Annexe 1 - Lites des principales personnes rencontrées

Ministère de l'Investissement et de la Coopération Internationale

M. Khélil KAMMOUN	Directeur, Unité coopération bilatéral			
Mme Asma BOUZAOUACHE	Conseiller des services publics, Direction			
	coopération bilatéral			

Office National de l'Assainissement

M. Khalil ATTIA	Président Directeur Général		
M. Hassen BEN MUSTAPHA	Direction Centrale Technique		
M. Houcine EL BECH	P. Maîtrise d'énergie		
M. Nejib ABID	Département Central Management		
M. Salem BEN MESSAOUD	Département Central Management		
M. Mohamed BEN MAKHLOUF	Direction analyses, Développement et rejets		
	Industriels, Direction Régionale de SFAX		
M. Mourad KAMOUN	Chef de Division Épuration et Rejets Industriels,		
	SFAX		
M. Slaheddine CHAABOUNI	Directeur Régional de Sfax		
M. Lotfi MAROUANI	Direction Développement et Etudes		
M. Mohamed MARRAKCHI	Directeur des Projets Sud		
M. Habib AYED	Chef Département Sud		
M. Mohamed Lassaad KHABOU	Directeur des Services Communs		
M. Tarek CHAABOUNI	Direction Procès		
M. Ali JEMMAL	Département Financier et Comptable		

Bureau de l'Agence Japonaise de Coopération International en Tunisie

M. Ryuichi TOMIZAWA	Directeur Général, Représentant de la JICA en
	Tunisie
M. Kenichi TAKEMOTO	Directeur Représentant
Mme Sayaka TANIGUCHI	Chargée de Mission de Suivi des Projets YEN
M. Kaita TSUCHIYA	Représentant
M. Tomoyoshi SUZUKI	Représentant

Annexe 2 - Procès-verbal

Procès-verbal 1

Le 16 octobre 2012 à 10h00

Au Ministère de l'Investissement et de la Coopération Internationale (MICI)

Présence

MICI: M. Khelil KAMMOUN, Mme Asma BOUZAOUACHE

Office National de l'Assainissement (ONAS): M. Nejib ABID, M. Salem BEN MESSAOUD

JICA: M. Kenichi TAKEMOTO, Mme Sayaka TANIGUCHI, M. Tomoyoshi SUZUKI

Équipe d'étude de la JICA (Équipe) : M. Norihisa TAOKA, M. Hiroki FUJIWARA, M. Toru WATANABE, M. Ryosuke OHTA, M. Ahmed SNADLI (Interprète), M. Dabboussi RABAH (Interprète)

- 1. L'Équipe a expliqué le contenu du rapport de commencement.
- 2. L'Équipe a communiqué qu'elle souhaitait prolonger son séjour à Sfax d'une journée de plus que prévu dans le rapport de commencement.
- 3. La prochaine réunion entre l'ONAS et l'Équipe aura lieu le 23 octobre à partir de 9 heures au siège de l'ONAS (Tunis).
- 4. Le 24 octobre à partir de 10 heures, l'ONAS et l'Équipe auront une autre réunion à laquelle le responsable du MICI assistera également.
- 5. L'ONAS et le MICI de la Tunisie ont manifesté leur volonté de coopérer à cette étude autant que possible.
- 6. L'étude de faisabilité sur la Station d'épuration (STEP) de Sfax sud s'est terminée il y a environ un mois, et des consultations sont toujours en cours entre l'ONAS et le consultant qui l'a menée. Par conséquent, les derniers documents sur cette étude que l'ONAS puisse fournir à l'Équipe sont un projet du rapport final. Il est prévu de le recevoir à Sfax.

Procès-verbal 2

Le 16 octobre 2012 à 17h00 Au bureau de l'ONAS à Sfax

Présence

ONAS:

M. Habib AYED, M. Mohamed MARRAKCHI, M. Sleheddine CHAABOUNI, M. Mohamed Lassaad KHABOU, M. Mourad KAMOUN, M. Mohamed BEN MAKHLOUF Équipe :

M. Norihisa TAOKA, M. Hiroki FUJIWARA, M. Toru WATANABE, M. Ryosuke OHTA, M. Ahmed SNADLI (Interprète), M. Dabboussi RABAH (Interprète)

- 1. L'Équipe a expliqué le contenu du rapport de commencement.
- 2. L'Équipe a communiqué qu'elle souhaitait prolonger son séjour à Sfax d'une journée de plus que prévu dans le rapport de commencement, et le bureau de l'ONAS à Sfax qui gère la STEP de Sfax sud a consenti à la prolongation.
- 3. Concernant l'Article B.2.1 Échantillonnage (L'Équipe a préalablement demandé à l'ONAS de l'effectuer) dans le rapport de commencement, l'Équipe a discuté sur son contenu avec l'ONAS. Il a été décidé que l'échantillonnage serait effectué le 17 octobre.
- 4. L'ONAS a assuré un bureau pour l'Équipe pendant son étude dans les locaux de l'ONAS à Sfax de la STEP de Sfax sud. L'Équipe peut utiliser ce bureau à l'exception du dimanche.
- 5. Les heures de l'ouverture de l'ONAS sont comme suit : de 8h00 à 12h00 et de 14h00 à 18h00 en semaine, de 8h00 à 13h00 le lundi.

Procès-verbal 3

Le 24 octobre 2012 à 11h00

Au siège de l'ONAS (Tunis)

Présence

ONAS: M. Khalil ATTIA, M. Nejib ABID, M. Salem BEN MESSAOUD, M. Hassen BEN

MUSTAPHA

JICA: Mme Sayaka TANIGUCHI

Équipe: M. Norihisa TAOKA, M. Hiroki FUJIWARA, M. Toru WATANABE, M. Ryosuke

OHTA, M. Ahmed SNADLI (Interprète)

1. L'Équipe a rapporté les résultats de l'étude de terrain.

- 2. L'ONAS a communiqué qu'il comptait sur l'Équipe concernant le choix d'un système d'aération approprié du basin aérobie, soit le système d'aérateur ou celui d'aération par diffusion d'air. L'ONAS a demandé à l'Équipe de lui rapporter le résultat de l'examen ci-dessus.
- 3. En ce qui concerne le problème des eaux usées que rejette l'usine d'huile d'olive de manière illégale dans des regards d'égout sur la voie publique, etc., l'ONAS a expliqué qu'il continuait le dialogue avec l'usine sans prendre une attitude intransigeante à son égard. L'Équipe a expliqué les mesures suivantes qui avaient été prises au Japon : 1) notification par l'usine de la qualité des eaux usées versées dans l'égout, 2) inspection sur place par les autorités de l'assainissement au besoin.
- 4. Pour prolonger la durée des produits liés à l'électricité, l'Équipe a conseillé à l'ONAS de bien gérer la climatisation de la salle et de continuer à remplacer des pièces constamment.
- 5. À la fin de la réunion, l'ONAS a communiqué qu'il demandait une coopération car il souhaite résoudre le problème de la STEP de Sfax sud aussitôt que possible.

An	Annexe 3 - Liste des documents collectés			Remarque : Classifiée principalement par les noms d'institution ayant fourni les documents		
N°	Titre de document	Formule (Livre, Vidéo, Carte, Photo, etc.)	Original / Copie	Institution émettrice	Année d'émission	
1	DOSSIER TECHNIQUE AUTOMATE (Plan de récolement de PLC)	Livre	Original	IMCS	2005	
2	ARMOIRES ELECTRIQUES (Plan de récolement des armoires électriques TGBT)	Livre	Original	ARELEC	2006	
3	EQUIPEMENTS DU PRETRAITEMENT (Plan de récolement des équipements du prétraitement TPT)	Livre	Original	ARELEC	2006	
4	ARMOIRES ELECTRIQUES (Plan de récolement des armoires électriques TBB)	Livre	Original	ARELEC	2006	
5	ECLAIRAGE PRISE COURANT (Plan de récolement de l'éclairage prise courant SS4)	Livre	Original	ARELEC	2004	
6	ARMOIRES TBE AERATEUR 1 (Plan de récolement des armoires TBE aérateur 1)	Livre	Original	ARELEC	2006	
7	ARMOIRES TBE AERATEUR 2 (Plan de récolement des armoires TBE aérateur 2)	Livre	Original	ARELEC	2006	
8	ARMOIRES TBE AGITATION 1 (Plan de récolement des armoires TBE agitation 1)	Livre	Original	ARELEC	2006	
9	ARMOIRES TBE AGITATION 2 (Plan de récolement des armoires TBE agitation 2)	Livre	Original	ARELEC	2006	
10	Descriptif fonctionnel AUTOMATE (Mode d'emploi de PLC)	Livre	Original	IMCS	2006	
11	Rapport d'essai du transformateur	Copie sur papier	Copie	SOCOMEL	2011	
12	Liste de pièces (pour 1 pièce. PICKET FENCE THICKENER)	Fichier électronique	Copie	ONAS	N/A	
13	Fiche de donnée (Herse de brassage de l'épaississeur)	Fichier électronique	Copie	ONAS	N/A	
14	RAPPORT ANNUEL STEP de SFAX SUD 2007	Fichier électronique	Copie	ONAS	N/A	
15	RAPPORT ANNUEL STEP de SFAX SUD 2008	Fichier électronique	Copie	ONAS	N/A	
16	RAPPORT ANNUEL STEP de SFAX SUD 2009 RAPPORT ANNUEL STEP de SFAX	Fichier électronique	Copie	ONAS	N/A	
17	SUD 2010 RAPPORT ANNUEL STEP de SFAX SUD 2010	Fichier électronique Fichier	Copie	ONAS ONAS	N/A N/A	
19	SUD 2011 RAPPORT MENSUEL	électronique Fichier	Copie	ONAS	N/A	
1)	D'EXPLOITATION MOIS: DECEMBRE 2009	électronique	Copie	OTADA	IV/A	
20	RAPPORT MENSUEL D'EXPLOITATION MOIS: JANVIER 2010	Fichier électronique	Copie	ONAS	N/A	
21	RAPPORT MENSUEL D'EXPLOITATION MOIS: FEVRIER 2010	Fichier électronique	Copie	ONAS	N/A	

