Karachi Urban Transport Corporation The Islamic Republic of Pakistan

PREPARATORY SURVEY (II) ON KARACHI CIRCULAR RAILWAY REVIVAL PROJECT IN ISLAMIC REPUBLIC OF PAKISTAN

FINAL REPORT

VOLUME 1/2 MAIN REPORT

FEBRUARY 2013

JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD. YACHIYO ENGINEERING CO., LTD. JAPAN ELECTRICAL CONSULTING CO., LTD.

4 R
JR(先)
13-009

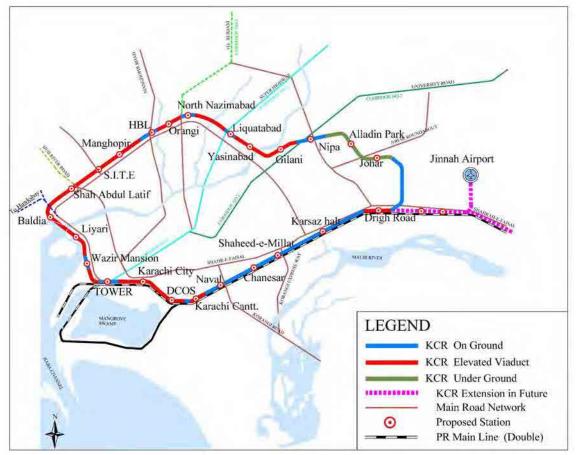
Karachi Urban Transport Corporation The Islamic Republic of Pakistan

PREPARATORY SURVEY (II) ON KARACHI CIRCULAR RAILWAY REVIVAL PROJECT IN ISLAMIC REPUBLIC OF PAKISTAN

FINAL REPORT

VOLUME 1/2 MAIN REPORT

FEBRUARY 2013


JAPAN INTERNATIONAL COOPERATION AGENCY

NIPPON KOEI CO., LTD. YACHIYO ENGINEERING CO., LTD. JAPAN ELECTRICAL CONSULTING CO., LTD.

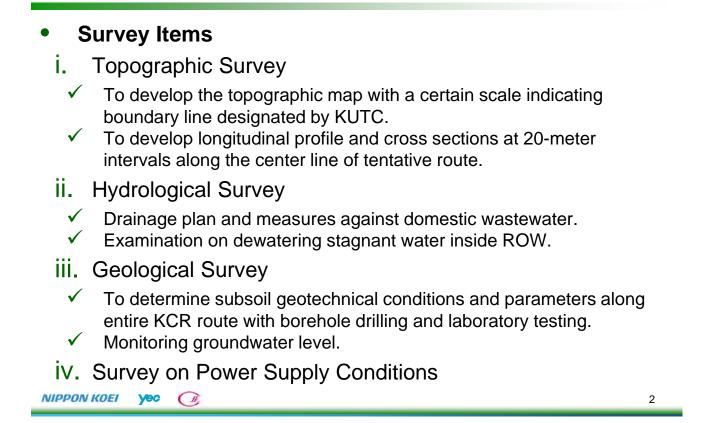
Exchange Rate

Description	Exchange Rate
JPY / USD	78.7
PRs / USD	94.5
JPY / PRs	0.83

LOCATION MAP

SALIENT FEATURES

Civil & Station structures	
Total Route Length	43.24 km
On-ground	15.68 km
Elevated	23.86 km
Trench	2.28 km
Bridge	1.42 km
Total Number of Stations	24
On-ground	10
Elevated	12
Trench	2
Gauge	Standard gauge, 1435 mm
Depot & Workshop	
Location	Wazir Mansion Depot-Hill
Track-work	
Rail	UIC 60 kg, 54 kg
Type of Track	Ballast, Solid-bed


Power supply system	
Grid Stations (GS)	2 GS at Mauipur & KDA
Traction Power Substation (TSS)	2 TSS at Alladin Park & Liyari
Electrification System	A/C-25kV x2 AT feeding system
Overhead Contact System	Simple catenary
Signal & Telecom System	
Signal System	ATO & CBTC
Telecom System	Dedicated fibre optic cable network with train radio etc
Rolling Stock	
Туре	Electric multiple unit (EMU)
Train formation	4 cars (2M2T) with 20 m long car body
No. of Trains at Opening	25 train sets

Chapter 1 Introduction

- Objectives and Scope of the Study
 - ✓ To conduct topographic, hydrological, geological survey and KESC grids survey along the KCR entire route.
 - To review the KCR alignment plan, civil structures, track, depot plan and power supply system.
 - To provide advices and suggestions to strengthen the abilities of KUTC as the project implementation institution.
 - ✓ To conduct the O&M surveys of urban railways in the third countries and examine and propose a viable O&M plan.
 - To review the project costs and the results of economic and financial analysis.

Chapter 2 Survey on Site Conditions and Facilities

Chapter 3 Review of Demand Forecast

(1) Prerequisite Conditions for Demand Forecast

Yea	ar	2022	2030	2040		
KOD	A	Loop line + Extension line		Loop line + Extension line		
KCR	В	Shah-Abdul-Latif ~ Drigh Road	Shah-Abdul-Lat + Extens	tif ~ Drigh Road sion line		
Bus	1		n area of the existing bu er routes from the static			
	2	Extension to suburbar	n area of the existing bu	us route network		
BRT a	and	Green and Red line	Green, Red, Brown, Aqua, Orange, Yellov and Purple line			
Veloc	city	(Outside KCR)	25km/h outside KCR, 15km/h inside KCR	25km/h		
Road		Under construction	Implementation bas	sed on Master Plan		
IIPPON KO)EI	yec 🕡	1	(Source; JICA Study Team) 3		

Chapter 3 Review of Demand Forecast

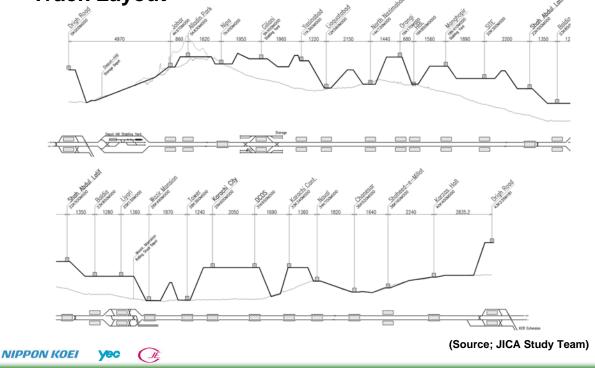
(2) KCR Demand

ltem	Project I	Demand	Maximum Number of Passengers loaded by section				
Case	2022	2022	2030				
N-A1	N-A1 578,362 1,223,066		236,999	448,476			
N-A2	N-A2 526,738 1		219,548	426,870			
N-B1	N-B1 306,236		225,101	449,858			
N-B2	283,543	798,716	207,820	427,397			

(Source; JICA Study Team)

4

NIPPON KOEI Yec 📿


Chapter 4 Review of Technical Standards and Railway Alignment

Review Items of Technical Standard

- ✓ Basic concept based on Japanese standard
- Rolling stock gauge
- Construction gauge
- Distance between track centers
- Formation width
- Type of station and platform design (type and width)
- Intermodal facility plan
- Basic Concept of Route Alignment
 - Based on results of topographic & boundary survey
 - On-ground track is applied to parallel section to PR line, between Tower and Drigh Road, on the assumption that PR tracks will be shifted.

Chapter 4 Review of Technical Standards and Railway Alignment

• Track Layout

Chapter 5 Review of Preliminary Design

Scope of the Project (1/3)

lt	em	Option N-A1, A2	Option N-B1
	Route Length (total)	43.24 km	20.73 km
	On-ground	15.68 km	9.77 km
	Elevated	23.86 km	10.20 km
	Trench	2.28 km	-
Civil & Station	Bridge	1.42 km	0.76 km
	Number of Stations	24	13
	On-ground	10	6
	Elevated	12	7
	Trench	2	-
	Total Stabling Capacity	31 trains at opening	19 trains at opening
	Total Stabiling Capacity	(43 trains in future)	(22 trains in future)
	Wazir Mansion Depot &	19 trains at opening	15 trains at opening
	Workshop	(23 trains in future)	(18 trains in future)
Danat & Warkshan	Depet Hill Depet	4 trains at opening	4 trains at opening
Depot & Workshop	Depot-Hill Depot	(10 trains in future)	(4 trains in future)
	Manghopir Stabling	2 trains at opening	
	Yard	(2 trains in future)	-
	Ciloni Stobling Vord	6 trains at opening	
	Gilani Stabling Yard	(8 trains in future)	-

(Source; JICA Study Team)

7

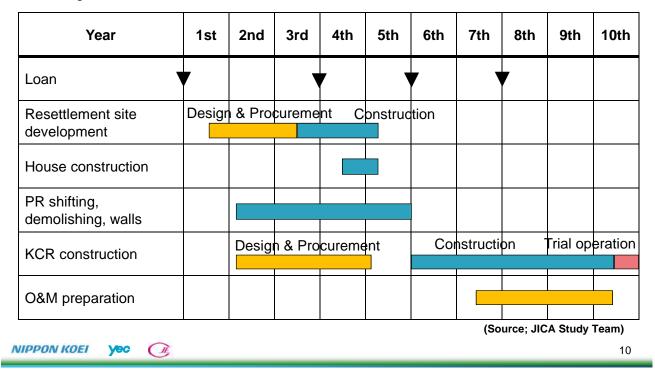
6

Chapter 5 Review of Preliminary Design

Scope of the Project (2/3)

	lte	em	Option N-A1, A2 Option N-B1					
		Gauge	Standard gauge, 1435 mm					
		Rail	UIC 60 kg for main line					
		Rail	UIC 54 kg for s	ub line in depot				
	Track		Ballasted track in	Ballasted track in				
	Hack		on-ground sections	on-ground sections				
		Type of Track	Solid bed in	Solid bed in				
			elevated and trench	elevated sections				
			sections					
		Grid Station (GS)	2 GS at Mauipur &	1 GS at Mauipur				
			KDA					
			220 kV Mauripur-					
		Transmission Line	Liyari	220 kV, Mauripur-				
			132 kV, KDA-Alladin	Liyari				
	Power Supply System		Prak					
	i ower oupply oystern	Traction Power	2 TSS at Alladin	1 TSS at Liyari				
		Substation (TSS)	Park & Liyari					
		Sectioning Post (SP)	2 SP at Orangi &	1 SSP at Karachi				
			Karsaz	Cantt				
		Electrification System	A/C-25kVx2 AT feedi	ng system				
Overhead Contact System Simple catenary								
NII	PPON KOEI Yec 🕖		(Sou	rce; JICA Study Team) 8				

Chapter 5 Review of Preliminary Design

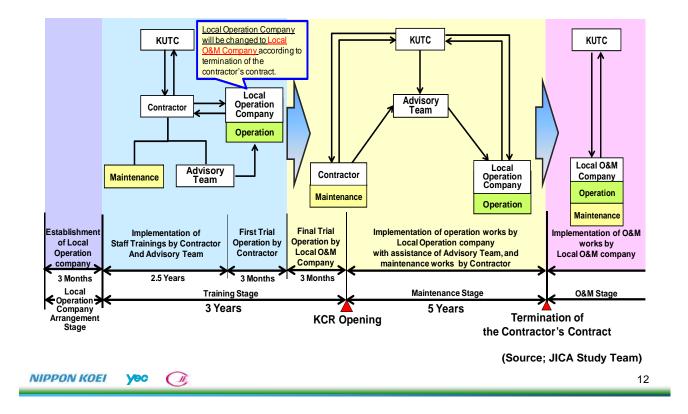

Scope of the Project (3/3)

lf	tem	Option N-A1, A2	Option N-B1				
	Signaling System	Automatic train operation (ATO), CBTC system					
Signal & Telecom System	Telecommunication System	Fibre optic cable network, Cab radio system, CCTV system, Public addressing system					
	Туре	Public information display system, etc. Electric multiple unit (EMU)					
Rolling Stock	Train Formation	4 cars (2M2T) with 20 m long car body a opening					
	Number of Train Set	25 sets at opening	16 sets at opening				
Other Facility	Fare Collection System	Automatic fare c	collection system				
	Time for Train	6:00 -	- 23:30				
Train Operation	Operation						
Train Operation	Average Speed	43 km/h					
	Headway	6-8 min. at opening	5-8 min. at opening				

(Source; JICA Study Team)

Chapter 6 Review of Project Schedule and Cost

• Project Schedule

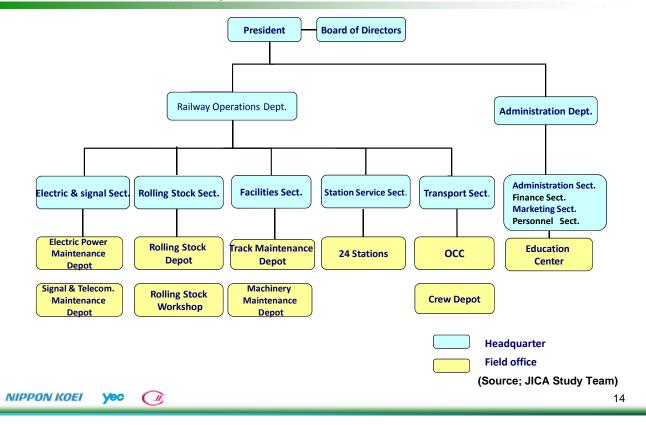

Chapter 7 Review of O&M Plan

(1) Review Items

- Review Items
- ✓ Survey on Urban Railways in Asian Cities
- ✓ O&M Scheme and Organization of KCR
- ✓ Estimation of O&M Costs
- ✓ Railway Fare Revenue
- ✓ Non-rail Business Revenues
- ✓ Revenue and Expenditure of KCR

Chapter 7 Review of O&M Plan

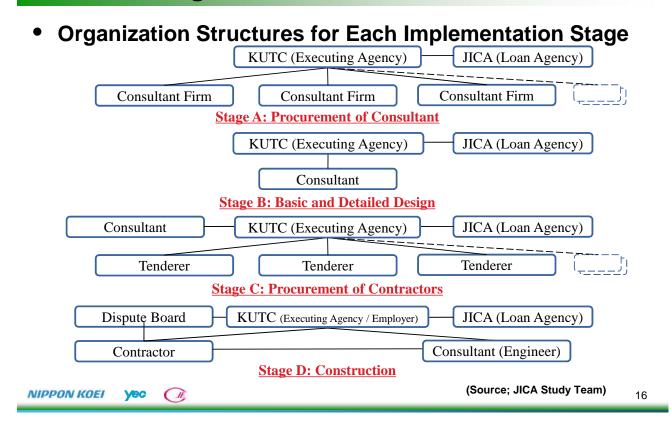
(2) Outline of the Proposed O&M Scheme


Chapter 7 Review of O&M Plan

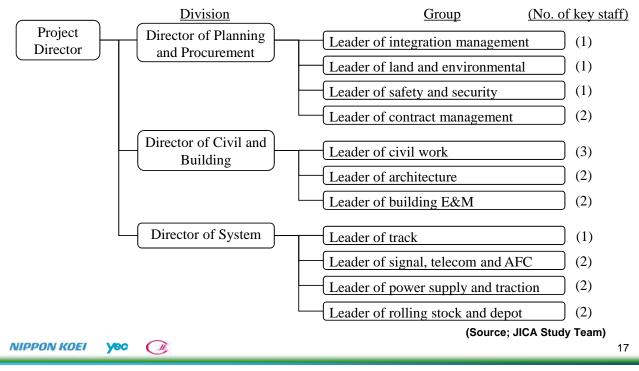
(3) Implementation Schedule

			Bas		ail De ase	sign	Cons	struc	tion Pl Proje	nase of	KCR		0&		se of K (5 years		ject		fter 5 yea	
1			2012		ase 2015	2016	2017	2018			202	4	2022			rs) from the open 2025 2026		ənir		
	Implementation Schedule		2010			stabli	shment o Compan 3 Month	f 🔹	4 2 Imp	Years 9 Iementa Iff Traini	-		↓ Trial (al Op	Operation	5 Year	rs —	1pany 3	•		
	Basic and Detail Design																			
Project Schedule	Construction & Procurement										•									
	Operation and Maintenance																			
Implementation Organization																				
	Establishment of O&M Company																			
	Employment and Trainings in	Driver																		
китс	cooperation with Advisory Team	Operation Staff								-										
	Implementation of Operation Work Advisory Team	s in cooperation with																		
	Supervision of O&M works																			_
Management Consultant or JICA Expert	Preparation for Establishment of C according to the law, tender docur O&M Company and so on.							-												
		Driver									1	-								
Advisary Team	Employment and Training Operation Staff Implementation of Operation Works with Operation Staff and KUTC										1	-								
Autoury rouni																				
	Construction & Procurement										-									
	Establishment of O&M Company																			
	Organizing Advisory Team and																			
Contractor	Dispatching Advisory Team to KU																			
	Employment and Training of Main																			
	Implementation of Maintenance W Staff																			
	Empolyment of Headquarter's Staf management	f and preparation of																		
	Employment and Training in	Driver	1								1									
O&M Company	cooperation with Advisory Team	Operation Staff									1									
	Implementation of Operation Work											-								
	Implementation of Maintenance W																			
Consultant	Basic and Ditail Design (preparation Plan for O&M Company)	on of Establishment																		
	Project Supervision		1	1						<u> </u>		-								
				1	1	Establishment of Operation Company by Contractor Establishment of Operation Company By Contractor to Operation Company (Source; JICA Study)					to O&M									
PON KOEI	yec 🔐													,		,			,	

Chapter 7 Review of O&M Plan


(4) O&M Company Organizational Structure

Chapter 8 Verification of Project Effects


- Climate Change Mitigation Effects
 <u>GHG emission reduction due to regenerative energy effect</u>
 - ✓ Option N-A1: 128,306 [tCO2/10 years]
 - ✓ Option N-B1: 69,857 [tCO2/10 years]

Chapter 9 Advices for Project Implementation Organization

Chapter 9 Advices for Project Implementation Organization

• Proposed Organization of KUTC Engineering Units

Chapter 10 Environmental and Social Considerations

• Environmental Consideration

- ✓ Review of IEE on Resettlement Site
- ✓ Review of EIA for KCR Line
- ✓ Environmental Management Plans

Social Consideration

- ✓ Review of Resettlement Action Plan
- ✓ Rap Implementation Arrangement
- ✓ O&M for Public Facilities at Resettlement Site

18

Chapter 11 Conclusions and Recommendations

(1) Comparison between options

Comparison between options

Item	Option N-A1	Option N-B1	Remark
Demand	Fair	Slightly good	N-B1 is better in terms of passengers/km and fare revenue/km.
Headway	Good	Excellent	5 min. in peak time for N-B1.
Cost efficiency	Good	Slightly good	N-A1 is better in terms of unit cost per km.
Initial investment	Large	Compact	N-B1 requires 2/3 investment of N-A1.
EIRR	Fair	Marginal	N-A1 is better but both feasible.
FIRR	Insufficient	Insufficient	Marginal if taxes are exempted.
O&M easiness	Significantly tough	Easier than Option N-A1	N-B1 is rather simple due to less staff and shorter length.
Overall	Slightly good	Good	Option N-B1 as the Phase 1 implementation recommended.
NIPPON KOEI	yec 📿		(Source; JICA Study Team) ₁₉

Chapter 11 Conclusions and Recommendations

(2) Recommendations -1

- Understanding of KUTC's roles for smooth implementation of KCR project.
- Completion of preparation works such as shifting of PR tracks and resettlement before commencement of KCR construction.
- Early implementation of KCR center line survey and setting of boundaries of KCR land.
- ✓ Establishment of high quality local O&M company.
- Proper setting of KCR fare level and adjustment during operation according to number of passengers.
- Management of railway land development and under-viaduct space development businesses with a non-rail business division in KUTC based on sound, careful and conservative policies.

Chapter 11 Conclusions and Recommendations

(3) Recommendations -2

- Consideration of rolling stock with performance of TX-2000 or higher taking into account the longer distance due to circular route.
- Suggestion of BRT operation for missing route in Case of N-B1 for the provision of better feeder transportation service and prevention of squatters.
- Special financial assistance and tax exemption support from GOP and GOS.
- Dispatch of a long-term JICA expert to MOR who owns rich experiences and know-how in urban railway projects and O&M.

