Annex:

Annex-1 Project Sites
Annex-2 Components of the Project
Annex-3 Selected Sites
Annex-4 Organization Chart of the Responsible Organization
Annex-5 Project Cost Estimation

1. Construction of Water Supply Facilities: 9 towns as listed below

No.	Town	Population (2016)	Water supply amount (2016)
9	Mertule Maryam	17,829	$328.97 \mathrm{~m}^{3} /$ day
10	Yetimen	3,877	$74.33 \mathrm{~m}^{3} /$ day
12	Lumame	13,451	$255.17 \mathrm{~m}^{3} /$ day
14	Wojel	3,758	$121.22 \mathrm{~m}^{3} /$ day
15	Sedie	3,947	$87.99 \mathrm{~m}^{3} /$ day
16	Dibo	2,510	$89.22 \mathrm{~m}^{3} /$ day
	Amanuel	12,694	$86.40 \mathrm{~m}^{3} /$ day
27	Gobeze Maryam	6,908	$114.00 \mathrm{~m}^{3} /$ day
	Bikolo	5,811	$181.43 \mathrm{~m}^{3} /$ day
Total		70,786	$1,338.73 \mathrm{~m}^{3} /$ day

2. Technical Assistance consisting of:

- To facilitate AWRDB and Woreda water office on the effective support system in proper management of Water Management Organization (WMO)
- To institutionalize the operation and maintenance structures of WMO
- To secure general understanding among the stakeholders on the operation and maintenance structures
- To conduct technical trainings on the maintenance and repair of the facilities (implemented by EWTEC)
- To conduct technical trainings on administrative tasks such as accountancy, book keeping and reporting

資料 5．ソフトコンポーネント計画書

アムハラ州南部地方小都市給水計画 ソフトコンポーネント計画書

（1）ソフトコンポーネントを計画する背景
1）現状と課題
対象サイトにおいては，既存の水管理組織による運営•維持管理体制が整備されているが，管理費用の積み立て計画を立案し，それを基に水料金を徴収•管理し，水道施設を運営していく能力に は乏しい。また，軽微な故障が発生しても，修繕せずに放置されている水道施設も散見される。他方，施設の故障を防ぐための定期保守を担う Woreda 水事務所の役割分担が明確ではなく，それに かかる予算や人員も十分に配置されていないのが現状である。

以上から，水管理組織の運営•維持管理にかかる課題は，以下のとおりである。

- 運営•維持管理体制が確立されていない
- 機器操作や軽微な修理に対応できない
- 水料金（運営•維持管理費）の徴収•管理能力が低い

2）ソフトコンポーネントの必要性
前述のとおり，既存の水管理組織による運営•維持管理体制は整備されているが，管理費用の積 み立て計画を立案し，それを基に水料金を徴収•管理し，水道施設を運営していく能力には乏しい。 また，軽微な修繕に対する能力も不足している。本プロジェクトで整備される水道施設は，水管理組織によって運営•維持管理が可能となる内容及び規模で計画するが，現状の水管理組織の体制及 び技術力では能力不足と判断される部分がある。

したがって，円滑なプロジェクトの立ち上がりを確実とするため，ソフトコンポーネントによる技術支援を投入し，水管理組織及び Woreda 水事務所の運営•維持管理にかかる能力強化を支援す る。なお，対象サイトには，公共水栓式または各戸給水式水道施設が存在するため，住民の衛生理念はある程度醸成されていると判断し，ソフトコンポーネント内での衛生教育は実施しない。

また，技術支援の内容としては，運営•維持管理能力の強化にかかるソフト面の支援に重点を置 くが，エチオピア国地下水開発•水供給訓練センター（Ethiopian Water Technology Centre，以下「EWTEC」）と連携し，機械操作や軽微な修繕等のハード面についても技術支援を行なう。
（2）ソフトコンポーネントの目標
1）目標
ソフトコンポーネントの目標は，「水管理組織が主体となって水道施設の運営•維持管理が適切 に実施されること」と定める。この上位目標は，「建設された水道施設がプロジェクト終了後も長期間にわたって利用される」ことである。すなわち，ソフトコンポーネントの実施によって，本プロ ジェクト終了後の水道施設が，水管理組織主体で持続的に運営•維持管理されることを目指すもの である。なお，ソフトコンポーネントの PDM は，次表のとおりである。

PDM（ソフトコンポーネント）

プロジェクト要約	指標	入手手段	外部条件
上位目標 建設された水道施設がプロジ エクト終了後も長期間に亘って利用される	住民の水因性疾病率の低下	- 保健衛生の統計資料 - 住民アンケート	
ソフトコンポーネントの目標 水管理組織が主体となって， 水道施設の運営•維持管理が 適切に実行される	－全施設が年間を通して稼動 している －安全な水が得られる人口が増加する	- 施設運転記録簿 - 施設利用登録簿	AWRDB が水管理組織主体の運営•維持管理政策を変更しない
成果 1．水道施設の運営•維持管理に関わる実施体制が整う	1.1 実施機関において，住民主体の運営•維持管理に対する連携意識が高ま り，水管理組織への支援体制が形成される 1.2 各サイトにおいて水管理組織が整備される 1.3 住民を含む関係者各自 が自分の役割を明確に認識する	- 関係者へのヒアリング - ワークショップ報告書 - 支援体制組織図 - 利用規約 - 水管理組織•組織図 - 運営•維持管理計画書 - 各担当者へのヒアリング	住民が主体となること に関して，関係機関か らの異議がない
2．運営•維持管理に必要な技能や知識を習得する	2.1 故障頻度が減少し，給水施設の未使用期間が短縮される 2.2 水管理組織での出納業務を含む運営記録が作成される 2.3 モニタリング・評価が計画 に応じて実施され，活動 に反映される	- 活動記録簿 - 施設運転記録簿 - 技術訓練報告書 - 故障時修理マニュアル - 料金徴収出納帳 - 施設運転記録簿 －ソフトコンポーネント 実施状況報告書	
活動			前提条件
1．1 AWRDB 及び Woreda の水管理組織への支援体制を整える 12 水管理組織の運営•維持管理体制を整備する 1.3 運営•維持管理体制に関 する理解を得る 2.1 水道施設の点検修理等 にかかる技術訓練（ハード面）を実施する 2.2 会計，記録等のアドミニス トレーションにかかる技術指導（ソフト面）を実施す る 2.3 活動のモニタリング・評価 を実施し，計画の修正を行なう			関係者がプロジェクト実施に積極的である

2）支援体制配慮事項

ソフトコンポーネントは，水道施設建設前に行なら「実施体制の確立」（フェーズ 1）と建設中～後に行われる「運営•維持管理技術の習得」（フェーズ 2）の 2 フェーズ体制を取り，サイト単位で水管理組織を中心に啓蒙•教育活動を行なう。水道施設のハード面に関する維持管理に関しては， EWTEC から 2 名の講師を各サイトに招き，関係者に対する合同の技術訓練を実施する。
（3）ソフトコンポーネントの成果
運営•維持管理にかかるソフトコンポーネントの成果（直接効果）は，以下のとおりである。

成果1：水道施設の運営•維持管理に関わる実施体制が整う

既存の水道施設は，サイト単位で水管理組織により運営されているが，故障や利用料金の支払い困難等の様々な問題に対処できていないのが現状である。また，AWRDB や Woreda 水事務所による支援体制はできているが，円滑に機能していない状態にある。

したがって，各機関における水管理組織への対応を見直したらえで，具体的な支援体制を整備す る。また，利用規約を含む運営•維持管理計画を策定し，計画を具体的に推進させる。

成果 2 ：運営•維持管理に必要な技能や知識を習得する

水管理組織による運営•維持管理を推進するためには，現在欠如している技術的能力に対する補填が必要となる。実施機関による支援体制が整備されたうえで，具体的な問題に対応する能力を習得するために，水管理組織及び Woreda 職員に対する技術訓練（ハード面及びソフト面）を行なう。 ハード面に対する技術訓練により，軽微な故障であれば水管理組織が修理し，複雑な修理が必要な場合は Woreda 職員が対応することが可能となり，各機関による実施体制がより明確になる。

また，持続的な運営•維持管理とするためには，適切な利用料金の徴収と管理が重要であるため，水管理組織及び Woreda 職員に対する会計管理に関する技術訓練を行なら。

さらに，水道施設の利用及び稼動状況を記録管理するため，記録作成にかかる訓練を実施する。水管理組織で作成された記録簿は，Woreda 水事務所から AWRDBに共有されることにより，故障に よる放置や水料金の徴収に関する問題が減少する。
（4）成果達成度の確認方法
上記の成果を達成するための指標と成果達成度の確認方法は，以下のとおりである。
成果達成度の確認方法

