REPUBLIC OF THE PHILIPPINES DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS (DPWH)

PREPARATORY SURVEY FOR EXPRESSWAY PROJECTS IN MEGA MANILA REGION

CENTRAL LUZON LINK EXPRESSWAY PROJECT (Phase I)

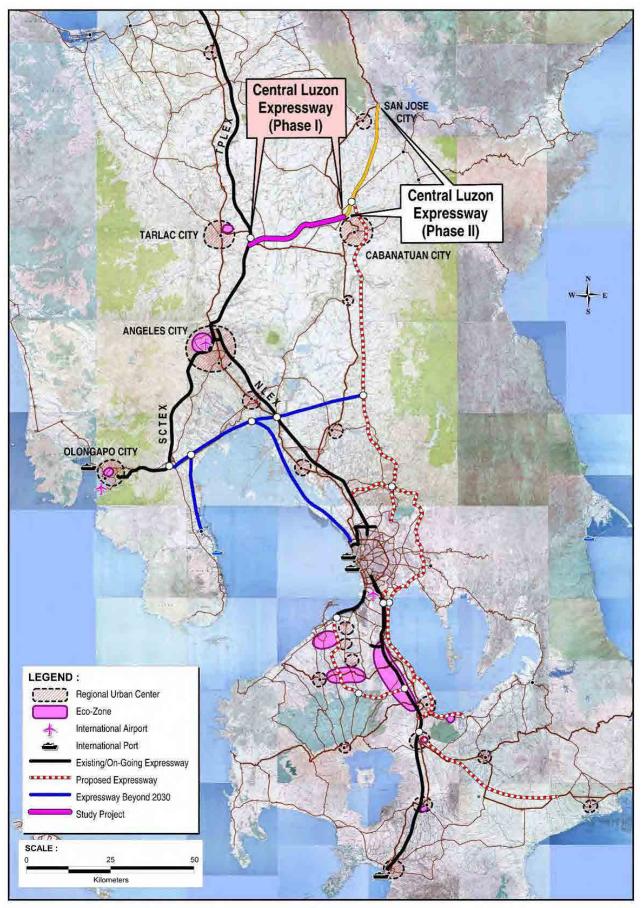
FINAL REPORT MAIN TEXT

NOVEMBER 2012

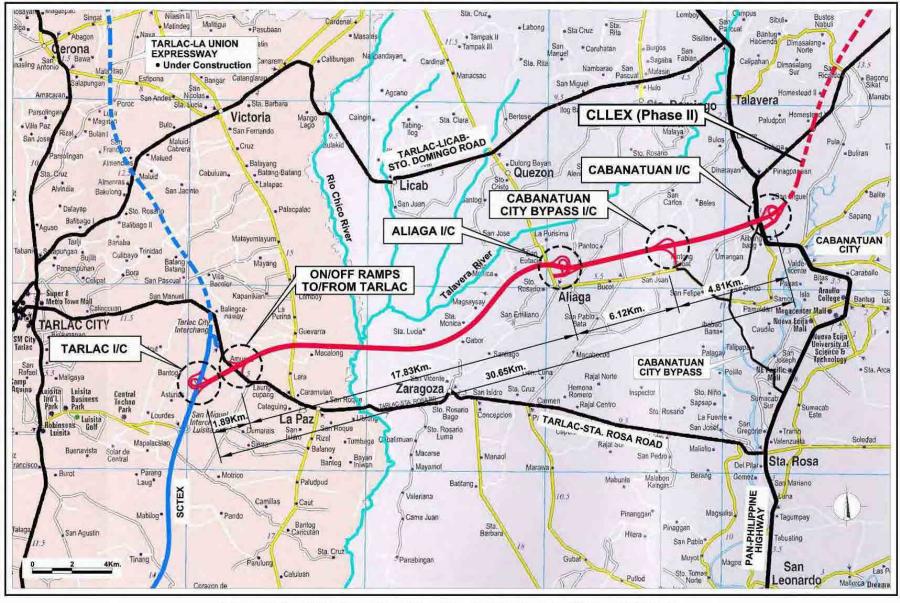
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

CTI ENGINEERING INTERNATIONAL CO., LTD MITSUBISHI RESEARCH INSTITUTE, INC. ORIENTAL CONSULTANTS CO., LTD METROPOLITAN EXPRESSWAY CO., LTD

EI
CR(3)
12-145(1)


CLLEX

EXCHANGE RATE


July 2011

1PhP= 1.86 Japan Yen 1US\$=43.7Philippine Peso 1US\$= 81.2 Japan Yen

Central Bank of the Philippines

LOCATION MAP OF CLLEX

PROPOSED CLLEX ALIGNMENT AND LAYOUT OF INTERCHANGES

TABLE OF CONTENTS

Executive Summary

1.]	BACKGROUND OF THE CLLEX PROJECT	S-1
2. 1	NECESSITY OF THE CLLEX PROJECT	
3. (OBJECTIVE OF THE CLLEX PROJECT	
4.	TRAFFIC DEMAND FORECAST	
4.1	Existing Traffic Condition	
4.2	2. Future Traffic Volume on CLLEX PHASE-1 Section	S-6
5. l	REVIEW OF 2010 FEASIBILITY STUDY OF CLLEX PHASE-1	S-10
5.1		S-10
5.2		S-11
5.3		S-11
5.4		
5.5	5. Improvement of access CLLEX To/From Southern Cabanatuan City	S-13
5.6	5. Appropriate CLLEX Alignment in the Rio Chico Flood-Prone Area	S-15
5.7	7. Toll Collection System of CLLEX	S-17
6. 5	SCOPE OF THE PROJECT	S-18
6.1	. Outline of the CLLEX Project	S-18
6.2	2. Design Standard	S-19
6.3	3. Typical Roadway Cross Section	
	PROJECT COST	
8. l	ECONOMIC EVALUATION	
8.1	Assumption and Indicators of Economic Analysis	
8.2	2. Results of Economic Analysis	
8.3	3. Economical Project Sensitivity	
9. 1	PPP SCHEME	S-23
10.	FINANCIAL EVALUATION	S-25
10	.1. Assumption and Conditions of Financial Analysis	S-25
10	.2. Results of Financial Analysis	S-26
11.	ENVIRONMENTAL AND SOCIAL CONSIDERATION	S-29
11	.1. Prediction / Assessment and Mitigation of the Impacts and Monitoring	S-29
11	.2. RAP Requirement	S-37
11	.3. Summary of Relocation Assets	S-38
11	.4. Organization Chart of RAP Implementation	S-39
11	.5. RAP Implementation Process	
12.	PROJECT IMPLEMENTATION	
13.	OPERATION AND EFFECT INDICATORS	S-45

Main Report

	INTRODUCTION	
1.1 BAG	CKGROUND AND BRIEF HISTORY OF THE PROJECT	1-1
1.1.1	Background of the Project	1-1
1.1.2	Brief History of the Project	1-1
1.2 OB	JECTIVES OF THE PROJECT	1-2
1.3 TH	IS REPORT	1-2
CHAPTER 2	ROAD SECTOR OVERVIEW	
2.1 PH	ILIPPINE DEVELOPMENT PLAN (2011 – 2016)	2-1
2.2 RC	OAD DEVELOPMENT GOALS	2-2
2.3 Ma	ster Plan on High Standard Highway Network	2-3
2.4 Cu	rrent Road Infrastructure and Its Development Plan Related to the Project	2-4
2.5 Pa	st and Future Plan of Other Donor's Project Related to PPP Policies	2-5
2.6 Re	lations between other ODA Loan Projects	
2.7 Le	sson and Countermeasure from the Similar Past Project	2-7
2.8 DF	WH Organization and Current O & M Company	2-14
CHAPTER 3	SOCIO-ECONOMIC CONDITION OF THE PROJECT AREA AND REGIONAL	
	DEVELOPMENT PLAN	3-1
3.1 SC	OCIO-ECONOMIC CONDITIONS	3-1
3.1.1	Physical Profile	
3.1.2	Demographic Trend	
3.1.3	Economic Trend	3-4
3.1.4	Per Capita GDP and GRDP	3-5
3.1.5	Employment	
3.2 R	EGIONAL DEVELOPMENT PLAN	
3.3 N	IANUFACTURING COMPANIES IN THE PROJECT INFLUENCE AREA	
CHAPTER 4	TRAFFIC STUDY	
4.1 PR	ESENT TRAFFIC CONDITION	4-1
4.1.1	Type of Surveys Carried Out	4-1
4.1.2	Traffic Volume	4-1
4.1.3	Hourly Variation of Traffic Volume	4-4
4.1.4	Traffic Composition	
4.1.5	Travel Speed	
4.1.6	Willingness to Pay Survey for Use of CLLEX (Private Car User)	4-9
4.1.7	Willingness to Pay Survey for Use of CLLEX (Bus Operators)	
4.1.8	Willingness to Pay Survey for Use of CLLEX (Truck Operators)	
4.1.9	Willingness to Pay Survey for Use of CLLEX (Manufacturing Companies)	
4.1.10	Summary	
	TURE TRAFFIC DEMAND	
4.2.1	Approach	
4.2.2	Future Socio-economic Framework	
4.2.3	Present and Future OD Matrix	
4.2.4	Traffic Assignment Model	
4.2.5	Assignment Validation	
4.2.6	Toll Rate vs. Revenue	
4.2.7	Traffic Assignment Result	
CHAPTER 5	REVIEW OF THE 2006 FS AND ALIGNMENT STUDY	
	CESSITY OF THE PROJECT	
	CHNICAL ISSUES	
5.2.1	Summary of Technical Issues	
5.2.2	How to connect with SCTEx or TPLEx	
5.2.3	Needs of Additional Interchange at Aliaga Municipality	5-9
5.2.4	Cabanatuan IC Location and How to Attract More Traffic To/From Cabanatuan	

		City	
	5.2.5	Appropriate Location of Alignment in the Flood-prone Area	
	5.2.6	Proposed CLLEx Alignment and Interchange Layout	
	5.2.7	Toll Collection System	
	5.2.8	Study on Stage Construction	
CHA	PTER 6	PRELIMINARY DESIGN	6-1
6.1	ENG	GINEERING SURVEYS UNDERTAKEN	6-1
	6.1.1	General	6-1
	6.1.2	Topographical Survey	6-1
	6.1.3	Soils and Geo-technical Investigation	
6.2	DES	SIGN STANDARD	
	6.2.1	Design Concept	
	6.2.2	Design Standard	
	6.2.3	Design Speed	
	6.2.4	Design Vehicle	
	6.2.5	Summary of Expressway Geometry	
	6.2.6	Vertical Clearance	
	6.2.7	Number of Lanes	
	6.2.7	Carriageway, Shoulder and Median Width	
	6.2.9	Stopping Distance	
	6.2.10	Cross fall Development	
	6.2.11	Minimum Radius without Super elevation	
	6.2.12	Minimum Curve Length	
	6.2.13	Speed Change Lanes	
	6.2.14	Maximum Gradient	
6.3	EXI	PRESSWAY DESIGN	
	6.3.1	General	
	6.3.2	Hydrological Analysis	6-30
	6.3.3	Crossing Road and Water Way Design	6-57
	6.3.4	Vertical Control	6-64
	6.3.5	Rio Chico River Flood Prone Area Design	6-67
	6.3.6	Interchange Design	
	6.3.7	Interim 2 Lanes Design	
6.4		RUCTURE DESIGN	
0	6.4.1	Structure Design Standard	
	6.4.2	Structure Type Study	
6.5	····=	VEMENT DESIGN	
0.5	6.5.1	General	
	6.5.2	Pavement Design Standards	
	6.5.2 6.5.3	Technical Approach	
	6.5.4	Recommended Pavement Structures	
	6.5.5	Pavement Design Calculation	6-128
011.17			
	PTER 7	PROJECT COST ESTIMATE	
7.1		ERAL	
7.2		L WORK COST	
7.3		HT-OF-WAY ACQUISITION COST	
7.4		IINISTRATIVE COST	
7.5		IMARY OF PROJECT COST BEFORE O&M STAGE	
7.6		IMARY OF PROJECT COST	
7.7		RATION AND MAINTENANCE COST	
7.8		JECT COST OF PHASE II: CABANATUAN – SAN JOSE SECTION	
CHAR	PTER 8	ECONOMIC AND FINANCIAL EVALUATION	
8.1	EC	ONOMIC EVALUATION	
	8.1.1	Methodology	
	8.1.2	Economic Cost of the Project	
	8.1.3	Economic Benefit of the Project	

8.1.4	Results of Economic Analysis	
8.1.5	Project Sensitivity	
8.2 FII	VANCIAL EVALUATION	8-18
8.2.1	Procedure of Financial Analysis	8-18
8.2.2	Selection of PPP Modality	8-19
8.2.3	Assumptions and Conditions for Financial Analysis	
8.2.4	Indicator for Financial Viability	
8.2.5	Results of Financial Analysis for CLLEX	
8.2.6	Sensitivity Analysis for the revenue and project cost (civil works cost and O&M	
	cost)	
CHAPTER 9	ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	
	SCRIPTION OF THE PROJECT	
9.1.1	Background and Purpose	
9.1.2	Necessity of Project	
9.1.3	Project Component	
9.1.4	Project Rational	9-6
9.2 PH	ILIPPINES' LEGAL / POLICY FRAMEWORK ON	
	ENVIRONMENTAL AND SOCIAL CONSIDERATION	9-11
9.2.1	Governing Laws and Regulations	9-11
9.2.2	Philippines Environmental Impact Statement System (PEISS)	
9.2.3	Involuntary Resettlement and Land Acquisitions	
	SPONSIBLE ORGANIZATIONS	
9.3.1	Proponent of the Project	
9.3.2	EIA and ECC	
9.3.3	Involuntary Resettlement and Land Acquisitions	
	A GUIDELINES AND PHILIPPINES' SOCIAL AND	
<i>,</i>	ENVIRONMENTAL CONSIDERATION	9-34
9.4.1	Compliance with JICA Guidelines.	
9.4.2	Means to Bridge the Gaps	
9.4.3	Review of Existing Documents	
9.4.4	Identification of Means to Bridge the Gap	
9.4.5	Revised Scope of EIS; Scoping Matrix According to JICA Guidelines	
	VIRONMENTAL IMPACT ASSESSMENT	
9.5.1	EIA Study Area.	
9.5.2	State of Environment (Baseline Data)	
9.5.2	Analysis of Alternatives	
9.5.4	Prediction / Assessment and Mitigation of the Impacts	
9.5.4 9.5.5	Environmental Management and Monitoring Plan	
9.5.6	Institutional Arrangement and Budget	
9.5.7	System for Environmental Management	
	LOCATION ACTION PLAN	
9.6.1	Relocation Policy	
9.6.2	Summary of Relocation and Assets	
9.6.3	Household Survey Result	
9.6.4	Compensation and Livelihood Restoration Plan	
9.6.5	Relocation Site Development Plan	
9.6.6	PAP's Willingness to Relocate and Preferred Sites	
9.6.7	Grievance Redressing Mechanism	
9.6.8	Institutional Arrangement	
9.6.9	RAP Implementation Process	
9.6.10	Implementation schedule	
9.6.11	Financial Arrangement	9-199
9.6.12	Estimated Cost	9-199
9.6.13	Monitoring and Evaluation	
9.7 ST	AKEHOLDERS MEETING/ CONSULTATION MEETING	
9.7.1	Procedure of the Meeting	
9.7.2	Program	
9.7.3	Attendants	

9.7.4	4 Discussion	
9.8	RECOMMENDATION	
9.8.1	1 EIS	
9.8.2	2 RAP	
9.9	ECC STATUS	
CHAPTER	R 10 PROJECT IMPLEMENTATION PLAN	
10.1	IMPLEMENTATION STRATEGY	
10.2	IMPLEMENTATION SCHEDULE	
10.3	CIVIL WORK CONTRACT PACKAGING	
10.3	3.1 Civil Work Contract Package	
10.3	3.2 Construction Execution Plan	
10.4	CONSULTANCY SERVICES	
10.5	PROCUREMENT PLAN	
10.6	ORGANIZATIONAL STRUCTURE	
10.7	FINANCIAL PLAN	
10.7	7.1 Project Cost	
10.7	7.2 Annual Fund Requirement	
CHAPTER		
11.1	SELECTED OPERATION AND EFFECT INDICATORS	
11.2	TRAFFIC VOLUME OF CLLEX	
11.3	TOLL REVENUE OF CLLEX	
11.4	TRAFFIC CONGESTION RATE (V/C RATE)	
11.5	TRAVEL TIME SAVING	
11.6	TRAVEL COST SAVING	
11.7	OPERATION AND EFFECT INDICATORS	

List of Figure

Executive Summary

FIGURE 4.1-1	Traffic Volume in Central Luzon	S-3
FIGURE 4.1-2	Travel Speed (Afternoon Peak)	S-4
FIGURE 4.1-3	Travel Speed along Pan Philippine Highway	S-5
FIGURE 4.1-4	Toll Rate vs. Revenue (Year 2017)	S-6
FIGURE 4.2-1	Traffic Projection of CLLEX Phase-1	S-7
FIGURE 4.2-2	Traffic Flow of CLLEX Phase-1 by Destination (Year 2017)	S-8
FIGURE 4.2-3	Traffic Flow of CLLEX Phase-1 by Destination (Year 2030)	S-9
FIGURE 5.5-1	Need of Cabanatuan City By pass IC	S-14
FIGURE 5.6-1	Flood Condition at Rio Chico A Flood-Prone Area	S-15
FIGURE 5.7-1	Proposed Toll Collection System of CLLEX	S-17
FIGURE 6.1-1	Proposed CLLEX Alignment and Layout of Interchanges	
FIGURE 6.3-1	Typical Cross Section	S-20
FIGURE 11.3-1	Finally Proposed Relocation Sites (Umangan, Aliaga Municipality)	S-38
FIGURE 11.4-1	RAP Implementation Organization	S-39
FIGURE 11.5-1	RAP Implementation Process	

Main Report

FIGURE 2.3-1	PROPOSED HSH NETWORK	2-3
FIGURE 2.6-1	LOCATION MAP OF PLARIDEL BYPASS AND CLLEX	2-7
FIGURE 2.8-1	ORGANIZATION CHART OF DPWH	2-15
FIGURE 3.1.2-1	ALIGNMENT OF CLLEX SHOWING DIRECTLY AFFECTED	
	BARANGAYS	
FIGURE 3.1.3-1	GDP AND GRDP GROWTH RATE	
FIGURE 3.2-1	URBAN DEVELOPMENT STRUCTURE	3-8
FIGURE 3.2-2	AGRICULTURE AND TOURISM DEVELOPMENT	
	AND PACIFIC COAST DEVELOPMENT	3-9
FIGURE 3.2-3	DEVELOPMENT AXES	3-10
FIGURE 3.2-4	DEVELOPMENT STRATEGY : 200KM RADIUS SPHERE OF	
	METRO MANILA	3-11
FIGURE 4.1.2-1	TRAFFIC VOLUME IN CENTRAL LUZON AND ROAD	
	NETWORK SURROUNDING CLLEX	
FIGURE 4.1.2-2	TALAVERA/GUIMBA/MUNOZ JUNCTION	
FIGURE 4.1.2-3	CABANATUAN/TALAVERA/LLANERA JUNCTION	
FIGURE 4.1.2-4	ALIAGA/TALAVERA/STA.ROSA/CABANATUAN JUNCTION	
FIGURE 4.1.3-1	TARLAC – STA. ROSA ROAD (LAPAZ-ZARAGOSA SECTION)	
FIGURE 4.1.3-2	TARLAC – STA. ROSA ROAD (ZARAGOSA-STA. ROSA SECTION)	
FIGURE 4.1.3-3	TARLAC – STA. ROSA ROAD (ALIAGA-CABANATUAN SECTION)	
FIGURE 4.1.3-4	TARLAC – TALAVERA ROAD (LICAB-QUEZON SECTION)	
FIGURE 4.1.3-5	PAN PHILIPPINE HIGHWAY (SAN LEONARDO-STA. ROSA)	4-5
FIGURE 4.1.3-6	PAN PHILIPPINE HIGHWAY (CABANATUAN-TALAVERA-LLANERA	
	JUNCTION)	
FIGURE 4.1.4-1	TRAFFIC COMPOSITION AT TARLAC - STA. ROSA ROAD)	4-5
FIGURE 4.1.4-2	TRAFFIC COMPOSITION AT OTHER ROADS CONNECTING	
	TARLAC SIDE AND CABANATUAN SIDE	
FIGURE 4.1.4-3	TRAFFIC COMPOSITION AT PAN PHILIPPINE HIGHWAY	
FIGURE 4.1.5-1	TRAVEL SPEED (AFTERNOON PEAK)	
FIGURE 4.1.5-2	TRAVEL TIME (AM AND PM) TRAVEL SPEED ALONG PAN PHILIPPINE HIGHWAY	
FIGURE 4.1.5-3 FIGURE 4.1.6-1	LOCATION FOR WILLINGNESS-TO-PAY SURVEY	
FIGURE 4.1.6-2 FIGURE 4.1.6-3	WILLINGNESS-TO-PAY SURVEY FORM SEX DISTRIBUTION	
FIGURE 4.1.6-4	AGE DISTRIBUTION	
FIGURE 4.1.6-5	OCCUPATION DISTRIBUTION	
FIGURE 4.1.6-6	MONTHLY INCOME DISTRIBUTION	
FIGURE 4.1.6-7	ORIGIN OF TRIPS AT STATION 1 (TARLAC – STA. ROSA ROAD)	
FIGURE 4.1.6-8	DESTINATION OF TRIPS AT STATION 1	4-13
1100KL 4.1.0-0	(TARLAC – STA. ROSA ROAD)	1 13
FIGURE 4.1.6-9	ORIGIN OF TRIPS AT STATION 2 (PAN PHILIPPINE HIGHWAY AT	4-15
1100KL 4.1.0-9	CABANATUAN - GAPAN)	4-13
FIGURE 4.1.6-10	DESTINATION OF TRIPS AT STATION 2 (PAN PHILIPPINE HIGHWAY A	т. Т
1100112 4.1.0 10	CABANATUAN - GAPAN)	
FIGURE 4 1 6-11	ORIGIN OF TRIPS AT STATION 3 (PAN PHILIPPINE HIGHWAY AT	+ 15
1100112 4.1.0 11	CABANATUAN - TALAVERA)	4-14
FIGURE 4 1 6-12	DESTINATION OF TRIPS AT STATION 2 (PAN PHILIPPINE HIGHWAY A	
	CABANATUAN - TALAVERA)	
FIGURE 4.1.6-13	TRIP PURPOSE DISTRIBUTION	
	CURRENT ROUTE CHOICE TO/FROM MANILA	
	WILL THEY USE CLEX TO/FROM TARLAC/SUBIC	
	AMOUNT THEY ARE WILLING TO PAY TO/FROM TARLAC/SUBIC	

FIGURE 4.1.6-17 FIGURE 4.1.6-18	WILL THEY USE EXPRESSWAY TO/FROM METRO MANILA	
FIGURE 4.1.7-1	SINGLE-SEATER BUS	
FIGURE 4.1.7-1	TWO-SEATER BUS	
FIGURE 4.1.7-2 FIGURE 4.1.7-3	BUS ROUTE FOR MANILA - CABANATUAN	
FIGURE 4.1.7-3	WILL THEY ALLOW THEIR BUS DRIVERS TO USE CLLEX?	
	AMOUNT THEY ARE WILLING TO PAY?	
FIGURE 4.1.7-5	PERCEIVED BENEFITS BY BUS OPERATORS OF CLLEX	
FIGURE 4.1.7-6		4-20
FIGURE 4.1.7-7	EXISTING BUS ROUTE AND AFTER CLLEX BUS ROUTE	4 00
	(WILLINGNESS TO USE)	
FIGURE 4.1.8-1	DISTRIBUTION OF TRUCK TYPES	4-23
FIGURE 4.1.8-2	DO YOU ALLOW YOUR TRUCK DRIVERS TO USE EXPRESSWAY	4.00
	(YES OR NO)	
FIGURE 4.1.8-3	WHO SHOULDER THE TOLL FEE	
FIGURE 4.1.8-4	TRUCK ROUTES FOR MANILA – CABANATUAN DELIVERY	4-24
FIGURE 4.1.8-5	WILL YOU ALLOW YOUR TRUCK DRIVERS TO USE CLLEX	
	(YES OR NO)	
FIGURE 4.1.8-6	HOW MUCH ARE YOU WILLING TO PAY FOR USE CLLEX	
FIGURE 4.1.8-7	PERCEIVED BENEFITS BY TRUCK OPERATORS FROM CLLEX	
(/2) EXISTING TRUCK ROUTE AND AFTER CLLEX BUS ROUTE	
(/2) EXISTING TRUCK ROUTE AND AFTER CLLEX BUS ROUTE	4-27
FIGURE 4.1.9-1	PERCENTAGE OF WILLING AND NOT WILLING TO	
	SHOULDER TOLL FEE	4-28
FIGURE 4.1.9-2	PERCEIVED BENEFITS BY MANUFACTURING COMPANIES	
	FROM CLLEX	
FIGURE 4.1.9-3	TRUCK ROUTES OF MANUFACTURING INDUSTRY IN CLLEX	4-30
FIGURE 4.2.1-1	FORECAST OF TRAFFIC VOLUMES ON ROAD NETWORK	
FIGURE 4.2.1-2	ZONING MAP – METRO MANILA	4-37
FIGURE 4.2.1-3	ZONING MAP – OUTSIDE METRO MANILA	4-38
FIGURE 4.2.4-1	TRAFFIC ASSIGNMENT PROCEDURE	4-43
FIGURE 4.2.4-2	SPEED – FLOW RELATIONSHIP	4-43
FIGURE 4.2.5-1	COMPARISON OF OBSERVED AND ASSIGNED TRAFFIC VOLUME	
	(VEH/DAY)	4-46
FIGURE 4.2.6-1	TOLL RATE VS REVENUE (YEAR 2017)	4-47
FIGURE 4.2.7-1	TRAFFIC PROJECTION (YEAR 2017) OF CLLEX (PHASE-1)	
	2-LANE CASE	4-50
FIGURE 4.2.7-2	TRAFFIC PROJECTION (YEAR 2020) OF CLLEX (PHASE-1)	
	2-LANE CASE	4-51
FIGURE 4.2.7-3	TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-1)	
	2-LANE CASE	4-52
FIGURE 4.2.7-4	RESULT OF TRAFFIC ASSIGNMENT IN YEAR 2017	
	(PHASE-1, 2-LANE)	4-53
FIGURE 4.2.7-5	RESULT OF TRAFFIC ASSIGNMENT IN YEAR 2020	
	(PHASE-1, 2-LANE)	4-54
FIGURE 4.2.7-6	RESULT OF TRAFFIC ASSIGNMENT IN YEAR 2030	
	(PHASE-1, 2-LANE)	4-55
FIGURE 4.2.7-7	COMPARISON OF WITH CASE AND WITHOUT CASE IN YEAR 2017	
	(PHASE-1, 2-LANE)	4-56
FIGURE 4.2.7-8	COMPARISON OF WITH CASE AND WITHOUT CASE IN YEAR 2020	
	(PHASE-1, 2-LANE)	4-57
FIGURE 4.2.7-9	COMPARISON OF WITH CASE AND WITHOUT CASE IN YEAR 2030	
	(PHASE-1, 2-LANE)	4-58
FIGURE 4.2.7-10	TRAFFIC VOLUME OF CLLEX DESTINATION (YEAR 2017)	
	(PHASE 1, 2 LANES)	4-59
	· · · · · · · · · · · · · · · · · · ·	

FIGURE 4.2.7-11	TRAFFIC VOLUME OF CLLEX DESTINATION (YEAR 2020) (PHASE 1, 2 LANES)	4 60
FIGURE 4.2.7-12	TRAFFIC VOLUME OF CLLEX DESTINATION (YEAR 2030)	4-00
FIGURE 4.2.7-12	(PHASE 1, 2 LANES)	1-61
FIGURE 4.2.7-13	TRAFFIC PROJECTION (YEAR 2017) OF CLLEX (PHASE-1)	+-01
1100112 4.2.7 15	4-LANE CASE	4-64
FIGURE 4.2.7-14	TRAFFIC PROJECTION (YEAR 2020) OF CLLEX (PHASE-1)	
1100112 1.2.7 11	4-LANE CASE	4-65
FIGURE 4.2.7-15	TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-1)	
1100112	4-LANE CASE	4-66
FIGURE 4.2.7-16	TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-1)	
1100112	4-LANE CASE	4-68
FIGURE 4.2.7-17	TRAFFIC PROJECTION (YEAR 2020) OF CLLEX (PHASE-2)	
1100112	2-LANE CASE	4-69
FIGURE 4.2.7-18	TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-2)	
	2-LANE CASE	4-70
FIGURE 4.2.7-19	TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION	
	(YEAR 2017) 4 LANES	4-71
FIGURE 4.2.7-20	TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION	
	(YEAR 2020) 4 LANES	4-72
FIGURE 4.2.7-21	TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION	
	(YEAR 2030) 4 LANES	4-73
FIGURE 5.1-1	DISTRIBUTION OF POPULATION IN REGION 3 AND	
	ROAD NETWORK	5-2
FIGURE 5.2.1-1	TECHNICAL ISSUES OF CLLEX PHASE I	
FIGURE 5.2.2-1	CONNECTION BETWEEN SCTEX AND TPLEX	5-6
FIGURE 5.2.3-1	ALIAGA TOWN PROPER AND ITS VICINITY	
FIGURE 5.2.4-1	NEED OF CABANATUAN CITY BYPASS IC	
FIGURE 5.2.5-1	FLOOD CONDITION AT RIO CHICO AND TALAVERA RIVER	
	CONFLUENCE POINT	5-16
FIGURE 5.2.6-1	PROPOSED CLLEX ALIGNMENT AND LAYOUT OF INTERCHANGES.	5-21
FIGURE 5.2.8-1	LEVEL OF SERVICE FOR MULTI-LANE HIGHWAY	
FIGURE 6.1.3-1	DISTRIBUTION OF EARTHQUAKE GENERATORS IN	
	THE PHILIPPINES	6-3
FIGURE 6.1.3-2	MAP SHOWING ACTIVE AND SUSPECTED ACTIVE FAULTS AND	
	SEISMIC SOURCES IN CENTRAL LUZON	6-4
FIGURE 6.1.3-3	HISTORICAL EATHQUAKE IN THE CENTRAL LUZON, PHILIPPINES	6-5
FIGURE 6.1.3-4	GEOTECHNICAL TEST LOCATION MAP	
FIGURE 6.1.3-5	GEOGRAPHICAL PROFILE (1/2)	6-10
FIGURE 6.1.3-5	GEOGRAPHICAL PROFILE (2/2)	6-11
FIGURE 6.1.3-6	LOCATION MAP OF SAMPLE MATERIAL	
FIGURE 6.2.8-1	CROSS SECTIONAL CONFIGURATION (4 LANES)	6-17
FIGURE 6.2.8-2	CROSS SECTIONAL CONFIGURATION (1 LANE RAMP)	6-18
FIGURE 6.2.8-3	CROSS SECTIONAL CONFIGURATION (2 DIRECTION	
	2 LANE RAMP)	6-18
FIGURE 6.2.8-4	CROSS SECTIONAL CONFIGURATION (2 DIRECTION 4 LANE)	6-18
FIGURE 6.2.8-5	CROSS SECTIONAL CONFIGURATION (MEDIUM/ SMALL SIZE	
	BRIDGE (L=<100M)	
FIGURE 6.2.8-6	CROSS SECTIONAL CONFIGURATION FOR VIADUCT (STANDARD)	6-19
FIGURE 6.2.8-7	CROSS SECTIONAL CONFIGURATION FOR VIADUCT	
	(INITIAL OPEN SIDE)	
FIGURE 6.3.2-1	CATCHMENT AREA (1/2)	6-36
FIGURE 6.3.2-1	CATCHMENT AREA (2/2)	
FIGURE 6.3.2-2 (1) RAINFALL INTENSITY FREQUENCY (CABANATUAN)	6-39

FIGURE 6.3.2-2 (2) RAINFALL INTENSITY FREQUENCY	
	(MUNOZ, NUEVA ECIJA	
FIGURE 6.3.2-2 (3) RAINFALL INTENSITY FREQUENCY (PANTABANGAN)	6-40
FIGURE 6.3.2-3	RESULT OF THE RATIONAL FORMULA CALCULATION	
	(BASIN NO.1)	6-45
FIGURE 6.3.2-4	RESULT OF THE RATIONAL FORMULA CALCULATION	
	(BASIN NO.18)	6-45
FIGURE 6.3.5-1	PAMPANGA RIVER BASIN	
FIGURE 6.3.5-2	INUNDATED AREA ALONG STUDY ROUTE	0 07
1100RE 0.5.5 2	(MAXIMUM FLOOD BY 2004)	6-68
FIGURE 6.3.5-3	FLOOD CONDITION AT RIO-CHICO RIVER	6-71
FIGURE 6.3.5-4	ASSUMPTION OF MFWL AND HWL	
FIGURE 6.3.5-5	SCHEMATIC IMAGE OF VERTICAL CONTROL POINT OF	0-75
1100KL 0.5.5-5	RIO CHICO RIVER	6-74
FIGURE 6.3.5-6	MINIMUM BRIDGE LENGTH AND DISCHARGE CAPACITY	
FIGURE 6.3.5-7	STRUCTURAL DESIGN AT FLOOD PRONE AREA	
FIGURE 6.3.5-8	FLOOD ON 27 JUNE, 2011 BY TYPHOON FALCON	0-70
1100KL 0.3.3-0	(RIO CHICO RIVER EQUALIZING ZONE)	6 77
FIGURE 6.3.5-9	EQUALIZER AT SAME PLACE ABOVE	0-77
FIGURE 6.3.6-1	LOCATION OF IC AND NUMBER OF FACILITIES	
	TYPICAL DRAWING OF TOLL BOOTH	
	TYPICAL DRAWING OF TOLL BOOTH LAYOUT (9BOOTHS)	
	TYPICAL DRAWING OF TOLL BOOTH LAYOUT (3BOOTHS)	
FIGURE 6.3.6-2(4)	TYPICAL DRAWING OF TOLL BOOTH LAYOUT (4BOOTHS)	
FIGURE 6.3.6-4	TARLAC JUNCTION TARLAC INTERCHANGE AND TOLL BARRIER	
FIGURE 6.3.6-5	ALIAGA INTERCHANGE	
FIGURE 6.3.6-6	CABANATUAN BYPASS INTERCHANGE (1/2)	
FIGURE 6.3.6-7	CABANATUAN BYPASS INTERCHANGE (1/2)	
FIGURE 6.3.6-8	CABANATUAN DITASS INTERCHANGE (2/2)	
FIGURE 6.3.7-1	CROSS SECTIONAL CONFIGURATION (1ST STAGE: 2 LANES)	
FIGURE 6.3.7-2	CROSS SECTIONAL CONFIGURATION (131 STAGE, 2 LANES)	
FIGURE 6.3.7-3	SAMPLE OF LANE DIVIDER	
FIGURE 6.3.7-4	TYPE OF ADDITIONAL LANE PROVISION	
FIGURE 6.3.7-5	RECOMMENDED ADDITIONAL LANE LAYOUT	
FIGURE 6.3.7-6	TAPER LAYOUT OF ADDITIONAL LANE	
FIGURE 6.3.7-7	SCHEMATIC DIAGRAM FOR INTERIM 2 LANE DESIGN	
FIGURE 6.4.2-1	STRUCTURE LOCATION MAP	
FIGURE 6.4.2-1	RCBC FOR ROAD	
FIGURE 6.4.2-3	RCBC FOR RIVER AND IRRIGATION	
FIGURE 6.5.4-1	PAVEMENT STRUCTURE OF MAIN CARRIAGEWAY	
FIGURE 6.5.4-2	PAVEMENT STRUCTURE OF MAIN CARRIAGE WAT	
FIGURE 6.5.4-3	PAVEMENT STRUCTURE OF SHOULDER	
FIGURE 8.1.1-1	WORK FLOW OF ECONOMIC EVALUATION	
FIGURE 8.2-1	PROCEDURE OF FINANCIAL ANALYSIS FOR CLLEX	
FIGURE 8.2-2	PPP MODALITY (LEASE) FOR CLLEX	
FIGURE 8.2-3	CONCEPTUAL DIAGRAM OF ANNUAL LEASE FEE	
FIGURE 8.2-4	ANNUAL LEASE FEE FOR PHASE 1 (OPTION 1)	
FIGURE 8.2-5	ANNUAL LEASE FEE FOR PHASE 1 (OPTION 2)	
FIGURE 8.2-6	ANNUAL LEASE FEE FOR PHASE 1&2 (OPTION1	
FIGURE 8.2-7	ANNUAL LEASE FEE FOR PHASE 1&2 (OPTION2)	
FIGURE 8.2-8	NET INCOME ON "IRR FOR SPC" FOR PHASE 1 (OP1) -CASE 1-4	
FIGURE 8.2-9	CASH FLOW ON "EQUITY IRR" FOR PHASE 1 (OP1) -CASE 1-4	
		-

FICUDE 0.2.10		
FIGURE 8.2-10	NET INCOME ON "GOVERNMENT IRR" FOR PHASE 1	0.20
FICUDE 0.0.11	(OP1) -CASE 1-4 NET INCOME ON "IRR FOR SPC" FOR PHASE 1&2 (OP1) -CASE 1-6	8-30
FIGURE 8.2-11		
FIGURE 8.2-12	CASH FLOW ON "EQUITY IRR" FOR PHASE 1&2 (OP1) -CASE 1-6 NET INCOME ON "GOVERNMENT IRR" FOR PHASE 1&2	8-37
FIGURE 8.2-13		0.27
	(OP1) -CASE 1-6	8-37
FIGURE 8.2-14	NET INCOME ON "IRR FOR SPC" FOR PHASE 1 (OP2) -CASE 2-5	
FIGURE 8.2-15	CASH FLOW ON "EQUITY IRR" FOR PHASE 1 (OP2) -CASE 2-5	8-38
FIGURE 8.2-16	NET INCOME ON "GOVERNMENT IRR" FOR PHASE 1	0.00
	(OP2)-CASE 2-5	
FIGURE 8.2-17	NET INCOME ON "IRR FOR SPC" FOR PHASE 1&2 (OP2) -CASE 2-7	
FIGURE 8.2-18	CASH FLOW ON "EQUITY IRR" FOR PHASE 1&2 (OP2) -CASE 2-7	8-39
FIGURE 8.2-19	NET INCOME ON "GOVERNMENT IRR" FOR PHASE 1&2	
	(OP2) -CASE 2-7	8-39
FIGURE 9.1.2-1	DISTRIBUTION OF POPULATION IN REGION III AND	
	ROAD NETWORK	9-3
FIGURE 9.1.2-2	DEVELOPMENT STRATEGY: 200KM RADIUS SPHERE OF	
	METRO MANILA	9-4
FIGURE 9.1.3-1	PROPOSED PROJECT AREA	
FIGURE 9.1.3-2	ROUTE OF PROPOSED ROAD	
FIGURE 9.1.4-1	PROPOSED HSH NETWORK	
FIGURE 9.2.2-1	EIA PROCESS FLOW	9-16
FIGURE 9.3.1-1	DPWH ORGANOGRAM	
FIGURE 9.3.1-2	ORGANIZATION CHART OF PMO-PJHL	
FIGURE 9.3.1-3	FUNCTIONAL CHART OF PMO-PJHL	
FIGURE 9.3.1-4	ORGANIZATION CHART OF ESSO	
FIGURE 9.3.1-5	ORGANIZATION CHART OF PMO-IROWR	9-28
FIGURE 9.3.2-1	DENR ORGANOGRAM	9-30
FIGURE 9.3.2-2	DENR-EMB ORGANOGRAM	9-31
FIGURE 9.5.1-1	PROJECT AFFECTED AREA / BARANGAYS	9-54
FIGURE 9.5.2-1	WATER, AIR, AND NOISE SAMPLING STATIONS	9-61
FIGURE 9.5.2-2	NOISE PREDICTED STATION MAP	9-71
FIGURE 9.5.2-3	CLIMATOLOGICAL MAP	9-80
FIGURE 9.5.2-4	PAMPANGA RIVER BASIN	9-81
FIGURE 9.5.2-5	FLOOD PRONE AREA IN CLLEX ALIGNMENTS	9-84
FIGURE 9.5.2-6	GEOLOGICAL MAP	9-86
FIGURE 9.5.2-7	OPEN DUMPING SITE	
FIGURE 9.5.2-8	HERITAGE SITES AND OTHER TOURIST DESTINATION	9-97
FIGURE 9.5.2-9	TRAFFIC ON ROAD NETWORK	9-98
FIGURE 9.5.2-10	PROTECTED AREA	9-100
FIGURE 9.5.3-1	MONITOR IMPLEMENTATION OF ENVIRONMENTAL MITIGATION	
	MEASURES EVALUATION OF ALTERNATIVE ALIGNMENT	9-107
FIGURE 9.5.3-2	ALIAGA INTERCHANGE ALTERNATIVES	
FIGURE 9.5.3-3	CABANATUAN I/C ALTERNATIVES	
FIGURE 9.5.6-1	ENVIRONMENTAL MANAGEMENT AND MONITORING	
	IMPLEMENTATION ORGANIZATION	9-143
FIGURE 9.6.5-1	PROPOSED RELOCATION SITE (TARLAC)	
FIGURE 9.6.5-2	PROPOSED RELOCATION SITE (NUEVA ECIJA)	
FIGURE 9.6.5-3	FINALLY PROPOSED RELOCATION SITES	
FIGURE 9.6.8-1	RAP IMPLEMENTATION ORGANIZATION	
FIGURE 9.6.9-1	RAP IMPLEMENTATION PROCESS	
FIGURE 9.7.4-1	TOTAL ATTENDANCES AND PARTICIPATION TO DISCUSSIONS	
FIGURE 9.7.4-2	OVERALL ATTENDANCES	
FIGURE 10.3.1-1	CONTRACT PACKAGING	
1 100KB 10.3.1-1		10-7

FIGURE 10.3.2-1	ROADS TO BE USED DURING CONSTRUCTION AND	
	LOCATION OF CONTRACTOR'S CAMP	10-11
FIGURE 10.6-1	OVERALL IMPLEMENTATION ORGANIZATION	10-17

List of Table

Executive Summary

TABLE 4.2-1	Traffic Volume and Vehicle KM (CLLEX Phase-1)		
TABLE 5.2-1	Alternatives of Connection Between CLLEX and SCTES /TPLEX	S-11	
TABLE 5.3-1	Aliaga Interchange of Comparative Study	S-12	
TABLE 5.4-1	Cabanatuan Interchange Comparative Study	S-13	
TABLE 5.6-1	Evaluation of Alignment Alternatives	S-16	
TABLE 6.1-1	Outline of CLLEX Phase-1	S-18	
TABLE 6.2-1	Geometrical Design Standard of CLLEX	S-19	
TABLE 7-1	Estimated Construction Cost of CLLEX Phase-1	S-21	
TABLE 7-2	Estimated Operation and Maintenance Cost of CLLEX Phase-1	S-21	
TABLE 8.1-1	Unit VOC by Four (4) Vehicles Type in 2011 Peso/km/veh)	S-22	
TABLE 8.1-2	Unit Travel Time Cost in 2011 (Peso/min/veh)	S-22	
TABLE 8.2-1	The Results of Economic Analysis	S-22	
TABLE 8.3-1	Project Sensitivity	S-23	
TABLE 10.1-1	Assumptions and Conditions of Financial Analysis	S-25	
TABLE 10.1-2	Assumptions for Lease Fee	S-26	
TABLE 10.2-1	Financial Analysis Results of CLLEX Phase-1 Option-1 (2 lane to 4 lane)	S-27	
TABLE 10.2-2	Financial Analysis Results of CLLEX Phase-1 Option-2 (4-lane)	S-28	
TABLE 11.1-1	EIA Results (Pre-Construction and Construction Phase)	S-30	
TABLE 11.1-2	EIA Results (Operation and Maintenance Phase	S-36	
TABLE 11.2.1	Over-all RAP Requirements	S-37	
TABLE 11.3-1	Number of Residential House, Household and People Affected	S-38	
TABLE 11.5-1	RAP Implementation Schedule	S-41	
TABLE 12-1	Implementation Schedule	S-44	
TABLE 13-1	Operation and Effect Indicators	S-45	
TABLE 13-2	Operation and Effect Indicators	S-45	

Main Report

TABLE 2.3-1	PROPOSED HSH PROJECTS PRIORITY	2-3	
TABLE 2.4-1	TARGET OUTCOMES OVER THE MEDIUM TERM		
TABLE 2.4-2	(2011-2016) PUBLIC INVESTIMENT PROGRAM SUMMARY	2-4	
TABLE 2.7-1	MAJOR ISSUES AND BOTTLENECKS OF PPP PROJECTS	2-8	
TABLE 2.8-1	TOLL EXPRESSWAY COMPANY	2-16	
TABLE 2.8-2	TOLL EXPRESSWAY'S TOLL COLLECTION SYSTEM AND TRAFFIC CONTROL SYSTEM	2-16	
TABLE 3.1.1-1	POPULATION SHARE	3-1	
TABLE 3.1.2-1	DEMOGRAPHIC TREND IN THE STUDY AREA	3-2	
TABLE 3.1.2-2	POPULATION OF BARANGAYS DIRECTLY AFFECTED BY THE PROJECT	3-3	
TABLE 3.1.3-1	INDUSTRIAL STRUCTURE OF THE ECONOMY, 2007		
TABLE 3.1.4-1	PER CAPITA GRDP IN CURRENT PRICE	3-5	
TABLE 3.1.4-2	PER CAPITA GRDP IN CONSTANT PRICE	3-6	
TABLE 3.1.5-1	NUMBER OF ESTABLISHMENTS AND EMPLOYMENTS BY REGION/PROVINCE: LUZON	3-6	
TABLE 4.1.1-1	TYPE OF SURVEYS CARRIED OUT		
TABLE 4.1.7-1	NUMBER OF BUS OWNED BY BUS COMPANIES	4-18	
TABLE 4.1.8-1	NUMBER OF TRUCKS OWNED BY TRUCK COMPANIES	4-23	
TABLE 4.2.1-1 (1)	TRAFFIC ZONING SYSTEM	4-33	
TABLE 4.2.1-1 (2)	TRAFFIC ZONING SYSTEM	4-34	
	TRAFFIC ZONING SYSTEM		
TABLE 4.2.1-1 (4)	TRAFFIC ZONING SYSTEM	4-36	
TABLE 4.2.2-1	FUTURE POPULATION	4-39	
TABLE 4.2.2-2	GDP AND GRDP GROWTH RATE	4-39	
TABLE 4.2.2-3	FUTURE EMPLOYMENT	4-40	
TABLE 4.2.3-1	ESTIMATED GENERATION TRIP AND ANNUAL GROWTH RATE	4-40	
TABLE 4.2.3-2	FUTURE VEHICLE OD TABLE (YEAR 2020)	4-41	
TABLE 4.2.4-1	FREE SPEED AND CAPACITY BY ROAD TYPE	4-44	
TABLE 4.2.4-2	PASSENGER CAR UNIT (PCU)	4-44	
TABLE 4.2.4-3	TIME EVALUATION VALUE BY VEHICLE TYPE	4-45	
TABLE 4.2.5-1	COMPARISON OF OBSERVED AND ASSIGNED TRAFFIC VOLUME (VEH/DAY)	4-45	
TABLE 4.2.6-1	PRESENT TOLL RATE	4-47	
TABLE 4.2.7-1	TRAFFIC INDICATORS OF W/O CLLEX CASE AND WITH CASE	4-48	
TABLE 4.2.7-2	TOTAL TRAFFIC VOLUME AND TOTAL VEHICLE KM (CLLEX PHASE-1, 2LANE)	4-49	
TABLE 4.2.7-3	TOTAL TRAFFIC VOLUME AND TOTAL VEHICLE KM (CLLEX PHASE-1, 4-LANE)		
TABLE 4.2.7-4	TOTAL TRAFFIC VOLUME AND TOTAL VEHICLE KM (CLLEX PHASE-2, 2-LANE)		

TABLE 5.2.2-1	ALTERNATIONS OF CONNECTION BETWEEN CLLEX AND SCTEX/TPLEX	5-7
TABLE 5.2.2-2	EVALUATION OF ALTERNATIVES	
TABLE 5.2.3-1	ALIAGA INTERCHANGE OF COMPARATIVE STUDY	
TABLE 5.2.4-1	CABANATUAN INTERCHANGE COMPARATIVE STUDY	
TABLE 5.2.5-1	OUTLINE OF ALTERNATIVE ALIGNMENTS	
TABLE 5.2.5-2	EVALUATION OF ALIGNMENT ALTERNATIVES	
TABLE 5.2.7-1	PROPOSED TOLL COLLECTION SYSTEM OF CLLEX	5-23
TABLE 5.2.7-2	NUMBER OF TOLL BOOTH REQUIRED	5-24
TABLE 5.2.7-3	LOCATION FOR TRAFFIC AND MAINTENANCE OFFICE	
TABLE 5.2.8-1	DAILY TRAFFIC VOLUME OF TWO-LANE EXPRESSWAY	
	IN JAPAN (2011 APRIL)	
TABLE 5.2.8-2	DEFINITION OF LOS FOR TWO-LANE HIGHWAY	
TABLE 5.2.8-3	DEFINITION OF LOS FOR MULTI-LANE HIGHWAY	
TABLE 5.2.8-4	SERVICE TRAFFIC VOLUME OF TWO-LANE CLLEX	
TABLE 5.2.8-5	ESTIMATED 2-LANE CLLEX TRAFFIC VOLUME	
TABLE 5.2.8-6	SERVICE TRAFFIC VOLUME OF FOUR-LANE CLLEX	5-32
TABLE 5.2.8-7	ESTIMATED 4-LANE CLLEX TRAFFIC VOLUME (TARLAC IC – ALIAGA IC SECTION)	5-32
TABLE 5.2.8-8	ESTIMATED 2-LANE CLLEX PHASE-II TRAFFIC VOLUME AND LOS	
	(CABANATUAN – SAN JOSE SECTION) SUMMARY OF TOPOGRAPHICAL SURVEY	
TABLE 6.1.2-1 TABLE 6.1.3-1	LIST OF GEOTECHNICAL TEST	
TABLE 6.1.3-1 TABLE 6.1.3-2	BOREHOLE TEST LOCATION	
TABLE 6.1.3-2	TEST RESULT OF TEST PITS AND AUGER HOLES	
TABLE 6.1.3-4	LABORATORY TEST RESULT OF MATERIAL SOURCE	0-9
IADLE 0.1.3-4	INVESTIGATION	6-13
TABLE 6.2.5-1	GEOMETRY OF CLEX (MAIN ALIGNMENT) (100KM/HR)	6-15
TABLE 6.2.5-2	GEOMETRY OF CLEX (RAMP) (40KM/HR)	6-16
TABLE 6.2.10-1	MINIMUM RADII FOR DESIGN SUPERELEVATION RATES, EMAX = 6.0%	6-26
TABLE 6.2.12-1	DESIRABLE LENGTH OF SPIRAL CURVE TRANSITION	
TABLE 6.2.12-2	MINIMUM SPIRAL CURVE LENGTH FOR SUPERELEVATION	
	RUNOFF (LD)	6-27
TABLE 6.2.13-1	DECELERATION LENGTH	6-28
TABLE 6.2.13-2	ACCELERATION LENGTH	6-28
TABLE 6.2.13-3	SPEED CHANGE LANE ADJUSTMENT FACTORS AS A FUNCTION OF GRADE	6-29
TABLE 6.2.13-4	SPEED CHANGE LANE ADJUSTMENT FACTORS AS A FUNCTION OF GRADE	6-29
TABLE 6.3.2-1	VALUES OF "C" FOR USE IN THE RATIONAL FORMULA	
TABLE 6.3.2-2	RESULT OF THE RATIONAL FORMULA CALCULATION	
	(BASIN NO.1)	6-43
TABLE 6.3.2-3	RESULT OF THE RATIONAL FORMULA CALCULATION (BASIN NO.18)	6-44

TABLE 6.3.2-4	DISCHARGE OF RIO CHICO RIVER	6-46		
TABLE 6.3.2-5	HYDROLOGICAL CHARACTERISTICS OF WATERSHEDS			
TABLE 6.3.2-6	RIO CHICO RIVER	6-53		
TABLE 6.3.2-7	BASIN NO. 1	6-53		
TABLE 6.3.2-8	BASIN NO. 18	6-53		
TABLE 6.3.2-9	DESIGN FREQUENCY BY ROAD STRUCTURE	6-57		
TABLE 6.3.3-1	CROSS SECTIONAL CONFIGURATION OF CROSSING ROAD	6-58		
TABLE 6.3.3-2	TYPICAL CONDITION OF CROSSING WATER WAY	6-59		
TABLE 6.3.3-3	FREEBOARD ALLOWANCE	6-59		
TABLE 6.3.3-4	LIST OF BRIDGE	6-60		
TABLE 6.3.3-5	LIST OF RCBC OF ROADWAY	6-61		
TABLE 6.3.3-6	LIST OF RCBC OF RIVER AND IRRIGATION	6-62		
TABLE 6.3.3-7	LIST OF RCBC (EQUALIZATION ZONE)	6-63		
TABLE 6.3.4-1	VERTICAL CONTROL POINT LIST (1/2)	6-65		
TABLE 6.3.4-1	VERTICAL CONTROL POINT LIST (2/2)	6-66		
TABLE 6.3.5-1	CHARACTERISTICS OF RIO CHICO AND PAMPANGA RIVER	6-68		
TABLE 6.3.5-2	FLOOD CONDITION BY MUNICIPALITY ALONG			
	RIO CHICO RIVER			
TABLE 6.3.5-3	RECORD OF ROAD CLOSURE TARLAC-STA ROSA ROAD			
TABLE 6.3.5-4	SUMMARY OF FLOOD MECHANISM AT RIO CHICO RIVER			
TABLE 6.3.5-5	HISTORICAL FLOOD LEVEL			
TABLE 6.3.5-6	COMPARISON OF RECORD AND ANALYZED VALUE			
TABLE 6.3.5-7	DESIGN FLOOD LEVEL			
TABLE 6.3.5-8	REQUIRED BRIDGE LENGTH OF RIO CHICO RIVER			
TABLE 6.3.6-1	TYPICAL JUNCTION TYPE			
TABLE 6.3.6-2	TYPICAL INTERCHANGE TYPE			
TABLE 6.3.6-3	REQUIRED LANE NUMBER OF INTERCHANGE RAMP			
TABLE 6.3.7-1	ADEQUATE LENGTH OF ADDITIONAL LANE			
TABLE 6.3.7-2	SUMMARY OF INTERIM 2 LANE DESIGN SECTIONAL CONFIGURATION			
TABLE 6.3.7-3	INTERIM 2 LANE DESIGN SECTIONAL CONFIGURATION			
TABLE 6.4.2-1	BRIDGE FEATURES – MAIN CARRIAGEWAY (1/3)			
TABLE 6.4.2-1	BRIDGE FEATURES – MAIN CARRIAGEWAY (2/3)			
TABLE 6.4.2-1	BRIDGE FEATURES – MAIN CARRIAGEWAY (3/3)			
TABLE 6.4.2-2	BRIDGE FEATURES – CROSSOVER BRIDGE FOR			
	MAIN EXPRESSWAY	6-107		
TABLE 6.4.2-3	RCBC FEATURES	6-108		
TABLE 7.2-1	COMPARISON OF UNIT PRICE (1/2)	7-2		
TABLE 7.2-1	COMPARISON OF UNIT PRICE (2/2)	7-3		
TABLE 7.2-2	CIVIL WORK COST OF OPTION-1 (1/3)			
TABLE 7.2-2	CIVIL WORK COST OF OPTION-1 (2/3)	7-5		
TABLE 7.2-2	CIVIL WORK COST OF OPTION-1 (3/3)	7-6		
TABLE 7.2-3	CIVIL WORK COST BY CONTRACT PACKAGE: OPTION-2			

TABLE 7.2-4	MAJOR QUANTITIES BY CONTRACT PACKAGE: OPTION-2	7-8				
TABLE 7.3-1	COST ESTIMATION OF ROW ACQUISITION					
TABLE 7.5-1	SUMMARY OF CONSULTANCY SERVICE COST					
TABLE 7.6-1(1)	SUMMARY OF PROJECT COST: BASE COST OPTION-1 STAGE DEVELOPMENT	7-11				
TABLE 7.6-1(2)	SUMMARY OF PROJECT COST: BASE COST OPTION-1 STAGE DEVELOPMENT	7-12				
TABLE 7.6-2(1)	SUMMARY OF PROJECT COST: BASE COST OPTION-2 FULL DEVELOPMENT	7-13				
TABLE 7.6-2(2)	LE 7.6-2(2) SUMMARY OF PROJECT COST: BASE COST OPTION-2 FULL DEVELOPMENT					
TABLE 7.7-1	COST BREAKDOWN OF O&M COST OF 2-LANE EXPRESSWAY	7-16				
TABLE 7.7-2	COST BREAKDOWN OF O&M COST OF 4-LANE EXPRESSWAY	7-17				
TABLE 7.7-3	COST BREAKDOWN OF INSURANCE COST	7-18				
TABLE 8.1.1-1	INDICATORS OF ECONOMIC EVALUATION	8-2				
TABLE 8.1.1-2	ECONOMIC EVALUATION CASE	8-2				
TABLE 8.1.2-1	ESTIMATED ECONOMIC COST (CASE 1-1)	8-3				
TABLE 8.1.2-2	ESTIMATED ECONOMIC COST (CASE 1-2)	8-4				
TABLE 8.1.2-3	ESTIMATED ECONOMIC COST (CASE 2)	8-4				
TABLE 8.1.2-4	IMPLEMENTATION SCHEDULE AND INITIAL COST (ECONOMIC COST) PER YEAR					
	CASE 1-1 PHASE-1, INITIAL STAGE 2-LANE, WIDENING	8-5				
TABLE 8.1.2-5	IMPLEMENTATION SCHEDULE AND INITIAL COST (ECONOMIC COST) PER YEAR CASE 1-2 PHASE-1, 4-LANE	8-6				
TABLE 8.1.2-6	IMPLEMENTATION SCHEDULE AND INITIAL COST (ECONOMIC COST) PER YEAR CASE 2 PHASE-2, 2-LANE					
TABLE 8.1.2-7	OPERATION AND MAINTENANCE AND OTHER COSTS					
TABLE 8.1.3-1	UNIT VOC BY VEHICLE TYPE IN SEPTEMBER 2006	8-8				
TABLE 8.1.3-2	UNIT VOC BY VEHICLE TYPE IN 2011	8-8				
TABLE 8.1.3-3	UNIT VOC BY FOUR (4) VEHICLE TYPES IN 2011	8-8				
TABLE 8.1.3-4	UNIT TRAVEL TIME COST IN 2006					
TABLE 8.1.3-5	UNIT TRAVEL TIME COST IN 2011	8-9				
TABLE 8.1.3-6	ECONOMIC BENEFIT	8-10				
TABLE 8.1.4-1	COST-BENEFIT STREAM (CASE1-1: INITIAL STAGE 2-LANE AND WIDENING 4-LANE)	8-11				
TABLE 8.1.4-2	COST-BENEFIT STREAM (CASE1-2: 4-LANE DEVELOPMENT)	8-12				
TABLE 8.1.4-3	ECONOMIC INDICATOR OF CLLEX (PHASE-2)	8-13				
TABLE 8.1.4-4	COST-BENEFIT STREAM (CASE 2: PHASE-2 OPENING YEAR 2022)	8-14				
TABLE 8.1.4-5	COST-BENEFIT STREAM (CASE3-1: PHASE-1(INITIAL STAGE 2LANE AND WIDENING 4-LANE) AND PHASE-2)					
TABLE 8.1.4-6	LE 8.1.4-6 COST-BENEFIT STREAM (CASE3-2: PHASE-1 (4-LANE DEVELOPMENT) AND PHASE-2)					
TABLE 8.1.5-1 PROJECT SENSITIVITY (CASE 1-1: INITIAL 2-LANE, 4-LANE WIDENING)						

