

ROADS & HIGHWAYS DEPARTMENT (RHD), MINISTRY OF COMMUNICATION (MOC) PEOPLE'S REPUBLIC OF BANGLADESH

PREPARATORY SURVEY FOR DHAKA-CHITTAGONG NATIONAL HIGHWAY NO.1 BRIDGE CONSTRUCTION AND REHABILITATION PROJECT

(Project name:

THE KANCHPUR, MEGHNA, GUMTI 2ND BRIDGES CONSTRUCTION AND EXISTING BRIDGES REHABILITATION PROJECT)

FINAL REPORT VOLUME 1 : MAIN REPORT

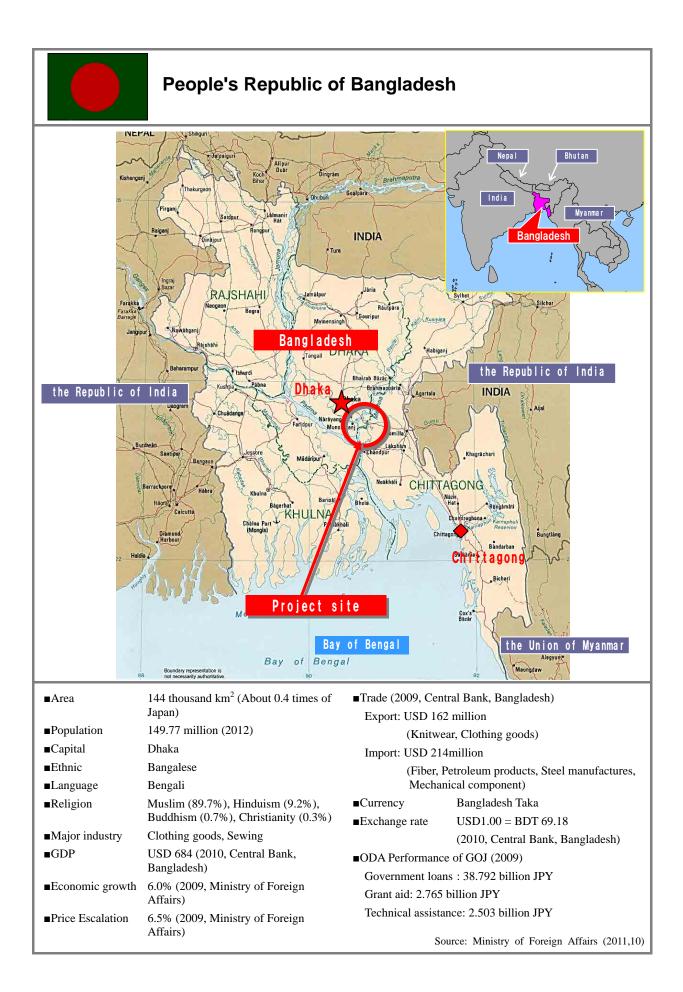
March 2013

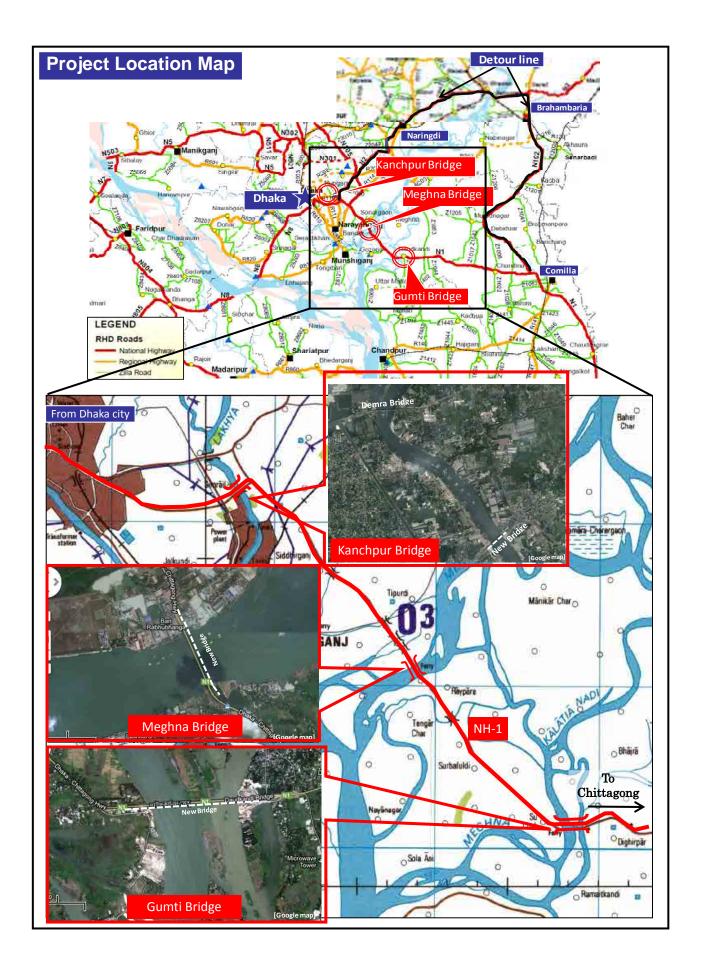
JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. KATAHIRA & ENGINEERS INTERNATIONAL

ROADS & HIGHWAYS DEPARTMENT (RHD), MINISTRY OF COMMUNICATION (MOC) PEOPLE'S REPUBLIC OF BANGLADESH

PREPARATORY SURVEY FOR DHAKA-CHITTAGONG NATIONAL HIGHWAY NO.1 BRIDGE CONSTRUCTION AND REHABILITATION PROJECT

(Project name:

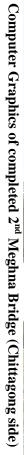

THE KANCHPUR, MEGHNA, GUMTI 2ND BRIDGES CONSTRUCTION AND EXISTING BRIDGES REHABILITATION PROJECT)


FINAL REPORT VOLUME 1 : MAIN REPORT

March 2013

JAPAN INTERNATIONAL COOPERATION AGENCY ORIENTAL CONSULTANTS CO., LTD. KATAHIRA & ENGINEERS INTERNATIONAL

The exchange rates applied in this Study are: USD 1.00 = BDT 81.7 = JPY 79.0 (December 2012) *BDT: Bangladesh Taka



Computer Graphics of completed 2nd Kanchpur Bridge (Dhaka side)

Outline of the Project	<i>i</i>
1. Country: People's Republic of Bangladesh	
2. Project Name: The Kanchpur, Meghna, Gumt	i 2 nd Bridges construction and existing bridges
rehabilitation project	
	artment (RHD) under Ministry of Communication
construction of Kanchpur, Meghna and Gun	e the traffic congestion problem on NH-1 by the nti 2 nd Bridges and the rehabilitation of existing putcome of the Survey will be referred to appraise loan project.
Stage 1: Survey Project Background and Data	(7) Construction plan
 Collection Review plan and methodology followed during site investigation Confirmation of the necessity and background of the project Review design standards followed in Bangladesh Confirmation of site situation Stage 2: Survey Project Essential Contents Leastion of 2nd bridges, approach road 	 (8) Environmental and social consideration (9) Operation & maintenance administration (10) Determination of essential contents of the project Stage 3: Outline Design of Project Components (11) Outline design (12) Project implementation plan (13) Project implementation framework (14) Bill of Quantities and total cost estimate
 (5) Location of 2nd bridges, approach road alignment (6) Rehabilitation plan for existing bridges 6. Conclusions and Recommendations: 	(15) Project implementation method(16) Economic and financial analysis
 scheme is adopted for three bridges, the project The route alignment next and parallel to the e bridges construction. The required numbers Moreover, 'Steel narrow box girder bridge' is 2nd bridges. The Steel Pipe Sheet Pile (SPSP) i the construction of 2nd bridges and the rehabilit The construction of 2nd bridges together wir simultaneously commenced on August, 2016 2021. 	existing bridge is selected as optimum route for 2^{nd} of lanes for 2^{nd} bridges are proposed as 4-lanes. If evaluated as the most appropriate bridge type for s evaluated as the most suitable foundation type for
 thoroughly implemented in preconstruction and Resettlement Action Plan (RAP) is prepared implemented without any delay of construction b) Operation and Maintenance 	s prepared in this study. This EMP should be d construction stage. d in this study. This RAP should be thoroughly n works. enance, it is strongly recommended to raise 'Road

• It is strongly recommended to establish well-maintenance management so that the periodic and routine maintenance works of the bridges can be carried out at a regular interval. The periodic and routine inspection can be conducted safely and smoothly by Bridge Inspection Vehicle.

c) Weighbridge Installation

• To prevent damages in roads and bridges, it is recommended to control the overloading trucks strictly. It can be controlled by the installation of weighbridges at both sides of the bridges.

Preparatory Survey for Dhaka-Chittagong National Highway No.1

Bridge Construction and Rehabilitation Project

(Project name: The Kanchpur, Meghna, Gumti 2nd Bridges Construction

and Existing Bridges Rehabilitation Project)

EXECUTIVE SUMMARY

1. INTRODUCTION

1.1 Background of the Study

The economic development in Bangladesh maintains a GDP growth rate of around 6 % per annum in the 2000s. More specifically, the adjacent areas along Dhaka-Chittagong National Highway No.1 (NH-1), the lifeline of economy, contributes approximately one-third (32 %) of the nation's GDP and more than one-third (45 %) of the nation's industrial sector, while it reaches 33 % and 13 % of nation's service sector and agricultural sector, respectively. Such trend in economic development of Bangladesh directly impacts on the strong growth in both the number of passengers and freight traffic. Accordingly, the freight traffic has been increasing by 8 times over the last 30 years from 1975 to 2005 and at a rate of 6-7 % in recent years at the same pace as the GDP, and the amount of passenger transport has been increasing at about 6.5 times during the same period.

The traffic capacity on the main roads connecting the major cities and metropolitan areas in Dhaka cannot keep up with the year-after-year increase of traffic volume and eliminating bottlenecks of distribution routes has become a pressing issue. On the other hand, damage to roads and bridges is progressively increasing and has restrained traffic, becoming a major issue. Moreover, "Bangladesh National Building Code (BNBC)" has been implemented in 1993 and the earthquake standards have been raised in 2006; therefore the existing bridges no longer meet the earthquake-resistance standards. Accordingly, rehabilitation and retrofitting of the existing bridges have undoubtedly become a pressing issue.

Since 2008, Government of Bangladesh has been widening the all sections of NH-1 to 4lanes except existing Kanchpur, Meghna and Gumti Bridges. This 4-lane project is one of the projects mostly needed to accommodate the growth in traffic demand over the next 20 years. However, for bridge sections, funds have not been raised, enlargement to meet the traffic capacity has not progressed, becoming a critical bottleneck to traffic.

Furthermore, the existing Kanchpur, Meghna and Gumti Bridges were constructed in 1977, 1991 and 1995 based on outdated design standards with the seismic acceleration coefficient

of 0.05; however the value has been increased to 0.15 in accordance with BNBC (2006). These three bridges are still further damaged by passing huge numbers of overloaded vehicles, and this situation is bound to go on.

In order to handle the situation, in June 2011, the Government of Bangladesh requested to JICA to undertake a Feasibility Study on 'the Kanchpur, Meghna and Gumti 2nd Bridges construction and existing Kanchpur, Meghna and Gumti Bridges rehabilitation project'. The details of the study area are shown in Project Location Map.

1.2 Objective of the Study

The overall objective of this project is to improve the traffic congestion problem on NH-1 by

- a) Construction of 2nd Kanchpur, 2nd Meghna and 2nd Gumti Bridges
- b) Rehabilitation of existing Kanchpur, Meghna and Gumti Bridges

In consideration with the above project objectives, the survey works are conducted and the necessary materials are prepared in order to appraise the feasibility of project as Japanese-ODA loan project.

2. NUMBER OF LANES REQUIRED FOR 2ND BRIDGES

For the assessment of lane numbers necessary for 2nd bridges, the traffic surveys (traffic count, OD interview, traffic movement count and traffic speed) were conducted in February, 2012 at Kanchpur, Meghna and Gumti Bridge sites. This provides primary traffic data for the analysis of the current traffic characteristics and a basis for the forecast traffic demand of the project. Average Daily Traffic (ADT) at Kanchpur Bridge site is counted at 34,453, while that at Meghna and Gumti Bridge sites is 27,578.

Regression analysis is made using existing traffic and socio-economic data (vehicle registration data and GDP of Bangladesh) to forecast future traffic demand. Additionally, the traffic demand forecast also considers the influence of traffics to NH-1 due to development of Dhaka-Chittagong double tracking railway and Chittagong port. The forecasted traffic volume at the project bridge sites is shown in Table 2.1.1 hereunder.

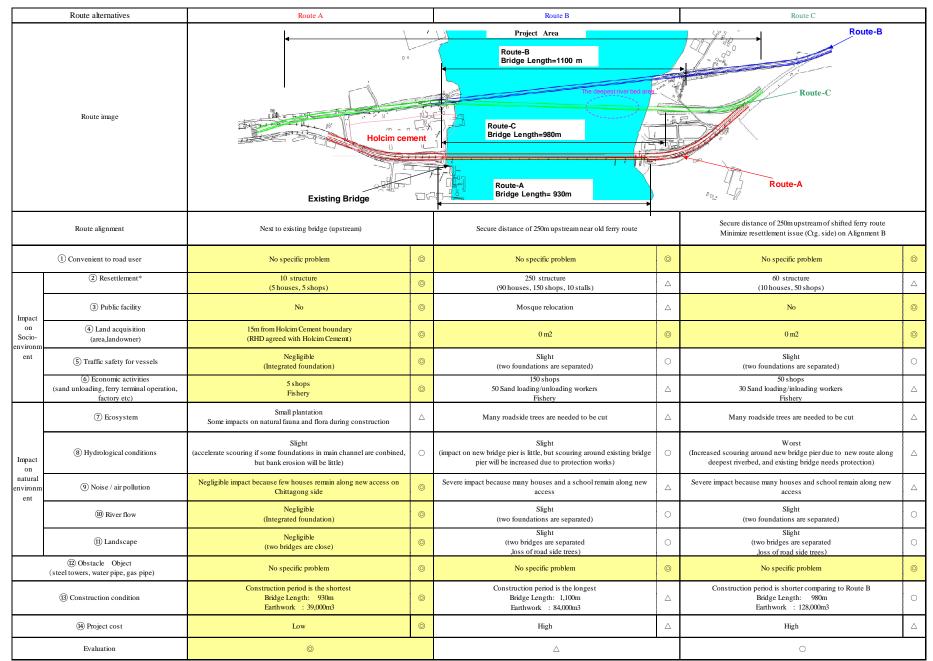
The total numbers of lanes required are determined in accordance with forecasted traffic volume and standard road capacity. It is found that at least 10 lanes will be required to cope with traffic volume forecasted in 2030. But, widening of NH-1 to more than10-lanes is not realistic. Rather GoB has a master plan to develop a toll road connecting Dhaka-Chittagong corridor as 8-lanes ahead of Kanchpur Bridge and 6-lanes beyond Gumti Bridge. Therefore, the required numbers of lanes for 2nd bridges are proposed as 4-lanes so as to concurrent with the GoB master plan. Moreover, the lane number of Dhaka-Chittagong expressway, an alternate route of NH-1, was proposed as 4 lanes in the FS study. Accordingly, in 2030, the

numbers of lanes for Dhaka-Chittagong corridor is expected to become 12 lanes in Kanchpur and 10-lanes in Meghna/Gumti.

Survey location	Year	r 2012	Year 2021		Year	2030	No. of lanes			
Survey location	PCU/ day	Required lane no.	PCU/ day	Required lane no.	PCU/ day	Required lane no.	Adopted	Existing Bridge	2 nd Bridge	
Kanchpur Bridge	76,732	6	123,301	8	192,687	12	8	4	4	
Meghna/Gumti Bridge	65,008	4	105,374	6	165,168	10	6	2	4	

 Table 2.1.1 Proposed lane numbers for 2nd bridges

3. SELECTION OF OPTIMUM ROUTE FOR 2ND BRIDGES


In order to select the optimum route alignment for 2^{nd} bridges construction, the three feasible alternative routes of each bridge are taken into consideration. These route alternatives for respective bridges are briefly described in Table 3.1.1 and they are comprehensively analysed and evaluated by focussing some key items such as impact on socio-environment and natural environment, construction condition and project cost. For instance, the comprehensive evaluation on three alignment alternatives of 2^{nd} Meghna Bridge is summarized in Table 3.1.2. It is found that 'Route A', upstream next and parallel to the existing bridge, has minimum resettlement issue and less impact on the natural environment. Therefore, 'Route A' is considered to be optimum route for 2^{nd} bridge construction, even though this alignment might have some influence to Holcim Cement boundary. However, this issue has already been resolved by the understanding and agreement between RHD and Holcim Cement administration through a clarification letter memo no.5-187/1099-bridge.

On the other hand, the comprehensive evaluation, followed similar approach of 2^{nd} Meghna Bridge, is also applied to optimize route selection for 2^{nd} Kanchpur and 2^{nd} Gumti Bridge construction. Accordingly, the 'Route A' which is downstream next and parallel to the existing bridge is set to as final alignment for 2^{nd} bridges construction. Their detailed evaluations are cited elsewhere in the main report.

Bridge	Route alternatives	Location to existing bridge	Description of Route
	Route A	Downstream	Next to existing bridge
2 nd Kanchpur	Route B Downstream		Provides adequate distance from existing bridge
	Route C	Upstream	Next to existing bridge
andara	<u>Route A</u>	<u>Upstream</u>	<u>Next to existing bridge</u> <u>Minimizes the influence on Holcim Cement boundary</u>
2 nd Meghna	Route B	Upstream	Provides distance of 250m upstream near the old ferry route
	Route C	Upstream	Provides distance of 250m upstream of shifted ferry route Minimize resettlement issue (Ctg. side) on Route B
	Route A	Downstream	Next to existing bridge
2 nd Gumti	Route B	Downstream	Provides adequate distance from existing bridge
	Route C	Upstream	Next to existing bridge

 Table 3.1.1 Route Alternatives for 2nd Bridges

Table 3.1.2 Optimum route selection for 2nd Meghna Bridge

Legend \bigcirc : Excellent, \circ : Good, \triangle : Poor

Note: *Number of structures within the proposed alignment were counted and roudd up based on the number of robos identified through Google maps and site reconnaissance survey

From the census survey, the number of affected households along Route A is found to be 19 households, that means an average of 1.9 households/structure. Based on this assumption, the affected households under Route B and Route C would be 475 and 114 respectively. Therefore, Route A is the most feasible route due to least affected households, comparing to other plans.

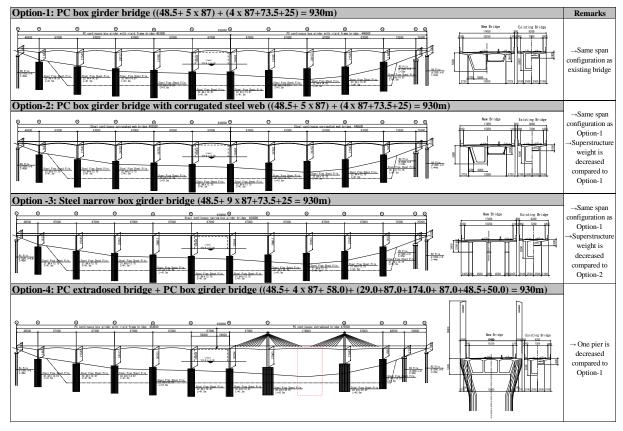
4. SELECTION OF BRIDGE TYPE OF 2ND BRIDGES

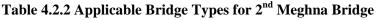
The bridge types of 2^{nd} bridges are studied and examined in accordance to several factors such as (1) type of foundation and their integrity with existing one, (2) applicable bridge types and (3) comprehensive evaluation of applicable bridge types.

4.1 Selection of Foundation Type

Two types of foundations are chosen as applicable foundation types for 2nd bridges and retrofitting of existing bridges, one is Steel Pipe Sheet Pile (SPSP) and other is Cast-in-place Concrete Pile. From numerical computation, it is found that the cast-in-place concrete pile foundation under severe riverbed scouring zone needs a huge plane section, a long period for construction, a huge construction cost and a cofferdam to construct pile cap, while the SPSP foundation is possible to be constructed with a smaller plane section, a shorter period and least cost and also needs no cofferdam because of cofferdam function of SPSP. Accordingly, the application of SPSP is proposed and decided to integrate the foundations of 2nd bridges and the existing bridges.

4.2 Applicable Bridge Types


The 2^{nd} bridges will be in close vicinity of the existing bridges respectively, therefore the span configuration of 2^{nd} bridge is required to be same as the existing bridge. In case of modification of span configuration of 2^{nd} bridge, the span length of 2^{nd} bridge should be expanded as a double or triple of one of the existing bridge by decreasing one or two piers and foundations. The existing Kanchpur Bridge has 8 spans with a longest span of 73.2m and shortest one of 42.7m, and most of span length of the existing Meghna and Gumti Bridges is 87.0m. Under restricting the condition of span configuration of the existing bridges, the applicable bridge types for respective 2^{nd} bridges are listed in Table 4.2.1.


For instance, a comparison among the applicable bridge types (Option-1 to Option-4) for 2nd Meghna Bridge, considering with their cross section, side view, span configuration and selection criteria, is shown in Table 4.2.2.

Bridge type	Applicable span length		2 nd Bridges		Remarks	
Bridge type	(m)	Kanchpur	Meghna	Gumti	Termins	
PC T-beam	25 - 45	0	-	-	Same span configuration of existing bridges	
PC box girder	45 - 100	0	0	0	Ditto	
PC box girder with corrugated steel web	50 - 120	-	0	0	Ditto	
Steel narrow box girder	50 - 120	0	0	0	Ditto	
PC extradosed	150 - 240	0	0	0	In case of adopting double span length of existing bridges	

 Table 4.2.1 Applicable Bridge Types

Among the four options, Option-1 to Option-3 have span configuration same as existing bridge. But, in case of Option-2 and Option-3, Prestressed Concrete (PC) is changed to steel material so as to decrease the superstructure weight. The decreasing in superstructure weight leads advantages to the earthquake resistance. In case of Option-4, the span length is expanded to double of one of the existing bridge by decreasing one pier and foundation located under severe scouring zone.

4.3 Comprehensive Evaluation on Bridge Type for 2nd Bridges

In accordance with some major evaluation items, the comparison results for the 4-options of 2nd Meghna Bridge are shown in Table 4.3.1. The major items such as Structural performance, Constructability, Maintenance, Landscape, Environmental impact and Construction cost are chosen and each major item consists of some sub-items. Each major item is analysed by integrating the evaluation results of the sub-items. In accordance with these evaluation results, finally "Option-3 (Steel narrow box girder bridge)" is ranked as "1st order" by comprehensive comparison procedure, and it is proposed for the most appropriate bridge type of the 2nd Meghna Bridge. Same evaluation results are also obtained for 2nd Kanchpur and 2nd Gumti Bridges. Details of their comprehensive evaluation are shown elsewhere in the main report.

Specifically the selection of "Opton-3" is governed by some vital factors such as enough durability, advantageous to earthquake resistance, shorter construction period, less impact on environment, compared to other candidate bridges. Therefore, "Steel narrow box girder bridge" is proposed as the most appropriate bridge type for the construction of 2^{nd} bridges.

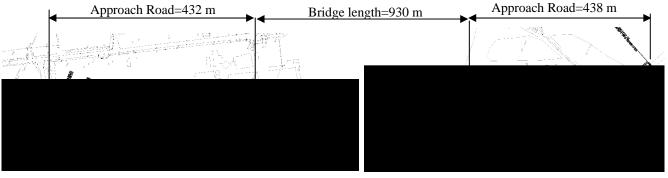
Table 4.3.1 Evaluation	Result of 2 nd	¹ Meghna Bridge
------------------------	---------------------------	----------------------------

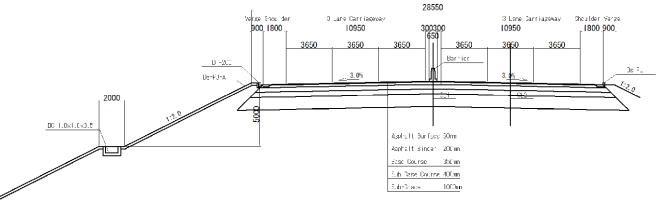
			Option-1			Option-2			Option-3			Option-4		
	Bridge	type	PC box girder bridge			PC box girder bridge with corrugate	d steel	l web	Steel narrow box girder bridg	ge.		PC extradosed bridge + PC box gin	der bri	dge
	Bridge s	shape		Ì				1			1			7
	Record of usage		Many	0		Moderate	0		Moderate	0		Moderate	0	
Strctural performance	Durability	Durability of floor slab	Enough (PC floor slab)	0	0	Enough (PC floor slab)	0	0	Enough (PC floor slab)	0	0	Enough (PC floor slab)	0	С
performance	Earthquake resistance	Weight of superstraucture	Moderate	0		Slightly advantageous	0		Advantageous	O		Moderate	sed bridge + PC box girder brid, sed bridge + PC box girder brid,	
	Construction method	Difficulty level of constructuction	Normal	0		Slightly difficult	Δ		Normal	0		Slightly difficult	۵	
Constructability	Quality control	Difficulty level of quality control	Normal	0	0	Normal	0	0	Normal	0	0	Slightly difficult (Camber adjustemnt)	Δ	
	Construction perio	od	4 years	0		4 years	0		3 years	0		4 years	0	
	Painting / Carbonation	Necessity of painting / Surface treatment	Painting once in 30 years	0		Painting once in 30 years	0		Painting once in 30 years	0		Painting once in 30 years	0	
Maintenance	Periodic	Intermidiate joint numbers	1 points	0	$ \circ$	1 points	0	0	Nothing	0	0	1 points	0	
	maintenance	Pier with bearings	2 points	0		2 points	0	-	11 points			3 points	0	
	Cable	replacement of cable sheath	Not required	0		Not required	0		Not required	0		Replacement once in 75 years	-	-
Landscape	Aesthetic view		Slender arch shape	0	0	Slender arch shape	0	0	Straight	0	0	Monumental appearance	0	0
P • • • •	River Hydrology	Depends on no. of bridge piers in riverbed	11 piers	0		11 piers	0		11 piers	0		10 piers	0	
Environmental impact	Scouring	number of pier in main stream	5 piers	0	0	5 piers	0	0	5 piers	0	Ο	4 piers	0	0
·	Noice/vibraton	No.and conditions of expansion joints	3 Points	0		3 Points	0		2 Points	0		3 Points	0	
	Constructi	on cost	1.00	(Ò	1.00		Ò	1.00	(0	1.17		Δ
	Evalua	tion	2			3			1			4		

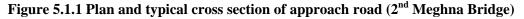
Legend: \bigcirc Excellent, \bigcirc Good, \triangle Poor

5. OUTLINE DESIGN

5.1 Approach Road


Design conditions for the approach road are as follows:


a) Design speed = 80 km/h c) Outer shoulder width = 1.8 m,


b) Lane width = 3.65 m

Inner shoulder width = 0.3 m

The plan and the typical cross section of the approach road of 2^{nd} Meghna Bridge, for instance, are shown in Figure 5.1.1 and its geometry is designed based on geometric design standard by RHD and land uses along the selected route of the project. The thickness of flexible pavement is determined based on the cumulative Equivalent Single Axle Load (ESAL) value computed from all heavy commercial vehicles. The calculated thickness of pavement layer components is schematically shown in Figure 5.1.1.

5.2 2nd Bridges

The design conditions to be used for the 2^{nd} bridges are listed as follows:

1) The type of 2nd bridges would be continuous "Steel Narrow Box Girder Bridge". The steel box girders have been chosen for the superstructure; therefore the span allocation is kept the same as existing one. The same span allocation will ensure the same number of foundations

for the 2^{nd} bridge and existing bridge. Therefore, it will be easier to unify the new foundations with those of adjacent existing bridge.

2) In accordance with the design scouring level, the type of foundation is determined. Accordingly, where the riverbed scouring level is medium to severe (RL= -14.90 m to - 26.2 m), "Steel Pipe Sheet Pile (SPSP)" type foundation is found to be economical and additionally this SPSP will act as a scouring countermeasure. On the other hand, where the riverbed scouring is shallow level (RL= -0.7 m to - 4.6 m), the "Cast-in-place Concrete Pile" foundation is found to be cost effective.

The general outline of the design and the obtained outputs are summarized in Table 5.3.2. Consequently, the general view of 2^{nd} Meghna Bridge, for instance, is shown in Figure 5.2.1.

5.3 Existing Bridges

The present conditions observed and investigated have been examined and the latest design criteria to be conformed to have also been considered. As a result, the existing Kanchpur, Meghna and Gumti Bridges have been determined to need to be retrofitted and rehabilitated in the manner described in Table 5.3.1.

- 1) The rehabilitation works have been determined as the repair works for the expansion joints in three existing bridges and the repair works for the damaged hinges in existing Meghna Bridge and Gumti Bridge.
- 2) The repair works for the damaged hinges shall be connecting two cantilever girders to become monolithic, eliminating the hinge and expansion joint, at each hinge section. The retrofitting works comprises the works to renew the bridge structure to conform to the current bridge design standards and to cope with the current and future scouring conditions.

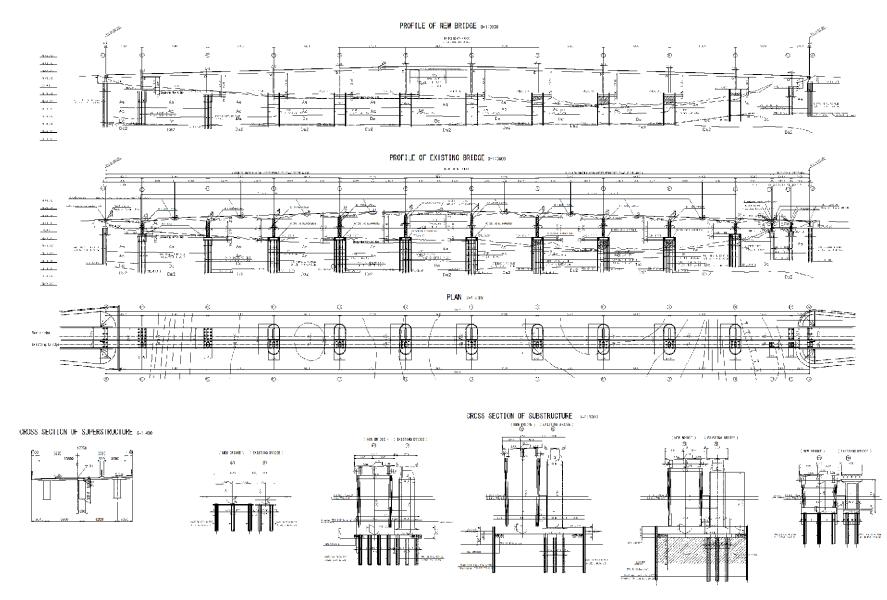

D 1 1 1			Existing Bridge		
Rehabili	itation/Retrofitting works	Kanchpur	Meghna	Gumti	
Repair of crac	ks/rebar exposures	0	0	0	
Connecting gi hinges/joints)	rders (eliminating	-	0	0	
Center hinge r	rehabilitation	-	0	0	
Expansion joint replacement		0	0	0	
Steel brackets on the substructures		0	0	0	
Fail-safe conn	ection	0	-	-	
Deck strength	ening	0	-	-	
Piers	RC-lining	0	0	0	
11015	Diaphragm wall	0	-	-	
	Pile cap integration	P1, P3, P5, P6	P1 to P10	P1 to P8	
Foundations	Steel Pipe Sheet Pile (SPSP)	P1 to P6	P3 to P10	P1 to P8	
	Cast-in-place concrete pile	-	P1, P2	-	

 Table 5.3.1 Scope of the Rehabilitation and Retrofitting Works

Duiden (1			n Design (2 Megnina Druge)						
Bridge type				el narrow box	girder						
Configuration of	of bridge			930.0 m							
superstructure	-			929.1 m + 9@87.0 m -	+ 73.5 m + 23.9 m						
Number of lane	28	4-lanes	/. 4 III '	<u>- 7807.0</u> III -	- 75.5 m + 25.7 m						
runder of func		17.75 m									
			(1.1 m (sidewalk) + 15.55 m (road) + 1.1 m (sidewalk))								
			17750								
			100 <u>10950</u> 50 <u>3950</u> 1100								
				b	Ge gi						
					2_0%						
Cross section				400							
					240						
				1200							
				2675	6200 6200 2675						
	Superstructure				3-box girders (1.2 m x 3.31 m) with PC floor slab(t=24 cm)						
l	Superstructure			Inc. (1							
		Abutmer	nt	Inverted T-type	Number: 2 Height: 8.0 m - 9.5 m						
				Columnar	Number: 11						
D · 1		Pier	Pier		Height: 9.9 m - 30.44 m						
Bridge components				type Abutment	Cast-in-place RC pile (φ 1.5 m): A1&A2 n=6, L=48.0 m						
components	Substructure		Foundation								
		Foundati			Cast-in-place RC pile (φ 1.5 m): P1,P2&P12 n=6-12, L=35.0 m - 44.0m						
		Foundation		Pier	SPSP (φ1.0 m)						
					P3-P10; 39.93 m x 14.97 m (including existing)						
					L=42.65-44.15m						
	Live load				JRA B-type (only for floor slab system)						
					AASHTO HS20-44 (for girder and substructure)						
Loads	Seismic load				$C_{sm} = \frac{1.2ZS}{T_{m}^{2/3}} \le 2.5Z$; where Z=0.15 and S=1.5						
LUaus	Seisine loud				$T_m^{2/3}$						
	Wind load				3.0 kN/m ²						
	Thermal force	2			Temperature range: +10 °c to +50 °c						
					Specification						
			Sta-1		Grade-SM490A (JIS)						
			Steel		$\sigma_u = 490 \text{ MPa}, \qquad \sigma_y = 315 \text{ MPa}$						
l	Superstructure	e 🗌	DC :	11	Grade-SWPR7BL (JIS)						
	_		PC ste	el bar	$\sigma_u = 1,850 \text{ MPa}, \qquad \sigma_y = 1,600 \text{ MPa}$						
		F	Concr	ete	JIS						
Construction			(Preca		$\sigma_c = 50 \text{ MPa}$						
Materials			Concr	ete	RHD						
			(cast-i	n-situ)	$\sigma_c = 25 \text{ MPa}$						
			ית		Grade-60 (ASTM)						
	Substructure		Rebar		σ_u : 620 MPa, σ_y : 420 MPa						
		F			SKY400 and SKY490 (JIS)						
			SPSP		$\sigma_u = 400 \text{ MPa}$ and 490 MPa						
			5151		$\sigma_{y} = 235$ MPa and 315 MPa						
					,						

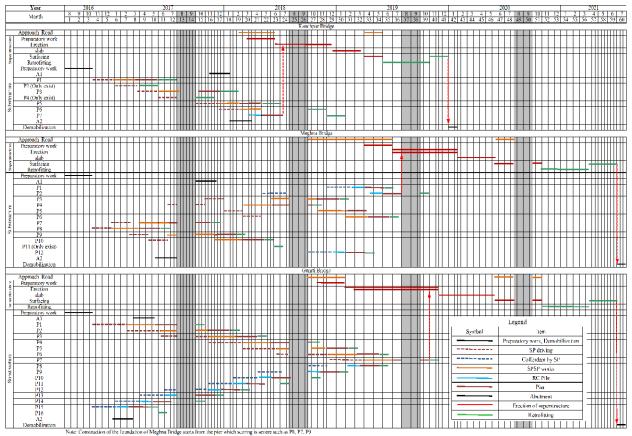
Table 5.3.2 Outline of Design (2nd Meghna Bridge)

MEGHNA BRIDGE: GENERAL VIEW

THE KANCHPUR, MEGHNA, GUMTI 2ND BRIDGES CONSTRUCTION AND EXISTING BRIDGES REHABILITATION PROJECT Final Rep<u>ort</u>

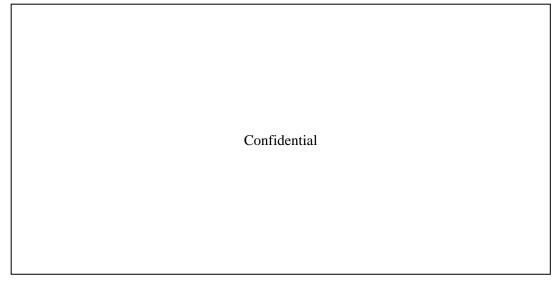
Figure 5.2.1 General view of Meghna Bridge

Executive Summary-11


The general outline of the design and the obtained outputs are summarized in Table 5.3.3. Consequently, the general view of Existing Meghna Bridge, for instance, is shown in Figure 5.2.1.

