Kingdom of Thailand Ministry of Agriculture and Cooperatives Royal Irrigation Department

PROJECT FOR COMPREHENSIVE FLOOD MANAGEMENT PLAN FOR THE CHAO PHRAYA RIVER BASIN (SUB-COMPONENT 1-1 AERIAL SURVEY BY LIDAR)

FINAL REPORT

August 2012

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

PASCO CORPORATION KOKUSAI KOGYO CO., LTD. ASIA AIR SURVEY CO., LTD.

GE
JR
12-119

Project for comprehensive flood management plan for the Chao Phraya River Basin (Sub-Component 1-1 Aerial Survey by LiDAR)

Final Report

August 2012

PASCO Corporation Kokusai Kogyo Co., Ltd. Asia Air Survey Co., Ltd.

Currency exchange rate Currency unit: Thai Baht 1 THB = 2.487 yen (August 2012)

Table of Contents

1.	Out	ine of Work	1
	1.1.	Objective of Work	1
	1.2.	Target Area	1
	1.3.	Details and Amount of Work	2
2.	Wor	k Implementation Status	4
	2.1	Work Implementation Details	4
	2-1-	Preparation of Inception Report	4
	2-1-2	2 Explanation of / Discussion on Inception Report	4
	2-1-3	3 Discussion on Specifications	4
	2-1-4	4 Collection and Organization of Existing Materials	7
	2-1-:	5 Preparation of Final Report	7
	2-1-	5 Explanation of / Discussion on Final Report	8
	2-1-	7 Handling of Acquired Data	8
	2.2	Details of Survey Implementation	9
	2-2-	Measurement Plan	10
	2-2-2	2 Survey of Primary Control Network (GCP/MCP) and Control Points for Correction	15
	2-2-3	3 Installation/Observation of GPS base station (GCP)	16
	2-2-4	Installation/Observation of Control Points for Correction	
	2-2-:	5 Verification of Control Points for Correction	25
	2-2-0	6 GPS Equipment that was used	
	2-2-'	7 Measurement (Airborne Laser Scanning)	
	2-2-3	3 Creation of 3D Measurement Data	41
	2-2-9	9 Creation of Original Data	57
	2-2-	10 Creation of Ground Data	60
	2-2-	11 Creation of Grid Data	68
	2-2-	12 Creation of Contour Line Data	69
	2-2-	13 Digital Aerial Photography	70
	2-2-	14 Creation of Orthophoto Data	71
	2-2-	15 Data Verification	72
	2-2-	16 Discussion for Effective Use of Map Data / Explanation of Results (Technology Transfer)	84
	2-2-	Summary of Results (including preparation of reports, etc.)	85
	2.3	Work Schedule and Record	87
	2.4	Personnel Plan and Record	88
3.	Con	clusion	89

Appendix-1	Minutes of Inception Meeting
Appendix-2	Minutes of Final Report Meeting
Appendix-3	Work Regulation Rules and Implementation Manuals Thereof (Draft) for Creation of
	Elevation Data by Airborne Laser Scanning Survey
Appendix-4	Location Map of the project

1. Outline of Work

1.1. Objective of Work

This Work shall be performed to examine the possibility of allowing a certain amount of flooding with a focus on controlling overflowing of the river into farmland area for the region that was affected by the flood that occurred in 2011. In order to determine the feasibility and formulate plans, detailed topographic data of the flooded region needs to be utilized. However, topographic map data that can currently be used has an accuracy of 2 meters in the difference of elevation, which is inadequate for the evaluation of suitable areas in the mid and lower portions of the flat Chao Phraya River, necessitating the creation of new detailed topographic data by means of airborne laser scanning.

1.2. Target Area

Area to be photographed: Chao Phraya River Basin Flooded Region: 24,700km²

Location of the survey work

Target area of the work

Royal Irrigation Department, Ministry of Agriculture and Cooperatives (RID)

Entrance to Royal Irrigation Department

Royal Irrigation Department Technology Office Building

1.3. Details and Amount of Work

(1) Details and Amount of Work

It was decided that the Work Regulation Rules (Publication No. 413 dated March 31, 2008) of the Ministry of Land, Infrastructure, Transport and Tourism should be used as the technical standard for the survey work.

Survey Item	Volume	Remarks	
(1) Measuring Plan	24,700 km ²	Scan Density: 2.0m×2.0m	
		Average Sidelap of flight path: 30%	
		Completed in February	
(2) GPS Base Stations	11 points	Installation completed in February for constant	
		observation at the time of measurement	
(3) Control Points for	989 points	Placed on public land	
Correction		Installation completed in March	
		Observation and calculation completed in May	
(4) Airborne Laser	24,700 km ²	Airborne laser scanning system provided with	
Scanning		digital camera will be used.	
		Flight permit obtained in February	
		Measurement of the whole area (excluding the	
		areas where measurement is prohibited)	
		completed in May	
(5) 3D Data Creation	$24,700 \text{ km}^2$	Ground Coordinate Unit: 1cm	
		Data created from March to July	
(6) Original Data Creation	24,700 km ²	Standard Unit: 1cm	
		Data created from April to August	
(7) Ground Data Creation	24,700 km ²	Data created from April to August	
(8) Grid Data Creation	$24,700 \text{ km}^2$	2m grid	

		Elevation: Rounded off to 0.1m units
		Data created from May to August
(9) Contour Line Data	24,700 km ²	Index contour lines: 5m (changed from 10m
Creation		through discussions with RID)
		Intermediate contour lines: 1m (changed from
		2m through discussions with RID)
		Data created from May to August
(10)Digital Aerial	$24,700 \text{ km}^2$	Airborne laser scanning system provided with
Photography		digital camera shall be used.
		Photographed simultaneously with (4), excluding
		the areas where measurement is prohibited
(11)Orthophoto Data	$24,700 \text{ km}^2$	Ground Resolution: 50cm
Creation		Data created from April to July

(2) Final Outputs

During this Work, the following reports and other outputs shall be prepared and submitted.

Outputs	Content	Copies	Submission
(1) Inception Report	Implementing plan of the work	English: 20	Submitted on
	including basic policy,		February 8, 2012
	methods, processes, and		
	personnel plans of the Work.		
(2) Final Report	Overall results of the Work	Japanese: 10	Submitted on
	and technology transfer results	English & DVD:	August 27, 2012
		20	
(3) Airborne Laser	Digital Data Files	24,700 km ²	Submitted on
Scanning Survey	- Original data	Stored on a HDD	August 24, 2012
Data	- Ground data	for delivery	
	- Grid data		
	Orthophoto Data		
	Position Data File		
	Contour Line Data		
	Water Surface Polygon		
	Stored Data List		
(4) Index Map of	Map showing the areas and	3	Submitted on
Measurement	flight paths which were		August 27, 2012
	scanned for measurements		

2. Work Implementation Status

2.1 Work Implementation Details

2-1-1 Preparation of Inception Report

After studying the Scope of Work and the collected materials, an inception report was created. The report was finalized by incorporating the results of preliminary explanation to JICA and prepared in Japanese and English. It comprised the following details:

- Target area of the work
- Work details and work volume
- Basic policy of work implementation
- Method of work implementation
- Work flowchart
- Work schedule
- Personnel plan
- Equipment procurement plan
- Work implementation structure

2-1-2 Explanation of / Discussion on Inception Report

On February 8, 2012, the inception report was explained to the Royal Irrigation Department (RID), which is the counterpart agency, and related organizations and a meeting was held with them to discuss the work details and implementation policy to obtain an approval. For the purpose of explanation and discussion, a presentation was given, using a PowerPoint file summarizing the content of the report.

The discussion details and results were summarized into the minutes on which signatures of both parties were given. (See Appendix-1.)

2-1-3 Discussion on Specifications

The survey details and methods were explained to the Royal Thai Survey Department (RTSD), which prescribes the survey work standard in Thailand, in addition to the RID and a meeting was held with them to discuss the survey control of airborne laser scanning survey to be newly established in this survey, the scope of survey and the specifications of the outputs to obtain an approval.

1) Survey control

As a result of discussions among the RID, the RTSD and the Study Team, the survey control was established as described below in consideration of standardization to facilitate the sharing of data

with related organizations in Thailand and abroad.

Item	This survey
Projection method	UTM (Universal Transverse Mercator)
Projection method	Zone 47N
Reference ellipsoid	WGS84
Geodetic datum	WGS84 (ITRF2008)
Height reference Mean Sea Level (in accordance with the existing benchma	

Table 2.1.1Survey Control

2) Target area of survey

The target area of survey was determined as described below through discussions between the related organizations and the Study Team and with the approval of JICA.

Figure 2.1.1 Target Area of the Survey

3) Specifications and outputs

Since this project is the first airborne laser scanning survey in Thailand, it was decided to perform the survey in accordance with the survey work regulations in Japan ("Work Regulation Rules" of the Ministry of Land, Infrastructure, Transport and Tourism).

With respect to the data creation unit of the outputs, it was decided that the data should be created by using the map sheets that divide the whole country into map sheets of 2km east to west and 2km north to south (1:4000 map sheets), which are used by the Department of Land Development (DOL).

2-1-4 Collection and Organization of Existing Materials

Existing materials needed for this project were collected and organized as described in the following table.

No.	Name of Materials	Туре	Organization of Publication	Published
1	1:50,000 map (96 maps covering the target area)	Survey result	RTSD	Depends on the
	(paper map + scan data)			map
2	1:50,000 index map (paper map)	Survey result	RTSD	
3	1:250,000 map (10 maps covering the target	Survey result	RTSD	Depends on the
	area) (paper map)			map
4	1:250,000 index map (paper map)	Survey result	RTSD	July 2541
				(1998)
5	Reference point data, Reference point	Survey result	RTSD	Depends on the
	description (Reference point data for 15 points			point
	covering the target area) (paper + scan data)			
6	Reference point index map (first class) released	Survey result	RTSD	2550 (2007)
	on a website (scan data)			
7	Reference point index map (second class +	Survey result	RTSD	
	index map of Reference points with elevation)			
	(scan data)			
8	Benchmark data, benchmark description (data of	Survey result	RTSD	Depends on the
	115 benchmarks around 40 locations needed for			point
	a primary network of control points for			
	correction) (paper)			
9	Same as above (point shape file)	Survey result	RTSD	Latest
10	Leveling route network diagram (whole nation)	Survey result	RTSD	Before 2553
	(scan data)			(2010)
11	Leveling route network diagram (Bangkok)	Survey result	RTSD	2554 (2011)
	(scan data)			
12	Administrative division data (province, district)	Background	RID	Latest
	(polygon shape file)	information		

 Table 2.1.2
 List of Collected Existing Materials

2-1-5 **Preparation of Final Report**

Summarizing the implementation results of this work, a final report was created. The report was finalized by incorporating the results of preliminary explanation to JICA and prepared in Japanese and English. It comprised the following details:

- Target area of the work
- Work details and work volume
- Work implementation details
- Work implementation methods
- Work flowchart
- Work schedule and record
- Personnel plan and record
- Recommendation and Conclusion

2-1-6 Explanation of / Discussion on Final Report

The final report was explained to the Royal Irrigation Department (RID), which is the counterpart agency, and related organizations and a meeting was held with them to discuss the work details and results of implementation to obtain an approval. For the purpose of explanation and discussion, a presentation was given, using a PowerPoint file summarizing the content of the report.

The discussion details and results were summarized into the minutes on which signatures of both parties were given. (See Appendix-2.)

2-1-7 Handling of Acquired Data

It is mandatory to work on the acquired measurement data under the management of the staff of the RTSD to prevent the leakage of information based on the national security of Thailand. As security officers, a total of 16 staff members of the RTSD were permanently stationed at the project office within the counterpart as well as at the airport office and the aircraft throughout the project period as described below.

Project office		
Airport office (four aircraft)		
Aircraft (four aircraft)		
ig place		
PASCO	1 person	
Kokusai Kogyo	1 person	
Asia Air Survey	2 people	
PASCO	2 people	
	(four aircraft) aircraft) g place PASCO Kokusai Kogyo Asia Air Survey PASCO	

Also, as the data needed to be hand-carried by the security officers for delivery, the security officers traveled between Bangkok and Japan (Sapporo, Tokyo and Okinawa) whenever necessary.

2.2 Details of Survey Implementation

The implementation workflow of this survey is described below.

Thai LiDar WorkFlow

Figure 2.2.1 Implementation Workflow

2-2-1 Measurement Plan

The measurement plan was created for the measuring specifications, flight paths, location of GPS base stations and GPS observation, taking the location of GPS satellites and other such details into consideration.

The scan density was set to have a grid of $2m \times 2m$ or less, with one or more laser points irradiated. Furthermore, the standard flight path duplication (side lap ratio) was set at 30%. The measurement was to be carried out with two base airports, namely Don Muang Airport in the south and Phitsanulok Airport in the north, taking the weather and air area into consideration.

The flight plan for airborne laser scanning is shown below. In principle, the flight altitude was set at 2,785m (428 courses). However, a plan with the flight altitude as low as 500m (2,017 courses in total) was also developed to provide for unfavorable weather in order to avoid measurement delays caused by clouds.

	Flight Planning		
		Planning Date	2012.03.08 (Update)
Project Name	The study on a comprehensive flood management plan for the chao phraya river basin	Implementing Company	PASCO Europe
Flight Area	Project Area	Team Leader	Jyrki. Inberg
Aircraft / System	OO-MAP / ALS 60 SN6125	Person in charge	Ari Jääskeläinen
Item	Value of Parameter Setting	Remai	rks
Flight hight above the ground	2785 m		
Sea Level Altitude	2785 m		
Ground Spead	120kts		
Number of Flight Paths	364 course		
Side Lap	30%		
Pulse Rate	86.7kHz		
Scan Angle	20degree		
Number of Scans	29.4Hz		
Beam Diameter	0.63 m		
Pulse Mode	4		
Others	MpiA		
*Planning map of flight path sha	ll be attached.		

Table 2.2.2Flight Plan (Terrain Clearance 500m)

Flight Planning			
	Planning Date	2012.03.08 (Update)	
The study on a comprehensive flood management plan for the chao phraya river basin	Implementing Company	PASCO Europe	
Project Area	Team Leader	Jyrki. Inberg	
OO-MAP / ALS 60 SN6125	Person in charge	Ari Jääskeläinen	
Value of Parameter Setting	Remar	ks	
500m			
500m			
150kts			
1904course			
30%			
148.9 kHz			
20 degree			
59.4 Hz			
0.12 m			
4			
SpiA			
be attached.			
	Flight Planning The study on a comprehensive flood management plan for the chao phraya river basin Project Area OO-MAP / ALS 60 SN6125 Value of Parameter Setting S00m S00 m	Flight Planning Planning Date Planning Date The study on a comprehensive flood management plan for the chao phraya river basin Implementing Company Project Area Team Leader OO-MAP / ALS 60 SN6125 Person in charge Value of Parameter Setting Remar S00m 1 S00m 1 150kts 1 1904course 30% 148.9 kHz 1 20 degree 1 59.4 Hz 0.12 m 4 SpiA SpiA SpiA	

*Locations of the GPS base stations, etc. shall be clealy marked on the planning map of flight path

Figure 2.2.2 Measurement Course (Terrain Clearance 2,785m, 428 courses)

GPS base stations are points installed for GPS observations that are carried out synchronizing with the airborne laser scanning. An accurate location of the aircraft can be calculated by base line analysis of the GPS base station data combined with the airborne GPS data. In order to exhaustively cover the area to be measured, the points were distributed at about 45km intervals.

Figure 2.2.3 GPS base station Location Map

An application for flight permit was filed on February 10, adding the information on the aircraft and equipment to be used, the measurement plan, the pilots and the navigators and the permit was granted on February 24.

14

2-2-2 Survey of Primary Control Network (GCP/MCP) and Control Points for Correction The workflow of the survey of control points for correction is shown below.

Figure 2.2.4 Workflow

2-2-3 Installation/Observation of GPS base station (GCP)

In order to identify the position of the laser distance meter by kinematic GPS surveying, GPS base stations need to be set up on the ground when an aircraft is flying. Since the area to be surveyed longitudinally stretches more than 400km from north to south, it was decided that 11 GPS base stations (GCP), each covering a circle of 45km radius, should be installed. It was also decided that data from GPS observation at the GPS base stations (GCP) should be obtained throughout the airborne laser scanning flight time and that data from both the GPS base stations and GPS observation unit on the aircraft should be obtained at one second intervals. Furthermore, the work was carried out to ensure that the number of GPS satellites would be five or more when data was acquired.

Figure 2.2.5 GPS Base Station (GCP) Distribution Map

In synchronization with the airborne laser scanning, GPS observation was carried out at the ground control points that had been set up beforehand. The observation interval was set at one second and the elevation mask was set at 15 degrees.

Figure 2.2.6 Implementation of Ground GPS Observation (March 20, GCP-03)

Figure 2.2.7 Implementation Status of Ground GPS Observation

2-2-4 Installation/Observation of Control Points for Correction

As confirmation with the accurate height information at the site is important in the airborne laser scanning survey, in accordance with the Japanese survey work regulations, 989 control points for correction (FCP) were planned with one point for every 25km² (5km x 5km).

Figure 2.2.8 Distribution Map of Control Points for Correction (FCP)

It was decided that the work should be performed in accordance with the Japanese survey work regulations, which provide the survey and accuracy standards of control points for correction. The standards for survey coordinates were determined based on the existing data held by the RTSD. The RTSD owns reference points and benchmarks (BM). However, since it is impossible to directly observe the control points for correction (FCP) that have been set up for every 25km² with the current reference points and benchmarks alone, because the area to be covered in this project is so wide, it was decided to set up a primary control network with the baseline length of about 30km. For the primary control network, 45 new points, which consist of the abovementioned 11 GPS base stations (GCP) for the airborne laser scanning and 34 master control points (MCP) providing the basis for the calculation of the control points for correction, were installed. The observation was carried out for no less than two hours in the static GPS method.

Figure 2.2.10 Description of Master Control Points(MCP)

With respect to the existing data that provides the standards, direct leveling was carried out for 82.1km from seven reference points of the RTSD (3001, 3009, 3166, 3197, 3539, 3540 and 3661) and 20 benchmarks of the RTSD in the vicinity of the GPS base stations (GCP) and master control points (MCP) to indicate the elevation.

Master Control Point (MCP)

Using this existing data and the result of GPS observation, the primary control network was calculated to determine the data of the 45 new points.

Figure 2.2.11

Existing reference point that was utilized Existing benchmark that was utilized

Description of existing reference point

Figure 2.2.12 Description of existing benchmark

Reconnaissance result (benchmark)

The data of the 45 new points is described in the following table.

Point Name	UTM 47N		Ellipsoide WGS84(H)	Mean sea level (E)	Geogr	aphic
	Easting	Northing			Longitude	Latitude
3001	608735.656	1701027.309	106.749	141.209	100°00'47.54965"E	15°23'01.53492"N
3009	609756.416	1618019.501	-24.186	9.739	100°01'08.96107"E	14°38'00.03885"N
3166	662970.524	1521727.911	-17.740	13.733	100°30'26.67779"E	13°45'37.11119"N
3197	625647.785	1885006.714	16.553	52.570	100°10'50.29812"E	17°02'45.05974"N
3539	703857.161	1617213.927	-6.390	24.689	100°53'33.41494"E	14°37'14.17511"N
3540	706076.516	1593113.651	-21.086	9.618	100°54'40.82906"E	14°24'09.55002"N
3661	583851.988	1503378.501	-26.125	6.775	99°46'30.44390"E	13°35'52.06151"N
GCP-01	603270.288	1880980.222	8.451	45.305	99°58'12.74477"E	17°00'38.05432"N
GCP-02	633205.499	1844725.093	5.545	40.843	100°14'57.29212"E	16°40'52.96642"N
GCP-03	632687.328	1789965.022	-3.739	31.187	100°14'28.46958"E	16°11'11.37319"N
GCP-04	625381.849	1737350.285	-7.308	27.006	100°10'12.53995"E	15°42'40.74934"N
GCP-05	633151.066	1677426.585	-16.042	17.605	100°14'21.93020"E	15°10'09.42232"N
GCP-06	620973.377	1631400.156	-24.737	8.876	100°07'26.10051"E	14°45'13.76105"N
GCP-07	662267.966	1615861.343	-25.951	6.365	100°30'23.48687"E	14°36'40.30012"N
GCP-08	613378.669	1572135.952	-30.088	3.290	100°03'03.02411"E	14°13'06.24248"N
GCP-09	675474.543	1568812.223	-27.310	4.189	100°37'33.67197"E	14°11'06.50082"N
GCP-10	633080.699	1517155.462	-30.064	2.072	100°13'50.79482"E	13°43'13.83424"N
GCP-11	688250.253	1521377.685	-29.657	0.986	100°44'28.11428"E	13°45'20.16805"N
MCP-01	594799.580	1892749.977	12.588	49.663	99°53'28.09674"E	17°07'02.33066"N
MCP-02	583945.575	1876871.822	10.971	47.980	99°47'18.64748"E	16°58'27.19369"N
MCP-03	634438.948	1862086.232	10.442	45.914	100°15'42.65097"E	16°50'17.56230"N
MCP-04	617121.725	1845141.558	6.404	42.301	100°05'54.42551"E	16°41'09.59513"N
MCP-05	652715.658	1845570.663	6.838	41.418	100°25'56.06039"E	16°41'16.21124"N
MCP-06	624868.006	1815007.972	0.631	35.986	100°10'10.01281"E	16°24'47.70610"N
MCP-07	654777.083	1815937.034	1.500	35.712	100°26'58.43137"E	16°25'11.64694"N
MCP-08	619722.695	1780275.137	-0.244	34.827	100°07'10.15441"E	16°05'58.49946"N
MCP-09	655255.002	1772568.113	-0.764	33.134	100°27'04.19409"E	16°01'40.55876"N
MCP-10	606431.128	1735053.110	-4.569	30.097	99°59'35.55245"E	15°41'29.14903"N
MCP-11	658763.694	1729722.941	-3.717	29.562	100°28'52.06155"E	15°38'25.78255"N
MCP-12	625195.050	1710933.064	-8.064	26.023	100°10'01.40565"E	15°28'21.16906"N

Table 2.2.3List of New Point Coordinates (3001 – MCP-12)

n.nnn

Is from Leveling

Point Name	UTM 47N		Ellipsoide WGS84(H)	Mean sea level (E)	Geogr	aphic
	Easting	Northing			Longitude	Latitude
MCP-13	606293.329	1663776.380	-17.731	16.536	99°59'19.97021"E	15°02'49.64964"N
MCP-14	666260.369	1663400.549	-20.363	12.406	100°32'47.86558"E	15°02'26.21138"N
MCP-15	639033.487	1648469.468	-21.504	11.729	100°17'33.33669"E	14°54'26.05093"N
MCP-16	684488.297	1636664.654	-0.590	31.405	100°42'51.21523"E	14°47'52.00319"N
MCP-17	593369.596	1584918.181	-27.495	6.606	99°51'57.04522"E	14°20'04.93698"N
MCP-18	642198.708	1599178.814	-28.451	4.237	100°19'09.62463"E	14°27'41.49798"N
MCP-19	685402.468	1598151.144	-24.340	7.224	100°43'12.02092"E	14°26'58.74948"N
MCP-20	591508.318	1559026.076	-23.464	10.372	99°50'51.77229"E	14°06'02.45070"N
MCP-21	643638.915	1565829.938	-26.269	6.075	100°19'51.32458"E	14°09'36.00454"N
MCP-22	706532.888	1572244.300	-25.762	4.743	100°54'50.30845"E	14°12'50.50343"N
MCP-23	614957.080	1541831.771	-28.546	4.384	100°03'51.11410"E	13°56'39.75029"N
MCP-24	654958.687	1535910.553	-16.733	15.114	100°26'02.78071"E	13°53'20.22609"N
MCP-25	686285.591	1540864.430	-28.582	2.338	100°43'27.39075"E	13°55'54.66381"N
MCP-26	716449.703	1531061.735	-27.713	1.984	101°00'09.37132"E	13°50'28.07925"N
MCP-27	618004.314	1513125.283	-27.042	5.316	100°05'28.30424"E	13°41'05.02663"N
MCP-28	639714.229	1498376.092	-30.341	1.320	100°17'28.29149"E	13°33'01.55406"N
MCP-29	667588.503	1500445.449	-29.305	1.706	100°32'55.88499"E	13°34'03.62370"N
MCP-30	700881.918	1501797.228	-29.696	0.338	100°51'23.56444"E	13°34'40.05022"N
MCP-31	639173.105	1757039.284	-0.473	33.802	100°17'59.89917"E	15°53'18.76488"N
MCP-32	664620.161	1755020.538	0.816	34.165	100°32'14.89047"E	15°52'07.47321"N
MCP-33	626931.700	1684113.688	-18.725	15.146	100°10'54.76191"E	15°13'48.14559"N
MCP-34	646128.623	1861830.081	8.107	43.159	100°22'17.50260"E	16°50'06.69673"N

Table 2.2.4 List of New Point Coordinates ((MCP-13 – MCP-34)
---	-------------------

n.nnn Is from Leveling

In order to determine the location of the 989 control points for correction (FCP), regarding the newly established 45 points (GCP/MCP) as known points, a more detailed network of control points for correction was organized.