22	RAPPORT MENSUEL D'EXPLOITATION MOIS: MARS 2010	Fichier électronique	Copie	ONAS	N/A
23	RAPPORT MENSUEL D'EXPLOITATION MOIS: AVRIL 2010	Fichier électronique	Copie	ONAS	N/A
24	RAPPORT MENSUEL D'EXPLOITATION MOIS: MAI 2010	Fichier électronique	Copie	ONAS	N/A
25	RAPPORT MENSUEL D'EXPLOITATION MOIS: JUIN 2010	Fichier électronique	Copie	ONAS	N/A
26	RAPPORT MENSUEL D'EXPLOITATION MOIS: JUILLET 2010	Fichier électronique	Copie	ONAS	N/A
27	RAPPORT MENSUEL D'EXPLOITATION MOIS: AOUT 2010	Fichier électronique	Copie	ONAS	N/A
28	RAPPORT MENSUEL D'EXPLOITATION MOIS: SEPTEMBRE 2010	Fichier électronique	Copie	ONAS	N/A
29	RAPPORT MENSUEL D'EXPLOITATION MOIS: OCTOBRE 2010	Fichier électronique	Copie	ONAS	N/A
30	RAPPORT MENSUEL D'EXPLOITATION MOIS: NOVEMBRE 2010	Fichier électronique	Copie	ONAS	N/A
31	RAPPORT MENSUEL D'EXPLOITATION MOIS: DECEMBRE 2010	Fichier électronique	Copie	ONAS	N/A
32	RAPPORT MENSUEL D'EXPLOITATION MOIS: JANVIER 2011	Fichier électronique	Copie	ONAS	N/A
33	RAPPORT MENSUEL D'EXPLOITATION MOIS: FEVRIER 2011	Fichier électronique	Copie	ONAS	N/A
34	RAPPORT MENSUEL D'EXPLOITATION MOIS: MARS 2011	Fichier électronique	Copie	ONAS	N/A
35	RAPPORT MENSUEL D'EXPLOITATION MOIS: AVRIL 2011	Fichier électronique	Copie	ONAS	N/A
36	RAPPORT MENSUEL D'EXPLOITATION MOIS: MAI 2011	Fichier électronique	Copie	ONAS	N/A
37	RAPPORT MENSUEL D'EXPLOITATION MOIS: JUIN 2011	Fichier électronique	Copie	ONAS	N/A
38	RAPPORT MENSUEL D'EXPLOITATION MOIS: JUILLET 2011	Fichier électronique	Copie	ONAS	N/A
39	RAPPORT MENSUEL D'EXPLOITATION MOIS: AOUT 2011	Fichier électronique	Copie	ONAS	N/A
40	RAPPORT MENSUEL D'EXPLOITATION MOIS: SEPTEMBRE 2011	Fichier électronique	Copie	ONAS	N/A
41	RAPPORT MENSUEL D'EXPLOITATION MOIS: OCTOBRE 2011	Fichier électronique	Copie	ONAS	N/A
42	RAPPORT MENSUEL D'EXPLOITATION MOIS: NOVEMBRE 2011	Fichier électronique	Copie	ONAS	N/A
43	RAPPORT MENSUEL D'EXPLOITATION MOIS: DECEMBRE 2011	Fichier électronique	Copie	ONAS	N/A

44	RAPPORT MENSUEL D'EXPLOITATION MOIS: JANVIER 2012	Fichier électronique	Copie	ONAS	N/A
45	RAPPORT MENSUEL D'EXPLOITATION MOIS: FEVRIER 2012	Fichier électronique	Copie	ONAS	N/A
46	RAPPORT MENSUEL D'EXPLOITATION MOIS: MARS 2012	Fichier électronique	Copie	ONAS	N/A
47	RAPPORT MENSUEL D'EXPLOITATION MOIS: AVRIL 2012	Fichier électronique	Copie	ONAS	N/A
48	RAPPORT MENSUEL D'EXPLOITATION MOIS: MAI 2012	Fichier électronique	Copie	ONAS	N/A
49	RAPPORT MENSUEL D'EXPLOITATION MOIS: JUIN 2012	Fichier électronique	Copie	ONAS	N/A
50	RAPPORT MENSUEL D'EXPLOITATION MOIS: JUILLET 2012	Fichier électronique	Copie	ONAS	N/A
51	RAPPORT MENSUEL D'EXPLOITATION MOIS: AOUT 2012	Fichier électronique	Copie	ONAS	N/A
52	BULLETIN DES ANALYSES No. 35/06/2009	Fichier électronique	Copie	ONAS	2006
53	REHABILITATION DE LA STEP SFAX SUD / DIAGNOSTIC de FONCTIONNEMENT PROJET DE REHABILITATION / Rapport final	Fichier électronique	Copie	ONAS	2012
54	ÉTUDE DE DIAGNOSTIC DE LA STRUCTURATION ORGANISATIONNELLE DE L'ONAS ET PROPOSITION DE L'ORGANIGRAMME	Fichier électronique	Copie	ONAS	2012
55	Rapport d'essai No. 0033-8/10	Fichier électronique	Copie	ONAS	2010
56	Rapport d'essai No. 0033-9/10	Fichier électronique	Copie	ONAS	2010
57	NT 106.20(2002) Matières fertilissantes - Boues des ouvrages de traitement des eaux usées urbaines	Document	Copie	Institut national de la normalisation et de la propriété industrielle	2002
58	Organigramme de l'ONAS	Livre	Copie	ONAS	N/A
59	IV PROJET D'ASSAINISSEMENT URBAIN DE GRAND SFAX / LOT No. 3S - SFAX SUD ETUDE D'EXECUTION, DU RENFORCEMENT ET DE L'EXTENSION DU RESEAU D'ASSAINISSEMENT EN EAUX USEES / AVANT PROJET DETAILLE RAPPORT	Livre	Copie	ONAS	1999
60	NT 106.002(1989) PROTECTION DE L'ENVIRONNEMENT - REJETS D'EFFLUENTS DANS LE MILIEU HYDRIQUE	Livre	Copie	Institut national de la normalisation et de la propriété industrielle	1989

61	NT 106.03 (1989) Protection de l'environnement - utilisation des eaux usées traitées à des fins agricoles - Spécifications physico-chimiques et	Livre	Copie	Institut national de la normalisation et de la propriété	1989
62	biologiques 2011 Statistiques Du taux de branchement Au réseau public d'assainissement	Livre	Copie	industrielle ONAS	2012
63	IV PROJET D'ASSAINISSEMENT URBAIN DE GRAND SFAX / LOT No. 4S - SFAX CENTRE / ETUDE D'EXECUTION DES TRAVAUX DE REHABILITATION ET DE RECALIBRAGE DU RESEAU D'ASSAINISSEMENT EN EAUX USEES ET EAUX PLUVIALES / AVANT PROJET DETAILLE RAPPORT	Livre	Copie	ONAS	1999
64	Journal Officiel de la République Tunisienne - 23 Avril 1993	Livre	Copie	Gouvernement de la République de Tunisienne	1993
65	Journal Officiel de la République Tunisienne - Décret No. 94-1885	Livre	Copie	Gouvernement de la République de Tunisienne	1994
66	Journal Officiel de la République Tunisienne - 14 Octobre 1994	Livre	Copie	Gouvernement de la République de Tunisienne	1994
67	Journal Officiel de la République Tunisienne - 19 novembre 1996	Livre	Copie	Gouvernement de la République de Tunisienne	1996
68	Journal Officiel de la République Tunisienne - 17 décembre 1996	Livre	Copie	Gouvernement de la République de Tunisienne	1996
69	Journal Officiel de la République Tunisienne - 3 juillet 2001	Livre	Copie	Gouvernement de la République de Tunisienne	2001
70	Journal Officiel de la République Tunisienne - 31 août 2001	Livre	Copie	Gouvernement de la République de Tunisienne	2001
71	Journal Officiel de la République Tunisienne - Décret No. 2002-524	Livre	Copie	Gouvernement de la République de Tunisienne	2002
72	Document pour le coût d'entretien de l'aérateur	Livre	Copie	ONAS	2012
73	Relevé du coût des travaux	Livre	Copie	ONAS	2012
74	Résultats de l'analyse de la qualité d'eau (le 17 octobre 2012)	Livre	Copie	ONAS/POLYLA B	2012
75	PLANNING DES TRAVAUX D'ENTRETIEN (Planning des travaux d'entretien de la STEP de Sfax Sud)	Livre	Copie	ONAS	N/A
76	Plan des travaux de la STEP de Sfax Sud	Plan	Copie	ONAS	2005

