REPUBLIC OF THE UNION OF MYANMAR Hydropower Generation Enterprise (HPGE)

THE PREPARATORY SURVEY (2) ON THE PROJECT FOR REHABILITATION OF BALUCHAUNG NO.2 HYDROPOWER PLANT IN REPUBLIC OF THE UNION OF MYANMAR

Final Report (Annex)

March 2013

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

> NIPPON KOEI CO., LTD. TOKYO ELECTRIC POWER COMPANY

IL
JR
13-056

ANNEX

CHECK LIST OF SITE INSPECTION

- ANNEX 1 Generating equipment (Water Turbine)
- ANNEX 2 Generating equipment (Generator)
- ANNEX 3 Transformer and Control System
- ANNEX 4 Civil & Metal Facility

ANNEX 1

GENERATING EQUIPMENT (WATER TURBINE)

Check List of Site Inspection for Generating Equipment (Water Turbine) (Unit 1)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

Manufacturer HITACHI

Turbine Type	HP-2R4ND
ruionie rype	

Manufactured in 1958,

Inspection 9 through 10-Jul-2012

	Items	Result	Photo No.
1	Cavitation Pitting	$\triangle^{1)}$	
2	Runner Bucket Crack by PT	$\times^{2)}$	
3	Needle, Nozzle, Needle Shaft	× ³⁾	T-001 to -003
4	Deflector	$\times^{4)}$	T-004
5	Jet Brake	× ⁵⁾	

- Please refer to separate Photos for Unit No. 1.On Bucket No. 13 of No. 1A runner and Bucket No. 20 of No. 1B runner, quite heavy cavitation pitting is observed. Also, on action side of Bucket No. 20 of No. 1B runner, hitting mark is noticed. From the back side cavitation, it is recognized thatt the high pressure flow direction from the nozzle is deformed by cavitation pitting of needle and nozzle tip.
- Please refer to separate Inspection Data Sheets for Unit No.1.
 On Unit No. 1B runner, the cracks are detected at the left side rib of bucket No. 9, 14 and 17 and at the right side rib of bucket No. 19.
- 3) Due to heavy leakage water from the needle nozzle, details of needle and nozzle cannot be inspected.
- 4) Typical photo shows the cavitation damage around the middle of the deflector leading edge on Unit No. 1A (Upper), which will cause further rapid pitting of the deflector and shall be replaced with new one.
- 5) Due to the sticking problem of the jet brake valve rod and it's oil servomotor rod, the jet brake valve cannot be opened fully. The jet brake shall be replaced with new one.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

Manufacturer	HITACHI
Туре	Rotary Valve with Oil Operated Servomotors having Upstream/downstream
	Seals

Manufactured in 1958 (Rubber Seal Type),

Inspection 9 through 10-Jul-2012

	Items	Result	Photo No.
1	Downstream and Upstream Seal of Inlet Valve and	$\times^{1)}$	T-005
	Others		
2	Inlet Valve Servomotor	$\triangle^{2)}$	
3	Inlet Valve Control Panel	× ³⁾	
4	Penstock Drain Valve	$\times^{4)}$	T-006

 From the large water leakage from the nozzle, both downstream and upstream seals are not properly functioned to seal the penstock high pressure. From this serious condition, it is essential to replace one complete inlet valve with newly designed one.

- The oil operated servomotors for inlet valve is still operational. There is no locking device for servomotor closing position on Unit No. 1 Servomotors, which provision is required for safety aspect.
- 3) Due to malfunction of both downstream and upstream seals, the inlet valve control panel shall be replaced with new one.
- 4) Penstock drain valve is no longer used due to no movement of valve disc handle, and the downstream flange is closed with blind cover.

1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI
Туре	Mechanical Type Governor
Manufactured in	1992 (Unit No. 1 overhauled)
Inspection	9 through 10-Jul-2012

	Items	Result	Photo No.
1	Governor Cabinet	$\triangle^{1)}$	T-007 & -008
2			

 It is observed that many instruments mounted on Instrument and Governor Cabinets are broken or malfunctioned. These instruments shall be replaced with new ones to have more reliability. Leaked oil inside of all governor cabinet is observed. Dirty governor oil shall be purified.

1-4. Pressure Oil System for Governor (Visual Inspection)

Manufacturer HITACHI

Manufactured in 1992

The second preparatory survey on the project for rehabilitation of BALUCHAUNG NO.2 hydropower plant in republic of the union of MYANMAR

Inspe	ection 9 through 10-Jul-2012		
	Items	Result	Photo No.
1	Oil Tank	$\triangle^{1)}$	
2	Oil Pressure System	$\triangle^{2)}$	
3			

 Overall deterioration of oil pressure system is observed. The pressure gauge on oil tank indicates the different value of the gauge on instrument panel. These gauges shall be replaced with new ones. Also, the oil level indicator glass mounted on Governor oil tank becomes dirty, and it shall be replaced with new one.

2) One oil pump and control panel shall be replaced with new one.

1-5. Operational Condition

Inspection in 10 through 11-Jul-2012

	Items	Result	Photo No.
1	Pressure Oil System Test	$\triangle^{1)}$	
2	Generator Output vs. Needle Stroke	$\triangle^{2)}$	
3	Inlet Valve	× ³⁾	

- 1) Please refer to the separate data documents for Unit No. 1.
- Please refer to the separate data documents for Unit No. 1.
 It is evaluated that over 40 years old generating unit is relatively in good operating condition, which proves frequent and well maintenance by powerhouse staff.
- 3) Penstock water cannot be stopped by either upstream or downstream seals. This sealing condition is really unsafe and unreliable for unit outage, so that urgent and complete countermeasure to the inlet valve is essential.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Unit 2)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

ManufacturerHITACHITurbine TypeHP-2R4NDManufactured inRunner: 1993 (for Unit No. 2),Inspection18 through 19-Jul-2012

	Items	Result	Photo No.
1	Cavitation Pitting	$\triangle^{1)}$	
2	Runner Bucket Crack by PT	$\times^{2)}$	
3	Needle, Nozzle, Needle Shaft	× ³⁾	T-001 to -003
4	Deflector	$\times^{4)}$	T-002
5	Jet Brake	× ⁵⁾	

1) Please refer to separate Photos for Unit No. 2.

2) Please refer to separate Inspection Data Sheets for Unit No. 2.

On Unit No. 2A runner, a crack is detected at right side rib of bucket No. 9 (new crack having 70mm length is detected) and No. 10. Also, on Unit No. 2B runner, a crack is detected at left side of bucket No. 8 and at right side of bucket No. 7 and No. 10. On bucket No. 7, the crack is propagated from 65mm (based on previous record) to 77 mm.

- 3) Due to heavy leakage water from the needle nozzle, details of needle and nozzle cannot be inspected. Since needle tip and nozzle tip damage will induce deflector cavitation, runner bucket cavitation and turbine efficiency drop, these shall be replaced with new ones at the earliest days. The needle shaft drain line is closed with blind cover, and this line is no longer used.
- 4) Heavy leakage water hits the deflector edge, which is causing cavitation pitting and erosion on the deflector.
- 5) Water leakage from the valve stem of jet brake on Unit No. 2 is observed. The jet brake shall be replaced with new one.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

Manufacturer	HITACHI
Туре	Rotary Valve with Oil Operated Servomotor(s) having Upstream/downstream
	Seals
Manufactured in	1958 (for Unit No. 2, Rubber Seal Type)

Inspection 18 through 19-Jul-2012

	Items	Result	Photo No.
1	Downstream and Upstream Seal of Inlet Valve and	$\times^{1)}$	
1	Others		
2	Inlet Valve Servomotor	$\triangle^{2)}$	
3	Inlet Valve Control Panel	× ³⁾	
4	Penstock Drain Valve	$\times^{4)}$	T-004

1) Both downstream and upstream seals with rubber seals are not properly functioned, so that complete inlet valve with servomotor and control panel shall be replaced with new one.

- The oil operated servomotors for inlet valve is still operational. However, there is no locking device for servomotor closing position. This locking provision shall be required for safety aspect.
- 3) Together with inlet valve, the control panel shall be replaced with new one.
- 4) The penstock drain valve is closed with blind cover, and this line is no longer used.

1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI
Туре	Mechanical Type Governor
Manufactured in	1992 overhauled
Inspection	18 through 19-Jul-2012

	Items	Result	Photo No.
1	Governor Cabinet	$\triangle^{1)}$	T-005
2			

 It is observed that many instruments mounted on Instrument and Governor Cabinets are broken or malfunctioned. These instruments shall be replaced with new ones to have more reliability. Leaked oil inside of all governor cabinet is observed. Dirty governor oil, which needs to be purified, is used.

1-4. Pressure Oil System for Governor (Visual Inspection)

	Items	Result	Photo No.
Inspection	9 through 30-Jul-2012		
Manufactured in	1992		
Manufacturer	HITACHI		

1	Oil Tank	$\triangle^{1)}$	
2	Oil Pressure System	$\triangle^{2)}$	
3			

- Overall deterioration of oil pressure system is observed. The pressure gauge on oil tank indicates the different value of the gauge on instrument panel. These gauges shall be replaced with new ones. Also, the oil level indicator glass mounted on Governor oil tank becomes dirty, and it shall be replaced with new one.
- 2) One oil pump having oil leakage and control panel shall be replaced with new one.

1-5. Operational Condition

Inspection in 21-Jul-2012

	Items	Result	Photo No.
1	Pressure Oil System Test	$\triangle^{1)}$	
2	Generator Output vs. Needle Stroke	$\triangle^{2)}$	
3	Inlet Valve	× ³⁾	
4			

- 1) Please refer to the separate test record for Unit No. 2.
- 2) Please refer to the separate data documents for Unit No. 2.
- 3) Penstock water cannot be stopped by both upstream or downstream seals. This leaking condition is really unsafe and unreliable for unit outage, so that urgent and complete countermeasure to the inlet valve is essential.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Unit 3)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

ManufacturerHITACHITurbine TypeHP-2R4NDManufactured inRunner: 1993 (for Unit No. 3)

Inspection 26-Jul-2012

Items		Result	Photo No.
1	Cavitation Pitting	$\triangle^{1)}$	
2	Runner Bucket Crack by PT	$\triangle^{2)}$	
3	Needle, Nozzle, Needle Shaft	$\triangle^{3)}$	T-001 & -002
4	Deflector	$\triangle^{3)}$	T-001
5	Jet Brake	$\times^{4)}$	T-003

- Please refer to separate Photos for Unit No. 3. Very light cavitation pitting is observed on both 3A and 3B runners.
- Please refer to separate Inspection Data Sheets for Unit No. 3. No cracks are detected on No. 3A and 3B runners.
- 3) As compared with other units (Unit No. 4 through 6), the pitting damage of Unit No. 3 needle, nozzle and deflector seems to be lighter. There is no valve handle of the needle shaft drain line.
- 4) Due to the sticking problem of the jet brake valve rod and it's oil servomotor rod of Unit No. 3, the jet brake valve cannot be opened fully. As a result, it takes longer time (approx. 30 minutes) to stop the Generating unit. This jet brake shall be replaced with new one.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

Manufacturer	HITACHI
Туре	Rotary Valve with Oil Operated Servomotors having Upstream/downstream
	Seals
Manufactured in	1958 (Rubber Seal Type)
Inspection	26-Jul-2012

	Items	Result	Photo No.
1	Downstream and Upstream Seal of Inlet Valve and	$\times^{1)}$	T-004
1	Others		
2	Inlet Valve Servomotor	$\times^{2)}$	
3	Inlet Valve Control Panel	× ³⁾	
4	Others (Needle & Deflector Servomotor)	\bigtriangleup	T-005
5	Penstock Drain Valve	imes ⁴⁾	T-006

 Both downstream and upstream seals are not operated properly due to malfunction of rubber seal system. Accordingly, quite large water leakage is observed from the inlet valve. From the present condition, it is essential to replace one complete inlet valve with newly designed one.

- 2) The oil operated servomotors for inlet valve is still operational. However, there is no locking device for servomotor closing position. The servomotors shall be replaced with new ones.
- 3) This control valve panel together with inlet valve shall be replaced with new one.
- 4) The penstock drain line is not used.

1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI
Туре	Mechanical Type Governor
Manufactured in	1992 (for Unit No. 3)
Inspection	26-Jul-2012
	Items

	Items	Result	Photo No.
1	Governor Cabinet	$\triangle^{1)}$	
2			

 It is observed that many instruments mounted on Governor Cabinet are broken or malfunctioned. These instruments shall be replaced with new ones to have more reliability. Leaked oil inside of governor cabinet is observed.

1-4. Pressure Oil System for Governor (Visual Inspection)

Manufacturer	HITACHI
Manufactured in	1992 (for Unit No. 3)
Inspection	26-Jul-2012

	Items	Result	Photo No.
1	Oil Tank	$\triangle^{1)}$	
2	Oil Pressure System	$\triangle^{2)}$	
3			

 The pressure gauge on oil tank indicates the different value of the gauge on instrument panel. These gauges shall be replaced with new ones. Also, the oil level indicator glass mounted on Governor oil tank becomes filthy, and it shall be replaced with new one.

2) One oil pump and control panel shall be replaced with new ones.

1-5. Operational Condition

Inspection in	27-Jul-2012
---------------	-------------

	Items	Result	Photo No.
1	Pressure Oil System Test	$\triangle^{1)}$	
1	Generator Output vs. Needle Stroke	$\triangle^{2)}$	
2	Inlet Valve	× ³⁾	
3			

1) Please refer to the separate test record for Unit No. 3.

- Please refer to the separate data sheet for Unit No. 3.
 It is evaluated that operation for the unit over 40 years old is in good condition, which proves frequent and well maintenance by powerhouse staff.
- 3) Penstock water cannot be stopped by either upstream or downstream seal due to malfunction of the rubber seals. And also, the penstock water cannot be stopped at needle and nozzle. Basically, the needle and nozzle is designed and used to control the water flow volume and not to seal the penstock water. Only both A and B water deflectors provided downstream of needles are used to stop the unit. This sealing operation is really unsafe and unreliable for unit stop, so that the whole inlet valve shall be replaced with new one.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Unit 4)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

Manufacturer HITACHI

HP-2R4ND

Manufactured in 1972

Inspection 23-Jul-2012

	Items	Result	Photo No.
1	Cavitation Pitting	$\triangle^{1)}$	
2	Runner Bucket Crack by PT	$\triangle^{2)}$	
3	Needle, Nozzle, Needle Shaft	× ³⁾	T-001, -002
4	Deflector	$\times^{4)}$	T-003
5	Jet Brake	0	

- 1) Please refer to separate Photos for Unit No. 4. On, both 4A and 4B runners, cavitation pitting is considered small.
- Please refer to separate Inspection Data Sheets for Unit No. 4. No cracks are observed on both 4A and 4B runners.
- 3) Due to heavy leakage water from the needle nozzle, details of needle and nozzle cannot be inspected. Since needle tip and nozzle tip damage will induce further deflector cavitation during unit stop condition, these shall be replaced with new ones at the earliest days.
- 4) Deflector tip is being damaged with cavitation pitting.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

F	Items	Result	Photo No.
Inspection	23-Jul-2012		
Manufactured in	1972 (Metal Seal Type)		
Туре	Rotary Valve with Oil Operated Servom	otor having Upstream/d	ownstream Seals
Manufacturer	HITACHI		

	Items	Result	Photo No.
1	Downstream and Upstream Seal of Inlet Valve and	$\times^{1)}$	T-004 to -007

	Others		
2	Inlet Valve Servomotor	$\triangle^{2)}$	
3	Inlet Valve Control Panel	× ³⁾	T-008 to -010
4			

 Both downstream and upstream seals are no longer used at all due to malfunction of distributing valves (No. 530, 550, 580 and 590) mounted in the Inlet Valve Control Panel. Water supply line to the downstream and upstream seals are completely closed at before and after strainers..

Also, on Unit No. 4A inlet valve, water leakage from anti-servomotor stem side is observed. From these serious conditions, it is essential to replace one complete inlet valve with newly designed one.

- 2) The oil operated servomotor for inlet valve is still operational.
- 3) Due to malfunction of the distributing valves (No. 530, 550, 580 and 590), both downstream and upstream seals are no longer used. The water supply line to the above control valves are fully closed at the manual valves around water strainers by MEPE. The water line strainers for operating the downstream and upstream seals are clogged by muddy silt water. These strainers shall be periodically (at least every two weeks) washed out and cleaned for reliable operation of these seals.

1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI
Туре	Mechanical Type Governor
Manufactured in	1972
Inspection	23-Jul-2012

	Items	Result	Photo No.
1	Governor Cabinet	$\triangle^{1)}$	T-011 to -013
2			

 It is observed that many instruments mounted on Instrument and Governor Cabinets are broken or malfunctioned. These instruments shall be replaced with new ones to have more reliability. Leaked oil inside of all governor cabinet is observed. Dirty governor oil, which needs to be purified, is used.

1-4. Pressure Oil System for Governor (Visual Inspection)

Manufacturer	HITACHI
Manufactured in	1972 (for Unit No. 4-6)
Inspection	23-Jul-2012

	Items	Result	Photo No.
1	Oil Tank	$\triangle^{1)}$	T-014, -015
2	Oil Pressure System	$\triangle^{2)}$	

- Overall deterioration of oil pressure system is observed. The pressure gauge on oil tank indicates the different value of the gauge on instrument panel. These gauges shall be replaced with new ones. Also, the oil level sight glass mounted on oil tank becomes filthy, and it shall be replaced with new one.
- Since oil pressure pump is in service over 40 years, overall deterioration of oil system is observed. The oil pumps/motors with control panel shall be replaced with new ones.

1-5. Operational Condition

Inspection in 24-Jul-2012

	Items	Result	Photo No.
1	Pressure Oil System Test	$\triangle^{1)}$	
2	Generator Output vs. Needle Stroke	$\triangle^{2)}$	
3	Inlet Valve	× ³⁾	
4			

1) Please refer to the separate test record for Unit No. 4.

2) Please refer to the separate data for Unit No. 4.

It is evaluated that the operation for the unit over 40 years old is in good condition, which proves frequent and well maintenance by powerhouse staff.

3) During Unit shutdown, penstock water cannot be stopped by either upstream or downstream seal due to malfunction of the distributing valves mounted in the inlet valve control panel. This sealing condition is really unsafe and unreliable to stop the unit, so that urgent and complete countermeasure to the inlet valve is essential.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Unit 5)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

Manufacturer HITACHI

Turbine Type	HP-2R4ND

Manufactured in 1972

Inspection 30-Jul-2012

	Items	Result	Photo No.
1	Cavitation Pitting	$\triangle^{1)}$	
2	Runner Bucket Crack by PT	$\triangle^{2)}$	
3	Needle, Nozzle, Needle Shaft	× ³⁾	T-001 to-003
4	Deflector	$\times^{4)}$	T-002
5	Jet Brake	0	
6	Water Shelter	× ⁵⁾	T-004

- Please refer to separate Photos for Unit No. 5. On both 5A and 5B runners, cavitation pitting is relatively light. Also, on No. 5B runner bucket, typical fish scale surface condition by erosion is noticed at the stream surface of the bucket No. 12..
- Please refer to separate Inspection Data Sheets for Unit No. 5. No cracks at runner bucket rib's roots are detected.
- 3) On Unit No. 5 A (upper) with visible water leakage from the nozzle, typical photo is taken, which indicates the cavitation pitting and erosion at the stream surface of the needle tip. Since needle tip and nozzle tip damage will induce deflector cavitation, runner bucket cavitation and turbine efficiency drop, these needles and nozzles shall be replaced with new ones at the earliest days. On the other hand, due to heavy leakage water from the needle nozzle on Unit No. 5B, details of needle and nozzle cannot be inspected. Water leakage from the needle shaft seal is also observed on Unit No. 5B (Upper). The needle shaft seal packing shall be replaced with new one.
- 4) Typical photo shows the cavitation pitting and erosion around the middle of the deflector leading edge on Unit No. 5A (Upper), which will cause further rapid pitting of the deflector and

shall be replaced with new one.

5) The water shelter for Unit No. 5B shaft is not assembled. New water shelter shall be installed.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

Manufacturer	HITACHI
Туре	Rotary Valve with Oil Operated Servomotor having Upstream/downstream Seals
Manufactured in	1972 (Metal Seal Type)
Inspection	30-Jul-2012

	Items	Result	Photo No.
1	Downstream and Upstream Seal of Inlet Valve and	$\times^{1)}$	
1	Others		
2	Inlet Valve Servomotor	× ²⁾	T-005 to -007
3	Inlet Valve Control Panel	× ³⁾	
4			

- Both downstream and upstream seals are no longer used at all due to malfunction of distributing valves (No. 530, 550, 580 and 590) mounted in the Inlet Valve Control Panel. Water supply line to the downstream and upstream seals are completely closed at the inlet and outlet of the strainers..
- 2) The oil operated servomotor for inlet valve is still operational. However, quite deep scratched surface is observed on Unit No. 5B servomotor rod, which will cause oil leak by seal packing damage in future.

Also, the followings are	1 1.	ſ ,	•
Also the followings are	tunical conditi	on of precent cervom	Mor oneninge
AISO, the followings are	typical conditi		noi obennies.

No. of Servomotor	Fully Closed Position	Fully Opened Position
5A Servomotor	3 Degrees	84 Degrees
5B Servomotor	26 Degrees	90 Degrees

Even though opening or closing problem of the servomotor cannot be investigated at this inspection, the present servomotor condition is abnormal, so that the servomotor together with inlet valve shall be replaced with new one.

- 3) Due to malfunction of the distributing valves (No. 530, 550, 580 and 590), both downstream and upstream seals are no longer used. The water supply line to the above control valves are fully closed at the manual valves around water strainers by MEPE. The water line strainers for operating the downstream and upstream seals are clogged by muddy silt water. These strainers shall be periodically (at least every two weeks) washed out and cleaned for reliable operation of these seals.
- 1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI
Туре	Mechanical Type Governor

 Manufactured in
 1972

 Inspection
 30-Jul-2012

 Items
 Result
 Photo No.

 1
 Governor Cabinet
 $\triangle^{1)}$ T-008 to -010

 2

 Different wattmeter is temporary mounted on Unit No. 5 Governor cabinet. It is observed that many instruments mounted on Instrument and Governor Cabinets are broken or malfunctioned. These instruments shall be replaced with new ones to have more reliability. Leaked oil inside of all governor cabinet is observed.

1-4. Pressure Oil System for Governor (Visual Inspection)

Manufacturer	HITACHI

Manufactured in 1972

Inspection 30-Jul-2012

	Items	Result	Photo No.
1	Oil Tank	$\triangle^{1)}$	
2	Oil Pressure System	$\triangle^{2)}$	
3			

- Overall deterioration of oil pressure system is observed. The pressure gauge on oil tank indicates the different value of the gauge on instrument panel. These gauges shall be replaced with new ones. Also, the oil level sight glass mounted on Governor oil tank becomes dirty, and it shall be replaced with new one.
- 2) Overall deterioration of oil system is observed. The oil pumps/motors and control panel shall be replaced with new ones.

