カンボジア国 建設の品質管理強化プロジェクト 事業完了報告書

(別冊)

第2部 業務完了総合報告書(短期専門家) Final Report-Appendix

> 平成24年10月 (2012年)

独立行政法人国際協力機構 カンボジア事務所

KINGDOM OF CAMBODIA

THE PROJECT FOR STRENGTHENING OF CONSTRUCTION QUALITY CONTROL

FINAL REPORT (APPENDIX VOLUME)

OCTOBER 2012

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
KATAHIRA & ENGINEERS INTERNATIONAL

Appendix Volume TABLE OF CONTENTS

Appendix 1 Plan of Operation

Appendix 2 (Task 1-1) Second Edition of Standard Guideline and Regulation

Appendix 3 (Task 1-2) Study of Application of Dispersive Soil to Road Works

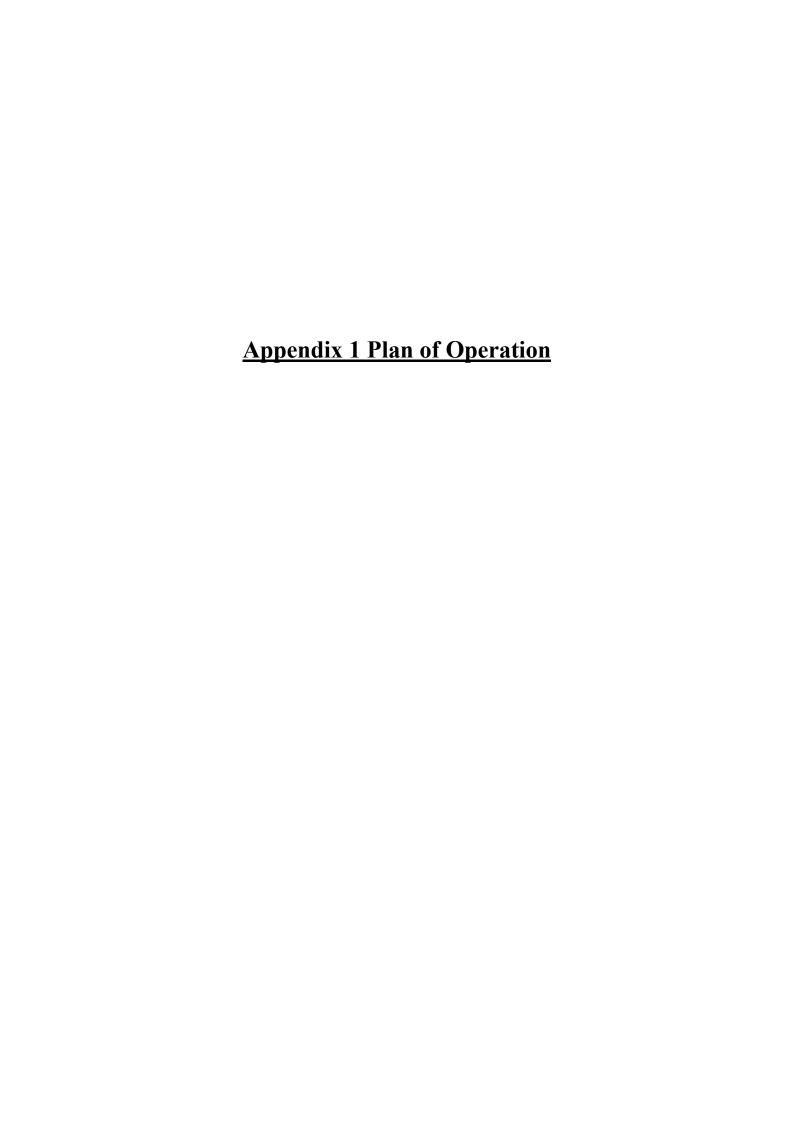
- 3-1 Laboratory Test Result of Natural Soil
- 3-2 Laboratory Test Result of Additive Mixed Soil
- 3-3 Photograph of Work Progress
- 3-4 Photograph of Site Observation
- 3-5 Technical Specification of Pilot Work

Appendix 4 (Task 2) List of Supplied Equipment to Laboratory

Appendix 5 (Task 3) Database System for Completion Documents

- 5-1 Documents Scanning Manual
- 5-2 User Manual for Document Management Database

Appendix 6 (Task 4) Technical Training Course


- 6-1 Text Book of Training of Trainers (TOT)
- 6-2 Syllabi of Training Program in Regular Training Course

Appendix 7 (Task 5) Standard Drawings

- 7-1 Sample of Standard Drawings
- 7-2 User's Manual for Data Searching System

for Road and Road Structure Standard Drawings

Appendix 8 Meeting Minutes

Appendix 1

Plan of Operations (IFY2009 - IFY2012)

					IEA	200		aII	OI	U	שטי	Ιd		Y 20		Г.	LZ	<u>200</u>	7	+	ت	20	/12		Y 20	111					Т			IEV	2012)			Ror	narks
Output		Activities	Work Package		_		-		<u>. T.</u>	- T	, I <u>-</u>	. T			_	140	Τ.			١.	Γ.		_ 1		-			۰	. Т.	Τ.	+	. T -	. T			_	۰	40		1
		Im , ,		11	12	1	2	3	4	5	6 7	<u> </u>	8 9	10) 11	12	1	1 2	3	4	5	6	7	8	9 1	10	11 1	2	1 2	3	3	4 5	<u>, </u>	6	7	8	9	10	Expert	Counterpar
	1.1	To conduct the baseline survey on the current duties and capacity of each Department in MPWT relating quality control of construction	Meeting with Secretary, Director General and Directors	•		_		_																															Yumita	Bunthoeur
Established			Secure the capable person from related Department																																				Yumita	Bunthoeur
iance are I	1-2	To set up Task Force for formulating draft SG, RG	Counterpart meeting will be conducted			_	_	#	_	-	+-	+	-+-	+	_	-		+-	-	-					+	_	+	+	+-	+	‡	+	‡	_	+	-	_	-	Yamauchi Yumita	Bunthoeu
d Mainter			Conduct regular Task Force meeting twice a month			_	_	4	_	-	+-			+																									Yamauchi Noda	Namo Phibal
ruction and			Collecting and analysis the related specification and Standards			_	-																																Noda Nakamura	Sinaveth Menakak
orce 1) Bridge Const			Review of the implementation process (New and Maintenance)		_	_	-	=																							l								Noda Nakamura	Phibal
OUTPUT 1 (Task Force 1) control of Road and Bridge			Confirmation of the Design process (New and Maintenance)			=																																	Noda Nakamura	Phibal
OUTPUT 1 (Task Force 1) Standards, Regulations, Guidelines for Quality Control of Road and Bridge Construction and Maintenance are Established.		(1-3.) To study and analyze	Confirmation of the Quality Control process currently being adopted (Routine and Periodic)			_																																	Noda Nakamura	Phibal
lelines for Qu	1-3 & 1-5	the currently applied specifications and Standards (1-5.)	To identify all the problems and the problems to be improved			-																																	Noda Nakamura	Phibal
ons, Guid		To formulate SG for actual application of Standards	Preparation of the draft Standards Guidelines																																				Noda Nakamura	Namo Phibal
ards, Regulati			Confirmation of Standards Guidelines to be formulated and modified				-		+	-	+-	+																											Noda Nakamura	Namo Phibal
Stand			Formulation of the draft Standards Guidelines								-	1																											Noda Nakamura	Namo Phibal
			Conduct regular Task Force meeting		_	_		#	#	+	+	‡	#	‡																									Noda	Phibal
			Counterpart meeting will be conducted			_	-	-}	_	_		╁		+	-			+-	-	-					_	_	_	_	<u> </u>	-	Ⅎ	<u>-</u>	1	-+	_	-	-		Yamauchi Yumita	Bunthoeu Namo
	I																								I						I		ı							

Output	Activities	Work Package		JF	Y 20	09							JFY	201	0										JF	Y 20	11								JFY2	012			Re	marks
Catput	receivities	Work I ackage	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	1 2	3	4	4 5	5	6	7	8 9	10	0 1	1 1	2 1	2	3	4	5	6	5 7	8	9	10	Expert	Counterpar
		Meeting with Secretary, Director General and Directors					-	_			_	_	-							ļ																			Yamauchi Yumita	Bunthoeur
Stablished.	To formulate the draft	Analysis of relating Regulations documents such as sub-degree and result of the baseline survey																																					Yumita Noda Nakamura	Menakak Sinaveth
ance are E	Regulations determining each Department duties for	Preparation of the work schedule for Regulations																																					Nakamura Noda	Phibal
d Mainten	assuring construction quality	Meeting with MEF and related Department							-			_		_																									Yumita Yamauchi	Bunthoeur i
ruction an		Confirmation of Party A/B/C/D system for QC							-	-																													Yamauchi Noda	i Bunthoeur Namo
e 1) dge Const		Preparation of the draft Regulations					-	_	-		-	-	-																										Noda Yamauchi	Namo i Phibal
Force Force ad and Bri		Conducting the seminar at 24 provinces											-																			-	-	+		+-	•		Yumita Sakurai	Onit Menakak
OUTPUT 1 (Task Force 1) Standards, Regulations, Guidelines for Quality Control of Road and Bridge Construction and Maintenance are Established	(1-6.) To be authorized the draft SG and RG by	Conduct on EC/JCC meeting and to be approved Standards Guidelines and Regulations										_	 - 																										Yamauchi Yumita	i Bunthoeur Namo
idelines for Qu	JCC (1-9.) To be officially authorized Standards	Review of Khmer version of Standards Guidelines and Regulations																		-	<u> </u>	-	_	_	_	<u> </u> -	-	-	+-	-					-	-	-	+	=	Namo Phibal
Regulations, Gu	& Guidelines and Regulations by the Minister of MPWT, and evaluate the	Formulation of the 2nd edition of Standards Guidelines and Regulations																										-			_		-		_	-		_	Yamauchi Nakmura Noda	i Namo Phibal
Standards, F	application of Standards Guidelines and Regulations	Monitoring and evaluation for Standards Guidelines and Regulations														-	_	-	-	+				-		-	- -			_	_								Yamauchi Ymauchi Noda	
		Approved the 2nd edition of Standards Guidelines and Regulations by MPWT																																_	-		-	1	Yamauchi Noda	i Bunthoeur Namo

0		A -+ii+i	West-Destant		JFY	Y 200	19						JFY :	2010)				Ī					JFY	2011					I			JFY	2012	2			Ren	narks
Output		Activities	Work Package	11	12	1	2	3 4	5	6	7	8	9	10	11	12	1	2 3	3 4	1 5	6	7	8	9	10	11	12	1 2	2	3	4	5	6	7 8	8	9 1	10 E	Expert	Counterpart
			Selection of the pilot project													_		+	+	-								_	_	-								imauchi Iaeda	Bunthoeun Namo
olished.			Development and application of Quality Control format (Daily Control/ Progress)																+			_	-		i	-				-		-		<u>.</u>			Na	amauchi akamura Iaeda	All C/Ps
e are Estal			Detailed Cost estimation for Party B and C																1	+		-					•	7	-	-								imauchi ikamura	All C/Ps
Maintenanc			Preparation of Contract Document																			-	-	-			_	-	+		_						Na	amauchi akamura	All C/Ps
tion and			Conduct regular Task Force meeting													_	1	_	Ŧ	‡	+	Ė	Ė		_		=	#	+	1	_		#	#	1			oda Iaeda	All C/Ps
e 1) idge Construc	1-8	Implementation of the pilot projects	Implementation of the pilot projects (Observation of current practice)													-		-+	+	+-	+	+	-	-													М	laeda	All C/Ps
(Task Forc			Evaluation of the pilot projects																							-		-+	_	1	-	-	_	+	+	+		mauchi laeda	All C/Ps
OUTPUT 1 (Task Force 1) Control of Road and Bridge			Selection of the pilot projects for Year 2012																				-	-		-	•			-								imauchi oda	All C/Ps
es for Quality (Preparation of the pilot projects in Year 2012 (Construction Plan, etc.)																										-		· -			_			Υι	imauchi umita Iaeda	All C/Ps
OUTPUT 1 (Task Force 1) Standards, Regulations, Guidelines for Quality Control of Road and Bridge Construction and Maintenance are Established.			Development and application of Quality Control format (Daily Control/ Progress) in Year 2012																												-+	-	<u>-</u>	-			М	laeda	All C/Ps
ındards, Re			Confirmation of dispersive soil at site]	-											Menakak Socheat
Sta	1-9A	Trial construction for dragon hall treatment	Trial construction].	+								Ol	kamoto	Leang Menakak
			Evaluation of pilot construction																																-		Na	akamura	All C/Ps

Output	Activities	Work Package		JFY	2009						JFY	2010)								JI	Y 20	011							JF	Y2012	2		Re	marks
Output	Activities	work rackage	11	12	2	3	4 5	5 6	7	8	9	10	11	12	1	2 3	4	5	6	7	8	9	10 1	1 12	2 1	2	3	4	5	6	7	8 9	9 10	Expert	Counterpart
Maintenance		Meeting with Secretary, Director General and Directors																							-		_	-				+		Yumita Yamauch	Bunthoeun Namo
nstruction and		Monitoring and evaluation for Standards Guidelines and Regulations																							-	_						-		Yamauch Nakamura Kuwano	
OUTPUT 1 (Task Force 1) Standards, Regulations, Guidelines for Quality Control of Road and Bridge Construction and Maintenance are Established.	Monitor and evaluate the application of the Standards Guidelines	Conduct on EC/JCC meeting and to be approved Standards Guidelines and Regulations																							•	-	_								Bunthoeun Namo
OUTPUT 1 (Task Force 1) Quality Control of Road an are Established.	and Regulations	Comparison of SG and applied daily control sheet																	_		-+	_	+		-		-		-			-	-	Maeda Yamauchi	All C/Ps
OU		Preparation of Khmer version of SG & RG																	_		_	_	-			-									Namo Phibal
ions, Guidelin		Formulation of 2nd edition of SG & RG																											_		<u>-</u> +	+	-	Yamauchi Nakamura Noda	All C/Ps
ds, Regulat	To study of current paractice of road	Follow up & improvement of road inventory data																									-	-						Yumita	Phibal Dara
Standare	propose road data information system	Propose to road data information system																												- -				Yumita	Dara

0	ıtput		Activities	Work Package		JFY	Y 20	09							JFY	201	10										JFY	201	l							JF	Y20	12			Re	marks
	itput		Activities	WOIR I ackage	11	12	1	2	3	4	5	6	7	8	9	10) 11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	Expert	Counterpar
	affs			Analysis of existing laboratory equipment or device					-	-		1																													Maeda	Leang
2)	ent and st			Analysis of laboratory staffs ability					_			_	_	-																											Maeda	Leang
OUTPUT 1-2 (Task Force 2)	y equipm		Formulate the procurement plan of	Formulation of the procurement plan							•		_																												Maeda	Leang
JT 1-2 (T	aborator	1-7	Laboratory equipment to meet the Standards Regulations	Inspection and Installation on delivered equipment at laboratory																				<u> </u>		<u>.</u>															Maeda Yumita	Leang
OUTP	Improvement of Laboratory equipment and staffs		Regulations	Implementation of lecture for how to use and maintenance of new equipment																							-														Maeda	Lab Staffs
	ImI			Monitoring of working status for new equipment																						_	-	-	_	-	-	-	-	_	-		-	-	_		Maeda Yumita	Leang
	port of	2-1	To list up the past implemented construction projects of roads and bridges	Developing the past projects records sheet with reference to road number																																					Yashiro	Sinaveth Menakak
	ving and re		To collect the	Tidy up at the library and repair if necessary					4		-		-		_	-	-	-	-	-	-		-		_			-		_	-		-								Yashiro	Sinaveth Menakak
	ts such as drav	2-2	completion documents of construction at the MPWT Library	Developing the documents list with reference to road route					-	-	-		_		_	<u> </u>	-	<u> </u>		_	-		-		_			_		_	!		-	-	-		-	-		-	Yashiro	Namo Ratha
3)	document		To categorize all completion documents	Selection and contract with the out-recourse					#	-	-		-																												Yashiro	Namo Ratha
Task Force	ompletion is establish	2-3	by road route, structure, regulation and guidelines	Developing the draft documents index					‡	-	_	_	_																												Yashiro	Namo Ratha
OUTPUT 2 (Task Force 3)	Centralized and integrated management system of completion documents such as drawing and report of construction is established.		To formulate the	Encoding the data to computer and developing the primary system								-		-			-	_	-															-	_						Yashiro	Namo Ratha Sokly
	manageme	2-4	database with index for reference	Conduct of training for the administrator and operator																	_							_	_					-		_			-	_	Yashiro	Namo Ratha
	ntegrated			Developing the regulation (rule) of the system																					-			-		-	-		-	-	-						Yashiro	Namo Ratha
	alized and i	2-4A	To formulate the submission procedure of completion	Developing the regulation (rule) of the system																			-	<u> </u>	-		-	-	_	-		-	-		-		-		-		Yashiro Ishida	Namo Ratha Sokly
	Centra	2-5	documents To formulate database and apply the management	Training to Users (MPWT staffs)					ı																										-		_			-	Yashiro Yumita	Ratha Sokly

				I	JF	Y 20)9	Т					JFY	201	0									JFY	7 201	1							JFY	2012	2		T	Ren	narks
Output		Activities	Work Package	11	12	1	2	3	4	5 6	5 7	7 8	9	10	11	12	1	2	3	4	5	6	7 8	9	10	11	12	1	2	3	4	5	6	7	8	9 1	10	Expert	Counterpart
	3-1	To study and analyze existing training courses	Review and analysis the existing training activities Conduct the Capacity Gap Assessment to MPWT and DPWT staffs					-		-		1																									Sa Y	umita akurai umita akurai	Dara Dara
ns".	3-2	To re-design training program with	Developing the curriculum for the training program						_	-																											Sa	akurai	Dara
Collectio		additional technical contents	Counterpart training in Japan								_	-												-	-	-							_	-				akurai umita	Bunthoeun
Drawing			Developing the training program for trainers												-		•																				Sa	akurai	All C/Ps
e Standard	3-3	To implement training of trainers (MPWT lecturers)	Implementation of the training program for trainers												-		•									-	i	-										akurai umita	All C/Ps
d Structun			Implementation of the training courses by MPWT trainers											_	-	-	_									Ŀ					-			+	+	_	Y	umita	Onit
isk Force 4) ted by "Roa		To prepare the curriculum and	Implementation of the pilot training using Standard Guidelines and																	-		+	4															akurai umita	Onit Menakak
OUTPUT 3-1. (Task Force 4) Techinical training lectured by MPWT lecturers is consolidated by "Road Structure Standard Drawing Collections'	3-8	materials for pilot training.	Preparation of the textbook for the regular training program in MPWT																		-			<u>-</u>	-		-						_	-	-	-		akurai umita	Namo Onit Menakak
OU' VT lecture		To project and implement pilot	Participation of the regular training program in MPWT																							-									-			akurai umita	All C/Ps
ed by MPV	3-9	training courses for the staff of RID, HEC, DPWT, General	Evaluation of the training of trainers																									-	_	-	ŀ		_	_	-			akurai umita	Bunthoeun Namo
ing lecture		Inspectorate and other personnel concerned	Preparation of developing for yearly training program																											-								akurai umita	Onit
inical traini	2 1	Establishment of 0 training program for	Evaluation of regular training program in MPWT Establishment of					_				1																					<u>-</u>	<u>+</u>	 	<u> </u>	Sé	akurai	Bunthoeun Namo All C/Ps
Tech	3-10	quality control	training program for quality control & approval at JCC meeting																														<u>-</u>	<u>-</u>	-		Ya	uwano amauchi umita	All C/PS
	3-1	To implement follow- up survey for participants in order to	Implementation of questionnaire to the participants in the									İ																						+	 	-		akurai umita	Onit Socheat
		confirm the degree of understanding and application to actual	Improvement of the training program																														-		-			akurai umita	Onit Socheat

0			A	West Decker		JF	Y 20	09							JFY	2010)									J.	FY 2	011					Ī			JF	'Y20	12			Re	marks
Ou	tput		Activities	Work Package	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	Expert	Counterpar
	llections".	3-4	To establish Task Force (TF-3) for the "Road	Secure the capable person from related Department																																					Izawa	Sophal
	awing Co	5 4	Structure Standard Drawings Collections"	Conduct regular Task Force meeting								_		-	-		_	-	_										-	_	-+	_									Izawa	Sophal Vuthy
	andard Dr	3-5	To categorize the road structures and collect ideal road structure	Collection and analysis for Road Structure Drawing							i	-																													Izawa	Sophal Vuthy
	ructure Sta	3-3	drawings from past projects	Counterpart meeting will be conducted							;	_		_	-	-	-		_	_				-	-	-+	-		_	_	-+	_	-	_	-	-	-		-		Izawa	Vuthy Soth
rce 5)	' "Road Sti		To confirm the worthiness of those road structures in	Analysis of the collected Road Structure Drawing							i	-		-	-	_	-		_	_																					Izawa	Sophal Vuthy
OUTPUT 3-2. (Task Force 5)	didated by	3-6	terms of design load, material used, structure, and the	Analysis of the collected Bridge Structure Drawing								_		_			_		_																						Izawa	Thong Vuthy
TPUT 3-2	rs is conso		actual types of road foundation in	Developing the CAD drawings												=	_	-	-						!		_		_	_											Izawa	Soth Vuthy
OO	T lecture			Approval at the JCC meeting																									-	-											Izawa	Soth Vuthy
	red by MPW		To compile road structure drawings into the "Road and Bridge	Review of road works and Road Structure Standard Drawing																							-	_	-			-	-	_	-						Izawa	Soth Vuthy Thong
	ning lectu	3-7	Structure Standard Drawing Collections" and to be authorized	Monitoring of working status for Standard Drawing																										-		+	-		-		i				Izawa Yamauchi	Bunthoeun Namo
	Technical training lectured by MPWT lecturers is consolidated by "Road Structure Standard Drawing Collections"		by JCC	Selection & Implementation of pilot project to applying the standards drawing																						-	-+	_	-	_+	•			-	_		i			-	Izawa Yamauchi	Bunthoeun Namo
		1.	Conducting of the Proje	ect Counterpart Meeting			i	-	-	·	i	_		_	-	-	-		_		-	ij	-	-	-		-		_	_	_	_	-	-		-:	ij		-	-	Yamauch Yumita	i Bunthoeun Namo
	ch meeting	2.	Conducting of the Proje	ect Management Meeting		•		△	•		△	•		△	•		Δ	•		△			Δ	•		Δ			Δ	•		<u></u>	_		Δ	•		Δ			Yamauch Yumita	i Bunthoeun Namo
;	Holding each meeting	3.	Conducting of the EC (I Meeting	Executive Committee)			Δ		Δ			Δ	Δ		Δ		Δ	Δ			Δ				Δ	Δ			Δ				Δ				Δ				Yamauch Yumita	i All C/Ps
		4.	Conducting of the JCC (Committee) Meeting	Joint Coordinating		Δ										Δ		Δ												△ △								Δ	Δ		Yamauch Yumita	i All C/Ps