Annexe 4 - Album photos

Consultation avec le MICI et le siège de l'ONAS

Consultation avec l'ONAS Sfax

Consultation avec le siège de l'ONAS

Consultation avec le siège de l'ONAS

Panorama de la station d'épuration

Panorama de la station d'épuration

Canal de dégazage

Canal de dégazage

Dégrilleur mécanique

Dégrilleur mécanique

Pompe élévatoire

Pompe élévatoire

Dessableur/déshuileur

Dessableur/déshuileur

Bassin anaérobie

Bassin anaérobie

Bassin aérobie

Bassin aérobie

Clarificateur

Clarificateur

Bâtiment des pompes de boues de retour

Bâtiment des pompes de boues de retour

Pompe de boues excédentaires

Pompe de boues excédentaires

Bâtiment des pompes à eau pour l'usine et du dispositif d'échantillonnage

Dispositif d'échantillonnage

Lit de séchage au soleil

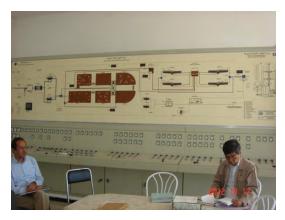
Lit de séchage au soleil

Bâtiment du déshydrateur mécanique

Déshydrateur mécanique

Bâtiment administratif

Bâtiment d'équipements électriques



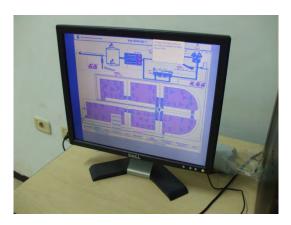

Tableau de contrôle central automatique

Tableau de contrôle central automatique

Intérieur du tableau de contrôle central automatique

PC de surveillance

Armoire de distribution dans le local électrique du bâtiment administratif

Intérieur de l'armoire de distribution dans le local électrique du bâtiment administratif

Armoire de distribution dans le local électrique de la pompe élévatoire

Intérieur de l'armoire de distribution dans le local électrique de la pompe élévatoire

Armoire de distribution dans le local électrique du bâtiment des pompes de boues de retour

Intérieur de l'armoire de distribution dans le local électrique du bâtiment des pompes de boues de retour

Transformateur

Armoire de distribution basse tension

Armoire de distribution basse tension

Groupe électrogène

Silencieux d'échappement du groupe électrogène

Réservoir de carburant en plein air

Débitmètre d'effluent

Convertisseur du débitmètre d'effluent

Débitmètre de boues excédentaires

Débitmètre de boues de retour

Débitmètre de boues d'alimentation de déshydrateur

Indicateur de niveau d'eau en amont de dégrillage

Canal de décharge

Canal de décharge

Analyse de l'eau par l'Équipe d'étude

Analyse de l'eau par l'Équipe d'étude

Équipe d'étude et ONAS en plein travail

Mesure de l'état d'isolation par l'Équipe d'étude

Annexe 5 - Calculs de bilan matières

- Revoir la quantité de génération de boue en fonction de la montée de concentration des affluents solides,
- La concentration de boue épaissie que prévoit l'étude détaillée est de 5,0% mais comme il s'agit d'une valeur très sévère pour les boues épaissies par gravité et que les références d'autres installations sont de l'ordre de 3,0%, on utilisera 3,0%.

Les conditions de calculs du bilan matières sont déterminées comme suit:

Arti	cles	unité	CAS.1-1	CAS.1-2	CAS.2	CAS.3	Remarques
			Données d'étude détaillée	Présente revue	Conditions actuelles d'affluents	Etat actuel	
Conditions de calculs	Eaux usées	m ³ /d	49 500	49 500	38 218	38 218	
	Entrée de MES	mg/ Q	305	430	428	428	Revue selon les valeurs réelles
	Sortie de MES	mg/ Q	30	30	30	118	
	MES concentrés	%	5,0	3,0	3,0	3,0	Présente revue

1.1 MASS BALANCE CALCULATION CASE.1-1

1.1.1 DESIGN CONDITION

Inlet Quantity	m ³ /d	49,500
Inlet SS	mg/l	305
Inlet SS	kg/d	15,098
Inlet BOD	mg/l	436
Inlet T-N	mg/l	40
Inlet Quantity of Transported Sludge	m³/d	0
Inlet SS OF Transported Sludge	mg/l	0
Inlet SS OF Transported Sludge	kg/d	0
Inlet BOD OF Transported Sludge	mg/l	0
Inlet T-N OF Transported Sludge	mg/l	0
Outlet SS	mg/l	30
Outlet BOD	mg/l	30
Outlet T-N	mg/l	10
Waste Sludge Solids Content	%	0.8
Converting Ratio of SS		0.76
Thickened Sludge Solids Content	%	5.0
Recovery Ratio of Thickener	%	90.0
Water Content of Cake	%	75.0
Recovery Ratio of Dewatering Unit	%	90.0
I.		

1.1.2 RESULT

(1) INLET

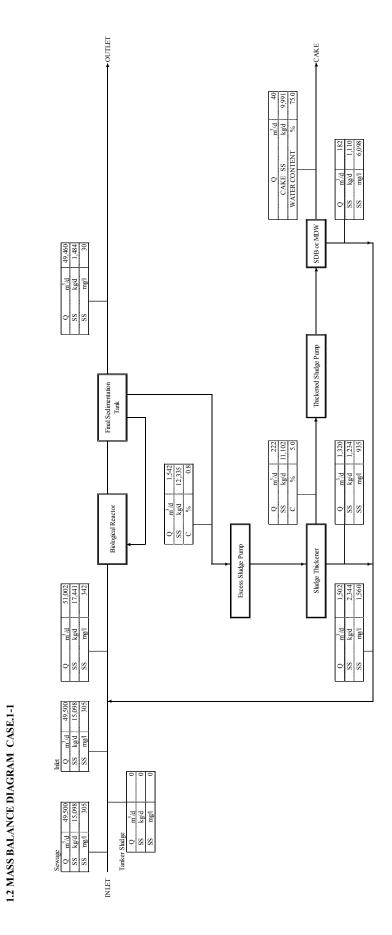
Inlet Quantity	m^3/d	49,500
Inlet SS	kg/d	15,098
Inlet SS	mg/l	305
Inlet BOD	mg/l	436
Inlet T-N	mg/l	40

Sludge Concentration	%	0.8
Waste Sludge	kg/d	12,335
Waste Sludge Quantity	m ³ /d	1,542

Thickened Sludge	kg/d	11,102
Thickened Sludge Quantity	m ³ /d	222
Supernatant SS	kg/d	1,234
Supernatant Quantity	m^3/d	1,320
Supernatant SS	mg/l	935

(4) SLUDGE DRYING BED OR DEW ATERING UNIT

Water Content of Cake	%	75.0
Cake SS	kg/d	9,991
Cake Quantity	m ³ /d	40
Supernatant SS	kg/d	1,110
Supernatant Quantity	m ³ /d	182
Supernatant SS	mg/l	6,098


(5) INLET CONDITION TO OD

Quantity	m^3/d	51,002
SS	kg/d	17,441
SS	mg/l	342

(6) RETURN FROM THICKENER & DEWATERING UNIT

Quantity	m ³ /d	1,502
SS	kg/d	2,344
SS	mg/l	1,560

Quantity	m^3/d	49,460
Outlet SS	mg/l	30
SS	kg/d	1,484

A5-4

1.1 MASS BALANCE CALCULATION CASE.1-2

1.1.1 DESIGN CONDITION

Inlet Quantity	m ³ /d	49,500
Inlet SS	mg/l	430
Inlet SS	kg/d	21,285
Inlet BOD	mg/l	436
Inlet T-N	mg/l	40
Inlet Quantity of Transported Sludge	m ³ /d	0
Inlet SS OF Transported Sludge	mg/l	0
Inlet SS OF Transported Sludge	kg/d	0
Inlet BOD OF Transported Sludge	mg/l	0
Inlet T-N OF Transported Sludge	mg/l	0
Outlet SS	mg/l	30
Outlet BOD	mg/l	30
Outlet T-N	mg/l	10
Waste Sludge Solids Content	%	0.8
Converting Ratio of SS		0.76
Thickened Sludge Solids Content	%	3.0
Recovery Ratio of Thickener	%	90.0
Water Content of Cake	%	75.0
Recovery Ratio of Dewatering Unit	%	90.0

