THE PREPARATORY SURVEY ON APPLICATION OF WASTEWATER RECLAIMING IN SOUTHERN BALI WATER SUPPLY SYSTEM
 IN
 THE REPUBLIC OF INDONESIA

FINAL REPORT

VOLUME III

SUPPORTING REPORT (APPENDICES)

JUNE 2012

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

TOYOTA TSUSHO CORPORATION	OPS
NIHON SUIDO CONSULTANTS CO., LTD.	CR (5)
METAWATER CO., LTD	12-029

THE PREPARATORY SURVEY ON APPLICATION OF WASTEWATER RECLAIMING IN SOUTHERN BALI WATER SUPPLY SYSTEM IN THE REPUBLIC OF INDONESIA

REPORT CONTENTS

```
Volume I Summary
Volume II Main Report
Volume III Supporting Report (Appendix)
```

TABLE OF CONTENTS
APPENDIX 1 INTERVIEW SURVEY ON THE RECLAIMED WATER USE
1.a Introduction Appendix 1-1
1.b Interview Survey Method Appendix 1-1
1.c Questionnaire for the Survey. Appendix 1-2
1.d Survey Target Appendix 1-3
1.e Result of Interview Survey Appendix 1-4
1.f Result of Water Demand Survey Appendix 1-11
APPENDIX 2 WATER QUALITY SURVEY
2.a Terms of Reference Appendix 2-1
2.b Survey Photo Appendix 2-3
2.c Survey Result Appendix 2-4
APPENDIX 3 TOPOGRAPHIC SURVEY
3.a Terms of Reference Appendix 3-1
3.b Survey Photo Appendix 3-3
3.c Survey Result Appendix 3-3
APPENDIX 4 GEOTECHNICAL SURVEY
4.a Terms of Reference Appendix 4-1
4.b Survey Photo Appendix 4-4
4.c Survey Result Appendix 4-10
APPENDIX 5 CONCEPT DESIGN OF RECLAIMED WATER TREATMENT FACILITY
5.a Calculation Sheets Water Reclaimed Water for Bali Appendix 5-1
5.b Design Drawing Appendix 5-7
APPENDIX 6 CONCEPT DESIGN OF TRANSMISSION FACILITY
6.a Design Criteria Appendix 6-1
6.b Equipment Design Appendix 6-4
6.c Design Drawing Appendix 6-16
APPENDIX 7 INVESTIGATION DATA OF WATER DISTRIBUTION AND SUPPLY FACILITIES
7.a Examination and Repair Strategy of Existing Distribution Pipe Appendix 7-1
7.b Study of Conversion for Water Service System in Hotels Appendix 7-3
APPENDIX 8 DATA OF PROJECT COST ESTIMATE
8.a Component of Project Cost Appendix 8-1
8.b Construction Cost. Appendix 8-1
8.c Engineering Service Appendix 8-21
8.d Tax Charges. Appendix 8-22
8.e Operation and Maintenance Cost Appendix 8-24
APPENDIX 9 DETAILED PROJECT ACTIVITY PLAN
9.a Background of the Project Appendix 9-1
9.b Objectives and Benefits of the Project Appendix 9-1
9.c Scope of the Project and Alternative Project Components. Appendix 9-2
9.d Maps and Social and Environmental Descriptions of the Project Sites Appendix 9-2
9.e Project Activities from Pre-Construction Stage to Post-Operation Stage Appendix 9-2
APPENDIX 10 ENVIRONMENTAL EFFECT STUDY REPORT 10.a Environmental Screening Appendix 10-1
10.b Alternative Analysis for Environmental and Social Considerations Appendix 10-3
10.c Environmental Scoping Appendix 10-8
10.d Evaluation of Moderately Significant Negative Impacts and Mitigation Measures Appendix 10-24
10.f Public Consultations Appendix 10-26
APPENDIX 11 A DRAFT TOR FOR THE EIA
11.a Introduction Appendix 11-1
11.b Scope of the Project and the EIA Appendix 11-1
11.c Methodology of the EIA. Appendix 11-3
11.d Implementation Structure of the EIA and Other Information Appendix 11-4

APPENDIX 1

INTERVIEW SURVEY ON THE RECLAIMED WATER USE

APPENDIX 1 INTERVIEW SURVEY ON THE RECLAIMED WATER USE

1.a Introduction

Interview survey was executed to understand the usage and demand of reclaimed water in the southern Bali area by visiting the person in charge of the water supply and drainage facility management in a power plant, a harbor facility, large-scale hotels, golf courses, and shopping malls, etc., using the questionnaire prepared beforehand.

1.b Interview Survey Method

The reclaimed water demand changes depending on the water quality and the charge. Therefore, three levels of reclaimed water quality shown below are set to understand the demand of each water quality level in the interview survey. Level 1 reclaimed water was set to ask the interviewee his image on the reclaimed water.

Level 1 reclaimed water: Reclaimed water that can be used as potable water and cooking water directly and indirectly.

Level 2 reclaimed water: This is not water quality (level 1) that can be used as potable water and cooking water. Reclaimed water that can be used without problem on water quality for other usages (shower, pool, hand wash, toilet flush, sprinkling water for landscaping pond and garden, and others.)

Level 3 reclaimed water: Reclaimed water that can be used for landscaping such as ponds and sprinkling water for garden. There is a problem on the water quality for other usages.

The charge of reclaimed water changes greatly depending on the kind and scale of the treatment process, the scale (diameter, length and others) of the transmission facility and the scale of the pump facility. The interview survey started at the beginning of the survey, when the construction cost and O\&M cost could not be calculated yet. The reclaimed water charge was not shown at the interview. Therefore, willingness to pay (unit charge) for the reclaimed water of each level was questioned. Moreover, necessity of receiving tank that is necessary when using the reclaimed water, indoor dual water supply piping (independent pipe for clear water and reclaimed water), and others were questioned. And the maximum installation cost can be borne is also questioned.

In the interview survey, water source, demand by each usage, scale of water service facility, drain facility, waste water treatment plant, installation cost and O\&M cost were confirmed to understand the background of the reclaimed water demand in each facility.
1.c Questionnaire for the Survey

1.d Survey Target

Table 1.d. 1 shows the reclaimed water demand expectations by usage for each target facility.
Table 1.d. 1 Targets and Reclaimed Water Demand Expectations for Interview Survey

Target	Expectation of Usage and Demand on Reclaimed Water
Airport	- It can be used for sprinkling water of the green space in the airport and toilet flush water in the terminal facility. Especially, the volume of toilet flush water is large because there are many users.
Power Plant	- It can be used for a large amount of cooling water, sprinkling water in the site, and toilet flush water in the administration building.
Benoa Harbor	- It can be used for a large amount of washing and cleaning water for the marine product processing company. - It can also be used for washing water and the ballast water of the ship.
Large-scale luxury hotel (Four and Five star hotels)	- As there is a huge garden, it can be used for a large amount of sprinkling water. - As there are many guests, it can be used for a large amount of toilet flush water. - As high groundwater tax is imposed, it can be used for an alternative of groundwater.
Golf course	- It can be used for a large amount of sprinkling water to maintain the golf course.
New resort development (Serangan Island)	- The resort development plan for the Serangan Island was prepared in the past. It can be used for sprinkling water, toilet flush water and others if facilities such as hotels are constructed, though the situation depends on the development trend of afterwards.
Large Scale Shopping Mall	- It can be used for toilet flush water, sprinkling water and others as the counterpart proposes.

Figure 1.d. 1 shows the location of the target area and facilities of the demand survey. Legian area was excluded from the demand survey, because it was thought that there were few large-scale and luxury hotels expected to use sprinkling water.

Figure 1.d. 1 Location of the Target Area and Facilities of the Demand Survey

1.e Result of Interview Survey

As a result of the interview survey, the demand for level 1 reclaimed water was little by the sensuous reason: They do not want to use the wastewater for drinking and cooking even though it is reclaimed. Therefore, the report of the survey by the facility and area will be focused on the demand for level 2 and 3.
(1) Power Plant (Indonesia Power)

This power plant was expected as a recipient of the reclaimed water because it was located near the Denpasar WWTP where the construction of reclamation facility is examined. However, it turned out that its power generating system does not need a huge amount of the cooling water. Moreover, the treated water from the internal wastewater treatment plant is used for sprinkling water, therefore it is considered that the demand of a level 3 reclaimed water is a little. On the other hand, the interviewee answered that there is a possibility to buy the level 2 treated water if the charge is under $\mathrm{Rp} .228 / \mathrm{m}^{3}$, the groundwater tax of the power plant. However, level 2 reclaimed water demand cannot be expected under the current situation because the unit cost of current underground water is set considerably low.

(2) Ngurah Rai International Airport

This airport is using a small amount of PDAM water, relies on the groundwater from the internal deep well. It has a plan to expand the terminal. The plan which the groundwater is scheduled to be used as the main water source in the future is advanced now. It is at the tender stage at present, and scheduled the facility to be completed in 2013. On the other hand, there is a plan to improve the treatment facility to use the treated water as sprinkling water, toilet flushing water, and cooling water and others, though currently, the generated sewage has been discharged into the sea directly from the wastewater treatment plant after treatment. Moreover, the interviewee answered that the supply of the treated water is enough compared with the demand for the reclaimed water after the terminal is expanded. Therefore, the demand for level 2 and 3 reclaimed water is limited under the current situation.

However, it is thought that there is potential as a recipient for the reclaimed water if the groundwater that is the pillar of the water supply plan becomes difficult by legal regulation, groundwater quality problem, profitability, maintenance and others in the future. It seems possible to expect as future potential recipient for the reclaimed water.

(3) Benoa Harbour

In the reclaimed water business prepared by Bali province government independently, Benoa Harbour is a user of the reclaimed water. But a concrete usage of the reclaimed water is not mentioned.

It was expected that a large amount of reclaimed water could be used for ship cleaning, ballast water, washing water for marine product processing company and others. The demand for ship cleaning and ballast water was not made clear by the interview survey. The groundwater tax is set cheap as Rp.1,216/m ${ }^{3}$ from January 2011 though currently groundwater is used in the marine product processing company. Therefore, it is thought to be difficult to expect the level 2 and 3 reclaimed water demand under the current situation.

But if the water demand for ship cleaning and ballast water is expected and/or the groundwater is difficult to use due to a regulation, the harbour would become a good recipient.

(4) Golf Course

There are two golf courses in the survey area. One is the Grand Bali Beach Golf Course in the Sanur area (9 holes). The other is Bali Golf and Country Club in the Nusa Dua area that is in the Bali Tourism Development Cooperation (BTDC) area where the national tourism project has been developed. Toilet flush water, shower water at clubhouse (level 2 reclaimed water) and sprinkling water (level 3 reclaimed water) in the course can be considered as the demand for reclaimed water but the level 2 reclaimed water demand cannot be expected in those golf courses because dual water supply piping system is required as well as a large amount of reclaimed water cannot be expected. Therefore, the result of the survey on
level 3 is described below.
In the Grand Bali Beach Golf Course in Sanur area, the treated water which is collected at the adjoining Inna Grand Bali Beach Hotel and treated at the WWTP is used for the sprinkling of the golf course. Moreover, in the worst case, if the emergency that cannot use the treated water occurs, it is possible to use the nearby river water temporarily. Therefore, the demand for level 3 reclaimed water is limited. Public sewers are developed in the Sanur area under the Sewerage Project, the sewers connections are forced by a regulation and the in-house wastewater treatment facilities are to be abandoned, then the level 3 reclaimed water demand would become high.

In the Bali Golf and Country Club of Nusa Dua area, the generated sewage is treated in the WTTP of BTDC, then the treated water is purchased as reclaimed water (hereinafter referred to as BTDC irrigation water) and used for sprinkling, etc. Usually, the sprinkling water of about $500 \mathrm{~m}^{3} / \mathrm{d}$ is required during the dry season. Among them, about $100 \mathrm{~m}^{3} / \mathrm{d}$ is supplied from the rainwater reservoir in the golf course, about $400 \mathrm{~m}^{3} / \mathrm{d}$ is supplied from the BTDC irrigation water as much as possible, and the shortfall is supplied from groundwater.

According to the record of BTDC irrigation water supply amount to the golf course in the BTDC area in 2009 (Table 1.e.1), the amount of maximum reclaimed water supplied from the WWTP of BTDC to the golf course was $10,200 \mathrm{~m}^{3} / \mathrm{month}$ (October, 2009), $329 \mathrm{~m}^{3} / \mathrm{d}$ (converted into daily amount). From these records, level 3 reclaimed water demand becomes about 70 , subtracted $100 \mathrm{~m}^{3} / \mathrm{d}$ (rain water) and $329 \mathrm{~m}^{3} / \mathrm{d}$ (reclaimed water of BTDC) from $500 \mathrm{~m}^{3} / \mathrm{d}$ (demand for sprinkling during the dry season). The quality of BTDC irrigation water is so bad that it is used for sprinkling after mixed the BTDC irrigation water with groundwater from the deep well in another pond of the golf course. After 2009, the demand decreased to only $70 \mathrm{~m}^{3} / \mathrm{d}$ because the groundwater tax rose though there is demand for the reclaimed water as an alternative water source of groundwater. Moreover, the interviewee answered that there was a possibility of purchasing more level 3 reclaimed water if it was possible to supply it by lower charge than Rp. $6,812 / \mathrm{m}^{3}$, BTDC irrigation water charge.

Considering the circumstances mentioned above, it was clarified that the demand of level 3 reclaimed water in the golf course is limited now, but it can be expected depending on the development of sewer connections to the public sewerage system and BTDC irrigation water supply service.
(5) Large Scale Hotel

1) Sanur Area

In the Sanur area, there seems to be approximately ten large-scale hotels (four or five star hotel) with many guest rooms, also large garden, and high reclaimed water demand. In this survey, the interview was done for the Bali Hyatt Hotel (five star hotel) and the Sanur Paradise Plaza Hotel (four star hotel), etc.

Bali Hyatt Hotel has a waste water treatment plant, and the treated water is used as sprinkling water for the garden and landscape water for the pond. There is a plan to improve the sewage treatment enough to be used as cooling water in the future. Therefore, the demand for level 3 reclaimed water is considered as a little. Moreover, the interviewee answered that use of the level 2 reclaimed water is not assumed because a large scale construction is required to have dual water supply piping system in the building to use level 2 reclaimed water for toilet flush, etc. Therefore, the demand for the level 2 reclaimed water is depending on the establishing the dual water supply piping system.

At Sanur Paradise Plaza Hotel, the level 3 demand is limited because the garden is small and the demand is only about $5 \mathrm{~m}^{3} / \mathrm{d}$ even at the dry season. The demand for the level 2 reclaimed water would be limited when it is used for the toilet flush installation of new separate pipes are required but the installation work is difficult, for pool water the total water consumption is small due to circulation use
and a bad image even if the reclaimed water quality is good.

2) Nusa Dua Area

In the Nusa Dua area, there is BTDC service area developed as a national tourism project (hereinafter referred to as BTDC area), and there are approximately ten large-scale hotels (four or five stars). The generated sewage from these hotels is treated at the WWTP of BTDC. A part of treated water is purchased as BTDC irrigation water, and used as sprinkling water for the garden and others.

At present, the influent is only around $5,000 \mathrm{~m}^{3} / \mathrm{d}$ - average, and $6,000 \mathrm{~m}^{3} / \mathrm{d}$-maximum, though the design capacity of the WWTP of BTDC is $10,000 \mathrm{~m}^{3} / \mathrm{d}$. About $2,400 \mathrm{~m}^{3} / \mathrm{d}, 40 \%$ of this treated volume at present is further treated (design capacity of the facility: $3,000 \mathrm{~m}^{3} / \mathrm{d}$) and sold as BTDC irrigation water. BTDC is now advancing the improvement program of sewage treatment facility and the reclaimed water treatment facility by BOT project, and the progress should be taken care of in the future.

There are about four large-scale hotels (four or five star hotel) outside the BTDC area. Generated sewage in the hotel is treated in the internal WWTP, and the BTDC irrigation water is not used.

Based on the above-mentioned situation, the result of the reclaimed water demand survey in large-scale hotels in Nusa Dua area is reported.
< Large-scale hotels in BTDC area >
Among large scale hotels in the BTDC area, the interview survey was done for Club Med located near the WWTP of BTDC, Ayodya Resort and Novotel Nusa Dua located far away from the WWTP, Melia Bali Villas Resort located between them, etc.

It was thought that there were hotels which have the dual pipe system because the BTDC irrigation water was supplied in the BTDC area. But it was clarified that such a hotel doesn't exist through the interview with BTDC and hotels.

First of all, Novotel Nusa Dua and Club Med answered that they would not break the wall and install the pipe only for the reclaimed water to supply the level 2 reclaimed water

Water is leaking frequently in Ayodya Resort Hotel because 20 years has already passed since the pipe was installed in the hotel. It is necessary to examine remedial measures including the dual water supply piping in the future. There was an answer that they might examine the use of the reclaimed water depending on the level 2 reclaimed water charge. Ayodya Resort Hotel uses the groundwater of the deep well about $200 \mathrm{~m}^{3} / \mathrm{d}$ at the maximum, and it is thought that it influences largely if the reclaimed water charge is cheaper than the groundwater tax when the use of the reclaimed water is examined.

It is scheduled that three hotels (250 rooms at Marriott Hotel, 50 rooms at the Royal Kamuela Hotel, and 50 rooms at Laguna Villa) will be constructed by the end of 2011, and 350 rooms will increase in total in the BTDC area. In addition, the construction of three facilities (20 rooms at Villa NW-2, 200 rooms at $\mathrm{N}-5$, and 5000 seats in the convention hall) is also scheduled. As the water demand will increase further in these facilities, but the present water supply capacity is not easily increase as stated in the previous section. Therefore, a promotion of the level 2 reclaimed water use by introduction of the dual water piping system in these facilities may effective use the limited water supply.

As the demand for the level 3 reclaimed water, three hotels other than Ayodya Resort Hotel answered that they have enough amount of irrigation water from BTDC. As shown in Table 4.3.2, large amount of BTDC irrigation water is supplied to St. Regis Bali Resort which is located farthest away from WWTP of BTDC. New demand for the level 3 reclaimed water can hardly be expected under the present situation that there is no complain about the BTDC irrigation water supply volume and they are satisfied with

Ayodya Resort Hotel answered that they were using the rain water saved in the pond of the hotel about $100 \mathrm{~m}^{3} /$ the day for the garden during the dry season because the amount of the reclaimed water supplied from the WWTP of BTDC was not enough. It is difficult to say that the volume of the BTDC irrigation water only for Ayodya Resort Hotel is insufficient because the rain water saved in the pond in the hotel is free, and Novotel Nusa Dua Hotel receives the enough reclaimed water from BTDC. Therefore, there is high possibility of attempting the use of free rain water compared with the charged BTDC irrigation water.

Considering the circumstances mentioned above, it is thought that the BTDC irrigation water supply satisfies the demand for the sprinkling water in BTDC.

Table 1.e. 1 Amount of BTDC Irrigation Water Supplied to Each Facility (2009)

NO	nama investor	AIR IRIGASI TH 2009 (VOLUME DALAM M3)												$\underset{2009}{\text { TOTAL TH }}$
		JaN	PEB	MAR	APRIL	MEI	JUNI	JULI	AGST	SEPT	OKT	NOP	DES	
1	Oub Med	47,00	-	-	4.352,00	6.012,00	5.681,00	7.095,00	8.334,00	2,718,00	6.981,00	4.381,00	1.808,00	47,409,00
2	NDSH (PT. Sejahtera ind)	-	-	-	-	-	-	-	-	-	-	.	,	
3	Meia Bali	488,00	94,00	4,00	1.761,00	1.979,00	1,690,00	5.082,00	9.036,00	5.916,00	8.423,00	7.860,00	7.130,00	49.463,00
4	Hotel Putri Ball	-				-	-	\checkmark	-		.	-	-	-
5	Sheraton Nusa Indah/NDGI	-	-		-	-	-	\cdot	-	${ }^{-}$	-	-	-	-
6	Grand Hyatt	-	-	1.324,00		3.346,00	4.786,00	7,690,00	8.566,00	$5.143,00$	7.601,00	4.952,00	1.414,00	44.822,00
7	PT. KAKLUSheraton Lagcon	-	-	-	-		-	-	-		-	-	-	-
8	PT. Banigati Betegak	-	-	-	-	-	-	-	-		-	-	-	
9	PT. Bali Nusadewata villace	-	-	-	-	-	-	-	-		.	-	-	-
10	PT. Chikara Inti Bahagia	-	-	-	-	-	\cdots	,	-			-	-	-
4	Solsollect				3300000	1500000		1050000	5750	100000	10.30000	1550000	1950000	10727500
12	\cdots Intimulyforlies													
13	Metafora (LOT SW2)	-	98,00	101,00	127,00	318,00	546,00	879,00	1.775,00	820,00	1.098,00	582,00	611,00	6.956,00
14	Sentral Telephone	-	-	-	.	-	\checkmark	\bigcirc	-			-	.	-
15	Melia Benoa/Citra Rapi	162,00	128,00	392,00	1.154,00	1.059,00	1.103,00	996,00	270,00	215,00	220,00	99,00	157,00	5.957,00
16	Hann Restaurant/PT. BSS	-	-	-	-	-	-	-	-		-	-	-	
17	Hotel Grand Bali/Intersis	-	.	-	-	-	-	-	,		-	-	-	
18	Conrad Bali Resort/OtB	705,00	267,00	911,00	1.971,00	4.862,00	1.756,00	4.712.00	5,363.00	2.453,00	5.144,00	3.500,00	1.300,00	32,944,00
19	Villa Kayu Manis/Blok 5/Partha Stana	33,00	3,00	67,00	275,00	334,00	547,00	570.09	529,00	524,00	468,00	478,00	209,00	4.037,00
20	Se-Regis/Perd (5-b)			1.583,00	3.304,00	1,216,00	2.369,00	6. 3×9900	0.153,00	7,000,00	11,019,00	9,590,00	7.198,00	57.184.00
21	Cormmon Area	233,00	2.193,00	6.668,00	9.910,00	17.727,00	12.948,00	22,356,00	37,109,00	21,681,00	27.544,00	22.580,00	$7.742,00$	188,691,00
22	GPL	-	-				-	.	
23	Bal Tropic	-	.	.				-			539,00	49,00	13,00	
24	Proyek N-5	98,00	.	.	.	-	.	.	112,00	1.053,00	211,00	244,00	368,00	2.086,00
	TOTAL	1.766,00	2.783,00	11.050,00	45.854,00	51.853,00	42.426,00	66,231,00	78,423,00	49,323,50	79.448,00	70.815,00	47,450,00	546.821,00

As mentioned above, in the BTDC area, the number of accommodation facility will increase by 350 rooms by the end of 2011, then 220 rooms afterwards, and construction of the convention hall with 5000 seats is also scheduled. These facilities will be built in BTDC where the land is originally green space. Consequently the green area will decrease and the demand of the level 3 reclaimed water in BTDC can be thought to be in the direction of decrease in the future.

< Large-scale hotel outside BTDC area >

The interview was done for Nikko Bali Resort and Spa where the number of guest room is the largest outside the BTDC area. This hotel uses the groundwater of the deep well. The wastewater generated in the hotel is treated at the internal wastewater treatment facility. The treated wastewater is used as sprinkling water of the garden, cooling water, and landscaping water to ponds etc. The water for these usages will be sufficient in the future, and the demand for the level 3 reclaimed water is hardly expected. In case of the level 2 reclaimed water, if all the cost for the indoor dual water supply piping work is subsidized, interviewee answered that he may purchase the level 2 reclaimed water of $20-25 \mathrm{~m}^{3} / \mathrm{d}$ as pool water, $70-80 \mathrm{~m}^{3} / \mathrm{d}$ as clothes washing water, and toilet flush water by around Rp.10,000/m ${ }^{3}$.

The construction of three hotels (Mulia, Ritz Calton, Kedung New Wall Hotel) and one villa is scheduled outside the BTDC in Nusa Dua area in the future. It is likely that the demand for the water supply increases, but the water supply volume cannot be increased accordingly as explained in the previous section. It is thought that the need of level 2 reclaimed water use becomes high.

From the above-mentioned viewpoint, the demand for the level 3 reclaimed water cannot be expected because the treated wastewater by their own wastewater treatment facility is already used for irrigation purposes, but the demand for the level 2 reclaimed water can be expected because the water demand itself will be increased but the supply volume is difficult to increase under the current waterworks supply capacity. It is thought that the level 2 reclaimed water should be used effectively to cover the gap between the water demand and supply.

3) Benoa Area

The interview survey was done in the Benoa area for three large-scale hotels (Melia Benoa, Bali Tropic Resort and Spa, Conrad Bali Resort and others) located near the WWTP of BTDC.

The demand for the level 2 reclaimed water may depend on the introduction of dual water supply pipe work, the same as in the case of Nusa Dua area.

On the other hand, the demand for the level 3 reclaimed water is limited because of following reasons. The WWTP of BTDC accepts and treats the sewage generated at three hotels (Melia Benoa, Bali Tropic Resort and Spa, and Conrad Bali Resort) located near the WWTP but outside of BTDC area because those hotels is close to the WWTP, and provides the BTDC irrigation water to these three hotels. In the large scale hotels in Benoa area other than these three hotels, internal wastewater treatment facilities have been constructed and the treated wastewater is used for gardening.

4) Jimbaran Area

There were three large-scale hotels in the Jimbaran area, and the interview survey was done for Bali Intercontinental and Four Seasons Resort. The demand for level 3 reclaimed water is limited because the irrigation water is already supplied from their own wastewater treatment facilities. But the demand for level 2 reclaimed water may be expected by installation of dual water supply system to the hotels.
5) Kuta Area

In Kuta area, interview survey was done for Bali Dynasty resort, Hard Rock Hotel Bali, etc. As in the case of the large-scale hotels in other area, the demand for level 3 reclaimed water is limited because the irrigation water is already supplied from their own wastewater treatment facilities. But the demand for level 2 reclaimed water may be expected by installation of dual water supply system to the hotels.
(6) Serangan Island

The development of the Serangan island started in 1994. The island is expanded from 100ha to 400ha by reclamation. But the development has been interrupted with the collapse of Suharto administration in 1998. This development was advanced without building consensus with the resident. Therefore, the problem of the interest with the resident is not solved. Moreover, Bali provincial government cannot understand the trend of the Serangan island development, because the reclamation part on this island (almost vacant lot at present) was sold to the company in Singapore. In addition, there was a bridge construction project to connect Serangan island and Benoa peninsula. But there is information that the construction plan has not approved by the opposition of Benoa harbor and airport.

From such a situation on the Serangan island, it is thought that it is not easy to think that the resort development will begin in the near future, and it is not in the situation that the demand for the reclaimed water can not be expected.

(7) Large Scale Shopping Mall

There are five large-scale shopping centers in Denpasar City and Badung Regency that was the survey area of the study. The interview survey was done for Mal Bali Galleria that was the biggest shopping mall among those shopping centers. Approximately $30 \mathrm{~m}^{3} / \mathrm{d}$ as toilet flush water and $30 \mathrm{~m}^{3} / \mathrm{d}$ as gardening water was expected as a target usage for the treated water in this facility. However, the willingness to pay for the level 2 reclaimed water as toilet flush water was quite low about Rp. $1,000-2,000 / \mathrm{m}^{3}$. Moreover, the water source of the gardening is free river water at present. Therefore, the demand for the level 2 and 3 reclaimed water can hardly be expected because of the low water demand and the low willingness to pay.

(8) Green Belt along Main Road and Park

The interview survey was done for the demand of the reclaimed water as sprinkling water for the green belt along the trunk road and the park by Dinas DKP under the Badung Regency administration. Dinas DKP uses the river water for free for watering. The water from the Mati River is used as gardening water for Nusa Dua area and Kuta area. But the water is not suitable for the watering because it contains high salinity concentration. During the dry season, the volume of the water drops, and earth and sand enters. Therefore, if the reclaimed water is purchased cheaper than the groundwater tax in the Badung Regency (After the price cut), the answer they could purchase about $60 \mathrm{~m}^{3} / \mathrm{d}$ (Each five round trips a day by two tank tracks $\left(6 \mathrm{~m}^{3}\right)$) was obtained. However, it is expected that the groundwater tax for the government agency after price cut is suppressed to low about Rp.1,000/m ${ }^{3}$. Therefore, the demand for level 3 reclaimed water may be limited due to its charge.

