

1 Most leakages are caused in service pipes

Screening Method for Detection 2

• Service pipes with leakage are screened by detector and the leak checker

• Only 6% of service pipes are surveyed by experts 0 • 94% of service pipes are normal \bigcirc Small amount of leakage No leakage

3 Leakage detection instrument (Leak Checker)

Measuring results are indicated on display
 Data take down included memory

Interval between snap taps are around 1 5m

7 Inspection Result

On the case of keeping earlier data, it is possible to compare the last time data and new data. The number spot is where new data came up and can be judged as questionable place of leaking

8 Result of survey (A city in Japan)

• 6% of questionable places of leakage are selected by screening method

• 80% of leaking spots, 90% of leakage staunch were detected by second

survey of questionable places

Number of screening 16,094				
Questionable places (Integrated % 99~60%)			Number of no leakage pipes (Integrated % 59~0%)	
988(6%)			15,106	
Noise	Leakage spots 122		Normally service pipes	
889	99	23		
	Leakage staunch 32.4(m ³ /h)		15,083	
	29.8	2.6		

9 Improve of leakage (Bangkok Thailand)

TESCO CO.,LTD has carried out the target of pilot project in official requisition

Objection of this project

Reduce non revenue water rate of Phayathai area and to collect survey data to increase improving non-revenue water rate throughout Bangkok city

Term May 23 \sim J u I y 14 , 2011 Client Metropolitan Waterworks Authority Thailand

Outline of	Phay	athai Br	anc
h Offitem e Area	Unit	Volume	
Annual distribution total	m³	122,000,000	
Annual revenue water	m³	87,452,000	
Annual non revenue water	%	28.32	
Extension of service pipe	km	1,126	
Service area	km²	55.4	
Number of customer	Number	84,506	

Survey using leak checker

Water Leak on a Steel Pipe100mm

Second Survey (Pinpoint)

Improvement of non revenue water rate in Phayathai area

Result of survey

Distance of survey(km)	10.4
Leakage place(number)	21
Leakage stanched (m [*] /hr)	22.2
Number of leakage places(No./km)	2.019
Leakage staunch(m³/hr/km)	2.135

Non revenue water rate

28.3% (May 11)

Cause of pipe accident

Pipe crack	10
Tee pipe crack	1
Joint crack	1
Pipe joint	3
Collar joint	1
Gimbal joint	1
Fire hydrant packing	2
Valve packing	1
Damaged perforation	1
Total	21

10 Advantages of screening method

1 . .	Efficient work	 Reading of meter and check of the leakage are possible at the same time It is not necessary to move for survey Data result are recorded instantly
2.	Early detection	 Shorten survey interval Reduce the recurrence of leakage Reduce accidents by leakage
3.	Saving expense	 Much more can be surveyed with the same expenses Reduce compensation cost for accidents by leakage

名古屋の水はおいしい!

