

Annual Project Execution Scenario

$1^{\text {st }}$ Year:

Fact finding and propose solution idea and initial execution of the solution process. Implementation of system, trial operation of the system, and carry out training program. $2^{\text {nd }}$ Year:
Find obstacles through initial operation and resolve by applying counter actions. Start initial operation by CP staff, skill up system operation through On the Job Training (OJT). Hazard resolution into element to dissolve them. Human skill upgrade by training and
education program.
$3^{\text {rd }}$ Year
Watch and support independent operation of the system by CP. Skill up human resources through education program. Support the extension of training program by CP . Support future scope planning by CP .

Narrative Summary of the Project

Overall Goal

Law enforcement is enhanced ground on technical information based on satellite images on illegal deforestation

Project Purpose

Technical information based on ALOS/PALSAR images on illegal deforestation in the Brazilian Amazon is provided for law enforcement.

Outputs

1. Deforestation areas including suspicious areas are detected using ALOS/PALSAR data.
2. The information flow of satellite monitoring system throughout DPF and IBAMA is improved.
3. Human resources in DPF and IBAMA are up skilled to detect and characterize illegal deforestation

Basic Plans of project execution

To realize the project goal, following 3 basic policy is essential to successfully complete the project;
(1) Ensure technology transfer on deforestation detection by means of ALOS/PALSAR
(2) Materialize Data and Information System in DPF and IBAMA.
(3) Capacity building focused on the human resources development for the system operation, maintain and enhance.

These basic plans are well match with the PDM output description.

Goal System Concept

Activity for Output 1

Goal 1:
Deforestation areas including suspicious areas are detected using ALOS/PALSAR
data

Activities for Output 2

Goal 2:
The information flow of satellite monitoring system throughout DPF and

Activities for Output 3

Goal 3:

Human resources in DPF and IBAMA are up skilled to detect and characterize

Principle of Synthetic Aperture Radar

May, 2006

Tsutomu Yamanokuchi
Remote Sensing Technology Center (RESTEC)
Mestre

Annual Activity Scenario

1st Year: Fact finding on the existing system both in DPF and IBAMA to clarify system configuration and data flow. Find operational problems for importing PALSAR data into the system and draw a solution idea and system configuration. Draft modification scope of the system, schedule and expected results of the modification. Modify the system under the permission and co work by DPF and IBAMA. Test run under the modified system. Conduct Web interface design and develop out side of the system.

2nd Year: Initial trial operation of the system for shaking down bugs and find necessary improvement. Draft improvement reflecting user's comment. Apply modification. Implement Web interface to the system.

3rd Year: Adjust Web interface and monitor operation to confirm link between DPF and IBAM works well. Support drafting plan for future upgrade to enhance or extend the system to be conducted by DPF and IBAMA.

Table of Contents

(1) Introduction
(2) SAR Image processing
(3) Characteristics of SAR image
. Scattering process
II. Geometric characteristics
III. Difference of Microwave bands
IV. Descending and Ascending image
(4) SAR specific analysis method
I. Stereo SAR
II. Polarimetric SAR
III. Interferometric SAR
(5) Appendix

Introduction of ALOS value-added products
(1) Introduction

Mrstre

SAR and its strona point(1)

Abbreviation of Synthetic Aperture Radar
Sensor itself transmit a microwave on the ground and receive the reflection from ground (backscatter)

Preferable target for SAR observation

- Ice, Ocean waves
- Soil moisture, vegetation mass
- Man-made objects, e.g. buildings
- Geological structures

SAR and its strong point(2)

Strong point of SAR
-Can observe under all-weather condition

- Can work day-and-night observation
- Can observe polarimetric observation
-Have the Coherency information
Weak point of SAR
- Difficulty of image interpretation
(Characteristics of microwave image)
- Geometric Distortion due to observation system
(Foreshortening, Layover, Radarshadow)

Important parameters for SAR system

- Incidence angle
- Wavelength
- Polarization
- Spatial Resolution
- Repeat cycle

What's microwave?

Characteristic of atmospheric spectral transmittance (after NASAJJPL, 1988)

Optical and Microwave sensor

LANDSAT TM (23 Apr. 1992)

JERS-1 SAR (23 Apr. 1992)

Processing level

1 RAW data : Raw signal data. Before the image reconstruction of SAR image

2 SLC data : SLC means Single Look Complex.
This data has phase and amplitude information in complex style

3 Image data :Each pixels are consist of real value (usually 2byte short integer). No phase information

To create from data1 to 2 or 3 , It is necessary to process range compression and azimuth compression

Range Resolution (2) Slant range resolution and ground range resolution

The relationship between the ground range Δx and the slant range ΔR is expressed as below with the incident angle θ.

$$
\Delta x=\Delta R / \sin \theta=\frac{C T}{2 \sin \theta}
$$

Hence, the ground resolution Δx is lower than the slant range

Hence, the resolution is higher at the far range side than that at near range side.
i.e. JERS-1:
$\Delta x=C T / 2 \sin \theta=3.0 \times 10^{8} \times 35 \times 10^{-6} /\left(2.0 \times \sin 35^{\circ}\right)=9153 \mathrm{~m}$

Range Resolution (3) Characteristics of pulse and resolution

S/N in SAR image : Depends on the transmission power.
Resolution of SAR image : Depends on the band width. High resolution needs sharp pulse width,
It is difficult to realize the pulse signal which has both sharp pulse width and high transmission power .
Increase the band width without the modulation of pulse width. \Rightarrow Theory of chirp compression

In the case of sine wave and rectangular wave,
Band width: $\mathrm{B}=\frac{1}{\tau}$
$\underset{\text { (along slant range) }}{\text { Resolution: }} \Delta R=\frac{c \tau}{2}=\frac{c}{2 B}$

In the case of chirp-compressed wave, Band width: $\mathrm{B}=\frac{1}{\tau}=\Delta \mathrm{f}$ (After detection) $\underset{\text { (along slant range) }}{\text { Resolation: }} \Delta \mathrm{R}=\frac{\mathrm{ct}}{2}=\frac{\mathrm{c}}{2 \mathrm{~B}}=\frac{\mathrm{c}}{2 \Delta \mathrm{f}}$ (After detection)
hanging a frequency of wave in proportion to changes in time
frequency $f=f_{0}+a t$ (a :constant) Output waveform $\quad g_{S}(t)=\exp \left[2 \pi i\left(f_{0}+a t\right) t\right]$

$\mathrm{f}_{0}=1275 \mathrm{MHz}$
$\Delta f=15 \mathrm{MHz}$
$1267.5 \leqq \mathrm{f} \leqq 1282.5$ Bandwidth after phase detection: T B= Δ $\int_{f=15 \mathrm{MHz}}$ In the case of JERS-1, pulse width and spatia $t=15 \mathrm{MHz}$ resolution after chirp compression is following;