1.f Result of Water Demand Survey

No.		Name	Area	Adures			$\begin{gathered} \text { JICA Team } \\ \text { Attendant } \\ * *) \end{gathered}$		PDAM Tariff(Rp./m3)		$\begin{array}{\|c\|} \hline \text { Deep Well Tax } \\ (\mathrm{Rp} . / \mathrm{m} 3) \end{array}$		IditionInternal WWTPOperating C ost(Rp./Month)	$\left\|\begin{array}{c} \text { Indor Doal } \\ \text { Piping sysem } \end{array}\right\|$	Renexaion	$\begin{gathered} \text { Possibility of the } \\ \text { reclaimed water use } \end{gathered}$	Williggesestopay	$$		$\begin{aligned} & \text { Indoor Duan Ppiping Insatlition } \\ & \text { work } \end{aligned}$	Other ItIormation
	Facilites				tel.																
101	$\underset{\substack{\text { Ceneatiog } \\ \text { Sution }}}{\substack{\text { a }}}$	Ioneia Power	${ }_{\text {Pemengan }}^{\text {Peman }}$		72021	IR.IGAN SUBAWA PURTA (MANAGER TEKNIK)	SS,SM,K.,.DP	2221 15:30-16:30	PDAM water is not used	Avel32	${ }^{228}$	NA	NA	not exuiped		mssble	less hana 2arp./m3	NA	ок		Treated water will be supplied from WWTP in the future. Therefore gardening water will be enough.
102		The Grand Bali Beach Golf Course	Smur	n. Hang Tual 58 Samur	${ }^{287}$	I Ketut Raka Adnyana (HR. GA. \& Leagal Manager) GA. \& Leagal Manager)	HUSK,SM,DP	$21816.000-1820$	8,000	nA	NA	NA	Capacity, Cost: NA equipped with WWTP	note equiped	notequipped	$\begin{aligned} & \text { may be used only in } \\ & \text { emergency } \end{aligned}$	${ }^{1.0008 p / m 3}$	NA	ок	will not be installed even if the cost is subsidized	Our grow, Ina Grand Bali Beesh Hoel owns WWTP.
${ }^{103}$		Bali Goff Country Culb	Nusa Dua	asan Wisan Nusas Dua 0363	71799	Wayan Nawa (Executive Asst. Manager General Affairs)	SK,SM,YK,DP	$3116.000-18: 20$	10,300	(2019) Ave23	20,000	Max,100	wse BTDC	noteceniped	not cuiped	posible	$\begin{aligned} & \text { less than BTDC-IW } \\ & (5,200 \mathrm{Rp} . / \mathrm{m} 3) \end{aligned}$	ng	ок	will not be installed	The pond which stores the rain water, well water, BTDC-IW and PDAM-IW is used for gardening
104	Airport	Ngurah Rai Internationarl Airport	Tuban	Bandar Udara Ngurah Rai Gedung Wisti Sabha Lt. 3 Tuban Kuta	751	$\begin{aligned} & \text { Gunung Banendro (Manager } \\ & \text { of General Engineering and } \\ & \text { Eouipment) } \end{aligned}$ Equipment)	U.SK, M, Y,	$22514.20 \cdot 15.50$	NA	(2010) Ave2, 24	7,434	NA	equipped with WWTP Capacity, Cost: NA	noteemipped		will not be used (deep well has enoughcapacity and expansion of WWTP will be planned)		NA	ок	be sasalleded atepansison pant	Current well capacity is $4,200 \mathrm{~m} 3 / \mathrm{d}$, while actual consumption is $2,247 \mathrm{~m} 3 / \mathrm{d}$.
105	Shopping	Mal Bali Gulleria	Kuas	J. By Pass I Gst. Ngurah Rai Simpang Dewa Ruci Kuta	${ }^{75527}$	Jeffry M. Lomban (Building Manger)	SK,SM,DP	${ }^{39} 115.50-16: 15$	5,000	noperation	NA	NA	$\begin{aligned} & \text { equipped with WWTP } \\ & \text { Capacity, Cost: NA } \end{aligned}$	noteequpped	notecupped	Depends on the cost for dual piping installtion work and tariff	1,000:2,200R $\mathrm{P} / \mathrm{m3}$	NA	ок	may be installed if the cost is subsidized	canem
${ }^{109}$	Harbour	noa Aarbour Auntority		n. Raya Peabuhan Beman Derpasar	72566	$\text { O } \begin{aligned} & \text { Judiharto (Technical } \\ & \text { Manager) } \end{aligned}$	SK,NT,SM,DP	$3714.400-16: 20$	See attachment: Current volume of gardening water in dry season is around $20 \mathrm{~m}^{3} / \mathrm{d}$, future volume is around $75 \mathrm{~m}^{3}$.							possille	3.008p/./m	NA	ок	needs confirmation to Surabaya headquarter due to high installation cost	There is a harbour expansion plan, but reclaim water use potential is low.
110		PT. Inti Mas Surya (Fish Processing Company)			72246	Mr. Amin(Mamgere)	SK,SM,DP	3310 10:00-10:30								$\begin{aligned} & \text { See attachment: Difficult to use for fish } \\ & \text { processing considering becteria } \end{aligned}$					Water quality for fish processing follows ISO and Japanese Minister of Health, Labour and Welfare standards
111			${ }_{\substack{\text { Benos } \\ \text { Hubour }}}$	Jl. Ikan Tuna Raya Timur1 Pelabuhan Benoa	77023	Mr. Maruko (Director Factory Manager)	SK,SM,DP	3310 10:45.11:15								See attachment: Difficult to use for fish processing considering becteria					Reclaimed water may be used for fish washing before processing
112	PublicOffice	DINAS DKP Badumg	Batug	Pusen Badung JI. Raya Sempidi Mangupura Badung	90	Eka Mertawan (Head of Dinas DKP Badung)	SK,SM,DP	${ }^{38} 10.00 \cdot 1100$								See attachment: $54-60 \mathrm{~m} 3 / \mathrm{d}$ may be used ifprice is cheaper than PDAM water and deepwell tax					
${ }^{113}$		PDAM Badumg	Batus	In. Bedahalu No3 Depposar	${ }^{42124}$	Komarudinstiortek		2222 14,00-15:30	See atacoment							See atadment					
114		${ }^{\text {BrDCe }}$ part ${ }^{\text {a }}$	Nusa dua	${ }^{\text {Pbobax } 3 \text { Nusa Duasous }}$	771010	$\begin{aligned} & \text { A. A. I. Ratna Dewi, St } \\ & \text { (Head of WWTP Unit) } \end{aligned}$		$22209015-11: 20$	Se atacimmen							See atadment					
		${ }^{\text {BrDC) }}$ para ${ }^{\text {a }}$	1	1		I Putu Trisna Wijaya (Business Dev, Division)	Sk,SM,Yk,DP.Ss	$33209900-11: 00$	See attachment							See attachment					
		$\mathrm{BrDCP}^{\text {para }}$	1	1		Mr. Nyoman Wedastra BTDC's WWTP)	SK,NT,SM,DP	38 15:30-1													

APPENDIX 2

WATER QUALITY SURVEY

APPENDIX 2 WATER QUALITY SURVEY

2.a Terms of Reference

Water quality survey was carried out to prepare the material to understand the characteristics of the effluent of Denpasar WWTP which is the raw water, and to determine the treatment process which is required for the reclaimed water treatment facility. The contents of the survey are shown below.

Outline of the Water Quality Survey

Item	Contents
1. Sampling Location	Influent and Effluent of Denpasar WWTP
2. Sample Number	1 sample x 4 events x 2 locations = 8
3. Parameters	$\begin{aligned} & \text { Influent: } 7 \text { parameters } \\ & \left(\begin{array}{l} \mathrm{pH}, \text { Water Temp, COD, } \mathrm{BOD}_{5}, \mathrm{SS}, \text { Total Nitrogen (T-N), } \\ \text { Total Phosphorus (T-P) } \end{array}\right] \\ & \text { Effluent: } 16 \text { parameters } \\ & \left.\quad \begin{array}{l} \mathrm{pH}, \text { Water Temp, } \mathrm{COD}, \mathrm{BOD}_{5}, \mathrm{SS}, \mathrm{UV}_{254}, \text { Turbidity, Color, } \mathrm{Cl}^{-}, \\ \mathrm{CO}_{3}{ }^{2-,}, \mathrm{KMO}_{4}, \text { Total Nitrogen }(\mathrm{T}-\mathrm{N}), \mathrm{NH}_{4}^{+}-\mathrm{N}, \mathrm{NO}_{2}-\mathrm{N}, \mathrm{NO}_{3}-\mathrm{N}, \\ \text { Total Phosphorus (T-P) } \end{array}\right] \end{aligned}$

Terms of Reference

2.b Survey Photo

2.c Survey Result

APPENDIX 3

TOPOGRAPHIC SURVEY

APPENDIX 3 TOPOGRAPHIC SURVEY

3.a Terms of Reference

Transmission pipe route was selected and the line survey with the following specifications was carried out.

Total Length:	about 16 km with the width of about 25 m
Scale of Plan:	$1 / 500$
Scale of Longitudinal Section:	$\mathrm{H}=1 / 500, \mathrm{~V}=1 / 100$
Scale of Cross Section:	$1 / 100$

Terms of Reference

3.b Survey Photo

3.c Survey Result

THE PREPARATORY SURVEY ON APPLICATION OF
WASTEWA TER RECLAIMING
IN SOUTHERN BALI WATER SUPPLY SYSTEM
IN THE REPUBLIC OF INDONESIA
Office: J. Jaya Giri I Nomor 5, Desa Dangin Puri Kelod, Denpasar Timur, Denpasar

Appendix 3-4

Appendix 3-5

Appendix 3-6

Appendix 3-7

Appendix 3-8

Appendix 3-9

Appendix 3-21

APPENDIX 4

GEOTECHNICAL SURVEY

APPENDIX 4 GEOTECHNICAL SURVEY

4.a Terms of Reference

Geotechnical survey for the construction site of the reclaimed water treatment plant (located at the Denpasar WWTP expansion site) was carried out with the following specifications.

Specifications of Geotechnical Survey

Item	Specification
Number of boring	3
Maximum depth	40 m
Total depth	120 m

Test item and sampling number is shown below
Test Item and Sampling Number

Item	Specification
1. Standard penetration test	Every 1.0m interval
2. Sampling	Every 10 meters interval and the bottom
3. Laboratory Test	1) Specific gravity
	2) Water content
	3) Particle size distribution
	4) Unconfined compressive strength

Terms of Reference

4.b Survey Photo

PHOTO DOCUMENTATION (BH 1)

PROJECT : SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM
LOCATION BALI
CLIENT
NIHON SUIDO CONSULTANT

PHOTO DOCUMENTATION (BH 1)

PROJECT LOCATION CLIENT

SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM BALI
NIHON SUIDO CONSULTANT

Appendix 4-5

PHOTO DOCUMENTATION (BH 2)

PROJECT : SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM
LOCATION BALI
CLIENT : NIHON SUIDO CONSULTANT

PHOTO DOCUMENTATION (BH 3)

PROJECT LOCATION CLIENT

SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM BALI
NIHON SUIDO CONSULTANT

DRILLING AT BH-3

COREBOX 1 (0-5 M)

PHOTO DOCUMENTATION (BH 3)

PROJECT : SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM
LOCATION BALI
CLIENT
NIHON SUIDO CONSULTANT

Appendix 4-8

PHOTO DOCUMENTATION (BH 4)

PROJECT : SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM LOCATION : BALI CLIENT : NIHON SUIDO CONSULTANT

DRILLING AT BH-4

Appendix 4-9

SITE PLAN

BOREHOLE LOGS

(Continued Next Page)

BORING NUMBER BH-02 PAGE 2 OF 2 PT. Tigenco Graha Persada JI. Pahlawan Revolusi 100BJakarta Timur 14340 Telephone: (62) 21 86600710 LOCATION IPAL SUWUNG CLIENT NIHON SUIDO CONSULTANTS			$\int \begin{gathered} \text { mancrove } \end{gathered}$
 LITHOLOGY DESCRIPTION			
LIMESTONE, light grey to white, very stiff to hard, medium plastic (continued) Bottom of borehole at 25.45 meters.	7.45	20 20.45 (26) SPT 21 $10-14-14 / 20$ 21 21.45 (28) SPT 22 $10-12-13 / 20$ 22 22.45 (25) SPT 23 $10-10-13 / 20$ 23 23.45 (23) SPT 24 $12-14-14 / 20$ 24 24.45 (28) SPT 25 $12-14-16 / 20$ 25 2545 (30)	

(Continued Next Page)

(Continued Next Page)

LAB TEST RESULTS

- Specific Gravity Test
- Moisture Content Test
- Density Test
- Sieve Analysis
- Hydrometer Analysis
- Unconfined Compression Test
- Atterberg Limits

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI W ATER SUPPLY SYSTEM							
	Client	NHHON SUIDOI CONSULTANT				Date		28-Jul-2011	
	Tested By	Benny				Checked By		M. Iqbal, ST	
INDEX PROPERTIES									
Location : Bali									
Bore Hole No		BH -		BH -		BH		BH	
Depth	meter	1.50 -		15.50-		19.50-		4.50 -	
Sample Type		UD		UD		UD		UD	
SPECIFIC GRAVITY TEST (ASTM D-854)									
Pycnometer No.		T15	T14	T6	T16	T8	T29	T28	T13
Wt. Of dry Soil (A) g		17.91	17.67	14.18	14.22	14.00	14.21	16.02	15.45
Temperature (T) ${ }^{\circ} \mathrm{C}$		27.00	27.00	27.00	27.00	27.00	27.00	27.00	27.00
Wt. Pycnometer + Water + Soil (B) g		169.55	158.46	163.98	156.79	163.57	169.52	172.62	161.23
Wt Pycnometer + Water at $\mathrm{T}^{\circ} \mathrm{C}$ (C) C		158.47	147.52	155.24	147.95	154.90	160.65	162.69	151.65
$\mathrm{A}+(\mathrm{C}-\mathrm{B}) \quad \mathrm{g}$		6.83	6.73	5.44	5.38	5.33	5.34	6.09	5.87
Specific Gravity (Gs)		2.618	2.621	2.602	2.639	2.622	2.657	2.626	2.628
SPECIFIC GRAVITY Average (Gs)		2.619		2.620		2.639		2.627	
MOISTURE CONTENT TEST (BS 1377 : 1975)									
No. Container		R. 1	D. 60	R. 12	D. 55	F. 36	D. 3	E. 33	E. 6
Wt. Container + Wet Soil g		163.80	30.05	144.56	46.52	141.09	46.81	34.40	33.47
Wt. Container + Dry Soil g		116.34	21.86	87.44	27.51	84.12	27.51	20.87	20.42
Wt. Container g		17.58	5.05	19.71	4.88	17.43	4.85	5.16	5.27
Wt. Water g		47.46	8.19	57.12	19.01	56.97	19.30	13.53	13.05
Wt. Dry Soil g		98.76	16.81	67.73	22.63	66.69	22.66	15.71	15.15
Moisture Content (w) \%		48.06	48.72	84.33	84.00	85.43	85.17	86.12	86.14
MOISTURE CONTENT Average (w) \%		48.39		84.17		85.30		86.13	
DENSITY TEST (BS 1377: 1975)									
No. Ring		A		A]		A		A	
Wt. Ring + Wet Soil g		75.95		71.75		70.55		71.27	
Wt. Ring g		43.38		43.38		43.38		43.38	
Vol. Wet Soil (=Vol. Ring) cm^{3}		19.24		19.24		19.24		19.24	
BULK DENSITY ($\gamma \mathrm{m}$) $\mathrm{Mg} / \mathrm{m}^{3}$		1.693		1.475		1.412		1.450	
DRY DENSITY ($\gamma \mathrm{d}$) $\mathrm{Mg} / \mathrm{m}^{3}$		1.141		0.801		0.762		0.779	
VOID RATIO (e)		1.296		2.273		2.463		2.373	
POROSITY (n)		0.564		0.694		0.711		0.704	
DEGREE OF SATURATION (Sr) \%		97.792		97.038		91.396		95.347	

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NHON SUIDOI CONSULTANT		
Location	Bali	Date	28-Jul-11
Tested By	Ria Irmawan	Checked By	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-01
Depth : 1.50-2.00 m
SIEVE ANALYSIS (ASTM D 422)
Initial weight of dry soil : $\quad 43.36 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.810	1.87	1.87	98.13
8	2.380	1.170	2.70	4.57	95.43
20	0.840	2.250	5.19	9.76	90.24
40	0.420	3.300	7.61	17.37	82.63
80	0.177	6.260	14.44	31.80	68.20
100	0.149	1.570	3.62	35.42	64.58
200	0.074	4.000	9.23	44.65	55.35
Pan		19.36	44.65	89.30	

HYDROMETER ANALYSIS (BS 1377: 1975)

Weight of soil Specific Gravity (Gs)		60.00	g	Tube No. Hydrometer No.		$\begin{aligned} & : 1 \\ & : A 1 \end{aligned}$	
		2.595					
Meniscus Correction, c :		-2.00		Temperature Correction, mt		: 1.01	
Viscosity of water		0.8711		Dispersant Correction, x		4	
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	K
	min			mm		mm	\%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	24.0	22.0	138.77	22.2	0.0608	52.13
	1	23.0	21.0	140.33	21.2	0.0432	49.78
	2	22.0	20.0	141.89	20.2	0.0307	47.44
	5	20.0	18.0	145.01	18.2	0.0197	42.75
	15	17.0	15.0	149.69	15.2	0.0115	35.71
	30	15.0	13.0	152.81	13.2	0.0082	31.02
	60	14.0	12.0	154.37	12.2	0.0059	28.67
	240	12.5	10.5	156.71	10.7	0.0029	25.16
	1440	11.0	9.0	159.05	9.2	0.0012	21.64

[^0]

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	28-Jul-11
Tested By	Ria Irmawan	Checked By	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-01
Depth : 15.50-16.00 m
SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 29.32 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.000	0.00	0.00	100.00
8	2.380	0.000	0.00	0.00	100.00
20	0.840	0.000	0.00	0.00	100.00
40	0.420	0.380	1.30	1.30	98.70
80	0.177	0.370	1.26	2.56	97.44
100	0.149	0.080	0.27	2.83	97.17
200	0.074	0.490	1.67	4.50	95.50
Pan		1.32	4.50	9.00	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of		60.00		be No.			
Specific G	(Gs)	2.595		drometer			A1
Meniscus	ction, c :	$\begin{gathered} -2.00 \\ 0.8711 \end{gathered}$		mperature	ection, mt		
Viscosity		0.8711		spersant	$\text { tion, } x$		
Time	Elapsed Time t min	Hydrometer reading R'h	TRUE Reading Rh	Effective depth HR mm	Fully Corrected Reading	Particle Diameter D mm	Percentage Finer Than D K \%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	28.0	26.0	132.53	26.2	0.0594	90.96
	1	27.5	25.5	133.31	25.7	0.0422	89.22
	2	26.0	24.0	135.65	24.2	0.0301	84.02
	5	24.0	22.0	138.77	22.2	0.0192	77.09
	15	21.0	19.0	143.45	19.2	0.0113	66.68
	30	20.0	18.0	145.01	18.2	0.0080	63.21
	60	19.0	17.0	146.57	17.2	0.0057	59.75
	240	17.0	15.0	149.69	15.2	0.0029	52.81
	1440	14.0	12.0	154.37	12.2	0.0012	42.41

NOTES:

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	28-Jul-11
Tested By	Ria Irmawan	Checked By	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-01
Depth : 19.50-20.00 m
SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 33.95 \quad \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained $\%$	Cumulative Percent Retained $\%$	Percent Finer
$3{ }^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.000	0.00	0.00	100.00
8	2.380	0.420	1.24	1.24	98.76
20	0.840	0.780	2.30	3.53	96.47
40	0.420	0.350	1.03	4.57	95.43
80	0.177	0.340	1.00	5.57	94.43
100	0.149	0.060	0.18	5.74	94.26
200	0.074	1.000	2.95	8.69	91.31
Pan		2.95	8.69	17.38	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of soil Specific Gravity (Gs)		60.00	g	Tube No. Hydrometer No. Temperature Correction, mt Dispersant Correction, x		$\begin{aligned} & : 1 \\ & : A 1 \\ & : 1.01 \\ & : 4 \\ & \hline \end{aligned}$	
		2.595					
Meniscus Correction,c Viscosity of water		-2.00					
		0.8711					
Time	Elapsed Time t min	Hydrometer reading R'h	TRUE Reading Rh	Effective depth HR mm	Fully Corrected Reading	Particle Diameter D mm	Percentage Finer Than D K \%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	31.0	29.0	127.85	29.2	0.0584	87.54
	1	30.0	28.0	129.41	28.2	0.0415	84.54
	2	29.0	27.0	130.97	27.2	0.0295	81.55
	5	27.0	25.0	134.09	25.2	0.0189	75.56
	15	25.0	23.0	137.21	23.2	0.0110	69.57
	30	23.0	21.0	140.33	21.2	0.0079	63.58
	60	21.0	19.0	143.45	19.2	0.0056	57.59
	240	18.0	16.0	148.13	16.2	0.0029	48.60
	1440	15.0	13.0	152.81	13.2	0.0012	39.62

NOTES :

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NHHON SUDOI CONSULTANT		
Location	Bali	Date	2-Aug-11
TestedBy	Ria Irmawan	Checked By	M. 1 Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-02
Depth : 4.50-5.00
SIEVE ANALYSIS (ASTM D 422)
Initial weight of dry soil : $\quad 34.51 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 88^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.000	0.00	0.00	100.00
8	2.380	0.000	0.00	0.00	100.00
20	0.840	0.020	0.06	0.06	99.94
40	0.420	0.040	0.12	0.17	99.83
80	0.177	0.450	1.30	1.48	98.52
100	0.149	0.440	1.27	2.75	97.25
200	0.074	4.560	13.21	15.97	84.03
Pan		5.51	15.97	31.93	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of soil		60.00	Tube No.			1	
Specific Gravity (Gs)		2.623		Hydrometer No.			A1
Meniscus Correction,c:		-2.00		Temperature Correction, mt		: 1.01	
Viscosity of water		0.8711		Dispersant Correction, x		4	
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
		R'h	Rh	HR	Reading	D	K
	min			mm		mm	\%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	29.0	27.0	130.97	27.2	0.0586	79.69
	1	27.0	25.0	134.09	25.2	0.0419	73.84
	2	26.0	24.0	135.65	24.2	0.0298	70.91
	5	25.0	23.0	137.21	23.2	0.0190	67.98
	15	22.0	20.0	141.89	20.2	0.0111	59.20
	30	20.0	18.0	145.01	18.2	0.0080	53.35
	60	18.0	16.0	148.13	16.2	0.0057	47.50
	240	16.0	14.0	151.25	14.2	0.0029	41.64
	1440	13.0	11.0	155.93	11.2	0.0012	32.86

	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT		
	Location	Bali	Date	2-Aug-11
	Tested By	Ria Irmawan	CheckedBy	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-02
Depth : 6.50-7.00 m

Sample Type
UDS
clayey SAND

SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 39.69 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.000	0.00	0.00	100.00
8	2.380	0.260	0.66	0.66	99.34
20	0.840	1.290	3.25	3.91	96.09
40	0.420	3.380	8.52	12.42	87.58
80	0.177	8.480	21.37	33.79	66.21
100	0.149	2.330	5.87	39.66	60.34
200	0.074	5.950	14.99	54.65	45.35
Pan		21.69	54.65	109.30	

HYDROMETER ANALYSIS (BS 1377 : 1975)

NOTES:

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	2-Aug-11
Tested By	Ria Irmawan	CheckedBy	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-02
Depth : 8.50-9.00 m

Sample Type
Sample Description

UDS
silty CLAY

SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 33.98 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.090	0.26	0.26	99.74
8	2.380	0.470	1.38	1.65	98.35
20	0.840	1.200	3.53	5.18	94.82
40	0.420	1.450	4.27	9.45	90.55
80	0.177	2.310	6.80	16.24	83.76
100	0.149	0.580	1.71	17.95	82.05
200	0.074	2.880	8.48	26.43	73.57
Pan		8.98	26.43	52.85	

HYDROMETER ANALYSIS (BS 1377 : 1975)

NOTES:

	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER		
SUPPLY SYSTEM				

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-03
Depth : 2.50-3.00 m

Sample Type
Sample Description
UDS
silty CLAY

SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 39.33 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained $\%$	Cumulative Percent Retained $\%$	Percent Finer
$3{ }^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	1.900	4.83	4.83	95.17
8	2.380	1.120	2.85	7.68	92.32
20	0.840	2.720	6.92	14.59	85.41
40	0.420	3.450	8.77	23.37	76.63
80	0.177	5.750	14.62	37.99	62.01
100	0.149	1.350	3.43	41.42	58.58
200	0.074	3.040	7.73	49.15	50.85
Pan		19.33	49.15	98.30	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of soil Specific Gravity (Gs)		60.00	g	Tube No. Hydrometer No.			$\begin{aligned} & : 1 \\ & : \text { A1 } \end{aligned}$
		2.653					
Meniscus Correction, c :		-2.00		Temperature Correction, mt			1.01
Viscosity of water		0.8711		Dispersant Correction, x		4	
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	K
	min			mm		mm	\%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	20.0	18.0	145.01	18.2	0.0611	46.49
	1	19.0	17.0	146.57	17.2	0.0434	43.94
	2	18.0	16.0	148.13	16.2	0.0309	41.39
	5	16.0	14.0	151.25	14.2	0.0197	36.29
	15	15.0	13.0	152.81	13.2	0.0114	33.74
	30	14.0	12.0	154.37	12.2	0.0081	31.19
	60	13.0	11.0	155.93	11.2	0.0058	28.63
	240	12.0	10.0	157.49	10.2	0.0029	26.08
	1440	10.0	8.0	160.61	8.2	0.0012	20.98

NOTES:

	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER		
SUPPLY SYSTEM				

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-03
Depth : 8.50-9.00 m
SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 40.14 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	5.060	12.61	12.61	87.39
8	2.380	4.130	10.29	22.89	77.11
20	0.840	3.920	9.77	32.66	67.34
40	0.420	3.140	7.82	40.48	59.52
80	0.177	4.000	9.97	50.45	49.55
100	0.149	1.810	4.51	54.96	45.04
200	0.074	5.080	12.66	67.61	32.39
Pan		27.14	67.61	135.23	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of		60.00		be No.			
Specific G	(Gs)	2.653		drometer			A1
Meniscus	ction, c	-2.00		mperature	ection, mt		1.01
Viscosity	er	0.8711		spersant	$\text { tion, } x$		
Time	Elapsed Time t min	Hydrometer reading R'h	TRUE Reading Rh	Effective depth HR mm	Fully Corrected Reading	Particle Diameter D mm	
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	13.0	11.0	155.93	11.2	0.0633	28.06
	1	12.0	10.0	157.49	10.2	0.0450	25.56
	2	11.0	9.0	159.05	9.2	0.0320	23.06
	5	10.5	8.5	159.83	8.7	0.0203	21.81
	15	10.0	8.0	160.61	8.2	0.0117	20.56
	30	8.0	6.0	163.73	6.2	0.0084	15.56
	60	6.0	4.0	166.85	4.2	0.0060	10.56
	240	3.0	1.0	171.53	1.2	0.0030	3.07
	1440	0.0	-2.0	176.21	-1.8	0.0013	-4.43

NOTES :

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	11-Aug-11
Tested By	Ria Irmawan	CheckedBy	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-04
Depth : 2.50-3.00