成果	達成度の確認項目	達成度の確認方法（案）
成果 1 水道施設の運営•維持管理 に関わる実施体制が整う	実施機関において，住民主体の運営•維持管理に対する連携意識が高まり，水管理組織への支援体制が形成され たか	－関係者へのヒアリング －ワークショップ報告書 －支援体制組織図 －利用規約
	各サイトにおいて，住民による水管理組織が形成，または再編成されたか	- 水管理組織の組織図 - 運営•維持管理計画書
	住民を含む関係者各自が自分の役割 を明確に認識しているか	- 各担当者へのヒアリング - 関係者全体組織図
成果2 運営•維持管理に必要な技能や知識を習得する	故障頻度が減少し，故障期間が短縮さ れたか	- 関係機関の活動記録 - 施設運転記録簿 - 技術訓練報告書 - 故障時修理マニュアル
	水管理組織での出納業務を含む運営記録が作成される	- 料金徴収出納帳 - 施設利用登録簿
	モニタリング・評価が計画に応じて実施 され，活動に反映されたか	- モニタリング・評価記録 - ソフトコンポーネント実施報告書

（5）ソフトコンポーネントの活動（投入計画）
1）活動区分
ソフトコンポーネントは，活動期間を「水道施設建設前」及び「施設建設中及び竣工後」の 2 フ エーズに区分し，水管理組織を支援する実施機関である AWRDB 及び Woreda 水事務所の協力のも と，邦人コンサルタントがこれを統括する形で実施する。

また，水道施設の点検や修理等の技術訓練（ハード面）については，EWTEC の協力を仰ぐ。

2）役割分担

本邦コンサルタント，Woreda 職員及び EWTEC 講師の役割分担は，以下のとおりである。

本邦コンサルタント

ソフトコンポーネント計画の統括者として以下を担当する。

- ソフトコンポーネント実施運営管理
- ワークショップ，セミナー等の立ち上げにかかる作業
- AWRDBとの協議及び Woreda 職員に対するワークショップの実施
- 他ドナー，NGOとの連携にかかる調整業務
- 水管理組織に対する AWRDB，Woreda 水事務所の支援体制の整備
- EWTEC 講師による施設維持管理にかかる技術訓練（ハード面）の運営実施
- アドミニストレーションにかかる技術指導（ソフト面）
- 運営•維持管理マニュアルの作成
- 各種規約の立案補助
- 各種記録簿作成補助
- 活動のモニタリング・評価に関するレビュー
- 各フェーズにおける活動結果のレビューとフィードバック
- 実施機関及び JICA への報告

Woreda 職員

本邦コンサルタントの指示のもと，作業計画遂行のための現地活動を統括し，継続的に計画に関与する。本邦コンサルタントの不在時は，逐次活動の進渉状況確認を行なう。また，本邦コンサル タントが現地滞在中は，関係機関との調整を行ない，活動を補佐する。

- 住民による水管理組織の立ち上げ支援
- 各サイトでの住民集会開催における運営業務
- 各サイトでの運営•維持管理の状況確認と本邦コンサルタントへの報告
- EWTEC 講師による運営•施設維持管理にかかる技術研修（ハード面）調整
- 水管理組織の運営•維持管理に対する連携支援と定期監査
- 関係者によるモニタリング採集
- 邦人不在時における各関係機関との業務調整

EWTEC 講師

水管理組織職員及び Woreda 職員に対して，水道施設の運営•維持管理にかかる技術訓練（ハー ド面）を実施する。

- 新設水道施設に関する基礎知識の伝授
- 日常の点検方法
- 故障時の対応（軽微な故障の修理方法及び重度な故障の対応方法）
- スペアパーツの購入方法
- 施設の利用ルール
- 施設の清掃

3）活動計画

具体的な活動内容は，以下のとおりである。

＜実施体制の確立（フェーズ 1）＞

活動1－1：AWRDB 及び Woreda の水管理組織への支援体制を整える
プロジェクト開始に伴い，実施機関であるAWRDB において，プロジェクトの目的，必要性，内容，実施計画にかかる協議を行なら。その後，水管理組織による運営•維持管理を後方支援する Woreda の職員を対象に，既存の水道施設の使用状況，運営•維持管理にかかる現状把握及び住民主体の運営•維持管理の必要性•重要性を理解するためワークショップを実施する。Woreda 職員はこ のワークショップを通じ，今後各サイトの水管理組織の職員及び住民を啓蒙指導するための住民参加型手法を習得する。

邦人コンサルタントは，各 Woreda 職員に対するヒアリングにおいて，これまでの水管理組織と の関わり方や問題点を明らかにしたらえで，支援体制の組織図を作成する。さらに Woreda 職員と共に，活動 1－2 で選出される水管理組織の職員構成，役割，人選の方法，資金繰りを含めた運営体制及び利用規約について具体案を捻出する。

```
対象者: AWRDB 職員, Woreda 職員
投 入: 邦人コンサルタント (10 日), 車両(本邦コンサル及び先方機関投入)
成果品: 支援体制組織図, 利用規約
```


活動1－2：水管理組織の運営•維持管理体制を整備する

水道施設が整備される9サイトにおいて，既存の水管理組織を対象として，その在り方と問題点 を明らかにするためのワークショップを開催する。その結果を踏まえ，Woreda 職員主導の下で，今後の運営•維持管理活動に適切と思われる職員構成，役割，人選方法を提示し，現職員の理解を得 る。

また，運営•維持管理の実施に際して水管理組織と住民との関わり方を再考し，次の住民集会で の協議に先立ち，各水管理組織の連携による無理のない計画案を策定する。とりわけ，組織職員の給与や運営資金，それらを捻出するための適切な水料金の設定と徴収方法に関しては，活動 1－3 で行なわれる住民集会において提示できるよう本段階で策定する。

```
対象者: 水管理組織職員
投 入: 邦人コンサルタント (9 日), Woreda 職員 (9 日) , 車両
成果品: 水管理組織•組織図, 運営•維持管理計画書案
```


活動1－3：運営•維持管理体制に関する理解を得る

各サイトを統括する Woreda 職員により，運営•維持管理にかかる概略説明を行なった後，活動 1－1，1－2 で得られた成果をもとに，住民を対象にしたワークショップを開催する。ワークショップ では，安全な水の継続的確保のための水道施設の周囲環境整備，利用規約に従った施設の運営•維持管理における住民参加の重要性，とりわけ水道施設の運営資金確保のための水料金徴収の必要性 に関して住民からの理解を得る。水管理組織職員は，活動 1－2 で策定された水管理組織による運営•維持管理計画案を住民に提示し，今後の連携と協力を求める。

対象者：住民，村評議会
投 入：邦人コンサルタント（9日），Woreda 職員（9 日），水管理組織職員（9 日），車両

＜運営•維持管理技術の習得（フェーズ 2）＞

活動2－1：水道施設の点検，修理等にかかる技術訓練（ハード面）を実施する

Woreda 水事務所及び水管理組織の施設管理担当者に対し，EWTEC 講師による水道施設の運営•維持管理にかかる基礎知識と日常点検方法，故障時の対応，軽微な故障への修理技術の習得のため の技術訓練（ハード面）を，OJT 方式で実施する。プロジェクトの対象となる 9 サイトのうち，3 サイトが竣工した時点で第一回目の訓練を行う。引き続き 3 サイトが竣工する度に第二回目，第三回目の訓練を実施する。訓練終了後においても，各担当者が習得した維持管理技術や知識を継続的 に実践できるよう，本邦コンサルタントは故障時修理マニュアル及び運転記録簿を作成し関係者に配布する。

対象者：Woreda 職員，水管理組織職員
投 入：EWTEC 講師（21日 $\times 2$ 人），邦人コンサルタント（ 15 日），車両
成果品：故障時修理マニュアル，活動記録簿，施設運転記録簿，技術訓練報告書

活動2－2：会計，記録等のアドミニストレーションにかかる技術指導（ソフト面）を実施する
Woreda 及び水管理組織の職員，会計担当者に対し，施設の運営•維持管理におけるソフト面での技術習得のため，本邦コンサルタント主導によるOJT 研修を実施する。

本活動では，水使用料金の設定•徴収•管理方法のみに拘わらず，施設運営経費，職員の報酬，修理に伴ら部品代や修理費用の算出方法等の経理にかかる技能に加え，施設運転•稼動状況の記録作成方法等のアドミニストレーションに関する技能訓練を実施する。

本活動は，本体工事の各工区竣工後の活動 2－1 の訓練の後に引き続いて行なわれる。また，活動 2－1 と同様，アドミニストレーションにかかるマニュアル，料金徴収出納帳は，邦人コンサルタン トが事前に作成し，変更があれば追記修正を行ない関係者に配布する。

```
対象者: Woreda 職員, 水管理組織職員
投 入: 邦人コンサルタント (12 日), 車両
成果品: 維持管理マニュアル, 料金徴収出納帳, 施設利用登録簿
```