PREPARATORY SURVEY (II) ON KARACHI CIRCULAR RAILWAY REVIVAL PROJECT IN ISLAMIC REPUBLIC OF PAKISTAN

FINAL REPORT VOLUME 1/2 MAIN REPORT

TABLE OF CONTENTS

Location Map Executive Summary Table of Contents List of Tables List of Figures Abbreviations

1.	INT	ITRODUCTION	1-1
1.	1	Background of the Study	1-1
1.2	2	Objectives and Scope of the Study	1-2
1.	3	Schedule of the Study	1-3
1.4	4	Contents of the Final Report	1-4
2.	SUF	JRVEY ON SITE CONDITIONS AND FACILITIES	2-1
2.	1	Topographic Survey	2-1
	2.1.	1.1 Methodology	2-1
	2.1.	1.2 Control Points	2-4
	2.1.	1.3 List of Topographic Survey Data	2-5
2.2	2	Hydrological Survey	2-7
	2.2.	2.1 Overview of the Hydrological Survey	2-7
	2.2.2	2.2 Result of Survey Work	2-8
	2.2.	2.3 Hydrology	2-17
	2.2.4	2.4 Drainage and Sewerage	2-34
	2.2.	2.5 Issues on Water in the Right of Way	2-35
	2.2.	2.6 Drainage Measures against Stagnant and Inflow Water Drainage	2-35
2.	3	Geological Survey	2-43
	2.3.	3.1 Scope of Work	2-43
	2.3.	3.2 Program of Investigations:	2-43

	2.3.3	Description of Regional and Site Geology and Geomorphology
	2.3.4	Results of Boring Survey
	2.3.5	Results of Standard Penetration Tests
	2.3.6	Analysis of Investigation:
	2.3.7	Recommendation for Foundation Design
	2.3.8	Conclusions
	2.3.9	Core Boxes Storage Shed
	2.4 Su	rvey on Power Supply Conditions
	2.4.1	Current Status of Karachi Electric Supply Company (KESC)
	2.4.2	Stable Power Supply from KESC
	2.4.3	Current Situation of Power Supply to Strategic Customer and Industrial Customer . 2-100
	2.4.4	Procedure for Power Receiving from KESC Transmission Network2-101
	2.4.5	Transmission Network System and Future Development Plan of KESC2-101
	2.4.6	Electricity Tariff System of KESC
3.	REVIE	W OF DEMAND FORECAST
	3.1 So	cio-Economic Framework and Urban Planning3-1
	3.1.1	Future Population
	3.1.2	Urban Planning
	3.2 Tra	affic Analysis Zones
	3.3 OE	Data for Public Transport
		nditions of Demand Forecasting
	3.4.1	Mass Transit Development Program
	3.4.2	Level of Service by Public Transport
	3.4.3	Transfer Mode between KCR and Other Public Transportation
	3.5 KC	CR Demand
		CR Demand with Alternative Fare Level
4.	REVIE	W OF TECHNICAL STANDARDS AND RAILWAY ALIGNMENT
	4.1 Teo	chnical Standards to be applied to KCR
	4.1.1	Basic Policy of Technical Standards to be applied to KCR
	4.1.2	Outline of Technical Standards to be applied to KCR
	4.1.3	Rolling Stock Gauge for KCR
	4.1.4	Construction Gauge for KCR
	4.1.5	Distance between Track Centers
	4.1.6	Width of Formation
		sic Policy of Station Design
	4.2.1	Type of Station
	4.2.2	Platform Design
	4.2.3	Intermodal Facility Plan
		internotati i tentoj i ian esta esta esta esta esta esta esta esta
	4.3.1	Reconnaissance of the Available Land for KCR and KUTC Alignment Option

	4.3.2	Issues of Review)
	4.3.3	Exchange of Opinions with KUTC	;
	4.3.4	Railway Alignment	;
	4.3.5	Station Location and Type)
	4.3.6	Track Layout	;
	4.3.7	Route Plan	5
5.	REVIE	W OF PRELIMINARY DESIGN	
	5.1 Tra	in Operation Plan	
	5.1.1	Purpose	
	5.1.2	Review of Basic Conditions for Train Operation Plan of KCR	
	5.1.3	Train Operation Planning)
	5.2 Civ	vil Structure and Track	
	5.2.1	Structures between Stations	L
	5.2.2	Track Structures	1
	5.2.3	Station Architecture	
	5.2.4	Rolling Stock Depots and Workshop5-76	
	5.3 Poy	wer Supply Facilities	
	5.3.1	System Configuration	
	5.3.2	Traction Substation (TSS) and Sectioning Post (SP)	
	5.3.3	KESC Grid Station and Transmission Line	
	5.3.4	Power Load Simulation	
	5.3.5	Power Distribution Facility	
	5.3.6	Overhead Contact System	
	5.3.7	Plan of Option N-B1	
		naling	
	-	posed Scope of the Project	
6.		W OF PROJECT SCHEDULE AND COST	
		vject Implementation Plan and Schedule6-1 vject Cost*	
		5	
		ditional Investment due to Demand Increase and Replacement of Facilities*	
		ntract Packages*	
	•	anese ODA Loan	
	6.5.1	Introduction of JICA STEP Loan	
	6.5.2	Recommendable Items for STEP Component*	;
7.	REVIE	W OF O&M PLAN	-
	7.1 Sur	vey on Urban Railways in Asian Cities	
	7.1.1	Singapore7-2	
	7.1.2	India (Delhi)	2
	7.1.3	Tsukuba Express (TX)7-2)

7	7.1.4	Applying Asian Urban Railway Survey Results to KCR	
7.2	08	M Scheme and Organization of KCR	7-3
7	7.2.1	Proposed O&M Scheme	7-3
7	7.2.2	Organizational Structure and Personnel Plan of O&M Company	7-10
7.3	Ma	achines and Equipment for Maintenance and Equipment for O&M Training	7-19
7	7.3.1	Machines and Equipment for Maintenance	7-19
7	7.3.2	Equipment for O&M Training	7-19
7.4	Re	venue and Expenditure Plan of KCR	7-21
7	7.4.1	Features of Revenue and Expenditure found through O&M Survey in	Third World
		Countries	7-21
7	7.4.2	Basic Concept of Revenue and Expenditure Plan	7-21
7	7.4.3	Revenue and Expenditure Plan Reflecting the Basic Concept	7-21
7	7.4.4	Estimation of O&M Costs	
7	7.4.5	Railway Fare Revenue	
7	7.4.6	Non-rail Business Revenues	
7.5	Re	venue and Expenditure of KCR	7-24
7.6	Fii	nancial Plan for O&M of KCR	7-31
7.7	Ri	sks and Risk Management in O&M	7-31
7	7.7.1	Risks in O&M	7-31
7	7.7.2	Risk Management in O&M	7-31
-	7.7.3		D 11 1 1 (
	1.1.5	Individual Cases of Risk Management in O&M taken by Singapore Metro	, Delhi Metro,
,	1.1.5	and TX	
7.8			
7.8		and TX	
7.8	Le	and TX gislative System for Railway	
7.8	Le 7.8.1 7.8.2	and TX gislative System for Railway Legislative System in Japan	
7.8	Le 7.8.1 7.8.2 VERIF	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business	7-32 7-33 7-33 7-33 7-33
7.8 7 8. 7 8.1	Le 7.8.1 7.8.2 VERIF	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS	
7.8 7 8. 7 8.1 8.1	Le 7.8.1 7.8.2 VERIH Ec	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation	7-32 7-33 7-33 7-33 8-1 8-1 8-1
7.8 7 8. 7 8.1 8.1 8	Le 7.8.1 7.8.2 VERIH Ec 3.1.1	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions	7-32 7-33 7-33 7-33 8-1 8-1 8-1 8-1
7.8 7 8. 7 8.1 8.1 8	Le 7.8.1 7.8.2 VERIF Ec 3.1.1 3.1.2 3.1.3	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis*	
7.8 7 8. 1 8.1 8.1 8.2 8.1	Le 7.8.1 7.8.2 VERIH Ec 3.1.1 3.1.2 3.1.3 Pro	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis*	7-32 7-33 7-33 7-33 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-1
7.8 7 8. 8.1 8.1 8.1 8.2 8.2 8.3	Le 7.8.1 7.8.2 VERIH Ec 3.1.1 3.1.2 3.1.3 Pro	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis*	
7.8 7.8 8. 7 8.1 8.1 8.1 8.2 8.2 8.3 8.3	Le 7.8.1 7.8.2 VERII Ec 3.1.1 3.1.2 3.1.3 Pro Cl	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis* oject Effect Indicators imate Change Mitigation Effects	7-32 7-33 7-33 7-33 8-1
7.8 7 8. 8.1 8.1 8.2 8.2 8.3 8.2 8.3	Le 7.8.1 7.8.2 VERIH Ec 3.1.1 3.1.2 3.1.3 Pro Cl: 3.3.1	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis* oject Effect Indicators imate Change Mitigation Effects Modal Shift Effect	
7.8 7.8 8. 7 8.1 8.1 8.2 8.2 8.3 8.2 8.3 8.5 8.5 8.5	Le 7.8.1 7.8.2 VERII Ec 3.1.1 3.1.2 3.1.3 Pro Cl: 3.3.1 3.3.2	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis* oject Effect Indicators imate Change Mitigation Effects Modal Shift Effect	
7.8 7.8 8. 7 8.1 8.1 8.2 8.2 8.3 8.2 8.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	Le 7.8.1 7.8.2 VERIF Ec 3.1.1 3.1.2 3.1.3 Pre 5.3.1 3.3.2 3.3.3	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis * oject Effect Indicators imate Change Mitigation Effects Modal Shift Effect Regenerative Energy Effect Practicability as CDM Project	7-32 7-33 7-33 7-33 8-1 8-1 8-1 8-1 8-1 8-1 8-7 8-7 8-7 8-9 8-11 8-18
7.8 7.8 8. 7 8.1 8.1 8.2 8.2 8.3 8.2 8.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	Le 7.8.1 7.8.2 VERIF Ec 3.1.1 3.1.2 3.1.3 Pro Cl: 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	and TX gislative System for Railway Legislative System in Japan Legislative System Required for Railway Business FICATION OF PROJECT EFFECTS onomic and Financial Evaluation Prerequisite Conditions Economic Analysis* Financial Analysis* oject Effect Indicators imate Change Mitigation Effects Modal Shift Effect Regenerative Energy Effect Practicability as CDM Project Issues and Further Actions	7-32 7-33 7-33 7-33 8-1 8-1 8-1 8-1 8-1 8-1 8-1 8-7 8-7 8-7 8-1 8-1 8-1 8-1 8-1 8-2 8-1 8-1 8-2 8-1
7.8 7.8 8. 7 8.1 8.1 8.2 8.2 8.3 8.2 8.3 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	Le 7.8.1 7.8.2 VERIH Ec 3.1.1 3.1.2 3.1.3 Pre Cl: 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 ADVIe	and TX gislative System for Railway	

10. ENVIR	ONMENTAL AND SOCIAL CONSIDERATIONS	
10.1 EIA	System in Pakistan	
10.1.1	Introduction of KCR Project	
10.1.2	EIA System in Pakistan	10-1
10.2 Env	vironmental Characteristics of the Project Site	
10.2.1	Overall KCR Line	
10.2.2	Resettlement Site (Juma Goth)	
10.3 Rev	view of Initial Environmental Examination on Resettlement Site	
10.3.1	Outline	
10.3.2	Project Description	
10.3.3	Description of Environment	10-4
10.3.4	Screening of Potential Environmental Impact	
10.3.5	Alternatives	
10.3.6	Environmental Management Plan	
10.3.7	Public Consultation	10-6
10.3.8	Revised Environmental and Social Impact	10-6
10.3.9	Mitigation Measures	
10.3.10	Basic Outline of JICA Environmental and Social Consideration Document	
10.4 Rev	view of Environmental Impact Assessment for KCR Line	
10.4.1	Outline	
10.4.2	Alternatives	
10.4.3	Approval and Attached Conditions	
10.4.4	Environmental Management Plan and Cost Estimation	10-16
10.4.5	Public Consultation	10-16
10.5 Rev	view of Feasibility Study on Resettlement Site	10-16
10.5.1	Application of Environmental Considerations in F/S on Resettlement Site	10-16
10.6 Soc	io-Economic Survey on KCR Line*	
10.7 Stal	keholder Meeting*	
10.8 Rev	view of Resettlement Action Plan*	
10.9 Rap	Implementation Arrangement	
10.9.1	Organization	
10.9.2	Grievance Redress Committee (GRC)	
10.9.3	Implementation Schedule	
10.9.4	Harmonization with Host Community	
10.10 Liv	elihood Restoration Arrangement	
10.10.1	Resettlement and Restoration of Livelihood Program	10-27
10.10.2	Support Measures for Housing Construction	
10.10.3	O & M for Public Facilities at Resettlement Site	
10.11 Env	vironmental Management Plan	
10.11.1	Environmental Survey in Resettlement Site	
10.11.2	Updated Environmental Management Plan	

10.11.3 TOR for EMP Consultant for Development of Resettlement Site	
10.11.4 Cost Estimation on Environmental Survey in Resettlement Site	
10.11.5 Cost Estimation on EMP for Development of Resettlement Site	
10.11.6 Cost Estimation on EMP for KCR Project	
10.12 Suggestion on Required Additional Survey*	
10.13 Recommendation	
10.13.1 Environmental Management Plan	
10.13.2 Resettlement Action Plan	
10.13.3 Resettlement Site Development	
11. CONCLUSIONS AND RECOMMENDATIONS	11-1
11.1 Conclusions	
11.2 Recommendations	

* To ensure fairness of procurement process as well as project implementation, information of the following sections should not be disclosed for a fixed period. 6.2 Project Cost 6.3 Additional Investment due to Demand Increase and Replacement of Facilities Contract Packages 6.4 Recommendable Items for STEP Component 6.5.2 7.4.4 Estimation of O&M Costs 8.1.2 **Economic Analysis** 8.1.3 **Financial Analysis** Socio-Economic Survey on KCR Line 10.6 Stakeholder Meeting 10.7 Review of Resettlement Action Plan 10.8 10.12 Suggestion on Required Additional Survey **Resettlement Action Plan** 10.13.2 **Resettlement Site Development** 10.13.3 ** The information contains information of particular firms/institutions; information should not be disclosed for a fixed period. (7.1)Survey on Urban Railways in Third Countries) 7.1.1 Singapore 7.1.2 India (Delhi) 7.1.3 **TSUKUBA** Express 7.4.1 Features of Revenue and Expenditure found through O&M Survey in Third World Countries Non-rail Business Revenues 7.4.6 Financing Plan for O&M of KCR 7.6 7.7.3 Individual Cases of Risk Management in O&M taken by Singapore Metro, Delhi Metro, and TX

LIST OF TABLES

Table 2.2.1	Contents of Survey Work and Time Schedule	2-9
Table 2.2.2	Field Survey in Target Area 'P'	2-9
Table 2.2.3	Quantity of Stagnated Water in Target Area 'P'	2-11
Table 2.2.4	Quantity of the Wastewater Inflow Through Household Interview	-13
Table 2.2.5	Flow Measurement Data at P-22, P-34 and P-40	-15
Table 2.2.6	Wastewater from Single Household Based on Flow Measurement	-15
Table 2.2.7	Result of Sewage Water Quality Analysis	-17
Table 2.2.8	Rainfall in Karachi	-18
Table 2.2.9	Mean Monthly Maximum Temperature in Karachi (1)	-19
Table 2.2.10	Mean Monthly Minimum Temperature in Karachi (2)	-19
Table 2.2.11	Specification of UTHAL Station	-20
Table 2.2.12	Mean Monthly Pan Evaporation at UTHAL Station2	-20
Table 2.2.13	Details of Survey Sectors	-21
Table 2.2.14	Maximum Daily Rainfall2	-32
Table 2.2.15	Probable Rainfall by Iwai Method (Unit: mm)2	-33
Table 2.2.16	Maximum Flow in Target Area P1 and P212	-34
Table 2.2.17	Evaluation on the Drainage Measures at the Stage under Construction	-39
Table 2.2.18	Amount of the Ground Level Raise of KCR Line Foundation by Sector2	-41
Table 2.3.1	Quantities of Geotechnical Survey	-46
Table 2.3.2	Quantities of Laboratory Testing	-47
Table 2.3.3	Rocks Exposed in Karachi	-51
Table 2.3.4	List of Earthquakes in Indus Deltaic Region and Surroundings within Latitude 23.0.2	25.0
	^o N and longitude 67.5.71.0 ^o E2	-60
Table 2.3.5	SPT Correlations for Cohesionless Soils	-71
Table 2.3.6	SPT Correlations for Cohesive Soils	-71
Table 2.3.7	SPT Data for All (1/2)	-73
Table 2.3.8	SPT Data for All (2/2)	-74
Table 2.3.9	Stratigaphy along KCR Routes	-75
Table 2.3.10	SPT Data for Sand with N<=252	-80
Table 2.3.11	Earthquake Data for Karachi and within 200 Km2	-81
Table 2.3.12	Seismic Zones	-85
Table 2.3.13	Seismic Zone Factor Z	-85
Table 2.3.14	Soil Profile Types	-86
Table 2.3.15	Seismic Coefficients C _a	-86
Table 2.3.16	Seismic Coefficients Cv	-87
Table 2.3.17	Near Source factor N _a 2	-87
Table 2.3.18	Near Source factor N _v	-87
Table 2.3.19	Seismic Source Type	
Table 2.3.20	Soil Parameters	-89

Table 2.3.21	Grain Size Analysis (Percent Filter by Weight)
Table 2.3.22	Atterberg Limits
Table 2.4.1	Operating Facility of KESC
Table 2.4.2	Power Supply Record of KESC's Service Area
Table 2.4.3	KESC's Performance of Power Supply to Strategic and Industrial Customers2-101
Table 2.4.4	Tariff System Applicable to KCR (Industrial Supply Tariff)2-101
Table 3.3.1	Number of Trips and Modal Share by Mode
Table 3.4.1	KCR Development Cases
Table 3.4.2	Level of Service by Public Transport Mode
Table 3.5.1	Case wised KCR Demand in 2022 and 2030
Table 3.5.2	Number of Passenger
Table 3.5.3	Boarding and Alighting Passengers (Case N-A1)
Table 3.5.4	Boarding and Alighting Passengers (Case N-A2)
Table 3.5.5	Boarding and Alighting Passengers (Case N-B1)
Table 3.5.6	Boarding and Alighting Passengers (Case N-B2)
Table 3.5.7	Estimated KCR Demand for Each Year
Table 3.6.1	KCR Demand (Case N-B1)
Table 4.1.1	Outline of Technical Standards to be Applied to KCR
Table 4.1.2	Upper Clearance of KCR and Tsukuba Express
Table 4.1.3	Proposed Formation Width in Ballasted Sections
Table 4.1.4	Proposed Formation Width in Viaduct and Culvert or U-shape Sections
Table 4.2.1	Type of KCR Station
Table 4.2.2	Platform Type, Width of Platform and Total Passenger Inflow/Evacuation Capacity4-17
Table 4.2.3	Tentative Platform Plan of KCR Stations
Table 4.2.4	Forecast Demand Data in 2051
Table 4.2.5	Required Width of Platform of KCR Stations Obtained from Passenger Flow Capacity on
	Platform
Table 4.2.6	Final Platform Types and Width of KCR Stations
Table 4.2.7	Relation between Alighting/Boarding Passengers and Passenger Inflow/Evacuation
	Capacity by Platform at Each Station
Table 4.3.1	Station Name
Table 4.3.2	Viaduct and Underpass Section Planned in SAPROF (I)
Table 4.3.4	Control Point for Crossing Road/Track in Vertical Alignment
Table 4.3.5	Verification of Rail Level at Elevated Section
Table 4.3.6	Elevated and Underpass Section Planned by SAPROF(I) and (II)
Table 4.3.7	Station Plan (Chainage)
Table 5.1.1	Passenger Capacities of a 4-car Formation
Table 5.1.2	Passenger Capacity of 6-car Formation
Table 5.1.3	Passenger Capacity of 8-car Formations
Table 5.1.4	Transportation Capacity/hour of 4-car, 6-car and 8-car and 4-car & 8-car Mixed Train
	Operations
Table 5.1.5	Transportation Capacity/hour of 4-car, 6-car and 8-car and 4-car & 8-car Mixed Train

Operation	ons
Table 5.1.6	Stopping Time at KCR Stations
Table 5.1.7	Time Zone (Peak Hour, Semi-peak Hour and Off-peak Hour)5-8
Table 5.1.8	Standard Train Operation Time Table for N-A1 and N-A2
Table 5.1.9	Standard Train Operation Time Table for N-B1 5-11
Table 5.1.10	Projected Maximum Sectional Passenger Volume/hour between Stations by Time Zone
	of N-A1
Table 5.1.11	Train Operation Plan of N-A1 (Headways and Trains/hour by Time Zone)5-16
Table 5.1.12	Projected Maximum Sectional Passenger Volume/hour between Stations by Time Zone
	of N-A2
Table 5.1.13	Train Operation Plan of N-A2 (Headways and Number of Trains/hour by Time Zone)
Table 5.1.14	Projected Maximum Sectional Passenger Volume of N-B1 5-25
Table 5.1.15	Train Operation Plan of N-B1 (Headways and Number of Trains/ hour by Time Zone)
Table 5.1.16	Required Number of Train Sets and Cars of N-A1 Option5-28
Table 5.1.17	Required Number of Train Sets and Cars of N-A2 Option5-29
Table 5.1.18	Required Number of Train Sets and Cars of N-B1 Option5-30
Table 5.2.1	Characteristics of Elevated Structures
Table 5.2.2	Comparison of Structure Type in Trench Section
Table 5.2.3	Comparison of Space for Haul Road5-41
Table 5.2.4	Required Inner Width of Culvert Section
Table 5.2.5	Characteristics of Track Type
Table 5.2.6	Stations Picked up for Draft Plan
Table 5.2.7	Station Facilities
Table 5.2.8	Required Train Sets at the Opening Stage to 2051
Table 5.2.9	Depot Function Plan
Table 5.2.10	Major Track of Wazir Mansion Depot5-79
Table 5.2.11	Major Track of Depot Hill Stabling Yard5-83
Table 5.3.1	Electrical Features of KESC Grid Station
Table 5.3.2	Responsibility of Construction and Maintenance Work
Table 5.3.3	Peak Load and Power Consumption in 2022 (Opening Year)
Table 5.3.4	Peak Load and Power Consumption in 2051
Table 5.3.5	Back-up Power Supply Facility in N-B1
Table 5.3.6	Alladin Park TSS
Table 5.3.7	Liyari TSS
Table 5.3.8	Alladin Park TSS without Liyari TSS
Table 5.3.9	Liyari TSS without Alladin Park TSS5-106
Table 5.3.10	Liyari TSS
Table 5.3.11	Total Peak Load in Case of N-A15-106
Table 5.3.12	Total Peak Load in Case of N-B1
Table 5.3.13	Regenerative Effect of Alladin Park TSS (N-A1) (Normal Feeding)5-107