Sample Type
Sample Description

UDS
silty CLAY
SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 43.04 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	2.040	4.74	4.74	95.26
8	2.380	0.560	1.30	6.04	93.96
20	0.840	2.110	4.90	10.94	89.06
40	0.420	3.380	7.85	18.80	81.20
80	0.177	5.600	13.01	31.81	68.19
100	0.149	1.290	3.00	34.80	65.20
200	0.074	3.560	8.27	43.08	56.92
Pan		18.54	43.08	86.15	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of soil Specific Gravity (Gs)		60.00	g	Tube No. Hydrometer No.			$\begin{aligned} & : 1 \\ & : \text { A1 } \end{aligned}$
		2.653					
Meniscus Correction, c :		-2.00		Temperature Correction, mt			1.01
Viscosity of water		0.8711		Dispersant Correction, x		4	
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	K
	min			mm		mm	\%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	24.5	22.5	137.99	22.7	0.0596	52.97
	1	23.0	21.0	140.33	21.2	0.0425	49.47
	2	22.0	20.0	141.89	20.2	0.0302	47.14
	5	21.5	19.5	142.67	19.7	0.0192	45.98
	15	19.5	17.5	145.79	17.7	0.0112	41.32
	30	18.0	16.0	148.13	16.2	0.0080	37.82
	60	17.0	15.0	149.69	15.2	0.0057	35.49
	240	15.5	13.5	152.03	13.7	0.0029	31.99
	1440	13.5	11.5	155.15	11.7	0.0012	27.33

NOTES :

Appendix 4-41

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	11-Aug-11
Tested By	Ria Irmawan	CheckedBy	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-04
Depth : 4.50-5.00

Sample Type
Sample Description
UDS
clayey SAND

SIEVE ANALYSIS (ASTM D 422)
Initial weight of dry soil : $\quad 41.60 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.130	0.31	0.31	99.69
8	2.380	0.120	0.29	0.60	99.40
20	0.840	1.180	2.84	3.44	96.56
40	0.420	3.780	9.09	12.52	87.48
80	0.177	8.580	20.63	33.15	66.85
100	0.149	3.320	7.98	41.13	58.87
200	0.074	5.490	13.20	54.33	45.67
Pan		22.60	54.33	108.65	

HYDROMETER ANALYSIS (BS 1377 : 1975)

NOTES:

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	11-Aug-11
Tested By	Ria Irmawan	CheckedBy	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH - 04
Depth : 8.50-9.00

Sample Type
Sample Description
UDS
clayey SAND

SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 38.45 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11 / 2^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.670	1.74	1.74	98.26
8	2.380	1.220	3.17	4.92	95.08
20	0.840	2.240	5.83	10.74	89.26
40	0.420	7.750	20.16	30.90	69.10
80	0.177	5.750	14.95	45.85	54.15
100	0.149	1.650	4.29	50.14	49.86
200	0.074	2.170	5.64	55.79	44.21
Pan		21.45	55.79	111.57	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of		60.00		No.			
Specific G	(Gs)	2.653		drometer			A1
Meniscus	ction, c	$\begin{gathered} -2.00 \\ 0 \end{gathered}$		mperature	ection, mt		1.01
Viscosity	er :	0.8711		spersant	$\text { tion, } x$		
Time	Elapsed Time t min	Hydrometer reading R'h	TRUE Reading Rh	Effective depth HR mm	Fully Corrected Reading	Particle Diameter D mm	Percentage Finer Than D K \%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	17.0	15.0	149.69	15.2	0.0620	39.73
	1	16.0	14.0	151.25	14.2	0.0441	37.12
	2	16.0	14.0	151.25	14.2	0.0312	37.12
	5	15.0	13.0	152.81	13.2	0.0198	34.51
	15	14.0	12.0	154.37	12.2	0.0115	31.90
	30	13.0	11.0	155.93	11.2	0.0082	29.29
	60	12.0	10.0	157.49	10.2	0.0058	26.68
	240	11.0	9.0	159.05	9.2	0.0029	24.07
	1440	9.0	7.0	162.17	7.2	0.0012	18.85

NOTES:

Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
Client	NIHON SUIDOI CONSULTANT		
Location	Bali	Date	11-Aug-11
Tested By	Ria Irmawan	CheckedBy	M.Iqbal, ST

PARTICLE SIZE DISTRIBUTION ANALYSIS

Hole No. : BH-04
Depth : 11.50-12.00
Sample Type
Sample Description

UDS

SIEVE ANALYSIS (ASTMD 422)
Initial weight of dry soil : $\quad 34.52 \mathrm{~g}$

Sieve No.	Sieve Opening mm	Wt. Soil Retained	Percent Retained	Cumulative Percent Retained $\%$	Percent Finer
$3^{\prime \prime}$	101.600	0.000	0.00	0.00	100.00
$2^{\prime \prime}$	75.000	0.000	0.00	0.00	100.00
$11^{\prime \prime}$	38.100	0.000	0.00	0.00	100.00
$1^{\prime \prime}$	25.400	0.000	0.00	0.00	100.00
$3 / 4^{\prime \prime}$	19.050	0.000	0.00	0.00	100.00
$1 / 2^{\prime \prime}$	12.700	0.000	0.00	0.00	100.00
$3 / 8^{\prime \prime}$	9.525	0.000	0.00	0.00	100.00
4	4.760	0.000	0.00	0.00	100.00
8	2.380	0.000	0.00	0.00	100.00
20	0.840	0.020	0.06	0.06	99.94
40	0.420	0.250	0.72	0.78	99.22
80	0.177	0.580	1.68	2.46	97.54
100	0.149	0.660	1.91	4.37	95.63
200	0.074	5.010	14.51	18.89	81.11
Pan		6.52	18.89	37.78	

HYDROMETER ANALYSIS (BS 1377 : 1975)

Weight of		60.00		be No.			
Specific G	(Gs)	2.653		drometer			A1
Meniscus	ction, c :	-2.00		mperature	ection, mt		1.01
Viscosity		0.8711		spersant Com	tion, x		4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	K
	min			mm		mm	\%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	28.0	26.0	132.53	26.2	0.0584	76.21
	1	27.5	25.5	133.31	25.7	0.0414	74.76
	2	27.0	25.0	134.09	25.2	0.0294	73.31
	5	26.0	24.0	135.65	24.2	0.0187	70.40
	15	24.0	22.0	138.77	22.2	0.0109	64.59
	30	22.0	20.0	141.89	20.2	0.0078	58.78
	60	20.5	18.5	144.23	18.7	0.0056	54.42
	240	18.0	16.0	148.13	16.2	0.0028	47.15
	1440	15.0	13.0	152.81	13.2	0.0012	38.44

NOTES :

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH1(1.5)

'LAB DATA/2003/PL 001/PAGAR DEWA@@CL@FC08CE0F/BH1(15.5)

MOHR CIRCLES

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH2(4.5)

Appendix 4-56

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH2(6.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH2(8.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH3(2.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH3(8.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(2.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(4.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(8.5)

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CEOF/BH4(11.5)

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	16-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

| Location | $:$ Bali |
| :--- | :--- | :--- |
| Hole No. | $: B H-01$ |
| Depth | $: 1.50-2.00 \quad \mathrm{~m}$ |

Sample No.
Sample Type
UDS
Soil Description

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		39	28	21	16		
Container No.		C. 25	C. 34	C. 15	C. 26	A. 27	A. 28
Wt. Container + Wet Soil	g	11.34	12.23	12.97	13.50	21.55	22.24
Wt. Container + Dry Soil	g	9.00	9.49	10.02	10.30	19.21	19.87
Wt. Water	g	2.34	2.74	2.95	3.20	2.34	2.37
Wt. Container	g	4.34	4.40	4.50	4.34	12.01	12.70
Wt. Dry Soil (Ws)	g	4.66	5.09	5.52	5.96	7.20	7.17
Water Content (w)	\%	50.21	53.83	53.44	53.69	32.50	33.05

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	$\%$	52.75
PLASTIC LIMIT	$\%$	32.78
PLASTICITY INDEX	$\%$	19.97
CLASSIFICATION		MH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	29-Jul-11
	Tested By	Ria Imawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	: Bali	
Hole No.	$:$ BH -01	
Depth	$: 19.50-20.00$	m

Sample No
Sample Type : UDS
Soil Description :-

Depth : 19.50-20.00 m

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		39	29	20	16		
Container No.		C. 12	C. 29	C. 17	C. 38	A. 17	A. 18
Wt. Container + Wet Soil	g	11.09	11.24	11.87	12.00	22.54	22.95
Wt. Container + Dry Soil	g	7.92	7.89	8.23	8.28	20.43	20.70
Wt. Water	g	3.17	3.35	3.64	3.72	2.11	2.25
Wt. Container	g	4.45	4.33	4.34	4.38	12.81	12.87
Wt. Dry Soil (Ws)	g	3.47	3.56	3.89	3.90	7.62	7.83
Water Content (w)	\%	91.35	94.10	93.57	95.38	27.69	28.74

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	$\%$	93.52
PLASTIC LIMIT	$\%$	28.22
PLASTICITY INDEX	$\%$	65.30
CLASSIFICATION		CH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	2-Aug-11
	Tested By	Ria Imawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

 ASTM D 4318| Location | $:$ Bali |
| :--- | :--- |
| Hole No. | $: \mathrm{BH}-02$ |
| Depth | $: 6.50-7.00 \mathrm{~m}$ |

Sample No
Sample Type : UDS
Soil Description
: -

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		40	30	19	15		
Container No.		C. 4	C. 22	C. 3	C. 6	A. 25	A. 26
Wt. Container + Wet Soil	g	11.80	12.01	12.43	13.02	21.97	20.56
Wt. Container + Dry Soil	g	8.88	8.93	9.14	9.54	19.03	18.00
Wt. Water	g	2.92	3.08	3.29	3.48	2.94	2.56
Wt. Container	g	4.38	4.34	4.35	4.52	12.77	12.71
Wt. Dry Soil (Ws)	g	4.50	4.59	4.79	5.02	6.26	5.29
Water Content (w)	\%	64.89	67.10	68.68	69.32	46.96	48.39

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	\%	67.36
PLASTIC LIMIT	$\%$	47.68
PLASTICITY INDEX	$\%$	19.68
CLASSIFICATION		MH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	2-Aug-11
	Tested By	Ria Imawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$: \mathrm{BH}-02$
Depth	$: 8.50-9.00 \mathrm{~m}$

Sample No
Sample Type : UDS
Soil Description

Depth : 8.50-9.00 m

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		40	29	20	15		
Container No.		C. 36	C. 40	C. 42	C. 39	A. 31	A. 32
Wt. Container + Wet Soil	g	11.05	11.16	12.21	12.45	23.10	22.80
Wt. Container + Dry Soil	g	8.22	8.21	8.80	8.95	20.88	20.66
Wt. Water	g	2.83	2.95	3.41	3.50	2.22	2.14
Wt. Container	g	4.43	4.31	4.39	4.34	13.42	13.38
Wt. Dry Soil (Ws)	g	3.79	3.90	4.41	4.61	7.46	7.28
Water Content (w)	\%	74.67	75.64	77.32	75.92	29.76	29.40

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	\%	75.84
PLASTIC LIMIT	\%	29.58
PLASTICITY INDEX	$\%$	46.26
CLASSIFICATION		CH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	4-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$: \mathrm{BH}-03$
Depth	$: 2.50-3.00 \mathrm{~m}$

Sample No.	:
Sample Type	: UDS
Soil Description	$:-$

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		40	29	21	15		
Container No.		C39	C40	C36	C37	A. 15	A. 16
Wt. Container + Wet Soil	g	11.35	12.19	13.53	14.21	22.08	22.69
Wt. Container + Dry Soil	g	8.84	9.26	10.07	10.43	19.74	20.23
Wt. Water	g	2.51	2.93	3.46	3.78	2.34	2.46
Wt. Container	g	4.34	4.31	4.43	4.40	12.72	12.79
Wt. Dry Soil (Ws)	g	4.50	4.95	5.64	6.03	7.02	7.44
Water Content (w)	\%	55.78	59.19	61.35	62.69	33.33	33.06

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	\%	59.65
PLASTIC LIMIT	\%	33.20
PLASTICITY INDEX	\%	26.45
CLASSIFICATION		MH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	4-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$: B H-03$
Depth	$: 8.50-9.00 \mathrm{~m}$

Sample No
Sample Type : UDS
Soil Description

Depth : 8.50-9.00 m

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		39	31	19	15		
Container No.		C3	C42	C4	C22	A. 29	A. 30
Wt. Container + Wet Soil	g	12.70	13.50	14.29	15.60	20.64	20.00
Wt. Container + Dry Soil	g	10.25	10.78	11.28	12.16	19.00	18.47
Wt. Water	g	2.45	2.72	3.01	3.44	1.64	1.53
Wt. Container	g	4.35	4.39	4.38	4.34	12.53	12.41
Wt. Dry Soil (Ws)	g	5.90	6.39	6.90	7.82	6.47	6.06
Water Content (w)	\%	41.53	42.57	43.62	43.99	25.35	25.25

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	$\%$	42.85
PLASTIC LIMIT	$\%$	25.30
PLASTICITY INDEX	$\%$	17.55
CLASSIFICATION		CL

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	11-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$: \mathrm{BH}-04$
Depth	$: 2.50-3.00 \mathrm{~m}$

Sample No.	$:-$
Sample Type	$:$ UDS
Soil Description	$:-$

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		39	30	21	15		
Container No.		C. 36	C. 42	C. 40	C. 39	A. 5	A. 6
Wt. Container + Wet Soil	g	11.62	11.57	11.38	11.03	22.25	20.67
Wt. Container + Dry Soil	g	8.92	8.82	8.67	8.38	21.26	19.79
Wt. Water	g	2.70	2.75	2.71	2.65	0.99	0.88
Wt. Container	g	4.43	4.39	4.31	4.34	12.68	12.44
Wt. Dry Soil (Ws)	g	4.49	4.43	4.36	4.04	8.58	7.35
Water Content (w)	\%	60.13	62.08	62.16	65.59	11.54	11.97

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	\%	62.42
PLASTIC LIMIT	$\%$	11.76
PLASTICITY INDEX	$\%$	50.66
CLASSIFICATION		CH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	11-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$: \mathrm{BH}-04$
Depth	$: 4.50-5.00 \mathrm{~m}$

Sample No.	$:-$
Sample Type	$:$ UDS
Soil Description	$:-$

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		39	29	21	15		
Container No.		C. 32	C. 14	C. 15	C. 21	A. 27	A. 28
Wt. Container + Wet Soil	g	14.49	15.67	16.07	16.15	25.07	25.74
Wt. Container + Dry Soil	g	11.01	11.65	11.96	11.53	22.02	22.75
Wt. Water	g	3.48	4.02	4.11	4.62	3.05	2.99
Wt. Container	g	4.39	4.32	4.47	4.37	12.01	12.70
Wt. Dry Soil (Ws)	g	6.62	7.33	7.49	7.16	10.01	10.05
Water Content (w)	\%	52.57	54.84	54.87	64.53	30.47	29.75

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	\%	56.55
PLASTIC LIMIT	$\%$	30.12
PLASTICITY INDEX	$\%$	26.43
CLASSIFICATION		MH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	11-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$:$ BH -04
Depth	$: 8.50-9.00 \mathrm{~m}$

Sample No.	:
Sample Type	: UDS
Soil Description	$:-$

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		39	29	19	14		
Container No.		C. 37	C. 25	C. 34	C. 15	A. 3	A. 4
Wt. Container + Wet Soil	g	11.86	12.34	12.75	13.37	21.33	21.37
Wt. Container + Dry Soil	g	9.25	9.54	9.78	10.11	19.12	19.15
Wt. Water	g	2.61	2.80	2.97	3.26	2.21	2.22
Wt. Container	g	4.40	4.34	4.40	4.50	12.39	12.61
Wt. Dry Soil (Ws)	g	4.85	5.20	5.38	5.61	6.73	6.54
Water Content (w)	\%	53.81	53.85	55.20	58.11	32.84	33.94

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	\%	54.99
PLASTIC LIMIT	$\%$	33.40
PLASTICITY INDEX	$\%$	21.59
CLASSIFICATION		MH

PT. TIGENCO GRAHA PERSADA	Project	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM		
	Client	NIHON SUIDOI CONSULTANT	Date	11-Aug-11
	Tested By	Ria Irmawan	Checked By	M.lqbal, ST

ATTERBERG LIMITS

ASTM D 4318

Location	$:$ Bali
Hole No.	$: \mathrm{BH}-04$
Depth	$: 11.50-12.00 \mathrm{~m}$

Sample No.	: -
Sample Type	: UDS
Soil Description	- -

LIQUID LIMIT						PLASTIC LIMIT	
No. of Blows		41	31	20	15		
Container No.		C. 26	C. 13	C. 5	C. 24	A. 19	A. 20
Wt. Container + Wet Soil	g	12.09	13.82	14.99	15.27	20.85	20.10
Wt. Container + Dry Soil	g	8.88	9.83	10.44	10.57	18.90	18.45
Wt. Water	g	3.21	3.99	4.55	4.70	1.95	1.65
Wt. Container	g	4.34	4.34	4.35	4.34	12.65	13.01
Wt. Dry Soil (Ws)	g	4.54	5.49	6.09	6.23	6.25	5.44
Water Content (w)	\%	70.70	72.68	74.71	75.44	31.20	30.33

FLOW CURVE

RESULT SUMMARY

LIQUID LIMIT	$\%$	73.38
PLASTIC LIMIT	$\%$	30.77
PLASTICITY INDEX	$\%$	42.61
CLASSIFICATION		CH

BEARING CAPACITY

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast		
Round	$\mathbf{0 , 3 0} \mathrm{m}$	Area	$0,0707 \mathrm{~m} 2$
Dimension	$\underline{\text { Perimeter }}$	$0,942477796 \mathrm{~m}$	

SOIL INFORMATION

DEPTH OF SOIL DATA
SPT INTERVAL

note:
soil type
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) $=1$

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout $\mathbf{S f}=\mathbf{3}$
0	0		2					0
1	1	1	2	0	1	1	0	0
2	1	1	2	1	1	2	1	0
3	1	1	2	2	1	3	1	0
4	1	1	2	3	1	4	1	1
5	1	1	2	3	1	4	1	1
6	1	1	2	4	1	5	2	1
7	1	1	2	5	1	6	2	1
8	1	1	2	6	1	7	2	1
9	1	1	1	6	3	9	3	1
10	2	2	1	6	4	10	3	1
11	2	2	1	6	4	11	4	1
12	2	2	1	7	4	11	4	2
13	2	2	1	7	4	11	4	2
14	2	2	1	7	4	12	4	2
15	2	2	1	7	4	12	4	2
16	2	2	2	9	2	11	4	2
17	2	2	2	10	2	13	4	2
18	2	2	2	12	2	14	5	3
19	2	2	2	13	2	16	5	3
20	2	2	2	15	2	17	6	3
21	2	2	2	16	3	19	6	4
22	3	2	2	18	3	21	7	4
23	4	3	2	21	9	29	10	5

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast		
Dimension	Round	$\mathbf{0 , 3 0} \mathrm{m}$	Area

SOIL INFORMATION
DEPTH OF SOIL DATA:
SPT INTERVAL
note: soil type
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) = 1

depth m	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	16	13	2	28	19	47	16	7
25	31	24	2	46	23	69	23	11
26	16	13	2	63	26	89	30	15
27	23	18	2	77	23	101	34	18
28	24	19	2	95	28	123	41	22
29	28	22	2	114	30	144	48	27
30	30	24	2	136	28	163	54	32
31	17	13	2	153	25	178	59	36
32	20	16	2	167	21	187	62	39
33	19	15	2	181	21	203	68	42
34	19	15	2	195	25	220	73	46
35	30	24	2	213	33	246	82	50
36	40	31	2	239	42	281	94	56
37	43	34	2	270	47	317	106	63
38	44	35	2	302	49	351	117	70
39	46	36	2	335	51	387	129	78
40	48	38	2	370	52	422	141	86

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$ Round	Area	$0,1257 \mathrm{~m} 2$
Dimension	$\mathbf{0 , 4 0} \mathrm{m}$	Perimeter	$1,256637061 \mathrm{~m}$

SOIL INFORMATION
DEPTH OF SOIL DATA:
SPT INTERVAL
note:
soil type
clay, silty clay (CH/CL), clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) $=1$

depth m	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	2	2	1	0
2	1	1	2	1	2	3	1	0
3	1	1	2	2	2	4	1	1
4	1	1	2	3	2	5	2	1
5	1	1	2	4	2	6	2	1
6	1	1	2	5	2	7	2	1
7	1	1	2	6	2	8	3	1
8	1	1	2	7	2	9	3	2
9	1	1	1	8	5	13	4	2
10	2	2	1	8	7	14	5	2
11	2	2	1	8	8	16	5	2
12	2	2	1	9	8	17	6	2
13	2	2	1	9	8	17	6	2
14	2	2	1	9	8	17	6	2
15	2	2	1	10	8	18	6	2
16	2	2	2	12	4	16	5	3
17	2	2	2	14	4	18	6	3
18	2	2	2	16	4	20	7	4
19	2	2	2	18	4	22	7	4
20	2	2	2	20	4	24	8	5
21	2	2	2	22	5	26	9	5
22	3	2	2	24	6	30	10	6
23	4	3	2	28	15	43	14	6

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$ Round	Area	$0,1257 \mathrm{~m} 2$
Dimension	$\mathbf{0 , 4 0} \mathrm{m}$	Perimeter	$1,256637061 \mathrm{~m}$

SOIL INFORMATION
DEPTH OF SOIL DATA:
SPT INTERVAL
note:
soil type
clay, silty clay (CH/CL), clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) = 1

depth m	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	16	13	2	38	34	71	24	9
25	31	24	2	61	41	102	34	14
26	16	13	2	84	46	130	43	20
27	23	18	2	103	41	145	48	24
28	24	19	2	126	49	176	59	29
29	28	22	2	152	54	206	69	35
30	30	24	2	181	49	230	77	42
31	17	13	2	204	44	248	83	48
32	20	16	2	222	37	259	86	52
33	19	15	2	241	38	280	93	56
34	19	15	2	260	45	305	102	61
35	30	24	2	284	59	343	114	66
36	40	31	2	319	74	393	131	74
37	43	34	2	360	84	443	148	84
38	44	35	2	403	88	490	163	94
39	46	36	2	447	91	538	179	104
40	48	38	2	494	93	586	195	115

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast		
Round	Area	$0,1963 \mathrm{~m} 2$	
Dimension	$\mathbf{0 , 5 0} \mathrm{m}$	Perimeter	$\mathbf{1 , 5 7 1 \mathrm { m }}$

SOIL INFORMATION

DEPTH OF SOIL DATA :
SPT INTERVAL
note:
soil type
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) = 1

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout $\mathbf{S f}=3$
0	0		2					0
1	1	1	2	1	3	4	1	0
2	1	1	2	2	3	5	2	0
3	1	1	2	3	3	6	2	1
4	1	1	2	4	3	7	2	1
5	1	1	2	6	3	9	3	1
6	1	1	2	7	3	10	3	2
7	1	1	2	8	3	11	4	2
8	1	1	2	9	3	12	4	2
9	1	1	1	10	8	18	6	2
10	2	2	1	10	10	20	7	2
11	2	2	1	10	12	23	8	2
12	2	2	1	11	12	23	8	3
13	2	2	1	11	12	24	8	3
14	2	2	1	12	12	24	8	3
15	2	2	1	12	12	25	8	3
16	2	2	2	15	6	21	7	3
17	2	2	2	17	6	23	8	4
18	2	2	2	20	6	26	9	5
19	2	2	2	22	6	28	9	5
20	2	2	2	25	6	31	10	6
21	2	2	2	27	7	34	11	6
22	3	2	2	30	9	39	13	7
23	4	3	2	35	24	58	19	8

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast		
Round	Area	$0,1963 \mathrm{~m} 2$	
Dimension	$\mathbf{0 , 5 0} \mathrm{m}$	Perimeter	$1,571 \mathrm{~m}$

SOIL INFORMATION
DEPTH OF SOIL DATA:
SPT INTERVAL
note: soil type
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) = 1

depth m	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	Pf ton	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	16	13	2	47	52	99	33	11
25	31	24	2	76	65	141	47	18
26	16	13	2	105	72	177	59	24
27	23	18	2	129	65	194	65	30
28	24	19	2	158	77	235	78	37
29	28	22	2	190	84	274	91	44
30	30	24	2	226	77	303	101	53
31	17	13	2	255	69	324	108	59
32	20	16	2	278	58	335	112	65
33	19	15	2	302	60	361	120	70
34	19	15	2	325	70	395	132	76
35	30	24	2	355	92	447	149	83
36	40	31	2	399	116	515	172	93
37	43	34	2	450	131	580	193	105
38	44	35	2	504	137	640	213	117
39	46	36	2	559	142	701	234	130
40	48	38	2	617	145	762	254	144

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$		
Round	Area	$0,0707 \mathrm{~m} 2$	
Dimension	$\mathbf{0 , 3 0} \mathrm{m}$	Perimeter	$0,942477796 \mathrm{~m}$

SOIL INFORMATION

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	1	1	0	0
2	1	1	2	1	1	2	1	0
3	1	1	2	2	1	3	1	0
4	1	1	2	3	1	4	1	1
5	1	1	2	3	1	4	1	1
6	1	1	2	4	1	5	2	1
7	1	1	2	5	1	6	2	1
8	1	1	2	6	1	7	2	1
9	1	1	2	6	4	10	3	1
10	8	6	2	10	9	19	6	2
11	16	13	2	19	16	34	11	4
12	19	15	2	31	31	63	21	7
13	50	39	1	37	66	102	34	9
14	20	16	1	42	68	110	37	10
15	22	17	2	57	26	83	28	13
16	28	22	2	76	29	104	35	18
17	27	21	2	96	31	128	43	22
18	30	24	2	117	30	148	49	27
19	25	20	2	138	30	168	56	32
20	26	20	2	157	29	186	62	37
21	28	22	2	177	29	206	69	41
22	25	20	2	196	28	224	75	46
23	23	18	2	214	28	242	81	50
24	28	22	2	233	30	263	88	54
25	30	24	2	254	32	287	96	59

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{} \quad$ Round	Area	$0,1257 \mathrm{~m} 2$
Dimension	$\mathbf{0 , 4 0} \mathrm{m}$	Perimeter	$1,256637061 \mathrm{~m}$

SOIL INFORMATION

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	2	2	1	0
2	1	1	2	1	2	3	1	0
3	1	1	2	2	2	4	1	1
4	1	1	2	3	2	5	2	1
5	1	1	2	4	2	6	2	1
6	1	1	2	5	2	7	2	1
7	1	1	2	6	2	8	3	1
8	1	1	2	7	2	9	3	2
9	1	1	2	8	7	15	5	2
10	8	6	2	13	16	29	10	3
11	16	13	2	25	28	53	18	6
12	19	15	2	42	56	98	33	10
13	50	39	1	49	117	166	55	11
14	20	16	1	56	121	177	59	13
15	22	17	2	76	46	122	41	18
16	28	22	2	101	51	152	51	24
17	27	21	2	128	56	184	61	30
18	30	24	2	156	54	210	70	36
19	25	20	2	184	53	237	79	43
20	26	20	2	209	52	261	87	49
21	28	22	2	235	52	287	96	55
22	25	20	2	262	50	312	104	61
23	23	18	2	285	50	335	112	67
24	28	22	2	310	53	364	121	72
25	30	24	2	339	57	396	132	79

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast		
Round	Area	$0,1963 \mathrm{~m} 2$	
Dimension	$\mathbf{0 , 5 0} \mathrm{m}$	Perimeter	$\mathbf{1 , 5 7 1 \mathrm { m }}$

SOIL INFORMATION

depth	NSPT	$\begin{array}{\|c} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{array}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f + P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	1	3	4	1	0
2	1	1	2	2	3	5	2	0
3	1	1	2	3	3	6	2	1
4	1	1	2	4	3	7	2	1
5	1	1	2	6	3	9	3	1
6	1	1	2	7	3	10	3	2
7	1	1	2	8	3	11	4	2
8	1	1	2	9	3	12	4	2
9	1	1	2	10	10	21	7	2
10	8	6	2	16	26	42	14	4
11	16	13	2	31	44	75	25	7
12	19	15	2	52	87	140	47	12
13	50	39	1	61	183	244	81	14
14	20	16	1	70	189	259	86	16
15	22	17	2	96	72	168	56	22
16	28	22	2	126	79	206	69	29
17	27	21	2	160	87	248	83	37
18	30	24	2	195	84	280	93	46
19	25	20	2	229	83	313	104	54
20	26	20	2	261	81	342	114	61
21	28	22	2	294	81	375	125	69
22	25	20	2	327	78	405	135	76
23	23	18	2	357	78	435	145	83
24	28	22	2	388	83	471	157	91
25	30	24	2	424	89	513	171	99

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length:	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast	Round	Area