Appendix 2 (Task 1-1) Second Edition of Standard Guideline and Regulation

KINGDOM OF CAMBODIA NATION RELIGION KING

• :: **===**>>>**(•==:** •

MINISTRY OF PUBLIC WORKS AND TRANSPORT THE STRENGTHENING OF CONSTRUCTION QUALITY CONTROL

STANDARD GUIDELINE FORCE ACCOUNT PROJECT

SECOND EDITION

August 2012

PREPARED BY: MPWT'S COUNTERPARTS AND JICA EXPERTS

The Strengthening of Construction Quality Control Project Ministry of Public Works and Transport Standard Guideline for MPWT Force Account Project (Second Edition)

CONTENTS LIST OF FIGURES AND TABLES

CONTENTS

			Page
1	Gei	eneral	1
2	Rol	bles of the Departments concerned in Maintenance	2
3	Bas	asic Surveys and Investigations	3
	3.1	New Construction, Reconstruction and Periodic Mainten	ance3
	3.2	Routine Maintenance	3
4	Bas	asic Design	3
	4.1	New Construction, Reconstruction and Periodic Mainten	ance3
	4.2	Routine Maintenance	4
5	Pre	eliminary Cost Estimate	4
	5.1	New Construction, Reconstruction and Periodic Mainten	ance4
	5.2	Routine Maintenance	4
6	Def	etermination of Ceiling Amount	5
	6.1	New Construction, Reconstruction and Periodic Mainten	ance5
	6.2	Routine Maintenance	5
7	Spe	pecial Advance Payment	5
8	Def	etailed Investigation and Survey	5
	8.1	New Construction, Reconstruction and Periodic Mainten	ance5
	8.1	1.1 Description	5
	8.1	1.2 Testing and Sampling	5
	8.1	1.3 Laboratory Test	6
	8.1	1.4 Traffic Survey	7
	8.2	Routine Maintenance	7
9	Det	etailed Design	7
	9.1	New Construction, Reconstruction and Periodic Mainten	ance
	9.2	Routine Maintenance	11
10) Det	etailed Cost Estimate	11
	10.1	New Construction, Reconstruction and Periodic Mainten	ance11
	10.2	Routine Maintenance	11

11 Qu	ality Control Documents	. 12
11.1	Earth Works	. 12
11.	1.1 Flow of the Works	. 12
11.	1.2 Quality Control Chart and Forms	. 15
11.	1.3 As-built Measuring Control Chart and Forms	. 15
11.	1.4 Documentation for Improvement: Check List	. 16
11.2	Pavement Works	. 19
11.	2.1 Flow of the Works	. 19
11.3	2.2 Quality Control Chart and Forms	. 21
11.	2.3 As-built Measuring Control Chart and Forms	. 21
11.	2.4 Documentation for Improvement: Check List	. 21
11.3	Piling Works	. 23
11	3.1 Flow of the Works	. 23
11	3.2 Quality Control Chart and Forms	. 30
11	3.3 As-built Measuring Control Chart and Forms	. 30
11	3.4 Documentation for Improvement: Check List	. 31
11.4	Concrete Works	. 33
11.	4.1 Flow of the Works	. 33
11.	4.2 Quality Control Chart and Forms	. 34
11.4	4.3 As-built Measuring Control Chart and Forms	. 34
11.	4.4 Documentation for Improvement: Check List	. 34
12 Ins	pection	. 37
13 IB	Performance Evaluation	. 39
11 12 Ins ₃	4.4 Documentation for Improvement: Check List	3

Appendices

- A As-built Measurement Record Form
- B Sand Cone Test Method and Test Sheet
- C Check Sheet for Proof Rolling
- D Check Sheet for Application of Bitumen Material
- E Quality Control Sheet for Earth Work
- F Quality Control Sheet for Piling Work
- G Quality Control Sheet for Concrete Work
- H Documentation for Improvement

Check List for Earthwork at Reconstruction Section, Earthwork at Embankment Section, Asphalt Concrete / DBST / SBST Works, Piling Works and Concrete Works

I Request for Inspection

LIST OF FIGURES AND TABLES

		Page
Figure 11-1	Quality Control Documents	12
Figure 11-2	Flowchart of Earthwork at Reconstruction Section	13
Figure 11-3	Flow of Earthwork at Embankment Section	14
Figure 11-4	Flow of Asphalt Concrete Works	19
Figure 11-5	Flow of DBST Works	20
Figure 11-6	Flow of SBST Works	20
Figure 11-7	Flow of Piling Works	23
Figure 11-8 T	ypical Execution Flowchart of Driving Piles	25
Figure 11-9 S	election of Size of Ram	25
Figure 11-10	Arrangement of Piles and Instrument	26
Figure 11-11	Method of Driving Record	27
Figure 11-12	Sample of Driving Record Form	28
Figure 11-13	Flow of Concrete Works	33
Table 2-1 R	oles of Department concerned	2
Table 4-1 N	ew Proposed Scheme for Road Pavement Design	3
	Vork Code of Routine Maintenance	
Table 7-1 R	ate of Special Advance Payment	5
Table 9-1 D	etailed Pavement Formation	8
Table 9-2 K	ey to the Design Chart in TRL Overseas Road Note 31	9
Table 9-3 L	st of Layer Coefficient	10
Table 9-4 Sa	ample of Conversion of Pavement Design Formation	11
Table 11-1 (Q-1) Quality Control Chart for Earth Work	17
Table 11-2 (A-1) As-built Measuring Control Chart for Earth / Road Work	18
Table 11-3 (Q-2) Quality Control Chart for Pavement Works	22
Table 11-4 Li	mit of Number of Blows	25
Table 11-5 Sa	mple of Criteria of Stop Driving	26
Table 11-6 (Q-4) Quality Control Chart for Piling Works	32
Table 11-7 (Q-4) Quality Control Chart for Concrete Works	35
Table 11-8 (A-2) As-Built Control Chart for Concrete Works	36
Table 12-1	Points of Inspection	37
Table 12-2	Check List for Inspection	38

1 General

Background:

MPWT has constructed many road and bridge infrastructures in response to the needs of social and economic development and poverty reduction. But the quality of these infrastructures has been inadequate or insufficient because the MPWT focuses its effort only on construction.

Based on the above-mentioned backgrounds, the Royal Government of Cambodia (RGC) requested the implementation of the Technical Cooperation Project (TCP) to the Government of Japan in order to establish an adequate Quality Control and Quality Assurance (QC/QA) system for roads and bridges construction. In response to the request from the RGC, the Government of Japan dispatched the experts organized by JICA.

Objectives:

To establish Standard, Regulations and Guidelines is one of the Project objectives, which will help MPWT staff controls and assures qualities of construction appropriately with new institutional regulations, engineering standard and guidelines.

Standard, Regulations and Guidelines are established with objectives:

To improve procedures and methods of making annual plan including basic design, rough cost estimate,

To improve procedures and methods of detailed design, cost estimation,

To improve procedures and methods of supervising construction works including daily quality control, and

To improve procedures and methods of inspections.

Referred documents:

Cambodian references:

Construction Specification 2003 / Ministry of Public Works and Transport

Compact Construction Materials Specification for Maintenance & Construction of Roads and Structures 2011 / Ministry of Public Works and Transport

Standard Construction Specification (Cost Estimation Guideline) / Ministry of Public Works and Transport

Guideline for Supervision of Routine Maintenance 2008 / Ministry of Public Works and Transport

Guideline for Repairing Defects of Roads 2008 / Ministry of Public Works and Transport Guideline for Regular Inspection Report 2008 / Ministry of Public Works and Transport

Guideline for Supervision of Periodic Maintenance 2008 / Ministry of Public Works and Transport

Guideline for Road Design Standard Part 2. Pavement / Ministry of Public Works and

Transport

IB Performance Evaluation Form 2008 / Ministry of Public Works and Transport

Other country's references:

Standard Specifications for Transportation Materials and Methods of Sampling and Testing / AASHTO

Civil Works Handbook / Japan

Manual for Asphalt Pavement 1989 / Japan Road Association

2 Roles of the Departments concerned in Maintenance

Road infrastructure maintenance and reconstruction have been implemented supervised, and inspected according to the chapter budget allocated as shown in the following Table 2-1.

Table 2-1 Roles of Department concerned

		Executor: Party B	Checking party / Supervisor: Party C	Inspector: Party D
Chapter 21 (New Construct Reconstruction)		HEC RID (Unit) DPWT/RCAF/PO	PWRC RID(Plan) SPIED (Sub-National Public Infrastructure and Engineering Department	PEAC
Chapter 61 (Maintenance)	Routine Periodic	DPWT/RID(Unit) DPWT/RID(Unit)/	RID(Plan) RID(Plan)/PWRC	/GDI
	Emergency	HEC RID(Unit)	RID(Plan)	
Roles in design	stage	-Preparation of Basic Design -Preparation of Preliminary Cost Estimate for Construction -Preparation of Detailed Design -Preparation of Cost Estimate for Construction	-Checking Basic Design -Preparation of Preliminary Cost Estimate for Supervision -Check and Sum of Preliminary Project Cost -Checking Detailed Design -Preparation of Cost Estimate for Supervision -Check and Sum of Project Cost	
Roles in executi	on stage	Execution	Supervising	Inspection

Note: (Unit) Road/Bridge Unit

(Plan) Planning and Technical BureauHEC : Heavy Equipment CenterRID : Road Infrastructure Department

DPWT : Provincial Department of Public Works and Transport

RCAF : Royal Cambodian Army Force

PO : Police Office

PWRC : Public Works Research Center

PEAC : Procurement Evaluation Award Committee

GDI : General Department of Inspection

3 Basic Surveys and Investigations

3.1 New Construction, Reconstruction and Periodic Maintenance

Basic survey and investigation for basic design mentioned below shall be conducted in June or July. The items of the basic surveys and investigations are as follows.

- Desk study and site reconnaissance
 - To confirm the beginning point and ending point of the project, if necessary by geodetic and control survey.
 - To confirm the length and location map of the project
 - To confirm the geological formation with the stations such as mountainous, flat, swamp.
 - To confirm the hydraulic and hydrological survey (catchment area calculation) if it is available or to consult with local people on the hydraulic and hydrological status of the project area.

3.2 Routine Maintenance

Based on the visual inspections, the measures for the defects appearing on the pavement shall be categorized into the work code. The effective work code shall be selected in the manner of the high productivities and low cost. -

4 Basic Design

4.1 New Construction, Reconstruction and Periodic Maintenance

(1) Pavement Design

The road pavement design shall be done based on the basic survey. And the following Table 4-1 can be used for basic design of road pavement without consideration into traffic volume.

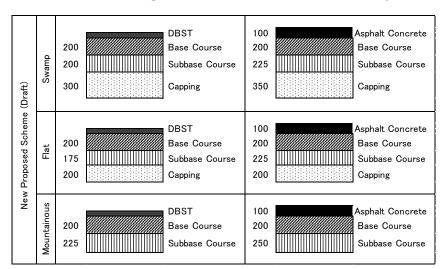


Table 4-1 New Proposed Scheme for Road Pavement Design

(2) Structure Design

Prior to do structure design (culverts and bridges), basic survey shall be carried out. Based on the survey, appropriate design shall be taken from the Standard Drawings for Road, and Bridge and Structure.

4.2 Routine Maintenance

Work codes of routine maintenance as specifications are shown in the Table 4-2. Basic design of routine maintenance is not needed.

Table 4-2 Work Code of Routine Maintenance

No.	Work Code	Description	Unite
1	1100	Patching on bituminous surface by AC	m ²
2	1130	Sealing on crack surface	m²
3	1150	Shape corretion by Macadam	m ²
4	1160	Patching on bituminous surface by DBST	m ²
5	1170	Patching on bituminous surface by MCD	m ²
6	1200	Grade shoulder	Km
7	1201-1	Material for shoulder	m³
8	1210-1	Refill dragon hole	m³
9	1250	Grade earth and laterite	Km
10	1260	Heavy grading	Km
11	2100	Clean Culvert by hand	m
12	2150	Drainage cleaning, both sides	m
13	3100	Culvert cleaning	Place
14	3200	Bridge minor repair	man/h
15	4150	Control vegetation and clean road side	Km

5 Preliminary Cost Estimate

5.1 New Construction, Reconstruction and Periodic Maintenance

Preliminary cost estimate shall be prepared based on the basic survey, basic design and Standard Construction Specifications (Cost Estimate Guideline) issued in 2005. In addition, provision for traffic safety and removal / relocation / shifting of utilities (cable, telephone, water etc.) shall be allowed, as the case may be.

5.2 Routine Maintenance

The supervising team shall prepare the preliminary cost estimate based on the basic surveys and investigations and its unit rate.

6 Determination of Ceiling Amount

6.1 New Construction, Reconstruction and Periodic Maintenance

The ceiling amount shall be determined through the inter-ministerial committee meetings. This meeting shall be conducted every two months and when the meeting is needed.

6.2 Routine Maintenance

The ceiling amount of routine maintenance will be determined as same procedure as new construction and periodic maintenance.

7 Special Advance Payment

Special advance payment shall be paid before award of the contract to enable the commencement of the works in January. The amounts to be paid are mentioned in the following Table 7-1 Rate of Special Advance Payment.

Table 7-1 Rate of Special Advance Payment

		Executor	%
Chapter 21		HEC	20~30
(New Construction,		RCAF/PO	30-40
Reconstruction)		DPWT/RID(Unit)	20~30
Chapter 61	Routine	DPWT/RID(Unit)	30-40
(Maintenance)	Periodic	DPWT/RID(Unit)/HEC	30-40
	Emergency	RID(Unit)	30-40

Note:

(Unit) Road/Bridge Unit

(Plan) Planning and Technical Bureau

8 Detailed Investigation and Survey

8.1 New Construction, Reconstruction and Periodic Maintenance

8.1.1 Description

This clause consists of three items which are Sub-grade Investigation, Material Sources Investigation and Sub-soil Investigation.

8.1.2 Testing and Sampling

Sub-grade Investigation

The locations of the sampling shall be every 200m along the proposed road alignment. The location of the sampling shall be confirmed by checking party. The sampling shall be also done with witness of checking party. The samples shall be extracted from 0.5m below the sub-grade surface.

In case the length of the section is shorter than 200m, at least one location of the sampling shall be selected.

Checking party shall deliver the extracted materials tightly sealed in the plastic bags to

the laboratory.

Material Sources Investigation

Two or three material sources for base course, sub-base course, capping material and embankment material shall be identified near the project site. The sampling shall be done with witness of checking party. The samples shall be extracted from 0.5m below the ground surface. Checking party shall deliver the extracted materials tightly sealed in the plastic bags to the laboratory.

Sub-soil Investigation

Sub-soil investigation shall be carried out at least at one boring in each bridge location. During the boring, standard penetration test at each 1.0 m or 1.5 m and samplings shall be carried out for laboratory tests and the boring shall be continued until reaching to hard layer or until assuring the necessary length for an friction pile. Other site tests may be carried out as required.

8.1.3 Laboratory Test

The following soil tests shall be carried out in accordance with the following standard by laboratory with witness of checking party. Checking party shall determine the acceptability of the proposed materials.

Sub-grade Investigation

Natural Moisture Content

Compaction Test

CBR Test

AASHTO T-265

AASHTO T-180

AASHTO T-193

Sieve Analysis

AASHTO T-27

LL, PL, PI

AASHTO T-89,90

Material Sources Investigation

Natural Moisture Content

Compaction Test

AASHTO T-265

AASHTO T-180

Modified CBR Test

AASHTO T-193

Sieve Analysis

AASHTO T-27

LL, PL, PI

Abrasion

AASHTO T-89,90

AASHTO T-96

(for base course material, if necessary)

Sub-soil Investigation

Unit Weight

Natural Moisture Content AASHTO T-265 Sieve Analysis AASHTO T-27 LL, PL, PI AASHTO T-89,90

Unconfined Compression Test for cohesive soil

Tri-axial Compression Test for sandy soil

8.1.4 Traffic Survey

Collecting the result of traffic volume and axle load survey shall be conducted. Traffic survey will be conducted if the collected data is not enough. Traffic class of the road shall be determined by analyzing above those data with a consideration of prediction of traffic growth.

8.2 Routine Maintenance

Detailed investigation and survey has not been needed for routine maintenance.

9 Detailed Design

9.1 New Construction, Reconstruction and Periodic Maintenance

(1) Design of pavement formation

The basic design which had been done based on the geographical formation shall be revised according to the results of sub-soil investigation and traffic survey results mentioned above. The pavement design formation shall be determined based on the following Table 9-1 Detailed Pavement Formation.

Table 9-1 Table 9-1 Detailed Pavement Formation

subgrade class	DBST-T1 $(CN_{esa} < 0.3 \times 10^{6})$	DBST-T2 $(CN_{esa} < 0.3-0.7 \times 10^{6})$	DBST-T3 ($CN_{esa} < 0.7-1.5 \times 10^{6}$)	DBST-T4 $(CN_{esa} < 1.5-3.0 \times 10^{6})$	AC-T6 (CN _{esa} $<$ 1.5-3.0 \times 10 ⁶)	
S1 (CBR≧2%)	150 175 300	150 225 300	200 200 300	200 250 300	200 225 350	
S2 (CBR 3%, 4%)	150 150 200	150 200 200	200 175 200	200 225 200	200 225 200	
S3 (CBR ≧5%)	150	150	200	200	200	
Note:	DBST	Base-course	[[]]]]]]]]] Sub-base	Capping Layor	Asphalt Concrete	

Definition of Traffic Class and Sub-grade class is specified in the following Table 9-2 Key to the Design Chart in TRL (the Transport Research Laboratory) Overseas Road Note 31.

Table 9-2 Key to the Design Chart in TRL Overseas Road Note 31

Traffic	10 ⁶ CN _{esa}	Sub-grade class	CBR %	
T1	< 0.3	S1	2	
T2	0.3-0.7	S2	3-4	
T3	0.7-1.5	S3	5-7	
T4	1.5-3.0	S4	8-14	
T5	3.0-6.0	S5	15-29	
T6	6.0-10	S6	30+	
T7	10-17			
Т8	17-30			

N_{esa} is defined by the following equation.

$$N_{esa} = (\frac{P}{80})^{4.5} \times N_p$$

Where

N_{esa} =

number of equivalent standard axles;

Np =

number of axles with load PkN

The total number of heavy vehicles that will use the road during in design life is converted to a cumulative number of equipment standard axles (CN_{esa}).

The pavement design should be based on the cumulative number of standard axles in the busiest lane of the road. For two-lane roads with two-way traffic and no significant difference between the two traffic streams, the design number of standard axles is assumed to be 50% of the total number of standard axles in the two directions. Detailed guideline on carrying out axle load surveys and analyzing the results is given in TRRL Road Note 40.

(2) Conversion of pavement formation

In case the soil test results of the proposed materials cannot satisfy the requirement in the specifications, the pavement design formation shall be revised according to the availability of the materials.

The required bearing capacity of the pavement is expressed as a 'structural number'

(SN). For CNesa higher than 0.5×10^6 , the required SN is calculated from the empirical equation.

$$logCN_{esa} = 9.36log \left(\frac{SN}{25.4} + 1\right) - 0.83 + log\frac{1}{R} + 1.395logCBR$$

where

SN=structural number in mm

CBR=Design CBR for the subgrade

R=regional adjustment factor.

R is assumed to be 1.0 for areas with rainfall throughout most of year. A factor of 0.1 is assumed where the pavement structure and sub-base never reach a saturated condition.

After the materials for the different pavement layers have been selected the thickness are determined by trial and error so that the following equation is satisfied.

$$a_1h_1 + a_2h_2 + a_3h_3 = SN$$

where a_1,a_2 and a_3 are the layer coefficient of the wearing course, base and sub base material, respectively, and h_1 , h_2 and h_3 are the thickness in mm of the wearing course, base and sub base respectively. In the case of a fourth pavement layer the equation is extended by adding a_4 and h_4 . The values of the layer coefficient are shown in the following Table 9-3 List of Layer Coefficient.

Table 9-3 List of Layer Coefficient

Layer/material	Layer coefficient			
Asphalt Concrete	0.35			
DBST, SBST	0.2			
Base Course (CBR>80%)	0.12			
Sub-base (CBR>30%)	0.11			
Capping Layer (CBR>15%)	0.06			

The sample of pavement design formation is shown in the following Table 9-4.

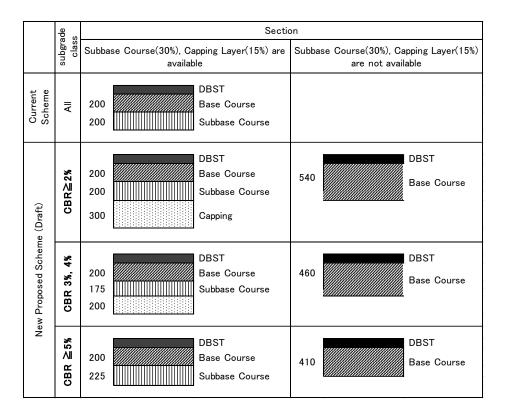


Table 9-4 Sample of Conversion of Pavement Design Formation

(3) Structure design

Based on the site survey, most suitable bridge design (span and structure type) shall be selected from the Standard Drawings of Road and Structure. Foundation of bridge shall be designed, including selection of pile type from the standard drawings and length of pile after careful review of sub-soil investigation result.

9.2 Routine Maintenance

Detailed design is not needed for routine maintenance project.

10 Detailed Cost Estimate

10.1 New Construction, Reconstruction and Periodic Maintenance

Cost estimate shall be prepared based on the detailed investigation and survey, detailed design and Standard Construction Specifications (Cost Estimate Guideline) issued in 2005. In addition, expenses for traffic safety and removal / relocation / shifting of utilities (cable, telephone, water etc.) shall be calculated and included in the cost estimation, as the case may be.

10.2 Routine Maintenance

Detailed Cost Estimate is not needed for routine maintenance project.

11 Quality Control Documents

The quality control documents consist of the following documents as shown in the Figure 11-1.

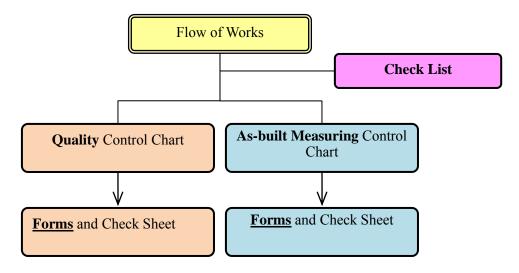


Figure 11-1 Quality Control Documents

11.1 Earth Works

11.1.1 Flow of the Works

The flows for reconstruction section and new construction section (embankment section) have been prepared and shown in the Figure 11-2 Flowchart of Earthwork at Reconstruction Section and the Figure 11-3 Flow of Earthwork at Embankment Section. The yellow and blue squares are quality control activities with target value and as-built measuring control activities with target value respectively. The squares on the right side are the identification code of quality control and as-built measuring control items. Supplemental instructions are as follows.