1-5. Operational Condition

Inspection in 9 through 30-Jul-2012

	Items	Result	Photo No.
1	Pressure Oil System Test	$\triangle^{1)}$	
2	Generator Output vs. Needle Stroke	$\triangle^{2)}$	
3	Inlet Valve	× ³⁾	
3			

1) Please refer to the separate test record for Unit No. 5.

2) Please refer to the separate data documents for Unit No. 5.

It is evaluated that the operation for over 40 years old unit is in good condition, which proves frequent and well maintenance by powerhouse staff.

3) Penstock water cannot be stopped by either upstream or downstream seal due to malfunction of the distributing valves mounted in the inlet valve control panel. Also, the needle and nozzle

cannot stop the penstock water. This sealing condition is really unsafe and unreliable for unit outage, so that urgent and complete countermeasure to the inlet valve is essential.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Unit 6)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

Manufacturer HITACHI

Turbine TypeHP-2R4NDManufactured in1972

Inspection 28-Jul-2012

Items Result Photo No. $\triangle^{1)}$ **Cavitation Pitting** 1 --- $\triangle^{2)}$ 2 Runner Bucket Crack by PT --- $\times^{3)}$ 3 Needle, Nozzle, Needle Shaft T-001 to -003 $\times^{3)}$ 4 Deflector --- $\times^{4)}$ 5 T-004 Jet Brake

- Please refer to separate Photos for Unit No. 6. On both No. 6A and No. 6B runners, relatively light cavitation pitting is observed. However, at the backside inlet of No. 5 bucket of No. 6B runner, heavy cavitation pitting is recognized.
- Please refer to separate Inspection Data Sheets for Unit No. 6. No crack on backside rib roots is detected on both 6A and 6B runners..
- 3) From relatively small water leakage from the No. 6A needle nozzle, needle tip cavitation and deflector pitting is observed. However, due to heavy leakage water, details of needle and nozzle of No. 6B cannot be inspected. Since needle tip and nozzle tip damage will induce further deflector cavitation, runner bucket cavitation and turbine efficiency drop, these needles and nozzles shall be replaced with new ones at the earliest days. Water leakage from the needle shaft seal is also observed on Unit No. 6A (Upper). The needle shaft seal packing shall be replaced with new one.
- 4) Water leakage from the jet brake valve body on Unit No. 6 is observed. This jet brake shall be replaced with new one.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

Manufacturer	HITACHI
Туре	Rotary Valve with Oil Operated Servomotor having Upstream/Downstream
	Seals

Manufactured in 1972 (Metal Seal Type)

Inspection 28-Jul-2012

	Items	Result	Photo No.
1	Downstream and Upstream Seal of Inlet Valve and	$\times^{1)}$	
1	Others		
2	Inlet Valve Servomotor	$\times^{2)}$	T-006 to -007
3	Inlet Valve Control Panel	× ³⁾	
4			

 Both downstream and upstream seals are no longer used at all due to malfunction of distributing valves (No. 530, 550, 580 and 590) mounted in the Inlet Valve Control Panel. Water supply line to the downstream and upstream seals are completely closed at before and after water strainers..

On Unit No. 6B inlet valve, the grease supply line to valve disc stem (servomotor side) is broken and plugged, so that there is no grease supply to the stem bushing and seal packing area, which is causing quick bush wear and seal packing damage and water leakage. These bushes and seal packing shall be replaced with newly designed ones.

2) The oil operated servomotor for inlet valve is still operational. However, quite deep scratched surface is observed on Unit No. 6B servomotor rod, which will cause oil leak by seal packing damage in future.

No. of Servomotor	Fully Closed Position	Fully Opened Position
6A Servomotor	0 Degrees	92 Degrees
6B Servomotor	4 Degrees	92 Degrees

The followings are typical condition of present servomotor openings.

Even though opening or closing problem of the servomotor cannot be investigated at this inspection, the present servomotor condition is abnormal. The servomotor together with inlet valve shall be replaced with new one.

- 3) Due to malfunction of the distributing valves (No. 530, 550, 580 and 590), both downstream and upstream seals are no longer used. The water supply line to the above control valves are fully closed at the manual valves around water strainers by MEPE. The water line strainers for operating the downstream and upstream seals are clogged by muddy silt water. These strainers shall be periodically (at least every two weeks) washed out and cleaned for reliable operation of these seals.
- 1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI
Туре	Mechanical Type Governor

Man	ufactured in	1972		
Inspe	ection	28-Jul-2012		
		Items	Result	Photo No.
1	Governor Cab	inet	$\triangle^{1)}$	
2				

 It is observed that many instruments mounted on Instrument and Governor Cabinets are broken or malfunctioned. These instruments shall be replaced with new ones to have more reliability. Leaked oil inside of all governor cabinet is observed. Dirty governor oil, which needs to be purified, is used. Since there is no sufficient oil purification equipment, it is recommended to have one set of oil purifier unit.

1-4. Pressure Oil System for Governor (Visual Inspection)

1070

Manufacturer	HITACHI
Manufacturer	HITACHI

Manufactured in 1972

Inspection 1-August-2012

	Items	Result	Photo No.
1	Oil Tank	$\triangle^{1)}$	
2	Oil Pressure System	$\triangle^{2)}$	
3			

- Overall deterioration of oil pressure system is observed. The pressure gauge on oil tank indicates the different value of the gauge on instrument panel. These gauges shall be replaced with new ones. Also, the oil level indicator glass mounted on oil tank becomes dirty, and it shall be replaced with new one.
- Since oil pressure pump for Unit No.6 is in service over 40 years, deterioration and aging of oil pressure system is observed. The oil pumps/motors with control cabinet shall be replaced with new ones.

1-5. Operational Condition

Inspection in 31-July through 1-August-2012

	Items	Result	Photo No.
1	Pressure Oil System Test	$\triangle^{1)}$	
2	Generator Output vs. Needle Stroke	$\triangle^{2)}$	
3	Inlet Valve	× ³⁾	
4			

- 1) Please refer to the separate test record for Unit No. 6.
- 2) Please refer to the separate data documents for Unit No. 6.

It is evaluated that the operation for the unit over 40 years old is in good condition, which proves frequent and well maintenance by powerhouse staff.

3) Penstock water cannot be stopped by either upstream or downstream seal of the inlet valves due to malfunction of the distributing valves mounted in the inlet valve control panel. This sealing condition is really unsafe and unreliable for unit outage, so that urgent and complete countermeasure to the inlet valve is essential.

Check List of Site Inspection for Generating Equipment (Water Turbine) (House Turbine)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. House Turbine, Inlet Valve, Governor, Pressure Oil System

1-1. Runner Bucket, Needle Nozzle, Deflector, Jet Brake (Visual Inspection)

Manufacturer HITACHI

Turbine Type P1N1-H

Manufactured in 1958

Inspection 3-August-2012

	Items	Result	Photo No.
1	Cavitation Pitting	ND ¹⁾	
2	Runner Bucket Crack by PT	ND ¹⁾	
3	Needle, Nozzle, Needle Shaft	ND ¹⁾	
4			

 Due to heavy leakage water from the inlet valve, needle and nozzle tip, the runner cover cannot be disassembled for inspection of runner bucket, needle tip and nozzle tip. Leakage from this inlet valve is causing cavitation pitting and erosion of downstream needle and nozzle portion, inlet valve seal portion shall be repaired at the earliest convenience.

1-2. Inlet Valve, Servomotor, Valve Control Panel (Visual Inspection)

Manufacturer	HITACHI
Туре	ϕ 160 sluice type shutoff valve

Manufactured in 1958

Inspection 3-August-2012

	Items	Result	Photo No.
1	Seal of Inlet Valve and Others	$\times^{1)}$	TH-001
2	Inlet Valve Servomotor	\bigtriangleup	TH-001
3			

1) From the inlet valve leakage, inlet valve seal is not acting properly.

1-3. Governor System (Visual Inspection)

Manufacturer	HITACHI	
Туре	Mechanical Type Governor	
Manufactured in	1958	
Inspection	3 through 6-August-2012	
	Items	
1 0 01	• ,	

Items		Result	Photo No.
1	Governor Cabinet	$\triangle^{1)}$	HT-002, -003
2			

1) Governor is operational. On governor cabinet, meter glass is frosted and not clearly visible.

1-4. Pressure Oil System for Governor (Visual Inspection)

Manufacturer		HITACHI		
Manufactured in		1958		
Inspection		3 through 6-August-2012		
		Items	Result	Photo No.
1	Oil Tank		$\triangle^{1)}$	HT-004
2	Oil Pressure S	System	$\triangle^{1)}$	HT-004
3				

 Overall deterioration of oil pressure system is observed. The gauges shall be replaced with new ones. Also, the oil level indicator glass mounted on Governor oil tank becomes filthy, and it shall be replaced with new one.

1-5. Operational Condition

Items		Result	Photo No.
1	Generator Output vs. Needle Stroke	ND	
2	Inlet Valve	ND ¹⁾	
3			

1) WARNING: Due to heavy leakage from inlet valve, inlet valve seal shall be urgently replaced with new one. Since no deflector is provided to the house turbine, turbine could not be stopped, if leakage from the inlet valve and further downstream needle and nozzle is becoming large.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Auxiliary Equipment)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. House Drainage Pumps, Cooling Water Supply System, Grease Supply System, Governor Actuator Motor

Supplier	HITACHI

Manufactured in 1958

Inspection 20-July through 3-August-2012

Items		Result	Photo No.
1	House Drainage Pumps	$\times^{1)}$	AU-001
2	Cooling Water Supply System for Unit No. 2	$\times^{2)}$	AU-002
3	Grease Supply System	× ³⁾	AU-003
4	Governor Actuator Motor	$\times^{4)}$	AU-004

- 1) The originally supplied two pumping units are no longer used, and temporary pumping unit is installed. This temporary pump unit does not have sufficient capacity, so that these old pumps shall be replaced with new ones.
- 2) The existing two pumps for cooling water supply system are deteriorated, so that these two pumps and motors shall be replaced with new ones.
- 3) Grease supply system for every unit (No. 1 through 6) shall be checked and repaired during the overhaul period.
- 4) The existing governor actuator motor has deteriorated, and replaced with spares. Since there is no spare, spare actuator motors shall be obtained.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Spare Parts)

REMARKS \bigcirc : Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, heavy water leakage, etc)

1. Spare Parts in Warehouse

Insp	Inspection 20-Jul-2012		
	Items	Result	Photo No.
1	Metal Seal Parts for Inlet Valve are as follows;	$\bigcirc^{1)}$	T-001, -002
	5 sets of upstream seal ring	0	
	5 sets of upstream seat ring	0	
	2 sets of upstream seal guide	0	
	5 sets of downstream seal ring	0	
	5 sets of downstream seat ring	0	
	2 sets of downstream seal guide	0	

1) There is neither spare D-type rubber packing nor round rubber packing for upstream and downstream seal replacement.

Check List of Site Inspection for Generating Equipment (Water Turbine) (Overhead Traveling Crane)

REMARKS O: Good condition

 \triangle : Caution

 \times : Countermeasure to be considered

ND: No data available (due to damaged meter, etc)

1. 60 / 10 Tons \times 47'-0" EOT Crane No. 2 (Unit No. 6 side) Operation Condition

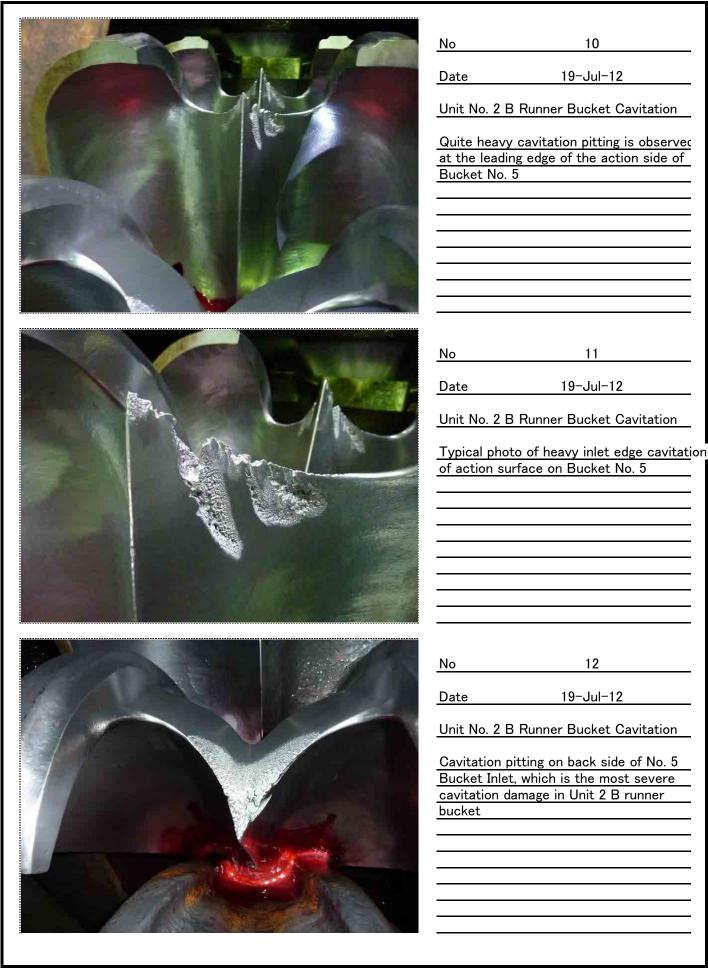
Manufacturer	HITACHI (Kameari Works)
--------------	-------------------------

Type EOT-KF-L (DWG No. C961667)

Manufactured in 1958

Inspection 1 through 5-August-2012

Items of Problem on Crane No. 2		Result	Photo No.
1	Travelling Speed of Crane	$\triangle^{1)}$	C-001 to -003
2	Lowest Limit of 10 Tons Auxiliary Hoisting	$\triangle^{2)}$	
3			

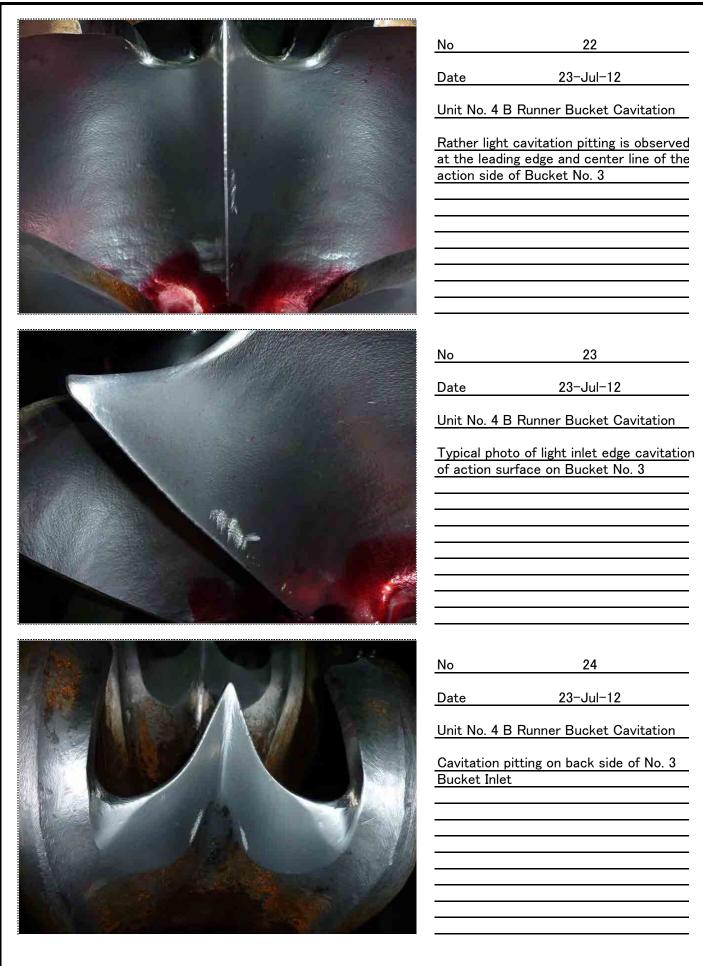

- When traveling to right side direction on the rails, one speed (the lowest speed) only is available even though 5 speed settings were originally provided. From the site survey, there is a malfunction at the CF brake, which horizontal arm does not move even changing the speed lever. Related DWG is No. KS719231 (Connection Diagram of Master Controller), and No. KS525480-1 (CF Brake).
- 2) 10 Tons hoist hook cannot lower over approx. 6 feet height from the ground floor. This is a malfunction of the limit switch setting.

Runner Cavitation Photo

No 1 Date 10–Jul–12 Unit No. 1 A Runner Bucket Cavitation Near the inlet edge of the action surface of Bucket No.13, light cavitation is observed.
No 2 Date 10–Jul–12 Unit No. 1 A Runner Bucket Cavitation Typical photo of inlet edge cavitation on action surface on Bucket No. 13
No 3 Date 10–Jul–12 Unit No. 1 A Runner Bucket Cavitation Cavitation pitting on back side of No. 13 Bucket Inlet, which is the most severe cavitation damage in Unit 1 runner bucket

No 4 Date 10–Jul–12 Unit No. 1 B Runner Bucket Cavitation At the inlet edge top of the action surface of Bucket No.20, hitting mark and cavitation is observed.
No 5 Date 10–Jul–12 Unit No. 1 B Runner Bucket Cavitation Typical photo of inlet edge cavitation and hitting mark at knife edge on action surface on Bucket No. 20
No 6 Date 10–Jul–12 Unit No. 1 B Runner Bucket Cavitation Cavitation pitting on back side of No. 20 Bucket Inlet, which is the most severe cavitation in Unit 1 B runner bucket

	No 7 Date 19–Jul–12 Unit No. 2 A Runner Bucket Cavitation Near the inlet edge top of the action surface of Bucket No.9, light cavitation is observed.
	No 8 Date 19–Jul–12 Unit No. 2 A Runner Bucket Cavitation Typical photo of light inlet edge cavitation and hitting mark of action surface on Bucket No. 9
<image/>	No 9 Date 19–Jul–12 Unit No. 2 A Runner Bucket Cavitation Cavitation pitting on back side of No. 9 Bucket Inlet, which is the most severe cavitation damage in Unit 2 A runner bucket



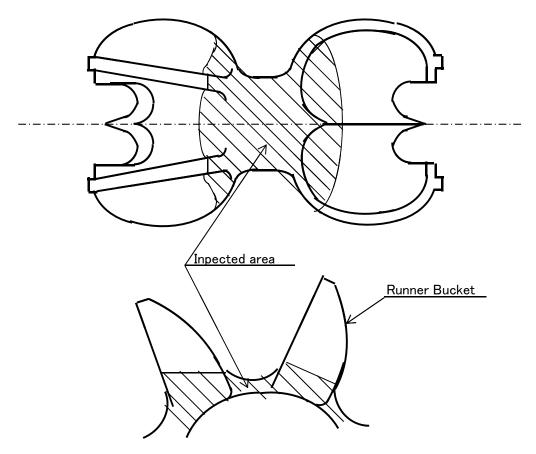
<image/>	No 13 Date 26-Jul-12 Unit No. 3 A Runner Bucket Cavitation Relatively light Cavitation pitting at the leading edge of the action side of Bucket No. 5
<image/>	No 14 Date 26–Jul–12 Unit No. 3 A Runner Bucket Cavitation Typical photo of light inlet edge cavitation of action surface on Bucket No. 5
<image/>	No 15 Date 26–Jul–12 Unit No. 3 A Runner Bucket Cavitation Light cavitation pitting on back side of No. 5 Bucket Inlet

Runner Cavitation Photo

	No 16 Date 26-Jul-12 Unit No. 3 B Runner Bucket Cavitation Light cavitation pitting is observed near the leading edge of the action side of Bucket No. 6
	No 17 Date 26-Jul-12 Unit No. 3 B Runner Bucket Cavitation Typical photo of inlet edge and stream surface cavitation of action surface on Bucket No. 6
<image/>	No 18 Date 26-Jul-12 Unit No. 3 B Runner Bucket Cavitation No cavitation pitting on back side of No. 0 Bucket Inlet

<image/>	Small cavita	19 23–Jul–12 Runner Bucket Cavitation tion pitting is observed ding edge of the action side c
	Typical phot of action su	20 23-Jul-12 Runner Bucket Cavitation to of light inlet edge cavitation rface on Bucket No. 1 stream surface of the bucket oserved.
<image/>	Minor cavita	21 23–Jul–12 Runner Bucket Cavitation tion pitting on back side of t inlet is observed.

