APPENDICES

Appendix 1 POCC Analysis of MTDP and Development Goal of POCC Table A1-1 POCC Analysis of MTDP of Ho Municipality

<i>V</i> D	D-44-1-	0	Compton	Challenau		
Key Development Issues	Potentiais	Opportunities	Constraints	Challenges		
 Inadequate development 	• Existence of viable	• Existence of	• Low income levels of	• Culture of low loan		
of, and investment in	market	MOFA	Tarmers	repayment		
processing and added	• Availability of vast	• Availability of	• Lack of collateral	 Low promotion of added value 		
value of traditional lood	arable land	agricultural	security	added value		
crops and cash crops	- Availability of water	Evistence of		- Low investment in		
such as cassava and on	I arge labour force	- Existence of	• Unwillingness of youth	food processing		
pann	Existence of NBSSI	Support from MA	to go into agriculture			
Conclusion:	- Existence of ND551	- Support Irolli MA	to go into agriculture.			
There are sufficient resource and challenges. In addition	es such as a viable market, the NBSSI would be exten	vast arable land, and ag sively involved in dialog	gricultural extension services gue to deal with the constraint	to address the constraints ts and challenges		
 Difficulty in accessing 	 Availability of vast 	 Creation of land 	 Most lands is small scale 	 Difficult to engage in 		
large tracts of land	land for development	bank	owned by families	mechanised and		
	 Existence of 	 Land 	Land disputes and	large-scale farming		
	traditional leaders and	administration	litigation			
	opinion leaders	project				
Conclusion:						
The existence of traditiona	l leaders and opinion lead	ers, vast land, creation	of a land bank as well as land	nd administration project		
means there is sufficient po	tential and opportunities to	support the programme	to address the constraints and	d challenges.		
 Low agricultural 	 Availability of arable 	 Availability of 	 Land litigation 	 Erratic rainfall 		
productivity and output	land	market for crops	 Low rate of adoption of 	pattern		
due to dependence on	 Volume of water 	especially	improved technologies	 High cost of 		
rainfall	available for irrigation	horticultural crops	Inadequate and untimely	irrigation and		
	 Presence of workforce 		release of credit	agricultural inputs		
	 Availability of organic 		 Insufficient number of 			
	manure		extension staff			
Conclusion:	1					
A project to increase crop p	production is feasible projection	ct. There are rivers as n	atural resources to support the	e project. The constraints		
and challenges would be ma	anaged through improved to	echnology and dialogue		-0 : 1 11 1: 0		
• Low access to irrigated	• Existence of the MA	• Existence of	• Low income levels of	• Socio-cultural beliefs		
land	• Availability of	NGOs to support	Tarmers	 Outmoded customs 		
	- Encietaria a forma en					
	• Existence of farmer					
Conclusion	groups					
Access to irrigation land by	Conclusion:					
involving all stakeholders	farmers for farming is feas	sible in the municipality	. The constraints and chaneng	ges would be managed by		
Involving an stateholders Inadequate credit	Existence of	■ Evistence of	■Unwillingness of banks	Delay and untimely		
support facilities for	organised agricultural	- Existence of	to support agricultural	release of credit by		
agricultural production	groups	and NGOs	sector	donors		
agricultural production	 Presence of banks 	and NOOS	sector	donors		
Conclusion:	Tresence of builds					
Credit facilities to support	the agricultural sector are	a viable project in the r	nunicipality The constraints	and challenges would be		
addressed by bringing all st	akeholders on board.	a viable project in the r	numerpanty. The constraints	and enumeriges would be		
 High post-harvest 	 Availability of land to 	Government	 Unattractive prices 	Insufficient subsidies		
losses	establish processing	policy to buy and	during certain seasons of	for agricultural inputs		
103563	factories	store farm produce	the year	 Delay in government 		
	• A gricultural extension	■ Existence of MA	High cost of storing	policy		
	agents and NGOs to	and development	chemicals	implementation		
	give education on	nartners to build	chemieais	Implementation		
	food storage	storage facilities				
	Availability of ready	storage raemites				
	market					
Conclusion:	munot	1	I			
The project would be suc	The project would be successful because the numerous economic and social resources listed offer significant potential and					
opportunities to address the problems. Negotiations and dialogue would also be actively used to engage all stakeholders as part of						
addressing the constraints a	nd challenges		is searcely used to engage u	succession as part of		

Thematic Area	Agriculture Modernisation and Natural Resource Management
Key Focus Area	 Accelerated Modernisation of Agriculture
-	Climate Variability and Change
	Land degradation and Land use
	 Waste Pollution and noise
Objectives	 To enhance agricultural extension service delivery.
-	To increase access of farmers to modern agricultural technology.
	To build the operational capacity of farmers along the value chain.
	To identify and develop commodities of competitive and comparative advantage.
	To adapt to the impacts and reduce vulnerability to climate variability and change
	To maintain and enhance the Protected Area system.
Policies	 Improve agricultural productivity
	 Increase agricultural competitiveness and enhance integration into domestic and international
	markets
	Adapt to the impacts and reduce vulnerability to climate variability and change.
	 Mitigate the impacts of climate variability and change
	Curb the loss of bio-diversity by strengthening safe and sound environmental practices
	Reverse land and natural resources degradation through investment
	 Achieve sustainable use of wetlands and water resources
Strategies	Provide agricultural land banks for youths in agriculture in the municipality
	Introduce high-yielding crop varieties and improved breeds of animals to farmers
	Provide irrigation schemes in the municipality
	Re-introduce aqua-culture in the municipality
	Introduce appropriate technologies such as dryers to farmers in the municipality
	Increase the ratio of agricultural extension agents to farmers.
	Increase access to credit to farmer-based organisations in the municipality
	Provide markets and storage facilities in the municipality
	 Establish cassava processing and drying centres in all zonal councils
	Promote agro-based industries in the municipality
	Train unemployed youths annually in snail and mushroom production.
	Facilitate the establishment of mechanisation services provision centres, and machinery hire
	purchase and lease schemes with backup spare parts for all machinery and equipment.
	 Develop human capacity in agricultural machinery management, operation and maintenance within
	the public and private sectors.
	Promote the accelerated development of feeder roads and rural infrastructure
	 Develop trade in local and regional markets
	Improve market infrastructure and sanitary conditions
	Increase resilience to climate change impacts: through early warning systems
	• Minimise climate change impacts on human health through improved access to healthcare
	Improve waste management mechanisms
	 Promote energy enciency in an aspects of social and economic file Encourses referentiation of desired and efferent and efference encourter through the alertations
	- Encourage reforestation of degraded forest and off- reserve areas through the plantations
	• Encourses the use of lessen used species (LUS), portionlarly for the construction industry in the
	- Encourage the use of lesser used species (LOS), particularly for the construction multitry in the
	utilicsus market
	- Carry our comprehensive wetlands inventory, supported by research and monitoring
	 Equate the public of the outcome of improper disposal of waste Provide waste collection bins at suitable places in the communities, and empty these bins
	 Regularly enforce all sanitation laws

Table A1-2 Development Goals of POCC of Ho Municipality (1)

Thematic Area	Infrastructure, Energy and Human Settlement
Key Focus Areas	Transport Infrastructure
	 Information Communication technology for Growth
	Recreation Infrastructure
	Energy supply to support industries and households
	Renewal energy
	 Human Settlements Development
	 Housing and Shelter
	 Water and Environmental sanitation and hygiene
Objectives	 To expand the transport infrastructure into farming communities with emphasis on feeder roads and farm tracks.
	To promote the rapid development and deployment of the national ICT infrastructure
	• To develop recreational facilities and promote cultural heritage and natural conservation in both
	 To ensure increased access of households and industries to efficient, reliable and adequate energy supply
	 To promote the sustainable, spatially integrated and orderly development of human settlements for socio-economic development
	To promote well structured and integrated urban development
	To increase access to safe, adequate and affordable shelter
	To accelerate the provision of affordable and safe water
	 To improve environmental Sanitation.
Policies	Create and sustain an efficient transport system that meets user needs
	Promote the application of science, technology and innovation in all sectors of the economy
	 Integrate land use, transport planning, development planning and service provision (science,
	technology and innovation to support productivity and development)
	Promote information communication technology development for growth
	Promote well structured and integrated urban development
	Increase access to safe, adequate and affordable shelter
Strategies	 Prioritise the maintenance of existing road infrastructure to reduce vehicle operating costs (VOC) and future and rehabilitation costs
	Implement Integrated Land use and spatial planning
	 Promote science, technology and innovation development at all levels of production
	 Decongest and reverse the decline in productivity of primary cities and selected fast growing settlements
	Promote urbanisation as a catalyst for economic growth, social improvement, and environmental sustainability
	 Provide versatile spaces in urban areas for commercialisation
	• Create land banks to ensure the availability of serviced lands for housing development at affordable
	 Proces Acquire and develop land/sites for the treatment and disposal of solid waste in major towns and
	cities

Table A1-2	Development Goals of POCC of Ho Municipality (2)

Table A1-3	POCC Analysis of MTDP	of of Adaku-Anygbe District
	•	

Key Development Iss	sues	Poten	tials	Opportunit	ies	Constraint	8	Challenges	
 Low access of women to la including irrigated land 	omen to land ed land irrigation		of streams for	 Favourable government policy on agriculture and employment of women 		 Inadequate dams Low rainfall pattern in the district Inadequate funds to construct dams/dug-outs 		 Limited financial/credit institutions Harsh collateral requirements Poor rainfall pattern 	
 Credit support facilities for agricultural production 		Existence of financial institutionsExistence of FBOs		Favourable government policyFavourable interest rate		 Inadequate credit institutions Low loan recovery rate Misappropriation of loan facilities 		Hash collateral requirementsUntimely release	
 Low level of mechanisation due to limited availability and access to appropriate agricultural machinery, equipment and mechanised services High cost of agricultural machinery and equipment Inadequate technical know-how in agricultural mechanisation Inadequate post-production infrastructure 		 Existence directorate agriculture 	xistence of district irectorate of griculture • Govt. policy to establish tractor pool • Availability of hire purchase facility at MoFA		 Absence of agriculture technology school Inadequate agricultural officers Non-availability of agriculture machinery service centres. 		 Inadequate budgetary support from government 		
 Poor nature of roads to procentres Inadequate market informa Limited marketing extension producers, traders and exponential extension producers. 	duction tion on for orters	 Existence network Existence roads Existence services 	ence of road ork tence of feeder s tence of internet tence of internet tence of internet tence of internet		 Inadequate IT centres in the district Inadequate local resources 		 Delay in release of funds for road construction and maintenance 		
 High incidence of poverty among farmers, especially food crop farmers 		 Large tracts of farm-land Availability of market Cross- border trade 		 Favourable government. policy on agriculture Small scale farmin Difficulty in access credit for farming Labour intensive farming Rain-fed agricultu 		iing essing g ture	 Inadequate funds for poverty reduction projects/programmes Delay in release of funds 		
 Poor management practices (feeding and health care) and low productivity Inadequate availability of quality feed Inability of local livestock farmers to match the stiff competition from cheap imports Low awareness of food safety lending to practices such as use of inappropriate handling, transportation of livestock/livestock products Poor quality of data and monitoring system 		 Availabilit agriculture services Organised association Large trac grazing land 	y of e extension livestock Is t of nd	 Existence of animal research institutes Availability of livestock development projects Pool grazin supplement Culture of f management 		 Poor grazing lan supplementary f Culture of free r management sys 	d and eeding ange tem	 Inadequate agricultural extension staff Inadequate logistics for monitoring 	
Agriculture is the major eco district needs to make maxin effective irrigation farming.	nomic activ	vity in the dis the prevailing	trict. To acce government	elerate the modern policy on agricult	uisation of ure mode	of agriculture and a ernisation. In addition	gro-base on, the la	d industrial development, the kes and rivers can be used for	
 Poor nature of roads 	 Availability of skilled labour Availability of road network Existence of DFR 		 Access to CBRDP 	• BRDP		ow internally enerated funds		Delay in release of govt. and lonor funds Delay in the implementation of lonor projects	
 Increase in road traffic accidents Inadequate enforcement of road transport regulations 	 DFR Existence of DVLA Existence of security agencies 		 National road trans 	campaign on sport regulations • Heav • Narr majo		ence of road signs /y traffic on roads ow width of or roads	 Inade road 	equate resources to enforce regulation	
Conclusion: The main issue under the th challenges of making adequa and the existence of relevan production infrastructure in regulations in the district.	nematic area ate resource nt institution the district.	is inadequate s available for ns such as th The DA need	e production providing in e DFR, town s to provide	infrastructure esp nfrastructure in the n planning and er resource town pla	ecially r e district wironme nning ar	oad and sanitation . Fortunately, the LS ental health in the ad the security agen	nfrastruc SGDP is listrict c cies mus	ture, and the constraints and accessible at the district level an facilitate improvement of t strictly enforce the building	

Thematic Area	Agriculture Modernisation and Natural Resource Management
Objectives	• To reduce the risk associated with agriculture
Strategies	• Develop appropriate irrigation schemes, dams, boreholes and other water harvesting technologies
	for different categories of farmers
	Promote access to land by women
	• Provide selective subsidies for the agricultural sector for the procurement of improved seeds, grade
	breeders and stock, pesticides and fertilisers
	• Create awareness about environmental issues among all stakeholders and develop an effective and
	efficient framework for collaboration with appropriate agencies to ensure environmental compliance
	Improve incentives and compulsion measure to encourage users of the environment to adopt less
	exploitative and non-degrading practices in agriculture
	 Promote joint planning and implementation of programmes with relevant institutions to address
	environmental issues in food and agriculture
Objectives	To improve agriculture productivity
Strategies	• Develop human capacity in agricultural machinery management, operation and maintenance within
	the public and private sectors
	• Promote the production and use of small-scale multi-purpose machinery along the value chain,
	including farm level storage facilities, appropriate agro-processing machinery/equipment and
	intermediate means of transport
Objectives	• To increase competitiveness and enhanced integration into domestic and international markets
Strategies	Improve market infrastructure and sanitary conditions
	• Promote the formation of viable farmer groups and FBOs to enhance their knowledge, skills and
	access to resources along the value chain, and to strengthen bargaining power in marketing
	Promote selected crops for food security, export and support to industry
	• Promote the development of selected horticulture and exotic vegetables for export
	 Promote small-noider productivity in the transition to large-scale production Evidend the concern of public out grouper and block forming schemes and context forming to cover
	• Extend the concept of nucleus out-grower and block farming schemes and contact farming to cover
	staple and norticulture crops to bridge the gap between large- and small-scale producers
Objectives	To promote livestock and poultry development for food security and income
Stratagies	Improve access to quality feed
Strategies	 Improve access to quality recu Develop commercial noultry as the priority for improving meat supply
	 Develop commercial poundy as the priority for improving mean suppry Introduce measures to transform smallholder production into profitable enterprises
	Increase the awareness of food safety and public health
	Facilitate the development of livestock statistics and monitoring system
	 Promote linkage relationships between animal and crop farmers to enhance bi-product utilisation
Thematic Area	Infrastructure, Energy and Human Settlement
Goal	• To improve rural access to productive infrastructure
Objectives	• To link 10 rural communities to major towns and market centres in the District
Strategies	Construct 50 km of feeder roads
-	 Upgrade 25 km feeder roads
	 Rehabilitate major roads in the district

 Table A1-4
 Development Goals of POCC of Adaku-Anygbe District

Key Development	Potentials	Opportunities	Constraints	Challenges
Poor Road Network	 Existence of sector departments at the District Assembly; Department of Feeder Roads; Town and Country Planning Department. Availability of road construction materials e.g. stone and gravel. Willingness of communities to co-operate. 	 Government of Ghana Road Fund. Donor grants. 	 Inadequate monitoring and supervision. Inadequate maintenance Inadequate logistics for staff. 	 Irregular flow of funds. No support from survey Department of Town and Country Planning Department.
Conclusion: Currently	, there is many ways of improvin	ng the situation		
Key Development	Potentials	Opportunities	Constraints	Challenges
Absence of Sustainable Industrial Sector to generate employment	 Vast land for large scale agro-business. Existing water bodies of the Volta River and its numerous tributaries, Alabo, Kolor, Aklakpa, Gblor and Nyivu for irrigation. DA support for access to two big market centres: Accra – Tema and Lome in Togo 	 Government- supported Rural Enterprise Project NGOS, DANIDA, GTZ PSI for cassava and oil palm. 	 Low level of entrepreneurial skills Inadequate access to credit facilities. Land litigation No plan defined for the district 	 Poor road network Low level of energy supply (electricity and gas)
Conclusion: Currently	, there are many ways of improv	ving the situation	1	
Key Development Issues	Potentials	Opportunities	Constraints	Challenges
Deteriorating soil fertility	 Availability of cow dung Availability of chemical fertiliser retail shops Availability of agricultural information 	 Existence of land and water management project Availability of the Soil Research Institute Existence of fertiliser importers 	 Annual bushfires Continuous cropping Inappropriate cropping patterns Inappropriate land preparation operations 	 Non-sustainability of land and water management project Inadequate release of funds High cost of fertilizer
Koy Dovelopment	Detentials	Onnortunities	Constraints	Challanges
Issues	i otciitiais	Opportunities	Constraints	Chanenges
Low prices for agricultural produce Conclusion: Not avail	 Emerging farmer group organisations Existence of Department of Cooperatives Availability of small-scale processors 	 Existence of the President's initiative for cassava Existence of national consumers association Existence of Food Research Institute (FRI) 	 No organised producers cooperatives Lack of farm-gate technology for storage of perishables Large numbers of farmers producing same commodity 	Ban on importation of some food commodities.

Thematic Area	Overall
Objectives	 To increase revenue mobilisation and management by 20% by 2013
	• To improve and increase the basic socio-economic infrastructure development by 10% by 2013
	• To increase and promote extension services and the use of improved seeds from 40% to 60% by
	2013
	To promote effective private sector participation in the development of the district
	 To improve the logistics and human resource based in the district
	• To enhance good governance by strengthening the administrative set-up of the Assembly and the
	sub-structures.
	• To promote economic activities in the District especially for the vulnerable and the excluded.

Table A1-6 Objectives of POCC of North Tongu District

Source: Volta Region Coordinating Council

Key Development Issues	Potentials	Opportunities	Constraints	Challenges
Increase access to irrigation schemes and promote mechanised farming in the District	 Availability of land and water bodies for both small-scale and large-scale farming Availability of agriculture mechanisation centre to provide appropriate technology to farmers Availability of high yielding seedlings 	 Closeness to Accra for marketing & export of produce Government support for non-traditional exports Availability of high-yielding seedlings MCA priority on agriculture transformation in the district and linkage to wider markets MCA support on the establishment of agro-processing industries in the district (including the construction of a pack house at Agomeda) Government intervention on the irrigation of 2,000 hectares of land for large-scale agriculture Available government support under the youth in agriculture 	 Destruction of crops by cattle Unfavourable land tenure system 	 Frequent bushfires The credit crunch and fear of limited funding in establishing agro-processing industries from partners Changing the mindset of farmers to see agriculture as a business High cost of agro-chemicals and irrigation infrastructure Drying up of rivers/ water bodies that feed the dams

Table A1-7 POCC Analysis of MTDP of Dangme West District

Conclusion:

Utilizing the potential of the district for large-scale agriculture by the constructing irrigation facilities and establishing agriculture mechanisation centre would change the mindset of farmers, increase their productive capacity and reduce the high cost of agro-chemicals.

Source: Greater Accra Region Coordinating Council

Thematic Area	Agriculture Modernisation and Natural Resource Management			
Objectives	• To increase access to irrigation schemes and promote mechanised farming in the District			
Strategies	 For increase access to infiguron schemes and promote incentanised faithing in the District Ensure equity and transparency in the distribution of irrigated land to avoid conflicts in the communities Protect dam walls from erosion by using appropriate measures e.g. Planting of vetiver grass, etc. Introduce appropriate fishing methods Encourage the formation of Water Users Associations to enhance the management of dam facilities and improve access to credit and other fund Encourage fencing of the dam to prevent livestock from getting into the dam Promote proper landscaping and slope protection measure to avoid siltation of dams that may lead to volume reduction Support the establishment of 2,000 hectares of irrigated land under the APGIP Facilitate the establishment of cold storage facilities in fishing communities Promote the use of both scientific and organic farming methods Collaborate with decentralised departments and agencies to train the youth in agriculture and other related services Organise farmers' workshops in four traditional areas Construct/rehabilitate 4 dams/dugouts in 4 communities Support the cultivation of traditional and non-traditional crops under the Youth in Agriculture Programme 			
Objectives	• To improve the knowledge of farmers on the use of high yielding seedlings and application of agro-chemicals			
Strategies	 Promote improved management practices to maximise yield from introduced high-yielding crop varieties Develop marketing systems to motivate farmers to continue using high-yielding crops Ensure consumer preferences in the introduction of new varieties to ensure sustainability Promote appropriate strategies for bio-diversity conservation Train farmers and farmer-based groups in new technologies Provide logistics to and other incentives to Agriculture Extension Agents (AEAs) Support the eradication of pests and diseases Encourage the production of small ruminants Educate farmers on modern technologies and the importance and use of improved seedlings Provide demonstration farms in the District 			

 Table A1-8
 Development Goals of POCC of Dangme West District

Source: Greater Accra Region Coordinating Council

Key	Potentials	Opportunities	Constraints	Challenges
Development				
Issues				
Poor irrigation facilities	 Availability of water from the Volta River. Availability of large tract of arable land Co-operation and support from Production Societies and the District 	 Presence of NGOs and Development Partners The willingness of Government to support agricultural development The availability of 	 Poor farmer knowledge on the use of irrigation facilities Inadequate Co-operative Societies to access funds for irrigation Protracted conflicts 	 Inadequate funds Unwillingness of Banks to give loans to undertake agricultural projects due to the high risks involved
	Agricultural Directorate	Agricultural Development Banks	between farmer-based organisations	

Table A1-9 POCC Analysis of MTDP of Dangme East District

Conclusion:

Agriculture in the district is mostly rain-fed with only a hand full of farmers having access to irrigational facilities. The District however has high potential for the provision of irrigation facilities due to the availability of water from the Volta River. Great effort is therefore needed to ensure that these potentials are adequately harnessed to enhance agricultural productivity in the District. There is also the need to foster synergy between farmer-based organisations and the Agricultural Directorate in order to ameliorate all agriculture related problems in the District.

Key	Potentials	Opportunities	Constraints	Challenges
Development				
Issues				
Poor road network	 Presence of the Department of Feeder roads and High ways. Availability of the DACF and DDF Availability of road construction and maintenance materials at Tehey and other areas in the District Co-operation and support from rural communities notwithstanding the low level of income in rural communities Availability of skilled and unskilled labour for road construction The presence of reputable and experienced road 	• Existence of Ghana Road Fund and the presence of Development Partners with interest in roads infrastructure	 Inadequate personnel and lack of road maintenance equipment Poor road designs and execution techniques by contractors Unfavourable weather conditions and delay in project execution due to inadequate participation and change of priorities Inadequate involvement of women in road projects Inadequate maintenance practices due to inadequate funds 	 Inadequate funds Delay in the release of funds

Conclusion:

Many of the roads in the District are feeder roads. It is extremely important to improve these roads in order to improve living conditions in the District. It is also expected that the existing potentials as well as an increase in the Road Fund by GoG will have a trickledown effect for improving roads in the District, because roads play a major role in the production, distribution and marketing of agricultural produce which form the bedrock of the economic activities of the people in the District.

Source: Greater Accra Region Coordinating Council

Thematic Area	Agriculture Modernisation and Natural Resource Management
Objectives	 To improve agriculture productivity by 20% within the plan period
Strategies	Construct irrigation facilities
	Encourage and support the formation of farmer-based organisations
	 Accelerate agricultural mechanisation
	 Facilitate the supply of agriculture inputs
	Recruit agricultural extension services
	 Introduce modern practices into agricultural production
	Support the fishing industry
	Facilitate the introduction of block farming
	 Introduce improved varieties in agriculture
	Develop appropriate methodologies for post-harvest handling
	 Organise training and sensitisation workshops for farmers regularly
	 Facilitate micro finance and small-scale loans to farmers
	 Intensify disease surveillance and control for livestock

 Table A1-10
 Development Goals of POCC of Dangme East District

Source: Greater Accra Region Coordinating Council

Table A1-11POCC Analysis of MTDP of Asuogyaman District

Key	Potentials	Opportunities	Constraints	Challenges
Development				
Issues				
Inadequate arable lands	 Availability of improved farming technologies, e.g., the application of fertiliser Presence of vast savannah lands for livestock farming 	 GoG programme to promote selected crop development for food security, export and to support industry GoG's bid to promote Livestock and poultry development for food security and income 	 Low income and poverty Weak revenue base Inadequate technical know-how in modern methods of farming 	 High cost of inputs for modern methods of farming Uncoordinated training programmes for rural farmers
Conclusion:	··· · · · · · ·			
More farmers shoul pressure on the avai Moreover, with the limited arable lands	d be encouraged to undertail lable arable land, and could application of fertiliser and available.	ke livestock farming on a large be undertaken with the help o other improved cultural practi	e and productive scale. This v f effective veterinary service ces, farmers can improve the	vould help reduce the provision. output per acre of the
Key	Potentials	Opportunities	Constraints	Challenges
Development				
Issues				
Low agricultural productivity	 The presence of Lake Volta for irrigation The presence of FBO in the district 	 GoG support to develop appropriate irrigation schemes, dams, boreholes, and other water harvesting techniques for different categories of farmers and ecological zones 	 Inadequate technical know-how in irrigation farming. Low income levels of rural farmers. 	 Weak irrigation infrastructure
Conclusion:				
The presence of La	ke Volta lake in the distric	t and government support for	subsistence food crop farme	ers through irrigation
programmes will re-	duce the overreliance on rai	nfall for crop production.		
Key Development Issues	Potentials	Opportunities	Constraints	Challenges
Poor road surface	 Interest of DA and VRA 	in • Presence of ministry	 Poor maintenance 	 Delays in the
condition and	road and utility services	of roads and	• High cost of road	release of funding
network	 Support from DANIDA and NGOs 	Presence of GHA	construction and repairs	other donor agencies
Conclusion:				
The poor condition	of the road surface and n	etwork can be addressed by 1	harnessing the opportunities	and potentials in the
district. The constr	aints can be addressed by release of funds	ensuring a proper maintena	nce culture. The challenges	can be managed by

Thematic Area	Agriculture Modernisation and Natural Resource Management
Issues	Low agricultural productivity
Objectives	• To increase agriculture output on available arable land by 60% by the end of the planned period
Strategies	 Introduce farmers to modern methods of farming
	 Encourage farmers to go into productive livestock farming
	 Provide farmers with micro finance support
Activities	 Organize bi-annual training workshops for farmers on mechanised and productive methods of
	farming (e.g. application of fertilisers)
	Provide subsidised viable seeds, seedlings and other inputs to farmers
	 Organise annual training workshops for livestock farmers
	Provide subsidised feeds and other inputs for large scale livestock farmers
	Construct cattle ponds
	 Form FBOs to access credit facilities
	 Conduct 162 field days for farmer beneficiaries in improved maize, cassava, plantain
	 Carry out 51 demonstrations of crop production

Table A1-12 Objectives of POCC of Asuogyaman District

Source: Eastern Region Coordinating Council

Table A1-13 POCC Analysis of MTDP of Lower Manya Krobo District

Key Development	Potentials	Opportunities	Constraints	Challenges
Increased agricultural productivity	 Adequate number of extension services Availability of agro-chemical shops The nearness to Accra making the district a good place for poultry and vegetable farming A double rainfall season Support by District Assembly Availability of Lake Volta for fishing and irrigation 	 Readiness of financial institutions to give credit to farmer groups Various GoG credit schemes for farmers Support from NGOs and other international partners Availability of high yielding planting materials and disease resistant breeds of livestock. 	 Inability & refusal of many farmers to repay loans Misappropriation of agro-chemicals Resistance to modern techniques by some farmers Low adaptability of farmers to innovation Over-reliance on rain-fed agriculture Inadequate storage facilities resulting in post-harvest losses Continuous use of local planting materials Low farmer-extension-officer ratio Use of unauthorised nets and chemicals for fishing 	 Pest attacks Low prices for agricultural produce Flooding of the market with cheaper goods from abroad Politicisation of GoG interventions
Conclusion: Not availab	ble		·	
Improved layout of the towns in the district	 Existence of Town and Country Planning Department Existence of Statutory Planning Committee Existence of by-laws 	 Existence of national laws to ensure compliance by developers Integration of environmental department in local government Continuous capacity building of technical staff by MLG&RD 	 Unfavourable land tenure system Undue pressure put on the Town and Country Planning Department Uncooperative attitude of land owners Financial constraints on the part of the District Assembly 	 Shifting of the department of Town and Country Planning from one ministry to another Non-existence of environmental protection office at the district level

Thematic Area	Agriculture Modernisation and Natural Resource Management
Objectives	• To enhance access to improved technologies and credit facilities to ensure food security and annual
	income
Strategies	• Improve farmers' access to modern technology and financial resources for inputs.
	Reduce post-harvest crop losses
	• Apply appropriate agricultural research and technology to introduce economies of scale in agricultural
	production
	Improve the effectiveness of Research-Extension farmer-Linkages
	• Intensify the use of ICT and media to disseminate agricultural information to farmer
	Raise awareness about environmental issues
	• Facilitate the training of out-grower farmers
	• Improve and diversify livelihood opportunities for men and women in the post-harvest fishing sector
Objectives	• To increase farmer competitiveness and enhance integration into domestic and international markets.

Develop institutional capacity and sustainable programmes for non-export farmers

Promote the establishment of agro-based industries to process agricultural produce

• To improve the general condition of 40% of the existing road network by December 2013

• To improve institutional Co-ordination and stakeholder engagement in agricultural activities in the

Infrastructure, Energy, and Human Settlement Development

Develop and implement a communication strategy to improve supervision and inter-sectorial

Table A1-14 Development Goals of PCCC of Lower Manya Krobo District

Strategies	 Perform routine maintenance
	 Construct and upgrade the road network
Objectives	• To reduce vehicular congestion and traffic offences on the main Atua-Kpong road
Strategies	Enforce road traffic regulations
-	 Hold education campaign
	Improve the professionalism of the drivers

• To process and add value to agricultural produce

Source: Eastern Region Coordinating Council

district

coordination.

Raise farmer motivation

Strategies Objectives

Strategies

Objectives Strategies

Objectives

Thematic Area

Table A1-15 POCC Analysis of MTDP of Yilo Krobo District

Key Development	Potentials	Opportunities	Constraints	Challenges
Issues			· · · · ·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Poor development of	 Electricity 	 Tourists 	 Land litigations 	 Similar potentials
tourism sector	 Natural land marks 	 Private sector investment 	 Lack of access roads 	nearby
	• Land			
	 Common Fund 			
Conclusion:				
Poor development of the	tourism sector can be addressed	since significant potentials and	l opportunities exist. The constraints car	n be addressed through
developing synergies in	programme design. The challenge	can be managed through effec	tive marketing of the sites.	
Low production	 Availability of land. 	 NGOs 	 Difficulty in acquiring land 	 High interest rates
	 Availability of labour and 	 MCA 	acquisition.	 Collateral
	raw materials.	 MoFA 	 High rent on land. 	 High cost of inputs
	 MOFA 		 High cost of labour. 	 Irregular rainfall
	 Rains/rivers/streams/boreho 		 Land litigation. 	
	les			
Conclusion:				
Significant potentials and	d opportunities exist to address th	e issue of low production. The	constraints can be dealt with through d	leveloping synergies in
programme design. The	challenges can be managed throug	gh dialogue with banks.	-	
Inadequate/poor	 DACF 	 NGOs 	 Difficulty in acquiring land. 	 High cost of
market infrastructure.	Land for extension.		 Inadequate documentation on 	building markets.
	 Market Associations 		land.	c
	 Goods 		 Land litigation 	
	 Technical support 		-	
Conclusion:				
Significant potentials an	d opportunities exist to help ad	dress the issue of inadequate/	poor market infrastructure. The constra	aints can be addressed
through developing syne	rgies in programme design. The c	hallenge can be managed throu	igh securing more funds.	
Inadequate/poor nature	• Gravels and chippings	 Road Fund 	Rocky and hilly terrain	High cost of
of roads	 Availability of Common 	 NGOs 	 Numerous streams 	construction/maint
	Fund	 DANIDA 		enance
	• Labour	2111 (1211		 Delay in the
				release of funds
Conclusion:	1	L	1	
Significant potentials an	d opportunities exist to address	the issue of inadequate/poor	nature of roads. The constraints can h	e surmounted through
developing synergies in t	programme design. The challenge	s can be managed through dial	ogue with Development Partners	anounce anough
action by hergies in	erogramme accign. The enumerige	e can ee managed through that		

Thematic Area	Agriculture Modernisation and Natural Resource Management
Goals	 To increase production and reduce post-harvest losses.
Objectives	• To increase agricultural production in the district by 5% by 2013
0	To increase access to market for agricultural and industrial products
	To protect and conserve forest resources
Strategies	Construct 20 wells for irrigation
C	Train farmers in the use of appropriate storage facilities, post-harvest handling and proper
	harvesting methods.
	 Provide storage and small agro- processing facilities
	Provide incentives to extension service workers
	 Facilitate the recruitment of extension workers
	Promote environmentally sustainable cropping practices
	Promote irrigated vegetable cultivation, cultivation of sugar cane and cassava, the rearing of
	grass-cutters and rabbits, beekeeping and fish farming.
	Control local animal diseases
	• Conduct training in fish farming
	Provide credit facilities to farmers
	• Encourage farmers to form co-operatives
	Disseminate market information to farmers
	• Organise agricultural fairs
	Embark on realiorestation exercises along Ponpon Kiver upstream/forest reserves
Thematic Area	Infrostructure Energy and Human Settlements Development
Goals	To improve road infrastructure
Objectives	 To enhance accessibility (road) in the District
Strategies	Provide electricity to 30 communities
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• Construct and maintain 200km of feeder roads
	Extend telecommunication/internet services to 20 communities
	Enforce building regulations
	Create land banks.
	<ul> <li>Conduct educational campaigns on safe sanitation practices</li> </ul>
	Promote and support the construction of 100 household toilets
	<ul> <li>Construct 3 public toilets and 20 institutional latrines</li> </ul>
	Convert 4 public pan latrines into cesspit tank latrines in collaboration with the private sector
	Provide and place 70 refuse containers at designated points
	• Embark on house-to-house refuse collection at selected areas in Somanya
	• Enact sanitation by-laws to ensure proper management of household-level liquid waste
	<ul> <li>Enforce laws on the provision of sanitation facilities and other infrastructure by developers</li> <li>Construct 50 hardwales</li> </ul>
	Construct 50 borenoies     Pohabilitata 20 hand dug walls
	Renabilitate 50 nand-dug wells     Pahabilitate the Somenya nine system
	Coordinate the activities of all water providers in the district
	- Coordinate the activities of all water providers in the district
	- Encourage communities to participate in the provision and maintenance of potable water facilities

Table A1-16Development Goals of POCC of Lower Yilo Krobo District

## Final Report

### Appendix 2Results of Cross Sectional Traffic Volume Counting Survey

### Appendix 2-1 Location of MCC Stations



Appendix 2-2 Results of M		at Station No. 1
Station Number	••	1
Station Name	••	Tema Port
Road	••	Harbour Road
Day-Night Ratio	••	1.528
Weekly Fluctuation	••	0.8
Monthly Fluctuation	••	1.2
Commercial Vehicle Ratio	••	15.1%

No.	VEHICLE TYPE	06:00 - 07:00	07:00 - 08:00	- 00:80 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	TOTAL	24-hour Volume	ADT
1	Passenger car	1,118	1,676	1,709	1,771	1,650	1,706	1,772	1,618	1,790	1,490	1,759	1,898	19,957	30,494	31,765
2	Minibus	161	280	176	169	173	122	222	173	209	121	190	200	2,196	3,355	3,495
б	Bus	51	89	59	50	62	24	111	62	122	58	107	91	899	1,374	1,431
4	Medium truck	41	50	06	77	117	94	188	125	151	94	114	108	1,249	1,908	1,988
5	Heavy truck	10	13	24	40	31	24	52	33	41	18	56	35	377	576	600
9	Trailer	62	78	134	173	202	191	313	181	241	208	267	253	2,303	3,519	3,666
7	Others	19	11	33	54	55	43	78	39	70	55	46	79	582	889	926
	TOTAL	1,462	2,176	2,225	2,334	2,307	2,204	2,736	2,248	2,624	2,044	2,539	2,664	27,563	42,115	43,870





Station Number	:	2
Station	:	Tema Roundabout North
Road	:	N2
Day-Night Ratio	:	1.446
Weekly Fluctuation	:	0.8
Monthly Fluctuation	:	1.2
Commercial Vehicle Ratio	:	5.4%

C at Station No. 2	2	Tema Roundabout North	N2	1.446	0.8	1.2	5.4%	
of MCC	••							
Results o				0	tion	ation	hicle Ratic	
Appendix 2-3	Station Number	Station	Road	Day-Night Ratic	Weekly Fluctua	Monthly Fluctua	Commercial Ve	

No.	VEHICLE TYPE	06:00 - 07:00	07:00 - 08:00	- 00:00 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	TOTAL	24-hour Volume	ADT
1	Passenger car	855	819	861	848	890	868	885	901	877	887	901	967	10,559	15,268	15,904
2	Minibus	494	418	412	411	384	382	406	436	419	420	424	375	4,981	7,203	7,503
3	Bus	40	25	19	13	7	17	16	23	25	25	30	27	267	386	402
4	Medium truck	43	54	68	65	72	74	78	81	75	67	113	76	866	1,252	1,304
5	Heavy truck	13	13	18	15	12	15	18	12	18	14	14	8	170	246	256
9	Trailer	32	20	31	36	44	38	39	29	36	27	32	20	384	555	578
7	Others	12	7	6	16	11	6	11	10	10	7	12	8	122	176	183
	TOTAL	1,489	1,356	1,418	1,404	1,420	1,403	1,453	1,492	1,460	1,447	1,526	1,481	17,349	25,086	26,131





MCC at Station No. 3	3	: Asutsuare Jct. North	: N2	: 1.446	: 1.05	: 1.2	: 9.4%
Appendix 2-4 Results of	Station Number	Station	Road	Day-Night Ratio	Weekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ratio

DT	
V	
and	
raffic	
Τ	
rve	
Obse	

No.	VEHICLE TYPE	00:00 - 07:00	07:00 - 08:00	- 00:80 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	TOTAL	24-hour Volume	ADT
-	Passenger car	66	115	131	124	124	133	141	122	143	167	171	183	1,653	2,390	1,897
2	Minibus	102	89	103	62	98	96	96	108	98	138	114	116	1,237	1,789	1,420
ю	Bus	9	10	7	9	11	7	8	12	14	20	15	14	130	188	149
4	Medium truck	16	14	12	19	13	21	23	24	22	24	30	25	243	351	279
5	Heavy truck	5	3	10	4	7	10	6	8	5	8	6	11	89	129	102
9	Trailer	5	4	5	7	7	11	6	9	5	9	12	6	86	124	98
7	Others	3	2	1	2	1	0	1	1	5	1	1	2	20	29	23
	TOTAL	236	237	269	241	261	278	287	281	292	364	352	360	3,458	5,000	3,968





bsei	rved Traffic and Al	DT														
No.	VEHICLE TYPE	06:00 - 07:00	07:00 - 08:00	- 00:80 - 00:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	TOTAL	24-hour Volume	ADT
1	Passenger car	24	21	27	21	27	18	29	36	33	30	32	28	326	471	374
2	Minibus	6	4	9	2	1	0	3	4	9	5	5	4	49	71	56
3	Bus	4	3	7	1	0	1	9	5	3	0	1	3	34	49	39
4	Medium truck	5	5	2	3	5	4	3	5	5	9	5	2	50	72	57
5	Heavy truck	1	1	2	4	2	2	3	1	1	2	3	1	23	33	26
6	Trailer	0	0	4	4	5	3	4	3	2	5	7	3	40	58	46
7	Others	0	1	0	2	0	0	0	0	1	1	0	1	9	6	7
	TOTAL	43	35	48	37	40	28	48	54	51	49	53	42	528	763	606

# Appendix 2-5 Results of MCC at Station No. 4

4	: Asutsuare Jct. East	: Asutsuare Jct. – Asi	: 1.446	: 1.05	: 1.2	: 19.5%
tation Number	tation	toad	Day-Night Ratio	Veekly Fluctuation	Aonthly Fluctuation	Commercial Vehicle Ratio





No. 5
Station
MCC at
<b>Results of</b>
lix 2-6 F
Append

5	Kpong North	N2	1.446	1.05	1.2	6.9%	
••	••	••	••	••	••	••	
Station Number	station	Road	Day-Night Ratio	Neekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ratio	

nour ADT	174 2,519	965 3,147	364 289	388 308	116 92	39 31	36 29	082 6,414
AL 24-h Voli	195 3,	742 3,	252	268	80	27	25	589 8,
TOT	2,	5,						5,
17:00 - 18:00	212	213	30	26	9	2	1	490
16:00 - 17:00	245	265	31	27	L	4	3	582
15:00 - 16:00	217	242	28	24	5	1	2	519
14:00 - 15:00	198	245	31	21	5	2	1	503
13:00 - 14·00	179	234	24	22	9	1	2	468
12:00 - 13·00	165	212	19	29	8	2	2	437
11:00 - 12:00	176	231	17	24	10	2	4	464
10:00 - 11:00	174	222	11	17	8	3	2	437
- 00:00 10:00	160	219	13	23	7	3	2	427
- 00:00 - 00-00	180	245	12	21	8	3	4	473
07:00 - 08:00	170	220	17	15	4	3	1	430
00:00 - 07:00	119	194	19	19	9	1	1	359
VEHICLE TYPE	Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
QN N	- 1	2	б	4	5	6	7	





9
N0.
CC at Station
of M
Results
x 2-7
Appendix

. 6	: Kpong West	: N3	: 1.446	: 1.05	: 1.2	: 1.8%
Station Number	Station	Road	Day-Night Ratio	Weekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ratio

ADT	1,105	3,886	67	213	21	1	8	5,300
24-hour Volume	1,392	4,896	84	269	26	1	10	6,678
TOTAL	963	3,386	58	186	18	1	7	4,619
17:00 - 18:00	90	290	8	15	2	0	1	406
16:00 - 17:00	96	311	7	20	1	0	1	436
15:00 - 16:00	79	294	9	18	1	0	1	417
14:00 - 15:00	92	271	5	17	1	0	0	386
13:00 - 14:00	81	262	5	18	1	0	0	367
12:00 - 13:00	77	272	3	21	1	0	1	375
11:00 - 12:00	62	252	1	12	2	0	0	346
10:00 - 11:00	86	266	0	15	1	0	1	369
09:00 - 10:00	74	270	2	15	2	0	0	363
- 00:80 09:00	71	294	5	17	1	1	0	389
07:00 - 08:00	99	312	9	6	2	0	1	396
06:00 - 07:00	54	292	10	6	3	0	1	369
VEHICLE TYPE	Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
No.	1	2	3	4	5	9	7	





1
No.
tation
CatS
MCC
ults of
Res
2-8
oendix
ld

s of MCC at Station	: 7	: Atimpokı	: N2	: 1.446	: 1.05	: 1.2	tio : 5.2%
Appendix 2-8 Result	Station Number	Station	Road	Day-Night Ratio	Weekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ra