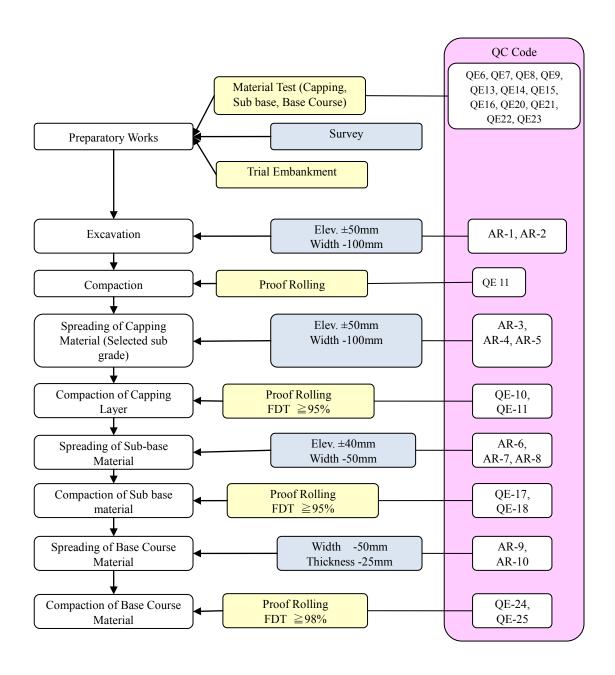


Figure 11-2 Flowchart of Earthwork at Reconstruction Section



Figure 11-3 Flow of Earthwork at Embankment Section

(1) Survey (Preparatory Works)

Prior to the commencement of the work, Party B shall confirm the sections to be executed, the alignment and the elevation with Party C by the proper survey instruments. Party B shall execute the work according to the confirmed sections, alignment and elevation.

(2) Trial Embankment (Preparatory Works)

Before commencing the formation of embankments, Party B shall submit in writing to Party C for approval on his proposals for the compaction of each type of fill material to be used in the works. The proposals shall include the relationship between the types of compaction equipment, the number of passes required and the method of adjusting moisture content. Party B shall carry out full scale compaction trials on areas of not less than 10 m wide and 50 m long as required by Party C and using his proposed procedures or such amendments thereto as may be found necessary to satisfy Party C so that all the specified requirements regarding compaction can be consistently achieved. Compaction trials with the main types of fill material to be used in the works shall be completed before work with the corresponding materials will be allowed to commence.

Throughout the periods when compaction of earthwork is in progress, Party B shall adhere to the compaction procedures found from compaction trials for each type of material being compacted, each type of compaction equipment employed and each degree of compaction specified.

(3) Observation of the Cut Section

After the removal of existing paving material, Party B shall confirm the condition of the sub-grade after being graded as designated in the guideline and compacted. If the defect portions are found, Party B shall take the necessary actions to satisfy the following inspections by Party C.

(4) Proof Rolling

The procedure of all proof rolling tests indicated in the flow shown above shall follow the clause 2.6.3.7 in the Construction Specification. However, semi proof rolling in the flow shown above does not have to follow the specifications. Dump track without loads is enough to find the unsuitable portions for semi proof rolling. The unsuitable portions shall be replaced by suitable material. A sample of check sheet for proof rolling is attached in Appendix C.

11.1.2 Quality Control Chart and Forms

The quality control work shall be done according to Table 11-1 (Q-1) Quality Control Chart for Earth Work and be recorded. Especially a test method and test sheet of sand cone test as field density test which shall be conducted in the site is attached in Appendix B. Quality Control Sheet for Earth Works is attached in Appendix E.

11.1.3 As-built Measuring Control Chart and Forms

The as-built measuring control shall be done according to Table 11-2 (A-1) As-built Measuring Control Chart for Earth / Road Work and be recorded in the forms attached. Necessary forms shall be prepared based on the sample forms as attached in Appendix

A.

The thickness control item AR-4, AR-7, AR-9, AR-11 in Table 11-2 shall be checked by actual excavation or coring.

As-built record form shall be used day by day.

The final measured records of as-built record form in Appendix A shall be inside tolerance. In case the measured records deviated the tolerance, the structure whose records deviated the tolerance shall be rectified in compliance with the tolerance.

11.1.4 Documentation for Improvement: Check List

Check lists for Earthwork at Reconstruction Section and Earthwork at Embankment Section are enclosed in Appendix H.

Table 11-1 (Q-1) Quality Control Chart for Earth Work

Q-1 Qu	ality (Control Chart for Earth W	orks							
Description		Specs	No.	Test Method	Standard	Tolerance	Frequency	Record method	Custody of Records	Witness
Embankment Execution Mat'l	IĮ.		QE-1	Compaction Test	AASHTO T180	MDD, OWC	Per sourse, whenever any irregularity is	St'd Form	Party B & C	Party C
	M	CCMS Appendix 1	QE-2	Modified CBR	AASHTO T193	≥ 2.0%	observed	St'd Form	Party B & C	Party C
	nc	CS 2.6.3.3	QE-3	Field Density Test	AASHTO T180	Dry Density ≥ 90% of MDD	5times / 2,000m2,	St'd Form	Party B & C	Party C
	ecution	CS 2.6.3.7	QE-4	Proof Rolling		By observation	Entire area on the embankment surface	Check Sheet	Party B & C	Party C
	Ą	CS 2.6.3.2	QE-5	Compaction thickness		≦ 20cm	All embankment works	Check Sheet	Party B & C	Party C
			QE-6	Compaction Test	AASHTO T180	MDD, OWC		St'd Form	Party B & C	Party C
	ਢ		QE-7	Modified CBR	AASHTO T193	≧ 15%以上		St'd Form	Party B & C	Party C
Capping Layor (Selected sub-grade)	Material	CCMS Appendix 1	QE-8	Seive Analysis	AASHTO T27	74μMass Percent Passing : 10%-30%	Per sourse, whenever any irregularity is observed	St'd Form	Party B & C	Party C
pping sted su			QE-9	LL•PL•PI	AASHTO T89, 90	LL ≦ 40%, PI ≦ 20%		St'd Form	Party B & C	Party C
Caj (Selec	uc	CCMS Appendix 1	QE-10	Field Density Test	AASHTO T180	Dry Density ≥ 95% of MDD	5times / 2,000m2	St'd Form	Party B & C	Party C
	Execution	CS 3.1.3.5	QE-11	Proof Rolling		Observation	Entire area on the embankment surface	Check Sheet	Party B & C	Party C
	Ex	CCMS Appendix 1	QE-12	Compaction thickness		≦ 20cm	All embankment works	Check Sheet	Party B & C	Party C
			QE-13	Compaction Test				St'd Form	Party B & C	Party C
	ᇛ		QE-14	Modified CBR	AASHTO T193	≧ 30%以上		St'd Form	Party B & C	Party C
ase Materia	Material	CCMS Appendix 1	QE-15	Sieve Analysis	AASHTO T27	Within the ranges spesified in the table	Per sourse, whenever any irregularity is observed	St'd Form	Party B & C	Party C
Sub Base			QE-16	LL•PL•PI	AASHTO T89, 90	LL ≦ 35%, PI ≦ 20%		St'd Form	Party B & C	Party C
	u	CCMS Appendix 1	QE-17	Field Density Test	AASHTO T180	Dry Density ≥ 95% of MDD	5 times / 2,000m2	St'd Form	Party B & C	Party C
	Execution	CS 3.1.3.5	QE-18	Proof Rolling		Observation	Entire area on the embankment surface	Check Sheet	Party B & C	Party C
	Ex	CCMS Appendix 1	QE-19	Compaction thickness		≦ 20cm	All embankment works	Check Sheet	Party B & C	Party C
			QE-20	Compaction Test				St'd Form	Party B & C	Party C
	F		QE-21	Modified CBR	AASHTO T193	≧ 80%以上		St'd Form	Party B & C	Party C
ourse	Material	CCMS Appendix 1	QE-22	Sieve Analysis	AASHTO T27	Within the ranges spesified in the table	Per sourse, whenever any irregularity is observed	St'd Form	Party B & C	Party C
ase Co	Base Course		QE-23	LL•PL•PI	AASHTO T89, 90	LL ≦ 25%, PI ≦ 6%	1	St'd Form	Party B & C	Party C
B	u	CCMS Appendix 1	QE-24	Field Density Test	AASHTO T180	Dry Density ≥ 98% of MDD	5 times / 2,000m2	St'd Form	Party B & C	Party C
	Execution	CS 3.3.3.7	QE-25	Proof Rolling		Observation	Entire area on the embankment surface	Check Sheet	Party B & C	Party C
	Ex	CCMS Appendix 1	QE-26	Compaction thickness		≤ 20cm	All embankment works	Check Sheet	Party B & C	Party C
Note ·	CCI	MS (Compact Contruc	tion Materi	als Specification)						

Table 11-2 (A-1) As-built Measuring Control Chart for Earth / Road Work

Description	Specs	No.	M easured Items	Method	Tolerance	Frequency	Record method	Custody of Records	Witness
Embankment/	Civil Works Handbook/Japan	AR-1	Elevation	Level Instrument	± 5.0cm	every 40 m	St'd Form	Party B & C	Party C
Sub-grade	Civil Works Handbook/Japan	AR-2	Width	M easuring Tape	-10.0 cm	every 40 m	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AR-3	Elevation	Level Instrument	± 5.0cm	every 40 m	St'd Form	Party B & C	Party C
Capping Layor (Selected sub-grade)	Civil Works Handbook/Japan	AR-4	Thickness	M easuring Tape	-4.5 cm	every 200 m	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AR-5	Width	M easuring Tape	-5.0 cm	every 80 m	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AR-6	Elevation	Level Instrument	± 4.0cm	every 40 m	St'd Form	Party B & C	Party C
Sub Base	Civil Works Handbook/Japan	AR-7	Thickness	M easuring Tape	-4.5 cm	every 200 m	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AR-8	Width	M easuring Tape	-5.0 cm	every 80 m	St'd Form	Party B & C	Party C
Base Course	Civil Works Handbook/Japan	AR-9	Thickness	M easuring Tape	-2.5 cm	every 200 m	St'd Form	Party B & C	Party C
Base Course	Civil Works Handbook/Japan	AR-10	Width	M easuring Tape	-5.0 cm	every 80 m	St'd Form	Party B & C	Party C
Asphalt Concrete	Civil Works Handbook/Japan	AR-11	Thickness	M easuring Tape	-0.7 cm	every 1000 m2	St'd Form	Party B & C	Party C
Asphan Concrete	Civil Works Handbook/Japan	AR-12	Width	M easuring Tape	-2.5 cm	every 80 m	St'd Form	Party B & C	Party C

11.2 Pavement Works

11.2.1 Flow of the Works

The flows for asphalt concrete / DBST / SBST works have been prepared shown in Figure 11-4 Flow of Asphalt Concrete Works, Figure 11-5 Flow of DBST Works, Figure 11-6 Flow of SBST Works respectively. The yellow and blue square are quality control activities and as-built measuring control activities respectively. The squares on the right side are the identification code of quality control and as-built measuring control items.

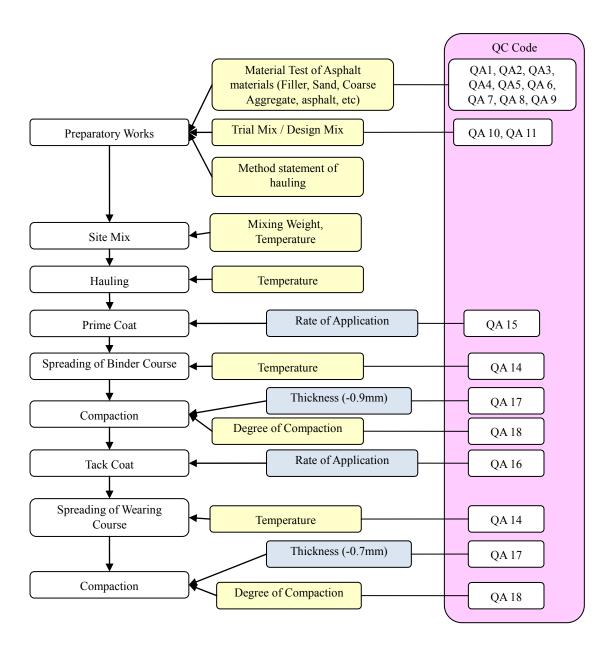


Figure 11-4 Flow of Asphalt Concrete Works

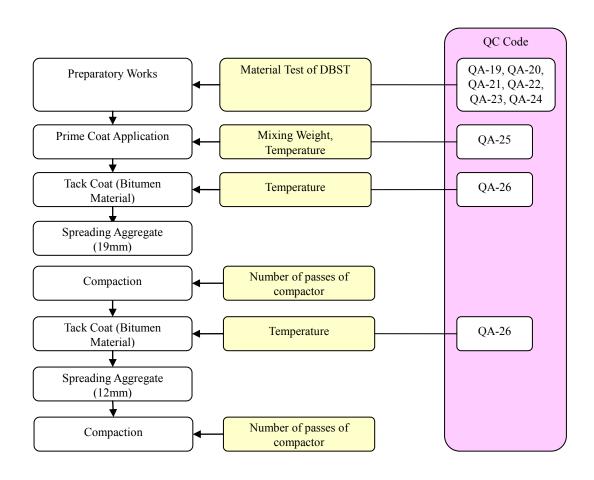


Figure 11-5 Flow of DBST Works

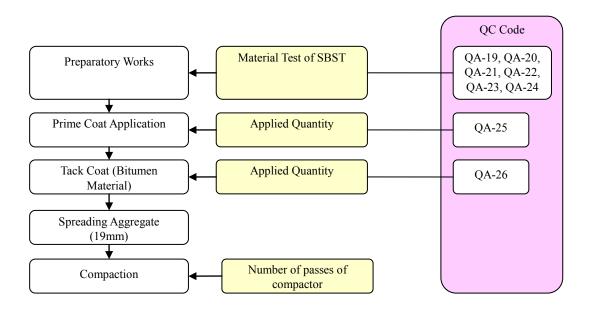


Figure 11-6 Flow of SBST Works

11.2.2 Quality Control Chart and Forms

The quality control work shall be done according to the Table 11-3 (Q-2) Quality Control Chart for Pavement Works

. In case the asphalt concrete is procured from a asphalt batching plant, Party B have to secure the results of quality control records for the materials and trial mix for design proportion from manufacturers.

A sample of check sheet for application of bitumen material is attached in Appendix D.

11.2.3 As-built Measuring Control Chart and Forms

The as-built measuring control shall be done according to Table 11-2 (A-1) As-built Measuring Control Chart for Earth / Road Work. Necessary forms shall be prepared based on the sample forms as attached in Appendix A.

11.2.4 Documentation for Improvement: Check List

Check lists for Asphalt Concrete / DBST / SBST Works are enclosed in Appendix H.

Table 11-3 (Q-2) Quality Control Chart for Pavement Works

		Des	scription	Specs	No.	Test Method	Standard	Tolerance	Frequency	Record method	Custody of Records	Witness
			Filler	CS 4.4.3.3	QA-1	Ontario Vacuum Immersion Marshal Test	AASHTO M17	≦ 75%	Per source, irregularity is observed	St'd Form	Party B & C	Party C
			Fine Aggregate	CS 4.4.3.2	QA-2	Sieve Analysis / Grading	AASHTO M-29	≦ 4.75mm	Per source, irregularity is observed	St'd Form	Party B & C	Party C
			I me Aggregate	CS 4.4.3.2	QA-3	Sand Equivalent Test	ASSHTO T-176	≧ 50	Per source, irregularity is observed	St'd Form	Party B & C	Party C
	ant	rial		CS 4.4.3.1	QA-4	Fractured Faces	AASHTO M147-6S	≥75% (2 fractured faces) ≥90% (1 fractured faces)	Per source, irregularity is observed	Check List	Party B & C	Party C
	alt PI	Material	Coarse Aggregate	CS 4.4.3.2	QA-5	Abrasion	AASHTO T96	≦ 40%	Per source, irregularity is observed	St'd Form	Party B & C	Party C
	Aspl			CS 4.5.2.1	QA-6	Grading	AASHTO T27	CS Table 4.5.1	Per source, irregularity is observed	St'd Form	Party B & C	Party C
	Responsibility of Asphalt Plant		Asphalt	CCMP Appendix 1 5.2	QA-7	Manufacture's Certificate Shown in Clause 5.2	Shown in Clause 5.2	Shown in Clause 5.2	Per source, irregularity is observed	St'd Form	Party B & C	Party C
rete	ponsi		Prime Coat	CCMP Appendix 1 5.2	QA-8	Shown in Clause 5.2	Shown in Clause 5.2	Shown in Clause 5.2	Per source, irregularity is observed	St'd Form	Party B & C	Party C
Asphalt Concrete	Res		Tack Coat	CCMP Appendix 1 5.2	QA-9	Shown in Clause 5.2	Shown in Clause 5.2	Shown in Clause 5.2	Per source, irregularity is observed	St'd Form	Party B & C	Party C
phalt					QA-10	Marshal / Stability	AASHTO T-245		Per source, irregularity is observed	St'd Form	Party B & C	Party C
As		Plant	Trial Mix	CCMP Appendix 1 5.2	QA-11	Marshal / Flow	AASHTO T-245		Per source, irregularity is observed	St'd Form	Party B & C	Party C
		P			QA-12	Marshal / Air Void	AASHTO T-245		Per source, irregularity is observed	St'd Form	Party B & C	Party C
			Hot Bin		QA-13	Grading			Per source, irregularity is observed	St'd Form	Party B & C	Party C
			Hot Mix	Manual for Asphalt Pavement / Japan	QA-14	Spreading Temperature	Japan Road Association	≧ 110°C On arrival	1 time / 1000m2	Stud Form	Party B & C	Party C
			Prime Coat	Manual for Asphalt Pavement / Japan	QA-15	Application volume	Japan Road Association	≧ 1.0 lit/m2	1 time / 1000m2	Check List	Party B & C	Party C
	Party C	Execution	Tack	Manual for Asphalt Pavement / Japan	QA-16	Application volume	Japan Road Association	≧ 0.4 lit./m2	1 time / 1000m2	Check List	Party B & C	Party C
		щ	Coring	Manual for Asphalt Pavement / Japan	QA-17	Thickness	Japan Road Association	-0.7 mm : Surface Course -0.9 mm : Binder Course	1 time / 1000m2	St'd Form	Party B & C	Party C
			Coring	Manual for Asphalt Pavement / Japan	QA-18	Degree of compaction	Japan Road Association	≥ 98%	1 time / 1000m2	St'd Form	Party B & C	Party C
				CCMP Appendix 1 5.1	QA-19	Sieve Analysis / Grading	AASHTO T-27	Table shown in Appendix 1 5.1	Per source, irregularity is observed	St'd Form	Party B & C	Party C
			Aggregate	CCMP Appendix 1 5.1	QA-20	Abrasion	AASHTO T-96	≦ 40%	Per source, irregularity is observed	St'd Form	Party B & C	Party C
		Material	Аддесдате	CS 4.4.3.1	QA-21	Fractured Faces	AASHTO M147-6S	≥75% (2 fractured faces) ≥90% (1 fractured faces)	Per source, irregularity is observed	Check List	Party B & C	Party C
BST		Ma		CCMP Appendix 1 5.1	QA-22	Flakiness Index Test	BS-82	≦ 33%	Per sourse, irregularity is observed	Check List	Party B & C	Party C
SBST or DBST	Party C		Prime Coat	CCMP Appendix 1 5.2	QA-23	Shown in Clause 5.2	Shown in Clause 5.2	Shown in Clause 5.2	Per source, irregularity is observed	St'd Form	Party B & C	Party C
SBST	P		Tack Coat / Binding material	CCMP Appendix 1 5.2	QA-24	Shown in Clause 5.2	Shown in Clause 5.2	Shown in Clause 5.2	Per source, irregularity is observed	St'd Form	Party B & C	Party C
		on	Prime Coat	Manual for Asphalt Pavement / Japan	QA-25	Application volume	Japan Road Association	≧ 1.0 lit/m2	1 time / 1000m2	Check List	Party B & C	Party C
		Execution	Tack	None	QA-26	Application volume	None	≥ 1.8 lit./m2 DBST 1st layer ≥ 1.2 lit./m2 DBST 2nd layer	1 time / 1000m2	Check List	Party B & C	Party C
		1	Tack	None	QA-27	Application volume	None	≧ 1.8 lit./m2 SBST	1 time / 1000m2	Check List	Party B & C	Party C

11.3 Piling Works

11.3.1 Flow of the Works

Bridge works consist of piling works, structural excavation and backfilling, sub-structure works and superstructure works. Since quality control for excavation and backfilling can be carried out in accordance with the requirements stipulated in clause 11.1 Earth Works and that for structure works with those in clause 11.4 Concrete Works, this clause describes for piling works.

The yellow and blue square are quality control activities and as-built measuring control activities respectively. The squares on the right side are the identification code of quality control and as-built measuring control items.

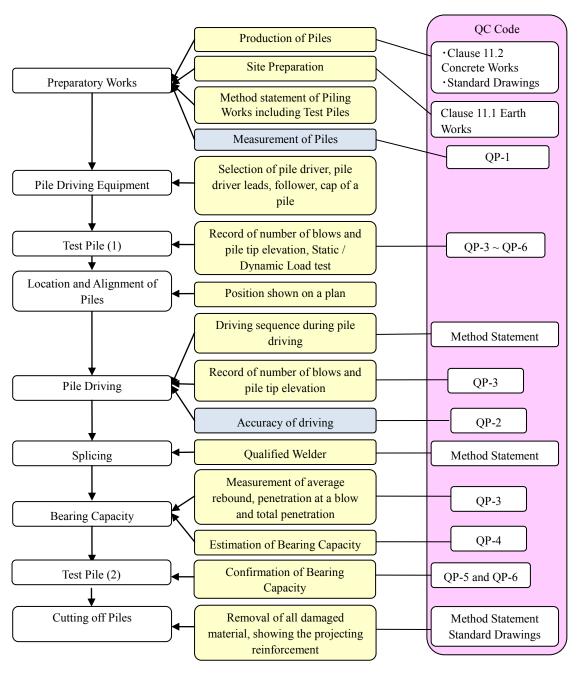


Figure 11-7 Flow of Piling Works

(1) Piling Works

Piling works shall be witnessed by Party C, when piling is about complete. A record of piling works shall be kept by Party B and submitted to Party C within 24 hours. The record shall contain the following information.

- Date of Driving
- Date of Casting and Identification Number
- Location of Pile
- Length of Pile and Cross Section
- Ground Level before Driving
- Estimated Tip Elevation (as shown on the drawings)
- Actual Tip Elevation after Driving
- Verticality of Piles
- Number of Blows for Each 500 mm Penetration from Start of Driving
- Number of Blows for each 100 mm Penetration in last 1.0 m
- Hammer Type, Weight and Rated Energy
- Calculation of Bearing Capacity using the Formula agreed with Party C
- Details of Condition of Pile Head
- Others

(2) Test Piles

Test piles shall be carried out as specified in the drawings and/or directed by Party C. Test shall be either static load test or dynamic load test, which shall be witnessed by Party C. The record shall be kept and submitted to Party C for approval as agreed.

Test Piles shall be conducted for the following reasons.

- To check the bearing capacity of driven test piles by Formula mentioned in clause 11.3.1 (7), Static Load Test or Dynamic Load Test mentioned in Clause 5.3.3.3 of the Construction Specification.
- To determine the pile length or to check the designed pile length.
- To make driving criteria based on driving records of Test Pile driving and bearing capacity.
- To confirm the Size of Driving Hammer.
- To confirm the capacity of driven working piles.

(3) Typical Execution Flow of Driving Piles

Typical execution flow of driving piles is shown in the Figure 11-8 Typical Execution Flowchart of Driving Piles.

.