活動 2－3：活動のモニタリング・評価を実施し，計画の修正を行なう

施設の運営•維持管理及びアドミニストレーションにかかる技術訓練の成果が活動に適切に反映 しているか否か，各関係者によるモニタリング・評価を実施する。邦人コンサルタントは，その結果を次の工区の活動に生かすため，関係者に対する指導を行なう。

また，本プロジェクト終了後も，関係者自らが継続してモニタリング・評価を実施し，逐次運営•維持管理計画の修正を行なう。

対象者：Woreda 職員，水管理組織職員，住民
投 入：邦人コンサルタント（10日），水管理組織職員及び Woreda 職員（9 日），車両成果品：モニタリング計画書，モニタリング評価記録

活動計画

| 活動 | 実施内容 | | 形態 | 対象者（受講者） |
| :---: | :---: | :--- | :---: | :--- | 実施主体者（投入者）＝投入

（6）ソフトコンポーネントの実施リソースの調達方法
本ソフトコンポーネントは，本邦コンサルタントによる直接支援型とするが，投入計画における水道施設の機械操作や故障時の対応，軽微な修繕等のハード面での技術移転に関しては，EWTEC と連携し，OJT 方式を用いて実施する。
（7）ソフトコンポーネントの実施工程
1）実施内容
運営•維持管理にかかるソフトコンポーネントの実施計画概念及び必要作業日数の算出根拠は，以下のとおりである。

ソフトコンポーネントは，フェーズ1（建設前：28日間）とフェーズ 2 （建設中～建設後：37日間）の 2 フェーズ体制とする。邦人コンサルタントの活動期間は，計 65 日を想定している。

邦人コンサルタントが現地で活動している期間は，水管理組織及び Woreda 職員が投入あるいは享受によって活動に参加するため，邦人に対し常にローカルスタッフが同行することになる。

EWTEC による技術支援は，各工区 5 日間ずつとし，邦人コンサルタントはマニュアル作成のた め訓練の全期間同行する。邦人コンサルタントの不在時に実施されるモニタリング・評価に関して は，Woreda 職員主導のもとで関係者により実施される。

必要作業日数の算出根拠

		活動No．		活動内容	対象者	投入者	実作業日数		移動日数		合計		
				邦入（1人）			$\begin{gathered} \text { 現地 } \\ \text { (EWTEC:2人) } \end{gathered}$	邦人（1人）	$\begin{gathered} \text { 現地 } \\ \text { (EWTEC:2人) } \end{gathered}$	邦入（1人）	$\begin{gathered} \text { 現地 } \\ \text { (EWTEC:2人) } \end{gathered}$		
			1－1		AWRDB及びWoredaの水管理組織への支援体制を整える	AWRDB職員 Woreda職員	邦入コンサルタント	10		4		32	
			1－2	水管理組織の運営•維持管理体制を整備する	水管理組織職員	邦人コンサルタント Woreda職員	9						
			1－3	運営•維持管理体制に関する理解を得る	$\begin{gathered} \text { 住民 } \\ \text { 村評議会 } \end{gathered}$	邦人コンサルタント Woreda職員水管理組織職員	9						
$\begin{aligned} & \text { N } \\ & \text { K } \\ & \text { H } \\ & \text { rin } \end{aligned}$			2－1	水道施設の点検修理等にかかる技術訓練 （ハード面）を実施する	Woreda職員水管理組織職員	邦人コンサルタント EWTEC講師	5	$\frac{5}{5}$	4	$\frac{2}{2}$	18	14	
			2－2	会計，記録等のアドミニストレーションにかかる技術指導（ソフト面）を実施する		邦入コンサルタント	4						
			2－3	活動のモニタリング・評価を実施し，計画の修正 を行なう			5						
			2－1	水道施設の点検修理等にかかる技術訓練 （ハード面）を実施する	Woreda職員水管理組織職員	邦人コンサルタント EWTEC講師	5	$\frac{5}{5}$	4	$\frac{2}{2}$	18	14	
			2－2	会計，記録等のアドミニストレーションにかかる技術指導（ソフト面）を実施する		邦入コンサルタント	4						
			2－3	活動のモニタリング・評価を実施し，計画の修正 を行なう			5						
			2－1	水道施設の点検修理等にかかる技術訓練 （ハード面）を実施する	Woreda職員水管理組織職員	邦人コンサルタント EWTEC講師	5	$\frac{5}{5}$	4	$\frac{2}{2}$	13	14	
			2－2	会計，記録等のアドミニストレーションにかかる技術指導（ソフト面）を実施する		邦入コンサルタント	4						
			2－3	活動のモニタリング・評価を実施し，計画の修正 を行なう		Woreda職員							
							65	30	16	12	81	42	

2）邦人コンサルタントの派遣期間及び回数の妥当性検討
運営•維持管理活動は，合計4回の本邦コンサルタントによる現地作業からなる。活動は実施内容及び時期から，水道施設建設前に実施するフェーズ 1（実施体制の確立）及び水道施設建設中及 び竣工後に実施するフェーズ 2（運営•維持管理技術の習得）に区分される。

実施機関を対象とする活動は，邦人コンサルタントが 100% 関与する。
フェーズ 1 では関係者による合意形成が重要となるため，段階毎に邦人コンサルタントが確認す る必要がある。同様にフェーズ 2 においても，研修にかかる調整及びマニュアル，記録簿等の資料作成業務のため，期間中の滞在が必須となる。

したがって，邦人コンサルタントの派遣期間及び回数は，妥当と判断する。
（8）ソフトコンポーネントの成果品
本ソフトコンポーネントにおける成果品は，以下のとおりである。

- 支援体制組織図（活動 1－1）
- 利用規約（活動 1－1）
- 水管理組織•組織図（活動 1－2）
- 運営•維持管理活動計画書（活動 1－2）
- 故障時修理マニュアル（活動 2－1）
- 活動記録簿（活動 2－1）
- 施設運転記録簿（活動 2－1）
- 技術訓練報告書（活動 2－1）
- 維持管理マニュアル（活動 2－2）
- 料金徴収出納帳（活動 2－2）
- 施設利用登録簿（活動 2－2）
- モニタリング計画書，評価記録（活動 2－3）
- ソフトコンポーネント実施状況報告書（邦人コンサルタント派遣毎）
- 完了報告書（終了時，相手国政府，日本側に対して）
（9）相手国側の責務
実施機関（AWRDB 及び Woreda 水事務所）の分担事項は，以下のとおりである。
- 本邦コンサルタントとの提携によるプログラム全体の管理
- 各上層機関への報告
- プログラム実施にかかる他部署への協力要請
- 関係機関職員の提供及び現地活動費用，移動交通費，日当宿泊費等の経費負担
- EWTEC 講師による技術研修にかかる調整業務
- 合同協議会，ワークショップ開催にかかる会場準備，運営費用の負担