TABLE 8.1.5-2	PROJECT SENSITIVITY (CASE 1-2: 4-LANE DEVELOPMENT)			
TABLE 8.2-1	TYPE OF PPP MODALITY FOR FINANCIAL ANALYSIS OF CLLEX			
TABLE 8.2-2	ASSUMPTIONS AND CONDITIONS OF FINANCIAL ANALYSIS OF CLLEX PHASE 1			
TABLE 8.2-3	ASSUMPTIONS AND CONDITIONS OF FINANCIAL ANALYSIS	0-22		
111DLL 0.2-5	OF CLLEX PHASE 1&2	8-24		
TABLE 8.2-4	BASIS FOR ASSUMPTIONS AND CONDITIONS	8-25		
TABLE 8.2-5	ASSUMPTIONS FOR LEASE FEE	8-26		
TABLE 8.2-6	CONDITIONS FOR CALCULATION OF WACC	8-30		
TABLE 8.2-7	CONDITIONS FOR CALCULATION OF WACC FOR GOVERNMENT	8-30		
TABLE 8.2-8	CRITERIA OF FINANCIAL ANALYSIS FOR CLLEX	8-30		
TABLE 8.2-9	RESULTS OF FINANCIAL ANALYSIS FOR CLLEX (OPTION 1: PHASE 1 (2-LANE) &WIDENING)	8-32		
TABLE 8.2-10	RESULTS OF FINANCIAL ANALYSIS FOR CLLEX			
	(OPTION 2: PHASE 1 (2-LANE) &WIDENING)	8-33		
TABLE 8.2-11	SELECTED CASES FOR SENSITIVITY ANALYSIS	8-40		
TABLE 8.2-12	CASE FOR SENSITIVITY ANALYSIS ON THE REVENUE AND PROJECT COST	8-40		
TABLE 8.2-13	THE RESULTS OF IRR SENSITVITY ANALYSIS FOR THE REVENUE			
	AND PROJECT COST (CIVIL WORKSCOST AND O&M COST)			
TABLE 9.1.3-1	PROJECT PROFILE	9-5		
TABLE 9.1.4-1	PROPOSED HSH PROJECTS PRIORITY	9-9		
TABLE 9.1.4-2	IMPACT ON AGRICULTURE BY CLLEX	9-10		
TABLE 9.2.1-1	THE GOVERNED LAW ON ENVIRONMENTAL RELATED LAWS	9-11		
TABLE 9.2.1-2	LIST OF ENVIRONMENTAL RELATED LAWS AND DECREE	9-11		
TABLE 9.3.1-1	FUNCTION OF ESSO	9-28		
TABLE 9.3.1-2	FUNCTION OF PMO-IROWR	9-29		
TABLE 9.4.1-1	COMPARISON OF EIA REPORT OUTLINES			
TABLE 9.4.1-2	RAP OUTLINE	9-38		
TABLE 9.4.2-1	SUMMARY OF GAP ANALYSIS ON RELOCATION POLICY	9-39		
TABLE 9.4.3-1	SCOPING MATRIX (EIS 2010)	9-43		
TABLE 9.4.3-2	SUMMARY OF ECC (2010)	9-46		
TABLE 9.4.4-1	INFORMATION TO GATHER IN THIS STUDY	9-48		
TABLE 9.4.5-1	REVISED SCOPING MATRIX	9-49		
TABLE 9.5.1-1	LIST OF DIRECT IMPACT AREAS (PHASE-1 SECTION ONLY)	9-55		
TABLE 9.5.2-1	OVERVIEW OF FLORA OBSERVED IN CLLEX ALIGNMENT (2009, OCTOBER)	9-56		
TABLE 9.5.2-2	NUMBERS OF FAUNA SPECIES OBSERVED IN CLLEX ALIGNMENT (2009, OCTOBER)	9-58		
TABLE 9.5.2-3	AIR QUALITY (DRY SEASON): OCTOBER 2009			
TABLE 9.5.2-4	AIR QUALITY (WET SEASON): JULY 2011			
TABLE 9.5.2-5	UK - ROAD TRANSPORT EMISSION FACTORS: 2008 NAEI			
TABLE 9.5.2-6	ANNUAL AVERAGE DAILY TRAFFIC FORECAST FOR	9-63		
COMPUTED TOTAL EMISSION RATES PER AREA 9- 9- 9-				

TABLE 9.5.2-8	MAXIMUM GLC FOR NITROGEN DIOXIDE (NO2)	9-64				
TABLE 9.5.2-9	MAXIMUM GLC FOR PARTICULATE MATTER 10 (PM10)					
TABLE 9.5.2-10	MAXIMUM GLC FOR SULFUR DIOXIDE (SO2)	9-65				
TABLE 9.5.2-11	AIR QUALITY PREDICTED AREA RELATED TO					
TABLE 9.5.2-12	PREDICTED CO2 EMISSION CAUSED BY THE CONSTRUCTION					
TABLE 9.5.2-13	COMPARISON OF WITH AND WITHOUT	9-66				
TABLE 9.5.2-14	02 EMISSION (G-CO2/KM. VEHICLE)					
TABLE 9.5.2-15	DISE LEVEL (DRY SEASON): OCTOBER 2009					
TABLE 9.5.2-16	NOISE LEVEL (WET SEASON): JULY 2011					
TABLE 9.5.2-17	SENSITIVE RECEPTORS (CHURCHES & SCHOOLS)	9-69				
TABLE 9.5.2-18	CLUSTERED RESIDENTIAL RECEPTORS	9-70				
TABLE 9.5.2-19	PREDICTED NOISE LEVEL AT SENSITIVE RECEPTORS FOR YEAR 2018 TRAFFIC FORECAST	9-73				
TABLE 9.5.2-20	PREDICTED NOISE LEVEL AT SENSITIVE RECEPTORS FOR YEAR 2020 TRAFFIC FORECAST	9-74				
TABLE 9.5.2-21	PREDICTED NOISE LEVEL AT CLUSTERED RESIDENTIAL	9-75				
TABLE 9.5.2-22	PREDICTED NOISE LEVEL AT CLUSTERED RESIDENTIAL FOR YEAR 2020 TRAFFIC FORECAST	9-76				
TABLE 9.5.2-23	NOISE REDUCTION RESULTING	9-77				
TABLE 9.5.2-24	WATER QUALITY IN THE PROJECT AREA (DRY SEASON): OCTOBER 2009	9-77				
TABLE 9.5.2-25	LOCATION OF SURFACE WATER QUALITY SAMPLING STATIONS, JULY 2011	9-78				
TABLE 9.5.2-26	CHARACTERISTICS OF RIO CHICO AND PAMPANGA RIVER	9-82				
TABLE 9.5.2-27	RAINFALL INTENSITY-DURATION FREQUENCY	9-83				
TABLE 9.5.2-28	RAINFALL INTENSITY-DURATION FREQUENCY FOR MUNOZ, NUEVA ECIJA (MM)	9-83				
TABLE 9.5.2-29	SOLID WASTE COLLECTION FACILITY (2007)					
TABLE 9.5.2-30	AMOUNT OF SOLID WASTE GENERATED (2007)	9-87				
TABLE 9.5.2-31	PROFILE OF TARGET PROVINCES AND BARANGAYS	9-89				
TABLE 9.5.2-32	GRDP IN 2008	9-91				
TABLE 9.5.2-33	GRDP AND ECONOMIC GROWTH RATE BY SECTOR	9-91				
TABLE 9.5.2-34	FARMING AREAS	9-93				
TABLE 9.5.2-35	LAND USE PROFILE OF TARLAC AND NUEVA ECIJA PROVINCES	9-93				
TABLE 9.5.2-36	LIST OF INITIAL COMPONENTS OF NIPAS PROPOSED FOR ESTABLISHMENT UNDER NIPAS	9-99				
TABLE 9.5.2-37	ESTIMATED PRODUCTION IN 2010, AREA HARVESTED AND YIELD PER HECTARE, BY FARM TYPE	9-101				
TABLE 9.5.2-38	AN EXAMPLE OF CCEP'S TABLE OF CONTENT	9-104				
TABLE 9.5.4-1	PRE-CONSTRUCTION AND CONSTRUCTION PHASE	9-110				
TABLE 9.5.4-2	OPERATION AND MAINTENANCE PHASE	9-119				
TABLE 9.5.5-1	ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN	9-123				
TABLE 9.5.5-2	ENVIRONMENTAL MANAGEMENT AND MONITORING PLAN	9-134				
TABLE 9.5.5-3	DENR NATIONAL AMBIENT AIR QUALITY GUIDELINE FOR CRITERIA POLLUTANTS	9-137				

TABLE 9.5.5-4	DENR STANDARDS FOR NOISE IN GENERAL AREAS (DBA)	9-137
TABLE 9.5.5-5	WATER QUALITY CRITERIA FOR CONVENTIONAL AND OTHER POLLUTANTS CONTRIBUTING TO AESTHETIC AND OXYGEN	0.120
	DEMAND FOR FRESH WATERS	
TABLE 9.5.5-6	MONITORING FORM OF JICA	9-138
TABLE 9.6.2-1	NUMBER OF HOUSEHOLD WHOSE RESIDENTIAL HOUSES ARE AFFECTED AND TO BE RELOCATED	9-148
TABLE 9.6.2-2	NUMBER OF HOUSEHOLD WHO WILL LOSE FARM LAND	
TABLE 9.6.2-3	NUMBER OF RESIDENTIAL HOUSE, HOUSEHOLD AND PEOPLE AFFECTED	9-149
TABLE 9.6.2-4	LAND TENURE OF RESIDENTIAL HOUSES AFFECTED	9-150
TABLE 9.6.2-5	NUMBER OF LOT OF FARM LAND AFFECTED (APPROXIMATE ONLY)	9-151
TABLE 9.6.2-6	LAND TENURE: FARM LAND (SAMPLE SURVEY ONLY)	9-151
TABLE 9.6.2-7	OTHER IMPROVEMENTS AFFECTED	
TABLE 9.6.2-8	SIZE OF FARM LAND AFFECTED BY THE PROJECT (TYPE-B: SAMPLE SURVEY)	9-152
TABLE 9.6.2-9	SIZE OF FARM LAND CULTIVATING OTHER THAN AREA (TYPE-B: SAMPLE SURVEY)	
TABLE 9.6.2-10	INCOME FROM FARMING (TYPE-B: SAMPLE SURVEY)	9-153
TABLE 9.6.2-11	MARKETING	
TABLE 9.6.2-12	OTHER FARMING THAN PALAY PRODUCTION	9-154
TABLE 9.6.2-13	OVER-ALL RAP REQUIREMENTS	9-154
TABLE 9.6.3-1	PAPS HOUSEHOLD SIZE	9-156
TABLE 9.6.3-2	RESIDENCY OF RESPONDENTS	9-157
TABLE 9.6.3-3	MOTHER TONGUE	9-158
TABLE 9.6.3-4	EDUCATION LEVEL	9-159
TABLE 9.6.3-5	HOUSEHOLD INCOME OF PAPS	9-160
TABLE 9.6.3-6	LAND TENURE OF THE RESPONDENTS	9-161
TABLE 9.6.3-7	OWNERSHIP OF STRUCTURES	9-162
TABLE 9.6.3-8	PAPS WILLING TO BE RELOCATED	9-163
TABLE 9.6.3-9	PREFERRED RELOCATION SITE OF PAPS TYPE A	9-163
TABLE 9.6.3-10	COMPENSATION PREFERENCE OF FARMLAND OWNER	9-164
TABLE 9.6.3-11	ACCEPTABLE LIVELIHOOD ASSISTANCE FOR PAPS TYPE B	9-165
TABLE 9.6.4-1	ENTITLEMENT MATRIX	9-168
TABLE 9.6.5-1	PROPOSED RELOCATION SITES	9-177
TABLE 9.6.5-2	SKILLS OF MEN IN THE DIA BASED ON SURVEY/INTERVIEW	9-187
TABLE 9.6.5-3	SKILLS OF WOMAN IN THE DIA BASED ON SURVEY/INTERVIEW	9-188
TABLE 9.6.6-1	ACCEPTABLE LIVELIHOOD ASSISTANCE FOR PAPS (TYPE B)	9-189
TABLE 9.6.6-2	PREFERENCE OF RELOCATION SITES BY PAPS (STRUCTURE OWNER)	9-189
TABLE 9.6.10-1	DATES OF CENSUS COMMENCEMENT (CUT-OFF DATE)	9-197
TABLE 9.6.10-2	RAP IMPLEMENTATION SCHEDULE	9-198
TABLE 9.6.12-1	ESTIMATED RAP IMPLEMENTATION COST	9-199

TABLE 9.6.12-2	COST OF LAND, STRUCTURE AND TREES BY CITY/MUNICIPALITY	9-201
TABLE 9.6.13-1	RAP MONITORING SCHEDULE	9-204
TABLE 9.6.13-1	MONITORING INDICATORS	9-205
TABLE 9.7.4-1	TYPES OF ATTENDANTS	9-216
TABLE 9.7.4-2	EXAMPLES OF ATTENDEES WHOM SPECIAL	
	ATTENTION MUST BE PAID TO	
TABLE 9.7.4-3	SUMMARY OF CONCERNS	9-219
TABLE 10.2-1	IMPLEMENTATION SCHEDULE	10-7
TABLE 10.3.1-1	MAJOR QUANTITIES BY CONTRACT PACKAGE	10-8
TABLE 10.3.1-2(1)	CIVIL WORK COST OF PACKAGE-1	10-8
TABLE 10.3.1-2(2)	CIVIL WORK COST OF PACKAGE-2	10-10
TABLE 10.3.1-2(3)	CIVIL WORK COST OF TOTAL (PACKAGE 1 AND PACKAGE-2)	10-10
TABLE 10.3.2-1	CONSTRUCTION SCHEDULE FOR CENTRAL LUZON	
	EXPRESSWAY	10-12
TABLE 10.3.2-2	MAJOR MATERIAL TO BE USED FOR CLLEX	10-13
TABLE 10.3.2-3	MAJOR EQUIPMENT TO BE USED FOR CLLEX PROJECT	10-14
TABLE 10.7.1-1	PROJECT COST	10-18
TABLE 10.7.2-1	SUMMARY OF ANNUAL FUND REQUIREMENT	10-19
TABLE 10.7.2-2	ANNUAL FUND REQUIREMENT (1/2)	10-20
TABLE 10.7.2-2	ANNUAL FUND REQUIREMENT (2/2)	10-21
TABLE 11.2-1	ESTIMATED TRAFFIC VOLUME OF CLLEX	
	(TARLAC IC ~ ALIAGA IC) 4-LANE	
TABLE 11.3-1	ESTIMATED TOLL REVENUE (YEAR 2020)	11-2
TABLE 11.4-1	ESTIMATED TRAFFIC CONGESTION RATE	
	(VOLUME / CAPACITY RATE)	
	ESTIMATED TRAVEL TIME	
TABLE 11.5-2	COMPARISON OF TRAVEL TIME	
TABLE 11.5-3	MAJOR TRAVEL TIME SAVING	11-4
TABLE 11.6-1	UNIT TRAVEL TIME COST	
TABLE 11.7-1	OPERATION AND EFFECT INDICATORS	11-5

ACRONYMS AND ABBREVIATIONS

ADB	:	Asian Development Bank	MIAA	:	Manila International Airport
B/C	:	Benefit/Cost Ratio			Authority
BCDA	:	Bases Conversion Development	MMDA	:	Metro Manila Development Agency
		Authority	MRT	:	Mass Rail Transit
BLT	:	Build-Lease-Transfer	MRTC	:	Metro Rail Transit Corporation
BOT	:	Build-Operate and Transfer	NCR	:	National Capital Region
CAAP	:	Civil Aviation Authority of the	NDC	:	National Development Corporation
		Philippines	NEDA	:	National Economic Development
CDCP	:	Construction Development			Authority
		Corporation of the Philippines	NGO	:	Non-Governmental Organization
CLEx	:	Central Luzon Expressway	NLEx	:	North Luzon Expressway
DBFO		Design, Build, Finance and Operate	NPER	:	Net Public Expenditure Reduction
DBP	:	Development Bank of the Philippines	NPV	:	Net Present Value
DENR	:	Department of Environment and	O&M	:	Operation and Maintenance
		Natural Resources	ODA	:	Official Development Assistance
DBM	:	Department of Budget and	OSG	:	Office of the Solicitor General
		Management	PD	:	Presidential Decree
DOF	:	Department of Finance	PEA	:	Philippine Estate Authority
DOTC	:	Department of Transportation and	PEGR	:	Philippines-Australia Partnership for
		Communications			Economic Governance Reform
DPWH	:	Department of Public Works and	PIP	:	Public Investment Plan
		Highways	PMO-	:	Project Management Office for
DTI	:	Department of Trade and Industry	BOT		Build-Operate-Transfer
EIA	:	Environmental Impact Assessment	PNCC	:	Philippine National Construction
EIRR	:	Economic Internal Rate of Return			Company
EIS	:	Environmental Impact Statement	PNR	:	Philippine National Railways
EO	:	Executive Order	PPA	:	Philippine Port Authority
FIRR	:	Financial Internal Rate of Return	PPP	:	Public-Private Partnership
GDP	:	Gross Domestic Product	R.A.	:	Republic Act
GFS	:	Government Financing Support	RAP	:	Resettlement Action Plan
GOCCs	:	Government-Owned and Controlled	ROW	:	Right of Way
		Corporations	SC	:	Steering Committee
GOJ	:	Government of Japan	SCTEx	:	Subic-Clark-Tarlac Expressway
GRP	:	Government of the Republic of the	SLEx	:	South Luzon Expressway
		Philippines	SPC	÷	Special Purpose Company
HSH	:	High Standard Highway	STAR	÷	Southern Tagalog Arterial Road
ICC	:	Investment Coordinating Committee	STOA	:	Supplemental Toll Operation
		6			Agreement
IEE	•	Initial Environmental Examination	TCA		Toll Concession Agreement
IFC	•	International Finance Corporation of	TOA	·	Toll Operation Agreement
пe	•	World Bank Group	TOC	:	Toll Operation Certificate
IRR	•	Internal Rate of Return	TOR	:	Terms of Reference
JICA		Japan International Cooperation	TPLEx	:	Tarlac-Pangasinan-La Union
JICH	·	Agency	II LLA	•	Expressway
KOICA		Korean International Cooperation	TRB		Toll Regulatory Board
Rolen	•	Agency	TWG	÷	Technical Working Group
LAPRAP	:	Land Acquisition Plan and	USAID	:	United States Agency for
	•	Resettlement Action Plan	USAD	•	International Development
LGUs		Local Government Units	WACC	:	Weighted Average of Capital Cost
LGUS LRTA	:	Light Rail Transit Authority	WB	•	World Bank
MARINA	:	Maritime Industry Authority	W D	•	
MAKINA	:	Minimum Revenue Guarantee			
UNING	•	winnihum Revenue Guarantee			

EXECUTIVE SUMMARY

1. BACKGROUND OF THE CLLEX PROJECT

The Philippines has been experiencing relatively slower economic development partly due to limited flow of direct investments into manufacturing sector compared to other rapidly growing ASEAN countries after the recovery from Asian Economic Crisis. In order to foster both domestic and foreign investments, improving overall investment climate including road network has been an urgent matter. In particular, the economic activities are extremely concentrated in Metro Manila where 37% of GDP and 13% of total population are accumulated in merely 0.2% of the country's land. This extreme concentration causes serious congestion and delays of distribution of goods and movement of people, resulting to huge damage to economy and lowering the country's international competitiveness as an investment destination. Likewise living condition in Metro Manila has eroded due to air pollution and traffic noise caused by chronic congestion. In summary, solving traffic congestion in Metro Manila by networking surrounding cities and upgrading/expanding highways around Mega Manila – the area covering Metro Manila, Central Luzon and CALABARZON – contributes to improvement of both investment climate and living climate.

Central Luzon Link Expressway (CLLEX) improves access between the two-north large cities, Tarlac and Cabanatuan, and supports industrialization of North part of Mega Manila and eases the extreme concentration in Metro Manila as CLLEX allows better connection between North part of Mega Manila and Metro Manila. Central Luzon is expected to increase its efficiency as an industrial hub with Clark Airport receiving international flights.

In 2010, JICA-assisted High Standard Highway Network Development Master Plan (hereinafter referred to "HSH Master Plan Study") formulated the expressway network in the 200 km radium sphere from Metro Manila. The Study recommended CLLEX as one of eight first priority projects.

In 2010, DPWH completed the Feasibility Study for the Proposed Central Luzon Expressway (now Central Luzon Link Expressway) (hereinafter referred to 2010 FS) under the supplemental agreement of JICA-funded Arterial Bypass Project.

In 2010, JICA-assisted Preparatory Survey for Public-Private Partnership (PPP) Infrastructure Development Projects (hereinafter referred to as "PPP Infra Projects"). This Study prioritized PPP expressway projects in accordance with the criteria established which are based on the necessity and urgency of project, profitability of the project and implement-ability of the project. Phase I of CLLEX was ranked no. 4 out of 10 priority projects.

2. NECESSITY OF THE CLLEX PROJECT

CLLEX is needed from the viewpoints of the following;

- To reduce traffic congestion of Pan Philippine Highway (or Daang Maharlika)
- To strengthen lateral (east-west) road network.
- To develop regional growth pole cities to decongest overconcentration of socio-economic activities in Metro Manila.
- To develop impoverish area of the Pacific Ocean Coastal area through development of Cabanatuan City which functions as a hub city for the area.
- To develop an integrated multi-modal logistics/transport system
- To promote PPP projects.

3. OBJECTIVE OF THE CLLEX PROJECT

The objectives of CLLEX Project are summarized as follows:

- To provide fast, safe, comfortable and reliable mode of transport in Region III for socio-economic development.
- To decongest traffic of Pan-Philippine Highway (or Daang Maharlika)
- To support sound development of Regional Growth Pole Cities of Tarlac City and Cabanatuan City, thus contributing to the decongestion of over-concentration of Metro Manila
- To form an important lateral (east-west) link of overall Expressway network of Region III
- To provide faster access from Metro Manila to Cabanatuan City which is the base (or hub) city for Pacific Ocean Coastal Area Development

4. TRAFFIC DEMAND FORECAST

4.1. Existing Traffic Condition

(1) Traffic Volume

Traffic volume along major roads in Central Luzon as well as in the road network surrounding the CLLEX is shown in **FIGURE 4.1-1**. As seen in the figure, the two major highways (Manila North Road and Pan Philippine Highway) exhibited high number of traffic. The NLEX is also carrying a very heavy traffic confirming the very active socio-economic exchanges between cities in the North and Metro Manila.

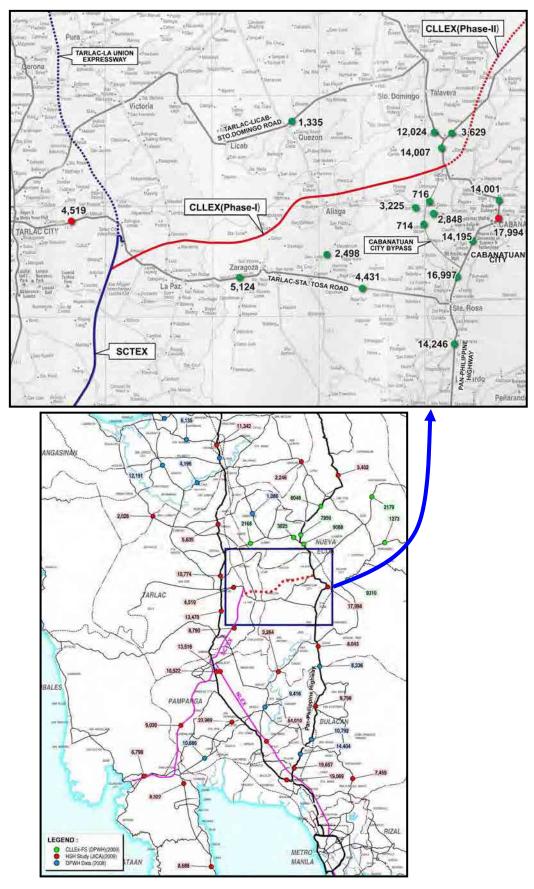


FIGURE 4.1-1 TRAFFIC VOLUME IN CENTRAL LUZON

(2) Travel Speed

The study entitled 'Feasibility Study of the Proposed Central Luzon Expressway', 2010, carried out a travel speed survey. The raw data used to plot travel speed shown in **FIGURE 4.1-2** and **4.1-3** were taken from the said study. The following were observed from the figures:

- Tarlac Sta. Rosa Road is relatively congested free except at the center of towns of La Paz, Zaragosa and its approach to Tarlac. Travel time to traverse the 39.9 km road is about 60 minutes.
- Tarlac Carmen Cabanatuan Road (via Aliaga) is also free of traffic congestion except of its approach to Tarlac and Pan Philippine Highway (Cabanatuan side). Average travel time is about 69 minutes to cross the 46 km route.
- Gapan Cabanatuan Talavera (Pan Philippine Highway) has a severe traffic congestion from Sta. Rosa all the way to Carmen Cabanatuan Road. Traffic congestion is particularly heavy inside Cabanatuan City where local and through traffic merges. At the center of Cabanatuan City, most of the traffic is composed of jeepneys which served local traffic. Average travel time from Gapan to Cabanatuan reaches about 60 minutes for merely 24 km road. Likewise, average travel time from Cabanatuan to Talavera (10 km) is about 24 minutes.
- Pan Philippine Highway (NLEX Sta. Rosa Exit to San Jose) observed serious traffic congestion at the town centers of Ildefonso, Sta. Rosa, Cabanatuan, Talavera, Sto. Domingo and San Jose.

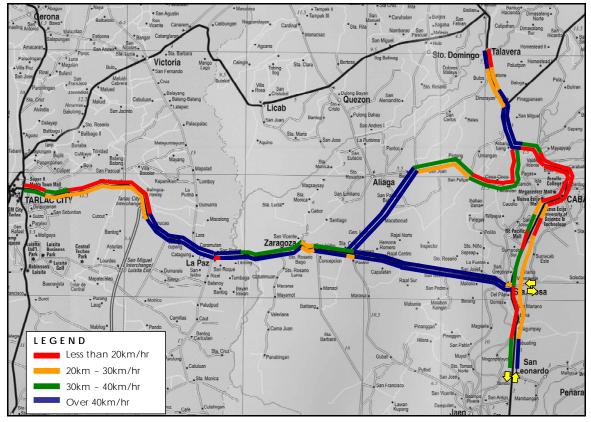


FIGURE 4.1-2 TRAVEL SPEED (AFTERNOON PEAK)

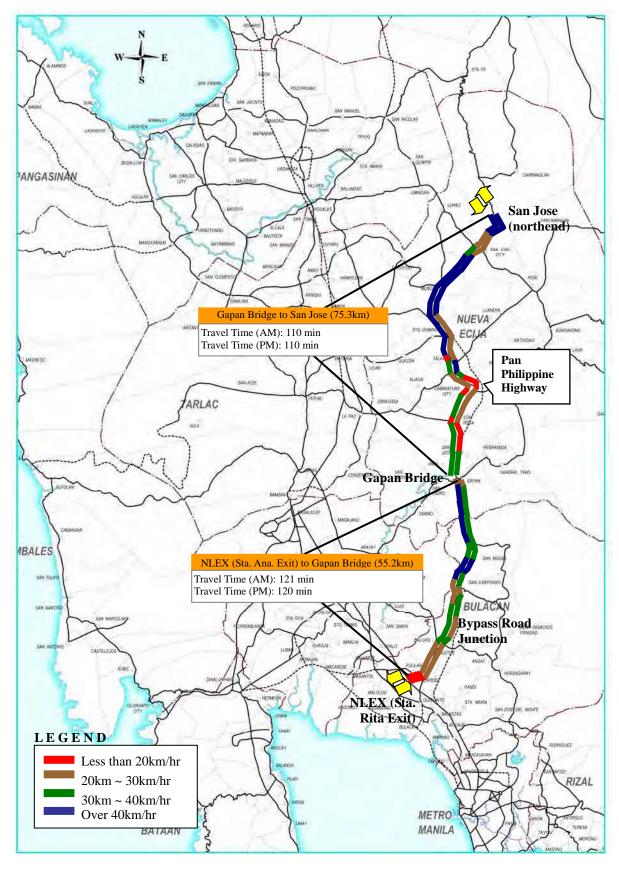


FIGURE 4.1-3 TRAVEL SPEED ALONG PAN PHILIPPINE HIGHWAY

(3) Toll Rate vs. Traffic Volume

In order to set the proper toll rate of CLLEX, the traffic volume and the amount of revenue are estimated by traffic assignment model. **FIGURE 4.1-4** shows the result of traffic assignment of toll rate.

- In case of toll free, total traffic volume to enter CLLEX is 16,197 vehicles/day
- The toll rate for getting higher revenue is about 3.0 to 4.5 Peso/km and the amount of revenue is about 1.14 and 1.18 million Peso/day. Although maximum amount of revenue is 4.0 peso case, traffic volume to enter CLLEX is only 8,628 vehicle /day which is about half of toll free case.
- The desirable toll rate for attractive to motorist and higher revenue is 3.0 Peso/km. total traffic volume to enter CLLEX is 11,236 vehicle/day (70% of toll free case) and estimated toll revenue 1.14 million Peso/day. 3.0 Peso/km in year 2017 converts about 2.2 Peso /km in year 2011. This toll rate is the almost same as that of NLEX and other present interurban expressway. Most motorists may accept the 3.0 peso/km in year 2017.

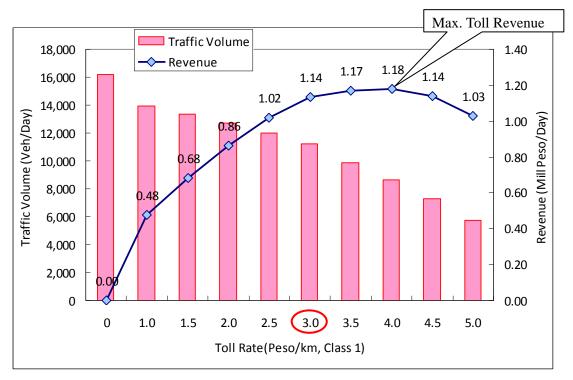


FIGURE 4.1-4 TOLL RATE VS REVENUE (YEAR 2017)

4.2. Future Traffic Volume on CLLEX PHASE-1 Section

To estimate the traffic volumes on CLLEX, traffic demand system data developed on the Study of Master plan on High Standard Highway Network Development funded by JICA was used. The number of lane of CLLEX PHASE-1 section assumed to be 4 lanes both directions after discussion with DPWH. The total volume to enter CLLEX Phase 1 and total vehicle*km are shown as **TABLE 4.2-1** in the year 2017, 2020 and 2030.

Item Vehicle Class		Year 2017	Year 2020	Year 2030
Traffic Volume Class 1		9,052	10,967	15,450
	Class 2	2,886	3,030	4,346
	Class 3	241	257	381
	Total	12,629	14,254	20,177
LOS		А	А	А
Volume/Ca	pacity Ratio	0.17	0.19	0.23
Vehicle*km Class 1		256,672	289,609	410,372
Class 2		78,158	82,733	119,680
Class 3		6,321	6,837	10,457
	Total	341,151	379,179	540,509

FIGURE 4.2-1 TRAFFIC PROJECTION OF CLLEX PHASE-1

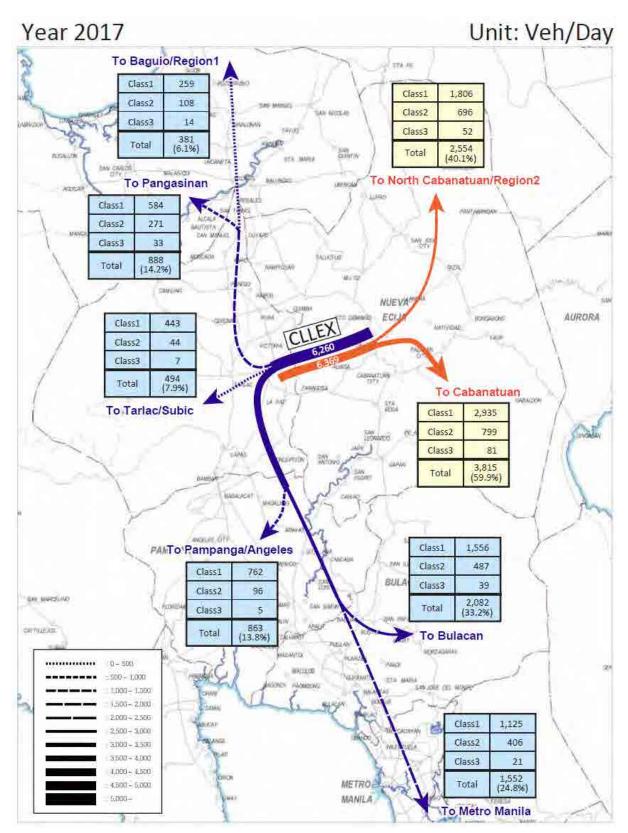


FIGURE 4.2-2 TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION (YEAR 2017)

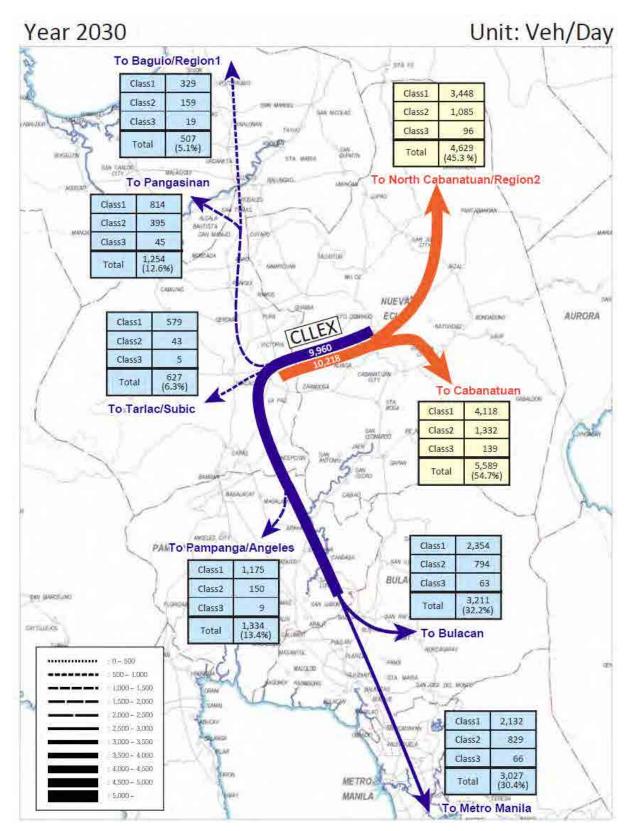


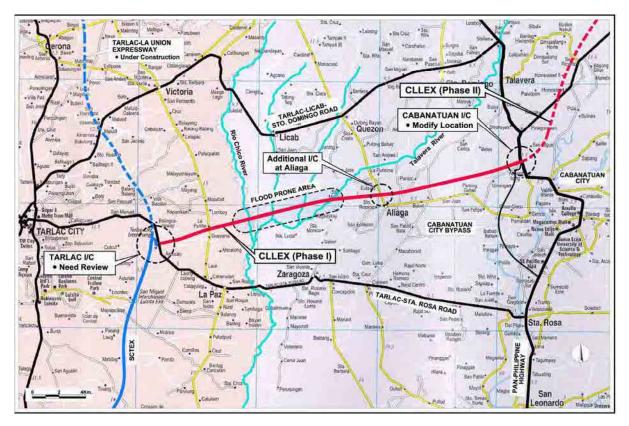
FIGURE 4.2-3 TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION (YEAR 2030)

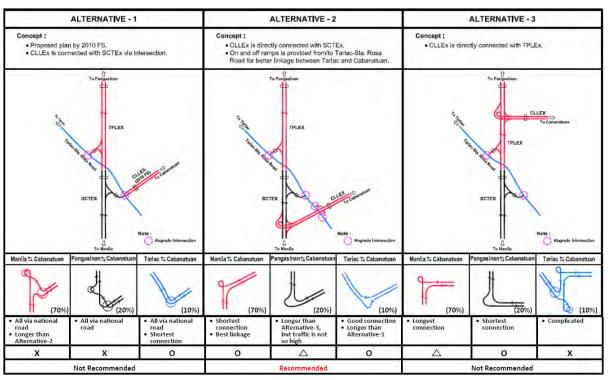
5. REVIEW OF 2010 FEASIBILITY STUDY OF CLLEX PHASE-1

5.1. Technical Issues of CLLEX in the past study

The feasibility study of CLLEX was completed in 2010. Some technical issues have found as follows (see **FIGURE 5.1-1**):

- Tarlac I/C needs to be reviewed on how to connect with SCTEX / TPLEX.
- No I/C was planned for 28 km stretch between Tarlac and Cabanatuan cities. One I/C will be needed at about Aliaga Municipality.
- Cabanatuan Interchange (I/C) was planed at the location of a 5-leg intersection, thus quite complexed I/C was planned. A church was built at the proposed I/C location. Therefore, review of I/C is needed.
- Access to / from south area of Cabanatuan City, it should be to pass the congested area in the city centre of Cabanatuan, thus it is necessary to improve direct accesses to / from the southern Cabanatuan City.
- CLLEX passes though flood-prone area. The bridge location and its length need to be reviewed.
- Toll Collection System should be studied.




FIGURE 5.1-1 TECHNICAL ISSUES OF CLLEX PHASE-1

5.2. Direct Connection with the expressway of SCTEx or TPLEx

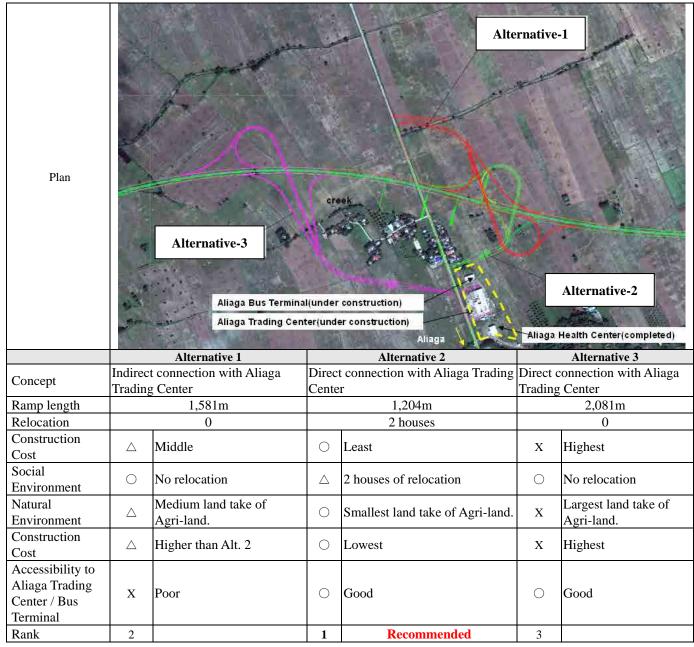
The 2010 FS proposed that CLLEX was not directly connected with SCTEx, but was connected via the national road of Tarlac – Sta. Rosa Road. The type of Tarlac Interchange was changed. According to the latest plan of SCTEx and TPLEx, Tarlac Interchange is a half interchange at CLLEX and another half interchange at TPLEx. To maintain efficient traffic flow on the expressways, two expressways should be directly connected, but not via national or provincial road.

Three (3) alternative connection options were studied. The evaluation of 3 alternatives is shown in **TABLE 5.2-1**, and then the alternative-2 (connected with SCTEx) was recommended due to the following reasons;

- Alternative-2 provides direct connection between 2 expressways.
- Most preferred alternative for traffic between Manila side and Cabanatuan City, which is the predominant traffic flow.

TABLE 5.2-1 ALTERNATIVES OF CONNECTION BETWEEN CLLEX AND SCTEX/TPLEX

5.3. Additional Interchange at Aliaga Municipality


The 2010 FS proposed no interchange between Tarlac and Cabanatuan City for the extension of 28 km. In general, the longest interval of interchanges is set at 15 to 25 km, an interval of 28 km is too long and additional exits should be needed during emergency cases.

- Maximum Interval : 30 km
- Standard Interval
 - ♦ Mega City, Major Industrial Area : 5 ~ 10 km

- ♦ Rural Area with Small to Medium Cities : $15 \sim 25$ km
- \Rightarrow Rural Area and Mountainous Area : 20 ~ 30 km

In view of the above, it is necessary to add an interchange in the Municipality of Aliaga. Three (3) interchange alternatives were prepared for comparison as shown in **TABLE 5.3-1**, which also shows evaluation of alternatives. Alternative-2 was recommended due to the following reasons;

- It provides efficient access to New Development Site.
- Least construction cost.
- Although two houses are affected, it achieves the minimum ROW acquisition or land take.

TABLE 5.3-1 ALIAGA INTERCHANGE OF COMPARATIVE STUDY

5.4. Cabanatuan IC Location

At the location of Cabanatuan Interchange proposed by the 2010 FS, the new church was built, thus the IC location is required to be re-planned. The following recommendations should be considered.;

- CLLEX center line alignment should be shifted to avoid affecting the new church.
- Interchange location should be almost at the same location selected by the 2010 FS.
- An alignment of the proposed Cabanatuan Ring Road will be selected by the City Government with due consideration of new interchange location.

The 2010 FS proposed two (2) stages development of the interchange for CLLEX Phase 1 and Phase 2, and ramps constructed during Phase-1 are proposed to be abandoned during Phase 2. The stage development of the interchange is necessary, however, it should be planned to avoid useless investment during Phase-1. Two alternatives were studied and evaluated as shown in **TABLE 5.4-1**. The alternative-2 was recommended, since it can avoid useless investment during Phase-1.

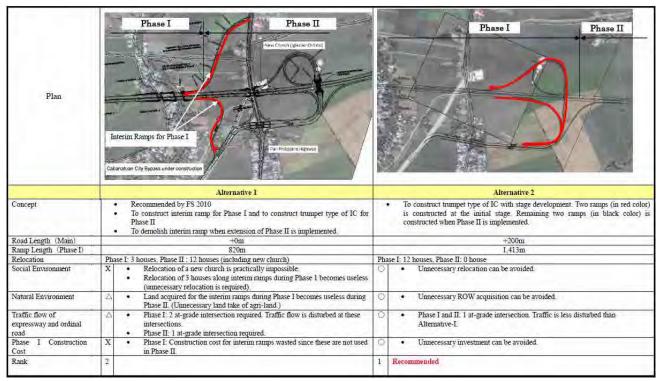
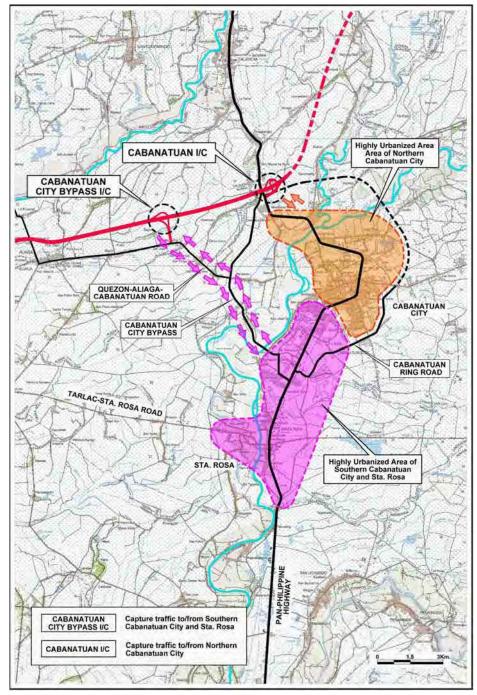


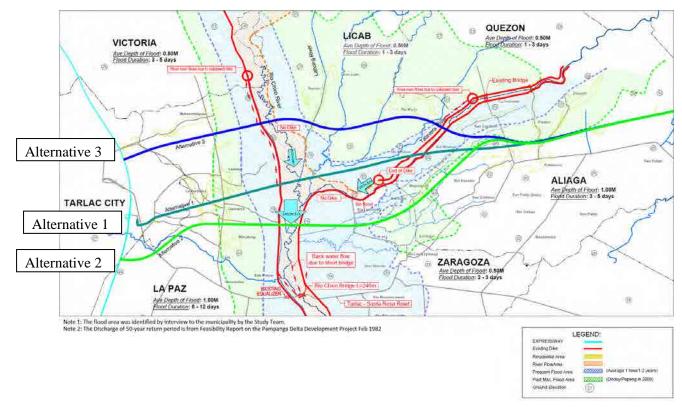
 TABLE 5.4-1 CABANATUAN INTERCHANGE COMPARATIVE STUDY

5.5. Improvement of access CLLEX To/From Southern Cabanatuan City

The only road traversing Cabanatuan City in the north-south direction is the Pan-Philippine Highway (or Daang Maharlika) which is heavily congested due to huge number of slow moving vehicles such as tricycles and jeepneys. Travel speed on this road within Cabanatuan City is very slow with less than 15km/hour. Cabanatuan IC of CLLEx is located at northern periphery of Cabanatuan City, which will attract traffic to/from northern area of Cabanatuan City. Traffic from southern area will rarely utilize Cabanatuan IC, thus some measures is required for traffic generated in southern areas of Cabanatuan City. It is recommended that another half interchange (only on-ramp and off-ramp

from/to southern Cabanatuan City) should be constructed. Traffic generated from southern Cabanatuan City will use City Bypass and Quezon-Aliaga-Cabanatuan Road to access to CLLEX. This Cabanatuan City Bypass Interchange is proposed to be located at about 4 km west of Cabanatuan City Bypass.




FIGURE 5.5-1 NEED OF CABANATUAN CITY BYPASS IC

5.6. Appropriate CLLEX Alignment in the Rio Chico Flood-Prone Area

(1) Condition of Flood-Prone Area

The CLLEX project has to traverse the flood-prone area. There are two (2) big rivers, namely Rio Chico River and Talavera River. There are other four (4) small rivers. All of these rivers join into one river, and then it is called as Rio Chico River. The longitudinal slope of the Rio Chico river bed is very flat at about 1/3,000 (or 0.03%), therefore, velocity of the flood water is estimated as not so fast. All rivers in Rio Chico River Area overflow the banks and flood area extends for quite wide area. Flood areas were identified by interviews to municipality officials, which is illustrated in **FIGURE 5.6-1**.

- The Ordinary river flow area (orange color) is frequent flood area (average 1 time/1-2 years), the past maximum flood area by Typhoon Ondoy/Pepeng in 2009 is shown in green color.
- The water velocity in the frequent flood areas (blue area) is very slow except the vicinity of the ordinary river flow area.
- The water velocity in the area (green area) between the frequent flood area and the past maximum flood area is minimal and almost dead water.

FIGURE 5.6-1 FLOOD CONDITION AT RIO CHICO A FLOOD-PRONE AREA

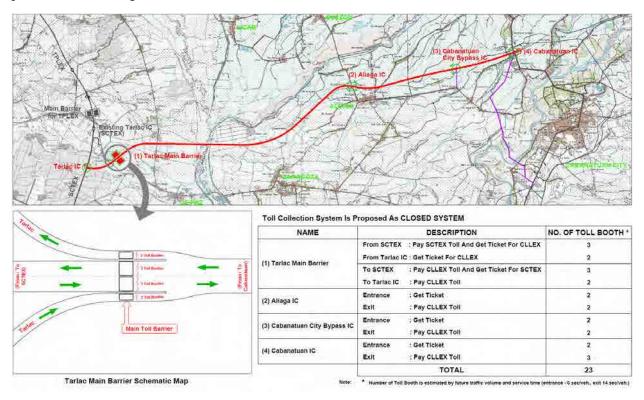
(2) Alternative Alignment study passing through Flood-prone Area Rico Chico River

Three (3) alternative alignments as shown in **FIGURE 5.6-**1 were studied.

- Alternative-1: Alignment recommended by the 2010 FS. The alignment starts at SCTEx Tarlac Interchange entrance/exit point. It traverses at slightly upstream side of confluence point of Rio Chico River and Talavera River.
- Alternative-2: This alignment starts at SCTEx and traverses at the downstream side of confluence point.

Alternative-3: This alignment starts at TPLEx and passes through the upstream side of confluence point.

Confluence Point of 2 rivers Confluence Point Confluence Point Confluence Point Confluence Point of 2 rivers (crossing 2 rivers independently) Road length 28.23 km (1.00) 30.31 km (1.06) (±1.84 km) 28.48 km (1.01) (±0.25 km) Thide length work ito 3,000 m (2 Bridges) 1,500 m (1 Bridge) 1,740 m (2 Bridges) Chick of Takvera Rivers (2.00) (1.00) (1.16) Equal large fassing flator 6,584 m (1.77) 3.720 m (1.00) 2,930 m (0.79) View flood Area Frequent: 9,580 m Max. in the past: 13,190 m, Frequent: 4,670 m Frequent: 4,670 m Construction Cost + RWC Cost = root at Orn theoding IC) Nax. in the past: 13,97 B, ROW = 0.48 Const. Cost = 11.21 B, ROW = 0.52 Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Number of Affected Houses/Structure 56 28 33 Confluence point of Rio Cic River ribod Area Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.80 B Cost. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B Cost. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B Cost. Cost = 11.21 B, ROW = 0.52 B, Total = 11.80 B Cost. Cost = 11.21 B, ROW = 0.52 B, Total = 11.80 B Cost. Cost = 11.21 B, ROW = 0.52 B, Total = 11.80 B Cost. Cost = 11.21 B, ROW = 0.52 B, Total = 11.80 B Cost. Cost = 11.2				
Confluence Point of 2 rivers. Confluence Point Confluence Point of 2 rivers. (crossing 2 rivers independently) Road length 28.23 km (1.00) 30.31 km (1.06) (+1.34 km) 28.48 km (1.01) (+0.25 km) Bridge length work Rivers 3.000 m (2 Bridges) 1.500 m (1 Bridge) 1.740 m (2 Bridges) Chico / Talavera Rivers 6.584 m (1.77) 3.720 m (1.00) 2.930 m (0.79) With Box Cubrers) Max. in the past: 11.950 m, Frequent: 9.580 m Scatter (1.00) 2.930 m (0.79) Length passing flood area: Area: Do Area: Prequent Hood Area: Orist. Cost = 13.97 B, ROW = 0.48 Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.45 B Const. Cost = 11.31 B, ROW = 0.49 New Cost = Total (and fice the past: Total = 14.45 B B, Total = 11.73 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Not al = 11.80 B Not al = 11.80 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.21 B, ROW = 0.52 Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.21 B, ROW = 0.52 Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.30 B, ROW = 0.49 Const. Cost = 11.30 B, ROW = 0.49 Const. Cost = 11.30 B, ROW = 0.49 Cost. Cost = 11.21 B, ROW = 0.52 Const. Cost = 11.30 B, ROW = 0.49 Cost. Cost = 11.				
Road length 28.23 km (1.00) 30.31 km (1.06) (-1.84 km) 28.48 km (1.01) (+0.25 km) Bridge length over Rio 3,000 m (2 Bridges) 1,500 m (1 Bridge) 1,740 m (2 Bridges) Chico / Talavera Rivers (2.00) (1.00) 2,930 m (0.79) Equilizing zone for 6,584 m (1.77) 3,720 m (1.00) 2,930 m (0.79) Food Area (Section Max. in the past: 11,950 m, Frequent: 0.580 m Frequent: 4,670 m Frequent: 4,670 m Frequent: 9,580 n Scale and Area Scale and Area Scale and Area B, Total = 14.45 B B, Total = 11.73 B B, Total = 11.80 B B, Total = 14.45 B B, Total = 14.45 B B, Total = 11.73 B B, Total = 11.80 B Const. Cost = 10.21 K, passes through the worst condition area. C Cl_EX crosses the downstream side of confluence point of Rio Chice River and Talavera River. Confluence point of Rio Chice River and Talavera River. A thoough required bridge length is shorter than Alternative-3. Requires longest bridge length is shorter than Alternative-3. Scotal Environmental requires longest equalizing zone. C SCTEx and CLLEx is directly connected. Scotal Environmental requires longest equalizing zone. C SCTEx and CLLEx is directly connected. Mainal-Alternative-3. Scotal Environmental row of houses/structure affected	Concept			Confluence Point of 2 rivers
Bridge length over Rio Chio/Tilavera Rivers 3,000 m (2 Bridges) (1.00) 1,500 m (1 Bridge) (1.16) Equalizing zone for Diod Area (Science Area: Max. Flood Area Area: Max. Flood Area Frequent: 9,580 m Max. in the past: 11,950 m, Frequent: 9,580 m Max. in the past: 13,190 m, Frequent: 4,670 m Construction Cost + Row Cost = Total (not inching) (2) Const. Cost = 13.97 B, ROW = 0.48 B, Total = 14.45 B Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.00 B Number of Affected Houses/Structure River / Flood Area Crossing X CLLEX passes near Confinence point of Rio Chico River and Talavera River, thus passes through the worst condition area. C CLLEX crosses the downstream side of confluence point of Rio Chico River and Talavera River, thus passes through the worst condition area. C CLLEX crosses through shorter than Alternative-1. Passes through shorter frequent flood area, thus requires longest equalizing zone. N SCTEx and CLLEx is directly connected but made via intersection with national rowastructure affected. SCTEx and CLLEx is directly connected. N TPLEx and CLLEx is directly connected. Social Environmental mapert X SCTEx and CLLEx is directly connected. Second highest number of houses/structure affected. Second highest number of houses/structure	Road length	28 23 km (1 00)	30.31 km (1.06) (+1.84 km)	
Chico / Talavera Rivers (1.00) (1.16) (1.16) Equilifying zone for requent plood Area (Section with Bos Culvers). 6.584 m (1.77) 3.720 m (1.00) 2.930 m (0.79) Length passing flood area: Max. Flood Area / Frequent Flood Area (or including IC) Max. in the past: 9.220 m, Frequent: 5.220 m Max. in the past: 13.190 m, Frequent: 4.670 m Number of Affreetod Houses/Structure Crossing Const. Cost = 11.3 P, ROW = 0.48 B, Total = 14.45 B Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.73 B Number of Affreetod Houses/Structure Crossing 56 28 33 Appropriateness of CLLEX passes near Crossing X CLLEX passes near Confluence point of Rio Chico River and Talavera River, Huo passes through the worst condition area. Passes through longest frequent flood area, thus requires longest equalizing zone. CLLEX crosses the downstream side of Chico River and Talavera River. Nus flood area, thus requires longest equalizing zone. CLLEX trosses true river. Nuther and Talavera River. Nus flood area, thus requires longest equalizing zone. Passes through shorter frequent flood area, thus the best location from the viewpoint of river/flood area crossing. Passes through shorter frequent flood area, thus directly connected but made via intersection with national roa thus continuity of an expressway is poor. SCTEx and CLLEx is directly connected. X TPLEx and CLLEx is directly connected. Social Environmental Impact <td< td=""><td></td><td></td><td></td><td></td></td<>				
Equalizing zone for Flood Area (Scelion with Box Culvers) 6,584 m (1.77) 3.720 m (1.00) 2.930 m (0.79) Image passing flood area: Max. Flood Area Frequent Flood Area (Section Cost + Row Cost = Total (not including) Max. in the past: 12.950 m, Frequent Flood Area Sceling and Area Max. in the past: 9.220 m, Frequent: 5.220 m Max. in the past: 13.190 m, Frequent Flood Area Sceling and Area Construction Cost + Row Cost = Total (not including) Const. Cost = 13.97 B, ROW = 0.48 B, Total = 14.45 B Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.73 B Number of Affected Houses/Structure 56 28 33 Appropriateness of CLIEX Location at River / Flood Area Crossing X CLLEX passes near confluence point of Rio Chico River and Talavera River, thus passes through longest frequent flood area, thus requires longest bridge length: CLLEX crosses the downstream side of confluent point of Rio Chico River and Talavera River. Ibus passes through longest frequent flood area, thus requires longest pridge in an Alternative-3. but shorter than Alternative-3. N CLLEX crosses through shorter frequent flood area, thus the best location from the via intersection with national roa dimescry connected but made via intersection with national roa dimescry connected but made via intersection with national roa dimescry connected but made via intersection with national roa dimescry connected by directly connected by floodes/structure affected. X TPLEx and CLLEx is directly connected. Social Environmental Impact <td< td=""><td></td><td></td><td></td><td></td></td<>				
 Flood Area (Section with Box Culvers) Length passing flood area: Max. in the past: 11.950 m, Frequent: 9,580 m Groamreation Cost = 13.97 B, ROW = 0.48 (Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B ROW Cost = Total (not including IC) Number of Affected Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.73 B Const. Cost = 11.30 ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.30 ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.30 ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.70 B Const. Cost = 13.97 B, ROW = 0.48 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.71 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.70 B Const. Cost = 11.31 B, ROW = 0.49 B	Equalizing zone for			
area: Max. Floid Areal Frequent: 9,580 m 5,220 m Frequent: 4,670 m Construction Cost + ROW Cost = Total (not including IC) Const. Cost = 13.97 B, ROW = 0.48 B, Total = 14.45 B Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B Const. Cost = 11.31 B, ROW = 0.49 B, Total = 11.80 B Number of Affected houses/structure 56 28 33 Appropriateness of CLLEX Location at River / floid Area Crossing X CLLEX passes near confluence point of Rio Chico River and Talavera River, thus passes through the worst condition area. Passes through longest frequent flood area, thus requires longest equalizing zone. △ CLLEX crosses the downstream side of River and Talavera River. Alternative -1, but longer than Alternative -1. ● Passes through shorter frequent flood area, thus the best location from the viewpoint of river/flood area crossing. Expressways Connectivity and Transport Efficiency X SCTEx and CLLEx is not directly connected but made via intersection with national road thus continuity of an expressway is poor. SCTEx and CLLEx is directly connected. X TPLEx and CLLEx is directly connected. Natural Environmental Impact X Highest number of houses/structure affected. ○ Least number of houses/structures affected. ○ Land take of agri-land smallest. Scened high the storest frequent flood area, towest construction cost. Number of houses/structures affected. ○ Land take of agri-	Flood Area (Section with Box Culverts)			
Frequent Flood Area Construction Cost + Construct Cost = 13.97 B, ROW = 0.48 Construct. Cost = 11.21 B, ROW = 0.52 Construct Cost = 11.31 B, ROW = 0.49 RoW Cost = Total (not including IC) B, Total = 14.45 B B, Total = 11.73 B Construct. Cost = 11.21 B, ROW = 0.52 B, Total = 11.80 B Number of Affected Homes/Structure Appropriateness of CLEX Location at River, Hispasses through the worst condition area. Sector and Talavera River. CLLEX crosses the downstream side of Chico River and Talavera River. CLLEX crosses through the worst condition area. Requires longest bridge length is longer than Alternative-1. Natternative-2. Required bridge length is shorter than Alternative-3. but longer than Alternative-3. Natternative-2. Natternative-2. Natternative-2. Natternative-2. Natternative-3. Naternative-3. Natternative-3.				
ROW Cost = Total (orb including IC) B, Total = 14.45 B B, Total = 11.73 B B, Total = 11.80 B Number of Affected Houses/Structure 56 28 33 Appropriateness of CLEX Location at River / Hoad Area Crossing X CLLEX passes near confluence point of Rio Chico River and Talavera River, Ho passes through the worst condition area. CLLEX crosses the downstream side of confluent point of Rio Chico Chico River and Talavera River, Ho passes through the passes through the worst condition area. CLLEX crosses the downstream side of confluent point of Rio Chico Chico River and Talavera River, Ho passes through horter than Alternative-1. CLLEX crosses through trigle length is frequent flood area, thus requires longest equalizing zone. CLLEX crosses through shorter than Alternative-1. Passes through shortest frequent flood area, thus the best location from the best location from the best location from the viewpoint of river/flood area crossing. Passes through shortest frequent flood area than Alternative-3. Passes through shortest frequent flood area than Alternative-3. Passes through the set location from the best location from the social Environmental Inpact X SCTEx and CLLEx is directly connected. X TPLEx and CLLEx is directly connected. Social Environmental Inpact X Highest number of houses/structures affected. Construction is the longest in distance. A Second highest number of houses/structures affected. A Second highest number of houses/structures affected. Passes through the shortest	Frequent Flood Area	•	, ,	-
Houses/Structure X CLLEX location at confluence point of Rio Chico River and Talavera River, thus passes through the worst condition area.	ROW Cost = Total			
ci Li EX Location at River / Flood Area	Number of Affected Houses/Structure	56	28	33
Connectivity and Transport Efficiencydirectly connected but made via intersection with national road thus continuity of an expressway is poor. • Connection from Cabanatuan to Manila is bad.directly connected. • Best transport efficiency.directly connected. • Manila-Cabanatuan connection is the longest in distance.Social Environmental ImpactX • Highest number of houses/structure affected. • Community is divided by CLLEX at La Paz.• Least number of houses/structures affected. • Land take of agri-land highest.• Land take of agri-land highest.• Land take of agri-land smallest.Natural Environmental Impact• Passes through the longest frequent flood area, thus construction work is seriously affected by floods. • Highest construction cost.• Land take of agri-land seriously affected by floods. • Lowest construction cost.• Passes through the socond longest frequent flood area. • Lowest construction cost.• Passes through the socond longest frequent flood area. • Lowest construction cost.• Passes through the socond longest frequent flood area. • Lowest construction cost.• Passes through the socond longest frequent flood area. • Lowest construction cost.• Passes through the socond longest frequent flood area. • Lowest construction cost.• Passes through the socond longest frequent flood area. • Lowest construction cost.• Passes through the socond longest construction cost.• Passes through the socond 	Appropriateness of CLLEX Location at	 confluence point of Rio Chico River and Talavera River, thus passes through the worst condition area. Requires longest bridge length. Passes through longest frequent flood area, thus requires longest equalizing 	 downstream side of confluent point of Rio Chico River and Talavera River. Although required bridge length is longer than Alternative-3, but shorter than Alternative-1. Passes through shorter frequent flood area than Alternative-1, but longer than Alternative-3. Located within the range of back flow from Rio Chico Bridge along Tarlac – Sta. 	 independently. Required bridge length is shorter than Alternative-1, but longer than Alternative-2. Passes through shortest frequent flood area, thus the best location from the viewpoint of river/flood
to Manila is bad. to Manila is bad. Social Environmental Impact X Highest number of houses/structure affected. Least number of houses/structures affected. A Second highest number of houses/structures affected. Natural Environmental Impact O Land take of agri-land smallest. A Land take of agri-land highest. O Land take of agri-land smallest. Constructability X Passes through the longest frequent flood area, thus construction work is seriously affected by floods. O Passes through the second longest frequent flood area. O Passes through the shortest frequent flood area. Highest construction cost. Highest construction cost. Lowest construction cost. D Lowest construction cost.	Expressways Connectivity and Transport Efficiency	directly connected but made via intersection with national road thus continuity of an expressway is poor.	 SCTEx and CLLEx is directly connected. Best transport efficiency. 	directly connected.Manila-Cabanatuan connection is the longest in
Impact A Impact induction of houses/structure affected. Impact induction of houses/structures affected. Natural Environmental Impact Impact Impact induction of smallest. Impact Impac		to Manila is bad.		
Impact	Social Environmental Impact	houses/structure affected.Community is divided by		
Constructability X • Passes through the longest frequent flood area, thus construction work is seriously affected by floods. • Highest construction cost.	Natural Environmental Impact	• Land take of agri-land		e
	Constructability	X • Passes through the longest frequent flood area, thus construction work is seriously affected by floods.	• Passes through the second longest frequent flood area.	frequent flood area.
	Rank	3	1 Recommended.	2


TABLE 5.6-1 EVALUATION OF ALIGNMENT ALTERNATIVES

The evaluation of alternative alignments is shown in **TABLE 5.6-1**. The alternative-2 was recommended due to the following reasons;

- The most preferred alignment for traffic between Manila side and Cabanatuan City which is dominant traffic on CLLEX.
- The alignment passes through the area where there are banks on both sides of the river; therefore water course is controlled and stable. Flood water overflows the banks, thus enough bridge length needs to be provided.
- Number of affected houses is the least.
- Construction cost is the least, although it is almost the same as Alternative-3.
- Alternative-1 passes through the confluent points of two rivers, not appropriate for the alignment to pass.
- From the view point of river crossing location, Alternative-3 is also appropriate, however, from the view points of traffic efficiency, Alternative-3 is not recommended.

