NATIONAL DEVELOPMENT PLANNING AGENCY (BAPPENAS) MINISTRY OF PUBLIC WORKS (PU) BALI PROVINCIAL GOVERNMENT

THE PREPARATORY SURVEY ON APPLICATION OF WASTEWATER RECLAIMING IN SOUTHERN BALI WATER SUPPLY SYSTEM IN THE REPUBLIC OF INDONESIA FINAL REPORT VOLUME III

SUPPORTING REPORT (APPENDICES)

JUNE 2012

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

TOYOTA TSUSHO CORPORATION NIHON SUIDO CONSULTANTS CO., LTD. METAWATER CO., LTD

Currency Exchange Rate (Effective as of August 2011) 1 IDR = 0.00909 JPY

THE PREPARATORY SURVEY ON APPLICATION OF WASTEWATER RECLAIMING IN SOUTHERN BALI WATER SUPPLY SYSTEM IN THE REPUBLIC OF INDONESIA

REPORT CONTENTS

Volume ISummaryVolume IIMain ReportVolume IIISupporting Report (Appendix)

TABLE OF CONTENTS

APPENDIX 1 INTERVIEW SURVEY ON THE RECLAIMED WATER USE

1.a Introduction	Appendix 1-1
1.b Interview Survey Method	Appendix 1-1
1.c Questionnaire for the Survey	
1.d Survey Target	
1.e Result of Interview Survey	
1.f Result of Water Demand Survey	

APPENDIX 2 WATER QUALITY SURVEY

2.a Terms of Reference	
	Appendix 2-3
•	Appendix 2-4

APPENDIX 3 TOPOGRAPHIC SURVEY

3.a Terms of Reference	
3.b Survey Photo	11
3.c Survey Result	Appendix 3-3

APPENDIX 4 GEOTECHNICAL SURVEY

4.a Terms of Reference	Appendix 4-1
4.b Survey Photo	Appendix 4-4
4.c Survey Result	Appendix 4-10

APPENDIX 5 CONCEPT DESIGN OF RECLAIMED WATER TREATMENT FACILITY

5.a Calculation Sheets Water Reclaimed Water for Bali	Appendix 5-1
5.b Design Drawing	Appendix 5-7

APPENDIX 6 CONCEPT DESIGN OF TRANSMISSION FACILITY

6.b Equipment DesignAppendix 6-4	6.a Design Criteria	Appendix 6-1
o.c Design Drawing	6.c Design Drawing	

APPENDIX 7 INVESTIGATION DATA OF WATER DISTRIBUTION AND SUPPLY FACILITIES

7.a Examination and Repair Strategy of Existing Distribution Pipe	Appendix 7-1
7.b Study of Conversion for Water Service System in Hotels	Appendix 7-3

APPENDIX 8 DATA OF PROJECT COST ESTIMATE

8.a Component of Project Cost Appendix	8-1
--	-----

8.b Construction Cost	Appendix 8-1
8.c Engineering Service	
8.d Tax Charges	
8.e Operation and Maintenance Cost	

APPENDIX 9 DETAILED PROJECT ACTIVITY PLAN

Appendix 9-1
Appendix 9-1
Appendix 9-2
Appendix 9-2
Appendix 9-2

APPENDIX 10 ENVIRONMENTAL EFFECT STUDY REPORT

10.a Environmental Screening	Appendix	10-1
10.b Alternative Analysis for Environmental and Social Considerations	Appendix	10-3
10.c Environmental Scoping	Appendix	10-8
10.d Evaluation of Moderately Significant Negative Impacts and Mitigation Measures	Appendix	10-18
10.e Environmental Monitoring	Appendix	10-24
10.f Public Consultations	Appendix	10-26

APPENDIX 11 A DRAFT TOR FOR THE EIA

11.a Introduction	Appendix 11-1
11.b Scope of the Project and the EIA	Appendix 11-1
11.c Methodology of the EIA	Appendix 11-3
11.d Implementation Structure of the EIA and Other Information	Appendix 11-4

APPENDIX 1

INTERVIEW SURVEY ON THE RECLAIMED WATER USE

APPENDIX 1 INTERVIEW SURVEY ON THE RECLAIMED WATER USE

1.a Introduction

Interview survey was executed to understand the usage and demand of reclaimed water in the southern Bali area by visiting the person in charge of the water supply and drainage facility management in a power plant, a harbor facility, large-scale hotels, golf courses, and shopping malls, etc., using the questionnaire prepared beforehand.

1.b Interview Survey Method

The reclaimed water demand changes depending on the water quality and the charge. Therefore, three levels of reclaimed water quality shown below are set to understand the demand of each water quality level in the interview survey. Level 1 reclaimed water was set to ask the interviewee his image on the reclaimed water.