SOIL INFORMATION

DEPTH OF SOIL DATA:
SPT INTERVAL
note:
soil type
30,45 m
BOREHOLE
BH3
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) $=1$

depth	NSPT	$\begin{array}{\|c} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{array}$	soil type	$\begin{aligned} & \text { Pf } \\ & \text { ton } \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	5	4	2	2	4	6	2	0
2	2	2	1	2	7	9	3	1
3	2	2	1	3	5	8	3	1
4	3	2	1	3	6	9	3	1
5	3	2	1	3	5	9	3	1
6	1	1	2	5	2	7	2	1
7	1	1	2	6	1	7	2	1
8	1	1	2	6	1	8	3	2
9	1	1	1	7	4	10	3	2
10	3	2	1	7	5	12	4	2
11	3	2	1	7	7	14	5	2
12	3	2	1	8	7	15	5	2
13	4	3	1	8	8	16	5	2
14	4	3	1	9	9	18	6	2
15	4	3	1	9	24	33	11	2
16	24	19	1	12	41	53	18	3
17	28	22	1	15	61	76	25	4
18	30	24	1	20	47	67	22	5
19	6	5	1	22	32	54	18	5
20	7	6	1	23	13	36	12	5
21	4	3	1	24	12	36	12	6
22	5	4	2	27	6	33	11	6
23	6	5	2	32	12	44	15	7

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length	15 m		
Pile type	Precast Round	Area	0,0707 m2
Dimension	$\mathbf{0 , 3 0} \mathrm{m}$	Perimeter	0,942477796 m

SOIL INFORMATION

DEPTH OF SOIL DATA		30,45 m	BOREHOLE
SPT INTERVAL		1 m	
note:	soil type	ilty clay ($d(S P / S W)$	$M H)=2$ andy silt (M

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	22	17	2	42	19	61	20	10
25	24	19	2	59	28	87	29	14
26	29	23	2	79	32	110	37	18
27	33	26	2	102	36	138	46	24
28	36	28	2	127	41	169	56	30
29	43	34	2	156	47	203	68	36
30	47	37	2	190	50	240	80	44

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length:	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast	Round	Area

SOIL INFORMATION

DEPTH OF SOIL DATA:
SPT INTERVAL
note:
soil type
30,45 m
BOREHOLE
BH3
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) $=1$

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	5	4	2	2	7	9	3	1
2	2	2	1	3	12	15	5	1
3	2	2	1	4	9	13	4	1
4	3	2	1	4	11	15	5	1
5	3	2	1	5	9	14	5	1
6	1	1	2	7	3	10	3	2
7	1	1	2	8	2	10	3	2
8	1	1	2	9	2	11	4	2
9	1	1	1	9	7	15	5	2
10	3	2	1	9	9	18	6	2
11	3	2	1	10	12	22	7	2
12	3	2	1	10	13	24	8	2
13	4	3	1	11	14	26	9	3
14	4	3	1	12	16	28	9	3
15	4	3	1	13	42	55	18	3
16	24	19	1	15	74	89	30	4
17	28	22	1	21	108	128	43	5
18	30	24	1	26	84	111	37	6
19	6	5	1	30	57	86	29	7
20	7	6	1	31	22	53	18	7
21	4	3	1	32	21	53	18	8
22	5	4	2	37	10	47	16	9
23	6	5	2	42	22	64	21	10

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length:	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$ Round	Area	$0,1257 \mathrm{~m} 2$
Dimension	$\mathbf{0 , 4 0} \mathrm{m}$	Perimeter	$1,256637061 \mathrm{~m}$

SOIL INFORMATION

DEPTH OF SOIL DATA		30,45 m	BOREHOLE
SPT INTERVAL		1 m	
note:	soil type	ilty clay ($d(S P / S W)$	$M H)=2$ andy silt (M

depth m	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	22	17	2	56	34	90	30	13
25	24	19	2	79	49	128	43	18
26	29	23	2	105	57	161	54	24
27	33	26	2	135	65	200	67	32
28	36	28	2	169	74	243	81	40
29	43	34	2	208	83	291	97	49
30	47	37	2	253	89	342	114	59

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length:	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast	Round	Area

SOIL INFORMATION

DEPTH OF SOIL DATA:
SPT INTERVAL
note:
soil type
30,45 m
BOREHOLE
BH3
clay, silty clay $(\mathrm{CH} / \mathrm{CL})$, clayey silt $(\mathrm{MH})=2$ sand (SP/SW), silty sand (SM), sandy silt (ML) $=1$

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f + P b}$ ton	allowable capacity Pa $\mathrm{SF}=3$ ton	remarks Pullout $S f=3$
0	0		2					0
1	5	4	2	3	11	14	5	1
2	2	2	1	4	19	22	7	1
3	2	2	1	4	14	19	6	1
4	3	2	1	5	16	22	7	1
5	3	2	1	6	14	20	7	1
6	1	1	2	8	5	13	4	2
7	1	1	2	10	3	13	4	2
8	1	1	2	11	3	14	5	3
9	1	1	1	11	10	21	7	3
10	3	2	1	11	14	26	9	3
11	3	2	1	12	19	31	10	3
12	3	2	1	13	21	34	11	3
13	4	3	1	14	23	36	12	3
14	4	3	1	15	25	39	13	3
15	4	3	1	16	66	82	27	4
16	24	19	1	19	115	134	45	4
17	28	22	1	26	169	194	65	6
18	30	24	1	33	132	164	55	8
19	6	5	1	37	88	126	42	9
20	7	6	1	39	35	74	25	9
21	4	3	1	40	33	73	24	9
22	5	4	2	46	15	61	20	11
23	6	5	2	53	34	87	29	12

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$ Round	Area	$0,1963 \mathrm{~m} 2$
Dimension	$\mathbf{0 , 5 0} \mathrm{m}$	Perimeter	$1,571 \mathrm{~m}$

SOIL INFORMATION

DEPTH OF SOIL DATA		30,45 m	BOREHOLE
SPT INTERVAL		1 m	
note:	soil type	silty clay (C $d(S P / S W)$	$M H)=2$ andy silt (ML)

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{aligned} & \text { Pf } \\ & \text { ton } \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	22	17	2	70	53	123	41	16
25	24	19	2	98	77	175	58	23
26	29	23	2	131	88	219	73	31
27	33	26	2	169	101	270	90	39
28	36	28	2	212	115	327	109	49
29	43	34	2	261	130	390	130	61
30	47	37	2	316	139	455	152	74

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$		
Round	Area	$0,0707 \mathrm{~m} 2$	
Dimension	$\mathbf{0 , 3 0} \mathrm{m}$	Perimeter	$0,942477796 \mathrm{~m}$

SOIL INFORMATION

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \text { ton } \end{gathered}$	ultimate capacity $\mathbf{P f + P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	2	2	2	1	2	3	1	0
2	2	2	2	2	2	4	1	1
3	1	1	2	3	1	5	2	1
4	1	1	2	4	1	5	2	1
5	1	1	2	5	2	7	2	1
6	3	2	2	6	2	8	3	1
7	1	1	2	8	2	10	3	2
8	1	1	2	9	1	10	3	2
9	2	2	2	10	2	11	4	2
10	2	2	2	11	2	13	4	3
11	2	2	2	13	2	15	5	3
12	2	2	2	14	2	16	5	3
13	2	2	2	16	2	18	6	4
14	2	2	2	17	2	19	6	4
15	2	2	2	19	2	21	7	4
16	2	2	2	20	2	22	7	5
17	2	2	2	21	2	24	8	5
18	2	2	2	23	3	26	9	5
19	3	2	2	25	13	38	13	6
20	31	24	2	37	21	59	20	9
21	24	19	2	58	27	84	28	13
22	17	13	2	73	21	94	31	17
23	15	12	2	85	17	102	34	20
24	14	11	2	96	17	113	38	22
25	18	14	2	107	18	125	42	25

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	$\frac{\text { Precast }}{}$ Round	Area	$0,1257 \mathrm{~m} 2$
Dimension	$\mathbf{0 , 4 0} \mathrm{m}$	Perimeter	$1,256637061 \mathrm{~m}$

SOIL INFORMATION

depth	NSPT	$\begin{gathered} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{gathered}$	soil type	$\begin{aligned} & \text { Pf } \\ & \text { ton } \end{aligned}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	2	2	2	1	4	5	2	0
2	2	2	2	3	3	6	2	1
3	1	1	2	4	3	7	2	1
4	1	1	2	5	2	7	2	1
5	1	1	2	6	3	10	3	1
6	3	2	2	8	3	12	4	2
7	1	1	2	10	3	14	5	2
8	1	1	2	11	3	14	5	3
9	2	2	2	13	3	16	5	3
10	2	2	2	15	4	19	6	3
11	2	2	2	17	4	21	7	4
12	2	2	2	19	4	23	8	4
13	2	2	2	21	4	25	8	5
14	2	2	2	23	4	27	9	5
15	2	2	2	25	4	29	10	6
16	2	2	2	27	4	31	10	6
17	2	2	2	29	4	33	11	7
18	2	2	2	31	5	35	12	7
19	3	2	2	33	24	57	19	8
20	31	24	2	50	38	88	29	12
21	24	19	2	77	47	124	41	18
22	17	13	2	97	37	134	45	23
23	15	12	2	113	30	143	48	26
24	14	11	2	127	31	158	53	30
25	18	14	2	143	32	175	58	33

PILE CAPACITY CALCULATION FOR DRIVEN PILE (MEYERHOFF'S FORMULA)

PILE INFORMATION

Length :	$\mathbf{1 5} \mathrm{m}$		
Pile type	Precast		
Round	Area	$0,1963 \mathrm{~m} 2$	
Dimension	$\mathbf{0 , 5 0} \mathrm{m}$	Perimeter	$\mathbf{1 , 5 7 1 \mathrm { m }}$

SOIL INFORMATION

depth	NSPT	$\begin{array}{\|c} \text { Corrected } \\ \text { NSPT } \\ \text { N70 --> N55 } \end{array}$	soil type	$\begin{gathered} \text { Pf } \\ \text { ton } \end{gathered}$	$\begin{aligned} & \mathrm{Pb} \\ & \text { ton } \end{aligned}$	ultimate capacity $\mathbf{P f}+\mathbf{P b}$ ton	allowable capacity Pa SF=3 ton	remarks Pullout $\mathrm{Sf}=3$
0	0		2					0
1	2	2	2	1	6	7	2	0
2	2	2	2	4	5	9	3	1
3	1	1	2	6	4	10	3	1
4	1	1	2	7	3	10	3	2
5	1	1	2	8	5	13	4	2
6	3	2	2	10	5	16	5	2
7	1	1	2	13	5	18	6	3
8	1	1	2	14	4	18	6	3
9	2	2	2	16	5	21	7	4
10	2	2	2	19	6	25	8	4
11	2	2	2	21	6	27	9	5
12	2	2	2	23	6	30	10	5
13	2	2	2	26	6	32	11	6
14	2	2	2	28	6	35	12	7
15	2	2	2	31	6	37	12	7
16	2	2	2	33	6	39	13	8
17	2	2	2	36	6	42	14	8
18	2	2	2	38	7	45	15	9
19	3	2	2	41	37	78	26	10
20	31	24	2	62	60	122	41	15
21	24	19	2	96	74	170	57	22
22	17	13	2	122	58	179	60	28
23	15	12	2	141	47	189	63	33
24	14	11	2	159	48	208	69	37
25	18	14	2	179	49	228	76	42

SHALLOW BEARING

CALCULATION OF SOIL BEARING CAPACITY SHALLOW FOUNDATION										
Project				Southern Bali Water Supply System				Made By		Andrianto
Client				NIHON SUIDO CONSULTANT				Undrained shear strength and friction angle is obtained from lab tests. Unit weight value also taken from lab All values subject to engineer judgement		
Borehole Number				BH-1						
Method				Meyerhoff (1963, SPT 1974)						
Width of Foundation (B)				4 m						
$\begin{aligned} & \stackrel{士}{\stackrel{\rightharpoonup}{D}} \\ & \stackrel{0}{0} \end{aligned}$		c_{u}	ϕ	$\begin{aligned} & \bar{\circ} \\ & \stackrel{0}{c} \\ & \underset{\sim}{n} \\ & \overline{\overline{0}} \end{aligned}$	γ^{\prime}				$\begin{gathered} \text { SPT N Value } \\ \text { (N55) } \\ \hline \end{gathered}$	Allowable Bearing Capacity (kPa)
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)	05101520	${ }^{\circ}$
0	1	5	6	$\stackrel{5}{5}$	16	43	14	14.45	- 5101520	
0.5	1	5	6		16	64	21	15.04		
1	1	5	6		16	87	29	15.64		III - - SPT
1.5	1	5	6		16	112	37	16.23		
2	1	5	6		16	138	46	16.83		
2.5	1	5	6		6	103	34	17.42		
3	1	5	6		6	117	39	18.02		
3.5	1	5	6		6	132	44	18.62		II
4	1	5	6		6	148	49	19.21		
4.5	1	5	6		6	164	55	19.21		-
5	1	5	6		6	180	60	19.21		
5.5	1	5	6		6	197	66	19.21		-
6	1	5	6		6	215	72	19.21		
6.5	1	5	6		6	234	78	19.21		1
7	1	5	6		6	253	84	19.21		
7.5	1	5	6		6	273	91	19.21		I
8	1	5	6		6	293	98	19.21		
8.5	2	5	8		6	377	126	38.42		1
9	2	5	8		6	404	135	38.42		
9.5	2	8	8		6	522	174	38.42		
10	2	8	20		6	1792	597	38.42		

CALCULATION OF SOIL BEARING CAPACITY SHALLOW FOUNDATION										
Project				Southern Bali Water Supply System				Made By		Andrianto
Client				NIHON SUIDO CONSULTANT				Undrained shear strength and friction angle is obtained from lab tests. Unit weight value also taken from lab All values subject to engineer judgement		
Borehole Number				$\frac{\text { BH-2 }}{\text { Meyerhoff (1963, SPT 1974) }}$						
Method										
Width of Foundation (B)				Meyerhoff (1963, SPT 1974)						
		c_{u}	ϕ		γ^{\prime}				SPT N Value (N55)	Allowable Bearing Capacity (kPa)
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)	05101520	O $100{ }^{1000} 30004000500$
0	1	5	6		16	43	14	14.45		
0.5	1	5	6		16	64	21	15.04		\rightarrow - Meyerhof
1	1	5	6		16	87	29	15.64		--SPT
1.5	1	5	6		16	112	37	16.23		
2	1	5	6		16	138	46	16.83		\square
2.5	1	5	6		6	103	34	17.42		
3	1	5	6		6	117	39	18.02		
3.5	1	5	6		6	132	44	18.62		
4	1	5	6		6	148	49	19.21		
4.5	1	5	6	㐫	6	164	55	19.21		
5	1	5	6	4	6	180	60	19.21		
5.5	1	5	6	$\stackrel{\rightharpoonup}{0}$	6	197	66	19.21		
6	1	5	6		6	215	72	19.21		
6.5	1	5	6		6	234	78	19.21		
7	1	5	6		6	253	84	19.21		
7.5	1	5	6		6	273	91	19.21		
8	1	5	6		6	293	98	19.21		
8.5	1	5	8		6	377	126	19.21		
9	1	5	8		6	404	135	19.21		
9.5	3	8	8		6	522	174	57.64		
10	8	8	20		6	1792	597	153.70		

CALCULATION OF SOIL BEARING CAPACITY SHALLOW FOUNDATION										
Project				Southern Bali Water Supply System				Made By		Andrianto
Client				NIHON SUIDO CONSULTANT				Undrained shear strength and friction angle is obtained from lab tests. Unit weight value also taken from lab All values subject to engineer judgement		
Borehole Number				$\frac{\text { BH-3 }}{\text { Meyerhoff (1963, SPT 1974) }}$						
Method										
Width of Foundation (B)					m					
$\begin{array}{r} \text { 喜 } \\ \text { O} \\ \hline \end{array}$		c_{u}	ϕ		γ^{\prime}				SPTN Value (N55)	Allowable Bearing Capacity (kPa)
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)		0. $100 \quad 20033004000500$
0	5	5	6		16	43	14	72.23		
0.5	5	5	6	-	16	64	21	75.21		- Meyerrof
1	5	5	6	有	16	87	29	78.19		ST
1.5	5	5	6		16	112	37	81.16	,	
2	2	5	6		16	138	46	33.66		
2.5	2	5	6		6	103	34	34.85		
3	2	5	6		6	117	39	36.04		
3.5	2	5	6		6	132	44	37.23		¢
4	3	5	6		6	148	49	57.64		
4.5	3	5	6	\%	6	164	55	57.64		-
5	3	5	6	8	6	180	60	57.64		
5.5	3	5	6	E	6	197	66	57.64	-	
6	1	5	-	3	6	215	72	19.21		
6.5	1	5	6	\%	6	234	78	19.21		
7	1	5	6	0	6	253	84	19.21		
7.5		5	6	5	6	273	91	19.21		
8	1	5	6		6	293	98	19.21		
8.5	1	5	8		6	377	126	19.21		II
9	1	5	8			404	135	19.21		
9.5	2	8	8		6	522	174	38.42		
10	3	8	20		6	1792	597	57.64		

CALCULATION OF SOIL BEARING CAPACITY SHALLOW FOUNDATION										
Project				Southern Bali Water Supply System				Made By		Andrianto
Client				NIHON SUIDO CONSULTANT				Undrained shear strength and friction angle is obtained from lab tests. Unit weight value also taken from lab All values subject to engineer judgement		
Borehole Number				BH-4						
Method				Meyerhoff (1963, SPT 1974)						
Width of Foundation (B)				4 m						
		c_{u}	¢	$$	γ^{\prime}				SPTN Value (N55)	Allowable Bearing Capacity (kPa)
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)		$0 \quad 100200300400500$
0	2	5	6		16	43	14	28.89		
0.5	2	5	6	灰	16	64	21	30.08		-Meyertor
1	2	5	6	有	16	87	29	31.27		- - SPT
1.5	2	5	6		16	112	37	32.47		
2	2	5	6		16	138	46	33.66		
2.5	2	5			6	103	34	34.85		
3	1	5	6		6	117	39	18.02		
3.5	1	5	6		6	132	44	18.62		1
4	1	5	6		6	148	49	19.21		
4.5	1	5	-	$\stackrel{3}{5}$	6	164	55	19.21		
5	1	5	6	8	6	180	60	19.21		
5.5	1	5	6		6	197	66	19.21		
6	3	5	6	3	6	215	72	57.64		
6.5	3	5	6	\%	6	234	78	57.64		,
7	1	5	6	0	6	253	84	19.21		-
7.5	1	5	6		6	273	91	19.21		
8	1	5	6		6	293	98	19.21		
8.5	1	5	8		6	377	126	19.21		II
9	2	5	8		6	404	135	38.42		
9.5	2	8	-		6	522	174	38.42		
10	2	8	20		6	1792	597	38.42		

APPENDIX 5

CONCEPT DESIGN OF RECLAIMED WATER TREATMENT FACILITY

APPENDIX 5 CONCEPT DESIGN OF RECLAIMED WATER TREATMENT FACILITY

5.a Calculation Sheets Water Reclaimed Water for BALI

Item	Case 1	Case 2
1.Design Parameter 1-1 Outline of Reclaimed Water System (1) Area of Plant (2) Grand Level of Plant (3) Type of Reclaimed Water System (4) Water Treatment Process 1-2 Design Flowrate Water Reuse Maximum Daily Flowrate Reclaimed Water System Flowrate Raw Water Flowrate Biological Filtration Flowrate Ozone Cotactor Flowrate Ceramic Membrane Filtration Flowrate Reclaimed Water Flowrate 1-3 Number of Series	$4500 \mathrm{~m}^{3} / \mathrm{d}$ $5900 \mathrm{~m}^{3} / \mathrm{d}$ $5900 \mathrm{~m}^{3} / \mathrm{d}$ $4800 \mathrm{~m}^{3} / \mathrm{d}$ $4800 \mathrm{~m}^{3} / \mathrm{d}$ $4800 \mathrm{~m}^{3} / \mathrm{d}$ 1 Series	$9000 \mathrm{~m}^{3} / \mathrm{d}$ $11800 \mathrm{~m}^{3} / \mathrm{d}$ $11800 \mathrm{~m}^{3} / \mathrm{d}$ $9600 \mathrm{~m}^{3} / \mathrm{d}$ $9600 \mathrm{~m}^{3} / \mathrm{d}$ $9600 \mathrm{~m}^{3} / \mathrm{d}$ 2 Series
2.Raw Water		
2-1 Raw Water Tank		
Raw Water Flowrate	$=5900 \mathrm{~m}^{3} / \mathrm{d}$	$=11800 \mathrm{~m}^{3} / \mathrm{d}$
Retention Time	$=5.0$ minutes	$=5.0$ minutes
Req. Volume	$\begin{gathered} =5900 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ \mathrm{x} 5 \mathrm{~min} \fallingdotseq 20.5 \mathrm{~m}^{3} \end{gathered}$	$\begin{aligned} = & 11800 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \times 5 \mathrm{~min} \fallingdotseq 41 \mathrm{~m}^{3} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Number of Basin	$=1$ Basin	$=1$ Basin
One Basin Volume	$=20.5 / 1=20.5 \mathrm{~m}^{3}$	$=41 / 2 / 1=20.5 \mathrm{~m}^{3}$
Length	$=3.3 \mathrm{~m}$	$=3.3 \mathrm{~m}$
Width	$=2.5 \mathrm{~m}$	$=2.5 \mathrm{~m}$
Water Depth	$=2.5 \mathrm{~m}$	$=2.5 \mathrm{~m}$
Total Volume	$\begin{aligned} & =3.3 \times 2.5 \times 2.5 \\ & =20.625 \mathrm{~m}^{3} / \text { Series } \end{aligned}$	$\begin{aligned} & =3.3 \times 2.5 \times 2.5 \\ & =20.625 \mathrm{~m}^{3} / \text { Series } \end{aligned}$
Total Number of Basins	$=2$ Basins	$=2$ Basins
Raw Water Feed Pump		
Total Pump Capacity	$\begin{aligned} & =5900 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \fallingdotseq 4.1 \mathrm{~m} 3 / \mathrm{min} \end{aligned}$	$\begin{aligned} & =11800 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \fallingdotseq 8.2 \mathrm{~m} 3 / \mathrm{min} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Pump Capacity	$=4.1 / 12=4.1 \mathrm{~m}^{3} / \mathrm{min}$	$=8.2 / 2=4.1 \mathrm{~m}^{3} / \mathrm{min}$
Total Number of Pumps	$\begin{aligned} & =2 \text { Pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$	$\begin{aligned} & \text { = } 3 \text { Pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$

Item	Case 1	Case 2
3.Biological Filtration		
3-1 Biological Filtration Tank		
Design Flowrate		
Biological Filtration Flowrate	$=5900 \mathrm{~m}^{3} / \mathrm{d}$	$=11800 \mathrm{~m}^{3} / \mathrm{d}$
Biological Filtration Speed	$=40 \mathrm{~m} / \mathrm{d}$	$=40 \mathrm{~m} / \mathrm{d}$
Req. Area	$\begin{aligned} & =5900 \mathrm{~m}^{3} / \mathrm{d} / 40 \mathrm{~m} / \mathrm{d} \\ & =148 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & =11800 \mathrm{~m}^{3} / \mathrm{d} / 40 \mathrm{~m} / \mathrm{d} \\ & =295 \mathrm{~m}^{2} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Number of Basin	$=4$ Basins	$=4$ Basins
One Reactor Req. Area	$=148 / 1 / 4=37 \mathrm{~m}^{2}$	$=295 / 2 / 4=36.9 \mathrm{~m}^{2}$
Length	$=6.1 \mathrm{~m}$	$=6.1 \mathrm{~m}$
Width	$=6.1 \mathrm{~m}$	$=6.1 \mathrm{~m}$
Biological Filtration Area	$=6.1 \times 6.1=37.21 \mathrm{~m}^{2}$	$=6.1 \times 6.1=37.21 \mathrm{~m}^{2}$
Total Number of Basins	$=4$ Basins	= 8 Basins
Biological Filtration Backwash Pump		
Biological Filtration Area	$=37.21 \mathrm{~m}^{2}$	$=37.21 \mathrm{~m}^{2}$
Backwash Speed	$=0.45 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}$	$=0.45 \mathrm{~m}^{3} / \mathrm{m}^{2} \cdot \mathrm{~min}$
Pump Capacity	$\begin{aligned} & =37.21 \times 0.45 \\ & \fallingdotseq 16.8 \mathrm{~m}^{3} / \mathrm{min} \end{aligned}$	$\begin{aligned} & =37.21 \times 0.45 \\ & \fallingdotseq 16.8 \mathrm{~m}^{3} / \mathrm{min} \end{aligned}$
Number of Series	= 1 Series	= 2 Series
Req. Number of Pump / One Series	= 1 Pump	= 1 Pump
Total Number of Pumps	$\begin{aligned} & \text { = } 2 \text { Pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$	$\begin{aligned} & \text { = } 3 \text { Pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$

Item	Case 1	Case 2
3-2 Biological Filter Treated Water Tank		
Biological Filtration Flowrate	$=5900 \mathrm{~m}^{3} / \mathrm{d}$	$=11800 \mathrm{~m}^{3} / \mathrm{d}$
Ozone Cotactor Flowrate	$=4800 \mathrm{~m}^{3} / \mathrm{d}$	$=9600 \mathrm{~m}^{3} / \mathrm{d}$
Biological Filtration Backwash Water	$\begin{aligned} & =5900 \mathrm{~m}^{3}-4800 \mathrm{~m}^{3} \\ & =1100 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =11800 m^{3}-9600 m^{3} \\ & =2200 m^{3} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Number of Basin	$=4$ Basins	$=4$ Basins
One Cotactor Req. Backwash Water	$\begin{aligned} & =1100 / 1 / 4 \\ & =275 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =2200 / 2 / 4 \\ & =275 \mathrm{~m}^{3} \end{aligned}$
Retention Time of Biological Filter Backwash	$=30.0$ minutes	$=30.0$ minutes
Outflow of Biological Filter Treated Water Tank	$=3.4 \mathrm{~m}^{3} / \mathrm{min}$	$=3.4 \mathrm{~m}^{3} / \mathrm{min}$
Inflow of Biological Filter Treated Water Tank	$=4.1 \mathrm{~m}^{3} / \mathrm{min}$	$=4.1 \mathrm{~m}^{3} / \mathrm{min}$
One Cotactor Req. Volume	$\begin{aligned} & =275+3.4 \times 30 \\ & -4.1 \times 30=254 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =275+3.4 \times 30 \\ & -4.1 \times 30=254 \mathrm{~m}^{3} \end{aligned}$
Length	$=15.0 \mathrm{~m}$	$=15.0 \mathrm{~m}$
Width	$=6.3 \mathrm{~m}$	$=6.3 \mathrm{~m}$
Water Depth	$=3.3 \mathrm{~m}$	$=3.3 \mathrm{~m}$
Total Volume	$\begin{aligned} & =15.0 \times 6.3 \times 3.3 \\ & \fallingdotseq 311.8 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =15.0 \times 6.3 \times 3.3 \\ & \fallingdotseq 311.8 \mathrm{~m}^{3} \end{aligned}$
Total Number of Basin	$=1$ Basin	= 1 Basin
Biological Filter Treated Water Feed Pump Ozone Cotactor Flowrate	$=4800 \mathrm{~m}^{3} / \mathrm{d}$	$=9600 \mathrm{~m}^{3} / \mathrm{d}$
Total Pump Capacity	$\begin{aligned} & =4800 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \fallingdotseq 3.4 \mathrm{~m}^{3} / \mathrm{min} \end{aligned}$	$\begin{aligned} & =9600 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \fallingdotseq 6.8 \mathrm{~m}^{3} / \mathrm{min} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Pump Capacity	$=3.4 / 1=3.4 \mathrm{~m}^{3} / \mathrm{min}$	$=6.8 / 2=3.4 \mathrm{~m}^{3} / \mathrm{min}$
Total Number of Pumps	$\begin{aligned} & \text { = 2pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$	$\begin{aligned} & \text { = 3pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$