5.7. Toll Collection System of CLLEX

Toll fee should be imposed based on travel distance based toll to assure fairness to expressway users, hence the closed toll collection system should be established which is shown in **FIGURE 5.7-1**. Number of toll booth was computed on the assumption that toll collection would be done manually. Actual toll collection shall be partially done by the electronic toll collection system. Weigh-in-motion equipment for overloaded truck control, administrative maintenance office, and toll houses are also planned at the strategic locations.

FIGURE 5.7-1 PROPOSED TOLL COLLECTION SYSTEM OF CLLEX

6. SCOPE OF THE PROJECT

The proposed CLLEX is to be constructed in the provinces of Tarlac and Nueva Ecija, which are part of Region III. The starting point of the expressway is at Tarlac City (about 125km. from Manila), and ends at Cabanatuan City (CLLEX Phase I). The proposed Project has a ROW of 60 meters in width, and a length of 30.7 kilometers.

6.1. Outline of the CLLEX Project

The proposed CLLEX alignment and interchange layout has been planned and summarized as below.

TABLE 6.1	-1 OUTLINE OF CLLEX PHASE-1		
Project Name	Central Luzon Link Expressway (CLLEX) Project : PHASE 1		
Project Proponent	Department of Public Works and Highways (DPWH)		
Project Contents	Expressway construction through La Paz, Aliaga and		
	Cabanatuan City including 7 bridges.		
Expressway Length	30.7 km		
Number of Lane	4-lane		
ROW (width)	60m		
Number of I/C	5		
Number of Bridges and Length	7 bridges, 1,886 m		
Equalizing Zone Length	3.78 km		
Number of Overpass / Underpass	Overpass: 1, Underpass: 37, Total: 38		
for Intersecting Roads			
Toll Collection System	Closed toll collection		
	• Toll Fee: Distance-based toll fee		
	Manual and Electrons toll collection booths		
	• Weigh-in-motion equipment to control overloaded truck		

TABLE 6.1-1 OUTLINE OF CLLEX PHASE-1

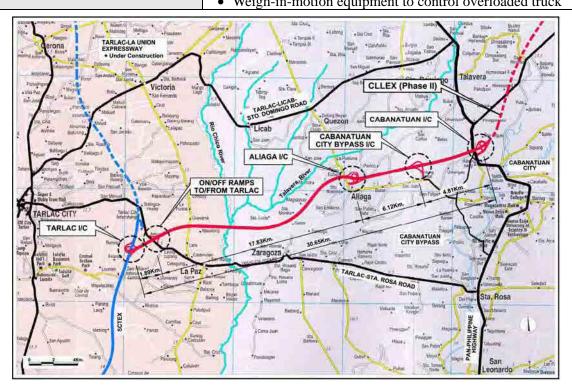
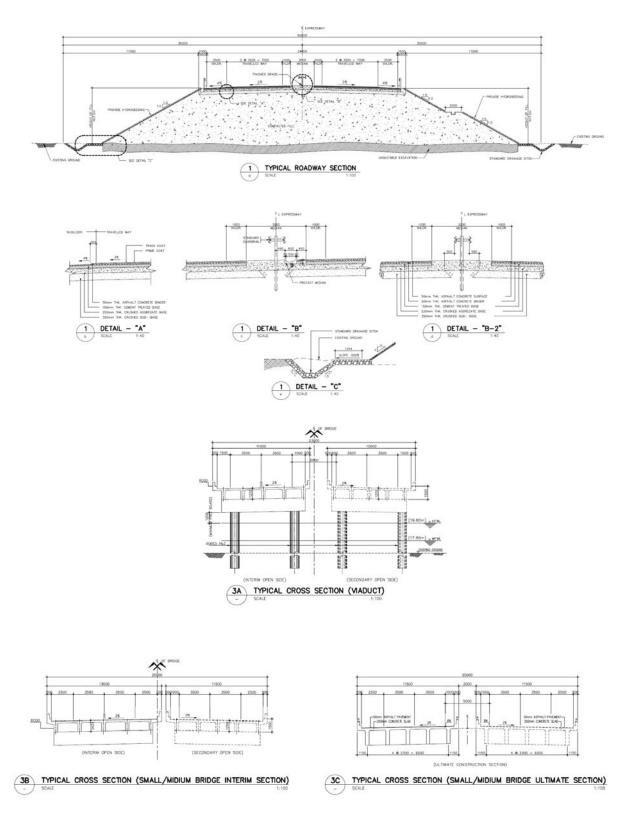


FIGURE 6.1-1 PROPOSED CLLEX ALIGNMENT AND LAYOUT OF INTERCHANGES

6.2. Design Standard

The design concept is to provide a high speed toll road that allows safe and efficient movement of traffic as an expressway with fully controlled access, especially to improve the access from Tarlac (connection to SCTEx) to Cabanatuan (Pan Philippines Highway) in the total length of 30.73km. The following standard is mainly used as reference in CLLEX PHASE-1 design, and the geometrical design standards are set up as shown in **TABLE 6.2-1**.


- A Policy on Geometric Design of Highways and Streets, AASHTO 2004
- Highway Safety Design Standards Part 1 Road Safety Design Manual, May 2004, DPWH
- Japan Road Association, Road Structure Ordinance, 2004
- Highway design manual, Metropolitan Expressway Co., Ltd., Japan
- Highway design manual, NEXCO, Japan

Catagomy	Item	Unit	Roadway	Ramp way
Category	Item	Unit	Standard	Standard
Basic	Design Speed	km/h	100	40
Element	Design Vehicle	-	WB-15	WB-15
	Stopping Sight Distance	m	185	50
	Passing Sight Distance	m	670	270
Cross	Pavement Type	-	Asphalt Concrete	Asphalt Concrete
Section	Number of lane	nos	4	1
Element	Lane Wide	m	3.50	3.50
	Median Width	m	3.00	1.00
	Inner Shoulder Width	m	1.00	1.00
	Outer Shoulder Width	m	2.50	2.50
	Normal Cross fall	%	2.00	2.00
	Maximum Super Elevation		6.00	6.00
	Super Elevation	%	Exhibit 3-26	Exhibit 3-26
	Maximum relative Gradients	%	0.43	0.66
Horizontal	Minimum Radius	m	437	50
Alignment				(absolute 43)
	Minimum Transition Curve length	m	56	22
	Minimum Radius not requiring Transition Curve	m	2560	525
	Super elevation Run off	%	0.43	0.66
Vertical	Maximum Vertical Gradient	%	3	6
Alignment			(absolute 4)	(absolute 7)
	Minimum K Value Crest	%	85.0	6.0
	Minimum K Value Sag	%	52.0	9.0
	Minimum Vertical Curve Length	%	60	60
	Maximum Composition Grade	%	-	11.5
	Vertical Clearance (Road)	m	5.200	5.200

TABLE 6.2-1 GEOMETRICAL DESIGN STANDARD OF CLLEX

6.3. Typical Roadway Cross Section

Typical cross sections of roadway, viaduct and bridge are illustrated as FIGURE 6.3-1.

7. PROJECT COST

The estimated project costs were summarized by currency component (foreign, local and tax) and by cost sharing (GOP, ODA, and Private Components). The construction cost composed of civil works, consultancy service, ROW acquisition and administrative Cost. The operation and maintenance cost also estimated by annual base and periodical base.

					Ont.	MIIIIOII Pe	505 m 201	i piice
Catagomy	Itoma	Total	Curre	ency Compo	onent	(Cost Sharing	
Category	Items	Total	Foreign	Local	Tax	GOP	ODA	Private
Civil	4 lanes Construction	11,359.3	4,060.6	5,897.3	1,401.3	1,401.3	9,958.0	0.00
Work		9	9	3	7	7	2	
Cost	Toll Facility Installation	614.93	219.62	319.44	75.87	0.00	0.00	614.93
	Sub-Total	11,974.3	4,280.3	6,216.7	1,477.2	1,401.3	9,958.0	614.93
		2	1	7	4	7	2	
	Detail Design	190.62	152.00	18.20	20.42	20.42	170.20	0.00
Consultancy	Tender Assistance	35.71	27.32	4.56	3.83	3.83	31.88	0.00
Services	Review of D/D and	361.71	245.51	77.44	38.76	38.76	322.95	0.00
Cost	Construction							
	Supervision							
	Transaction Service:	56.83	47.98	2.76	6.09	6.09	50.74	0.00
	Document Preparation							
	Transaction Service:	53.97	44.23	3.96	5.78	5.78	48.19	0.00
	Tender Assistance							
	Design / Supervision of	43.05	31.15	7.30	4.60	0.00	0.00	43.05
	Toll Facility Installation							
	Independent Consultant:	48.49	40.35	2.94	5.20	24.25	0.00	24.24
	Toll Facility Installation							
Sub-Total		790.38	588.54	117.16	84.68	99.13	623.99	67.26
ROW Acquisition Cost		574.96	0.00	513.36	61.60	574.96	0.00	0.00
Administrative Coast		143.69	0.00	143.69	0.00	143.69	0.00	0.00
Total		13,483.	4,868.8	6,990.9	1,623.5	2,219.1	10,582.	682.19
		35	5	8	2	5	01	

TABLE 7-1 ESTIMATED CONSTRUCTION COST OF CLLEX PHASE-1

Unit: Million Pesos in 2011 price

TABLE 7-2 ESTIMATED OPERATION AND MAINTENANCE COST OF CLLEX PHASE-1

Unit: Million Pesos in 2011 price

Category	Items	Total
Annual Maintenance and	Operation Cost	100.40
Maintenance Cost	Maintenance Cost	20.82
	Insurance Cost	16.97
	Sub-Total	138.19
Periodic Maintenance Cost (ev	420.42	

8. ECONOMIC EVALUATION

8.1. Assumption and Indicators of Economic Analysis

Economic costs and benefits throughout the project life periods are compared by a discount cash flow analysis. The discount rate is at 15%, which is widely used in Philippines as a social discount rate. For economic evaluation, three indicators are calculated: EIRR, B/C and NPV. In addition, the economic life is assumed to be 30 years, taking into account future rapid growth and changes of socioeconomic conditions. Therefore, the Pro-forma cash flow of a project evaluation will be prepared for 2011-2046. The Unit VOC and travel time cost applied are explained in the **TABLE 8.1-1** and **8.1-2**.

		VCR (4) VLINCLL		
Speed (km/hr)	Passenger Car	Jeepney	Bus	Truck
20	14.46	10.32	26.16	37.93
30	13.05	9.14	23.23	34.01
40	11.64	7.97	20.30	30.09
50	10.23	6.79	17.37	26.16
60	10.04	6.73	17.40	25.94
70	9.86	6.66	17.43	25.71
80	9.67	6.59	17.45	25.48
90	9.76	6.81	17.50	25.69
100	9.86	7.02	17.54	25.90

 TABLE 8.1-1
 UNIT
 VOC
 BY
 FOUR
 (4)
 VEHICLE
 TYPES
 IN
 2011
 (Peso/km/veh)

TABLE 8.1-2 UNIT TRAVEL TIME COST IN 2011 (Peso/min/veh)

Vehicle Type	2011
Passenger Car	7.18
Jeepney	7.83
Bus	29.36
Truck	1.33

8.2. Results of Economic Analysis

The performance indicators of the project in stage construction and 4-lane construction are as sown in **TABLE 8.2-1**. The economic costs and benefits of the project generated a positive NPV and an EIRR that is higher than the government-prescribed hurdle rate (15%). These values indicate that the project is economically viable.

 TABLE 8.2-1 THE RESULTS OF ECONOMIC ANALYSIS

	Stage Construction	4-lane Construction
EIRR	20.6%	19.4%
B/C	1.50	1.39
NPV (Million peso @ i=15%)	3,522.5	3,093.4

8.3. Economical Project Sensitivity

The Result of sensitivity analysis shows that the project is able to hurdle the minimum acceptance criteria of EIRR = 15% and NPV = 0 in all case.

Case Set	NPV	B/C	EIRR
	(Million Pesos)		
Base Case	3093.4	1.39	19.4%
Cost plus 10%	2502.7	1.29	18.3%
Cost plus 20%	1911.9	1.20	17.3%
Benefit less 10%	2140.2	1.27	18.1%
Benefit less 20%	1186.9	1.15	16.8%
Cost plus 10%, Benefit less 10%	1549.4	1.18	17.1%
Cost plus 10%, Benefit less 20%	596.2	1.07	15.8%
Cost plus 20%, Benefit less 10%	958.6	1.10	16.2%
Cost plus 20%, Benefit less 20%	5.4	1.00	15.0%

TABLE 8.3-1 PROJECT SENSITIVITY

9. PPP SCHEME

Project IRR which is the internal rate of return when all costs including ROW acquisition are shouldered by the private sector, is estimated about 3.5%. The project needs financial support of the Government. Otherwise, the private sector will not be interested. For the projects with low Project IRR, the possible PPP modalities are as follows;

Туре-1	Design and build by the Government and lease the facility to the private. The Private operates and maintains the facility and pays lease fee to the Government (SCTEx model). Traffic demand and revenue risks shall be borne by the private.
Туре-2	The private sector undertakes just O & M. Toll rate can be reduced compared to other modality.
Туре-3	Design, build and O & M by the private. The facility is leased to the Government who shall pay lease fee to the private (MRT-3 model). The Government shall bear the traffic demand and revenue risk

Type-1 was selected due to the following reasons;

- The Government can recover its investment from lease fee.
- The Government can utilize ODA fund which provides soft loan with low interest rate, long repayment period with long grace period.
- Because of ODA soft loan, total project cost becomes much less than Type-3. Since Type-3 has to secure higher interest rate fund and shorter repayment loan from the private commercial banks.

Option-1:	Government	ROW Acquisition
Stage		• Design & Build of 2-lane Expressway (Yen loan)
Development	Private	• Installation of toll collection facility
(Initially 2-lane		• O & M (2-lane)
Widen to 4-lane		• Design & Build & Finance Widening (2 to 4-lane)
		• O & M (4-lane)
		• Pay lease fee to the Government (or Toll revenue
		sharing between GOP and the Private)
Option-2:	Government	ROW Acquisition
Full		• Design & Build of 4-lane Expressway (Yen loan)
Development	Private	Installation of toll collection facility
(4-lane from the		• O & M (4-lane)
Beginning)		• Pay lease fee to the Government (or Toll revenue
		sharing between GOP and the Private)

Financial analysis was undertaken based on the following PPP modality;

10. FINANCIAL EVALUATION

10.1. Assumption and Conditions of Financial Analysis

Assumptions and conditions of financial analysis are summarized in **TABLE 10.1-1**. The assumption for lease fee is shown in **TABLE 10.1-2**.

]	ltem	Assumption	
1. PPP Moda	ity		Lease Scheme	
2. Base Year			2011	
3. Operation	3. Operation Operation Period		34 years (From 2017 to 2050)	
4. Price Esca	ation	Foreign	1.6%	
		Local	3.8%	
5. Toll Rate		Initial Toll Rate in 2017	3.0 Pesos/vehicle*km (Class 1)	
		Toll Rate Adjustment	100% every 2 years (+7.6%)	
6. Financing				
(1) ODA				
	ng L/A		February 2012	
Intere	st rate	Civil work	1.4%	
		Consultancy Service	0.01%	
	Repayme	nt Period	30 years (From 2012 to 2041)	
Grace	Period		10 years (From 2012 to 2021)	
	ment Stru		Even annuity basis	
	nitment C		0.1% of Loan	
	nercial Ba			
	cing Clos	ure	2016	
	st rate		10.49%	
	ment Per	iod	12 years	
Grace	Period		3 years	
	ment Stru		Even annuity basis	
	cing Char		1.0% of Loan	
Short	term	Interest Rate	5%	
loan		Repayment Period	1 year	
7.		odology	Liner	
Depreciation	1	eciation Period	34 years	
8. Taxation		orate Income Tax Rate	30%	
	-	orate Income Tax	7 years from the commencement of the operation	
Holida		ay	(in accordance with Executive Order No. 226, The	
			Omnibus Investments Code of 1987)	
	Net C	perating Loss Carry Over	The Net Operating Loss of the Concessionaire shall	
			be carried over as a deduction from gross income for	
			the next 3 taxable years.	
		Government Tax	3% of Gross Revenue	
	VAT		No	
Property Tax		erty Tax	No	

 TABLE 10.1-1 ASSUMPTIONS AND CONDITIONS OF FINANCIAL ANALYSIS

	Item	Description		
Amount of	Lease Fee	Lease fee will be paid to the DPWH by the Concessionaire to compensate repayment of ODA Loan. In this study, amount of the		
		lease fee is assumed to be equal to amount of principal and interest of		
		ODA Loan excluding Interest During Construction and Commitment		
		Charge.		
Annual	Scenario 1:	Constant annual lease fee is paid		
Lease	Constantly			
Fee	Scenario 2:	Annual lease fee is equal to annual amortization of ODA Loan.		
	ODA Loan			
	Amortization			
	Scenario 3:	Annual lease fee will increase by constant value every year		
	Linear			
Lease	Scenario 1:	From the opening to the end of repayment period of ODA Loan		
Fee	Repayment Period			
Payment	of ODA Loan			
Period	Scenario 2:	From the opening to the end of Concession period		
	Operation Period			
Exchange	Rate Risks	-10% decrease of current Exchange Rate(Yen/Pesos)		
		(The value of amortization of ODA Loan in Pesos will be increase.)		

TABLE 10.1-2 ASSUMPTION FOR LEASE FEE

10.2. Results of Financial Analysis

The results of financial analysis are shown in **TABLE 10.2-1** and **10.2-2**.

TABLE 10.2-1 FINANCIAL ANALYSIS RESULTS OF CLLEX PHASE-1 OPTION-1 (2-lane to 4-lane)

Exchange Rate Risk for Lease Fee: -10% Yen/Pesos

Yellow cell above WACC : 9.64% (after Corporate Income Tax)

Opti	on 1		Equity IRR Hurdle Rate: 15%												
			Major item									Year of becoming			
	Case				GFS for		Annual Lease Fee		Tax Exemption (Net	mption Net				positive cash flow	
	Ca		PPP Modality	Equity /Loan	Private Portion	Payment	Initial Charge	Period	Operating Loss Carry-Over & Tax Holiday)	Short-term Loan	Project IRR	IRR for SPC	Equity IRR	Government IRR	
1-1						Constant			No	No	3.45%	6.00%	5.31%	4.27%	
1-2								25 yrs				6.13%	7.01%	3.87%	
1-3	Phase 1					ODA Loan Amortization basis	0	25 yis	Yes	Yes	3.51%	7.11%	8.83%	3.57%	
1-4		Option 1 (2-lane &	Lease (with	3:7	No	Linear		34 yrs				11.59%	17.22%	2.74%	2038
1-5	Phase 1+2	widening)	ODA)			Linear	15 Million PHP/yr (Based on Interest of ODA Loan)	Ph1: 35yrs Ph2: 30yrs	Yes	Yes	3.52%	11.90%	14.09%	2.83%	
1-6	1.2						0 (Phase 2 Only: 15 Million PHP/yr)	1 12: 50915				13.98%	20.96%	2.72%	2037

TABLE 10.2-2 FINANCIAL ANALYSIS RESULTS OF CLLEX PHASE-1 OPTION-2 (4-lane)

Executive Summary

Option 2

			Major item						Results						
	Case				GFS for		Annual Lease Fee		Tax Exemption (Net						Year of becoming
			PPP Modality	Equity /Loan	Private Portion	Payment	Initial Charge	Period	Operating Loss Carry-Over & Tax Holiday)	Louin	Project IRR	IRR for SPC	Equity IRR	Government IRR	positive cash flow
2-1						Constant			No	No	3.48%	7.05%	6.86%	3.95%	
2-2									Yes	Yes		7.19%	13.36%	3.62%	
2-3						ODA Loan Amortization	0	25 yrs	Yes	Yes		9.41%	20.58%	3.34%	
2-4	Phase 1		Lease		N	basis			103	No	3.54%	9.41%	9.24%	3.48%	
2-5		Option 2 (4-lane)	(with ODA)	3:7	No	Linear	15 Million PHP/yr (Based on Interest of ODA Loan)		Yes	Yes		17.46%	24.10%	2.73%	2030
2-6							021120uii)			No		17.46%	20.12%	2.74%	
2-7							15 Million PHP/yr (Based on Interest of	Ph1: 35yrs	Yes	Yes		17.84%	23.68%	2.75%	2030
2-8	Phase 1+2					Linear	ODA Loan)	Ph2: 30yrs	105	No	3.65%	17.84%	21.49%	2.76%	
2-9			Ph1: Lease Ph2: BTO		50%		0	Ph1: 35yrs	Yes	Yes		9.97%	12.28%	2.25%	

S-28

11. ENVIRONMENTAL AND SOCIAL CONSIDERATION

11.1. Prediction / Assessment and Mitigation of the Impacts and Monitoring

Impact to natural and social environment for directly affected area and its PAPs are predicted and magnitude of the impact is assessed based on the Study. Assessment results, mitigation measures and monitoring in Pre-construction / construction phase and Operation / maintenance phase are shown in **TABLE 11.1-1** and **TABLE 11.1-2**.

	Item	Assessment	Mitigation Measures	Monitoring Item
		A total of 64 structure (i.e. residential houses) with 67 households (or 337 people) will be affected. All of them except 1 household (5 people) are informal settlers. One household	• To prepare Final RAP with full consensus with PAPS, and inventories of land and other assets.	 Inventory of land and asset Valuation of land and assets by replacement cost.
1	Involuntary Resettlement	is tenant. A total of about 507 farm land lots (or 201 ha.) will be affected. About 95.6%	• To provide relocation sites for PAPs to be relocated.	• Relocation sites are provided and at PAPs' satisfaction.
		are land owners, about 1.3% are tenants, About 3.1% are free occupants with permit of land owners.	• To provide just (or fair) compensation, relocation sites, and other supports that are stated in LARRIPP/WB OP 4.12.	• Valuation is made at the replacement cost and fair compensation is offered to PAPs.
		(+) Demands for labor to the construction	• To assure priority employment of PAPs during construction.	• Contract specified this condition.
2	Local Economy such as	and related work are expected to be increased temporarily, which further stimulates local economy.	Construction contract between DPWH and the selected contractor shall specify this condition.	• They are employed during construction.
	Employment	(-) Shops and small businesses locating on CLLEX I/C construction sites will have to be relocated.	• To provide just (or fair) income loss compensation and rehabilitation assistance.	• PAPs are provided such compensation and assistance.
3	Land Use	About 201 ha of lands, almost all of which are palay (rice) field will be lost and change to CLLEX. These lots along the new road and around the interchanges might be converted to market places / shopping malls, or residential uses.	• Respective LGUs shall amend city/municipality Land Use Plan and Zoning Ordinance to control unorderly urban development along CLLEX and to restrict conversion of farm land to other land use purposes, and strictly enforce amended zoning ordinance.	• Zoning ordinance is amended and implemented.
		Project site is located in abundant sand/gravel resources, construction of	• Detailed design shall adopt construction methods which utilize available local resources.	• Local resources are incorporated in design.
	Utilization of Local	pavement and bridges/other structure can utilize these resources.		• Local resources are used.
	Resources		• Construction contract between DPWH and the selected contractor shall specify maximum utilization of available local resources.	• Utilization of local resources are specified in the contract.
				• Local resources are used.
		About 201 ha of farmland will be lost by this project in exchange to the expressway. Negative impact to farmers is expected in a	• To provide just (or fair) compensation, replacement of land when feasible and other supports such as disturbance compensation and rehabilitation assistance in accordance with LARRIPP/WB OP 4.12.	• Fair valuation is made, fair compensation is estimated and paid.
	Farm Land	form of loss of lands. Division of farmlands by CLLEX might cause inconvenience to access their cultivating lands.	• Detailed design shall be undertaken focusing on maintaining of existing irrigation system and existing farm roads to assure accessibility to farm lands.	• Detailed Design is made in accordance with this concept.
			 Detailed design shall be undertaken to provide accessibility between the lands divided by CLLEX by providing enough box-culverts. 	• Designed features are constructed and functioning efficiently as design concept.

TABLE 11.1-1 EIA RESULTS (PRE-CONSTRUCTION AND CONSTRUCTION PHASE)

	Item	Assessment	Mitigation Measures	Monitoring Item
4*	Social Institution, and Local Decision-maki ng	No concern regarding Social Institution and Local Decision-making system were raised by PAPs.	 Although no concern was raised by PAPs, DPWH shall continue to dialogue with social institution and local decision-making bodies. 	• Any concerns are raised.
	Social Infrastructure	There are some universities and hospitals in Tarlac, Aliaga and Cabanatuan. During the construction, it might create difficulty in access to those social infrastructure due to the increasing in vehicles and congestion by construction.	 To construct temporary road within the road right-of-way for transporting construction materials, equipment and laborers. To implement proper traffic management with close coordination with local police and barangay captains. To provide proper information on construction schedule and traffic management plan. 	These are specified in the contract.These are implemented.
5*	Poor	About 58.7% of affected households belong to the poor (or below Region III poverty threshold). (+) Demands for labor to the construction and related work are expected to be increased temporarily, which further stimulates local economy. (-) Shops and small businesses locating on CLLEX I/C construction sites will have to be relocated	 Qualified skilled workers and laborers in the Direct Impact Areas (DIA) duly endorsed by the Brgy. Captains will be given priority in hiring during implementation of the project. To include condition of priority employment of PAPs below poverty line into construction contractor's contract. To provide just (or fair) compensation for income loss and rehabilitation assistance in accordance with LARRIPP/WB OP 4.12. 	 These are specified in the contract. These are implemented by the Contractor. Fair compensation and rehabilitation assistance are made.
9*	Water Use, Water Rights	All project areas are provided with the irrigation system.	 To assure by Detailed Design that the existing irrigation system shall not be disturbed. Irrigation channels and their maintenance roads shall be provided with box culverts and when necessary, rechanneling of irrigation canal shall be designed. Inventory of drainages and irrigation distribution means must be cataloged with lawful owners and practical users' name. In case of the area where CLLEX Project takes place, the water right for irrigation belongs to National Irrigation Administration (NIA). Just allocation of irrigation water to the farmers is NIA's responsibility. 	 Detailed Design incorporated this requirement. Designed features are constructed and functioning efficiently
10*	Sanitation	Sanitary condition around construction site is anticipated to become worse due to generation of wastes during the construction.	 Temporary sanitation facilities such as garbage bins and portable toilets must be provided by the Contractor at the construction area. Regular disposal of the solid and domestic wastes to the designated disposal areas duly-approved by respective LGUs and DPWH must be strictly complied with. Weekly inspection of the work sites must be undertaken by DPWH to ensure proper management of the solid and domestic wastes generated. 	These requirements are specified in the contract.These are properly implemented.

	Item	Assessment	Mitigation Measures	Monitoring Item
11*		Temporally increase in infectious and communicable diseases is possible during	• Temporary sanitation facilities such as garbage bins and portable toilets must be provided by the Contractor at the construction area.	• These requirements are specified in the contract.
	Risk, HIV/AIDS, Infectious disease	construction phase due to influx of construction workers. Poor sanitary environment can generate and	• Regular disposal of the solid and domestic wastes to the designated disposal areas duly-approved by respective LGUs and DPWH must be strictly complied with.	• These are properly implemented.
		spread communicable diseases such as diarrhea, common cold, and such.	• Weekly inspection of the work sites must be undertaken by DPWH to ensure proper management of the solid and domestic wastes generated.	
			• To provide Information, Education and Communication (IEC) on healthy behavior and Sexually Transmitted Disease (STD) to the construction workers.	
12*		Accidents involving construction works, vehicles and machineries operation are	• To construct temporary construction road within road right-of-way, implement traffic management plan in coordination with local police and	• These are specified in the contract.
	anticipated. Traffic accidents may happen by construction vehicles and heavy machines during construction. Construction personnel, particularly operators of heavy equipment and	inform construction schedule, etc. to people within the project area to prevent traffic accidents.	• These are properly implemented.	
		• To implement proper stock piling of materials, watering of soils and covering materials to prevent dusting.		
	Accident	machineries may experience respiratory ailments.	• To educate construction workers on various construction safety measures, and strictly implement such safety measures.	
		Fall down from higher position such as piers and bridges may happen.	• To provide adequate lighting and reflectors and construction warning signs at construction sites as well as at traffic accident-prone sections of roads.	
			• To provide temporary fences so as ordinary people not to enter in the construction sites.	
		During the construction stage, erosion is likely to occur mainly by intense rain.	• To provide proper temporary drainage system to prevent water concentration at certain locations.	• These are incorporated in the contract.
14	Soil Erosion		• To provide temporary dike within the road right-of-way to prevent flow of eroded soils.	• These are properly implemented.
			• For high embankment construction section, to cover embankment by vinyl sheet during heavy rain for prevention of slope collapse.	
		Groundwater table at project site is between GL-0.5m and GL-4.3m deep. Groundwater	• To seal, remove, or contain solid wastes and other construction hazardous materials off from bare ground to prevent seeping into the	• These are specified in the contract.
15	Groundwater	level might temporarily be dropped during construction by cutting off of recharge source	ground especially when it rains.To install and manage portable toilets for construction workers properly.	• These are properly implemented.
		e.g. surface water flow.	 To maintain machineries and generators and prevent oil leakage. 	
16	Hydrology	CLLEx traverses the flood-prone area where the river bed gradient is very gentle	• To design and construct sufficient length of bridges and also provide sufficient number of box-culverts in order not to change and worsen the	• These are incorporated in the detailed design.

	Item	Assessment	Mitigation Measures	Monitoring Item
		(1/3,000). Due to insufficient river banks distance, sufficient river channel capacity is not provided, thus storm water overflows the banks. By construction of CLLEx, hydrological condition may be affected if proper design is not made.	 current condition. During construction, to undertake bridge substructure construction only during dry season and to avoid stockpiling of materials in a manner to disturb water flow. 	• Check work schedule of the Contractor
17	Flora, Fauna and Biodiversity	Agricultural flora, mainly rice, and trees growing in CLLEX alignment are expected to be removed. Removal of such flora also causes impact. Slightly on local ecology and biodiversity negatively.	 To obtain "Permit To Cut" prior to tree cutting activities along the alignment. To limit Tree cutting only within the required ROW. Relocation of trees will be carefully undertaken. Reforestation at areas designated by the DENR-FMB to replace cut tree species. Replacement ratio and species to be introduced will be determined by the DENR-FMB (Forest Management Bureau). 	• These are properly implemented.
20*	Global Warming	It is estimated that total emission of CO ₂ will be about 59,584 tons during construction phase.	 To use clean filters and mufflers of engines. To minimize idling of engines. To minimize traveling frequencies between construction sites and origin by making and executing efficient construction materials transportation schedule. To prohibit old model equipment and vehicles. To follow mitigation measures suggested for AIR POLLUTION. To off-set this impact, plant enough trees along expressway and interchange sites. 	These requirements are specified in the contract.These are properly implemented.
21*	Air Pollution	Air quality was measured at 4 stations in dry season (2010 FS) and 7 stations in wet season (2011). Results shows that highest values of TSP, SO ₂ and NO ₂ are 299 (DENR Standard: 300), 30 (DENR Standard: 340) and 11 (DENR Standard: 260), respectively. Although SO ₂ and NO ₂ are far below DENR standard, TSP at one station in Cabanatuan City is close to DENR Standard. Construction work near the section to Cabanatuan City needs to be done carefully.	 To spray exposed ground with water to minimize dust re-suspension. To cover temporary stockpiles of excavated materials and construction spoils with tarpaulin or sack materials. To transport and dispose construction spoils regularly to hauled areas duly-approved by the DENR/LGUs. To perform regular maintenance of construction vehicles, heavy equipment and machineries. Follow mitigation measures suggested for GLOBAL WARMING. Aggravation of air pollution will be minimized by adoption of above measures, considering that most of construction sites are located in the rice field areas. 	 Measure air quality quarterly. These are specified in the contract. These are properly implemented.
22*	Water Pollution	Water quality was measured at 2 stations in dry season (2010 FS) and 7 stations in wet	• To adopt construction method minimizing generation of drainage water (e.g. river realignment plan for substructure construction).	• These are specified in the contract.

	Item	Assessment	Mitigation Measures	Monitoring Item
		season (2011). In dry season, all of BOD, TSS and Total Coliforms exceeded DENR Standard. In wet season, BOD exceeds DENR Standard at one station, TSS at 4 stations and TC at 5 stations. It is important not to worsen water quality than at present.	 To seal, remove, or contain solid wastes and other construction hazardous materials off from bare ground to prevent seeping into the ground especially when it rains. To install and manage portable toilets for construction workers properly. To maintain machineries and generators and to prevent oil leakage. Aggravation of water quality will be minimized by adoption of above measures. 	• These are properly implemented.
23*	Soil Contamination	During the construction, excavated soil, surface water and oil from vehicles and machineries may pollute the ground.	 To seal, remove, or contain solid wastes and other construction hazardous materials off from bare ground to prevent seeping into the ground especially when it rains. To install and manage portable toilets for construction workers properly. To maintain machineries and generators and prevent oil leakage. Aggravation of soil contamination will be minimized by adoption of above measures. 	 These are specified in the contract. These are properly implemented.
24*	Waste	Construction debris and excavated soil are generated during the construction. Human waste will be generated from workers during construction and operation.	 To seal, remove, or contain solid wastes and other construction wastes. To dispose them at the disposal sites approved by respective LGUs and DPWH. To select eco-friendly waste disposal methods. To edificate and educate construction workers. To conduct EIS on the disposal site if the site is to be newly developed for the project. Effect of waste will be minimized by adoption of above measures. 	These are specified in the contract.These are properly implemented.
25*	Noise and Vibration	Noise level was measured along the national roads at 3 stations in dry season (2010 FS) and 5 stations in wet season (2011). Noise level at all stations exceeded DENR Standard. It is important to adopt measures not to worsen noise level than at present. Noise and vibration occur from machineries and vehicles used during construction work, hence construction work and transporting of materials need to be carefully done.	 To bore piles using a special boring equipment will be adopted during foundation works instead of pile driving. To use noise suppressors equipped machineries. To work in day time or non-critical time to minimize noise disturbance to adjacent residential areas. To install temporary noise barriers at noise sensitive areas such as residential, schools, and places of worships to maintain noise level at permissible limit. To strictly prohibit overloading on trucks. Aggravation of noise and vibration will be minimized by adoption of above measures, considering that most construction sites are located in the rice field area. 	 Measure noise quarterly. These are specified in the contract. These are properly implemented.

	Item	Assessment	Mitigation Measures	Monitoring Item
27*		Possible offensive odor might be generated from construction vehicles and portable	To seal, remove, or contain solid wastes and other construction wastes.To dispose them off in an LGU approved solid wastes disposal site.	• These are specified in the contract.
	Offensive Odor	toilets for workers during construction.	 To install and manage portable toilets for construction workers properly. 	• These are properly implemented.
			• To do good camp management.	
29*	During the construction, trucks transporting construction materials will cause traffic		To implement traffic management plan in coordination with local police.To transport materials during off-peak hours.	• These are specified in the contract.
	Traffic Congestion	congestion.	• To prohibit parking of construction-related vehicles on the national/provincial roads.	• These are properly implemented.
			• To use temporary construction road built within the acquired road right-of-way as much as possible.	
			• To educate truck drivers.	

	TABLE 11.1-2 EIA RESULTS (OPERATION AND MAINTENANCE PHASE)							
	Item	Assessment	Mitigation Measures	Measures Monitoring Item				
3	Farm Land	Estimated monetary values of paray that would yield in the land acquired for CLLEX were estimated to be 14.75 million pesos per year. Some of PAPs who lose farm land might face financial difficulty if their losses of income sources are not properly compensated or alternative	To adopt high productivity farming methods and high yield seeds.To educate and finance farmers so as for them to adopt above	 Check rice production of provinces of Tarlac and Nueva Ecija. 				
5		means of compensation have been provided.	 Proper compensation such as job training and prioritized job opportunity. 	 Number of PAPs who received training. Number of jobs provided to PAPs 				
12*	Accident	CLLEX will be built as 4-lane divided facility with center median and international geometric design standard is adopted. Traffic on CLLEX will not be so heavy; therefore, occurrence of accidents will be unlikely due to quality of the facility. Accident may occur only when a driver does not follow traffic rules and regulations. Traffic on existing roads will be decreased, thus accidents will be expected to reduce.	 Educate drivers to follow traffic rules and regulations. Install traffic signboards at appropriate places. Regularly repair roads and bridges to ensure good condition for vehicle movement. 	Check report of Concessionaire.				
20*	Global Warming	Amount of GHG e.g. CO_2 is expected to increase as number of vehicles travel through CLLEX increases. But CO_2 is estimated to decrease 16,810 tons, 21,073 tons and 34,654 tons in 2017, 2020 and 2030, respectively compared with the without Project case.	 To use clean filters and mufflers of engines To minimize idling of engines To maintain vehicle mechanics, engines, oil filter, exhaust pipe, and such in proper shape To prohibit old model vehicles To strengthen vehicle emission regulation 	Check report of Concessionaire on traffic volume and travel speed.				
21*	Air Pollution	Predicted air qualities such as NOX, SO ² and PM-10 are less than $1\mu g/Ncm$ with CLLEX. During all parameters are below DENR Standards.	 To use clean filters and mufflers of engines To minimize idling of engines To maintain vehicle mechanics, engines, oil filter, exhaust pipe, and such in proper shape To prohibit old model vehicles To strengthen vehicle emission regulation 	• Measure air quality quarterly.				
22*	Water Pollution	Litters on road surface and eroded soils from embankment slope may cause water pollution, however, minimal impact.	• Implement proper road maintenance.	• Check maintenance report of the Concessionaire.				

11.2. RAP Requirement

Overall RAP requirements are shown in TABLE 11.2-1.

TABLE 11.2-1 OVER-ALL RAP REQUIREMENTS

For Structure Cash including cost of restoring the remaining structure Determined by Appraisal Committee No. of residential houses affected: (67 HH, 334 persons) No deduction for salvaged building materials (Replacement Cost) 1 is tenant, 63are occupation of priv land and 3 on public land (a total of are informal settlers) For Other Cash 1 formal settler and 66 informal settl Improvement Replacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Sugar land: 3 ha. For Cost for reconnecting the facility such as water, power and telephone Fruit bearing/crops: 897 For enside and telephone Commercial value as determined by DENR or Appraisal Committee Fruit bearing Trees: 281 PaFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Residential house land: 9 lots owners, all severe) For Land Replacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash (Severe 31, Marginal 474) Residential house land: 9 lots owners, all severe)		LARRIPP, 2007	This Project
Determined by Appraisal Committee (67 HH, 334 persons) No deduction for salvaged building materials (Replacement Cost) 1 is tenant, 63are occupation of prival land and 3 on public land (a total of are informal settlers) For Other Cash Improvement Replacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Sugar land: 3 ha. For Cost for reconnecting the facility such as water, power and telephone Fruit bearing/crops: 897 For Commercial value as determined by DENR or Appraisal Perennials Fruit bearing Trees: 281 For Land Replacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Residential house land: 9 lots owners, all severe) For Land Replacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Residential house land: 9 lots owners, all severe) For Land Replacement Cost Initial Offer: Market Value Fasible (Land for Land) (Cash (Severe 31, Marginal 474)			
No deduction for salvaged building materials (Replacement Cost)1 is tenant, 63are occupation of priv land and 3 on public land (a total of are informal settlers) 1 formal settlers) 1 formal settlers)For Other Cash Improvement Replacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephoneSugar land: 3 ha.For Crops, Cash Trees PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsFruit bearing Trees: 281For Land Replacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash (Severe 31, Marginal 474) compensation when affected holding has a higher value thanReplacement 1 is tenant, 63are occupation of privince land and 3 on public land (a total of are informal settlers) 1 formal settlers) 1 is tenant, 63 are occupation of privincial/Municipal Assessors		6 6 6	
Cost) Iand and 3 on public land (a total of are informal settlers) I formal settler and 66 informal settle 61 (67 HH) shall be provided werelocation site by respective LGUs For Other Cash Sugar land: 3 ha. Improvement Replacement cost for the affected portion of public structure Auxiliary Structure: 50 to the Government or non-Government agencies or to the community Sugar land: 3 ha. Cost for reconnecting the facility such as water, power and telephone Fruit bearing/crops: 897 For Crops, Cash Fruit bearing/crops: 897 Trees and Commercial value as determined by DENR or Appraisal Perennials Committee PAFs given sufficient time to harvest crops None Fruit Bearing Trees: 281 For Land Replacement Cost Initial Offer: Zonal Valuation owners, all severe) Second Offer: Market Value Farm Land: Approximately 505 Land Swapping if feasible (Land for Land) (Cash (Severe 31, Marginal 474) Sample Survey Result95.6% are free			
are informal settlers) are informal settlers) 1 formal settler and 66 informal settle 61 (67 HH) shall be provided verelocation site by respective LGUs Sugar land: 3 ha. Improvement Replacement cost for the affected portion of public structure Auxiliary Structure: 50 to the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephone For Crops, Cash Trees and Commercial value as determined by DENR or Appraisal Perennials Commercial value as determined by DENR or Appraisal Perennials Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal Assessors Residential house land: 9 lots owners, all severe) For Land Replacement Cost Initial Offer: Zonal Valuation Residential house land: 9 lots owners, all severe) Second Offer: Market Value Farm Land: Approximately 505 farm Land: Approximately 505 farm Land: Supproximately 505 farm Land: Approximately 505 farm Land: Approximately 505 farm Land: Approximately 505 farm Land: Supproximately 505 farm Land: Supproximately 505 farm Land: Approximately 505 farm Land: Supproximately 505 farm Land: Approximately 505 farm Land: Approximately 505 far			
ForOtherCashSugar land: 3 ha.ImprovementReplacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephoneSugar land: 3 ha.ForCrops, CashFruit bearing/crops: 897Treesand Commercial value as determined by DENR or Appraisal PerennialsFruit bearing/crops: 897PerennialsCommercial value as determined by DENR or Appraisal PerennialsFruit bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value thanResidential house land: 9 lots owners, all severe)For LandSwapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value thanResidential house land: 474) Sample Survey Result95.6% are face			
ForOtherCashSugar land: 3 ha.ImprovementReplacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephoneSugar land: 3 ha.ForCrops, CashCashFruit bearing/crops: 897Treesand Commercial value as determined by DENR or Appraisal PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market valueFruit bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash (Severe 31, Marginal 474)Residential house land: 9 lots owners, all severe)For LandSample Survey Result95.6% are based Scrom Other: Sample Survey Result95.6% are based			
ForCashSugar land: 3 ha.ImprovementReplacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephoneAuxiliary Structure: 50ForCrops, CashFruit bearing/crops: 897Treesand Commercial value as determined by DENR or Appraisal PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market valueFruit bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Second Survey Result95.6% are based			
For Other Cash Sugar land: 3 ha. Improvement Replacement cost for the affected portion of public structure to the Government or non-Government agencies or to the community Sugar land: 3 ha. Cost for reconnecting the facility such as water, power and telephone Public Infrastructure: 6 For Crops, Cash Fruit bearing/crops: 897 Trees and Commercial value as determined by DENR or Appraisal Fruit bearing Trees: 281 Perennials Commercial value as determined by DENR or Appraisal None Fruit Bearing Trees: 281 PaFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Residential house land: 9 lots For Land Replacement Cost Residential house land: 9 lots owners, all severe) Farm Land: Approximately 505 Second Offer: Market Value Farm Land: Approximately 505 Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Sample Survey Result95.6% are labored.			
ImprovementReplacement cost for the affected portion of public structureAuxiliary Structure: 50Improvementto the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephonePublic Infrastructure: 6ForCrops, Cash TreesCash Commercial value as determined by DENR or Appraisal Committee PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsFruit bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash 	r Other		
to the Government or non-Government agencies or to the community Cost for reconnecting the facility such as water, power and telephonePublic Infrastructure: 6ForCrops, Cash Trees and Commercial value as determined by DENR or Appraisal Committee PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsFruit bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value thanResidential house land: 9 lots owners, all severe) Farm Land: Approximately 505 1			
community Cost for reconnecting the facility such as water, power and telephoneFruit bearing/crops: 897ForCrops, CashFruit bearing/crops: 897TreesandCommercial value as determined by DENR or Appraisal PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsFruit bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value thanResidential house land: 9 lots owners, all severe)			
Cost for reconnecting the facility such as water, power and telephoneFor Crops, CashFruit bearing/crops: 897Trees and Commercial value as determined by DENR or Appraisal PerennialsFruit bearing Trees: 281PerennialsCommittee PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsNone Fruit Bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Sample Survey Result95.6% are laboration			
telephoneForCrops, CashTreesandCommercial value as determined by DENR or AppraisalPerennialsCommitteePAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market valueFruit-bearingtreesFruit-bearingtreesperennialGenerationReplacement CostResidential house land: 9 lots owners, all severe)For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Sample Survey Result95.6% are labeled			
For Crops, Cash Fruit bearing/crops: 897 Trees and Commercial value as determined by DENR or Appraisal None Fruit Bearing Trees: 281 Perennials Committee PAFs given sufficient time to harvest crops None Fruit Bearing Trees: 281 PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal Assessors Residential house land: 9 lots owners, all severe) For Land Replacement Cost Residential house land: 9 lots owners, all severe) Second Offer: Market Value Farm Land: Approximately 505 Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Sample Survey Result95.6% are labored.			
Treesand Commercial value as determined by DENR or Appraisal CommitteeNone Fruit Bearing Trees: 281PerennialsCommitteePAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsNone Fruit Bearing Trees: 281For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value thanResidential house land: 9 lots owners, all severe)			Fruit bearing/crops: 897
Perennials Committee PAFs given sufficient time to harvest crops Compensation for damaged crops (palay, corn) at market Value Fruit-bearing trees based on assessment of Provincial/Municipal Assessors Provincial/Municipal Assessors For Land Replacement Cost Initial Offer: Zonal Valuation Residential house land: 9 lots Second Offer: Market Value Farm Land: Approximately 505 for Land Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than			
Compensation for damaged crops (palay, corn) at market valueFruit-bearing trees based on assessment of Provincial/Municipal AssessorsFor LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value thanResidential house land: 9 lots owners, all severe) Farm Land: Approximately 505 12 Farm Land: Approximately 505 12 Farm Land: Approximately 505 12			6
value Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsResidential house land: 9 lots owners, all severe)For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Sample Survey Result95.6% are labeled as a second content of the second conten		PAFs given sufficient time to harvest crops	
Fruit-bearing trees based on assessment of Provincial/Municipal AssessorsResidential house land: 9 lots owners, all severe)For LandReplacement Cost Initial Offer: Zonal Valuation Second Offer: Market Value Land Swapping if feasible (Land for Land) (Cash compensation when affected holding has a higher value than Sample Survey Result95.6% are labeled on the second of		Compensation for damaged crops (palay, corn) at market	
Provincial/Municipal AssessorsFor LandReplacement CostResidential house land: 9 lotsInitial Offer: Zonal Valuationowners, all severe)Second Offer: Market ValueFarm Land: Approximately 505Land Swapping if feasible (Land for Land) (Cash(Severe 31, Marginal 474)compensation when affected holding has a higher value thanSample Survey Result95.6% are laboration		value	
For LandReplacement CostResidential house land: 9 lotsInitial Offer: Zonal Valuationowners, all severe)Second Offer: Market ValueFarm Land: Approximately 505Land Swapping if feasible (Land for Land) (Cash(Severe 31, Marginal 474)compensation when affected holding has a higher value thanSample Survey Result95.6% are laboration		6	
Initial Offer: Zonal Valuationowners, all severe)Second Offer: Market ValueFarm Land: Approximately 505Land Swapping if feasible (Land for Land) (Cash(Severe 31, Marginal 474)compensation when affected holding has a higher value thanSample Survey Result95.6% are laboration		1	
Second Offer: Market ValueFarm Land: Approximately 505Land Swapping if feasible (Land for Land) (Cash(Severe 31, Marginal 474)compensation when affected holding has a higher value thanSample Survey Result95.6% are labeled		1	
Land Swapping if feasible (Land for Land) (Cash (Severe 31, Marginal 474) compensation when affected holding has a higher value than Sample Survey Result95.6% are la			
compensation when affected holding has a higher value than Sample Survey Result95.6% are la			
Irelocation plot) Interview I 3% are tenants and 3.1%			
		1	owners, 1.3% are tenants and 3.1% are
free occupation with permit.			
			About 95.6% of farm lands are owned.
of Assistance Lessees: 5 times the average of gross harvest for the past No Lessee			
			4.4% are classified as tenant farmers
Entitlement Tenant: Value of gross harvest of 1 year and not less than Dhp15 000 nor ha (E.O. 1025)			
Php15,000 per ha. (E.O. 1035) Income Loss Four (4) Sari-sari store owners			Four (4) Sari-sari store owners are
Loss of business/income, entitled to an income rehabilitation affected.			
assistance not to exceed Php15,000 or based on tax record.			ancered.
	-		Sixty one (61) residential houses (67
Php10,000 to PAF when severely affected structures which households)			
require relocation and new construction.			nousenousy
		* · · · · · · · · · · · · · · · · · · ·	Max. Sixty seven (67) households who
Skills training and other development activities equivalent to lose income.			
			Some farmers who become land less.
			When availability of relocation sites is
Without sufficient additional land to allow reconstruction of delayed, this should be conside			
their lost house. (maximum of 67 households)			
Equivalent to prevailing average monthly rental.			
Period between delivery of house compensation and the			
delivery of land compensation			
Transportation Allowance and Assistance 67 households		denvery of fund compensation	

Note: Severe – More than 20% of Total Land/Properties affected

Marginal – Less than 20% and still viable for continued use.

11.3. Summary of Relocation Assets

TABLE 11.3-1 shows number of residential houses, households and people affected and relocated.

T	ABLE 11.3-1 NUN	ABER OF RESID	DENTIAL HOUS	E, HOUSEHOLI)			
	AND PEOPLE AFFECTED							
oality/	Barangay	No. of Residential	No. of Household	No. of People	PAPs with Loss of			

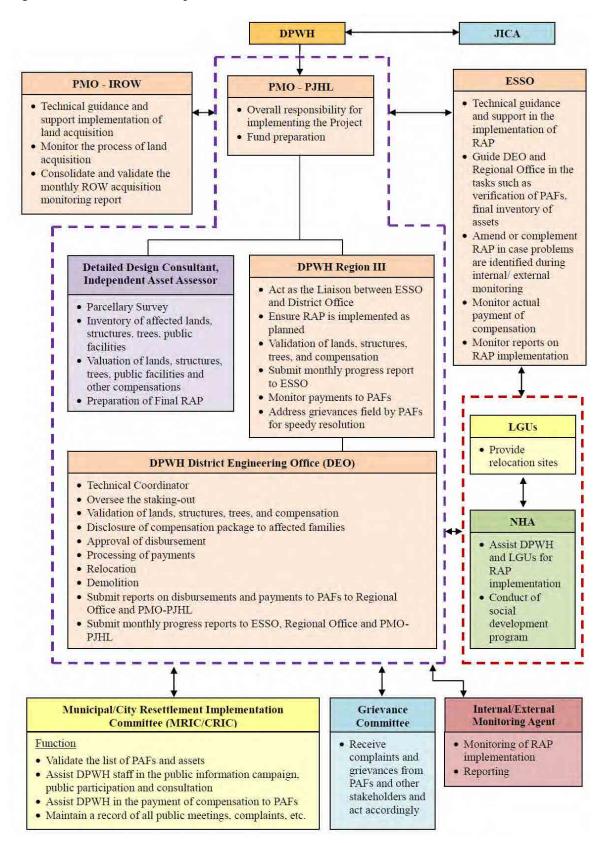

Municipality/ City	Barangay	No. of Residential Houses Affected	No. of Household Affected	No. of People Affected	PAPs with Loss of Income
La Paz	Macalong	2	2	14	0
	Laungcapang	1	1		
	Sub-Total	3	3	14	0
Aliaga	Pantoc	3	3	158	0
	Betes	2	2		
	Bucot	1	1		
	Umangan	25	26		
	Sub-Total	31	32	158	0
Cabanatuan City	Caalibang-bangan	27	37	162	4
Total		61	67	334	4

FIGURE 11.3-1 FINALLY PROPOSED RELOCATION SITES (Umangan, Aliaga Municipality)

11.4. Organization Chart of RAP Implementation

Organization chart of RAP Implementation is shown in FIGURE 11.4-1.