ADT	2,002	2,014	146	287	62	24	9	4,540
24-hour Volume	2,522	2,538	184	362	8 <i>L</i>	30	L	5,721
TOTAL	1,744	1,755	127	250	54	21	5	3,956
17:00 - 18:00	164	149	13	22	4	2	1	355
16:00 - 17:00	169	154	14	29	5	2	0	373
15:00 - 16:00	167	163	14	18	4	2	0	368
14:00 - 15:00	159	162	12	20	5	2	0	360
13:00 - 14:00	151	154	10	19	4	4	1	343
12:00 - 13:00	142	143	6	29	7	2	1	333
11:00 - 12:00	155	143	7	20	3	0	0	328
10:00 - 11:00	140	136	10	23	4	1	1	315
09:00 - 10:00	129	132	8	20	4	2	0	295
- 00:80 00:00	136	152	8	16	3	1	0	316
07:00 - 08:00	130	140	10	17	5	2	0	304
06:00 - 07:00	102	127	12	17	9	1	1	266
VEHICLE TYPE	Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
No.	1	2	3	4	5	9	7	





$\boldsymbol{\infty}$
Ž
n
<b>i</b> .
at
S
÷
्र
$\mathcal{Q}$
E
$\geq$
of
\$
I
S
ž
6
4
×
di
â
ď
d
$\checkmark$

Station Number	••	8
Station	••	Asikuma
Road	••	N2
Day-Night Ratio	••	1.446
Weekly Fluctuation	••	1.05
Monthly Fluctuation	••	1.2
<b>Commercial Vehicle Ratio</b>	••	8.2%

ADT	1,204	1,583	206	202	28	20	13	3,256
24-hour Volume	1,517	1,995	260	254	35	25	17	4,103
TOTAL	1,049	1,380	180	176	24	17	12	2,838
17:00 - 18:00	100	106	18	22	3	2	2	253
16:00 - 17:00	109	125	26	20	3	2	0	285
15:00 - 16:00	112	111	21	18	4	2	0	268
14:00 - 15:00	93	118	24	17	1	0	1	254
13:00 - 14:00	92	121	18	15	3	1	1	251
12:00 - 13:00	81	123	15	16	2	2	1	240
11:00 - 12:00	82	119	10	11	2	1	1	226
10:00 - 11:00	83	110	10	14	2	0	2	221
09:00 - 10:00	69	125	6	10	1	1	0	215
- 00:00 00:00	84	115	5	12	0	3	1	220
07:00 - 08:00	78	109	14	11	1	1	2	216
06:00 - 07:00	99	98	10	10	2	2	1	189
VEHICLE TYPE	Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
No.	1	2	3	4	5	9	7	





Appendix 2-10 Results of	MC	C at Station No. 9
Station Number	••	6
Station	••	Sege West
Road		Nl
Day-Night Ratio		1.446
Weekly Fluctuation		0.8
Monthly Fluctuation		1.2
Commercial Vehicle Ratio	••	10.9%

ADT
and
raffic
ved T
bser
$\cup$

No.	VEHICLE TYPE	06:00 - 07:00	07:00 - 08:00	- 00:00 09:00	09:00 - 10:00	10:00 - 11:00	11:00 - 12:00	12:00 - 13:00	13:00 - 14:00	14:00 - 15:00	15:00 - 16:00	16:00 - 17:00	17:00 - 18:00	TOTAL	24-hour Volume	ADT
1	Passenger car	120	155	163	162	147	125	161	162	166	162	179	223	1,925	2,784	2,900
2	Minibus	158	137	138	129	125	143	129	178	170	183	166	202	1,858	2,687	2,799
3	Bus	4	10	11	6	4	5	5	8	9	17	8	15	102	147	153
4	Medium truck	12	13	11	17	10	15	25	17	16	21	19	26	202	292	304
5	Heavy truck	12	11	7	11	8	15	13	14	12	6	13	16	141	204	213
9	Trailer	14	11	12	16	19	14	20	16	24	26	21	32	225	325	339
7	Others	3	2	2	3	1	1	4	2	0	0	1	2	21	30	31
	TOTAL	323	339	344	347	314	318	357	397	394	418	407	516	4,474	6,469	6,739



Vehicle Composition



10
No.
Station
atS
MCC
of
Results
-11
Appendix 2

: 10	: Sege North	: R18	: 1.446	: 0.8	: 1.2	: 13.6%
Station Number	Station	Road	Day-Night Ratio	Weekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ratio

		_	_	_	_	_	_	_	
	ADT	1,663	321	23	142	232	50	0	2,460
	24-hour Volume	1,596	308	51	136	223	48	0	2,362
	TOTAL	1,104	213	35	94	154	33	0	1,633
	17:00 - 18:00	80	16	2	9	8	1	0	113
	16:00 - 17:00	107	18	5	6	12	2	0	153
	15:00 - 16:00	96	13	3	9	11	3	0	132
	14:00 - 15:00	104	17	2	9	6	1	0	139
	13:00 - 14:00	96	20	4	8	13	3	0	144
	12:00 - 13:00	85	21	3	7	11	3	0	130
	11:00 - 12:00	62	16	1	8	12	4	0	120
	10:00 - 11:00	87	20	2	7	7	4	0	127
	09:00 - 10:00	97	17	5	11	20	5	0	155
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	- 00:00 - 00:00	91	19	4	11	18	1	0	144
No.         VEHICLE TYPE         06:00-           1         Passenger car         79           2         Minibus         79           3         Bus         79           4         Medium truck         8           5         Heavy truck         15           6         Trailer         3           7         Others         9	07:00 - 08:00	103	18	4	7	18	3	0	153
No.VEHICLE TYPE1Passenger car2Minibus3Bus4Medium truck5Heavy truck6Trailer7Others	06:00 - 07:00	79	18	0	8	15	3	0	123
No. 1 1 6 5 7 4 8 3 3 3 7 0	VEHICLE TYPE	Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
	No.	-	2	3	4	5	9	7	



Vehicle Composition



11
No.
at Station
of MCC a
Results
x 2-12
Appendi

: 11	: Sogakope	: N1	: 1.446	: 0.8	: 1.2	: 12.0%
Station Number	Station	Road	Day-Night Ratio	Weekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ratio

ADT	3,013	2,309	307	395	113	223	138	6,497
24-hour Volume	2,892	2,217	295	379	108	214	132	6,237
TOTAL	2,000	1,533	204	262	75	148	91	4,313
17:00 - 18:00	211	164	24	34	15	26	11	485
16:00 - 17:00	223	140	25	24	4	11	11	438
15:00 - 16:00	216	163	14	27	7	13	11	451
14:00 - 15:00	180	160	17	29	11	22	16	435
13:00 - 14:00	155	114	16	22	7	8	8	330
12:00 - 13:00	146	140	14	16	4	10	5	335
11:00 - 12:00	143	100	10	16	5	6	5	288
10:00 - 11:00	157	108	12	19	4	5	4	309
09:00 - 10:00	154	108	25	19	5	13	4	328
- 00:00 09:00	150	111	21	23	8	13	9	332
07:00 - 08:00	148	126	10	18	3	8	8	321
06:00 - 07:00	117	66	16	15	2	10	2	261
VEHICLE TYPE	Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
No.	1	2	3	4	5	9	7	
### Hourly Fluctuation



Vehicle Composition



Station Number	•••	12
Station	••	Adidome
Road	••	R28
Day-Night Ratio	••	1.446
Weekly Fluctuation	••	0.8
Monthly Fluctuation	••	1.2
Commercial Vehicle Ratio	••	5.9%

Observed Traffic and ADT

ADT		629	131	26	48	17	10	0	892
24-hour	Volume	633	126	25	46	16	10	0	856
TOTAL		438	87	17	32	11	7	0	592
17:00 -	18:00	36	7	1	4	1	0	0	49
16:00 -	17:00	36	8	1	5	1	0	0	51
15:00 -	16:00	39	11	2	3	1	1	0	57
14:00 -	15:00	37	7	0	3	2	1	0	50
13:00 -	14:00	35	8	1	3	1	3	0	51
12:00 -	13:00	42	6	2	1	0	0	0	51
11:00 -	12:00	37	6	0	3	1	0	0	47
10:00 -	11:00	39	5	1	2	1	1	0	49
- 00:60	10:00	36	5	1	1	1	1	0	45
- 00:80	09:00	40	7	3	2	1	0	0	53
- 00:00	08:00	35	8	3	3	1	0	0	50
- 00:90	07:00	26	6	2	2	0	0	0	39
VEHICLE TVDF		Passenger car	Minibus	Bus	Medium truck	Heavy truck	Trailer	Others	TOTAL
	No.	1	2	3	4	5	9	7	

### Hourly Fluctuation



### Vehicle Composition



: 13	: Tamale	: N10 (Central Corrido)	: 1.446	: 1.05	: 1.2	: 38.4%
Station Number	Station	Road	Day-Night Ratio	Weekly Fluctuation	Monthly Fluctuation	Commercial Vehicle Ratio

DT	
A	
and	
<b>[</b> raffic	
ц Ч	
rve	
Obse	

No.         VEHICLE TYPE         06:00-           1         Passenger car         07:00           2         Minibus         5           3         Bus         17           4         Medium truck         42           5         Heavy truck         7           6         Trailer         28           7         Others         0
No.VEHICLE TYPE1Passenger car2Minibus3Bus4Medium truck5Heavy truck6Trailer7Others
7 6 5 4 3 2 1 No.

### Hourly Fluctuation



Vehicle Composition



### Appendix 3 Forecast of Distributed Traffic Demand (O/D Matrix)

0	gin Destination	1	2	2	4			6	7	0	0	10	11	12	12	14	15	16	17	19	10	20	21	22	22	24	25	26	27	28	20	20	21	22	22	24	25
Uri	gin Destination	1	2	3	4	2		0	/	8	9	10	11	12	13	14	15	10	1/	18	19	20	21	22	23	24	25	20	27	28	29	30	31	32	33	34	35
1	North Tongu (1)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	North Tongu (2)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
3	North Tongu (3)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	North Tongu (4)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	North Tongu (5)	0		0	0	0	0	7	0	0	0	0	0	0	0	0	0	65	0	32	0	0	0	0	0	0	0	4	10	24	0	0	0	0	0	0	0
6	North Tongu (6)	0		0	0	0	8	0	0	0	0	0	0	0	0	0	4	248	0	0	0	0	0	0	0	0	0	9	15	31	5	0	3	0	0	0	5
7	Asugyaman (1)	0	-	0	0	0	0	0	0	269	0	0	76	0	0	0	3	0	8	0	0	4	5	32	9	0	0	0	13	41	3	0	0	0	0	0	0
8	Asugyaman (2)	0	-	0	0	0	0	0	177	0	0	0	18	0	0	0	4	0	0	7	0	4	114	287	27	0	0	0	32	71	15	2	0	0	0	9	0
9	Ho Municipality (1)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	Ho Municipality (2)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
11	Ho City	0	-	0	0	0	0	5	19	25	0	0	0	0	6	0	4	40	0	16	0	3	15	128	13	0	0	0	174	794	21	80	19	0	0	25	8
12	Adaklu Anyigme	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0
13	Dangme West (1)	0		0	0	0	0	0	0	7	0	0	0	0	0	0	0	5	33	0	0	0	0	44	12	0	55	0	59	24	29	0	0	0	0	0	0
14	Dangme West (2)	0		0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	52	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
15	North Tongu (7)	0		0	0	0	0	3	0	0	0	0	0	0	0	0	0	42	0	695	0	0	0	4	0	0	0	25	134	253	39	0	0	0	0	0	0
16	South Tongu	0		0	0	14	36	207	0	0	0	0	22	7	0	0	0	0	0	160	0	0	0	0	0	0	0	36	17	195	0	0	0	0	0	0	0
17	Dangme West (3)	0		0	0	0	0	0	0	3	0	0	13	0	34	0	24	12	0	0	0	10	8	65	19	0	0	12	60	0	15	0	0	0	0	0	0
18	Dangme East	0	-	0	0	0	0	41	8	0	0	0	28	0	0	18	534	303	8	0	0	6	5	8	4	0	0	314	28	0	0	0	0	0	0	0	0
19	Ho Municipality (3)	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0
20	South Dayi	0		0	0	0	0	0	0	4	0	0	0	0	0	0	3	0	0	0	0	0	0	102	12	/	0	0	30	81	0	8	0	0			0
21	Asugyaman (5)	0		0	0	0	0	0	15	252	0	0	201	0	20	0	0	0	25	8	0	24	140	102	042	8	0	25	224	205	215	23	0	0		0	0
22	Vine Vine Vine	0		0	0	0	0	0	15	555	0	0	321	0	20	0	0	0	35	0	0	28	284	782	942	10	8	12	106	205	122	131	0	0	0	0	7
23	Alayanim North	0	-	0	0	0	0	0	0	50	0	0	12	0	0	0	0	12	0	0	0	0		20	0	0	0	12	56	50	152	0	0	0	0	0	
24	Dangma Wast (4)	0		0	0	0	0	0	0	0	0	0	0	0	17	0	0	12	0	0	0	0	0	16	0	0	0	0	50	0	0	0	0	0	0	0	0
25	South Fast of Volta Region	0		0	0	0	2	3	0	0	0	0	0	0	0	0	23	5	0	198	0	0	11	13	0	26	0	0	150	2 046	49	61	5	0	0	16	0
20	Tema Port	0		3	0	0	9	9	31	69	0	0	167	0	67	0	118	59	60	0	0	37	154	381	60	0	0	180	0	5 206	4 214	133	0	0	0	278	37
28	Accra Metropolitan Area	0		0	0	0	66	64	91	176	0	0	872	5	112	0	338	269	0	18	0	189	225	211	20	8	0	1 1 5 9	1.022	0,200	1,214	47	0	0	0	4	5
29	West of Greater Accra	0		0	0	0	0	0	11	25	0	0	212	0	42	0	57	0	0	0	0	4	33	294	135	0	0	11	2,161	56	0	8	0	0	0	0	0
	Region	-		-	-	-	-	-			-			-		-		-		-	-					-			_,		-	-	-	-	-	-	-
30	West of Eastern Region	0		0	0	0	0	0	0	0	0	0	180	0	6	0	0	0	0	0	0	0	6	241	16	0	0	52	0	16	20	0	0	0	0	0	0
31	Central Region	0		0	0	0	0	0	0	0	0	0	13	0	6	0	0	0	0	0	0	6	0	0	0	0	0	9	15	0	0	0	0	0	0	0	0
32	Western Region	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	88	0	0	0	0	0	0	0	0
33	Sekondi Takoradi	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	Ashanti Region	0		0	0	0	0	0	0	7	0	0	13	0	0	0	0	0	0	0	0	0	0	16	0	0	0	13	239	0	0	0	0	0	0	0	0
35	Brong Ahafo Region	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0
36	West of Northern Region	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	99	170	0	4	0	11	0	266	124
37	East of Northern Region	0		0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	31	0	4	0	0	0	26	12
38	Upper West Region	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	113	0	0	0	0	0	0	0	0
39	Upper East Region	0		0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	139	161	0	9	0	4	0	55	112
40	North of Volta Region	0		0	0	0	3	3	22	11	0	0	3	0	0	0	11	21	9	17	0	0	19	233	12	9	0	6	280	913	82	94	11	3	0	15	0
41	South of Togo	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	58	249	0	0	0	0	0	0	0
42	North of Togo	0		0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	4	0	0	0	4	0
43	Burkina Faso, Niger &	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	82	105	0	0	3	10	0	62	8
	Mali																																		$ \longrightarrow $	$ \longrightarrow $	$ \rightarrow $
44	Cote d'Ivoire	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
	Total	0	1	1	0	14	24	347	404	1,239	0	0	2,009	12	316	18	1,125	1,084	173	1,203	0	315	1,128	2,966	1,970	74	63	1,890	5,458	10,859	4,955	616	41	28	0	778	318

### Table A3-1 Forecast of Distributed Traffic Demand (O/D Matrix) for All Vehicle Types (2012)

-			-			-	(Unit	: venic	cies)
36	37	38	39	40	41	42	43	44	Total
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	142
0	0	0	0	4	0	0	0	0	332
0	0	0	0	13	0	0	0	0	476
0	0	0	0	20	0	0	0	0	787
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	4
7	0	0	0	0	0	0	0	0	1,402
0	0	0	0	0	0	0	0	0	5
0	0	0	0	7	0	0	0	0	275
0	0	0	0	0	0	0	0	0	64
0	0	0	0	17	0	0	0	0	1,212
0	0	0	0	5	0	2	0	0	701
0	0	0	0	3	0	0	0	0	278
5	7	0	0	36	12	0	0	0	1,365
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	228
0	0	0	0	37	0	0	0	0	1,431
0	0	0	0	331	0	0	0	0	3,116
0	0	0	0	25	0	0	0	0	1,581
0	0	0	0	0	0	0	0	0	98
0	0	0	0	4	0	0	0	0	37
0	0	0	0	2	0	0	0	0	2,610
158	0	0	64	104	205	0	114	4	11,921
197	18	3	103	794	291	0	96	0	6,403
0	0	0	0	288	0	0	0	0	3,337
4	0	0	0	60	0	0	0	0	601
0	0	0	0	15	0	0	0	0	64
37	0	0	31	0	0	0	35	0	191
0	0	0	0	0	0	0	0	0	0
173	0	0	120	12	0	0	39	0	632
255	0	0	81	0	0	0	7	0	351
0	0	4	20	0	0	0	0	0	705
5	0	0	0	0	0	0	0	0	81
8	0	0	0	0	0	0	0	0	121
8	0	4	0	0	0	0	0	0	496
0	0	0	0	0	0	0	0	0	1,777
0	0	0	0	0	0	0	0	0	307
0	0	0	0	0	0	0	0	0	14
0	0	0	0	0	0	0	0	0	279
0	0	0	0	0	0	0	0	0	4
857	25	11	419	1,777	508	2	291	4	43,432

(Unit: Vehicles)

Ori	igin Destination 1	2	3	4	5	6	7	8 9	10	11	12	13	14	15	16 17	18	19	20	21 22	23 24	25	26	27	28	29	30	31 32	33	34	35	36	37	38	39 40	41 42	2 4.	3	44	Total
1	North Tongu (1) 0	0	0	0	0	) 0	0	0	0 0	) 0	0	0	0	0	0 0	0	0 0	0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0
2	North Tongu (2) 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	1	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	1
3	North Tongu (3) 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0
4	North Tongu (4) 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	4 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	4
5	North Tongu (5) 0	0	0	0	0	) 8	0	0	0 0	0 0	0	0	0	0	83 0	39	0	0	0 0	0 0	0	5	13	29	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	177
6	North Tongu (6) 0	0	0	0	10	) 0	0	0	0 0	0 0	0	0	0	5	313 0	0	0	0	0 0	0 0	0	11	18	38	6	0	4 0	0	0	6	0	0	0	0 5	0	0	0	0	416
7	Asugyaman (1) 0	0	0	0	0	) 0	0	330	0 0	96	0	0	0	3	0 10	0	0	5	6 38	11 0	0	0	16	48	3	0	0 0	0	0	0	0	0	0	0 16	0	0	0	0	583
8	Asugyaman (2) 0	0	0	0	0	) 0	217	0	0 0	23	0	0	0	5	0 0	8	0	5	138 348	33 0	0	0	42	86	18	2	0 0	0	10	0	0	0	0	0 25	0	0	0	0	960
9	Ho Municipality (1) 0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0
10	Ho Municipality (2) 0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	5	0	0	0	0	0 0	0	0	0	0	5
11	Ho City 0	0	0	0	0	) 6	24	32	0 0	0 0	0	8	0	5	52 0	19	0	4	19 162	17 0	0	0	226	974	27	100	23 0	0	31	10	9	0	0	0 0	0	0	0	0	1,747
12	Adaklu Anyigme 0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	6	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	6
13	Dangme West (1) 0	0	0	0	0	) 0	0	9	0 0	0 0	0	0	0	0	6 42	0	0	0	0 56	15 0	64	0	91	29	37	0	0 0	0	0	0	0	0	0	0 9	0	0	0	0	357
14	Dangme West (2) 0	0	0	0	0	) 0	0	0	0 0	0 0	0	8	0	0	0 0	64	0	0	0 0	0 0	0	0	8	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	79
15	North Tongu (7) 0	0	0	0	0	) 4	0	0	0 0	0 0	0	0	0	0	55 0	866	0	0	0 5	0 0	0	33	173	306	44	0	0 0	0	0	0	0	0	0	0 21	0	0	0	0	1,509
16	South Tongu 0	0	0	17	46	264	0	0	0 0	29	7	0	0	0	0 0	196	i 0	0	0 0	0 0	0	45	22	243	0	0	0 0	0	0	0	0	0	0	0 7	0	2	0	0	878
17	Dangme West (3) 0	0	0	0	0	0 0	0	4	0 0	20	0	42	0	32	15 0	0	0	14	10 81	23 0	0	15	76	0	21	0	0 0	0	0	0	0	0	0	0 5	0	0	0	0	360
18	Dangme East 0	0	0	0	0	50	10	0	0 0	35	0	0	22	657	371 10	0	0	7	6 10	5 0	0	378	34	0	0	0	0 0	0	0	0	6	7	0	0 44	15	0	0	0	1,666
19	Ho Municipality (3) 0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0
20	South Dayi 0	0	0	0	0	0 0	0	5	0 0	0 0	0	0	0	7	0 0	0	0	0	0 99	15 9	0	0	38	100	0	10	0 0	0	3	0	0	0	0	0 0	0	0	0	0	286
21	Asugyaman (3) 0	0	0	0	0	0 0	27	309	0 0	70	0	0	0	0	0 10	10	0	30	0 124	849 10	0	9	43	169	20	28	0 0	0	6	0	0	0	0	0 47	0	0	0	0	1,756
22	Lower Manya Klobo 0	0	0	0	0	0 0	18	406	0 0	404	0	24	0	0	0 39	0	0	34	182 0	1,154 19	10	30	293	244	383	157	0 0	0	5	0	0	0	0	0 417	0	0	0	0	3,819
23	Yiro Krobo 0	10	0	0	0	) 0	10	69	0 0	) 15	0	0	0	0	0 13	0	0 0	0	470 957	0 0	0	15	135	45	162	0	0 0	0	0	6	0	0	0	0 31	0	0	0	0	1,938
24	Akwapim North 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	15 0	0	0 0	0	0 36	0 0	0	0	69	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	120
25	Dangme West (4) 0	0	0	0	0	0 0	0	0	0 0	0 0	0	22	0	0	0 0	0	0	0	0 20	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0	0	0	0 5	0	0	0	0	47
26	South East of Volta Region 0	0	0	0	3	4	0	0	0 0	0 0	0	0	0	30	7 0	246	0	0	14 17	0 32	0	0	193	2,564	62	77	6 0	0	21	0	0	0	0	0 3	0	0	0	0	3,277
27	Tema Port 0	3	0	0	10	0 10	37	82	0 0	212	0	84	0	144	69 75	0	0 0	48	186 464	74 0	0	222	0	6,100	5,203	145	0 0	0	271	32	218	0	0	77 130	283	0 1	139	5	14,324
28	Accra Metropolitan Area 0	0	0	0	80	) //	109	212	0 0	1,081	6	131	0	419	330 0	21	0	233	270 252	24 10	0	1,41/	1,255	0	0	55	0 0	0	5	6	249	22	3	132 977	361	0 1	10	0	/,848
29	West of Greater Accra 0	0	0	0	U	0	13	28	0 0	267	0	49	0	69	0 0	0	0	5	41 357	165 0	0	14	2,663	68	0	10	0 0	0	0	0	0	0	0	0 363	0	0	0	0	4,111
30	West of Eastern Region 0	0	0	0	0	) 0	0	0	0 0	225	0	7	0	0	0 0	0	0	0	6 291	20 0	0	64	0	19	24	0	0 0	0	0	0	5	0	0	0 75	0	0	0	0	736
31	Central Region 0	0	0	0	0	) 0	0	0	0 0	15	0	7	0	0	0 0	0	0	6	0 0	0 0	0	9	18	0	0	0	0 0	0	0	0	0	0	0	0 19	0	0	0	0	74
32	Western Region 0	0	0	0	0	) 0	0	0	0 0	) 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	85	0	0	0	0 0	0	0	0	49	0	0	41 0	0	0	40	0	215
33	Sekondi Takoradi 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	0
34	Ashanti Region 0	0	0	0	0	) 0	0	9	0 0	16	0	0	0	0	0 0	0	0	0	0 20	0 0	0	14	315	0	0	0	0 0	0	0	0	211	0	0	149 15	0	0	48	0	796
35	Brong Ahafo Region 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 0	0	0	10	0 0	0	0	0	317	0	0	95 0	0	0	18	0	440
36	West of Northern Region 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	9	157	231	0	5	0 75	0	350	159	0	0	5	29 0	0	0	0	0	1,020
37	East of Northern Region 0	0	0	0	0	) 4	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	47	0	5	0 0	0	37	16	9	0	0	0 0	0	0	0	0	117
38	Upper West Region 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	137	0	0	0	0 0	0	0	0	10	0	0	0 0	0	0	0	0	147
39	Upper East Region 0	0	0	0	0	) 0	0	0	0 0	) 5	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	195	222	0	11	0 35	0	90	150	12	0	5	0 0	0	0	0	0	725
40	North of Volta Region 0	0	0	0	4	4	25	13	0 0	) 3	0	0	0	14	27 9	20	0	0	23 292	15 10	0	7	361	1,132	102	116	14 2	0	18	0	0	0	0	0 0	0	0	0	0	2,210
41	South of Togo 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	74	310	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	385
42	North of Togo 0	0	0	0	0	2	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	0 0	5	0	5	0 0	0	5	0	0	0	0	0 0	0	0	0	0	18
43	Burkina Faso, Niger & 0	0	0	0	0	) 0	0	0	0 0	0 0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	13	100	128	0	0	4 12	0	72	28	0	0	0	0 0	0	0	0	0	356
	Mali								_																											$\perp$	$\perp$	$\perp$	
44	Cote d'Ivoire 0	0	0	0	0	0 0	0	0	0 0	0	0	0	0	0	0 0	0	0	0	0 0	0 0	0	0	5	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0	0	0	5
	Total 0	14	0	17	154	433	489	1,509	0 0	2,515	13	383	22	1,392	1,347 208	1,489	0	390	1,370 3,627	2,418 90	74	2,311	6,858	13,143	6,112	736	51 124	0	927	413	1,094	29	13	523 2,213	658	2 3	354	5	53,519

### Table A3-2 Forecast of Distributed Traffic Demand (O/D Matrix) for All Vehicle Types (2016)

(Unit: Vehicles)

<u>S</u>

Ori	gin Destination	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35 2
1	North Tongu (1)	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	North Tongu (2)	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
3	North Tongu (3)	0	(	) (	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	North Tongu (4)	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	North Tongu (5)	0	(	) (	) 0	0	11	0	0	0	0	0	0	0	0	0	113	0	49	0	0	0	0	0	0	0	6	19	39	0	0	0	0	0	0	0
6	North Tongu (6)	0	(	) (	0 0	13	0	0	0	0	0	0	0	0	0	6	413	0	0	0	0	0	0	0	0	0	14	31	47	8	0	5	0	0	0	8
7	Asugyaman (1)	0	(	) (	0 0	0	0	0	423	0	0	127	0	0	0	3	0	12	0	0	7	8	47	14	0	0	0	24	61	3	0	0	0	0	0	0
8	Asugyaman (2)	0	(	) (	0 0	0	0	278	0	0	0	30	0	0	0	7	0	0	10	0	7	176	439	42	0	0	0	66	108	23	3	0	0	0	12	0
9	Ho Municipality (1)	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	Ho Municipality (2)	0	(	) (	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6	0
11	Ho City	0	(	) (	) 0	0	9	32	43	0	0	0	0	10	0	7	71	0	18	0	5	25	214	22	0	0	0	319	1,250	35	130	29	0	0	40	13
12	Adaklu Anyigme	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0
13	Dangme West (1)	0	(	) (	0 0	0	0	0	11	0	0	0	0	0	0	0	9	53	0	0	0	0	71	19	0	75	0	147	37	48	0	0	0	0	0	0
14	Dangme West (2)	0	(	) (	) 0	0	0	0	0	0	0	0	0	10	0	0	0	0	82	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
15	North Tongu (7)	0	(	) (	) 0	0	5	0	0	0	0	0	0	0	0	0	77	0	1,121	0	0	0	7	0	0	0	47	274	405	58	0	0	0	0	0	0
16	South Tongu	0	(	) (	) 22	63	353	0	0	0	0	39	7	0	0	0	0	0	250	0	0	0	0	0	0	0	62	29	312	0	0	0	0	0	0	0
17	Dangme West (3)	0	(	) (	) 0	0	0	0	7	0	0	27	0	54	0	44	20	0	0	0	17	13	104	30	0	0	20	105	0	36	0	0	0	0	0	0
18	Dangme East	0	(	) (	) 0	0	62	12	0	1	0	45	0	0	29	850	479	12	0	0	8	7	12	6	0	0	484	54	0	0	0	0	0	0	0	0
19	Ho Municipality (3)	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	South Dayi	0	(	) (	) 0	0	0	0	7	0	0	0	0	0	0	9	0	0	0	0	0	0	130	20	11	0	0	51	129	0	13	0	0	0	3	0
21	Asugyaman (3)	0	(	) (	) 0	0	0	35	397	0	0	93	0	0	0	0	0	10	12	0	38	0	156	1,092	12	0	12	64	211	25	35	0	0	0	6	0
22	Lower Manya Klobo	0	(	) (	) 0	0	0	23	514	0	0	531	0	28	0	0	0	44	0	0	42	232	0	1,475	24	13	36	409	302	480	197	0	0	0	5	0
23	Yiro Krobo	0	13	. (	0 0	0	0	12	90	0	0	20	0	0	0	0	0	16	0	0	0	603	1,222	0	0	0	21	189	57	205	0	0	0	0	0	6
24	Akwapim North	0	(	) (	) 0	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	0	46	0	0	0	0	89	0	0	0	0	0	0	0	0
25	Dangme West (4)	0	(	) (	) 0	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0
26	South East of Volta Region	0	(	) (	) 0	3	5	0	0	0	0	0	0	0	0	38	9	0	319	0	0	18	22	0	39	0	0	262	3,356	82	101	8	0	0	27	0
27	Tema Port	0	4	(	) 0	7	7	44	92	0	0	267	0	111	0	135	55	98	0	0	65	226	569	93	0	0	250	0	7,217	6,638	135	0	0	0	217	18
28	Accra Metropolitan Area	0	(	) (	) 0	101	93	135	267	0	0	1,383	8	153	0	540	425	0	26	0	299	338	311	30	12	0	1,802	1,653	0	0	69	0	0	0	6	8
29	West of Greater Accra	0	(	) (	) 0	0	0	15	34	0	0	348	0	58	0	86	0	0	0	0	7	52	449	208	0	0	19	3,458	84	0	12	0	0	0	0	0
	Region																																			
30	West of Eastern Region	0	(			0	0	0	0	0	0	294	0	9	0	0	0	0	0	0	0	9	300	25	0	0	84	0	24	30	0	0	0	0	0	0
31	Central Region	0	(	) (	) 0	0	0	0	0	0	0	17	0	9	0	0	0	0	0	0	4	0	0	0	0	0	8	26	0	0	0	0	0	0	0	0
32	Western Region	0	(			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	0	0	0	0	0	0	0	0
33	Sekondi Takoradi	0	(			0	0	0	12	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	Asnanti Region	0	(			0	0	0	12	0	0	18	0	0	0	0	0	0	0	0	0	0	20	0	0	0	9	441	0	0	12	0	0	0	0	0
35	Brong Anaio Region	0	(			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	208	168	0	12	0	65	0	508	205
27	Feet of Northern Design	0	(			0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	298	110	0	0	0	03	0	508	303
20	Lana West Pasien	0	(			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	171	110	0	0	0	0	0	35	21
20	Upper West Region	0	(			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	105	222	0	16	0	46	0	141	204
39	North of Valta Dagion	0	(			5	5	27	17	0	0	2	0	0	0	10	27	0	20	0	0	20	201	10	11	0	0	516	1 461	122	150	10	40	0	141	204
40	South of Togo	0				0	0	2/	17	0	0		0	0	0	19	5/	9	20	0	0	29	201	19	0	0	9	106	1,401	132	150	10	2	0	23	0
41	North of Togo	0	(			0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	422	0	7		0	0	7	0
42	Burkina Faso Nigor &	0	(			0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	116	164	0	/	4	40	0	/ 07	20
40	Mali	0		1	, 0	0	0	0		U	0	0	0	U	U	0	U	0	U	U	U	U	U	U	U	U	15	110	104	U	U	4	40	0	0∠	29
44	Cote d'Ivoire	0	(		) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
74	Total	0	1-		) 22	102	550	612	1 012	1	0	3 7 4 9	16	474	20	1 746	1 722	254	1 006	0	400	1 726	4 507	3 006	110	07	2 007	0 270	16 510	7 802	805	64	152	0	1 1 2 9	612 1
	10(a)	0	17		, 22	192	558	012	1,712	1	0	5,240	10	7/4	29	1,740	1,132	234	1,900	U	+77	1,750	т,377	5,070	110	0/	2,707	7,270	10,510	1,005	075	04	133	U	1,100	012 1,

### Table A3-3 Forecast of Distributed Traffic Demand (O/D Matrix) for All Vehjicle Types (2026)

36	37	38	39	40	41	42	43	44	Total
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	5
0	0	0	0	0	0	0	0	0	237
0	0	0	0	7	0	0	0	0	551
0	0	0	0	22	0	0	0	0	751
0	0	0	0	32	0	0	0	0	1,234
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	6
12	0	0	0	0	0	0	0	0	2,285
0	0	0	0	0	0	0	0	0	8
0	0	0	0	12	0	0	0	0	481
0	0	0	0	0	0	0	0	0	102
0	0	0	0	28	0	0	0	0	2,021
0	0	0	0	9	0	3	0	0	1,150
0	0	0	0	6	0	0	0	0	483
8	7	0	0	57	20	0	0	0	2,151
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	374
0	0	0	0	61	0	0	0	0	2,257
0	0	0	0	552	0	0	0	0	4,909
0	0	0	0	38	0	0	0	0	2,491
0	0	0	0	0	0	0	0	0	154
0	0	0	0	7	0	0	0	0	62
0	0	0	0	4	0	0	0	0	4,293
369	0	0	184	158	410	0	188	9	17,566
414	27	3	181	1,243	535	0	167	0	10,229
0	0	0	0	477	0	0	0	0	5,307
6	0	0	0	98	0	0	0	0	946
0	0	0	0	24	0	0	0	0	88
52	0	0	93	0	0	0	48	0	260
0	0	0	0	0	0	0	0	0	0
351	0	0	197	18	0	0	66	0	1,137
405	0	0	169	0	0	0	43	0	629
0	0	6	40	0	0	0	0	0	1,709
15	0	0	0	0	0	0	0	0	286
12	0	0	0	0	0	0	0	0	183
15	0	6	0	0	0	0	0	0	863
0	0	0	0	0	0	0	0	0	2,891
0	0	0	0	0	0	0	0	0	527
0	0	0	0	0	0	0	0	0	25
0	0	0	0	0	0	0	0	0	448
0	0	0	0	0	0	0	0	0	5
,658	35	16	863	2,851	965	3	512	9	69,107

(Unit: Vehicles)

											-				-	-							-	-						-	-	1				(Onn	. vemen	.5)	
Origin Destination	1	2	3	4	5	6	7	8	9 10	) 11	12	13	14 15	16	17 1	8 1	9 2	20 2	21	22 23	24 25	26	27	28	29	30	31	32 33	34 35	36	37	38	39	40	41	42 4	43 44	Tot	ətal
1 North Tongu (1)	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	0 0	0	0	0	0	0 0	0 (	1	0 0	0	0	, 0	0	0	0	0	0
2 North Tongu (2)	0	0	0	0	0	0	0	0	0	0 0	0 (	0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 3	0	0	0	0	0 0	0 (	1	0 0	0	0	0 0	0	0	0	0	3
3 North Tongu (3)	0	0	0	0	0	0	0	0	0	0 0	) 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 0	0	0	0	0	0 0	0 (	1	0 0	0	0	0 0	0	0	0	0	0
4 North Tongu (4)	0	0	0	0	0	0	0	0	0	0 0	) 0	0	0 0	6	0	0	0	0	0	0 0	0 0	(	) 0	0	0	0	0	0 0	0 (	,	0 0	0	C	0	0	0	0	0	6
5 North Tongu (5)	0	0	0	0	0	14	0	0	0	0 0	) 0	0	0 0	134	0	55	0	0	0	0 0	0 0	5	3 29	44	0	0	0	0 0	0 (	,	0 0	0	0	) 0	0	0	0	0	284
6 North Tongu (6)	0	0	0	0	15	0	0	0	0	0 0	) 0	0	0 7	477	0	0	0	0	0	0 0	0 0	16	5 50	52	9	0	5	0 0	0 0	,	0 0	0	0	8	0	0	0	0	647
7 Asugyaman (1)	0	0	0	0	0	0	0	477	0	0 145	5 0	0	0 3	0	14	0	0	8	0	52 16	0 0		) 38	66	2	0	0	0 0	0 (		0 0	0	, c	25	0	0	0	0	853
8 Asugyaman (2)	0	0	0	0	0	0	317	1//	0	0 35	5 0	0	0 8	0	0	11	0	8	100	180 10	0 0	(	) 111	110	25	3	0	0 0	13 (		0 0	0		37	0	0	0	0 1	1 426
9 Ho Municipality (1)	0	0	0	0	0	0	0	0	0	0 0		0	0 0	0	0	0	0	0	0	0 0	0 0	(		0	0	0	0	0 0	0 (		0 0	0		) 0	0	0	0	0 1,	0
10 Us Municipality (2)	0	0	0	0	0	0	0	0	0	0 0		0	0 0	0	0	0	0	0	0	0 0	0 0	(		0	0	0	0	0 0	0 0		0 0	0	0	<u> </u>	0			0	
11 Ho City	0	0	0	0	0	10	29	50	0	0 0		12	0 0	94	0	10	0	7	20	250 26	0 0	(	157	1 202	40	140	22	0 0	48 14		4 0	0	0		0		0	0 2	2 695
	0	0	0	0	0	10	50	50	0	0 0		12	0 9	04	0	19	0	/	30	230 20	0 0	(	457	1,393	40	149	55	0 0	40 10		.4 0	0	0	0	0		0	0 2,	.,085
12 Adakiu Anyigme	0	0	0	0	0	0	0	10	0	0 0		0	0 0	0	0	0	0	0	0	77 22	0 0	(	0 105	10	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	10
13 Dangme West (1)	0	0	0	0	0	0	0	13	0	0 0		0	0 0	10	60	0	0	0	0	11 22	0 83	(	195	41	50	0	0	0 0	0 0		0 0	0	0	14	0	0		0	565
14 Dangme West (2)	0	0	0	0	0	0	0	0	0	0 0		12	0 0	0	0	93	0	0	0	0 0	0 0	(	12	0	0	0	0	0 0	0 0		0 0	0	0	0	0	0	0	0	11/
15 North Tongu (7)	0	0	0	0	0	6	0	0	0	0 (	) ()	0	0 0	93	0 1,	279	0	0	0	8 0	0 0	57	438	448	61	0	0	0 0	0 (	'	0 0	0	0	33	0	0	0	0 2,	2,423
16 South Tongu	0	0	0	26	75	412	0	0	0	0 47	7 9	0	0 0	0	0 1	286	0	0	0	0 0	0 0	79	9 34	355	0	0	0	0 0	0 (	'	0 0	0	0	11	0	4	0	0 1,	1,338
17 Dangme West (3)	0	0	0	0	0	0	0	9	0	0 33	3 0	61	0 51	23	0	0	0	23	14	116 34	0 0	24	1 134	0	36	0	0	0 0	0 (	1	0 0	0	0	7	0	0	0	0	565
18 Dangme East	0	0	0	0	0	69	13	0	1	0 51	1 0	0	33 963	538	13	0	0	9	8	13 7	0 0	538	8 84	0	0	0	0	0 0	0 (	1	8 8	0	0	64	24	0	0	0 2,	2,444
19 Ho Municipality (3)	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	0 0	0	0	0	0	0 0	0 (	1	0 0	0	0	. 0	0	0	0	0	0
20 South Dayi	0	0	0	0	0	0	0	8	0	0 0	0 0	0	0 11	0	0	0	0	0	0	151 24	13 0	(	) 60	150	0	15	0	0 0	4 (	1	0 0	0	0	. 0	0	0	0	0	435
21 Asugyaman (3)	0	0	0	0	0	0	39	449	0	0 107	7 0	0	0 0	0	13	13	0	44	0	173 1,235	14 0	14	4 94	229	27	39	0	0 0	6 (	1	0 0	0	0	70	0	0	0	0 2,	2,563
22 Lower Manya Klobo	0	0	0	0	0	0	26	577	0	0 610	0 0	32	0 0	0	49	0	0	49	261	0 1,663	27 14	39	543	324	529	214	0	0 0	4 (	1	0 0	0	0	635	0	0	0	0 5,	5,596
23 Yiro Krobo	0	15	0	0	0	0	13	102	0	0 24	4 0	0	0 0	0	19	0	0	0	680	1,370 0	0 0	24	4 255	60	227	0	0	0 0	0 (		0 0	0	0	44	0	0	0	0 2,	2,838
24 Akwapim North	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	23	0	0	0	0	0	53 0	0 0	(	100	0	0	0	0	0 0	0 (	1	0 0	0	0	i 0	0	0	0	0	176
25 Dangme West (4)	0	0	0	0	0	0	0	0	0	0 0	0 0	36	0 0	0	0	0	0	0	0	28 0	0 0	(	) 0	0	0	0	0	0 0	0 (	1	0 0	0	0	, 8	0	0	0	0	72
26 South East of Volta Region	0	0	0	0	4	6	0	0	0	0 0	0 0	0	0 51	11	0	364	0	0	22	26 0	46 0	(	311	3,875	96	118	9	0 0	32 (	1	0 0	0	0	, 4	0	0	0	0 4.	4,976
27 Tema Port	0	4	0	0	9	9	53	115	0	0 322	2 0	129	0 172	72	113	0	0	77	265	658 110	0 0	303	3 0	8,143	7,573	152	0	0 0	275 20	58	35 0	0	280	/ 192	526	0	274 1	10 20.	),444
28 Accra Metropolitan Area	0	0	0	0	111	101	150	299	0	0 1,574	4 10	174	0 611	474	0	28	0	342	374	341 33	13 0	2,009	2,012	0	0	74	0	0 0	7 8	8	31	3	365	1,405	629	0	187	0 12,	2,167
29 West of Greater Accra	0	0	0	0	0	0	16	35	0	0 400	0 0	63	0 94	0	0	0	0	8	58	501 234	0 0	22	3,951	92	0	13	0	0 0	0 (		0 0	0	0	549	0	0	0	0 6,	5,037
Region																																							
30 West of Eastern Region	0	0	0	0	0	0	0	0	0	0 344	4 0	10	0 0	0	0	0	0	0	12	408 28	0 0	101	1 0	26	33	0	0	0 0	0 (	1	7 0	0	0	114	0	0	0	0 1.	1,082
31 Central Region	0	0	0	0	0	0	0	0	0	0 17	7 0	10	0 0	0	0	0	0	2	0	0 0	0 0	4	4 30	0	0	0	0	0 0	0 (	1	0 0	0	0	28	0	0	0	0	92
32 Western Region	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	0 114	0	0	0	0	0 0	0 (	1	2 0	0	90	) 0	0	0	51	0	367
33 Sekondi Takoradi	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	0 0	0	0	0	0	0 0	0 (	1	0 0	0	0	, 0	0	0	0	0	0
34 Ashanti Region	0	0	0	0	0	0	0	13	0	0 20	0 0	0	0 0	0	0	0	0	0	0	30 0	0 0	4	4 414	0	0	0	0	0 0	0 (	69	03 0	0	412	. 20	0	0	88	0 1.	1,693
35 Brong Ahafo Region	0	0	0	0	0	0	0	0	0	0 0	0 (	0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 0	0	0	14	0	0 0	0 (	60	52 0	0	173	ن 0	0	0	700	0 1.	1,549
36 West of Northern Region	0	0	0	0	0	0	0	0	0	0 0	0 0	0	0 0	0	0	0	0	0	0	0 0	0 0	15	5 355	683	0	7	0	15 0	891 463		0 0	7	36	0 ز	0	0	0	0 2.	2,471
37 East of Northern Region	0	0	0	0	0	6	0	0	0	0 0	0 (	0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 0	82	0	7	0	0 0	59 23		6 0	0	0	0 0	0	0	0	0	193
38 Upper West Region	0	0	0	0	0	0	0	0	0	0 0	0 (	0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 185	0	0	0	0	0 0	0 (		3 0	0	0	0 0	0	0	0	0	198
39 Upper East Region	0	0	0	0	0	0	0	0	0	0 7	7 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	343	428	0	13	0	16 0	193 353		2 0	6	0	0 0	0	0	0	0 1	1.372
40 North of Volta Region	0	0	0	0	6	6	29	19	0	0 3	3 0	0	0 22	43	10	21	0	0	32	440 21	11 0	11	1 723	1.646	150	168	20	1 0	26 (		0 0	0	0	0	0	0	0	0 3	3,407
41 South of Togo	0	0	0	0	0	0		0	0	0 0	) 0	0	0 0	0	0	0	0	0	0	0 0	0 0		) 170	518	0	0	0	0 0	0 (		0 0	0	Ċ	0	0	0	0	0	688
42 North of Togo	0	0	0	0	0	4	0	0	0	0 0		0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 0	0	0	Q	0	0 0	10 0		0 0	0	c c		0		0	0	32
43 Burkina Faso Niger &	0	0	0	0	0	<del>ب</del> ۱	0	0	0	0 0		0	0 0	0	0	0	0	0	0	0 0	0 0		126	20.9	0	0	3	13 0	110 1/		0 0	0			0		0	0	402
Mali	0	0	0	0	0	0	0	0			, 0	0	0	0	v	0	0	0	0	0	0		, 150	200	0	0	5	15 0	110 1			0	0	0		v	3	Ŭ.	775
44 Cote d'Ivoire	0	0	0	0	0	0	0	0	0	0 0	) 0	0	0 0	0	0	0	0	0	0	0 0	0 0	(	) 7	0	0	0	0	0 0	0 (		0 0	0	C	) 0	0	0	0	0	7
Total	0	10	0	20	221	642	604	2166	1	0 2 720	10	540	22 2 002	1 007	200 2	168	0	577 1	064	5 192 2 502	122 07	2.27	1 11 207	18 000	0 0 2 0	005	71	45 0	1.694 014	2.00	5 20	17	1 254	2 2 2 69	1 1 70		300	10 02	2 220
i otal	U	19	0	20	221	043	094	2,100	1	0 3,/35	19	540	<b>33</b> 2,002	1,98/	209 2,	100	U	<i>J11</i> 1	,704	3,162 3,303	125 97	3,274	+ 11,38/	10,998	0,638	773	/1	45 0	1,004 919	2,92		1/	1,336	3,208	1,179	4 1,	,500 1	.u 82,	-,320