資料 6．参考資料 6－1 収集資料リスト

番号	名称	形態（地図，報告書）		オリジナル・ コピー	発行機関	発行年
1	Hydrogeological Map of Northern Ethiopia， S＝1／1，000，000	水理地質図	$\begin{gathered} \text { 図面/ } \\ \text { 電子ファイル } \end{gathered}$	コピー	GSE	2002
2	Regional Hydrogeological Investigation of Northern Ethiopia	同解説書	電子ファイル	コピー	GSE	2003
3	Geological Map of the Bahir Dar Area（NC37－1）， S＝1／250，000	地質図	$\begin{gathered} \text { 図面 / } \\ \text { 電子ファイル } \end{gathered}$	コピー	GSE	2010
4	Geology Geochemistry and Gravity Survey of the Bahir Dar Area	同解説書	電子フアイル	コピー	GSE	2010
5	Geological Map of the Debre Tabor Area（NC37－2）， S＝1／250，000	地質図	$\begin{gathered} \text { 図面/ } \\ \text { 電子ファイ } \end{gathered}$	コピー	GSE	2010
6	Geology Geochemistry and Gravity Survey of the Debre Tabor Area	同解説書	電子フアイル	コピー	GSE	2010
7	Geological Map of the Bure（NC37－5）， $S=1 / 250,000$	地質図	$\begin{gathered} \text { 図面 / } \\ \text { 電子ファイル } \end{gathered}$	コピー	GSE	2007
8	Geology of Bure map Sheet（NC37－5）	同解説書	電子ファイル	$コ ヒ ゚ ー$	GSE	2007
9	Geological Map of Debre Marcos Sheet（NC37－6）， S＝1／250，000	地質図	$\begin{gathered} \text { 図面 / } \\ \text { 電子ファイル } \end{gathered}$	コピー	GSE	2009
10	Topografhic Map，S＝1／250，000，EMA3，NC37－1， Bahir Dar	地形図	図面	コピー	EMA	1996
11	Topografhic Map，S＝1／250，000，1502，NC37－2， Debre Tabor	地形図	図面	コピー	EMA	1972
12	Topografhic Map，S＝1／250，000，EMA3，NC37－5， Bure	地形図	図面	コピー	EMA	1995
13	Topografhic Map，S＝1／250，000，EMA3，NC37－6， Debre Mark＇os	地形図	図面	コピー	EMA	1995
14	Topografhic Map，S＝1／50，000，ETH4，，Debre Mark＇os	地形図	図面	コピー	EMA	1995
15	Topographic Map S＝1／50，000，ETH 41037 A2 DABI（Gebez Maryam）	地形図	図面	コピー	EMA	1987
16	Topographic Map S＝1／50，000，ETH 41037 A3 BURE（Mankusa，Kuchie）	地形図	図面	コピー	EMA	1987
17	Topographic Map S＝1／50，000，ETH 41037 B2 KERANIYO（Keranyo，Sedie）	地形図	図面	コピー	EMA	1984
18	Topographic Map S＝1／50，000，ETH 41037 C1 KUCH（Kuchie）	地形図	図面	コピー	EMA	1987
19	Topographic Map S＝1／50，000，ETH 41037 D2 AMBER（Amberi，Lumamie）	地形図	図面	コピー	EMA	1984
20	Topographic Map S＝1／50，000，ETH 41037 D4 LUMAME（Amberi，Lumamie）	地形図	図面	コピー	EMA	1984
21	Topographic Map S＝1／50，000，ETH 41038 A2 MERTO LEMARYAM（Mertle Maryam，Dibo）	地形図	図面	コピー	EMA	1998
22	Topographic Map S＝1／50，000，ETH 41038 C1 BICHENA（Bichena，Yetimen）	地形図	図面	コピー	EMA	1984
23	Topographic Map S＝1／50，000，ETH 41038 C3 DEJEN（Wejele）	地形図	図面	コピー	EMA	1984
24	Topographic Map S＝1／50，000，ETH 41137 A1 KUNZLA（Kunzila）	地形図	図面	コピー	EMA	1987
25	Topographic Map S＝1／50，000，ETH 41137 C1 MER AWI（Mer－Awi）	地形図	図面	コピー	EMA	1987
26	Topographic Map S＝1／50，000，ETH 41137 C4 ADAMA TERARA（Gebez Maryam）	地形図	図面	コピー	EMA	1987
27	Topographic Map S＝1／50，000，ETH 41137 D3 GONJ（Gonji Kollela）	地形図	図面	コピー	EMA	1984

GSE：Geological Survey of Ethiopia
EMA：Ethiopian Mapping Agency

資料 7．その他の資料•情報 7－1 水理計算書

Hydraulic Calculation

1. Mertule Maryam

1.1. Basal Condition

Since the checked quantity of water intake is $424.01 \mathrm{~m} 3 /$ day, and it is less than maximum daily supply and average daily supply, water facilities of Mertule Maryam are planed by total quantity of water intake.

1.2. Water Intake

There are two existing water sources in Mertule Maryam, both of two water sources are spring. One is transmitted to reservoir by gravity flow (139.35m3/day), and another is transmitted to the collection chamber by gravity flow ($91.96 \mathrm{~m} 3 /$ day) and then pumped up to reservoir.

The volume of existing collection chamber is 28.65 m 3 and another 28.83 m 3 of new collection chamber is designed, so totally 57.48 m 3 of volume of collection chambers are secured. Total volume of collection chamber is calculated 15 hours of volume of water intake (i.e. $91.96 \mathrm{~m} 3 \times 15$ hours $/ 24$ hours $=57.48 \mathrm{~m} 3$).

It was confirmed that another three springs are existing in Mertule Maryam. One is $42.59 \mathrm{~m} 3 /$ day of volume, second one is $92.70 \mathrm{~m} 3 /$ day and third one is $57.41 \mathrm{~m} 3 /$ day. These three springs are transmitted by gravity flow, so at the end of this project, total $424.01 \mathrm{~m} 3 /$ day of volume of water intake is secured.

The specification of pump at collection chamber is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from collection chamber to reservoir tank is 40 m and flow volume is $3.19 \mathrm{~L} / \mathrm{sec}$ ($91.96 \mathrm{~m} 3 /$ day $/ 8$ hours), so it is needed 3.7 kw of capacity of pump.

1.3. Transmission Line

The specification of transmission lines is calculated by the conditions of each water intake. Diameter is decided by the calculation with Hazen-Williams formula. Each distance of each water intake to reservoir tank is from 440 m to 3015 m . Diameters of transmission line are almost 3 ", only one transmission line's diameter is 1 "1/2.

1.4. Reservoir Tank

There are three existing reservoir tanks in Mertule Maryam. The volume is, first: 82.98 m 3 , second: 50.36 m 3 , third: 50.36 m 3 . All the three reservoir tanks are not leaking water and it is useful, it is planed the new reservoir tank as additional. Required total capacity of reservoir tanks is 212.01 m 3 , so short capacity is 28.31 m 3 , it is planed 30 m 3 of reservoir tank by reinforced concrete.

1.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Mertule Maryam, but some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

1.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

2. Yetimen

2.1. Basal Condition

In Yetimen, average daily supply is $102.98 \mathrm{~m} 3 /$ day, maximum daily supply is 123.58 m 3 /day and checked quantity of water intake is $250.56 \mathrm{~m} 3 /$ day. Quantity of water intake is sufficient, so water facilities of Yetimen are planed by average and maximum daily supply.

2.2. Water Intake

There is one existing borehole as water sources in Yetimen, but new borehole was drilled and there is no problem about quality and quantity of that borehole, it is planed to use new borehole for this project.

From the borehole to reservoir tank, the water is pumped up, the specification of pump at borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from borehole to reservoir tank is 70 m and flow volume is $4.29 \mathrm{~L} / \mathrm{sec}$ ($123.58 \mathrm{~m} 3 /$ day $/ 8$ hours), so it is needed 5.5 kw of capacity of pump.

2.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Distance from borehole to reservoir tank is 1250 m . Diameter of transmission line is 3 ".

2.4. Reservoir Tank

There is an existing reservoir tank in Yetimen. The volume of reservoir tank is 60 m 3 . Existing reservoir tank is now leaking, there is a option only to repair the existing reservoir tank, but preventing water leakage can not be guaranteed for the future because of the technical difficulty, new reservoir tank is planed in Yetimen.

Required capacity of reservoir tank is 64.36 m 3 , so it is planed 70 m 3 of reservoir tank by reinforced concrete.

2.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Yetimen, but some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

2.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

3. Lumame

3.1. Basal Condition

In Lumame, average daily supply is $342.64 \mathrm{~m} 3 /$ day, maximum daily supply is $411.17 \mathrm{~m} 3 /$ day and checked quantity of water intake is $399.17 \mathrm{~m} 3 /$ day. Quantity of water intake is enough for average daily supply, so water facilities of Lumame are planed by average daily supply and quantity of water intake.

3.2. Water Intake

There are two existing boreholes as water sources in Lumame, but total quantity of those two boreholes is not enough for new water facilities (first: $57.60 \mathrm{~m} 3 /$ day, second: $86.40 \mathrm{~m} 3 /$ day, total: $144.00 \mathrm{~m} 3 /$ day), so new borehole was drilled and it was confirmed the quantity of new borehole is $255.17 \mathrm{~m} 3 /$ day. It is not enough for maximum daily supply but satisfied average daily supply, so it is planed to use all of three boreholes for this project.

From each borehole to reservoir tank, the water is pumped up, the specification of pump at borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Each total head from borehole to reservoir tank is 90 m (first), 100 m (second) and 110 m (third). Flow volume is $2.00 \mathrm{~L} / \mathrm{sec}(57.60 \mathrm{~m} 3 /$ day $/ 8$ hours), $3.00 \mathrm{~L} / \mathrm{sec}(86.40 \mathrm{~m} 3 /$ day $/ 8$ hours $)$ and $8.86 \mathrm{~L} / \mathrm{sec}(255.17 \mathrm{~m} 3 /$ day $/ 8$ hours), so each borehole need $5.5 \mathrm{kw}, 5.5 \mathrm{kw}$ and 15 kw of capacity of pump.

3.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Existing transmission lines of existing two boreholes are combined on the line to reservoir tank. So, existing pumps do not function at the same time because of interfering with each other. It is planed to replace new transmission lines independently for existing transmission lines, and also planed to set new transmission line for new borehole.

Distance and diameter of each transmission line is 1927.22 m (first: existing, $3^{\prime \prime}$), 1475.14 m (second: existing, $3^{\prime \prime}$), 1208.09m (third: new, 4").

3.4. Reservoir Tank

There is an existing reservoir tank (elevated tank) in Lumame. The volume of existing reservoir tank is 50 m 3 . Existing reservoir tank is functioning and new reservoir tank is planed to satisfy the total capacity of reservoir tank.