Item	Case 1	Case 2
4-2 Coagulation / Flocculation Tank		
Coagulation Tank		
Ozone Cotactor Flowrate	$=4800 \mathrm{~m}^{3} / \mathrm{d}$	$=9600 \mathrm{~m}^{3} / \mathrm{d}$
Retention Time of Congulation Tank	$=1.0$ minutes	$=1.0$ minutes
Req. Volume of Congulation Tank	$\begin{aligned} & =4800 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \mathrm{x} 1 \mathrm{~min} \fallingdotseq 3.4 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =9600 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \mathrm{x} 1 \mathrm{~min} \fallingdotseq 6.8 \mathrm{~m}^{3} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Number of Basin	$=1$ Basin	$=1$ Basin
One Reactor Volume	$=3.4 / 1 / 1=3.4 \mathrm{~m}^{3}$	$=6.8 / 2 / 1=3.4 \mathrm{~m}^{3}$
Length	$=1.5 \mathrm{~m}$	$=1.5 \mathrm{~m}$
Width	$=2.0 \mathrm{~m}$	$=2.0 \mathrm{~m}$
Water Depth	$=1.7 \mathrm{~m}$	$=1.7 \mathrm{~m}$
Total Volume	$=1.5 \times 2.0 \times 1.7=5.1 \mathrm{~m}^{3}$	$=1.5 \times 2.0 \times 1.7=5.1 \mathrm{~m}^{3}$
Flocculation Tank		
Retention Time of Flocculation Tank	$=2.0$ minutes	$=2.0$ minutes
Req. Volume of Congulation Tank	$\begin{aligned} & =4800 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \mathrm{x} 2 \mathrm{~min} \fallingdotseq 6.7 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =9600 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \mathrm{x} 2 \mathrm{~min} \fallingdotseq 13.4 \mathrm{~m}^{3} \end{aligned}$
Number of Series	$=1$ Series	$=2$ Series
Number of Basin (2 Basins in Series)	$=1$ Basin	$=1$ Basin
One Reactor Volume	$=6.7 / 1 / 1=6.7 \mathrm{~m}^{3}$	$=13.4 / 2 / 1=6.7 \mathrm{~m}^{3}$
Length	$=2.0 \mathrm{~m}$	$=2.0 \mathrm{~m}$
Width	$=2.0 \mathrm{~m}$	$=2.0 \mathrm{~m}$
Water Depth	$=1.7 \mathrm{~m}$	$=1.7 \mathrm{~m}$
Total Volume	$=2.0 \times 2.0 \times 1.7=6.8 \mathrm{~m}^{3}$	$=2.0 \times 2.0 \times 1.7=6.8 \mathrm{~m}^{3}$
Total Number of Basins (Coagulation / Flocculation Tank)	= 1 Basin	$=2$ Basins
Coagulated / Flocculated Water Feed Pump Total Pump Capacity	$=4800 \mathrm{~m}^{3} / \mathrm{d} \fallingdotseq 6.8 \mathrm{~m}^{3} / \mathrm{min}$	$=9600 \mathrm{~m}^{3} / \mathrm{d} \fallingdotseq 6.8 \mathrm{~m}^{3} / \mathrm{min}$
Number of Series	$=1$ Series	$=2$ Series
Pump Capacity	$=3.4 / 1=3.4 \mathrm{~m}^{3} / \mathrm{min}$	$=6.8 / 2=3.4 \mathrm{~m}^{3} / \mathrm{min}$
Pump Numbers	$\begin{aligned} & \text { = 2pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$	$\begin{aligned} & \text { = 3pumps } \\ & \text { (Including Backup Pump) } \end{aligned}$

Item	Case 1	Case 2
5.Ceramic Membrane Filtration Unit		
Ceramic Membrane Filtration Flowrate	$=4800 \mathrm{~m}^{3} / \mathrm{d}$	$=9600 \mathrm{~m}^{3} / \mathrm{d}$
Design One Ceramic Membrane Filter Area	$=25 \mathrm{~m}^{2}$	$=25 \mathrm{~m}^{2}$
Design Velocity	$=4.0 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$	$=4.0 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$
Efficiency	$=0.9$	$=0.9$
Req. Number of Ceramic Membrane Filters	$\begin{aligned} & =4800 \mathrm{~m}^{3} / \mathrm{d} / 25 \mathrm{~m}^{2} \\ & / 4.0 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} / 0.9 \fallingdotseq 53.4 \end{aligned}$	$\begin{aligned} & =9600 \mathrm{~m}^{3} / \mathrm{d} / 25 \mathrm{~m}^{2} \\ & / 4.0 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} / 0.9 \doteqdot 106.7 \end{aligned}$
Design Module of Ceramic Membrane Filters	$=10$ Filters	$=10$ Filters
Design Series of Modules	$=6$ Modules	$=6$ Modules
Number of Series	= 1 Series	$=2$ Series
Design Number of Ceramic Membrane Filters	$=10 \times 6 \times 1=60$ Filters	$=10 \times 6 \times 2=120$ Filters
6. Reclaimed Water Tank Reclaimed Water Flowrate	$=4800 \mathrm{~m}^{3} / \mathrm{d}$	$=9600 \mathrm{~m}^{3} / \mathrm{d}$
Retention Time of Congulation Tank	$=5.0$ minutes	$=5.0$ minutes
Req. Volume	$\begin{aligned} & =4800 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \mathrm{x} 5 \mathrm{~min} \fallingdotseq 16.7 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} & =9600 \mathrm{~m}^{3} / \mathrm{d} / 1440 \mathrm{~min} / \mathrm{d} \\ & \mathrm{x} 5 \mathrm{~min} \fallingdotseq 33.3 \mathrm{~m}^{3} \end{aligned}$
Number of Basin	$=1 \mathrm{Basin}$	$=1$ Basin
One Basin Volume	$=16.7 / 1=16.7 \mathrm{~m}^{3}$	$=33.3 / 1=33.3 \mathrm{~m}^{3}$
Length	$=8.1 \mathrm{~m}$	$=8.1 \mathrm{~m}$
Width	$=3.8 \mathrm{~m}$	$=3.8 \mathrm{~m}$
Water Depth	$=2.0 \mathrm{~m}$	$=2.0 \mathrm{~m}$
Total Volume	$\begin{aligned} & =8.1 \times 3.8 \times 2.0 \\ & =61.5 \mathrm{~m}^{3} / \text { System } \end{aligned}$	$\begin{aligned} & =8.1 \times 3.8 \times 2.0 \\ & =61.5 \mathrm{~m}^{3} / \text { System } \end{aligned}$
Total Number of Basin	$=1 \mathrm{Basin}$	= 1 Basin

5.b Design Drawing

Appendix5-7

Appendix5-8

Appendix5-9
Section of Reclaimed Water Treatment Facility for Case 2

Sextion ce:

TinE:
DRAWMG No. 01

Section of Raw Water Pump Station

Section F-F

\square

JAPAN INTERNATONAL COOPERATONAGENC

Appendix5-11

Appendix5-16

APPENDIX 6

CONCEPT DESIGN OF

 TRANSMISSION FACILITY
APPENDIX 6 CONCEPT DESIGN OF TRANSMISSION FACILITY

6.a Design Criteria

The following descriptions are shown for the case of Case2.

6.a.1 Transmission pump facility

Design Transmission Flow: Maximum daily flow shall be considered for the transmission pump.
Design maximum daily flow $\quad 9,000 \mathrm{~m}^{3} /$ day $\left(=6.250 \mathrm{~m}^{3} / \mathrm{min}=104.2 \mathrm{~L} / \mathrm{s}\right)$
Transmission pump specification: Shall be determined considering the elevation difference between Denpasar WWTP and UPA reservoir, head loss of transmission pipe, head loss around the pipe, water hammer analysis and others.
Power receiving facility: Shall have the capacity enough for duty operation of the transmission pumps.
Generator equipment: Shall have the capacity enough for emergency operation of the transmission pumps.
Electrical and instrumentation equipment, and monitoring equipment:
Shall consider automatic operation

6.a. 2 Transmission Pipe

Laying roulte: The laying route of transmission pipe is shown in Figure 6.a.1. The length is approximately 16 km .

Figure 6.a. 1 Transmission Pipe Route

Design Transmission Flow: Maximum daily flow shall be considered for the transmission pipe.
Design maximum daily flow $\quad 9,000 \mathrm{~m}^{3} /$ day $\left(=6.250 \mathrm{~m}^{3} / \mathrm{min}=104.2 \mathrm{~L} / \mathrm{s}\right)$
Pipe type, diameter: \quad HDPE, $\varphi 400$ (based on the result of water hammer analysis)
Construction method:
-General open cut method part:
-Other special construction method part:

Standard section shown in Figure 6.a.2 shall be applied. Construction method shown in Figure 6.a. 3 shall be applied as a result of field survey.

Figure 6.a. 2 Standard Section of Pipe Earthwork for the General Open Cut Method Part

Figure 6.a. 3 Location of Transmission Pipe for Special Construction Method Part

6.b Equipment Design

6.b. 1 Reclaimed Water Transmission Equipment

(1) Design Criteria

Design Flow
Daily average transmission Flow: $\quad 6.250\left[\mathrm{~m}^{3} / \mathrm{min}\right]$
Water Level
Pump well LWL $1.6[\mathrm{~m}]$
UPA reservoir HWL 29.335 [m]
(2) Pump Specification

Discharge:	3.125	$\left[\mathrm{~m}^{3} / \mathrm{min}\right]$
Motor output:	75	$[\mathrm{~kW}]$
Quantity:	$3(1)$	$[\mathrm{Nos}]$

(3) Water Hammer Analysis

The result of simplified calculation to judge whether a water hammer will occur has showed that there is no point where the minimum pressure gradient curve goes below the pipeline longitudinal section, and negative pressure is not generated. Therefore it is confirmed that a water column separation will not be caused.

6.b. 2 Power Receiving Equipment and Substation

 It is assumed that the maximum demand power of this facility amounts to approximately 780 kW . After power receiving at 20 kV from the electric power company, 20 kV is transformed into 400 V by the transformer at site, and then 400 V is supplied to each load. Power distribution diagram is shown in Figure 6.\#.In addition, indoor space with not less than $3 \mathrm{~m} x \mathrm{~m}$ is required for the space of switchboard installation of the electric power company. Based on the electric power supply regulation, it is necessary to pay the electric power company for a connection fee.

6.b. 3 Generator Equipment

This equipment is to supply the power for producing reclaimed water at the time of a power failure, and supply the treated water to UPA reservoir.
(1) Reason to install

This facility needs to produce and supply the reclaimed water always and stably, even at a time of power failure, based on the PPP contract. According to the hearing to the electric power company, the frequency of power failure of 20 kV power line is about ten times a year, and

Figure 6.b. 1 Power Distribution Diagram its duration is about two hours at maximum. Therefore, installation of emergency power generating facility to secure the power supply at least two hours needs to be considered.

All the facilities related to this project have emergency generators as the measure against power failure. The details of the generators are summarized as follows. Power failures are occurring frequently and they are operating frequently.

- Suwung WWTP (The facility to provide the reclaimed WTP with raw water)

Engine Type:	Diesel
Quantity:	$1 \quad[\mathrm{set}]$
Capacity:	$500[\mathrm{kVA}]$
Fuel Type:	Diesel Oil
Capacity of Fuel Tank:	$4 \quad\left[\mathrm{~m}^{3}\right]$

- Teluk Benoa Reservoir (The facility to transmit the clean water to UPA reservoir)

Engine Type:	Diesel
Quantity:	$1 \quad[\mathrm{set}]$
Capacity:	$750[\mathrm{kVA}]$
Fuel Type:	Diesel Oil
Capacity of Fuel Tank:	$1\left[\mathrm{~m}^{3}\right]$

- UPA reservoir (The facility to supply the clean water to Nusa Dua area)

Engine Type
Quantity:
Capacity:
Fuel Type:
Capacity of Fuel Tank:

Diesel
1 [set]
106 [kVA]
Diesel Oil
$1.3\left[\mathrm{~m}^{3}\right]$
(2) Required load in case of emergency

Required load in case of emergency shall be the capacity enough to operate one train of reclaimed water treatment $\left(4,500 \mathrm{~m}^{3} / \mathrm{d}\right)$, because if all the trains are considered for emergency power, required capacity will become excessive and the amount of investment will increase. If one train operation is considered at power failure, the reclaimed water would be supplied to the customer for at least four hours without interruption under the condition that there is certain amount of reclaimed water in UPA reservoir. Moreover, the load necessary for maintenance such as building power, building lighting shall be minimized in consideration of demand factor.
(3) Engine Type

Diesel engine or gas turbine engine is used for generator, and diesel engine is selected in consideration of maintenance, since the diesel engine is used in the related facilities. Reclaimed water shall also be used as the cooling water for the generator.
(4) Specification

The outline of generator equipment to be installed in this facility is as follows. Capacity calculation is attached.

Engine Type:	Diesel
Quantity:	$1 \quad[\mathrm{set}]$
Capacity:	$750[\mathrm{kVA}]$
Fuel Type:	Diesel Oil
Capacity of Fuel Tank:	$2.5\left[\mathrm{~m}^{3}\right]$

6.b.4 Reclaimed water transmission pump instrumentation and control equipment

This equipment is to operate and control the transmission pump which transmits the reclaimed water to UPA reservoir. Normally, two transmission pumps shall be operated in duty. Operation of the pump shall be automatic according to water level of UPA reservoir. Level meters shall be installed at transmission pump well and UPA reservoir for automatic operation. Moreover, transmission flow meter shall be installed in order to understand the amount of reclaimed water supplied.

6.b. 5 Supervision equipment

Supervisor equipment is the equipment to monitor and control the plant equipment dispersed broadly in a central monitoring room by the operator, and to perform the plant operation safely, efficiently, and stably. It is installed for the purpose of operation and maintenance cost reduction, laborsaving, labor environment improvement, and workability improvement. The basic function of supervisor equipment is as follows.

- Monitoring function (Status display, failure display, measured value display)
- Operation / setting function
- Recording function

Schematic diagram is shown in Figure 6.b.2.

Figure 6.b. 2 Schematic Diagram of Supervision System

【Calculations of Equipment for Concept Design】

1. Calculation of Reclaimed Water Transmission Pump
2. Water Hammer Analysis
3. Calculation of Transformer
4. Calculation of Emergency Generator
5. Calculation of Fuel Tank

1. Calculation of Reclaimed Water Transmission Pump

i) Head Loss in Transmission Pipe
a) Head loss around the pump $\mathrm{H}_{\mathrm{f} 1}$

Estimated as 10 [m]
b) Head loss in transmission pipe
b-1) Hazen-Williams Equation

$$
\mathrm{Hl}=10.666 \times \mathrm{C}^{-1.85} \times \mathrm{D}^{-4.87} \times \mathrm{Q}^{1.85} \times \mathrm{L}
$$

C Coefficient HDPE
D Diameter of Pipe
[m]
Q Flow Rate
L Length of Pipeline
[m $\mathrm{m}^{3} / \mathrm{s}$]
[m]
$=10.666 \times 140^{-1.85} \times 0.4^{-4.87} \times 0.104^{1.85} \times 15,230$
$=22.90[\mathrm{~m}]$
b-2) Head loss around the corner
Estimated as 10% of head loss in transmission pipe

$$
=2.29[\mathrm{~m}]
$$

ii) Driving power of a pump

```
\(\mathrm{P}=\frac{0.163 \times \gamma \times \mathrm{Q} \times \mathrm{H}}{\eta} \times(1+\mathrm{a})\)
    \(\gamma \quad\) Density of Liquid
    Q Amount of Discharge \(\quad\left[\mathrm{m}^{3} / \mathrm{min}\right]\)
    H Total Head [m]
    \(\eta \quad\) Pump Efficiency
    a Allowance Rate
    \(=\frac{0.163 \times 1 \times 6.24 \times(10+22.90+2.29+27.735)}{0.6} \times(1+0.1)\)
    \(=117 \quad[\mathrm{~kW}]\)
    \(\rightarrow 75[\mathrm{~kW}] \times 3(1)\)
```


2．Water Hammer Analysis

1．Pump Details

	単位 Unit	記号 Symbol	数値 Value	備考 Remarks
Motor Output	$[\mathrm{kW}]$		75	
Frequency	$[\mathrm{Hz}]$		50	
Static Head	$[\mathrm{m}]$	Ha	27.735	
Loss of Head	$[\mathrm{m}]$	Hf	35.19	
Total Head	$[\mathrm{m}]$	Ht	63	$\mathrm{Ha}+\mathrm{Hf}$
Pump Shaft Power	$[\mathrm{kW}]$	Pw	53.4	$0.163 \gamma \mathrm{QH} / \eta \mathrm{p}$
Efficiency	$[\%]$	$\eta \mathrm{p}$	60	
Discharge Flow	$\left[\mathrm{m}^{3} / \mathrm{min}\right]$	Q_{0}	3.12	
Revolution Speed	$\left[\mathrm{min}^{-1}\right]$	N	1,000	6 P
Fly－wheel Effect	$\left[{\left.\mathrm{kg}-\mathrm{m}^{2}\right]}^{\mathrm{GD}}{ }^{2}\right.$	16.50		
Number of Pump		n	2	

2．Pipeline Details

	単位 Unit	記号 Symbol	数値 Value	備考 Remarks	
Pipeline Length	$[\mathrm{m}]$	L	15,230		
Diameter	$[\mathrm{mm}]$	D	400		
Thickness	$[\mathrm{mm}]$	t	23.7		
Material	HDPE				
k / E	-	k / E	2.07		
Pump Suction WL	$[\mathrm{m}]$		1.6		
Pipeline Profile				Figure 4．b．2	

3．Calculation

	単位 Unit	記号 Symbol	計算式 Formula		数値 Result
運転時トルク Pump Torque	［ $\mathrm{N} \cdot \mathrm{m}$ ］	M	$\frac{\Sigma(9,550 * \mathrm{Pw})}{\mathrm{N}}$	$\frac{9,550 * 53.4 * 2}{1,000}=$	1019.9
慣性係数 Inertial Coefficient	－	k	$\frac{38.2 * \Sigma \mathrm{M}}{\sum\left(\mathrm{GD}_{\mathrm{n}}^{2} * \mathrm{~N}_{\mathrm{n}}\right)}$	$\frac{38.2 * 1019.9}{16.5 * 2 * 1000}=$	1.181
損失百分率 Pipeline loss of head［percentage］	［\％］	R	$\frac{\mathrm{Hf}}{\mathrm{Ht}} * 100$	$\frac{35.19}{63} * 100$	55.9
圧力伝播速度 Pressure Propagation Velocity	［m／s］	a	$\frac{1425}{\sqrt{1+\mathrm{K} / \mathrm{E} \cdot \mathrm{D} / \mathrm{t}}}$	$\frac{1425}{\sqrt{1+2.07 \cdot 400 / 23.7}}=$	237.7
管内流速 Average Flow Velocity	［m／s］	V	$\frac{\mathrm{Q}_{0}}{60 * \pi / 4 * \mathrm{D}^{2}}$	$\frac{3.12}{60^{*} \pi / 4^{*} 0.4 \wedge 2 / 2}=$	0.828
管路定数 Pipeline Constant	－	2ρ	$\frac{\mathrm{a} * \mathrm{~V}}{\mathrm{~g} * \mathrm{Ht}}$	$\frac{237.7 * 0.828}{9.8^{*} 63}=$	0.32
サージ係数 Surge Coefficient	－	S	$2 * \mathrm{k}^{*} \frac{\mathrm{~L}}{\mathrm{a}}$	$2 * 1.181 * \frac{15,230}{237.7}=$	151.339

4．Pressure

Location	最低圧力比 Lowest Pressure Ratio［\％］	最低圧力 Lowest Pressure Estimated
At pump installation point	10.0	6.30
At 1／2L point	35.0	22.05
At 3／4L point	38.0	23.94

5．Result

Water column separation is considered not to occur．However，detail calculation will be required in detail design．

Figure 6.b. 3 Pipeline Profile

3. Calculation of Transformer

Load List

	$\mathbf{k W}$	Nos	Total $[\mathbf{k W}]$
From raw water pump to reclamation process equipment	706.94	1 lot	706.94
Reclaimed Water Transmission Pump	75	$3(1)$	150
Building Service	60	1 lot	60
Others	10	1 lot	10
3-phase Total [kW]			$\mathbf{9 2 6 . 9 4}$
Building Service	50	1 lot	50
Laboratory	30	1 lot	30
Others	10	1 lot	10
1-phase Total $[\mathbf{k W]}$		$\mathbf{9 0}$	

1) Formula

Required Capacity $\mathrm{P}[\mathrm{kVA}]=$ Total Load $[\mathrm{kW}] \times \frac{\beta \times \alpha}{\eta \times \varphi}$

Here,	$\varphi:$	Total Power Factor	0.85
	$\eta:$	Total Efficiency	0.85
	$\beta:$	Demand Factor	0.8
	$\alpha:$	Allowance Rate	1.1

2) Calculation
$1016.94 \times \frac{0.8 \times 1.1}{0.85 \times 0.85}=1,239[\mathrm{kVA}]$
3) Result
$1,250[\mathrm{kVA}]$ shall be selected since the required capacity amounts to $1,239[\mathrm{kVA}]$.

4. Calculation of Emergency Generator

Load List for Emergency Generator

	$\mathbf{k W}$	Nos	Total $[\mathbf{k W}]$
From raw water pump to reclamation process equipment	455.755	1 lot	455.755
Reclaimed Water Transmission Pump	75	1	75
Building Service	18	1 lot	18
Others	10	1 lot	10
3-phase Total $[\mathbf{k W}]$			$\mathbf{5 5 8 . 7 5 5}$
Building Service	15	1 lot	15
Laboratory	9	1 lot	9
Others	3	1 lot	3
$\mathbf{1 - p h a s e ~ T o t a l ~}[\mathbf{k W}]$			$\mathbf{2 7}$

(1) Formula

Capacity of generator shall exceed the largest among the required capacity calculated using the following formulas.
a. PG_{1} : Required capacity for steady operation of all the loads
$\mathrm{PG}_{1}=\frac{\Sigma \mathrm{P}_{0}}{\eta_{\mathrm{L}} \times \varphi_{\mathrm{L}}} \times \alpha \times \mathrm{Sf}[\mathrm{kVA}]$
$\mathrm{Sf}=1+0.6 \times \frac{\Delta \mathrm{P}}{\Sigma \mathrm{P}_{0}}$
Here,
$\Sigma \mathrm{P}_{0}$: Total Load for Emergency Generator [kW]
Calculation of $\Sigma \mathrm{P}_{0}$
a) Equipment that the rating is displayed as output kW (such as general induction motor) $\mathrm{Pi}=$ Rated Output [kW]
b) Equipment that the rating is displayed as output kVA (such as CVCF)
$\mathrm{Pi}=$ Rated Output [kVA] \times Power Factor (0.9)
c) Rectification equipment

Pi $=$ Rated DC Voltage [V] \times DC side Rated Current [A]
d) Fluorescent Light and Incandescence Light
$\mathrm{P}_{\mathrm{i}}=$ Rated Power Consumption or Lamp Power [kW]
Referred to as $\mathrm{Pi}=$ Rated Output [kVA] x0.8 when [kVA] is used as the unit for fluorescent light output.
$\eta_{\mathrm{L}}: \quad$ Total Load Efficiency 0.85
$\varphi_{\mathrm{L}}:$ Total Load Power Factor 0.8
α : Demand Factor 0.8
$\Delta \mathrm{P}$: Total of unbalance part of single phase load

Starting Method		$\beta \times \mathrm{C}$
Squirrel -Cage Type	DOL	7.2×1.0
	Star Delta	$7.2 \times 2 / 3$
	Reactor Starting	$\begin{aligned} & \hline 50 \% 7.2 \times 0.5 \\ & 65 \% 7.2 \times 0.65 \\ & 80 \% 7.2 \times 0.8 \\ & \hline \end{aligned}$
	Kondorfer Starting	$\begin{aligned} & 50 \% 7.2 \times 0.25 \\ & 65 \% 7.2 \times 0.42 \\ & 80 \% 7.2 \times 0.64 \end{aligned}$
	VFD Starting	1.2
Wound-Rotor Type		1.2
(Note) In case of closed transition Star Delta starter, $\beta \times$ C shall be $7.2 \times 1 / 3$.		

b. PG_{2} : Required capacity for allowable voltage drop
$\mathrm{PG}_{2}=\mathrm{P}_{\mathrm{m}} \times \beta \times \mathrm{C} \times \mathrm{Xd}^{\prime} \times \frac{1-\Delta \mathrm{E}}{\Delta \mathrm{E}} \quad[\mathrm{kVA}]$

Here,

P_{m} : The Maximum Motor Output [kW]
β : Starting kVA of the maximum capacity motor per $\mathrm{kW} \quad[\mathrm{kVA}]$
C: The coefficient decided by starting method
Xd': Generator Constant 0.25
$\Delta \mathrm{E}$: Allowable Voltage Drop Rate 0.25
c. PG_{3} : Required capacity for starting of the motor with maximum capacity at the end

Here,
$\Sigma \mathrm{P}_{0}$: Total Load for Emergency Generator (excludes standby load) [kW]
$\eta_{\mathrm{L}}: \quad$ Total Load Efficiency 0.85
α : Demand Factor 0.8
P_{m} : The Maximum Motor Output [kW]
$\varphi_{\mathrm{L}}:$ Total Load Power Factor 0.8
β : Starting kVA of the maximum capacity motor per kW [kVA]
C: The coefficient decided by starting method
γ_{G} : Instant overload capacity of generator
1.5
$\mathrm{f}_{\mathrm{v} 1}$: Loading Abatement Factor
(2) Calculation
a. PG_{1} : Required capacity for steady operation of all the loads

$$
\begin{aligned}
& \Sigma \mathrm{P}_{0}=558.755+0 \times 0.9+33.75 \times 0.8=585.8 \\
& \mathrm{Sf}=1+0.6 \times \frac{27}{585.8}=1.028 \\
& \mathrm{PG}_{1}=\frac{585.8}{0.85 \times 0.8} \times 0.8 \times 1.028 \fallingdotseq 708.4
\end{aligned}
$$

b. PG_{2} : Required capacity for allowable voltage drop

$$
\begin{aligned}
\mathrm{PG}_{2} & =75 \times 7.2 \times 0.8 \times 0.25 \times \frac{1-0.25}{0.25} \\
& \fallingdotseq 324
\end{aligned}
$$

c. PG_{3} : Required capacity for starting of the motor with maximum capacity at the end

$$
\begin{aligned}
\mathrm{PG}_{3} & =\frac{1.0}{1.5}\left\{(585.8-75) \times \frac{0.8}{0.85 \times 0.8}+75 \times 7.2 \times 0.8\right\} \\
& \fallingdotseq 688.6
\end{aligned}
$$

(3) Result
$750[\mathrm{kVA}]$ shall be selected since the required capacity is calculated as $708.4[\mathrm{kVA}]$.

5. Calculation of Fuel Tank

1) Formula

Required capacity of fuel tank $\mathrm{Q}\left[\mathrm{m}^{3}\right]=\frac{\mathrm{P} \times \mathrm{be} \times \mathrm{H} \times \alpha}{\mathrm{d}}$

Here,	$\mathrm{P}:$	Engine Output	$[\mathrm{kW}]$
	$\mathrm{be}:$	Fuel consumption rate	$[\mathrm{kg} / \mathrm{kW} \cdot \mathrm{h}]$
	$\mathrm{H}:$	Operating time	$[\mathrm{h}]$
	$\alpha:$	Allowance Rate	1.1
	$\mathrm{~d}:$	Fuel Density	

2) Calculation

Engine Output $\mathrm{P}[\mathrm{kW}]=\frac{\mathrm{P}_{\mathrm{G}} \times \varphi_{\mathrm{G}}}{\eta_{\mathrm{G}}}=\frac{750 \times 0.8}{0.923}=650.1$
Here, $\quad \mathrm{P}_{\mathrm{G}}: \quad$ Generator Output
$\varphi_{G}: \quad$ Generator Power Factor
η_{G} : Generator Efficiency
$\mathrm{Q}=\frac{\mathrm{P} \times \mathrm{be} \times \mathrm{H} \times \alpha}{\mathrm{d}}=\frac{650.1 \times 0.231 \times 12 \times 1.1}{830}=2.38\left[\mathrm{~m}^{3}\right]$
3) Result
$2.5\left[\mathrm{~m}^{3}\right]$ of fuel tank shall be selected as required capacity is $2.38\left[\mathrm{~m}^{3}\right]$.