### Table A3-4 Forecast of Distributed Traffic Demand (O/D Matrix) for All Vehjicle Types (2036)

(Unit: Vehicles)

Origin Destination	1 2	2	4	5 6	7	0	9 10	11	12 12	14	15	16	17	19	10	20	21	22	22 24	25		26 27	28 20	20 21	22	22 24	25	26 27	29	20	40	41	42	42	44	Total
	1 2	3	-	3 0	,	0	9 10	11	12 13	14	15	10	1/	10	19	20	21	22	23 24	23	0	20 27	28 23	30 31	32	33 34		30 37	30	39	40	41	42	+3		Total
1 North Longu (1)	0 0		) 0	0	0	0	0 0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 (	0	0 0	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0		0
2 North Tongu (2)	0 0	) (	0 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0 0	0	0	0 (	0 0	0	0	0	0	0			0
3 North Tongu (3)	0 0	) (	0 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0 0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	0
4 North Tongu (4)	0 0	) (	0 0	0	0	0	0 0 0	0 0	0 0	0	0	6	0	0	0	0	0	0	0	0 0	0	0 0	0	0 0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	6
5 North Tongu (5)	0 0	(	0 0	0	6	0	0 0 0	0 0	0 0	0	0	125	0	55	0	0	0	0	0	0 0	0	0 15	35	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	236
6 North Tongu (6)	0 0	(	0 0	15	0	0	0 0 0	0 0	0 0	0	6	471	0	0	0	0	0	0	0	0 0	0	14 5	52	0 5	0	0	0 9	0 0	0	0	8	0	0	0	0	594
7 Asugyaman (1)	0 0	(	) 0	0	0	0 47	77 0 0	) 145	0 0	0	0	0	14	0	0	8	9	50	16	0 0	0	0 4	65	) 0 0	0	0	0 (	0 0	0	0	25	0	0	0	0	811
8 Asugyaman (2)	0 0	(	0 0	0	0 2	99	0 0 0	32	0 0	0	8	0	0	11	0	8	171	435	40	0 (	0	0 33	119 2	1 3 0	0	0	7 (	0 0	0	0	30	0	0	0	0	1,216
9 Ho Municipality (1)	0 0	(	0 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 (	0	0 0	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	0
10 Ho Municipality (2)	0 0	(	0 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	0
11 Ho City	0 0	(	0 0	0 1	0	38 5	50 0 0	0 0	0 12	0	9	82	0	9	0	7	30	250	26	0 0	0	0 227	1,307 4	0 146 30	0	0	47 16	14 0	0	0	0	0	0	0	0	2,348
12 Adaklu Anyigme	0 0	(	0 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	10	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0	10
13 Dangme West (1)	0 0	(	0 0	0	0	0 1	13 0 0	0 0	0 0	0	0	10	55	0	0	0	0	70	22	0 55	5	0 58	41 4	2 0 0	0	0	0 (	0 0	0	0	14	0	0	0	0	381
14 Dangme West (2)	0 0	) (	0 0	0	0	0	0 0 0	0 0	0 12	0	0	0	0	93	0	0	0	0	0	0 (	0	0 12	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	117
15 North Tongu (7)	0 0	) (	0 0	0	6	0	0 0 0	0 0	0 0	0	0	93	0	1,273	0	0	0	8	0	0 0	0	57 127	386 3	5 0 0	0	0	0 (	0 0	0	0	27	0	0	0	0	2,011
16 South Tongu	0 0	) (	) 23	66 40	8	0	0 0 0	47	0 0	0	0	0	0	267	0	0	0	0	0	0 (	0	37 34	355	0 0	0	0	0 (	0 0	0	0	11	0	4	0	0	1,252
17 Dangme West (3)	0 0	) (	) 0	0	0	0	0 0 0	0 0	0 61	0	36	23	0	0	0	0	14	101	34	0 (	0	24 102	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	396
18 Dangme East	0 0	) (	) 0	0 6	57	13	0 0 0	51	0 0	33	849	495	13	0	0	5	8	13	7	0 0	0	426 30	0	0 0	0	0	0 (	0 0	0	0	60	24	0	0	0	2,095
19 Ho Municipality (3)	0 0	) (	) 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	0
20 South Dayi	0 0	) (	) 0	0	0	0	8 0 0	0 0	0 0	0	11	0	0	0	0	0	0	146	24	3 (	0	0 60	127	0 15 0	0	0	4 (	0 0	0	0	0	0	0	0	0	407
21 Asugvaman (3)	0 0	) (	) 0	0	0	39 43	35 0 0	107	0 0	0	0	0	0	13	0	41	0	167	1.235	4 (	0	14 34	225 2	7 39 0	0	0	0 0	0 0	0	0	66	0	0	0	0	2,455
22 Lower Manya Klobo	0 0	(	) 0	0	0	26 54	47 0 0	605	0 27	0	0	0	28	0	0	44	261	0	1.654	7 14	4	31 283	311 52	7 208 0	0	0	0 0	0 0	0	0	635	0	0	0	0	5.228
23 Yiro Krobo	0 15	(	) 0	0	0	9 10	02 0 0	24	0 0	0	0	0	14	0	0	0	659	1.353	0	0 (	0	24 154	49 22	3 0 0	0	0	0 (	0 0	0	0	34	0	0	0	0	2.660
24 Akwapim North	0 0		) 0	0	0	0	0 0 0	) 0	0 0	0	0	23	0	0	0	0	0	41	0	0 (	0	0 100	0		0	0	0 0	0 0	0	0	0	0	0	0	0	164
25 Dangme West (4)	0 0		) 0	0	0	0	0 0 0	0	0 22	0	0	0	0	0	0	0	0	28	0	0 (	0	0 0	0		0	0	0 0	0 0	0	0	8	0	0	0	0	58
26 South East of Volta Region	0 0		) 0	0	6	0	0 0 0		0 0	0	30	11	0	364	0	0	18	26	0	3 (	0	0 311	3 731 9	5 118 9	0	0	32 (	0 0	0	0	4	0	0	0	0	4 790
27 Tama Port	0 0			0	0	14 5	83 0 0	201	0 120	0	87	10	113	0	0	77	236	611	102	0 0	0	234 0	6 667 7 40	3 14 0	0	0	84 (	8 0	0	7	167	0	0	15		16 387
28 Accra Metropolitan Area	0 0			00 90	6 1	28 29		1 481	10 126	0	553	424	0	28	0	328	350	325	20	3 (	0 1	757 1.621	0,007 7,40	) 66 0	0	0	7 9	109 29	0	40	1 285	520	0	14		0 737
20 West of Greater Accra	0 0			0	0	14 3		306	0 58	0	87	121	0	0	0	920	58	/08	230	0 0	0	22 3.628	92	) 13 0	0	0	0 0	0 0	0	- 10	546	0	0	0		5 681
Region	0 0		, 0	0	0		51 0 0	, 570	0 50	0	07	U	0	0	0	0	50	770	250	0 (	0	22 5,020	,2	, 15 0	0	Ŭ	0	0 0	0	0	540	0	0	Ū	0	5,081
30 West of Eastern Region	0 0		) 0	0	0	0	0 0 0	314	0 10	0	0	0	0	0	0	0	0	398	28	0 (	0	69 0	26 3	3 0 0	0	0	0 0	7 0	0	0	100	0	0		0	984
31 Central Region	0 0			0	0	0		15	0 10	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0		0	0	0 0	, , ,	0	0	28	0	0	0		53
22 Western Pagion	0 0			0	0	0		) 0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	0		0	0	0 0	12 0	0	6	20	0	0			19
33 Sekondi Takoradi	0 0			0	0	0			0 0	0	0	0	0	0	0	0	0	0	0		0	0 0	0		0	0	0 0	0 0	0	0	0	0	0	0		0
34 Ashanti Region	0 0			0	0	0 1		10	0 0	0	0	0	0	0	0	0	0	30	0	0 0	0	0 0	0		0	0	0 0	204 0	0	82	10	0	0	26		303
35 Brong Abste Desion	0 0			0	0	0		0	0 0	0	0	0	0	0	0	0	0	50	0	0 0	0	0 0	0	$\frac{14}{14}$	0	0	0 0	265 0	0	50	17	0	0			270
36 West of Northern Pagior	0 0			0	0	0			0 0	0	0	0	0	0	0	0	0	0	0		0	15 0	127		0	0 2	68 157	205 0	7	00	0	0	0			592
27 East of Northern Basier	0 0			0	6	0			0 0	0	0	0	0	0	0	0	0	0	0		0	0 0	12/		0	0 2	0 152		/	0	0	0	0			200
37 East of Northern Region	0 0			0	0	0			0 0	0	0	0	0	0	0	0	0	0	0		0	0 0	9		0	0	0 1	0 0	0	0	0	0	0			100
38 Upper West Region	0 0			0	0	0	0 0 0		0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 185	0		0	0	0 0	13 0	0	0	0	0	0		0	198
39 Upper East Region	0 0	(	0	0	U C	0		7	0 0	0	0	0	0	0	0	0	0	0	0	0 (	0	0 6	23	6 0	7	0	29 47	0 0	- 6	0	0	0	0		0	131
40 North of Volta Region	0 0		0 1	6	0	14 ]	0 0	0	0 0	0	20	41	0	13	0	0	28	430	18	8 (	U	9 339	1,604 14	+ 157 20	0	0	23 (	0 0	0	0	0	0	0	0	0	2,896
41 South of Togo	0 0	(	0	0	0	0	0 0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 (	0	0 0	485	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	485
42 North of Togo	0 0	(	) 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 (	0	0 0	9	9 0	0	0	10 (	0 0	0	0	0	0	0	0	0	28
43 Burkina Faso, Niger &	0 0		0 0	0	0	0	0 0 0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 0	0	0 0	9	0 0	0	0	10 (	0 0	0	0	0	0	0	0	0	19
Mali		-			_	_					+									_	_				-		_	+						-+	-+	
44 Cote d'Ivoire	0 0	(	) 0	0	0	0	0 0 0	0 0	0 0	0	0	0	0	0	0	0	0	0	0	0 (	0	0 0	0	0 0	0	0	0 (	0 0	0	0	0	0	0	0	0	0
Total	0 15	(	) 23	187 60	6	34 2,05	58 0 0	3,535	10 468	33	1,696	1,814	237	2,124	0	525	1,851	4,979	3,465 10	7 69	9 2	2,731 7,379	15,862 8,60	823 64	7	0 5	21 239	631 29	13	186	3,065	544	4	55	0	65,185

### Table A3-5 Forecast of Distributed Traffic Demand for Passenger Vehicles (2036)

(Unit: Vehicles)

	<b>D</b> <i>d d</i>						-		-		0	10		10	12	14	15	16	15	10	10	20		- 22	22			24	25	20	20	20	21	- 22	- 22	24	
Origin	Destination	1	2	3	_	4	5	0	1	8	9	10	11	12	13	14	15	10	1/	18	19	20	21	22	23	24	25	20	27	28	29	30	31	32	33	34	35
1 North To	ongu (1)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 North To	ongu (2)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	
3 North To	ongu (3)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4 North To	ongu (4)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5 North To	ongu (5)	0	0		0	0	0	8	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0	0	8	14	9	0	0	0	0	0	0	
6 North To	ongu (6)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	1	6	0	0	0	0	0	0	0	0	0	2	44	0	0	0	0	0	0	0	
7 Asugyar	man (1)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	2	0	0	0	0	34	1	2	0	0	0	0	0	
8 Asugyan	man (2)	0	0		0	0	0	0	19	0	0	0	3	0	0	0	0	0	0	0	0	0	28	54	9	0	0	0	78	0	5	0	0	0	0	6	
9 Ho Mun	nicipality (1)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10 Ho Mun	nicipality (2)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8	
11 Ho City		0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	10	0	0	0	0	0	0	0	0	230	86	0	3	4	0	0	1	
12 Adaklu	Anyigme	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
13 Dangme	e West (1)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	6	0	0	28	0	137	0	7	0	0	0	0	0	
14 Dangme	e West (2)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15 North To	ongu (7)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	311	62	25	0	0	0	0	0	
16 South To	ongu	0	0		0	3	9	4	0	0	0	0	0	9	0	0	0	0	0	19	0	0	0	0	0	0	0	42	0	0	0	0	0	0	0	0	
17 Dangme	e West (3)	0	0		0	0	0	0	0	9	0	0	33	0	0	0	15	0	0	0	0	23	0	15	0	0	0	0	32	0	36	0	0	0	0	0	
18 Dangme	e East	0	0		0	0	0	1	0	0	0	0	0	0	0	0	114	43	0	0	0	4	0	0	0	0	0	112	53	0	0	0	0	0	0	0	
19 Ho Mun	nicipality (3)	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20 South D	ayi	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	23	0	0	0	0	0	0	
21 Asugyan	man (3)	0	0		0	0	0	0	0	14	0	0	0	0	0	0	0	0	13	0	0	3	0	6	0	0	0	0	60	4	0	0	0	0	0	6	
22 Lower M	Manya Klobo	0	0		0	0	0	0	0	29	0	0	6	0	5	0	0	0	21	0	0	4	0	0	9	0	0	8	261	13	2	6	0	0	0	4	
23 Yiro Kro	obo	0	0		0	0	0	0	4	0	0	0	0	0	0	0	0	0	4	0	0	0	21	17	0	0	0	0	100	11	4	0	0	0	0	0	
24 Akwapin	m North	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0	
25 Dangme	e West (4)	0	0		0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
26 South Ea	ast of Volta	0	0		0	0	4	0	0	0	0	0	0	0	0	0	22	0	0	0	0	0	4	0	0	12	0	0	0	144	0	0	0	0	0	0	
Region																																					
27 Tema Po	ort	0	4		0	0	9	9	9	32	0	0	28	0	0	0	84	61	0	0	0	0	29	46	8	0	0	69	0	1,477	171	137	0	0	0	190	1
28 Accra M	fetropolitan Area	0	0		0	0	12	15	12	16	0	0	93	0	48	0	58	49	0	0	0	14	15	15	4	0	0	252	390	0	0	7	0	0	0	0	
29 West of	Greater Accra	0	0		0	0	0	0	2	5	0	0	4	0	5	0	7	0	0	0	0	0	0	3	4	0	0	0	323	0	0	0	0	0	0	0	
Region																																					
30 West of	Eastern Region	0	0		0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	12	10	0	0	0	32	0	0	0	0	0	0	0	0	
31 Central I	Region	0	0		0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	4	30	0	0	0	0	0	0	0	
32 Western	Region	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	114	0	0	0	0	0	0	0	
33 Sekondi	Takoradi	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
34 Ashanti	Region	0	0		0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	414	0	0	0	0	0	0	0	
35 Brong A	Ahafo Region	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
36 West of	Northern Region	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	347	556	0	0	0	15	0	623	3
37 East of N	Northern Region	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	0	0	0	0	0	59	
38 Upper W	Vest Region	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
39 Upper E	ast Region	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	336	405	0	7	0	9	0	164	3(
40 North of	f Volta Region	0	0		0	0	0	0	15	3	0	0	3	0	0	0	2	2	10	8	0	0	4	10	3	3	0	2	383	42	6	11	0	1	0	2	<u> </u>
41 South of	f Togo	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	170	33	0	0	0	0	0	0	1
42 North of	f Togo	0	0		0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+
43 Burking	Faso Niger &	0	0		0	0	0	+	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	9	136	100	0	0	2	12	0	100	<u> </u>
Mali	1 0.50, 141ge1 &	0	0		5	v	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	150	177	0	0	5	15	0	100	
44 Cote d'Iv	voire	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	<b></b>
T	otal	0	4		0	3	34	41	60	108	0	0	204	9	73	0	306	173	53	44	0	52	114	202	37	15	28	543	4,007	3,136	258	172	7	38	0	1,163	68

### Table A3-6 Forecast of Distributed Traffic Demand for Freight Vehicles (2036)

(Unit: Vehicles)

35	36	37	38	39	40	41	42	43	44	Total
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	48
0	0	0	0	0	0	0	0	0	0	53
0	0	0	0	0	0	0	0	0	0	42
0	0	0	0	0	8	0	0	0	0	210
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	8
0	0	0	0	0	0	0	0	0	0	336
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	184
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	6	0	0	0	0	411
0	0	0	0	0	0	0	0	0	0	86
0	0	0	0	0	7	0	0	0	0	170
0	8	8	0	0	4	0	0	0	0	348
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	28
0	0	0	0	0	4	0	0	0	0	108
0	0	0	0	0	0	0	0	0	0	368
6	0	0	0	0	10	0	0	0	0	178
0	0	0	0	0	0	0	0	0	0	12
0	0	0	0	0	0	0	0	0	0	14
0	0	0	0	0	0	0	0	0	0	186
26	577	0	0	273	25	526	0	258	10	4 057
20	694	2	3	325	120	100	0	174	10	2 430
0	0	0	0	0	3	0	0	0	0	356
Ŭ	0	0	0	0	5	0	0	0	Ū	550
0	0	0	0	0	14	0	0	0	0	98
0	0	0	0	0	0	0	0	0	0	38
0	100	0	0	84	0	0	0	51	0	349
0	0	0	0	0	0	0	0	0	0	0
0	489	0	0	329	1	0	0	62	0	1,300
0	397	0	0	123	0	0	0	700	0	1,221
311	0	0	0	36	0	0	0	0	0	1,888
16	16	0	0	0	0	0	0	0	0	164
0	0	0	0	0	0	0	0	0	0	0
307	12	0	0	0	0	0	0	0	0	1,241
0	0	0	0	0	0	0	0	0	0	511
0	0	0	0	0	0	0	0	0	0	203
0	0	0	0	0	0	0	0	0	0	4
14	0	0	0	0	0	0	0	0	0	474
0	0	0	0	0	0	0	0	0	0	7
680	2,294	10	3	1,170	203	635	0	1,245	10	17,134

### Appendix 4 Link Data of Road Network for Traffic Demand Forecast

	Node Name		Node	No	Distance	Surfage	Class	No. of	Condition	Width
1 E 310P 1	From		From	To.	(km)	Surface	Class	Lane	Condition	(m)
		10 T D 11	FIOII	10		D 1	NY	Lanc	<u> </u>	(III)
I Eastern N2P-I	Tema Port	Tema Roundabout	27	73	6.2	Paved	National	2	Good	7.3
2 Eastern N2P-2	Tema Roundabout	Afienya	/3	72	10.2	Paved	National	2	Good	7.3
5 Eastern N2P-5	Domum	Doryum	72	/1	10.2	Paved	National	2	Fair	7.5
4 Eastern N2P-4	Doryum	Asutsuare Jct.	/1	59	10.0	Paved	National	2	Fair	7.5
5 Eastern N2P-5	Asutsuare Jct.	Akuse Jci.	59	66	12.9	Paved	National	2	Fair	7.5
7 Eastern N2P 7	Knong	Atimpola	66	7	10.0	Paved	National	2	Fair	7.5
8 Eastern N2P-8	Atimpoku	Adome	7	52	4.2	Paved	National	2	Fair	7.5
9 Eastern N2P-9	Adome	Juanong	52	53	1.5	Paved	National	2	Fair	7.5
10 Eastern N2P-1	Juanong	Frankadua	53	54	10.3	Paved	National	2	Fair	7.5
10 Eastern N2P-1	Frankadua	Osi-Abura	54	55	5.6	Paved	National	2	Fair	7.1
12 Eastern N2P-1	Osi-Abura	Asikuma Ict	55	8	4.9	Paved	National	2	Fair	7.2
13 Eastern N2P-1	Asikuma Jct.	Dafor	8	20	23.0	Paved	National	2	Good	7.3
14 Eastern N2P-1	Dafor	Fume	20	19	32.2	Paved	National	2	Good	7.3
15 Coastral N1P-1	Aflao	Akatsi	41	26	51.6	Paved	National	2	Fair	7.8
16 Coastral N1P-2	Akatsi	Sogakope	26	16	29.3	Paved	National	2	Fair	7.8
17 Coastral N1P-3	Sogakope	Peterkope	16	65	8.4	Paved	National	2	Good	7.9
18 Coastral N1P-4	Peterkope	Kase	65	18	11.2	Paved	National	2	Good	7.6
19 Coastral N1P-5	Kase	Sege	18	62	17.9	Paved	National	2	Good	7.6
20 Coastral N1P-6	Sege	Nyigbenya	62	17	19.0	Paved	National	2	Good	7.6
21 Coastral N1P-7	Ode-Opeo	Dawhenya	17	61	28.9	Paved	National	2	Good	7.6
22 Coastral N1P-8	Dawhenya	Tema Roundabout	61	73	12.4	Paved	National	2	Good	7.6
23 - R28P-	Sogakope	Adidome	16	6	20.3	Paved	Regional	2	Good	7.3
24 - R28P-	Adidome	Dadaboe	6	51	5.1	Paved	Regional	2	Good	7.3
25 - R28P-	Dadaboe	Kpedzeglo	51	49	12.1	Paved	Regional	2	Good	7.3
26 - R28P-	Kpedzeglo	Mafi Asiekpe	49	5	3.2	Paved	Regional	2	Good	7.3
27 - R28G-	Mafi Asiekpe	Tsrefe	5	12	29.4	Gravel	Regional	2	Good	7.3
28 - R28G-	Tsrefe	Но	12	11	13.3	Gravel	Regional	2	Good	7.3
29 - R28G-	Но	Fume	11	19	24.8	Gravel	Regional	2	Good	7.3
30 - N5P-1	Asikuma	Dededu	8	9	5.7	Paved	National	2	Good	7.2
31 - N5P-2	Dededu	Anyinawasi	9	10	17.9	Paved	National	2	Good	7.2
32 - N5P-3	Anyinawasi	Sokode Gbogame	10	58	10.9	Paved	National	2	Fair	7.2
33 - N5P-4	Sokode Gbogame	Но	58	11	9.4	Paved	National	2	Fair	7.2
34 - N3P-1	Kpong	Odumase	66	22	7.0	Paved	National	2	Fair	6.6
35 - R21P-	Atimpoku	Akosombo	7	21	14.2	Paved	Regional	2	Fair	7.1
36 - R95G-	Juapong	Padoe Dufo	53	45	8.3	Gravel	Regional	2	Fair	5.7
37 - R95G-	Padoe Dufo	Kpolukope	45	56	8.5	Gravel	Regional	2	Fair	5.7
<u>38 - R95G-</u>	Kpolukope	Abutia Kloe	56	57	19.8	Gravel	Regional	2	Fair	5.7
39 - R95P-	Abutia Kloe	Sokode Gbogame	57	58	11.8	Paved	Regional	2	Good	6.2
40 - R13P-	Prampram	Dawhenya	63	61	40.6	Paved	Regional	2	Poor	7.0
41 - R13P-	Dawhenya	Afienya	61	72	/.1	Paved	Regional	2	Poor	7.0
42 - R13P-	Afienya	Dodowa	12	25	15.6	Paved	Regional	2	Poor	7.0
43 - KI8P-	Anyaman	Sege	63	62	9.3	Bravel	Regional	2	Good	7.0
44 - R18P-	Sege	Aveyime	62	15	17.2	Paved	Regional			/.0
45 D10D	Aveyime	wiene	16	64	10 (	Dana J	Destand	2	Fair	7.0
45 - R18P-	Mana	Deterlione	15	64	10.6	Paved	Regional	2	Fair Fair	7.0
45 - R18P- 46 - F1G-1	Mepe	Peterkope	15 64 71	64 65	10.6 15.6	Paved Gravel	Regional Feeder	2 2 2 2	Fair Fair n.a	7.0 n.a
45         -         R18P-           46         -         F1G-1           47         -         R22P-           48         P40P	Mepe Doryum	Peterkope Ayikuma	15 64 71	64 65 24 20	10.6 15.6 18.7	Paved Gravel Paved	Regional Feeder Regional	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	Fair Fair n.a Poor Fair	7.0 n.a 7.0 7.5
45         -         R18P-           46         -         F1G-1           47         -         R22P-           48         -         R40P-           49         -         D30D	Mepe Doryum Dodowa Odumase	Peterkope Ayikuma Adenta	15 64 71 25 22	64 65 24 29 23	10.6 15.6 18.7 20.9	Paved Gravel Paved Paved Paved	Regional Feeder Regional Regional	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	Fair Fair n.a Poor Fair Fair	7.0 n.a 7.0 7.5 7.9
45         -         R18P-           46         -         F1G-1           47         -         R22P-           48         -         R40P-           49         -         R30P-           50         P10C	Mepe Doryum Dodowa Odumase	Peterkope Ayikuma Adenta Somanya	$     \begin{array}{r}       15 \\       64 \\       71 \\       25 \\       22 \\       41     \end{array} $	64 65 24 29 23 70	10.6 15.6 18.7 20.9 4.5	Paved Gravel Paved Paved Paved Gravel	Regional Feeder Regional Regional Regional	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	Fair Fair n.a Poor Fair Fair Fair	7.0 n.a 7.0 7.5 7.8 7.5
45         -         R18P-           46         -         F1G-1           47         -         R22P-           48         -         R40P-           49         -         R30P-           50         -         R10G-	Mepe Doryum Dodowa Odumase Aflao Dzodza	Peterkope Ayikuma Adenta Somanya Dzodze Kretce	$     \begin{array}{r}       15 \\       64 \\       71 \\       25 \\       22 \\       41 \\       70 \\     \end{array} $	64 65 24 29 23 70 69	$ \begin{array}{r} 10.6 \\ 15.6 \\ 18.7 \\ 20.9 \\ 4.5 \\ 43.6 \\ 24.1 \\ \end{array} $	Paved Gravel Paved Paved Gravel Paved	Regional Feeder Regional Regional Regional Regional	$\begin{array}{c} 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	Fair Fair n.a Poor Fair Fair Fair Fair	7.0 n.a 7.0 7.5 7.8 7.5 7.0
45         -         R18P-           46         -         F1G-1           47         -         R22P-           48         -         R40P-           49         -         R30P-           50         -         R10G-           51         -         R10P-	Mepe Doryum Dodowa Odumase Aflao Dzodze Kratoa	Peterkope Ayikuma Adenta Somanya Dzodze Kpetoe	$ \begin{array}{r} 15 \\ 64 \\ 71 \\ 25 \\ 22 \\ 41 \\ 70 \\ 60 \\ \end{array} $	64 65 24 29 23 70 69	$ \begin{array}{r} 10.6 \\ 15.6 \\ 18.7 \\ 20.9 \\ 4.5 \\ 43.6 \\ 24.1 \\ 43.9 \\ \end{array} $	Paved Gravel Paved Paved Gravel Paved Paved	Regional Feeder Regional Regional Regional Regional Regional		Fair Fair n.a Poor Fair Fair Fair Poor Paar	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0
45         -         R18P-           46         -         F1G-1           47         -         R22P-           48         -         R40P-           49         -         R30P-           50         -         R10G-           51         -         R10P-           52         -         R10P-           53         -         R12G	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi	Peterkope Ayikuma Adenta Somanya Dzodze Kpetoe Ho Dzodze	$ \begin{array}{r} 15 \\ 64 \\ 71 \\ 25 \\ 22 \\ 41 \\ 70 \\ 69 \\ 26 \\ \end{array} $	64 65 24 29 23 70 69 11 70	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Cravel	Regional Feeder Regional Regional Regional Regional Regional Regional		Fair Fair n.a Poor Fair Fair Fair Poor Poor Good	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 7.0 10.0
45     -     R18P-       46     -     F1G-1       47     -     R22P-       48     -     R40P-       49     -     R30P-       50     -     R10G-       51     -     R10P-       52     -     R10P-       53     -     R12G-       54     -     R14G	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi	Adenta Adenta Somanya Dzodze Ho Dzodze K petoe	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 26\\ \end{array} $	64 65 24 29 23 70 69 11 70 69	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Gravel Gravel	Regional Feeder Regional Regional Regional Regional Regional Regional		Fair Fair N.a Poor Fair Fair Fair Poor Poor Good Poor	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 7.0 10.0 10.0
45     -     R18P-       46     -     F1G-1       47     -     R22P-       48     -     R40P-       49     -     R30P-       50     -     R10G-       51     -     R10P-       52     -     R10P-       53     -     R12G-       54     -     R14G-       55     -     R11P	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase	Peterkope Ayikuma Adenta Somanya Dzodze Kpetoe Ho Dzodze Kpetoe Adafoa	$ \begin{array}{r} 15 \\ 64 \\ 71 \\ 25 \\ 22 \\ 41 \\ 70 \\ 69 \\ 26 \\ 26 \\ 18 \\ \end{array} $	64 65 24 29 23 70 69 11 70 69 84	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Gravel Gravel Paved	Regional Feeder Regional Regional Regional Regional Regional Regional Regional		Fair Fair Poor Fair Fair Poor Poor Good Poor	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 7.0 10.0 10.0 7.3
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P 1	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya	Adenta Adenta Somanya Dzodze Ho Dzodze Kpetoe Adafoa Adafoa	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 18\\ 23\\ \end{array} $	64 65 24 29 23 70 69 11 70 69 84 67	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Gravel Paved Paved Paved	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder		Fair Fair Poor Fair Fair Fair Poor Poor Poor Poor Poor Fair	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 7.0 10.0 10.0 10.0 7.3
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F7P-2	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Ict	Adenta Adenta Somanya Dzodze Ho Dzodze Kpetoe Adafoa Akuse Jct. Kpong Dam Let	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 18\\ 23\\ 67\\ \end{array} $	64 65 24 29 23 70 69 11 70 69 84 67 68	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8 \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Gravel Paved Paved Paved Paved	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Fair Poor Poor Good Poor Fair Fair Fair	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 7.3 n.a n.a
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R14G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F2P-2         58       -       F7P-3	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Let	Adenta Adenta Somanya Dzodze Kpetoe Ho Dzodze Kpetoe Adafoa Akuse Jct. Kpong Dam Jct.	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 26\\ 18\\ 23\\ 67\\ 68\\ \end{array} $	64 65 24 29 23 70 69 11 70 69 84 69 84 67 68 84 8	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4 \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Gravel Paved Paved Paved Paved Paved Paved	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair N.a Poor Fair Fair Fair Poor Poor Poor Fair Fair Fair Fair	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 7.3 n.a n.a
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F2P-3         58       -       F2P-3         59       F7D-4	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya	Peterkope Ayikuma Adenta Somanya Dzodze Kpetoe Ho Dzodze Kpetoe Adafoa Akuse Jct. Kpong Dam Jct. Kagyanya Asutsuare	15           64           71           25           22           41           70           69           26           28           23           67           68           48	64 65 24 29 23 70 69 11 70 69 84 67 68 84 88 88	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ \end{array} $	Paved Gravel Paved Paved Paved Paved Paved Gravel Paved Paved Paved Paved Paved Paved Paved Paved	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Fair Poor Poor Poor Fair Fair Fair Fair Fair	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 7.3 n.a n.a n.a
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F2P-3         58       -       F2P-3         59       -       F2P-4         60       -       F3P-1	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct.	Peterkope         Ayikuma         Adenta         Somanya         Dzodze         Kpetoe         Ho         Dzodze         Kpetoe         Adafoa         Akuse Jct.         Kpong Dam Jct.         Kagyanya         Asutsuare         Ageteklekvi	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 18\\ 23\\ 67\\ 68\\ 48\\ 68\\ 68\\ 58\\ 68\\ 68\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 5$	64 65 24 29 23 70 69 11 70 69 84 67 68 48 48 13	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ \end{array} $	Paved Gravel Paved Paved Gravel Paved Gravel Gravel Gravel Paved Paved Paved Paved Paved Paved Paved Paved Paved	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Poor Poor Poor Fair Fair Fair Fair Fair Fair Fair	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 7.3 n.a n.a n.a n.a n.a
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F2P-2         58       -       F2P-2         59       F2P-4       60         60       -       F3P-1         61       -       F3P-1	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct.	Peterkope Ayikuma Adenta Somanya Dzodze Kpetoe Ho Dzodze Kpetoe Adafoa Akuse Jct. Kpong Dan Jct. Kagyanya Asutsuare Ageteklekyi Dokotsi	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 26\\ 18\\ 23\\ 67\\ 68\\ 48\\ 48\\ 68\\ 46\\ \end{array} $	64 65 24 29 23 70 69 11 70 69 84 67 68 48 48 13 47	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ 13.1\\ \end{array} $	Paved Gravel Paved Paved Paved Paved Paved Gravel Paved Paved Paved Paved Paved Paved Paved Paved Paved Cravel	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Fair Fair Fair Foor Poor Poor Foor Poor Fair Fair Fair Fair Fair Fair Fair na na na	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 7.3 n.a n.a n.a n.a n.a n.a
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F2P-2         58       -       F2P-3         59       F2P-4       60       -         61       -       F3G-2         62       -       F4G-1	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct. Ageteklekyi Ageteklekvi	Anipe         Peterkope         Ayikuma         Adenta         Somanya         Dzodze         Kpetoe         Ho         Dzodze         Kpetoe         Adafoa         Akuse Jet.         Kagyanya         Asutsuare         Ageteklekyi         Dokotsi	$ \begin{array}{c} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 18\\ 23\\ 67\\ 68\\ 48\\ 68\\ 48\\ 68\\ 46\\ 46\\ \end{array} $	64 65 24 29 23 70 69 11 70 69 84 67 68 48 13 46 47 52	$ \begin{array}{r} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ 13.1\\ 12.7\\ \end{array} $	Paved Gravel Paved Paved Paved Paved Gravel Gravel Paved Paved Paved Paved Paved Paved Paved Paved Gravel Gravel	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Poor Poor Poor Fair Fair Fair Fair Fair Fair Fair Fai	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 7.0 10.0 7.3 n.a n.a n.a n.a n.a n.a n.a n.a
45       -       R18P-         46       -       F1G-1         47       -       R22P-         48       -       R40P-         49       -       R30P-         50       -       R10G-         51       -       R10P-         52       -       R10P-         53       -       R12G-         54       -       R14G-         55       -       R11P-         56       -       F2P-1         57       -       F2P-2         58       -       F2P-3         59       F2P-4       60       -         61       -       F3G-1         61       -       F3G-2         62       -       F4G-1	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct. Ageteklekyi Ageteklekyi Dadeboe	Alight         Peterkope         Ayikuma         Adenta         Somanya         Dzodze         Kpetoe         Ho         Dzodze         Kpetoe         Adafoa         Akuse Jct.         Kpong Dam Jct.         Kagyanya         Asutsuare         Ageteklekyi         Dokotsi         Adome	$ \begin{array}{c} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 26\\ 18\\ 23\\ 67\\ 68\\ 48\\ 68\\ 46\\ 46\\ 46\\ 49\\ \end{array} $	64           65           24           29           23           70           69           84           67           68           48           13           46           47           50	$\begin{array}{c} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ 13.1\\ 12.7\\ 7.0\\ \end{array}$	Paved Gravel Paved Paved Gravel Paved Paved Gravel Paved Paved Paved Paved Paved Paved Paved Paved Gravel Gravel Gravel Gravel	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Poor Poor Poor Poor Poor Fair Fair Fair Fair Fair Fair n.a n.a n.a	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 7.0 10.0 10.0 7.3 n.a n.a n.a n.a n.a n.a n.a n.a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct. Ageteklekyi Ageteklekyi Dadaboe Agove	Algebra         Peterkope         Ayikuma         Adenta         Somanya         Dzodze         Kpetoe         Ho         Dzodze         Kpetoe         Adafoa         Akuse Jet.         Kpong Dam Jet.         Kagyanya         Asutsuare         Ageteklekyi         Dokotsi         Agove         Knedzeglo	$ \begin{array}{r} 15\\ 64\\ 71\\ 25\\ 22\\ 41\\ 70\\ 69\\ 26\\ 26\\ 18\\ 23\\ 67\\ 68\\ 48\\ 68\\ 46\\ 46\\ 46\\ 49\\ 950\\ \end{array} $	64           65           24           29           23           70           69           84           67           68           48           13           46           47           52           50           51	$\begin{array}{c} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ 13.1\\ 12.7\\ 7.0\\ 8.8\end{array}$	Paved Gravel Paved Paved Paved Paved Paved Gravel Paved Paved Paved Paved Paved Paved Paved Paved Gravel Gravel Gravel Gravel Gravel	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Poor Poor Poor Poor Poor Fair Fair Fair Fair Fair Fair n.a n.a n.a n.a n.a	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 10.0 7.3 n.a n.a n.a n.a n.a n.a n.a n.a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct. Ageteklekyi Ageteklekyi Dadaboe Agove Adidome	Algebra         Peterkope         Ayikuma         Adenta         Somanya         Dzodze         Kpetoe         Ho         Dzodze         Kpetoe         Adafoa         Akuse Jet.         Kpong Dam Jet.         Kagyanya         Asutsuare         Ageteklekyi         Dokotsi         Adome         Agove         Kpedzeglo	$\begin{array}{c} 15 \\ 64 \\ 71 \\ 25 \\ 22 \\ 41 \\ 70 \\ 69 \\ 26 \\ 26 \\ 26 \\ 26 \\ 8 \\ 36 \\ 7 \\ 68 \\ 48 \\ 68 \\ 46 \\ 46 \\ 46 \\ 49 \\ 50 \\ 6 \end{array}$	$\begin{array}{c} 64 \\ 65 \\ 24 \\ 29 \\ 23 \\ 70 \\ 69 \\ 11 \\ 70 \\ 69 \\ 84 \\ 67 \\ 68 \\ 48 \\ 13 \\ 46 \\ 47 \\ 52 \\ 50 \\ 50 \\ 51 \\ 4 \end{array}$	$\begin{array}{c} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ 13.1\\ 12.7\\ 7.0\\ 8.8\\ 27.0\\ \end{array}$	Paved Gravel Paved Paved Paved Paved Gravel Gravel Paved Paved Paved Paved Paved Paved Paved Gravel Gravel Gravel Gravel Gravel Gravel	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Poor Poor Poor Fair Fair Fair Fair Fair Fair n.a n.a n.a n.a n.a n.a n.a	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 7.3 n.a n.a n.a n.a n.a n.a n.a n.a
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mepe Doryum Dodowa Odumase Aflao Dzodze Kpetoe Akatsi Akatsi Akatsi Kase Somanya Akuse Jct. Kpong Dam Jct. Kagyanya Kpong Dam Jct. Ageteklekyi Ageteklekyi Dadaboe Agove Adidome Volo	Peterkope         Ayikuma         Adenta         Somanya         Dzodze         Kpetoe         Ho         Dzodze         Kpetoe         Adafoa         Akuse Jet.         Kpong Dam Jet.         Kagyanya         Asutsuare         Ageteklekyi         Dokotsi         Adome         Agove         Kpedzeglo         Volo         Dufor-Adidome	$\begin{array}{c} 15 \\ 64 \\ 71 \\ 25 \\ 22 \\ 41 \\ 70 \\ 69 \\ 26 \\ 26 \\ 26 \\ 26 \\ 18 \\ 23 \\ 67 \\ 68 \\ 48 \\ 68 \\ 46 \\ 46 \\ 49 \\ 50 \\ 6 \\ 6 \\ 4 \\ 46 \\ 49 \\ 50 \\ 6 \\ 4 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 4 \\ 6 \\ 6$	$\begin{array}{c} 64 \\ 65 \\ 24 \\ 29 \\ 23 \\ 70 \\ 69 \\ 11 \\ 70 \\ 69 \\ 84 \\ 67 \\ 68 \\ 48 \\ 13 \\ 46 \\ 47 \\ 52 \\ 50 \\ 51 \\ 1 \\ 4 \\ 2 \\ \end{array}$	$\begin{array}{c} 10.6\\ 15.6\\ 18.7\\ 20.9\\ 4.5\\ 43.6\\ 24.1\\ 43.9\\ 25.1\\ 38.5\\ 20.0\\ 6.7\\ 8.8\\ 6.4\\ 2.3\\ 8.9\\ 13.1\\ 12.7\\ 7.0\\ 8.8\\ 27.0\\ 9.5\\ \end{array}$	Paved Gravel Paved Paved Paved Paved Gravel Paved Paved Paved Paved Paved Paved Paved Paved Gravel Gravel Gravel Gravel Gravel Gravel Gravel	Regional Feeder Regional Regional Regional Regional Regional Regional Regional Regional Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder Feeder	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Fair Fair Poor Fair Fair Fair Poor Poor Foor Fair Fair Fair Fair Fair n.a n.a n.a n.a n.a n.a n.a n.a n.a	7.0 n.a 7.0 7.5 7.8 7.5 7.0 7.0 10.0 10.0 10.0 7.3 n.a n.a n.a n.a n.a n.a n.a n.a