Pulse widtht ${ }_{\mathrm{mc}}=1 / \Delta \mathrm{f}=6.67 \times 10^{-8}(\mathrm{~s})$
Spatial resolution on slant range
$\Delta R=\mathrm{CT}_{\mathrm{mc}} / 2.0=10 \mathrm{~m}$ Spatial resolution on ground range:
$\Delta X \quad=\Delta R / \sin 35^{\circ} \fallingdotseq 17.4 \mathrm{~m}$

Azimuth resolution(1) ~Azimuth resolution without azimuth compression \sim
-Set spatial resolution of azimuth direction as δ and slant range length R, spatial resolution of azimuth direction is estimated following equation:

Half bandwidth $\beta=\lambda / L(\mathrm{rad})$
(L:azimuth antenna width)

$$
\delta=\beta \mathrm{R}=\lambda \mathrm{R} / \mathrm{L}
$$

In the case of JERS-1;
$\lambda=23 \mathrm{~cm}, ~ \mathrm{R}=700 \mathrm{~km}, ~ \mathrm{~L}=12 \mathrm{~m}$,
$\delta=0.23 \times 7 \times 10^{5} / 12.0=13400 \mathrm{~m}$

Spatial resolution in azimuth direction $=13 \mathrm{~km} \rightarrow$ almost no use!!!(Low resolution)

Backscatter from the Earth Surface (1)
Birace scatter (Reflecion) mechanism

으N

Spatial resolution of SAR image (Summary)
-Spatial resolution on ground range is getting higher to go to far range side.
-Range compression, Azimuth compression \rightarrow execute for the improvement of the spatial resolution
-The narrower the illuminating pulse width, the higher spatial resolution of image
-Maximum azimuth resolution is decided by the real antenna size and it is a half of real antenna width.
-Azimuth resolution is finally decided by the number of look number
Backscatter from the Earth Surface (2)
 Ansinc

Radar Frequency and Surface Scattering Parameter

Mrestic
Characteristics of SAR image

Distortion of SAR image
Slant range and Ground range

\triangle mestec

Choice of Radar Frequency

Application Factor

Radar wavelength should be matched to the size
of the surface features that we wish to discriminate

- -e.g. Ice discrimination, small features, use X-band
- -e.g. Geology mapping, large features, use L-band
- -e.g. Foliage penetration, better at low frequencies, ustem Factor use P-band
-Low frequencies
- More difficult processing
- Need larger antennas and feeds
- Simpler electronics
-High frequencies
- Need more power
- More difficult electronics

Conversion to Sigma nought (σ^{0})

Backscatter coefficient(sigma nought, σ^{0}):
The average reflectivity of a horizontal material sample, normalized with respect to a unit area $A_{\llcorner }$on the horizontal ground plane
Validation of backscatter coefficient
Set corner reflector which backscatter coefficient is already known and measure SAR observed intensity on the image. Then, execute the validation of SAR image. Conversion equation to sigma nought:

> In the case of JERS-1, following equation is represented by JAXA,

Distortion of SAR image

Ansinc

Geometric Distortion of SAR image

Data products

Georeferenced products:

- Relative geographic location is incorporated in the image
- not corrected to a map projection and should not be used for mapping purposes
Geocoded products:
- Geometrically corrected to conform to a map projection
- Often use ground control points and DEM to increase the geocoding accuracy
- Geocoded products are usually resampled to a standard square pixel size

Effect of Look Direction

Typical image pattern can be seen in SAR image (1)

Effect of Frequency (sample image)

ERS-1 AMI Image Wavelength: C band $(5.6 \mathrm{~cm})$

JERS-1 SAR Image
Wavelength: L band $(23 \mathrm{~cm})$

Typical image pattern can be seen in SAR image (2)

The effect of azimuth angle of incident microwave on ploughed fields

The effect of look direction On pounged fieds

Typical image pattern can be seen in SAR image (3)

Cmestic

Stereo SAR Observation -Radarsat observation mode-

Qersice

Interferometric SAR

으N

Interferometric SAR

The great Hanshin-awaji earthquake

In the epicenter of this earthquake, earth surface displaced more than 1.2 m in both vertical and horizontal direction. The displacement value estimated from this interferogram is agreed with the ground survey results.

Polarimetric SAR Pi-SAR image

$\mathrm{RGB}=\mathrm{HH}-\mathrm{HV}-\mathrm{VV}$

L band

$R G B=H H-H V-V V$

References

- Canadian Center for Remote Sensing (CCRS) Tutorial Radar Remote Sensing(http://www.ccrs.nrcan.gc.ca)
- Japan Aerospace explore Agency (JAXA) ALOS site (http:// www.eorc.jaxa.jp/ALOS/index.htm)
- Principles and Applications of IMAGING RADAR, Manual of Remote Sensing Third Edition, Vol. 2
- NASA/JPL, Synthetic Aperture Radar, Technical Report, NASA Earth Observation System, Instrument Panel Report, Vol. IIf, 1988.
- Sieber, A., Noack, W., Results of an Airborne SAR Experiment over a SIR-B Test Site in Germany, ESA Journal, 10 No. 3, 1986.
Polarimetric SAR ~Preferable polarization (C-band)~

Application	Preferred Single Polarization	Preferred Multi-Polarization
Agriculture - Grains (vertical) Canola/Peas (horizontal) Crop Monitoring	$\begin{aligned} & \text { VV or HV } \\ & \text { HH HV VV } \\ & \text { HV or } \end{aligned}$	$\begin{aligned} & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \end{aligned}$
Defense -Manime Surveillance Ship (shallow incidence) - Ship (steep incidence)	HH HV H HV or HH	$\begin{aligned} & \mathrm{HV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{HH} \end{aligned}$
Forestry Clear-cut Mapping Biomass Estimation	$\begin{aligned} & \mathrm{HV} \\ & \mathrm{HV} \end{aligned}$	$\begin{aligned} & \mathrm{HV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \end{aligned}$
Geology Structural Mapping	HV	$\mathrm{HV}+\mathrm{HH}$
Hydrology Flood Mapping Soil Moisture Estimation	$\begin{array}{\|l\|l} \mathrm{HH} \\ \mathrm{HV} \end{array}$	$\begin{aligned} & \mathrm{HV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \end{aligned}$
Oceans Wave Spectra Mesoscale Features Bathymetric Mapping	$\begin{aligned} & \text { HH or VV } \\ & \text { HH O VV } \\ & \text { Wv } \\ & \hline \end{aligned}$	$\begin{aligned} & H H+V V \\ & H H+V V \\ & H H+V V \\ & H \\ & \hline \end{aligned}$
Sea le Ice Classification Ice Edge Mapping	$\begin{aligned} & \mathrm{HV} \\ & \mathrm{HV} \end{aligned}$	$\begin{aligned} & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \\ & \mathrm{HV}+\mathrm{VV}+\mathrm{HH} \end{aligned}$

The Project for utilization of ALOS images to support the protection of the Brazilian Amazon Forest and combat against illegal deforestation. Basic training course 2009
terça-eira, 13 de outubro de 2009
REMOTE SENSING TECHNOLOGY CENTER OF JAPAN
TOKYO, JAPAN

1. Geometric Distortion of SAR

In the SAR image reconstruction process, cross track pixel sampling is originally done using range (from satellite to target distance) information. Usually equal range spaced image (referred as slant range image) is created initially. Due to the side looking geometry, equal range spacing causes unequal ground range spacing.
Also, due to the image mapping process, pixel position distortion appears depending on the local land feature measured from a reference plane. This distortion happens both in slant range image and in ground range image.