	No 25 Date 30–Jul–12 Unit No. 5 A Runner Bucket Cavitation Light cavitation pitting at the leading edge of the action side of Bucket No. 19 and erosion at the stream surface of the bucket is observed.
	No 26 Date 30-Jul-12 Unit No. 5 A Runner Bucket Cavitation Typical photo of light inlet edge and knife edge cavitation of action surface on Bucket No. 19
<image/>	No 27 Date 30–Jul–12 Unit No. 5 A Runner Bucket Cavitation Cavitation pitting on back side of No. 19 Bucket Inlet, which is the most severe cavitation damage in Unit 5 A runner bucket

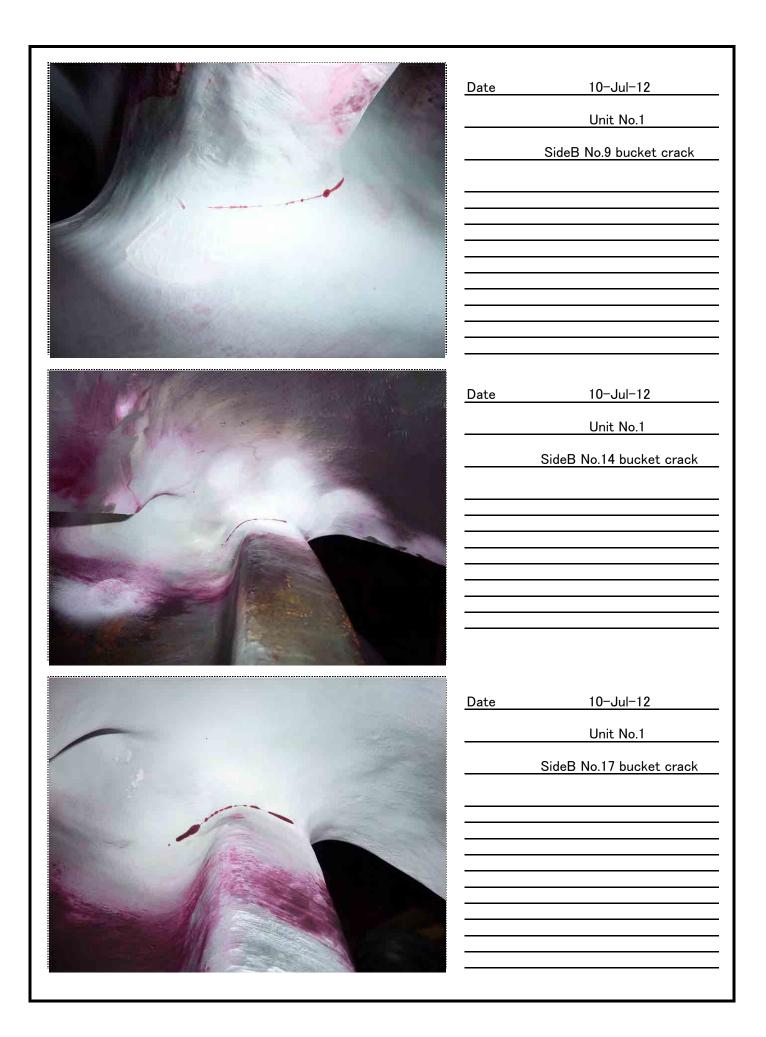

<image/>	No 28 Date 30–Jul–12 Unit No. 5 B Runner Bucket Cavitation Light cavitation pitting is observed at the leading edge of the action side of Bucket No. 12
	No 29 Date 30-Jul-12 Unit No. 5 B Runner Bucket Cavitation Typical photo of light cavitation at the center edge of action surface on Bucket No. 12
<image/>	No 30 Date 30-Jul-12 Unit No. 5 B Runner Bucket Cavitation Cavitation pitting on back side of No. 12 Bucket Inlet

31 No 28-Jul-12 Date Unit No. 6 A Runner Bucket Cavitation Light cavitation pitting is observed at the leading edge of the action side of Bucket No. 10 32 No 28-Jul-12 Date Unit No. 6 A Runner Bucket Cavitation Typical photo of light inlet edge cavitation of action surface on Bucket No. 10 33 No 28-Jul-12 Date Unit No. 6 A Runner Bucket Cavitation Cavitation pitting on back side of No. 10 Bucket

34 No 28-Jul-12 Date Unit No. 6 B Runner Bucket Cavitation Rather light cavitation pitting is observed at the leading edge of the action side of Bucket No. 5 No 35 28-Jul-12 Date Unit No. 6 B Runner Bucket Cavitation Typical photo of inlet edge cavitation of action surface on Bucket No. 5 36 No 28-Jul-12 Date Unit No. 6 B Runner Bucket Cavitation Cavitation pitting on back side of No. 5 Bucket Inlet, which is the most severe cavitation pitting in Unit 6 B runner bucket

Position of Runner Bucket for Penetrant Testing(PT)

- 1. Material :Remover Penetrant Developer
- 2. Penetration time
- 3. Ambient temprature
- 4. Inspection area


No.1 Runner Bucket PT Result

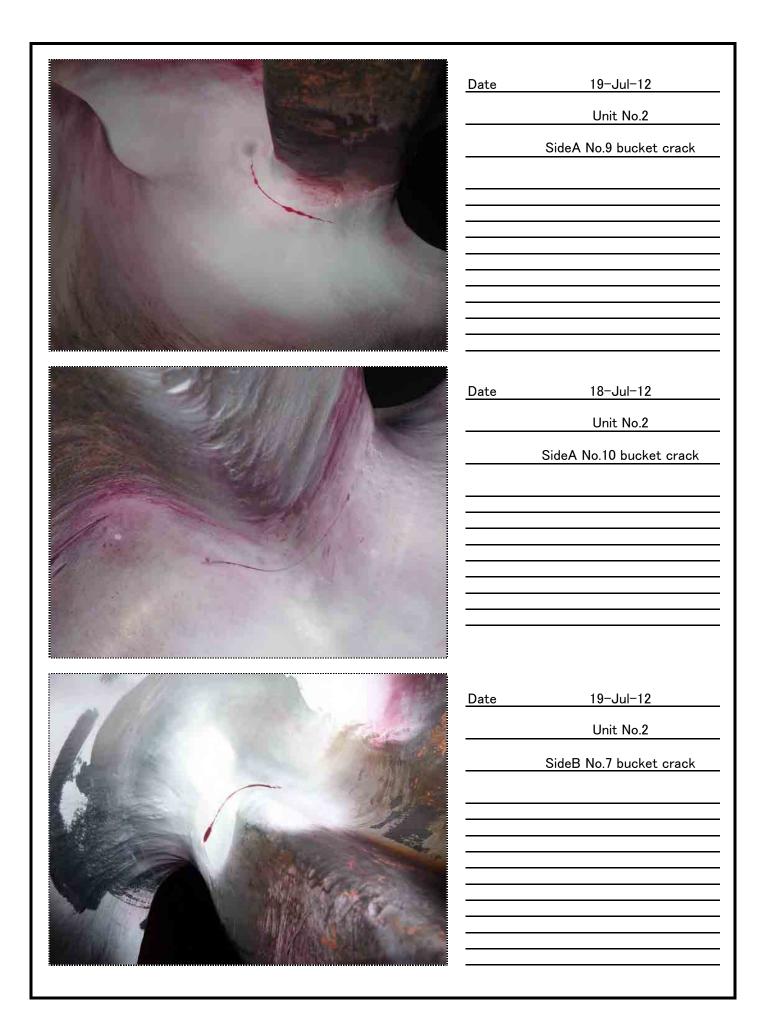
Inspection Date					9 ai	nd 10	Jul. 2	012									9 ai	nd 10	Jul. 2	012				
Unit No.						/	4											E	3					
ID No.						Ue	606											U6	05					
Bucket		L	-			[)				R			l	_			[)				R	
No.	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	80	80	80	80	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	85	85	85	85	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	100	100	100	100	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91	91	91	91
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Crack	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	3	0	0	0	0	1	1	1	1

Location: L=Left rib D=Dalta R=Right rib in the view from the the back of Runner

Pre1: Previous time(Nov.1998) Pre2: Previous time (Aug.1999) Pre3: Previous time (Jan.2000) This: This time

0:Examined and no crack

<image/>	Date 10-Jul-12 Unit No.1 SideB No.19 bucket crack
写真	
写真	


No.2 Runner Bucket PT Result

Inspection Date					18	, 19 .	Jul. 20	12									18	8, 19 J	Jul. 20	12				
Unit No.						/	4											E	3					
ID No.						U7	798											U7	/99					
Bucket		l	-			[D			I	7			l				E)				R	
No.	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	65	65	65	77
8	0	0	0	0	0	0	0	0	0	0	0	0	22	22	22	25	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	70	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	65	65	65	65	0	0	0	0	0	0	0	0	23	23	23	23
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Crack	0	0	0	0	0	0	0	0	1	1	1	2	1	1	1	1	0	0	0	0	2	2	2	2

Location: L=Left rib D=Dalta R=Right rib in the view from the the back of Runner

Pre1: Previous time(Nov.1998) Pre2: Previous time (July.1999) Pre3: Previous time (Feb.2000) This: This time

0:Examined and no crack

	Date 19-Jul-12 Unit No.2 SideB No.8 bucket crack
	Date 18-Jul-12 Unit No.2 SideB No.10 bucket crack
写真	

No.3 Runner Bucket PT Result

Inspection Date					:	26 Ju	l. 2012	2									:	26 Jul	. 201:	2				
Unit No.							4											E	3					
ID No.						F9	24											F6	43					
Bucket		Ĺ	-			[)			I	٦			l	L			[)			I	7	
No.	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This	Pre1	Pre2	Pre3	This
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Crack	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Location: L=Left rib D=Dalta R=Right rib in the view from the the back of Runner

Pre1: Previous time(Nov.1998) Pre.2: Previous time (July.1999) Pre3: Previous time (Feb.2000) This: This time

0:Examined and no crack

No.4 Runner Bucket PT Result

Inspection Date				23	Jul. 2	012							23	Jul. 2	012			
Unit No.					А									В				
ID No.					F533									F156				
Bucket		L			D			R			L			D			R	
No.	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Number of Crack	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Location : L	.=Left	rib	D=	Dalta	Crack Crack													

Pre1: Previous time(6.July.1997) Pre2: Previous time (3Mar.2000) This: This time

0:Examined and no crack

No.5 Runner Bucket PT Result

Inspection Date				30	Jul. 2	012							30	Jul. 2	012			
Unit No.					Α									В				
ID No.					F749									F956				
Bucket		L			D			R			L			D			R	
No.	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This
1	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	-	0	0
2	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
3	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
4	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
5	0	0	0	0	0	0	0	0	0	_	0	0	_	0	0	_	0	0
6	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
7	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
8	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
9	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
10	0	0	0	0	0	0	0	0	0	—	0	0	_	0	0	_	0	0
11	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
12	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
13	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
14	0	0	0	0	0	0	0	0	0	_	0	0	_	0	0	_	0	0
15	0	0	0	0	0	0	0	0	0	—	0	0	_	0	0	_	0	0
16	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
17	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
18	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	_	0	0
19	0	0	0	0	0	0	0	0	0	-	0	0	-	0	0	_	0	0
20	0	0	0	0	0	0	0	0	0	-	0	0	_	0	0	-	0	0
Number of Crack	0	0	0	0	0	0	0	0	0	_	0	0	_	0	0	_	0	0
Location : L	Crack Crack D=Dalta R=Right rib in the view from the the back of Runner																	

Pre1: Previous time(8.July.1997) Pre2: Previous time (24Feb.2000) This: This time

0:Examined and no crack

No.6 Runner Bucket PT Result

Inspection Date				28	Jul. 2	012							28	Jul. 2	012			
Unit No.					А									В				
ID No.					F982									F853				
Bucket		L			D			R			L			D			R	
No.	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This	Pre1	Pre2	This
1	_	0	0	_	0	0	_	0	0	0	0	0	0	0	0	0	0	0
2	_	0	0	_	0	0	_	0	0	0	0	0	0	0	0	0	0	0
3		0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
4	1	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
5	1	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
6	Ι	0	0		0	0	_	0	0	0	0	0	0	0	0	0	0	0
7	-	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
8	1	0	0		0	0	-	0	0	0	0	0	0	0	0	0	0	0
9	1	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
10	1	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
11		0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
12		0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
13	_	0	0	_	0	0	_	0	0	0	0	0	0	0	0	0	0	0
14	_	0	0	_	0	0	_	0	0	0	0	0	0	0	0	0	0	0
15	1	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
16		0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
17		0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
18		0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0
19	_	0	0	_	0	0	_	0	0	0	0	0	0	0	0	0	0	0
20	1	0	0	-	0	0	-	0	0	0	0	0	0	0	0	0	0	0
Number of Crack	-	0	0	-	0	0	_	0	0	0	0	0	0	0	0	0	0	0

Location: L=Left rib D=Dalta R=Right rib in the view from the the back of Runner

 $\label{eq:Prel:Previous time(7.July.1997) Pre2: Previous time (10 Mar.2000) \cdots A \ Side \ (1 A pr.2000) \cdots B \ Side \ This: This time \ Side \ S$

0:Examined and no crack

	Baluchaung No.2		Unit No.	1
	Pressure Oil System (Unloa	ader Test)	Date	10 Jul. 2012
1.	Test Result of No.1 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	27.2	27.2	27.2
	(3) Oil Pressure at On-loading (lb/in2)	295	294	295
	(4) Oil Pressure at Unloading (lb/in ²)	310	310	310
	(5) Oil Level at On-loading (mm)	-10	-8	-9
	(6) Oil Level at Unloading (mm)	75	80	78
2.	Test Result of No.2 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	37.5	37.5	37.5
	(3) Oil Pressure at On-loading (lb/in2)	295	294	295
	(4) Oil Pressure at Unloading (lb/in ²)	310	310	310
	(5) Oil Level at On-loading (mm)	-5	-5	-5
	(6) Oil Level at Unloading (mm)	80	80	80

	Baluchaung No.2		Unit No.	2
	Pressure Oil System (Unloa	ader Test)	Date	21 Jul. 2012
1.	Test Result of No.1 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	21	21	21
	(3) Oil Pressure at On-loading (lb/in ²)	297	297	297
	(4) Oil Pressure at Unloading (lb/in ²)	310	310	310
	(5) Oil Level at On-loading (mm)	27	30	29
	(6) Oil Level at Unloading (mm)	110	112	111
2.	Test Result of No.2 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	32	33	33
	(3) Oil Pressure at On-loading (lb/in ²)	297	297	297
	(4) Oil Pressure at Unloading (lb/in ²)	310	310	310
	(5) Oil Level at On-loading (mm)	30	35	33
	(6) Oil Level at Unloading (mm)	110	115	113

Ambient temperature is 30°C. Oil temperature was not obtained due to no indicator.

	Baluchaung No.2		Unit No.	3	
	Pressure Oil System (Unloa	ader Test)	Date	27 Jul. 2012	
1.	Test Result of No.1 Pump				
	(1) Test No.	1	2	Average	
	(2) On-load Time	29	27	28	
	(3) Oil Pressure at On-loading (lb/in ²)	287	288	288	
	(4) Oil Pressure at Unloading (lb/in ²)	-70	-70	-70	
	(5) Oil Level at On-loading (mm)	308	308	308	
	(6) Oil Level at Unloading (mm)	31	30	31	
2.	Test Result of No.2 Pump				
	(1) Test No.	1	2	Average	
	(2) On-load Time	43	45	44	
	(3) Oil Pressure at On-loading (lb/in ²)	288	287	288	
	(4) Oil Pressure at Unloading (lb/in ²)	-83	-88	-86	
	(5) Oil Level at On-loading (mm)	305	305	305	
	(6) Oil Level at Unloading (mm)	10	8	9	

Ambient temperature is 27°C. Oil temperature was not obtained due to no indicator.

Γ	Baluchaung No.2		Unit No.	4
	Pressure Oil System (Unloa	ader Test)	Date	24 Jul. 2012
1.	Test Result of No.1 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	60	59	60
	(3) Oil Pressure at On-loading (lb/in ²)	395	395	395
	(4) Oil Pressure at Unloading (lb/in ²)	-10	-9	-10
	(5) Oil Level at On-loading (mm)	435	435	435
	(6) Oil Level at Unloading (mm)	96	95	96
2.	Test Result of No.2 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	49	47	48
	(3) Oil Pressure at On-loading (lb/in ²)	405	405	405
	(4) Oil Pressure at Unloading (lb/in ²)	20	20	20
	(5) Oil Level at On-loading (mm)	440	440	440
	(6) Oil Level at Unloading (mm)	105	106	106

Ambient temperature is 28°C. Oil temperature was not obtained due to no indicator.

	Baluchaung No.2		Unit No.	5
	Pressure Oil System (Unloa	ader Test)	Date	31 Jul. 2012
1.	Test Result of No.1 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	61	61	61
	(3) Oil Pressure at On-loading (lb/in ²)	385	385	385
	(4) Oil Pressure at Unloading (lb/in ²)	-29	-30	-30
	(5) Oil Level at On-loading (mm)	425	425	425
	(6) Oil Level at Unloading (mm)	89	97	93
2.	Test Result of No.2 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	50	51	51
	(3) Oil Pressure at On-loading (lb/in ²)	387	387	387
	(4) Oil Pressure at Unloading (lb/in ²)	-28	-25	-27
	(5) Oil Level at On-loading (mm)	420	420	420
	(6) Oil Level at Unloading (mm)	75	75	75

Ambient temperature is 27°C. Oil temperature was not obtained due to no indicator.

	Baluchaung No.2		Unit No.	6
	Pressure Oil System (Unloa	ader Test)	Date	31 Jul. 2012
1.	Test Result of No.1 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	53	53	53
	(3) Oil Pressure at On-loading (lb/in ²)	402	402	402
	(4) Oil Pressure at Unloading (lb/in ²)	-41	-42	-42
	(5) Oil Level at On-loading (mm)	440	439	440
	(6) Oil Level at Unloading (mm)	55	53	54
2.	Test Result of No.2 Pump			
	(1) Test No.	1	2	Average
	(2) On-load Time	34	35	35
	(3) Oil Pressure at On-loading (lb/in ²)	400	400	400
	(4) Oil Pressure at Unloading (lb/in ²)	-65	-68	-67
	(5) Oil Level at On-loading (mm)	421	421	421
	(6) Oil Level at Unloading (mm)	-7	-6	-7

Ambient temperature is 28°C. Oil temperature was not obtained due to no indicator.

Γ	Baluchaung No	. 2			Unit	t No.	1	
	Generator Output vs Servo	omotor	Stroke	e	Da	ate	11 Ju	. 2012
1.	General							
	(1) Test No.	under stoppage	1	2	3	4	5	
	(2) TIME		10:09	10:29	10:43	10:53	11:02	
	(3) Generator Output (MW)	-	5.0	9.9	15.0	20.0	23.0	
2.	Needle Servomotor Stroke (mm)							
	(1) Servomotor for Runner A	2	52	86	121	162	192	
	(2) Upper Needle Rod for Runner A	3	14	27	41	60	76	
	(3) Lower Needle Rod for Runner A	-3	13	24	38	57	73	
	(4) Servomotor for Runner B	0	51	84	117	159	191	
	(5) Upper Needle Rod for Runner B	-3	11	24	38	56	70	
	(6) Lower Needle Rod for Runner B	-3	13	24	38	57	71	
3.	Deflector Servomotor Stroke (%)							
	(1) for Runner A	2	96	98	98	99	99	
	(2) for Runner B	0	92	97	99	99	99	
4.	Position meter for Governor							
	(1) for Runner A		18	26	48	52	60	
	(2) for Runner B		18	26	48	52	62	
5.	Vibration (μm p-p)							
	(1) Horizontal at A side Pedestal	2	135	165	160	130	100	
	(2) Vertical at A side Pedestal	2	32	28	20	22	22	
	(3) Axial at A side Pedestal	2	32	40	46	46	42	
	(4) Horizontal at B side Pedestal	2	34	36	38	38	38	
	(5) Vertical at B side Pedestal	2	16	16	18	22	22	
	(6) Axial at B side Pedestal	2	8	10	14	24	16	

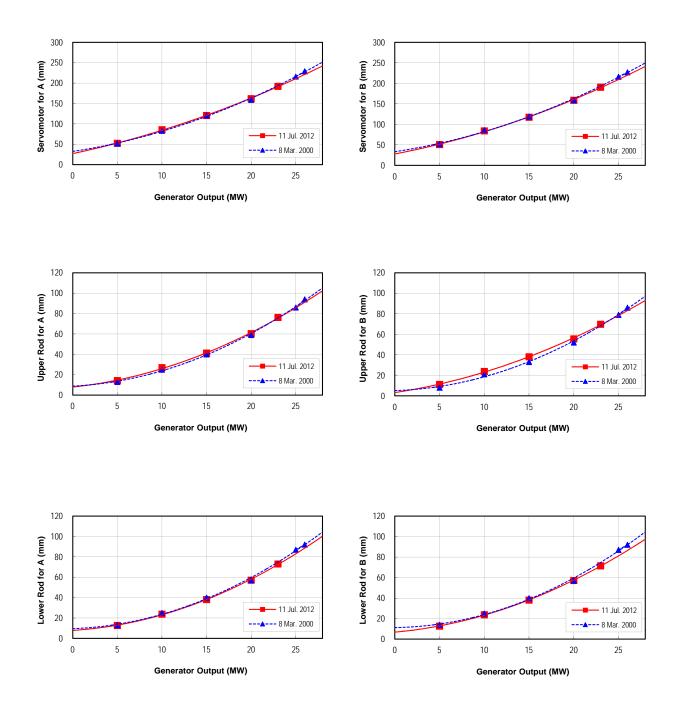


Fig. Generator Output vs Needle Servomotor Stroke

8	14	25	40	57		87 92
Lower Rod 1. 2012 8 Mar. 2000			4			
Lowei 11 Jul. 2012	13	24	38	57	71	
er B Rod 3 Mar. 2000	ω	21	33	52		79 86
Runner B Upper Rod 11 Jul. 2012 8 Mar. 2000	=	24	38	56	70	
2000	52	86	119	159		216 227
Servomotor 11 Jul. 2012 8 Mar.	51	84	117	159	191	
2000	13	25	40	57		87 92
Lower Rod 11 Jul. 2012 8 Mar.	13	24	38	57	73	
2000	13	25	40	20		86 94
Runner A Upper Rod 11 Jul. 2012 8 Mar.	41	27	41	60	76	
2000	52	83	121	159		216 229
Servomotor 11 Jul. 2012 8 Mar.	52	86	121	162	192	
Generator Output	0 - 7 7 7 3 0 4 7	6 9 10 10	11 12 13 15 15	17 17 19 20	21 22 23 24	25 26 27 27 28

	Baluchaung No	b.2			Unit	No.	:	2
	Generator Output vs Servo	omotor	Strok	e	Da	ate	21 Jul	. 2012
1.	General							
	(1) Test No.	under stoppage	1	2	3	4		
	(2) TIME	9:54	10:24	10:37	10:52	11:07		
	(3) Generator Output (MW)	-	5.0	10.0	15.0	24.4		
	(4) Penstock Pressure (ft)	1,440	1,440	1,430	1,400	1,400		
2.	Needle Servomotor Stroke (mm)							
	(1) Servomotor for Runner A	0	60	90	122	197		
	(2) Upper Needle Rod for Runner A	-2	13	25	38	75		
	(3) Lower Needle Rod for Runner A	-3	6	17	30	65		
	(4) Servomotor for Runner B	0	57	87	119	194		
	(5) Upper Needle Rod for Runner B	-3	11	22	37	70		
	(6) Lower Needle Rod for Runner B	0	8	19	33	67		
3.	Deflector Servomotor Stroke (%)							
	(1) for Runner A	0	82	87	90	94		
	(2) for Runner B	0	80	85	87	94		
4.	Position meter for Governor							
	(1) for Runner A		21	25	40	67		
	(2) for Runner B		18	29	41	69		
5.	Vibration (μm p-p)							
	(1) Horizontal at A side Pedestal	3	25	24	26	27		
	(2) Vertical at A side Pedestal	7	10	10	13	30-90		
	(3) Axial at A side Pedestal	3	13	13	14	15		
	(4) Horizontal at B side Pedestal	2	26	27	27	30		
	(5) Vertical at B side Pedestal	8	12	16	15	16		
	(6) Axial at B side Pedestal	5	10	14	16	17		
6.	Output of Other Units (MW)							
	(1) Unit 1		21.0	21.0	20.1	19.8		
	(2) Unit 3		21.0	21.0	20.0	19.5		
	(3) Unit 4		24.5	24.5	23.0	24.7		
	(4) Unit 5		17.0	17.3	17.3	19.8		
	(5) Unit 6		25.0	26.0	26.0	27.0		