Table 5.3.14	Regenerative Effect of Liyari TSS (N-A1) (Normal Feeding)	5-108
Table 5.3.15	Regenerative Effect of Liyari TSS (N-A1) (Extended Feeding)	5-108
Table 5.3.16	Regenerative Effect of Liyari TSS (N-B1, Drigh Road – Shah Abdul Latif)	5-109
Table 5.3.17	Traction Current of Electric Car	5-109
Table 5.3.18	Circular Line and Extension Line (N-A1)	5-109
Table 5.3.19	Drigh Road to Shah Abdil latif and Extension Line (N-B1)	5-110
Table 5.3.20	KESC Grid Station	5-110
Table 5.3.21	KCR Traction Substation (TSS)	5-110
Table 5.3.22	Simulation Pattern	5-110
Table 5.3.23	Feeding System	5-110
Table 5.3.24	Composition of Feeding Circuit	5-110
Table 5.3.25	Impedance (55kV Level)	5-111
Table 5.3.26	Feature of Catenary System in Viaduct Section	5-112
Table 5.3.27	Maximum & Minimum Values of Alladin Park TSS (N-A1, Normal Feeding)	
Table 5.3.28	Maximum AT Neutral Current	5-133
Table 5.3.29	Maximum AT Capacity	5-133
Table 5.3.30	Basic Characteristics for Simulation	5-133
Table 5.3.31	Power Consumption With and Without Regenerative Power System	5-135
Table 5.3.32	Maximum and Minimum Values of Liyari TSS (N-A1)	5-136
Table 5.3.33	Maximum AT Neutral Current	5-143
Table 5.3.34	Maximum AT Capacity	5-143
Table 5.3.35	Power Consumption With and Without Regenerative Power System	5-145
Table 5.3.36	Maximum and Minimum Values of Liyari TSS in Extended Feeding (N-A1)	5-149
Table 5.3.37	Power Consumption With and Without Regenerative Power System	5-155
Table 5.3.38	Maximum and Minimum Values of Liyari TSS (N-B1)	5-156
Table 5.3.39	Maximum and Mean-Square Value of AT Neutral Current	5-161
Table 5.3.40	Maximum AT Capacity	5-161
Table 5.3.41	Power Consumption With and Without Regenerative Power System	5-163
Table 5.3.42	Climate Conditions in Karachi City	5-168
Table 5.3.43	Site Situation of Proposed Stations	5-170
Table 5.3.44	Ambient Temperature	5-171
Table 5.3.45	Wind Velocity	5-171
Table 5.3.46	Valuation basis on Pollution level in Japan	5-172
Table 5.3.47	Configuration of Overhead Contact System	5-173
Table 5.3.48	Line Type and Tensioning Force of Feeding Wire	5-174
Table 5.3.49	Line Type and Tensioning Force of Feeder Wire	5-174
Table 5.3.50	Required Land Area for SSP and ATP	5-185
Table 5.3.51	Differences between 2 Backup Powers	5-197
Table 5.4.1	ERTMS Levels	5-203
Table 5.4.2	Recent Records of CBTC System	5-204
Table 5.4.3	Cost Comparison between Fixed Block and CBTC Systems	5-206
Table 5.5.1	Salient Feature of the Project	5-207

Table 7.1.1	Summary of Surveyed Urban Railways	7-1
Table 7.2.1	Major Roles of Office for Operation	7-10
Table 7.2.2	Major Roles of Office for Maintenance	7-11
Table 7.2.3	Number of Working Days	
Table 7.2.4	Number of OCC Staff in N-A1 and N-A2 Cases	7-12
Table 7.2.5	Number of OCC Staff in Case N-B1	7-13
Table 7.2.6	Number of Drivers According to Each Development Case of KCR	7-13
Table 7.2.7	Number of Drivers per Day (N-A1 and N-A2 Cases from 2022 to 2029)	7-14
Table 7.2.8	Number of Drivers at the Crew Station (from 2020 to 2029)	7-14
Table 7.2.9	Number of Staff in Rolling Stock Depot and Workshop (from 2022 to 2029)	7-15
Table 7.2.10	Number of Maintenance Staff of Each Field Office (from 2022 to 2029)	7-16
Table 7.2.11	Number of Station Staff	7-17
Table 7.2.12	Number of Station Staff (from 2022 to 2029)	7-17
Table 7.2.13	Total Number of Staff (from 2022 to 2029)	7-18
Table 7.2.14	Total Number of Staff (N-A1, N-A2, and N-B1 Cases)	7-18
Table 7.3.1	Primary Machines and Equipment for Maintenance Works	7-19
Table 7.3.2	Main Equipment for O&M Training	
Table 7.4.1	Proposed Fare Matrix of KCR	
Table 7.4.2	Railway Fare Revenue	
Table 7.5.1	Annual Revenue of KCR (Case N-A1)	7-24
Table 7.5.2	Annual Revenue of KCR (Case N-A2)	
Table 7.5.3	Annual Revenue of KCR (N-B1)	
Table 7.5.4	Annual Expenses for O&M of KCR (N-A1)	7-28
Table 7.5.5	Annual Expenses for O&M of KCR (N-A2)	7-29
Table 7.5.6	Annual Expenses for O&M of KCR (N-B1)	7-30
Table 8.1.1	Population Growth and Economic Growth in Karachi	
Table 8.2.1	Operation and Effect Indicators	
Table 8.2.2	Operation & Effect Indicator and Target Value (Option N-A1)	
Table 8.2.3	Operation and Effect Indicators and Target Value (Option N-B1)	
Table 8.2.4	Bus Travelling Time in 2012 between Karachi Cantt to North Nazimabad a	and Nipa to
	Baldia	
Table 8.3.1	Outline of the ACM0016	
Table 8.3.2	Applicability of the ACM0016 and Project Activity	
Table 8.3.3	Outline of the AMS-III.C	
Table 8.3.4	Necessary Data in Application of ACM0016	
Table 8.3.5	Necessary Data in Application of the AMS-III.C	
Table 8.3.6	Mitigation Measures to Reduce the Environmental Impacts during Construction	on Phase
Table 8.3.7	Mitigation Measures to Reduce the Environmental Impacts during Operation	Phase . 8-15
Table 8.3.8	Effect of regenerative system on N-A1 and N-A2	
Table 8.3.9	Effect of regenerative system on N-B1	
Table 8.3.10	Issues and Further Actions to be Taken	

Table 8.3.11	Project Benchmark of CDM Activities	8-21
Table 8.3.12	List of Registered CDM Projects in Transport Sector	8-23
Table 8.3.13	List of Registered CDM Projects in Asian countries	8-25
Table 8.3.14	List of Registered CDM Projects in Pakistan	8-25
Table 8.3.15	List of Registered CDM Projects in Pakistan	8-27
Table 9.1.1	Role of Stakeholders for Procedures/Activities during Implementation	9-2
Table 9.2.1	KUTC Staff List	9-5
Table 9.2.2	Main Tasks and Qualifications for Division Directors	9-8
Table 9.2.3	Main Tasks and Qualifications for Technical Leaders	9-9
Table 10.2.1	Flora of Resettlement Site	10-3
Table 10.3.1	Result of Alternative Analysis	10-5
Table 10.3.2	Result of Revised Environmental and Social Impact	10-7
Table 10.3.3	Mitigation Measures	10-11
Table 10.4.1	Environmental and Financial Aspect of Vertical Alignment	10-13
Table 10.4.2	Comparison of Power Supply System	10-14
Table 10.4.3	Implementation Plan for Compliance of EIA Approval Conditions	10-15
Table 10.5.1	Application of Environmental Considerations to F/S (1)	10-17
Table 10.5.2	Application of Environmental Considerations to F/S (2)	10-18
Table 10.9.1	Personnel Organization, Man-Months and Cost for RPMU	10-22
Table 10.9.2	Personnel Organization, Man-Months and Cost of EMC	10-22
Table 10.9.3	Personnel Organization, Man-Months and Cost of RAP Implementation Cor	nsultant
		10-23
Table 10.9.4	Personnel Organization, Man-Months and Cost of GRC	10-25
Table 10.9.5	Summary of Cost for RAP Implementation Management	10-26
Table 10.10.1	Overview of Public Facilities	10-29
Table 10.10.2	Experience of each NGO	10-31
Table 10.11.1	Environmental Survey in Resettlement Site	10-34
Table 10.11.2	Proposed Judgmental Standard	10-35
Table 10.11.3	Japanese Environmental Standards on Soil Quality	10-36
Table 10.11.4	Functions and Responsibilities of Each Person or Body	10-37
Table 10.11.5	Environmental Observation/Monitoring for Resettlement Site Development (1)	10-38
Table 10.11.6	Environmental Observation/Monitoring for Resettlement Site Development (2)	10-40
Table 10.11.7	Environmental Observation/Monitoring for KCR Project (1)	10-41
Table 10.11.8	Environmental Observation/Monitoring for KCR Project (2)	10-42
Table 10.11.9	Estimated Cost for Environmental Survey	10-44
Table 10.11.10	0 Estimated Cost for Implementation of EMP	10-45
Table 10.11.11	1 Estimated Cost for Implementation of EMP	10-47
Table 10.13.1	Estimated Noise Level in Operation Phase	10-50
Table 11.1.1	Evaluation of Projected Demand Between N-A1 and N-B1	11-1
Table 11.1.2	Frequency of Train Operations by Option	11-2
Table 11.1.3	Initial Investment by Option	11-2
Table 11.1.4	Results of Economical and Financial Evaluations	11-3

Table 11.1.5	Evaluation on KCR O&M Set-up	11-3
Table 11.1.6	Scoring Criteria for Evaluation	11-4
Table 11.1.7	Overall Evaluations of N-A1 and N-B1	11-4

LIST OF FIGURES

Figure 1.3.1	Work Schedule of the Study	1-3
Figure 2.1.1	1/2000 Scale Topographic Map	2-3
Figure 2.1.2	Index Map of Established Control Point and Bench-mark	2-4
Figure 2.1.3	Description of Control Points	2-5
Figure 2.2.1	Target Area of the Hydrological Survey	2-7
Figure 2.2.2	Overview of Target Area 'P'	2-8
Figure 2.2.3	Cross-Section, Longitudinal-Section and Water-Depth Survey	2-10
Figure 2.2.4	Cross-Section and Water-Depth Survey Points in Target Area 'P'	2-10
Figure 2.2.5	View of Cross-Section and Water-Depth Survey	2-11
Figure 2.2.6	View of Some Flush Points	2-12
Figure 2.2.7	View of Interview to Householder	2-13
Figure 2.2.8	Sampling Points for Waste Quality Analysis	2-16
Figure 2.2.9	Annual Rainfall in Karachi	2-18
Figure 2.2.10	Mean Monthly Maximum and Minimum Temperature in Karachi	2-19
Figure 2.2.11	Mean Monthly Pan Evaporation at UTHAL Station	2-20
Figure 2.2.12	Survey Sectors	2-21
Figure 2.2.13	Classification of Interviewee	2-22
Figure 2.2.14	Classification of Age of Interviewee	2-22
Figure 2.2.15	Classification of Flooding Experience	2-23
Figure 2.2.16	Time of the year of Flooding Experience	2-23
Figure 2.2.17	Classification of Cause of Flood	2-24
Figure 2.2.18	Classification of Flooding Duration	2-25
Figure 2.2.19	Classification of Flooding Depth	2-26
Figure 2.2.20	Classification of Method of Disposal	2-27
Figure 2.2.21	Existence of Drainage System	2-28
Figure 2.2.22	Existence of Sewerage/Waste water Collection System	2-29
Figure 2.2.23	Sewerage/Waste Water Collection System and Rain Water Collection System	2-30
Figure 2.2.24	View of Interview Survey	2-31
Figure 2.2.25	Plotting Position	2-33
Figure 2.2.26	Catchment Area of Target Area P1 and P2	2-34
Figure 2.2.27	Sewer Catchment Areas	2-35
Figure 2.2.28	Existing Sewer Pipes and Newly Sewer Pipes to be Developed around	Nipa
	(Method-2)	2-36
Figure 2.2.29	D Existing Sewer Pipes and Newly Sewer Pipes to be Developed an	ound
	Gulistan-e-Johar (Method-2)	2-37

Figure 2.2.30	Area of Wastewater Stagnated (Method -3)	7
Figure 2.2.31	Area of Wastewater Flowing near Naval Station (Method -4)	
Figure 2.2.32	Area of Wastewater Flowing near Karachi Cantt. Station (Method -4)	
Figure 2.2.33	Area of Industrial Wastewater Flowing in the Right of Way-4	1
Figure 2.3.1	Borehole Locations along KCR Route	5
Figure 2.3.2	Geomorphological Map of Area Around and within KCR Route	0
Figure 2.3.3	Geological Map of Karachi Showing Fold and Fault Structures	4
Figure 2.3.4	Seismic Risk Map of Karachi-Hyderabad Divisions, Showing Major Active Fault	S
-	around Karachi	7
Figure 2.3.5	Geological (Stratigraphical/ Lithological) Cross Sections at 1:4,000 Scale: From 0.0km	n
-	to 8.0km	
Figure 2.3.6	Geological (Stratigraphical/ Lithological) Cross Sections at 1:4,000 Scale: From 8.0km	n
-	to 16.0km	6
Figure 2.3.7	Geological (Stratigraphical/ Lithological) Cross Sections at 1:4,000 Scale: From	n
	16.0km to 24.0km	7
Figure 2.3.8	Geological (Stratigraphical/ Lithological) Cross Sections at 1:4,000 Scale: From	n
	24.0km to 32.0km	8
Figure 2.3.9	Geological (Stratigraphical/ Lithological) Cross Sections at 1:4,000 Scale: From	n
	32.0km to 40.0km	9
Figure 2.3.10	Geological (Stratigraphical/ Lithological) Cross Sections at 1:4,000 Scale: From	n
	40.0km to 43.2km	0
Figure 2.3.11	Geological (Stratigraphical/ Lithological) Cross Sections at 1:50,000 Map2-70	0
Figure 2.3.12	Water Flow Direction Map Along KCR Route	6
Figure 2.3.13	Passing #200, LL and PI vs Depth - SAND- 1 and SAND- 2 Combined Data for Top	р
	10m Depth	2
Figure 2.3.14	Seismic Zone	4
Figure 2.3.15	Peak Horizontal Ground Acceleration2-8	5
Figure 2.3.16	Consolidation Settlement in KCR Section where Clay is Encountered2-9	1
Figure 2.3.17	Result of Allowable Bearing Capacity by Terzaghi Theory	3
Figure 2.3.18	Result of Borehole Log2-94	4
Figure 2.3.19	Design & Drawing of the Shed for Core Boxes (1)2-9'	7
Figure 2.3.20	Design & Drawing of the Shed for Core Boxes (2)2-98	8
Figure 3.1.1	Flow of Demand Forecast	1
Figure 3.1.1	Estimation of Future Population	1
Figure 3.1.4	Future Population growth by Town/Cantonment (2010, 2020, 2030)	3
Figure 3.2.1	Traffic Analysis Zone of KTIP	4
Figure 3.2.2	Traffic Analysis Zone of SAPROF-I	5
Figure 3.3.1	Public Trips by Zone (Year 2020/2030 KTIP)	б
Figure 3.3.2	Public Trips by Zone (Year 2023 SAPROF-I)	7
Figure 3.4.1	Mass Transit Network by Each Cases	9
Figure 3.5.1	Passengers Loading (Year 2022)	3
Figure 3.5.2	Passengers Loading (Year 2030)	4

Figure 3.6.1	Mini Bus Travel Time Survey	3-20
Figure 3.6.2	Fare Level	3-21
Figure 4.1.1	Vehicle Gauge of KCR	. 4-3
Figure 4.1.2	Required Distance between Track Centers	.4-3
Figure 4.1.3	Construction Gauge for KCR	.4-4
Figure 4.1.4	Railway Car Structure and Throw in Curve Sections	.4-5
Figure 4.1.5	Lean due to Curvature	.4-6
Figure 4.1.6	Critical Situation for Examination of Track Centers	.4-6
Figure 4.1.7	Expansion of Formation due to Cant Increase in Outer Parts in Ballasted Section	.4-7
Figure 4.1.8	Formation Width of KCR at Ground Section	.4-9
Figure 4.1.9	Formation Width of KCR at Viaduct Section	.4-9
Figure 4.2.1	Example of Viaduct Station	4-10
Figure 4.2.2	Example of Three-story Viaduct Station	4-11
Figure 4.2.3	Example of Over-track Station	4-12
Figure 4.2.4	Image of Johar Station (Semi-underground Station)	4-12
Figure 4.2.5	Example of Semi-underground Station	4-13
Figure 4.2.6	Side Platform	4-14
Figure 4.2.7	Island Platform	4-15
Figure 4.2.8	Minimum Safety Clearance from Edge of Platform	4-16
Figure 4.2.9	Basic Concept of Intermodal Facility	4-22
Figure 4.2.10		
Figure 4.2.12	Intermodal Facility Image of Johar Station	4-25
Figure 4.2.13	Provisional Station Plaza Plan (3/15)	4-26
Figure 4.2.14	Provisional Station Plaza Plan (4/15)	4-27
Figure 4.2.15	Provisional Station Plaza Plan (5/15)	4-28
Figure 4.2.16	Provisional Station Plaza Plan (6/15)	4-28
Figure 4.2.17	Intermodal Facility Image of HBL station	4-29
Figure 4.2.18	Provisional Station Plaza Plan (7/15)	4-30
Figure 4.2.19	Intermodal Facility Image of Manghopir Station	4-30
Figure 4.2.20	Provisional Station Plaza Plan (8/15)	4-31
Figure 4.2.21	Provisional Station Plaza Plan (9/15)	4-32
Figure 4.2.22	Provisional Station Plaza Plan (10/15)	4-33
Figure 4.2.23	Provisional Station Plaza Plan (11/15)	4-33
Figure 4.2.24	Provisional Station Plaza Plan (12/15)	4-34
Figure 4.2.25	Intermodal Facility Image of DCOS Station	4-34
Figure 4.2.26	Provisional Station Plaza Plan (13/15)	4-35
Figure 4.2.27	Intermodal Facility Image of Karachi Cantt. Station	4-35
Figure 4.2.28	Provisional Station Plaza Plan (14/15)	4-36
Figure 4.2.29	Provisional Station Plaza Plan (15/15)	4-37
Figure 4.3.1	Route Map and Station Name	4-38
Figure 4.3.2	Karachi Circular Railway Route Map	4-39
Figure 4.3.3	Longitudinal Profile by KUTC (1/2)	4-41

Figure 4.3.4	Longitudinal Profile by KUTC (2/2)	. 4-42
Figure 4.3.5	Draft Route and Alignment / Stations and Structures	.4-49
Figure 4.3.6	Comparison of Longitudinal Profiles near Karachi Cantt. Station	.4-51
Figure 4.3.7	Examination on the level of KCR around Karachi City Station	.4-52
Figure 4.3.8	Cross Section at Karachi Cantt. Station Viaduct Prepared by PR	. 4-52
Figure 4.3.9	Reviewed Cross Section at Karachi Cantt Station Viaduct	. 4-53
Figure 4.3.10	Schematic Track Layout for Option N-A	.4-54
Figure 4.3.11	Schematic Track Layout for Option N-B	.4-55
Figure 5.1.1	TX-2100	5-2
Figure 5.1.2	TX-2200 or TX-2300 (Long Seats Type)	5-2
Figure 5.1.3	Traction Force-Speed Performance Curve of TX2000	5-8
Figure 5.1.4	Work Flow of Train Operation Planning	5-9
Figure 5.1.5	Track Layout Change of Drigh Road for Shuttling Operation of Extension Train	. 5-15
Figure 5.1.6	KCR Track Layout of N-A1,A2 Option	. 5-17
Figure 5.1.7	Track Layout of Shah Abdul Ratif	. 5-23
Figure 5.1.8	KCR Track Layout of N-B1 Option	. 5-24
Figure 5.2.1	Standard Cross Section of On-ground Structure	. 5-31
Figure 5.2.2	Cross Section of Embankment	. 5-32
Figure 5.2.3	Cross Section of Bridge	. 5-32
Figure 5.2.4	Beam-slab Rigid-frame Viaduct	. 5-32
Figure 5.2.5	Cross Section of Box Culvert	. 5-33
Figure 5.2.6	Cross Section of U-shape Culvert	. 5-33
Figure 5.2.7	Cross Section of Station in Trench Section	. 5-33
Figure 5.2.8	On-ground Structure	. 5-34
Figure 5.2.9	Cross Section of Reinforced Embankment	. 5-34
Figure 5.2.10	Girder Type Structure	.5-37
Figure 5.2.11	Rigid-Flame Type Structure	.5-37
Figure 5.2.12	Actual Construction Photography	. 5-37
Figure 5.2.13	Schematic Cross Section	.5-38
Figure 5.2.14	Photograph of Site	. 5-38
Figure 5.2.15	Cross section of Station with haul road	.5-41
Figure 5.2.16	Minimum Depth of KCR	. 5-42
Figure 5.2.17	Standard Section of Culvert	. 5-43
Figure 5.2.18	Example of Equipment on Both Wall	. 5-43
Figure 5.2.19	Standard Station of Culvert Structure	. 5-44
Figure 5.2.20	Drainage Facility for Underground Water	.5-44
Figure 5.2.21	Drainage Facility Plan	. 5-45
Figure 5.2.22	Standard Section of Box-culvert	. 5-46
Figure 5.2.23	Setting up Facility	. 5-46
Figure 5.2.24	Setting up Opening of Wall	. 5-46
Figure 5.2.25	Ballasted Track and Solid Bed Track	. 5-47
Figure 5.2.26	Example of Solid Bed Track Structure Design in Japan	. 5-48

Figure 5.2.27	JIS 60kg Rail, UIC 60kg Rail and UIC 54kg Rail	5-49
Figure 5.2.28	Pandrol Rail Fastening System in Solid Bed Track	
Figure 5.2.29	Design of Pandrol Rail Fastening System	
Figure 5.2.30	Dimension (Skelton) of 10# Turnout	
Figure 5.2.31	Dimensions (Skelton) of 8# Turnout	5-51
Figure 5.2.32	Dimensions (Skelton) of 6# Turnout	5-52
Figure 5.2.33	Station Architect Conceptual Plan (Karachi Cantt. Station)	5-54
Figure 5.2.34	Station Architect Conceptual Plan (Johar Station)	
Figure 5.2.35	Station Architect Conceptual Plan (HBL Station)	5-56
Figure 5.2.36	Station Architect Conceptual Plan (Manghopir Station)	5-57
Figure 5.2.37	Station Architect Conceptual Plan (DCOS Station)	5-58
Figure 5.2.38	Perspective of Karachi Cantt. Station	
Figure 5.2.39	Perspective of Johar Station	
Figure 5.2.40	Perspective of HBL Station	5-61
Figure 5.2.41	Perspective of Manghopir Station	5-62
Figure 5.2.42	Perspective of DCOS Station	
Figure 5.2.43	Station Plan (On-ground Island)	
Figure 5.2.44	Station Plan (On-ground Side)	
Figure 5.2.45	Station Plan (Karachi Cantt.)	
Figure 5.2.46	Station Plan (Elevated Island, Elevated Concourse)	5-67
Figure 5.2.47	Station Plan (Elevated Island, Ground Concourse)	5-68
Figure 5.2.48	Station Plan (Elevated Side, Elevated Concourse)	5-69
Figure 5.2.49	Station Plan (Elevated Side, Ground Concourse)	
Figure 5.2.50	Station Plan (Elevated 2-Island, Elevated Concourse)	5-71
Figure 5.2.51	Station Plan (Elevated 2-Island, Ground Concourse)	
Figure 5.2.52	Station Plan (Drigh Road)	5-73
Figure 5.2.53	Station Plan (Elevated 2-Island, Manghopir)	5-74
Figure 5.2.54	Station Plan (Culvert, Ground Concourse)	5-75
Figure 5.2.55	Skeleton Diagram of Wazir Mansion Depot	5-78
Figure 5.2.56	Layout of Main Workshop	
Figure 5.2.57	Skeleton Diagram of Depot Hill Stabling Yard (Option N-A1,A2)	5-81
Figure 5.2.58	Skeleton Diagram of Depot Hill Stabling Yard (Option N-B1)	
Figure 5.3.1	Configuration of Overall Power Supply System (KCR)	5-86
Figure 5.3.2	Location of KESC's Grid Station and KCR's TSS	
Figure 5.3.3	Equipment and Machinery Layout Plan in Proposed Land for Baldia TSS	
Figure 5.3.4	Proposed Construction Site and Transmission Line Route for Baldia TSS	5-90
Figure 5.3.5	Proposed Construction Site for Liyari TSS	5-91
Figure 5.3.6	Proposed Construction Site for Alladin Park TSS	
Figure 5.3.7	Proposed Construction Site for Orangi SP	5-93
Figure 5.3.8	Proposed Construction Site for Karsaz SP	5-94
Figure 5.3.9	KESC Grid Station and Transmission Network (as of 23-09-2011)	
Figure 5.3.10	KESC's Notice of KDA Grid Station for KCR Power Supply	5-99