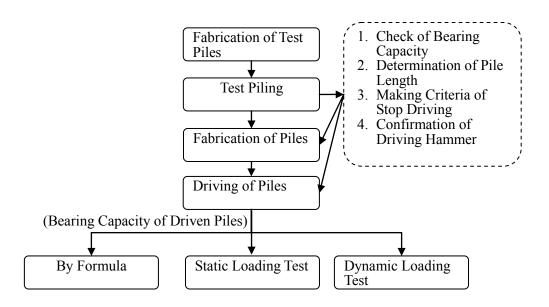


Figure 11-8 Typical Execution Flowchart of Driving Piles

(4) Selection of Hammer

The total number of the blows is limited to limit the vibration of piles and to minimize the deterioration of the quality of piles. The limit number is shown in the Table 11-4.

Type of pile Total number Driving last 10m

RC Pile 1000 500

SPP (Steel Tube Pile) 3000 1500

Table 11-4 Limit of Number of Blows

The selection for the hammer can be referred to the following Figure 11-9 Selection of Size of Ram.

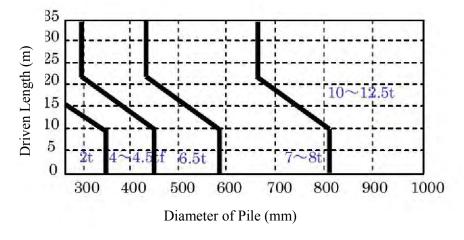


Figure 11-9 Selection of Size of Ram

(5) Criteria of Stop driving

Criteria of stop driving shall be determined based on the results of bearing capacity and driving records of test piles. Sample of criteria is shown in the following Table 11-5 Sample of Criteria of Stop Driving.

Table 11-5 Sample of Criteria of Stop Driving

Type of Bearing Strata	Criteria
Normal Strata	 Penetration per blow last 1m shall be is 3∼5mm Penetration per blow shall be less than 2mm
Hard Strata	• Penetration into hard strata shall be more than $1\sim2$ times of side or diameter of piles.
Rock	Penetration of weathered rock.Penetration per blow shall be less than 1mm

(6) Driving Record

The preparation and recording of driving piles shall be done properly. The procedures are shown below.

<Setup of the Driving>

- To mark the measuring scale on the piles as shown in the Figure 11-10 Arrangement of Piles and Instrument.
- To set the level instruments to monitor the penetration as shown in the same Figure 11-10.

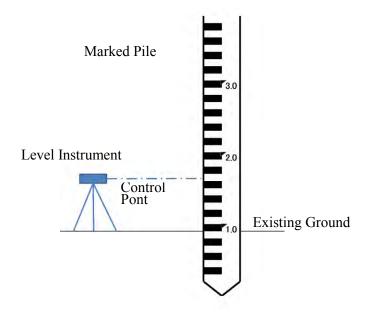
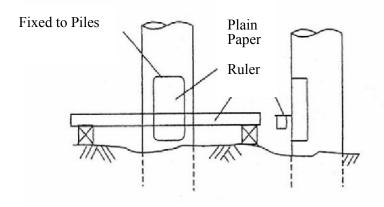



Figure 11-10 Arrangement of Piles and Instrument

<Record of Driving>

• The penetration and rebound records shall be obtained before stop driving as

shown in the Figure 11-11 Method of Driving Record.

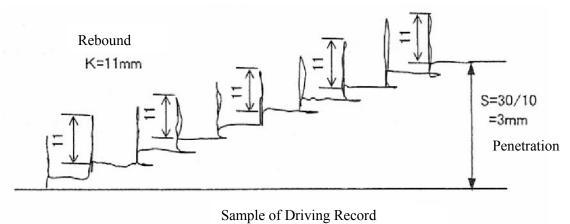


Figure 11-11 Method of Driving Record

The driving record shall be kept properly. The Sample of driving record form is shown in the Figure 11-12.

No. Date:

Budget Year	Province
Chapter	Bridge Number
Name of Party B	Name of Party C

Pile Type	SPP	Driving Started		Pile Elev.	Тор	Toe	Hammer Data	Diesel Hammer
Total Pile Length	40 m	Driving finished		Design Elev.	6.892m	-28.108m	Model	Kobelco
Design Bearing Cap. 100tf.		Control Elevation (Level)	6.792m	Actual Elev.	8.942m	-31.058m	Type/Length	Diesel Cylinder
Design Bearing Cap. 981K	N			NGL.	6.506m	6.506m	Capacity/weight	3.5t (Ram Wt)
				Verticality	1/75			

Reading of Piles	No. of Blows	Total No. of Blows	Pile Toe Elevation	Penetration per Blow(mm)	Bearing Capacity KN			Allowable Bearing Caoacity
21.50				, í				Modified Hiley's Fomula
22.00	45	45	-15.208	11.111	789			
22.50	37	82	-15.708	13.514	709	Ra	=	1/3 Ru
23.00	35	117	-16.208	14.286	686			2WH(W)
23.50	36	153	-16.708	13.889	697		=	(S+K)x(W+Wp)
24.00	34	187	-17.208	14.706	674		=	49490
24.50	34	221	-17.708	14.706	674		=	1/3
25.00	34	255	-18.208	14.706	674			
25.50	34	289	-18.708	14.706	674		=	186.61 tf
26.00	33	322	-19.208	15.152	662			
26.50	31	353	-19.708	16.129	638	Rs	=	1,829 KN > 981 KN OK
27.00	33	386	-20.208	15.152	662			
27.50	43	429	-20.708	11.628	770			
28.00	54	483	-21.208	9.259	865	Where		
28.50	50	533	-21.708	10.000	833	Ra	=	Allowable Bearing Capacity
29.00	47	580	-22.208	10.638	807	Ru	=	Ultimate Bearing Capacity
29.50	38	618	-22.708	13.158	719	Wp	=	Weight of Pile, tf = 6.20
30.00	34	652	-23.208	14.706	674	W	=	Weight of Hammer, tf = 3.9
30.50	33	685	-23.708	15.152	662	Н	=	Drop Height, mm = 2,02
31.00	34	719	-24.208	14.706	674	S	=	Penetration per Blow, mm = 2.
31.50	33	752	-24.708	15.152	662	K	=	Rebound, mm =
32.00	30	782	-25.208	16.667	625			
32.50	32	814	-25.708	15.625	650			
33.00	42	856	-26.208	11.905	761			
33.50	46	902	-26.708	10.870	798			
34.00	213	1,115	-27.208	2.347	1,349			н
34.50	195	1,310	-27.708	2.564	1,326			\downarrow
35.00	160	1,470	-28.208	3.125	1,269			Control Elev. ▼ 6.792
35.50	123	1,593	-28.708	4.065	1,184		7	
36.00	101	1,694	-29.208	4.950	1,114		/	Natual Ground Elev. ▼ 6.506
36.50	95	1,789	-29.708	5.263	1,092	•		
37.00	164	1,953	-30.208	3.049	1,277			
37.50	148	2,101	-30.708	3.378	1,245			
37.85	166	2,267	-31.058	2.108	1,829			
								▼ -31.058

Figure 11-12 Sample of Driving Record Form

(7) Calculation of Bearing Capacity with Driving Records

There are several formulas to calculate the bearing capacity. In this clause, two typical formulas are introduced. One is Modified Hiley's Formula which has been used for civil work foundation in many countries. The other is Simple Estimate Formula has

been used for the building works in Japan and piling works in Cambodia. Among these two formulas, Modified Hiley's Formula is recommended for force account project since this formula is very reliable as the rebound value has been considered.

<Modified Hiley's Formula>

The bearing values for concrete and steel pile will be determined by the following formulas:

$$R_{u} = \frac{2 W H \times (W)}{(S+K) \times (W+W p)}$$
 Diesel Hammer

$$Ru = \frac{WH x(W)}{(S+K) x(W+Wp)}$$
 Drop Hammer

$$Ra = \frac{Ru}{Fa}$$

Where:

Ru = ultimate capacity of piles (KN)

Ra = capacity of pile (KN)

W = Weight of ram or hammer (KN)

H = height of fall of ram (mm)

Wp = weight of pile (KN)

S = average penetration for the last ten blows (mm)

K = Rebound (mm)

FS = factor of safety (3)

e.g.

W = 35 (KN)

H = 2000 (mm)

Wp = 60 (KN)

S = 2.0 (mm)

 $K = 7.0 \, (mm)$

FS = 3

$$R_u = \frac{2WH x(W)}{(S+K) x(W+Wp)}$$

=4,900,000/855

= 5,731 KN

Ra = Ru/3 = 1,910 KN

<Simple Estimate Formula>

The bearing values for concrete and steel pile will be determined by the following formula:

$$Ru = \frac{2WH}{(5S+0.1)}$$
 Diesel Hammer(Single Action)

$$Ru = \frac{WH}{(5S+0.1)}$$
 Drop Hammer

Where:

Ra = capacity of pile (KN)

W = Weight of ram or hammer (KN)

H = height of fall of ram (m)

S = average penetration for the last ten blows (m)

e.g.

W = 35 (KN)

H = 2 (m)

S = 0.003 (m)

$$Ra = \frac{2WH}{(5S+0.1)}$$

11.3.2 Quality Control Chart and Forms

The quality control work for concrete works shall be done according to the Table 11-7 (Q-4) Quality Control Chart for Concrete Works. In case the piles are produced at a factory, Party B has to secure the results of quality control records for the materials and trial mix for design proportion from a factory. A sample of quality control sheet for concrete work is attached in Appendix G.

The quality control for piling works shall be done according to Table 11-6 (Q-4) Quality Control Chart for Piling Works. Quality control sheets for pilling works are attached in Appendix F.

11.3.3 As-built Measuring Control Chart and Forms

Eccentricity of piles in whole footing shall be measured and confirmed as per allowable range. The result of the eccentricity shall be submitted to Party C. Quality

control sheets for eccentricity of piles are attached in Appendix F.

11.3.4 Documentation for Improvement: Check List Check lists for Piling Work are enclosed in Appendix H.

Table 11-6 (Q-4) Quality Control Chart for Piling Works

		Description	Specs	No.	Test Method	Standard	Tolerance	Frequency	Record method	Custody of Records	Witness
		Precast RC Pile	CS 5.3.2.1	QP-1	Measurement of the distance from the line stretched from tip to butt to any surface		$\leq 1/1000$ of the length	Every pile	St'd Form	Party B & C	Party C
		Driving Piles	CS 5.3.3.2	OP-2	M easurement of positions of pile heads comparing the		≦80mm	Every pile	St'd Form	Party B & C	Party C
Work	ution			QF-2	Measurement of the center of gravity of row comparing		≦50mm	Every row of piles	St'd Form	Party B & C	Party C
Piling	Execution		CS 5.3.3.3	QP-3	Recording driving			Every pile	St'd Form	Party B & C	Party C
		Bearing Capacity	CS 5.3.3.3	QP-4	Driving formula	JRA 17.10	≦Pile Load caluculated in the design, Safety factor of 3	Every pile		Party B & C	
				QP-5	Static Load Test		≦Pile Load caluculated in the design, Safety factor of 3	Test Pile		Party B & C	Party C
				QP-6	Dynamic Load Test	ASTM D4945	≦Pile Load caluculated in the design, Safety factor of 3	Test Pile		Party B & C	Party C

Note: CS (Construction Specification)

11.4 Concrete Works

11.4.1 Flow of the Works

The flows of Concrete Works has been prepared and shown in the Figure 11-13 Flow of Concrete Works. The yellow and blue square are quality control activities and as-built measuring control activities respectively. The squares on the right side are the identification code of as-built measuring quality control and as-built measuring control items.

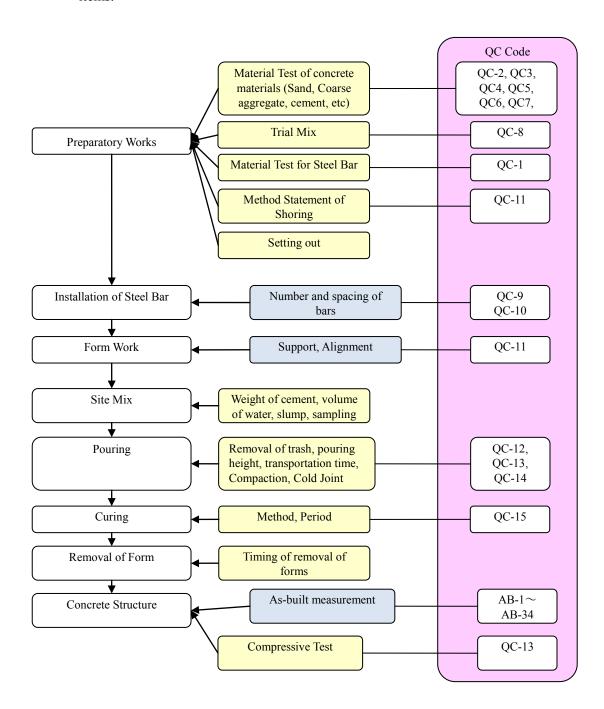


Figure 11-13 Flow of Concrete Works

11.4.2 Quality Control Chart and Forms

The quality control work shall be done according to Table 11-7 (Q-4) Quality Control Chart for Concrete Works. In case the concrete is procured from a concrete batching plant, Party B has to secure the results of quality control records for the materials and trial mix for design proportion from manufacturers. A sample of daily quality control sheet for concrete work is attached in Appendix G.

11.4.3 As-built Measuring Control Chart and Forms

Please refer to its forms. The as-built measuring control shall be done according to Table 11-8 (A-2) As-Built Control Chart for Concrete Works. Necessary forms shall be prepared based on the sample forms as attached in Appendix A.

11.4.4 Documentation for Improvement: Check List

Check list for Concrete Work is enclosed in Appendix H.

Table 11-7 (Q-4) Quality Control Chart for Concrete Works

	Description	soa ds	No.	Test Method	Standard	Tolerance	Frequency	Record method	Custody of Records	Witness
	Deformed Bar	CCMS Appendix 2	QC-1	M ill Certificate	AASHTO T-68	Grade 400 (\ge 420Mpa)		Photocopy	Party B & C	Party C
	Fine Aggregate	CCMS Appendix 3	QC-2	Grading	AASHTO 1A	Within the ranges		St'd Form	Party B & C	Party C
	Course Aggregate	CCMS Appendix 3	QC-3	Grading	AASHTO 1A	Within the ranges		St'd Form	Party B & C	Party C
aterial	IBI Izms	CCMS Appendix 3	QC-4	Abrasion	AASHTO T-96	≦35% at 500 revolutions	Der cource whenever any	St'd Form	Party B & C	Party C
v N	IAT	CCMS Appendix 3	QC-5	Flakiness Index	BS-82	≤33%		St'd Form	Party B & C	Party C
	Water	CCMS Appendix 3	QC-6	Taste of Water		Potable		Check List	Party B & C	Party C
	Cement	CCMS Appendx3	QC-7	Manufacture's Certificate	Certificate AASHTO T-131	Portland Cement Type 1		Photocopy	Рапу В & С	Party C
oncrete	Mix Proportion	CS 5.1.2.5	QC-8	Trial Mix		shown in the CS 5.1.2.5		St'd Form	Party B & C	Party C
כי	Re-bar Arrangement	CS 5.2.3.3	QC-9	Placing Supporting and Fastening			All staructures	Check List	Party B & C	Party C
		CS 5.2.3.4	QC-10	Splicing		40D	All staructures	Check List	Party B & C	Party C
cecution	Forms	CS 4.1.4.5	QC-11	Shape, Strength, rigidity etc	Specified in CS	N/A	Before pourings	Check List	Party B & C	Party C
1	Slump	CS 5.1.2.2	QC-12	Slump cone	AASHTO T-119	50-100	Every Truck	Check List	Party B & C	Party C
	Conrete Strength	CS 5.1.2.4	QC-13	Compressive Test	AASHTO T-22,23	≧ Requirement	First batch & Every 25 m3	Check List	Party B & C	Party C
	Compaction	CS 5.1.4.7	QC-14	Observation	Specified in CS	N/A	All pourings	Check List	Party B & C	Party C
	Curing	CS 5.1.4.8	QC-15	Observation	Specified in CS	N/A	All pourings	Check List	Party B & C	Party C

Table 11-8 (A-2) As-Built Control Chart for Concrete Works

8 8 8 8 8	specs	No.	Measured Items	M ethod	Tolerance	Frequency	Record method	Custody of Records	Witness
<u>ช้ ช้ ช้ ช้ </u>	Civil Works Handbook/Japan	AB-1	Elevation of bearing seat	Level Instrument	mm 02 ∓	every structure	St'd Form	Party B & C	Party C
8 8 8	Civil Works Handbook/Japan	AB-2	Thickness of footing	M easuring Tape	- 20 mm	every structure	St'd Form	Party B & C	Party C
<u>δ</u> [σ	Civil Works Handbook/Japan	AB-3	Width of parapet wall	M easuring Tape	- 10 mm	every structure	St'd Form	Party B & C	Party C
Ci	Civil Works Handbook/Japan	AB-4	Width of bearing seat	M easuring Tape	- 10 mm	every structure	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AB-5	Width of footing	M easuring Tape	mm 05-	every structure	St'd Form	Party B & C	Party C
Abutment	Civil Works Handbook/Japan	AB-6	Height of abutment	M easuring Tape	mm 05-	every structure	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AB-7	Height of parapet wall	M easuring Tape	- 30 mm	every structure	St'd Form	Party B & C	Party C
C'n	Civil Works Handbook/Japan	AB-8	Length of Parap et Wall	Measuring Tape	mm 05-	every structure	St'd Form	Party B & C	Party C
Ċ	Civil Works Handbook/Japan	AB-9	Length of bearing seat	M easuring Tape	ww 05-	every structure	St'd Form	Party B & C	Party C
Ċ	Civil Works Handbook/Japan	AB-10	Distance of parapet wall	M easuring Tape	± 30 mm	every structure	St'd Form	Party B & C	Party C
<u>.</u> .	Civil Works Handbook/Japan	AB-11	Distance of bearing seat (Span Length)	M easuring Tape	ww 05 ∓	every structure	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-12	Elevation of bottom	Level Instrument	± 20 mm	every structure	St'd Form	Party B & C	Party C
Diar Ecoting	Civil Works Handbook/Japan	AB-13	Width	M easuring Tape	-50 mm	every structure	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AB-14	Height	M easuring Tape	-20 mm	every structure	St'd Form	Party B & C	Party C
αν	Civil Works Handbook/Japan	AB-15	Length	M easuring Tape	-50 mm	every structure	St'd Form	Party B & C	Party C
ND CN	Civil Works Handbook/Japan	AB-16	Elevation of bearing seat	Level Instrument	mm 02 ∓	every structure	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-17	Width of structure	M easuring Tape	-20 mm	every structure	St'd Form	Party B & C	Party C
Dior Sun eretru eture	Civ il Works Handbook/Japan	AB-18	Height of structure	M easuring Tape	mm 05-	every structure	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AB-19	Length of structure	M easuring Tape	-50 mm	every structure	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-20	Distance of piers	M easuring Tape	± 30 mm	every structure	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-21	Span length	M easuring Tape	mm 05 ±	every structure	St'd Form	Party B & C	Party C
ND CV	Civil Works Handbook/Japan	AB-22	Width (Upper)	M easuring Tape	+10, -5 mm	every pier	St'd Form	Party B & C	Party C
DC/RC Girder	Civil Works Handbook/Japan	AB-23	Width (Lower)	M easuring Tape	± 0.5 mm	every pier	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AB-24	Height	M easuring Tape	+10, -5 mm	every pier	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-25	Length	M easuring Tape	-30 mm	every pier	St'd Form	Party B & C	Party C
Ç	Civil Works Handbook/Japan	AB-26	Formation level	Level Instrument	± 30 mm	inlet & outlet	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-27	Width (inside)	M easuring Tape	-30 mm	inlet & outlet	St'd Form	Party B & C	Party C
Box Culvert Civ	Civil Works Handbook/Japan	AB-28	Height (inside)	M easuring Tape	± 30 mm	inlet & outlet	St'd Form	Party B & C	Party C
Ċ'n	Civil Works Handbook/Japan	AB-29	Thickness (slab & wall)	M easuring Tape	-20 mm	inlet & outlet	St'd Form	Party B & C	Party C
Civ	Civ il Works Handbook/Japan	AB-30	Length	M easuring Tape	-50 mm (L<20m) -100 mm (20m≤L)	every culvert	St'd Form	Party B & C	Party C
ND CV	Civil Works Handbook/Japan	AB-31	Formation level	Level Instrument	mm ± 30 mm	inlet & outlet	St'd Form	Party B & C	Party C
Pine Culvert	Civil Works Handbook/Japan	AB-32	Width (foundation)	M easuring Tape	-50 mm	inlet & outlet	St'd Form	Party B & C	Party C
	Civil Works Handbook/Japan	AB-33	Height (foundation)	M easuring Tape	- 30 mm	inlet & outlet	St'd Form	Party B & C	Party C
Civ	Civil Works Handbook/Japan	AB-34	Length	M easuring Tape	-200 mm	every culvert	St'd Form	Party B & C	Party C

12 Inspection

Party C and D shall, at all times, have access to the work during its construction, and shall be furnished with every reasonable facility for ascertaining that the materials and the workmanship are in accordance with the requirements and intentions of construction specifications, special provisions, and construction plans. All work done and all materials furnished shall be subject to Party C and D inspection.

Party B shall make requests for inspection when necessary. A sample form of "Request for Inspection" is attached in Appendix I.

Inspections of Party D which are composed of Interim Inspection, Final Inspection and Warranty Inspection should be carried out by checking documents and site inspection as shown in the Table 12-1 and Table 12-2.

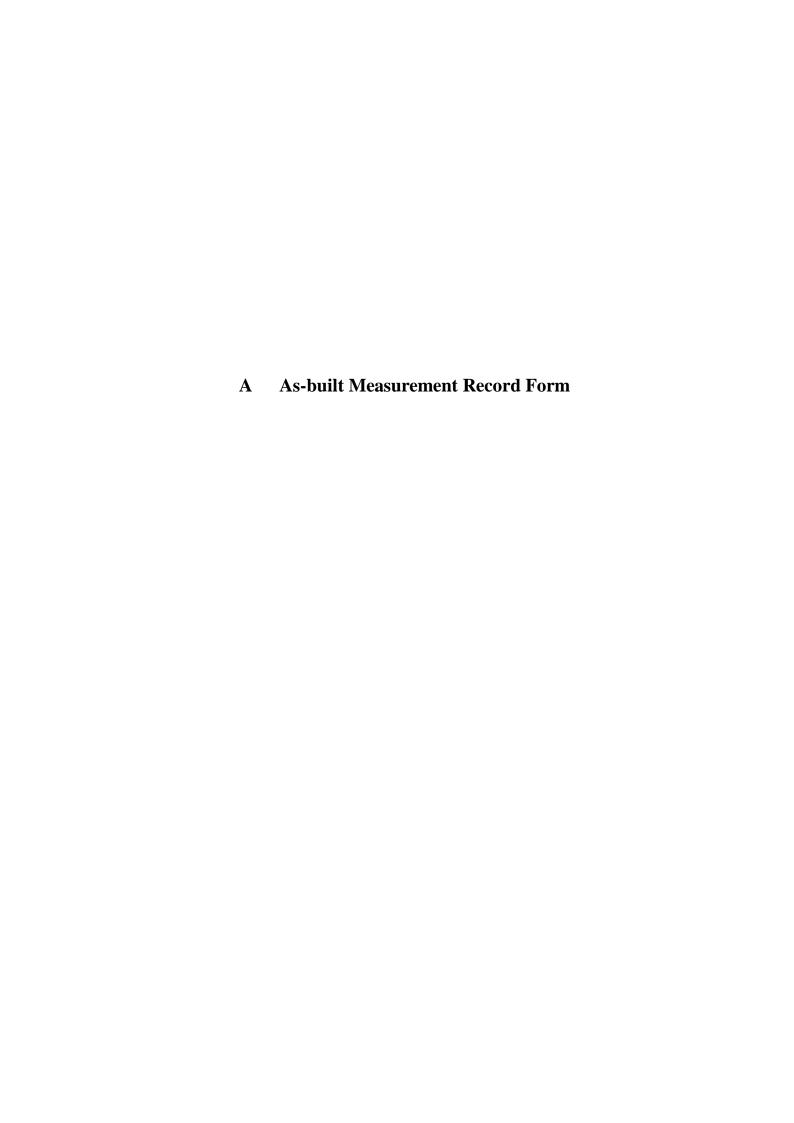
Checking document:

Documents of original and revised construction plans and records of Daily Quality Control shall be checked.