Level 1 reclaimed water:	Reclaimed water that can be used as potable water and cooking water directly and indirectly.
Level 2 reclaimed water:	This is not water quality (level 1) that can be used as potable water and cooking water. Reclaimed water that can be used without problem on water quality for other usages (shower, pool, hand wash, toilet flush, sprinkling water for landscaping pond and garden, and others.)
Level 3 reclaimed water:	Reclaimed water that can be used for landscaping such as ponds and sprinkling water for garden. There is a problem on the water quality for other usages.

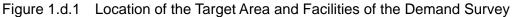
The charge of reclaimed water changes greatly depending on the kind and scale of the treatment process, the scale (diameter, length and others) of the transmission facility and the scale of the pump facility. The interview survey started at the beginning of the survey, when the construction cost and O&M cost could not be calculated yet. The reclaimed water charge was not shown at the interview. Therefore, willingness to pay (unit charge) for the reclaimed water of each level was questioned. Moreover, necessity of receiving tank that is necessary when using the reclaimed water, indoor dual water supply piping (independent pipe for clear water and reclaimed water), and others were questioned. And the maximum installation cost can be borne is also questioned.

In the interview survey, water source, demand by each usage, scale of water service facility, drain facility, waste water treatment plant, installation cost and O&M cost were confirmed to understand the background of the reclaimed water demand in each facility.

1.c Questionnaire for the Survey

<text><section-header><text><text><text><text></text></text></text></text></section-header></text>	All States quality, writer quality, writer, grant, writer, quality,
After sources and consumption for the Level 1 and Level 2 usages in dry and tripy resource After sources and consumption for the Level 1 and Level 2 usages in dry and tripy measure <u>many measure</u> <u>many measure</u> <u>many</u>	

1.d Survey Target


Table 1.d.1 shows the reclaimed water demand expectations by usage for each target facility.

Target	Expectation of Usage and Demand on Reclaimed Water
Airport	- It can be used for sprinkling water of the green space in the airport and toilet flush water
	in the terminal facility. Especially, the volume of toilet flush water is large because there
	are many users.
Power Plant	- It can be used for a large amount of cooling water, sprinkling water in the site, and toilet
	flush water in the administration building.
Benoa Harbor	- It can be used for a large amount of washing and cleaning water for the marine product
	processing company.
	- It can also be used for washing water and the ballast water of the ship.
Large-scale luxury	- As there is a huge garden, it can be used for a large amount of sprinkling water.
hotel (Four and Five	- As there are many guests, it can be used for a large amount of toilet flush water.
star hotels)	- As high groundwater tax is imposed, it can be used for an alternative of groundwater.
Golf course	- It can be used for a large amount of sprinkling water to maintain the golf course.
New resort	- The resort development plan for the Serangan Island was prepared in the past. It can be
development	used for sprinkling water, toilet flush water and others if facilities such as hotels are
(Serangan Island)	constructed, though the situation depends on the development trend of afterwards.
Large Scale	- It can be used for toilet flush water, sprinkling water and others as the counterpart
Shopping Mall	proposes.

Table 1.d.1 Targets and Reclaimed Water Demand Expectations for Interview Survey

Figure 1.d.1 shows the location of the target area and facilities of the demand survey. Legian area was excluded from the demand survey, because it was thought that there were few large-scale and luxury hotels expected to use sprinkling water.

1.e Result of Interview Survey

As a result of the interview survey, the demand for level 1 reclaimed water was little by the sensuous reason: They do not want to use the wastewater for drinking and cooking even though it is reclaimed. Therefore, the report of the survey by the facility and area will be focused on the demand for level 2 and 3.

(1) Power Plant (Indonesia Power)

This power plant was expected as a recipient of the reclaimed water because it was located near the Denpasar WWTP where the construction of reclamation facility is examined. However, it turned out that its power generating system does not need a huge amount of the cooling water. Moreover, the treated water from the internal wastewater treatment plant is used for sprinkling water, therefore it is considered that the demand of a level 3 reclaimed water is a little. On the other hand, the interviewee answered that there is a possibility to buy the level 2 treated water if the charge is under Rp.228/m³, the groundwater tax of the power plant. However, level 2 reclaimed water demand cannot be expected under the current situation because the unit cost of current underground water is set considerably low.

(2) Ngurah Rai International Airport

This airport is using a small amount of PDAM water, relies on the groundwater from the internal deep well. It has a plan to expand the terminal. The plan which the groundwater is scheduled to be used as the main water source in the future is advanced now. It is at the tender stage at present, and scheduled the facility to be completed in 2013. On the other hand, there is a plan to improve the treatment facility to use the treated water as sprinkling water, toilet flushing water, and cooling water and others, though currently, the generated sewage has been discharged into the sea directly from the wastewater treatment plant after treatment. Moreover, the interviewee answered that the supply of the treated water is enough compared with the demand for the reclaimed water after the terminal is expanded. Therefore, the demand for level 2 and 3 reclaimed water is limited under the current situation.