Contents	
1. Geometry of SAR image 1.1 Mapping on Slant range and Ground range 1.2 Fore shortening 1.3 Lay over 1.4 Shadow 2. Radiometric Property of SAR image 2.1 System defined parameter a) Wavelength b) Incident angle d) Illumination orientation e) Speckle noise 2.2 Target depend parameter a) Surface roughness b) Dielectric constant c) Shape of target - Specular reflection - Double bounce - Volume scattering	3. Radiometric Calibration 4. SAR specific analysis technology 4.1 Inteeferometry(InSAR) 4.2 Polarimetry 4.3 Coherence 4.4 SAR stereo

1. Geometrical Characteristics of SAR 1.1 Ground range distortion by equal range sampling

- In PALSAR image products, georeferenced and geocoded data is resampled to equal ground sampling space.
-SLC data is usually slant range image to keep original phase information.

1. Geometrical Characteristics of SAR

1.1 Difference between Slant range image and Ground range image

Ground range image

1. Geometrical Characteristics of SAR

1.3 Lay Over

In case the depression angle of a local slope inclination facing to SAR system exceed the incident angle of SAR system geometry, a severe distortion occurs. This is called lay over and no information on the target feature is obtained in the lay over area.
In lay over area both slope area and moderate slope area is mapped at the same pixel position.
 , same pixel position.

1. Geometrical Characteristics of SAR

1.4 Radar Shadow

If the inclination of a local slope facing to opposite side of SAR system exceed the complement of incident angle, the slope is hided from SAR system illumination, which causes shadow in SAR image. Shadow continues in side the blanket area of the
illumination by the high slope object.

terc̣a-feira, 13 de outubro de 2009

1. Geometrical Characteristics of SAR

Examples

terģa-feira, 13 de outubro de 2009

1. Geometrical Characteristics of SAR
1.4 Radar Shadow

If the inclination of a local slope facing to opposite side of SAR system exceed the complement of incident angle, the slope is hided from SAR system illumination, which causes shadow in SAR image. Shadow continues in side the blanket area of the
illumination by the high slope object.

Shadow
Shadow occures when $\theta+\varphi_{A C}>90^{\circ}$.
2. Radiometric Characteristics of SAR
2.1 SAR system Element to affect intensity
a wavelength
b incident angle
c polarization
dillumination orientation
e speckle noise
2.2 Target Element to affect intensity
a electromagnetic parameter
(dielectric/magnetic constants)
b surface texture
c surface pattern
Mirror, Dihedral, Trihedral, Bragg scattering

Digital Number of SAR image

DN is a digitized back scattering signal strength normalized by Radar illumination strength.

Value of σ in RADAR image

erça-feira, 13 de outubro de 200

Concept of σ

Radar back scattering cross section(RCS)= return energy within a beam width and range bin. (Wikipedia)
$\sigma=\mathrm{DN} \sin (\theta)$ (normalized by pulse illuminated area) $\gamma=\sigma / \cos (\theta)$ (normalized value to perpendicular incident energy)

Concept of γ

- $\gamma=\sigma / \cos (\theta)$

Incident wave

Illumination intensity of radar pulse per unit ground length is proportional to $\cos (\theta)$.
By dividing σ with $\cos (\theta), \sigma$ is normalized per unit ground length.

Slope Correction

- In the derivation of $\mathrm{s}, \sin (\mathrm{q})$ is multiplied to DN . In standard processing q is counted as angle or incident wave direction (opposite direction) and normal vector on flat earth surface.
- If incident angle relative to slope of local feature is taken

2. Radiometric Characteristics of SAR

2.1 Effect of wavelength

terça-feira, 13 de outubro de 2009

2. Radiometric Characteristics of SAR

2.1 System parameter effect of wavelength

Saku, Nagano, Japan 2004.8.4
2. Radiometric Characteristics of SAR
-2.1 Effect of Incident angle

2. Radiometric Characteristics of SAR

2.1 Effect of polarization

RGB=HH-HV-VV

2. Radiometric Characteristics of SAR

2.1 Speckle Noise

A unit cell (pixel) contains many reflecting objects in the cell. Even if each object in the cell reflects radar wave isotropically, over all summation of reflected electro-magnetic wave varies depending on the observation direction due to the variation of relative phase.
Radar reflectance is a measure to evaluate power reflection ratio to incident power.
But in the SAR image processing, amplitude summation from individual object with various reflectance is calculated as pixel value. Thus statistic expectation of the vector summation (complex pixel value) is zero (summation of random complex number) while the statistic expectation of the variance is the Radar reflectance.
Difference of the two value appears as speckle noise which is multiplicative nature. Thus the noise looks significant compared with the thermal noise in optical images.

terça-feira, 13 de outubro de 2009

2. Radiometric Characteristics of SAR 2.1 Speckle noise reduction

- From the basic SAR process nature, speckle noise reduction can be done in various ways.
- Using a statistic theory, one effective way is to obtain many samples showing a pixel and non coherently averaging the data to evaluate Radar reflectance.
- This is called multi look processing.
- By sacrificing resolution, several independent pixel value can be obtained from an original image, which can be averaged to reduce speckle noise.

Radiometric Characteristics of SAR

2．2 Target depend elements
Following 3 element affect intensity level of SAR image．
a）Surface roughness
（b）Dielectric constants
c）Surface pattern and texture
Discrimination of surface roughness and dielectric constants
Use of dual polarization or polarimetry may provide solution．

Shape and pattern／texture
depending on the target shape，location pattern and texture causes various kind scattering as：Bragg，specular，volume，multiple bounce scattering．

Specular reflection Single bounce Dual bounce

Terçita， 13 de outho 2009
depending on the target shape，location pattern and texture causes
various kind scattering as：Bragg，specular，volume，multiple bounce
scattering．

Radiometric Characteristics of SAR

2．2 Surface roughness：Typical sample

Radiometric Characteristics of SAR

2．2 Surface roughness
Rayleigh＇s condition

$$
\mathrm{h} \leq \frac{\lambda}{(8 \cos (\theta))} \quad: \text { smooth limit }
$$