Site inspection:

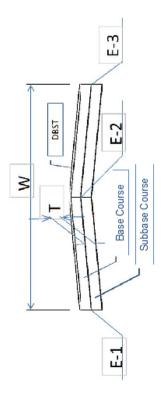
Works which shall conform to the lines, grades, cross sections, dimensions and material requirements indicated in the specifications shall be inspected by eye and measurement.

Table 12-1 Points of Inspection

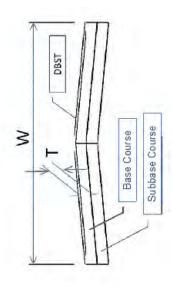

Checking	· All tests and as-built measurements specified in the technical specifications
Documents	shall be carried out in conformity to their frequencies, record methods and
	those results shall satisfy their tolerances.
	· Construction work shall be carried out subject to approved construction plan.
Site	· Measurements shall be carried out at points in a work site chosen by Party D
Inspection	according to the work types.
	Workmanship such as material condition, level of flatness, crack appearance
	and so on shall be inspected by eye.
	· Construction methods shall be subject to approved construction plan.

Check List for Inspection Checking Documents: ☐ Construction Plan · Is the construction plan approved by Party C? (Yes / · Is the construction plan in conformity to the specification? (Yes / ☐ Quality Control Chart (Material and Execution Test Result) For each test, ·Is the test frequency enough? (Yes / ·Is the record method appropriate? (Yes / No) ·Is the test result within its tolerance? (Yes / No) ☐ As-built Measurement Chart For each measurement, · Is the measurement frequency enough? (Yes / ·Is the record method appropriate? (Yes / No) · Is the measurement error within its tolerance? (Yes **Site Inspection:** ☐ Actual as-built measurement of works For each measurement, · Is the measurement error within its tolerance? (Yes No) ☐ Workmanship (Material, flatness, crack and etc. to be checked) For asphalt concrete or DBST road surface, ·Did you check that flush did not occur? (Yes / •Did you check that hair crack did not occur? (Yes • Did you check that stripping did not occur? (Yes / ·Did you check that flatness was good? (Yes / For shoulder, · Is the shoulder proper material and certainly compacted? (Yes / · Is the shoulder grade appropriate? (Yes / For embankment slope, ·Is the slope grade appropriate? (Yes / No) ·Is the slope certainly compacted? (Yes / No) For concrete work, • Did you check that honeycomb did not appear on the surface? (Yes / • Did you check that re-bar did not appear on the surface? (Yes / No) ·Is the condition of the joint good? (Yes / ☐ Construction Method For each construction work, ·Is the work procedure according to the construction plan? (Yes / · Is the equipment used for the work appropriate? (Yes / ·Is the material used for the work appropriate? (Yes / No) · Are the quality control tests done appropriately? (Yes / **Comments:**

13 IB Performance Evaluation


Performances of IB, in other words Party B shall be evaluated by Supervision & Evaluation Team under the RID and Evaluation & Hand-Over Team from MEF and PEAC according to the guideline named as "IB Performance Evaluation Form" promulgated by MPWT on May 02, 2008.

As-Built Record Form



(Error	(mm)	20	-20	22	-54	-30	-40	-40	34	44	43	44	-20	33	-40	90	-40	-50	-30	40	-32	44
E-3(±50mm)	Actual	EL	15.141	15.601	16.176	16.567	17.091	17.581	18.081	18.655	19.165	19.664	20.165	20.571	21.154	21.581	22.181	22.581	23.071	23.591	24.161	24.589	25.165
E-	Design	EL	15.121	15.621	16.121	16.621	17.121	17.621	18.121	18.621	19.121	19.621	20.121	20.621	21.121	21.621	22.121	22.621	23.121	23.621	24.121	24.621	25.121
	Error	(mm)	-11	-12	12	23	34	34	43	43	43	43	23	-34	-33	-34	34	34	43	34	44	43	34
E-2(±50mm)	Actual	EL	15.710	16.209	16.733	17.244	17.755	18.255	18.764	19.264	19.764	20.264	20.744	21.187	21.688	22.187	22.755	23.255	23.764	24.255	24.765	25.264	25.755
E-	Design	EL	15.721	16.221	16.721	17.221	17.721	18.221	18.721	19.221	19.721	20.221	20.721	21.221	21.721	22.221	22.721	23.221	23.721	24.221	24.721	25.221	25.721
	Error	(mm)	10	-12	12	10	6-	30	30	10	09-	-45	-20	23	-44	20	-34	34	-45	34	45	43	45
E-1(±50mm)	Actual	EL	15.131	15.609	16.133	16.631	17.112	17.651	18.151	18.631	19.061	19.576	20.071	20.644	21.077	21.671	22.087	22.655	23.076	23.655	24.166	24.664	25.166
E-	Design	EL	15.121	15.621	16.121	16.621	17.121	17.621	18.121	18.621	19.121	19.621	20.121	20.621	21.121	21.621	22.121	22.621	23.121	23.621	24.121	24.621	25.121
	Error	(mm)	10	1	ı	1	_	-20	1	_	_	_	30	1	-	-	1	-10	_	_	1	1	20
T(-45mm)	Actual	(mm)	210	ı	ı	1	-	150	1	-	1	-	230	ı	ı	ı	ı	190	-	-	ı	1	220
	Design	(mm)	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
(Error	(mm)	10	1	20	1	20	_	09	_	10	_	-10	1	-20	_	-20	_	-40	_	-10	1	10
W(±50mm)	Actual	(mm)	6010	ı	6020	1	6020	1	0909	1	6010	1	5990	1	5980	ı	5950	-	2960	1	5990	1	6010
W	Design	(mm)	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009	0009
	Sta		Sta 0+000	Sta 0+040	Sta 0+080	Sta 0+120	Sta 0+160	Sta 0+200	Sta 0+240	Sta 0+280	Sta 0+320	Sta 0+360	Sta 0+400	Sta 0+440	Sta 0+480	Sta 0+520	Sta 0+560	Sta 0+600	Sta 0+640	Sta 0+680	Sta 0+720	Sta 0+760	Sta 0+800

As Built Record Form

Date	
Budget Year	
Chapter	
Province	
Road Number	
Name of Structure	
Measuring Person	Name / Signature
Witness	Name / Signature

		W(±50mm)			T(-45mm)	
Sta	Design	Actual	Error	Design	Actual	Error
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
Sta 0+000	0009	6010	10	200	210	10
Sta 0+040	0009	ı	1	200	1	1
Sta 0+080	0009	6020	20	200	1	1
Sta 0+120	0009	£	1	200	ī	1
Sta 0+160	0009	6020	20	200	ï	1
Sta 0+200	0009	1	1	200	150	-20
Sta 0+240	0009	0909	09	200	ĭ	0
Sta 0+280	0009	i	-1	200	ı	£
Sta 0+320	0009	6010	10	200	1	3
Sta 0+360	0009	-	1	200	1	ı
Sta 0+400	0009	0669	-10	200	230	30
Sta 0+440	0009		i	200	Ţ	1
Sta 0+480	0009	2980	-20	200	1	1
Sta 0+520	0009			200	ı	1
Sta 0+560	0009	2950	-20	200	ť	1
Sta 0+600	6000	1	1	200	190	-10
Sta 0+640	0009	0969	-40	200	1	1
Sta 0+680	0009		1	200	J	1
Sta 0+720	0009	2990	-10	200	1	ŀ
Sta 0+760	0009	-		200	ĵ	I
Sta 0+800	0009	0109	10	200	220	20

As-Built Record Form

N_q

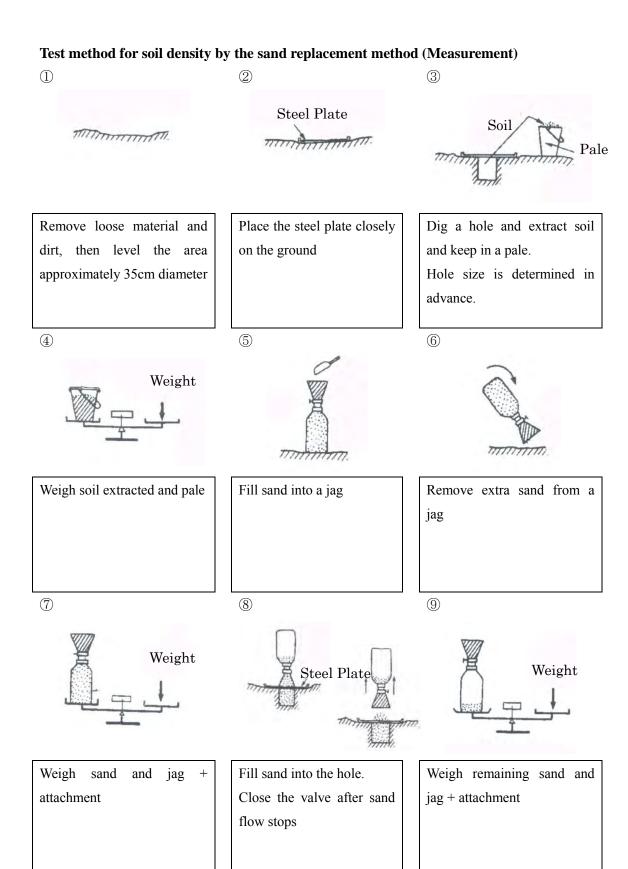
Date	
Budget Year	
Chapter	
Province	
Road Number	
Name of Structure	
Measuring Person	Name / Signature
Witness	Name / Signature

h₁

*

E W1	Location ±20mm -10mm -11	L C R L C R L	Design	A1 Actual	Error	Design	A2 Actual	
W2	-10mm	O R						
W3	-50mm	L C R				3-12-1		
W4	-50 mm							
h1	-50mm	0 7						
h2	-30mm	R L C						
		R						
4-4	-20mm	0 7						
	ш	R				ŀ	-	

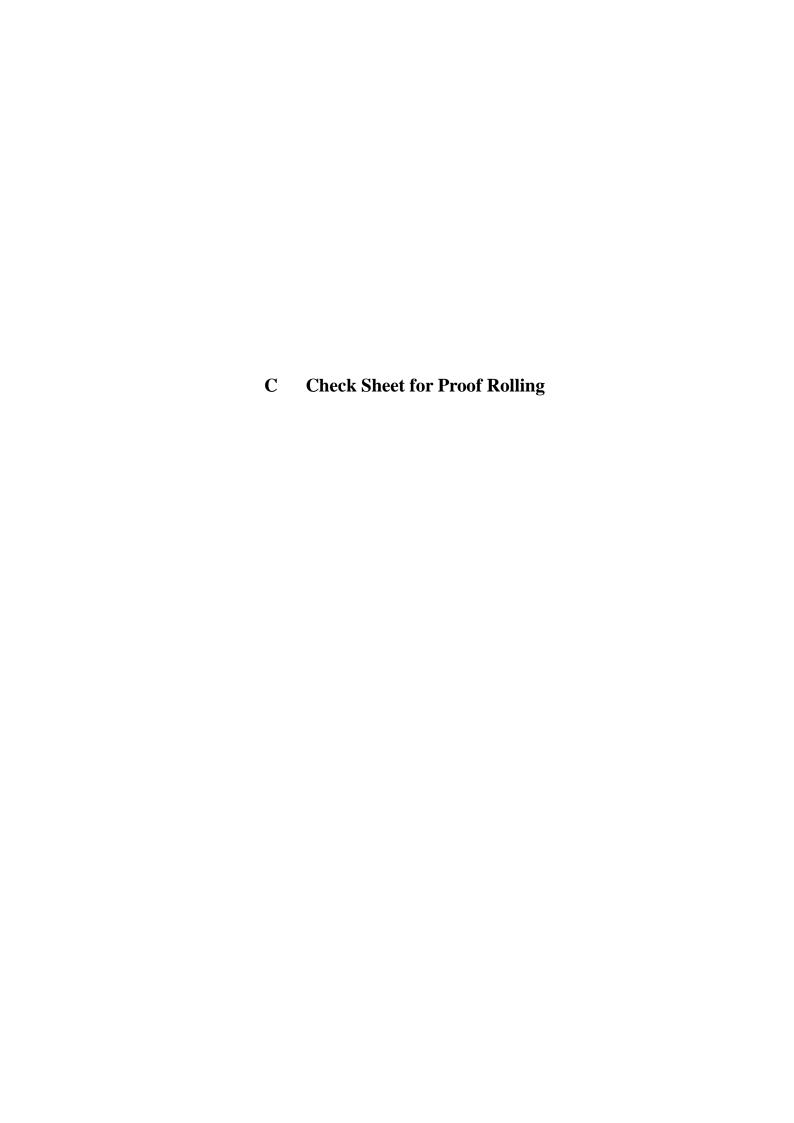
As-Built Record Form


Date				
Budget Year		W ₃	ı	2
Chapter			2° *	->
Province				
Road Number		h ₂₁ h _{2R}	<	
Name of Structure		, w	ř.	
Measuring Person	Name / Signature	W _{2R} W _{2R}	<u> </u>	
Witness	Name / Signature			

		E,	E2	யீ	W	W2L	Wal	W _{2R}	W _{3R}	hıc	hio	hıR	hat	hzR
Location			±20mm		+30mm -5mm	+10mm -5mm	±5mm	+10mm -5mm	±5 mm	+10mm -5mm	+10mm -5mm	+10mm -5mm	+10mm -5mm	+10mm -5mm
	Design											Ī		
=	Actual													
	Error													
	Design													
2	Actual											Ī		
	Error													
1	Design													
က	Actual													
	Error													

As-Built Record Form

Date								Box Culvert			Pipe (Pipe Culvert	
Budge	Budget Year						***	t, w t	T > K				
Chapter	ər										Ġ	▼ [
Province	eo) 1		Annual Control of the	_^			
Road	Road Number						y → «	ш 🏲		<u></u>		¥ ¥ T	(Manual Annual A
Name	Name of Structure	<u>1</u>					*			T	*	\ 	
Measu	Measuring Person	nc		Name /	Name / Signature								
Witness	g			Name /	Signature								
					ă	Box Culvert					Pipe (Pipe Culvert	
		ш	W	ч	Ţ	t ₂	يئ	ţ	1	ш	W	h	Т
Location		±30mm	-30mm	±30mm	-20mm	-20mm	-20mm	-20mm	-50 mm (L<20m) -100 mm (20m≤L)	±30mm	-50mm	-30mm	-200mm
	Design												
1-Inlet	Actual												
	Error												
	_												
1-Outlet	Actual												
	Error												
	Design												
2-Inlet	Actual												
	Error												
					_			_					
2-Outlet Actual	Actual												
	Error												



Calibration Sheet for the Sand Cone Apparatus

Proj ect Name:			_
Reference No.:			-
Date of Calibration:			_
(a) Sand type:			
(b) Density of sand			
Trial number	1	2	3
Volume of mold (V1)			
Mass of baseplate and empty mold (M_1)			
Mass of baseplate, mold, and sand (M_2)			
Mass of sand $M_3 = M_2 - M_1$			
Density of sand $\rho_1 = M_3 / V_1$			
Density of sand (average value):			
_		_	
(c) Volume of funnel and baseplate			
Trial number	1	2	3
Initial mass of funnel, container, and sand (M_4)			
Final mass of funnel, container, and sand (M ₅)			
Mass of sand in funnel and baseplate (M_6)			
Volume of funnel and baseplate $V_2 = M_6 \ / \ \rho_1$			
Volume of funnel and baseplate (average v	value):		
			-
Submitted by :		on the date of:	
Checked by:		on the date of:	
Approved by :		on the date of:	

Calculation Sheet for the Sand Cone Apparatus

roject Name:					
deference No.:			-		
6112 (3)			-		
Sand density (p1):					
Test Number	1	2	3	4	5
Date					
Location					
Elevation					
		Sand cone test Vo	olume of hole		
Initial mass of apparatus (M7)					
Final mass of apparatus (Mg)					
Sand used Mo = Mo - Mo					
$M_9 = M_7 - M_8$ Volume of sand					
$V_3 = M_9 / \rho_1$ Volume of funnel and					
baseplate (V ₂) Volume of hole					
$V_4 = V_3 - V_2$					
		Sand cone test Ma	iss of wet soil		
Empty container (M ₁₀)					
Container plus wet soil (M ₁₁)					
Wet soil					
$M_{12} = M_{11} - M_{10}$		Water conter	nt test		
Mass of empty cooking pan		Water conter	lt test		
(M_c)					
Mass of cooking pan + wet					
soil (M _{wt}) Mass of cooking pan + dry					
soil (M _{dc})					
Mass of water					
M _w = M _{wc} - M _{dc} Mass of solids					
$M_s = M_{dc} - M_c$					
Water content					
$W = M_w / M_s$					
****		Calculated v	alues		
Wet density					
$\rho_t = M_{12} / V_4$ Dry density					
$\rho_d = \rho_t / (1 + w)$					
Laboratory maximum dry					
density (ρ _{dmax}) Relative compaction =					
100 ρ _d / ρ _{dmax}					
Passed / Failed					
Submitted by :		on the date of :	l	l	l
Checked by :		on the date of :			
Approved by :		on the date of :			

Check Sheet for Proof Rolling

Budget Year		Province	Nameof Part B								
Chapter		Road Number	Nameof Part C								P : Pass
											F: Fail
Date	Work Items ¹⁾	Section	Length(m)	/R/ L&R	Load ²⁾ (P/F)	Tire (P/F)	Result of Test (P/F)	In charge(Party B)	(Party B)	In charge(Party C)	Party C)
								Name	Sign	Name	Sign
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ∼Sta.									
		Sta. ~Sta.									
		Sta. ∼Sta.									
1) Base con	rse Sub base C	1) Base course Sub base Capping Layor Sub-grade									

Base course, Sub base, Capping Layor, Sub-grade
 Load on the dump truck or in the water tank of tire roller shall be confimed by visual check.
 Air pressure of tires shall be confirmed by visual check.

D	Check Sheet for Application of Bitumen Material	

Check Sheet for Application of Bitumen Material

2000	יייייייייייייייייייייייייייייייייייייי	Olicer Olicer IO Application of Distilled Marchia								
Budget Year		Province	Nameof Part B							
Chapter		Road Number	Nameof Part C							
			-	•						
Date	Work Items ¹⁾	Section	Length(m)	L/R/ L&R	Target Appli- cation	Actual Application	In charge(Party B)	Party B)	In charge(Party C)	Party C)
						(III./m)	Name	Sign	Name	Sign
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ~Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								
		Sta. ∼Sta.								

1) : SBST, DBST, Asphalt Concrete / Prime Coat, Tack Coat

E	Quality Control Sheet for Earth Work

KINGDOM OF CAMBODIA Nation Religion King PROPRIET POLICE

> MINISTRY OF PUBLIC WORKS AND TRANSPORTS BUILDING AND PUBLIC WORKS LABORATORY STREET598,PHUM KHORZ,SANGKAT CHRANG CHOMRASS-2 KHAN RUSSEY KEO PHINOM PENH., Tel 0.23982.240 LBTP OF CAMBODIA

SUMMARY OF TESTS RESULTS

: External Access Road at 2 x 50MW Coal fired Power Plant at Stung Hav Project Name

. MEC Customer Name

June 14, 2012 Received Date

June 15, 2012 Date of Testing O-Tres Stung Hav Source Material

Soil Material

Purpose

Embankment (①Capping Layor, ②Sub-base, ③Base-course), ④Existing Sub-grade

Select and mark ①-④

		Sie	Sieve Analysis	.s	Atte	Atterberg Limits	is				In case of ①②③	In case of ๋€
LAB N°	SOURCE OF MATERIAL		(%)			(%)		Soil Classfication	Maximum Dry Density	Optimum Moisture Content	CBR at Point_% of MDD	CBR at Degree of Compaction (%) of existing ground
		2.00mm	0.425mm	0.075mm	W.	Wu	1		(g/cc)	(%)	Soaked	Soaked
0671	0-Tres Stung Hav	82.90 78.40		31.00	31.00 44.40 23.47 20.93	23.47	20.93	A ₂₋₇	1.935	10.6	3.8	

Calculated by:

Checked by:

Approved by: Director General of Laboratory .,

Mr. Men Bunny

Mr. Pich Vuthy

KINGDOM OF CAMBODIA Nation Religion King

MINISTRY OF PUBLIC WORKS AND TRANSPORTS
BUILDING AND PUBLIC WORKS LABORATORY
LBTP OF CAMBODIA
STREETSOR PHUM KHORQ, SANGKAT CHRANG CHOMBASS-2

Purpose

KHAN RUSSEY KEO PHNOM PENH Tel 023982240

Embankment (@Capping Layor, @Sub-base, @Base-course), @Existing Sub-grade

lient :	Client: MEC					2	Material: Soil				Re	Received Date: June 14, 2012	June 14, 2	2012
Site:	Site: 0-Tres Stung Hav	Hav					LAB: 0671				ă	Date of testing: June 15, 2012	: June 15, 2	2012
	AASHTO - M57	- M57												
sieve Size	weight retained	retained	passing	100										
ww	51	96	90											
				OS 14.4%						•				
				88										
75.00	0.0	0.00	100.0	- 0/				-		+				
50.80	0.0	00.00	100.0							-	_			
25.40	0.0	0.00	100.0	8										
9.50	34.2	67.6	90.2							+				\parallel
.750	49.1	14.1	85.9	20						-				
2.000	29.7	17.1	82.9							_				
0.425	75.4	21.6	78.4	40										Ц
0.075	241.0	0.69	31.0											
weigh	weight of Dry soil =	349.4	6	8						-				
ater	Water Content % =	,		50						_				
	Gravel % =		14.1	2 0	Sieve Size (mm)									
	% pues		549	0.001		10.0	0,1			·		10		100
	5		2				Fine		Mediu Coarse	oarse	Fine	Medium	Coarse	səp
()	Silt+Clay % =		31.0	Ō	Slay	Silt		ιχ	Sand			Gravel		qqo(

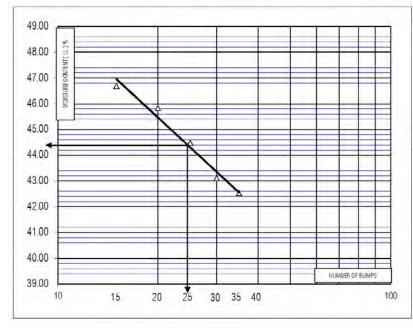
DETERMINING THE PLASTIC LIMIT AND PLASTICITY INDEX OF SOIL (AASHO T90-86)

Project Name : External Access Road at 2 x 50MW Coal fired Power Plant at Stung Hav

Customer Name : MEC

 Received Date
 : June 14, 2012

 Date of Testing
 : June 15, 2012


Source Material : 0-Tres Stung Hav

Material Soil

Purpose Embankment (1) Capping Layor, 2) Sub-base, 3) Base-course), 4) Existing Sub-grade

LAB: 0761

No			l		PI ACTI	C LIMIT		
NUMBER OF BUMPS		15	20	25	30	35	LASII	C LIVET
COTAINER Nº		E26	B22	B8	D6	D7	T16	T20
MASS OF WET SOIL + CONTAINER	g	55.1	52.5	54.6	61	58.6	18.7	18.5
MASS OF DRY SOIL + CONTAINER	g	43.1	40.4	42.1	48.8	45.5	16.4	16.2
MASS OF CONTAINER	g	17.4	14	14	20.5	14.7	6.5	6.5
MASS OF MOISTRURE	g	12	12.1	12.5	12.2	13.1	2.3	2.3
MASS OF DRY SOIL	g	25.7	26,4	28.1	28.3	30.8	9.9	9.7
MOISTRURE CONTEN	%	46.69	45.83	44.48	43.11	42.53	23.23	23.71
							23	47

RESULTS	S TEST
Liquid Limit , %	44.40
Plastic Limit , %	23.47
Plastic Index , %	20.93
Soil Classification	A ₂₋₇
Water Content ,%	

MODIFIED PROCTOR

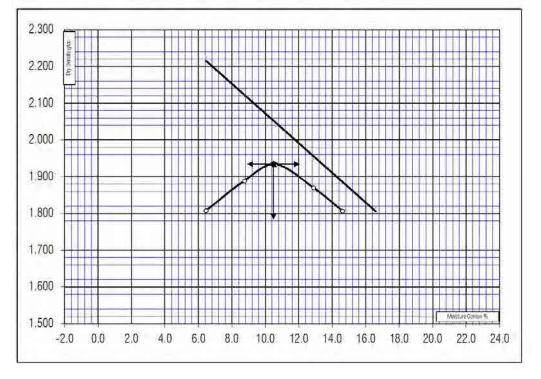
(MOISTURE - DENSITY RELATOINS OF SOILS)

*AASTHO T180-97 Project Name : External Access Road at 2 x 50MW Coal fired Power Plant at Stung Hav

* Weight of Rammer = 4.54 kg Customer Name : MEC

 *Free fall Height= 457mm
 Received Date
 : June 14, 2012

 *Drop = 152.40mm
 Date of Testing
 : June 15, 2012


 *Face of Diameter = 50.8mm
 Source Material
 : 0-Tres Stung Hav

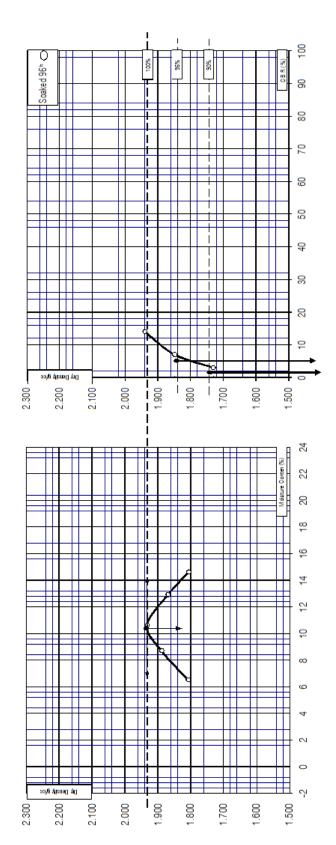
*Compacted=56 blows/5layer Material : Soil

Purpose Embankment (①Capping Layor, ②Sub-base, 3Base-course), ④Existing Sub-grade

TEST RESULTS DENSITY Wt.of Soil + Mold 6908.0 7184.0 7544.0 7305.0 7220.0 Maximum Dry Density Wt.of Motd 2792.0 2792.0 3015.0 2792.0 2792.0 MDD = 1.935 g/cc Wt.of Soil 4116.0 4392.0 4529.0 4513.0 4428.0 Optimum Moisture Content Vol. Mold 2138.0 2138.0 2117.0 2138.0 2138.0 OMC = 10.6% 1.925 2.054 2.139 2.071 Wet Density 2.111 Dry Density 1.808 1.889 1.933 1.870 1.807 WATER CONTENT LAB № 0761 242.2 285.4 262.9 274.4 243.3

Wt.of Wet Soil + Container 4 236.4 243.3 Wt.of Dry Soll + Container 230.3 225.2 260.9 Wt.of Water 13.0 17.0 24.5 26.5 31.1 WLof Container 29.1 30.7 30.1 30.6 30.5 Wt.ot Dry Soil 201.2 194.5 230.8 205.8 212.8 Water Content 8.7 12.9 14.6 6.5 10.6

KINGDOM OF CAMBODIA Nation Religion King


MINISTRY OF PUBLIC WORKS AND TRANSPORT BUILDING AND PUPLIC WORKS LABORATORY LBTP OF CAMBODIA STREET598. PHUM KHOR-1. SANGKAT CHRANGCHOM RASS-2

STREET598, PHUM KHOR-1, SANGKAT CHRANGCHOMRASS-2 KHAN RUSSEY KEO, PHNOM PENH, CAMBODIA, TEL 023982240

Purpose Embankment (①Capping Layor, ②Sub-base, ③Base-course), ④Existing Sub-grade

	9				_	
	LABN				0761	
Date	Tecting	6			14-Jun-12 15-Jun-12	
Date	Sampling	9 9			14-Jun-12	
	CHANDAPO		1.550 AASHTO	T193		
	Swelling Standard Sampling Testing	(%)	1.550	2.331	2.950	0.7 = 0.0
ARING RATIO	Moisture Content	After Soaking 96 ^h (%)	22.4	24.3	25.2	t Point 95% of ME
CALIFORNIA BEARING RATIO	Dry Density Moisture Content	at Compaction 🕾	10.6	10.6	10.8	CBR For Soil Soaked 96 ^h at Point 95% of MDD = 7.0
	Dry Density	(pa/6)	1.940	1.849	1.731	CBR For S
	Blowe		65	30	10	
TOR	ards	T 180	OMC	(%)		10.6
PROCTOR	Standards	AASHTO T 180	MDD	ad/6		1.935

MEC Soil from 0-Tres Stung Hav

Check sheet for Pilling Works (As Built Measurement)

No.				Date:
Budget Ye	ar			Province
Chapter				Bridge Number
Nameof Pa	arty	В		Name of Party C
Abutment /	Pieı	r No. :		
Pile No. :				
Ī	Prof	ile of Pile		
	1	D		
	2	Date of Casting		
	3	Length of Pile	m	
	4	Cross Section of Pile	□Square	mm ×mm
			□Circle	Diameter:mm
1	Mea	surement of Pile		
	1	Cross Section of Pile	□Square	mm ×mm
			□Circle	Diameter:mm
	2	Length of Pile	m	
		Maximum Distance from the line stretched from tip to butt to any surface	m	
	4	2/3		<= 1/1000
(Che	ck by Party C		
Г		ne of Person in charge:		
5	Sign	ature:		

Check sheet for Pilling Works (Measurement of Pile's eccentricity)

No. Date:

Budget Year	Province	
Chapter	Bridge Number	
Name of Party B	Name of Party C	

Abutment / Pier No.:

Nu	mber of Pile		difference (mm)	T	Tolerance	Check
		x direction	y direction	total		
Ot	1	15	60	62	<= 80mm	Pass/Fail
	2	-20	40	45	<= 80mm	Pass/Fail
	3	30	-50	58	<= 80mm	Pass/Fail
	4	50	40	64	<= 80mm	Pass/Fail
	5	-60	20	63	<= 80mm	Pass/Fail
	6	70	10	71	<= 80mm	Pass/Fail
	7				<= 80mm	Pass/Fail
	8				<= 80mm	Pass/Fail
	9				<= 80mm	Pass/Fail
	10				<= 80mm	Pass/Fail
	11				<= 80mm	Pass/Fail
	12				<= 80mm	Pass/Fail
	13				<= 80mm	Pass/Fail
	14				<= 80mm	Pass/Fail
	15				<= 80mm	Pass/Fail
	16				<= 80mm	Pass/Fail
	17				<= 80mm	Pass/Fail
	18				<= 80mm	Pass/Fail
	19				<= 80mm	Pass/Fail
	20				<= 80mm	Pass/Fail
	21				<= 80mm	Pass/Fail
	22				<= 80mm	Pass/Fail
	23				<= 80mm	Pass/Fail
	24				<= 80mm	Pass/Fail
	х					
Cer	nter of Gravity	14	20	25	<= 50mm	Pass/Fail

Check by Party C

Name of Person in charge:	
Signature:	

Check sheet for Pilling Works (Driving Record)

No. Date:

Budget Year	Province
Chapter	Bridge Number
Name of Party B	Name of Party C

Pile Type	SPP	Driving Started		Pile Elev.	Тор	Toe	Hammer Data	Diesel Hammer
Total Pile Length	40 m	Driving finished		Design Elev.	6.892m	-28.108m	Model	Kobelco
Design Bearing Cap. 100tf		Control Elevation (Level)	6.792m	Actual Elev.	8.942m	-31.058m	Type/Length	Diesel Cylinder
Design Bearing Cap. 981K	N			NGL.	6.506m	6.506m	Capacity/weight	3.5t (Ram Wt)
				Verticality	1/75			

Reading of Piles	No. of Blows	Total No. of Blows	Pile Toe Elevation	Penetration per Blow(mm)	Bearing Capacity KN			Allowable Bearing Caoacity
21.50								Modified Hiley's Fomula
22.00	45	45	-15.208		789	_		40.70
22.50	37	82	-15.708		709	Ra	=	1/3 Ru
23.00	35	117	-16.208		686		=	1/3 2WH(W)
23.50	36	153	-16.708		697			(S+K)x(W+Wp)
24.00	34	187	-17.208		674		=	1/3 49490
24.50	34	221	-17.708	14.706	674			88.40344
25.00	34	255	-18.208		674			
25.50	34	289	-18.708	14.706	674		=	186.61 tf
26.00	33	322	-19.208		662			
26.50	31	353	-19.708	16.129	638	Rs	=	1,829 KN > 981 KN OK
27.00	33	386	-20.208	15.152	662			
27.50	43	429	-20.708	11.628	770			
28.00	54	483	-21.208	9.259	865	Where		
28.50	50	533	-21.708	10.000	833	Ra	=	Allowable Bearing Capacity
29.00	47	580	-22.208	10.638	807	Ru	=	Ultimate Bearing Capacity
29.50	38	618	-22.708	13.158	719	Wp	=	Weight of Pile, tf = 6.204
30.00	34	652	-23.208	14.706	674	W	=	Weight of Hammer, tf = 3.50
30.50	33	685	-23.708	15.152	662	H	=	Drop Height, mm = 2,020
31.00	34	719	-24.208	14.706	674	S	=	Penetration per Blow, mm = 2.11
31.50	33	752	-24.708	15.152	662	K	=	Rebound, mm = 7
32.00	30	782	-25.208	16.667	625			
32.50	32	814	-25.708	15.625	650			
33.00	42	856	-26.208	11.905	761			
33.50	46	902	-26.708	10.870	798			
34.00	213	1,115	-27.208	2.347	1,349			Н
34.50	195	1,310	-27.708	2.564	1,326			
35.00	160	1,470	-28.208	3.125	1,269		_	Gontrol Elev. € 6.792m
35.50	123	1,593	-28.708	4.065	1,184		7	
36.00	101	1,694	-29.208	4.950	1,114		/	Natual Ground Elev. ▼ 6.506m
36.50	95	1,789	-29.708	5.263	1,092			
37.00	164	1,953	-30.208	3.049	1,277			
37.50	148	2,101	-30.708	3.378	1,245			
37.85	166	2,267	-31.058		1,829			
					-			▼ -31.058m

G	Quality Control Sheet for Concrete Work

Daily Quality Control Sheet for Concrete Work

Budget Year	Province	Nameof Part B
Chapter	Road Number	Nameof Part C

	S. S.	O BL																					
Result of Compressive Test σ^{28}	PIC ² of	Party C																					
ompressive		Ave.																					
sult of Co	Result	2nd																					
, a		1st																					
iece	i.	180																					
Test Piece Sampling	PIC of	Party C																					
	S.	Uglo																					
Slump	PIC of	Party C																					
	410	Lesaur																					
Fre-	_		1st	25m3	50m3																		
Name of	Name of Fre- Supplier or Site Mix ¹⁾ quency																						
	(m ₃)																						
Design	Ourerigun	(Ng/CIII)		210																			
7	Class			٧																			
	T07			2nd																			
Struc	-ture			Aput																			
- 2	Date			6/10																			

1): Please fill out Name of supplier or Site Mix 2): Person in-cahrge

H Documentation for Improvement

Check List for Earthwork at Reconstruction Section

Earthwork at Embankment Section

Asphalt Concrete Work

DBST Work

SBST Work

Piling Work

Concrete Work

DOCUMENTATION FOR IMPROVEMENT IN EXECUTION, QUALITY AND MANAGEMENT

- There are check lists for seven kinds of the works, such as 1) earthworks at reconstruction section, 2) earthwork at embankment section, 3) asphalt concrete work, 4) DBST work, 5) SBST work. 6) piling work and 7) concrete work.
- The list shows test method, standard to follow and frequency for quality tests to be carried out in every activity with work procedure. 7
- The project shall be divided with certain work volume as one unit to make checking in one sheet, such as earthwork and paving work in each 500 to 1000 m, each concrete structure (each bridge and each box culvert and so on). 3
- Every cell in columns of "checked by Executor", "inspected by Inspector" and "confirmed by Engineer" in the check list shall be filled with date & signature, unless there are reasonable reasons to skip under the contract. 4
- All quality test records shall be kept with order of activities and the corresponding check list shall be on top of those records. δ.
- 6. The kind of check lists shall be added, as required.

Check List of Earthwork at Reconstruction Section

Budget rear:							6	۶	-	
	FIOVINCE.					Party A:	Party B:	ra	rarty C:	
Project Name:				Location:			ÕE: d	uality contr	QE: quality control for earthwork, AR: as-built control	as-built control
	activity	code of	test method	standard	frequency	checked by Executor (Party B)	xecutor inspected by Inspector	pector con	confirmed by Engineer	remarks
	(17,17)	AR (F)			(Amorton	date	n date	n date		
1 Preparatory Wor	1 Preparatory Works Material Test Capping layer	QE 6	Compaction test	AASHTO T 180	per source					
2		QE 7	Modified CBR	AASHTO T 193	any irregularity					
3		QE 8	Sieve analysis	AASHTO T 27						
4		QE 9	TT PL PI	AASHTO T 89 & T 90						
5	Sub base	QE13	Compaction test	AASHTO T 180	per source					
9		QE 14	Modified CBR	AASHTO T 193	any irregularity					
7		QE 15	Sieve analysis	AASHTO T 27						
∞		QE 16	LL PL PI	AASHTO T 89 & T 90						
6	Base Course	QE 20	Compaction test	AASHTO I 180	per source					
10		QE 21	Modified CBR	AASHTO T 193	any irregularity					
11		OE 22	Sieve analysis	AASHTO T 27						
12		QE 23	IT PL PI	AASHTO T 89 & T 90						
13	Trial Embankment									
14 Excavation		AR 1/2	AR 1/2 Elevation & Width		every 40 m					
15 Compaction		OF 11	Proof Polling		entire area					
		2	9		nom o muo					
16 Spreading of Cap	16 Spreading of Capping Material (1st layer)		Thickness		as required			+		
17 Compaction of C	17 Compaction of Capping Layer (1st layer)	QE 10	Field density test	AASHTO T 180	5 locations / 2000 m2	f_I	If capping layer is not more than 200 mm, disregard (1st layer)	han 200 mi	n, disregard (1st layer)
18		QE 11	Proof Rolling		entire area					
19 Spreading of Cap	19 Spreading of Capping Material (final layer)	AR 3	Elevation		every 40 m					
20		AR 4	Thickness		every 200 m					
21		AR 5	Width		every 80 m					
22 Compaction of C	22 Compaction of Capping Layer (final layer)	QE 10	Field density test	AASHTO T 180	5 locations / 2000 m2					
23		QE 11	Proof Rolling		entire area					
24 Spreading of Sut	24 Spreading of Sub Base Material (1st layer)		Thickness		as required					
25 Compaction of S	25 Compaction of Sub Base Material (1st layer)	QE 17	н	AASHTO T 180	5 locations / 2000 m2) If	If Sub Base is not more than 200 mm, disregard (1st layer) lines.	00 mm, dis	regard (1st layer) line	۶.
26		QE 18	Proof Rolling		entire area					
27 Spreading of Sut	27 Spreading of Sub Base Material (final layer)	AR 6	Elevation		every 40 m					
28		AR 7	Thickness		every 200 m					
29		AR 8	Width		every 80 m					
30 Compaction of S	30 Compaction of Sub Base Material (final layer)	QE 17	щ	AASHTO T 180	5 locations / 2000 m2					
31		QE 18	۲,		enure area					
32 Spreading of Bas	32 Spreading of Base Course Material (1st layer)				as required			+		
33 Compaction of E	33 Compaction of Base Course Material (1st layer)	QE 24	H	AASHTO T 180	5 locations / 2000 m2	If B	If Base Course is not more than 200 mm, disregard (1st layer) lines	1 200 mm, d	isregard (1st layer) lii	ies.
34		QE 25	Proof Rolling		entire area					
32 Spreading of Bas	32 Spreading of Base Course Material (final layer)	AR 9	Thickness		every 200 m					
33			- 1		every 80 m					
34 Compaction of E	34 Compaction of Base Course Material (final layer)		٣.	AASHTO T 180	5 locations / 2000 m2					
35		QE 25	Proof Rolling		entire area	_				

	D. 1 . V		In :			Check List of Ea	rthwork at Embankm			D . D		I Day of		1
	Budget Year:		Province:					Party A	L:	Party B		Party C		J
$_{\perp}$	Project Name:					Location:								R: as-built control
				code of					ed by Executor		ed by Inspecto		ned by Engineer	
		activity		QE / AR	test method	standard	frequency		(Party B)		Party C)		Party C)	remarks
				AK				date	sign	date	sign	date	sign	
	Preparatory Works	Material Test	Embankment	QE 1	Compaction test	AASHTO T 180	per source							
2				QE 2	Modified CBR	AASHTO T 193	any irregularity							
3			Capping layer	QE 6	Compaction test	AASHTO T 180	per source							
4				QE 7	Modified CBR	AASHTO T 193	any irregularity							
5				QE 8	Sieve analysis	AASHTO T 27								
6				QE 9	LL PL PI	AASHTO T 89 & T 90								
7			Sub base	QE13	Compaction test	AASHTO T 180	per source							
8				QE 14	Modified CBR	AASHTO T 193	any irregularity							
9				QE 15	Sieve analysis	AASHTO T 27								
#				QE 16	LL PL PI	AASHTO T 89 & T 90								
#			Base Course	QE 20	Compaction test	AASHTO T 180	per source							
#				QE 21	Modified CBR	AASHTO T 193	any irregularity							
#				OE 22	Sieve analysis	AASHTO T 27								
#				QE 23	LL PL PI	AASHTO T 89 & T 90								
#		Trial Embankn	l nont	QE 23	LL PL PI	ANDRIO 1 89 00 1 90		-		1		+		-
#		Inai Embanki	nem											
#	Clearing and Grub	bing												
#	Compaction				Semi Proof Rolling		entire area							
	a									1	I			
-	Spreading of Emba				Thickness		as required							
#	Compaction of Em	bankment Mate	rial (1st layer)	QE 3	Field density test	AASHTO T 180	5 locations / 2000 m2							
#				QE 4	Proof Rolling		entire area in each layer							
	Spreading of Emba				Thickness		as required							
#	Compaction of Em	bankment Mate	rial (2nd layer)	QE 3	Field density test	AASHTO T 180	5 locations / 2000 m2							
#				QE 4	Proof Rolling		entire area in each layer							
#	repeat until final layer preading of Embankment Material (final layer ompaction of Embankment Material (final lay		nal layer											
#	Compatible of Forb			17.10	E		40 : 41					-		
				AR 1/2	Elevation & Width		every 40 m in each layer							
#	Compaction of Em	bankment Mate	rial (final layer)	QE 3	Field density test	AASHTO T 180	5 locations / 2000 m2							
#	QE 4		Proof Rolling		entire area in each layer									
#	Spreading of Capping Material (1st layer)			Thickness		as required								
#	Spreading of Capping Material (1st layer) Compaction of Capping Layer (1st layer)		QE 10	Field density test	AASHTO T 180	5 locations / 2000 m2		If capping	layer is n	ot more than 2	200 mm, d	isregard (1st la	ver)	
#				QE 11	Proof Rolling		entire area		Ì	T		T		т
#	Spreading of Capp	ing Material (fir	nal laver)	AR 3	Elevation		every 40 m							
#		J	-27	AR 4	Thickness		every 200 m			1		_		
#				AR 5	Width		every 80 m			1		1		
	Compaction of Cap	oping Laver (fin	al laver)	QE 10	Field density test	AASHTO T 180	5 locations / 2000 m2			1		1		
#	puction of Cap	-F P mayor (HII		OE 11	Proof Rolling		entire area			1		+		
				Ár 11		1	viiiiv aiva							
#	Spreading of Sub E				Thickness		as required]					
#	Compaction of Sub	Base Material	(1st layer)	QE 17	Field density test	AASHTO T 180	5 locations / 2000 m2		If Sub Base	is not mo	ore than 200 m	m, disrego	ard (1st layer) l	ines.
#				QE 18	Proof Rolling		entire area							
#	Spreading of Sub E	ase Material (fi	nal layer)	AR 6	Elevation		every 40 m							
#				AR 7	Thickness		every 200 m			1				
#				AR 8	Width		every 80 m							
#	Compaction of Sub	Base Material	(final layer)	QE 17	Field density test	AASHTO T 180	5 locations / 2000 m2					1		
#				QE 18	Proof Rolling		entire area			1				
				<u></u>		1		=		; 		+		
-	Spreading of B ase				Thickness		as required			<u> </u>	<u> </u>			Щ
#	Compaction of Bas	se Course Mater	ial (1 st layer)	QE 24	Field density test	AASHTO T 180	5 locations / 2000 m2		If Base Cour	se is not r	nore than 200	mm, disre	gard (1st layer)	lines.
#				QE 25	Proof Rolling		entire area							
#	Spreading of B ase	Course Materia	l (final layer)	AR 9	Thickness		every 200 m							
#				AR 10	Width		every 80 m							
#	Compaction of Bas	se Course Mater	ial (final layer)	QE 24	Field density test	AASHTO T 180	5 locations / 2000 m2			1				
#	-			QE 25	Proof Rolling		entire area			1				
_										-		-		