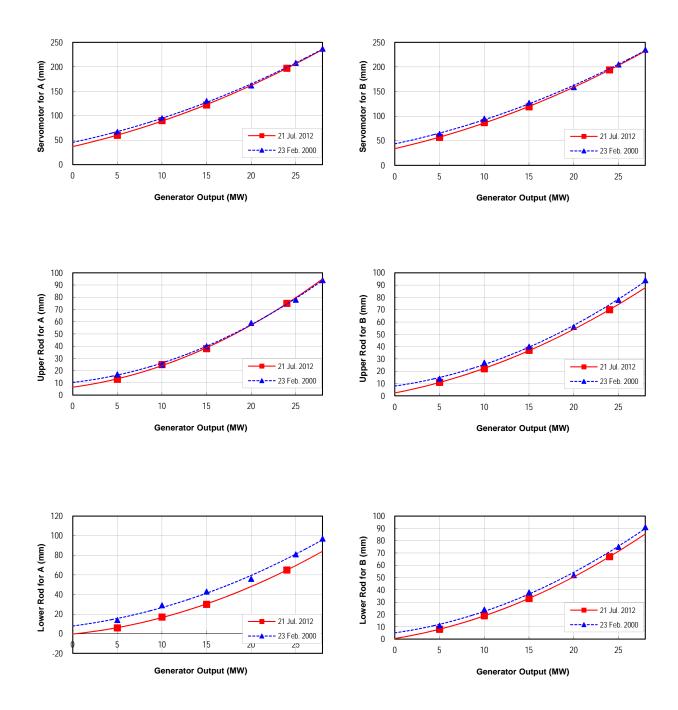


Fig. Generator Output vs Needle Servomotor Stroke

Rod 3 Feb. 2000		Ŧ	24	38	52	75	91
Runner B Upper Rod Lower Rod 21 Jul. 2012 23 Feb. 2000 21 Jul. 2012 23 Feb. 2000		ω	19	33		67	
er B Rod 3 Feb. 2000		<u>+</u>	27	40	20	78	94
Runner B Upper Rod 21 Jul. 2012 23 Feb		Ξ	22	37		70	
notor 13 Feb. 2000		64	<mark>9</mark> 2	127	159	205	235
Servomotor 21 Jul. 2012 23 Feb. 2000		57	87	119		194	
Lower Rod Jul. 2012 23 Feb. 2000		14	29	43	56	81	97
21		ပ	17	30		65	
er A · Rod 23 Feb. 2000		17	25	40	20	78	94
Runner A motor Upper Rod 23 Feb. 2000 21 Jul. 2012 23 Feb. 2000		13	25	38		75	
notor 23 Feb. 2000		67	95	130	162	208	237
Servomotor 21 Jul. 2012 23 Feb.		60	06	122		197	
Generator Output	0 - 7 0 - 7 0 4	00700	10 11 12 13 14	15 16 17 18 18	20 21 23 23	24 25 26 26	28 28

	Baluchaung No	b.2			Unit	No.	:	3
	Generator Output vs Servo	omotor	Strok	e	Da	ate	27 Jul	. 2012
1.	General							
	(1) Test No.	under stoppage	1	2	3	4	5	
	(2) TIME	-	14:51	15:06	15:13	15:25	15:36	
	(3) Generator Output (MW)	-	5.0	10.0	15.0	20.0	25.0	
	(4) Penstock Pressure (ft)	1,450	1,450	1,450	1,430	1,420	1,420	
2.	Needle Servomotor Stroke (mm)							
	(1) Servomotor for Runner A	0	54	79	110	143	181	
	(2) Upper Needle Rod for Runner A	0	15	25	37	52	70	
	(3) Lower Needle Rod for Runner A	-	-	-	-	-	-	
	(4) Servomotor for Runner B	-3	51	79	110	141	181	
	(5) Upper Needle Rod for Runner B	0	15	25	37	51	67	
	(6) Lower Needle Rod for Runner B	0	15	25	37	52	70	
3.	Deflector Servomotor Stroke (%)							
	(1) for Runner A	0	95	96	98	99	99	
	(2) for Runner B	0	95	96	98	99	99	
4.	Position meter for Governor							
	(1) for Runner A	0	18	23	40	52	68	
	(2) for Runner B	0	20	24	42	53	69	
5.	Vibration (µ m p-p)							
	(1) Horizontal at A side Pedestal	2	14	14	16	16	16	
	(2) Vertical at A side Pedestal	4	7	8	10	8	8	
	(3) Axial at A side Pedestal	10	10	14	10	11	14	
	(4) Horizontal at B side Pedestal	2	24	24	22	25	26	
	(5) Vertical at B side Pedestal	4	14	12	10	11	14	
	(6) Axial at B side Pedestal	3	8	11	11	12	12	
6.	Output of Other Units (MW)							
	(1) Unit 1	-	19.2	19.0	19.1	18.3	18.2	
	(2) Unit 2	-	15.5	15.5	15.3	14.9	13.7	
	(3) Unit 4	-	14.8	15.8	16.2	16.2	14.8	
	(4) Unit 5	-	-	-	-	-	-	
	(5) Unit 6	-	-	-	-	-	-	

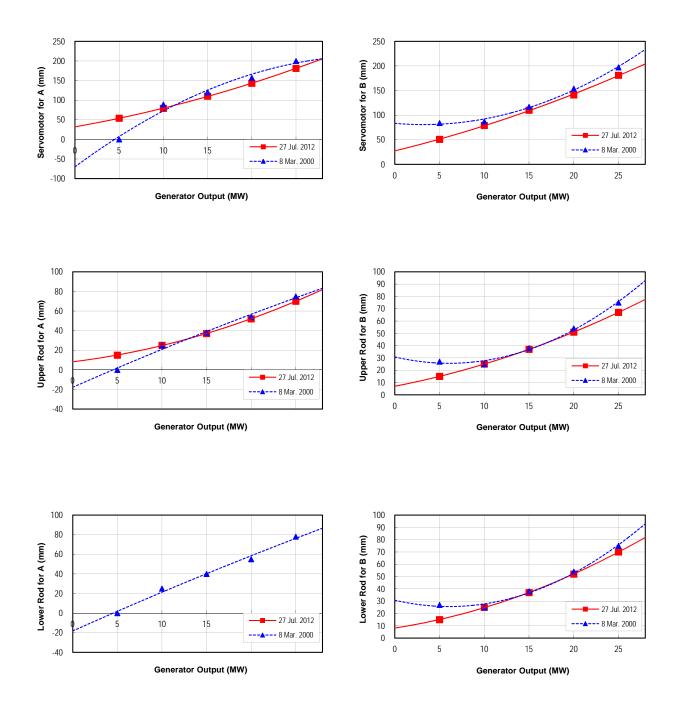


Fig. Generator Output vs Needle Servomotor Stroke

000		27	25	38	54	75
Lower Rod . 2012 8 Mar. 2000						
Lowe 27 Jul. 2012	!	10	25	37	52	70
er B - Rod 8 Mar. 2000	1	27	25	38	54	75
Runner B Upper Rod 27 Jul. 2012 8 Mar.	!	15	25	37	51	67
2000		84	87	117	154	197
Servomotor 27 Jul. 2012 8 Mar.	i	0 <mark>.</mark>	79	110	141	181
Lower Rod 27 Jul. 2012 8 Mar. 2000		O	25	40	55	78
Runner A Upper Rod J. 2012 8 Mar. 2000		0	25	88	54	75
Runn Upper 27 Jul. 2012		15	25	37	52	70
motor 8 Mar. 2000		0	80	120	157	200
Servomotor 27 Jul. 2012 8 Mar.	;	54	79	110	143	181
Generator Output	1432-0	0 0 7 0 0 0	10 11 13 13 14	15 16 17 18 18	20 21 23 23 24	25 27 28

	Baluchaung No	. 2			Unit	No.		4
	Generator Output vs Servo	omotor	Strok	e	Da	ate	24 Jul	. 2012
1.	General							
	(1) Test No.	under stoppage	1	2	3	4	5	
	(2) TIME	-	16:31	16:49	17:00	17:10	17:20	
	(3) Generator Output (MW)	-	5.0	10.0	15.0	20.0	25.0	
	(4) Penstock Pressure (lb/in ²)	610	610	610	610	605	600	
2.	Needle Servomotor Stroke (mm)							
	(1) Servomotor for Runner A	-	-	-	-	-	-	
	(2) Upper Needle Rod for Runner A	0	11	16	38	57	76	
	(3) Lower Needle Rod for Runner A	0	11	21	33	51	70	
	(4) Servomotor for Runner B	-	-	-	-	-	-	
	(5) Upper Needle Rod for Runner B	0	13	25	40	57	78	
	(6) Lower Needle Rod for Runner B	6	6	16	29	48	67	
3.	Deflector Servomotor Stroke (mm)							
	(1) for Runner A	0	180	195	205	216	224	
	(2) for Runner B	1	184	195	205	216	224	
4.	Position meter for Governor							
	(1) for Runner A	2	9	18	28	40	56	
	(2) for Runner B	0	10	18	28	40	57	
5.	Vibration (μm p-p)							
	(1) Horizontal at A side Pedestal	4	10	10	10	10	11	
	(2) Vertical at A side Pedestal	4	8	9	8	6	10	
	(3) Axial at A side Pedestal	4	6	6	6	8	6	
	(4) Horizontal at B side Pedestal	2	9	10	10	10	12	
	(5) Vertical at B side Pedestal	4	5	7	6	8	10	
	(6) Axial at B side Pedestal	2	7	8	8	8	10	
6.	Output of Other Units (MW)							
	(1) Unit 1		19.8	19.7	19.7	19.7	19.7	
	(2) Unit 2		21.7	21.8	21.8	21.7	21.8	
	(3) Unit 3		9.0	9.0	9.1	9.1	9.1	
	(4) Unit 5		25.3	25.0	25.0	24.7	16.7	
1	(5) Unit 6		26.8	26.5	26.3	25.9	26.0	

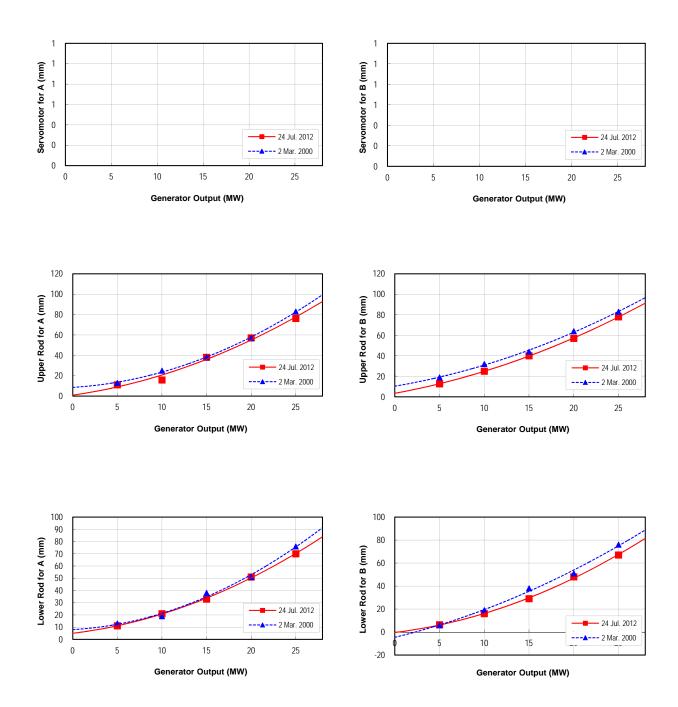


Fig. Generator Output vs Needle Servomotor Stroke

. Rod 2 Mar. 2000		0	19	38	51	76
Lower Rod 24 Jul. 2012 2 Mar.		G	16	29	48	67
er B - Rod 2 Mar. 2000		0	33	44	64	83
Runner B Upper Rod 24 Jul. 2012 2 Mar.		13	25	40	57	78
Servomotor 24 Jul. 2012 2 Mar. 2000						
- Rod 2 Mar. 2000		13	19	38	51	76
Lower Rod 24 Jul. 2012 2 Mar.		=	21	33	51	70
er A · Rod 2 ^{Mar.} 2000		13	25	38	57	83
Runner A Upper Rod 24 Jul. 2012 2 Mar. 3		=	16	38	57	76
Servomotor 24 Jul. 2012 2 Mar. 2000						
Generator Output	0 1 0 4 3 2 1 0	08403	10 11 12 13 14	15 16 17 18 19	20 21 22 23 23	25 26 27 28

	Baluchaung No	Unit No.		5				
	Generator Output vs Servo	Date		31 Jul. 2012				
1.	General							
	(1) Test No.	under stoppage	1	2	3	4		
	(2) TIME	-	14:21	14:28	14:37	14:44		
	(3) Generator Output (MW)	-	5.0	10.0	15.0	20.0		
	(4) Penstock Pressure (ft)	-	1,550	1,550	1,550	1,540		
2.	Needle Servomotor Stroke (mm)							
	(1) Servomotor for Runner A	-	-	-	-	-		
	(2) Upper Needle Rod for Runner A	0	6	19	32	48		
	(3) Lower Needle Rod for Runner A	10	13	22	35	51		
	(4) Servomotor for Runner B	-	-	-	-	-		
	(5) Upper Needle Rod for Runner B	3	19	29	44	57		
	(6) Lower Needle Rod for Runner B	6	19	29	41	57		
3.	Deflector Servomotor Stroke (mm)							
	(1) for Runner A	3	181	193	202	212		
	(2) for Runner B	0	181	192	201	211		
4.	Position meter for Governor							
	(1) for Runner A	1	5	15	24	35		
	(2) for Runner B	2	13	21	31	42		
5.	Vibration (μm p-p)							
	(1) Horizontal at A side Pedestal	2	4	8	8	8		
	(2) Vertical at A side Pedestal	8	4	4	4	5		
	(3) Axial at A side Pedestal	4	7	4	4	4		
	(4) Horizontal at B side Pedestal	2	12	11	12	10		
	(5) Vertical at B side Pedestal	6	8	8	7	5		
	(6) Axial at B side Pedestal	3	7	10	9	9		
6.	Output of Other Units (MW)							
	(1) Unit 1		14.8	14.9	13.8	11.8		
	(2) Unit 2		15.7	15.7	14.1	13.0		
	(3) Unit 3		-	-	-	-		
	(4) Unit 4		18.5	18.7	15.1	13.6		
	(5) Unit 6		-	-	-	-		

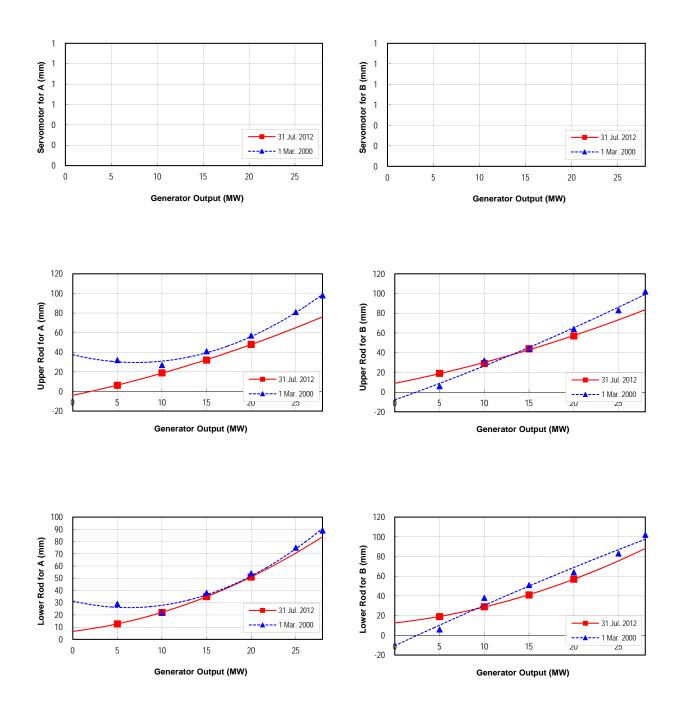


Fig. Generator Output vs Needle Servomotor Stroke

Lower Rod I. 2012 1 Mar. 2000		G	38	51	64	83	102
31 Ju		19	29	41	57		
ler B r Rod 1 Mar. 2000		Q	32	44	64	83	102
Runner B Upper Rod 31 Jul. 2012 1 Mar.		19	29	44	57		
Servomotor ul. 2012 1 Mar. 2000							
ע 15 1						10	6
Lower Rod . 2012 1 Mar. 2000		29	22	88	54	75	89
Lowe 31 Jul. 2012		13	22	35	51		
er A Rod 1 Mar. 2000		32	27	41	57	81	98
Runner A Upper Rod 31 Jul. 2012 1 Mar. 3		9	19	32	48		
Servomotor 31 Jul. 2012 1 Mar. 2000							
Generator Output	0 - 7 0 7 8 7 9	00 7 0 0 0 8 7 0	10 11 12 13 14	15 16 17 18 18	20 21 23 23 23	25 26 27	28

	Baluchaung No	Unit No.		6				
	Generator Output vs Servomotor Stroke					Date		g. 2012
1.	General							
	(1) Test No.	under stoppage	1	2	3	4	5	
	(2) TIME	-	14:16	14:25	14:32	14:40	14:47	
	(3) Generator Output (MW)	-	5.0	10.0	15.0	20.0	25.0	
	(4) Penstock Pressure (lb/in ²)	940	930	925	925	920	920	
2.	Needle Servomotor Stroke (mm)							
	(1) Servomotor for Runner A	-	-	-	-	-	-	
	(2) Upper Needle Rod for Runner A	0	10	25	35	51	60	
	(3) Lower Needle Rod for Runner A	6	16	19	29	44	54	
	(4) Servomotor for Runner B	-	-	-	-	-	-	
	(5) Upper Needle Rod for Runner B	0	13	29	38	51	64	
	(6) Lower Needle Rod for Runner B	0	6	25	32	44	60	
3.	Deflector Servomotor Stroke (mm)							
	(1) for Runner A	0	183	200	206	215	222	
	(2) for Runner B	0	181	199	205	213	220	
4.	Position meter for Governor							
	(1) for Runner A	3	9	17	24	35	45	
	(2) for Runner B	1	10	20	26	38	46	
5.	Vibration (μm p-p)							
	(1) Horizontal at A side Pedestal	4	14	14	14	14	14	
	(2) Vertical at A side Pedestal	8	4	12	7	7	7	
	(3) Axial at A side Pedestal	4	4	6	9	10	9	
	(4) Horizontal at B side Pedestal	4	8	7	7	8	8	
	(5) Vertical at B side Pedestal	8	6	8	6	8	10	
	(6) Axial at B side Pedestal	4	4	5	7	7	6	
6.	Output of Other Units (MW)							
	(1) Unit 1	19.9	14.3	10.9	10.9	10.8	10.8	
	(2) Unit 2	19.4	15.3	15.4	15.3	15.3	15.3	
	(3) Unit 3	-	-	-	-	-	-	
	(4) Unit 4	20.2	17.5	17.5	17.5	17.5	17.5	
	(5) Unit 5	-	-	-	-	-	-	

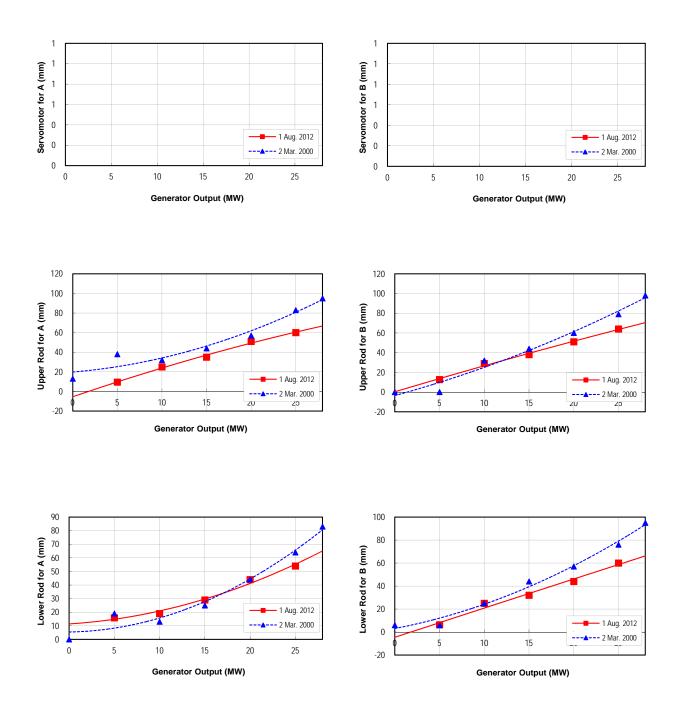
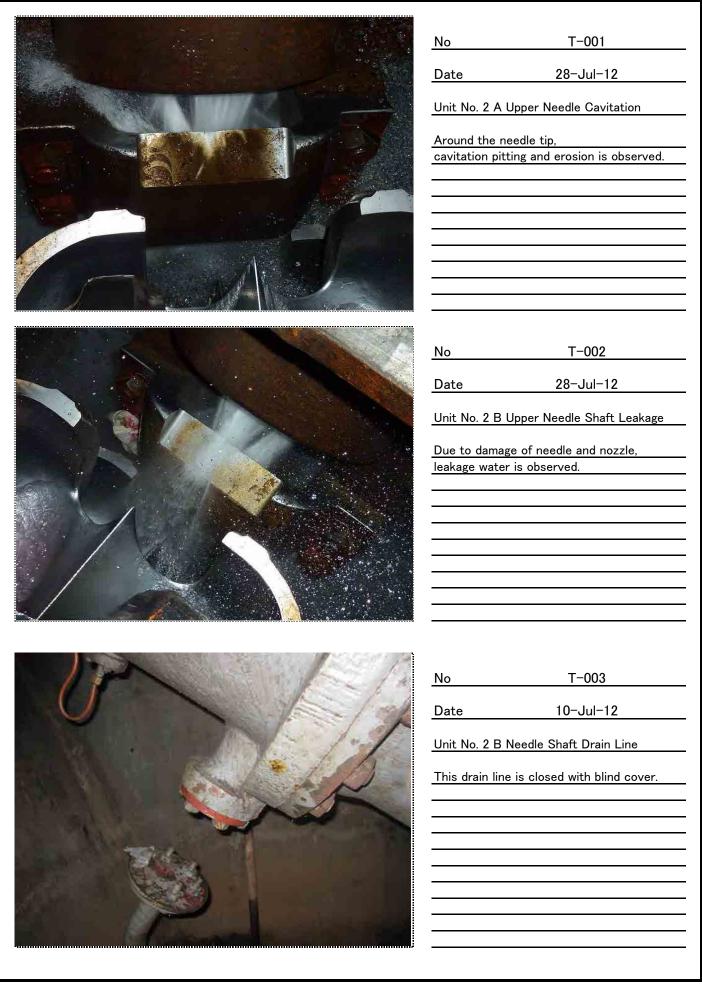
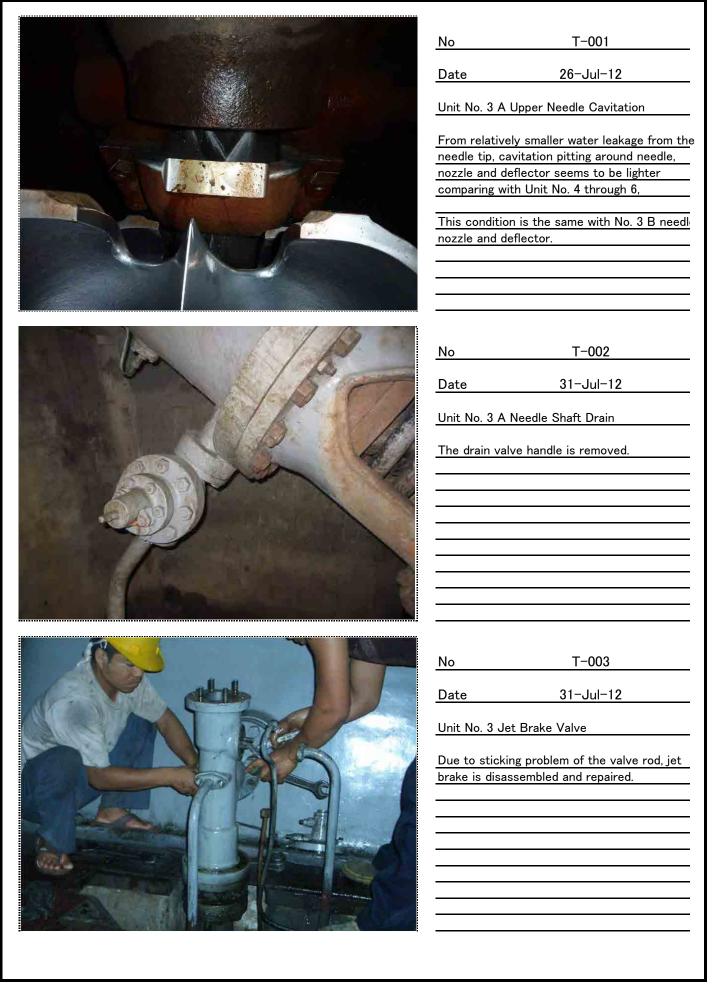


