4.7.3 Simulation de crues survenues en 2003

Le calcul de simulation des crues survenues en 2003 qui sont de taille la plus grande dans ces dernières années, s'est fait à l'aide du modèle d'analyse de crues élaboré.

Les crues survenues dans le passé, superposées du résultat d'analyse de crues sont montrées dans la Figure de la page suivante. Les crues survenues dans le passé sont classées seulement pour les crues observées des environs d'El Battan aux abords de Jedeida. Suivant le résultat de calcul, les voies d'écoulement des crues tombent sur les crues survenues dans le passé. En ce qui concerne le cours intermédiaire et l'aval de l'oued pour lesquels les crues survenues ne sont pas classées, la simulation arrive à reproduire l'état actuel des eaux inondées écoulées vers le gararet El Mabtouh le long des canaux existants, puis retenues dans le bassin de retardement. De ce fait, ce modèle sera adopté comme le modèle d'analyse d'inondation. Les conditions de calcul pour l'analyse de crues sont indiquées dans le Tableau ci-dessous :

Rubrique		Conditions	Remarque
Conditions de la force extérieure	Echelle de planification	Crues survenues en 2003	
	Hydrogramme de débit	Débit observé à l'observatoire de Slouguia	
	Hyétogramme	Crues survenues en 2003	
	Précipitations	Précipitations observées à 3 observatoires en aval du barrage de Laroussia	
	Méthode de calcul	Calcul unidimensionnel des écoulements instables	
Modèle de	Etendue cible	Aval extrême de l'oued Medjerda au barrage de Larrousia 64 974km	
lit de cours	Pas de calcul	Près de 300m à 500m	
d'eau	Section utilisée	Profil transversal en 2007 Chenal actuel	
	Niveau de l'eau en aval extrême	Niveau moyen mensuel de marée haute 0,77m (fixe)	
	Coefficient de rugosité	0,040	
	Type de crues	Crue propagée	
	Méthode de calcul	Calcul bidimensionnel des écoulements insTableaules	
Modèle de crues	Hauteur de sol	à élaborer à partir des données du modèle numérique de terrain	
	Coefficient de rugosité	Terrain d'agriculture : 0,060 Voie : 0,047 Autres : 0,050	
	Taux d'occupation du sol des bâtiments	à éTableaulir à partir de photos aériennes	
	Conditions pour le débordement	à juger par le calcul unidimensionnel des écoulements instables Coefficient de débordement : à déterminer en tenant compte des écoulements horizontaux estimés par la formule de Homma. Hauteur des eaux débordées : niveau des digues actuelles ou niveau des digues de projet	

		Zones débordées : à viser toutes les zones	
Conditions d'effondrement des digues		à ne pas déterminer	
Précipitation effective	f 1 (débit de ruissellement)	rizières 0 / montagnes 0,15 / champs 0,25/ villes 0,6 à 0,9	
	Rsa (taux d'écoulement d'eau saturante)	rizières 50 / montagnes 300 /champs 150 / villes 55	
	fsa (eau saturante)	rizières 1 / montagnes 0,6 / champs 1 / villes 1	

