Image processing manual using RapidEye and PALSAR around Milne Bay

1. General procedure of using ERDAS Imagine

1-1. Menu

Execute ERDAS Imagine click this icon (But this version is not latest).

This menu icon appears.

Viewer: to view import/create image

Import : to Import/Export from many type of formats

Data Perp: to make/subset image, mosaic and geocode

Composer : to prepare layout legend, title and so on for printing.

Interpreter : Most of analysis function are included in this menu.

Classifier : For executing Unsupervised/Supervised classification.

Modeler : to write a flowchart of commands for processing.

2. RapidEye data processing

2-1. Importing of Geotiff file

.

Open a Geotiff file in directory using Import menu

Import Import/Export		
 Import C Export Type: GeoTIFF 		<u></u> *
Media: File	Outout File: (*.ima)	• *
2		R.
 2010-09-20T012202_RE2_3A-NAC_7257468_119356.tif 2010-09-20T012202_RE2_3A-NAC_7257468_119356_browse.tif 2010-09-20T012202_RE2_3A-NAC_7257468_119356_udm.tif 	 2010-09-20T012202_RE2_3A-NAC_7257468_119356 2010-09-20T012202_RE2_3A-NAC_7257469_119356 2010-09-20T012203_RE2_3A-NAC_7257360_119356 2010-09-20T012206_RE2_3A-NAC_7257361_119356 2010-09-20T012206_RE2_3A-NAC_7257520_119356 2010-09-20T012206_RE2_3A-NAC_7257520_119356 2010-09-20T012209_RE2_3A-NAC_7257467_119356 2010-09-20T012209_RE2_3A-NAC_7257470_119356 2010-09-20T012209_RE2_3A-NAC_7257470_119356 	*
2010-09-201012202_re2_3a-nac_7257468_119356	png_rapideye	+
Close	Data View	Help

In Import/export select Geotiff file as input file. In Output file create new file with file extension "*.img" for using in ERDAS Imagine

NB: For input TIFF dialogue options, accept the default settings.

Input File:	d:/png_rapi	deye/2010-09-20	t012202_re2	_3a-nac_7257	468_119356/2
Dutput File;	d:/png_rap	ideye/2010-09-20	t012202_re2	2_3a-nac_7257	468_119356/te
No. of Rows:	5000	No. of Cols:	5000	No. of Ba	nds: 5
OK	Pr	eview Options	11	Preview	Help
Close	, Ir	nport Options			Batch

The process creates two (2) files with extensions "*.img" and "*.rrd".

To display the imported image click Viewer menu and select file and open.

In [Select layer to add] choose imported image

In [Raster Options] display as True Color and set color combination as indicated below.

ile Raster Options M	lultiple		
Display as : True Co	lor 💌	₿.	<u>o</u> K
1	avers to Colors:		<u>C</u> ancel
Red 5	4	\triangleright	Help
		_	<u>R</u> ecent
🔽 Grient Imagestu Map	System		<u>G</u> oto
🔽 Clear Display	T Set View Extern		
🔽 Fit to Frame	T No Stretch		
🖵 Data Scaling	Background Transparent		
		in the second	
17.00 19	a to the second s		

To display an image in photogrammetric (natural color) set color combination as below

A CONTRACT OF A	
Multiple	
Color	<u>0</u> K
Layers to Colors:	<u>C</u> ancel
2 - Blue 1 -	Help
ap System	<u>B</u> ecent <u>G</u> oto
🖵 Set View Extern	
No Stretch	
1 Ho showin	
	Multiple Solor Layers to Colors: 2 Blue: 1 + System System System System

To display entire image tick the Fit to frame option

To view no data area (in black) tick Background Transparent option to make the image transparent

To compare visible (natural color) image and infrared image select Viewer to open second viewer to compare the two images. In second Viewer click file and open. In Select layer to add, select the same imported file. In Raster options, display as True color with color combination as above. (The two images are displayed as below)

The left image shows difference of forest area. The right images shows natural color (using for mapping.) To view two (2) images at same time (simultaneously) in Viewer menu, select view option and click link/unlink viewers and choose geographical.

2-5. Mosaicing Of RapidEye Image by ERDAS Imagine

Select Data Prep menu and click Mosaic images and Mosaic tool. In Edit option select Add images and choose the imported images (*.img) of interest that will join each other.(The images are assigned Id numbers for reference). In process menu select Preview mosaic to check before mosaicing or select Run mosaic to continue Mosaic process. If Run mosaic then save the Output file in *.img format and wait for mosaic process to complete. Check the final mosaic by selecting Viewer menu and Open file and and choose saved mosaic file in *.img format.