 Table A4-1
 Link Data of Road Network for Traffic Demand Forecast (1)

No.	Corridor	Code	Node	Name	Node	e No.	Distance	Surface	Class	No. of	Condition	Width
			From	То	From	То	(km)	~		Lane		(m)
68	-	T1E-1	Agove	Adidokpavui	50	3	20.0	Earth	Track	1	n.a	n.a
69	-	T1E-2	Adidokpavui	Kpomkpo	3	1	14.7	Earth	Track	1	n.a	n.a
70	Project	ALT F8P-1	Asutsuare Jct.	Jerusalem	59	60	10.4	Paved	Feeder	2	n.a	n.a
71	Project	F8P-2	Jerusalem	Asutsuare	60	13	11.4	Paved	Feeder	2	n.a	n.a
72	Project	F8P-3	Asutsuare	Volivo	13	14	6.3	Paved	Feeder	2	n.a	n.a
73	Project	F10G-1	Dufor-Adidome	Dokotsi	47	2	6.1	Gravel	Feeder	2	n.a	n.a
74	Project	F10G-2	Dokotsi	Juapong	47	53	15.8	Gravel	Feeder	2	n.a	n.a
75	Project	F11G-1	Kpomkpo	Podoe-Dufo	1	45	4.2	Gravel	Feeder	2	n.a	n.a
76	Project	F11G-2	Podoe-Dufo	Frankadua	45	54	5.2	Gravel	Feeder	2	n.a	n.a
77	Project	ALT1_NC1-1	Jerusalem	Kagyanya	60	48	20.0	Paved	National	2	Fair	n.a
78	Project	ALT1_NC1-2	Kagyanya	Dokotsi	48	47	8.3	Paved	National	2	Fair	n.a
79	Project	ALT4_NC2-1	Jerusalem	Volivo	60	14	30.0	Paved	National	2	Fair	n.a
80	Project	ALT4_NC2-2	Volivo	Dufor-Adidome	14	2	1.9	Paved	National	2	Fair	n.a
81	Project	ALT4_NC2-3	Dufor-Adidome	Dokotsi	2	47	6.4	Paved	National	2	Fair	n.a
82	Project	ALT_NC3-1	Dokotsi	Kpomkpo	47	1	14.3	Paved	National	2	Fair	n.a
83	Project	ALT_NC3-2	Kpomkpo	Kpolukope	1	56	9.7	Paved	National	2	Fair	n.a
84	Project	ALT_NC3-3	Kpolukope	Asikuma Jct.	56	8	9.7	Paved	National	2	Fair	n.a
85	Project	ALT5_F11G-1	Volivo	Aveyime	14	15	18.7	Paved	National	2	Fair	n.a
86	Coastral	N1P-9	Tema Roundabout	Tetteh Quashie	73	74	19.2	Paved	National	2	Good	7.3
87	Coastral	N1P-10	Tetteh Quashie	Accra	74	28	5.9	Paved	National	2	Good	10.5
88	Coastral	N1P-11	Accra	Cape Coast	28	31	129.7	Paved	National	2	Good	8.9
89	Coastral	N1P-12	Cape Coast	Daboasi Jct.	31	32	58.8	Paved	National	2	Good	7.9
90	Coastral	N1P-13	Daboasi Jnc.	Takoradi Port	32	33	28.7	Paved	National	2	Fair	8.0
91	Coastral	N1P-14	Takoradi Port	Elubo	33	44	138.6	Paved	National	2	Good	7.6
92	Eastern	N2P-15	Fume	Nkwanta	19	40	231.1	Paved	National	2	Good	8.8
93	Eastern	N2G-16	Nkwanta	Yendi	40	37	95.1	Gravel	National	2	Fair	8.2
94	Eastern	N2P-17	Yendi	Sakpiegu	37	82	12.2	Paved	National	2	Good	7.3
95	Eastern	N2G-18	Sakpiegu	Misiga	82	81	193.9	Gravel	National	2	Fair	8.1
96	Eastern	N2G-19	Misiga	Kulungugu	81	80	10.7	Gravel	National	2	Poor	9.6
97	-	N14G-1	Sakpiegu	Yawgu	82	42	100.2	Gravel	National	2	Good	8.1
98	-	N3P-2	Odumase	Koforidua	22	30	46.4	Paved	National	2	Fair	7.0
99	-	N4P-1	Tetteh Quashie	Adenta	74	29	9.8	Paved	National	2	Poor	7.3
100	-	N4P-2	Adenta	Koforidua	29	30	73.3	Paved	National	2	Good	7.3
101	-	N4P-3	Koforidua	Bunso	30	75	27.5	Paved	National	2	Good	7.2
102	Central	N6G-1	Accra	Bunso	28	75	87.6	Gravel	National	2	Fair	7.5
103	Central	N6P-2	Bunso	Kumasi	75	34	150.6	Paved	National	2	Good	7.4
104	-	N6P-3	Kumasi	Sunyani	34	35	122.8	Paved	National	2	Fair	7.8
105	-	N8P-1	Cape Coast	Anwiankwantsa	31	76	174.1	Paved	National	2	Fair	7.3
106	-	N10G-1	Daboasi Jct.	Anwiankwantsa	32	76	189.1	Gravel	National	2	Fair	8.1
107	-	N10P-2	Anwiankwantsa	Kumasi	76	34	45.0	Paved	National	2	Good	7.5
108	Central	NIOP-3	Kuması	Fufulsu Jct.	34	11	307.9	Paved	National	2	Good	8.3
109	Central	NIOP-4	Fufulsu Jct.	Tamale	77	36	59.1	Paved	National	2	Poor	7.3
110	Central	NIOP-5	Tamale	Bolgatanga	36	39	160.6	Paved	National	2	Fair	7.5
111	Central	NIOP-6	Bolgatanga	Navrongo	39	79	30.3	Paved	National	2	Fair	7.3
112	Central	NIOP-7	Navrongo	Paga	79	43	12.7	Paved	National	2	Fair	6.9
113	-	NTIP-I	Bolgatanga	Misiga	39	81	83.5	Paved	National	2	Poor	7.7
114	Western	NI2G-I	Elubo	Sunyani	44	35	322.9	Gravel	National	2	Poor	8.4
115	Western	NI2P-2	Sunyani	Sawia	35	/8	253.3	Paved	National	2	Good	7.9
110	Western	N12P-3	Sawia	Wa	/8	38	95.2	Paved Dave	National	2	Good	/.6
110	western	NTZP-4	Wa Factorian L (	Dowene	38	83	14.4	raved	INational	2	0000 De en	8.3
118	-	IN/G-I	ruiuisu jet.	Sawia	//	/8	14/./	Gravel	National	2	r00r	8.0
119	-	NISU-I P201P 1	Inavrongo Vandi	Tamala	/9	83	157.4	Daved	Inational Regional	2	Foir	8.5
120	-	N4D 5	Momfo	Talliale Voforidus	3/	20	92.7	Paved	Noticral	2	Fair	1.1
121	-	IN4F-J	Momfo	Adopto	24	20	21.22	Paved	National	2	Fair	/.0
122	-	1941-0	widillie	Auenta	24	29	51.52	raved	inational	- 2	rair	/.0

### Table A4-1 Link Data of Road Network for Traffic Demand Forecast (2)

Source: GHA Road Condition Survey, GHA

Lands Commision Topographical Map

## Appendix 5Results of Route AssignmentTable A5-1Results of Route Assignment in 2016 (1)

(Unit: Vehicles) Passenger Link Medium Heavy Corridor Node Name Minibus Bus Trailer Total CVR* Car/ Others No. Truck Truck Pick-up 1,025 Tema Port Tema Roundabout 11,785 3,365 1,425 890 3,015 22,365 25.9% Eastern 860 26.0% 2 Eastern Tema Roundabout Afienya 4,196 1,748 496 638 343 1.124 346 8,891 447 25.3% 3 Eastern Afienya Doryum 4,796 2,197 405 741 1,288 484 10,358 2,843 Asutsuare Jct. 740 32.7% 4 Eastern Doryum 2,241 470 502 1,363 491 8,650 5 Eastern Asutsuare Jct Akuse Jct 1,489 916 113 217 92 122 4 2,953 11.2% 1,898 205 312 44 99 6 Eastern Akuse Jct. Kpong 1,469 5 4,032 8.8% 7 Eastern Kpong Atimpoku 2,142 3.081 165 283 38 64 12 5,785 4.8% 2,070 236 46 42 8 Eastern Atimpoku Adome 1,945 130 13 4,482 5.2% 2,070 1,945 130 42 9 Eastern Adome Juapong 236 46 13 4,482 5.2% 1,936 234 10 2,029 130 46 35 12 4,422 5.0% Eastern Juapong Frankadua 4,422 2,029 1,936 130 234 46 35 12 5.0% 11 Eastern Frankadua Osi-Abura 2,029 130 234 46 35 4,422 Eastern Osi-Abura 1.936 12 5.0% 12 Asikuma Jct. 13 Eastern Asikuma Jct Dafor 1,818 2,200 368 488 279 1,115 491 6,759 33.3% 1,440 2,010 346 453 259 1,110 491 6,109 36.1% 14 Eastern Dafor Fume 15 Coastral Aflao 440 20 130 10 45 320 75 1,040 54.8% Akatsi 2,520 570 16 Coastral Akatsi Sogakope 2.665 380 285 130 75 6.625 17.4% Coastral Sogakope Peterkope 4,050 3,367 552 527 297 1,330 341 10,464 24.1% 17 Coastral Peterkope 18 Kase 4,107 2,736 369 483 282 1,254 340 9,571 23.5% 19 Coastral Kase 3,925 2,423 264 434 252 1,231 340 8,869 23.5% Sege 20 Coastral Sege 2,247 1,448 374 391 356 867 182 5,865 30.3% Nvigbenva 2,334 21 395 Coastral Ode-Opeo Dawhenya 1,454 376 358 876 182 5.975 30.0% 22 Tema Roundabout 5,782 517 1,576 Coastral Dawhenya 2,114 288 436 487 11,200 24.9% 23 296 Sogakope Adidome 1,767 618 173 162 740 265 4,021 33.3% 24 Adidome Dadaboe 1,009 537 172 251 150 738 265 3,122 42.4% 251 25 172 3,122 Dadaboe Kpedzeglo 1,009 537 150 738 265 42.4% 3,122 26 537 172 251 738 Kpedzeglo Mafi Asiekpe 1,009 150 265 42.4% 27 511 172 213 150 738 46.2% Mafi Asiekpe Tsrefe 816 265 2,865 -28 Tsrefe Но 816 519 172 213 142 738 265 2,865 46.0% 29 350 301 139 144 710 2,045 61.1% 265 136 Ho Fume 30 Asikuma Jct. 1,363 1,629 110 182 33 47 0 3,364 Dededu 5.6% 33 1,629 47 3,364 5.6% 31 110 182 0 Dededu Anyinawasi 1,363 32 Sokode Gbogame 1,363 1,629 110 182 38 47 0 3,369 5.8% Anyinawasi 33 Sokode Gbogame 1,629 182 38 47 0 5.8% Ho 1,363 110 3.369 34 Kpong Odumase 2,983 4,814 331 486 83 103 8 8,808 6.0% 35 1,085 1,825 10 3,130 3.4% Atimpoku Akosombo 55 115 15 25 -36 Juapong Padoe Dufo 43 8 0 2 0 7 1 61 13.1% 37 Kpolukope 0 0 0 0 0 0 0 Padoe Dufo 0 -38 Kpolukope Abutia Kloe 0 0 0 0 0 0 0 0 39 Abutia Kloe Sokode Gbogame 0 0 0 0 0 0 0 0 -1,497 0 471 15.6% 40 Prampram Dawhenya 1.793 0 125 160 4,046 1,053 193 5,960 15.5% 41 Dawhenya Afienya 3,788 134 126 520 146 232 340 544 19.1% 42 Afienya Dodowa 4,692 1,045 623 38 7,514 43 Anyaman Sege 1,793 1,497 0 125 0 471 160 4,046 15.6% 825 44 1.992 119 219 126 3,389 Sege Aveyime 106 2 10.4% 45 924 704 78 23 0 Aveyime Mepe 184 77 1,990 14.3% 1,990 924 704 78 23 14.3% 46 Mepe Peterkope 184 77 0 -47 3,271 2,201 305 524 123 6,493 Doryum Ayikuma 61 8 7.7% 345 547 48 4.704 623 232 38 7.539 19.1% 1.050 Dodowa Adenta 49 1,553 4,074 142 230 96 101 5 6,201 5.5% Odumase Somanya 50 0 0 0 0 0 0 Aflao 0 0 Dzodze -51 0 0 0 0 0 0 0 Dzodze Kpetoe 0 -52 0 0 0 0 0 0 0 Ho 0 Kpetoe -53 0 0 0 0 0 0 0 0 -Akatsi Dzodze -0 0 0 0 0 0 0 54 0 -Akatsi Knetoe -55 0 0 0 0 0 0 0 0 Kase Adafoa 92 11.7% 56 1,190 875 101 178 101 4 2,541 Somanya Akuse Jct 57 Akuse Jct Kpong Dam Jct. 1,155 1,368 147 213 68 88 3 3,042 10.1% 1,120 58 Kpong Dam Jct. Kagyanya 1,861 193 247 44 75 2 3,542 8.9% 247 2 59 75 Kagyanya Asutsuare 1,120 1,861 193 44 3,542 8.9% 60 Kpong Dam Jct Ageteklekyi 110 1 0 26 0 0 0 137 0.0% 26 61 Ageteklekyi Dokotsi 110 1 0 0 0 0 137 0.0% 62 Ageteklekyi Adome 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 Dadaboe Agove -

										(L	nit: venic	les)
Link No.	Corridor	Node	e Name	Passenger Car/ Pick-up	Minibus	Bus	Medium Truck	Heavy Truck	Trailer	Others	Total	CVR*
64	<del>ا</del>	Agove	Knedzeglo	0	0	0	0	0	0	0	0	<u> </u>
65	<del>ہے ا</del>	Adidome	Volo	253	36	0	38	0	0	0	327	0.0%
66	<del>ر ا</del>	Volo	Dufor-Adidome	249	21	0	36	0	0	0	306	0.0%
67	<del>ر _ ا</del>	Osi-Ahura	Knolukone	0	0	0	0	0	0	0	0	0.070
68	<del>ب _</del>	Agove	Adidoknavuj	0	0	0	0	0	0	0	0	
69	<del>ب _</del>	Adidoknavuji	Knomkno	0	0	0	0	0	0	0	0	
70	Project	Acuteuare Ict	Terucalem	2 531	2 379	524	565	472	1 264	486	8 221	33.4%
70	Project	Asusuale Jer.	Asuteuare	152	2,375	30	25	15	30	0	284	29.6%
72	Project	Asutsuare	Valivo	1.078	1 848	183	218	45	86	$\frac{1}{2}$	3 460	0.1%
72	Project	Asusual Dufor Adidome	Dolzotsi	1,070	1,040	105	0	0	0		3,400	9.170
75	Project	Duloi-Autuonic Dalaatsi	Lunnana	0	0	0	0		0		0	· · · · · · · · · · · · · · · · · · ·
75	Project	Dokotsi	Juapong	42	0	0	2	0		1	61	12 10/
76	Project	Rpomkpo Dadaa Dufa	Pouoe-Duio	45	0		2				01	13.170
/0	Project	Podoe-Dulo	Frankadua	0	0		0				0	<u> </u>
77	Project	Jerusalem	Kagyanya	0	0	0	0				0	
78	Project	Kagyanya	Dokotsi	0	0 2 2 5 9	0	5.42	0	1 222	U 496	0	22.50/
79	Project	Jerusalem	Volivo	2,380	2,358	496	542	457	1,223	486	7,942	33.5%
80	Project	Volivo	Dutor-Adidome	2,315	2,957	386	582	311	1,139	487	8,177	28.4%
81	Project	Dufor-Adidome	Dokotsi	2,280	2,938	386	598	311	1,134	487	8,134	28.5%
82	Project	Dokotsi	Kpomkpo	2,170	2,937	386	572	311	1,134	487	7,997	29.0%
83	Project	Kpomkpo	Kpolukope	2,129	2,928	386	570	311	1,127	486	7,937	29.1%
84	Project	Kpolukope	Asikuma Jct.	2,129	2,928	386	570	311	1,127	486	7,937	29.1%
85	Project	Volivo	Aveyime	1,716	1,478	371	234	225	189	3	4,216	18.7%
86	Coastral	Tema Roundabout	Tetteh Quashie	5,673	2,156	555	572	219	616	42	9,833	14.6%
87	Coastral	Tetteh Quashie	Accra	10,543	4,650	1,330	1,383	536	1,215	95	19,752	16.1%
88	Coastral	Accra	Cape Coast	58	15	0	20	16	45	55	209	55.5%
89	Coastral	Cape Coast	Daboasi Jct.	6	0	0	0	10	30	55	101	94.1%
90	Coastral	Daboasi Jnc.	Takoradi Port	26	0	0	0	10	15	5	56	53.6%
91	Coastral	Takoradi Port	Elubo	26	0	0	0	10	15	5	56	53.6%
92	Eastern	Fume	Nkwanta	1,769	2,311	485	597	395	1,820	755	8,132	42.5%
93	Eastern	Nkwanta	Yendi	447	, 66	180	333	329	1.765	675	3.795	77.7%
94	Eastern	Yendi	Sakpiegu	15	0	0	0	0	0	0	15	0.0%
95	Eastern	Sakniegu	Misiga	0	0	0	0	0	0	0	0	-
96	Eastern	Misiga	Kulungugu	0	0	0	0	0	0	0	0	-
97	-	Sakniegy	Vawon	15	0	0	0	0	0	0	15	0.0%
98	<del>اا</del>	Odumase	Koforidua	3.047	3 484	388	457	111	111	17	7 615	8.2%
99	<del>اا</del>	Tetteh Quashie	Adenta	6.942	3 277	921	909	324	638	53	13 064	14.8%
100	<del>ب _</del>	Adenta	Koforidua	1 317	1.030	0	0	0	0.50	0	2 347	0.0%
101	<u>-</u>	K oforidua	Dunso	1,517	1,050	10	13	11	0		2,577	55 30/2
101	Control	Agoro	Dunso	0		0	15	0	0		0	55.570
102	Control	Accia	Bullso Varmagi	0	4	10	13	11			38	55 20/2
103	Central	Buliso	Kumasi	245	146	205	222	100	245	225	J0 1 /19	56 00/
104	<u></u> ا	Kuması Cura Caast	Sunyani	245	140	203	233	109	243	255	1,410	30.070
105	<del>ب</del> ا	Cape Coasi	Anwiankwanisa	0		0	0				0	
106	l	Daboasi Jct.	Anwiankwantsa	0	0	0	0			0	0	
107	<u> </u>	Anwiankwantsa	Kumasi	0	0	0	0	0	0	0	0	-
108	Central	Kumasi	Fufulsu Jct.	0	0	0	0	0	0	0	0	-
109	Central	Fufulsu Jct.	Tamale	571	264	217	305	122	281	226	1,986	42.6%
110	Central	Tamale	Bolgatanga	90	18	57	148	239	1,391	456	2,399	89.3%
111	Central	Bolgatanga	Navrongo	70	27	34	115	221	1,363	444	2,274	90.7%
112	Central	Navrongo	Paga	20	0	20	110	240	1,370	455	2,215	94.1%
113		Bolgatanga	Misiga	0	0	0	0	0	0	0	0	-
114	Western	Elubo	Sunyani	26	0	0	0	4	15	5	50	48.0%
115	Western	Sunyani	Sawla	467	291	255	334	156	300	245	2,048	46.7%
116	Western	Sawla	Wa	190	27	51	38	31	19	19	375	32.0%
117	Western	Wa	Dowene	50	27	46	34	31	19	19	226	50.9%
118	, <u> </u>	Fufulsu Jct.	Sawla	571	264	217	305	122	281	226	1,986	42.6%
119	ı - İ	Navrongo	Dowene	50	27	46	34	31	19	19	226	50.9%
120	i - †	Yendi	Tamale	432	66	160	334	324	1.770	675	3.761	77.9%
121	· - ·	Mamfe	Koforidua	1.482	1.740	282	295	64	85	17	3.965	11.3%
122	<del> </del>	Mamfe	Adenta	4 629	3.895	587	798	125	208	24	10.266	9.2%

Table A5-1	<b>Results of Route Assignment in 2016 (2)</b>
------------	------------------------------------------------

Note: CVR - Commercial Vehicle Ratio

Link NCreard PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase PreckaParase <b< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>(Ur</th><th>nit: Vehicle</th><th>es)</th></b<>											(Ur	nit: Vehicle	es)
I         Lastern         Ferna Roundbout, Alfreya	Link No.	Corridor	Node	Name	Passenger Car/ Pick-up	Minibus	Bus	Medium Truck	Heavy Truck	Trailer	Others	Total	CVR*
2         Eastern         Frams Roundbout Arlenya         4,19         1,777         140         442         207         2,044         6.2         9,592         33.5%           4         Eastern         Austuare Lot.         4,475         2,002         331         575         433         1,844         802         11,172         30.7%           5         Eastern         Akuse Lot.         Kyeng         1,479         2,780         322         344         155         153         36         648         329         2,323         2,532         32,33         2,842         3,83         38         185         163         30         7,832         2,833         2,842         3,33         348         1,85         1,83         7,84         1,83         1,84         1,84         1,84         3,33         348         1,85         1,83         1,84         1,84         1,83         348         1,85         1,83         34         1,84         1,84         1,85         1,83         1,84         1,100         30         6,171         7,76           11         Eastern         Askuma Jot.         Dafor         1,409         1,320         3,311         445         1,338         1,160	1	Eastern	Tema Port	Tema Roundabout	15,205	4,355	1,315	1,545	1,080	4,190	1,230	28,920	27.0%
3         Lastern         Alterya         Docyum         3, 250         1, 751         591         661         429         2,865         8441         802         11, 173         30, 78,           5         Fastern         Autus Let         Altus Let         2,414         603         123         155         33         648         893         1,233         128,         23         523         238         128,         128,         23         523         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         110,         106,         107,         108,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,         128,	2	Eastern	Tema Roundabout	Afienya	4,159	1,777	340	442	207	2,044	623	9,592	33.5%
4         Lastern         Doryum         Assubane / L         Ause / L         2,413         C/2         4,33         C,844         302         1,11         30,70           6         Eastern         Akusa / LC         Kpong         1,117         2,177         4,113         333         383         185         185         533         525         5,233         12,337         12,337         1333         383         185         125         133         44         118         34         5,752         16,667           7         Bastern         Atimpoku         Adome         2,235         2297         331         44         118         34         5,752         16,667         7.757           10         Eastern         Adome         1,240,727         2,253         229         131         44         102         30         6,171         7.757           11         Eastern         Atima Adom         2,273         2,635         229         131         441         102         30         6,171         7.757           12         Eastern         Atima Adome         Diabot         2,737         2,737         2,737         130         131         135         135         <	3	Eastern	Afienya	Doryum	3,250	1,751	591	661	429	2,565	842	10,089	43.9%
a.         Lastert         National Val.         National Val.         Laster         Laster         Kpong         Laster         Laster         Kpong         Autopace         Laster         Laster <thlaster< th="">         Laste         Laster</thlaster<>	4	Eastern	Doryum	Asutsuare Jct.	4,475	2,692	351	575	433	1,844	802	11,172	30.7%
D         Disklin         Disklin <thdisklin< th=""> <thdisklin< th=""> <thdisklin< td=""><td>5</td><td>Eastern</td><td>Asutsuare Jct.</td><td>Akuse Jci.</td><td>2,434</td><td>023</td><td>23</td><td>244</td><td>155</td><td>048</td><td>393</td><td>4,329</td><td>25.8%</td></thdisklin<></thdisklin<></thdisklin<>	5	Eastern	Asutsuare Jct.	Akuse Jci.	2,434	023	23	244	155	048	393	4,329	25.8%
8         Eastern         Atimpolu         Adorne         Lappong         2223         2,653         297         551         444         118         34         5,720         8,6%,           0         Eastern         Juapong         Frankadua         2,737         2,653         292         331         444         102         30         6,171         7,5%,           11         Eastern         Frankadua         2,737         2,635         292         331         444         102         30         6,171         7,5%,           12         Eastern         Osi-Abura         Asiumu Jct.         2,737         2,635         292         331         444         102         30         6,171         7,5%,           13         Eastern         Dafor         Pater         1,163         1,820         445         146         429         141         141         143         148,58         106         6,171         7,5%,44         148         144         148         144         148         148         144         148         148         144         148         148         144         148         148         148         145         148         144         148	7	Eastern	Knong	Atimpoku	2 157	4 112	321	383	38	185	30	7 183	7 4%
9         Fastern         Jangong         2,266         2,653         297         351         44         102         34         6,371         7.7%           10         Eisstern         Frankadua         Osi-Abura         2,237         2,635         292         331         44         102         39         6,171         7.6%           12         Eisstern         Osi-Abura         Asikuma Jct.         2,737         2,635         292         331         44         102         39         6,171         7.6%           13         Eisstern         Asikuma Jct.         Darfor         1,469         1,826         435         446         102         39         1,605         678         6,850         450%           14         Eisstern         Darfor         1,469         1,823         1,838         464         594         1,468         538         777         101         6,55         479         1,165         2,477         11         1,165         2,477         101         1,165         2,471         1,172         737         455         449         1,468         321         1,1169         2,457         1,125         2,171         256         450         1,161 <t< td=""><td>8</td><td>Eastern</td><td>Atimpoku</td><td>Adome</td><td>2,137</td><td>2.653</td><td>297</td><td>351</td><td>44</td><td>118</td><td>34</td><td>5.720</td><td>8.6%</td></t<>	8	Eastern	Atimpoku	Adome	2,137	2.653	297	351	44	118	34	5.720	8.6%
10         Eastern         Juapong         Frankadua         2,737         2,655         292         331         44         102         30         6,171         7,8%           12         Eastern         Osi-Abura         Asikuma Jet.         2,737         2,655         292         331         44         102         30         6,171         7,6%           13         Eastern         Dafor         Pare         1,1635         1,881         406         429         281         1,655         678         6,063         49.8%           14         Eastern         Dafor         Pare         1,035         1,881         406         429         281         1,655         678         6,063         49.8%           15         Coustral         Atatis         Sogakope         2,285         3,073         510         315         155         770         110         8,218         18.8%         11,462         2,340%         12.8%         11,462         2,340%         12.8%         11,462         2,340%         12.8%         11,462         2,340%         12.8%         11,462         2,340%         12.8%         12.8%         12.8%         12.8%         12.8%         12.8%         12.8%	9	Eastern	Adome	Juapong	2,866	2.653	297	351	44	118	34	6.363	7.7%
11       Eastern       Frankadua       Osi-Abura       2,737       2,635       292       331       44       102       30       6,171       7.6%         13       Eastern       Asikuma Ixt.       Dafor       1,469       1,826       435       463       299       1.605       678       6,563       48.9%         14       Eastern       Dafor       1,469       1,828       406       420       2281       1.655       678       6,663       49.8%         15       Coastral       Atati       Sogakope       3,073       510       115       1700       110       8,218       11.466       2.347         16       Coastral       Restern       Sogakope       4,636       3,227       577       555       449       1,468       3344       11,466       2.347         19       Coastral       Sega       Ngakope       2,447       2,902       518       644       549       1,446       3342       11,445       338.9         10       Coastral       Sega       Ngakope       2,440       2,247       732       128       7,353       2.09.9%       21.292       540       2.537       528       840       41.44 <td< td=""><td>10</td><td>Eastern</td><td>Juapong</td><td>Frankadua</td><td>2,737</td><td>2,635</td><td>292</td><td>331</td><td>44</td><td>102</td><td>30</td><td>6,171</td><td>7.6%</td></td<>	10	Eastern	Juapong	Frankadua	2,737	2,635	292	331	44	102	30	6,171	7.6%
12       Eastern       Osi-Abura       Asikuma Jct.       2,737       2,635       292       331       44       102       30       6,717       7,6%         13       Eastern       Dafor       Fune       1,035       1,881       406       429       281       1,650       678       6,605       49,8%         15       Cosstral       Atati       Sogakope       3,285       3,073       510       315       155       770       110       8,218       18,8%         16       Cosstral       Sogakope       46,365       3,527       577       755       449       1,445       332       11,55       270,97         19       Coastral       Kase       Sege       4,560       2,502       330       887       462       1,427       332       10,552       20,9%         21       Coastral       Kase       Sege       1,214       2,962       518       684       504       1,445       332       10,123       10,9%         21       Coastral       Kase       Sege       1,522       2,08       452       13,18       820       2,154       2,363       3,683       3,168       322       10,38       3,18 <td< td=""><td>11</td><td>Eastern</td><td>Frankadua</td><td>Osi-Abura</td><td>2,737</td><td>2,635</td><td>292</td><td>331</td><td>44</td><td>102</td><td>30</td><td>6,171</td><td>7.6%</td></td<>	11	Eastern	Frankadua	Osi-Abura	2,737	2,635	292	331	44	102	30	6,171	7.6%
13         Eastern         Asikuna Act.         Dafor         1.469         1.280         463         299         1.650         678         6,830         45.0%           15         Coastral         Aflao         Akatsi         558         27         185         10         65         495         105         1.445         588.3%           16         Coastral         Sogakope         Peterkope         4,636         3,527         577         655         449         1,468         314         11,464         2437           18         Coastral         Sogakope         Peterkope         4,636         3,227         577         655         449         1,468         314         11,464         2437           10         Coastral         Sege         4,500         2,002         380         587         402         1,427         322         10,535         2,092           21         Coastral         Segakope         Adidome         2,300         2,537         528         804         408         313         821         227         6,453         35.792           22         Coastral         Dawherya         2,632         1,712         298         442         313	12	Eastern	Osi-Abura	Asikuma Jct.	2,737	2,635	292	331	44	102	30	6,171	7.6%
14         Eastern         Dafor         Func         1,035         1,58         406         429         281         1,055         678         6,065         44,95           16         Coustral         Atati         Sogakope         3,285         3,073         510         315         155         770         110         8,218         18,8%           17         Coustral         Sogakope         Kase         5,214         2,902         518         664         504         1,445         332         11,655         2,704           19         Coustral         Rese         Sega         4,500         2,902         308         587         402         1,427         332         10,250         2,34%           20         Coustral         Ode-Opeo         Dawhenya         2,149         2,947         272         2,757         2408         730         128         7,353         20.9%         210,250         2,54%         20.9%         210,250         2,54%         20.9%         213         13         821         227         6,353         25,7%         20.9%         422         26.3,367         36,1%         36         36,1%         36         36,1%         36         27.9%	13	Eastern	Asikuma Jct.	Dafor	1,469	1,826	435	463	299	1,660	678	6,830	45.0%
15         Coastral         Atlatio         Akatis         558         27         185         10         655         449         101         421         588.8%           17         Coastral         Sogakope         Peterkope         4.636         3.527         577         655         449         1.448         334         11.646         24.3%           18         Coastral         Sega         4.500         2.502         380         587         462         1.427         332         11.650         24.4%           20         Coastral         Sega         4.500         2.502         2.88         4.02         730         128         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.100         12.8         7.111         7.23         2.00         7.3         13.0         7.00         7.3         13.0         7.2         13.0         7.6         13.0         7.2         13	14	Eastern	Dafor	Fume	1,035	1,581	406	429	281	1,655	678	6,065	49.8%
10         Coastral         Akatist         Sogakope         3,253         3,073         310         -131         135         170         110         8,218         18,218         18,203           18         Coastral         Peterkope         Kase         5,214         2,962         518         684         504         1,445         333         11,659         24,05           19         Coastral         Sege         Nyigbenya         2,149         2,947         272         572         400         713         128         7,190         21,25           21         Coastral         Ode-Ope         Dawhenya         2,203         2,237         228         442         1,313         821         227         6,455         25,27%           23         -         Sogakope         Adidome         2,425         1,712         246         3,687         3,61%           25         -         Dadaboe         1,245         785         155         325         208         742         226         3,668         3,61%           26         -         Kpadzeglo         1,245         785         155         225         208         742         226         3,618         3,617	15	Coastral	Aflao	Akatsi	558	27	185	10	65	495	105	1,445	58.8%
1/2         Constant         Sogakope         Peterkope         Kase         5,22         577         Old         449         1,446         332         11,693         24,0%           19         Constral         Kase         Sege         4,560         2,502         380         587         462         1,427         332         11,050         25,4%           21         Constral         Sege         Nyigberya         2,149         2,947         2409         713         128         7,100         21,2%           21         Constral         Dawhenya         2,140         2,047         288         44         755         1,810         921         1,923         30.9%           23         -         Sogakope         Adidome         2,632         1,712         298         452         313         821         2226         5,668         36.1%           24         -         Adidome         Dadaboe         1,245         785         155         325         208         742         226         3,568         36.1%           25         -         Mafi Asiskpe         Terefe         995         776         155         265         199         742         226	16	Coastral	Akatsi	Sogakope	3,285	3,073	510	315	155	1 469	224	8,218	18.8%
10         Coastral         Kase         Sege         4.200         2.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0	17	Coastral	Peterkope	Kase	4,030	2 962	518	684	449 504	1,408	332	11,040	24.5%
20         Coastral         Sege         Nyigbenya         2:149         2:947         272         572         409         713         128         7.190         2:255           21         Coastral         Dawkerya         Tema Roundabout         4:906         2:535         271         565         408         730         128         7.190         2:255           23         -         Sogakope         Adidome         2:30         528         804         755         1,810         592         1.932         30.9%           23         -         Sogakope         Adidome         1,245         786         155         325         208         742         226         3,687         36.1%           24         -         Adibobe         Kpedzeglo         1,245         785         155         325         208         742         226         3,687         36.1%           25         -         Mafi Asiekpe         1,245         785         155         265         208         742         226         3,318         39.8%           29         -         Ho         Furgle         893         850         110         148         33         55         20	19	Coastral	Kase	Sege	4 560	2,502	380	587	462	1,447	332	10.250	25.4%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	Coastral	Sege	Nvigbenva	2,149	2,947	272	572	409	713	128	7.190	21.2%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	21	Coastral	Ode-Opeo	Dawhenya	2,300	2,953	271	565	408	730	128	7,355	20.9%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Coastral	Dawhenya	Tema Roundabout	4,906	2,537	528	804	755	1,810	592	11,932	30.9%
24         -         Addiome         Dadaboc         1,245         786         155         325         208         742         226         3,686         36,1%           25         -         Mafi Asiekpe         Interfe         1,245         785         155         325         208         742         226         3,686         36,1%           27         -         Mafi Asiekpe         Tsrefe         995         736         155         205         199         742         226         3,318         39,8%           28         -         Tsrefe         Ho         995         736         155         205         199         742         226         3,318         39,8%           29         -         Ho         Fume         893         850         110         182         176         699         225         3,135         38,98%           30         -         Asikuma At.         Deddu         2,588         2,754         154         183         38         52         0         5,766         4,2%           31         -         Sokode Gobgame         2,848         2,754         154         183         38         52         10         <	23	-	Sogakope	Adidome	2,632	1,712	298	452	313	821	227	6,455	25.7%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	-	Adidome	Dadaboe	1,245	786	155	325	208	742	226	3,687	36.1%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	25	-	Dadaboe	Kpedzeglo	1,245	785	155	325	208	742	226	3,686	36.1%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	26	-	Kpedzeglo	Mafi Asiekpe	1,245	785	155	325	208	742	226	3,686	36.1%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	27	-	Mafi Asiekpe	I srete	995	726	155	265	208	742	226	3,317	40.1%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	28	-	I srele	H0 Fumo	995	/30	155	203	199	600	220	2,318	39.8%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30		Asikuma Ict	Dededu	2 588	2 754	154	182	35	52	0	5 766	4 2%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	_	Dededu	Anvinawasi	2,588	2,754	154	183	35	52	0	5,766	4.2%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	-	Anyinawasi	Sokode Gbogame	2,588	2,754	154	183	38	52	0	5,769	4.2%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33	-	Sokode Gbogame	Но	2,588	2,754	154	183	38	52	0	5,769	4.2%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34	-	Kpong	Odumase	2,813	6,174	631	637	293	201	12	10,761	10.6%
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	-	Atimpoku	Akosombo	1,395	2,345	75	135	15	20	10	3,995	3.0%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	-	Juapong	Padoe Dufo	129	18	6	21	0	16	4	194	13.4%
38-KpolukopeAbulta Kloe00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000	37	-	Padoe Duto	Kpolukope	0	0	0	0	0	0	0	0	-
John Proprime       Dawhenya       3,013       217       142       132       179       774       248       4,705       28.5%         41       -       Dawhenya       Afienya       2,744       1,338       411       407       218       699       216       6,033       25.6%         42       -       Afienya       Dodowa       5,206       2,576       450       387       124       305       21       9,069       9,9%         43       -       Anyaman       Sege       3,013       217       142       132       179       774       248       4,705       28.5%         44       -       Sege       Aveyime       2,608       999       39       236       145       59       45       4,131       7.0%         45       -       Aveyime       Mepe       1,907       856       61       65       69       135       4       3,097       8.7%         46       -       Mepe       Peterkope       1,907       856       61       65       69       135       4       3,097       8.7%         47       -       Dodumase       Somanya       2,667       5,443       60 </td <td>38</td> <td>-</td> <td>Abutia Klos</td> <td>Adulia Kioe</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>-</td>	38	-	Abutia Klos	Adulia Kioe	0	0	0	0	0	0	0	0	-
101111111112112112113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113113<	40		Prampram	Dawhenya	3 013	217	142	132	179	774	248	4 705	28.5%
42-AfienyaDodowa $5,206$ $2,576$ $450$ $387$ $124$ $305$ $21$ $9,069$ $9,9\%$ 43-AnyamanSege $3,013$ $217$ $142$ $132$ $179$ $774$ $248$ $4,705$ $28.5\%$ 44-SegeAveyime $2,608$ $999$ $39$ $236$ $145$ $59$ $45$ $4,131$ $7.0\%$ 45-AveyimeMepe $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7\%$ 46-MepePeterkope $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7\%$ 47-DoryumAyikuma $3,502$ $1,752$ $520$ $400$ $124$ $848$ $64$ $7,210$ $21.6\%$ 48-DodowaAdenta $5,231$ $2,597$ $450$ $399$ $124$ $314$ $21$ $9,136$ $9.9\%$ 49-OdumaseSomanya $2,667$ $5,443$ $60$ $185$ $52$ $181$ $176$ $8,764$ $5.4\%$ $50$ -AflaoDzodze $47$ 20000 $472$ $0.0\%$ $51$ -DzodzeKpetoe $245$ $227$ 0000 $472$ $0.0\%$ $52$ -KpetoeHo $245$ $227$ 00000 $-55$ 53-AkatsiDzodze <td>41</td> <td>-</td> <td>Dawhenva</td> <td>Afienva</td> <td>2,744</td> <td>1.338</td> <td>411</td> <td>407</td> <td>218</td> <td>699</td> <td>216</td> <td>6.033</td> <td>25.6%</td>	41	-	Dawhenva	Afienva	2,744	1.338	411	407	218	699	216	6.033	25.6%
43-AnyamanSege $3,013$ $217$ $142$ $132$ $179$ $774$ $248$ $4,705$ $28.5\%$ 44-SegeAveyime $2,608$ $999$ $39$ $236$ $145$ $59$ $45$ $4,131$ $7.0\%$ 45-AveyimeMepe $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7\%$ 46-MepePeterkope $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7\%$ 47-DoryumAyikuma $3,502$ $1,752$ $520$ $400$ $124$ $848$ $64$ $7,210$ $21.6\%$ 48-DodowaAdenta $5,231$ $2,597$ $450$ $399$ $124$ $314$ $21$ $9,136$ $9.9\%$ 49-OdumaseSomanya $2,667$ $5,443$ $60$ $185$ $52$ $181$ $176$ $8,764$ $5.4\%$ $50$ -AflaoDzodze $47$ 20000 $0472$ $0.0\%$ $51$ -DzodzeKpetoe $245$ $227$ 0000 $0472$ $0.0\%$ $52$ -KpetoeHo $245$ $227$ 0000 $0472$ $0.0\%$ $53$ -AkatsiDzodze $198$ $225$ 00000 $ 55$ -KaseAdafoa000<	42	-	Afienya	Dodowa	5,206	2,576	450	387	124	305	21	9,069	9.9%
44-SegeAveyime $2,608$ $999$ $39$ $236$ $145$ $59$ $45$ $4,131$ $7.0%$ $45$ -AveyimeMepe $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7%$ $46$ -MepePeterkope $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7%$ $47$ -DoryumAyikuma $3,502$ $1,752$ $520$ $400$ $124$ $848$ $64$ $7,210$ $21.6%$ $48$ -DodowaAdenta $5,231$ $2,597$ $450$ $399$ $124$ $314$ $21$ $9,136$ $9.9%$ $49$ -OdumaseSomanya $2,667$ $5,443$ $60$ $185$ $52$ $181$ $176$ $8,764$ $5.4%$ $50$ -AflaoDzodze $47$ 200000 $449$ $0.0%$ $51$ -DzodzeKpetoe $245$ $227$ 00000 $442$ $0.0%$ $51$ -DzodzeHo $245$ $227$ 00000 $442$ $0.0%$ $54$ -AkatsiKpetoe00000000 $ 55$ -KaseAdafoa00000000 $ 55$ -KaseAdafoa000 <td>43</td> <td>-</td> <td>Anyaman</td> <td>Sege</td> <td>3,013</td> <td>217</td> <td>142</td> <td>132</td> <td>179</td> <td>774</td> <td>248</td> <td>4,705</td> <td>28.5%</td>	43	-	Anyaman	Sege	3,013	217	142	132	179	774	248	4,705	28.5%
45-AveyimeMepe $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7%$ $46$ -MepePeterkope $1,907$ $856$ $61$ $65$ $69$ $135$ $4$ $3,097$ $8.7%$ $47$ -DoryumAyikuma $3,502$ $1,752$ $520$ $400$ $124$ $848$ $64$ $7,210$ $21.6%$ $48$ -DodowaAdenta $5,231$ $2,597$ $450$ $399$ $124$ $314$ $21$ $9,136$ $9.9%$ $49$ -OdumaseSomanya $2,667$ $5,443$ $60$ $185$ $52$ $181$ $176$ $8,764$ $5.4%$ $50$ -AflaoDzodze $47$ 20000 $0$ $49$ $0.0%$ $51$ -DzodzeKpetoe $245$ $227$ 0000 $0$ $472$ $0.0%$ $52$ -KpetoeHo $245$ $227$ 0000 $0$ $0.7$ $53$ -AkatsiDzodze $198$ $225$ 00000 $0$ $0$ $54$ -AkatsiDzodze $198$ $225$ 00000 $0$ $0$ $55$ -KaseAdafoa0000000 $0$ $0$ $0$ $55$ -KaseAdafoa0000	44	-	Sege	Aveyime	2,608	999	39	236	145	59	45	4,131	7.0%
46-MepePeterkope1,90785661656913543,0978.7%47-DoryumAyikuma3,5021,752520400124848647,21021.6%48-DodowaAdenta5,2312,597450399124314219,1369.9%49-OdumaseSomanya2,6675,44360185521811768,7645.4%50-AflaoDzodze47200000490.0%51-DzodzeKpetoe245227000004720.0%52-KpetoeHo245227000004720.0%53-AkatsiDzodze198225000000-54-AkatsiKpetoe000000055-KaseAdafoa000000056-SomanyaAkuse Jct.2,2611,71313136561811764,5369.4%57-Akuse Jct.Kpong Dam Jct.1,2921,183123534672173,20921.8%58-Kpong Dam Jct.Kagyanya<	45	-	Aveyime	Mepe	1,907	856	61	65	69	135	4	3,097	8.7%
47-DoryumAyıkuma $3,502$ $1,752$ $520$ $400$ $124$ $848$ $64$ $7,210$ $21.6%$ $48$ -DodowaAdenta $5,231$ $2,597$ $450$ $399$ $124$ $314$ $21$ $9,136$ $9.9%$ $49$ -OdumaseSomanya $2,667$ $5,443$ $60$ $185$ $52$ $181$ $176$ $8,764$ $5.4%$ $50$ -AflaoDzodze $47$ $2$ $0$ $0$ $0$ $0$ $49$ $0.0%$ $51$ -DzodzeKpetoe $245$ $227$ $0$ $0$ $0$ $0$ $0$ $472$ $0.0%$ $52$ -KpetoeHo $245$ $227$ $0$ $0$ $0$ $0$ $0$ $472$ $0.0%$ $53$ -AkatsiDzodze $198$ $225$ $0$ $0$ $0$ $0$ $0$ $423$ $0.0%$ $54$ -AkatsiKpetoe $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $54$ -AkatsiKpetoe $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $55$ -KaseAdafoa $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $56$ -SomanyaAkuse Jct. $2,261$ $1,713$ $13$ $136$ $56$ $181$ $176$ $4,536$ $9.4%$ $57$ <td>46</td> <td>-</td> <td>Mepe</td> <td>Peterkope</td> <td>1,907</td> <td>856</td> <td>61</td> <td>65</td> <td>69</td> <td>135</td> <td>4</td> <td>3,097</td> <td>8.7%</td>	46	-	Mepe	Peterkope	1,907	856	61	65	69	135	4	3,097	8.7%
40-DodowaAdema $3,231$ $2,397$ $430$ $399$ $124$ $314$ $21$ $9,136$ $9,9%$ $49$ -OdumaseSomanya $2,667$ $5,443$ $60$ $185$ $52$ $181$ $176$ $8,764$ $5.4%$ $50$ -AflaoDzodze $47$ 200000 $49$ $0.0%$ $51$ -DzodzeKpetoe $245$ $227$ 00000 $472$ $0.0%$ $52$ -KpetoeHo $245$ $227$ 00000 $472$ $0.0%$ $53$ -AkatsiDzodze198 $225$ 00000 $423$ $0.0%$ $54$ -AkatsiKpetoe00000000 $ 54$ -AkatsiKpetoe00000000 $ 55$ -KaseAdafoa0000000 $ 56$ -SomanyaAkuse Jet. $2,261$ $1,713$ $113$ $136$ $56$ $181$ $176$ $4,536$ $9.4%$ $57$ -Akuse Jet.Kpong Dam Jet. $1,292$ $1,183$ $112$ $35$ $3$ $467$ $217$ $3,209$ $21.8%$ $58$ -Kpong Dam Jet.Kagyanya $1,392$ $1,787$ $151$ $238$	47	-	Doryum	Ayıkuma Adanta	3,502	1,752	520	400	124	848	64	7,210	21.6%
50         -         Aflao         Dzodze         47         2         0         0         0         0         0         49         0.0%           51         -         Dzodze         Kpetoe         245         227         0         0         0         0         0         472         0.0%           52         -         Kpetoe         Ho         245         227         0         0         0         0         472         0.0%           53         -         Akatsi         Dzodze         198         225         0         0         0         0         423         0.0%           54         -         Akatsi         Dzodze         198         225         0         0         0         0         423         0.0%           54         -         Akatsi         Kpetoe         0         0         0         0         0         0         0         0         0         0         -           55         -         Kase         Adafoa         0         0         0         0         0         -         -         -         -         -         -         -         -         -	40	-	Odumase	Somanya	2,231	2,397	430	599 185	124 52	514 181	21 176	9,130	9.9% 5 10%
51       -       Dzodze       Kpetoe       245       227       0       0       0       0       472       0.0%         52       -       Kpetoe       Ho       245       227       0       0       0       0       472       0.0%         53       -       Akatsi       Dzodze       198       225       0       0       0       0       4472       0.0%         54       -       Akatsi       Kpetoe       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>50</td> <td></td> <td>Aflao</td> <td>Dzodze</td> <td>47</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>49</td> <td>0.0%</td>	50		Aflao	Dzodze	47	2	0	0	0	0	0	49	0.0%
52-KpetoeHo $245$ $227$ 00000 $472$ $0.0%$ $53$ -AkatsiDzodze198 $225$ 00000 $472$ $0.0%$ $54$ -AkatsiKpetoe0000000000 $54$ -AkatsiKpetoe00000000000 $55$ -KaseAdafoa0000000000- $56$ -SomanyaAkuse Ict. $2,261$ $1,713$ $13$ $136$ $56$ $181$ $176$ $4,536$ $9.4%$ $57$ -Akuse Ict.Kpong Dam Jct. $1,292$ $1,183$ $12$ $35$ $3$ $467$ $217$ $3,209$ $21.8%$ $58$ -Kpong Dam Jct.Kagyanya $1,392$ $1,787$ $151$ $238$ $72$ $102$ $132$ $3,874$ $11.8%$ $59$ -KagyanyaAsutsuare $1,392$ $1,787$ $151$ $238$ $72$ $102$ $132$ $3,874$ $11.8%$ $60$ -Kpong Dam Jct.Ageteklekyi $643$ $1,559$ $161$ $89$ $136$ $43$ 0 $2,631$ $12.9%$ $61$ -AgeteklekyiDokotsi0 $1,559$ $161$ $89$ $136$ $43$ 0 $1,988$ $17.1%$ <tr< td=""><td>51</td><td>-</td><td>Dzodze</td><td>Kpetoe</td><td>245</td><td>227</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>472</td><td>0.0%</td></tr<>	51	-	Dzodze	Kpetoe	245	227	0	0	0	0	0	472	0.0%
53       -       Akatsi       Dzodze       198       225       0       0       0       0       423       0.0%         54       -       Akatsi       Kpetoe       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	52	-	Kpetoe	Ho	245	227	0	0	0	0	0	472	0.0%
54       -       Akatsi       Kpetoe       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>53</td><td>-</td><td>Akatsi</td><td>Dzodze</td><td>198</td><td>225</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>423</td><td>0.0%</td></t<>	53	-	Akatsi	Dzodze	198	225	0	0	0	0	0	423	0.0%
55       -       Kase       Adafoa       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	54	-	Akatsi	Kpetoe	0	0	0	0	0	0	0	0	-
56       -       Somanya       Akuse Jct.       2,261       1,713       13       136       56       181       176       4,536       9.4%         57       -       Akuse Jct.       Kpong Dam Jct.       1,292       1,183       12       35       3       467       217       3,209       21.8%         58       -       Kpong Dam Jct.       Kagyanya       1,392       1,787       151       238       72       102       132       3,874       11.8%         59       -       Kagyanya       Asutsuare       1,392       1,787       151       238       72       102       132       3,874       11.8%         60       -       Kpong Dam Jct.       Ageteklekyi       643       1,559       161       89       136       43       0       2,631       12.9%         61       -       Ageteklekyi       Dokotsi       0       1,559       161       89       136       43       0       1,988       17.1%         62       -       Ageteklekyi       Adome       643       0       0       0       0       0       0       0       0       0         63       -       Dadaboe	55	-	Kase	Adafoa	0	0	0	0	0	0	0	0	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	56	-	Somanya	Akuse Jct.	2,261	1,713	13	136	56	181	176	4,536	9.4%
36         -         Report Dam Jet.         Ragyanya         1,392         1,787         151         238         72         102         132         3,874         11.8%           59         -         Kagyanya         Asutsuare         1,392         1,787         151         238         72         102         132         3,874         11.8%           60         -         Kpong Dam Jet.         Ageteklekyi         643         1,559         161         89         136         43         0         2,631         12.9%           61         -         Ageteklekyi         Dokotsi         0         1,559         161         89         136         43         0         1,988         17.1%           62         -         Ageteklekyi         Adome         643         0         0         0         0         0         643         0.0%           63         -         Dadaboe         Agove         0         0         0         0         0         0         -	57	-	Akuse Jct.	Kpong Dam Jct.	1,292	1,183	12	35	3	467	217	3,209	21.8%
57       -       Ragyalya       Assussaic       1,572       1,767       151       258       72       102       152       5,674       11.8%         60       -       Kpong Dam Jct.       Ageteklekyi       643       1,559       161       89       136       43       0       2,631       12.9%         61       -       Ageteklekyi       Dokotsi       0       1,559       161       89       136       43       0       1,988       17.1%         62       -       Ageteklekyi       Adome       643       0       0       0       0       0       643       0.0%         63       -       Dadaboe       Agove       0       0       0       0       0       0       0       0       -	50 50	-	Kpong Dam Jct.	Asutsuare	1,392	1,/8/	151	238	12	102	132	3,8/4	11.8%
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60	-	Knong Dam Ict	Ageteklekvi	643	1,787	161	238	136	43	132	2.631	12.9%
62         -         Ageteklekyi         Adome         643         0         0         0         0         0         0         643         0.0%           63         -         Dadaboe         Agove         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	61	_	Ageteklekvi	Dokotsi	0	1.559	161	89	136	43	0	1.988	17.1%
63         -         Dadaboe         Agove         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>62</td> <td>-</td> <td>Ageteklekyi</td> <td>Adome</td> <td>643</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>643</td> <td>0.0%</td>	62	-	Ageteklekyi	Adome	643	0	0	0	0	0	0	643	0.0%
	63	-	Dadaboe	Agove	0	0	0	0	0	0	0	0	-