					Check List of Asphalt Concrete Work	halt Concrete W	ork					
Budget Year.	Province	ài					Party A:	Party B:		Party C:		
Project Name:					Location:				QA: quality co	ontrol for	QA: quality control for pavement, AR: as-built control	rs-built control
activity	vity	code of QA /	Jo e	test method	standard	frequency	checked by Executor (Party B)		inspected by Inspector confirmed by Engineer (Party C)	confirme (F	ned by Engineer (Party C)	remarks
		AR	~				date sign	date	sign	date	sign	
1 Preparatory WorksMaterial Test Filler	erial Test Filler	QA	1	Ontario Vacuum Immersion Marshal Test	AASHTO M 17	per source any irregularity						
2	Fine aggregate	egate QA	2	Sieve analysis/Grading	AASHTO M 29	per source						
3		ÓΑ	3	Sand equivalent test	AASHTO T 176	any irregularity						
4	Coarse ag	Coarse aggregate QA	4	Fractured faces	AASHTO M 147-6S	per source						
2		δĄ	5	Abrasion	AASHTO T96	any irregularity						
9		ÓΑ	9	Grading	AASHTO T 27							
7	Asphalt	QA 7		Manufacture's Certificate, as shown in CCMP appendix I 5.2	as shown in CCMP appendix I 5.2	per source any irregularity						
8	Prime coat	ıt QA	∞	ditto		ditto						
6	Tack coat	ΑÒ	6	ditto		ditto						
10	Total Min / Designs Min	QA 10		Marshal / Stability	AASHTO T 245	per source						
11	ma / Design mia	QA 11		Marshal / Flow	AASHTO T 245	any irregularity						
12 Meth	Method of Hauling											
13 (Site Mix)			Mixing	ng weight, Temperature	re							
14 Hauling				Temperature								
15 Prime Coat		QA 15		Application volume	Japan Road A ssociation	1 time / 1000 m2						
16 Spreading of Binder Course	urse	QA 14	_	Spreading temperature	ditto	1 time / 1000 m2						
17 Compaction of Binder Course	Course	QA 17	17	Thickness	ditto	1 time / 1000 m2						
18		QA 18	ш	Decree of compaction	ditto	1 time / 1000 m2						
19 Tack coat		QA 16	16 Appli	cation volume	Japan Road A ssociation 1 time / 1000 m2	1 time / 1000 m2						
20 Spreading of Weaning Course	ourse	QA 14		Spreading temperature	ditto	1 time / 1000 m2						
21 Compaction of Wearing Course	Course	QA 17	17	Thickness	ditto	1 time / 1000 m2						
22		QA 18		Decree of compaction	ditto	1 time / 1000 m2						

Check List of DBST Work

				CHECK LIST O	CHECK LIST OF DEST WOLK				
Budget Year:	Province:					Party A:	Party B:	Party C:	
Project Name:	,			Location:			QA: quality c	QA: quality control for pavement, AR: as-built control	us-built control
aci	activity	code of OE /	test method	standard	frequency	checked by Executor (Party B)	inspected by Inspector (Party C)	checked by Executor inspected by Inspector confirmed by Engineer (Party B) (Party C)	remarks
	`	AR			•	date sign	date sign	date sign	
1 Preparatory Ma	Material Test Aggregate	QA 19	QA 19 Sieve analysis / Grading	AASHTO T 27	per source				
2 Works		QA 20	Abrasion	AASHTO T 96	any irregulanity				
3		QA 21	Fractured faces	AASHTO M 147-6S					
4		QA 22	Flakiness Index	BS 82					
5	Prime coat	QA 23	as shown in CCMP appendix I 5.2	P appendix I 5.2	per source any irregulanty				
9	Tack coat / Binding	QA 24	as shown in CCMP appendix I 5.2	P appendix I 5.2	per source any irregulanity				
7 Prime Coat		OA 25	Application volume	Japan Road Association 1 time / 1000 m2	1 time / 1000 m2				
8 Tack coat		QA 26	Application volume	Japan Road Association 1 time / 1000 m2	1 time / 1000 m2				
9 Spreading aggregate (19 mm)	19 mm)								
10 Compaction			Number of passes of compactor	pactor					
11 Tack coat		QA 26	Application volume	Japan Road Association 1 time / 1000 m2	1 time / 1000 m2				
12 Spreading aggregate (12 mm)	12 mm)								
13 Compaction			Number of passes of compactor	nactor					

14
춫
3
2
5
92
SBS
S
of S
0
-
įst
. 51
_
-
Check
삪
9
\circ

Budget Year:		Province:					Party A:	1,4	Party B:		Party C:		
Project Name:					Location:					QA: quality co	ntrol for p	QA: quality control for pavement, AR: as-built control	as-built control
			code of				checke	checked by Executor inspected by Inspector confirmed by Engineer	inspected	i by Inspector	confirme	d by Engineer	
acti	activity		Œ/	test method	standard	frequency	_	(Party B)	(P	(Party C)	(P)	(Party C)	remarks
			AR				date	sign	date	sign	date	sign	
r	E				l				L				
1 Preparatory Mat	Material Lest Aggregate	Aggregate	QA 19	QA 19 Steve analysis / Grading	AASHTO T 2/	per source							
2 Works			QA 20	Abrasion	AASHTO T 96	any irregularity							
3			QA 21	Fractured faces	AA SH TO M 147-6S								
4			QA 22	Flakiness Index	BS 82								
5	<u> </u>	Prime coat	QA 23	as shown in CCM	shown in CCMP appendix I 5.2	per source any irregularity							
9		Tack coat / Binding	QA 24	as shown in CCM	shown in CCMP appendix I 5.2	per source any irregularity							
7 Prime Coat			OA 25	Annlication volume	Tanan Road Association 1 time / 1000 m2	1 time / 1000 m2							
8 Tack coat			QA 26	Application volume	Japan Road Association 1 time / 1000 m2	1 time / 1000 m2							
9 Spreading aggregate (19 mm)	6 mm)												
10 Compaction				Number of passes of compactor	pactor								

Check List of Piling Works

	Budget Year:	Province:					Party A:		Party B:		Party C:		
	Project Name:				Location:					OP: qua	dity contr	ol for piling, AR	QP: quality control for piling, AR: as-built control
		activity	code of	test method	standard	frequency	checked (F	checked by Executor (Party B)	inspected (P	ted by Inspector (Party C)	confirme (F	inspected by Inspector confirmed by Engineer (Party C)	remarks
			ÅR			,	date	sign	date	sign	date	sign	
1	Preparatory Works	Preparatory Works Measurement of Precast Pile	QP 1	Measurement	CS 5.3.2.1	Every Pile							
1		Recording	QP 3	Recording	CS 5.3.3.3	Every Pile							
2	Tact Dita (1)		QP 4	Driving Formula	JRA 17.10	Every Pile							
3	TOSI LITO (1)	Bearing Capacity	QP 5	Static Load Test	CS 5.3.3.3	Test Pile							
4			QP 6	Dynamic Load Test	ASTM D4945	Test Pile							
5		Eccentricity	QP 2	Measurement	CS 5.3.3.2	Every Pile							
9	Driving Piles	Recording	QP 3	Recording	CS 5.3.3.3	Every Pile							
7		Bearing Capacity	QP 4	Driving Formula	JRA 17.10	Every Pile							
∞	Total and Co.	D common Committee	ζďÒ	Static Load Test	CS 5.3.3.3	Test Pile							
6	Test bring (2)	Deaning Capacity	QP 6	QP 6 Dynamic Load Test	ASTM D4945	Test Pile							

Check List of Concrete Works

					CII ECK LIS	Check List of Concrete Works	KS						
Budget Year:		Province:					Party A:	A:	Party B:	3:	Party C:		
Project Name:					Location:					QC: quality	control	for concrete, AR	QC: quality control for concrete, AR: as-built control
	activity		code of OC /	test method	standard	frequency	chec	checked by Executor (Party B)		inspected by Inspector confirmed by Engineer (Party C) (Party C)	confirm	ned by Engineer Party C)	remarks
			ÅR				date		date	sign	date	sign	
1 Preparatory Works Material Test Fine aggregate	Material Test	Fine aggregate	QC 2	Grading	AASHTO 1A	per source any irregulanity							
2		Coarse aggregate	QC 3	Grading	AASHTO 1A	per source							
3			QC 4	Abrasion	AASHTO T 96	any irregulanity							
4			QC 5	Flakiness Index	BS 82								
5		Water	9 OO	Taste of water		per source any irregulanity							
9		Cement	QC 7	Manufacture's Certificate	AASHTO T 131	per source any irregulanty							
7 T	Trial Mix		QC 8	Mix proportion		per mix any irregulanty							
8 N	Material Test	Steel bar	QC 1	Mill certificate	AASHTO T 68	per source any irregulanty							
6	Shoring method	Form	QC 11	Shape, Strength, Rigidity	CS								
10 S	Setting out												
11 Installation of Steel Bar	Bar	B ar arrangement	600	Placing,		ali							
12			QC 10			all							
13 Form Work			QC 11	Shape, Strength, Rigidity	CS	ali							
14 (Site Mix)				Concrete weight, V	Concrete weight, Water volume, Slump, Sampling								
15 Pouring			QC 12	Slump cone	A A SHTO T 119	every truck							
16			QC 13	Sampling	AASHTO T 22, T 23	first batch & every 25 m3							
17			QC 14	compaction	CS	all							
18 Curing		Method & period	QC 15	Observation		all							
19 Removal of Form		Removal timing				all							
20 Concrete Structure			QC 13		Compressive test AASHTO T 22, T 23	all							
21			AR 1-16	AR 1-16 Dimension & Elevation	ion	all							

KINGDOM OF CAMBODIA NATION RELIGION KING

MINISTRY OF PUBLIC WORKS AND TRANSPORT THE STRENGTHENING OF CONSTRUCTION QUALITY CONTROL

REGULATION FORCE ACCOUNT PROJECT

SECOND EDITION

AUGUST 2012

PREPARED BY: MPWT'S COUNTERPARTS AND JICA EXPERTS

No.	Date:
Budget Year	Province
Chapter	Road Number
Name of Party B	Name of Party C
Reconstruction (Name of Inspector) Party C or D)	quest for Inspection
	s mentioned below for your approval
Location :	
Contents of Inspection	
Requested BY	Approved By

Preface

The Project for Strengthening of Construction Quality Control (SCQCP) was commenced at the end of 2009 and the team for task 1 (output 1-1), establishing new standard guideline and regulation for force account project was set up in January 2010. The team consists of counterparts from the various departments of the Ministry of Public Works and Transport (MPWT) in Cambodia and experts from Japan International Cooperation Agency (JICA).

Since setting up the team, related documents were collected and reviewed, such as sub decrees for relevant organizations in MPWT, construction specifications currently used for construction projects and contract agreements etc. Interviews to management, technical and support staff in MPWT were also conducted. Following those actions, numbers of discussions were taken place among the team and key concept and table of contents for the regulation were established in March 2010. At the same time, each clause in the regulation was assigned to counterparts in task 1.

All counterparts then started to write up clauses and reviewed those written papers with other counterparts, incorporating advices from the JICA experts. The first draft was completed in June 2010, as scheduled.

Following the completion of the first draft, the counterparts and experts commenced to explain concept and contents of the first draft to relevant parties concerned to the force account projects for their comments and advices. With these comments and advices, the team member discussed, reviewed and finalized the regulation (final draft) in August 2010.

The final draft of regulation together with the standard guideline was presented at the third Executive Committee (EC) meeting for discussion and comments from the member. After obtaining consents from the EC member, these documents (post final draft of regulation and standard guideline incorporating comments of the EC member) were delivered and accepted at the Joint Coordinating Committee (JCC) meeting for applying them to pilot projects in 2011.

The regulation in 2010 was first edition and it was being applied to pilot projects in 2011 and 2012. In February 2012, the team for task 1 (output 1-1) was set up again in order to review, add and modify the first edition of regulation as required toward compilation of second edition. Since then, there were quite a number of discussions among the team and at the counterpart meetings. At the end of April 2012, draft of second edition was up and comments on the second edition were requested to and collected from stakeholders. After reviewed those comments in the team for task 1, the second edition of regulation was complete in July 2012 together with Khmer version.

The second edition of regulation was explained and agreed in the sixth EC meeting in August 2012 and was finally accepted in the third JCC meeting in August 2012. Accordingly, the second edition of regulation and standard guideline shall be applied to all force account projects in Cambodia from 2013 onward.

It is to note that the regulation has been prepared purely for force account projects, however it will be applicable for contract-out projects with some modifications, as party B is private company. This is to say, authorities and responsibilities in each party shall be defined more clearly and precisely to fit to that purpose (contract-out projects).

contents

Preface

I		GENERAL PROVISION	1
	1	Scope	1
		Objectives	
		Application	
		Roles and Responsibilities of Parties Concerned in Force Account Project	
		•	
II		RULES FOR PARTIES IN FORCE ACCOUNT PROJECT	2
	1.	Basic Survey and Design	2
		1.1 Preparation of Basic Design	
		1.2 Check of Basic Design	
	2.	Preliminary Cost Estimate	
		2.1 Preparation of Preliminary Cost Estimate for Construction	2
		2.2 Preparation of Preliminary Cost Estimate for Supervision	2
		2.3 Check and Sum of Preliminary Project Cost	
	3.	Negotiation for Project	2
		3.1 Submission of Basic Designs and Preliminary Project Costs to MPWT	2
		3.2 Discussion for Basic Designs and Project Costs between MEF and MPWT	2
	4.	Budget Confirmation	2
		4.1 List of Projects	2
	5.	Detailed Survey and Design	3
		5.1 Preparation of Detailed Design Documents	3
		5.2 Check of Detailed Design Documents	3
		Detailed Cost Estimate	
		6.1 Preparation of Detailed Cost Estimate for Construction	
		6.2 Preparation of Detailed Cost Estimate for Supervision	
		6.3 Check and Sum of Project Cost	
	7.	Final Negotiation for Project.	
		7.1 Submission of Detailed Designs and Project Costs to MPWT	
		7.2 Discussion for Detailed Designs and Project Costs between MEF and MPWT	
		Contract	
		8.1 Party A, Party B, Party C and Party D	
		8.2 Documents Forming Contract	
		8.3 Construction Period and Warranty Period	
		8.4 Contract Price	
		8.5 Payment Term	
		8.6 Approval of Contract	
		8.7 Form of Contract Agreement	
		Implementation	
		9.1 Definition	
		9.2 Roles of Parties	
		9.3 Subcontract	
		9.4 Contract Documents and As-Build Documents	
		9.5 Unforeseen Physical Conditions	
		9.6 Programme, Progress and Meetings / Reports	
		9.7 Quality Control	
		9.8 Stop Order and Suspension.	
		9.9 Extension of Time	
		9.10 Inspection (Interim, Completion and Warranty)	
		9.11 Variations	
		9.12 Payments	
		9.13 Force Majeure	
		9.14 Defects during Warranty Period	
		9.15 Others	
	10). Appraisal of Projects	8

Form of Contract between Party A and Party B Project Information Annex A

Postscript

I GENERAL PROVISION

1. Scope

Scope of the regulation is to specify roles and responsibilities for related parties to the force account projects implemented in Ministry of Public Works and Transport (MPWT). The regulation shall also be applied to the force account projects carried out by Royal Cambodian Army Force (RCAF) and/or Police Office (PO).

2. Objectives

The objectives of the regulation are to make clear precisely which party does what matters in which timing in each activity along the flow of the force account project in order to achieve the required quality in construction.

Roles and responsibilities of related parties to the force account project in the project flow are indicated in clause 4 of Section I.

3. Application

- 1) The regulation is to apply only to the force account projects implemented by the organization, such as Department of Public Works and Transport (DPWT), General Department of Public Works (GDPW), General Department of Inspection (GDI), Heavy Equipment Center (HEC), Public Works Research Center (PWRC), Road Infrastructure Department (RID), Sub-National Public Infrastructure and Engineering Department (SPIED), Royal Cambodian Army Force (RCAF) and Police Office (PO).
- 2) As Procurement Evaluation Award Committee (PEAC), which is formed in member from Ministry of Economy and Finance (MEF) and MPWT is being involved in certain timings for check and inspection to the force account projects, roles and responsibilities for PEAC are also stipulated in relevant clauses of the regulation.

4. Roles and Responsibilities of Parties Concerned in Force Account Project

the project for strengthening of construction quality control

Project Flow and Roles & Responsibilities of Concerned Parties in Force Account Project of MPWT

		timing	prepared by		checked / supervised by		approved by		
	activity of project flow		chapter 21	chapter 61	chapter 21	chapter 61	chapter 21	chapter 61	remarks
Α	basic survey and design	may - jun in previous yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	standard guideline to be applied
В	preliminary cost estimate	jun in previous yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	ditto
С	negotiation	jul - dec in previous yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT		RID / PWRC PIED	MPWT	/ MEF	
D	budget confirmation	end in previous yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT		RID / PWRC PIED	MPWT / MEF		
Е	detailed survey and design	jan - feb in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	standard guideline to be applied
F	detailed cost estimate	feb in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	ditto
G	final negotiation	feb in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT		RID / PWRC PIED	MPWT / MEF		
н	contract	feb - mar in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	DG of PV	V / PEAC	
I-1	initial payment	mar in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	PE	AC	
J-1	implementation	jan - mid in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	standard guideline to be applied
I-2	interim inspection	middle in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	PEAC	/ GDI	ditto
J-2	implementation	mid - dec in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	ditto
I-3	inspection at completion	end in execution yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	PEAC	/ GDI	ditto
к	maintenance during warranty period	jan - dec in next yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC / SPIED	RID / PWRC / SPIED	-	-	ditto
L	warranty inspection	end in next yr	RID / HEC / DPWT /RCAF/PO	RID/HEC /DPWT	RID / PWRC /SPIED	RID / PWRC / SPIED	PEAC	/ GDI	ditto

II RULES FOR PARTIES IN FORCE ACCOUNT PROJECT

1. Basic Survey and Design

Basic survey and design shall be carried out and complete in May to June of the previous year of project implementation.

1.1 Preparation of Basic Design

Execution party (DPWT, HEC, Road/Bridge Unit in RID, RCAF or PO) shall carry out basic survey and design for proposed projects, prepare the report and submit it to checking party.

1.2 Check of Basic Design

Checking party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall review the report submitted by the execution party stipulated in clause 1.1 and the checking party shall furnish either comments or agreement to the execution party within two weeks after submission.

This process shall be repeated until agreement is reached.

2. Preliminary Cost Estimate

Estimation of preliminary cost for proposed projects shall be carried out and complete in June of the previous year of project implementation.

2.1 Preparation of Preliminary Cost Estimate for Construction

Execution party (DPWT, HEC, Road/Bridge Unit in RID, RCAF or PO) shall make preliminary cost estimate for construction, based on the report agreed in clause 1.2 and submit it to checking party.

2.2 Preparation of Preliminary Cost Estimate for Supervision

Supervision party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall make preliminary cost estimate for supervision, based on the report agreed in clause 1.2 and submit it to checking party.

2.3 Check and Sum of Preliminary Project Cost

- 1) Checking party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall reviewed the preliminary cost estimate submitted by the executed party and the supervision party stipulated in clause 2.1 and clause 2.2 respectively and the checking party shall furnish either comments or agreement to the execution party and the supervision party within two weeks after submission. This process shall be repeated until agreement is reached.
- 2) Checking party shall then sum up preliminary cost of construction and supervision as preliminary project cost.

3. Negotiation for Project

Negotiation shall take place in July to December of previous year of the project implementation, after preparing the preliminary project costs stipulated in clause 2.3.

3.1 Submission of Basic Designs and Preliminary Project Costs to MPWT

Execution party (DPWT, HEC, Road/Bridge Unit in RID, RCAF or PO) and checking party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall submit reports for basic design and preliminary project costs to GDPW and Undersecretary and Secretary of State in charge for review and approval.

This shall be considered approval process in MPWT.

3.2 Discussion for Basic Designs and Project Costs between MEF and MPWT

- 1) After approval process in MPWT, summary with reports for basic design and preliminary project costs for all force account projects planned shall be submitted to the Ministry of Economy and Finance (MEF) for discussion between MEF and MPWT.
- 2) Discussion shall be made and agreement be reached between them.

4. Budget Confirmation

Budget confirmation shall be made around end of the previous year of project implementation, after negotiation stipulated in clause 3.2.

4.1 List of Projects

1) As soon as after the agreement made between MEF and MPWT for basic design reports and preliminary project costs stipulated in clause 3.2, list of projects with preliminary amount for each project shall be compiled and published.

2) Amount for projects in the list shall be considered to be ceiling amount and shall not be exceeded during final negotiation.

5. Detailed Survey and Design

Detailed survey and design shall be carried out and complete in January and February of the year of project implementation.

5.1 Preparation of Detailed Design Documents

Execution party (DPWT, HEC, Road/Bridge Unit in RID, RCAF or PO) shall carry out detailed survey and design for proposed projects, prepare the report and submit it to checking party.

5.2 Check of Detailed Design Documents

Checking party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall review the report submitted by the execution party stipulated in clause 5.1 and the checking party shall furnish either comments or agreement to the execution party within two weeks after submission.

This process shall be repeated until agreement is reached.

6. Detailed Cost Estimate

Estimation of detailed cost shall be carried out and complete in February of the year of project implementation.

6.1 Preparation of Detailed Cost Estimate for Construction

Execution party (DPWT, HEC, Road/Bridge Unit in RID, RCAF or PO) shall make cost estimate for construction, based on the report agreed in clause 5.2 and submit it to checking party.

6.2 Preparation of Detailed Cost Estimate for Supervision

Supervision party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall make cost estimate for supervision, based on the report agreed in clause 5.2 and submit it to checking party.

6.3 Check and Sum of Project Cost

1) Checking party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall review the cost estimate submitted by the execution party and the supervision party stipulated in clause 6.1 and clause 6.2 respectively and the checking party shall furnish either comments or agreement to the execution party and the supervision party within two weeks after submission.

This process shall be repeated until agreement is reached.

2) Checking party shall then sum up costs of construction and supervision as project cost.

7. Final Negotiation for Project

Final price negotiation shall take place in February of the year of project implementation, after preparing the project cost stipulated in clause 6.3.

7.1 Submission of Detailed Designs and Project Costs to MPWT

Execution party (DPWT, HEC, Road/Bridge Unit in RID, RCAF or PO) and checking party (Planning and Technical Bureau in RID, PWRC and/or SPIED) shall submit reports for detailed design and project cost to GDPW and Undersecretary and Secretary of State in charge for review and approval.

This shall be considered approval process in MPWT.

7.2 Discussion for Detailed Designs and Project Costs between MEF and MPWT

- 1) After approval process in MPWT, summary with reports for detailed design and project costs shall be submitted to the Ministry of Economy and Finance (MEF) for discussion between MEF and MPWT
- 2) Discussion shall be made and agreement be reached between them.

8 Contract

Contract shall be made between concerned parties in February to March of the year of project implementation.