FIGURE 11.4-1 RAP IMPLEMENTATION ORGANIZATION

11.5. RAP Implementation Process

RAP implementation process is shown in **FIGURE 11.5-1**. The implementation schedule is described as **TABLE 11.5-1**.

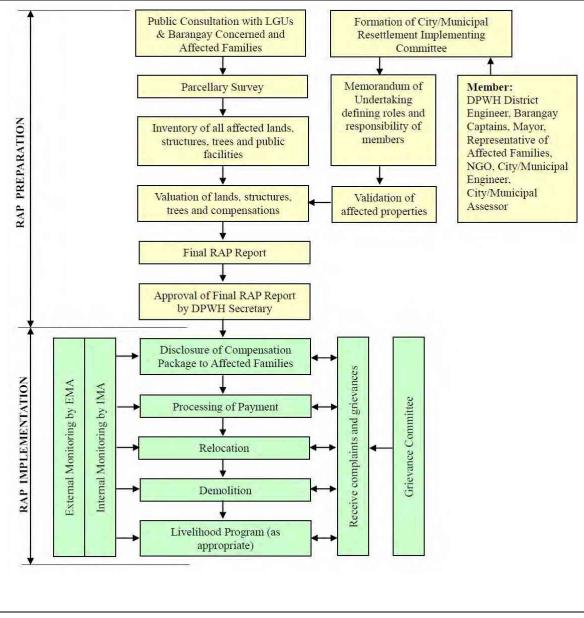


FIGURE 11.5-1 RAP IMPLEMENTATION PROCESS

TABLE 11.5-1 KAT INT LEWENTATION SCHEDULE										
Activities	2011			2012			2013			
Acuvittes	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q
First Disclosure (PCM)										
Preparation of RAP										
Conduct of Parcellary Survey										
Validation of APs and Finalization of RP										
Approval of the Final RP										
Formation of the CRIC										
Disclosure of final RP to APs										
Notification of APs										
Compensation										
Provision of Replacement Land										
Relocation to Replacement Land										
Income Restoration										
Approval of Road Design										
Commencement of Civil Works										
Monitoring & Evaluation										
Internal Monitoring										
External Monitoring and Evaluation										

 TABLE 11.5-1
 RAP IMPLEMENTATION SCHEDULE

12. PROJECT IMPLEMENTATION

(1) Implementation Strategy

Two options were studied in the economic and financial evaluations, because the traffic level of CLLEX is not so high. The conditions of two options are as follows;

- Option-1: Stage Development option, which construct initially 2-lane with overtaking lane, then widened to 4-lane
- Option-2: Full Development option, which construction 4-lane drive way initially

The condition and results of economical and financial evaluation are summarized as followings.

1) Traffic level

	Year	Traffic Volume (veh/day)	Level of Service	Volume / Capacity Ratio
Option-1	2017 :	11,221	D	0.37
	2020 :	12,967	D	0.43
	2025 :	14,979	D	0.49
	2030 :	17,340	Е	0.57
Option-2	2017 :	12,630	А	0.17
	2020 :	14,255	А	0.19
	2025 :	16,959	А	0.23
	2030 :	20,177	А	0.27

2) Project Cost

Option-1	Total Project Cost :	14,199.85 Million Peso	
	GOP	10,309.85 Million Peso	
	Local Fund	1,998.08 Million Peso	
	Yen Loan	8,311.77 Million Peso	
	Private	3,890.00 Million Peso	

Option-2	Total Project Cost :	13,483.35 Million Peso
_	GOP	12,801.16 Million Peso
	Local Fund	2,219.15 Million Peso
	Yen Loan	10,582.01 Million Peso
	Private	682.19 Million Peso

3) Economic Evaluation

		Economical Indicators
Option-1	• Economic IRR	= 20.6 %
	• NPV	= 3,522.5 Million Pesos
	• B/C Ratio	= 1.51
Option-2	• Economic IRR	= 19.4 %
	• NPV	= 3,093.4 Million Pesos
	• B/C Ratio	= 1.39

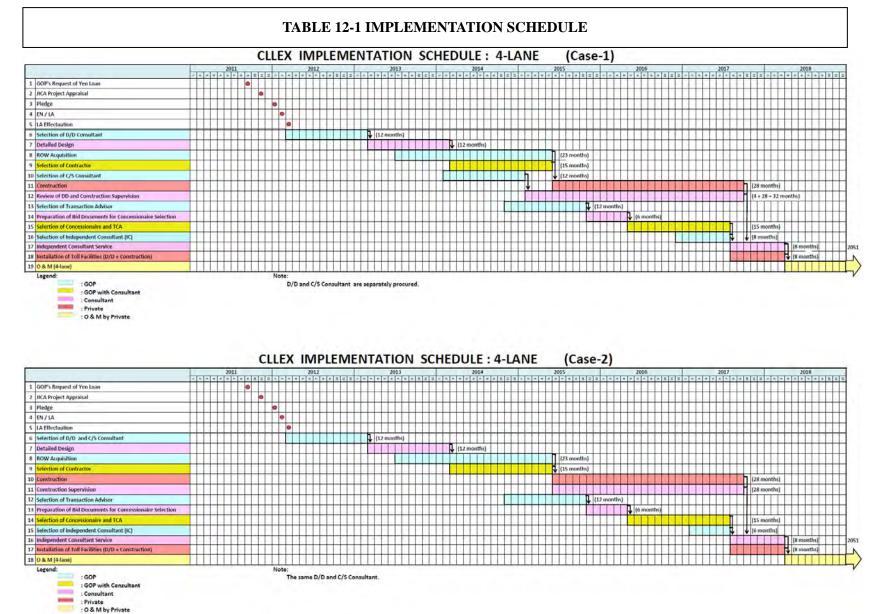
4) **PPP Scheme**

Option-1	Government	 ROW Acquisition Design & Build of 2-lane Expressway (Yen Loan)
	Private	 Installation of toll collection facility O & M (2-lane) During Parilel and Finance Withening (2 to 4 lane)
		 Design, Build and Finance Widening (2 to 4-lane) Operation & Maintenance (4-lane) Pay lease fee to the Government (or Toll revenue sharing between GOP and the Private)
Option-2	Government	 ROW Acquisition Design & Build of 4-lane Expressway (Yen Loan)
	Private	 Installation of toll collection facility Operation & Maintenance (4-lane) Pay lease fee to the Government (or Toll revenue sharing between GOP and the Private)

5) Financial Evaluation

	Results of Financial Evaluation Indicators						
Option-1	• O & M Period : 34 years						
	• Lease fee shall be an equivalent amount to Yen Loan Repayment						
	• Equity : Debt $= 3:7$						
	• Short term loan : Considered						
	• WACC = 9.64 %						
	Financial Evaluation Result						
	Project IRR = 3.51% IRR for SPC = 1159%						
	Equity of IRR = 17.22% Government IRR = 2.74%						
Option-2	• O & M Period : 34 years						
	 Lease fee shall be an equivalent amount to Yen Loan Repayment 						
	• Equity : Debt $= 3:7$						
	• Short term loan : Considered						
	• WACC = 9.64 %						
	Financial Evaluation Result						
	Project IRR = 3.54% IRR for SPC = 17.46%						
	Equity of IRR = 24.10 % Government IRR = 2.73 %						

(2) Recommended Implementation Strategy


Option-2: Full Development (Construction of 4-lane from the Initial Stage) is recommended due to the following reasons;

- Total project cost can be saved by 742.67 Million Pesos at 2011 price level due to the following;
 - ☆ In case of Option-1, during widening stage, some works done during the initial stage must be removed and constructed again, i.e. double investment is required for pavement works, embankment works, center median works, etc.
 - ✤ For the long bridge, wider 2-lane bridge is required at the initial stage in consideration of broken down vehicle on the bridge.
 - ♦ Option-1 needs additional consultancy cost and construction supervision during widening stage.
- Even though an overtaking lane is provided during the initial stage under Option-1, possibility of traffic accidents is higher than Option-2. Also during widening stage, possibility of traffic accidents will become higher due to the construction work along the expressway in operation.
- The project requires high embankment. Uneven settlement of embankment between embankment built at the initial stage and embankment built during widening stage will be expected.
- On the part of the private sector, 3.89 Billion Pesos (at 2011 price level) required for the widening stage under Option-1 is not required but only 0.68 Billion Pesos is required under Option-2, which will greatly reduce investment risks. Thus more investors will be interested in the project.

(3) Implementation Schedule

Implementation Schedule is shown in **TABLE 12-1**. Two cases are shown in table;

- Case-1: This is the case when the selection of the detailed design (D/D) consultant and the construction supervision (C/S) consultant is separately undertaken.
- Case-2: This is the case when the detailed design (D/D) consultancy services and construction supervision (C/S) consultancy services are combined, and one group of consultant for D/D and C/S is selected.

Preparatory Survey for Expressway Projects in Mega Manila Region

13. OPERATION AND EFFECT INDICATORS

(1) Selected Operation and Effect Indicators

In order to enable project monitoring and evaluation on the basis of consistent indicators, operation and effect indications are introduced for ODA loan projects. Operation and effect indicators are basically equivalent to the outcome indicators and performance indicators used by the World Bank. For this study, they are defined as follows:

- Operation indicators: quantitative measure of the operational status of project.
- Effect indicators: quantitative measure of the effects generated by a project.

In view of project objective and expected effects, the indicators as **TABLE 13-1** were selected.

0	peration and Effect Indicators	Data Collection Method
Operation	Traffic Volume of CLLEX (veh./day)	Traffic count survey
Indicators	Toll Revenue	Data collection from Operator
Effect	Traffic Congestion Rate	Calculation based on Traffic count survey
Indicators	(Volume/Capacity Rate)	
	Travel Time Saving (vehhour/day)	Calculation based on Travel Time Survey
	Travel Time Cost Saving (Peso/Year)	Calculation based on Time Cost and Travel
		Time Survey

TABLE 13-1 OPERATION AND EFFECT INDICATORS

(2) Study and Estimation of Operation and Effect Indicators

The summarized operation and effect indicators are shown in TABLE 13-2.

TABLE 15-2 OF ERATION AND EFFECT INDICATORS							
	Indicators	Road Name	Baseline (2009)	Target (2020)			
Operation Indicators	Traffic Volume (vehicle /day)	CLLEX (Tarlac IC ~ Aliaga IC)	-	14,255			
	Toll Revenue (Thousand Peso/day)	CLLEX		1,535			
Effect Indicators	Traffic Congestion Rate	Tarlac – Sta. Rosa Road (Zaragosa)	0.56	0.41			
	(V/C Rate) Pan Philippine Highway (San Leonardo)		0.83	0.85			
	Travel Time	Cabanatuan – Balintawak					
	(hr:min)	Via SCTEX(Thru Aliaga)	2:14	Via			
		Via Pan-Philippine Highway	3:06	SCTEX and CLLEX 1:53			
	Travel Time Saving (hours / day)	Due to transferred traffic from Tarlac -Sta. Rosa road and PPH to CLLEX	-	5,162			
	Travel Time Cost Saving(Peso/year)		-	1.26 billion			

TABLE 13-2 OPERATION AND EFFECT INDICATORS

Note: Opening Year = Year 2018

CHAPTER 1 INTRODUCTION

1.1 BACKGROUND AND BRIEF HISTORY OF THE PROJECT

1.1.1 Background of the Project

The Philippines has been experiencing relatively slower economic development partly due to limited flow of direct investments into manufacturing sector compared to other rapidly growing ASEAN countries after the recovery from Asian Economic Crisis. In order to foster both domestic and foreign investments, improving overall investment climate including road network has been an urgent matter. In particular, the economic activities are extremely concentrated in Metro Manila where 37% of GDP and 13% of total population are accumulated in merely 0.2% of the country's land. This extreme concentration causes serious congestion and delays of distribution of goods and movement of people, resulting to huge damage to economy and lowering the country's international competitiveness as an investment destination. Likewise living condition in Metro Manila has eroded due to air pollution and traffic noise caused by chronic congestion. In summary, solving traffic congestion in Metro Manila by networking surrounding cities and upgrading/expanding highways around Mega Manila - the area covering Metro Manila, Central Luzon and CALABARZON - contributes to improvement of both investment climate and living climate. Central Luzon Link Expressway (CLLEX) improves access between the two-north large cities, Tarlac and Cabanatuan, and supports industrialization of North part of Mega Manila and eases the extreme concentration in Metro Manila as CLLEX allows better connection between North part of Mega Manila and Metro Manila. Central Luzon is expected to increase its efficiency as an industrial hub with Clark Airport receiving international flights.

1.1.2 Brief History of the Project

In 2010, JICA-assisted High Standard Highway Network Development Master Plan (hereinafter referred to "HSH Master Plan Study") formulated the expressway network in the 200 km radium sphere from Metro Manila. The Study recommended CLLEX as one of eight first priority projects.

In 2010, DPWH completed the Feasibility Study for the Proposed Central Luzon Expressway (now Central Luzon Link Expressway) (hereinafter referred to 2010 FS) under the supplemental agreement of JICA-funded Arterial Bypass Project.

In 2010, JICA-assisted Preparatory Survey for Public-Private Partnership (PPP) Infrastructure Development Projects (hereinafter referred to as "PPP Infra Projects"). This Study prioritized PPP expressway projects in accordance with the criteria established which are based on the necessity and urgency of project, profitability of the project and implementability of the project. Phase I of CLLEX was ranked no. 4 out of 10 priority projects.

1.2 OBJECTIVES OF THE PROJECT

Objectives of the project are as follows:

OBJECTIVES OF THE PROJECT

- (i) To provide fast, safe, comfortable and reliable means of transport in Region III for socio-economic development.
- (ii) To decongest traffic of Pan-Philippine Highway (or Daang Maharlika).
- (iii) To support sound development of Regional Growth Pole Cities of Tarlac City and Cabanatuan City, thus contributing to the decongestion of over-concentration of Metro Manila.
- (iv) To form an important lateral (east-west) link of overall Expressway network of Region III.
- (v) To provide faster access from Metro Manila to Cabanatuan City which is the base (or hub) city for Pacific Ocean Coastal Area Development.

1.3 THIS REPORT

This report presents all the findings and recommendations made for the Central Luzon Link Expressway (CLLEx) Project.

CHAPTER 2 ROAD SECTOR OVERVIEW

2.1 PHILIPPINE DEVELOPMENT PLAN (2011 – 2016)

Philippine Development Plan (PDP), 2011-2016 was announced in 2011. Development policies of infrastructure are as follows;

DEVELOPMENT POLICIES OF INFRASTRUCTURE

"Accelerating Infrastructure Development"

(1) To optimize resources and investment

- Improve project preparation, development and implementation
- Synchronize planning and budgeting
- Coordinate and integrate infrastructure initiative
- (2) To attract investments in infrastructure
 - Improve the institutional and regulatory environment of the infrastructure sector
 - Encourage PPPs
- (3) To foster transparency and accountability in infrastructure development
 - Encourage stakeholder participation
- (4) To adopt to climate change and mitigate the impacts of natural disasters
 - Institutionalize Climate Change Act (CCA) and Disaster Risk Reduction Management (DRRM)
- (5) To provide productive employment opportunities
 - Adopt a labor-intensive scheme where applicable.

With regards to the transport sector, issues and challenges are established as follows;

TRANSPORT SECTOR ISSUES AND CHALLENGES

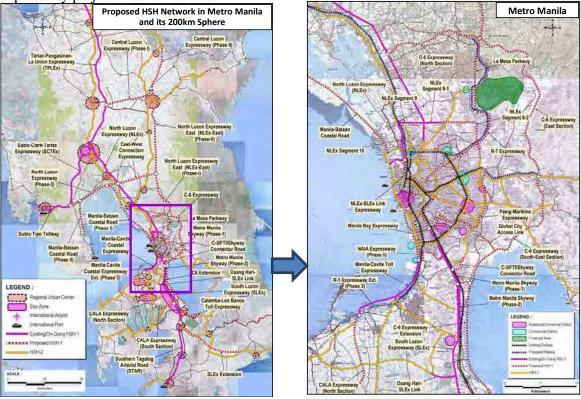
- (a) Assessment and Issues
 - Lack of integrated and coordinated transport network
 - Overlapping and conflicting functions of transport and other concerned agencies
 - Transport safety and security concerns
- (b) Strategic Plan and Focus
 - Adopt a comprehensive long-term National Transport Policy (NTP)
 - Develop strategic transport infrastructure assets
 - Prioritize asset preservation
 - Provide access to major and strategic tourism destinations and production areas
 - Promote environmentally sustainable and people-oriented transport
- (c) Develop an Integrated Multi-modal Logistics and Transport System
 - Identify and develop strategic logistics corridors based on a National Logistics Master Plan
 - Improve RORO terminal system
 - Explore ASEAN connectivity through sea linkages
- (d) Separate the Regulatory and Operation Functions of Transport and Other Concerned Agencies. To address the overlapping and conflicting functions of transport and other concerned agencies.
- (e) Comply with Safety and Security Standards. To ensure transport safety and standards.
- (f) Provide Linkages to Bring Communities into the Mainstream of Progress and Development. To promote conflict-affected and highly impoverished areas.

2.2 ROAD DEVELOPMENT GOALS

Public Investment Program (PIP) (2011 - 2016) was formulated by DPWH in 2011. Goals were set as follows;

DEVELOPMENT GOALS UNDER PIP

- 1. Provide safe environment through quality infrastructure facilities;
- 2. Increase mobility and total connectivity of people through quality infrastructure resulting to improved quality of life;
- 3. Strengthen national unity, family bonds and tourism by making the movement of people faster, cheaper and safer;
- 4. Facilitate the decongestion of Metro Manila via a transport logistics system that would ensure efficient linkages between its business centers and nearby provinces;
- 5. Implement more Public-Private Partnership (PPP) projects for much needed infrastructure and level playing field for investment;
- 6. Study the mechanism for longer maintenance period for roads and bridges; and
- 7. Generate more transport infrastructure with minimal budget cover or contingent liabilities.


Strategic focuses were set as follows;

STRATEGIC FOCUS

- Implement activities in the following order of priorities:
 - a. Maintenance or asset preservation to preserve existing roads in good condition
 - b. Rehabilitation to restore damaged roads to their original designed condition
 - c. Improvement to upgrade road features so that they efficiently meet traffic demands; and
 - d. New Construction
- Prioritize upgrading of the national road network, as to quality and safety standards
- Prioritize national roads to address traffic congestion and safety in urban centers and designated strategic tourism destinations
- Completion of on-going bridges along national roads
- Develop more Public-Private Partnership (PPP) projects for much needed infrastructure and level playing field for investments
- Study the mechanism for a longer maintenance period (5 10 years) in road and bridges construction contract provision
- Prioritize flood control projects in major and principal river basins to address climate change based on master plan and adopting new technologies in flood control and slope management
- Prioritize adequate flood control and upgraded drainage design standards and facilities in flood-disaster prone areas to mitigate loss of river and damage to properties
- Promote innovative technology such as geo-textiles and coco-netting in slope protection and soil erosion control
- Promote retarding basin and rain water harvesting for non-domestic use
- Prioritize water supply in designated strategic tourist destinations/centers

2.3 Master Plan on High Standard Highway Network

The study of master plan on High Standard Highway (HSH) Network Development was conducted in Year 2010. **Figure 2.3-1** shows the proposed HSH network in Metro Manila and 200 km sphere. Based on this master plan, Public Investment Program (2011-2016) for expressway projects was formulated.

FIGURE 2.3-1 PROPOSED HSH NETWORK

Source: The Study of Master plan on High Standard Highway Network Development, 2010, JICA

CLLEX is one of the 1st priority projects in this Master plan shown in Table 2.3-1.

	Name of HSH	Length (km)	Cost (billion pesos)
	NLEx-SLEx Link Expressway	13.4	31.14
d	CALA Expressway	41.8	19.67
no.	C-5/FTI/SKYWAY Connector Rd.	3.0	4.76
G	NAIA Expressway (Phase 2)	4.9	12.18
rity	C-6 Expressway/Global City Link	66.5	54.29
1 st Priority Group	Central Luzon Expressway (CLLEX)	63.9	29.23
, D	SLEx Extension (to Lucena)	47.8	16.45
Ĩ	Calamba-Los Banos Expressway	15.5	5.23
	Sub-total	256.8	172.95
	R-7 Expressway	16.1	25.81
đ	NLEX East / La Mesa Parkway	103.0	38.94
rou	Manila – Bataan Coastal Road	70.3	72.94
2 nd Priority Group	NLEX (Phase 3)	36.2	28.42
riț.	East-West Con. Expressway	26.6	16.48
rio	C-6 Extension	43.6	18.61
d p	Manila Bay Expressway	8.0	46.54
5	Pasig Marikina Expressway	15.7	49.58
	Sub-total	319.5	297.32
TOT	AL	576.3	470.27

TABLE 2.3-1 PROPOSED HSH PROJECTS PRIORITY

Source: The Study of Master plan on High Standard Highway Network Development, 2010, JICA

2.4 Current Road Infrastructure Sector and its Development Plan Related to the Project

DPWH Public Investment Program (PIP) for 2011 -2016 contains the following target and priority programs

			Year		Dequinement
		2011	2014	2016	Requirement
a.	National Arterial Roads (15,987 km)	94% Paved	100% Paved in good condition		 Paving of 1,443km Rehab./ widening/ upgrading/ construction of 2,828km
b.	National Seconda ry Roads (15,372 km)	72% Paved	81% Paved	100% Paved in good condition	 Paving of 3,329km Rehabilitation of 1,798km
с.	National Bridge (330,08 9m) (7,792 bridges)	95%	98%	100% Permanent	 Replacement of 8,544 lm of temporary bridges Improvement of 6,047 lm of existing bridges Construction of 2,154 lm new bridges Repair/rehabilitation of 104,293 lm of bridges

 TABLE 2.4-1 TARGET OUTCOMES OVER THE MEDIUM TERM

Source: Public Investment Program (2011-2016) As of April 2012, DPWH

Under the PIP for 2011-2016, DPWH is envisaging a total investment of 698,084 million pesos. Of this total investment requirement in the PIP, 585,938 million pesos or 84% is earmarked for the highway sector, 83, 948 million pesos (12%) for flood control works and 28,198 million pesos (4%) for other locally-funded projects over the six (6) year program.

The total investment requirement for 2013 up to 2016 is based on the annual 10% increase from the approved budget of 99,490 million pesos for Y2012.

Lint of	Deter	Proposed Allocation (in Million Pesos)						
List of Project	Prior Year	2011	2012	2013	2014	2015	2016	Total (2011-2016)
1.Roads	75,703	75,047	81,246	91,697	101,347	113,722	122,878	585,938
-Foreign	41,490	19,566	14,257	30,313	28,889	35,186	39,162	167,645
assisted								
project								
-PPP	-	-	1,474	11,164	7,450	4805	-	24,894
-Locally	34,213	55,481	65,243	50,219	65,008	73730	83,715	393,398
funded project								
2.Flood	19,692	11,166	10,816	12,523	13,854	14,960	20,628	83,948
Control								
Project								
-Foreign	13,283	2,978	2,300	2,670	3,728	6656	12,406	30,738
assisted								
project								
-Locally	6,419	8,188	8,517	9,853	10,127	8304	8,221	53,211
funded project								

List of	Prior Year	Proposed Allocation (in Million Pesos)						
List of Project		2011	2012	2013	2014	2015	2016	Total (2011-2016)
3. Other Locally Funded DPWH Project	36,288	4,474	7,428	5,219	5,181	3,738	2,157	28,198
GRAND TOTAL	131,683	90,687	99,490	109,439	120,383	132,421	145,663	698,084

Source: Public Investment Program (2011-2016) As of April 2012, DPWH

2.5 Past and Future Plan of Other Donor's Project Related to PPP Policies

(1) Technical Assistance by ADB, AusAID, and CIDA

In terms of capacity building, "Technical Assistance for Strengthening Public-Private Partnerships in the Philippines" are being carried out as of November 2011. This is a capacity development program financed by ADB AusAID (the Australian Agency for International Development), and CIDA (The Canadian International Development Agency). The purpose of the program is to help the Philippines to clear obstacles and to pave the way for PPP. Under this program, ADB provides a US\$1.5 million grant, AusAID provides a US\$7 million grant and CIDA provides a US\$1.2 million grants. The program is to run from April 2011 to July 2013.

The expected outputs of the program are 1) Strengthening of PPP Enabling Framework, 2) Strengthening Capacity of the PPP Center, 3) Institutionalization of PPP Best Practice and 4) Establishment of Long-term Financing and Risk Guarantee Mechanisms.

(2) Other Programs and Activities

Besides ADB TA, there are several assistance programs planned by GoP and foreign agencies.

Singapore Cooperation Enterprise (SCE) has agreed with GoP to provide TA to promote PPP. The objectives of SCE TA are to:

- Achieve an in-depth understanding of the benefits and challenges for greater private sector participation in the financing of public sector projects; and the policy actions required to strengthen the enabling environment, legislative and regulatory frameworks for PPP;
- Build capabilities for key public sector officials involved in the procurement and implementation of infrastructure projects, through the implementation of a pilot PPP transaction; and
- Provide examples of Singapore's infrastructure procurement process by sharing Singapore's lessons and experience in developing successful and commercially viable PPP projects.

It was agreed that SCE will provide a grant worth approximately S\$1.423 million (P48.373 Million) to DOTC for PPP capacity development of DOTC. GoP will provide counterpart fund of S\$ 270,100. The grant will cover one-year period. Based on the Joint Press Release issued by SCE and Temasek Foundation on March 31, 2011, SCE will work with the DOTC to develop institutional capabilities for key agencies within the Philippine Government responsible for the procurement of infrastructure projects under the PPP framework.

Furthermore, according to the Joint Press Release, SCE will send a team of Singapore PPP experts to work with DOTC to prepare and structure a pilot project for procurement under the PPP framework. The pilot project will provide a real-life and hands-on case study where Philippine Government officials can adapt relevant lessons from Singapore to bring projects to a biddable and bankable stage.

SCE will also help DOTC organize a series of capacity building workshops to build capacity for some 100 Philippine Government officials in the development and implementation of PPP transactions. During these workshops, Singapore public sector agencies, such as Public Utilities Board, Singapore Sports Council and Institute of Technical Education, will share with the workshop participants the key challenges Singapore had faced, including the policy considerations, regulatory framework and practical experiences in implementing Singapore's PPP projects. The Singapore private sector players involved in Singapore's PPP projects will also share the perspective of the private sector investors and project developers in investing in a PPP project.

There is also information about assistance coming from the World Bank. According to the World Bank's website, they are interested in helping specific projects, such as expansion of the LRT System and the sewerage system in Manila. There can be further assistance that is directed towards individual projects.

2.6 Relation between other ODA Loan Projects

Project related of CLLEX is Plaridel Bypass Project.

Plaridel Bypass Project

A Plaridel Bypass road aims to ease serious traffic congestion and enhance transportation capacity and efficiency around Plaridel City, one of the core cities north of Metro Manila. The bypass also aims to enhance the function of the Philippine-Japan Friendship Highway which connects urban areas north of Metro Manila to the Cabanatuan City and Cagayan Valley Area from where agricultural products originate and are transported to Metro Manila areas.

Pradiel Bypass consist of two phase, financed under a loan agreement between the Government of the Philippines and Japan International Cooperation Agency (JICA). Phase 1 of the overall Plaridel Bypass is under implementation.

Phase 2 starts at the town of San Rafael and proceeds towards the northerly direction to the town of San Ildefonso, both are in the province of Bulacan.

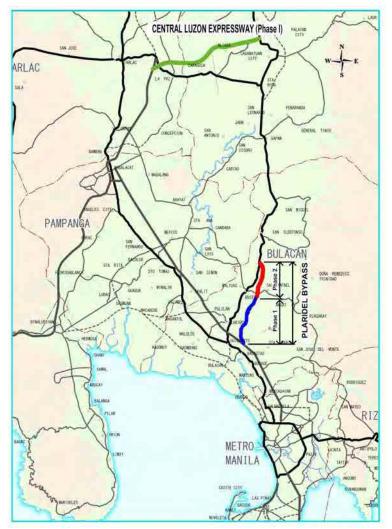


Figure 2.6-1 Location Map of Plaridel Bypass and CLLEX

2.7 Lesson and Countermeasure from the Similar Past Project

Interview surveys were conducted to government officials and the private O& M companies in order to identify the bottleneck and recommendation in the Preparatory Survey for PPP infrastructure Development Project (JICA 2011).

Table 2.7-1 shows the summary of major issues and bottlenecks of PPP project and corresponding recommendations.

	Issues and Bottlenecks of PPP Projects	Recommendations
1. Legal Framework	 1.1 There are two laws/E.O. to allow the private sector to invest infrastructure projects: a) RA 7718 (BOT Law) and its IRR b) EO 423 and its Guidelines and Procedure for entering into joint venture agreement between the Government and the private entities. No NEDA ICC nor NEDA Board's project approval is required. Head of Agency has authority to approve the JV Agreement regardless of project cost. 	 1.1 Options: Option 1 : EO 423 be abolished and integrated into RA 7718 Option 2 : Modification of Guidelines and Procedure Project should be approved by NEDA ICC or NEDA Board Ceiling of project cost should be specified. Enough time should be given to challengers.
	 1.2 Modification of IRR of RA 7718 Amendments of IRR is being studied on i) Approval of Individual Projects and Draft Contract, ii) List of Priority Projects, iii) Publication of Invitation, iv) Approving Authority for the Contract, v) Contract Variation, vi) Protest Fee, vii) Timelines, viii) Substitution/Withdrawal of a Member of a Consortium/Joint Venture, ix) Government Shoulder the Differential, x) Period of Comparative Bids Preparation, xi) Information Disclosure of Unsolicited Proposal, xii) New ROW Acquisition Under Unsolicited Proposal 	1.2 Amendments should be finalized as early as possible.
	1.3 Creation of PPP Laws Present BOT Law is for the one type of PPP schemes, which should be improved by adding other PPP schemes so as to add more flexibility to other types of PPP schemes and to specify the Government's responsibilities.	1.3 Study on creation of PPP Law should start.

TABLE 2.7-1 MAJOR ISSUES AND BOTTLENECKS OF PPP PROJECTS					
	Issues and Bottlenecks of PPP Projects	Recommendations			
2. Institutional Framework	 2.1 Lack of Experiences/Capacity of Government Officials for Planning and Implementation of PPP Projects Historically, planning and implementation of BOT projects was led by the private sector's initiative. The Government is discouraging the unsolicited proposals. The Agencies are required to be more pro-active and take a leadership for PPP projects. 	 2.1 Agencies should take a leadership for promotion of PPP projects. Develop priority projects with implementation priority and firm implementation schedule. The roles of the private sector, government agencies and other authorities as well as LGUs in transport infrastructure development in operation and management needs to be defined. 			
	2.2 No PPP Project Specialized Office except DPWH.	2.2 Organize PPP Specialized Office.			
	2.3 BOT Center has been not so active.	2.3 In close coordination with Agencies, BOT center should be more active in project development of PPP projects.			
	 2.4 Strengthening of DPWH Planning Service and PMO-BOT - In line with the DPWH Rationalization Plan, DPWH is planning to upgrade existing PMO-BOT to PPP Service. 	2.4 PMO-BOT should be upgraded to PPP Service as early as possible.			
	 2.5 Materials for PPP Capacity Development and manuals/standards are incomplete. Training materials for PPP Standard PQ/Tender and Draft Toll Concession Agreement O & M manual 	2.5 Necessary materials, standards and manuals should be prepared.DPWH should establish regular PPP training course.			
3. PPP Project Financing	3.1 Long period (sometimes years) is required for financial closure due to unfavorable offer of banks to the investor (short repayment period with no grace period and high interest rate). Some commercial banks are not familiar with the PPP project financing.	3.1 PPP fund to finance the private entities needs to be created.			
	3.2 Delay in ROW acquisition delays financial closure.	3.2 Refer to 4.4			

TABLE 2.7-1 MAJOR ISSUES AND BOTTLENECKS OF PPP PROJECTS					
	Issues and Bottlenecks of PPP Projects	Recommendations			
3. PPP Project Financing	3.3 Project Development Fund (PDF) of BOT Center is not fully utilized.	3.3 PDF needs to be revitalized by increasing fund as well as establishment of rules and guidelines for usage.			
	3.4 On the part of financing the Government expenditure, it is still relying on the project loans from the international lending institutions and/or bilateral sources.	3.4 PPP fund to finance the Government expenditure needs to be studied and established.			
4. Bottlenecks in PPP Project Cycle	 4.1 <u>Master Plan/Basic Plan/Project</u> <u>Identification Stage</u> Master Plan and/or basic plans were not updated. Listing of projects and their implementation schedule was not updated. Project promotion has been largely relied on the private sector. 	4.1 Master Plan, project list and project implementation priority should be always updated and firm implementation schedule and corresponding budgeting should be done.			
	 4.2 <u>Business Case/Feasibility Study</u> <u>Stage</u> Level of feasibility studies has been incomplete/inadequate. Soon after a feasibility study is completed, it has been difficult to go into a tendering stage due to unfixed ROW, lack of ECC, lack of LGUs' endorsement, etc. Agencies' capacity and local consultants' capacity to undertake a feasibility study of PPP project is not sufficient. 	 4.2 More fund and time should be spent for this study Complete information and documents for NEDA's project approval and succeeding tendering should be prepared. 			
	 4.3 <u>Project Approval Stage</u> Lengthy time is required until the project is approved by NEDA ICC or NEDA Board. 	 4.3 Complete information and documents should be prepared during the feasibility study stage. NEDA should undertake seminars on "ICC Project Evaluation Procedure and Guidelines". 			

TADL	E 2.7-1 MAJOR ISSUES AND BOTTI			
	Issues and Bottlenecks of PPP Projects	Recommendations		
4. Bottlenecks in PPP Project Cycle	 4.4 <u>ROW Acquisition / Resettlement</u> <u>Stage</u> Preparation of IROW plan and parcellary plan takes long time due to inaccurate land registration, difficulty to locate land owners, inaccurate record of lot boundary, etc. A lot of documentations are needed and lot owners have difficulty to prepare required documents. Land valuation is made based on BIR land valuation for the first offer, and based on Provincial/ City Appraisal Committee or Land Bank valuation for the second offer, these are close to, but still lower than market value. In case that land owners fail to prepare complete documents, expropriation is the only solution. ROW acquisition Teams are not provided sufficient logistics (like service vehicles, computers, etc.). More staff who are familiar with ROW acquisition are needed. Some Toll Concession Agreements include the private sector's funding for ROW acquisition. 	 4.4 Preparation of IROW plan and parcellary plan and succeeding ROW acquisition should start soon after the project is approved by NEDA Board or NEDA ICC. Once major critical documents are prepared, cash advance by the private sector should be made to PAPs through the Government, which shall be refunded to the private sector. This arrangement should be specified in TCA. Land value should be based on the prevailing market price. Enough logistics support such as service vehicles, computers, etc. should be included for ROW acquisition team, cost of which should be included in the project cost. IROW Procedural Manual should be trained. 		
	 4.5 <u>Tender Stage</u> Government Projects Selection of Consultants and Contractors takes lengthy time. Consultant selection - over 8 months Contractor selection - over 10 months 2) Selection of Project Proponent of PPP Project Selection of project proponent takes lengthy time over 12 months 3) Unsolicited Proposal Takes much longer time to finalize due to many disputes and counteroffers and negotiation of contract terms such as toll rates, risk 	 4.5 Government Projects Selection of Consultants should target 6 months or less. Selection of Contractor should target 8 months or less. 2) Selection of Project Proponent of PPP Project Selection of Project and target 10 months or less. Agency should undertake project campaign and enough information should be disclosed before the project is advertized. All tender conditions and draft Toll Concession Agreement should be agreed between DPWH and 		

	2 2.7-1 MAJOR ISSUES AND BOTTL			
	Issues and Bottlenecks of PPP Projects	Recommendations		
4. Bottlenecks in PPP Project Cycle	 4.6 <u>Contracting Stage</u> Review of Toll Concession Agreement (TCA) by TRB usually takes lengthy time. Approval of NEDA Board also takes lengthy time. 	 4.6 Close coordination between NEDA and Agencies should be made. 		
	 4.7 <u>Toll Operation Agreement Stage</u> Review by TRB of toll adjustment formula and other O & M aspects take considerable time. 	4.7From the feasibility study stage, TRB should be involved.		
	 4.8 <u>Fund Procurement/Preparation</u> <u>Stage</u> Government Budget constraints and delay in budget release Difficult to cope with cost overrun. Private Delay in attaining financial closure due to difficulty in meeting lender's requirement such as complete ROW acquisition, government financial support, approval of toll rates and toll rate adjustment formula. Difficult to find appropriate financer (short repayment period with no grace period, and high interest rates). Unexpected changes requiring additional costs due mainly to additional facilities required by LGUs and LGU fees. 	 4.8 Government Needs provision of adequate annual budget. Needs to tap ODA. Private Creation of fund to finance the private sector for infrastructure project implementation should be studied. 		
	 4.9 <u>Detailed Design Stage</u> Lacks proper coordination with LGUs, thus modification of design, requirement of additional facilities, etc. is required by LGUs. Lacks proper coordination with utility companies for relocation/protection of public utilities affected. 	 4.9 Proper coordination with LGUs and utility companies should be done during the feasibility study. Value engineering should be exercised. 		

	Issues and Bottlenecks of PPP Projects	Recommendations
4. Bottlenecks in PPP Project Cycle	 4.10 <u>Construction Stage</u> Delayed construction due to delayed delivery of ROW and financial closure. Needs more strict quality control and schedule control. 	 4.10 An Independent Certificate Engineer should be employed at the cost of the Government.
	 4.11 <u>Operation and Maintenance Stage</u> Approval of toll fee and adjustment of toll fee by TRB is delayed. Increase of toll fee is usually objected by the people and politicians and adoption of new toll rate is delayed. 	 4.11 TRB should approve toll fee and its adjustment in accordance with provisions of TCA. The Government should compensate the loss of revenue due to delayed increase of toll rates. TRB and operators should jointly make information disclosure to the people why toll rates and toll adjustment are needed and determined and what are benefits of users.
	4.12 <u>End of Contract and Facility</u> <u>Transfer Stage</u> No experience on this stage, yet.	-

2.8 DPWH Organization and Current O& M Company

(1) **DPWH Organization (Central Office)**

Organization chart of DPWH is shown in **Figure 2.8-1**. Offices within the DPWH which are related to the development of PPP projects are highlighted and discussed below.

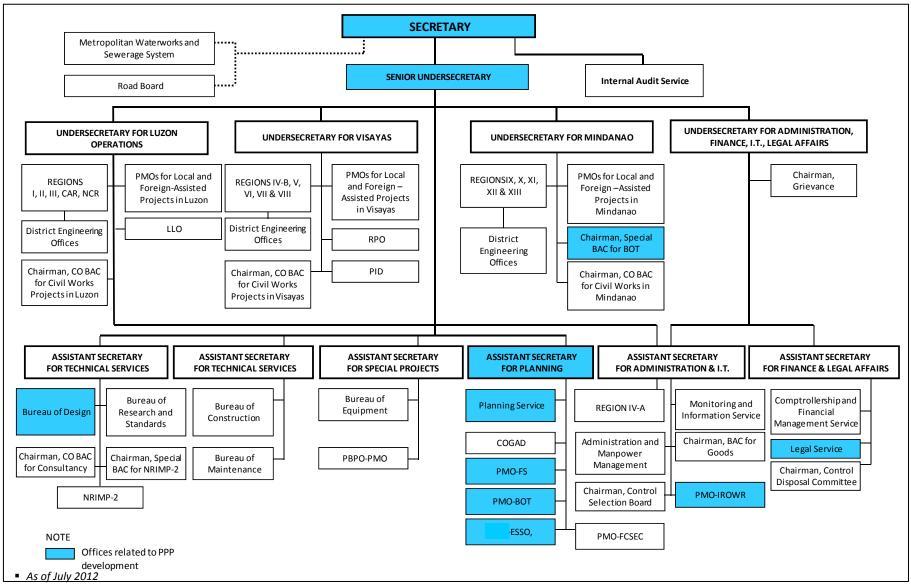
Planning Service (PS)

Tasked to formulate policies, plans and programs for the development of the national road network, which includes expressways; prepare PPP proposals for ODA financing; maintain a national road database; and prepare multi-year and annual budgets for the construction (including right-of-way and engineering) and maintenance of national roads.

PMO-Feasibility Studies (PMO-FS)

Assigned to conduct/supervise FS of major foreign-assisted and locally-funded road and expressway projects; and assist the PS and PMO-BOT in preparing project proposals for ODA financing.

PMO-Built-Operate-Transfer (PMO-BOT)


Tasked to identify and initiate projects for BOT/PPP implementation; prepare/review feasibility studies (FS) and proposals for BOT/PPP projects for approval of the NEDA-Investment Coordinating Committee (ICC); prepare bidding documents; participate in negotiations and finalization of BOT/PPP contracts; and monitor/supervise the implementation of BOT/PPP projects.

Environmental and Social Services Office (ESSO)

Involved in preliminary planning activities related to Environmental Impact Assessment (EIA), Social Impact Assessment (SIA), Rapid Social Assessment, Resettlement Action Plan (RAP); conduct public consultations on PPP projects; conduct Information, Education and Communication (IEC) on environment-related concerns; and compliance and effects monitoring of ECC conditions and Environmental Management Plan (EMP).

PMO-Infrastructure Right-of-Way and Resettlement (PMO-IROWR)

Tasked to consult with LGUs, local communities, project affected persons, and the designer/contractor for PPP projects; coordinate with the Presidential Commission for the Urban Poor (PCUP) and the National Housing Authority (NHA) on the relocation of squatter families; conduct census and tagging of affected lots and improvements; coordinate with the Bureau of Internal Revenue or BIR (for zonal valuation), Registry of Deeds (for titles), Assessor's Office, and DAR (for land conversion); coordinate and negotiate with affected property owners on the sale of their properties; coordinate with the Office of the Solicitor General (OSG) for filing of expropriation proceedings; and effect payment of affected properties.

Source: DPWH website

FIGURE 2.8-1 ORGANIZATION CHART OF DPWH

(2) Overview of Current toll expressway companies for construction and O&M

Table 2.8-1 shows the summary of toll expressway investors and O&M companies and **Table 2.8-2** shows the summary of current toll collection system and traffic control system.

Investors	Operating Expressway(length)	O&M Companies	Remarks
Manila North Tollways Corp.(MNTC)	 North Luzon Expressway (82.6km) Subic-Tipo Tollway (8.5km) 	Tollways Management Corp.	Metro Pacific Investment Corp.(Hong Kong Fund)
(BCDA)	 Subic-Clark-Tarlac Expressway (93.8km) 	Tollways Management Corp.	Construction by ODA fund
Private Infrastructure Development Corp. (PIDC)	Tarlac-Pangasinan-La Union Expressway (88.0km under construction)	_	PIDC was established by ten (10) local contractor companies
UEM-MARA Philippine Corp.	 Manila-Cavite Coastal Expressway (8.8km) and Extension (11.2km) 	Direct operation	Malaysian Fund
Citra Metro Manila Tollways Corp./ San Miguel Corp.	 Skyway : PhaseI (9.4km) South Luzon Expressway (13.4km) Skyway : PhaseII (6.8km) 	Skyway O&M Company	Indonesia Fund
San Miguel Corp.	South Luzon Expressway (37.2km)	South Luzon Tollways Corp.	Philippine Fund
Ayala Corp/	 Daang Hari SLEx Link Road 		Philippine Fund
San Miguel Corp.	 Southern Tagalog Arterial Road (STAR) (41.9km) 	Star Infrastructure Development Corp.	Philippine Fund

TABLE 2.8-1 TOLL EXPRESSWAY COMPANY

TABLE 2.8-2 TOLL EXPRESSWAY'S TOLL COLLECTION SYSTEM AND TRAFFIC CONTROL SYSTEM

Operating Expressway(length)	Toll Collection System	Traffic Control System
North Luzon Expressway (82.6km)	• Cash, EC-tag, Easy Trip	Yes, CCTVs, Vehicle detectors and VMSs (Variable Message e Sign) are installed.
 Subic-Clark-Tarlac Expressway (93.8km) Subic-Tipo Tollway (8.5km) 	• Cash only	Not yet installed
• Manila-Cavite Coastal Expressway (8.8km) and Extension (11.2km)	• Cash only	Not yet installed
 Skyway : PhaseI (9.4km) South Luzon Expressway (13.4km) Skyway : PhaseII (6.8km) 	• Cash, E-pass	Yes, CCTVs are installed.
• South Luzon Expressway (37.2km)	• Cash, E-pass	Yes, CCTVs and VMSs are installed.
• Southern Tagalog Arterial Road (STAR) (41.9km)	Cash only	Not yet installed

CHAPTER 3 SOCIO-ECONOMIC CONDITION OF THE PROJECT AREA AND REGIONAL DEVELOPMENT PLAN

3.1 SOCIO-ECONOMIC CONDITIONS

3.1.1 Physical Profile

As mentioned, the project is located in Region III specifically in the provinces of Tarlac and Nueva Ecija. Region III, better known as the Central Luzon Region, is composed of six provinces namely Nueva Ecija, Tarlac, Pampanga, Bulacan, Aurora, Zambales and Bataan. The region covers about 22,014.6 square kilometers or equivalent to 6.4% of the land area of the country. Table 3.1.1-1 shows the land area share of Region III to country as well as share of neighboring regions to the country.

Region	Land Area (sq. km.)	Share to Philippines (%)
Philippines	344,879.4	
CAR	20,122.28	5.8
NCR	619.5	0.2
Region I	13,012.6	3.8
Region II	28,228.8	8.2
Region III	22,014.6	6.4

TABLE 3.1.1-1 POPULATION SHARE

Source: National Statistics Office

3.1.2 Demographic Trend

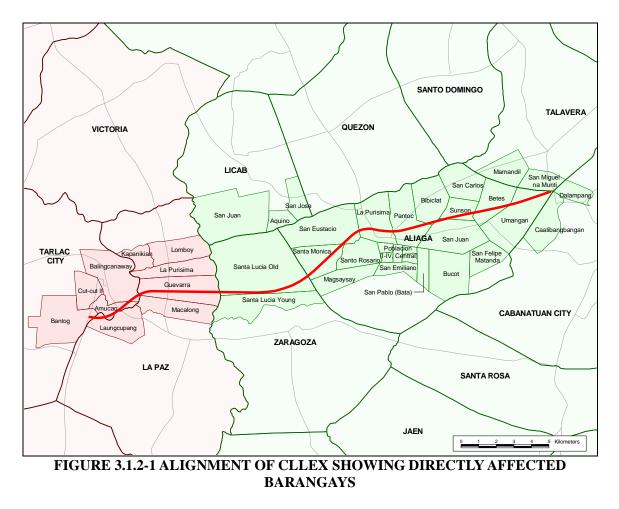
The population of Region III reaches 9.7 million in 2007. This number represents 11% of the total population of the country. Growth rate of population recorded at 2.4% annually from 2000 to 2007. This is higher that the growth rate posted in the neighboring regions like CAR, Region I, Region III and NCR as shown in Table 3.12-1. This high growth of population is expected to continue partly due to population spillover from NCR and recent development in the area.

Population of Barangays Directly Affected by the Expressway Project

The alignment of CLLEX originates from Tarlac City and traverses the municipalities of Lapaz (Tarlac side), Zaragasa (Cabanatuan side), Aliaga and terminates at Talavera. There are 29 barangays located in Nueva Ecija (Cabanatuan side) with total population of 135,072 and there are 10 barangays located in Tarlac side with total population of 28,857 as presented in Table 3.1.2-2. The total area covered by these barangays is about 245 km² of which 203 km² is located in Cabanatuan side and the remaining is on the side of Tarlac. Barangays directly affected by the expressway project is illustrated in Figure 3.1.2-1

Region	Province	Actual Population		Land Area	Density (persons/sq km)			m)	Past Annual Population Growth Rate				
		1990	1995	2000	2007	(sq km)	1990	1995	2000	2007	1990-1995	1995-2000	2000-2007
Philippines		60,703,206	68,616,536	76,504,077	88,574,614	340,575	178	201	225	260	2.48	2.20	2.11
NCR		7,948,392	9,454,040	9,932,560	11,553,427	620	12,830	15,261	16,033	18,650	3.53	0.99	2.18
CAR		1,146,191	1,254,838	1,365,220	1,520,743	19,422	59	65	70	78	1.83	1.70	1.55
Region I		3,550,642	3,803,890	4,200,478	4,545,906	13,013	273	292	323	349	1.39	2.00	1.14
Region II		2,340,545	2,536,035	2,813,159	3,051,487	28,229	83	90	100	108	1.62	2.10	1.17
Region III		6,338,590	7,092,191	8,204,742	9,720,982	22,015	288	322	373	442	2.27	2.96	2.45
	Aurora	139,573	159,621	173,797	187,802	3,147	44	51	55	60	2.72	1.72	1.11
	Bataan	425,803	491,459	557,659	662,153	1,373	310	358	406	482	2.91	2.56	2.48
	Bulacan	1,505,219	1,784,441	2,234,088	2,826,926	2,796	538	638	799	1,011	3.46	4.60	3.42
	*Nueva Ecija	1,312,680	1,505,827	1,659,883	1,853,853	5,751	228	262	289	322	2.78	1.97	1.59
	Pampanga	1,295,929	1,401,756	1,618,759	1,911,951	2,063	628	680	785	927	1.58	2.92	2.41
	*Tarlac	859,708	945,810	1,068,783	1,243,449	3,054	282	310	350	407	1.93	2.47	2.19
	Zambales	369,665	289,512	433,542	493,085	593	96	76	113	129	(4.77)	8.41	1.86
	Angeles City	236,686	234,011	263,971	314,493	60	3,925	3,881	4,378	5,215	(0.23)	2.44	2.53
	Olongapo City	193,327	179,754	194,260	227,270	103	1,872	1,740	1,881	2,200	(1.45)	1.56	2.27
Project Area (Nueva Ecija + Tarlac) 2,172,388 2,451,637 2,728,666 3,097,302		3,097,302	8,805	247	278	310	352	2.45	2.16	1.83			

TABLE 3.1.2-1 DEMOGRAPHIC TREND IN THE STUDY AREA


Source: NSO, 2007

Note: *CLLEX is located in the provinces of Nueva Ecija and Tarlac

			PROJECT	Popu	lation	Growth Rate
	Province / City /	Barangay	Land Area	· · · · ·		(% per
	Municipality	Durunguj	(Sq. Km.)	2000	2007	annum)
	NUEVA ECIJA		5,751.300	1,659,883	1,853,853	1.59
	Aliaga		86.576	50,004	61,270	2.95
		Betes	3.719	1,542	1,889	2.94
		Bibiclat	4.339	6,212	7,612	2.95
		Bucot	5.784	3,930	4,815	2.94
		La Purisima	4.915	1,451	1,778	2.95
		Magsaysay	3.288	1,855	2,273	2.95
		Pantoc	5.157	1,651	2,023	2.95
		Poblacion Centro	0.529	1,414	1,733	2.95
		Poblacion East I	0.343	1,700	2,083	2.95
		Poblacion East II	0.433	1,297	1,589	2.94
		Poblacion West III	0.376	985	1,207	2.95
		Poblacion West IV	0.464	646	792	2.95
		San Carlos	4.029	2,238	2,742	2.94
		San Emiliano	1.630	873	1,070	2.95
A		San Eustacio	7.777	1,283	1,572	2.94
E		San Felipe Matanda	2.646	2,089	2,560	2.95
NUEVA EJICA		San Juan	5.630	3,931	4,817	2.95
VA		San Pablo Bata	1.456	1,686	2,066	2.95
É		Santa Monica	3.906	764	936	2.94
Z		Santo Rosario	3.165	1,963	2,405	2.94
		Sunson	2.047	633	776	2.95
		Umangan	7.211	2,679	3,283	2.95
	Cabanatuan City		163.628	222,859	259,267	2.19
	*	Caalibangbangan	4.057	6,167	8,456	4.61
		Dalampang	1.764	1,559	1,585	0.24
	Licab		46.088	21,593	23,675	1.32
		San Jose	2.235	1,017	1,115	1.32
		San Juan	10.417	2,788	3,057	1.32
		Aquino	1.396	1,712	1,877	1.32
	Talavera		83.256	97,329	105,122	1.11
		Mamandil	3.492	904	976	1.10
		San Miguel na Munti	2.298	2,634	2,845	1.11
	Zaragosa	-	76.826	37,645	40,355	1.00
		Santa Lucia Old	15.957	956	1,025	1.00
		Santa Lucia Young	6.205	2,654	2,845	1.00
	TARLAC		3,053.600	1,068,783	1,243,449	2.19
	La Paz		102.166	52,907	61,324	2.13
		Guevarra	6.144	3,872	4,488	2.13
TARLAC		Kapanikian	1.730	1,601	1,856	2.13
		La Purisima	3.662	2,400	2,782	2.13
		Lomboy	4.137	2,897	3,358	2.13
		Laungcupan	4.2305	2,443	2,832	2.13
[A]		Macalong	4.282	1,865	2,162	2.13
<u> </u>	Tarlac City		201.365	262,481	314,155	2.60
		Amucao	4.8365	2,187	2,618	2.60
		Balingcanaway	6.789	5,181	6,201	2.60
		Bantog	5.859	1,696	2,030	2.60
		Cut-cut II	0.098	443	530	2.59

TABLE 3.1.2-2 POPULATION OF BARANGAYS DIRECTLY AFFECTED BY THE PROJECT

Source: NSO, 2007

3.1.3 Economic Trend

The economic performance of Region III as well neighboring provinces is depicted in Figure 3.1.3-1. The three regions are considered the economic engine of the country which is reflected in the very high economic growth. NCR for instance even surpassed the national average. Although Region III's growth is lower than the two regions, this growth is still very high compared to other regions in the country.

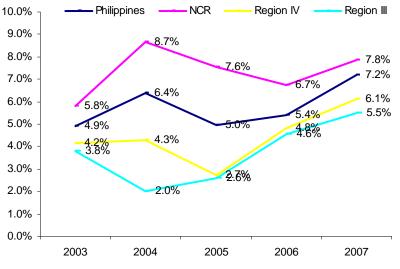


FIGURE 3.1.3-1 GDP AND GRDP GROWTH RATE

The industrial structure of the economy of the study area as well as surrounding regions is shown in Table 3.1.3-1. Region III's industrial structure is a balanced share of primary, secondary and tertiary. It is interesting to note that although Region III is known to possess a fertile flat land, the share of agriculture is limited to just 25% and service industry shoot to 40%. As mentioned, the region is absorbing the spillover population and activities in NCR thus service sector is beginning to lead the region's economy.

In terms of economic growth rate, Region III had a healthy growth ranging from 2% to 6%. Although this is lower that the growth rate of the country in the same period, it is expected that the region will continue to grow and eventually overtake the national average due to its strategic location sitting beside NCR. Further, the region has strategic infrastructure assets like international airport and international port. The complete operation of SCTEX and its eventual integration with NLEX will further facilitate the economic development of the region. This is further enhances once the TPLEX opened for public to use. Therefore, economic prospect of the region is very bright.

	Primary	Secondary	Tertiary	Total		
Philippines	251,272	445,486	671,883	1,368,641		
NCR	1	151,135	295,656	446,793		
CAR	4,338	18,794	7,315	30,447		
Region I	17,294	5,832	17,270	40,396		
Region II	13,711	4,349	9,126	27,187		
Region III	27,963	40,500	45,539	114,001		
IN PERCENTAGE						
Philippines	18	33	49	100		
NCR	0	34	66	100		
CAR	14	62	24	100		
Region I	43	14	43	100		
Region II	50	16	34	100		
Region III	25	36	40	100		

 TABLE 3.1.3-1 INDUSTRIAL STRUCTURE OF THE ECONOMY, 2007

Source: NSO, 2007

3.1.4 Per Capita GDP and GRDP

The per capita GRDP in current price and constant price are shown in Table 3.1.4-1 and table 3.1.4-2 respectively. As expected, NCR being the capital of the country has the highest per capita GRDP which almost 3 fold higher than the national average. Per capita GRPD of Region III is a bit lower that the national average at .70.

The country's per capita GRDP grew by 3.8% per annum from 2003 to 2007. Highest growth is realized in NCAR and followed by Region I, Region II and Region III. Except NCR, all regions recorded growth with less than the national average.

						Unit: Peso
	2003	2004	2005	2006	2007	
Philippines	52,718	58,149	63,556	69,365	74,947	1.00
NCR	148,743	165,814	184,758	205,117	223,332	2.98
CAR	66,749	71,247	75,556	82,523	85,319	1.14
Region I	27,943	30,725	33,405	35,996	38,063	0.51
Region II	26,829	30,474	30,369	33,799	36,605	0.49
Region III	39,407	42,256	45,789	49,469	52,351	0.70

 TABLE 3.1.4-1 PER CAPITA GRDP IN CURRENT PRICE

						Unit: Peso		
		Per Capita GRDP						
	2003	2004	2005	2006	2007	Rate 2003-2007		
Philippines	13,252	13,789	14,186	14,681	15,429	3.87		
NCR	31,730	33,867	35,742	37,856	40,252	6.13		
CAR	17,848	18,111	17,919	18,208	19,120	1.74		
Region I	7,209	7,442	7,727	7,988	8,286	3.54		
Region II	7,590	8,228	7,649	8,122	8,511	2.91		
Region III	11,092	11,054	11,142	11,448	11,904	1.78		

TABLE 3.1.4-2 PER CAPITA GRDP IN CONSTANT PRICE

3.1.5 Employment

The number of establishment in Region III reaches 84,361 in 2007. This number is higher that the number of establishment recorded in the neighboring provinces except Metro Manila. The said number of establishments generated 421,962 employments in the region.