Bridge data			Length = 930 m : 48.5 + 9@87.0 + 73.5 + 25.0 m Width = 9.2 m				
Bridge components	Superstructure		Pre-stressed concrete box girder, continuous rigid frame type (48.5 m + 9*87.0 m + 48.5 m) Pre-stressed concrete T girder, simply supported type (2*25.0 m) $200 \xrightarrow{900}{720} $				
		Abutment	Inverted T-type				
	Substructure	Pier	Columnar type				
		Foundation	Abutment: Cast-in-place RC pile (φ1,500) Pier: Cast-in-place RC pile (φ1,500)				
	Live load		AASHTO HS20-44 (for girder and substructure)				
Loads	Seismic load		$C_{sm} = \frac{1.2ZS}{T_m^{2/3}} \le 2.5Z$; where Z=0.15 and S=1.5				
	Wind load		3.0 kN/m ²				
	Thermal force		Temperature range: $26^{\circ}c \pm 17^{\circ}c$				
Cinder or 1	Repair of cracks/reba	r exposures	P12 to A2				
Girder and deck	Connecting girders (e hinges/joints)	liminating	All except P5 to P6				
Bridge	Center hinge rehabilit		P5 to P6				
accessories	Bridge Expansion joint replacement		A1, P5 to P6, A2				
Steel brackets			A1, A2				
Pier	RC-lining		P1 to P12				
	RC casting reinforcen	nent	P1 to P10				
Foundation	Steel pipe sheet piles		P3 to P10				
	Bored RC piles		P3 to P10 P1, P2				

Table 5.3.3 Outline of Design	(Existing Meghna Bridge)
-------------------------------	--------------------------


6. CONSTRUCTION PLAN AND COST ESTIMATE

The construction period of 2^{nd} bridges construction and existing bridges rehabilitation will be 5.0 years (60 months) including mobilization and demobilization as shown in Figure 6.1.1.

Figure 6.1.1 Construction Schedule

7. OPERATION AND MAINTENANCE PLAN

Following three key points are strongly recommended to establish an effective operation and maintenance plan for roads and bridges.

- To establish 'Road Fund'. Vehicle Registration tax, additional earmarked tax on fuel and existing toll revenue can be considered as contributions to this Fund.
- To prevent damages in roads and bridges by strict control of overloading trucks. It can be controlled by the installation of weighbridges at both sides of the bridges.
- To ensure easy operation and proper maintenance of the 2nd bridges and the existing bridges, the Bridge Inspection Vehicle (BIV) is introduced through which the daily and periodic inspection can be easily conducted. The level of painting deterioration in steel girder, the present state of damage in expansion joints and hinges should necessarily be inspected by BIV and the corresponding countermeasures should be taken into action accordingly.

8. IMPLEMENTATION PLAN

The milestones for the implementation of project undertaken by Japanese ODA loan are planned as:

Confidential

Confidential

Figure 8.1.1: Project Implementation Plan

9. ECONOMIC AND FINANCIAL EVALUATION

9.1 Economic Evaluation

The Project is evaluated in terms of EIRR, BCR and NPV within the assumed evaluation period of 25 years. Evaluation of the economic viability is made through comparative analysis between EIRR and a social discount rate of 12.0 %. Comparing such a discount rate, it can be said that economic viability is secured at a highly feasibility level whether the road is improved or not improved.

Table 9.1.1 Economic Indicators of project three bridges

Confidential

9.2 Financial Evaluation

In the financial analysis, two (2) cases of Plans 1 and 2 are not taken into consideration due to toll revenues of Plan 1 and 2 being the same. The financial analysis is computed with the following three (3) cases:

- a) Case 1: Cost recovery analysis made by three (3) Bridges individually
- b) Case 2: Cost recovery analysis of all three (3) Bridges using revenues of 2-bridge, namely Meghna and Gumti Bridges

c) Case 3: Cost recovery analysis of all three (3) Bridges using all revenues of all 3-bridge

The Project is evaluated in terms of FIRR and NPV within the assumed evaluation period of 25 years. Evaluation of the financial viability is made through comparative analysis between FIRR and a discount rate of 8.0% taking into consideration of 10 years treasury bound of Bangladesh. Comparing such a discount rate, it can be said the project is not financially viable except Kanchpur Bridge.

Table 9.2.1 Financial Indicators of project three bridges

Confidential

10. ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

10.1 Environmental Impact Assessment

The EIA report was prepared on the basis of proposed engineering works, field investigations, stakeholder consultation, primary and secondary data collection, screening of all baseline environmental parameters, environmental quality baseline monitoring, and review of other similar project reports in Bangladesh. The study was taken up during March–August, 2012.

Locations of the 2nd bridges were studied in the views of feasibility such as social impact, environmental impact and cost etc. It is found that 'Route A', next and parallel to the existing bridge, has minimum resettlement issue and less impact on the natural environment.

The Project is classified as "Red" under regulation of Bangladesh and "A" according to the JICA Environmental Guidelines, and thus EIA is necessary to be conducted.

Several scoping has been set to find out possible ecological/environmental and social impact caused by the implementation of proposed project. The results of scoping are shown in Table 10.1.1. Impacts are rated in A, B, C and D, which are defined as follows;

- A: Severe negative impact is predicted
- B: Limited negative impacts can be predicted
- C: Impact is unknown
- D: Almost no negative impact is predicted

	Karahara Prida Mathara Prida Cunti Prida												
C1			Kanchpur Bridge			Meghna Bridge			Gumti Bridge				
Sl. no.	Item	Overall	Before / During Construction	During Operation	Overall	Before / During Construction	During Operation	Overall	Before / During Construction	During Operation			
1	Involuntary resettlement	А	А	D	А	А	D	А	А	D			
2	Local economics, such as employment, livelihood, etc.	А	А	D	А	А	D	А	А	D			
3	Land use and utilization of local resources	В	В	D	В	В	D	D	D	D			
4	Social institutions such as social infrastructure and local decision-making institutions	D	D	D	В	В	D	В	В	D			
5	Existing social infrastructures and services	D	D	D	В	В	D	D	D	D			
6	Poor, indigenous, or ethnic people	А	А	D	А	А	D						
7	Misdistribution of benefits and damages	В	В	В	В	В	В	А	А	D			
8	Local conflicts of interest	В	В	В	В	В	В	В	В	В			
9	Cultural heritage	D	D	D	D	D	D	В	В	В			
10	Accident	В	В	В	В	В	В	D	D	D			
11	Infectious diseases such as HIV/AIDS	В	В	С	В	В	С	В	В	В			
12	Gender	В	В	С	В	В	С	В	В	С			
13	Children's rights	В	В	С	В	В	С	В	В	С			
14	Erosion and scouring	С	С	С	А	С	А	А	С	А			
15	River transportation	В	В	В	В	В	В	В	В	В			
16	Hydrology	В	В	В	В	В	В	В	В	В			
17	Biota and Ecosystem	В	В	С	В	В	С	В	В	С			
18	Global Warming	С	С	С	С	С	С	С	С	С			
19	Air Pollution	В	В	С	В	В	С	В	В	С			
20	Water Contamination	В	В	D	В	В	D	В	В	D			
21	Soil Pollution	В	В	D	В	В	D	В	В	D			
22	Waste	В	В	D	В	В	D	В	В	D			
23	Noise and Vibration	В	В	С	В	В	С	В	В	С			
24	Ground Subsidence	С	D	С	С	D	С	С	D	С			
25	Offensive Odor	С	С	С	С	С	С	С	С	С			
26	Bottom Sediment	С	С	D	С	С	D	С	С	D			
27	Landscape	С	С	С	С	С	С	С	С	С			

Table 10.1.1: Results of Scoping at three bridges

Source: EIA Report

The EIA report as per the TOR and specified terms and conditions in the DoE letter no. DoE/Clearance/5150/2012/31 7/2002/900 dated 23/05/2012, has been prepared for obtaining the Environmental Clearance Certificate (ECC) from the Government of Bangladesh (GoB). Accordingly, the EIA report was submitted to DoE on October 11, 2012 and approved by DoE on 12 November, 2012.

10.2 Consultation and Participation

Public consultations were held three times on 15th March 2012, 1st August 2012 and 1st September 2012. In the consultation, the local people did not mostly have any comment, opinion, suggestion and question relating to the environment.

10.3 Resettlement Action Plan

Construction of the 2nd bridges and rehabilitation of the existing bridges will require no land acquisition. All components of the project will be constructed on the RHD land. A total of 274 Project Affected Households (PAHs) or 972 peoples will be relocated due to the project interventions as shown in Table 10.3.1. Besides, two community properties will also be relocated from the project area. A total of 231 households and shop tenants will be displaced in Kanchpur Bridge, 19 in Meghna Bridge and 24 in Gumti Bridge. In addition to 274 households to be displaced, a total of 28 wage laborers will also lose their sources of livelihood due to the project of which 26 at Kanchpur Bridge and 2 at Gumti Bridge. These peoples and properties are located in RHD owned land and have not official land ownership. However, bridge wise impacts are shown in Table 10.3.1.

			No of PA	Hs			No of pe	ople	
	Type of loss	Kanchpur Meghna Gumti To		Total	Kanchpu r	Meghna	Gumti	Total	
Req	uired for Displacement	r		I		r			
1	Residential house owners	100	1	6	107	412	3	19	434
2	Residential rentee	98	0	0	98	313	0	0	313
3	Shop owners	26	17	18	61	98	40	61	199
4	Shop tenants	4	1	0	5	12	4	0	16
5	Residential and shop owner	3	0	0	3	10	0	0	10
	Sub Total (1-5)	231	19	24	274	845	47	80	972
Not	required for Displacement								
6	Pond/fish cultivator	1	0	0	1	5	0	0	5
7	Tree owners	0	1	0	1	0	6	0	6
8	Wage earners (Employees)	26	0	2	28	26	0	2	28
9	Community owned structures	1	1	0	2	1	1	0	2
	Sub Total (6-9)	28	2	2	32	32	7	2	41
Gra	nd Total (1-9)	259	21	26	306	877	54	82	1,013

Table 10.3.1 Number of Affected Households

Source: RAP Report

Mitigation of above impacts will be undertaken through implementation of this Resettlement Action Plan (RAP), addressing the gaps between national legislation and the requirements of Development Partner (such as JICA)'s Policy on Involuntary Resettlement.

Resettlement Action Plan (RAP) report was prepared and submitted to RHD for obtaining the approval from the GoB side and accordingly MoC approved the RAP report on November 28, 2012.

Preparatory Survey for Dhaka-Chittagong National Highway No.1 Bridge Construction and Rehabilitation Project

(Project Name: The Kanchpur, Meghna, Gumti 2nd Bridges Construction And Existing Bridges Rehabilitation Project)

VOLUME1: MAIN REPORT

- TABLE OF CONTENTS -

VOLUME 1: MAIN REPORT

LOCATION MAP CG IMAGE OF 2ND KANCHPUR BRIDGE CG IMAGE OF 2ND MEGHNA BRIDGE CG IMAGE OF 2ND GUMTI BRIDGE OUTLINE OF THE PROJECT EXECUTIVE SUMMARY TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS

Page

1. INTRODUCTION

1.1	Ger	neral	1-1
1.2	Pro	ject Background	1-2
1.	2.1	Deterioration of Existing Bridges	1-2
1.	.2.2	Substantial Shortage of Capacity for Present and Future Traffic Demand	1-3
1.3	Pro	ject Objectives	1-3
1.4	Sur	vey Area	1-4
1.	4.1	Location of Survey Area	1-4
1.	.4.2	Economic Condition of Dhaka-Chittagong Corridor NH-1	1-4
1.5	Rel	evant Development Plans	1-7
1.	5.1	Road Development Plans	1-7
1.	5.2	Relevant Development Plans	1-8

2. SITE SURVEY RESULTS

THE KANCHPUR, MEGHNA, GUMTI 2ND BRIDGES CONSTRUCTION AND EXISTING BRIDGES REHABILITATION PROJECT Final Report

2.2 Na	tural Condition2-4
2.2.1	Meteorological Condition2-4
2.2.2	Hydraulic Survey and Hydrological Condition2-5
2.2.3	Topographic Survey2-17
2.2.4	Geological Condition2-20
2.2.5	CBR Test2-35
2.3 Tra	affic Surveys, Analysis2-37
2.3.1	Traffic Survey
2.3.2	Results of the Survey2-42
2.4 Pre	esent River Traffic Condition2-62
2.4.1	River Traffic Categories Observed2-62
2.4.2	Observation Methods2-62
2.5 De	tailed Inspection of Structures2-76
2.5.1	Visual Inspection2-76
2.5.2	Kanchpur Bridge Survey2-83
2.6 Ba	seline Survey2-87
2.6.1	Average Daily Traffic (ADT)2-87
2.6.2	Traffic Speed2-87
2.6.3	Accident rate
2.6.4	Air Quality2-88
2.6.5	Surface Water Quality2-90
2.6.6	Groundwater
2.6.7	Soil pollution
2.6.8	Riverbed sediment

3. TRAFFIC DEMAND FORECAST

• • • •

3.6.1	Capacities of Multiple-Lane Roads	3-22
3.6.2	Required Number of Lanes	3-23
3.6.3	Alternative Corridor (Expressway)	3-25
3.6.4	Adopted Number of Lanes Considering Other Studies	3-26
3.6.5	Adopted Number of Lanes for This Project	3-27

4. SELECTION OF OPTIMUM ROUTE

4.1	Gen	neral	4-1
4.2	Alte	ernative Routes	4-1
4.2	2.1	Kanchpur Bridge	
4.2	2.2	Meghna Bridge	4-7
4.2	2.3	Gumti Bridge	
		nprehensive Evaluation	
		Evaluation Items	
4.3	3.2	Result of Evaluation	
4.4	Kan	chpur Intersection	4-23

5. HYDROLOGICAL AND HYDRAULIC ANALYSIS

5.1 De	sign Criteria	5-1
5.2 Hy	drological Analysis	5-1
5.2.1	Kanchpur Bridge	5-1
5.2.2	Meghna and Gumti Bridges	5-3
5.3 Hi	gh-Water Level Calculation	5-5
5.3.1	Method	5-5
5.3.2	Numerical Simulation Results in 100-Year Return Period Flow Condition	5-8
5.3.3	Design Water Level	5-14
5.4 Es	timation of Scour at Bridges	5-15
5.4.1	Basic Concept	5-15
5.4.2	Methodology of Scour Computation	5-15
5.4.3	Long-Term Aggradations and Degradations	5-15
5.4.4	Local Scour	
5.4.5	Scour Estimation Results	
5.4.6	Countermeasures Against Scouring	

6. DESIGN CRITERIA

6.1 De	sign Criteria for Roads	6-1
6.1.1	Design Standards	6-1
6.1.2	Standard for Roads in Bangladesh	6-1
6.1.3	Example of Typical Cross Section	6-4
6.2 De	sign Criteria for Bridge	6-9
6.2.1	Design Standards to be followed in Bangladesh	6-9
6.2.2	Number of Lanes	6-10

	())		C 10
	6.2.3	Bridge Alignment	
	6.2.4	Restrictions on Bridge Planning	6-10
	6.2.5	Design Loads	6-11
	6.2.6	Design of Seismic Anti-collapse Device	
	6.2.7	Seismic Analysis	
	6.2.8	Design Rainfall	
	6.2.9	Technical Specifications for Construction Materials	
	6.2.10	Technical Specifications for Paintings	
7.	SELECT	TION OF BRIDGE TYPES OF 2 ND BRIDGES	
	7.1 Gen	neral	7-1
	7.2 Dra	conditions of Bridge Type Selection	7 2

7.2	Prec	conditions of Bridge Type Selection	7-2
7.3	Sele	ection of Foundation	7-3
7.4	Ren	narks on Bridge Types for 2nd Bridges	7-5
7.4	4.1	Applicable Bridge Types	7-5
7.4	4.2	Application of Bridge Types for Each Bridge for Comparison	7-6
7.5	Con	nprehensive Evaluation of Selection of Bridge Type for 2nd Bridges	
7.5	5.1	Evaluation Items	
7.5	5.2	Results of Evaluation	
7.5	5.3	Remarks on Bridge Type Evaluation	7-29

8. REHABILITATION AND RETROFITTING OF EXISTING BRIDGES

8.1 Ba	ckground	
8.1.1	General	
8.1.2	Additional Information	
8.2 Co	nfiguration of Existing Bridges	
8.2.1	Existing Kanchpur Bridge	
8.2.2	Existing Meghna Bridge	
8.2.3	Existing Gumti Bridge	
8.3 Sc	ope of the Retrofitting and Rehabilitation Works	
8.3.1	Observation of the Damages	
8.3.2	Scope of the Retrofitting and Rehabilitation Works	
8.4 Lo	ads Applied in the Original Design and to be Applied in the Current Design	
8.4.1	Earthquake Loads	
8.4.2	Live load Combination	
8.5 Ka	nchpur Bridge	
8.5.1	Evaluation and Recommendations for Slab Design	
8.5.2	Evaluation and Recommendations for PC Girder Design	
8.5.3	Evaluation and Recommendations for Pier Design	
8.5.4	Evaluation and Recommendations for Foundation Design	
8.5.5	Evaluation and Recommendations for Work to prevent the Bridge from	
	collapsing	

THE KANCHPUR, MEGHNA, GUMTI 2ND BRIDGES CONSTRUCTION AND EXISTING BRIDGES REHABILITATION PROJECT Final Report

8	.6 Me	ghna Bridge	
	8.6.1	Evaluation and Recommendations for Girder Design	
	8.6.2	Evaluation and Recommendations for Pier Design	
	8.6.3	Evaluation and Recommendations for Foundation Design	
	8.6.4	Evaluation and Recommendations for Work to prevent Bridge collapse	
8	.7 Gu	mti Bridge	
	8.7.1	Evaluation and Recommendations for Girder Design	
	8.7.2	Evaluation and Recommendations for Pier Design	8-36
	8.7.3	Evaluation and Recommendations for Foundation Design	
	8.7.4	Evaluation and Recommendations for Work to Prevent Bridge Collapse	
8	.8 Co	nsideration of Damages on Meghna Bridge and Gumti Bridges	
	8.8.1	General	
	8.8.2	What Happened to the Hinges and Expansion Joints	
	8.8.3	Possible Causes of the Damages	
	8.8.4	Conclusions	

9. OUTLINE OF THE DESIGN

9.1 Ro	ad	
9.1.1	Geometric Design	
9.1.2	Pavement Design	
9.1.3	Drawing	
9.2 Th	e 2 nd Bridges	
9.2.1	The 2 nd Kanchpur Bridge	
9.2.2	The 2 nd Meghna Bridge	9-16
9.2.3	The 2 nd Gumti Bridge	
9.2.4	Bridge Accessories	
9.3 Ext	sting Bridges	
9.3.1	General	
9.3.2	Scope of the Retrofitting and Rehabilitation Works	
9.3.3	Retrofitting and Rehabilitation Works	

10. CONSTRUCTION PLAN AND COST ESTIMATE

10.1 Cor	nstruction Plan	
10.1.1	Construction Procedure	
10.1.2	Preparation Works	
10.1.3	Bridge Civil Works	10-9
10.1.4	Construction Works for the Approach Road	10-14
10.1.5	Finishing Works	10-14
10.1.6	Construction Schedule	
10.2 Cos	t Estimation	10-17
10.2.1	General Conditions of Cost Estimation	10-17
10.2.2	Cost Estimation	

10.2	.3 General Terms of Reference for Project Implementation
11. OPER	ATION AND MAINTENANCE ADMINISTRATION
11.1 (Overview of Roads and Bridges
11.1	1 Roads
11.1	2 Bridges
11.2 N	Inistry of Communication (Upper Level to RHD)11-4
11.2	1 Organization Chart of MoC 11-5
11.3 F	oads and Highways Department (RHD)
11.3	1 RHD: Responsible for National Roads
11.3	2 RHD's Organization
11.3	3 Overall Management System of RHD 11-12
11.3	4 RHD's Bridge Management Wing 11-13
11.4 E	udgetary Situation of Roads and Bridges Development and Maintenance 11-15
11.4	1 Trend of National Budget and Development Revenue 11-15
11.4	2 Trend of Development and Maintenance Allocation for RHD Roads and
	Bridges
11.4	3 Toll collection Data on the Meghna and Gumti Bridges in NH-1 11-17
11.4	4 Conclusion of this Section
11.5 (Deperation and Maintenance Plan
	1 Budget Allocation System 11-20
	2 Specific Sections of RHD and Other Relevant Organizations
11.5	3 Inspection and maintenance system11-22
11.5	4 Incidental Maintenance
11.5	5 Maintenance Operation by Outsourcing 11-25
	.6 Existing Sample of Maintenance Cost and Future Necessity 11-26
11.5	7 Traffic Management 11-31
11.5	.8 Toll Collection
11.5	9 Issues Related to the Maintenance
11.6 F	ecommendations for Effective Operation and Maintenances
11.6	1 Stable Financing for Roads and Bridges Maintenance
11.6	2 Prohibition and Control of Overloaded Vehicles

12. PROJECT IMPLEMENTATION ARRANGEMENTS

12.1 Implementation Plan	
12.1.1 Establishment of the Implementation Plan	
12.2 Project Organization	
12.2.1 Current Implementation Organization	
12.2.2 Proposed Project Implementation Unit (PIU)	
12.3 Contract Package and Procurement Method	
12.3.1 Contract Package	
12.3.2 Procurement Method	

12.3.3 Disbursement Plan12-112.4 Recommendations12-112.4.1 Procurement of Consultant12-112.4.2 Technical Transfer Program12-1	
12.4.1 Procurement of Consultant	11
	11
12.4.2 Technical Transfor Drogram 12.1	11
12.4.2 Technical Transfer Program	2
12.4.3 On-The-Job-Training12-1	12
12.4.4 Seminars/Lectures and Tour in Japan	2

13. ECONOMIC AND FINANCIAL EVALUATION

13.1 Eco	onomic Analysis	13-1
13.1.1	Methodology	13-1
13.1.2	Presumptions for Economic Evaluation	
13.1.3	Road User Cost (RUC)	13-4
13.1.4	Construction Cost, Land Acquisition Cost and Operation/Maintenance Co	st 13-10
13.1.5	Estimation of Benefits	
13.1.6	Economic Analysis	13-17
13.2 Fin	ancial Analysis	
13.2.1	General	
13.2.2	Cases for Financial Analysis	
13.2.3	Assumptions Adopted	
13.2.4	Results of Financial Analysis	
13.3 Op	eration and Effect Indicators	
13.3.1	Project Objectives	
13.3.2	Operation and Effect Indicators	
13.3.3	Targets of Operation and Effect Indicators	
13.4 Qua	alitative Effect	
13.4.1	Promotion of National / Regional Development and Market Expansion	
13.4.2	Promotion of Poverty Reduction	

14. ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

14.1 Sur	nmary of EIA	14-1
14.1.1	General	14-1
14.1.2	Policy, Legal, and Administrative Framework	
14.1.3	Baseline Environmental Condition	
14.1.4	Alternative Analysis	
14.1.5	Initial Environmental Examination	
14.1.6	Environmental Impacts	
14.1.7	Environmental Management Plan	
14.1.8	Public Participation	14-19
14.1.9	Addendum of EIA Report Approved by DoE	14-19
14.2 Bri	ef Overview of RAP Report	
14.2.1	Land Acquisition and Displacement	
14.2.2	Significance of Impacts	

14.2.3	Indigenous People	14-25
14.2.4	Compensation and Entitlements	
14.2.5	Disclosure, Consultation and Participation	
14.2.6	Eligibility of Cut-off Date	
14.2.7	Grievance Redress Mechanism	
14.2.8	Income Restoration Strategy	
14.2.9	Institutional Arrangements	
14.2.10	Cost Estimate and Budget	
14.2.11	Implementation and Monitoring	
14.2.12	Glossary of Terms	

15. CONSIDERATIONS FOR CLIMATE CHANGE

15.1 Vuln	erability due to Climate Change	
15.1.1	Scenario of Climate Change	
15.2 Basic	c Concept	
15.2.1	Need for Adaptation Options	
15.2.2	Adaptation Options	
15.2.3	Target Year of Climate Change	
15.3 Clim	ate Change Data for this Project	
15.3.1	Temperature	
15.3.2	Sea Level Rise	
15.3.3	Rainfall	
15.3.4	River Water Level	
15.3.5	Sea Water intrusion	
15.3.6	Wind Speed	
	The Result of Climate Change	
15.4 Study	y of Adaptation Options	
15.4.1	Study of Countermeasures for CC	
15.5 Items	s for Considering Adaptation Option Study	

VOLUME 2: APPENDICES

VOLUME 3: DRAWINGS

- LIST OF TABLES -

Page

Table 1.4.1	Trends in GDP Growth at Current Market Prices in Areas along NH-1	1-5
Table 1.5.1	EPZs Cumulative Performance (up to July, 2012)	1-9
Table 2.1.1	Ambient natural condition survey and design relationship	
Table 2.2.1	Discharge and Water Level Data List around Kanchpur Bridge	2-9
Table 2.2.2	Discharge and Water Level Data List around Meghna Bridge and Gumti	
	Bridge	2-9
Table 2.2.3	Annual Maximum Discharge Observed by BWDB (unit: m3/s)	2-10
Table 2.2.4	Annual Highest Water Level Observed by BWDB (unit: PWD.m)	2-10
Table 2.2.5	Annual Lowest Water Level Observed by BWDB (unit: PWD.m)	2-10
Table 2.2.6	Cross Section Survey Data List (BWDB Survey)	2-11
Table 2.2.7	Interview Survey Overview	2-12
Table 2.2.8	Interview Result around Meghna Bridge	2-13
Table 2.2.9	Measurement Result at Three Bridges	2-16
Table 2.2.10	The results of pressure tests for Kanchpur Bridge	2-23
Table 2.2.11	The results of pressure tests for Meghna bridge	2-23
Table 2.2.12	The results of pressure tests for Gumti Bridge	2-23
Table 2.2.13	Summary of Pressure Meter Test Data Results	2-27
Table 2.2.14	Summary of Grain Size Analysis Test Data Results	2-30
Table 2.2.15	Summary of Moisture Content Test Data Results	2-31
Table 2.2.16	Summary of Atterberg Limit Test Data Results	2-32
Table 2.2.17	Summary of Direct Shear Test Data Results	2-34
Table 2.2.18	Summary of CBR Test Results	2-35
Table 2.3.1	Types of Survey	2-37
Table 2.3.2	Classifications of Vehicles	2-38
Table 2.3.3	Adopted Zones of O-D Survey	2-41
Table 2.3.4	Adopted Values of Passenger Car Units (PCUs)	2-42
Table 2.3.5	ADT Values of Motorized and Non-Motorized Vehicles	
	(in number of Vehicles)	2-43
Table 2.3.6	ADT Values of Motorized and Non-Motorized Vehicles (in PCU)	2-44
Table 2.3.7	Traffic Volume of Traffic Movement Count Survey	2-49
Table 2.3.8	Commodity Classification Groups	2-52
Table 2.3.9	Result of Traffic Speed Survey	2-61
Table 2.4.1	Number of Ships (Kanchpur Bridge)	2-65
Table 2.4.2	Number of Ships (Meghna Bridge)	2-68
Table 2.4.3	Number of Ships (Gumti Bridge: Dhaka side)	2-71
Table 2.4.4	Number of Ships (Gumti Bridge: Chittagong side)	2-74
Table 2.5.1	Survey Items	2-77
Table 2.5.2	Damage Level	2-77

Table 2.5.3	Cracks in Concrete Slab	2-78
Table 2.5.4	Damage Level and Rebar Exposure	2-78
Table 2.5.5	Unevenness of Road Surface	2-79
Table 2.5.6	Observation of the Damages (Structures)	2-82
Table 2.5.7	Observation of the Damages (Accessories)	2-83
Table 2.5.8	Schmidt Hammer Tests Result	2-84
Table 2.5.9	Survey Location (Piers No. P2, P5, P7)	2-86
Table 2.5.10	Survey Location (Piers No. P1, P3, P4, P6)	2-86
Table 2.5.11	Survey Results on Reinforcement Arrangement	2-86
Table 2.6.1	ADT Values (2012)	2-87
Table 2.6.2	Traffic Speed (2012)	2-87
Table 2.6.3	Number of Accidents	2-88
Table 2.6.4	Results of Ambient Air Quality Analysis	2-88
Table 2.6.5	Results of Surface Water Analysis	2-91
Table 2.6.6	Results of Groundwater Analyses	2-92
Table 2.6.7	Results of Surface Soil Analysis	2-93
Table 2.6.8	Results of Sediment Analysis	2-93
Table 3.2.1	Growth Rate by Trend Analysis Using Vehicle Registration Data	3-2
Table 3.2.2	Number of Motor Vehicles Register in Bangladesh	3-4
Table 3.2.3	GDP Growth (GDP at constant 1995 – 1996)	3-5
Table 3.2.4	Growth Rate by Trend Analysis Based on GDP	3-5
Table 3.2.5	Transport Demand Elasticity Values	3-7
Table 3.2.6	Growth Rates for All Type Vehicles	3-8
Table 3.2.7	Comparison of Growth Rates by Various Methods	3-8
Table 3.3.1	The Growth Rates for All Types of Vehicle	3-9
Table 3.3.2	Growth Rate for Chittagong City Ring Road Project	3-9
Table 3.4.1	Adopted Growth Rates	3-10
Table 3.4.2	Comparison of Estimated Growth Rates by Other Studies	3-10
Table 3.5.1	Projected Traffic Volume at Kanchpur Bridge	3-11
Table 3.5.2	Projected Traffic Volume at Meghna and Gumti Bridges	3-12
Table 3.5.3	Yearly Growth Rate of Chittagong Port and Deep Sea Port	3-14
Table 3.5.4	Traffic Volume of Road from Port	3-14
Table 3.5.5	Traffic Volume that Passes over NH-1	3-15
Table 3.5.6	Additional Traffic Demand	3-16
Table 3.5.7	Shifted Traffic Volume to Railway from Road	3-17
Table 3.5.8	Passenger Forecast	
Table 3.5.9	Shifted Passenger Traffic Volume to Railway from Road	3-19
Table 3.5.10	Projected Traffic Volume at Kanchpur Bridge site	3-20
Table 3.5.11	Projected Traffic Volume at Meghna and Gumti Bridge sites	
Table 3.6.1	Traffic Capacity	
Table 3.6.2	LOS Criteria for Multilane Highways	
Table 3.6.3	Required Number of Lanes for Kanchpur Bridge	

Table 3.6.4	Projected Traffic Volume and Required Number of Lanes	3-26
Table 3.6.5	Projected Traffic Volume and Required Number of Lanes	
Table 3.6.6	Adopted Number of Lanes for this Project	
Table 4.2.1	Alternative Routes for 2nd Bridge	4-3
Table 4.2.2	Alternative Routes for 2nd Bridge	4-7
Table 4.2.3	Alternative Routes for 2nd Bridge	4-11
Table 4.3.1	Evaluation Items	4-15
Table 4.3.2	Selected Routes	4-19
Table 4.3.3	Comparison Table at Kanchpur Site	4-20
Table 4.3.4	Comparison Table at Meghna Site	4-21
Table 4.3.5	Comparison Table at Gumti Site	4-22
Table 4.4.1	List of Intersection Analysis Results	4-28
Table 5.2.1	100-Year Return Period Discharge at Kanchpur Bridge	
Table 5.2.2	Occurrence Probability for Discharge at Demra (Lahkya) St	
Table 5.2.3	Occurrence Probability for Discharge at Demra (Balu) St	5-2
Table 5.2.4	100-Year Return Period Discharge at Bhairab Bazar	5-4
Table 5.2.5	Occurrence Probability for Discharge at Bhairab Bazar (Estimated)	5-4
Table 5.2.6	Catchment Area of the Meghna River	5-4
Table 5.3.1	Boundary Condition for Hydraulic Analysis at Each Bridge	
	(100-Year Return Period)	5-7
Table 5.3.2	Numerical Analysis Result for 100-Year Return Period at Kanchpur Bridge	5-8
Table 5.3.3	Numerical Analysis Result for 100-Year Return Period at Meghna Bridge	5-10
Table 5.3.4	Numerical Analysis Result for 100-Year Return Period at Gumti Bridge	5-12
Table 5.3.5	Design Water Level at Bridge Center Line	5-14
Table 5.4.1	Longitudinal River Bed Profile of Meghna River	5-16
Table 5.4.2	Local Scour in 100-Year Return Period Flood at Kanchpur Bridge	5-25
Table 5.4.3	Local Scour in 100-Year Return Period Flood at Meghna Bridge	5-25
Table 5.4.4	Local Scour in 100-Year Return Period Flood at Gumti Bridge	5-26
Table 5.4.5	Dimension of Riprap Protection around Meghna Bridge	5-28
Table 5.4.6	Dimension of Riprap Protection around Gumti Bridge	5-28
Table 5.4.7	Dimension of Riprap Protection around Kanchpur Bridge	5-28
Table 6.1.1	Functional Road Class	6-2
Table 6.1.2	Road Design Types	6-2
Table 6.1.3	The Geometric Design Standard for Main Line	6-3
Table 6.2.1	Design Standards for Design of 2 nd Bridges and Rehabilitation of Existing	6 10
Table 6.2.2	Bridges Present Status of Navigation Clearance under Existing Bridges	
Table 6.2.2 Table 6.2.3	Unit Weight of Bridge Materials for Dead Load Calculation	
Table 6.2.3 Table 6.2.4		
14010 0.2.4	Truck Load Comparison	

Table 6.2.5	Truck Load Specification by AASHTO and JRA for Floor Slab System	c 10
	Design	
Table 6.2.6	Lane Load Specification for Girder and Substructure Design	
Table 6.2.7	Zone Coefficient Z (BNBC)	
Table 6.2.8	Site Coefficient S for Seismic Lateral Forces (BNBC)	
Table 6.2.9	Ambient Temperature at Dhaka Site	
Table 6.2.10	Load Combinations and Load Factors by AASHTO	
Table 6.2.11	Permanent Load Factors γp by AASHTO	
Table 6.2.12	Minimum Analysis Requirements for Seismic Effects	
Table 6.2.13	Regular Bridge Requirements	
Table 6.2.14	Strength Requirements of Concrete for Bridges	
Table 6.2.15	Nominal Stress of Reinforcing Steel Bars for Bridges	
Table 6.2.16	Nominal Stress of Prestressing Steel	6-25
Table 6.2.17	Nominal Stress of Steel	6-25
Table 6.2.18	Nominal Stress of Steel Pipe Pile for SPSP Foundation	6-26
Table 6.2.19	Concrete Strength for Existing Meghna and Gumti Bridges	6-26
Table 6.2.20	Concrete Strength for Kanchpur Bridge Pier	6-26
Table 6.2.21	Steel Nominal Stress Used for Meghna and Gumti Bridges	6-26
Table 6.2.22	Paint system categories	6-27
Table 6.2.23	Steel girder outer surface painting C-5	6-27
Table 6.2.24	Steel girder inner surface painting D-5	6-28
Table 6.2.25	Splice plate and attached area painting T	6-28
Table 6.2.26	High Tension Bolt splicing F-11	6-29
Table 6.2.27	High Tension Bolt splicing F-12	6-29
Table 6.2.28	Touch-up works	6-30
Table 6.2.29	Limit of paint works	6-30
Table 7.3.1	Selection of Foundation Type for Pier P8 (Meghna Bridge)	7-4
Table 7.4.1	Applicable Bridge Types	7-5
Table 7.4.2	Application of Bridge Types for 2nd Bridges	7-6
Table 7.5.1	Evaluation Items	7-20
Table 7.5.2	Bridge Type Evaluation for 2nd Kanchpur Bridge	7-24
Table 7.5.3	Bridge Type Evaluation for 2nd Meghna Bridge	
Table 7.5.4	Bridge Type Evaluation for 2nd Gumti Bridge	7-28
Table 8.2.1	Basic Data of Existing Kanchpur Bridge	
Table 8.2.2	Basic Data of Existing Meghna Bridge	
Table 8.2.3	Basic Data of Existing Gumti Bridge	
Table 8.3.1	Observation of the Damages (Structures)	
Table 8.3.2	Observation of the Damages (Accessories)	
Table 8.3.3	Scope of the Rehabilitation and Retrofitting Works	
Table 8.4.1	Horizontal Seismic Coefficient	
Table 8.4.2	Live Loads for Slab Design	