Data Preparation	×
Create New Image	
Create Surface	
Subset Image	1
Dice Image)
Image Geometric Correction	m
Mosaic Images	
Unsupervised Classification	m
Reproject Images.,.	1
Recalculate Elevation Valu	ies
Imagizer Data Prep	
Make RPF TOC	1
RPC Generation	Ĵ
Unchip NITFs	
Extract Shapefiles from NI	۲F
Process Footprints and RSE	TS
Close H	elp

Mosaic Images	
MosaicPr	O.,
Mosaic To	iol
Mosaic Dire	ect
Mosaic Wiz	ard
Close	Help

9 Z 17 11 6 5 21 25 9 II II 12	19	16	14	- 13	1	
6 5 21 20 9 11 12	9	7	17	-1		
9 8 13 12	ð	ā	21	a	Y	
	ę		ġ.	5	2	
The second secon	+ (Pat)	Same (Same		in.	Baumpe	- III C

Mosaic index information

Bottom view is final/complete mosaic image.

2-4. Geometric Correction (Pre-processing)

Prepare two imported images as;

Viewer 1: Show orthorectified image

Viewer 2: Show not orthorectified image

In Viewer 2 select Raster menu and choose Geometric Correction. Set Geometric Model and apply Polynomial. In Polynomial Model Properties accept the default values. In GCP Tool Reference Setup select Existing viewer. In Viewer Selection Instructions click on a point in Viewer 1 and the Reference Map Information appears for information. Select a minimum of nine (9) or ten (10) GCPs. Check RMS Error and Control Point Error. Both errors should be less than pixel size (normally 100) in Viewer 1.

	W Polynomial Madel Properture (No Lite)	
Select Geometric Model X	Parameters Transformation Projection	
CARTOSAT RPC RESOURCESAT RPC IRS Landist REXXXXXVI Projective Transform Reproject Reproject Rubber Sheeting	Polynomial Order 1	Rated Save Save As Date Help
Open Existing Model.	Statue: Model has no solution.	

Reference Cum	Map Information	ojection:
Projection: I	МТИ	
Spheroid: W Zone Number:	GS 84 51	
Datum: WG9	84	
Map Units.	Meters	*
[OK	Cancel	Help

In Geometric Tools select Display Resample Image dialogue. Then enter Output File name and choose Nearest Neighbor in Resample Method. Click OK to let resample process run.

🕖 Resample	×
Output File: (* img)	Resample Method:
1	💐 Nearest Neighbor 🔄
Dutpu	It Map Information
Projection: UTM	
Units: meters	
Number rows: 8490	Number columns. 5733
0	utput Corners:
ULX: 325195.000000	LRX: 543011.000000
ULY: 167780.000000	LRY: -2000.000000
	From Inquire Box
0.	utput Cell Sizes:
x 38.000000 - Y	20.000000 - Mommal.
Force Square Pixels on Re	projection *
Decelariate Orderst Defer	ite To anno Zone in Chate
necalculate output perac	
OK Batch	Cancel Help

Create new Viwer to display geocoded (orthorectified) image. Open two images in same Viewer reference image and output resample image.

NB: When opening Output image untick Clear Display, tick Background Transparent and reset color combination to Red:3, Green:2 and Blue:1 depending on the Output image.

In Utility option select Blend or Flicker to view changes/difference in the two images.

Comparing RapidEye image and PALSAR image using Blend/Fade.

2-2. Atmospheric Correction (Pre-processing/Radiometric Correction)

Select Interpreter menu and choose Radiometric Enhancement and select Haze Reduction or Noise Reduction. If Haze Reduction then open Input file (original) and create Output file (rename file). For Point Speed Type click High and rename Output file (eg, haze_reduction_high.img) and click OK to run.

Mage Interpreter	X
Spatial Enhancement	
Radiometric Enhancemen	ü. 🦳
Spectral Enhancement.	
Basic HyperSpectral Tools	Š. 1.5
Advanced HyperSpectral To	iols
Fourier Analysis	
Topographic Analysis	
GIS Analysis	
Utilities	
Close Ha	elp

Radiometric Enhar	icement 🗴
LUT Strete	sh
Histogram Equa	lization
Histogram M	atch
Brightness Inv	ersion
Haze Reduc	tion
Noise Reduc	tion
Destripe TM	Data
Close	Help

Input Fik		Output File; (*.img)				
Coordinate Type:	Subset De	finition:			From Ing	uire Box
🕫 Мар	ULX:	0.00	1	LRX:	0.00	÷
C File	ULY:	0,00	* *	LR Y:	0.00	ź
Method.	Poir	nt Spread Tyj	pe:	☐ Igr	nore Zero in S	Stats.
Point Epread	•	High 🤉 Li	ow	∏ Igr	nore Zero in I	npul.
	UK I	Bał	ch.		(Á,É))	
(Cancel	Viev	N		Help	

To compare, repeat above process then click Low and rename Output file (eg, haze_reduction_low.img) and click OK to run.