（ h ：rms of height variation，λ ：wavelength，θ ：incident angle） In the case of ALOS／PALSARやJERS－ $1, \theta=38^{\circ}, ~ \lambda=0.23 \mathrm{~m}$ then；

$$
\text { Smooth limit is } h \leqq 3.65 \mathrm{~cm}
$$

Image of scattering directivity relative to surface condition．
Spatial distribution of surface roughness must also be counted．If the spatial frequency is less than wavelength，rough surface looks like a some smooth dielectric body sheath．

Radiometric Characteristics of SAR

2．2 Surface roughness：Typical sample

terça－feira， 13 de outubro de 2009

Radiometric Characteristics of SAR

2．2 Surface roughness：Typical sample

Rough criteria is a function of wavelength

2．Radiometric characteristics of SAR
2．2 Pattern
Specular reflection，Bragg scattering

32
リビアのセンターピボット式灌溉農業地帯のSIR－A画像
arca－feira， 13 de outubro de 2000

Radiometric Characteristics of SAR

2．2 Surface roughness

－Bragg scattering

repeated pattern of local random surface causes a strong reflection to specific
directions．This phenomena are called Bragg scattering and used in various analysis in physics．In the radar remote sensing this is often used to analyze sea surface observations．
In land observation，agriculture field often causes Bragg scattering to show some directive periodic structure effect．

2．Radiometric characteristics of SAR 2．2 Pattern and shape

－Bowtie effect

Plowing in a large scale farm caused by， －specular reflection of ridges in the filed
or
－Bragg reflection by the regular ridge pattern

Model of $\begin{aligned} & \text { F1 } B r a g g ~ r e f l e c t i o n ~\end{aligned}$
33
arca－feira， 13 de outubro de 200

2. Radiometeric characteristics of SAR
2.2 Shape / location

- Multiple reflection by a bridge and water surface

3.1 Conversion to back scattering coefficient

-Back scattering coefficient Sigma naught $\left(s^{0}\right)$): Ratio of return signal power over incident power.
-In a SAR system, theoretical beam width after image processing and its illumination power density distribution is necessary to evaluate the value.
-Calibration using known reflectance object appears in the image is easier than theoretical dedication.
-Passive or active corner reflector is used as reference reflection source.

Active Radar Calibrator (ARC)

3.1 Conversion to back scattering coefficient

Calculation of back scattering:

Set a corner reflector with known back scattering coefficient to be appears in the processed SAR image and use the value in the image as reference back scattering

ALOS/PALSAR (L1.5)

$$
\sigma^{0}=10 \log _{10}<1^{2}>+C F(d B)
$$

-I: Digital number of a pixel in SAR image -CF: calibration constant derived from processed corner reflector pixel value in SAR image.
-CF is written in the leader file of PALSAR image products

- If the signal processing parameter or equation is modified the CF may be changed.

4. SAR data analysis technology

 4.1 SAR interferometry
-SAR Interferometry

Using precision return phase preservation nature of SAR signal processing, interferometer is realize from a pair of images.

4. SAR Image Analysis Technology
4.1 Interferometry
4.2 Polarimetry
4.3 StereoSAR

4. SAR data analysis technology

4.1 SAR Interferometry

Geometry of SAR interferometry
Assume δ as slant range difference between observation A1 and A2 and phase difference φ Assume δ as slant range differing equations stand as;

41
erça-feira, 13 de outubro de 2009
4. SAR data analysis technology
4.1 SAR Interferometry

Reduction of basic equation
Phase component
In the image of previous page, an equation to show relations among Z, ρ, and θ as;

$$
\mathrm{Z}=\mathrm{H} \quad-\rho \cos \theta
$$

Calculate total differentia of f using equation in

$$
\begin{aligned}
& d \phi=\frac{\partial \phi}{\partial \rho} d \rho+\frac{\partial \phi}{\partial z} d z+\frac{\partial \phi}{\partial D x} d D x+\frac{\partial \phi}{\partial D z} d D z \\
& \text { (b) (d) } \begin{array}{l}
\text { (d) } \\
\text { (a) }
\end{array} \\
& \text { where } \quad \begin{array}{l}
\text { (a) } \quad \text { Orbit fringe } \\
\text { (b) : Land feature fringe } \\
\text { (c),(d): Variance fringe }
\end{array}
\end{aligned}
$$

Since (a) doesn't contain land feature information, it is eliminated in post processing. Other items are used in various way.
terça-feira, 13 de outubro de 2009
terça-feira, 13 de outubro de 2009

4. SAR data analysis technology
4.1 SAR Interferometry process flow

44
terça-feira, 13 de outubro de 2009
4. SAR data analysis technology
4.1 SAR Interferometry
2. Land feature fringe $\quad \frac{\partial \phi}{\partial z}=\frac{4 \pi B \cos (\theta-\alpha)}{\lambda \rho \sin \theta}=\frac{4 \pi B p}{\lambda \rho \sin \theta}=\frac{1}{\cos \theta} \frac{\partial \phi}{\partial \rho}$

Above equation indicates countablity of digital elevation mode. In the case of JERS-1,
assumin Bp of 500 m 1 cycle fringe is equivalent to 100 m elevation. By assumin no
variation between 2 observattion, height difference is proportional to phase difference as,

$$
\frac{\partial \phi}{\partial z}=\frac{4 \pi B p}{\lambda \rho \sin \theta}
$$

3. Variation fringe

$$
\begin{array}{ll}
\frac{\partial \phi}{\partial D x}=\frac{4 \pi}{\lambda} \sin \theta & \text { Dx:horizontal variatio } \\
\frac{\partial \phi}{\partial D z}=-\frac{4 \pi}{\lambda} \cos \theta & \underline{\text { Dz:vertical variation }}
\end{array}
$$

By removing feature fringe, variation happens in between two observation can be detected. It is very sensitive to change even a half wavelength displacement can be detected.

45
terça-feira, 13 de outubro de 2009

4. SAR data analysis technology

 4.1 SAR Interferometrycoherence: a measure for phase stability in a pair of Single Look Complex image(SLC). (Coherence) The value is calculated as covariance of two conjugate pixel values.

$$
\rho_{c}=\frac{\mid E\left(c_{1} c_{2}^{*}\right)}{\left[E\left(c_{1} c_{1}\right) E\left(c_{2} c_{2}\right)\right]^{2}}
$$

$c_{1} c_{2}$ is conjugate 2 pixel values in the two SAR images
*means conjugate of a complex number, E() is an expectation of the component.