Table 8.4.3	Live Loads for Girder Design	
Table 8.5.1	Slab Strength Evaluation	
Table 8.5.2	Retrofitting Method for Slabs	
Table 8.5.3	Restoration Design of PC Girder Based on Original Design Standards	
Table 8.5.4	State of Strength of PC-Girder	
Table 8.5.5	State of Strength of PRC-Girder	
Table 8.5.6	State of Strength of Pier P5	
Table 8.5.7	Seismic Retrofitting of Existing Bridge Piers	
Table 8.5.8	State of Strength of Foundation Corresponding to Pier P5	
Table 8.5.9	Foundation Retrofitting	
Table 8.5.10	Prevention Work above the Substructure to prevent bridge collapse	
Table 8.6.1	Retrofitting by Center Hinge	
Table 8.6.2	Strength Check for Pier P8	
Table 8.6.3	Retrofitting by Pier	
Table 8.6.4	Strength Check for Foundation of Pier P8	
Table 8.6.5	Retrofitting the foundation	
Table 8.6.6	Retrofitting the foundation	
Table 8.7.1	Retrofitting Center Hinge	
Table 8.7.2	Strength Check for Pier P6	
Table 8.7.3	Retrofitting Piers	
Table 8.7.4	Strength Check for Foundation of Pier P6	
Table 8.7.5	Retrofitting the Foundations	
Table 9.1.1	Geometric Design Outline	
Table 9.1.2	Vehicle Equivalent Factor	
Table 9.1.3	Summary of ESAL	
Table 9.2.1	Outline of Design (The 2 nd Kanchpur Bridge)	
Table 9.2.2	Outline of Design (The 2 nd Meghna Bridge)	
Table 9.2.3	Outline of Design (The 2 nd Gumti Bridge)	
Table 9.2.4	Horizontal Movement of Expansion Joint	
Table 9.2.5	Drainage System (Direct Drop)	
Table 9.2.6	Bearing Movement	
Table 9.3.1	Scope of the Rehabilitation and Retrofitting Works	
Table 9.3.2	Outline of Design (Existing Kanchpur Bridge)	
Table 9.3.3	Outline of Design (Existing Meghna Bridge)	
Table 9.3.4	Outline of Design (Existing Gumti Bridge)	
14010 7.3.7	Saune of Deorgi (Dristing Saina Dridge)	
Table 10.2.1	Construction Cost	
Table 10.2.2	Engineering Cost	
Table 10.2.3	Manning Schedule for the Consulting Service	
Table 10.2.4	Project Cost	

Table 11.1.1	Road Network in Bangladesh 11-	1
Table 11.1.2	Growth in Number of Bridges under RHD 11-2	2
Table 11.1.3	Bridge Condition Category by Structure Type 11-	3
Table 11.2.1	Ministry of Communication's Officers Class and Numbers (Road Division) 11-	5
Table 11.3.1	Condition of RHD Road Network	б
Table 11.3.2	Summary of Existing Posts of RHD 11-1	1
Table 11.4.1	Consolidated Receipts and Expenditures of the Government of Bangladesh 11-1.	5
Table 11.4.2	Development and Maintenance Allocation for RHD Roads and Bridges 11-10	б
Table 11.4.3	Requested and Allocated Maintenance Budget 11-1	7
Table 11.4.4	Toll Collection Data on the Meghna and Gumti Rivers	8
Table 11.5.1	Types of Inspections 11-2	2
Table 11.5.2	Shift of 5 Parties for 24 hr. Operation	3
Table 11.5.3	Periodic Inspection	3
Table 11.5.4	Detailed Inspection	4
Table 11.5.5	Annual Plan (in case of detailed inspection) 11-2-	4
Table 11.5.6	Development and Maintenance Allocation for Narayanganj RHD 11-2	7
Table 11.5.7	Unit Rates for Cost Estimates	8
Table 11.5.8	List of Active Equipment Available at RHD, Narayanganj Office 11-2	8
Table 11.5.9	Toll Collection Operation and Maintenance of Meghna and Gumti Bridges 11-2	9
Table 11.5.10	Operations and Maintenance Cost Estimation	0
Table 11.5.11	Proposed Toll Rate of Meghna Bridge and Gumti Bridge	2
Table 12.2.1	Number of Project Members	7
Table 12.3.1	Comparative Analysis for Alternative Project Packages	0
Table 12.3.2	Disbursement Plan of Project Costs 12-1	1
Table 12.4.1	Proposed Program for Seminars/Lectures	3
Table 13.1.1	Project Implementation Schedule for Economic Analysis	2
Table 13.1.2	Bridge and Road Plans in cases of With and Without Project	3
Table 13.1.3	Traffic Demand Forecast on the Bridges on Plan 1 and 2 13-4	4
Table 13.1.4	Passenger based unit TTC (Unit: BDT/hr)	б
Table 13.1.5	Vehicle based Unit TTC for each Truck in 2012 (Unit: BDT/hr.)	б
Table 13.1.6	Vehicle based unit TTC	7
Table 13.1.7	Weighted Vehicle based unit TTC	7
Table 13.1.8	Comparison of Vehicle Operating Cost by Various Studies	8
Table 13.1.9	Unit ACC	9
Table 13.1.10	Road Traffic Accident (RTA) Rate on NH-1 between Dhaka and Chittagong 13-9	9
Table 13.1.11	Summary of Resettlement Cost for the Project	1
Table 13.1.12	Economic Project Cost Estimate	1
Table 13.1.13	Operation and Maintenance Cost	2
Table 13.1.14	Length of Target Road Section	3
Table 13.1.15	Result of ACC Saving Calculation (Unit: BDT)	б
Table 13.1.16	Saving in Riprap Cost	б

Table 13.1.17	Results of Benefit Calculation (Plan 1 and 2)
Table 13.1.17	Economic Indicators of Kanchpur, Meghna, Gumti Bridges and All bridges 13-17
Table 13.1.19	Benefit and Cost Stream at Kanchpur Bridge (Plan1 & 2)
Table 13.1.20	Cost and Benefit Stream at Meghna Bridge (Plan 1)
Table 13.1.20	Cost Benefit Stream at Meghna Bridge (Plan 2)
Table 13.1.21 Table 13.1.22	Cost and Benefit Stream at Gumti Bridge (Plan1)
Table 13.1.22 Table 13.1.23	Cost Benefit Stream at Gumti Bridge (Plan2)
Table 13.1.23	Cost and Benefit Stream at All Bridges (Plan 1)
Table 13.1.24 Table 13.1.25	Cost and Denent Stream at All Bridges (Plan 2)
Table 13.1.25 Table 13.1.26	Results of the Sensitivity Analysis of Kanchpur Bridge (Plan 1 & 2)
Table 13.1.20 Table 13.1.27	Results of the Sensitivity Analysis of Meghna Bridge (Unit: EIRR (%))
Table 13.1.27 Table 13.1.28	Results of the Sensitivity Analysis of Gumti Bridge (Unit: EIRR (%))
Table 13.1.28 Table 13.1.29	Results of the Sensitivity Analysis of All Bridge (Unit: EIRR (%))
Table 13.1.29 Table 13.2.1	
Table 13.2.1 Table 13.2.2	Toll Rate by Vehicle Type (as of August 2012) (Unit: BDT/Vehicle)
	Financial Project Cost Stream by Bridges
Table 13.2.3	
Table 13.2.4	Forecast Annual Toll Revenues of Three (3) Bridges (Unit: Million BDT)
Table 13.2.5	Indicators for Financial Viability Analysis
Table 13.2.6	Results of Financial Analysis for Kanchpur, Meghna and Gumti Bridge
Table 12 0 7	(Case 1)
Table 13.2.7	Results of Financial Analysis for Cases 2 and 3
Table 13.2.8	Cash Flow of Kanchpur Bridge (Case 1-1(W/ Toll Case)) (Unit: Million BDT)
Table 13.2.9	Cash Flow of Meghna Bridge (Plan 1)
Table 13.2.9 Table 13.2.10	Cash Flow of Meghna Bridge (Plan 2)
Table 13.2.10 Table 13.2.11	
Table 13.2.11 Table 13.2.12	Cash Flow of Gunti Bridge (Plan 1)
Table 13.2.12 Table 13.2.13	Cash Flow of Gunti Bridge (Plan 2)
Table 15.2.15	Cash Flow for All Bridges (Plan 1) (Case 2) No Toll Scheme is adopted for Konchrun Bridge) 12,22
T_{a} = 12 0 14	(Case 2: No Toll Scheme is adopted for Kanchpur Bridge)
Table 13.2.14	Cash Flow for All Bridges (Plan 2) (Case 2: No Toll Scheme is adopted for Kenchnur Bridge) 12,22
Table 12 2 15	(Case 2: No Toll Scheme is adopted for Kanchpur Bridge)
Table 13.2.15	Cash Flow for All Bridges (Plan 1)
Table 13.2.16	(Case 3: Toll Scheme is adopted for Kanchpur Bridge)
Table 15.2.10	
Table 12 0 17	(Case 3: Toll Scheme is adopted for Kanchpur Bridge)
Table 13.2.17	Sensitivity Analysis of Toll Level and Financial Indicators (Case 2)
Table 13.2.18	Existing Toll Rate and Suggested Toll Rate Increase
Table 13.2.19	Results of the Sensitivity Analysis (Case 2)
Table 13.3.1	Indicators for Project Performance and Effectiveness
Table 13.3.2	Operation Indicators for the Project under Plans 1 & 2
Table 13.3.3	Operation Indicators for the Project under Plan 1 & 2
Table 13.3.4	Effect Indicators of the Project in the Target Road under Plan 1

Table 13.3.5	Effect Indicators of the Project in the Target Bridge and Road Section	
T 11 10 0 1	(Plan 1)	
Table 13.3.6 Table 13.3.7	Effect Indicators of the Project in the Target Roads under Plan 2 Effect Indicators of the Project in the Target Bridges and Road Sections	13-41
	(Plan 2) (Travel Speed and Travel Time)	
Table 14.1.1	Bridge Locations	
Table 14.1.2	Results of Scoping at Kanchpur Bridge Site	14-5
Table 14.1.3	Results of Scoping at Meghna Bridge Site	14-6
Table 14.1.4	Results of Scoping at Gumti Bridge Site	14-7
Table 14.1.5	Summary of EMP (Before Construction)	14-8
Table 14.1.6	Summary of EMP (During Construction)	14-9
Table 14.1.7	Summary of EMP (During Operation)	14-11
Table 14.1.8	Costs for Environmental Management and Monitoring	
	(Enhancement of Environment (A))	
Table 14.1.9	Costs for Environmental Management and Monitoring	
	(Environmental Management Cost (B))	
Table 14.1.10	Costs for Environmental Management and Monitoring	
	(Monitoring Costs (C))	14-16
Table 14.1.11	Costs for Environmental Management and Monitoring	
	(Environmental Training Costs (D))	14-19
Table 14.1.12	Costs for Environmental Management and Monitoring (Total Cost in BDT)	14-19
Table 14.1.13	Material to be used and Waste to be generated (to be included)	14-20
Table 14.1.14	Inclusion of Additional Phrases	14-20
Table 14.1.15	Scouring Depth in past and Scouring Depth expected in 100 Year Period	14-21
Table 14.1.16	Inclusion of Additional Phrase	
Table 14.1.17	Additional Two Items to be included in Table 8.12 of EIA Report (approved) 14-22
Table 14.1.18	Environmental Management Budget	14-23
Table 14.2.1	Number of Affected Households	
Table 14.2.2	Entitlement Matrix, Loss Item-1	14-27
Table 14.2.3	Entitlement Matrix, Loss Item-2	14-28
Table 14.2.4	Entitlement Matrix, Loss Item-3	14-29
Table 14.2.5	Entitlement Matrix, Loss Item-4	14-30
Table 14.2.6	Entitlement Matrix, Loss Item-5	
Table 14.2.7	Entitlement Matrix, Loss Item-6	14-32
Table 14.2.8	Summary of Resettlement Costs for the Project	14-33
Table 15.1.1	Scenarios of Global Warming postulated by IPCC	
Table 15.3.1	Projected Global Average Surface Warming under Different Scenarios in	
	Southern Asia	
Table 15.3.2	Future Climate Scenarios used for Preparation of NAPA for Bangladesh	15-6

Table 15.3.3	Probability Analysis of observed Maximum and Minimum Temperatures and
	corresponding projected Temperature Statistics according to the PRECIS
	Model
Table 15.3.4	Projected Global Average Sea Level Rise under Different Scenarios in
	Southern Asia
Table 15.3.5	Future Climate Scenarios used for Preparation of NAPA for Bangladesh
Table 15.3.6	Effect of Sea Level in the River and Estuary Region including the Change in
	Water Level at Other Locations
Table 15.3.7	Projected Change in Rainfall derived from PRECIS Model for Base and
	Future Scenarios at Madaripur Station Rainfall (in mm)15-8
Table 15.3.8	Probability Analysis of observed 1-Day and 2-Day Consecutive Maximum
	Rainfall and corresponding projected Statistics according to the IPCC Fourth
	Assessment Report
Table 15.3.9	Recorded High and Low Flows
Table 15.3.10	Probability Analysis of observed Water Level at Mawa Station and
	corresponding projected Statistics according to IWM generated Model
	Output
Table 15.3.11	Results of Study for Wind Speed
Table 15.3.12	Effect of Climate Change on Bridges
Table 15.4.1	Countermeasures in Design for Climate Change
Table 15.4.2	Countermeasures for Operation
Table 15.5.1	Monitoring Items during Operation

- LIST OF FIGURES -

Page

Figure 1.4.1	Project Location Map	1-6
Figure 1.5.1	Five EPZs along NH-1	1-8
Figure 1.5.2	Dhaka-Chittagong Railway Network	1-11
Figure 2.2.1	Annual Rainfall and Monthly Rainfall at Dhaka and Comilla Met. Station	2-4
Figure 2.2.2	Monthly Temperature Data	
Figure 2.2.3	Longitudinal Profile of Existing Meghna Bridge (1995)	
Figure 2.2.4	Change in Riverbed Cross-Section at Existing Meghna Bridge Site	
	(Sounding survey result in 2006, 2010)	
Figure 2.2.5	Longitudinal Profile of Existing Gumti Bridge (1995)	2-7
Figure 2.2.6	Change in Riverbed Cross-Section at Existing Gumti Bridge Site	
	(Sounding survey result in 2006, 2010)	2-7
Figure 2.2.7	Change in Riverbed Level along Bridge Pile Foundation	2-7
Figure 2.2.8	Water Discharge and Water Level Station Location Map	2-9
Figure 2.2.9	Location Map for Cross Section Survey by BWDB	2-11
Figure 2.2.10	Historical Change of Lowest Riverbed Height of Cross Section at Meghna	
	River	2-12
Figure 2.2.11	Change of Shore Line of Meghna River around Meghna and Gumti Bridges	2-14
Figure 2.2.12	Bathymetric Survey Device	2-15
Figure 2.2.13	ADCP Software Main Window	2-16
Figure 2.2.14	Kanchpur Bridge (Dhaka side) Plane Table Survey Area	2-17
Figure 2.2.15	Kanchpur Bridge (Chittagong side) Plane Table Survey Area	2-18
Figure 2.2.16	Meghna Bridge Plane Table Survey Area	2-18
Figure 2.2.17	Gumti Bridge (Dhaka side) Plane Table Survey Area	2-19
Figure 2.2.18	Gumti Bridge (Chittagong side) Plane Table Survey Area	2-19
Figure 2.2.19	Geological Profile at Existing Meghna Bridge Site	2-20
Figure 2.2.20	Geological Profile at Existing Gumti Bridge Site	2-20
Figure 2.2.21	Soil Strata Profile at Kanchpur	2-24
Figure 2.2.22	Soil Strata Profile at Meghna Bridge	2-25
Figure 2.2.23	Soil Strata Profile at Gumi Bridge	2-26
Figure 2.2.24	The Pressure-Radius Displacement Curve	2-27
Figure 2.2.25	The Relation between Po and Py	2-28
Figure 2.2.26	The Relation between N Value and Elastic Modulus	2-28
Figure 2.2.27	Grain Size of Each Soil Type	2-29
Figure 2.2.28	Moisture Content of Each Soil Type	2-31
Figure 2.2.29	Consistency Graph of LL-PI	2-32
Figure 2.2.30	Stress Strain Curve of Unconfined Compression Tests	2-33
Figure 2.2.31	Distribution of Friction of Angle	2-34
Figure 2.2.32	The Relation between the Compaction and CBR	2-36

Figure 2.3.1	Survey Locations	
Figure 2.3.2	Adopted Zones of OD Survey	
Figure 2.3.3	Hourly Variation of Traffic Data - Demra	
Figure 2.3.4	Hourly Variation of Traffic Data - Kanchpur	
Figure 2.3.5	Hourly Variation of Traffic Data - Meghna, Gumti	
Figure 2.3.6	Composition of Traffic at Demra	
Figure 2.3.7	Composition of Traffic at Kanchpur	
Figure 2.3.8	Composition of Traffic at Meghna, Gumti	
Figure 2.3.9	Peak Hour Volume Flow	
Figure 2.3.10	Composition of Vehicle Type	
Figure 2.3.11	Composition of Occupations	
Figure 2.3.12	Composition of Trip Purposes	
Figure 2.3.13	Number of Passengers	
Figure 2.3.14	Typical Composition of Commodities	2-52
Figure 2.3.15	Locations of OD Survey	
Figure 2.3.16	Desire Line Diagram at OD-1	
Figure 2.3.17	Desire Line Diagram at OD-2	
Figure 2.3.18	Desire Line Diagram at OD-3	
Figure 2.3.19	Desire Line Diagram at OD-4	2-57
Figure 2.3.20	Desire Line Diagram at OD-5	
Figure 2.3.21	Desire Line Diagram at OD-6	
Figure 2.3.22	Desire Line Diagram at OD-7	
Figure 2.4.1	Survey Area (Kanchpur Bridge)	
Figure 2.4.2	Survey Area (Meghna Bridge)	
Figure 2.4.3	Survey Area (Gumti Bridge)	
Figure 2.4.4	Numbers of Ships Passed under Kanchpur Bridge	
Figure 2.4.5	Numbers of Ships Approached by Kanchpur Bridge	
Figure 2.4.6	Numbers of Ships Passed through Meghna Bridge	
Figure 2.4.7	Numbers of Ships Approached towards Meghna Bridge	
Figure 2.4.8	Numbers of Ships Passed under Gumti Bridge (Dhaka Side)	2-72
Figure 2.4.9	Numbers of Ships Approached towards Gumti Bridge (Dhaka side)	2-72
Figure 2.4.10	Numbers of Ships Passed under Gumti Bridge (Chittagong side)	2-75
Figure 2.4.11	Numbers of Ships Approached by Gumti Bridge (Chittagong side)	2-75
Figure 2.5.1	Kanchpur Bridge Profile	
Figure 2.5.2	Kanchpur Bridge Longitudinal Profile	
Figure 2.6.1	Locations of Ground Water Sampling	
Figure 3.2.1	Log-Log Regressions Based on Vehicle Registration Data	
Figure 3.2.2	Growth of GDP	
Figure 3.5.1	Concept of Study Method	
Figure 3.6.1	Expressways in Japan	
Figure 3.6.2	Required Lane Numbers for Kanchpur Site and Expressway Opening	

Figure 3.6.3	Required Lane Numbers for Meghna and Gumti Sites and Expressway
	Opening
Figure 3.6.4	Location of 4-Laning of Dhaka-Chittagong Highway Project
Figure 4.2.1	Light Pole Base Size
Figure 4.2.2	Concept of Construction Plan
Figure 4.2.3	Alternative Routes for Kanchpur Bridge
Figure 4.2.4	Route A for Kanchpur Bridge
Figure 4.2.5	Route B for Kanchpur Bridge
Figure 4.2.6	Route C for Kanchpur Bridge
Figure 4.2.7	Alternative Routes for Meghna Bridge
Figure 4.2.8	Route A for Meghna Bridge
Figure 4.2.9	Route B for Meghna Bridge
Figure 4.2.10	Route C for Meghna Bridge
Figure 4.2.11	Alternative Routes for Gumti Bridge
Figure 4.2.12	Route A for Gumti Bridge
Figure 4.2.13	Route B for Gumti Bridge
Figure 4.2.14	Route C for Gumti Bridge
Figure 4.4.1	Current Situation
Figure 4.4.2	Traffic Volume at Kanchpur Intersection
Figure 4.4.3	Adopted Option
Figure 5.2.1	Location of Discharge Measuring Stations around Kanchpur Bridge 5-3
Figure 5.2.2	Relationship between 100-Year Period Discharge and Catchment Area5-5
Figure 5.3.1	Example of Numerical Simulation Using NAYS2D Software on i-Ric
	Platform
Figure 5.3.2	Relationship between BWDB's PWD.m and M.S.L.m5-7
Figure 5.3.3	Bed Elevation and Current Velocity Contour around Kanchpur Bridge5-9
Figure 5.3.4	Bed Elevation and Current Velocity Contour around Meghna Bridge 5-11
Figure 5.3.5	Bed Elevation and Current Velocity Contour around Gumti Bridge5-13
Figure 5.4.1	Topographic Survey Line around Meghna Bridge
Figure 5.4.2	Historical Change of Cross Section Profile around Meghna Bridge
Figure 5.4.3	Report regarding Illegal Dredging in the Newspaper
Figure 5.4.4	Dredging around the Bridge
Figure 5.4.5	Schematic Representation of Scour at a Pier
Figure 5.4.6	Chart for Scour Depth (Z/D) Estimation
Figure 5.4.7	Bridge Size for Local Scour Estimation
Figure 5.4.8	Estimated Bed Profile with Local Scouring at Kanchpur Bridge5-22
Figure 5.4.9	Estimated Bed Profile with Local Scouring at Meghna Bridge5-23
Figure 5.4.10	Estimated Bed Profile with Local Scouring at Gumti Bridge
Figure 5.4.11	Schematic Diagram for Scour Countermeasure

Figure 6.1.1	Typical Cross-Section of Road Proposed by Geometric Design Standard	6.4
Figure 6.1.2	(RHD) Typical Cross Section for Kanchpur Bridge	
Figure 6.1.2	Typical Cross Section for Meghna Bridge	
e		
Figure 6.1.4	Typical Cross Section for Gumti Bridge	
Figure 6.1.5	Benches	
Figure 6.1.6	Service Road at Kanchpur Bridge	
Figure 6.1.7	Service Road at Meghna Bridge	
Figure 6.2.1	Characteristics of Design Truck (HS20-44)	6-12
Figure 6.2.2	Lane Load for Restoration Design of Girders and Substructure (Existing	<i>с</i> 1 4
	Kanchpur Bridge)	
Figure 6.2.3	Seismic Zoning Map (BNBC)	
Figure 6.2.4	Design Response Spectrum	6-17
Figure 7.4.1	Cross-Section and Side View of Option-1 (Kanchpur Bridge)	7-7
Figure 7.4.2	Computer Graphics of Kanchpur Bridge (Option-1) from Dhaka Side	7-7
Figure 7.4.3	Cross-Section and Side View of Option-2 (Kanchpur Bridge)	7-8
Figure 7.4.4	Computer Graphics of Kanchpur Bridge (Option-2) from Dhaka Side	7-8
Figure 7.4.5	Cross-Section and Side View of Option-3 (Kanchpur Bridge)	7-9
Figure 7.4.6	Computer Graphics of Kanchpur Bridge (Option-3) from Dhaka Side	7-9
Figure 7.4.7	Cross-Section and Side View of Option-4 (Kanchpur Bridge)	7-10
Figure 7.4.8	Computer Graphics of Kanchpur Bridge (Option-4) from Dhaka Side	7-10
Figure 7.4.9	Cross-Section and Side View of Option-1 (Meghna Bridge)	7-11
Figure 7.4.10	Computer Graphics of Meghna Bridge (Option-1) from Chittagong Side	7-11
Figure 7.4.11	Cross-Section and Side View of Option-2 (Meghna Bridge)	7-12
Figure 7.4.12	Computer Graphics of Meghna Bridge (Option-2) from Chittagong Side	7-12
Figure 7.4.13	Cross-Section and Side View of Option-3 (Meghna Bridge)	7-13
Figure 7.4.14	Computer Graphics of Meghna Bridge (Option-3) from Chittagong Side	7-13
Figure 7.4.15	Cross-Section and Side View of Option-4 (Meghna Bridge)	7-14
Figure 7.4.16	Computer Graphics of Meghna Bridge (Option-4) from Chittagong Side	7-14
Figure 7.4.17	Cross-Section and Side View of Reference Option (Meghna Bridge)	7-15
Figure 7.4.18	Cross-Section and Side View of Option-1 (Gumti Bridge)	7-16
Figure 7.4.19	Cross-Section and Side View of Option-2 (Gumti Bridge)	7-17
Figure 7.4.20	Cross-Section and Side View of Option-3 (Gumti Bridge)	7-18
Figure 7.4.21	Computer Graphics of Gumti Bridge (Option-3) from Dhaka Side	7-18
Figure 7.4.22	Cross-Section and Side View of Option-4 (Gumti Bridge)	7-19
Figure 8.2.1	General View of Existing Kanchpur Bridge	
Figure 8.2.2	General View of Existing Meghna Bridge	8-8
Figure 8.2.3	General View of Existing Gumti Bridge	8-12
Figure 8.4.1	Seismic Zoning Map of Bangladesh	
Figure 8.4.2	Earthquake Load Application	
Figure 8.4.3	Truck Live Load Comparison	

Figure 8.4.4	Live Loads (AASHTO HS20-44)	8-18
Figure 8.6.1	Concept of Continuity in Meghna Bridge Girder	8-27
Figure 8.7.1	Concept of Continuity in Gumti Bridge Girder	8-34
Figure 8.8.1	Deterioration in Hinges	8-40
Figure 8.8.2	Deterioration in Expansion Joints	8-41
Figure 8.8.3	Types of Hinges	8-41
Figure 8.8.4	Creep Deflection of the Bridge Girders	8-42
Figure 8.8.5	Hinge of Gumti Bridge	8-42
Figure 9.1.1	Plan and Typical Cross Section at Kanchpur	9-7
Figure 9.1.2	Plan and Typical Cross Section at Meghna	9-8
Figure 9.1.3	Plan and Typical Cross Section at Gumti	9-9
Figure 9.2.1	Riverbed Scouring and Design Scouring Level for the 2 nd Kanchpur Bridge	9-11
Figure 9.2.2	General View of Kanchpur Bridge	
Figure 9.2.3	CG of Completed the 2 nd Kanchpur Bridge (Dhaka side)	9-15
Figure 9.2.4	Riverbed Scouring and Design Scouring Level for the 2 nd Meghna Bridge	9-16
Figure 9.2.5	General View of Meghna Bridge	9-19
Figure 9.2.6	CG of Completed the 2 nd Meghna Bridge (Chittagong side)	
Figure 9.2.7	Riverbed Scouring and Design Scouring Level for 2 nd Gumti Bridge	9-21
Figure 9.2.8	General View of Gumti Bridge	
Figure 9.2.9	CG of Completed the 2 nd Gumti Bridge (Dhaka side)	9-25
Figure 9.3.1	Hinge Connection of Existing Meghna Bridge	9-32
Figure 10.1.1	Construction Procedure for the Kanchpur Bridge	10-2
Figure 10.1.2	Construction Procedure for the Meghna Bridge	10-3
Figure 10.1.3	Construction Procedure for the Gumti Bridge	10-4
Figure 10.1.4	Construction Yard and Temporary Road at the Kanchpur Bridge Site	10-6
Figure 10.1.5	Construction Yard and Temporary Road at the Meghna Bridge Site	10-7
Figure 10.1.6	Construction Yard and Temporary Road at the Gumti Bridge Site	10-8
Figure 10.1.7	Reverse Circulating Method	10-9
Figure 10.1.8	Construction Sequence in Shallow Scouring Zones	10-10
Figure 10.1.9	Construction Sequence in Severe Scouring Zones	10-11
Figure 10.1.10	Steel Girder Erection Approach	10-12
Figure 10.1.11	Slab Construction Approach	10-12
Figure 10.1.12	Continuity in Box Girder	10-13
Figure 10.1.13	Construction Schedule	10-16
Figure 11.2.1	Organization Chart of Ministry of Communication (Roads Division)	11-5
Figure 11.3.1	Organization Chart of RHD	11-9
Figure 11.3.2	Organization Chart of Bridge Management Wing of RHD	
Figure 11.4.1	Trend of National Revenue Receipts and Developments Receipts	
Figure 11.4.2	Development and Maintenance Allocation for RHD Roads and Bridges	
Figure 11.4.3	Yearly Total Amount	11-18

Figure 11.5.1	Budget Allocation System 11-20	0
Figure 11.5.2	Narayanganj Division Territory 11-2	1
Figure 11.5.3	Bridge Inspection Vehicle	5
Figure 11.5.4	Development and Maintenance Allocation for Narayanganj RHD 11-2	7
Figure 11.6.1	Image of Enforcement Step 11-3.	5
Figure 11.6.2	Location and Number of Installation 11-3	б
Figure 11.6.3	System Component of Axle Weight Scale 11-30	6
Figure 12.1.1	Implementation Schedule of Dhaka-Chittagong NH-1 Bridge Construction	
	and Rehabilitation Project	3
Figure 12.2.1	Current System of Bridge Management of RHD 12-	5
Figure 12.2.2	PIU of Design and Tender Stage	б
Figure 12.2.3	PIU of Construction Stage	7
Figure 13.1.1	Procedure for Economic Analysis	1
Figure 13.1.2	Relationship between VOC and Travel Speed	8
Figure 13.1.3	Relationship between VOC and Travel Speed Accident Cost (ACC)	9
Figure 13.1.4	Target Road Section influenced by the Bridges	2
Figure 13.1.5	Procedure for RUC's Benefits Calculation	3
Figure 13.1.6	Hourly Variation of Traffic Volume and Road Traffic Capacity (Example)	4
Figure 13.1.7	Traffic Flow Model adopted for the Target Road Section	4
Figure 13.1.8	Q-V Relationship adopted for the Project Road Section	4
Figure 13.2.1	Location of Toll Gates for Meghna and Gumti Bridges	4
Figure 13.2.2	Relationship between Toll Level and FIRR (Case 2)	5
Figure 15.2.1	Scope of Consideration	4
Figure 15.3.1	Increase in Water Level in Meghna Estuary due to 88 cm Sea Level Rise	
	Compared to Base Condition	7
Figure 15.3.2	Project Site Relative to 5 ppt Salinity Isolines for Various Sea Level Rise	
	Scenarios (adapted from MoEF, 2008, Map 4)	0

- LIST OF ABBREVIATIONS -

AADT	Appused Asserves Deily Troffic
AASHTO	Annual Average Daily Traffic American Association of State Highway and Transport Officials
ACC	Accident Cost
ACEs	Additional Chief Engineers
ACES	C C
ADCP	Asian Development Bank Acoustic Doppler Current Profiler
ADCI	
AH	Average Daily Traffic Affected Household
AIDS	
	Acquired Immunodeficiency Syndrome
AOGCMs	Atmosphere-Ocean General Circulation Model
APs	Affected Persons
AR4	Forth Assessment Report, IPCC
ASTM	American Society for Testing Material
BBA	Bangladesh Bridge Authority
BBS	Bangladesh Bureau of Statistics
B/C	Cost-Benefit
BCCSAP	Bangladesh Climate Change Strategy and Action Plan
BCM	Billion Cubic Meter
BCR	Benefit Cost Ratio
BDNAPA	Bangladesh National Adaptation Program of Action
BDT	Bangladesh Taka
BEPZA	Bangladesh Export Processing Zones Authority
BIWTA	Bangladesh Inland Water Transport Authority
BMD	Bangladesh Metrological Department
BMMS	Bridge Maintenance Management System
BNBC	Bangladesh National Building Code
BOD	Biochemical Oxygen Demand
BRTA	Bangladesh Road Transport Authority
BRTC	Bangladesh Road Transport Corporation
BUET	Bangladesh University of Engineering and Technology
BWDB	Bangladesh Water Development Board
CBEs	Commercial and Business Enterprises
CG	Computer Graphics
CPD	Center for Policy Dialogue
CBR	California Bearing Ratio
CCC	Climate Change Cell
CEAM	Cumulative Effects Assessment and Management
CEGIS	Center for Environmental and Geographic Information Service
СН	Fat Clay
CL	Lean Clay
CMS	Central Monitoring and Management System

C&B	Construction and Building
COD	Chemical Oxygen Demand
COP	Conference of the Parties
CPRs	Common Property Resources
CS	Construction Supervision
DB	Dispute Board
DC	Deputy Commissioner
DCSC	Design and Construction Supervision Consultant
DD	Dry Density
D/D	Detail Design
DfID	Department for International Development
DOE	Department of Environment
DPs	Displaced Persons
DTCB	Dhaka Transport Co-ordination Board
E/N	Exchange of Note
EA	Executing Agency
ECC	Environmental Clearance Certificate
EDA	Elastic Dynamic Analysis
EIA	Environmental Impact Assessment
EIRR	Economic Internal Rate of Return
EMA	External Monitoring Agency
EMP	Environmental Management Planning
EPs	Entitled Persons
EPZ	Export Processing Zones
ESA	Equivalent Static Analysis
ESAL	Equivalent Single Axle Load
ESDI	Global Land Cover Facility Earth Science Data Interface
FAO	Food and Agriculture Organization
FC	Foreign Currency
FIRR	Financial Internal Rate of Return
FGD	Focus Group Discussion
FMU	Financial Management Unit
FS	Feasibility Study
FS	Fine sand
FY	Financial Year or Fiscal Year
GDP	Gross Domestic Product
GIS	Geographic Information Service
GoB	Government of Bangladesh
GoJ	Government of Japan
GPS	Global Positioning System
GRCs	Grievance Redress Committees
GWAVA	Global Water Availability Assessment
HDM	Highway Development and Management

HHs	Households
HIV	Human Immunodeficiency Virus
HNPS	Hard Non Plastic Silt
HPC	Hard Plastic Clay
HSMP	Health and Safety Management Plan
IA	Implementation Agency
IARC	International Agency for Research on Cancer
ICB	International Competitive Bidding
ICC	Impact Climate Change
ICT	Information and Communication Technology
IDB	Islamic Development Bank
IDC	Institutional Development Component
IM	Impact
IMF	International Monetary Fund
IOL	Inventory of Losses
IPCC	Intergovernmental Panel on Climate Change
IRC	Indian Road Congress
IWFM	Institute of Water and Flood Management
IWT	Inland Water Transport
JBIC	Japan Bank for International Cooperation
JDCF	Japan Debt Cancellation Fund
JICA	Japan International Cooperation Agency
JIS	Japan Industrial Standards
JPY	Japanese Yen
JRA	Japan Road Association
KFAED	Kuwait Fund for Arab Economic Development
kp	kilometer post
km	kilometer
LL	Liquid Limit
L/A	Loan Agreement
LGI	Local Government Institutions
LGED	Local Government Engineering Department
LRFD	Load and Resistance Factor Design
Μ	Month
MDD	Maximum Dry Density
MFF	Multi-tranche Financing Facility
MH	Elastic Silt
M.H.W.L	Mean High Water Level
MILTT	Ministry of Land, Infrastructure, Transport and Tourism
MOC	Ministry of Communication
MoEF	Ministry of Environment and Forest
MPC	Medium Plastic Clay
MSL	Mean Sea Level

NAPA	National Adaptation Program of Action
NGO	Non Governmental Organizations
NGO NH-1	National Highway No.1
NH-2	National Highway No.2
NMV	Non- Motorized Vehicle
NPV	Net Present Value
OD	Origin Destination
ODA	Official Development Assistance
OM	Operation and Maintenance
OMC	Optimum Dry Density
PAHs	Project Affected Households
PAVC	Property Assessment and Valuation Committee
PD	Project Director
PC	Prestressed Concrete
PCU	Passenger Car Unit
PCU	Failure Pressure
PI	
PIU	Plasticity Index Project Implementation Unit
PL	Project Implementation Unit Plastic Limit
PMBP	Padma Multipurpose Bridge Project
PMT	Pressuremeter test
Po	Earth Pressure at rest
PPP	Public Private Partnership
PQ	Pre-qualification
PRC	Prestressed Reinforced Concrete
PRECIS	Providing Regional Climates for Impacts Studies
PWD	Public Works Datum
PWRI	Public Work Research Institute of Japan
Ру	Yield Pressure
Q-V	Quantity of traffic volume and Velocity
RAMS	RHD Road and Bridge Asset Management System
RAP	Resettlement Action Plan
RC	Reinforced Concrete
RHD	Roads and Highways Department
RL	Reduce Level
RMG	Ready Made Garments
ROW	Right of Way
RRC	Riprap Cost
RS	Response Spectrum
RTA	Road Traffic Accident
RTWs	River Training Works
RUC	Road Use Cost
RV	Replacement Value

SES	Socio-economic Survey
SEC	Social and Environmental Circle
S.H.W.L	Standard High Water Level
SMP	Safety Management Plan
SN	Standard Number
SPSP	Steel Pipe Sheet Pile
SPT	Standard Penetration Test
SRES	The Special Report on Emissions Scenarios
SST	Sea Surface Temperature
STA	Station
SWG	Sectoral Working Group
ТА	Technical Assistance
TAR	Trans Asian Railway
tf	ton force
TOR	Terms of Reference
TTC	Travel Time Costs
UD	Undisturbed Sample
UK	United Kingdom
UNFCCC	United Nation Framework Convention on Climate Change
US\$	United State Dollar
VAT	Value Added Tax
VFS	Very Fine sand
VHH	Vulnerable Households
VOC	Vehicle Operating Cost
W	With
WACC	Weighted average capital Cost
WARPO	Water Resources Planning Organization
WD	Wet Density
W/O	Without
WHO	World Health Organization
UNESCAP	United Nations Economic and Social Commission for Asia and the Pacific

CHAPTER 1

INTRODUCTION

1. INTRODUCTION

1.1 General

In Bangladesh, along with the economic development maintaining a GDP growth rate of around 6 % per annum in the 2000 s, the strong growth in both the number of passengers and amount of freight continues, as the amount of freight has increased by a factor of 8 over the last 30 years from 1975 to 2005 and at a rate of 6-7 % in recent years at the same pace as the GDP, and the amount of passenger transport has been increasing at about a factor of 6.5 during the same period. Although the country's main transportation modes are inland waterways, railways and roads, the tendency is in the concentration of both passenger and freight using roads. Bangladesh is aiming at the "economic growth to benefit the poor" based on the revised PRSP-II (2009). In this situation, road traffic management of basic infrastructure is considered as having a direct impact on economic growth and poverty reduction, and the National Land Transport Policy (2004) has made "the construction of new bridges to reduce the missing links of the main road network a more effective use of existing infrastructure". Taking this situation into account, the road network has been actively expanding, and the Bangladesh road network has extended to a total length of approximately 271,000 km.