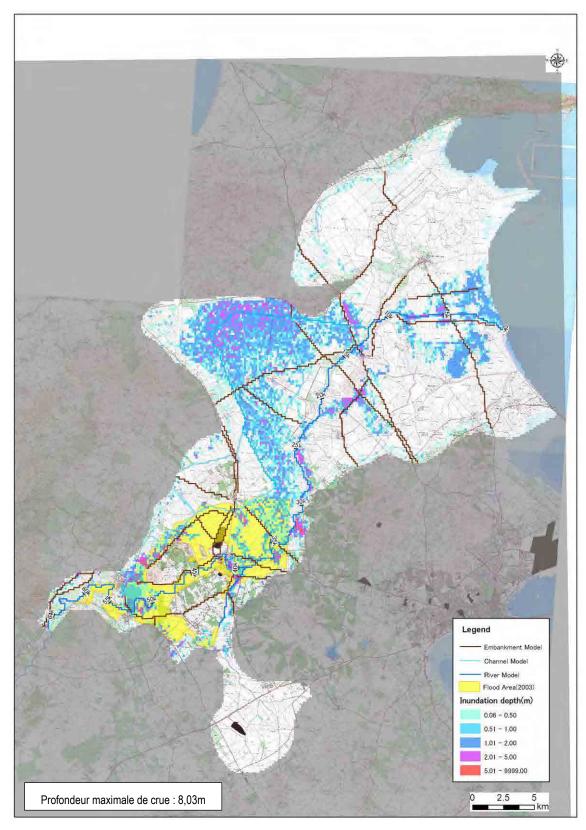
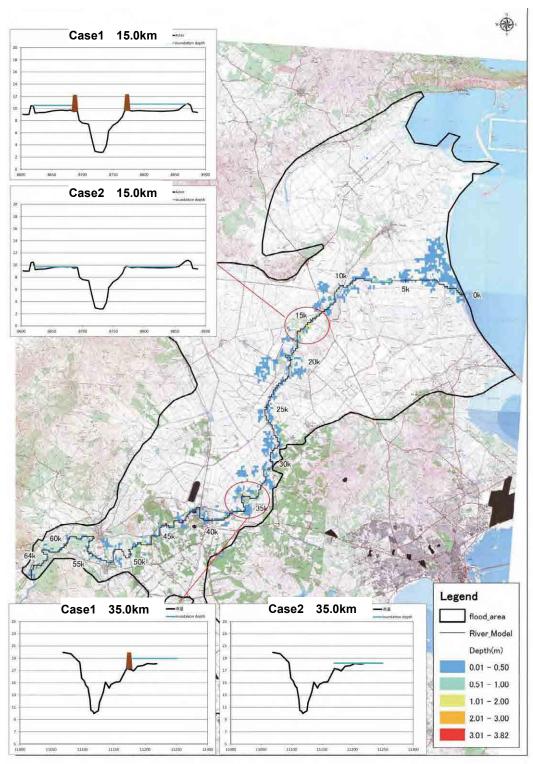


Figure 4-30 Résultat du calcul de simulation des crues de 2003

4.7.4 Comparaison des états des crues des eaux intérieures entre le profil transversal de l'endiguement proposé et le profil transversal de l'excavation proposée

Etant donné que l'oued Medjerda manque la capacité d'écoulement, il sera nécessaire d'assurer la superficie de la section mouillée par l'excavation ou l'élargissement du lit de cours d'eau ainsi que l'endiguement. D'autre côté, l'oued Medjerda ayant le lit de niveau inférieur par rapport au terrain protégé par les digues sur toutes les sections, il risque de favoriser les dégâts dus aux eaux intérieures par l'endiguement.


A cet effet, la pertinence du plan du chenal de l'oued sera examinée à travers la comparaison des états de crues des profils transversaux de l'endiguement proposé (cas N°1 mentionné plus haut) et de l'excavation proposée (cas N°2 susmentionnée).

Les conditions de calcul pour l'analyse de crues sont montrées dans le tableau ci-dessous.