Top view is original RapidEye image. Bottom view is applied Haze Reduction.

2-3. Topographic Analysis (Pre-processing/Radiometric Correction)(Optional)

In Interpreter menu select Topographic Analysis and choose Topographic Normalize. In Lambertian Reflection Model specify target image (working image file) as below

x

Slope.

Aspect.

Level Slice

Shaded Relief.

Painted Relief.

Topographic Normalize. Raster Contour.

Create Surface,

Viewshed.

Route Intervisibility.

Anaglyph.

DEM Height Converter.

Help

Close

Input DEM file (already created) and set layer number as 1 and DEM units in Meters. Then create Output file (eg, topographic_normalize.img). Set Solar Azimuth (eg, 34) and Solar Elevation (eg 76) and click OK to run. (NB: Solar azimuth and elevation values are obtained from respective metadata files or can be calculated from meteorological

information from observation/acquired date)

2-6. Applications of Optical Image (RapidEye)

The Optical image has a range of applications in analysis of geographical features. For applications in forest cover analysis optical image has merits in observing status of vegetation areas/types in forest and monitoring its changes. Landuse changes such as plantations can also be monitored among the forest cover. The forest cover and landuse change can be analysed using NIR(Near Infrared) band (especially RapidEye has NIR band as band #5). Other features such as roads, rivers (inundated areas), settlements, natural and man-made disasters can also be effectively monitored using optical images.

3. PALSAR data processing

3-1. Import PALSAR data

ERSDAC(A PALSAR provider) provides geocoded and orthorectified image as Geotiff file format, so it can be imported as geotiff image using Import tool. (See 2-1. How to import images.)

3-2. Combine HH-polarization image and HV-polarization image

In this programme, PALSAR FBD (Fine Beam Dual polarization) images are applied. FBD data are separated as HH data and HV data. Layer Stacking tool is used to combine the two images (HH data and HV data).

HH polarization image

HV polarization image

Note : What is HH polarization? and HV polarization?

The radar sensor is an active sensor apart from Optical sensor which is passive. Thus, the radar sensor (space-borne) transmits signals to the target (on ground) and receives backscatter signals from the target. The signal transmitted by radar sensor is referred to as H (horizontal signal). The signal received by radar sensor is backscatter signal and referred to as; (1) H (horizontal signal) and (2) V (Vertical signal).

If the target(surface) is smooth, the backscatter signal is H. If the target(surface) is rough or the target is forest crown, the backscatter signal is V because the signal polarization is rotated.

Insert a diagram showing HH and HV here.

In ERDAS Imagine software select Interpreter menu and choose Utilities. Then select Layer Stack and choose Stacking. In Stacking open the Input file (*.hh.img) and click Add to add 'hh' file. Also open input file (*hv.img) and click Add to add 'hv' file.

2	mage Interpreter	×
	Spatial Enhancement	
	Radiometric Enhancement	
	Spectral Enhancement.	1
	Basic HyperSpectral Tools	
	Advanced HyperSpectral Tools	
	Fourier Analysis	
	Topographic Analysis	1
	GIS Analysis	
1	Utilities	
-	Close Help	
-		-

Layer Selection and Stacking	- 🗆 ×
Input File: (*.img)	Output File: (*.img)
02hh.img	R.
Layer 1	
d:/png_palsar/img/02hh.img(1)	4
	_
	<u>*</u>
Add	Clear
Data Type;	
Input: Float Single Out	put: Float Single
Output Options:	
Union C Intersection	☐ Ignore Zero in Stats.
UK Batch	A01
Cancel View	Help
	1

Create an Output file as (*hh_hv.img) which combines the two images and click OK to run the stacking process.

Layer Selection and St	acking		-101 ×
Input File: (*.img)		Output File: (*.img)	1
02hv.img	02_hh_h	iv.ing	R
Layer 1			
d:/png_palsar/img/02hh.img(1) d:/png_palsar/img/	02hv.img(1)	म
1			-
Add			Clear
Data Type;			
Input: Float Single	Output;	Float Single	-
Output Options:			
Union C Intersection	1	Ignore Zero in St	tats.
OK	Batch	A01	
Cancel	View	Help	
			1

To display the processed image select File/Open in Viewer menu and in Select Layer To Add choose Raster option to set color combination as; Red: Band 1 (HH), Green: Band 2 (HV) and Blue: Band 1 (HH).

3-3. Comparing HH image and HV image

In figure the processed image display false color of the image and so it depicts a profile of vegetation cover in area of interest (AOI). The HH signal received with bright/strong backscatter shows features such as buildings, settlements due to its double-bounce effect. The HV signal received with bright/strong backscatter shows vegetation areas or relief areas (rough areas) due to volume scattering.