Required capacity of reservoir tank is 121.30 m 3 , so it is planed 123 m 3 of reservoir tank by elevated type.

3.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Lumame, but some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

3.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

4. Wojel

4.1. Basal Condition

In Wojel, average daily supply is 101.02 m 3 /day, maximum daily supply is $121.22 \mathrm{~m} 3 /$ day and checked quantity of water intake is $224.64 \mathrm{~m} 3 /$ day. Quantity of water intake is sufficient, so water facilities of Wojel are planed by average and maximum daily supply.

4.2. Water Intake

There is one existing borehole as water sources in Wojel, but that borehole was abandoned and new borehole was drilled. There is no problem about quality and quantity of new borehole, it is planed to use new borehole for this project.

From the new borehole to reservoir tank, the water is pumped up, the specification of pump at borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from borehole to reservoir tank is 90 m and flow volume is $4.21 \mathrm{~L} / \mathrm{sec}$ (121.22 m 3 /day / 8 hours), so it is needed 7.5 kw of capacity of pump.

4.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter of transmission line is decided by the calculation with Hazen-Williams formula. Distance from borehole to reservoir tank is 1000 m . Diameter of transmission line is 3 ".

4.4. Reservoir Tank

There is an existing reservoir tank in Wojel. The volume of existing reservoir tank is 60 m 3 but that reservoir tank was deserted, so new reservoir tank is planed in Wojel.

Required capacity of reservoir tank is 63.14 m 3 , so it is planed 70 m 3 of reservoir tank by reinforced concrete.

4.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Lumame, but every water facilities ware abandoned in wojel and it is difficult to confirm the condition of existing distribution line, so new distribution line is planed.

4.6. Water Faucet

Every existing water faucets are replaced new and additional new water faucets are constructed.

5. Sedie

5.1. Basal Condition

In Sedie, average daily supply is $106.66 \mathrm{~m} 3 /$ day, maximum daily supply is $127.99 \mathrm{~m} 3 /$ day and checked quantity of water intake is $256.32 \mathrm{~m} 3 /$ day. Quantity of water intake is sufficient, so water facilities of Yetimen are planed by average and maximum daily supply.

5.2. Water Intake

There is one existing borehole as water sources in Sedie, but new borehole was drilled and there is no problem about quality and quantity of that borehole, it is planed to use new borehole for this project.

From the borehole to reservoir tank, the water is pumped up, the specification of pump at borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from borehole to reservoir tank is 110 m and flow volume is $4.44 \mathrm{~L} / \mathrm{sec}$ ($127.99 \mathrm{~m} 3 /$ day $/ 8$ hours), so it is needed 7.5 kw of capacity of pump.

5.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Distance from borehole to reservoir tank is 1455 m . Diameter of transmission line is 3 ".

5.4. Reservoir Tank

There is an existing reservoir tank in Sedie. The volume of existing reservoir tank is 60 m 3 . Existing reservoir tank is located low elevation, so new reservoir tank is planed in Sedie.

Required capacity of reservoir tank is 66.66 m 3 , so it is planed 70 m 3 of reservoir tank by reinforced concrete.

5.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Sedie, but some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

5.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

6. Dibo

6.1. Basal Condition

In Dibo, average daily supply is $74.35 \mathrm{~m} 3 /$ day, maximum daily supply is $89.22 \mathrm{~m} 3 /$ day and checked quantity of water intake is $256.32 \mathrm{~m} 3 /$ day. Quantity of water intake is sufficient, so water facilities of Dibo are planed by average and maximum daily supply.

6.2. Water Intake

There is no existing borehole and any other water facility in Dibo except hand pump, so new borehole was drilled and there is no problem about quality and quantity of that borehole, it is planed to use new borehole for this project.

From the borehole to reservoir tank, the water is pumped up, the specification of pump at borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from borehole to reservoir tank is 90 m and flow volume is $3.10 \mathrm{~L} / \mathrm{sec}$ ($89.22 \mathrm{~m} 3 /$ day $/ 8$ hours), so it is needed 5.5 kw of capacity of pump.

6.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Distance from borehole to reservoir tank is 2070 m . Diameter of transmission line is 3 ".

6.4. Reservoir Tank

There is no existing reservoir tank in Dibo. Required capacity of reservoir tank is 46.47 m 3 , so it is planed 50 m 3 of reservoir tank by elevated type.

6.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now there are no distribution lines in Dibo, so every pipeline for distribution is set as new.

6.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

7. Amanuel

7.1. Basal Condition

In Amanuel, average daily supply is $326.76 \mathrm{~m} 3 /$ day, maximum daily supply is $392.11 \mathrm{~m} 3 /$ day and checked quantity of water intake is $230.40 \mathrm{~m} 3 /$ day. Quantity of water intake is not enough for average and maximum daily supply, so water facilities of Amanuel are planed by quantity of water intake.

7.2. Water Intake

There are two existing boreholes as water sources in Amanuel, but one of existing boreholes is abandoned and quantity of another existing borehole is not enough ($144.00 \mathrm{~m} 3 / \mathrm{day}$) for new water facilities, so new borehole was drilled and it was confirmed the quantity of new borehole is $86.40 \mathrm{~m} 3 /$ day. Total amount of water intake is not enough for average and maximum daily supply but it was not found another water intake as drilling, so it is planed to use two boreholes (existing and new) for this project.

From each borehole to reservoir tank, the water is pumped up, existing borehole and pump is functioning well, so at this project, only the pump for new borehole is set. The specification of pump at new borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from new borehole to reservoir tank is 100 m . Flow volume is $3.00 \mathrm{~L} / \mathrm{sec}(86.40 \mathrm{~m} 3 /$ day $/ 8$ hours), so new borehole needs 5.5 kw of capacity of pump.

7.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Existing transmission line is functioning, so only new transmission line from new borehole to reservoir tank.

Distance and diameter of new transmission line is 2386 m . Diameter of transmission line is 3".

7.4. Reservoir Tank

There is two existing reservoir tanks (elevated tank) in Amanuel. Although the volume of existing reservoir tanks are 60 m 3 and 30 m 3 , both reservoir tanks are leaking. So it is planed to construct new reservoir tank, required capacity of reservoir tank is 115.2 m 3 , so it is planed 120 m 3 of reservoir tank by elevated type.

7.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Amanuel, but some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

7.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

8. Gobeze Maryam

8.1. Basal Condition

Since the checked quantity of water intake is $164.00 \mathrm{~m} 3 /$ day as a spring, and it is less than maximum daily supply and average daily supply, water facilities of Gobeze Maryam are planed by total quantity of water intake.

8.2. Water Intake

There is a existing water source in Gobeze Maryam as spring. The water is transmitted to the collection chamber by gravity flow and then pumped up to reservoir.

The volume of existing collection chamber is 19.87 m 3 and another 82.63 m 3 of new collection chamber is designed, so totally 102.50 m 3 of volume of collection chambers are secured. Total volume of collection chamber is calculated 15 hours of volume of water intake (i.e. 164.00 m 3 x 15 hours $/ 24$ hours $=102.50 \mathrm{~m} 3$).

The specification of pump at collection chamber is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from collection chamber to reservoir tank is 100 m and flow volume is $5.69 \mathrm{~L} / \mathrm{sec}$ ($164.00 \mathrm{~m} 3 /$ day $/ 8$ hours), so it is needed 11 kw of capacity of pump.

8.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Distance from water intake to reservoir tank is 1300 m . Diameters of transmission line are 3 ".

8.4. Reservoir Tank

There is a existing reservoir tank in Gobeze Maryam. The volume of existing reservoir tank is 50 m 3 . But elevation of existing reservoir tank is not enough to distribute high area, existing reservoir tank will be abandoned and new reservoir tank is planed instead. Required capacity of reservoir tank is 102.50 m 3 , so it is planed 105 m 3 of reservoir tank by reinforced concrete.

8.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Gobeze Maryam, but some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

8.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

9. Bikolo

9.1. Basal Condition

In Bikolo, average daily supply is $151.19 \mathrm{~m} 3 /$ day, maximum daily supply is $181.43 \mathrm{~m} 3 /$ day and checked quantity of water intake is $403.20 \mathrm{~m} 3 /$ day. Quantity of water intake is sufficient, so water facilities of Bikolo are planed by average and maximum daily supply.

9.2. Water Intake

There is one existing borehole as water sources in Bikolo, but new borehole was drilled and there is no problem about quality and quantity of that borehole, it is planed to use new borehole for this project.

From the borehole to reservoir tank, the water is pumped up, the specification of pump at borehole is calculated by 9 hours running per day (4 hours in the morning, 4 hours in the afternoon and 1 hour recess). Total head from borehole to reservoir tank is 110 m and flow volume is $6.30 \mathrm{~L} / \mathrm{sec}$ ($181.43 \mathrm{~m} 3 /$ day $/ 8$ hours), so it is needed 11 kw of capacity of pump.