The observation for the control points for correction (FCP) was also carried out for no less than one hour in the static GPS method. As a general rule, the plans called for the distribution of points in a grid as shown in the distribution map above, but it was decided that this should be flexibly modified, considering the condition of topography and objects on the ground as well as the availability of public land for observation.

The observation result of the control points for correction is shown below.

Figure 2.2.13 Control Points for Correction (FCP) Observation Result

Also, it was confirmed that coordinate values have been calculated and determined within the limitation for all the control points for correction with respect to the loop closure and network adjustment.

The data of the 989 new points (extracted) is as follows.

Delet News	Coordinate (m) Height (r		t (m) Coordinate						
Point Name	Observation Date	E	N	Ellip. H	MSL F	l Lati	tude	Longitude	
F001	2012/4/2	611,589.671	1,901,318.064	14.718	51.374	17°11'38	3.38278″ N	100°02'57.78966″E	
F002	2012/4/2	606,990.366	1,896,815.840	11.912	48.720	17°09'1	2.68853″ N	100°00'21.31116″E	
F003	2012/4/2	612,226.021	1,896,885.353	10.809	47.446	17°09'14	4.04647″ N	100°03'18.51417″E	
F004	2012/3/8	616,756.491	1,896,964.462	15.166	51.639	17°09'1	5.80347″ N	100°05'51.85203″E	
F005	2012/3/8	598,806.335	1,891,969.424	11.101	48.106	17°06'30	6.32376″ N	99° 55' 43.54997″ E	
F006	2012/4/2	605,764.829	1,891,923.328	10.933	47.775	17°06'3	3.70605″ N	99° 59' 38.98849″ E	
F007	2012/4/2	612,034.196	1,891,728.441	9.421	46.053	17°06'20	6.29284″ N	100°03'11.07735″E	
F008	2012/4/7	616,771.660	1,891,883.915	10.373	46.821	17°06'30	0.50026″ N	100°05'51.39503″E	
F009	2012/4/2	621,930.079	1,891,932.184	13.181	49.414	17°06'3	1.10389″ N	100° 08' 45.93368" E	
F010	2012/3/8	592,067.285	1,887,154.984	13.157	50.239	17°04'00	0.67996″ N	99° 51' 54.80105″ E	
F011	2012/3/8	599,177.018	1,886,989.885	12.712	49.695	17°03'54	4.24307″ N	99° 55' 55.28705″ E	
F012	2012/3/8	604,814.378	1,887,026.018	9.590	46.444	17°03'54	4.51815″ N	99° 59' 05.99246″ E	
F013	2012/3/8	610,574.840	1,886,875.181	9.424	46.087	17°03'48	8.63877″ N	100°02'20.82571″E	
F014	2012/3/8	616,664.242	1,887,577.236	8.027	44.451	17°04'10	0.39742″ N	100° 05' 46.94120" E	
F015	2012/3/8	624,403.707	1,887,328.635	12.753	48.842	17°04'00	0.84765″ N	100° 10' 08.69108" E	
F016	2012/3/8	586,986.020	1,882,174.518	12.800	49.863	17°01'19	9.33369″ N	99° 49' 02.20139" E	
F017	2012/3/8	593,977.017	1,882,044.765	9.744	46.759	17°01'14	4.12360″ N	99° 52' 58.62429″ E	
F018	2012/4/3	600,228.665	1,881,704.018	10.285	47.210	17°01'02	2.08825″ N	99° 56' 30.00086" E	
F019	2012/3/10	606,225.453	1,881,522.558	8.576	45.354	17°00'5	5.21731″N	99° 59' 52.77517" E	
F020	2012/3/10	611,894.790	1,882,049.058	8.219	44.795	17°01'1	1.38256″ N	100°03'04.59719"E	
F021	2012/4/2	617,173.365	1,881,402.141	7.571	43.927	17°00'49	9.39003″ N	100°06'02.98702"E	
F022	2012/4/2	621,762.183	1,881,792.223	10.780	46.944	17°01'0	1.22578″N	100° 08' 38.24304" E	
F023	2012/3/7	626,678.064	1,882,377.415	11.953	47.905	17°01'19	9.31162″ N	100°11'24.60281" E	
F024	2012/4/3	583,845.558	1,876,722.283	11.215	48.221	16°58'22	2.34085″ N	99° 47' 15.24530" E	
F025	2012/4/3	588,471.059	1,876,896.213	11.578	48.576	16° 58' 2	7.37971″N	99° 49' 51.67029″ E	
F026	2012/3/8	E01 6EE 0E1	1077051174	0 006	45 794	16° 50' 2'	07501″ N	00° 51' 20 20251" E	
	2012/0/0	091,000.901	1,877,031.174	0.000	43.704	10 38 3	1.97521 N	99 01 09.00201 E	
F027	2 Point Name	Observation Dat	Coc	ordinate (m)	43.704	Heigh	nt (m)	69 51 59.36251 E	ordinate
F027 F028	2 Point Name	Observation Dat	:e E	ordinate (m)	40.704	Ellip. H	nt (m) MSL H	Latitude	ordinate Longitude
F027 F028 F029	2 Point Name F970	Observation Dat 2012/4/19	.e E 639,030.631	ordinate (m)	43.704 58.686	Ellip. H -30.740	nt (m) MSL H 0.952	Cc Latitude	Longitude 100° 17' 05.70655" E
F027 F028 F029 F030	2 Point Name	Observation Dat 2012/4/19 2012/4/20		ordinate (m) 1,499,2 1,499,3	58.686 98.904	Ellip. H -30.740 -30.877	nt (m) MSL H 0.952 0.678	Cc Latitude 13° 33' 30.39452″ N 13° 33' 33.87120″ N	Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E
F027 F028 F029 F030 F031	2 Point Name F970 F971 F972	Observation Date 2012/4/19 2012/4/20 2012/4/20	Coc E 639,030,631 645,240,877 650,340,392	s.sou rdinate (m) 1,499,2 1,498,3 1,498,3	58.686 98.904 19.531	Ellip. H -30.740 -29.748	nt (m) MSL H 0.952 0.678 1.668	Image: Single	Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E 100° 23' 21.74223" E
F027 F028 F029 F030 F031 F032 F032	Point Name F970 F971 F973	Observation Dat 2012/4/19 2012/4/20 2012/4/20	Coc 639,030.631 645,240.877 650,340.392 657,419.725	ordinate (m) 1,499,2 1,499,3 1,499,3 1,499,4 1,499,4	43.764 58.686 98.904 19.531 20.373	Height Ellip. H -30.740 -30.877 -29.748 -29.784	nt (m) MSL H 0.952 0.678 1.668 1.484	Image: Single	Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E 100° 23' 21.74223" E 100° 27' 17.43323" E
F027 F028 F029 F030 F031 F032 F033 F033	Point Name F970 F971 F972 F973 F974	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20	E Coc 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 662,695,849	rdinate (m) 1,499,2 1,498,3 1,498,3 1,498,4 1,498,8	43.734 58.686 98.904 19.531 20.373 68.234	-30.740 -30.877 -29.748 -29.784 -25.720	MSL H 0.952 0.678 1.668 1.484 5.404	Image: Single	Longitude 1 100° 17' 05.70655" E 100° 20' 32.31486" E 1 100° 23' 21.74223" E 1 100° 27' 17.43323" E 1 100° 30' 12.81746" E
F027 F028 F029 F030 F031 F032 F033 F034 F034	Point Name F970 F971 F972 F973 F974 F975	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20	E Coc 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862	Image: state	40.704 58.686 98.904 19.531 20.373 68.234 40.431	It is is Heigt Ellip. H -30.740 -30.877 -29.748 -29.784 -25.720 -29.999	MSL H 0.952 0.678 1.668 1.484 5.404 0.942	Ji Ji Ji Ji Ji Cc Latitude 13" 33' 30.39452" N 13" 33' 33.87120" N 13" 32' 57.81774" N 13" 32' 57.81774" N 13" 33' 32.30125" N 13" 33' 13.29462" N 13" 34' 02.94172" N	Longitude 1 100° 17' 05.70655" E 1 100° 20' 32.31486" E 1 100° 23' 21.74223" E 1 100° 27' 17.43323" E 1 100° 30' 12.81746" E 1 100° 34' 18.85252" E
F027 F028 F029 F030 F031 F032 F033 F033 F034 F035 F036	Point Name F970 F971 F972 F973 F974 F975 F976	Observation Dat 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20	E Coc 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 676,310,670	Image: state	40.704 58.686 98.904 19.531 20.373 68.234 40.431 15.463	It is is Heigt Ellip. H -30.740 -30.877 -29.748 -29.784 -25.720 -29.999 -30.010	No. 1992 No. 1993 No.	Ji Ji Ji Ji Ji Cc 13" 33' 30.39452" N 13" 33' 33.387120" N 13" 32' 57.81774" N 13" 32' 57.81774" N 13" 33' 32.30125" N 13" 33' 13.29462" N 13" 34' 02.94172" N 13" 33' 31.51565" N	Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E 100° 30' 12.81746" E 100° 31' 45.79540" E
F027 F028 F029 F030 F031 F032 F033 F033 F034 F035 F036 F037	Point Name F870 F971 F972 F973 F974 F976 F977	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25	E Coc 639,030.631 645,240.877 650,340.392 657.419.725 662,695.849 670.082.862 676,310.670 683,060.368	Image: state	43.764 43.764 19.51 19.531 20.373 68.234 40.431 15.463 45.832	-30.740 -30.740 -30.877 -29.748 -29.748 -25.720 -29.999 -30.010 -29.829	No. 100 Aug. Action Act	Ji 39.3621 E Cc Latitude 13° 33' 30.39452″ N 13° 33' 30.39452″ N 13° 33' 33.87120″ N 13° 32' 57.81774″ N 13° 32' 57.81774″ N 13° 33' 31.329462″ N 13° 33' 13.29462″ N 13° 33' 31.51565″ N 13° 33' 31.51565″ N	Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E 100° 20' 32.31.486" E 100° 30' 12.81746" E 100° 31' 45.79540" E 100° 31' 45.79540" E 100° 41' 30.31759" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038	Point Name F970 F971 F972 F973 F974 F975 F976 F977 F978	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25	E Coc 639,030.631 645,240.877 650,340.392 657,419,725 662,695.849 670,082.862 676,310.670 683,060.368 689,792.023 689,792.023	Image: state	43.764 43.764 19.531 19.531 20.373 68.234 40.431 15.463 45.832 86.187	-30.740 -30.877 -29.748 -29.748 -25.720 -29.999 -30.010 -29.829 -28.438	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928	33 31 33 30 394 Cc Latitude 13" 33' 30.39452" N 13" 33' 33.87120" N 13" 32' 57.81774" N 13" 33' 32.30125" N 13" 33' 13.29462" N 13" 34' 02.94172" N 13" 33' 31.51565" N 13" 33' 34.26491" N 13" 33' 34.26491" N	Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E 100° 30' 12.81746" E 100° 31' 45.79540" E 100° 41' 30.31759" E 100° 45' 14.21275" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039	Point Name F970 F971 F972 F973 F974 F975 F976 F977 F978 F979	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25	E 639,030.631 645,240.877 650,340.392 657,419,725 662,695.849 670,082.862 676,310.670 683,060.368 689,792.023 696,488.339	Image: state	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031	10 38 3 Heigt -30.740 -30.877 -30.877 -29.748 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -30.010 -29.829 -28.438 -29.579	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591	33 31 33.30.39452" P Latitude 13" 33' 30.39452" N 13" 33' 33.87120" N 13" 33' 33.87120" 13" 32' 57.81774" N 13" 33' 32.29462" N 13" 33' 13.29462" N 13" 33' 31.51565" N 13" 33' 31.51565" N 13" 33' 34.26491" N 13" 33' 34.03334" N 13" 34' 05.78561"	Longitude 1 100° 17' 05.70655" E 1 100° 20' 32.31486" E 1 100° 30' 12.81746" E 1 100° 30' 12.81746" E 1 100° 37' 45.79540" E 1 100° 41' 30.31759" E 1 100° 45' 14.21275" E 1 100° 48' 57.18887" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040	Point Name F970 F971 F972 F973 F974 F975 F976 F977 F978 F979 2 F980	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26	E Coc 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,578,636 703,578,636	rdinate (m) 1,499,2 1,499,3 1,499,4 1,499,4 1,499,5 1,499,5 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6	43.764 58.686 58.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122	Horison Bellip. H -30.740 -30.877 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488	Si S	Longitude 1 100° 17' 05.70655" E 1 100° 20' 32.31486" E 1 100° 30' 12.81746" E 1 100° 30' 12.81746" E 1 100° 37' 45.79540" E 1 100° 41' 30.31759" E 1 100° 45' 14.21275" E 1 100° 48' 57.18887" E 1 100° 52' 52.79129" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F977 F978 F979 2 F980 F981	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26	E Coc 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347	noise rdinate (m) 1.499.2 1.499.3 1.499.4 1.499.4 1.499.5 1.499.6 1.499.6 1.499.7 1.499.8 1.500.4 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.6 1.499.7	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323	Itelign Heigt -30.740 -30.877 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513	Si S	Longitude 1 100° 17' 05.70655" E 1 100° 20' 32.31486" E 1 100° 20' 17.43323" E 1 100° 30' 12.81746" E 1 100° 30' 12.81746" E 1 100° 37' 45.79540" E 1 100° 41' 30.31759" E 1 100° 45' 14.21275" E 1 100° 45' 57.18887" E 1 100° 52' 52.79129" E 1 100° 12' 49.21398" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F977 F978 F979 2 F980 F981 F982	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/19	Bit String Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 663,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106	noise rdinate (m) 1,499.2 1,499.3 1,499.4 1,499.4 1,499.4 1,499.5 1,499.6 1,499.6 1,499.6 1,499.6 1,499.6 1,499.6 1,499.6 1,499.6 1,499.6 1,499.8 1,499.8 1,499.6 1,499.6 1,499.6 1,499.8 <	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075	10 38 3 Heigt -30.740 -30.877 -30.877 -29.748 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063	Si S	Longitude 1 100° 17' 05.70655" E 1 100° 20' 32.31486" E 1 100° 20' 17.4323" E 1 100° 30' 12.81746" E 1 100° 30' 12.81746" E 1 100° 37' 45.79540" E 1 100° 41' 30.31759" E 1 100° 45' 14.21275" E 1 100° 45' 52.79129" E 1 100° 52' 52.79129" E 1 100° 12' 49.21398" E 1 100° 12' 69.96323" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043	2 Point Name F970 F971 F972 F973 F973 F974 F975 F976 F976 F977 F978 F979 2 F980 F981 F982 F983	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/19 2012/4/19	By 10311/4 Coc E 639,030.631 645,240.877 650,340.392 657,419.725 662,695.849 670,082.862 676,310.670 683,060.368 689,792.023 696,488.939 703,579.636 631,359.347 637,390.106 644, 314, 209	non-state non-state 1.499.2 1.499.2 1.499.3 1.499.4 1.499.4 1.498.3 1.499.4 1.499.6 1.499.5 1.499.6 1.499.6 1.499.6 1.499.8 1.499.6 1.499.6 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6 1.499.8 1.499.6	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 29.144	10 38 3 Heigt -30.740 -30.877 -30.877 -29.748 -29.748 -29.748 -29.784 -29.784 -29.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.545 -29.545 -29.545	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063	Si S	Image: construction of the section of the s
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044	2 Point Name F970 F971 F972 F973 F973 F974 F975 F976 F976 F976 F977 F978 F979 2 F980 F981 F981 F982 F983 E984	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/19 2012/4/19 2012/4/20	B Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,210,007	1.499.2 1.499.2 1.499.3 1.498.3 1.498.3 1.498.3 1.498.3 1.498.3 1.499.6 1.499.7 1.499.8 1.499.8 1.499.8 1.499.8 1.499.8 1.499.8 1.499.8 1.499.8 1.499.8	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 29.144 0.19.54	10 38 3 Heigt -30.740 -30.877 -30.877 -29.748 -29.748 -29.748 -29.784 -29.792 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -29.545 -29.582 -29.582	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883	33 31 33 30 39 20 20 Latitude 13" 33 30 39 25 7.81 7.4" 13" 32' 57.81 7.4" 1 13" 32' 57.81 7.4" 1 13" 32' 57.81 7.4" 1 13" 32' 57.81 7.4" 1 13" 32' 57.81 7.4" 1 13" 33' 13.20126" N 1 13" 33' 13.20126" N 1 13" 33' 13.20126" N 1 13" 33' 33' 33' 1 33'' 33''''''''''''''''''''''''	Image: construction of the section of the s
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F045	2 Point Name F970 F971 F972 F973 F973 F974 F975 F976 F976 F976 F977 F978 F979 2 F980 F981 F982 F983 F984 F985	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/19 2012/4/20 2012/4/20	By 10311/4 Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907	1.499.2 1.499.2 1.499.3 1.498.3 1.498.3 1.498.3 1.498.3 1.498.4 1.499.6 1.499.8 1.499.8 1.499.8 1.499.8 1.492.6 1.493.5	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 52.9.144 91.954 67.746	10 38 3 Heigt -30.740 -30.877 -29.748 -29.784 -29.784 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.545 -29.545 -29.542 -26.970 -20.980	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342	33 31 33 30 39 30<	Image: construction of the section of the s
F027 F027 F028 F030 F031 F032 F033 F034 F035 F036 F037 F038 F037 F038 F039 F040 F041 F042 F043 F044 F045 F046	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F977 F978 F979 2 F980 F981 F982 F983 F984 F985 F985	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/19 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20	By 10311/4 Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,286,264	1.499.2 1.499.2 1.499.3 1.498.3 1.498.3 1.498.3 1.498.4 1.498.6 1.499.6 1.493.6 1.493.6 1.493.6	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 52.9.144 91.954 97.748 60.011	Horse S Heigt Ellip. H -30.740 -30.877 -29.748 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.545 -29.582 -26.970 -29.960 -29.960	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200	33 31 33 30.39452" Cc 13" 33' 30.39452" N 13" 33' 33.387120" N 13" 32' 57.81774" N 13" 33' 13.29462" N 13" 34' 02.94172" N 13" 33' 31.51565" N 13" 33' 33' 34.26491" N 13" 34' 05.78561" N 13" 34' 05.78561" N 13" 29' 14.55300" N 13" 29' 9.70981" N 13" 29' 53.72424" N 13" 30' 23.71537"	Image: construction of the section of the sectin of the section of the section of the section of the se
F027 F027 F028 F030 F031 F032 F033 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F045 F046 F047	2 Point Name F970 F971 F972 F972 F973 F974 F975 F976 F976 F977 F978 F979 2 F980 F981 F982 F983 F984 F985 F985,1 2 F985,1	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,266,264 659,134,261	1.499.2 1.499.2 1.499.3 1.498.3 1.498.3 1.498.3 1.498.4 1.498.6 1.500.4 1.499.6 1.492.6 1.493.6 1.493.6 1.497.6	43.704 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 52.144 91.954 97.748 88.911 0.424	Horse 3 Heigt Ellip. H -30.740 -30.877 -29.748 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -26.970 -29.960 -29.972 -29.900	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226	33 31 33 30.39452" E Latitude 13" 33 30.39452" N 13" 33' 33.387120" N 13" 32' 57.81774" N 13" 33' 32.30125" N 13" 33' 32.30125" N 13" 33' 32.30125" N 13" 33' 32.426491" N 13" 33' 34.26491" N 13" 33' 33' 36.51739" N 13" 33' 36.51739" N 13" 29' 9.70981" N 13" 29' 9.70981" N 13" 30' 23.71537" N 13" 30'	Image: construction of the section of the s
F027 F027 F028 F030 F031 F032 F033 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F045 F046 F047 F048	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F977 F978 F977 F978 F979 2 F980 F981 F981 F982 F983 F984 F985 F986 F986 F986	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,286,264 659,134,261 666,493,506	1.499.2 1.499.2 1.499.3 1.498.3 1.498.3 1.498.4 1.498.4 1.499.5 1.499.6 1.499.6 1.499.8 1.499.6 1.499.7 1.497.6 1.497.2	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 29.144 91.954 97.748 88.911 08.434	Horison -30.740 -30.740 -30.877 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -26.970 -29.980 -29.9972 -26.996	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226 4.000	3 3	Image: construction of the section of the s
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F044 F045 F046 F047 F048 F049	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F976 F977 F978 F979 2 F980 F981 F981 F982 F983 F984 F985 F985,1 2 F986 F986	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/20	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,286,264 659,134,261 666,493,506	0.800 prdinate (m) 1,499,2 1,499,3 1,498,3 1,498,3 1,499,4 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,492,6 1,492,6 1,493,5 1,493,6 1,493,6 1,492,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,493,6 1,497,6 1,497,2	43.704 43.704 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 29.144 91.954 97.748 88.911 08.434	Ho is 3 Heigt -30.740 -30.877 -29.748 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -26.970 -29.980 -29.9972 -26.996	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226 4.000	33 31 33 30 39 30<	Image: construction of the section of the s
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F045 F046 F047 F048 F049 F050	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F977 F978 F977 F978 F979 2 F980 F981 F982 F983 F984 F985 F985 F985 F986 F987 F986 F987	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,286,264 659,134,261 666,493,506 647,704,606	0.800 prdinate (m) 1.499.2 1.499.3 1.498.3 1.499.4 1.499.6 1.499.7 1.492.6 1.493.5 1.493.6 1.497.2	43.764 58.686 98.904 19.531 20.373 68.234 40.431 15.463 45.832 86.187 11.031 65.122 58.323 69.075 29.144 91.954 97.748 88.911 08.434 97.628	Heigt -30.740 -30.740 -30.877 -29.748 -29.784 -29.784 -25.720 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -26.970 -29.980 -29.980 -29.996 -29.997 -26.996 -29.657	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226 4.000	3 3	Image: construction Longitude 100° 17' 05.70655" E 100° 20' 32.31486" E 100° 20' 32.31486" E 100° 20' 32.31486" E 100° 20' 17.43323" E 100° 30' 12.81746" E 100° 30' 12.81746" E 100° 31' 18.85252" E 100° 31' 41' 88.5252" E 100° 31' 41' 30.31759" E 100° 45' 14.21275" E 100° 45' 14.21275" E 100° 45' 52' 52.79129" E 100° 10' 20' 00.26335" E 100° 20' 00.26335" E 100° 24' 06.42878" E 100° 28' 14.11703" E 100° 28' 14.11703" E 100° 38' 31.52843" E
F027 F028 F029 F030 F031 F032 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F045 F046 F047 F048 F049 F050 F051	2 Point Name F970 F971 F972 F973 F974 F975 F976 F976 F977 F978 F977 F978 F979 2 F980 F981 F981 F982 F983 F984 F985 F985 F985 F985 F986 F987 F988 F988	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,286,264 659,134,261 666,493,506 677,704,606 683,655,414	s.800 prdinate (m) 1,499,2 1,499,3 1,498,3 1,499,4 1,499,4 1,499,5 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,499,6 1,492,4 1,492,4 1,492,6 1,493,5 1,493,6 1,497,6 1,497,6 1,496,6	43.704 43.704 58.686 98.904 19.531 20.373 68.234 40.431 15.463 68.234 40.431 15.463 68.187 11.031 65.122 58.323 69.075 29.144 91.954 97.748 88.911 08.434 97.628 57.162	10 38 3 Heigt -30.740 -30.877 -29.748 -29.748 -29.748 -29.784 -29.784 -29.784 -29.784 -29.784 -29.784 -29.784 -29.579 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -26.970 -29.950 -29.980 -29.952 -26.9960 -29.972 -26.996 -29.657 -29.222 -29.222	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226 4.000 1.028 1.300	33 31 33 30 39 30<	Image: construction of the second s
F027 F027 F028 F029 F030 F031 F032 F033 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F044 F044 F045 F044 F045 F046 F047 F048 F049 F050 F051	2 Point Name F970 F971 F972 F973 F973 F974 F975 F976 F976 F977 F978 F977 F978 F979 2 F980 F981 F982 F983 F984 F985 F985 F985 F985 F985 F986 F987 F988 F988 F988 F988 F988 F988 F988 F988	Jan (303,301) Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,836 631,359,347 637,390,106 651,710,907 658,286,264 659,134,261 666,493,506 677,704,606 683,655,414 690,290,355	Image: state	43.704 43.704 43.704 58.686 98.904 19.531 20.373 68.234 40.431 15.463 68.234 40.431 15.463 68.234 40.431 15.463 68.187 11.031 65.122 58.323 69.075 29.144 91.954 97.748 88.911 08.434 97.628 57.162 55.887	Itel as a Heigt -30.740 -30.740 -30.877 -29.748 -29.784 -29.784 -29.784 -29.784 -29.784 -29.999 -30.010 -29.829 -28.438 -29.579 -28.448 -30.200 -29.582 -26.970 -29.960 -29.972 -26.996 -29.657 -29.657 -29.627 -29.174	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226 4.000 1.028 1.300 1.148	33 31 33 30 39 30<	Image: construction of the section of the s
F027 F028 F029 F030 F031 F032 F033 F033 F034 F035 F036 F037 F038 F039 F040 F041 F042 F043 F043 F044 F044 F044 F045 F046 F047 F048 F049 F050 F051	2 Point Name F970 F971 F972 F973 F973 F974 F975 F976 F976 F977 F978 F977 F978 F979 2 F980 F981 F982 F983 F984 F985 F985 F985 F985 F985 F986 F987 F988 F988 F989 F989 F990 F991	Observation Date 2012/4/19 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/26 2012/4/20 2012/4/20 2012/4/20 2012/4/20 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25 2012/4/25	Britishing Coc E 639,030,631 645,240,877 650,340,392 657,419,725 662,695,849 670,082,862 670,082,862 670,082,862 676,310,670 683,060,368 689,792,023 696,488,939 703,579,636 631,359,347 637,390,106 644,314,209 651,710,907 658,286,264 659,134,261 666,493,506 647,704,606 683,655,414 690,290,355 698,014,569 698,014,569	Image: state	43.704 43.704 43.704 58.686 98.904 19.531 20.373 68.234 40.431 15.463 68.234 40.431 15.463 68.234 40.431 15.463 68.187 11.031 65.122 58.323 69.075 29.144 91.954 97.748 88.911 00.434 97.628 57.162 55.887 90.095	10 38 3 Heigt -30.740 -30.877 -29.748 -29.748 -29.748 -29.784 -29.784 -29.784 -29.790 -30.010 -29.829 -28.438 -29.579 -28.438 -29.579 -28.448 -30.200 -29.545 -29.582 -26.970 -29.582 -26.970 -29.980 -29.9.502 -26.996 -29.972 -26.996 -29.922 -29.174 -29.222 -29.174 -28.580	MSL H 0.952 0.678 1.668 1.484 5.404 0.942 0.748 0.738 1.928 0.591 1.488 1.513 2.063 1.883 4.342 1.200 1.226 4.000 1.028 1.300 1.148 1.512	33 31 33 30.39452" E Latitude 13" 33 30.39452" N 13" 33' 33.387120" N 13" 32' 57.81774" N 13" 33' 13.29462" N 13" 34' 02.94172" N 13" 31' 33' 34.0334" 13" 33' 34.03334" N 13" 34' 05.78561" N 13" 31' 65.78561" N 13" 29' 9.70981" N 13" 30' 23.71537" N 13" 30' 23.71537" N 13" 31' 32'	Image: construction of the section of the s