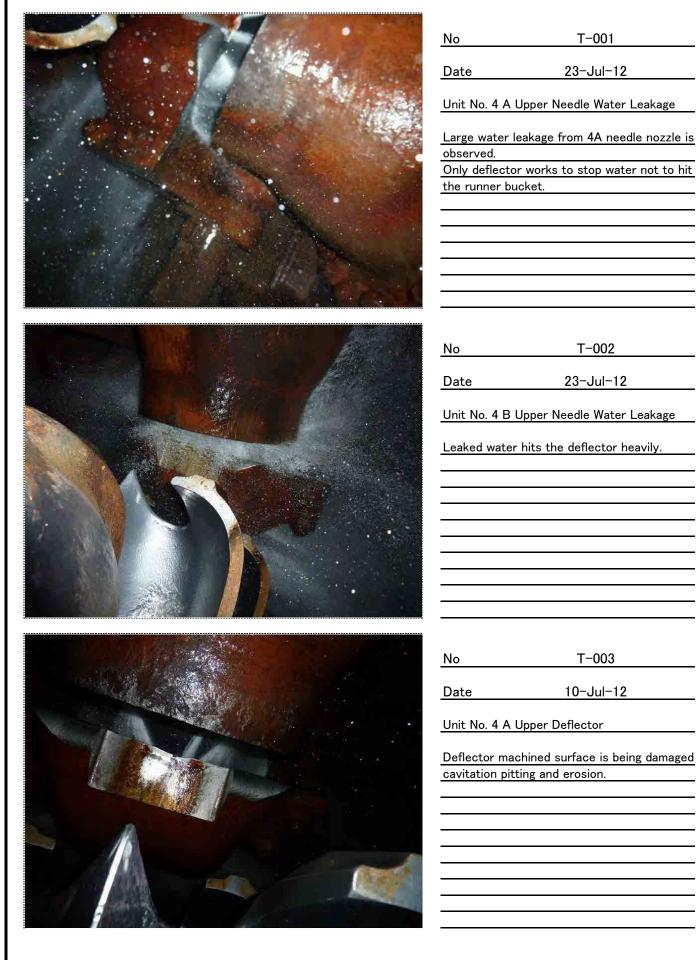
Fig. Generator Output vs Needle Servomotor Stroke

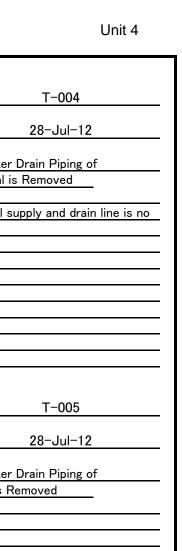

- Rod	6 Mai 2000	Q	D	25	44	57	76 95
Lower Rod	1 Dug. 2012	ι.	D	25	32	44	60
er B · Rod	0	c	Þ	32	44	80	79 08
Upper Rod		ç	2	59	38	51	64
Servomotor							
		ç	<u>מ</u>	13	25	44	64 82
Lower Rod	1 Mg. 2012	ب ۲	2	19	29	44	54
er A · Rod	13	ę	8	32	44	57	83 05
Upper Rod		ç	2	25	35	51	60
Servomotor							
Generator Output	0	- 0 0 4 I	n o r o o	10 11 12 13 13 14	15 16 17 17 18 18	20 21 23 23 24	25 26 27 27

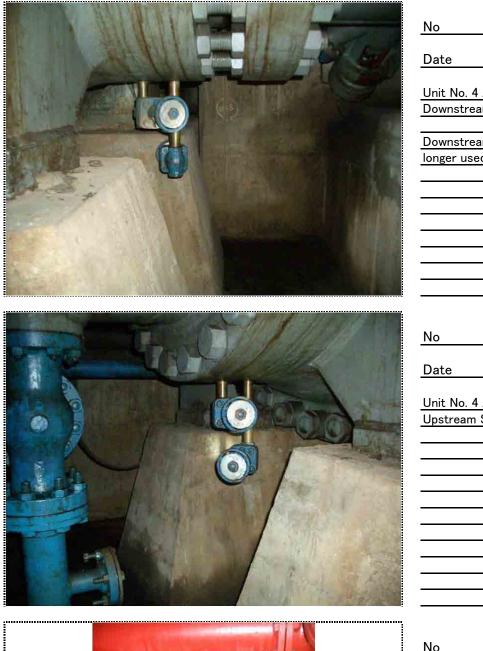
Site Inspection Photo for Generating Equipment (Water Turbir	ne)	Unit 1
	No	T-001
	Date	9-Jul-12
· · · ·	Unit No. 1	I A Upper Needle, Leakage
	No	T-002
	Date	9-Jul-12
	Unit No. 1	I B Upper Needle, Leakage
		T 000
and the second sec	<u>No</u> Date	T-003 9-Jul-12
AS COLOR DE MARINE		9-501-12 I A Lower Needle Shaft Water Drain
		is closed with blind cover.


<image/>	No T-004 Date 9-Jul-12 Unit No. 1 A Upper Deflector Damaged by cavitation pitting and erosion
<image/>	No T-005 Date 4-Aug-12 Unit No. 1 A Companion Flange and Bypass Valve Line
<image/>	No T-006 Date 31-Jul-12 Unit No. 1A Penstock Drain Valve This valve is permanently closed with blind cover.

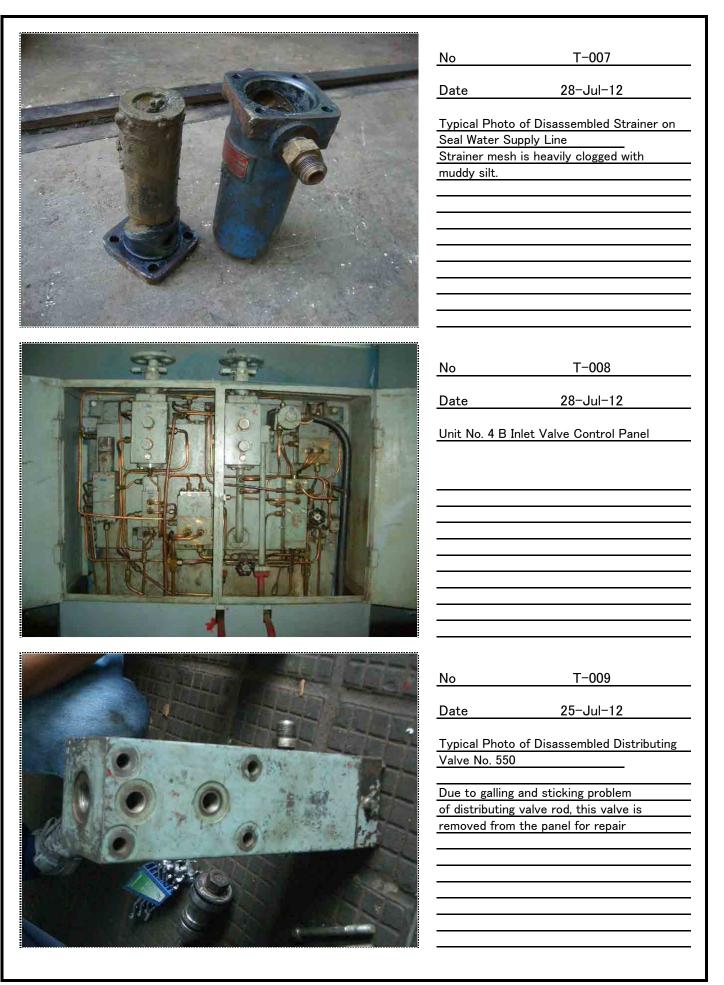
No T-007 Date 31-Jul-12 Unit No. 1 Governor Cabinet and Damaged Dial Indicators
No T-008 Date 31-Jul-12 Unit No. 1 Governor Indicators


Unit 2




<image/>	No T-004 Date 10-Jul-12 Unit No. 2 A Penstock Drain Line Downstream flange of penstock drain valve is closed with blind cover.
	No T-005 Date 10-Jul-12 Unit No. 2 Governor Cabinet

T-004 No Date 10-Jul-12 Unit No. 3 A Inlet Valve and Companion Flange No T-005 Date 28-Jul-12 Unit No. 3 B Oil Leakage from Needle & Deflector Servomotor T-006 No 28-Jul-12 Date Unit No. 3 B Penstock Drain Valve Line The penstock drain line is removed from downstream of valve.



Date	<u>28-Jul-12</u>
Unit No. 4 A Water D	rain Piping of
Downstream Seal is F	
	loniovou
Deumetreem eeel eur	nly and duals line is no
	ply and drain line is no
longer used.	
No	T-005
Date	28-Jul-12
Unit No. 4 A Water D	rain Pining of
Upstream Seal is Ren	
Opstream Seams Ren	noved
No	 T-006
No	 T-006
No Date	T-006 28-Jul-12
Date	28-Jul-12
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve
Date Unit No. 4 A Water Le	28-Jul-12 eakage from Inlet Valve

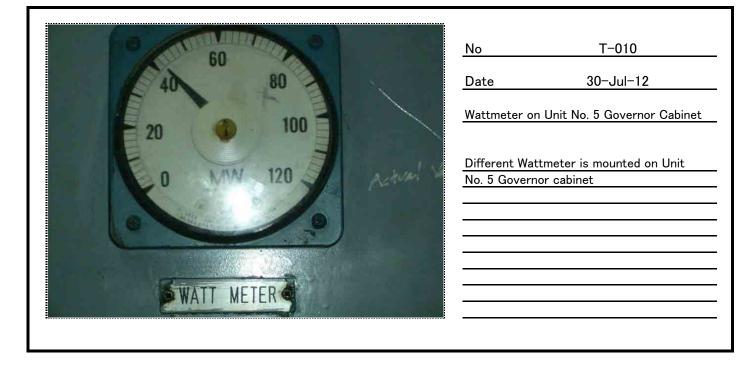
4

Ý

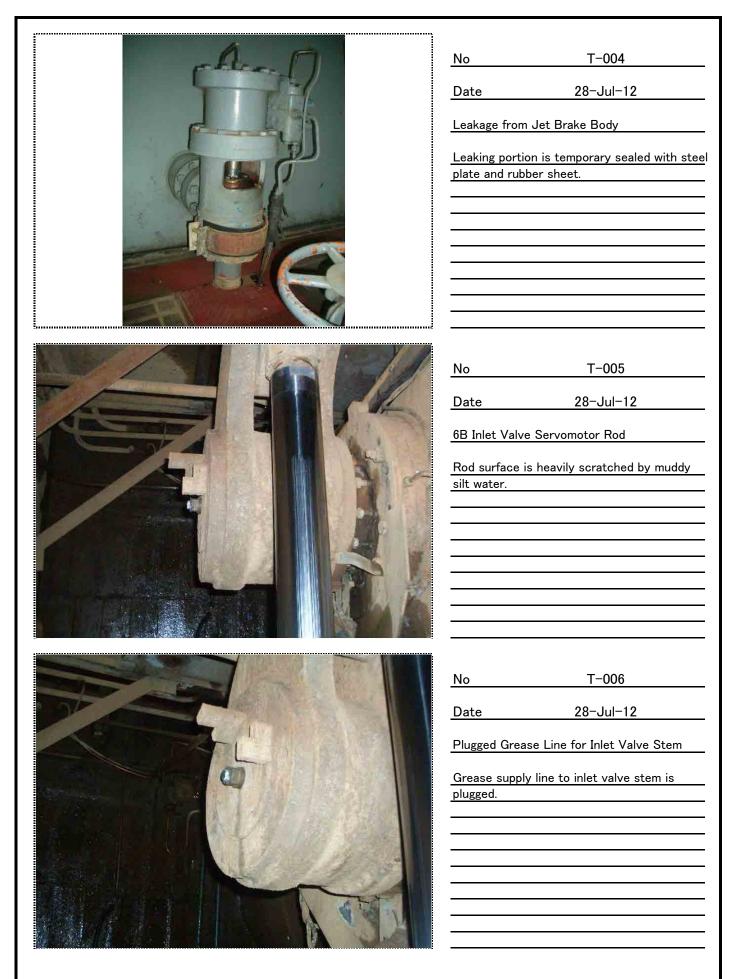

No T-0010 Date 25-Jul-12 Typical Photo of Disassembled Distributing Valve
Due to sticking problem, this distributing valve No. 590 is removed from inlet valve control panel
No T-011
Date 31–Jul–12 Unit No. 4 Governor Cabinet General View
No T-012 Date 31-Jul-12 Typical Photo of Actuator Motor on Unit No. 4

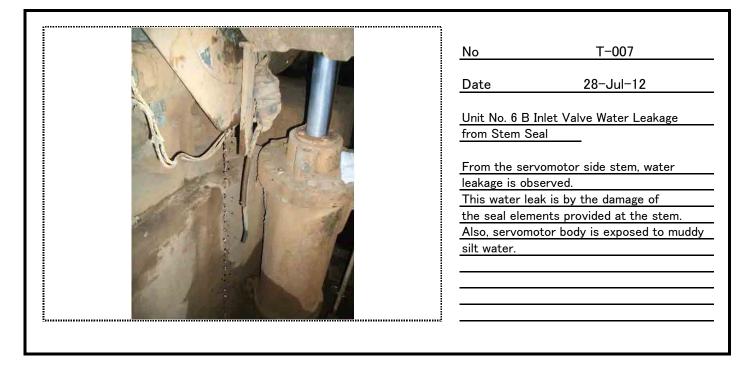
....

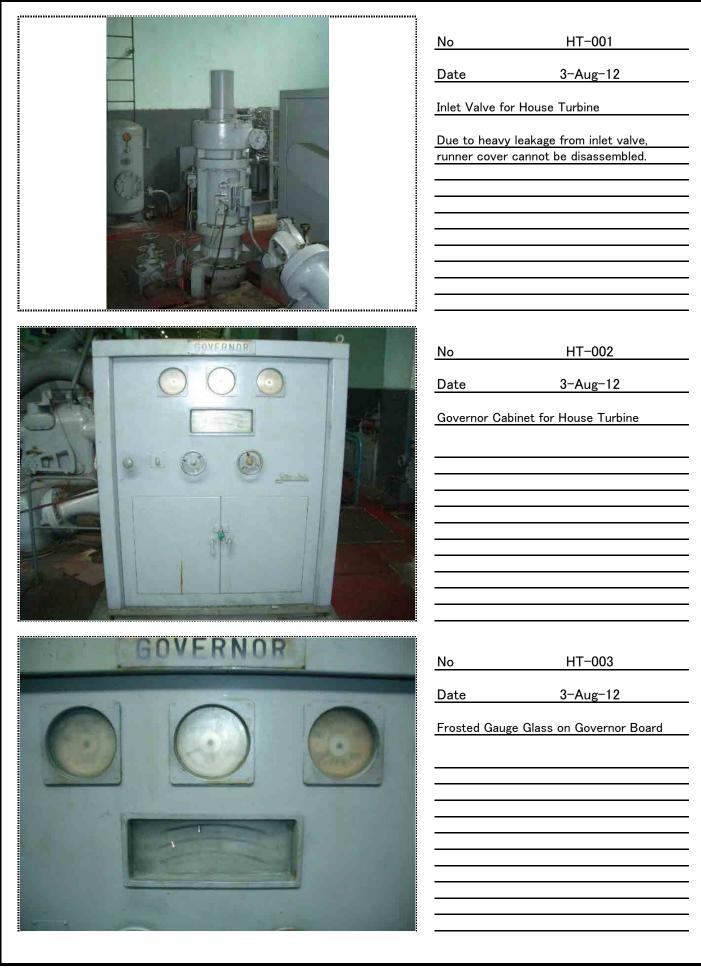
<image/>	No T-013 Date 31-Jul-12 Unit No. 4 Governor Inside Leaked oil is observed at the inside of governor cabinet governor cabinet
<image/>	No T-014 Date 4-Aug-12 Unit No. 4 Governor Tank Level Gauge Sight level gauge is discolored.
	No T-015 Date 4-Aug-12 Pressure Gauge mounted on Governor Tank


1

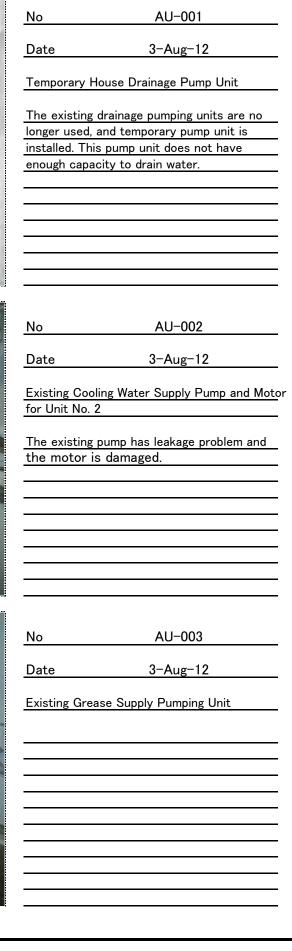
|--|




	<u>No</u> <u>Date</u> <u>Unit No. 5 B</u>	T-004 28-Jul-12 Water Shelter is not mounted
0° 20° 30° 40°		T-005 28-Jul-12 Inlet Valve Servomotor ervomotor Indicator (26 Degrees)
<image/>		T-006 28-Jul-12 Inlet Valve Servomotor Rod rod has many scratches caused



<image/>	No T-001 Date 28-Jul-12 Unit No. 6 A Upper Needle Cavitation Around the needle tip, heavy cavitation pitting and erosion is observed. Due to this damage, penstock water can not be sealed at the needle fully closed position.
	No T-002 Date 28-Jul-12 Unit No. 6 B Upper Needle Cavitation Due to heavy water leakage from the needle nozzle, details of cavitation pitting and erosion cannot be inspected.
	No T-003 Date 28-Jul-12 Water Leakage from Needle Shaft on No. 6 A Water leakage is observed on No. 6 A needle shaft area.



House

No	HT-004
Date	3-Aug-12
	Fank System for Governor

	A CONTRACT OF
No	and the second
Date	F
Tempora	



Site Inspection Photo for Generating Equipment (Water Turbine)

No	AU-004
 Date	3-Aug-12
	overnor Actuator Motors

	No T-001 Date 20-Jul-12 Spare Inlet Valve Metal Seals (2 sets) with Seal Guides
<image/>	No T-002 Date 20-Jul-12 Spare Inlet Valve Metal Seals (3 sets) without Upstream and Downstream Seal Guides

ANNEX 2

GENERATING EQUIPMENT (GENERATOR)

Check list of site inspection for Generating Equipment (Generator)

(Unit 1)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Manufacturer HITACHI

Type EFBW

Manufactured in 1958 (Rewinding : 1993)

Inspection in 8, 9 and 10-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	\bigcirc	
2	Damage of Coil End	$\triangle^{(1)}$	1
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(2)}$	
4	Pollution of Coils	$\triangle^{(3)}$	2
5	Coil Binding	\bigcirc	
6	Loosening (Slackness) of Wedge	0	
7	Undulation of Core	\bigcirc	3
8	Rust on Core Surface	\bigcirc	
9	Red rust on Split of Core	\bigtriangleup	4
10	Defect on Air Duct of Core	$\triangle^{(4)}$	5, 6
11	Insulation Resistance and Polarity Index	$ riangle^{(5)}$	
12	Water Leakage from Air Cooler	-	
13	Corrosion of Air Cooler and Piping	-	
14	Damage of Cooler Cover	-	

1) Coil cover was damaged by repair work.

2) No Discoloration, no powder occurrence

- 3) Contamination by oil and carbon particles
- 4) A part of core duct at the upper side of stator came down by 5mm.
- 5) See the attached. The value of the polarity index was decreased due to high humidity.

1-2. Rotor (Visual Inspection)

Manufacturer HITACHI

Туре	EFBW
Manufactured in	1958 (Rewinding : 1993)
Inspection in	8, 9 and 10-Jul-2012

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	
2	Condition of Fan	0	
3	Condition of Coil Insulation Material	0	
4	Pollution on Rotor Coils and Collector Ring	$\triangle^{(1)}$	7, 8
5	Abrasion Damage of Commutator, Collector Ring	0	
6	Insulation resistance	$\bigcirc^{(2)}$	

1) Contamination by oil and carbon particles

2) See the attached.

1-3. Exciter (Visual Inspection)

Manufacturer	HITACHI
Туре	FB
Manufactured in	1958

Inspection in 8, 9 and 10-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	0	9
2	Condition of HTD	$\triangle^{(1)}$	10, 11
3	Condition of Excitation control cubicle	$\triangle^{(2)}$	12

1) Discoloration of the commutator was observed.

2) Overall deterioration was observed.

1-3. Operational Condition

Inspection in 17-Jul-2012

	Items	Result	Photo No.
1	Power Swing	0	
2	Unsteadiness of Voltage	0	
3	Abnormal Sound	\bigcirc	
4	Abnormal Odor	0	
5	Temperature of Stator Coil	ND ⁽¹	13
6	Temperature of Cooler Inlet [°C] measured/demand	54 / 65	
7	Temperature of Cooler Outlet [°C] measured/demand	35 / 50	
8	Temperature of Power House [$^{\circ}C$] measured/demand	33	

1) Unmeasurable due to malfunction of meter panel in the control room

Check list of site inspection for Generating Equipment (Generator) (Unit 2)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Manufacturer	HITACHI
1.10010100000101	

Type EFBW

Manufactured in 1958 (Rewinding : 1993)

Inspection in 17-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	\bigcirc	
2	Damage of Coil End	\bigcirc	
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(1)}$	1
4	Pollution of Coils	$\triangle^{(2)}$	1
5	Coil Binding	\bigcirc	2
6	Loosening (Slackness) of Wedge	\bigcirc	
7	Undulation of Core	\bigcirc	3
8	Rust on Core Surface	\bigcirc	
9	Red rust on Split of Core	\bigcirc	4
10	Defect on Air Duct of Core	\bigcirc	
11	Insulation Resistance and Polarity Index	$\bigcirc^{(3)}$	
12	Water Leakage from Air Cooler and Piping	\bigcirc	5
13	Corrosion of Air Cooler and Piping	0	6
14	Damage of Cooler Cover	0	7
15	Search Coil Resistance	$\triangle^{(4)}$	8

1) No Discoloration, no powder occurrence

- 2) Contamination by oil and carbon particles
- 3) See the attached.
- 4) See the attached. Some search coils might be broken.