### Table A5-2Results of Route Assignment in 2026 (1)

										(U	nit: Vehic	les)
Link No.	Corridor	Node	Name	Passenger Car/ Pick-up	Minibus	Bus	Medium Truck	Heavy Truck	Trailer	Others	Total	CVR*
64	-	Agove	Knedzeglo	0	1	0	0	0	0	0	1	0.0%
65	-	Adidome	Volo	701	878	141	120	89	75	1	2.005	15.3%
66	_	Volo	Dufor-Adidome	696	858	141	118	89	75	1	1 978	15.5%
67		Osi-Abura	Knolukone	0,0	0.00	0	0	0	0	0	1,970	13.370
69	-	Agovo	Adidaknowi	0	0	0	0	0	0	0	1	- 0.0%
60	-	Adidalmarni	Knomleno	0	1	0	0	0	0	0	1	0.0%
09	- D · · ·	Adidokpavui	кропкро	2 000	2 404	226	121	140	17(0	5(5	0.042	0.0%
70	Project	Asutsuare Jct.	Jerusalem	3,998	2,404	330	431	448	1,700	303	9,942	31.5%
71	Project	Jerusalem	Asutsuare	184	33	24	26	10	45	0	322	24.5%
72	Project	Asutsuare	Volivo	1,409	1,777	110	211	57	112	132	3,808	10.8%
73	Project	Dufor-Adidome	Dokotsi	0	0	0	0	0	0	0	0	-
74	Project	Dokotsi	Juapong	0	0	0	0	0	0	0	0	-
75	Project	Kpomkpo	Podoe-Dufo	129	18	6	21	0	16	4	194	13.4%
76	Project	Podoe-Dufo	Frankadua	0	0	0	0	0	0	0	0	-
77	Project	Jerusalem	Kagyanya	0	0	0	0	0	0	0	0	-
78	Project	Kagyanya	Dokotsi	0	0	0	0	0	0	0	0	-
79	Project	Jerusalem	Volivo	3,814	2,371	312	405	436	1,717	565	9,620	31.5%
80	Project	Volivo	Dufor-Adidome	3,403	2,822	368	496	380	1.691	656	9.816	31.5%
81	Project	Dufor-Adidome	Dokotsi	2,702	3 379	508	590	470	1.668	657	9 974	33.1%
82	Project	Dokotsi	Knomkno	2 702	3 295	348	502	333	1,600	657	9 463	31.3%
82	Project	Knomkno	Knolukone	2,702	3 278	3/3	481	333	1,610	653	0 271	31.570
0J 04	Project	Kpoliikpo	A giltumo Lot	2,575	2 270	242	401	222	1,010	652	9,271	21.70/
04	Project	Kpolukope Maliaa	Asikuma Jet.	2,373	3,278	102	401	242	1,010	40	9,271	31.7%
85	Project	VOIIVO	Aveyime	2,989	1,779	192	206	242	201	49	5,058	12.1%
86	Coastral	Tema Roundabout	Tetteh Quashie	9,155	3,086	819	/68	197	600	39	14,664	11.3%
87	Coastral	Tetteh Quashie	Accra	13,564	7,305	1,720	1,600	583	1,315	105	26,192	14.2%
88	Coastral	Accra	Cape Coast	64	20	0	15	23	50	45	217	54.4%
- 89	Coastral	Cape Coast	Daboasi Jct.	16	0	0	0	17	25	45	103	84.5%
90	Coastral	Daboasi Jnc.	Takoradi Port	38	0	0	0	17	20	5	80	52.5%
91	Coastral	Takoradi Port	Elubo	38	0	0	0	17	20	5	80	52.5%
92	Eastern	Fume	Nkwanta	1,845	2,427	511	610	455	2,352	904	9,104	46.4%
93	Eastern	Nkwanta	Yendi	819	660	276	438	407	2,310	829	5,739	66.6%
94	Eastern	Yendi	Sakpiegu	20	356	5	5	0	0	0	386	1.3%
95	Eastern	Sakpiegu	Misiga	0	356	0	0	0	0	0	356	0.0%
96	Eastern	Misiga	Kulungugu	0	0	0	0	0	0	0	0	_
97	-	Sakniegu	Yawgu	20	0	5	5	0	0	0	30	16.7%
98	_	Odumase	Koforidua	3 517	5 169	595	551	272	273	193	10 570	12.6%
99		Tetteh Quashie	Adenta	10 509	5 865	1 3 3 9	1 063	401	856	66	20,099	13.2%
100		A denta	Koforidua	1 770	2,009	236	254	70	137	14	4 4 08	10.2%
100	_	Kafaridua	Dunco	1,779	2,000	120	155	112	500	226	2 2 2 2 2	16.2%
101	Control	Agama	Dunso	438	013	129	155	0	300	220	2,202	40.370
102	Central	Accra	Bunso	0	0	120	155	112	500	0	2 292	-
103	Central	DUNSO	Kumasi	458	015	129	155	113	588	226	2,282	40.5%
104	-	Kuması	Sunyani	541	//3	369	405	209	/51	394	3,242	55.1%
105	-	Cape Coast	Anwiankwantsa	0	0	0	0	0	0	0	0	-
106		Daboasi Jct.	Anwiankwantsa	0	0	0	0	0	0	0	0	-
107	-	Anwiankwantsa	Kumasi	0	0	0	0	0	0	0	0	-
108	Central	Kumasi	Fufulsu Jct.	502	6	0	0	0	0	0	508	0.0%
109	Central	Fufulsu Jct.	Tamale	1,094	548	388	458	143	288	249	3,168	33.7%
110	Central	Tamale	Bolgatanga	124	53	81	199	332	1,992	611	3,392	88.9%
111	Central	Bolgatanga	Navrongo	85	416	30	133	301	1,946	587	3,498	81.9%
112	Central	Navrongo	Paga	30	0	30	170	405	2,440	745	3,820	94.8%
113	-	Bolgatanga	Misiga	0	356	0	0	0	0	0	356	0.0%
114	Western	Elubo	Sunyani	38	0	0	0	2	20	5	65	41.5%
115	Western	Sunvani	Sawla	526	955	431	517	251	791	413	3.884	48.6%
116	Western	Sawla	Wa	228	416	53	66	109	503	164	1 539	53.9%
117	Western	Wa	Dowene	55	416	48	61	109	503	164	1 356	60.8%
119		Fufulsu Ict	Sawla	502	5/2	288	/59	1/2	262	240	2 660	40.20%
110	-	1 uluisu Jet.	Dowene	592	J42 A16	J00 10	400	145	200 502	164	1 256	60.90/
119	-	Vandi	Tamala	012	410	40	01	109	2 2 2 4	104	5 200	70.00/
120	-	1 cilui Momfo	I alliale	1 022	2 455	238	430	400	2,324	629	5 000	10.70/
121	-	M	Koloridua	1,933	2,433	279	211	103	099	0.3	3,809	17./%
122	-	Mamie	Adenta	5,105	4,149	800	653	227	459	41	11.434	15.4%

Note: CVR - Commercial Vehicle Ratio

										(Ur	nit: Vehicl	es)
Link No.	Corridor	Node	Name	Passenger Car/ Pick-up	Minibus	Bus	Medium Truck	Heavy Truck	Trailer	Others	Total	CVR*
1	Eastern	Tema Port	Tema Roundabout	17,300	4,975	1,490	2,145	1,465	4,930	1,615	33,920	28.0%
2	Eastern	Tema Roundabout	Afienya	4,570	1,869	438	607	511	2,008	835	10,838	35.0%
3	Eastern	Afienya	Doryum	3,808	2,410	374	683	514	2,700	1,103	11,592	40.5%
4	Eastern	Doryum	Asutsuare Jct.	4,532	3,111	399	644	545	2,071	847	2 262	5 10/
5	Eastern	Asutsuare Jct.	Knong	3 912	2 635	378	308	111	129	1	5,505	3.1%
7	Eastern	Knong	Atimpoku	3 403	4 418	308	374	39	50	9	8 601	4 7%
8	Eastern	Atimpoku	Adome	3,447	2,761	256	304	47	37	15	6,867	5.2%
9	Eastern	Adome	Juapong	4,112	3,525	256	304	47	37	15	8,296	4.3%
10	Eastern	Juapong	Frankadua	3,837	3,511	256	303	47	26	11	7,991	4.3%
11	Eastern	Frankadua	Osi-Abura	3,837	3,511	256	303	47	26	11	7,991	4.3%
12	Eastern	Osi-Abura	Asikuma Jct.	3,902	3,560	294	346	154	889	65	9,210	15.2%
13	Eastern	Asikuma Jct.	Dafor	1,575	1,633	423	415	384	1,920	837	7,187	49.6%
14	Eastern	Dafor	Fume	1,104	1,381	399	378	366	1,915	837	6,380	55.1%
15	Coastral	Altatsi	Akatsi	2 099	2 405	188	206	172	205	170	1,/30	30.4% 17.7%
17	Coastral	Sogakone	Peterkone	3,988 4 989	4 381	590	290 562	261	1 274	446	9,347	20.6%
18	Coastral	Peterkope	Kase	5.476	4.095	508	606	336	1,27	446	12,505	19.8%
19	Coastral	Kase	Sege	4,730	3,534	374	508	296	1,238	446	11,126	21.2%
20	Coastral	Sege	Nyigbenya	2,201	2,086	312	465	524	1,062	138	6,788	30.0%
21	Coastral	Ode-Opeo	Dawhenya	2,420	2,099	314	471	555	1,085	138	7,082	29.5%
22	Coastral	Dawhenya	Tema Roundabout	4,286	2,749	263	645	630	2,379	720	11,672	34.2%
23	-	Sogakope	Adidome	2,898	1,288	150	282	89	434	273	5,414	17.5%
24	-	Adidome	Dadaboe	1,761	1,144	123	252	63	432	273	4,048	22.0%
25	-	Dadaboe	Kpedzeglo Mafi Asialma	1,761	1,144	123	252	63	432	273	4,048	22.0%
20	-	Npeuzegio Mafi Asiekne	Tsrefe	1,701	1,144	123	195	63	432	273	3,690	22.0%
27	-	Tsrefe	Ho	1,484	1,120	123	195	54	432	273	3,691	23.9%
29	-	Но	Fume	657	753	58	78	103	647	279	2.575	42.2%
30	-	Asikuma Jct.	Dededu	3,435	3,553	343	388	166	448	12	8,345	11.6%
31	-	Dededu	Anyinawasi	3,435	3,553	343	388	166	448	12	8,345	11.6%
32	-	Anyinawasi	Sokode Gbogame	3,435	3,553	343	388	169	448	12	8,348	11.6%
33	-	Sokode Gbogame	Но	3,653	3,553	343	388	169	448	12	8,566	11.3%
34	-	Kpong	Odumase	3,950	5,889	552	498	203	231	13	11,336	8.8%
35	-	Atimpoku	Akosombo Dadaa Dufa	1,575	2,650	80	165	20	25	10	4,525	5.0%
30	-	Juapong Padoe Dufo	Knolukone	2/1 218	12	0	0	0	0	4	218	0.0%
38	-	Kpolukope	Abutia Kloe	218	0	0	0	0	0	0	218	0.0%
39	-	Abutia Kloe	Sokode Gbogame	218	0	0	0	0	0	0	218	0.0%
40	-	Prampram	Dawhenya	2,580	1,575	11	90	117	644	308	5,325	20.3%
41	-	Dawhenya	Afienya	1,579	1,262	133	233	432	1,550	274	5,463	43.7%
42	-	Afienya	Dodowa	4,035	3,005	515	429	125	318	24	8,451	11.6%
43	-	Anyaman	Sege	2,580	1,575	11	90	117	644	308	5,325	20.3%
44	-	Sege	Aveyime	2,581	689	119	211	385	508	6	4,499	22.6%
45	-	Mene	Peterkone	1,487	611	109	140	90	116	1	2,560	12.0%
47	-	Doryum	Ayikuma	3.879	2,369	291	305	82	738	288	7,952	17.6%
48	-	Dodowa	Adenta	4,063	3,025	515	444	125	328	24	8,524	11.6%
49	-	Odumase	Somanya	2,709	5,757	298	357	120	205	8	9,454	6.7%
50	-	Aflao	Dzodze	29	4	47	1	1	26	0	108	68.5%
51	-	Dzodze	Kpetoe	150	396	103	43	8	70	1	771	23.6%
52	-	Kpetoe	Ho	150	396	103	43	8	70	1	771	23.6%
53	-	Akatsi	Dzodze V potoo	121	391	56	42	7	44	1	662	16.3%
55	-	Kase	Adafoa	0	0	0	0	0	0	0	0	-
56	-	Somanya	Akuse Jct.	2.131	1.956	250	316	121	205	6	4,985	- 11.7%
57	-	Akuse Jct.	Kpong Dam Jct.	2.586	1,688	250	199	54	266	6	5,049	11.4%
58	-	Kpong Dam Jct.	Kagyanya	1,885	2,050	308	261	83	172	1	4,760	11.8%
59	-	Kagyanya	Asutsuare	1,885	2,050	308	261	83	172	1	4,760	11.8%
60	-	Kpong Dam Jct.	Ageteklekyi	1,114	1,080	196	128	85	129	2	2,734	15.1%
61	-	Ageteklekyi	Dokotsi	449	317	196	128	85	129	2	1,306	31.5%
62	-	Ageteklekyi	Adome	666	763	0	0	0	0	0	1,429	0.0%
63	-	Dadaboe	Agove	0	0	0	0	0	0	0	0	-

### Table A5-3Results of Route Assignment in 2036 (1)

										(L	Jnit: Vehic	les)
Link No.	Corridor	Node	e Name	Passenger Car/ Pick-up	Minibus	Bus	Medium Truck	Heavy Truck	Trailer	Others	Total	CVR*
64	[_]	Agove	Knedzeglo	0	0	0	0	0	0	0	0	<u> </u>
65	- ¹	Adidome	Volo	410	33	23	8	0	0	0	474	4.9%
66	-	Volo	Dufor-Adidome	404	9	23	3	0	0	0	439	5.2%
67	- I	Osi-Abura	Knolukope	65	49	37	43	108	862	54	1.218	87.1%
68	- I	Agove	Adidoknavui	0	0	0	0	0	0	0	0	-
69	- I	Adidoknavuj	Knomkno	0	0	0	0	0	0	0	0	
70	Project	A sutsuare Jct.	Ierusalem	2.845	1.881	381	457	482	1.794	836	8.676	40.3%
71	Project	Jerusalem	Asutsuare	246	33	28	36	12	79	0	434	27.4%
72	Project	Asutsuare	Volivo	1.765	2.027	261	235	65	166	1	4.520	10.9%
73	Project	Dufor-Adidome	Dokotsi	0	0	0	0	0	0	0	0	-
74	Project	Dokotsi	Juanong	4	2	0	0	0	0	0	6	0.0%
75	Project	Knomkno	Podoe-Dufo	53	12	0	3	0	11	4	83	18.1%
76	Project	Podoe-Dufo	Frankadıja	0	0	0	0	0	0	0	0	
77	Project	Ierusalem	Kaovanva	0	0	0		0	0	0	0	
78	Project	Kaovanva	Dokotsi	0		0		0	0	0	0	
79	Project	Ierusalem	Volivo	2 795	1 864	353	434	470	1 761	836	8 513	40.2%
80	Project	Volivo	Dufor-Adidome	3 414	2 934	435	533	598	2 338	842	11 094	38.0%
<u>81</u>	Project	Dufor-Adidome	Dakotei	3 045	2,25	459	530	598	2,330	842	10 731	30.0%
82	Project	Dalatei	Vnomkno	2 593	3 196	552	656	512	2,352	840	10,751	28.9%
83	Project	Knomkno	Knolukone	2,575	3 184	552	653	512	2,203	836	10,352	30.1%
84	Droject	Kpolukone	A silama Ict	2,540	2 1 3 5	515	610	404	1 330	782	0.251	27 80/2
0 <del>1</del> 85	Project	Valiva	Asikuilla jot.	2,475	1 1 8 3	370	246	515	621	702	5 3 3 0	28 30/0
05 96	Coostrol	VOIIVO	Aveyine Tattah Quashia	11 815	1,105	1 1 4 2	1 066	313	021 841	60	10 620	20.370
00 97	Coastral	Tettah Quashie	Letten Quasine	11,015	9 310	1,142	1,000	502	1 255	120	20 515	12.270
07	Coastral	A sorro	Accia Cana Coast	15,406	0,510	1,970	1,700	17	1,355	75	29,515	13.770
00	Coastral	Accra Cana Coast	Dahaasi Iat	30		0	10	1/	40	75	150	01.070
87 00	Coastral	Cape Coasi	Daboasi Jci.	55				14	40	13	139	81.170 20.20/
90	Coastral	Daboasi Jiic.		55		0		14	15	5	07 80	38.270
91	Coastrai	Takoradi Port	Elubo	1 622	2 100	420	447	14	2560	J 116	0 751	52.2%
92	Eastern	Fume	NKWanta	1,052	2,100	430	447	401	2,500	1,110	8,/31	50.70/
95	Eastern	NKwanta	Yenui	1,1/5	1,420	102	80	401	2,500	41	1,247	20.770 21.60/
94	Eastern	Yendi	Sakpiegu	440	2/3	103	89	50	20	41	1,030	21.0%
93	Eastern	Sakpiegu	Misiga	428	2/3	100	80	38	20	41	1,000	21.8%
90	Eastern	Misiga	Kulungugu	20		5	<u> </u>	0	0	0	40	-
97	<u>⊢</u>	Sakpiegu	Yawgu	4 772	4.524	7(2		224	222	10	40	12.5%
98		Odumase	Kotoridua	4,773	4,534	1.514	612	224	332	18	11,255	11.9%
99	- <u>'</u>	Tetteh Quashie	Adenta	12,981	7,041	1,514	1,230	451	682	60	23,959	11.5%
100		Adenta	Kotoridua	2,364	1,807	282	251	161	124	10	4,999	11.5%
101		Kotoridua	Bunso	994	1,400	292	298	154	640	279	4,057	33.6%
102	Central	Accra	Bunso	0	0	0	0	0	0	0	0	-
103	Central	Bunso	Kuması	994	1,400	292	298	154	640	279	4,057	33.6%
104	<u>'</u>	Kumasi	Sunyani	1,126	1,581	529	500	215	810	463	5,224	38.6%
105	<u>'</u>	Cape Coast	Anwiankwantsa	0	0	0	0	0	0	0	0	-
106	<u>'</u>	Daboasi Jct.	Anwiankwantsa	0	0	0	0	0	0	0	0	-
107	<u> </u>	Anwiankwantsa	Kumasi	0	0	0	0	0	0	0	0	-
108	Central	Kumasi	Fufulsu Jct.	173	0	0	0	0	0	0	173	0.0%
109	Central	Fufulsu Jct.	Tamale	1,029	1,451	352	359	117	231	236	3,775	24.8%
110	Central	Tamale	Bolgatanga	225	53	96	187	300	2,163	731	3,755	87.6%
111	Central	Bolgatanga	Navrongo	651	334	211	248	344	2,147	758	4,693	73.7%
112	Central	Navrongo	Paga	40	0	35	125	385	2,565	890	4,040	95.9%
113	<u> </u>	Bolgatanga	Misiga	428	273	100	86	58	20	41	1,006	21.8%
114	Western	Elubo	Sunyani	55	0	0	0	5	15	5	80	31.3%
115	Western	Sunyani	Sawla	1,443	1,785	593	608	257	852	477	6,015	36.2%
116	Western	Sawla	Wa	829	334	249	249	140	621	238	2,660	46.9%
117	Western	Wa	Dowene	643	334	246	247	140	621	238	2,469	50.4%
118		Fufulsu Jct.	Sawla	855	1,451	352	359	117	231	236	3,601	26.0%
119	- 1	Navrongo	Dowene	643	334	246	247	140	621	238	2,469	50.4%
120	· - '	Yendi	Tamale	755	1,153	244	356	346	2,500	956	6,310	64.1%
121	- I	Mamfe	Koforidua	2,906	2,635	475	472	142	825	287	7,742	22.3%
122	-	Mamfe	Adenta	5 925	4,311	715	552	178	280	31	11,992	10.0%

Table A5-3	<b>Results of Route Assignment in 2036 (2)</b>
------------	------------------------------------------------

Note: CVR - Commercial Vehicle Ratio

### Appendix 6 Results of Bathymetric Survey



Source: Study Team









Figure A6-3 River Cross Section of the Alternative Bridge Locations B-3

### Appendix 7 Results of Geotechnical Investigation

	PROJECT : Proposed Bridge Over River Volta CLIENT : CCVPADECO	BOR	EHOLI	E NC	) : 1 Near Asutuare
	Boring Equipment : Shell & Auger Boring with rotary pandant Equipment : Pilcon Waylean 1500 Investigtor Rig	Data : Loggo	30th A	prii - 1 ansto	and May, 2012
	Supervisor, Dr. Addo - Abedi Ground Cordinates 402346.098, 156400.585	Genun	Height		16 33
		Depth	SAMP	LE	In-Situ Test
Symbo	Soil / Rock Description	(m)	Туре	No.	SPT W
_	Loose, dark brown line sity SAND 0.3		D.	1	
		π			N=51
				-	
17		2	Ð	2	N=64
4	Hard Light Brown/Yellowish Brown Sandy SILT				
XX					N H CR
	· · · · · · · · · · · · · · · · · · ·	1			N 4 30
*			D	3	
		. 4			N#82
XX	40				
		5			N= 148
*			-		
xx	Hard, Light Brown/Dark Grey Sandy SILT	6	DCI	4	N=110
x	6.8				
		ž			M-100
		Ľ.,			11.7.40
	Water and the same				
	Plano, Chocoloto Brown-Sreytsh Sandy CLAY.	8	Ð	5	N=86
	44	9			N = 75
~ ~		10			N=59
X	Hard, Dark Grey Sandy StL1		D	6	
	Getting Wet at a Depth of 11.0m	11			N=51
* *	11.6	1.1			1
		15			10.010
	CHE Consiste Danie Comments of the	1			
	asin, comparations brown damay cutori	5	D	7	
		12			
	Stiff, GreytalyDark Brown Sandy CLAY	14	D	8	N=20
	147				
		15			H=22
		18			
- 1	Medium dense, reddish trown coarse grained SAND with pockets of stay and cobbles.				
	han the second				H
		. W	-	1940	JA # 12
					A A A A A A A A A A A A A A A A A A A
		16			N+23
-	18.5				
>	Medium Dense, Reddish Brown/Yellowish Gravely SAND (Gravel of Countration During)	19	Ð	10	N = Refusal
•	Monk wanabased and allohili.				An Orthogram Prof. South (-Odi
	TYTER, Weighterest and eithing decomposed CHENSS FOOI	20			
	Legend :	tale wa	is termin	ated	at 20.0m
	D - Disturbed sample recovery N - Standard Pen. Test (SPT)	Ground	Elev, 14	.325	
	Ground Water First Formulation - First -0.675	Rockha	nd Eliev:		6.675
	Presented a second a second seco				
	Final Groundwater Level - Elov 2.325				

Figure A7-1 Borehole Log at BH-A

)	PROJECT : Proposed Bridge Over river Volta	BOR	EHOLI	E NO	: 2 Noor Volivo
	Parine Environment - Shall & Auror Parine with retory pandant	Deta	2% 14		May 2012
100	Equipment: Pilcon Wayfarer 1500 Investigtor Rig	Lorges		iy - 501	Tattak
9	Supervisor; Dr. Addo - Abedi	Lugge		ansion	i reuen
1	Ground Cordinates : 411301.316, 158787.219	Depth	SAMP	LE ]	62.0 In-Situ Test
ymbol	Soil / Rock Description	(m)	Туре	No.	SPT 'N'
			n		
	Merium Dense Dark Brown Sithy SAND with Organic Matter	1			N = 22
			D	2	
	24	2			N - 30
- 00	••••				
-		3	D	3	N = 34
-					
-	Stiff to Hard Light Brown Sandy CLAY	4			N = 44
-			D	4	
-		5			N = 73
	5.6				
-744	Hard dark brown coarse Sandy SILT	6			N = 67
	Teru, dair, down oderes serving sign		D	5	
-	7	7			N = 94
X					
		8			N = 92
<u></u>			D	6	
×	Hard to Stiff Dark Grey Sandy SILT	9			N = 70
×	goung ac at their open				
		10	D	7	N = 11
*					
x		11			N = 16
-	11.6				
		12			
	Medium Dense Reddish Brown Gravelly SAND				
		13	D	8	N = 11
. 1					
•	Medium Dense Reddish Brown Gravelly SAND	14			
			D	9	
		15			N = 10
-	15.7				
3		16			N = 12
4					
,	Medium Dense to Very Dense, Reddish Brown Coarse Grained SAND with Rounded Quartzitic Gravel	17	D	10	N = 70
e		18			N = Refusal 25Blows/25mmPen
-	18.5				
	Weak, weathered and slightly decomposed GNEISS rock	19			N = Refusal 25Blows/25mmPen
		20 Hole w	as termi	nated a	at 20.0m
1	Legend : D - Disturbed sample recovery	Ground	Elev: E	lev 13	.985
1	N - Standard Pen. Test (SPT)	Rockhe	ad Elev	<i>r</i> .	-6.015
C F	Ground Water First Encountered: Elev 1.985 Final Ground Water Level: Elev 3.385				

Figure A7-2 Borehole Log at BH-B

_____

Equipment & Methods         Equipment 5200 Nicrodivay ST Loai         Generation         Conditionature         Date Beguin 22/07/12         Date Completed: 22/07/12<	PROJECT: Preparatory Survey ( Project( Geotech	on Eastern Co nical Investiga	rridor Devel ation)	opment		BOF	REHO	OLE	No.	BH	# 3				
Relation of South Control to So	Equipment & Methods					Elevat	ion:		Co	ordina	tes:				
MODES information by Database solution to broke solutice solutice solution to broke solutice solutice solut	Rotary coring with Central Mine Ed	quipment 6200	N Broadway	ST Louis											
CLENT : JUCA STUDY TEAM         LOCATION: Amerikance under the state of the s		.om to produce	somm cores									Date	e Begun	22/07	/12
LLEIN : JLA S 100 T 100 M         Reduced Level (m)         legel (m) <thlegel (m)<="" th="">         legel (m)         <thleg< th=""><th></th><th>1</th><th></th><th></th><th></th><th>1004</th><th>TION</th><th>A</th><th>ahiaka</th><th></th><th></th><th></th><th></th><th> /</th><th></th></thleg<></thlegel>		1				1004	TION	A	ahiaka					/	
Description         Reduced Level (m)         Legend (hthch)         Samples / Test (m)         Field Records           Most_Llosse. dark brown/black. Sandy CLAY         0.20         0.20         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	CLIENT : JICA STUDY TEAM					LUCA	TION:	Ame	sпіако	ре		Date	Complet	ed: 22/0	07/1
Description         Level (n)         Degree (Trick)         Point Propertor (Trick)         Test         Priod Records           Most, Loose, dark brown/black. Sandy CLAY         Image: Control (Control (C		1	Reduced		]	Depth		Sa	mples	/ Tests					
Most. Loose. dark brown/black. Sity sandy         Image: CLAY	Description		Level (m)	Legend	(	(m)	De (r	pth n)	San Type	No.	Test	t	Field F	lecords	
Moist, firm to stiff, dark brown silty CLAY       0.20       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00					-										
Moist, dark brown, sity CLAY       1.00       0.50       0.20       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50       0.50	Moist Loose. dark brown/black.	Sandy CLAY			(	0.20								_	
CLAT       O       0.50       0.20 · 0.50       CD       1       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I       I	Moist, firm to stiff, dark brown /black	k Silty sandy													
Moist, dense to firm, dark brown silty CLAY       Image: CLAY<					-	0.50	0.20 -	0.50	DS	1					
Moist, dense to firm, dark brown silty CLAY       1.00       0.60-1.00       05       2       1.0       1.0         Moist, firm to stiff, dark brown, silty CLAY       1.50       1.50       1.50       1.50       3       1       N=5       2.2,3       1.5         Moist, firm to stiff, dark brown, silty CLAY with occasional gravels       1.50       1.50       1.50       1.50       1.50       1.5       3       1       N=5       2.2,3       1.5         Moist, stiff, yellowish-brown, silty CLAY with occasional gravels       3.00       3.00       3.00       3.00       3.00       3.5       SPT       2       N=43       18,21,22       3.0         Moist, hard to compact, yellowish brown silty with whitish quartz keins.       5.00       6.00       05       5       1       1       N=54       24,25,26       1       4.0       1       4.0       1       4.0       1       4.0       1       4.0       1       4.0       1       4.0       1       4.0       1       4.0       1       4.0       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1					Ľ										
Moist, firm to stiff, dark brown, silty CLAY       Image: CLAY with stiff, dark brown, silty CLAY       Image: CLAY with stiff, dark brown, silty CLAY with scalar stress	Moist, dense to firm,dark brown si	Ity CLAY			_										
Moist, firm to stiff, dark brown,silty CLAY       Image: CLAY<					-									_	
Moist, firm to stiff, dark brown,silty CLAY       Image: CLAY with construct on the stiff, yellowish brown, silty CLAY with coccasional gravels       Image: CLAY with coccasiona					-	1.00	0.60 -	1.00	DS	2				1.0	)
Moist, firm to stiff, dark brown, silty CLAY       Image: CLAY with control in the stiff, yellowish-brown, silty CLAY with coreasional gravels       Image: CLAY with control in the stiff, yellowish-brown, silty CLAY with coreasional gravels       Image: CLAY with control in the stiff, yellowish-brown, silty CLAY with control in the stiff, yellowish brown, silty CLAY with whitsh quartz veins.       Image: CLAY with control in the stiff, yellowish brown, silty CLAY with whitsh quartz veins.       Image: CLAY with control in the stiff, yellowish brown, silty CLAY with whitsh quartz veins.       Image: CLAY with control in the stiff, yellowish brown, silty CLAY with whitsh quartz veins.       Image: CLAY with control in the stiff, yellowish brown, silty CLAY with whitsh quartz veins.       Image: CLAY with control in the stiff, yellowish brown, silty CLAY with whitsh quartz veins.       Image: CLAY with whitsh quartz					-							_			
Moist, stiff, yellowish-brown, silty CLAY with occasional gravels       Image: Character of the state of the	Moist, firm to stiff, dark brown	silty <b>CLAY</b>					1.00	- 1.50	DS	3					
Moist, stiff, yellowish-brown, silty CLAY with occasional gravels       2.00 - 3.00       DS       4       2.00 - 3.00       DS       5       1.00 - 3.00       DS       5       1.00 - 3.00       DS       SPT       2       N=43       18,21,22       3.00         Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.30 - 3.45       DS       5       DS       5       1.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00       4.00 - 4.00					-	1.50	1.50	- 1.95	SPT	1	N=5	;	2.2.3	1.	5
Moist, stiff, yellowish-brown, silty CLAY with occasional gravels       2.00 - 3.00       DS       4       2.0       2.0       3.00       3.00 - 3.00       DS       4       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0<					L										
Moist, stiff, yellowish-brown, silty CLAY with occasional gravels       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0       2.0															
Moist, stiff, Yellowish brown, silty CLAY with quartzitic gravel.       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00					-									2.0	, –
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       13.00       3.00 - 3.45       SPT       2       N=43       18,21,22       3.0         Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       4.50       4.50 - 4.50       DS       5       5       18,21,22       3.0         Moist, stiff. Yellowish brown, silty CLAY with quartzitic gravel.       4.50       4.50 - 4.50       DS       5       5       24,25,26       4.0         Moist, stiff. Yellowish brown, silty CLAY with quartz veins.       5.00 - 6.00       DS       6       1       4.0       4.0         Moist, stiff. Yellowish brown, silty Whitish quartz veins.       5.00 - 6.00       DS       6       1       1       4.0       1         Moist, stiff. Yellowish brown, silty Whitish quartz veins.       5.00 - 6.00       DS       6       1       1       1       1         Moist, stiff. Yellowish brown, silty Whitish quartz veins.       5.00 - 6.00       DS       6       1       1       1       1         Moist, stiff. Yellowish brown, silty Whitish quartz veins.       5       5.00 - 6.00       DS       6       1       1       1       1       1       1       1       1       1       1       1       1       1       1	Moist, stiff, vellowish-brown, silt	v CLAY with			Ľ		2.00	- 3.00	DS	4				2.0	, _
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.00       3.00       3.00       3.00       3.50       4.50       SPT       2       N=43       18,21,22       3.0         Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       4.50       4.50       4.50       4.50       5       5       1       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0	occasional gravels				-										
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00       3.00<					Ľ										
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.50 - 4.50       D5       SFT       2       N=43       18,21,22       3.0         Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.50 - 4.50       D5       5       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0					-									_	
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       Image: Clay with quartz veins.					Γ.										
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       Image: Clay with quartz qu					-									-	
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.50 - 4.50       DS       5       5       4.0       4.0         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       4.50       4.50 + 4.50       5       5       3       N=51       24,25,26       4.0         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       4.50       4.50 + 4.50       5       5       3       N=51       24,25,26       4.0         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       5.00 - 6.00       DS       6       1       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6					Γ.	3.00	3.00	- 3.45	SPT	2	N=4	3	18,21,22	2 3.0	)
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.50 - 4.50       DS       5       4.50       4.50 - 4.50       DS       5       4.50       4.50       4.50 - 4.50       Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       4.50       4.50 - 4.50       SPT       3       N=51       24,25,26       -         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       4.50       4.50 - 4.50       SPT       3       N=51       24,25,26       -       -       -       4.0       -       -       4.0       -       -       4.0       -       -       4.0       -       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       4.0       -       5.0       -       6.0       -       6.0       -       6.0       -       6.0       -       6.0       -       6.0       -       6.0       -<					Ċ.										
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       3.50 - 4.50       DS       5       5       5       4.0       4.0         Moist, stiff. Yellowish brown, silty with whitish quartz veins.       6       4.50       4.50       4.50       5       5       5       24,25,26       5       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0       4.0<					2										_
Moist, hard to compact, yellowish brown silty CLAY with quartzitic gravel.       Image: Clay with quartzitic gravel. <td></td>															
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       3.50 - 4.50       DS       5       4.0       4.0         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       4.50       4.50 - 4.95       SPT       3       N=51       24,25,26         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       5.00 - 6.00       DS       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6	Moist hard to compact vellowis	h brown cilty			-									_	
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       1       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50       4.50	CLAY with quartzitic dra	avel.					3.50	- 4.50	DS	5					
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A					b									4.0	) _
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       A.50       4.50       4.50       A.50															
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       A.SO       4.SO       4.SO       4.SO       4.SO       4.SO       4.SO       SPT       3       N=51       24,25,26       C         Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       Image: Classifier of the state					-										
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       Image: Character of the state of					2	4 50	4 50	4.05	CDT	_			24.25.20		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					┢	4.50	4.50	- 4.95	581	5	N=5		24,25,26	)	
Moist, stiff. Yellowish brown, silty CLAY with whitish quartz veins.       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A					F										
whitish quartz veins.	Matak aliff Vallandak kuru 19				È.										
Remarks:       Image: Second Sec	MUIST, STIIT. YEIIOWISH Drown, Silt	y <b>lay</b> with			μ	$ \rightarrow $								5.0	)
Remarks:       Image: Control of the second se		•			Ë.		5.00	- 6.00	DS	6					
Remarks:       ////////////////////////////////////					-			-						_	
Remarks:       ////////////////////////////////////					μ.										-
Remarks:       76.00       6.00       6.0       N=54       6.0         Remarks:       LEGEND:       58       Small Bulk Sample       6.0       6.0       6.0         U-Undisturbed sample       SB - Small Bulk Sample       6.0       6.0       6.0       6.0       6.0         W-Water Sample       V-Mater Sample       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0       6.0 <td></td> <td></td> <td></td> <td></td> <td>t</td> <td></td>					t										
Remarks:       500       6.00       6.00       6.0       6.0         Remarks:       LEGEND:       Image: Constraint of the second seco					H										
Remarks:       LEGEND:       Image: Constraint of the second seco					Ħ.	6.00	6.00 6	5.45	SPT	4	N= 5	4		6.0	)
SB-Small Bulk Sample U - Undisturbed sample U - Undisturbed sample S - Standard Penetration Test LB - Large Bulk Sample W - Water Sample R - Rock Sample V - Shear strength results from vane test U -	Remarks:					EGEN	n٠							_	++
U - Undisturbed sample S - Standard Penetration Test LB - Large Bulk Sample W - Water Sample R - Rock Sample V - Shear strength results from vane test Logged by Checked by AAA GKK						SB - Sn	nall Bu	lk Sam	ple						
LB - Large Bulk Sample W - Water Sample R - Rock Sample V - Shear strength results from vane test Sheet 1 of 2 Logged by AAA GKK						U - Und S - Star	isturb Idard I	ed san Penetr	nple ation Te	est					_
R - Rock Sample V - Shear strength results from vane test Logged by Checked by Sheet 1 of 2					;	LB-La W-Wa	rge Bu ter San	lk Sam	ple						$\rightarrow$
V - Snear strength results from vane test     Sheet 1 of 2       Logged by     Checked by       AAA     GKK						R - Roc	k Sam	ple	oulte f						
Logged by Checked by AAA GKK						v - She	ar stre	ngth re	esuits f	om var	ie (est	C	heet 1	of 2	++
AAA GKK					Lo	ogged	by		Check	ed by					
						AAA			GKK						