Tableau 4-9 Conditions de calcul

1 ableau 4-9 Conditions de Calcui				
Rubrique		Conditions	Remarques	
Conditions de la force extérieure	Echelle de planification	1/10*5 fois		
	Hydrogramme de débit	Néant		
	Hyétogramme	Précipitations concentrées au milieu de l'hyétogramme		
	Précipitation	1/10*5 fois: 526,1mm/48h	Période de retour =1/10 105,2 mm/48h	
	Etendue cible	aval extrême de l'oued Medjerda – barrage de Laroussia, 64 974km		
	Pas de calcul	Près de 300 à 500m		
Conditions de lit de cours d'eau	Section utilisée	Profils transversaux de 2007 Cas N°1 : Profil transversal de l'endiguement proposé Cas N°2 : Profil transversal de l'excavation proposée		
	Niveau de l'aval extrême	Niveau moyen mensuel de marée haute 0,77m (fixe)		
	Coefficient de rugosité	0,040		
	Type de crue	Crues propagées		
	Méthode de calcul	Calcul bidimensionnel des écoulements instables		
Conditions	Modèle de la plaine d'inondation	 a. Hauteur de sol: hauteur moyenne de sol en maille de 150m b. Coefficient de rugosité: champ et terre inculte 0,06 partout c. Taux d'occupation du sol des bâtiments: 40 à 80% uniquement pour villes 		
de crues	Canal	à ne pas considérer		
ue crues	Conditions pour le débordement	Les eaux débordées depuis le chenal de l'oued ne sont pas tenues en compte. Pour le lit de niveau inférieur par rapport au terrain protégé par les digues, il faut tenir compte des eaux de retour de la plaine d'inondation vers le chenal de l'oued.		
	Précipitation effective	f 1 : champs 0,15 Rsa : 0	à supposer que la plaine d'inondation soit mouillée	

Le résultat de la comparaison est montré à la page suivante. La partie en couleur du résultat de la comparaison représente l'étendue favorisant les dégâts dus aux eaux intérieures par l'endiguement et la profondeur de l'eau est indiquée en couleur. A l'issue de ladite comparaison, il a été confirmé le fait que les dégâts entraînés par les eaux intérieures seront favorisés dans le cas où les digues de hauteur de près de 2m seraient construites suivant l'endiguement proposé. Ainsi il s'est avéré de nouveau que le projet de l'endiguement demandera plus de frais par rapport au projet de l'excavation afin d'assurer les mesures contre l'eau intérieure.

Source: Mission d'étude JICA

Figure 4-31 Comparaison des états des eaux intérieures inondées

4.7.5 Résultat d'analyse de crues par probabilité

L'analyse de crues par probabilité de pluies est effectuée pour le chenal actuel de l'oued ainsi que pour le chenal de l'oued de projet.

Les conditions de calcul pour l'analyse de crues sont comme ci-dessous :

Tableau 4-10 Conditions de calcul

	Rubrique	Conditions	Remarque
		Chenal en état actuel : 1/5 1/10 1/20 1/50	
	Etendue de projet	1/100	
		Chenal de projet : 1/5 1/10	
Conditions	Hydrogramme de	Débit par probabilité	
de la force	débit	Point du barrage de Laroussia	
extérieure	Hyétogramme	Précipitations concentrées au milieu de	
		l'hyétogramme	
	Précipitations	3 observatoires en aval du barrage de Laroussia	
		Précipitations par probabilité	
	Méthode de calcul	Calcul unidimensionnel des écoulements	
	Methode de calcul	instables	
		Aval extrême de l'oued Medjerda au barrage	
	Etendue cible	de Larrousia	
M. Di. J.		64 974km	
Modèle de lit de	Pas de calcul	Près de 300m à 500m	
	Profil utilisé	Profils transversaux de 2007	
d'eau		Chenal actuel de l'oued et	
u eau		Chenal de l'oued de projet	
	Niveau d'eau en aval	Niveau moyen mensuel de marée haute	
	extrême	0,77m (fixe)	
	Coefficient de rugosité	0,040	
	Type de crues	Crues propagées	
	Méthode de calcul	Calcul bidimensionnel des écoulements	
		instables	
	Hauteur de sol	à établir par les données de modèle numérique	
Modèle de crues		de terrain	
	Coefficient de	Terrain d'agriculture : 0,060	
	rugosité	Voies: 0,047 Autres: 0,050	
	Taux d'occupation de		
	bâtiments	à établir par les photos aériennes	
		à juger par le calcul unidimensionnel des	
	Conditions pour le	écoulements instables	
	débordement	Coefficient de débordement :	
		à déterminer en tenant compte des écoulements	