Figure 5.3.11	Schematic Diagram of 132kV Circuit of Mauripur Grid Station
Figure 5.3.12	Schematic Diagram of 220kV Circuit of Mauripur Grid Station Transmission Line
	from KESC Grid Station
Figure 5.3.13	Transmission Line Route between KDA Grid and Alladin Park TSS5-103
Figure 5.3.14	Overhead Contact Equipment Layout in Viaduct Section
Figure 5.3.16	Normal Feeding Circuit of Liyari TSS (N-A1)
Figure 5.3.17	Normal Feeding Circuit of Alladin Park TSS (N-A1)5-115
Figure 5.3.18	Extended Feeding Circuit of Liyari TSS (N-A1)
Figure 5.3.19	Extended Feeding Circuit of Alladin Park TSS (N-A1)5-116
Figure 5.3.20	Feeding Circuit of Liyari TSS (N-B1)
Figure 5.3.21	Characteristics of 4-Car Formation in Power Running
Figure 5.3.22	Characteristics of 4-Car Formation in Regenerative Braking
Figure 5.3.23	Characteristics of 8-Car Formation in Power Running
Figure 5.3.24	Characteristics of 8-Car Formation in Regenerative Running
Figure 5.3.25	Traction Power Consumption of 4-Car Formation (2M2T)5-119
Figure 5.3.26	Traction Power Consumption of 8-Car Formation (4M4T)5-119
Figure 5.3.27	Train Operation Diagram between 7:00 and 9:00 (N-A1)5-120
Figure 5.3.28	Train Operation Diagram between 7:00 and 8:00 (N-B1)5-121
Figure 5.3.29	Train Movement Curve of Circular Line : Down Line (N-A1)5-122
Figure 5.3.30	Train Movement Curve of Circular Line : Up Line (N-A1)5-122
Figure 5.3.31	Train Movement Curve of Extension line : Down Line (N-A1)5-123
Figure 5.3.32	Train Movement Curve of Extension Line : Up Line (N-A1)
Figure 5.3.33	Train Movement Curve of Drigh Road - Shah Abdul Latif Line : Down Line (N-B1)
Figure 5.3.34	Train Movement Curve of Drigh Road - Shah Abdul Latif Line : Up Line (N-B1)5-124
Figure 5.3.35	Fluctuation Rate of Receiving Voltage (Alladin Park TSS)5-126
Figure 5.3.36	Unbalance Rate of Receiving Voltage (Alladin Park TSS)5-126
Figure 5.3.37	Receiving Power Transition of Alladin Park TSS5-127
Figure 5.3.38	Regenerative Power Transition of Alladin Park TSS
Figure 5.3.39	Feeding Voltage, Current & Power (Main Phase Bus) and Voltage at SP5-128
Figure 5.3.40	Feeding Voltage, Current & Power (Teaser phase Bus) and Voltage at SP5-130
Figure 5.3.41	Neutral Current at Alladin Park TSS, Main Phase5-131
Figure 5.3.42	AT Neutral Current at Alladin Park TSS, Teaser Phase5-131
Figure 5.3.43	AT Self Capacity of Main Phase Feeder at Alladin Park TSS5-132
Figure 5.3.44	AT Self Capacity of Teaser Phase Feeder at Alladin Park TSS5-132
Figure 5.3.45	Temperature Rise (Alladin Park TSS, Teaser phase Feeder)5-134
Figure 5.3.46	Temperature Rise (Alladin Park TSS, Main phase Feeder)5-134
Figure 5.3.47	Power Consumption per 15 Minutes of Alladin Park TSS5-135
Figure 5.3.48	Fluctuation Rate of Receiving Voltage (Liyari TSS)
Figure 5.3.49	Unbalance Rate of Receiving Voltage (Liyari TSS)5-138
Figure 5.3.50	Receiving Power Transition (Liyari TSS)5-138
Figure 5.3.51	Feeding Voltage, Current & Power (Main Phase Bus) and Voltage at SP5-139

Figure 5.3.52	Feeding Voltage, Current & Power (Teaser Phase Bus) and Voltage at SP	5-140
Figure 5.3.53	Neutral Current at Liyari TSS, Main phase Feeder	5-141
Figure 5.3.54	AT Neutral Current at Liyari TSS, Teaser phase Feeder	5-142
Figure 5.3.55	AT Self Capacity of Main phase Feeder at Liyari TSS	5-142
Figure 5.3.56	AT Self Capacity of Teaser phase Feeder at Liyari TSS	5-143
Figure 5.3.57	Temperature Rise (Liyari TSS, Main phase Feeder)	5-144
Figure 5.3.58	Temperature Rise (Liyari TSS, Teaser phase Feeder)	5-144
Figure 5.3.59	Power Consumption per 15 Minutes of Liyari TSS	5-145
Figure 5.3.60	Voltage at Pantograph of Electric Car between Liyari SS and SP	5-146
Figure 5.3.61	Rail Voltage between TSS and SP in Case of PW Earthing	5-146
Figure 5.3.62	Fault Current (Short Circuit between Trolley and Rail)	5-147
Figure 5.3.63	Rail Voltage in Case of Short Circuit Fault (With PW Earthing Case)	5-147
Figure 5.3.64	Rail Voltage in Case of Short Circuit Fault (Without PW Earthing Case)	5-148
Figure 5.3.65	Fluctuation Rate of Receiving Voltage in Extended Feeding (Liyari TSS)	5-150
Figure 5.3.66	Unbalance Rate of Receiving Voltage in Extended Feeding (Liyari TSS)	5-151
Figure 5.3.67	Receiving Power Transition (Liyari TSS)	5-151
Figure 5.3.68	Feeding Voltage, Current & Power (Main Phase Bus) and Voltage at SP	5-152
Figure 5.3.69	Feeding Voltage, Current & Power (Teaser Phase Bus) and Voltage at SP	5-153
Figure 5.3.70	Temperature Rise (Teaser phase Feeder)	5-154
Figure 5.3.71	Power Consumption per 15 Minutes of Liyari TSS (Extended Feeding)	5-154
Figure 5.3.72	Voltage at Pantograph of Electric Car	5-155
Figure 5.3.73	Fluctuation Rate of Receiving Voltage (Liyari TSS)	5-157
Figure 5.3.74	Unbalance Rate of Receiving Voltage (Liyari TSS)	5-158
Figure 5.3.75	Receiving Power Transition (Liyari TSS)	5-158
Figure 5.3.76	Feeding Voltage, Current & Power (Main Phase Bus) and Voltage at ATP	5-159
Figure 5.3.77	Feeding Voltage, Current & Power (Teaser Phase Bus) and Voltage at ATP	5-160
Figure 5.3.78	Temperature Rise (Teaser Phase Feeder)	5-161
Figure 5.3.79	Power Consumption per 30 Minutes of Liyari TSS (Extended Feeding)	5-162
Figure 5.3.80	Voltage at Pantograph Point of Electric Car	5-162
Figure 5.3.81	Rail Voltage with PW Earthing	5-163
Figure 5.3.82	Proposed Traction Power Feeding Network in Main Line	5-175
Figure 5.3.83	Proposed OCS Schematic Plan	5-176
Figure 5.3.84	Proposed OCS Mountings Plan	5-177
Figure 5.3.85	Configuration of overall power supply system of Option B	5-179
Figure 5.3.86	Location of KESC's GS, KCR's TSS and ATP of Option B	5-180
Figure 5.3.87	Configuration of Overall Power Supply System of N-B1	5-181
Figure 5.3.88	Location of KCR's TSS, SSP, ATP, and KESC's Grid Station of N-B1	5-182
Figure 5.3.89	Transmission Line Route from KESC's Mauripur Grid Station to KCR's Liyari	i TSS
		5-183
Figure 5.3.90	Power Line Drop Platform (PLDP) in KESC Mauripur Grid Station and Ex	isting
	Overhead Transmission Lines (M2 \rightarrow M3 \rightarrow M4)	5-184
Figure 5.3.91 I	Dedicated Feeder Line Route from Liyari TSS to Wazir Mansion Depot	5-184

Figure 5.3.92	Existing Liyari Bridge viewed from planned Liyari TSS (Left) and Planned Liyari TSS
	Site (Right)
Figure 5.3.93	Sample 220kV Receiving Substation in Japan5-185
Figure 5.3.94	Typical Layout Plan for SSP Facilities5-186
Figure 5.3.95	Typical Layout Plan for ATP Facilities
Figure 5.3.96	A Sample Sub-Sectioning Post in Japan
Figure 5.3.97	Candidate Sites for SSP in Karach Cantt
Figure 5.3.98	Candidate Site of Option-1
Figure 5.3.99	Candidate Site of Option-2 5-189
Figure 5.3.100	Candidate Site of Option-3
Figure 5.3.101	A sample Auto-Transformer Post (ATP) in Japan
Figure 5.3.102	2 Proposed Construction Site for ATP near Shah Abdul Latif
Figure 5.3.103	Planned site of proposed Shah Abdul Latif Station
Figure 5.3.104	Candidate Site for Planned ATP near Baldia Station5-191
Figure 5.3.105	5 Candidate Site for Planned ATP between Shah Abdul Latif and SITE
Figure 5.3.106	5 Proposed Construction Site for ATP near Drigh Road
Figure 5.3.107	7 Candidate Site for Planned ATP near Drigh Road station (Viewed from the depot hill
	station side)
Figure 5.3.108	8 Candidate Site for Planned ATP near Drigh Road Station (Viewed from Fasal Road
	side)
Figure 5.3.109	2 Land Condition of Area-A (Viewed from PR Drigh Road Station Side)
Figure 5.3.110	Land Condition of Area-B (Within the Premises of Drigh Road Station)
Figure 5.3.111	Dedicated Feeder Line Route from Alladin-P TSS to Depot Hill
Figure 5.3.112	2 Candidate Site for Proposed Stations and Depot Yard
Figure 5.4.1	Typical Configuration of Track Circuit System
Figure 5.4.2	Typical Configuration of CBTC System
Figure 5.4.3	Interval Control with Fixed and Moving Block Systems
Figure 5.4.4	Concept of ERTMS Level 3
Figure 5.4.5	Location Map of CBTC System Records
Figure 6.1.1	Viaduct Construction Steps
Figure 6.1.2	Girder Construction Steps
Figure 6.1.3	Summarized Project Implementation Schedule for Option N-A1
Figure 6.1.4	Detailed Project Implementation Schedule for Option N-A1
Figure 7.2.1	O&M Scheme Alternatives where Case-2 and Case-3 are Proposed in SAPROF (I)7-3
Figure 7.2.2	Concept of O&M Scheme Based on the Risks for O&M of KCR
Figure 7.2.3	Outline of the Proposed O&M Scheme
Figure 7.2.4	Implementation Schedule in Relation to the O&M of KCR
Figure 7.2.5	O&M Company Organizational Structure
Figure 7.2.6	Working Pattern (Sample)
Figure 7.5.1	Composition of KCR's Annual Revenue (Case N-A1)
Figure 7.5.2	Composition of KCR's Annual Revenue (Case N-A2)
Figure 7.5.3	Composition Ratio of Revenue (Case N-B1)

Schematic Figure of Baseline and Project Emissions
CDM Flow
CDM Project Cycle with Project Cycle
Organization Chart of CDM Authority in Pakistan
Average Required Time from Validation to Registration
Organization Structures for Each Implementation Stage
Organization of KUTC9-7
Proposed Organization of KUTC Engineering Units
Karachi Circular Railway and Resettlement Site10-1
Flow of EIA and IEE Process
Preliminary Layout Plan Proposed in IEE10-4
Layout Plan in F/S10-4
Overview on RAP Implementation Organization
Overview on Housing Society in Operation Stage
1 Typical Pucca House at LERP
2 Typical School Operated by NGOs10-29
3 Typical Medical Unit Operated by NGO10-30
4 Typical Vocational Training Unit Operated by NGOs10-30
Survey Flowchart of Environmental Survey in Resettlement Site 10-35
2 Proposed Organization Chart for EMP for Pre-Construction and Construction Phase
Proposed Organization Chart for EMP for Operation Phase10-38
Proposed Air and Water Quality Monitoring Point

ABBREVIATIONS

AAGR	Average Annual Growth Rate
AC	Alternating Current
ADB	Asian Development Bank
AFC	Automatic Fare Collection
APS	Affected Persons
ATC	Automatic Train Control
ATO	Automatic Train Operation
ATP	Automatic Train Protection
B/C	Benefit / Cost
BDT	Bangladesh Taka
BOD	Board of Directors
BOD	Biochemical Oxygen Demand
BOT	Build, Operate and Transfer
BRT	Bus Rapid Transit
BTS	Bangkok Transit System
CAA	Civil Aviation Authority
CAPEX	Capital Expenditure
CARE	City Airport Rail Enterprises
CBD	Central Business District
СВО	Community Based Organization
CBTC	Communications Based Train Control
CC	Control Center
CCP	Central Control Point
CCTV	Closed Circuit Television
CDGK	City District Government Karachi
CDM	Clean Development Mechanism
CDM EB	CDM Executive Board
CER	Certified Emission Reduction
CGL	City Green which Lewisham
CI	Converter- Inverter
CMS	Manganese Steel Cast Crossing
CO	Carbon monoxide
CO2	Carbon dioxide
COD	Chemical Oxygen Demand
COE	Certificate of Entitlement
CPT	Cone Penetration Test
CS-ATC	Cab Signal-Automatic Train Control
CSC	Centralised Substation Control
CTC	Centralised Traffic Control
DC	Direct Current

DID	Dansaly Inhabitad Districts
DID DLR	Densely Inhabited Districts
DLR DMRC	Dockland Light Rail in London Delhi Metro Bailway Corporation
DMRC DMU	Delhi Metro Railway Corporation
-	Diesel Multiple Unit
DNA	Designated National Authority
DOE E&M	Designated Operational Entity Electrical & Mechanical
EC EC	Electric Car Entitlement Card
ECNEC	Executive Committee of National Economic Council
EIA	
EIRR	Environment Impact Assessment Economic Internal Rate of Return
EIRR EMC	
-	External Monitoring Consultant
EMC	Environmental Management Consultant
EMI	Electromagnetic Interference
EMP	Environmental Management Plan
EMU	Electric Multiple Units
EP	Entitled Person
ERTMS	European Rail Traffic Management System
ESI	Electricity Supply Industry
ETCS	European Rail Traffic Management System
F/S	Feasibility Study
FIRR	Financial Internal Rate of Return
FTC	Finance and Trade Center
GAF	Grievance Application Form
GDP	Gross Domestic Product
GHG	Greenhouse Gas
GIG	Grievance Investigation Group
GNCTD	Government of National Capital Territory of Delhi
GOI	Government of India
GOJ	Government of Japan
GOP	Government of Pakistan
GOS	Government of Sindh
GPS	Global Positioning System
GRC	Grievance Redress Committee
GRDP	Gross Regional Domestic Product
GSM	Global System for Mobile communications
GSM-R	Global System for Mobile communications-Railways
GST	General Sales Tax
HHs	Households Heads
HS	Housing Society
HV	High Voltage

IEA	International Energy Agency
IEA IEE	International Energy Agency Initial Environmental Examination
IGDP	
IPCC	Insulated Gate Bipolar Transistor
IPCC	Intergovernmental Panel on Climate Change
	Independent Power Producer Insulated Rail Joint
IRJ	
JEMP	Jurong East Modification Project
JETRO	Japan External Trade Organization
JICA	Japan International Cooperation Agency
JIS	Japanese Industrial Standards
JNR	Japanese National Railway
JR	Japan Railway
JV	Joint Venture
KBCA	Karachi Building Contract Authority
KCR	Karachi Circular Railway
KDA	Karachi Development Authority
KESC	Karachi Electric Supply Corporation
KMTC	Karachi Mass Transit Cell
KMTP	Karachi Mass Transit Priority (Corridors)
KPT	Karachi Port Trust
KSDP	Karachi Strategic Development Plan
KSDP	Karachi Strategic Development Plan
KTIP	Karachi Transportation Improvement Project
KUTC	Karachi Urban Transport Corporation
KW and SB	Karachi Water Supply and Sewerage Board
KWSB	Karachi Water & Sewerage Board
L/A	Loan Agreement
LAA	Land Acquisition Act
LOA	License and Operating Agreement
LRT	Light Rail Transit
LTA	Land Transport Authority
MD	Minutes of Discussion
MDA	Multan Development Authority
MLIT	Ministry of Land, Infrastructure, Transport and Tourism
MOR	Ministry of Railway
MRT	Mass Rapid Transit
MRTS	Mass Rapid Transit System
MW	Mega Watts
MWP	Ministry of Water and Power
NEQS	National Environmental Quality Standard
NGO	Non-Governmental Organization
NHA	National Highway Authority
	radonal mightay multionty

NOx	Nitrogen Oxides
O&M	Operation & Maintenance
OCC	Operations Control Center
OCS	Overhead Contact System
OD	Origin and Destination
ODA	Official Development Assistance
OECD	Organization for Economic Cooperation and Development
OPEX	Operating Expenditure
P&R	Park & Ride
PA	Public Address
PABX	Private Automatic Branch Exchange
PAHs	Project Affected Households
Pak-EPA	Pakistan Environmental Protection Agency
PAPs	Project Affected persons
PBC	Pakistan Building Code
PC	Pre-stressed Concrete
РСМ	Public Consultation Meeting
PDD	Project Design Document
PDMA	Provincial Disaster Management Authority
PDMA	Provincial Disaster Management Authority
PDWP	Provincial Development Working Party
PEPA	Pakistan Environmental Protection Act
PEPO	Pakistan Environmental Protection Ordinance
PH	Public Hearing
PLDP	Power Line Drop Platform
PM	Particulate Matter
PM10	Particulate Matter less than 10 micrometer of particulate size
PMD	Pakistan Meteorological Department
РРК	Post Processed Kinematic
PPP	Public Private Partnership
PR	Pakistan Railways
PRACS	Pakistan Railways Advisory & Consultancy Services Ltd
PSD	Platform Screen Door
RAP	Resettlement Action Plan
RL	Rail Level
ROB	Road-Over Bridge
ROW	Right of Way
RPMU	Resettlement Project Management Unit
RPO	Resettlement Project Officer
Rs.	Pakistan Rupees
RTA	Roads and Transport Authority
RTK	Real Time Kinematic

RUB	Road-Under Bridge
S&C	Switches & Crossings
SAPROF	Special Assistance for Project Formulation
SCADA	Supervisory Control and Data Acquisition
SDF	Special Development Fund
SEBS	Socio-Economic Baseline Survey
SECP	Securities Exchange Commission of Pakistan
SITE	Sindh Industrial Trading Estates
SMRT	Singapore Mass Rapid Transit
SP	Stated Preference
SPT	Standard Penetration Test
SSGC	Sui Southern Gas Company
SSP	Sub Sectioning Post
ST	STation
STEP	Japanese Special Term for Economic Partnership
STRASYA	STandard urban RAilway SYstem for Asia
SUPARCO	Space & Upper Atmosphere Research Commission
SWR	Scott Wilson Railways
TAZ	Traffic Analysis Zone
TETRA	Terrestrial Trunked Radio
TMAs	Town Municipal Authorities
TPH	Trains Per Hour
TSP	Total Suspended Particulate matter
TSS	Traction Sub Station
TTC	Travel Time Cost
TX	Tsukuba Express
UBC	Unified Building Code
UC	Union Council
UHF	Ultra High Frequency
UIC	International Union of Railway
UMA	Umar Munshi Associates
UNFCCC	United Nations Framework Convention on Climate Change
VOC	Vehicle Operating Cost
VVVF	Variable Voltage Variable Frequency
WAPDA	Water and Power Development Authority
WARE	Woolwich Arsenal Rail Enterprises

1. INTRODUCTION

1.1 Background of the Study

Karachi City is the largest city in Pakistan, which has a population of 18 million, and the capital of Sindh Province. Karachi continues to be the national center of finance, industry, and overseas trade as well as an international center of southwest Asian countries. However, its urban transport infrastructure has been insufficiently developed. About 99% of trips generated in Karachi are by means of cars and buses, while the registered number of automobiles has increased exponentially. This has worsened traffic jams and air pollution to such a degree of average vehicle speed of about 15 km/h and particulate matter (PM10) of twice the WHO guideline. Therefore, to resolve the traffic problems in Karachi and enhance economic growth with better living environment, urban mass transit systems that facilitate modal shift from road transportation are indispensable.