47
terça-feira, 13 de outubro de 2009
4. SAR data analysis technology
4.1 SAR Interferometry: Digital elevation model

Unwrapped Phase Image

InSAR DEMPALSAR 3D using InSAR DEM

terça-feira, 13 de outubro de 2009

4. SAR data analysis technology 4.1 SAR Polarimetry

Example polarimetric images

4. SAR data analysis technology

4.1 SAR Polarimetry

Circular polarized wave : spirally rotated polarization Linearly polarized wave : Horizontal Polarization

In the field of Satellite, H and V polarizations are defined as below;
(H)orizontal pol. : Parallel to satellite's orbital direction (V)ertical pol. : Vertical to satellite's orbital direction Case of SAR sensor :
JERS-1 : Emit H pol. and receive H pol. (HH) ERS-1 : Emit V pol. And receive V pol. (VV)

If we obtain 4 component as phase preserved image data, this is a unique component to express RADAR reflectance. Any transmission and reception mode can be numerically realized from the 4 component. In free space operation only the 3 component is independent upon the reciprocity theorem in electromagnetic theory.

4. SAR data analysis technology

4.1 SAR Polarimetry

Scattering Matrix

In a polarimetric SAR image each pixel consists of a scattering matrix of 2 by 2 complex numbers.

$$
[S(H V)]=\left[\begin{array}{ll}
S_{H H} & S_{H V} \\
S_{V H} & S_{V V}
\end{array}\right]
$$

In the linear stable system $S_{H V}=S_{V H}$ by the reciprocity theorem of Electromagnetism.
The advantage of the matrix is its flexibility that the matrix can be converted in various basis like circular polarization, ellipsoidal polarization, etc.

$$
\begin{aligned}
& \text { Circular polarization base } \\
& {[S(R L)]=\left[\begin{array}{ll}
S_{R R} & S_{R L} \\
S_{L R} & S_{L L}
\end{array}\right] \quad \begin{array}{l}
S_{R R}=\left(S_{H H}-S_{V V}-2 j S_{H V}\right) / 2 \\
S_{L L}=\left(S_{V V}-S_{H H}-2 j S_{H V}\right) / 2 \\
S_{R L}=S_{L R}=-j\left(S_{H H}+S_{V V}\right) / 2
\end{array}}
\end{aligned}
$$

terça-feira, 13 de outubro de 2009

4．SAR data analysis technology

4．1 SAR Polarimetry

Entropy alpha plane
From eigenvalue 1 of Coherency matrix and Angle α of Eigen vactor，entropy H andais defilend．
Entropy H（ $0 \sim 1$ ）index for randomness of scattering．
$\mathrm{H}=0$ ：surface scattering only
$\mathrm{H}=1: 3$ kind of scattering is mixed（total randomens）
Angle $\alpha\left(0^{\circ} \sim 90^{\circ}\right)$ index for polarization dependency
0° ：plate，， 45° ：wire， 90° ：Corner reflector

Using entropy and alpha scattering index is divided into several region，which segment the target category．

Left 9 zone is commonly used to define region on
H－A plane．

4．SAR data analysis technology

4．1 SAR Polarimetry

Instead of scattering matrix，several pre processed matrix is often used．All the matrix is derived from scattering matrix component．

Covariance Matrix $\left\langle\begin{array}{ccc}\left\langle s_{H H} s_{H H}^{*}\right\rangle & \sqrt{2}\left\langle s_{H H} s_{H V}^{*}\right\rangle & \left\langle s_{H H} s_{V V}^{*}\right\rangle \\ \left\langle\overline{2}\left\langle s_{H V} s_{H H}^{*}\right\rangle\right. & 2\left\langle s_{H V} s_{H V}^{*}\right\rangle & \sqrt{2}\left\langle s_{H V} s_{V V}^{*}\right\rangle \\ \left\langle s_{V V} s_{H H}^{*}\right\rangle & \sqrt{2}\left\langle s_{V V} s_{H V}^{*}\right\rangle & \left\langle s_{V V} s_{V V}^{*}\right\rangle\end{array}\right]$
Correlation coefficient

$$
\operatorname{Cor}(X Y, A B)=\frac{\left\langle S_{x y} S_{a b}^{*}\right\rangle}{\sqrt{\left\langle S_{x y} S_{x y}^{*}\right\rangle\left\langle S_{a b} s_{a b}^{*}\right\rangle}} \quad \begin{aligned}
& \text { XY, AB means polarization combination of } \\
& \text { transmission and reception. } \\
& \text { In linearly pol. :HH, HV, VH, VV, } \\
& \text { In circular:RR, RL, LR, LL. }
\end{aligned}
$$

Covariancevector，Coherency vector

$$
\kappa_{p}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
S_{H H}+S_{V V} \\
S_{H H}-S_{V V} \\
2 S_{H V}
\end{array}\right] \quad[T]=\kappa_{p} \kappa_{p}^{* T}=\left[\begin{array}{ccc}
\frac{\left|s_{H H}+S_{V V}\right|^{2}}{2} & \frac{\left(s_{H H}+S_{V V}\right)\left(s_{H H}-S_{V V}\right)^{*}}{2} & \left(s_{H H}+S_{V V}\right) s_{H V}^{*} \\
\frac{\left(s_{H H}-S_{V V}\right)\left(S_{H H}+S_{V V}\right)^{*}}{2} & \frac{\left|S_{H H}-S_{V V}\right|^{2}}{2} & \left(s_{H H}-S_{V V}\right) s_{H V}^{*} \\
S_{H V}\left(s_{H H}+S_{V V}\right)^{*} & s_{H V}\left(s_{H H}-S_{V V}\right)^{*} & 2\left|s_{H V}\right|^{2}
\end{array}\right]
$$

4．SAR data analysis technology
4．1 SAR Stereo

4. SAR data analysis technology

4.3 SAR Stereo: Aanaglyph

Parallax equation of same side stereo pair of SAR image.

$\mathrm{p}=\left\|\cot \theta_{1}-\cot \theta_{2}\right\| * \mathrm{~h}$
(same illumination direction)

$\mathrm{p}=\left\|\cot \theta_{1}+\cot \theta_{2}\right\| * \mathrm{~h}$
(opposite illumination direction)

Image parameter			
SAR	Mode	Date	Inc.
RADA R	F1	1997.3 .17	37.6°
RADA R	F5	1997.3 .27	47.5°

4. SAR data analysis technology 4.3 SAR Stereo: Aanaglyph

End of ALOS Overview

Access and Open ALOS Images

REMOTE SENSING TECHNOLOGY CENTER OF JAPAN TOKYO, JAPAN

Getting Parameter

1. Read Summary text to find line number
2. Find file size from windows property
3. Calculate apparent pixel number

Pixels=File_size/(line+1)

Header=Pixels(number shown above)

Naming of Image Files

- Image starts with "IMG-"
- PRISM: IMG-ALPSM*********1B2-UN
- AVNIR2 IMG-B1-ALAV"****1B2R
**** is orbit turn number from launch (5digit)+process code

PALSAR Image File Structure

 (Lev. 1.5)Header=720bytes

File Size
From Windows Property

Find PALSAR Parameter(Lev 1.5)

Pixel=(FileSize-720)/(Line x 2)
Byte Order:UNIX format (High byte first order) byte swap is required in the Intel systems.