			horizontaux estimés par la formule de Homma.	
			Hauteur des eaux débordées :	
			Hauteur des digues actuelles ou hauteur des	
			digues de projet	
			Zones débordées : à viser toutes les zones	
	Conditions			
	d'effondrement des digues		à ne pas déterminer	
		f 1	rizières 0 / montagnes 0,15 / champs 0,25 /	
			villes 0,6 à 0, 9	
P	Précipitation Rsa effective fsa	Dea	rizières 50 / montagnes 300 / champs 150 /	
		Ksa	villes 55	
		fsa	rizières 1 / montagnes 0,6 / champs 1 /	
			villes 1	

Le hydrogramme par période de retour ainsi que le résultat d'analyse de crues sont montrés dans les pages qui suivent. Le résultat d'analyse de crues montre que l'inondation par l'eau extérieure par période de retour de projet de 1/10 ans ne s'est pas produite sur le cours d'eau du projet. Aussi, si on suppose que l'ouvrage n'est pas détruit même si le niveau d'eau atteint à la crête, l'inondation ne peut se produire jusqu'à 1/20ans. Même avec la probabilité de 1/50 ans ou de 1/100 ans, la zone inondée reste limitée grâce à la dérivation au bassin de retardement. La hauteur d'inondation est en hausse par l'augmentation du volume d'eau d'inondation au niveau des zones non aménagées en aval, mais la zone d'inondation reste inchangée.

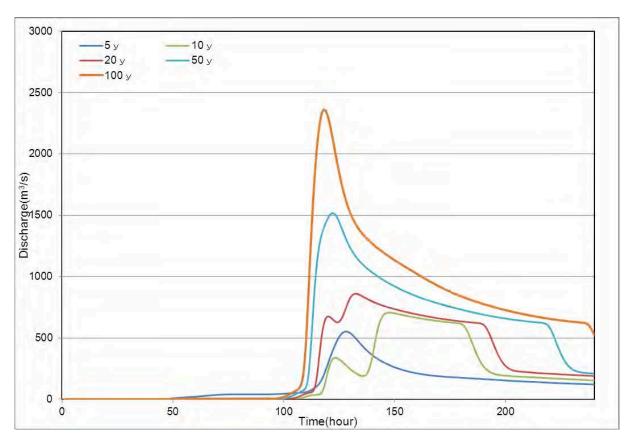


Figure 4-32 Hydrogramme par période de retour (barrage de Laroussia)

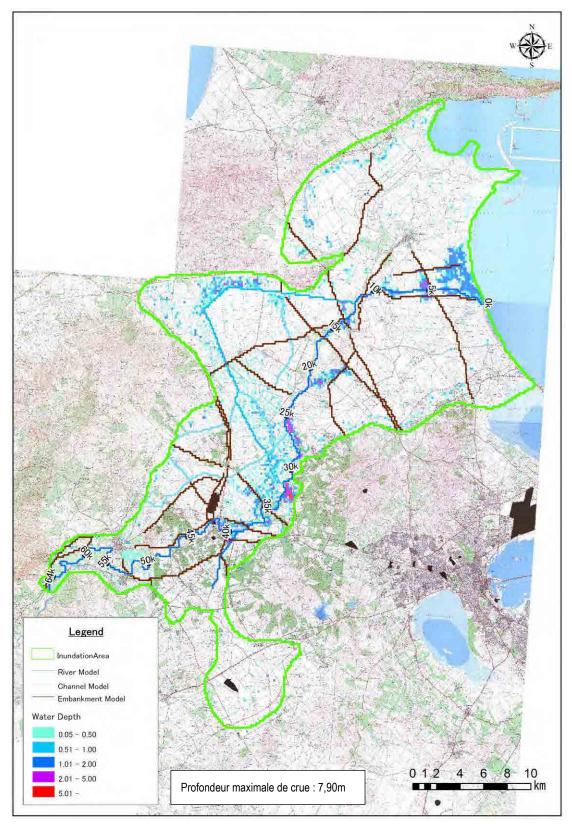


Figure 4-33 Résultat d'analyse de crues (chenal de l'oued actuel, Probabilité 1/5)