Figure A7-3 Borehole Log at BH-3 (1)

PRO	DJECT: PI	eparab	ory Surve	y on Easte Inv	m Corrid estigatio	lor Devi in)	elopment. P	roject	( Geotechni	cal			BH#3
-	Ernin	mant 2	Maihade		1	-		-		_			
Rotan	v corina w	ih Cenh	al Mine Fr	ninment	LOCATE	-	Am oc hisko	-	-			-	
6200N B to	p comy n troadway: 5 20.0m to	ST Louis produce	MO.6314 e 50m m ci	7 drilling rig ores.	CLIENT	: JICA	STUDY TEA	AM			Date Begun: 22/07/12		
Core Siz	zes: 0.050	)m	Oriental vertical	ion			Ground Lev	et					
	6.2.1	-		-		_			Rock (	Juaity			
Depth(m)	Progress	return	Cast	discontinui fies	f	0	r (*	Core run	Thick (m)	5.7	description	0.0 Level (m)	Legend
6.0	^{222/07/12} 1.5m	98%				31	× 0	1111	(1.5)	Sliç gr frack gra	philystrong to strong, eyish brown, slightly weathered, highly med,medium to coarse med,micaeous biotile mobilole <b>GMBSS</b> .		
<u>7.5</u> Remarks 1. BH - 3	e: was term	inated a	t a depth c	of 7.50m			LEGEND: Cr-Peice r-RockQ	tage C	Core Recovery				
below ex	isting gro	und leve	L.				f - No of fis	scture p	er metre		Sheet 2 of	2	
2 Grou of 1.50m	nd water h within th	was end e deoth	countered of explo	at a depth ration.	Logged I	AVA	u .		Checked by GKK				

Figure A7-3 Borehole Log at BH-3 (2)

Project in Ghana ( Geo	technical Inve	stigation)	opment	Ľ				110.	BH	# 4		
quipment & Methods				E	levat	ion:		Co	ordinat	es:		
Rotary coring with Central Mine Eq	uipment 6200N	Broadway	ST Louis									
MO.63147 drilling rig to 20.	0m to produce 5	50mm cores		-							Data Basuni 20	107/
				-							Date Begun: 20	/0//
CLIENT : JICA STUDY TEAM				I	LOCA	TION:	Dor	for Ad	idome		Date Completed:	20/0
												-
Description		Reduced		De	epth		Sa	mples	/ Tests		Field Dec	
Description		Level (m)	Legena		піск) m)	De (r	ptn n)	San Type	No.	Test		oras
Moist.Loose to dense. dark black	, silty <b>CLAY</b>			Ľ,								
vith rootlets. (ORGANIC TOPSOIL	)			0.	20							
oist,dense to stiff, dark black/browr	nish ,Silty <b>CLA</b>			0.	50	0.20 -	0.50	DS	1			
			-	-								
Moist.dense to stiff. brownish blad	k.siltv CLAY											
	,,											
				7	.00	0.60 -	1.00	DS	2			1.0
Moist, firm to stiff, dark brown,	silty CLAY			-		1.00	1.50	DS	3			
				<u> </u>	1.50	1.50	<u>- 1.</u> 95	SPT	1	N=1	<b>3</b> 4,6,7	1.5
					_							
				H			-					
				F I								
				-	_	2.00	- 3.00	DS	4			2.0
Moist, firm to stiff, dark brown,	silty CLAY			E .		2.00	5.00					
				F,	0.00	2.00	2.45	CDT	2		10	2.0
					3.00	3.00	- 3.45	SPT	2	N=1	5,7,10	3.0
				Ξ.								
				-								
				Ξ.								
Maist stiff to bard growish brow				-								
with occasional grave	Is Silly CLAT					3.50	4.50	DS	5			
with occusional grave	15			-								4.0
												1.0
				-								
				- 2	4.50	4.50	4.95	SPT	3	N=4	<b>0</b> 10,13,27	
				-								
Moist, stiff to hard, grevish brown	clavev SILT.			<b>-</b>								E O
(Highly weathered biotite amphib	ole <b>GNEISS</b> )											5.0
	,			E –		5.00	- 5.50	DS	6			
				μ.								
				6							·	
				Ę I				057				
				- 7	5.00	5.50 -	5.95	SPT	4	N= 5	δ ξ15,18,40	6.0
				LF	GENF	):						5.5
END OF PERCUSSION DRILLING				SB	- Sm	all Bull	k Samj	ole				
emarks: RH - 4 was terminated at a dept	h of 5 95m below	existing		U - S -	Undi Stan	sturbe dard Pe	d sam enetra	pie tion Tes	st			
round level.		CADUNG		LB	- Lar	ge Bull	Sam	ole				
				R -	- wate Rock	Samp	le					
				۷-	Shea	r stren	gth re	sults fro	om vane	test		
											Sheet 1 of	1
				Log	gged	by		Check	ed by			
					Andre	w		GKK				



Project in Ghana ( Geote	chnical Inve	stigation)	opinent	50	<b>NEIIOEE</b>	110.	BH#	• 4a		
Equipment & Methods		stigation)		Eleva	tion:	6	ordinat			
Rotary coring with Central Mine Equi	ipment 6200N	Broadway	ST Louis	Lieva			orainat			
MO.63147 drilling rig to 20.0r	m to produce 5	50mm cores	i.					-		
									Date Beg	un: 17/07/1
CLIENT - IICA STUDY TEAM			-	1.000		for Ad	idama	-		
CLIENT : JICA STUDY TEAM				LUCA	TION: DOI		aome		Date Com	pieted: 19/07
				Depth	Sa	mples	/ Tests		·	
Description		Reduced	Legend	(Thick)	Depth	San	nple	Tesi	, Fie	ld Records
ost Loose to dense, dark brown vellow	vish siltv <b>CLA</b>			(m)	(m)	Туре	No.			
with gravels.				0.20						
<u></u>										
			-					_		
Moist, dense to stiff, dark brown , Si	ity CLAY			0.50	0.20 - 0.50	DS	1	_		
				-						
Moist, dense to stiff, reddish brown,	silty <b>CLAY</b>									
			-	<b>B</b> 00	0.00.4.00		2			
				1.00	0.60 - 1.00	DS	2		-	1.0
			1							
Moist, stiff, dark brown,silty CLAY	with shells			-	1.00 - 1.50	DS	3			
				1.50	1.50 - 1.95	SPT	1	N=1	<b>5</b> <u>3</u> ,6	,9 <u>1</u> .5
				-	2 00 - 3 00	DS	4			2.0
Moist, stiff, reddish brown, silty	CLAY				2.00 5.00	0.5				
				-						
				3.00	3.00 - 3.45	SPT	2	N = 1	<b>7</b> 4,7	.10 3.0
				-						
				-						
Moist, stiff, dark brown silty C	JAY .				3.50 - 4.50	DS	5			
										4.0
								_		
				-						
				4.50	4.50 - 4.95	SPT	3	N=2	5 6,11	,14
Moist stiff gravish brown clave										5.0
(Highly weathered biotite amphibol	e GNETSS)			+						5.0
	e <b>G.</b>				5.00 - 5.50	DS	6			
					5.50 - 5.95	SPT	4	N= 4	6 8,15	5,31
				6.00						6.0
END OF PERCUSSION DRILLING				LEGEN SB - Sm	D: all Bulk Sam	nle				
				U - Und	isturbed sam	ple				
emarks: BH - 4a was terminated at a depth	n of 5.95m belov	v existing		S - Stan	dard Penetra	tion Te nle	st			
pround level.				W - Wat	er Sample					
				R - Roc	k Sample	sulte fr	om vano	test		
				- Silea	a suenyui le	Sun S II	an vane	teat		
									Sheet	1 of 1
				Logged	by	Check	ed by			
				AAA		GKK				



Preparatory Survey on Eastern Corridor Development Project in the Republic of Ghana Appendix 7

PROJECT:			BOF	REHOLE	No.	BH	15		
Proposed			6.00				224		
Equipment & Methods Picon Wavfarer 1500 light cable percussion no with sta	ndard accesso	ories for	Hevat	tion:	N	ordinat	tes:		
sinking 150mm diameter holes.					E				
			1.0	_		_	-	Date Begun	: 30/06/1
CLIENT:			1004	TICAL Name				Date Complet	hed: 30/06;
	Reduced		Depth	S	imples,	/ Tests	5	1	
Description	Level (m)	Legend (	Thick) (m)	Depth (m)	San Type	No.	Test	r Field	Records
Soft , moist, dark brown sandy CLAY		XXX	0.20			1	1		
		<u>XXX</u>	0.20	-			1		
		XXX		0.50	SB	1			-
Very stiff, moist, dark brown CLAY with traces of sand and uravel		XXX	1-1						
		XXXX	1						
		XXX:	1.00	1.00 - 1.45	SPT	1	N= 2	1 56.55.6.	5 1.0
tighty decomposed vellowish/ grovish brown (NIES)		1.	a second						
igni accomposed, jenomiský grejisni bromn citura.		-0	1.30						
				1.50	SB	2			
					-				
		-							
				2.00 - 2.45	SPT	2	N=4	0 9.17.12.9	10.9 2.0
							111		
moderately decomposed, yellowish brown, light grey camess			-						
						_			
				3.00 - 3.45	SPT	3	N=4	0 6.6.8.12.1	0.10 3.0
			3 50				1		
	1		June	*					
		1		4 00 - 4 45	GUT		M-5	3 11 10 15 1	3 14 4 0
				200 20				5 II, 15 II,	
		-0-							
Highly weathered, light grey greenish brown GNIESS	-	2							
		1		E 00 E 30	GIT	E.	RISE.	0 10 00 000	M 50
				5.00-5.30	SPT	5	C< N	U 12,25,26	PU 5.0
		· · ·	5.30			-			
END OF PERCUSSION DRILLING									
			-			- A			
						2			
		E E							
		Þ							
	1								-
<b>Remarks:</b> 1. Drill-hole was terminated at a donth of 5 20m hol.	w oviction		LEG	END: Small Bulk 4	amole				
ground Level.	an casuly		U-U	indisturbed s	anple	Tort			
2. Groundwater was not encountered within the dep	th of explora	tion	S-S	Large Bulk S	ample	lest			
3. Hole chiselled from 3.50-5.30m in 2hrs			W-V	Nater Sample lock Sample					
And the second second second second second			V-5	hear strengt	h result:	s from v	rane tes	st.	
								Sheet 1	of 1
		I	ogged	by	Check	ed by	1		
			Ebene	zer	Ansah	(1	-	1-1	

Figure A7-6 Borehole Log at BH-5

Preparatory Survey on Eastern Corridor Development Project in the Republic of Ghana Appendix 7

PROJECT:	1		BO	REHOLE	No.	DI	16					
Proposed				12 11-		DI	10					
Equipment & Methods	1	1	Eleva	tion:	Co	ordina	tes:				t	
Pilcon Wayfarer 1500 light cable percussion rig with sta	indard accesso	ries for	1		N							
sinking 150mm diameter holes.					E			1.			4	
			-		-	_		Date Beg 28/	m: 16/20	112	4	
CLIENT -	1.1				1	-		Data Come	latad:			
		1	LOCA	TION: Osun	vem -	Asutu	are	28/	06/20	)12		
	Reduced		Depth	Si	mples	/ Test	5			1.2		
Description	Level (m)	Legend	(Thick)	Depth	Sa	nple No.	Test	Fie	d Rec	ords		
		÷×÷:	(	()				1	_		IĽ	
Soft ,moist, dark brown sandy CLAY			0.20			_		-			H	
1	1	XXX	0.30		1.5			-			Ħ	
		$=$ $\times$ $=$ :	1	0.50	SB	1	1	1.0			П	
		÷×÷:									÷	
the second se		÷×÷	3									
and the set of the second s		-x-:	-	1.00 1.45	ar	-					I	
Verystiff, moist, dark brown CLAY with traces of sand		×÷×÷	+	1.00 - 1.45	SPI	1	m= 2	2 3,7,0,0,	5,5	1.0	÷	
and gravel		×-x-		111								
		×-×-	-								-	
		XXX		1.50	SB	2	-				1	
		×÷×:			1.20	1.00			-		1	
		× x x z z z z z z z z z z z z z z z z z	1 80			-		-			÷	
	1	·	1.00	ALCONTRON	1.1.1	1.00	a ch	-50 14,14,7,18,32 2.0				
			+	2.00 - 2.35	SPT	2	N>5	14,14,7,	18,32	2.0	4	
	in the second se	-0	-					1.00			t	
		· · ·									E	
		,~				-		-		-	ł	
Fight worthored vallewish/ gravith brown CMEES			1					1			Ħ	
nigniy weathered yellowishy greyish brown GNESS		0					-	1			1	
		· · ·	-	1			1	1			÷	
				3.00 - 3.45	SPT	3	N=3	5 9,8,10,6	,8,11	3.0	I	
					1.6.0		100 P		-		-	
		• •	1001				1				Ē	
		<b>`</b> .	3.35			_						
END OF PERCUSSION DRILLING												
											E	
							-		-	+		
											fE	
Domarks	1		150	-			-				H	
1. Drill-hole was terminated at a denth of 3.35m be	low existing		SB -	<b>Small Bulk S</b>	ample	1.	-					
ground Level. Encountered rock at 3.35m below the	surface.		U - Undisturbed sample S - Standard Penetration Test									
2. Groundwater was not encountered within the der	th of explora	S - Standard Penetration Test ation LB - Large Bulk Sample W - Water Sample P. Rock Sample										
								-			tt	
		1	R - Rock Sample V - Shear strength results from vane					t				
	1	-			-			Sheet	1 of	1	H	
	4	1	Logged	by	Check	ced by						
			Ebene	zer	Ansal	n						

Figure A7-7 Borehole Log at BH-6

HDM-4 Input Data
Appendix 8

# Table A8-1 Road Sections - Basic

# ) M - 4 Road Sections - Basic

MANAGEMENT

Jdy Name: 4. Construction of new bypass_ECDP

A MOIL OF HOMO	
	09-01-2013
	Run Date:

0	Name	Speed Flow Type	Traffic Flow Pattern	Road Class	Climate Zone	Surface Class	Pavement Type	(Km)	(m)	Shoulder width (m) La	nes	AADT	AADT	Year
NO A	CC_A Tema - Accra	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Concrete	JRCP	25.15	7.30	1.00	2	2,485	a	2013
SC 8	CC_B Accra - Kumasi	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	243.37	7.40	1.00		2,485	0	2013
SC C	CC_C Kumasi - Tamale	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	357,20	8.15	1.00	5	2,485	0	2013
EC.A	EEC_A Tema - Asu Jot.	Two Lane Standan	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	34.28	7.30	100	2	8.856	0	2013
EEC B	EEC_B Asu Jot Asikun	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	48.20	7.30	1.00	2	8,856	0	2013
SEC C	EEC_C Askuma Jot - Fi	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGE	63.36	7.30	1.00	-	3,664	0	2013
EC_D	EEC_D Fume - Nkwanta	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	167.08	7.30	1.00		5,641	0	2013
SECE	EEC_E Niwanta - Tama	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGE	251,85	7.30	1.00	~	1.428	0	2013
DEC	Proposed Eastern Corrid	Wide 2 Lane Road	Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	67.20	7.30	2.50	5	8,163	a	2016
528	R28 Tema - Fume	Two Lane Standar	d Free-Flow	Primary or Trunk	Ghana ECDP	Bituminous	AMGB	210.05	7.30	1.00	2	3.692	0	2013

Preparatory Survey on Eastern Corridor Development Project in the Republic of Ghana Appendix 8

Page 1 of 1

H	<b>M-4</b>	Road	Sect	ions	ÿ	ondi	tion							
HIGHWAY DEV	ELOPNENT & MANAGEMENT	Study Name Run Date	4. Const 10-01-20	ruction o	f new b	ypass_t	ECDP							
Bituminous	Sections: Name	Condition	Roughness IRI (m/km)	To Crackir Area (* ACR	ng KA	/elled Area F ARV	otholes (no./km) NPT	Edge Break (m2/km) AEB	Rut (mm) RDM	Texture Depth (mm) TD	Skid Resistance (SCRM) SFC50	Drainage Condition		ĺ.
EEC_A EEEC_A EEEC_B EEEC_D EEEC_D CC_B CC_A CC_A CC_A	EEC_A Tema - Asu Jct. EEC_B Asu Jct Asikun EEC_D Fume - Nkwanta EEC_E Nkwanta - Tami R28 Tema - Tamate CC_B Accra - Kumasi CC_C Kumasi - Tamate Proposed Eastern Corri ections: Name CC_A Tema - Accra	2012 2012 2012 2012 2015 2015 2015 2015	250 400 400 400 400 250 250 250 250 400 400 400	11 51 51 51 51 51 51 11 11 11 11 11 11 1	00000000000000000000000000000000000000	1.00 5.00 5.00 5.00 5.00 1.00 1.00 1.00	0 00 0 000 0 00 0 000 0 000 0 000 0 000 0 00000 0 000 0 000 0 0000000 0 0000000	0.00 5.00 5.00 5.00 0.00 0.00 0.00 0.00			* * * * * * * * * *	Excellent Excellent Excellent Excellent Excellent Excellent		
HDM-4 Version	5												Page 1	10

Table A8-2 Road Sections - Condition

ಲ
5
3
B
1
÷
Š
Ĕ
Ē
e)
5
•=
<b>_</b>
୍କ
$\geq$
$\mathfrak{S}$
~
~
<
e)
<u> </u>



Study Name: 4. Construction of new bypass_ECDP Run Date: 10-01-2013

Vehicle Fleet - Basic

Motorised Vehicle Types: Name	Base Type	PCSE	No. of N Wheels A	No. of Axles T	vre Tvpe	Tyre Base Recaps	Tyre Retread Cost (%)	Annual Km	Annual Work Hours	Avg Life	rrivate Use I (%) ei	Pass-	Work Related Trips	SALF	Oper. Veight Life (t) Model
6-3 Truck Trailer	Articulated Truck	1.80	18	5 Bi	as plv	1.30	15.00	85,000	2.050	15	0	0	100.00	4.63	28.00 Optimal
5 Heavy truck	Heavy Truck	1.60	10	3 8	as ply	1.30	15.00	60,000	2,050	15	0	0	100.00	2.28	13.00 Optimal
4-2 Medium Truck	Medium Truck	1.40	9	2 BI	as ply	1.30	15.00	40,000	1.200	12	0	0	100.00	1.25	7.50 Optimal
2 Small Bus	Mini Bus	1.20	4	2 R	adial ply	1.30	15.00	60,000	750	ω	10	10	00.06	0.01	1.50 Optimal
1-1 Car/Taxi	Four Wheel Drive	1.00	4	2 8	ias ply	1.30	15.00	23,000	1,300	10	20	m	80.00	0.01	1.80 Optimal
3-2_Large Bus	Heavy Bus	1.60	10	3 BI	ias ply	1.30	15.00	70,000	1,750	12	10	40	00.06	0.80	10.00 Optimal
7 Others	Articulated Truck	1.80	18	5 8	ias ply	1.30	15.00	85,000	2,050	15	0	0	100.00	4.63	28.00 Optimal
1-2_Pick-up	Four Wheel Drive	1.00	4	2 BI	ias ply	1.30	15.00	23,000	1,300	10	20	e	80.00	0.01	1.80 Optimal
3-1 Medium Bus/Mummy	WHeavy Bus	1.60	10	3 Bi	ias ply	1.30	15.00	70,000	1,750	12	10	40	00.06	0.80	10.00 Optimal
4-1_Light Truck	Medium Truck	1.40	9	2 BI	las ply	1.30	15.00	40,000	1.200	12	0	0	100.00	1.25	7.50 Optimal
6-1_Semi - Trailer (Light)	Articulated Truck	1.80	18	5 8	ias ply	1.30	15.00	85,000	2,050	15	0	0	100.00	4.63	28.00 Optimal
6-2_Semi - Trailer (Heavy)	Articulated Truck	1.80	18	5 8	ias ply	1.30	15.00	85,000	2.050	15	0	0	100.00	4.63	28.00 Optimal

HDM-4 Version 1.3

Page 1 of 1

<u> </u>
Ξ
Ξ
2
Ξ
5
Ē
<u> </u>
et
ē
Ē
F
<u> </u>
Ē
e
$\geq$
4
Ô.
ف
Ť
9
Ľ



Vehicle Fleet - Economic

Study Name: 4. Construction of new bypass_ECDP Run Date: 10-01-2013 Currency: To be completed

Cargo Holding (per hr)	0.50	0.30	0.10	00:0	00.0	00.0	0:30	0.00	00.0	0:10	0.50	0:00
Passenger Non-Work (per hr)	0.09	0.09	0.09	0.09	0.13	0.09	0.09	0.13	0.09	0.09	0.09	0.09
Passenger Work Time (per hr)	0.34	0.34	0.34	0.34	0.50	0.34	0.34	0.50	0.34	0.34	0.34	0.34
Annual Interest (%)	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
Annual Overhead	800	800	700	500	400	700	800	400	700	700	800	800
Crew Wages (per hr)	1.09	1:09	0.95	0.52	0.09	0.78	1.09	0.09	0.78	0.95	1.09	1.09
Maint Labour (per hr)	1.61	1.15	1.15	1.15	1.84	1.15	1.61	1.84	1.15	1.15	1.61	1.61
Lubr. Oi (per litre)	2.60	2.60	2.60	4.15	4,15	2.60	2.60	4.15	2.60	2.60	2.60	2.60
Fuel (per litre)	0.55	0.55	0.55	0.42	0.42	0.55	0.55	0.42	0.55	0.55	0.55	0.55
Replace	556	556	215	155	120	782	608	312	162	215	556	556
New	134,344	95,487	68,830	30,788	11,600	61,984	146,797	16,385	61,964	68,830	134,344	134,344
Base Type	Articulated Truck	Heavy Truck	Medium Truck	Mini Bus	Four Wheel Drive	Heavy Bus	Articulated Truck	Four Wheel Drive	VHeavy Bus	Medium Truck	Articulated Truck	Articulated Truck
Motorised Vehicle Types: Name	6-3_Truck Trailer	5_Heavy truck	4-2_Medium Truck	2 Small Bus	1-1_Car/Taxi	3-2_Large Bus	7_Others	1-2_Pick-up	3-1_Medium Bus/Mummy V	4-1_Light Truck	6-1_Seni - Trailer (Light)	6-2_Semi - Trailer (Heavy)

Preparatory Survey on Eastern Corridor Development Project in the Republic of Ghana Appendix 8

ſ

Page 1 of 1

HDM-4 Version 1.3

# Appendix 9 Road Sectors Impact Assessment and Recommended Mitigation Measures in ESMF

### APPENDIX 5

### Analysis of Environmental / Social Issues Common to Road Sector Activities

	Environmental /	Common								Average	Ranking
	<b>Social Parameters</b>	GHA	EPA	DUR	DFR	WD	FS D	WRC	FC		
1	Dust	Н	Н	Н	Н	Н	Н	Н		Н	1
2	Noise	Н	Н	Н	Н	М	Н	L		Н	5
3	Road accidents	М	М	М	М	Н	М	-		М	16
4	Public safety	М	М	М	Н	М	М	М		М	17
5	Resettlement	М	М	Н	L	М	М	Н	L	М	21
6	Compensation	М	М	Н	М	М	М	Н	М	М	11
7	Wildlife en	т	т	м	т	м	м		м	М	20
/		L	L	M	L	M	M	- M	IVI	M	20
8	(e.g. access)	L	L	Н	L	М	M	M	L	М	19
9	Habitat disruption	М	М	Н	L	Н	М	М	Μ	М	15
10	Water contamination	Н	Н	М	М	Н	М	Н	М	М	14
11	Stream diversion / blocking	М			М	М	М	Н	М	М	9
12	Flooding	М	М	М	L	М	М	М	М	М	12
13	Run off	М	М	М	М	М	М	М	М	М	10
14	Induced development	М	М	Н	М	М	М	М	Н	М	8
15	Cultural concerns	М	М	Н	М	М	М	L	L	М	13
16	Archaeological losses	L	L	L	L	М	М	L	L	L	22
17	Pits / trenches near roads	Н	Н	Н	Н	Н	М	М	М	Н	4
18	Inadequate drains along roads	Н	Н	М	М	Η	Н	L	М	Н	6
19	Road construction waste generation & disposal	Н	М	М	Н	Н	L	Н	М	Н	7
20	Top soil removal	Н	Н	Н	М	Н	Н	М	М	Н	3
21	Tree & vegetation removal	Н	Н	Н	Н	Н	М	Н	М	Н	2
22	Extensive construction (impact) corridor	Н	М	Н	L	М	-	М	М	М	18

Note: L - Represents Low Occurrence

M - Represents Medium Occurrence

H - Represents High Occurrence

### APPENDIX 6

### Analysis of Environmental / Social Issues Significant to Road Sector Activities

	Environmental /	Significant								Average	Ranking
	Social Parameters	GHA	EPA	DUR	DFR	WD	FS D	WRC	FC		
1	Dust	Н	Н	Н	Н	Н	Н	Н	М	Н	1
2	Noise	Н	Н	Н	М	М	Н	L	М	М	12
3	Road accidents	Н	М	М	М	-	М	-	Н	М	15
4	Public safety	Н	Н	Н	М	М	М	Н	М	Н	3
5	Resettlement	Н	Н	Н	М	М	М	Н	М	М	8
6	Compensation issues/agreement	Н	М	Н	М	М	Н	Н	М	М	9
7	Wildlife concerns	Н	М	М	Μ	М	М	-	М	М	17
8	Forestry concerns (e.g. access)	Н	М	М	М	М	М	М	М	М	16
9	Habitat disruption		М	Н		Н	М	М	М	М	18
10	Water contamination	Н	Н	Н	М	Н	Н	Н	М	Н	2
11	Stream diversion / blocking	Н	М	М	М	М	Н	М	М	М	14
12	Flooding	Н	Н	М	М	L	Н	М	М	М	11
13	Run off	Н	L	Н	Н	М	Н	М	Н	Н	5
14	Induced development	М	М	Н	М	М	М	-	М	М	21
15	Cultural concerns	Н	Н	Н	М	М	М	М	М	М	13
16	Archaeological losses	М	М	L	М	Н	L	М	М	М	20
17	Pits / trenches near roads	Н	Н	Н	Н	Н	М	М	L	Н	6
18	Inadequate drains along roads	Н	Н	Н	М	Н	М	М	М	М	10
19	Road construction waste generation & disposal	М	М	Н	Н	М	L	М	М	М	19
20	Top soil removal	Н	М	Н	М	Н	М	Н	М	М	7
21	Tree & vegetation removal	Н	Н	Н	Н	М	М	Н	М	Н	4
22	Extensive construction (impact) corridor	Н	М	Н	L	М	-	М	М	М	22

### APPENDIX 8

### Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (1)

No	Impact	Potential Source	Mitigation Measures
1	Soil Impacts Loss of productive soil elimination of the productive capacity of the soil covered by roads particularly where the site for the road development is also suitable for agriculture.	Removal of productive soil Compaction with heavy machinery during construction Burrow pits and gravel winning, Quarries Spoil dumping Site preparation and clearing	<ul> <li>Minimizing the area of ground clearance;</li> <li>Avoiding sensitive alignments, including steep slopes</li> <li>Progressive replanting of disturbed areas during construction not after</li> <li>Terracing of nearby marginal farmland to make it more productive on the long term;</li> <li>Remediation of affected soils by using a sub soils to break up hardpan produced by compaction with heavy equipment:</li> </ul>
	Erosion	Removal of vegetation and Soil disturbance coupled with poor drainage Site preparation and clearing	<ul> <li>Specifications for contractors responsibilities to cover such issues as erosion control, prevention of fuel spills during construction, and planting as well as timely watering of plantings.</li> <li>Minimizing the area of ground clearance</li> </ul>
	Destabilization of slopes which can lead to landslides	Creation of road cuts or embankments. Excessive steepness of cut slopes, deficiency of drainage, modification of water flows,	<ul> <li>Balancing filling and cutting requirements through route choice, so as to avoid/minimize the production of excess spoil material and reduce the need for borrow pits;</li> <li>Avoiding the creation of cut slopes and embankments of an angle greater than the natural angle of repose for the local soil type; and</li> <li>Engineering solutions such as intercepting ditches at the tops and bottoms of slopes. Gutters and spillways are used to control the flow of water down a slope;</li> <li>Terraced or stepped slopes to reduce the steepness of a slope. riprap, or rock material embedded in a slope face, sometimes combined with planting, retaining structures, such as gabions (rectangular wire baskets of rocks), etc should be explored</li> </ul>
	Soil contamination during road construction and traffic operations.	Daily traffic operation on very busy roads. Metals from emissions such as chromium, lead, and zinc remain in the soil for hundreds of years. Pollutants settling in roadside soil can impair the growth of vegetation increasing potential for erosion. Spillage of hazardous products in transit. Site preparation and clearing	<ul> <li>Enforcement of emission standards and introduction of control legislation and mechanism</li> <li>Guidelines for transport of hazardous products defining permissible routes</li> <li>Emergency response procedures for spillage</li> </ul>

### APPENDIX 8

### Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (2)

No	Impact	Potential Source	Mitigation Measures
2	Water Resources Impacts	Concentrating flows at certain points and, in some cases, increasing the speed of flow resulting in flooding, soil erosion channel modification and	• Avoiding alignments which are susceptible to erosion, such as those crossing steep slopes;
	waters	siltation of streams.	• Minimize the number of water crossings
	Ground water table modifications	- Earthworks Road drainage and excavation & embankments and structures can reduce or raise the water table (through restricting flow)	<ul> <li>Use clean fill materials around watercourses such as quarried rock containing no fine soil; and</li> <li>Provide reservations/buffer zones of undisturbed vegetation between road sites and water bodies</li> </ul>
	Water quality degradation (surface and groundwater)	<ul> <li>Sedimentation, changes in biological activity in streams and on their banks</li> <li>Uncontrolled construction activities,</li> <li>Chemicals spillage</li> <li>Chronic pollution of surface runoff from exhaust emissions, pavement and tyre wear, petroleum product drippage, and corrosion of metals</li> </ul>	<ul> <li>Introduce Water speed reduction measures e.g. grasses, riprap, and other devices in water channels etc</li> <li>Provide settling basins to remove silt, pollutants, and debris from road runoff water before discharge to adjoining streams or rivers</li> <li>Construction of runoff channels, contouring or other means of erosion control</li> <li>Pave sections of roads prone to erosion and sedimentation particularly relevant near water crossings.</li> <li>Compensatory measures such as</li> </ul>
			<ul> <li>Compensatory measures addrass provision of bore holes and wells for communities adversely affected</li> <li>Adopt environmental enhancements measures in design such as water retention structures in dry areas, and raising inlets to drainage culverts in high water table areas, retarding basins in areas prone to flooding to reduce runoff peaks, spillways</li> </ul>
	<b>APPENDIX 8</b>		
--	-------------------	--	
--	-------------------	--	

# Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (3)

No	Impact	Potential Source	Mitigation Measures
3	Air Quality Impacts	Construction-related air pollution	Water dousing to minimize dust
	Dust	Batching plants and asphalt plant	Contract specifications include dust
	Emissions such as Nitrogen	operations	control measures
	oxides (NO _X ), Hydrocarbons	Material dump sites	<ul> <li>Rerouting traffic away from</li> </ul>
	(HC), Carbon monoxide (CO).	Vehicular emissions	populated areas and reducing traffic
	Sulfur dioxide (SO ₂ ),	Haulage of materials	congestion.
	Particulates including suspended		<ul> <li>Provision of Bypass roads.</li> </ul>
	airborne particles from diesel fuel		• Covering of Hauling trucks carrying
	combustion, materials produced		sand with canvass to avoid dust
	by tyre, brake and road wear, and		emission;
	dust, lead (Pb)		• Location of material storage areas
	Aldehydes etc.		away from communities and
			environmentally sensitive receptors
			• Selecting road alignments which
			avoids housing, schools, and
			workplaces;
			Avoiding placement of busy
			intersections, near housing, schools
			or workplaces;
			• Taking account of prevailing wind
			direction when sling roads and road
			reatures, including relueing stations,
			near population centres;
			• Avoiding steep grades and sharp
			deceleration acceleration and
			shifting wherever possible:
			<ul> <li>Sealing high-use dirt roads where</li> </ul>
			they pass through populated areas to
			control dust: and
			Planting tall leafy and dense
			vegetation between roads and human
			settlements to filter pollutants
			Vehicle emissions standards as well
			as inspection and maintenance
			requirements;

# Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (4)

No	Impact	Potential Source	Mitigation Measures
4	Habitat Destruction and	Right of way and land take	<ul> <li>Avoid environmentally sensitive</li> </ul>
	disruption (flora and fauna	Road intersecting habitat,	areas to prevent severe impacts on
	impacts)	Borrow and pits, and quarries	flora and fauna.
			<ul> <li>Water crossings should be</li> </ul>
	Habitat loss	When a road cuts through an	minimized, and buffer zones of
		ecosystem it	undisturbed vegetation should be left
	Habitat fragmentation	affects the ecosystem's stability and	between roads and watercourses.
		health.	<ul> <li>Planting in road rights-of-way and</li> </ul>
		Roads tend to fragment an area into	adjacent areas can help to support
		weaker ecological sub-units, thus	local flora and fauna.
		making the whole more vulnerable to	<ul> <li>Re-engineering road cross-section</li> </ul>
		invasions and degradation.	designs by using narrower widths,
			lower vertical alignments, smaller
		Corridor restrictions	cuts and fills, flatter side slopes, and
		Accidental death and poaching of	less clearing of existing vegetation.
		animal species.	<ul> <li>Provision of animal crossings to</li> </ul>
			facilitate movements
		Aquatic habitat damage -Erosion from	• Fencing or plant barriers can reduce
		poorly constructed and rehabilitated	the risk of collisions between
		sites can lead to downstream siltation,	animals and vehicles.
		ruining spawning beds for fish.	• Provision of aquatic crossings:
			Culverted crossings should be
		Constriction of flows at water	designed with the needs of migratory
		crossings can make the current too fast	aquatic species in mind.
		for some species.	• Baffles might be installed to slow
			the flow enough to allow fish
		Alterations of flood cycles, tidal flows,	movement etc
		and water levels can upset trophic	• Iraffic control measures- speed
		dynamics by affecting the life cycle of	limits, particularly at night and in
		plankton, and have corresponding	areas of frequent animal crossing,
		effects on the rest of the food chain.	warning signs
		Pashannaling of waterways is offer	Koadside reflectors to scare animals
		undertaken as part of road construction	away from the roadway when
		to avoid floading and make areasing	venicies approach at night.
		structures simpler. In the process	
		natural streambeds are dug up and	
		useful electronic including large	
		houlders, are removed	
<u> </u>		boulders, are removed.	

#### Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (5)

No	Impact	Potential Source	Mitigation Measures
5	Noise and Vibration	Vehicular movement - friction between	Surface design and maintenance
		vehicle and the road surface;	• Application of a bituminous surface
	Degradation of human welfare		layer over worn concrete roadways
	and hearing impairment,	Driver behaviour- using vehicles'	is effective in reducing frictional
	communication problems and	horns, playing loud music, shouting at	noise.
	leading to elevated stress levels as	each other, and causing their tyres to	• Use open-graded asphalt
	well as associated behavioural and	squeal as a result of sudden braking or	<ul> <li>Smooth, well-maintained surfaces</li> </ul>
	health effects.	acceleration.	such as freshly laid asphalt without
			grooves and cracks will keep noise
	Causing auditory fatigue,	Construction and maintenance	to a minimum.
	temporary and permanent loss of	activities	<ul> <li>Road design should avoid steep</li> </ul>
	hearing ability, sleep disorders,		grades and sharp corners to reduce
	and can even contribute to	Asphalt plant operations	noise resulting from acceleration,
	learning problems in children.		braking, gear changes, and the use of
		Resonance of traffic	engine brakes by heavy trucks at
	Damage to roadside structures		critical locations.
	particularly makeshift or lightly	Piling for interchange construction and	<ul> <li>Provision of Noise barriers –</li> </ul>
	constructed buildings through	bridges	concrete, earth, metal, window
	vibration		glazing etc.
			<ul> <li>Environmental specifications for</li> </ul>
	Disruption of wildlife habitat and		contractors - In carrying out
	movement		construction, quarrying, or other
			such activities in noise-sensitive
			areas, special attention may have to
			be paid to equipment noise
			standards, hours of operation,
			material haulage routes, and other
			aspects of work-site management.
6	Landscape Alteration and	Lack of harmony between the road and	Reforestation
	aesthetics	Landscape features such as natural	• Landscaping of route
		relief and morphology, hydrology,	Selection of alignment
		vegetation, recreational areas, cultural	characteristics that best fit the route
		heritage sites.	into the landscape e.g. Vertical and
			horizontal alignment should follow
		Quarrying, Borrow pits and gravel	the natural relief
		winning associated with road	Reclamation of degraded lands
		construction	

# Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (6)

No	Impact	Potential Source	Mitigation Measures
7.	Impact on communities and	Both new roads and reconstruction	• Resettlement and compensation may
	economic activities	requiring widening can split a	need to be considered for those
		community.	whose housing, land; welfare or
	Splitting of Communities		livelihood is directly affected by a
		Introduction of faster traffic, access	project.
		controls, and median barriers generally	• Take account of local movements in
		cuts traditional lines of travel or	road design stage
		communication in communities	<ul> <li>Make provision for improved</li> </ul>
			crossings or alternative access
		Provision of longer alternative routes	routes.
		for local movements affects businesses	<ul> <li>Provision of alternative space for</li> </ul>
		and pedestrian movements	displaced activities and service areas
			adjacent to the new routes for
		Disruption of links between villagers	displaced businesses
		and their farmlands by a new road or	<ul> <li>Planning of temporary traffic</li> </ul>
		increased traffic.	diversions,
		Roadside business activities	
		including	
		the selling of goods, small businesses	
		such as cafes and vehicle, repair shops;	
		bus or taxi stops can be disrupted by	
	Loss/disruption of roadside	road const.	
	activity	Added to this list of activities are social	
	activity	In rural areas in particular but also in	
		urban areas and at entrances to towns	
	Increased land and property	and villages the roadside provides a	
	values leading to higher rental	social disruption	
	values, a turnover in occupancy.	soonal alsraphon	
	and displacement of lower-income	People congregate along the roads to	
	tenants	talk, smoke, drink or watch the traffic	
		Increased traffic flows as a result of	
		road improvements can increase	
		conflicts between local activities and	
		the efficiency and safety of traffic	
		functions of the road.	
		Further conflicts and safety concerns	
		arise when road improvement plans	
		eneroschments and accesses	
		encroachiments and accesses.	
		Creation of by pass roads	
		Although by-pass roads can reduce	
		conflict between road use and	
		community	
		welfare, they also can lead to loss of	
		business and death of communities	
		increased by infrastructural	
		improvements, new roads, road	
		improvements	
		Creation of diversion routes	
		Creation of diversion routes	

# Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (7)

No	Impact	Potential Source	Mitigation Measures
8	Impacts from land acquisition and resettlement displacement of communities loss of business, properties and incomes social stress economic loss, social and psychological disruption for the affected individuals and their families.	Compulsory land acquisition (expropriation of properties for public projects). Demolishing of structures such as houses, buildings, shops	<ul> <li>Impacts on roadside land users can be avoided by choosing route locations away from built-up areas and by restricting the extent of road</li> <li>Works to avoid interference with existing activities.</li> <li>Adoption of a reduced speed design, reduced right-of-way land</li> <li>Requirements, or design changes (underground drainage, for instance) can avoid impacts on properties and activities.</li> <li>Compensation of owners of the land and properties on the basis of the current market rates</li> <li>Resettlement of affected persons where possible</li> </ul>
9	Impact on Cultural Heritage Damage could affect the historic, scientific, social, and amenity values; aesthetic impacts on cultural monuments and archaeological sites;	Damage caused by road construction, related works such as quarries and borrow sites, and unregulated access to cultural heritage sites.	<ul> <li>Road construction should avoid any alignment that cuts through known cultural sites</li> <li>Cultural sites uncovered during road works should lead to possible realignment of the road.</li> <li>In some unusual cases it is preferable to leave a cultural site buried beneath the road.</li> <li>Excavation, erosion control, restoration of structural elements, rerouting of traffic, and site mapping.</li> <li>Salvage excavation and relocating artifacts or ruins from a site.</li> <li>Dialogue between the road department and Monuments and Museums board is required to avoid damage to cultural sites</li> <li>Marking and fencing important cultural sites during the construction period</li> </ul>
10	Waste Generation	Excavation spoils Inappropriate Construction camp design and mismanagement leading to sewage and garbage pollution; Spills from construction equipment operation and servicing. Construction waste Waste asphalt	<ul> <li>Disposal of construction related waste materials at designated waste dump site</li> <li>Waste minimization measures</li> <li>Waste management plan to be incorporated in road planning</li> </ul>
11	Traffic Disruptions and interruption of local traffic	Carelessly planned detours and road closures.	<ul> <li>Provision of planned diversion routes during construction</li> <li>Use of signboards and other public information mechanisms to inform public in advance of construction work and schedule</li> </ul>

# Summary of Potential Environment and Social Impacts Associated with Road Transport Sector and Mitigation Measures (8)

No	Impact	Potential Source	Mitigation Measures
12	Utility Disruptions	Construction activities and the need to realign utility supply lines	<ul> <li>Advance public notices</li> <li>Collaboration with utility providers</li> <li>Provision of alternative supplies where applicable e.g. water supply by tankers to affected communities</li> <li>Restoration of utility lines and other structures damaged during the construction</li> </ul>
13	Public Safety and Health	Exposure to atmospheric emissions from construction equipment Exposure to excessive and continuous noise and vibration from construction activities Lack of warning sign and safeguards Influx of migrant workers and introduction of diseases such as STDs	<ul> <li>Servicing of construction equipment</li> <li>Use of equipment with low operating noise levels</li> <li>Restricting construction works to day time hours</li> <li>Introduction of traffic/speed control devices</li> <li>Intensive public awareness campaigns</li> <li>Provision of signboards</li> <li>Provision of Diversions where possible during construction period</li> <li>open ditches and other potential hazards to be properly marked with visible tapes</li> </ul>
14	Occupational Health and Safety	Accidents from operation of construction equipment	<ul> <li>Training of workers in equipment use</li> <li>Provision of personal protective equipment and clothing</li> <li>Enforcement of the use of such equipment</li> <li>Frequent maintenance of equipment</li> <li>Safety rules for workers and their enforcement</li> <li>Emergency procedures and training</li> </ul>

# Appendix 10 Requirement of JICA Guideline (Appendix 1 of JICA Guideline)

# Appendix 1. Environmental and Social Considerations Required for Intended Projects

# In principle, appropriate environmental and social considerations are undertaken, according to the nature of the project, based on the following:

#### **1. Underlying Principles**

1. Environmental impacts that may be caused by projects must be assessed and examined in the earliest possible planning stage. Alternatives or mitigation measures to avoid or minimize adverse impacts must be examined and incorporated into the project plan.

2. Such examinations must be endeavored to include an analysis of environmental and social costs and benefits in the most quantitative terms possible, as well as a qualitative analysis; these must be conducted in close harmony with the economic, financial, institutional, social, and technical analyses of projects.

3. The findings of the examination of environmental and social considerations must include alternatives and mitigation measures, and must be recorded as separate documents or as a part of other documents. EIA reports must be produced for projects in which there is a reasonable expectation of particularly large adverse environmental impacts.

4. For projects that have a particularly high potential for adverse impacts or that are highly contentious, a committee of experts may be formed so that JICA may seek their opinions, in order to increase accountability.

#### 2. Examination of Measures

1. Multiple alternatives must be examined in order to avoid or minimize adverse impacts and to choose better project options in terms of environmental and social considerations. In the examination of measures, priority is to be given to avoidance of environmental impacts; when this is not possible, minimization and reduction of impacts must be considered next. Compensation measures must be examined only when impacts cannot be avoided by any of the aforementioned measures.

2. Appropriate follow-up plans and systems, such as monitoring plans and environmental management plans, must be prepared; the costs of implementing such plans and systems, and the financial methods to fund such costs, must be determined. Plans for projects with particularly large potential adverse impacts must be accompanied by detailed environmental management plans.

#### 3. Scope of Impacts to Be Assessed

1. The impacts to be assessed with regard to environmental and social considerations include impacts on human health and safety, as well as on the natural environment, that are transmitted through air, water, soil, waste, accidents, water usage, climate change, ecosystems, fauna and flora, including trans-boundary or global scale impacts. These also include social impacts, including migration of population and involuntary resettlement, local economy such as employment and livelihood, utilization of land and local resources, social institutions such as social capital and local decision-making institutions, existing social infrastructures and services, vulnerable social groups such as poor and indigenous peoples, equality of benefits and losses and equality in the development process, gender, children's rights, cultural heritage, local conflicts of interest, infectious diseases such as HIV/AIDS, and working conditions including occupational safety.

2. In addition to the direct and immediate impacts of projects, their derivative, secondary, and cumulative impacts as well as the impacts of projects that are indivisible from the project are also to be examined and assessed to a reasonable extent. It is also desirable that the impacts that can occur at any time throughout the project cycle should be considered throughout the life cycle of the project.

#### 4. Compliance with Laws, Standards, and Plans

1. Projects must comply with the laws, ordinances, and standards related to environmental and social considerations established by the governments that have jurisdiction over project sites (including both national and local governments). They must also conform to the environmental and social consideration policies and plans of the governments that have such jurisdiction.

2. Projects must, in principle, be undertaken outside of protected areas that are specifically designated by laws or ordinances for the conservation of nature or cultural heritage (excluding projects whose primary objectives are to promote the protection or restoration of such areas). Projects are also not to impose significant adverse impacts on designated conservation areas.

#### 5. Social Acceptability

1. Projects must be adequately coordinated so that they are accepted in a manner that is socially appropriate to the country and locality in which they are planned. For projects with a potentially large environmental impact, sufficient consultations with local stakeholders, such as local residents, must be conducted via disclosure of information at an early stage, at which time alternatives for project plans may be examined. The outcome of such consultations must be incorporated into the contents of project plans.

2. Appropriate consideration must be given to vulnerable social groups, such as women, children, the elderly, the poor, and ethnic minorities, all members of which are susceptible to environmental and social impacts and may have little access to decision-making processes within society.

#### 6. Ecosystem and Biota

1. Projects must not involve significant conversion or significant degradation of critical natural habitats and critical forests.

2. Illegal logging of forests must be avoided. Project proponents etc. are encouraged to obtain certification by forest certification systems as a way to ensure the prevention of illegal logging.

#### 7. Involuntary Resettlement

1. Involuntary resettlement and loss of means of livelihood are to be avoided when feasible by exploring all viable alternatives. When, after such an examination, avoidance is proved unfeasible, effective measures to minimize impact and to compensate for losses must be agreed upon with the people who will be affected.

2. People who must be resettled involuntarily and people whose means of livelihood will be hindered or lost must be sufficiently compensated and supported by project proponents etc. in a timely manner. Prior compensation, at full replacement cost, must be provided as much as possible. Host countries must make efforts to enable people affected by projects and to improve their standard of living, income opportunities, and production levels, or at least to restore these to pre-project levels.

Measures to achieve this may include: providing land and monetary compensation for losses (to cover land and property losses), supporting means for an alternative sustainable livelihood, and providing the expenses necessary for the relocation and re-establishment of communities at resettlement sites.

3. Appropriate participation by affected people and their communities must be promoted in the planning, implementation, and monitoring of resettlement action plans and measures to prevent the loss of their means of livelihood. In addition, appropriate and accessible grievance mechanisms must be established for the affected people and their communities.

4. For projects that will result in large-scale involuntary resettlement, resettlement action plans must be prepared and made available to the public. In preparing a resettlement action plan, consultations must be held with the affected people and their communities based on sufficient information made available to them in advance. When consultations are held, explanations must be given in a form, manner, and language that are understandable to the affected people. It is desirable that the resettlement action plan include elements laid out in the World Bank Safeguard Policy, OP 4.12, Annex A.

#### 8. Indigenous Peoples

1. Any adverse impacts that a project may have on indigenous peoples are to be avoided when feasible by exploring all viable alternatives. When, after such an examination, avoidance is proved unfeasible, effective measures must be taken to minimize impacts and to compensate indigenous peoples for their losses.

2. When projects may have adverse impacts on indigenous peoples, all of their rights in relation to land and resources must be respected in accordance with the spirit of relevant international declarations and treaties, including the United Nations Declaration on the Rights of Indigenous Peoples. Efforts must be made to obtain the consent of indigenous peoples in a process of free, prior, and informed consultation.

3. Measures for the affected indigenous peoples must be prepared as an indigenous peoples plan (which may constitute a part of other documents for environmental and social consideration) and must be made public in compliance with the relevant laws and ordinances of the host country. In preparing the indigenous peoples plan, consultations must be made with the affected indigenous peoples based on sufficient information made available to them in advance. When consultations are held, it is desirable that explanations be given in a form, manner, and language that are understandable to the people concerned. It is desirable that the indigenous peoples plan include the elements laid out in the World Bank Safeguard Policy, OP4.10, Annex B.

## 8. Monitoring

1. After projects begin, project proponents etc. monitor whether any unforeseeable situations occur and whether the performance and effectiveness of mitigation measures are consistent with the assessment's prediction. They then take appropriate measures based on the results of such monitoring.

2. In cases where sufficient monitoring is deemed essential for appropriate environmental and social considerations, such as projects for which mitigation measures should be implemented while monitoring their effectiveness, project proponents etc. must ensure that project plans include feasible monitoring plans.

3. Project proponents etc. should make efforts to make the results of the monitoring process available to local project stakeholders.

4. When third parties point out, in concrete terms, that environmental and social considerations are not being fully undertaken, forums for discussion and examination of countermeasures are established based on sufficient information disclosure, including stakeholders' participation in

relevant projects. Project proponents etc. should make efforts to reach an agreement on procedures to be adopted with a view to resolving problems.

# Appendix 11 Baseline of Natural and Social Environment in the Study Area

## 11.1 **Project Area of Influence**

(1) Construction of New Road between Asutsuare Jct. and Asikuma Jct.

The project road traverses three districts, namely Dangme West in the Greater Accra Region, North Tongu in the Volta Region and Asuogyaman in the Eastern Region. The main townships along the road include Osuwem, Asutsuare, Dufor Adidome, and Asikuma

(2) Upgrading of Asutsuare – Aveyime Road

The project road traverses two districts, namely Dangme West and Asuogyaman in the Eastern Region. There are three main townships at the both end of the target road, Asutsuare and Aveyime, and Volivo at the middle.

District	District Capital	Main Townships on Road
Dangme West	Dodowa	Osuwem, Asutsuare, Volivo,
Asuogyaman	Atimpoku	Asikuma
North Tongu	Adidome	Dufor Adidome, Aveyime
	District       Dangme West       Asuogyaman       North Tongu	DistrictDistrict CapitalDangme WestDodowaAsuogyamanAtimpokuNorth TonguAdidome

 Table A11-1
 Main Towns in Proposed Project Area

Source: Study Team

(3) Overview of Land Use and Livelihoods

In general along the proposed road projects, the land use along the existing roads proposed alignments are:

- Food crop farms, mainly cassava and rice
- Cash crop farms, mainly oil palm, mango, woodlots, and banana plantations
- Cattle grazing fields (mostly north of the Volta River between Dufor Adidome and Asikuma Jct.)
- Natural or original vegetation

Other livelihoods specifically related to the Volta River are:

- Aquaculture in the Volta River (limited but popular)
- Shell mining as a raw materials for white paint or as a construction materials
- Canoe ferries offering transport services

# **11.2 Profiles of Potentially Affected Districts**

- (1) Dangme West District
  - a) Climate

The Dangbe West part of the southeast coastal plain of Ghana, which encompasses the project area, is one of the hottest and driest parts of the country. Temperatures are high for most of the year, being the highest during the main dry season (November – March) and the lowest during the short dry season (July – August). The absolute maximum temperature is  $40^{\circ}$ C.

Rainfall is generally very low, with most of it being very erratic in nature and falling between September and November. Mean annual rainfall increases from 762.5 mm on the coast to 1,220 mm.



Photos by the Study Team, May 2012

b) Topography, Geology and Soil

In the central portion of the Accra plain, the relief is gentle and undulating, with heights not exceeding 70 m. The plains are punctuated by a few prominent inselbergs, isolated hills, outliers and knolls scattered over the area. Prominent relief features include the Yongua inselberg (427 m) which has a conical shape with a number of outliers around Asutsuare and Osuwem areas; the Krabote inselberg also to the North, and the Shai Hills (289 m) towards the western part of the area. There are conspicuous large rock outcrops and boulders in the vicinity of the hills in some places.

The soils in the area are poorly drained pale-coloured sandy silty and clay soils formed recently or contemporary Volta Alluvium. The soils appear to be moderately well supplied with nutrients under natural conditions and are easily workable even with simple implements. In the recent past most of it was under sugarcane cultivation to feed the now collapsed Asutsuare Sugar complex. The same fields are currently under extensive rice cultivation, making the flood plain soils one of the most fertile soils in the area. Recent alluvium occupies the Volta flood plain and the valleys of the major streams on the plain. There are no known mineral deposits of commercial and economic value in the area, except for oyster shell deposits at Volivo and its surroundings and clays of various types.

c) Land Use

Although the soils in the district have relatively low fertility and remain dry for most of the year due to the unreliable and insufficient rainfall, there is still enormous potential for the

development and expansion of agriculture. Extensive irrigation of the low plains with water drawn from the Volta River would enable these soils to support extensive rice, maize and vegetable cultivation. At present, the area is widely used for the cultivation of rice, sugarcane and vegetables.

# d) Water Resources and Drainage

Flowing over fairly low terrain, most of the streams have carved wide valleys, which are dry for most of the year. The very seasonal nature of most of the streams caused by high temperatures and equally high insolation levels has encouraged the construction of a number of artificial dams and ponds of varying size, which are used for irrigation and for watering of livestock.

The project area forms part of the lower Volta flood plain. The repeated process of flooding and recession of the Volta waters over the years has created fertile alluvial soil, a vast sedimentary strata of oyster shells and a number of inland lakes. Ground water potential in the area is quite low and saline.

Sources of water for domestic use are pipe borne, boreholes, streams and wells. Except for the towns, most of the villages depend on borehole water, hand-dug well water, streams and rivers.

e) Economic Activities

The area is largely rural. The predominance of the rural population is reflected in the occupational distribution, with agriculture being the main occupation. The relocation of the Golden Exotic Estate (a 3,000-ha banana plantation of which almost 800-ha have been planted) and Tropo Farms, a 5-ha fish farm has, broken new ground in agriculture. Fishing, which could be another big employer given the presence of the Volta River, employs only 6.4% of the people. The area is noted for the production of fruits such as mangoes, pineapple, and banana. In addition, rice production and aquaculture (tilapia) are practised in the Asutsuare area. The area is also noted for animal production with cattle, goats and poultry rearing being the leading activities.

f) Social Infrastructure

The district has about 252 km of roads, of which 40% is paved and the rest are feeder roads. Tracks and footpaths also link villages. The total road network appears to have a good spatial distribution compared to other districts. The 14.8-km railway line from Tema through Afienya to the Shai Hills is not being used. Out of the 231 settlements in the district, about 30% are connected to the national electricity grid. Major towns in the district including Dodowa, Prampram, Asutsuare, Dawhenya, Afienya, Dorymu, Old Ningo, Kordiabe, New Ningo and Agomeda have electricity. An estimated 34% of the inhabitants in the 231 settlements in the district have no access to potable water. A total of 18 towns have access to piped water, with the remaining towns depending on wells, boreholes and other sources.

#### g) NGOs

There are many NGOs such as World Vision operating in the district. These NGOs are

involved in projects such as community water supply, food security, capacity building and HIV/AIDS intervention activities.

#### (2) North Tongu

#### a) Climate

The climate of the North Tongu District is tropical, greatly influenced by the south-west monsoons from the south Atlantic and the dry Harmattan winds from the Sahara. There are two rainy seasons, the major one from mid-April to early July and the minor one from September to November. The average annual rainfall varies from 900 mm to 1,100 mm with more than 50% of it falling in the major season.

Temperature and relative humidity vary little throughout the year. The mean temperature is 27°C, ranging from a maximum of 33°C and to a minimum of 22°C. Average relative humidity is about 80%, making the weather quite conducive to human activities, such as habitation, farming and recreation.

b) Topography, Geology and Soil

North Tongu is dominantly medium to moderately coarse textured alluvial soils along the Volta River. Below these are the heavier clay soils that characterise most parts of the area, leading to poor surface and sub-surface drainage, making road development difficult. These soils are also very difficult to cultivate because they have low water holding capacity. They are also shallow (low effective rooting depth). They are, however, suitable for rice and sugarcane cultivation under irrigation. They also provide the raw material for the pottery, brick and tile industries. The main mineral deposits in the area are clay, oyster shells, feldspar, nepheline gneiss, sand and granite.

c) Land Use

The project road traverses a number of farming villages and towns. The main form of land use in the project area is agriculture. The land is mainly used for the cultivation of food crops and cattle rearing.

d) Water Resources and Drainage

The area is drained by the Alabo, Kolo, Aklakpa, Gblor, and Nyifla rivers and their numerous tributaries into the Volta River. In the rainy season, these streams overflow their banks, causing damage to roads and farms. There are several ponds and dugouts/dams in the area, which serve as main sources of water supply for the inhabitants and livestock.

The same as in Dangme West District, sources of water for domestic use are pipe borne, boreholes, streams and wells. Except for the towns, most of the villages depend on borehole water, hand-dug well water, streams and rivers.

e) Economic Activities

The leading sector of the district's economy is agriculture. The sector is dominated by smallscale unorganised farmers who depend mainly on labour-intensive production techniques. The sector is characterised by low production resulting from the continuous usage of indigenous farm implements, adoption of indigenous farming practices and a higher level of post-harvest losses particularly in maize and vegetable production. Fishing, which is done mostly in the Volta River, has declined considerably due to the construction of the Kpong Dam. Traditional fishing communities (Bakpa, Mafi, Mepe, Battor and Volo) close to the Volta River have had their economic base eroded. Livestock breeding is an integral part of the farming communities, with about 30% of the farmers in the district keeping some ruminants. The district is one of the largest cattle breeding areas in the country.

f) Social Infrastructure

The road network in the district is in a poor state, although efforts are being made to improve the roads and make them more motorable. A number of roads and bridges are currently undergoing construction or rehabilitation, and when completed they will make the district generally more accessible.

Until 1994, most communities in the North Tongu District had no access to potable water. The inception of the DANIDA brought a tremendous change in the water supply situation in the district. The DANIDA water project provided piped water to Tedeafenui and other communities in the Adidome area. In addition, 26 communities have been provided with a total of 89 shallow wells fitted with hand pumps. The Volta River provides an important source of water supply to the towns and villages, located along it.

The current supply of hydroelectric power is limited to Adidome, Akyemfo, Battor, Mepe, Mafi-Kumase-Asiekpe and Juapong. Electricity supply is being extended to most of the major settlements in the district. Extension of electric power to towns and villages outside the district capital is dependent on community self-help with the support of the rural electrification programme. Wood fuel and charcoal are the main sources of energy for cooking.

The district has 35 kindergartens, 126 primary schools, 71 junior high schools, five senior high schools and a special school for rehabilitation of the mentally retarded. There is also a farm institute at Adidome, which trains youths in self-employable agricultural skills.

g) NGOs

The same as in Dangme West District, there are many NGOs operating in the district. These NGOs are mainly involved in community water supply, food security, capacity building and HIV/AIDS intervention activities.

#### (3) Asuogyaman District

a) Climate

This part of the project area in the Asuogyaman District lies within the dry equatorial climate zone and experiences substantial precipitation. It has a long rainy season which starts in April, peaks in June/July and ends in November. The dry season starts in November/December and ends in March.

The annual rainfall is between 67 mm and 1,130 mm and the maximum temperature is 37.2°C, The relative humidity is generally high, ranging from 98% in June to 31% in January.

b) Topography, Geology and Soil

The main rock types of the Asuogyaman District are quartzite acidic gneiss and schist. There

are several out–crops of rocks in the area. In the low-lying areas along Lake Volta, the soil types are Savannah Greisol and Aluviosols. These are hydro-morphine soils confined to the large depression and valley bottoms of the Volta River plain.

The soil is a greyish, dark red in colour. It is mainly impervious and moderately supplied with nutrients. Because of its structure, the soil is liable to temporary flooding in times of high water level. Its nutrient status is moderate but fertiliser is required to ensure sustained yields of crops.

#### c) Land Use

The project road traverses a number of farming villages and towns in this district and the main form of land use is agriculture (crop farming and animal husbandry). The land is mainly used for cultivation of food crops and cattle rearing.

d) Water Resources and Drainage

The water resources are Lake Volta and the downstream side of the Akosombo Hydroelectric Dam. The same as in other districts, sources of water for domestic use are pipe borne, boreholes, streams and wells. Except for the towns, most of the villages depend on borehole water, hand-dug well water, streams and rivers.

e) Economic Activities

Agriculture is the major economic activity in the district in terms of employment and rural income generation. Crop farming is predominant, with maize, cassava, plantain, vegetables and yam being the major crops. Fishing in Lake Volta is an important economic activity along the 141 km shoreline. It is carried out in wooden planked canoes, with tilapia and chryrtrissa (one-mouth thousand) being popular catches. Live box aquaculture of tilapia is also being developed on Lake Volta. The fish are processed mostly by smoking and frying and sent to market centres at Dzeneni, Akosombo, Atimpoku and Agormanya.

There are three main types of farming activities in the district: livestock breeding, food cropping and cash cropping among which food cropping accounts for more than 78% of the farmers in the district (population and housing census in the year 2000). Livestock breeding is carried out on a limited scale, employing only about 8% of farmers, whiles cash cropping also employs just 12% of the farming population.

f) Social Infrastructure

The Ghana Water Company supplies piped water to towns and villages along the major trunk road and the Volta River Authority supplies water to Akosombo. Other towns and villages depend on deep wells, hand-dug wells and streams.

The district has 28 junior high schools and 7 senior high schools. The teacher/pupil ratio for primary school and junior high scool is 1:32 and 1:19 respectively, which are lower than the national average.

The National Health Insurance Scheme (NHIS) began in 2004 and has since registered a total of 31,320 people. Service providers include two hospitals and 13 health centres.

g) NGOs

The same as in Dangme West District, there are many NGOs operating in the district. These

NGOs are mainly involved in community water supply, food security, capacity building and HIV/AIDS intervention activities.

# 11.3 Water Quality

Water sampling and analysis was conducted. The results of analyzing physical, chemical and bacteriological parameters of surface water (Volta River) are presented in Table A11-2 alongside EPA guideline values. There are no indicators exceeding the EPA guideline values.

Parameter	EPA Method No.	Unit	Sample/Volta River Water	EPA Guideline
Temperature	-	°C	28.6	
Turbidity	3	NTU	10.0	75.0
Colour (apparent)	2	Hz	10.0	100
pН	4	pH Units	6.88	6.0-9.0
Conductivity	1	μS/cm	66.0	1,500
Tot. Susp. Solids (T-SS)	5	mg/l	4.00	50.0
Tot. Dis. Solids (TDS)	6	Mg/l	43.6	1,000
BOD	30	Mg/l	1.64	50.0
COD	29	Mg/l	19.3	250
Sulphate (SO ₄ )	19	Mg/l	3.80	250
Phosphate (PO ₄ -P)	17	Mg/l	0.692	2.00
Nitrate (NO ₃ -N)	15	Mg/l	0.119	50.0
Ammonia (NH ₃ -N)	13	Mg/l	0.871	1.00
Salinity	-	ppt	0.041	-
Oil & Grease	-	mg/l	<1.00	10.0

 Table A11-2
 Water Quality of Volta River Surface Water (Mean Concentrations)

Source: EPA Wastewater Quality Guidelines and Study Team

#### 11.4 Air and Noise Quality

(1) Air Quality

In accordance with sampling methods for the EPA Ambient Air Quality Guidelines, air quality sampling was conducted at representative locations of the two proposed projects. The results shows that at present, all sampling locations are below the EAP guide line for residential areas.

 Table A11-3
 Results of Ambient Particulate Matter Monitoring

Sample Location	GPS Coordinates	PM ₁₀ (μg/m ³ )	TSP(µg/m ³ )
Adebosu	N - 06° 24' 14.1", E- 000° 11' 53.1"	18.5	39.7
Amesinyekope	N - 06 [°] 22' 54.3", E- 000° 12' 53.7"	30.1	63.2
Dafor Akpatanu	N - 06 [°] 06' 20.9", E- 000 [°] 15' 54.9"	22.3	50.2
Adakope	N - 06 [°] 03' 07.7", E- 000 [°] 17' 41.3"	40.8	70.3
Osuwem	N-06° 01' 35.4", E- 000° 10' 58.4	55.7	73.4
Aveyime	N06° 01' 30.7", E000° 22' 02.15"	58.2	83.3
EPA Ambient Air	Quality Guidelines for Residential Areas	$70 \ \mu g/m^3$	$150\mu g/m^3$

Instrument Used: Minivol samplers

Source: Study Team



Photos by the Study Team, August 2012

(2) Noise Quality

In general, the noise levels recorded at the various locations along the projects were low. The project roads are all located in mostly rural settings where there is no industrial activity and the traffic volumes is low, and so the noise levels are also low. The ambient noise levels monitored for selected communities are listed in Table A11-4.

Location	GPS Coordinates	Leq	Lmax	Lmin	L90
Adabosu	N - 06° 24' 14.1", E- 000° 11' 53.1"	48.9	66.4	42.9	45.3
Amesinyekope	N - 06 [°] 22' 54.3", E- 000 [°] 12' 53.7"	66.3	94.4	52.3	55.3
Dafor Akpatanu	N - 06 [°] 06' 20.9", E- 000 [°] 15' 54.9"	45.2	52.6	44.4	48.5
Adakope	N - 06 [°] 03' 07.7", E- 000 [°] 17' 41.3"	56.6	71.9	42.8	50.1
Osuwem	N-06° 01' 35.4", E- 000° 10' 58.4"	64.7	73.7	54.9	57.4
Aveyime	N06° 01' 30.7", E000° 22' 02.15"	69.3	108	59.3	62.8
EPA Daytime Recommended Level for Residential Areas dB(A)		55	_	_	_

 Table A11-4
 Ambient Noise Levels at Selected Locations

Note: Instruments used - Quest Suite Professional, Sound Level Metre, type1900 Source: Study Team



Photo A11-7 Noise monitor setup

Photo A11-8 Noise monitor

Photos by the Study Team, August 2012

## 11.5 Flora and Fauna

# (1) Flora

The predominant type of vegetation found in this southern part is short savannah grass interspersed with shrubs and short trees, which are characteristic of the Sub-Sahelin type. A large portion of vegetation remains dry for most of the year particularly towards the south except for the short rainy season. In the Volta flood plain areas, tall swampy grass and tall savannah grass with isolated thickets and trees are the main types of vegetation.

The northern area lies within the tropical savannah grassland zone. The vegetation is dense along the Volta River and along the stream basins, and is maily mangoes, oil palms, baobab, silk cotton, acacia, etc. Farther from the river the vegetation is sparse, predominantly grassland, interspersed with Neem trees and guinea grass, digitaria decumbent and fan palms. The shrub and grassland areas are suitable grounds for cattle breeding, making the area one of the largest cattle-producing areas in the country.



Photos by the Study Team, August 2012

project area

(2) Fauna

Harvesting of trees for lime and charcoal production in the area and also poaching has caused wildlife, which included elephants, antelopes, monkeys hogs to flee to other reserves close to the Study Area (Figure A11-1). Partridges are, however, still common in the area.

proposed project area

Preparatory Survey on Eastern Corridor Development Project in the Republic of Ghana Appendix 11



Photos by the Study Team, August 2012

# 11.6 Environmentally Sensitive Area around the Proposed Project Area

Details of environmentally sensitive area around the proposed project area are described in the Main Report Section 11.2.2 (6) Environmentally Sensitive Area around Proposed Project Area).



Source: Ghana Wildlife Division <http://www.wildlifeghana.com/wildlifeMain/map.html> Figure A11-1 Protected Wildlife Areas around Proposed Project Area

# Appendix 12 Result of Environmental and Social Environmental Survey

The potential impacts of and appropriate mitigation measures for the projects have been confirmed with reference to similar projects throughout Ghana, and the particular concerns of the local communities have been investigated.

From baseline information gathered at the fieldwork phase and issues that transpired during consultations with stakeholders, the impacts of the projects, particularly during the construction phase, will be as follows:

- Water resources
- Soil erosion and sedimentation
- Air quality
- Noise and vibration
- Expropriation of farmland and forest reserves
- Establishment of borrow pits
- Flora and fauna
- Construction waste
- Construction camps
- Employment and income
- Gender issues
- Traffic safety, accidents and convenience
- Vehicle operating costs and transportation costs

#### 12.1 Potential Positive Impacts

(1) Regional Economy

Construction or upgrading of roads is expected to provide socio-economic benefits to the nation as well as sub-region. The new road between Asutsuare Jct. and Asikuma Jct. will form a major link to parts of the Eastern Corridor. Thus, consturciton of new road between Asutsuare Jct. and Asikuma Jct. and upgrading of Asutsuare – Aveyime road will have psitive impacts on the regional economy, by enhancing accessibility and commercial activities, and facilitating regional economic integration. Although construction activities on the Asutsuare – Aveyime road will cause temporary delays to public and private transport, access to services and facilities should be improved in the long-term through greater reliability and, possibly increased availability of public transport.

Public and private transport opportunities should improve because of faster travel speeds, reduced frequency of breakdowns, and lower maintenance costs. This may encourage an increase in taxi and bus services. Increased growth in the size and number of settlements along the road will speed up deliveries and the availability of transport services.

Construction and upgrading of the road will also improve access to health care and other social services and strengthen local economies.

Demand for goods is expected to increase, and many more people will engage in various economic activities. In the long term, the projects will help reduce poverty in the Study Area. Thus, the impact on the regional and national economies is positive and significant.

(2) Traffic Safety, Accidents and Convenience

Reconstruction of culverts and side drains to reduce flooding of the road will be a component of upgrading the Asutsuare – Aveyime road. The project will improve horizontal and vertical alignment together with improvement of intersection that will significantly improve traffic safety and comfort for road users. As a consequence of the traffic safety measures and improvements of the road, the number of accidents is expected not to increse.

The construction of the new road between Asutsuare Jct. and Asikuma Jct. will ease traffic congestion at townships along the existing N2, particularly Kpong and Atimpoku, and hence the conflicts vehicules and pedestrians and its associated accidents in these areas will be reduced.

Construction of the road will confer additional benefits and convenience including improved access to markets, increased government services such as the provision of electricity, potable water, health services, education and stimulation of agro-industries, especially in the Asutsuare and Aveyime areas.

(3) Vehicle Operating Costs and Transportation Costs

The project has the potential to benefit road users through reduced vehicle maintenance costs and delays. It will benefit the people in the area through increased opportunities and reduced costs of transporting agricultural produce to distribution centres or sale points; sending children to school; getting to other facilities or service centres and encouraging migrant workers to return home more frequently. The effect on overall vehicle operating costs is positive and significant for the local and regional users in the operation phase.

(4) Employment and Income

The projects will lead to an overall upgrading of the socioeconomic setting in the area. In the short-term, recruitment of labour from roadside villages will contribute towards raised employment, increased income and upgrading of the skills of local residents and their families. Newly skilled workers will have enhanced prospects for future employment. The presences of a labour force in the vicinity of settlements will also increase economic and employment opportunities for residents. In the long term, an increase in traffic volume may stimulate business opportunities along the road through the sale of goods and other services. Since the economy of the settlements along the road is largely based on agriculture, road construction may increase transport opportunities and potentially decrease the costs of distributing agricultural products and thereby increase earning potential.

The major economic activity of the inhabitants in the project area is agricultural production and marketing. The improved road will open up the possibilities for agro-business. New industries tend to locate where land is available and infrastructure exists; road corridors are logical choices. Incomes earned directly or indirectly will raise the standard of living of the people involved in the projects. The impact on employment and income is considered to be significant and positive in the construction phase and slightly positive when the road is in operation.

#### (5) Gender Issues

The road project will bring new job opportunities for women and also improve their situation within the agriculture and trading sectors. The influx of labour will temporarily cause a significant increase in the demand for vegetables and other foodstuff traditionally produced by women. Catering and trading opportunities will also increase.

The indirect benefits include improved access to health facilities and schools for children. The transport of people and products between the fields and the villages will become faster and safer with the improved road. The women will benefit greatly from the savings in time.

It is anticipated that improvement in the transportation sector, which supports the marketing of agricultural produce, would help increase income levels and the general well-being of women in the districts. Improvement of the road is therefore critical to the livelihood of women in the districts.

#### (6) Air Quality Improvement

Upgrading of the Asutsuare – Aveyime road will result in improved air quality during the operational life of the road. The paved surfaces will generate much less dust than the present gravel roads, reducing the current negative effect on the flora and crops along the road as well as the health of those people living in the area. The consumption of fuel and thus the amount of exhaust fumes produced per tonnage kilometre will be reduced as the road standard is improved. The post-construction impact on air quality is therefore positive.

Construction of road between Asutsuare Jct. and Asikuma Jct. which will be far from most communities, will reduce the exhaust fumes on the existing N2 because traffic diversion will reduce the number of vehicles on it.

#### 12.2 Potential Negative Impacts

(1) Pollution of Water Resources

Road construction alters the hydrology of watersheds through changes in water quantity and quality, stream channel morphology, and ground water levels. Some culverts over streams and a bridge across the Volta River are to be constructed; as a result, pollution and siltation of the watercourses under these culverts and bridge could occur. If construction takes place during the dry season, the silt banks that are close to the place of work may obstruct the flow if proper de-silting is not carried out. If works are done during the rainy season, a high concentration of suspended matter will occur in the water body concerned. For works that will be done during the rainy season, suspended matter will be carried further with the flow and eventually end up in downstream reservoirs. Soil and water contamination by oil, grease, fuel and paint from equipment yards is likely to occur during the construction phase.

Vegetation cover will be removed from not only the road alignment but also from borrow pits and the fine materials of exposed surfaces would be susceptible to erosion by intense tropical rainstorms and winds. The creation of stagnant water bodies in borrow pits, quarries, etc. during construction of the road will create conditions suitable for mosquito breeding and other vectors. The impact is negative and significant. Mitigation measures are thus required.

In addition, discharge of wastewater from construction camps will contribute to pollution of nearby rivers. Surface run-off from construction sites and camps may include but not necessarily be limited to hydrocarbons such as waste oil and lubricants. Decreased water quality, through sedimentation or pollution, may have downstream impacts on aquatic fauna (which are important for purifying water), agriculture and other socio-economic uses, such as washing and drinking by rural inhabitants.

The largest impact on present water quality is expected where the project road crosses water bodies. The impact on water quality is considered to be negative and significant in the construction phase and slightly negative in the operation phase.

(2) Soil Erosion and Sedimentation

Road construction will intensify the effects of natural soil erosion due to vegetation removal, soil disturbance, and exposure of bare soil surfaces. The most severe problems will be associated with embankment construction in the plain area, road sections with heavy cuts and fills, borrow and spoil sites, as well as bridge and culvert construction sites, particularly on rainy days. Soil erosion decreases the agricultural potential of the affected land with consequences for the economy of the region.

(3) Air Quality

During the construction phase, the use of construction equipment and vehicles will increase the level of dust and emissions not only in the work areas, but also along the permanent and temporary roads to quarries, borrow pits and sand pits as well as disposal sites for spoils and waste. The impact is negative and significant.

During the life of the road, vehicle exhaust fumes will increase due to traffic growth. The impact will be most significant in towns. The impact is negative due to negative health implications.

(4) Noise and Vibration

Certain levels of noise pollution are unavoidable at major construction sites. Excessive noise, however, can be a nuisance to construction workers, farm workers and people who live close to the road, and in extreme cases could be a health hazard.

Construction activities involving heavy duty machinery, vehicular movement, vehicle horns, etc. will increase ambient noise levels and vibration beyond the immediate road corridor. Noise and vibration will also occur as a result of the creation of sandpits and borrow pits, and other construction activities such tipping and turning of heavy-duty trucks and other trucks and compacting of gravel spread on the road. The effects of this impact include welfare and physiological disruptions. Vibrations can damage roadside structures, particularly makeshift or lightly constructed buildings. The impacts are negative and significant. Mitigation measures are required to reduce noise and vibration in the construction phase to the EPA acceptable ambient

noise level of 55 dBA between the hours of 06:00 to 22:00, for residential, educational and other facilities.

(5) Expropriation of Farmland and Forest Reserves

The need to improve the vertical and horizontal alignments of some sections of the existing road will cause farmland to be destroyed. Where new bridges will be constructed across the Volta River and other rivers, farmland is likely to be destroyed. In the project roads area, there are several intersections that need to be properly designed and constructed All these activities at the construction phase will result in the destruction of farmland and natural vegetation. Vegetation cover, once established, is central to maintaining the ecosystem of an area. Destruction of vegetation has a multitude of negative effects on other environmental attributes which include reduced capacity for water infiltration, increased rate of surface runoff, reduced groundwater recharge, reduced water quality through increased sedimentation, accelerated soil erosion, reduced production of atmospheric oxygen, and loss of habitat for wildlife. The impacts on farmland and forests are considered to be negative and significant and mitigation measures are required.

(6) Landscape Modification

It is proposed to use borrow pits during rehabilitation of the road. Disfiguration of the landscape by embankments, deep cuts, fills and quarries as well as roadside littering are also expected to take place during the construction and operation phases of the project. There will be destruction of beautiful landscapes rich in vegetation and wildlife in the ROW created by the project roads. Furthermore, disused borrow pits if not rehabilitated, could serve as breeding grounds for mosquitoes and vectors of other water-borne diseases.

The landscape is considered to be environmentally sensitive along the entire section of the project roads. The impact of sandpits, borrow pits and dumpsites on the aesthetic and visual quality and value of the landscape is thus considered to be negative and highly significant. Mitigation measures are required to reduce these environmental impacts.

- (7) Flora and Fauna
  - a) Flora

Vegetation must be cleared and trees felled where borrow pits have been proposed and on sections where there is horizontal realignment of the road. The clearing of vegetation causes destruction or damage to terrestrial wildlife habitats, biological resources or ecosystems that should be preserved. Emissions and spilled oil that will be washed out from the road are also likely to have negative effects on the growth of plants by the roadside. These impacts are considered to be negative but moderate since the actual areas involved will not be large. Mitigation measures are required to reduce the negative impacts.

b) Fauna

The impact on fauna is expected to be low since the destruction of vegetation and other human activities have already caused paucity of fauna along the existing roads. The noise and vibration from the construction works will frighten the few reptiles and birds and probably drive them from their habitat.

# (8) Traffic Diversion

Travellers and commuters may experience possible inconvenience due to road diversions during the construction period. The traffic diversions could result in traffic congestion, increased waiting times and traffic accidents. This will be for a limited period, but will have direct bearing on economic activity in the predominantly farming area. The impact on road users is significant and negative. Mitigation measures are required during the construction phase.

# (9) Construction Wastes

Large quantities of construction wastes will be generated while construction and upgrading of the roads. Poor sanitation and solid waste disposal in construction camps and work sites are likely to have negative impacts on human health. The improper handling and disposal of construction wastes would have a negative impact on the environment.

# (10) Construction Camps

Temporary construction camps will be required for housing construction workers, and storing construction vehicles, equipment, fuel and road-building materials. Establishing new construction camps may involve the bulldozing and levelling of pieces of ground, and erection of temporary or permanent housing units. This could destroy an area, leading to obvious consequences on soil erosion and water quality, if the camp is poorly sited and or constructed. Indiscriminate dumping of engine oils, fuel, lubricants or other solvents could contaminate soil and leach into subsoil water.

The impacts of construction camps are negative and significant. Mitigation measures are required.

# (11) Traffic Safety

Conflicts will occur between passing vehicles and the activities in the work areas. Such conflicts will be most pronounced on the Asutsuare – Aveyime road. The movement of construction vehicles and workers, pedestrians and non-construction vehicles in these settlements will result in conflicts. The safety of vehicle users and pedestrians may be endangered by an increased risk of collisions with construction equipment or unsafe road conditions.

When the project is completed, accident rates could rise due to speeding on the improved roads. Indirectly, construction and upgrading of roads will induce commercial, industrial and residential developments along these roads.

The impacts are considered to be significant and negative in the construction and operation phases. Mitigation measures are therefore required in the construction and operation phases.

# (12) Public Health

The influx of construction workers as well as freight vehicle drivers into the area could increase the risk of spreading sexually transmitted infections (STIs) and HIV/AIDS to rural inhabitants. In addition, the safety of vehicle users and pedestrians may be endangered by an

increased risk of collisions with construciton equipment or unsafe road conditions.

Standing water in borrow pits, quarries and pools near the road is a health hazard to nearby residents since it serves as a breeding site for vectors of disease such as mosquitoes and snails which transmit malaria and bilharzia. During the rainy season, many people may use these pools of water for domestic purposes and watering of livestock, thereby increasing health risks. Reworking and reclamation of existing borrow pits and installation of sufficient culverts will reduce the risk of standing water and associated health hazards.

# (13) Community Cohesion and Social Disruption

The social fabric of rural settlements, especially the smaller ones, may be disrupted by an influx of construction workers and the opportunities these pose for providing services and forging new relationships. The construction camps may severely disrupt the social fabric of settlements by exposing residents to different norms and practices.

# Appendix 13 Results of Public Consultations

The GHA conducted initial public consultations for both construction of new road between Asutsuare Jct. and Asikuma Jct. and upgrading of the Asutsuare – Aveyime road at Asutsuare on 10th September, 2012 and at Juapong on 11th September, 2012. Each of the public consultations is summarized as follows.