In figure below, mangrove area is shown as dark green but due to water cover it also indicates grey color among mangrove areas. (HV signal received with dark/weak backscatter)

3-4. Comparing PALSAR image in 2007 and 2010

Physical/Geographical changes can be observed over certain period of interest and thus the PALSAR image can be used as such in comparing images of 2007 and 2010. The two images can be compared to monitor or detect changes in vegetation/forest cover over time period. If the image (HV signal as backscatter effect with color Green: band 2) shows bright/strong effect in year 2010 than in 2007, it indicates afforestation, or re-growth/regeneration. If the image (HV signal as backscatter effect with color Green: band 2) shows dark/weak effect in year 2010 than in 2007, it indicates deforestation/logged area or burning/clearing area of forest/vegetation cover. If the image (HH signal as backscatter effect with color Magenta: band 1) shows bright/strong effect in year 2010 than in 2007, it indicates building constructions or new planting areas (agriculture). If the image (HH signal as backscatter effect with color Magenta: band 1) shows dark/weak effect in year 2010 than in 2007, it indicates clearing/removal of .buildings, roads, surface areas with water cover or flooding areas.

PALSAR image in 2007

PALSAR image in 2010

PALSAR image in 2007

PALSAR image in 2010

4. Applications of RapidEye, PALSAR and GeoSAR

The table below summarizes the applications and its merits and demerits.

RapidEye	PALSAR	GeoSAR
Applications	Applications	Applications
Forest/Vegetation Types	Forest/Vegetation Change	Forest cover detection
Plantation	detection	Tree height
Land-use	Geological structure	
Roads	Natural/man-made	
Rivers	disaster	
Settlements	Plantations	
Natural/Man-made		
disaster		
Demerits	Demerits	Demerits
Cloud cover	Difficult to	More expensive
Expensive	interpret/understand	One time observation
		Limited area of observation
		(Cannot cover whole of
		PNG)

Presentation on JICA Training Program

JICA PROGRAM

CAPACITY DEVELOPMENT ON FOREST RESOURCE MONITORING FOR ADDRESSING CLIMATE CHANGE IN PAPUA NEW GUINEA (PNG)

PROGRAM OBJECTIVE:

1. TO UNDERSTAND THE WHOLE PICTURE OF FUTURE ACTIVITIES THROUGH THE INTRODUCTION OF CASE EXAMPLE OF JAPANESE REDD & RELATED SUPPORT

2. TO BE ABLE TO PREPARE AND ORGANISE BASIC INFORMATION FOR IMPLEMENTATION OF THE FUTURE PROJECT THROUGH PRACTICAL WORK OF FOREST COVER CLASSIFICATIONS USING REMOTE SENSING TECHNOLOGY AND ACTUAL DATA OF PNG.

PO 1. (A) CASE EXAMPLE OF JAPANESE REDD & RELATED SUPPORT:

(ERSDAC) EARTH REMOTE SENSING DATA ANALYSIS CENTRE

PALSAR Project

PHASE ARRAY TYPE L – BAND SYNTHETIC APERTURE RADAR IS ONE OF THE IMAGING SENSORS ON BOARD THE ALOS (ADVANCED LAND OBSERVING SATELLITE) LAUNCHED IN JANUARY 24,2006.

CHARACTERISTICS OF PALSAR

ALL WEATHER SENSOR
(RAIN/NIGHT/CLOUD)
L BAND (1.27 GHZ/23.6CM)
HIGH RESOLUTION (GROUND
RES.10M)/ SWATH 70KM
MULTI-POLARIZATION: HH, VV,
HH + HV, VV + VH, HH + HV + VH
-+ VV. FOR VEGETATION, SOIL AND
GEOLOGIC CLASSISFICATION

Japan Aerospace Exploration Agency (JAXA)

REDD AND FOREST MONITORING USING ALOS/PALSAR

- GLOBAL TIME SERIES HIGH RESOLUTION (10M AND 25M) L − BAND SAR DATASET USING JERS-1(1992 − 1998) AND PALSAR (2007 − 2010) ARE BEING GENERATED AND USED FOR REDD+, i.e, MONITORING THE FOREST CHANGE, FOREST CLASSIFICATION AND IN FUTURE CONVERTING TO BIOMASS
- SEVERAL CLASSIFICATION METHODS ARE EVALUATED FROM THE MAIN (AUTHOMATIC OPERATION) DRIVER FOR REDD. JAXA IS KEEN TO SHARE THE REDD+ACTIVITY JOINTLY USING THE SATELLITE DATA, GROUND TRUTH DATA, EXPERIMENT, EVALUATION WITH INTERESTED PARTIES.