In 1964, the Karachi Circular Railway (KCR) opened in the 26.56-km section between Drigh Road and Wazir Mansion as an unelectrified at-grade single track railway and was extended from Wazir Mansion to Karachi City in 1970. As a result, it had a total route length of 29.32 km with 16 stations. However, the operational efficiency of KCR was marginalized and its ridership dwindled with every passing day beyond the year 1985 and was eventually closed to traffic in 1999, due to longer running time, low frequency of trains, lack of punctuality, and lack of adequate integration with other transportation modes. In 2005, KCR reopened partially using the Pakistan Railway (PR) main line, but the daily number of passengers was only about 3,000 persons. The remaining closed KCR sections have been increasingly occupied by squatters and the right of way (ROW) has not been well-defined due to surrounding housing development.

Under such situation, the Medium Term Development Framework 2005-2010 recognizes that urban public transportation development in the mega cities such as Karachi and Lahore will play a key role in Pakistan's economic development in the decades ahead. The Karachi Strategic Development Plan 2020 prepared in 2007 also emphasizes the need for mass rapid transits in Karachi. The Government of Pakistan (GOP), the Government of Sindh (GOS) and the City District Government of Karachi (CDGK) prioritize the KCR revival project.

In 2006, the Japan External Trade Organization (JETRO) carried out a feasibility study for the revival of KCR, which was reviewed by Scott Wilson Railways and local consultants Umar Munshi Associates through the Ministry of Railways (MOR). To implement the project, The Karachi Urban Transport Corporation (KUTC) was established with the capitals provided by MOR, GOS and CDGK in May 2008.

The Government of Japan (GOJ) places importance on well-balanced development of regional society and economy as well as strengthening Karachi as a regional economic center in his Official Development Assistance Policy for Pakistan established in 2005. GOJ also has been assisting developing countries who are implementing climate change countermeasures for low carbon society in financing projects for reducing greenhouse gas including low-carbon transport infrastructures.

In order to resolve the traffic problems in Karachi by the development of mass rapid transits and to mitigate air pollution and climate change, GOP has requested for an ODA loan from GOJ for the KCR revival project. In response, Japan International Cooperation Agency (JICA) has shown willingness to arrange the funding of the project under the Special Term for Economic Partnership (STEP) Loan. JICA conducted the study of Special Assistance for Project Formulation (SAPROF-I) on the project from October 2008 to May 2009, scopes of which included transport demand forecast, policies and measures for the shift of travelers towards KCR, preliminary designs and technical specifications, project cost estimate, O&M arrangements and project effect evaluations. From April 2009 to May 2010, JICA intermittently dispatched project formation advisors on railway planning, traction power supply planning and social environmental considerations to assist KUTC in the preliminary design, cost estimate, organization and resettlement plan of the project.

JICA further decided to carry out the second preparatory survey (expressed as SAPROF-II in this

report) including more studies on technical issues and operational and management plans for smooth project implementation and operation.

1.2 Objectives and Scope of the Study

The objectives of the SAPROF-II study are as follows:

- a) To conduct topographic survey, hydrological survey, geological survey and KESC grids survey concerned with the KCR entire route.
- b) To review the KCR alignment plan, civil structures, track, depot plan and power supply system of the SAPROF study based on the results of the above mentioned site surveys.
- c) To provide advices and suggestions to strengthen the abilities of KUTC as the project implementation institution relating to the design review, provisions of approvals, tender evaluations and construction supervisions.
- d) To conduct the O&M surveys of urban railways in the third countries about revenues, expenses, organizations and funding plans, and to examine and propose a viable O&M plan taking into account the results of the survey.
- e) To review the project costs and the results of economic and financial analysis of the SAPROF study and to submit the interim reports to make reference for Yen loan appraisal by JICA.

The Terms of Reference (TOR) of the study are summarized as follows:

- TOR 1 Review of existing reports
- TOR 2 Survey on conditions of site and facilities
 - [2-1] Survey on site conditions topographic survey
 - [2-2] Survey on site conditions hydrological survey
 - [2-3] Survey on site conditions geological survey
 - [2-4] Survey of power supply facilities
- TOR 3 Review of KCR O&M plan
 - [3-1] O&M survey in other countries
 - [3-2] Review on O&M cost and revenue
 - [3-3] Prepare proposed O&M organization
 - [3-4] Prepare proposed O&M financial plan
- TOR 4 Verification of demand forecast, project costs and project effects
 - [4-1] Review of demand forecast
 - [4-2] Estimate of project costs
 - [4-3] Economic and financial analysis
 - [4-4] Effect indicators
 - [4-5] Effects on climate change
- TOR 5Review of preliminary designs
 - [5-1] Railway alignment
 - [5-2] Civil and track works
 - [5-3] Train operation and depot
 - [5-4] Electrical facilities
- TOR 6 Suggestions for project implementation organization
- TOR 7 Review of environmental and social considerations and preparation of plans
- TOR 8 Preparation of project implementation schedule
- TOR 9 Preparation and submission of reports
 - Inception Report (IC/R)

1-2

Interim Report (1)	(IT/R-1)
Interim Report (2)	(IT/R-2)
Draft Final Report	(DF/R)
Final Report	(F/R)

1.3 Schedule of the Study

The SAPROF-II study was commenced at the end of September 2011, the IT/R-1 and IT/R-2 were submitted in March 2012, and the study was completed in February 2013 when submitting the F/R.

The study was originally planned to be completed in June 2012 where the IT/R-1 was to be prepared in November 2011. However, due to the addition of the following works instructed by JICA, the program was rescheduled:

- a) Study on an option with partial KCR operation as well as entire route operation
- b) Review of transport demand forecast based on the OD matrix and planned highway and mass transit networks prepared in Karachi Transport Improvement Project (KTIP)
- c) Review of resettlement plans, schedules and organizations, livelihood restoration programs and arrangement of stakeholder meetings
- d) Review of environmental management and monitoring plans for the resettlement area development project, consulting services and costs
- e) Preparation of overall project implementation schedule
- f) Additional topographic survey and geological survey

Figure 1.3.1 shows the overall work schedule of the study.

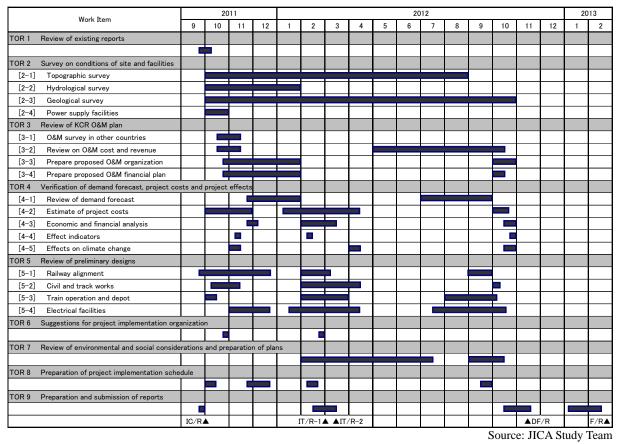


Figure 1.3.1 Work Schedule of the Study

1.4 Contents of the Final Report

This final report presents all the results of the SAPROF-II study including survey on site conditions and facilities, review of demand forecast, review of technical standards and railway alignment, review of preliminary design, review of project schedule and cost, review of O&M plan, verification of project effects, advices for project implementation organization, environmental and social considerations, and conclusions and recommendations.

2. SURVEY ON SITE CONDITIONS AND FACILITIES

To identify the project site conditions, surveys on topography, hydrology, geotechnical conditions and power supply were conducted in the study.

2.1 Topographic Survey

2.1.1 Methodology

(1) Survey standard

Following standards were adopted for control point survey:

Coordinate System	: Universal Transverse Mercator (Zone42N)
Horizontal Datum	: World Geodetic System 1984 (WGS84)
Vertical Datum	: Mean Sea Level at Karachi Port.

(2) Reconnaissance Survey and installation of primary control points

Site reconnaissance survey was conducted using Handheld GPS for the entire route and proper primary control points were selected at about 1km intervals. All the selected primary control points were established solidly with concrete monuments.

(3) GPS Survey for primary control points

The selected primary control points were surveyed using more than 4 static-GPS L1 and L2 wave equipments. Reference Benchmark was the one that has been authorized by the Pakistan Government. The standard observation time of each session was minimum 1-hour, but in case the distance between static-GPS equipments (base line) was over 5km, the surveying was conducted up to 5-hour. Observation data interval was done in 15 second with elevation mask of 15 degree. The required accuracy of Loop Closure was 3ppm or less after processing.

(4) Leveling Survey for primary control points

Level network was based on the Bench Mark that is recognized to be the standard mean sea level for all survey works around Karachi. The leveling work was performed with digital automatic level instruments connected with or built-in data logging systems. Digital recording of the logged data ensured high reliability by excluding human error in writing down of observations and manual calculations. Primary controls leveling was conducted by double leveling using two separate level instruments working together from one Control Point to the next and closing their data. If the difference between the two readings were found to be more than the specified tolerance, the level circuit is repeated with double leveling again till the required accuracy is achieved.

(5) Photo control point survey

Photo control points were surveyed with high precision GPS equipment. Complete network was developed covering the entire Karachi city in and around the KCR route. Network GPS observations ensured the high accuracy of the Photo Controls data that was used to ortho-rectify the stereo satellite imagery for accurate mapping of the terrain and ground features.

Photo Control points locations were selected in such a fashion that the points are suitable for high accuracy GPS observations without multi-path errors.

(6) Installation of center line posts

Centerline posts had been installed all along the KCR route at every 20 meter distance. These posts are in the form of wooden pegs for soft ground and railway ballast and steel nails on hard surfaces like

wooden sleepers, roads etc. Chain-ages are marked with paint on the side rail whereas the centerline posts themselves are placed in the center of the KCR survey track wherever it is visible and its centerline can be demarked.

Along the stagnated water reach from NIPA to COD where the tracks are not visible, the survey markers are placed at offsets from which to survey the cross sections so that the survey references are available for future referencing.

(7) Center line survey for the entire route

The centerline posts established along the proposed KCR route are surveyed to high precision using RTK/PPK GPS or Total Station for establishing their X, Y coordinates. Elevations of each centerline post are established using high precision automatic, self recording digital levels. Both positional and elevation values are referenced to the nearest Control Points already established as defined under section (3) and (4) above.

Spreading the survey controls to centerline posts distribute the survey control to a very high extent so that if any Primary Control Point is disturbed for any reason, it can be reestablished again easily from its nearby centerline posts which are setup at every 20 meters interval. Annexure-5 contains the X, Y, Z data information for the centerline posts surveyed.

(8) Land boundary confirmation and survey

Land boundary confirmation and survey was carried out to delineate KUTC boundary for the design of KCR. The boundary was identified physically by the KUTC staff/engineers in the field and its survey was carried out by JST through the survey contractor.

The KUTC boundary survey was carried out using the same coordinate system as of Primary Controls already setup earlier. The boundary survey was done using total stations or RTK/PPK setup.

Boundary pillars were installed at the request of the MD KUTC at selected positions. Total number of boundary survey points was approximately 200. The design of the boundary pillars include a 3 inches diameter concrete pipe 3 feet long inserted into the ground about 2'-6". Boundary survey was referenced to the Control Points already established and/or the sub-controls spread in the form of Centerline Posts along the entire KCR route.

(9) Cross section survey

Cross sections along the entire KCR route were observed at every centerline post, approximately 20m apart. Cross section corridor was observed 50 meters on either side of the survey centerline or up to the property line whichever is encountered first. At station areas the corridor width is 125 meters.

Cross sections were observed using total stations, RTK/PPK GPS systems for precise measurements and direct data plotting for quick results. Cross sections were referenced to the already surveyed Centerline Posts along the entire KCR route.

(10) Longitudinal profile survey

Longitudinal profile was generated from the cross sections data but it is supplemented with additional profile information that lies in between two centerline posts. These include the culverts, pipes, bridge piers, columns and river beds etc.

(11) 1/2000 scale topographic map creation

1/2000 scale topographic map was created using the satellite image.

The specification of the purchased satellite image is as follows:

•	Satellite name	: WorldView-1
•	Image type	: Stereo pair

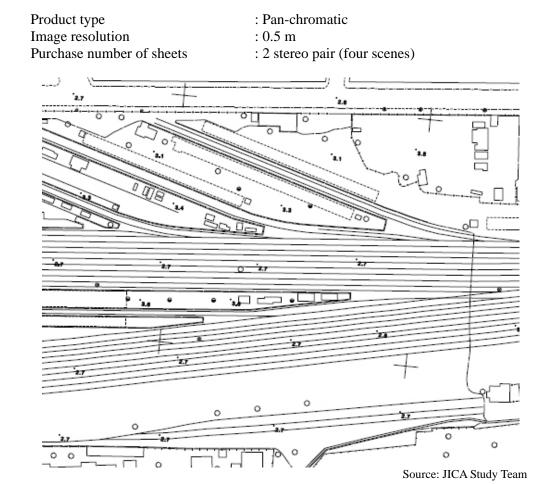


Figure 2.1.1 1/2000 Scale Topographic Map

(12) 1/1000 scale complementary topographic maps at proposed stations

Complementary survey at 1/1000 scale are performed for selected 21 sites for stations or yards along the proposed KCR route. Location of these stations and yards are:

1 Depot Hill 12 SITE 2 Gulistan-e-Johar 13 Shah Abdul Latif 3 Alladin Park 14 Baladiya 4 NIPA 15 Liyari 16 Wazir Mansion 5 Gilani 6 Yasinabad 17 DCOS 7 Liaquatabad 18 Naval 8 North Nazimabad 19 Chanesar 9 Orangi 20 Shaheed-e-Millat 10 HBL 21 Karsaz 11 Manghopir

Complementary survey was performed to fill up the finer details of topography that are not visible on the satellite imagery. Complementary survey was referenced to the Control Points already established along the entire KCR route.

Complementary survey was conducted using total station or tape measurements from known positions to achieve the required accuracy of 1/1000 scale mapping.

(13) 1/500 scale detailed topographic maps at 4 proposed stations

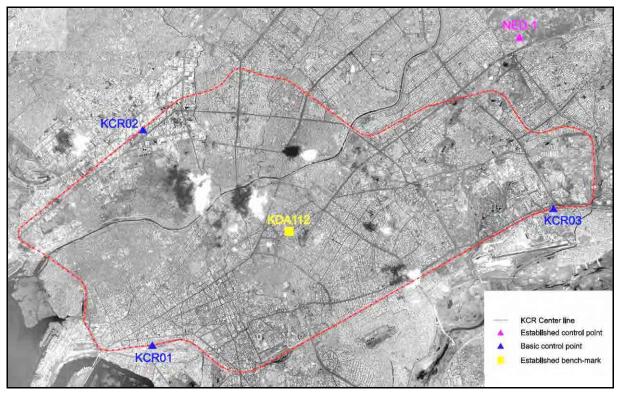
Four Main Line stations are selected for detailed topographic survey at 1/500 scale. These include:

1 Tower Station	3 Cantt Station
2 City Station	4 Drigh Road Station

These maps are developed in digital form through a complete resurvey at 1/500 scale covering details that are not visible from the satellite imagery. Survey was performed using total stations or RTK GPS depending upon the equipment suitability for that area. Annexure–10 shows the resultant survey maps of the 4 stations. Primary references were taken from the already established Control Points at every kilometer approximately.

2.1.2 Control Points

(1) Established control point


NED-1 (NED University) and KDA-112 are used as the horizontal datum of control point (XY) and the vertical datum of bench-mark (Z) respectively in this project.

(2) Basic control points

The basic control point was installed in the following three places.

- Drigh Road Station
- Mangohpir Station
- Karachi city Station

The location of Established and Basic control points are shown in Figure 2.1.2.

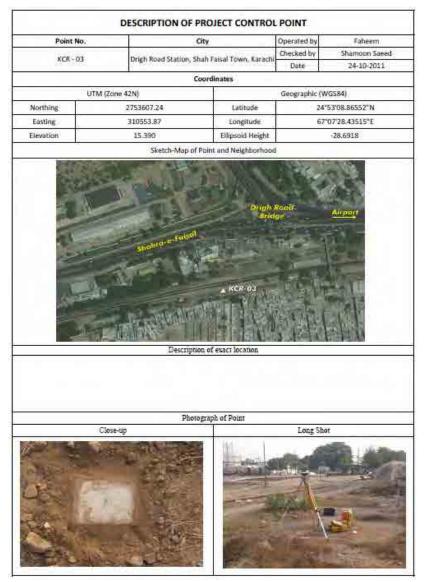

Source: JICA Study Team

Figure 2.1.2 Index Map of Established Control Point and Bench-mark

(3) Primary control points

40 primary control points was installed at about 1km intervals.

Figure 2.1.3 shows the description of project control point at near Drigh Road Station. All the points of it are shown in Appendix-2.1

Source: JICA Study Team

Figure 2.1.3 Description of Control Points

2.1.3 List of Topographic Survey Data

The list of the Topographic survey data is as shown in the following:

(1) GPS Survey for primary control points

- GPS observation Raw Data
- GPS observation log sheet
- Description of Primary Control Point
- Coordinate List

(2) Leveling Survey for primary control points

- Observation Raw Data or Field note book
- One set of digital files and hard copies of Coordinate List

(3) Photo control point survey

- GPS observation Raw Data
- GPS observation log sheet
- Description of Primary Control Point
- Coordinate List

(4) Center line survey for the entire route

- Observation Raw Data or Field note book
- Coordinate List of all center line post

(5) Land boundary confirmation and survey

- Observation Raw Data or Field note book
- Coordinate List of all boundary survey point
- Land boundary map

(6) Cross section survey

- Observation Raw Data or Field note book
- Coordinate list of all observation point with section name
- Cross sections sheets

(7) Longitudinal profile survey

- Observation Raw Data or Field note book
- Coordinate list of all observation point
- Longitudinal profile sheets

(8) 1/2000 scale topographic map creation

- 1/2000 scale topographic map data
- 1/2000 scale topographic map sheets

(9) 1/1000 scale complementary topographic maps at proposed stations

- 1/1000 scale topographic map data
- 1/1000 scale topographic map sheets

(10) 1/500 scale detailed topographic maps at 4 proposed stations

- 1/500 scale topographic map data
- 1/500 scale topographic map sheets

2.2 Hydrological Survey

2.2.1 Overview of the Hydrological Survey

(1) Purpose of the Hydrological Survey

Currently, some portion in the Right of Way (ROW) of Karachi circular railway (Target Area "P" as defined afterward) has been affected by the inflow of the domestic wastewater and probably by seepage through ground. For the revival design of Karachi circular railway for the future, any kind of inflow has to be stopped and the stagnant water and the inflow into the existing circular railway need to be drained. For this purpose it is important to know, the quantity of the stagnant water and inflow of domestic wastewater as well as the status-quo of the existing sewer system into which domestic wastewater might be discharged. Their surveys are essential for an examination of the drain system required for ridding the circular railway of the flood water.

To study protection from inundation in the ROW of the KCR due to an inflow of rain and wastewater, hydrological data, flood disaster data and information on status-quo of the existing sewer system have been collected through hydrological survey. The objectives of the survey are to:

- · Clarify the cause of the inundation are as along Karachi Circular Railway
- Study to dewater stagnant water in the ROW
- · Study to protect the ROW from inflow such as domestic wastewater
- Propose drainage plan

(2) Target Area

The hydrological survey is done in the area that is along Karachi circular railway. The survey area is divided into the Target Area 'W' and 'P' (see Figure 2.2.1). Respective target area is defined as follows:

- Target Area 'W':
 - It is the entire area along Karachi Circular Railway ROW excluding the Target Area 'P'.
- Target Area 'P':

It is the area in the KCR ROW where domestic wastewater and rain water are remarkably stagnant.

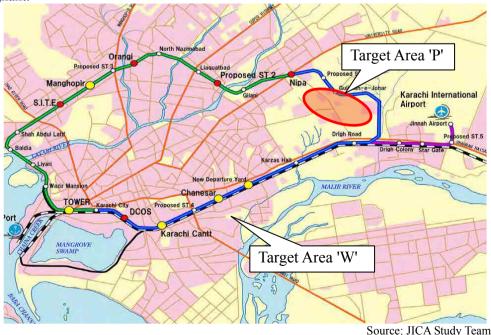


Figure 2.2.1 Target Area of the Hydrological Survey

(3) Condition of Stagnant Water and Inflow in the Right of Way

It was recognized that domestic and industrial wastewater was found to be flowing and/or stagnant in the ROW of the Karachi circular railway.

In the Target Area 'W', domestic and industrial wastewaters have been flowing in the parts of the ROW. Domestic wastewater has leaked from the damaged sewer pipes and flowed in the small trench in the ROW. In addition, it is likely that the small trench was intentionally made by dwellers such as informal settlers living surrounding the circular railway to flush and spill domestic wastewater downstream, such as to creek 'Nala'. An industrial wastewater has been discharged into the existing rainstorm drainage and small trench without any treatment.

There is no industrial wastewater in the Target Area 'P', but domestic wastewater has been discharged into the ROW and stagnated due to the feature of topographical condition (See Figure 2.2.2). Most of the domestic wastewater has leaked from the existing sewer pipes which were damaged as mentioned above and over-flowed from the sewer manholes, which were blocked up with waste, sludge, etc at point 'G' as shown in Figure 2.2.2.

-Note: A to I denotes the sampling points of water quality analysis as described in '2.2.2' Source: JICA Study Team

Figure 2.2.2 Overview of Target Area 'P'

2.2.2 Result of Survey Work

To effectively learn topographical, environmental, infrastructural and meteorological condition, JICA Study Team farmed out the field works to the contractor of the name of "ENVIRONMENTAL MANAGEMENT CONSULTANTS" hereinafter referred to as EMC) as shown in Table 2.2.1.

The contract work was carried out from the beginning of October 2011 to the end of January 2012.

Surries Cotogonias		2012		
Survey Categories	Oct.	Nov	Dec	Jan
(1) Survey on the Stagnant Water in Target Area 'P'				
(2) Survey on Inflow of Domestic Wastewater in Target Area 'P'				
(3) Survey on the Discharge Point to be proposed				
(4) Collection of Rainfall Data, Water Level Data and Flow Regime Data for the Target Area 'W'				
(5) Survey/ Collection on Flood Disaster Records				
(6) Water Quality Analysis				
(7) Effluent Standards into Public Water Body and Treatment Plant in Pakistan				
(8) Existing Water Supply, Drainage and Sewerage Survey				
		So	ource: JICA	Study Tea

Table 2.2.1 Contents of Survey Work and Time Schedule

(1) Survey on the Stagnant Water in Target Area 'P'

To grasp the Stagnated Water in Target Area 'P', Field Survey shown in Table 2.2.2 was carried out by EMC.