However, the traffic capacity on the main roads connecting the major cities and metropolitan areas in Dhaka can not keep up with the year-after-year increase of traffic volume and eliminating bottlenecks of distribution routes has become a pressing issue. On the other hand, damage to roads and bridges is advancing and has restrained traffic, becoming a major issue. In particular, for trunk roads and local highways where there are no alternative roads, progression of bridge damage is a serious problem. In addition, the "Bangladesh National Building Code (BNBC)" has been implemented in 1993, and as Bangladesh earthquake standards have been raised (2006), existing bridges no longer meet the earthquake-resistance standards and repair and reinforcement have undoubtedly become a pressing issue.

Based on the Road Master Plan (2009), Bangladesh has specifically made the reinforcement of National Highway No.1 (NH-1) as one of the projects most needed to accommodate the growth in traffic demand over the next 20 years, and since 2008, the change to a four-lane in all sections has been carried out. However, for bridge sections, funds have not been raised, enlargement to meet the traffic capacity has not progressed, becoming a bottleneck to traffic, and existing bridges which no longer meet the earthquake standards are still further damaged by passing vehicles, and this situation is bound to go on. In the Bangladesh Climate Change Strategy and Action Plan (BCCSAP, 2008), guidelines have been established for bridge construction in river banks that is subject to erosion, and for seawall construction to suppress bank erosion.

Thus, in June 2011, the Government of Bangladesh has requested to JICA to undertake a study to repair and reinforce the existing Kanchpur, Meghna and Gumti Bridges on NH-1, and the construction of the 2nd Kanchpur, 2nd Meghna and 2nd Gumti Bridges. Kanchpur, Meghna and Gumti Bridges are important bridges located on the NH-1 connecting Dhaka and Chittagong which is the key corridor that supports the economy.

1.2 Project Background

1.2.1 Deterioration of Existing Bridges

The NH-1, namely, Dhaka-Chittagong Highway, is the lifeline for the economy of Bangladesh with a capacity of 25,000 Annual Average Daily Traffic (AADT). The NH-1 will be a part of the Asian Highway that connects with neighbouring countries. Along this highway, existing Kanchpur, Meghna and Gumti Bridges are major structures which cross Lakhya, Meghna and Gumti Rivers. These bridges, constructed in the year of 1977, 1991 and 1995 respectively, have been deteriorating for several years. If the existing Kanchpur, Meghna or Gumti Bridges become impassable, a very long detour will be made necessary, that is, traveling from Dhaka to Chittagong or Comilla, a detour of 70 km (Figure 1.4.1) would be necessary. Such an extensive detour is certain to create immeasurable economic losses. Consequently, to recover this economic loss, the three existing bridges need rehabilitation on an urgent basis.

(1) The deterioration of existing Kanchpur Bridge, Meghna Bridge and Gumti Bridge were only a result of normal aging except those of the expansion joints in all the bridges and the hinges in existing Meghna and Gumti Bridges. Existing Meghna and Gumti Bridges are multi span continuous prestressed concrete rigid frame bridges having, in the middle of each span between piers, hinges and expansion joints, where no bending moments occur. The hinges are fixed in the vertical direction to transmit the shearing forces between the cantilevers projecting from the piers whereas they are free in the horizontal direction to eliminate restraint forces due to creep, shrinkage and temperature in the structures. It has been observed that the hinges lost the proper function to transmit the shearing forces between the cantilevers, generating noises and unfavorable impact forces on the expansion joints when vehicles move from one cantilever to the other cantilever. The main reason for the damage is considered to be heavily overloaded trucks. The essential parts such as the superstructures and substructures of the bridges were investigated and judged as sound even though some cracks due to aging are observed.

- (2) The three existing bridges were designed and constructed in accordance with the outdated seismic design standard with the seismic acceleration coefficient of 0.05, however, the value has been increased to 0.15 in BNBC $(2006)^{1}$.
- (3) The deepest river bed -20.70 m (PWD) was measured in the bathymetric survey conducted along the centerline of existing Meghna Bridge. Therefore, the local scouring at bridge piers is suspected to be in critical condition.
- (4) The issues of damage to the expansion joints and hinges will be resolved by connecting the simply supported girders into a continuous girder at the hinged sections. And also the existing bridges may necessitate seismic retrofitting to withstand earthquake excitations in accordance with current codes under the scoured condition.

1.2.2 Substantial Shortage of Capacity for Present and Future Traffic Demand

Recently, the Government of Bangladesh (GoB) has planned to widen the NH-1 into 4-lanes in order to increase traffic capacity and remove traffic bottlenecks in the earthwork section. But, these are existing 2-lane bridges which are becoming a critical bottleneck for traffic movement on NH-1 in the bridge section.

In 2012, Average Daily Traffic (ADT) of the NH-1 is 75,000PCU, 65,000PCU at existing Kanchpur and Meghna/Gumti Bridges respectively. The magnitude of ADT has already exceeded its traffic volume capacity by more than 10 % and 60 % at Kanchpur and Meghna/Gumti Bridges respectively. In addition, due to the increasing traffic trend, the forecast traffic volume in 2025 will exceed by 100 % and 200 % the capacity at Kanchpur and Meghna/Gumti Bridges respectively.

It is obvious that the existing 2-lane bridges will fail to cope with the increased traffic volume of the NH-1 and cause serious traffic congestion. Therefore, the construction of new 2nd Kanchpur, 2nd Meghna and 2nd Gumti Bridges is becoming an essential issue.

1.3 Project Objectives

In accordance with the context of the preceding section, it can be concluded that the three existing bridges need to be retrofitted and three new 2^{nd} bridges should be constructed to meet the increasing traffic demand of NH-1. So, the overall objective of this project consists of the rehabilitation of the three existing bridges and the construction of three new 2^{nd} bridges.

¹ Bangladesh National Building Code (BNBC) was first published in 1993. Then, in 2006, the Building Construction Act 1952 was amended to include a new section 18A empowering the Government to promulgate the BNBC (1993) as a legally binding document (Gazette).

(1) Rehabilitation of existing Kanchpur, Meghna and Gumti Bridges so as to ensure smooth traffic flow over the bridges.

The three existing bridges are damaged due to heavily overloaded trucks, the scouring of Meghan Bridge piers is in progress, and also the three existing bridges designed in accordance with the outdated seismic design standard should be analyzed using the new seismic design standard of BNBC (2006). The contents of rehabilitation of the three existing bridges are examination of the above influence and retrofitting them to secure their reliability as bridge structures.

(2) Construction of new 2nd Kanchpur, 2nd Meghna and 2nd Gumti Bridges to accomodate the increasing traffic demand.

In the recommendation of the traffic demand forecast, 8-lanes are necessary for existing Kanchpur Bridge and 6-lanes for existing Meghna and Gumti Bridges. The existing Kanchpur Bridge will function as a 4-lane bridge, and also the existing Meghna and Gumti Bridges as 2-lane bridges after rehabilitation. Therefore, the new 2nd Kanchpur, 2nd Meghna and 2nd Gumti Bridges are designed as 4-lane bridges.

In consideration of the above project objectives, the survey work will be carried out in order to appraise Japanese ODA loan that will cover total project cost, project implementation framework, environmental and social considerations.

1.4 Survey Area

1.4.1 Location of Survey Area

The survey area covers existing Kanchpur, Meghna and Gumti Bridges on NH-1. The details of the study area are shown in Figure 1.4.1. The Dhaka-Chittagong corridor NH-1 passes through seven districts (Dhaka, Narayanganj, Munshiganj, Comilla, Feni, Chittagong, and Cox's Bazar). The importance of this corridor and its contribution to the national economy are explained in the following section.

1.4.2 Economic Condition of Dhaka-Chittagong Corridor NH-1

The economic condition of Dhaka-Chittagong corridor is expressed herein under by regional GDP growth of the areas adjacent to NH-1. The average regional GDP growth over the 10 years from 1995 to 2005 for the seven districts of Bangladesh along Dhaka-Chittagong corridor NH-1 is shown in Table 1.4.1. This table shows that the average GDP growth of the seven districts ranges between 4.3 %-6.6 % p.a. in which the regional GDP growth rate at Dhaka district is accelerated to maximum. Moreover, this table also shows that the overall GDP growth of the nation (whole Bangladesh) accelerated to 5.4 % p.a.

It can also be observed that greater Dhaka, Comilla and Chittagong regions together account for approximately one-third (32 %) of the nation's GDP and more than one-third (45 %) of

the nation's industrial sector, while it reaches 33 % and 13 % of the nation's service sector and agricultural sector, respectively. Therefore, the reduction of travel time between Dhaka and Chittagong, two of the most important cities in Bangladesh, will help to improve the overall economic environment of Bangladesh in addition to strengthening ties between the two cities.

Areas	1995-96			2005-06				Average change p.a.	
	Agricul -ture	Industry	Service	total	Agricul -ture	Indust- ry	Service	total	
Dhaka	62	2,348	3,304	5,714	82	4,103	5,311	9,496	6.6 %
Narayanganj	48	503	546	1,097	62	848	841	1,751	6.0 %
Munshiganj	74	78	173	325	70	134	262	466	4.3 %
Comilla	362	239	544	1,145	410	338	887	1,635	4.3 %
Feni	85	61	141	287	99	95	235	429	4.9 %
Chittagong	357	1,061	1,637	3,055	421	1,861	2,581	4,871	5.9 %
Cox's bazar	214	117	234	565	233	203	383	819	4.5 %
Bangladesh	9,355	9,717	19,321	38,393	11,014	16,674	31,356	59,044	5.4 %
Contribution to National economy	13 %	45 %	34 %	32 %	13 %	46 %	33 %	33 %	-

Table 1.4.1 Trends in GDP Growth at Current Market Prices in Areas along NH-1

Unit: million US\$

Source: Center for Policy Dialogue (CPD) report on Growth, Income, Inequality and Poverty (2008)

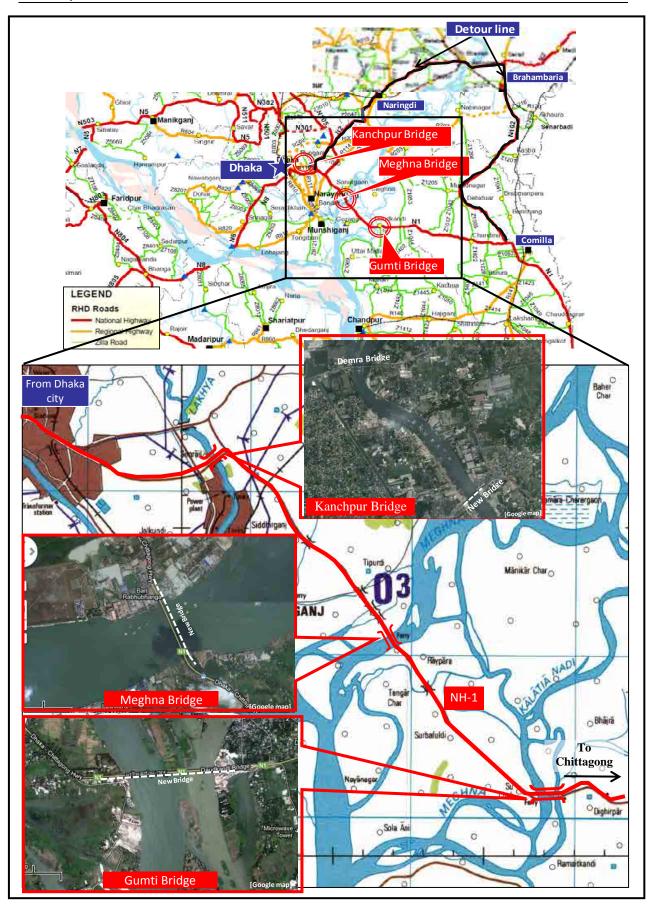


Figure 1.4.1 Project Location Map

1.5 Relevant Development Plans

1.5.1 Road Development Plans

(1) 8-laning of Jatrabari-Kanchpur Road

(Polder Road)

The main objective of the project is to widen the Jatrabari-Kanchpur portion of NH-1 to 8lane for minimizing traffic congestion and to establish better road communication. The project is managed by RHD.

Length: 9 km

Project was commenced in January 2011, and is scheduled to be completed in the beginning of June 2013. The present construction progress is 10 %.

(2) 4-laning of Dhaka - Chittagong

Highway Project (Daudkandi -Chittagong Section)

The 4-laning highway project of NH-1 (Daudkandi - Chittagong) is a high priority for RHD. Under the project, a new 2-lane carriageway is planned to be constructed along the existing 2-lane to make it into a 4-lane highway in order to reduce the existing traffic congestion and to increase the road transport efficiency. The project road, having a length of 198 km, starts from Daudkandi, 28 km from Dhaka, and ends 226 km away at Chittagong. The construction of the project was started in 2006 and is scheduled to be completed by the end of 2013. The project has been divided into 10 packages / contracts, and the present progress is around 20 %.

(3) Construction of NH-1 between Dhaka and Chittagong with six (6) lanes

The above plan is described in the Sixth Five Year Plan (FY2011 - FY2015), however, the project is still in planning stage.

(4) Dhaka – Chittagong Expressway (PPP) Project

(ADB TA loan)

NH-1 is considered to be the most important highway and lifeline of commerce in Bangladesh. Considering the above facts, the Government of Bangladesh has committed to a program for the feasibility studies and detailed design for a new access controlled expressway with 4-lanes between Dhaka and Chittagong planned as PPP. In 2006 a feasibility study & conceptual design of the project was conducted, however, the new study will be carried out again as a feasibility study and detailed design by September 2015, at the moment selection of a consultant is on-going.

1.5.2 Relevant Development Plans

(1) Padma Multi-purpose Bridge Project

Another big budget project "Construction of Padma multi-purpose bridge project" is now under consideration by GoB. In the feasibility stage from 2003 to 2005, JICA assisted in carrying out survey works. After that, project implementation is still under planning stage.

(2) Development of Export Processing Zones (EPZ)

In order to stimulate rapid growth of the country, particularly through industrialization, the GoB has adopted an 'Open Door Policy' to attract foreign investment in Bangladesh. The Bangladesh Export Processing Zones Authority (BEPZA) is the official organ of the government to promote, attract and facilitate foreign investment in all of the Export Processing Zones (EPZs) of the country. Of the eight EPZ's (existing or planned) nationwide, five are located along the Dhaka-Chittagong Corridor, namely;

- Chittagong EPZ (Prime sector: Heavy industry, fishing reels, garments and electronics)
- Dhaka EPZ (Prime sector: RMG, IT, shoes, electronics)
- Comilla EPZ (Prime sector: Textiles, garments, electrical goods)
- Adamjee EPZ (Prime sector: Knitting, Ready Made Garments (RMG), electronics, footwear)
- Karnaphuli EPZ (Prime sector: Knitting, RMG, electronics, footwear)

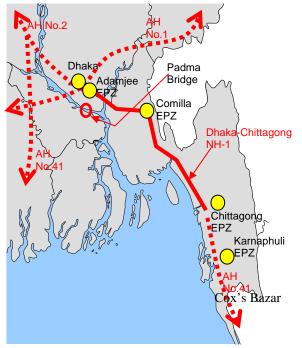


Figure 1.5.1 Five EPZs along NH-1

Among them, Chittagong EPZ is the largest one, which accommodates numerous Japanese firms among others, where a total of 147 industries are in operation whilst 19 industries are not yet in operation (under implementation). Accordingly, the cumulative performance of Chittagong EPZ along with the other seven EPZs of Bangladesh is summarized in Table 1.5.1. It reveals from the record up to July 2012 that a total of 341,344 workers, a cumulative number, are employed in the 8 EPZs. The cumulative EPZ investment of US\$ 2,478.9 million and EPZ exports of US\$ 30,078.75 million were recorded up to July 2012. Among them, the Chittagong EPZ, the Dhaka EPZ and the Comilla EZP contributed the major part. The Chittagong EPZ accounts for 51 % of the cumulative amount of exports from all EPZ's. This is followed by the Dhaka EPZ, the corresponding figures of which are 42 % and 35 % with respect to EPZ exports and investments respectively. Therefore, the upgrading of Dhaka-Chittagong corridor is indispensable for allowing the companies operating in the EPZ's to continue to carry out their activities efficiently.

EPZ	Prime sectors	Employment (no.)	Investment (million US\$)	Exports (million US\$)
Chittagong	Heavy industry, fishing reels, garments and electronics	176,993	968.42 (39 %)	15,272.73 (51 %)
Dhaka	RMG, IT, shoes, electronics	84,503	866.06 (35 %)	12,729.37 (42 %)
Comilla	Textiles, garments, electrical goods	12,820	157.23	726.67
Mongla	Light engineering, RMG, electronics, agro products	1,522	5.36	134.95
Uttra	Domestic consumption goods, RMG, agro products, light engineering.	8,530	23.85	26.65
Ishwardi	RMG, electronics, plastic goods, light engineering.	7,958	68.03	87.86
Adamjee	Knitting, RMG, electronics, footwear	21,381	168.95	580.41
Karnaphuli	Knitting, RMG, electronics, footwear	27637	221.00	520.11
Total	-	341,344	2,478.9	30,078.75

 Table 1.5.1 EPZs Cumulative Performance (up to July, 2012)

Source: BEPZs Home Page: http://www.epzbangladesh.org.bd

(3) Development of Deep Sea Port in Cox's Bazar

The Bangladesh Government is considering the establishment of a deep water sea port on Sonadia Island, in Cox's Bazar. Construction of a deep sea port is needed to cater to the growing exports and imports of Bangladesh, as the existing Chittagong Port is already facing congestion, while mother vessels avoid it for poor navigability. With construction of a deep sea port, the Bangladesh's coast will turn into a top global cargo hub, working as a hinterland for a stretch of land including southern China, eastern India, landlocked Nepal and Bhutan and part of Myanmar. A Feasibility Study (FS) was conducted using GoB fund and accordingly, a FS report was submitted to the Ministry of Shipping in 2009 for the construction of a deep-water sea port. The proposed port would have 58 jetties, with a total length of 11 kilometres. The scope of works includes construction of port and jetties, additional channel, specific places for import and export, road and rail communication, linking with internal river ports, transit area, township, helipad, safe places during disasters and construction of gas and power plants. The GoB has established this as a priority project to develop the entire region as a business hub. The port, which will be constructed at a cost of US\$ 8.2 billion in three phases, will play a major role in keeping the country's economy vibrant;

- Phase 1: Nine jetty-berths will be constructed at a cost of US\$ 2.2 billion and relevant construction is expected to be completed in the middle of 2020.
- Phase 2: Construction of twenty two berths for the container terminal and thirteen berths for the cargo terminal will be carried out from 2020 to 2031.
- Phase 3: Construction of sixty eight berths for the container terminal and forty six berths for the cargo terminal will be carried out from 2031 to 2050.

The Phase 1 will be financed by Private-Public-Partnership (PPP) funds. Funds will be raised through bonds and equity from share markets and lending from foreign donors. As much as thirty per cent of the expenditure will be met by Chittagong Port Authority.

Recently six foreign firms have been shortlisted for being appointed as consultants for the proposed deep sea port. The Terms of Reference (TOR) for the appointment of a consulting firm to prepare the detailed design and drawing of deep sea port has been finalized. The Final TOR is expected to be handed over to consultants in November, 2012 and accordingly, consultant will be recruited.

(4) Development of Double Tracking Dhaka-Chittagong Trunk Railway

About 200 km out of the 320 km railway line from Dhaka to Chittagong (Figure 1.5.2) is still only single track and therefore, a constraint to increase the number of trains in this corridor. Within those 200 km, of single track, the 3.7 km. single track section from Bhairab Bazar to Ashuganj has a rail-bridge named 'Bhairab Bridge' constructed on Meghna River, which is beyond the scope of double tracking. The Bangladesh Government's Sixth Five-Year Plan, 2011-2015 assigns high priority to increasing the capacity of the Dhaka-Chittagong corridor by completing double tracking on the entire corridor, which is important to increase the market share of the railway. Enhancing the capacity of the entire corridor will also allow operating additional trains for sub-regional trade through Chittagong Port with Bhutan, India and Nepal; a part of the Trans Asian Railway (TAR) network.

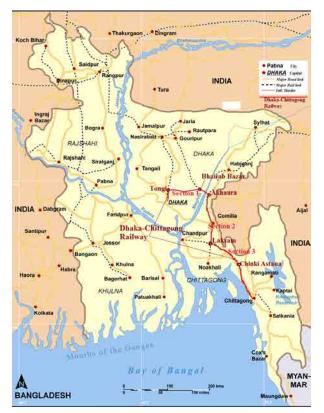


Figure 1.5.2 Dhaka-Chittagong Railway Network

The Dhaka-Chittagong Trunk Railway, which will be upgraded to double tracking, has three sections;

- Section1: Double tracking of 64 km Tongi-Bhairab Bazar (ADB-loans 2316/2845)
- Section2: Double tracking of 71 km Akhaura-Laksam (TA-loan 2688-BAN by ADB)
- Section 3: Double tracking of 61 km Laksam-Chinki Astana(JICA-ODA loan)

Among the three sections, Section 1defined as 'Double tracking of 64 km Tongi-Bhairab Bazar section' is financed by ADB-loans 2316/2845. This project is under construction and scheduled to be completed in 2015.

At the time of processing of the Mutitranche Financing Facility (MFF) by ADB for Section 1, Akhaura-Laksam section was supposed to be financed by World Bank. Due to delays in project preparation, reform process and lapse of the credit for project design, the World Bank has not renewed its financial support to this project. The GoB has therefore requested ADB to finance double tracking of the 71 km Akhaura-Laksam section. Given the urgency to address the remaining line capacity bottlenecks in the Dhaka-Chittagong corridor, the scarcity of remaining funds and the focus on other key infrastructure investments under the ongoing MFF, a project loan will be processed for approval in 2014. Section 2 will be high priority due to preparation of the detailed design and bid documents under TA-loan 2688-BAN.

Section 3 defined as 'Double tracking of 61 km Laksam-Chinki Astana section' is financed by JICA-ODA loan (FY2005-2007). The Yen loan amounts to 12,916 million yen. This project is scheduled for November 2007-July 2015 (93 months) and the project completion period includes the defect liability period.

CHAPTER 2

SITE SURVEY RESULTS

2. SITE SURVEY RESULTS

2.1 Survey Items

(1) Ambient natural condition survey

Table 2.1.1 shows the relation among the design, Environmental Impact Assessment (EIA) and Impact Climate Change (ICC) on the site survey. The site survey results are used for the analysis and design base data.

		Design		Impact	
Survey Item	Road	2 nd bridge	Existing bridge	EIA	Climate Change
Weather condition					
Temperature		0	0	0	0
Rain fall		0	0	0	0
Hydraulic and Hydrological survey				-	
Discharge		0			
River profile		0			
Riverbed material geological survey		0			
River current velocity		0			
Topographic				•	
Topographic	0	0		0	
Geological					
Boring					
SPT		0			
Soil strata profile		0			
Pressure meter test		0			
Soil test					
Density		0			
Grain size		0			
Moisture content		0			
Atterberg limit		0			
Unconfirmed compression		0			
Direct sheer		0			
CBR	0				

Source: JICA study team

 \circ means usage

(2) Traffic survey and River traffic survey

Conducted traffic survey and river traffic survey items are shown below. Traffic survey results are used road design, while river traffic survey results are used for preparation of EIA and ICC.

- Traffic survey
 - ✓ Classified traffic count
 - ✓ OD survey
 - \checkmark Traffic movement count
 - ✓ Traffic speed
- River traffic survey

(3) Detailed Inspection of Structures

Conducted detailed inspection survey items are shown below. The survey results are used to conduct design for rehabilitation of existing bridges.

- Visual Inspection
- Dimension measuring
- Schmidt hummer test
- Rebar direction

(4) Baseline survey

Conducted baseline survey items are shown below. The survey results are used to calculate project operation and effect indicators, for preparation of EMP.

- ♦ Average daily traffic
- ♦ Traffic speed
- ♦ Accident rate
- Air quality
- Water quality
- Ground water
- Soil pollution
- Bottom sediment

2.2 Natural Condition

2.2.1 Meteorological Condition

(1) Meteorological Survey

In order to design the three bridges, it is necessary to collect and correlate the basic meteorological data such as Rainfall, Humidity and Wind Speed and Direction data.

1) Rainfall

According to monthly rainfall data from 2000 to 2009, average annual rainfall is about 2,100 – 2,200 mm/yr at Dhaka and Comilla Stations. Normally, the rainy season starts from May and ends in October. There is especially heavy rainfall, which is about 400 mm/month, in June and July in comparison to the other months. Dry season lasts from November to April.

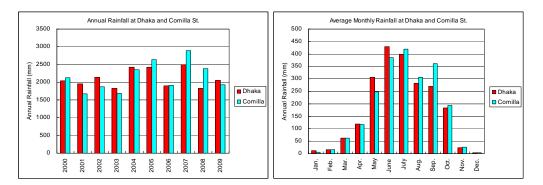


Figure 2.2.1 Annual Rainfall and Monthly Rainfall at Dhaka and Comilla Met. Station

2) Temperature

The monthly maximum, minimum and average temperature data at Dhaka and Comilla station are shown in the following figure, which are based on data collected from Bangladesh Meteorological Department (BMD) for the year 1999-2008. It can be observed that the monthly average temperatures through the year at the two stations are around 19 to 29 $^{\circ}$ C.

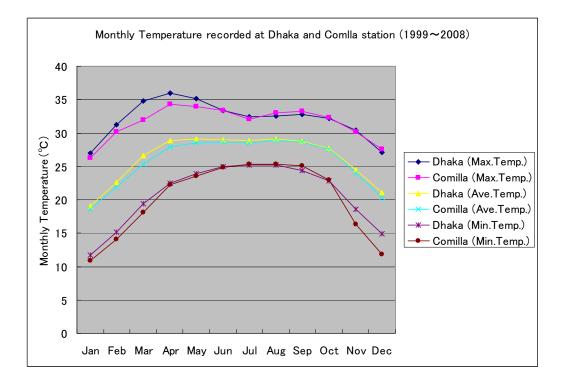


Figure 2.2.2 Monthly Temperature Data

2.2.2 Hydraulic Survey and Hydrological Condition

- (1) Existing Hydraulic and Hydrological Data
 - 1) Existing Kanchpur Bridge

No relevant information on sounding surveys conducted for riverbed erosion and change of riverbank data are available for either before or after construction of the existing Kanchpur Bridge.

2) Existing Meghna Bridge

According to the bathymetric survey result, the average scouring depth at riverbed level is - 12.4 m, while the maximum scouring depth measured near bridge piers is -20.7 m (PWD). Therefore, the scouring of riverbed near bridge piers is in a critical condition, compared with the condition of the riverbed when the bridge was constructed. Accordingly, the severe scouring problem could threaten the stability of the bridge and endanger the transport system in the future if proper and sustainable remedial measures are not taken immediately.

Further, the existing Meghna Bridge was designed following outdated design standards. Accordingly, seismic retrofitting to withstand earthquake excitations as per current design codes and constraining the riverbed scouring to a tolerable limit are becoming a challenging job for rehabilitation and reconstruction of the existing Meghna Bridge. Specifically, as a countermeasure for the latter one, the concept of combined foundations that connect the foundation of the existing and new bridges can be applied to reduce the scouring tendency in the near future.

At the time of bridge construction, the elevation of Meghna riverbed at the lowest part was - 7.0 m PWD. But after that, due to severe scouring effect, the riverbed elevation changed to - 19.5 m PWD in 2010.

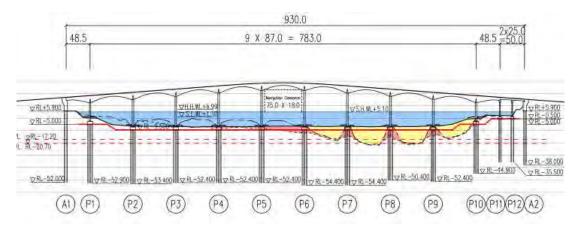


Figure 2.2.3 Longitudinal Profile of Existing Meghna Bridge (1995)

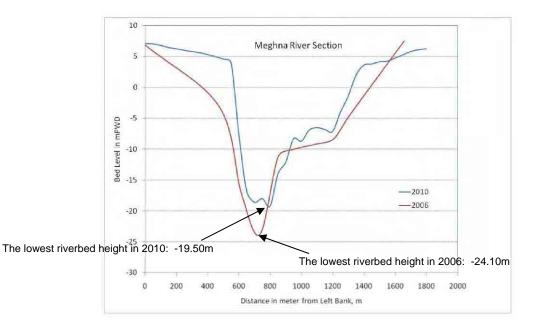


Figure 2.2.4 Change in Riverbed Cross-Section at Existing Meghna Bridge Site (Sounding survey result in 2006, 2010)

3) Existing Gumti Bridge

At the time of bridge construction, the elevation of Gumti riverbed at the lowest part was -6.0 m. The riverbed level remained unchanged until 1999. But after that, due to severe scouring effect, the riverbed elevation changed to -7.6 m in 2006, -11.1 m in 2010.

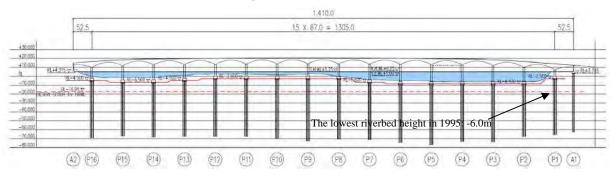


Figure 2.2.5 Longitudinal Profile of Existing Gumti Bridge (1995)

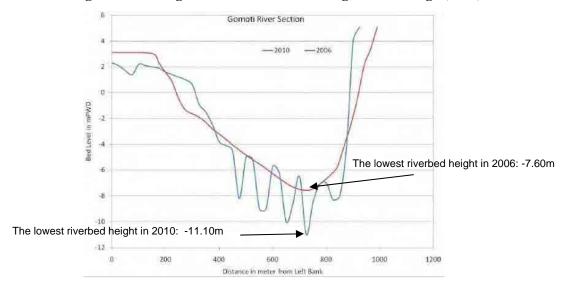


Figure 2.2.6 Change in Riverbed Cross-Section at Existing Gumti Bridge Site

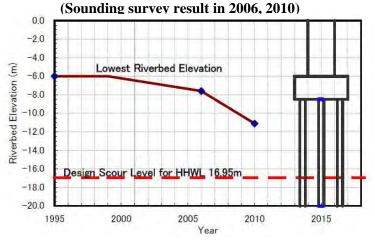


Figure 2.2.7 Change in Riverbed Level along Bridge Pile Foundation

4) Causes of scouring

The riverbed inclinations in Bangladesh are generally very flat in lower basin as 1/100,000 in average. The riverbed sand average diameter is quite fine as 0.1 mm to 0.2 mm without silt and clay. The riverbed sand has no adhesion and very fine so that the riverbed can be easily eroded and the sand will floated in the river flow. And the scoured hole is not stable in the water repose angle 30 degrees such as in Japan, in some cases the angle of repose is very small as 2 to 3 degrees. The angle of repose in Japan case is average 30 degrees.

Additionally the climate is sorted as tropical monsoon and the catchment area is quite large, when it rains strongly and long so that the flooding time is quite long because of the small riverbed inclination. The scoured hole in the river is easy to spread caused by the whirl in the river flow. This is one of the causes of scouring around the Meghna bridge piers. This phenomenon is typical in Meghna River.¹ Furthermore, the cause of scouring around Meghna Bridge is briefly explained in Chapter 5 Section 5.4.3.

- (2) Hydraulic and Hydrological Data Surveyed
- 1) Overall

In order to predict the water flow during the flood season and resultant scour around existing and new bridge piers, it is necessary to collect and correlate the hydraulic and hydrological properties of the Lakhya River (Kanchpur Bridge), Meghna River and Gumti River. Some of the properties will be directly used in the numerical model as input data or is needed for developing the model. Regarding these input data, some existing hydrological data has been collected from Bangladesh Water Development Board (BWDB).

2) Hydraulic data

Secondary hydraulic data around the three bridges are collected in order to develop a numerical model, which will be set as boundary conditions. Collected data from BWDB are shown in Table 2.2.1 and Table 2.2.2. Locations of Observation Stations are shown in Figure 2.2.8.

Annual maximum discharge and annual maximum and minimum water levels are calculated in Table 2.2.3 to Table 2.2.5 for the bridge design.

¹ "river technological consideration for bridge planning in the developing country" Junji YOKOKURA Gyozo SUGA Thesis in Japan Association of Civil Engineering.

Itam	tem Station Name Name Nation Natio Nation Nation Nation Nation Nation Natio Nation Nat	Station Name		River Name Location		Observation Period	
nem	Station Name	Number	River Name	(Dist:Thana:Union:Mouza)	Available (Year)	From	То
Tidal	Kalagachia	71	Dhaleswari	Munshiganj, Munshiganj Sadar, Paurashava,	44	1968	2011
Water	Kalatia (Outfall)	70	Dhaleswari	Dhaka, Keraniganj, Kalatia, Nutan Char	44	1968	2011
Level	Demra	179	Lakhya	Narayanganj, Rupganj, Tarabo, Taraba	44	1968	2011
Non Tidai	Demra	7.5	Balu	Narayanganj, Rupganj, Kayet Para, Pubgaon	16	1994	2009
Discharge	Demra	179	Lakhya	Narayanganj, Rupganj, Tarabo, Taraba	24	1986	2009

Table 2.2.1 Discharge and Water Level Data List around Kanchpur Bridge

Table 2.2.2 Discharge and Water Level Data List around Meghna Bridge and Gumti Bridge

T.	Station Name	Station	River Name	Location	Data Available	Observati	Observation Period	
Item	Station Name	Number	River Name	(Dist:Thana:Union:Mouza)	(Year)	From	То	
	Bhairb Bazar	273	Upper Meghna	Kishoreganj, Bhairab, Paurashava,	44	1968	2011	
Tidal	Narsingdi	274	Upper Meghna	Narsingdi, Narsingdi Sadar, Hajipur, Char Hajipur	44	1968	2011	
Water	Meghna Ferry Ghat	275.5	Upper Meghna	Munshiganj, Gazaria, Baluakandi, Bara Baliakandi	44	1968	2011	
Level	Satnal	276	Upper Meghna	Chandpur, Matlab, Satnal, Char Chariani	44	1968	2011	
	Daudkandi	115	Gumti-Burinadi	Comilla, Daudkandi, Dakshin Daudkandi	44	1968	2011	
Non Tidal Discharge	Jibanpur(Gumti Br.)	114	Gumti-Burinadi	Comilla,Debidwar,Debidwar,Binoypar	30	1996	2011	
Tidai Discharge	Bhairab Bazar	273	Surma-Meghna	Kishoreganj, Bhairab, Paurashava,	28	1981	2011	

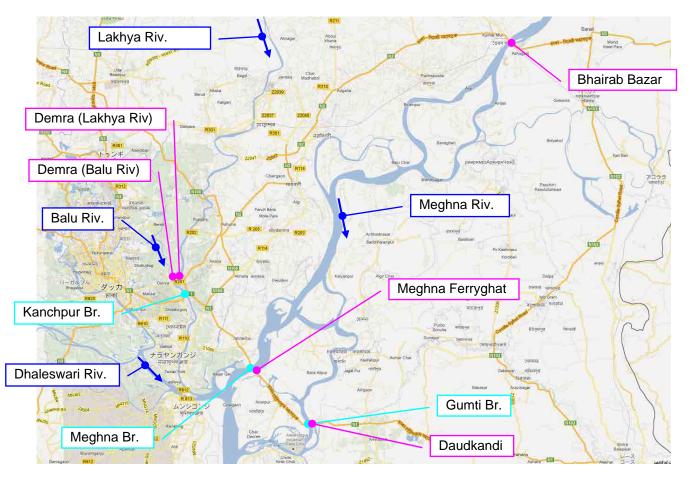


Figure 2.2.8 Water Discharge and Water Level Station Location Map

	Obs	Observed Discharge [m3/s]								
River	Meghna	Lahkya	Balu							
Station	Bhairab Bazar	Demra	Demra							
Maximum	19,900	2,742	744							
Minimum	7,375	657	88							
Mean	12,936	1,784	389							

Table 2.2.3 Annual Maximum Discharge Observed by BWDB (unit: m³/s)

Source: Edited BWDB observation data by JICA Study Team

Table 2.2.4 Annual Highest Water Level Observed by BWDB (unit: PWD.m)

River	Meghna	Meghna-Gumti	Lahkva
-	U U	3	
Station	Meghna Ferryghat	Daudkandi	Demra
Maximum	6.76	6.77	7.11
Minimum	3.50	4.40	5.07
Mean	5.50	5.55	5.82

Source: Edited BWDB observation data by JICA Study Team

Table 2.2.5 Annual Lowest Water Level Observed by BWDB (unit: PWD.m)

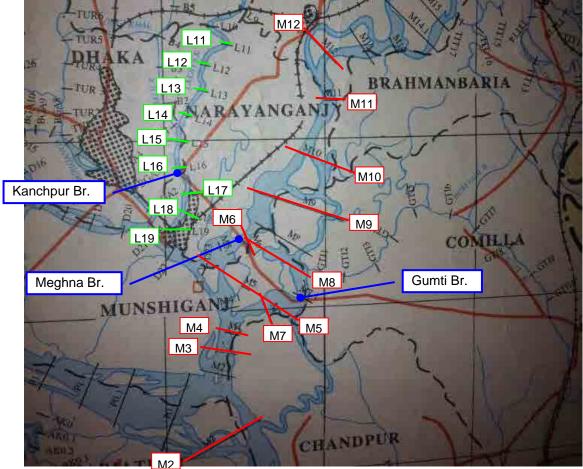
River	Meghna	Meghna-Gumti	Lahkya
Station	Meghna Ferryghat	Daudkandi	Demra
Maximum	1.61	3.14	1.56
Minimum	0.20	0.22	0.48
Mean	0.85	1.09	0.86

Source: BWDB observation data edited by JICA Study Team

3) River Profile Data

River cross section profile data have been collected from BWDB and former reports (JPZ consultants) in order to determine the historical changes of Meghna and Lakhya riverbed profiles.