Foresti	ry & Forest Products Research Institute
	ONE OF THE ROLES OF REDD R & D CENTRE OF FFPRI IN FFPRI- REDD PROGRAM IS TO;
	DEVELOP REMOTE SENSING METHODOLOGIES AND ANALYTICAL TECHNIQUES IN ORDER TO MONITOR DEFORESTATION AND FOREST DEGRADATION IN DEVELOPING COUNTRIES.
	FFPRI DEVELOPS METHODS TO INTEGRATE REMOTE SENSING TECHNIQUIES WITH GROUND MEASUREMENTS FOR FOREST MONITORING. REMOTE SENSING BY SATELITE IS A PARTICULARLY USEFUL TECHNIQUE FOR MONITORING FORESTS OVER LARGE AREAS. IT IS ESPECIALY EFFECTIVE WHEN MONITORING DEFORESTATION. AND FOREST DEGRADATION IN DEVELOPING COUNTRIES.

METHODS ARE CURRENTLY DEVELOPED TO ESTIMATE CHANGES IN CARBON STOCK LEVELS AND TO IDENTIFY THE VARIOUS CAUSES OF FOREST DEGRADATION BY USING MULTI TEMPORAL OR HIGH RESOLUTION SATELLITE DATA IN COMBINATION WITH GROUND MEASUREMENTS.

ALSO RESEARCHING WAYS OF USING THE SAR CARRIED ON THE JAPAN ALOS SATELLITE AND EXHIBITING ITS ABILITY TO PENETRATE CLOUD COVER IN ORDER TO IDENTIFY DEFORESTATION AND FOREST DEGRADRADATION IN CLOUD COVERED TROPICAL RAIN FORESTS.

PO (2): PRACTICAL WORK OF FOREST COVER CLASSIFICATION USING REMOTE SENSING TECHNOLOGY AND ACTUAL DATA OF PNG

(2.1) Image processing of RapidEye by ERDAS Imagine for Milne Bay Province (PNG)

Comparing visible (natural color) image and infrared image

The left image in Infrared color (false) shows difference of forest and land-use area. The right images shows natural color (useful in mapping)

Mosaic Of RapidEye Images by ERDAS

Mosaic index information

		9 12 N 12	. 🗆 @	a u	0
19	18	LÅ	10		
8	2	17	11		
¢	5	21	20		
9	B	13	12		
Dinter: Ruit.	inge Nam	a.	. 80.4	Returch	TRMS 10
Y X d/sn	a_recidrys/mg2/2010-08	201012202 142 334	Enio	MN	0.0000
1 250	0 (Apidityity Ing.2/2010-09	201012202_102_344	Enter	Part -	0.0025
4 0.00	g 14pdhys/mg2/2/30-09	201012206 m2 3ar	Enlet	1414	0.0005
5 d/on	g_readbys/mg2/2010-00	201012206_142_341	Low	NN	0.000.0
E 0./54	a_Htp://www.img2/2010-09	201012206_082_384	Entrie:	NN	0.0020

View of final/complete mosaic image.

Atmospheric Correction (Pre-processing/Radiometric Correction)

Left view is original RapidEye image.

Right view is applied Haze Reduction.

Applications of Optical Image (RapidEye)

The Optical image has a range of applications in analy atur de0 ara ons ΟΤ bhl cover analysis optical Imad e In vegetation observina stat \bigcirc S/TVD In ar monitorina chand use **ONS** Logged SUCh as GIO ah C eatur can se i **I**nn LS | chan **B** Ides 0210 De 6 US esp band 16 Dand as atur Ch roads, rivers Inundated settlements. area man-made disasters can natural and **a so** be effectively monitored using optical images.

2.2 PALSAR Data Processing

What is HH polarization? and HV polarization?

The radar sensor is an active sensor apart from Optical sensor which is passive. Thus, the radar sensor (space-borne) transmits signals to the target (on ground) and receives backscatter signals from the target. The signal transmitted by radar sensor is referred to as H (horizontal signal). The signal received by radar sensor is backscatter signal and referred to as; (1) H (horizontal signal) and (2) V (Vertical signal).

 If the target (surface) is smooth, the backscatter signal is H.
 If the target (surface) is rough, eg; forest crown, the backscatter signal is V because the signal polarization is rotated. (Illustrate)

Comparing PALSAR image of 2007 and 2010

- Physical/Geographical changes can be observed over certain period of interest and thus the PALSAR image can be used as such in comparing images of 2007 and 2010. The two images can be compared to monitor or detect changes in vegetation/forest cover over time period.
- If the image (HV signal as backscatter effect with color Green: band 2) shows bright/strong effect in year 2010 than in 2007, it indicates afforestation, or re-growth/regeneration.
- If the image (HV signal as backscatter effect with color Green: band 2) shows dark/weak effect in year 2010 than in 2007, it indicates deforestation/logged area or burning/clearing area of forest/vegetation cover.
- If the image (HH signal as backscatter effect with color Magenta: band 1) shows bright/strong effect in year 2010 than in 2007, it indicates building constructions or new planting areas (agriculture).
- If the image (HH signal as backscatter effect with color Magenta: band 1) shows dark/weak effect in year 2010 than in 2007, it indicates clearing/removal of .buildings, roads, surface areas with water cover or flooding areas.