Naming of PALSAR(Lev 1.5)

- IMG-HH-ALPSR****-H1.5_UA

Cycle number And process code
Polarization
Polarization
HH:horizontal transmission
and horizontal reception

VV:vertical trans. /vertical rec.
HV: horizontal trans./vertical rec.

PALSAR Image File Structure Header=720bytes (Lev. 1.1)

Find PALSAR Parameter(Lev 1.1)

Pixel=((FileSize-720)/Lines-412)/8
Byte Order:UNIX format (High byte first order) byte swap is required in the Intel systems.

Naming of PALSAR(Lev 1.1)

- IMG-HH-ALPSR****-H1.1_A

Polarization
HH:horizontal transmission
and horizontal reception

VV:vertical trans. /vertical rec.
HV: horizontal trans./vertical rec.

Process Code

- Every ALOS scene has unique number as;

IMG-HH-ALPSRP207217030-H1.5_UA (PALSAR) IMG-03-ALAV2A185263730-O1B2R_U (AVNIR2) IMG-ALPSMW $185263735-O 1 B 2 R _U W$ (PRISM)

- 9 digit (under lined) shows satellite orbit cycle number and position on orbit plane

First 5 digit

- First 5 digit of process code shows orbit cycle number after launch.
- Knowing 671 cycles in 46 days, launch date of January 21, 2006, and cycle time of 98.71833 minutes, you can calculate date of data acquisition.
- Cycle time can be calculated from $46 * 24 * 60 / 671$.

Hours of 1 cycle

First 5 digit

- By the relations,
if 1 data of first 5 digit of "ABCDE" covers a targeted area, "ABCDE+671*N" may covers the same area 'assuming same last 4 digit and same observation mode for PALSAR and AVNIR2). N is arbitral integer number.

Second 4 digit

ω to latitude conversion
Using trigonometric function,
Sin (latitude) $=\operatorname{Sin}(w) * \operatorname{Sin}$ (orbitinc)
You can calculate latitude of satellite position.

Access to AUIG
https://auig.eoc.jaxa.jp/auigs/top/TOP1000LoginLang.do

16

Login and Order

After Login, select "Order and Obs. Request".
4:00(UT)-

- ${ }^{[2009.10 .02]}$ System

11:30(UT)

- [2009.09.18] System

2009 7:30(UT)

- [2009.09.02] System

2009 11:30(UT)

- 2009 11:30(uT)

Data search window

Set search rectangle

Select rectangle tool and drag mouse from top left to bottom right. 4 corner geo information appears on right hand dialog. Alternately, you can directly specify the value in the right ${ }^{19}$ dialog

Case of PRISM

Select search conditions (1 PALSAR)

Search result

24

Enlarged thumb nail image

25

Search result

Enlarged thumb nail image

Case of AVNIR2

Enlarged thumb nail image

Application for Subsidence Monitoring (1/2)

Subsidence and landslide were able to be detected by ALOS/ PALSAR differential interferometry (DinSAR).

Application for Landslide Monitoring (3/3)

Landslide detection in mountainous area

Landslide fields (local movement points) are appeared different color with the surroundings in the Interferogram of DInSAR.
segunda-feira, 31 de maio de 2010

Application for Volcanic Monitoring (3/3)

Uplift detection around the Kilauea Crater, Hawaii by ALOS/PALSAR interferometry.

Application for Landslide Monitoring (3/3)

Landslide detection in mountainous area

Interferogram of the pair No1.(30 Jul. $06-2$ Aug. 07)

Landslide fields (local movement points) are appeared different color with the surroundings in the Interferogram of DInSAR.

Application for Earthquake Monitoring (1/2)

SAR interferometry by RADARSAT showing deformation around Tottori, Japan by the earthquake occurred in Oct. 2000. The red star indicate the hypocenter

August 6, 2009

User's Manual of ALOS
PALSAR Fringe
Version 3.0(Soft version 4.0.1)
M. Ono

Remote Sensing Technology Center of Japan

\square

1. Radar System
1.1 Wave and Phase

SAR uses Electro Magnetic wave

Phase in Time at a Point in Space

ALOS Sensor AVNIR2

Foreshortening correction

fgs $=h^{*} \tan (\theta 1)$
$\mathrm{fs}=\mathrm{h}^{*} \sin (\theta 1)$
$\mathrm{dhp}=h / \sin (\theta 1)$
$\mathrm{d} 1=\mathrm{dhp}{ }^{\sin (8 \theta)}$
$\mathrm{d}=\mathrm{dhp} * \sin (\delta \theta)$
$\delta \theta=B \operatorname{perp} / \mathrm{R} 1$
$\substack{\delta=\text { Bperp } / R 1 \\ h / \text { cycle }=\lambda / 2 * \sin (\theta 1) / \sin (\delta \theta)}$

Phase and Amplitude Stability

 (Dependency to Observer Point)Example shown below was simulated sugnal for a 10 m size pixel with 10 sub section (see previous page. " φ " is assumed to be zero
his table shows an example of ampritude and phase variation depending on
 In a distance of satellite from a ground observed point, observation angle difference for 1 km apart points
is around 0.07 degrees is around 0.07 degrees. To make a satellite SAR image, more
than 10 km separated raw data is accumulated along a satellite path achich suffer along this signal molelite padification
when and finally appears as speckled image.
Phase stability is important to obtain noise free interferogram

Evaluation of \mathbf{H}

$\mathrm{r}_{2}{ }^{\prime 2}=\left(\mathrm{ro}_{2}-(\mathrm{re}+\mathrm{h})\right)^{2}+2 \mathrm{ro}_{2}{ }^{*}(\mathrm{re}+\mathrm{h}) *\left(1.0-\cos \left(\varphi_{2}\right)\right)$
Coefficients
$h^{2}: 1.0$
h :-2re-2 ro $\cos \left(\varphi_{2}\right)$
const: $\mathrm{ro}_{2}{ }^{2}+\mathrm{re}^{2}-2 \mathrm{ro}_{2} \mathrm{re}{ }^{*} \cos \left(\varphi_{2}\right)-\mathrm{r}_{2}{ }^{\prime 2}=\mathrm{rs}_{0}{ }^{2}-\mathrm{r}_{2}{ }^{\prime 2}$
thus
$\mathrm{h}=\mathrm{re}+\mathrm{ro}_{2} \cos \left(\varphi_{2}\right)-\left[\left(\mathrm{re}+\mathrm{ro}_{2} \cos \left(\varphi_{2}\right)\right)^{2}-\right.$ const $\left.)\right]^{1 / 2}$
Source of Phase Error and method to reduce the effect in SAR interferometry \cdot Cell reflectance variation for observation angle
change
-Receiver Noise
-Along track phase instability Avoid by Averaging after Inteferogram calc.
-Conjugate point evaluation error

Time dependency of the objects
-Environmental dependency of the observation (freeze temperature or not, wet or dry)

Avoid by Scene Selection

Interferogram Calculation

- $\mathrm{O} 1(\mathrm{P})=\mathrm{Ar} \exp [-\mathrm{j} 4 \pi \mathrm{R} 1 / \lambda]$; out put form \#1 configuration
- O2(P)=Ar $\exp [-j 4 \pi(\mathrm{R} 1-\mathrm{dl}) / \lambda]$; output from \#2
configuration
$\mathrm{D}(\mathrm{P})=\mathrm{O} 2(\mathrm{P}) / \mathrm{O} 1(\mathrm{P})$
$=\exp [\mathrm{j} 4 \pi(\mathrm{dl}) / \lambda]=\mathrm{R}+\mathrm{jX}$;phase detection (element of inteferogram)
$\phi=\tan ^{-1}(\mathrm{X} / \mathrm{R})$; Fringe value

1.7 Reflectance in a Pixel of SAR

As a inherent problem of SAR system, there is speckle noise to disturb accurate phase calculation. The image below shows the mechanism to cause accurate phass
such noises.