TABLE 3.1.5-1 NUMBER OF ESTABLISHMENTS AND EMPLOYMENTS BY
REGION/PROVINCE: LUZON

Region/Province	No.	of Establishm	ents	No. of Employments			
Region/Flovince	2005	2006	2007	2005	2006	2007	
Philippines	782,980	783,065	783,869	5,479,297	4,984,883	5,187,793	
NCR	195,412	195,632	196,426	1,976,359	1,869,507	2,025,751	
CAR	14,762	14,744	14,738	70,444	61,717	62,731	
Region I	44,134	44,117	44,082	175,325	144,269	144,495	
Region II	23,978	23,982	23,932	88,827	69,271	69,052	
Region III	84,368	84,344	84,361	480,020	419,320	421,962	
Bataan	6,026	6,027	5,982	39,501	36,796	34,686	
Bulacan	23,152	23,135	23,139	129,883	113,827	113,674	
Nueva ecija	18,239	18,228	18,148	65,273	49,198	49,006	
Pampanga	19,104	19,091	19,165	136,087	120,074	125,567	
Tarlac	9,172	9,169	9,158	51,587	45,697	44,071	
Zambales	7,335	7,355	7,431	53,865	50,629	51,936	
Aurora	1,340	1,339	1,338	3,824	3,099	3,022	
Luzon Total	362,654	362,819	363,539	2,790,975	2,564,084	2,723,991	

Source: NSO, Statistical Sampling and Operations Division, 2000 List of Establishments

3.2 REGIONAL DEVELOPMENT PLAN

The Philippine Development Plan (2011 - 2016) is pursuing the following national development policies;

NATIONAL DEVELOPMENT POLICIES

- Development of an integrated multi-modal logistics/transport system to achieve an economic corridor
- Decongestion of Metro Manila
- Promotion of development of impoverished area
- Promotion of PPP projects for acceleration of infrastructure development

Due to economic growth in the capital regions, economic sphere is expanding from Metro Manila towards its neighboring regions of Region III and Region IV-A. Thus, the development strategy cannot be planned only for Metro Manila but involving Region III and Region IV-A as a whole. Overall development strategy will be as follows;

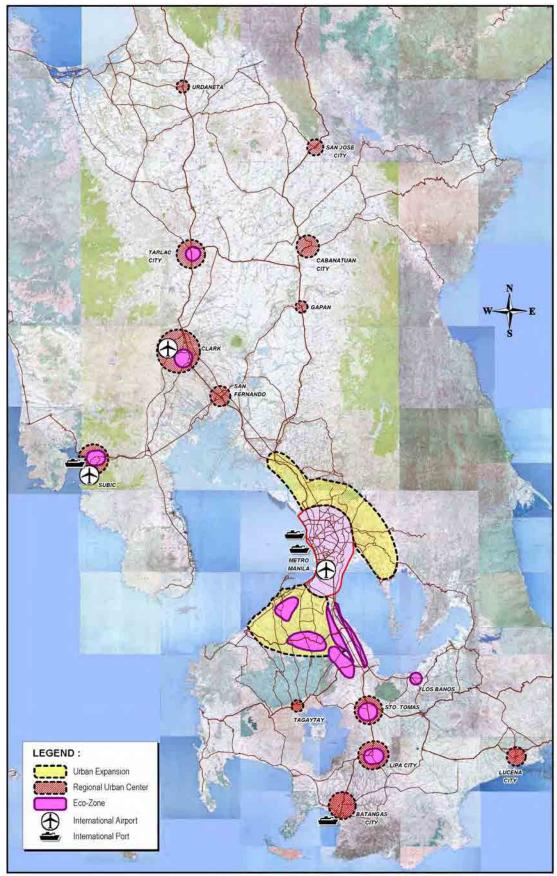
1) 200 km radius sphere from Metro Manila

- Metro Manila together with Region III and Region IV-A will continue to propel the country's economy.
- To promote decentralization and to mitigate overconcentration of Metro Manila, regional urban centers outside Metro Manila shall be developed. (see Figure 3.2-1)
- <u>Strategic areas along the Pacific coast</u> shall be regarded as the impoverished areas for universal development and accessibility to those areas shall be strengthened. (see **Figure 3.2-2**)
- In order to support <u>tourism development</u>, the tourism development axes shall be developed for the strategic areas of tourism development. (see Figure 3.2-2)

2) Metro Manila and its suburbs

- Due to accumulation of infrastructure of expressways, international airports and ports and economic zones along the north-south direction, <u>the north-south industrial development</u> <u>beltway</u> which connects Batangas-Metro Manila-Clark-Tarlac will be the key axis for the development of the Metropolitan areas and the country as a whole. (see **Figure 3.2-3**)
- Sound urbanization of Metro Manila and its suburbs shall be achieved. (see Figure 3.2-1)

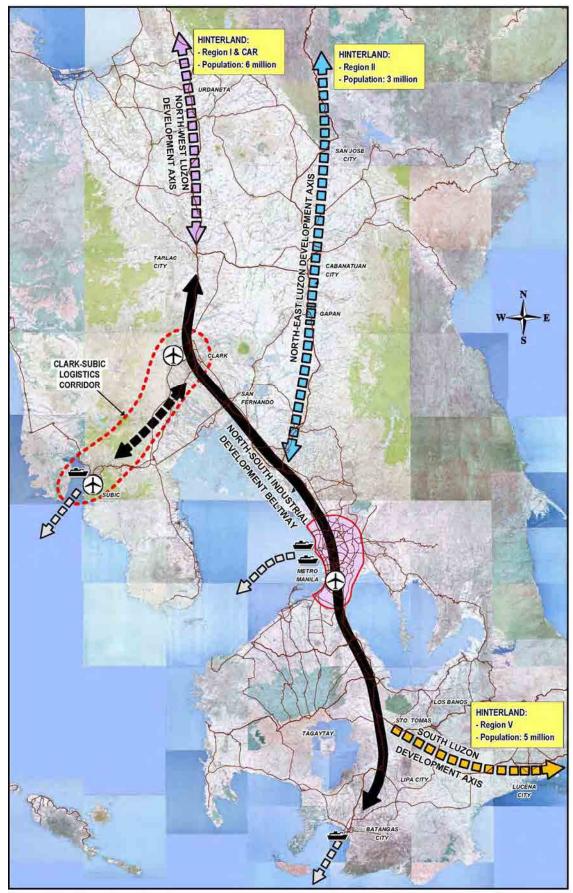
3) North of Metro Manila

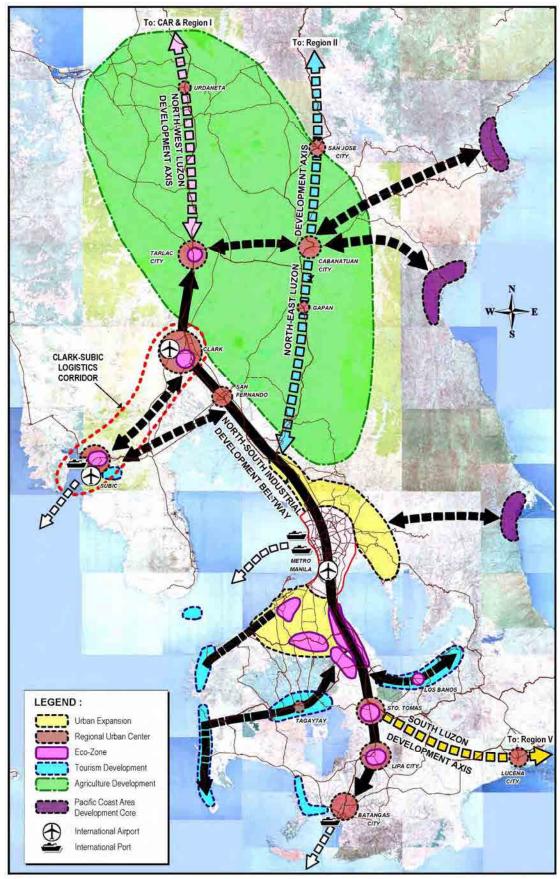

- <u>Clark-Subic corridor</u> shall be developed as a logistic axis not only for the country but also for the southeast and ASEAN countries. (see **Figure 3.2-3**)
- To support the development of CAR and Region I, <u>the North-West Luzon development axis</u> shall be developed. (see **Figure 3.2-3**)
- For the development of Region II, <u>the North-East Luzon development axis</u> shall be developed. (see Figure 3.2-3)

4) South of Metro Manila

• To support the development of Region V, <u>the South-Luzon development axis</u> shall be developed. (see Figure 3.2-3)

5) Overall Regional Development Scenario


• Overall regional development scenario is shown in Figure 3.2-4.


Source: HSH Development Master Plan, JICA, 2010 FIGURE 3.2-1 URBAN DEVELOPMENT STRUCTURE

Source: HSH Development Master Plan, JICA, 2010 FIGURE 3.2-2 AGRICULTURE AND TOURISM DEVELOPMENT AND PACIFIC COAST DEVELOPMENT

Source: HSH Development Master Plan, JICA, 2010 FIGURE 3.2-3 DEVELOPMENT AXES

Source: HSH Development Master Plan, JICA, 2010 FIGURE 3.2-4 DEVELOPMENT STRATEGY : 200KM RADIUS SPHERE OF METRO MANILA

3.3 MANUFACTURING COMPANIES IN THE PROJECT INFLUENCE AREA

Luisita Industrial Park, San Miguel, Tarlac (as of Sept. 2009) 1)

- Land area: 120 ha. •
- Number of factories/establishments in operation: 7 •
- Type of factories/establishments •

Type of Factories/Establishment	No. of Factories	No. of Employees
Feed Mill	1	45
Electrical Parts/Equipment	2	500
Electronic/IT Related Parts	1	800
Vehicle Parts/Transport Equipment	3	4,500
Total	7	5,845

Outline of major factories are as follows;

a) San Miguel Foods, In	Inc.
-------------------------	------

b)

c)

	• Share of Capital :	100% Domestic
	Floor area	
	– Factory :	10,000 sq. m
	– Stock Yard :	34,000 sq. m
	– Warehouse :	10,000 sq. m
	• No. of Employees :	45
	• Products :	Animal Feeds (7,500 ton/month)
	• Where does raw material co	
	Corn :	Within the country
	Soya :	Argentina
	• Where are the products cons	sumed? Within Region III
)	Sanyo Semiconductor Manufact	uring Philippines, Corp.
	• Share of Capital :	
	• Floor area	
	– Factory :	4.205 sq. m
	 Stock Yard/Warehouse 	
	• No. of Employees :	1
	 Products 	: Integrated Circuits (30 Million pcs/month)
	• Where does raw material co	
	IC Chips	: Japan
	Lead Frames	: Overseas, Laguna, Cavite
	Mold Resin	: Japan, Thailand, Laguna
	• Where are the products trans	
	Japan	: 70%
	Hongkong	: 15%
	Taiwan	: 10%
	Singapore	: 5%
1	SDE Philippines, Corp.	
	• Share of Capital :	100% Japan
	• Floor area	
	– Factory :	2,147 sq. m
	• No. of Employees :	68
	r J	

•	Products	ets :		Circuit & Assembly Board (59,000 pcs/month)						
		Applicator Parts (3,200 pcs/month)								
٠	Where does raw material come from?									
	PO	DM			:	Singapore				
	Ci	rcuit & Asser	ard Parts	:	Japan					
•	Where are the	re the products transported?								
	Ja	pan	:	14%						
	U	SA	:	1%						
	A	SEAN	:	9%						
	Re	egion III	:	67%						
	Re	egion IV-A	:	9%						

2) Bio-fuel Factory in San Mariano, Isabela, Region II

Itochu Corp. Japan is constructing a bio-fuel factory in San Mariano City, Isabela, Region II. The factory will be constructed and completed in May 2012. 8,000 hectares of land around the factory will be converted to sugar cane land by March 2012 which will be expanded to 10,000 hectares by May 2012 and further expanded to 25,000 ha.

The project will employ 3,000 families for sugar cane productions and about 10,000 employments will be created.

54,000 kl/year or about 200,000 l/day of bio-fuel will be produced and transported to Metro Manila.

The Pan Philippine Highway will be used for transportation, however, when CLLEx will be completed, CLLEx will be used instead of the Pan Philippine Highway from Cabanatuan City to NLEx which is currently suffering traffic congestion at urban areas.

CHAPTER 4 TRAFFIC STUDY

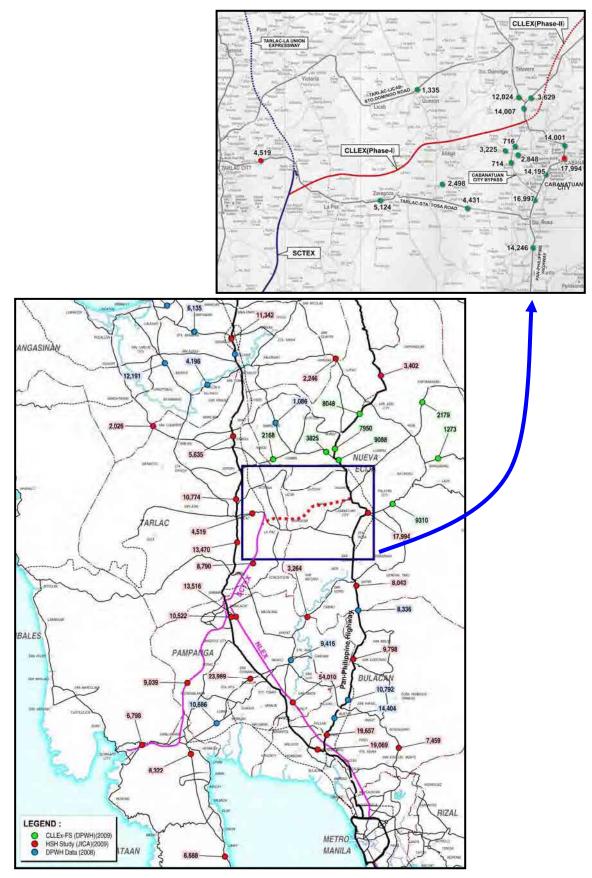
4.1 PRESENT TRAFFIC CONDITION

4.1.1 Type of Surveys Carried Out

A number of surveys were carried out to better understand the characteristics of the study area as shown in the table below:

TABLE 4.1.1-1 THE OF SURVETS CARRIED OUT					
	Survey Type	Number of Samples			
a.	Willing to Pay Survey for Car Users	820			
b.	Interview Survey to Trucking Companies	10			
с.	Interview Survey to Bus Companies	9			
d.	Interview Survey to Manufacturing Companies	5			

TADIE	1111	TVDE	OF	SUDVEVS	CARRIED	OUT
IADLL	4.1.1-1	LILL	UГ	SURVEIS	CARKIED	001


Other important data such as traffic volume was sourced out from the two reports which are Feasibility Study of the Proposed Central Luzon Expressway (DPWH, 2010) and The Study of Master Plan on High Standard Highway Network Development (JICA, 2010) and DPWH count stations. Travel speed data of the road network in the study area was taken from the Feasibility Study of the Proposed Central Luzon Expressway.

4.1.2 Traffic Volume

Traffic volume along major roads in Central Luzon as well as in the road network surrounding the CLLEX is shown in **Figure 4.1.2-1**. As seen in the figure, the two major highways (Manila North Road and Pan Philippine Highway) exhibited high number of traffic. The NLEX is also carrying a very heavy traffic confirming the very active socio-economic exchanges between cities in the North and Metro Manila.

Construction of CLLEX provides smooth connection between two major cities in the north. Currently, there are two roads that motorists may take from Tarlac City to Cabanatuan City, Tarlac - Sta. Rosa Road, and Tarlac – Talavera Road. These roads run parallel to the future Central Luzon Link Expressway (CLLEX). The Tarlac – Sta. Rosa Road is becoming the main corridor of commuters coming from Cabanatuan City and nearby cities and municipalities going to Metro Manila due to heavy traffic congestion along the Pan Philippine Highway. This road connects motorist to two expressways that guarantee them smooth travel. At first, they will be connected to SCTEX, then to NLEX which brings them to Metro Manila. Volume of traffic at three count stations assigned along Tarlac – Sta. Rosa section (4,431), and Aliaga - Cabanatuan section (2,498) as shown in **Figure 4.1.2-1**. Traffic volume at intersection counts is shown in **Figure 4.1.2-2** to **Figure 4.1.2-4**.

The Tarlac – Talavera Road on the other hand is used by motorist going further north like San Jose City and Tuguegarao City. This road serves as bypass road to avoid heavy congestion at Sta. Rosa – Talavera section of Pan Philippine Highway when using the Tarlac-Sta. Rosa Road. Traffic volume at Licab – Quezon section of Tarlac – Talavera Road is 1,335.

Note : All data in AADT; June and May refers to actual month of survey FIGURE 4.1.2-1 TRAFFIC VOLUME IN CENTRAL LUZON AND ROAD NETWORK SURROUNDING CLLEX

unit: vehicle/day

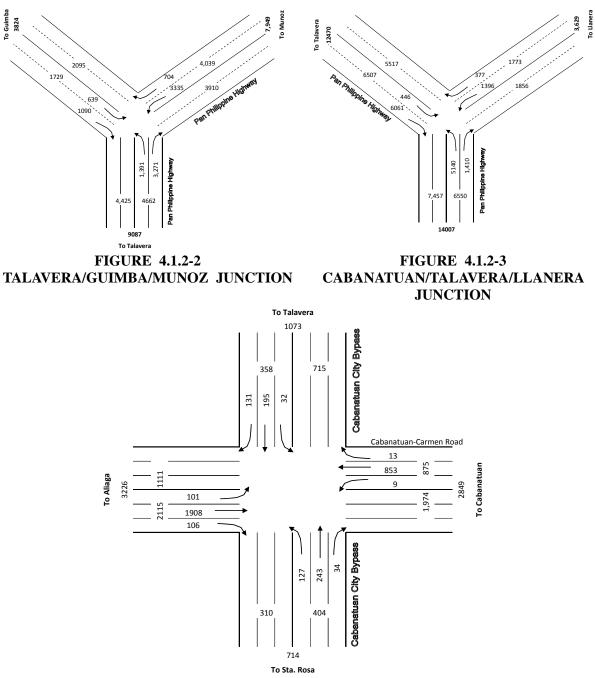


FIGURE 4.1.2-4 ALIAGA/TALAVERA/STA.ROSA/CABANATUAN JUNCTION

4.1.3 Hourly Variation of Traffic

Hourly variation of traffic at the two roads (i.e. Tarlac - Sta. Rosa Road, Tarlac - Talavera Road) connecting Tarlac City and Cabanatuan City are shown from Figure 4.1.3-1 to Figure 4.1.3-4. At the Tarlac - Sta. Rosa Road, three count stations were assigned at the following sections: Lapaz-Zaragosa, Zaragosa-Sta. Rosa, and Aliaga-Cabanatuan.

At Lapaz-Zaragosa section, high traffic volume is observed from 8:00AM to 7:00PM where traffic registered constantly exceeded 100. Highest volume of traffic is in the direction of Lapaz and recorded between 1:00PM to 2:00PM and 4:00PM to 5:00PM.

Peak hour traffic is observed at noon time from 12:00 to 5:00PM. Highest number of recorded traffic in an hour is 216. At Zaragosa - Sta. Rosa Road, traffic volume seems to be constant and exceeded 100 vehicles on both directions from 8:00AM until 5:00PM. Hourly variation of traffic at the Pan Philippine Highway is shown in Figure 4.1.3-5 to Figure 4.1.3-6.

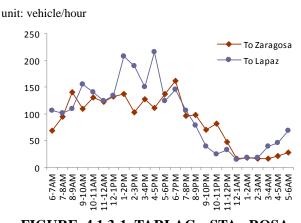
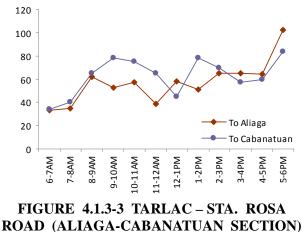
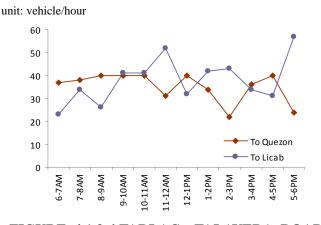
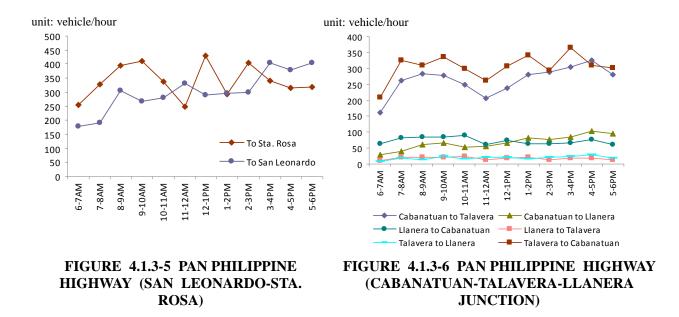




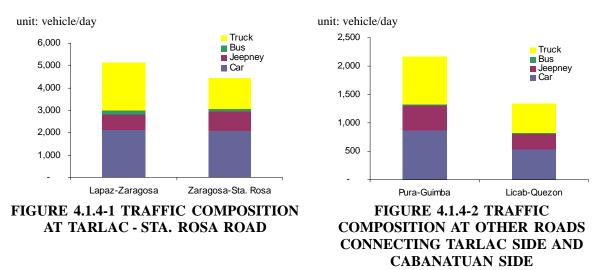
FIGURE 4.1.3-1 TARLAC – STA. ROSA **ROAD (LAPAZ-ZARAGOSA SECTION)** 160 140 120 100 80 60 40 To Sta, Rosa 20 To Zaragosa 0 3-4PM 4-5PM 5-6PM 7-8AM 8-9AM **1-2PM** 6-7AM 11-12AM 12-1PM 2-3PM 9-10AN **I0-11AN**

FIGURE 4.1.3-2 TARLAC – STA. ROSA ROAD (ZARAGOSA-STA. ROSA SECTION)

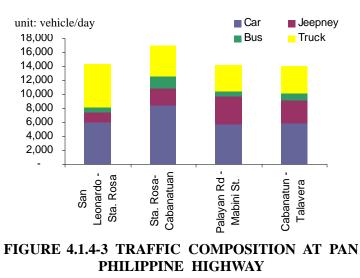


unit: vehicle/hour

200


180

4-4



4.1.4 Traffic Composition

Vehicles traversing Tarlac - Sta. Rosa Road are dominated by cars and trucks. At Lapaz-Zaragosa section, share of car reaches 42% of traffic and the same number is reached by trucks. Share of jeepney is 13% and share of bus is merely 4%. At Zaragosa - Sta. Rosa section, proportion of different transport mode has not changed; car (47%), jeepney (20%), bus (3%), and truck (30%) The decline on the share of bus means that perhaps some buses took the Aliaga - Cabanatuan route and their destination is most likely Region II. See **Figure 4.1.4-1** and **Figure 4.1.4-2**.

Composition of vehicles plying Pan Philippine Highway is shown in **Figure 4.1.4-3**. Share of different transport mode at San Leonardo - Sta. Rosa section of Pan Philippine Highway are: 42% for car, 10 for jeepney, 5% for bus and 43% for truck. Share of jeepney substantially increased to 28% inside Cabanatuan City (Palayan Road – Mabini St.) and share of truck reduced to just 27%. Jeepney which is the main public transportation in medium cities is mixing with through traffic that created serious traffic congestion.

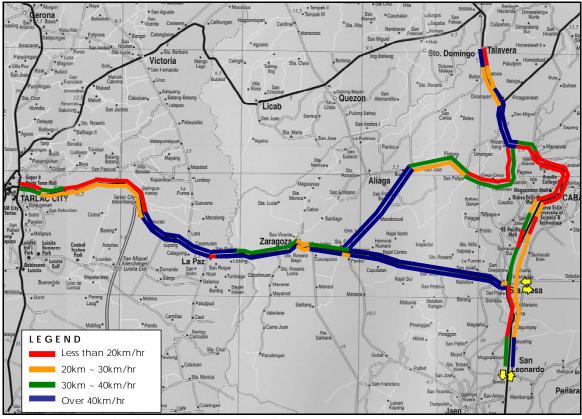
4.1.5 Travel Speed

The study entitled 'Feasibility Study of the Proposed Central Luzon Expressway', 2010, carried out a travel time survey. The raw data used to plot travel speed shown in **Figure 4.1.5-1** were taken from the said study. The following were observed from the figure:

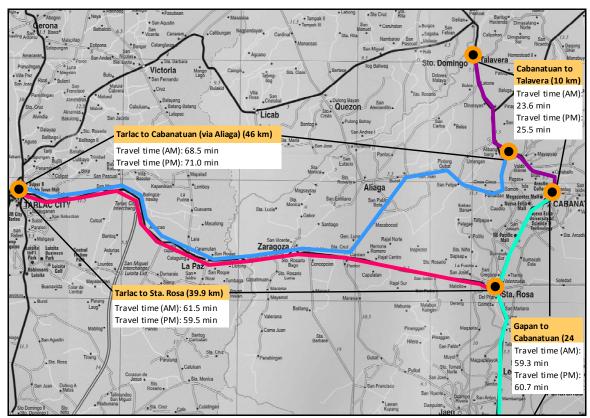
Tarlac – Sta. Rosa Road

This road is relatively congested free except at the center of towns of La Paz, Zaragosa and its approach to Tarlac. Travel time to traverse the 39.9 km road is about 60 minutes. See **Figure 4.1.5-2**.

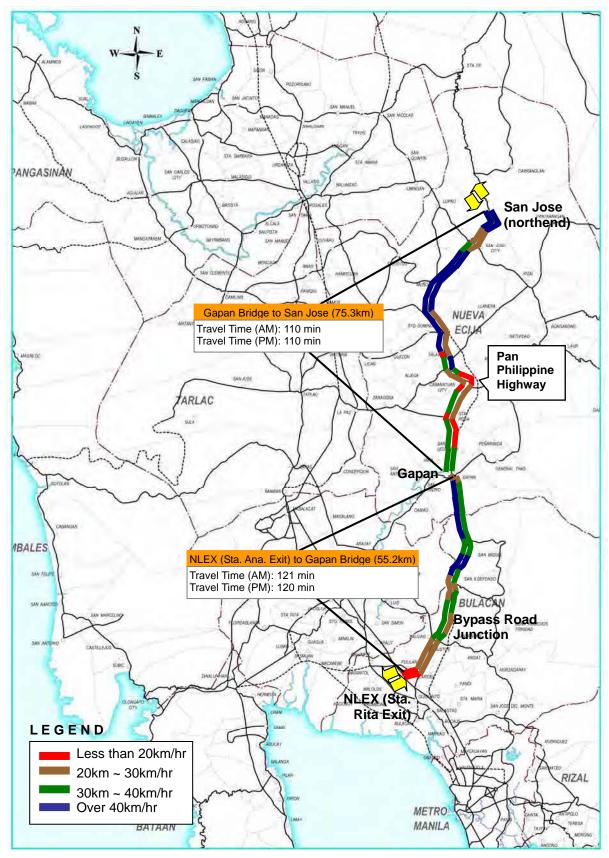
Tarlac - Carmen – Cabanatuan Road (via Aliaga)


This route is also free of traffic congestion except of its approach to Tarlac and Pan Philippine Highway (Cabanatuan side). Average travel time is about 69 minutes to cross the 46 km route. See **Figure 4.1.5-2**.

Gapan - Cabanatuan – Talavera (Pan Philippine Highway)

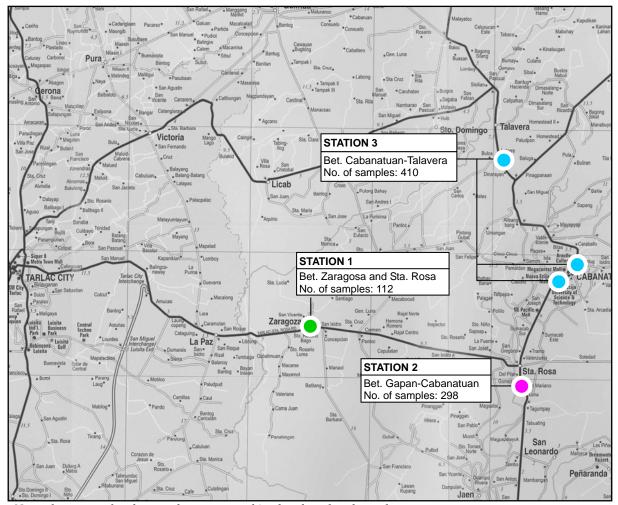

Traffic congestion is severe from Sta. Rosa all the way to Carmen – Cabanatuan Road. Traffic congestion is particularly heavy inside Cabanatuan City where local and through traffic merges. At the center of Cabanatuan City, most of the traffic is composed of jeepneys which served local traffic. Average travel time from Gapan to Cabanatuan reaches about 60 minutes for merely 24 km road. Likewise, average travel time from Cabanatuan to Talavera (10 km) is about 24 minutes. See **Figure 4.1.5-2**.

Pan Philippine Highway (NLEX Sta. Rosa Exit to San Jose)


Travel speed of motorists along Pan Philippine Highway from Sta. Rosa Exit of NLEX until San Jose is shown in **Figure 4.1.5-3**. Traffic congestion is observed to be serious at the town centers of Ildefonso, Sta. Rosa, Cabanatuan, Talavera, Sto. Domingo and San Jose.

Note: Raw data is taken from Feasibility Study of the Proposed Central Luzon Expressway, DPWH (2010) FIGURE 4.1.5-1 TRAVEL SPEED (AFTERNOON PEAK)

Note: Raw data is taken from Feasibility Study of the Proposed Central Luzon Expressway, DPWH (2010) FIGURE 4.1.5-2 TRAVEL TIME (AM AND PM)


Source: The Study of Master Plan on High Standard Highway Network Development (JICA, 2010) FIGURE 4.1.5-3 TRAVEL SPEED ALONG PAN PHILIPPINE HIGHWAY

4.1.6 Willingness-To-Pay Survey For Use of CLLEX (Private Car Users)

a. Survey Locations and Hypothetical Question for Willingness-to-pay Survey

Figure 4.1.6-1 shows the survey locations where the willingness-to-pay survey was carried-out. Samples collected from each site were treated differently to know car users' response depending on their location in relation to CLLEX. This process allows us to determine areas where high shift to expressway can be expected and areas where shift cannot be expected.

CLLEX can provide congestion-free travel to residents of Tarlac City and Cabanatuan City and neighboring municipalities. For those living in Cabanatuan side, the expressway can be used for their trips to Subic or to Baguio or to Metro Manila. See **Figure 4.1.6-2** for the survey questionnaire which also presents a map showing the possible routes that can be served by the CLLEX.

Note: the same color denotes data were combined and analyzed together FIGURE 4.1.6-1 LOCATION FOR WILLINGNESS-TO-PAY SURVEY

Expressway Projects in Mega Manila Region in the Republic of the Philippines

wi	LINGNESS TO PAY SURVEY (FORM 3) FOR STUDY PURPOSE ONLY
fo.	Sample ID No: Date (month/day)
General Info.	Location: Sta. Rosa-Tarlac Road Time
ener	Maharlika Highway (bet. Cabanatun & Gapan)
G	Maharlika Highway (bet. Cabanatun & Talavera)
	1-Sex 2-Age 1)20-29 2)30-39 3)40-49 1-Male 2-Female 4)50-59 5)>60
Personal Information	3-Occupation
form	1- Admin. 2- Professional 3- Tech./assist. 4- Clerk 5- Sale/Services 6- Farmer/fisher 7- Craftman 8- Production 9- Unskilled 10- Student 11- House wife 12- Retired
nal In	13- Jobless 14- Other (specify):
ersor	4-Monthly Income (Pesos) 1) None 4) 10,000 - 14,999 7) 30,000-39,999 10) 100,000-149,000
ď	2) Under 5,000 5) 15,000 - 19,999 8) 40,000-59,999 11) 150,000 and above 3) 5,000-9,999 6) 20,000 - 29,999 9) 60,000-99,9999 11) 150,000 and above
	5- Trip OD Where did you start this trip?
	(City/Municipality)
uo	Where do you end this trip? (City/Municipality)
rip Information	6- Trip purpose
Info	1.Work 4.Selling/Delivering 7.Shopping/Eating 10.Medical treatment 2.Education 5.Meeting/business 8.Sending/ Fetching 11.Social
Trip	3.Home 6.Return to work place 9.Recreation 12.Other
	7- Current Route Which route do you usually take going to Metro Manila and back?
	1. Route 1 (Maharlika Highway - NLEX) 3. Others:
	2. Route 2 (Sta. Rosa Road - SCTEX - NLEX)
	Hypothetical Question The government is planning to construct the Central Luzon
	Link Expressway (CLLEX) to link Cabanatuan City to SCTEX.
	be collected to use the expressway.
	8 - If you go to Tarlac or Subic, will you use CLLEX for your travel?
	[via Sta, Rosa Road = 70 min]
	[CLLEX = 20 min]
Рау	1) Yes — How much you are willing to pay?
s to F	a) 50 b) 70 c) 100
gnes	2) No, I will take ordinary road why
Willingness to	9 - If you go to Manila, will you use CLLEX for Route 2 Route 1
-	your travel? - Cabanatuan-NLEX via Maharlika Highway (166 min)
	- Cabanatuan-Sta Rosa Rd-SCTEX-NLEX (130 min)
	- Cabanatuan-CLLEX-SCTEX-NLEX (90 min)
	1) Yes → How much you are willing to pay?
	a) 50 b) 70 c) 100
	2) No, I will take ordinary road why
	That's All. Thank You Very Much for Your Cooperation.

b. Sex Distribution

For sex distribution, most of the car users captured in the survey are male (82.8%) and the remaining 17.2% are female. See **Figure 4.1.6-3**.

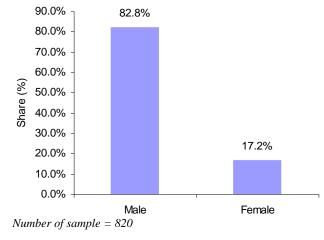


FIGURE 4.1.6-3 SEX DISTRIBUTION

c. Age Distribution

For age distribution, more than half of the respondents (69.5%) are between the age range of 30 to 49. See **Figure 4.1.6-4**.

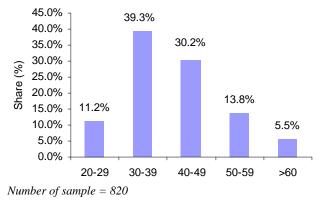
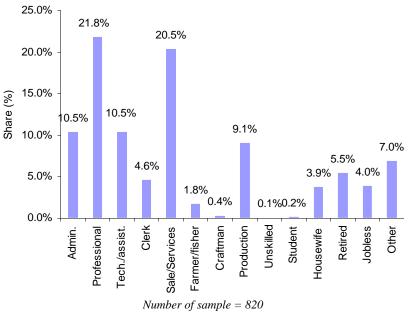



FIGURE 4.1.6-4 AGE DISTRIBUTION

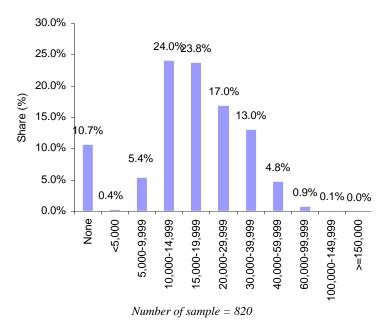
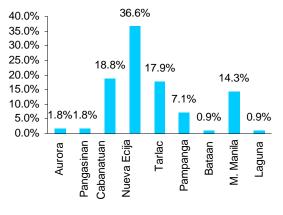
d. Occupation Distribution

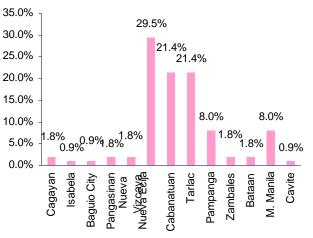
For occupation of the captured respondents, most of them are engaged in professional work (21.8%) and sales/services (20.5%). See **Figure 4.1.6-5**.

FIGURE 4.1.6-5 OCCUPATION DISTRIBUTION

e. Monthly Income Distribution

For monthly income, notable income brackets which the respondents belong are: 10,000-14,999 (24.0%) and 15,000-19,999 (23.8%). For respondents which declared 'none' or lack of income, they are normally students or housewives. See **Figure 4.1.6-6**.

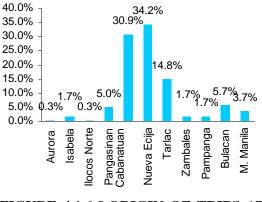



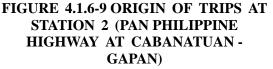

FIGURE 4.1.6-6 MONTHLY INCOME DISTRIBUTION

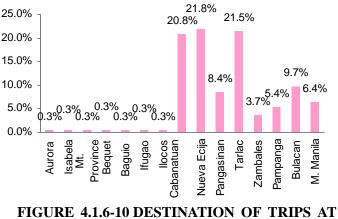
f. OD Distribution

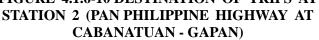
The captured OD trips at Station 1 (Tarlac - Sta. Rosa Road) are discussed below.

- 36.6% of trips come from municipalities of Nueva Ecija such as Zaragosa, San Leonardo, Munoz, Jaen, San Antonio, etc. Although Cabanatuan City is under Nueva Ecija, trip from this city is separated to distinguish the number of trips coming from this city. As shown in the figure below, 18.8% of trips originate from Cabanatuan city. Other notable origin of trips is Tarlac 17.9% and Metro Manila 14.3%. See Figure 4.1.6-7.
- For destination, major destinations are municipalities of Nueve Ecija such as Gapan, Zaragosa, Sta. Rosa (29.5%), Cabanatuan City (21.4%), and Tarlac (21.4%). See Figure **4.1.6-8**.

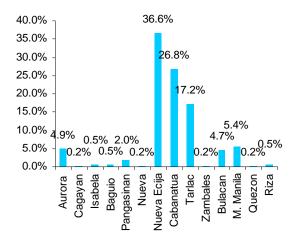


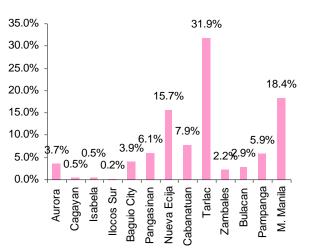

FIGURE 4.1.6-7 ORIGIN OF TRIPS AT STATION 1 (TARLAC – STA. ROSA ROAD)

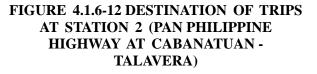

FIGURE 4.1.6-8 DESTINATION OF TRIPS AT STATION 1 (TARLAC – STA. ROSA ROAD)


For the captured OD trips at Station 2 (Cabanatuan – Gapan), this has the following features:

- Places with substantial trips originated are: Cabanatuan (30.9%), other cities/municipalities of Nueva Ecija (34.2%), and Tarlac (14.8%).
- For destinations, places which have major share are: other cities/municipalities of Nueva Ecija (21.8%), Tarlac (21.5%) and Cabanatuan City (20.8).






For the captured OD trips at Station 3, this has the following features:

- Most trips come from other cities/municipalities of Nueva Ecija (36.6%), Cabanatuan City (26.8%) and Tarlac (17.2%).
- For destinations, places which have major share are: Tarlac (31.9%), Metro Manila (18.4%), other cities/municipalities of Nueva Ecija (15.7%) and Cabanatuan city (7.9%).

FIGURE 4.1.6-11 ORIGIN OF TRIPS AT STATION 3 (PAN PHILIPPINE HIGHWAY AT CABANATUAN - TALAVERA)

g. Trip Purpose Distribution

For trip distribution, most of the respondents have the following trip purpose: social (19.6%), selling/delivering (13.7%), going home (13.5%) and meeting/business (11.5%). See **Figure 4.1.6-13.**

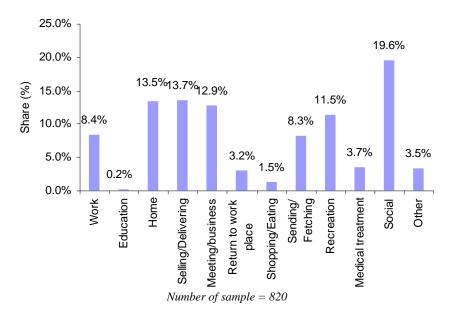


FIGURE 4.1.6-13 TRIP PURPOSE DISTRIBUTION

h. Current Route Choice to/from Manila

The respondents were asked of their current route choice in going/from Metro Manila. There were three locations where the surveys were conducted: (i) Station 1 - Along Sta Rosa-Tarlac Road, (ii) Station 2 - Pan Philippine Highway between Gapan-Cabanatuan section, and (iii) Station 3 - Pan Philippine Highway Cabanatuan – Talavera section (See Figure 4.1.6-1). Figure 4.1.6-14 illustrates the route choice per location.

Station 1 (Sta. Rosa – Tarlac Road at Zaragosa Municipality)

89% of interviewed respondents are using Route 2 (Sta. Rosa – SCTEX – NLEX route) when they travel to/from Manila and the remaining 11% still uses the direct but congested route (Pan Philippine Highway – NLEX route).

Station 2 (Gapan – Cabanatuan near Sta. Rosa Municipality)

65 % of respondents are travelling to/from Manila via Route 2 (Sta. Rosa – SCTEX – NLEX route) and substantial number (35%) still uses the shorter but congested route of Pan Philippine Highway – NLEX.

Station 3 (Cabanatuan – Talavera)

64 % of respondents are travelling to/from Manila via Route 2 (Sta. Rosa – SCTEX – NLEX route) and the remaining 36% still uses the direct Pan Philippine Highway – NLEX.

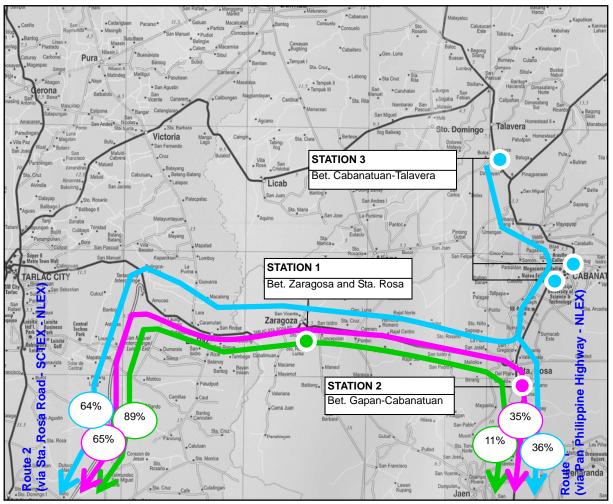
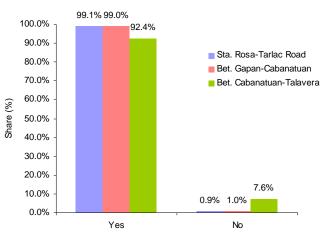
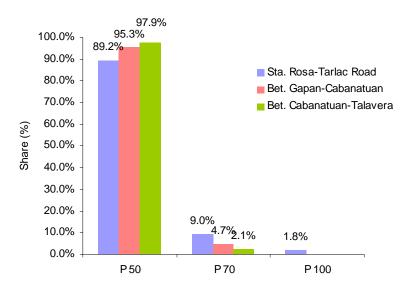



FIGURE 4.1.6-14 CURRENT ROUTE CHOICE TO/FROM MANILA

i. Will they Use CLEX to/from Tarlac/Subic (Time saved is 40 min)

As mentioned, aside from going to Metro Manila, motorists making trips between the two towns of Cabanatuan City and Tarlac City might use the expressway for their daily trips. Thus, such question was asked for car users. And as can be seen in the figure below, at all survey stations, car users' willingness to use CLLEX is very high which is above 90%. See **Figure 4.1.6-15**.

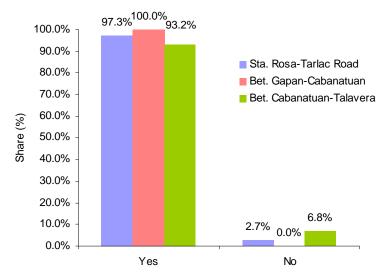


Sample size (Sta. Rosa-Tarlac = 112; Gapan-Cabanatuan = 298; Cabanatuan-Talavera = 410)

FIGURE 4.1.6-15 WILL THEY USE CLEX TO/FROM TARLAC/SUBIC

j. How much they are willing to pay to use CLEX to/from Tarlac/Subic?

As for the amount they are willing to pay to use the expressway for their trip between Tarlac/Subic and Cabanatuan City, most of the respondents is willing to pay 50 pesos. See **Figure 4.1.6-16**.

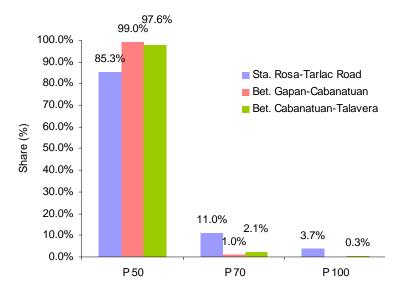


Sample size (Sta. Rosa-Tarlac = 112; Gapan-Cabanatuan = 298; Cabanatuan-Talavera = 410)

FIGURE 4.1.6-16 AMOUNT THEY ARE WILLING TO PAY TO/FROM TARLAC/SUBIC

k. Will they Use CLEX to/from Metro Manila (Time saved is 40 min)

When respondents were asked if they would also use the expressway when they travel to/from Metro Manila, motorists interviewed at Pan Philippine Highway (between Gapan – Cabanatuan) all indicated their willingness to use the expressway. Majority of respondents from other two survey stations expressed also their willingness to use the expressway (97.3% at Sta. Rosa-Tarlac Road and 93.2% at Pan Philippine Highway, Cabanatuan-Talavera Section). See **Figure 4.1.6-17**.



Sample size (Sta. Rosa-Tarlac = 112; Gapan-Cabanatuan = 298; Cabanatuan-Talavera = 410)

FIGURE 4.1.6-17 WILL THEY USE EXPRESSWAY TO/FROM METRO MANILA

l. How much they are willing to pay to use CLEX from/to Manila?

For the amount of money they are willing to pay for the use of CLLEX, majority of the respondents revealed that they are willing to pay 50 pesos. See **Figure 4.1.6-18**.

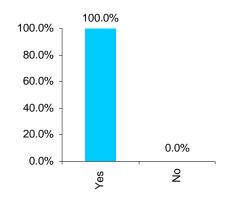
Sample size (Sta. Rosa-Tarlac = 112; Gapan-Cabanatuan = 298; Cabanatuan-Talavera = 410)

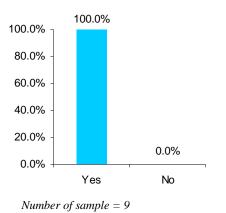
FIGURE 4.1.6-18 AMOUNT THEY ARE WILLING TO PAY TO/FROM METRO MANILA

4.1.7 Willingness-To-Pay Survey For Use of CLLEX (Bus Operators)

m. How many buses you owned? (Q5)

The number of bus owned and used for operation by the nine (9) bus companies interviewed is presented in **Table 4.1.7-1**. The total number of bus used by these companies is 1,587 bus unit or an average of 176 buses per company. Taking into account the share of each type of bus, 64% are composed of two-seater air-conditioned bus and this followed by ordinary bus (24%) and others (most of buses refer as others are 2x3 bus which means five seats in one row all together and normally 'ordinary bus' without air-conditioned) with a share of 9.0%. See survey form in Appendix 4-1.


Bus Type	BC 1	BC 2	BC 3	BC 4	BC 5	BC 6	BC 7	BC 8	BC 9	Total
Mini-bus										0
Ordinary bus			20		100			19	247	386
Air-conditioned										
bus (single-seater)						15			29	44
Air-conditioned										
bus (two-seater)	10	42	45	3	200	115	10		590	1,015
Others (2x3 bus)				57		4		15	66	142
Total	10	42	65	60	300	134	10	34	932	1,587


TABLE 4.1.7-1 NUMBER OF BUS OWNED BY BUS COMPANIES

Note: BC = Bus *Company; Number of sample = 9*

n. Do you allow your driver to use expressways? (Q7)

Interviewed bus managers revealed that they allow their drivers to use expressway both for single-seater (special bus) and double-seater bus (regular bus). Refer to the two figures below.

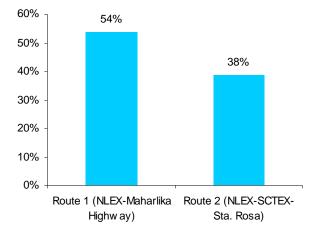
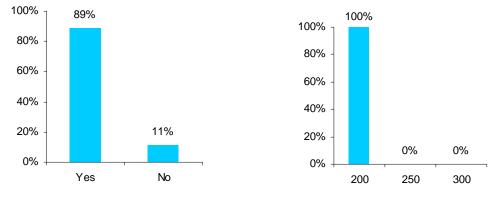

Number of sample = 9 (note that only 4 companies have single-seater bus)

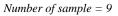
FIGURE 4.1.7-1 SINGLE-SEATER BUS

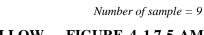
FIGURE 4.1.7-2 TWO-SEATER BUS

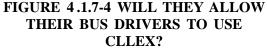
o. Bus Route - Cabanatuan to/from Manila? (Q8)

The bus managers were also queried regarding the route used by their drivers for Manila – Cabanatuan (and neighboring municipalities) route. Seven managers (54%) said that they are still using the NLEX-Pan Philippine highway which passes medium size towns like Bustos, San Miguel, Gapan, etc. The others revealed that they are using the NLEX - SCTEX - Sta. Rosa route which is longer but faster. See **Figure 4.1.7-3**.

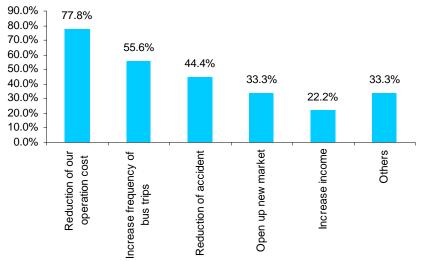



Number of sample = 9; the missing 8% are not using both route (destination is Pangasinan)


FIGURE 4.1.7-3 BUS ROUTE FOR MANILA - CABANATUAN


p. Willingness-to-pay to Use CLLEX - from SCTEX to Cabanatuan? (Q10)

All of the interviewed managers except one revealed that they will allow their bus drivers to use the expressway if it served their route. The amount of toll they are willing to pay for the expressway is 200 pesos. See the two figures below.



q. Perceived Benefits by Bus Managers from CLLEX? (Q14)

If the Central Luzon Link Expressway is constructed in the future, managers of bus companies were asked if what kind of benefits that this new infrastructure can bring to their business. Most managers believed that the new expressway would reduce their operation cost (29.2%), increase frequency of trips (28.8%), and would help in reduction of accident (12.5%). Others which have a share of 12.5% refer to shortening of travel time. See **Figure 4.1.7-6**.

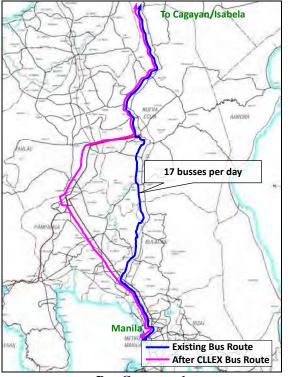
Number of sample = 9; Note: Respondents were allowed for multiple answers

FIGURE 4.1.7-6 PERCEIVED BENEFITS BY BUS OPERATORS OF CLLEX

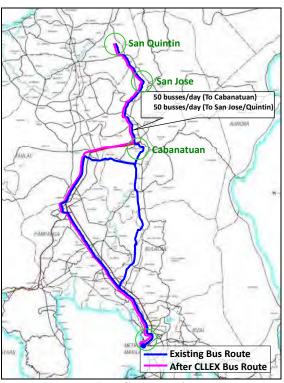
r. Problems Encountered by Bus Company in their daily operations. (Q12)

Interviewed operation managers of nine (9) bus companies reveal the following as the problems they encountered in their daily operation:

- Traffic congestion along town/city center
- High maintenance cost due to poor road condition
- High operation cost due to poor road condition
- High cost of fuel
- Bad road condition of road
- Road accidents


s. Comments and Suggestions to Improve Business Operation of Bus Industry. (Q13)

The following were the comments and suggestions expressed by the interviewed bus managers' which could help improve their operation.


- Expedite repairs of damage roads and highways
- Construction of more durable and accessible roads
- To have continuous education process with our drivers on how to prevent accident and how to use expressway.
- Full implementation of traffic rules and regulations like in Subic.
- Evaluation of franchise given to bus companies

t. Bus Routes Before and After Construction of CLLEX

The current routes and number of buses that is likely to use the CLLEX if constructed in the future is shown in **Figure 4.1.7-7**. Most of these buses have their destination in Cagayan Valley which is further north from Cabanatuan City. These buses are utilizing the heavily congested Pan Philippine Highway with the exception of few which are plying through NLEX, SCTEX, Tarlac-Sta. Rosa road. The total number of buses that would utilize the CLLEX from these six (6) companies is 282 per day.

Bus Company 1

Bus Company 2

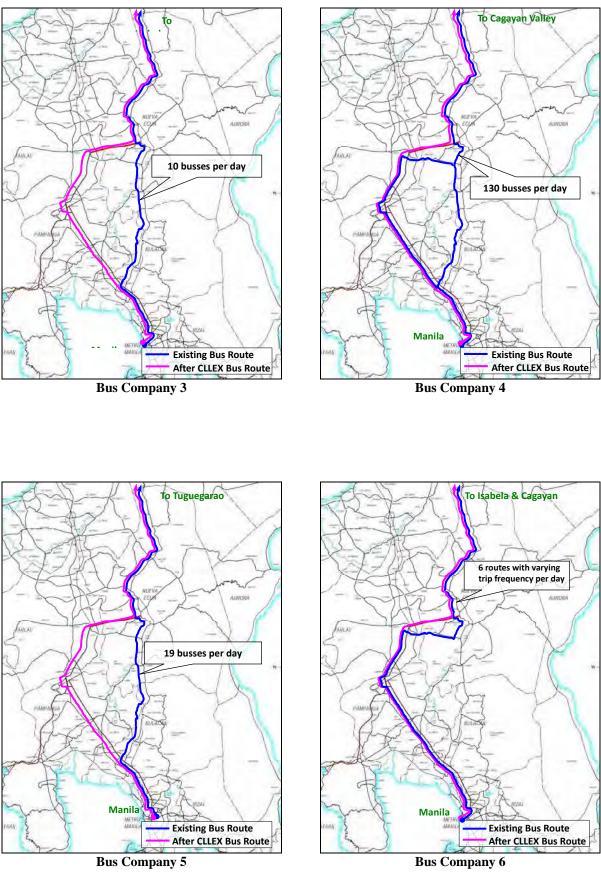
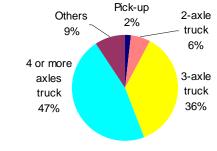


FIGURE 4.1.7-7 EXISTING BUS ROUTE AND AFTER CLLEX BUS ROUTE (WILLINGNESS TO USE)

4.1.8 Willingness-To-Pay Survey For Use of CLLEX (Truck Operators)

a. How many vehicles used for operation? (Q5)

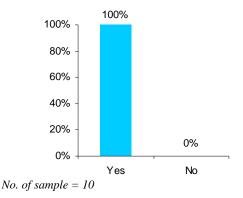

The number of trucks used for operation by the interviewed trucking companies is shown in **Table 4.1.8-1**. The total number of trucks used for operation and owned by these ten (10) companies is 282 while the number of rented trucks reaches 444.

Туре	T-1	T-2	T-3	T-4	T- 5	T- 6	T-7	T- 8	T-9	T- 10	Т	otal
Pick-up		2			1	1	4			6	14	
2-axle truck		2	3	9	4	6	2		(8)	8	34	(8)
3-axle truck	10			6	2	10 (10)	2	(160)	(20)	40	70	(190)
4 or more axles truck						15		(240)	(6)	73	88	(246)
Others					3					63	66	
Total	10	4	3	15	10	42 (10)	8	(400)	(34)	190	282	(444)

 TABLE 4.1.8-1 NUMBER OF TRUCKS OWNED BY TRUCK COMPANIES

Note: T=*Truck Company; () rented trucks used for operation*

The average number of trucks per company used for operation is around 73 trucks (owned and rented). For type of trucks used by these companies, the dominant types are: 4-axle trucks (47%), 3-axle trucks (36%), and others (e.g. vans, pick-up, canter) with 9% share. See **Figure 4.1.8-1**.



No. of sample = 10

FIGURE 4.1.8-1 DISTRIBUTION OF TRUCK TYPES

b. Do you allow your truck drivers to use expressways? (Q6)

When the truck company managers were asked if they allow their drivers to use expressway in their trips, all of them revealed that they allow them to use expressway. For the issue of toll fee, all interviewed managers said that their company is the one shouldering the toll fee. See **Figure 4.1.8-2** and **Figure 4.1.8-3**.

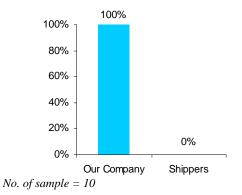
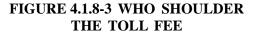
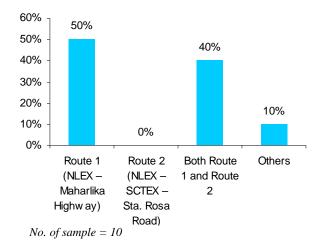
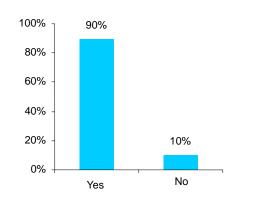




FIGURE 4.1.8-2 DO YOU ALLOW YOUR TRUCK DRIVERS TO USE EXPRESSWAY (YES OR NO)

c. Which route do you take in delivering goods from Manila to Cabanatuan and neighboring municipalities? (Q7)


Five (5) of the ten (10) managers reveals that their drivers still uses NLEX-Pan Philippine Highway when they have delivery from Manila to Cabanatuan or at neighboring municipalities. Four managers said that their drivers are using both Route 1 (NLEX-Pan Philippine) and Route 2 (NLEX-SCTEX-Sta. Rosa). One manager said that their delivery is mostly in the Pangasinan area thus their route is via NLEX-SCTEX most of the time. See **Figure 4.1.8-4**.

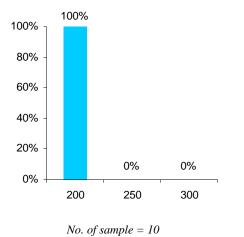
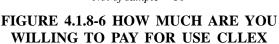


FIGURE 4.1.8-4 TRUCK ROUTES FOR MANILA – CABANATUAN DELIVERY

d. Will they allow their truck drivers to use CLLEX in delivering their goods? (Q10)


Only one manager expressed his intention not to allow their drivers to use CLLEX. The other nine (9) managers revealed that they will allow their drivers to use the CLLEX if it serves their route. For the amount of toll fee they are willing to pay, all of them said 200 pesos. See **Figure 4.1.8-5** and **Figure 4.1.8-6**.

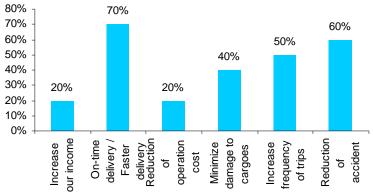

No. of sample = 10

FIGURE 4.1.8-5 WILL YOU ALLOW YOUR TRUCK DRIVERS TO USE CLLEX (YES OR NO)

e. Perceived Benefits by Truck Managers from CLLEX (Q11)

Truck managers were also asked if what kind of benefits the Central Luzon Link Expressway can bring to their business. Most managers believed that it would help them to deliver their cargo on time (27%) and it could also help in reduction of road accidents (23%). Some believed it would increase their frequency of trips (19%) and minimize damage to cargoes (15%). See **Figure 4.1.8-7**.