8.1 Party A, Party B, Party C and Party D

Following parties shall be the party for force account project;

Party A: the Employer, Director General of Public Works represents Party A. Main roles and responsibilities are;

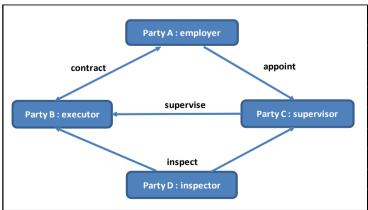
1) to give Party B permission to work on site

- 2) to appoint supervisor as Party C and inform the appointment to Party B
- 3) to request MEF pay amount to Party B and Party C time to time

Party B: the Executor, (<u>Director / Chief of Heavy Equipment Center / Road or Bridge Unit of Road Infrastructure Department / Department of Public Works and Transport of xxxx Province / Royal Cambodian Army Force / Police Office)</u> represents Party B. Main roles and responsibilities are;

- 1) to carry out the Works in accordance with the Contract Documents.
- 2) to commence and complete the Works within construction period.
- 3) to carry out quality tests and keep records in accordance with the standard guideline.
- 4) to submit monthly report to Party C.
- 5) not to subcontract any part of the Works, without prior consent from Party C for such subcontract.
- 6) to inform unforeseen conditions to Party C, when encountered.
- 7) to request extension of time with reasons to Party C, if the Works delay.
- 8) to request inspections in accordance with the standard guideline and the regulation for interim payment, payment at completion and remaining payment after warranty period.
- 9) to submit all contract documents with as-build drawings and important papers (one hard copy and soft copy with PDF) to Party A through Party C upon completion

Party C: the Supervisor, (Name of Staff from Planning and Technical Bureau in Road Infrastructure


<u>Department / Public Works Research Center / Sub-National Public Infrastructure and Engineering Department)</u> represents Party C. Main roles and responsibilities are;

- 1) to supervise the Works carried out by Party B.
- 2) to witness quality tests and check records in accordance with the standard guideline.
- 3) to review monthly report submitted by Party B and compile monthly report of Party C, adding observation of Party C.
- 4) to review unforeseen conditions reported by Party B and to make concept design change, if necessary.
- 5) to review request of extension of time from Party B and to make decision within reasonable time.
- 6) to stop and/or suspend the Works, if the Works are not in accordance with the Contract and/or any reason to do so.
- 7) to instruct Party B in order to achieve requirements in the Contract and to make design change, if necessary.
- 8) to check the Works and review the records upon requests of inspection from Party B for interim payment, payment at completion and remaining payment after warranty period and to inform Party D for their inspection, if satisfying himself of the works.

Party D: the Inspector, (Procurement Evaluation Award Committee (PEAC) and/or General Department of Inspection) represents Party D. Main roles and responsibilities are;

- 1) to check the Contract prior to signing by Party A and Party B.
- 2) to inspect upon request from Party B through Party C in accordance with the regulation and the standard guideline for interim payment, payment at completion and remaining payment after warranty period.

The formation of Party A, Party B, Party C and Party D during project implementation is shown below.

8.2 Documents Forming Contract

The contract consists of the following documents;

- 1) the Contract Agreement: form is enclosed in Annex A.
- 2) the Standard Guideline
- 3) the Regulation
- 4) the Technical Specification
- 5) the Detailed Design Documents, Project Costs and Works Schedule

8.3 Construction Period and Warranty Period

The construction period, including commencement and completion dates and warranty period (if any) shall be written in the Contract Agreement.

8.4 Contract Price

The contract price shall be written in the Contract Agreement, together with brief of the project.

8.5 Payment Term

The procedure of payment and pre-requisites to payment (inspection by Party C & Party D) shall be stipulated in clauses 9.10 and 9.12 in details and percentage of each payment (advance payment, initial payment, interim payment, payment at completion and payment after warranty period etc.) shall be written in the Contract Agreement.

8.6 Approval of Contract

The contract shall be checked and approved by Party D prior to signing by relevant parties.

8.7 Form of Contract Agreement

- 1) With the requirements in the above clauses, Forms of Contract Agreement are prepared between Party A and Party B attached in Annex A in the regulation for all force account projects.
- 2) The Form of Contract Agreement is set for purpose of contract standardization.

9. Implementation

The following clauses specify important aspects during project implementation, including warranty period.

9.1 Definition

- 1) "Party" means Party A, Party B, Party C and Party D, describing main roles and responsibilities in clause 8.1 above and as the context requires.
- 2) "Commencement Date" and "Completion Date" mean the date for commencing the Works and completing the Works respectively, stated in the Contract Agreement.
- 3) "Time for Completion" means the time for completing the Works or a Section (as the case may be) stated in the Contract Agreement (with any extension under clause 9.9 [Extension of Time]), calculated from the Commencement Date.
- 4) "Tests" mean the tests which are specified in the Contract Documents or agreed by Parties, shall be carried out under clause 9.7 [Quality Control] and 9.10 [Inspection].
- 5) "Contract Price" means the price stated in the Contract Agreement and includes adjustments in accordance with the Contract Documents.
- 6) "Works" mean the Permanent Works and the Temporary Works, or either of them as appropriate.

9.2 Roles of Parties

- 1) Party A shall permit Party B to implement the Works by providing site possession, shall appoint a supervisor as Party C and shall inform MEF to make payment to Party B and Party C, after each inspection and application for payments, as detailed in clause 9.10 and 9.12.
- 2) Party B shall carry out the Works in accordance with the Contract and inform to Party C when unforeseen conditions are encountered, variations require adjustment and delays appear. Party B shall receive any instruction from Party C.
- 3) Party C shall administer project in impartial and bona fade manner. Party C shall instruct to Party B, vary design in professional and proper way in order to maintain construction quality and Judge & determine on requests of extension of time and modification of design from Party B.
- 4) Party D shall check the Contract prior to signing by the parties and inspect the Works time to time as defined in clause 9.10.

9.3 Subcontract

Party B shall not subcontract any part of the Works, unless approval of subcontract is given by Party C.

9.4 Contract Documents and As-Build Documents

- 1) Contract Documents are defined in clause 8.2, which shall be mutually explanatory of one another.
- 2) Party B shall always keep the Contract Documents on site during implementation.
- 3) Party B shall at completion submit project information (using a format in Annex B) and all Contract Documents, including as-build documents and other important papers as agreed to Party C in form of one hard copy and soft copy with PDF. Upon the submission, Party C shall check and review them and shall furnish either comments or acceptance to Party B within two weeks. This process shall be repeated until acceptance.
- 4) Soon after the acceptance, Party C shall deliver them to Party A to store at library for database.

9.5 Unforeseen Physical Conditions

- 1) Physical conditions means natural physical conditions and man-made and other physical obstructions, which Party B encounters at the site when executing the Works, including sub-surface and hydrological conditions and extremely adverse climatic conditions.
- 2) If Party B encounters adverse physical conditions which he considers to have been unforeseeable, Party B shall give notice to Party C as soon as practicable.
- 3) Party B shall continue executing the Works, using such proper and reasonable measures as are appropriate for the physical conditions, and shall comply with any instructions which Party C shall give. If an instruction constitutes a variation, clause 9.11 [Variations] shall apply.

9.6 Programme, Progress and Meetings / Reports

- 1) Party B shall submit to Party C construction schedule, work execution plan for the Works and other documents for approval, as soon as the Works commence. On receipt, Party C shall check and review them and shall furnish either comments or agreement to Party B within two weeks after submission.
 - This process shall be repeated until acceptance.
- 2) When Party C finds the Works are behind the schedule, Party C shall notify such delay to Party B and request Party B submit revised schedule, taking such delay into consideration.
- 3) Party B shall prepare and submit monthly report, including status of progress every month to Party C at the end of first week of the following month. Upon receipt of the report, Party C shall compile his monthly report with observation of Party C and submit it to Party A within one week after receipt.
- 4) Party C shall call for monthly meeting and Party B shall attend the meeting and report the progress. Party B and Party C shall discuss any matters arising on site for maintaining progress and completing the Works on time. Party A may attend the meeting.

9.7 Quality Control

- 1) Party B shall carry out all execution of the Works, (a) in the manner (if any) specified in the Contract and (b) in a proper workmanlike and careful manner, in accordance with good practice.
- 2) Party B shall give Party A, Party C and/or Party D full opportunity to carry out checking quality of the Works at any time in accordance with the standard guideline.
- 3) Party B shall give notice to Party C whenever any work is ready and before it is covered up, put out of sight. Party C shall then carry out the examination, inspection, measurement or testing in accordance with the stipulation in the standard guideline.

9.8 Stop Order and Suspension

- 1) When Party A and/or Party C find that the Works are carried out with inappropriate manner by Party B and seem to affect final product in quality, Party C shall stop Party B to proceed to the Works and request rectification to the works already done improperly.
 - After rectifying the works suspended or stopped to the satisfaction of Party C, Party C shall issue notice to Party B to resume the works.
- 2) Party C may at any time instruct Party B to suspend progress of part or all of the Works. During such suspension, Party B shall protect, store and secure such part or the Works against any deterioration, loss or damage. In such case, Party C shall notify the cause for the suspension to Party A and Party B. If and to the extent that the cause is not the responsibility of Party B, Party C shall evaluate such suspension in reasonable manner in accordance with clauses 9.9 and 9.11.

9.9 Extension of Time

- 1) Party B shall be entitled to an extension of time for completion if and to the extent that completion is or will be delayed by any causes, other than those through default of Party B.
- 2) If Party B considers himself to be entitled to an extension of time for completion, Party B shall give notice and request an extension of time with the details and reasons to Party C.
- 3) Upon receipt of such request, Party C shall judge and determine an extension of time within reasonable time and shall submit it to Party A for approval. As soon as after obtaining the consent from Party A, Party C shall inform the extension of time to Party B and send the copy to Party D accordingly.
- 4) When determining each extension of time, Party C shall review previous determinations and may increase the total extension of time.

9.10 Inspection (Interim, Completion and Warranty)

- 1) When time comes for interim payment, payment at completion or remaining payment after warranty period, Party B shall request such inspection to Party C through submission of the documents substantiating the Works have been complete to the relevant stage at interim, completion or after warranty period.
- 2) Upon request, Party C shall check status of the Works and the documents (as stated in 1) above) and inform Party D for inspection, otherwise Party C shall notify Party B to rejection of request, giving reasons and specifying the Works to be done prior to request such inspection again. In addition, Party C shall make a certificate stating that the Works have been confirmed to be complete and deliver the copy of certificate to Party D, when informing Party D for inspection at completion.
- 3) Upon information from Party C, Party D shall inspect the Works within two weeks in accordance with the details stipulated in the standard guideline. After such inspection, Party D shall inform Party B and Party C either that the Works are in order or re-inspection shall be carried out after defects (to be specified) are rectified.

9.11 Variations

- 1) Variations may be initiated by Party A and Party C for any reason to achieve requirements in the Contract at any time prior to completion of the Works, either by an instruction or by a request from Party B with proposal.
- 2) Party B shall execute and be bound by each variation. Simultaneously, Party B shall submit monetary proposal, if necessary and Party C shall evaluate variation with consultation with Party B and submit it to Party A for approval. As soon as after obtaining the consent from Party A, Party C shall adjust Contract Price if necessary and send the information to Party B and Party D.

9.12 Payments

- A) Payments for construction shall be made at various stages and percentages to total sum for each payment shall be stated in the Contract Agreement.
 - In all cases, payment shall be made within 28 days after Party A proceeds for payment.
 - 1) Advance payment: After budget confirmation stipulated in clause 4.1, Party B may request for advance payment. Upon such request, Party C shall examine and recommend Party A to proceed for payment, if such deems reasonable.
 - 2) Initial payment: After contract agreement is signed, Party B may request for payment of initial payment. Upon such request, Party C shall examine and recommend Party A to proceed for payment. Initial payment shall be amount specified in the Contract Agreement less advance payment, as the case may be.
 - 3) Interim payment: When inspection for interim payment stipulated in clause 9.10 is passed, Party B may request for payment of interim payment. Upon such request, Party C shall examine and recommend Party A to proceed for payment.
 - 4) Payment at completion: When inspection for payment at completion stipulated in clause 9.10 is passed, Party B may request for payment at completion. Upon such request, Party C shall examine and recommend Party A to proceed for payment.
 - 5) Payment after Warranty Period (if there is warranty period): When inspection for payment after warranty period stipulated in clause 9.10 is passed, Party B may request for payment after warranty period. Upon such request, Party C shall examine and recommend Party A to proceed for payment.
- B) Payments for supervision shall be made at same time for those for construction and percentages

to total sum for each payment shall be as follows.

- 1) Advance payment: 20 % shall be paid or 25 % be paid if there is no warranty period.
- 2) Initial payment: 25 % shall be paid.
- 3) Interim payment: 25 % shall be paid.
- 4) Payment at completion: 25 % shall be paid.
- 5) Payment after warranty period: 5 % shall be paid or nil if there is no warranty period.

9.13 Force Majeure

- 1) "Force Majeure" means an exceptional event or circumstance, including (i) war, hostilities, invasion, (ii) rebellion, terrorism, revolution, insurrection, (iii) riot, commotion, disorder, strike or lockout, (iv) ionizing radiation or contamination by radio-activity, (v) natural catastrophes such as earthquake, typhoon or volcanic activity.
- 2) If a Party is or will be prevented from performing any of its obligations under the Contract by Force Majeure, it shall give notice to the other Parties of the event or circumstances constituting the Force Majeure. The notice shall be given within 14 days after the Party became aware.
- 3) If Party B is prevented from performing any of his obligations under the Contract by Force Majeure and suffers delay and/or incurs cost by reason of such Force Majeure, the Party B shall be entitled an extension of time for such delay and payment of any such cost. Upon such request, Party C shall proceed in accordance with clauses 9.9 and 9.11 to agree or determine these matters.
- 4) If the execution of Works is prevented for long time by reason of Force Majeure, either Party may give to the other Parties a notice of termination of the Contract. In this event, the termination shall take effect 7 days after the notice is given. Upon such termination, Party B shall determine the value of the work done, as if the works are complete.

9.14 Defects during Warranty Period

During the warranty period, Party B shall be responsible for maintenance of the Works and replace any kind of Works and/or materials which do not meet with the requirements in the Standard Guideline and the Detailed Specification as soon as possible. All the expenses incurred for such reconstruction, maintenance and/or replacement shall be solely born by Party B, unless the damages are caused by natural disasters or force majeure as stipulated in clause 9.13 of the Regulation

9.15 Others

- 1) Every Party shall perform the duties, stipulated in the Contract, in bona fade manner and in accordance with the professional integrity.
- 2) When any event occurs during implementation other than those stipulated in the previous clauses, Party B and C shall discuss the matter in bona fade manner with professional discipline and shall seek solution together in amicable way.
- 3) All the Parties shall resolve the disputes arising in connection with the Contract amicably. In the case that the dispute is not amicably resolved between the Parties, then it may be referred to Cambodian court in Cambodia and in accordance with the laws of the Kingdom of Cambodia.

10. Appraisal of Projects

In order to have evaluation on force account projects, Party C and Party D shall appraise performance of Party B at completion in accordance with the standard guideline and the guideline recommended in Implementation Body (IB) Performance Evaluation.

(Form of Contract)

Contract Agreement between General Department of Public Works and (xxxx xxx): appropriate words shall be inserted to complete the contract agreement.

<u>Italic</u> <u>with</u> <u>underline:</u> appropriate words shall be selected.

(Heavy Equipment Center / Road or Bridge Unit of Road Infrastructure Department /
Department of Public Works and Transport of xxxx Province) / Royal Cambodian Army Force /

Police Office

for (Name of Project)

Project Name

Reference

Agreement No. <u>xxxxxx</u> dated on <u>(day) (month) 20xx</u> for <u>(Name of Project)</u> from the Ministry of Economy and Finance has been accepted by Ministry of Public Works and Transport.

Concerned Party

Party A: the Employer, Director General of Public Works represents Party A.

- Party B: the Executer, (Director / Chief of Heavy Equipment Center (HEC) / Road or Bridge Unit of Road Infrastructure Department (RID) / Department of Public Works and Transport (DPWT) of xxxx Province / Royal Cambodian Army Force (RCAF) / Police Office (PO)) represents Party B.
- Party C: the Supervisor, (Name of Staff from Planning and Technical Bureau in Road Infrastructure Department (RID), Public Works Research Center (PWRC) and/or Sub-National Public Infrastructure and Engineering Department (SPIED)) represents Party C.
- Party D: the Inspector, (<u>Procurement Evaluation Award Committee (PEAC) and/or General Department of Inspection (GDI)</u>) represents Party D.

Detailed role and responsibility of Party A, Party B and Party C shall be referred to the Regulation.

1. Contract Documents

The Contract consists of;

- the Contract Agreement,
- the Standard Guideline,
- the Regulation,
- the Detail of Technical Specification, and
- the Detailed Design Documents, the Project Costs and the Work Schedule.
- 2. The Contract Documents must be included in the agreement between both parties.

3. Works

Party A has agreed with Party B that Party B shall construct, complete and maintain the Works briefed below in accordance with the requirements of quality and schedule etc. specified in the Contract.

(project brief, like length & width, earthworks, pavement works, structure works etc.)

4. Work Schedule

- 1) The Works shall commence and complete as below.
 - Commencement date: (date month 20xx)
 - Completion date: (date month 20xx).
- 2) Individual scope of work items shall be carried out in accordance with the Work Schedule referred to Clause 1 by Party B and confirmed by Party C.

5. Delay of the Works

The Contract shall be extended, only if there is reasonable cause for delay agreed by Party A. If delay occurs, Party B shall inform reasons of delay to Party C and Party C shall decide duration of delay, after consultation with Party A, as stipulated in Clause 9.9 of the Regulation.

Annex A (Party A and Party B)

Party B shall not make any sub-contract over any part or whole of the Works to other contractors, as stipulated in Clause 9.3 of the Regulation.

7. Quality

Party B shall be responsible to all forms and structures and shall assure position and dimension of the Works.

During maintenance period, Party B shall amend, reconstruct and remedy defects and faults Party A and C may request before hand-over the Works.

8. Construction Quality Assurance

Party B shall assure that the works and materials are good enough and meet with the requirements in the Technical Specification (Compact Construction Materials Specification for Maintenance and Construction of Roads and Structures 2011 by Ministry of Public Works and Transport).

Warranty period is 12 months after completion of the Works, approved by PEAC.

During the warranty period, Party B shall maintain the Works and replace any kind of Works and materials not meeting with the requirements in the Specification as soon as possible.

Construction and maintenance of the Works shall be responsibility of Party B, unless damages are caused by natural disasters.

9. Failure or Incompletion

In case Party B is not able to complete the Works or any part of the Works, Party A may have right to terminate the Contract and file the matter to the court.

10. Contract Price

- 1) The Contract price is;
 - a) (section 1 xxx,xxx,xxx riel)
 - b) (section 2 yyy,yyy,yyy riel)
 - *c)* (section *x* riel)
 - d) (..... riel)
 - (total zzz,zzz,zzz riel)
- 2) Payment Term for Construction is as follows.

(in case of 4 steps payment)

- Step 1: (40 % of Contract Price) shall be paid as an advance payment 7days after the Contract is signed and upon request by Party B.
- Step 2: (30 % of Contract Price) shall be paid at the 50 % of progress as interim payment upon request by Party B after inspected and accepted by Party D.
- Step 3: <u>(20 % of Contract Price)</u> shall be paid at completion as payment at completion upon request by Party B after inspected and accepted by Party D.
- Step 4: 10 % of Contract Price shall be paid as payment for retention upon request by Party B after inspected and accepted by Party D.

(in case of 3 steps payment)

- Step 1: (40 % of Contract Price) shall be paid as an advance payment 7days after the Contract is signed and upon request by Party B.
- Step 2: (50 % of Contract Price) shall be paid at completion as payment at completion upon request by Party B after inspected and accepted by Party D.
- Step 3: 10 % of Contract Price shall be paid as payment for retention upon request by Party B after inspected and accepted by Party D.

11. Document Usage

- 1) Every Party shall perform the duties, stipulated in the Contract, in bona fade manner.
- 2) Matters unexpectedly occurred shall be resolved by Parties concerned in amicable manner.
- 3) The Contract shall be made in Khmer language in <u>(x numbers)</u> signed and authorized according to the law of Cambodia and shall be kept by;

- <u>Party A</u>	: x no.
- Party B	: x no.
- Party C	: 1 no.
- Ministry of Economy and Finance	: 2 no.
- Ministry of Public Works and Transport	: 2 no.

Annex A (Party A and Party B)

Phnom Penh, *xx month, 20xx* Director General of Public Works xxx xxx, xx month, 20xx (Director / Chief of Heavy Equipment Center / Road or Bridge Unit of Road Infrastructure Department / Department of Public Works and Transport of xxxx Province / Royal Cambodian Army Force / Police Office) Party A representative Party B representative Certified Certified Phnom Penh, xx month 20xx Phnom Penh Minister of Ministry of Economy and Finance Minister of Ministry of Public Works and Transport

Annex B (Project Information)

Project Information

date: May xx, 2012

Prepared by Party B	
Checked by Party C	

	(1) Basic Data				
1-1	Project name	Rehabilitation of National Road 71			
1-2	Project fund	National Budget Chapter 61			
1-3	Location & Road number	Kampong Cham Province National Road 71 (PK2+160 ~ PK 10+940)			
1-4	Employer / Party A	General Director of Public Works			
1-5	Executor / Party B	DPWT Kampong Cham			
1-6	Supervisor / Party C	Road Infrastructure Department (RID)			
1-7	Inspector / Party D	Procurement Evaluation Award Committee (PEAC)			
1-8	Designer	DPWT Kampong Cham checked by RID			
1-9	Others				

(2) Technical Data				
2-1 Road Length & Beginning and End Points 2.5 km,		2.5 km,		
		Section 1: 680 m (PK 2+160 - PK 2+840)		
		Section II: 1,380 m (PK 4+210 – PK 5+590)		
		Section III: 440 m (PK 10+500 – PK 10+940)		
2-2	Road Section	(1 lane + shoulder) x 2 ways as 0.5 m (shoulder) - 3.5 m (1 lane) - 3.5 m (1 lane) - 0.5 m (shoulder)		
2-3	Earthwork	Reconstruction of existing SBST road		
2-4	Pavement	Capping layer (30 cm) – Sub-base (20 cm) – Base Course (20 cm) – DBST		
2-5	Culverts	Pipe diameter 1.0 m 3 nos. Ditto 1.2 m 1 no. Box size 3.0 m x 3.0 n 2 nos.		
2-6	Bridges	No. 1: 10 m wide x 30 m long (2 span x 15 m), Super: RC Girder No. 2: No. 3:		
2-7	Others			

	(3) Contract Data				
3-1	Contract Amount: Original	Riel xxx,xxx,xxx			
	Final	Riel yyy,yyy,yyy			
3-2	Schedule	October xx, 2011 – May yy, 2012			
3-3	Completion Date	May zz, 2012			
3-4	Inspection after Warranty Period	(Plan) May zzz, 2013			
3-5	Others				

Postscript

It is the team's pleasure (task 1, consisting Cambodian counterparts and JICA experts) to present the regulation (second edition) for force account project in Cambodia. It took more than eight months in 2010 and six months in 2012 to discuss concept and contents of regulation, write up the draft and eventually complete the second edition of regulation. Following the eight months and six months struggle in the team, the regulation is really thought to be team's product.

During these months, there are lots of discussions with and opinions and comments from various departments and stakeholders. Taking those into consideration, it is recommended by the team to set up department in MPWT to look after project in view of supervision alone in order to avoid any conflict of interest. For future, force account projects would be lesser and contract-out projects be more. In this sense, the department for construction supervision would be certainly required and become more important.