However, it is thought that there is potential as a recipient for the reclaimed water if the groundwater that is the pillar of the water supply plan becomes difficult by legal regulation, groundwater quality problem, profitability, maintenance and others in the future. It seems possible to expect as future potential recipient for the reclaimed water.

(3) Benoa Harbour

In the reclaimed water business prepared by Bali province government independently, Benoa Harbour is a user of the reclaimed water. But a concrete usage of the reclaimed water is not mentioned.

It was expected that a large amount of reclaimed water could be used for ship cleaning, ballast water, washing water for marine product processing company and others. The demand for ship cleaning and ballast water was not made clear by the interview survey. The groundwater tax is set cheap as Rp.1,216/m³ from January 2011 though currently groundwater is used in the marine product processing company. Therefore, it is thought to be difficult to expect the level 2 and 3 reclaimed water demand under the current situation.

But if the water demand for ship cleaning and ballast water is expected and/or the groundwater is difficult to use due to a regulation, the harbour would become a good recipient.

(4) Golf Course

There are two golf courses in the survey area. One is the Grand Bali Beach Golf Course in the Sanur area (9 holes). The other is Bali Golf and Country Club in the Nusa Dua area that is in the Bali Tourism Development Cooperation (BTDC) area where the national tourism project has been developed. Toilet flush water, shower water at clubhouse (level 2 reclaimed water) and sprinkling water (level 3 reclaimed water) in the course can be considered as the demand for reclaimed water but the level 2 reclaimed water demand cannot be expected in those golf courses because dual water supply piping system is required as well as a large amount of reclaimed water cannot be expected. Therefore, the result of the survey on

level 3 is described below.

In the Grand Bali Beach Golf Course in Sanur area, the treated water which is collected at the adjoining Inna Grand Bali Beach Hotel and treated at the WWTP is used for the sprinkling of the golf course. Moreover, in the worst case, if the emergency that cannot use the treated water occurs, it is possible to use the nearby river water temporarily. Therefore, the demand for level 3 reclaimed water is limited. Public sewers are developed in the Sanur area under the Sewerage Project, the sewers connections are forced by a regulation and the in-house wastewater treatment facilities are to be abandoned, then the level 3 reclaimed water demand would become high.

In the Bali Golf and Country Club of Nusa Dua area, the generated sewage is treated in the WTTP of BTDC, then the treated water is purchased as reclaimed water (hereinafter referred to as BTDC irrigation water) and used for sprinkling, etc. Usually, the sprinkling water of about 500m³/d is required during the dry season. Among them, about 100m³/d is supplied from the rainwater reservoir in the golf course, about 400m³/d is supplied from the BTDC irrigation water as much as possible, and the shortfall is supplied from groundwater.

According to the record of BTDC irrigation water supply amount to the golf course in the BTDC area in 2009 (Table 1.e.1), the amount of maximum reclaimed water supplied from the WWTP of BTDC to the golf course was 10,200m³/month (October, 2009), 329m³/d (converted into daily amount). From these records, level 3 reclaimed water demand becomes about 70, subtracted 100m³/d (rain water) and 329m³/d (reclaimed water of BTDC) from 500m³/d (demand for sprinkling during the dry season). The quality of BTDC irrigation water is so bad that it is used for sprinkling after mixed the BTDC irrigation water with groundwater from the deep well in another pond of the golf course. After 2009, the demand decreased to only 70m³/d because the groundwater. Moreover, the interviewee answered that there was a possibility of purchasing more level 3 reclaimed water if it was possible to supply it by lower charge than Rp.6,812/m³, BTDC irrigation water charge.

Considering the circumstances mentioned above, it was clarified that the demand of level 3 reclaimed water in the golf course is limited now, but it can be expected depending on the development of sewer connections to the public sewerage system and BTDC irrigation water supply service.

(5) Large Scale Hotel

1) Sanur Area

In the Sanur area, there seems to be approximately ten large-scale hotels (four or five star hotel) with many guest rooms, also large garden, and high reclaimed water demand. In this survey, the interview was done for the Bali Hyatt Hotel (five star hotel) and the Sanur Paradise Plaza Hotel (four star hotel), etc.

Bali Hyatt Hotel has a waste water treatment plant, and the treated water is used as sprinkling water for the garden and landscape water for the pond. There is a plan to improve the sewage treatment enough to be used as cooling water in the future. Therefore, the demand for level 3 reclaimed water is considered as a little. Moreover, the interviewee answered that use of the level 2 reclaimed water is not assumed because a large scale construction is required to have dual water supply piping system in the building to use level 2 reclaimed water for toilet flush, etc. Therefore, the demand for the level 2 reclaimed water is depending on the establishing the dual water supply piping system.