9.3. Transmission Line

The specification of transmission lines is calculated by the conditions of water intake. Diameter is decided by the calculation with Hazen-Williams formula. Distance from water intake to reservoir tank is 5533 m . Diameters of transmission line are 4".

9.4. Reservoir Tank

There is an existing reservoir tank in Bikolo. The volume of existing reservoir tank is only 25 m 3 . Moreover, the location of existing reservoir tank is centering of Bikolo town, water pressure for distribution is not enough. That is why existing reservoir tank will be abandoned and new reservoir tank is planed instead at high area of Bikolo town. Required capacity of reservoir tank is 94.49 m 3 , so it is planed 105 m 3 of reservoir tank by reinforced concrete.

9.5. Distribution Line

Distribution lines are calculated by Hazen-Williams formula with peak hourly supply. Now distribution lines are already set in Bikolo, but new reservoir tank is designed to construct at high area, it is needed to extend the distribution line. And some lines are not in the ground, those lines crop out. So basically lines are replaced by the necessity of changing diameter, but also are changed at the lines that pipes are cropping out.

9.6. Water Faucet

Every existing water faucets are replaced and additional new water faucets are constructed.

Hydrologic Calculation

1. Basic Number

No.	Towns	Zone	Woreda	Existing Population 2012	Projection of pop. 2016	School number of students	Hospital, Clinic
9	Mertule Maryam	East Gojam	Enebsie Sar Mdirir	15,124	17,829	7,180	10
10	Yetimen	East Gojam	Enemay	3,289	3,877	2,346	11
12	Lumame	East Gojam	Awabel	11,410	13,451	5,735	10
14	Wojel	East Gojam	Awabel	3,188	3,758	2,486	10
15	Sedie	East Gojam	Hulet Egu Enesie	3,348	3,947	2,712	10
16	Dibo	East Gojam	Enebsie Sar Mdir	2,129	2,510	2,839	10
---	Amanuel	East Gojam	Machakel	10,768	12,694	6,002	10
27	Gobeze Maryam	West Gojam	Quarit	5,860	6,908	4,938	10
---	Bikolo(Wetet Abay)	West Gojam	Mecha	4,929	5,811	3,000	10
Total							60,045

[^0]Growth Rate : 4.2 \%
--- Number of students and beds ---
It is based on the result of field study.
2. Water Demand
(AD : 2012)

(AD : 2012)						Unit:m3/day			
No.	Towns	Daily Water Demand(m3/day)				Ineffective water 15%	Average Daily Supply	Maximum Daily Supply factor : 1.2	PeakHourlySupplyfactor : 2.0
		General $20 \mathrm{l} / \mathrm{c} /$ day	School $5 \mathrm{l} / \mathrm{c} /$ day	Hospital, Clinic 25 I/c/day	Total				
9	Mertule Maryam	302.48	35.90	0.25	338.63	50.79	389.42	467.30	778.84
10	Yetimen	65.78	11.73	0.28	77.79	11.67	89.46	107.35	178.92
12	Lumame	228.20	28.68	0.25	257.13	38.57	295.70	354.84	591.40
14	Wojel	63.76	12.43	0.25	76.44	11.47	87.91	105.49	175.82
15	Sedie	66.96	13.56	0.25	80.77	12.12	92.89	111.47	185.78
16	Dibo	42.58	14.20	0.25	57.03	8.55	65.58	78.70	131.16
---	Amanuel	215.36	30.01	0.25	245.62	36.84	282.46	338.95	564.92
27	Gobeze Maryam	117.20	24.69	0.25	142.14	21.32	163.46	196.15	326.92
---	Bikolo(Wetet Abay)	98.58	15.00	0.25	113.83	17.07	130.90	157.08	261.80
	Total	1,200.90	186.20	2.28	1,389.38	208.40	1,597.78	1,917.33	3,195.56

Unit of Water Demand :	20	$\mathrm{l} / \mathrm{c} /$ day (Average Daily Demand)
	5	$\mathrm{l} / \mathrm{c} /$ day (School)
	25	$\mathrm{l} / \mathrm{c} /$ day (Hospital)
Ineffective Water:	15	$\%$
Factor of Water Supply :	1.2	(Maximum Daily Supply)
	2.0	(Peak Hourly Supply)

3. Volume of Water Intake

3. Volume of Water Intake														Unit: m3/day
No.	Towns		Volume of Water Intake(Existing)			Volume of Water Intake(New)			Volume of Water Intake(Total)			Design Volume		Remarks
			Borehole	Spring	Total	Borehole	Spring	Total	Borehole	Spring	Total	Water Intake	Water Coverage	
9	Mertule Maryam	541.97	0.00	139.35	139.35	0.00	0.00	0.00	0.00	424.01	424.01	424.01	78.23\%	Existing use
			0.00	91.96	91.96	0.00	0.00	0.00						Existing use
			0.00	0.00	0.00	0.00	42.59	42.59						New
			0.00	0.00	0.00	0.00	92.70	92.70						New
			0.00	0.00	0.00	0.00	57.41	57.41						New
10	Yetimen	123.58	0.00	0.00	0.00	0.00	0.00	0.00	250.56	0.00	250.56	123.58	100.00\%	Abolishment
			0.00	0.00	0.00	250.56	0.00	250.56						New
12	Lumame	411.17	57.60	0.00	57.60	0.00	0.00	0.00	399.17	0.00	399.17	399.17	97.08\%	Existing use
			86.40	0.00	86.40	0.00	0.00	0.00						Existing use
			0.00	0.00	0.00	255.17	0.00	255.17						New
14	Wojel	121.22	0.00	0.00	0.00	0.00	0.00	0.00	224.64	0.00	224.64	121.22	100.00\%	Abolishment
			0.00	0.00	0.00	224.64	0.00	224.64						New
15	Sedie	127.99	0.00	0.00	0.00	0.00	0.00	0.00	256.32	0.00	256.32	127.99	100.00\%	Abolishment
			0.00	0.00	0.00	256.32	0.00	256.32						New
16	Dibo	89.22	0.00	0.00	0.00	256.32	0.00	256.32	256.32	0.00	256.32	89.22	100.00\%	New
---	Amanuel	392.11	144.00	0.00	144.00	0.00	0.00	0.00	230.40	0.00	230.40	230.40	58.76\%	Existing use
			0.00	0.00	0.00	0.00	0.00	0.00						Abolishment
			0.00	0.00	0.00	86.40	0.00	86.40						New
27	Gobeze Maryam	225.08	0.00	164.00	164.00	0.00	0.00	0.00	0.00	164.00	164.00	164.00	72.86\%	Existing use
---	Bikolo(Wetet Abay)	181.43	0.00	0.00	0.00	0.00	0.00	0.00	403.20	0.00	403.20	181.43	100.00\%	Abolishment
			0.00	0.00	0.00	403.20	0.00	403.20						New
Total		2,213.77	288.00	395.31	683.31	1,732.61	192.70	1,925.31	2,020.61	588.01	2,608.62	1,861.02	84.07\%	---