 Table 2.2.5
 List of New FCP Coordinates

2-2-5 Verification of Control Points for Correction

In the northern and central regions, areas where only a few primary control points have a height indication were selected to verify the accuracy of the height of control points for correction (FCP). The southern region was excluded, because many of the primary control points in this area have a height indication. With respect to the six locations in the northern region and two locations in the central regions as indicated in the figure below, elevation obtained by direct leveling was compared with the GPS elevation. As it turned out that the elevation difference was no more than 10cm for all the points, it was determined that there was no problem in the accuracy of the control points for correction. (+ Location where check survey was performed)

Figure 2.2.14 GCP and routes of leveling for height verification

			Distance	Elevation (m)		Difference
Points to be Cr	еске	u (FCP)	(km)	Leveling	GPS	(m)
BMP.958	То	FCP017	0.8	46.794	46.759	0.035
MCP-02	То	FCP024	0.2	48.241	48.221	0.020
BMP.1587	То	FCP079	0.2	41.696	41.696	0.000
BMP.1586	То	FCP085	0.1	40.962	40.877	0.085
BMP.1578R/44	То	FCP162	0.1	36.108	36.095	0.013
GCP-04	То	FCP246	0.4	26.897	26.896	0.001
BMS.7232A/38	То	FCP515	1.6	8.695	8.682	0.013
BMP.(RTSD)	То	FCP541	6.2	7.493	7.398	0.095

 Table 2.2.6
 Results of the verification in heights

2-2-6 GPS Equipment that was used

GPS equipment used in this work is described in the following table:

			/
No.	Brand	Model	Serial No.
1	Trimble	5700	0220264300
2	Trimble	5700	0220268118
3	Trimble	5700	0220263050
4	Trimble	5700	0220268117
5	LEICA	GX1230	452768
6	LEICA	GX1230	450539
7	LEICA	GX1230	454467
8	LEICA	SR530	4405
9	LEICA	SR531	4473
10	LEICA	SR532	4479
11	LEICA	SR533	0727
12	LEICA	SR534	0698

Table 2.2.7 Primary Control Point (GCP/MCP)

No.	Brand	Model	Serial No.
1	LEICA	SR530	4405
2	LEICA	SR531	4473
3	LEICA	SR532	4479
4	LEICA	SR533	0727
5	LEICA	SR534	0698
6	TOPCON	HYPER GGD	270-0181
7	TOPCON	HYPER Ga	457-00621
8	TOPCON	HYPER Ga	457-00442
9	TOPCON	HYPER II	689-00170
10	TOPCON	HYPER II	689-00154
11	TOPCON	GB 1000	268-0569

Table 2.2.8Control Point for Correction (FCP)

2-2-7 Measurement (Airborne Laser Scanning)

Measurement should be performed with laser distance surveying unit and analysis software, and direct fixed position units that are installed in aircraft. The equipment used in this work is described in the following table.

Table 2.2.9 Equipment that was used

		10010 21219 Eqt	iipinent that was asea	
	Aircraft No.	Model	Airborne Laser Scanning	Digital Camera
			Equipment	
1	HS-RSI	Piper PA-31-350	Leica ALS50-II (SN58)	Leica RCD105
2	OO-MAP	Cessna 404	Leica ALS60 (SN6125)	Leica RCD105
3	VH-WGS	Cessna 404	Leica ALS50 (SN31)	
4	VH-AZU	Cessna 404	Leica ALS50-II (SN87)	ProSilica
Backup	OH-PNX	PiperPA-31-350		
Backup			Leica ALS50-II (SN68)	Leica RCD105

Figure 2.2.15 Aircraft and Installed Equipment

Since the laser target area of 24,700km² is very large, four aircraft and equipment were used. Measurement was carried out by referring to the airport weather information that is released every hour. One of the aircraft first took a flight to the area where the weather was expected to be favorable. If the aircraft was able to take measurements, the other three aircraft were contacted to take a flight. The northern region took priority in the measurement, which gradually proceeded to the south. In the areas under military restrictions, measurement (capturing of image data, in particular) was sometimes restricted, in which case, it was necessary to take measurements again after obtaining permission.

After the measurement was completed, the measured data would be downloaded, analyzed and processed at the airport before being transferred for data verification. In the analysis and processing, the direct georeference (GPS/IMU) was used for the analysis. Then, the flight path was verified, with the data transferred to the measurement course map, to prepare a flight record and dairy report.

The downloaded data was hand-carried to the next process to avoid the risk of hard disks being lost.

Checking of Equipment Errors (Calibration)

Laser calibration was performed for all the airborne laser equipment to be used in this project. The measurement course map and measurement specifications for laser calibration are given below.

Figure 2.2.16 Calibration Site (HS-RSI)

Date	March 04, 2012
Calibration Area	Bangkok
Aircraft	HS-RSI
System	ALS50-II (SN58)
Line 1	Altitude 500m
Line 2	Altitude 500m
Line 3	Altitude 500m
Line 4	Altitude 500m

Table 2.2.10	Measurement Specifications	(HS-RSI)
--------------	----------------------------	----------

Figure 2.2.17 Calibration Site (OO-MAP)

Table 2.2.11	Measurement	Specifications	(OO-MAP)
--------------	-------------	----------------	----------

Date	March 12, 2012
Calibration Area	Bangkok
Aircraft	OO-MAP
System	ALS60 (SN6125)
Line 1	Altitude 500m
Line 2	Altitude 500m
Line 3	Altitude 500m
Line 4	Altitude 500m
Line 5	Altitude 2,785m
Line 6	Altitude 2,785m

Figure 2.2.18 Calibration Site (VH-AZU)

Table 2.2.12	Measurement Specifications (VH-AZU)
--------------	------------------------------------	---

Date	March 30, 2012
Calibration Area	Wang Noi
Aircraft	VH-AZU
System	ALS50-II (SN87)
Line 1	Altitude 2,785m
Line 2	Altitude 2,785m
Line 3	Altitude 2,785m
Line 4	Altitude 2,785m

Figure 2.2.19 Calibration Site (VH-WGS)

Date	March 14, 2012
Calibration Area	Lop Buri
Aircraft	VH-WGS
System	ALS50 (SN31)
Line 1	Altitude 2,785m
Line 2	Altitude 2,785m
Line 3	Altitude 2,785m

Table 2.2.13Measurement Specifications (VH-WGS)

Based on the result of airborne laser calibration analysis, registry files were created to be used in the 3D measurement data creation process. Of the content of the registry files of each item of the equipment, the portion related to the calibration value has been extracted and described below.

s	Registry Files Name	SN058_Calibrated	SN6125_100609_G-	VH-AZU	120413_SN031
y s t e	Aircraft	HS-RSI	00-MAP	VH-AZU	VH-WGS
m s	System	ALS50- II (SN58)	ALS60(SN6125)	ALS50- II (SN87)	ALS50 (SN31)
o f	Roll	-0.00287341 rad	0.00812971 rad	0.007667894 rad	0.011570835 rad
P f o s s e	Pitch	0.00615184 rad	−0.00846529 rad	−0.008623409 rad	−0.001774067 rad
t s	Heading	0.00126656 rad	0.0019201 rad	0.001986776 rad	0.000384623 rad
		Bank A / BankB			
в С а °	Renge 1 Correction	3.332/3.305	2.531/2.531	2.928/2.928	3.150/3.150
sr er e	Renge 2 Correction	3.340/3.344	2.503/2.539	2.956/2.920	3.141/3.152
R ^c at n	Renge 3 Correction	3.358/3.324	2.482/2.582	2.977/2.877	3.186/3.014
g n e s	Renge 4 Correction	3.300/3.317	2.499/2.567	2.960/2.892	3.096/3.040

Table 2.2.14List of Registry Files

Measurement Result

Airborne laser scanning started on February 29, 2012. A measurement course map, an example of the daily report describing the work status of aircraft and a list of airborne laser scanning results are given below. The laser target area was divided into six blocks from the north for the management of measurement.

Figure 2.2.20 Measurement Course Map (1,035 courses in total)

Date		2012.02.29		No.	005
roject Name	Т	he study on a comprehensive	flood measurement plan for	r the Chao Phraya river basin	
Base (Airport)	VTBD: South / VTPP: North	Don Muang A	irport (VTBD)	Phisanulok Airr	oort (VTPP)
ime		Morning	Afternoon	Morning	Afternoon
Veather		Cloudy	Cloudy	Cloudy	Cloudy
Veather Details	METAR	Atta	ched	Attach	ned
ircraft Information	· · ·			••	
Aircraft 1	HS-RSI (Royal Skyways)	Flying	Flying		
Aircraft 2	OO-MAP (Aerodata)		ETA:	: 04 Mar 2012	
Aircraft 3	VH-AZU (Fuguro)	Preparatio	n of Mobilization (Applying	g for transit permit based on Thai flight	t permit)
Aircraft 4	VH-WGS (Fuguro)	Preparatio	n of Mobilization (Applying	g for transit permit based on Thai flight	t permit)
Aircraft 5 (Back-up)	OH-ONX (FINNMAP)		Stand	-by at Finland	
Equipment					
Equipment 1	ALS50 II (SN58)	Installed	(HS-RSI)		
Equipment 2	ALS60 (SN6125)	Stand-by at Royal	Skyways Hangar		
Equipment 3	ALS50 II (SN87)		Stand-by a	at Fuguro Australia	
Equipment 4	ALS60 (SN31)		Stand-by a	at Fuguro Australia	
Equipment 5 (Back-up)	ALS50 II (SN68)	1	PASCO Head Office \rightarrow PA	SCO Thailand (ETA: 15 Mar 2012)	
taff Information					
Team Leader (Flight)	Mr. Jyrki Inberg	Air	port		
Team Leader (GCP)	Mr. Felix Rohrbach	Air	port		
Pilot 1 (HS-RSI)	Mr. Witanyou Oubjiaraphant (Pingir	Fly	ing		
Pilot 2 (HS-RSI)	Mr. Lapus Tantivitayakorn (Sarat)	Fly	ing		
Pilot 3 (OO-MAP)	Mr. Ruben Philipse		ETA:	04 Mar 2012	
Pilot 4 (OO-MAP)	Mr. Vendenabeele Nicolas		Stand-by at	Aerodata (Belgium)	
Pilot 5 (VH-AZU)	Mr. Jamieson Roderick		Stand-by at	t Fuguro (Australia)	
Pilot 6 (VH-WGS)	Mr. Hunt Andrew		Stand-by at	t Fuguro (Australia)	
Pilot 7 (VH-WGS)	Mr. Matheson Kim		Stand-by at	t Fuguro (Australia)	
Operator 1	Mr. Akseli Galkin	Fly	ing		
Operator 2	Mr. Ari Jaaskelainen		Stand-by at 1	FINNMAP (Finland)	
Operator 3	Mr. Ruben Philipse				
Operator 4	Mr. Kelly Neil (Ned)		Stand-by at	t Fuguro (Australia)	
Operator 5	Ms. Julie Sherrard		Stand-by at	t Fuguro (Australia)	
ecurity Officer Information					
Security Officer 1 (RTSD A	HS-RSI (Royal Skyways)	Fly	ing		
Security Officer 2 (RTSD B	HS-RSI (Royal Skyways)	Airport (Gro	and Security)		
Security Officer 3 (RTSD C	OO-MAP (Aerodata)				
Security Officer 4 (RTSD D	OO-MAP (Aerodata)				
Security Officer 5 (RTSD E	VH-AZU (Fuguro)				
Security Officer 6 (RTSD F	VH-AZU (Fuguro)				
Security Officer 7 (RTSD G	VH-WGS (Fuguro)				
Security Officer 8 (RTSD H	VH-WGS (Fuguro)				
		Description of Wo	rk (Comment)		
	SI	ight haze. 6 lines recorded or	1 area 2-1.		

Table 2.2.15Example of Daily Report

]				nao i maya	a River Circuit Area	Leader	Kolem Honji							
	Base			Don M	Iuang Airport	Marker	Felix Rohrbach							
No	Dete	Wea	ther	Airoraft	Contants of Operation		Domork							
INO.	Date	AM PM		Allclaft	Contents of Operation		Kelliaik							
				HS-RSI	Test Flight with equipment (Total Syster	em).	OO-MAP, VH-AZU and VH-WGS							
1	25-Feb Cloudy Cloudy OO-MAP		mobilization.											
1	25 1 00	cloudy	cloudy	VH-AZU										
				VH-WGS										
				HS-RSI	Test Flight with equipment.		OO-MAP, VH-AZU and VH-WGS							
2	26-Feb	Cloudy	Cloudy	OO-MAP			mobilization.							
2	20-100	Cloudy	Cloudy	VH-AZU										
				VH-WGS										
				HS-RSI	No Flight (weather was not suitable for f	lying).	OO-MAP, VH-AZU and VH-WGS							
2	07 E 1		CI I	OO-MAP			mobilization. Weather was so bad,							
3	27-Feb	Cloudy	Cloudy	VH-AZU			Thunderstorm was warned by Thai							
				VH-WGS			Meteorologial Department (TMD).							
				HS-RSI	Stand-by (weather was not suitable for fl	ying).	OO-MAP started ferry flight from							
				OO-MAP	Estimated Time of Arrival (ETA) is on 4	Mar	Belgium. VH-AZU and VH-WGS are							
4	28-Feb	Cloudy	Cloudy	VH-AZU	2012.		mobilization.							
				VH-WGS										
		Cloudy									HS-RSI	Flight (6 lines in 500m recorded on Bloc	k 2).	Weather was slight haze. VH-AZU
	29-Feb		C 1 1	OO-MAP	ETA is on 4 Mar 2012.		and VH-WGS are ongoing of							
5			Cloudy	VH-AZU			preparation of moonization.							
				VH-WGS			1							
				HS-RSI	Flight (No data record).		METAR indicated suitable for flying,							
				OO-MAP	ETA is on 4 Mar 2012.		but clouds over the project areas							
6	1-Mar	Cloudy	Cloudy	VH-AZU			VH-WGS are ongoing of preparation							
				VH-WGS			of mobilization.							
				HS-RSI	Stand-by (weather was not suitable for fl	ying).	VH-AZU started ferry flight from							
				OO-MAP	ETA is on 4 Mar 2012.	,	Australia. VH-WGS is ongoing of							
7	2-Mar	Cloudy	Cloudy	Cloudy	VH-AZU	ETA is on 8 Mar 2012.								
				VH-WGS			-							
				HS-RSI	Stand-by (weather was not suitable for fl	ving).	VH-WGS is ongoing of preparation o							
				OO-MAP	ETA is on 4 Mar 2012.		mobilization.							
8	3-Mar	Cloudy	Cloudy	VH-AZU	ETA is on 8 Mar 2012.									
				VH-WGS			-							
				HS PSI	Flight (4 lines in 2785m recorded on Blo	ck 4)	HS-RSI conducted calibration flight.							
				00-MAD	NEW ETA is on 5 Mar 2012	1).	The estimated time of arrival for OO-							
9	4-Mar	Sunny	Cloudy	VH_A7U	FTA is on 8 Mar 2012		MAP was changed due to landing approval time in transit country. VH-							
				VH_WGS	211113 OII 0 Mai 2012.		WGS is ongoing of preparation of							
				HC DCI	Flight (1.5 lines in 2785m recorded on B	lock 4)	mobilization. HS-RSI was flying, but clouds and							
				110-K31		100K +)	bad weather was on air, so had to stop							
				00 MAP	Arrived in Llon Milliond Areacer		bad weather was on air, so had to ste							
10	5-Mar	Sunny	Cloudy	OO-MAP	ETA is on 8 Mar 2012		operation. VH-WGS is ongoing of preparation of mobilization							

Flight Operation Report of Aerial Laser Mesurement

Table 2.2.16List of Airborne Laser Scanning Results (February 25 – March 5)

Table 2.2.17List of Airborne Laser Scanning Results (March 30 – May 1)Flight Operation Report of Aerial Laser Mesurement

No 5

Are	a Name		C	hao Phraya	a River Circuit Area	Leader	Koichi Honji							
]	Base			Don M	luang Airport	Marker	Felix Rohrbach							
	D.	Wea	ather											
No.	Date	AM	PM	Aircraft	Contents of Operation		Remark							
				HS-RSI	Stand-by (weather was not suitable for	flying).	Thunderstorm was warned by Thai							
4.1		D.	р. ¹	OO-MAP	Stand-by (weather was not suitable for	flying).	Meteorologial Department (TMD)							
41	5-Apr	Rainy	Rainy	VH-AZU	Stand-by (100hrs maintenance).									
				VH-WGS	Stand-by (weather was not suitable for	flying).								
				HS-RSI	Stand-by (weather was not suitable for	flying).	Weather was rainy all day in							
42	6 1.00	Doiny	Doiny	OO-MAP	Stand-by (weather was not suitable for	flying).	remaining project area.							
42	0-Apr	Kalify	Kalify	VH-AZU	Stand-by (100hrs maintenance).									
				VH-WGS	Stand-by (weather was not suitable for	flying).								
				HS-RSI	Stand-by (weather was not suitable for	flying).	OO-MAP took off for image							
13	7 Apr	Cloudy	Cloudy	OO-MAP	Flight (3 lines in 3300m recorded on B	lock 6)	acquision flight, but had to return due							
43	/-Api	Cloudy	Cloudy	VH-AZU	Stand-by (100hrs maintenance).		and weather was also very bad							
				VH-WGS	Stand-by (weather was not suitable for	flying).	condition for LiDAR flight.							
				HS-RSI	Flight (7 lines recorded on Block 6)		HS-RSI took off, but returned due to							
44	8-Apr	Cloudy	Cloudy	OO-MAP	Stand-by (weather was not suitable for	flying).	engine problem, then Engine got							
44	о-дрі	Cloudy	Cloudy	VH-AZU	Stand-by (100hrs maintenance).		image data. Bascially, weather was							
				VH-WGS	Flight (14 lines in 2785m recorded on	Block 6)	very cloudy all areas.							
	9-Apr	Cloudy									HS-RSI	Flight (12 lines in 3300m recorded on	Block 6)	HS-RSI and OO-MAP was flying and
45			Rainy -	OO-MAP	Flight (24 lines in 2785m recorded on	Block 6)	collecting image data for uncovered areas VH-WGS was flying and							
7.5		<i>j-r</i> ipi	Cloudy	Cloudy	Cloudy	VH-AZU	Stand-by (100hrs maintenance).		collecting LiDAR data.					
				VH-WGS	Flight (14 lines in 2785m recorded on	Block 6)								
				HS-RSI	Stand-by (flight limitation of number of	of aircraft)	The flying areas only allowed for 2							
46	10-Apr	Cloudy	Cloudy	Cloudy	OO-MAP	Flight (24 lines recorded on Block 2,3,	4,5)	aircrafts to fly. OO-MAP was flying both LiDAR and image flight in the						
10	10 mpi	cloudy	cloudy	VH-AZU	Released to Australia		northern areas. VH-WGS was flying							
				VH-WGS	Flight (16 lines in 2785m recorded on	Block 6)	LiDAR lines in the sourthen areas.							
				HS-RSI	Flight (6 lines in 3300m recorded on B	lock 6)	HS-RSI conducted image flight in							
47	11-Apr	Cloudy	Cloudy	OO-MAP	Flight (30 lines recorded on Block 1,2,	3)	southern areas. OO-MAP went to the northern area to capture mainly image							
.,	11 Apr	cloudy	cloudy	VH-AZU			reflying lines.							
				VH-WGS	Stand-by (flight limitation of number of	of aircraft)								
				HS-RSI	Flight (14 lines in 3300m recorded on	Block 6)	HS-RSI took 14 image flight lines.							
48	12-Apr	Cloudy	Cloudy	OO-MAP	Flight (19 lines recorded on Block 2,3)		and 6 LiDAR lines over military							
	12 . p.	cioudy	cioudy	VH-AZU			areas.							
				VH-WGS	Stand-by (flight limitation of number of	of aircraft)								
				HS-RSI	Flight (14 lines in 3300m recorded on	Block 5,6)	HS-RSI and OO-MAP was flying							
49	13-Apr	Cloudy	Cloudy	OO-MAP	Flight (14 lines in 3300m recorded on	Block 1,2,3)	VH-WGS completed all the							
.,	10 1	cioudy	cioudy	VH-AZU			remaining LiDAR lines over the							
				VH-WGS	Flight (18 lines in 2785m recorded on	Block 4,6)	military areas.							
				HS-RSI	Stand-by (weather was not suitable for	flying).	Weather condition was very bad due							
50	14-Apr	Rainy -	Rainy -	OO-MAP	Stand-by (50hrs maintenance).		clouds.							
	· · · · · ·	Cloudy	Cloudy	VH-AZU										
				VH-WGS	Stand-by (weather was not suitable for	flying).								

Checking for Missing Measurements

A polygon was created based on the range of laser measurement and superimposed on top of the area to be measured to check if any measurement was missing. Re-measurement was performed for the areas with missing measurements.

Figure 2.2.21 Map for Checking for Missing Measurements (Red Frame: Area to be Measured, Blue Frame: Measurement Range)

Instructions for checking for missing measurements and re-measurement were given by the RID project office.

Figure 2.2.22 Checking for Missing Measurements

The figure above is expressed in the gradation of blue (low elevation) to red (high elevation) with black parts representing the areas where the data is missing. Since the airborne laser is a light, it tends to dissipate on water surfaces. Hence, the data on the water surfaces is missing. The data on black roofs and asphalt surfaces also tends to be missing.

As this missing data cannot be obtained by re-measurement, it was not counted as missing measurements. As a result, no measurement was found to be missing.

Checking of Cloud Coverage

The laser intensity image was checked for the presence of clouds within the measurement courses. Re-measurement was performed for the areas where measurement was obstructed by clouds.