1-2. Rotor (Visual Inspection)

Manufacturer HITACHI

The second preparatory survey on the project for rehabilitation of BALUCHAUNG NO.2 hydropower plant in republic of the union of MYANMAR

Туре	EFBW
Manufactured in	1958 (Rewinding : 1993)
Inspection in	17-Jul-2012
	Items

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	9
2	Condition of Fan	0	
3	Condition of Coil Insulation Material	0	
4	Pollution on Rotor Coils and Collector Ring	$ riangle^{(1)}$	9
5	Abrasion Damage of Commutator, Collector Ring	0	10
6	Insulation resistance	\bigcirc ⁽²	

1) Contamination by oil and carbon particles

2) See the attached.

1-3. Exciter (Visual Inspection)

Manufacturer	HITACHI
Туре	FB
Manufactured in	1958
Inspection in	18-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	$ riangle^{(1)}$	11, 12
2	Condition of HTD	$\triangle^{(2)}$	13
3	Condition of Excitation control cubicle	$\triangle^{(3)}$	14, 15

1) Deformation and discoloration of the commutator was observed.

- 2) Discoloration of the commutator was observed.
- 3) Slide surface of the field regulator is worn.

1-3. Operational Condition

Inspection in 23-Jul-2012

	Items	Result	Photo No.
1	Power Swing	0	
2	Unsteadiness of Voltage	0	
3	Abnormal Sound	0	
4	Abnormal Odor	0	
5	Temperature of Stator Coil	ND ⁽¹	
6	Temperature of Cooler Inlet [°C] measured/demand	49 / 65	
7	Temperature of Cooler Outlet [°C] measured/demand	24 / 50	
8	Temperature of Power House [°C] measured/demand	29	

1) Unmeasurable due to malfunction of meter panel in the control room

Check list of site inspection for Generating Equipment (Generator)

(Unit 3)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Type EFBW

Manufactured in 1958 (Rewinding : 1994)

Inspection in 25-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	\bigcirc	
2	Damage of Coil End	\bigcirc	
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(1)}$	1
4	Pollution of Coils	$\triangle^{(2)}$	1
5	Coil Binding	0	
6	Loosening (Slackness) of Wedge	\bigcirc	
7	Undulation of Core	0	2
8	Rust on Core Surface	0	
9	Red rust on Split of Core	\bigcirc	3
10	Defect on Air Duct of Core	\bigcirc	
11	Insulation Resistance and Polarity Index	$\bigcirc^{(3)}$	
12	Water Leakage from Air Cooler and Piping	\bigcirc	
13	Corrosion of Air Cooler and Piping	0	
14	Damage of Cooler Cover	0	
15	Search Coil Resistance	$\triangle^{(4)}$	4

1) No Discoloration, no powder occurrence

- 2) Contamination by oil and carbon particles
- 3) See the attached.
- 4) See the attached. Some search coils might be broken.

1-2. Rotor (Visual Inspection)

Manufacturer HITACHI

Туре	EFBW	
Manufactured in	1958 (Rewinding: 1994)	
Inspection in	25-Jul-2012	
	Items	

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	
2	Condition of Fan	\bigcirc	
3	Condition of Coil Insulation Material	0	
4	Pollution on Rotor Coils and Collector Ring	$\triangle^{(1)}$	5
5	Abrasion Damage of Commutator, Collector Ring	0	6
6	Insulation resistance	\bigcirc ⁽²	

1) Contamination by oil and carbon particles

2) See the attached.

1-3. Exciter (Visual Inspection)

Manufacturer	HITACHI
Туре	FB
Manufactured in	1958
Inspection in	25-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	$\triangle^{(1)}$	7
2	Condition of HTD	$\triangle^{(2)}$	8
3	Condition of Excitation control cubicle	$\triangle^{(3)}$	9

1) Deformation and discoloration of the commutator was observed.

- 2) Discoloration of the commutator was observed.
- 3) Slide surface of the field regulator is worn.

1-3. Operational Condition

Inspection in 18-Jul-2012

· · r			
	Items	Result	Photo No.
1	Power Swing	0	
2	Unsteadiness of Voltage	0	
3	Abnormal Sound	0	
4	Abnormal Odor	0	
5	Temperature of Stator Coil	$ND^{(1)}$	
6	Temperature of Cooler Inlet [$^{\circ}C$] measured/demand	54 / 65	
7	Temperature of Cooler Outlet [$^{\circ}C$] measured/demand	37 / 50	
8	Temperature of Power House [$^{\circ}C$] measured/demand	30	

Check list of site inspection for Generating Equipment (Generator)

(Unit 4)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Manufacturer	HITACHI
manufacturer	mmem

Type TFBLW

Manufactured in 1972

Inspection in 22-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	$\triangle^{(1)}$	1
2	Damage of Coil End	0	
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(2)}$	
4	Pollution of Coils	$ riangle^{(3)}$	
5	Coil Binding	$\triangle^{(4)}$	2
6	Loosening (Slackness) of Wedge	\times ⁽⁵	3
7	Undulation of Core	0	
8	Rust on Core Surface	\bigtriangleup	4
9	Red rust on Split of Core	\bigtriangleup	5
10	Defect on Air Duct of Core	0	
11	Insulation Resistance and Polarity Index	$\triangle^{(6)}$	
12	Water Leakage from Air Cooler and Piping	× ⁽⁷	6
13	Corrosion of Air Cooler and Piping	0	
14	Damage of Cooler Cover	0	
15	Search Coil Resistance	(8	

1) Deterioration of vanish was observed.

2) No Discoloration, no powder occurrence

3) Contamination by oil and carbon particles

4) Coating of the coil bindings has come off.

5) At least fifteen (15) drops of the wedge was observed.

6) See the attached. It is supposed that the value of the insulation resistance was decreased due to heavy contamination and the value of the polarity index was decreased due to high humidity.

- 7) Water leakage from the air cooler was observed.
- 8) It was impossible to measure the resistance due to the location of the terminal board for the search coil.

1-2. Rotor (Visual Inspection)

Manufacturer	HITACHI
Туре	TFBLW
Manufactured in	1972
Inspection in	22-Jul-2012

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	
2	Condition of Fan	\bigcirc	
3	Condition of Coil Insulation Material	0	
4	Pollution on Rotor Coils and Collector Ring	$ riangle^{(1)}$	7
5	Abrasion Damage of Commutator, Collector Ring	0	
6	Insulation resistance	$\triangle^{(2)}$	

1) Contamination by oil and carbon particles

2) See the attached. It is supposed that the value of the insulation resistance was decreased due to heavy contamination.

1-3. Exciter (Visual Inspection)

Manufacturer	HITACHI
Туре	EFO
Manufactured in	1972
Inspection in	21, 22-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	0	
2	Condition of HTD	0	
3	Condition of Excitation control cubicle	$\triangle^{(1)}$	8, 9

1) Some parts of excitation control system were damaged.

1-3. Operational Condition

Inspection in 18-Jul-2012

	Items	Result	Photo No.
1	Power Swing	0	
2	Unsteadiness of Voltage	0	
3	Abnormal Sound	0	

4	Abnormal Odor	0	
5	Temperature of Stator Coil	ND ⁽¹	
6	Temperature of Cooler Inlet [$^{\circ}C$] measured/demand	50 / 65	
7	Temperature of Cooler Outlet [°C] measured/demand	39 / 45	
8	Temperature of Power House [°C]	30	

Check list of site inspection for Generating Equipment (Generator) (Unit 5)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Manufacturer HITACHI

Type TFBLW

Manufactured in 1972

Inspection in 28-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	$\triangle^{(1)}$	1
2	Damage of Coil End	0	
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(2)}$	
4	Pollution of Coils	$\triangle^{(3)}$	1
5	Coil Binding	$\triangle^{(4)}$	2
6	Loosening (Slackness) of Wedge	$\times^{(5)}$	3
7	Undulation of Core	0	
8	Rust on Core Surface	0	
9	Red rust on Split of Core	0	
10	Defect on Air Duct of Core	0	
11	Insulation Resistance and Polarity Index	$\triangle^{(6)}$	
12	Water Leakage from Air Cooler and Piping	$\triangle^{(7)}$	4
13	Corrosion of Air Cooler and Piping	0	
14	Damage of Cooler Cover	0	
15	Search Coil Resistance	(8	

1) Deterioration of vanish was observed.

2) No Discoloration, no powder occurrence

3) Contamination by oil and carbon particles

4) Coating of the coil bindings has come off.

5) Looseness of the wedge was observed.

6) See the attached. It is supposed that the value of the polarity index was decreased due to high humidity.

- 7) The track of water leakage from the air cooler was observed on the floor.
- 8) It was impossible to measure the resistance due to the location of the terminal board for the search coil.

1-2. Rotor (Visual Inspection)

Manufacturer	HITACHI	
Туре	TFBLW	
Manufactured in	1972	
Inspection in	28-Jul-2012	

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	
2	Condition of Fan	\bigcirc	
3	Condition of Coil Insulation Material	0	
4	Pollution on Rotor Coils and Collector Ring	$ riangle^{(1)}$	5
5	Abrasion Damage of Commutator, Collector Ring	\bigcirc	
6	Insulation resistance	\bigcirc ⁽²	

- 1) Contamination by oil and carbon particles
- 2) See the attached.

1-3. Exciter (Visual Inspection)

Manufacturer	HITACHI
Туре	EFO
Manufactured in	1972
Inspection in	27, 28-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	$\times^{(1)}$	6
2	Condition of HTD	$\triangle^{(2)}$	7
3	Condition of Excitation control cubicle	$\triangle^{(3)}$	8

1) Deformation and discoloration of the commutator was observed.

- 2) Discoloration of the commutator was observed.
- 3) Slide surface of the field regulator is worn.

1-3. Operational Condition

Inspection in 18-Jul-2012

	Items	Result	Photo No.
1	Power Swing	0	
2	Unsteadiness of Voltage	0	

3	Abnormal Sound	0	
4	Abnormal Odor	0	
5	Temperature of Stator Coil	ND ⁽¹	
6	Temperature of Cooler Inlet [°C] measured/demand	51 / 65	
7	Temperature of Cooler Outlet [°C] measured/demand	35 / 45	
8	Temperature of Power House [°C]	30	

Check list of site inspection for Generating Equipment (Generator) (Unit 6)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Manufacturer	HITACHI
Manufacturer	IIIIACIII

Type TFBLW

Manufactured in 1972

Inspection in 30, 31-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	$\triangle^{(1)}$	1
2	Damage of Coil End	× ⁽²	1, 2
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(3)}$	
4	Pollution of Coils	$\triangle^{(4)}$	3
5	Coil Binding	0	
6	Loosening (Slackness) of Wedge	× ⁽⁵	4
7	Undulation of Core	0	
8	Rust on Core Surface	\bigtriangleup	5
9	Red rust on Split of Core	0	
10	Defect on Air Duct of Core	0	
11	Insulation Resistance and Polarity Index	△(6	
12	Water Leakage from Air Cooler and Piping	0	
13	Corrosion of Air Cooler and Piping	0	
14	Damage of Cooler Cover	0	
15	Search Coil Resistance	(7	

1) Deterioration of vanish was observed.

2) Discoloration was observed. Some spacers for stator coils are coming off.

- 3) No Discoloration, no powder occurrence
- 4) Contamination by oil and carbon particles
- 5) Looseness of the wedge was observed.
- 6) See the attached. It is supposed that the value of the insulation resistance was decreased due to heavy contamination and the value of the polarity index was decreased due to high humidity.

- 7) It was impossible to measure the resistance due to the location of the terminal board for the search coil.
- 1-2. Rotor (Visual Inspection)

Manufacturer	HITACHI
Туре	TFBLW
Manufactured in	1972
Inspection in	30-Jul-2012

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	
2	Condition of Fan	\bigcirc	
3	Condition of Coil Insulation Material	0	
4	Pollution on Rotor Coils and Collector Ring	$\triangle^{(1)}$	6
5	Abrasion Damage of Commutator, Collector Ring	0	
6	Insulation resistance	\bigcirc ⁽²	

- 1) Contamination by oil and carbon particles
- 2) See the attached. It is supposed that the value of the insulation resistance was decreased due to heavy contamination.

1-3. Exciter (Visual Inspection)

Manufacturer	HITACHI
Туре	EFO
Manufactured in	1972
Inspection in	30-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	$\times^{(1)}$	7
2	Condition of HTD	$\triangle^{(2)}$	8
3	Condition of Excitation control cubicle	0	

- 1) Deformation and discoloration of the commutator was observed.
- 2) Discoloration of the commutator was observed.

1-3. Operational Condition

Inspection in 18-Jul-2012

	Items	Result	Photo No.
1	Power Swing	0	
2	Unsteadiness of Voltage	0	
3	Abnormal Sound	0	

4	Abnormal Odor	0	
5	Temperature of Stator Coil	$ND^{(1)}$	
6	Temperature of Cooler Inlet [°C] measured/demand	52 / 65	
7	Temperature of Cooler Outlet [°C] measured/demand	35 / 45	
8	Temperature of Power House [°C]	30	

Check list of site inspection for Generating Equipment (Generator) (House Turbine-Generator)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Generator

1-1. Stator (Visual Inspection)

Manufacturer HITACHI Type SB1

Manufactured in 1958

Inspection in 31-Jul-2012

	Items	Result	Photo No.
1	Damage of Coil Surface	0	
2	Damage of Coil End	0	
3	Insulation Deterioration (aging) of Coil End	$\bigcirc^{(1)}$	1, 2
4	Pollution of Coils	0	
5	Coil Binding	0	
6	Loosening (Slackness) of Wedge	0	
7	Undulation of Core	0	3
8	Rust on Core Surface	0	
9	Red rust on Split of Core	_	
10	Defect on Air Duct of Core	0	
11	Insulation Resistance and Polarity Index	$\times^{(2)}$	
12	Water Leakage from Air Cooler and Piping	_	
13	Corrosion of Air Cooler and Piping	_	
14	Damage of Cooler Cover	—	
15	Search Coil Resistance		

1) No Discoloration, no powder occurrence

- 2) The insulation resistance value of stator windings for U, V, W and N measured by 500V Meggar was 0.05 M Ω . It is supposed that the value of the insulation resistance was decreased since the terminals absorbed moisture in the pit.
- 1-2. Rotor (Visual Inspection)

Inspection in 31-Jul-2012

	Items	Result	Photo No.
1	Condition of Connecting Conductor	0	
2	Condition of Fan	0	
3	Condition of Coil Insulation Material	$\triangle^{(1)}$	4
4	Pollution on Rotor Coils and Collector Ring	0	
5	Abrasion Damage of Commutator, Collector Ring	0	5
6	Insulation resistance	—	

1) Damage of coil insulation material was observed.

1-3. Exciter (Visual Inspection)

Inspection in 31-Jul-2012

	Items	Result	Photo No.
1	Condition of Exciter	0	6
2	Condition of HTD	—	
3	Condition of Excitation control cubicle	$\triangle^{(1)}$	7, 8

1) Overall deterioration was observed.

1-3. Operational Condition

Inspection in

	Items	Result	Photo No.
1	Power Swing	_	
2	Unsteadiness of Voltage	—	
3	Abnormal Sound	—	
4	Abnormal Odor	—	
5	Temperature of Stator Coil	—	
6	Temperature of Cooler Inlet [$^{\circ}C$] measured/demand	_	
7	Temperature of Cooler Outlet [°C] measured/demand	—	
8	Temperature of Power House [°C]	_	

Check list of site inspection for Generating Equipment (Generator) (Auxiliary Equipment)

REMARKS O: Good condition

 \triangle : Caution

 \times : Consider to countermeasure

ND: No data (with damaged meter and things like that)

1. Auxiliary Equipment for Generator

Manufacturer HITACHI

Inspection in 14, 20, 24, 28 & 31-Jul and 6-Aug-2012

	Items	Result	Photo No.
1	Lubricating oil system	$\times^{(1)}$	1, 2
2	Guide Bearing	$\triangle^{(2)}$	3, 4
3	Oil lifter	$\times^{(3)}$	5
4	Generator air cooler	$\times^{(4)}$	6, 7
5	Speed detector for generator	$\times^{(5)}$	8,9

- Pumps / motors and control panels have been used since commissioning. Heavy oil leakage and aged deterioration was observed for Unit 1 to 3. Relevant relays for Unit 1 to 6 were also deteriorated.
- 2) Bearing metals for Unit 4 to 6 were damaged at the accident in 2011 and replaced with spare ones. There are not any necessary spare ones.
- 3) The oil lifter cannot be operated automatically due to the malfunction of the timer relays on the control panel for Unit 4 to 6.
- 4) All spare parts for the air cooler were damage and it was observed that 20% of piping for spare one was closed due to water leakage.
- 5) A part of the gear for the speed detector of Unit 4 was damaged.

Baluchaung	No.2	Unit No.	1
Insulation Resistance Test for Generator		Date	8 Jul. 2012
Ambient Temp	erature	3	3 °0
Humidity		7	/5%
Insulation Resistance of	f Stator Winding		[MΩ
Time	A	В	C
1 min.	380	830	870
2 min.	460	1,100	1,300
3 min.	470	1,300	1,500
4 min.	470	1,400	1,700
5 min.	560	1,500	1,800
6 min.	580	1,600	2,000
7 min.	590	1,600	> 2,000
8 min.	600	1,700	
9 min.	540	1,600	
10 min.	510	1,500	
- Insulation resistance should b	e more than 10.0 M Ω		Tested by 1,000V Megga
	А	В	С
PI Value (10 min. / 1 min.)	1.3	1.8	more than 2.3
- PI Value should be more than Insulation Resistance of		are connected)	[ΜΩ
(1) Resistance of 1min.	<u>`</u>		5.8
(2) Resistance of 1min. (after c	leaning)		7.5

Baluchaung	j No.2	Unit No.	2
Insulation Resistance Test for Generator		Date	17 Jul. 2012
Ambient Tem	perature	33	S°€
Humidi	ty	4	9%
Insulation Resistance	of Stator Winding		[MΩ]
Time	Т	S	R
1 min.	490	490	490
2 min.	840	790	780
3 min.	1,000	1,000	1,000
4 min.	1,200	1,200	1,200
5 min.	1,400	1,400	1,400
6 min.	1,600	1,600	1,500
7 min.	1,700	1,700	1,700
8 min.	1,900	1,800	1,600
9 min.	> 2000	> 2000	1,800
10 min.			> 2000
- Insulation resistance should	be more than 10.0 $M\Omega$		Tested by 1,000V Megga
	Т	S	R
PI Value (10 min. / 1 min.)	more than 4.0	more than 4.0	more than 4.0
- PI Value should be more that		ore connected)	IMO
(1) Resistance of 1min.	of Rotor (all 14 poles		.98
(2) Resistance of 1min. (after cleaning)			3.6
- Insulation resistance should			Tested by 500V Megga
modiation registance should			i colou by couv mogyal

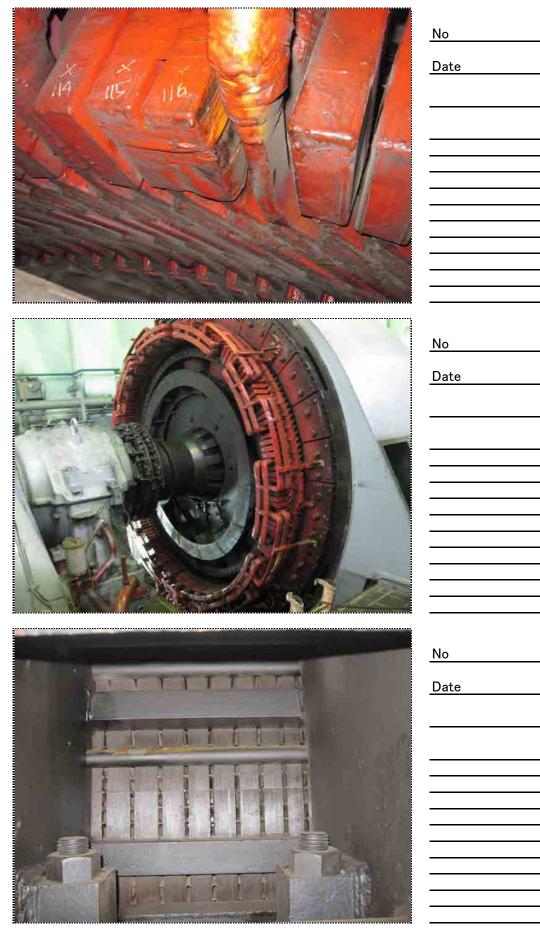
Baluchaung No.2		Unit No.	3
		Date	25 Jul. 2012
Ambient Tempe	erature	31	3 ° 0
Humidity		6	3%
Insulation Resistance o	f Stator Winding		[MΩ]
Time	T	S	R
1 min.	500	680	700
2 min.	760	970	1,000
3 min.	900	1,200	1,300
4 min.	1,000	1,500	1,500
5 min.	1,000	1,400	1,600
6 min.	1,000	1,500	1,800
7 min.	1,100	1,400	1,900
8 min.	1,100	1,500	>2000
9 min.	1,100	1,800	
10 min.	1,400	1,600	
- Insulation resistance should b	e more than 10.0 M Ω		Tested by 1,000V Megga
	Т	S	R
PI Value (10 min. / 1 min.)	2.8	2.3	more than 2.8
- PI Value should be more than Insulation Resistance o		are connected)	[ΜΩ
	-		120
(1) Resistance of 1min.			120

Baluchaung No.2		Unit No.	4
		Date	22 Jul. 2012
Ambient Tempe	erature	30	S°
Humidity		67	7%
Insulation Resistance o	f Stator Winding		[MΩ]
Time	R	S	Т
1 min.	18	18	38
2 min.	18	19	38
3 min.	18	18	42
4 min.	19	20	43
5 min.	19	20	41
6 min.	18	20	40
7 min.	18	22	38
8 min.	17	22	38
9 min.	17	22	40
10 min.	17	23	42
- Insulation resistance should b	e more than 10.0 M Ω		Tested by 1,000V Megga
	R	S	Т
PI Value (10 min. / 1 min.)	0.9	1.3	1.1
- PI Value should be more than		are connected)	[ΜΩ]
(1) Resistance of 1min.			74
(2) Resistance of 1min. (after cl	eaning)	0.	74