4. Intake, Transmission Facilities

No.	Towns	Volume of Water Intake (m3/day)			Elevation(m)				Transmission Pipe, Intake to the ground, the ground to Tank					Pump Plan(8h/day)		
		Spring		Borehole	Intake Facilities		Tank	Vertical Drop	Length (m)	Diameter (mm)	Velocity (m / s)	$\begin{array}{\|c\|} \hline \text { Hydraulic } \\ \text { Grade } \\ (\%) \\ \hline \end{array}$	Head loss (m)	$\begin{aligned} & \text { Lifting } \\ & \text { Range } \end{aligned}$(m)	$\begin{aligned} & \text { How } \\ & \text { Volume } \end{aligned}$$(\mathrm{L} / \mathrm{s})$	Spec (kw)
		Gravity	Pump		Intake Point	Ground										
9	Mertule Maryam	139.35	0.00	0.00	2,737.94	2,737.94	2,711.09	26.85	800.00	75	0.37	3.66	2.93	---	---	---
		0.00	91.96	0.00	2,630.69	2,630.69	2,667.92	-37.23	440.00	75	0.72	1.70	0.75	40.00	3.19	3.7
		42.59	0.00	0.00	2,848.73	2,848.73	2,711.09	137.64	3,015.40	40	0.39	8.73	26.33	---	---	---
		92.70	0.00	0.00	2,790.81	2,790.81	2,711.09	79.72	790.00	75	0.24	1.72	1.36	---	---	---
		57.41	0.00	0.00	2,678.33	2,678.33	2,664.87	13.46	1,444.86	75	0.15	0.71	1.03	---	---	---
10	Yetimen	0.00	0.00	123.58	2,382.83	2,405.63	2,445.78	-62.95	60.00	50	2.19	21.13	1.27	70.00	4.29	5.5
					2,382.83	2,405.63			1,250.00	75	0.97	2.93	3.67			
12	Lumame	0.00	0.00	57.60	2,418.84	2,464.13	2,505.77	-86.93	55.00	50	1.02	5.15	0.28	90.00	2.00	5.5
									1,927.22	75	0.45	0.71	1.38			
		0.00	0.00	86.40	241234	2.46295	2,505.77	-93.43	55.00	50	1.53	10.90	0.60	100.00	3.00	5.5
						2,462.95			1,475.14	75	0.68	1.51	2.23			
		0.00	0.00	255.17	2407.00	2.42495	2,505.77	-98.77	40.00	65	2.67	22.52	0.90	110.00	8.86	15.0
									1,208.09	100	1.13	2.76	3.34			
14	Wojel	0.00	0.00	121.22	2,403.96	2,442.88	2,488.58	-84.62	55.00	50	2.14	20.39	1.12	90.00	4.21	7.5
					2,403.96	2,442.88			1,000.00	75	0.95	2.83	2.83			
15	Sedie	0.00	0.00	127.99	2,446.25	2,468.29	2,547.55	-101.30	60.00	50	2.26	22.55	1.35	110.00	4.44	7.5
					2,446.25	2,468.29			1,455.27	75	1.01	3.13	4.56			
16	Dibo	0.00	0.00	89.22	2,374.98	2,420.18	2,452.64	-77.66	55.00	50	1.58	11.57	0.64	90.00	3.10	5.5
					2,374.98	2,420.18			2,071.06	75	0.70	1.61	3.33			
---	Amanuel	0.00	0.00	14400	2,147.20	2,197.20	2,302.89	-155.69	100.00	50	2.55	28.05	2.80	170.00	5.00	13.0
									2,800.00	75	1.13	3.89	10.90			
		0.00	0.00	144.00	2,302.89	2,302.89	$2,397.78$	$\begin{aligned} & -94.89 \\ & \hline \end{aligned}$	2,800.00	75	1.13	3.89	10.90	110.00	5.00	9.2
		0.00	0.00	86.40	2,306.14	2,336.49	2,397.78	-91.64	32.00	50	1.53	10.90	0.35	100.00	3.00	5.5
									2,386.25	75	0.68	1.51	3.61			
27	Gobeze Maryam	0.00	164.00	0.00	2,156.40	2,156.40	2,243.37	-86.97	1,304.06	75	1.29	4.95	6.46	100.00	5.69	11.0
---	Bikolo(Wetet Abay)	0.00	0.00	181.43	1,855.63	1,905.63	1,953.02	-97.39	50.00	65	1.90	11.98	0.60	110.00	6.30	11.0
									5,533.39	100	0.80	1.47	8.14			
Total		332.05	255.96	1,417.01	---	---	---	---	---	---	---	---	---	---	---	---

5. Transmission Facilities (Relay Tank)

No.	Towns	Water Intake m3/day	Required Capacity of Tank $(\mathrm{m} 3)$	Vol. of Existing Tank (m3)	Additional capacity $(\mathrm{m} 3)$
9	Mertule Maryam	91.96	57.48	28.65	28.83
27	Gobeze Maryam	164.00	102.50	19.87	82.63

6. Distribution Facilities (Reservoir Tank)

7. Distribution Facilities (Pipeline)

Distribution pipelines of each site are determined by the hydraulic calculation.

世＂

ঞが

웅

응응응응응용응응응응응응응응응응응응응응응응응응응응응응응응융융융응응

$\stackrel{\leftrightarrow}{4}$
$\stackrel{\circ}{\circ}$

ヵ亘

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

Node	$\underset{(\mathbb{I})}{\mathrm{HP}_{2}}$	$\begin{aligned} & \mathrm{Gl} \\ & (\mathrm{~m}) \end{aligned}$	$\underset{1 \mathrm{st}(\mathrm{~m})}{\operatorname{EHP}}$	$\underset{\text { 2nd (} \mathbb{C D})}{\mathrm{EHP}}$	$\stackrel{Q c}{(1 / \mathrm{s})}$	Remarks		EN	$\underset{(\mathrm{mm})}{\mathrm{D}}$	$\underset{(\pi)}{L}$	$\underset{C}{\text { Coef }}$	$\begin{gathered} Q \\ (1 / \mathrm{s}) \end{gathered}$	$\underset{(\mathrm{m} / \mathrm{s})}{\mathrm{V}}$	$\underset{\left(\%_{0}\right)}{I}$
111	2678. 563	2, 678.563	32. 528	0. 000	0.000	reak Pressure Tan	112	33	38	522.930	110	0.000	0.000	0.000
112	2633. 840	2,633. 840	44. 723	0. 000	0. 000	reak Pressure Tan	113	40	38	174. 553	110	0. 000	0. 000	0. 000
113	2623. 546	2, 623.546	55.017	0.000	0.000	reak Pressure Tan	113	43	75	98.768	110	0.000	0.000	0.000
114	2598. 849	2, 598.849	24. 697	0.000	0. 000	reak Pressure Tan	114	49	38	278.695	110	0.000	0.000	0. 000
115	2613.779	2, 613.779	64.784	0.000	0. 000	teak Pressure Tan	115	64	38	269. 183	110	0.000	0.000	0. 000
116	2619.902	2,619.902	58.662	0.000	0. 000	reak Pressure Tan	116	75	38	286. 580	110	0.000	0.000	0. 000
117	2610. 185	2, 610.185	68.378	0. 000	0.000	reak Pressure Tan	117	56	38	210.779	110	0. 000	0.000	0. 000
118	2678. 563	2.611. 045		67.518	0.000		118	55	75	261.653	110	0.000	0.000	0.000
							118	101	38	92.744	110	0. 000	0.000	0. 000

$\stackrel{\square}{3}$

$\underset{\omega}{\omega}$
三

응

完
언

内人

岛

我的风の が

∞

E

完亘

 $\dot{S} \dot{S} \dot{S} \dot{S} \dot{S} \dot{\Phi}$

$\dot{s} \dot{\sigma} \dot{s} \dot{s}$

为

9
응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ
$\dot{\Delta} \dot{\Delta} \dot{\Delta} \dot{0}$

旱垔晋
응

急軍宣

い亘
 sunamanovin

旦	旦	d8
号	8	8
\cdots	\cdots	S

오 오

 Head revel Effectual Head Consumption of
 Tater

$\stackrel{\square}{8}$

 ぁ

$$
\begin{aligned}
& \text {-百 } \\
& \text { 定是 } \begin{array}{l}
\circ \\
\hline
\end{array} \\
& -\underset{8}{8} \stackrel{8}{8}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \stackrel{8}{9} \\
& \text { 多 } \\
& \text { 一旦 } \\
& \stackrel{\leftarrow}{m} \\
& \begin{array}{c}
\text { Remarks Node D }
\end{array} \\
& 3 \stackrel{8}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 号宣 }
\end{aligned}
$$

$\langle\langle$ Explanatory Notes \gg
－Node－
HP：Head Pressure
GL：Ground Level
EHP：Effectual Head Pressure
QC：Consumption of Hater

－－－LineData ---

EHP（m）

色ㄹ

$\stackrel{4}{0}$

宝宣

 ぶ

Reservoir Tank
 ，$\dot{1} 0 \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} 000000000$

Node	$\underset{(\mathrm{m})}{\mathrm{HP}}$	GL (m)	$\begin{gathered} \mathrm{EHP} \\ \operatorname{lst}(\mathbb{m}) \end{gathered}$	$\underset{\text { End (m) }}{\text { EHP }}$	$\stackrel{Q c}{(1 / s)}$	Remarks	ST	EN	$\begin{gathered} D \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~m}) \end{gathered}$	Coef C	$\stackrel{Q}{(1 / s)}$	$\begin{gathered} V \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\underset{\left(\%_{0}\right)}{I}$	HL (m)	$\begin{gathered} P \\ (\mathrm{~m}) \end{gathered}$
25	2442.071	2, 416. 328		25. 743	0.122		25	26	37.5	333. 357	110	0. 122	0.110	0.879	0. 293	0.000
26	2441. 778	2, 416.715		25. 063	0. 122											

잉잉융용ㅇㅇㅇ잉ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

守 $\underset{\sim}{\circ} \infty$

 $\stackrel{\square}{8}$ Remarks $\stackrel{3}{3}$

$\stackrel{\text { 응 }}{\sim}$

\qquad

曾
总
苞
$\stackrel{0}{\sim}$

[^1]

보즐 \rightarrow

B

守

 Remarks

몽

 ○

以心 以
$\stackrel{\text { B }}{8}$

Maximum EHP	61.324	（m）
Minimum EHP	3.995	$(\mathrm{~m})$
Maximum I	$0.000(\%)$	
Maximum V	$0.000 \cdot(\mathrm{~m} / \mathrm{s})$	

