ATTACHMENT
Both parties agreed upon and confirmed on the following items.

1. Boreholes with Handpump
(1) Prioritization of villages for implementation
TEC-OYO carried out the geophysical survey in the selected 130 villages in the study area, and
confirmed the access conditions to villages to prioritize the selected 152 villages. The following
parameters are considered for the prioritization.
- Required Drilling Depth:

Groundwater DataBase (NGWDB). Drilling depth reflects to the
THE SECOND PREPARATORY SURVEY
THE PROJECT FOR PROVISION OF IMPROVED WATER SOURCE FOR
RETURNED IDP IN ACHOLI SUB-REGION IN THE REPUBLIC OF UGANDA
Based on the Minutes of Discussions (hereinafter referred to as "M/D") on the Second Preparatory Survey on the Project for Provision of Improved Water Source for Returned IDP in Acholi Sub-region in the Republic of Uganda (hereinafter referred to as "the Project") signed on October 19, 2011 between the Second Preparatory Survey Team (hereinafter referred to as "the Team") of Japan International Cooperation Agency (hereinafter referred to as "JICA") and Ministry of Water and Environment (hereinafter referred to as "MOWE"), of the Government of the Republic of Uganda, the consultant members of the Team (hereinafter referred to as "TEC-OYO") had a series of discussions and conducted field surveys from October 20 to December 6, 2011.
As a result of the discussions and the surveys, both sides confirmed the technical
conditions described as per Attachment.

Kampala, December 5, 2011

RGCs. The results of these tests and drillings are tabulated below.

(2) Planning conditions and water demand
As agreed in the M/Ds for the first and second preparatory survey, the consumption per capita of 20 liter/day/capita and the population estimated for the target year of 2017 are applied for
The core part where the population density is found to be high as a result of field reconnaissance is delineated as the target service area, and the population therein is estimated based on the socio-economic condition survey conducted by TEC-OYO. Where the functional existing scheme is identified in such delineated area, the area served by the existing piped scheme is excluded from the target area of the project. The served area and population of the piped water supply facilities to be provided under the project is set so as to cover those out of the existing scheme as much as possible considering the exploitable volume of groundwater.
liter/ hr ($0.60 \mathrm{~m}^{3} / \mathrm{hr}$) has been basically adopted considering the difficulties in exploring the groundwater in the sub-region.
(

Fig. 1 Histogram of yield in National Groundwater Database in Acholi sub-region (3) Standard Structure of borehole

The standard structure of borehole for handpump installation is as shown in Fig. 2 considering those prevailingly adopted in Uganda.

> The handpumps unit of the modified U2 type will be adopted for the boreholes with handpump for villages. Riser pipes shall be of PVC and connection rods of 3.0 m long shall be of stainless'steel furnished with centralizers.
(5) Drilling procedures and alternative villages

In the implementation of the project, twice of drilling attempts are madein maximum in each village. If both of the attempts fail, the drilling works of the respective village is stopped and the drilling will be conducted in the alternative village of the highest priority. If the twice of drilling attempts fail again, the same procedure is applied for the next highest alternative village. 36 villages will remain after selecting 116 villages among 152 villages, and they are listed as the alternative villages.

2. Piped Water Supply Facilities

 (1) Results of the aquifer tests and the test drilling TEC-OYO carried out the aquifer tests for the 12 existing boreholes which were selected based on the results of analyses on the DWRM's data base and the field reconnaissance. Meanwhile, TEC-OYO conducted the test drillings at the 10 sites which were determined based on the results of the geophysical survey (electric resistivity sounding) conducted in the target six (6)The solar power generation is only possible during the daytime of about six (6) hours causing the increase of initial investment costs, while it reduces the operation costs to almost free, which is considered to be an advantage in the operation and maintenance by the user community.

In fact, although the most of the existing piped water supply systems operated by diesel generated power and commercial electricity supply have been out of operation and abandoned in the Acholi sub-region, some systems operated by the solar power generation are still in operation.

The power source to be applied for the project is determined through the comparative studies among possible sources such as commercial electricity supply, diesel generation and solar power generation in order to ensure long sustainability of the facilities by the operation and maintenance on community level.
(6) Layout plan of piped water supply scheme

The draft layout plans of the piped water supply schemes are drawn to command whole of the target service areas in RGCs. The draft plans are presented in Fig. 4 to Fig. 9. TEC-OYO will proceed with the planning and cost estimate based on these draft plans in the 2nd home work period.
3. Equipment and Tools to be Procured
(1) Tool box for Handpump Mechanics (HPMs)

The present distribution and conditions of the tool boxes in the districts is summarized in the following table, and their sub-county wise details are tabulated in Table 6 attached bereto.

Table 5 Present Distribution and Conditions of Tool Boxes

	Number		Condition of Standard Tool Kit	
				Col

 \qquad

Here are two (2) kinds of tool kits and fishing tools. A standard tool kit is used for regular
maintenance, and a special tool kits is for hand pump installation and rehabilitation. Fishing
Water demand and available water in each RGC are tabulated below.

(3) Water supply system and power source
The piped water supply system is proposed to consist of water source boreholes, transmission pipelines, elevated tank (reservoir), distribution pipeline (networks) and public water stands as illustrated below.

(4) Security measures
It was agreed that the security measures for solar modules are taken providing fences, security lamps, etc. MOWE requested TEC-OYO to furnish required security measures under the responsibility of Japanese side including security fences and guard houses.
(5) Power source of submersible pumps
A submersible motor pump is proposed to be applied considering easy operation and
maintenance, and the solar power generation system is requested to be applied by MOWE,
TEC-OYO agreed basically with this request considering the followings.
\div
A7-3

The service rig is still working and implementing repair work for the central region of Uganda. The service center for the rig is just located in the yard of DWD.
2) Outline of the Specification required to new service rig and attachments Table 9 Outline of Specification for Requested Service Rig

Specifications		Q'ty	Remark
1	Medium body cargo truck with crane and lift frame	1 set	
2	Winch	1 set	For escaped from stuck place.
3	Double tube pipes for well development	1 set	
		141 m	
	b Outer tube: $\phi 2.5$ inch, length 3 m	141 m	
4	Hand pump mechanic tool, fishing tools, and wrench of 24 mm and 36 mm	2 sets	Same tool kits for hand pump mechanics, but it needs additional wrench for repair work of motorized submersible pump system

3) Intended purpose and the place where a new service rig to be deployed Achon region has a lot or phase. Many of them are not fore in addition, it is difficult to develop new groundwater source in Acholi sub-region due to the hydrogeological condition, and it takes a lot of time and cost. Therefore, rehabilitation of those boreholes is most effective measure to solve this issue.

The existing service rig is to be deployed for the rehabilitation work for the Central region. The requested rig is to be deployed in Acholi sub-region and managed by the central office through TSU-2, which is the responsible organization to technical support for Acholi region.
4) Training for the new rig instruction manual after delivering a new rig,
(3) The present conditions of the vehicles of the district water ofles are shown in able 10. Trecks because their daily work for communities are frequently hindered by lack of transportation.
tools are equipment used for extracting dropped parts of the handpump or riser pipes from the borehole.

Plan of the delivery of the tool kits are as follows:

- Two (2) sets of standard tool kit, special tool kits and fishing tools are delivered to each sub-county.

The tools will be lent to hand pump mechanics upon his/her request.
Number of tool kits to be procured is determined to fill the gap between numbers of complete tool boxes possessed at present.

(2) Service rig

The present condition of the existing service rig, which is delivered from Japan in 1997, is summarized in the below table.

$$
\text { Table } 8 \text { Condition of Present Service Rig }
$$

	Part	Condition
1	Truck Travel distance $117,039 \mathrm{~km}$ on $29^{\text {h }}$ November, 2011	Good
2	Crane Lifting Load: Maximum 3.0 ton	Trouble in hydraulic system, which causes the lifting ability lower.
3	Compressor Model 4LE1, Denyo Co.Lld Operation 0.69 MPa , Actual air delivery $5.1 \mathrm{~m} 3 / \mathrm{min}$	Broke down
4	Generator	Broke down

Collection of user fees.
Monthly or seasonal coll
Monthly or seasonal collection of user fees is recommended ensure the repair of handpump unit. The amount and method of water charge collection should be determined by the community and stated in their by-laws.
Technical Support In case or piped rem per in easily. However, extra-ordinary repair may happen in future. There are some options such as becoming a member of Umbrella-North and receiving its support, or contract with private company, etc. The coping method will be determined by the community itself.
(3) Equipment and tools
Each sub-county keeps and manages two (2) set of standard tool kit, special tool kit and fishing fools, The keeper of each tool kit and fishing tools should be recorded by sub county, and such District Water Office (DWO) is responsible to regularly monitor the usage and storage of such
(4) Software assistance "Post Construction Phase". Those software activities are usually implemented by relevant DWO and Health Assistant and Community Development Officer. However, this project intends to construct 116 boreholes with hand pumps for villages and piped water supply systems for 6 RGCs within about one (1) year. It is considered difficult to conduct such a huge amount of software activities by few officers in a short period. Therefore, this project itself must include software activity component for Pre-construction Phase and Construction Phase as well as Post Construction Phase. The software activity component
will be implemented by Japanese expert and contracted local consultants in cooperation

(4) Software assistance

$$
\begin{aligned}
& \text { will be implemented by Japanese expert and contracted local consultants in cooperation } \\
& \text { with DWO and relevant officers in Local government. }
\end{aligned}
$$

In addition, MOWE requested TEC-OYO to include one (1) vehicle for the Socio-science section of Rural Water Supply and Sanitation Department (Planning and Development division) of DWD's central office in order to facilitate the mobilization and sensitization activities in headquarters.
4. Operation and Maintenance of Provided Facilities
(1) Boreholes with handpump

Operation and maintenance of boreholes with handpumps will basically follow conventional method and procedures of Uganda, which is described in the National Framework for
Operation and Maintenance of Rural Water Supply in Uganda, July 2011.
(2) Piped water supply systems

The idea of method of operation and maintenance for piped water supply system is as follows:
Each public water tap is controlled by a Tap Water Committee which is under Water and Sanitation Committee. Each public water stand has its command area, and the Tap Water Committee to be established in each command area collects user fees from users who live in
such command area as presented in Fig. 10.

Sub County Office

$$
5-5
$$

Water \& Sanitation Committee (RGC)

Envisaged role of each organization

$$
\nabla
$$

The roles of each operation and maintenance organization are summarized in the following
table.

A7-5
6. Stakeholder Meetings

MOWE held stakeholder meetings in selected five (5) RGCs. The purpose of the stakeholder
 environmental negative impacts directly and indirectly caused by the construction of the water supply systems, and the mitigation measurcs. As a result of enthusiastic discussions, all
starstood the contents of the proposed water supply systems, the environmental stakeholders understood the contents of the proposed water supply systems, the environmental
negative impacts and the mitigation measures, and reached consensus. The Statement of Agreement of each stakeholder meeting is attached in Annex 2 .

Table 12 Date and Place Where Stakeholder Meetings Held

However, pumping tests of existing boreholes and test boreholes have been proceeding in parallel with the design work of the water supply systems so that reduction of service area may be forced to happen in some RGCs due to the lack of yields of such boreholes. The final plans are to be prepared by TEC-OYO modifying these draft plans in the 2nd home work period.

In case of Koch Goma RGC, boreholes used for new piped water supply system are not yet determined by TEC-OYO so that a consultative meeting was held for Koch Goma RGC to oblain an understanding of the participants for possible dratt plans and incorporate the opinions
with the draft plans.
7. Social and Environmental Consideration

Project Brief for EIA application, which describes outline of piped water supply systems and social and environmental issues, has been prepared in cooperation with MOWE and TEC-OYO
as per Annex 3 attached hereto.

Both side confirmed that EIA procedure for the piped water supply system proceed by DWD under the terms of M/D on the First Preparatory Survey which held on August 23 rd, 2011, at MOWE. MOWE promised that the actual EIA procedure will completed before February 2011
after contracting with CERTIFIED AND REGISTERED ENVIRONMENTAL PRACTITIONERS IN UGANDA. The EIA for boreholes with handpump will be conducted together with that above for RGC.

b) Key points of Software Activity Component
b) Key points of Software Activity Component
<Pre Construction Stage>
. Formation of Water \& Sanitation Committees.
. Training of Water \& Sanitation Committees on their roles
. Mobilizing Communities to fulfill the Critical Requirement developed by rural water
supply sector.
. Sanitation and Hygiene promotion.

- Meeting with Sub County Sectoral Committee on results of communities verified for
the Critical Requirements
<Construction Phase
- Mobilization of Communities to participate in Construction Activities
- Sanitation and Hygiene promotion.
- Training of water source caretakers for preventive mainternances:
. Training of water and sanitation committee on Operation and Maintenance
. Commissioning of water supply facility
< Post Construction Phase
- Sanitation and Hygiene promotion.
- Sanitation and Hygiene promotion.
c) Many handpump mechanics (HPMs) are already trained in Acholi sub-region. DWOs are now going to evaluate the ability of each HPM, and establish Hand Pump Mechanic by experienced senior HPMs. Therefore, further training of new HPMs are not included in the project.
d) Concerning Piped Water Supply Systems for RGCs, Project Implementation Committees (PICs) described in MOU will be a center of the software activities by commissioning of water supply facilities. Therefore software activities should include assistant activities for PICs such as establishment of Water and Sanitation Committees and Tap Water Committees,
Creation of By-laws, understanding of the role of each organizations and responsibility of communities, set up of tariff collection system, and amount of tariff, so on. These software activities will be implemented in line with "Steps in Carrying Out Mobilization Activities in Rural Growth Centres". And the software activity component will also be implemented by Japanese expert and contracted local consultants in cooperation with DWOs and
relevant officers in Local government.

5. Land for Facilities to be Provided under the Project
TEC-OYO got the consents of the stakeholders relating to the
TEC-OYO got the consents of the stakeholders relating to the use of the lands where the project facilities such as water source boreholes, elevated tanks, solar power generation modules as shown in Annex 1. The provision of required lands is confirmed in MOU (Minutes of Understandings) which were concluded in the stakeholder meetings. It is, therefore, required for
MOWE to assure such land uses that confirmed in the course of the 2 nd field survey.

| 1 | LEI | ［Fa | E2 | 600 | Cal | W11 | σ | 620 | 6，55 | 004 | 1 | \％amin｜ | unt xaymer | ancmil | | ｜x／2 | | 812 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ＋ | ch | －2： | 12 | 600 | CII | Eor | 212 | 029 | 6s5 | 017 | 1 | орат｜ | unin xamen | ппйт | | Liz | （tayb）spany | 12 |
| t | $8 \mathrm{x}, \mathrm{L}$ | rat | L2 | （60） | CII | － 11 | VL | （6， | 655 | （im | 1 | Elateral | | оканन | वरकास्－ | णिन | | 912 |
| 2 | Soz | Fて | \％ | 600 | （A） | \％\％ | OL1 | 629 | 6\％5 | 001 | 1 | | | स | | St2 | | 512 |
| 1 | İRh | － | Li | 608 | C21 | 206 | Lit | 6 | 65 | क1 | 1 | 1ヵ3\％ | | пмппе］ | 10 ¢tur | IR | （tue omin）entary | ＋iz |
| 4 | IK | Fit | 12 | （ain） | L21 | 5 | 15 | \％09 | 6st | （0） | 1 | \％por | | अस्याँन्न | पघापन्न | ELi | | z12 |
| 11 | $6 L$ | F2i | 12 | 6 m | －${ }^{1 / 1}$ | \％21 | 58 | $00^{\circ} 0$ | 655 | 017 | 1 | equery | समा | ввивन｜ | पर्याने | ak | | 0 C |
| DI | क | 601 | IT | 5×5 | 51 | E | 15 | OLs | －19 | का | 1 | | | омихन｜ | | sot | | sok |
| 1 | Frn | OV！ | i2 | | SH | STLI | Cue | OF： | （19） | \％ 01 | 1 | Mrivicisiv | 107 7averal | | पघ | Luc | | Ш¢ |
| 11 | 8sk | 6．18 | 5 s | 510 | कह1 | OTs | OTK | （tr） | $6{ }^{6}$ | 4 | I | maxteran | | | 0sturl | Dok | | प02 |
| 6 | Let | 257 | 8.1 | 20 | 6ik | Ivi | 2\％a | 205 | －6 | 001 | 1 | kimal | बur｜ed | өиयदन | оиसान－1 | Ioz | | 502 |
| 21 | tho | cst | 91 | 2 c | 60% | \％It | siz | 2\％ | ［（0） | 001 | 1 | | | oxaliel | पष्यान | 102 | （рррррер）Нрррир | 102 |
| \％ | Kı | 618 | a | 3×2 | Wदट | $\times 10$ | 101 | 6.6 | （ow | 001 | 1 | पweme， | \％msiv | वसमसेन－ | Oसमात्। | （8） 1 | F－1．0pown | 601 |
| 01 | 25 | 618 | 5 | ix | | 万5 | Cs | 6.58 | 6\％ | 001 | 1 | mepos | asdy | | | 661 | | －${ }^{\text {a }}$ |
| L | LS | 618 | S | 5 zk | insz | C06 | For | 6，55 | 6\％0 | 010 | 1 | Oumben | usav | उलासे｜ | पहलाइए | \％ol | 150\％） | Q， |
| 02 | IVIV | －12 | 91 | ca | 6iz | O2F | CLz | 2 $\times 15$ | ［（0） | का | 1 | Esens | | | ०मरान－1 | ¢0\％ | | 851 |
| 81 | \％ | Irat | Ez | 272 | ， | xev | 6zi | 9\％ | xsic | 001 | 1 | emapeol | 1036－pow | | | （001 | uprapod | （6，1） |
| 9 | 8 sic | 1 co | 22 | 272 | 5% | （0，0）1 | 004 | Vn | x 3 L | 081 | 1 | सx | | | | x81 | （102） | xs1 |
| 12 | if | COI | \％ 1 | OA | P／2 | iza | O\％ 1 | 805 | （\％） | 001 | 1 | sutramy | ｜F｜x｜ | $\square^{\text {a manel }}$ | | \％st | | \％ 0^{51} |
| I | OL | （9） | 51 | 9a | EIz | 江 | क\％1 | x＇ss | 60m | 001 | 1 | \＃mency | | | \＃xatiol | （6） | लन्याpa｜ | Sx1 |
| 6 t | 15 | 3st | 12 | 6\％ | 172 | 6\％ | | 205 | （aip | 001 | 1 | Eenvera | | वरй木ा | वरमान｜ | 281 | | \％） |
| 21 | 182 | Esis | 12 | 641 | 1 tz | L20 | TEL | 2 CH | （\％） | 001 | 1 | Exaly | | Omari］ | пзы＂ | ｜asi | （amme | （1011 |
| 81 | 6 L | xsi | Lic | \％ | 5\％ | W15 | \＄V\％ | 1क | ［－6） | क1 | 1 | me｜ | PMI | สถన్｜ | шताले | ［EI | | KL1 |
| 11 | w， | 0\％a | E2 | Fix | VIL | CLI | x 51 | 585 | 1／6s | 001 | 1 | बaper | उलण | कहलाV | काहतV | C． 21 | | 21 |
| 6 | Na | ici | \％ | OKL | LL | \％ 12 | \％ 21 | 950 | in | 001 | 1 | सत्वान्त्र | | | | ［\％1 | 校V（1） | 201 |
| 21 | La | \％C5 | 9 | 08 L | IT | cm | E－4 | （05） | iss | का | 1 | पस्यान्र | （\％ | | कानाप | का | सक्रापगV | （0） |
| 1 | \＄\％ | x $\times 2$ | II | 8 sit | ¢5 | 000t | 68： | 195 | （20） | का | 1 | क्रat | MM | \％amy | पाहा V | （0） | 人uesppoyl | ט1 |
| 91 | 1×2 | xst | It | 88 | इटz | 201 | \＄11 | 19\％ | （\％） | का | 1 | | PM | TहEay | आहु | 651 | matiry | ar1 |
| 11 | ca | 0，5k | 0 | 509 | FII | E21 | \％at | （7） | CLS | का | 1 | | कारितनद्य｜ | काख्य | खाहाV | उड 1 | citmo | 851 |
| I | fir | OFsi | O_{2} | 5.29 | FII | 0\％1 | \％11 | （ob） | 2．28 | （0） | 1 | | сайपा9］ | कारहy | बत⿸厂⿱亠乂口｜ | क， 1 | | Wit |
| τ | 695 | \％s8 | V2 | 520 | FII | \％sp | bF\％ | 5 | L．5 | का | 1 | Ny | | \％kay | chims | FSt | （च） | rat |
| 01 | xat | 958 | M | （ 010 | 111 | 2Hi | For | 509 | 228 | 001 | 1 | गुख्य ${ }^{\text {a }}$ | | chey | （ जहEIV | cisi | 0＊＊NM | E） |
| \times | sta | － 28 | 0 L | 529 | FII | क人⿻ | \％$\%$ | （10） | L2： | © 01 | 1 | स्यमयकगपक | | suray | （ximy | 251 | иив | V1 |
| 5 | क大 | －958 | 02 | 5.0 | FH | － | osi | （ 5 （1） | CLS | का | 1 | स०口 | | लहला | जारान | 1ist | Fenticaniv | 151 |
| － | （191 | \％${ }^{\text {S }}$ | U2 | （0） | FII | Eż | 0\％1 | （50） | CL5 | \％ 01 | 1 | caseny | | aray | （xima | Os 1 | | （6） |
| H1 | （6， | 12\％ | Dz | Fil | 26 | 521 | DII | 205 | －00 | © 01 | 1 | | | कात्र｜ | काmay | क्रक | सहxतl｜ | siti |
| 1 | Cix | 12\％ | 02 | F2L | 26 | 126 | （\％M | 204 | －0） | （0） | I | | wxpecis． | लघहाV｜ | जालy | － 1 | | 9＋1 |
| t | \％ c | 123 | 9 | ＋7z | 26 | 122 | एक | 205 | \％o） | क1 | 1 | งखन्गोग｜ | क्यारत，हुन | आए． | －15 | 301 | | क1 |
| 31 | 0 m 2 | 125 | VL | pLI | c\％ | 16 | ， 1 | E06 | Nom | क01 | 1 | Tılumbe | उसारत，खा | अन्ते | कात⿸丆口广y | It | | ＋17 |
| \＄＊＊${ }^{1}$ | $\left.\begin{array}{\|l\|} \hline \sin x \\ \operatorname{mon} 1 \end{array} \right\rvert\,$ | anoy | （4，${ }^{\text {a }}$ ） | anos | （ㅂu） | anoy | （3u） | 30．5 | （60） | 300\％ | $\begin{gathered} \text { appenhery } \\ \text { गpoyipz } z \neq 1 \end{gathered}$ | ¢pue， | 人0meory | Kmion | pusat | $\begin{array}{\|c\|} \hline \text { 3nN } \\ \text { atirpe } \end{array}$ | 3＊＊A | ${ }^{\circ} \mathrm{N}$ |
| | | | $1 /$ | ｜Ma｜ | м Mras | पplat | | | （1） | | creasy | | | | | | | |

| 51 | Ith | xss | IT | K12 | 66 | E\％${ }^{\text {che }}$ | इएT | From | 5TM | का | 1 | | कौरत⿰亻 | | （10xamet） | xe1 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | tik | व＇s | LI | $81 / 2$ | 06 | Fos | －9\％ | एक | STL | का 01 | 1 | | बपरसफ） | बहराप） | | क． 1 | रस्यकण | क1 |
| 91 | cor | F\％ | 12 | 1005 | coll | FIE | 9 Cl | If | 1t9 | 01 | 1 | | （खगए। | | | 921 | | \％1 |
| 0 | rat | FOM | Fi | 0×1 | 501 | xsi | 1 m | Lis | （10） | （0） | 1 | | （ख）${ }^{\text {a }}$ | пहलाप） | （пиы＂п） | तzर | | 5.1 |
| 4 | bic | FOf | ${ }_{\text {F }}$ | 00 L | रout | risi | 106 | 215 | 1iv） | \％ 191 | 1 | वर्यकण | | बहर土at | | FII | $\mathrm{Hal}^{(1)}$ | FII |
| 1 | 2 s | EF） | GL | 022 | 386 | T19 | Vie | Prs | 6.9 | ［01 | 1 | हरकडटा | जnाप्र｜ | वरणक | | 911 | | O11 |
| 6 | KII | ［209 | 62 | $1{ }^{102}$ | \％\％ | LLI | x＇st | Pro | （\％）ए | का | 1 | | उहत्प｜ | （1mme | | III | एрस्रे० | 511 |
| 6 | al | 2\％9 | 6 C | 0 CL | \％6 | Fit | ELZ | P65 | ब19 | i01 | I | अवल | | | | III | हागे | 111 |
| 21 | Phis | 5 | EL | $\overline{C L}$ | ${ }^{2} 6$ | 28i | sTK | 985 | Wes | ［01） | ， | Esampa | 1404 | тви＂） | （орйस्त） | sol | ㅍ口101 | soi |
| 11 | ma | S14 | 12 | ZLL | ［66 | E\％2 | TOI | 0885 | 06in | का | I | उडpreal | सpM｜ | | （ （1） | Lot | | 201 |
| 1 | Fh | Cft | \pm | T22 | 1\％ | Oess | | 9xs | O\％ | 01 | 1 | （\％）apipe，${ }^{\text {a }}$ | स¢091 | （w）th） | | Tot | | 001 |
| \％ | 521 | \％001 | \％7 | m8L | L＇I | \％L | CO | U | Ce9 | 01 | 1 | | ＂गएक | vयक्र | Mए0 | sot | | 501 |
| \times | 10 | 6x\％ | il | Ecu | VII | \％ l （ | x－1 | LCs | －19 | （0）1 | 1 | बएemo | | Empl | mpm） | 101 | एक्से | 101 |
| τ | ［ 8 | 0×0 | II | 100 | FII | 6.89 | Cr | 265 | 60 | \％1 | 1 | | अ10｜cal | हस4p | ＂pper | \％ | 1 mas | \％ 6 |
| ＜ 1 | 3 mR | C25 | V2 | 91／ | 60 | FIF | izz | \％ Na | \％2L | © 01 | 1 | | | Expp | mpmo | 56 | लडगएल | 66 |
| Oi | Sir | Es | 92 | $4 \% 1 \mathrm{~L}$ | 6.6 | ｜017 | 『®\％ | x89 | Kze | （0） | 1 | एपाँ | वप | Ex＜py | （19．0） | ar | ［ P （1）${ }^{\text {a }}$ | $1 \mathrm{~F}_{1}$ |
| 1 | 1 L | F\％ | 6 | F\％ | \％ 1 | 66 | FL | Ost | F\％9 | （0）1 | 1 | ल्लाखित | जात्या | एरmल | －10\％N／ | OL | рхйन｜ | 02 |
| \％ | \％ | F\％\％ | 62 | 505 | Eal | IVIF | 12% | 0×8 | $1{ }^{\text {Fon }}$ | 001 | 1 | | | － | － | （9） | | 80 |
| 1 | xti | F\％ | （6） | एOK | Est | तov－ | －1\％ | Oxt | Fom | （0） | I | | （zamen | | －kamin | （9） | | （1） |
| है | \％ | Fors | 6 | FM | EIt | Oit | tic | ＂\％ | PM） | \％oi | 1 | Entral | स्amom | ERomin | हरालत | （r） | FM | （0） |
| E | \％ | FW， | 6 L | vos | ESt | \％It | $1 i z$ | Ost | F9） | （ib） | 1 | Empan | रांत्miny | R0im ${ }^{\text {a }}$ | Esam | 59 | हe，Efra， | s9 |
| \cdots | Iter | 5\％ | 62 | PM， | Cst | Itin | （n） | 98\％ | Fw | （3） | 1 | numera | | Exim | Ecosin | 19 | PO／ | 1910 |
| 3 | ， Sl_{1} | Fom | 6） | ＋5 | 12\％1 | 5m | 561 | Oxt | Fom | （0） | 1 | अणन｜ | | Etomen | बबनात | \％ | | 21 |
| 6. | W012 | $x=2$ | Lic | 690 | V11 | 601 | 12 | 5．0） | E＇s | （ 61 | 1 | عimbin | | हराmen | Eximin | is | ＂1－Einativ | \％ |
| \times | | EZ | 15 | XME | 201 | in | irxz | tor | L×K | （0）1 | 1 | Amanemi | | Examin． | Eximi | xt | FY／ | 85－ |
| 81 | sz | FCs | 92 | K19 | L21 | W1 | 15 | 67t | ［099 | （0）1 | 1 | | परहाप｜ | जएप｜ | | ¢ | | 5 |
| İ | OLI | \％si | T2 | （\％2 | W\％ | 00 | Liz | 025 | \％20 | ［6il | 1 | बाप्यन | क्वपद4 | Win | ถूसेप | ${ }^{12}$ | उत्｜ | iz |
| 6 | imi | ［itit | it | ＊$\times 1$ | wot | \％at | Eरf | 124 | 120 | （0）1 | 1 | गए0， | हरकाएन｜ | Firy | साँसेप | II | उро） | E_{2} |
| ： | Wh | ITr | 0 0 | 500 | 8 Cl | F19 | \％le | 104 | $61 /$ | （0） | 1 | saximen | | Wry | ивен\％ | a | ароэроя | z |
| te | L0\％ | Ith | $0 \sim$ | （00） | 821 | \％ 12 | ＊：I | 10\％ | \％$/ 2$ | （0） | I | | ＂सासेप | FFY | दumav | － | | or |
| $\stackrel{5}{2}$ | Whe | its | 07 | （00） | x＋1 | －10 | L／L | TV10 | ail | （a） | 1 | परmen | （1） | FFicy | пारूप | \％ | | $\stackrel{8}{4}$ |
| 6 | \％ 2 | zGa | İ | 8×9 | 601 | 6， | Cuk | 121 | 109 | 001 | 1 | apo | करालम़। | 事新 | пит木у | Lz | गक्） | $i \tau$ |
| τ | गK | Vra | 22 | 509 | 601 | －19 | C\％ | 1＋ | U00 | （6） | 1 | | | Friy | | 12 | \％ismb | 12 |
| 91 | U12 | Era | \％ | （88） | \％，01 | WIR | － | ILIA | | （i）1 | 1 | र०ना | सरुपन्न | Fiy | जांतहो | or | ग㇇⿰工力八⿹丁口｜ | 0 |
| H | x 22 | C（ia | 2L | 8×81 | 601 | 52 | wil | 126 | 120 | （a） | 1 | होमा－Em | ह⿴囗十介⿺𠃊｜ | प्राप | （uxaniv | 61 | \＄700 | at |
| 21 | L Sz 2 | Era | 27 | 8301 | （iol | 6\％ | 8.1 | T20 | $1{ }^{19}$ | （0） | 1 | | Eरुप्न－ | Tix | घघaiv | 81 | Eहरास्य | 81 |
| 6 | \％ | Era | it | x $\times 1 \times$ | 60% | OLS | Cuk | 124 | 10 | （0）1 | 1 | | हापनान्｜ | Fin | нूहाप） | 1 | sos．jv | 4 |
| 4 | 905 | 0\％ | Li | C8L | \％${ }^{\text {c }}$ | T0 | 96 | 625 | 029 | （011 | 1 | （zankpien | | प्रांत्＞ | दूरापण | F1 | हथा | F1 |
| 9 | 10% | 0\％ | \％ | ExI | 9 C | Cle | 5.1 | 623 | （62） | （0） | 1 | | | F｜\％ | | 11 | Vmey（1）ey | E1 |
| F | \％ $\mathrm{in}^{\text {c }}$ | 丁为 | 22 | ExL | ＂／ | is | C61 | 6.25 | （6） | का | 1 | （एल） | | wiv | пиस | 21 | عरatio | 21 |
| 5 | \％or | एक | 2 F | CSI | TO_{2} | mit | C81 | 625 | （020 | （0） | 1 | ［PY（a）${ }^{\text {a }}$ | 19495］ | Ficy | | II | | o1 |
| 51 | yez | 9\％\％ | Iz | tet | ＂i | －0 | $\underline{C 5}$ | \％235 | （13） | （0） | 1 | सरक） | apma | TFM | numiav | \％ | cmomed | 6 |
| 1 | sa | 1F6 | 02 | $x \times 0$ | ． 21 | \％e9 | 区zz | OH： | \％＊ | （0） 1 | 1 | | पर्ताप | ＊＊त | पदहसेप | x | मधा होक | 8 |
| 81 | sci | Tos | vi | 80 | Cz1 | SI | 17. | 6 HH | －5\％ | （0） 01 | 1 | | सwilv | जाiv | ипसaty | 5 | ［－7atioputen | ： |
| I | 8 kir | TTi | vi | xiv | Lzt | Cos | criz | | －$\times 1$ | （0）1 | 1 | प｜ | wiliv | जांतy | แmeav | t | | t |
| 41 | 182 | F2s | 92 | xay | L2I | तर | －21 | OF | पर大\％ | （3） | 1 | W．${ }^{\text {co }}$ | Weniv | Fix | пाइस | i | | T |
| 0 | 165 | FCr | 02 | 819 | c\％1 | 101 | S | \％ | 0， | （0）1 | 1 | जयमा | परहा］ | FW\％ | пumay | 1 | मिन्ता हैग | 1 |
| $\mathrm{Twn}^{1 / 2}$ | | ancox | （4A10） | sums | （iv） | anons | （iv） | จam\％ | （00） | anas | | Pemes | Spensory | Spams） | pimal | $\begin{array}{c\|} \hline \text { vN } \\ \text { askien } \end{array}$ | | PN |
| | | | 918 | Pajas | लM Mres | тpaici | 178×19311 | nut | $\square^{\text {¢ }}$ | （k） | 2， | | | | | | | |

| on | का | For | OL | ¢ ${ }^{\text {che }}$ | 0sz | Toxi | FII | 65 | 60 | 0 | t | （peme，${ }^{\text {a }}$ | usiliv｜ | | | wot | \checkmark eqemaxit | ［0x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| St | Q1 | \％ | E1 | ｜c｜ | 8 m | 19 | \％ | 2at | 8w | क1 | 1 | （uxusiory | пиат | ＊mb | ппйty | at | बर¢\％） | $\underline{0}$ |
| 12 | 2.1 | \％ot | I 1 | P21 | Loa | （च） | Lx | 2m | ric | （0） | 1 | ¢masin | Emapromen | Emb | सmmip｜ | iti | | 102 |
| u | 861 | \％ | I1 | Iz1 | 8 m | 6\％ | X 1 | Cut | 810 | （0） | 1 | ＂4\％） | unam | （\％） | （umal | 135 | Emay | iv |
| a | cois | －95 | E） | 121 | Vin | cxi | $\times 15$ | zat | x\％ | （ 81 | 1 | इएpor | пино | Emo | | Eit | （885（1） | 2 za |
| H | चIR | 105 | si | CLL | \％\％11 | Fat | 001 | L29 | एक | 0 | \％ | ए4 | Einuer | （xuv） | | DTV | vovy | F\％ |
| Of | कर | （2） | v2 | V08 | O11 | Cz | 58 | F6\％ | Dess | 0 | Σ | wown | पारजन｜ | （muty | 4 tama | xLI | （1） | PLT |
| 0.2 | 12 | \％ KM | 2 | 5 ENi | \％ | Et | 21 | 675 | 6c\％ | \％ | z | | （6） $\mathrm{c}_{4} 1$ | Firy | （1） | 11 | E＂ppuy | 11 |
| 8 c | L2 | Fic | 12 | 60 | Cl | \％il | \％ 2 | 679 | 6 | ${ }_{4}$ | \％ | Eрary | （15） | \％आघणन｜ | बरूपन－ | OLE | | 012 |
| L2 | tiz | csi | ± 1 | 248 | 6 m | 5 m | EK | －205 | （0） | 18 | 2 | т | Expal | пरहान | | 哑 | （exyy）व阝⿳亠丷厂犬灬） | ， 5 |
| 4 | जदट | aro | IT | La | Sf | \ldots | 1－L | 8，5 | nom | O） | 1 | | panimen | कालेग | काहां V ． | 9.1 | पpres 19.9 Mrami． | 9 |
| $\frac{3}{3}$ | むz | －1t | \％ | 27L | L6 | （6） | Loil | 988 | O6， | 0 | z | prom | प＂ली | वरुपा | （ | 011 | 14 V | \％11 |
| pr | ni | －12 | V1 | sa | 612 | VLZ | － $0 \cdot 1$ | c．xt | EOM | （0） | 1 | ［ Pminil | | | हार्यात्न｜ | er | Sat pmika | 161 |
| $\bar{\square}$ | ni | 00 | 12 | ILi | S5 | C－1 | 601 | x， | \％om | （0） | 1 | Enam | рой＂， | बहाहाV | जूल्यु | 6.1 | बत\％on | 64 |
| $\overline{4}$ | mi | 0 Co | 12 | 1 La | 5 | CL | \％01 | 85 | O\％ | （0） | 1 | हरan | раите， | ज़हत｜ | | x＜1 | | x（1） |
| 12 | xtic | Fot | 12 | | İz | \％xi | N11 | 200 | am | （0） | 1 | Pxymol | リ（a） 1×10 | oहiliel | Unता\％ | 181 | | 1819 |
| 0 | az | 9\％ | IT | 1xi | σ^{2} | Whi | P91 | 627 | （6）0 | 0 | z | （1）k | （4）0， | सWश | mumaty | 51 | 00 | 31 |
| X 1 | 侸 | in | $0 \overline{1}$ | 0\％ | 821 | Et | LT | 106 | $61 / 2$ | （m） | 1 | उखगान्व | | Ficy | （1） | \％ | जहान｜ | 6 |
| $\times 1$ | ciz | in | 02 | 000 | $x=1$ | － | 2 F | Tow | al | （0） | 1 | पexeral | п¢muy | ｜rive | पहरूप्र | Iz | | L2 |
| 91 | ar | col | 51 | 94 | 812 | \％ 15 | $\times 21$ | Nos | 6m | 01 | 1 | \＃ран＂ | PFF｜ | | उरमान्－ | 281 | 4 | ［8） |
| 01 | ac | col | S | \％a | kIL | \％II | x＇1 | Kis | 60 | （mit | 1 | miv | ल｜xamen | | Ustite 1 | （ix） | | ＋ EXI_{1} |
| ． 1 | 2 L | FM | riz | 002 | 501 | Toi | －6， | Cis | TFu | 0 | \％ | अंत्रो | | ак⿺⿻⿻一㇂㇒丶幺小） | （авкан）${ }^{\text {a }}$ | Eच | ［कल） | ［2］ |
| H | W2 | \％ | 12 | rit | $5{ }_{5}$ | Ciz | xsi | 8 xis | 6% | （0） | 1 | Ex¢न 1 | | minay | numay | 121 | | 141 |
| 11 | LF | Cu | 17 | 13n | CLE | \％ 7 | VL | पण5 | 7m | （0） | 1 | ＂рр | | （midy | 29074 | \％ 8 c | 1\％ | कर大 |
| ［1 | 4 L | \％Lz | 81 | 900 | EOI | IEA | \％ 1 | 9x | OGL | क1 | 1 | उदeproe， | （स）ग／ | Eximen | Esamen | （i） | | क |
| 11 | x＋2 | GLz | $\times 1$ | 902 | E01 | C21 | Ch | 9 yc | Ost | को | 1 | | पडल］ | सबत्m | | 4 | | a |
| 01 | 152 | Oon | is | 142 | 58 | 6\％ | $\times 21$ | x^{805} | （6io | को | 1 | बहालन | | （ixav | （ जxelv | OC1 | | 001 |
| 6 | 2Sट | in | Ot | O（0） | 8x1 | DLI | \％01 | 10\％ | GIL | का | 1 | हाराए | Maumy | Welix | （1） | II | | it |
| \times | ¢ | ifis | 02 | vom | xil | 区 4 | III | Tou | ब1： | （0）1 | 1 | एकरगप | umany | W＋4 | साँक्रो | İ | （\％）0． | s |
| t | E\％ | ELF | 17 | 18 se | LIz | Cal | sot | 99\％ | vow | （0） | 1 | | | Eatry | \＄ved | asc | | \cos |
| 9 | 5 SL | Oot | 22 | vas | PTE | OM | asi | 585 | 106 | （0） | 1 | | | सиशत्र｜ | （6miv｜ | III | कहलाग | IT1 |
| ？ | $6{ }^{\circ} \mathrm{L}$ | －2F | 2 | SME | col | FIT | （001 | FOT | Cx | को | 1 | Tmak | c¢ | H0．N | mman | \％ | बहताप | 为 |
| F | er | F26 | 02 | 829 | ［2I | II2 | AK | 617 | 980 | （0i） | 1 | ［Emes， | \％enty | F／0］ | mianiv | L | \％marrom | \square |
| 1 | SIz | Exi | 92 | 912 | 6.6 | FOI | \％L | | atz | क） | 1 | | | Exipy | mant | cs | | cs |
| z | Lici | ［m | 62 | 024 | \％ 8 | E0 | Is | －5 | 619 | （0） | I | | （बतात्र | | （апито） | 711 | वंज्या | Fi1 |
| 1 | （0， 2 | 1rot | 12 | Omi | 501 | ¢\％ | \％ 1 | CTIS | 170 | （ 01 | 1 | （x｜） | （रिश्रा｜ | unimit | （minate） | ［2］ | ＂सरमकरसण | ［2］ |
| | | | | | | | | | | | | | | | | | | Luriti |
| per） | $\begin{array}{\|l\|} \hline \sin x \\ \hline 1020 \\ \hline \end{array}$ | anas | （450］） | aens | （8i） | анея | （an） | axos | （n） | акок | | qu＊） | Kemeo quin | Sume， | mpas | $\begin{array}{\|c\|} \hline \text { "N } \\ \hline \text { wheins } \\ \hline \end{array}$ | afien | ${ }^{0} \mathrm{~N}$ |
| | | peas | | pacionem ame | | | | | | \％eremey，maxy | | | | | | | | |

| I | 就 | 246 | 12 | 2 F, | ITH | W15 | 50\％ | 875 | ［19） | （0） | 1 | Samol | （\％ypy womp | Inver | सpe， | zर | （emale） | \％2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | 132 | ELS | Lて | 206， | IFI | －0 | IL | 87 | Lep | 001 | 1 | amatery | （7ariomat | mary | बशeal | act | mime， | $\cdots 8$ |
| 6 | sin | 2：1 | 12 | 130 | －12 | 189 | － | WW | Fw | col | ， | （ बner） | | minv | मकाइए | Lxi | वряक） | $\cdots{ }_{\text {ck }}$ |
| II | tic | Cz | 12 | 188 | Lk | 691 | cot | 505 | （\％） | （0） | 1 | amil | | साख्य | सबर， | Nzz | quenamil | 5siz |
| of | 10. | in | 92 | 0\％ | 191 | －We | 291 | crs | rap | 0.1 | 1 | Sum \times ¢ | ambe， | mavy | A0： | 2xz | sppankil | 2xi |
| I | 9n | 20L | İ | Tel | \％ | 00） | x＇s | ए5 | 2m | का | 1 | मांन्न | авмर｜ | muv | समध禹 | $1 / 2$ | | 1.2 |
| \times | inh | 20L | 11 | V1／ | Lo | Cs | Fs | W | 20） | －01－ | 1 | орхрпп | 003my | （1any | ब＂m | 022 | 品v | 027 |
| \％ | 0 OL | 16 | 5 | 68. | \％\％ | ¢z | 821 | 120 | －9 | col | 1 | | （mimplientiraty | nuvp | Epre， | （f） | प9\％1 | ，\％ |
| 5 | Of | 185 | 5 | 6 CL | \％ | Sez | x 21 | 170 | FOK | का | 1 | sprymin | （enturv）Enteray | mavy | A $\mathrm{A} \times \mathrm{E}, 1$ | set | （s）¢¢aty | （x） |
| 1 | UK2 | 106 | 56 | OL2 | 26 | 0001 | Fwi | 120 | एक | col | 1 | | | waxy | 190， | Me | mapperaniel | कर |
| 11 | 0， 0^{2} | LOE | 91 | cic | \％ 6 | \％ot | 691 | cos | Ots | 01 | 1 | | Eximen | mary | 4 APC, | O2 | F7\％mody | v2 |
| $!$ | （6at | Cok | 91 | 2\％ | L0 | W（1） | 95 | Cay | ot | \％im | 1 | Eanty | | （1）0 | स्राध， | IV | Tustum | 102 |
| ह1 | axic | 102 | 01 | IVi | C6 | ES | क\％1 | ［50 | OFs | 001 | 1 | | | nuty | सקe， 1 | O2 | बणनक्तो | me |
| τ | \％ | \％． 4 | 51 | ITL | Nx | \％r001 | Prat | V65 | Fxi | 681 | 1 | aeply | pal／ | max） | $1{ }^{1+1}$ | बर | （ix） $\mathrm{Na}_{\text {P P }}$ N | $6{ }^{62}$ |
| 21 | cas | 6L | 51 | 172 | x．x | जण | 002 | P6\％ | ＋58： | 001 | 1 | अरुप्र｜ | Pater | （100） | STM x_{0} | \％${ }^{2}$ | Hipy | 88 |
| F | S5 | 52t | 51 | 1812 | Est | （\％m） | F\％ | OTS | Wev | （3） | T | Exap｜ | Emaxy erma | （Ex미） | （1ヵnतy | \％ | | 0，2 |
| 8 | $6{ }^{6}$ | \％\％1 | E1 | pel | Th | 0001 | 0021 | Est | VL | 01 | 1 | | Expoum | हघल | | a | （ | W2： |
| I | 4 L | 0\％ | ${ }_{5}$ | $2 \overline{2 c}$ | COL | 170 | Of | （ta） | \％ 9 | 001 | 1 | हान्यो | | kmil） | （Emati＞ | $1{ }^{\text {I }}$ i | | IT2 |
| f1 | ai | \％\％ | 52 | 2\％ | C\％ | 109 | \％\％ | $5(0)$ | V6 | 16 | \％ | हाey｜ | maman | Emin | Iumiaty | oz | sppr | 0172 |
| 9 | S\％ | 505 | 5 | 2% | ट\％ | 2¢ | कण | 509 | 94 | 001 | 1 | ब5， | uexmen | ह패） | Emanty | mi | V mid | 6itz |
| 11 | 25i | \％ow | \square | 2\％ | E\％ | 5 | cs | STM | \％ls | 01 | 1 | लष⿻） | minueiv | （1int | （1m™ | 5\％ | | st |
| 1 | कर | \％\％ | 5 S | \％ 5 | cot | 0001 | ［－W | s（0） | 9／5 | क01 | 1 | Esalil | mamenvi | （－mb） | सहताप्य | Hz | | 122 |
| I1 | 012 | －0\％ | $\times 1$ | ：$\times 2$ | 0\％z | \checkmark | \％， 11 | 9 | \％） | 001 | 1 | | саив | हW以 | Ematy | tiz | | M2 |
| of | H2 | \％．sz | s？ | sisk | W，${ }^{5}$ | \％ | क⿴囗 | V15 | 6， | 181 | 1 | ＂umita， | immere｜ | culc | แкраाप | $z{ }_{\text {a }}$ | | 27 |
| 6 | H2 | \％sर | ${ }^{51}$ | 5ki | ars | ex | 80\％ | 975 | Кv | 00t | 1 | amplisio | | हिए | | liz | | $12 \overline{7}$ |
| 5 | IME | Dive | \bar{T} | T／4 | Lİ | 1×1 | 009 | Ch | \％o | क1 | 1 | FMMEA | unkel | ह⿵冂卄一口一） | सासेश | int | $10^{\text {chato wims nipy }}$ | 02 |
| ： | CKL | 00p | ¿z | Lid | Eİ | OS5 | For | Cr | \％29 | 001 | 1 | （170） | | एसे | | \％z | | Kzz |
| 21 | iaz | \％om | E2 | 2 Va | Cl | is | $2 \cdot 5$ | Lis | O20 | 601 | 1 | हmery | （ensin | EM以 | | xz | | x22 |
| 6 | D20 | VLZ | $\times 1$ | 1% | Lz | \％ 5 | OLz | Fis | （17\％ | 001 | 1 | इurem | प940w wimbiry | EmL | ㅍumaty | | \％limet | siz |
| 4 | Haz | 20\％ | 0 | 1 il | ITR | FIL | $\times 2$ | Eit | L09 | 01 | 1 | P＂To | | | सuxily | İC | | 127 |
| ＊＊＊ | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { unass } \\ 1 \times p i 1 \\ \hline \end{array} \\ \hline \end{array}$ | anas | （1903） | atms | （3i） | 2nos | （19） | aems | （iai） | anos | | | | （рпme） | puperi | $\begin{array}{\|c\|} \hline{ }^{3} \mathrm{~N} \\ \operatorname{sim} \end{array}$ | | ${ }^{\circ} \mathrm{N}$ |
| | | peas | | Pacoinem yers | | | | $\square_{\text {¢foramat }}$ | | | | | | | | | | |

Table 6 Present Distribution and Conditions of Tool Kits for HPM

 \begin{tabular}{l|l|l|l|l|l|l|l}
$\begin{array}{l}\text { Rodronga } \\
\text { Put }\end{array}$ \& 6 \& 2 \& 2 \& 2 \& \&

\hline Total \& 26 \& 15 \& 7 \& 7 \& 0 \& 0 \& 0

\hline

Koch Goma and Puronpa sub countics contain one National Park Parish respectively

\hline d. Kitgum District
\end{tabular}

Fig. 2 Standard Borehole Structure
\therefore

多

| Sub-county | $\begin{gathered} \text { Number } \\ \text { of } \\ \text { Parish } \end{gathered}$ | Number of HPMs | Number of Tool Boxes | Condition of Standard Tool Kit | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Missing tools | | | |
| | | | | Complete | Few | Several | Many |
| Alero
 Anaka
 Koch Goma
 Puronga | 7 | | 2 | 2 | | | |
| | 6 | 5 | 1 | 1 | | | |
| | 7 | 2 | 2 | 2 | | | |
| | 6 | 2 | 2 | 2 | | | |
| Total | 26 | 15 | 7 | 7 | 0 | 0 | 0 |
| d. Kitgum District | | | | | | | |
| Amida Kitgum Matidi | 6 | 18 | 0 | | | | |
| | 4 | 9 | 0 | | | | |
| Lagoro | 4 | 10 | 0 | | | | |
| Layamo | 4 | 10 | 0 | | | | |
| Mucwini | 9 | 18 | 0 | | | | |
| Namokora
 OmiyaAnyima | 4 | 8 | 0 | | | | |
| | 4 | 9 | 0 | | | | |
| Orom | 8 | 11 | 0 | | | | |
| Ahwang | 3 | 11 | 0 | | | | |
| K.T.C | 7 | 8 | 0 | | | | |
| Total | 53 | 112 | 0 | 0 | 0 | 0 | 0 |
| c. Lamwo District | | | | | | | |
| Palabek Ogili | 4 | 8 | 1 | | | | 1 |
| Padibe East | 4 | 6 | 2 | | | | 2 |
| Madi-opei | 4 | 16 | 0 | | | | |
| Padibe West | 4 | 12 | 0 | | | | |
| Agoro | 6 | 15 | 0 | | | | |
| Paloga | 3 | 3 | 0 | | | | |
| Lokung | 9 | 23 | 0 | | | | |
| Palabek Kal | 4 | 10 | 0 | | | | |
| Palabek Gem Lamwo TC | 5 | 18 | 0 | | | | |
| | 1 | 4 | 0 | | | | |
| Total | 44 | 115 | 3 | 0 | 0 | 0 | 3 |
| f. Pader District | | | | | | | |
| Pader (-Kilak | 4 | 5 | 2 | | 2 | | |
| Lapul | 4 | 6 | 1 | | | 1 | |
| Puranga | 6 | 10 | 3 | | 3 | | |
| Atanga | 5 | 8 | 2 | | 2 | | |
| Angagura | 4 | 5 | 2 | | 2 | | |
| Awere | 4 | 6 | 1 | | | | 1 |
| Lagut | 3 | 5 | 3 | 2 | 1 | | |
| Pajule | 6 | 13 | 2 | | 2 | | |
| Latanya | 5 | 5 | 2 | | 2 | | |
| Ogom | 4 | 6 | 2 | | 2 | | |
| Achdibur Pader TC | 4 | 5 | 2 | | | | 2 |
| | 3 | 6 | 0 | | | | |
| Total | 52 | 80 | 22 | 2 | 16 | 1 | 3 |
| g. Agago District | | | | | | | |
| Lira Palwo | 5 | 2 | 0 | | | | |
| Arum | 4 | 3 | 0 | | | | |
| Patongo | 4 | 3 | 0 | | | | |
| Kotomor | 4 | 2 | 0 | | | | |
| Lokole | 5 | 2 | 0 | | | | |
| Adilang | 7 | 3 | 0 | | | | |
| Paimol Omiya Pacwa | 4 | 3 | 0 | | | | |
| | 4 | 2 | 0 | | | | |
| Wol | 8 | 2 | 0 | | | | |
| Katongo TC | 5 | 0 | 0 | | | | |
| $\begin{aligned} & \text { Lamiyo } \\ & \text { Omot } \end{aligned}$ | t | 4 | 0 | | | | |
| | t | 5 | 0 | | | | |
| Patongo TC
 Agago TC | 4 | 2 | 0 | | | | |
| | 3 | 1 | 0 | | | | |
| Lapono | 5 | 0 | 0 | | | | |

The Project for Provission of Improved Water Source for Returned IDP in Achori Sub-Region
Form of Quality Control
$\begin{array}{ll}\text { QC Item:: } & \text { Site Transfer } \\ \text { Form Title } & \text { Confirmation of Site Transfer }\end{array}$

| Name of RGC: Koclic Goma | District: Nwoye |
| :--- | :--- |
| Bemehele No:: Ph'S-D3 | County: |
| N: | Sub-County: |
| E: | |

Working space:
Aqilling: $20^{n n} \times 20^{m}$ approx.
Aquer Tests: $20 \mathrm{~m} \times 10 \mathrm{~m}$ nphex.
Working space:
Aqilling: $20^{n n} \times 20^{m}$ approx.
Aquer Tests: $20 \mathrm{~m} \times 10 \mathrm{~m}$ nphex.
Working space:
Aqilling: $20^{n n} \times 20^{m}$ approx.
Aquer Tests: $20 \mathrm{~m} \times 10 \mathrm{~m}$ nphex.

Attachment:(ifary) Loodion $M \mathrm{H}$.

The Project for Provission of Improved Water Source for Returned IDP in Achori Sub-Region Form of Quality Control

| Name of RGC: A were | District: Gulw |
| :---: | :---: |
| Berchole No.: PMS -08 | County: |
| N :
 E: | Sub-County: |
| Working space:$\begin{aligned} & \text { 1. Drilling site }=20 \mathrm{~m} \times 20^{\mathrm{m}} / \text { site } \\ & \text { 2. Aquifer tests }=20^{\mathrm{m}} \times 15 \mathrm{~m} / \mathrm{site} \end{aligned}$ | |

| Confirmed by: | | | |
| :---: | :---: | :---: | :---: |
| Firms and organizations | Name | Signature | |
| Consultant | 9Nat Hamaeda | townor | |
| District Water office | Mecal S Patric | | 2:Bu4- |
| Sub-county | DCAYA BISCO ADEBE.L. | Conctata | |
| RGC office | | Sign: Esitumktm | |
| Land load \quad \% | LUWZ CENL AMTONE | THE CHARMEKSON MLAES GOUNCl | |
| Tent Drilligy s.tert | Qjok. young. | | |

*

The Project for Provission of Improved Water Source for Returned IDP in Achori Sub-Region

A1-8
4

है
The Project for Provission of Improved Water Source for Returned IDP in Achori Sub-Region

| | Form of Quality Control |
| :--- | :--- |
| Form No.: | QC-3 |
| QC Item: | Site Transfer for Aquifer Tests |
| Form Title | Confirmation of Site Transfer |

Confirmed by:

[^0]

 วอบ !p!yew unธ カl-SMd

Attachment:(ffany) Locatión Map.

701.
 sl-SMd

Unyania

Vanvon so गा'gกdระ 3HL
The Project for Provision of Improved Water Source for Returned IDP
in Achori Sub-Region
Land Agreement for Solar Facilities and/or
Land Agreement for Solar Facilities and/or Elevated Tank
$\begin{aligned} & \text { I Mr. OBt } 1 \text { A AASAms } \\ & \text { instalation of water supply system to be weed by community. }\end{aligned}$ installation of water supply system to be used by community.

Name.... Ofo? : A A ASAGms.......
Landowner
Witnessed by...kello cease

LCI Chairperson

 Name:... Rackara Mnchacl Name.

LC II Chairperson
Next Landowner
Sign:.....fac.........................Date.2!!!!!/o!! SignStamp...............................Date...........
 Sign:-Jennent

Date21-11-201!

Sub County Authorities:
Name:......Who. Whask. Tite: Sub County Chief

Date. 21.11 . 2 er

易
\neq

The Project for Provision of Improved Water Source for Returned IDP

Land Agreement for Solar Facilities and/or Elevated Tank

 Name:@lueed...itis. honger Sign:.... दesternay
 Name: Euntus RopóliTitle: Chairperson LC III
 Date.... $1.7 \% / 11 \% \%$. $2 . / 1 \ldots ~$

普
A1-21
$\frac{3}{2}$

Axilang

THE REPUBLIC OF UGANDA

The Project for Provision of Improved Water Source for Returned IDP

Land Agreement for Solar Facilities and/or Elevated Tank

Name.OKEmDKOMAt mon Then
Landowner SUB-COUNTY Witnessed by....
We COUNTY CHIEF

LC II Chairperson
Sign/ Stamp.....
...Date...........
Other community members present:
Name:......................................
Sign:
sem

Sub County Authorities: man mint Name: PI DO OPOKA GERSHON Title: Sub County Grief B-C OUT Title: Chairperson LC III

Dign.....................................11-2011.
Stamp:
CHAIRPERSON LC III
Kif 18 NOV $2011 \star$
KITGUM MATADI SUB-COUNTY
KITGUM DISTRICT LOCAL GOVT.
A1-25

An

THE REPUBLIC OF UGANDA
 The Project for Provision of Improved Water Source for Returned IDP in Achori Sub-Region

Land Agreement for Solar Facilities and/or Elevated Tank
cmexalo Rodur Retro

L. I Chairperson KLILAMAA CHARLES
 LC \# Chairperson
momatuan

Other community members present:
Name:...
Sign...
Date..
 $\%$

Mr.
installation of water supply system to be used by community.

stamp: For
Name: $O B A$ AIm $P=\pi E=R \angle A C A K A$

- 1 .

Title: Chairperson L.C III
2. Others (if any)

$$
\begin{aligned}
& \text { The Project for Provision of Improved Water Source for Returned IDP } \\
& \text { in } \\
& \text { Acholi Sub-region in the Republic of Uganda } \\
& \qquad \text { Statement of Agreement } \\
& \text { On } \\
& \text { Draft Plan of the Piped Water Supply System } \\
& \text { The Directorate of Water Development (hereinafter referred to as "DWD") of the Ministry of } \\
& \text { Water and Environment (hereinafter referred to as "MoWE"), held the stakeholder meeting on } \\
& \text { November 17, } 2011 \text { with representatives of the District Local Governments of Pacer from LCV } \\
& \text { including CAO to LCI, and the participants have confirmed the items described in the attached } \\
& \text { sheets }
\end{aligned}
$$

Pader, November $17^{\text {th }}, 2011$
N
$\xrightarrow{8}$
ATTACHMENT

1. Draft Plan of the Piped Water Supply System
DWD explained on the draft plan of the piped water supply system which will be constructed in
the RGC, all participants agreed on the following;
1) Location of new boreholes, elevatied tank, transmittion pipe, and distribution facilities.
2) Some existing boreholes which will be rehabilitated and used as water source of the new
water supply system.
2. Negative Impacts of the Project and the Mitigation Measure
DWD explained the possible negative impacts of the project and its mitigation measures, all
participants understand the issues.
3. Request from participants
Extension of a diatribntron pipe to the Techie eal Institute
under construction is requested.
Th. adaptation of the request well be comidered after
pumping test of existing boreholes.

| 1) Environmental Impacts associated with the Project Siting | | | |
| :---: | :---: | :---: | :---: |
| Category | Environmental Item | Negative Impacts | Mitigation Measures |
| Social Environment | Land tenure | Land takes for the construction which reduces the coverage of cultivable land or grass land. | An agreement for the proposed lad must be signed by the land owner and responding District Local Government before any construction takes place to show that the owner of the land gage it to the community willingly. |

| Category | Environmental Item | Negative Impacts | Mitigation Measures |
| :---: | :---: | :---: | :---: |
| Pollution Control | Noise \quad and Vibration | Noise during Construction | - Declaration of operation schedule
 Cautious operation and speed control of construction machinery not to exceed the allowable noise limits. |
| | Wastes | Waste generation ranging from solid and liquid. | - Contractor should clear any waste generated during construction and damp them at a proper disposal place. Care must be taken in the handling and storage of all liquids to avoid any |
| Natural
 Ervironment | Ecosystem | Vegetation Clearance | Clearance of vegetation should only be lifinted to the agreed construction area. |
| Social Environment | Health Condition | Prevalence of HIV/AIDS | Socially the workers may develop relationship with the female community members. Contractor is advised to monitor his workers and educate on the dangers of HIV/AIDS |

| A̧jुes ıapun aumjon 28 requsip

 | гэвмриподя jo чорюпрэу | к8орорр $\mathrm{K}_{\mathbf{H}}$ | |
| :---: | :---: | :---: | :---: |
| | | solsem | ןодиоо uопnn!\|od |
| samseวW uopreip! | | | (10\%ow] |

A2-6

$\frac{3}{6}$
\qquad

A2-8

The Project for Provision of Improved Water Source for Returned IDP

The Directorate of Water Development (hereinafter referred to as "DWD") of the Ministry of Water and Environment (hereinafter referred to as "MoWE"), held the stakeholder meeting on November 18, 2011 with representatives of the District Local Governments of Agago from LCV including CAO to LCI, and the participants have confirmed the items described in the attached

Agago, November $18^{\text {th }}, 2011$

1. Draft Plan of the Piped Water Supply System
DWD explained on the draft plan of the piped water supply system which will be constructed in the RGC, all participants agreed on the following; 1) Location of new boreholes, elevatied tank, transmittion pipe, and distribution facilities. water supply system.
2. Negative Impacts of the Project and the Mitigation Measure DWD explained the possible negative impacts of the project and its mitigation measures, all participants understand the issues.
$\begin{aligned} & \text { The Project for Provision of Improved Water Source for Returned IDP } \\ & \text { in } \\ & \text { Acholi Sub-region in the Republic of Uganda }\end{aligned}$
$\begin{aligned} & \text { The Project for Provision of Improved Water Source for Returned IDP } \\ & \text { in } \\ & \text { Acholi Sub-region in the Republic of Uganda }\end{aligned}$
The Directorate of Water Development (hereinafter referred to as "DWD") of the Ministry of
Water and Environment (hereinafter referred to as "MoWE"), held the stakeholder meeting on
November 22, 2011 with representatives of the District Local Governments of Kitgum from
LCV including CAO to LCI, and the participants have confirmed the items described in the
$\begin{aligned} & \text { LCV including CAO to LCI, and the participants have confirmed the items described in the } \\ & \text { attached sheets }\end{aligned}$

$$
\begin{aligned}
& \text { heet } \\
& \begin{array}{c}
\text { in } \\
\begin{array}{c}
\text { Acholi Sub-region in the Republic of Uganda } \\
\text { Statement of Agreement } \\
\text { On }
\end{array} \\
\text { Draft Plan of the Piped Water Supply System }
\end{array}
\end{aligned}
$$

| | | | | $\frac{1}{0}$ |
| :---: | :---: | :---: | :---: | :---: |

$\frac{3}{6}$

| Category | Environmental Item | Negative Impacts | Mitigation Measures |
| :---: | :---: | :---: | :---: |
| Social Environment | Land tenure | Land takes for the construction which reduces the coverage of cultivable land or grass land. | An agreement for the proposed lad must be signed by the land owner and responding District Local Government before any construction takes place to show that the owner of the land gage it to the community willingly. |
| 2) Environmental Impacts associated with the Construction Phase of the Project | | | |
| Category | Environmental Item | Negative Impacts | Mitigation Measures |
| Pollution Control | Noise Vibration and | Noise during Construction | - Declaration of operation schedule
 Cautious operation and speed control of construction machinery not to exceed the allowable noise limits. |
| | Wastes | Waste generation ranging from solid and liquid. | - Contractor should clear any waste generated during construction and damp them at a proper disposal place. Care must be taken in the handling and storage of all liquids to avoid any environmental degradation. |
| Natural Environment | Ecosystem | Vegetation Clearance | Clearance of vegetation should only be limited to the agreed construction area. |
| Social
 Environment | Health Condition | Prevalence of HIV/AIDS | Socially the workers may develop relationship with the female community members. Contractor is advised to monitor his workers and educate on the dangers of HIV/AIDS |

\qquad
\＆
A2－ 13
DWD Authorites and the Team Representatives ： Name．BISOBORRWM OAN Title：DWD Representative

| |
| :---: |
| | |
| | |
| | |
| | |
| | |

Name LASKM EMMANHLCh．©

Name：ORYEMA CHARLES
Title：District Water Office Representative
sien coen

Sign．．．．．
Name．．．．．．．．．．．．．．．．．．．．．．．．．．．．
带夏总
Sign．

The Project for Provision of Improved Water Source for Returned IDP
Gule, November $24^{\text {th }}, 2011$

$$
\begin{aligned}
& \begin{array}{c}
\text { Statement of Agreement } \\
\text { On }
\end{array} \\
& \text { Draft Plan of the Piped Water Supply System for Unyama RGC }
\end{aligned}
$$

| Category | Item
 Environmental | Negative Impacts | Mitigatio |
| :---: | :---: | :---: | :---: |
| Pollution Control | Noise Vibration and | Noise during Construction | - Declaration schedule
 - Cautious control machinery allowable |
| | Wastes | Waste generation ranging from solid and liquid. | |
| Natural Environment | Ecosystem | Vegetation Clearance | Clearance of only be limit construction ar |
| Social Environment | Health Condition | Prevalence of HIV/AIDS | Socially the wo relationship community me is advised to m and educate HIV/AIDS |

| Category | Environmental Item | Negative Impacts | Mitigation Measures |
| :---: | :---: | :---: | :---: |
| Pollution Control | Wastes | Water stagnation that leads to mosquitoes breeding. | - Soak pits with enough infiltration ability should be designed and installed to prevent accumulation of stagnant water.
 - The soak pits should be maintained through daily cleaning activitics by the Water and Sanitation Committee / the Water Service Board. |
| Natural
 Environment | Hydrology | Reduction of groundwater table | Conservation of groundwater should be achieved by keeping discharge volume under safety yields of each borehole. |

A2 - 21
ATTACHMENT
1．Draft Plan of the Piped Water Supply System
1．DWD explained on the draft plan of the piped water supply system which will be constructed in
the RGC，all participants agreed on the following；
1）Location of new boreholes，elevated tank，transmittion pipe，and distribuition facilities．
2）Some existing boreholes which will be rehabilitated and used as water source of the
water supply system．
2．Negative Impacts of the Project and the Mitigation Measure
DWD explained the possible negative impacts of the project and its mitigation measures，all participants understand the issues．

DWD Authorities and the Team Representatives ： Name．Muanacit．．．R．R．kato Title：DWD Representative sign．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．

District Authorities：
District Authorities
Name．．．．．．．．．．．．．．．．．．．
Title：LCV Representative
Tite：LCV Representative Name：Hilcmes．B
Title：CAO Representative

Name ArENA $\bar{\pi}$ NORACE

\square
When

Name．ODONG KEVNEOY．．．．．．．．．．
Tille：LCI Representative
Sub County Authorities：
Name．．．．．．PACH JusTint
Title：LCIII Representative
sign．．．．．．Pferfor
Name：KOM MA．VECY $\mathrm{CAN-O}$
Tite：LCI Represen five GHAIRMANL．CII
Name：KOMMA．VECU $\mathrm{CAN}=\mathrm{ECO}$
Tite：LCI Represen five GHAIRMANL．CII

os or

H $<$

夏
Sign．
\square

| | | |
| :---: | :---: | :---: |
| | | |
| | | 弟 |
| | $\begin{aligned} & \text { Co } \\ & \text { ed } \\ & \text { y } \end{aligned}$ | |

| Category | Environmental Item | Negative Impacts | Mitigation Measures |
| :---: | :---: | :---: | :---: |
| Pollution Control | Noise Vibration \quad and | Noise during Construction | －Declaration of operation schedule
 Cautious operation and speed control of construction machinery not to exceed the allowable noise limits． |
| | Wastes | Waste generation ranging from solid and liquid． | －Contractor should clear any waste generated during construction and damp them at a proper disposal place．
 Care must be taken in the handling and storage of all liquids to avoid any environmental degradation． |
| Natural Environment | Ecosystem | Vegetation Clearance | Clearance of vegetation should only be limited to the agreed construction area． |
| Social Environment | Health Condition | Prevalence of HIV／AIDS | Socially the workers may develop relationship with the female community members．Contractor is advised to monitor his workers and educate on the dangers of HIV／AIDS |

Draft
PROJECT BRIEF
for
ENVIRONMENET IMPACT ASSESSEMENT
for
THE PROJECT FOR PROVISION OF IMPROVED WATER
SOURCE FOR RETURNED ID IN ACHOLI SUB-REGION
(For 6 RGCs and 116 Villages)
6. Alternatives Considered .. 13

8. Any other information that may be useful in determining the level of EIA required............ 16
Appendices...

Appendix 2: Villages where a hand pump system to be installed... 20
+2
$\$$
Contents of a Project Brief

2.2 Objectives of the Project
In line with the national development program of Uganda (2010-2014/15) the objectives of this project can be stated as follow:
Provide safe drinking water to the people of the target RGCs and Villages and increase their access to improved water sources to 77 percent for rural area respectively by the year 2015 Improve on the hygienic practices of the beneficiary communities
.Prevent the spread of water related diseases
Reduce infant mortality rates

1. Name, Title and Address of Developer;

Name: Directorate of Water Development under Ministry of Water and Environment Address: P.O. Box 20026, Kampala, Uganda

2. Outline of the Project

2.1 Project Background

Close to two million people of Northern Uganda had been displaced from their homes into internal camps for about twenty years. This led to provision of emergency services to the camp communities. With relative peace beginning 2007, the people started to return to villages and as of now about almost all of the people have retumed to their original villages.

The majority of the returned people have settled in areas with inadequate improved water source and sanitation facilities. The major source of water supply for returned people is surface water which is mainly rivers and streams. However, nowadays even most of these streams are experiencing drying up which forces the people to fetch for improved water source rraveling over 6 km every day. This will affect the families' income, as most of their time is spent on searching water and the burden on the part of women and Children are becoming extremely unbearable.

On the other hand, diseases related to consumption of unsafe water remains the second leading cause of morbidity and mortality in the districts next to Malaria. A total of 13,672 cases of diarthea were reported among under-five children in 2009 alone. Very often the districts face an outbreak of disease related to lack of safe water. In 2008 the districts experienced epidemics of hepatitis and polio, both being water and sanitation related disease.

Therefore, the current national development plan of water, among other sector, aims at increasing access to improved water source in rural area to 77% by 2015 .

The Directorate of Water Development (DWD) of the Ministry of Water and Environment (MoWE) is going to implement a water supply project in the Acholi sub region: piped water supply systems for the rural growth centres of Koch Goma (Nwoya Dsictrict), Unyam and Awere (Gulu District), Adilang (Agago District), Kitgum Matidi (Kitgum District), Corner Kilak (Pader); boreholes with hand pump for 116 villages distributed in Amuru, Nwoya, Gulu, Agago, Lamwo, Kitgum and Pader Districts to achieve the goal above mentioned.

The project is being carried out with assistance from the Japanese Government under JICA.

| District | RGC | Pipe Length (m) | | | Q'ty of Public Stand |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Transmission | Distribution ${ }^{\text {n }}$ | Total | |
| Nwoya | Koch Goma | 712 | 1,290 | 2,002 | 3 |
| Gulu | Unyama | 1,686 | 1,990 | 3,676 | 13 |
| Gulu | Awere | 368 | 1,110 | 1,478 | 6 |
| Agago | Adilang | 2,440 | 2,380 | 4,820 | 12 |
| Kitgum | Kitgum Matidi | 1,615 | 2,510 | 4,125 | 12 |
| Pader | Corner Kilak | 1,253 | 1,390 | 2.643 | 7 |
| | Total | 8,074 | 10,670 | 18,744 | 53 |
| Remark: | 1) Borehole: $3 \mathrm{~m} \times 5 \mathrm{~m}, \quad$ 2) Public Stand: $2 \mathrm{~m} \times 8 \mathrm{~m}$,
 3) Pipe length of distribution includes length of service pipes for connection of public taps | | | | |

3.2 Motorized Point Water Supply System
In case of small yield is given by boreholes in relevant RGCs, motorized point water supply system will be one of the project component. This system consisted of identification of water resource, installation of motorized pump with solar power supply facility, elevated tank and public stand tap.

1) Water water resource for the project is groundwater sources. New borehole construction works and/or rehabilitation of existing boreholes will be implemented for groundwater source development.
a. Abstrac ric power supply system. electric power supply will be solar system. Details of planed new boreholes are as follows:
Average borehole drilling depth: 80 m .
Final drilling diameter: 8 inch.
Inner diameter of easing and screen: 5 inch.
Material of the casing and screen: PVC.
b. Elevated Tank
Elevated tank for distribution of groundwater is installed in the close vicinity of the water source (borchole)
Average borehole drilling depth: 80 m .
Final drilling diameter: 8 inch.
Inner diameter of casing and screen: 5 inch.
Material of the casing and screen: PVC.
b. Elevated Tank
Elevated storage tanks for distribution of groundwater are installed at higher place in the RGCs.
c. Transmission Pipes
A common transmission
construction accompanies trench works.
The distribution system is installed in the RGCs to connect elevated tanks and public stand taps.

| 3) Planed Served Population in 2017 and Service Areas | | | |
| :--- | :---: | :---: | :---: |
| District RGC Served Population in 2017 $\begin{array}{c}\text { Service Area } \\ \left(\mathrm{km}^{2}\right)\end{array}$
 Nwoya Koch Goma 900 0.21
 Gulu Unyama 3,600 0.25
 Gulu Awere 1,680 0.16
 Agago Adilang 3,420 0.57
 Kitgum Kitgum Matidi 2,800 0.27
 Pader Corner Kilak 2,000 0.18
 Total - 14,400 1.64 | | | |

| District | RGC | Required Area for Water Supply Facilities (m^{2}) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Borehole ${ }^{\text {] }}$ | Elevated Tank + Solar Module | Elevated Tank | Solar module | Public Stand ${ }^{2)}$ | Total |
| Nwoya | Koch Goma | 30 | 600 | . | - | 48 | 678 |
| Gulu | Unyama | 30 | . | 400 | 600 | 208 | 1.238 |
| Gulu | Awere | 30 | - | 400 | 375 | 96 | 901 |
| Agago | Adilang | 60 | 900 | . | - | 192 | 1,152 |
| Kitgum | Kitgum Matidi | 30 | 900 | . | . | 192 | 1,122 |
| Pader | Corner Kilak | 45 | 625 | - | - | 112 | 782 |
| Total | | 225 | 3,025 | 800 | 975 | 848 | 5,873 |

4. Description of the Proposed Project Site and its Surroundings, and
be Located.
4.1 Location
As May 2011, Acholi sub-region the historical homeland of the Acholi ethnic group, also known as Acholi-land, was constituted of seven (7) districts. The districts in Acholi-land include the following: Amuru, Nwoya, Gull, Agago, Lamwo, Kitgum and Pader.

4.2 Relief

Acholi-land is averagely at altitude in a range of 600 to $1,100 \mathrm{~m}$ AMSL. The topography consists of gentle sloping plains with a few hills rising to the level of 1,200 in some areas.

The vegetation is typical savannah type mainly characterized by grass cover. Perennial trees normally shed their leaves during the dry season. Much of the natural vegetation has been felled down for economic activities including charcoal burning and farming.

4.4 Geology and Soils

The soil types vary from place to place but are generally well drained sandy loams and clay. Clay loams occupy areas along the rivers and streams. The soils are fertile, with potential for high productivity and especially suitable for agriculture. In some places the following soil exists: Foresails, Gleysols, Nitrosols, Reyasols and Cilhosols. The soils along major rivers in Acholi-land constitute mostly of Reyasols and Cilhosols which are poorly developed and prone to water logging. The soil of a greater part of Acholi-land consists of ferruginous soil with a high percentage of sandy soils and therefore susceptible to erosion. Due to its sandy nature, the soil has low water retention capacity and high rate of water infiltration. The soils are usually deep with little differentiation into clearly defined zones and possess fine granular structure, others molded into large, weak coherent clods that are very porous.

4.5 Climate

Acholi-land has both dry and rainy seasons. The climate is hot throughout the year with two marked rainy seasons from March to June and August to November. The rainfall peaks in April and August, The average total rainfall received is $1,130 \mathrm{~mm}$ per annum with the monthly average rainfall varying between 1.4 mm in January and 230 mm in August. It is hot, dry and windy from December to mid-March. The maximum temperature is about $31.8^{\circ} \mathrm{C}$ and the annual minimum temperature is
$\stackrel{s}{8}$
※
$\underset{\square}{4}$

5. Conformity of the Activity to Existing Laws, Regulations and Policies Governing such Project and the Use of the Site/Area Proposed for its Location.

An EIA required under the Uganda EIA process shall be appropriate to the nature, scale, and possible effects of the proposed project, and to the nature of the proposed site for its location. Sufficient understanding of these factors is necessary for the initial screening decision on the level of EIA required. The level and number of stages the assessment will pass through will depend on the expected extent and gravity (significance) of the environmental impacts.

Related existing laws, regulations and policies goveming the project are as follows.

5.1 Millennium Development Goals

The seventh goal of the Millennium development goals is ensuring environmental sustainability. Some of the key targets for this goal include: Integrate sustainable development principles into country policies and prograns and reverse the loss of envirommental resources; Halve the proportion of people suffering the lack of access to safe drinking water and basic sanitation by 2015; and Achievement of significant improvement in the lives of at least 100 million slum dwellers by 2020 . In ensuring drinking water it is defined that people need to have access to safe and clean water supply and a possibility to acquire enough water for drinking, food preparation and hygiene purposes.

Through improved water and sanitation, the project will contribute to goal four (4) of the Millennium development goals which is reducing child mortality by two-thirds by 2015 .
5.2 The National Environment Management Policy This emplasizes sust mander of natural resources and stakenoder panien environmental management, so that the ability of the future generation to meet their needs is not adversely compromised by the activities of the present generation. The DWD has prepared this Project Brief for purposes of ensuring sustainable use of resources and enhancing stakeholder participation.
5.3 The PEAP

The Poverty Eradication Action Plan (PEAP) promotes poverty alleviation activities in rural communities. The policy plans recognizes sustainable natural resource management including provision of water facilities as one of the key strategic intervention areas to achieve PEAP objectives.
oth
\circ
i
$\xrightarrow{\infty}$
about $17.3^{\circ} \mathrm{C}$ giving a mean annual temperature of $24.6^{\circ} \mathrm{C}$.
The water resources of the area are heavily dominated by the rainfall pattern, topography and geological formation. The immediate response to rainfall is the runoff which finds its way to the streams and gradually into the groundwater system. The relatively dry and windy conditions mean that most of the rainfall is lost through evaporation.

Surface water is dominated by the marginally perennial rivers which essentially form the boundaries of districts, counties and sub-counties at times. Smaller streams can also be found within the vicinity of some RGCs. None of these streams are gauged and therefore there is no data on stream flows to inform planning.

These surface sources are used by the community for non-culinary purposes. The growing population, coupled with lack of enforcement of environment laws and regulations and a lack of alternative energy sources have had a serious impact on the quality of the water in the streams. The streams are heavily polluted.

Groundwater is the main source of drinking water although the geology of the area does not lend it to high expansive productive aquifers. Groundwater is found in valleys and in isolated pockets of the decomposed Precambrian rocks that form most of the geological stratum.
5.4 The Constitution of Uganda

The Constitution of the Republic of Uganda, 1995, is the main legislation body in the country. It offers, "every Ugandan has the right to a clean and healthy environment (clause 39) while at the same time expects citizens to play their part in creating a healthy environment. It is the duty of every Ugandan to create and protect a clean and healthy environment (clause 177).
5.5 The Water Act, Cap 152. 1995

The Water Act, Cap 152 provides for the use, protection and management of water resources and supply. Sections 18 of division 3 (Hydraulic works) of the Water Act states that permission may be granted for people carrying out construction works on water bodies. Section 19 provides for exemptions to a public authority or a class of persons or works. Section 20 provided that when works is permitted to be undertaken, it should not pollute the water and that there shouldn't be damage caused to the source or to the outflow. If any bridges and culvert crossing are to be installed these provisions will have to be complied with as appropriate.
5.6 The National Environment Act, Cap 153, 1995

The National Environment Act Cap 153, laws of Uganda, provides tools for environmental management. The Act imposes a mandatory duty on a project developer to have an Environmental Impacts Assessment conducted before embarking on a project. The Third Schedule of the Act made under section 18 of the Aet specifies the types of the projects to be subjected to EIA. Water supply projects also require Environmental Impact Assessments procedure for implementation.

5.7 The Land Act

- Section 43 : Utilization of land according to various laws

A person who owns or occupies land shall manage and utilize the land in accordance with the Forests Act, the Mining Act, the National Environment Act, the Water Act and any other law.

- Section 71: Rights of way

All land, whether alienated or un-alienated, shall be subject to all existing public rights of way which shall be reserved to and vested in the Government on behalf of the public; and all such rights of way shall be maintained by the public uninterrupted unless they are terminated or altered by the direction of the Minister (responsible for lands) in writing.
5.8 Environmental Impact Assessment Guideline, 1999

General EIA objectives are clearly stated in EIA Guidelines and apply to this particular project. In brief the objectives of the EIA study are to;

- Identify potential environmental concerns at a sufficiently early stage in the project development

7. Likely Environmental Impacts and Mitigation Measures
The Table below shows Likely Negative Environmental Impacts brought by the project and how the
impacts can be mitigated,

系
$\stackrel{ \pm}{\dot{2}}$
8. Alternatives Considered
This project aims at improvement of drinking water supply condition to the communities in Acholi sub-region to meet drinking water demand in the project area. The water source is limited to groundwater due to lack of surface water in the project area during dry season. The isolated case is. Awere RGC in Pader district which is located near River Achowa. It is a perennial river. However, the use of river water with high turbidity needs water treatment. It is rather difficult for the community to manage the treatment system than groundwater abstraction system. Under these situations, it is very difficult to find effective alternatives of this project. More detail consideration is
9. Any Other Information that may be Useful in Determining the Level of EIA Required
It is very difficult to find effective alternatives of this project so that consideration about "without project case" and "with project case" is implemented from the environmental and social points of view for reference. The consideration result is shown in following table as relative evaluation.

| Consideration results on "without project case" and "with project case" | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Environmental Elements | | | Case | | | |
| | | | Without this project | | With this project | |
| | | | Impacts | $\begin{aligned} & \hline \text { Good } \\ & \text { /Bad } \\ & \hline \end{aligned}$ | Impact | $\begin{aligned} & \text { Good } \\ & \text { /Bad } \\ & \hline \end{aligned}$ |
| | 1 | Involuntary Resettlement | Nothing will occur. | | Nothing will occur. | - |
| | 2 | Local Economy | No change | | Creation of employment opportunity | + |
| | 3 | Land use and Utilization of Local resources | No change | | Change of land use | - |
| | 4 | Social institution such as Social infrastructure and Local decision-making institutions | Deterioration of reliability villagers, Local government and DWD | - | Increase of reliability among villagers, , Local government and DWD | + |
| | 5 | Existing Social Infrastructure and Services | No change | | Improvement of drinking water supply condition | : |
| | 6 | The poor, Indigenous and Ethnic people | Deterioration of health and water supply conditions | - | Improvement of health and water supply conditions | + |
| | 7 | Misdistribution of benefits and Damage. | No change | | Realization of fair allocation of drinking water | + |
| | 8 | Cultural Heritage | No change | | No change is anticipated | |
| | 9 | Local Conflict of interest | Scrambling of drinking water | - | Mitigation of sscrambling of drinking water | + |
| | 10 | Water Usage, Water Rights and Commune Rights | No change | | Out of the scope of this project | |
| | 11 | Sanitation | Deterioration of health and water supply conditions | - | Improvement of health and drinking water supply condition | + |
| | 12 | Natural Disaster (Risk) Infectious Disease such as HIV/AIDS | Nothing will occur.
 No change. | | Decrease of draught damage Increase of opportunity of HIV/AIDS may happen if no mitigation measure are taken | + + |
| = | 13 | Topography and | No change | | The impacts are unknown | |

3) Environmental Impacts associated with Operation and Maintenance Phase of the Project

| Category | Item
 Environmental | Negative Impacts | Mitigation Measures |
| :---: | :---: | :---: | :---: |
| Pollution Control | Wastes | Water stagnation that leads to mosquitoes breeding. | - Soak pits with enough infiltration ability should be designed and installed to prevent accumulation stagnant water.
 The soak pits should be maintained through daily cleaning activities by the Water and Sanitation Committee / the Water Service Board. |
| Natural Environment | Hydrology | Reduction of groundwater table | Conservation of groundwater should be achieved by keeping discharge volume under safety yields of each borehole. |

Appendices
Appendix 1: 6 RGCs where Piped water supply system or Motorized point water supply system to be
installed
Appendix 2: Villages where a hand pump system to be installed

[^1]dn
Appendix 2: Villages where a Handpump System to be Installed

[^0]: Lucation Mapo

[^1]: The consideration abole brings following conclusion;
 "With project case" is considered to bring negative impacts such as increase of groundwater use, and noise/vibration during construction stage; and positive impacts such as dissolution of water shortage, realization of fair water allocation, reduction of drought damage, appropriate groundwater use, creation of job opportunity, increase of social capital and so on; the "With project case" shows high performances though it has several weak points. The implementation of this project is supposed to be more relevant than "without project case" for sustainable development of rural water supply.