At Sanur Paradise Plaza Hotel, the level 3 demand is limited because the garden is small and the demand is only about $5m^3/d$ even at the dry season. The demand for the level 2 reclaimed water would be limited when it is used for the toilet flush installation of new separate pipes are required but the installation work is difficult, for pool water the total water consumption is small due to circulation use

and a bad image even if the reclaimed water quality is good.

2) Nusa Dua Area

In the Nusa Dua area, there is BTDC service area developed as a national tourism project (hereinafter referred to as BTDC area), and there are approximately ten large-scale hotels (four or five stars). The generated sewage from these hotels is treated at the WWTP of BTDC. A part of treated water is purchased as BTDC irrigation water, and used as sprinkling water for the garden and others.

At present, the influent is only around 5,000m³/d- average, and 6,000m³/d-maximum, though the design capacity of the WWTP of BTDC is 10,000m³/d. About 2,400m³/d, 40% of this treated volume at present is further treated (design capacity of the facility: 3,000m³/d) and sold as BTDC irrigation water. BTDC is now advancing the improvement program of sewage treatment facility and the reclaimed water treatment facility by BOT project, and the progress should be taken care of in the future.

There are about four large-scale hotels (four or five star hotel) outside the BTDC area. Generated sewage in the hotel is treated in the internal WWTP, and the BTDC irrigation water is not used.

Based on the above-mentioned situation, the result of the reclaimed water demand survey in large-scale hotels in Nusa Dua area is reported.

< Large-scale hotels in BTDC area >

Among large scale hotels in the BTDC area, the interview survey was done for Club Med located near the WWTP of BTDC, Ayodya Resort and Novotel Nusa Dua located far away from the WWTP, Melia Bali Villas Resort located between them, etc.

It was thought that there were hotels which have the dual pipe system because the BTDC irrigation water was supplied in the BTDC area. But it was clarified that such a hotel doesn't exist through the interview with BTDC and hotels.

First of all, Novotel Nusa Dua and Club Med answered that they would not break the wall and install the pipe only for the reclaimed water to supply the level 2 reclaimed water

Water is leaking frequently in Ayodya Resort Hotel because 20 years has already passed since the pipe was installed in the hotel. It is necessary to examine remedial measures including the dual water supply piping in the future. There was an answer that they might examine the use of the reclaimed water depending on the level 2 reclaimed water charge. Ayodya Resort Hotel uses the groundwater of the deep well about 200m³/d at the maximum, and it is thought that it influences largely if the reclaimed water charge is cheaper than the groundwater tax when the use of the reclaimed water is examined.

It is scheduled that three hotels (250 rooms at Marriott Hotel, 50 rooms at the Royal Kamuela Hotel, and 50 rooms at Laguna Villa) will be constructed by the end of 2011, and 350 rooms will increase in total in the BTDC area. In addition, the construction of three facilities (20 rooms at Villa NW-2, 200 rooms at N-5, and 5000 seats in the convention hall) is also scheduled. As the water demand will increase further in these facilities, but the present water supply capacity is not easily increase as stated in the previous section. Therefore, a promotion of the level 2 reclaimed water use by introduction of the dual water piping system in these facilities may effective use the limited water supply.

As the demand for the level 3 reclaimed water, three hotels other than Ayodya Resort Hotel answered that they have enough amount of irrigation water from BTDC. As shown in Table 4.3.2, large amount of BTDC irrigation water is supplied to St. Regis Bali Resort which is located farthest away from WWTP of BTDC. New demand for the level 3 reclaimed water can hardly be expected under the present situation that there is no complain about the BTDC irrigation water supply volume and they are satisfied with

BTDC irrigation water service.

Ayodya Resort Hotel answered that they were using the rain water saved in the pond of the hotel about 100m³/the day for the garden during the dry season because the amount of the reclaimed water supplied from the WWTP of BTDC was not enough. It is difficult to say that the volume of the BTDC irrigation water only for Ayodya Resort Hotel is insufficient because the rain water saved in the pond in the hotel is free, and Novotel Nusa Dua Hotel receives the enough reclaimed water from BTDC. Therefore, there is high possibility of attempting the use of free rain water compared with the charged BTDC irrigation water.

Considering the circumstances mentioned above, it is thought that the BTDC irrigation water supply satisfies the demand for the sprinkling water in BTDC.