Figure 2.2.23 Example of Checking of Cloud Coverage Based on Laser Intensity Image (Clouds exist within the red frame.)

2-2-8 Creation of 3D Measurement Data

Airborne laser measurement data was created by means of integration analysis for comparative checking with the control points for correction. It should be confirmed that the standard deviation for the checked results is within 25cm or the average value is within ± 25 cm. Abnormal values due to diffused reflection or other causes should be removed as noise data.

Locations to be checked should be selected on the areas between courses that are duplicated, and comparative checking of the elevation values for each course should be performed. Four locations should be designated for checking that are located at equidistant locations on the duplicated areas. Flat locations that can be clearly distinguished should be selected for checking, with the averaged values for measurement data in a circle with the same radius as the grid width or a square for which the side length is approximately two times the grid width being adopted. However, the number of points to be checked may be reduced in mountainous and other areas that are influenced by terrain conditions. It should be confirmed that the average difference in the elevation values of the checked results is within ±30cm.

The ground coordinate value unit for the 3D measurement data to be created should be 1cm.

Furthermore, the proportion of measurement loss (proportion of the areas with missing measurements in target area) used to judge whether or not the measured results pass should be within 10%. In the event that the proportion of measurement loss is 10% or more, if this is due to the influence of water surfaces and black colored objects (roofs, etc.), the data should be judged as passing.

Figure 2.2.24 Conceptual Diagram for Checking of Control Points for Correction

The procedures for creation of 3D measurement data are outlined in the following diagram.

Figure 2.2.25 Outline of 3D Measurement Data Creation Procedures (Items within broken lines are those handled in other sections.)

In airborne laser scanning, based on the acquired airborne data (GPS/IMU data) and ground GCP observation data, aircraft position and posture (direct georeferencing data) at the time of laser irradiation are determined. Furthermore, combining the laser telemeter data (scan angle and distance from ground), measurement point group data is created for each course. This data also includes laser points created by the reflection of birds, airborne dust and other objects, which should be removed as noise. The details of the procedures for the creation of 3D measurement data are described below.

Figure 2.2.26 Details of 3D Measurement Data Creation Procedures

GPS/IMU Analysis/Verification

By means of baseline analysis of the data from airborne GPS and GPS installed at ground control points, the flight path of an aircraft during scanning was obtained. Figures 2.2.27 to 2.2.29 describe the examples of analysis results.

Aircraft position and posture were determined by analyzing the flight path combined with the IMU (inertia measurement unit) data to create solution files needed for the creation of 3D measurement data and external orientation element files needed for the creation of orthophotos.

Measurement courses that provided no fixed solution from the baseline analysis were subject to re-calculation using course adjustment software called TerraMatch (made by TerraSolid), and results within the accuracy tolerance limits were obtained. (Figure 2.2.30.)

Figure 2.2.27 Example of GPS/IMU Analysis

Figure 2.2.28 Example of Number of Satellites

airborne [Combined] - PDOP, HDOP, VDOP Plots

Figure 2.2.29 Example of PDOP

Figure 2.2.30 Flight paths subject to Re-Calculation Using TerraMatch (indicated in yellow, 43 courses in total)

Post Processing (Creation of 3D Measurement Data)

3D measurement data was calculated based on the solution files obtained through the GPS/IMU analysis. ALS Post Processor (Release 2.71 BUILD #15) was used for calculation. With respect to the output data, the elevation value was obtained by using UTM 47 system, WGS84 for the ellipsoid of revolution and EGM2008 for the geoid. The details of the settings for ALS Post Processor, which varied according to the measurement equipment, are given in Tables 2.2.18 to 2.2.22.

00019:0	0482 Scanning	Aero Records for Sy	stem 9	Setup :	LDR12031	6_071755_0	00000000)1.scn			
Laser	R Base		Fi	L	MultiM	PR	FOV	Sca	Sca	-	Add
Data	F LDB120	0316_032237_	1	1	4+3	100000	19.9	-26033	-1.0		Pamoua
	F LDR120	0316_032306_	1	1	4+3_2P	100000	10.0	-25888	-1.0		Temove
	F LDR120	0316_040403_	1	8	4+3_2P	86700	39.8	-94126	29.5		Reset
	F LDR120	F LDR120316_040905_ F LDR120316_041512_		9	4+3_2P	86700	39.8	-28774	29.5		Select All
	F LDR120			10	4+3_2P	86700	39.8	37748	29.5		
	MF LDR12	J316_042111_	1	13	4+3_2P	86700	39.8	/8882	29.5		Deselect A
	FLDB120	1316_042732_	1	17	4+3_2F	86700	39.0	-43443	29.5		
	ELDB120	316 044408	1	17	4+3_2P	86700	39.8	-47628	29.5		
	F LDR120	0316 045050	Ť	21	4+3 2P	86700	39.8	50203	29.5		
	F LDB120	0316_050051_	1	20	4+3_2P	86700	39.8	1625	29.5	-	
	<								5		
OS Filen	ame: N:\HS-R	SINRAW_DATA120	0316\2	201203	16_031158	VIPAS-2\pro	c\201203	16_032234	.sol		Browse
Jutput fol	der: N:\HS-R	SINRAW_DATA\120	0316\2	201203	16_031158	LAS-21			-	_	Select
Altitude		200.00 m		Boll Er	TOL		50.00	2973/10 rai	-		Explore
Altitude		200.00 m		Roll Er	тог		-0.00	2873410 rai	=		Explore
Altitude: Temper	ature:	200.00 m 300.00 K		Roll Er	ror Error		-0.00	2873410 rai 151840 rad	Ŧ		Explore
Altitude: Temper Pressure	ature: e:	200.00 m 300.00 K 101.00 kPa		Roll Er Pitch F Headir	ror Eiror ng Eiror		-0.00 0.006 0.001	2873410 rai 151840 rad 266560 rad			Egplore
Altitude: Temper Pressur Temper	ature: e: ature Gradient:	200.00 m 300.00 K 101.00 kPa -0.006500 K/m		Roll Er Pitch F Headir Minimu	ror Error ng Error um Range t	o Process	-0.003 0.006 0.001 0.000	2873410 rai 151840 rad 266560 rad m			Explore
Altitude: Temper Pressum Temper Range	ature: e: ature Gradient: 1 Correction	200.00 m 300.00 K 101.00 kPa -0.006500 K/m 3.332 / 3.305 m		Roll Er Pitch I Headii Minimu Maxim	ror Error ng Error um Range t um Range (o Process to Process	-0.00; 0.006 0.001 0.000 1500	2873410 rai 151840 rad 266560 rad m).000 m			Explore
Altitude: Temper Pressum Temper Range	ature: e: ature Gradient: 1 Correction 2 Correction	200.00 m 300.00 K 101.00 kPa -0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m		Roll Er Pitch I Headir Minimu Maxim	ror Error Ing Error Im Range to Um Range I Ingle To Pro	o Process to Process cess:	-0.000 0.000 0.001 0.000 15000	2873410 rai 151840 rad 266560 rad m 0.000 m 0.000 m			Egplore
Altitude: Temper Pressum Temper Range Range	ature: e: ature Gradient: 1 Correction 2 Correction 3 Correction	200.00 m 300.00 K 101.00 kPa -0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m 3.358 / 3.324 m		Roll Er Pitch I Headir Minimu Maxim Min Ar	ror Error um Range tr um Range t um Range To Pro	o Process to Process cess: ccess:	-0.00; 0.006 0.001 0.000 15000 50.00	2873410 rad 151840 rad 266560 rad m 0.000 m 00 deg 0 deg			Egplore
Altitude: Temper Pressur Temper Range Range Range	ature: e: ature Gradient: 1 Correction 2 Correction 3 Correction 4 Correction	200.00 m 300.00 K 101.00 kPa -0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m 3.358 / 3.324 m 3.300 / 3.317 m		Roll Er Pitch I Headir Minimu Maxim Min Ar Max A Min La	ror Error um Range t um Range t ngle To Pro ungle To Pro	o Process to Process cess: acess: acess: ut;	-0.002 0.000 0.001 15000 50.00 50.00	2873410 rad 151840 rad 266560 rad m 0.000 m 00 deg 0 deg			Egplore
Altitude: Temper Pressum Temper Range Range Range Range	ature: e: ature Gradient: 1 Correction 2 Correction 3 Correction 4 Correction 5 Correction	200.00 m 300.00 K 101.00 kPa 0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m 3.358 / 3.324 m 3.300 / 3.317 m 0.000 m		Roll Er Pitch I Headii Minimu Maxim Max A Min La Max L	ror Error um Range t um Range t ugle To Pro ungle To Pro at/Y to outp	o Process to Process cess: acess: uut: aut:	-0.002 0.006 0.001 15000 -50.00 50.00 N/A N/A	2873410 rad 151840 rad 266560 rad m 0.000 m 00 deg 0 deg			Egplore
Altitude: Temper Pressun Temper Range Range Range Range Scan ar	ature: e: ature Gradient: 1 Correction 2 Correction 3 Correction 4 Correction 5 Correct	200.00 m 300.00 K 101.00 kPa 0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m 3.358 / 3.324 m 3.300 / 3.317 m 0.000 m -22700 ticks		Roll En Pitch E Headii Minimu Min Ar Max A Min La Min La	ror Error um Range t um Range t um Range t um Range to rop to Pro ngle To Pro ngle To Pro at∕Y to outp at∕Y to outp	o Process to Process cess: ocess: ut: out:	-0.007 0.006 0.001 15000 -50.00 50.00 N/A N/A N/A	2873410 rad 151840 rad 266560 rad m 0.000 m 00 deg 0 deg			Egplore
Altitude: Temper Pressur Temper Range Range Range Range Scan ar Torsion	ature: e: ature Gradient: 1 Correction 2 Correction 3 Correction 5 Correction ngle correct Constant:	200.00 m 300.00 K 101.00 kPa -0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m 3.358 / 3.324 m 3.300 / 3.317 m 0.000 m -22700 ticks 0.00 units		Roll Er Pitch I Headii Minimu Min Ar Max A Min La Min La Min La	ror Error um Range t um Range t um Range t um Range to roge To Pro ungle To Pro at/Y to outp at/Y to outp ong/X to Ou	o Process to Process cess: cocess: ut: ut: sut: sut: stput	-0.001 0.001 0.001 15000 -50.00 50.00 N/A N/A N/A	2873410 rad 151840 rad 266560 rad m 0.000 m 00 deg 0 deg			Explore
Altitude: Temper Pressur Temper Range Range Range Range Scan ar Torsion	ature: e: ature Gradient: 1 Conection 2 Correction 3 Correction 5 Correction ngle correct Constant: r Latency:	200.00 m 300.00 K 101.00 kPa -0.006500 K/m 3.332 / 3.305 m 3.340 / 3.344 m 3.358 / 3.324 m 3.300 / 3.317 m 0.000 m /22700 ticks 0.00 units 0.000 units		Roll Er Pitch B Headii Minimu Min Ar Max M Min La Min La Min La Min La	tor Error Img Error Img Range t Imgle To Pro Ingle To Pr	o Process to Process cess: access: ut: atput atput atput: utput	-0.000 0.000 0.000 15000 50.00 N/A N/A N/A 9999	2873410 rad 151840 rad 266560 rad m 0.000 m 00 deg 0 deg 9.000 m			Explore

Figure 2.2.31 Example of Post Processing

Table 2.2.18Setting for Post Processing

System	UYM
Zone	47N 96E to 102E
Horizontal Datum	WGS84
Horizontal Units	Meters
Vertical Datum	EGM2008
Vertical Units	Maters

Altitude:	200.00 m	Roll Error	-0.002873410 rad
. .	200 00 K	D2 1 5	
l'emperature:	300.00 K	Pitch Error	0.006151840 rad
_			
Pressure:	101.00 kPa	Heading Error	0.001266560 rad
Temperature Gradient:	-0.006500 K/m	Minimum Range to Process	0.000 m
Range 1 Correction	3.332 / 3.305 m	Maximum Range to Process	15000.000 m
Range 2 Correction	3.340 / 3.344 m	Min Angle To Process:	-50.000 deg
			1
Range 3 Correction	3.358 / 3.324 m	Max Angle To Process:	50.000 deg
			_

Table 2.2.19Settings for HS-RSI Leica ALS50-II (SN58)

Table 2.2.20 Settings for OO-MAP Leica ALS60 (SN6125)

Altitude:	200.00 m	Roll Error	-0.010093986 rad
Temperature:	300.00 K	Pitch Error	-0.001326469 rad
Pressure:	101.00 kPa	Heading Error	-0.001417276 rad
Temperature Gradient:	-0.006500 K/m	Minimum Range to Process	0.000 m
Range 1 Correction	-3 872 / -3 872 m	Maximum Range to Process	15000.000 m
Range 2 Correction	-3.874 / -3.849 m	Min Angle To Process:	-50.000 deg
Range 3 Correction	-3.837 / -3.880 m	Max Angle To Process:	50.000 deg

Table 2.2.21 Settings for VH-AZU Leica ALS50-II (SN87)

Altitude:	200.00 m	Roll Error	0.007667894 rad
Temperature:	300.00 K	Pitch Error	-0.008623409 rad
Pressure:	101.00 kPa	Heading Error	0.001986776 rad
Temperature Gradient:	-0.006500 K/m	Minimum Range to Process	-99999.000 m
Range 1 Correction	2.928 / 2.928 m	Maximum Range to Process	99999.000 m
Range 2 Correction	2.956 / 2.920 m	Min Angle To Process:	-50.000 deg
Range 3 Correction	2.977 / 2.877 m	Max Angle To Process:	50.000 deg

Altitude:	200.00 m	Roll Error	0.011570835 rad
Temperature:	300.00 K	Pitch Error	-0.001774067 rad
Pressure:	101.00 kPa	Heading Error	0.000384623 rad
Temperature Gradient:	-0.006500 K/m	Minimum Range to Process	0.000 m
Range 1 Correction	3.150 / 3.150 m	Maximum Range to Process	20000.000 m
Range 2 Correction	3.141 / 3.152 m	Min Angle To Process:	-50.000 deg
Range 3 Correction	3.186 / 3.014 m	Max Angle To Process:	50.000 deg

Table 2.2.22Settings for VH-WGS Leica ALS50 (SN31)

Checking of 3D Measurement Data

Centering on the control points for correction, laser scanning data within a circle with a radius of 2m, which is the grid width, or within a square with one side equivalent to about twice the grid width was extracted and the elevation differences between the control points for correction and each item of the extracted laser scanning data was calculated for comparative checking.

Error measurement points caused by diffuse reflection or other factors should be identified by checking the display of aerial view for areas of strange TIN shape and the display of cross section for point groups with abnormal elevation values and removed as noise data.

Figure 2.2.32 Images of Noise Data to be Removed in the Display of Aerial View (Left) and the Display of Cross Section (Right)

*: Only one point has been extracted, because a car was parked near FCP867 when laser scanning was performed, which has been included in the result of checking.

The 3D measurement data was checked in accordance with the control points for correction distributed in the area to be measured (Figure 2.2.33). If the result of checking revealed that the standard deviation was no less than 25cm or the mean was no less than \pm 25cm, re-calculation or re-measurement was performed after studying the cause. The result of checking was organized into

"3D Measurement Data Checking Table" an	d "Control Points for Correction Survey S	heet".
---	---	--------

Name of work	work Chao Phraya River		Implemented by	Hiromichi	Omori
area			Head of the work team	Honji Ko	oichi
Point name	FC	P001	Actual measurements H=	51.374	m
No	Х	Y	Z	Difference (H-Z)	Remarks
1	611590.670	1901316.090	51.311	0.063	
2	611590.150	1901317.290	51.348	0.026	
3	611587.950	1901317.260	51.250	0.124	
4	611588.050	1901318.470	51.248	0.126	
5	611590.310	1901318.500	51.427	-0.053	
6	611591.490	1901319.690	51.274	0.100	
7	611589.270	1901319.650	51.374	0.000	
	Mean		0.055	the second s	
Maximum			0.126		
Minimum			-0.053		
Standard Deviation			0.063		
RMS error			0.084		

Table 2.2.23	Form 2-8	3D Measurement Data	Checking Table
--------------	----------	---------------------	----------------

Figure 2.2.33 Distribution of Control Points for Verification (993 points in total)

						Implemented by	Kiyofur	ni Tamari	
Nam	e of work area		Chao Phr	aya River			Head of the	Koich	ni Honii
			1	Difference			work team		Difference from
No	Point	Leveling result	Output of laser	from the result	No	Point	Leveling result	Output of laser	the result of
110	name	Levening result	scanning	of leveling	NO	name	Levening result	scanning	leveling
1	FCP401	9.593	9.701	-0.108	41	FCP441	18.807	18.637	0.170
2	FCP402	8.680	8.828	-0.148	42	FCP442	28.541	28.482	0.059
3	FCP403	10.339	10.244	0.095	43	FCP443	20.399	20.224	0.175
4	FCP404	11.797	11.765	0.032	44	FCP444	16.236	16.164	0.072
5	FCP405	9.721	9.787	-0.066	45	FCP445	11.751	11.705	0.046
6	FCP406	8.275	8.330	-0.055	46	FCP446	7.679	7.458	0.221
7	FCP407	9.056	9.242	-0.186	47	FCP447	7.691	7.727	-0.036
8	FCP408	12.920	12.960	-0.040	48	FCP448	8.334	8.306	0.028
9	FCP409	25.714	25.715	-0.001	49	FCP449	8.311	8.306	0.005
10	FCP410	14.961	14.903	0.058	50	FCP450	8.991	8.874	0.117
11	FCP411	10.387	10,195	0.192	51	FCP451	7.653	7.661	-0.008
12	FCP412	8.427	8.270	0.157	52	FCP452	6.919	6.910	0.009
13	FCP413	10 769	10,786	-0.017	53	FCP453	9 093	9.156	-0.063
14	FCP414	11 602	11 653	-0.051	54	FCP454	8 816	8 954	-0.138
15	FCP415	10 192	10 163	0.029	55	FCP455	6 665	6 599	0.066
16	FCP416	9.846	9.850	-0.004	56	FCP456	6 265	6 172	0.093
17	FCP417	9 143	9 169	-0.026	57	FCP457	6.930	6.889	0.041
18	FCD/18	10 283	10 178	0.020	58	FCD/58	6.412	6 362	0.041
19	FCP410	9 093	9 232	-0.139	50	FCP450	8.076	8 099	-0.023
20	FCP420	10 201	10.427	-0.226	60	FCP460	23.038	22.970	0.020
21	FCD421	0 131	0.197	-0.056	61	FCD/61	20.000	20.763	-0.063
21	FCD422	0.500	9.167	0.030	62	FCD462	14 010	14 005	0.003
22	F0F422	9.366	9.407	0.121	62	FOF402	0.042	0.005	0.014
23	F0F423	9.230	9.083	0.147	64	FCF403	9.043	9.005	-0.060
24	F0F424	20 706	10.417	0.005	65	F0F404	6.000	6.174	-0.009
20	F0P420	30.700	30.000	0.130	00		0.000	0.079	-0.023
20	F0P420	10.110	10.123	-0.013	67	FCP400	7.434	7.402	0.032
27	F0P427	10.279	10.137	0.122	60		0.955	0.901	0.054
28	F0P428	10.230	10.104	0.120	60		7.745	7.022	0.123
29	F0P429	9.220	9.150	0.070	70	FCP409	7.039	0.900	0.063
30	F0P430	9.422	9.439	-0.017	70	FCP470	7.289	7.303	-0.014
31	F0P431	9.451	9.544	-0.093	71	F0P4/1	7.394	7.343	0.051
32	FCP432	10.003	9.958	0.045	72	FCP4/2	7.759	7.999	-0.240
33		/.513	/.558	-0.045	/3	FCP473	6.635	6.612	0.023
34	FCP434	8.832	8.913	-0.081	/4	FCP4/4	6.628	6.532	0.096
35	FCP435	8.454	8.467	-0.013	/5	FCP475	/.263	/.168	0.095
36	FCP436	8.005	8.247	-0.242	76	FCP476	5.964	6.089	-0.125
37	FCP437	8.875	8.779	0.096	77	FCP477	6.923	6.701	0.222
38	FCP438	5.656	5.528	0.128	78	FCP478	9.233	9.114	0.119
39	FCP439	8.097	7.946	0.151	79	FCP479	18.981	18.947	0.034
40	FCP440	13.416	13.491	-0.075	80	FCP480	27.006	27.216	-0.210

Table 2.2.24 Example of Control Points for Correction Survey Sheet

Control Point for C	orrection Survey	Sheet
---------------------	------------------	-------

	Mean (m)	Standard deviation (m)	RMS error (m)	Maximum (m)	Minimum (m)	Maximum – Minimum	Number of data
Difference from the result of leveling for the entire scan area	-0.001	0.134	0.134	0.447	-0.464	-0.911	976

Survey for Checking Between Courses

Duplicated areas between adjacent courses were selected for comparative checking of the elevation values for each course. For each course, a maximum of four locations, which were located at equal intervals, were designated for checking.

Figure 2.2.34 Example of locations for verification between flight paths

To designate the locations for checking, flat areas were selected in the overlapping range (yellow range) based on the laser intensity image.

Figure 2.2.35 Example of Selected Location

In checking, 3D measurement data of the 4m² range centered on the location for checking was averaged for comparison.

Figure 2.2.36 Example of Checking Range

It was confirmed that the elevation difference between courses was within ± 30 cm. In the event that the result of checking exceeded the limits, re-establishment of the location for checking or revision of the calibration value was performed.

The results of checking were tabulated as "Differences at Locations for Checking between Courses" and a distribution map was prepared as "Distribution Map of Locations for Checking Between Courses".

C)ifference bet	erence between the Measurements Taken from Different Flight Paths						Form 2–10
Name of work area		Chao Pra	ya River		Implementing institution		JICA Study Te	am
Flight path name		6423_0328azu1			6424_0328azu1		Difference	
Pointname	×	Y	н	×	Y	н	ΔН	Remarks
1	652341.845	1639152.650	8.832	652341.845	1639152.650	8.892	-0.060	
2	652431.289	1615079.013	5.920	652431.289	1615079.013	6.007	-0.087	
3	652631.731	1591672.391	2.336	652631.731	1591672.391	2.446	-0.110	
4	652666.194	1564677.945	2.095	652666.194	1564677.945	2.066	0.029	
					Minii	num	-0.110	
					Мажі	mum	0.029	
					Me	an	-0.057	
					Standard	deviation	0.061	

 Table 2.2.26
 Form 2-10
 Differences at Locations for Checking Between Courses

As a resulting of checking all the differences between courses, it was confirmed that the measurements were within the limits.

Figure 2.2.37 Distribution Map of Locations for Checking Between Courses

The distribution map of locations for checking between courses was prepared for each block. The names of the tie points were simplified for the convenience of indication.

Checking of Proportion of Measurement Loss

To determine the measurement loss in the measurement result, proportion of measurement loss (proportion of areas with missing measurements in the target area) was calculated.

As the grid interval is 2m in this project, the limit shall be less than 10%.

The proportion of measurement loss indicates the proportion of missing measurements in the target area and it was obtained with the following formula stipulated in the rule.

Proportion of measurement loss = (Number of missing grids/Number of grids)×100

Figure 2.2.38 Calculation Result of the Proportion of Measurement Loss

Table 2.2.27	Result of Checking the Proportion of Measurement Loss
--------------	---

Total number of	Less than 10%	10% or more
map sheets		
6666	5,416	1,250

If the proportion of measurement loss was less than 10%, the measured results should pass. In the event 10% or more of the area is missing, if this is due to the influence of water surface and black colored planimetric features (roofs, etc.), the data was judged as passing.

When the proportion of measurement loss was confirmed as exceeding the limit (10%), water surface polygons were created based on the ortho image that had been created.

Survey of Control Points for Correction

The elevation value of the control points for correction and that of the original data after correction were compared for verification.

As the RMS error was within the prescribed value of 25cm for all the control points for correction, the elevation accuracy of the laser scanning data after correction (correction value: 0.00m) was satisfactory.

Table 2.2.28 Form 2-13 Residual error at Control Points for Correction

2-2-9 Creation of Original Data

In creating 3D data, when the difference from the control points for correction and the result of checking between courses exceeded the limit, or when the result of checking the control points for correction with the 3D data exceeded the limit, the elevation values were corrected by means of parallel movement to offset (shift) them vertically by a uniform amount.

Due to the influence of DOP during scanning and the long course distances, the courses have accumulated IMU errors. Since this resulted in a displacement that would never occur normally, edge smoothing, revision of calibration and correction of minute displacement of the course data were performed in addition to shifting the data vertically by a uniform amount, which is normally performed independently.