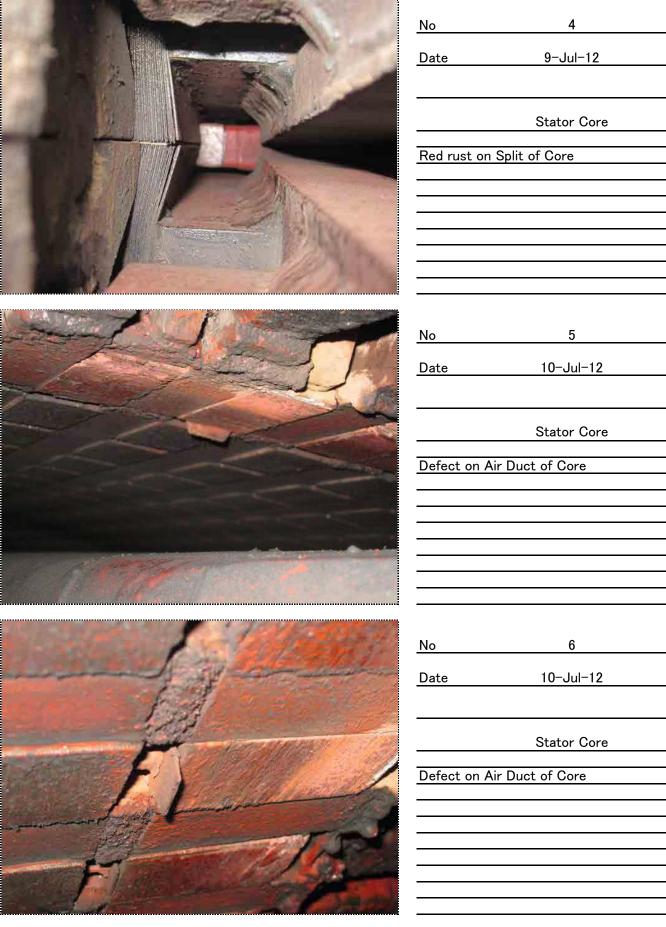
Baluchaung No.2		Unit No.	5
Insulation Resistance Test for Generator		Date	28 Jul. 2012
	·		
Ambient Temp	erature	2	7 °C
Humidit	ý	7	6%
I. Insulation Resistance of	of Stator Winding		[MΩ]
Time	R	S	Т
1 min.	500	490	650
2 min.	530	540	760
3 min.	520	560	810
4 min.	500	590	830
5 min.	530	620	840
6 min.	520	610	840
7 min.	520	650	830
8 min.	530	660	800
9 min.	550	640	780
10 min.	580	640	780
- Insulation resistance should I	be more than 10.0 M Ω		Tested by 1,000V Meggar
	R	S	Т
PI Value (10 min. / 1 min.)	1.2	1.3	1.2
- PI Value should be more than 2. Insulation Resistance of		are connected)	[MΩ]
(1) Resistance of 1min.		-	155
- Insulation resistance should I	pe more than 1.0 MΩ		Tested by 500V Meggar

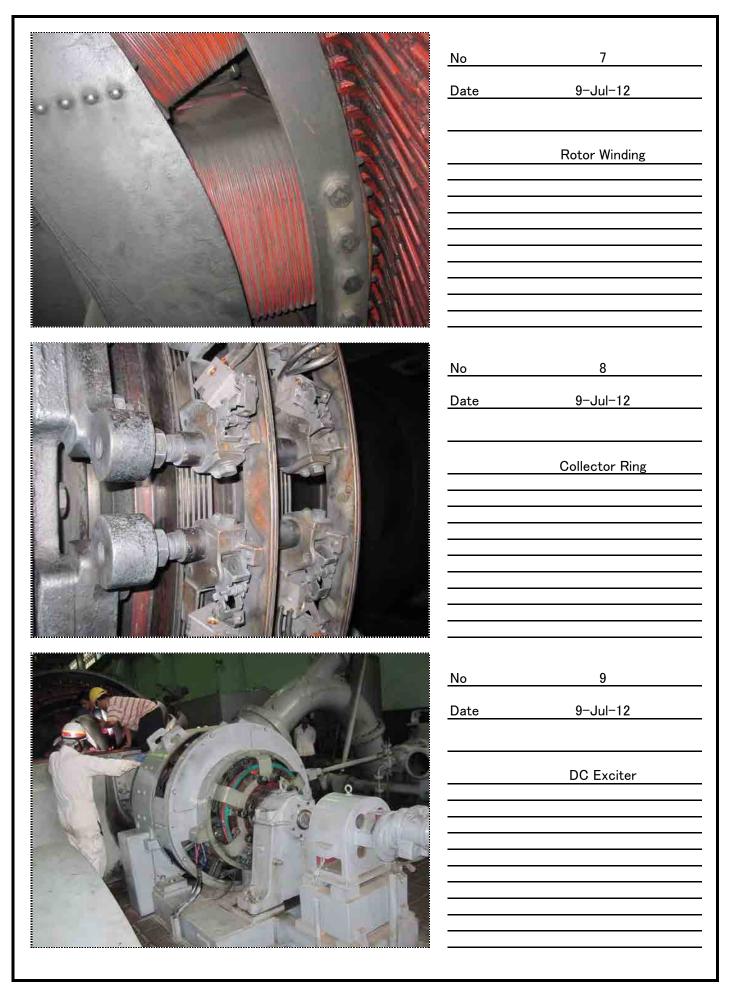
Baluchaung No.2		Unit No.	6
		Date	30 Jul. 2012
Ambient Tempe	erature	28	S°€
Humidity		7	6%
Insulation Resistance of	f Stator Winding		[MΩ]
Time	R	S	T
1 min.	96	55	68
2 min.	99	61	109
3 min.	96	61	110
4 min.	98	59	95
5 min.	102	63	80
6 min.	102	58	88
7 min.	102	54	83
8 min.	104	55	111
9 min.	101	64	112
10 min.	100	60	155
- Insulation resistance should b	e more than 10.0 M Ω		Tested by 1,000V Megga
	R	S	Т
PI Value (10 min. / 1 min.)	1.0	1.1	2.3
- PI Value should be more than		are connected)	[MΩ]
(1) Resistance of 1min.			3.2
- Insulation resistance should b	e more than 1.0 M Ω		Tested by 500V Megga

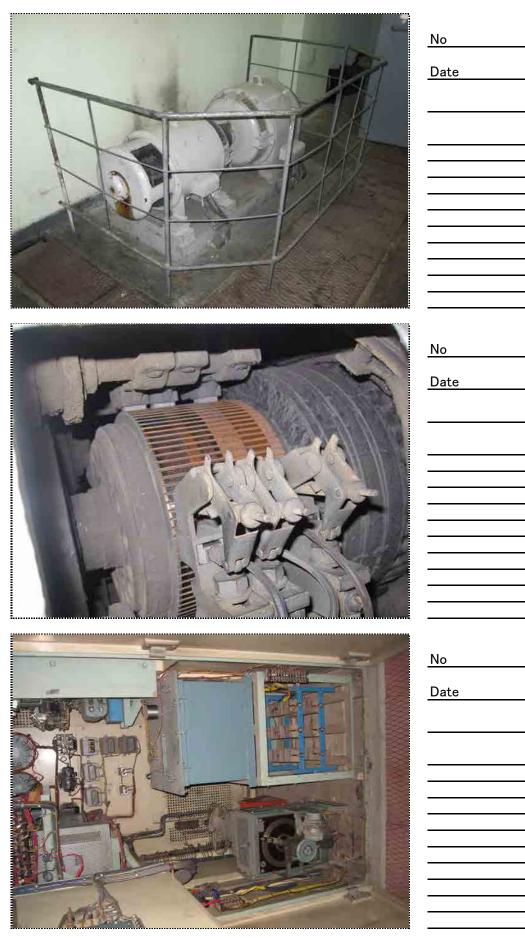
Baluchau	ng No.2	Unit No.	2	
Resistance of Search Coil for Stator Windings		Date	20 Jul. 2012	
. Search Coil Resistar	nce		[Ω]	
Terminal No.	R - W	R - B	W - B	
1	28.4	28.4	0.1	
2	28.9	28.9	0.2	
3	29.0	28.9	0.1	
4	28.9	28.9	0.3	
5	infinity	25,000	41,000	
6	infinity	infinity	0.2	
7	infinity	infinity	0.2	
8	infinity	infinity	0.3	
9	infinity	infinity	0.2	
10	infinity	infinity	0.2	
11	29.0	29.0	0.3	
12	29.1	29.1	0.3	
Terminal No.	Result	Usage	Slot No. 1)	
1	normal	spare	18 (U)	
2	normal	in use	82 (U)	
3	normal	spare	109 (U)	
4	normal	in use	172 (U)	
5	abnormal	spare	1 (V)	
6	abnormal	in use	26 (V)	
7	abnormal	spare	92 (V)	
8	abnormal	in use	116 (V)	
9	abnormal	spare	35 (W)	
10	abnormal	spare	10 (W)	
11	normal	in use	126 (W)	
12	normal	in use	100 (W)	


1) referred to the Drawing No. HB-163-803

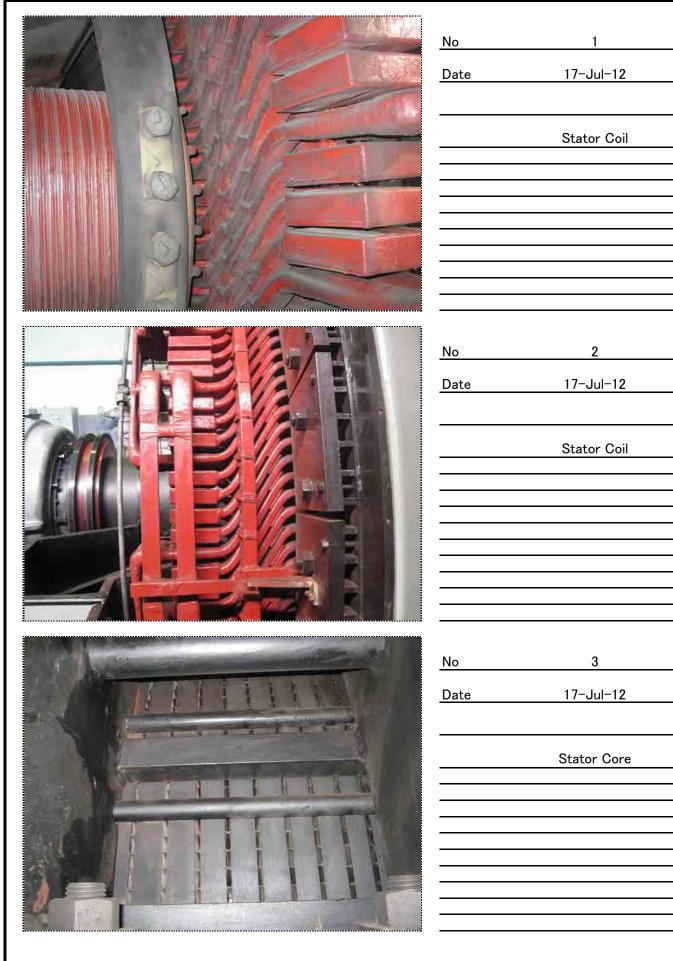
Baluchaung No.2		Unit No.	3
		Date	25 Jul. 2012
. Search Coil Resista	nce (Ambient Temperat	ure: 30°C)	[Ω]
Terminal No.	R - W	R - B	W - B
1	29.0	29.0	0.2
2	infinity	infinity	0.2
3	infinity	infinity	0.2
4	29.1	29.0	0.4
5	28.9	29.0	0.2
6	infinity	infinity	0.2
7	29.4	29.5	0.2
8	infinity	infinity	0.2
9	infinity	infinity	0.2
10	28.9	28.9	0.2
11	29.3	29.4	0.3
12	infinity	infinity	0.3
Terminal No.	Result	Usage	Slot No. 1)
1	normal	in use	18 (U)
2	abnormal	spare	82 (U)
3	abnormal	in use	109 (U)
4	normal	spare	172 (U)
5	normal	in use	1 (V)
6	abnormal	spare	26 (V)
7	normal	in use	92 (V)
8	abnormal	spare	116 (V)
9	abnormal	spare	35 (W)
10	normal	in use	10 (W)
11	normal	in use	126 (W)
12	abnormal	spare	100 (W)

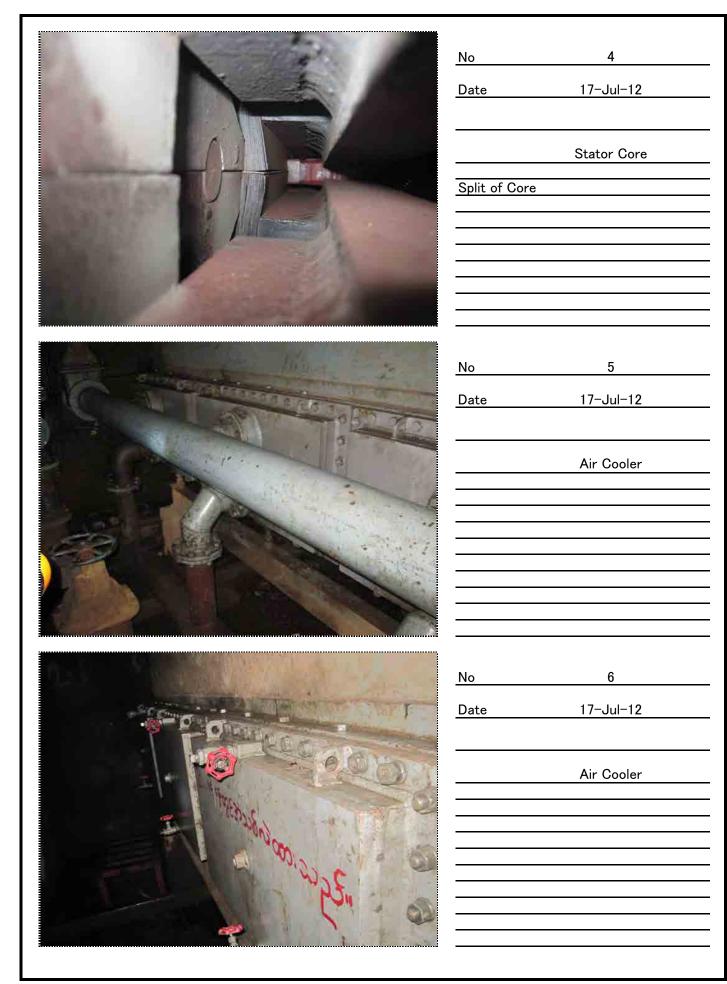

1) referred to the Drawing No. HB-163-803

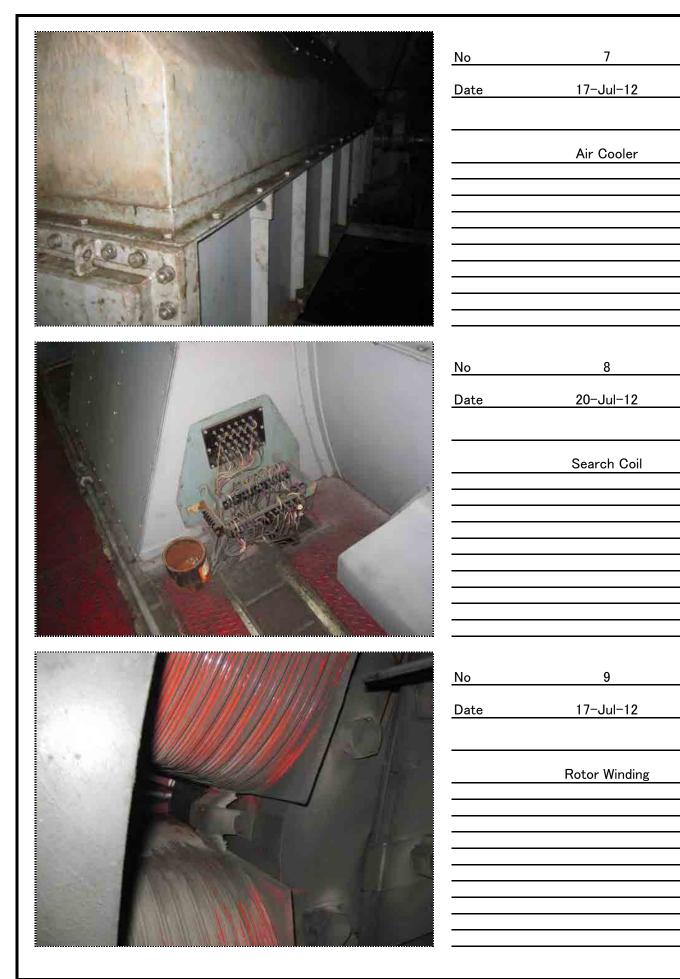

	Baluchaung No.2	Date (No	o.1, 3-6)	18-J	ul-12	30°C	, 71%
	Operation Condtion		Date (No.2)		23-Jul-12		, 76%
1.	Unit No.	1	2	3	4	5	6
2.	Output [MW]	22.0	19.0	25.0	26.8	26.3	26.3
3.	Reactive Power [Mvar] ¹⁾	4.0	3.5	5.0	1.0	-0.5	-1.0
4.	Stator Coil Temperature [°C] ²⁾	-	-	-	-	-	-
5.	Bearing Temperature [°C]						
	(1) Collector Ring Side	48	46	38	41	44	30
	Collector Ring Side (demand)	(60)	(60)	(65)	(65)	(65)	(65)
	(2) Counter-Collector Ring Side	51	47	48	54	49	52
	Counter-Collector Ring Side (demand	(60)	(60)	(65)	(65)	(65)	(65)
6.	Air Cooler Tempereture [°C]						
	(1) Air Cooler Inlet	53	49	54	50	51	52
	(1) Air Cooler Inlet (demand)	(65)	(65)	(65)	(65)	(65)	(65)
	(2) Air Cooler Outlet	34	24	37	39	35	35
	(2) Air Cooler Outlet (demand)	(50)	(50)	(50)	(45)	(45)	(45)
	(3) Cooling Water Inlet	26.5	26.0	26.0	25.5	26.0	25.5

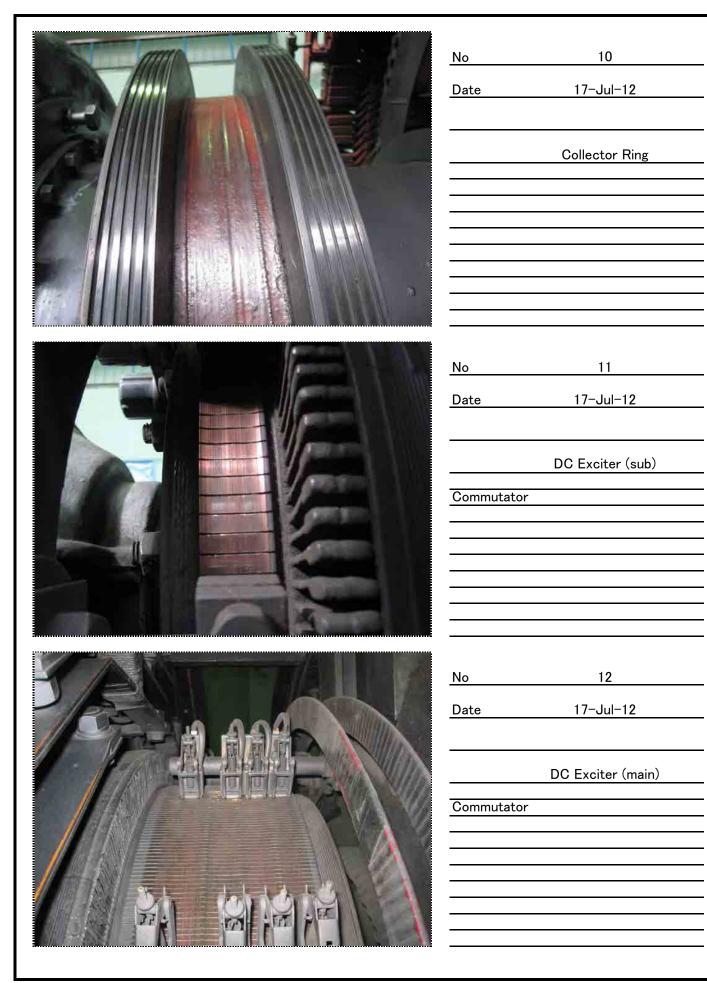

Measured value is supposed to be inaccurate due to a malfunction in a meter.
 It is unmeasurable due to malfunciton in a meter.