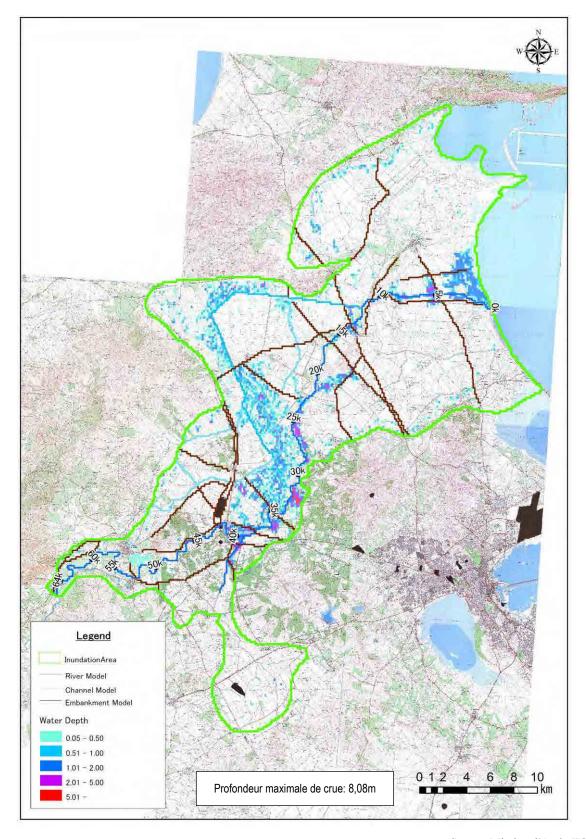


Figure 4-34 Résultat d'analyse de crues (chenal de l'oued actuel, Probabilité 1/10)

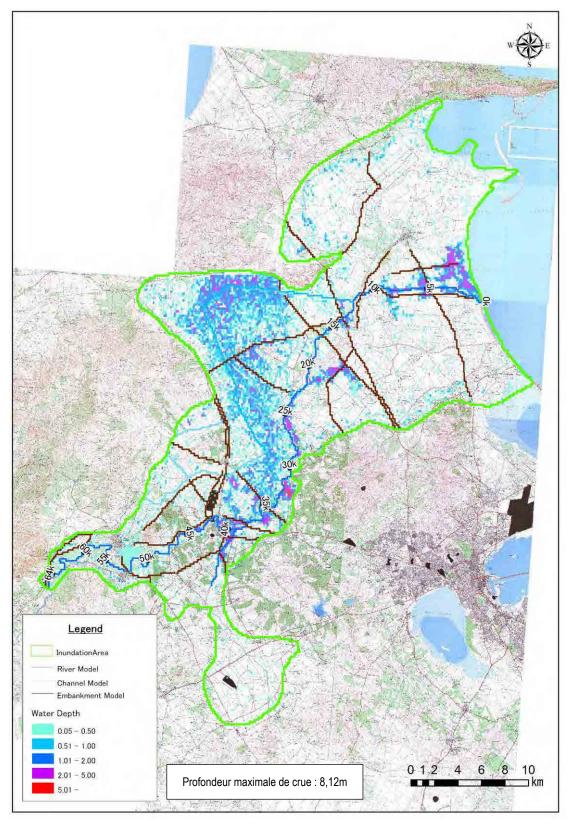


Figure 4-35 Résultat d'analyse de crues (chenal de l'oued actuel, Probabilité 1/20)