(a) Cross section profile by BWDB Survey


Cross-sectional data that are collected from BWDB are listed in Table 2.2.6, and Cross sectional lines are shown in Figure 2.2.9. BWDB has surveyed the river cross sections at about 2-3 years intervals along the measurement line since the 1960's. But there are some limitations observed in BWDB's data to study the historical river deformation.

- 1. There are no measurement lines near the three bridges, and these lines are at a minimum of 6 km intervals along longitudinal direction. Therefore, it is difficult to discuss the meandering behavior of the river around the bridges
- 2. It seems that BWDB's survey line does not coincide with the line surveyed every year. Especially for Meghna River, the river channel has widely varied due to major floods. Therefore, it is difficult to compare the cross sections of Meghna River surveyed every year.

However, BWDB's cross section data are useful to check and understand the historical change of longitudinal river profile. In Figure 2.2.10, the longitudinal riverbed height seems to be almost stable for 40 years.

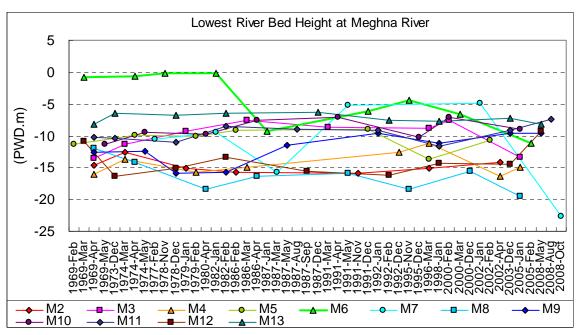

River name	Bridge name	Data Station	Data Period
Lakhya River	Kanchpur	L11 to L19 (9 Lines)	Now (latest), Oldest,
Meghna River	Gumti	M2 to M12 (13 Lines)	about 5 year interval periods.

Table 2.2.6 Cross Section Survey Data List (BWDB Survey)

Source: BWDB

Figure 2.2.9 Location Map for Cross Section Survey by BWDB

Source: Edited BWDB observation data by JICA Study Team

Figure 2.2.10 Historical Change of Lowest Riverbed Height of Cross Section at Meghna River

4) Interview Survey

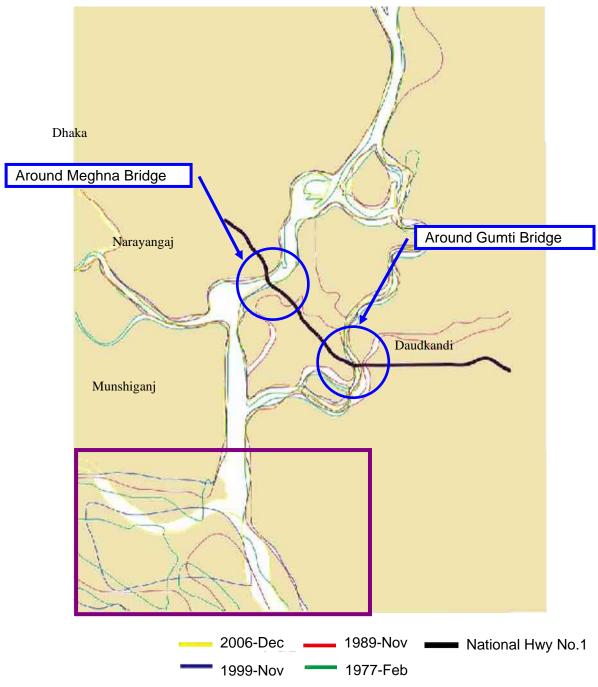
Interview surveys around the three bridges have already been conducted in order to determine information regarding past major flood water levels and river flow conditions around existing piers.

The field survey result will be used to increase the level of accuracy of the numerical model and to analyze the characteristics of these rivers during the peak flow in rainy season. These will be helpful to detect scouring around bridge piers also.

Bridge site	Interview data	Interview Points
Kanchpur Bridge	25/Jan/2012	4
Meghna Bridge	14/Mar/2012	5
Gumti Bridge	25/Jan/2012	4

Table 2.2.7 Interview Survey Overview

	Question	Interview Point.1	Interview Point.2	Interview Point.3	Interview Point.4	Interview Point.5
	Question	Right side of the	river (dhaka side)	Right side, upstream	Left side of the riv	er (chittagon side)
Q1	Have you ever seen the flood around Meghna bridge in rainy season? When those flood has occurred? How much height is those highest flood level?	1998 is up to 30cm above ground at the location of that tree.	1998 is up to 30cm above ground at the location of that tree. 1988 is up to the ground at the location of that car.	1988 is up to 80cm above ground at the location of that tree.	1988 1998 (most highest).	1998 is up to the ground at the location of that bamboo.
Q2	How often does the river overflow to the land?	1960 1962 1974 1980 1987 1998(most highest).	1988, 1998 (most highest)	2004	No flood at here.	1988 1998 (most highest)
Q3	Was there historical changes about the river around this Meghna bridge? (ex. bank erosion, shoreline Scenery, sand bar rising and falling, land use along river)	-	The sand bar upstream of the bridge, have already collected by the digging contractor 7-8 years ago, and now lost.	Bank erosion of this side is progressing every year. The sand bar upstream of the bridge, have already collected by the digging contractor 7-8 years ago, and now lost. (same as Interview 2.) Cement plant embankments look over there, which was completed in 2008.	-	-
Q4	If know, please teach the river flow condition around piers in summer season (flood) to us. (ex. Eddy or Whirlpool around pier, Waves from pier to shoreline)	-	-	-	I have seen several times the eddy at the downstream of the pier during the flood.	I have seen several times the eddy at the downstream of the pier during the flood.
Q5	Sediment unload area works in rainy season?	-	-	-	-	-


Table 2.2.8 Interview Result around Meghna Bridge

5) Land Sat Data Survey

Land sat data has already been collected from the concerned homepage in order to fully understand the historical changes of the river stream line/belt. These data were downloaded from the Global Land Cover Facility Earth Science Data Interface (ESDI) homepage.

Figure 2.2.11 which is made of 4 Land Sat Images, shows that the course of Meghna River is morphing year by year and accordingly, the channel width changes depending on river discharge. As of the selected section bounded by ' \Box ', it seems that the river profile of 1989 is very much wider than that of other years because this picture is taken at the time of the flood season (Discharge at Bhairab Bazar is 15,500 m³/s).

Especially around Meghna Bridge and Gumti Bridge bounded by 'O', it seems that the stream line shows almost the same profile, compared to shore line shown by red line. Therefore, it is supposed that the river shore line around Meghna Bridge and Gumti Bridge is stable with respect to the morphological view point.

Source: Edited Landsat data by JICA Study Team

Figure 2.2.11 Change of Shore Line of Meghna River around Meghna and Gumti Bridges

6) Riverbed material and geological survey

The diameter of riverbed materials is important in order to predict the scouring around piers. The former survey result by JICA in 1997^2 around Meghna Bridge represents that most of the bed materials are a formation of fine sand and silt and the size of D50 is about 0.1 to 0.2 mm, which has an average value of 0.167 mm.

(3) Topographic Survey (on the river)

A topographic survey has been carried out to determine the riverbed profile and to develop numerical models for each river. Survey lines are decided from the hydraulic point of view, which are also close to past survey lines so that a comparative study can be easily carried out. The survey lines at Meghna Bridge and Gumti Bridge are set along the past survey lines to compare with the historical change of river profile.

There are no survey results/ survey records for Kanchpur Bridge, therefore, the survey lines have been selected at 200 m intervals upstream and downstream of the existing bridges.

- River Bathymetric Survey (under the river flow)
- Using Echo- Sounding device (Figure 2.2.12)
- River Topographic Survey (on the land)

(GPS)

Echo-sounding device -Echotrac DF3200 MKII

Odom Hydrographical Systems Inc.)

Figure 2.2.12 Bathymetric Survey Device.

² Basic Design Study Report on The Project For Protection Works For Meghna Bridge In The People's Republic of Bangladesh, Feb 1998, JICA, Pacific Consultants International, Nippon Koei Co.,Ltd.

(4) River Current Velocity Survey

In order to protect the existing bridges and new bridges from scouring around the piers, it is necessary to predict current velocity in the design flood event. A river current velocity survey was held to collect the basic hydrological data of the river, and data measured will be used to check the numerical analysis.

The river current velocity survey was carried out from July 30th 2012 by ADCP device which can measure river current velocity, flow direction and total discharge measurement along the cross section of the river.

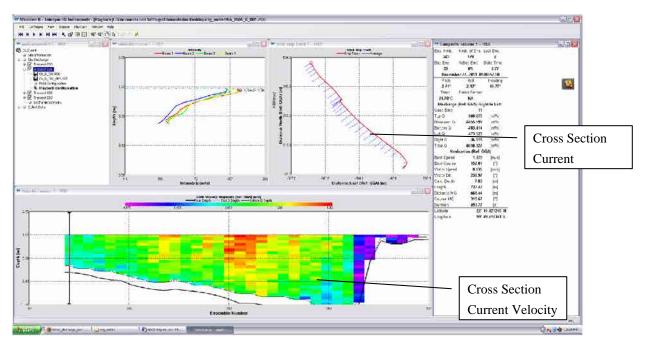


Figure 2.2.13 ADCP Software Main Window

Total discharge, average flow area and average velocity near the three bridges by ADCP survey are shown in Table 2.2.9.

In this result, discharge at Meghna Bridge is about 10 times more than the discharge at Gumti Bridge. Both river flows originated from one channel upstream of the bridges, and after Bhairab Bazar, station, both river channels are separated. Hence it seems that the discharge at Bhairab Bazar mostly flows along the Main Meghna River through Meghna Bridge.

	Unit	Kanchpur	Meghna	Gumti
Water Level	M.S.L	3.96	3.72	3.69
Total Discharge	m ³ /s	1248.4	11637.0	1063.5
Average Flow Area	m ²	2267.5	13245.9	7416.0
Average Velocity	m/s	0.554	0.892	0.143

 Table 2.2.9 Measurement Result at Three Bridges

2.2.3 Topographic Survey

- (1) General
- 1) Work Components

A topographic Survey was carried out in the area planned for the existing and new bridges, which are composed of the 3 sub-components listed below;

- Plane Table Survey in existing bridge approaches and in area planned for new bridge approaches,
- Longitudinal Survey in existing bridge approaches and in area planned for new bridge approaches,
- Cross Section Survey in existing bridge approaches and in area planned for new bridge approaches,
- 2) Survey Areas

Plane table survey areas are schematically shown in the following maps for Kanchpur Bridge, Meghna Bridge and Gumti Bridge.

Kanchpur Bridge (Dhaka side) plane-table area 46,000m2

Figure 2.2.14 Kanchpur Bridge (Dhaka side) Plane Table Survey Area

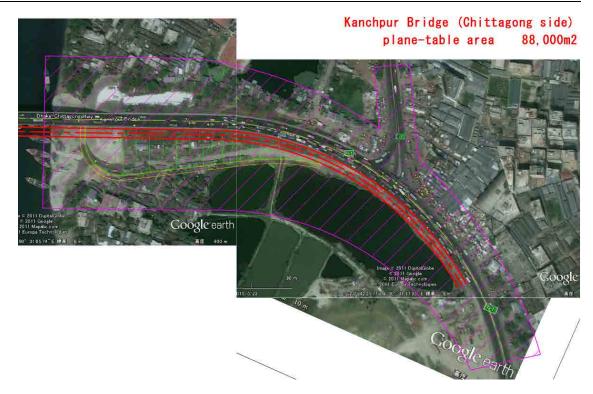


Figure 2.2.15 Kanchpur Bridge (Chittagong side) Plane Table Survey Area

Meghna Bridge plane table area 284,000m²

Figure 2.2.16 Meghna Bridge Plane Table Survey Area

Gumti Bridge (Dhaka side)

plane-table area 47,000m2

Figure 2.2.17 Gumti Bridge (Dhaka side) Plane Table Survey Area

Gumti Bridge (Chittagong side) plane-table area 43,000m2

Figure 2.2.18 Gumti Bridge (Chittagong side) Plane Table Survey Area

(2) Survey Results

Detailed survey results are shown in the Appendix 2.

2.2.4 Geological Condition

(1) Existing Data

Basically, the Meghna and Gumti Rivers are turbulent in nature while the Lakhya River is less turbulent. Furthermore, the river valley is still developing and changes its formation level to some extent. Moreover, it is connected with many old stream channels and less turbulent tributaries that forms the flood plain.

The three bridge sites are on a formation of alluvial soil. The riverbed material type is microsand which has uniform grain size with lower uniformity coefficient value. Accordingly, the angle of repose, an indication of scouring range, should be studied carefully.

The geological condition around the bridge site is soft-ground, which is composed of loose sandy soil as well as loose silty soil.

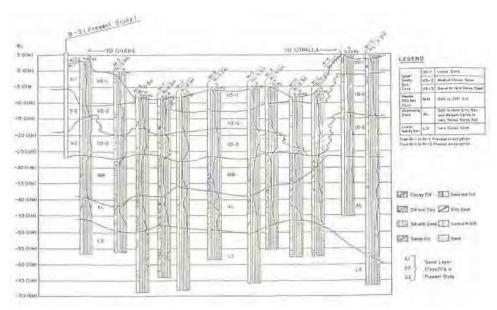


Figure 2.2.19 Geological Profile at Existing Meghna Bridge Site

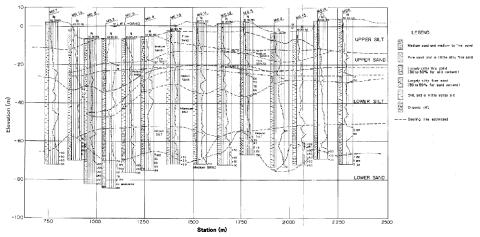


Figure 2.2.20 Geological Profile at Existing Gumti Bridge Site

- (2) Geological Data Surveyed
- 1) General
- (a) Work Components

Geological survey works are composed of 6 sub-components and are listed below;

- ♦ SPT
- Disturbed soil samplings
- Laboratory test (density test, grain size analysis test, moisture content test and Atterberg limit test)
- Undisturbed soil sampling
- Unconfined compression test
- Pressure meter test
- (b) Survey Locations

Geological survey borehole locations were planned 15 m downstream from the center of each existing pier and abutment in Kanchpur Bridge assuming the adjacent location of the new bridge; approx. 255 m upstream from the center of each existing pier and abutment in Meghna Bridge assuming the approach roads are within the RHD's property and 12 m downstream from the center of each existing pier and abutment in Gumti Bridge assuming the adjacent location of the new bridge. These locations are shown in appendix 3.

2) Geological Survey Field Work

Field work for borehole drilling including Standard Penetration Test (SPT) and disturbed soil samplings for each 1.0 m depth were carried out from the 31 st January to 28 th March, 2012.

- 3) Field Investigation Results
- (a) Boring Logs

Boring logs are shown in appendix 3 on Kanchpur Bridge, Meghna Bridge and Gumti Bridge.

(b) Soil Strata Profile

Soil strata profiles assumed from the boring logs are shown in Figure 2.2.21 to Figure 2.2.23 on Kanchpur Bridge, Meghna Bridge and Gumti Bridge.

(c) Pressure meter test results

Pressure meter test results are shown in appendix 3 on Kanchpur Bridge, Meghna Bridge and Gumti Bridge.

Summary of the test data is shown in Table 2.2.13 and Figure 2.2.24 to Figure 2.2.26. On Kanchpur Bridge, the total test number is 7. In the MPC, 2 PMT have been conducted. In the HPC, 4 PMT have been conducted. In the HNPS, 1PMT has been conducted. The depth of testing was 14 to 35 m.

On Meghna Bridge, the total test number is 8. In the VFS, 3PMT have been conducted. In the FS, 5 PMT have been conducted. The depth of testing was 13 to 20 m.

On Gumti Bridge, the total test number is 7. In the SS, 4 PMT have been conducted. In the FS, 3 PMT have been conducted. The depth of testing was 10 to 19 m.

All PMT were carried out by the 1 cycle load procedure.

The pressure-radius displacement curve ideal lines except for 3 places (P6D14, P7D17, and D24 on Kanchpur Bridge), see Figure 2.2.24. Because, from an initial load, the inclination of the line rises gradually and then between Po and Py the line is almost straight. After Py, the inclination of the line drops down gradually. The rest of the 3 test curves are composed of 2 lines. That is two linear parts are apparent.

None of the results reach to the Pf point, and the values of creep are in convergence. In the elastic range, the value is small. It is approximately 1 mm.

Po values correspond to the static earth pressure. The depths of the test locations are in a range of 10 to 20 m, and the Po value is distributed in the range of 2 to 4 kg/cm². But, the Po value (27 kg/cm²) at P2 Kanchpur Bridge is higher than the static earth pressure (7 kg/cm² is calculated from the 35 m depth), see Figure 2.2.25.

Py values are distributed in a range of 3 to 11 kg/cm², but the Py value at P2 on Kanchpur Bridge shows a high value (35 kg/cm^2).

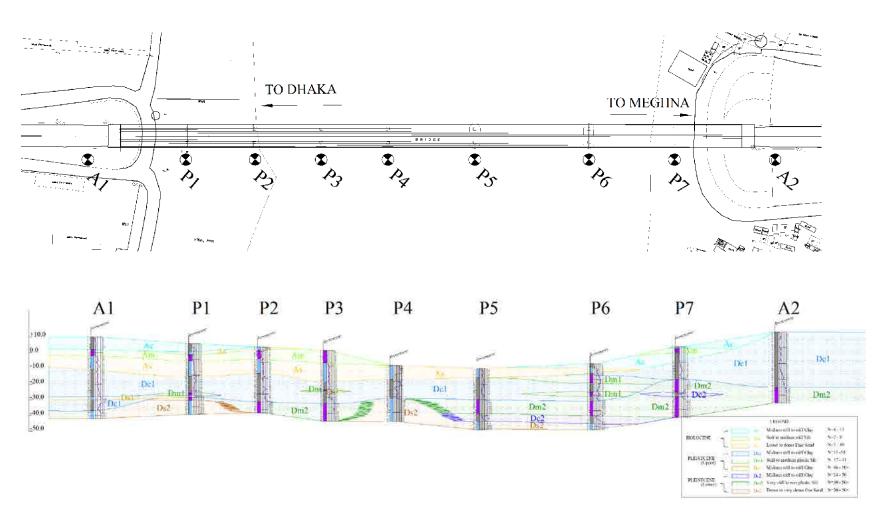
E moduli of this PMT are distributed from 18 to 265 kg/cm². No clear difference is found between soil types. The average of all PMT data is 124 kg/ cm². N-value is said to be related to E modulus. A value of 7N is used to convert E modulus, but in these tests, 6N corresponds to the E modulus, see Figure 2.2.26. Therefore, E modulus of this test is proper for the next design.

Point	Depth(m)	Em (kg/cm ²)	Em (KN/m ²)	N value	Standard value (700 N) KN/m ²
P2 1	23	146.923	14398	18	12600
P2 2	35	84.963	8326.	50	35000
P2 3	20	38.379	3761.	12	8400
P6 1	14	61.382	6015.	37	25900
P6 2	21	136.053	13333	35	24500
P7 1	17	18.783	1840.	20	14000
P72	24	65.695	6438.	50	35000

 Table 2.2.10 The results of pressure tests for Kanchpur Bridge

The results of pressure tests at Kanchpur are lower than the standard values. The horizontal reaction of soil is weak.

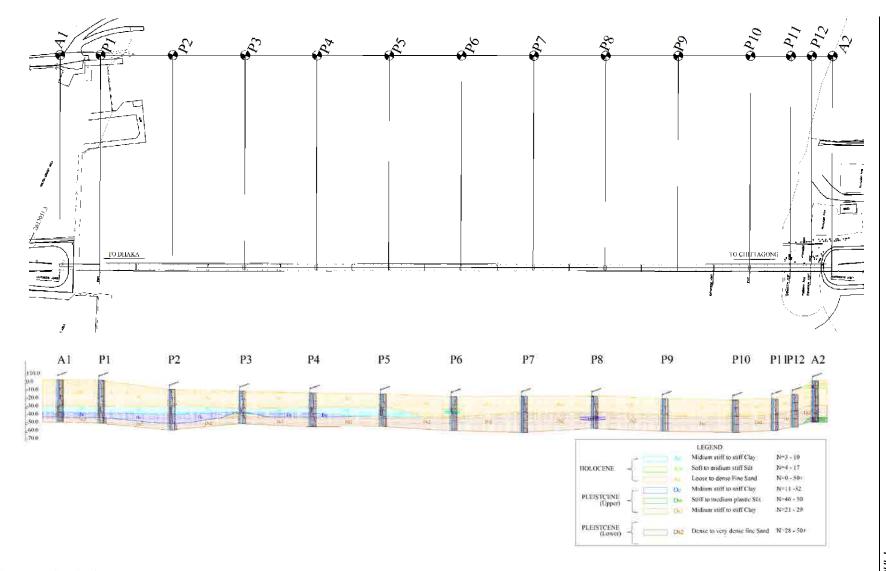
Point	Depth(m)	Em (kg/cm ²)	Em (KN/m ²)	N value	Standard value (700 N) KN/m ²
A1 1	10	21.196	2077.	11	7700
A1 2	16	130.607	12799.	9	6300
A1 3	20	53.379	5231.	11	7700
P4 1	10	151.821	14878.	18	12600
P4 2	13	130.607	12799.	24	16800
P4 3	18	217.332	21298.	22	15400
P11 1	10	15.769	1545.	13	9100
P11 2	15	72.276	7083.	26	18200


 Table 2.2.11 The results of pressure tests for Meghna bridge

The results of pressure tests at Meghna are lower than the standard values in the shallow depth but higher in deep areas. The horizontal reaction of the soil is stronger in the deep areas.

Point Depth(m) N value Standard value Em Em (kg/cm^2) (KN/m^2) $(700 \text{ N}) \text{ KN/m}^2$ 187.809 18475 17500 p-11 15 25 17 P12 19 253.211 24814 11900 P8 1 13 243.200 23833 21 14700 P8 2 18 266.718 11900 26138 17 P 13 1 10 178.328 17476.144 11 7700 P 13 2 14 109.364 10717.672 13 9100 P 13 3 19 21 14700 130.607 12799.486

 Table 2.2.12 The results of pressure tests for Gumti Bridge


The results of pressure tests at Gumti are higher than the standard values. The horizontal reaction is good.

THE KANCHPUR, MEGHNA, GUMTI 2ND BRIDGES CONSTRUCTION AND EXISTING BRIDGES REHABILITATION PROJECT Final Report

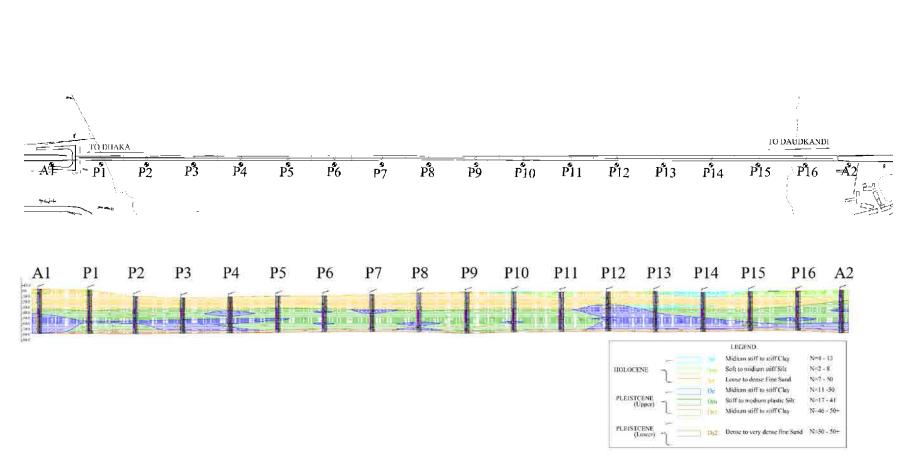
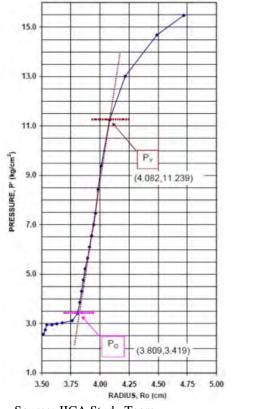
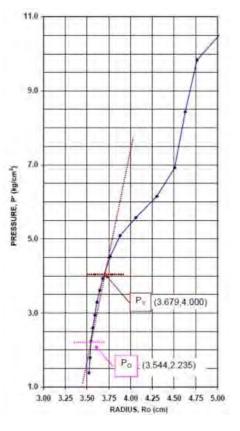

Source: JICA Study Team

Figure 2.2.21 Soil Strata Profile at Kanchpur

Source: JICA Study Team

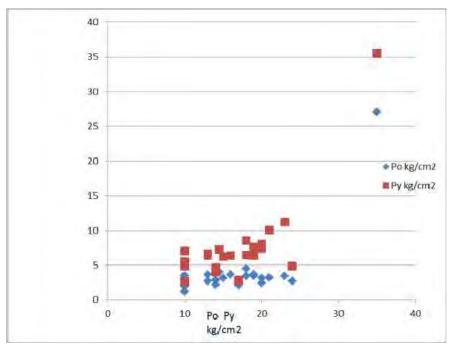
Figure 2.2.22 Soil Strata Profile at Meghna Bridge


Source: JICA Study Team


Figure 2.2.23 Soil Strata Profile at Gumi Bridge

LOCATIO	N	SOIL TYPE	N-VALUE	DEPTH	Po	Py	Pf	Km	Em	Rm	N × 7	
				m	kg/cm2	kg/cm2	kg/cm2	kg/cm3	kg/cm2	cm	kg/cm2	
ANCHPUR	P2 br	MEDIUM PLASTIC CLAY	12	20	2.436	8.026		6.988	38.379	4.225	84	
	P2 br	MEDIUM PLASTIC CLAY	18	23	3.419	11.239		28.645	146.923	3.946	126	
	P2 br	HARD PLASTIC CLAY	50	35	27.026	35.469		14.786	84.953	4.420	350	*
	P6 br	HARD PLASTIC CLAY	37	14	2.235	4.000		13.074	61.382	3.612	259	*
	P6 br	HARD PLASTIC CLAY	35	21	3.198	10.059		25.989	136.053	4.027	245	
	P7 br	HARD PLASTIC CLAY	20	17	2.118	2.823		4.006	18.783	3.607	140	*
	P7 br	HARD NON PLASTIC SILT	50	24	2.692	4.843		13.877	65.695	3.642	350	*
MEGHNA	A1 br	VERY FINE SAND	11	10	1.226	2.625		3.721	21.196	4.382	77	
	A1 br	VERY FINE SAND	9	16	3.670	6.382		27.394	130.607	3.668	63	
	A1 br	VERY FINE SAND	11	20	3.170	7.427		10.860	53.379	3.781	77	
	P4 br	FINE SAND	18	10	3.174	7.000		30.608	151.621	3.811	126	
	P4 br	FINE SAND	24	13	3.670	6.382		27.394	130.607	3.668	168	
	P4 br	FINE SAND	32	18	4.51	8.513		45.489	217.322	3.675	224	
	P11 br	FINE SAND	13	10	3.493	4.859		7.0780	35.769	3.888	91	
	P11 br	FINE SAND	26	14.5	4.000	7.280		14.199	72.276	3.916	182	
	D.U.		25	45	0.407	0.045		00.400	407.000	0.001	475	
MEGHNA GUMUTI	P1br	SANDY SILT	<u>25</u> 17	15	3.137	6.215		39.462	187.809	3.661	175	
	P1br	SANDY SILT		19	3.483	7.587		54.000	253.211	3.607		
	P8 br P8 br	FINE SAND SANDY SILT	<u>21</u> 17	<u>13</u> 18	2.737	6.657 6.438		51.579 56.943	243.200	3.627	147	
		FINE SAND	11	18	3.420				265.718	3.590	119	
	P13 br	FINE SAND	13	10	2.018	5.501		36.663	178.328 109.364	3.742	77 91	
	P13 br P13 br	SANDY SILT	21	14	2.832 3.670	4.666		22.642 27.394	130.607	3.716 3.668	147	
	FIS Dr	SANDT SILT										
				MPC	5.855	19.265		35.633	185.302	8.171	210	
				HPC	34.577	52.351		57.855	301.171	15.666	994	
				HNS	2.692	4.843		13.877	65.695	3.642	350	
				VFS	8.066	16.434		41.975	205.182	11.831	217	
				FS	26.434	50.858		235.652	1138.487	30.043	1,106	
				SS	13.71	26.62		177.80	837.35	14.53	560	
				TOTAL	91.334	170.373		562.791	2733.182	83.879	3437	
				AVERAGE	4.2	7.7		25.6	124.2	3.8	156.2	

Table 2.2.13 Summary of Pressure Meter Test Data Results


Source: JICA Study Team

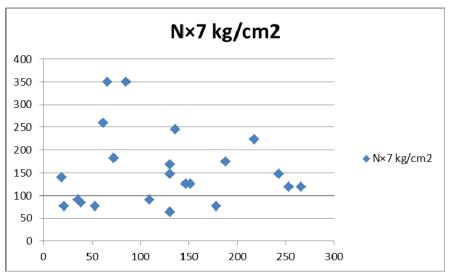

Source: JICA Study Team

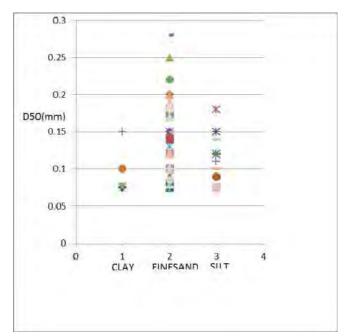
Figure 2.2.24 The Pressure-Radius Displacement Curve

Source: JICA Study Team

Source: JICA Study Team

Figure 2.2.26 The Relation between N Value and Elastic Modulus

4) Laboratory test results


Details of the laboratory test results regarding 1) to 4) are shown in appendix 3 for Kanchpur Bridge, Meghna Bridge and Gumti Bridge.

• Density test

WD, DD tests at A2 ((UD1, depth 4.5 m), (UD2, depth 6.0 m)) at Kanchpur are conducted. The result is WD=2.1 gm/cc, DD=1.88 gm/cc at UD1. And the other result is WD=2.19 gm/cc, DD=2.01 gm/cc at UD2. The result at UD2 is a little larger than the value for clay.

♦ Grain size analysis test

The summary of the Grain size analysis tests is shown in Table 2.2.14. The number of tests was 78. The result shows that the clay soil type is composed of 40 % sand. And fine sand soil type is composed of 80 % sand. Grain size distribution for the D50 index is nearly 0.1 mm, and if anything, not proportional but uniform, see Figure 2.2.27.

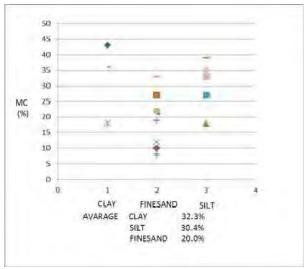
Source: JICA Study Team

Figure 2.2.27 Grain Size of Each Soil Type

LOCATIO	N	SOIL TYPE	DEPTH	SAND	CLAY	D50	SILTFACTOR
KANCHPUR	P1 br	clay	m 5	% 40	% 60	mm 0.075	0.48
	P1 br	silt	8	54	46	0.08	0.40
	P1 br	silt	10	46	54	0.075	0.48
	P1 br	fine sand	17	80	20	0.15	0.68
	P1 br	fine sand	43	86	14	0.12	0.61
	P5 br	fine sand	2	70	30	0.09	0.53
	P5 br	fine sand	6	82	18	0.15	0.68
	P5 br	clay	33	48	52	0.075	0.48
	P5 br	fine sand	37	74	26	0.12	0.61
	P7 br	silt	26	60	40	0.085	0.51
	P7 br	silt	28	22	78	0.075	0.48
	P7 br	silt	39	66	34	0.09	0.53
	P7 br	silt	42	44	56	0.075	0.48
IEGHNA	P1 br	FINE SAND	5	80	20	0.1	0.56
	P1 br	FINE SAND	10	75	25	0.1	0.56
	P1 br	FINE SAND	18	85	15	0.18	0.75
	P1 br	FINE SAND	22	90	10	0.2	0.79
	P1 br	FINE SAND	26	82	18	0.1	0.56
	P1 br	FINE SAND	31	88	12	0.12	0.61
	P1 br	FINE SAND	47	72	28	0.15	0.68
	P1 br	FINE SAND	51	82	18	0.18	0.75
	P4 br	CLAY	8	68	32	0.1	0.56
	P4 br	CLAY	18	84	16	0.15	0.68
	P4 br	CLAY	19	44	56	0.075	0.48
	P4 br	CLAY	28	54	46	0.08	0.5
	P4 br	FINE SAND	31	82	18	0.15	0.68
	P4 br	FINE SAND	40	86	14	0.175	0.74
	P6 br	FINE SAND	7	84	16	0.14	0.66
	P6 br	FINE SAND	11	90	10	0.18	0.75
	P6 br	SILT	15	88	12	0.18	0.75
	P6 br	FINE SAND	18	85	15	0.22	0.83
	P6 br	CLAY	20	60	40	0.11	0.58
	P6 br	FINE SAND	22	82	18	0.17	0.73
	P6 br	FINE SAND	24	82	18	0.17	0.73
	P6 br	FINE SAND	28	80	20	0.18	0.75
	P6 br	FINE SAND	34	74	26	0.14	0.66
	P6 br	FINE SAND	41	98	2	0.25	0.88
	P11 br	FINE SAND	6	88	12	0.18	0.75
	P11 br P11 br	FINE SAND	11	90 88	10 12	0.13	0.63
		FINE SAND FINE SAND	24			0.18	1
	P11 br P11 br			90	10		0.83
	A2 br	FINE SAND	31 10	97 84	3 16	0.28	0.93
	A2 br	FINE SAND FINE SAND	10	85	15	0.12	0.01
	A2 br	FINE SAND	22	82	18	0.17	0.61
	A2 br	FINE SAND	29	90	10	0.12	0.79
	A2 br	FINE SAND	37	88	12	0.17	0.73
	A2 br	SILT	50	40	60	0.075	0.48
MEGHNA GUMUTI	A1br	FINE SAND	2	75	25	0.095	0.54
	A1br	SILT	6	85	15	0.1	0.560
	A1br	SILT	7	34	66	0.075	0.48
	A1br	FINE SAND	17	80	20	0.12	0.61
	A1br	FINE SAND	22	70	30	0.1	0.56
	A1br	FINE SAND	27	76	24	0.12	0.61
	A1br	SILT	36	30	70	0.075	0.48
	A1br	SILT	37	30	70	0.075	0.48
	P3 br	FINE SAND	4	94	6	0.17	0.73
	P3 br	FINE SAND	14	80	20	0.15	0.68
	P3 br	SILT	20	78	22	0.14	0.66
	P3 br	SILT	21	28	72	0.075	0.48
	P3 br	SILT	39	45	55	0.075	0.48
	P3 br	FINE SAND	61	78	22	0.12	0.61
	P7 br	FINE SAND	2	88	12	0.1	0.56
	P7 br	FINE SAND	8	92	8	0.19	0.77
	P7 br	FINE SAND	17	67	33	0.085	0.51
	P7 br	FINE SAND	26	50	50	0.075	0.48
	P7 br	FINE SAND	64	78	22	0.095	0.54
	P12br	FINE SAND	3	48	56	0.075	0.48
	P12br	FINE SAND	7	86	14	0.1	0.56
	P12br	SILT	11	44	56	0.075	0.48
	P12br	FINE SAND	14	90	10	0.17	0.73
	P12br	CLAY	25	50	50	0.075	0.48
	P12br	FINE SAND	31	54	46	0.08	0.5
	P12br	FINE SAND	68	82	18	0.18	0.75
	P16br	FINE SAND	11	78	22	0.1	0.56
	P16br	FINE SAND	20	74	26	0.1	0.56
	P16br	FINE SAND	67	38	62	0.075	0.48
	P16br	FINE SAND	68	80	20	0.1	0.56
			CLAY	56	44	0.093	0.53
		AVERAGE	SILT	47	53	0.084	
			FINESAND	81	19	0.144	0.66

Table 2.2.14 Summary of Grain Size Analysis Test Data Results

Source: JICA Study Team


• Moisture content test

The summary of the moisture content tests is shown in Table 2.2.15. The number of tests is 17. Moisture content of the clay is in the range of 18 to 43 %. And the silt is 18 to 39 %. Fine sand is 8 to 33 %. The order of the Moisture content is clay > silt > fine sand. The moisture content of the fine sand is near to OMC (18 %), see Figure 2.2.28.