Table 2.2.2 Field Survey in Target Area 'P'

Item	Quantity
Cross-Section and Water-Depth Survey	13 points
Longitudinal Section and Water-Depth Survey	12 points
	Source: JICA Study Team

Target Area 'P' is further divided into two (2) areas judging according to the topographical situation, P1 and P2 as shown in Figure 2.2.4. Furthermore, P2 is sub-divided into two (2) areas, Stagnant-Water area and Flowing-area.

Cross-Section and Water-Depth Survey and Longitudinal-Section Water-Depth Survey were carried out at 13 points and 12 points respectively as shown in Figure 2.2.4.

The quantity of the stagnated water is estimated about 14,510 m^3 (10,860 m^3 at 'P1' and 3,650 m^3 at 'P2') by the way as shown below.

The results of Cross-Section and Water-Depth Survey and Longitudinal-Section and Water-Depth Survey are shown in Table 2.2.3. Figure 2.2.5 shows the view of Cross-Section and Water-Depth Survey.

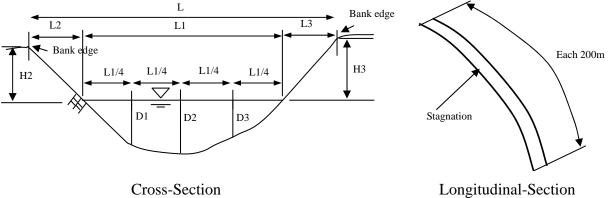
1) Cross-Section and Water-Depth Survey

The depth for water pool (measure depth D_1 , D_2 and D_3) as shown in Figure 2.2.3 to specify approximate water volume of stagnation in Target Area 'P' shall be conducted. Interval of the cross section shall be 500 m toward the flow direction. Cross section area should be calculated as follows:

$$A = \frac{D_1}{2} \times \frac{L_1}{4} \times \frac{(D_1 + D_2)}{2} \times \frac{L_1}{4} + \frac{(D_2 + D_3)}{2} \times \frac{L_1}{4} + \frac{D_3}{2} \times \frac{L_1}{4}$$
$$= \frac{L_1}{4} \times (D_1 + D_2 + D_3)$$

$$V = \frac{A_1}{2} \times DL_0 + \frac{(A_1 + A_2)}{2} \times DL_1 + \dots + \frac{(A_{n-1} + A_n)}{2} \times DL_n$$

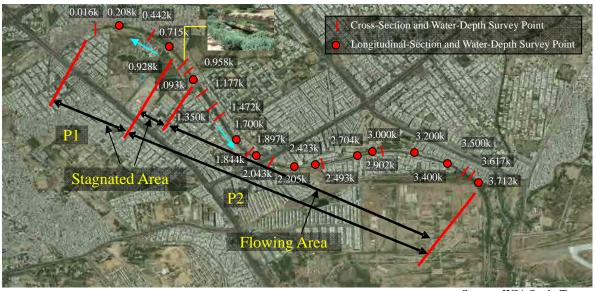
Hereby,


 A_n : Section area of the stagnated (m²) (see below)

V: Approximate quantity of the stagnated water (m³)

 DL_n : Interval between section area (m)

Longitudinal-Section and Water-depth Survey 2)


The depth for water pool at center line in target area has been measured. Interval of the longitudinal section was 200 m.

Cross-Section

Source: JICA Study Team

Figure 2.2.3 Cross-Section, Longitudinal-Section and Water-Depth Survey

Source: JICA Study Team

Figure 2.2.4 Cross-Section and Water-Depth Survey Points in Target Area 'P'

Table 2.2.5 Quantity of Stagnated Water in Target Area T																		
No.	P1orP2	Cross	L	L1	L1/4	L2	L3	H2	H3	D1	D2	D3		An	[DLn	V	Remarks
INO.	FIOREZ	Section	m	m	m	m	m	m	m	m	m	m		m ²		m	m ³	Remarks
1		0.016k	17.20	17.20	4.30	0.00	0.00	0.00	0.00	1.11	1.14	1.42	A1	15.78	DL0	16	126	
2'		0.208K		24.00	6.00					1.01	1.04	1.30	A1'	20.09	DL0'	192	3,305	
2	P1	0.442k	30.90	24.30	6.08	4.20	2.40	1.09	1.37	0.61	0.76	0.99	A2	14.34	DL1	234	1,677	Stagnated Area
2"	FI	0.715K		26.00	6.50					1.48	1.85	2.41	A2'	37.34	DL1'	273	5,097	7404
2'"															DL1"	35	653	
															S.	Total	10,859	
3		0.928k	16.00	10.70	2.68	3.00	2.30	6.60	7.31	1.93	2.00	1.57	A3	14.71	DL3	178	1,309	
4		0.958k	20.60	10.66	2.67	7.30	2.64	8.33	7.30	1.93	2.26	1.68	A4	15.64	DL4	30	455	Stagnated
4'		1.093k		9.75	2.44					1.58	1.85	1.38	A4'	11.71	DL4'	135	1,847	Area
4"																7	41	
															S.	Total	3,652	
5		1.177k	17.10	8.00	2.00	6.65	2.45	0.00	12.02	0.07	0.61	0.48	A5	2.32	DL5	77	89	
6		1.350k	17.70	6.00	1.50	8.70	3.00	8.45	5.50	0.50	0.30	0.30	A6	1.65	DL6	173	343	
7		1.472k	19.10	3.00	0.75	6.21	9.92	7.00	4.40	0.18	0.78	0.45	A7	1.06	DL7	122	165	
7'		1.700k		8.40	2.10					0.07	0.30	0.17	A7'	1.14	DL7'	228	250	
8		1.844k	16.76	8.80	2.20	4.72	3.20	8.91	8.10	0.53	0.51	0.41	A8	3.19	DL8	144	312	
8'		1.897k		8.70	2.18					0.77	0.74	0.59	A8'	4.58	DL8'	53	206	
9	P2	2.043k	4.87	4.30	1.08	0.00	0.61	1.00	0.61	0.61	0.48	0.48	A9	1.69	DL9	146	457	
9'		2.205k		6.70	1.68					0.19	0.15	0.15	A9'	0.82	DL9'	162	203	
10'		2423k		8.00	2.00					0.28	0.22	0.22	A10'	1.44	DL10'	218	246	
10		2.493k	13.65	6.00	1.50	4.40	3.25	0.61	0.74	0.10	0.00	0.15	A10	0.38	DL10	70	63	Area
11'		2.704k		7.60	1.90					0.33	0.33	0.44	A11'	2.10	DL11'	211	261	
11"		2.902k		9.00	2.25					0.45	0.45	0.60	A11"	3.38	DL11"	198	542	
11		3.000k	11.20	7.35	1.84	1.75	2.10	0.69	0.61	0.38	0.38	0.51	A11	2.33	DL11	98	280	
12'		3.200k		5.60	1.40					0.17	0.20	0.37	A12'	1.05	DL12'	200	338	
12"		3.400k		7.80	1.95					0.33	0.38	0.71	A12''	2.77	DL12''	200	382	
12		3.500k	11.80	7.20	1.80	1.80	2.80	0.81	1.20	0.20	0.23	0.43	A12	1.55	DL12	100	216	
13	3	3.617k	13.25	5.30	1.33	5.60	2.35	0.46	1.00	0.10	0.18	0.18	A13	0.61	DL13	117	126	
13'		3.712k		3.00	0.75					0.42	0.76	0.76	A13'	1.46	DL13'	95	98	
																Total	4,580	
																ted Area	14,511	
															Flowing	g Area	4,580	
															Total		19,091	

Table 2.2.3 Quantity of Stagnated Water in Target Area 'P'

Note; n' or n'': Longitudinal-Section and Water-Depth Survey Point Source: JICA Study Team

Source: JICA Study Team

Figure 2.2.5 View of Cross-Section and Water-Depth Survey

(2) Survey on inflow of domestic wastewater in the Target Area 'P'

The following surveys were carried out by EMC to specify the points where household wastewater is flushed into Target Area 'P'.

- a) The Number of flush points connected to Target Area 'P' from surroundings.: N (locations)
- b) The survey of the quantity of wastewater inflow through household interview

The quantity of wastewater was to be estimated initially in accordance with the way shown below.

After flow measurement at 3 locations, the survey of the quantity of wastewater inflow through household interview was adopted instead of flow measurement because of inaccesibility.

Selecting 10 representative locations out of the flush points (N locations) of above a), the number ('m') of households located in hinterland for 10 locations, and rate 'q' (litter/day/household) of wastewater from sampling points are surveyed. Quantity of wastewater Q (litter/day) per location is estimated by following formula.

Q (litter/day/ location) = q (litter/day \cdot household) \times m (households)

Note: 'q' and 'm': average for 10 locations

Total quantity of wastewater (TQ) was estimated as follows:

TQ (litter/day) = Q (litter/day/location) \times N (locations)

1) The Number of flush points connected to Target Area 'P' from surroundings

A total of 64 flush points were identified through field investigation.

Some of 64 flush points are shown in Figure 2.2.6.

Figure 2.2.6 View of Some Flush Points

2) The survey of the quantity of wastewater inflow through household interview

The quantity of wastewater inflow through household interview is summarized in Table 2.2.4. As seen in Table 2.2.4, the total quantity of wastewater inflow is about 13,200 L/day. The wastewater inflow per one flush point is estimated about 206 L/day/point and this quantity seems to be wastewater inflow per singlehousehold because of each households having their own flush points. Table 2.2.5 shows flow measurement data at P-22, P-34 and P-40. After the flow measurement at these points, the interview survey was adopted instead of flow measurement owing to inaccessibility as mentioned above. Average flow measurement data are calculated as 1.3 L/10M, 3.1 L/10M and 1.4 L/10M at P-22, P-34 and P-40 respectively. Daily wastewater from one household is estimated about 76 L/day – 186 L/day on the assumption that the average flow measurement data run on for 10 hours on average. This value based on the flow measurement might be rather underestimated in comparison with the

quantity of the wastewater inflow through household interview.

Figure 2.2.7 shows view of the interview to householders.

Source: JICA Study Team

Figure 2.2.7 View of Interview to Householder

Point	Latitude	Longitude	Daily Usage (Ltr/day)	Remarks
P-01	24.91741	67.1036	40	Single Household
P-02	24.9174	67.10365	40	Single Household
P-03	24.91742	67.10365	80	2 Households
P-04	24.91737	67.10371	40	Single Household
P-05	24.91744	67.10387	1226	6 Households
P-06	24.91744	67.10385	1000	2 Households
P-07	24.91748	67.10406	120	Single Household
P-08	24.91747	67.10404	120	Single Household
P-09	24.91769	67.10483	290	Single Household
P-10	24.91776	67.105	160	Single Household
P-11	24.91784	67.10503	180	Single Household
P-12	24.91772	67.10511	140	Single Household
P-13	24.91778	67.10513	80	Single Household
P-14	24.91777	67.10529	80	Single Household Assumed (Based on household size)
P-15	24.91773	67.10539	200	Single Household
P-16	24.9177	67.10548	200	Single Household
P-17+18+19	24.91777	67.10571	100	Single Household
P-20	24.91776	67.10574	80	Single Household
P-21	24.91775	67.10587	100	Single Household
P-22	24.91775	67.10588	100	Single Household
P-23+24	24.91775	67.10588	240	Single Household
P-25+26	24.91771	67.10595	240	Single Household
P-27+28+29	24.91772	67.10603	250	Single Household Assumed (Based on household size)
P-30	24.91772	67.10622	100	Single Household
P-31	24.91775	67.10626	40	Single Household
P-32	24.91775	67.10628	40	Single Household

 Table 2.2.4 Quantity of the Wastewater Inflow Through Household Interview

Point	Latitude	Longitude	Daily Usage (Ltr/day)	Remarks
P-33	24.91775	67.10628	320	Single Household
P-34	24.91772	67.10635	300	Single Household
P-35	24.9177	67.10638	170	Single Household
P-36+37+38	24.91771	67.1064	100	Single Household
P-39	24.91772	67.10654	20	Single Household
P-40	24.91771	67.10659	280	Single Household
P-41+42	24.91765	67.10667	140	Single Household
P-43	24.91766	67.1067	80	Single Household
P-44	24.91766	67.10704	150	Single Household
P-45	24.91766	67.10712	200	Single Household
P-46	24.91755	67.10755	750	4 Households
P-47	24 01749	67 10771	160	Single Household
P-47	24.91748 67.10771		100	Assumed (Based on household size)
P-48	24.91746	67.10783	980	2 Households
P-49	24.91735	67.10802	554	2 Households
P-50	24.91736	67.10802	170	Single Household
P-51	24.91735	67.10804	120	Single Household
P-52	24.91733	67.10806	72	Single Household
P-53	24.91731	67.10809	200	Single Household
P-54	24.91726	67.10822	240	Single Household
P-55	24.91724	67.10831	884	Single Household
P-56	24.91689	67.10911	350	2 Households
P-57	24.91675	67.10929	440	Single Household
P-58	24.91666	67.10941	100	Single Household Assumed (Based on household size)
P-59	24.91661	67.10948	95	Single Household
P-60	24.91637	67.1097	240	Single Household
P-61	24.91675	67.10929	40	Single Household Assumed (Based on household size)
P-62	24.91666	67.10941	750	Single Household
P-63 + 64	24.91661	67.10948	10	Single Household
Total Quantity	y	•	13,201 Ltrs/Day	y (Approx.) from 67 households

Source: JICA Study Team

Table 2.2.5 Flow Weasurement Data at 1-22, 1-54 and 1-40												
Point No.	Latitude	Longitude	Ti	ime		Quantity						
22	24.91775	67.10588		From	То	(Ltrs)						
			Morning	8:00	8:10	1.5						
			After Noon	12:00	12:10	1.2						
			Evening	16:00	16:10	1.1						
Point No.	Latitude	Longitude	Ti	Quantity								
34	24.91772	67.10635		From	То	(Ltrs)						
			Morning	8:25	8:35	2.2						
			After Noon	12:25	12:35	No Flow						
			Evening	16:25	16:35	4.0						
Point No.	Latitude	Longitude	Ti	ime		Quantity						
40	24.91771	67.10659		From	То	(Ltrs)						
			Morning	8:50	9:00	1.8						
			After Noon	12:50	13:00	1.0						
			Evening	16:50	17:10	No Flow						

Table 2.2.5 Flow Measurement Data at P-22, P-34 and P-40

Source: JICA Study Team

Table 2.2.6 Wastewater from Single Household Based on Flow Measurement
--

Flush Point	Average Inflow (L/10M)	Daily Wastewater (L)	Remarks
P-22	1.3	76	
P-34	3.1	186	10-hour duration
P-40	1.4	84	

Source: JICA Study Team

(3) Survey on the Discharge Point to be proposed

To deal with wastewater being flushed illegally, practical use of the existing sewer system was proposed. Based on the existing sewer drawings, site reconnaissance was carried out to identify manholes and verify the flow direction. In addition, the invert depth of manholes was measured so as to verify a possibility of the proper sewer connection with the existing sewer pipes.

Domestic wastewater, total quantity of which is approximately 13.2 m^3 /day, has being discharged form 64 points (about 67 households) to the ROW in Area 'P'. The quantity per household can be assumed to be 200 liter/day/household. In case household size of 5 persons, wastewater per capita per day is accounted for 40 liter/capita/day, which is nearly equal to $70\%^1$ of water consumption per capita per day (55-60 liter/capita/day) for poverty in urban area, which was reported in The Study on Water Supply and Sewerage System in Karachi in the Islamic Republic of Pakistan, July 2008: JICA Study Report.

(4) Collection of Rainfall Data, Water Level Data and Flow Regime Data for the Target Area 'W'

Rainfall data, temperature data and evaporation data were collected through Pakistan Meteorological Department. Actual water level data or flow regime data in the Lyari River and the Malir River were not collected. Despite all enquiries to every organizations concerned were done, any data could not be recognized at all.

(5) Survey/Collection on Flood Disaster Record

Flood disaster records in the Target Area 'W' including vicinity areas could not be obtained in spite of spending great effort to get desired records through concerned agencies, like Provincial Disaster

¹ Daily per capita domestic wastewater is defined as 70% of daily per capita consumption in Pakistan.

Management Authority (PDMA), City District Government Karachi (CGDK) and Town Municipal Authorities (TMAs). Consequently, the interview survey was carried out to gather useful information related to floods in the ROW of the KCR.

(6) Sewage Quality Analysis

Twelve points of the stagnant wastewater in Target Area 'P', raw sewage water and sewage-treated water and Nala were sampled and analyzed in nine parameters. Sampling points were directed by the JICA Study Team in the field as shown in Figure 2.2.8 as well as Figure 2.2.2.

As shown in Figure 2.2.8, sewage-treated water at the Sewage Treatment Plant (T.P-3) complies with National Environmental Quality Standards (NEQS) for wastewater discharge in Pakistan. However, treated water at T.P-1 does not comply with NEQS. Judging from analysis data, stagnant and the flowing wastewater in target area 'P' are typical domestic wastewater. It is not so different quality between stagnant and the flowing wastewater. Regarding Point 'B', since BOD and COD of first analysis are extremely high to be 428 mg/L and 1,270 mg/L respectively, water quality was rechecked by local contractor. Consequently, second analysis result was an ordinal quality level of domestic wastewater. It is envisaged that the result of first sampling might be caused by sampling wastewater unexpectedly at the place where dwellers had dumped the domestic wastewater concentrated through garbage.

Meanwhile, the flowing water in the storm water drain (turned into *Nala*) contains industrial wastewater which results in a remarkable deterioration of water quality around S.I.T.E.

Source: JICA Study Team

Figure 2.2.8 Sampling Points for Waste Quality Analysis

			National Env	ironment Quality Sta	ndard Limits	T.P1	T.P-1	T.P-3	T.P-3		
S.No	Parameters	Units	For Sewage	For Inland Water	For Sea	(Raw Sewage)	(Treated Sewage)	(Raw Sewage)	(Treated Sewage)	Point A	Point B
			Treatment Plant	Tor Intalia Water	1 of bea	Treatment	Treatment	Treatment	Treatment	Stangant	Stangant
1	Temperature	Deg.	3 or less difference againt water body	3 or less difference againt water body	3 or less difference againt water body	30.6	31	30.9	29.9	28.1	25.5 (23.4)
2	pH	SU	6-9	6-9	6-9	6.75	7.22	6.91	9.22	7.87	7.28 (7.41)
3	5 Days (BOD)	mg/L	250	80	80	284	132	251	39	193	428 (41)
4	COD	mg/L	400	150	400	518	229	432	85	369	1,270 (68)
5	TSS	mg/L	400	200	200	179	54	148	102	214	381 (90.6)
6	TDS	mg/L	3,500	3,500	3,500	969	932	748	2,667	3,237	1,318 (1,160.5)
7	Total Nirogen (as N)	mg/L	N/A	N/A	N/A	6.82	5.38	12.98	2.17	5.68	4.37 (16.84)
8	Total Phophate (PO ₄)	mg/L	N/A	N/A	N/A	17.29	13.27	9.19	0.76	10.64	3.06 (4.35)
9	Total Sulfate (SO ₄)	mg/L	1000	600	Below concentration at sea	124	86	280	220	180	160 (128)
			National Env	ironment Quality Sta	ndard Limits						Storm Water
S.No	Parameters	Units	For Sewage Treatment Plant	For Inland Water	For Sea	Point C	Point E	Point F	Point H	Point I	Drain
			Treatment T lan			Stangant	Flowing	Flowing	Flowing	Flowing	Flowing
1	Temperature	Deg.	3 or less difference againt water body	3 or less difference againt water body	3 or less difference againt water body	28.4	26.72	27.3	29.3	28.6	35.7
2	pH	SU	6-9	6-9	6-9	6.96	6.89	7.71	7.22	7.62	7.4
3	5 Days (BOD)	mg/L	250	80	80	141	83	81	134	157	826
4	COD	mg/L	400	150	400	263	154	143	287	311	1386
5	TSS	mg/L	400	200	200	393	127	328	193	204	1,174
6	TDS	mg/L	3,500	3,500	3,500	2,890	6,575	6241	4,975	5,670	6,334
7	Total Nirogen (as N)	mg/L	N/A	N/A	N/A	2.68	5.46		3.84	11.94	7.19
8 9	Total Phophate (PO ₄) Total Sulfate (SO ₄)	mg/L mg/L	N/A 1000	N/A 600	N/A Below concentration at sea	6.72 91	1.54	1.93 128	13.28 120	10.68	4.79

Table 2.2.7	Result of	of Sewage	Water	Quality	Analysis
--------------------	-----------	-----------	-------	---------	----------

Source: Water Quality Survey in the JICA Study Note: In regard to Point 'B', Upper: First sampling, Lower: Second sampling

(7) Effluent Standards into Public Water Body and Treatment Plant in Pakistan

The Gazette of Pakistan which included 'National Environmental Quality Standards for Municipal and Liquid Industrial Effluents' was obtained. Effluent standards are described for detail in '2.2.4'.

(8) Existing Water Supply, Drainage and Sewerage Survey

Drawings on the existing water supply, drainage and sewerage were obtained from KW and SB and Pakistan Railway Housing Authority in the study. However, their information lacks and includes only trunk main lines.

Meanwhile, information on sewer pipes along Target area 'P' was utilized so as to deal with wastewater being flushed illegally from houses into the ROW.

2.2.3 Hydrology

The following data were collected through the organizations concerned.

(1) Rainfall

Rainfall data was collected through Pakistan Meteorological Department (hereinafter referred to as PMD). Table 2.2.8 and Figure 2.2.9 show the rainfall data from 2001 through 2011 in Karachi.

Rainfall in Karachi is limited from June to September, and the annual rainfall is no more than 500 mm at most.