응응ㅇ8ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ定宣

$\stackrel{y}{\circ}$

它宣

\rightarrow 旦

曰宣

 S心

EHP（m）
8
是
Q
$(1 / s)$

，

	－S	응응응응 $00^{\circ 0}$
	ㅂ⽟旦	응용용응 sósó
	－${ }^{8}$	앙응융응 sicoo
	$=\frac{2}{2}$	앙융융응 ததos
	0	앙응ㅇㅇㅇㅇㅇㅇ ふふத்த
	"\#0	을으ㅇㅡㅡ
i	可是	
	口旦	以 皆灾灾
$\begin{gathered} . \vec{y} \\ 1 \\ 1 \\ 1 \end{gathered}$		
	8	응흥응응응응 ら்த்த்
	阋首	
	画夏	
I	已宣	的めm的品
\％		vososios
0 0 0 0 8 1	定是	용ㅇㅇㅇㅇㅇㅇㅇㅇ 家 ふ
1	華	

 Remarks Reservoir Tank

๗乌

을

が

全宣－Hico

$-\sqrt{\text { and }}$

－晋 1010101010
ふicicis
을
呙品品品

ミミきコริอ
$8=$
joioco

婳宫

부포 븐
Sedie Pipe Networks
号

Renarks

$\stackrel{B}{3}$
응응응응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

응응흥응응음응응응응응응응응응응

응응응응응응응ㅇㅇㅇㅇㅇㅇㅇㅇ응응응응

으ㅇㅡㅡ으으ㅋㅡㅡㅇㅡㅡ읔ㅇㅡㅡㅡㅡ읔읔읔읔으으ㅇㅡㅡ

 か

EHP
Is）

它㫜

올定

을
2nd（m）

：
号

Q

응

守守守守守守守守守

응

一亘

白 －

装

ーーー LineData－－																
Node	$\begin{aligned} & \text { HP } \\ & \text { (m) } \end{aligned}$	$\begin{aligned} & \mathrm{GL} \\ & (\mathrm{~m}) \end{aligned}$	$\begin{gathered} \text { EHP } \\ \text { Ist (m) } \end{gathered}$	$\begin{gathered} \text { EHP } \\ \text { 2nd (m) } \end{gathered}$	$\begin{gathered} 0 \mathrm{c} \\ (1 / \mathrm{s}) \end{gathered}$	Remarks	ST		$\begin{gathered} D \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{L} \\ (\mathrm{~m}) \end{gathered}$	Coef C	$\begin{gathered} Q \\ (1 / s) \end{gathered}$	$\begin{gathered} V \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\underset{\left(\%_{0}\right)}{I}$	$\begin{aligned} & \mathrm{HL} \\ & \text { (m) } \end{aligned}$	$\underset{(\mathrm{m})}{\mathrm{P}}$
25	2460.637	．2，419．665		40． 972	0.000		25	26	37． 5	157． 144	110	0.000	0.000	0.000	0.000	0.000
26	2460.637	2，421．018		39． 619	0.000										0.00	0． 00

8
，宣

号

অぃ

형

ーーNovicorros

Node	HP (m)	$\begin{aligned} & \text { GL } \\ & \text { (m) } \end{aligned}$	$\underset{\operatorname{lst}(\mathrm{m})}{\mathrm{EHP}}$	$\underset{\text { 2nd (} \pi \text {) }}{\text { EHP }}$	$\stackrel{Q c}{(\mathrm{l} / \mathrm{s})}$	Remarks	ST		$\begin{gathered} D \\ (\mathrm{~mm}) \end{gathered}$	$\stackrel{\mathrm{L}}{(\mathrm{~m})}$	Coef C	$\begin{gathered} Q \\ (1 / s) \end{gathered}$	$\begin{gathered} V \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	$\underset{\left(\%_{0}\right)}{\mathrm{I}}$	$\underset{(\mathrm{m})}{\mathrm{HL}}$	$\begin{gathered} \mathrm{P} \\ (\mathrm{~m}) \end{gathered}$
25	2439.899	2, 419.665		20.234	0.127		25	26	37.5	157. 144	110	0.000	0.000	0.000	0.000	0.000
26	2439.899	2,421.018		18.881	0. 000									0.	0.00	0.00

부를

용응융융용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

윽응은은응응응으ㅇㅡㅡ으으ㅇㅡㅡ읔으⼆으ㅇㅡㅡ응으

－

8
응응응응응응응응응응응응응응응응응

으코흘

ํํํํํํํํํํํํํํํํํํํํํํํํํํํํํํํํํ

jo்ociociocosiciocio

＂

 $\stackrel{\square}{2}$

8

응으으ㅇㅡㅡ으ㅇㅡㅡ응으으으으으으으으으으으

\rightarrow 흘

ص蒠

8

lst（m）
「が

 が
$\stackrel{8}{8}$

ㄴํํํํํํํํํํํํํํํํํํํํํํ

二ิ⿳

荘

$\underset{\sim}{\infty}$

$\stackrel{\circ}{8}$
Coef
C

一旦

曰曋

丞
Node
星 Remarks

受豆

EHP

家

壬亘

Node

응응응응응응응응응응융응용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

응으으으ㅇㅡㅡㅇㅡㅡ으읔은으으ㅇㅡㅡ으으으ㅇㅡㅡ으ㅇㅡㅡ윽으ㅇㅡㅡ

Reservoir Tank

$$
\begin{array}{rc}
\text { ————Gobeze Maryam } \\
\text { Tank } & 1 \\
\text { Node } & 53 \\
\text { Line } & 53 \\
\text { Pump, Decom } & 1 \\
\text { Convergence Gap } & 0.00 \text { (cm) } \\
\text { Calculation } & 2 \text { (times) }
\end{array}
$$

－Line－
D：Diameter
L：Length of Pipe
Coef：Friction Coefficient
Q：Quantity of Flow
V：Velocity of Flow
I：Hydraulic Gradient
HI：Head Loss
P：Add Pressure

$\langle\langle$ Explanatory Notes $\rangle\rangle$

二亘

 볼

10

以

耳向

宣宣

国定

¢

30
コニコニココニコニココニコこコココこコここコこコ

4
 $\stackrel{\oplus}{\infty}$

प्रे

已亘

ㄴํํํ

完が

물

Bikolo Pipe Networks

응용용용용응용응응응응응
siodidididojodoco

$-\overline{8}$응융응ㅇㅇㅇㅇㅇㅇ응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ응

ㄴํํํํํํํํํํํํํํํํํํํํํํํํํํํํ

응으으ㅇㅡㅡㅇㅡㅡ으ㅇㅡㅡ윽으읔으ㅇㅡㅡ으ㅇㅡㅡ을

E

号

Remarks
Reservoir Tank
응응융응응응응응응응응응 ，iodosidiosdodosoo

宛

응으으ㅇㅡㅡ읔읔으ㅇㅡㅡㅇㅡㅡ응응으ㅇㅡㅡㅇㅡㅡ

 OL

Remarks
Reservoir Takk

Node

資料 7．その他の資料•情報 7－2 試掘調査結果（柱状図）

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo@ethionet.et

$$
\text { Page } \mid \mathbf{7 3}
$$

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)11 5153397/98 e-mail tam-Geo@ethionet.et
Page|74

Test well drilling and existing water source survey for the second preparatory survey of the project for small towns water supply in southern part of the Amhara regional state

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo@ethionet.et
Page 175

Test well drilling and existing water source survey for the second preparatory survey of the project for small towns water supply in southern part of the Amhara regional state

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)11 5153397/98 e-mail tam-Geo@ethionet.et
Page|76

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo@ethionet.et

$$
\text { Page } \mid 77
$$

Test well drilling and existing water source survey for the second preparatory survey of the project for small towns water supply in southern part of the Amhara regional state

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo@ethionet.et

$$
\text { Page } \mid \mathbf{7 8}
$$

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo@ethionet.et

	Page
79	

Test well drilling and existing water source survey for the second preparatory survey of the project for small towns water supply in southern part of the Amhara regional state

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo@ethionet.et
Pag e $1 \mathbf{8 0}$

Test well drilling and existing water source survey for the second preparatory survey of the project for small towns water supply in southern part of the Amhara regional state

TAM GEO-ENGINEERING PLC. P.O.Box. 4661, Tel. 251 (0)115153397/98 e-mail tam-Geo(@ethionet.et
Page | $\mathbf{8 1}$

Test well drilling and existing water source survey for the second preparatory survey of the project for small towns water supply in southern part of the Amhara regional state

TAM GEO-ENGINEERING PLC.P.O.Box. 4661, Tel. 251 (0)11 5153397/98 e-mail tam-Geo@ethionet.et

[^0]: --- Annual Growth Rate of Population ---

[^1]:

