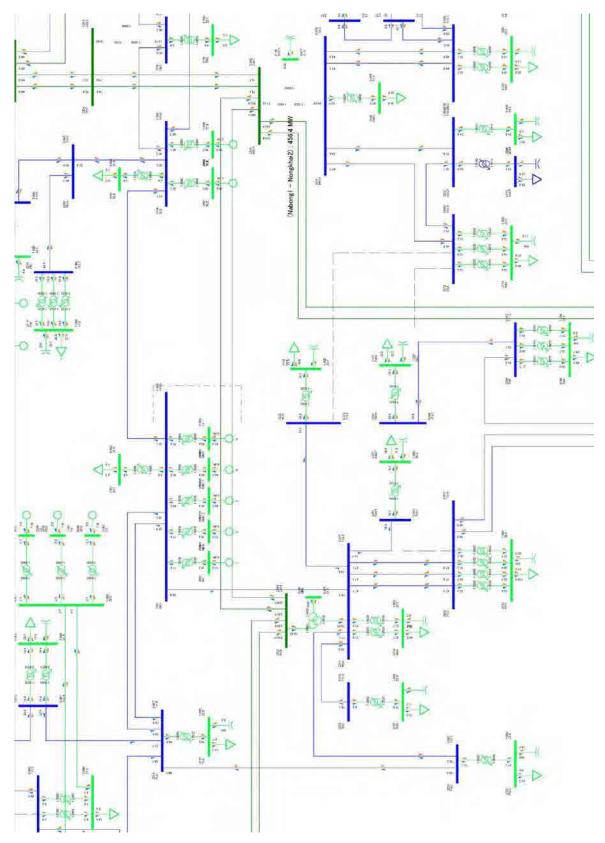

APPENDIX

Appendix A

Result of Power Flow and Voltage Regulation Analysis


List of Drawings

Drawing No.	Title
Figure A-1	Result of Power Flow and Voltage Regulation Analysis (w/o Expansion, Normal Condition)
Figure A-2	Result of Power Flow and Voltage Regulation Analysis (w/o Expansion, N-1 Contingency: NN1-NXA Fault)
Figure A-3	Result of Power Flow and Voltage Regulation Analysis (w/o Expansion, N-1 Contingency: NN1-TLA Fault)
Figure A-4	Result of Power Flow and Voltage Regulation Analysis (40MW Expansion, Normal Condition)
Figure A-5	Result of Power Flow and Voltage Regulation Analysis (40MW Expansion, N-1 Contingency: NN1-NAX Fault)
Figure A-6	Result of Power Flow and Voltage Regulation Analysis (40MW Expansion, N-1 Contingency: NN1-TLA Fault)
Figure A-7	Result of Power Flow and Voltage Regulation Analysis (60MW Expansion, Normal Condition)
Figure A-8	Result of Power Flow and Voltage Regulation Analysis (60MW Expansion, N-1 Contingency: NN1-NAX Fault)
Figure A-9	Result of Power Flow and Voltage Regulation Analysis (60MW Expansion, N-1 Contingency: NN1-TLA Fault)
Figure A-10	Result of Power Flow and Voltage Regulation Analysis (80MW Expansion, Normal Condition)
Figure A-11	Result of Power Flow and Voltage Regulation Analysis (80MW Expansion, N-1 Contingency: NN1-NAX Fault)
Figure A-12	Result of Power Flow and Voltage Regulation Analysis (80MW Expansion, N-1 Contingency: NN1-TLA Fault)
Figure A-13	Result of Power Flow and Voltage Regulation Analysis (120MW Expansion, Normal Condition)
Figure A-14	Result of Power Flow and Voltage Regulation Analysis (120MW Expansion, N-1 Contingency: NN1-NAX Fault)
Figure A-15	Result of Power Flow and Voltage Regulation Analysis (120MW Expansion, N-1 Contingency: NN1-TLA Fault)

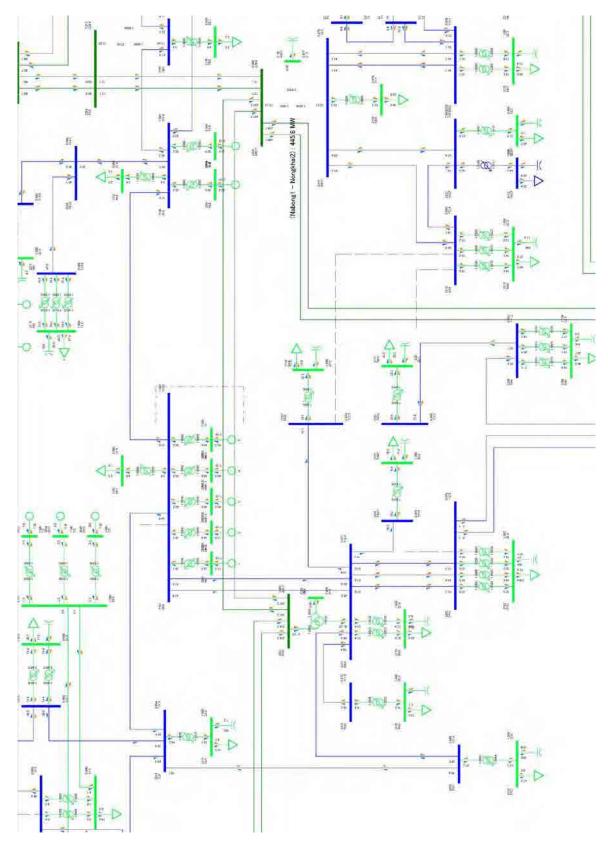

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-1 Result of Power Flow and Voltage Regulation Analysis (w/o Expansion, Normal Condition)

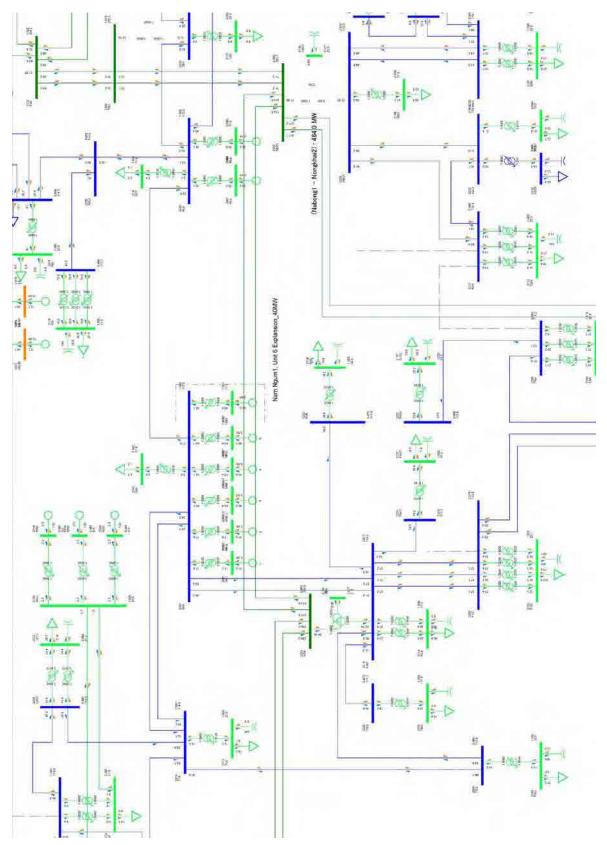

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-2 Result of Power Flow and Voltage Regulation Analysis (w/o Expansion, N-1 Contingency: NN1-NXA Fault)

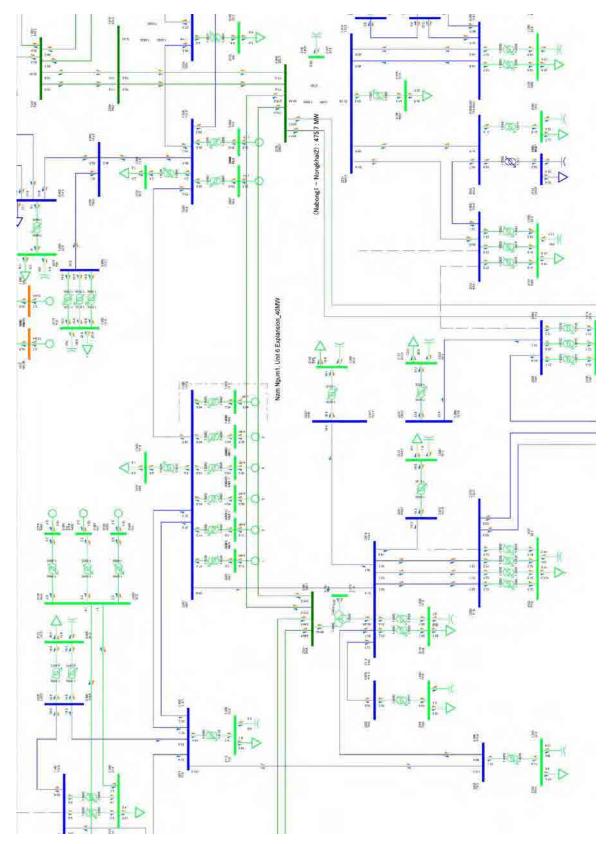

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-3 Result of Power Flow and Voltage Regulation Analysis (w/o Expansion, N-1 Contingency: NN1-TLA Fault)

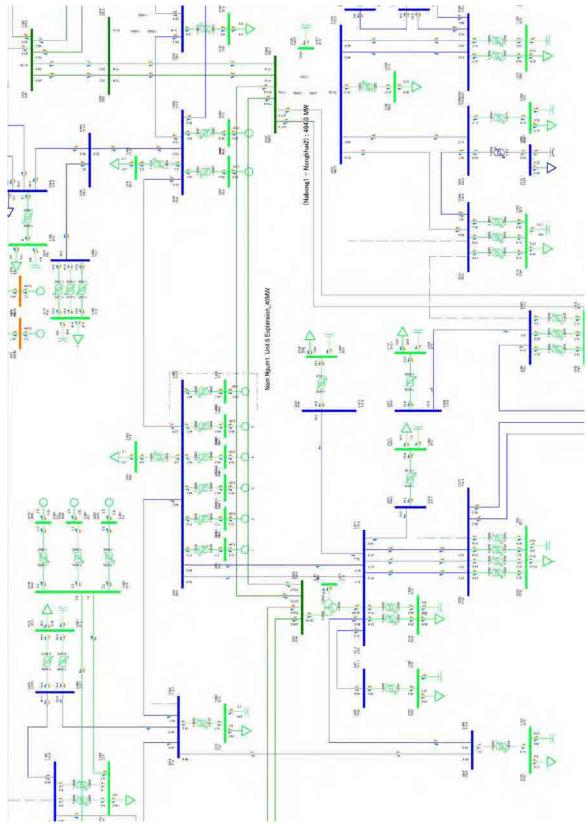
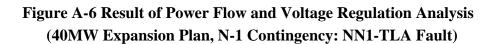

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-4 Result of Power Flow and Voltage Regulation Analysis (40MW Expansion, Normal Condition)



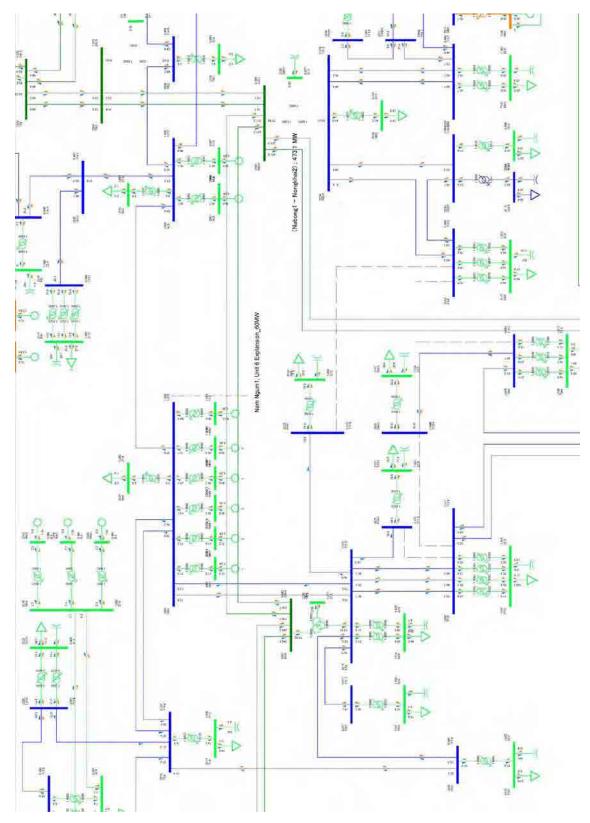
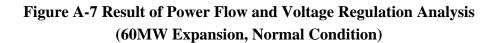
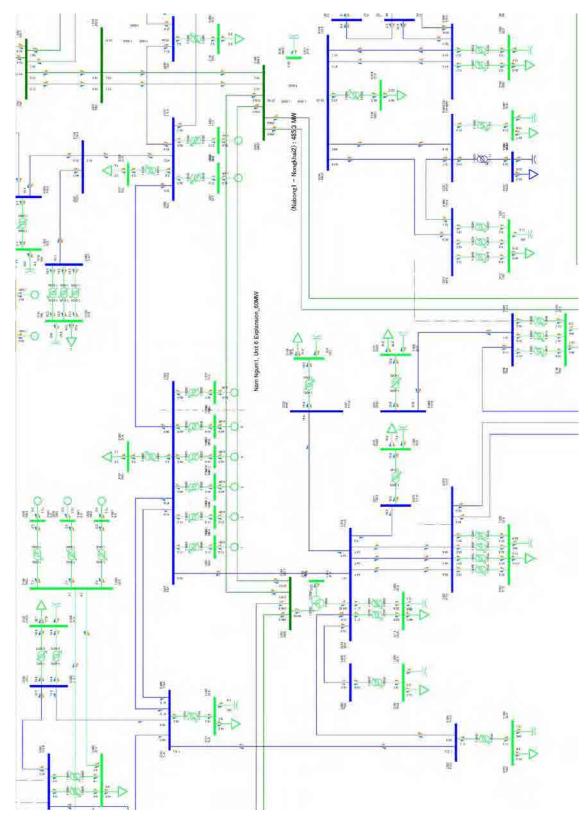
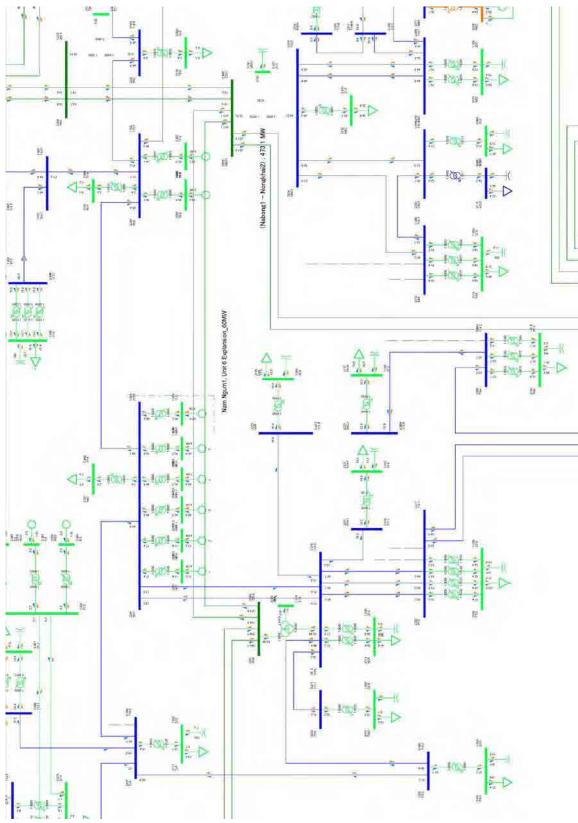

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-5 Result of Power Flow and Voltage Regulation Analysis (40MW Expansion, N-1 Contingency: NN1-NXA Fault)




Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU


Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

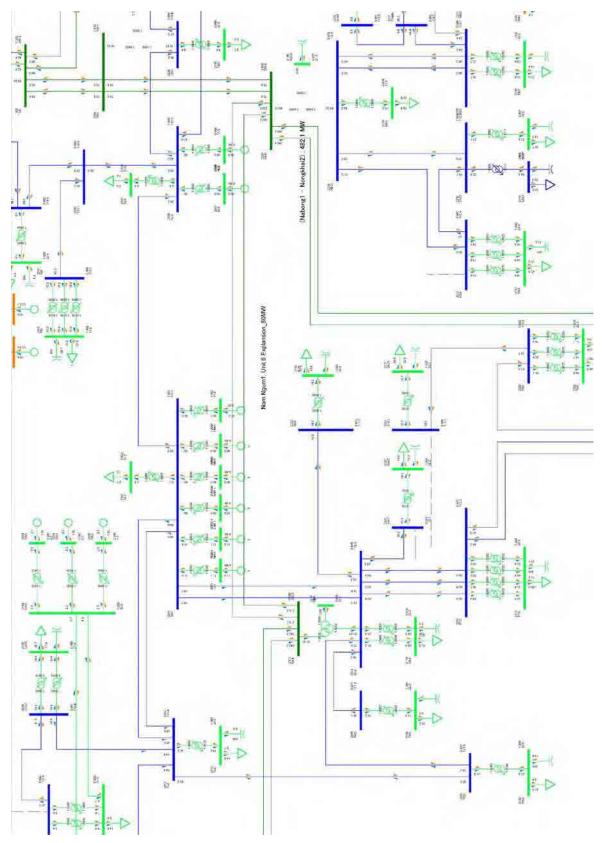

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-8 Result of Power Flow and Voltage Regulation Analysis (60MW Expansion, N-1 Contingency: NN1-NXA Fault)

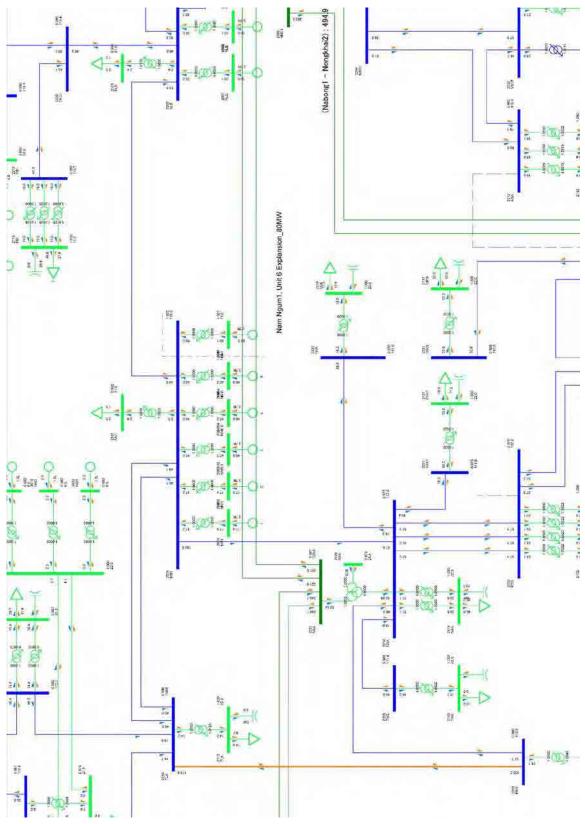
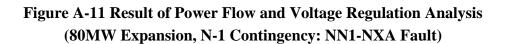

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-9 Result of Power Flow and Voltage Regulation Analysis (60MW Expansion, N-1 Contingency: NN1-TLA Fault)



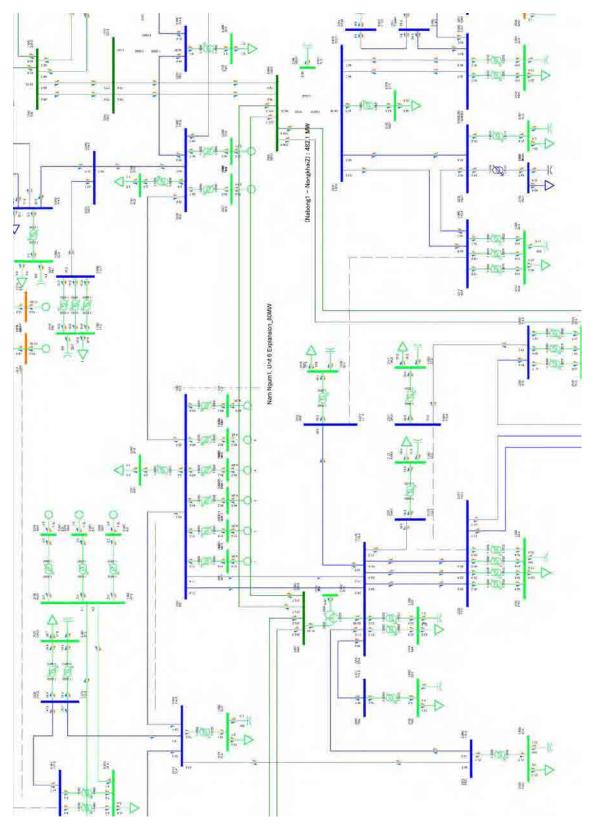
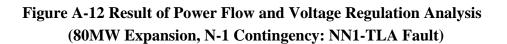
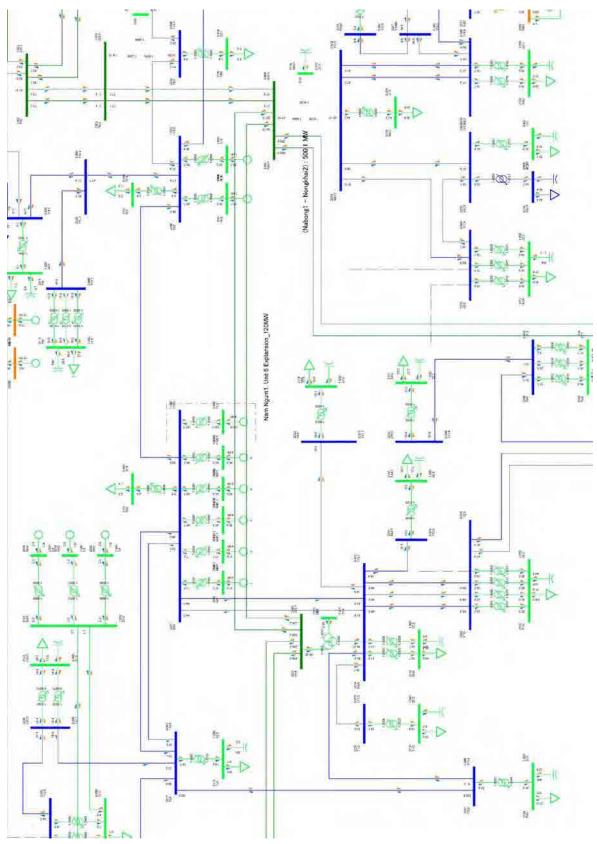
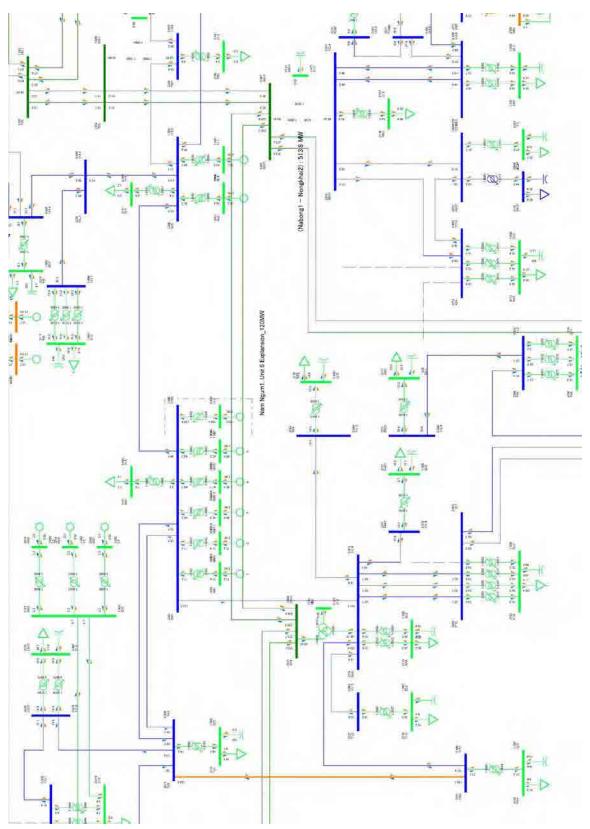
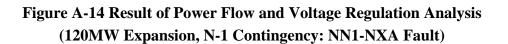

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-10 Result of Power Flow and Voltage Regulation Analysis (80MW Expansion, Normal Condition)




Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU


Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU



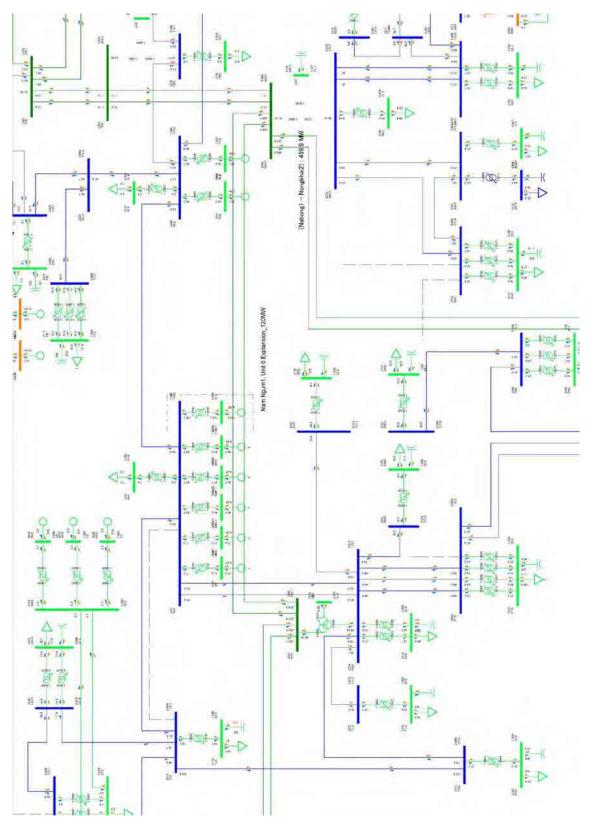

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-13 Result of Power Flow and Voltage Regulation Analysis (120MW Expansion, Normal Condition)

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Note: Unit of Load Flow of Transmission Lines: MVA, Bus voltage: PU

Figure A-15 Result of Power Flow and Voltage Regulation Analysis (120MW Expansion, N-1 Contingency: NN1-TLA Fault)

Appendix B

Result of Reservoir Operation

													Unit: cms
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
1972	258	294	248	264	156	312	617	1,126	819	494	329	272	432
1973	276	259	262	272	262	346	701	789	1,151	529	308	264	452
1974	254	251	234	283	200	383	492	605	612	418	318	291	362
1975	287	192	84	65	174	495	612	944	991	540	306	279	414
1976	260	267	241	263	235	422	614	661	616	514	360	277	394
1977	271	269	317	319	154	190	595	596	584	371	312	304	357
1978	142	99	90	93	193	614	771	1,098	915	380	310	270	415
1979	286	287	261	272	319	430	534	701	555	366	311	264	382
1980	275	194	86	101	169	438	699	634	730	380	303	258	356
1981	272	272	271	267	216	518	867	1,026	973	782	301	278	503
1982	267	270	258	284	298	434	543	870	644	512	316	286	415
1983	274	277	256	274	317	288	600	695	612	428	313	289	385
1984	272	282	171	150	160	351	754	753	540	422	308	278	370
1985	277	277	257	271	241	410	538	680	570	383	336	286	377
1986	281	238	86	147	359	590	700	582	501	326	281	270	363
1987	274	186	84	103	110	236	354	639	543	405	337	313	299
1988	147	94	70	99	185	177	409	630	508	356	313	108	258
1989	91	91	76	81	183	551	562	612	516	394	318	296	314
1990	285	112	142	111	189	539	709	508	648	411	346	301	358
1991	279	278	262	160	136	377	578	637	535	390	328	290	354
1992	164	115	84	61	86	240	557	553	486	369	219	112	254
1993	109	103	64	37	181	481	784	795	625	381	316	294	347
1994	268	255	158	102	267	607	740	1,077	953	579	370	327	475
1995	268	263	265	268	248	426	588	955	875	326	282	271	420
1996	264	278	278	309	209	397	620	749	602	396	347	282	394
1997	269	266	274	210	187	442	525	566	746	399	293	284	372
1998	259	277	258	281	220	356	601	546	493	333	209	84	326
1999	70	39	67	103	390	648	608	595	595	407	315	281	343
2000	271	225	84	146	332	652	706	726	716	376	296	265	400
2001	258	259	296	252	299	570	713	799	666	417	312	273	426
2002	267	275	254	254	334	646	782	1,040	644	382	336	302	460
2003	272	275	248	259	186	336	541	609	555	369	300	149	342
2004	163	104	61	148	228	370	743	705	965	295	257	235	356
2005	243	251	227	238	174	492	804	1,265	889	479	273	253	466
2006	265	262	246	254	361	307	754	614	471	352	274	246	367
2007	243	240	85	91	151	276	403	544	572	574	292	249	310
2008	225	115	123	121	325	821	1,191	1,098	589	479	388	292	481
2009	282	269	310	229	259	444	738	596	478	397	295	277	381
2010	266	235	221	72	63	372	530	627	579	328	283	237	318
2011	80	90	173	372	513	701	807	951	965	582	445	286	497
Mean	238	217	188	192	232	442	650	755	676	426	311	262	382
Max	287	294	317	372	513	821	1,191	1,265	1,151	782	445	327	503
Min	70	39	61	37	63	177	354	508	471	295	209	84	254
STDV	63	75	87	91	90	146	148	199	177	94	40	54	60

 Table AP2-1
 Monthly Average Inflow into Nam Ngum 1 Reservoir with NN2

					lated Mon	J		(1		I	Unit: MCM
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
1972	0	0	0	0	0	0	0	818	1,016	227	0	0	2,060
1973	0	0	0	0	0	0	0	576	1,843	316	0	0	2,736
1974	0	0	0	0	0	0	0	0	0	28	0	0	28
1975	0	0	0	0	0	0	0	0	1,257	344	0	0	1,601
1976	0	0	0	0	0	0	0	17	517	277	0	0	810
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	480	1,255	0	0	0	1,735
1979	0	0	0	0	0	0	0	464	368	0	0	0	832
1980	0	0	0	0	0	0	0	0	17	0	0	0	17
1981	0	0	0	0	0	0	428	1,580	1,397	955	0	0	4,359
1982	0	0	0	0	0	0	0	766	587	272	0	0	1,624
1983	0	0	0	0	0	0	0	105	508	59	0	0	672
1984	0	0	0	0	0	0	0	0	32	43	0	0	76
1985	0	0	0	0	0	0	0	0	399	0	0	0	399
1986	0	0	0	0	0	0	0	0	197	0	0	0	197
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	3	0	0	3
1991	0	0	0	0	-	0	-	0	-	0	0	-	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993 1994	0	0	0	0	0	0	0	0	-	443	0	0	2 057
1994	0	0	0	0	0	0	0	1,267 868	1,347 1,155	443	0	0	3,057
1995	0	0	0	0	0	0	0	395	482	0	0	0	
1996	0	0	0	0	0	0	0	<u> </u>	218	0	0	0	878 218
1997	0	0	0	0	0	0	0	0	0	0	0	0	-
1998	0	0	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	371	761	0	0	0	1,132
2000	0	0	0	0	0	0	379	999	641	33	0	0	2,052
2001	0	0	0	0	0	0	824	1,614	586	0	0	0	3,023
2002	0	0	0	0	0	0	024	0	0	0	0	0	0
2003	0	0	0	0	0	0	0	0	575	0	0	0	575
2004	0	0	0	0	0	0	0	1,615	1,188	190	0	0	2,993
2005	0	0	0	0	0	0	0	1,015	1,100	0	0	0	320
2000	0	0	0	0	0	0	0	0	0	120	0	0	120
2007	0	0	0	0	0	0	848	1,766	452	120	0	0	3,255
2009	0	0	0	0	0	0	64	483	181	0	0	0	729
2010	0	0	0	0	0	0	0	0	0	0	0	0	0
2011	0	0	0	0	0	0	243	1,388	1,377	449	101	0	3,558
	-	-	2		5	-		,2 0 0	, ,				2,200
Mean	0	0	0	0	0	0	70	393	463	99	3	0	1,027
Max	0	0	0	0	0	0	848	1,766	1,843	955	101	0	4,359
Min	0	0	0	0	0	0	0	0	0	0	0	0	0
STDV	0	0	0	0	0	0	202	567	527	192	16	0	1,249

Table AP2-2 Simulated Monthly Spill of NN1 (without 40MW Expansion)

		18	ible AP2-	3 Simula	ted Mont	niy Energ	gy of NN1	(withou	t 40M W 1	expansion	1)		Unit: GWh
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
1972	90	77	85	83	117	108	117	117	113	115	91	77	1,189
1973	92	77	85	83	117	113	117	116	113	115	85	76	1,190
1974	88	77	86	83	117	108	117	112	98	107	88	82	1,163
1975	94	77	86	84	110	98	89	112	113	115	85	78	1,142
1976	90	77	85	83	117	111	117	116	112	115	99	78	1,201
1977	92	77	85	82	116	110	117	114	102	95	86	87	1,162
1978	87	78	87	82	106	77	102	116	113	109	85	77	1,120
1979	93	76	85	82	116	113	116	116	112	105	85	76	1,176
1980	90	77	86	85	112	98	93	109	98	109	85	76	1,119
1981	87	77	85	83	117	113	116	117	113	116	85	76	1,185
1982	91	77	85	83	117	113	117	116	112	115	87	81	1,193
1983	92	76	85	83	117	113	117	116	112	115	86	82	1,194
1984	92	76	85	84	116	103	115	117	112	115	85	78	1,179
1985	92	76	85	83	117	113	117	116	112	110	93	81	1,195
1986	93	77	86	84	116	108	117	116	111	94	85	76	1,163
1987	86	77	87	85	108	62	73	65	52	44	88	89	915
1988	88	78	87	82	106	59	50	64	46	29	82	74	846
1989	63	79	84	77	81	58	75	66	60	44	85	80	851
1990	93	77	87	85	112	100	109	109	90	82	95	85	1,125
1991	93	76	85	83	117	106	116	110	96	81	91	82	1,137
1992	84	78	87	83	105	58	66	64	46	29	82	72	854
1993	63	78	82	75	58	57	76	107	91	83	87	83	940
1994	91	77	86	84	116	107	117	117	113	116	102	94	1,219
1995	91	77	85	83	117	113	117	116	113	94	85	76	1,167
1996	86	77	85	82	117	113	117	116	112	113	95	80	1,192
1997	91	77	85	83	117	109	117	115	112	114	85	76	1,182
1998	89	77	85	83	117	112	117	117	105	76	84	74	1,135
1999	63	78	82	76	93	62	80	107	78	65	86	79	950
2000	92	77	86	84	116	107	117	116	113	108	85	76	1,176
2001	86	77	85	83	117	113	116	117	112	115	86	77	1,183
2002	91	77	85	83	117	112	116	117	112	109	93	86	1,198
2003	92	76	85	83	117	108	117	113	100	86	85	75	1,138
2004	66	78	87	82	107	61	80	109	112	85	84	75	1,026
2005	83	77	86	84	117	105	117	117	113	115	85	76	1,176
2006	87	77	86	83	117	112	117	116	111	101	85	76	1,168
2007	86	77	87	84	104	63	77	65	53	84	85	76	943
2008	87	78	87	84	105	105	117	117	112	115	107	83	1,196
2009	93	76	85	82	117	113	116	116	111	113	85	76	1,184
2010	89	77	86	84	114	98	79	103	75	52	84	75	
2011	66	79	87	84	116	110	116	117	113	116	111	81	1,196
Mean	87	77	86	83	111	98	105	108	100	95	88	79	1,117
Max	94	79	87	85	117	113	117	117	113	116	111	94	1,219
Min	63	76	82	75	58	57	50	64	46	29	82	72	846
STDV	9	1	1	2	11	20	19	17	21	26	7	5	

Table AP2-3 Simulated Monthly Energy of NN1 (without 40MW Expansion)

			rabic Ar	2- 4 5mm		ter Level	0111111	without 4		pansion)			Unit: EL.m
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
1972	211.9	211.5	211.3	210.9	209.6	207.9	208.1	211.1	212.0	212.0	212.0	212.0	210.9
1973	211.9	211.5	211.1	210.9	210.0	209.0	209.6	211.7	212.0	212.0	212.0	212.0	211.1
1974	211.8	211.3	210.8	210.4	209.4	208.2	208.1	209.0	210.7	212.0	212.0	212.0	210.5
1975	211.9	211.3	209.9	207.9	205.7	204.8	206.2	209.3	212.0	212.0	212.0	212.0	209.6
1976	211.9	211.4	211.0	210.6	209.6	208.7	209.3	211.0	212.0	212.0	212.0	212.0	211.0
1977	211.9	211.5	211.4	211.6	210.6	208.5	208.1	209.4	210.8	211.9	212.0	212.0	210.8
1978	211.4	209.8	208.0	206.1	204.0	204.1	206.6	210.5	212.0	212.0	212.0	212.0	209.0
1979	211.9	211.6	211.4	211.2	210.6	210.2	210.6	211.8	212.0	212.0	212.0	212.0	211.4
1980	211.9	211.2	209.9	208.0	205.9	204.7	206.2	208.3	210.7	212.0	212.0	211.9	209.4
1981	211.8	211.4	211.2	211.0	209.9	209.4	211.3	212.0	212.0	212.0	212.0	212.0	211.3
1982	211.9	211.5	211.2	210.9	210.3	209.8	210.2	211.8	212.0	212.0	212.0	212.0	211.3
1983	211.9	211.5	211.3	211.0	210.4	209.3	209.4	211.1	212.0	212.0	212.0	212.0	211.2
1984	211.9	211.5	210.9	209.7	207.9	206.3	207.2	209.7	211.6	212.0	212.0	212.0	210.2
1985	211.9	211.5	211.3	211.0	210.1	209.2	209.4	210.9	212.0	212.0	212.0	212.0	211.1
1986	211.9	211.4	210.3	208.6	207.5	207.7	209.4	211.2	212.0	212.0	211.9	211.7	210.5
1987	211.7	211.1	209.7	207.8	205.6	204.0	203.9	205.7	208.5	210.8	212.0	212.0	208.6
1988	211.4	209.8	207.9	205.9	203.8	202.2	202.4	204.8	207.6	209.9	210.9	210.2	207.2
1989	209.0	207.5	205.5	203.4	201.5	201.8	203.9	206.3	208.7	210.7	211.8	212.0	206.8
1990	211.9	210.9	209.5	207.9	205.9	205.2	206.8	208.2	209.8	211.6	212.0	212.0	209.3
1991	211.9	211.5	211.3	210.6	208.7	207.2	207.5	208.9	210.4	211.7	212.0	212.0	210.3
1992	211.6	210.2	208.5	206.3	203.7	202.0	202.8	205.2	207.6	209.8	210.5	209.5	207.3
1993	208.3	206.9	204.9	202.5	201.0	201.3	204.1	207.5	210.2	211.7	212.0	212.0	206.9
1994	211.9	211.4	210.6	209.2	207.5	207.4	209.3	211.8	212.0	212.0	212.0	212.0	210.6
1995	211.9	211.4	211.1	210.9	210.0	209.1	209.7	211.7	212.0	212.0	211.9	211.8	211.1
1996	211.7	211.3	211.2	211.1	210.3	209.2	209.7	211.6	212.0	212.0	212.0	212.0	211.2
1997	211.9	211.4	211.2	210.7	209.3	208.3	208.6	209.5	211.3	212.0	211.9	211.9	210.7
1998	211.9	211.4	211.2	210.9	210.0	208.8	209.0	210.2	211.0	211.8	211.6	210.4	210.7
1999	208.9	207.2	204.9	202.9	201.8	203.1	205.6	207.5	209.3	211.2	212.0	212.0	207.2
2000	211.9	211.3	210.1	208.4	207.2	207.5	209.5	211.6	212.0	212.0	211.9	211.9	210.4
2001	211.8	211.3	211.1	210.9	210.2	210.2	211.7	212.0	212.0	212.0	212.0	212.0	211.4
2002	211.9	211.5	211.2	210.8	210.2	210.7	212.0	212.0	212.0	212.0	212.0	212.0	211.5
2003	211.9	211.5	211.2	210.8	209.6	208.2	208.1	209.2	210.7	211.8	212.0	211.4	210.5
2004	210.6	209.5	207.6	205.7	204.0	203.3	205.4	208.3	211.3	212.0	211.8	211.4	208.4
2005	211.2	210.6	210.0	209.4	207.9	207.0	208.7	211.8	212.0	212.0	211.9	211.6	210.3
2006	211.5	211.0	210.6	210.2	209.6	208.8	209.5	211.6	212.0	212.0	211.8	211.6	210.9
2007	211.4	210.7	209.5	207.6	205.6	204.3	204.6	206.1	208.6	211.3	211.9	211.8	208.6
2008	211.5	210.2	208.7	207.0	205.8	206.8	210.9	212.0	212.0	212.0	212.0	212.0	210.1
2009	211.9	211.5	211.5	211.2	210.3	209.6	210.9	212.0	212.0	212.0	211.9	211.9	211.4
2010	211.9	211.3	210.7	209.4	206.8	204.9	205.5	207.2	209.2	210.9	211.5	211.3	209.2
2011	210.5	208.9	207.4	206.9	207.3	208.5	211.1	212.0	212.0	212.0	212.0	212.0	210.0
Mean	211.5	210.8	210.0	209.0	207.6	206.9	208.0	209.8	211.0	211.7	211.9	211.8	210.0
Max	211.9	211.6	211.5	211.6	210.6	210.7	212.0	212.0	212.0	212.0	212.0	212.0	211.5
Min	208.3	206.9	204.9	202.5	201.0	201.3	202.4	204.8	207.6	209.8	210.5	209.5	206.8
STDV	0.9	1.2	1.8	2.5	2.8	2.7	2.5	2.2	1.4	0.6	0.3	0.5	1.4

Table AP2-4 Simulated Water Level of NN1 (without 40MW Expansion)

												1	Unit: MCM
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
1972	0	0	0	0	0	0	0	419	652	0	0	0	1,070
1973	0	0	0	0	0	0	0	6	1,480	0	0	0	1,486
1974	0	0	0	0	0	0	0	0	0	0	0	0	0
1975	0	0	0	0	0	0	0	0	997	0	0	0	997
1976	0	0	0	0	0	0	0	0	0	0	0	0	0
1977	0	0	0	0	0	0	0	0	0	0	0	0	0
1978	0	0	0	0	0	0	0	609	890	0	0	0	1,499
1979	0	0	0	0	0	0	0	0	0	0	0	0	0
1980	0	0	0	0	0	0	0	0	107	0	0	0	107
1981	0	0	0	0	0	0	78	1,202	1,032	580	0	0	2,891
1982	0	0	0	0	0	0	0	141	228	0	0	0	368
1983	0	0	0	0	0	0	0	0	0	0	0	0	0
1984	0	0	0	0	0	0	0	0	0	0	0	0	0
1985	0	0	0	0	0	0	0	0	0	0	0	0	0
1986	0	0	0	0	0	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	0	0	0	0	0	0
1988	0	0	0	0	0	0	0	0	0	0	0	0	0
1989	0	0	0	0	0	0	0	0	0	0	0	0	0
1990	0	0	0	0	0	0	0	0	0	0	0	0	0
1991	0	0	0	0	0	0	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0	0	0	0	0	0	0
1993	0	0	0	0	0	0	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0	920	982	75	0	0	1,977
1995	0	0	0	0	0	0	0	324	791	0	0	0	1,115
1996	0	0	0	0	0	0	0	0	42	0	0	0	42
1997	0	0	0	0	0	0	0	0	79	0	0	0	79
1998	0	0	0	0	0	0	0	0	0	0	0	0	0
1999	0	0	0	0	0	0	0	0	0	0	0	0	402
2000	0	0	0	0	0	0	0	94	399	0	0	0	493
2001	0	0	0	0	0	0	0	466	281	0	0	0	747
2002	0	0	0	0	0	0	139	1,236	227	0	0	0	1,602
2003 2004	0	0	0	0	0	0	0	0	0 611	0	0	0	611
2004 2005	0	0	0	0	0	0	0	1,233	824	0	0	0	2,057
2005	0	0	0	0	0	0	0	1,233	824	0	0	0	2,057
2008	0	0	0	0	0	0	0	0	0	28	0	0	28
2007	0	0	0	0	0	0	990	1,387	95	28	0	0	28
2008	0	0	0	0	0	0	990	1,387	93	0	0	0	2,473
2009	0	0	0	0	0	0	0	0	0	0	0	0	0
2010	0	0	0	0	0	0	127	1,011	1,012	81	0	0	2,231
2011	0	0	0	0	0	U	127	1,011	1,012	01	0	0	2,231
Mean	0	0	0	0	0	0	33	226	268	19	0	0	547
Max	0	0	0	0	0	0	990	1,387	1,480	580	0	0	2,891
Min	0	0	0	0	0	0	990 0	1,387	1,480	0	0	0	2,091
STDV	0	0	0	0	0	0	158	428	412	93	0	0	838

Table AP2-5 Simulated Monthly Spill of NN1 (with 40MW Expansion)

			Table AT 2	-o siinu	lated Mor	itiliy Elle	1gy 01 101	vi (witii ·		(pansion)			Unit: GWh
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Total
1972	74	96	96	92	103	108	125	143	150	140	90	78	1,294
1973	79	95	95	92	104	110	129	155	149	150	85	78	1,319
1974	70	95	95	91	103	109	125	110	91	109	87	83	1,168
1975	82	95	93	86	56	91	124	133	149	152	85	79	1,224
1976	74	95	95	91	104	110	128	142	125	145	99	78	1,286
1977	77	95	96	93	105	108	124	110	91	86	85	87	1,158
1978	67	92	89	83	55	84	126	150	149	108	85	78	1,168
1979	81	96	96	92	105	121	130	153	115	103	85	78	1,255
1980	76	95	93	86	57	94	122	112	129	108	85	77	1,133
1981	71	96	96	92	104	112	145	154	149	155	85	78	1,336
1982	75	95	95	92	105	114	130	155	150	144	87	81	1,324
1983	78	96	96	92	105	111	128	144	124	121	86	82	1,262
1984	77	96	95	90	99	96	117	134	109	120	85	79	1,196
1985	79	96	96	92	104	110	128	133	113	108	92	82	1,232
1986	80	95	93	87	86	109	130	155	97	91	84	77	1,186
1987	69	95	93	86	56	66	81	67	82	64	92	88	938
1988	67	92	89	83	55	65	78	66	59	40	84	76	854
1989	64	87	85	78	52	63	81	68	90	69	87	84	909
1990	81	94	92	86	57	97	126	113	111	118	95	86	1,155
1991	80	96	96	91	101	106	121	108	90	76	90	83	1,137
1992	67	93	90	84	55	64	79	67	64	42	83	75	862
1993	63	87	84	77	51	61	80	109	103	108	87	84	992
1994	76	95	94	88	89	108	130	154	149	155	102	92	1,333
1995	76	95	95	92	104	110	129	153	150	93	84	77	1,259
1996	68	95	96	93	105	111	129	154	142	113	95	80	1,281
1997	76	95	96	92	103	108	126	111	115	114	85	77	1,198
1998	73	96	96	92	104	110	127	113	92	77	84	75	1,137
1999	63	86	82	76	52	67	106	92	91	98	86	80	979
2000	77	95	93	87	82	109	135	155	150	107	85	77	1,251
2001	68	95	96	92	105	130	146	155	150	120	85	78	1,319
2002	76	96	95	92	105	135	153	154	150	109	92	86	1,342
2003	77	96	95 97	92	103	108	125	110	91	80	85	77	1,138
2004	66	90 94	87 93	82	55	66	103	111	140 149	85	84	77	1,046
2005	67			89	100	106	127	154		137	84	77	1,278
2006	67	95	95	91	104	110	130	155	101	93	84	77	1,201
2007	67	94	92	86	56	73	81	67	84	111	85	77	974
2008	67	93	91	85	62	112	150	154	150	137	107	83	1,291
2009	80	95	96	92	105	111	138	155	115	109	85	77 77	1,258
2010 2011	73 66	95 90	95 88	89 85	59 87	95 125	110 150	89 154	91 149	71	84	77 81	1,029
2011	00	90	88	85	8/	125	150	154	149	155	123	81	1,354
Mean	73	94	93	88	85	100	121	127	119	108	88	80	1,176
Max	82	96	96	93	105	135	153	155	119	155	123	92	1,170
Min	63	86	82	76	51	61	78	66	59	40	83	75	854
STDV	6	3	4	5	23	20	20	31	28	30	8	4	140

Table AP2-6 Simulated Monthly Energy of NN1 (with 40MW Expansion)

								X	I	,			Unit: EL.m
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average
1972	212.0	211.7	211.1	210.4	209.2	207.8	207.8	210.8	212.0	212.0	212.0	212.0	210.7
1973	212.0	211.6	210.9	210.3	209.5	208.7	209.3	211.1	212.0	212.0	212.0	212.0	210.9
1974	212.0	211.6	210.7	210.0	209.1	208.1	208.0	208.8	210.6	212.0	212.0	212.0	210.4
1975	212.0	211.3	209.6	207.5	206.2	206.6	207.5	210.0	212.0	212.0	212.0	212.0	209.9
1976	212.0	211.6	210.8	210.1	209.2	208.6	209.1	210.2	211.4	212.0	212.0	212.0	210.8
1977	212.0	211.6	211.2	211.0	210.0	208.1	207.6	208.8	210.5	211.8	212.0	212.0	210.5
1978	211.6	210.2	208.2	206.2	205.1	206.1	208.2	211.3	212.0	212.0	212.0	212.0	209.6
1979	212.0	211.7	211.1	210.5	210.0	209.7	209.6	210.4	211.4	212.0	212.0	212.0	211.0
1980	212.0	211.3	209.7	207.7	206.5	206.6	207.7	209.5	211.5	212.0	212.0	211.9	209.9
1981	211.9	211.6	211.0	210.4	209.5	209.1	210.9	212.0	212.0	212.0	212.0	212.0	211.2
1982	212.0	211.6	210.9	210.4	209.8	209.5	209.7	211.1	212.0	212.0	212.0	212.0	211.1
1983	212.0	211.7	211.0	210.4	209.9	209.0	208.9	210.2	211.4	212.0	212.0	212.0	210.9
1984	212.0	211.7	210.7	209.2	207.6	206.6	207.6	210.0	211.4	212.0	212.0	212.0	210.2
1985	212.0	211.7	211.0	210.4	209.5	208.9	209.0	210.1	211.4	212.0	212.0	212.0	210.8
1986	212.0	211.5	210.0	208.2	207.7	208.3	209.8	210.8	211.3	212.0	211.9	211.7	210.4
1987	211.9	211.3	209.6	207.6	206.2	205.6	205.5	207.2	209.6	211.2	212.0	212.0	209.1
1988	211.6	210.2	208.1	206.0	204.9	204.4	204.3	206.2	208.6	210.6	211.6	210.9	208.1
1989	209.6	208.0	205.9	203.8	202.6	203.5	205.6	208.0	210.1	211.3	212.0	212.0	207.7
1990	212.0	211.0	209.3	207.6	206.5	207.0	208.4	209.7	211.2	212.0	212.0	212.0	209.9
1991	212.0	211.7	211.0	210.0	208.3	207.0	207.3	208.6	210.2	211.5	212.0	212.0	210.1
1992	211.7	210.4	208.5	206.3	204.6	203.9	204.7	206.9	208.8	210.6	211.3	210.3	208.2
1993	209.1	207.6	205.4	203.1	201.7	202.4	205.1	208.5	211.1	212.0	212.0	212.0	207.5
1994	212.0	211.6	210.4	208.7	207.6	207.9	209.6	211.8	212.0	212.0	212.0	212.0	210.6
1995	212.0	211.6	210.9	210.3	209.5	208.9	209.3	211.2	212.0	212.0	211.9	211.8	211.0
1996	211.9	211.6	211.0	210.7	209.8	209.0	209.4	210.7	211.8	212.0	212.0	212.0	211.0
1997	212.0	211.6	211.0	210.2	208.9	208.1	208.3	209.1	211.2	212.0	211.9	211.9	210.5
1998	212.0	211.7	211.0	210.4	209.5	208.6	208.8	209.8	210.9	211.8	211.6	210.4	210.5
1999	208.9	207.0	204.7	202.6	202.4	204.5	206.9	208.4	210.5	211.9	212.0	212.0	207.6
2000	212.0	211.4	209.9	208.1	207.5	208.3	210.1	211.6	212.0	212.0	211.9	211.9	210.6
2001	211.9	211.6	211.0	210.5	209.8	209.9	210.8	211.9	212.0	212.0	212.0	212.0	211.3
2002	212.0	211.7	211.0	210.3	209.7	210.2	211.5	212.0	212.0	212.0	212.0	212.0	211.4
2003	212.0	211.7	210.9	210.2	209.1	207.9	207.8	208.8	210.4	211.7	212.0	211.4	210.3
2004	210.6	209.3	207.2	205.3	204.5	204.9	206.8	209.2	211.7	212.0	211.8	211.4	208.7
2005	211.3	210.9	210.0	209.1	207.8	207.2	208.8	211.7	212.0	212.0	211.9	211.6	210.4
2006	211.7	211.4	210.6	209.9	209.5	208.9	209.5	210.8	211.3	212.0	211.8	211.6	210.7
2007	211.5	211.1	209.5	207.5	206.2	205.9	206.0	207.5	209.6	211.6	211.9	211.8	209.2
2008	211.6	210.6	208.8	207.1	206.6	208.4	211.6	212.0	212.0	212.0	212.0	212.0	210.4
2009	212.0	211.6	211.1	210.6	209.6	209.2	210.3	211.3	211.5	212.0	211.9	211.9	211.1
2010	212.0	211.5	210.5	209.0	207.2	206.6	206.9	208.2	210.4	211.7	211.9	211.6	209.8
2011	210.8	209.1	207.4	206.9	207.9	209.5	211.3	212.0	212.0	212.0	212.0	212.0	210.3
Mean	211.6	211.0	209.8	208.6	207.7	207.5	208.4	209.9	211.2	211.8	211.9	211.8	210.1
Max	212.0	211.7	211.2	211.0	210.0	210.2	211.6	212.0	212.0	212.0	212.0	212.0	211.4
Min	208.9	207.0	204.7	202.6	201.7	202.4	204.3	206.2	208.6	210.6	211.3	210.3	207.5
STDV	0.8	1.2	1.7	2.2	2.3	1.9	1.9	1.6	0.9	0.3	0.1	0.4	1.1

 Table AP2-7
 Simulated Water Level of NN1 (with 40MW Expansion)

Appendix C

Environment

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
1 Permits and Explanation	(1) EIA and Environmental Permits	 (a) Have EIA reports been already prepared in official process? (b) Have EIA reports been approved by authorities of the host country's government? (c) Have EIA reports been unconditionally approved? If conditions are imposed on the approval of EIA reports, are the conditions satisfied? (d) In addition to the above approvals, have other required environmental permits been obtained from the appropriate regulatory authorities of the host country's government? 	(a)Y (b) Y (c) Y (d) N	 (a) Only Initial Environmental Examination (IEE) is required since it is the expansion of an existing project and it has small impacts on downstream. After carrying out the IEE, the IEE reports, comprise of IEE main report and Environmental and Social Management Plan (ESMP) were submitted to the Environmental and Social Impact Assessment Department (Dept. of ESIA) in Water Resources and Environmental Administration (WREA: now the task is taken by the Ministry of Natural Resources and Environment: MoNRE) in 2009. (b) It was approved by Dept. of ESIA in WREA on 13 April 2010. (c) The report was approved without conditions. (d) There is no other required environmental permits, however, the ESMP shall be reviewed and updated and then submit to MoNRE for obtaining approval six month before commencement of project.
	(2) Explanation to the Local Stakeholders	 (a) Have contents of the project and the potential impacts been adequately explained to the Local stakeholders based on appropriate procedures, including information disclosure? Is understanding obtained from the Local stakeholders? (b) Have the comment from the stakeholders (such as local residents) been reflected to the project design? 	(a) Y (b) Y	 (a) Consultation meeting at village level was held in conducting initial social assessment survey for all 24 affected villages. Consultation meeting at district, provincial and national level was organized in July, 2009 and consensus on the implementation of the project was made. (b) Comments were incorporated in the IESE reports. (IESE report, page 79)
	(3) Examination of Alternatives	(a) Have alternative plans of the project been examined with social and environmental considerations?	(a) Y	(a) 12 alternatives were screened in the light of environmental and social considerations (IESE report, page 61).
2 Pollution Control	(1) Water Quality	 (a) Does the water quality of dam pond/reservoir comply with the country's ambient water quality standards? Is there a possibility that proliferation of phytoplankton and zooplankton will occur? (b) Does the quality of water discharged from the dam pond/reservoir comply with the country's ambient water quality standards? (c) Are adequate measures, such as clearance of woody vegetation from the inundation zone prior to flooding planned to prevent water quality degradation in the dam pond/reservoir? (d) Is there a possibility that reduced the river flow downstream will cause water quality degradation resulting in areas that do not comply with the country's ambient water quality standards? (e) Is the discharge of water from the lower portion of the dam pond/reservoir (the water temperature of the lower portion) planned by considering the impacts to downstream areas? 	(a) - (b) - (c) - (d)Y (e)Y	 (a) (b) (c) The project is an extension of hydropower plant thus the negative impact is not expected on reservoir site. (d) During construction turbidity might be become higher however, the impacts are considered to be small (Environmental and Social Management Plan: ESMP P.56). (e) The significant negative impacts is not expected in downstream areas. Mitigation measures shall be applied in case any degradation of the water quality detected in operation phase.(ESMP, page 67).
	(2) Wastes	(a) Are earth and sand generated by excavation properly treated and disposed of in accordance with the country's regulations?	(a) Y	(a) Dispose of materials to approved area so as no to disturb scenery and not to contaminate water (ESMP, page 73).

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
	(1) Protected Areas	(a) Is the project site located in protected areas designated by the country' s laws or international treaties and conventions? Is there a possibility that the project will affect the protected areas?	(a) N	(a) Phou Khao Khouay NBCA is located southeast of NN1 reservoir which covers the catchment area of Nam Leuk Hydropower which is diverted and flow into NN1 reservoir. There will be no problem to NBCA or protected areas with regards to the expansion of the project (IESE page 47).
3 Natural Environment	(2) Ecosystem	 (a) Does the project site encompass primeval forests, tropical rain forests, ecologically valuable habitats (e.g., coral reefs, mangroves, or tidal flats)? (b) Does the project site encompass the protected habitats of endangered species designated by the country's laws or international treaties and conventions? (c) Is there a possibility that the project will adversely affect downstream aquatic organisms, animals, plants, and ecosystems? Are adequate protection measures taken to reduce the impacts on the ecosystem? (d) Is there a possibility that installation of structures, such as dams will block the movement of the migratory fish species (such as salmon, trout and eel those move between rivers and sea for spawning)? Are adequate measures taken to reduce the impacts on these species? 	(a) N (b) N (c) N (d)N	 (a) Not found. (b) Listed endangered species have not been found in downstream area of NN1. (c) Mitigation can be done by selecting off-peak output (IESE page 64). (d)Dam already exists, the expansion should not cause any problems regarding this issue.
	(3) Hydrology	(a) Is there a possibility that hydrologic changes due to the installation of structures, such as weirs will adversely affect the surface and groundwater flows (especially in "run of the river generation" projects)?	(a) Y	(a) The range of water fluctuation would be increased, however, it will not make significant impact on the surface and groundwater flows (IESE page 75).
	(4) Topography and Geology	 (a) Is there a possibility that reductions in sediment loads downstream due to settling of suspended particles in the reservoir will cause impacts, such as scouring of the downstream riverbeds and soil erosion? Is there a possibility that sedimentation of the reservoir will cause loss of the storage capacity, water logging upstream, and formation of sediment deposits at the reservoir entrance? Are the possibilities of the impacts studied, and adequate prevention measures taken? (b) Is there a possibility that the project will cause a large-scale alteration of the topographic features and geologic structures in the surrounding areas (especially in run of the river generation projects and geothermal power generation projects)? 	(a)N (b)N	 (a) There is no plan of constructing reservoir, but using existing reservoir thus no impact is expected. (b)Excavation, spill and wastage embankment give a little change to the geographical feature but the impact is not significant(ESMP, page 28).

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
4 Social	(1) Resettlement	 (a) Is involuntary resettlement caused by project implementation? If involuntary resettlement is caused, are efforts made to minimize the impacts caused by the resettlement? (b) Is adequate explanation on compensation and resettlement assistance given to affected people prior to resettlement? (c) Is the resettlement plan, including compensation with full replacement costs, restoration of livelihoods and living standards developed based on socioeconomic studies on resettlement? (d) Are the compensations going to be paid prior to the resettlement? (e) Are the compensation policies prepared in document? (f) Does the resettlement plan pay particular attention to vulnerable groups or people, including women, children, the elderly, people below the poverty line, ethnic minorities, and indigenous peoples? (g) Are agreements with the affected people obtained prior to resettlement? (h) Is the organizational framework established to properly implement resettlement? Are the capacity and budget secured to implement the plan? (i) Are any plans developed to monitor the impacts of resettlement? 	(a) N (b)- (c)- (d)- (e)- (f)- (g)- (h)- (i)- (j)-	(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) No resettlement or compensation is required.
Environment	(2) Living and Livelihood	 (a) Is there any possibility that the project will adversely affect the living conditions of inhabitants? Are adequate measures considered to reduce the impacts, if necessary? (b) Is there any possibility that the project causes the change of land uses in the neighboring areas to affect adversely livelihood of local people? (c) Is there any possibility that the project facilities adversely affect the traffic systems? (d) Is there any possibility that diseases, including infectious diseases, such as HIV, will be brought due to the immigration of workers associated with the project? Are adequate considerations given to public health, if necessary? (e) Is there any possibility that reductions in water flow downstream or seawater intrusion will have impacts on downstream water and land uses? (g) Is there any possibility that water-borne or water-related diseases (e.g., schistosomiasis, malaria, filariasis) will be introduced? (h) Is there any possibility that fishery rights, water usage rights, and common usage rights, etc. would be restricted? 	(a)N (b)N (c)N (d)N (e)Y (f)N (g)N (h)N	 (a) Water level fluctuation does not affect the downstream social activities (b) Any change of land use nor change of local resources is expected. (c) During construction phase, transportation of the construction materials disturbes the existing traffic systems, however, the impact is not significant. (d) Construction camps are to be installed enough away from local residents thus the immigration of workers will not directly affect to the living of local people. (e) Minimum maintenance flow has to secure to give no affect on irrigation and water pumping use at downstream in dry season. (ESMP, page 52). (f) No negative impact is expected. (g) Construction workers health problem and disease may happen during construction phase, however, it can be mitigated with appropriate provision for sanitation with septic facilities and untreated human waste not to enter any watercourse. (h) Minimum maintenance flow has to secure to give no affect on Irrigation and water pumping use at downstream in dry season. (ESMP, page 52).

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
	(3) Heritage	(a) Is there a possibility that the project will damage the local archeological, historical, cultural, and religious heritage? Are adequate measures considered to protect these sites in accordance with the country's laws?	(a)N	(a)No cultural heritage is reported in affected areas.
	(4) Landscape	(a) Is there a possibility that the project will adversely affect the local landscape? Are necessary measures taken?	(a)N	(a) New powerhouse and possible downstream bed rock excavation affects landscape at the dam site, however, the impact is not significant.
	(5) Ethnic Minorities and Indigenous Peoples	(a) Are considerations given to reduce impacts on the culture and lifestyle of ethnic minorities and indigenous peoples?(b) Are all of the rights of ethnic minorities and indigenous peoples in relation to land and resources to be respected?	(a)N (b)N	 (a) Not necessary. Because all ethnic groups risiding within the project area have a long association with the local area and they have been absorbed into the mainstream Lao-speaking society. (b)No special rights for ethnic minorities exist.
Environment	(6) Working Conditions	 (a) Is the project proponent not violating any laws and ordinances associated with the working conditions of the country which the project proponent should observe in the project? (b) Are tangible safety considerations in place for individuals involved in the project, such as the installation of safety equipment which prevents industrial accidents, and management of hazardous materials? (c) Are intangible measures being planned and implemented for individuals involved in the project, such as the establishment of a safety and health program, and safety training (including traffic safety and public health) for workers etc.? (d) Are appropriate measures taken to ensure that security guards involved in the project not to violate safety of other individuals involved, or local residents? 	(a)Y (b)Y (c)Y (d)Y	 (a) In comply with legislations of the Lao PDR, the protection of health, prevention of accidents are enforced by applying the ESMP. (b) Tangible safety considerations are incorporated in the ESMP. (c)Proper safety management during expansion works is to be provided at responsibility of contractor with CEMP implementation based on the ESMP. (d) Contactor shall take all necessary precautions against risk of loss of life or of injury to any person employed in the works. (ESMP, page 73).

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
		 (a) Are adequate measures considered to reduce impacts during construction (e.g., noise, vibrations, turbid water, dust, exhaust gases, and wastes)? (b) If construction activities adversely affect the natural environment (ecosystem), are adequate measures considered to reduce the impacts? (c) If construction activities adversely affect the social environment, are adequate measures considered to reduce the impacts? 	(a)Y (b)Y (c)Y	(a) Appropriate mitigation measures are already considered(ESMP, page 65). (b) Mitigation measures such as provision of sedimentation pond or reducing excavation speed were addressed. in ESMP (page56) (c) Adequate measures are already considered to mitigate the impacts (ESMP, page 17).

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
	(2) Accident Prevention Measures	(a) Is a warning system established to alert the inhabitants to water discharge from the dam?	(a)Y	(a) The alert system on water discharge from the dam has been established in 2012. As for the alert system for water increase due to the shift of operation pattern from off-peak to on-peak, it needs to study where to locate the warning signboards and to consider the necessity of setting up an automatic warning system in D/D.
5 Others	(3) Monitoring	 (a) Does the proponent develop and implement monitoring program for the environmental items that are considered to have potential impacts? (b) What are the items, methods and frequencies of the monitoring program? (c) Does the proponent establish an adequate monitoring framework (organization, personnel, equipment, and adequate budget to sustain the monitoring framework)? (d) Are any regulatory requirements pertaining to the monitoring report system identified, such as the format and frequency of reports from the proponent to the regulatory authorities? 	(a)Y (b)Y (c)Y (d)Y	 (a) It's stated in Environmental and Social Monitoring Plan (ESMP, page 65). (b) Overall monitoring, ambient monitoring, validation monitoring, effectiveness monitoring, compliance monitoring (ESMP, page 66-69). (c) Monitoring by Environmental /Social Team (construction phase) and Corporate Social Responsibility Unit (operation phase) for compliance of ESMP and ECC. In addition, MoNRE and Livelihood Restoration Committee will be involved for monitoring supervision in both construction and operation phase. (d) Quarterly Reports & Final Environmental Monitoring Report(ESMP, page 77).
6 Note	Reference to Checklist of Other Sectors	 (a) Where necessary, pertinent items described in the Forestry Projects checklist should also be checked (e.g., projects in the mountains including large areas of deforestation). (b) In the case of dams and reservoirs, such as irrigation, water supply, and industrial water purposes, where necessary, pertinent items described in the Agriculture and Water Supply checklists should also be checked. (c) Where necessary, pertinent items described in the Power Transmission and Distribution Lines checklist should also be checked (e.g., projects including installation of electric transmission lines and/or electric distribution facilities). 	(a)N (b)N (c)N	 (a) Not necessary as it is the development of an expansion of existing project. (b) Not necessary (c) Not necessary
	Note on Using Environmental Checklist	(a) If necessary, the impacts to trans-boundary or global issues should be confirmed (e.g., the project includes factors that may cause problems, such as trans-boundary waste treatment, acid rain, destruction of the ozone layer, or global warming).	(a)N	(a) No trans-boundary issue will be occurred as the project site is located in Lao boundary.

Category	Environmental Item	Main Check Items	Yes: Y No: N	Confirmation of Environmental Considerations (Reasons, Mitigation Measures)
----------	-----------------------	------------------	-----------------	---

1) Regarding the term "Country's Standards" mentioned in the above table, in the event that environmental standards in the country where the project is located diverge significantly from international standards, appropriate environmental considerations are requested to be made.

In cases where local environmental regulations are yet to be established in some areas, considerations should be made based on comparisons with appropriate standards of other countries (including Japan's experience).

2) Environmental checklist provides general environmental items to be checked. It may be necessary to add or delete an item taking into account the characteristics of the project and the particular circumstances of the country and locality in which it is located.

Appendix C-2 Monitoring Form

1. Responses/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring item						Monitoring results during report period
Responses/Actions	to	Comments	and	Guidance	from	
Government Authorities						

2. Mitigation Measures

- Air Quality (Emission Gas / Ambient Air Quality)

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Sprinkle water to control dust	Construction site	Daily	Construction	
Minimize travel distance	Construction site	Daily	Construction	
Regular checking of engine and exhaust of machinery and its recording and reporting	Construction site	Monthly	Construction	
Respiratory protection for worker at site	Construction site	Daily	Construction	

- Water Quality (Effluent/Wastewater/Ambient Water Quality)

Item	Unit	Measured value (Mean)	Measured value (Max.)	Country's standards	Remarks (measurement point, frequency)
рН	-			6-9.5	Entry point of the NN1 reservoir and at NN1 Dam, monthly
SS (Suspended Solid)	mg/l			40	Entry point of the NN1 reservoir and at NN1 Dam, monthly
BOD	mg/l			60	Entry point of the NN1 reservoir and at NN1 Dam and all worker's camp, monthly
DO	mg/l			6	Entry point of the NN1 reservoir and at NN1 Dam and all worker's camp, monthly
Ammonia Nitrogen	mg/l			0.2-4	Entry point of the NN1 reservoir and at NN1 Dam and all worker's camp, monthly
TDS	mg/l			1500	Entry point of the NN1 reservoir and at NN1 Dam and all worker's camp, monthly
Total Phosphorus	mg/l			1	Entry point of the NN1 reservoir and at NN1 Dam, monthly
Temperature	°c			<40	Entry point of the NN1 reservoir and at NN1 Dam, monthly
COD	ml/l			350	Entry point of the NN1 reservoir and at NN1 Dam and all worker's camp, monthly
Oil & Grease	mg/l			20	Entry point of the NN1 reservoir and at NN1 Dam and all worker's camp, monthly

- Waste

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Dispose of material to approved area so as not to disturb scenery and not to contaminate water	Construction site	Weekly	Construction	

- Soil contamination

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Capture insulation oils in	Construction site	Weekly	Construction	
barrel and use oil proof sheet				
to avoid any leakage				

Appendix C-2 Monitoring Form

- Noise / Vibration

Monitoring item	Measurement	Frequency	Implementation	Monitoring result during
	point	1	phase	report period
Instruction to driver to comply speed limit	Construction site	Weekly	Construction	
Check proper material loading and uploading	Construction site	Weekly	Construction	
Use silencer and muffler for equipment	Construction site	Weekly	Construction	

- Management of Abandoned Sites

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Site rehabilitation with topsoil recovery, reshaping, re-vegetation and remediation with site cleanup work	Construction site	-	At finishing stage of construction phase	

3. Natural Environment

- Ecosystem

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Provision of minimizing the disturbance under water	Construction site	Monthly	Construction	

- Topography and Geology

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Prevention with rock support	Construction site	-	Before construction	
and prompt concrete work in construction				

4. Social Environment

- Sanitation

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Provision of proper sanitation with septic facilities (prohibition of untreated human waste to enter any watercourse)	Construction site/Worker's camp	Weekly	Construction	

- Living / Livelihood

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Source workforce from	-	-	Work	
qualified locals and orient			commencement	
workers on desirable working				
relationship with skill				
enhancement and				
employment program				

- Landscape

Monitoring item	Measurement point	Frequency	Implementation phase	Monitoring result during report period
Provision of explanation to villagers and tourist for the meaning of work	-	-	At finishing stage of construction phase	

-Hydrology/Social and Economic Environment/Public Safety

Appendix C-2 Monitoring Form

Monitoring item	Measurement point*	Frequency	Implementation phase	Monitoring result during report period
Daily monitoring downstream water level including the Nam Lik avoid zero or single 18 MW operation for off-peak hours to keep downstream water level	Thalat and Pakkagnoung Water level Gauges	Daily	Operation	
Precaution to downstream communities for rapid increase/decrease of river water level with sign board and public consultation. Keep present output increase rate and conduct gradual opening as possible	To be designated at D/D	Daily	Operation	

*to be finalized at D/D

- Water Quality

Item	Unit	Measured value (Mean)	Measured value (Max.)	Country's standards	Remarks (measurement point, frequency, implementation phase)*
pH	-			6-9.5	Entry point of the NN1 reservoir and at NN1 Dam, monthly, operation
SS (Suspended Solid)	mg/l			40	Entry point of the NN1 reservoir and at NN1 Dam, monthly, operation
BOD	mg/l			60	Entry point of the NN1 reservoir and at NN1 Dam and former worker's camp, monthly, operation
DO	mg/l			6	Entry point of the NN1 reservoir and at NN1 Dam and former worker's camp, monthly, operation
Ammonia Nitrogen	mg/l			0.2-4	Entry point of the NN1 reservoir and at NN1 Dam and former worker's camp monthly, operation
TDS	mg/l			1500	Entry point of the NN1 reservoir and at NN1 Dam and former worker's camp, monthly
Total Phosphorus	mg/l			1	Entry point of the NN1 reservoir and at NN1 Dam, monthly, operation
Temperature	°c			<40	Entry point of the NN1 reservoir and at NN1 Dam, monthly, operation
COD	ml/l			350	Entry point of the NN1 reservoir and at NN1 Dam and former worker's camp, monthly, operation
Oil & Grease	mg/l			20	Entry point of the NN1 reservoir and at NN1 Dam and former worker's camp monthly, operation

*to be finalized at D/D

Appendix C-3 Water Quality Standards in Lao PDR

No	Substances	Symbol	Unit	Standard Value	Method of Measurement	
1	Colour, Odour and Taste	-	-	N	-	
2	Temperature	t	°C	N'	Thermometer	
3	Potential of Hydrogen	pН	-	5-9	Electronic pH Meter	
4	Dissolved Oxygen	DO	mg/l	6	Azide Modification	
5	COD	COD	ml/l	5	Potassium permanganate	
6	BOD ₅	BOD ₅	mg/l	1,5	Azide Modification at 20 degree C, 5 days	
7	Total Coliform Bacteria	Coliform Bacteria	MPN/100 ml	5000	Multiple Tube Fermentation	
8	Faecal Coliform Bacteria	Faecal Coliform	MPN/ 100 ml	1000		
9	Nitrate-Nitrogen	NO ₃ -N	mg/l	<5.0	Cadmium Reduction	
10	Ammonia-Nitrogen	NH ₃ -N	mg/l	0.2	Distillation Nesslerization	
11	Phenols	C ₆ H ₃ -OH	mg/l	0.005	Distillation, 4-Amin anti-pyrenne	
12	Copper	Cu	mg/l	0.1		
13	Nickel	Ni	mg/l	0.1		
14	Manganese	Mn	mg/l	1.0	Atomic Absorption	
15	Zinc	Zn	mg/l	1.0	Direct Aspiration	
16	Cadmium	Cd	mg/l	0.005		
17	Chromium, Hexavalent	Cr ⁶⁺	mg/l	0.05		
18	Lead	Pb	mg/l	0.05		
19	Mercury	Hg	mg/l	0.002	Atomic Absorption Cold Vapour	
20	Arsenic	As	mg/l	0.01	Atomic Absorption	

4.1.5 Surface Water Quality Standards

No	Substances	Symbol	Unit	Standard Value	Method of Measurement
					Direct Aspiration
21	Cyanide	CN ⁻	mg/l	0.005	Pyridine-Barbituric
22	Alpha ¬Radioactive	α	Becquere 1/1	0.1	Counting machine
23	Beta ¬ Radioactive	β	Becquere 1/1	1.0	Counting machine
24	Total Organochlorine	-	mg/l	0.05	Gas
25	DDT	C14H9Cl5	mg/l	1.0	Chromatography
26	Alpha -BHC	αBHC	mg/l	0.02	
27	Dieldrin	C ₁₂ H ₈ Cl ₆ O	mg/l	0.1	
28	Aldrin	-	mg/l	0.1	
29	Heptachlor and	-	mg/l	0.2	
	Heptachlor Epoxide				
30	Endrin	-	mg/l	None	

Source: Agreement on National Environmental Standards, WREA 2009

No	Parameters	Symbols	Unit	Maximum Concentration
1	BOD ₅	BOD ₅	mg/l	40
2	Ammonia Nitrogen	NH ₃ -N	mg/l	4
3	Total Suspended Substances	TSS	mg/l	40
4	Potential of Hydrogen	pH	-	6-9.5
5	Total Dissolved Substances	TDS	mg/l	3,500
6	Phenols	C ₆ H ₅ OH	mg/l	0.3
7	Phosphorous	Р	mg/l	1.0
8	Silver	Ag	mg/l	0.1
9	Zinc	Zn	mg/l	1.0
10	Sulphide	S	mg/l	1.0
11	Free Chlorine	Cl ₂	mg/l	1.0
12	Chloride	Cl	mg/l	500
13	Iron	Fe	mg/l	2.0
14	Fluoride	F	mg/l	15
15	Cyanide	CN	mg/l	0.1
16	Copper	Cu	mg/l	0.5
17	Lead	Pb	mg/l	0.2
18	Oil and Grease	-	mg/l	5
19	Nickel	Ni	mg/l	0.2
20	Mercury	Hg	mg/l	0.005
21	Manganese	Mn	mg/l	1.0
22	Arsenic	As	mg/l	0.25
23	Barium	В	mg/l	1.0
24	Cadmium	Cd	mg/l	0.03
25	Chromium	Cr ⁺⁶	mg/l	0.1
26	Total Chromium	Total Cr	mg/l	0.5

5.1 General Industrial Wastewater Discharge Standards 5.1.1 Standards for General Industries

Source: Agreement on National Environmental Standards, WREA 2009

Annex C4-1 Summary of the Public Consultation at Village Level

Source: IESA Report of NN1 Hydropower Station Expansion 2009

Public Consultation schedule

In accordance with the TOR for the IESE study for Nam Ngum 1 Expansion Project, the survey team from SD&XP Consultant Group was fielded. Subsequently, the testing survey with draft questionnaire was conducted with JICA survey team at Ban Thaxan village in Keo Oudom District Vientiane Province on 22 May 2009. Then the survey team was engaged and trained for 5 teachers from Pakcheng Secondary school to conduct the field interview, which was started from 28 May to 6 June 2009. Afterwards, the public consultation workshop was organized on 16 July 2009 with participation of line agencies, District authorities of Keooudom, Viengkham and Thoulakhom and 24 downstream village authorities.

Selection criteria's for the interview:

The interview survey was conducted for 100 persons in villages selected from inhabitant of Nam Ngum river bank, nearby Nam Ngum dam and its downstream within 50 km and within 1 km from river bank. Although upstream villages are not affected by the expansion project, some villages from upstream of the Nam Ngum River Basin were also interviewed for reference.

For village level interviewing, the survey team conducted with village authorities as on the list given in the TOR for 25 downstream villages. Some villages upstream of the NN1 dam were also interviewed for reference in formation.

Methodology and process to conduct field interview

The survey team conducted interview in totally 27 villages (24 villages downstream and 3 upstream villages) and 94 potentially affecting households out of targeted 24 villages and additional 6 households from upstream 3 villages as reference. The household selection for interview was based on the main occupation of the households that is related to river water usage: riverside gardening, boat transportation, fishing, water pumping, etc. which is related to the water level increase and decrease. Then the candidate households were proposed by village chief in each village.

According to the selection for the optimum 40 MW of the NN1 Hydropower station expansion, the adverse impact study was focusing on how many household likely to be affected, compare to present water level, if the water level increases 0.5 m or more at peak time and how many households would affected from the water level decreases about 0.5 m or more at off-peak time.

(1) Survey team formation:

- The survey team included 1 Socio-economic Specialist and 1 Environmental Specialist from SD&XP Consultant Group, 5 surveyors engaged teachers from Pakagnoung Secondary school
- The survey team members were then trained on the scope and purposes of the project with all needed handout, medias, graphs and presentation material.

(2) Consultation with villagers

• Selection of households for interview: the surveyor would firstly consult with village authority about the list of household practicing riverside gardening, boat transportation, water pumping, fish

caging, etc. that likely to be affected by operation of NN1 Hydropower expansion project. Particularly for the downstream villager who own the above occupations.

- Presentation venue: most of the villages conducted the interview at the temples or village chief's house.
- Presentation of project scope and objectives to the interviewees: before interview the surveyors were well present about project scope and objectives together with graph of water fluctuation when the system operates. In association with the presentation there were time for questions and answer to ensure full understanding of the participants.
- Interview survey: the interview involved 2 levels as the followings
 - (i) Village level interview: use village level questionnaire to interview village authority totally 24 available village downstream and some villages upstream (currently 24 downstream and 3 upstream villages)
 - (ii) Households level interview: use household level to interview 100 households that likely to be affected by NN1 Hydropower Expansion project (totally 94 downstream households and 5 upstream households
- Explanation that the goal of NN1 expansion project is to increase the national electricity output and export especially to develop socio-economic aspect of people in the project pilot villages.

Result of the field survey:

- 1. Economic and subsistence activities of the downstream people; The main income sources of the downstream people of NN1 are agriculture, fishery, boat transportation, etc. and the water level fluctuation of at the range of 0.5 m makes very little impact to them if compare to the current seasonal fluctuation.
- 2. Status of water use and hygienic condition; People are freely using natural river for several purposes such as fishing, boating, washing, irrigation, riverside garden watering, etc. For the sources of drinking water, most of the villagers use open well as well as tube wells.
- 3. Infrastructure/ public facilities in the downstream villages All downstream villages have easy access to good road structure, electricity, river transportation, etc. the same as easy access to public facilities like schools, dispensary and hospital in the District center of 3 target districts of Viengkham, Keo Oudom and Thoulakhom.
- 4. Condition of Natural resources use; Most of the downstream villages of NN1 dam own the land for rice and other cash crop production. None of the villages settle inside the protected areas or conservation area. Villagers are mainly engaged in agriculture and fisheries for their income earning.
- 5. Affecting water level increase for riverside gardening and affecting water level decrease for boat transportation, fish pond, gage fisheries and water pumping; The water level fluctuation is considered to affect during dry season for downstream households and it is confirmed by conducting field survey that there is almost no adverse impact to the economic status of downstream villagers by the fluctuation range at 0.5 m, while none of the riverside cultivators complaining that they will be affect at 0.5m of increase water.
- 6. Requirement for resettlement and compensation Since the result of village as well as household interview shown that the fluctuation of water level will not affect to the assets of the community. The maximum water level is expect to increase about 0.5 m at peak time, while villagers confirmed that the allowable level of water is 0.5 m cm and when the water level decrease to 0.6 m at off peak time it will affect to two families, who engaged in boat

transportation and fisheries as their allowable water level is 50 cm but they are all waive for project to go on.

7. Overall opinion of the downstream people to the project

All village authorities and household head interviewed are agreed with the Government's plan for NN1 Hydropower station expansion as it would be the main potential income sources for the country and all are opted to waive for any resettlement and compensation due to the water level will not at all affect their assets compare to natural disaster.

(3) Data computation and analysis

In order to be able to assess socio-economic and environmental condition in the project area a set of data analysis table were formed. All the data were computed, analyze and translate the result to the report text.

(4) Organize workshop for officially public consultation: on 16 July 2009 the project team organized a public consultation workshop at NN1 Hydropower camp. Attending this workshop are Mr. Vilath Sisouvong, Voce Governor of Vientiane province, Mr. Khammany Inthilath, the Director of EDL, Representative of WREA in Vientiane, the Board of director NN1, District Governors of 3 concern Districts, village chief of affected villages and concerned line agencies.

Annex C4-2 Minutes of the Public Consultation

Source: IESA Report of NN1 Hydropower Station Expansion 2009

Lao People's Democratic Republic Peace Independence Democracy Unity Prosperity

---==========------

Minutes

of the consultative meeting on the Initial Environmental Examination of the Nam Ngum 1 Hydro Power Plant expansion project

The consultative meeting on the Nam Ngum 1 expansion project has been held at the meeting hall of the Nam Ngum 1 Hydro Power Station, Vientiane Province on 16 July 2009 from 13:30 to 17:00. Presence at the meeting were Mr. Vilath Sisouvong, head of Vientiane Provincial Cabinet, representative of Water Resource and Environment Agency, representative of the Department of Electricity, Ministry of Energy and Mine, representatives from villages concerned, representatives of NIPPON KOEI Co., Ltd of Japanese consultant for Nam Ngum 1 Expansion Study, SD & XP Consultants Group of local consultants for IESE study of Nam Ngum 1 Expansion Plan, and other participants from different divisions concerned from Electricite du Laos (list of participants attached). The meeting was co-chaired by Mr. Vilath Sisouvong, head of Vientiane Provincial Cabinet, Mr. Khammany Inthilath, member of the National Assembly for the 10th constituency of Vientiane Province and Director General of Electricite du Laos. Mr. Vilath delivered his opening remark by stressing the objective of the meeting as to discuss the Initial Environmental Examination Study with regard to the Nam Ngum 1 expansion project in order to make the participants more understood on the electricity development of the Electricite du Laos. He also raised the importance of the hydro power station and electricity development in Lao PDR aiming at implementing the government policy on national development in order to lift the country out of least developed country status. At the same time, Lao PDR will also make households across the country access to electricity at 70% by 2010 and at 90% by 2020, and to make Lao PDR a battery of ASEAN. Mr. Head of Vientiane Provincial Cabinet stressed the meeting should focus and participate actively on the consultation and officially opened the meeting.

After the opening, Mr. Khammany Inthilath, member of the National Assembly for the 10th Constituency of Vientiane Province, and Director General of the Electricite du Laos, who were also cochaired of the meeting, had given their views on the general potential for the hydro power plant development, especially different projects in Vientiane Province which are important to the socio-economic development in the Lao PDR. He also raised the importance of the Nam Ngum 1 expansion project and the link of the transmission network in Lao PDR which covers the northern, central and southern parts of the country. He also reminded the future plan of electricity projects should take into account and focus on both positive and negative impacts on environment as well as society that may arise from the future development project and should follow the laws and regulations of the Lao PDR as main reference for carrying out measures under socio-environment management. This project is one of the projects that will supply electricity to locality and export of electricity in order to reduce the import of electricity and to generate revenue for the Lao PDR. They thanked to the village, district and provincial authorities for giving attention to and participation in the meeting.

The SD&XP Consultants Group, who conducts a joint study with NIPPON KOEI under JICA funding, presented details on background, technique, and outcomes of the environmental and socioeconomic impact study of the Nam Ngum 1 expansion project in order to make participants more understood and saw the outcome of the study in 3 main areas as follows:

- The study of the existing environment which could be affected from the project during its construction and operation.
- Recommendations of measures, action plan, prevention and impact mitigation during the construction and operation, such as: water level fluctuation and mitigation measure for construction of expansion works
- Recommendations of environment monitoring during the construction and operation.

After that, the meeting was open for comments and discussion from participants on the report made by the consulting company, which are summarized as follows:

- 1. Comments from the participants, such as: Mr. Khaokeo Somchanmavong, Head of Thoulakhom District and Ms. Chanhpheng Viphavanh, Head of Viengkham District: Both agreed with the presentation of the consulting company on the information regarding initial environmental and social impact and measures to address the issues. They gave further instruction to organizations concerned such as: concerned units of the province, district and authority at the village level must take responsibility to help educate people in order to make them whom is likely to be affected from the project understand more with the aim to achieving overall national interest, otherwise misunderstanding such as impact on flood, which is not related to the expansion project, may occur.
- 2. Mr. Souphon, representative of the Water Resource and Environment Agency commented and advised for the plan for environmental management that the consultant should give focus on:
 - the further attention be given to the long term impact that may arise from the development of the project

- the allocation of funding in detail that will be used in the work of environmental and social management as well as monitoring from each relevant sector that should be done sufficiently.
- the attention should be given to the stage of working with locality especially the participation of the people as well as community who may be affected from the expansion project.
- Comments from other participants such as Mr. Khamphuoa Phengphanhak, Head of Provincial Water Resource and Environment Office, Mr. Khammy Viengvilay, Village Head of Ban Sengsavang and Mr. Sisamone Boudsalath, Village Head of Ban Boungphoa:
 - They asked the project as well as consultant to pay attention to measures carefully and clearly in order to make the project goes smoothly, without or reduce possible negative impacts to the locality either on environment or society and those measures must be included in the agreement in order to make the contractor implement them and make it easier to monitor.

The project as well as consultant agreed to take all the comments made above into consideration in order to improve its report on the Initial Environmental Impact study of the project to make it more complete and with regard to the above mentioned comments.

Mr. Phoumy Nitibandith, Deputy Head of Production Division, Director of Nam Ngum Hydro Electric Dam 1 made additional clarification on the questions, benefit and negative impact from the extension project of Nam Ngum 1 as follows:

Benefits:

- Produce electricity for social consumption in an effective manner.
- Having the biggest reservoir in the country that can store water for fishery of the people.
- Using the reservoir as convenient transport route for the people living nearby the reservoir area of the Nam Ngum 1.
- Serving as beautiful tourist attraction site for the local people as well as for the foreign tourist, which can generate additional income to the people of Vientiane province as well as for Lao PDR.
- Water from the production of electricity can be used for irrigation and that amount of water can sufficiently feed the agriculture in the Vientiane plain.
- Can reduce flood in the sub-area of the Nam Ngum 1 and provide water for dry season.
- Serving as a venue for building and training of human resource of the Lao PDR on the hydro electric dam management skill and other jobs related to the management of dam, station and transmission line for example.
- The project has very limited negative impact on socio-environment compared to other new hydro power plant development projects and other similar projects.

Negative impacts:

- Loss of some riverside gardening land along the sub-area of Nam Ngum 1 during dry season if no consideration is held.

Through consultation mentioned above, the meeting concluded that the Initial Environmental Examination impact study and the mitigation plan are suitable, complete and implementable. In general, participants of the meeting as well as those who made comments have agreed in consensus with the said study and supported the development of the project (Nam Ngum 1 extension project).

At the end of the meeting, Mr. Vilath Sisouvong, Head of Vientiane Provincial Cabinet and Mr. Khammy Inthilath, member of the National Assembly for the 10th constituency of Vientiane Province, cochairs of the meeting had made additional guidance, namely: in general it is agreeable with the study, but it was requested that the consultant to provide answer to questions raised and provide clearer study in IESE. However, in order to make the project study right, suitable and implementable on the basis of the law and regulations of the Lao PDR, in case of any participants still have questions that could not be raise today, they can submit through the concerned authority of the village, district and province for further comments and clear answer. This is to improve the study report to make it more complete that in the next stage it will be submitted to the sector concerned: Electricity Department, Ministry of Energy and Mines and Water Resource and Environment Agency.

The meeting adjourned at 17:00 hours with consensus reached from all parties.

Vientiane Province, 16 July 2009 <u>Chair of the Meeting</u> pp. Signature for Chair of Meeting

<u>Recorder</u> Mr. Vongvilay

Mr. Somsanith SENGTHONG

Participant of Public Consultation Meeting on 16 July 2009


	ist of villages Head (Participant Representative) for NN1_IEE on 16 July 2009 at Thalat (NN1 meeting hall).				
No	Nam and Surname	Village Names	Remark		
	Keo Oudom District		Not presented 2 villages of		
1	Mr. Hong Thong	Thalat	downstream villages.There are 22		
	Mr.Leuxay Bouttavong	Thaxan	villages of down stream villages which		
	Mr. BounPheng VongKhamphanh	Phoukhaokham	were particpated is equivalent to		
	Mr. Khammy Viengvilay	Seng Savang	91.6%. For Upsteam villages not		
	Mr. Bouathong	Thinhkeo	presented because they are very far		
Sub_Total:	5		from meeting site, also they have		
	Vieng Kham District		obstacle of voyages. For 2 Villages		
1	Not presented	Hatsaykhoune	have not information. May be They are		
	Mr. Bouapha Oudomphone	Vieng Kham Village	busy with paddy rice production. Also		
3	Mr. Khammao	Naninh	the in vitation cards has been		
4	Not Presented	Veunsanh	delivered by hand.		
5	Mr. Intong	Pakkhagnoung			
6	Mr. Ketkeo Ssysomchay	Thaphoxay			
7	Mr. Phone Xao phouvong	Nakheua			
8	Mr. Soukanh Xayyasne	Thingnoung			
9	Mr. Bounthiane Vongsay	Mouang Kao			
10	Mr. Phouvong Southammavong	Pakcheng			
11	Mr. Bouasavanh	Done Kuath			
Sub_Total:	9				
	Thoulakhom District				
1	Mr. Khankham	Nakhong			
2	Mr. Khamphanh Vong say	Keunkang			
	Mr. Noumanh	Hatsay			
4	Mr.Kounthong Soydara	Keunneua			
	Mr. Norkham Phetthongsy	Phone Hair			
	Mr. Saythong	Cheng			
7	Mr. PhayKeo Luang Aphay	Lingsanh			
8	Mr. Sysamone Bouthsalath	Boungphao			
Sub_Total:	8				
Total:	22 persons(villages Head)				
	Home District				
1	NotPresented	San Patong			
2	NotPresented	Namone			
3	NotPresented	Phonesavanh			

List of villages Head (Participant Representative) for NN1_IEE on 16 July 2009 at Thalat (NN1 meeting hall)

List of participants (Central and Province Representative) for NN1 IEE on 16 July 2009 at Thalat (NN1 meeting hall)

for NN1_IE	E on 16 July 2009 at Thalat (NN1 meeting hall)	
No	Nam and Surname	From
	SD & XP Consultants Group	
1	Mr. Chanthip Latsavanh(PM)	SD&XP
2	Mr. Bounheuang Phanthasith(TL)	SD&XP
3	Mr. Anousith Sramany(Hg)	SD&XP
4	Mr. Phanthong Maxisonsay(Socio)	SD&XP
	Mr. Khamla (ADMIN)	SD&XP
Sub-Total	5	
	JICA /Nippon Koei Co., LTD	
1	Ms. Yuka Nakagawa	JICA Survey Team/NK
	Mr. Takuji Katoaka	JICA Survey Team/NK
Sub-Total		
	Participnats of Central Level	
1	Mr. Souphonh	WREA
Sub-Total	1	
	DoE/EDL	
1	Mr. Khammany Inthirath	EDL/General Director
	Mr. Lattana Pathoumvanh	
	Mr. Thong Phet DuangNgeun	EDL/Technical Electricity Director
	Mr. Vilaphorn. V	EDL/ Env.section, Head
	Mr. Vongvilay	EDL/Env.
	Mr. Kailath	EDL/Production study System
	Mrs. Alivanh Mangkhaseum	EDL/Production study System
Sub-Total		
Sub-Total	Vientiane Province Level/NN1	
1	Mr.Vilat Sisouvong	Head of Provincial Cabinet Office
	Mr. Khamphua Phengphanh Hak	PWREO
۷		Province Agriculture and Forestry
2	Mr. Thongsang Chanthavong	Office(PAFO)
2		Head of Energy and Mines of Vientiane
3	Mr. Chandeng Keopaseuth	Province
	Mr. Amkha Keoluang Khot	Evr./ADMIN_ NN1 Hp
	Mr. Bouavanh Chanthaphet	Dpty of NN1 Hp
	Mr. Phoumy	General Director of NN1
Sub-Total		
Sub-Total	Keo Oudom District	
1	Mrs. Siriphone Chanthamith	DWREO
	Mr. Khamla Luang Bouddy	District Energy and Mines
	Mr. Somchay	District Office Cabinet
	Mr. Bouahong	Land Titling of District
4 Sub-Total		
Sub-Total	Vieng Kham District	
1	Mrs. Changpheng Viphavanh	District Governor's
	Mr. BounGnong Keomala	DWREO
	Mr. Kalaketh Southammavong	District Energy and Mines
	Mr. Inpeng Vongchandy	District Energy and Mines
4 Sub Total:		
A	Thoulakhom District	District Covernor's
	Mr.Khao Keo Somchanmavong	District Governor's
	Mr. Phokham Luangphayvong	District Energy and Mines
	Mr. Koumkham Xayyasane	District Cabinet Office
Sub-Total		
Total:	31	

A total of participants for meeting is 53 persons(22 villages head +31 of stafts + Districts/Povince

Appendix C-5 Location of Affected Villages

Source: IESA Report of NN1 Hydropower Station Expansion 2009

BASELINE DATA Village Identification

District: Village: Location GPS Lat (WGS84) Location GPS Long (WGS84) Mark Location on Map Date of Data Collection:

List the Names and Positions of Persons Collecting Data

Name:

Position:

Name:

Position:

Name:

Position:

Village Representation

No. Position First Name Surname Phone number

- 1.
- 2.
- <u>-</u>. 3.
- 5.
- 4.
- 5.
- 6.
- 7.

1. Population, Demography and Settlement

What is the total population and women population in the Village?

.....

How many households reside in Village?

.....HHs

Total agricultural area in the village including riverbank area

_____ ha

2. Economic Status of Village

2.1. How much an average income per capita per year?

.....Kip

2.2. What is the main income source (%)? Percentage of hhs main income in each activity.

Agriculture

2.3 How many households that are designated as poor (vulnerable)?

Definition of vulnerable stipulated in Decree192;

- divorced or widowed female headed households with dependents and low income

- households with disabled or invalid persons,

- households with person falling under the generally accepted indicator for poverty as defined by the Ministry of Labor and Social Welfare or the landless,

- elderly and disable households with no means of support

.....HHs

3. Activities related to the Nam Ngum river

3.1. Categories of river water usage	
Use for general purpose	HHs
Use for drinking	ННѕ
Use for commercial fishing	HHs
Use for fish culture	HHs
Use for transportation route	HHs
Use for irrigation	HHs
Use for riverbank garden	HHs
4. Riverbank Gardening	
4.1. Total area of the river bank garden in the villag	eha
4.2. Average income gain from river bank activities	kips/ha/year
4.3. How many households practice riverbank garde	ening? HHs
4.4. How many meters are secured for buffer zone?	
m from	
4.5. What is the status in the riverbank gardening ar	ea?
Belong to Government (but customary use recogniz	red)
Permanent Land Use Certificate Issued	
Temporary Land Use Certificate Issued	
Tax Imposed	

Detail Description (eg. how to measure the riverbank area etc.,)

4.6. What kind of vegetable is planted in the riverbank garden?

.....

4.7. Cost of Productivity land in this area?

4.8. How much is the price of the river bank area? (if there is the price difference between the most expensive and average, please give both prices)

	(expensive) kip/ha
	(average) kip/ha
5. Electrification Status	

5.1. What is the electrification rate in your village?	%
--	---

5.2. What is the average electricity consumption per month?kWh

BASELINE DATA Household Identification

District: Village: Location GPS Lat (WGS84) Location GPS Long (WGS84) Mark Location on Map Date of Data Collection:

List the Names and Positions of Persons Collecting Data

Name:

Position:

Name:

Position:

Name:

Position:

Household's Representation

No. Position First Name Surname Phone Number

- 1.
- 2.
- -. ว

3.

1. Demography

How many members in your household?

.....

2. Economic Status of Household

2.1. How much an average income per household per year?

.....Кір

2.2. What is the main income source (%)? Agriculture

.....%

Agriculture (Riverbank garden)	
Small-scale trading (shops, stalls)	
% Government service	
% Fishing Culture	
Others	
%	%
% 3. Riverbank Gardening	%
3.1. How many meters are secured for buffer zone?	

.....m

3.2. What is the status on the land where you practices riverbank gardening?Belong to Government (but customary use recognized)Permanent Land Use Certificate IssuedTemporary Land Use Certificate IssuedTax Imposed

3.3. What is total riverbank area?

.....ha

(Length ((m)) x Width ((m))

.....m xm

Location

Botto	m (the nearest to the river)	Latitude:	Longitude:
Тор	(the farthest from the river)) Latitude:	Longitude:

3.4. What kind of vegetables grown in your riverbank garden?

Type / Frequency / Productivity (eg. red pepper / 3 times from September to March / 1kg per ha/ 100,000 kip)

.....

.....

.....

.....

.....

3.5. How many % of income from the riverbank gardening will be in total household's income?

.....%

3.6. How many % of the riverbank garden will be affected if the water level increases in 80cm from the present level?

.....%

3.7. How many % of income from the affected riverbank garden will be in total household's income?

.....%

3.8. How much for the riverbank garden area?

.....kip/ha

Entity	Population		Household	Vulnerable
	Total	Female		Households
1 National	6,256,197	3,133,059	1,027,468	-
2 Vientiane Province	475,140	233,055	86,730	-
3 Keo-Oudom District	18,988	9,401	3,912	-
4 Thinkeo Village	1,168	568	218	0
5 Sengsavang Village	1,403	726	313	0
6 Thalat Village	1,056	568	207	0
7 Thatxan Village	932	486	165	0
8 Viengkham District	18,566	8794	3,780	-
9 Hatxaykhoun Village	247	119	64	0
10 Nanin Village	539	273	122	1
11 Veunsan Village	1,307	669	282	0
12 Muangkao Village	855	427	201	0
13 Thaphoxai Village	532	273	104	4
14 Pakkagnoung Village	2,397	1,208	530	5
15 Pakcheng Village	807	395	150	0
16 Donkouat Village	892	447	185	5
17 Thingnyoung Village	1,501	732	310	3
18 Viengkham Village	732	374	131	2
19 Thoulakhom District	-	-	-	-
20 Keun-Nua Village	1,784	920	342	0
21 Keun-Kang Village	1,999	979	368	2
22 Hatxai Village	1,071	582	213	30
23 Boungphao Village	1,587	837	340	1
24 Nakhong Village	842	426	166	-
25 Lingxan Village	1,615	801	297	2
26 Cheng Village	1774	825	368	0
Total No. Impacted Village	25,040	12,635	5,076	55

Appendix C7-1	Village Populat	tion and Vulnerab	le Households
	, mage - opened		10 110 40 0110140

Source:

Statistic Year Books, 2011

Social Economic Development Plan, 2010-11, Vientiane Province

Land Use Allocation Plan, Viengkham District, 2011

Social Economic Development Plan, 2010-14, Keo-Oudom District, Vientian Province Village Hearings by ,JICA study team, 24-26 May2012 and 28-31 Aug 2012

Appendix C7-2 Average Income and Income Source

	Entity	Average Income	Main Income					
No.			Agriculture	Fish Farming	Trading	Government Services	Others	Remark
1	National	1,088	N/A	N/A	N/A	N/A		Information from Year 2010
	Keo-Oudom District	595	N/A	N/A	N/A	N/A	N/A	Information from Year 2009
3	Thinkeo Village	N/A	0.10%	0	95%	4.90%	0	
	Sengsavang Village	750	7.50%	2.50%	20%	70%	0	
	Thalat Village	N/A	20%	0	75%	5%	0	
	Thatxan Village	700	80%	0	8%	0%	12%	
	Viengkham District	720	N/A	N/A	N/A	N/A	N/A	Information from Year 20011
	Hatxaykhoun Village	1200	20%	0	0	0	80%	
	Nanin Village	700	70%	0	0	5%	25%	
10	Veunsan Village	600	20%	0	0	50%	30%	
11	Muangkao Village	850	100%	0	0	0	0	others income source is a supplement, Average income is quite high in this village as most of the families are retired from government service.
12	Thaphoxai Village	1200	30%	0	8%	50%	12%	
13	Pakkagnoung Village	1200	60%	0	40%	0	0	
14	Pakcheng Village	1100	75%	0	15%	0	10%	
15	Donkouat Village	750	100%	0	0	0	0	
16	Thing young Village	800	90%	0	10%	0	0	
17	Viengkham Village	800	70%	0	10%	0	20%	
18	Thoulakhom District	N/A	N/A	N/A	N/A	N/A	N/A	
19	Keun-Nua Village	1,876	80%		15%	5%	0	
20	Keun-Kang Village	1,400	70%	1%	19%	10%	0	
21	Hatxai Village	850	80%	0	0	3%	17%	
	Boungphao Village	900	70%	0	20%	0%	15%	
	Nakhong Village	760	70%	0	20%	10%	0	
24	Lingxan Village	800	80%	0	20%	0%	0	
25	Cheng Village	700	90%	0.03%	3%	6.97%	0	
	Average	944	61.08%	0.18%	18.00%	10.47%	10.52%	

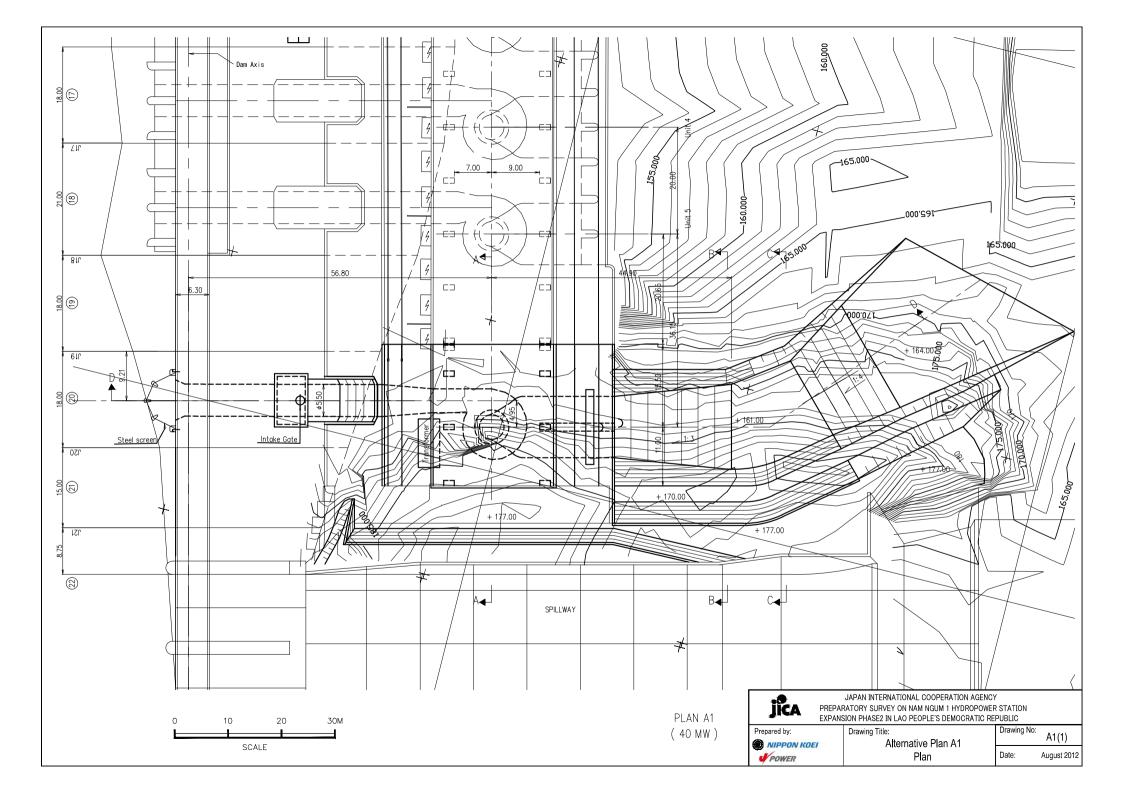
Note: Exchange rate is 1 = 8,000 kips

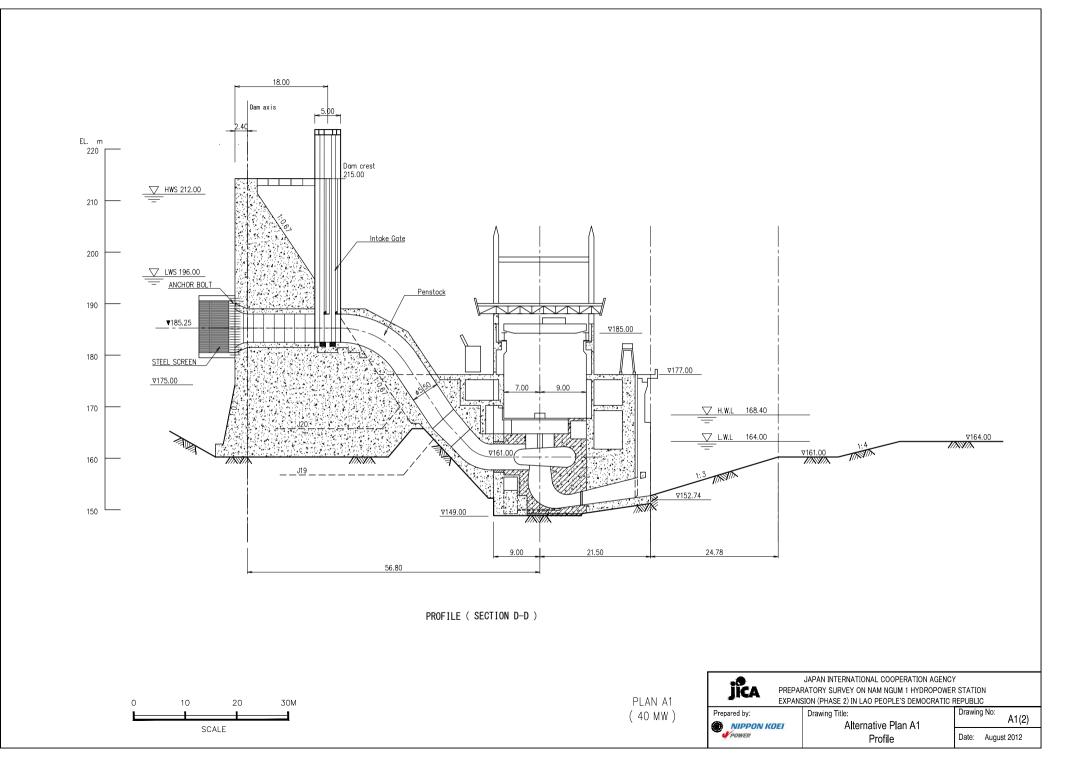
Appendix C-7 Result from Hearing (Village)

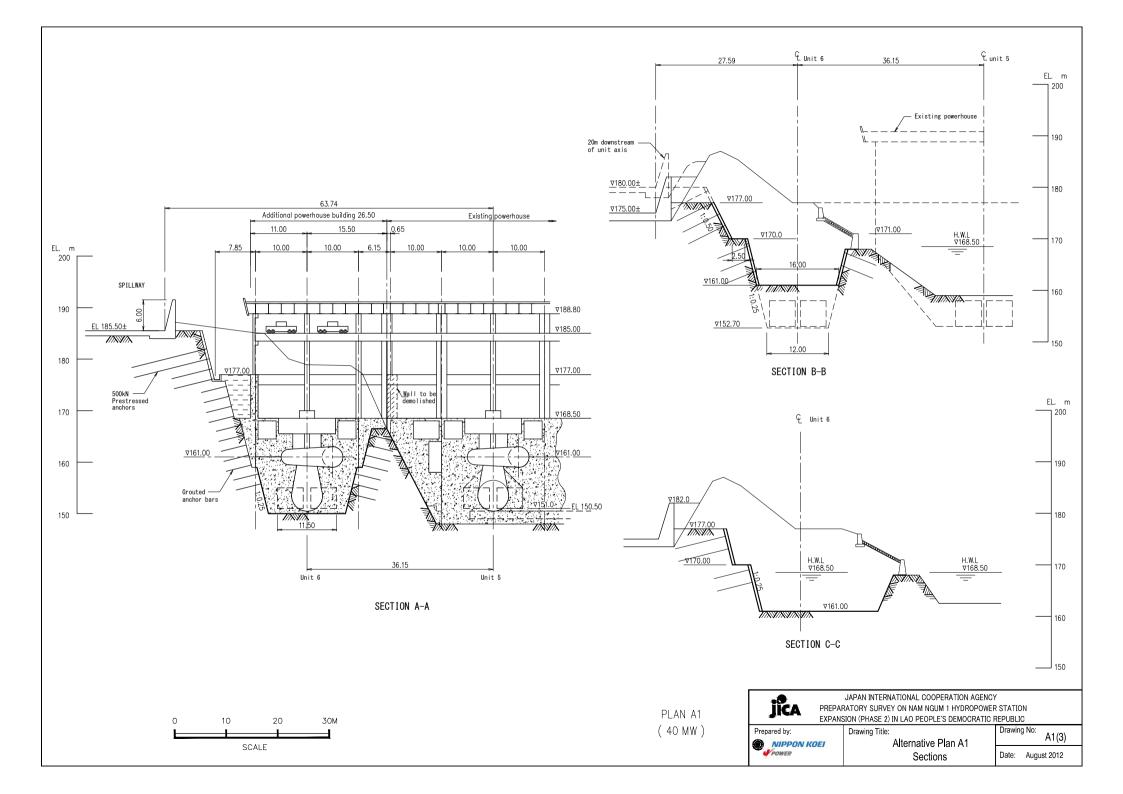
No.	Village	District	Electrification Rate (%)	Average Elevtricity Consumption / Month
1	Thinkeo	Keoudom	100	-
2	Sengsavang	Keoudom	100	-
3	Thalat	Keoudom	100	-
4	Thatxan	Keoudom	100	50,000 kip/month
5	Hatxaykhoun	Viengkham	100	30,000 kip/month
6	Nanin	Viengkham	100	50,000 kip/month
7	Veunsan	Viengkham	100	50,000 kip/month
8	Muaungkao	Viengkham	100	-
9	Thaphoxai	Viengkham	100	95,000 kip/month
10	Pakkagnoung	Viengkham	100	100,000 kip/month
11	Pakcheng	Viengkham	100	60,000 kip/month
12	Donkouat	Viengkham	100	-
13	Thin-Nyoung	Viengkham	100	-
14	Viengkham	Viengkham	100	50,000 kip/month
15	Keun-Neua	Thoulakhom	96.5	100,000 kip/month
16	Keun-kang	Thoulakhom	100	-
17	Hatxai	Thoulakhom	100	-
18	Boungphao	Thoulakhom	100	50,000 kip/month
19	Nakhong	Thoulakhom	100	-
	Lingxan	Thoulakhom	94.6	50,000 kip/month
21	Cheng	Thoulakhom	100	-

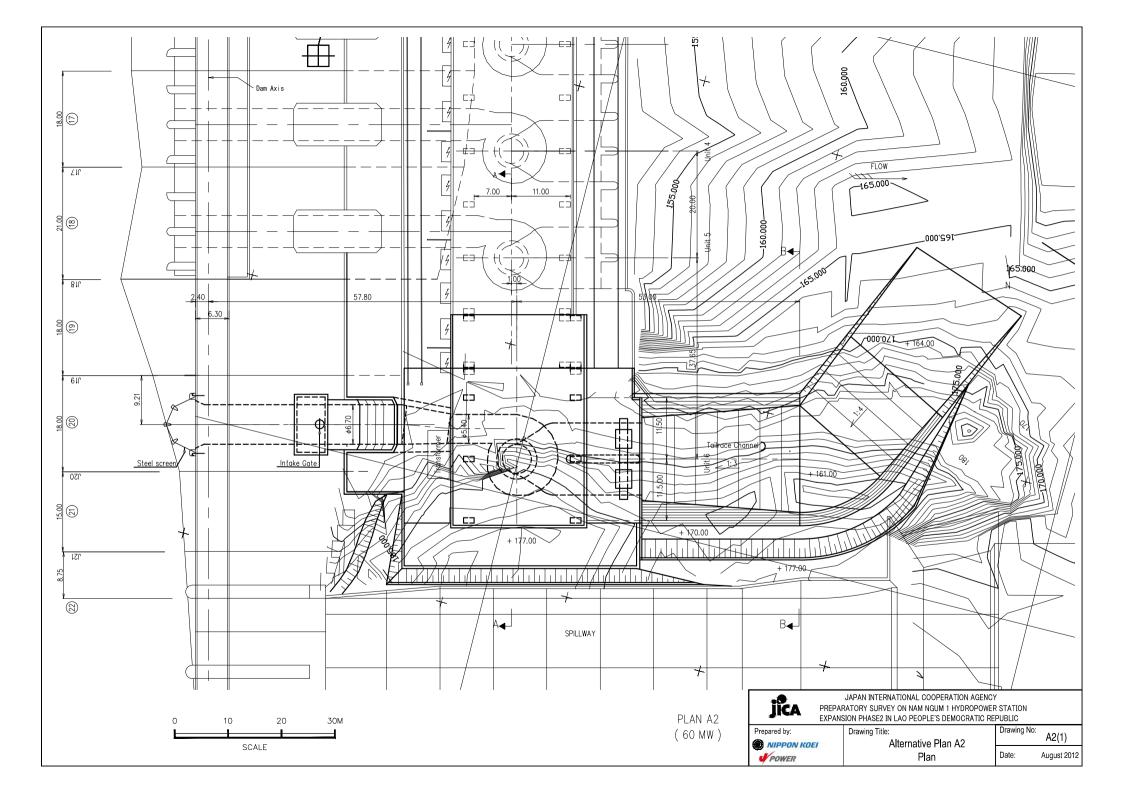
Appendix C7-3 Electrification Rate and Electricity Bill

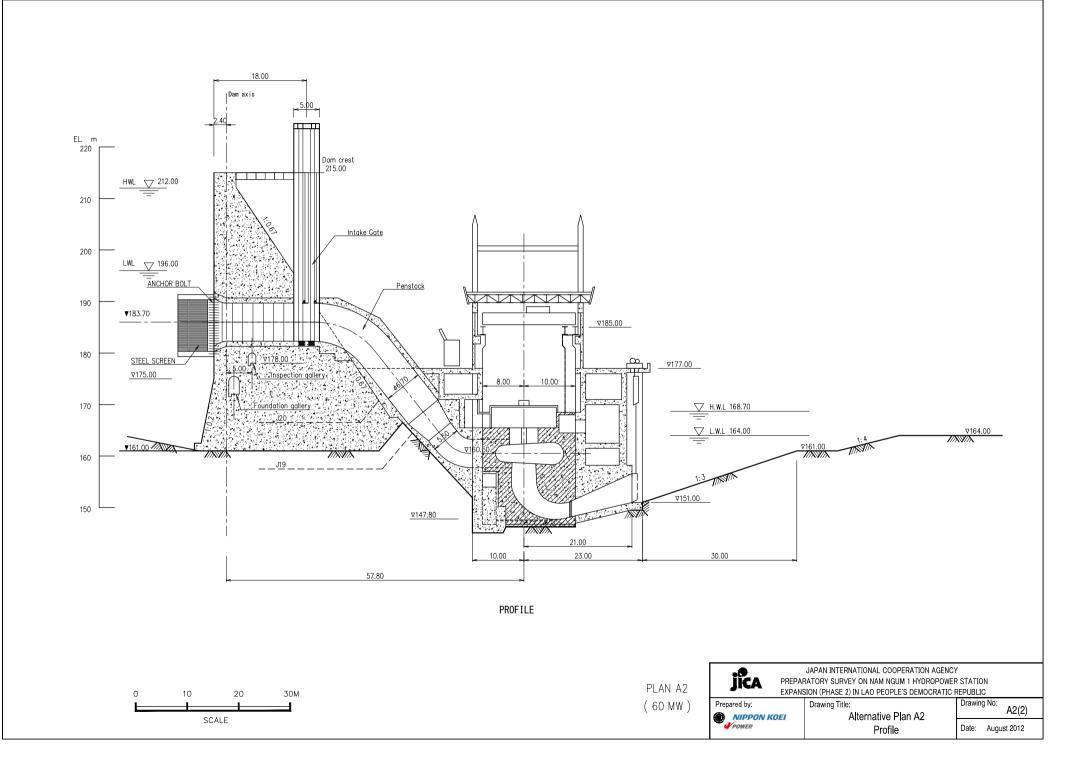
No.		District	Households	Irrigation (HHs)	%	Riverbank Garden (HHs)	%	Navigation (HHs)	%	Fishery (HHs)	%	Fish Farming (HHs)	%
1	Thinkeo	Keoudom	218	0	0	1	0.5	0.0	0.0	6.0	2.8	0.0	0.0
2	Sengsavang	Keoudom	313	0	0	0	0.0	0.0	0.0	0.0	0.0	8.0	2.6
3	Thalat	Keoudom	207	21	10.1	30	14.5	0.0	0.0	10.0	4.8	0.0	0.0
4	Thatxan	Keoudom	165	0	0.0	50	30.3	0.0	0.0	0.0	0.0	0.0	0.0
5	Hatxaykhoun	Viengkham	64	0	0.0	25	39.1	0.0	0.0	0.0	0.0	0.0	0.0
6	Nanin	Viengkham	122		0.0	30	24.6	0.0	0.0	0.0	0.0	0.0	0.0
7	Veunsan	Viengkham	282		0.0	58	20.6	0.0	0.0	0.0	0.0	0.0	0.0
8	Muaungkao	Viengkham	201	0	0.0	0	0.0	0.0	0.0	15.0	7.5	0.0	0.0
9	Thaphoxai	Viengkham	104		0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
10	Pakkagnoung	Viengkham	530	176	33.2	50	9.4	0.0	0.0	0.0	0.0	0.0	0.0
11	Pakcheng	Viengkham	150	75	50.0	3	2.0	0.0	0.0	0.0	0.0	0.0	0.0
12	Donkouat	Viengkham	185	0	0.0	148	80.0	0.0	0.0	0.0	0.0	0.0	0.0
13	Thin-Nyoung	Viengkham	310	114	36.8	0	0.0	0.0	0.0	10.0	3.2	0.0	0.0
14	Viengkham	Viengkham	131	104	79.4	3	2.3	0.0	0.0	0.0	0.0	0.0	0.0
15	Keun-Neua	Thoulakhom	342	60	17.5	25	7.3	0.0	0.0	0.0	0.0	0.0	0.0
16	Keun-kang	Thoulakhom	368	0	0.0	35	9.5	2.0	0.5	15.0	4.1	2.0	0.5
17	Hatxai	Thoulakhom	213	0	0.0	170	79.8	0.0	0.0	170.0	79.8	0.0	0.0
18	Boungphao	Thoulakhom	340	20	5.9	30	8.8	0.0	0.0	0.0	0.0	0.0	0.0
19	Nakhong	Thoulakhom	166	50	30.1	12	7.2	0.0	0.0	80.0	48.2	0.0	0.0
20	Lingxan	Thoulakhom	297	65	21.9	25	8.4	0.0	0.0	0.0	0.0	0.0	0.0
21	Cheng	Thoulakhom	368	235	63.9	150	40.8	0.0	0.0	5.0	1.4	1.0	0.3
	Total		5076	920	348.8	845	385.1	2.0	0.5	311.0	151.7	11.0	3.4

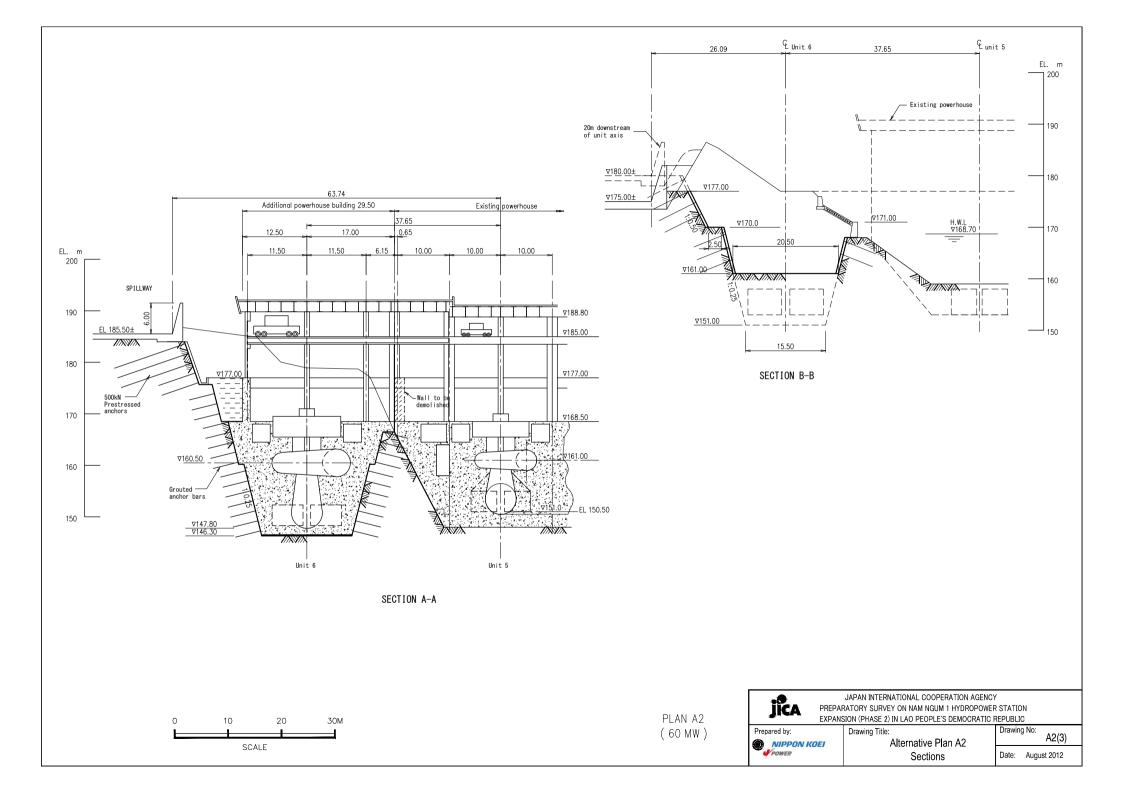

Appendix C7-4 River Related Activities in the Downstream of the Nam Ngum River

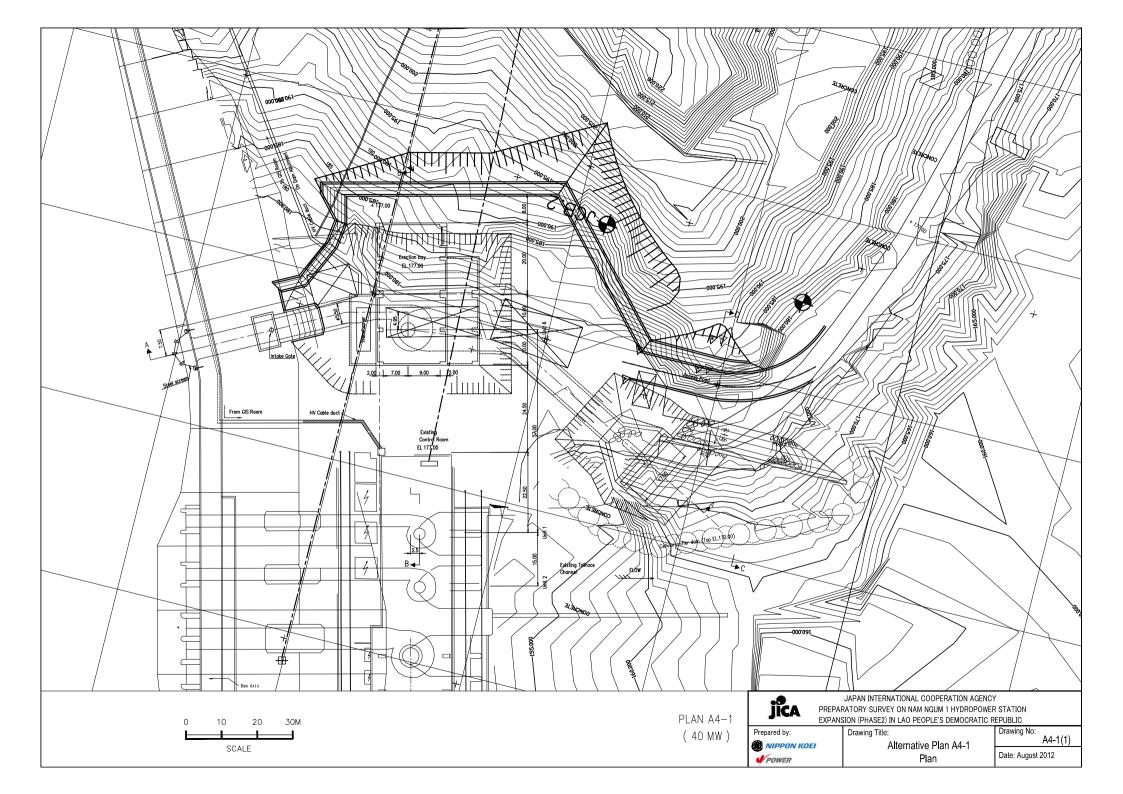

No.	Name	Village	District	Type of Vegetable	Frequency	Season	Productivity (kg/Rai/kip)	Total Area for Riverbank Gardening (m2)
			Keoudom	Cash crop	9	Oct toJun	N/A	3,200
1	Ms. Phoukhong	Thatxan		Pumpkin	3	Oct toJun	N/A	-
				Corn	3	Oct toJun	N/A	-
			Keoudom	Long bean	3	Oct toJun	N/A	250
2	Ms. Onchan	Thatxan		pumpkin	3	Oct toJun	N/A	-
				sweet potato	3	Oct toJun	N/A	-
3	Mr. ThongLor	Hatxaykhoun	Viengkham	cash crop	8	Oct toJun	300,000	1,600
4	Ms. Khambao	Hatxaykhoun	Viengkham	Cash crop	12	Jan to Dec	5,000,000	2,000
5	Mr.Souay	Nanin	Viengkham	cash crop & long bean	8	Oct toJun	2,000,000	200
			Viengkham	egg plant	3	Oct toJun	5,000,000	1,500
6	Ma Khamfana	Nonin		corn	3	Oct toJun	-	-
6	Mr. Khamfong	Nanin		long bean	3	Oct toJun	-	-
				Morning glory	8	Oct toJun	-	-
				cucumber	3	Oct toJun	2,300,00	800
7	Ma Khamhai	Veunsan	Viengkham	corn	3	Oct toJun	-	-
7	Mr. Khambai			Long bean	3	Oct toJun	-	-
				cash crop	8	Oct toJun	-	-
		Veunsan	Viengkham	Long bean	3	Oct toJun	4,000,000	1,800
0	Mr. Thongsai			corn	3	Oct toJun	-	-
8				chili	3	Oct toJun	-	800
				crash crop	8	Oct toJun	-	-
0	Ms. Chongkham	Pakkagnoung	Viengkham	corn	3	Oct toJun	3,000,000	1,600
9				cash crop	8	Oct toJun	-	-
10	Mr. Leokham	Pakkagnoung	Viengkham	Corn	3	Oct toJun	900,000	300
	Ms. Nouandee	Pakcheng	Viengkham	cash crop	5	Oct toJun	1,000,000	1,600
11				chili	3	Oct toJun	-	-
				egg plant	3	Oct toJun	-	-
	Mr. Inta	Pakcheng	Viengkham	cash crop	8	Oct toJun	1,000,000	850
12				chili	3		-	-
				egg plant	3	Oct toJun	-	-
13	Mr. Bounyonh	Keun-Nua	Thoulakhom	cash crop	8	Oct toJun	3,000,000	1,600
				cash crop	8	Oct toJun	30,000,000	15,000
14	Ms. Hung	Keun-Nua	Thoulakhom	vegetable shoot	12	Oct toJun	-	-
15	Mr. Khamphou	Hatxai	Thoulakhom	cash crop		Oct toJun	3,000,000	400
	Mr. Saykham			chili			8,000,000	1,600
16		Hatxai	Thoulakhom	egg plant	3		500,000	-
	-			papaya			3,000,000	-
17	Mr. Khamfun	Boungphao	Thoulakhom	corn	2	Nov to May	3,200,000	1,600
	Mr. Nouanthong	Boungphao	Thoulakhom	Corn		Nov to May	3 t/season	570
18				egg plant		Nov to May	21 t/season	-
	U			chili		Nov to May	500 kg/season	-
			Thoulakhom	chili	-	Nov to May	288 kg/season	3,000
19	Mr. Bouasavanh	Cheng		egg plant	~	Nov to May	289 kg/season	-
			Thoulakhom	chili	-	Nov to May	5,000,000	1,200
20	Mr. Bounpheng	Cheng		egg plant	-	Nov to May	-	-

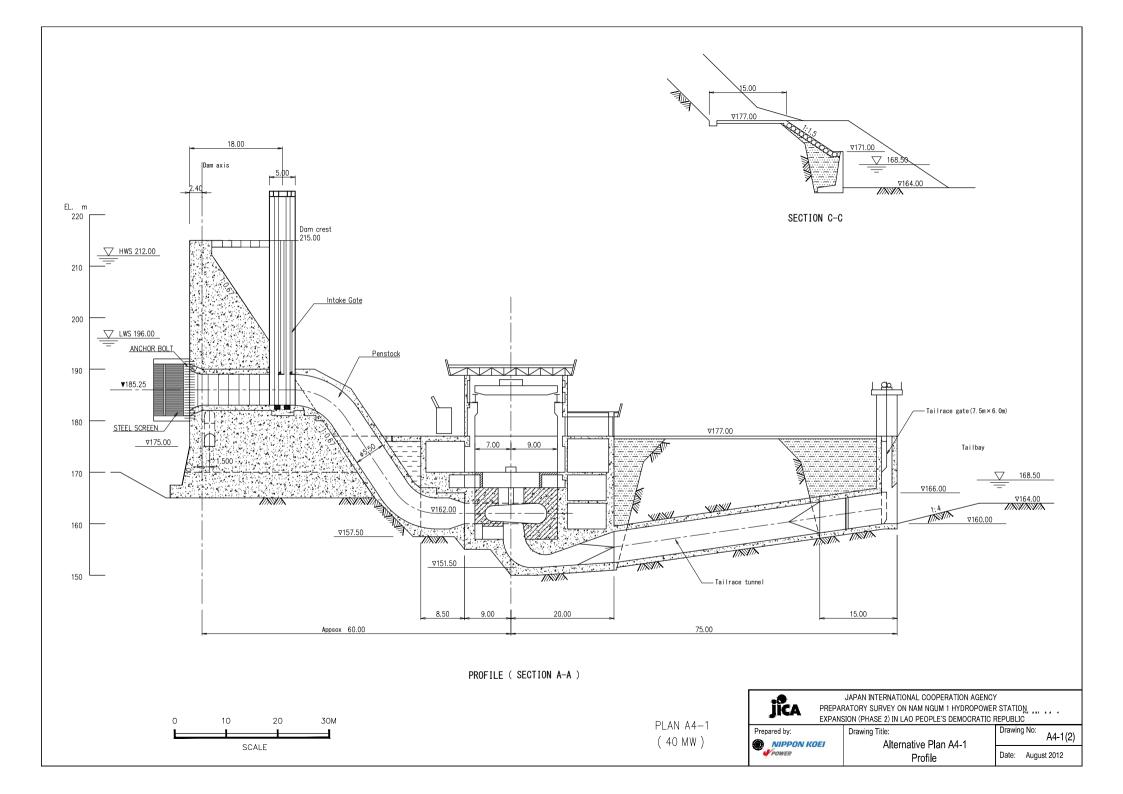

Appendix C7-5 Type of Vegetables from Riverbank Gardening

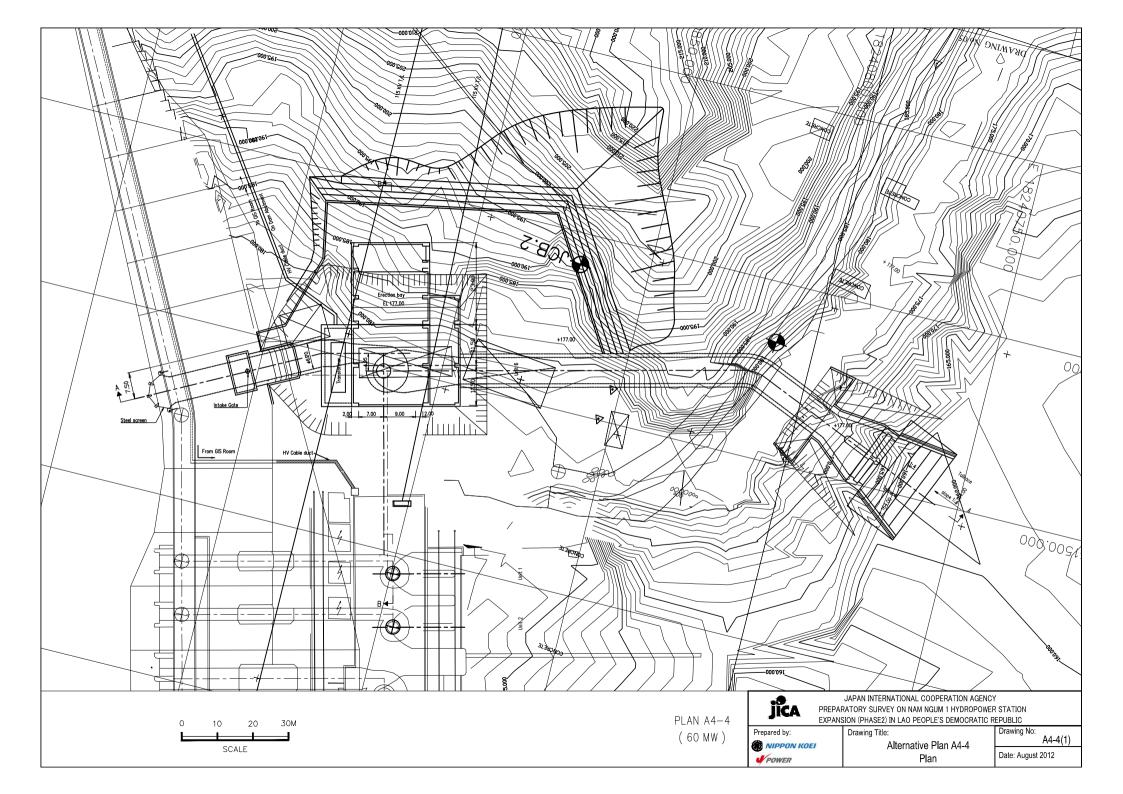

Appendix D

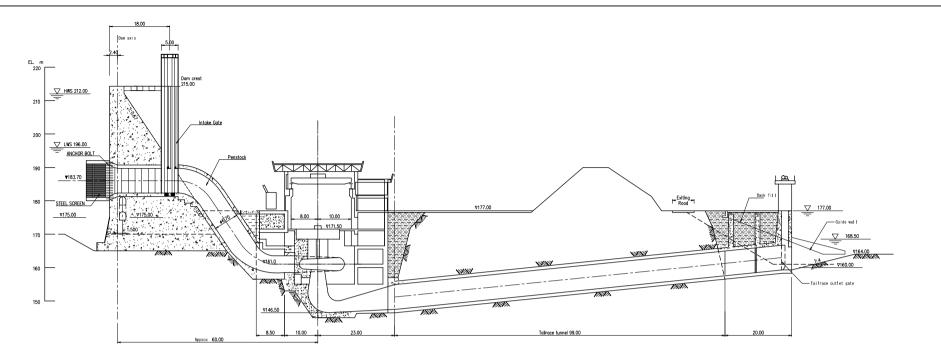

Alternative Plans

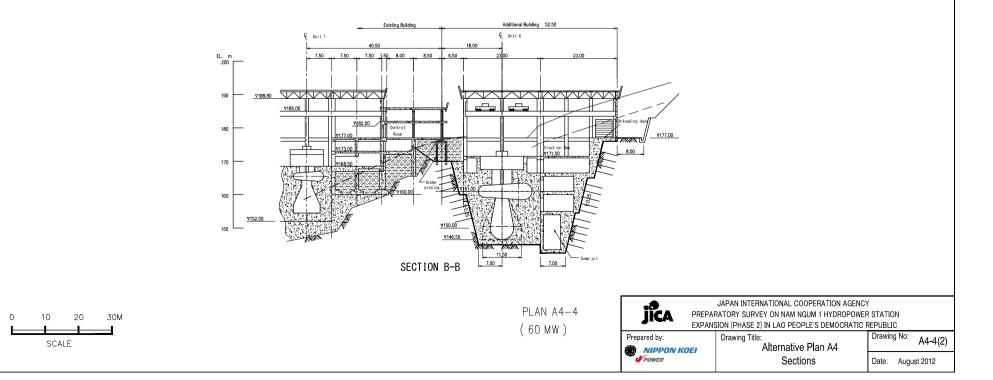


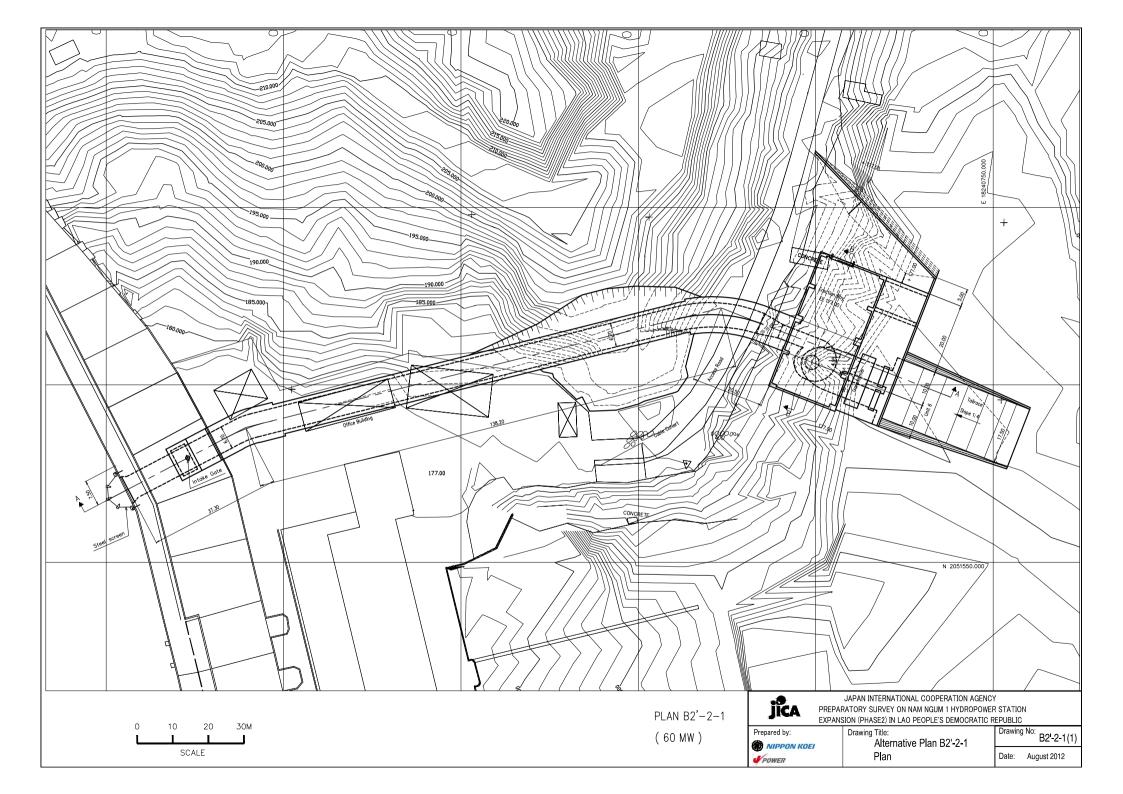


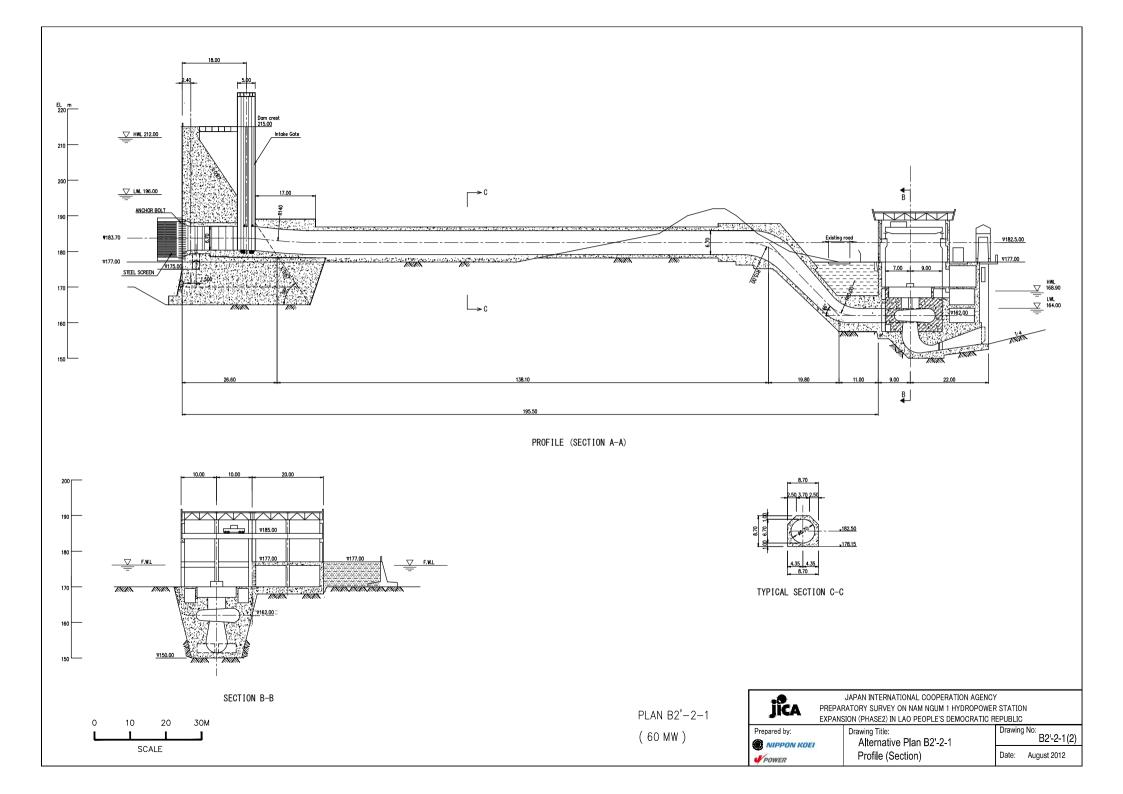


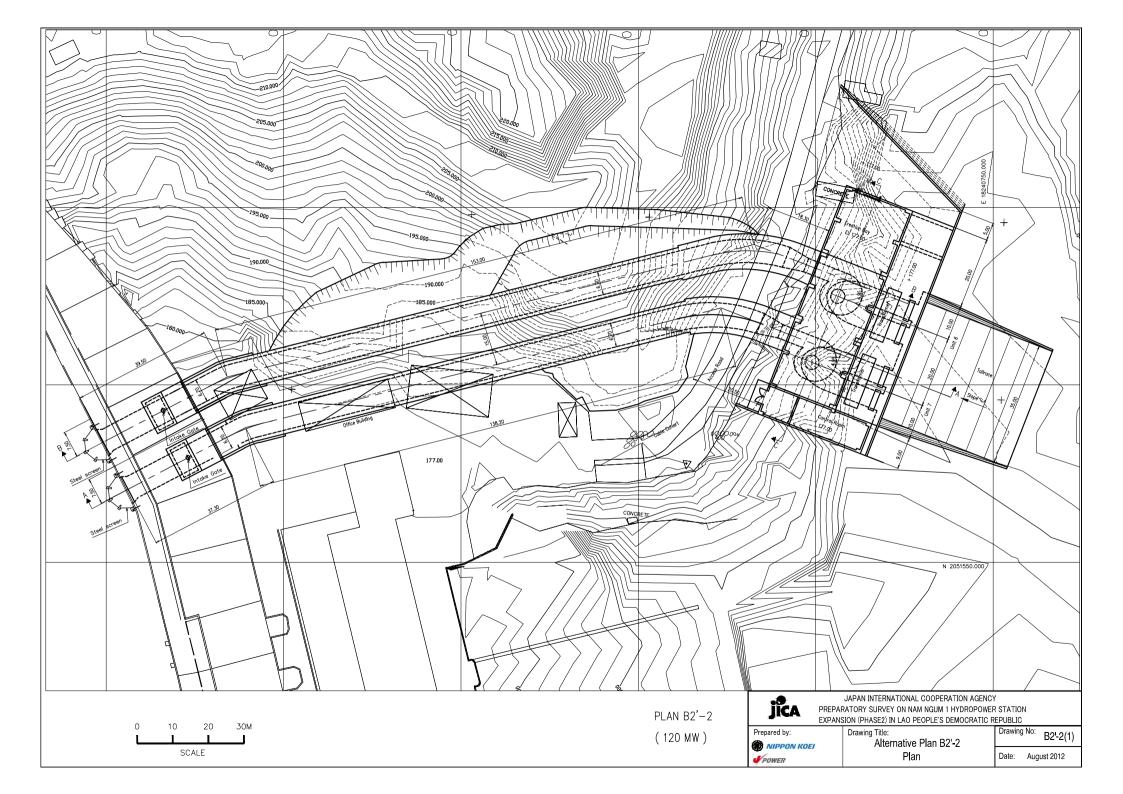


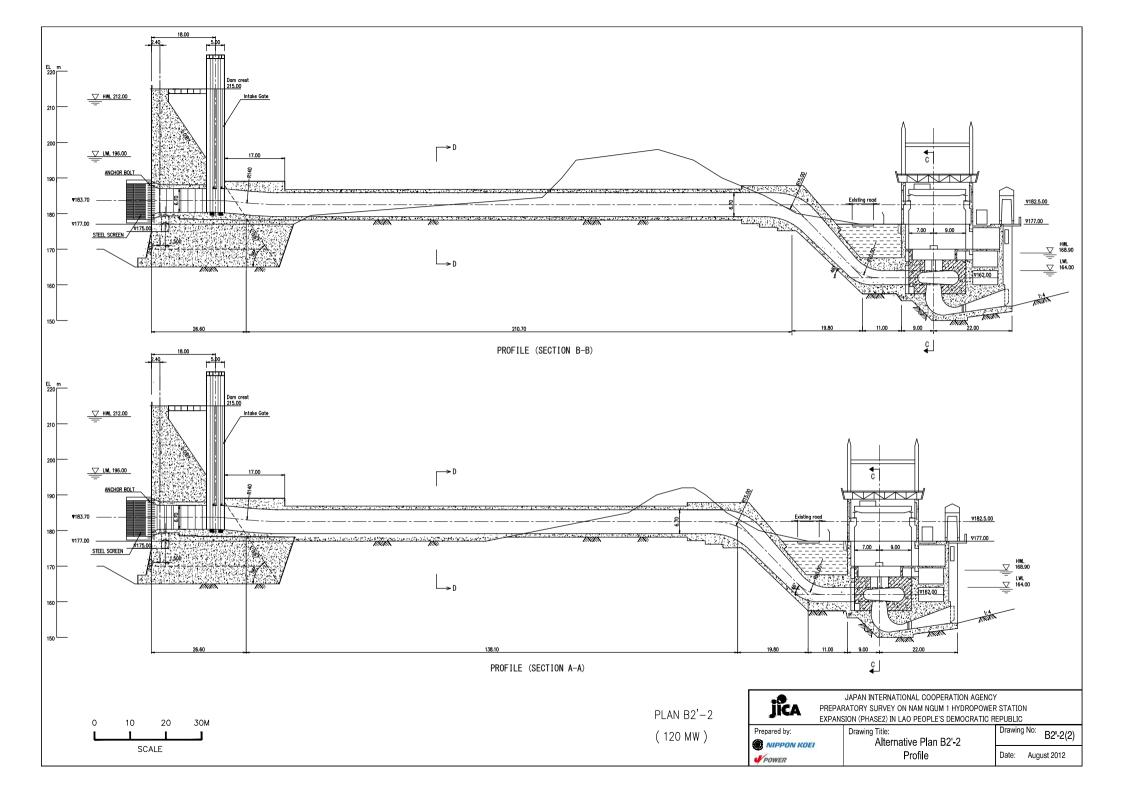


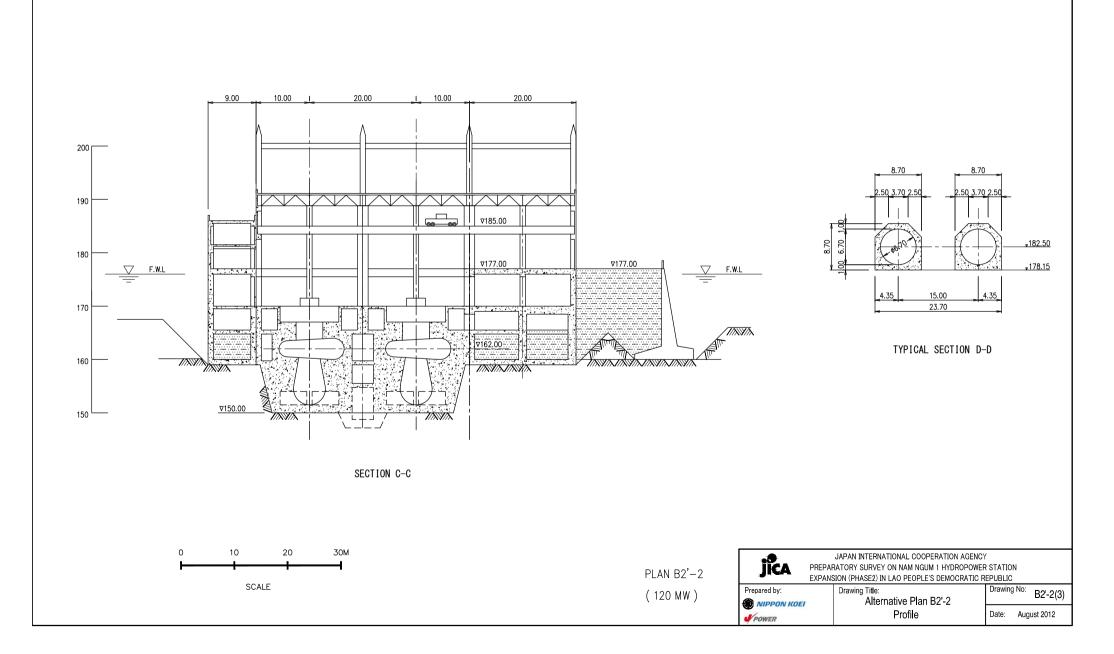


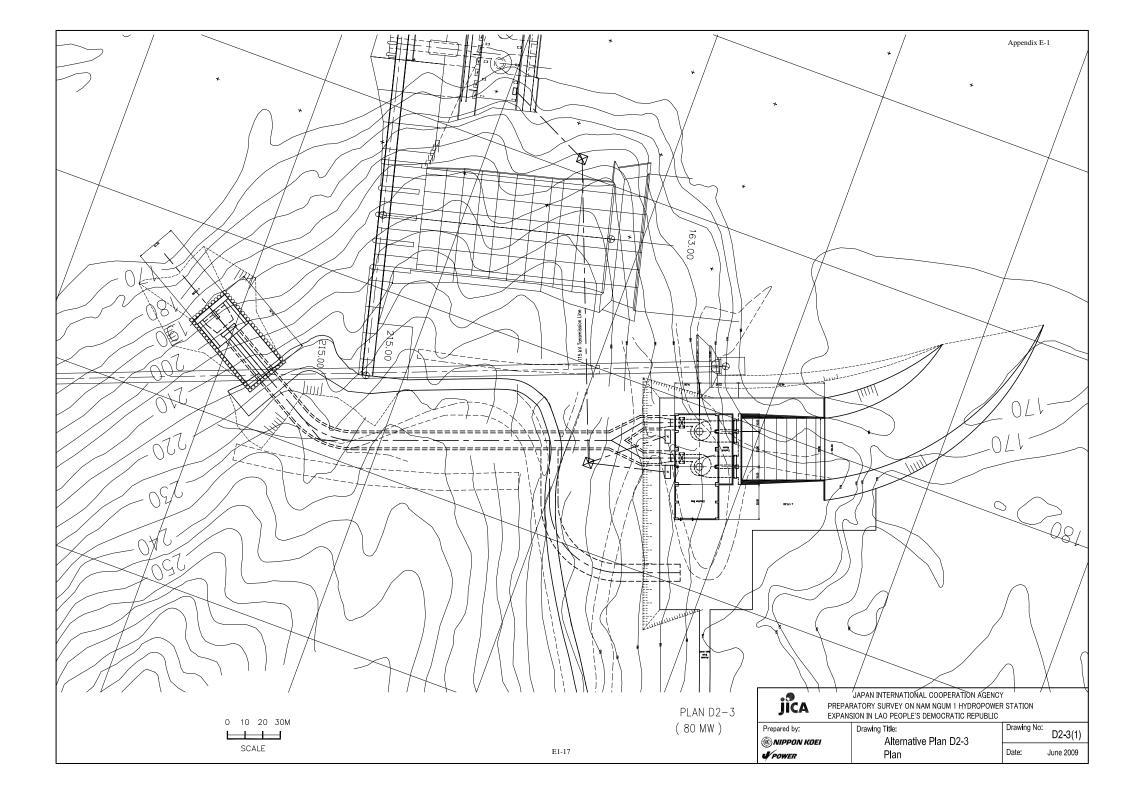


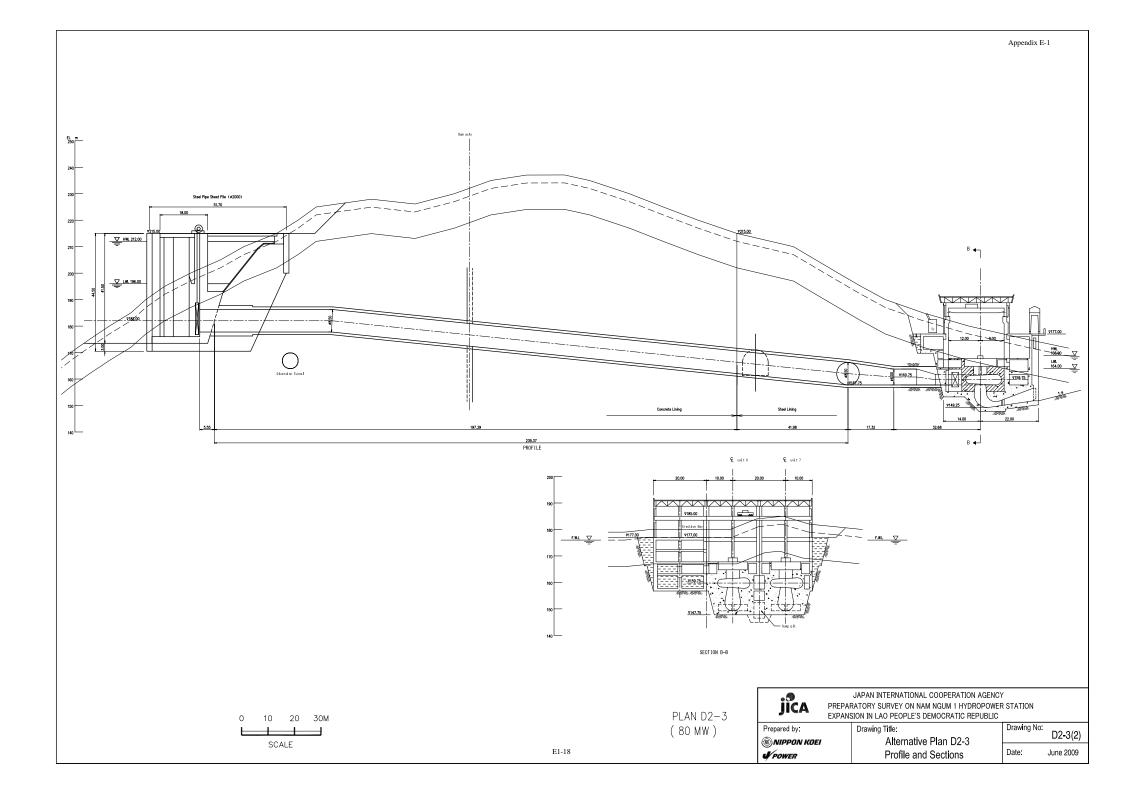





PROFILE (SECTION A-A)







Cost E	stimate for Comparison of Alternatives	or comparison of Alternatives		Plan A	1 (40MW)
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
A	CIVIL WORKS				
A1	Preparatory Works				
	a) Preparation of access on the existing draft tube deck	LS			10,63
	b) Relocation of gantry cranes (dam crest & draft tube)	LS			21,26
	Sub-total				31,89
42	Intake and Penstock				,
1	Temporary works				
	a) Intake enclosure structure in reservoir	LS			5,622,14
	b) Platform for dam penetration work	LS			841,58
2	Concrete excavation for dam penetration	m3	1,450	341	494,45
	Concrete (above El. 177m)	m3	1,130	198	223,74
	Re-bars	t	48	1,673	80,30
	Gate tower	No.		1,463,354	1,463,35
5	Miscellaneous works (metal works, road,	INO.	1	1,403,334	1,403,30
6	landscaping, etc.)	LS			872,55
	Sub-total				9,598,13
A 3	Powerhouse and Tailrace				5,000,10
1	Temporary works				
	a) Tailrace coffer structure (incl. grouting and rock anchoring)	LS			65,91
	b) Trestle at EL. 177 m for muck loading	LS			299,33
2		L3			299,33
2	Excavation			40	507.0
	a) Open excavation, rock, above El. 168m	m3	39,000	13	507,00
	b) Pit excavation, rock, below El. 168m	m3	24,000	40	960,00
	d) Underwater excavation, rock, outside coffer	m3	2,500	42	105,00
	e) Demolition of existing reinforced conc.	m3	400	59	23,60
3	Slope protection and rock support				
	a) Rock bolts on cut slope	m	4,300	22	94,60
	b) Shotcrete on cut slope	m3	540	819	442,26
	Backfill with free draining materials	m3	4,000	7	28,00
	Cut slope stabilization (spillway side)	LS			148,84
6	Concrete (incl. formwork cost)				
	a) Penstock below El. 177 m	m3	770	198	152,46
	b) Powerhouse	m3	13,100	265	3,471,50
	c) Tailrace	m3	1,100	272	299,20
7	Re-bars	t	840	1,673	1,405,32
8	Steel structures (roof truss, crane beams)	t	98	4,784	468,83
9	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	LS			404,01
10	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			266,27
	Sub-total				9,142,16
44	Roof Switchyard				-,,-
1	Concrete	m3	30	280	8,40
2	Re-bars	t	2.0	1,673	3,34
	Miscellaneous works	LS	2.0	1,010	1,17
5	Sub-total	5			12,92
45	General Item Cost				12,92
	Contractors' offices, camps, workshop,				
	power/water supply, insurance, bonds, etc.)	LS			2,683,58

Cost	Cost Estimate for Comparison of Alternatives		Plan A ²	I (40MW)	
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	Total of A				21,500,000
В	HYDRAULIC STEEL STRUCTURES				
B1	Intake and Penstock				
	1 Trash rack	t	43	7,000	301,000
	2 Stoplog	t	18	7,442	133,963
	Intake gate and hoist	t	57	9,569	545,422
	Penstock steel pipe	t	100	7,442	744,240
	Sub-total				1,724,625
B2	Draft Tube Stoplog Facility				
	1 Gantry crane rails & cable extension	LS			31,896
	Sub-total				31,896
	Total of B				1,800,000
С	ELECTRICAL /MECHANICAL EQUIPMENT				
C1	Generating Equipment				
	1 Turbine and auxiliaries	LS			7,639,915
	2 Generator and auxiliaries	LS			8,734,533
	3 Transformers	LS			1,526,113
	Indoor switchgear	LS			884,038
	5 Outdoor switchyard equipment	LS			514,173
	6 Control and protection equipment	LS			602,118
	7 Auxiliary equipment	LS			281,423
	B Miscellaneous materials	LS			285,284
	Sub-total				20,467,597
C2	Thalat Substation Improvement				
	1 Overhead power conductors	LS			0
	Sub-total				0
C3	Inspection, Training and Model Test				
	1 Factory inspection by the Employer	LS			61,081
	2 Factory training to the Employer	LS			20,360
	3 Site instruction	LS			72,716
	4 Turbine model test	LS			36,358
	Sub-total				190,515
	Total of C				20,700,000
D	ENGINEERING				
	1 Design and construction supervision	LS			6,600,000
	Total of D				6,600,000
Gran	d Total				50,600,000

Cost	t E	stimate for Comparison of Alternatives			Plan A4-1 (40MW)	
Iter	m	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
Α		CIVIL WORKS				
A1		Preparatory Works				
		a) Temporary buildings for power station O&M	LS			10,632
		stan including guard room	10			
		Sub-total				10,632
A2	4	Nam Leuk SS Building Relocation		450		
	1	Excavation for land preparation at new site	m3	150	6	900
	2	Concrete for tower foundations and cable ducts	m3	12	230	2,760
	3	Re-bars	t	1	1,673	1,004
	4	New building for GIS (150 m ²)	LS			79,740
	5	Cable rack along dam crest	LS			8,506
	6	Miscellaneous work	LS			2,532
		Sub-total				95,442
A3		Intake and Penstock				
	1	Temporary works				
		a) Intake enclosure structure in reservoir	LS			5,622,140
		b) Platform for dam penetration work	LS			841,585
	2	Concrete excavation for dam penetration	m3	1,500	341	511,500
		Concrete (including formwork cost)	m3	1,190	198	235,620
		Re-bars	t	49	1,673	81,977
	5	Gate tower	No.	1	1,463,354	1,463,354
	6	Miscellaneous works (metal works, road, landscaping, etc.)	LS			875,618
		Sub-total				9,631,794
A4		Powerhouse				-,,
	1	Under-pinning of existing control building columns	LS			318,960
		Excavation				,
	_	a) Open excavation above El. 168m(loose)	m3	9,000	6	54,000
		b) Open excavation above El. 168m(rock)	m3	34,000	13	442,000
		c) Pit excavation (rock) below El. 168m	m3	20,000	29	580,000
	3	Slope protection and rock support				
		a) Rock bolts on cut slope	m	3,100	22	68,200
		b) Shotcrete on cut slope	m3	590	819	483,210
	4	Backfill with free draining materials	m3	12,000	7	84,000
	5	Concrete of powerhouse building	m3	19,000	265	5,035,000
		Concrete of cable duct to GIS room	m3	100	272	27,200
		Re-bars	t	1,450	1,673	2,425,850
	8	Steel structures (roof truss, crane beam)	t	140	4,784	669,816
	9	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	LS			525,221
	10	Miscellaneous works (metalwork, earthing, paving,	LS			321,404
	10	landscaping, etc.) Sub-total	10			
A5		Tailrace				11,034,861
дЭ	1					
	1	a) Tailrace cellular cofferdam	LS			637,920
		b) Access road to outlet bottom	LS			58,476
	2	Excavation				00,470
	~	a) Open excavation (loose material)	m3	4,000	6	24,000
		b) Open excavation (rock)	m3	17,400	13	226,200
		c) Underwater excavation during coffer removal	m3	1,500	42	63,000
		d) Tunnel excavation for tailrace tunnel	m3	2,200	163	358,600
	3	Rock support and slope protection	-	,		_,_ >
		a) Rock bolts	m	1,000	22	22,000

Cost E		Estimate for Comparison of Alternatives			Plan A4-1 (40MW)		
Iter	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)	
		b) Shotcrete	m3	180	819	147,420	
	4	Backfill with free draining materials	m3	6,600	7	46,200	
	5	Concrete					
		a) Tunnel lining	m3	520	300	156,000	
		b) Outlet structure	m3	2,500	272	680,000	
	6	Re-bars	t	120	1,673	200,760	
	7	Consolidation grouting	m	225	70	15,750	
	8	Miscellaneous works	LS			79,090	
		Sub-total				2,715,416	
A6		General Item Cost					
		Contractors' offices, camps, workshop,					
		power/water supply, insurance, bonds, etc.)	LS			3,355,449	
		Total of A				26,800,000	
В		HYDRAULIC STEEL STRUCTURES					
B1		Intake and Penstock					
	1	Trash rack	t	43	7,000	301,000	
		Stoplog	t	18	7,442	133,963	
		Intake gate and hoist	t	57	9,569	545,422	
		Penstock steel pipe	t	100	7,442	744,240	
	4	Sub-total	ι -	100	7,442	1,724,625	
B2		Draft Tube Stoplog Facility				1,724,023	
DZ	1		+	56	10 622	E05 202	
	1	Draft tube gates and hoists	t	56	10,632	595,392	
		Sub-total	_			595,392	
_						2,300,000	
C							
C1	_	Generating Equipment				0.474.000	
	1	Turbine and auxiliaries	LS			8,171,608	
	2	Generator and auxiliaries	LS			8,956,819	
		Transformers	LS			1,442,752	
		Indoor switchgear	LS			707,316	
		Outdoor switchyard equipment	LS			2,987,653	
		Control and protection equipment	LS			660,539	
		Auxiliary equipment	LS			723,400	
	8	Miscellaneous materials	LS			535,363	
		Sub-total				24,185,450	
C2		Thalat Substation Improvement					
	1	Overhead power conductors	LS			0	
		Sub-total				0	
C3		Inspection, Training and Model Test					
		Factory inspection by the Employer	LS			61,081	
	2	Factory training to the Employer	LS			20,360	
	3	Site instruction	LS			72,716	
	4	Turbine model test	LS			36,358	
		Sub-total				190,515	
		Total of C				24,400,000	
D		ENGINEERING					
	1	Design and construction supervision	LS			8,030,000	
	-	Total of D	-			8,000,000	
						0,000,000	
0		Total				61,500,000	

Cost	st Estimate for Comparison of Alternatives				Plan A4-3 (40MW)	
Iten	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
A		CIVIL WORKS				
A1		Preparatory Works				
		Temporary buildings for power station O&M				10.00
		a) staff including guard room	LS			10,63
		Sub-total				10,63
A2		Nam Leuk SS Building Relocation				· ·
	-	Excavation for land preparation at new site	m3	150	6	90
		Concrete for tower foundations and cable ducts	m3	12	230	2,76
	3	Re-bars	t	1	1,673	1,00
		New building for GIS (150 m ²)	LS		.,0.0	79,74
			LS			
		Cable rack along dam crest				8,50
	6	Miscellaneous work	LS			2,53
		Sub-total				95,44
A3		Intake and Penstock				
	1	Temporary works				
		a) Intake enclosure structure in reservoir	LS			5,622,14
		b) Platform for dam penetration work	LS			841,58
	2	Concrete excavation for dam penetration	m3	1,500	341	511,50
	3	Concrete (including formwork cost)	m3	1,190	198	235,62
	4	Re-bars	t	49	1,673	81,97
	5	Gate tower	No.	1	1,463,354	1,463,35
	c	Miscellaneous works (metal works, road,	10			975 64
	6	landscaping, etc.)	LS			875,61
		Sub-total				9,631,79
A4		Powerhouse				
	1	Under-pinning of existing control building columns	LS			318,96
	2	Excavation				
	_	a) Open excavation above El. 168m(loose)	m3	9,000	6	54,00
		b) Open excavation above El. 168m(rock)	m3	34,000	13	442,00
		c) Pit excavation (rock) below El. 168m	m3	21,000	29	609,00
	3	Slope protection and rock support	mo	21,000	20	000,00
	-	a) Rock bolts on cut slope	m	3,100	22	68,20
		b) Shotcrete on cut slope	m3	570	819	466,83
		Backfill with free draining materials	m3	12,000	7	84,00
		Concrete of powerhouse building	m3	12,000	265	5,035,00
		Concrete of cable duct to GIS room		,		
			m3	100	272	27,20
		Re-bars	t	1,450	1,673	2,425,85
	-	Steel structures (roof truss, crane beam)	t	140	4,784	669,76
		Architectural works (finishing, windows, doors,	LS			525,22
		roofing, plumbing, lighting, ventilating, etc.)				•
1		Miscellaneous works (metalwork, earthing, paving,	LS			321,78
		landscaping, etc.)				
		Sub-total				11,047,80
A5	-	Tailrace				
		Temporary cofferdam and access road	LS			120,00
	2	Excavation				
		a) Open excavation (loose material)	m3	4,200	6	25,20
		b) Open excavation (rock)	m3	4,200	13	54,60
		c) Tunnel excavation for tailrace tunnel	m3	5,700	163	929,10
	3	Rock support and slope protection				
		a) Rock bolts	m	1,400	22	30,80
		b) Shotcrete	m3	330	819	270,27
	-	Backfill with free draining materials	m3	5,400	7	37,80
	-	Concrete		,	· · · ·	- ,

Cos	st Estimate for Comparison of Alternatives				Plan A4	4-3 (40MW)	
Iter	m	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)	
		a) Tunnel lining	m3	2,370	300	711,000	
		b) Outlet structure	m3	1,330	272	361,760	
	6	Re-bars	t	161	1,673	269,353	
	7	Consolidation grouting	m	520	70	36,400	
	8	Miscellaneous works	LS			81,788	
		Sub-total				2,928,071	
A6		General Item Cost				· · ·	
		Contractors' offices, camps, workshop,				0 007 077	
		power/water supply, insurance, bonds, etc.)	LS			3,387,677	
		Total of A				27,100,000	
В		HYDRAULIC STEEL STRUCTURES					
B1		Intake and Penstock					
	1	Trash rack	t	43	7,000	301,000	
	2	Stoplog	t	18	7,442	133,963	
		Intake gate and hoist	t	57	9,569	545,422	
		Penstock steel pipe	t	100	7,442	744,240	
		Sub-total			,	1,724,625	
B2		Draft Tube Stoplog Facility				, ,	
	1	Draft tube gates and hoists	t	56	10,632	595,392	
	-	Sub-total				595,392	
		Total of B				2,300,000	
С		ELECTRICAL /MECHANICAL EQUIPMENT				,,	
C1		Generating Equipment					
• •	1	Turbine and auxiliaries	LS			8,171,608	
	2	Generator and auxiliaries	LS			8,956,819	
	3		LS			1,442,752	
		Indoor switchgear	LS			707,316	
		Outdoor switchyard equipment	LS			2,987,653	
		Control and protection equipment	LS			660,539	
		Auxiliary equipment	LS			723,400	
		Miscellaneous materials and services	LS			535,363	
		Sub-total				24,185,450	
C2		Thalat Substation Improvement				,,	
	1	Overhead power conductors	LS			0	
	·	Sub-total				0	
C3		Inspection, Training and Model Test				•	
••	1	Factory inspection by the Employer	LS			61,081	
	2	Factory training to the Employer	LS			20,360	
		Site instruction	LS			72,716	
		Turbine model test	LS			36,358	
		Sub-total				190,515	
		Total of C				24,400,000	
D		ENGINEERING				27,700,000	
2	1	Design and construction supervision	LS			8,070,000	
	1		L3				
		Total of D				8,100,000	
Gra	nd	Total				61,900,000	

Cost Estimate for Comparison of Alternatives				Plan B2'-1-1	(40 MW)
Item	n Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
A	CIVIL WORKS				
A1	Preparatory Works				
	a) CSM (civil) staff	LS			10,632
	Sub-total				10,632
A2	Nam Leuk SS Building Relocation		450		
	1 Excavation for land preparation at new site	m3	150	6	900
	2 Concrete for tower foundations and cable ducts	m3	12	230	2,760
	3 Re-bars	t	1	1,673	1,004
	4 New building for GIS (220 m ²)	LS			79,740
	5 Cable rack along dam crest	LS			8,506
	6 Miscellaneous work	LS			2,532
	Sub-total				95,442
A3	Intake				
	1 Temporary works				
	a) Intake enclosure structure in reservoir	LS			5,622,140
	b) Platform for dam penetration work	LS			27,408
	2 Concrete excavation for dam penetration	m3	1,500	341	511,500
	3 Concrete (including formwork cost)	m3	1,190	198	235,620
	4 Re-bars	t	49	1,673	81,977
	5 Gate tower	No.	1	1,585,618	1,585,618
	6 Miscellaneous works (metal works, road,	LS			806,426
	landscaping, etc.) Sub-total				8,870,689
A4	Penstock				0,070,008
A4	1 Excavation				
	a) Open excavation (loose materials)	m3	500	6	3,000
	b) Open excavation (Rock)	m3	6,000	13	78,000
	2 Rock support and slope protection	ino	0,000	10	70,000
	a) Rock bolts	m	180	22	3,960
	b) Shotcrete	m3	200	819	163,800
	3 Concrete				,
	a) Concrete for cover pipe	m3	5,700	172	980,400
	5 Re-bars	t	180	1,673	301,140
	8 Miscellaneous works	LS			45,909
	Sub-total				1,576,209
A5	Powerhouse and Tailrace				
	1 Temporary cofferdam & access road	LS			318,960
	2 Excavation				
	a) Open excavation, loose materials	m3	7,800	6	46,800
	b) Open excavation, rock	m3	18,000	13	234,000
	3 Slope protection and rock support				
	a) Rock bolts on cut slope	m	280	22	6,160
	b) Shotcrete on cut slope	m3	140	819	114,660
	4 Backfill with free draining materials	m3	12,600	7	88,200
	5 Concrete		(0.000		0.001.000
	a) Powerhouse building	m3	13,600	265	3,604,000
	b) Tailrace wall and retaining wall	m3	1,450	272	394,400
	c) HV cable culvert and duct	m3	190	272	51,680
	6 Re-bars 7 Steel structures (roof truss, crane beam)	t	1,100		1,840,300
	(ISTEEL STUCTURES (TOOT TRUSS CRADE DEAM)	t	110	4,784	526,240
	Architectural works (finishing, windows, doors,				

Cost	Cost Estimate for Comparison of Alternatives				Plan B2'-1-1	(40 MW)
Iter	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	9	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			259,184
		Sub-total				8,898,640
A6		General Item Cost				
		Contractors' offices, camps, workshop, power/water supply, insurance, bonds, etc.)	LS			2,778,802
		Total of A				22,200,000
в		HYDRAULIC STEEL STRUCTURES				, ,
B1		Intake and Penstock				
	1	Trash rack	t	43	7,000	301,000
		Stoplog	t	12	7,442	89,309
		Intake gate and hoist	t	57	9,569	545,422
		Penstock steel pipe	t	470	6,379	2,998,224
		Sub-total	-		0,010	3,933,954
B2		Draft Tube Stoplog Facility				0,000,001
	1	Draft tube gates and hoists	t	56	10,632	560,000
		Sub-total			10,002	560,000
-		Total of B				4,500,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				1,000,000
C1		Generating Equipment				
•	1	Turbine and auxiliaries	LS			8,171,609
		Generator and auxiliaries	LS			8,956,818
	_	Transformers	LS			1,442,752
		Indoor switchgear	LS			707,316
		Outdoor switchyard equipment	LS			2,987,653
		Control and protection equipment	LS			660,539
		Auxiliary equipment	LS			723,399
		Miscellaneous materials	LS			535,363
-	0	Sub-total	L3			24,185,450
C2		Thalat Substation Improvement				24,105,450
62	1	Overhead power conductors	LS			0
	•	Sub-total	LO			0
C3		Inspection, Training and Model Test				0
00	1	Factory inspection by the Employer	LS			61,081
	2	Factory training to the Employer	LS			20,360
		Site instruction	LS		├	72,716
		Turbine model test	LS			36,358
	4	Sub-total	10			190,515
						24,400,000
		Total of C ENGINEERING	l			24,400,000
D	4				├	7 070 000
	1	Design and construction supervision	LS			7,670,000
		Total of D				7,700,000
Grai	nd	Total				58,800,000

Cost E	cost Estimate for Comparison of Alternatives			Plan A2 (60MW)	
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
Α	CIVIL WORKS				
A1	Preparatory Works				
	a) Preparation of access on the existing draft tube deck	LS			10,632
	b) Relocation of existing equipment (intake and draft tube gantry cranes)	LS			21,264
A2	Sub-total Intake and Penstock				31,896
1	Temporary works				
	a) Intake enclosure structure in reservoir	LS			5,816,584
	b) Platform for dam penetration work	LS			841,585
2	Concrete excavation for dam penetration	m3	2,100	341	716,100
3	Concrete (above El. 177 m)	m3	1,600	198	316,800
4	Re-bars	t	64	1,673	107,072
5	Gate Tower	No.	1	1,808,459	1,808,459
6	Miscellaneous works (metal works, road, landscaping, etc.)	LS		,,	779,814
	Sub-total				10,386,414
A3	Powerhouse and Tailrace				
1	Temporary works				
	anchoring)	LS			95,688
2	a) Trestle at EL. 177 m for muck loading Excavation	LS			299,333
	a) Open excavation, rock, above El. 168m	m3	50,000	13	650,000
	b) Pit excavation, rock, below El. 168m	m3	32,000	40	1,280,000
	d) Underwater excavation, rock, outside coffer	m3	3,400	42	142,800
	e) Demolition of existing reinforced conc.	m3	490	59	28,910
3	Removal of existing roof (Columns 17 to 18) Slope protection and rock support	LS			50,000
	a) Rock bolts on cut slope	m	7,300	22	160,600
	b) Shotcrete on cut slope	m3	710	819	581,490
5	Backfill with free draining materials	m3	4,600	7	32,200
6	Cut slope stabilization (spillway side)	LS			265,800
7	Concrete (incl. formwork cost)				
	a) Penstock below El. 177 m	m3	950	198	188,100
	b) Powerhouse	m3	18,500	265	4,902,500
	c) Tailrace	m3	1,500		408,000
8	,	t	1,170		1,957,410
9		t	200	4,784	956,880
10	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	LS			606,024
11	Miscellaneous works (metal works, earthing, paving, landscaping, etc.)	LS			378,172
	Sub-total				12,983,907
A4	Roof Switchyard				12,303,307
4	Concrete	m?	50	272	13,600
ו ר	Re-bars	m3 +	3.0		
2		t	3.0	1,673	5,019
3	Miscellaneous works	LS			1,757
	Sub-total				20,376

Cost Estimate for Comparison of Alternatives

Plan A2 (60MW)

	Cost Estimate for Comparison of Alternatives					
Iter	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
A5		General Item Cost				
		Contractors' offices, camps, workshop, power/water supply, insurance, bonds, etc.)	LS			3,346,085
		Total of A				26 800 000
D						26,800,000
B B1		HYDRAULIC STEEL STRUCTURES				
BI	1	Intake and Penstock Trash rack	4	63	7 000	444.000
			t		7,000	441,000
		Stoplog	t	24	7,442	178,618
		Intake gate and hoist	t	73	11,695	853,750
	4	Penstock steel pipe	t	150	7,442	1,116,360
		Sub-total				2,589,727
B2		Draft Tube Stoplog Facility				
	1	Draft tube gates and hoists	t	80	10,632	850,560
		Sub-total				850,560
		Total of B				3,400,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				
C1		Generating Equipment				
		Turbine and auxiliaries	LS			11,378,877
	2	Generator and auxiliaries	LS			13,008,400
	3	Transformers	LS			2,189,845
	4	Indoor switchgear	LS			655,339
	5	Outdoor switchyard equipment	LS			534,527
	6	Control and protection equipment	LS			504,609
	7	Auxiliary equipment	LS			1,013,693
	8	Miscellaneous materials	LS			667,163
		Sub-total				29,952,453
C2		Thalat Substation Improvement				
	1	Overhead power conductors	LS			0
		Sub-total				0
C3		Inspection, Training and Model Test				
	1	Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
		Turbine model test	LS			36,358
	-	Sub-total				190,515
		Total of C				30,100,000
D		ENGINEERING				
-	1	Design and construction supervision	LS			9,050,000
	•	Total of D				9,100,000
_						
Gra	nd	Total				69,400,000

Decrease of energy production due to 3 month stoppage of Unit 5 during renewing of roof on spillway side of existing powerhouse.	LS		4,000,000
Total			73,400,000

8.96	cents/kWh (tariff)
3	month stoppage
	% plant factor (dry seasons)
3,909,427	US\$ reduction
3,909,000	Rounded US\$ reduction

Cost	E	stimate for Comparison of Alternatives			Plan A4	-2 (60MW)
Iten	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
A		CIVIL WORKS				
A1		Preparatory Works				
		Temporary buildings for power station O&M	10			10.000
		a) staff including guard room	LS			10,632
		Sub-total				10,632
A2		Nam Leuk SS Building Relocation				
		Excavation for land preparation at new site	m3	150	6	900
	2	Concrete for tower foundations and cable ducts	m3	12	230	2,760
	3	Re-bars	t	1	1,673	1,004
	4	New building for GIS (150 m ²)	LS			79,740
	5	Cable rack along dam crest	LS			8,506
	6	Miscellaneous work	LS			2,532
	-	Sub-total				95,442
A3		Intake and Penstock				
		Temporary works				
	_	a) Intake enclosure structure in reservoir	LS			5,816,584
		b) Platform for dam penetration work	LS		l l	841,585
		Concrete excavation for dam penetration	m3	2,170	341	739,970
		Concrete	m3	1,680	198	332,640
		Re-bars	t	66	1,673	110,418
		Gate Tower	Nos	1	1,808,459	1,808,459
		Miscellaneous works (metal works, road,			1,000,400	
	6	landscaping, etc.)	LS			964,966
		Sub-total				10,614,622
A4		Powerhouse				
	1	Under-pinning of existing control building columns	LS			318,960
	2	Excavation				
		a) Open excavation above El. 168m(loose)	m3	10,000	6	60,000
		b) Open excavation above El. 168m(rock)	m3	55,000	13	715,000
	_	c) Pit excavation (rock) below El. 168m	m3	34,000	29	986,000
		Slope protection and rock support				
		a) Rock bolts on cut slope	m	4,100	22	90,200
		b) Shotcrete on cut slope	m3	890	819	728,910
		Backfill with free draining materials	m3	17,000	7	119,000
		Concrete of powerhouse building	m3	27,000	265	7,155,000
		Concrete of cable duct to GIS room	m3	300	272	81,600
		Re-bars	t	2,280	1,673	3,814,440
		Steel structures (roof truss, crane beam)	t	220	4,784	1,052,480
		Architectural works (finishing, windows, doors,		0	,	
		roofing, plumbing, lighting, ventilating, etc.)	LS			808,032
		Miscellaneous works (metalwork, earthing, paving,				·
1		landscaping, etc.)	LS			477,889
		Sub-total				16,407,511
A5		Tailrace				
		Temporary works				
		a) Tailrace cellular cofferdam	LS			637,920
		b) Access road to outlet bottom	LS			58,476
		Excavation	-			
		a) Open excavation (loose material)	m3	4,700	6	28,200
		b) Open excavation (rock)	m3	19,800	13	257,400
		c) Underwater excavation during coffer removal	m3	1,500	42	63,000
		d) Tunnel excavation for tailrace tunnel	m3	2,200	163	358,600
		Rock support and slope protection	-	-,		,- ••
		a) Rock bolts	m	1,240	22	27,280
		b) Shotcrete	m3	220	819	180,180

Cos	t E	stimate for Comparison of Alternatives			Plan A4	-2 (60MW)
Iter	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	3	Backfill with free draining materials	m3	8,200	7	57,400
	4	Concrete				
		a) Tunnel lining	m3	470	300	141,000
		b) Outlet structure	m3	3,100	272	843,200
	5	Re-bars	t	140	1,673	234,220
	6	Consolidation grouting	m	200	70	14,000
	7	Miscellaneous works	LS			87,026
		Sub-total				2,987,902
A6		General Item Cost				
		Contractors' offices, camps, workshop,				4 000 004
		power/water supply, insurance, bonds, etc.)	LS			4,302,301
		Total of A				34,400,000
В		HYDRAULIC STEEL STRUCTURES				
B1		Intake and Penstock				
	1	Trash rack	t	63	7,000	441,000
	2	Stoplog	t	24	7,442	178,618
	3	Intake gate and hoist	t	73	11,695	853,750
		Penstock steel pipe	t	150	7,442	1,116,360
		Sub-total				2,589,727
B2		Draft Tube Stoplog Facility				
	1	Draft tube gates and hoists	t	80	10,632	850,560
		Sub-total				850,560
		Total of B				3,400,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				· ·
C1		Generating Equipment				
	1	Turbine and auxiliaries	LS			11,378,877
	2	Generator and auxiliaries	LS			13,008,400
	3	Transformers	LS			2,189,845
		Indoor switchgear	LS			733,304
		Outdoor switchyard equipment	LS			2,989,342
		Control and protection equipment	LS			660,539
		Auxiliary equipment	LS			1,013,693
		Miscellaneous materials	LS			724,754
		Sub-total				32,698,754
C2		Thalat Substation Improvement				
	1	Overhead power conductors	LS			0
		Sub-total				0
C3		Inspection, Training and Model Test				
		Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
		Turbine model test	LS			36,358
		Sub-total	_			190,515
		Total of C				32,900,000
D		ENGINEERING				,000,000
-	1	Design and construction supervision	LS			10,610,000
	1	Total of D				10,600,000
Gra	nd	Total				81,300,000

0051	Estimate for Comparison of Alternatives				-4 (60MW)
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
1	CIVIL WORKS				
\1	Preparatory Works				
	a) Temporary buildings for power station O&M	LS			10,63
	staff including guard room	20			
	Sub-total				10,63
\2	Nam Leuk SS Building Relocation				
1	Excavation for land preparation at new site	m3	150	6	90
2	Concrete for tower foundations and cable ducts	m3	12	230	2,7
3	Re-bars	t	1	1,673	1,0
2	New building for GIS (150 m ²)	LS			79,7
5	Cable rack along dam crest	LS			8,5
6	Miscellaneous work	LS			2,53
	Sub-total				95,4
43	Intake and Penstock				,-
	Temporary works				
	a) Intake enclosure structure in reservoir	LS			5,816,5
	b) Platform for dam penetration work	LS			841,5
2	Concrete excavation for dam penetration	m3	2,170	341	739,9
	Concrete (including formwork cost)	m3	1,680	198	332,6
	Re-bars	t	66	1,673	110,4
	Gate tower	Nos	1	1,808,459	1,808,4
	Miscellaneous works (metal works, road,		•	1,000,100	
6	landscaping, etc.)	LS			964,9
	Sub-total				10,614,6
4	Powerhouse				
1	Under-pinning of existing control building columns	LS			318,9
	PExcavation				,-
-	a) Open excavation above El. 168m(loose)	m3	10,000	6	60,0
	b) Open excavation above El. 168m(rock)	m3	52,000	13	676,0
	c) Pit excavation (rock) below El. 168m	m3	33,000	29	957,0
	Slope protection and rock support	IIIS	33,000	29	937,0
	a) Rock bolts on cut slope	m	3,800	22	83,6
	b) Shotcrete on cut slope	m m2	640	819	
,	Backfill with free draining materials	m3 m3	15,000	019	524,1 105,0
	Concrete of powerhouse building		27,000	265	7,155,0
	Concrete of powerhouse building	m3	300	203	
	Re-bars	m3		1,673	81,6 3,814,4
	Steel structures (roof truss, crane beam)	t t	2,280 220	4,784	1,052,4
C		L	220	4,704	1,052,40
ę	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	LS			808,03
10	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			469,0
	Sub-total				16,105,3
\5	Tailrace				,, _
	Temporary cofferdam and access road	LS			120,0
	2 Excavation	-			
	a) Open excavation (loose material)	m3	5,000	6	30,0
	b) Open excavation (rock)	m3	5,000	13	65,0
	c) Tunnel excavation for tailrace tunnel	m3	7,300	163	1,189,9
3	Rock support and slope protection		,		, , =
-	a) Rock bolts	m	2,000	22	44,0
	b) Shotcrete	m3	380	819	311,2
	Backfill with free draining materials	m3	16,000	7	112,0

Cost	tΕ	stimate for Comparison of Alternatives			Plan A4	-4 (60MW)
Iter	n	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	5	Concrete				
		a) Tunnel lining	m3	3,200	300	960,000
		b) Outlet structure	m3	1,800	272	489,600
	6	Re-bars	t	86	1,673	143,878
	7	Consolidation grouting	m	600	70	42,000
	8	Miscellaneous works	LS			101,628
		Sub-total				3,609,226
A6		General Item Cost				
		Contractors' offices, camps, workshop,				4 0 40 000
		power/water supply, insurance, bonds, etc.)	LS			4,348,000
		Total of A				34,800,000
В		HYDRAULIC STEEL STRUCTURES				· · ·
B1		Intake and Penstock				
	1	Trash rack	t	63	7,000	441,000
		Stoplog	t	24	7,442	178,618
		Intake gate and hoist	t	73	11,695	853,750
		Penstock steel pipe	t	150	7,442	1,116,360
	Ū	Sub-total		100	.,	2,589,727
B2		Draft Tube Stoplog Facility				2,000,121
	1	Draft tube gates and hoists	t	80	10,632	850,560
		Sub-total		00	10,002	850,560
-		Total of B				3,400,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				0,400,000
C1		Generating Equipment				
01	1	Turbine and auxiliaries	LS			11,378,877
		Generator and auxiliaries	LS			13,008,400
		Transformers	LS			2,189,845
		Indoor switchgear	LS			733,304
		Outdoor switchyard equipment	LS			2,989,342
		Control and protection equipment	LS			660,539
		Auxiliary equipment	LS			
		Miscellaneous materials and services	LS			1,013,693 724,754
	0	Sub-total	1.3			32,698,754
C2		Thalat Substation Improvement				32,090,754
62	1	Overhead power conductors	LS			0
	1	Sub-total	10			0
<u></u>		Inspection, Training and Model Test				0
C3	4		10			61 001
		Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
	4	Turbine model test	LS			36,358
		Sub-total				190,515
<u> </u>		Total of C				32,900,000
D		ENGINEERING				
	1	Design and construction supervision	LS			10,670,000
		Total of D				10,700,000
0	hd	Total				81,800,000

Cost	Estimate for Comparison of Alternatives			Plan B2'-2-1	(60 MW)
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$
A	CIVIL WORKS				
A1	Preparatory Works				
	a) Temporary office building for power station	LS			10,632
	Oalvi (civii) stali				
	Sub-total				10,632
A2	Nam Leuk SS Building Relocation				
	1 Excavation for land preparation at new site	m3	150	6	90
:	2 Concrete for tower foundations and cable ducts	m3	12	230	2,76
	3 Re-bars	t	1	1,673	1,00
	⁴ New building for GIS (150 m ²)	LS			79,74
ļ	5 Cable rack along dam crest	LS			8,50
	6 Miscellaneous work	LS			2,78
	Sub-total				95,69
43	Intake				
	1 Temporary works				
	a) Intake enclosure structure in reservoir	LS			5,816,58
	b) Platform for dam penetration work	LS			11,94
	2 Concrete excavation for dam penetration	m3	2,170	341	739,97
	3 Concrete (including formwork cost)	m3	1,660	198	328,68
	4 Re-bars	t	65	1,673	108,74
	4 Gate towers	Nos.	1	1,808,459	1,808,45
4	Miscellaneous works (metal works, road, landscaping, etc.)	LS			881,43
	Sub-total				9,695,82
44	Penstock				0,000,02
17	1 Excavation				
	a) Open excavation (loose materials)	m3	500	6	3,00
	b) Open excavation (Rock)	m3	6,500	13	84,50
	2 Rock support and slope protection	_			- ,
	a) Rock bolts	m	200	22	4,40
	b) Shotcrete	m3	230	819	188,37
	4 Concrete				
	a) Concrete for cover pipe	m3	7,000	172	1,204,00
:	5 Re-bars	t	210	1,673	351,33
i	3 Miscellaneous works	LS			55,06
	Sub-total				1,890,66
45	Powerhouse and Tailrace				
	1 Temporary cofferdam & access road	LS			340,22
1	2 Excavation				
	a) Open excavation, loose materials	m3	9,500	6	57,00
	b) Open excavation, rock	m3	22,000	13	286,00
	3 Slope protection and rock support				
	a) Rock bolts on cut slope	m	340	22	7,48
	b) Shotcrete on cut slope	m3	170	819	139,23
	4 Backfill with free draining materials	m3	15,700		109,90
	5 Concrete		47.000	0.05	4 505 00
	a) Powerhouse building	m3	17,000	265	4,505,00
	b) Tailrace wall and retaining wall	m3	1,800	272	489,60
	c) HV cable culvert and duct	m3	240	272	65,28
	6 Re-bars 7 Steel structures (reaf trucs, graps beam)	t t	1,250	1,673	2,091,25
	7 Steel structures (roof truss, crane beam)	t	130	4,784	621,92
	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	LS			1,212,04

Cos	tΕ	stimate for Comparison of Alternatives			Plan B2'-2-1	(60 MW)
Ite	m	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	9	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			297,748
		Sub-total				10,222,680
A6		General Item Cost				
		Contractors' offices, camps, workshop,				0 400 700
		power/water supply, insurance, bonds, etc.)	LS			3,130,786
		Total of A				25,000,000
В		HYDRAULIC STEEL STRUCTURES				
B1		Intake and Penstock				
	1	Trash rack	t	63	7,000	441,000
	2	Stoplog	t	15	7,442	111,636
	3	Intake gate and hoist	t	73	11,695	853,750
		Penstock steel pipe	t	670	6,379	4,274,064
		Sub-total				5,680,450
B2		Draft Tube Stoplog Facility				
	1	Draft tube gates and hoists	t	80	10,632	850,560
		Sub-total				850,560
		Total of B				6,500,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				
C1		Generating Equipment				
	1	Turbine and auxiliaries	LS			11,378,877
	2	Generator and auxiliaries	LS			13,008,400
	3	Transformers	LS			2,189,845
	4	Indoor switchgear	LS			733,304
		Outdoor switchyard equipment	LS			2,989,342
		Control and protection equipment	LS			660,539
		Auxiliary equipment	LS			1,013,693
		Miscellaneous materials	LS			724,754
		Sub-total				32,698,754
C2		Thalat Substation Improvement				
	1	Overhead power conductors	LS			0
		Sub-total				0
C3		115kV Transmission Line				
	1	Overhead power conductors	LS			0
		Sub-total				0
C4		Inspection, Training and Model Test				
	1	Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
		Turbine model test	LS			36,358
		Sub-total				190,515
		Total of C				32,900,000
D		ENGINEERING				, ,
	1	Design and construction supervision	LS			9,660,000
		Total of D	-			9,700,000
<u> </u>						
Gra	nd	Total				74,100,000

COST	Estimate for Comparison of Alternatives			Plan B2-1	(80 MW)
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
A	CIVIL WORKS				
A1	Preparatory Works				
	a) Temporary office building for power station O&M (civil) staff	LS			10,632
	Sub-total				10,632
A2	Nam Leuk SS Building Relocation				
	Excavation for land preparation at new site	m3	300	6	1,800
	Concrete for tower foundations and cable ducts	m3	200	230	46,000
3	Re-bars	t	12	1,673	20,076
	New building for GIS (220 m ²)	LS			175,428
	Cable rack along dam crest	LS			8,50
6	Miscellaneous work	LS			7,554
	Sub-total				259,364
A3	Intake				
	Temporary works				
	a) Intake enclosure structure in reservoir	LS			9,391,584
	b) Platform for dam penetration work	LS			27,408
	Concrete excavation for dam penetration	m3	3,060	260	795,60
	Concrete (including formwork cost)	m3	2,430	198	481,14
	Re-bars	t	99	1,673	165,62
Ę	Gate tower	No.	2	1,585,618	3,171,23
6	Miscellaneous works (metal works, road, landscaping, etc.)	LS			1,403,26
	Sub-total				15,435,85
A4	Penstock				13,433,63
~ 4	Excavation				
	a) Open excavation (loose materials)	m3	14,000	6	84,000
	b) Open excavation (Rock)	m3	22,000	13	286,00
2	Rock support and slope protection	ino	22,000	10	200,00
-	a) Rock bolts	m	1,000	22	22,00
	b) Shotcrete	m3	350	819	286,65
3	3 Concrete	_			,
	a) Concrete for cover pipe	m3	12,300	172	2,115,60
Ę	Re-bars	t	450	1,673	752,850
8	Miscellaneous works	LS			106,413
	Sub-total				3,653,513
A5	Powerhouse and Tailrace				
	Temporary cofferdam & access road	LS			318,960
2	2 Excavation				
	a) Open excavation, loose materials	m3	16,000	6	96,00
	b) Open excavation, rock	m3	38,000	13	494,000
3	Slope protection and rock support				
	a) Rock bolts on cut slope	m	880	22	19,360
	b) Shotcrete on cut slope	m3	240	819	196,56
4	Backfill with free draining materials	m3	25,000	7	175,00
Ę	Concrete				
	a) Powerhouse building	m3	26,000	246	6,396,00
	b) Tailrace wall and retaining wall	m3	4,000	253	1,012,00
	c) HV cable culvert and duct	m3	600	253	151,80
	Re-bars	t	2,400	1,673	4,015,20
7	Steel structures (roof truss, crane beam)	t	270	4,784	1,291,68
8	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	LS			1,414,056

Cos	tΕ	stimate for Comparison of Alternatives			Plan B2-1	(80 MW)
Ite	m	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	9	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			467,418
		Sub-total				16,048,034
A6		General Item Cost				10,010,001
		Contractors' offices, camps, workshop,				
		power/water supply, insurance, bonds, etc.)	LS			5,058,200
		Total of A				40,500,000
В		HYDRAULIC STEEL STRUCTURES				-,,
B1		Intake and Penstock				
	1	Trash rack	t	86	7,000	602,000
		Stoplog	t	24	7,442	178,618
		Intake gate and hoist	t	114	9,569	1,090,843
		Penstock steel pipe	t	940	6,379	5,996,448
		Sub-total	•	0.0	0,010	7,867,909
B2		Draft Tube Stoplog Facility				1,001,000
	1	Draft tube gates and hoists	t	72	10,632	560,000
	•	Sub-total	•		10,002	560,000
		Total of B				8,400,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				0,100,000
C1		Generating Equipment				
•	1	Turbine and auxiliaries	LS			15,979,638
		Generator and auxiliaries	LS			17,913,636
		Transformers	LS			3,290,434
		Indoor switchgear	LS			1,680,640
		Outdoor switchyard equipment	LS			3,531,627
		Control and protection equipment	LS			1,479,174
		Auxiliary equipment	LS			1,096,930
		Miscellaneous materials	LS			1,020,598
	•	Sub-total				45,992,677
C2		Thalat Substation Improvement				,
	1	Overhead power conductors Sub-total	LS			0
						0
C3		115kV Transmission Line				
••	1	Overhead power conductors	LS			5,617,287
	•	Sub-total				5,617,287
						0,011,201
C4		Inspection, Training and Model Test	I			
		Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
		Turbine model test	LS			36,358
		Sub-total	-			190,515
		Total of C	<u> </u>			51,800,000
D		ENGINEERING				.,
2	1	Design and construction supervision	LS			15,110,000
	'	Total of D	- 10			15,100,000
					<u> </u>	
Gra	nd	Total				115,800,000

Cost Estimate for Comparison of Alternatives

Plan D3 (80MW)

				(surfa	ce powerhouse)	
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)	
A	CIVIL WORKS	Onic	Quantity	Tute (00¢)	0031 (004)	
A A1	Preparatory Works					
AI	Preparation of permanent access road to					
	a) intake and powerhouse	LS			212,640	
	b) Relocation of intake gantry crane	LS			53,160	
	Sub-total				265,800	
A2	Intake					
1						
	a) Intake enclosure structure in reservoir	LS			11,099,808	
	b) Work platform	LS			11,961,000	
2	Open excavation above El. 215 m	m3	15,700	13	204,100	
	Intake channel excavation		. 0,1 00		,	
•	a) Open excavation	m3	11,600	13	150,800	
	b) Underwater excavation	m3	18,600	42	781,200	
4	Concrete	m3	10,100	253	2,555,300	
	Re-bars	t	810	1,673	1,355,130	
	Miscellaneous works (metal works, road,		0.0	.,		
6	landscaping, etc.)	LS			2,810,734	
	Sub-total				30,918,072	
A3	Headrace Tunnel and Penstocks				00,010,012	
	Open excavation at adit portals	m3	3,000	13	39,000	
	Underground excavation, tunnel	m3	40,300	53	2,135,900	
	Rock support and slope protection	mo	40,000		2,100,000	
0	a) Rock bolts	m	2,000	22	44,000	
	b) Shotcrete	m3	1,800	819	1,474,200	
4		mo	1,000	010	1,474,200	
	a) Invert lining	m3	700	300	210,000	
	b) Concrete lining	m3	7,600	300	2,280,000	
	c) Filling behind steel liner	m3	3,000	300	900,000	
4	Re-bars	t	430	1,673	719,390	
	Curtain grouting	m	480		57,600	
	Consolidation grouting	m	3,200	70	224,000	
	Miscellaneous works	LS	0,200		808,409	
-	Sub-total				8,892,499	
A4	Powerhouse & Tailrace				-,,	
	Temporary cofferdam	LS			106,320	
	Excavation				,	
	a) Open excavation, loose materials	m3	76,000	6	456,000	
	b) Open excavation, rock	m3	36,000	13	468,000	
3	Slope protection and rock support					
	a) Rock bolts on cut slope	m	800	22	17,600	
	b) Shotcrete on cut slope	m3	300	819	245,700	
4	Backfill with free draining materials	m3	40,000	7	280,000	
	Rock riprap on tailrace channel bank slopes	m3	8,000	15	120,000	
	Concrete					
	a) Powerhouse building	m3	28,000	246	6,888,000	
	b) Tailrace wall and retaining wall	m3	4,800	253	1,214,400	
7	Re-bars	t	2,500	1,673	4,182,500	
	Steel structures (roof truss, crane beam)	t	270	4,784	1,291,680	
	Architectural works (finishing, windows, doors,			,	· _ ·	
9	roofing, plumbing, lighting, ventilating, etc.)	LS			606,024	

Plan D3 (80MW)

					(surfa	ce powerhouse)
lte	m	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	10	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			476,287
		Sub-total				16,352,511
A5		General Item Cost				
		Contractors' offices, camps, workshop,				0.004.000
	1	power/water supply, insurance, bonds, etc.)	LS			8,061,269
		Total of A				64,500,000
В		HYDRAULIC STEEL STRUCTURES				
B1		Intake and Penstock				
	1	Trash rack	t	34	7,000	238,000
	2	Intake gate and hoist	t	120	8,506	1,020,672
	3	Penstock steel pipe	t	516	7,442	3,840,278
		Sub-total				5,098,950
B2		Draft Tube Stoplog Facility				
	1	Draft tube gates and hoists	t	56	10,632	595,392
		Sub-total				595,392
		Total of B				5,700,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				
C1		Generating Equipment				
	1	Turbine and auxiliaries	LS			19,420,400
	2	Generator and auxiliaries	LS			17,913,636
	3	Transformers	LS			3,290,434
	4	Indoor switchgear	LS			1,589,680
	5	Outdoor switchyard equipment	LS			952,902
	6	Control and protection equipment	LS			1,459,738
	7	Auxiliary equipment	LS			1,096,930
		Miscellaneous materials	LS			1,040,734
		Sub-total				46,764,454
C2		Thalat Substation Improvement				. ,
	1	Overhead power conductors	LS			0
		Sub-total				0
C3		115kV Transmission Line				
		Overhead power conductors	LS			5,617,287
		Sub-total				5,617,287
						- , - , -
C4		Inspection, Training and Model Test				
		Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
		Turbine model test	LS			36,358
		Sub-total				190,515
		Total of C				52,600,000
D		ENGINEERING				,,,,
_	1	Design and construction supervision	LS			18,420,000
	•	Total of D				18,400,000
~	_					
Gra	ano	d Total				141,200,000

JUSI	Estimate for Comparison of Alternatives			Plan B2-2	(120 MW)
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$
A	CIVIL WORKS				
A1	Preparatory Works				
	a) Temporary office building for power station O&M (civil) staff	LS			10,632
	Sub-total				10,63
A2	Nam Leuk SS Building Relocation				
1	Excavation for land preparation at new site	m3	150	6	90
2	2 Concrete for tower foundations and cable ducts	m3	12	230	2,76
3	Re-bars	t	1	1,673	1,00
2	New building for GIS (150 m ²)	LS			79,74
5	Cable rack along dam crest	LS			8,50
6	Miscellaneous work	LS			2,78
	Sub-total				95,69
A3	Intake				
1	Temporary works				
	a) Intake enclosure structure in reservoir	LS			9,586,02
	b) Platform for dam penetration work	LS			11,94
	2 Concrete excavation for dam penetration	m3	4,460	260	1,159,60
	Concrete (including formwork cost)	m3	3,450	198	683,10
	Re-bars	t	132	1,673	220,83
2	Gate towers	Nos.	2	1,808,459	3,616,91
5	Miscellaneous works (metal works, road,	LS			1,527,84
	landscaping, etc.)				
	Sub-total				16,806,27
44	Penstock				
1	Excavation				
	a) Open excavation (loose materials)	m3	17,500		105,00
	b) Open excavation (Rock)	m3	28,000	13	364,00
2	Rock support and slope protection		1 000		
	a) Rock bolts	m	1,300	22	28,60
	b) Shotcrete	m3	450	819	368,55
2			18.000	172	2 006 00
F	a) Concrete for cover pipe Re-bars	m3	18,000 450		3,096,00
	Miscellaneous works	t LS	430	1,073	752,85
C	Sub-total	L3			4,856,45
A5	Powerhouse and Tailrace				4,030,43
н ј	Temporary cofferdam & access road	LS			340,22
	2 Excavation	1.5			540,22
2	a) Open excavation, loose materials	m3	20,000	6	120,00
	b) Open excavation, rock	m3	47,000	13	611,00
	B Slope protection and rock support	1110	47,000	10	011,00
,	a) Rock bolts on cut slope	m	1,000	22	22,00
	b) Shotcrete on cut slope	m3	310		253,89
4	Backfill with free draining materials	m3	35,000		245,00
F	Concrete		00,000	<u> </u>	_ 10,00
	a) Powerhouse building	m3	33,000	246	8,118,00
	b) Tailrace wall and retaining wall	m3	4,500		1,138,50
	c) HV cable culvert and duct	m3	4,300		202,40
F	Re-bars	t	2,800		4,684,40
7	Visite Structures (roof truss, crane beam)	t	2,000	· · · · · ·	1,291,68
'	Architectural works (finishing, windows, doors,		210	-, <i>i</i> O r	
8	roofing, plumbing, lighting, ventilating, etc.)	LS			1,212,04

Cos	tΕ	stimate for Comparison of Alternatives			Plan B2-2	(120 MW)
Ite	m	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
	9	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			547,174
		Sub-total				18,786,316
A6		General Item Cost				
		Contractors' offices, camps, workshop,				5 700 004
		power/water supply, insurance, bonds, etc.)	LS			5,793,624
		Total of A				46,300,000
В		HYDRAULIC STEEL STRUCTURES				
B1		Intake and Penstock				
	1	Trash rack	t	126	7,000	882,000
	2	Stoplog	t	30	7,442	223,272
	З	Intake gate and hoist	t	146	11,695	1,707,499
	4	Penstock steel pipe	t	1,340	6,379	8,548,128
		Sub-total				11,360,899
B2		Draft Tube Stoplog Facility				
	1	Draft tube gates and hoists	t	104	10,632	1,105,728
		Sub-total				1,105,728
		Total of B				12,500,000
С		ELECTRICAL /MECHANICAL EQUIPMENT				
C1		Generating Equipment				
	1	Turbine and auxiliaries	LS			22,394,176
	2	Generator and auxiliaries	LS			26,016,800
	3	Transformers	LS			4,535,588
	4	Indoor switchgear	LS			1,732,618
	5	Outdoor switchyard equipment	LS			3,482,195
	6	Control and protection equipment	LS			1,583,128
	7	Auxiliary equipment	LS			1,387,117
	8	Miscellaneous materials	LS			1,387,693
		Sub-total				62,519,315
C2		Thalat Substation Improvement				
	1	Overhead power conductors	LS			0
		Sub-total				0
C3		115kV Transmission Line				
	1	Overhead power conductors	LS			5,617,287
		Sub-total				5,617,287
C4		Inspection, Training and Model Test				
	1	Factory inspection by the Employer	LS			61,081
		Factory training to the Employer	LS			20,360
		Site instruction	LS			72,716
		Turbine model test	LS			36,358
		Sub-total				190,515
		Total of C				68,300,000
D		ENGINEERING				, ,
	1	Design and construction supervision	LS			19,070,000
	•	Total of D				19,100,000
~						
Gra	nd	Total				146,200,000

Cost Estimate for Comparison of Alternatives

Plan D4 (120MW)

00	511	Estimate for Companson of Alternatives						
					(surface powerhouse)			
lte	m	Description	Rate (US\$)	Cost (US\$)				
Α				Quantity	()	()		
A1		Preparatory Works						
		Preparation of permanent access road to						
		a) intake and powerhouse	LS			212,640		
		b) Relocation of intake gantry crane	LS			53,160		
		Sub-total				265,800		
A2		Intake				,		
	1	Temporary works						
		a) Intake enclosure structure in reservoir	LS			14,799,744		
		b) Work platform	LS			15,948,000		
	2	Open excavation above El. 215 m	m3	18,800	13	244,400		
		Intake channel excavation				,		
	Ŭ	a) Open excavation	m3	15,000	13	195,000		
		b) Underwater excavation	m3	24,000		1,008,000		
	4	Concrete	m3	13,000		3,289,000		
		Re-bars	t	1,100	1,673	1,840,300		
	0	Miscellaneous works (metal works, road,		1,100	1,073	1,040,000		
	6	landscaping, etc.)	LS			3,732,444		
		Sub-total				11 056 999		
A3		Headrace Tunnel and Penstocks				41,056,888		
AJ			m2	4 000	13	F2 000		
		Open excavation at adit portals	m3	4,000	53	52,000		
		Underground excavation, tunnel	m3	52,000	53	2,756,000		
	3	Rock support and slope protection		0.000	00			
		a) Rock bolts	m	3,000		66,000		
		b) Shotcrete	m3	2,700	819	2,211,300		
	4	Concrete			000	070.000		
		a) Invert lining	m3	900		270,000		
		b) Concrete lining	m3	9,900		2,970,000		
	-	c) Filling behind steel liner	m3	4,100	300	1,230,000		
		Re-bars	t	560	,	936,880		
		Curtain grouting	m	550		66,000		
		Consolidation grouting	m	4,100	70	287,000		
	1	Miscellaneous works	LS			1,084,518		
		Sub-total				11,929,698		
A 4		Powerhouse & Tailrace						
	1	Temporary cofferdam	LS			106,320		
	2	Excavation						
		a) Open excavation, loose materials	m3	98,000	6	588,000		
		b) Open excavation, rock	m3	54,000	13	702,000		
	3	Slope protection and rock support						
		a) Rock bolts on cut slope	m	1,000		22,000		
		b) Shotcrete on cut slope	m3	500		409,500		
		Backfill with free draining materials	m3	50,000		350,000		
		Rock riprap on tailrace channel bank slopes	m3	9,000	15	135,000		
6								
		a) Powerhouse building	m3	33,000	246	8,118,000		
		b) Tailrace wall and retaining wall	m3	4,000		1,012,000		
	7	Re-bars	t	2,800	1,673	4,684,400		
	8	Steel structures (roof truss, crane beam)	t	270	4,784	1,291,680		
	9	Architectural works (finishing, windows, doors,	10			1 212 040		
	Э	roofing, plumbing, lighting, ventilating, etc.)	LS			1,212,048		

JUSU	Estimate for Companson of Alternatives			Fiall D4	(12010100)
				(surfa	ce powerhouse)
Item	Description	Unit	Quantity	Rate (US\$)	Cost (US\$)
10	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS			558,928
	Sub-total				19,189,876
A5	Outdoor Switchyard				, ,
	Open excavation	m3	3,000	13	39,000
	Concrete	m3	800	272	217,600
	Re-bars	t	40	1,673	66,920
	Miscellaneous works	LS		-,	16,176
	Sub-total				339,696
A6	General Item Cost				,
	Contractors' offices, camps, workshop,				40.007.400
1	power/water supply, insurance, bonds, etc.)	LS			10,397,423
	Total of A				83,200,000
В	HYDRAULIC STEEL STRUCTURES				
B1	Intake and Penstock				
1	Trash rack	t	54	7,000	378,000
2	Intake gate and hoist	t	180	8,506	1,531,008
	Penstock steel pipe	t	764	7,442	5,685,994
	Sub-total			,	7,595,002
B2	Draft Tube Stoplog Facility				. ,
1	Draft tube gates and hoists	t	80	10,632	850,560
	Sub-total			,	850,560
	Total of B				8,400,000
С	ELECTRICAL /MECHANICAL EQUIPMENT				-,,
C1	Generating Equipment				
1	Turbine and auxiliaries	LS			27,411,488
	Generator and auxiliaries	LS			26,016,800
	Transformers	LS			4,535,588
	Indoor switchgear	LS			1,732,618
	Outdoor switchyard equipment	LS			2,081,686
	Control and protection equipment	LS			1,583,128
	Auxiliary equipment	LS			1,387,117
	Miscellaneous materials	LS			1,471,756
U	Sub-total	20			66,220,181
C2	Thalat Substation Improvement				00,220,101
	Overhead power conductors	LS			0
	Sub-total	20			0
C3	115kV Transmission Line				0
	Overhead power conductors	LS			5,617,287
	Sub-total	20			5,617,287
C4	Inspection, Training and Model Test				3,017,207
	Factory inspection by the Employer	LS			61,081
	Factory training to the Employer	LS			20,360
	Site instruction	LS			72,716
	Turbine model test	LS			36,358
4	Sub-total	13			190,515
	Total of C				· · · · · · · · · · · · · · · · · · ·
					72,000,000
D	ENGINEERING & ENVIRONMENTAL WORKS				01 - 10 055
1	Design and construction supervision	LS			24,540,000
	Total of D				24,600,000
Gran	d Total				188,200,000

Appendix E

Dam Stability Analysis

Appendix E-1 Dam Stability Analysis

1. Analysis case and load conditions

The stress and stability analysis of the dam was made for NO.20 section, assuming the following three different stages and four different load conditions. In case of "Stage B during construction", stability analysis was not made for load condition "Case II Unusual_Flood" and "Case IV Extreme_Earthquake".

The load condition case for each analysis is shown in **Table E.1.1**.

[Stage]		[Load condition]
Stage A	current condition	Case I Usual_
Stage B	during construction	Case II Unusual Flood
Stage C	after completion	CaseIII Unusual Earthquake (k=0.061 for OBE)
		CaseIV Extreme Earthquake (k=0.215 for MCE)

Load Con	dition		Stage A Current Condition	Stage B During Construction	Stage C After Completion
Case I	Usual	Usual Load A- I L		Load B- I	Load C- I
Case II	Unusual	Unusual Flood	Load A-II	_	Load C- II
CaseⅢ		Earthquake (k=0.061) OBE	Load A-III	Load B-III	Load C-III
CaseIV	Extrem e	Earthquake (k=0.215) MCE	Load A-IV	_	Load C-IV

Table E.1.1 Case of Load Condition for each analysis
--

2. Principal feature of NO.20 block

The dimensions of NO.20 section, surrounding water and silt conditions are shown in **Table E.2.1**. The stability analyses are done on the below-mentioned conditions.

- 1) The dam stability is evaluated totally as the whole No.20 block of 18m width.
- 2) In Stage B calculation is done with the dam piercing completed and no new concrete placed.
- 3) In Stage C calculation is done with the intake gate closed
- 4) The weight and uplift of the temporary enclosure works are neglected in Stage B.
- 5) The weights of metal works (Intake Screen, Intake Gate ex.) are neglected.
- 6) Effect of downstream water level is considered only for calculation of uplift.

	Items	Dimension, Elevation, Slope				
Dam crest	elevation	EL.215.0m				
Bedrock e	levation	EL.161.0 m				
Height of	dam	54 m				
Base Leng	gth	41.38 m				
Block wid	lth	18.m				
Upstream	slope of dam	Vertical above EL.175.0 m 1 to 0.2 below EL.175.0 m				
Downstrea	am slope of dam	1 to 0.67				
Normal hi	gh water level	EL.212.0 m				
Flood wat	er level	EL.215.0 m				
Sedimenta	ation level in reservoir	EL.180.0 m				
Normal ta	il water level	EL.166.9 m				
Flood tail	water level	EL.176.4 m				
	Center Elevation	EL.185.25 m				
Dam	Length	22.33 m				
Piercing	Inner Dimension	4.50m×5.50m				
	Excavated Dimension	6.10m×7.10m				

 Table E.2.1
 Principal Feature of NO.11 Block

3. Load combination

Load combination in each load condition case is shown in **Table E.3.1~E.3.3**.

				Loads to be considered									
Load Condition			Self Weight of dam	Hydro- static Pressure	Silt Pressure	Uplift	Seismic Force	Hydro- dynamic Pressure	Decreased weight due to piercing	Water Weight in Waterway	Weight of newly placed concrete		
Load A- I	oad A- I Usual		0	0	0	0	—	_	—	_	—		
Load A- II	Unusual	Flood	0	0	0	0	_	_	—	_	—		
Load A-III	Ullusual	Earthquake	0	0	0	0	0	0			_		
Load A- Ⅳ	Extreme	Earthquake	0	0	0	0	0	0	_	_	—		

Table E.3.1Load Combination (Stage A : Current condition)

Table E.3.2	Load Combination (Stage B : During Construction)
-------------	--

			Loads to be considered									
Load Condition			Self Weight of dam	Hydro- static Pressure	Silt Pressure	Uplift	Seismic Force	Hydro- dynamic Pressure	Decreased weight due to piercing	Water Weight in Waterway	placed	
Load B- I	oad B- I Usual		0	0	0	0		—	0	_	—	
—	Unusual	Flood	—	Ι	—	—		_	_	_	—	
Load B-III	Ullusual	Earthquake	0	0	0	0	0	0	0		—	
—	Extreme	Earthquake		_				_		_	—	

			Loads to be considered									
Load Condition			Self Weight of dam	Hydro- static Pressure	Silt Pressure	Uplift	Seismic Force	Hydro- dynamic Pressure	Decreased weight due to piercing	Water Weight in Waterway	placed	
Load C- I	C- I Usual		0	0	0	0	_		0	0	0	
Load C- II		Flood	0	0	0	0		_	0	0	0	
Load C-III		Earthquake	0	0	0	0	0	0	0	0	0	
Load C- Ⅳ	Extreme	Earthquake	0	Ō	Ō	0	Ō	Ō	Ō	Ō	Ő	

 Table E.3.3
 Load Combination (Stage C : After Completion)

4. Formulas for calculation of the loads

The loads for each case are calculated by the following formulas.

1) Hydrostatic pressure : P_w (per unit width)

$$\mathbf{P}_{\mathbf{w}} = \frac{1}{2} \times \mathbf{w}_{0} \times \mathbf{h}^{2}$$

where

 w_0 : unit weight of water, 1.0t/m³ h : water depth in meters including wave height wave height : 0.9m (Case- I, II), 0.45m (Case- III, IV)

2) Silt pressure : Pe (per unit width)

$$Pe = \frac{1}{2} \times Ce \times We \times d^2$$

where

Ce : coefficient of silt pressure, 0.5

d : depth of silt deposit in meters

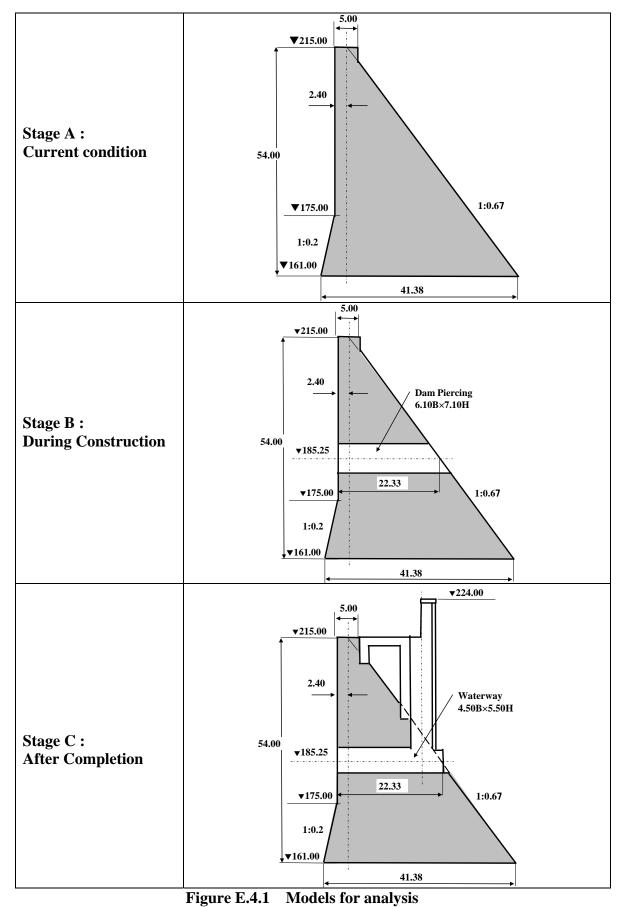
- We : unit weight of silt in water, $0.6t/m^3$
- 3) Hydrodynamic pressure : P_d (per unit width)

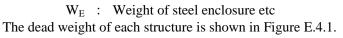
$$\mathbf{P}_{\mathrm{d}} = \frac{7}{12} \times \mathbf{k} \times \mathbf{h}^2$$

where h : water depth in meters k : seismic coefficient, 0.061 for OBE 0.215 for MCE

The hydrodynamic pressure due to the seismic action is considered only in CaseIII and CaseIV. It is considered on the upstream side of dam.

4) Weight of dam : W (per unit width)


$$W = wc \times V + W_E$$


wc

where

vc : unit weight of concrete, 2.42 t/m³ Quoted from test data in "Final Report on Nam Ngum Hydro-electric Project, First Stage" (Nippon Koei Co.,Ltd. 1972) Table32.5.2

V : Volume of concrete

5) Inertia force of dam due to seismic action : Ws (per unit width)

 $Ws = k \times W$

where W : weight of dam k : seismic coefficient, 0.061 for OBE 0.215 for MCE

Inertia force of dam is considered only in CaseIII and CaseIV.

6) Uplift pressure : U (per unit width)

$\mathbf{U} = \mathbf{w}_0 \times \mathbf{h}_1$	at upstream heel
$w_{0} \times (h_{2} + \frac{1}{3}(h_{1} - h_{2}))$	at drain hole
$\mathbf{w}_{0} \times \mathbf{h}_{2}$	at downstream toe

where	\mathbf{w}_0	:	unit weight of water, 1.0t/m ³
	h_1	:	water depth of upstream side
	h_2	:	water depth of downstream side

Uplift pressure is not subject to wave action on the reservoir water surface.

5. Criteria

Criteria for dam stability is based on Lao Electric Power Technical Standards(2004). In case of Extreme condition, the manual of US Army Corps of Engineers is referred. Criteria for dam stability analysis is shown in **Table E.5.1**.

Overturning, Sliding and stress in the foundation rock are calculated by the following formulas.

(1) Overturning

Resultant location " x_0 " and distance of eccentricity "e" are calculated by the following formulas.

$$\begin{array}{rcl} \mathbf{x}_{0} & = & \displaystyle\frac{\mathbf{M}}{\mathbf{V}} \\ \mathbf{e} & = & \displaystyle\left| \begin{array}{c} \mathbf{x}_{0} - \displaystyle\frac{\mathbf{L}}{2} \end{array} \right| \end{array}$$

where x_0 : resultant location

- e : distance of eccentricity
- M : total moment acting on the shear plane per unit width
- V : total vertical force acting on the shear plane per unit width
- L : base length = 41.38 m

(2) Sliding

Shear friction safety factor "n" is calculated by the following formulas.

$$n = \frac{\tau \times L + f \times V}{H}$$

~

where : shear friction safety factor n : shearing strength of foundation = 200 tf/m^2 τ L : base length = 41.38 mf : internal friction factor = 0.65V : total vertical force acting on the shear plane per unit width Η : total horizontal force acting on the shear plane per unit width

(3) Stress in the foundation rock

Compressive stress in the foundation rock at downstream end "Pd" is calculated by the following formulas.

$$\mathbf{P}_{\mathrm{d}} = \frac{\mathrm{V}}{\mathrm{L}} \left(1 + \frac{\mathbf{6} \cdot \mathbf{e}}{\mathrm{L}} \right) \leq \sigma \, \mathrm{a}$$

where

 P_d : sum of the moments

: distance of eccentricity e

: base length = 41.38 mL

V : total vertical force acting on the shear plane per unit width

 σ a : allowable compressive stress (400 tf/m²)

Load Condition		Overturning	Sliding	Stress in the Foundation
U	sual	Within middle $1/3$ (e $\leq L/6$)n ≥ 3.0		$P_d \leq$ allowable compression stress
Unusual	Flood Earthquake	Within Middle $1/2$ (e \leq L/4)	n ≥ 2.0	$P_d \leq allowable$ compression stress
	(k=0.061)	$(e \ge L/4)$		
Extreme	Earthquake (k=0.215)	Within base ^{$\times 1$} (e \leq L/2)	$n \ge 1.3^{*1}$	$P_d \leq 1.33 \times allowable$ compression stress ^{*1}

X1 Based on the manual of US Army Corps of Engineers

6. Seismic coefficient

In this dam stability analysis, seismic coefficient k is assumed from PGA of design earthquakes for Nam Ngum 2 Dam^{**1}.

POBE
 :
 k
 =
 0.092

$$\times$$
 $2/3$
 =
 0.061

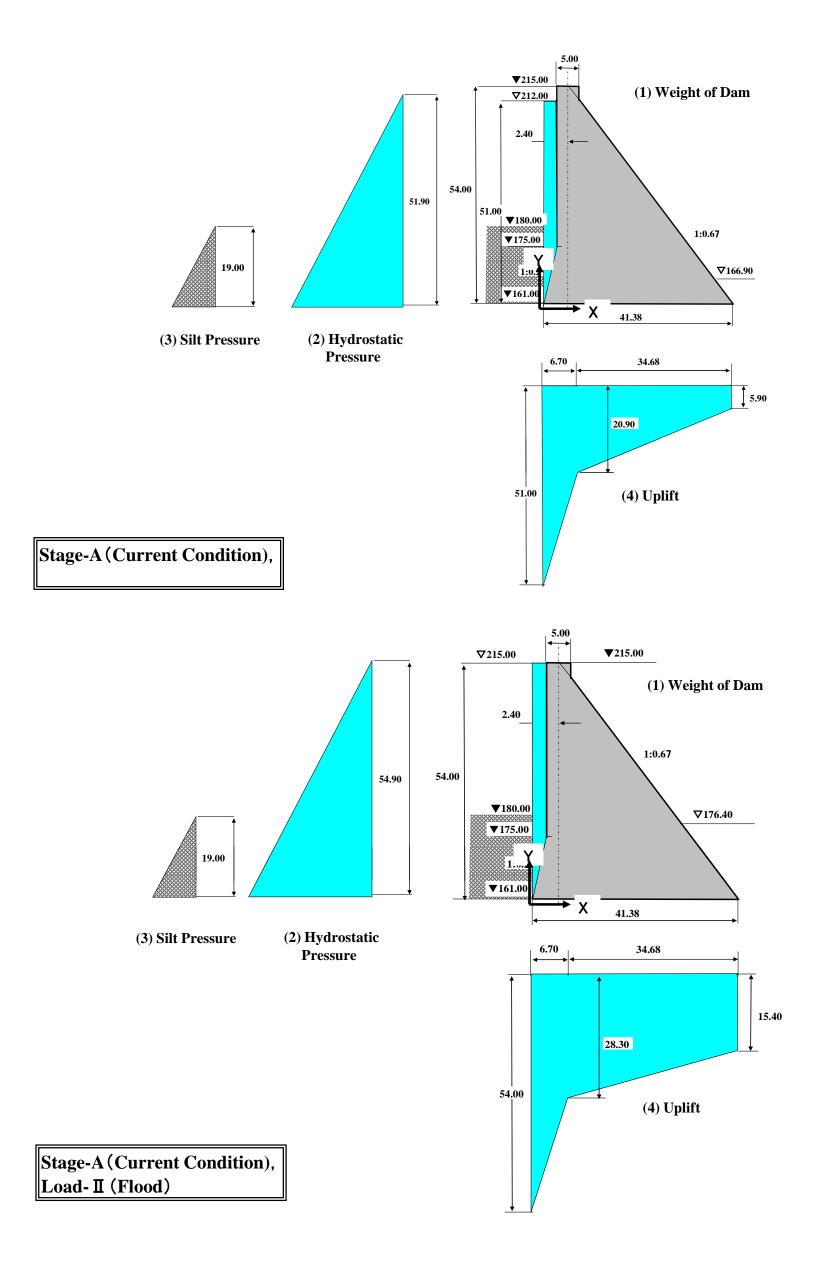
 PMCE
 :
 k
 =
 0.322
 \times
 $2/3$
 =
 0.215

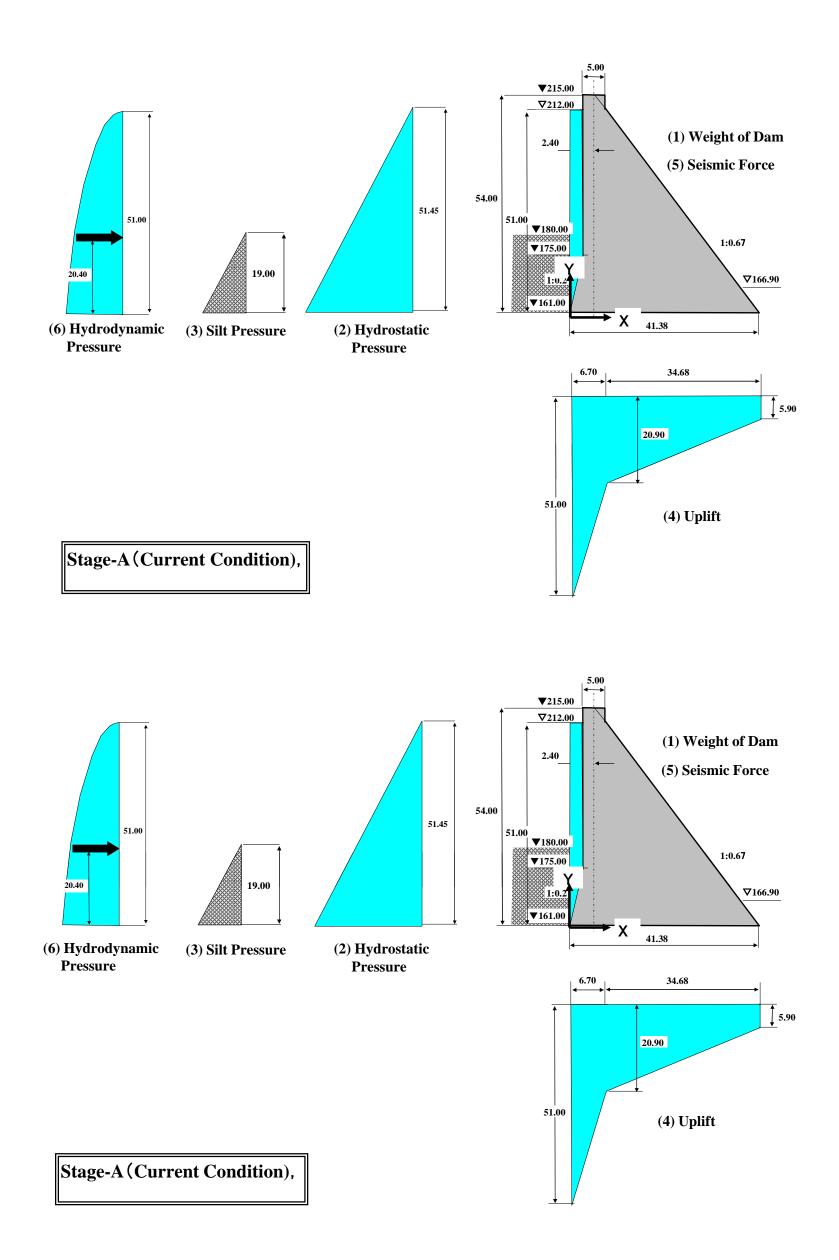
Where

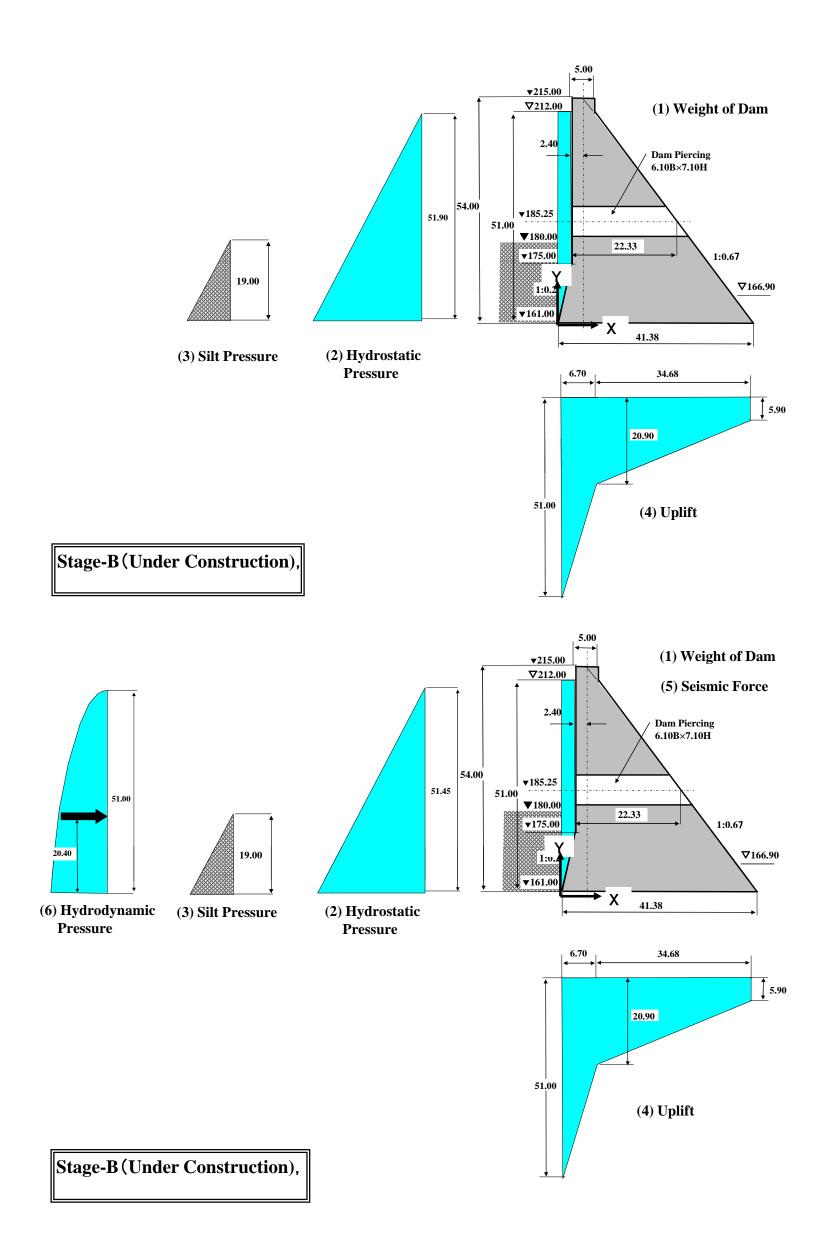
OBE (Operating Basis Earthquake)	:	Return period 145 years
MCE (Maximum Credible Earthquake)	:	Return period 10000 years
PGA (Peak Ground Acceleration)	:	0.092 for OBE in the study of NN2
		0.322 for MCE in the study of NN2

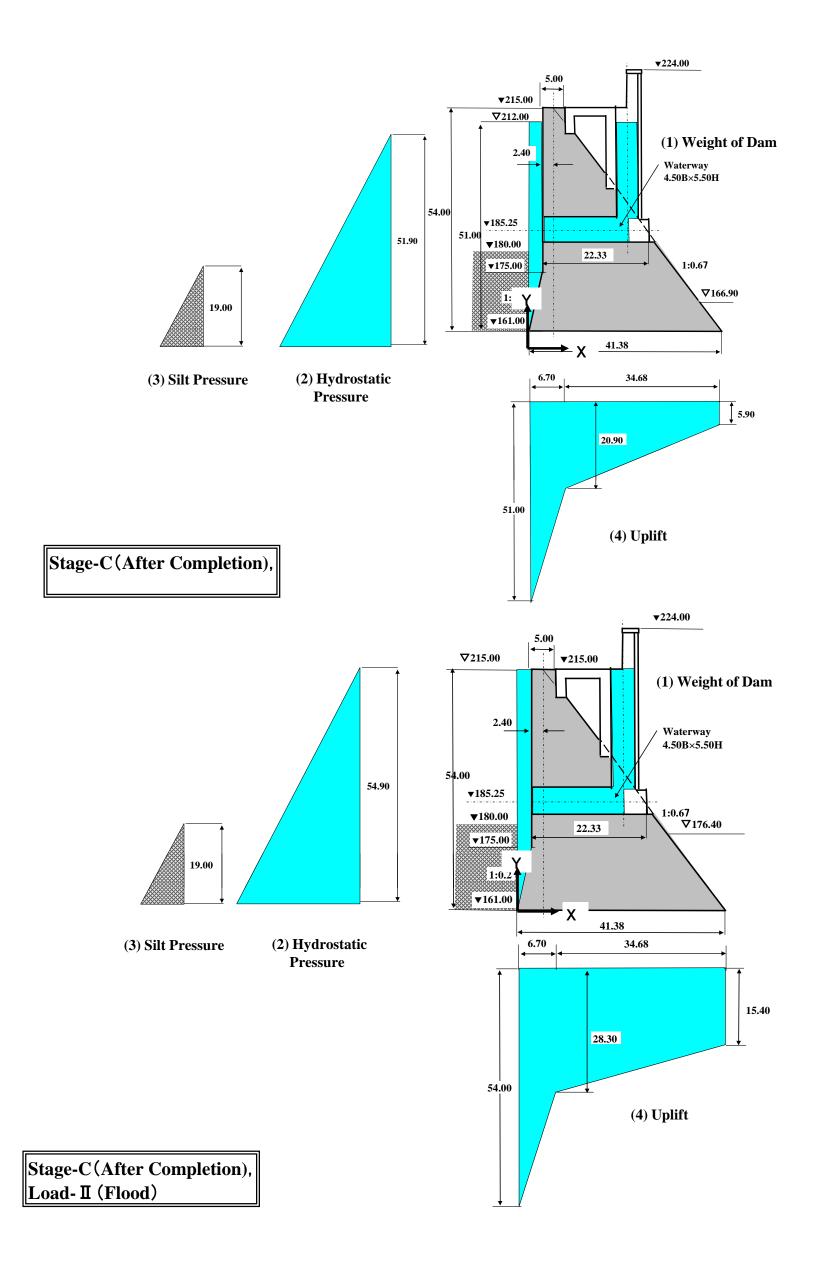
1 Source : Probabilistic Seismic Hazard Assessment of Nam Ngum 2 Dam Site

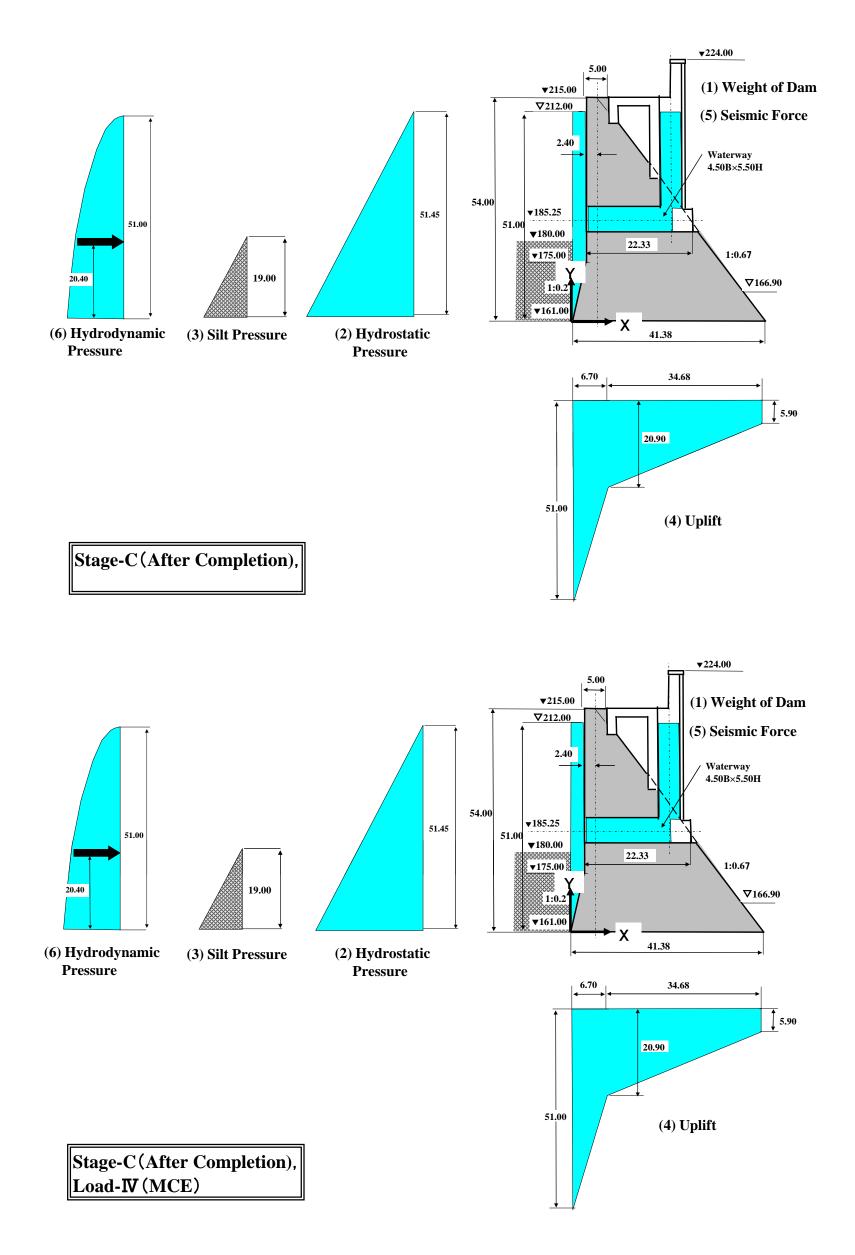
7. Analysis Cases and Results


Analysis cases are shown in **Table E.7.1**. The stability of the dam is satisfied in every stage and every loading condition.


Figures of load condition are shown in **Appendix E-2**, and calculation results of load are shown in **Appendix E-3**.


Load	Crite	ania	Stag	e-A	Stag	ge-B	Stage-C	
Condition	Criu	eria	Current C	Condition	During Construction		After Completion	
	Over-	e≦L/6	e=5.15≦	L/6=6.90	e=5.91≦	L/6=6.90	e=4.88≦	L/6=6.90
	turning	e⊇∟/o		OK		OK		OK
Load I	Sliding	n≧3	n= 6.91	≧3	n= 6.85	≧3	n= 6.95	≧3
(Usual)	Ŭ	1≧3		OK		OK		OK
(Usual)	Max. Foundation	$\sigma \leq 400 \text{tf/m}^2$	σ= 91	≦ 400	σ= 91	≦ 400	σ= 93	≦400
	Stress	400tI/m		OK		OK		ОК
	Over-	e≦L/4	e=7.96≦	L/4=10.35	\backslash		e=7.48≦	L/4=10.35
	turning	9⊇∟/4		OK				OK
Load I	Sliding	n≧2	n= 6.07	≧2			n= 6.11	≥ 2
(Flood)	-			OK				OK
(11004)	(Flood) Max. Foundation	σ≦ 	σ= 95	≦400			σ= 97	≦400
	Stress	400tf/m ²		OK				OK
	Over-	e≦L/4	e=7.06≦		e=7.84≦		e=6.78≦	
	turning	5⊒∟/4		OK		OK		OK
Load II	Sliding	n≧2	n= 5.97	≧2	n= 5.95	≧2	n= 6.01	≥ 2
(OBE)	Ũ			OK		OK		OK
	Max. Foundation	σ≦	σ= 105	≦400	σ= 105	≦400	σ= 108	≦ 400
	Stress	400tf/m ²		OK		OK		OK
	Over-	e≦L/2	e=13.14≦		\backslash		e=12.86≦	
	turning			OK				OK
Load IV	Sliding	n≧1.3	n= 4.22	≧1.3			n= 4.23	≧1.3
(MCE)	U			OK				OK
	Max.	σ≦1.33×	σ= 151	≦400×			σ= 155	≦400×
	Foundation	400tf/m^2		1.33			U- 100	1.33
	Stress	400U/III		OK				OK


 Table E.7.1
 Result of Dam Stability Analysis


Appendix E-2 Figures of Load Condition

Appendix E-3 Calculations of Load

Stage-A(Current condition), Load- I (Usual)

		Vertical Load	Holizontal Load	Arm Le	ength (m)	Moment	(tf-m/m)
		(tf/m)	(tf/m)	Vertical	Horizontal	Vertical	Horizonta
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws				_		
Hydro-static Pressure	Pw		1347		17.30		23303
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		_		_		— —
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	_					
Weight of newly placed concrete	Wn	_					
Water Weight in Waterway	Ww						
Total		2154	1401			32014	23645

①Overturning

$e = (M_V + M_H)/V - L/2 = 25.84 - 20.69 = 5.15 \le L/6 = 6.90(m)$	OK
②Sliding	
$n = (\tau L + fV)/H = (200 \times 41.38 + 0.65 \times 2154)/1401 = 6.91 \ge 3$	OK
③Stress in the foundation rock	
$Pd = V/L(1+6e/L) = 2154/41.38 \times (1+6 \times 5157/41.38) = 91 \leq 400 \text{ tf/m}^2$	OK

Stage-A(Current condition), Load-II (Flood)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizontal
Self Weight of dam	W	2869		14.78		42404	
Seismic Force	Ws						—
Hydro-static Pressure	Pw		1507		18.30		27578
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd						—
Uplift	U	-1033		17.18		-17747	
Decreased Load due to piercing	Wd	—		l			
Weight of newly placed concrete	Wn	—					
Water Weight in Waterway	Ww						
Total		1836	1561			24657	27920

1Overturning

0	$e = (M_V + M_H)/V - L/2 = 28.64 - 20.69 = 7.95 \le L/4 = 10.35 (m)$	OK
②Sliding		
	n = $(\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 1836)/1561 = 6.07 \ge 2$	OK
③Stress in	the foundation rock	
	$Pd = V/L(1+6e/L) = 1836/41.38 \times (1+6 \times 7.95/41.38) = 95 \le 400 \text{ tf/m}^2$	OK

Stage-A(Current condition), Load-III(OBE)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizonta
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws		167		18.96		3166
Hydro-static Pressure	Pw		1324		17.15		22707
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		75		20.40		1530
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	—		_		_	
Weight of newly placed concrete	Wn	_		_			
Water Weight in Waterway	Ww	—		_			
Total		2154	1620			32014	27745

①Overturning

	$e = (Mv+M_H)/V-L/2 = 27.74-20.69 = 7.05 \le L/4 = 10.35(m)$	OK
②Sliding		
	n = $(\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 2154)/1620 = 5.97 \ge 2$	ОК
③Stress in	the foundation rock	
	$Pd = V/L(1+6e/L) = 2154/41.38 \times (1+6 \times 7.05/41.38) = 105 \le 400 \text{ tf/m}^2$	OK

Stage-A(Current condition), Load-IV(MCE)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizonta
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws		589		18.96		11167
Hydro-static Pressure	Pw		1324		17.15		22707
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		326		20.40		6650
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd			_			
Weight of newly placed concrete	Wn					_	
Water Weight in Waterway	Ww						
Total		2154	2293			32014	40866

①Overturning

-	$e = (M_V + M_H)/V - L/2 = 33.83 - 20.69 = 13.14 \le L/2 = 20.69 (m)$	OK
②Sliding		
	n = $(\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 2154)/2293 = 4.22 \ge 1.3$	OK
③Stress in	n the foundation rock	
	$Pd = V/L(1+6e/L) = 2154/41.38 \times (1+6 \times 13.14/41.38) = 151 \leq 400 \times 1.33 tf/m^2$	OK

Stage-B(During Construction), Load-I(Usual)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf−m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizontal
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws				_		_
Hydro-static Pressure	Pw		1347		17.30		23303
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		_		_		
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	-130		13.97		-1816	
Weight of newly placed concrete	Wn	—					
Water Weight in Waterway	Ww						
Total		2024	1401			30198	23645

①Overturning

0	$\vec{e} = (M_V + M_H)/V - L/2 = 26.60 - 20.69 = 5.91 \le L/6 = 6.90 (m)$	ОК
②Sliding		
	n = $(\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 2024)/1401 = 6.85 \ge 3$	OK
③Stress ir	n the foundation rock	
	$Pd = V/L(1+6e/L) = 2024/41.38 \times (1+6 \times 5.91/41.38) = 91 \leq 400 \text{ tf/m}^2$	OK

Stage-B(During Construction), Load-III(OBE)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizonta
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws		167		18.96		3166
Hydro-static Pressure	Pw		1324		17.15		22707
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		75		20.40		1530
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	-130	-8	13.97	24.25	-1816	-194
Weight of newly placed concrete	Wn	_		_			
Water Weight in Waterway	Ww						
Total		2024	1612			30198	27551

1)Overturning

-	$e = (Mv+M_H)/V-L/2 = 28.53-20.69 = 7.84 \le L/4 = 10.35(m)$	OK
②Sliding		
	$n = (\tau L + fV)/H = (200 \times 41.38 + 0.65 \times 2024)/1612 = 5.95 \ge 2$	OK
③Stress in	the foundation rock	
	$Pd = V/L(1+6e/L) = 2024/41.38 \times (1+6 \times 7.84/41.38) = 105 \leq 400 \text{ tf/m}^2$	ок

Stage-C(After Completion), Load-I(Usual)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizontal
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws		_				
Hydro-static Pressure	Pw		1347		17.30		23303
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		_				
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	-189		18.20		-3440	
Weight of newly placed concrete	Wn	219		18.85		4128	
Water Weight in Waterway	Ww	61		17.17		1047	
Total		2245	1401			33750	23645

①Overturning

	$e = (M_V + M_H)/V - L/2 = 25.57 - 20.69 = 4.88 \le L/6 = 6.90 (m)$	OK
②Sliding		
	n = $(\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 2245)/1401 = 6.95 \ge 3$	OK
③Stress in	the foundation rock	
	$Pd = V/L(1+6e/L) = 2245/41.38 \times (1+6 \times 4.88/41.38) = 93 \le 400 \text{ tf/m}^2$	ОК

Stage-C(After Completion), Load-II (Flood)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizontal
Self Weight of dam	W	2869		14.78		42404	
Seismic Force	Ws		_				
Hydro-static Pressure	Pw		1507		18.30		27578
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		_				_
Uplift	U	-1033		17.18		-17747	
Decreased Load due to piercing	Wd	-189		18.20		-3440	
Weight of newly placed concrete	Wn	219		18.85		4128	
Water Weight in Waterway	Ww	66		17.42		1150	
Total		1932	1561			26495	27920

1Overturning

0	$\vec{e} = (M_V + M_H)/V - L/2 = 28.17 - 20.69 = 7.48 \le L/4 = 10.35 (m)$	OK
②Sliding		
	n = $(\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 1932)/1561 = 6.11 \ge 2$	OK
③Stress ir	the foundation rock	
	$Pd = V/L(1+6e/L) = 1932/41.38 \times (1+6 \times 7.48/41.38) = 97 \le 400 \text{ tf/m}^2$	ОК

Stage-C(After Completion), Load-III(OBE)

		Vertical	Holizontal	Arm Le	ength (m)	Moment	(tf−m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizontal
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws		167		18.96		3166
Hydro-static Pressure	Pw		1324		17.15		22707
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		75		20.40		1530
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	-189	-12	18.20	35.48	-3440	-426
Weight of newly placed concrete	Wn	219	13	18.85	46.16	4128	600
Water Weight in Waterway	Ww	61		17.17		1047	
Total		2245	1621			33750	27919
	•				•		-
(1)Overturning							

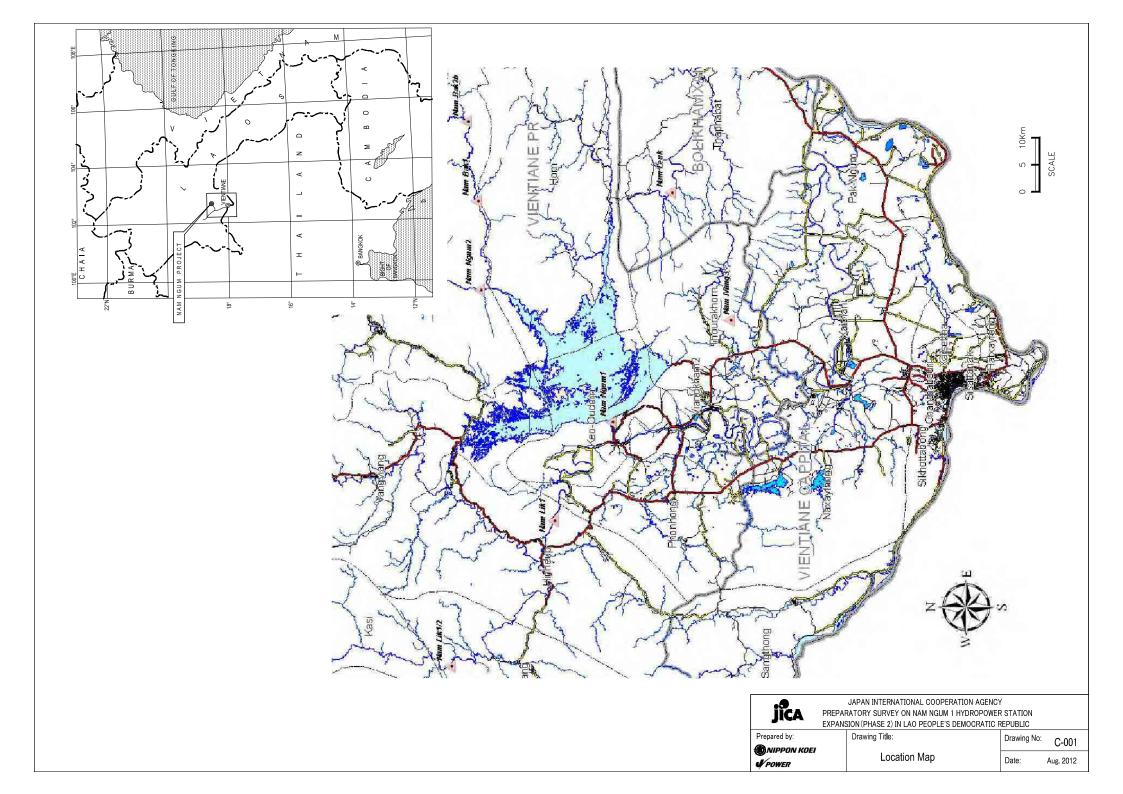
 $e = (Mv+M_{H})/V-L/2 = 27.47-20.69 = 6.78 \le L/4 = 10.35 \text{ (m)} \qquad OK$ (2)Sliding $n = (\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 2245)/1621 = 6.01 \ge 2 \qquad OK$ (3)Stress in the foundation rock $Pd = V/L(1+6e/L) = 2245/41.38 \times (1+6 \times 6.78/41.38) = 108 \le 400 \text{ tf/m}^{2} \qquad OK$

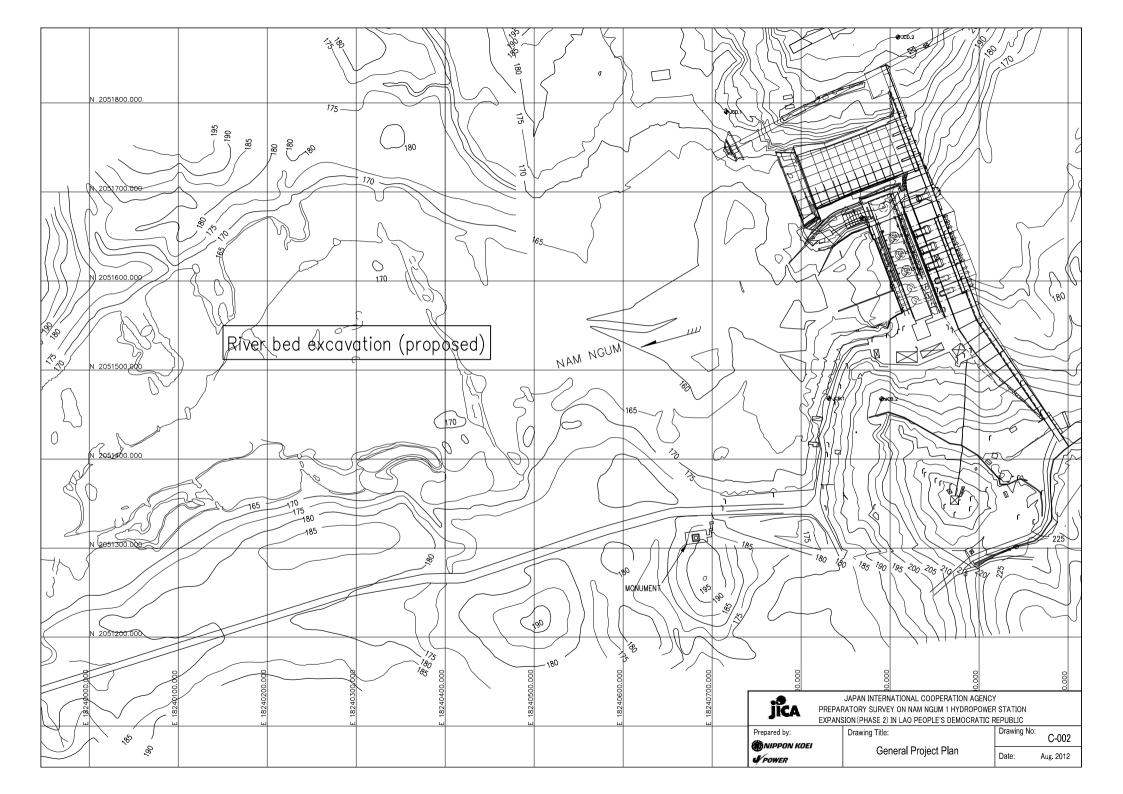
Stage-C(After Completion), Load-IV(MCE)

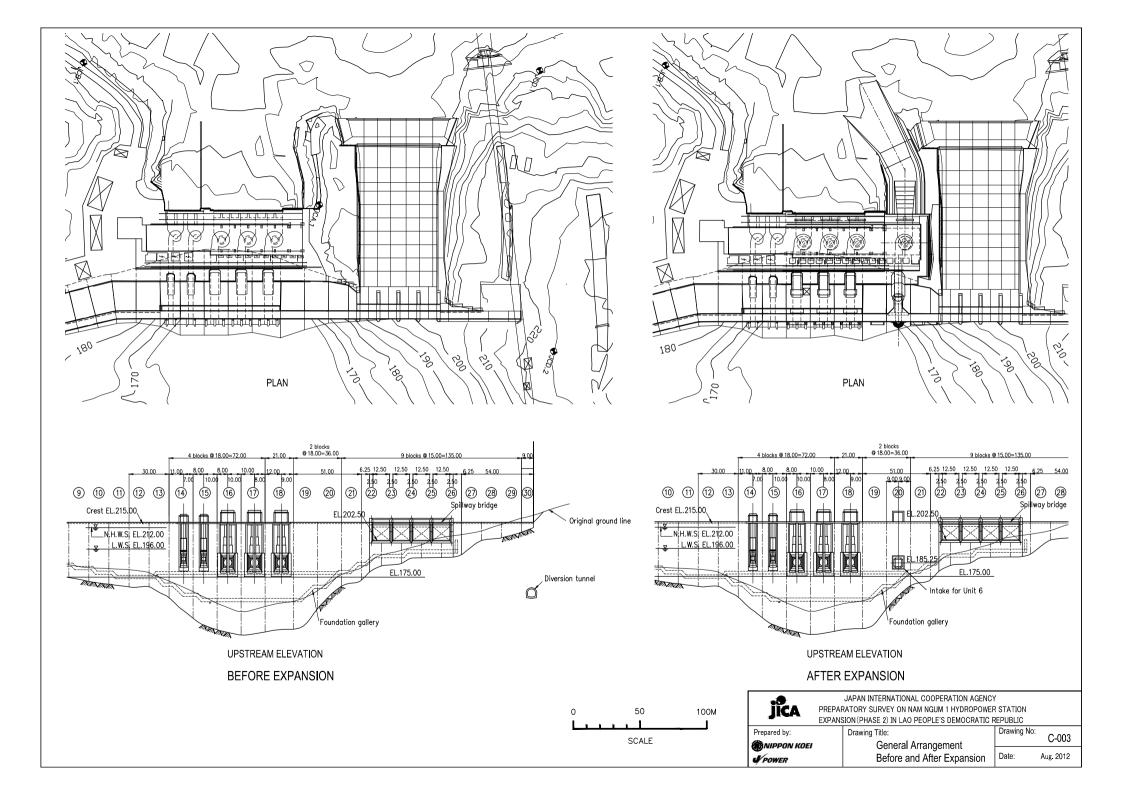
		Vertical	Holizontal	Arm Le	ngth (m)	Moment	(tf-m/m)
		Load	Load	Vertical	Horizontal	Vertical	Horizontal
Self Weight of dam	W	2860		14.82		42385	
Seismic Force	Ws		589		18.96		11167
Hydro-static Pressure	Pw		1324		17.15		22707
Silt Pressure	Pe		54		6.33		342
Hydro-dynamic Pressure	Pd		326		20.40		6650
Uplift	U	-706		14.69		-10371	
Decreased Load due to piercing	Wd	-189	-41	18.20	35.48	-3440	-1455
Weight of newly placed concrete	Wn	219	47	18.85	46.16	4128	2170
Water Weight in Waterway	Ww	61		17.17		1047	
Total		2245	2299			33750	41581

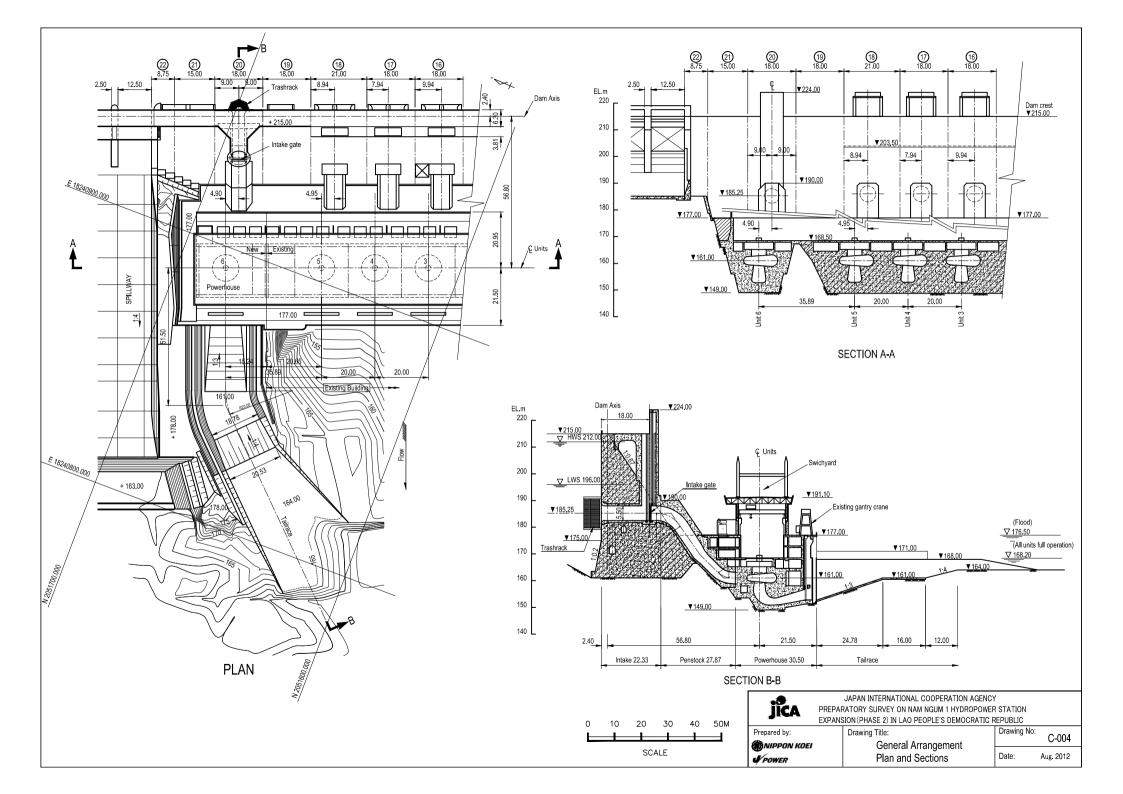
1Overturning

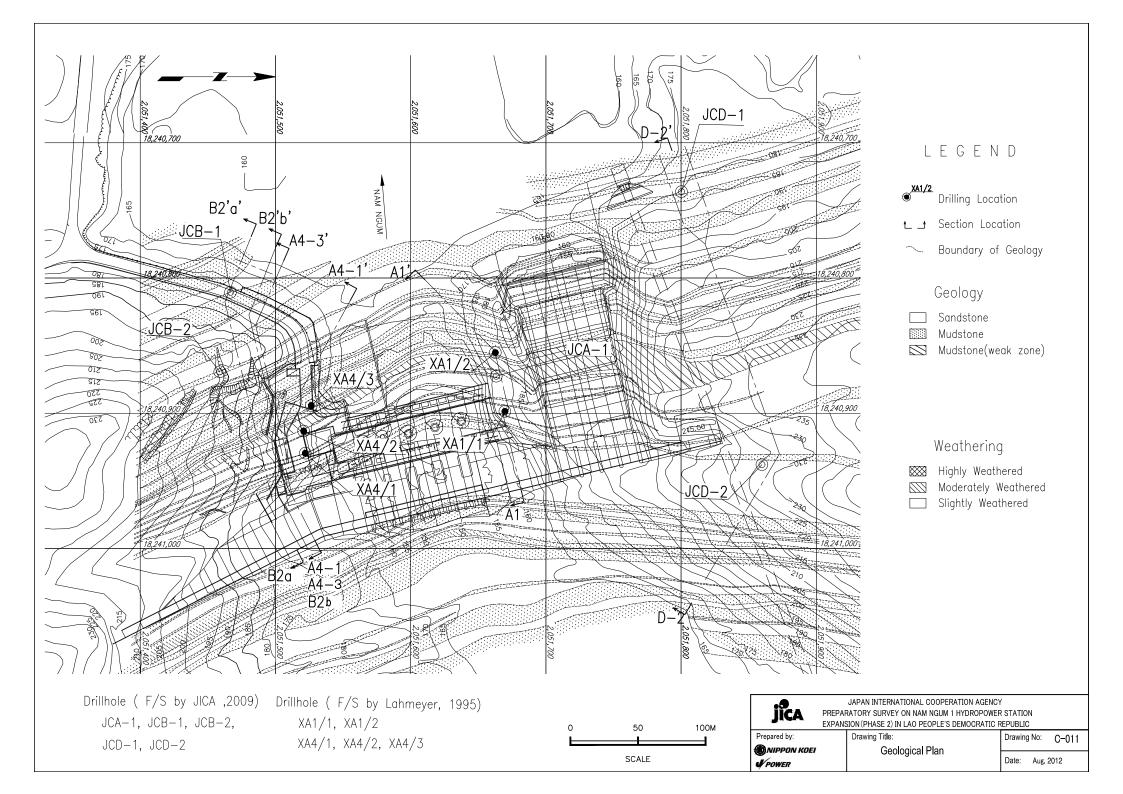
$$e = (M_V+M_H)/V-L/2 = 33.55-20.69 = 12.86 \le L/2 = 20.69 (m)$$
 OK
(2)Sliding

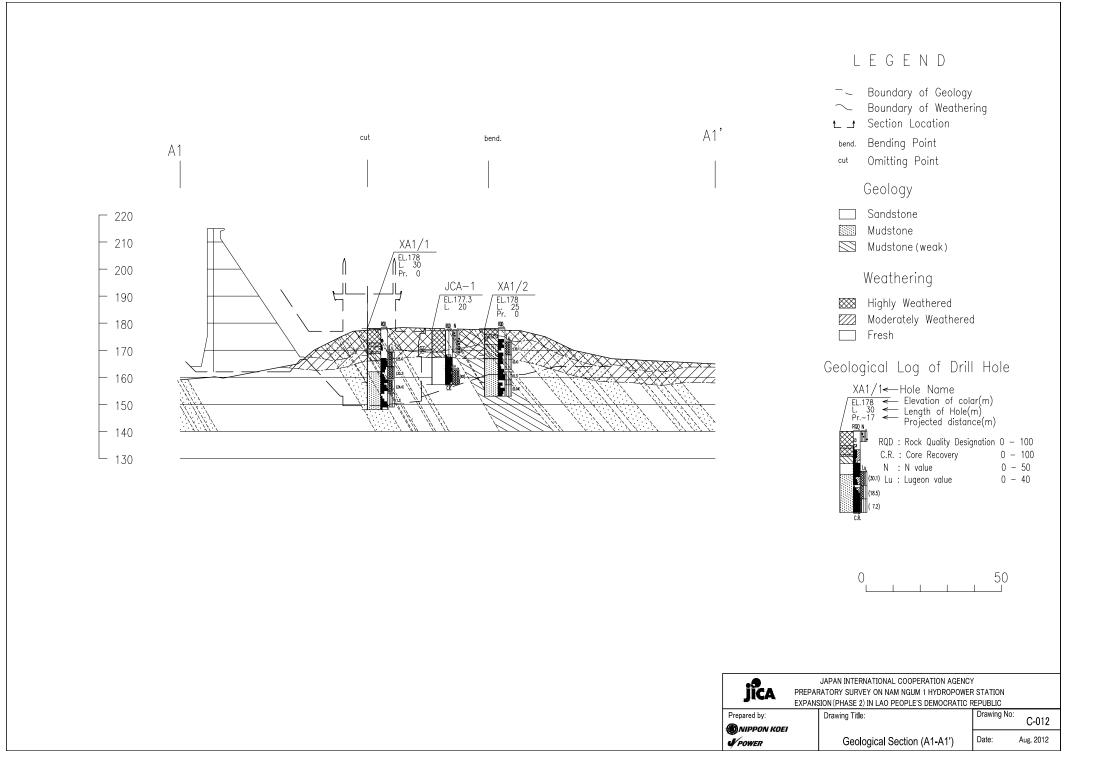

$$n = (\tau L+fV)/H = (200 \times 41.38 + 0.65 \times 2245)/2299 = 4.23 \ge 1.3$$
 OK
(3)Stress in the foundation rock

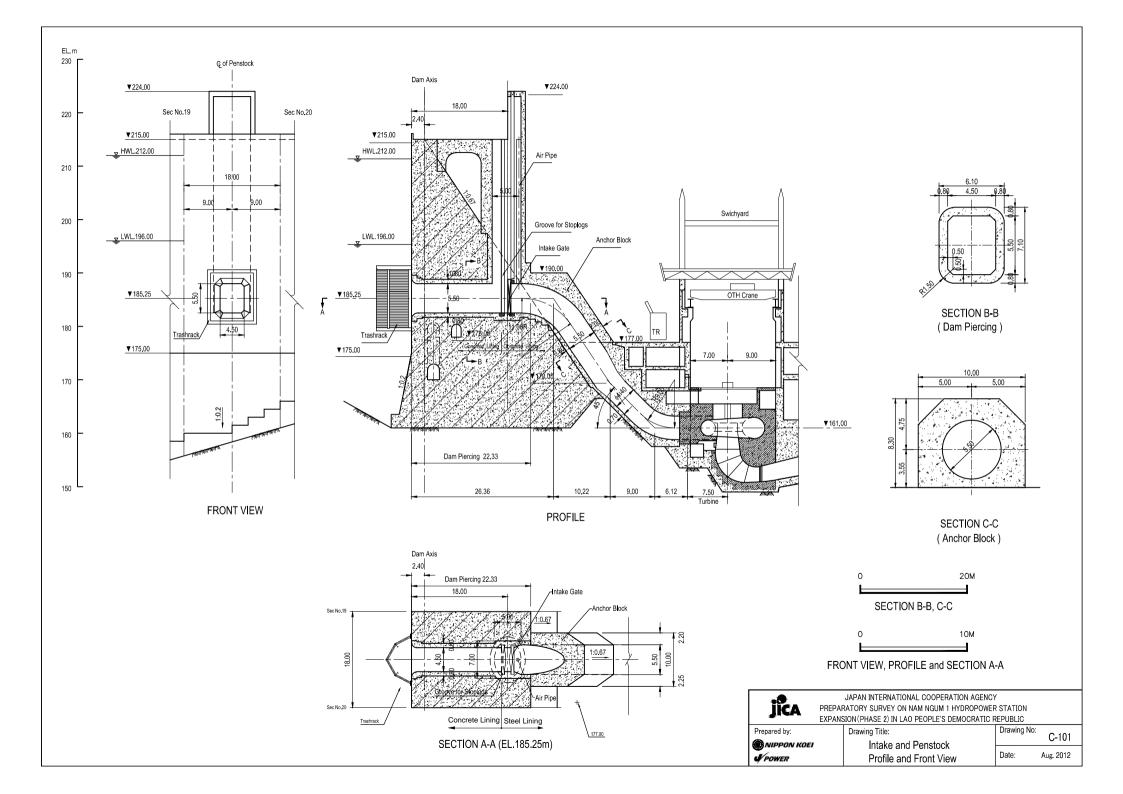

$$Pd = V/L(1+6e/L) = 2245/41.38 \times (1+6 \times 12.86/41.38) = 155 \le 400 \times 1.33 \text{ tf/m}^2$$
 OK

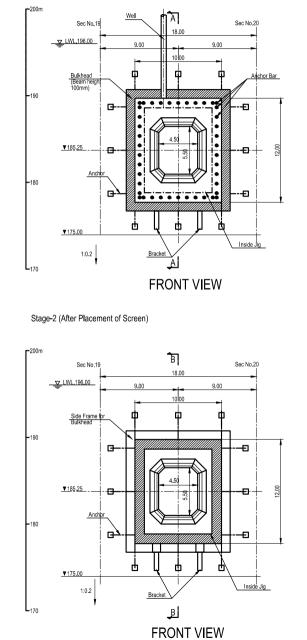

Appendix F

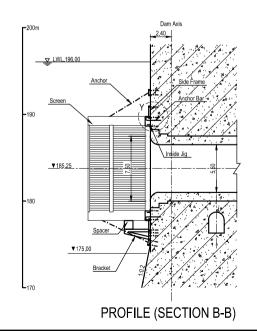

Basic Design Drawings

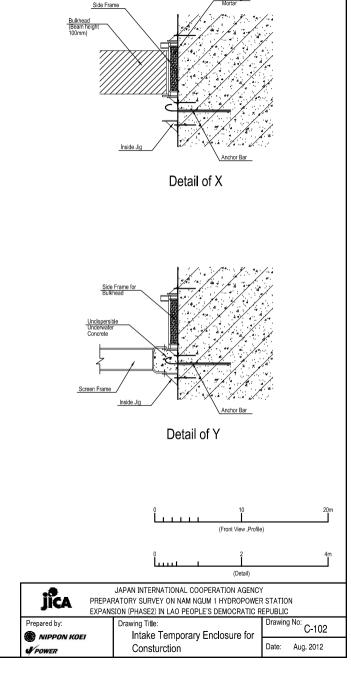

Dwg	<u>g. No.</u>	Title
1	C-001	Location Map (Laos map + Vientiane to dam site)
2	C-002	General Project Plan (dam to downstream river course)
3	C-003	General Arrangement, Before and After Expansion
4	C-004	General Arrangement, Plan, Profile & Sections (intake to tailrace)
5	C-011	Geological Plan
6	C-012	Geological Section
7	C-101	Intake and Penstock, Profile and Front View
8	C-102	Intake, Temporary Enclosure for Construction
9	C-211	Powerhouse, Floor Plan, El. 177.0 m
10	C-212	Powerhouse, Floor Plan, El. 172.5 m & El.168.5m
11	C-213	Powerhouse, Floor Plan, El.164.5m & El. 161.0m
12	C-214	Powerhouse, Floor Plan, El.157.0 m & El. 153.0m
13	C-221	Powerhouse, Cross Section A-A
14	C-222	Powerhouse, Cross Section B-B
15	C-223	Powerhouse, Longitudinal Section C-C
16	C-224	Powerhouse, Longitudinal Section D-D
17	C-225	Powerhouse, Longitudinal Section E-E
18	C-226	Powerhouse, Longitudinal Section F-F
19	C-230	Tailrace Channel, Plan & Sections
20	C-240	Powerhouse and Tailrace, Excavation Plan & Sections
21	H-010	Hydraulic Steel Works, Intake Trashrack
22	H-020	Hydraulic Steel Works, Penstock Pipe
23	H-030	Hydraulic Steel Works, Draft Tube Gate Slot & Gantry Crane
24	E-001	Electrical Connection Diagram (1), Overall Scheme
25	E-002	Electrical Connection Diagram (2), Main Circuits for Unit 6
26	E-003	Electrical Connection Diagram (3), Station Service Circuits
27	E-011	Schematic Diagram (1), Pressure Oil and Compressed Air Supply System
28	E-012	Schematic Diagram (2), Cooling Water Supply and Drainage System
29	E-021	115kV Outdoor Switchyard, Equipment Layout Plan
30	E-022	115kV Outdoor Switchyard, Equipment Layout Section







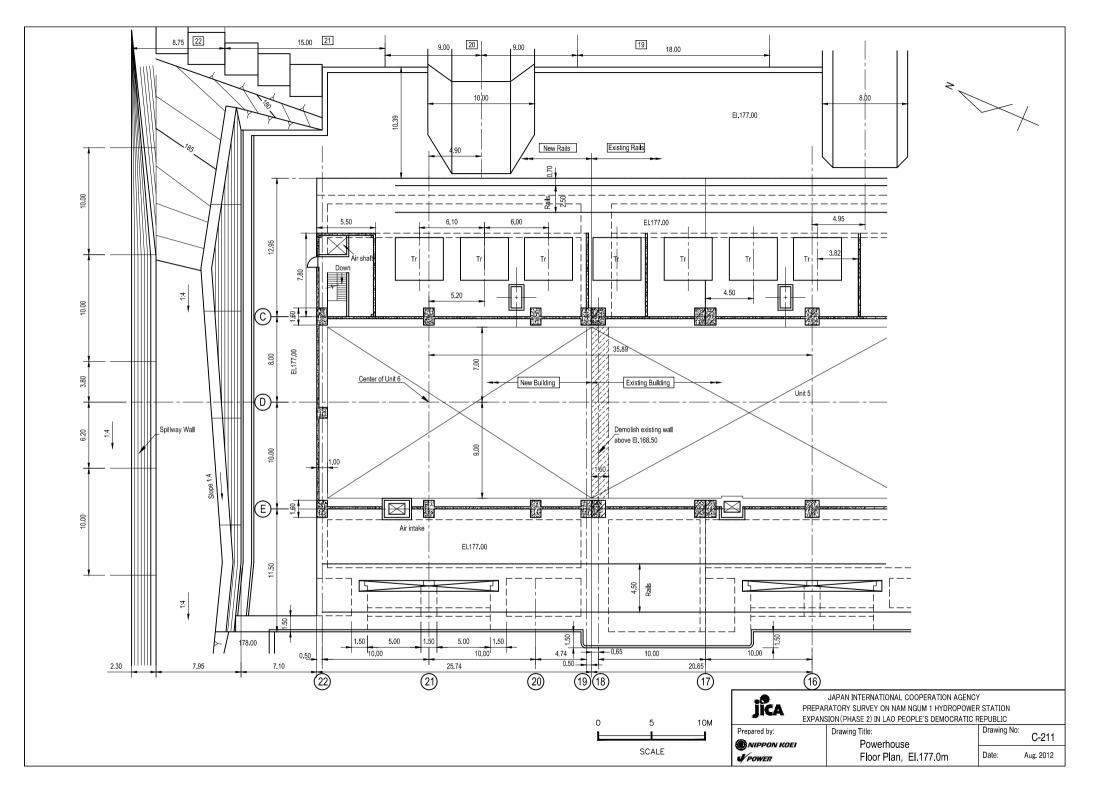


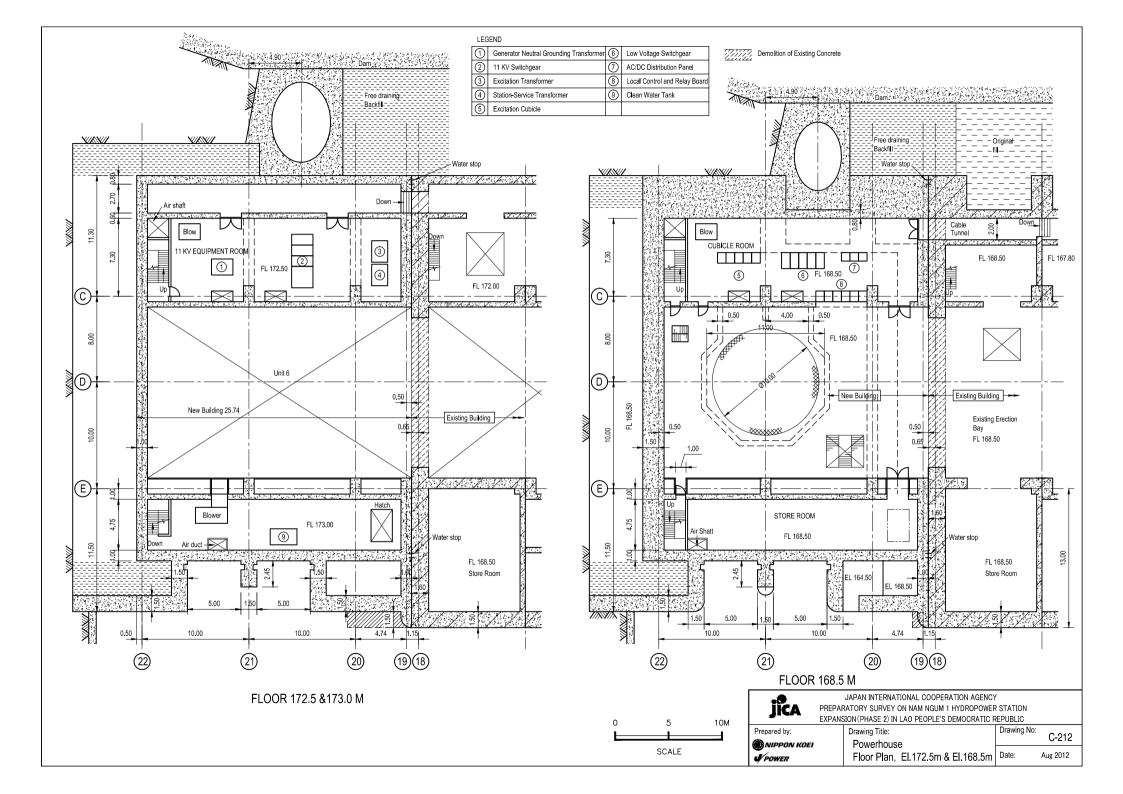


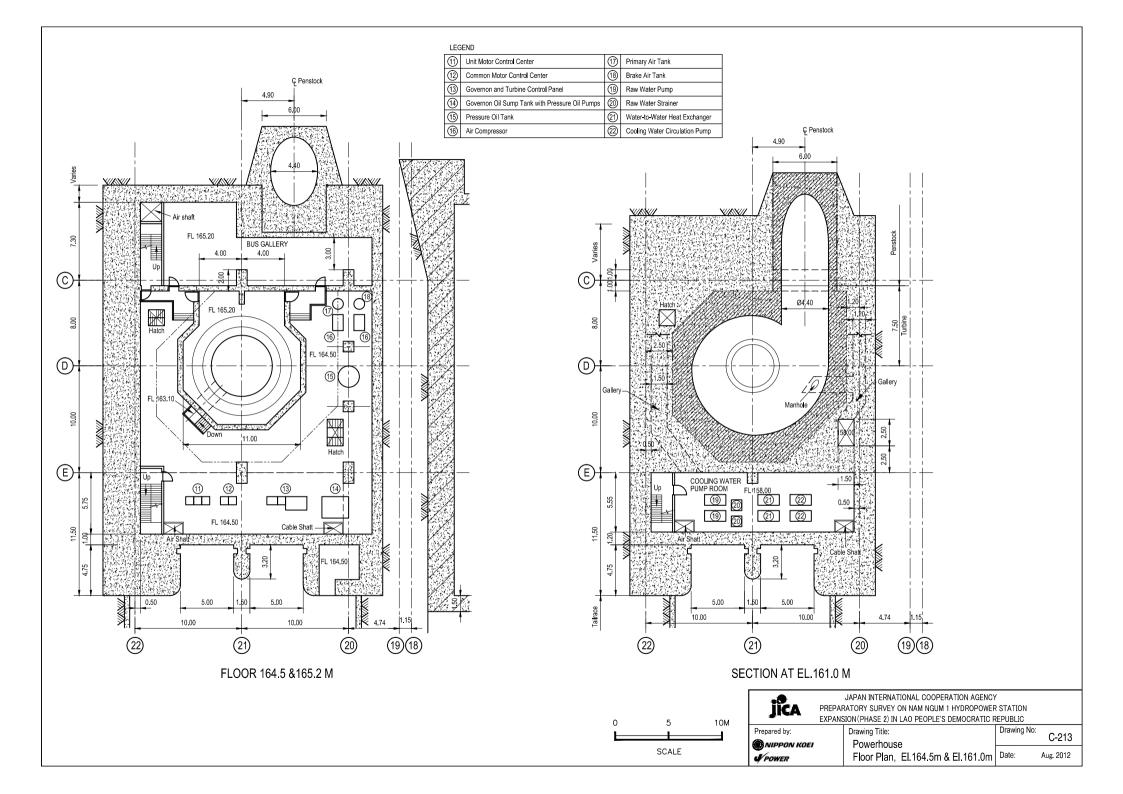
Stage-1 (During Placement of Bulkhead)

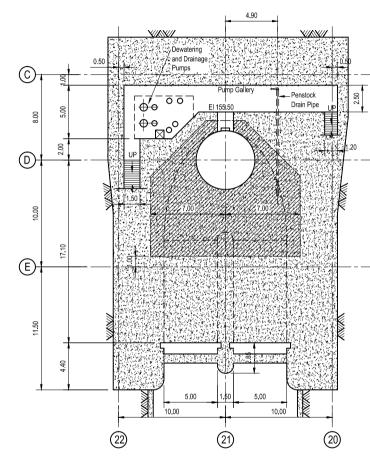
Water-tight

-200m

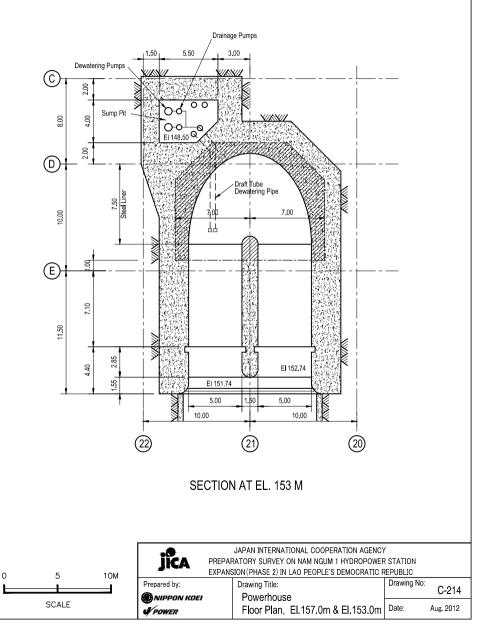

Anchor

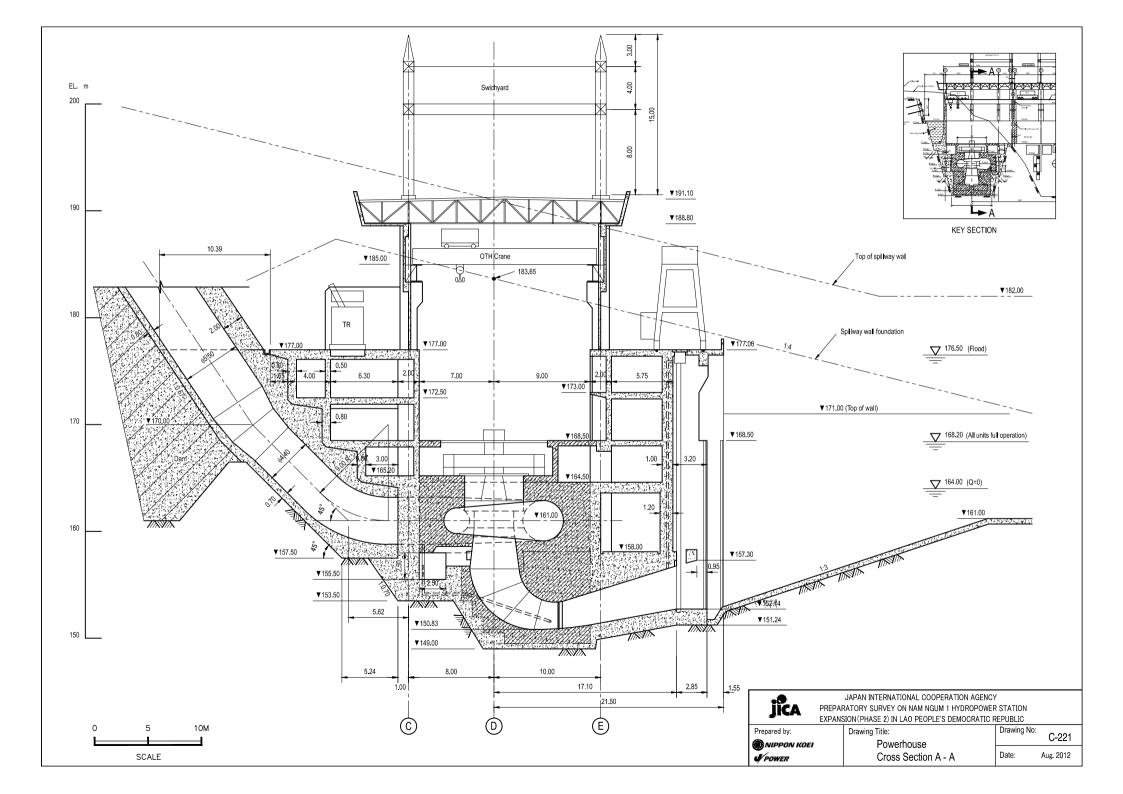

PROFILE (SECTION A-A)

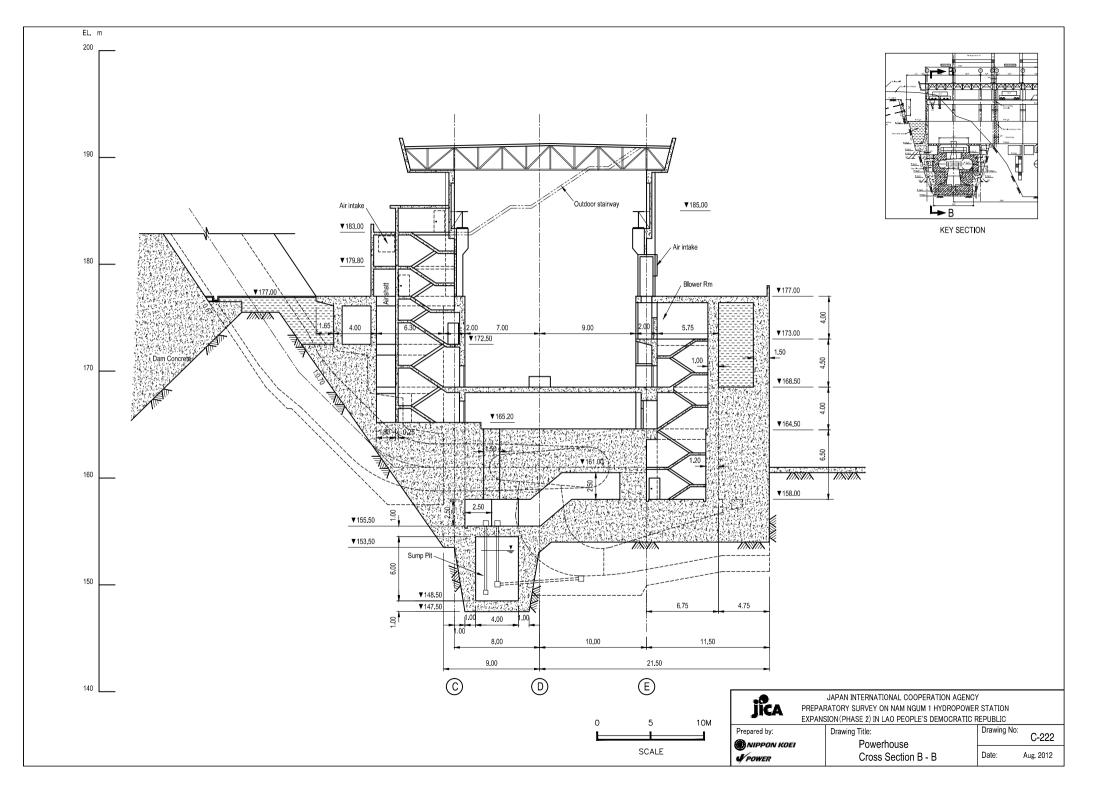

Dam Axis

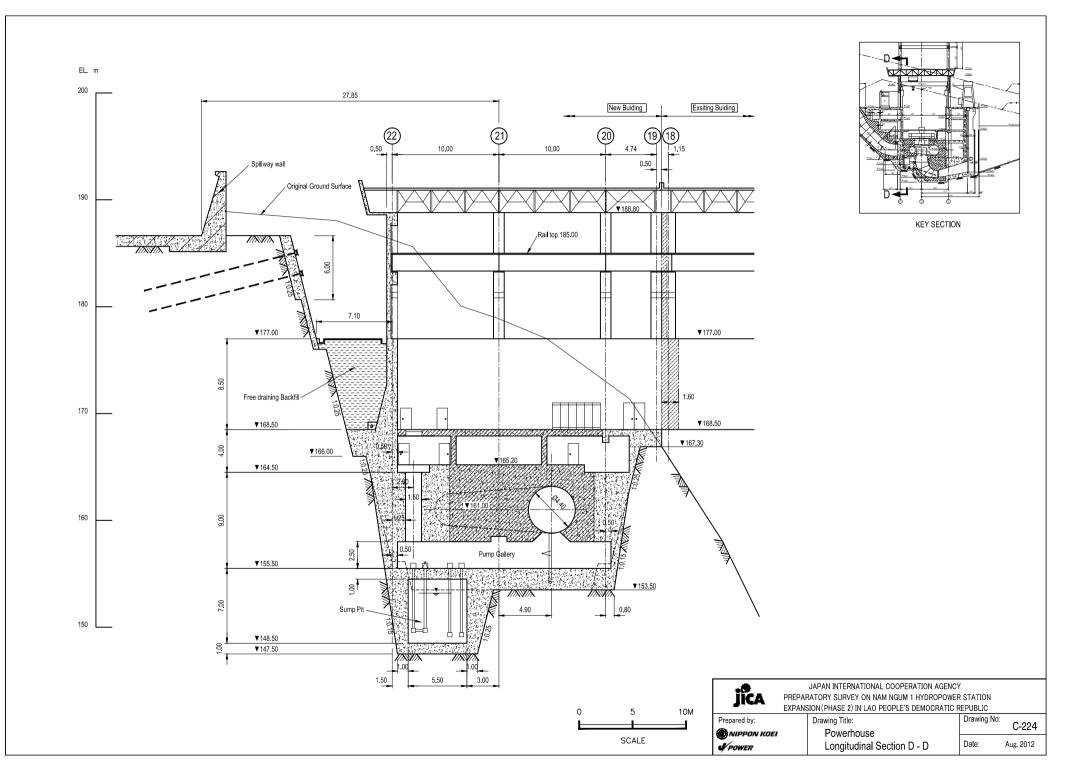

side Jia

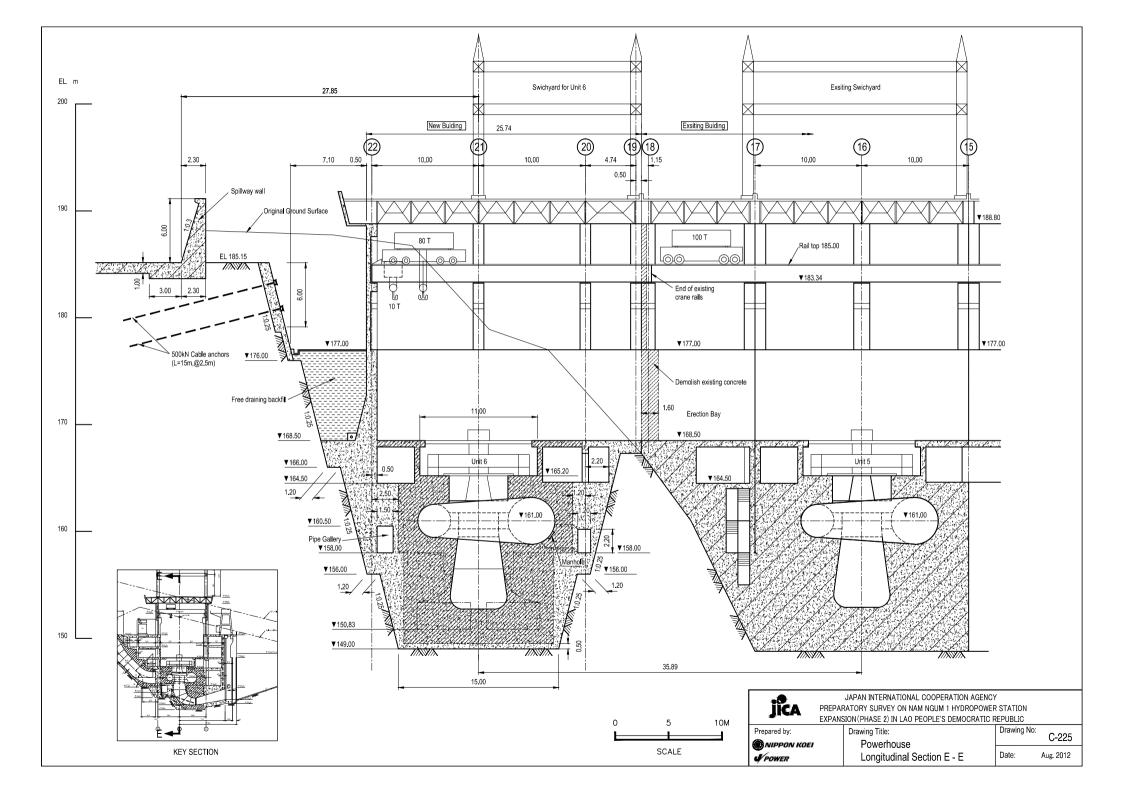
PROFILE

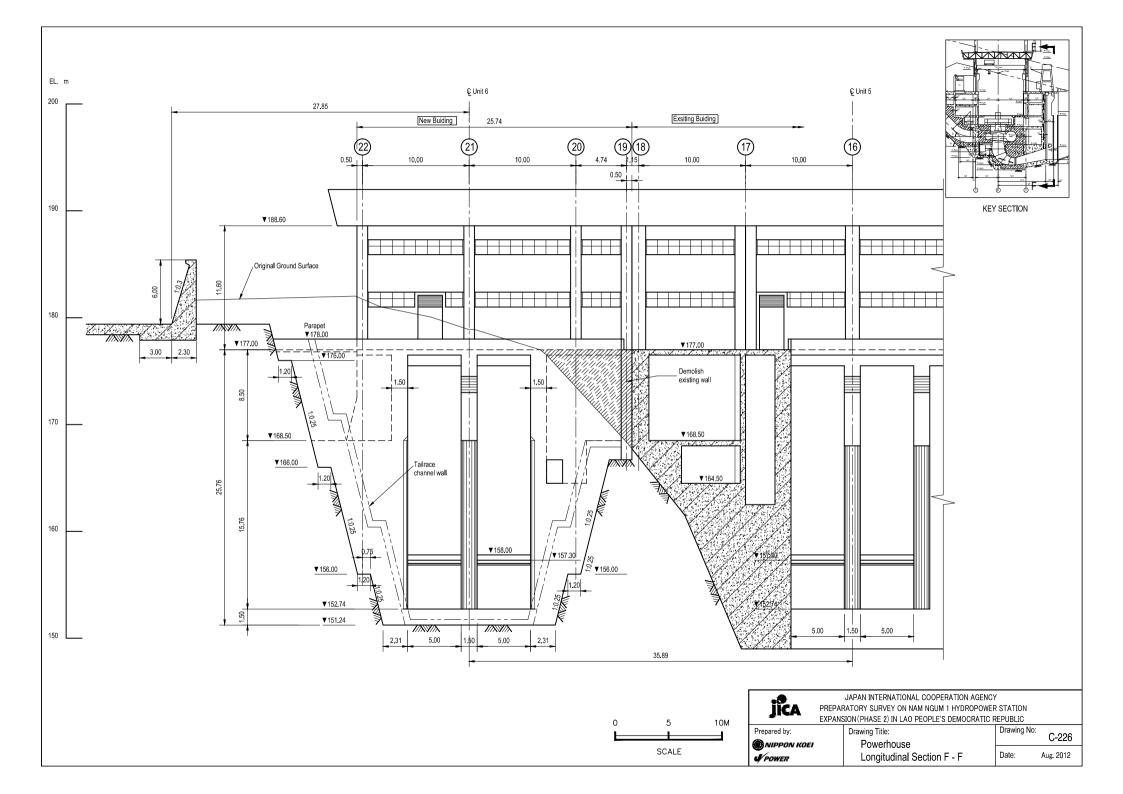


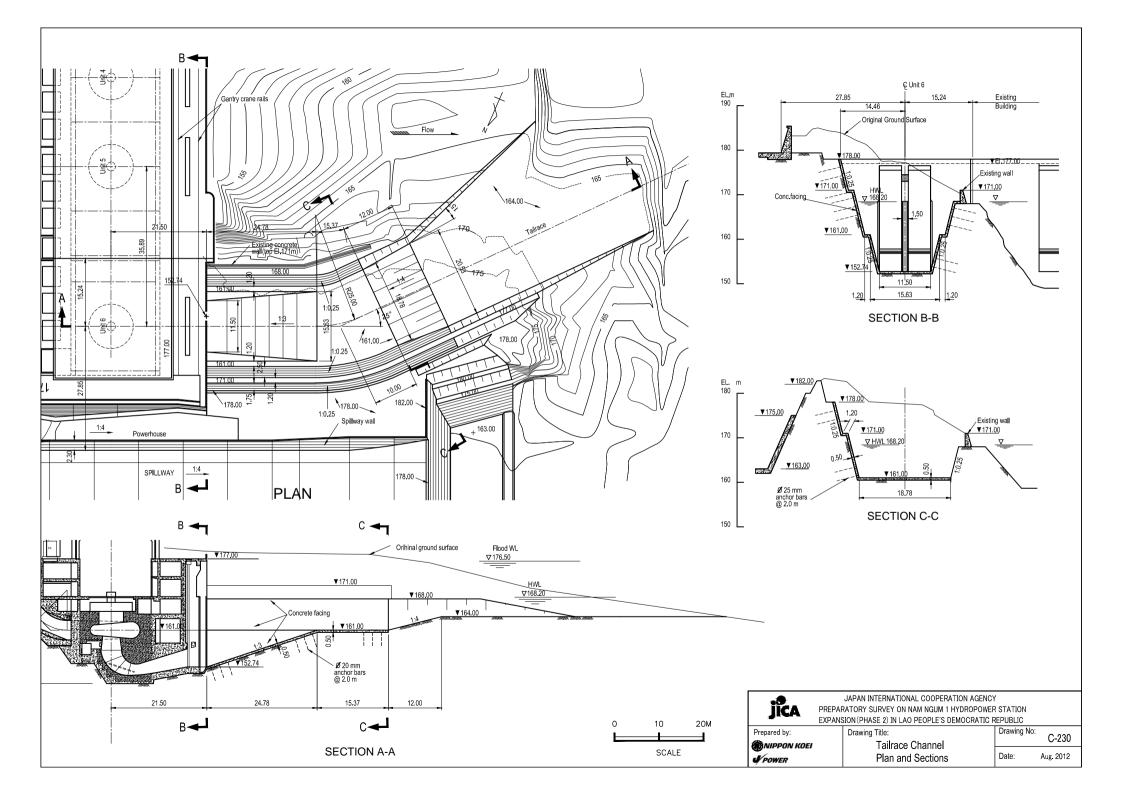


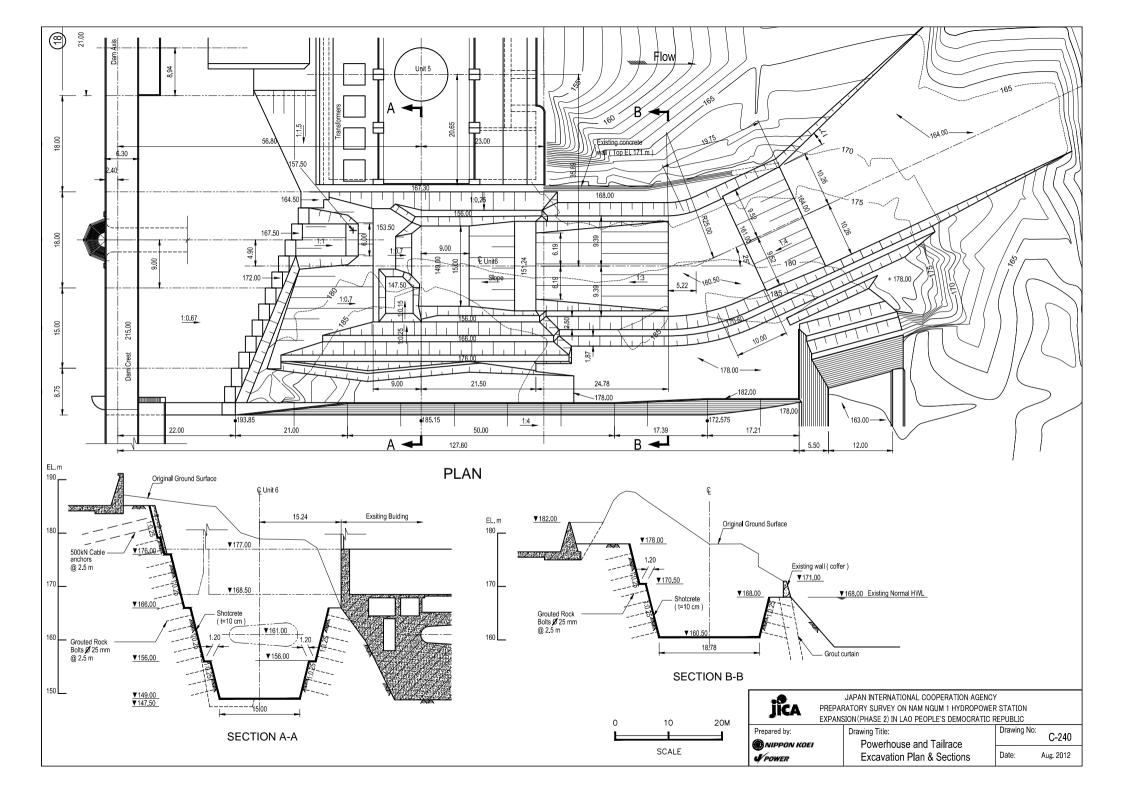


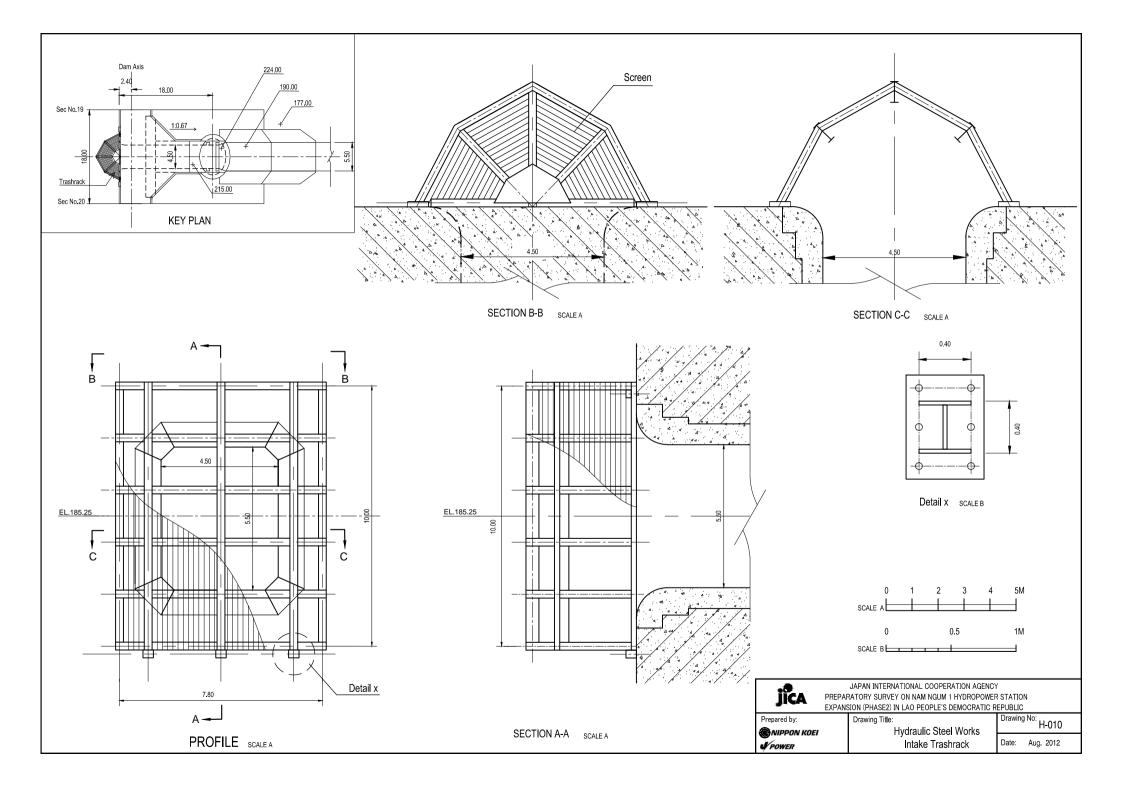


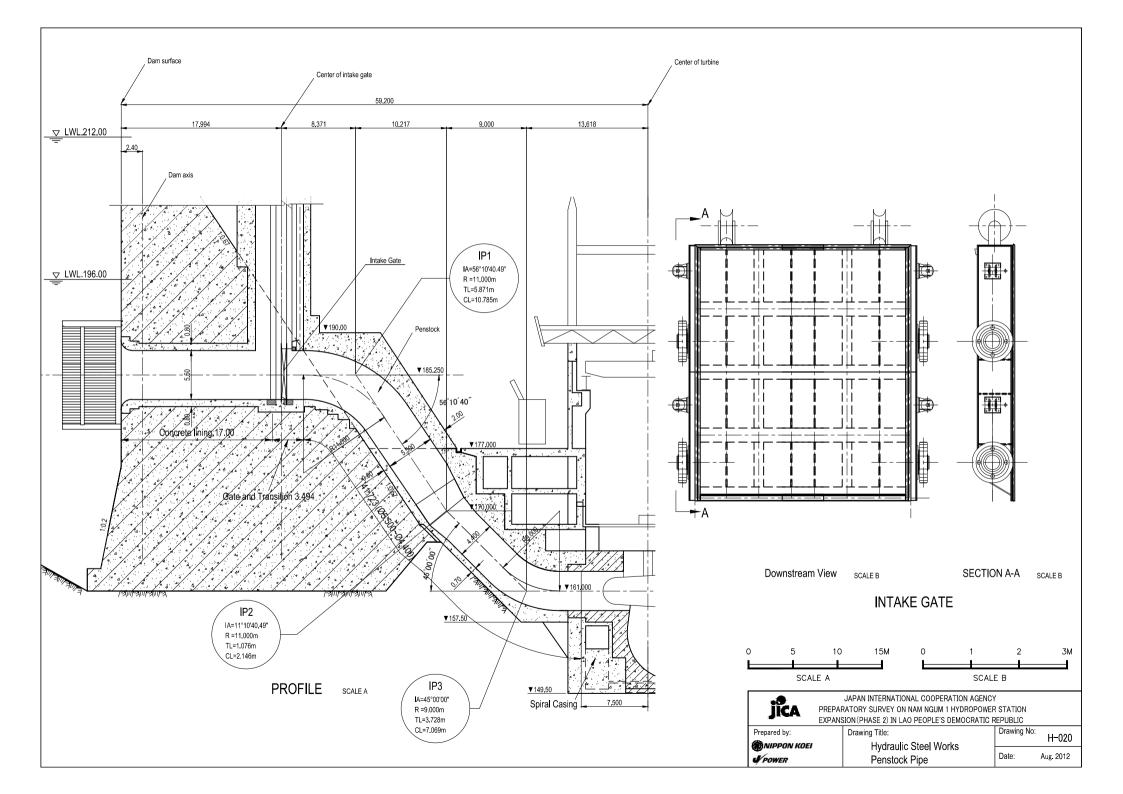

SECTION AT EL. 157 M

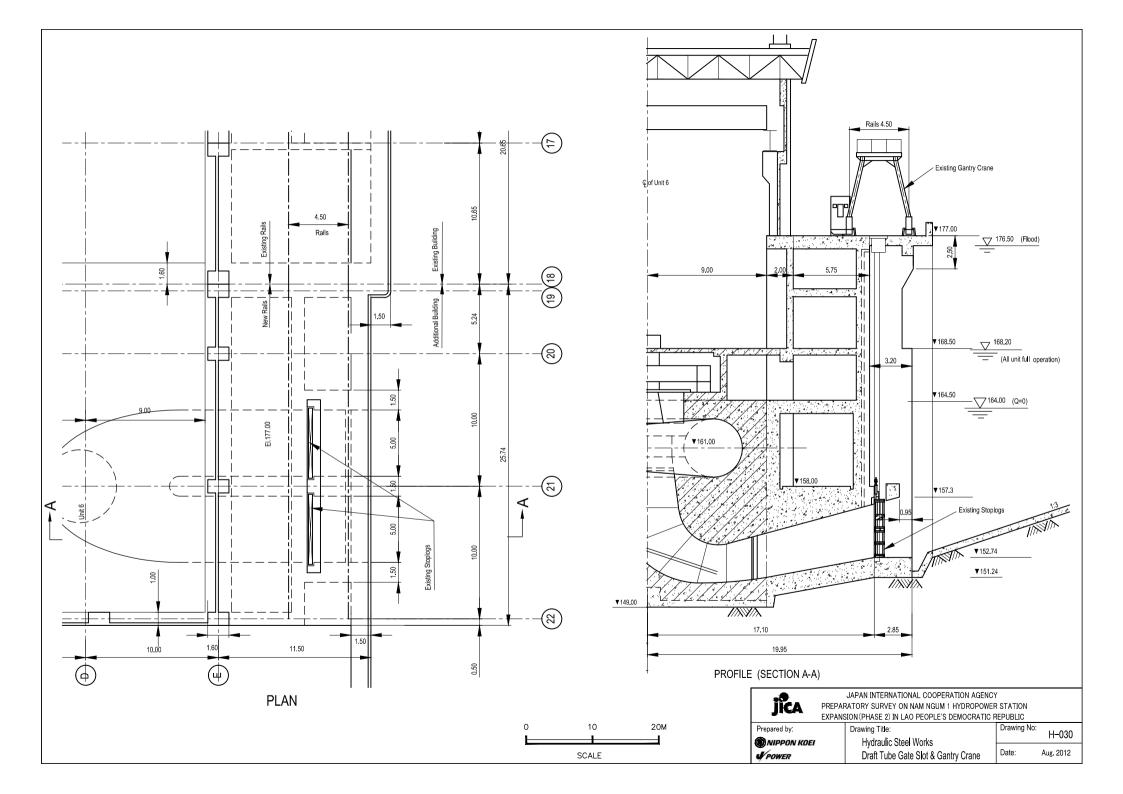


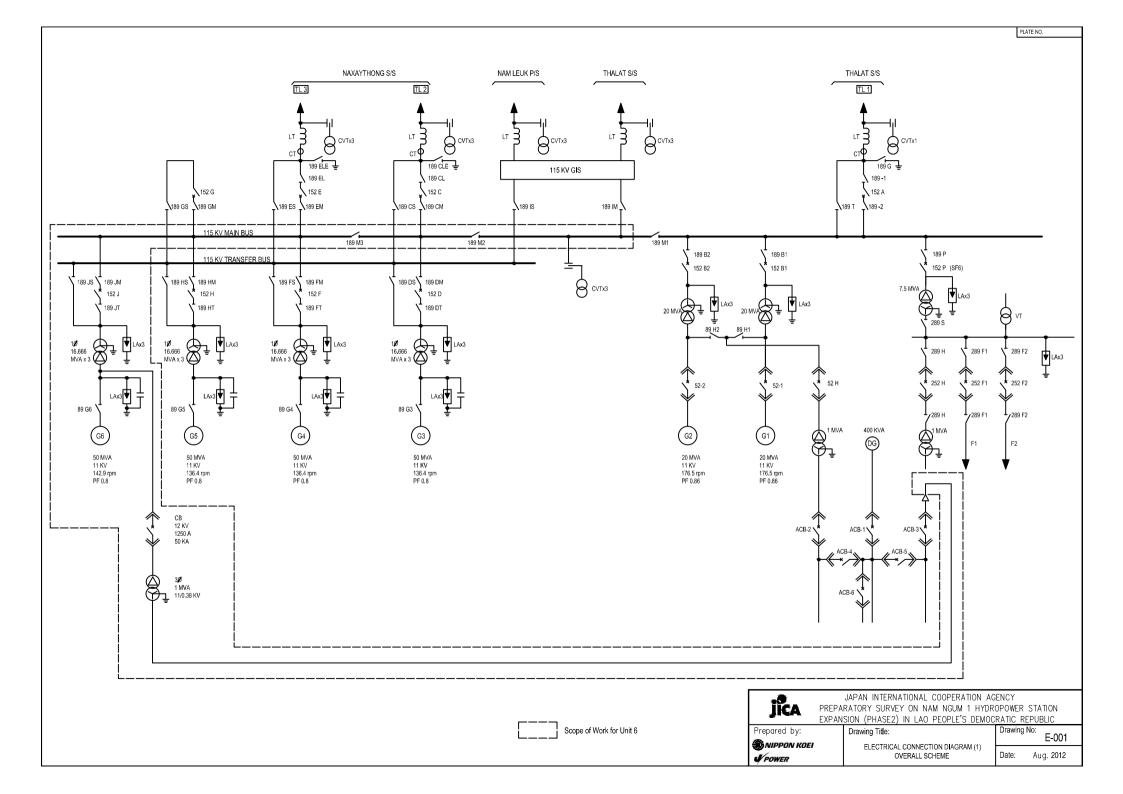












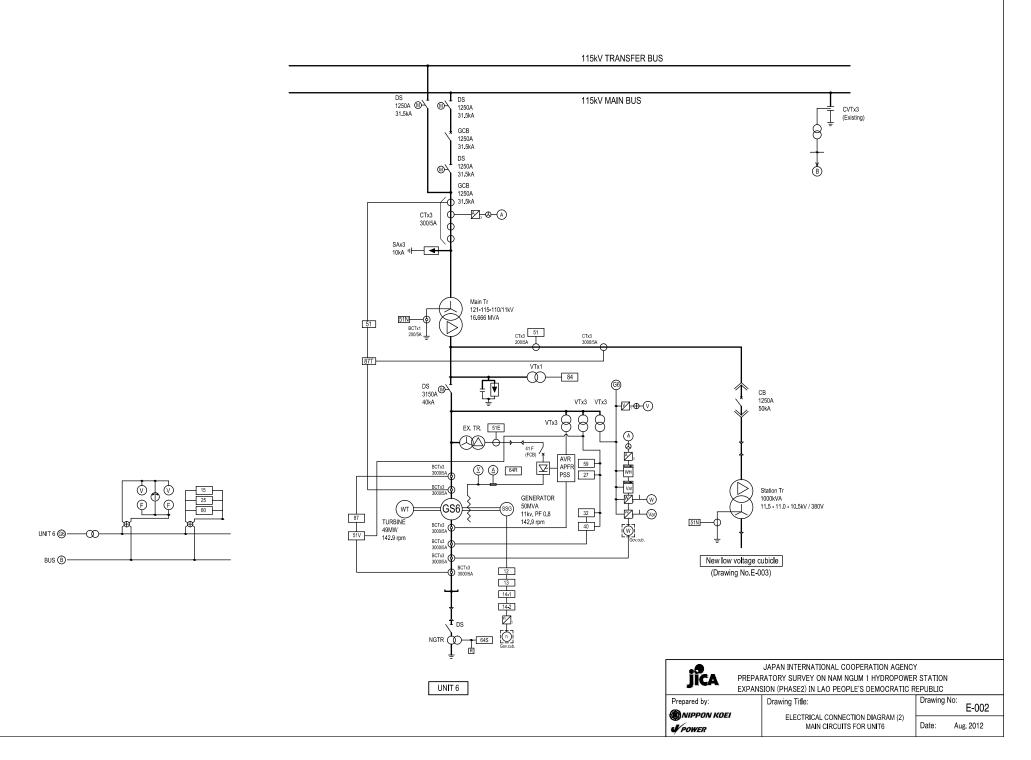
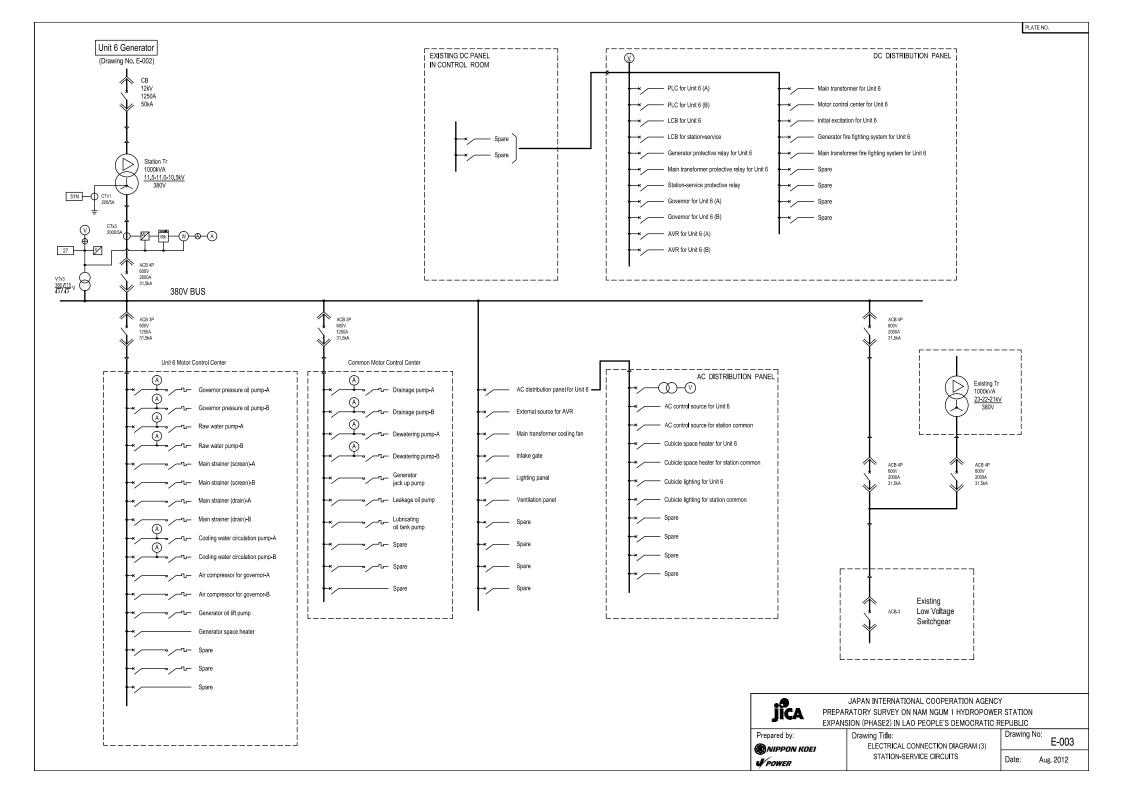



PLATE NO.

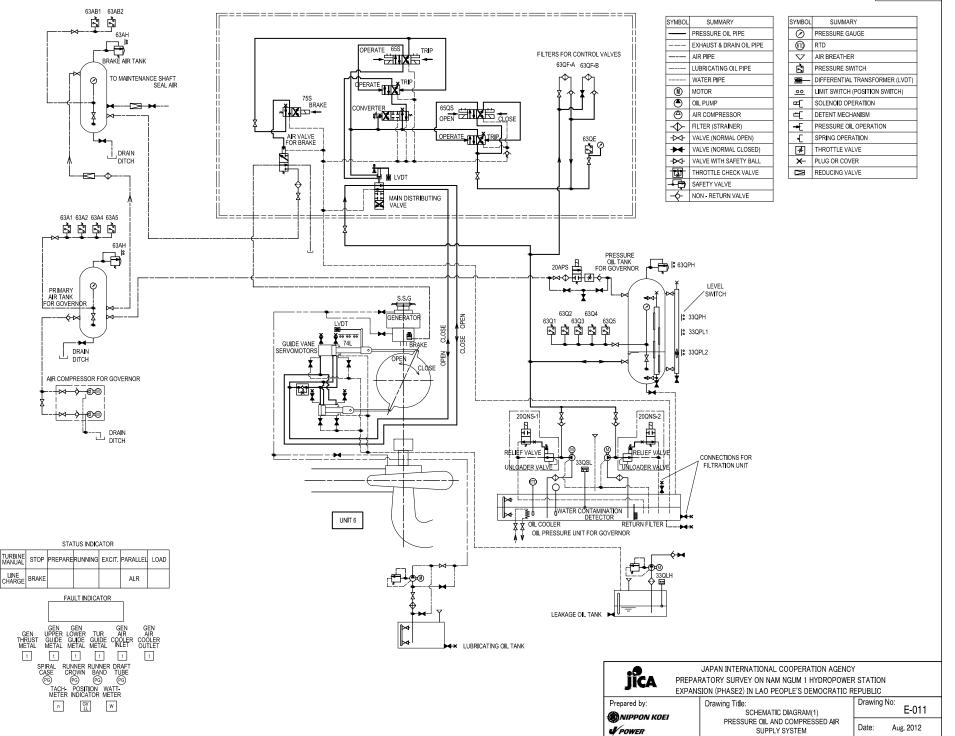
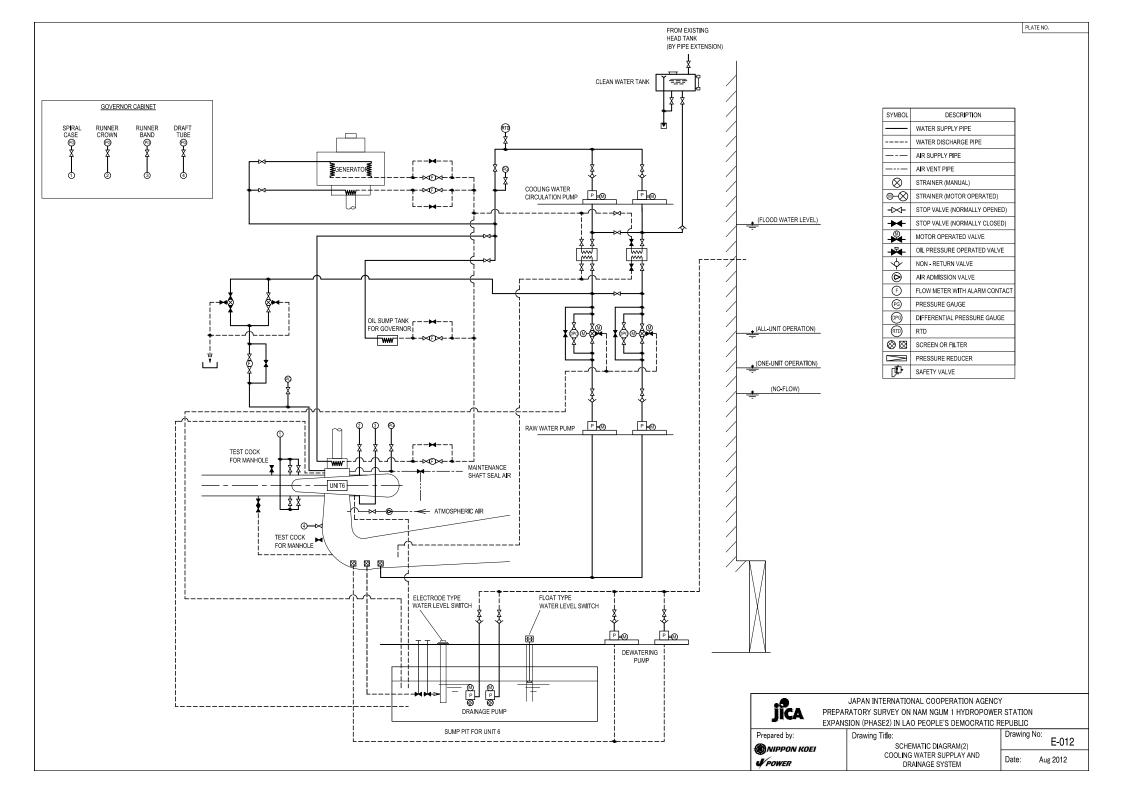
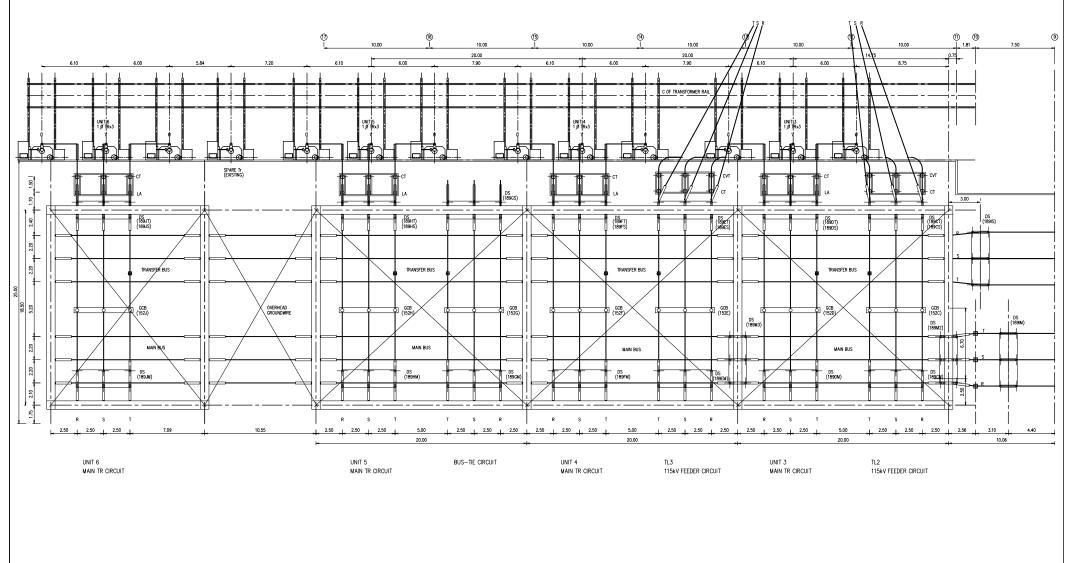
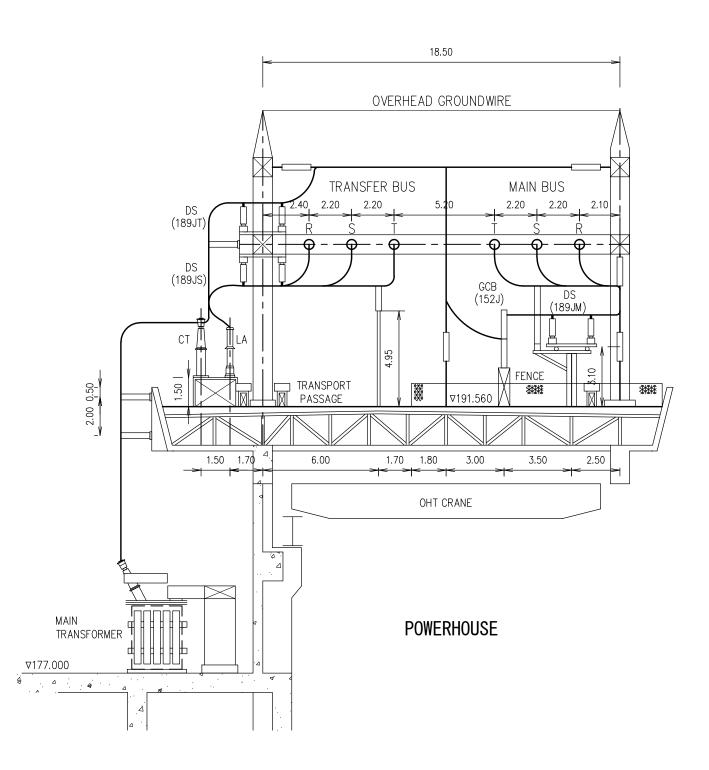
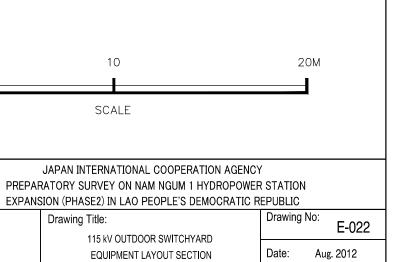





PLATE NO.


		JAPAN INTERNATIONAL COOPERATION AGENCY	(
JICA	PREPAR	RATORY SURVEY ON NAM NGUM 1 HYDROPOWEF	R STATION	
	EXPANS	SION (PHASE2) IN LAO PEOPLE'S DEMOCRATIC R	EPUBLIC	
Prepared by:		Drawing Title:	Drawing	No: E - 021
NIPPON KOEI		115kV OUTDOOR SWITCHYARD		E - 021
V POWER		EQUIPMENT LAYOUT PLAN	Date:	Aug. 2012

0

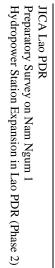
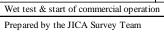

PREPA EXPAN Prepared by: Prep

PLATE	NO.
1 6/116	

Appendix G

Implementation Plan and Cost Estimate

	Description	2012									2013									2014										2015																		
		1	2	3	4 5	5 6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9 1	0 11	12	1	2	4	5	6	7	8 9	10	11	12	1	2	3 4	4 5	6	7	8	9 1	0 11	12	1	2	3	4	1
Γ														Ы	re-co	ons	struc	ctior	n ad	ctiv	ities	5																								Π	Τ	
L				Ц																				T																				Ц	$ \dashv$			
	1 Loan Pledge										1	Y.																																		Ц		
_	2 Loan Agreement														7	'																														Ц		
	3 Selection of consultant	_																																												\square		
	Preparation of TOR by EdL								L			E																	_																			
	Tender & evaluation																																															
	Contract award																F																															
ŀ	4 D/D & Tender Document																																															
	Detailed design for tender level																	ļ																												\Box		[
	Tender documents																				F	-	1		-																							
1	5 Selection of Contractors																																															
	PQ, tender & evaluation				Τ		Τ	Τ	Τ	Γ								Τ		Τ			Γ	1		-	-			-		1	1				Τ					Τ	Γ			Π		Ī
	Contract award		Π	Π	Т		Τ		Т	Τ		Γ				Т	Τ	Τ	Т	Т	Т		Γ	Т	Τ	Τ	Γ			Т	Τ				Τ	Τ		Γ				Τ	Γ			Π		ľ
•	6 Construction																																									С	ons	truc	tior	n pe	rio	0
	Mobilization/Preparatory works			H		1	t	t	t	T	T	t				+	+	1	1	1	t	1	t		1	T	t	Η	1	t			Η				Ī					Ē	Ē					
	Powerhouse & tailrace				Τ	Τ	Τ	Τ	Т	Γ								Τ	Τ	Τ	Τ	Τ	Γ			1			Τ	Т	Γ																	
	Access to PH excavation site																																			•												
	Tail bay coffer barrier				Τ		Т		Т	Γ								T	Τ	Τ		ľ	Γ							Т	1																	
	Temporary trestle (platform)																																															
	Foundation excavation (incl. tailrace)				Τ		Т		Т	Γ								Τ		Τ			Γ							Т																		
	Concrete up to crane rail level			Π	Т	Τ	Т	Τ	Т	Τ	Γ	Γ				Τ	Τ	Τ	Т	Τ	Т	Τ	Г		Т	Γ	Γ		Τ	Т	Т	Γ																ł
	Turbine & mechanical		Π	Π	Т		Т		Т		-	Γ			Π	Т		Τ	Т	Т	Т	Τ	Г		Τ	Τ	Γ		Π	Т	Τ																	ł
	Generator & electrical						Τ	Γ	T										Τ				Γ		Τ																							I
	Building utilities and finishing				T		Τ	T	Τ	1				1		T		T	Τ	T	T	Ť	Τ		Τ		1			Τ																		I
	Intake & Penstock				T		Τ		Γ	1		1				T		T	T	T	T	T	Γ		Τ		1											-					-					Ī
	Dam crest temporary platform				T	T	T	T	Т	T	Г	T				Ť	T	Ť	Ť	Ť	T	T	T		T					T	T																	Ī
	Temporary d/s platform and ramp		Π				Т	T	Т	1	Γ	1				T	T	1	T	Ť	T	Ť	Γ		Т	1	1		Τ	Т	1	-	-		ľ			-				1	-			De	w	at
	Concrete wall for Vertical shaft				T	T	T	T	Т	T	Γ	T				Ť	T	Ť	Ť	Ť	T	T	T		T					T	T																	T
1	Intake temporary coffer enclosure		Π		T	1	T	T	T	T	Γ	T				Ť	Ť	Ť	Ť	Ť	T	Ť	T		Ť		T		1	Т		-													-			
1	Dewatered period in coffer enclosure		Π		T		T	T	T		T	Ť				T	Ť	T	Ť	T	T		T	Π	Ť		T		1	Ť	T	Γ																
1	Piercing NN1 dam body	1	\square	\square	1	1	T	Ť	t	1	T	T				1	1	+	1	1	1	1	T		1	1	T		1	1	1	1					-									Bre	ea	k -
	Trashrack		Π		T		T	T	T		T	Ť				Ť	Ť	T	Ť	Ť	T	T	T	Π	Ť		T		1	Ť		Γ																I
1			diameter of	the second s	-	-	-	÷	_		- 1	-			_	-	_	-	-	- de	-	-	1		_		diam.		-	-	1	diameter of		_	_	_	_	-		_	_	_	-	_	_			ł

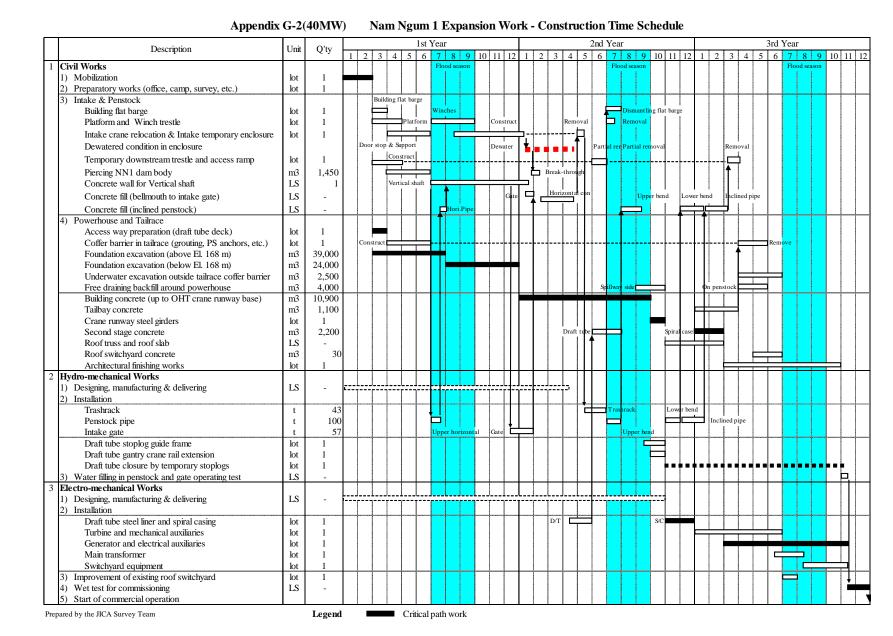

Appendix G-1

Overall Implementation Schedule

2016

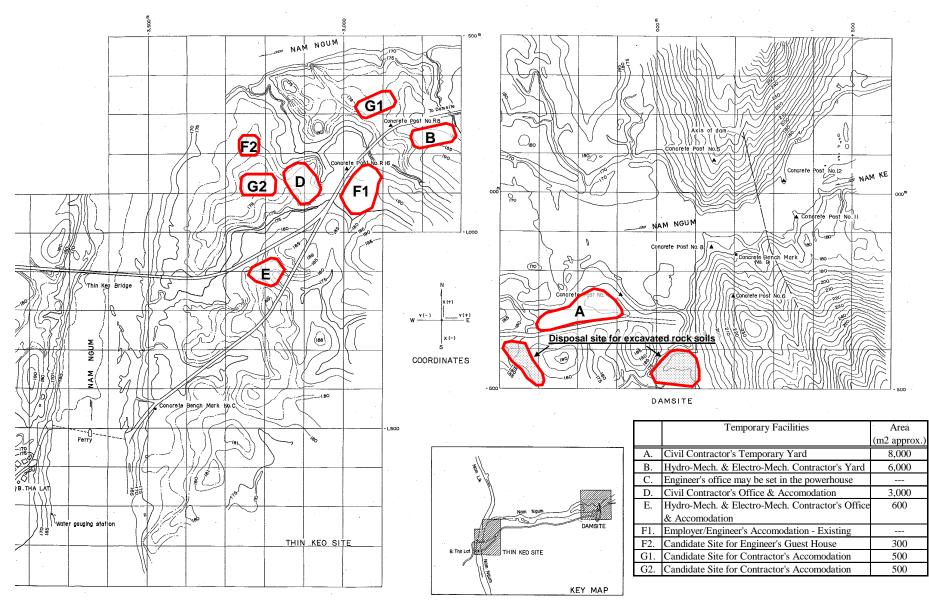
2 3 4 5 6

reak-through

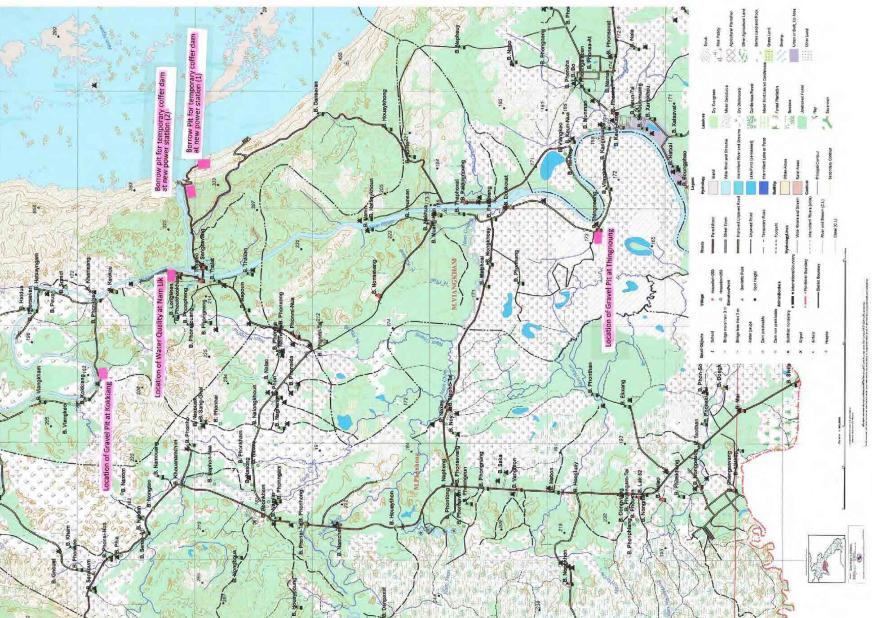

Penstock pipe and intake gate

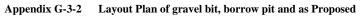
Concrete

7 Commissioning


2017

10 11 12 1 2 3 4 5 6


JICA Lao PDR Preparatory Survey on Nam Ngum 1 Hydropower Station Expansion in Lao PDR (Phase 2)


Appendix G

G-3

G-4

October 2012

Appendix G-3-3 Photograph of gravel bit, borrow pit and as Proposed

	Base Year for Cost Estimation:	Sep, 2	2012		FC : million JPY
	Exchange Rates	•	= Yen	0.0101	LC : million Kip
	Price Escalation:	•	2.1%	LC: 8.3%	Total : million JPY
	Physical Contingency	10%			
	Physical Contingency for Consultant	5%			
	Item		Total		
		FC	LC	Total	
A.E	LIGIBLE PORTION				
I)	Procurement / Construction	3,338	114,395	4,493	
	a. civil works	1,127	65,198	1,786	
	b. hydro-mechanical works	119	2,079	140	
	c. electro-mechanical works	1,560	9,633	1,657	
	Base cost	2,806	76,910	3,583	
	Price escalation	228	27,086	502	
	Physical contingency	303	10,400	408	
Π)	Consulting services	745	2,838	774	
	Base cost	665	2,081	686	
	Price escalation	44	622	51	
	Physical contingency	35	135	37	
Tot	I = I	4,083	117,233	5,267	
B. I	NON ELIGIBLE PORTION				
а	Procurement / Construction	0	0	0	
	Base cost	0	0	0	
	Price escalation	0	0	0	
	Physical contingency	0	0	0	
b	Land Acquisition	0	0	0	
	Base cost	0	0	0	
	Price escalation	0	0	0	
	Physical contingency	0	0	0	
С	Administration cost	0	26,073	263	
d	VAT	0	0	0	
е	Import Tax	0	0	0	
Tot	al (a+b+c+d+e)	0	26,073	263	
TO	TAL (A+B)	4,083	143,306	5,530	
C.	Interest during Construction	106	0	106	
	Interest during Construction(Const.)	105	0	105	
	Interest during Construction (Consul.)	0	0	0	
D.	Commitment Charge	38	0	38	
	AND TOTAL (A+B+C+D)	4,226	143,306	5,673	

Appendix G-4 Total Fund Requirement

Administration Cost = VAT= Import Tax= 5% 0% of the expenditure in local currency of the eligible portion 0%

				US\$ 1.0	=	JPY	79.7	
				US\$ 1.0	=	Kip	7,890.3	
				Kip 1	=	JPY	0.0101	
No	Work Itam	Unit	Overtity	Un	it Rate	Am	ount	Total
No.	Work Item	Unit	Quantity	(JPY)	(Kip)	(10 ³ JPY)	(10 ³ Kip)	(10^3JPY)
A	CIVIL WORKS							
A1	Preparatory Works							
	a) Preparation of access on the existing draft tube deck	lot	1			0	83,890	847
	b) Relocation of gantry cranes (dam crest & draft tube)	lot	1			0	167,779	1,695
	Sub-total					0	251,669	2,542
A2	Intake and Penstock							
1	Temporary works							
	a) Intake enclosure structure in reservoir	lot	1			304,408	12,343,083	429,073
	b) Platform for intake closure on dam crest	t	40	242,211	23,487,423	9,616	932,451	19,034
	b) Platform for dam penetration work	t	163	212,879	21,222,625	34,699	3,459,288	69,638
2	Concrete excavation for dam penetration	m3	1,450	21,961	519,963	31,843	753,946	39,458
3	Concrete (above El. 177m)	m3	680	11,715	399,438	7,966	271,618	10,709
4	Re-bars	t	34	1,065	13,092,701	36	445,152	4,532
5	Penstock works for support of trashrack	lot	1			825	151,496	2,355
6	Gate tower	lot	1			63,872	3,935,810	103,624
7	Miscellaneous works (metal works, road, landscaping, etc.)	LS				45,327	2,229,284	67,843
	Sub-total					498,592	24,522,128	746,265
A3	Powerhouse and Tailrace							
1	Temporary works							
	a) Tailrace coffer structure (incl. grouting and rock	lot	1			4,466	78,017	5,254
	anchoring)	101				4,400	/8,01/	5,25
	b) Removal method at EL. 177 m for muck loading	m3	24,000	718	27,329	17,232	655,896	23,857
2	Excavation							
	a) Open excavation, rock, above El. 168m	m3	39,000	408	60,507	15,912	2,359,773	39,746
	b) Pit excavation, rock, below El. 168m	m3	24,000	2,126	101,490	51,024	2,435,760	75,625
	d) Underwater excavation, rock, outside coffer	m3	2,500	3,231	174,997	8,078	437,493	12,497
	e) Demolition of existing reinforced conc.	m3	400	3,190	152,236	1,276	60,894	1,891
3	Slope protection and rock support							
	a) Rock bolts on cut slope	m	4,300	1,460	28,214	6,278	121,320	7,503
	b) Shotcrete on cut slope	m3	540	56,083	907,472	30,285	490,035	35,234
4	Backfill with free draining materials	m3	4,000	254	30,323	1,016	121,292	2,24
5	Cut slope stabilization (spillway side)	lot	1			10,084	176,168	11,863
6	Concrete (incl. formwork cost)							
	a) Penstock below El. 177 m	m3	770	11,715	399,438	9,021	307,567	12,12
	b) Powerhouse	m3	13,100	14,328	673,375	187,697	8,821,213	276,79
	c) Tailrace	m3	1,100	14,876	673,376	16,364	740,714	23,845
7	Re-bars	t	840	1,065	13,092,701	895	10,997,869	111,973
8	Steel structures (roof truss, crane beams)	t	98	324,092	5,662,079	31,761	554,884	37,365
9	Architectural works (finishing, windows, doors, roofing, plumbing, lighting, ventilating, etc.)	lot	1			41,055	717,257	48,299
10	Miscellaneous works (metalwork, earthing, paving, landscaping, etc.)	LS				12,973	872,285	21,783
	Sub-total					445,417	29,948,437	747,890
A4	Roof Switchyard							
1	Concrete	m3	30	14,876	673,376	446	20,201	650
2	Re-bars	t	2.0	1,065	13,092,701	2	26,185	260
3	Miscellaneous works	LS				45	4,639	92
	Sub-total					493	51,025	1,008
A5	Removal Cost of Rock Outcrops							,
1	Removal cost of rock outcrops at downstream stretch	m3	13,000	3,231	174,997	42,003	2,274,961	64,980
A6	General Item Cost	-	- ,			-,000	,,	
1	Contractors' offices, camps, workshop, power/water supply, insurance, bonds, etc.)	lot	1			140,929	8,149,746	223,24
	Total of A					1,127,434	65,197,966	1,785,933

Appendix G-5 Priced Bill of Quantities

Ap	pendix G-5 (continued)							
B	HYDRAULIC STEEL STRUCTURES							
B1	Intake and Penstock							
1	Trash rack	t	43	474,215	8,284,815	20,391	356,247	23,989
2	Stoplog	t	18	504,185	8,808,415	9,075	158,551	10,676
3	Intake gate and hoist	t	57	648,238	11,325,105	36,950	645,531	43,470
5	Penstock steel pipe, D5.5m	t	100	504,185	8,808,415	50,419	880,842	59,316
	Sub-total					116,835	2,041,171	137,451
B2	Draft Tube Stoplog Facility							
1	Gantry crane rails & cable extension	LS				2,161	37,750	2,542
	Sub-total					2,161	37,750	2,542
	Total of B					118,996	2,078,921	139,993
С	ELECTRICAL /MECHANICAL EQUIPMENT							
C1	Generating Equipment							
1	Turbine and auxiliaries	lot	1			572,489	3,604,784	608,897
2	Generator and auxiliaries	lot	1			654,513	4,121,266	696,138
3	Transformers	lot	1			116,028	554,759	121,631
4	Indoor switchgear	lot	1			66,390	402,733	70,458
5	Outdoor switchyard equipment	lot	1			38,114	283,729	40,980
6	Control and protection equipment	lot	1			54,982	332,942	58,345
7	Auxiliary equipment	lot	1			21,124	129,222	22,429
8	Miscellaneous materials	lot	1			20,917	203,542	22,973
	Sub-total					1,544,557	9,632,977	1,641,850
C2	Thalat Substation Improvement							
1	Overhead power conductors	lot	1			0	0	(
	Sub-total					0	0	(
C3	Inspection, training and model test							
1	Factory inspection by the Emplyer	lot	1			4,868	0	4,868
2	Factory training to the Employer	lot	1			1,623	0	1,623
3	Site instruction	lot	1			5,795	0	5,795
4	Turbine model test	lot	1			2,898	0	2,898
	Sub-total					15,184	0	15,184
	Total of C	-				1,559,741	9,632,977	1,657,030
D	CONSULTING SERVICES					.,==:,: •=	- , ,- , . ,	-,,000
1	Design and construction supervision	lot	1			665,374	2,081,196	686,396
	Total of D					665,374	2,081,196	686,396
Gra	and Total					3,471,545	78,991,060	4,269,353

Appendix G-5 (continued)

JICA Lao PDR Preparatory Survey on Nam Ngum 1 Hydropower Station Expansion in Lao PDR (Phase 2)

October 2012

G-9

	Position	Billing	nRate			2013			1		20	014			1		2	015					20	016						2017		1	
	1 Oshion	F/C Yen		4 5	6 7 8		1 12 1	2 3	4 5	6 7			12 1	23	4 5	6 7			1 12 1	2 3	4 5	6 7			12 1	2 3	4 5	6 7			1 12 1	1 2 3	Total
		1/0 101			1-1-1-1	- 1 1 -	.1.=1.				1-1-		11.	-1-				1.01.				•							÷	- 1 1 -		. - -	rotai
-	1 Project director	2562000	-						h						-																		3
a	2 Project manager	2562000					1 1 1					1 1						1 1 1				4 4	4 4	1 1		11					1 1	1 1	50
	3 Civil designer 1 (intake)	2562000			┼╍╌┞╍┚┞╍┚╿					4-+-	4		+		1 1				4			1 1	1 1						4 4				9
a										+ $+$	+ +-	1	1					++-	++-+		4 4					+ + + -		+++	+ +		1 1		
а	4 Civil designer 2 (powerhouse)	2562000			1	1	1 1 1	1 1 1		+ $+$	+ +-	1 1	1 .	1 1 .	1 1	1 1	+	++	++-	1 1	1 1					+ + -		++	+ $+$	1	1 1		23
	5 Architectural engineer	2562000			$\left - \right - \left - \right $		111			++-						+-+-	+	+-+-	+	1 1						+		+-+-	++				4
	6 Civil contract engineer	2562000					111	1	1	1		1 1		1 1 1	1 1	1 1		+-+-	+				1 1				1	+-+-	+-+		1 1	1 1 1	21
а	7 Cost estimate engineer	2562000			┝╾┝╍┝		+++1	1		++	+-+-	+ + -				+-+-	+ + +	+	┶┼┼	++-						+-+-		++	+				2
	8 Geologist	2562000			┼╍┼┦╍┼	1	1			++-			+		1			1	1	++-						+-+-		+-+-	++				6
	9 Hydro-mechanical engineer	2562000					1 1	1		1		1				1		+-+-	1			1		11	1								11
	0 Electro-mechanical engineer	2562000					<u>1 1 1</u>	1	1	1		1									1			1	1 1		1 1		1 1	1 1	1 1	1 1	22
	1 Civil construction engineer	2562000			<u> </u>			++-		+ $+$				1 1 1	1 1	1 1 1	1 1	1 1 1	1 1	1 1	1 1	1 1	1 1	1 1	1		1 1	4-+-	+ +		1 1		29
	2 Substation/SCADA engineer	2562000			┝╍┝╍┝		1	++-		++-	+-+	+					+	+-+-	+-+	++-						+-+-		+-+-	+	1 1	+-+-		3
a 1	3 Environmental engineer	2562000	0		- - -	1		₊		+-+-		<u> -</u>	_	1			+	+		 		1		 		<u> -</u>		+	+		1		4
								<u> -</u>				 	ļ					+								<u> - -</u>		+	+-+	_			
b	1 Administrator	300000				1 1	1 1 1	1 1	1 1	1 1	1 1 1	1 1	1 '	1 1 .	1 1	1 1 1	1 1	1 1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	<u> 1 ·</u>	1 1	1 1	1 1	1 1 1	57
	2 Civil engineer 1 (intake)	300000				1	1 1	\downarrow		+		1 1	1	1		1 1		\downarrow						ļ		<u> -</u>							9
	3 Civil engineer 2 (powerhouse)	300000				1	1 1 1	1 1		\downarrow		1 1	1 '	1 1 1	1 1 1	1 1 1	1 1	1 1 1	1 1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1 .	1 1	1 1	1 1	1 1 1	49
b	4 Structural engineer	300000		_		1	1 1 1					1 1	1 '	1 1 1	1																		10
	5 Architectural engineer	300000					1 1	1					1	1 1 1	1					1 1			_				1 1	1 1	1 1	1 1	1 1		18
	6 Geologist	300000			1 1	1	1								1	1	1	1	1														9
b	7 Mechanical engineer	300000					1 1	1	1	1		1				1			1			1		1 1	1					1	1 1	1 1	16
	8 Electrical engineer	300000					1 1	1	1	1		1									1			1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1 1	23
b	9 Cad operator	300000				2	2 3 3	3 3 3	3			3 3	3 3	3 3 3							2 2			1 1		1 1		1 1 1	1 1	1 1	1 1		79
b 1	0 Inspector	300000								TT	TT		Π	2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 3	3 3 3	3 3	3 3	3 3	3 3	3 3	3 3 3	3 3 3	3 3 3	3 3	3 2	2 2		91
b 1	1 Environmental engineer	300000	0			1		1		TT	TT	П		1 1	1 1	1 1		TT	TT	Π	1 1	1 1	1 1	П		TT		TT.	1 1	1 1	1 1		20
	[Total of Pro-A]					39					3	33						39					3	8						38			187
	[Total of Pro-B]					54					e	60					1	87					9	1						89			381
	[Total of Pro-A+Pro-B]					93					ç	93					1	26					1:	29						127			568
	Total Cost of FC for Each Month(Pro-A)				99,	918,000)				84,54	16,000					99,9	18,000	1				97,35	6,000					97,	356,000	0		479,094,000
	Total Cost of FC for Each Month(Pro-B)				16,	200,000	2				18,00	00,000					26,10	00,000)				27,30	0,000					26,	700,000	0		114,300,000
	Total Cost of LC for Each Month(Pro-A)					0						0						0					. ()						0			0
	Total Cost of LC for Each Month(Pro-B)					0						0						0					()						0			0
с	1 secretary	0	3000000		1 1	1 1	1 1 1	1 1	1 1	1 1	1 1 1	1 1	1 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2 2	2 2	2 2	2 2	2 2	2 2	2 2 2	2 2 2	2 2 2	2 2	2 2	2 2	1 1 1	93
		0	0		<u> </u>					††	1 1	1 1	1	<u> </u>		+++		\uparrow	\neg	1-1-				<u> </u>		11		11	11	$\neg \neg$	1-1-		0
		0	0					++		++	+-+		<u>+</u>	++	1.1.	+		++	++-							++		++	+		+-+-		0
		0	0					++-		++								++											+				0
		0						++-		++			++-			+-+-	+	++										++	+				0
		0			$\left - \right $			++		++	++-	+ +-	++	+-+-	1	+++		++	++-	++-						+++		++	+ +	++	+++	1-1-1	0
		0			$\left \cdot \right \left \cdot \right $	-+-+	+++-	++-		++	++-			+++	1	+++		++	++	++-				┼╌┼╌╴		++		++	++	++	++	+++	0
		0			┼╾┼╾┼╾┤		++-	+ + -		++	++-	++-	+-+-	+-+-		+-+-		++	++-	++-						++-		++	+	++			0
		0			┟╾┼╾┼╾┤		++-	+ + -		++	++-	+ + -	+	+-+-	1	+-+-		++	++-					+		++-		++	+	++			0
		0			┟╍┟╍┟╸			++-		++	++-	╆┼┷	+	+-+-	1	+	++	++	++	++-						┼╌┼╌		++	+	++	++	++++	0
	[Total of Supporting Staff]					9					1	15						24					2	4						21			93
	Total Cost of LC for Each Month(SS)				27	.000.000)		45,000,000				72.000.000						72,000,000						_	63	21	0		279,000,000			
	Grand Total				,	102						08					1-	150						53					/	148	-		661
<u>ــــــــــــــــــــــــــــــــــــ</u>	orana rota														· · · · ·						I						4						

Appendix G-6 Manning Schedule for Consulting Services