	Rainfall									Stat	Station:Karachi(Airport) (mm)		
Year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
2001	0.0	0.0	0.0	0.0	0.0	10.6	73.6	16.2	0.0	0.0	0.0	0.0	100.4
2002	0.0	2.4	0.0	0.0	0.0	0.0	0.3	52.2	0.0	0.0	0.5	0.4	55.8
2003	6.4	21.8	0.0	0.0	0.0	16.3	270.4	9.8	0.0	0.0	0.2	0.0	324.9
2004	13.7	0.0	0.0	0.0	0.0	0.0	3.0	5.6	0.0	39.3	0.0	4.3	65.9
2005	10.8	12.8	0.0	0.0	0.0	0.0	1.3	0.3	54.9	0.0	0.0	17.1	97.2
2006	0.0	0.0	0.0	0.0	0.0	0.0	66.2	148.6	21.9	0.0	3.1	61.3	301.1
2007	0.0	13.2	33.4	0.0	0.0	110.2	41.0	250.4	0.0	0.0	0.0	17.4	465.6
2008	8.0	0.0	1.1	0.0	0.0	0.0	54.0	37.5	0.0	0.0	0.0	21.0	121.6
2009	3.0	0.0	0.0	0.0	0.0	2.6	159.9	44.0	68.9	0.0	0.0	1.5	279.9
2010	0.0	0.5	0.0	0.0	0.0	97.4	120.4	111.5	42.7	0.4	0.0	0.0	372.9
2011	8.5	1.6	0.0	0.0	0.0	0.0	7.2	61.1	212.9				291.3
Average	4.6	4.8	3.1	0.0	0.0	21.6	72.5	67.0	36.5	4.0	0.4	12.3	225.1
Max.	13.7	21.8	33.4	0.0	0.0	110.2	270.4	250.4	212.9	39.3	3.1	61.3	465.6
Min.	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.3	0.0	0.0	0.0	0.0	55.8

Table 2.2.8 Rainfall in Karachi

Source: PMD

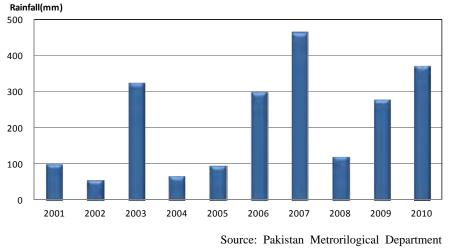


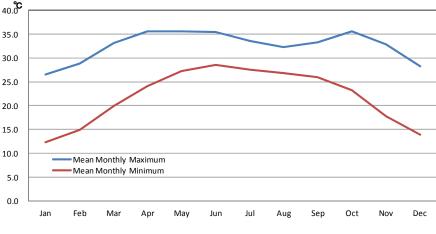
Figure 2.2.9 Annual Rainfall in Karachi

(2) Temperature

Temperature data was also collected through PMD. Table 2.2.9, Table 2.2.10 and Figure 2.2.10 show the mean monthly maximum and minimum temperature data from 2001 through 2011 in Karachi.

The mean monthly maximum temperature in Karachi is about 36 degrees from April to June and October at maximum, and about 27 degrees in January at minimum. The mean monthly minimum temperature is about 29 degrees in June at maximum, and about 12 degrees in January at minimum.

					•	·		-					
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2001	27.2	29.6	33.1	34.6	35.1	34.9	32.2	32.3	33.1	36	33.5	30.4	32.7
2002	27	28.2	33.3	35.4	35.6	35.1	32.2	31.6	31.4	36.5	32.7	28.1	32.3
2003	27.6	28.5	32.4	36.6	35.7	34.9	34.1	32.6	32.5	37	32.2	28.3	32.7
2004	26.6	29.9	36.2	35.4	36.8	35.6	33.8	32.7	32.8	33.7	33.1	29.4	33
2005	24.9	26.3	31.5	35.3	35.4	36	33.2	32.2	34.2	35.2	33.1	28.4	32.1
2006	26	31.3	31.8	34	34.6	35.3	33.8	31	34.2	35	33.4	26.3	32.2
2007	26.9	29.4	31.4	37.7	36	36.4	N/A	N/A	N/A	N/A	N/A	N/A	33
2008	24.4	26.9	34.3	34.4	33.9	35.1	33.5	31.9	34.7	35.5	32.5	27.2	32
2009	26.2	29.8	33	36	36.8	35.7	34.5	33	32.8	35.9	33	28.6	32.9
2010	27.5	29.2	34	35.7	36.5	34.7	34.6	33.2	34.5	35.9	32.7	28	33.0
2011	26.9	28.5	33.2	35.8	35.3	35.3	34.2	32.8	32.9				
Average	26.5	28.9	33.1	35.5	35.6	35.4	33.6	32.3	33.3	35.6	32.9	28.3	32.6
Max.	27.6	31.3	36.2	37.7	36.8	36.4	34.6	33.2	34.7	37.0	33.5	30.4	33.0
Min.	24.4	26.3	31.4	34.0	33.9	34.7	32.2	31.0	31.4	33.7	32.2	26.3	32.0


Table 2.2.9 Mean Monthly Maximum Temperature in Karachi (1)

Source: Pakistan Metrorilogical Department

Table 2.2.10 Mean	Monthly Minimum	Temperature in Karachi (2)

						-		-					
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
2001	11.5	14.9	19.6	23.8	28.1	29	27.1	26.5	25.9	24.4	18.6	15.8	22.1
2002	12.8	13.8	19.5	23.9	27	28.2	29.6	25.6	24.8	22.5	17.7	14.9	21.7
2003	12.7	16.9	19.8	24.2	26.5	28.2	23.6	27	25.3	20.9	15.2	12	21
2004	12.9	14.5	19.1	24.8	27.3	28.8	27.5	26.3	25.3	22.4	18	15.4	21.9
2005	12.3	11.3	20.3	23	26.4	28.3	27.2	26.6	26.6	22.9	18.9	13	21.4
2006	11.7	18.1	19.6	24.5	27.5	28.5	28.3	26.3	26.8	25.7	19.4	14	22.5
2007	13	17.3	19.7	24.7	27.6	28.6	N/A	N/A	N/A	N/A	N/A	N/A	21.8
2008	10.1	11.1	19.6	24	27.3	29.1	27.9	26.8	26.6	23.8	17.6	14.9	21.6
2009	14.7	16.5	20.8	23.8	27.6	28.7	28.1	27.5	26.5	22.6	17	13.9	22.3
2010	12.2	14.7	21.3	25.1	28	28.2	28.3	27.2	25.8	23.9	17.4	11.1	21.9
2011	11	14.5	19.7	23.1	27.1	28.8	27.8	28.6	26.5				
Average	12.3	14.9	19.9	24.1	27.3	28.6	27.5	26.8	26.0	23.2	17.8	13.9	21.8
Max.	14.7	18.1	21.3	25.1	28.1	29.1	29.6	28.6	26.8	25.7	19.4	15.8	22.5
Min.	10.1	11.1	19.1	23.0	26.4	28.2	23.6	25.6	24.8	20.9	15.2	11.1	21.0

Source: Pakistan Metrorilogical Department

Source: Pakistan Metrorilogical Department

Figure 2.2.10 Mean Monthly Maximum and Minimum Temperature in Karachi

(3) Evaporation

Evaporation data at UTHAL Station was also collected through PMD. The specification of UTHAL Station is shown in Table 2.2.11. Table 2.2.12 and Figure 2.2.11 show the mean monthly pan evaporation data from 2001 through 2011 at UTHAL Station.

The mean monthly pan evaporation at UTHAL Station is about 260 mm in May at maximum, and about 175 mm in December at minimum. The annual pan evaporation is about 2,600 mm.

Table 2.2.11 Specification of UTHAL Station

Ī	Station Name	Latitude	Longitude	Elevation								
	UTHAL	25° 48′N	66° 37′E	41.67 m								

N	66° 37 E	41.67 m
	Source: Pakistan N	Ietrorilogical Department

year	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annual
2003	-	-	-	-	-	-	-	-	232.5	258.9	-	214.4	-
2004	236.8	217.2	234.3	-	284.0	269.2	314.6	207.5	259.0	201.8	226.0	254.3	-
2005	-	219.6	220.2	224.5	-	224.2	237.9	274.1	206.9	265.1	218.6	240.2	-
2006	252.5	173.8	129.2	225.7	230.5	252.7	237.1	247.8	216.8	216.0	220.4	292.0	2,694.5
2007	194.7	190.4	238.9	237.2	231.7	236.3	268.6	219.2	238.9	248.6	259.7	157.6	2,721.8
2008	302.6	225.9	211.6	239.4	256.8	228.0	196.4	174.0	190.3	177.6	133.6	81.8	2,417.8
2009	90.0	132.8	188.4	250.8	312.5	276.4	231.5	232.4	215.6	215.7	149.7	38.2	2,334.0
2010	106.9	134.9	200.0	220.1	246.8	216.0	190.5	192.4	186.6	197.2	227.5	123.5	2,242.3
Mean	197.2	185.0	203.2	233.0	260.4	243.3	239.5	221.0	218.3	222.6	205.1	175.2	2,603.8

Table 2.2.12 Mean Monthly Pan Evaporation at UTHAL Station

Source: Pakistan Metrorilogical Department

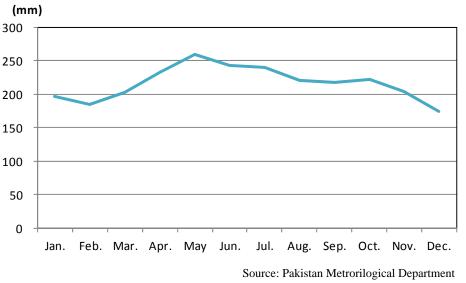


Figure 2.2.11 Mean Monthly Pan Evaporation at UTHAL Station

(4) Floods

Flood disaster records in the Target Area 'W' including vicinity areas could not be obtained in spite of spending great effort to get desired records through concerned agencies, like Provincial Disaster Management Authority (PDMA), City District Government Karachi (CGDK) and Town Municipal Authorities (TMAs). It was also found that none of the authorities have been assigned the responsibility of maintaining records of such type of data. During emergency scenarios TMAs and other CDGK departments carry out relief measures based on complaints and on required basis. Consequently, the interview survey was carried out to gather useful information related to floods in the ROW of the KCR.


The interview survey was done in every sectors shown in Table 2.2.13 and Figure 2.2.12.

Figure 2.2.24 shows view of the interview survey.

Sector	EXTENT					
	From	То	Mileage			
А	Drigh Road	Shaheed-e-Millat Flyover	5.5 Km			
В	Shaheed-e-Millat Flyover	Clifton Bridge	5.9 Km			
С	Clifton Bridge	Machhar Colony	5.5 Km			
D	Machhar Colony	Sher Shah bridge	4.75 Km			
Е	Sher Shah bridge	Bara maidan	5.0 Km			
F	Bara maidan	Gharibabad Furniture market	5.05 Km			
G	Gharibabad Furniture market	Lal Flat/Railway Societ Bridge	5.5 Km			
Н	Lal Flat/Railway Society Bridge	Rabia City	2.6 Km			

Table	2.2.13	Details	of Survey	Sectors
14010		Details	orsurvey	Sectors

Note: The area from Rabia City to Drigh Road is generally devoid of population. Source: JICA Study Team

Figure 2.2.12 Survey Sectors

- 1) Result of Interview Survey
- (a) Number of Interviewee

A total number of 281 persons were interviewed all along the KCR route which included residents, shopkeepers and others.

The percentage of residents of the total sample size was 59.8% whereas, shopkeepers constituted 29.5% and others (Guards, Cattle farmers, Flat Union representatives) 10.7% as shown in Figure 2.2.13.

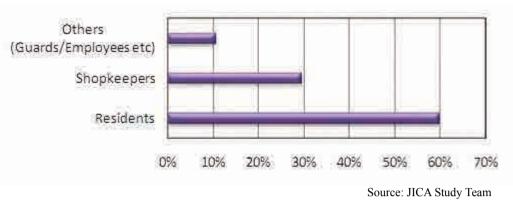
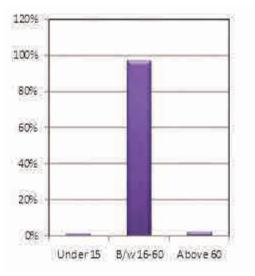



Figure 2.2.13 Classification of Interviewee

(b) Age of Interviewee

Age group of interviewee was mostly between 16 years to 60 years with 96.8%.

Source: JICA Study Team

Figure 2.2.14 Classification of Age of Interviewee

(c) Experience of Flooding

Overall 86% of the interviewee experienced flooding around their premises while 14% denied. Sector-wise distribution is shown in Figure 2.2.15.

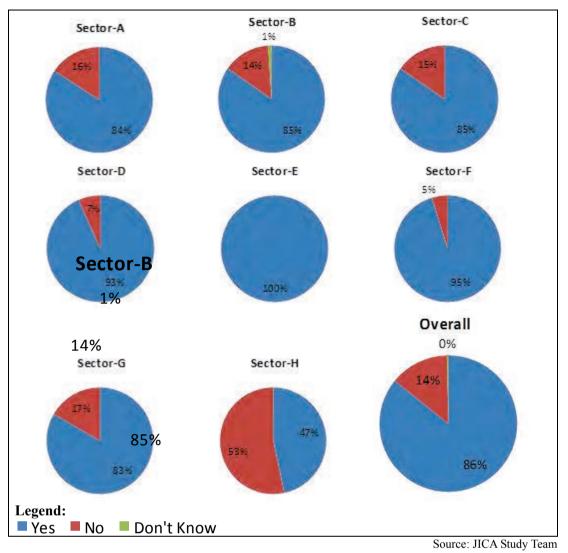


Figure 2.2.15 Classification of Flooding Experience

(d) Time of the year

According to the opinion of the interviewee, 75.1% of them experienced last rainwater flooding in 2011, while 23.2% in 2010 and 1.7% prior to 2010.

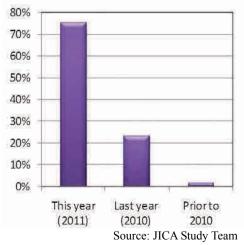


Figure 2.2.16 Time of the year of Flooding Experience

(e) Cause of Flood

56% of the interviewee answered that water inundated due to rain, 1% due to Sewerage overflow and 43% due to both reasons.

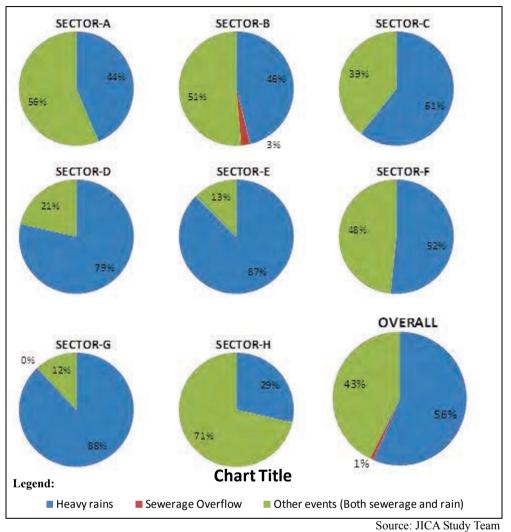
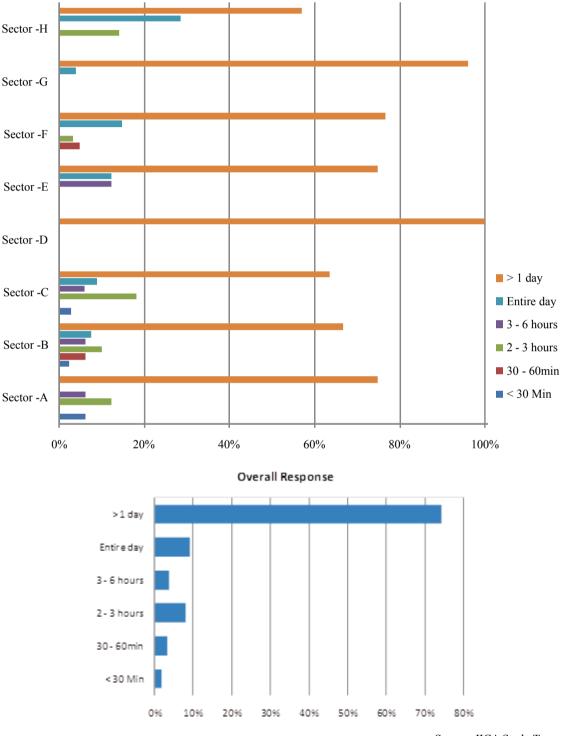
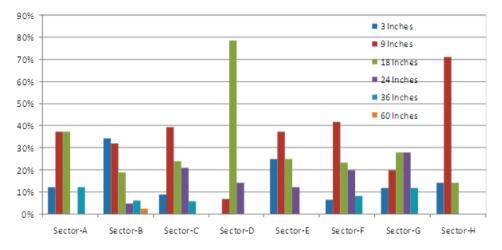



Figure 2.2.17 Classification of Cause of Flood

(f) Duration of Flood

The flood lasted for more than a day according to 74% of interviewee. Sector-wise details are shown in Figure 2.2.18.



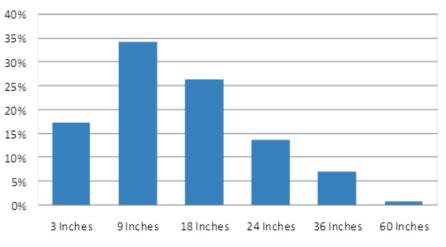

Source: JICA Study Team

Figure 2.2.18 Classification of Flooding Duration

(g) Depth of Flood

According to 61% of the interviewee, the flood depth was noted between 9 to 18 inches. Sector-wise details are shown in Figure 2.2.19. The flood depth in Sector-D seemed to be the heaviest among all Sectors.

Overall Response

Source: JICA Study Team

Figure 2.2.19 Classification of Flooding Depth

(h) Method of Disposal of Standing Water

According to 54% of the interviewee, standing water was removed through community efforts, 37% stated that water receded naturally through existing drains or by evaporation while 9% said that it was pumped by municipal authorities.

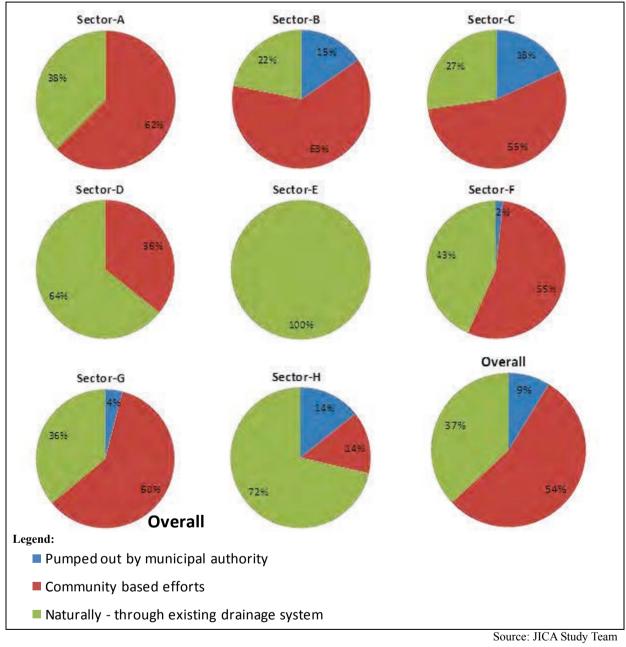


Figure 2.2.20 Classification of Method of Disposal

(i) Existence of Drainage System

98% of the interviewee denied about the storm water drainage system in the area.

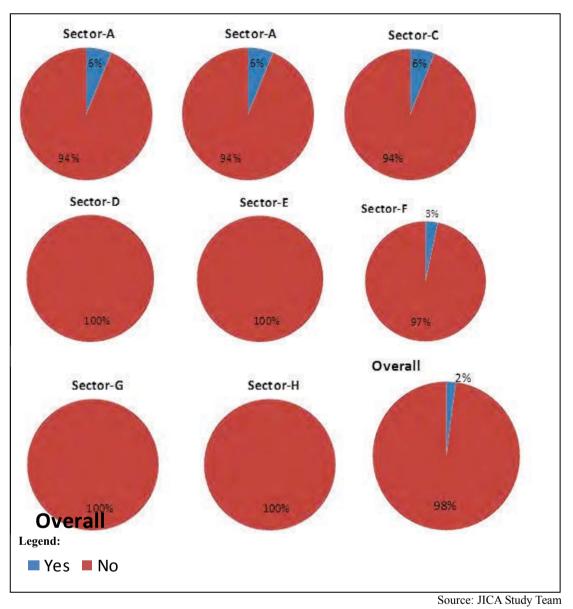


Figure 2.2.21 Existence of Drainage System

(j) Existence of Sewerage/Waste Water Collection System

85% of the interviewee gave positive response about sewerage/waste water collection system in their area.

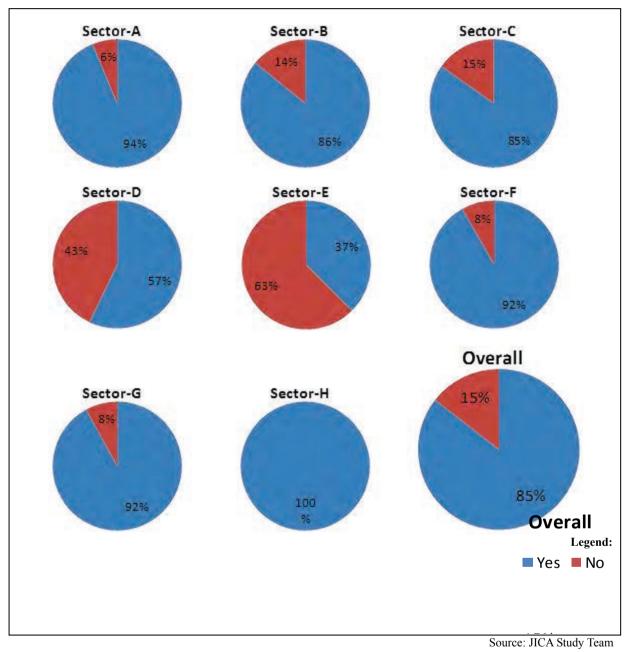
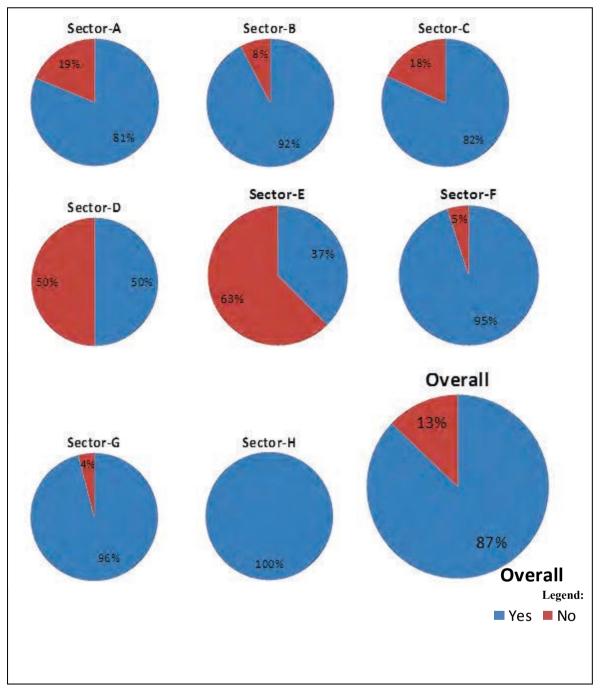



Figure 2.2.22 Existence of Sewerage/Waste water Collection System

(k) Sewerage/Waste Water Collection System and Rain Water Collection System

Sewerage/waste water and rain water collection system is same as per 87% of the interviewee.