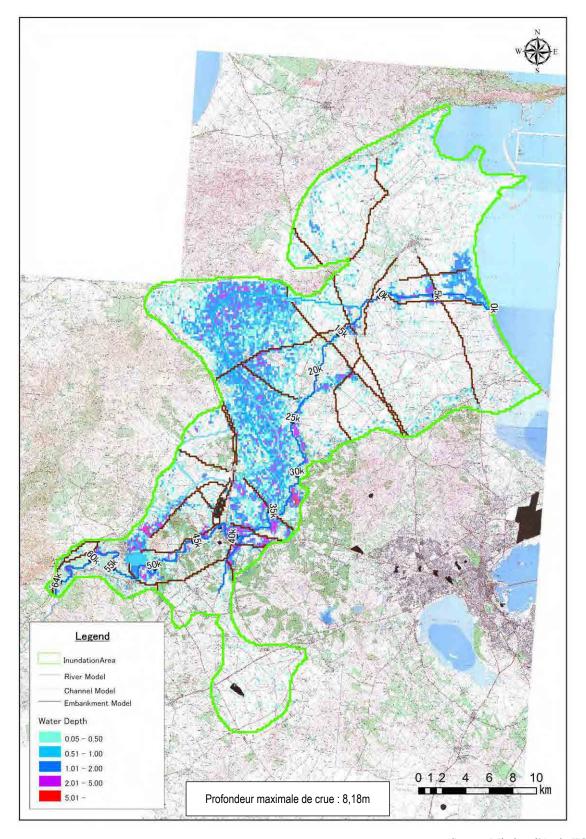


Figure 4-36 Résultat d'analyse de crues (chenal de l'oued actuel, Probabilité 1/50)

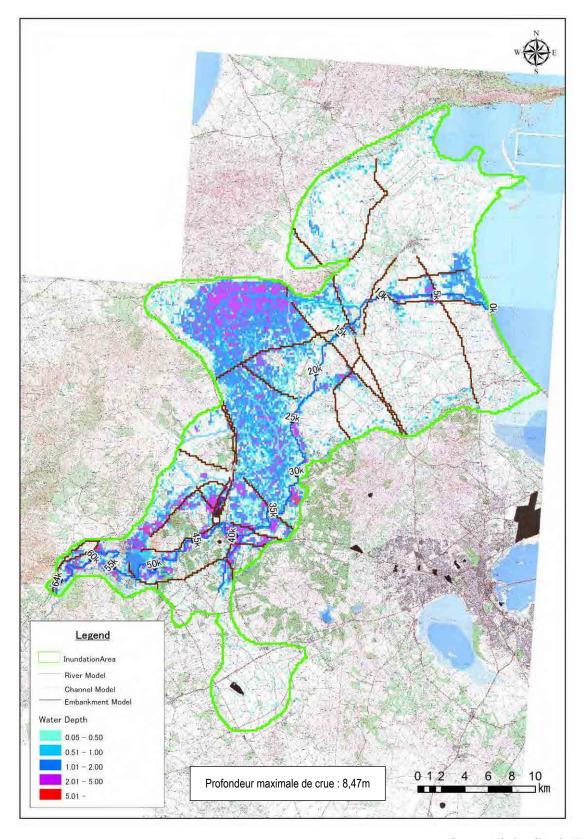


Figure 4-37 Résultat d'analyse de crues (chenal de l'oued actuel, Probabilité 1/100)