PALSAR image in 2007

PALSAR image in 2010

2.3 Forest Cover Classification

Object based classification (eCognition Software)

Object-Based Classification is a method of image analysis to conduct classification based on image objects. This method to partition a comparatively homogeneous domain on an image is similar to image interpretation by human eyes (Figure 1 (a)). It is difficult to partition homogeneous domain on the existing pixelbased classification without the difference of the minute domain, because it does not consider relations with neighboring pixels (Figure 1 (b)). Therefore, in many applications, the object-based classification can be more effective for high resolution image analysis than pixel-based classification (Figure 1 (c)).

(a) (b) (c) Figure 1: Differences between Object-based Classification and Pixel-based Classification

Classification

- (a) Human eyes' interpretation (Boundaries of different vegetation types can be extracted.)
- (b) Pixel-based classification (The difference of the minute domain is extracted unnecessarily)
- (c) Object-based classification (Results can be close to those of human interpretation.)
- Regarding pixel-based classification, because one class of domain may contain many minute domains of other classes, it is often hard to interpret a resulting classification map. Regarding object-based classification, on the other hand, because this method segments a whole image into small domains (image objects), a resulting classification map can be similar to a map that can be created based on human eyes' interpretation (Figure 2).

Figure 2: Comparison of Pixel-based Classification and Object-based Classification

Original Image

Pixel-Based Classification

Object-Based Classification

2.4 Applications of RapidEye, PALSAR and GeoSAR The table below summarizes the applications and its merits and demerits.

RapidEye	PALSAR	GeoSAR		
Applications Forest/Vegetation types Plantation Land-use Roads Rivers Settlements Natural/Man-made disaster	Applications Forest/Vegetation Change detection Geological structure Natural/man-made disaster Land-use	Forest cover detection Tree height		
Demerits Cloud cover Expensive	Demerits Difficult to interpret/understand	Demerits More expensive One time observation Limited area of observation (Cannot cover whole of PNG)		

2. Project/Programme Scope

Forest Monitoring: Benchmark Map and Change Detection

🕙 PNGF A

Background & Needs

Accurate Forest Base-map for Forest Management & Development Planning Sustainable Monitoring System for Forest Change (Deforestation) Detection Constellation of Optical Satellites

Vegetation Type Classification for Forest Benchmark map

Benchmark Map by Optical Satellite

KOKUSAI KOGYO CO., LTD.

Developing Forest Base-map with Constellation of Optical Satellites Change Detection with Multi-temporal Radar Image (ALOS/PALSAR)

Weather-independent of Radar Satellite

Change Detection with Multi-temporal Radar

Change Detection by Radar Satellite

JICA & JICS 88

_	comparin	g approaches to a	ctivity data
SOFC-GOLD Fra	mework	Issues for comideration	PNGFA approach to National Level MRV
Step 1	Selection of the forest definition	 Is FAO definition sufficient How to stratify 	 Definitional issue: Forest definition and classification: including Mangrove consistently applied in PINGRIS, FIM-S, and FAO-FRA National Report (barameters" for defining forest arms) Stratification: Aggregation level of forest classification to be determined; forest / non-forest, 6, 9, 15, or 25, major groups
Step 2	Designation of forest area for acquiring cateflite data	 Wall-to-wall or forested areas only A/Re-forestation requires wall-to-wall 	Satellite monitoring covers nation-wide land by well-to-wall Yrigh into of forest coverage in PNG fincersity of deterting A/te-forestation and detarestation Boundaries for reporting to be considered 2010 Forest Base Mep will be considered with 2002 classe
Step 3	Selection of sutolite imagery and coverage	 What required resolution, update frequency How to get data feed to PNG 	Mation wate (to be stam presswed) Oprical Reputies at 6.5 moder vis. (2010) SAR ALCOMATIAN (2007, 2010) Partial coverage Alrborne Sañ and/or (2004 (TBD))
Step 4	Elecisions for sampling versus wall to wall coverage	 Systematic vs. stratified sampling How to identify 'hot-spots' for stratified sampling 	Woll-to-walt coverage since PINGRIS and FIM-5 Datatase shifty and design to be considered using (50-1900). Unified Modeling Language Reports on resource monitoring, reports from FRI-PSPs, concessis and other projects to be feel ideally including all 5 carbon pools*
Step 5	Process Hod analyze the satellite data	 What methodology and software for data processing and change detection 	 GIS-AveGIS (for be soon procurrent in order to build Forest Resource (offermation Management DAtabase* Remote Sensing: EFDAS (MAGNE (including ER Mapper), IDRIS/Land Change Modeller (on ArcGIS) and eCognition (to be soon procurred), to complete 2010 Forest Base Map. Burness and carbon estimated by "Spatial Volume*" from