1	Contraction of					AIR	IRIGASI TH	2009 (VOLUM	E DALAM M3)					TOTAL TH
NO	NAMA INVESTOR	JAN	PEB	MAR	APRIL	MEI	JUNI	JULI	AGST	SEPT	OKT	NOP	DES	2009
1	Club Med	47,00	-		4.352,00	6.012,00	5.681,00	7.095,00	8.334,00	2.718,00	6.981,00	4.381,00	1.808,00	47,409,00
2	NDBH (PT. Sejahtera Ind)		-			-				-	-	-		
3	Melia Bali	488,00	94,00	4,00	1.761,00	1.979,00	1,690,00	5.082,00	9.036,00	5.916,00	8,423,00	7.860,00	7.130,00	49.463,00
4	Hotel Putri Bali					1.1	1.1.1			-				
5	Sheraton Nusa Indah/NDGI				5				1		-	-	-	
6	Grand Hyatt		-	1.324,00	-	3.346,00	4.786,00	7,690,00	8.566,00	5.143,00	7.601,00	4.952,00	1.414,00	44.822,00
7	PT. KAKL/Sheraton Lagoon		-				-	1.1	-	100		-	-	
8	PT. Banigati Betegak			-			1.5				~	-	-	
9	PT. Bali Nusadewata Village	-	~		-	-				-	-			
10	PT. Chikara Inti Bahagia		-			1		1			-	-	1.3	
11	Bali Golf & C. Club				23.000,00	15.000,00	11.000,00	10.500.00	575,00	1.000,00	10.200,00	16.500,00	19,500,00	107 275,00
12	PT. Inti Putra M/Bali Desa													
13	Metafora (LOT SW2)	-	98,00	101,00	127,00	318,00	546,00	879,00	1.775,00	820,00	1,098,00	582,00	611,00	6.956,00
14	Sentral Telephone	-			1.1.1		1.11	1	4			-		1.00
15	Melia Benoa/Citra Rapi	162,00	128,00	392,00	1.154,00	1.059,00	1.103,00	995,00	270,00	215,00	220,00	99,00	157,00	5.957,00
16	Hann Restaurant/PT. BSS					-	-	-			1.0			
17	Hotel Grand Bali/Intersis					-	-					1.5		
18	Conrad Bali Resort/OIB	705,00	267,00	911,00	1.971,00	4.862,00	1,756,00	4.712,00	5,363,00	2.453,00	5.144,00	3.500,00	1.300,00	32.944,00
19	Villa Kayu Manis/Blok S/Partha Stana	33,00	3,00	67,00	275,00	334,00	547,00	570,00	529,00	524,00	468,00	478,00	209,00	4.037,0
20	St. Regis/PBRI (S-6)		•	1.583,00	3.304,00	1.216,00	2,369,00	6.349,00	6.753,00	7.800,00	11.019,00	9,590,00	7.198,00	57.181,00
21	Common Area	233,00	2.193,00	6.668,00	9.910,00	17.727,00	12.948,00	22.356,00	37.109,00	21.681,00	27.544,00	22.580,00	7,742,00	188.691,00
22	GPL		-			4		1				1.00		
23	Bali Tropic						-	-	1		539,00	49,00	13,00	
24	Proyek N-5	98,00				-			112,00	1.053,00	211,00	244,00	368,00	2.086,0
	TOTAL	1.766,00	2.783,00	11.050,00	45.854.00	51.853,00	42.426,00	66.231,00	78,423,00	49.323,00	79.448,00	70.815,00	47.450,00	546.821,00

Table 1.e.1 Amount of BTDC Irrigation Water Supplied to Each Facility (2009)

As mentioned above, in the BTDC area, the number of accommodation facility will increase by 350 rooms by the end of 2011, then 220 rooms afterwards, and construction of the convention hall with 5000 seats is also scheduled. These facilities will be built in BTDC where the land is originally green space. Consequently the green area will decrease and the demand of the level 3 reclaimed water in BTDC can be thought to be in the direction of decrease in the future.

< Large-scale hotel outside BTDC area >

The interview was done for Nikko Bali Resort and Spa where the number of guest room is the largest outside the BTDC area. This hotel uses the groundwater of the deep well. The wastewater generated in the hotel is treated at the internal wastewater treatment facility. The treated wastewater is used as sprinkling water of the garden, cooling water, and landscaping water to ponds etc. The water for these usages will be sufficient in the future, and the demand for the level 3 reclaimed water is hardly expected. In case of the level 2 reclaimed water, if all the cost for the indoor dual water supply piping work is subsidized, interviewee answered that he may purchase the level 2 reclaimed water of 20-25m³/d as pool water, 70-80m³/d as clothes washing water, and toilet flush water by around Rp.10,000/m³.

The construction of three hotels (Mulia, Ritz Calton, Kedung New Wall Hotel) and one villa is scheduled outside the BTDC in Nusa Dua area in the future. It is likely that the demand for the water supply increases, but the water supply volume cannot be increased accordingly as explained in the previous section. It is thought that the need of level 2 reclaimed water use becomes high.

From the above-mentioned viewpoint, the demand for the level 3 reclaimed water cannot be expected because the treated wastewater by their own wastewater treatment facility is already used for irrigation purposes, but the demand for the level 2 reclaimed water can be expected because the water demand itself will be increased but the supply volume is difficult to increase under the current waterworks supply capacity. It is thought that the level 2 reclaimed water should be used effectively to cover the gap between the water demand and supply.

3) Benoa Area

The interview survey was done in the Benoa area for three large-scale hotels (Melia Benoa, Bali Tropic Resort and Spa, Conrad Bali Resort and others) located near the WWTP of BTDC.

The demand for the level 2 reclaimed water may depend on the introduction of dual water supply pipe work, the same as in the case of Nusa Dua area.

On the other hand, the demand for the level 3 reclaimed water is limited because of following reasons. The WWTP of BTDC accepts and treats the sewage generated at three hotels (Melia Benoa, Bali Tropic Resort and Spa, and Conrad Bali Resort) located near the WWTP but outside of BTDC area because those hotels is close to the WWTP, and provides the BTDC irrigation water to these three hotels. In the large scale hotels in Benoa area other than these three hotels, internal wastewater treatment facilities have been constructed and the treated wastewater is used for gardening.

4) Jimbaran Area

There were three large-scale hotels in the Jimbaran area, and the interview survey was done for Bali Intercontinental and Four Seasons Resort. The demand for level 3 reclaimed water is limited because the irrigation water is already supplied from their own wastewater treatment facilities. But the demand for level 2 reclaimed water may be expected by installation of dual water supply system to the hotels.

5) Kuta Area

In Kuta area, interview survey was done for Bali Dynasty resort, Hard Rock Hotel Bali, etc. As in the case of the large-scale hotels in other area, the demand for level 3 reclaimed water is limited because the irrigation water is already supplied from their own wastewater treatment facilities. But the demand for level 2 reclaimed water may be expected by installation of dual water supply system to the hotels.

(6) Serangan Island

The development of the Serangan island started in 1994. The island is expanded from 100ha to 400ha by reclamation. But the development has been interrupted with the collapse of Suharto administration in 1998. This development was advanced without building consensus with the resident. Therefore, the problem of the interest with the resident is not solved. Moreover, Bali provincial government cannot understand the trend of the Serangan island development, because the reclamation part on this island (almost vacant lot at present) was sold to the company in Singapore. In addition, there was a bridge construction project to connect Serangan island and Benoa peninsula. But there is information that the construction plan has not approved by the opposition of Benoa harbor and airport.

From such a situation on the Serangan island, it is thought that it is not easy to think that the resort development will begin in the near future, and it is not in the situation that the demand for the reclaimed water can not be expected.

(7) Large Scale Shopping Mall

There are five large-scale shopping centers in Denpasar City and Badung Regency that was the survey area of the study. The interview survey was done for Mal Bali Galleria that was the biggest shopping mall among those shopping centers. Approximately $30m^3/d$ as toilet flush water and $30m^3/d$ as gardening water was expected as a target usage for the treated water in this facility. However, the willingness to pay for the level 2 reclaimed water as toilet flush water was quite low about Rp.1,000-2,000/m³. Moreover, the water source of the gardening is free river water at present. Therefore, the demand for the level 2 and 3 reclaimed water can hardly be expected because of the low water demand and the low willingness to pay.

(8) Green Belt along Main Road and Park

The interview survey was done for the demand of the reclaimed water as sprinkling water for the green belt along the trunk road and the park by Dinas DKP under the Badung Regency administration. Dinas DKP uses the river water for free for watering. The water from the Mati River is used as gardening water for Nusa Dua area and Kuta area. But the water is not suitable for the watering because it contains high salinity concentration. During the dry season, the volume of the water drops, and earth and sand enters. Therefore, if the reclaimed water is purchased cheaper than the groundwater tax in the Badung Regency (After the price cut), the answer they could purchase about $60m^3/d$ (Each five round trips a day by two tank tracks ($6m^3$)) was obtained. However, it is expected that the groundwater tax for the government agency after price cut is suppressed to low about Rp.1,000/m³. Therefore, the demand for level 3 reclaimed water may be limited due to its charge.

1

1.f Result of Water Demand Survey

1 1	kesult of 111					I												Party of the second sec			
(4) 14. 14. (1.1.1. (1.1.1. (1.1.1.1.			Rating R			u	JICA Team Attendant **)	Interview Date(2011)/I)											Water Us derance La Pool Gard	10 2	_
10. 10.0 10.00		1 Aston Legend Villas	Villa		705 <i>67</i> P	(Chief	VT,DP	30-Mar 14.05					Septic turl						_		will connect DSDP
11000		2 Bali Hyatt	5 star		281234(// B		SK,SM,YK,DP						_			a		an 4,500Rp/m3		a di	see has some interest but not notes sary because they are od already investing in WWTP
10. 10.01 1		3 Gazebo Beach	2 star		288212 ^{1d} A	n Mgr)	VT,DP						Septic tan	J	-			0-3000Rp/m3		0.8	will connect DSDP
10.10		4 Inna Grand Bali Beach Hotel	5 star		288511 ^N	yoman Sukusuda(Chief ng)	VT,DP						oquipped with WV m3/day) investment 3	æ			ause of new or WWTP	no idea		5.8	waliing to connect DSDP, but the price to high
10.00.0100		5 La Tavelna Bali	2 star	39 Jl. Danau Tamblingan No29 Sanur	288497 P		VT.DP						Septic tan				risklered	2000Rp/m3		0.8	will connect DSDP
10010101010101	Sanur	6 Mercure Resort Sanur	4 stars	189 Jl. Mertasari Sanur	2888331		VT.DP						equipped with ¹ (300m3)					10-3000Rp/m3		R. C	will use the water 50 m3(day
310 11000 1100 1100 <th< th=""><th></th><td>7 Puri Santrian Hotel</td><td>4 stars</td><td>182 JJ. Cemara 35 Sanur PoBox3055</td><td>288009 E</td><td></td><td>VT.DP</td><td></td><td></td><td></td><td></td><td></td><td>Septic tan</td><td></td><td></td><td></td><td></td><td>0-4000Rp/m3</td><td></td><td>8.0</td><td>will use reclaimed water 50 m3/day</td></th<>		7 Puri Santrian Hotel	4 stars	182 JJ. Cemara 35 Sanur PoBox3055	288009 E		VT.DP						Septic tan					0-4000Rp/m3		8.0	will use reclaimed water 50 m3/day
(1) (1) <th></th> <td>8 Sanur Beach Hotel</td> <td>5 stars</td> <td></td> <td></td> <td>Lowy Rensus(Chief</td> <td>VL.DP</td> <td></td> <td>n</td> <td></td> <td></td> <td>-</td> <td>equippd with V (600 m3/di</td> <td></td> <td></td> <td></td> <td></td> <td>10-3500Rp/m3</td> <td></td> <td>5.2</td> <td>88 wd</td>		8 Sanur Beach Hotel	5 stars			Lowy Rensus(Chief	VL.DP		n			-	equippd with V (600 m3/di					10-3500Rp/m3		5.2	88 wd
10010101010101			4 stars	329 Jl. Hang Tuah 46 Samur 80228	281781		HUSKSMDP						-					,000Rp/m3			customer awareness is more important than hotel intention
306 0106		10 Segara Village	4 stars	120 Jl. Segara Ayu Sanur PoBox3091	288407 K	adek Ariana(Chief Eng)	VT.DP	-					Septic tan					10-500Rp/m3			
10 11.10 11.00 0.000 0.		11 Waka Maya Resort	Butique Resort	25 JJ. Tanjung Pinggir Pantai No41 Sanur	289912 K		VT,DP	-			8		Septic tan	J			risklered	4000Rp/m3			р. Г.
No. No. <th></th> <td>1 Amanusa Resort *)</td> <td>5 stars</td> <td>35 Nusa Dua PoBox 33 Nusa Dua 80363</td> <td>772333 B</td> <td></td> <td>VI.DP</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>use BTD</td> <td></td> <td></td> <td>8</td> <td>dered 5000- Rp/m3</td> <td></td> <td></td> <td></td> <td></td>		1 Amanusa Resort *)	5 stars	35 Nusa Dua PoBox 33 Nusa Dua 80363	772333 B		VI.DP		_				use BTD			8	dered 5000- Rp/m3				
10 10.10 10.10 0.10 <th< th=""><th></th><td>2 Ayodya Resort *)</td><td>5Bs tars</td><td>451 Jalan Pantai Megiat PoBox 46 Nusa Dua 80363</td><td>771 102 K</td><td>2</td><td>SK,SM,YK,DP</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>comparison med internal VTP</td><td></td><td></td><td></td><td>Installation of soft WWTP and disalination facility will be plasmed scon.</td></th<>		2 Ayodya Resort *)	5Bs tars	451 Jalan Pantai Megiat PoBox 46 Nusa Dua 80363	771 102 K	2	SK,SM,YK,DP										comparison med internal VTP				Installation of soft WWTP and disalination facility will be plasmed scon.