Source: JICA Study Team

Figure 2.2.23 Sewerage/Waste Water Collection System and Rain Water Collection System

Source: JICA Study Team

Figure 2.2.24 View of Interview Survey

According to the Reports of the Inter Government Panel on Climate Change (hereinafter referred to as IPCC), the global mean sea level may rise as high as 88 cm by end of 21st Century and it may severely affect coastal regions in many parts of the World. Consequently the research was to conduct a case study in Karachi. The result of a simulation is described in "MODELING AND SOCIO-ECONOMIC IMPACT ANALYSIS OF FLOODS IN COASTAL CITIES UNDER SEA LEVEL RISING SCENARIOS: A CASE STUDY OF KARACHI, PAKISTAN"

For the simulation, the observed MSL for the year 2003 was considered as present condition, and the mean sea level was increased by 14, 32, 57 and 88 cm from the present level to obtain future flood inundation condition for future years of 2025, 2050, 2075 and 2100 respectively based on IPCC, the A1 scenario. It is concluded in this paper that climate change scenarios can not affect on Rail Network in Karachi in present and future.

Maximum daily rainfall from 1981 through 2011 is shown in Table 2.2.14. The maximum rainfall occurred in 2009, and the minimum rainfall occurred in 1987. The mean maximum daily rainfall is 52.1mm. Probable daily rainfall amount is estimated using Gumbel Method, Iwai Method and Ishihara/Takase Method. Plotting position is shown in Figure 2.2.25. The probable daily rainfall amount of Iwai method, which is the best method for fitness in three methods, is shown in Table 2.2.15.

Based on this probable daily rainfall amount, the maximum daily rainfall in 2011 and 2009 are between 2-year and 3-year probable daily rainfall amount, and approximately 15-year probable daily rainfall amount respectively.

The catchment areas of Target Area P1 and P2 are 1.74 km² and 2.15 km² respectively.

Maximum Flow in Target Area P1 and P2 are roughly estimated based on this probable daily rainfall amount. The rate of flow in Target Area P1 and P2 is 0.6 on the assumption that the flow rate in Pakistan is not different to that in Japan because of no information regarding the flow rate in Pakistan.

Maximum flow in Target Area P1 and P2 is shown in Table 2.2.16.

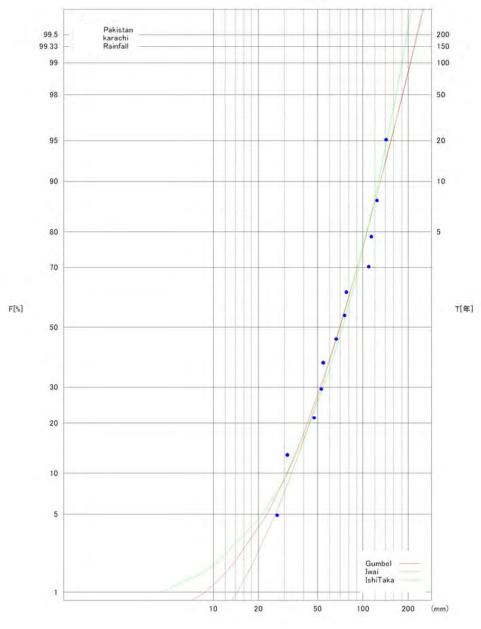

Table 2.2.14 Maximum Dany Kaman			
year	Occurrence Day	Daily Rainfall Amount (mm)	
1981	Мау	47.6	
1982	Aug.	74.0	
1983	Aug.	38.9	
1984	Aug.	113.7	
1985	Apr.	37.0	
1986	Aug.	25.4	
1987	Aug.	0.0	
1988	Aug.	5.1	
1989	Jul.	58.8	
1990	Aug.	57.2	
1991	Feb.	19.5	
1992	Aug.	91.7	
1993	Feb.	9.8	
1994	Aug.	46.5	
1995	Jan.	81.3	
1996	Feb.	33.2	
1997	Sep.	24.0	
1998	Nov.	24.1	
1999	Jan.	4.5	
2000	Jan.	19.0	
2001	13/Jul.	52.5	
2002	27/Aug.	47.0	
2003	29/Jul.	108.4	
2004	3/0ct.	26.5	
2005	12/Sep.	31.0	
2006	31/Jul.	65.9	
2007	10/Aug.	124.2	
2008	30/Jul.	54.0	
2009	19/Jul.	142.6	
2010	6/Jun.	77.1	
2011	7/Sep.	75.0	
Min.		0.0	
	Max.	142.6	
	Mean	52.1	
		Source: DMD	

 Table 2.2.14 Maximum Daily Rainfall

Source: PMD

Return Period	Iwai method
2	70.0
3	87.0
5	106.1
10	130.2
20	153.5
30	167.0
50	184.0
80	199.6
100	207.1

Table 2.2.15 Probable Rainfall by Iwai Method (Unit: mm)

Source: JICA Study Team

Source: JICA Study Team

Figure 2.2.25 Plotting Position

Target Area	Catchment Area (km ²)	Maximum Flow (m ³ /s)	Return period
P1	1.74	2.6	5-year
		3.1	10-year
		3.7	20-year
P2	2.15	3.2	5-year
		3.9	10-year
		4.6	20-year

Source: JICA Study Team

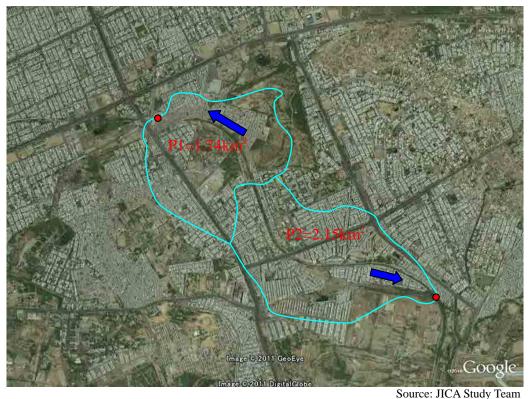


Figure 2.2.26 Catchment Area of Target Area P1 and P2

2.2.4 Drainage and Sewerage

As mentioned above, there is the water supply and sewerage system which is managed by Karachi Water Supply and Sewerage Board (KW and SB) throughout Karachi circular railway. The existing sewerage catchment area which covers 18 towns in Karachi city is divided into three districts, namely: respective catchment area of T.P-1, T.P-2 and T.P-3 as shown in Figure 2.2.27.

Total design capacity of three treatment plant is $686,000m^3/day$ (T.P-1: 232,000m³/day, T.P-2: 209,000m³/day, T.P-3: 245,000m³/day) but currently, only T.P-1 and T.P-3 are operational. T.P-2 has suspended since three years ago because of O&M matters such as technical troubles and budget, etc. Of total quantity of wastewater of 1.76 million m³/day being discharged in Karachi, only approximately 25% of the total quantity is treated in T.P-1 and T.P-3. The remained wastewater has being discharged into 'Nala'.

To review the existing Master Plan of the sewerage system as well as water supply which was prepared from 1985 to 1988, KW and SB formulated the Master Plan of the water supply and sewerage system in cooperation with JICA in 2008. However, most of the projects for rehabilitation and augmentation proposed in the Master Plan study, etc have not been carried out due to financial constraint of KW and SB.

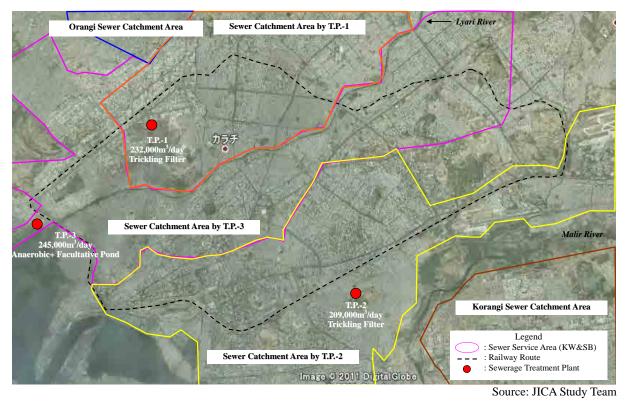


Figure 2.2.27 Sewer Catchment Areas

Effluent standards for inland waters, sea and sewerage treatment in 32 parameters are regulated by the Ministry of Environment and Local Government Development through the Pakistan Environmental Protection Act 1997 in Pakistan. Basically effluent wastewater should be monitored and directed by Environmental Protection Agency (EPA). However, industrial wastewater in the Sindh Industrial Trading Estate (S.I.T.E.) has been discharged to public areas such as rainstorm water drainage and 'Nala', etc. without any treatment.

There is a penalty system on a strict effluent standard. According to the regulation, PKR 1.0 million (min.) is imposed as a penalty for exceeding the effluent standard. If effluent flow is not suspended after a warning by EPA, a further penalty of PKR 0.1 million per day is imposed. However, the penalty has not been imposed on industrial companies because of a lack of appropriate monitoring by EPA. This is caused by shortage of human resource of EPA.

2.2.5 Issues on Water in the Right of Way

As far as JICA Study Team had a field reconnaissance along KCR, the issues on water being present in the ROW so as to steadily implement the railway project are summarized as follows:

- a. Eliminate stagnant wastewater (Area 'P') from the ROW.
- b. Eliminate seepage (Area 'P') through the ground from the ROW.
- c. Protect the ROW from flood entirely.
- d. Stop flushing wastewater (Area 'P' and Gulistan-e-Johar) from dwellers along the ROW.
- e. Deal with industrial wastewater (S.I.T.E) in the ROW.

2.2.6 Drainage Measures against Stagnant and Inflow Water Drainage

To solve the issues as mentioned in '2.2.5', countermeasures are categorized into '(1) Drainage Measures at the Stage under Construction' and '(2) Drainage Measure at the Post-construction Stage'. Furthermore, '(1)' is divided into the respective measure against domestic, industrial wastewater and flood disaster.

(1) Drainage Measures at the Stage under Construction

a) Drainage Measures against Stagnant and Inflow of Domestic Wastewater

Four measures at the construction stage are proposed as follows:

- <u>Method-1 Stagnant wastewater removed by lorry trucks and submersible pump(s)</u>: The stagnant wastewater of 15,000 m³ at Point 'A' as shown in Figure 2.2.2 will be pumped up by private lorry truck (bowser) by submersible pumps and transported to the existing treatment plant of KWandSB by the lorry trucks (bowser). It is proposed that the stagnant wastewater should be transported to be T.P-3 considering its treatment performance.
- <u>Method-2 Diversion of existing sewer pipes</u>: The wastewater which is being flushed from outlet of domestic wastewater of approximately 100 households will be directly connected to the existing sewer pipes (See Figure 2.2.28 and Figure 2.2.29). In addition, wastewater which has been leaked from the damaged existing sewer pipes will be flown in the sewer pipes to be replaced (See Figure 2.2.28 and Figure 2.2.29).
- <u>Method-3 Dredging of sludge in the ROW</u>: Even if stagnant wastewater is dewatered, seepage of groundwater may be remained in the ROW. Sludge heaped up on the ROW will be excavated with excavator to flush seepage water to 'Nala' at downstream in gravity (See Figure 2.2.30).
- <u>Method-4 Diversion of rainstorm drainage</u>: The quantity of domestic wastewater flowing currently in the existing drainage and small trench is very little and the distance of their drainages is relatively short. Most of wastewater has been discharged from informal settlers. Through the project, the informal settlers who live along KCR will be relocated to a candidate suburb area based on an assessment of RAP. Rainstorm drainage or small trench will be utilized for the drainage of wastewater until the informal settlers move (See Figure 2.2.31 and Figure 2.2.32).

Source: JICA Study Team

Figure 2.2.28 Existing Sewer Pipes and Newly Sewer Pipes to be Developed around Nipa (Method-2)

Source: JICA Study Team

Figure 2.2.29 Existing Sewer Pipes and Newly Sewer Pipes to be Developed around Gulistan-e-Johar (Method-2)

Source: JICA Study Team

Figure 2.2.30 Area of Wastewater Stagnated (Method -3)

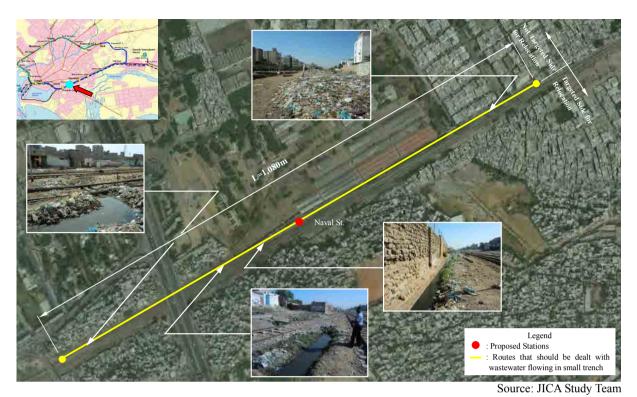


Figure 2.2.31 Area of Wastewater Flowing near Naval Station (Method -4)

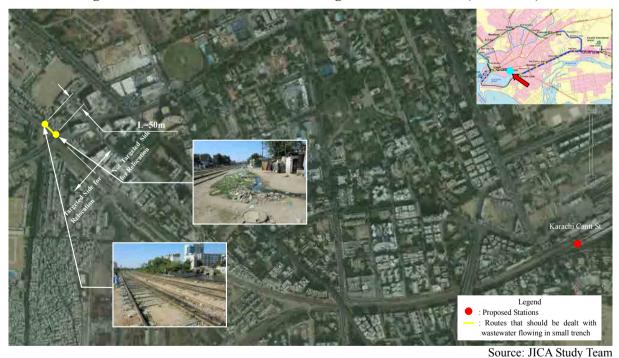


Figure 2.2.32 Area of Wastewater Flowing near Karachi Cantt. Station (Method -4)

Table 2.2.17 shows the result of technical and cost evaluation on the measures at the stage under construction. The cost was estimated based on the unit cost which had been provided by local contractors. The cost of Method-1 to Method -3 must be included in the railway project cost.

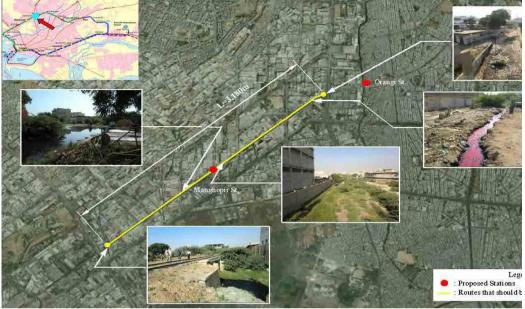
No.	Measures	Description	Cost
No. Method -1	Measures Stagnant wastewater removed by Lorry Trucks (bowser) and submersible pump	The method of dewatering stagnant wastewater by lorry trucks will be useful for wastewater disposal after flushing points are connected to the existing sewer pipes. KWandSB has 18 suction vehicles as reported by Deputy Managing Director of KWandSB. All the Vehicle has been allocated in 18 towns of Karachi. Therefore, it is too limited to divert the vehicles to dewatering of stagnant wastewater in this project. Lorry trucks will be leased from private company.	CostCondition: (General) Quantity of stagnant wastewater: 15,000m³Cost includes mobilization and VAT (Bowser)Capacity of truck: $37m^3$ / bowser Number of trucks: 3bowzers Daily trips: 3trips Cost of one bowser including man-power and fuel for one trip per day: PKR32,000/truck/ trip Cost of three bowsers including man-power and fuel for three trips per day: PKR288,000 Daily performance: 3trips x 3bowzers x $37m^3 = 333m^3$ per day Required work days: $15,000m^3 / 333 m^3 = 45days$ (Treatment) PKR2/Gal=PKR528/m³ (Pump and Generator) Cost of three submersible pumps @ $300,000/$ - per pump in PKR900,000 Cost of 25 KVA Diesel Driven Generator in PKR1,100,000 (Fuel for Generator) Quantity of fuel required for a one hour operation hours for a day: 4.5hours Total Quantity of fuel required for 45 days: 810liter Unit cost of fuel: PKR110/liter Cost: (Bowser) 45days x PKR288,000 = PKR12,960,000(A) (Treatment) 15,000 m³ x PKR528/m³ = PKR7,920,000(B) (Pump and Generator) PKR900,000 + PKR1,100,000 = PKR2,000,000(C) (Fuel for Generator) PKR900,000 + PKR1,10/liter = PKR2,969,100 Total Cost: (A)+(B)+(C)+(D)= PKR22,969,100 Total Cost: 23.0-Million (Including overhead of 5%)

Table 2.2.17 Evaluation on the Drainage Measures at the Stage under	Construction
Table 2.2.17 Evaluation on the Drainage Measures at the Stage under	Construction

No.	Measures	Description	Cost
Method -2	Diversion of Existing Sewer Pipes	Prior to dewatering the stagnant water, the sewer pipes which receive wastewater being discharged in the ROW of KCR from dwellers around Area 'P' must essentially be laid and connected to existing sewer system by KWandSB. However, JICA may consider supporting KWandSB for laying of new sewer pipes to connect to the existing sewerage system due to lack of KWandSB's budget. It is anticipated that the cost of the sewer pipes in rehabilitation and expansion is PKR37.2Million. Invert depth of two existing manholes is 1.52m and 2.15m respectively. Their invert depths are enough to be connected to the new sewer pipes.	Condition: Including Mobilization, VAT and overhead Cost: Households to be covered with sewer pipes at Area 'P': 100 Sewer pipes (PVC: 200-300mm) to be expanded and rehabilitated: 4,270m (1,250m+3,020m) Connection sewer pipe: 5,00m (5m per household) Manholes to be installed: 61sets Sewer pipe (200-300mm): PKR4,900 /m Connection sewer pipe (150mm): PKR3,000 /m Manhole: PKR21,000 /set Pipe: PKR4,900 x 4,270m = PKR20.9Million Connection pipe: PKR3,000 x 5,00m =PKR1.5Million Manhole: PKR21,000 x 61sets = PKR1.3Million Total Cost: PKR23.7Million *1
Method -3	Dredging of sludge in the ROW	To drain the seepage of groundwater after dewatering stagnant wastewater, the ROW of approximately 1,300m as shown in Figure 2.2-11 shall be dredged by excavators.	Condition: Including Mobilization, VAT and overhead Cost: Excavation: PKR900/m ³ for hard soil with excavator of $1.0m^3$ Cost: PKR900/m ³ x 1,300m x 11m x 1m = PKR12.9Million Total Cost: PKR12.9Million ^{*1}
Method -4	Diversion of Rainstorm Drainage and raising foundation of railway	Domestic wastewater flowing in the small trench in the ROW will be solved if informal settlers are relocated.	The cost of Method-4 will be not required as Drainage Measures against Stagnant and Inflow of Domestic Wastewater.

Note: *1; Including overhead of 5% Price escalation is not included the cost. Source: JICA Study Team

b) Drainage Measures against Stagnant and Inflow of Industrial Wastewater


According to Environmental Protection Act 1997 in Pakistan, even if industrial companies need to discharge wastewater into sewer system, it must be treated by themselves as effluent quality of treated wastewater is subject to the effluent standard.

However, effluent has actually not been regulated strictly with industrial companies as mentioned above. Judging from an aspect of EPA's performance, to smoothly implement the project, the following measures should be applied to design the circular railway to avoid

inundation due to overflow of industrial wastewater:

- Installation of fence with which is isolated rain storm drainage from the railway.
- Securing of a capacity of the existing rainstorm drainage channel by excavation.

Figure 2.2.33 shows the pictures of industrial wastewater flowing in the ROW. About 3,180 m in the ROW should be dealt with either above measure during the railway construction.

Source: JICA Study Team

Figure 2.2.33 Area of Industrial Wastewater Flowing in the Right of Way-4

c) Drainage Measures against Flood Disaster

To protect trains against the overflow during rainy season, rising of the railway foundation is one of the efficient measures. Although there is no record regarding the flood disaster in the Target Area 'W', the useful information is obtained through the interview survey on the state of the flood disaster along the KCR line.

Raising amount of the ground level of the KCR line is quite different on the ground level condition. The amount of the ground level raise of the KCR line by the sector is shown in Table 2.2.18. In addition, it is desirable that the size of the existing rainstorm drainage in the ROW should be enlarged.

Sector	Raising	Mileage	Remarks
А	3 inches – 36 inches	5.5 km	Drigh Road – Shaheed-e-Millat Flyover
В	3 inches – 60 inches	5.9 km	Shaheed-e-Millat Flyover – Clifton Bridge
С	3 inches – 36 inches	5.5 km	Clifton Bridge – Machhar Colony
D	9 inches – 24 inches	4.75 km	Machhar Colony – Sher Shah bridge
Е	3 inches – 24 inches	5.0 km	Sher Shah bridge – Bara maidan
F	3 inches – 36 inches	5.05 km	Bara maidan – Gharibabad Furniture market
G	3 inches – 36 inches	5.5 km	Gharibabad Furniture market – Lal Flat/Railway Societ Bridge
Н	3 inches – 18 inches	2.6 km	Lal Flat/Railway Societ Bridge – Rabia City

 Table 2.2.18 Amount of the Ground Level Raise of KCR Line Foundation by Sector

Source: JICA Study Team

(2) Drainage Measure at the Post-construction Stage

Drainage measure at the post-construction stage depends on types such as seepage or inflow of groundwater and domestic wastewater. Groundwater will be able to be drained with the drainage in the ROW which will be designed for the KCR revival project, because the ROW for the existing railway was not affected by rainwater and groundwater, while the KCR was operational.