6.c Design Drawing

Transmission pipe plan, transmission pipe cross section, transmission pipe vertical section, water pipe bridge schematic drawing, and pipe-thrusting method outline drawing are shown in the attached drawings. Drawing list is shown in the following table.

Table 6.c. 1 Drawing List of Transmission Pipe Concept Design

NO.	Title	Scale	Remarks
1-1	Key Plan	None	
2-1	Transmission Pipe Plan (1)	1/2000	
2-2	Transmission Pipe Plan (2)	1/2000	
2-3	Transmission Pipe Plan (3)	1/2000	
2-4	Transmission Pipe Plan (4)	1/2000	
2-5	Transmission Pipe Plan (5)	1/2000	
2-6	Transmission Pipe Plan (6)	1/2000	
2-7	Transmission Pipe Plan (7)	1/2000	
2-8	Transmission Pipe Plan (8)	1/2000	
2-9	Transmission Pipe Plan (9)	1/2000	
2-10	Transmission Pipe Plan (10)	1/2000	
2-11	Transmission Pipe Plan (11)	1/2000	
2-12	Transmission Pipe Plan (12)	1/2000	
2-13	Transmission Pipe Plan (13)	1/2000	
2-14	Transmission Pipe Plan (14)	1/2000	
2-15	Transmission Pipe Plan (15)	1/2000	
2-16	Transmission Pipe Plan (16)	1/2000	
2-17	Transmission Pipe Plan (17)	1/2000	
2-18	Transmission Pipe Plan (18)	1/2000	
2-19	Transmission Pipe Plan (19)	1/2000	
2-20	Transmission Pipe Plan (20)	1/2000	
2-21	Transmission Pipe Plan (21)	1/2000	

NO.	Title	Scale	Remarks
3-1	Transmission Pipe Cross Section (1)	1/100	
3-2	Transmission Pipe Cross Section (2)	1/100	
3-3	Transmission Pipe Cross Section (3)	1/100	
3-4	Transmission Pipe Cross Section (4)	1/100	
3-5	Transmission Pipe Cross Section (5)	1/100	
3-6	Transmission Pipe Cross Section (6)	1/100	
3-7	Transmission Pipe Cross Section (7)	1/100	
3-8	Transmission Pipe Cross Section (8)	1/100	
3-9	Transmission Pipe Cross Section (9)	1/100	
3-10	Transmission Pipe Cross Section (10)	1/100	
3-11	Transmission Pipe Cross Section (11)	1/100	
3-12	Transmission Pipe Cross Section (12)	1/100	
3-13	Transmission Pipe Cross Section (13)	1/100	
3-14	Transmission Pipe Cross Section (14)	1/100	
3-15	Transmission Pipe Cross Section (15)	1/100	
3-16	Transmission Pipe Cross Section (16)	1/100	
3-17	Transmission Pipe Cross Section (17)	1/100	
3-18	Transmission Pipe Cross Section (18)	1/100	
3-19	Transmission Pipe Cross Section (19)	1/100	
3-20	Transmission Pipe Cross Section (20)	1/100	
3-21	Transmission Pipe Cross Section (21)	1/100	
3-22	Transmission Pipe Cross Section (22)	1/100	
3-23	Transmission Pipe Cross Section (23)	1/100	
3-24	Transmission Pipe Cross Section (24)	1/100	
3-25	Transmission Pipe Cross Section (25)	1/100	
3-26	Transmission Pipe Cross Section (26)	1/100	
3-27	Transmission Pipe Cross Section (27)	1/100	
3-28	Transmission Pipe Cross Section (28)	1/100	
3-29	Transmission Pipe Cross Section (29)	1/100	
3-30	Transmission Pipe Cross Section (30)	1/100	
3-31	Transmission Pipe Cross Section (31)	1/100	
3-32	Transmission Pipe Cross Section (32)	1/100	
3-33	Transmission Pipe Cross Section (33)	1/100	
3-34	Transmission Pipe Cross Section (34)	1/100	
3-35	Transmission Pipe Cross Section (35)	1/100	
3-36	Transmission Pipe Cross Section (36)	1/100	
3-37	Transmission Pipe Cross Section (37)	1/100	

NO.	Title	Scale	Remarks
4-1	Transmission Pipe Vertical Section (1)	H=1/2000, V=1/200	
4-2	Transmission Pipe Vertical Section (2)	H=1/2000, V=1/200	
4-3	Transmission Pipe Vertical Section (3)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-4	Transmission Pipe Vertical Section (4)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-5	Transmission Pipe Vertical Section (5)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-6	Transmission Pipe Vertical Section (6)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-7	Transmission Pipe Vertical Section (7)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-8	Transmission Pipe Vertical Section (8)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-9	Transmission Pipe Vertical Section (9)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-10	Transmission Pipe Vertical Section (10)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-11	Transmission Pipe Vertical Section (11)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-12	Transmission Pipe Vertical Section (12)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-13	Transmission Pipe Vertical Section (13)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-14	Transmission Pipe Vertical Section (14)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-15	Transmission Pipe Vertical Section (15)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-16	Transmission Pipe Vertical Section (16)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-17	Transmission Pipe Vertical Section (17)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-18	Transmission Pipe Vertical Section (18)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-19	Transmission Pipe Vertical Section (19)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-20	Transmission Pipe Vertical Section (20)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-21	Transmission Pipe Vertical Section (21)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-22	Transmission Pipe Vertical Section (22)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-23	Transmission Pipe Vertical Section (23)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-24	Transmission Pipe Vertical Section (24)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
4-25	Transmission Pipe Vertical Section (25)	$\mathrm{H}=1 / 2000, \mathrm{~V}=1 / 200$	
5-1	Water Pipe Bridge Layout Plan (1)	1/200	
5-2	Water Pipe Bridge Layout Plan (2)	1/200	

Appendix 6-19

Appendix 6-20

Appendix 6-21

Appendix 6-22

Appendix 6-23

Appendix 6-24

Appendix 6-25

Appendix 6-26

Appendix 6-27

Appendix 6-28

Appendix 6-29

Cross-sectional View of Piping (2)

"

THE PREPARATORY SURVEY O NAPLICATON OF WASTEWATER RECLMMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	men: Croses-sectional View of Pipinges (2)

$\xlongequal{\text { Cross-sectional View of Piping (4) }}$

$\stackrel{\text { on }}{\square}$

THE PREPARATORY SURVEY O NAPLICATON OF WASTEWATER RECLMMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	men: Crose-sectional Yiew of Piping (4)

Cross-sectional View of Piping (8)

"

THE PREPARATORY SUUVEY ON NPPLCCTON OF WASTEWAIERRELAMMNG IN SOUTHER BAL WATER SUPPYYSISTEM NTHE REPUILC OF NDONESAA	mine: Crose-sectional View of Piping (8)
JAPAN NTERNATOW L COOPERATOVAGENCY	

Cross-sectional View of Piping (12)

"

THE PREPARATORY SURVEY ON APPLICATON OF WASTEWATER RECLAMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	The: Cross-seotional Yien of Piping (12)
JAPAN NTERNATOW COOPEEATONAGENCY	

Cross-sectional View of Piping (14)

"

THE PREPARATORY SURVEY ON APPLICATON OF WASTEWATER RECLAMNG IN SOUTHERN BAL WATER SUPPLY SYSTEM IN THE REPUBLC OF INDONESA	mée: Cross-acticimal Yior of Piping (14)
JAPAN ITERNATOWL COOPERATONAGENCY	

$\xlongequal{\text { Cross-sectional View of Piping (16) }}$

"

THE PREPARATORY SUNVEY O NNPPLCATOV OF WNSTEWAIERRECOMMNG IN SOUTHER BAL WATER SUPPY SSISEM NTHE REPUILC OF NDONESA	The: Cross-seotional Yien of Piping (16)
JMPAN NTERNATOWL COOPERATOV AGENCY	

$\xlongequal[\text { Cross-sectional View of Piping (18) }]{s=1 / 100}$

$\stackrel{\circ}{n}$

THE PREPARATORY SUUVEY ON NPPLCCTON OF WASTEWAIERRELAMMNG IN SOUTHER BAL WATER SUPPYYSISTEM NTHE REPUILC OF NDONESAA	mine: Cross-sectional Yien of Piping ($\mathbf{1 8}$)
JAPAN NTERNATOW L COOPERATOVAGENCY	

Cross-sectional View of Piping (20)

THE PREPARATORY SUUVVEY ONAPPLCATO OF WASIEWAIER RECLMMNG 	mine: Cross-sectignal Yion of Piping (20)
JAPAN NTERNATOWA COOPERATONAGENCY	

Cross-sectional View of Piping (22)

"

THE PREPARATORY SURVEY O NAPLICATON OF WASTEWATER RECLMMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	The: Cross-sectional Yiex of Piping (22)
JAPAN MIERNATOVALCOOPERATOVAGENCY	

Cross-sectional View of Piping (24) $\underset{s=1 / 100}{ }$

"

THE PREPARATORY SURVEY ON APPLICATON OF WASTEWATER RECLAMNG IN SOUTHERN BAL WATER SUPPLY SYSTEM INTHE REPUBLICOF INDONESA	mine: Cross-secticnal Yiew of Piping (24)
JMPAN NTERNATOWL COOPERATOV AGENCY	

Cross-sectional View of Piping (26)

"

THE PREPARATORY SURVEY O NAPLICATON OF WASTEWATER RECLMMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	ThLe: Croses-socticonal Yiew of Piping (28)
Japen Iternatow cooprationagenc	

Cross-sectional View of Piping (32)

$\stackrel{n}{\square}$

THE PREPARATORY SURVEY O NAPLICATON OF WASTEWATER RECLMMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	ThLe: Croses-socticonal Yiew of Piping (32)
Japen Iternatow cooprationagenc	

Cross-sectional View of Piping (36)

"

THE PREPARATORY SURVEY O NAPLICATON OF WASTEWATER RECLMMNG IN SOUTHERN BAL WATE SUPPLY SYSTEM INTHE REPUBLCOF INDONESA	The: Cross-sectional Yiow of Piping (36)
Japen Iternatow cooprationagenc	

Appendix 6-48

Appendix 6-49

Appendix 6-50

Appendix 6-51

Appendix 6-52

Appendix 6-53

Appendix 6-54

Appendix 6-55

Appendix 6-56

Appendix 6-57

Appendix 6-58

Appendix 6-59

APPENDIX 7

INVESTIGATION DATA OF WATER DISTRIBUTION AND SUPPLY
 FACILITIES

APPENDIX 7 INVESTIGATION DATA OF WATER DISTRIBUTION AND SUPPLY FACILITIES

7.a Examination and Repair Strategy of Existing Distribution Pipe

The route of existing main distribution pipe is shown as Table 7.a.1. The material of existing distribution pipes is DCIP, the length of each pipe diameter is shown as follows.

```
\phi 150mm : 1,630m
\phi 200mm : 1,880m
\phi 300mm : 800m
\phi 400mm : 2,170m
Total : 6,480m
```

The existing distribution pipe could not be confirmed by appearance inspection or etc because it is underground pipe. In detailed design stage, further investigations as follows are necessary for reconstruction.

- Water Leakage Investigation and Intratubular Washing of Existing Pipe
- Replacement of Water Shutoff Valve
- Reconstruction for water leakage part

The pipe reconstruction cost was calculated from reconstruction pipe length as 10% of total pipe length because confirmation of water leakage point of existing pipe is difficult.

Figure 7.a.1 Route of Existing Distribution Pipe

7.b Study of Conversion for Water Service System in Hotels

In this section, the cost and renovation method of water service systems in hotels is studied in the case of reclaimed water use.

Building layout and structure of the hotel is different for every hotels, a case study is conducted because studies for all hotels of water supply target is difficult.

Hotel N was selected as a model of case study for the reason of below.

- Water service system is relatively complex system of plane and cross-section arrangement.
- Hotel N is the typical size hotel (Rooms 300-400) for water supply target hotels.
- Hotel N provided detailed floor plans, cross-section and plumbing.

Table 7.b. 1 Distribution of Room Number in Hotels for Water Supply Target

Number of Rooms	Number of Hotel	Total Room Number
$401 \sim(750)$	4	2,311
$301 \sim 400$	7	$\mathbf{2 , 5 1 2}$
$201 \sim 300$	2	526
$101 \sim 200$	9	1,407
Under 100	19	832
Total	41	7588

The conditions of the cost study for renovation of water service pipes in Hotel N is as follows.

- Number of Rooms : about 400 rooms
- Building Layout
- Number of Restaurant
- Total Volume of Water Consumption
- Water Volume for Toilet
- Water Volume for Drinking
- Water Volume for Non-drinking
: 6 praces
: about $1,000 \mathrm{~m}^{3} /$ day
: about $800 \mathrm{~m}^{3} /$ day (40\%)
: Main Building (3 floors), Northern Building (6 floors), Southern Building (5 floors), Coast Building (14 floors)
: about $200 \mathrm{~m}^{3} /$ day (20\%) (Capacity of new pump for Case1)
: about $200 \mathrm{~m}^{3} /$ day (20\%) (Capacity of new pump for Case2)
(including $400 \mathrm{~m}^{3} /$ day of reclaimed water volume for Case2)

Layout plan of Hotel N is shown as Figure 7.b.1, its profile is shown Figure 7.b.2.

Figure 7.b. 1 Layout Plan of Hotel N (sources: G2011 Google-Map Data)

Figure 7.b. 2 Profile of Hotel N (source: http://www.nikkobali.com/jp/)

2 case of renovation design as follows are studied
Case 1: Typical Reclaimed Water Service System
Case 2: New Clean Water Service System
(1) Case 1 Renovation Design

According to Case 1, the renovation design model is shown as Figure 7.b.3.

Figure 7.b. 3 Model for Renovation of Water Service Pipes (Case 1)

Therefore the renovation work as following items is necessary.

- Installation work of reclaimed water service pipes
(Water Meter - Receiving Tank - Water Pump - Rooms)
- Construction work of water receiving tank for reclaimed water
- Installation work of water meter for reclaimed water
- Installation work of water pump for reclaimed water

The image for route of new water service pipe is shown as Figure 7.b.4.

Figure 7.b. 4 Image for Route of New Water Service Pipe (Case 1)

The existing water meter is located with green mark and the route of new water service is located with blue line on Figure 7.b.4.

The conversion cost based on above route is calculated as Table 7.b.2.
Table 7.b. 2 Conversion Cost in Hotel for Typical Water Service System (Case1)

Item	Quantity	Unit	Unit Price (IDR)	Cost (IDR)
Installation work of reclaimed water service pipes	2,420	m	370,000	$895,400,000$
Construction work of water receiving tank for reclaimed water	1	Set	$488,870,000$	$488,870,000$
Installation work of water meter for reclaimed water	1	Set	$8,000,000$	$8,000,000$
Installation work of water meter for reclaimed water	1	Set	$100,000,000$	$100,000,000$
Total Cost				$1,492,270,000$

(2) Case 2 Renovation Design

According to Case 2, the renovation design model is shown as Figure 7.b.5.

Figure 7.b. 5 Model for Renovation of Water Service Pipes (Case 2)

Therefore the renovation work as following items is necessary.

- Installation work of reclaimed water service pipes
(For reclaimed water: Water Meter - Receiving Tank)
(For PDAM water: Water Meter - Receiving Tank - Water Pump - Restaurants)
- Construction work of water receiving tank for reclaimed water
- Installation work of water meter for reclaimed water
- Installation work of water pump for reclaimed water
- Installation work of water heater for reclaimed water

The image for route of new water service pipe is shown as Figure 7.b.6.

Figure 7.b.6 Image for Route of New Water Service Pipe (Case 2)

The existing water meter is located with green mark, restaurants are located with red marks and the route of new water service is located with blue line on Figure 7.b.6.

The conversion cost based on above route is calculated as Table 7.b.3.
Table 7.b. 3 Conversion Cost in Hotel for Typical Water Service System (Case2)

Item	Quantity	Unit	Unit Price (IDR)	Cost (IDR)
Installation work of reclaimed water service pipes	920	m	363,000	$333,960,000$
Construction work of water receiving tank for reclaimed water	1	Set	$488,870,000$	$488,870,000$
Installation work of water meter for reclaimed water	1	Set	$20,000,000$	$20,000,000$
Installation work of water meter for reclaimed water	1	Set	$100,000,000$	$100,000,000$
Installation work of water heater for reclaimed water	6	Set	$8,000,000$	$48,000,000$
Total Cost				$990,830,000$

APPENDIX 8

DATA OF PROJECT COST ESTIMATE

APPENDIX 8 DATA OF PROJECT COST ESTIMATE

8．a Component of Project Cost

The four main cost components of the reclaimed water supply project cost are construction，engineering services，taxes，operation and maintenance（ $O \& M$ ）．These are further categorized as shown in the following table．

Table 8．a． 1 Components of the Project Cost

Main Item	Detail Item
【1】 Construction	（A）Site Preparation
	（B）Reclamation Plant Construction
	（C）Transmission Pipe Installation
	（D）Distribution Reservoir Reconstruction
	（E）Distribution Pipe Rehabilitation and Installation
	（F）Renovating the Service Pipe Facilities in Each Hotel
【2】 Engineering Services	（A）Detailed Design，Construction Supervision，Other Surveys，etc．
	（B）Capacity Building
	（C）Publication and Education－related
【3】 Tax Charges	（A）Value－added Tax（VAT）
	（B）Import Tax
	（C）Surface Water Use Tax
【4】 Operation and Maintenance（O\＆M）	（A）Personnel
	（B）Electricity
	（C）Chemical
	（D）Fuel
	（E）Water Quality Testing
	（F）Repair and Replacement of parts and equipment
	（G）Office expenditures
	（H）Treated Water Use Rate

8．b Construction Cost

Construction costs are calculated for all the facilities required for the project，from the reclamation plant to the renovation of service pipe facilities in each hotel．As explained in Chapter 7，the responsibility for constructing and renovating these facilities is divided between SPC，PDAM Badung and the hotels；and the associated costs are calculated separately for these parties．Construction costs under SPC’s responsibility consist of site preparation，reclamation plant construction and transmission pipeline construction．Construction costs under PDAM＇s responsibility consist of distribution reservoir reconstruction，rehabilitation of the existing distribution network and installation of new distribution pipes． The construction costs under the responsibility of each hotel consist of renovation of their service pipe facilities．The detail of each construction cost item is explained in the following．

Table 8．b． 1 Responsible Organization of the Each Component

Items	SPC	PDAM	Hotels
（A）Site Preparation	\bigcirc		
（B）Reclamation Plant Construction	\bigcirc		
（C）Transmission Pipe Installation	\bigcirc		
（D）Distribution Reservoir Reconstruction		\bigcirc	
（E）Distribution Pipe Installation		\bigcirc	
（F）Renovating the Service Pipe Facilities in Each Hotel			\bigcirc

(1) Site Preparation

Site preparation consists of the following:

- Improvement of the access road to the reclamation plant site
- Cutting down of mangrove trees, digging up of soft soil and removal of concrete debris
- Land reclamation and leveling using purchased soil

The land for the reclaimed water supply plant will be provided by the Bali Provincial Government as a precondition of this PPP project (the Bali Provincial Government needs to apply to to the Ministry of Forestry for the license to use the land.

(2) Reclamation Plant Construction

This cost category covers the construction of the pump facility to convey the secondary effluent from Denpasar WWTP, biological filtration facility, ozonation facility, membrane filtration facility and transmission pump facility. The breakdown by facility type is shown as follows.

1) Main plant construction (civil engineering and architectural works)

- Raw water pumping station
- Biological filtration process building
- Ozonation process building
- Membrane filtration process building
- Site work
- Vehicle purchase
- Connection charge for electrical service

2) Mechanical and Electrical Facility

- Mechanical equipment (including installation)
- Electrical equipment (including installation)
(3) Transmission Pipe Installation

The transmission pipe from Denpasar WWTP to the existing UPA distribution reservoir would be constructed in four sections, using different pipe installation methods, according to the level of traffic congestion and the ease of pipe installation at the location. The total cost for the transmission pipe installation the sum of the pipe installation costs for each section. The length of each road section is shown below.

- Open cut method (daytime work : about 7.5 km)
- Open cut method (nighttime work : about 7 km from Badung River to Sama River)
- Water pipe bridge method (crossing of river and drainage canal)
- Pipe jacking method (around the airport about 400 m)

(4) Distribution Reservoir Reconstruction

The existing reservoir does not have a roof and has many cracks and evidence of water leakage. The cost
for reconstruction would cover the following:

- Crack repair
- Waterproofing
- Roof construction
(5) Distribution Pipe Installation

The distribution pipe installation cost would cover the following:

- Rehabilitation of the existing distribution pipes in Nusa Dua
- Installation of new distribution pipes in Benoa
- Installation of new distribution pipe in Sawangan
(6) Renovation of Service Pipe Facilities in the Hotels

The renovation cost is required to use reclaimed water in the hotels. The unit cost of renovation is calculated in Chapter 6.
<Summary of Case 1>
The renovation cost would establish a system to supply the reclaimed water to the toilet in each room or floor.
<Summary of Case 2>
The renovation cost would establish a system to supply the reclaimed water which is mixed with PDAM water and a separate system to supply drinking and cooking water to the restaurants inside the hotels.

(7) Total Construction Cost

The total construction costs calculated on the conditions by each facility and responsible agency explained above is shown in Table 8.b. 2 (Case 1) or Table 8.b.3 (Case 2). The breakdown for each item of construction cost is shown as Table 8.b. 4 (Case 1) and Table 8.b. 5 (Case 2), the unit price is shown as Table 8.b.6.

Table 8．b． 2 Construction Cost of Case 1

（1）Construction Cost by Each Facility

Item	IDR（ $\times 1,000$ ）			JPY（ $\times 1,000$ ）
	LC	FC	Total	Total
【A Site Preparation】				
Site Preparation	5，968，887	0	5，968，887	54，257
【B Reclamation Plant Facility】				
Structure Construction				
Raw Water Pump Building	976，400	0	976，400	8，875
Biological Treatment Building	5，455，191	0	5，455，191	49，588
Ozonation Building	7，942，297	0	7，942，297	72，195
Membrane Filtration Building	12，454，956	0	12，454，956	113，216
Site Work	3，598，539	0	3，598，539	32，711
Vehicles	2，070，000	0	2，070，000	18，816
Connection Charge for Electricity	631，250	0	631，250	5，738
Sub Total（1）	33，128，632	0	33，128，632	301，139
Mechanical and Electrical Facility				
Mechanical Equipment	28，027，620	24，004，951	52，032，571	472，976
Electrical Equipment	35，613，810	0	35，613，810	323，730
Sub Total（2）	63，641，430	24，004，951	87，646，381	796，706
Total	96，770，062	24，004，951	120，775，013	1，097，845
【C Water Transmission Pipe】				
Water Transmission Pipe	44，144，600	0	44，144，600	401，274
\D Distribution Reservoir】				
Distribution Reservoir	3，449，933	0	3，449，933	31，360
【E Distribution Pipe】				
Distribution Pipe for Nusa Dua	3，342，380	0	3，342，380	30，382
Distribution Pipe for Benoa	10，285，000	0	10，285，000	93，491
Distribution Pipe for Sawangan	8，465，200	0	8，465，200	76，949
Total	22，092，580	0	22，092，580	200，822
【F Renovation of Service Pipe Facilities in the Hotel】				
Renovation Cost	29，230，000	0	29，230，000	265，701
Total	29，230，000	0	29，230，000	265，701

（2）Construction Cost by Responsible Agency

Item	IDR $(\times 1,000)$			JPY $(\times 1,000)$
	LC	FC	Total	Total
SPC Total Construction Cost	$146,883,549$	$24,004,951$	$170,888,500$	$1,553,376$
PDAM Total Construction Cost	$25,542,513$	0	$25,542,513$	232,181
Hotel Total Renovation Cost	$29,230,000$	0	$29,230,000$	265,701
Grand Total Construction Cost	$201,656,062$	$24,004,951$	$225,661,013$	$2,051,259$

Table 8．b． 3 Construction Cost of Case 2

（1）Construction Cost by Each Facility

Item	IDR（ $\times 1,000$ ）			JPY（ $\times 1,000$ ）
	LC	FC	Total	Total
【A Site Preparation】				
Site Preparation	6，507，139	0	6，507，139	59，150
【B Reclamation Plant Facility】				
Structure Construction				
Raw Water Pump Building	1，224，468	0	1，224，468	11，130
Biological Treatment Building	9，387，773	0	9，387，773	85，335
Ozonation Building	8，823，814	0	8，823，814	80，208
Membrane Filtration Building	14，261，371	0	14，261，371	129，636
Site Work	4，357，294	0	4，357，294	39，608
Vehicles	2，070，000	0	2，070，000	18，816
Connection Charge for Electricity	631，250	0	631，250	5，738
Sub Total（1）	40，755，971	0	40，755，971	370，472
Mechanical and Electrical Facility				
Mechanical Equipment	33，402，949	34，308，417	67，711，366	615，496
Electrical Equipment	35，613，810	0	35，613，810	323，730
Sub Total（2）	69，016，759	34，308，417	103，325，176	939，226
Total	109，772，730	34，308，417	144，081，147	1，309，698
【C Water Transmission Pipe】				
Water Transmission Pipe	56，218，200	0	56，218，200	511，023
【D Distribution Reservoir】				
Distribution Reservoir	3，449，933	0	3，449，933	31，360
【E Distribution Pipe】				
Distribution Pipe for Nusa Dua	3，342，380	0	3，342，380	30，382
Distribution Pipe for Benoa	13，326，700	0	13，326，700	121，140
Distribution Pipe for Sawangan	10，757，200	0	10，757，200	97，783
Total	27，426，280	0	27，426，280	249，305
【F Renovation of Service Pipe Facilities in the Hotel】				
Renovation Cost	19，750，000	0	19，750，000	179，528
Total	19，750，000	0	19，750，000	179，528

（2）Construction Cost by Responsible Agency

Item	IDR $(\times 1,000)$			JPY $(\times 1,000)$
	LC	FC	Total	Total
SPC Total Construction Cost	$172,498,069$	$34,308,417$	$206,806,486$	$1,879,871$
PDAM Total Construction Cost	$30,876,213$	0	$30,876,213$	280,665
Hotel Total Renovation Cost	$19,750,000$	0	$19,750,000$	179,528
Grand Total Construction Cost	$223,124,281$	$34,308,417$	$257,432,698$	$2,340,063$

Table 8.b. 4 Breakdown for Each Item of Case 1 Construction Cost

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Excavation	Sand, Cray	m^{3}	185	46,000	0	8,510	0	8,510	
Back Filling	BH	m^{3}	7	43,300	0	303	0	303	
Surplus Soil Disposal		m^{3}	178	56,600	0	10,075	0	10,075	
Foundation Pile	$\mathrm{L}=20 \mathrm{~m}$	pcs	150	12,940,000	0	1,941,000	0	1,941,000	
Sand Layer		m^{3}	89	202,300	0	18,005	0	18,005	
Leveling Concrete		m^{3}	45	1,294,000	0	58,230	0	58,230	
Reinforced Concrete		m^{3}	749	2,534,000	0	1,897,966	0	1,897,966	
Reinforcement		t	74.9	16,120,000	0	1,207,388	0	1,207,388	
Roofing		m^{2}	224	1,040,000	0	232,960	0	232,960	
Waterproofing		m^{2}	1,252	64,500	0	80,754	0	80,754	
Total						5,455,191	0	5,455,191	

B4

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Excavation	Sand, Cray	m^{3}	1,924	46,000	0	88,504	0	88,504	
Back Filling	BH	m^{3}	649	43,300	0	28,102	0	28,102	
Surplus Soil Disposal		m^{3}	1,275	56,600	0	72,165	0	72,165	
Foundation Pile	L=20m	pcs	245	12,940,000	0	3,170,300	0	3,170,300	
Sand Layer		m^{3}	210	202,300	0	42,483	0	42,483	
Leveling Concrete		m^{3}	105	1,294,000	0	135,870	0	135,870	
Reinforced Concrete		m^{3}	1,580	2,534,000	0	4,003,720	0	4,003,720	
Reinforcement		t	158.0	16,120,000	0	2,546,960	0	2,546,960	
Roofing		m^{2}	1,278	1,040,000	0	1,329,120	0	1,329,120	
Waterproofing		m^{2}	585	64,500	0	37,733	0	37,733	
Laboratory Equipment		set	1	1,000,000,000	0	1,000,000	0	1,000,000	
Total						12,454,956	0	12,454,956	