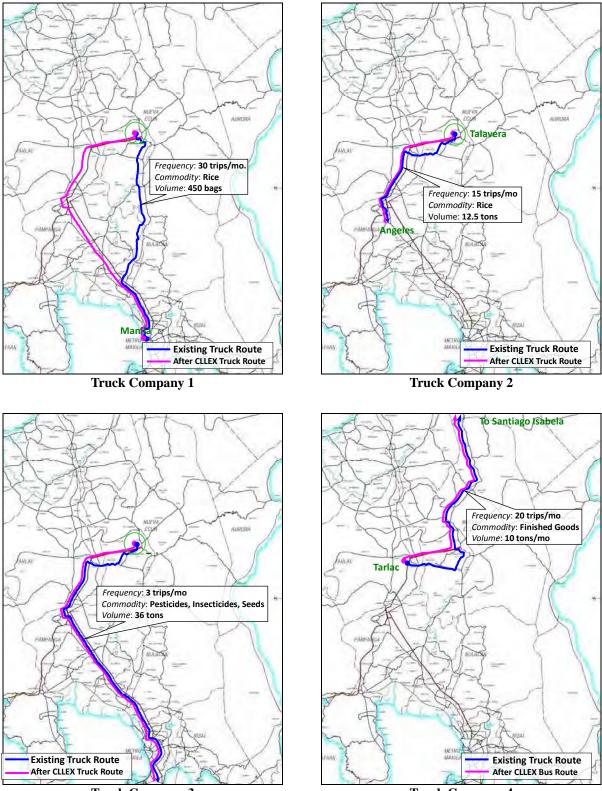
No. of sample = 10; Note: Respondents were allowed for multiple answers

FIGURE 4.1.8-7 PERCEIVED BENEFITS BY TRUCK OPERATORS FROM CLLEX

f. Problems Encountered in their operations? (Q12)

The most common problems mentioned by the twenty (20) managers of trucking companies are:

- Heavy traffic at main arterials roads (Pan Philippine Highway going Cagayan Valley)
- Problem at ports and shipping lines
- Traffic congestion at roads going to client's place
- Overweight limit
- Overloading causes accidents
- Corrupt traffic enforcers
- LTO/MMDA are more interested of finding violations of trucks that enforcing traffic rules during night time
- Traffic congestion at inner roads of small towns


g. Comments that could improve their business operations? (Q13)

The following were comments made by the managers of trucking companies:

- Open new alternative routes, example Baloc Sto. Domingo
- No truck overloading
- Government plans should be acceptable to manufacturers/trucking companies
- Fuel increase should be controlled
- Traffic enforcer should follow the government's rules and regulations
- Provisions for motorcycle lane

h. Truck Routes Before and After Construction of CLLEX

Of the ten (10) interviewed companies, nine (9) companies found the CLLEX to be useful to their current operation. As a result, at least 852 trips per month (28 trips/day) will be attracted to the CLLEX from these companies. Current routes of their trucks as well as possible routes after the construction of CLLEX are shown in **Figure 4.1.8-8**.

Truck Company 3

Truck Company 4

FIGURE 4.1.8-8 (1/2) EXISTING TRUCK ROUTE AND AFTER CLLEX BUS ROUTE

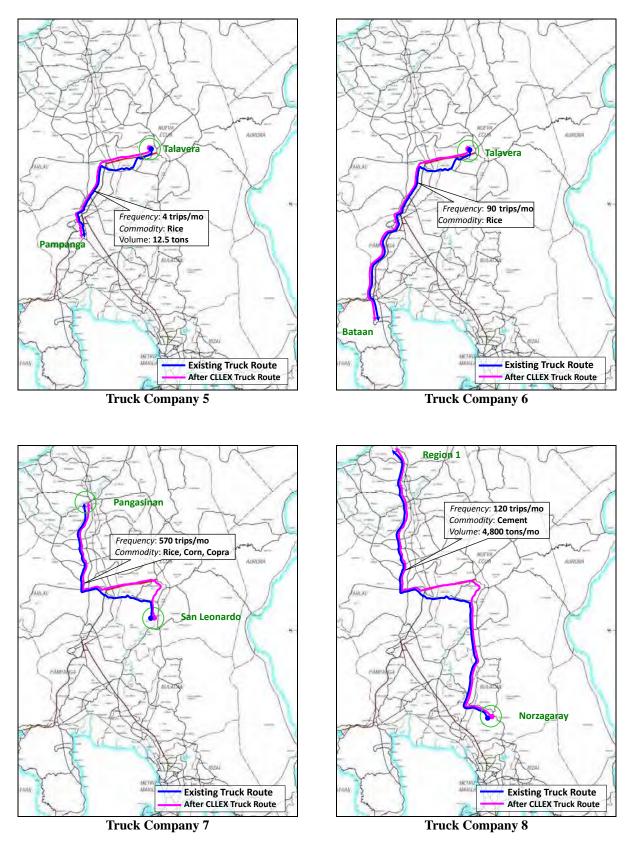


FIGURE 4.1.8-8 (2/2) EXISTING TRUCK ROUTE AND AFTER CLLEX BUS ROUTE

4.1.9 Willingness-To-Pay Survey For Use of CLLEX (Manufacturing Companies)

a. Are you willing to shoulder the toll fee to be paid by trucking companies? (Q7)

The five (5) officials of manufacturing companies interviewed revealed different opinions. Three (3) of them agreed to shoulder toll fee of expressway if this can help for speedy delivery of their cargoes. On the other hand, the two (2) other interviewed officials representing two manufacturing companies said that they are not willing to pay for toll fee because this should be paid by trucking companies (See **Figure 4.1.9-1**). It should be noted that for the case of CALAX, all interviewed officials of manufacturing companies in Cavite Province expressed their willingness to shoulder toll fee.

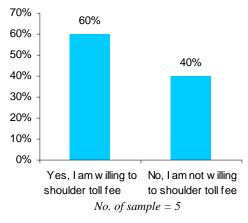
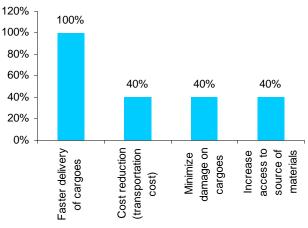



FIGURE 4.1.9-1 PERCENTAGE OF WILLING AND NOT WILLING TO SHOULDER TOLL FEE

b. Perceived Benefits by Manufacturing Companies from CLLEX?(Q8)

For the benefits they are hoping to get after the construction of expressway, these are: faster delivery of cargoes (46%), cost reduction (18%), minimize damage on cargoes (18%) and increase access to source of raw materials (18%). See **Figure 4.1.9-2**.

No. of sample = 5; Note: Respondents were allowed for multiple answers

FIGURE 4.1.9-2 PERCEIVED BENEFITS BY MANUFACTURING COMPANIES FROM CLLEX

c. Plans by Manufacturing Companies after construction of CLLEX?(Q9)

The plans after the construction of CLLEX revealed by interviewed officials of manufacturing companies are:

- Better scheduling of delivery of raw materials
- Better scheduling of delivery of finished goods
- Try to realize cost reduction

d. Problems Encountered by Manufacturing Companies?(Q10)

The problems mentioned by the officials of manufacturing companies are:

- Late arrival of raw materials which affect our operations
- Difficulty in maintaining huge inventory levels of stock
- High cost of expressway toll fees

e. Comments and Suggestions by Manufacturing Companies?(Q11)

The following were comments made by officials of manufacturing companies:

- Roll back of diesel price
- Continuous implementation of government rules and regulations

f. Summary of Transportation Routes of Manufacturing Companies

A mentioned, five manufacturing companies were interviewed to understand their freight movement among others. Three (3) were Japanese-affiliated companies and two (2) were locally owned and some of the biggest companies in the country. Three of five (5) interviewed manufacturing companies have their factory in Tarlac. These three companies have very simple transportation routes – i.e. Tarlac via SCTEX and NLEX to Manila port or Cavite and Batangas area. Therefore, these companies have no opportunity to use CLLEX.

Two other companies are located in Nueva Ecija. CLLEX is useful to both these companies but only one company reveals their intention to use CLLEX. Another company has no plan to use the expressway because their product is not time sensitive (rice distribution). Below is the discussion for the company that had expressed intention to use CLLEX. See **Figure 4.1.9-3** for the summary of transportation routes.

1. Manufacturing Company A (Local Company)

- Location : San Leonardo, Nueva Ecija
- Products : Line of business is poultry and livestock feeds
- The company is getting its supplies from Tarlac City, municipalities of Ibaan and Mariveles (Batangas), and other cities/municipalities of the country via ports of Manila.
- They are currently using the Tarlac Sta. Rosa Road in getting raw materials from Tarlac to their factory in San Leonardo and it takes them almost one hour.
- For other supplies, they are using the heavily congested Pan Philippine Highway (from Manila ports to San Leonardo and from Ibaan, Mariveles (Batangas) to San Leonardo).
- They are hoping for early construction of CLLEX which will help realize faster delivery of supplies and it will also increase their access to source of materials.
- If CLLEX is constructed, they intend to use the expressway instead of Tarlac Sta. Rosa Road to avoid heavy traffic congestion which causes late arrival of raw materials.

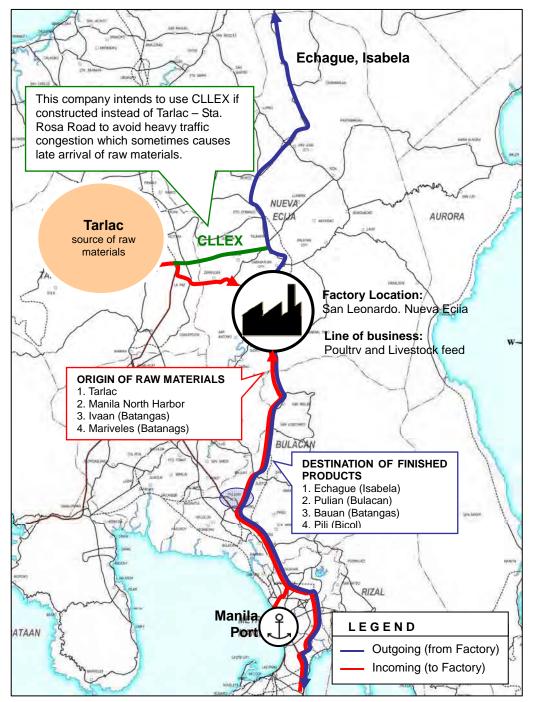
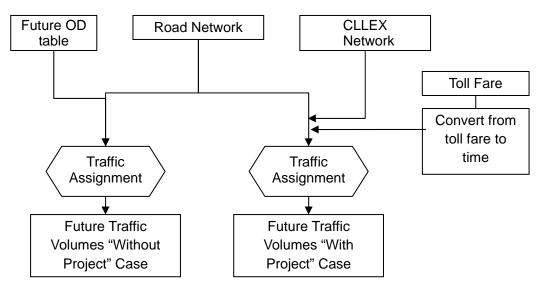


FIGURE 4.1.9-3 TRUCK ROUTES OF MANUFACTURING INDUSTRY IN CLLEX

4.1.10 Summary

Based on the results of the survey carried out on private car users, bus companies, trucking companies, and manufacturing companies, the following are the noted findings:


- PRIVATE CARS: Private car users captured at all stations revealed that they intend to use CLLEX if constructed in the future (more than 90%) for their trips to/from Manila or other regular trips that would be served by the said expressway.
- The dominant amount (85% to 97% depending on interview sites) of toll they are willing to pay to use CLLEX is 50 pesos.
- BUS COMPANY: Eight (8) out of nine (9) bus managers interviewed (89%) disclosed that if CLLEX is constructed in the future, they will allow their bus drivers to use it.
- All eight (8) bus managers revealed that the amount of toll they are willing to pay for the use of CLLEX is 200 pesos.
- TRUCKING COMPANY: Out of ten (10) interviewed managers, nine (9) affirmed their intention to allow their truck drivers to use CLLEX if it serves their delivery route.
- All nine (9) managers pointed out that the amount of toll they are willing to pay for the use of CLLEX is 200 pesos.
- MANUFACTURING COMPANIES: Of the five (5) managers interviewed, only two manufacturing companies found the CLLEX useful for their operations. However, only one company will utilize the expressway in getting their material supply. Another company is rice distributor and they don't intend to use CLLEX since their products are not time sensitive. The three (3) other companies have found CLLEX not useful to their current routes thus they could not use it.

4.2 FUTURE TRAFFIC DEMAND

4.2.1 Approach

To estimate the traffic volumes on CLLEX, traffic demand system data developed on the Study of Master plan on High Standard Highway Network Development funded by Japan International Cooperation Agency (hereinafter HSH), was used.

The overall flow diagram of the methodology used in forecasting the traffic volumes on CLLEX, and the present road network in the two cased of "Without Project" and "With Project", is shown in **Figure 4.2.1-1**.

FIGURE 4.2.1-1 FORECAST OF TRAFFIC VOLUMES ON ROAD NETWORK

Traffic volumes are assigned first on the existing road network without CLLEX, which is the case of "Without Project". Next, volume of traffic which will be handled in the future on CLLEX network are determined, which is the case of "With Project".

In the Study, the zone system comprised of Region III (Nueva Ecija, Tarlac, Pampanga, Bulacan and etc.), NCR, Region IV-A and Region I. The total zoning number is 320 zones, presented in **Figure 4.2.1-2~3** and **Table 4.2.1-1**.

TABLE 4.2.1-1 (1) TRAFFIC ZONING SYSTEM

Small Zone	Barangay	Medium Zone	City/Municipality	Large Zone	Province	Region
1	City of Manila 1 - Barangay 20					
2	City of Manila 2 - Barangay 105]				
3	City of Manila 3 - Barangay 375	ł				
4	City of Manila 4 - Barangay 48	4				
5	City of Manila 5 - San Nicolas City of Manila 6 - Binondo	4				
7	City of Manila 7 - Barangay 310					
8	City of Manila 8 - Quiapo	1				
9	City of Manila 9 - Barangay 413]				
10	City of Manila 10 - San Miguel	1	City of Manila			
11	City of Manila 11 - Barangay 570	ł				
12	City of Manila 12 - Barangay 450 City of Manila 13 - Port Area	ł				
13	City of Manila 14 - Intramuros, Ermita					
15	City of Manila 15 - Paco					
16	City of Manila 16 - Malate					
17	City of Manila 17 - Santa Ana					
18	City of Manila 18 - Barangay 601	-				
19 20	City of Manila 19 - Pandacan					
20	Pasay City 1 - Barangay 46 Pasay City 2 - Barangay 132	ł				
21	Pasay City 3 - Barangay 183	2	Pasay City			
24	Pasay City 4 - Barangay 1	1				
82	Pasay City 5 - Barangay 76			1		
23	Parañaque City 1 - Don Bosco					
25	Paranaque City 2 - Baclaran	-				
84 85	Parañaque City 2 - Sun Valley, San Martin De Porra Parañaque City 3 - Marcelo Green Village	3	Parañaque City	1		
85	Parañaque City 4 - B.F. Homes	5	a unaque eny			
92	Parañaque City 5 - San Isidro	1				
93	Parañaque City 6 - San Dionisio	1]		
26	Makati City 1 - Bangkal, San Lorenzo			1		
27	Makati City 2 - Palanan	ł				
28	Makati City 3 - Olympia Makati City 4 - Guadalupe Viejo	ł	Makati City			
29 30	Makati City 4 - Guadalupe Viejo Makati City 5 - Bel-Air	4	wakati City			
31	Makati City 6 - Rizal, Pembo	1				
34	Makati City 7 - Magallanes	1				
32	Santa Ana		Pateros	1		
33	Taguig 1 - Western Bicutan				Metro Manila	NCR
81	Taguig 2 - Upper Bicutan	5	Taguig			
83 35	Taguig 3 - Signal Village, Lower Bicutan Mandaluyong City 1 - Poblacion			1		
35	Mandaluyong City 2 - Plainview	1		1		
37	Mandaluyong City 3 - Mauway		Mandaluyong City	-		
39	Mandaluyong City 4 - Wack-wack Greenhills	6				
40	San Juan 1 - West Crame		San Juan			
41	San Juan 2 - Corazon de Jesus					
38 78	Pasig City 1 - Ugong Pasig City 2 - Santolon	4				
78	Pasig City 2 - Santolan Pasig City 3 - Santa Lucia	7	Pasig City			
80	Pasig City 4 - Pinagbuhatan	1				
42	Quezon City 1 - Tatalon, Damayang Lagi			1		
43	Quezon City 2 - Santo Domingo (Matalahib)]				
44	Quezon City 3 - Baesa, Sangandaan	ł		1		
45	Quezon City 4 - Bagong Pag-asa	4				
46 47	Quezon City 5 - Pinyahan, (Trinoma/SM West) Quezon City 6 - Paltok, Del Monte	1				
47	Quezon City 6 - Paitok, Del Monte Quezon City 7 - Kamuning	1		1		
40	Quezon City 8 - E. Rodriguez, Crame	1				
50	Quezon City 9 - Camp Aguinaldo	1				
51	Quezon City 10 - Kamias (East/West)	8	Quezon City			
52	Quezon City 11 - U.P. Campus	Ŭ				
53	Quezon City 12 - Pasong Tamo	4		1		
54 55	Quezon City 13 - Batasan Hills Quezon City 14 - Commonwealth	1				
56	Quezon City 15 - Payatas	1				
57	Quezon City 16 - North Fairview	1				
61	Quezon City 17 - Greater Lagro, Novaliches Proper]				
62	Quezon City 18 - Tandang Sora	ł		1		
75	Quezon City 19 - Pansol, Loyola Heights	ł				
77	Quezon City 20 - White Plains, Libis (Eastwood)			-		
58 59	Kalookan City (North) 1 - Barangay 178 Kalookan City (North) 2 - Barangay 176	9	Kalookan City (North)	1		
60	Kalookan City (North) 2 - Barangay 170 Kalookan City (North) 3 - Barangay 171	1				
63	Valenzuela City 1 - Ugong			1		
64	Valenzuela City 2 - Canumay, Maysan]				
65	Valenzuela City 3 - Malinta	10	Valenzuela City			
66	Valenzuela City 4 - Malanday	1	1	1		
71	Valenzuela City 5 - Marulas					

Small Zone	Barangay	Medium Zone	City/Municipality	Large Zone	Province	Region
67	Malabon 1 - Concepcion		Malabon			
70	Malabon 2 - Potrero					
68 69	Navotas - North Bay Blvd South Kalookan City (South) 1 - Barangay 12	11	Navotas	-		
72	Kalookan City (South) 2 - Barangay 12 Kalookan City (South) 2 - Barangay 132		Kalookan City (South)			
73	Kalookan City (South) 3 - Barangay 120		ranoonan eriy (bouni)			
74	Marikina City 1 - Concepcion Uno, Parang		Marikina City	1	Metro Manila	NCR
76	Marikina City 2 - Malanday		Marikina City	1	Metro Maina	NCK
87	Muntinlupa City 1 - Sucat	12	Muntinhan Cita			
88 89	Muntinlupa City 2 - Alabang Muntinlupa City 3 - Putatan		Muntinlupa City			
90	Las Pinas City 1 - Almanza (Uno, Dos)			-		
91	Las Pinas City 2 - B.F. International Village	13	Las Pinas City			
94	Las Pinas City 3 - Zapote		-			
320	Manila Port	-	-	1	Metro Manila	NCR
133 134			BACOOR IMUS	-		
134		24	CAVITE CITY	-		
136			KAWIT	-		
137			NOVELETA			
138			ROSARIO			
139	Tejero					
140	Pasong Camachile II	25	GENERAL TRIAS	1		
141 142	Amaya	- 23		4		
142	Halayhay	-	TANZA	1		
144	Bagtas					
146	Ibayo Silangan		NAIC	2	CAVITE	
147	Palangue 2 & 3	26				
161			GENERAL EMILIO AGUINALDO	-		
145 148	Datu Esmael (Bago-a-ingud)		TRECE MARTIRES CITY (Capital)	-		
148	Paliparan III	27	DASMARIÑAS			
150	Langkaan II					
151			SILANG			
153			GEN. MARIANO ALVAREZ			
154		28	CARMONA			
162 163			AMADEO ALFONSO	-		
164			TAGAYTAY CITY	-		
152			SAN PEDRO			
155		29	BIÑAN			
156			CITY OF SANTA ROSA			
157	D 1 D 1		CABUYAO			
158 159	Pansol, Parian Canlubang	30	CITY OF CALAMBA			Region IV-A
159	Cantubang		BAY	-		Region IV-A
165			SANTA MARIA			
166		31	MABITAC			
167			FAMY	3	LAGUNA	
168		32	KALAYAAN	-		
169 170			CAVINTI LILIW	-		
170	1	33	PAGSANJAN	1		
172			ALAMINOS	1		
173	Del Remedio			1		
174	Santisimo Rosario	34	SAN PABLO CITY	1		
175	San Francisco			1		
176 116	Santo Angel San Jose					-
110	Burgos	19	RODRIGUEZ (MONTALBAN)	1		
118			SAN MATEO	1		1
119	Cupang	20		1		1
120	San Jose (Pob.)	20	CITY OF ANTIPOLO (Capital)	1		
121	Inarawan		CADITA	4		
122	+	21	CAINTA TAYTAY	4		
123		- 21	ANGONO	4	RIZAL	
124	1		BINANGONAN	1		
126		22	TERESA]		
127			MORONG	1		
128			CARDONA	4		
129			BARAS	4		
130 131	+	23	TANAY PILILLA	-		
131	1		JALA-JALA	1		
95	1		CITY OF MEYCAUAYAN	1	1	1
96		14	MARILAO	1		
97			OBANDO	5	BULACAN	Region III
		1.5	BULACAN	1	1	1
<u>98</u> 99		15	BOCAUE			

TABLE 4.2.1-1 (2) TRAFFIC ZONING SYSTEM

Small Zone	Barangay	Medium Zone	City/Municipality	Large Zone	Province	Region
100			BALAGTAS (BIGAA)	Lone		
101		15	GUIGUINTO			
102			CITY OF MALOLOS (Capital) 1			
103		_	PAOMBONG			
104 105		16	HAGONOY CALUMPIT			
105		10	PULILAN			
107			PLARIDEL			
108			PANDI			
109	Poblacion, Guyong	17	SANTA MARIA			
110	Pulong Buhangin		bii (in bii ikin	5	BULACAN	
111 112	Muzon		SAN JOSE DEL MONTE			
112	Gumaoc Kaypian	18	SAN JOSE DEL MONTE			
113	Tigbe		NORGEGEREN			
115	San Mateo		NORZAGARAY			
205			BALIUAG			
206		43	BUSTOS			
207			ANGAT			Danian III
208 209		44	SAN ILDEFONSO DOÑA REMEDIOS TRINIDAD			Region III
209			APALIT			-
220	1	46	CANDABA			1
215			MINALIN			1
219		47	BACOLOR			
224	Dolores		CITY OF SAN FERNANDO			1
225	Bulaon					
216		48	MASANTOL LUBAO	-		1
217		40	FLORIDABLANCA	_		
221		40	ARAYAT	6	PAMPANGA	
222		49	MAGALANG			
223			PORAC			
226	Dau		MABALACAT			
227	Mabiga, Calumpang	50				
228 229	Cutcut Santo Domingo					
230	Balibago	_	ANGELES CITY			
231	Malabanias					
177			BALAYAN			
178		35	AGONCILLO			
179			LAUREL	_		
180 181		_	CITY OF TANAUAN SANTO TOMAS			
181		_	BALETE			
188	Marauoy	36				
189	Antipolo Del Norte		LIPA CITY			
190	Lodlod		LIFACITI			
191	San Jose		OVER LO	7	BATANGAS	
183		37	CUENCA	_		
187 184			ALITAGTAG PADRE GARCIA	-		1
184		38	SAN JUAN			D
186			LOBO			Region IV-A
192	Santa Rita Karsada					1
193	Gulod Itaas	39	BATANGAS CITY (Capital)			
194	Libjo		- (F)			
195	Pinamucan		CENEDAL NAKAD	-		4
196 197		40	GENERAL NAKAR LUCBAN	-		
197			CITY OF TAYABAS			1
203		41	LUCENA CITY (Capital)			1
204			AGDANGAN	8	QUEZON	1
199			SARIAYA			1
200		42	CANDELARIA			1
201	1		DOLORES SAN ANTONIO	_		1
202 210			SAN ANTONIO LIMAY	-		ł
210	1		ABUCAY			1
212		45	BAGAC	9	BATAAN	1
213			DINALUPIHAN			J
249	Barreto East Bajac-bajac Santa Rita					1
250		56	OLONGAPO CITY			
251						Region III
252	New Cabalan			10		1
0.50	Calapacuan		1	10	ZAMBALES	1
253	Cowog	57		10		
254	Cawag Pamatawan	57	SUBIC			
	Cawag Pamatawan Naugsol	57	SUBIC			

TABLE 4.2.1-1 (3) TRAFFIC ZONING SYSTEM

Small Zone	Barangay	Medium Zone	City/Municipality	Large Zone	Province	Region
258		59	BOTOLAN	10	ZAMBALES	
259		60	CANDELARIA	10		
232		51	BAMBAN			
234		_	CAPAS			
233 236		_	CONCEPCION LA PAZ			
236	Matatalaib	52	LA PAZ			
240	San Rafael	52	CITY OF TARLAC			
247	Maliwalo		en i or taklae			
235	Marwaro		SAN JOSE			
240		53	CAMILING	11	TARLAC	
237			VICTORIA			
238		54	PURA			
239			GERONA			
241			RAMOS			
242			ANAO			
243		55	SAN MANUEL			
244	Poblacion Norte		PANIQUI			
245	Balaoang					
260	San Nicolas		CITY OF GAPAN			
261	San Roque			-		Region III
262		<i>c</i> 1	CABIAO	-	1	Ţ
263 264		61	JAEN SAN LEONARDO	1		
264			GENERAL TINIO (PAPAYA)	1		
265		-1	SANTA ROSA	1		
266		+	GABALDON (BITULOK & SABANI)	1	1	
267		62	BONGABON	1		
282			CARRANGLAN			
269			GENERAL MAMERTO NATIVIDAD			
270			SANTO DOMINGO	12	NUEVA ECIJA	
275		63	SCIENCE CITY OF MUÑOZ			
276			LUPAO			
281			SAN JOSE CITY			
271		64	ALIAGA			
272		04	LICAB			
277	Bantug Norte					
278	Caalibangbangan	65	CABANATUAN CITY			
279	San Josef Norte					
280	Campo Tinio		our man			
273		66	GUIMBA			
274			CUYAPO			
284 285			UMINGAN NATIVIDAD			
285		68	ASINGAN			
280		08	SAN MANUEL			
298		_	BALUNGAO			
288			POZZORUBIO			
289			BUGALLON			
290		69	CALASIAO			
291			BINMALEY	10	DANGAGDAAN	р · т
294		1	AGUILAR	13	PANGASINAN	Region I
295			BASISTA]		
296		_	BAUTISTA]	1	
297		70	VILLASIS	1		
299	Bayaoas	_				
300	Pinmaludpod	_	CITY OF URDANETA			
301	Palina East	_	ļ	4	1	
292		71	CITY OF ALAMINOS	4		
293			AGNO	L	· · · · ·	
283		67	All Municipalities	14	4 AURORA	Region III
302	4	1	1		Benguet	
303	4	1	1		-	-
308	4	1	1		Ifugao	
309 312	4	1	1		-	CAR
312	4	1	1		Mt. Province Kalinga	-
313	4	1	1		Abra	-
314	4	1	1		Abra Apayao	-
304	1	1	1			
304	Zone 302-319 Out of Study Area.	72	1	15	Nueva Vizcaya	
305	1	1	1		Quirino	Region II
306		1	1		Isabela	Kegion II
317		1	1		CAGAYAN	
310		1	1		LA UNION	
311	1	1	1		ILOCOS SUR	Region I
	4	1	1	1		Region I
315						
315 318	-				ILOCOS NORTE All Provinces	Region IV-B

TABLE 4.2.1-1 (4) TRAFFIC ZONING SYSTEM

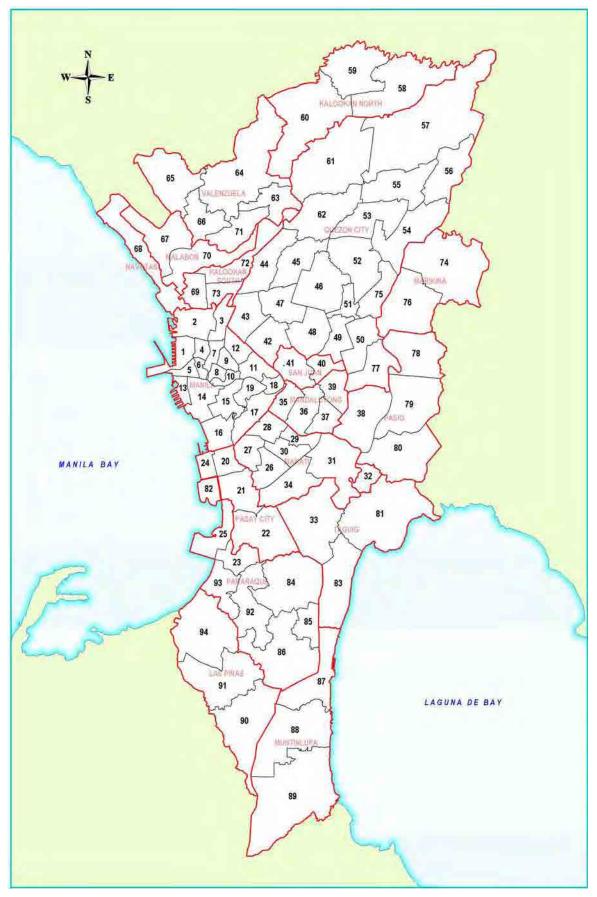


FIGURE 4.2.1-2 ZONING MAP – METRO MANILA

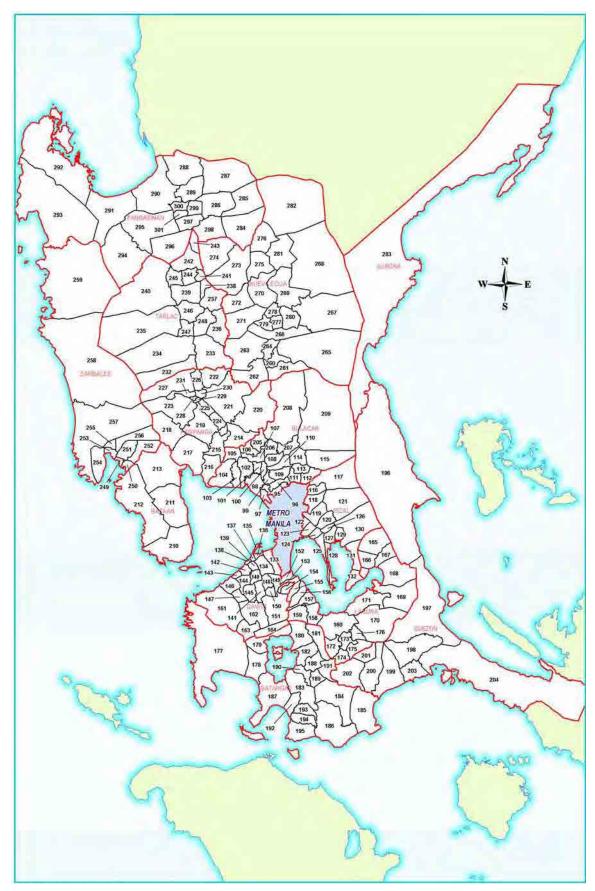


FIGURE 4.2.1-3 ZONING MAP – OUTSIDE METRO MANILA

4.2.2 Future Socio-Economic Framework

The future socio-economic indicators were formulated by the Study of Master Plan on High Standard Highway Network Development based on the past trend.

The socio-economic profile is summarized below.

(1) **Population projection**

The population annual growth rate of HSH Study is 2.3% up to 2020 and 1.8% from 2021 to 2030.

Tarlac and Nueva Ecija is the almost same growth rate.

IA	BLE 4.2.2-	TFUTUR	E POPULA	ATION					
	Population(thousand) AAGR								
	Y2009	Y2020	Y2030	09-20(%)	21-30(%)				
Metro Manila	11,962	14,511	15,942	1.8%	0.9%				
Cavite	3,242	5,154	7,102	4.3%	3.3%				
Laguna	2,625	3,511	4,194	2.7%	1.8%				
Rizal	2,481	3,535	4,419	3.3%	2.3%				
Bulacan	3,020	4,199	5,300	3.0%	2.4%				
Pampanga	2,336	3,000	3,676	2.3%	2.1%				
Batangas	2,347	3,050	3,843	2.4%	2.3%				
Quezon	1,792	2,143	2,496	1.6%	1.5%				
Bataan	694	895	1,114	2.3%	2.2%				
Zambales	749	921	1,101	1.9%	1.8%				
Tarlac	1,297	1,627	1,950	2.1%	1.8%				
Nueva Ecija	1,914	2,400	2,870	2.1%	1.8%				
Pangasinan	2,705	3,046	3,356	1.1%	1.0%				
Aurora	192	216	241	1.1%	1.1%				
Total	37,356	48,041	57,214	2.3%	1.8%				

TABLE 4.2.2-1 FUTURE POPULATION

Source: HSH (JICA 2010)

(2) GRDP projection

The estimated GRDP growth rate of Region III (Central Luzon) is between $6.0 \sim 6.5\%$.

		TADLE 7.2.2-2 ODI A		NOW TH KAL								
2012-2014 2015-2020 2021-2025 2026-203												
GDP			5.0%	5.5%	5.5%	5.0%						
GRDP	NCR	National Capital Region	6.5%	6.5%	6.5%	6.0%						
	III	Central Luzon	6.0%	6.5%	6.5%	6.5%						
	IV-A	CARABARZON	6.5%	7.0%	7.0%	6.5%						

 TABLE 4.2.2-2 GDP AND GRDP GROWTH RATE

Source: HSH (JICA 2010)

(3) Employment projection

The number of employment is estimated on population and GRDP in HSH Study.

The employment annual growth rate of HSH Study is higher than that of population. The growth rate of employment is 2.8% up to 2020 and 2.0% from 2021 to 2030.

The growth rate of Tarlac and Nueva Ecija is a little higher than the rate of study area.

Emplo	yment(thou	AAGR		
Y2009	Y2020	Y2030	09-20(%)	21-30(%)
4,575	6,103	7,378	2.7%	1.9%
1,092	1,583	2,058	3.4%	2.7%
1,371	1,807	2,214	2.5%	2.1%
454	654	821	3.4%	2.3%
675	976	1,240	3.4%	2.4%
800	1,124	1,427	3.1%	2.4%
485	683	872	3.2%	2.5%
218	283	344	2.4%	2.0%
227	297	357	2.5%	1.9%
339	478	604	3.2%	2.4%
282	398	506	3.2%	2.4%
293	409	520	3.1%	2.4%
651	739	798	1.2%	0.8%
21	26	33	2.0%	2.4%
11,483	15,560	19,172	2.8%	2.1%
	Y2009 4,575 1,092 1,371 454 675 800 485 218 227 339 282 293 651 21	Y2009 Y2020 4,575 6,103 1,092 1,583 1,371 1,807 454 654 675 976 800 1,124 485 683 218 283 227 297 339 478 282 398 293 409 651 739 21 26 11,483 15,560	4,5756,1037,3781,0921,5832,0581,3711,8072,2144546548216759761,2408001,1241,42748568387221828334422729735733947860428239850629340952065173979821263311,48315,56019,172	Y2009 Y2020 Y2030 09-20(%) 4,575 6,103 7,378 2.7% 1,092 1,583 2,058 3.4% 1,371 1,807 2,214 2.5% 454 654 821 3.4% 675 976 1,240 3.4% 800 1,124 1,427 3.1% 485 683 872 3.2% 218 283 344 2.4% 227 297 357 2.5% 339 478 604 3.2% 282 398 506 3.2% 293 409 520 3.1% 651 739 798 1.2% 21 26 33 2.0% 11,483 15,560 19,172 2.8%

TABLE 4.2.2-3 FUTURE EMPLOYMENT

Source: HSH (JICA 2010)

4.2.3 Present and Future OD Matrix

Traffic demand forecast was conducted in HSH Study. Annual growth rate in study area is 2.8 %(2009-2017) and 2.0 %(2021-2030). The growth rate of Tarlac and Nueva Ecija is the same rate of study area.

	Generation Trip	p(Vehicle/day)	An	nual Growth R	ate
	Y2009	Y2020	Y2030	2009-2017	2021-2030
Metro Manila	3,539,909	4,496,863	5,173,752	2.2%	1.4%
Cavite	570,765	838,206	1,159,496	3.6%	3.3%
Laguna	400,087	619,695	811,382	4.1%	2.7%
Rizal	303,205	431,995	544,728	3.3%	2.3%
Bulacan	509,021	811,307	1,050,340	4.3%	2.6%
Pampanga	31,055	44,979	52,820	3.4%	1.6%
Batangas	38,817	51,355	59,416	2.6%	1.5%
Quezon	17,390	23,253	26,719	2.7%	1.4%
Bataan	14,690	18,468	20,446	2.1%	1.0%
Zambales	4,563	6,253	7,805	2.9%	2.2%
Tarlac	12,552	16,970	21,177	2.8%	2.2%
Nueva Ecija	20,484	28,016	35,037	2.9%	2.3%
Pangasinan	12,908	17,868	19,666	3.0%	1.0%
Aurora	430	562	687	2.5%	2.0%
Out of study area	11,322	14,941	18,665	2.6%	2.3%
Total	5,487,198	7,420,728	9,002,132	2.8%	2.0%

TABLE 4.2.3-1 ESTIMATED GENERATION TRIPAND ANNUAL GROWTH RATE

Source: HSH (JICA 2010)

Future OD was prepared in Year 2017, 2020 and 2030. Year 2017 is the opening year of CLLEx.

Table 4.2.3-2 to 4.2.3-3 shows the Vehicle OD Table.

	Metro	Cavite	Laguna	Rizal	Bulacan	Pampanga	Batangas	Quezon	Bataan	Zambales	Tarlac	Nueva	Pangasina	Aurora	Out of	Total
	Manila	Carrie	gaine		Danata	. ampanga	Satangas	Quelon	Bataan	Lannoaroo	. al la c	Ecija	n		study area	
Metro Manila	4,122,744	95,382	66,285	115,250	65,312	3,538	12,042	3,292	1,514	1,456	848	2,401	2,145	315	4,340	4,496,863
Cavite	95,382	706,597	26,667	1,804	2,908	201	2,929	1,052	42	57	14	26	53	0	477	838,206
Laguna	115,250	1,804	8,977	489,063	3,016	56	269	791	31	25	0	32	44	108	231	619,695
Rizal	66,285	26,667	320,055	8,977	1,922	157	6,331	856	67	38	83	32	79	0	449	431,995
Bulacan	65,312	2,908	1,922	3,016	718,670	9,343	390	33	692	946	307	6,200	484	7	1,079	811,307
Pampanga	3,538	201	157	56	9,343	24,266	52	20	1,453	1,660	1,085	558	2,025	1	566	44,979
Batangas	12,042	2,929	6,331	269	390	52	25,891	2,730	101	27	2	106	36	0	451	51,355
Quezon	3,292	1,052	856	791	33	20	2,730	14,200	0	14	129	0	20	0	118	23,253
Bataan	1,514	42	67	31	692	1,453	101	0	12,455	1,118	416	328	112	2	140	18,468
Zambales	1,456	57	38	25	946	1,660	27	14	1,118	98	212	188	82	120	214	6,253
Tarlac	848	14	83	0	307	1,085	2	129	416	212	12,016	940	604	1	316	16,970
Nueva Ecija	2,401	26	32	32	6,200	558	106	0	328	188	940	14,467	1,423	1	1,315	28,016
Pangasinan	2,145	53	79	44	484	2,025	36	20	112	82	604	1,423	5,977	0	4,787	17,868
Aurora	315	0	0	108	7	1	0	0	2	120	1	1	0	0	8	562
Out of study area	4,340	477	449	231	1,079	566	451	118	140	214	316	1,315	4,787	8	453	14,941
Total	4,496,863	838,206	431,995	619,695	811,307	44,979	51,355	23,253	18,468	6,253	16,970	28,016	17,868	562	14,941	7,420,728

TABLE 4.2.3-2 FUTURE VEHICLE OD TABLE (YEAR 2020)

Source: HSH (JICA 2010)

TABLE 4.2.3-3 FUTURE VEHICLE OD TABLE (YEAR 2030)

	Metro Manila	Cavite	Laguna	Rizal	Bulacan	Pampanga	Batangas	Quezon	Bataan	Zambales	Tarlac	Nueva Ecija	Pangasina n	Aurora	Out of study area	Total
Metro Manila	4,710,201	119,731	81,228	144,569	80,310	4,061	14,268	3,853	1,718	1,768	1,386	2,862	2,285	374	5,142	5,173,752
Cavite	119,731	992,007	35,395	2,540	3,808	266	3,708	1,188	52	75	21	34	64	0	610	1,159,496
Laguna	81,228	35,395	403,660	12,149	2,492	182	7,722	1,000	77	54	118	42	86	0	526	544,728
Rizal	144,569	2,540	12,149	645,949	4,152	90	332	1,006	44	37	0	41	49	141	286	811,382
Bulacan	80,310	3,808	2,492	4,152	935,477	11,422	464	42	886	1,199	434	7,647	548	9	1,455	1,050,340
Pampanga	4,061	266	182	90	11,422	28,144	57	23	1,601	2,026	1,251	715	2,314	2	669	52,820
Batangas	14,268	3,708	7,722	332	464	57	28,945	3,089	128	33	2	130	38	0	502	59,416
Quezon	3,853	1,188	1,000	1,006	42	23	3,089	16,191	0	16	147	0	23	0	142	26,719
Bataan	1,718	52	77	44	886	1,601	128	0	13,315	1,376	543	409	117	2	181	20,446
Zambales	1,768	75	54	37	1,199	2,026	33	16	1,376	133	326	261	93	146	264	7,805
Tarlac	1,386	21	118	0	434	1,251	2	147	543	326	14,677	1,172	739	2	362	21,177
Nueva Ecija	2,862	34	42	41	7,647	715	130	0	409	261	1,172	17,270	1,670	2	2,785	35,037
Pangasinan	2,285	64	86	49	548	2,314	38	23	117	93	739	1,670	6,486	0	5,158	19,666
Aurora	374	0	0	141	9	2	0	0	2	146	2	2	0	0	12	687
Out of study area	5,142	610	526	286	1,455	669	502	142	181	264	362	2,785	5,158	12	574	18,665
Total	5,173,752	1,159,496	544,728	811,382	1,050,340	52,820	59,416	26,719	20,446	7,805	21,177	35,037	19,666	687	18,665	9,002,132

Source: HSH (JICA 2010)

4.2.4 Traffic Assignment Model

The traffic assignment procedure allocates vehicle traffic into individual road links. This step uses as input the matrix of flows (vehicles) that indicate the volume of traffic between origin and destination pairs.

1) Assignment Method

There are many assignment techniques that can be used to estimate traffic volume ranging from manual methods to complex iterative procedures by computer programs. In this study, the capacity restraint assignment which is the most straightforward for use in network models was applied. This assignment technique is based on the speed – flow relationship. Flowchart of the applied methodology is presented in **Figure 4.2.4-1**.

In this assignment technique, and by calculating the required travel time for each link according to its travel speed and road conditions, the program determines the fastest routes between each origin and destination by evaluating the consuming time on links, and assigns the trips between the given origin and destination. As congestion increases until a certain level, alternative routes are introduced to handle the unassigned traffic. Zone-to-zone routing is built, which is the fastest path from each zone to any other, and all trips are assigned to these optimum routes.

Regarding tolled expressway, travel time adds the sum up of travel time conversion from toll fee (= toll fee divided by time evaluation value) and time calculation from travel speed.

Since the link-travel time varies with the traffic volume of vehicles using that link, which can be explained as a degree of link congestion, the OD tables are divided to apply an iteration procedure on ten stages. At each iteration, and depending upon the current link loadings, the flows are divided between all the shortest routes generated and a new travel time is computed for the average assigned link flow at each pass. The iteration continues to re-estimate the speed on that links considering the assigned traffic on links, and to produce alternative routes so that more accurate allocation can be achieved. The accumulated assigned traffic volume from each OD pair on the links composes the total assigned traffic volumes per direction for the network. JICA STRADA is used to estimate traffic volumes.

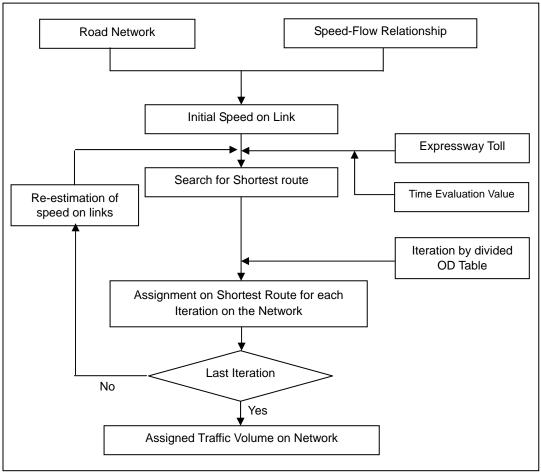


FIGURE 4.2.4-1 TRAFFIC ASSIGNMENT PROCEDURE

2) Speed Flow Relationship

The speed-flow relationship used in the traffic assignment procedure is shown in **Figure 4.2.4-2**. When the traffic volumes are over the maximum capacity 0.3*Qmax, it is assumed that vehicle speed drastically reduces. The basic free flow and capacity is shown in **Table 4.2.4-1**.

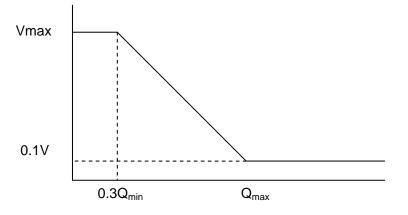


FIGURE 4.2.4-2 SPEED – FLOW RELATIONSHIP

TABLE 4.2.4-1 FREE SPEED AND CAPACITY BY ROAD TYPE								
QV Type	Pavement	Road Class	Topography	Lane	Vmax	Qmax		
1				4	100	80,000		
2			Plain	3	100	60,000		
3		Inter-Urban	Flain	2	100	40,000		
4		Expressway		1	70	20,000		
5			Mountains	2	70	28,000		
6			Wountains	1	60	10,500		
7		Inter I laken		3	80	60,000		
8		Intra-Urban Expressway	Plain	2	60-80	40,000		
9			1	60	15,000			
10			Plain	4	40	60,000		
11	Paved	Interstate		2	30	18,000		
12		Highway Mountains	Mountains	4	30	42,000		
13			Wouldains	2	25	12,600		
14				10	60	120,000		
15		Urban		8	60	96,000		
16		Arterial	Mountains	6	50	72,000		
17		7 mteriai	i iitoriui	i ii toi iui		4	40	48,000
18	I			2	30	14,400		
19			Plain	4	40	40,000		
20		Local		2	30	12,000		
21			Mountains	2	30	8,400		
22	Unpaved		Plain	2	20	6,000		
23	Chpaved		Mountains	2	10	4,200		

TABLE 4.2.4-1 FREE SPEED AND CAPACITY BY ROAD TYPE

3) Passenger Car Unit

Table 4.2.4-2 shows the Passenger Car Unit (PCU) used in vehicle traffic conversion. This value is the same used by the DPWH.

Vehicle Type	Passenger Car Unit
Passenger Car	1.0
Jeepney	1.5
Bus	2.2
Truck	2.5

4) Time Evaluation Value

An important input for the demand forecast is the trip maker's time value. This time value is the basis for a trip maker to decide whether to use toll expressway or not. The time values were derived from MMUEN (JICA, The Development of the Public –Private Partnership Technique for the Metro Manila Urban Expressway Network) survey results. Though MMUEN data is based on the Metro Manila and surrounding area, Time Evaluation Value in Region III is lower than that of MMUEN. Based on the rate of GRDP per capita (GRDP per capita of Region III / that of NCR and Region IV-4A = 50,176 peso / 96,505 peso = 0.52), Time Evaluation Value in Region III is set.

Supposing time value will increase in accordance with inflation rate of 5% per year, the figures in **Table 4.2.4-3** will be the time value.

Area	MMUEN (Metro Manila and surrounding Area)	Region III (Study Area)		
Year	Y2009	Y2009	Y2020	Y2030
	(a)	(b=a*0.52)	(c=b*1.05 ¹¹)	(d=c*1.05 ¹⁰)
Car	331.4	172.4	294.8	480.2
Jeepney	465.9	242.3	414.4	675.0
Bus	1,524.2	792.8	1,355.9	2,208.7
Truck	873.2	454.1	776.6	1,265.0

TABLE 4.2.4-3 TIME EVALUATION VALUE BY VEHICLE TYPE Unit: Peso/hour

4.2.5 Assignment Validation

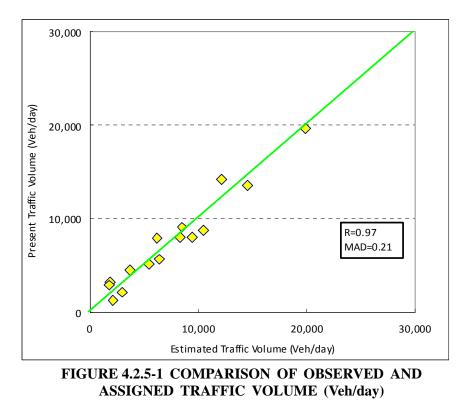

The procedure of model validation entails two steps: first, the current OD matrix is assigned on an existing network. Second, the assigned traffic volume is compared with the result of the traffic count surveys at each corresponding location. This verification aims to check the accuracy of both the current OD matrix and an existing network model representing the existing transport situation.

Table 4.2.5-1 presents traffic volumes generated from traffic assignment and observed traffic (traffic count survey). **Figure 4.2.5-1** shows the result of comparison between the assigned traffic volumes and observed traffic volume. This comparison between observed traffic count and assigned traffic flow at individual sites is done via the Mean Absolute Difference (MAD)¹ Ratio. For daily traffic counts, the value of the MAD ratio is 0.21 which is considered to reflect a good calibration.

(,,	h/day) Observed	Assigned		
Road Name, Site	Traffic Volume	Traffic Volume	Difference	Rate
1.SCTEX (Between Luisita IC and Capas IC)	8,790	10,432	-1,642	16%
2.SCTEX (Between Floridablanca and Porac IC)	9,039	8,564	475	-6%
3.Pan-Philippine HWY, Sto. Domingo	7,950	6,242	1,708	-27%
4.Pan-Philippine HWY, San Jose City	8,048	9,417	-1,369	15%
5.Pan-Philippine HWY, Zaragosa	14,246	12,089	2,157	-18%
6.Pan-Philippine HWY, Gapan	19,657	19,864	-207	1%
7.Pan-Philippine HWY, Plaridel	8,043	8,359	-316	4%
8.Sta Rosa-Tarlac Rd-1	5,124	5,422	-298	5%
9.Sta Rosa-Tarlac Rd-2	4,431	3,658	773	-21%
10.Caalibangbangan - Aliaga Rd-1	3,225	1,835	1,390	-76%
11.Caalibangbangan - Aliaga Rd-2	2,848	1,777	1,071	-60%
12.Nueve Ecija-Aurora Rd	1,273	2,092	-819	39%
13.Pinagpanaan-Rizal-Pantabangan Rd	2,179	2,990	-811	27%
14.MacArthur Hwy, Paniqui	5,635	6,409	-774	12%
15.NLEX-Dau Exit, National Hwy	13,516	14,536	-1,020	7%

TABLE 4.2.5-1 COMPARISON OF OBSERVED AND ASSIGNED TRAFFIC VOLUME (Veh/day)

¹ MAD Ratio is defined by the following formula: MAD Ratio = $\sum \frac{Count - assignment}{assignment} / n$ where n is the number of observations.

4.2.6 Toll Rate vs. Revenue

In order to set the proper toll rate of CLLEX, the traffic volume and the amount of revenue are estimated by traffic assignment model. **Figure 4.2.6-1** shows the result of traffic assignment of toll rate.

- In case of toll free, total traffic volume to enter CLLEX is 16,197 vehicles/day
- The toll rate for getting higher revenue is about 3.0 to 4.5 Peso/km and the amount of revenue is about 1.14 and 1.18 million Peso/day. Although maximum amount of revenue is 4.0 peso case, traffic volume to enter CLLEX is only 8,628 vehicle /day which is about half of toll free case.
- The desirable toll rate for attractive to motorist and higher revenue is **3.0 Peso/km**. total traffic volume to enter CLLEX is 11,236 vehicle/day (70% of toll free case) and estimated toll revenue 1.14 million Peso/day. 3.0 Peso/km in year 2017 converts about 2.2 Peso /km in year 2011. This toll rate is the almost same as that of NLEX and other present interurban expressway (see **Table 4.2.6-1**). Most motorists may accept the 3.0 peso/km in year 2017.

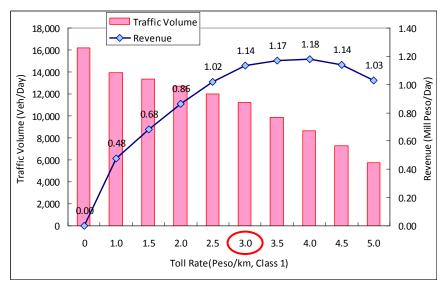


FIGURE 4.2.6-1 TOLL RATE VS REVENUE (YEAR 2017)

TABLE 4.2.6-1	PRESENT	TOLL	RATE
----------------------	---------	------	------

_				-	(Peso/km)
Toll Road		Class 1	Class 2	Class 3	
		Car, Jeep, Pick-up	Light Truck	Heavy Truck, Trailer	Remarks
Metro Manila	Elevated Phase 1	6.84	13.68	20.53	Skyway/Buendia - Bicutan (9.50 km)
Skyway (MMS)	Elevated Phase 2	11.92	23.84	35.76	Alabang - Bicutan (6.88 km)
Skyway (MINIS)	At grade	7.85	15.70	23.56	Magallanes - Alabang (13.50 km)
North Luzon Express	way (NLEX)	2.38	5.92	7.08	
South Luzon Express	way (SLEX)	3.02	6.04	9.10	
Manila Cavite Toll	Phase 1	3.33	6.82	9.85	R-1 Extension to Bacoor (6.6 km)
Expressway (MCTE) Phase 2		8.96	17.92	26.87	Bacoor Bay to Kawit (6.475 km)
Southern Tagalog Arterial Road (STAR)		1.43	2.86	4.26	
Subic-Clark-Tarlac E	xpressway (SCTEX)	2.68	5.36	8.04	

Source: TRB, 2011 May

4.2.7 Traffic Assignment Result

1) Case-1 CLLEX (Phase-1) Initial Stage 2 lane

a) Total Traffic Efficiency

Table 4.2.7-1 shows the traffic assignment of without CLLEX (Phase-1) case and with case.

This study area is Tarlac, Nueva Ecija, Bulacan, Pampanga,

Year	Case	Total Travel Time	Total Vehicle Km	Average Travel Speed
		(PCU*hr)	(PCU*km)	(km/hr)
2017	With	922,689	27,459,992	29.8
	W/O	933,781	27,351,557	29.3
	With-W/O	-11,092	108,435	0.5
2020	With	1,036,424	29,758,637	28.7
	W/O	1,053,098	29,710,937	28.2
	With-W/O	-16,674	47,700	0.5
2030	With	1,452,642	37,346,746	25.7
	W/O	1,474,010	37,219,691	25.3
	With-W/O	-21,368	127,055	0.4

TABLE 4.2.7-1 TRAFFIC INDICATORS OF W/O CLLEX CASE AND WITH CASE

Source JICA Study Team Note: PCU: Passenger Car Unit

- If CLLEX were constructed, many motorists may use this expressway even though their trips become longer. Total PCU*km of with case will be higher than that of without case.
- Total travel time will be decrease if CLLEX were constructed. The difference of total travel time is 11,092 hours/day in year 2017 which much traffic time can be saved by CLLEX.

b) Traffic Assignment

Figure 4.2.7-1 to 4.2.7-3 shows the estimated traffic volume of CLLEX (Phase-1) 2lane.

• The highest IC section is between Tarlac IC and Aliaga IC, which number of traffic are 11,222 (vehicle/day) in year 2017, 12,966 (vehicle/day) in year 2020 and 17,118 (vehicle/day) in year 2030.

Figure 4.2.7-4 to 4.2.7-6 shows the traffic assignment result with CLLEX (Phase-1) and **Figure 4.2.7-7 to 4.2.7-9** shows the difference of traffic volume with case and without case.

Figure 4.2.7-10 to 4.2.7-12 shows the number of traffic CLLEX (Phase-1) destination.

- About 60% of CLLEX traffic from west side to east are going to Cabanatuan City.
- The major destinations of CLLEX traffic from east to west are Bulacan or Metro Manila...

