yahagigawa WWTP	383,000 m ³ /day
S10	Aichi	Kinuura toubu WWTP	51,500 m ³ /day
S11	Aichi	Toyogawa WWTP	141,500 m ³ /day
S12	Aichi	Gojogawa sagan WWTP	127,975 m ³ /day
S13	Aichi	Nikkogawa jouryuu WWTP	117,250 m ³ /day
S14	Aichi	Gojogawa ugan WWTP	66,800 m ³ /day
S15	Aichi	Gamagorishi WWTP	46,100 m ³ /day
S16	Aichi	Nanbu WWTP	32,000 m ³ /day
S17	Mie	Nagashima WWTP	10,000 m ³ /day
S18	Mie	Chuuou WWTP	15,000 m ³ /day
S19	Shiga	Konan Chuubu WWTP	346,500 m ³ /day
S20	Shiga	Kosai WWTP	75,000 m ³ /day
S21	Shiga	Touhokubu WWTP	149,625 m ³ /day
S22	Shiga	Takashima WWTP	25,200 m ³ /day
S23	Kyoto	Rakusai WWTP	208,000 m ³ /day
S24	Kyoto	Kisshoin WWTP	114,000 m ³ /day
S25	Kyoto	Toba WWTP	805,000 m ³ /day
S26	Kyoto	Ishida WWTP	149,900 m ³ /day
S27	Osaka	Ryuge WWTP	138,000 m ³ /day
S28	Osaka	Takatsuki WWTP	182,610 m ³ /day
S29	Osaka	Harada WWTP	425,500 m ³ /day

Table 1 Wastewater Treatment Plants of SFNDP

Code	Prefecture	Name	Design capacity
S 30	Osaka	Sanbo WWTP	120,200 m ³ /day
S31	Нуодо	Mukogawa Karyuu WWTP	375,300 m ³ /day
S32	Wakayama	Ito WWTP	34,000 m ³ /day
S33	Wakayama	Naga WWTP	18,150 m ³ /day
S34	Shimane	Toubu WWTP	81,000 m ³ /day
S35	Okayama	Kojima WWTP	41,900 m ³ /day
S36	Okayama	Mizushima WWTP	57,900 m ³ /day
S37	Okayama	Tamashima WWTP	43,920 m ³ /day
S38	Okayama	Sanyo WWTP	16,990 m ³ /day
S39	Hiroshima	Takehara WWTP	1,880 m ³ /day
S40	Yamaguchi	Sanin WWTP	63,400 m ³ /day
S41	Yamaguchi	Yamaguchishi WWTP	53,080 m ³ /day
S42	Yamaguchi	Iwakuni minami WWTP	11,500 m ³ /day
S43	Yamaguchi	Sanyo WWTP	6.200 m ³ /day
S44	Tokushima	Hokubu WWTP	38,200 m ³ /day
S45	Ehime	Seibu WWTP	52,850 m ³ /day
S46	Ehime	Hokubu WWTP	11,400 m ³ /day
S47	Ehime	Hokubu WWTP	7,125 m ³ /day
S48	Kochi	Takasu WWTP	28,260 m ³ /day
S49	Kochi	Geji WWTP	78,800 m ³ /day
S50	Fukuoka	Fukuma WWTP	2,100 m ³ /day
S51	Kumamoto	Kumamoto hokubu WWTP	113,500 m ³ /day

Table 2 Wastewater Treatment Plants of A2O

Code	Prefecture	Name	Capacity
A01	Hokkaido	Abashiri WWTP	20,265 m ³ /day
A02	Miyagi	Senshio WWTP	222,000 m ³ /day
A03	Ibaragi	Kasumigaura WWTP	152,000 m ³ /day
A04	Ibaragi	Yasato WWTP	6,480 m ³ /day
A05	Chiba	Nanbu WWTP	261,000 m ³ /day
A06	Chiba	Takase WWTP	102,900 m ³ /day
A07	Chiba	Kisarazu WWTP	57,000 m ³ /day
A08	Chiba	Matsugoshima WWTP	53,200 m ³ /day
A09	Tokyo	Mimamitama WWTP	162,450 m ³ /day
A10	Tokyo	Kitatama No.1 WWTP	260,700 m ³ /day
A11	Tokyo	Tamagawa jouryuu WWTP	261,900 m ³ /day

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

Code	Prefecture	Name	Capacity
A12	Tokyo	Kitatama No.2 WWTP	80,800 m ³ /day
A13	Tokyo	Asaka WWTP	133,900 m ³ /day
A14	Tokyo	Hachiouji WWTP	160,000 m ³ /day
A15	Tokyo	Kiyose WWTP	327,800 m ³ /day
A16	Tokyo	Mikawashima WWTP	800,000 m ³ /day
A17	Tokyo	Morigasaki WWTP	1,540,400 m ³ /day
A18	Tokyo	Ariake WWTP	120,000 m ³ /day
A19	Tokyo	Ukima WWTP	220,000 m ³ /day
A20	Tokyo	Narise WWTP	109,500 m ³ /day
A21	Kanagawa	Hokubu No.1 WWTP	81,200 m ³ /day
A22	Kanagawa	Kohoku WWTP	284,500 m ³ /day
A23	Kanagawa	Kanazawa WWTP	265,900 m ³ /day
A24	Kanagawa	Hokubu No.2 WWTP	388,400 m ³ /day
A25	Kanagawa	Ezaki WWTP	318,600 m ³ /day
A26	Kanagawa	Asao WWTP	62,800 m ³ /day
A27	Fukui	Takahamachou WWTP	6,629 m ³ /day
A28	Gifu	Kakamigahara WWTP	214,414 m ³ /day
A29	Gifu	Mizunamishi WWTP	15,300 m ³ /day
A30	Aichi	Kinuura seibu WWTP	103,600 m ³ /day
A31	Aichi	Nishiyama WWTP	60,000 m ³ /day
A32	Aichi	Shibata WWTP	210,000 m ³ /day
A33	Aichi	Nanbu WWTP	14,900 m ³ /day
A34	Mie	Hokubu WWTP	178,000 m ³ /day
A35	Mie	Nanbu WWTP	78,800 m ³ /day
A36	Mie	Kumodegawa sagan WWTP	55,140 m ³ /day
A37	Mie	Matsusaka WWTP	56,100 m ³ /day
A38	Mie	Miyakawa WWTP	40,200 m ³ /day
A39	Shiga	Konan Chuubu WWTP	346,500 m ³ /day
A40	Kyoto	Toba WWTP	805,00 m ³ /day
A41	Osaka	Nawate WWTP	76,000 m ³ /day
A42	Osaka	Chuuou WWTP	302,360 m ³ /day
A43	Osaka	Nagisa WWTP	198,200 m ³ /day
A44	Osaka	Harada WWTP	425,500 m ³ /day
A45	Osaka	Sayama WWTP	111,500 m ³ /day
A46	Osaka	Imaike WWTP	206,000 m ³ /day
A47	Osaka	Oui WWTP	100,000 m ³ /day
A48	Osaka	Chuubu WWTP	70,200 m ³ /day

Code	Prefecture	Name	Capacity
A49	Osaka	Nanbu WWTP	38,100 m ³ /day
A50	Osaka	Senboku WWTP	145,900 m ³ /day
A51	Hyogo	Tamazu WWTP	122,750 m ³ /day
A52	Nara	Yamatogawa No.1 WWTP	370,200 m ³ /day
A53	Nara	Yamatogawa No.2 WWTP	174,200 m ³ /day
A54	Nara	Udagawa WWTP	12,100 m ³ /day
A55	Okayama	Yoshiigawa WWTP	7,000 m ³ /day
A56	Tokushima	Yoshinogawa WWTP	11,000 m ³ /day
A57	Fukuoka	Mikasagawa WWTP	283,600 m ³ /day
A58	Fukuoka	Tataragawa WWTP	67,100 m ³ /day
A59	Fukuoka	Fukudou WWTP	27,000 m ³ /day
A60	Fukuoka	Yabegawa WWTP	19,200 m ³ /day
A61	Fukuoka	Onogawa chuuryuu WWTP	37,600 m ³ /day
A62	Fukuoka	Toubu WWTP	195,300 m ³ /day
A63	Fukuoka	Seibu WWTP	296,800 m ³ /day

2.2 Annual Average Qualities

Annual average values of influent and effluent qualities of the WWTPs are summarized in Table 3 and Table 4, respectively.

Cada	BOD ₅ [mg/l]		COD _{Mn} [mg/l]		SS [mg/l]		TN [mg/l]		TP [mg/l]	
Code	In	Out	In	Out	In	Out	In	Out	In	Out
S01	170	3.4	NA	NA	140	ND	26.0	7.8	2.8	0.2
S02	270	3.0	NA	NA	200	ND	36.0	8.4	8.4	3.0
S03	210	1.1	130	5.3	220	ND	37.0	1.8	4.7	1.8
S04	249	1.1	150	5.8	378	2.7	43.9	7.2	8.8	0.5
S05	193	2.7	142	8.5	150	2.5	29.1	4.8	5.8	0.5
S06	140	ND	92	5.4	180	ND	32.0	6.4	3.9	0.8
S07	82	1.8	60.4	5.4	121	1.9	20.1	6.7	3.0	1.0
S08	143	5.4	88	9.5	147	4.3	23.4	6.2	3.1	1.0
S09	190	ND	95	6.8	180	1.5	28.0	6.3	4.4	0.3
S10	270	2.8	140	9.5	200	3.1	50.0	6.1	10.0	0.2
S11	230	ND	110	7.9	170	1.1	37.0	6.8	5.3	0.3
S12	190	1.6	110	7.4	200	ND	38.0	6.5	4.1	0.3
S13	170	ND	100	7.1	160	2.1	41.0	6.7	4.5	ND

 Table 3
 Annual Average Qualities of SFNDP

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

S14	320	1.8	160	7.7	290	2.7	44.0	6.2	5.3	0.2
S15	166	1.1	85	7.8	77.0	1.1	42.5	7.6	4.2	0.2
S16	165	12.6	99.2	8.1	108	2.4	42.0	9.0	4.5	0.2
S17	130	3.0	79	8.0	134	3.0	36.0	5.7	3.8	0.4
S18	132	2.4	111.7	8.8	168	3.9	27.5	2.3	3.6	0.6
S19	170	0.9	88.9	5.2	179	0.6	29.9	5.5	3.2	0.1
S20	150	1.0	85.0	5.7	147	ND	25.6	3.9	3.0	0.1
S21	130	0.6	77.3	4.8	146	0.6	26.8	2.2	2.6	0.1
S22	160	1.0	77.5	5.7	118	ND	26.1	3.6	2.6	0.0
S23	101	1.9	61.6	9.5	86	ND	19.2	10.0	2.2	1.2
S24	89	3.9	54	6.6	73	2.0	16.0	7.8	1.6	0.6
S25	115	2.9	67.5	6.5	129	1.7	16.5	7.4	2.1	0.4
S26	190	3.7	94	8.0	214	5.0	21.0	8.5	2.9	0.9
S27	100	1.0	55	6.2	55	1.0	25.0	5.9	2.4	0.1
S28	361	5.0	146	8.0	280	2.0	30.0	8.4	6.5	1.0
S29	182	2.7	94	11.0	205	2.0	28.0	12.0	3.7	0.4
S30	123	2.7	80	16.9	92	2.0	23.0	6.7	3.1	0.4
S31	110	2.0	54	6.6	130	1.5	22.0	6.8	3.1	0.5
S32	143	1.9	82.5	7.3	138	1.1	30.5	4.2	3.0	0.5
S33	67	1.2	42	4.6	22	1.0	26.1	3.1	2.1	0.3
S34	154	1.5	100	8.6	203	1.2	33.1	6.2	3.8	0.2
S35	136	3.0	57	7.2	102	1.0	36.0	7.4	3.3	0.2
S36	145	2.6	56.8	8.3	62	2.0	30.2	6.0	2.9	0.2
S37	229	3.5	102	8.5	151	2.2	49.6	5.6	4.7	0.4
S38	234	0.5	132	6.6	232	ND	41.0	3.5	5.4	0.5
S39	102	5.2	73	7.5	84	5.0	32.5	4.0	3.3	0.3
S40	200	4.3	120	11.5	180	3.0	56.5	16.0	5.6	1.0
S41	133	3.0	83.6	9.3	115	1.6	25.0	17.0	2.5	1.2
S42	170	3.0	168	10.0	192	4.0	23.0	4.0	4.0	1.0
S43	115	2.1	64	6.5	113	1.9	34.0	6.0	3.3	0.9
S44	150	3.4	65.3	5.7	141	1.9	20.0	5.3	3.6	0.8
S45	244	1.8	184.2	8.8	247	1.0	57.8	12.0	6.4	0.6
S46	160	1.0	110	8.0	150	1.0	36.6	3.5	4.1	0.2
S47	207	5.1	101.2	8.9	175	4.4	43.5	11.9	4.1	1.9
S48	204	1.1	111.8	7.9	259	1.5	26.0	5.8	3.6	0.7
S49	129	3.6	63.9	7.1	108	3.3	21.9	7.4	2.6	0.7
S50	208	0.6	120	6.3	108	3.3	21.9	7.4	2.6	0.7
S51	133	4.8	74	7.5	169	2.6	30.0	18.0	3.0	0.8