Procurement Items

Item	Qty (Mar)	Qty (July)	Qty (proposing)	Remarks
A) GIS related equipment; hardware/software		•		·
A-1 Computer Hi-Tech (GIS Capacity)	14	24	32	Desktop PC
A-2 Laptop	12	15	18	Laptop PC
A-3 GPS (Mobile Mapper)	12	15	31	Portable GPS
A-4 A3 Printer (Color)	-	-	8	
A-5 A3 Scanner	-	-	8	
- A1 Scanner	1	3	-	
A-6 A0 Scanner	-	-	3	
A-7 A0 Plotter	-	-	3	
A-8 Data Server	-	-	2	FA & FRI
- ER Mapper license & backup software	2 x 5 year	3 x 3 year	-	Included in ERDAS Pro.
A-9 ERDAS	-	-	1 unit	Level & Extensions
A-10 eCognition	-	-	1 unit	Several license type
A-11 ArcGIS license	2 x 5 year	3 x 3 year	1 unit	Level & Extensions
A-12 ArcGIS Server	-	-	2 set	For data-sharing
A-13 Database Management System	-	-	2 set	MS SQL Server
A-14 Integrated Development Environment	-	-	3 set	MS Visual Studio
A-15 MapInfo Upgrade	1	1	1 set	Minimum upgrade
- Satellite Imagery (SPOT/ALOS)	Whole country	Whole country	-	No archive
A-16 Satellite Imagery 2010 (ALOS/PALSAR)	-	-	Whole country	332 scene (tentative)
A-17 Satellite Imagery 2010 (RapidEye)	-	-	Whole country	1055 tile
A-18 Satellite Imagery 2007 (ALOS/PALSAR)	-	· · ·	Whole country	332 scene (tentative)
A-19 Airborne RADAR Data	Due to the problem of ALOS, cl	hanged from	Sample area	DTM & DSM
A-20 Airborne LiDAR Data	to 2007 (Training items ar	re not changed)	Sample area	Validation/verification

4. Grant-Aid Procurement

Challenging of RS in PNG: "Cloud"

SPOT4 2002

SPOT5 2008

Color Color

CAN DA

4. Grant-Aid Procurement

Solution of RS in PNG: RapidEye Basic Information

KOKUSAI KOGYO CO., LTD.

JICA & JICS 26

KOKUSAI KOGYO CO., LTD.

6. Benc	hmark Ma	ap Development			-		er le se
Со	mpari	ng Class i	tems of PNC	G and	interr	nati	ional standard
	UPNG	Structural formation	Vegetation type	•	Condition	Code	
Forest lands		Forest	Low Altitude Forest on Planir	ns and Fans	below 1000m	Pl Po	Large to medium crowned forest Open forest
			Low Altitude Forest on Uplan	ıds	below 1000m	Ps HI Hm	Small crowned forest Large crowned forest Medium crowned forest
						HmAr Hmd	Medium crowned forest with Araucaria common Medium crowned depauperate/damaged forest
						Hme Hs Hse	Medium crowned forest with an even canopy Small crowned forest Small crowned forest with an even canopy
						HsAr HsCa	Small crowned forest with Araucaria common Small crowned forest with Castanopsis
						HsCp HsN HsRt	Small crowned forest with Casuarina papuana Small crowned forest with Nothofagus Small crowned forest with Rhus taitensi
			Lower Montane Forest		above 1000m	L LAr	Small crowned forest Small crowned forest with Araucaria common
						LN Lc	Small crowned forest with Nothofagus Small crowned forest with conifers Very small crowned fores
						LsCp LsN	Very small crowned forest with Casuarina papuana Very small crowned forest with Nothofagus
			Montane Forest		above 300m	Мо	Very small crowned forest
			Dry Seasonal Forest			D	Dry evergreen forest
			Litoral Forest			B BCe BMI	Mixed forest Forest with Casuarina equisetifolia Forest with Melaleuca leucadendron
			Seral Forest			Fri FriCg	Riverine mixed successions Reverine successions with Casuarina grandis
						FriK FriTb	Riverine successions with Eucalyptus deglupta Riverine successions with Terminalia brassii
			Swamp Forest			FV Fsw FswC	Voicanic Mixed swamp forest Swamp forest with Campnosperma
						FswMI FswTb	Swamp torest with Melaleuca leucadendron Swamp foresl with Terminalia brassii
E KOKU	SAI KOGY	O CO., LTD.		PNGFA			JICA & JICS 37