1.1.2 RESULT

(1) INLET

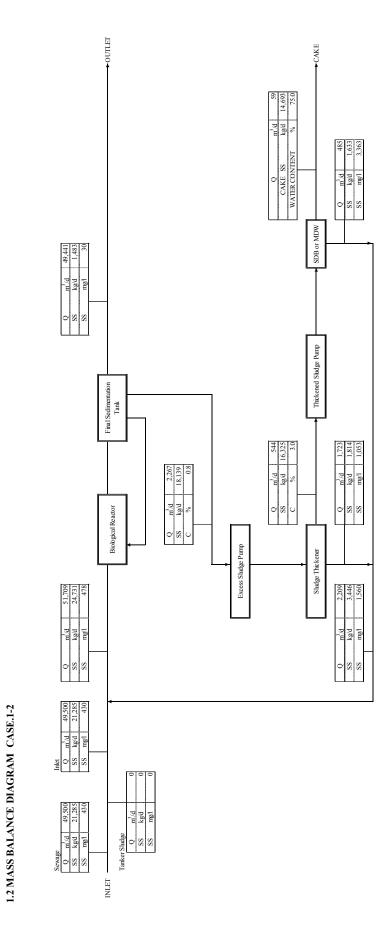
Inlet Quantity	m^3/d	49,500
Inlet SS	kg/d	21,285
Inlet SS	mg/l	430
Inlet BOD	mg/l	436
Inlet T-N	mg/l	40

Sludge Concentration	%	0.8
Waste Sludge	kg/d	18,139
Waste Sludge Quantity	m ³ /d	2,267

Thickened Sludge	kg/d	16,325
Thickened Sludge Quantity	m ³ /d	544
Supernatant SS	kg/d	1,814
Supernatant Quantity	m^3/d	1,723
Supernatant SS	mg/l	1,053

(4) SLUDGE DRYING BED OR DEW ATERING UNIT

Water Content of Cake	%	75.0
Cake SS	kg/d	14,693
Cake Quantity	m ³ /d	59
Supernatant SS	kg/d	1,633
Supernatant Quantity	m ³ /d	485
Supernatant SS	mg/l	3,363


(5) INLET CONDITION TO OD

Quantity	m^3/d	51,709
SS	kg/d	24,731
SS	mg/l	478

(6) RETURN FROM THICKENER & DEWATERING UNIT

Quantity	m^3/d	2,209
SS	kg/d	3,446
SS	mg/l	1,560

Quantity	m^3/d	49,441
Outlet SS	mg/l	30
SS	kg/d	1,483

A5-7

1.1 MASS BALANCE CALCULATION CASE.2

1.1.1 DESIGN CONDITION

Inlet Quantity	m ³ /d	38,218
Inlet SS	mg/l	428
Inlet SS	kg/d	16,357
Inlet BOD	mg/l	432
Inlet T-N	mg/l	40
Inlet Quantity of Transported Sludge	m ³ /d	0
Inlet SS OF Transported Sludge	mg/l	0
Inlet SS OF Transported Sludge	kg/d	0
Inlet BOD OF Transported Sludge	mg/l	0
Inlet T-N OF Transported Sludge	mg/l	0
Outlet SS	mg/l	30
Outlet BOD	mg/l	30
Outlet T-N	mg/l	10
Waste Sludge Solids Content	%	0.8
Converting Ratio of SS		0.76
Thickened Sludge Solids Content	%	3.0
Recovery Ratio of Thickener	%	90.0
Water Content of Cake	%	75.0
Recovery Ratio of Dewatering Unit	%	90.0
		-

1.1.2 RESULT

(1) INLET

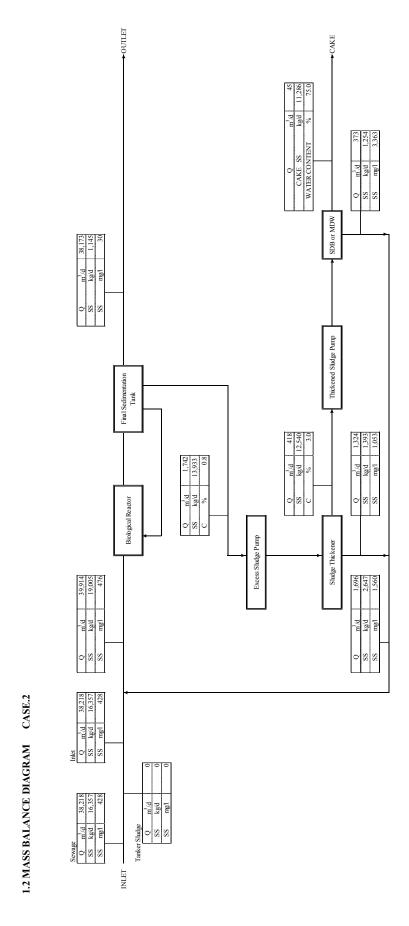
Inlet Quantity	m^3/d	38,218
Inlet SS	kg/d	16,357
Inlet SS	mg/l	428
Inlet BOD	mg/l	432
Inlet T-N	mg/l	40

Sludge Concentration	%	0.8
Waste Sludge	kg/d	13,933
Waste Sludge Quantity	m ³ /d	1,742

Thickened Sludge	kg/d	12,540
Thickened Sludge Quantity	m ³ /d	418
Supernatant SS	kg/d	1,393
Supernatant Quantity	m^3/d	1,324
Supernatant SS	mg/l	1,053

(4) SLUDGE DRYING BED OR DEWATERING UNIT

Water Content of Cake	%	75.0
Cake SS	kg/d	11,286
Cake Quantity	m ³ /d	45
Supernatant SS	kg/d	1,254
Supernatant Quantity	m^3/d	373
Supernatant SS	mg/l	3,363


(5) INLET CONDITION TO OD

Quantity	m^3/d	39,914
SS	kg/d	19,005
SS	mg/l	476

(6) RETURN FROM THICKENER & DEWATERING UNIT

Quantity	m^3/d	1,696
SS	kg/d	2,647
SS	mg/l	1,560

Quantity	m^3/d	38,173
Outlet SS	mg/l	30
SS	kg/d	1,145

1.1 MASS BALANCE CALCULATION CASE:3

1.1.1 DESIGN CONDITION

Inlet Quantity	m ³ /d	38,218
Inlet SS	mg/l	428
Inlet SS	kg/d	16,357
Inlet BOD	mg/l	432
Inlet T-N	mg/l	40
Inlet Quantity of Transported Sludge	m^3/d	0
Inlet SS OF Transported Sludge	mg/l	0
Inlet SS OF Transported Sludge	kg/d	0
Inlet BOD OF Transported Sludge	mg/l	0
Inlet T-N OF Transported Sludge	mg/l	0
Outlet SS	mg/l	118
Outlet BOD	mg/l	110
Outlet T-N	mg/l	10
Waste Sludge Solids Content	%	0.44
Converting Ratio of SS		0.76
Thickened Sludge Solids Content	%	3.0
Recovery Ratio of Thickener	%	90.0
Water Content of Cake	%	75.0
Recovery Ratio of Dewatering Unit	%	90.0

1.1.2 RESULT

(1) INLET

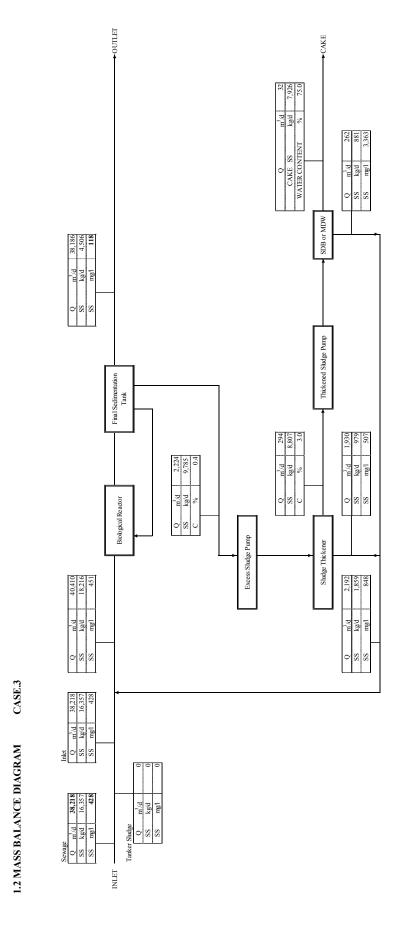
Inlet Quantity	m^3/d	38,218
Inlet SS	kg/d	16,357
Inlet SS	mg/l	428
Inlet BOD	mg/l	432
Inlet T-N	mg/l	40

Sludge Concentration	%	0.4
Waste Sludge	kg/d	9,785
Waste Sludge Quantity	m ³ /d	2,224

Thickened Sludge	kg/d	8,807
Thickened Sludge Quantity	m ³ /d	294
Supernatant SS	kg/d	979
Supernatant Quantity	m^3/d	1,930
Supernatant SS	mg/l	507

(4) SLUDGE DRYING BED OR DEW ATERING UNIT

Water Content of Cake	%	75.0
Cake SS	kg/d	7,926
Cake Quantity	m ³ /d	32
Supernatant SS	kg/d	881
Supernatant Quantity	m ³ /d	262
Supernatant SS	mg/l	3,363