B5 Site Wor
~

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Fence		m	350	500,000	0	175,000	0	175,000	
Road	Pavement Work	m^{2}	2,900	260,300	0	754,870	0	754,870	
Road	Sub-base (aggregate A)	m^{3}	580	330,000	0	191,400	0	191,400	
Road	Sub-base (aggregate B)	m^{3}	870	330,000	0	287,100	0	287,100	
Lawn Grass		m^{2}	2,290	50,800	0	116,332	0	116,332	
Drainage		m	332	1,431,000	0	475,092	0	475,092	
Electric Lamp		set	10	3,000,000	0	30,000	0	30,000	
Gate and Guard Post		set	1	100,000,000	0	100,000	0	100,000	
Pipe Laying Work	For Transmission pipe (300mm	m	560	1,631,000	0	913,360	0	913,360	
Pipe Laying Work	For Raw water pipe (300mm)	m	100	1,631,000	0	163,100	0	163,100	
Pipe Laying Work	For Discharge pipe (200mm)	m	335	1,171,000	0	392,285	0	392,285	
Total						3,598,539	0	3,598,539	

E1 Distribution Pipe Line for Nusa Dua

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Water Leakage Investigation		set	1	250,000,000		250,000	0	250,000	
Pipe Replacement DCIP	¢ 400	m	220	5,442,000		1,197,240	0	1,197,240	
Pipe Replacement DCIP	¢ 300	m	80	3,652,000		292,160	0	292,160	
Pipe Replacement DCIP	¢ 200	m	190	2,302,000		437,380	0	437,380	
Pipe Replacement DCIP	¢ 150	m	160	1,905,000		304,800	0	304,800	
Water Stop Valve Replacement	¢ 400	set	2	72,000,000		144,000	0	144,000	
Water Stop Valve Replacement	¢ 200	set	16	36,800,000		588,800	0	588,800	
Water Stop Valve Replacement	¢ 150	set	4	32,000,000		128,000	0	128,000	
Total						3,342,380	0	3,342,380	

Distribution Pipe Line for Benoa									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Pipe Laying	¢ 200	m	5,800	1,606,000		9,314,800	0	9,314,800	
Pipe Laying	¢ 100	m	700	1,386,000		970,200	0	970,200	
Total						10,285,000	0	10,285,000	

E3 Distribution Pipe Line for Sawangan

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Pipe Laying	¢ 200	m	4,000	1,606,000		6,424,000	0	6,424,000	
Pipe Laying	¢ 100	m	1,200	1,386,000		1,663,200	0	1,663,200	
Booster Pump	0.8m3/min 18.5 kW	set	2	77,000,000		154,000	0	154,000	
Electric Panel	Soft Starter	set	1	224,000,000		224,000	0	224,000	
Total						8,465,200	0	8,465,200	

F1 Hotel Conve									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Hotel Converting Cost		Room	7,900	3,700,000		29,230,000	0	29,230,000	
Total						29,230,000	0	29,230,000	

Table 8.b. 5 Breakdown for Each Item of Case 2 Construction Cost

B3 Ozonation Building									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Excavation	Sand, Cray	m^{3}	373	46,000	0	17,158	0	17,158	
Back Filling	BH	m^{3}	10	43,300	0	433	0	433	
Surplus Soil Disposal		m^{3}	363	56,600	0	20,546	0	20,546	
Foundation Pile	$\mathrm{L}=20 \mathrm{~m}$	pcs	197	12,940,000	0	2,549,180	0	2,549,180	
Sand Layer		m^{3}	182	202,300	0	36,819	0	36,819	
Leveling Concrete		m^{3}	91	1,294,000	0	117,754	0	117,754	
Reinforced Concrete		m^{3}	1,234	2,534,000	0	3,126,956	0	3,126,956	
Reinforcement		t	123.4	16,120,000	0	1,989,208	0	1,989,208	
Roofing		m^{2}	683	1,040,000	0	710,320	0	710,320	
Waterproofing		m^{2}	658	64,500	0	42,441	0	42,441	
Corrosion Protection Coating		m^{2}	213	1,000,000	0	213,000	0	213,000	
Total						8,823,814	0	8,823,814	

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Excavation	Sand, Cray	m^{3}	2,422	46,000	0	111,412	0	111,412	
Back Filling	BH	m^{3}	706	43,300	0	30,570	0	30,570	
Surplus Soil Disposal		m^{3}	1,716	56,600	0	97,126	0	97,126	
Foundation Pile	$\mathrm{L}=20 \mathrm{~m}$	pcs	291	12,940,000	0	3,765,540	0	3,765,540	
Sand Layer		m^{3}	256	202,300	0	51,789	0	51,789	
Leveling Concrete		m^{3}	128	1,294,000	0	165,632	0	165,632	
Reinforced Concrete		m^{3}	1,848	2,534,000	0	4,682,832	0	4,682,832	
Reinforcement		t	184.8	16,120,000	0	2,978,976	0	2,978,976	
Roofing		m^{2}	1,278	1,040,000	0	1,329,120	0	1,329,120	
Waterproofing		m^{2}	750	64,500	0	48,375	0	48,375	
Laboratory Equipment		set	1	1,000,000,000	0	1,000,000	0	1,000,000	
Total						14,261,371	0	14,261,371	

B5 Site Work									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Fence		m	400	500,000	0	200,000	0	200,000	
Road	Pavement Work	m^{2}	3,200	260,300	0	832,960	0	832,960	
Road	Sub-base (aggregate A)	m^{3}	640	330,000	0	211,200	0	211,200	
Road	Sub-base (aggregate B)	m^{3}	960	330,000	0	316,800	0	316,800	
Lawn Grass		m^{2}	2,500	50,800	0	127,000	0	127,000	
Drainage		m	370	1,431,000	0	529,470	0	529,470	
Electric Lamp		set	10	3,000,000	0	30,000	0	30,000	
Gate and Guard Post		set	1	100,000,000	0	100,000	0	100,000	
Pipe Laying Work	For Transmission pipe (400mm	m	558	2,230,000	0	1,244,340	0	1,244,340	
Pipe Laying Work	For Raw water pipe (400mm)	m	99	2,230,000	0	220,770	0	220,770	
Pipe Laying Work	For Discharge pipe (300mm)	m	334	1,631,000	0	544,754	0	544,754	
Total						4,357,294	0	4,357,294	

$\stackrel{\circ}{9}$

B6 Maintenanc									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Patrol Car	Sedan Type	units	1	270,000,000		270,000	0	270,000	
Tanker Truck	4t	units	2	900,000,000		1,800,000	0	1,800,000	
Total						2,070,000	0	2,070,000	

\footnotetext{
B7 Machinery Construction

B7 Machinery C							DR =	0.00909	
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference (JPY)
				LC	FC	LC	FC	Total	
Machinery Equipment		units	1	7,780,617,000	25,504,456,000	7,780,617	25,504,456	33,285,073	231,835,500
Transmission Pump		units	3	168,750,000	0	506,250	0	506,250	
Crane		units	1	162,000,000	0	162,000	0	162,000	
Equipment and Pipe Instration		units	1	24,954,081,750	8,803,961,000	24,954,082	8,803,961	33,758,043	80,028,000
Total						33,402,949	34,308,417	67,711,366	

\footnotetext{

B8 Electricity Construction	Specification	Unit	Quantity			(11DR = 0.00909			
				Unit Cost (IDR)		Total Cost (1,000IDR)			Reference (JPY)
				LC	FC	LC	FC	Total	
Electricity Equipment for Main Facilities		units	1	12,129,507,000	0	12,129,507	0	12,129,507	
Monitoring Device		units	1	2,457,000,000	0	2,457,000	0	2,457,000	
Receiving Electricity Equipment	20kV	units	1	1,201,500,000	0	1,201,500	0	1,201,500	
Electric Generator		units	1	5,703,750,000	0	5,703,750	0	5,703,750	
Electricity Equipment for Transmission Pump		units	1	445,500,000	0	445,500	0	445,500	
Instrumentation Equipment for UPA Reservoir		units	1	67,500,000	0	67,500	0	67,500	
Monitoring Device for UPA Reservoir		units	1	74,250,000	0	74,250	0	74,250	
Equipment and Cable Installation for Main		units	1	9,039,303,000	0	9,039,303	0	9,039,303	
Equipment and Cable Installation for Others		units	1	4,495,500,000	0	4,495,500	0	4,495,500	
Total						35,613,810	0	35,613,810	

C1									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Open Cut Methods	$\phi 400$ (Daytime work)	m	7,500	2,782,000	0	20,865,000	0	20,865,000	
Open Cut Methods	$\phi 400$ (Nighttime work)	m	7,000	3,616,600	0	25,316,200	0	25,316,200	
Pipe Bridge Methods	$\phi 400, \mathrm{~L}=120 \mathrm{~m}$	set	1	1,800,000,000	0	1,800,000	0	1,800,000	
Pipe Bridge Methods	¢ 400, L=50m	set	1	1,105,000,000	0	1,105,000	0	1,105,000	
Pipe Bridge Methods	$\phi 400, \mathrm{~L}=70 \mathrm{~m}$	set	1	807,000,000	0	807,000	0	807,000	
Pipe Bridge Methods	$\phi 400, \mathrm{~L}=10 \mathrm{~m}$	set	5	225,000,000	0	1,125,000	0	1,125,000	
Pipe Jacking Methods	¢ 400	m	400	13,000,000	0	5,200,000	0	5,200,000	
Total						56,218,200	0	56,218,200	

D1 Distribution Reservoir

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Mortar Removal		m^{2}	500	26,000		13,000	0	13,000	
Chemical Anchor		pcs	2,000	1,000,000		2,000,000	0	2,000,000	
Reinforced Concrete		m^{3}	100	2,534,000		253,400	0	253,400	
Reinforcement		t	10	16,120,000		161,200	0	161,200	
Waterproofing		m^{2}	900	64,500		58,050	0	58,050	
Roof		m^{2}	400	2,000,000		800,000	0	800,000	
Fixtures and Fittings		set	1	164,282,500		164,283	0	164,283	Total cost 5\%
Total						3,449,933	0	3,449,933	

E1 Distribution Pipe Line for Nusa Dua

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Water Leakage Investigation		set	1	250,000,000		250,000	0	250,000	
Pipe Replacement DCIP	¢ 400	m	220	5,442,000		1,197,240	0	1,197,240	
Pipe Replacement DCIP	¢ 300	m	80	3,652,000		292,160	0	292,160	
Pipe Replacement DCIP	¢ 200	m	190	2,302,000		437,380	0	437,380	
Pipe Replacement DCIP	¢ 150	m	160	1,905,000		304,800	0	304,800	
Water Stop Valve Replacement	¢ 400	set	2	72,000,000		144,000	0	144,000	
Water Stop Valve Replacement	¢ 200	set	16	36,800,000		588,800	0	588,800	
Water Stop Valve Replacement	¢ 150	set	4	32,000,000		128,000	0	128,000	
Total						3,342,380	0	3,342,380	

E2 Distribution Pipe Line for Benoa									
Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Pipe Laying	¢ 300	m	5,800	2,125,000		12,325,000	0	12,325,000	
Pipe Laying	¢ 150	m	700	1,431,000		1,001,700	0	1,001,700	
Total						13,326,700	0	13,326,700	

E3 Distribution Pipe Line for Sawangan

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Pipe Laying	¢ 300	m	4,000	2,125,000		8,500,000	0	8,500,000	
Pipe Laying	¢ 150	m	1,200	1,431,000		1,717,200	0	1,717,200	
Booster Pump	$1.5 \mathrm{~m} 3 / \mathrm{min} 18.5 \mathrm{~kW}$	set	2	110,000,000		220,000	0	220,000	
Electric Panel	Soft Starter	set	1	320,000,000		320,000	0	320,000	
Total						10,757,200	0	10,757,200	

Items	Specification	Unit	Quantity	Unit Cost (IDR)		Total Cost (1,000IDR)			Reference
				LC	FC	LC	FC	Total	
Hotel Converting Cost		Room	7,900	2,500,000		19,750,000	0	19,750,000	
Total						19,750,000	0	19,750,000	

Table 8.b. 6 Unit Price for Construction Cost

Items	Specification	Unit	Unit Price		Remarks
			IDR	YEN	
Excavation	Root of Mangrove, Existing Structure	m^{3}	102,000		
Excavation	BH, Sand, Clay, Gravel	m^{3}	46,000		
Excavation	BH, Rock	m^{3}	102,000		
Backfilling by purchase Soil		m^{3}	145,000		
Backfilling	BH	m^{3}	43,300		
Backfilling	Bulldozer	m^{3}	20,000		
Backfilling	(Compacted use buy soil)	m^{3}	144,800		
Surplus Soil Disposal		m^{3}	56,600		
Waste Disposal		m^{3}	56,600		
Sand Layer		m^{3}	202,300		
Leveling Concrete		m^{3}	1,294,000		
Reinforced Concrete	Including formwork	m^{3}	2,534,000		
Reinforcement Bar	With rebar fabrication and assembly	t	16,120,000		
Roof	Without slab and beam	m^{2}	1,040,000		
Roof		m^{2}	2,000,000		
Pile	$\varphi 300$	m	647,000		
Pile	$\varphi 300, \mathrm{~L}=20 \mathrm{~m}$	pcs	12,940,000		
Pavement work	block	m^{2}	260,300		
Cube Stone		m	148,300		
Sub-base (aggregate A)		m^{3}	330,000		
Sub-base (aggregate B)		m^{3}	330,000		
PVC Pipe	$\varphi=150 \mathrm{~mm}$ without Pavement	m	1,025,000		
PVC Pipe	$\varphi=200 \mathrm{~mm}$ without Pavement	m	1,171,000		
PVC Pipe	$\varphi=300 \mathrm{~mm}$ without Pavement	m	1,631,000		
HDPE Pipe	$\varphi=400 \mathrm{~mm}$ without Pavement	m	2,230,000		
PVC Pipe	$\varphi=150 \mathrm{~mm}$ with Pavement	m	1,431,000		
PVC Pipe	$\varphi=200 \mathrm{~mm}$ with Pavement	m	1,606,000		
PVC Pipe	$\varphi=300 \mathrm{~mm}$ with Pavement	m	2,125,000		
HDPE Pipe	$\varphi=400 \mathrm{~mm}$ with Pavement	m	2,782,000		
DCIP Pipe	$\varphi=150 \mathrm{~mm}$ with Pavement	m	1,905,000		
DCIP Pipe	$\varphi=200 \mathrm{~mm}$ with Pavement	m	2,302,000		
DCIP Pipe	$\varphi=300 \mathrm{~mm}$ with Pavement	m	3,652,000		
DCIP Pipe	$\varphi=400 \mathrm{~mm}$ with Pavement	m	5,442,000		
Water Stop Valve Replacement	$\varphi=400 \mathrm{~mm}$	set	72,000,000		
Water Stop Valve Replacement	$\varphi=200 \mathrm{~mm}$	set	36,800,000		
Water Stop Valve Replacement	$\varphi=150 \mathrm{~mm}$	set	32,000,000		
Pipe Bridge	$\phi=400 \mathrm{~mm}, \mathrm{~L}=120 \mathrm{~m}$	set	1,800,000,000		
Pipe Bridge	$\phi=400 \mathrm{~mm}, \mathrm{~L}=70 \mathrm{~m}$	set	1,105,000,000		
Pipe Bridge	$\phi=400 \mathrm{~mm}, \mathrm{~L}=50 \mathrm{~m}$	set	807,000,000		
Pipe Bridge	$\phi=400 \mathrm{~mm}, \mathrm{~L}=10 \mathrm{~m}$	set	225,000,000		
Pipe Bridge	$\phi=300 \mathrm{~mm}, \mathrm{~L}=120 \mathrm{~m}$	set	1,440,000,000		
Pipe Bridge	$\phi=300 \mathrm{~mm}, \mathrm{~L}=70 \mathrm{~m}$	set	884,000,000		
Pipe Bridge	$\phi=300 \mathrm{~mm}, \mathrm{~L}=50 \mathrm{~m}$	set	645,600,000		
Pipe Bridge	$\phi=300 \mathrm{~mm}$, L=10m	set	180,000,000		
Pipe Jacking	$\phi=400 \mathrm{~mm}$	m	13,000,000		
Pipe Jacking	$\phi=300 \mathrm{~mm}$	m	12,500,000		
Laboratory Equipment		set	1,000,000,000		
Mortar Removal		m^{2}	26,000		
Chemical Anchor		set	100,000		
Waterproofing		m^{2}	64,500		
Protecting Coating	for corrosion protection coating	m^{2}	1,000,000		
Electric Lamp		set	3,000,000		
Lawn Grass		m^{2}	50,800		
Fence	$\mathrm{H}=1.2 \mathrm{~m}$	m	500,000		
Gate and Guard Post		set	100,000,000		
Bridge Removal		m^{2}	1,980,000		
Bridge Construction		m^{2}	5,720,000		
Demolish		m^{3}	100,000		
Water Leakage Investigation		set	250,000,000		
Booster Pump	$1.5 \mathrm{~m} / \mathrm{min} 18.5 \mathrm{kw}$	set	110,000,000		
Electric Panel	Soft Starter	set	320,000,000		
Converting Cost	for Case1 (for Room Toilet)	room	3,700,000		
Converting Cost	for Case2 (for Restaurant)	room	2,500,000		

8.c Engineering Service

8.c. 1 Cost of Detailed Design, Construction Supervision and Surveys

This cost is calculated as the sum of the following cost items.

- Detailed design
- Construction supervision
- Project management during construction
- EIA implementation
- Additional ground and geological surveys
- Inspection of the existing distribution reservoir and distribution pipes (originally used for irrigation)

The detailed design and construction supervision costs are calculated based on the estimated required man-months (MM) of foreign and local engineers as shown below, including office expenses, etc.

- Foreign Engineer : 86 MM
- Local Engineer : 275 MM

8.c. 2 Capacity Building and Promotion

The capacity building and promotion activities are being conducted at the pilot reclamation plant in Denpasar WWTP. The cost of capacity building and promotion is excluded from the total project cost because it is a precondition of the project that the major part of the promotion should be finished before the confirmation of the reclaimed water demand at the target hotels.

Table 8.c. 1 Spreadsheet for Engineering Services Cost

8.d Tax Charges

The following taxes are estimated as part of the project cost.
(1) Value-added Tax (VAT)

VAT is estimated at 10% of the local currency portions of the project cost.
(2) Import Duty

The import tax depends on the items to be imported but the import tax is about 10% of the total price of the equipment to be imported, based on the experience with the construction of the pilot reclamation plant. According to the investigate and examine the results with the support of the tax consultant office in Indonesia, there is a possibility that the reclaimed water project will be exempted from import tax if import duty exemption as stipulated in the Ministry of Finance Regulation No. 101/PMK.04/2007 is applicable to this Project. Contents of the tax consultant office are shown below.

1) Minister of Finance defines in the provision, exempt from import duties pertaining to the import of raw materials and equipment to be used to prevent environmental pollution. Exemption shall be applied to the waste disposal or industry companies. These equipments can be used for other purposes or be transferred to others with the permission of the Directorate General of Customs, if the equipments were used as intended for two years from the import.
2) Definition of "waste" is the relevant provision has not been specified. In addition, the SPC to the management of the reclaimed water project is unclear whether the applicable to "waste disposal company" under such provision, but this project is considered to be business in line with the spirit of the law. Therefore the local tax office in Indonesia recommended that the SPC submits an application for the approval of the import tax exemption to the Ministry of Directorate General of Taxation with the following documents after the project approval.

- Investment Coordinating Board approval
- Tax ID card issued by the Revenue Department
- Registered businesses VAT (PKP)
- Details of materials and equipments (amount, type and specifications)
- Letter of recommendation by the Ministry of the Environment and Environmental Committee (It describes that these equipments entail no adverse consequence to the environment during the waste treatment and these are recommended the materials and equipments for using to waste treatment.)

Application for approval of import tax exemption is after the establishment of SPC, but the project costs in this survey are exempt from import tax as a prerequisite for the calculations.

(3) Surface Water Use Tax

The surface water use tax will be imposed on the Indonesian law (28/2009), if the water is use as a water source of tap water. The operation and tax rate are defined by the local government regulations. The taxable water is only surface water and groundwater on these regulations, but there is no provision for the treated wastewater from secondary treatment.

Table 8.d. 1 Laws, Regulation and Tax Rate for Water Source

	Water source	Laws and regulations	Tax rates
1	Surface water	Regulation of Bali (16/2009, Revision 1/2011)	10% of water price
2	Ground water	(In case of Badung Regency) Regulation of Badung Regency (1/2011)	20% of water price

The definition of surface water in Indonesian law (7/2004, GR42/2008) has been defined as "all the water on the ground", but the definition in Bali regulations (1/2011) has been defined as excluding the seawater on the land and sea. Therefore the use of seawater in the state of Bali is not subject to taxation.

According to the results of request to investigate and examine the law firm and tax consultant offices in Indonesia about whether the surface water should be regarded as treated wastewater, it is necessary to confirmation and agreement of the relevant agencies of Bali government but they think that there is unreasonable to tax the treated wastewater as surface water from the following two reasons.

1) The treated wastewater has been discharged to the sea so that this water isn't used in fact. The treated wastewater is the seawater rather than the surface water if it is dared to classify.
2) The treated wastewater does not have a valuation from the viewpoint of taxation.

Based on the above-mentioned expert opinion, the treated wastewater is considered as a tax-free advance in this survey.

8.e Operation and Maintenance Cost

The annual operation and maintenance costs include costs for personnel, electricity, chemicals, fuel, water quality tests, repairs and replacements, and office expenditures, as explained below. The details are presented in Table 8.e. 3 to 8.e.10.
(1) Personnel

The cost of Case 1 covers to employ 22 staffs for the management, administration, finance and technical departments. The cost of Case 2 covers to employ 24 staffs. The details are presented in Section 9.4.

(2) Electricity

The electricity cost is calculated by multiplying the unit price from electricity by the expected annual average electrical consumption of SPC. The unit price for electricity is set according to the electricity price list (2010) of PT PLN (PERSERO: Indonesian Electric Power Public Corporation).
(3) Chemicals

The annual chemicals cost for the reclamation plant consists of the costs for the following chemicals.

- Flocculant
- pH Adjuster (Acid, Alkali)
- Hypochlorous Acid
- Thiosulfuric Acid
(4) Fuel

The annual fuel cost consists of the fuel costs for the following machinery and vehicles.

- Standby generator (for monthly test operation)
- Patrol car
- Tanker truck
(5) Water Quality Test Cost

This is the outsourcing costs for the monthly and semiannually water quality tests excluding the cost of routine water quality tests in the laboratory of the reclamation plant.
(6) Repairs and Replacements

This is estimated as follows:

- Annual repair cost for civil \& architectural structures: 0.1% of their total construction cost.
- Annual repair cost for mechanical \& electrical equipment:1.5\% of their total purchase/installation cost.
- Annual repair cost for vehicles and other machineries: 3.0% of their total purchase cost.

The replacement cost of the filtration membrane during the operation is also estimated and converted into an annual cost.
(7) Office expenditures

This cost category covers the rental cost of SPC's office in BLUPAL and the rental fee of copy machine and other office equipment.
(8) Treated Water Use Rate

Currently, the treated wastewater is expected to have worthless and no utility rate because it has been discharged directly into the sea.
(9) Indirect Cost

The indirect cost covers miscellaneous expenses, which is calculated as 10% of the total cost of (1) to (8).
(10) Tax

The tax covers value-added tax (VAT), which is calculated as 10% of the total cost of (1) to (9).
(11) Total Operation and Maintenance Costs

The total operation and maintenance costs during the first and the second stages are shown in Tables 8.e. 1 and 8.e.2, respectively.

Table 8．e． 1 Operation and Maintenance Cost for Case 1

Items	Cost（IDR／year）	Tax（IDR／year）	Total（IDR／year）
〔A〕Direct O\＆M Cost			
1．Personnel Cost			
2． Electricity Cost	$\mathbf{2 , 0 6 1 , 6 0 0 , 0 0 0}$	$\mathbf{2 0 6 , 1 6 0 , 0 0 0}$	$\mathbf{2 , 2 6 7 , 7 6 0 , 0 0 0}$
3．Chemicals and Materials	$\mathbf{1 , 7 4 6 , 7 9 4 , 0 7 6}$	$\mathbf{1 7 4 , 6 7 9 , 4 0 8}$	$\mathbf{1 , 9 2 1 , 4 7 3 , 4 8 3}$
4．Fuel Cost	$\mathbf{6 1 8 , 3 7 9 , 0 4 0}$	$\mathbf{6 1 , 8 3 7 , 9 0 4}$	$\mathbf{6 8 0 , 2 1 6 , 9 4 4}$
5．Water Quality Test	$\mathbf{1 8 7 , 4 0 1 , 6 0 0}$	$\mathbf{1 8 , 7 4 0 , 1 6 0}$	$\mathbf{2 0 6 , 1 4 1 , 7 6 0}$
6．Repair and Replace Cost	$\mathbf{1 7 , 8 0 0 , 0 0 0}$	$\mathbf{1 , 7 8 0 , 0 0 0}$	$\mathbf{1 9 , 5 8 0 , 0 0 0}$
7．Office Cost	$\mathbf{1 , 6 3 1 , 3 3 6 , 5 8 4}$	$\mathbf{1 6 3 , 1 3 3 , 6 5 8}$	$\mathbf{1 , 7 9 4 , 4 7 0 , 2 4 3}$
8．Treated Water Use Rate	$\mathbf{6 0 0 , 0 0 0 , 0 0 0}$	$\mathbf{6 0 , 0 0 0 , 0 0 0}$	$\mathbf{6 6 0 , 0 0 0 , 0 0 0}$
Sub Total A	$\mathbf{0}$	$\mathbf{0}$	
［B］Indirect O\＆M Cost（10\％of Direct O\＆M Cost）	$\mathbf{6 , 8 6 3 , 3 1 1 , 3 0 0}$	$\mathbf{6 8 6 , 3 3 1 , 1 3 0}$	$\mathbf{7 , 5 4 9 , 6 4 2 , 4 3 0}$
Sub Total B			
Total Cost	$\mathbf{6 8 6 , 3 3 1 , 1 3 0}$	$\mathbf{6 8 , 6 3 3 , 1 1 3}$	$\mathbf{7 5 4 , 9 6 4 , 2 4 3}$

Table 8．e． 2 Operation and Maintenance Cost for Case 2

Items	Cost（IDR／year）	Tax（IDR／year）	Total（IDR／year）
〔A〕Direct O\＆M Cost			
1．Personnel Cost	$\mathbf{2 , 2 5 9 , 6 0 0 , 0 0 0}$	$\mathbf{2 2 5 , 9 6 0 , 0 0 0}$	$\mathbf{2 , 4 8 5 , 5 6 0 , 0 0 0}$
2．Electricity Cost	$\mathbf{3 , 4 7 1 , 8 7 4 , 3 0 1}$	$\mathbf{3 4 7 , 1 8 7 , 4 3 0}$	$\mathbf{3 , 8 1 9 , 0 6 1 , 7 3 2}$
3．Chemicals and Materials	$\mathbf{1 , 2 3 6 , 7 5 8 , 0 8 0}$	$\mathbf{1 2 3 , 6 7 5 , 8 0 8}$	$\mathbf{1 , 3 6 0 , 4 3 3 , 8 8 7}$
4．Fuel Cost	$\mathbf{1 8 7 , 4 0 1 , 6 0 0}$	$\mathbf{1 8 , 7 4 0 , 1 6 0}$	$\mathbf{2 0 6 , 1 4 1 , 7 6 0}$
5．Water Quality Test	$\mathbf{1 7 , 8 0 0 , 0 0 0}$	$\mathbf{1 , 7 8 0 , 0 0 0}$	$\mathbf{1 9 , 5 8 0 , 0 0 0}$
6．Repair and Replace Cost	$\mathbf{2 , 0 6 0 , 7 5 7 , 6 9 6}$	$\mathbf{2 0 6 , 0 7 5 , 7 7 0}$	$\mathbf{2 , 2 6 6 , 8 3 3 , 4 6 6}$
7．Office Cost	$\mathbf{6 0 0 , 0 0 0 , 0 0 0}$	$\mathbf{6 0 , 0 0 0 , 0 0 0}$	$\mathbf{6 6 0 , 0 0 0 , 0 0 0}$
8．Treated Water Use Rate	$\mathbf{0}$		$\mathbf{0}$
Sub Total A	$\mathbf{9 , 8 3 4 , 1 9 1 , 6 7 7}$	$\mathbf{9 8 3 , 4 1 9 , 1 6 8}$	$\mathbf{1 0 , 8 1 7 , 6 1 0 , 8 4 5}$
［B］Indirect O\＆M Cost（10\％of Direct O\＆M Cost）			
Sub Total B	$\mathbf{9 8 3 , 4 1 9 , 1 6 8}$	$\mathbf{9 8 , 3 4 1 , 9 1 7}$	$\mathbf{1 , 0 8 1 , 7 6 1 , 0 8 5}$
Total Cost	$\mathbf{1 0 , 8 1 7 , 6 1 0 , 8 4 5}$	$\mathbf{1 , 0 8 1 , 7 6 1 , 0 8 5}$	$\mathbf{1 1 , 8 9 9 , 3 7 1 , 9 3 0}$

Table 8.e. 3 Personnel Cost
(1) Case 1

		Numbers Total	Unit Price (IDR/Staff/month)	Annual Total (IDR)
Management	Director	1	33,000,000	396,000,000
	Deputy Director	1	22,000,000	264,000,000
	Secretary	1	5,500,000	66,000,000
	Sub Total	3		726,000,000
 Finance	Manager	1	15,000,000	180,000,000
	Administration Secretary	1	5,500,000	66,000,000
	Administration Staff	2	5,500,000	132,000,000
	Security Staff	3	1,500,000	54,000,000
	Office Boy	1	1,000,000	12,000,000
	Sub Total	8		444,000,000
Treatment Plant and Pipe Facility Technical Staff	Manager	1	16,300,000	195,600,000
	Engineer/Operator	9	5,500,000	594,000,000
	Chemist	1	8,500,000	102,000,000
	Sub Total	11		891,600,000
Total		22		2,061,600,000

(2) Case 2

		Numbers Total	Unit Price (IDR/Staff/month)	Annual Total (IDR)
Management	Director	1	33,000,000	396,000,000
	Deputy Director	1	22,000,000	264,000,000
	Secretary	1	5,500,000	66,000,000
	Sub Total	3		726,000,000
Admini \& Finance	Manager	1	15,000,000	180,000,000
	Administration Secretary	1	5,500,000	66,000,000
	Administration Staff	2	5,500,000	132,000,000
	Security Staff	3	1,500,000	54,000,000
	Office Boy	1	1,000,000	12,000,000
	Sub Total	8		444,000,000
Treatment Plant and Pipe Facility Technical Staff	Manager	1	16,300,000	195,600,000
	Engineer/Operator	12	5,500,000	792,000,000
	Chemist	1	8,500,000	102,000,000
	Sub Total	14		1,089,600,000
Total		25		2,259,600,000

Table 8.e.4 Electricity Cost (Case 1)

	power [kW]	$\begin{gathered} \text { unit } \\ \text { [unit] } \end{gathered}$	total power [kW]	running unit [unit]	total power [kW]	running hour [h/day]	$\begin{gathered} \text { load } \\ (\%) \\ \hline \end{gathered}$	Daily Electricity use (kWh)	Annual Electricity use (kWh)	Annual Electricity cost (IDR.)
BAR SCREEN	0.1	1	0.1	1	0.1	24.0	80	1.92	701	525,600
RAW WATER PUMP	30	2	60	1	30	24.0	80	576	210,240	157,680,000
STRAINER	0.75	1	0.75	1	0.75	24.0	80	14.4	5,256	3,942,000
BIOLOGICAL FILTER PUMP	15	2	30	1	15	24.0	80	288	105,120	78,840,000
BLOWER	29.2	2	58.4	1	29.2	24.0	80	560.64	204,634	153,475,200
BACKWASH BLOWER	47.2	2	94.4	1	47.2	0.1	80	4.5312	1,654	1,240,416
BACKWASH PUMP	45	3	135	2	90	0.1	80	8.64	3,154	2,365,200
OZONE REACTOR PUMP	30	2	60	1	30	24.0	80	576	210,240	157,680,000
OZONE GENERATOR	38	1	38	1	38	24.0	68	620.16	226,358	169,768,800
O2 PSA	0.1	1	0.1	1	0.1	24.0	90	2.16	788	591,300
AIR COMPRESSOR	55	1	55	1	55	24.0	65	858	313,170	234,877,500
CHILLER UNIT	48	1	48	1	48	24.0	76	875.52	319,565	239,673,600
OZONE TREATMENT UNIT (FOR OZONE UNIT)	1.25	1	1.25	1	1.25	24.0	80	24	8,760	6,570,000
AGITATOR (PH ADJUST)	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
AGITATOR (RAPID)	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
AGITATOR (SLOW)	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
COAGULANT FEED PUMP	0.02	2	0.04	1	0.02	24.0	65	0.312	114	85,410
PH MODIFIER PUMP (ACID INJECTION)	0.03	2	0.06	1	0.03	24.0	65	0.468	171	128,115
MEMBRANE FILTER PUMP	30	2	60	1	30	24.0	80	576	210,240	157,680,000
OZONE TREATMENT UNIT	3	1	3	1	3	24.0	80	57.6	21,024	15,768,000
COAGULANT TANK BLOWER	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
AIR COMPRESSOR	15	2	30	1	15	0.9	80	11.28	4,117	3,087,900
WATER SUPPLY PUMP UNIT	3.7	1	3.7	1	3.7	16.0	80	47.36	17,286	12,964,800
HYPOCHLORITE FEED PUMP	0.03	2	0.06	1	0.03	0.2	65	0.002925	1	801
ACID FEED PUMP	0.2	2	0.4	1	0.2	0.5	80	0.08	29	21,900
CHEMICAL CLEANING PUMP	1.2	2	2.4	2	2.4	-	80	0	$\fallingdotseq 0$	$\fallingdotseq 0$
CHEMICAL PULLING PUMP	1.5	2	3	2	3	-	80	0	$\fallingdotseq 0$	$\fallingdotseq 0$
THIOSULFURIC ACID PUMP	0.02	2	1	1	0.02	2.3	80	0.0368	13	10,074
SODIUM HYDROXIDE PUMP	0.02	2	0.04	1	0.02	7.0	80	0.112	41	30,660
DRAINAGE PUMP	11	2	22	1	11	6.0	80	52.8	19,272	14,454,000
TRANSMISSION PUMP	55	2	110	1	55	24.0	80	1056	385,440	289,080,000
Total								6,381	2,329,059	1,746,794,076

※Connection fee to Electric Power Company (631,250,000 IDR) is added on fist year.
$750 \mathrm{IDR} / \mathrm{kWh}=$ Unit rate of electricity

$$
\text { Total Electricity Cost }=\quad 1,746,794,076(\text { IDR/ year })
$$

Table 8.e. 5 Chemicals Cost (Case 1)

	Used Amount (kg/day)	Chemical usage rate	Cost/Kg (IDR)	Annual cost (IDR)
Coagulant (PACL)	540.0	0.5	4,348	$428,495,400$
Acid (pH)	92.7	0.5	2,717	$45,965,527$
Acid (Backwash)	47.0	0.5	2,717	$23,305,068$
Sodium Hydroxide	115.0	0.5	3,261	$68,440,238$
Hypochlorite	12.0	0.5	7,609	$16,663,710$
Thiosulfuric Acid	2.6	0.5	16,304	$7,736,248$
Hypochlorite (for Disinfection)	20.0	0.5	7,609	$27,772,850$
Total				$618,379,040$

Table 8.e. 6 Electricity Cost (Case 2)

	power [kW]	$\begin{gathered} \text { unit } \\ \text { [unit] } \end{gathered}$	total power [kW]	running unit [unit]	total power [kW]		$\begin{gathered} \text { load } \\ (\%) \\ \hline \end{gathered}$	Daily Electricity use (kWh)	Annual Electricity use (kWh)	Annual Electricity cost (IDR.)
BAR SCREEN	0.1	2	0.2	1	0.1	24.0	80	1.92	701	525,600
RAW WATER PUMP	30	3	90	2	60	24.0	80	1152	420,480	315,360,000
STRAINER	0.75	2	1.5	2	1.5	24.0	80	28.8	10,512	7,884,000
BIOLOGICAL FILTER PUMP	15	3	45	2	30	24.0	80	576	210,240	157,680,000
BLOWER	29.2	3	87.6	2	58.4	24.0	80	1121.28	409,267	306,950,400
BACKWASH BLOWER	47.2	2	94.4	1	47.2	0.1	80	4.5312	1,654	1,240,416
BACKWASH PUMP	45	3	135	2	90	0.1	80	8.64	3,154	2,365,200
OZONE REACTOR PUMP	30	3	90	2	60	24.0	80	1152	420,480	315,360,000
OZONE GENERATOR	38	2	76	2	76	24.0	68	1240.32	452,717	339,537,600
O2 PSA	0.1	2	0.2	2	0.2	24.0	90	4.32	1,577	1,182,600
AIR COMPRESSOR	55	2	110	2	110	24.0	65	1716	626,340	469,755,000
CHILLER UNIT	48	2	96	2	96	24.0	76	1751.04	639,130	479,347,200
OZONE TREATMENT UNIT (FOR OZONE UNIT)	1.25	2	2.5	2	2.5	24.0	80	48	17,520	13,140,000
AGITATOR (PH ADJUST)	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
AGITATOR (RAPID)	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
AGITATOR (SLOW)	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
COAGULANT FEED PUMP	0.02	3	0.06	2	0.04	24.0	65	0.624	228	170,820
PH MODIFIER PUMP (ACID INJECTION)	0.03	3	0.09	2	0.06	24.0	65	0.936	342	256,230
MEMBRANE FILTER PUMP	30	3	90	2	60	24.0	80	1152	420,480	315,360,000
OZONE TREATMENT UNIT	3	3	9	2	6	24.0	80	115.2	42,048	31,536,000
COAGULANT TANK BLOWER	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
AIR COMPRESSOR	15	2	30	1	15	0.9	80	11.28	4,117	3,087,900
WATER SUPPLY PUMP UNIT	3.7	2	7.4	2	7.4	16.0	80	94.72	34,573	25,929,600
HYPOCHLORITE FEED PUMP	0.03	3	0.09	2	0.06	0.2	65	0.00585	2	1,601
ACID FEED PUMP	0.2	3	0.6	2	0.4	0.5	80	0.16	58	43,800
CHEMICAL CLEANING PUMP	1.2	2	2.4	2	2.4	-	80	0	$\fallingdotseq 0$	$\fallingdotseq 0$
CHEMICAL PULLING PUMP	1.5	2	3	2	3	-	80	0	$\fallingdotseq 0$	$\fallingdotseq 0$
THIOSULFURIC ACID PUMP	0.02	2	1	1	0.02	2.3	80	0.0368	13	10,074
SODIUM HYDROXIDE PUMP	0.02	2	0.04	1	0.02	7.0	80	0.112	41	30,660
DRAINAGE PUMP	11	2	22	1	11	6.0	80	52.8	19,272	14,454,000
TRANSMISSION PUMP	55	3	165	2	110	24.0	80	2112	770,880	578,160,000
Total								12,683	4,629,166	3,471,874,301

750 IDR/kWh = Unit rate of electricity

$$
\text { Total Electricity Cost }=\quad \underline{3,471,874,301}(\text { IDR/ year })
$$

Table 8.e. 7 Chemicals Cost (Case 2)

	Used Amount $(\mathrm{kg} /$ day $)$	Chemical usage rate	Cost/Kg (IDR)	Annual cost (IDR)
Coagulant (PACL)	540.0	1	4,348	$856,990,800$
Acid (pH)	92.7	1	2,717	$91,931,054$
Acid (Backwash)	47.0	1	2,717	$46,610,135$
Sodium Hydroxide	115.0	1	3,261	$136,880,475$
Hypochlorite	12.0	1	7,609	$33,327,420$
Thiosulfuric Acid	2.6	1	16,304	$15,472,496$
Hypochlorite (for Disinfection)	20.0	1	7,609	$55,545,700$
Total				$1,236,758,080$

Table 8.e. 8 Fuel Cost (Case 1 or Case 2)

For Vehicles	Diesel fuel Unit Price $=$		6,000 IDR/liter		Unit cost/day*		
	No of days/ year	Fuel Consumption (liter/hours)	Working Time (hours/day)	Unit cost/ (IDR/liter)		No of sets	Total cost (IDR/year)
Patrol Car	150	2.6	6	4,500	84,240	1	12,636,000
Tanker Truck	225	5.3	6	6,000	228,960	2	103,032,000
Others (20\%)							23,133,600
Total							138,801,600

*Unit cost is including lubricant cost (20\%)
For Standby Generator (for maintenance operation)

	Capacity (kVA)	Unit Consumption (liter/kVA/hour)	Working Time (hours/month)	Unit cost/ (IDR/liter)	Unit cost/ day*	No of sets	Total cost (IDR/year)
Treatment Plant	750	0.25		6	6,000	$8,100,000$	

Total cost $($ IDR/year $)=187,401,600$

Table 8.e. 9 Water Quality Test Cost (Case 1 or Case 2)

Table 8.e. 10 Repair and Replace Cost
(1) Case 1
A. Site Preparation

	Capital Cost	Annual repair and maintenance cost	
	$(1,000$ IDR $)$	\% of Capital Cost	(IDR/year)
Structure	$5,968,887$	0.10%	$5,968,887$
Total	$5,968,887$		$5,968,887$

B. Reclaimed Water Treatment Facility

	Capital Cost	Annual repair and maintenance cost	
	$(1,000 I D R)$	\% of Capital Cost	(IDR/year)
Structure	$30,427,382$	0.10%	$30,427,382$
Vehicles	$2,070,000$	3.00%	$62,100,000$
Equipment	$87,646,381$	1.50%	$1,314,695,715$
Membrane Replacement	174,000	100%	$174,000,000$
Total	$120,143,763$		$1,581,223,097$

C. Water Transmission Pipe

	Capital Cost	Annual repair and maintenance cost	
	(1,000IDR)	\% of Capital Cost	(IDR/year)
Structure	$44,144,600$	0.10%	$44,144,600$
Total	$44,144,600$		$44,144,600$

Case1 Cost 1,631,336,584 IDR/year

(2) Case 2

A. Site Preparation

	Capital Cost	Annual repair and maintenance cost	
	$(1,000 I D R)$	\% of Capital Cost	(IDR/year)
Structure	$6,507,139$	0.10%	$6,507,139$
Total	$6,507,139$		$6,507,139$

B. Reclaimed Water Treatment Facility

	Capital Cost	Annual repair and maintenance cost	
	$(1,000$ IDR $)$	\% of Capital Cost	(IDR/year)
Structure	$38,054,721$	0.10%	$38,054,721$
Vehicles	$2,070,000$	3.00%	$62,100,000$
Equipment	$103,325,176$	1.50%	$1,549,877,636$
Membrane Replacement (1)	174,000	100%	$174,000,000$
Membrane Replacement (2)	174,000	100%	$174,000,000$
Total	$143,449,897$		$1,998,032,357$

C. Water Transmission Pipe

	Capital Cost	Annual repair and maintenance cost	
	(1,000IDR)	\% of Capital Cost	(IDR/year)
Structure	$56,218,200$	0.10%	$56,218,200$
Total	$56,218,200$		$56,218,200$

Case2 Cost $=\quad 2,060,757,696$ IDR/year

APPENDIX 9

DETAILED PROJECT ACTIVITY PLAN

APPENDIX 9 DETAILED PROJECT ACTIVITY PLAN

This appendix is prepared as the Detailed Project Activity Plan requested in the Minutes of Meetings signed between the Indonesian government and JICA on December 1, 2010. This appendix can be referred as well as Appendix 11 (A Draft TOR for the EIA) in the preparation of the draft KA-ANDAL for this project. The following descriptions of the proposed project activities (i.e. Scope of Work) are prepared mainly in accordance to the Regulation of Ministry of Environment (No.8/2006) on Guideline of EIA Preparation.

9.a Background of the Project

Bali is one of the famous tourist spots in Asia. The regional economy in Bali relies on its tourism industry and agriculture of wet-rice cultivation. Denpasar City and Badung Regency located in Southern Bali are developing as a center of tourism and commerce and their population is increasing rapidly. The growth in economic and population is increasing water demand and causing water shortage. However, the development of water supply systems in Bali is left behind the growth in economic and population. Water shortage and river water pollution are disturbing the sustainable economic development in Bali.

Groundwater has been used for mitigating the water shortage. However, its overuse caused the salination and depletion of groundwater in the coastal areas of Southern Bali. These difficult situations in groundwater use have recently become obvious. On the other hand, Denpasar Sewerage Development Project is been implemented by Japanese ODA loan in Denpasar City and its surrounding areas having high population density. The collected wastewater is being treated at Suwung WWTP. The treated wastewater from the WWTP is an important water resource which can be recycled.

In order to reduce the water shortage in Southern Bali and mitigate the groundwater salination and depletion, effective uses of the treated wastewater from Suwung WWTP have been studied by Indonesian government agencies. However any reclaimed water project using the treated wastewater has not been realized due to financial difficulties. In these circumstances, a Japanese joint venture (consisting of Toyota Tsusho Corporation, Nihon Suido Consultants Co. Ltd, and METAWATER Co. Ltd) have proposed to JICA to study the possibility of formulating a reclaimed water supply project in Southern Bali as a Public-Private Partnership (referred as PPP) Project. In response, JICA commissioned this preparatory survey to the joint venture at the end of 2010 in order to formulate a feasible reclaimed water supply project in Southern Bali.

9.b Objectives and Benefits of the Project

The objectives of the reclaimed water supply project proposed in the preparatory survey are as follows:

1) To utilize the treated wastewater from Suwung WWTP for producing reclaimed water with suitable quality for showering, bathing and pool
2) To supply the reclaimed water to the hotels in Nusa Dua, Sawangan, Benoa where water shortage and overuse of groundwater are serious
3) To make the PDAM water more available to the domestic customers in the service areas of Estuary Water Purification Plant

The objects of this project are also explained in 7.1 of the main report. The main benefits of this project are as follows:
a) The reduction of the effluent from Suwung WWTP which have negative impacts on the environment around its discharge point.
b) The mitigation of the serious water shortage in the service areas of Estuary Water Purification Plant, which will contribute to:
i. the improvement of the targeted hotels and the development of new hotels in the target areas of the project;
ii. the reduction of the excessive extraction of groundwater in the targeted hotels and the new hotels; and
iii. the increase of drinking/clean water available for the domestic users.
c) The establishment of local experiences regarding wastewater reclamation, which will be important for the formulation of other reclaimed water supply projects in Indonesia in the future.

The results of the economic analysis on the project including the evaluation of these benefits are explained in Chapter 13 of the main report. These benefits are also explained as the positive impacts of the project in the environmental scooping (see 10.4.3 of the main report and 10.c of Appendix 10).

9.c Scope of the Project and Alternative Project Components

The proposed scope of the project is explained in 7.2 to 7.4 of the main report.
Although the route of the transmission pipeline along the existing main road (Ngurah Rai By-pass Road) was selected in this preparatory survey, the alternative analysis on the route of the transmission pipeline (see 10.b (3) of Appendix 10) should be reviewed in the EIA and the detailed design study in order to mitigate the traffic congestion to be caused by the pipe installation. Moreover, it is not yet confirmed that the proposed wastewater reclamation facilities can meet the existing Indonesian water quality standards for pool and public bath continuously. The size of the biological filter for the pretreatment may need to be larger than its proposed design if the existing water quality standards cannot be continuously met with the proposed design. In case that new Indonesian water quality standards for reclaimed water is established before the implementation of the detained design study and the EIA, the wastewater reclamation facilities should be re-designed based on the new water quality standards. The ratio of mixing the reclaimed water with the PDAM water at the target hotels may also be revised in the detailed design study based on the results of the reclaimed water demand confirmation to be conducted before the signing of the PPP contract.

9.d Maps and Social and Environmental Descriptions of the Project Sites

Figures 9.d. 1 to 9.d. 5 shows the overall layout of the facilities related to the project including the tentative route of the transmission pipeline, the site plan of the proposed water reclamation plant, and the routes of the existing trunk distribution pipes in Nusa Dua and new trunk distribution pipes to Benoa and Sawangan. Detail maps of the route for the transmission pipeline are shown in 6.c of Appendix 6.

The proposed site for the wastewater reclamation plant is located at the edge of Ngurah Rai Mangrove Forest Area which is owned by the Ministry of Environment as shown in Figure 9.d.2. The land use in this area is controlled by the ministry through a land use permission process. The Forestry Agency of Bali Provincial Government is in charge of the forestry management in this area.

Nusa Dua has many new large resort hotels. Benoa has some large resort hotels and many middle size hotels and small villas. New large resort hotels are currently under construction in Sawangan.

General natural conditions and socio-economic conditions of Bali Island are also described in 2.1 and 2.2 of the main report.

9.e Project Activities from Pre-Construction Stage to Post-Operation Stage

Section 9.7 of the main report shows the implementation schedule of the project.

The project activates in each stage of the project are explained in the following, which are in consistency with those listed in the comprehensive environmental scoping matrix (see Table 10.c. 1 of Appendix 10).

(1) Pre-Construction Stage

In the pre-construction stage of the project, several types of permissions and agreements are required before starting the construction, which include the land use permit from the Ministry of Forestry, the PPP contract, the purchase agreement with PDAM Badung, the approvals on KA-ANDAL and the EIA documents, etc. The project also needs a further survey for confirming the targeted hotels' demand on the reclaimed water. The feasibility of the project has to be also examined by a PPP team from the Indonesian/Balinese side in the pre-construction stage.

1. Acquisition of Land Use Permit

DINAS PU/Bali Provincial Government needs to acquire the land use permit from the Ministry of Forestry (in coordination with the Forestry Agency of Bali Provincial Government) for using the land of the proposed water reclamation plant site.
2. Acquisition of Other Approvals and Agreements

The project needs a PPP contract with Bali Provincial Government and a purchase agreement with PDAM Badung. New reclaimed water standards (if necessary) and new tariffs for the reclaimed water supply may needs to be prepared before the signing of the PPP contract. The project also needs approval on the draft KA-ANDAL and the final EIA documents. The permissions to use the treated wastewater and to supply the reclaimed water should be included in these approvals and agreements.
3. Study and Field Survey

More studies and filed surveys are required for the EIA, the detailed design, the confirmation of reclaimed water demand in the target hotels, the confirmation of achievable water quality and the establishment of new reclaimed water quality standards (if necessary).

Figure 9.d. 1 Overall Layout of the Facilities related to the Project
Appendix 9-4

Figure 9.d. 3 Existing Distribution Network in Nusa Dua available for the Reclaimed Water Supply
Appendix 9-6

Figure 9.d. 5 New Distributing Pipes to Sawangan

4. Public Consultation and Socialization

Public consultation and socialization are required for 1) the transaction of this PPP project (See 14.3.2 of the main report), 2) the establishment of new water quality standards for reclaimed water (if necessary), 3) the establishment of new tariffs for the reclaimed water supply, 5) the approval on the EIA documents, and 6) the start of construction at each project site (as planned in the environmental management plan)

(2) Construction Stage

The construction stage includes personal mobilization, base camp operation, material/equipment mobilization, construction works, equipment demobilization and personal demobilization. The construction works can be divided to those for the new wastewater reclamation plant and the existing distribution reservoir and those for the installation of transmission, distribution and service pipes. The construction works for the new wastewater reclamation plant can be further divided into land clearing, excavation/embankment, building the structures/installation of equipment and landscaping.

1. Personal Mobilization

The SPC needs to establish a construction management team and need to make contracts with local sub-contractors.

2. Base Camp Operation

A based camp needs to be established by lending office and accommodations or constructing prefabrication buildings. Utilities and office appliances needs to be ready to use in the base camp.
3. Material/Equipment Mobilization

Materials and equipment required for the construction works need to be brought close to the construction sites.
4. Land Clearing

The mangrove trees at the proposed site for the wastewater reclamation plant needs to be removed.
5. Land Excavation/Embankment

The construction of the new wastewater reclamation plant requires the excavation of unstable surface soil after the removable of mangrove trees. Then, the site should be embanked up to the base ground level of the existing WWTP with stable soil for the construction. Soil excavation is also required to the construction of the new raw water pumping station for the wastewater reclamation within the existing WWTP.
6. Building of Structures/Installation of Equipment

The proposed wastewater purification plant consists of several buildings for raw water transmission, biological treatment, ozone treatment, membrane treatment, chlorination, treated water transmission, etc.
7. Landscaping

The main gate and the buildings of the wastewater purification plant should follow building code regulations of Bali.
8. Installation of Pipe Facilities

In order to supply the reclaimed water to the targeted areas, it is required to install 1) a transmission pipeline from the wastewater reclamation plant to the existing distributing reservoir in Nusa Dua, 2) two trunk distribution pipelines from the distribution reservoir to Benoa and Sawangan, and 3) service pipes from the existing distribution pipes in Nusa Dua and the new distribution pipes in Benoa and Sawangan to each hotel in the target areas. The rehabilitation of the existing distribution pipes in Nusa Dua and the installation of the new distribution pipes and service pipes are part of the responsibility of PDAM Badung according to the plan proposed in the preparatory survey.
9. Equipment Demobilization

Equipment used in the construction is removed from the construction sites.

10. Personal Demobilization

The construction workers need to move out of the base camp.

(3) Operation Stage

The operation stage of this project includes the personal mobilization of SPC and PDAM Badung, the operation and maintenance of reclaimed water treatment facilities (including the operation of pumps and valves for raw water intake, transmission and distribution and the maintenance of the pipes), meter reading, billing \& revenue collection and customer services. The main components of the operation stage are explained as follows:

1. Personal Mobilization

SPC needs to mobilize operational staff at the wastewater reclamation plant and PDAM Budung needs to assign O\&M and administration tasks for the retail supply of the reclaimed water to their existing or new staff.
2. Water Treatment Operation

The proposed treatment process for the wastewater reclamation includes the use of biological filter, pre-zonation, coagulation/flocculation, ceramic membrane and chlorination. The residual ozone after the pre-zonation is removed at the wastewater reclamation plant.
3. Backwash Water Management

The biological filter and ceramic membrane needs to be backwashed regularly. It is planned to send back the used backwash water to the inlet of the WWTP. Therefore, no sludge will be generated from the used backwash water in the wastewater reclamation plant.

4. Rotating Machinery Operation

In addition to the pumps for raw water intake, the pumps for water transmission and water distribution, the blowers for the diffuser of biological filters and the feed pump for ceramic membrane need to be operated continuously. The operation of power generator is also required during power failures.

5. Reclaimed Water Supply and Use

The reclaimed water will be transmitted and sold by the SPC as bulk water to PDAM Badung at the existing reservoir in Nusa Dua that was used for irrigation water in the past. PDAM Badung will be in charge of the reclaimed water distribution to the hotels in the target areas and billing \& collection. The hotels can deliver the reclaimed water with the existing pipes inside the hotels to each guest room after mixing it with PDAM's drinking/clean water.
6. Pipe Maintenance

All the pipes used for the reclaimed water supply requires maintenance to reduce leakage of the reclaimed water. The maintenance work is also required to avoid water quality degradation in the pipes.
7. Office Management

The office for management and administration staff and the workshop and resting place for technical staff need to be maintained.
8. Tariff Collection

Reclaimed water charges will be collected from the hotels using the reclaimed water, based on their consumptions of the reclaimed water measured with water meters. PDAM Badung will be in charge of the tariff collection.

(4) Post-Operation Stage

Since this project is planned as a BOT of 25 years. The facilities to be constructed for the project will be handed over to Bali Provincial Government 25 years after the signing of PPP contract. The machinery and electrical equipment to be installed will reach its lifetime expectancy at the time of handing over. In order to continue the reclaimed water service, the replacement of the machineries and electrical equipment are required. After the cease of the operation, land rehabilitation and personal demobilization are required as explained in the following.

1. Land Rehabilitation

After the cease of the operation, the land for the water reclamation plant needs to be rehabilitated before being returned to the Ministry of Forestry.
2. Personal Demobilization

The staff working exclusively for the project may need support to find new jobs.

[^0]: NOTES :