3.1 Image Reconstruction

- SAR image is almost same with hologram
- Image reconstruction either in Single Look Complex (SLC) form or
amplitude form is necessary.
To process SAR interfrometry, orig
- This process exactly trace SAR signal compression in complex number

Amplitude conversion from SLC is usual SAR intensity image. In the
usual intensity image, phase information (complex number is discarded.

- SAR image reconstruction is almost linear operation which means
reversible operation.
From raw data to single look complex (SLC) process is exactly a linear
operation where a Fast Fourier Transform(FFT) is preferred to accelerate
the processing speed drastically.

Move Search Result(page 35) to the Inventory Folder then Apply Calc_Bp.bat.

Image Reconstruction process flow
SAR image reconstruction is a linear correlation process using reference function generated from sensor parameter and orbit/attitude information. Since data size is huge, some treatment of a data file is necessary.

Intensity Image

Data Structure of SAR Processing

- Range Compession

Display Pair Image

- In dual polarization mode, we have 2 image data (HH, HV).
- The data can be displayed and switched from check menu.

Co-pol(HH or VV) image display
Cross-pol (HV,VH) image display

4. SAR Interferogram Generation

4.1 Fringe Program

After processing two images a pair of Single Look Complex data(SLC) is After processing two images a pair or single Look Comple
ready. Now you can start the program "PalsarFringe.exe"

In Case Error Happens when running SAR Processor
-In case error happens in the "SLC full process", start program again but this time from open project.
-Start corner turn and wait until "corner turn complete" message appear.

- Start Azimuth compression.

4.2 New Functions of Version 3.0

- Version 3 of PalsarFringe is enhanced for Differential interferometry operation.
- For the purpose, SAR image simulation function is implemented. This function uses SRTM DEM which covers most of low and middle latitude area.
- All the process is interactively conducted.

4.3 Create New Project and Select

 Associate Files

4.4 Index Image after Opening files

-When you create interferogram, always 2 images(SLC) are selected as specified by initial parameter selection. -After the initial selection or after select open project, an index images are created and displayed.
-Default display is the first SLC image you have specified. -By pressing " v " key, you can switch image 1(Master SLC) to 2 (Slave SLC) and vice versa.

Selection of Master/ Slave images

a)Master image by observation

b) Master image by
observation 2, slave

To display orbit
position, use above
1, Slave image by observation 2 observation 2 , slave
image by observation
In order to make fringe phase increase coincide with height increase, slave
orbit position must be right of master orbit position in orbit position must be right of master orbit position in above images. So, b)
is OK but in a), phase increase in fringe corresponds to height decrease. If orbit combination looks like a), change scene selection order so that orbit position becomes like b .

Revised Key Stroke

- In the current version new switch function is added.
- "v" key :Switch master and slave images.
- "f" key :Switch master image to fringe.
- "s" key :master image to simulated image
- Shift + "s" key: Fringe to simulated fringe Last 2 function will work after switching to differential mode.

4.6 Moving Slave Image

Slave image can move in the display frame while master image is fixed in the Slave image can move in the display frame while master image is fixed in the
frame. This function is used to make conjugate point in two images be close. frame. This function is used to make conjugate point in
To move slave image, click arrow key to any direction. By a click, image is one pixel displaced to arrow direction.

| 4.8 Establish 4 corner Corrrelation | |
| :--- | :--- | :--- |
| | Firstly, select lock on points at near four corners
 (Top Left, Top Right, Bottom Left and Bottom
 Right).
 Then lock on at each point by selecting menu item
 (Top Left Correlate, Bottom Right Correlate). |

Slave Image Lock on for an arbitral pixel

- After 4 corner point is set, pixel of slave image at any position in the image will be located to fit with corresponding master pixel.
- By holding " m " key and click mouse at any point in the image. Then slave image at clicked point will move to lock on to corresponding master pixel.

4.13 Note on OpenProject

- After conducting new project menu items, you can close the program and restart program with Open Project to go back to the last process before you close the program.
- If you move files to other directory of original point or you import the data (project files and/or SLC files), you must first start with new project menu again and select existing project to overwrite it.
- Then close the project and open the project again.
- All the process parameter is kept as before and move on to next step without conducting interferogram generation again.

4.11 Filter, Goldstein Filter

- Goldstein filter is a popular tool to reduce fringe noise.
- To apply the filter select menu "Goldstein filter". Then put weighting Usually $0.2-0.7$ is adequate value. Usually it is recommended to use appeared default value.

Dusione man
In most cases, apply "Goldstein Filter" once. No other filter is necessary.

4.12 Sigma Filter

- Sigma filter is a kind of Median filter but dedicated to
preserve phase continuity.
- The filter works any point either before Goldstein filtering,
after it.
- Multiple operation is also possible.

4.14 Masking Sea or Lake Area

- The area must be cut out for phase unwrapping.
- To clear the area first make polygons to enclose the area. Since individual vertex point number must be less than 255 , create overlapped individual vertex point number must be less than 255 , create overlapp
maltiple polygons to cover all noisy or false patterned area. - Polygon can be created a

Masking polygon with a Fringe value

In this example which shows an island，shore line is not a same gray value due
to mostly plane inclination of fringe．
To correct the inclination，it is easier to apply differential interferogram and
inclination correction（see Chapter 6.6 ）．
berion correction（see Chapter 6．6）．

5．Phase Unwrap

（Unweighted Least Mean Square Method Mark D．Pritts＇s method）
Currently several unwrap method is under development in this program．Wait for next version for complete the process． Phase unwrap function is now moved to separate program
＂PALSAR PhaseUnwrapV1．1．4．exe＂
Use the program for phase unwrap．
突 $=5$