(5) INLET CONDITION TO OD

Quantity	m^3/d	40,410
SS	kg/d	18,216
SS	mg/l	451

(6) RETURN FROM THICKENER & DEWATERING UNIT

Quantity	m^3/d	2,192
SS	kg/d	1,859
SS	mg/l	848

Quantity	m^3/d	38,186
Outlet SS	mg/l	118
SS	kg/d	4,506

A5-13

Annexe 6 - Tableau synoptique pour diagnostic des installations

【Critères d'appréciation des résultats de diagnostic】

1. Degrés de jugement

G: BON NG: PAS BON

P: MEDIOCRE

2. Appréciation globale

Remplacement : Installations électriques nettement vétustes et dont la fonctionnalité ne pourraient être conservée que difficilement d'ici 5

à 7 ans (essentiellement P

Maintien en état : Installations actuellement en bon état et dont la fonctionnalité pourra se maintenir d'ici 5 à 7 ans (essentiellement G)

Installations demandant à être réparées partiellement pour que leur fonctionnalité soit conservée d'ici 5 à 7 ans (NG

nombreux pour rouille et corrosion)

3. Diagnostic visuel

Réparation :

Contamination

Rouille, corrosion

Décoloration, fissure

Déformation

Usure

4. Diagnostic fonctionnel

Performance

Tableaux N°T à 2, 4 à 6 et8 en cours d'ante. Régulateurs grande vitesse N° °T et 6 en panne et démontés. Ré guitaur petite vitesse N° 7 en panne et démonté. Transmission des signauxen panne. Pièces de rechange disponibles, dé faut de UPS Inspection 1 fois/an, faible charge, problème de ventilation NG : PAS BON P : MEDIOCRE Remarques Caisson dito , BON Diagnostic fonctionnel .. O Neuf ou vétuste Légende Ø Ø Ø Ø O Ø O Ø O O O O O Ø Ø Ø O Ø O O O O O O 9 9 O O 9 Usure O O O Ø O O O Ø O Ø Ø O O Ø Nomenclature d'équipements électriques de STEP de Sfax sud ayant fait l'objet de l'étude O Ø O Ø Ø Ø Ø O Ø O Ø O O O Ø Ø Défor O O O O O Ø O O O O O O O O O Rouille, corrosion O 9 O O 9 9 9 9 9 9 9 9 9 9 O 9 ģ 9 Juge-ment Photo N° Mise en olace 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 ARELEC **ARELEC** ARELEC ARELEC SACEM SACEM MCCB MCCB 40kVar×3, 80kVar×9, à deux panı Spécifications 65kA 65kA 25kA 25kA, 1250kVA 30kV/0.4kV, 1250kVA 2000A, 2000A, Séquenceur (PLC) es/sorties ; 96 ≶ 1000VA MCCB 1600A 1600A, radiateur, ouvert, r rateur500 kVA 1600A, 30kV/0.4kV, ₽. ₽. ₽. ₽. 400/220V, c. a.400VA 1600A, ,000 ٩, 1000V 750V, 750V, MCCB MCCB ₽. Autoportant, service int. Type Autoportant, service int. rvice int. service int. Bâtiment de contrôle, salle électrique Bâtiment de contrôle, salle électrique Bâtiment de contrôle, salle électrique Bâtiment transfo. salle transfo. Bâtiment transfo. salle transfo. Bâtiment transfo. salle électrique Bâtiment transfo. salle électrique Bâtiment transfo. salle générateur Bâtiment transfo. salle électrique Bâtiment transfo. salle électrique Bâtiment transfo. salle électrique Bâtiment transfo. salle électrique Satiment transfo Bâtiment transfo Bâtiment transfo Satiment transfo salle électrique salle électrique Locaux salle électrique alle électrique Tableau de départ de bâ timent d'agliateur, pompe de B dégrilleur et pompe à boue N s °2 (DSS1.3, 2, 3.2) Tableau de départ de pompe de retour de boue N°1 (DSS3.1) Tableau de départ d'aération №2 (DSS1.2) Tableau principal N°2 de bâ timent de contrôle (aérateur) Tableau de départ d'aération №1 (DSS1.1) Tableau de commutation ré seau / groupe elec. (DMC-DMG) Tableau principal Nº1 de bâ timent de contrôle (aérateur) Armoire électrique d'aérateur (N°1∼8) Tableau secondaire (DN2) de Transformateur N° 2 Amoire d'alimentation de tension de commande (D19, D20) Tableau de commande automatique de bâtiment transfo (TGBT/TMT) Tableau secondaire de Transformateur N Tableau de condens Désignation Transformateur Nº : Groupe électrogène ŝ 12 13 4 16

Tableaux № 10 et 12 en panne. Régulaburs grande Wisses N°9 et 13 en panne. Régulabur grande wiesse № 17 en panne et démonté. Régulabur petite vites N° 16 en panne et démonté. 3° fois de rempiacement d'inverseur en 2011. Les plaques innailes et dons ale démonté pendant l'été pour prévention d'échauffement l'été pour 2° fois de rempleament d'inverseur en 2011. Les plaques frontale et dons ale démonté pendant l'été pour prévention d'échauffement 2° fois de rempleament d'inverseur er 2011. Les plaques frontale et dons ale démonté pendant l'été pour prévention d'échauffement 2° fois de remplacement d'inverseur er 2011. Les plaques frontale et dors ale démonté pendant l'été pour prévention d'échauffement. Contacteur d'amoire électrique des agliteurs N°13 à 19 brûlés. Même indéent survenu dans le pass ée tremplacement effectué. Fin de vel des batteries incorporées de PLC et UPS (qucune expérience de remplacement) Pas de ventilation, climatiseur en panne et démonté, risque d'é chauffement du fait d'insolation de l' ouest PAS BON P : MEDIOCRE .. 9 Disponibilité de pièces de rechange G BON Neuf ou vétus te Légende Diagnostic fon O O O O O Ø O O Ø O O Ø O O 9 9 9 O 9 Ø O O O O O O O O O O Ø O Ø O O O O O O O Ø O Ø O Ø O Nomenclature d'équipements électriques de STEP de Sfax sud ayant fait l'objet de l'étude Ø O O O Ø O Ø Ø O Ø O O O Ø O O Défor fissure O O O Ø O O O O O Ø O O O O O O Rouille, corrosion O O Ø Ø Ø O Ø O Ø Ø O O O O O O Contamination 9 9 9 9 9 9 9 9 9 9 9 9 9 9 92 Juge-ment Photo N° Mis e en place 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 ARELEC ARELEC **ARELEC** ARELEC ARELEC ARELEC **ARELEC** ARELEC ARELEC ARELEC ARELEC RELEC RELEC ΕÞ ĕ ē. ır (PLC) , :864 inverseur intégré MCCB MCCB MCCB Séquenceur : 86 es/sorties ; 86 Séquenceur es/sorties ; 29 250A 630A, 630A, ₽, Autoportant, service int. Type Prétraitement, salle é lectrique Prétraitement, salle é lectrique Bâtiment de contrôle, salle électrique Bâtiment de contrôle, salle électrique Bâtiment de contrôle, salle électrique salle é Bâtment de pompe retour boue, salle é lectrique Bâtmentde pompe retour boue, salle é lectrique Bâtiment de pompe retour boue, salle é lectrique Bâtmentde pompe retour boue, salle é lectrique Bâtiment de contrôle, Bâtiment de contrôle, Prétraitement, salle é Prétraitement, salle é salle électrique salle électrique Locaux lectrique lectrique lectrique Amoire électrique d' agitateur (pompes d'é vacuation N°1 ~ 2, agitateurs s: Armoire électrique de soufflante de désableur/dé shuileur, radeur de réservoir la d'épaississement Tableau de commande automatique de pompe de d égrilleur (TPT) Armoire électrique de pompe de retour de boue N°1 (TBB) Tableau principal N°3 de bâ timent de contrôle (agitateur) Tableau de commande automatique de bâtiment de contrôle (TBE) Armoire électrique de pompe de boue épaissie Armoire principale de salle é lectrique N°1 de pompe de retour de boue (TBB) Armoire électrique de pompe de retour de boue N°2 (TBB) Armoire électrique d'aérateur (N¤9∼16) moire principale de salle é oire électrique de pompe de retour de boue N°3 (TBB) Amoire d'alimentation d'é clairage (SS4) Armoire électrique de souffante de désableur/dé shuileur lectrique de bâtiment de pompe de dégrilleur (TPT) Armoire électrique de convoyeur de dégrilleur Armoire électrique de ₁ Désign de relevage