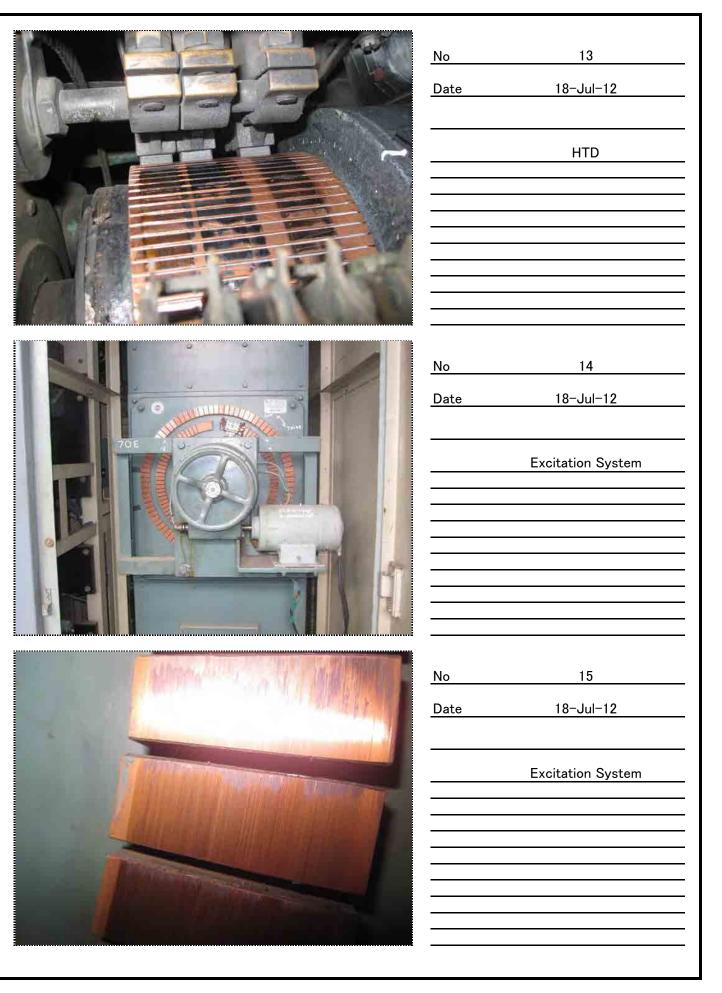
No	1	
Date	9-Jul-12	
	Stator Coil	
No	2	
Date	8-Jul-12	
	Stator Coil	
	3 9-Jul-12	
Date	3 OUI 12	
	Stator Core	

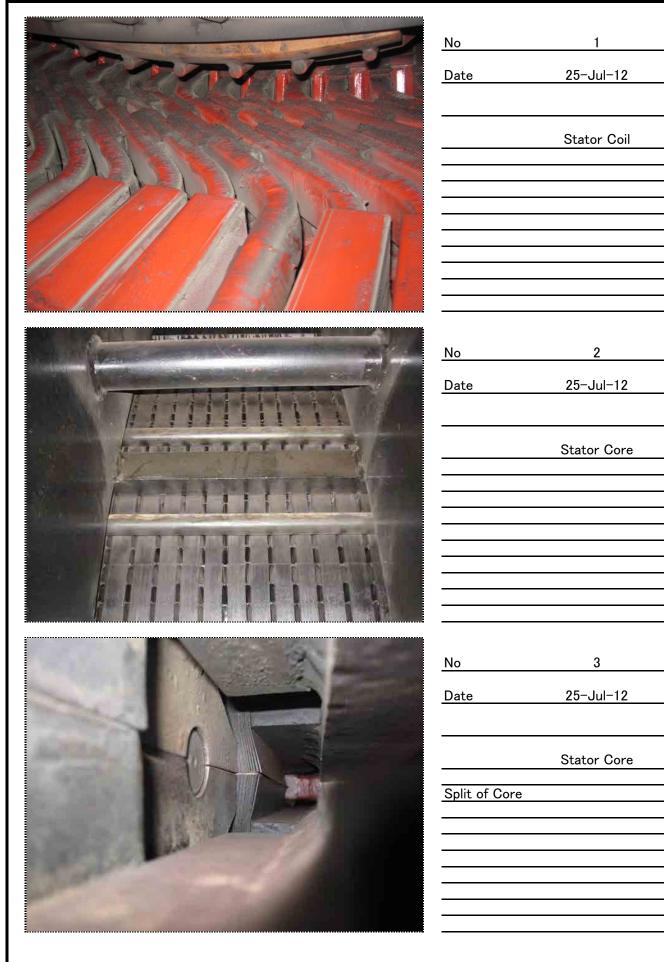


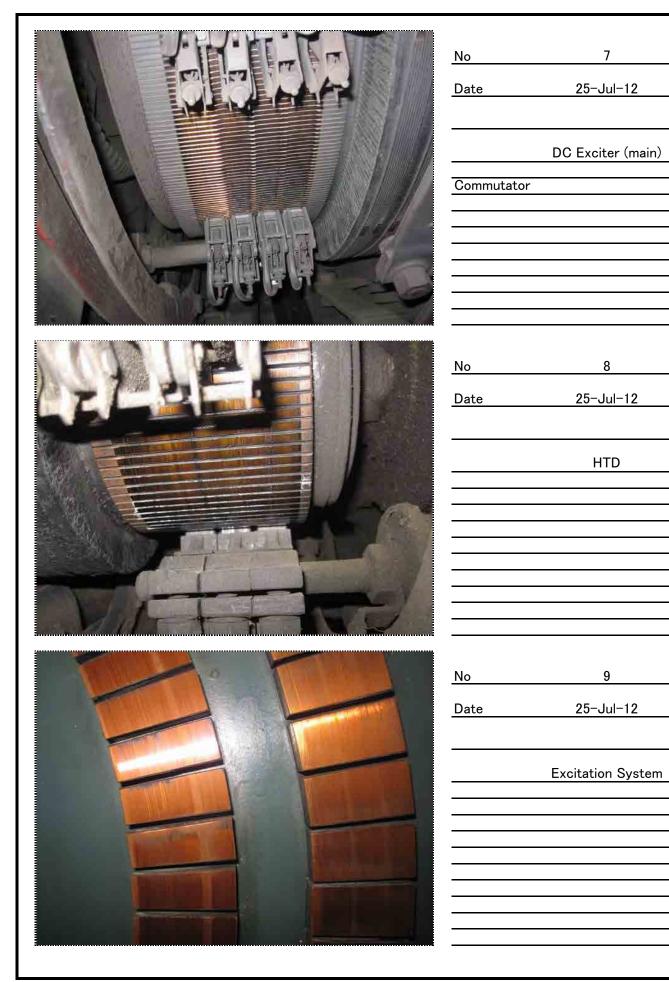


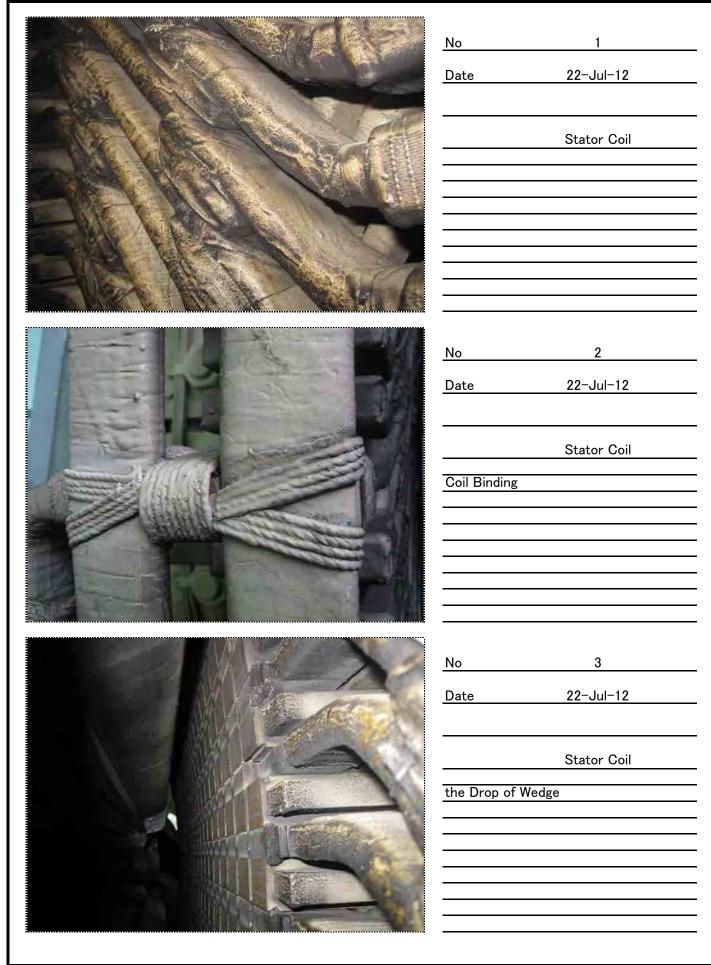


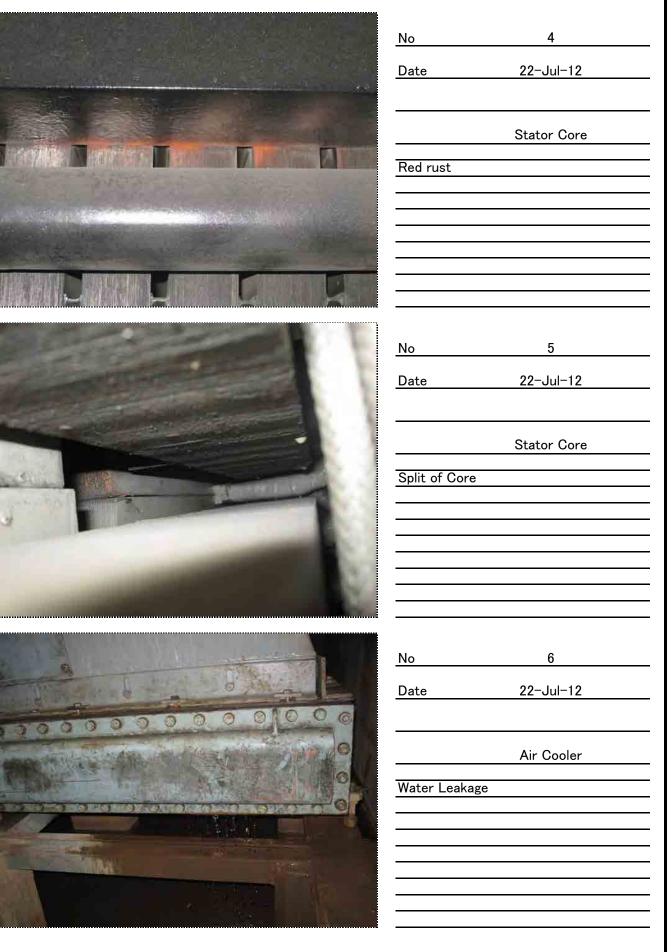

No	10
	10 9-Jul-12
Date	<u> </u>
	HTD
No	11
Date	9-Jul-12
	HTD
No	12
Date	8-Jul-12
	Excitation System

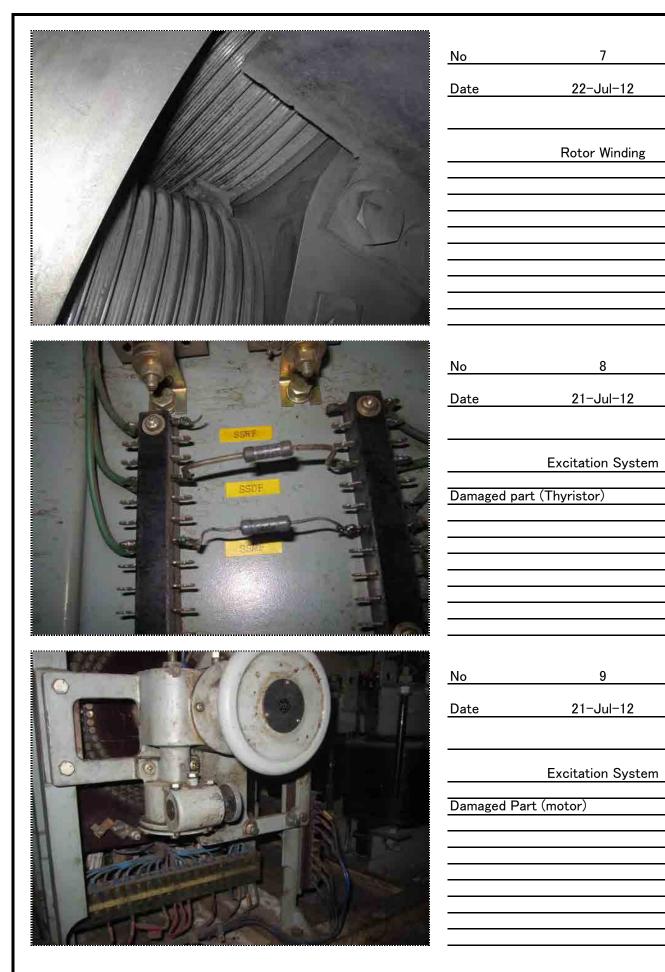

	<u>No 13</u> Date 10-Jul-12
	Temperature Panel
写真	No
写真	No

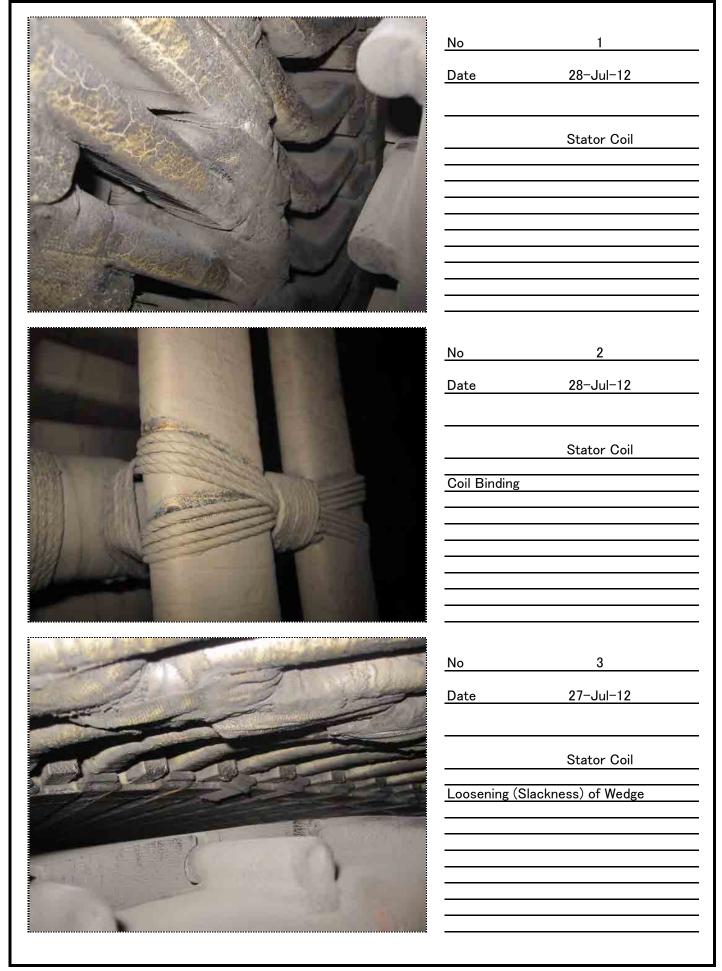







4 No 25-Jul-12 Date Search Coil No 5 25-Jul-12 Date Rotor Winding No 6 25-Jul-12 Date Collector Ring





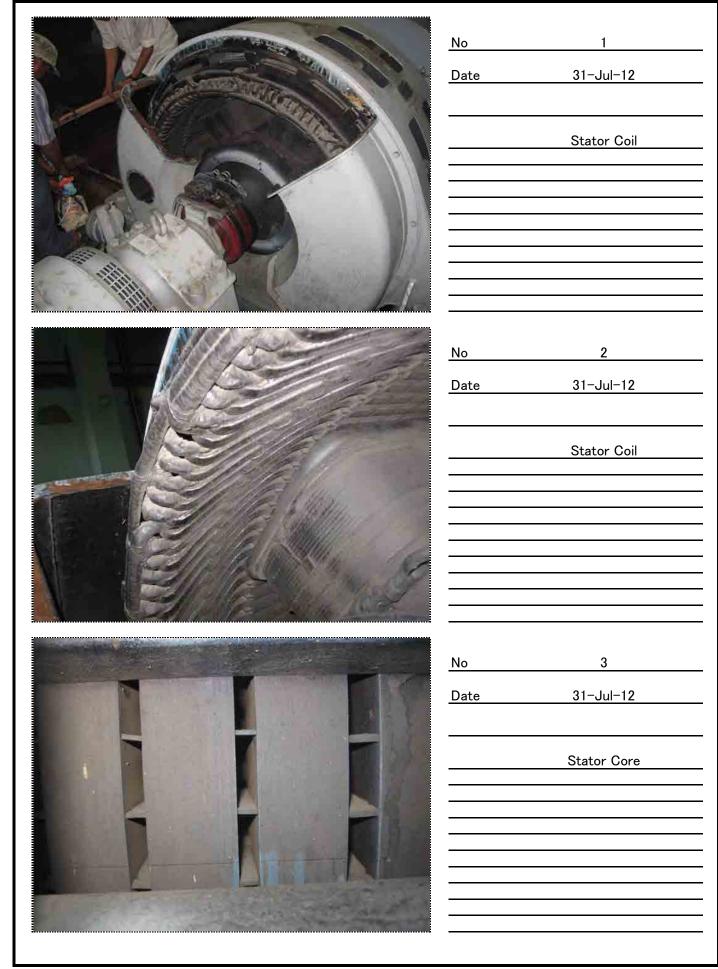
G4P-15

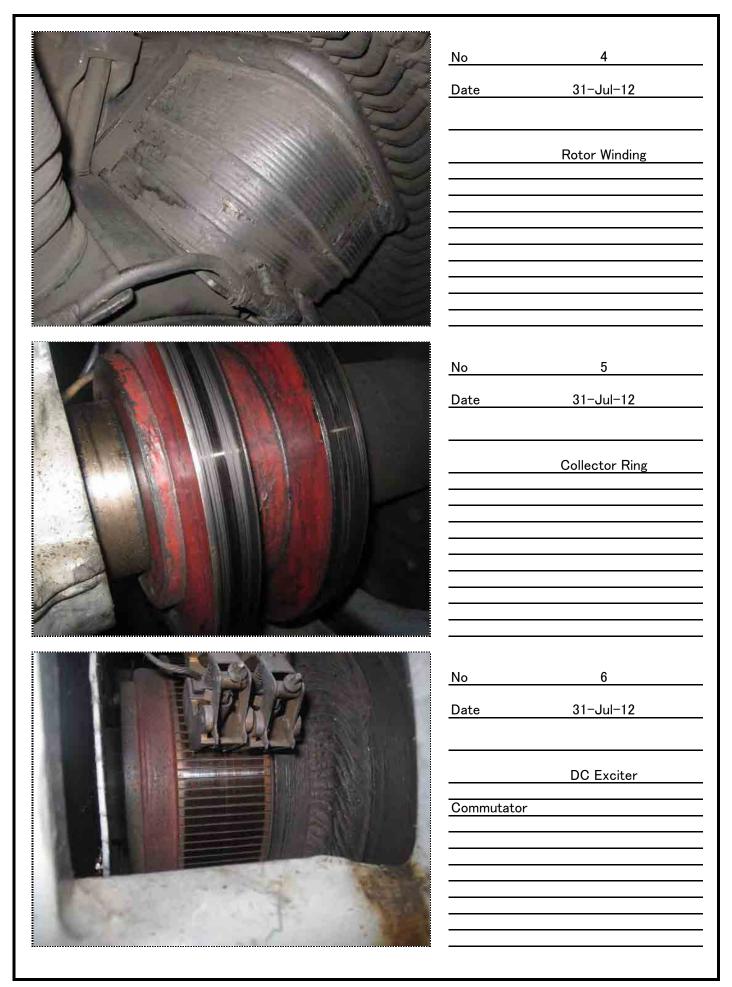
Site Inspectior	Photo for	Generating Equipment	(generator)
-----------------	-----------	-----------------------------	-------------

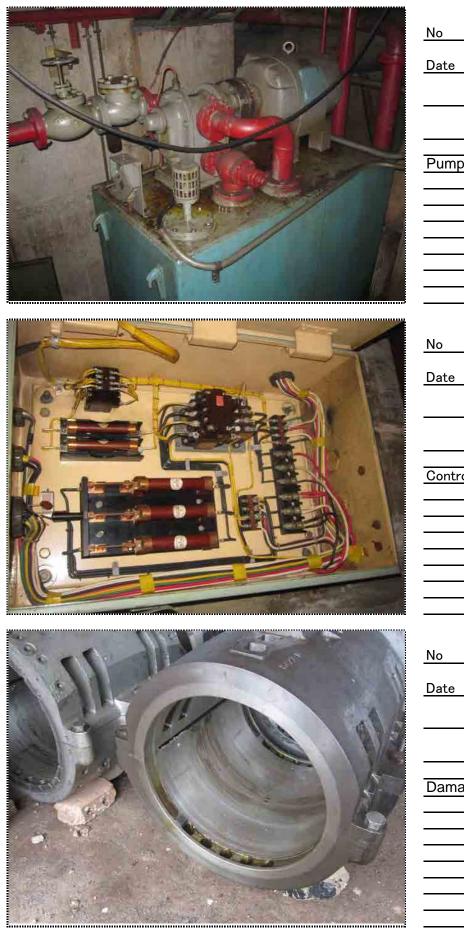


No	4	
Date	28-Jul-12	
	Air Cooler	
The track of w	vater leakage	
		_
		_
		-
No Date	5 28-Jul-12	
Duto	20 041 12	
	Rotor Winding	
		_
		_
No	6	
Date	28-Jul-12	
	DC Exciter	
Commutator		_
		_

	No 7 Date 27–Jul–12 HTD Commutator	
	No 8 Date 27-Jul-12 Excitation System Slide surface of the field regulator	
写真	No Date	

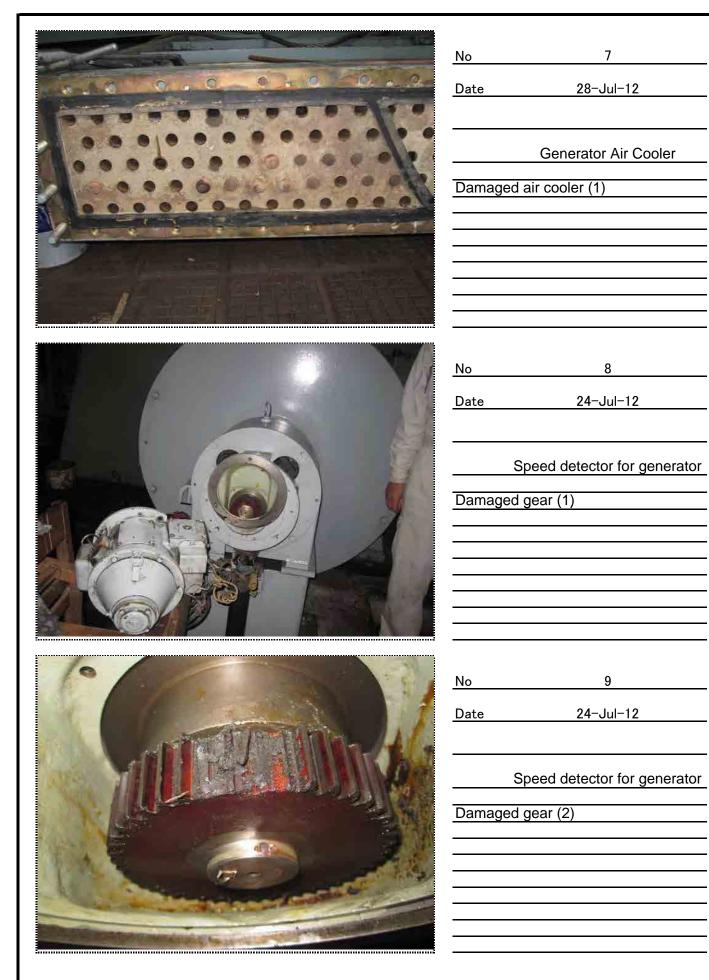



No	1
	1
Date	30-Jul-12
	Stator Coil
Discoloration a	nd Deformation of Coil Cover
No	2
	00 001 12
	Stator Coil
A spacer for s	stator coil is coming off
No	3
Date	
	Stator and Rotor


No	4	
Date	30-Jul-12	
	Stator Coil	
a drop of the	wedge	
No	5	
Date	30-Jul-12	
	Stator Core	
NI-	e	
No Date	6 30-Jul-12	
	Rotor Winding	

	No 7 Date 30–Jul–12 DC Exciter Commutator and Brush
	No 8 Date 30-Jul-12 HTD Commutator
写真	No Date

<image/>	No 7 Date 31–Jul–12 Excitation System
	No 8 Date 31–Jul–12 Excitation System
写真	No Date



No	1
Date	31-Jul-12
	Lubricating oil system
Pump / mc	otor for Unit 1
No	2
Date	31 JUI 12
	Lubricating oil system
Control Par	nel
No	3
Date	20-Jul-12
	Guide Bearing
Damaged	Bearing (1)
Damayeu	

Auxiliary

Site Inspection Photo for Generating Equipment (generator)