Table 4.2.7-2 shows the total traffic volume to enter CLLEX and total vehicle km of CLLEX

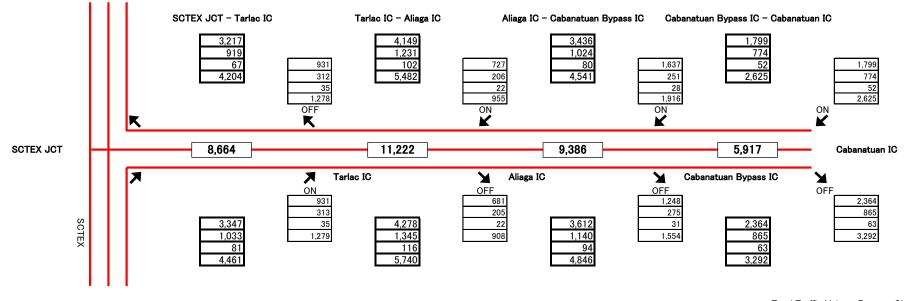

		Traffic Volum	e (Veh/day)			Total veh		/
Year	Class1	Class2	Class3	Total	Class1	Class2	Class3	Total
2017	8,427	2,576	219	11,222	222,318	69,635	5,722	297,675
2018	8,931	2,618	223	11,772	237,330	70,581	5,823	313,735
2019	9,464	2,661	227	12,352	253,356	71,541	5,927	330,823
2020	10,030	2,705	232	12,966	270,463	72,513	6,032	349,009
2021	10,268	2,818	242	13,328	276,853	75,721	6,332	358,906
2022	10,512	2,936	253	13,700	283,393	79,070	6,647	369,110
2023	10,761	3,058	264	14,084	290,088	82,568	6,977	379,633
2024	11,017	3,186	276	14,480	296,942	86,220	7,324	390,486
2025	11,279	3,320	289	14,887	303,957	90,034	7,688	401,679
2026	11,546	3,459	302	15,307	311,137	94,016	8,071	413,224
2027	11,821	3,603	316	15,740	318,488	98,175	8,472	425,135
2028	12,101	3,754	330	16,185	326,012	102,517	8,893	437,422
2029	12,389	3,911	345	16,645	333,714	107,052	9,335	450,101
2030	12,683	4,074	361	17,118	341,597	111,787	9,800	463,184
2031	12,984	4,245	377	17,606	349,667	116,732	10,287	476,686
2032	13,293	4,422	394	18,109	357,928	121,895	10,798	490,622
2033	13,608	4,607	412	18,627	366,384	127,287	11,335	505,006
2034	13,931	4,800	430	19,162	375,040	132,918	11,899	519,856
2035	14,262	5,001	450	19,713	383,900	138,797	12,490	535,187
2036	14,601	5,210	470	20,281	392,969	144,936	13,111	551,017
2037	14,948	5,428	492	20,867	402,253	151,347	13,763	567,363
2038	15,303	5,655	514	21,472	411,756	158,042	14,448	584,245
2039	15,666	5,891	537	22,095	421,483	165,033	15,166	601,682
2040	16,038	6,138	561	22,738	431,440	172,333	15,920	619,693
2041	16,419	6,395	587	23,401	441,633	179,956	16,712	638,300
2042	16,809	6,662	614	24,085	452,066	187,916	17,542	657,524
2043	17,208	6,941	641	24,790	462,746	196,228	18,415	677,388
2044	17,617	7,231	670	25,518	473,678	204,908	19,330	697,916
2045	18,035	7,533	701	26,270	484,868	213,971	20,291	719,131
2046	18,464	7,849	732	27,045	496,323	223,436	21,300	741,059

TABLE 4.2.7-2 TOTAL TRAFFIC VOLUME AND TOTAL VEHICLE KM (CLLEX PHASE-1, 2LANE)

Unit: Veh/Day

 Total Traffic Volume Enter to CLLEx

 Class 1
 8,427

 Class 2
 2,576

 Class 3
 219

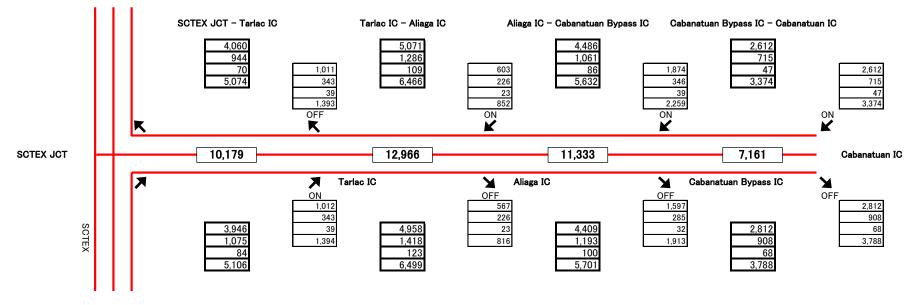

Class 3	219
Total	11,222

FIGURE 4.2.7-1 TRAFFIC PROJECTION (YEAR 2017) OF CLLEX (PHASE-1) 2-LANE CASE

Unit: Veh/Day

Total Traffic Volume Enter to CLLEx

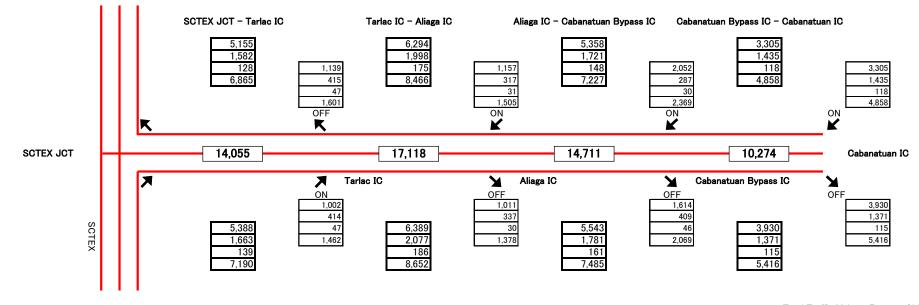

Class 1	10,030
Class 2	2,705
Class 3	232
Total	12,966

FIGURE 4.2.7-2 TRAFFIC PROJECTION (YEAR 2020) OF CLLEX (PHASE-1) 2-LANE CASE

Unit: Veh/Day

Total Traffic Volume Enter to CLLEx

Class 1	12,683
Class 2	4,074
Class 3	361
Total	17,118

FIGURE 4.2.7-3 TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-1) 2-LANE CASE

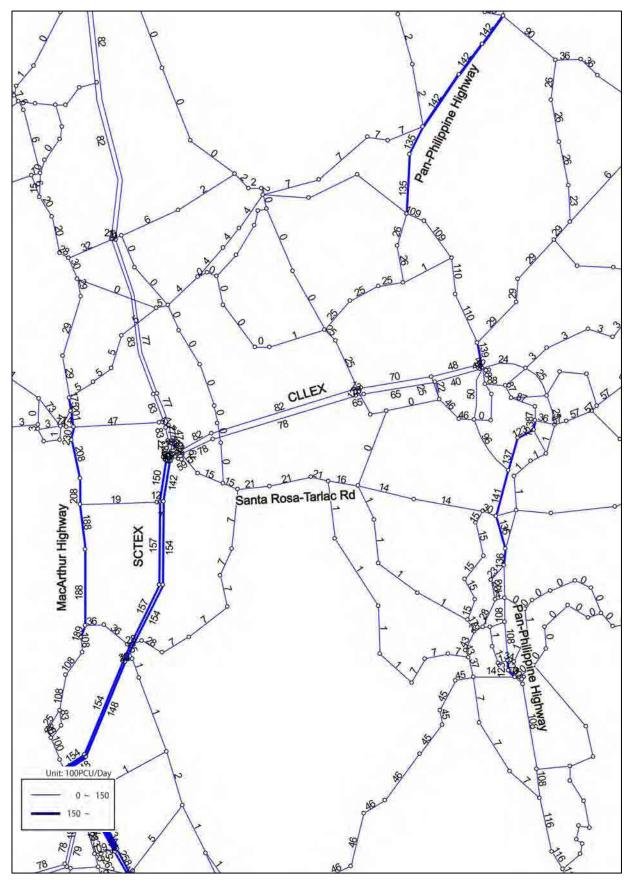


FIGURE 4.2.7-4 RESULT OF TRAFFIC ASSIGNMENT IN YEAR 2017 (PHASE-1, 2-LANE)

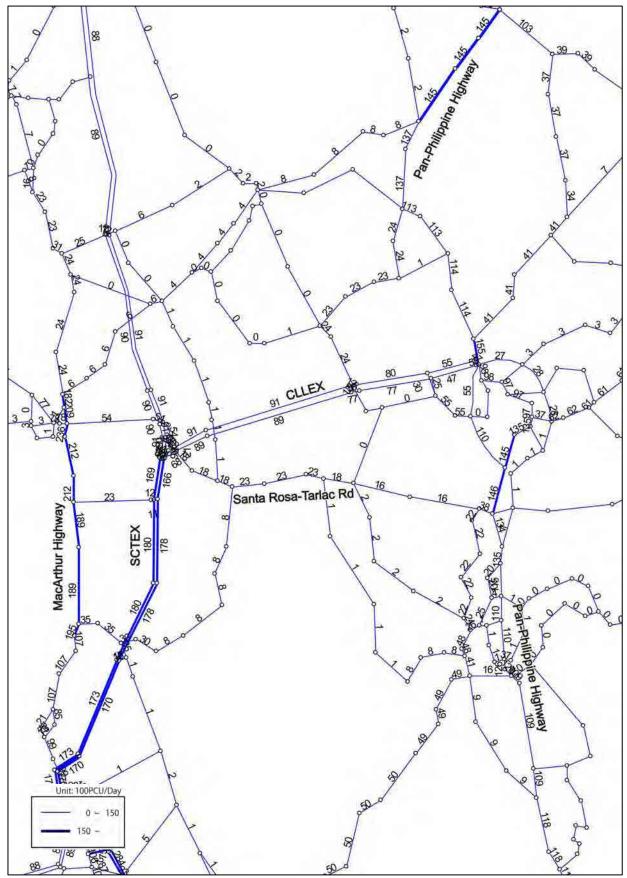


FIGURE 4.2.7-5 RESULT OF TRAFFIC ASSIGNMENT IN YEAR 2020 (PHASE-1, 2-LANE)

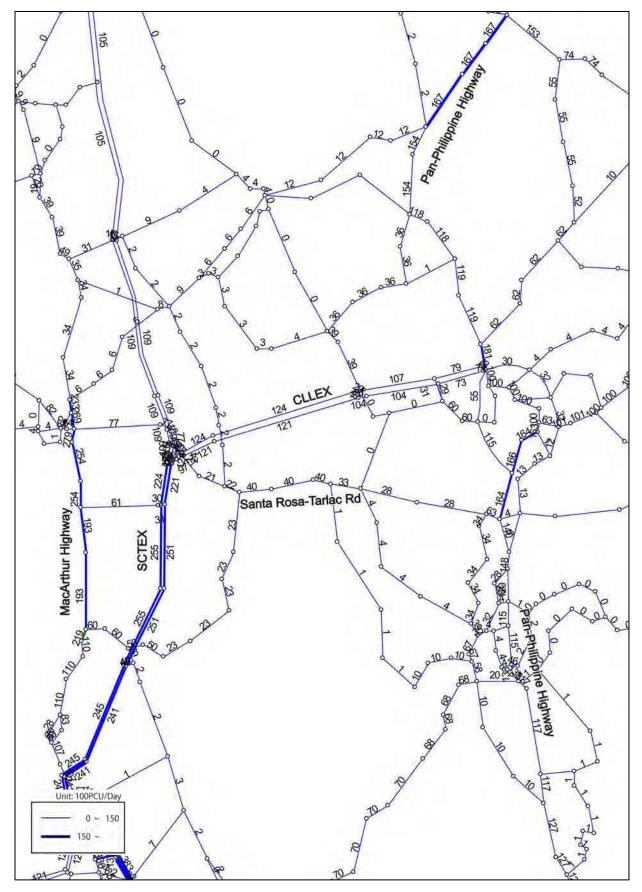


FIGURE 4.2.7-6 RESULT OF TRAFFIC ASSIGNMENT IN YEAR 2030 (PHASE-1, 2-LANE)

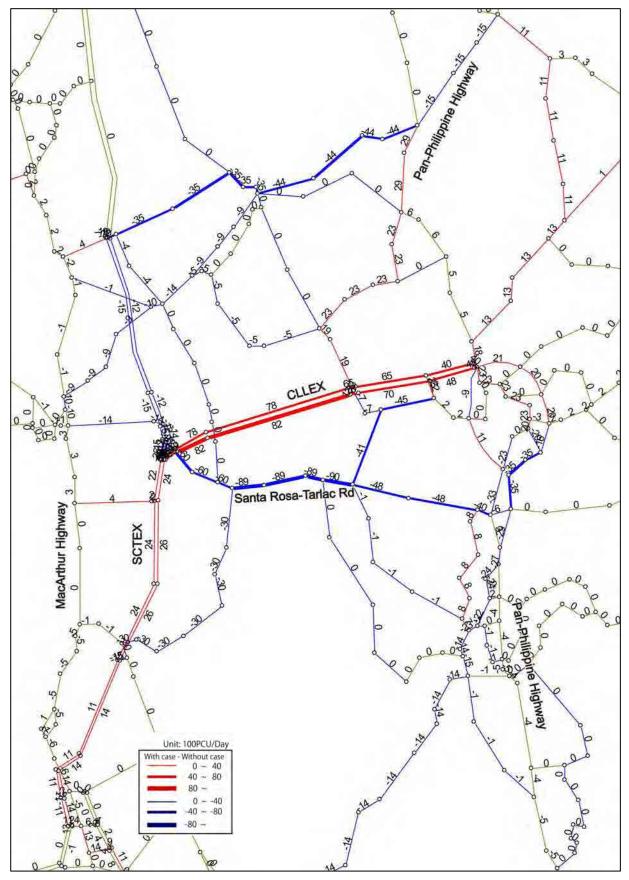


FIGURE 4.2.7-7 COMPARISON OF WITH CASE AND WITHOUT CASE IN YEAR 2017 (PHASE-1, 2-LANE)

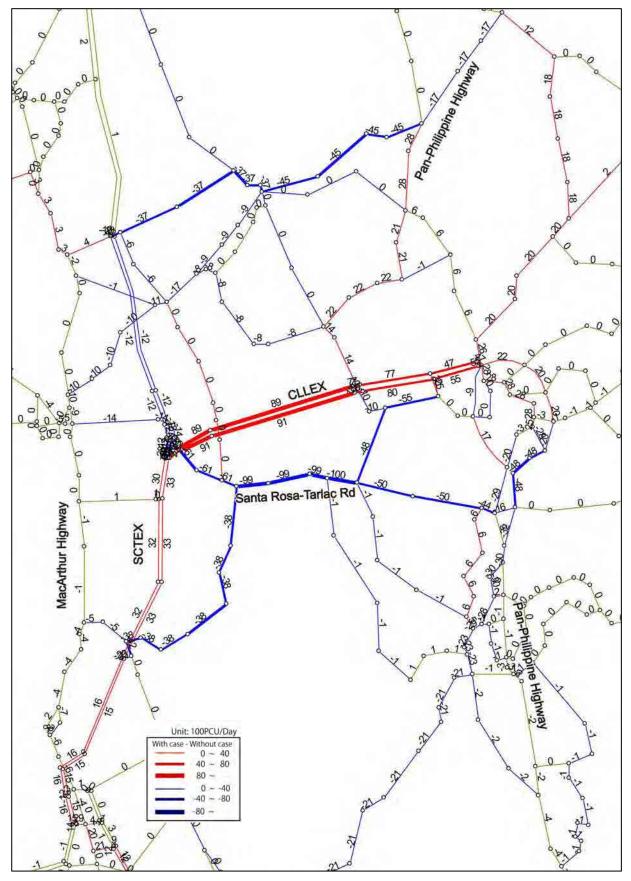


FIGURE 4.2.7-8 COMPARISON OF WITH CASE AND WITHOUT CASE IN YEAR 2020 (PHASE-1, 2-LANE)

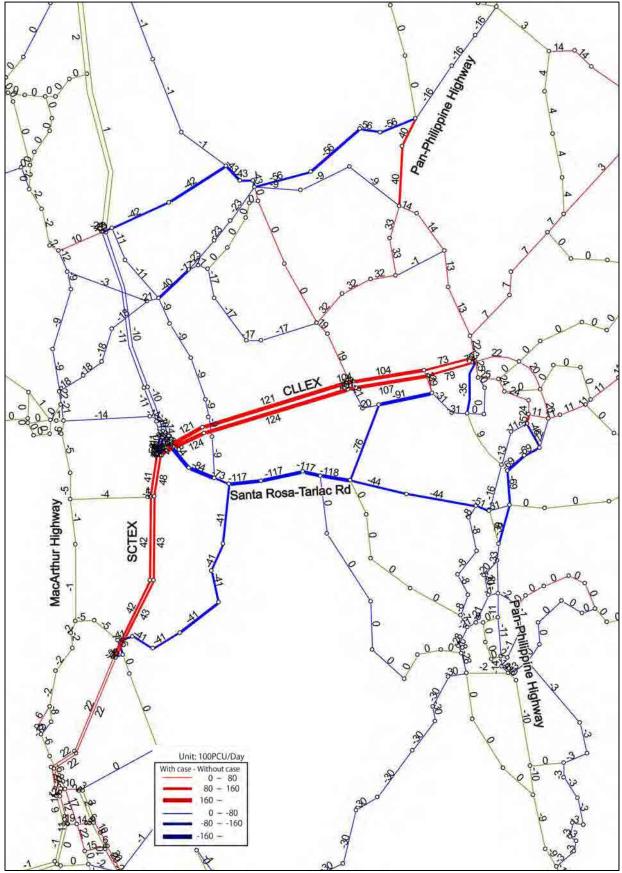


FIGURE 4.2.7-9 COMPARISON OF WITH CASE AND WITHOUT CASE IN YEAR 2030 (PHASE-1, 2-LANE)

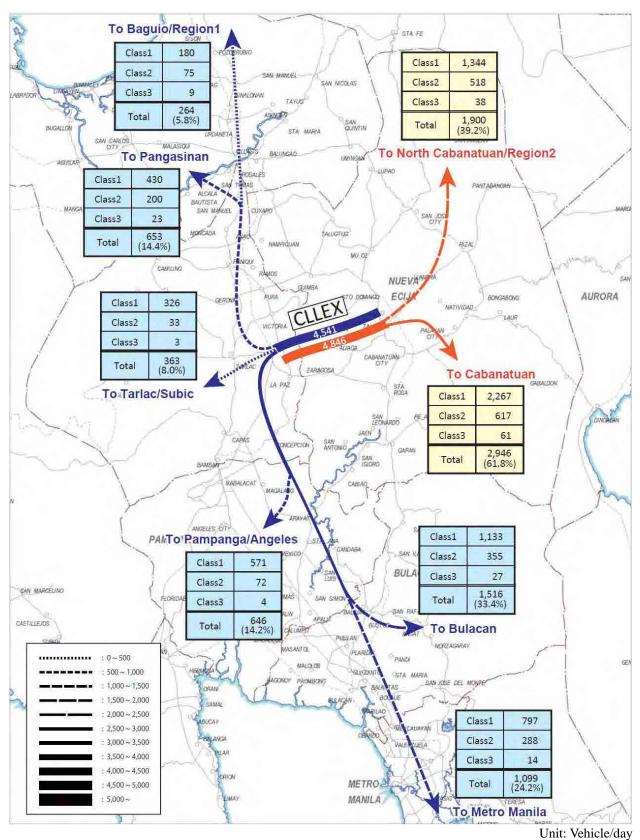
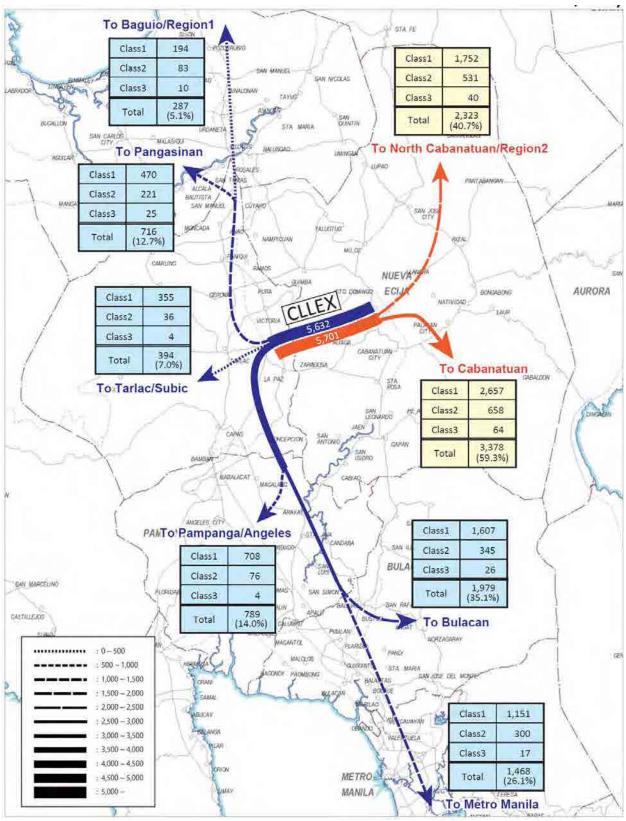
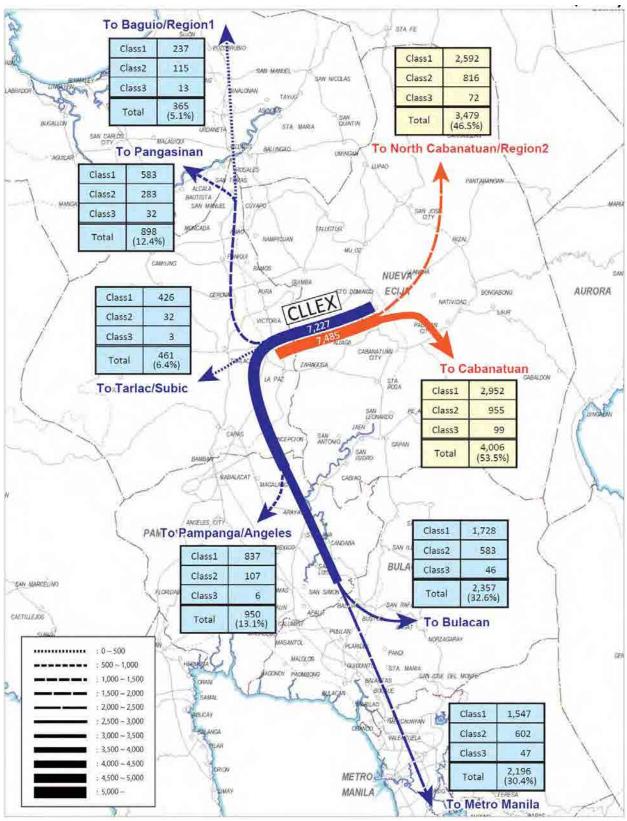




FIGURE 4.2.7-10 TRAFFIC VOLUME OF CLLEX DESTINATION (YEAR 2017) (PHASE 1, 2 LANES)

Unit: Vehicle/day

FIGURE 4.2.7-11 TRAFFIC VOLUME OF CLLEX DESTINATION (YEAR 2020) (PHASE 1, 2 LANES)

Unit: Vehicle/day

FIGURE 4.2.7-12 TRAFFIC VOLUME OF CLLEX DESTINATION (YEAR 2030) (PHASE 1, 2 LANES)

2) Case-2 CLLEX (Phase-1) 4 lane

Figures 4.2.7-13 to 4.2.7-15 shows the estimated traffic volume of CLLEX (Phase-1).

• Traffic assignment of CLLEX (Phase-1) 4lane case is a little higher than that of 2lane case. Traffic volume between Tarlac IC and Aliaga IC are 12,630 (vehicle/day) in year 2017, 14,255 (vehicle/day) in year 2020 and 20,177 (vehicle/day) in year 2030.

Table 4.2.7-3 shows the total traffic volume to enter CLLEX (Phase-1) and total vehicle km of CLLEX(Phase-1).

3) Case-3 CLLEX (Phase-2) 2 lane

Traffic assignment of CLLEX (Phase-2) was estimated based on the assumption of CLLEX (Phase-1) also 2-lane.

Figures 4.2.7-16 to 4.2.7-18 shows the estimated traffic volume of CLLEX (Phase-2).

• Traffic assignment of CLLEX (Phase-2) case is lower than phase-1 traffic. Traffic volume between Cabanatuan IC and Llanera IC are 7,402(vehicle/day) in year 2017, 8,402 (vehicle/day) in year 2020 and 12,984 (vehicle/day) in year 2030.

Figures 4.2.7-19 to 4.2.7-21 shows the number of traffic CLLEX (Phase-1) destination.

Table 4.2.7-4 shows the total traffic volume to enter CLLEX (Phase-2) and total vehicle km of CLLEX (Phase-2).

		Traffic Volume			L VEINCEE	Total vehicle*km			
Year	Class1	Class2	Class3	Total	Class1	Class2	Class3	Total	
2017	9,502	2,886	241	12,629	256,672	78,158	6,321	341,151	
2018	9,967	2,933	246	13,147	267,212	79,654	6,489	353,355	
2019	10,455	2,981	252	13,688	278,185	81,179	6,660	366,025	
2020	10,967	3,030	257	14,254	289,609	82,733	6,837	379,179	
2021	11,349	3,141	267	14,758	299,881	85,845	7,134	392,859	
2022	11,745	3,257	278	15,280	310,517	89,073	7,443	407,034	
2023	12,155	3,376	289	15,820	321,530	92,423	7,767	421,720	
2024	12,578	3,500	301	16,379	332,934	95,899	8,104	436,937	
2025	13,017	3,629	313	16,959	344,743	99,506	8,455	452,704	
2026	13,471	3,762	325	17,558	356,970	103,249	8,822	469,041	
2027	13,940	3,900	339	18,179	369,631	107,132	9,205	485,968	
2028	14,426	4,044	352	18,822	382,741	111,161	9,605	503,507	
2029	14,929	4,192	366	19,488	396,316	115,342	10,022	521,680	
2030	15,450	4,346	381	20,177	410,372	119,680	10,457	540,509	
2031	15,989	4,506	396	20,891	424,927	124,181	10,911	560,019	
2032	16,546	4,671	412	21,629	439,998	128,852	11,385	580,234	
2033	17,123	4,843	429	22,394	455,604	133,698	11,879	601,180	
2034	17,720	5,021	446	23,187	471,763	138,726	12,394	622,884	
2035	18,338	5,205	464	24,007	488,495	143,944	12,932	645,372	
2036	18,977	5,396	483	24,856	505,821	149,358	13,494	668,673	
2037	19,639	5,594	502	25,735	523,762	154,975	14,079	692,816	
2038	20,324	5,800	522	26,645	542,338	160,804	14,691	717,833	
2039	21,032	6,013	543	27,588	561,574	166,851	15,328	743,754	
2040	21,766	6,234	565	28,564	581,492	173,127	15,994	770,612	
2041	22,524	6,463	588	29,574	602,116	179,638	16,688	798,442	
2042	23,310	6,700	611	30,621	623,471	186,394	17,412	827,278	
2043	24,122	6,946	636	31,704	645,584	193,405	18,168	857,157	
2044	24,963	7,201	661	32,826	668,482	200,679	18,957	888,118	
2045	25,834	7,466	688	33,987	692,191	208,226	19,780	920,198	
2046	26,735	7,740	715	35,190	716,742	216,058	20,638	953,438	

TABLE 4.2.7-3 TOTAL TRAFFIC VOLUME AND TOTAL VEHICLE KM (CLLEX PHASE-1, 4-LANE)

Unit: Veh/Day

12,630

Total

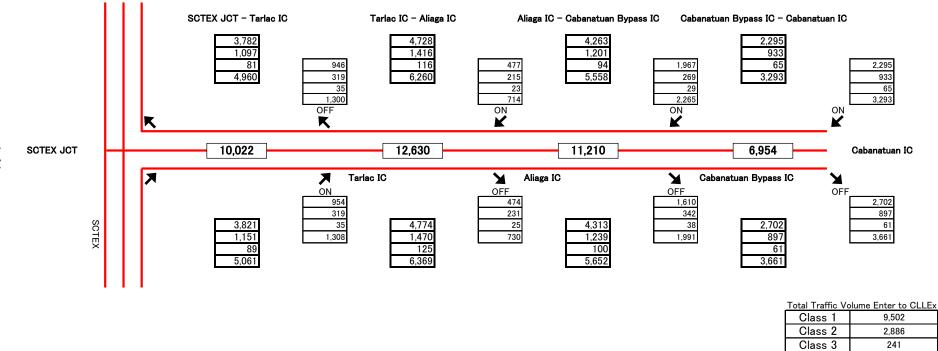
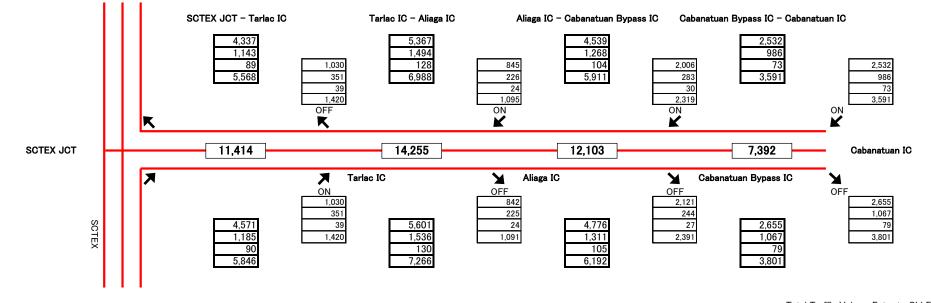
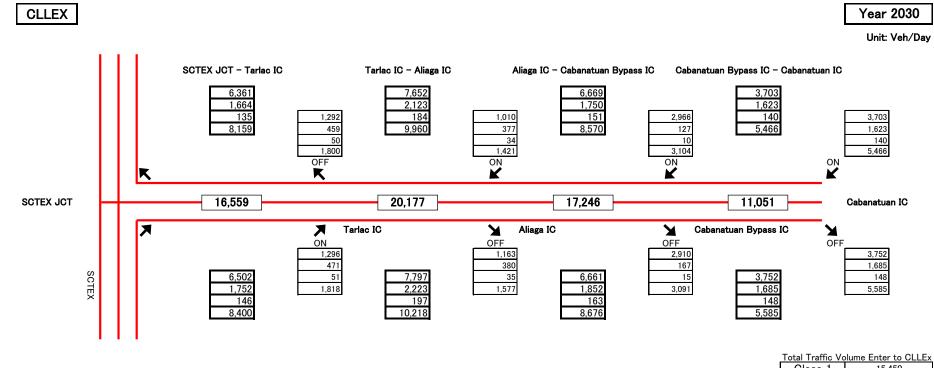



FIGURE 4.2.7-13 TRAFFIC PROJECTION (YEAR 2017) OF CLLEX (PHASE-1) 4-LANE CASE

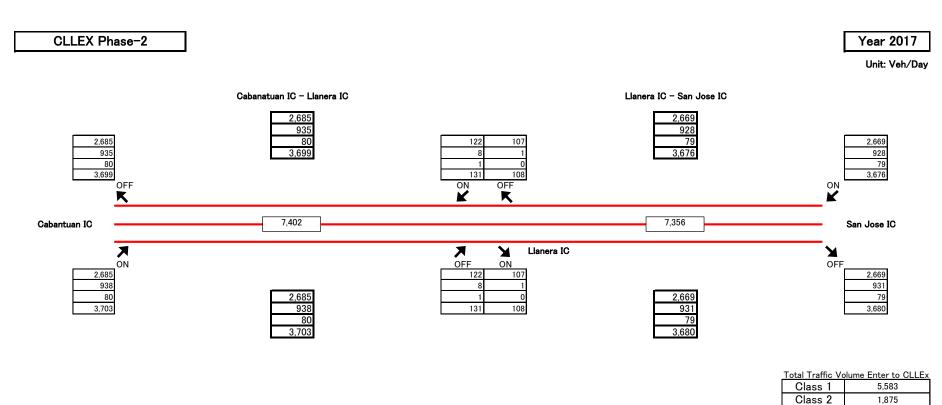
Unit: Veh/Day


Iotal Traffic Volume Enter to CLLEx					
10,967					
3,030					
257					

14,255

Total

FIGURE 4.2.7-14 TRAFFIC PROJECTION (YEAR 2020) OF CLLEX (PHASE-1) 4-LANE CASE



Total Traffic Volume Enter to OLLER					
Class 1	15,450				
Class 2	4,346				
Class 3	381				
Total	20,177				

FIGURE 4.2.7-15 TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-1) 4-LANE CASE

Voor		Traffic Volum			Total vehicle*km			
Year	Class1	Class2	Class3	Total	Class1	Class2	Class3	Total
2017	5,583	1,875	159	7,617	190,890	66,585	5,667	263,142
2018	5,865	1,915	163	7,944	200,733	68,020	5,793	274,547
2019	6,162	1,957	166	8,285	211,084	69,487	5,922	286,493
2020	6,474	1,999	170	8,643	221,968	70,985	6,054	299,007
2021	6,769	2,077	177	9,023	232,266	73,744	6,302	312,312
2022	7,077	2,158	184	9,419	243,042	76,609	6,561	326,213
2023	7,399	2,242	192	9,833	254,318	79,587	6,830	340,735
2024	7,736	2,329	200	10,265	266,117	82,680	7,111	355,907
2025	8,088	2,420	208	10,716	278,464	85,893	7,402	371,759
2026	8,457	2,514	217	11,187	291,383	89,231	7,706	388,320
2027	8,842	2,612	226	11,679	304,902	92,698	8,022	405,622
2028	9,244	2,714	235	12,193	319,048	96,301	8,352	423,700
2029	9,665	2,819	245	12,729	333,850	100,043	8,694	442,587
2030	10,105	2,929	255	13,289	349,339	103,931	9,051	462,321
2031	10,565	3,043	266	13,874	365,547	107,970	9,422	482,939
2032	11,046	3,162	277	14,484	382,506	112,166	9,809	504,481
2033	11,549	3,285	288	15,122	400,253	116,525	10,212	526,989
2034	12,075	3,413	300	15,787	418,822	121,053	10,631	550,506
2035	12,625	3,545	312	16,482	438,254	125,758	11,067	575,078
2036	13,199	3,684	325	17,208	458,586	130,645	11,521	600,752
2037	13,800	3,827	339	17,966	479,862	135,722	11,994	627,578
2038	14,429	3,976	353	18,757	502,126	140,996	12,486	655,608
2039	15,086	4,131	367	19,584	525,422	146,476	12,998	684,896
2040	15,772	4,292	383	20,447	549,799	152,168	13,532	715,499
2041	16,491	4,459	398	21,348	575,307	158,082	14,087	747,475
2042	17,241	4,632	415	22,289	601,998	164,225	14,665	780,888
2043	18,026	4,813	432	23,271	629,928	170,607	15,267	815,802
2044	18,847	5,000	450	24,297	659,153	177,237	15,893	852,284
2045	19,705	5,195	468	25,369	689,735	184,125	16,545	890,405
2046	20,602	5,397	488	26,487	721,735	191,281	17,224	930,240

TABLE 4.2.7-4 TOTAL TRAFFIC VOLUME AND TOTAL VEHICLE KM (CLLEX PHASE-2, 2-LANE)

FIGURE 4.2.7-16 TRAFFIC PROJECTION (YEAR 2017) OF CLLEX (PHASE-2) 2-LANE CASE

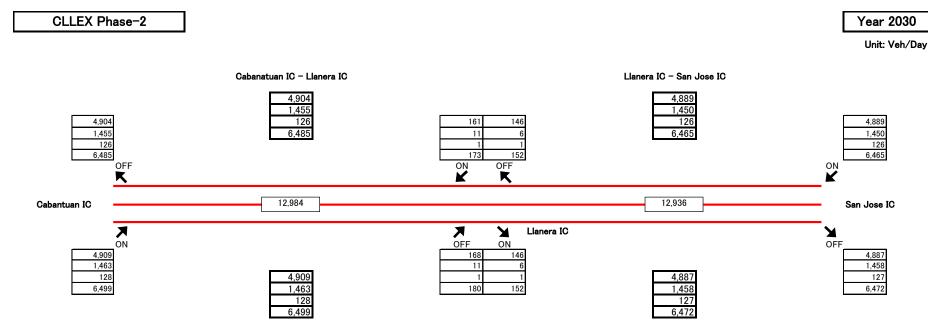
Class 3

Total

159 7,618

2-LANE

CLLEX Phase-2 Year 2020 Unit: Veh/Day Cabanatuan IC – Llanera IC Llanera IC – San Jose IC 3,120 3,105 999 991 84 3,120 85 132 117 3,105 4,204 4,180 999 8 991 84 85 0FF 4,204 141 4,180 ON K on K OFF K 8,408 8,360 Cabantuan IC San Jose IC N ON **≯** OFF کے OFF X Llanera IC ON 3,120 132 117 3,105 999 8 991 85 3,120 3,105 84 999 85 4,204 991 84 4,204 141 118 4,180 4,180 Total Traffic Volume Enter to CLLEx Class 1 6,474 Class 2 1,999


FIGURE 4.2.7-17 TRAFFIC PROJECTION (YEAR 2020) OF CLLEX (PHASE-2) 2-LANE CASE

Class 3

Total

170 8,643

2-LANE

Total Traffic	Total Traffic Volume Enter to CLLE				
Class 1	10,105				
Class 2	2,929				
Class 3	255				
Total	13,289				

FIGURE 4.2.7-18 TRAFFIC PROJECTION (YEAR 2030) OF CLLEX (PHASE-2) 2-LANE CASE

2-LANE

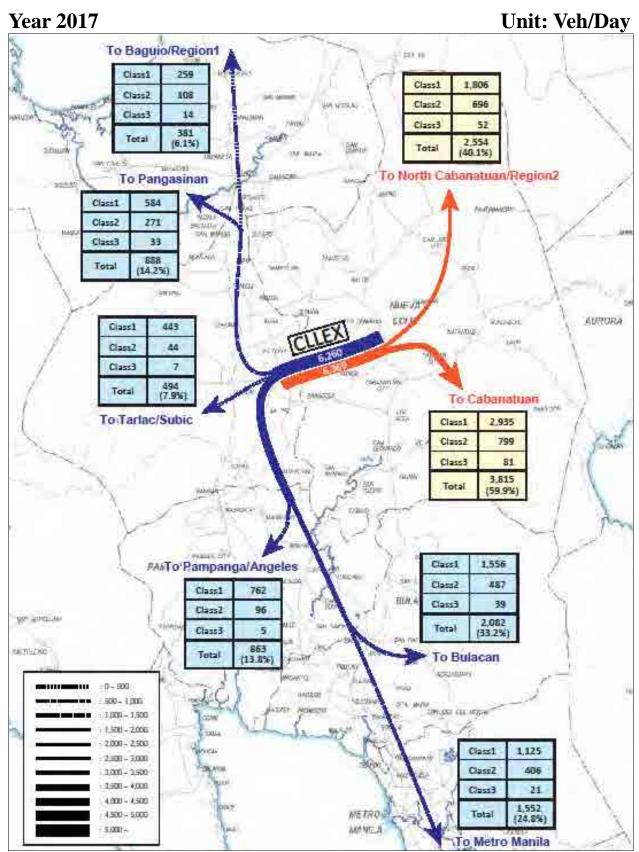


FIGURE 4.2.7-19 TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION (YEAR 2017) 4 LANES

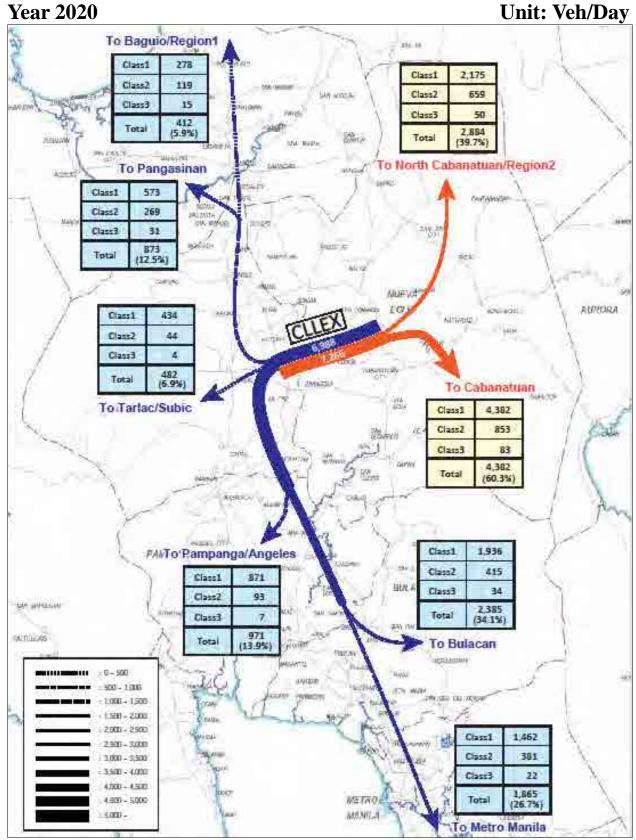


FIGURE 4.2.7-20 TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION (YEAR 2020) 4 LANES

Unit: Veh/Day

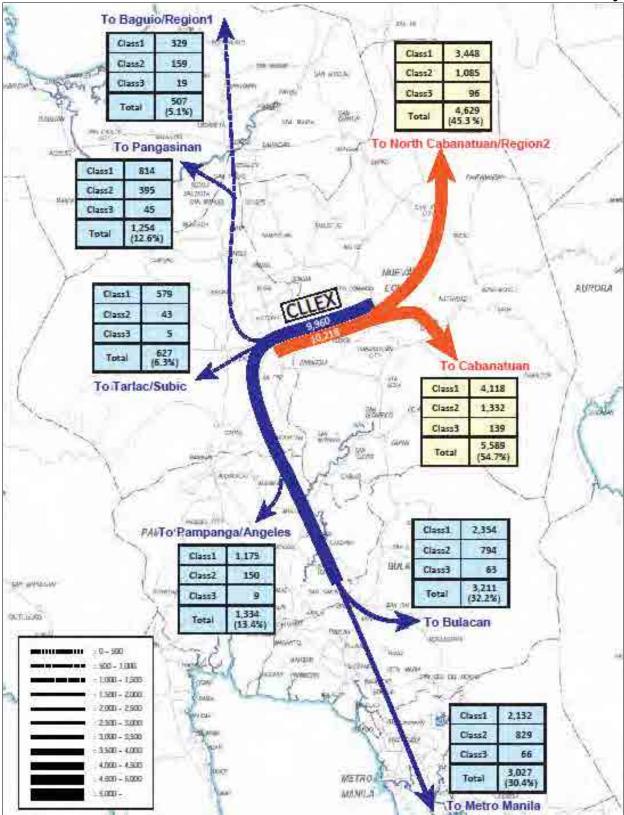


FIGURE 4.2.7-21 TRAFFIC FLOW OF CLLEX PHASE-1 BY DESTINATION (YEAR 2030) 4 LANES

CHAPTER 5 REVIEW OF 2010 FEASIBILITY STUDY

5.1 NECESSITY OF THE PROJECT

1) Traffic Congestion on Pan Philippine Highway

Eastern areas of Region III and whole Region II are served by Pan Philippine Highway, which passes through urban areas at 5-10 km interval. Urban sections of Pan Philippine Highway suffer chronic traffic congestions due to sharp increase of local traffic such as jeepneys and tricycles, and travel speed becomes less than 20 km/hr.

With the completion of SCTEx, some traffic of long distance trips, such as between Metro Manila and Cabanatuan City or Region II, are already diverting to the route of NLEx-SCTEx-Tarlac-Sta. Rosa Road from Pan Philippine Highway. When Tarlac-Sta. Rosa Road is replaced by CLLEx, more traffic will be diverted to this route from Pan Philippine Highway, thus traffic congestion of Pan Philippine Highway will be mitigated.

2) Need of Strengthening of Lateral (East-West) Road Network

Figure 5.1-1 shows the distribution of population in Region III and road network. For northsouth direction, traffic is served by NLEx-SCTEx-TPLEx, Manila North Road and Pan Philippine Highway along which major urban centers are distributed. However, road network in the east-west direction is still weak and needs to be strengthened, thereby socio-economic interaction in that direction is stimulated and overall socio-economic activities will be activated for socio-economic development of the Region and the country as a whole.

3) Need to Develop Regional Growth Pole Cities

Overconcentration of socio-economic activities in Metro Manila has been one of the critical issues of the country. To mitigate such conditions, Regional Gorwth Pole Cities must be developed, so that socio-economic activities of Metro Manila can be shared with such Regional Growth Pole Cities as Tarlac City and Cabanatuan City.

4) Need to Develop Impoverish Area

Pacific Ocean Coastal area in Region III is one of the impoverished areas of the country. Cabanatuan City is the base city (or hub city) for the development of Pacific Ocean Coastal area. If accessibility to Cabanatuan City is improved, the impact will be extended to Pacific Ocean Coastal area.

5) Need to Develop Integrated Multi-modal Logistics/Transport System

In order to achieve faster, safer, more cost effective and reliable logistics/transport system, an expressway network development in the Region is vitally needed.

Approach sections of Rio Chico River Bridge along Tarlac-Sta. Rosa Road which is currently an important to provide transport services in the east-west direction is often flooded and traffic is interrupted. More reliable transport facility is needed.

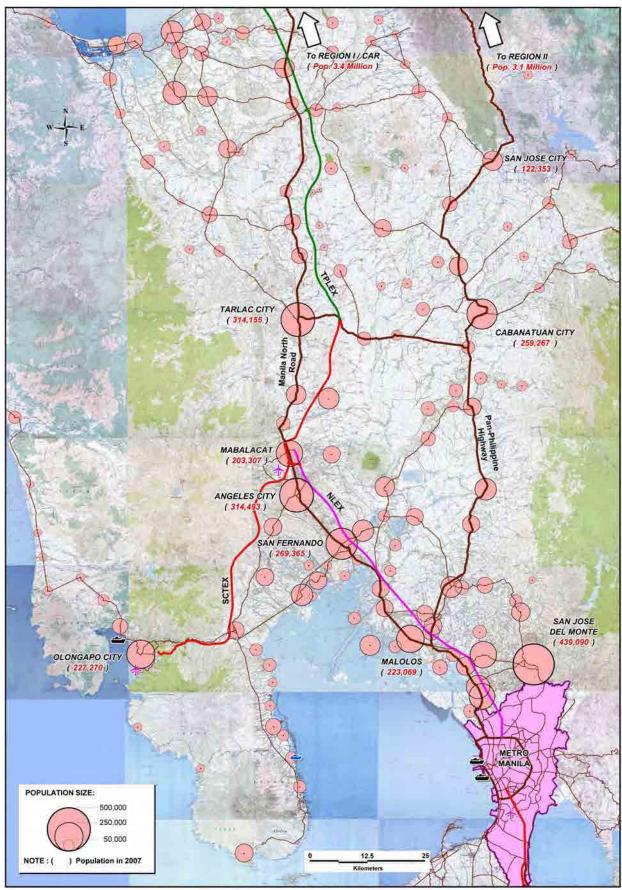


FIGURE 5.1-1 DISTRIBUTION OF POPULATION IN REGION 3 AND ROAD NETWORK

5.2 TECHNICAL ISSUES

5.2.1 Summary of Technical Issues

After thorough review of 2010 FS, the following technical issues were identified (see **Figure 5.2.1-1**);

TECHNICAL ISSUES

- How to connect with SCTEx or TPLEx
- Needs additional interchange at Aliaga Municipality
- Cabanatuan IC location and how to attract more traffic from/to Cabanatuan City
- Appropriate Location of Alignment in the Flood-prone Area
- Toll Collection System
- Need to Study Stage Construction

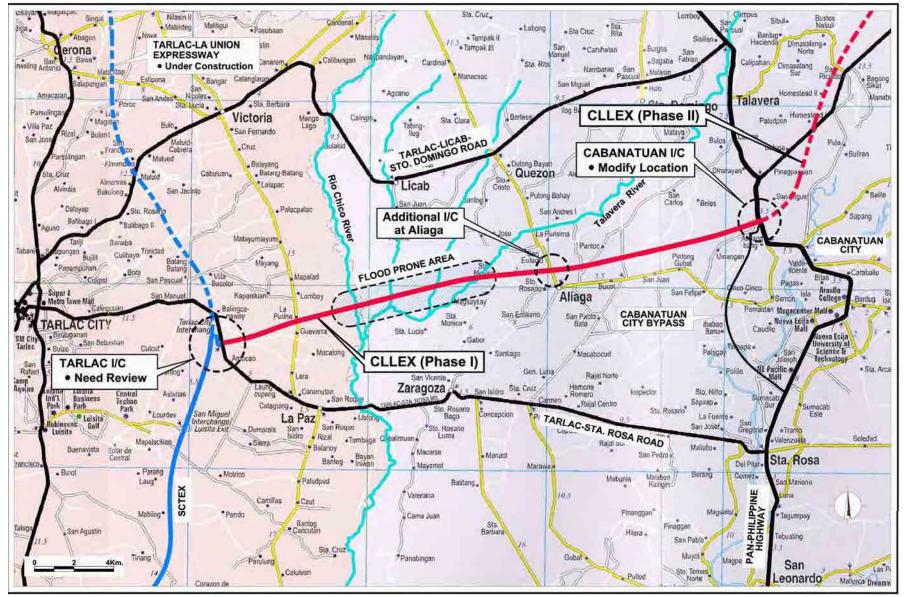


FIGURE 5.2.1-1 TECHNICAL ISSUES OF CLLEX PHASE I

5.2.2 How to connect with SCTEx or TPLEx

2010 FS proposed that CLLEx is to be connected with the existing SCTEx Tarlac Interchange exit/entrance, thus, CLLEx is not directly connected with SCTEx, but is connected via the national road of Tarlac – Sta. Rosa Road. Another new development is that the type of Tarlac Interchange was changed. According to the latest plan of SCTEx and TPLEx, Tarlac Interchange is a half interchange at CLEx and another half interchange at TPLEx as shown in **Figure 5.2.2-1**.

To maintain efficient traffic flow on the expressways, two expressways should be directly connected, but not via national or provincial road. Three (3) alternative connection options were studied (see **Table 5.2.2-1**);

	ALILI	Contection rout	
Alternative-1	:	2010 FS Option Proposed by 2010 FS	
Alternative-2	:	Direct connection with SCTEx	
Alternative-3	:	Direct connection with TPLEx	

ALTERNATIVES OF CONNECTION POINT

Traffic volume attracted to CLLEx is about 11,000 veh./day in the proposed opening year of 2017 and approximately composed of the following;

•	Traffic between Manila side and Cabanatuan City	:	70%
•	Traffic between Pangasinan side and Cabanatuan City	:	20%
•	Traffic between Tarlac side and Cabanatuan City	:	10%

As shown above, traffic between Manila side and Cabanatuan City is predominant. Connection point between CLLEx and SCTEx/TPLEx should be selected giving primary consideration of traffic between Manila side and Cabanatuan City.

Evaluation of 3 alternatives is shown in **Table 5.2.2-2**, and Alternative-2 (connected with SCTEx) was recommended due to the following reasons;

- Alternative-2 provides direct connection between 2 expressways.
- Most preferred alternative for traffic between Manila side and Cabanatuan City, which is the predominant traffic flow.

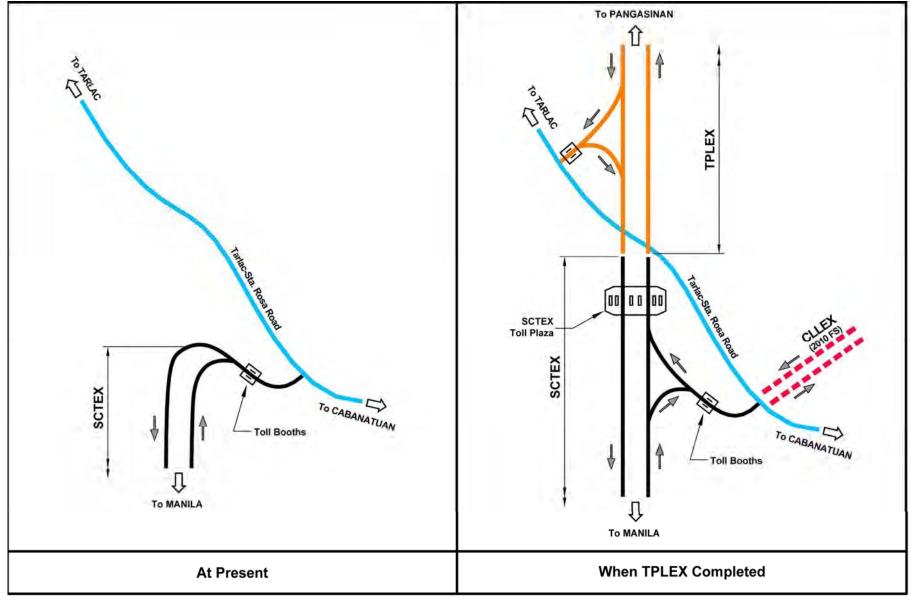
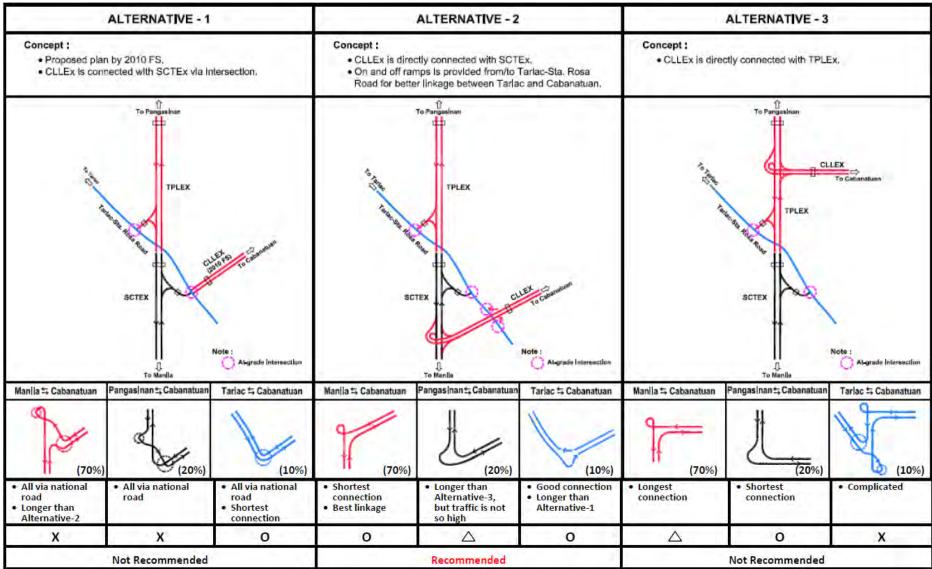



FIGURE 5.2.2-1 CONNECTION BETWEEN SCTEX AND TPLEX

5-6

TABLE 5.2.2-1 ALTERNATIVES OF CONNECTION BETWEEN CLLEX AND SCTEX/TPLEX

Traffic Between	Alternative-1	Alternative-2	Alternative-3
From Manila side to Cabanatuan City	 SCTEx off-ramp → Intersection with National Road → CLLEx (Travel distance is longer by 2 km than Alternative-2) Passes 2 toll booths (or 2 stops) 	 SCTEx -> CLLEx (Direct), <u>Shortest distance</u> Passes 1 toll booth (or 1 stop only) 	 TPLEx → CLLEx (Direct), Longer by 7.1 km than Alternative-2. Passes 2 toll booths (or 2 stops)
	X	0	$ \land$
From Cabanatuan City to Manila side	 CLLEx → National Road (2.2 km) → TPLEx IC Longer by 8.2 km. than Alternative-2. Passes 3 toll booths (or 3 stops) 	 CLLEx> SCTEx (Direct), shortest distance. Passes 1 toll booth (or 1 stop only) 	 CLLEx
	Х	0	\bigtriangleup
From Pangasinan side to Cabanatuan City	 TPLEx off-ramp → National Road (2.2 km.) → CLLEx. Passes 2 toll booths (or 2 stops) X 	 TPLEx → SCTEx → CLLEx (Direct), Longer by 7.1km than Alternative-3. 	 TPLEx → CLLEx (Direct), Shortest Passes 1 toll booth (or only 1 stop)
From Cabanatuan City to Pangasinan side	 CLLEx → Intersection with National Road → TPLEx Passes 2 toll booths (or 2 stops) 	 CLLEx	 CLLEx
Energy Textee side to Coloration City	X		
From Tarlac side to Cabanatuan City	 National Road → CLLEx Passes 1 toll booths (or 1 stop only) 	 National Road> CLLEx Passes 1 toll booth (or 1 stop only) 	 National Road → SCTEx → TPLEx → CLLEx Passes 2 toll booths (or 2 stops)
	0	0	X
From Cabanatuan City to Tarlac side	 CLLEx> National Road Passes 1 toll booths (or 1 stop only) 	 CLLEx> National Road Passes 1 toll booth (or 1 stop only) 	 CLLEx → TPLEx → National Road Passes 2 toll booths (or 2 stops) X
Overall Evaluation	X Not Recommended	Recommended	\triangle Not Recommended

TABLE 5.2.2-2 EVALUATION OF ALTERNATIVES

5.2.3 Needs of Additional Interchange at Aliaga Municipality

2010 FS proposed no interchange between Tarlac and Cabanatuan City for the extension of 28 km. In Japan, the longest interval of interchanges is set at 15 to 25 kms. as follows;

- Maximum Interval : 30 km
- Standard Interval
 - Mega City, Major Industrial Area : 5 ~ 10 km
 - Rural Area with Small to Medium Cities : 15 ~ 25 km
 - Rural Area and Mountainous Area : 20 ~ 30 km

An interval of 28 km is too long and additional exits should be needed during emergency cases.

There is also strong request from the Municipal Government of Aliaga to provide an interchange within the municipality.

In view of the above, it is necessary to add an interchange in the Municipality of Aliaga. Urbanization condition of Aliaga town proper and its vicinity is shown in **Figure 5.2.3-1**. Aliaga Town Proper is traversed by Quezon-Aliaga-Cabanatuan Road. New development site is being developed at the north-west area of Aliaga Town Proper, the Health Center was already built and Aliaga Trading Center and Bus Terminal are currently under construction. CLLEx passes northern periphery of Aliaga Town Proper. Location of Aliaga Interchange was so selected that it is not so far from Aliaga Town Proper and efficient access can be provided to new development site.

Three (3) interchange alternatives were prepared for comparison as shown in **Table 5.2.3-1**, which also shows evaluation of alternatives. Alternative-2 was recommended due to the following reasons;

- It provides efficient access to New Development Site.
- Least construction cost.
- Although two houses are affected, it achieves the minimum ROW acquisition or land take.