23 24 25 26

27 28 29 30

32

31

22

ŝ

17

18

19

20 21

En panne. Emplacem ent inapproprié (situé à l'entrée). Lecture difficile parce que l'indicateu local est situé dans la fosse. Utilisation de minuterie pour dé grilleur à cause d'imprécision de mesure de niveau NG : PAS BON P : MEDIOCRE Conductimètre en panne Disponibilité de pièces de rechange G BON Diagnostic fonctionnel Neuf ou vé Légende O O Ø O O 9 9 9 9 9 9 9 9 Ø O 9 Usure Ø Ø Ø O O O O O O Ø O O O Ø Nomenclature d'équipements électriques de STEP de Sfax sud ayant fait l'objet de l'étude O Ø O O O O O O O O O O Ø O Défor Décoloration, fissure Ø O O Rouille, corrosion Ø Ø O O O Ø 9 9 9 9 Ø Ø O 9 9 9 9 9 9 9 9 9 9 9 O 9 9 Juge-ment ۵ Photo N° 2011 (Fab. en 2008) Mise en olace 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 2006 Endress & Hauser Endress & Hauser Endress & Hauser Endress & Hauser indress & ARELEC lauser Ε ΕIΑ ΕĬ 4P, 100A, MCCB, armoire électrique de pompe de retour de boue 4 capteurs (Ph-mètre, thermomètre, conductimètre, turbidimètre), à é chantillonage, service intérieur Tableauxd'instruments et contrôle à graphique mosaïc Séquenceur (PLC) , nb. d'entré es/sorties ; 192 Séquenceur (PLC), nb. d'entré es/sorties; 768, avec UPS Diamètre 1200 mm, 0-1360L/s Diamètre 1000 mm, 0-2060L/s Analyseurd'oxygène dissous Diamètre 150 mm Banc autoportant, électromagné Autoporlant, service int. Autoportant, service int. immersion immersion Type service int. Bâtiment de pompe retour boue, salle é lectrique Bâtiment de pompe retour boue, salle é lectrique Bâtiment de pompe retour boue, salle é lectrique Puits de débitmètre de boue de retour Puits de débitmètre de rejet Bâtiment de pompe retour boue Bâtiment de contrô le,salle de contrôle Bâtiment de contrô le,salle de contrôle Bâtiment de contrô le,salle de contrôle Installation de dé grilleur Salle de pompe d' eau de lavage Bassin d'aération Bassin d'aération Bassin d'aération Locaux Armorre principale de salle el lechtique VX de pompe a rebur de boue, armorre e lechtique de pompe de boue les en surplues NZ (TBB) (TBB) Armorres descritques de pompe de aude service NY re à 2. Dass ins de se directation finale NY 1 à 4 Tableau automatique de bâ timent de pompe de retour de boue (TBB) Indicateur de niveau de dé Tableau automatique de surveillance (synoptique) Table au graphique de surveillance Désignation PC de traitement d' informations DO-mètre N°1 (1B) DO-mètre N°2 (2B) DO-mètre N°3 (3B) ŝ 33 34 35 36 37 38 39 40 42 43 45 46

Annexe 7 - Données de qualité d'eau

7.1 Paramètres d'exploitation de l'ONAS

			_												 	_
	IAS	se	177	150	340	290	170	597	450	332	120	09	•	09	2397	218
		Boue renvoyée	4727	2550	00891	0088	10572	12036	25039	22229	<i>LL</i> 977	1466	1188	4655	132739	11062
anormales.	(ng/gm)	B3	,							-	-	-		009	009	009
t à considérei	Concentration de $\operatorname{SS}(\operatorname{mg}/\ell)$	B2	3142	1600	4600	9500	8533	12015	9147	5723	2566	1197	835	1629	60487	5041
ıleurs () son	Concen	BI	4677	3600	1500	3500	6974	3950	8426	3812	2000	1446	525	629	41089	3424
Remarques : les valeurs () sont à considérer anormales.	Quantité de boue en surplus	(m³/j)	572	445	460	468	616	0	712	664	1310	1146	989	542	7571	631
I	Quantité de boue renvoyée	(m ³ /j)	29367	26486	23680	17628	17960	22500	27087	22355	27550	29166	29473	28163	301415	25118
(ng/0)	Sortie	33	37	17	50	62	73	66	103	120	69	50	28	771	64
fax sud (2011	MES(mg/0)	Entrée	167	150	08	200	266	029	969	1078	699	794	487	909	2163	480
de STEP de S	ng/0)	Sortie	45	48	35	55	133	63	109	49	20	99	29	69	862	<i>L</i> 9
qualité d'eau	BOD(mg/l)	Entrée	257	275	190	380	227	440	488	525	835	489	330	544	4980	415
Données de débit/qualité d'eau de STEP de Sfax sud (2011	Qté de traitement	(m³/j)	33975	36670	28126	31489	34523	28402	36618	35873	37057	34869	36106	34626	408334	34028
			fanvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	pte mbre)ctobre	ove mbre	éce mbre	Total	oyenne

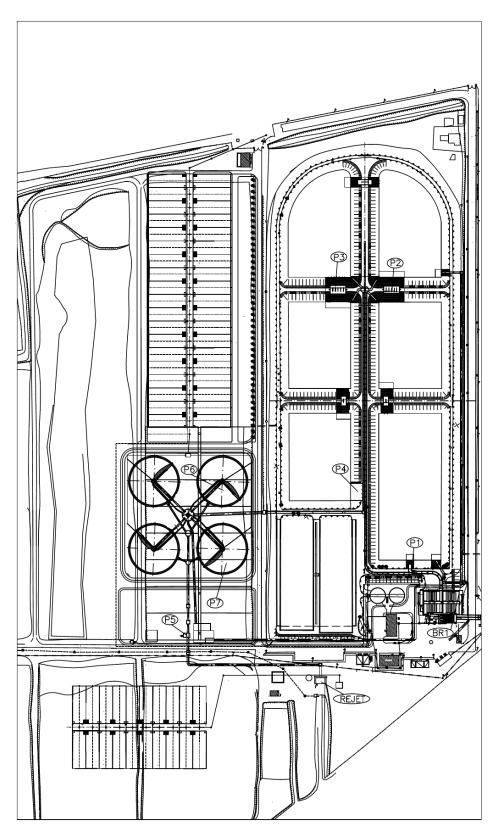
	SVI		50	105	70	100				270					595	,
normales.		Boue renvoyée	(278)	2940	2100	8136	7260	2022	2628	5450					30536	
	ng/0)	B3 I	2607	405	517	4338	1335	1184	5123	4656					20165	
à considérer	Concentration de SS(mg/l)	B2	3618	460	551	2495	4170	950	2252	9809					19582	
leurs () sont	Concent	BI	339	2314	388	2879	1190	1017	937	4073					13137	
Remarques : les valeurs () sont à considérer anormales.	Quantité de boue en surplus	(m ³ /j)	1425	1023	298	1240	806	848	455	1001					1911	
Données de débit/qualité d'eau de STEP de Sfax sud (2012)	Quantité de boue renvoyée	(m³/j)	33081	25986	31855	16484	30484	34293	34597	41677					248457	
	3/8)	Sortie	130	66	110	93	06	80	213	132					943	
	SS(mg/0)	Entrée	534	360	479	360	(2725)	267	394	109					2995	
	(g/g)	Sortie	133	135	139	54	(28)	62	147	101					771	
	BOD(mg/l)	Entrée	009	200	393	360	(1050)	333	373	463					3022	
	Qté de traitement	(m ³ /j)	34626	35094	38116	42418	42338	39293	39639	34223					305747	1
Д			Janvier	Février	Mars	Avril	Mai	Juin	Juillet	Août	Septembre	Octobre	Novembre	Décembre	Total	

Paramètres d'exp

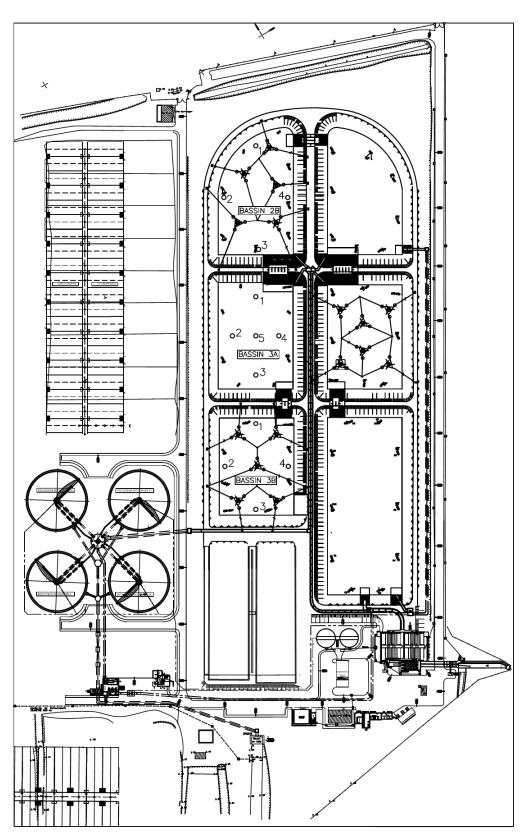
7.2 Résultats d'analyse de qualité d'eau réalisée par la mission, points de prélèvement

Résultats d'analyse de qualité d'eau (18 octobre 2012)