6. Benchmark Map Development

Comparing Class items of PNG and international standard

IPCC GL-AFOLU	UPNG	Structural formation	Vegetation type	Code	
Grassland		Woodland		W	Woodland
				Wri	Riverine successions dominated by woodland
				WriCg	Riverine successions with Casuarina grandis
				W∨	Volcanic successions dominated by woodland
				Wsw	Swamp woodland
				WswM	Swamp woodland with Melaleuca leucadendron
		Savanna		Sa	Savanna
				Saf	Savanna with galley forest
				SaMI	Savanna with Melaleuca leucadendron
		Scrub		Sc	Scrub
				ScBc	Scrub with Melaleuca leucadendron
				Scv	Volcanic successions dominated by scrub
		Grassland and Herbland		G	Grassland
				Ga	Alpine grassland
				Gi	Subalpine grassland
				Gf	Grassland with some forest
				Gr	Grassland reverting to forest
				Grf	Grassland reverting to forest with some forest
				Gsw	Swamp grassland
				Gri	Riverine successions dominated by grass
				Gv	Volcanic successions dominated by grass
				Hsw	Herbaceous swamp
Forest		Estuarine Communities		М	Mangrove
Cropland		Other Non-vegetation an	d areas dominated by land use	0	PNGRIS agricultural land use intensity classes 0-4
Wetlands				E	Lakes and large rivers
Other Land				Z	Bare areas
Settlements				U	Larger urban centres

Interpretation Practice for Classification

Structural formation	Vegetation type₽	Shape (Crown)관	Color₽	Shape₽	Size₽	Pattern₽	Texture₽	Shade₽	Circum- stance₽
Forest₽	Low Altitude Forest on Plains and Fanse "P" (<1,000m}e	Q	Mixed 🖉	¢.	ته	Relatively regular ↔ Scattered crown↔	Relatively regular, fine in Natural (RGB 4:5:2) Image of RapidEyee	لھ ا	Along coast, flat topography, lower elevation (<50-100) than H स्थ स्थ
¢.	Low Altitude Forest on Uplands 4 "H" (<1,000m) 43	сь. Г	43	¢	4)	Vary₽	vary in <u>RapidEve</u> in Natural Image (RGB 4:5:2) of <u>RapidEve</u> ²	÷	Uplan d, hilly/ aspects/ slope, higher elevation (>50-100) than P, 40 Mountain range0
¢	Lower Montane Forest (>1,000m) +/ "L"+?	ф	(Dark when Intact, lighter after disturbanc	4 ³	Ę,	Relatively regular, २ २	(Dense, thick, undulating canopy) (RGB452)+2	4 ³	(1,000 m demarcation is not very visible)+ e ⁱ (Inaccessible areacle

6. Benchmark Map Development

Interpretation Practice for Classification

¢	Montane Forest "Mo" (>3,000m) + Dry Seasonal Forest+	ته ته	ج ج	ب ب	ب ب	ر ه ره	ر ه د	<i>ب</i>	ф ф
	"D"								
Ş	Litoral Forest↔ "B"↔	¢	С.	sparsely, patchily scattered Crown २ ⁰ २ ⁰ Open canopy२ ⁰	Mediu m₽	Regular crowns#	Relatively regular, fine in Naturalय	Ф.	Sign of settlement and gardening Often within 150-200m from coast line +2
с,	Seral Forest स (River line) स "Fri"स	¢.	Lighter green₽	¢	Vary in small area ₽	Mixed₽	Mixed ₽	¢.	Along river (can be mixed with gardening) 42
Ą	Swamp Forest+/ "Esw"+/	÷	ę	¢	÷	¢	¢,	¢	¢,
Woodland "W"ନ	ته ا	÷	ę	¢.	¢	C.	¢	¢	C.

KOKUSAI KOGYO CO., LTD.

C.Martin J.

CARLEY STA

Scope of Forest Resource Information Management Database

Database De	esign/Develop	oment	<u></u>				
Sample	e of Wo	rk Breakdown 2					
	No.	1	2				
	Work	Sequence for Provide Forest Information (FIMS)	Sequence for Provincial Forest Plan				
	Who	FIMS administrator to Senior Plan Supervisor	Senior Plan Supervisor				
	When	Every five years (It takes a couple of hours each provinces)	Every five years based on Section 49 of Forestry Act 1991 (as amended)				
llse	for What	To make Provincial Forest Plan	Requirement of the Act. Review of plan				
case (As Is)	Input Information	Protected area data from DEC Logged area from Company	Relevant stakeholders consultations. Previous Provincial Forest Plans. Paper Maps and spreadsheet data of each province				
	Output Data	Paper Maps Spreadsheet data (each province)	Revised Provincial Forest Plan. New concession area Expired concession area Protected area				
	Function	Mapinfo Access	Map stored in FIMS. #New concession area (new) #Expired concession area (update) #Protected area (not often)				
Improve (T	ement items O BE)	Viewing & Printing (not editing) for Managers using Local Area Network	Detail Understanding of Individual work				
KOKUSAI KOGYO CO., LTD. R PNGFA JICA & JICS							