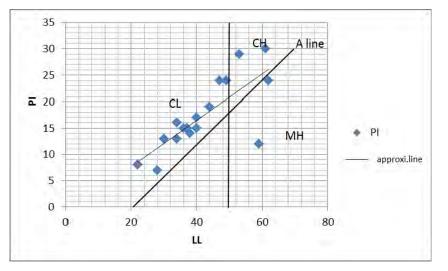
LOCATIO	N	SOIL TYPE	DEPTH	MC
			m	%
KANCHPUR	P1 br	CLAY	1	43
	P5 br	FINE SAND	6	27
	P7 br	SILT	2	18
MEGHNA	P1 br	FINE SAND	1	27
	P4 br	FINE SAND	2	8
	P6 br	FINE SAND	2	21
	P6 br	SILT	16	39
	P11 br	FINE SAND	2	10
	A2 br	SILT	7	27
MEGHNA GUMUTI	A1 br	FINE SAND	2	12
	A1 br	CLAY	63	18
	P3 br	FINE SAND	2	22
	P7 br	FINE SAND	2	19
	P7 br	CLAY	30	36
	P12 br	FINE SAND	2	33
	P16 br	SILT	3	35
	P16 br	SILT	36	33
			CLAY	32.3
			SILT	30.4
			FINESAND	20.0

 Table 2.2.15 Summary of Moisture Content Test Data Results

Source: JICA Study Team

Source: JICA Study Team

Figure 2.2.28 Moisture Content of Each Soil Type.

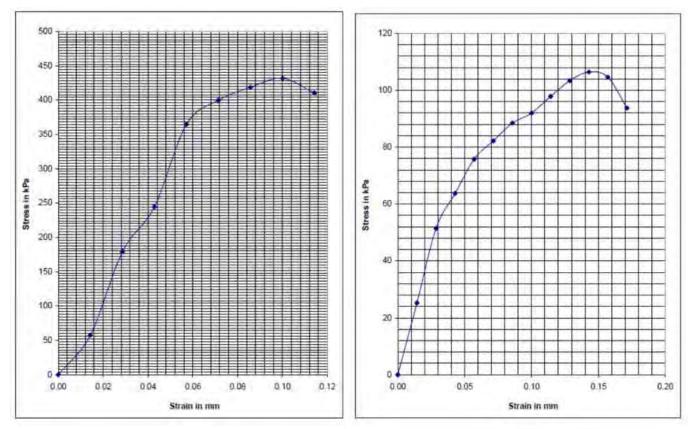

• Atterberg limit test

The summary of the Atterberg limit tests is shown in Table 2.2.16. The number of tests is 18. Average value is LL 42, PL 25, and PI 17. Soil of P1, P7 at Kanchpur Bridge is classified to be MH through A-line of IP-LL figures. Soil of P5 at Kanchpur Bridge and P3 on Gumti Bridge are classified to be CH. The others are CL, see Figure 2.2.29. In general, classification CL is good to poor for bearing capacity, CH, MH are poor or bad.

LOCATION		SOIL TYPE	DEPTH	LL	PL	PI	CLASSIFICATION
			m				
KANCHPUR	P1 br	CLAY	3	59	47	12	MH
	P1 br	CLAY	28	49	25	24	CL
	P5 br	CLAY	7	44	25	19	CL
	P5 br	CLAY	14	53	24	29	СН
	P7 br	CLAY	5	62	38	24	MH
	P7 br	CLAY	11	34	18	16	CL
	P7 br	CLAY	18	47	23	24	CL
MEGHNA	P1 br	CLAY	33	37	22	15	CL
	P4 br	CLAY	19	38	24	14	CL
	P6 br	CLAY	19	22	14	8	CL
	A2 br	SILT	46	28	21	7	CL
MEGHNA GUMUTI		CLAY	46	30	17	13	CL
	A1 br	CLAY	56	40	25	15	CL
	P3 br	CLAY	42	61	31	30	CH
	P3 br	CLAY	51	36	21	15	CL
	P7 br	CLAY	28	37	22	15	CL
	P12 br	CLAY	26	40	23	17	CL
	P16 br	CLAY	26	34	21	13	CL
			AVERAGE	42	25	17	

Table 2.2.16 Summary of Atterberg Limit Test Data Results

Source: JICA Study Team



Source: JICA Study Team

Figure 2.2.29 Consistency Graph of LL-PI

• Unconfined compression test

Unconfined compression tests were executed at A2 (depth 4.5 m, 6.0 m) at Kanchpur Bridge. Soil type of the two samples was clay. The strengths measured in the tests were 440 kpa and 106 kpa. Both values show a maximum load stress at the point. And the strains were 10 % and 14 %. Stress-strain curves (see Figure 2.2.30) show the narrow elastic region and show the modulus of deformation depends on strain. Comparing the unconfined tests with in-situ pressure meter tests, the unconfined test curve is different from the para-elastic curve of the pressure meter test because the level of strain in the unconfined test is larger than the level of TMT (5 %).

Source: JICA Study Team

Figure 2.2.30 Stress Strain Curve of Unconfined Compression Tests

• Direct shear test

The summary of direct shear tests is shown in Table 2.2.17. The total number of tests is 8. Soil types are silt and fine sand. The result of the tests is that the range of the angle of internal friction is 12 to 28 degrees. Average is 21 degrees, see Figure 2.2.31. The angle of internal friction is low for the wet sand with small grain size. Because uniform dry sand is about 30 degrees generally, the angle of internal friction (ϕ =12 degrees) of the sample at p16 (depth=70 m) on Gumti Bridge is especially small.

LOCATION		SOIL TYPE	DEPTH	COHESION	ANGLE OF FRICTION
			m	kPa	Degree
KANCHPUR	P1br	FINE SAND	49	0	22
	P7 br	SILT	43	0	19
MEGHNA	P1 br	FINE SAND	49	0	28
	P6 br	FINE SAND	34	0	22
	A2 br	FINE SAND	34	0	19
MEGHNA GUMUTI	A1br	FINE SAND	15	0	24
	P7br	FINE SAND	66	0	22
	P16 br	FINE SAND	70	0	12
				AVERAGE	21

Table 2.2.17 Summary of Direct Shear Test Data Results

Source: JICA Study Team

Source: JICA Study Team

Figure 2.2.31 Distribution of Friction of Angle

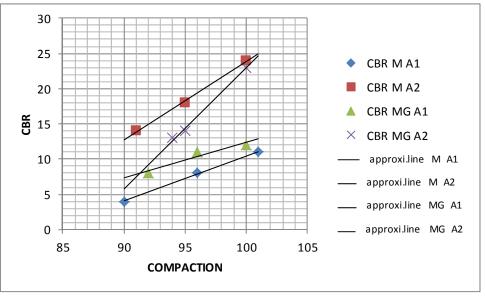
2.2.5 CBR Test

(1) Test Location

There are two test locations for each of the two bridges. These two locations were selected with one on each side of the existing approach roads. Therefore, a total of six CBR tests have been conducted during the survey stage.

(2) Type of test

Three tests were conducted at each point. Each test was executed on the condition of the compaction ratio and different moisture contents. This is referred to as the three point CBR test.


(3) Results of test

The summary of the CBR tests is shown in Table 2.2.18 and Figure 2.2.32. The result of the soil analysis shows MDD is 1.3 t/m³, OMC is 29 % at A1 at Meghna Bridge. The value of MDD is small, but OMC is high. As a result, the value of CBR (8) is relatively low. If the ratio of compaction is low, CBR becomes about 4. Therefore, the soil needs to be compacted sufficiently. On the other hand, the result of fine sand shows MDD is 1.6 t/m³, OMC is 18 % at A2 at Meghna Bridge. Both values are good, and CBR (18) is evaluated as good. The results of the soil analysis show MDD is 1.8 t/m³, OMC is 15 % at A1 at Gumti Bridge. The value of OMC is lower, but the value of CBR (11) is an average numerical value. The results of the fine sand show MDD is 1.6 t/m³, and OMC is 17 %. Those are average numerical values. The value of CBR (14) is a good numerical value. Both the results of CBR tests show linear lines which link 3 points, and there is no special CBR change when the compaction ratio decreases. The CBR test on Kanchpur was not good, because the soil type is clay. Clay is not compacted sufficiently. And the stress and penetration displacement curve doesn't show the linear line clearly. The value shows 6.9 MN/m² under at 2.5 mm displacement. So, the soil is not firm for the basement. It has to be solidified by the improvement of the soil.

LOCATI	ON	SOIL TYPE	MDD	OMC	D-DENSITY	COMPACTION	CBR 1	D-DENSITY	COMPACTION	CBR 2	D-DENSITY	COMPACTION	CBR 3
			kg/m3	%	kg/m3	%	%	kg/m3	%	%	kg/m3	%	%
Kanchpur	TP-A1 D1	CLAY					0			0			0
	TP-A2 D1	CLAY					0			0			0
MEGHNA	TP-A1 D1	SOIL	1338	29	1203	90	4	1282	96	8	1348	101	11
	TP-A2 D1	FINE SAND	1595	18	1458	91	14	1509	95	18	1597	100	24
MEGHNA GUMUTI	TP-A1 D1	SOIL	1795	15	1652	92	8	1720	96	11	1803	100	12
		FINE SAND	1602	17	1510	94	13	1527	95	14	1601	100	23
	MDD:MAXIMUM-DRY-DENSITY OMC:OPTIMUM-MOISTURE-CONTENT												

Table 2.2.18 Summary of CBR Test Results

Source: JICA Study Team

Source: JICA Study Team

Figure 2.2.32 The Relation between the Compaction and CBR

2.3 Traffic Surveys, Analysis

2.3.1 Traffic Survey

(1) Outline of Survey

Traffic surveys were conducted in February 2012 at Kanchpur Bridge, Meghna Bridge and Gumti Bridge, for the purpose of traffic demand forecasts on NH-1.

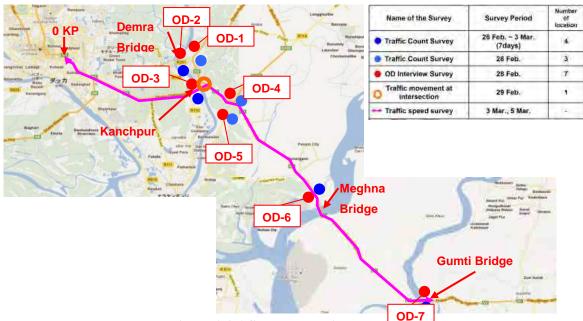

Name of the Survey	Survey Period	Survey hours	Number of locations	
Manual Classified	7 days (Whole Week) [26/2/2012~3/3/2012]	24 hours	4	
Counts	ounts 1 day (Weekday) [28/2/2012]		3	
OD Interview Survey	1 day (Weekday) [28/2/2012]	12 hours	7	
Traffic Movement Count Survey	1 day (Weekday) [27/2/2012]	16 hours	1	
Traffic speed survey	2 day (Weekday, Weekend) [28/2/2012, 3/3/2012]	16 hours	_	

 Table 2.3.1 Types of Survey

Source: JICA Study Team

(2) Locations of the Surveys

The traffic surveys were conducted on NH-1 and the road connected to NH-1. In order to avoid traffic congestion during the traffic survey, the survey locations shown in Figure 2.3.1 were selected.

Figure 2.3.1 Survey Locations

(3) Manual Classified Counts

The purpose of the classified traffic survey is to count the Average Daily Traffic (ADT) passing over Kanchpur Bridge, Meghna Bridge and Gumti Bridge on NH-1. There were 7 survey locations selected, which are shown in the survey location map (Figure 2.3.1). The manual traffic volume survey has been counted for both directions.

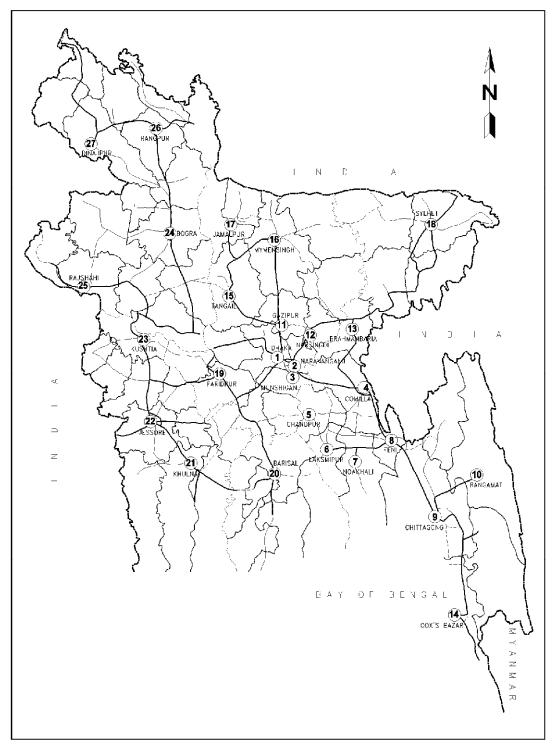
Motorized Vehicle	Non-Motorized Vehicle
Heavy Truck	Bicycle
Medium Truck	Cycle Rickshaw
Small Truck	Cart
Large Bus	
Medium bus	
Microbus	
Utility	
Car/Taxi	
Baby-taxi/Tempo	
Motor Cycle	

 Table 2.3.2 Classifications of Vehicles

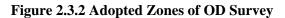
Source: JICA Study Team

(4) OD Interview Survey

The Origin–Destination (OD) survey, which was conducted on NH-1 and the road connected to No.1 as show in Figure 2.3.1 has been carried out to predict the travel patterns of goods and passenger traffic This survey was conducted for 12 hours of one working day at 7 locations which are shown in Figure 2.3.1. These locations are selected in order to determine the traffic pattern traveling on the existing corridor.


The road side interview method was adopted for conducting the OD survey. Various samples of vehicles were stopped randomly with the help of traffic police. The OD survey zones of NH-1 were assumed to be the same as the OD zone decided for Dhaka-Chittagong access controlled road. In this study appropriate coding was followed for zones, types of vehicles and commodities transported by the vehicles. The pertinent information on travel characteristics was collected during the interviews, which are listed as follows;

Origin and Destination of trips.


- Frequency of trip
- Trip purpose
- Trip length
- Number of passengers in the vehicle

For Goods Vehicles,

- Commodity type
- Load in Tonnes

Source: "Consultancy Services for Feasibility Study and Conceptual Design of Dhaka-Chittagong Expressway (PPP) project"

ONE n	iame of the zone	description of zones	ZUNE	name of the zon	description of zone:		name of the zo	nedescription of zon
		dhaka city karanigangi	14	cox's bazar	teknaf chakaria	-		jhalokati pirojpur
1	Dhaka	keranigangj nawabganj	14	COXS Dazar	ramu	-		pirojpur patuakhali
·	Dilaka	saver			mirjapur	-		bhandaria
		tongi			khalihati	20	barishal	rajapur
		sonargone			ghatail	-		patharghata
2	narayanganj	rupganj	15	tangail	bhuapur	-		barguna
		serajdikhan	10	cangan	delduar	-		kuakata
		gozaria			basail			bagarhat
3	munshiganj	tongibari			madhupur	-		rupsha
		lohajanj			netrokona	-		dacop
		chandina			kishirgangi	21	khulna	mongla
		daudkhandi			gafargaow	-		morelganj
		barura			trishal			sarankhola
		chuddagram			bhaluka			benapole
		laksham			haluaghat			satkhira
4	commilla	debiduar			phulbaria	22	jessore	jhenaidha
		companiganj	10		purbadhala			magura
		burichang	16	maymensingh	kalmakanda			narail
		muradnagar			dharmapasha			kumarkhali
		homna			mohanganj			meherpur
Т		hajiganj	l		atpara	23	kushtia	chudanga
		shahrasti	l		madan	23	Rustitia	bheramara
5	chandpur	matlab			nandail			mirpur
ĭ	onanupur	kachua			kendua			mujibnagar
		faridganj			karimganj			pabna
		hamichar			bajitpur			sirajgonj
6	lakshmipur	roypur			bhairab	24	bogra	joypurhat
°	latoninpu	ramgati			nikli	'	DOBIN	panchbibi
		chowmohani			sherpur			sherpur
		sonagazi	17	jamalpur	nakla	_		kazipur
7	noakhali	senbagh			nalitabari	_		naogaou
		daganbhuiyam			melandhaha	_		nawabganj
		companiganj			sarishabari	_		bholahat
		chhagalnaiya			jhenaigati	_		shapahar
8	feni	parshuram			hobigonj			raninagar
		mirsaraiy			moulabibazar	25	rajshahi	badalgachi
		sitakundo			sunamganj	_		mohadevpur
		chittagong city			beanibazar	_		shantahar
		hathazari			zakiganj	-		natore
		fatikchhari			barlekha	-		tanor
9	chattagong	kapati			fenchuganj	_		bagmara
		anowara			golapganj	-		nimatpur
		satkania			balaganj	-		charghat
		banshkhali			kaniaghat	-		lalmonirhat
		rangunioa	18	sylhet	tamabil	-		burimari
		patiya			chunarughat	-		khurigram
		boalkhali			bahubai mahimani	26	rangpur	gaibandha
10	obaittarani hill	rangamati Isha mua ahami	ł		nabiganj	-		palashbari
	chaittagonj hill	khagrachari bondorbon			ajmiriganj	-		bhurungamari
		bandarban pubail			kulaura	-		nilpharamari
		pubail kapagia			shimangal	-		saidpur
11	gazipur	kapasia kaliakair			kamalganj	-		roumari
··	Bazibal	kaliakoir	1		<u>biswanath</u> chhatak			jaldhaka dimla
		sreepur kaligonj	ł		dirai	-		dimia birampur
		raipur			jagannathpur	-		fulbari
		raipur shibpur			Jagannatnpur madaripur	-		hili
		araihazar			shariatpur	-		haripur
12	narsingdi	arainazar palashi	ľ		snariatpur gopalgonj	-		haripur thakurgaon
·-	naronigui	belabo			kalkini	27	dinajpur	panchagarh
		manohardi	1		rajoir	-		tentulia
		ashuganj	1		naria	-		banglabandh
		banchharampur			bhederganj	1		ranisonkail
		sarail	19	Faridpur	goshirghat			haripur
		ashuganj			kotalipara	1		burimari
13	brahmanbaria	nabinagar	1		tungipara			kolkhata
		kashba	1		mollarhat	28	india	agortala
		akhaura	1		rajbari	1		
		kashba	1		bhanga			
			1		goalanda			

Table 2.3.3 Adopted Zones of O-D Survey

Source: "Consultancy Services for Feasibility Study and Conceptual Design of Dhaka-Chittagong Expressway (PPP) project"

(5) Traffic Movement Count Survey

The objective of the Traffic Movement Count Survey is to obtain information regarding directional movement at Kanchpur intersection. The survey was conducted for 16 hours including the morning and evening peak hours.

(6) Traffic Speed Survey

The purpose of the Traffic Speed Survey is to determine the average speed of the traffic moving on NH-1. The survey was conducted from 0 kilometer post (kP) of NH-1 to Gumti toll gate.

2.3.2 **Results of the Survey**

(1) The passenger car units (PCUs)

The Passenger Car Units (PCUs) recommended by RHD for all types of vehicles is adopted for the traffic analysis. The adopted values are shown in Table 2.3.4.

Vehicle 7	Гуре	PC	U Equivalency	7
		RHD Standard	НСМ	remarks
	Heavy Truck	3.00		
	Medium Truck	3.00		
	Small Truck	3.00	15*	Upgrade
	Large Bus	3.00	1.5*	< 2 %
	Mini Bus	3.00		
Motorized Vehicle	Micro Bus	3.00		
	Utility	1.00	1.2*	Upgrade < 2 %
	Car	1.00	1.00	
	Auto Rickshaw	0.75	-	
	Motor Cycle	0.75	-	
	Bicycle	0.50	-	
Non-Motorized Vehicle	Cycle Rickshaw	2.00	-	
	Animal / Push Cart	4.00	-	

 Table 2.3.4 Adopted Values of Passenger Car Units (PCUs)

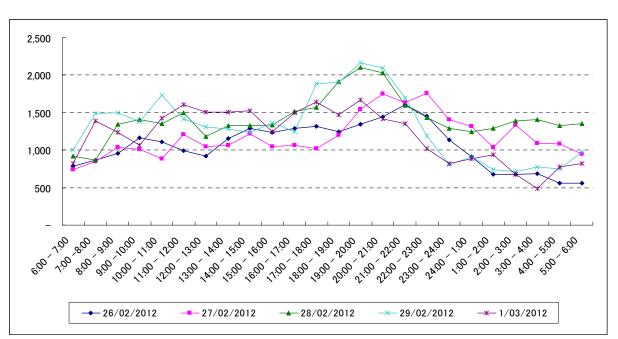
Source: JICA Study Team

(2) Average Daily Traffic (ADT)

Classified Manual Traffic Volume Surveys were conducted for 24 hours (6:00 a.m. to 6.00 a.m.) and the results obtained are expressed in terms of Average Daily Traffic (ADT). Table 2.3.5 and Table 2.3.6 show calculated ADT values.

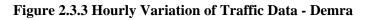
						Motoraize	d Vehicles					Non-N	Aotorized Ve	hicles			
		1	2	3	4	5	6	7	8	9	10	11	12	13	Tatal	Tatal	O and a
No	Location	Heavy Truck	Medium Truck	Small Truck	Large Bus	Mini bus	Microbus	Utility	Car/Taxi	Baby-taxi/ Tempo	Motor Cycle	Bicycle	Cycle Rickshaw	Cart	Total Motor	Total Non-M	Grand Total
1	Demra	2,107	1,468	1,245	1,002	745	1,464	1,488	1,832	2,360	770	119	367	-	14,480	486	14,966
2	Kanchpur	4,974	3,417	2,349	4,958	3,766	2,559	2,690	3,237	5,472	1,031	178	581	8	34,453	767	35,220
3	Meghna, Meghna-Gumti	3,337	4,944	1,797	4,138	1,986	2,929	2,740	2,937	2,509	260	-	-	-	27,578	-	27,578
4	N-2:Sylhet Road	3,755	1,487	1,243	2,645	1,966	1,704	1,938	1,855	4,201	1,049	220	1,698	-	21,843	1,918	23,761
5	Modonpur to Bandar road	760	627	587	19	217	307	235	368	1,879	324	116	1,369	-	5,323	1,485	6,808
6	Modonpur to Arihazar road	4,603	1,295	1,088	1,068	897	1,145	463	784	6,127	461	185	3,683	-	17,931	3,868	21,799

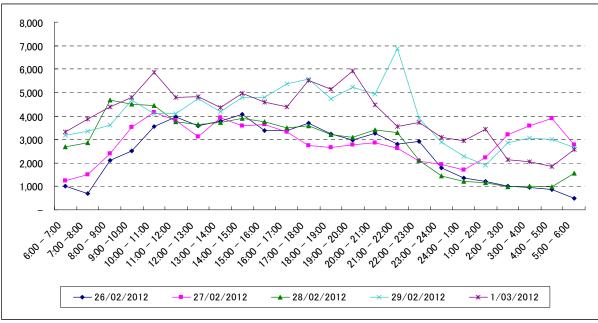
Table 2.3.5 ADT Values of Motorized and Non-Motorized Vehicles (in number of Vehicles)


Source: JICA Study Team

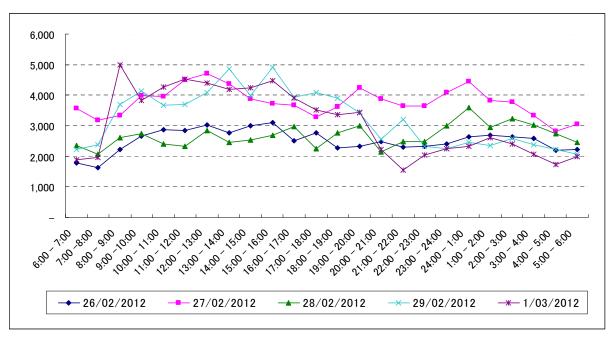
						Motoraize	d Vehicles					Non-N	Aotorized Ve	hicles			
		1	2	3	4	5	6	7	8	9	10	11	12	13	Total	Total	Grand
No	Location	Heavy Truck	Medium Truck	Small Truck	Large Bus	Mini bus	Microbus	Utility	Car/Taxi	Baby-taxi/ Tempo	Motor Cycle	Bicycle	Cycle Rickshaw	Cart	Motor	Non-M	Total
	PCU Equivalency	3.00	3.00	3.00	3.00	3.00	3.00	1.00	1.00	0.75	0.75	0.50	2.00	3.00			
1	Demra	6,320	4,403	3,736	3,007	2,234	4,391	1,488	1,832	1,770	577	60	735	-	29,759	794	30,553
2	Kanchpur	14,921	10,252	7,046	14,875	11,297	7,676	2,690	3,237	4,104	773	89	1,163	23	76,872	1,275	78,147
3	Meghna, Meghna-Gumti	10,012	14,831	5,392	12,413	5,958	8,786	2,740	2,937	1,882	195	-	-	-	65,147	-	65,147
4	N-2:Sylhet Road	11,265	4,461	3,729	7,935	5,898	5,112	1,938	1,855	3,151	787	110	3,396	-	46,131	3,506	49,637
5	Modonpur to Bandar road	2,280	1,881	1,761	57	651	921	235	368	1,409	243	58	2,738	-	9,806	2,796	12,602
6	Modonpur to Arihazar road	13,809	3,885	3,264	3,204	2,691	3,435	463	784	4,595	346	93	7,366	-	36,476	7,459	43,935

Table 2.3.6 ADT Values of Motorized and Non-Motorized Vehicles (in PCU)

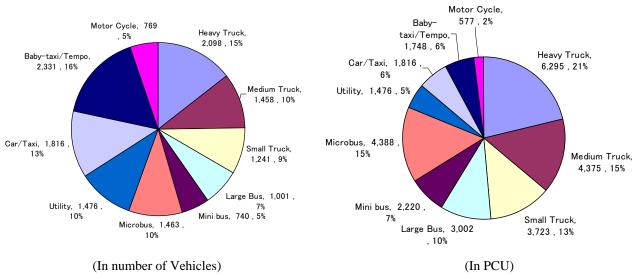

Source: JICA Study Team


(3) Hourly Variation of Traffic

Hourly variation of traffic was studied for 24 hours and accordingly the results obtained are shown in Figure 2.3.3 to Figure 2.3.5.

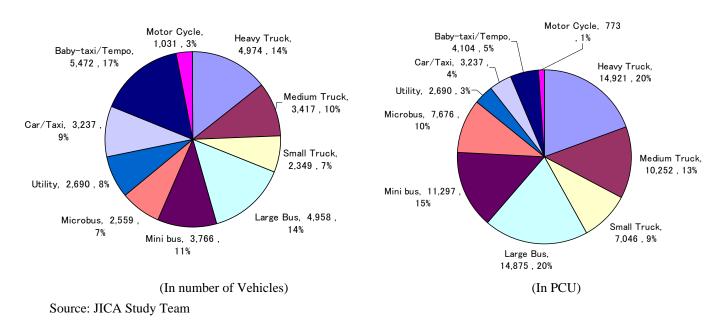

Source: JICA Study Team

Source: JICA Study Team



Source: JICA Study Team

Figure 2.3.5 Hourly Variation of Traffic Data - Meghna, Gumti


(4) Composition of Traffic

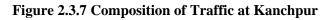

The traffic composition along with the percentage of vehicles of each category is expressed herein in terms of the numbers counted and PCU. Accordingly, the computed results are compared in Figure 2.3.6 to Figure 2.3.8. It shows that the large type vehicles (Heavy Truck, Medium Truck, Small Truck, Large Bus, Mini Bus, and Microbus) make up more than 50 % of the traffic at Kanchpur Meghna, and Gumti. On the other hand, considering the PCU factor, the large type vehicles are more than 80 % of the traffic at Demra, Kanchpur and Meghna and Gumti.

Figure 2.3.6 Composition of Traffic at Demra

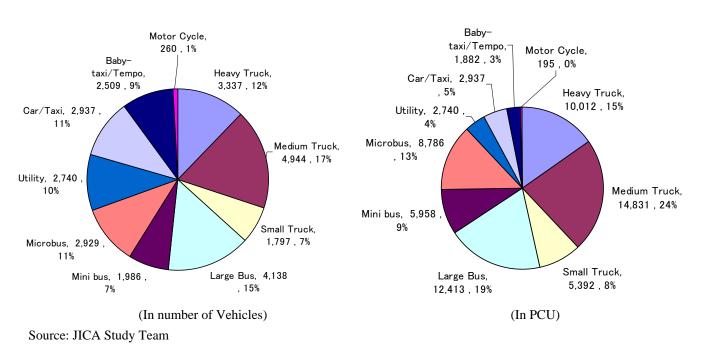
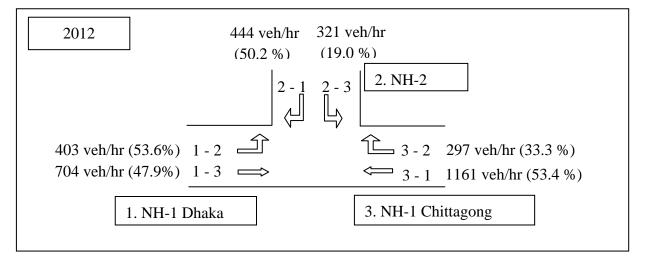
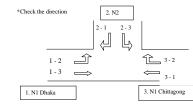



Figure 2.3.8 Composition of Traffic at Meghna, Gumti

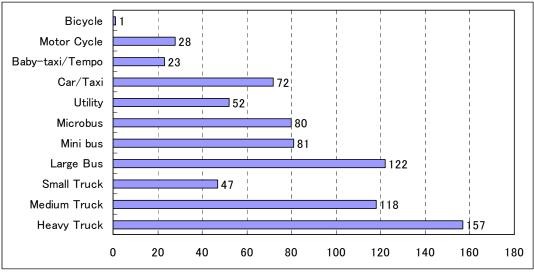
(5) Traffic Movement Count Survey

The analysis of the traffic movement count survey has been used for studying the requirement of improvement of intersections such as at grade intersections, u-loops and fly-overs etc.


Summary of peak hour flow is reported in Figure 2.3.9. Result of traffic movement count survey is shown in Table 2.3.7.

Note: () shows percent heavy vehicles Source: JICA Study Team

Table 2.3.7 Traffic Volume of Traffic Movement Count Survey

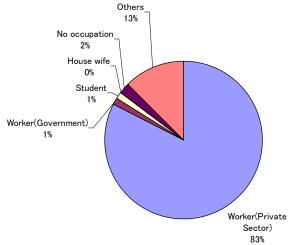


		1-2			1-3			2-1			2-3			3-2			3-1	
	Total	Heavy vehicle	Heavy ratio															
:00 - 7:00	235	97	41.3%	347	174	50.1%	231	108	46.8%	77	20	26.0%	86	47	54.7%	1161	620	53.4%
:00 -8:00	237	164	69.2%	399	221	55.4%	167	99	59.3%	100	39	39.0%	137	54	39.4%	1062	543	51.1%
00 - 9:00	353	187	53.0%	480	225	46.9%	288	142	49.3%	88	18	20.5%	150	63	42.0%	1071	572	53.4%
:00 -10:00	355	195	54.9%	428	209	48.8%	293	145	49.5%	101	20	19.8%	120	33	27.5%	933	486	52.1%
):00 - 11:00	397	187	47.1%	485	248	51.1%	382	164	42.9%	167	33	19.8%	146	42	28.8%	936	434	46.4%
1:00 - 12:00	342	164	48.0%	475	225	47.4%	352	168	47.7%	219	29	13.2%	173	59	34.1%	818	362	44.3%
2:00 - 13:00	379	170	44.9%	506	270	53.4%	345	152	44.1%	244	33	13.5%	193	60	31.1%	922	374	40.6%
3:00 - 14:00	380	174	45.8%	519	251	48.4%	377	167	44.3%	223	31	13.9%	187	55	29.4%	795	350	44.0%
4:00 - 15:00	340	158	46.5%	471	248	52.7%	329	156	47.4%	245	58	23.7%	151	45	29.8%	727	356	49.0%
5:00 - 16:00	325	164	50.5%	528	288	54.5%	328	167	50.9%	275	63	22.9%	177	46	26.0%	666	310	46.5%
5:00 - 17:00	310	176	56.8%	646	313	48.5%	318	193	60.7%	321	61	19.0%	203	62	30.5%	623	297	47.7%
7:00 - 18:00	316	160	50.6%	627	293	46.7%	324	158	48.8%	256	40	15.6%	232	60	25.9%	775	396	51.1%
8:00 - 19:00	339	161	47.5%	688	324	47.1%	444	223	50.2%	229	60	26.2%	297	99	33.3%	714	434	60.8%
9:00 - 20:00	403	216	53.6%	704	337	47.9%	411	220	53.5%	253	28	11.1%	261	55	21.1%	605	333	55.0%
):00 - 21:00	285	175	61.4%	491	268	54.6%	283	180	63.6%	282	31	11.0%	185	59	31.9%	642	388	60.4%
:00 - 22:00	222	141	63.5%	321	180	56.1%	273	172	63.0%	211	23	10.9%	150	55	36.7%	440	266	60.5%
Total	5218	2689		8115	4074		5145	2614		3291	587		2848	894		12890	6521	

Source: JICA Study Team

- (6) Analysis of Origin Destination (O-D)
- 1) Attributes of respondent's transport mode

Figure 2.3.10 shows the composition of the respondent's transport mode from the OD Interview Survey. In term of the number of respondents, "Heavy truck" occupies the largest portion with 157 persons. However, it does not indicate the modal share of traffic, since the numbers are based on respondents, not vehicular traffic.

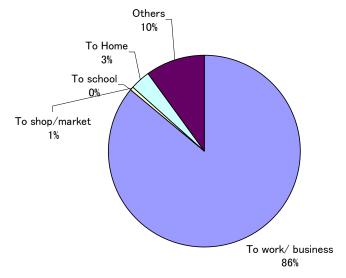


Source: JICA Study Team

Figure 2.3.10 Composition of Vehicle Type

2) Attributes of respondent's occupation

Figure 2.3.11 shows the composition of the respondent's occupation for the OD Interview Survey. In term of the number of respondents, "Worker (private sector)" occupies the largest portion with 83 %.



Source: JICA Study Team

Figure 2.3.11 Composition of Occupations

3) Attributes of respondent's trip purpose

Figure 2.3.12 shows the composition of the respondent's trip purpose for the OD Interview Survey. In term of the number of respondents, "To work/business" occupies the largest portion with 86 %.

Source: JICA Study Team

Figure 2.3.12 Composition of Trip Purposes

4) Number of passengers

Figure 2.3.13 shows the average number of passengers by vehicle.

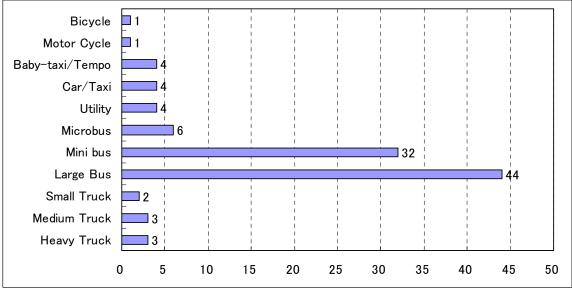


Figure 2.3.13 Number of Passengers

5) Commodity Analysis

Each commodity was assigned a particular code as shown in Table 2.3.8. Eleven groups for classification of commodities were formed and percentages of composition of commodities were detected. Typical compositions of commodities are shown in Figure 2.3.14. It can be seen that Agriculture and Construction are substantial.