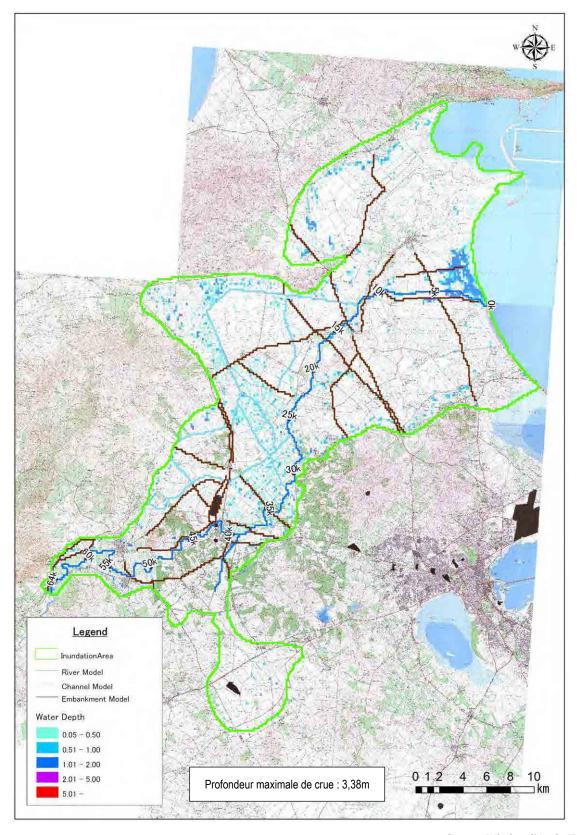


Figure 4-38 Résultat d'analyse de crues (chenal de l'oued de projet, Probabilité 1/5)

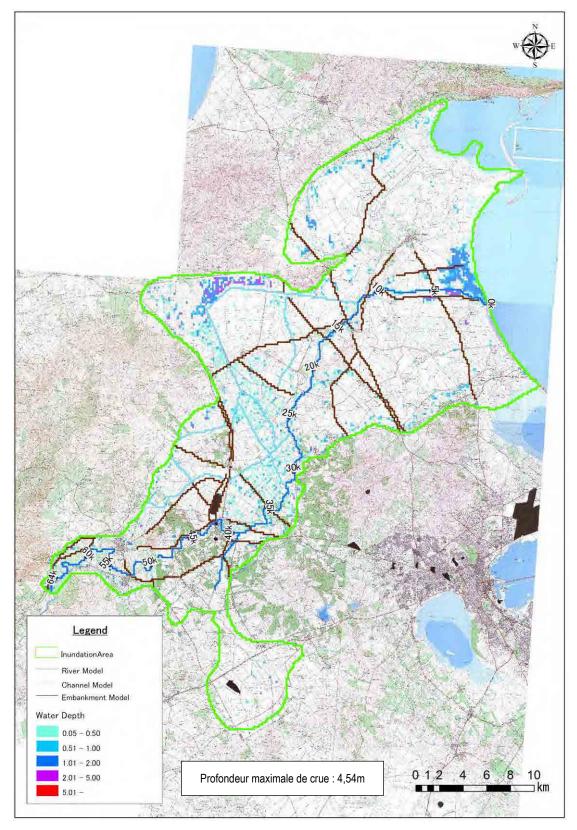


Figure 4-39 Résultat d'analyse de crues (chenal de l'oued de projet, Probabilité 1/10) (en cours de calcul)

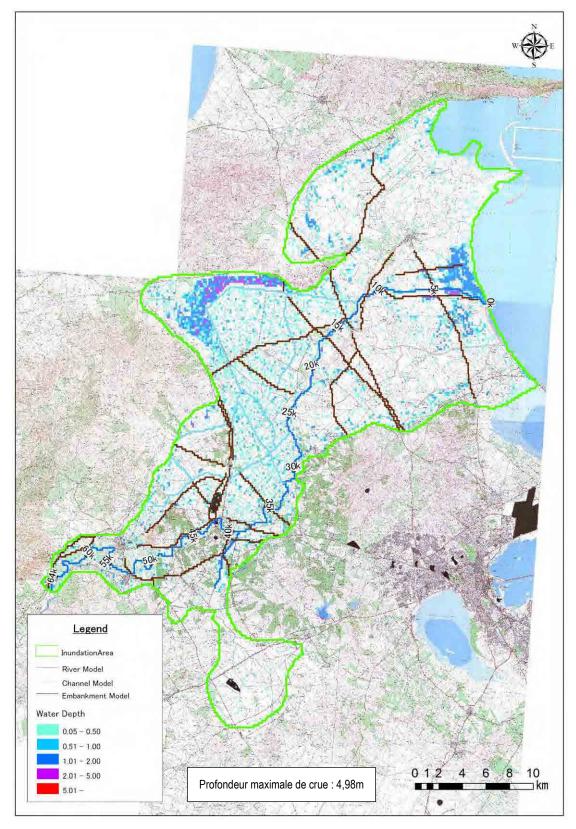


Figure 4-40 Résultat d'analyse de crues (chenal de l'oued de projet, Probabilité 1/20) (en cours de calcul)