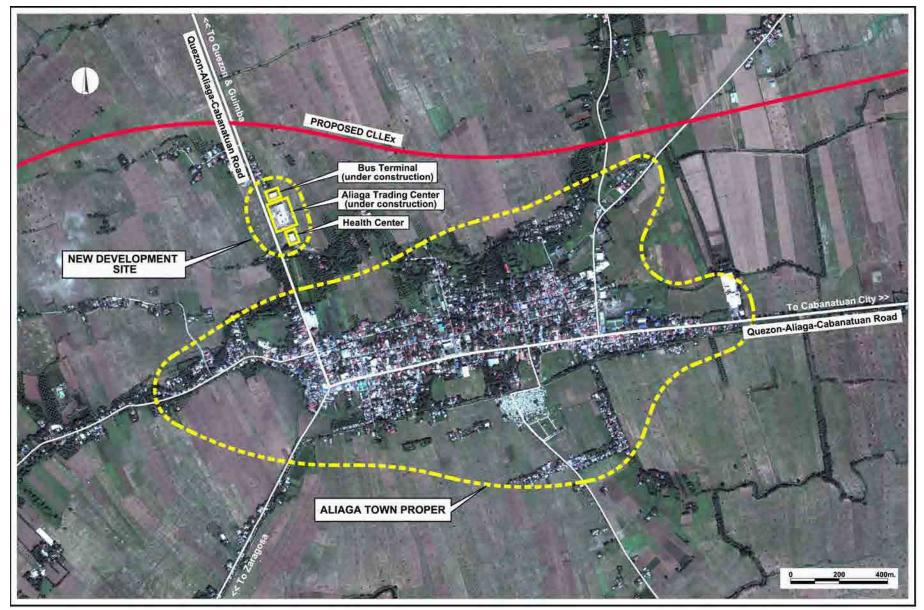


FIGURE 5.2.3-1 ALIAGA TOWN PROPER AND ITS VICINITY

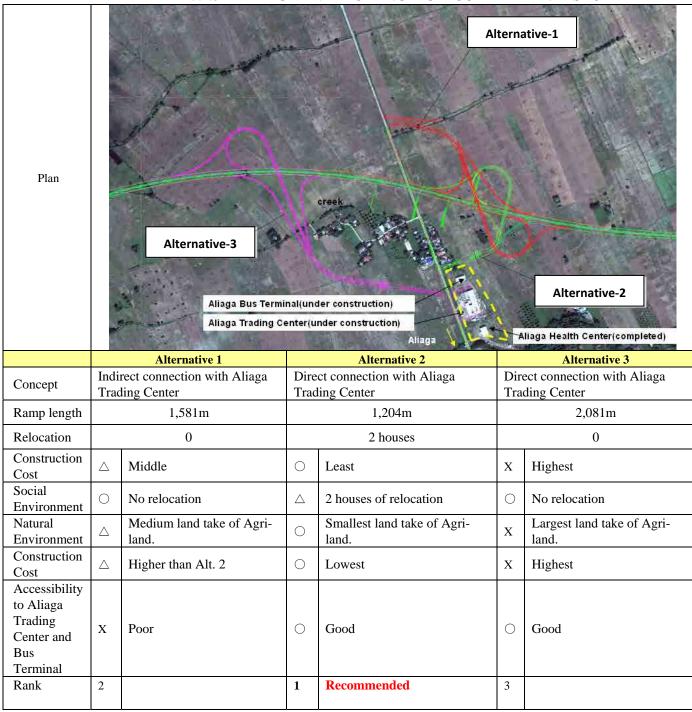


TABLE 5.2.3-1 ALIAGA INTERCHANGE OF COMPARATIVE STUDY

5.2.4 Cabanatuan IC Location and How to Attract More Traffic To/From Cabanatuan City

1) Cabanatuan IC Location

At the location of Cabanatuan Interchange proposed by 2010 FS, new church was built, thus IC location is required to be re-planned.

The Cabanatuan City Government recommended the following;

- CLLEx center line alignment be shifted to avoid affecting the new church.
- Interchange location be almost at the same location selected by 2010 FS.
- An alignment of the proposed Cabanatuan Ring Road will be selected by the City Government with due consideration of new interchange location.

2010 FS proposed two (2) stages development of the interchange for CLLEx Phase I and Phase II, and <u>ramps constructed during Phase I are proposed to be abandoned during Phase II.</u> The stage development of the interchange is necessary, however, it should be planned to avoid useless investment during Phase-II. Two alternatives were studied and evaluated as shown in **Table 5.2.4-1**. Alternative-2 was recommended, since it can avoid useless investment during Phase-I.

2) How to Attract More Traffic To/From Cabanatuan City

The only road traversing Cabanatuan City in the north-south direction is the Pan-Philippine Highway (or Daang Maharlika) which is heavily congested due to huge number of slow moving vehicles such as tricycles and jeepneys (see **Figure 5.2.4-1**). Travel speed on this road within Cabanatuan City is very slow with less than 15km/hour.

Cabanatuan IC of CLLEx is located at northern periphery of Cabanatuan City, which will attract traffic to/from northern area of Cabanatuan City. Traffic from southern area will rarely utilize Cabanatuan IC, thus some measures is required for traffic generated in southern areas of Cabanatuan City.

It is recommended that another half interchange (only on-ramp and off-ramp from/to southern Cabanatuan City) should be constructed. Traffic generated from southern Cabanatuan City will use City Bypass and Quezon-Aliaga-Cabanatuan Road to access to CLLEx. This Cabanatuan City Bypass Interchange is proposed to be located at about 4 km west of Cabanatuan City Bypass.

Plan	Phase I Phase I Preve Church (gestantChursch) New Church (gestanttch) New Church (Phase I Phase I Phase II			
0	Alternative 1	Alternative 2			
Concept	 Recommended by FS 2010 To construct interim ramp for Phase I and to construct trumpet type of IC for Phase II To demolish interim ramp when extension of Phase II is implemented. 	 To construct trumpet type of IC with stage development. Two ramps (in red color) is constructed at the initial stage. Remaining two ramps (in black color) is constructed when Phase II is implemented. 			
Road Length (Main)	+0m	+200m			
Ramp Length (Phase I)	820m	1.413m			
Relocation	Phase I: 3 houses, Phase II: 12 houses (including new church)	Phase I: 12 houses, Phase II: 0 house			
Social Environment	 Relocation of a new church is practically impossible. Relocation of 3 houses along interim ramps during Phase 1 becomes useless (unnecessary relocation is required). 	Unnecessary relocation can be avoided.			
Natural Environment	 Land acquired for the interim ramps during Phase I becomes useless during Phase II. (Unnecessary land take of agri-land.) 	Unnecessary ROW acquisition can be avoided.			
Traffic flow of expressway and ordinal road	 Phase I: 2 at-grade intersection required. Traffic flow is disturbed at these intersections. Phase II: 1 at-grade intersection required. 	 Phase I and II: 1 at-grade intersection. Traffic is less disturbed than Alternative-I. 			
Phase I Construction Cost	X • Phase I: Construction cost for interim ramps wasted since these are not used in Phase II.	 Unnecessary investment can be avoided. 			
Rank	2	1 Recommended			

TABLE 5.2.4-1 CABANATUAN INTERCHANGE COMPARATIVE STUDY

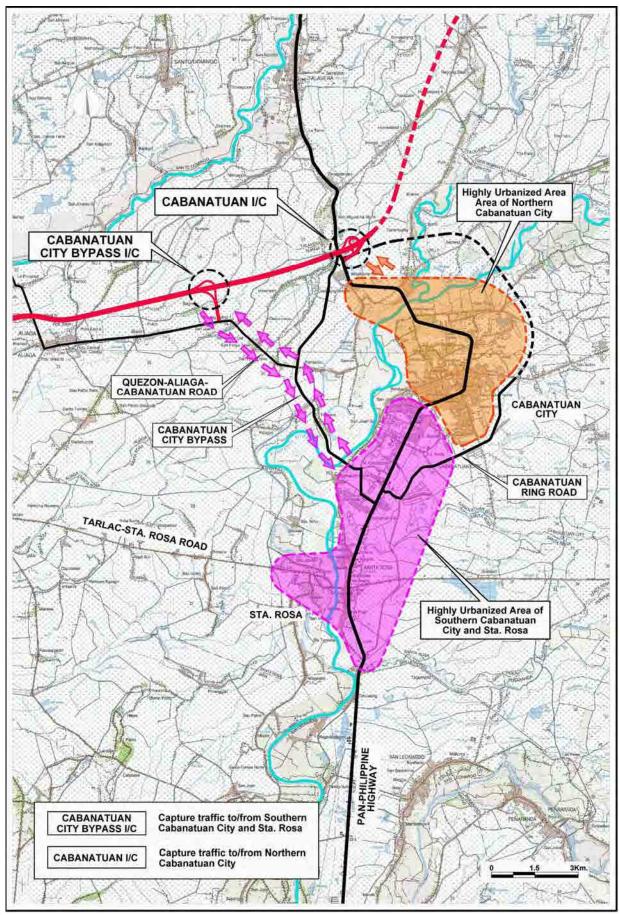
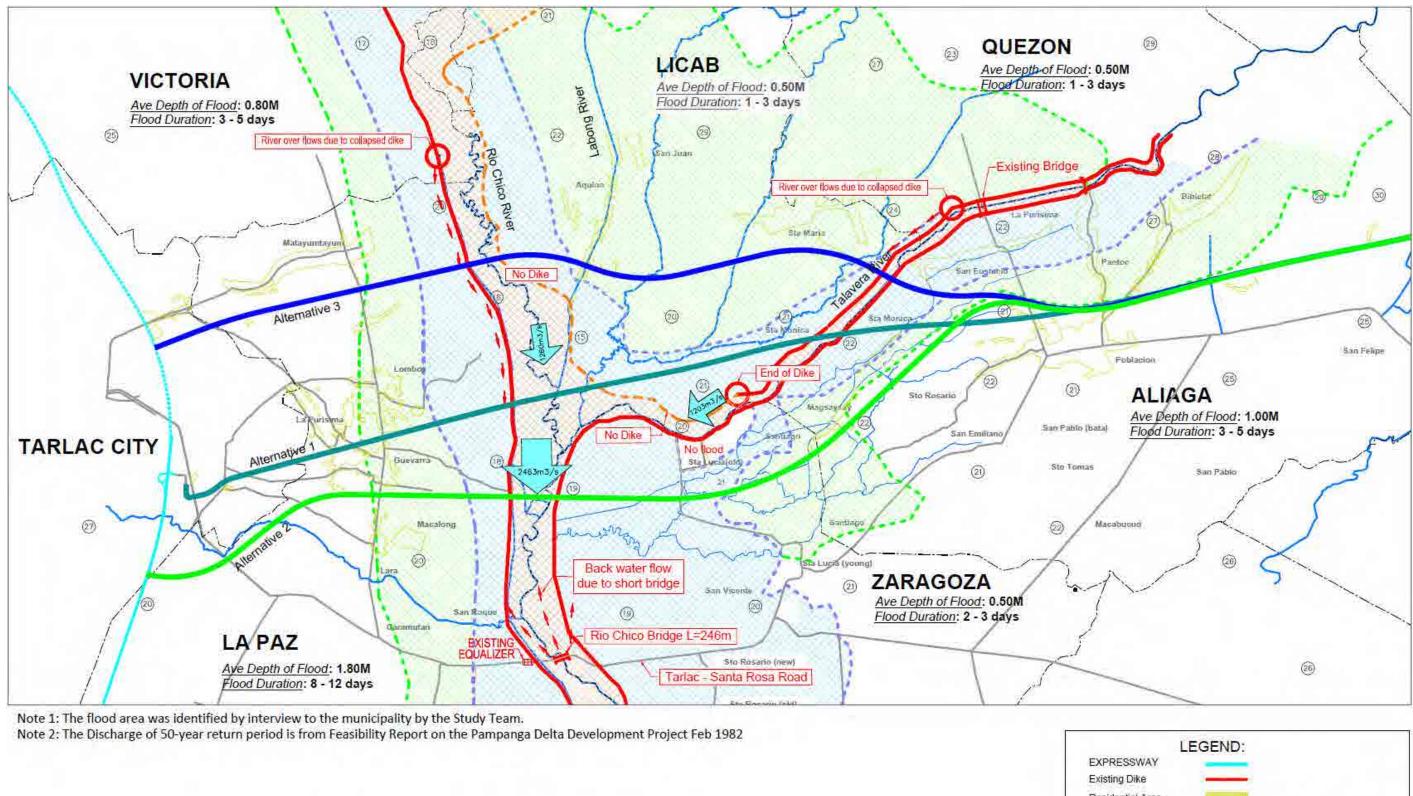


FIGURE 5.2.4-1 NEED OF CABANATUAN CITY BYPASS IC

5.2.5 Appropriate Location of Alignment in the Flood-prone Area


1) Condition of Flood-prone Area

The project has to traverse the flood-prone area. There are two (2) big rivers, namely Rio Chico River and Talavera River. There are other four (4) small rivers. All of these rivers join into one river, and then it is called as Rio Chico River (see **Figure 5.2.5-1**).

- Rio Chico River has a west bank but no east bank at the up-stream side of the confluence point. West bank has damage at the upstream side and the river water flows outside the bank when medium to heavy rainfall occurs.
- The downstream side of Rio Chico River from the confluence point has both west and east banks.
- Talavera River has both west and east banks until near the confluence point, however, west bank ends before it reaches to the confluence point. West bank has damage at Aliaga Municipality and Water flows outside the west bank.
- After the confluence point, Rio Chico River has both west and east banks.
- Discharge of 50-year return period estimated by Feasibility Study on Pampanga Delta Development Project (1982) is as follows;

0	Rio Chico River before the confluence point	:	$1,260 \text{ m}^{3}/\text{sec}$
0	Talavera River	:	1,203 m ³ /sec
0	Rio Chico River after the confluence point	:	2,463 m ³ /sec

- River bed longitudinal slope is very flat at about 1/3,000 (or 0.03%), therefore, velocity of the flood water is estimated as not so fast.
- All rivers overflow the banks and flood area extends for quite wide area.
- At downstream side of Rio Chico River, Tarlac Sta. Rosa Road crosses this river with the 246 m bridge. West approach of the bridge is provided with the equalizer (or series of box-culverts). The bridge constricts the flood water due to insufficient bridge length, flood water back flows towards upstream side until near the confluence point.
- Flood areas were identified by interviews to municipality officials is shown in Figure 5.2.5-1.
 - Ordinary river flow area in orange color
 - Frequent flood area (average 1 time/1-2 years)
 - Past maximum flood area by Typhoon Ondoy/Pepeng in 2009) in green color
- Water velocity in the frequent flood areas (blue area) is very slow except the vicinity of the ordinary river flow area.
- Water velocity in the area (green area) between the frequent flood area and the past maximum flood area is minimal and almost dead water.



FIGURE 5.2.5-1 FLOOD CONDITION AT RIO CHICO AND TALAVERA RIVER CONFLUENCE POINT

0000000

(21)

(Average 1 time/1-2 years)

(Ondoy/Pepeng in 2009)

5-16

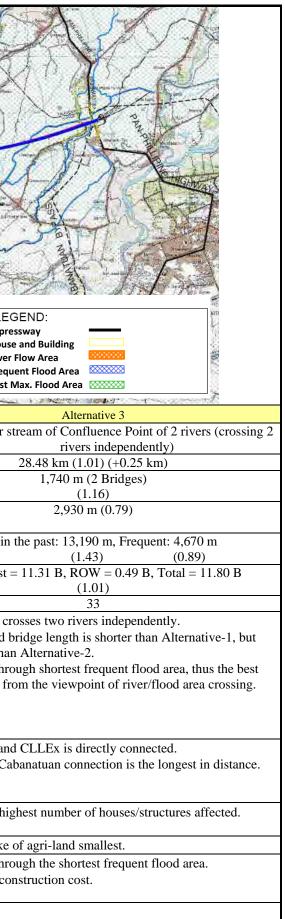
2) CLLEx Alignment Selection

Three (3) alternative alignments were studied.

- Alternative-1: Alignment recommended by 2010 FS. The alignment starts at SCTEx Tarlac Interchange entrance/exit point. It traverses at slightly upstream side of confluence point of Rio Chico River and Talavera River.
- Alternative-2: This alignment starts at SCTEx and traverses at the downstream side of confluence point.
- Alternative-3: This alignment starts at TPLEx and passes through the upstream side of confluence point.

		Alternative-1	Alternative-2	Alternative-3
Starting Point		Existing SCTEx	About 2 km south of	About 5.1 km north of
<u> </u>		Tarlac Interchange	SCTEx Tarlac	SCTEx Tarlac
			Interchange	Interchange
Crossing Po	oint in Flood-	About 1.2 km	About 1.2 km	About 4.5 km
prone area		upstream side of	downstream side of	upstream side of
	-	confluence point	confluence point	confluence point
Bank	Rio Chico	No east bank		No east bank
Condition	River		_	
	(upstream)			
	Talavera	East and west banks		East and west bank
	River		_	
	Rio Chico	_	East and west banks	_
	River (after 2			
	rivers			
	merged)			
Bridge	Rio Chico	Skewed crossing		Crossing
Crossing	River		_	perpendicular to water
	(upstream)			flow
	Talavera	Skewed crossing		Crossing
	River		_	perpendicular to water
				flow
	Rio Chico	_	Crossing	
	River (after 2		perpendicular to	
	rivers		water flow	
	merged)			

TABLE 5.2.5-1 OUTLINE OF ALTERNATIVE ALIGNMENTS


Evaluation of alternative alignments is shown in **Table 5.2.5-2**. Alternative-2 was recommended due to the following;

- The most preferred alignment for traffic between Manila side and Cabanatuan City which is dominant traffic on CLLEx.
- The alignment passes through the area where there are banks on both sides of the river; therefore water course is controlled and stable. Flood water overflows the banks, thus enough bridge length needs to be provided.

- Number of affected houses is the least.
- Construction cost is the least, although it is almost the same as Alternative-3.
- Alternative-1 passes through the confluent points of two rivers, not appropriate for the alignment to pass.
- From the view point of river crossing location, Alternative-3 is also appropriate, however, from the view points of traffic efficiency, Alternative-3 is not recommended.

TABLE 5.2.5-2 EVALUATION OF ALIGNMENT ALTERNATIVES

		LUATION OF ALIGNMENT ALTERNATIVES			
Plan	Accessed on the second of the	ADDREATERNATIVE 3 SIS MARS ADDREATERNATIVE 3 SIS MARS AD	Printo		
	Alternative 1	Alternative 2			
Concept	2010 FS Alignment (Passing at Confluence Point of 2 rivers)		Passing at Upper st		
Road length	28.23 km (1.00)	30.31 km (1.06) (+1.84 km)			
Bridge length over Rio Chico / Talavera Rivers	3,000 m (2 Bridges) (2.00)	1,500 m (1 Bridge) (1.00)			
Equalizing zone for Flood Area (Section with Box Culverts)	6,584 m (1.77)	3,720 m (1.00)			
Length passing flood area: Max. Flood Area / Frequent Flood Area	Max. in the past:11,950 m, Frequent: 9,580 m (1.30) (1.83)	Max. in the past: 9,220 m, Frequent: 5,220 m (1.00) (1.00)	Max. in		
Construction Cost + ROW Cost = Total (not including IC)	Const. Cost = 13.97 B, ROW = 0.48 B, Total = 14.45 B (1.23)	Const. Cost = 11.21 B, ROW = 0.52 B, Total = 11.73 B (1.00)	Const. Cost =		
Number of Affected Houses/Structure	56	28			
Appropriateness of CLLEX Location at River / Flood Area Crossing	 X CLLEX passes near confluence point of Rio Chico River and Talavera River, thus passes through the worst condition area. Requires longest bridge length. Passes through longest frequent flood area, thus requires longest equalizing zone. 	 △ CLLEX crosses the downstream side of confluent point of Rio Chico River and Talavera River. Although required bridge length is longer than Alternative-3, but shorter than Alternative-1. Passes through shorter frequent flood area than Alternative-1, but longer than Alternative-3. Located within the range of back flow from Rio Chico Bridge along Tarlac – Sta. Rosa Road. 	 CLLEX cro Required by longer than Passes thro location fro 		
Expressways Connectivity and Transport Efficiency	 SCTEx and CLLEx is not directly connected but made via intersection with national road thus continuity of an expressway is poor. Connection from Cabanatuan to Manila is bad. 	 SCTEx and CLLEx is directly connected. Best transport efficiency. 	X • TPLEx and • Manila-Cab		
Social Environmental Impact	 X • Highest number of houses/structure affected. • Community is divided by CLLEX at La Paz. 	• Least number of houses/structures affected.	\triangle • Second hig		
Natural Environmental Impact	• Land take of agri-land smallest.	\triangle • Land take of agri-land highest.	• Land take of		
Constructability	 X • Passes through the longest frequent flood area, thus construction work is seriously affected by floods. • Highest construction cost. 	 Passes through the second longest frequent flood area. Lowest construction cost. 	Passes throLowest con		
Rank	3	1 Recommended.	2		
			4		

5.2.6 Proposed CLLEx Alignment and Interchange Layout

Proposed CLLEx alignment and interchange layout is shown in **Figure 5.2.6-1**.

Expressway Length	30.7 km					
Number of Bridges	7					
Bridge Length	1,886 m					
Equalizing Zone Length	3.78 km					
Number of Overpass or Underpass for Intersecting Roads	Overpass : 1					
including underpasses for farm roads	Underpass : 37					
	Total : 38					
Number of Interchanges:	5					
• Between expressways (SCTEx and CLLEx)	1					
 Between CLLEx and intersecting roads 	4					

OUTLINE OF CLLEX

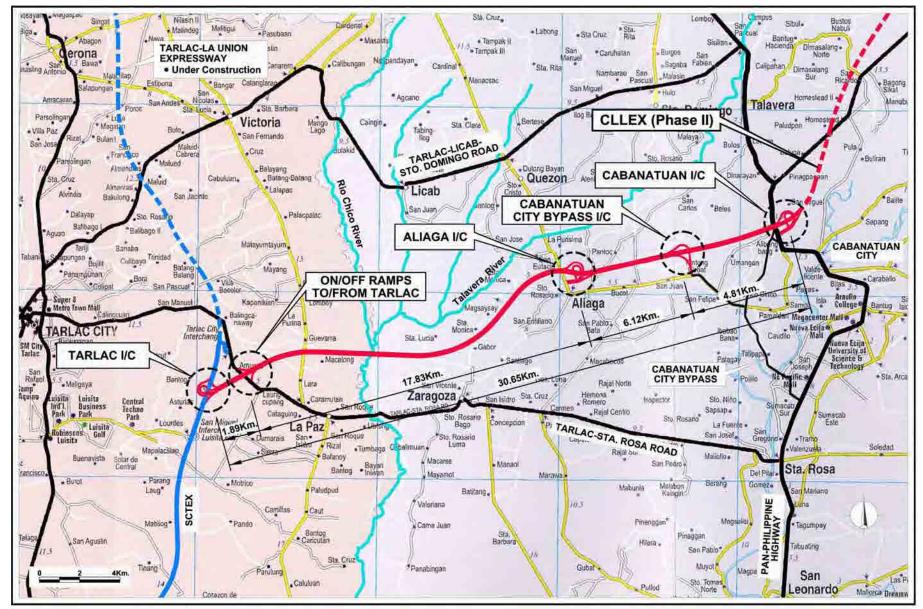
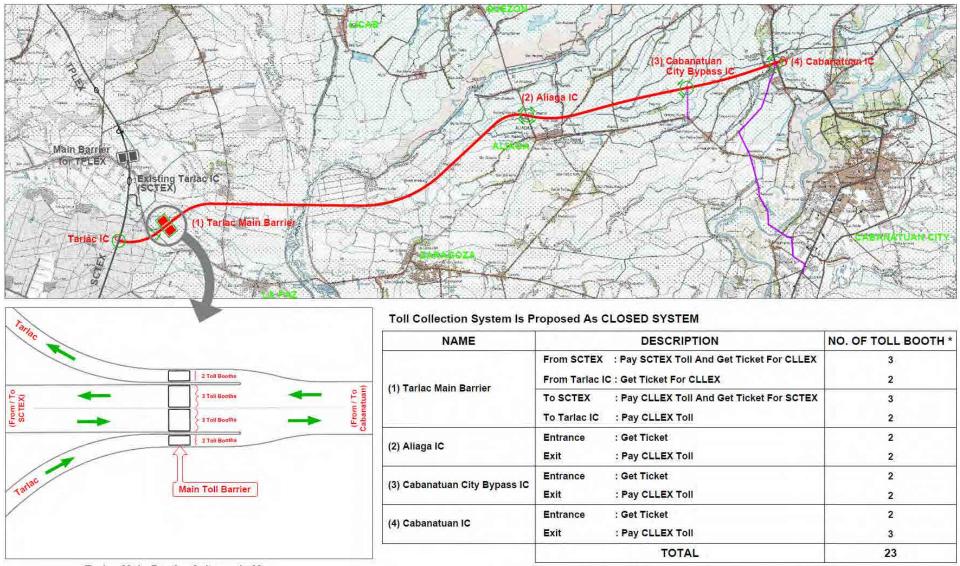


FIGURE 5.2.6-1 PROPOSED CLLEX ALIGNMENT AND LAYOUT OF INTERCHANGES


5.2.7 Toll Collection System

Toll fee should be imposed based on travel distance based toll to assure fairness to expressway users, hence the <u>closed toll collection system</u> should be established which is shown in **Table 5.2.7-1**.

Number of toll booth was computed on the assumption that toll collection would be done manually and is shown in **Table 5.2.7-2.** <u>Actual toll collection shall be partially done by the electronic toll collection system.</u>

Weigh-in-motion equipment for overloaded truck control, administrative maintenance office, and toll houses are planned at the strategic locations as shown in **Table 5.2.7-3**.

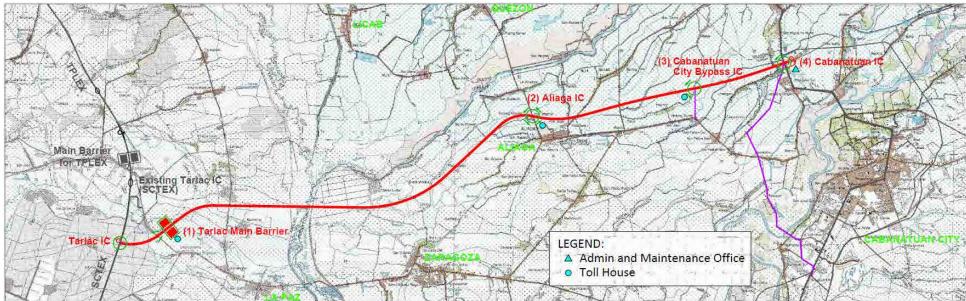
TABLE 5.2.7-1 PROPOSED TOLL COLLECTION SYSTEM OF CLLEX

Tarlac Main Barrier Schematic Map

Note: * Number of Toll Booth is estimated by future traffic volume and service time (entrance - 6 sec/veh., exit 14 sec/veh.)

TABLE 5.2.7-2 NUMBER OF TOLL BOOTH REQUIRED Assumption : All Manual Toll Collection Year 2017

104	2017							Necessar	Necessar	Necessar
No.	Interch	ange	AADT (2017)	Peak (%)	Peak Hr. Traffic	Toll Collection	Toll Capacity	y Toll	y Toll	y Toll
					Total		(Manual)	Booth (Manual)	Booth (Add.)	Booth (Total)
			(a)	(b)	(c=a*b)		(d)	(e=c/d)	(f)	(g=e+f)
1	Tarlac	Main>	4,461	8%	357	Pay	255	1.4		2
2	Tarlac	Main <	4,204	8%	336	Pay	255	1.3		2
3	Tarlac	Entrance	1,279	8%	102	Ticket	600	0.2	1	2
4	Tarlac	Exit	1,278	8%	102	Pay	255	0.4	1	2
5	Aliaga	Entrance	955	8%	76	Ticket	600	0.1	1	2
6	Aliaga	Exit	908	8%	73	Pay	255	0.3	1	2
7	Cabana. By	Entrance	1,916	8%	153	Ticket	600	0.3	1	2
8	Cabana. By	Exit	1,554	8%	124	Pay	255	0.5	1	2
9	Cabanatuan	Entrance	2,625	8%	210	Ticket	600	0.4	1	2
10	Cabanatuan	Exit	3,292	8%	263	Pay	255	1.0		2
								To	otal	20


Exit	255	14 sec/veh
Entry	600	6 sec/veh
Flat	450	8 sec/veh

Year	: 2020									
No.	Interch	ange	AADT (2020)	Peak (%)	Peak Hr. Traffic Total	Toll Collection	Toll Capacity (Manual)	Necessar y Toll Booth (Manual)	Necessar y Toll Booth (Add.)	Necessar y Toll Booth (Total)
			(a)	(b)	(c=a*b)		(d)	(e=c/d)	(f)	(g=e+f)
1	Tarlac	Main>	5,106	8%	408	Pay	255	1.6		2
2	Tarlac	Main <	5,074	8%	406	Pay	255	1.6		2
3	Tarlac	Entrance	1,394	8%	112	Ticket	600	0.2	1	2
4	Tarlac	Exit	1,393	8%	111	Pay	255	0.4	1	2
5	Aliaga	Entrance	852	8%	68	Ticket	600	0.1	1	2
6	Aliaga	Exit	816	8%	65	Pay	255	0.3	1	2
7	Cabana. By	Entrance	2,259	8%	181	Ticket	600	0.3	1	2
8	Cabana. By	Exit	1,913	8%	153	Pay	255	0.6	1	2
9	Cabanatuan	Entrance	3,374	8%	270	Ticket	600	0.4	1	2
10	Cabanatuan	Exit	3,788	8%	303	Pay	255	1.2		2
								То	tal	20

Exit	255	14 sec/veh
Entry	600	6 sec/veh
Flat	450	8 sec/veh

Year	2030									
No.	Interch	ange	AADT (2030)	Peak (%)	Peak Hr. Traffic Total	Toll Collection	Toll Capacity (Manual)	Necessar y Toll Booth (Manual)	Necessar y Toll Booth (Add.)	Necessar y Toll Booth (Total)
			(a)	(b)	(c=a*b)		(d)	(e=c/d)	(f)	(g=e+f)
1	Tarlac	Main>	7,568	8%	605	Pay	255	2.4		3
2	Tarlac	Main <	5,185	8%	415	Pay	255	1.6	1	3
3	Tarlac	Entrance	2,375	8%	190	Ticket	600	0.3	1	2
4	Tarlac	Exit	2,373	8%	190	Pay	255	0.7	1	2
5	Aliaga	Entrance	1,524	8%	122	Ticket	600	0.2	1	2
6	Aliaga	Exit	1,497	8%	120	Pay	255	0.5	1	2
7	Cabana. By	Entrance	2,309	8%	185	Ticket	600	0.3	1	2
8	Cabana. By	Exit	2,899	8%	232	Pay	255	0.9	1	2
9	Cabanatuan	Entrance	3,906	8%	312	Ticket	600	0.5	1	2
10	Cabanatuan	Exit	6,328	8%	506	Pay	255	2.0	1	3
								To	tal	23

Exit	255	14 sec/veh
Entry	600	6 sec/veh
Flat	450	8 sec/veh

TABLE 5.2.7-3 LOCATION FOR TRAFFIC AND MAINTENANCE OFFICE

INTERCHANGE		DESCRIPTION	NO. OF TOLL BOOTH *	WEIGHT IN MOTION	ADMIN/MAINT. OFFICE	TOLL HOUSE
	From SCTEX	: Pay SCTEX Toll And Get Ticket For CLLEX	3	<u>به</u>		
(1) Tarlac Main Barrier	From Tarlac IC	C : Get Ticket For CLLEX	2	1		4
(1) Tariac Main Barrier	To SCTEX	: Pay CLLEX Toll And Get Ticket For SCTEX	3	2-1		
	To Tarlac IC	: Pay CLLEX Toll	2	35		-
(2) Aliana IC	Entrance	: Get Ticket	2	1		
(2) Aliaga IC	Exit	: Pay CLLEX Toll	2	5645		<u>.</u>
2) Cabanatuan City Bynass IC	Entrance	: Get Ticket	2	1		
(3) Cabanatuan City Bypass IC	Exit	: Pay CLLEX Toll	2	534		<u>1</u> .
4) Cabanatuan IC	Entrance	: Get Ticket	2	1		
(4) Cabanatuan IC	Exit	: Pay CLLEX Toll	3	(1)	1	. . 6
		TOTAL	23	4	1	3

* Number of Toll Booth is estimated by future traffic volume and service time (entrance - 6 sec/veh., exit 14 sec/veh.)

5-25

5.2.8 Study on Stage Construction

Traffic volume attracted to CLLEx was estimated in Section 4.2.7 of this report. Traffic volume in 2017, 2020, 2030 was estimated at 11,221, 12,967, 17,340 veh./day, respectively. For this level of traffic volume, there is a need to study the options; one is the stage construction, and the other is on full development from the initial stage;

Option-1: Stage Construction

Initial Stage – 2-lane (1-lane by direction) with overtaking lane at strategic location Second Stage – Widening to 4-lane

Option-2: Full Development

4-lane from the initial stage

1) <u>2-lane Expressway in the Philippines and Japan</u>

In the Philippines, there are two (2) existing 2-lane expressways and one (1) 2-lane expressway under construction as follows;

- Section between Lipa City and Batangas City of STAR (existing)
 - Traffic Volume in 2009 : 9,181 veh/day
 - No overtaking lanes, thus fatal traffic accidents are being experienced.
- Subic-Tipo Expressway (existing)
 - Traffic Volume in 2009 : 6,798 veh/day
 - Climbing lane is provided.
- Tarlac-Pangasinan-La Union Expressway (TPLEx) (*under construction*)
 - Estimated traffic volume is as follows;

Section201520202030Tarlac – Victoria14,59519,19634,167Victoria – Gerona14,82419,65335,559Gerona – Paniqui12,82216,94030,428Paniqui – Moncada11,47115,10526,952Moncada – Carmen9,13812,03321,467Carmen – Urdaneta4,2815,65610,155		TRAFFIC FORECAST	OF TPLEX	
Victoria – Gerona14,82419,65335,559Gerona – Paniqui12,82216,94030,428Paniqui – Moncada11,47115,10526,952Moncada – Carmen9,13812,03321,467Carmen – Urdaneta4,2815,65610,155	Section	2015	2020	2030
Gerona – Paniqui12,82216,94030,428Paniqui – Moncada11,47115,10526,952Moncada – Carmen9,13812,03321,467Carmen – Urdaneta4,2815,65610,155	Tarlac – Victoria	14,595	19,196	34,167
Paniqui – Moncada11,47115,10526,952Moncada – Carmen9,13812,03321,467Carmen – Urdaneta4,2815,65610,155	Victoria – Gerona	14,824	19,653	35,559
Moncada – Carmen9,13812,03321,467Carmen – Urdaneta4,2815,65610,155	Gerona – Paniqui	12,822	16,940	30,428
Carmen – Urdaneta 4,281 5,656 10,155	Paniqui – Moncada	11,471	15,105	26,952
	Moncada – Carmen	9,138	12,033	21,467
	Carmen – Urdaneta	4,281	5,656	10,155
Urdaneta – Pozorrubio 8,270 10,969 19,847	Urdaneta – Pozorrubio	8,270	10,969	19,847
Pozorrubio – Rosario 7,501 9,956 18,040	Pozorrubio – Rosario	7,501	9,956	18,040

Source: Terms of Reference for Tarlac-La Union Toll Expressway Phase I, August 2007

• 2-lane Expressway in Japan

There are thirty one (31) 2-lane expressways in Japan, of which traffic volume in April, 2011 is shown in **Table 5.2.8-1**.

- Traffic volume more than 10,000 veh./day 20 expressways
- Traffic volume more than 20,000 veh./day 3 expressways

Expressways with traffic volume of $10,000 \sim 20,000$ veh./day are built and operated as a 2-lane expressway.

Expressway name Min. Section. (vehicle/day) Max. Section. (vehicle/day) Average (vehicle/day) 1 Do-ou Expressway 2,549 11,575 5,073 2 Do-tou Expressway 2,046 8,034 6,110 3 Aomori Expressway 2,046 8,034 5,807 4 Hachinohe Expressway 5,399 6,443 5,807 5 Kamaishi Expressway 2,429 2,894 2,579 6 Akita Expressway 2,429 2,894 2,579 7 Yamagata Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 6,961 7,776 7,446 11 Jyoban Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,620 11,420 11,400 14 Jo-Shin'etsu Expressway 10,636 12,103 11,517 15 Chubu Transversal Expressway 6,034 11,6		Unit: Vehicle/day				
1 Do-ou Expressway 2,549 11,575 5,073 2 Do-tou Expressway 2,046 8,034 6,110 3 Aomori Expressway 5,399 6,443 5,807 4 Hachinohe Expressway 7,277 10,253 7,310 5 Kamaishi Expressway 2,429 2,894 2,579 6 Akita Expressway 5,636 11,626 7,694 7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 6,961 7,776 7,446 11 Jyoban Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 <th></th> <th>Expressway name</th> <th>Min. Section.</th> <th></th> <th>Average</th>		Expressway name	Min. Section.		Average	
2 Do-tou Expressway 2.046 8.034 6.110 3 Aomori Expressway 5,399 6,443 5,807 4 Hachinohe Expressway 7,277 10,253 7,310 5 Kamaishi Expressway 2,429 2,894 2,579 6 Akita Expressway 5,636 11,626 7,694 7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 10,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 9,431 12,256 11,021			(vehicle/day)	(vehicle/day)	(vehicle/day)	
3 Aomori Expressway 5,399 6,443 5,807 4 Hachinohe Expressway 7,277 10,253 7,310 5 Kamaishi Expressway 2,429 2,894 2,579 6 Akita Expressway 5,636 11,626 7,694 7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 6,961 7,776 7,446 10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 10,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 9,431 12,256 11,021 </td <td>1</td> <td>Do-ou Expressway</td> <td>2,549</td> <td>11,575</td> <td>5,073</td>	1	Do-ou Expressway	2,549	11,575	5,073	
4 Hachinohe Expressway 7,277 10,253 7,310 5 Kamaishi Expressway 2,429 2,894 2,579 6 Akita Expressway 5,636 11,626 7,694 7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 6,961 7,776 7,446 11 Jyoban Expressway 6,961 7,776 7,446 12 Higashi Kanto Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 9,431 12,256 11,021 18 Maizuru Wakasa Expressway 6,700 16,709 12,469 19 Hanwa Expressway 1,367 1,367	2	Do-tou Expressway	2,046	8,034	6,110	
5 Kamaishi Expressway 2,429 2,894 2,579 6 Akita Expressway 5,636 11,626 7,694 7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 18,095 23,143 20,619 10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 10,655 1,655 1,655 13 Tateyama Expressway 10,896 12,103 11,517 14 Jo-Shin'etsu Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 1,367 1,367 1,367 18 Maizuru Wakasa Expressway 6,066 9,818 8,152 20 Harima Expressway 1,367 1,367 1,367 21 Tottori Expressway 5,648 13,220 6,552	3	Aomori Expressway	5,399	6,443	5,807	
6 Akita Expressway 5,636 11,626 7,694 7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 18,095 23,143 20,619 10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 10,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 9,431 12,256 11,021 18 Maizuru Wakasa Expressway 6,700 16,709 12,469 19 Hanwa Expressway 1,367 1,367 1,367 21 Tottori Expressway 6,066 9,818	4	Hachinohe Expressway	7,277	10,253	7,310	
7 Yamagata Expressway 4,919 14,799 7,102 8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 18,095 23,143 20,619 10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 10,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 9,431 12,256 11,021 18 Maizuru Wakasa Expressway 6,700 16,709 12,469 19 Hanwa Expressway 1,367 1,367 1,367 20 Harima Expressway 12,411 13,135 12,788 22 Okayama Expressway 5,648 13,220<	5	Kamaishi Expressway	2,429	2,894	2,579	
8 Tohoku Chuo Expressway 8,876 18,040 11,885 9 Nihonkai Tohoku Expressway 18,095 23,143 20,619 10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 9,431 12,256 11,021 18 Maizuru Wakasa Expressway 6,700 16,709 12,469 19 Hanwa Expressway 1,367 1,367 1,367 20 Harima Expressway 12,411 13,135 12,788 23 Yonago Expressway 5,648 13,220	6	Akita Expressway	5,636	11,626	7,694	
9 Nihonkai Tohoku Expressway 18,095 23,143 20,619 10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 6,034 11,647 8,864 17 Kise Expressway 6,700 16,709 12,469 19 Hanwa Expressway 1,367 1,367 1,367 21 Tottori Expressway 1,367 1,367 1,367 21 Tottori Expressway 12,441 13,135 12,788 22 Okayama Expressway 5,648 13,220 6,552 23 Yonago Expressway 5,283 6,281 5,849 24 Hamada Expressway 5,548 13,220 6,552	7	Yamagata Expressway	4,919	14,799	7,102	
10 Ban'etsu Expressway 6,961 7,776 7,446 11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 6,700 16,709 12,469 19 Hanwa Expressway 6,700 16,709 12,469 19 Harima Expressway 1,367 1,367 1,367 21 Tottori Expressway 6,066 9,818 8,152 22 Okayama Expressway 12,441 13,135 12,788 23 Yonago Expressway 5,648 13,220 6,552 25 Sanyo Expressway 5,283 6,281 5,849 <	8	Tohoku Chuo Expressway	8,876	18,040	11,885	
11 Jyoban Expressway 902 4,206 4,206 12 Higashi Kanto Expressway 1,655 1,655 1,655 13 Tateyama Expressway 10,420 11,482 11,400 14 Jo-Shin'etsu Expressway 10,896 12,103 11,517 15 Chubu Transversal Expressway 5,391 7,615 6,290 16 Tokai Hokuriku Expressway 6,034 11,647 8,864 17 Kise Expressway 9,431 12,256 11,021 18 Maizuru Wakasa Expressway 6,700 16,709 12,469 19 Hanwa Expressway 1,367 1,367 1,367 20 Harima Expressway 6,066 9,818 8,152 21 Tottori Expressway 12,441 13,135 12,788 22 Okayama Expressway 5,648 13,220 6,552 23 Yonago Expressway 5,648 13,220 6,552 24 Hamada Expressway 5,648 13,220 6,552 25 Sanyo Expressway 5,542 20,136 18,2	9	Nihonkai Tohoku Expressway	18,095	23,143	20,619	
12Higashi Kanto Expressway1,6551,6551,65513Tateyama Expressway10,42011,48211,40014Jo-Shin'etsu Expressway10,89612,10311,51715Chubu Transversal Expressway5,3917,6156,29016Tokai Hokuriku Expressway6,03411,6478,86417Kise Expressway9,43112,25611,02118Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway1,3671,3671,36720Harima Expressway6,0669,8188,15221Tottori Expressway6,0669,8188,15222Okayama Expressway5,64813,2206,55223Yonago Expressway5,64813,2206,55225Sanyo Expressway16,67119,32417,98826Takamatsu Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway6,0669,8188,15220Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	10	Ban'etsu Expressway	6,961	7,776	7,446	
13Tateyama Expressway10,42011,48211,40014Jo-Shin'etsu Expressway10,89612,10311,51715Chubu Transversal Expressway5,3917,6156,29016Tokai Hokuriku Expressway6,03411,6478,86417Kise Expressway9,43112,25611,02118Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway1,3671,3671,36720Harima Expressway6,0669,8188,15221Tottori Expressway6,0669,8188,15222Okayama Expressway5,64813,2206,55223Yonago Expressway5,2836,2815,84924Hamada Expressway15,54220,13618,24025Sanyo Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway6,0669,8188,15220Kashima Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway9,84511,57410,709	11	Jyoban Expressway	902	4,206	4,206	
14Jo-Shin'etsu Expressway10,89612,10311,51715Chubu Transversal Expressway5,3917,6156,29016Tokai Hokuriku Expressway6,03411,6478,86417Kise Expressway9,43112,25611,02118Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway1,3671,3671,36720Harima Expressway6,0669,8188,15221Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway6,0669,84511,57410,709	12	Higashi Kanto Expressway	1,655	1,655	1,655	
15Chubu Transversal Expressway5,3917,6156,29016Tokai Hokuriku Expressway6,03411,6478,86417Kise Expressway9,43112,25611,02118Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway12,17913,42812,94720Harima Expressway6,0669,8188,15221Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway15,54220,13618,24027Matsuyama Expressway6,0669,8188,15229Kochi Expressway6,0669,8188,15229Kochi Expressway9,84511,57410,709	13	Tateyama Expressway	10,420	11,482	11,400	
16Tokai Hokuriku Expressway6,03411,6478,86417Kise Expressway9,43112,25611,02118Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway12,17913,42812,94720Harima Expressway1,3671,3671,36721Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway6,0669,8188,15230Nagasaki Expressway9,84511,57410,709	14	Jo-Shin'etsu Expressway	10,896	12,103	11,517	
17Kise Expressway9,43112,25611,02118Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway12,17913,42812,94720Harima Expressway1,3671,3671,36721Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway6,0669,8188,15228Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	15	Chubu Transversal Expressway	5,391	7,615	6,290	
18Maizuru Wakasa Expressway6,70016,70912,46919Hanwa Expressway12,17913,42812,94720Harima Expressway1,3671,3671,36721Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	16	Tokai Hokuriku Expressway	6,034	11,647	8,864	
19Hanwa Expressway12,17913,42812,94720Harima Expressway1,3671,3671,36721Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	17	Kise Expressway	9,431	12,256	11,021	
20Harima Expressway1,3671,3671,36721Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	18	Maizuru Wakasa Expressway	6,700	16,709	12,469	
21Tottori Expressway6,0669,8188,15222Okayama Expressway12,44113,13512,78823Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway6,0669,8188,15228Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	19	Hanwa Expressway	12,179	13,428	12,947	
22Okayama Expressway12,44113,13512,78823Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	20	Harima Expressway	1,367	1,367	1,367	
23Yonago Expressway8,49612,1359,91324Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	21	Tottori Expressway	6,066	9,818	8,152	
24Hamada Expressway5,64813,2206,55225Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	22	Okayama Expressway	12,441	13,135	12,788	
25Sanyo Expressway5,2836,2815,84926Takamatsu Expressway16,67119,32417,98827Matsuyama Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	23	Yonago Expressway	8,496	12,135	9,913	
26 Takamatsu Expressway 16,671 19,324 17,988 27 Matsuyama Expressway 15,542 20,136 18,240 28 Tokushima Expressway 6,066 9,818 8,152 29 Kochi Expressway 17,959 21,476 18,352 30 Nagasaki Expressway 9,845 11,574 10,709	24	Hamada Expressway	5,648	13,220	6,552	
27Matsuyama Expressway15,54220,13618,24028Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	25	Sanyo Expressway	5,283	6,281	5,849	
28Tokushima Expressway6,0669,8188,15229Kochi Expressway17,95921,47618,35230Nagasaki Expressway9,84511,57410,709	26	Takamatsu Expressway	16,671	19,324	17,988	
29 Kochi Expressway 17,959 21,476 18,352 30 Nagasaki Expressway 9,845 11,574 10,709	27	Matsuyama Expressway	15,542	20,136	18,240	
30 Nagasaki Expressway 9,845 11,574 10,709	28	Tokushima Expressway	6,066	9,818	8,152	
	29	Kochi Expressway	17,959	21,476	18,352	
31 Higashi Kyushu Expressway 7,010 16,149 11,303	30	Nagasaki Expressway	9,845	11,574	10,709	
	31	Higashi Kyushu Expressway	7,010	16,149	11,303	

TABLE 5.2.8-1 DAILY TRAFFIC VOLUME OF TWO-LANE EXPRESSWAYIN JAPAN (2011 APRIL)

Note:

Traffic Volume more than 10,000 veh./day

Traffic Volume more than 20,000 veh./dav

2) <u>Level of Service (LOS) Analysis</u>

Definition of Level of Service (LOS) by Highway Capacity Manual (HCM) 2000 of USA for the 2-lane highway and for the multi-lane highway is shown in **Table 5.2.8-2** and **5.2.8-3**, respectively.

17	ABLE 5.2.8-2 DEFINITION OF LOS FOR TWO-LANE HIGHWAY
LOS A	The highest quality of traffic service, when motorists are able to travel at their
	desired speed. Without strict enforcement, this highest quality would result in
	average speeds of 90 km/h or more on two-lane highways.
LOS B	Traffic flow with speeds of 80 km/h or slightly higher on level terrain. The demand
	for passing to maintain desired speeds becomes significant and approximates the
	passing capacity at the lower boundary of LOS B.
LOS C	Further increases in flow, resulting in noticeable increases in platoon formation,
	platoon size, and frequency of passing impediments. The average speed still exceeds
	70 km/h on level-terrain.
LOS D	Unstable traffic flow. The two opposing traffic streams begin to operate separately
	at higher volume levels, as passing becomes extremely difficult.
	Speeds of 60 km/h still can be maintained under base conditions.
LOS E	Even under base conditions, speeds may drop below 60 km/h. Average travel speeds
	on highways with less than base conditions will be slower, even down to 40 km/h on
	sustained upgrades.
	The capacity of the highway, generally 3,200 pc/h total in both directions. Operating
	conditions at capacity are unstable and difficult to predict.
LOS F	Heavily congested flow with traffic demand exceeding capacity.
	Volumes are lower than capacity and speeds are highly variable.
Source: HC	M 2000

TABLE 5.2.8-2 DEFINITION OF LOS FOR TWO-LANE HIGHWAY

Source: HCM 2000

TABLE 5.2.8-3 DEFINITION OF LOS FOR MULTI-LANE HIGHWAY

LOS A	Free-flow operations. Free-flow speeds prevail. Vehicles are almost completely
	unimpeded in their ability to maneuver within the traffic stream.
LOS B	Reasonably free flow. Free-flow speeds are maintained. The ability to maneuver
	within the traffic stream is only slightly restricted, and the general level of physical
	and psychological comfort provided to drivers is still high.
LOS C	Flow with speeds at or near the Free Flow Speed of the freeway. Freedom to
	maneuver within the traffic stream is noticeably restricted, and lane changes require
	more care and vigilance on the part of the driver.
LOS D	The level at which speeds begin to decline slightly with increasing flows and density
	begins to increase somewhat more quickly. Freedom to maneuver within the traffic
	stream is more noticeably limited, and the driver experiences reduced physical and
	psychological comfort levels.
LOS E	Operation at capacity. Operations at this level are volatile, because there are
	virtually no usable gaps in the traffic stream. Vehicles are closely spaced leaving
	little room to maneuver within the traffic stream at speeds that still exceed 80 km/h.
	Maneuverability within the traffic stream is extremely limited, and the level of
	physical and psychological comfort afforded the driver is poor

LOS F	Breakdowns in vehicular flow. Such conditions generally exist within queues
	forming behind breakdown points. Breakdowns occur for a number of reasons:
	• Traffic incidents can cause a temporary reduction in the capacity of a short
	segment, so that the number of vehicles arriving at the point is greater than the
	number of vehicles that can move through it.
	• Points of recurring congestion, such as merge or weaving segments and lane
	drops, experience very high demand in which the number of vehicles arriving is
	greater than the number of vehicles discharged.
	• In forecasting situations, the projected peak-hour (or other) flow rate can
	exceed the estimated capacity of the location.

Source: HCM 2000

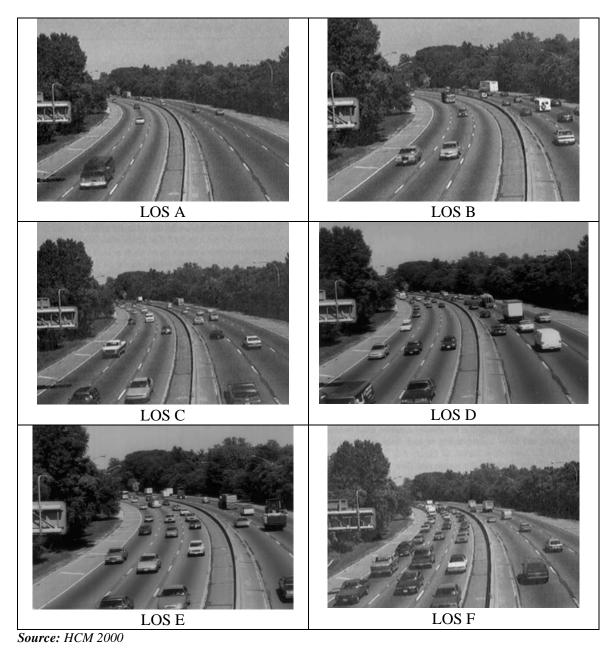


FIGURE 5.2.8-1 LEVEL OF SERVICE FOR MULTI-LANE HIGHWAY

Appropriate Level of Service by AASHTO

A Policy on Geometric Design of Highways and Streets, 2004 (AASHTO) suggests the appropriate level of service for each functional class of road as follows;

o circle i on selection of selection and selection				
	Appropriate level of service for specified combinations of			
Functional class	area and terrain type			
			Rural	Urban and
	Rural level	Rural rolling	mountainous	suburban
Freeway	В	В	С	С
Arterial	В	В	С	С
Collector	С	С	D	D
Local	D	D	D	D

GUIDELINES FOR SELECTION OF DESIGN LEVEL OF SERVICE

Source: A Policy on Geometric Design of Highways and Streets, 2004, AASHTO

According to the above guidelines, expressways are recommended that LOS be "B" or "C", however, the guideline seems to be aiming quite high LOS. LOS may be lowered by one rank, say from "B" to "C".

Service Traffic Volume of Two-lane CLLEx

In accordance with HCM formula, the service traffic volume of two-lane CLLEx was estimated as shown in **Table 5.2.8-4**. Estimated traffic volume and LOS is shown in **Table 5.2.8-5**. The LOS of the 2-lane CLLLEx at the opening year will be "D" and it will be "E" in year 2029. The widening to a 4-lane expressway should be made before LOS reaches to "E". In consideration of some allowance, CLLEx needs to be widened by the end of 2025. Development scenario of Option-1 will be as follows;

Initial Stage (2-lane)	:	2017 – 2024 (8 years)
Second Stage (4-lane)	:	2025 -

LOS	Service volume for LOS		
LUS	Veh/Hour (both directions)	Veh/Day (both directions)	
А	Less than 110	Less than 1,375	
В	Less than 320	Less than 4,000	
С	Less than 700	Less than 8,750	
D	Less than 1,310	Less than 16,375	
E	Less than 2,430	Less than 30,375	
F	More than 2,430	More than 30,375	

TABLE 5.2.8-4 SERVICE TRAFFIC VOLUME OF TWO-LANE CLLEX

Consultant's estimate based on Highway Capacity Manual 2000 (HCM2000) *Note:*

Assumptions: 60/40 directional split: <u>80-percent no-passing zones</u> for level, <u>23 percent truck and bus</u>; free flow speed; 100km/hr.

TA	BLE 5.2.8-5 ESTIMAT	TED 2-LANE CLLE	A TRAFFIC	VOLUME
Year	Daily Traffic	Peak Hour Traffic	LOS	Volume/Capacity
1 cai	Assignment (Veh./day)	Volume (Veh./hour)	LOS	Ratio
2017	11,221	898		0.37
2018	11,771	942		0.39
2019	12,352	988		0.41
2020	12,967	1,037		0.43
2021	13,344	1,068		0.43
2022	13,733	1,099	D	0.45
2023	14,135	1,131	D	0.47
2024	14,550	1,164		0.48
2025	14,979	1,198		0.49
2026	15,421	1,234		0.51
2027	15,878	1,270		0.52
2028	16,349	1,308		0.54
2029	16,836	1,347		0.55
2030	17,340	1,387		0.57
2031	17,859	1,429		0.59
2032	18,396	1,472		0.61
2033	18,951	1,516		0.62
2034	19,524	1,562	Е	0.64
2035	20,116	1,609	E	0.66
2036	20,728	1,658		0.68
2037	21,360	1,709		0.70
2038	22,013	1,761		0.72
2039	22,688	1,815		0.75
2040	23,386	1,871		0.77
A	1. 1			

TABLE 5.2.8-5 ESTIMATED 2-LANE CLLEX TRAFFIC VOLUME

Assumption: Peak hour rate: 8 percent

Service Traffic Volume of Four-Lane CLLEx

Service traffic volume of four-lane CLLEx is shown in **Table 5.2.8-6**. Estimated traffic volume and LOS of four-lane CLLEx is shown in **Table 5.2.8-7**. The LOS of the 4-lane CLLEx will be "A" from the opening year of 2017 until 2035 and "B" thereafter until 2040, which suggests that a 4-lane CLLEx is too much ideal.

Which option to be selected, namely Option-1: Stage Construction or Option-2: Full Development should be determined based on the economic viability of the option.

Service Traffic Volume of CLLEx Phase-II: Cabanatuan – San Jose Section

Estimated 2-lane Phase-II (Cabanatuan – San Jose Section) of CLLEx traffic volume and LOS is shown in **Table 5.2.8-8**.

LOS of Phase-II section will be as follows;

2017 - 2022	:	LOS C
2023 - 2040	:	LOS D

LOS of the Phase II section will not reach to "E" before 2040, thus 2-lane will be enough for Phase-II.

LOS	Service volume for LOS		
LUS	Veh/Hour (2-lane)	Veh/Day (4-lane)	
А	Less than 1,170	Less than 24,374	
В	Less than 1,850	Less than 38,541	
С	Less than 2,660	Less than 55,415	
D	Less than 3,260	Less than 67,915	
E	Less than 3,590	Less than 74,790	
F	More than 3,590	More than 74,790	

TABLE 5.2.8-6 SERVICE TRAFFIC VOLUME OF FOUR-LANE CLLEX

Consultant's estimate based on Highway Capacity Manual 2000 (HCM2000) *Note:*

Assumptions: Rural Area, 23 percent truck and bus; free flow speed; 100km/hr.

(TARLAC IC – ALIAGA IC SECTION)								
Year	Daily Traffic Assignment (Veh./day) (both directions) (a)	Daily Traffic Assignment (Veh./day) (one direction) (b = a * 0.6)	Peak Hour Traffic Volume (Veh./hour) (one direction) (c = b * 0.08)	LOS	Volume/Capacity Ratio			
2017	12,630	7,578	606	А	0.17			
2018	13,150	7,890	631		0.18			
2019	13,691	8,215	657		0.18			
2020	14,255	8,553	684		0.19			
2021	14,759	8,855	708		0.20			
2022	15,281	9,168	733		0.20			
2023	15,821	9,493	759		0.21			
2024	16,380	9,828	786		0.22			
2025	16,959	10,176	814		0.23			
2026	17,559	10,535	843		0.23			
2027	18,180	10,908	873	А	0.24			
2028	18,823	11,294	903		0.25			
2029	19,488	11,693	935		0.26			
2030	20,177	12,106	968		0.27			
2031	20,890	12,534	1,003		0.28			
2032	21,629	12,977	1,038		0.29			
2033	22,394	13,436	1,075		0.30			
2034	23,185	13,911	1,113		0.31			
2035	24,005	14,403	1,152		0.32			
2036	24,854	14,912	1,193		0.33			
2037	25,732	15,439	1,235		0.34			
2038	26,642	15,985	1,279	В	0.36			
2039	27,584	16,550	1,324		0.37			
2040	28,559	17,136	1,371		0.38			

TABLE 5.2.8-7 ESTIMATED 4-LANE CLLEX TRAFFIC VOLUME (TARLAC IC – ALIAGA IC SECTION)

Assumptions: 60/40 directional split, Peak hour rate : 8 percent

V	Daily Traffic	Peak Hour Traffic		Volume/Capacity
Year	Assignment (Veh./day)	Volume (Veh./hour)		Ratio
2017	7,288	583		0.24
2018	7,556	604		0.25
2019	7,834	627	С	0.26
2020	8,122	650	C	0.27
2021	8,372	670		0.28
2022	8,630	690		0.28
2023	8,896	712		0.29
2024	9,170	734		0.30
2025	9,452	756		0.31
2026	9,743	779		0.32
2027	10,043	803		0.33
2028	10,353	828		0.34
2029	10,671	854		0.35
2030	11,000	880		0.36
2031	11,339	907	D	0.37
2032	11,688	935		0.38
2033	12,048	964		0.40
2034	12,419	994		0.41
2035	12,801	1,024		0.42
2036	13,196	1,056		0.43
2037	13,602	1,088		0.45
2038	14,021	1,122		0.46
2039	14,453	1,156		0.48
2040	14,898	1,192		0.49

TABLE 5.2.8-8 ESTIMATED 2-LANE CLLEX PHASE-II TRAFFIC VOLUME AND LOS (CABANATUAN – SAN JOSE SECTION)

Assumption: Peak hour rate: 8 percent