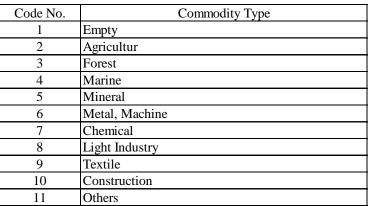
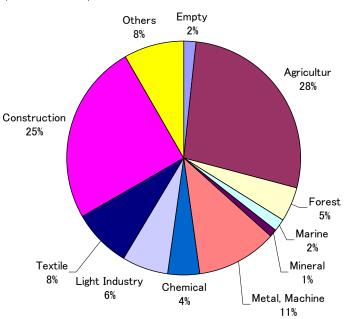



 Table 2.3.8 Commodity Classification Groups

Source: JICA Study Team

Figure 2.3.14 Typical Composition of Commodities

6) Major movements of traffic

Figure 2.3.16 to Figure 2.3.22 present the major OD characteristics of truck (Heavy Truck, Medium Truck, Small Truck), bus (Large Bus, Mini Bus, Microbus), and passenger car (Utility, Car/Taxi, Baby-taxi/Tempo) traffic between districts.

As trend of trip distance, the trip distance of passenger car tends to be short and the trip distance of truck and bus tend to be long. Regarding bus and track, high share of trip destination is occupied in Chittagong, Comilla and Sylhet area. In particular, the trip of Chittagong and Comilla destination counted for a higher proportion of trip through the Meghna and Gumti Bridge. Therefore, trips of Chittagong and Comilla are assumed to be influenced by development of Dhaka-Chittagong railway and Chittagong seaport.

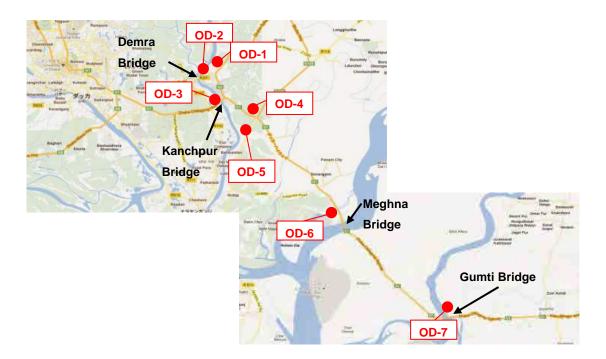
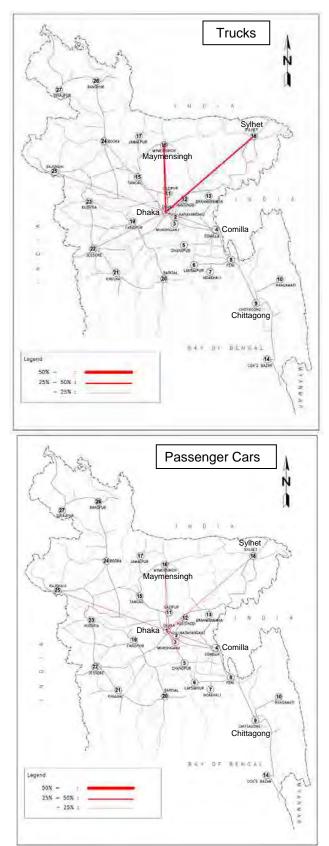
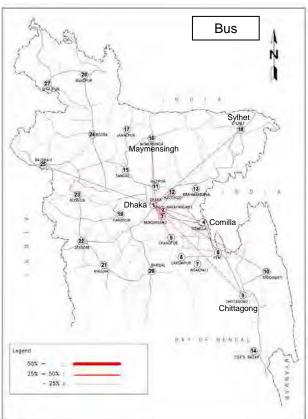
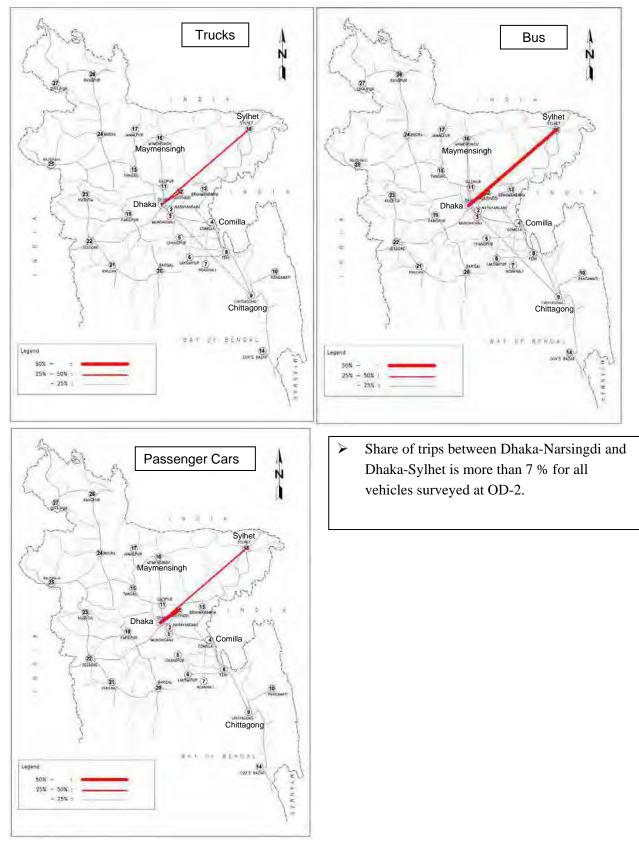
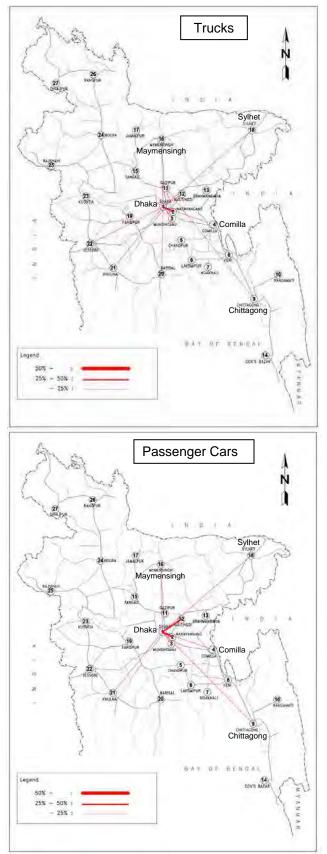
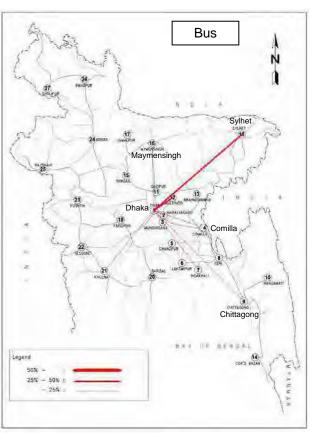




Figure 2.3.15 Locations of OD Survey



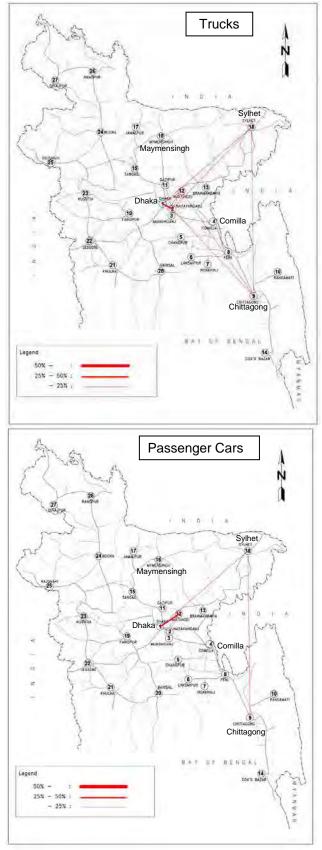
- Share of trips between Dhaka-Maymensingh and Dhaka-Sylhet is more than 50 % for trucks surveyed at OD-1.
- Each share of trips between Dhaka-Commilla, Dhaka-Brahmanbaria, Dhaka-Maymensingh and Dhaka-Sylhet is more than 10% for buses surveyed at OD-1.
- Each share of trips between Dhaka-Comilla, Dhaka-Brahmanbaria, Dhaka-Maymensingh and Dhaka-Sylhet is more than 10 % for passenger cars surveyed at OD-1.


Source: JICA Study Team



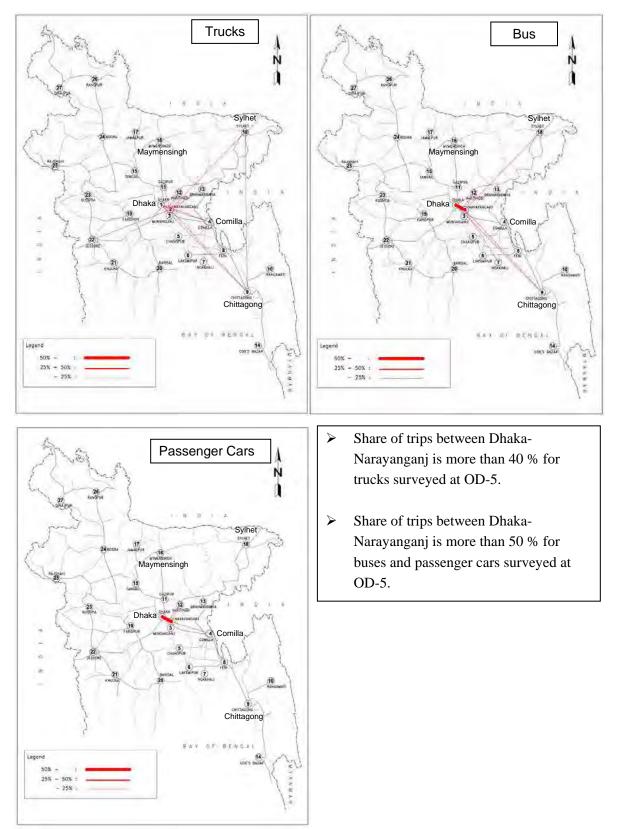
Source: JICA Study Team

Figure 2.3.17 Desire Line Diagram at OD-2



- Each share of trips between Dhaka-Narayanganj, Dhaka-Chittagong, Dhaka-Narsingdi and Dhaka-Sylhet is more than 10 % for trucks surveyed at OD-3.
- Each share of trips between Dhaka-Narayanganj and Dhaka-Sylhet is more than 30 % for buses surveyed at OD-3.
- Each share of trips between Dhaka -Narayanganj, Dhaka-Munshiganj, Dhaka-Chandpur, Dhaka-Maymensingh and Dhaka-Sylhet is more than 10 % for passenger cars surveyed at OD-3.

Source: JICA Study Team



- Each share of trips between Dhaka-Narayanganj and Dhaka-Narsingdi is more than 20 % for trucks surveyed at OD-4.
- Share of trips between Dhaka-Narsingdi is more than 40 % for buses surveyed at OD-4.
- Share of trips between Dhaka-Narsingdi is more than 40 % for passenger cars surveyed at OD-4

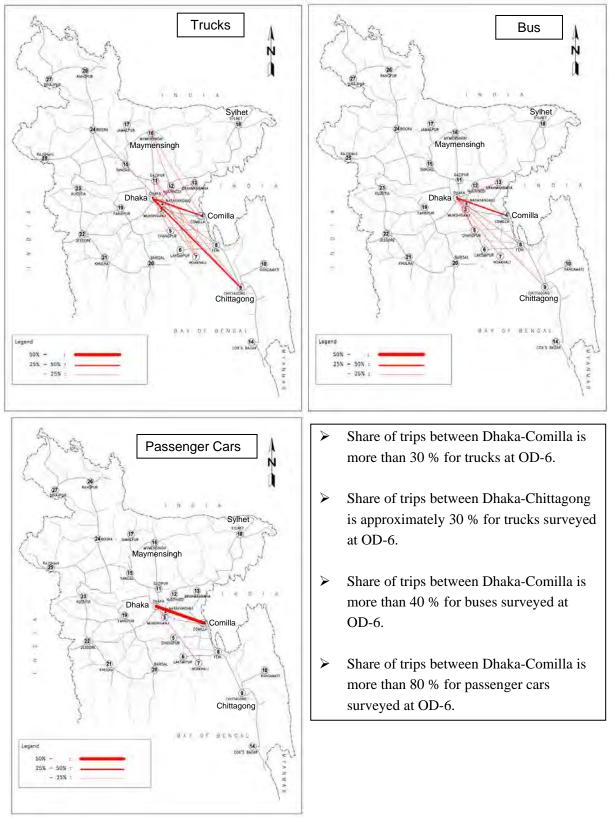
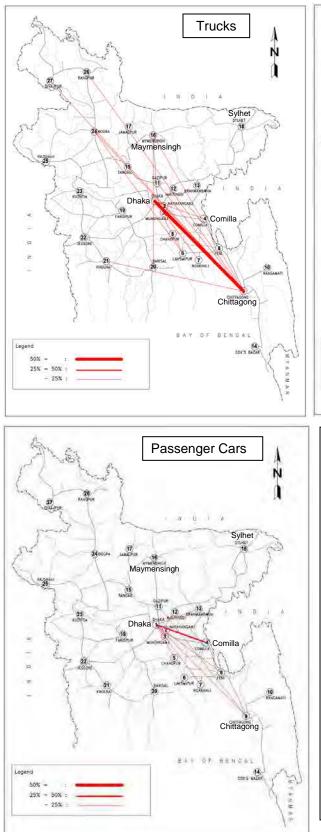
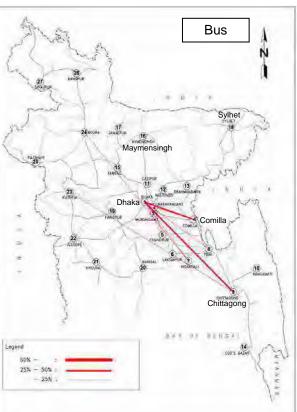

Source: JICA Study Team

Figure 2.3.19 Desire Line Diagram at OD-4


Source: JICA Study Team


Figure 2.3.20 Desire Line Diagram at OD-5

Source: JICA Study Team

Figure 2.3.21 Desire Line Diagram at OD-6

- Share of trips between Dhaka-Chittagong is more than 50 % for trucks surveyed at OD-7.
- Share of trips between Dhaka-Comilla is approximately 40 % for buses surveyed at OD-7.
- Share of trips between Dhaka-Chittagong is more than 40 % for buses surveyed at OD-7.
- Share of trips between Dhaka-Comilla is more than 40 % for passenger cars surveyed at OD-7.
- Share of trips between Dhaka-Noakhali, Dhaka-Feni and Dhaka-Chittagong is more than 10 % for passenger cars

Source: JICA Study Team

(7) Traffic Speed Survey

Table 2.3.9 shows the result of the traffic speed survey. The average speeds between Kanchpur Bridge and Gumti Bridge are 38 km/h in weekdays and 42 km/h in holidays.

	KP		2012	1/2/2		2012/6/3						
Location	(kilometer- post)	Outbound	Outbound	Outbound	average	Outbound	Outbound	Outbound	Outbound	average		
N-1 (0 KP)	0 KP											
Kanchpure bridge (Dhaka side)	12KP	32.72	14.40	17.14	21.42	14.69	15.32	18.46	32.73	20.30		
Meghna Bridge Toll Gate	26.5KP	45.79	37.80	48.33	43.97	43.50	43.50	36.25	48.33	42.90		
Meghna-Gumti Bridge Toll Gate	41.0KP	33.22	32.22	48.33	37.92	41.49	48.33	51.17	34.80	43.95		
average speed 0kp to 41kp		37.24	28.14	37.93	34.44	33.23	35.72	35.29	38.62	35.71		
average speed katchpur to Meghnagumuti		39.51	35.01	48.33	40.95	42.50	45.92	43.71	41.57	43.42		
Location	KP	Inboud	Inboud	Inboud	average	Inboud	Inboud	Inboud	Inboud	average		
Meghna-Gumti Bridge Toll Gate	0 KP											
Meghna Bridge Toll Gate	14.5KP	20.23	43.50	36.25	33.33	45.79	39.59	41.43	41.43	42.06		
Kanchpure bridge (Dhaka side)	29.0KP	27.19	43.50	37.82	36.17	39.54	31.07	48.33	36.25	38.80		
N-1 (0 KP)	41.0KP	16.36	18.00	18.46	17.61	15.32	15.32	18.46	16.74	16.46		
average speed 0kp to 41kp		21.26	35.00	30.84	29.03	33.55	28.66	36.07	31.47	32.44		
average speed Meghnagumuti to kanchpur		23.71	43.50	37.04	34.75	42.67	35.33	44.88	38.84	40.43		
Total average speed 0kp to 41kp		29.25	31.57	34.39	31.74	33.39	32.19	35.68	35.05	34.08		
Total average speed Meghnagumuti to kanchpur		31.61	39.26	42.68	37.85	42.58	40.62	44.30	40.20	41.93		

 Table 2.3.9 Result of Traffic Speed Survey

Source: JICA Study Team

2.4 Present River Traffic Condition

Several factors such as flood level and the change of tidal water level, riverbed scouring and ferry traffic congestion are considered in order to get to know the present river traffic condition.

The present river traffic condition is important to lay out the construction plan successfully and to ensure their safety while river traffic navigates through the construction working sites.

2.4.1 River Traffic Categories Observed

Observation fully covers all present river traffic categories passing under the existing bridges and river traffic condition also.

2.4.2 Observation Methods

(1) Observation day, observation time

This survey is conducted on the days excluding the beginning of the week and weekend. The observation time includes working hours between 7: 00- 18: 00.

(2) Observation locations

The river traffics were observed around the following three bridge sites;

- Kanchpur Bridge
- Meghna Bridge
- Gumti Bridge

(3) Survey area

The survey areas are marked in Figure 2.4.1 through Figure 2.4.3 for each bridge. The influence boundary shown in the figures represents the influence line expected from the implementation of construction. This influence line generally ranges within 200 m. In addition, another 50 meters is added to the influence boundary in order to increase the safety level. Furthermore, the direction of vessels marked in Figure 2.4.1 through Figure 2.4.3 has also been observed during the survey time.

- Plant/Ship size
- Estimated water depth
- Crane length and angle
- Anchor rode angle

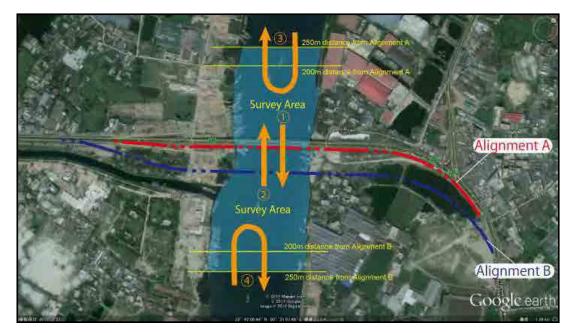


Figure 2.4.1 Survey Area (Kanchpur Bridge)

Figure 2.4.2 Survey Area (Meghna Bridge)

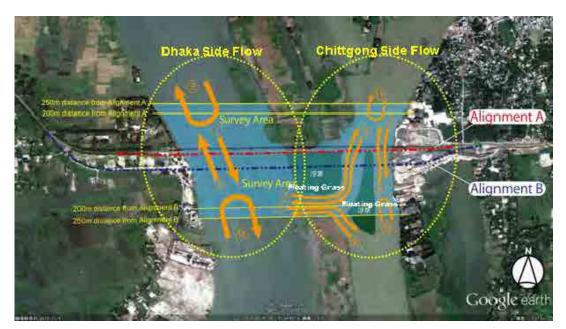


Figure 2.4.3 Survey Area (Gumti Bridge)

(4) Ship classification

Vessels are categorized as ferry, ship, boats carrying people and ships carrying goods. In addition, the length of the hull is classified into three types;

Less than 30 meters,

30 meters to 55 meters,

More than 55 meters

(5) Study results

The observation has been conducted in April, 2012 and the results are formulated accordingly.

1) Kanchpur Bridge (Lahkya River)

Table 2.4.1, Figure 2.4.4 and Figure 2.4.5 show the number of ships passing through and approaching towards Kanchpur Bridge. It is observed that 399 (392 for cargo ships, 7 for passenger ships) ships passed through the Kanchpur Bridge in the time between 7:00 to 18:00. Of which, 258 ships with less than 30 m, 137 ships with 30 to 55 m, 4 ships with more than 55 m, and ships with less than 30 m has been counted as 65 % of the total.

Investigation was conducted at every 30 minute interval and accordingly the observation results are plotted in Figure 2.4.4. The numbers of ships ranging between 7 to 28 and

averaging of 18.1 ships pass through the Kanchpur Bridge at every 30 minutes interval. That means, at every 2 minutes interval, one ship passes through the Kanchpur Bridge.

Figure 2.4.4 also shows that 55 ships passed at the time between 13:00 to 14:00. Of which, 5 ships approached and departed back from the observation range without passing Kanchpur Bridge. No fishing boat was observed near Kanchpur Bridge site.

Direction			1	+2			1+2
Passenger/Cargo		Passenger			Cargo		Total
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)
				122.00			(2.1.)
7:00 ~ 7:30				1	9		10
7:30 ~ 8:00				17	6		23
8:00 ~ 8:30				10	7		17
8:30 ~ 9:00				6	1		7
9:00 ~ 9:30				10	1	1	12
9:30 ~ 10:00							
10:00 ~ 10:30				13	8 3	2	23
$10:00 \sim 10:30$ $10:30 \sim 11:00$				8	6		11
11:00 ~ 11:30				10	2		14
11:30 ~ 12:00				10	ζ		10
					11		
$12:00 \sim 12:30$ $12:30 \sim 13:00$	3			12	13	1	23
	3						
13:00 ~ 13:30				13	15		28
13:30 ~ 14:00	1			13	13		27
14:00 ~ 14:30				13	7		20
14:30 ~ 15:00				12	3		15
15:00 ~ 15:30				17	4		21
15:30 ~ 16:00				9	6		15
16:00 ~ 16:30				8	5		15
16:30 ~ 17:00				12	12		24
17:00 ~ 17:30				24	2		26
17:30 ~ 18:00	1			19	3		23
Total	7			251	137	4	399
Percentage	1.8%			62.9%	34.3%	1.0%	100.0%
Direction		·	3	+4	·		3+4
Passenger/Cargo		Passenger	.	1	Cargo		Total
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)
7:00 ~ 7:30							
7:30 ~ 8:00							
7:30 ~ 8:00 8:00 ~ 8:30							
7:30 ~ 8:00 8:00 ~ 8:30 8:30 ~ 9:00					1		1
$\begin{array}{c cccc} 7:30 & \sim & 8:00 \\ \hline 8:00 & \sim & 8:30 \\ \hline 8:30 & \sim & 9:00 \\ \hline 9:00 & \sim & 9:30 \\ \end{array}$					1		1
7:30 ~ 8:00 8:00 ~ 8:30 8:30 ~ 9:00 9:00 ~ 9:30 9:30 ~ 10:00					1		1
$\begin{array}{cccc} 7:30 & \sim & 8:00 \\ 8:00 & \sim & 8:30 \\ 8:30 & \sim & 9:00 \\ 9:00 & \sim & 9:30 \\ 9:30 & \sim & 10:00 \\ 10:00 & \sim & 10:30 \end{array}$					1		1
$\begin{array}{cccc} 7.30 & \sim & 8.00 \\ 8.00 & \sim & 8.30 \\ 8.30 & \sim & 9.00 \\ 9.00 & \sim & 9.30 \\ 9.30 & \sim & 10.00 \\ 10.00 & \sim & 10.30 \\ 10.30 & \sim & 11.00 \end{array}$					1		1
$\begin{array}{c cccc} 7:30 & \sim & 8:00 \\ \hline 8:00 & \sim & 8:30 \\ \hline 8:30 & \sim & 9:00 \\ \hline 9:00 & \sim & 9:30 \\ \hline 9:30 & \sim & 10:00 \\ \hline 10:00 & \sim & 10:30 \\ \hline 10:30 & \sim & 11:30 \\ \hline \end{array}$					1		1
$\begin{array}{c ccccc} 7:30 & \sim & 8:00 \\ 8:00 & \sim & 8:30 \\ 8:30 & \sim & 9:00 \\ 9:00 & \sim & 9:30 \\ 9:30 & \sim & 10:00 \\ 10:00 & \sim & 10:30 \\ 10:30 & \sim & 11:30 \\ 11:30 & \sim & 12:00 \end{array}$					1		1
$\begin{array}{cccc} 7:30 & \sim & 8:00 \\ 8:00 & \sim & 8:30 \\ 8:30 & \sim & 9:00 \\ 9:00 & \sim & 9:30 \\ 9:30 & \sim & 10:00 \\ 10:00 & \sim & 10:30 \\ 10:30 & \sim & 11:30 \\ 11:30 & \sim & 11:30 \\ 11:30 & \sim & 12:30 \\ 11:2:00 & \sim & 12:30 \end{array}$							
$\begin{array}{cccc} 7.30 & \sim & 8.00 \\ 8.00 & \sim & 8.30 \\ 9.00 & \sim & 9.00 \\ 9.00 & \sim & 9.00 \\ 10.00 & \sim & 10.00 \\ 10.00 & \sim & 11.00 \\ 11.00 & \sim & 11.30 \\ 11.30 & \sim & 12.00 \\ 12.00 & \sim & 12.30 \\ 12.30 & \sim & 13.00 \\ \end{array}$					1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{ccccc} 7.30 & \sim & 8.00 \\ 8.00 & \sim & 8.30 \\ 8.30 & \sim & 9.00 \\ 9.00 & \sim & 9.00 \\ 10.00 & \sim & 10.00 \\ 10.00 & \sim & 11.30 \\ 11.30 & \sim & 11.30 \\ 11.30 & \sim & 12.30 \\ 12.30 & \sim & 13.30 \\ 13.30 & \sim & 14.30 \\ 14.30 & \sim & 14.30 \\ \end{array}$					1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					1		1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				11	1		1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					1		1

 Table 2.4.1 Number of Ships (Kanchpur Bridge)

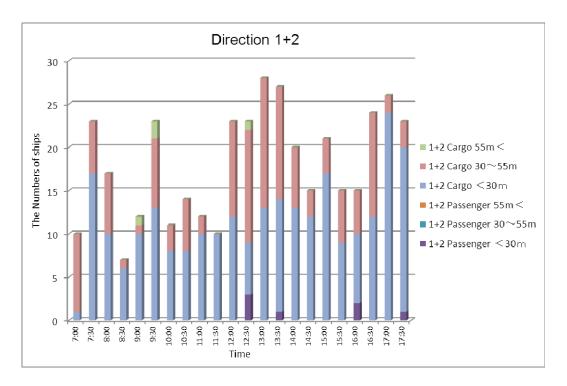


Figure 2.4.4 Numbers of Ships Passed under Kanchpur Bridge

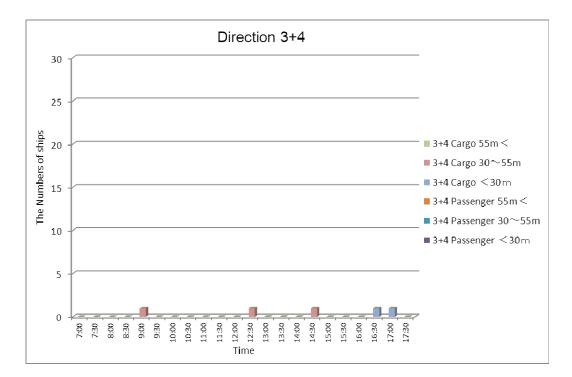


Figure 2.4.5 Numbers of Ships Approached by Kanchpur Bridge

2) Meghna Bridge (Meghna River)

Table 2.4.2, Figure 2.4.6 and Figure 2.4.7 show the number of ships passing through and approaching towards the Meghna Bridge. 611(581 for cargo ships, 30 for passenger ships) ships passed through the Meghna Bridge at the time between 7:00 to 18:00. Of which, 362 ships with less than 30 m, 249 ships with 30 to 55 m, no ship with more than 55 m, and ships with less than 30 m have been counted as 60 % of the total.

It was observed that there were many ships with more than 55 m moored in the right bank of the river but did not sail on the day of observation.

The observations which were conducted at every 30 minutes interval are plotted in Figure 2.4.6. It shows that the numbers of ships ranging between 17 to 38 and averaging of 27.8 ships pass through the Meghna Bridge at every 30 minutes interval. That means, one ship passes through the underneath of Meghna Bridge at every minute interval.

Figure 2.4.6 also shows that 71 ships passed at the time between 7:00 to 8:00. Of which, 29 ships approached and departed back from the observation range without passing Meghna Bridge. Many of passenger boats were moving to and fro near 'Old Ferry Ghat'. Moreover, in the observation site, 2 to 5 boats were observed at every one hour as fishing near Meghna Bridge site.

Direction			1	+2			1+2
Passenger/Cargo		Passenger			Cargo		Total
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)
7:00 ~ 7:30	8			10	15		33
7:30 ~ 8:00	4			19	15		38
8:00 ~ 8:30	4			26	8		38
8:30 ~ 9:00	1			10	13		24
9:00 ~ 9:30	1			13	15		29
9:30 ~ 10:00	5			11	10		26
10:00 ~ 10:30				15	13		28
10:30 ~ 11:00				20	2		22
11:00 ~ 11:30	1			18	12		31
11:30 ~ 12:00				15	6		21
12:00 ~ 12:30				15	6		21
12:30 ~ 13:00				17	4		21
13:00 ~ 13:30			****	14	3		17
13:30 ~ 14:00	1			17	12		30
14:00 ~ 14:30	······			16	16		32
14:30 ~ 15:00	1			20	12		33
15:00 ~ 15:30	1	***************************************		10	12		23
15:30 ~ 16:00	1			16	13		30
16:00 ~ 16:30	1			16	19		36
16:30 ~ 17:00	1			11	16		28
17:00 ~ 17:30				11	14		25
17:30 ~ 18:00				12	13		25
Total	30			332	249		611
Percentage	4.9%			54.3%	40.8%		100.0%
	4.3/0			54.57	40.0/0		
Direction			3	+4	-		3+4
Passenger/Cargo		Passenger		4	Cargo	1	Total
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)
7:00 ~ 7:30	1						1
7:30 ~ 8:00	2						
8:00 ~ 8:30					1		3
8:30 ~ 9:00	1				1		1
	11						1
9:00 ~ 9:30	1 1 1		*****		1		1 1 2
9:30 ~ 10:00	11						1 1 2 3
9:30 ~ 10:00 10:00 ~ 10:30	1 1 2				1		1 1 2 3 0
9:30 ~ 10:00 10:00 ~ 10:30 10:30 ~ 11:00	1 1 2 1			1	1		1 2 3 0 3
$\begin{array}{c ccccc} 9:30 & \sim & 10:00 \\ \hline 10:00 & \sim & 10:30 \\ \hline 10:30 & \sim & 11:00 \\ \hline 11:00 & \sim & 11:30 \\ \end{array}$	1 1 2 1 1 1			1	1 1 1		1 2 3 0 3 1
9:30 ~ 10:00 10:00 ~ 10:30 10:30 ~ 11:00 11:00 ~ 11:30 11:30 ~ 12:00	1 1 2 1			1	1		1 1 2 3 0 3 1 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 1			1	1 1 1		1 2 3 0 3 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 1			1	1 1 1		1 1 2 3 0 3 1 3
$\begin{array}{c ccccc} 9:30 & \sim & 10:00 \\ \hline 10:00 & \sim & 10:30 \\ \hline 10:30 & \sim & 11:00 \\ \hline 11:00 & \sim & 11:30 \\ \hline 11:30 & \sim & 12:00 \\ \hline 12:00 & \sim & 12:30 \\ \hline 12:30 & \sim & 13:00 \\ \hline 13:00 & \sim & 13:30 \end{array}$	1 1 2 1 1 2			1	1 1 1		1 1 2 3 0 3 1 3 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 2 1 1 2			1	1 1 1		1 1 2 3 0 3 1 3 0 1 3 0 1
$\begin{array}{c ccccc} 9:30 & \sim & 10:00 \\ \hline 10:00 & \sim & 10:30 \\ \hline 10:30 & \sim & 11:00 \\ \hline 11:00 & \sim & 11:30 \\ \hline 11:30 & \sim & 12:00 \\ \hline 12:00 & \sim & 12:30 \\ \hline 12:30 & \sim & 13:00 \\ \hline 13:00 & \sim & 13:30 \end{array}$	1 1 2 1 1 2 1 1 2 1 1 1			1	1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 1
$\begin{array}{c ccccc} 9:30 & \sim & 10:00 \\ \hline 10:00 & \sim & 10:30 \\ \hline 10:30 & \sim & 11:00 \\ \hline 11:00 & \sim & 11:30 \\ \hline 11:30 & \sim & 12:00 \\ \hline 12:00 & \sim & 12:30 \\ \hline 12:30 & \sim & 13:00 \\ \hline 13:00 & \sim & 13:30 \\ \hline 13:30 & \sim & 14:00 \\ \hline \end{array}$	1 1 2 1 1 2 1 2 1 1 1 1			1	1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 2 1 2 1 1 1 1			1	1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 1 2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 2 1 1 2 1 1 1 2 2			1	1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 1 2 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 2 1 2 1 1 2 1 1 2			1	1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 2 0 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 0 1 1 1 2 0 0 1 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1 1 1		1 1 2 3 0 3 1 3 0 1 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 2 0 1 1 1 2 0 1 1 1 2 0 1 1 1 1 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2.4.2 Number of Ships (Meghna Bridge)

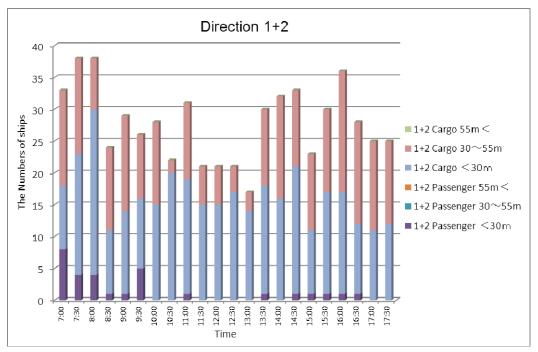


Figure 2.4.6 Numbers of Ships Passed through Meghna Bridge

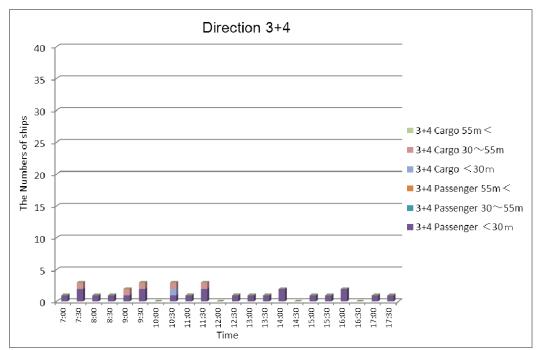


Figure 2.4.7 Numbers of Ships Approached towards Meghna Bridge

3) Gumti Bridge (Gumti River)

(a) Dhaka side

Table 2.4.3 Figure 2.4.8, and Figure 2.4.9 show the number of ships passing through and approaching the Gumti Bridge (Dhaka side). 174 (all for cargo ships) ships passed through the Gumti Bridge at the time between 7:00 to 18:00. Of which, 128 ships with less 30 m, 46 ships with 30 to 55 m, no ship with more than 55 m, and ships with less than 30 m have been counted as 74 % of the total.

The observations which were conducted at every 30 minutes interval are plotted in Figure 2.4.8. It shows that the numbers of ships ranging between 0 to 20 and averaging of 8 ships pass through the Gumti Bridge at every 30 minutes interval. That means, one ship passes through the underneath of Gumti Bridge (Dhaka side) at every 4 minutes interval.

Figure 2.4.8 also shows that 28 ships passed at the time between 11:00 to 12:00. Of which, 116 ships approached and departed back from the observation range without passing the Gumti Bridge (Dhaka side). Moreover, in the observation site, 2 to 8 boats were observed at every one hour as fishing near Gumti Bridge site.