5．3 Out Put DEM

－Convert to DEM value
－Fore shortening correction（not implemented yet）
\qquad
 $\int_{\delta \theta=\operatorname{Bperp} / R 1}^{\mathrm{d} 1=\mathrm{dhp}{ }^{*} \sin (\delta \theta)}$ h／cycle $=\lambda / 2 * \sin (\theta 1) / \sin (8 \theta)$ （See page 18）
－Geotif output
Rotated to Georeference
coordinate system（north up but
a range line is horizontal）．
－Original image is also cut and
rotated and GeoTiff out

6．Differential Interferometry

Differential interferometry is a good tool to monitor precise displacement or changes happened in between the two observations for displacement or changes
－It can be used to monitor small land deformation in an earthquake， industrial or city area land subsidence due to overwelling in the area， monitoring large scale land slide，or monitoring volcanic activities．
To achieve differential interferometry，we need a reference Digital elevation model and currently Shuttle Radar Topgraphic Mission （SRTM）provides us a good quality DEM．
In the current program the DEM is used．Most of the area except USA re covred by 3 arcsec spacing DEM which is almost enough to be used as the reference DEM．

6．1 Import SRTM Dem and Geoid Dat

Currently SRTM dem can be down loaded from various site supporting
SRTM project．
The dem is edted to 1 degree segment and modified to geoid den
using EGM96 geoid．
For current use，rotated ellipsoidal dem is necessary．So，geoid data is

6.3 Differential Interferometry Menu Items

SAR Image Simulation(2/2)

Go to SRTM DEM and Geoid file folder, then open indicated image. Simulation process starts and after several minutes simlation will be complete.

Differential Image Display

In the current case differential calculation was conducted on SRTM DEM so the difference shows deviation from SRTM dem.
Looking at the fringe, you recognize 2 cycle almost linear brightness change in the vertical direction and 1 cycle in horizontal direction.

Correction of inclination using GUI

Usually initial differential fringe
looks like what is looks like what is shown left. In a
large area average scene must be large area average scene must be
almost flat. The initial view has apparent inclinations which must be corrected.
In the current program this inclination is corrected by flat plane inclination model. shown in the next pages.

Color Composite of Dif. Fringe

Apply the interactive correction parameter

After adjusting parameter, select menu "Fringe Inclination" to show above dialog. The parameter is already picked up in accordance with the interactive modificcation Click OK to start inclination correction

GeoTiff output of color composite

After creating color composite image eithe
differential or original and display interferogram (original or differential), this image can be converted to geotiff file by selecting menu shown left.
In this process unnecessary blank area can be cut
out from frame dialog(left bottom).
Output filename is specified by your input in
standard file out dialog.

"G.tif" will be created.

1) "G.tif" will be created.
2) Color composite (differentia
3) SAR fringe (or differential fringe) of the sam
area.

6.8 Change Detection by Differential

 InterferometryProcess Flow:

Phase Change to Dem Change

Since phase difference in differential interferogram is not so sensitive to the DEM height change, phase pattern in the interferogram can be interpreted as the change between two SAR observation.

7. Orthographic Conversion of SAR

 image (1/2)- After generating differential interferometry, relative postion table
between original image and DEM is established.
- Using the table and DEM data, orthographic conversion of SAR is
. possible.
- The process flow is almost same with SAR image simulation for the part to select SRTM DEM. Remainig process is automatic and not
necessary to aware

Orthographic Conversion of SAR image(2/2)

Error Correction(4/4)

Process conditions

This tool is dedicated to unwrap phase of SAR interferometry for DEM extracton,
Program is designed to work on the results of "PALSARFringeV3" program.

Process environment:
OS: Windows XP (Vista is not recommended but works
with minor GUI incompatibilities.)
Memory: more than 1 GB
HD space: more than 10 GB free space
Clock Speed 2GHz or better (works on 1GHz but slow)

To Start PCG method

Click mouse at topleft and bottom right of the valid fringe area by holding "c" key. Target area of unwrap is marked by yellow line square.

Holding "c" key and click mouse again, frame will disappear

Phase Unwrap Menu Items

There are various method of phase unwrapping, original algorithms are borrowed from an excellent literature (1).
Currently not all process of unwrap menu items work.
PCG method and Min Lp-norm method is recommended tentatively
(1) Dennis C. Ghiglia and Mark D. Pritt, "Two-Dimensional Phase Unwraping Theory, Algorithms, and Software", John Wiley \& Sons Inc., 1998.

PCG process check

After selecting "OK" in the previous dialog, unwrap process star and after a while process will complete.
Bottom left task bar area, process step will be displayed.

Process Unit

- The size of frame to unwrap fringe have some limit depending on the process you have chosen.
In PCG method, 2049×2049 is a recommended size but smaller is faster to process. The size of 4097×4097 will work on phase unwrap process but due to large memory consumption, it can not be conve system). system).
In Min Lp-norm method smaller size like 1024 by 1024 is
Multi ended to achieve a good result.
Multi element connection is necessary but currently not supported yet.

> Ministério do Meio Ambiente

Resultados obtidos com a utilização de imagens de RADAR do satélite ALOS no combate ao desmatamento da Amazônia pelo CSR/IBAMA

Instituto Brasileiro do Meio Ambiente e dos Recursos
Naturais Renováveis -IBAMA
Ministério do Meio Ambiente - MMA

Area Total Detectada pelo Sistema DETER

Podemos detectar o desmatamento com RADAR?

Deteç̧ão de desmatamento com ALOS PALSAR

INDICAR- Indicador de desmatamento Indicator por imagens de RADAR

- Projeto desenvolvido pelo CSR/IBAMA
- Utiliza imagens de RADAR do satelite Japônes ALOS.
- Identificação de desmatamento sob cobertura de nuvens. Complementa os sistemas DETER e PRODES.

INDICAR Metodologia

- Utiliza imagens ScanSAR com 100 metros de resolução.
- Composições Multitemporais com imagens de RADAR.
- Máscara com PRODES e DETER
- Delimitação de Polígonos e validação com imagens opticas (e alguns saídas a campo).

Delimitação de Polígonos

Mapas Logísticos

Pontos GPS

Máscaras

- PRODES 1997 até Agosto de 2009;
- DETER August 2009 até março de 2010
- INDICAR ciclos anteriores
icador de desmatam,
porimagens de rada

+

INDICAR Web Page

Documento Indicativo de desmatamento pelo INDICAR

Resultados INDICAR Dezembro de 2008 (Ciclo 24)

Resultados INDICAR
maio de 2009 (Ciclos 26 e 27)

Resultados INDICAR
 Novembro 2009 (Ciclos 28-30)

Resultados INDICAR
Dezembro 2009 (Ciclos 29-31)

Resultados INDICAR Janeiro 2010 (Ciclos 30-32)

INDICARResultados em campo

STAFF

- Humberto Mesquita Jr.
- Marlon Crislei Silva
- Daniel Freitas
- Felipe Luis Matos
- Rodrigo Souza
- Werner Gonçalves

INDICAR Resultados em campo

Muito Obrigado

csr@csr.ibama.gov.br