(1) Public Consultation at Asutsuare

- a) Overview
  - Date: September 10, 2012
  - Place: Osudoku Senior High Technical School
  - Style: Public meeting
  - Number of attendants: 328
  - Chiefs and traditional community's key persons: 9
  - GoG officials: 9 including Minister of Roads and Highways, and Members of Parliament
  - Language: English and 2 local languages

b) Major Comments from the Public and Response from the GHA or Other Government Officials

## Table A13-1 Comments and Responses in the Public Consultation at Asutsuare

Comments from the Public	<b>Responses from GHA or GoG officials</b>
- Schedule of the project.	The GHA described the status of the Study and expected
	detail design, but no specific schedule was announced.
- The reason for excluding the Juapong to Mafi Adidome	The road project is now under another agency, but it is at
road from construction of Asutsuare Jct. and	the procurement stage at present.
Asikkuma Jct.	
- Without government officials supervision on site,	The MRH/GHA will assure proper implementation of the
contractors tend to do poor quality road construction	road construction work.
work. The GHA should monitor the contractors and	
make sure the road quality is good.	
- In the past, due to the lack of government funds, PAPs	The MRH/GHA will ensure necessary mitigation
agreed to relocate before full payment. However, some	measures including payment of compensation and
PAPs never received the rest of the compensation	recovery assistances.
without proper explanation. The GHA should take this	
issue seriously and prevent.	
- Why the road will not pass through Asutsuare	Asutsuare was excluded because it would require too
township.	much involuntary resettlement.
- During the construction of the Kpong Dam, some	The MRH/GHA will ensure that the necessary mitigation
PAPs were not compensated. For the proposed road	measures are taken in accordance with the resettlement
projects, all PAPs should be compensated.	policy. The issue of the Kpong Dam is not clear due to
	the different jurisdiction.

Source: Study Team

c) General Responses from the Public

No objections to the proposed projects were made. In general, the attendants agreed with the proposed projects and were keen to see them actually implemented. Historically, many projects were promised not only roads but also other public facilities, especially before elections. People in general are sceptical about politicians' promes. As the minister himself explained his strong intention that the proposed projects be carried out, the attendants seemed excited about the high

# priority status of the projects.

# d) Selected Pictures



Photo A13-1 Project Description by Planning Director of GHA



Photo A13-2 Meeting hall (front left →back right)



Photo A13-3 Meeting hall (front right → back left)



Photo A13-4 Additional attendants next to the meeting hall



Photo A13-6 Some responses by Minister of Roads and Highways

Photos by the Study Team, September 2012

local language translations

# (2) Public Consultation at Juapong

Though the Juapong community is not directly affected by the proposed projects, it was chosen due to its central role between proposed bridge across the Volta River and N2 Asikuma Jct.

- a) Overview
  - Date: 11th September, 2012
  - Place: St.Francis of Assisi Catholic Church
  - Style: Public meeting
  - Number of attendants: 376
  - Chiefs and traditional community's key persons: 70
  - GoG Officials: 8 including Members of Parliament
  - Language: English and 2 local languages

b) Major Comments from the Public and Response from the GHA or Other Government Officials

# Table A13-2 Comments and Responses in the Public Consultation at Juapong

Comments from the Public	Responses from GHA or GoG Officials
- The reason for excluding the Juapong to Dufor	The road project is now under another agency, but it is at
Adidome road from construction of Asutsuare Jct. and	the procurement stage at present.
Asikkuma Jct.	
- The reason for little description of Dufor Adidome's	The GHA will conduct a detailed survey at a later stage.
resettlement requirements despite the social	This time, the consultants conducted a survey for rough
environmental survey.	estimation purpose only.
- Request to hire young local people for the project	No specific response was given.
implementation.	

Source: Study Team

c) General Responses from the Public

No objections to the proposed projects were made. The majority of comments concerned the Juapong to Dufor Adidome road, which has been postponed for some reason and people are anxious about implementation of the project. However, in general, the attendants agreed with the proposed projects and are keen to see them actually implemented. Some Juapong based people are concerned about depopulation of Juapong and reduction of business opportunities due to construction of road between Asutsuare Jct. and Asikuma Jct.

d) Selected Pictures







Photo A13-9 Meeting hall (front right → back left)



Photo A13-8 Meeting hall (back → front)



Photo A13-10 Attendants' registration



Photo A13-11 English presentation followed by two local language translation

Photos by the Study Team, September 2012



Photo A13-12 Some responses by Member of Parliament (Volta Region)

# Appendix 14 Scope of Resettlement Impact

# 14.1 Summary of the Population and Housing Census

The GoG conducted a population and housing census in 2010 and has been processing the results. As of September 2012, only a summary report of the final results was available for the general public. The summary report covers both population and housing census results at the regional level and the appendix includes the population at the district level. With the support of the GSS, MoFEP, the Study Team could obtain population and selected socio-economic data at the district level. The following are the key findings of the 2010 population census and district level data sheets for the purpose of understanding the socioeconomic setup for the project affected area (Dangbe West District in Greater Accra Region, North Tongu District in Volta Region, and Asuogyaman District in Eastern Region): 1) population, 2) ethnicity, 3) religion, 4) educational level, and 5) economic activities.

(1) Population

The population of Ghana in 2010 was 24,658,823, up 30.4% from 2000. The age-sex structure is shown in the following figure. Based on the summary report, the present structure reflects the effects of high fertility and decreasing mortality rate. The populations in the project affected districts and regions are shown in Table A14-1.

Table A14-1Population in the Project-Affected Districts

Region/ District	Ratio in Region	Total	Male	Female	No. of Households	Household size	Urban	Rural
Greater Accra		4,010,054	1,938,225	2,071,829	1,036,426	3.8	3,630,955	379,099
Dangbe West	3.1%	122,836	58,806	64,030	26,489	4.5	41,629	81,207
Volta		2,118,252	1,019,398	1,098,854	495,603	4.2	713,735	1,404,517
North Tongu	7.0%	149,188	70,282	78,906	31,573	4.7	43,410	105,778
Eastern		2,633,154	1,290,539	1,342,615	632,048	4.1	1,143,918	1,489,236
Asuogyaman	3.7%	98,046	47,030	51,016	23,551	4.1	28,788	69,258

Source: 2010 Population and Housing Census, May 2012, GSS

(2) Ethnicity

Table A14-2 shows the ethnicity of the project affected regions. The ethnicity ratios vary greatly among the three affected regions.

# (3) Religion

Table A14-3 shows the religions in the project affected districts. The religion rations vary greatly among the three affected districts. In all districts, Pentecostal/Charismatic accounts for the majority, followed by Protestants. There are slight differences among project affected districts, but the distribution of religions is similar.



Source: 2010 Population and Housing Census, May 2012, GSS

Figure A14-1 Age-Sex Structure of Population

Ethnicity	National	Greater Accra	Ratio in Region	Volta	Ratio in Region	Eastern	Ratio in Region
Akan	47.5%	1,528,722	<u>39.7%</u>	55,736	2.8%	1,312,977	<u>51.1%</u>
Ga-Dangme	7.4%	1,056,158	<u>27.4%</u>	31,130	1.5%	460,814	<u>17.9%</u>
Ewe	13.9%	775,332	<u>20.1%</u>	1,482,180	<u>73.8%</u>	486,136	<u>18.9%</u>
Guan	3.7%	73,409	1.9%	162,981	8.1%	137,386	5.3%
<u>Gurma</u>	5.7%	62,435	1.6%	227,282	<u>11.3%</u>	42,291	1.6%
Mole-Dagbani	16.6%	200,735	5.2%	9,473	0.5%	83,311	3.2%
Grusi	2.5%	48,822	1.3%	2,214	0.1%	19,412	0.8%
Mande	1.1%	28,656	0.7%	1,591	0.1%	6,771	0.3%
Others	1.4%	75,568	2.0%	36,313	1.8%	20,377	0.8%

 Table A14-2
 Ethnicity in the Project-Affected Regions

Source: 2010 Population and Housing Census, May 2012, GSS

## Table A14-3 Religion in the Project-Affected Districts

Ethinicity	National	Greater Accra	Dangbe West	Volta	North Tongu	Eastern	Asuogyaman
No religion	5.3%	3.4%	5.4%	6.6%	7.4%	6.5%	4.1%
Catholic	13.1%	7.5%	4.9%	17.6%	11.5%	7.9%	8.4%
Protestant	18.4%	22.3%	<u>19.0%</u>	21.5%	27.0%	24.8%	28.7%
Pentecostal/Charismatic	28.3%	44.6%	<u>52.0%</u>	26.6%	31.3%	36.3%	36.1%
Other Christian	11.4%	8.9%	9.8%	7.1%	10.7%	15.5%	15.9%
Islam	17.6%	11.4%	5.3%	5.4%	2.8%	6.3%	3.5%
Ahmadi		0.4%	0.3%	0.3%	0.4%	0.4%	0.2%
Traditionalist	5.2%	0.5%	2.1%	14.1%	8.3%	1.4%	2.4%
Other	0.8%	1.0%	1.1%	0.8%	0.7%	0.9%	0.8%

Source: 2010 Population and Housing Census, May 2012, GSS

#### (4) Education

Table A14-4 shows the educational level in the project affected districts. The education level in Dangbe West District and North Tongu District is similar, while the Asuogyaman District has a slightly higher educational level for both males and females. In all districts, primary school is the most common educational level for males, followed by junior high school and never

attended school. For females, most have either never attended school or attended only primary school. Regarding higher education for both males and females, the Dangbe West District and Asuogyaman District have slightly higher proportions than North Tongu District. Based on the census data, there is no critical gender segregation in the project area.

Educational Level	Nation	Greater	Dang	be West	¥7-14-	North	ı Tongu	Fastarn	Asuog	yaman
Educational Level	Nation	Accra	Male	Female	voita	Male	Female	Lastern	Male	Female
Never attended	23.4%	10.0%	<u>18.2%</u>	<u>30.0%</u>	<u>24.1%</u>	<u>16.2%</u>	<u>30.8%</u>	<u>17.1%</u>	8.9%	<u>19.8%</u>
Nursery	3.2%	0.2%	0.6%	0.5%	0.4%	0.6%	0.5%	0.3%	0.2%	0.3%
Kindergarten	5.4%	1.2%	2.4%	2.2%	2.5%	3.6%	3.0%	2.5%	2.6%	2.4%
Primary school	<u>24.8%</u>	<u>22.3%</u>	<u>29.0%</u>	<u>29.1%</u>	<u>29.3%</u>	<u>31.6%</u>	<u>31.1%</u>	<u>29.7%</u>	<u>28.5%</u>	<u>29.5%</u>
Juniot secondary	<u>18.7%</u>	<u>23.0%</u>	<u>21.7%</u>	<u>20.0%</u>	<u>20.0%</u>	<u>22.6%</u>	<u>20.0%</u>	<u>23.2%</u>	<u>23.9%</u>	<u>23.4%</u>
school/Junior high										
school										
Middle school	8.3%	10.8%	8.7%	5.9%	10.1%	9.8%	6.5%	13.1%	<u>14.5%</u>	11.3%
Senior secondary	8.1%	13.6%	8.8%	5.8%	7.3%	9.1%	5.6%	7.2%	9.7%	7.1%
school/Senior high										
school										
Secondary school	1.2%	3.2%	1.6%	0.7%	0.9%	0.9%	0.4%	1.1%	1.3%	0.5%
Vocational/Technical/	1.6%	4.1%	2.5%	1.5%	1.5%	1.2%	0.7%	1.6%	2.7%	1.7%
Commercial										
Post middle/	1.1%	1.5%	1.1%	0.8%	1.4%	1.5%	0.8%	1.2%	1.3%	1.2%
secondary certificate										
Post secondary	2.1%	4.4%	2.7%	2.0%	1.7%	1.8%	0.5%	1.8%	3.5%	1.9%
diploma										
Bachelor degree	1.7%	4.5%	2.2%	1.3%	0.7%	0.8%	0.2%	1.0%	2.3%	0.9%
Post graduate (Cert.	0.3%	1.0%	0.5%	0.1%	0.1%	0.2%	0.0%	0.2%	0.6%	0.1%
Diploma, Masters,										
PHD, etc.)										

 Table A14-4
 Educational Level of Project-Affected Districts

Source: 2010 Population and Housing Census, May 2012, GSS

(5) Economic Activity

Tables A14-5 to A14-9 show the status of economic activity (15 years and older) in the project affected districts. The ratios of the respective activity statuses are similar among all districts. The unemployed ratio is slightly higher in the Asuogyaman District. Regarding economic activity by industry, agriculture, forestry and fishery account for the highest number in all districts, followed by manufacturing. Wholesale and retail is second highest for females in all districts.

 Table A14-5
 Status of Economic Activity (15 years and older)

A ativity Status	Greater	Dang	be West	V-14-	North Tongu		Eastan	Asuogyaman	
Activity Status	Accra	Male	Female	voita	Male	e Female Eastern		Male	Female
Employed	65.3%	65.3%	68.1%	67.0%	65.3%	68.1%	68.6%	65.1%	63.1%
Unemployed	5.9%	2.9%	2.6%	2.9%	2.9%	2.6%	4.1%	5.6%	5.1%
Not active	28.8%	31.8%	29.3%	30.1%	31.8%	29.3%	27.3%	29.3%	31.7%

Source: 2010 Population and Housing Census, May 2012, GSS

	(Unit: person)					
A stivity Status	Empl	loyed	Unemp	loyed	Not Active	
Activity Status	Male	Female	Male	Female	Male	Female
Employee	8,079	2,861	139	87	-	-
Self employed without employee(s)	11,636	17,984	112	343	-	-
Self employed with employee(s)	1,127	857	8	13	-	-
Casual worker	864	270	26	9	-	-
Contributing family worker	1,299	1,957	7	13	-	-
Apprentice	472	624	6	13	-	-
Domestic employee (Househelp)	132	148	3	4	-	-
Other	61	20	0	2	-	-
New workers seeking employment	0	0	1,168	1,584	10,119	13,995
Total	23,670	24,721	1,469	2,068	10,119	13,995

## Table A14-6 Economically Active Population in Dangbe West District

Source: 2010 Population and Housing Census, May 2012, GSS

## Table A14-7 Economically Active Population in North Tongue District

	(Unit	: person)				
A ativity Status	Empl	oyed	Unemp	loyed	Not Active	
Activity Status	Male	Female	Male	Female	Male	Female
Employee	5,485	3,906	1,579	68	36	-
Self employed without employee(s)	44,481	18,306	26,175	48	115	-
Self employed with employee(s)	1,285	703	582	7	5	-
Casual worker	995	668	327	9	4	-
Contributing family worker	8,144	3,267	4,877	2	5	-
Apprentice	630	252	378	2	2	-
Domestic employee (Househelp)	384	148	236	1	0	-
Other	103	43	60	0	0	-
New workers seeking employment	0	0	0	1,063	1,131	13,299
Total	61,507	27,293	34,214	1,200	1,298	13,299

Source: 2010 Population and Housing Census, May 2012, GSS

#### Table A14-8 Economically Active Population in Asuogyaman District

	(Unit	t: person)				
A attivity Status	Empl	oyed	Unemp	loyed	Not Active	
Activity Status	Male	Female	Male	Female	Male	Female
Employee	9,517	6,924	2,593	126	88	-
Self employed without employee(s)	24,863	9,438	15,425	44	163	-
Self employed with employee(s)	1,197	584	613	1	3	-
Casual worker	540	375	165	6	8	-
Contributing family worker	2,066	746	1,320	1	2	-
Apprentice	905	354	551	3	13	-
Domestic employee (Househelp)	150	63	87	0	0	-
Other	94	66	28	1	2	-
New workers seeking employment	0	0	0	1,424	1,412	8,342
Total	39,332	18,550	20,782	1,606	1,691	8,342

Source: 2010 Population and Housing Census, May 2012, GSS

	(Unit: per					
Activity Status	Dangb	e West	North	Tongu	Asuogy	aman
Activity Status	Male	Female	Male	Female	Male	Female
1. Agriculture, forestry and fishery	9,169	6,274	17,455	20,523	8,057	6,533
- Mining and quarrying	799	319	318	140	73	35
2. Manufacturing	2,077	4,582	2,281	4,029	1,925	3,035
- Electricity gas stream and air conditioning supply	60	8	30	2	996	176
- Water supply; sewerage waste management and remediation activities	87	81	73	42	90	29
3. Construction	2,714	93	1,256	33	1,216	28
4. Wholesale and retail; repair of motor vehicles and motorcycles	1,823	6,729	1,457	4,967	1,053	5,499
5. Transportation and storage	2,621	130	1,103	59	1,353	72
- Accommodation and food service	320	3,191	177	1,952	240	1,922
- Information and communication	112	41	37	7	83	33
- Finance and insurance	158	99	94	24	148	77
- Real estate	72	9	2	1	3	-
- Professional scientific and technical	279	89	122	78	255	535
- Administrative and support service	254	62	152	36	324	57
<ul> <li>Public administration and defence; compulsory social security</li> </ul>	1,046	215	236	67	281	90
- Education	848	835	1,252	686	1,047	984
- Human health and social work	186	278	478	322	565	302
- Arts entertainment and recreation	230	31	128	12	167	18
- Other service activities	678	1,488	526	1,051	506	1,103
<ul> <li>Activities of households as employers; undifferentiated goods and services, producing activities of households for own use</li> </ul>	131	165	113	183	167	254
- Activities of extraterritorial organisations and bodies	6	2	3	-	1	-
Total	23,670	24,721	27,293	34,214	18,550	20,782

# Table A14-9 Economic Activity of Employees by Industry (15 years and older)

Source: 2010 Population and Housing Census, May 2012, GSS

# 14.2 Summary of Socioeconomic Survey

- (1) Positive Impacts of Construction Phase
  - a) Job Creation

During the construction phase, there will be opportunities for skilled as well as unskilled workers to earn income. People skilled in driving heavy equipment, trucks and other artisans are expected to be engaged. Some women will also seize the opportunity to provide various services to the contractors and workers, especially the sale of food. About 96% of respondents believed that the project will boost employment opportunities for men and women during the construction phase.

b) Increasing Trading Activities, especially for Women

Women who sell along the road side will benefit from an increase in business because construction workers will buy their products. Some people will also burn some demolished trees
into charcoal for domestic use.

- (2) Negative Impacts of Construction Phase
  - a) Demolition of Properties

There are various types of structures along the roads and within the ROW: some temporary structures and some permanent structures will be affected. The road alignment will result in some property owners either partially or completely losing their properties. Some properties may be completely removed and others blighted which may indirectly reduce their quality and value in the short term.

b) Destruction of Farmlands and Other Important Areas of Value

The construction of the project roads will very likely affect farmlands with various crops and economic trees along the road. This will create untold hardships for men and women.

c) Increase in Dust and Noise Levels

Levels of dust will rise significantly because of dirt on the road, and vehicular movement and wind will stir up dust. Loading and unloading of dump trucks will also generate dust and reduce air quality. When air quality is poor, upper respiratory tract infections increase, asthmatics have more attacks and dust also causes eye irritation.

Noise levels will increase as a result of activities such as, movement of vehicles and earthmoving equipment, drilling, hammering, emptying and loading of trucks, and noise of workers. Moreover, piercing noise caused by drilling machines for example will cause high noise levels while in operation. High noise levels are known to cause stress, headaches and when persistent, hearing impairment.

d) Impact on Public Health and Safety

The construction of roads will bring an influx of additional persons into the road corridor. Construction workers will be made up mainly of men who are separated from their regular partners. Such persons tend to indulge in risky sexual behaviour which increases the incidence of STDs and HIV/AIDS.

The increase in dust levels could increase the incidence of colds and other upper respiratory infections in the general populace in the corridor. Construction of drains tends to leave uncovered trenches that collect rain water especially during the wet season and become breeding grounds for mosquitoes. This may mean that the incidence of malaria may increase in the corridor.

e) Impact on Traffic Movement

During construction, movement of traffic along the route will be difficult, riding comfort will be poor and speeds will be low, so traffic will tend to crawl and this will increase travel time. It will take longer to cross the corridor than it did before construction commenced.

f) Disruption and Reduction in the Supply of Utility Services

The communities along the arterial roads may experience some disruption and reduction in the supply of utility services such as water, electricity and telecommunications in the short term. These community utility services may be interrupted due to the relocation of service lines and poles, but this will only be in the short term.

g) Impact on Business Operation and Income

Some roadside sellers will suffer demolition of their structures and if unmitigated, they may lose their businesses all together. Table-top sellers and kiosk operators in the towns may also lose their business sites and would need to relocate. However, where space is available beyond the ROW, roadside sellers may only need to be assisted to move the structures backward and face very short-term disruption to their business activities. If they have to relocate elsewhere, they may face transportation costs that may be overwhelming considering the general poverty in the area.

The dust, noise and difficulty in travelling along the route will all impact on business operations. During the dry season, dust will cling to items on display or cover netting and discolour walls. All this will adversely affect the ambience and have a negative impact on business operations. Past experiences of construction on other road corridors has shown that business in those areas dips during construction due to a fall in the number of customersr. Such a fall will result in loss of income. Increased cleaning costs will also aggravate the loss of income. On some days high levels of noise will make it difficult for businesses premises abutting the road to operate, resulting and that will result in their closing down for the day.

(3) Positeve Impacts of Operational Phase

a) Improved Road Infrastructure and Transport Service

It is expected that during the operational phase, when the roads road infrastructure have been improved, there will be free flow of traffic. This will reduce vehicle operating costs and travel time. The provision of parking lots, drains, bus stops and a better road surface will also reduce vehicle-pedestrian conflicts and travel cost. The overall effect on vehicle operating costs will be positive and significant for road users.

b) Increase in Local Economic Activities

It is expected that with the completion of the Benchema – Adwufia road project, more businesses as well as customers will be attracted than before. Hence, business activities will flourish and have a impact significantly impact on the communities. It is also expected that the population will increase along the road. This will lead to an increase in demand for goods and services. In the longer term, the project will lead to increased business activities and strengthen local economies, thus helping to reduce poverty in the area.

c) Increase in Property Values

The value of properties along the road is expected to increase since most of them will have a new facelift as the landscape becomes more beautiful with the new road, particularly the new bridge across the Volta River.

d) Public Health and Safety

The existing roads do not have proper drainage systems and some of them are very dusty. This is detrimental to the well-being of the people who live alongside such roads. The road projects will include improvement of the alignment and the road surface and construction of drainage structures. With such improvements, flooding will be prevented and stagnant water will be eliminated, thus reducing the occurrence of certain diseases like malaria, typhoid, diarrhoea and asthma.

e) Traffic Safety

When roads are upgraded, the road surface and travel comfort improves and with moderate speeds and facilities for greater pedestrian safety, some accidents that are now common may reduce significantly. The project will solve some of the vehicle-pedestrian conflicts along the section. The provision of sidewalks, pedestrian crossings and other traffic management schemes will reduce accidents.

f) Beautification of Affected Communities

With the completion of the project, the communities along the project roads will look more beautiful and therefore attract more people and more commercial properties into the area.

g) Impact on Land Use

The land abutting the road is used for farming, residences, artisanship and small trading activities. When the road is upgraded, some of the unused lands may be developed into residential and commercial areas and the value of properties will tend to increase. Some property owners will also scale up their property to attract higher rents.

h) Improved and Easier Access to Social Amenities

The delivery of education services, markets, hospitals, etc. is expected to be made much easier through the provision of better transport services. For instance, more teachers will accept postings to schools on the road corridor.

- (4) Negative Impacts of Operational Phase
  - a) Vehicler-Pedestrian Conflicts and abuse of Traffic Regulations

Quite a number of respondents expressed fears that once the road is paved, drivers are likely to flout traffic regulations and exceed speed limits(even in communities), in a bid to shorten their travel time and maximise profits. This could result in knocking down of pedestrians, cyclists and animals. Another abuse is careless overtaking and consequent fatal accidents.

b) Increase in Criminality and Prostitution

While the influx of people into the road influence area is likely to boost the local economies, the ease of movement may also facilitate an influx of criminals and prostitutes engaging in highway robbery, stealing and prostitution.

c) Impact on Public Health and Safety

The construction of international trunk roads will bring an influx of additional persons into the road corridor. Freight vehicle drivers will be made up mainly of men who are separated from their regular partners. Such persons tend to indulge in risky sexual behaviour which increases the incidence of STDs and HIV/AIDS.

# 14.3 Results of Consultations with Potentially Affected Persons for Construction of New Road between Asutsuare Jct. and Asikuma Jct.

(1) District and Communities of Project-Affected Persons

The survey was conducted in three districts namely: Asuogyaman, Dangme West and North Tongu. In total, 210 respondents (132 males and 78 females) were interviewed. The distribution of the respondents among the districts was as follows: Asuogyaman 26 (18.1% of respondents); Dangme West 117 (55.7%), and North Tongu 55 (26.2%).

# Table A14-10Districts and Communities of Projected Affected Persons(Construction of New Road between Asutsuare Jct. and Asikuma Jct.)

District	Community	Male		Female		Total	
		Number	%	Number	%	Number	%
Asuogyaman	AbotiaNorvisi	9	4.3	4	1.9	13	6.2
	Amesianyakope	3	1.4	0	0	3	1.4
	Asikuma	8	3.8	6	2.9	14	6.7
	Dangbe	6	2.9	2	1.0	8	3.8
Asuogyaman Total		26	12.4	12	5.7	38	18.1
Dangme West	Asutsuare Junction	7	3.3	1	0.5	8	3.8
	Lubuse	35	16.7	20	9.5	55	26.2
	Osuwem	10	4.8	7	3.3	17	8.1
	Tanya	6	2.9	6	2.9	12	5.7
	Volivo	11	5.2	14	6.7	25	11.9
Dangme West Total		69	32.9	48	22.9	117	55.7
North Tongu	Dufor Adidome	34	16.2	16	7.6	50	23.8
	Osiabura	3	1.4	2	1.0	5	2.4
North Tongu Total		37	17.6	18	8.6	55	26.2
Grand Total		132	62.9	78	37.1	210	100

Source: Study Team

### (2) Occupations of Respondents

Six major occupation categories were identified in the communities. Figure A14-2 shows that the vast majority (79.5%) of the respondents were crop farmers, followed by the services sector (5.7%), artisans (5.2%) and trading (4.3%).



Source: Study Team



### (3) Potentially Affected Properties

Table A14-11 shows potentially affected properties by construction of new road between Asutsuare Jct. and Asikuma Jct.

Affected Properties	Male	Female	Total
	Number	Number	Number
House	1	0	1
Storage/hut	10	8	18
Farm	99	55	154
Container	1	1	2
Kiosk	1	1	2
Kitchen	1	0	1
Land	1	3	4
Wooden Shed	0	1	1
Fish Pond	2	1	3
Total	114	69	183**

Table A14-11Potentially Affected Properties(New Road between Asutsuare Jct. and Asikuma Jct.)

Notes: * multiple ownership included

** Unless the ENTIRE DISPLACED PAP is fewer than 200, the category of the project would be B and would require ARAP (WB OP4.12) (cf. paragraph 25). A draft resettlement plan that conforms to this policy is a condition of appraisal (see Annex A, paragraphs 2-21) for projects referred to in paragraph 17(a) above. However, where impacts on the <u>entire displaced population</u> are minor, or fewer than 200 people are displaced, an abbreviated resettlement plan may be agreed with the borrower(see Annex A, paragraph 22). The information disclosure procedures set forth in paragraph 22 apply.

Source: Study Team

(4) Type of Compensation Required by PAPs

A majority (70.4%) would want cash compensation. This was followed by 25.3% who would want their affected buildings to be replaced. A further 1.5% said they would prefer both cash and buildings. Of the remaining 2.8%, 1.5% would want farmland as composition.



Source: Study Team

Figure A14-3 Compensation Required by PAPs (New Road between Asutsuare Jct. and Asikuma Jct.)

Final Report

# 14.4 Results of Consultations with Potentially Affected Persons for Upgrading of Asutsuare – Aveyime Road

(1) District and Communities of Project Affected Persons

Atrobinya

Dufor

In all, 122 respondents were interviewed in two districts of Dangme West (59.8%) and North Tongu (40.2%). Five communities were selected from Dangme West and one from North Tongu.

District	Community	Male		Female		Total	
		Number	%	Number	%	Number	%
Dangme West	Asutsuare	15	12.3	7	5.7	22	18.0

17.2

0.8

14

1

11.5

0.8

35

2

8

6

73

49

122

28.7

1.6

6.6

4.9

59.8

40.2

100

 Table A14-12
 Districts and Communities of PAPs (Asutsuare – Aveyime Road)

7 Kewum 5.7 1 0.8 Volivo 3 2.5 3 2.5 Dangme West Total 47 38.5 26 21.3 North Tongu Aveyime 25 20.5 24 19.7 **Grand Total** 72 59.0 50 41.0

21

1

Source: Study Team

(2) Occupations of Respondents

Six major occupation categories were identified: farming (56.6%), trading (19.7%), artisans (9.8%), office work (4.9%), services (1.6%), and others (7.3%). The farming industry was made up of crop farming (54.9%)



Source: Study Team

Figure A14-4 Major Occupations of Respondents (Asutsuare – Aveyime Road)

### (3) Potentially Affected Properties

Table A14-13 shows potentially affected properties by upgrading of Asutsuare - Avyime road.

Affected Properties	Male	Female	Total
	Number	Number	Number
House	5	4	9
Farm	45	26	71
Container/Kiosk	1	6	7
Fence wall	0	1	1
Wooden Structure	3	1	4
Total	73	50	113

 Table A14-13
 Potentially Affected Properties* (Asutsuare – Aveyime Road)

Note: * multiple ownership included

Source: Study Team

### (4) Compensation Required by PAPs

The vast majority (77.0%) of the respondents stated that they would want to have cash compensation, 13.9% would want replacement of their buildings, whilst 6.6% wanted relocation. The rest (2.5%) said they would need farmland.



Source: Study Team

**Compensation Required by PAP (Asutsuare – Aveyime Road)** Figure A14-5

Final Report

## Appendix 15 Recommended Monitoring Items and Standards for Environmental Quality Monitoring

All standers shall meet the most updated EPA's guidelines at the time of implementation. As the environmental standards are not available on the EPA's website (www.epa.gov.gh) as of September 2012, GHA and responsible consultants would be required to obtain the updated standers at the EPA office. The following standards were extracted from the EPA's relevant guidelines as of May 2012.

Air Quality( <del>Emission Gas /</del> Ambient Air Quality)					
*EPA Ambient Air Quality Guidelines					
Item	Unit	Country's Standards*	<b>Referred International Standards**</b>		
SO ₂	µg/m ³	<industrial project="" site=""></industrial>	0.04 ppm/h-daily average		
		900 $\mu$ g/m ³ -h average	0.1 ppm/h-peak		
		$150 \ \mu g/m^3$ -24h average			
		80 $\mu$ g/ m ³ -1year average			
		<residential></residential>			
		$700 \ \mu g/m^3$ -h average			
		$100 \ \mu g/m^3$ -24h average			
		$50 \ \mu g/m^3$ -1year average			
NO $_2$	μg/m ³	<industrial project="" site=""></industrial>	0.04-0.06 ppm/h-daily average		
		$400 \ \mu g/m^3$ -h average			
		$150 \ \mu g/m^3$ -24h average			
		<residential></residential>			
		$200 \ \mu g/m^3$ -h average			
		$60 \ \mu g/m^3$ -24h average			
CO	mg/m ³	$100 \text{ mg/m}^3$ -15min average	10 ppm/h-daily average		
		$60 \text{ mg/m}^3$ -30min average	20 ppm/h-peak (consecutive 8h)		
		30 mg/ m ³ -h average			
		10 mg/ m ³ -8h average			
Total	μg/m ³	<industrial project="" site=""></industrial>	0.10 mg/m ³ -h-daily average		
Suspended		$230 \ \mu g/m^3$ -24h average	$0.10 \text{ mg/m}^3$ -hpeak		
Particle Matter		75 $\mu$ g/m ³ -1year average			
		<residential></residential>			
		$150 \ \mu g/m^3$ -24h average			
		$60 \ \mu g/m^3$ -1year average			
PM ₁₀	µg/m3	$70 \ \mu g/m$ 3-24h average N/A			
**Japanese Ministry of Environment (J-MOE) Environmental Quality Standards - Air Quality as of September 2012					
Due to the <u>units</u> of the items as well as analysis <u>methods are different</u> from Ghanaian and Japanese standards, it is advisable					
to carefully refer	the Japanes	e standards, especially volume to weight con-	version with the effect of temperature.		

		Water Quality (Effluent/Wastewater <del>/Amb</del>	<del>ient Water Quality</del> )	
*EPA Schedule 1 (Regulation 2) of Wastewater Quality Guidelines for Discharges into Water Bodies or Water				
Courses				
Item	Unit	Country's Standards*	<b>Referred International Standards**</b>	
pН	-	6-9	5.8 - 8.6	
Total Suspended	mg/l	50	150 mg/l-daily average	
Solid			200 mg/l-peak	
Total Dissolved	mg/l	1,000	N/A	
Solid				
BOD/COD	mg/l	BOD: 200	BOD (not into sea and lakes)	
		COD: 1,000	120 mg/l-daily average	
			160 mg/l-peak	
Total Nitrogen	mg/l	100	60 mg/l-daily average	
			120 mg/l-peak	
Total Phosphorus	mg/l	10.0	8 mg/l-daily average	
			16 mg/l-peak	
Hydrocarbons /	mg/l	20	5 mg/l (mineral oil)	
Mineral Oils			30 mg/l (animal/vegetable fats)	
Oil	-	No visible floating oil	N/A	
** J-MOE Uniform	Nation	al Effluent Standards as of May 25, 2012		

Noise / Vibration (Ambient)					
* EPA Ambient Noise Level Standards					
Item	Unit	Country's Standards*	<b>Referred International Standards**</b>		
Noise level	dB	(day:6AM-10PM/night:10PM-6AM)	85dB		
		55/48: (A: residential area)	<construction site=""></construction>		
		55/50: (B1: school and hospital)	working time: 6 am – 10 pm		
		60/50: (B2: commercial area)	max working time: 14 hours		
		65/60: (C1: light industry	max consecutive work: 6 days		
		/entertainment/public place)	prohibited work day: Sundays and holidays		
		75/65: (C2: predominantly commercial area)	<residential></residential>		
		70/60: (D: light industrial area)	working time: 6 am – 10 pm		
		70/70: (E: predominantly heavy industrial	max working time: 14 hours		
		area)	max consecutive work: 6 days		
			prohibited work day: Sundays and holidays		
Vibration	dB	No standard at this moment	***85dB (Construction Works)		
level			max consecutive work: 6 days		
		Necessity of vibration control shall be	prohibited work day: Sundays and holidays		
		decided based on the discussion of GoG and	<construction site=""></construction>		
		JICA before the loan agreement with EPA	working time: 6 am – 10 pm		
		and other authorities' consideration,	max working time: 14 hours		
		especially considering practicability of	<residential></residential>		
		monitoring and acceptability/common	working time: 7 am – 7 pm		
		practices of residents adjacent to the	max working time: 10 hours		
		construction site and roads.			
			70dB (daytime: motor vehicle)		
			65dB (nighttime: motor vehicle)		
** J-MOE Environmental Quality Standards for water pollution /human health					
*** Appendix II of	f Vibrati	ion Regulation Law #64 of 1976 (amended by La	aw #75 of 1995)		

# Appendix 16 Result of the Road Safety Audit

The report on Road Safety Audit – Stage 2 (Preliminary Design) for the Eastern Corridor Development Project on Construction of Asutsuare Junction – Asukuma Junction and Asutsuare – Aveyime Roads was prepared by the GHA on Octoboer 2012. Results of the report are as follows:

### **REPUBLIC OF GHANA**



## MINISTRY OF ROADS AND HIGHWAYS

### GHANA HIGHWAY AUTHORITY

**REPORT ON** 

# **ROAD SAFETY AUDIT – STAGE 2 (PRELIMINARY DESIGN)**



EASTERN CORRIDOR DEVELOPMENT PROJECT

# CONSTRUCTION OF ASUTSUARE JUNCTION-ASIKUMA JUCTION AND ASUTSUARE-AVEYIME ROADS

THE CHIEF EXECUTIVE GHANA HIGHWAY AUTHORITY HALL OF TECHNOLOGY, ACCRA

OCTOBER, 2012

# TABLE OF CONTENTS

1.0	INTRODUCTION1
2.0	GENERAL COMMENTS
2.1	Highway Classification and Design Speed on Mainline4
2.2	Auxiliary lanes at AsikumaJct, AsutsuareJct and Volivo Intersections
3.0	SPECIFICCOMMENTS
3.1	Toll Plaza7
3.2	Cross section of Volta River Bridge

### 1.0 Introduction

The basic objective of road safety audit is the reduction of road casualties through the adoption of a more proactive approach, contrary to traditional blackspot analysis which is a reactive method of identifying high accident locations. The intent is to identify and mitigate problem areas before accidents have a chance to occur.

A stage two (preliminary design) road safety audit was carried out by a multidisciplinary audit team (who are absolutely independent of the design team and had no involvement in the production of the design) between 26th and 29th October, 2012 to ensure that the Asutsuare Junction-Asikuma Juction and Asutsuare-Aveyime roads would not jeopardize the safety of motorist and other road users using the roadway after completion. The field audit was carried out during daylight hours.

This document is a Report of the study carried out at stage 2 (Draft Design). The project consists of Ninety-Seven (97) Highway Drawings. These are:

- 1. Plan and profile (31 Drawings)
- 2. Typical Cross Sections (2 Drawings)
- 3. General plan of bridges (4 Drawings)
- 4. Cross sections (58 Drawings)
- 5. Intersections (2 Drawings)

The audit covers an assessment of the above drawings relating to the project road supplied by the designeras well as the examination of physical and visual features of the study area which may affect road users' safety. Traffic conflict studies at major intersections and a review of road traffic crashes data, as well as socio-economic activities and other contextual issuesalong the entire project corridor that might affect the safety performance of the roadway, were also undertaken.

This Stage 2 Road Safety Audit has been carried out in accordance with the relevant sections of Ghana Highway Authority's Road Safety Audit procedures. The Audit Team has examined only those issues within the design relating to the road safety implications of the scheme.

In this report, issues considered to be potentially risky for accident occurrence have been raised. The reason for concern for the issues raised/observations made have been addressed. In addition, opportunities that exist (Recommendations) for improvements in safety for all road users have been provided.

The Road Safety Audit was undertaken by the following:

Victor Owusu, BSc, MPhil, MGhIE, MCIHT, MSoRSA- Team Leader

 $Harold\ Atobra-Acheampong,\ BSc,\ MGhIE-Member$ 

Anthony K. Spio, HND Civil Engineering – Member

Bernard Owusu, BSc, MGhIE – Member

### 2.0 General Safety Concerns

### 2.1 Highway Classification and Design Speed on Mainline

### a) Observation

The project road traverses through densely populated communities and large agricultural lands. Socio-economic activities are soaring with the rapid development of commercial, residential and social amenities along the route belt.

According to distribution of urban centers and populations along the roadside, forecast traffic, the project function and its role in the network, the evaluation was carried out to the proposed highway classification from the concern of adaptability to operating safety.

The road traffic crashes potential and safety performance evaluation of the preliminary scheme was carried out to design speed based on proposed highway classification, forecast traffic, traffic component and terrain along roadside. The design speed difference between two adjacent road sections with different design speed was not to exceed 20km/h. For adjacent road sections which speed difference is more than 20km/h, the transition section was to be arranged, which length shall guarantee the smooth and safe transition along the alignments. Also, relevant traffic facilities shall be arranged to instruct driver to adjust operating speed.

The design speed adopted for the proposed mainline between Asutsuare Junction and Asikuma Junction was 100kph. This is following the prescription for the desirable design speeds for national roads as obtains in the Ghana Road Design Guide (1991).

### b) Reason for concern

It is generally accepted that the chosen design speed must relate to the potential/actual driving behaviour as represented by the 85th percentile speed of passenger cars under free flow conditions. This is likely to be higher with only passenger cars, and even more so, if these were to be travelling on the proposed carriageway which lies on a relatively flat terrain.

The design speed is probably the most important geometric design parameter because it is supposed to be applied to obtain a consistent coordinated alignment. Adoption of 100 kph design speed throughout the mainline would very likely result in departure from consistency on the approaches of the proposed intersections where vehicular maneuverabilities at the transition zone will be at its threshold and operating speeds of diverging and merging traffic (leaving/entering the intersections) are likely to be lower than speeds of through traffic. This means that the design speed is at variance with actual driving behaviour (a situation which has the propensity of violating drivers' expectation) and may lead directly to an increase in accident potential.

c) Recommendation

• The design speed difference between the transition zones and the mainline should be kept at 20km/h. This means that a design speed of 80kph should be maintained at the transition zones.

- The transition zone should also to be arranged, which length shall guarantee the smooth and safe transition along the alignments. Also, relevant traffic facilities such as variable message signs (VMS), Intelligent Traffic System (ITS) and roadway delineation should be arranged in the detailed design stage to instruct driver to adjust operating speed. This is essential
- Signalization of the major intersection on the N2 Highway is essential.
- At the detailed design stage, consideration should be given to the provision of advance directional signs (on gantries and in combination with lane selection signs/markings) to inform/direct drivers to select the appropriate lanes at the approaches of the intersection. This will reduce side-swipe accidents
- In the long term an Interchange should be considered at the Asikuma Junction to enhance the smooth and safe transition of vehicles from one mainline to the other.

### 2.2 Auxiliary lanes at Asikuma Junction, Asutsuare Junction and Volivo Intersections

a) Observation

The storage and taper lengths are too short and inappropriate traffic safety

b) Reason for concern

Drivers will compete for the small auxiliary lanes as they leave/enter the intersections.

Erratic merging and diverging of impatience drivers may lead to traffic crashes.

- c) Recommendation
  - Consideration should be given to the extension of the auxiliary lanes to cater for the storage and turning movements of all vehicles.

### **3.0** Ssafety Concerns at Specific Locations

### 3.1 Toll Plaza

a) Observation

The proposed Toll Plaza is located quite close to the Volta River Bridge and it is sandwiched between the Volta River Bridge (Km 28+685) and the crossing of Juapong-Dufor Adidome feeder road (Km 29+060).

b) Reason for concern

The propensity of vehicles tailing back into and congesting the Volta River Bridge is high, considering the rather short approach lane of Toll Plaza and the significant proportion of Heavy Goods Vehicles that may use the road.

- c) Recommendation
  - The location of toll booth should be closer to the crossing of Juapong-Dufor Adidome feeder road (Km 29+060) to compensate for adequate space for vehicle approaching the toll both from the Volta River Bridge.
  - Consideration should be given to the provision of multiple toll booths and approach lanes to manage the traffic in the vicinity of the Volta River Bridge.

### 3.2 Cross section of Volta River Bridge

### a) Observation

Safety fence has not been provided at the interface of the carriageway and the walkway



No safety fence at the interface of walkway and carriageway

b) Reason for concern

The safety of pedestrian and other vulnerable road users will be impaired as errant motoristcross their path.

- c) Recommendation
  - Consideration should be given to the provision of appropriate safety fence during the detailed design stage.
  - Provision of enhanced road markings and shoulder rumble strips should be considered.