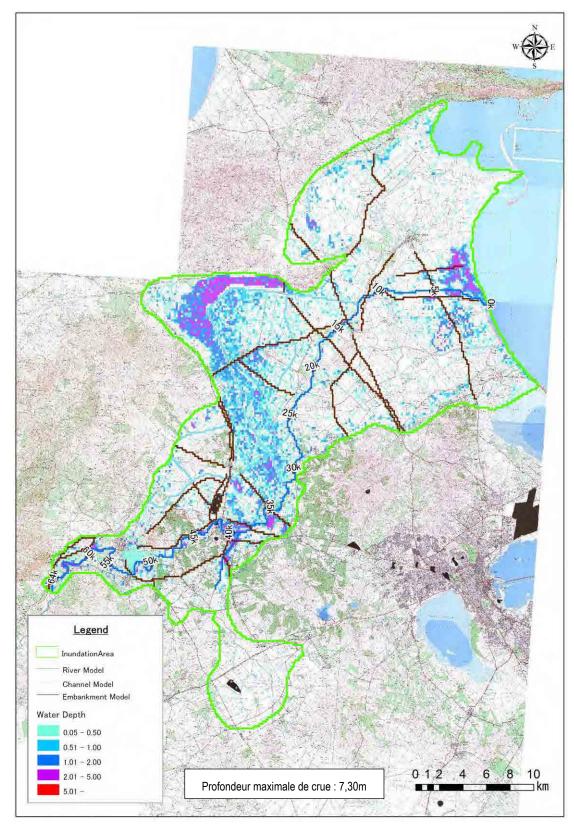


Figure 4-41 Résultat d'analyse de crues (chenal de l'oued de projet, Probabilité 1/50) (en cours de calcul)

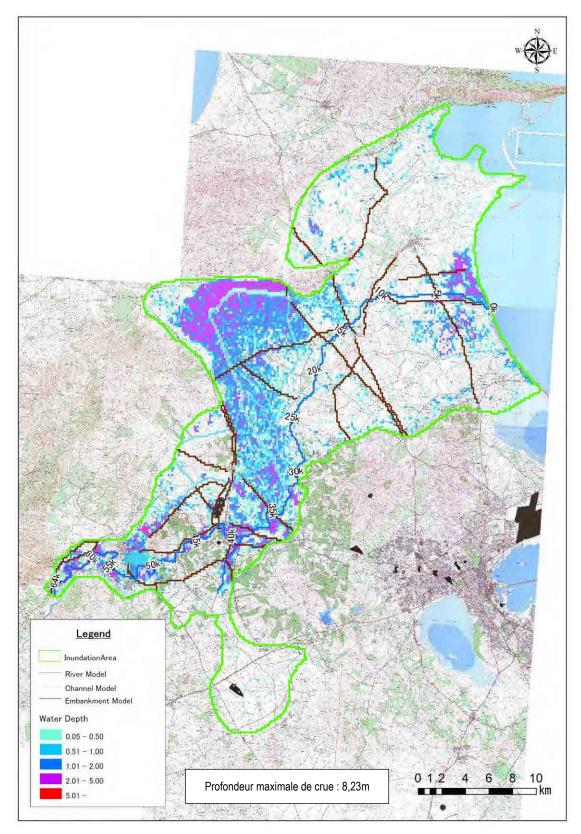


Figure 4-42 Résultat d'analyse de crues (chenal de l'oued de projet, Probabilité 1/100) (en cours de calcul)