		Druge de quante d	,	1	
	Point	Profondeur (m)	OD (mg/ℓ)	MESLM (mg/l)	pН
Eaux brutes d'entrée	P1	0,5	0,03	-	-
Effluent 1B	P2	0,5	0,1	1 400	7,24
Effluent 2B	Р3	0,5	1,2	4 900	7,5
Effluent 3B	P4	0,5	3,58	3 400	-
Effluent Decanteur	P5	0,5	3,12	-	-
		1,0	-	170	-
Decanteur No.4	P6	2,0	-	180	-
Decanteur No.4	10	3,0	-	260	-
		4,0	-	320	-
BASSIN	Point	Profondeur (m)	OD (mg/ℓ)	MESLM (mg/ℓ)	pН
	1	0,5	1,3	5 850	7,5
2B	2	0,5	0,02	5 200	7,5
25	3	0,5	0,75	4 350	7,47
	4	0,5	0,7	5 400	7,43
	1	1,0	-	2 300	-
	1	2,0	-	4 000	-
		1,0	-	3 600	-
	2	2,0	-	3 200	-
		2,8	-	5 700	-
3A	3	1,0	-	2 600	-
3A	3	2,0	-	4 700	-
	4	1,0	-	700	-
	4	2,0	-	4 100	-
		1,0	-	2 900	-
	5	2,0	-	11 000	-
		2,0<	-	Non mesurable	-
	1	0,5	0,02	3 100	7,61
2D	2	0,5	0,35	3 000	7,61
3B	3	0,5	1,78	3 450	7,62
	4	1,0	3	3 450	7,56
	•		•		


Résultats d'analyse de qualité d'eau (19 octobre 2012)

Resultats d'analyse de quante d'éau (19 octobre 2012)									
	Point	Profondeur (m)	OD (mg/l)	MESLM (mg/l)	рН				
Eaux brutes d'entrée	P1	-	-	-	-				
Effluent 1B	P2	-	-	-	-				
Effluent 2B	Р3	1,0	0,92	-	-				
Effluent 3B	P4	0,5	0,01	-	-				
Emuent 3B	F4	1,0	0,01	-	-				
Effluent Decanteur	P5	-	1	-	-				
Decanteur No.4	Р6	-	1	-	-				
		1,0	-	310	-				
Decanteur No.2	P7	2,0	-	510	-				
		2,5	1	Non mesurable	-				
BASSIN	Point	Profondeur (m)	OD (mg/l)	MESLM (mg/l)	pН				
	1	1,0	0,92	-	-				
2B	2	1,0	0,04	-	-				
2 D	3	1,0	0,05	-	-				
	4	1,0	0,03	-	-				
	1	1,0	0,01	-	-				
2D	2	1,0	0,01	-	-				
3В	3	1,0	0,01	-	-				
	4	1,0	0,01	-	-				


Avec un seul aèrateur fonctionnel

Résultats d'analyse de qualité d'eau (20 octobre 2012)

	Point	Profondeur (m)	OD (mg/ℓ)	MESLM (mg/ℓ)	рН
		1,0	-	3 400	-
Davida da mataria	Regard de boues de retour (BR1)	2,0	-	3 400	-
Boues de retour		3,0	-	3 500	-
		3,7 (Fond)	-	3 700	-
F	Daint de Ctation	Surface	-	620	-
Eaux traitées	Rejet de Station	0,5 (Fond)	-	750	-

Points d'échantillonnage 1

Points d'échantillonnage 2

7-3 Résultats d'analyse de qualité des échantillons d'eau

Date: le 17 octobre 2012 par: ONAS / POLYLAB

Remarque : Fluctuations importantes des résultats d'analyse. Ceci est probablement dû aux méthode et positions d'échantillonnage, entrée momentanée d'eaux industrielles usée, etc.

	1				Points d'échantillonnage					
Paramètres	unités	heure	Entrée dans le bassin d'aération	Canal de rejet	1B	2B	3B	Fosse de retour de boue		
		11h00	7,204	7,406	-	-	-	ı		
pН	pН	15h00	7,384	7,482	III	-	ı	ı		
		18h00	7,029	7,538	ı	-	-	ı		
		11h00	832,8	582,96	-	-	-	-		
DCO	mg/ℓ	15h00	2498,4	166,56	-	-	-	-		
		18h00	985,92	575,02	-	-	-	-		
		11h00	260	200	-	-	-	-		
DBO_5	mg/ℓ	15h00	1 200	90	-	-	-	-		
		18h00	550	320		-	-			
		11h00	371	300	2 120	10 400	4 970	7 340		
MES	mg/ℓ	15h00	1 400	373	140	7 770	4 740	6 280		
		18h00	500	279	272	6 420	4 340	5 830		
		11h00	0,017	0,001	-	-	-	-		
N-NO ₂	mg/ℓ	15h00	0,1	0,06	-	-	-	-		
		18h00	0,07	0,013	-	-	-	-		
		11h00	9,85	2,2	-	-	-	-		
N-NO ₃	mg∕ℓ	15h00	9,1	1,5	-	-	-	-		
		18h00	9,9	1,7	-	-	-	-		
		11h00	65	53	-	-	-	-		
$\mathrm{NH_4}^+$	mg/ℓ	15h00	250	70	-	-	-	-		
		18h00	150	50	-	-	-	-		
	mg/ℓ	11h00	100	86,5	-	-	-	-		
T-N		15h00	662	96	-	-	-	-		
		18h00	223	78,5	-	-	-	-		
		11h00	25	31	-	-	-	-		
Org-N	mg∕ℓ	15h00	400	24	-	-	-	-		
		18h00	63	26,5	-	-	-	-		

Annexe 8 – Méthode d'aération de bassin d'aérobie

1. Généralités

Le système existant d'aération de bassin d'aérobie est « à aérateur vertical superficiel + agitateur ». Mais ce système étant en soi défectueux et qu'il est mal entretenable, la méthode d'aération demande à être rénovée. Le présent document a donc pour objet de servir à l'étude comparative des variantes d'amélioration.

Par ailleurs, il n'y a actuellement qu'une seule chaîne de bassins d'activation. La modification envisagée consiste à en prévoir deux.

2. Etude comparative du système d'aération

Les modifications envisageables compte tenu de la géométrie du bassin existant sont comme suit :

Cas 1 : Aérateur à hélice à arbre incliné avec flotteur (équipé de soufflante)

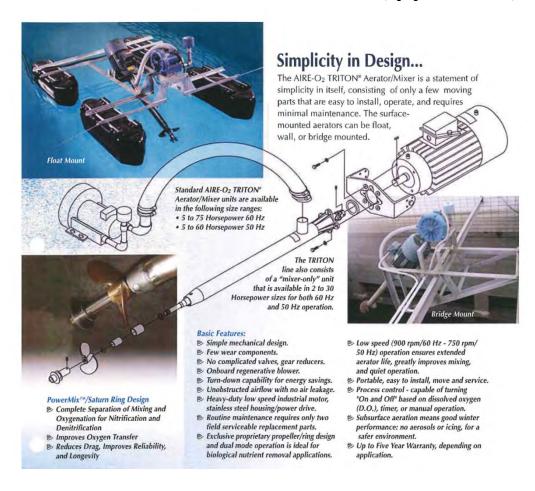
Cas 2 : Diffuseur + soufflante

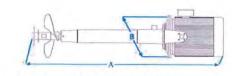
Le tableau 8-1 compare les deux méthodes.

Tableau A8.1 Etude sur la méthode d'aération (1/2)

Rubrique	Cas 1 – Aérateur à arbre incliné avec flotteur (équipé de soufflante)	Cas 2 – Diffuseur + soufflante
1. Condition d'étude	•Méthode de traitement : Dénitrification en 3 éta •:Dimensions de bassin d'aérobie existant Type : Digue en terre No.1B: Dimensions de fond (45m x 53m) x prof. AOR:338kgO ₂ /h/bassin No.2B: Dimensions de fond (37m x 53m) x prof. AOR:272kgO ₂ /h/bassin No.1B: Dimensions de fond (34m x 53m) x prof. AOR:234kgO ₂ /h/bassin Température de calcul : hiver 15°C, été 27°C • Les valeurs de demande en oxygène aux cond	3,5m x 8 000m ³ x 2 bassins, 3,5m x 8 000m ³ x 2 bassins, 3,5m x 8 000m ³ x 2 bassins, litions réelle (AOR) ont été déterminées sur la
2. Type	 base du « rapport d'étude détaillée, an 2000 » + Voir document joint. L'air est introduit grâce à la dépression créée par rotation d'hélice, et diffusé dans l'eau sous forme de microbulles. L'étude tient compte de l'utilisation de soufflante en vue d'un surcroît d'apport d'oxygène. L'aérateur sera arrêté par fil sur la surface du bassin existant. 	Voir document joint. L'air introduit par soufflante sera dispersé dans l'eau sous forme de microbulles à travers le diffuseur de fond de bassin Un bâtiment de soufflante viendra à être nécessaire.
3. Aperçu des ouvrages	 a. Installations mécaniques Le taux de marche compte tenu des visites et dépannages est estimé à 75%. Aérateur pour n° 1B: 55 kW x 10 Aérateur pour n° 2B et 3B: 45 kW x 20 + 2 (stock en magasin) b. Installations électriques: certains tableaux existants seront réutilisés. c. Ouvrages de génie civil Les ouvrages existants ne nécessitent aucune modification parce que l'aérateur reste en surface d'eau par flotteur. 	 a. Installations mécaniques D'après cette variante, tout est à nouvellement prévoir. Diffuseur à panneau-membrane 0,18 m large x 4,0m long x 1 660 pcs (référence) Soufflante : turbosoufflante mono-étagée 240m³/min x 5,5m x 310kW x (4 en service + 1 de réserve) Filtre d'air : 320 m³/mn x (3 en service + 1 de réserve) Système d'eau de refroidissement de soufflante : 1 ensemble Suspension de soufflante : 1 ensemble Tuyauterie et robinetterie de soufflante : 1 ensemble Tuyauterie d'air dans le bassin : 1 ensemble Tuyauterie d'air dans le bassin : 1 ensemble L'écart de niveau des diffuseurs à installer au fond de bassin doit être inférieur à 30mm. A cette fin, le fond de bassin sera recouvert du béton de propreté (é = 50mm).