Direction		1+2										
Passenger/Cargo		Passenger			Cargo		Total					
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)					
7:00 ~ 7:30				3			3					
7:30 ~ 8:00				8	1		9					
8:00 ~ 8:30				8	2		10					
8:30 ~ 9:00				4			4					
9:00 ~ 9:30				5	2		7					
9:30 ~ 10:00				11	4		15					
10:00 ~ 10:30				12	2		14					
$10:30 \sim 11:00$ $11:00 \sim 11:30$				7	6		13					
$11:00 \sim 11:30$ $11:30 \sim 12:00$				15	5		20					
12:00 ~ 12:30				13	JJ		20					
12:30 ~ 13:00				4			4					
13:00 ~ 13:30				16	2		18					
13:30 ~ 14:00				18			0					
14:00 ~ 14:30				4			4					
14:30 ~ 15:00				1	5		6					
15:00 ~ 15:30				4	6		10					
15:30 ~ 16:00				2	4		6					
16:00 ~ 16:30				3			3					
16:30 ~ 17:00				6	3		9					
17:00 ~ 17:30				5	1		6					
17:30 ~ 18:00				3	2		5					
Total				128	46		174					
Percentage	L			73.6%	26.4%		100.0%					
Direction		· · · · · ·	9+	+10	· · ·		9+10					
Passenger/Cargo		Passenger			Cargo		Total					
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)					
7:00 ~ 7:30	1			9			10					
7:30 ~ 8:00	1			4			5					
8:00 ~ 8:30	4											
8:30 ~ 9:00				5			9					
	2						2					
9:00 ~ 9:30	2 2			5	2		2 6					
9:00 ~ 9:30 9:30 ~ 10:00	2 2 6			2	2		2 6 6					
9:00 ~ 9:30 9:30 ~ 10:00 10:00 ~ 10:30	2 2 6 4				2		2 6 6 5					
9:00 ~ 9:30 9:30 ~ 10:00 10:00 ~ 10:30 10:30 ~ 11:00	2 2 6 4 4			2	2		2 6 6 5 4					
9:00 ~ 9:30 9:30 ~ 10:00 10:00 ~ 10:30 10:30 ~ 11:00 11:00 ~ 11:30	2 2 6 4 4 5			2 1 3			2 6 5 4 8					
9:00 ~ 9:30 9:30 ~ 10:00 10:00 ~ 10:30 11:30 ~ 11:30 11:30 ~ 12:00	2 2 6 4 4 5 7			2	2		2 6 5 4 8 11					
$\begin{array}{c cccc} 9:00 & \sim & 9:30 \\ \hline 9:30 & \sim & 10:00 \\ \hline 10:00 & \sim & 10:30 \\ \hline 10:30 & \sim & 11:00 \\ \hline 11:00 & \sim & 11:30 \\ \hline 11:30 & \sim & 12:00 \\ \hline 12:00 & \sim & 12:30 \end{array}$	2 2 6 4 4 5			2 1 3			2 6 5 4 8					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 6 4 5 7 2			2 1 3 1			2 6 5 4 8 11 2					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 4 5 7			2 1 3			2 6 5 4 8 11					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 6 4 5 7 2 5			2 1 3 1 3			2 6 5 4 8 11 2 8					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 6 4 5 7 2 5 3			2 1 3 1 3 4			2 6 5 4 8 11 2 8 7					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 6 4 5 7 2 5 5 3 3			2 1 3 1 3 4 2			2 6 5 4 8 11 2 8 8 7 5					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 5 7 2 5 3 3 4			2 1 3 1 3 4			2 6 6 5 4 8 11 2 8 8 7 5 6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 5 7 2 5 3 3 4 3			2 1 3 1 3 4 2 2 1			2 6 6 5 4 8 11 2 8 7 5 6 4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 5 7 2 5 3 3 4			2 1 3 1 3 4 2 2			2 6 6 5 4 8 11 2 8 7 5 6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 5 7 2 5 3 3 4 3 3 3			2 1 3 1 3 4 2 2 1 3			2 6 6 5 4 8 11 2 8 7 5 6 4 6					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 5 7 2 5 3 3 4 3 2			2 1 3 1 3 4 2 2 1 3 1			2 6 6 5 4 8 11 2 8 7 5 6 4 6 3					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 2 6 4 5 7 2 5 3 3 4 3 2 1			2 1 3 1 3 4 2 2 1 3 1	3		2 6 6 5 4 8 11 2 8 7 5 6 4 6 4 6 3 7					

Table 2.4.3 Number of Ships (Gumti Bridge: Dhaka side)

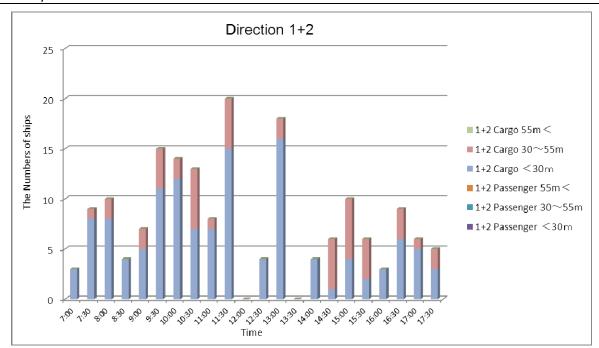


Figure 2.4.8 Numbers of Ships Passed under Gumti Bridge (Dhaka Side)

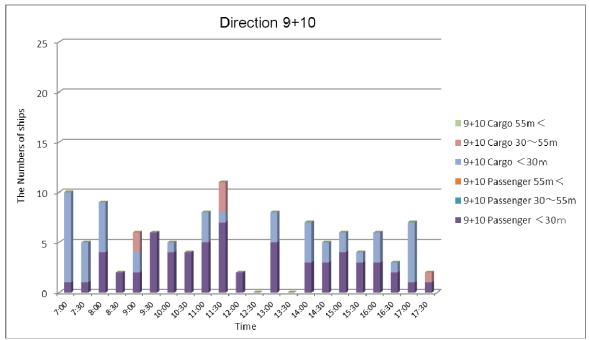


Figure 2.4.9 Numbers of Ships Approached towards Gumti Bridge (Dhaka side)

(b) Chittagong side

Table 2.4.4, Figure 2.4.10 and Figure 2.4.11 show the number of ships passing through and approaching the Gumti Bridge (Chittagong side). 457 (391 for cargo ships, 66 for passenger ships) ships passed through the Gumti Bridge at the time between 7:00 to 18:00. Of which, 427 ships with less 30 m, 30 ships with 30 to 55 m, no ship with more than 55 m, and ships with less than 30 m have been counted as 93 % of the total.

The observations which were conducted at every 30 minutes interval are plotted in Figure 2.4.10. It shows that the numbers of ships ranging between 12 to 30 and averaging of 21 ships pass through the Gumti Bridge at every 30 minutes interval. That means, one ship passes through the underneath of Gumti Bridge (Chittagong side) at every 3 minutes interval.

Figure 2.4.10 also shows that 57 ships passed at the time between 14:00 to 15:00. Of which, 105 ships approached and departed back from the observation range without passing the Gumti Bridge (Chittagong side). Moreover, in the observation site, 1 to 3 boats were observed at every one hour as fishing near Gumti Bridge site.

Direction			5+6+				5+6+7+8
Passenger/Cargo		Passenger			Cargo		Total
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)
7:00 ~ 7:30	1			17	3		21
7:30 ~ 8:00	2			14			16
8:00 ~ 8:30	2			13	2		17
8:30 ~ 9:00	3			18			21
9:00 ~ 9:30	2			13			15
9:30 ~ 10:00	6			15	1		22
10:00 ~ 10:30	6			14	1		21
10:30 ~ 11:00	5			12	2		19
11:00 ~ 11:30	3			16			19
11:30 ~ 12:00	3			15	1		19
12:00 ~ 12:30	2			12	1		15
12:30 ~ 13:00	3			13	1		17
13:00 ~ 13:30	3			24	2		29
13:30 ~ 14:00	4			20	1		25
14:00 ~ 14:30	9			17	1		27
14:30 ~ 15:00	4			24	2		30
15:00 ~ 15:30	2			17	2		21
15:30 ~ 16:00	2			15	6		23
16:00 ~ 16:30	3			17	Ū.		20
16:30 ~ 17:00	1			23	2		26
17:00 ~ 17:30				10	2		12
17:30 ~ 18:00				22	۷		22
Total	66			361	30		457
Percentage	14.4%			79.0%	6.6%		100.0%
rencentage	14.4/0			75.0%	0.0%		100.0 //
Direction		l	3+4+1	1+12			3+4+11+12
Passenger/Cargo		Passenger			Cargo		Total
Size of ship	<30m	30~55m	55m<	<30m	30~55m	55m<	(all)
7:00 ~ 7:30				1			1
7:30 ~ 8:00				9			9
8:00 ~ 8:30				1	3		4
8:30 ~ 9:00				2			2
9:00 ~ 9:30				9			9
9:30 ~ 10:00				8	5		13
10:00 ~ 10:30				10	4		14
10:30 ~ 11:00				3			3
11:00 ~ 11:30				4			4
11:30 ~ 12:00				4			4
12:00 ~ 12:30				3			3
12:30 ~ 13:00				3			3
13:00 ~ 13:30				3			3
13:30 ~ 14:00				2			2
14:00 ~ 14:30				3	1		4
14:30 ~ 15:00				1	1		2
15:00 ~ 15:30			0000000000E00000000E000000000000000000	3	2		5
15:30 ~ 16:00				4			4
16:00 ~ 16:30				7	2		9
16:30 ~ 17:00				, <u>,</u> 1			1
17:00 ~ 17:30				2	2		4
17:30 ~ 18:00				1	1		2
Total Percentage				84 80.0%	21 20.0%		105 100.0

 Table 2.4.4 Number of Ships (Gumti Bridge: Chittagong side)

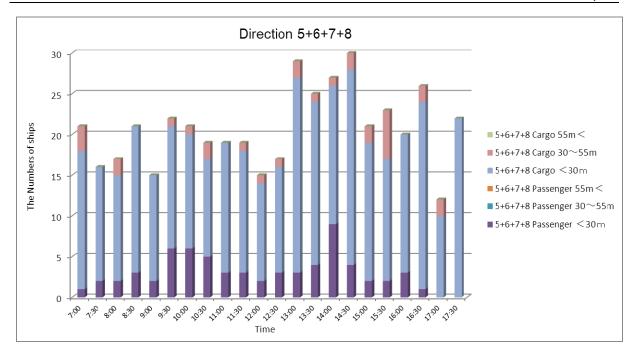


Figure 2.4.10 Numbers of Ships Passed under Gumti Bridge (Chittagong side)

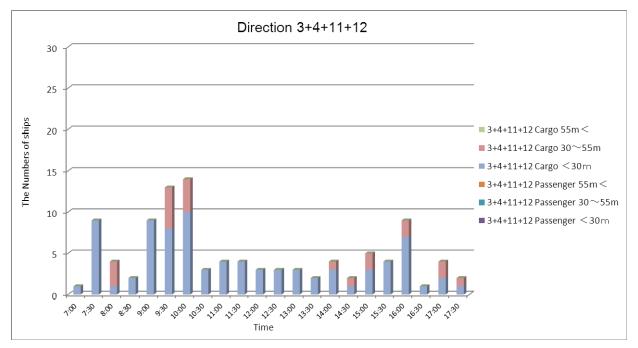


Figure 2.4.11 Numbers of Ships Approached by Gumti Bridge (Chittagong side)

2.5 Detailed Inspection of Structures

2.5.1 Visual Inspection

(1) Objective

The objective of the visual survey is to determine the present condition of the existing bridges and to develop a rehabilitation plan. The visual inspection was conducted for three bridges; Kanchpur, Meghna and Gumti.

(2) Method of Survey

A short distant visual inspection was conducted in accessible areas of the structure such as abutments, lower part of piers and expansion joints.

A distant visual inspection was conducted for non-accessible areas of the structure such as superstructures, and upper parts of piers.

(3) Survey Items

Survey items are identified as followings;

1) Cracks

In general damages caused by repeated vehicle traffic first emerge undersurface of bridge concrete decks. Cracks progress from those running in perpendicular direction to the bridge axis to those running in bridge axis direction. Also, cracks gradually progress to small cracks like crocodile cracks.

2) Isolated lime (Free lime), corrosion

Cracks emerging bottom of concrete decks will progress and penetrate concrete decks, causing water leakage into concrete decks. The leakage water dissolves the lime components and accumulates limes underneath of the concrete decks. If water leakage is running long time, the rusting occurs on the outer surface of steel bars. Accordingly, the trace of steel bar corrosion will propagate towards the surface of the concrete decks.

3) Peeling concrete decks

Salt components brought by concrete neutralization or from outside of the structure, cause corrosion to steel bars. Swelling of steel bars caused by corrosion then causes concrete peeling, creeping and spelling to concrete decks.

4) Exposure of steel bars

If the state of concrete damages is very serious, the steel bars are expected to be exposed to open air. To confirm this state of damage, following survey items were conducted. Moreover, the damage diagnosis criteria are defined in Table 2.5.2 through Table 2.5.5.

Survey Items	Damage level	Survey Location	Distant Visual Inspection	Proximity Visual Inspection	Remarks
Cracks, water leakage, isolated lime	a-e	Beams Cross Beams Substructure	0	0	Shown in Table 2.5.2
Cracks, water leakage, isolated lime	a-e	Slab around pier	0	0	Shown in Table 2.5.3
Exposure of reinforcement	Exist or not exist	Beams Cross Beams Slabs Substructure	0		Shown in Table 2.5.4
Uneven road surface	Exist or not exist	Road		0	Shown in Table 2.5.5

Table 2.5.1 Survey Items

Table 2.5.2 Damage Level

Crack width	Condition	Damage Level
No crack	-	а
Less than 0.2 mm	-	b
	Crack only	с
	Water leakage only	d
More than 0.2 mm	Small amount of isolated lime	d
	Much isolated lime	e

The water leakage initiates from the crack of 0.2 mm width. The damage level is examined by crack width, water leakage.

Condition	Drawing	Damage level
No cracks or crack widths are less than 0.2 mm and crack intervals are over 1.0 m. Water leakage through cracks and isolated lime are not confirmed.		a
Crack width less than 0.2 mm occurs in one direction. These crack intervals are more than 0.5 m. Water leakage through cracks and isolated lime are not confirmed.		b
Crack width is about 0.2 mm and confined within a grid. But water leakage through cracks and isolated lime are not confirmed. Or Crack widths are about 0.2 mm and confined to one direction. But water leakage through cracks and isolated lime are confirmed.		С
Crack widths are about 0.2 mm and confined within a grid. Water leakage through cracks and isolated lime are confirmed. Or There exist many cracks with widths more than 0.2 mm and concrete chips are spalling off. But water leakage through cracks and isolated lime are not confirmed.		d
Many concrete chips are spalling off and water leakage through cracks and isolated lime are confirmed.	T	e

Table 2.5.3 Cracks in Concrete Slab

The damage level in accordance with rebar exposure is defined in Table 2.5.4.

	. 0	. –	
Rebar exposure	Area	Area Condition	
No damage	-	-	No
	Small	Corrosion in rebar	No
Existence of damage	Sman	Decrease in rebar cross section	No
Existence of damage	Large	Corrosion in rebar	No
	Large	Decrease in rebar cross section	Exist

Table 2.5.4 Damage Level and Rebar Exposure

Generally, the rebar exposure is the final stage of concrete damage. This time the rehabilitation work will cover the damaged area so that the widely and severely corroded case should be identified.

Condition	Damage	
Uneven less than 20 mm	No	
Uneven more than 20 mm	Exist	

Table 2.5.5 Unevenness of Road Surface

The unevenness of expansion joints or pavement surface should be identified from above mentioned criteria.

- (4) Result of Visual Survey
- 1) Kanchpur Bridge
- (a) Substructure

After careful investigation of the substructures of Kanchpur Bridge, no cracks were found in the existing bridge piers. There were several cracks observed in both abutments A1 and A2, each crack exceeding 0.2 mm. Water leakage through the crack in A1 was also observed. The state of these cracks are designated as Damage d for A1 and c for A2

A rebar exposure was found in both Pier 2 and Pier 3.

(b) Beams and Cross beams

There were no cracks observed in the beams or cross beams. Moreover, there was no noticeable damage observed in the rebar embedded in the beams and cross beams. The state is Damage a.

(c) Slab

There were no cracks observed in the slab. The state is Damage a.

(d) Uneven road surface

Unevenness on the road surface was observed, especially in the expansion joints. The relative vertical displacement was found to be more than 20 mm.

- 2) Meghna Bridge
- (a) Substructure

After extensive investigation on the substructures of Meghna Bridge, the cracks with width more than 0.2 mm were found in Piers 1, 3, 6, 8, 9, 10, 11 and Abutment 2. So, their state is Damage c. The state of other piers is Damage a.

Small clear cover in the concrete were found in Piers 3, 4, 5, 6, 7, 8, 9 and 12, but there was no noticeable damage observed in the embedded rebar.

(b) Beams and Cross beams

There were no cracks observed in any of the sections. The state is Damage a. Moreover, in the section between Pier 12 and Abutment 2, slightly corroded rebar was observed.

(c) Slab

Crack with a width over 0.2 mm and partly isolated lime were observed in the slab between Pier 12 and Abutment 2. Their state is designated as Damage d. No crack was detected in other areas, so their state is Damage a.

(d) Uneven road surface

Unevenness on the road surface was observed, especially in the expansion joints. When a heavy loaded truck was passing over an expansion joint, the relative vertical displacement of the two faces of the expansion joint was noticed and its magnitude exceeds 20 mm.

- 3) Gumti Bridge
- (a) Substructure

The state is Damage a except for the following.

A crack with a width less than 0.2 mm, stated as Damage b, was found in Pier 1. Cracks with a width more than 0.2 mm were found in Piers 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15 and 16, all these being Damage c except Pier14 and 16 which are Damage d.

Water leakages were found in Piers 14 and 16. Beyond the concrete damage, there was no noticeable damage observed in the embedded rebar.

Small clear cover in the concrete was found in Piers 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15 and 16 but there was no noticeable damage observed in the embedded rebar.

(b) Beams and Cross beams

The state is Damage a except for the following.

There were cracks with a width more than 0.2 mm and water leakage observed in the sections around Piers 5, 6, 7 and 10. Those areas can be evaluated as damage d according to Table 2.5.1.

(c) Slab

No cracks were observed, therefore the state is Damage a.

(d) Unevenness on road surface

Unevenness on the road surface was observed, especially in the expansion joints. While a heavy loaded truck was passing over an expansion joint, the relative vertical displacement of the two faces of the expansion joint noticed and its magnitude exceeds 20 mm.

4) Summary of the observed damages

The damages of the three bridges have been observerd as follows;

	Kanchpur	Meghna	Gumti	
Sub-structure	A crack over 0.2 mm width in both A1 and A2 with water leakage in A1. Rebar exposures in P2 and 3. Abutment1 Total and the second secon	Cracks over 0.2 mm width in P3, 6, 8, 9, 10, 11 and A2. Small indents in P3, 4, 5, 6, 7, 8, 9 and 12. No rebar deteriorations. Pier 3	A crack under 0.2 mm width in P1. Cracks over 0.2 mm width in P2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15 and 16. Water leakage in P 14 and 16. Small indents in P1, 2, 3, 4, 6, 7, 8, 8, 10, 12, 13, 14, 15 and 16. No rebar deterioration. Pier 14	
Damage level	d	a	d	
Girders & Cross beams	No visible cracks.	Rebar exposures between P12 and A2. P12-A2	Cracks over 0.2 mm width with water leakage around P5 to P7 and P10. P5-P6	
Damage level	a	a	d	
Deck slab	No visible cracks.	A crack over 0.2 mm width with small isolated lime between P12 and A2.	No visible cracks.	
Damage level	a	а	а	
State	The deterioration level is same as usual aging			
Causes of Deterioration	Aging			

Table 2.5.6 Observation of the Damages (Structures)

	Kanchpur	Meghna	Gumti	
Expansion joint				
Damage	Exist	Exist	Exist	
Hinge		E	The F	
Damage	N/A	Exist	Exist	
State	Serious	Serious	Serious	
Possible causes of damages	Overloaded trucks Insufficient maintenance			

Table 2.5.7	Observation of	the Damages	(Accessories)
--------------------	-----------------------	-------------	---------------

2.5.2 Kanchpur Bridge Survey

(1) Dimension measuring

No physical dimensions or as-built drawings are available for the existing Kanchpur Bridge, therefore, all geometric properties of the existing bridge have been measured using measuring tools along with a Total Station where applicable. Total Station is widely used for measuring any bounded area. The geometric information collected during the survey stage is presented as a general drawing as shown in Appendix 5.

(2) Schmidt hammer test

The Schmidt hammer test was conducted for bridge piers no. P1-P5 and pier no.P7 in order to predict the concrete strength. But, being similar to P5, the Schmidt hammer test was not conducted for pier no. P6. For each pier, there are 16 points targeted within a grid net.

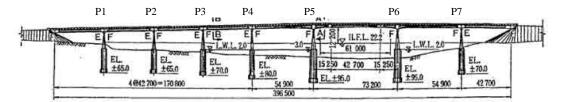


Figure 2.5.1 Kanchpur Bridge Profile

Table 2.5.8 Schmidt Hammer Tests Result

PIER No: #P1 (UPSTREAM)								
	44	42	44	46				
	46	42	44	52				
	40	42	46	42				
	42	40	46	54				

PIER No: #P2 (UPSTREAM)

44	46	46	46
44	46	40	48
44	42	40	42
50	54	48	40

PIER No: #P3 (UPSTREAM)

42	36	36	38
44	45	50	36
48	38	32	35
44	40	35	38

PIER No: #P4 (UPSTREAM)

40	39	38	36
38	42	40	40
38	39	44	36
36	32	40	42

PIER No: #P5 (UPSTREAM)

PIER No: #P7 (UPSTREAM)

46	44	40	46
44	42	42	44
50	48	50	50
46	46	45	48

PIER No: #P1 (DOWN STREAM) 45 38 48 50 50 47 46 48 40 43 40 50 46 44 50 40

PIER No: #P2 (DOWN STREAM)

50	52	46	50
40	50	48	50
42	44	42	42
40	50	42	42

PIER No: #P3 (DOWN STREAM)

50	44	37	40
38	40	40	38
38	40	40	42
40	38	36	40

PIER No: #P4 (DOWN STREAM)

42	36	34	34
36	36	38	36
38	36	34	40
40	38	38	36

PIER No: #P5 (DOWN STREAM)

40	44	38	50
42	44	42	42
44	42	40	46
48	46	40	44

PIER No: #P7 (DOWN STREAM)

44	42	44	44
46	42	48	48
42	46	42	47
48	48	40	46
			Unit: Mpa

Source: JICA Study Team

According to the report (1978) on Kanchpur Bridge published by the Journal of "Concrete Engineering", the concrete compression stiffness is designed as 211 kg/cm^2 . But as per the Schmidt Hummer Test results,

the concrete stiffness is found to be higher than 211 kg/cm^2 . Therefore, for safety consideration, the design concrete compression stiffness is set at 211 kg/cm^2 .

- (3) Reinforcement survey
- 1) Overall

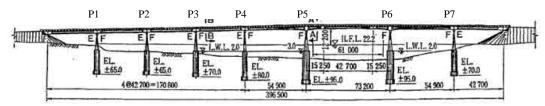
The reinforcement pitch was detected by using electromagnetic radar waves, whereas the bar diameter along with concrete cover was determined by the chipping method.

2) Overview of the equipment for Rebar detection

The device radiates electromagnetic waves through a concrete surface and catches reflected waves from embedded objects that have different electrical characteristics than concrete. Object location and depth are then recorded and displayed as simple image data. A detector with higher resolution that can easily sense embedded rebar may be required. For rebar detection, the Consultant will use the GSSI manufactured structure scanner SIR-3000 (2.6 GMHz antenna).

3) Survey method

It is a cumbersome job to conduct a reinforcement survey for all bridge piers. Therefore, in order to reduce the work volume, all bridge piers are grouped as follows;


Group A: P1, P2, P3 \rightarrow P2 selected

Group B: P4, P7 \rightarrow P7 selected

Group C: P5, P6 \rightarrow P5 selected

The combination of piers is set as group A for supporting 42.7 m length girders, group B for supporting 42.7 m and 54.9 m length girders and group C for supporting 54.9 m and 73.2 m length girders.

From each group, only a single pier was selected and tested by electromagnetic radar wave. This test was conducted on the locations shown in the following Table 2.5.9. The remaining piers were tested only at the lower part of each pier (location shown in Table 2.5.10) in order to confirm the survey results.

Item	Height	Plane	
Electromagnetic	Top of the pile cap above 1.5m (approx.)	123	
wave rebar survey	1.5 m from top of the pier	123	
Concrete chipping	Top of pile cap above 1.5m (approx.)	1)	
	1.5 m from top of the pier	123	

Table 2.5.9 Survey Location (Piers No. P2, P5, P7)

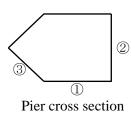
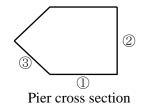



Table 2.5.10 Survey Location (Piers No. P1, P3, P4, P6)

Item	Height	Plane
Electromagnetic wave rebar survey	Top of the pile cap above 1.5m (approx.)	123

4) Survey results

The survey results obtained are expressed in terms of reinforcement diameter, concrete cover and reinforcement spacing, which are listed in Table 2.5.11.

Item	Reinforcement	Diameter	Cover (mm)		Spacing (mm)	
Item		Diameter	max	min	max	min
Group A	Longitudinal	D29	73	49	190	70
(P1,P2,P3)	Ноор	D16	55	30	390	180
Group B	Longitudinal	D29	65	55	190	80
(P4,P7)	Ноор	D16	45	36	400	230
Group C (P5,P6)	Longitudinal	D29	124	68	240	70
	Hoop	D16	106	52	370	220

Source: JICA Study Team

From the above observation it can be assumed;

- 1. The longitudinal reinforcement, D29, is arranged at 150 mm spacing.
- 2. The hoop reinforcement, D16, is arranged at 300 mm spacing.
- 3. The minimum cover to the hoop rebar is 35 mm.

2.6 Baseline Survey

2.6.1 Average Daily Traffic (ADT)

Table 2.6.1 shows Average Daily Traffic (ADT) at Kanchpur and Meghna and Gumti Bridges. The details of ADT results are shown in Appendix 4.

Locatio	on	Motorized Vehicles	Non-Motorized Vehicles	Total
	(Number of Vehicles)	34,453	767	35,220
Kanchpur	(PCU)	76,872	1,275	78,147
Meghna,	(Number of Vehicles)	27,578	-	27,578
Gumti	(PCU)	65,147	-	65,147

Table 2.6.1 ADT Values (2012)

Source: JICA Study Team

2.6.2 Traffic Speed

Table 2.6.2 shows the result of the traffic speed survey. The average speeds between Kanchpur and Gumti Bridges are measured as 38 km/hr in weekdays and 42 km/hr in holidays. The details of traffic speed survey results are shown in Appendix 4.

Location	Week day	Holliday
Kanchpur - Gumti	37.9 km/hr	41.9 km/hr

 Table 2.6.2 Traffic Speed (2012)

Source: JICA Study Team

2.6.3 Accident rate

The number of accidents that occurred between Kanchpur and Gumti Bridges is shown in Table 2.6.3.

Target area;

"1 km ahead of Kanchpur Bridge (11.8 KP)" to "1 km beyond Gumti Bridge (42.2 KP)"

	Fatal Accident No.	Non-Fatal Accident No.	Total Accident No.
1008 2007	98	34	132
1998-2006	12(annual average)	4(annual average)	16(annual average)
2007-2008	26	6	32
2009-2010	11	1	12

 Table 2.6.3 Number of Accidents

Source: Accident Research Institute data edited by JICA Study Team

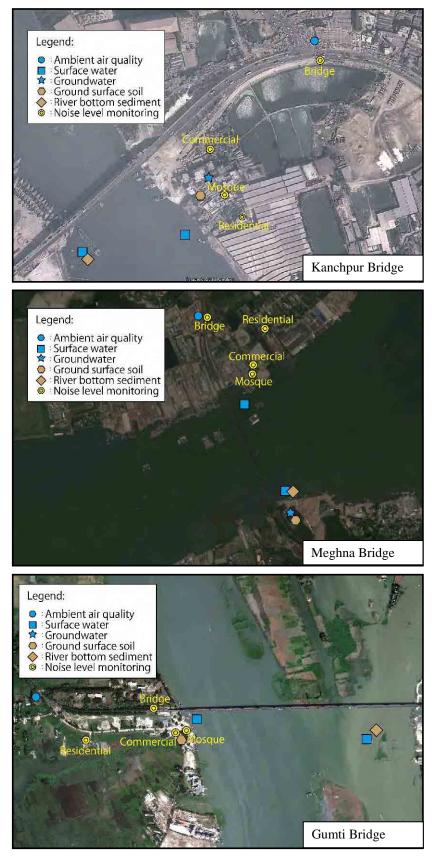
As the applicable traffic volume is not available for 2009, the traffic volume at 2009 is projected by the growth rate used for this project. The number of accidents is divided by total travel distance. An accident rate is found to be 4.1 accidents / 10million vehicle kilometers which is calculated based on the following.

- Accident rate: accident number / (traffic volume * travel distance * 365 days)
- Accident number: 12 accidents
- Traffic volume (2012): 31,016 vehicles/day (average traffic volume of Kanchpur and Meghna, Gumti)
- Traffic volume (2009): 26,257 vehicles/day (calculated from 2012 to 2009 by growth rate of this project)
- Travel distance: 30.4 km (from 11.8 KP to 42.2 KP)

2.6.4 Air Quality

Ambient air quality was monitored alongside the road at the three bridges. Table 2.6.4 represents the ambient air quality results and Figure 2.6.1 shows their monitoring points.

	Kano	chpur	Meg	ghna	Gu	imti			Environmer	ntal Conservatio	n Rules, 1997 (Bangladesh)	
Season Sampling date	Dry 8/5/2012	Wet 16/7/2012	Dry 8/5/2012	Wet 16/7/2012	Dry 9/5/2012	Wet	Japanese Standard	WHO	Industrial area	Commercia 1 and mix areas	Residential and rural areas	Sensitive area	
SPM	714	1,013	1,041	1,530	339	607	100	-	500	400	200	100	
PM2.5	94	160	144	197	61	86	-	10	65				
PM10	193	270	317	510	131	170	-	20	150				
SO2	96	191	60	110	55	80	110	20	120	100	80	30	
NO2	70	160	56	90	50	74	80	40	100	100	80	30	
Pb	0.63	0.55	0.38	0.33	0.27	0.25	-	-		0	.5		


Table 2.6.4 Results of Ambient Air Quality Analysis

Unit: μ g/m³

: Exceeding Standards

Note: Standard applied is as industrial area for Kanchpur and Meghna sites. Gumti Bridge site is categorized as commercial area based on the surrounding condition of economic activities

Source: JICA Study Team

Note: location of groundwater sampling is not indicated in this figure because no designated well location traced near Gumti Bridge.

2.6.5 Surface Water Quality

The sampling points for surface water quality assessment are shown in Figure 2.6.1 and the results of the surface water test are shown in Table 2.6.5.

- high concentration of Total Coliform probably due to discharge of human waste into the river without treatment
- high concentration of COD and BOD which indicates many raw materials including the above waste are being discharged into the river before oxidization/decomposition and the resulting very low dissolved oxygen concentration makes it difficult for fish to survive
- high concentration of Ammonia Nitrogen probably from human waste
- high concentration of oil and greases as untreated effluents from factories

Due to its high Total Coliform concentration, Lahkya River water is not suitable for any use. As for water qualities in the Meghna and Gumti Rivers, they are similar but are much better than Lahkya River since Total Coliform concentration and COD/BOD are somewhat tolerable for uses other than drinking water in Bangladesh Standards.

River water		La	hkya			Meghna			Gumti (H					Conservation Rule 1997 Bangladesh)				
Lacation	Upstrear Kanchpı	n of 1r Bridge	Downstro Kanchpu	cam of r Bridge	Upstream Meghna	n of Bridge	Downsti Meghna	ream of Bridge	Upstre Gumti	am of Bridge	Downstr Gumti B	cam of ridge	-					
Season	Dry	Wet	Dry	Wct	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wct	king wate ion	rpose	er after reatment			
Date	05/05/2012	16/07/2012	05/05/2012	16/07/2012	05/05/2012	16/07/2012	05/05/2012	16/07/2012	05/05/2012	16/07/2012	05/05/2012	16/07/2012	Source of drinking water after disinfection	Recreation purpose	Source of water after conventional treatment	Fishery	Industry use	Irrigation use
pII [-]	7.0	8.2	7.0	8.4	6.7	7.2	6.7	7.1	6.7	7.3	6.6	7.1	6.5 -8.5	6.5 -8.5	6.5 -8.5	6.5 -8.5	6.5 -8.5	6.5 -8.5
Turbidity (NTU)	85	158	12	123	35	10	28	6	12	8	53	3	-	-	-	-	-	-
$^{ m DO}$ [mg/Q]	0.3	3.2	0.1	4.1	4.2	6.3	4.7	6.7	4.4	5.8	4.4	6.7	>6	>5	>6	>5	>5	>5
Total Coliform [n/100m2]		>10,000	10,000>	>10,000	200	8	520	21	540	10>	1040	10>	50>	200>	5,000 >	-	5,000 >	1,000 >
TDS[mg/Q]	468	2305	570	1810	85	72	76	54	72	47	108	87	-	-	-	-	-	-
TSS [mg/l]	153	248	16	123	29	13	28	11	25	9	40	12	_	-	-	-	-	-
COD [mg/l]	59	84	47	128	8	6	7	8	8	6	8	5	-	-	-	-	-	-
BOD5 [mg/l] NH4-N [mg/l]		12	10	19	3	1	3	1	1	1	3	1	2>	3>	6>	6>	10>	10>
	9.6	3.5	9.5	1.2	0.3	0.1	0.5	0.1	0.27	0.1>	0.3	0.1	-	-	-	-	-	-
Oil and grease [mg/l]	4.7	2.8	5.1	3.9	3.8	0.8	4.1	0.7	6.2	0.1	5.3	0.1	0.01	-	-	-	-	-

Table 2.6.5 Results of Surface Water Analysis

Exceeding Standards

Source : JICA Study Team

2.6.6 Groundwater

The groundwater is necessary for daily life as drinking water in most areas where pipeline water is not available. At the project site, wells are dug through ground surface and used for drinking by local people.

					Unit: mg/L
Location	Kanchpur	Meghna	Gumti	Bangladesh Standard for Drinking Water(ECR'97)	WHO Guideline values,2004 (Drinking Water)
Date of sampling	5/5/2012	5/5/2012	5/5/2012	5/5/2012	5/5/2012
pH ^{**1}	6.7	6.8	6.8	6.5-8.5	6.5-8.5
EC **2	824	553	646	-	(2,000 by EPA)
Turbidity ^{**3}	24.7	28.7	43.1	10>	5>
Chloride	75	27	23	150-600	250>
Total hardness	248	238	222	200-500	500>
Iron	2.0	2.5	3.6	0.3-1.0	0.3>
Manganese	0.053	0.840	1.156	0.1>	0.4>
Arsenic	0.052	0.075	0.079	0.05>	0.01>

Table 2.6.6 Results of Groundwater Analyse
--

Exceeding Standards

Source: JICA Study Team ※1 : Unit Dimensionless

 ≈ 1 : Unit Dimensionles ≈ 2 : Unit μ S/m

3 : Unit NTU

Locations of groundwater sampling were shown in Figure 2.6.1. As shown in the above table, the concentrations of Turbidity, Iron, Manganese and Arsenic in groundwater near the three bridges do not always satisfy drinking water standards of Bangladesh or WHO. Arsenic is classified by IARC³ in Group 1 (carcinogenic to humans).

2.6.7 Soil pollution

Surface soils on the ground around the three bridges were sampled as shown in Figure 2.6.1 and analyzed accordingly. Because Bangladesh does not have any standard for soil pollution, the standards in Canada, the United States and Japan are used here for evaluation. The results of the primary survey satisfied all of the three standards and it can be said that there is no soil pollution in the project site.

³ International Agency for Research on Cancer

					Unit: mg/k	g dry soil				
	Ι	Location		Guidelines ⁴						
	Kanchpur	Meghna	Gumti	CCME ⁵	US EPA ⁶	Japan ⁷				
Arsenic As	1.8	2.4	2.7	-	-	150				
Cadmium Cd	0.10	0.07	0.09	0.822	850	150				
Chromium Cr	18	25	28	87	850	-				
Lead Pb	3.6	3.6	9.2	600	400	150				
Mercury Hg	0	0	0	50	510	15				
Ignition loss	2,200	2,800	2,700	-	-	-				

Table 2.6.7 Results of Surface Soil Analysis

Source: JICA Study Team

2.6.8 Riverbed sediment

Riverbed sediments were sampled at the location where many vessels are being moored as shown in Figure 2.6.1, and were analyzed for the three rivers. The results are summarized in Table 2.6.8 and international guidelines are taken since there is no standard for sediment pollution in Bangladesh. As shown in the table, contamination by heavy metals, arsenic, Cadmium, Chromium, Lead and Mercury are within guidelines and considered as not polluted. The organics content is also acceptable.

Table 2.6.8 Results of Sediment Analysis

				Unit: mg/kg dry soil
		Location		Guidelines, criteria or classification
	Vanahnur	Meghna	Gumti	US EPA ⁶
	Kanchpur	wieginia	Guinti	Guide-line ⁸
Arsenic As	2.1	0.9	4.2	33
Cadmium Cd	0.8	< 0.002	0.1	4.98
Chromium Cr	9	6	20	111
Lead Pb	3.6	3.6	9.2	128
Mercury Hg	0	0	0	1.06
Loss on ignition (Organics content)	6,700	2,000	4,300	-

Source: JICA Study Team

⁴ Soil Environment Center, 1999 and Commercial Law Institue, 1999

⁵ CCME- The Canadian Council of Ministers of the Environment have adopted these guideline numbers as the Canadian Soil Quality Guidelines for the Protection of Environment and Human Health- Industrial Land Use (1999)

⁶ US EPA- The United States Environmental Protection Agency (USEPA), adopted these guideline numbers as their Risk Based Screening Levels for Industrial Land Use, 1996

⁷ Soil Contamination Countermeasures Act (Act No. 53 of 2002)

⁸ Consensus-based freshwater sediment quality guidelines, US EPA, 2000