Cada	BOD ₅	[mg/l]	COD _M	n [mg/l]	SS [1	ng/l]	TN [mg/1]	TP [1	mg/l]
Code	In	Out	In	Out	In	Out	In	Out	In	Out
A01	310	6.0	170	17.0	230	6.0	42.0	23.0	4.8	2.7
A02	180	1.9	130	11.0	190	2.0	46.0	15.0	5.6	2.0
A03	153	0.7	95.1	6.1	173	NA	31.7	5.3	3.3	0.1
A04	90	0.9	58.2	6.0	83	2.0	20.0	8.2	2.7	0.2
A05	166	0.9	107	8.3	165	0.8	39.0	8.0	3.9	1.0
A06	235	1.3	133	7.2	213	1.8	39.4	6.8	5.8	0.4
A07	110	1.5	56.2	6.2	61	1.5	21.2	6.8	2.3	0.1
A08	230	3.2	117	10.1	144	2.1	40.7	10.4	7.7	0.5
A09	185	1.0	89	9.0	145	1.0	34.0	11.0	3.4	0.9
A10	160	1.0	90	8.0	140	1.0	30.0	10.0	3.5	0.6
A11	210	2.0	97	8.0	150	2.0	23.0	0.4	3.3	1.0
A12	140	2.0	85	8.0	120	2.0	30.0	0.4	3.0	0.4
A13	230	2.0	110	9.0	190	2.0	31.0	13.0	3.9	0.7
A14	260	2.0	110	9.0	250	1.0	29.0	10.0	3.9	1.1
A15	180	1.0	100	8.0	150	1.0	33.0	9.3	3.5	0.3
A16	183	2.5	82	9.5	122	2.0	31.2	13.4	3.4	0.4
A17	115	4.5	74	9.5	105	2.5	28.6	13.5	3.0	1.5
A18	110	ND	92	9.0	110	ND	33.8	10.4	4.0	0.3
A19	95	2.0	66	9.0	57	1.0	25.0	10.6	2.8	0.1
A20	200	1.8	120	7.6	200	2.2	38.3	11.7	4.4	0.8
A21	121	3.5	63	7.3	97	1.0	18.2	6.9	2.5	0.6
A22	160	2.8	72	7.0	129	2.0	25.2	7.0	3.7	0.5
A23	145	3.7	84.2	9.3	130	3.0	27.1	9.7	4.1	1.9
A24	114	4.0	67.2	11.0	110	3.0	25.1	15.2	4.2	3.3
A25	225	4.9	90	8.7	175	3.5	30.0	9.6	7.4	1.7
A26	220	4.5	110	8.9	190	3.0	35.0	8.2	3.9	1.0
A27	173	1.2	29.5	6.3	103	0.2	40.0	3.3	2.8	0.7
A28	140	ND	92	5.4	180	ND	32.0	6.4	3.9	0.8
A29	190	17.1	104.4	9.3	266	4.0	32.3	10.5	6.9	0.5
A30	270	2.5	120	7.8	170	2.5	42.0	6.8	5.1	0.3
A31	130	1.7	75	6.0	133	ND	31.8	7.1	3.0	0.2
A32	94	2.6	64	11.0	109	3.0	23.9	10.7	2.9	2.0
A33	191	5.8	70.6	7.4	131	3.0	31.6	13.7	2.8	0.3
A34	170	1.7	96	7.0	180	2.0	27.0	6.9	3.2	0.5

Table 4Annual Average Qualities of A2O

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

0.1	BOD ₅	[mg/l]	COD _M	n [mg/l]	SS [1	mg/l]	TN [mg/l]	TP [1	mg/l]
Code	In	Out	In	Out	In	Out	In	Out	In	Out
A35	127	2.2	79	7.6	108	2.0	29.0	4.8	3.2	0.4
A36	168	1.3	109.7	7.2	203	ND	31.8	7.5	4.4	0.4
A37	170	0.8	98	6.2	150	ND	33.0	7.6	3.7	ND
A38	130	0.8	110	6.7	190	ND	36.0	6.7	4.1	0.1
A39	170	0.9	88.9	5.2	179	0.6	29.9	5.5	3.2	0.1
A40	115	2.9	68	6.5	129	1.7	16.5	7.4	2.1	0.4
A41	170	0.9	110	9.0	158	ND	36.0	8.7	4.0	0.3
A42	150	ND	75	6.9	166	ND	25.0	7.1	4.9	0.8
A43	160	1.0	97	6.7	178	1.0	30.0	7.3	3.5	0.6
A44	182	2.7	94	11.0	205	2.0	28.0	12.0	3.7	1.1
A45	175	1.4	110	8.2	183	1.5	33.5	10.4	3.8	0.6
A46	170	2.7	130	11.5	179	1.5	34.0	15.4	3.8	0.3
A47	190	1.1	120	8.0	200	ND	38.0	7.4	4.8	0.3
A48	130	1.0	100	10.0	139	1.0	27.0	7.9	4.0	0.2
A49	230	2.1	95	7.0	198	ND	29.0	5.9	3.3	0.3
A50	235	2.9	155	10.0	220	2.0	37.0	14.3	4.2	0.4
A51	190	1.5	93	8.2	150	ND	31.0	16.0	3.4	0.5
A52	178	4.7	43.2	8.1	186	7.0	34.4	7.1	4.3	0.8
A53	258	2.5	87.2	8.6	150	1.0	33.5	7.8	5.6	0.7
A54	141	0.6	65.4	5.6	147	ND	29.1	8.0	2.8	ND
A55	280	1.5	140	5.6	190	ND	40.0	4.7	4.4	0.1
A56	69	2.8	50.9	8.6	75	2.0	32.2	7.0	3.4	0.3
A57	215	1.9	99	7.7	175	2.0	37.5	9.5	4.6	0.8
A58	250	0.4	140	7.4	250	0.0	38.0	9.0	4.6	0.4
A59	210	1.0	100	6.3	140	ND	36.0	6.2	3.4	0.6
A60	210	0.6	100	4.8	170	ND	34.0	8.1	3.1	0.6
A61	306	3.0	125	9.7	290	1.7	47.0	5.1	3.9	1.0
A62	180	3.0	120	11.0	190	3.0	38.4	15.4	5.6	0.3
A63	190	4.6	140	11.0	200	2.0	37.0	17.5	4.9	0.6

3. Design Calculation of Veliko Selo WWTP

3.1 Basics for Planning

(1) **Design Flow**

Year	2015	2021	2031
Daily average flow	394,000 m ³ /day	409,000 m ³ /day	448,700 m ³ /day
Daily maximum flow	464,000 m ³ /day	474,000m ³ /day	521,200 m ³ /day
Hourly maximum flow	696,000m ³ /day	717,100 m ³ /day	788,800 m ³ /day
Wet weather flow	1,209,600m ³ /day	1,252,800m ³ /day	1,341,100 m ³ /day

(2) **Design Water Quality**

Item	Influent characteristic	Effluent standard
BOD ₅	192 mg/l	25 mg/l
COD _{Cr}	385 mg/l	125 mg/l
SS	224 mg/l	35 mg/l
T-nitrogen	35 mg/l	10 mg/l
T-phosphorus	8 mg/l	1 mg/l

(3) **Design Water Temperature**

	Temperature
Maximum	24 degree Celsius
Average	17 degree Celsius
Minimum	10 degree Celsius

3.2 Design Calculation of Sewage Treatment Facilities

(1) Lift Pumping Station

Lift pump	Submersible pump (dry installation)	
Design flow in rainy weather day	1,341,800 m ³ /day	
Design flow in dry weather day	788,800 m ³ /day	
Specification of lift pump	94 m ³ /min x 18 mH x 400 kW	
Number of pump	12 nos. (2 standby)	
Coarse screen	Mechanical screen	
Specification of coarse screen	Channel: 4.5 m / Opening: 100 mm	

Number of screen	3 nos.
------------------	--------

(2) **Pretreatment Facility**

Grit chamber	Aerated grit chamber
Design flow in rainy weather day	1,341,800 m ³ /day
Design flow in dry weather day	788,800 m ³ /day
Hydraulic overflow rate (rainy)	3,600 m ³ /m ² /day
Hydraulic overflow rate (dry)	1,800 m ³ /m ² /day
Dimension of grit chamber	3.5 mW x 18 mL
Number of grit chamber	6 channels
Fine screen	Mechanical screen
Specification of fine screen	Channel: 2.5m / Opening: 20mm
Number of screen	6 nos.

(3) **Primary Settling Tank**

Primary settling tank	Circular settling tank
Daily average flow	448,700 m ³ /day
Daily maximum flow	521,200 m ³ /day
Hourly maximum flow	788,800 m ³ /day
Hydraulic surface loading	$50 \text{ m}^3/\text{m}^2/\text{day}$
Weir overflow rate	250 m ³ /m/day
Dimension of primary settling tank	Diameter 34 m x 3.5 mD
Number of primary settling tank	12 tanks
Sludge collector	Circular sludge scraper
Raw sludge production	68,782 DS-kg/day
Solid concentration of raw sludge	2.0 %

(4) Bioreactor

Bioreactor	Step feeding nitrification denitrification process
Number of bioreactor tank	48 tanks
Design flow	448,700 m ³ /day
MLSS concentration	3,000 mg/l
Dissolved oxygen	2.5 mg/l
Lowest monthly sewage temperature	10 degree Celsius
ASRT (aerobic solid retention time)	10.7 day
HRT (hydraulic retention time)	17.7 hour

Solid concentration of return sludge	0.9 %
Return sludge ratio	50 %
Circulation ratio	0 %
Dimension of anoxic tank (1 st stage)	10 mW x 13.7 mL x 6 mD
Dimension of oxic tank (1 st stage)	10 mW x 13.7 mL x 6 mD
Dimension of anoxic tank (2 nd stage)	10 mW x 19.2 mL x 6 mD
Dimension of oxic tank (2 nd stage)	10 mW x 19.2 mL x 6 mD
Dimension of anoxic tank (3 rd stage)	10 mW x 25.7 mL x 6 mD
Dimension of oxic tank (3 rd stage)	10 mW x 25.7 mL x 6 mD
Diffuser of oixc tank	Ultrafine bubble diffuser
Mixer of anoxic tank	Top-entry agitator

(5) Secondary Settling Tank

Secondary settling tank	Circular settling tank	
Daily average flow	448,700 m ³ /day	
Daily maximum flow	521,200 m ³ /day	
Hourly maximum flow	788,800 m ³ /day	
Hydraulic surface loading	$20 \text{ m}^3/\text{m}^2/\text{day}$	
Weir overflow rate	150 m ³ /m/day	
Dimension of primary settling tank	Diameter 49 m x 4.0 mD	
Number of primary settling tank	12 tanks	
Sludge collector	Circular sludge scraper	
Excess sludge production	49,069 DS-kg/day	
Solid concentration of excess sludge	0.9 %	
Return sludge pump	Submersible pump (dry installation)	
Specification of lift pump	16.5 m ³ /min x 8 mH x 37 kW	
Number of pump	24 nos.	

(6) Filtration

Filtration	Disc filter	
Design flow	788,800 m³/day	
Filtration speed	500 m/day	
Filtration area	114 m ²	
Number of disc filter	16 nos. (2 standby)	

3.3 Design Calculation of Aeration Requirement

Oxygen for oxidation of organic substance	23,692 kg-O ₂ /day	
Oxygen for nitrification of NH ₄	42,036 kg-O ₂ /day	
Oxygen for endogenous respiration of MLSS	51,255 kg-O ₂ /day	
Oxygen for maintaining dissolved oxygen	1,683 kg-O ₂ /day	
Total actual oxygen requirement (AOR)	118,666 kg-O ₂ /day	
Standard oxygen requirement (SOR)	190,402 kg-O ₂ /day	
Oxygen transfer efficiency	32.2 %	
Aeration requirement	1,473 m ³ /min	
Blower	Multi-stage centrifugal	
Specification of blower	270 m ³ /min x 70 kPa x 420 kW	
Number of blower	8 nos. (2 standby)	

3.4 Design Calculation of Sludge Treatment Facilities

(1) Gravity Thickener

Gravity thickener	Gravity sludge thickener
Solid content of raw sludge	68,782 kg-DS/day
Volume of raw sludge	3,439 m ³ /day
Solid concentration of raw sludge	2.0 %
Solid surface loading	50 kg/m²/day
Solid recovery rate	85 %
Dimension of primary settling tank	Diameter 21 m x 4.0 mD
Number of primary settling tank	4 tanks
Sludge collector	Circular sludge scraper
Solid content of thickened sludge	58,464 kg-DS/day
Volume of thickened sludge	1,462 m ³ /day
Solid concentration of excess sludge	4.0 %

(2) Mechanical Thickener

Mechanical thickener	Belt thickener
Solid content of excess sludge	49,069 kg-DS/day
Volume of excess sludge	5,452 m ³ /day
Solid concentration of excess sludge	0.9 %
Solid recovery rate	95 %
Polymer dosing rate	0.3 %

Operation hour	24 hour	
Specification of mechanical thickener	Capacity: 40 m ³ /hour	
Number of mechanical thickener	7 nos. (1 standby)	
Solid content of thickened sludge	46,755 kg-DS/day	
Volume of thickened sludge	1,169 m ³ /day	
Solid concentration of thickened sludge	4.0 %	

(3) Anaerobic Digestion

Anaerobic digestion	Heated sludge digester		
Solid content of thickened sludge	105,219 kg-DS/day		
Volume of thickened sludge	2,630 m ³ /day		
Solid concentration of thickened sludge	4.0 %		
HRT (hydraulic retention time)	20 day		
Sludge heating temperature	35 degree Celsius		
Volatile total solid	70 %		
Digestion rate	50 %		
Volume of sludge digester	6,600 m ³		
Number of sludge digester	8 tanks		
Digester mixer	Top-entry agitator		
Gas calorific value	21,000 kJ/m ³		
Gas production rate	0.50 m ³ /kg		
Volume of gas holder	3,000 m ³		
Number of gas holder	4 nos.		
Cogeneration system	Combined heat and power system		
Specification of cogeneration system	1,000 kVA		
Number of mechanical thickener	4 nos.		
Solid content of digested sludge	68,393 kg-DS/day		
Volume of digested sludge	2,630 m ³ /day		
Solid concentration of digested sludge	2.6 %		

(4) Mechanical Dewatering

Mechanical dewatering	Screw press dewatering
Solid content of digested sludge	68,393 kg-DS/day
Volume of digested sludge	2,630 m ³ /day
Solid concentration of digested sludge	2.6 %
Solid recovery rate	95 %
Polymer dosing rate	1.5 %

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

Operation hour	24 hour	
Specification of mechanical dewatering	Diameter: 1,000 mm / 836 kg-DS/hour	
Number of mechanical thickener	5 nos. (1 standby)	
Solid content of sludge cake	65,948 kg-DS/day	
Volume of sludge cake	314 m ³ /day	
Moisture content of sludge cake	79 %	

3.5 Calculations

1 DESIGN CALCULATIONS OF WATER TREATMENT FACILITIES

1.1 Pretreatment

(1) Design Bases			
Hourly maximum flow	$Q_{hm} =$	788,800 m ³ /d	
Hydraulic overflow rate	$q_o =$	$1,800 \text{ m}^3/\text{m}^2/\text{d}$	
Average flow rate	v o =	0.3 m/s	
Total number of chamber	n =	6 channel	
Hydraulic load on each channel is	-	788,800 / 6 =	131,467 m ³ /d
Required surface area of each chan	=	131,467 / 1800 =	73.0 m^2
(2) Tank Geometry			
Width of chamber	W =	3.5 m	

Effective depth	d =	1.0 m	
Lenghh of chamber	L =	21.0 m	
Hydraulic capacity of chamber	$Q_p =$	$74 m^3$	

Tank Shape and Dimensions

Width of chamber	3.5 m	
Effective depth	1.0 m	
Length of chamber	21.0 m	
Capacity of chamber	73.5 m ³	
Number of Units	6 channels	

1.2 Primary Settling Tank

(1) Design Bases

Daily average flow	$Q_{da} =$	448,700 m ³ /d		
Daily maximum flow	$Q_{dm} =$	521,200 m ³ /d		
Hourly maximum flow	$Q_{hm} =$	788,800 m ³ /d		
Wet weather flow	$Q_{ww} =$	1,341,800 m ³ /d		
Hydraulic overflow rate	$q_o =$	$50 \text{ m}^3/\text{m}^2/\text{d}$		
Total number of tanks	n =	12 units	6 tank x	2 train
Hydraulic load on each tank is	-	521,200 / 12 =	43,433 m ³ /d	
Required surface area of each tank	A =	43,433 / 50 =	869 m ²	
(2) Tank Geometry				
Internal diameter	D =	34.0 m		
Effective depth	<i>d</i> =	3.5 m		
Number of basins	n =	12 tanks		
Surface area of each tank	A =	908 m ²		
Hydraulic capacity of each tank	$Q_p =$	3,178 m ³		
Overflow rate for wet wether flow	$Q_{ww} =$	111,817 / 908.0 =	123.1 m ³ /m ² /d	

Tank Shape and Dimensions

Shape of tank	Circular tank	
Number of Units	12 tanks	
Internal diameter	34.0 m	
Effective depth	3.5 m	

1.3 Bioreactor

(1) Design Bases

Design flow	$Q_{in} =$	448,700 m ³ /d
BOD concentration	C _{BOD, in} =	126 mg/L

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

S-BOD concentration (= 66.7%)	C _{S-BOD, in} =	84 mg/L
SS concentration	C _{SS, in} =	122 mg/L
P concentration	$C_{P,in} =$	6.4 mg/L
S-P concentration (=78.0%)	C _{SP, in} =	5.0 mg/L
MLSS concentration of 3rd stage	$\mathbf{X} =$	3,000 mg/L
T - Nitrogen (in)	C _{TN, in} =	30 mg/L
Un removable Nitrogen	CorgN, out=	1 mg/L
Stage of aeration tank	N=	3 stage
Return sludge ratio	r=	50 %
Internal circulation ratio	$R_N =$	0 %
(2) Effluent of T-Nitrogen		

$C_{TN, EX} =$	8.5	mg/L
C _{TN, ni} =	20.5	mg/L
C _{TN, deni} =	16.0	mg/L
C _{NO3N, eff} =	4.5	mg/L
$C_{TN, eff} =$	5.5	mg/L
	$C_{TN, EX} = C_{TN, ni} = C_{TN, deni} = C_{NO3N, eff} = C_{TN, eff} =$	$\begin{array}{lll} C_{TN, EX} = & 8.5 \\ C_{TN, ni} = & 20.5 \\ C_{TN, deni} = & 16.0 \\ C_{NO3N, eff} = & 4.5 \\ C_{TN, eff} = & 5.5 \end{array}$

(3) Removal Ratio of Nitrogen

The removal ratio of Nitrogen can be calculated by the following equation:

The removal faile of the ogen can be calculated by the following equation.			
$S_{DN} = 1 \cdot (1/N \cdot (1+r+R_N))$	$S_{DN} =$	0.78	
where,			
N: Stage of aeration tank	=	3	stage
r: Return sludge ratio	=	50	%
R_N : Internal circulation ratio	=	0	%
(4) MLSS Concentration of 3rd Stage			
The SS ratio of return sludge can be calculated by the following equation:			
$X_{\rm p} = (1+0.5)/0.5 * X_{\rm N}$	$X_n =$	9,000	mg/L

$A_R = (I + 0.5) / 0.5 + A_N$	Λ_{R}^{-}	9,000	mg/L
where, X_N : MLSS concentration	=	3,000	mg/L
(5) ASRT			
ASK1 can be calculated by the following equation:			

	0 XA	=	$29.7 e^{(-0.102T)} =$	10.7 day		
where,						
T:	Month	ly lowe	est sewage temperature		=	10 C degree

(6) Capacity of 3rd Stage of Oxic Tank

The capacity of 3rd stage of oxic tank can be calculated by the following equation:

$$V_{AN} = Q_{in} \cdot \theta_{XA} \cdot (a \cdot C_{s:BOD, in} + b \cdot C_{ss, in} + g \cdot C_{Me}) / N \cdot X_N \cdot (l + c \cdot \theta_{XA})$$

= 71,188 m³/d

where,				
Qin :	Design flow	=	448,700	m ³ /d
θ XA :	A-SRT (aerobic solid retation time)	=	10.7	day
C S-BOD, in :	Influent S-BOD concentration to aeration tank	=	84	mg/L
C _{SS, in} :	Influent SS concentration to aeration tank	=	122	mg/L
a :	Biomass yield coefficient of S-BOD	=	0.5	g MLSS/g BOD
b :	Biomass yield coefficient of SS	=	0.95	g MLSS/g SS
c :	Sludge reduction coefficient due to endogenous respiration			
	of micro-organisms	=	0.04	1/d
g :	production ratio of solid matrial	=	5	times
X :	MLSS concentration of 3rd stage	=	3,000	mg/L
N:	Stage of aeration tank	-	3	stage
	$C_{Me} = C_{SP, in} / P * m * Me$	=	6.5	mg/L

1000	1	100
w	ne	re –

C SP. in :	Dissoluble phosphorous	=	5.0 mg/L
P :	Atomic mass of phosphorous	=	31
<i>m</i> :	Mole ratio	= ::	1.5
Me:	Atomic mass of coagulant	=	27

(7) MLSS Concentration of 1st Stage and 2nd Stage

The MLSS concetration of 1st stage and 2nd stage can be calculated by the following equation: $X_k = (r+1) / (r+k/N) * X_N$

where,

 $X_1 = 5,400 \text{ mg/L}$ $X_2 = 3,857 \text{ mg/L}$

(8) Capacity of 1st stage and 2nd stage of Oxic Tank

The capacity of 1st stage and 2nd stage of oxic tank can be calculated by the following equation:

V_{AI}	=	$X_N / X_I * V_{AN}$	-	39,549 m ³ /d
V_{A2}	=	$X_N / X_2 * V_{AN}$	=	55,370 m ³ /d

(9) Capacity of Anoxic Tank						
The capacity of anoxic tank can be eq	ual to the ca	apacity of c	xic tank:			
$V_{DI} = V_{AI}$		=	39,549	m ³ /d		
$V_{D2} = V_{A2}$		-	55,370	m ³ /d		
$V_{DN} = V_{AN}$		=	71,188	m ³ /d		
(10) Tank Geometry						
Total capacity of anoxic tank	$V_{DN} =$	166,107	m^3			
Tank width	W =	10.0	m			
Tank effective depth	d =	6.0	m			
Tank cross sectional area	A =	60.0	m ²			
Number of tanks	n =	48	units	2	4 tank x	2 train
Capacity of each tank	$V_e =$	166,107	/ 48 =	3,461	m³	
Tank length		3,461 /	60 =	57.7	m	
Total capacity of oxic tank	$V_A =$	166,107	m ³			
Tank width	W =	10.0	m			
Tank effective depth	<i>d</i> =	6.0	m			
Tank cross sectional area	A =	60.0	m^2			
Number of tanks	n =	48	units	2	4 tank x	2 train
Capacity of each tank	$V_e =$	166,107	/ 48 =	3,461	m ³	
Tank length		3,461 /	60 =	57.7	m	

Total of tank length	115.4	m	\rightarrow	115 m

Tank Shape and	Dimensions
----------------	------------

Width	10.0	m	
Depth	6.0	m	
Tank capacity	6,900	m ³	
Tank length	115	m	
No. of tank units and clusters	48	tanks	

1.4 Secondary Settling Tank

(1)	Design	Bases
-----	--------	-------

Daily average flow	$Q_{da} =$	448,700 m ³ /d
Daily maximum flow	$Q_{dm} =$	521,200 m ³ /d
Hourly maximum flow	$Q_{hm} =$	788,800 m ³ /d

Hydraulic overflow rate	=	$20 \text{ m}^3/\text{m}^2/\text{d}$		
Total number of tank	n =	12 units	6 tank x	2 train
Hydraulic load on each tank is	=	448,700 / 12 =	37,392 m ³ /d	
Required tank surface area	<i>A</i> =	37,392 / 20 =	1,870 m ²	
(2) Tank Geometry				
Internal diameter	D =	49.0 m		
Effective depth	<i>d</i> =	4.0 m		
Number of basins	n =	12 tanks		
Surface area of each tank	A =	1,886 m ²		
Hydraulic capacity of each tank	$Q_p =$	7,544 m ³		

Tank Shape and Dimensions		
Shape of tank	Circular tank	
Number of Units	12 tanks	
Internal diameter	49.0 m	
Effective depth	4.0 m	

1.5 Filtration

(1) Design Bases		
Daily average flow	$Q_{da} =$	448,700 m ³ /d
Daily maximum flow	$Q_{dm} =$	521,200 m ³ /d
Hourly maximum flow	$Q_{hm} =$	788,800 m ³ /d
Filtration speed	=	500 m/day
(2) Disc filter		
Required surface area	A =	1,578 m
Surface area of filter	a =	114 m^2
Number of filters	<i>n</i> =	16 nos. (2 standby)
Filtration Unit		

Filtration	Disc filter	
Number of Units	16 nos. (2 standby)	
Area of filter	114.0 m ²	

2 DESIGN CALCULATIONS OF SLUDGE TREATMENT FACILITIES

2.1 Design Bases

(1) Raw Sludge

3,439	m ³ /d
	3,439

(2) Waste Sludge

The volume of waste sludge can be estimated by the following equation: $Q_w \cdot X_w = (a \cdot C_{S \cdot B OD, in} + b \cdot C_{SS, in} - c \cdot \theta \cdot X) Q_{in}$ where,

Excess sludge volume (m ³ /d)			
Average solids concentration of waste sludge	=	0.9 %	
Inflow rate to reactor basisns	=	559,586 m ³ /	d
MLSS concentration in reactor basins	=	3,000 mg	L.
Influent S-BOD concentration to reactor basins	-	84 mg	L
Influent SS concentration to reactor basins	=	122 mg	L
Biomass yield coefficient of S-BOD	=	0.5 mg	MLSS/mgBOE
Biomass yield coefficient of SS	=	0.95 mg	MLSS/mgSS
Sludge reduction coefficient due to endogenous respiration			
of micro-organisms	=	0.04 L/d	
Hydraulic retention time (HRT) in reactors	=	17.7 hou	r
$Q_w X_w = 38,793 \text{ kg/d}$			
	Excess sludge volume (m^3/d) Average solids concentration of waste sludge Inflow rate to reactor basisns MLSS concentration in reactor basins Influent S-BOD concentration to reactor basins Influent SS concentration to reactor basins Biomass yield coefficient of S-BOD Biomass yield coefficient of SS Sludge reduction coefficient due to endogenous respiration of micro-organisms Hydraulic retention time (HRT) in reactors $Q_w X_w = 38,793$ kg/d	Excess sludge volume (m^3/d) =Average solids concentration of waste sludge=Inflow rate to reactor basins=MLSS concentration in reactor basins=Influent S-BOD concentration to reactor basins=Influent SS concentration to reactor basins=Biomass yield coefficient of S-BOD=Biomass yield coefficient of SS=Sludge reduction coefficient due to endogenous respiration=of micro-organisms=Hydraulic retention time (HRT) in reactors= $Q_w X_w = 38,793$ kg/dkg/d	Excess sludge volume (m^3/d) =0.9 %Average solids concentration of waste sludge=0.9 %Inflow rate to reactor basins=559,586 $m^3/$ MLSS concentration in reactor basins=3,000 mg/Influent S-BOD concentration to reactor basins=84 mg/Influent SS concentration to reactor basins=122 mg/Biomass yield coefficient of S-BOD=0.5 mg/Biomass yield coefficient of SS=0.95 mg/Sludge reduction coefficient due to endogenous respiration=0.04 L/dHydraulic retention time (HRT) in reactors=17.7 hou $Q_w X_w = 38,793$ kg/dkg/d=

The volume of sludge generated from coagulant can be estimated by the following equation:

The volume of studge generated no	in coaguia	in can be e	Sumated 0	die fonowing	5 equano	11.	
$X_w =$	$Q_{in} \times C$	SP, in x 0.7	7 x 27 / 31	x 1.5 x 5 / 1(= 16,939	kg/d
where,							
Q_{in} : Design flow						= 521,200	m ³ /d
$C_{SP, in}$: Inflow concetratio	n of phosp	horous				= 5.0	mg/L
Sludge solids in effluence flow	=	554,132	x 12	x 10 ⁻⁶ =	6,650	kg/d	
Sludge solids production	=	49,082	kg/d				
Solids concentration of sludge	=	0.9	%				
Waste sludge generation	-	49,082	/ 10 /	0.9 =	5,454	m ³ /d	
(3) Return Sludge							
Sludge return ratio	=	50	%				

Sludge leturn lauo	277	50 %				
Return sludge volume	=	559,586 x 0.50 =	279,793	m ³ /d	= 194	m ³ /min

2.2 Gravity Thickener

(1) Design Bases

Input sludge solids	-	68,782	kg/d
Input sludge Volume	$\sim =$	3,439	m ³ /d
Input sludge solids concetration	-	2.0	%
Thicken sludge solids concentrat	=	4.0	%
Solids recovery rate	=	85	%
Solids surface loading	$\sim -$	50	kg/m²/day
Required surface area	$\sim 10^{-10}$	1,376	m ²

(2) Tank Geometry

Internal diameter	=	21.0	m
Effective depth	=	4.0	m
Number of tanks	=	4	tanks
Water surface area	=	1,385	m ²

Tank Shape and Dimensions

Internal diameter	21.0 m
Efficent depth	4.0 m
Tank capacity	1,385 m ³
No. of tank units	4 tanks

(3) Thickened Sludge

Output sludge solids	=	58,464	kg/d
Output sludge volume	=	1,462	m ³ /d
(4) Side Stream			
Sludge solids in side stream	=	10,317	kg/d
Side stream volume	=	1,977	m ³ /d

Side stream volume

2.3 Mechnical Thickener

(1) Design	Bases
------------	-------

Input sludge solids	=	49,082	kg/d
Input sludge volume	=	5,454	m ³ /d
Input sludge solids concetration	=	0.9	%
Operation day per week	=	7.0	days
Operation hour per day	=	24.0	hour
Thicken sludge solids concentrat	=	4.0	%
Solids recovery rate	=	95.0	%
Polymer dosing rate	=	0.3	%
(2) Thickening Machine			
Required capacity	=	227	m ³ /hour
Capacity of thickening machine	=	40.0	m ³ /hour
Number of thickening machine	=	7.0	nos. (1 standby)
(3) Thickened Sludge			
Output sludge solids	=	46,768	kg/d
Output sludge volume	=	1,169	m ³ /d
(4) Side Stream			
Sludge solids in side stream	=	2,461	kg/d
Side stream volume	=	4,284	m ³ /d

Specification of Thickening Machine			
Туре	Belt thickening		
Capacity	$40 \text{ m}^3/\text{hour}$		
No. of thickening machine	7 nos. (1 standby)		

2.4 Anaerobic Digester

(1) Design Bases

Thicken sludge from gravity thickner and mechanical thickener Input sludge solids = 105,232 kg/d

Input sludge volume	=	2,631	m ³ /d
Input sludge solids concetration	=	4.0	%
Hydraulic retention time of prinn	=	20	days
Sludge heating temperature	-	35	С
Volatile material contents	$= 10^{-1}$	70	%
Digestion rate	=	50	%
Required digester capacity	=	52,616	m ³
Gas production rate (average)	=	0.50	m ³ /kg-vs
Gas production rate (maximum)	=	0.60	m ³ /kg-vs
Gas calorific value	-	21,000	kJ/m3

(2) Tank Geometry

Number of tanks	=	8	tanks
Digester tank capacity	=	6,577	m ³

Tank Shape and Dimensions

Tank capacity		6,577 m ³			-
No. of tank units		8 tanks			-
(3) Digested Sludge					
Digested sludge solids	=	105,232 x (1.0 -	0.7	x 0.5) =	68,401 kg/d
Digested sludge volume	=	2,631 m ³ /d			
Digested sludge solids concetratic	=	2.6 %			
(4) Gas Holder					
Maximun gas production	=	105,232 x 0.7	x 0.60		
	=	44,198 m ³ /d			
Gas retention time in tank	=	6 hr			
Storage capacity	=	44,198 x 6/	24 =	11,049	m ³ /d

Specification of Gas Holder

Туре	Water Seal Type	
Diameter	16.5 m	
Height	22.9 m	
Tank capacity	3,000 m ³	
No. of Gas Holder	4 tanks	

(5) Biogas Generator

Aerage gas production	=	105 232	x 0.7	x 0.50	
	-	36,831	m ³ /d	All Sciences	
Gas calorific value	=	21,000	kJ/m ³		
Total gas energy production	=	773,457	MJ/day		
Power production efficiency	=	35	%		
Possible electric power production	=	75,197	kWh/day =	3,133	kW
Number of biogas generator	-	4	nos.		
Capacity of biogas generator	=	1,000	kWh		

Specification of Biogas Generator

Туре	Biogas Gen	erator	
Capacity	1000	kW	
Power generation efficiency	35	%	
Total heat energy usage efficiency	30	%	
No. of generator set	4	nos.	

4.5 Mechnical Dewatering

(1) Design Bases

Digested sludge from anaerobic di	gester		
Input sludge solids	=	68,401	kg/d
Input sludge volume	=	2,631	m ³ /d
Input sludge solids concetration	-	2.6	%
Operation day per week	=	7.0	days
Operation hour per day	=	24.0	hour
Moisture content of sludge cake	-	79.0	%
Solids recovery rate	=	95.0	%
Polymer dosing rate	=	1.5	%
(2) Dewatering Machine			
Filtration rate (Dia.1000m)	=	836	kg-DS/hour
Number of dewatering machine	=	5.0	nos. (1 standby)
(3) Sludge Cake			
Solid content of sludge cake	-	65,956	kg/d
Volume of sludge cake	=	314	m ³ /d
(4) Side Stream			
Sludge solids in side stream	-	3,471	kg/d
Side stream volume	-	2,317	m ³ /d

Specification of Dewatering Machine

Туре	Screw press dewaterning	
Capacity (diameter)	1,000 mm	
No. of dewatering machine	5 nos. (1 standby)	

4. Soil Condition

Summary of current survey documents "Geological and geotechnical documentation as a basis for the Preliminary design for the construction of wastewater treatment plants - "Veliko Selo"" in 2007" (information only)

Silty sand) (\mathbf{g}_{ph}), the highly humidified near to surface part of the terrain (arable layer), where the participation of the roots of and venation of plants in the different stages of decomposition, is intense. The determined thickness of the layer was from 0.8 to 2.1 m. This layer is of heterogeneous lithological composition, with irregular ratio of clay, dust and sand fractions (in the zone closer to Dunavac is dominant the share fine sand fraction). Dust is easily crushed, of pseudo fracture porosity, with the local participation of residual small, tubular, porosity, and in the part where the share of the sandy fraction is dominant, the intergranular type of porosity is represented.

Newly performed laboratory tests

Bulk density		
naturally moist	g = 20.6 kN/	$/m^3$
dry	$g_{d} = 16.3 \text{ km}$	N/m^3
Shearing strength		
angle of internal friction		$\mathbf{f} = 24^{\circ}$
cohesion	$c = 7kN$	m^2
Static penetration test	Ckd = 2 - 2.	5 Mpa

Silty clay (GPP), of heterogeneous lithological composition, with irregular and uneven participation and clay and silty components, with locally higher content of sandy fraction and muddy clay in the form of irregular interlayers or layers whose presence is significantly in the area of the old still waters and swamps. Clay is determined directly under a layer of silty sand (dust) (gph) at a depth of 0.8 to 2.1 m, with determined thickness of 1.8 to 4.8 set m. Clay is of massive structure, with local, poorly-defined, layering, in the zone of oscilating of groundwater of significant pseudo fracture porosity along which it crumbles easily under your fingers into small monoliths, mostly middle plastic, easy to difficult to squash, unconsolidated to poorly consolidated, more compressible, of relatively uniform resistance characteristics.

By geomechanical laboratory testing were determined the following values of physical and mechanical sediment parameters of this facies:

Previously performed laboratory tests

Bulk weight

naturally moist	g = 19.0 to 19.5 kM	N/m^3
dry	$g_d = 13.0$ to 15.6	kN/m ³
Shear strength		
angle of internal friction		f =18-24°
cohesion	c= 12 - 1	8kN/m ²

Oedometer compressibility test

compressibility modulus for the specified range of load

naturally moist

 $M_{s (100-200)} = 4 \ 000-7 \ 000 \text{kN/m}^2$

• underwater

$M_{s (100-200)} = 3 \ 000-5 \ 500$	00kN/m ²	
Filtration coefficient		

 $k^{f} = 10^{-4} - 10^{-6} cm/sec$

The newly performed laboratory tests

Bulk weight

naturally moist $\mathbf{g} = 15.1$ to 1	6.6 kN/m ³
dry $\mathbf{g}_{\mathbf{d}} = 12.4 \text{ tot}$	13, 4kN/m ³
Shearing strength	
angle of internal friction	f = 18-19 °
cohesion	$c = 10 kN/m^2$
Filtration coefficient k _f	$= 10^{-6} - 10^{-7} \text{ cm/sec}$
Dynamic penetration test	
Number of strokes	N = 5-14
Static penetration tests	CKD = 0,5- 7 MPa;

Riverbed facies (ak)

Riverbed facies (a_k) is represented by close-grained sand to silty sand (p_p) , close-grained sand to medium-grained (p) and gravel sand (P_{sh}) .

Close-grained to silty sand (p_p) , build the highest parts of trough facies, immediately below the flood facies. Sand is mostly poorly granulated, locally inconsistently mud silted (p_m) , unbound, intergranulary porous, of gray-blue color, constantly saturated with water.

By geomechanical laboratory testing the following values of physical and mechanical sediment parameters of this facies were determined:

Previously performed laboratory tests

Bulk density

naturally moist	g = 18,5 -19	,7 kN/m ³
dry	$g_d = 13,2$ -	-15,0 kN/m ³
Shear strength		
angle of internal friction		f = 18-22 °
cohesion		$c = 0-5kN/m^2$

Oedometer compressibility test

compressibility modules for the specified range of load

• naturally moist

 $M_{s (100-200)} = 5 \ 500-7 \ 000 \text{kN/m}^2$

Filtration coefficient

 $k_f = 10^{\text{-3}} \text{cm/sec}$

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 6 Facilities Planning of Veliko Selo Wastewater Treatment Plant

The newly performed laboratory tests

Bulk weight

naturally moist	 $\mathbf{g} = 15, 1 - 16$,6 kN/m ³
dry	 gd = 12,4 - 13	$3, 4 \text{kN/m}^3$
Shear strength		
angle of internal friction	 	f =18-19 °
cohesion	 $c = 10k$	N/m^2

Oedometar compressibility test

compressibility modules for the specified range of load

 naturally moist 	
$M_{s(100-200)} = 5 \ 500-7 \ 000 \text{kN/m}^2$	
Filtration coefficient	$k_{\rm f} = 10^{-5} - 10^{-6} {\rm cm/sec}$
Dynamic penetration test	
Number of strokes	N = 12-14
Static penetration test	Ckd = 1,5-3MPa
Note: for the needs of higher levels of design (main	construction project) is necess

Note: for the needs of higher levels of design (main construction project) is necessary to conduct vulnerability assessment of this layer to suffosion and liquefaction.

Sand (p), close to medium grained, with depth the participation of coarse grained fractions is increasing. The sand is poorly clayed (up to 5% clay), sharp under fingers, of intergranular porosity, loose, well-compacted, more water permeable, permanently saturated with water.

By geomechanical laboratory testing the following values of physical and mechanical sediment parameters of this facies are determined:

Previously performed laboratory tests

Bulk weight

naturally moist $\mathbf{g} = 18,7$ to 19,7 kN/m³ Shear strength angle of internal friction $\mathbf{f} = 26-30^{\circ}$ cohesion c = 0 -10kN/m² Oedometer compressibility test compressibility modules for the specified range of load • naturally moist $M_{s(100-200)} = 8\ 000-12\ 000$ kN/m² Filtration coefficient $k_f = 10^{-2}$ cm/sec

The newly performed laboratory tests

Bulk weight
naturally moist $\mathbf{g} = 15,1$ to 16,6 kN/m ³
dry $gd = 12,4 \text{ to } 13, 4 \text{kN/m}^3$
Shear strength
angle of internal friction $\qquad \qquad \qquad$
cohesion $c = 10 kN/m^2$
Oedometer compressibility test
compressibility modules for the specified range of load
naturally moist
$M_{s(100-200)} = 5\ 500-7\ 000 \text{kN/m}^2$
Filtration coefficient $kf = 10^{-2} - 10^{-6} cm/sec$
Dynamic penetration test
Number of strokes N = 12-28
Static penetration tests Ckd = 3-11MPa

Gravelly sand (psh), builds the lowest parts of the alluvial sediments, as determined in previous research in the immediate surroundings of the investigated space, while in the latest research this layer was not determined. The sand is medium grained to coarse, well granulated, with uneven and irregular participation of gravel components (participation of gravel component ranges up to 65%). Gravel is well rounded, up to 2 cm (rarely up to 5 cm), of heterogeneous petrographic composition mainly of limestone. The soil is unbouned, more water permeable, and is suitable as a building material.

By geomechanical laboratory testing the following values of physical and mechanical sediment parameters of this facies were determined:

Previously performed laboratory tests

Bulk weight

naturally moist	g = 19,5 to 21,0 kN/m ³
Shear strength	
angle of internal friction	$f = 28-33$ °
cohesion	$\dots c = 0 k N/m^2$

Oedmeter compressibility test

compressibility module for the specified range of load

• naturally moist

 $M_{s(100-200)} = 10\ 000-18\ 000 \text{kN/m}^2$

Filtration coefficient

 $k_{f} = 10^{-2} cm/sec$

Tertiary age sediments

Tertiary age sediments build the geological terrain in the area designated for the construction of wastewater treatment plant – Veliko selo and they are presented by marl-clay sediments, which are characterized by heterogeneous composition and irregular and frequent changes of lithological members in horizontal and vertical directions. The newly performed tests in exploratory holes B-and-B, as well as the static penetration tests confirmed the presence of marl clay at a depth of..... m.

Marly clay (LG), determined on the depth of 9.5 to 13.9 m, intensive physical-chemically and mechanically modified in near to surface part of the layer ("weathering crust"), lowered values of shear strength parameters. In this part of the layer fissure-crack system is presented, along which the CaCO3 powder is precipitated in the form of accumulation, locally hardened due to groundwater circulation. Along this system is the extensively precipitation of Fe and Mn in the form of spots and films, and in the zone of significant limonitization in the form of small oolites. Determined thickness of the zone change is up to 2m. The main mass is hard, preconsolidated ,of favorable physical and mechanical characteristics.

Chapter 7 Cost Estimation and Implementation Schedule

	Itom Description		Amount (Amount (Euro)	
		nem Description	L.C	F.C	(Euro)
1		Construction Cost			
	А	Veliko Selo WWTP			
	-A1	Site preparation work			
		Civil & Architecture works	15,386,000	0	15,386,000
		Sub Total of -A1	15,386,000	0	15,386,000
	-A2	Lift pump facility			
		Civil works	1,278,000	0	1,278,000
		Architecture works	71,000	0	71,000
		Mechanical works	858,000	4,455,000	5,313,000
		Electrical works	317,000	1,645,000	1,962,000
		Sub Total of -A2	2,524,000	6,100,000	8,624,000
	-A3	Pretreatment facility			
		Civil works	1,892,000	0	1,892,000
		Architecture works	92,000	0	92,000
		Mechanical works	237,000	1.231,000	1,468,000
		Electrical works	33,000	171,000	204,000
		Sub Total of -A3	2,254,000	1,402,000	3,656,000
	-A4	Primary settling tank		, , ,	
		Civil works	5,537,000	0	5,537,000
		Mechanical works	236,000	1,226,000	1,462,000
		Electrical works	74,000	386,000	460,000
		Sub Total of -A4	5,847,000	1,612,000	7,459,000
	-A5	Bioreactor		, , ,	, ,
		Civil works	25,674,000	0	25,674,000
		Mechanical works	1,912,000	9,925,000	11,837,000
		Electrical works	166,000	861,000	1,027,000
		Sub Total of -A5	27,725,000	10,786,000	38,511,000
	-A6	Blower facility		, , ,	. ,
		Civil works	857,000	0	857,000
		Architecture works	179,000	0	179,000
		Mechanical works	428,000	2,221,000	2,649,000
		Electrical works	380,000	1,973,000	2,353,000
		Sub Total of -A6	1,844,000	4,194,000	6,038,000
	-A7	Secondary settling tank			
		Civil works	8,307,000	0	8,307,000
		Architecture works	116,000	0	116,000
		Mechanical works	575,000	2,985,000	3,560,000
		Electrical works	83,000	429,000	512,000
		Sub Total of -A7	9,081,000	3,414,000	12,495,000
	-A8	Filtration		, , ,	. ,
		Civil works	964,000	0	964,000
		Architecture works	56,000	0	56,000
		Mechanical works	1,226,000	6,363,000	7,589,000
		Electrical works	105,000	550,000	655,000
		Sub Total of -A8	2,351,000	6,913,000	9,264,000
	-A9	Gravity thickener			
		Civil works	759,000	0	759,000
		Mechanical works	72,000	372.000	444,000

1. Estimated Project Cost of All Components

Item Decemintion		Amount (Euro)		Total Amount
	Item Description	L.C	F.C	(Euro)
	Electrical works	11,000	55,000	66,000
	Sub Total of -A9	842,000	427,000	1,269,000
-A10	Anaerobic digester		,	
	Civil works	23,410,000	0	23,410,0000
	Architecture works	814,000	0	814,000
	Mechanical works	2,131,000	11,059,000	13,190,000
	Electrical works	67,000	349,000	416,000
	Sub Total of -A10	26,422,000	11,408,000	37,830,000
-A11	Sludge treatment facility			
	Civil works	31,000	0	31,0000
	Architecture works	1,297,000	0	1,297,000
	Mechanical works	740,000	3,842,000	4,582,000
-	Electrical works	209,000	1,083,000	1,292,000
	Sub Total of -A11	2,277,000	4,925,000	7,202,000
-A12	Pipe work			
-	Civil works	6,418,000	14,386,000	20,804,000
	Sub Total of -A12	6,418,000	14,386,000	20,804,000
-A13	Administration building		, ,	
	Architecture works	1,626,000	0	1,626,000
	Electrical works	260,000	3,937,000	4,197,000
	Sub Total of -A13	1,886,000	3,937,000	5,823,000
-A14	Substation and generator building		, ,	
	Architecture works	844,000	0	844,000
	Electrical works	781,000	5,275,000	6,056,000
	Sub Total of -A14	1,625,000	5,275,000	6,900,000
-A15	Cogeneration building		, ,	
-	Architecture works	316,000	0	316,000
-	Electrical works	357,000	1,853,000	2,210,000
	Sub Total of -A15	673,000	1,853,000	2,526,000
-A16	Landscaping work	ĺ ĺ	, , ,	
	Civil works	2,015,000	0	2,015,000
	Sub Total of -A16	2,015,000	0	2,015,000
	Sub Total of A	109,170,000	76,632,000	185,802,000
	Civil works	92,501,000	14,386,000	106,887,000
	Architecture works	5,411,000	0	5,411,000
	Mechanical works	8,415,000	43,679,000	52,094,000
	Electrical works	2,843,000	18,567,000	21,410,000
В	Interceptor			
-B1	Interceptor No.1			
	Civil works	6,416,000	4,623,000	11,039,000
	Sub Total of -B1	6,416,000	4,623,000	11,039,000
-B2	Interceptor No.2			
	Civil works	3,981,000	351,000	4,332,000
	Sub Total of -B2	3,981,000	351,000	4,332,000
-B3	Interceptor No.3			
	Civil works	7,752,000	0	7,752,000
	Sub Total of -B3	7,752,000	0	7,752,000
-B4	Interceptor No.4			
	Civil works	9,752,000	0	9,752,000
	Sub Total of -B4	9,752,000	0	9,752,000
-B5	Interceptor No.6			
	Civil works	3,874,000	10,587,000	14,461,000
	Sub Total of -B5	3,874,000	10,587,000	14,461,000
	Item Description	Amount	(Euro)	Total Amount
----------	--	-------------	-------------	--------------
		L.C	F.C	(Euro)
	-B6 Interceptor No.10 included collector			
	Civil works	5,957,000	18,906,000	24,863,000
	Sub Total of -B6	5,957,000	18,906,000	24,863,000
	Sub Total of B	37,732,000	34,467,000	72,199,000
	Civil Works	37,732,000	34,467,000	72,199,000
	C Pumping station			
	-C1 Usce pumping station			
	Civil works	2,216,000	149,000	2,365,000
	Architecture works	503,000	0	503,000
	Mechanical works	261,000	1,354,000	1,615,000
	Electrical works	228,000	1,303,000	1,531,000
	Sub Total of -C1	3,208,000	2,806,000	6,014,000
	-C2 Mostar pumping station			
	Civil works	490,000	0	490,000
	Architecture works	242,000	0	242,000
	Mechanical works	206,000	1,068,000	1,274,000
	Electrical works	214,000	1,232,000	1,446,000
	Sub Total of -C2	1,152,000	2,300,000	3,452,000
	Sub Total of C	4,360,000	5,106,000	9,466,000
	Civil works	2,706,000	149,000	2,855,000
	Architecture works	745,000	0	745,000
	Mechanical works	467,000	2,422,000	2,889,000
	Electrical works	442,000	2,535,000	2,977,000
	Sub Total of Construction Cost	151,262,000	116,205,000	267,467,000
	Civil works	132,939,000	49,002,000	181,941,000
	Architecture works	6,156,000	0	6,156,000
	Mechanical works	8,882,000	46,101,000	54,983,000
	Electrical works	3,285,000	21,102,000	24,387,000
2	Administration Cost			
	Administration Cost	16,799,000	0	16,799,000
	Sub-Total	16,799,000	0	16,799,000
3	Consulting Cost			
	Base cost	6,334,000	7,669,000	14,003,000
	Price escalation	601,000	712,000	1,313,000
	Physical contingency	347,000	419,000	766,000
	Sub-Total	7,282,000	8,800,000	16,082,000
4	Physical Contingency for construction			
	Physical contingency	8,456,000	6.562.000	15.018.000
<u> </u>	Sub-Total	8 156 000	6 562 000	15 018 000
5	Drice Eggelation for construction	0,430,000	0,302,000	13,010,000
3	Price Ascalation	16 726 000	13 522 000	30 248 000
	Sub Total	16,726,000	13,522,000	30,248,000
6	J and Acquisition	10,720,000	15,522,000	30,240,000
0	Page cost	6 8 1 6 000	0	6 916 000
	Base cost	126,000	0	126,000
	Physical contingency	248,000	0	248,000
	Sub Total	7 300 000	0	7 300 000
7	Jud-1 Utal Interest During Construction	7,300,000	U	7,300,000
	Interest during construction (const)	0	1/ 100 000	14 100 000
	Interest during construction (const)	0	7 000	7 000
	Sub Total	0	1/ 11/ 000	14 116 000
Q	Commitment Charge	0	14,110,000	14,110,000
0	Commitment Charge	0	2 742 000	2 742 000
Ì	Communent Charge	0	2,742,000	2,742,000

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 7 Cost Estimation and Implementation Schedule

	Item Decemention		Amount (Euro)		Total Amount
		Item Description	L.C	F.C	(Euro)
		Sub-Total	0	2,742,000	2,742,000
9	Tax				
		VAT	67,198,000	0	67,198,000
		Sub-Total	67,198,000	0	67,198,000
		Total of 1+2+3+4+5+6+7+8+9	275,023,000	161,947,000	436,970,000
		(including TAX)			
		Total of 1+2+3+4+5+6+7+8	207,825,000	161,947,000	369,772,000
		(excluding TAX)			

Amount (Euro) Total Amount Item Description (Euro) L.C F.C **Construction Cost** 1 A Veliko Selo WWTP -A1 Site preparation work 12,163,000 12,163,000 Civil & Architecture works 0 Sub Total of -A1 12,163,000 0 12,163,000 Lift pump facility -A2 1,287,000 1,287,000 Civil works 0 71,000 Architecture works 71,000 0 Mechanical works 467,000 2,424,000 2,891,000 Electrical works 158,000 822,000 980,000 1,983,000 5,229,000 Sub Total of -A2 3,246,000 -A3 Pretreatment facility Civil works 1,923,000 0 1,923,000 92,000 92,000 Architecture works 0 939.000 Mechanical works 181,000 1,120,000 102,000 Electrical works 16,000 86,000 Sub Total of -A3 2,212,000 1,025,000 3,237,000 -A4 Primary settling tank Civil works 2,872,000 0 2,872,000 Mechanical works 118,000 613,000 731,000 230,000 Electrical works 37,000 193,000 3,027,000 Sub Total of -A4 806.000 3,833,000 Bioreactor -A5 13,459,000 13,459,000 Civil works 0 4,962,000 956,000 5,918,000 Mechanical works 514,000 Electrical works 83,000 431,000 Sub Total of -A5 14,498,000 5,393,000 19,891,000 -A6 Blower facility 444,000 Civil works 0 444,000 Architecture works 89,000 0 89,000 214,000 1,324,000 Mechanical works 1,110,000 190,000 Electrical works 986,000 1,176,000 2,096,000 Sub Total of -A6 937,000 3,033,000 -A7 Secondary settling tank 4,416,000 Civil works 4,416,000 0 58,000 Architecture works 58,000 0 Mechanical works 288,000 1,493,000 1,781,000 41,000 215.000 256,000 Electrical works 1,708,000 Sub Total of -A7 4,803,000 6,511,000 -A8 Filtration Civil works 1,014,000 0 1,014,000 Architecture works 56,000 0 56,000 618,000 3,206,000 3,824,000 Mechanical works Electrical works 95,000 493,000 588,000 Sub Total of -A8 1,783,000 3.699.000 5,482,000 -A9 Gravity thickener Civil works 394,000 0 394,000 197,000 Mechanical works 38,000 235,000 27,000 Electrical works 5,000 32,000 437,000 224,000 661,000 Sub Total of -A9 Anaerobic digester -A10

2. Estimated Project Cost of Phase-1 Project

	Item Description	Amount	t (Euro)	Total Amount
	nem Description	L.C	F.C	(Euro)
	Civil works	11,817,000	0	11,817,000
	Architecture works	407,000	0	407,000
	Mechanical works	1,065,000	5,530,000	6,595,000
	Electrical works	34,000	174,000	208,000
	Sub Total of -A10	13,323,000	5,704,000	19,027,000
-A11	Sludge treatment facility	· · · ·	, ,	
	Civil works	75,000	0	75,000
	Architecture works	1,297,000	0	1,297,000
	Mechanical works	484,000	2,514,000	2,998,000
	Electrical works	177,000	918,000	1,095,000
	Sub Total of -A11	2,033,000	3,432,000	5,465,000
-A12	Pipe work	, ,	, ,	
	Civil works	4,601,000	7,119,000	11,720,000
	Sub Total of -A12	4.601.000	7.119.000	11.720.000
-A13	Administration building	,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,
	Architecture works	1.626.000	0	1.626.000
	Electrical works	205.000	2.745.000	2,950,000
	Sub Total of -A13	1.831.000	2.745.000	4.576.000
-A14	Substation and generator building	1,001,000	_ ,, ic ,000	1,270,000
	Architecture works	844 000	0	844 000
	Electrical works	427,000	3 438 000	3 865 000
	Sub Total of - A14	1 271 000	3 438 000	4 709 000
-A15	Cogeneration building	1,271,000	5,120,000	-1,7 09,000
1115	Architecture works	316,000	0	316 000
	Flectrical works	179,000	927.000	1 106 000
	Sub Total of -A15	495,000	927,000	1,100,000
-416	Landscaping work	475,000	727,000	1,422,000
1110	Civil works	2 015 000	0	2 015 000
	Sub Total of - A16	2,015,000	0	2,015,000
	Sub Total of A	67 412 000	41 562 000	108 974 000
	Civil works	56 480 000	7 119 000	63 599 000
	Architecture works	4 856 000		4 856 000
	Mechanical works	4 429 000	22 988 000	27 417 000
	Flectrical works	1 647 000	11 455 000	
В	Interceptor	1,047,000	11,400,000	13,102,000
-B1	Interceptor No 4			
D1	Civil works	9 752 000	0	9 752 000
	Sub Total of -B1	9,752,000	0	9,752,000
-B2	Interceptor No 6	>,752,000	v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Civil works	3 874 000	10 587 000	14 461 000
	Sub Total of -B?	3 874 000	10,587,000	14,461,000
_B3	Interceptor No 10 included collector	5,074,000	10,507,000	14,401,000
D 5	Civil works	5 957 000	18 906 000	24 863 000
	Sub Total of B3	5,957,000	18,006,000	24,863,000
	Sub Total of P	10 593 000	20 403 000	4,005,000
	Civil Works	10 583 000	23,493,000	42,070,000
C	Civil WOIRS Pumping station	17,303,000	47,493,000	47,070,000
	Mostar pumping station			
-01	Civil works	100 000	Ο	100 000
	Architecture works	242.000	0	2420,000
	Mechanical works	242,000	1.068.000	1 274 000
	Flectrical works	200,000	1 232 000	1,274,000
	Sub Total of C1	1 152 000	2 200 000	3 452 000
	Sub 10(a) 01 •C1	1,152,000	∠,300,000	3,432,000

	Itom Description	Amount	(Euro)	Total Amount
	ttem Description	L.C	F.C	(Euro)
	Sub Total of C	1,152,000	2,300,000	3,452,000
	Civil works	490,000	0	490,000
	Architecture works	242,000	0	242,000
	Mechanical works	206,000	1,068,000	1,274,000
	Electrical works	214,000	1,232,000	1,446,000
	Sub Total of Construction Cost	88,147,000	73,355,000	161,502,000
	Civil works	76,553,000	36,612,000	113,165,000
	Architecture works	5,098,000	0	5,098,000
	Mechanical works	4,635,000	24,056,000	28,691,000
	Electrical works	1,861,000	12,687,000	14,548,000
2	Administration Cost			
	Administration Cost	10,608,000	0	10,608,000
	Sub-Total	10,608,000	0	10,608,000
3	Consulting Cost			
	Base cost	6,344,000	7,669,000	14,003,000
	Price escalation	601,000	712,000	1,313,000
	Physical contingency	347,000	419,000	766,000
	Sub-Total	7,282,000	8,800,000	16,082,000
4	Physical Contingency for construction		· · ·	
	Physical contingency	4,895,000	4,095,000	8,990,000
	Sub-Total	4,895,000	4,095,000	8,990,000
5	Price Escalation for construction			
	Price escalation	9,747,000	8,536,000	18,283,000
	Sub-Total	9,747,000	8,536,000	18,283,000
6	Land Acquisition			
	Base cost	6,816,000	0	6,816,000
	Price escalation	136,000	0	136,000
	Physical contingency	348,000	0	348,000
	Sub-Total	7,300,000	0	7,300,000
7	Interest During Construction			
	Interest during construction (const)	0	8,516,000	8,516,000
	Interest during construction (consul)	0	7,000	7,000
	Sub-Total	0	8,523,000	8,523,000
8	Commitment Charge			
	Commitment Charge	0	1,707,000	1,707,000
	Sub-Total	0	1,707,000	1,707,000
9	Tax			
	VAT	42,430,000	0	42,430,000
	Sub-Total	42,430,000	0	42,430,000
	Total of 1+2+3+4+5+6+7+8+9	170,409,000	105,016,000	275,425,000
	(including TAX)			
	Total of 1+2+3+4+5+6+7+8	127,979,000	105,016,000	232,995,000
	(excluding TAX)			

Chapter 8 Financial Analysis and Economic Analysis and Institution

1. Willingness To Pay Survey Formats

(1) English Version

Interviewer will explain the purpose the survey as follows;

"This interview is to ask the residents of the city of Beograd to measure their person value for the proposed new project of a sewerage treatment plan, Veliko Selo. The interviewer will tell the respondent, "The interview will take about ten minutes or less. If you spare the time, your answers will greatly support accurate social evaluation of the project. The information you will provide us will be treated anonymous and confidential and will be used only for project evaluation purpose"

Q 0. Is your house connected to sewer system now? 1. Yes 2. No

Q 1. Do you know how much your family pays per month for water and sewerage service from the city? 1. Yes 2. No

Q2. If "yes" in Q1, How much is it? RSD

Q3. How do you perceive the current tariff? 1. Appropriate, 2. Very Affordable, 3. Expensive,

Q4. At present, all the collected sewage is directly discharged to the Danube River. The proposed project is aimed at cleaning the effluent and to discharge to the river. Naturally, if the project is implemented the cost of sewage treatment will increase. Would you accept the increase of 50% to the current tariff of water and sewage combined? 1 Yes 2. No

- If Yes, then would you accept 75% increase?

- If No, then would you accept 25% increase?

Q5.

Q6. The establishment of sewerage treatment capacity has another social importance in terms of accession to EU. The environmental compliance to EC directives is a prerequisite to the accession. Acknowledging this fact, what would be your final answer to your acceptable increases in terms of percentage?

% Please give us your brief profile: Occupation Age Number of family members sharing the same water source Date: Signature

(2) Serbian Version

Spremnost na plaćanje za projekat postrojenja Veliko Selo

Anketar će objasniti svrhu ankete prema sledećem;

"Ovaj upitnik je namenjen stanovnicima grada Beograda da oceni ličnu vrednost predloženog projekta za postrojenje za tretman otpadnih voda Veliko Selo. Anketa traje 10 minuta ili kraće. Ukoliko imate slobodno vreme, vaši odgovori će biti važna podrška preciznoj sociološkoj proceni projekta. Informacije koje ćete nam dati biće tretirane kao anonimne i poverljive i biće korišćene samo za svrhu evaluacije projekta"

Q 0. Da li je vaše domaćinstvo priključeno na kanalizacionu mrežu? 1. Da 2. Ne

Q 1. Da li ste upoznati sa tim koliko vaša porodica plaća mesečno za usluge vode ikanalizaciju gradu?1. Da2. Ne

Q 2. Ukoliko "da " u	Q1, koliko iznosi ?	RSD/mesecno
----------------------	---------------------	-------------

Q 3. Kako Vi vidite trenutne tarife? 1. odgovarajuće, 2. povoljne, 3. skupe

Q 4. Trenutno, sva otpadna voda se direktno ispušta u reku Dunav bez tretmana. Predloženi projekat ima za cilj tretiranje otpadne vode i ispuštanje prečišćene vode u reku. Naravno, ukoliko se projekat sprovede, troškovi tretiranja otpadne vode iz kanalizacije će se povećati.

a Da li ste upoznati sa činjenicom da se otpadne vode iz gradske kanalizacije ispuštaju bez bilo kakve prerade u reku Dunav? 1. Da 2. Ne

b. Da li bi ste bili spremni da prihvatite povećanje od 50% na trenutnu tarifu koju plaćate za vodu i kanalizaciju kombinovano?
1 Da
2. Ne

b1. Ukoliko da, da li bi ste prihvatili 75% uvećanja? 1 Da 2. Ne

b2. Ukoliko ne, da li bi ste prihvatili 25% uvećanja? 1 Da 2. Ne

Q 5. Uspostavljanje tretmana otpadnih voda iz kanalizacionog sistema ima još jedan društveni aspekt u smislu podrške pridruživanja EU. Uspostavljanje standarda zaštite životne sredine u skladu sa zakonodavstvom EU je jedan od preduslova pristupanju EU. Imavši na umu ovu činjenicu, koji bi bio Vaš konačni odgovor za prihvatljivo povećanje cene u smislu procenta,? %

Q 6. Molimo Vas samo osnovne podatke o Vama:

a) zanimanje

- b) godište
- c) broj članova istog domaćinstva koja koristi usluge vode i kanalizacije
- d) lokacija stanovanja

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 8 Financial Analysis and Economic Analysis and Institution

2. Willingness To Pay Survey Results

(1) The Results of Willingness To Pay

The results of the willingness to pay are shown in Table 1.

The question is asked after explaining the current sewage disposal into the rivers and positive environmental impacts to be brought out by the Project, "How much are you willing to pay more in addition to the current payment for water and sewerage services?"

Table shows the distribution of the responses which are listed in the descending order. The cumulative distribution shows the share of the responses with WTP values equal or higher to the particular WTP. For example, the benchmark of 25% more WTP bracket has a cumulative distribution of 79.4%. It means that 79.4% of the respondents are willing to pay no less than 25% for the Project benefits.

WTP	Number of	Share of Total	Cumulative
100%	36	10%	10%
90%	1	0%	10%
80%	5	1%	11%
75%	56	15%	26%
65%	1	0%	26%
60%	8	2%	29%
50%	131	35%	64%
35%	2	1%	64%
30%	9	2%	67%
27%	1	0%	67%
25%	47	13%	79.4%
20%	3	1%	80%
15%	5	1%	82%
10%	15	4%	86%
5%	5	1%	87%
2%	3	1%	88%
1%	3	1%	89%
0%	43	11%	100%
Total	374	100%	100%

 Table 1
 Results of Willingness to Pay For Project

Source: WTP Survey by JICA Study Team

(2) **Profile of Respondents**

Age Distribution

The age distribution of the respondent in Figure 1 shows relative wide coverage of age groups for the survey.

Source: WTP Survey by JICA Study Team

Employment Situation

Table 2 shows the job retention situation of the respondents. 27% of the respondents do not have jobs, being unemployed, students or retired.

1 0		1
No job	102	27%
Job	269	73%
Total	371	100%

Table 2	Employment	Situation of	f Respondents
	Limpioyment	bituation of	Musponuum

Source: WTP Survey by JICA Study Team

Sewer Connections

The distribution of the respondent in Table 3 shows the connection to sewers. 95% connection is slightly higher the average connection rate.

Tuble e Sewer Connection Distribution of Respondents				
Sewer Connection	286	95%		
No Connection	15	5%		
Total	301	100%		

Table 5 Sewer Connection Distribution of Respondent	Table 3	Sewer Connection	Distribution	of Respondents
---	---------	-------------------------	--------------	----------------

Source: WTP Survey by JICA Study Team

Family Size

Table 4 shows the distribution of family size of the respondents. The average size of the family is 3.2 persons per family.

Table 4 Fan	mly Size Distributio	on of Respondents
1	30	8%
2	97	27%
3	86	24%
4	96	27%
5	33	9%
6	11	3%
7	4	1%
8	1	0%
9	2	1%
Total	360	100%

C D . . .

Source: WTP Survey by JICA Study Team

Perception of Current Water/Sewerage Tariff

Table 5 shows the respondents' perception of the current tariff. 71% of the respondents feel are satisfied with the current tariff level, feeling either "acceptable", or "inexpensive."

L		0
Acceptable	154	42%
Inexpensive	106	29%
Expensive	108	29%
Total	368	368

 Table 5
 Perception of Current Water/Sewerage Tariff

Source: WTP Survey by JICA Study Team

Current Average Payment

The average pay for water and sewerage service by the respondents is RSD 1102 per month per family.