Item	Number of courses	Remarks
Without correction	96	Courses without correction
With correction	542	Courses for which uniform shifting and edge smoothing of the data were performed
Re-calculation	205	Courses for which calibration and re-calculation were performed
Rejection	192	Pass courses, high altitude (3,300ft) courses, etc.
Total	1035	Measurement courses

 Table 2.2.29
 Correction for Each Course

Vertical Uniform Shifting

Vertical uniform shifting means to shift an amount of error to equalize the data when the whole course has a certain amount of error, as shown in the diagram below.

Figure 2.2.39 Conceptual Diagram of Vertical Uniform Shifting

Edge Smoothing

Edge smoothing is a method to remove the difference by removing the lap of each course, as shown in the diagram below.

Figure 2.2.40 Conceptual Diagram of Edge Smoothing

Re-Calibration

Re-calibration is a method to re-correct the displacement (in three axes) caused by the influence of machine errors.

Figure 2.2.41 Conceptual Diagram of Calibration

Displacement Correction for Each Course

This method uses the fluctuation correction function of TerraScan and TerraMatch to extract the displacement in the height direction of each point for correction, when the displacement in the height direction, which exists in addition to the displacement in three axes, is not uniform but fluctuating.

Figure 2.2.42 Conceptual Diagram of Displacement Correction for Each Course

The original data thus created contains differences of about 30cm at a maximum between courses. Therefore, a layer tint map created based on the elevation data shows vertical lines stretching from north to south in some areas. Although this is within the accuracy tolerance limit of airborne laser scanning, care should be taken in using such data.

Figure 2.2.43 Layer Tint Map (Visualization of Steps)

Figure 2.2.44 Confirmation of Step Profile

It should be noted that the step is within 30cm, which is the standard value.

Figure 2.2.45 Confirmation of Step Profile

In particular, there is a difference in elevation between the blocks. Because above maps (7 maps) have been found some step, when it is necessary to use to be caution.

The data was created in text files in accordance with Form 2-18.

File name : 5136	V7438_or	g.txt
Id1, x1, y1, z1, p1	Id	: Unique serial number within the file
id2, x2, y2, z2, p2	X1,Y1	: Measured coordinate value (in meters, up to the second decimal place)
: : : : :	Z1	: Elevation value (in meters, up to the second decimal place)
idn, xn, yn, zn, pn	px	: x is a pulse number.

2-2-10 Creation of Ground Data

The ground data is the portion of the original data that indicates the ground elevation. It is created by filtering the original data. With respect to the filtering items, original specifications of Thailand (Figure 2.2.46-Figure 2.2.49) were created based on Japanese standards.

	Road facilities etc	Road bridges (5m or more long) viaducts pedestrian bridge		
	Roud Identites, etc.	lights signal lights road signs etc		
Transport facilities	Railroad facilities	Railroad bridges (5m or more long) viaducts (including		
fransport facilities	Ramoad facilities	BTS elevated bridges) over bridges platforms platform		
		roofs line support poles signal light poles		
	Mohile items	Vahielas railroad cars vassals		
D 111				
Buildings, etc.	Buildings, ancillary	Ordinary housing, factories, warehouses, public facilities,		
	facilities, etc.	stations, structures without walls (hot houses, green houses),		
		stadium grandstands, gates, pools (including foundation),		
		fences		
Small objects		Memorial statues, water tanks, fertilizer tanks, water towers,		
		cranes, smokestacks, towers, broadcast towers, lighthouses,		
		light beacons, transport pipe (on ground, in air), power		
		transmission lines		
Water surface	Structures related to	Pontoons, water level observation facilities, river signs		
	water surface			
Vegetation		Trees *1, bamboo forests *1, hedges *1		
Other	Other	Areas with large-scale construction *2, areas with excavation		
		work for subways, materials in open-air storage		
Remarks	*1: Items that can be judged as ground level shall be adopted as much as possible.			
	*2: Items that can be	nearly judged as permanent ground level shall be adopted.		

Table 2.2.30 Filtering Items

Figure 2.2.46 Filtering Specifications

Figure 2.2.47 Filtering Specifications

Figure 2.2.48 Filtering Specifications

Figure 2.2.49 Filtering Specifications

Filtering was performed automatically by using TerraScan (made by TerraSolid). Parameters used for the filtering process are described in the following figure.

Classify by class	Classify ground
From class: Any class To class: 12 - noise To class: □ Image: Second se	Classify From class: 1 - Default To class: 2 - Ground Initial points
	Select: <u>Aerial low</u> + Ground points <u>M</u> ax building size: 60.0 m
Classify by absolute elevation	Classification maximums
From class: Any class ▼ To class: 1 - Default ▼ Elevation: -50.00 to 150.00	Image: 10.00 degrees Image: 10.00 degrees Image: 10.00 m Image: 1.50 m Image: 1.50 m
<u>OK</u> Cancel	Classification options
	Edge length < [5.0] m Edge length < [2.0] m
Setting of the elevation range for	
ground processing, which needs t	to <u>QK</u> Cancel
be changed according to region.	

Figure 2.2.50 Setting of Automatic Filtering Parameters

Visual checking was performed on the data that had been automatically processed, and unsuitable locations were edited with Arc GIS (made by ESRI), which is interactive software for manual processing. In addition, when checking was performed, data of topographic maps, such as slope classification maps, for which the topography could have been interpreted, were used to correct problem locations. Furthermore, after overall checking, sampling inspection was carried out within the project office by drawing a sample representing 2% of the total volume, to ensure that there was no failure.

Figure 2.2.51 Example of Slope Classification Map

As described in Figure 2.2.52, the ground data should ultimately be point data that represents only the ground surface, excluding planimetric features, such as buildings and trees. The data was created in text files in accordance with a format stipulated in Form 2-18.

Figure 2.2.52 Ground Data

File name :	5136IV7438_grd.txt	
Id1, x1, y1, z1 id2, x2, y2, z2 : : : : : idn, xn, yn, zn	Id X1,Y1 Z1	 Unique serial number within the file Measured coordinate value (in meters, up to the second decimal place) Elevation value (in meters, up to the second decimal place)
2-2-11 Creation of Grid Data

Grid data at 2m intervals was created from the ground data by means of interpolation. The TIN method was used to enable the elevation values of the ground data to be extracted during the interpolation process.

Furthermore, data of the slope classifications map was used to check the topography in checking the grid data. As mentioned in the section on original data, due to the influence of the differences between courses, lines may be shown. However, since this is within the accuracy tolerance limit, it is determined that the data has a favorable quality. The data was created in text files in accordance with a format stipulated in Form 2-18.

Figure 2.2.53 Example of Grid Data

Figure 2.2.54 Example of Slope Classification Map

2-2-12 Creation of Contour Line Data

Contour lines at 1m intervals were automatically extracted from the grid data by calculating proximity statistics with 3×3 cells as average in order to conduct leveling. It was initially planned to create contour lines at 2m intervals. However, since contour lines at 2m intervals are unable to express footpaths, as is obvious from Figure 2.2.55, contour lines were created at 1m intervals. Intervals of 0.5m were also taken into consideration, but it was determined that 1m intervals were adequate, as 0.5m interval would result in the creation of detailed contour lines in areas such as in rice fields, making the data difficult to use.

The index contour lines should be 5m, and the intermediate contour lines 1m, with the data file format as Shape file.

Contour Line Data at 2m Intervals

Contour Line Data at 1m Intervals

Figure 2.2.56 Contour Line Data (Red Line: Index, Black Line: Intermediate)

2-2-13 Digital Aerial Photography

Ground level image data shall be acquired with the CCD camera outlined below at the same time as airborne laser scanning. Photography shall be performed with the digital camera installed at the same time with the airborne laser scanning system on the aircraft. There shall be no limits on the amount of clouds since the main objective is to obtain a grasp of elevation data in the target area.

[Measurement CDD Camera (RCD105) Specifications]

- Lens focal point distance: 59.694mm
- Image size (perpendicular to flight): 7162 pixels
- Image size (flight direction): 5389 pixels
- Pixel size: 6.8µm
- Image resolution on ground: Approx. 35cm

ProSilica

	Aircraft No.	Model	Airborne Laser Scanning	Digital Camera
			Equipment	
1	HS-RSI	Piper PA-31-350	Leica ALS50-II (SN58)	Leica RCD105
2	OO-MAP	Cessna 404	Leica ALS60 (SN6125)	Leica RCD105
3	VH-WGS	Cessna 404	Leica ALS50 (SN31)	
4	VH-AZU	Cessna 404	Leica ALS50-II (SN87)	ProSilica

Table 2.2.31Equipment Input

Since VH-WGS does not have a camera installed, it mainly took flights over the areas where photography is prohibited (about 600 km^2), while other aircraft took flights over the ordinary areas to ensure that the images would exhaustively cover the target area.

Figure 2.2.57 Flight paths of VH-WGS

2-2-14 Creation of Orthophoto Data

Digital orthophoto data was created based on the photographed ground level image data and external orientation elements (positional information of photos) after being corrected for camera inclination and distortion due to the elevation difference. The ground resolution of the orthophoto data to be created should be 0.5m.

Figure 2.2.58 Creation of Orthophoto (Example of Erdas Imagine)

Without the inclusion of clouds

With the inclusion of clouds

Figure 2.2.59 Example of Orthophoto

When the proportion of measurement loss verified in 2-2-9 exceeded the limit (10%), water surface polygons were created based on the ortho images that have been created for rivers of 7.5m in width or wider and ponds, etc. of 7.5m x 7.5m or larger.

Figure 2.2.60 Water Surface Polygon

2-2-15 Data Verification

During data verification, the results obtained from the work in Japan were confirmed and verified in accordance with the details described in the table below. When there were remaining issues to be verified, instructions to perform re-measurement or re-creation of data should be promptly issued. Items that have not been described up to the previous section are described in the table below and the following sections.

Verification Items	Details for Checking
Censorship of images and data	Confirmation and reflection of censoring of
	images and data
	Whether it is within limit value (0.25m) or
Checking of 3D measurement data	not
	Whether it is within limit value (0.30m) or
Checking of areas between courses	not
	Whether it is within limit value (10%) or
Checking of proportion of measurement loss	not
Examination of control points for correction	Whether correction is necessary or not
In-house checking of 3D topographic maps	Confirmation of topographic expressions
Ground data creation accuracy control table	Confirmation of accuracy control results
Elevation data creation accuracy control table	Confirmation of accuracy control results
Digital data creation accuracy control table	Confirmation of accuracy control results
Checking of contour line data	Confirmation of topographic expressions
Checking of orthophoto data	Confirmation of topographic expressions
Checking of water surface polygons	Confirmation of water surface area
Checking of cloud polygons	Confirmation of cloud area

Table 2.2.32Details forData Verification

1) Censorship of Images and Data

Censorship was carried out by the RTSD on the measured data to delete military secrets and other data in this project. Areas that were required to be censored were determined through preliminary discussions with the RTSD. The classifications and location map of these areas are given below.

Prohibited Area: Areas where flights for measurement are prohibited

Reserved Area: This includes areas under military restrictions (Military Secured Area) and areas regulated by the Department of Civil Aviation (Civil Aviation Secured Area). Permissions were obtained separately to perform measurement in these areas. Since these areas cannot be open to general public, some of the data was deleted. The deleted data is called Level 1 data, while undeleted data is called Level 0 data. Only the organizations within the Thai government that obtained permission for using the data can access Level 0 data.

Figure 2.2.61 Areas Under Regulation

Data Masking for Restricted Areas

Since the target area of this airborne laser scanning work included restricted areas as indicated in Figure 2.2.61, only for the measurement courses crossing the restricted areas, measured data for the restricted areas was removed to finalize the survey result. Table 2.2.34 shows the cut out point of measured data.

Data	A:			File Beneme	File Output			
Date	Aircraft		LINE NUMBER	File Rename	First File Number	Last File Number		
22_Max		120222 051152	6205	LDR120323_051153_0_I0_1+35cm	1	32		
Z3-Iviar	H3-K3I	120323_001103	0305	LDR120323_051153_0_I0_2+35cm	38	59		
11-Apr	HS-RSI	120411_042500	609	LDR120411_042500_0_I0_1	2	12		
21-Mar		120221 022514	6212	LDR120331_023514_0_I0_1+39cm	1	2		
31-Iviar		120331_023514	0312	LDR120331_023514_0_I0_2+39cm	7	18		
		120410 024101		LDR120410_024101_0_I0_1	1	8		
		120410_024101	ADD_6R	LDR120410_024101_0_I0_2	12	13		
		120410 024620	DIGD	LDR120410_024639_0_I0_1	1	4		
		120410_024039	FIOR	LDR120410_024639_0_I0_2	8	11		
		120410_025508	6318R	LDR120410_025508_0_I0_1	1	3		
				LDR120410_025508_0_I0_2	7	18		
10-4 mm				LDR120410_025508_0_I0_3	25	27		
10-Apr	VH-WG3			LDR120410_030326_0_I0_1	1	8		
		120410_030326	6315R	LDR120410_030326_0_I0_2	13	16		
				LDR120410_030326_0_I0_3	21	23		
				LDR120410_030955_0_I0_1	1	4		
		120410 020055	6214D	LDR120410_030955_0_I0_2	8	12		
		120410_030933	0314R	LDR120410_030955_0_I0_3	16	19		
1				LDR120410 030955 0 I0 4	26	27		

 Table 2.2.33
 Example of Control Points for Correction Examination Sheet

Censorship during the implementation of the work was carried out as described below.

- (1) Censorship during measurement (on board): Monitoring by security officers who were on board the aircraft for measurement to check if any measurement was carried out in the flight prohibited areas.
- (2) Data censorship after measurement (airport): Censorship by security officers on image data downloaded after measurement to ensure that data measured of restricted areas, if any, is deleted or stored so that such data will not be sent to post processing.
- (3) Data censorship after primary processing (project office): Censorship by security officers to check if images after primary processing and processed data before dispatch to Japan include restricted areas.
- (4) Censorship after data creation (each workshop in Japan): Censorship by security officers to ensure that restricted areas have been deleted after the creation of Level 0 and Level 1 data.
- (5) Final result censorship (project office): Censorship by security officers to ensure that restricted areas have been deleted from the final results created as Level 0 and Level 1 data.

2) In-House Checking of 3D Topographic Maps

Visual checking was performed for locations with inadequate filtering, focusing on the following checkpoints.

- Whether or not filtering has been carried out appropriately shall be checked.
- Causes for outstanding locations, such as locations with large angles of slope, shall be investigated.

Figure 2.2.62 Ortho Image

When the original data is shown on the slope classification map, DSM is indicated. Locations with large angles of slope are expressed as in the following figure.

Figure 2.2.63 Original

When the ground data is shown on the slope classification map, DTM is indicated. Locations with a small angle of slope represent the total as in the following figure.

Figure 2.2.64 Ground Data Slope Classification Map

3) Ground Data Creation accuracy control table

The results of checking the ground data for each of the 1:4000 map sheets were summarized into an accuracy control table.

							<u>г г</u>					
No Comparison for Association					The	0990	Implementing institution	JICA	A Study TEAM			
Name of w	ork Area	Chao Phraya River			amount	9000	Verified	Koichi Honji				
					OI WOLK		Implemented	Youic	hi Moriya			
Man Namban	Tra	ffic facil	lity	Decil dia a	C. 11 01 i	Western	Vanatation	Oth an	Remarks			
Map Number	Road facilities	Road facilities Railway facilities Moving of			Small Objects	water	vegetation	Other				
503515490	0	0	0	0	0	0	0	0				
503515492	0	0	0	0	0	0	0	0				
503515692	0	0	0	0	0	0	0	0				
503515892	0	0	0	0	0	0	0	0				
503516092	0	0	0	0	0	0	0	0				
503516292	0	0	0	0	0	0	0	0				
503615422	0	0	0	0	0	0	0	0				
503615424	0	0	0	0	0	0	0	0				
503615426	0	0	0	0	0	0	0	0				
503615428	0	0	0	0	0	0	0	0				
503615430	0	0	0	0	0	0	0	0				
503615432	0	0	0	0	0	0	0	0				
503615434	0	0	0	0	0	0	0	0				
503615436	0	0	0	0	0	0	0	0				
503615438	0	0	0	0	0	0	0	0				
503615440	0	0	0	0	0	0	0	0				
503615442	0	0	0	0	0	0	0	0				
503615444	0	0	0	0	0	0	0	0				

Table	2.2.34	Gro	und	Data Creati	ion accuracy	v control ta	ble
Ground	Data	Task	of	creating	Accuracy	control	table

Since the result of final inspection is entered, the inspection result should be "0".

4) Grid Data Creation accuracy control table

The results of checking the created grid data for each of the 1:4000 map sheets were summarized into an accuracy control table.

Name of	Chao Phrava	The amount		Implementing institution	JICA Study TEAM
work Area	River	of work	9880	Verified	Koichi Honji
				Implemented	Youichi Moriya
	-		-		
G	rid data the tas	sk op creating l	nspection recor	ds	
Map number	Error of Elevation value	Lack of grid	Lack of attribute data	Lack of joint	Remarks
503515490	0	0	0	0	
503515492	0	0	0	0	
503515692	0	0	0	0	
503515892	0	0	0	0	
503516092	0	0	0	0	
503516292	0	0	0	0	
503615422	0	0	0	0	
503615424	0	0	0	0	
503615426	0	0	0	0	
503615428	0	0	0	0	
503615430	0	0	0	0	
503615432	0	0	0	0	
503615434	0	0	0	0	
503615436	0	0	0	0	
503615438	0	0	0	0	

Table 2.2.35Grid Data Creation accuracy control tableGrid data Task of creating Accuracy control table

Since the result of final inspection is entered, the inspection result should be "0".

5) Digital Data File Creation accuracy control table

The results of checking the created grid data for each of the 1:4000 map sheets were summarized into an accuracy control table. A diagonal line has been entered for the grids that do not require the creation of water surface polygons.

Table 2.2.36	Digital Topographic M	Iap Data File Creation accura	acy control table
	2 grun ropogruphic in		

N			DI D.		The amount	0000	Implementing institution	JICA Study TEAM			
Name of work Area		Cha	ao Phraya Ri	ver	of work	9880	Verified	Koichi Honji			
							Implemented	Youichi Moriya			
	Figure	terrain dat	a file task	of creatin	g Inspectio	n records					
	Origina	al data	Groun	d data	Grid	data	Water Polygon	Remarks			
Map Number	Graphic quality of the file structure point	Quality of the file structure attribute point	Graphic quality of the file structure point	Quality of the file structure attribute point	Quality of the header format	Quality of the text format	Quality of the polygon file structure	Remarks			
503515490	0	0	0	0	0	0	0				
503515492	0	0	0	0	0	0	0				
503515692	0	0	0	0	0	0	0				
503515892	0	0	0	0	0	0	0				
503516092	0	0	0	0	0	0	0				
503516292	0	0	0	0	0	0	0				
503615422	0	0	0	0	0	0					
503615424	0	0	0	0	0	0					
503615426	0	0	0	0	0	0					
503615428	0	0	0	0	0	0					
503615430	0	0	0	0	0	0					
503615432	0	0	0	0	0	0					
503615434	0	0	0	0	0	0					
503615436	0	0	0	0	0	0					
503615438	0	0	0	0	0	0					
503615440	0	0	0	0	0	0					
503615442	0	0	0	0	0	0					
503615444	0	0	0	0	0	0	0				
503615446	0	0	0	0	0	0	0				

Figure terrain data file task of creating accuracy control table

Since the result of final inspection is entered, the inspection result should be "0".

6) Checking of Contour Line Data

To check the created contour line data, contour lines were created from the grid data and visual checking was performed for locations with unnatural terrain shapes, using GIS software.

Checking was carried out for the following three points.

- If the contour line interval was 1m
- · Errors and omissions of the contour line data
- Shape of the contour line data

The location of the contour lines was checked by indicating the intermediate contour lines in blue and index contour lines in black.

Figure 2.2.65 Contour Line Data

To check the location, ortho images were superimposed on top of the contour lines.

Figure 2.2.66 Ortho Image Superimposed on Contour Lines

Elevation value attributes were indicated to visually check the errors and omissions in the entry of attributes.

Figure 2.2.67 Indication of Elevation Value Attributes

The shape was checked for abnormality.

Figure 2.2.68 Checking of Contour Line Shape

7) Checking of Orthophoto Data

Orthophoto data was used to investigate the causes of the proportion of measurement loss in 3D measurement data being 10% or higher and to interpret planimetric features in performing filtering. Therefore, with respect to the target area of filtering, causes of areas that appeared blank in ortho creation and locations for ortho creation, were visually identified by using GIS software.

Blank areas were found in the following areas and their major causes are as follows:

- Sidelap breakage between courses
- Areas where flight is prohibited

Figure 2.2.69 Example of Broken Sidelap

Defects of the images used for ortho creation may cause displacement of the data as indicated in the following figure. Causes of such defects were investigated and corrected.

Figure 2.2.70 Example of Location to be Checked for Errors in Ortho Creation

8) Checking of Water Surface Polygon

With respect to the map sheets that the proportion of measurement loss exceeded the limit value (10%), water surface polygons were created based on the ortho images for rivers of 7.5m or more in width and ponds and others of $7.5 \text{m} \times 7.5 \text{m}$ or larger.

Figure 2.2.71 Checking of Water Surface (The light blue areas are water surfaces.)

9) Checking of Cloud Polygon

After the completion of measurement of the area to be surveyed (24,700km², 6666 map sheets in total), collected data was inspected to check if any data were missing (about 43 km²). As a result, it was confirmed that some data was missing and most omissions were due to clouds. The survey team created cloud polygon data in Shape files to make up for the missing data.

Laser data and orthophotos were used for data acquisition. Areas where data acquisition was possible from either of them due to the availability of duplicated data (overlap or sidelap) despite the presence of clouds were excluded.

Figure 2.2.72 Result of Cloud Confirmation (Terrain Clearance: 500m, 2,785m)

Figure 2.2.73 Enlarged View of Areas with Clouds (The gray portions in the figure are clouds.)

2-2-16 Discussion for Effective Use of Map Data / Explanation of Results (Technology Transfer)

Since the objective of this Work is to collect topographic data that is required to implement the Chao Phraya River Basin Flood Control Project, technology to create topographic maps shall not be transferred, but instruction was provided regarding the effective use of map data.

(1) Utilization of Data

Since the created data is point group data, the large volume of the data makes it extremely difficult to handle. Therefore, instruction was provided on using GIS software or CAD software to perform the required data conversion.

(2) Utilization as Topographic Maps

In addition, since this is 3D data, the detailed topography in the Chao Phraya River Basin area can be expressed in three dimensions. Therefore, expression methods used for ordinary 3D maps were introduced, and technology on operation methods was transferred to facilitate future use of the data as topographic maps.

(3) Airborne laser scanning survey training

Implemented on March 26	Laser scanning training
	Observation of aircraft and laser scanning equipment to be
	used
Implemented on March 29	Laser scanning training
	Study session within the RID "Airborne Laser Scanning"
Implemented on March 30	On-site control point survey training
	Uthai Thani Province, Chainat Province
Implemented on March 31	On-site control point survey training
	Nakhon Sawan Province, Phichit Province
Implemented on May 1	On-site control point survey training
	Ayutthaya Province, Saraburi Province
Implemented on May 2	On-site control point survey training
	Suphan Buri Province
Implemented on May 22	On-site control point survey training
	Samut Prakan Province
Implemented on June 12	Training in data creation and verification (for RID)
	Airborne laser data verification, data creation, explanation of
	result data (lecture training)
	Data verification, data creation (hands-on training)
Implemented on June 13	Training in data creation and verification (for RTSD)

	Airborne laser data verification, data creation, explanation of
	result data (lecture training)
Implemented on July 6	Training in data creation and verification (for GISTDA)
	Airborne laser data verification, data creation, explanation of
	result data (lecture training)

2-2-17 Summary of Results (including preparation of reports, etc.)

The results of this Work were summarized in a survey report, taking the content of explanation to parties concerned and mutual discussion into consideration.

1) Final report

The final report describes the overall results of the work and results of technology transfer.

2) Recommendations

This work has so far been carried out by applying relevant Japanese work regulation rules. To apply the rules to the future work in Thailand, however, the Consultants would like to make the following recommendations regarding the items to be revised and developed in a draft set of work regulation rules for airborne laser scanning survey in Thailand "Work Regulation Rules and Operation Standards for Creation of Elevation Data by Airborne Laser Scanning Survey (Draft)". (See Appendix-3).

It would be a great pleasure for the Consultants if this could be utilized in the future work of airborne laser scanning survey.

i) Control points for correction

989 points, that is, one point in every 25km^2 , were installed in this Work. However, considering the fact that there is almost no elevation difference on the flat land stretching to the northern region, the density of point distribution may be reduced. Therefore, we would recommend <u>distributing the points at a rate of one point in every 10km×10km</u> (100km²).

ii) Installation of MCP (master control point)

RTSD owns reference points and benchmarks (BM). However, if the target area is wide as in this Work, control points for correction in every 100km² cannot be directly observed with the existing reference points and benchmarks alone. Therefore, the Consultants would recommend organizing <u>a primary control point (MCP) network for the project with the baseline length as about 30km</u>.

iii) Extension distance between courses

Since Japanese work regulation rules do not include a rule on the extension distance of a course, the extension distance was set to be fairly long in this Work, with the longest

being 80km, partly for the purpose of increasing the measurement timings. However, as it turned out that the accumulation of IMU errors significantly affected the accuracy because of the long distance, the Consultants would recommend that the extension distance should be <u>50km at the longest.</u>

iv) Verification between courses

A maximum of four points were verified between courses, but since the course extension distance was long, four points are a little too few. The Consultants would recommend verifying <u>one location for every 10km of the course extension distance</u>.

v) Checking of filtering

Japanese work regulation rules stipulate two kinds of maps, namely, a "superimposition map of ortho image data and contour line data" and a "superimposition map of ortho image, original data and water surface polygon". However, a <u>"slope classification map", a</u> <u>"shading map", a "layer tint map", etc.</u>, which were also used in this Work, <u>are effective in grasping the topographic condition of a flat land.</u> Therefore, the Consultants would recommend using these maps.

vi) Quantity to be inspected

As a method of appropriate accuracy control to ensure the accuracy of survey, Japanese work regulation rules stipulate that 2% of the data should be inspected for topographic survey and photogrammetry.

Since airborne laser scanning survey falls in the same category, the Consultants would recommend that 2% of the data should be inspected.

2.3 Work Schedule and Record

The initial work schedule and the result of implementation are described in the table below.

2.4 Personnel Plan and Record

Personnel plan and the record in this Work are as follows:

				ren	sonne	I IIIVO	iveu									
									2012					N	Aan/Mon	th
	Work Items	Name	Company	Rank	1	2	3	4	5	6	7	8	9	Thai	Japan	Study Team's
	Team Leader / Airborne Laser Scanning 1	HONJI Koichi	PASCO Corporation	3		2/5		4/8	5/1	9 6/19 6/2	7/12	29 8/30	2 1 9/1	5.80		0.07
	Team Sub-Leader	MORI Hisashi	PASCO Corporation	3		2/8 2/22		4/18 4/2	8					0.87		
	Photography Plan	NAKAO Motohiko	PASCO Corporation	3		2/5 3/1	0		6/ 7 5/16	7 6/16		8/23 9	1	2.17		
	Airborne Laser Scanning 2	NAKANO Yasutaka	PASCO Corporation	4		2/5	4/16	4/22 4/2	/25 5/3 71 4					2.50		0.30
	Airborne Laser Scanning 3	INOUE Takeshi	Air Asia Survey Co., Ltd.	4			8/4		6/1					3.00		
	Airborne Laser Scanning 4	KANEDA Shinichi	Air Asia Survey Co., Ltd.	4			3/4		6/1					3.00		
	Airborne Laser Scanning 5	ITO Fumihiko	Air Asia Survey Co., Ltd.	5		Cancell	tion of d	ispatch								-
pu	Setup of GPS Base Station / Control Points for Correction 1	SHIMODA Shozo	Kokusai Kogyo Co., Ltd. (Toa-Tech Co., Ltd.)	4		2/16		4/15						2.00		
Thaila	Setup of GPS Base Station / Control Points for Correction 2	KIRA Susumu	Air Asia Survey Co., Ltd.	4		2/16		4/15						2.00		
/ork in	Setup of GPS Base Station / Control Points for Correction 3	TSUKADA Masayuki	Kokusai Kogyo Co., Ltd.	4				4/4		/2				2.00		
м	Setup of GPS Base Station / Control Points for Correction 4	FUKUTOMI Seiichi	Air Asia Survey Co., Ltd. (DMS Co., Ltd.)	4				4/4		V2				2.00		
	Data Verification 1	IDA Kengo	Kokusai Kogyo Co., Ltd.	6			8/4			6/2				3.03		
	Data Verification 1	SHIMANO Sota	Kokusai Kogyo Co., Ltd.	6	Cha	nge in per	sonnel		5/29 (6/3 /2	7/3 8/1 8	1		1.97		0.20
	Data Verification 2	TAMARI Kiyohumi	Air Asia Survey Co., Ltd. (DMS Co., Ltd.)	4			8/4				7/	31		5.00		
	Data Verification 3	OMORI Hiromichi	PASCO Corporation (GIS Kansai)	4			3/4				8/1 8	31 8/15 : 1 222	/31	5.00		0.60
	Data Verification 4	YOTSUMATA Toru	PASCO Corporation	4				4/3		6/2	4			2.77		
	Data Verification 4	SHIMAGO Takafumi	PASCO Corporation	4	Cha	nge in per	sonnel			6 23 6/21 6/24	25 1	8/20 8/21 8/3	1	1.90		0.50
	Work Coordination/ Photography Plan Assistance	TSUDA Kaoru	PASCO Corporation	4	2/:	2/15 2/16 2/2	3/29 4 5	4/10 4/17 4/18				8/23 9	/1	1.33		0.33
														46.34		2.00
m	Team Leader / Airborne Laser Scanning 1	HONJI Koichi	PASCO Corporation	3		2/1 2/4		4/9 4/14			7/13 7/27				0.83	
in Jap;	Team Sub-Leader	MORI Hisashi	PASCO Corporation	3		2/1 2/4		4/9 4/14							0.33	
Work	Photography Plan	NAKAO Motohiko	PASCO Corporation	3							7/27	\$/10		/	0.50	
				-	•									/	1.66	
	Reports, etc.				△ IC/R							∠ F/R				
														Thai	Japan	Study Team's
														46 34	1.66	expense 2.00
														Tc	otal	$\overline{}$
L														48.	.00	
	Legend:		Work in Thai					Work in	Japan	(77772	At Study	Team's ex	pense	

Personnel involved

At Study Team's expense

3. Conclusion

This Work was implemented to achieve the basic policy of the project of performing the creation of detailed topographic data in the flood region of Chao Phraya River in a quick, accurate and flexible manner to capture the microtopography of the region, which is necessary in examining the flood control measures for the mid and lower portions of the flat Chao Phraya River basin.

The project was unprecedented in that detailed topographic data had to be created in 2m grids of a huge area of 24,700km² using airborne laser scanning survey in a period as short as seven months from February to August 2012 and as such, speediness was the topmost priority. In addition, as it was necessary to complete measurement before the rainy season, which begins in the middle of May, the greatest challenge was to promptly acquire measurement permission to complete the measurement of the entire project area as quickly as possible.

Furthermore, it was necessary to ensure accuracy while quickly performing the work to eliminate rework. Japanese survey work regulation rules place an importance on establishing a process that would never generate defects as long as no error is made about the flow of work. However, a variety of technical issues were observed in applying these rules as they are to another country that is performing the work for the first time and lacks past experience. Therefore, the Consultants are rather doubtful about the appropriateness of applying the rules to such unprecedented work of huge volume that had to be completed in a short period.

In actuality, as the amount of data was huge, a certain amount of defects occurred, and flexibility, which was the subject of the last policy, was relied upon in determining how to deal with these defects. The Consultants realized that for a short-term work, it is also necessary to flexibly utilize Japanese survey work regulation rules, applying Japanese work regulation rules to the product while allowing flexibility to the process.

More specifically, "Work Regulation Rules and Operation Manuals for Creation of Elevation Data by Airborne Laser Scanning Survey (Draft)" that may serve as a reference for performing airborne laser scanning survey in Thailand in the future were created, taking the results of work implementation into consideration and incorporating the recommendations described in 2-2-17.

This Work ultimately resulted in the creation of five kinds of data, namely, original data, ground data, grid data, contour line data and orthophoto data. These data types can be fully utilized by the RID, RTSD and JICA in performing analysis and developing future plans for flood control.

The Consultants expect that the results and experience gained through this Work will contribute to future flood control measures and the prosperity of Thailand.

In conclusion, on behalf of the survey team, the Consultants would like to express their deepest gratitude to the RID, RTSD and other government agencies relating to this project for their hospitality and cooperation extended to the team. The Consultants would also like to express heartfelt gratitude to JICA and Japanese government agencies relating to this project for the valuable advice and guidance.

Appendix-1

Minutes of Meeting On Project For Chao Phraya River Basin Flood Control Project (Airborne Laser Scanning Survey) In Thailand

> Agreed upon between Royal Irrigation Department of Thailand And Japan International Cooperation Agency

> > Bangkok, Thailand 8th February, 2011

Cost timberry

Mr. Kosol Thianthongnukul Director of Office of Engineering, Topographical and Geotechnical Survey,, Royal Irrigation Department

本地老一

Mr. Koichi Honji Team leader of the Study Team, Japan International Cooperation Agency (JICA)

The JICA Study Team (hereinafter referred to as "the Team") headed by Mr. Koichi Honji visited Thailand from 5th February, 2012 in order to carry out Chao Phraya Basin Flood Control Project for Airborne Laser Scanning Survey in Thailand (hereinafter referred to as "the Study"). Royal Irrigation Department (hereinafter referred to as "RID") is a counterpart of the Team. During the meeting on explanation of the Inception Report to RID, the Team and RID discussed the several matters as followings and the Team answered the questions raised by RID. Both sides eventually agreed upon the below.

Before proceeding to have questions on the Inception Report, JICA outlined the project and highlighted significance of the surveys and the Team members elaborated on the essence of methodology and measurements in accordance with the Inception Report that was prepared in Japan.

The following questions were followed by the counterpart and related organization to the explanation of the inception report. Significant issues of the question and the replies to them are as follows.

1. Acquisition of data with LIDAR

Counterpart asked the precision of measurement with LIDAR applied to this project. The Team answered that the precision shall be kept less than 25cm according to the standard stipulated in the Japanese regulation of Airborne Laser Scanning. The Team also added promising accuracy to be sustained less than 10cm in average practically.

2. Timing for mobilization of the aircrafts

The Team explained that the aircrafts are supposed to stand by at the airport in Thailand within 4 or 5 days after the flight permission is issued. The Team requested to issue the permission by 20^{th} February, 2012.

The Team also explained that the testing flight will be possible 2 days after the flight is permitted, since one(1) of the proposed aircrafts is currently available at Don Mueang Airport in Thailand, and the equipment to be installed for laser scanning is already available in Thailand.

3. Concerning aerial photography

The Counterpart asked whether the aerial photography will be carried out covering the entire Project area. The Team answered that the aerial photography is proposed to cover the whole areas. On top of it, the Team stated that it could not be guaranteed to take the photographs with all clear objects on the ground due to no specification regarding cloud-free requirement and to the possibility of shooting in the night.

4. Implementation of ground survey

The counterpart will provide benchmark data for survey which will be conducted by JICA team as well as the budget and the provision. The Counterpart enhanced the necessity of conformity in the technical specifications so that the data to be acquired shall not cause any discrepancies between both data in accordance with the JICA operational standard.

In relation to this issue, the Counterpart raised a question whether JICA can disclose the standard and /or operational instruction of allocating GCP's specifically.

In response to the question, the Team answered that it can be disclosed as the specification is based on the Japan's regulation of Airborne Laser Scanning.

5. Processing of Laser Scanning Data

The Counterpart asked the Team what sort of software will be used for data processing and if the software would be donated to the Counterpart after termination of the Project. The Team replied that TERRASCAN and ARC GIS are to be used, however they are not supposed to be donated.

6. Topic of Technology Transfer

The topic on the Technology Transfer was raised from RTSD in the meeting asking the possibility of attending Technology Transfer program in order to learn a series of technical process and knowhow to utilize effectively data obtained.

The Team answered that any OJT (training) is not officially programmed in this project as the project inaugurated for the purpose of conducting an emergency rehabilitation model. The Team, however, added comments that the counterpart staff will be able to have opportunities to learn the knowledge about Airborne Laser Scanning and introductory data use from time to time when needed.

7. Outputs to be delivered

Counterpart asked if the Team could furnish relevant organizations with data at the time when the raw data are acquired accordingly. The Team explained the proposed plan that the final data shall be delivered only when data covering all the area are processed because raw data need to be processed with a specific software and can not be dealt easily due to enormously time consuming and costly work.

The Team suggested masking of the processed data be made in accordance with RTSD from security point of view. The Team also added to envisage that data for dissemination shall be masked and/or degraded in resolution.

Appendix

List of Attendants

Thai Side

-Royal Irrigation Department-

Mr. Kosol Thianthongnukul Director of Office of Engineering, Topographical and Geotechnical Survey.

Ms. Suwanna Euvananont Photogrammetrist (expert level of Office of Engineering, Topographical and Geotechnical Survey.

Mr. Kanchadin Srapratoom Project Management Officer of International Corporation Division

-Department of Water Resources-

Mr. Ammart SuthammajarasCivil Engineer of Bureau of Water Resources Conservation and
RehabilitationMr. Supapap PatsinghasaneeProfessional Civil Engineer of Water Crisis Prevention Center

-Geo-Informatics and Space Technology Development Agency-

Dr. Chaowalit Sillapathong

Director of Geo-Informatics Center

-Royal Thai Survey Department-

Mr. Winai Semsawat	Deputy Director
Mr. Bunjerd Ramkomut	Director of Plans and Project Division
Mr. Chaiwat Promthong	Director of Geodesy and Geophysics Division
Mr. Krit Bunthid	Director of Geography Division
Mr. Suppalert Chaichana	Director of Mapping Division
Mr. Surasak Toedkiatkun	Director of Aerial Survey Division
Mr. Sarapong Pramsane	Director of Education Division
Mr. Chakorn Boonphakdee	Deputy Director of Plans and Project Division
Mr. Piya Charukarn	Chief of Geophysics Section
Mr. Nitiwadee Lamkham	Chief of Research and Development Section
Mr. Chochchai Puathanachockchai	Map Editing and Revising Section
Mr. Pratya Nakhonkao,	Technical Officer

Japanese side

-JICA Study Team-Mr.Koichi Honji

Team Leader

Mr. Motohiko Nakao Mr. Yasutaka Nakano Mr. Kaoru Tsuda

-ICA Thailand Office-Hajime Taniguchi Kobchai Songsrisanga

-Embassy of Japan-Mr. Tetsuo Hasegawa Flight Planning Expert Airborne Laser Scanning Expert Coordinator

Representative Program Officer

First Secretary in charge of ICT, Telecommunications, Science and Technology

Appendix-2

Minutes of Meeting On Project for Comprehensive Flood Management Plan For Chao Phraya River Basin (Sub-Component 1-1 Aerial Survey by LIDAR) In Thailand

> Agreed upon between Royal Irrigation Department of Thailand And Japan International Cooperation Agency

> > Bangkok, Thailand 29th August, 2012

s 1

Mr. Chachawal Punyavateenun Deputy Director General Royal Irrigation Department (RID)

Mr. Koichi Honji Team Leader of the Project Team Japan International Cooperation Agency (JICA)

Japan International Cooperation Agency (JICA) Project Team for "Project for Comprehensive Flood Management Plan for Chao Phraya River Basin (Sub-Component 1-1 Aerial Survey by LIDAR) (hereinafter referred to as "The Team"), Royal Irrigation Department (hereinafter referred to as "RID"), and other relevant organizations held a meeting concerning the Final Report of "Project for Comprehensive Flood Management Plan for Chao Phraya River Basin (Sub-Component 1-1 Aerial Survey by LIDAR) (hereinafter referred to as "The Team") on 29th of August 2012 from 10:00 to 11:30 at a meeting room of RID office.

The Team explained about the followings based on the Final Report.

- a) Objective of the Project
- b) Target Area
- c) Basic Policy and Results
- d) Final Outputs
- e) Implementation Workflow
- f) Survey Standard
- g) Collected Existing Materials
- h) Inspection Results for Each Work
- i) Data Format
- j) Final Results
- k) Recommendation
- 1) Case Study
- m) Work Schedule
- n) Conclusion

After the explanation by the Team, the questions to the explanation of the Final Report raised by the participants are as follows:

1. Data Accuracy

The participants from GISTDA and RID asked the Team about the accuracy of fix control points, master control points and Orthophoto data and LIDAR data. The Team answered the accuracy referred to the Final Report and the presentation paper and informed them that all of the survey results are within the acceptable level authorized by Geospatial Information Authority of Japan.

2. Data Distribution

The participants from GISTDA asked the Team how to distribute the final output to

organizations which need the geospatial information. The Team replied that since all the data belong to RID, the organizations which are interested in the data should consult them under security regulation of RID.

3. Information Sharing

÷

The participants made a request to the Team to exchange the geospatial information continuously because the Government of Thailand had commenced the LIDAR Project. The Team stated that JICA would support the Government of Thailand as much as they could.

At the end of the meeting, RID stated to agree on the Final Report prepared by the Team in principle.

The members attended the meeting are listed in Appendix.

Appendix

LIST OF ATTENDANTS

Thai Side:

2

Mr. Chachawal Punyavateenun Mrs. Suwanna Euvananont Mr. Somyot Keawmora Mrs. Suchada Hokcharoen Mr. Sathit Phomee Mr. Chakaphan Choyhiran Mr. Kanchadin Sraprathoom Mr. Suphanat Pariyachat Mr. Cheewin Intharanukul Sr. Col. Supalerk Chaichana Col. Sukrich Lapkriengkri Mr. Montree Boonphanitch Mr. Chamnong Phawaphook Ms. Chuthamas Panaklin Mr.Chatchai Saensena Mr.Tatiya Channatrakul

Japanese Side:

Mr. Koichi Honji Mr. Motohiko Nakao Mr. Kaoru Tsuda

Mr. Tatsuo Kunieda Mr. Takahiro Mishina

Mr. Kimio Takeya Mr. Kunihiro Yamauchi Mr. Hideaki Matsumoto Mr.Yojiro Miyashita Mr.Kobchai Chongsrisa-ngha

Royal Irrigation Department Royal Thai Survey Department Royal Thai Survey Department National Economic and Social Development Board National Economic and Social Development Board Geo-Informatics and Space Technology Development Agency Geo-Informatics and Space Technology Development Agency Geo-Informatics and Space Technology Development Agency

Team Leader of JICA Project Team Project member Project member

JICA Expert in RID JICA Expert for Project for Flood Management Plan

JICA in Japan JICA in Japan JICA in Japan JICA in Thailand JICA in Thailand

Appendix-3

Work Regulation Rules and Operation Manuals for Creation of Elevation Data by Airborne Laser Scanning Survey (Draft)

> August 2012 PASCO Corporation

Table of Contents
Chapter 1 Gen	eral Provisions	1
Section 1 G	eneral Rules	1
Article 1	Objectives	1
Article 2	Relations with Other Manuals	1
Article 3	Definitions of Terms	1
Section 2 S	pecifications and Accuracy of the Elevation Data	1
Article 4	Specifications of the Elevation Data	1
Article 5	Accuracy of the Elevation Data	2
Section 3 C	components of the Scanning and Order of Implementation	2
Article 6	Components of the Scanning and Order of Implementation	2
Section 4 C	Composition and Accuracy Control of the System	2
Article 7	Airborne Laser Scanning Survey System	2
Article 8	Inspection of Equipment	4
Article 9	Work Process Management	4
Article 10	Preparation of Work Sheets	4
Article 11	Accuracy Control	4
Article 12	Compilation of Outputs	4
Chapter 2 Crea	ation of the Elevation Data	5
Section 1 V	Vork Planning	5
Article 13	Work Planning	5
Section 2 S	canning Planning	5
Article 14	Scanning Planning	5
Section 3 E	stablishment of GPS Base Stations	6
Article 15	Establishment of GPS Base Stations	6
Article 16	Preparation of Description of GPS Base Station	6
Article 17	Verification	7
Section 4 A	irborne Laser Scanning	7
Article 18	Airborne Laser Scanning	7
Article 19	Acquisition of Scanning Data	7
Article 20	Acquisition of Digital Photographs for Airborne Laser Scanning	8
Article 21	Verification	8
Article 22	Sorting	8
Section 5 E	stablishment of Control Points for Correction	9
Article 23	Establishment of Control Points for Correction	9
Article 24	Measurement of a Control Point for Correction 1	0
Article 25	Sorting 1	1

Section 6 C	Creation of Three-Dimensional (3-D) Measurement Data	11
Article 26	Creation of 3-D Scanning Data	11
Article 27	Verification of 3-D Scanning Data	12
Article 28	Verification of Elevation between Flight Paths	12
Article 29	Re-verification	13
Article 30	Creation of Ortho Image Data	14
Article 31	Creation of Water Surface Polygon Data	14
Article 32	Calculation of the Proportion of Measurement Loss	15
Article 33	Verification	15
Section 7 C	Creation of Original Data	16
Article 34	Creation of Original Data	16
Article 35	Verification	16
Section 8 C	Creation of Ground Data	16
Article 36	Creation of Ground Data	16
Article 37	Consistency with Existing Data)	18
Article 38	Creation of Filtering Verification Maps	19
Article 39	Verification	19
Section 9 C	Creation of the Elevation Data	20
Article 40	Creation of the Elevation Data	20
Article 41	Comparison with Control Points for Correction	20
Article 42	Assignment of Attribute Data	21
Section 10	Creation of Digital Data Files	21
Article 43	Creation of Digital Data Files	21
Article 44	Verification	22
Section 11	Outputs	22
Article 45	Outputs	22
Appendix -1	Workflow	23
Appendix -2	Specification of Control Point Survey	24
Appendix -3	Specification of Leveling	25
Form 1-1	Airborne Laser Scanning Survey System Inspection Record	26
Form 1-2	Record of Creation of Elevation Data with Airborne Laser Se	canning
Survey		27
Form 2-1	Flight Planning	28
Form 2-2	Description of GPS Base Station	29
Form 2-3	Record of Airborne Laser Scanning	30
Form 2-4	Flight Operation Report of Aerial Laser Measurement	31

Form 2-5	Observed Values and Verification of Difference between Data Sets 32
Form 2-6	Description of Control Points for Correction
Form 2-7	Distribution Map of Control Points for Correction and Verification
points for M	Ieasurements Taken from Different Flight Paths
Form 2-8	Three-dimensional Scanning Data Verification Sheet
Form 2-9	Control Point for Correction Survey Sheet
Form 2-10	Difference between the Measurements Taken from Different Flight
Paths	
Form 2-11	An example of data entry in the form of the positional data file (word
file) (with a	pixel size of 0.5m)
Form 2-12	Survey Sheet for Calculation of Proportion of Measurement Loss 38
Form 2-13	Residual Difference at Control Points for Correction
Form 2-14	Verification Result of Existing Data 40
Form 2-16	Elevation Data Survey Sheet 41
Form 2-18	Data Formats
Form 2-19	Folder Structure
Table -1	Ground Data task of creating accuracy control table
Table -2	Grid data task of creating accuracy control table 48
Table -3	Digital data file task of creating accuracy control table 49

Chapter 1 General Provisions

Section 1 General Rules

Article 1 Objectives

The purposes of this manual are to standardize the specifications of elevation data (hereinafter referred to as the "Elevation Data") and to ensure that the elevation data has required accuracy by providing the methods to be used for the creation of the elevation data with the airborne laser scanning survey.

Article 2 Relations with Other Manuals

A series of processes for creation of the elevation data shall be carried out in accordance with this manual, unless otherwise provided.

Article 3 Definitions of Terms

The following terms shall be interpreted herein as follows:

- i "National base map unit" shall mean a unit of an area of 2.0 km (in the north-south direction) by 2 km (in the east-west direction) demarcated from the Universal Transverse Mercator Zone47 (hereinafter referred to as the "national base map sheet").
- ii "Surface object" shall mean any item of land cover with the elevation of its upper surface significantly higher than that of the ground surface, such as artificial structures, including buildings and bridges, and vegetation, including trees.
- iii "Scanning data" shall mean data obtained in the airborne laser scanning.
- iv "Filtering" shall mean a process to remove scanning data other than that of the ground surface, such as data of surface objects, in the creation of ground data.

Section 2 Specifications and Accuracy of the Elevation Data

Article 4 Specifications of the Elevation Data

The specifications of the elevation data are provided in the following paragraphs:

- i Thai survey standards shall be followed as to the standards for positions.
- Coordinetes shall be Projection: UTM Zone47, Ellipsoid: WGS84, Geodetic datum: WGS84(ITRF2008) and Vertical datum: Mean Sea Level (Based on existing Bench Marks).
- iii Elevation data grids shall be created by dividing national base map sheets at 2m

interval.

iv The elevation data of a grid is the elevation at the center of the grid expressed in meters to the first decimal place.

Article 5 Accuracy of the Elevation Data

The accuracy of the elevation data shall be as follows:

Case	Accuracy (Standard deviation)	
A grid with ground data	Less than 0.3 m	
A grid without ground data	Less than 2 m	

Section 3 Components of the Scanning and Order of Implementation

Article 6 Components of the Scanning and Order of Implementation

In principle, the scanning work shall consist of the following components, which shall be implemented in the order shown below.

- i Work planning
- ii Scanning planning
- iii Establishment of GPS base stations
- iv Airborne laser scanning
- v Establishment of control points for correction
- vi Creation of three dimensional scanning data
- vii Creation of original data
- viii Creation of ground data
- ix Creation of the elevation data
- x Creation of digital data files

<Article 6 Enforcement Rule>

Appendix 1, "Workflow," shall be followed.

Section 4 Composition and Accuracy Control of the System

Article 7 Airborne Laser Scanning Survey System

An airborne laser scanning survey system shall consist of an airborne GPS receiving antenna, an airborne GPS receiver, GPS analysis software, IMU (inertial measurement unit), a laser distance meter and analysis software.

<Article 7 - Enforcement Rule>

The performance of the component equipment shall be as follows:

- i Airborne GPS receiving antenna and receiver
 - a A GPS antenna shall be able to be mounted on the top of an aircraft securely.
 - b A GPS receiver shall be capable of acquiring GPS observation data at an interval of one second or less.
 - c A GPS receiver shall be capable of dual-frequency carrier phase data observation.
- ii GPS analysis software
 - a Software shall have a kinematic baseline vector analysis function.
 - b Software shall have a function to display evaluation of analysis results.
- iii IMU (inertial measurement unit)
 - a IMU shall be capable of measuring tilts and acceleration in three axes, *i.e.* roll, pitch and heading, and have performance, in terms of the standard deviations obtained in the analysis, equivalent to or better than the performance shown below.

Sensor part	Performance	
Roll	0.015°	
Pitch	0.015°	
Heading	0.035°	
Data acquisition interval	0.005 second	

- b IMU shall be able to be mounted directly on a laser distance meter.
- iv Laser distance meter
 - a A laser distance meter shall be able to measure at least two pulses, the first and the last pulses.
 - b It shall have a scanning function.
 - c It shall have a function to prevent it from having adverse effects on the human body, including human eyes.
 - d It shall be provided with clearly stated safety standards.
- v Analysis software
 - a Analysis software has to enable calculation of three-dimensional (3-D) position of a measurement point.

Article 8 Inspection of Equipment

An airborne laser scanning survey system inspected at a calibration site within six months prior to the scanning shall be used. When an airborne laser scanning survey system, which has been dismantled from an aircraft within the six months, is to be used, the system shall have to be calibrated anew.

2 The Geospatial Information Authority of Japan shall designate equipment other than an airborne laser scanning survey system whose use in the scanning requires certification.

<Article 8 Enforcement Rule>

- i A person who implements the scanning shall appropriately maintain an airborne laser scanning survey system.
- Form 1-1 shall be used for keeping records of the inspection stipulated in Article
 8-1 and, in principle, the records of the inspection shall be shown to a supervisor
 prior to the work using the equipment concerned.

Article 9 Work Process Management

Work processes shall have to be managed appropriately in the entirety of the work

Article 10 Preparation of Work Sheets

A work sheet to record progress of the work shall be prepared immediately after completion of each work component.

<Article 10 – Enforcement Rule>

Progress of the work shall be recorded in Form 1-2.

Article 11 Accuracy Control

A person in charge of accuracy control shall control accuracy of measurement data appropriately throughout the work in order to ensure accuracy of survey and shall have to prepare other required materials, without delay, on the basis of the results of the implemented accuracy control.

Article 12 Compilation of Outputs

Outputs, records and other required materials shall be compiled after completion of the work without delay.

Chapter 2 Creation of the Elevation Data

Section 1 Work Planning

Article 13 Work Planning

Work Planning is a process to formulate an appropriate plan on work methods, major equipment to be used and work schedule prior to the commencement of a work, with conditions in a work area, amount of work and completion date taken into consideration.

<Article 13 – Enforcement Rule>

Full consideration shall be given regarding the major equipment to be used, required personnel, work procedures and implementation methods during the formulation of a work plan in order to ensure efficient implementation of a series of work components.

Section 2 Scanning Planning

Article 14 Scanning Planning

Planning of airborne laser scanning is a process to formulate specifications for the scanning, a flight path plan, a plan for locations of establishment of GPS base stations and a GPS observation plan, with locations of GPS satellites taken into consideration.

<Article 14 - Enforcement Rule>

- i The specifications for the scanning include ground elevation, ground speed, percentage of sidelap, number of scans, scan angle, pulse rate and standard distances between data acquisition points in the direction of flight paths and in the direction perpendicular to flight paths.
 - a A scan angle shall be within a range of $\pm 20^{\circ}$, in principle. A standard distance between points of 3-D scanning data acquisition shall be so designed that there will be at least one acquisition point in an area of 2.0m x 2.0m.
 - b The percentage of sidelap shall be at least 30%.
- ii A flight path plan shall be so designed that standard distances between data acquisition points are uniform. Nevertheless, uniformity of standard distances between data acquisition points shall be achieved by using sidelap of areas scanned from adjacent flight paths (or flights on same paths in both directions), with topographical or climatic conditions taken into consideration. The

extension distance shall be 50km at the longest.

- iii Horizontal locations of scanning data shall have accuracy of a standard deviation of less than 1 m.
- iv A scanning plan shall be so designed that scanning shall be extended up to a certain extent outside the border of an intended scan area.
- v Locations of establishment of GPS base stations shall be designed with view of the sky and baseline distances taken into account.
- vi A GPS observation plan shall be formulated with the number of satellites available for receiving signals from using the latest information on their orbits.
- vii The designed scan specifications, flight path plan maps and locations of establishment of GPS base stations shall be recorded in Form 2-1.

Section 3 Establishment of GPS Base Stations

Article 15 Establishment of GPS Base Stations

Establishment of GPS base stations is a process to establish ground GPS base stations in order to measure the position of a laser distance meter used in airborne laser scanning with the kinematic GPS survey.

<Article 15 – Enforcement Rule>

- i An electronic control point may be used as a GPS base station.
- ii GPS base stations shall be established within a scan area in such a way that baseline distances between them shall not exceed 50 km.
- iii GPS observation data shall have to be acquired at an interval of one second or less.
- iv A GPS base station shall have to be established at a place with clear view of the sky.
- v A horizontal position and elevation of an intended location of establishment of a GPS base station shall be measured with surveys conforming to the first order control point survey (Appendix-2) and third order leveling (Appendix-3).

Article 16 Preparation of Description of GPS Base Station

A description of GPS base station shall be prepared whenever a GPS base station has been installed.

<Article 16– Enforcement Rule>

Form 2-2 shall be used for the preparation of a description of GPS base station.

Article 17 Verification

A person implementing the scan shall have to carry out verification of a GPS base station and control accuracy of data on it when it has been established.

<Article 17 – Enforcement Rule>

The following shall be verified.

- i Guarantee of clear view of the sky and presence/absence of data acquisition
- ii Appropriateness of the selection of the location in a scan area
- iii Guarantee of accuracy of horizontal position and elevation of a GPS base station
- iv Stability of receiving antenna installation
- In order to enable evaluation of the accuracy of the results of the GPS observation in accordance with the Rules for Manual, documents such as observation notebooks and recording notebooks in which such data as locations of GPS satellites is recorded and an accuracy control sheet in which results of the baseline analysis are entered shall be prepared.

Section 4 Airborne Laser Scanning

Article 18 Airborne Laser Scanning

Airborne laser scanning is a process to acquire scanning data with an airborne laser scanning survey system.

Article 19 Acquisition of Scanning Data

Acquisition of scanning data refers to acquisition of GPS observation data at GPS base stations and acquisition of GPS observation data, IMU observation data and laser distance measurement data on an aircraft.

<Article 19 – Enforcement Rule>

- i In principle, one airborne laser scanning survey system shall be used to scan an entire scan area.
- ii In principle, airborne laser scanning on a flight path shall be implemented on a straight path at a fixed elevation.
- iii Ground speed of the aircraft shall be maintained as uniformly as possible during a scan on a single flight path.
- iv Scanning data shall be acquired by extending the outer circumference of a scan area to a certain extent.

- v GPS observation shall be implemented as follows:
 - a GPS observation data shall be acquired at an interval of one second or less both at GPS base stations and on an aircraft.
 - b PDOP of 3 or less shall be the standard for satellites used for GPS observation.
 - c At least five GPS satellites shall be used when acquiring GPS observation data.

Article 20 Acquisition of Digital Photographs for Airborne Laser Scanning

A Digital Photograph for Airborne Laser Scanning Survey is aerial image data of the land surface taken with a digital camera attached to an airborne laser scanning survey system. It is acquired for the filtering and verification.

<Article 20 – Enforcement Rule>

- i In principle, a digital photograph for airborne laser scanning shall be taken at the same time as airborne laser scanning.
- ii A digital photograph for airborne laser scanning shall have a resolution which allows identification of Surface Objects such as buildings and the standard ground pixel dimension shall be 1.0m or less.
- iii Ground surface image data shall be acquired from an entire scan area.

Article 21 Verification

An airborne laser scanning survey system shall be verified before commencement and after completion of airborne laser scanning.

<Article 21 – Enforcement Rule>

The following shall be verified:

- i Condition of operation and data recording of the GPS units in GPS base stations and on an aircraft
- ii Presence/absence of cycle slips
- iii Guarantee of coverage of airborne laser scanning: quality of digital photographs for airborne laser scanning
- iv Appropriateness of the ground elevation and routes of flight paths

Article 22 Sorting

Data shall be sorted after the completion of airborne laser scanning.

<Article 22 – Enforcement Rule>

- i The number of satellites available and a PDOP diagram during a period of scanning, which should be obtained as an output of GPS data analysis/processing, shall be produced.
- ii A map to detect areas from which no scanning data has been acquired (measurement loss) shall be created by marking an area scanned from each flight path on the same map.
- iii A track chart shall be created by overlaying actual flight tracks on flight path maps.
- iv A record of airborne laser scanning shall be created using Form 2-3. An airborne laser scanning log shall be prepared using Form 2-4.

Section 5 Establishment of Control Points for Correction

Article 23 Establishment of Control Points for Correction

Establishment of control points for correction is a process to establish control points to verify and correct 3-D scanning data.

<Article 23 – Enforcement Rule>

- i A control point for correction shall be established on a flat place where a position provided by 3-D scanning data can be easily identified on the ground and which can be surveyed without difficulty.
- ii A standard number of control points for correction shall be the nearest integer larger than (the size of a scan area (in km^2) / 100) + 1. They should be at least four points.
- iii A control point for correction shall be established at a site that satisfies the following conditions:
 - a In principle, control points for correction shall be established near the four corners of a scan area and other points shall be established as uniformly as possible over an entire scan area to ensure data accuracy.
 - b In principle, a base station shall be established on a flat place of a minimum size of 2m x 2m and without an obstacle, such as a tree or steps on a pedestrian path (*e.g.* a playing ground, vacant lot, road, park or flat rooftop).
 - c A base station shall be established near a benchmark.

Article 24 Measurement of a Control Point for Correction

Measurement of a control point for correction shall be taken with factors, such as conditions in a scan area, accuracy of data applicable to verification of elevations and measurement methods taken into consideration.

<Article 24 – Enforcement Rule>

- i Measurement of a control point for correction shall be taken with a survey conforming to the fourth order control point survey (Appendix-2) and the fourth order leveling (Appendix-3).
- ii If there is no benchmark required as an established control point near a control point for correction, single point observation based on the network RTK positioning may be used.
 - a In the single point observation based on the network RTK positioning, correction data or plane correction parameters calculated by a provider is received by a radio equipment at a rover station simultaneously with signals from GPS satellites, required analysis is conducted on the received data and the same observation and analysis is carried out at another rover station. There are two types of single point observation based on the network RTK positioning. The VRS method uses virtual control points and the FKP method uses plane correction parameters to acquire coordinate values.
 - b The table below shows the standards for the single point observation based on the network RTK positioning.

Number of	Number of	Data	Allowable	range of	Summary
satellites used	observations	acquisition	difference	between	
		interval	sets		
Five or more	2 sets of 10 or	1 second	$ riangle \mathbf{X}$	20mm	
satellites	more epochs after obtaining a fix solution		ΔY	20mm	

c With regard to the preceding paragraph, after completion of the first set of observations, the equipment shall be re-initialized and a second set of observations shall be made. If the difference between the sets is within the

allowable range, the means of the two sets of observed values shall be considered as the outputs of the observations. The observed values and the difference at each station shall be recorded in Form 2-5 "Observed Values and Verification of Difference between Sets."

- d If the difference between the two sets exceeds the allowable range, the equipment shall be re-initialized and a third set of observations shall be made. If there is no combination of a pair of sets of observations with the difference within the allowable range even after the third set of observations, the fourth set of observations shall not be made on the same day. Instead, new sets of observations shall be made on a separate day.
- e It shall be made a standard procedure to make observations for verification at an established control point in a scan area before and after the observations at the rover stations.
- iii If there is no benchmark near a control point for correction, the measurement may be taken with the static method with an observation period of 2 hours or more, using GPS receivers installed at two or more benchmarks closest to a control point for correction and a measurement point of a control point for correction.

Article 25 Sorting

Observation data shall be appropriately sorted after the measurement of control points for correction.

<Article 25 – Enforcement Rule>

- i Form 2-6 "Description of Control point for Correction" shall be filled in for each control point for correction. A photograph should be taken and arranged so that it can be used as a proof of absence of obstacles to scanning, including steps.
- ii A distribution map of control points for correction shall be prepared as shown in Form 2-7.

Section 6 Creation of Three-Dimensional (3-D) Measurement Data

Article 26 Creation of 3-D Scanning Data

Three-dimensional scanning data shall be created by analyzing airborne laser scanning data in an integrated way.

<Article 26 - Enforcement Rule>

- i During creation of 3-D scanning data, measurement errors, including noise created by the laser being reflected more than once on buildings, etc. nearby shall be removed using displays of cross section views and birds' eye views.
- ii Ground coordinates in 3-D scanning data shall be measured to 1 cm accuracy.
- iii Creation of 3-D scanning data shall be extended up to a certain extent outside the border of a scan area.

Article 27 Verification of 3-D Scanning Data

Verification of 3-D scanning data is a process to verify elevations of measurement points in 3-D scanning data by comparing them with an elevation of a control point for correction.

<Article 27 – Enforcement Rule>

The verification shall be implemented as follows:

- i. Three-dimensional scanning data acquired from measurement points within a 2.0m-radius circle or a 2m x 2m square shall be compared with an elevation of a base station.
- ii. The difference between an elevation of a base station and an elevation in the scanning data of each measurement point shall be calculated and the mean, maximum, minimum and RMS error of the differences shall be calculated.
- iii. Results of the verification shall be compiled in Form 2-8, "Three-dimensional Scanning Data Verification Sheet."
- 2 If an RMS error in the verification is 25 cm or larger, an investigation shall be carried out to identify a cause or causes of such a large error and an appropriate corrective measure, such as re-calculation or re-scanning, shall be taken.
- 3 Results of the verification of an entire scan area shall be compiled in Form 2-9, "Control point for Correction Survey Sheet," and be used as reference in the correction process.

Article 28 Verification of Elevation between Flight Paths

Verification of elevation between flight paths is a process in which elevations measured from two adjacent flight paths of a verification point selected in an area of sidelap between areas scanned from the two flight paths are compared and verified.

<Article 28 - Enforcement Rule>

The selection of verification points and the verification shall be implemented as follows:

- i The number of verification points shall be the nearest integer larger than (length of flight paths (in km) / 10).
- ii Verification points shall be distributed uniformly over the top and bottom of an area of sidelap from where flight paths begin.
- iii If it is impossible to satisfy the conditions mentioned above because of topographic constraints, such as mountainous terrain or thin strips of land, the number and distribution pattern of verification points may be modified.
- iv The mean elevation obtained from scanning data of measurement points within a 2.0m-radius circle or a 2m x 2m square located in a flat area with good visibility shall be used as an elevation of a verification point.
- v The difference between the two elevations of each verification point shall be calculated and the mean and standard deviation of the difference shall be calculated for each area of sidelap.
- vi If the mean of the difference in elevation in an area of sidelap is 30 cm or larger, elevations shall be corrected through selection of a new set of verification points or recalculation, such as re-correction of calibration values using the verification result.
- 2 The result of the verification of difference in elevations measured form different flight paths shall be compiled in Form 2-10, "Difference between Measurements Taken from Different Flight Paths." The distribution map of the verification points shall be indicated in Form 2-7, "Distribution Map of Control points for Correction and Verification Points for Measurements Taken from Different Flight Paths."

Article 29 Re-verification

A person in charge of verification shall re-verify 3-D scanning data at the completion of creation of 3-D scanning data.

<Article 29 – Enforcement Rule>

- i Distribution and locations for establishing control points for correction shall be verified with "Distribution Map of Control points for Correction" and "Description of Control point for Correction."
- ii Whether the mean and standard deviation of the difference between elevation of a control point for correction and elevations in 3-D scanning data of measurement points are within the allowable ranges or not, shall be verified with

"Three Dimensional Scanning Data Verification Sheet" and "Control point for Correction Survey Sheet."

- iii Distribution and locations of selected points for verification of difference in elevations measured from different flight paths shall be verified with digital photographs for airborne laser scanning and "Distribution Map of Verification Points for Measurements Taken from Different Flight Path."
- Whether the mean of the difference between elevations of verification points measured from different flight paths is within the allowable range or not, shall be verified with the table, "Difference between Measurements Taken from Different Flight Paths."

Article 30 Creation of Ortho Image Data

Ortho image data shall be created through orthogonal conversion of digital photographs for airborne laser scanning with 3-D scanning data.

<Article 30 – Enforcement Rule>

- i Ortho image data for each national base map sheet shall be created by joining orthogonally converted digital photographs for airborne laser scanning.
- ii The TIFF format shall be used as the format of the ortho image data.
- iii Ortho image data shall be created by extending the outer circumference of a scan area to at least 50 m.
- iv A positional data file showing geographic coverage of ortho image data shall be created as an ASCII file in accordance with Form 2-11.

Article 31 Creation of Water Surface Polygon Data

Polygon data of water surface shall be created from ortho image data for areas of water surface.

<Article 31 – Enforcement Rule>

Water surface polygon data shall be created as follows:

- i Polygon data shall be created for shore lines of a river with a water course width of 7.5 m or more and a pond of 7.5 m x 7.5 m or larger. Polygon data shall be created for a river that as a whole has a watercourse width of 7.5 m or more, even if it has an area with a watercourse width of less than 7.5m.
- ii If a water surface is found in a structure elevated from the surrounding ground (such as a swimming pool in a school or artificial reservoirs surrounded by

retaining walls in a sewage treatment plant), data on the water surface shall not be acquired because its foundation structure should be subject to filtering.

- iii A sandbank smaller than 7.5 m x 7.5 m in a water surface shall be included in polygon data of the water surface, instead of acquiring polygon data of its shoreline.
- iv If a shoreline has a very complex shape with presence of rocks and artificial structures, its shape may be edited in an appropriate way with the condition that such editing shall not compromise the accuracy requirement on elevation data.
- v If there is no water surface in a scan area, this process may be omitted.

Article 32 Calculation of the Proportion of Measurement Loss

Calculation of the proportion of measurement loss is calculation of a proportion of areas for which 3-D scanning data has not been acquired for the entire measurement area.

<Article 32 – Enforcement Rule>

A measurement loss shall be verified as follows:

- i If no 3-D scanning data has been acquired in a 2.0m x 2.0m grid, such a grid shall be considered as a data-missing grid.
- ii The proportion of measurement loss shall be calculated for each national base map sheet with the equation shown below. The result of the calculation for each national base map sheet shall be compiled in Form 2-12, "Survey Sheet for Calculation of Proportion of Measurement Loss." The area inside the border of water surface polygon shall be disregarded in the calculation.

Proportion of measurement loss = (Number of data-missing grids / total number of grids) \times 100

iii The proportion of measurement loss shall be less than 10 % in each sheet of national base map. If the proportion is 10 % or more, an investigation shall be carried out to identify the cause of such a large proportion and a new measurement shall be taken if necessary.

Article 33 Verification

A compiler and other appropriate equipment shall be used in verification.

<Article 33 - Enforcement Rule>

The following items shall be verified:

- i Presence/absence of significant discontinuity of ortho image data at edge matching with focus on major feature (such as road)
- ii Presence/absence of missing water surface polygon data
- iii Appropriateness of edge matching of water surface polygon data
- iv Appropriateness of proportion of measurement loss

Section 7 Creation of Original Data

Article 34 Creation of Original Data

Creation of original data is a process to create data by correcting elevation data in 3-D scanning data using control points for correction mentioned in Section 5.

<Article 34 – Enforcement Rule>

- i If the mean of the difference between elevations of control points for correction and elevations of measurement points in 3-D scanning data is 25 cm or more, the standard requires correction for an entire scan area.
- ii The correction to be implemented shall be a uniform increment or decrement of elevation values in 3-D scanning data for an entire scan area.
- iii Result of the Creation of Original Data shall be compiled in Form 2-13, "Residual Difference at Control points for Correction."

Article 35 Verification

A person in charge of creation of original data shall verify the data before and after the correction and a person in charge of verification shall verify the data after the completion of the creation of original data.

<Article 35 – Enforcement Rule>

When original data has been created with correction, the following shall be verified.

i Quality of the result of the correction

Section 8 Creation of Ground Data

Article 36 Creation of Ground Data

Ground data is part of the original data that shows elevations and is created by filtering original data.

<Article 36 - Enforcement Rule>

- i Ground data shall be created by extending the outer circumference of a scan area to a certain extent.
- ii The table below shows the standard items for the filtering.
- iii Ground data at a place where a large surface object makes it impossible to represent topography of the place appropriately shall be created by interpolation with non-filtered ground data of a surrounding area.

Transport facilities	Road facilities	Road bridges (with a length
		of 5m or more), viaducts,
		pedestrian crossings,
		lampposts, traffic lights,
		road information boards,
		etc.
	Railroad facilities	Railroad bridges (with a
		length of 5m or more),
		viaducts, over bridges,
		platforms, sheds on
		platforms, electric poles
		and signal posts
	Mobile objects	Parked vehicles, railroad
		carriages and ships
Buildings	Buildings and accessory	Residential houses,
	facilities	factories, warehouses,
		public facilities, railroad
		station buildings, wall-less
		structures (hothouses and
		greenhouses), stands of
		stadiums, gates, pools
		(including foundation) and
		fences
Small objects		Monuments, gateways of
		Shinto shrines, water tanks,
		fertilizer storage tanks,
		water supply towers,
		cranes, chimneys, high
		towers, radio towers,

	lighthouses light buoys	
	nghulouses, nght buoys,	
	pipelines (on the ground	
	and elevated) and power	
	transmission lines	
Structures related to water	Pontoons, water level	
surface	observatories and river sign	
	boards	
	Trees(*1), bamboo	
	forests(*1), hedges(*1) and	
	rice plants in paddies(*1)	
Others	Areas with large-scale land	
	development(*2), open pits	
	excavated for construction	
	of subways and materials in	
	open-air storage	
* ¹ Data which can be recognized as that of ground surface		
shall be used as much as possible		
$*^2$ If existing condition can be recognized a		
certainly as permanent, data on the existing condition		
shall be used.		
	Structures related to water surface Others * ¹ Data which can be recogn shall be used as much as pose * ² If existing condition certainly as permanent, dat shall be used.	

Article 37 Consistency with Existing Data)

In order to establish consistency with existing data, existing data and ground data of selected areas of overlapping coverage by these two types of data shall be compared for verification.

<Article 37 – Enforcement Rule>

For the comparison and verification, areas which satisfy the following conditions, shall be established.

- i At least one such area shall be established within an area covered by each national base map sheet and there shall be at least 100 measurement points in each of such areas.
- ii If there is a control point for correction, it shall be included in an area for the comparison.

- iii An area for the comparison shall be located on a large and flat space (e.g. a playing ground, vacant lot, road, park, etc.) where data is not likely to be affected by surface objects.
- 2 The verification shall be implemented as follows:
 - i The mean of the ground data within an area of overlapping coverage shall be obtained for the comparison and verification.
 - ii The mean and standard deviation of the difference between the existing data and ground data shall be obtained.
 - iii If the standard deviation is 30 cm or more, an investigation into the original data shall be carried out to identify the cause of such a large standard deviation and an appropriate measure, such as re-calculation or re-measurement, shall be taken.
 - iv Result of the verification shall be compiled in Form 2-14, "Result of Verification of Existing Data."

Article 38 Creation of Filtering Verification Maps

Filtering verification maps shall be created for the purpose of verifying whether the filtering has been implemented appropriately or not and presence/absence of abnormality in created ground data.

<Article 38 – Enforcement Rule>

- i Filtering verification maps shall be created by 3D map ("slope classification map", "shading map", "layer tint map", etc.,).
- ii Filtering verification maps shall be created at a scale of 1/4,000 and for each national base map sheet.
- iii Filtering verification maps shall be created by extend to a certain extent from the neat lines.

Article 39 Verification

Quality of the filtering shall be verified with the filtering verification maps and a compiler.

<Article 39 – Enforcement Rule>

The following items shall be verified:

i Presence/absence of unnecessary contour data on vegetation and artificial structures, such as bridges and buildings, which can be interpreted in ortho

image data

- ii Presence/absence of original data of vegetation and artificial structures, such as bridges and buildings, which can be interpreted in ortho image data
- iii Whether a water surface polygon matches with the water surface in ortho image data and satisfies the data acquisition criteria or not
- 2 If it is difficult to verify quality of the filtering, a cross section display created by a compiler shall be used for the verification.
- 3 2% of the whole data shall be verified.

Section 9 Creation of the Elevation Data

Article 40 Creation of the Elevation Data

The elevation data shall be created by interpolating from ground data.

<Article 40 – Enforcement Rule>

- i Elevation at the center of a grid created by dividing an area covered by a national base map sheet at 2m intervals both in the north-south and east-west directions shall be the elevation data of the grid.
- ii For a grid with no measurement point at its center, the elevation at the center shall be interpolated from data of the measurement points nearby.
- iii The TIN method shall be used to interpolate elevation.
- iv Elevation data shall be rounded to the nearest unit of 10 cm.

Article 41 Comparison with Control Points for Correction

Comparison with control points for correction refers to comparison between an elevation at a control point for correction and the elevation data.

<Article 41 – Enforcement Rule>

Selection of control points for the comparison and data comparison shall be implemented as follows:

- i More than half of the established control points for correction distributed as evenly as possible over a scan area shall be selected for the comparison.
- ii The elevation data of a measurement point nearest to a control point for correction shall be used in the comparison.
- iii The mean and standard deviation of the difference in the elevation in all the comparisons shall be calculated.
- iv Comparison results shall be compiled in Form 2-16, "Elevation Data Survey

Sheet."

v If the comparison has revealed a standard deviation of 30 cm or more, an investigation shall be carried out to identify the cause or causes of such a large standard deviation and an appropriate corrective measure, such as re-calculation, shall be taken.

Article 42 Assignment of Attribute Data

An attribute showing the condition of filtering of ground data used in the calculation or the condition of being a water surface shall be assigned to each point of the elevation data.

<Article 42 – Enforcement Rule>

Attribute data shall be created as follows.

- i Attribute data shall be created for an area for which the elevation data has been created.
- ii The data to be created is attribute data to the elevation data.
- iii An attribute value of an attribute data item shall be 'true,' if there is ground data in a grid for which the elevation data has been acquired, and 'false,' if there is no ground data in a grid as a result of the filtering or missing data. Data of areas with surface objects acquired through interpolation shall not be regarded as ground data. A grid whose center is located in a water surface polygon shall be regarded as a "water surface."

Section 10 Creation of Digital Data Files

Article 43 Creation of Digital Data Files

Creation of digital data files is a process of recording various types of data on electromagnetic recording media.

<Article 43 – Enforcement Rule>

The digital data files for the following shall be created:

- i Original data
- ii Ground data
- iii Elevation data (CSV format)
- iv Water surface polygon data
- v Ortho image data
- vi Positional data file
- vii List of stored data

- 2 Attribute data shall be described in the elevation data (in CSV format).
- 3 The data formats provided in Form 2-18 shall be used.
- 4 Folder composition shall be as described in Form 2-19

Article 44 Verification

A compiler shall be used for the verification of created digital data files.

<Article 44 - Enforcement Rule>

The following shall be verified:

- i Quality of the data format and contents
- ii Presence/absence of data omission

Section 11 Outputs

Article 45 Outputs

The following outputs shall be produced:

- i Digital data files
- ii Record of the work
- iii Other relevant documents

Appendix -1 Workflow

Appendix -2 Specification of Control Point Survey

Order Type	1st Order Control Point survey	4th Order Control Point survey
Known Points	Electronic reference Station Triangulation station(1-4 order) 1st Control point	Electronic reference Station Triangulation station(1-4 order) Control point(1-3 order)
Distance between known points(m)	4,000	500
Distance between unknown points(m)	1,000	50

(Method of control points survey)

Order	1st Order Control Point survey	4th Order Control Point survey	
Number of Known Points in a Traverse network	More than (2 + number of unknown points/5) Roundup decimals	More than 3	
Number of sides in a unit polygon	less than 10	-	
Number of sides in a route	less than 5	less than 10	
Distance between nodal points	More than 250m	More than 20m	
Route Length	Less than 3km	Less than 500m	
Observation method	Static	Static	
Observation time	More than 60 minutes (Distance < 10km) More than 120 minutes (Distance > 10km)	More than 60 minutes	
Data logging interval	Less than 30 second	Less than 30 second	

(Equipment)

Equipment for GPS observation shall be 2nd order GPS receiver or high

(Tolerance)

Туре	Order	1st Order 4th Order	Remarks	
	Horizontal(Δ N, Δ	20mm $$	N: number of sides	
Error of closure	E)	Ν	Δ N: Horizontal Error of	
(Base line)	Vartical (AU)	30mm $$	closure(north-south)	
	V ertical(ΔU)	Ν	Δ E: Horizontal Error of	
Discrepancy of	Horizontal(Δ N, Δ	20mm	closure(east-west)	
Duplicated Base	E)	2011111	Δ U: Vertical Error of	
line	Vertical(ΔU)	30mm	closure	

Appendix -3 Specification of Leveling

(Type of Known bench mark)

Items	3rd Order Leveling	4th Order Leveling
Known bench mark	$1^{st} - 3^{rd}$ order Bench mark $1^{st} - 3^{rd}$ Level Bench mark	$1^{st} - 3^{rd}$ order Bench mark $1^{st} - 4^{th}$ Level Bench mark
Distance between known bench marks (km)	50	50

(Method of Leveling)

Items	3rd Order Leveling	4th Order Leveling
Observation	Direct leveling(round trip)	Direct leveling(round trip)
Collimation Distance(m)	Less than 70	Less than 70
Reading unit(mm)	1	1

(Equipment)

Equipment for Leveling shall be 3rd order Level or high.

Staffs for Leveling shall be 2nd order Level or high.

(Tolerance)

Type	3rd Order	4th Order	Remarks
Discrepancy of Round trip observation value	10mm \sqrt{S}	20 mm \sqrt{S}	S: Observation distance (one way, km)
Error of closure	$10 \text{mm} \sqrt{S}$	$20 \text{mm} \sqrt{\text{S}}$	
Error of closure Between known bench marks	15mm √S	25mm √S	

n NT		· 						
Project Name								_
Aircraft				Inspected date				
Pilot				Person in charge				
Base (Airport)				Team Leader				
Name of Calibration Site								
Name of Equipment								_
Take-off Time				Commencement time				_
Landing Time				Completion time				_
								-
			<u>Roll Calit</u>	ration				
Name of flight path	Ground speed <kts></kts>	Flight hight above the ground <ft></ft>	FOV <degree></degree>	Pulse Rate <hz></hz>	Scan Rate <hz></hz>	Angle of correction <degree></degree>	Remark	
			<u>Pitch Cali</u>	<u>bration</u>				_
Name of flight path	Ground speed <kts></kts>	Flight hight above the ground <ft></ft>	FOV <degree></degree>	Pulse Rate <hz></hz>	Scan Rate <hz></hz>	Angle of correction <degree></degree>	Remark	
			Horizontal scale	e calibration				
Name of flight path	Ground speed <kts></kts>	Flight hight above the ground <ft></ft>	FOV <degree></degree>	Pulse Rate <hz></hz>	Scan Rate <hz></hz>	Angle of correction <degree></degree>	Remark	
		TE 214 (1					_
		HIGHT (F	neasurement of	aistance) callbra	10 0			_
Name of flight path	Ground speed <kts></kts>	Flight hight above the ground <ft></ft>	FOV <degree></degree>	Pulse Rate <hz></hz>	Scan Rate <hz></hz>	Value of correction <cm></cm>	Remark	
				Difference in ele	vation after the calil	orations <cm></cm>		_

4 1:1 ć e • Ū ⊨ F ÷

Form 1-2 Record of Creation of Elevation Data with Airborne Laser Scanning Survey

Fiscal year of the survey	Area name	Duration of the work	Planning institution
		~	Geospatial Information Authority of Japan

Implementing institution	Chief engineer	
	Head of the work team	

Work process	Duration of work	Quantity	Unit	Comments	Condition	Implemented by	Verified by
Work planning			Set				
Establishment of GPS base stations			Station	Baseline vector distance Visibility at ground stations	Excellent / Good / Fair		
Airborne laser scanning			km ²	Time of scan Ground elevation Ground speed FOV Scan rate Pulse rate PDOP Proportion of measurement loss			
Acquisition of digital photographs for airborne laser scanning			km ²	Lens S/N ratio of lens Shutter speed Resolution			
Establishment of control points for correction			Point				
Creation of 3-D scanning data			Set				
original data			km ²	Amount of adjustment			
Creation of ground data			km ²				
Creation of the elevation data			km ²				
Creation of digital data files			km ²				
Compilation of outputs			Set				

8	8				
Project Name			Implementin Company	ıg	
Flight Area	ght Area		Team Leader		
Aircraft/System			Person in ch	arge	
Item		Value of Parameter	Setting		Remarks
Flight hight above	the ground				
Sea level Alt	titude				
Ground sp	eed				
Number of flig	ht paths				
Percentage of sid	delap (%)				
Pulse rat	e				
Scan ang	le				
Number of s	scans				
Beam diam	eter				
Pulse mo	de				
Others					

Form 2-1 Flight Planning

*A flight path plan map shall be attached. *Locations of the GPS base stations, etc. shall be clearly marked on the flight path plan map.

Point name				Operator		
Date of Observation				Person in Charge		
Address						
Coordinate System						
Coordinates(m)	Х			MSL.Height(m)		
Coordinates(iii)	Y			Ellipsoid Height(m)		
Coordinate	lat					
Coordinate	lon					
Type of GPS Receiver				Analysis Software		
Rate of Observation		seconds	Posi	tive angle of elevation More then		degree
Instrument Height		m		Duration	hr	min
Horizo	ntal loca	tion		Photo of Obs	ervation	

Form 2-2 Description of GPS Base Station

Project Name						
Aircraft				Flight date		
Pilot				Person in charge		
Base(Airport)	Eleva	tion at Base		Team leader		
Datum Plane				Flight hight above the ground		
Name of Flight Area				Weather Condition		
Name of Equipment				Airstream		
Take-off Time				Wind Direction		
Landing Time				Wind Speed		
G Temperature (T)	G-Ter	nperrarure(L)		Temperature		
Details of Flight Record						
Name of flight path	Start time	I	End Time	Remark	Flight Simplified Map	

Form 2-3 Record of Airborne Laser Scanning

*Entry of flight path number may be omitted if scan was conducted continuously along adjacent flight paths. Entry is required for the time of commencement of the scan on the first flight path and the time of completion of the scan on the last flight path. *Entry of time of commencement and completion may be omitted for the other flight paths. Entry of drift angle may be omitted if it is not required

Area	n Name					Leader	
В	ase					Marker	
No	Date	W	eather		Contents of O	paration	Remarks
110.	Date	AM	PM	Aircraft	Contents of O	peration	Kemarks
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

Form 2-4 Flight Operation Report of Aerial Laser Measurement

*The weather of a scan area shall be entered in the columns of the weather.

Title of work	Date of observation	Implemented by	Head of the work	
			team	

Set	1 Set (m)			2 Sets (m)			3 Sets (m)			Difference (m)		Mean (m)			Remarks	
Point name	Х	Y	Н	Х	Y	Н	Х	Y	Н	$\triangle X$	$\triangle \mathbf{Y}$	$\triangle H$	X	Y	Н	

*The allowable range of the differences between data sets: ΔX , ΔY = within 0.020

Point name				Operator				
Date of Observation				Person in Charge				
Address								
Coordinate System								
Coordinates(m)	Х			MSL.Height(m)				
Coordinates(III)	Y			Ellipsoid Height(m)				
Coordinata	lat							
Coordinate	lon							
MSL.Height(m)			,	WLLIP.Height(m)				
Horizo	ntal loca	tion	Photo of Observation					
Sketch								

Form 2-6 Description of Control Points for Correction
	Fiscal year of the work	Scan area		Implementin	g institution	
c1 —	∇ C1				∇ C2	Scanning flight path
	OT1-1	OT1-2	OT1-3	0	T1-4	
C2 —	O T2-1	O T2-2	O T 2-3		O T 2-4	C2
C3 —	O T3-1	ОТ3-2	ОТ3-3	O T 3-4	OT3-5	C3
C4 —	O T 4-1	O T 4-2	ОТ4-3 ⊽С3		O T 4-4	C4
C5 —	O T5-1	O T 5-2	От5-3		O T 5-4	C5
C6 —	O T6-1	O T 6-2	От6-3		O T 6-4	C6
c/	O T 7-1	OT7-2	ОТ7-3		O T 7-4	C/
C8 —	∇ C4				∇ <u>C5</u>	C8

Form 2-7 Distribution Map of Control Points for Correction and Verification Measurements Taken from Different Flight Paths

Note: Either a 1/25,000 or 1/50,000 topographic map shall be used for creation of a distribution map.

A control point for correction and a location for verification of the difference shall be represented with a 4 mm equilateral triangle and a 2 mm-radius circle, respectively, with their names described next to the symbols.

r								
Name area	of work				Implemented	by		
					Head of work team	the		
Point	name				Actual measurements H=			
No		Х	Y		Z	Difference (H-Z)	Remarks	
			Mean					
			Maximum				1	
			Minimum				1	
		Standar	rd Deviation				1	
			RMS error				1	
·							1	

Form 2-8 Three-dimensional Scanning Data Verification Sheet

Name area	e of work						Imp by	lemented			
							Hea worl	d of the k team			
No	Point name	Leveling result	Output of laser scanning	Difference from the result of leveling	No	Point name		Leveling result	Output of laser scanning	Difference from result leveling	the of
1					11						
2					12						
3					13						
4					14						
5					15						
6					16						
7					17						
8					18						
9					19						
10					20						

Form 2-9 Control Point for Correction Survey Sheet

	Mean (m)	Standard deviation (m)	RMS error (m)	Maximum (m)	Minimum (m)	Maximum – Minimum	Number of data
Difference from the result of leveling for the entire							

Name of work area			Implementing institution					
Flight path name		C-	-		C-	-	Difference	Remarks
Point name	Х	Y	Н	Х	Y	Н	\triangle H	
*A com	puter printout ma	ay be used instead	l of this form, pr	ovided the	Minimum			
printout	contains all the in	formation require	d by the form.		Maximum			
					Mean			
					Standard deviation	1		

Form 2-10 Difference between the Measurements Taken from Different Flight Paths

Form 2-11 An example of data entry in the form of the positional data file (word file) (with a pixel size of 0.5m)

File name	: ****.tfw
0.50	: Pixel size in the x-direction (x-scale)
0.00	: Rotation about x-axis
0.00	: Rotation about y-axis
-0.50	: Pixel size in the y-direction (y-scale)
-25999.75	: x-coordinate of the center of the upper left pixel
-7500.25	: y-coordinate of the center of the upper left pixel

Notes · Each value shall be aligned to the left.

- The x- and y- coordinates shall be those at the center of the upper left pixel (expressed in meters to the second decimal place).
- The x- and y-coordinate axes shall not be of the geodetic coordinate system but shall be the ones replaced with the Cartesian coordinate axes.
- Small case alphabetical characters and Arabic numerals shall be used in texts.
- A title of a national base map sheet (*e.g.* 09je932) shall be used as "*****" in a filename.

Name of work area				Implemente	d by		
work area				Head of the	work team		
Map title	Proportion of measurement loss (%)	Map title	Proportion of measurement loss (%)	Map title	Proportion of measurement loss (%)	Map title	Proportion of measurement loss (%)
Mean of the entire area		Minimum		Maximum			

Form 2-12 Survey Sheet for Calculation of Proportion of Measurement Loss

Name of work area					Implementi	ng			
work area					Implemente	ed by	V	erified by	
Point name	А	ctual measurement	nts		Before correction	Before correction		Difference	Remarks
	Х	Y	Н	Х	Y	Н	Н	(m)	
					Correction made	(m)			
*A com	puter printout ma	w be used instead	l of this form pr	ovided the	Minimum				
printout	contains all the in	formation require	d by the form.	ovided the	Maximum				
					Mean				
					Standard deviation	n			
					RMS error				

Form 2-13 Residual Difference at Control Points for Correction

Name of work area (A)				Im	plemented by		
Name of the adjacent area (B)				Head of the work team			
Title of map	Number of points	Mean of measureme	the ent po	elevations at pints			
	Area A	Area B	Area A		Area B		
					Minimum (m)		
					Maximum (m)		
					Mean (m)		
					Standard deviation (m)		

Form 2-14 Verification Result of Existing Data

Name of					Implementing institution			
work area					Implemented by		Verified by	
Point name	Con	trol point for corre	ection		Elevation data		Difference	Remarks
	X Y H X		Y	Н	Н	Kemarks		
*A cc	mputer printout	may be used inst	ead of this form,	provided the	Minimum			
printo	ut contains all the	information requ	ired by the form.		Maximum			
					Mean			
					Standard deviation			

Form 2-16 Elevation Data Survey Sheet

Form 2-18 Data Formats

* notes The x- and y- coordinate axes shall be the Cartesian coordinate axes, instead of the geodetic coordinate axes.

Small case alphabetical characters and Arabic numerals shall be used in texts. A title of a national base map sheet (e.g. 5036IV1634) shall be used in a file name.

Original data

Original data shall be recorded in a csv format in which id and x-, y- and z-coordinates of a measurement point and a pulse number (a number given to each of first, other and last pulses) are described in a single line. If there is a measurement point outside a scan area in a file, data of the point concerned shall not be recorded considering it as a point without data.

File name: *****_org.txt

File structure: ids are a series of numbers and each id appears only once in a file.

id1, x1, y1, z1, p1	x1, y1: Coordinates of a measurement point (expressed in
	meters to the second decimal place)

id2, x2, y2, z2, p2		
: : : : :	z1:	Elevation (expressed in meters to the second
idn, xn, yn, zn, pn		decimal place)
	px:	x is a pulse number

If a scanner which cannot acquire data of other pulses is used, two separate files, *****_f_org.txt for the first pulse and *****_l_org.txt for the last pulse, shall be created. The format for ground data shall be used for these files.

Ground data

Ground data shall be recorded in a csv format in which id and x-, y- and z-coordinates of a measurement point are described in a single line. If there is a measurement point outside a scan area in a file, data of the point concerned shall not be recorded considering it as a point without data.

File name:	*****_grd.txt
File structure:	Original data and ground data of a measurement point shall have the
	same id. Ids of measurement points whose ground data has been
	obtained through interpolation shall be given a series of numbers
	with "-" attached and each id appears only once in a file.

id1, x1, y1,	z1	x1, y1: Coordinates of a measurement point (expressed in
		meters to the second decimal place)
id2, x2, y2,	z2	
: : :	: z	Elevation (expressed in meters to the second
idn, xn, yn,	zn	decimal place)

Elevation data (Grid data)

Elevation data shall be recorded in a csv format in which x-, y- and z-coordinates and an attribution code of a measurement point are described in a single line. If there is a measurement point outside a measurement area in a file, data of the point concerned shall not be recorded considering it as a point without data.

File name: *****_2g.txt

File structure: ids are a series of numbers given to respective grids in an ascending order starting from the upper left grid, moving to the right and then down and ending at the lower right grid. Each id appears only once in a file.

id1, x1, y1, z1, A1	x1, y	1: Coordinates of a measurement point (expressed in
		meters to the second decimal place)
id2, x2, y2, z2, A2		
: : : : :		
idn, xn, yn, zn, An	z1:	Elevation (expressed in meters to the second
		decimal place)
	A1:	Attribute : TRUE = 1. FALSE = 0

* Attribute 'TRUE' shall be given to a 2m-grid if there is ground data in the grid and attribute 'FALSE' shall be given to a 2m-grid if there is no ground data in the grid. Attribute values of 1, 0 shall be given to the data items when their attributes are 'TRUE,' 'FALSE' respectively. If the data is outside the range, it shall not be recorded, being considered as no data.

Water surface polygon data

A csv format in which coordinates of polygons are listed or the shape (polygon) format shall be used for water surface polygon data.

An example of a shape-format polygon data file is shown below.

Structure of a polygon file

File name:	Water_poly.shp
File structure:	A series of numbers shall be used as ids. Each id number appears
	only once in a file
id1	id1:A polygon label, id1, may be placed at any location in a polygon.
id2	id1:Integer 10 Column
•	
idn	

Locations of polygon labels of a polygon for a water surface, which has an island (hole) in it:

Polygon labels of a polygon of water surface with an island in it may be placed anywhere in the water surface except on the island (hole) polygon and polygon labels of the island (hole) polygon may be placed anywhere in the island polygon.

Polygon data of the water surface and that of an island (a hole) in it may not have to be placed consecutively in a file.

Cloud surface polygon data

A csv format in which coordinates of polygons are listed or the shape (polygon) format shall be used for Cloud surface polygon data.

An example of a Shape-format polygon data file is shown below.

Structure	of	no	lygon	file
Structure	01 2	t po.	iygon	me

File name:	Cloud_poly.shp	
File structure:	A series of numbers shall be used as ids.	Each id number appears
	only once in a file	
id1	id1: A polygon label, id1, may be placed at any	location in a polygon.
id2	id1:Integer 10 Column	
•		

Idn

Range contained in the cloud polygon, the data is not recorded.

Contur Line file

A csv format in which coordinates of polylines are listed or the shape (polyline) format shall be used for water surface polyline data.

An example of a Shape-format polyline data file is shown below.

Structure of a Lin	ne file							
File name:	*****_con.	*****_con.shp						
File structure:	A series of numbers shall be used as ids. Each id number appears							
	only once in	n a file						
id1,contour	1,code1	id1: A line label, id1, may be p	placed at any location in a					
		line.						
id2,contour2	2,code2	contour1: Elevation of the conto	our value					
• •	•							
idn,contouri	n,coden	code1: Attribute : total curve =1	, principal curve = 0					

List of stored data

A list of 1:4,000 national base map sheets whose polygon data is stored on a recording media shall be indicated in single-byte alphanumeric characters (lower-case letters for alphabetic characters) and shall be stored in the said media as a file entitled "file_itiran.txt".

Form 2-19 Folder Structure

The structure of folders is shown below:

A folder "LIDAR_ND47-4" for each survey unit shall contain files of original data, ground data, contour data, ortho image data and elevation data (Grid data in csv format) of the unit. Each data of the same base map shall be stored in each media. Other folder shall be stored water polygon and cloud polygon.

In addition, a list of names of files stored in each media shall be and created and stored. The folder names shown below shall be used.

	 υ	5		
			Implementing	
Name of	The amount		institution	
work Area	of work		Verified	
			Implemented	

	Inspection records of filtering										
Mon	North and		Fraffic	facility		Build	Small	W	Vegetat	Othor	Remarks
мар	Number	Road facilities	Railway	facilities	Moving object	ing	Objects	water	ion	other	

Table -1 Ground Data task of creating accuracy control table

			Implomonting	
			Imprementing	
Name of		The amount	institution	
work Area		of work	Verified	
		Implemented		

Grid data the task op creating $\mathrm{Ins}\mathbf{p}\mathrm{ection}$ records					
Map number	Error of Elevation value	Lack of grid	Lack of attrib u te dat a	Lack of joint	Remarks

Table -2	Grid data task of creating accuracy control table
----------	---

	0				
Name of work Area		The amount of work		Implementing	
				institution	
				Verified	
				Implemented	

Table -3	Digital data	file task of	creating	accuracy	control table
	A		· · · · · · · · · · · · · · · · · · ·		

Digital data file task of creating ${ m Insp}$ ection records								
	Original data		Ground data		Gr id data		Water Polygon	
Map Number	Graphic quality of the file structure point	Quality of the file structure attribute point	Graphic quality of the file structure point	Quality of the file structure attribute point	Quality of the header format	Quality of the text format	Quality of the p olygon file structure	Remarks

Appendix-4

PROJECT FOR COMPREHENSIVE FLOOD MANAGEMENT PLAN FOR THE CHAO PHRAYA RIVER BASIN

Number of sheet (6666sheets)

ORIGINAL DATA DELIVERY AREA GROUND DATA DELIVERY AREA GRID DATA DELIVERY AREA CONTOUR DATA DELIVERY AREA ORTHOPHOTO DATA DELIVERY AREA

Number of sheet (6666sheets)