Tableau A8.1 Etude sur la méthode d'aération (2/2)


	Tableau Ao.1 Etude sur la method	te a defation (2/2)
Rubrique	Cas 1 – Aérateur à arbre incliné avec flotteur (équipé de soufflante)	Cas 2 – Diffuseur + soufflante
		 Prévoir un bâtiment de soufflante.
4. Avantages	 L'apport d'oxygène est réglable en fonction du nombre d'aérateurs à mettre en service et de leur durée de service. En raison d'importance en nombre d'aérateurs à entretenir, les travaux de visite et entretien seront importants mais ils ne seront pas complexes pour autant, grâce à la simplicité de construction (inexistence de réducteur). L'efficacité d'apport d'oxygène sera meilleure par rapport aux aérateurs existants. Poids sensiblement réduit ce qui fait qu'il est même possible de ramener les aérateurs vers le bord du bassin. Vu les références d'exploitation, la durée de vie peut excéder 15 ans si les matériels sont convenablement entretenus. 	 L'apport d'oxygène est réglable en fonction du nombre d'aérateurs à mettre en service et de leur durée de service. Méthode courante d'aération permettant un apport stable d'oxygène. Comme l'indique le document joint, les diffuseurs seront répartis sur tout le fond du bassin permettant une agitation uniforme d'où inutilité d'agitateurs. L'entretien périodique ne sera nécessaire que pour la soufflante. La soufflante étant tout de même une machine tournant à grande vitesse, son entretien sera complexe et volumineux L'efficacité d'apport d'oxygène de diffuseur à membrane est de l'ordre de 28% à profondeur de 5,0m mais elle diminue à 18% à profondeur de 3,5m. Par contre, la demande en oxygène augmente d'où nécessité d'augmentation en nombre et capacité de soufflante.
5. Durée des travaux	• 5 mois d'attente de livraison et 1 mois ou moins pour les travaux d'installation car il suffit d'amarrer le matériel sur la surface d'eau avec flotteur. 6 mois au total	 Durée de vie de diffuseur : 10 à 15 ans Nécessité des travaux de bétonnage, de construction de bâtiment et de tuyauterie, etc. La durée de chantier sera de l'ordre de 12 moins.
6. Coûts estimatifs directs	Coûts des travaux directs Installations mécaniques: 165 millions Yens Installations électriques: 80 millions Yens Génie civil: aucun Total: 245 millions de Yen Les aérateurs sont nombreux mais les armoires électriques existantes seront réutilisables par quelque modification. Les travaux seront meilleurs marchés d'autant.	Coûts des travaux directs Installations mécaniques: 241 millions Yens Installations électriques: 79 millions Yens Génie civil: 68 millions Yen Total: 388 millions de Yen En raison de la grande profondeur d'eau, le nombre et la capacité de diffuseurs doivent être augmenté d'où prix plus élevé.
7. Consommation d'électricité	 Durée eff. de service : env. 16h/j (55kW x 10 utés + 45kW x 20 utés) x16h/j = 23 200 kWh/j Référence : Cas d'aérateur existant + agitateur Taux de marche projeté : 100% Aérateur : 75kW x 16 utés x 24h/j = 28 800kWh/j Agitateur: 5.5kWx24 utés x24h/j = 3 168 kWh/j Total 31 968 kWh/j 	• Taux eff. de charge: env. 80% • 310kW x 4 x 0,80 x 24 h/j = 23 808 kWh/j


3. Résultats d'étude

Suite à la revue des résultats de l'étude comparative ci-dessus, nous préconisons l'adoption du Cas 1 - Aérateur à hélice à arbre incliné avec flotteur (équipé de soufflante). Les motifs de ce choix sont les suivants :

- a. Les frais des travaux du Cas 1 sont moins importants si on tient compte des conditions de la présente étude (possibilité de réutilisation d'armoire électrique existante)
- b. Facilité des travaux grâce au flotteur qui retient l'aérateur en surface d'eau. D'où inutilité des travaux de génie civil et bâtiment
- c. Nécessité d'amélioration urgente en considération du taux de marche actuel. Plus les délais des travaux sont courts, plus ils sont avantageux.
- d. La consommation électrique des deux variantes est à peu près égale, soit environ 70% de la consommation actuelle
- e. En raison d'importance en nombre des machines à entretenir, les visites et interventions seront plus fréquentes mais les travaux ne sont pas complexes pour autant, grâce à la simplicité de construction (inexistence de réducteur).

Annexe A1 : CAS 1 - Aérateur à hélice à arbre incliné avec flotteur (équipé de soufflante).

60 / 50 Hz Weights & Measures for the AIRE-O2 TRITON Aerator:

NEMA AND IEC Motors Available

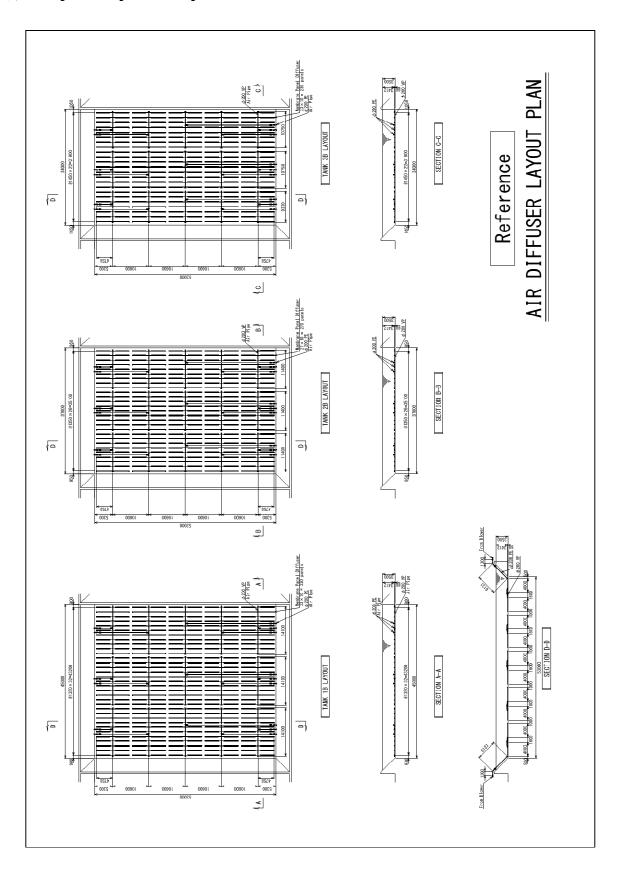
			Dimer	nsions	Motor	60 hz	Motor	50 hz	Motor	Ship	Pontoon	
		A	В	Frame	Motor	FLA@	Motor	FLA@	weight	System		
HP	Kw	In. (m)	In. (m)	Size	RPM	460V	RPM	380V	lbs. (kg)	Avail.	Pontoon System	
5	4	76 (1.93)	16 (.41)	254TCZ	865	8	750	10	480 (218)	b	a Intra-Pond	
7.5	5.5	76 (1.93)	16 (.41)	256TCZ	865	11	750	12	540 (245)	b	b Tri-pontoon	
10	7.5	87 (2.21)	21 (.53)	284TCZ	870	15	750	17	660 (299)	C	c Quad-pontoon	
15	11	87 (2.21)	21 (.53)	286TCZ	870	23	750	25	680 (308)	С	d Penta-pontoon	
20	15	87 (2.21)	21 (.53)	324TCZ	880	29	750	33	880 (399)	C	e Hexa-pontoon	
25	18.5	93 (2.36)	26 (.66)	326TCZ	880	35	750	42	910 (413)	c,d	f Hepta-pontoon	
30	22	93 (2.36)	30 (.76)	364TCZ	875	42	750	51	1400 (635)	d	g Octa-pontoon	
50	37	102 (2.59)	31 (.79)	250SM	887	64	735	74	1515 (687)	g	Pontoon systems	
60	45	102 (2.59)	31 (.79)	250SM	884	74	725	81	1565 (710)	g	available for 50 hz	
75	55	102 (2.59)	32 (.81)	250SM	884	97	N/A	N/A	1715 (778)	g	60 hz may vary. Contact factory.	

N/A - Not available at time of printing. Check with factory.

FRAME SIZE, RPM, FLA, and SHIP WEIGHTS may vary between motor manufacturers.

Data subject to change without notice.

Exemple d'utilisation : Photo (entrée en service 2000, 12 ans de service désormais)


Annexe A2 : Cas 2 – Diffuseur + soufflante
(1) Exemple de diffuseur à panneau-membrane

(2) Exemple de disposition de panneaux membrane

(3) Diffuseur à tube membrane