Chapter 9 Current Engagement with CDM

1. Project Design Document (PDD)

PROJECT DESIGN DOCUMENT FORM FOR SMALL-SCALE CDM PROJECT ACTIVITIES (F-CDM-SSC-PDD) Version 04.1

Provisional

Title of the project activity	Methane Gas Capture and Electricity and Heat		
	Production at Veliko Selo Wastewater Treatment		
	Plant, Serbia		
Version number of the PDD	Version 0		
Completion date of the PDD	xx December 2012		
Project participant(s)	Belgrade Land Development Public Agency (LDA)		
	Belgrade Waterworks and Sewerage (BVK)		
Host Party(ies)	Government of the City of Belgrade, Serbia		
Sectoral scope(s) and selected	Type I Renewable Energy Projects		
methodology(ies)	Category I.C "Thermal energy production with or		
	without electricity" Version 19 (provisional)		
Estimated amount of annual average	17,095 tCO ₂ /yr		
GHG emission reductions			

PROJECT DESIGN DOCUMENT (PDD)

SECTION A. Description of project activity

A.1. Purpose and general description of project activity

The project deals with methane capture, GHG emission reduction and electricity production at the Veliko Selo Wastewater Treatment Plant, Serbia.

Sewage from the City of Belgrade, with which is stocked into the Danube and the Sava River as untreated at the moment will be treated in the newly-built Veliko Selo Wastewater Treatment Plant including advanced treatment which treated water is planned to be released into the Danube. Sewage treatment system is a usual premium treatment with addition of the advanced treatment, which has functions of phosphorus and nitrogen removal. Wastewater treatment consists of three parts, which are primary settling tank, bioreactor and final settling tank.

Figure 1. Diagram of Wastewater Treatment Process

Sludge is produced in both two settling tanks, joined to one and sent to the sludge treatment process.

The sludge process, originally consisting of mechanical dehydration which can dehydrate the sludge to approximately 80% moisture content and disposal by landfill of waste disposal facility is introduced anaerobic digestion and the produced biogas from digester is used for warming the injection sludge to the digester and the surplus biogas is treated by flare facility (stack). (see below figure) In these sludge warming and flare treatment, CO_2 emissions are not counted as burning carbon-neutral methane.

Figure 2. Diagram of Sludge Treatment Process

In a general way, the objectives of adopting anaerobic digestion from the aspect of sludge treatment are 1) sludge volume reduction, 2) sludge stabilization in disposal and 3) reduction of methane production when landfill disposal, which means the methane avoidance in terms of climate change. In the project the produced biogas supplied to co-generation facilities, **electrical energy** by biogas generation and **heat energy** by exhaust heat recovery are obtained. The electricity is sold to the connected grid and the exhaust heat is used for warming of injection sludge to the digester. This enables an alternative of a portion of power consumption in WWTP by co-generation.

Contribution to Sustainable Development

The project can obtain the energy of both electricity and heat by the biogas from the digestion of sludge, which is utilized only for warming the sludge injected into digester. It is expected that the Project can provide direct local environmental benefits as follows:

- ✓ Contributing to alternatives of the electricity consumed in Veliko Selo WWTP. This will result in reduced local air pollution from sulphur dioxide and particulate emissions that would otherwise be emitted as a result of combustion of coal in Serbia.
- ✓ Contributing to the financial strength on the operation of WWTP. The electricity generated by co-generation will be connected to the existing grid and sold to the power company that would be the successive incomes.

A.2. Location of project activity

A.2.1. Host Party(ies)

Veliko Selo Wastewater Treatment Plant

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 9 Current Engagement with CDM

A.2.2. Region/State/Province etc.

Veliko selo (Vinča), Palilula

A.2.3. City/Town/Community etc.

The site is located in the eastern area of the City of Belgrade.

A.2.4. Physical/ Geographical location

Figure3. Map of the project location in the City of Belgrade

A.3. Technologies and/or measures

Technology adopted to the project is co-generation system using biogas from digester as fuel. Electricity produced by co-generation is connected to the grid and sold as biomass energy and furthermore, the exhaust heat produced by co-generation is used for warming the injection sludge to the digester.

Type I. – Renewable Energy Projects

Category I.C "Thermal energy production with or without electricity" Version 19 (provisional)

Party involved (host) indicates a host Party	Privateand/orpublicentity(ies)projectparticipants(as applicable)	Indicate if the Party involved wishes to be considered as project participant (Yes/No)
Government of the City of Belgrade, Serbia (host)	Belgrade Land Development Public Agency (LDA)	No
Government of the City of Belgrade, Serbia (host)	Belgrade Waterworks and Sewerage (BVK)	No
Government of the City of Belgrade, Serbia (host)	Veliko Selo Wastewater Treatment Plant	No
Japan		

A.4. Parties and project participants

A.5. Public funding of project activity

✓ Acquire the letter of telling that the project fund is not diverted from ODA fund from MOFA Sample:

A.6. Debundling for project activity

The proposed project activity is not a debundled component of a large project activity. According to Appendix C of the Simplified Modalities and Procedures for Small-Scale CDM Project Activities, a proposed small-scale project activity is considered a debundled component of a large scale project activity if there is a registered small-scale CDM project activity or an application to register another small-scale project activity:

- With the same project participants;
- In the same project category and technology/measure; and
- Registered within the previous 2 years; and
- whose project boundary is within 1 km of the project boundary of the proposed small-scale activity at the closest point

Since none of the above is true for the proposed CDM project activity, it is not a debundled component of a large project activity.

SECTION B. Application of selected approved baseline and monitoring methodology B.1. Reference of methodology

The baseline and monitoring methodologies applied for the project is based on the most recent list of the small-scale CDM project activity categories contained in Appendix B of the Simplified Modalities and Procedures for Small-Scale CDM Project Activities.

The project falls under,

Type I - Renewable Energy Projects

B.2. Project activity eligibility

According to Appendix B of the Simplified Modalities and Procedures for Small-Scale CDM Project Activities, Category I. C. "Thermal energy for the user" comprises "renewable energy technologies that supply individual households or users with thermal energy that displaces fossil fuels. Biomass-based co-generating systems that produce heat and electricity for use on-site are included in this category. For co-generation systems and/or co-fired systems to qualify under this category, the energy output shall not exceed 45 MW_{thermal}.

B.3. Project boundary

According to the baseline methodology for project category I.C., "The physical, geographical site of the renewable energy generation delineates the project boundary" The physical project boundary selected for the project activity is the sludge treatment process centered on the anaerobic digester of the Veliko Selo WWTP before the dehydration process.

Figure4. Project Boundary

B.4. Establishment and description of baseline scenario

The baseline of the project will be identified by the following procedures:

First of all, scenarios legitimate and presumable in Serbia the Host country will all be enumerated. The project scenario should also be included in these scenarios.

Any possible scenario is enumerated as the below Table:

Among the below scenarios, a reason will be suggested on the scenario thought of as improbable as baseline.

• <u>Conditions of Serbia</u>

At the present sewage sludge (derived from sewage) is not accepted as biomass even if after dehydrated or after composting in Serbia. There is no disposal method other than disposal by landfill as (industrial) waste substances. Meanwhile, methane gas produced by anaerobic digestion of sludge is accepted as biogas, by which as fuel of co-generator and/or generator generated electricity is made possible to purchase by high price as biomass generated electricity.

Scenario No.	Contents of Scenario	Reason on the Scenario thought to be unlikely as Baseline, unnecessary to implement Barrier Analysis
Scenario 1	Status quo. i.e. Sewage in Belgrade is released	Releasing untreated sewage progresses the
	as untreated into the Danube and the Sava.	contamination of (international) rivers, which
		means contradictory to the national

Table1. Legitimate and Presumable Scenarios in Serbi	Table1.	. Legitimate ar	nd Presumable	Scenarios	in Serbia
--	---------	-----------------	---------------	-----------	-----------

		environmental policy. Unlikely as baseline.		
Scenario 2	<i>M/P scheme</i> . i.e. Sewage is treated by	(presumable as baseline, it is necessary to		
	secondary biological treatment with advanced	examine in next step)		
	treatment and sludge is treated by anaerobic			
	digestion after thickening and disposed by			
	landfill after dehydration. Biogas produced			
	from digester is utilized for warming sludge			
	injected into digester and/or combusted by flare			
	treatment.			
Scenario 3	Co-generation introduction scheme. i.e.	(presumable as baseline, it is necessary to		
(this	Sewage is treated by secondary biological	examine in next step)		
project)	treatment with advanced treatment and sludge is			
	treated by anaerobic digestion after thickening			
	and disposed by landfill after dehydration.			
	Biogas from digester produces electricity and			
	heat by introduced co-generator and the			
	electricity is connected to the existing grid and			
	the exhaust heat is utilized for warming sludge			
	injected into digester.			
Scenario 4	Composting introduction scheme. i.e. Sewage	(presumable as baseline, it is necessary to		
	is treated by secondary biological treatment	examine in next step)		
	with advanced treatment and sludge is			
	dehydrated after thickening and dehydrated			
	sludge cake is treated by composting. Biogas			
	produced from digester is utilized for warming			
	sludge injected into digester and/or combusted			
	by flare treatment.			
Scenario 5	Drying process (sludge fuel conversion)	The product of dried sludge has no application		
	introduction scheme. i.e. Sewage is treated by	as fuel. Unlikely as baseline by reason of no		
	secondary biological treatment with advanced	economic benefit even if dried.		
	treatment and sludge is dehydrated after			
	thickening and dehydrated sludge cake is dried			
	by newly-introduced sludge drying equipment.			
	Biogas produced from digester is utilized for			
	warming sludge injected into digester and/or			
	combusted by flare treatment.			

Next, the barrier analysis of reckoned scenarios will be implemented. Investment analysis of ones having the least barrier will be implemented and the one of the highest investment efficiency will be baseline scenario. The result of barrier analysis is shown as follows:

Scenario No.	Contents of Scenario	Presumable Barrier	
Scenario 2	<i>M/P scheme</i> . i.e. Sewage is treated by	No technical barrier. Making a study of whether	
	secondary biological treatment with advanced	the project is formed economically or not is	
	treatment and sludge is treated by anaerobic	required.	
	digestion after thickening and disposed by		
	landfill after dehydration. Biogas produced		
	from digester is utilized for warming sludge		
	injected into digester and/or combusted by flare		
	treatment.		
Scenario 3	Co-generation introduction scheme. i.e.	No technical barrier. Making a study of whether	
(this project)	Sewage is treated by secondary biological	the project is formed economically or not is	
	treatment with advanced treatment and sludge is	required.	
	treated by anaerobic digestion after thickening		
	and disposed by landfill after dehydration.		
	Biogas from digester produces electricity and		
	heat by introduced co-generator and the		
	electricity is connected to the existing grid and		
	the exhaust heat is utilized for warming sludge		
	injected into digester.		
Scenario 4	Composting introduction scheme. i.e. Sewage	The barrier is existing. Sludge derived from	
	is treated by secondary biological treatment	sewage or wastewater treatment is not biomass in	
	with advanced treatment and sludge is	Serbia and no sludge composting is implemented.	
	dehydrated after thickening and dehydrated	The reason is nonexistence of composting	
	sludge cake is treated by composting. Biogas	technology and social system.	
	produced from digester is utilized for warming		
	sludge injected into digester and/or combusted		
	by flare treatment.		

Table2. Barrier Analysis of Scenarios

The result of investment analysis on scenario 2 and 3 is shown as follows:

Table3. Investment Analysis of Scenarios

Scenario	Contents of Scenario	Additional	Additional	Post-tax IRR
No.	Contents of Scenario	Expense	Revenue	
Scenario 2	<i>M/P scheme</i> . i.e. Sewage is treated by	Initial	NA	IRR calculation is
	secondary biological treatment with	Construction Cost		incapable.
	advanced treatment and sludge is	300,000 k€		

	treated by anaerobic digestion after			
	thickening and disposed by landfill			
	after dehydration. Biogas produced			
	from digester is utilized for warming			
	sludge injected into digester and/or			
	combusted by flare treatment.			
Scenario 3	Co-generation introduction scheme.	Initial	Power purchase	IRR calculation is
(this project)	i.e. Sewage is treated by secondary	Construction Cost	cost and cost of	incapable.
	biological treatment with advanced	302,000 k€	fuel for warming	
	treatment and sludge is treated by		sludge are	
	anaerobic digestion after thickening		reduced by the	
	and disposed by landfill after		efficient use of	
	dehydration. Biogas from digester		biogas.	
	produces electricity and heat by		Revenue of	
	introduced co-generator and the		electrical power	
	electricity is connected to the existing		selling;	
	grid and the exhaust heat is utilized		1,212 k€/yr	
	for warming sludge injected into		(0.067 €/kWh)	
	digester.			

The study mentioned above concluded the baseline scenario was the *M/P scheme*.

B.5. Demonstration of additionality

Secondly, the additionality will be demonstrated. The project is scenario 3. As it became clear that the scenario 3 was not the baseline scenario, it has already been confirmed that the project was additionality, however, "GHG emissions can be reduced additionally" will be demonstrated through the scenario 3.

Mathematically, if the following formula become clear, the additionality can be verified.

Baseline Emissions + Baseline Leakage > Project Emissions + Project Leakage
(1)

where

Baseline Emissions (tCO₂/yr) $BE_{i,y} = EG_{i,y} * EF_{BL,i,FC} = 0$ (2) Baseline Leakage (tCO₂/yr) $BL_y = P_y * EF_{grid,y}$ (3)

Project Emissions (tCO₂/yr) $PE_{i,y} = EG_{j,y} * EF_{BL,i,FC} = 0$ (4) Project Leakage (tCO₂/yr) $PL_y = 0$ (5)

As described above, it is obvious that $P_y * EF_{grid,y} > 0$ leads to the additionality.

where

 $BE_{i,y}$ = Baseline emissions from electricity and thermal energy displaced by the project activity during the year y (tCO₂)

 $EG_{i,y}$ = Amount of fuel *i* of water heater used for warming sludge (mass or volume

unit/yr)

 $EF_{BL,i,FC}$ = Emission factor of fuel *i* (tCO₂/mass or volume unit/yr)

Emission factor of biogas fuel is 0

 BL_y = Baseline leakage during the year y (tCO₂/yr)

 P_y = Net supplied power by the project co-generation system in the year y

(MWh/yr)

 $EF_{grid,y}$ = Emission factor of the baseline grid during the year y (tCO₂/MWh)

 $PE_{i,y}$ = Project emissions in the year y (tCO₂/yr)

 $EG_{j,y}$ = Amount of exhaust heat energy *j* in the year *y* (mass or volume unit/yr)

 PL_y = Project leakage during the year y (tCO₂/yr) = 0

In the baseline, anaerobic digestion implemented with the purpose of sludge stabilization, the produced biogas is used for warming sludge injected into digester and its surplus is treated by flare combustion. On the other hand, in the project, the produced biogas is supplied to the co-generation system, and the power energy generated by biomass generation and the heat energy by recovered exhaust heat are obtained. Electricity is connected to the existing grid and sold, and exhaust heat is used for warming the sludge injected into digester. Herewith, a part of power consumption is substituted by co-generation. Consequently, the project is additionality.

B.6. Emission reductions

B.6.1. Explanation of methodological choices

According to Appendix B of the Simplified Modalities and Procedures for Small-Scale CDM Project Activities, Category I-C. "*Thermal energy production with or without electricity*" comprises "renewable energy technologies that supply users with thermal energy that displaces fossil fuel use. These units include technologies such as solar thermal water heaters and dryers, solar cookers, energy derived from renewable biomass and other technologies that provide thermal energy that displaces fossil fuel.

The applicability is limited to biomass co-generation units that the total installed energy capacity (thermal and electrical) of the project shall not exceed 45 MW thermal. Incidentally, for the purpose of calculating this capacity limit the conversion factor of 1:3 shall be used for converting electrical energy to thermal energy (i.e. for renewable energy project activities, the maximal limit of 15

MW(e) is equivalent to 45 MW thermal output of the equipment or the plant).

The proposed project activity involves 4 (four) units of 1 MW co-generation equipment. Then the total capacity of the project activity is 4 MW(e). As such this project qualifies under Category I.C. of Appendix B of the small-scale guidelines.

B.6.2. Data and parameters fixed ex ante

Data / Parameter	$EF_{BL,i,FC}$
Unit	tCO ₂ /mass or volume unit
Description	CO_2 emission factor of fuel type <i>i</i>
Source of data	AMS-I.C.
Value(s) applied	0
Choice of data or	Since fuel for warming the sludge injected into digester is biogas,
Measurement methods	no CO_2 emission factor is to be considered.
and procedures	
Purpose of data	Calculation of baseline and project emissions
Additional comment	

Data / Parameter	EF _{grid,y}	
Unit	tCO ₂ /MWh	
Description	Emission factor of Serbian power grid during the year y	
Source of data	Technical Assistance of the Revision of Project Design Documents (PDDs). Calculation of the Carbon Emission Factor for the Serbian Power Grid; Rev.0 - JUNE 2011, Serbian Ministry of Environment, Mining and Spatial Planning Belgrade, Serbia (i.e. Ministry of Energy Development and Environmental Protection of the Republic of Serbia <i>at present</i>)	
Value(s) applied	0.945	
Choice of data or Measurement methods and procedures	This item should be decided based on the method mentioned in the Baseline Methodology.	
Purpose of data	Calculation of emission reduction of the project	
Additional comment		

Preparatory Survey on the Sewage System Improvement Project for the City of Belgrade APPENDIX-I Chapter 9 Current Engagement with CDM

Data / Parameter	PL _y
Unit	tCO ₂ /yr
Description	Project leakage during the year y
Source of data	AMS-I.C.
Value(s) applied	0
Choice of data or	If the energy generating equipment is transferred from another
Measurement methods	activity, leakage is to be considered.
and procedures	
Purpose of data	Calculation of emission reduction of the project
Additional comment	

B.6.3. Ex-ante calculation of emission reductions

1. Baseline emissions

Baseline emissions for heat produced using biomass fuel shall be calculated as follows:

$$BE_{i,y} = EG_{i,y} * EF_{BL,i,FC}$$

where

- $BE_{i,y}$ = The baseline emissions from heat displaced by the project activity during the year y (tCO₂/yr)
- $EG_{i,y}$ = The net quantity of heat supplied by the project activity during the year y (mass or volume unit/yr)
- $EF_{BL,i,FC}$ = The CO₂ emission factor of the fuel that would have been used in the baseline plant. (tCO₂/mass or volume unit)

Since the fuel is biogas, the emission factor is 0

This shows that the fuel of hot water heater required for warming the sludge injected into anaerobic digester is covered by the biogas. Adopting the method of utilizing biogas for warming sludge into digester, no GHG emission is to be considered. Such condition setting is consistent with the simplification of this GHG reduction projects.

2. Baseline leakage

Baseline leakage shall be calculated as follows:

$$BL_y = P_y * EF_{grid,y}$$

where

 $BL_y = Baseline leakage during the year y (tCO_2/yr)$ $P_y = Net supplied power by the project co-generation system in the year y$ (MWh/yr)

 $EF_{grid,y}$ = Emission factor of Serbian power grid during the year y (tCO₂/MWh)

$\blacksquare \quad \text{Regarding } P_{\mathcal{F}}$

The capacity of co-generation system planned in the main project (Veliko Selo WWTP Project) is as follows:

1,000 kW x 4 units total 4,000 kW (at peak time)

When assuming the generation capacity is 2,500 kW in normal operation, the annual operating time is 8,040 hrs (335-day running) and the self-consumption ratio is 10 %;

2,500 kW x 8,040 hrs x (1-0.1) = 18,090 MWh/yr

And the emission factor of Serbian power grid $EF_{grid,y}$ is;

 $EF_{grid,v} = 0.945 \text{ tCO}_2/\text{MWh}^1$

thus

$$BL_{v} = 17,095 \text{ tCO}_{2}/\text{yr}$$

3. Project emissions

Project emissions shall be calculated as follows:

$$PE_{i,y} = EG_{i,y} * EF_{BL,i,FC} = 0$$

Thus no project emission is to be considered.

4. Project leakage

If the energy generating equipment is transferred from another activity, leakage is to be considered.

Thus no project leakage is to be considered.

$$PL_y = 0$$

5. Emission reduction

¹ Technical Assistance of the Revision of Project Design Documents (PDDs), Calculation of the Carbon Emission Factor for the Serbian Power Grid; Rev.0 – JUNE 2011, Serbian Ministry of Environment, Mining and Spatial Planning Belgrade, Serbia

GHG emission reduction shall be calculated as follows:

Emission reduction = (Baseline emissions + Baseline leakage) - (Project emissions + Project leakage)

thus

GHG emission reduction $ER_{CO2} = \frac{17,095 \text{ tCO}_2/\text{yr}}{12000}$

Year	Baseline emissions (tCO ₂ e)	Project emissions (tCO ₂ e)	Leakage (tCO ₂ e)	Emission reductions (tCO ₂ e)
2019	0	0	17,095	17,095
2020	0	0	17,095	17,095
2021	0	0	17,095	17,095
2022	0	0	17,095	17,095
2023	0	0	17,095	17,095
2024	0	0	17,095	17,095
2025	0	0	17,095	17,095
Total				119,665
Total number of crediting years	7 years			
Annual average over the crediting period				17,095

B.6.4. Summary of ex-ante estimates of emission reductions

B.7. Monitoring plan

B.7.1. Data and parameters to be monitored

Data / Parameter	P_y	
Unit	MWh/yr	
Description	Net supplied power by the project co-generation system in the year y	
Source of data	Indicated value of sold electric power meter	
Value(s) applied	18,090	
Measurement	Measurement data should be stored as electronic data and kept them	
methods and	ods and for two years after the crediting period.	
procedures		
Monitoring	Once a year	
frequency		
QA/QC procedures	/QC procedures Instrument should be corrected proofs periodically.	
Purpose of data	Calculation of emission reduction of the project	
Additional comment		

Data / Parameter	<i>EF</i> _{grid,y}		
Unit	tCO ₂ /MWh		
Description	Emission factor of Serbian power grid during the year y		
Source of data	Technical Assistance of the Revision of Project Design Documents		
	(PDDs). Calculation of the Carbon Emission Factor for the Serbian		
	Power Grid; Rev.0 - JUNE 2011, Serbian Ministry of Environment,		
	Mining and Spatial Planning Belgrade, Serbia (i.e. Ministry of		
	Energy Development and Environmental Protection of the Republic		
	of Serbia at present)		
Value(s) applied	0.945		
Measurement	This item should be decided based on the method mentioned in the		
methods and	Baseline Methodology. Measurement data should be stored as		
procedures	electronic data and kept them for two years after the crediting		
	period.		
Monitoring	g Once a year		
frequency			
QA/QC procedures	Calculating based on the Baseline Methodology		
Purpose of data	Calculation of emission reduction of the project		
Additional comment			

B.7.2. Sampling plan

The framework of quality control and quality assurance on the monitoring are as follows: Where "Administrator" means the administration division of Belgrade Waterworks and Sewerage (BVK) and "Operator" means operators of Veliko Selo WWTP those who implement the monitoring under the directions of the administration division of BVK.

- \checkmark Project implement bodies consist of the operator and the administrator.
- ✓ Administrator develops a procedure for facility operation.
- ✓ In the procedure, daily work contents, maintenance methods and various types of criteria for judgement are described and formatted appropriately.
- ✓ The operator should be assured of chances for receiving training and education periodically to take every available step to work in accordance with the above procedure.
- ✓ Operator should carry out the daily works and report the results to the administrator in accordance with the procedure.
- ✓ Administrator should check the report from the operator and make judgements whether having problems with or not in accordance with the procedure, and as a result of checking, develop an appropriate response at an appropriate time in the event of problems.
- ✓ Administrator should file the report from the operator daily and store them in accordance with the procedure.
- ✓ Administrator should take a tour of the sites, visit the site at an appropriate time and audit whether the operator's works properly in accordance with the procedure. As a result of auditing, the administrator should develop an appropriate response at an appropriate time in the event of problems.
- ✓ When an accident occurs (including unexpected GHG discharge), administrator should find out the cause and give the operator the direction of countermeasure and implementation.
- ✓ If an emergency arises (including unexpected GHG discharge), operator should take emergency measures and implement the countermeasures under the administrator's direction.
- ✓ Instrument should properly be corrected proofs periodically in accordance with the procedure. A period and a method of the proofreading should accordance with the monitoring plan.

B.7.3. Other elements of monitoring plan

NA

SECTION C. Duration and crediting period C.1. Duration of project activity C.1.1. Start date of project activity xx / 01 / 2019

C.1.2. Expected operational lifetime of project activity 7 years

C.2. Crediting period of project activity C.2.1. Type of crediting period CER

C.2.2. Start date of crediting period dd / 01 / 2019

C.2.3. Length of crediting period 7 years

SECTION D. Environmental impacts D.1. Analysis of environmental impacts NA

SECTION E. Local stakeholder consultation E.1. Solicitation of comments from local stakeholders NA

E.2. Summary of comments received NA

E.3. Report on consideration of comments received NA

SECTION F. Approval and authorization NA

- - - - -

Organization	
Street/P.O. Box	
Building	
City	
State/Region	
Postcode	
Country	
Telephone	
Fax	
E-mail	
Website	
Contact person	
Title	
Salutation	Ms.
Last name	
Middle name	
First name	
Department	
Mobile	
Direct fax	
Direct tel.	
Personal e-mail	

Appendix 1: Contact information of project participants

Appendix 2: Affirmation regarding public funding

NA

Appendix 3: Applicability of selected methodology

NA

Appendix 4: Further background information on ex ante calculation of emission reductions

NA

Appendix 5: Further background information on monitoring plan

NA

Appendix 6: Summary of post registration changes

NA

History of the document

- - - - -

Version	Date	Nature of revision		
04.1	11 April 2012	Editorial revision to change history box by adding EB meeting and		
		annex numbers in the Date column.		
04.0	EB 66	Revision required to ensure consistency with the "Guidelines for		
	13 March 2012	completing the project design document form for small-scale CDM		
		project activities" (EB 66, Annex 9).		
03	EB 28, Annex 34	The Board agreed to revise the CDM project design		
	15 December 2006	document for small-scale activities (CDM-SSC-PDD),		
		taking into account CDM-PDD and CDM-NM.		
02	EB 20, Annex 14	The Board agreed to revise the CDM SSC PDD to reflect		
	08 July 2005	guidance and clarifications provided by the Board since		
		version 01 of this document.		
		As a consequence, the guidelines for completing CDM		
		SSC PDD have been revised accordingly to version 2. The		
		latest version can be found at		
		<http: cdm.unfccc.int="" documents="" reference="">.</http:>		
01	EB 07, Annex 05	Initial adoption.		
	21 January 2003			
Decision Class: Regulatory				
Document Type: Form				
Business Function: Registration				