(1) (1) <th></th> <td></td> <td>4 stars</td> <td>_</td> <td>772130 G</td> <td>2</td> <td>VT.DP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>eqquiped with</td> <td></td> <td></td> <td></td> <td>cosideated</td> <td>no klea</td> <td></td> <td>9.R</td> <td>they plan to improve the WWTP facility to get a drink water quality</td>			4 stars	_	772130 G	2	VT.DP						eqquiped with				cosideated	no klea		9.R	they plan to improve the WWTP facility to get a drink water quality
(1) (1) <th></th> <td>4 Club Med *)</td> <td>4 stars</td> <td>400 PoBox7 Lot No6 Nusa Dua</td> <td>771521 (1 M</td> <td></td> <td>SK SM.TY.YKDP</td> <td>-</td> <td></td> <td></td> <td>p well</td> <td>- Ave6</td> <td></td> <td></td> <td></td> <td>g</td> <td></td> <td>m BTDC IW tariff 5,156Rp./m3)</td> <td></td> <td></td> <td>BTDC irrigation water is not used in rainy season</td>		4 Club Med *)	4 stars	400 PoBox7 Lot No6 Nusa Dua	771521 (1 M		SK SM.TY.YKDP	-			p well	- Ave6				g		m BTDC IW tariff 5,156Rp./m3)			BTDC irrigation water is not used in rainy season
1010 10100 1010 1010 </th <th></th> <td>5 Grand Hyatt Bali *)</td> <td>5Bs tars</td> <td>750 PaBox53 Nuda Dua</td> <td>$771234 \frac{E}{(I)}$</td> <td>incering)</td> <td>SK,NT,SM,DP</td> <td></td> <td></td> <td></td> <td>p well</td> <td>- NA</td> <td>use BTD</td> <td></td> <td></td> <td></td> <td>n 40 cent</td> <td></td> <td></td> <td>-</td> <td>st is Rechtimed water cannot be used for gardening because people may touch it.</td>		5 Grand Hyatt Bali *)	5Bs tars	750 PaBox53 Nuda Dua	$771234 \frac{E}{(I)}$	incering)	SK,NT,SM,DP				p well	- NA	use BTD				n 40 cent			-	st is Rechtimed water cannot be used for gardening because people may touch it.
(1) (1) <th></th> <td>6 Inna Putri Bali *)</td> <td>5 stars</td> <td>392 Lot 3-3 Nusa Dua PoBox1 Nusa Dua</td> <td>771020M</td> <td>Tade Sudiarta(Chief Eng)</td> <td>VL'DP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>use BTD</td> <td></td> <td></td> <td></td> <td>onsidered</td> <td>7000Rp/m3</td> <td></td> <td>0.14</td> <td>will use reclaimed water 30% of PDAM water uses</td>		6 Inna Putri Bali *)	5 stars	392 Lot 3-3 Nusa Dua PoBox1 Nusa Dua	771020M	Tade Sudiarta(Chief Eng)	VL'DP						use BTD				onsidered	7000Rp/m3		0.14	will use reclaimed water 30% of PDAM water uses
0 0	Nusa Dua	7 Melia Bali Villas Resort *)	5Bs tars	500 Lot N-1 Nusa Dua PoBox88	771510 ^B		HUSK SMYK,DP						use B TD				v	NA			interview time was not enough
(1) (1) <th></th> <td></td> <td>5Bs tars</td> <td></td> <td>773377 (0</td> <td></td> <td>SK,SM,DP</td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td>equipped with V (550m3(d)/Cor</td> <td></td> <td></td> <td>-</td> <td>r flashing : clothes.</td> <td>an 10,000Rp/m3</td> <td>-</td> <td>*</td> <td>is PL 2.0</td>			5Bs tars		773377 (0		SK,SM,DP			~			equipped with V (550m3(d)/Cor			-	r flashing : clothes.	an 10,000Rp/m3	-	*	is PL 2.0
314 0.3510 omerge 30.0 omerge and omerge and omerge and			5 stars		8480555 (C		SK,SM,YKDP,SS				p wdl	- Max2					v				better to sell the reclaimed
104 104 100 <th< th=""><th></th><td>10 Nusa Dua Beach Hotel *)</td><td>5 stars</td><td>381 Lot N-4 Nusa Dua PoBox217</td><td>771210^D</td><td></td><td>VT,DP</td><td></td><td>-</td><td></td><td>cur</td><td></td><td>use BTD</td><td></td><td></td><td>_</td><td>orts idered</td><td>5000Rp/m3</td><td></td><td>K need investment</td><td>will use 100m3/day</td></th<>		10 Nusa Dua Beach Hotel *)	5 stars	381 Lot N-4 Nusa Dua PoBox217	771210 ^D		VT,DP		-		cur		use BTD			_	orts idered	5000Rp/m3		K need investment	will use 100m3/day
1.06 1.05 1.37 1.30 1.30 1.30 1.30 1.30 1.31 1.3		11 Nusa Dua Golf Resort *)	5 stars		8480555									0	N			ss than BTDC			
3Mi 1.5710 1.70 0.70 0.70 0.70 0.70 0.7 0.6 0.7		13 Swiss Grand Bali *)	4 stars		776688 E		VT,DP						use BTDC			_	onsiderd	4000Rp/m3		_	will use 1000m3/month
3Ma 1Mo 1Mo 0.00		15 The St. Regis Bali Resort ^a)	5 stars	Kawasan Nusa Dua Lot S6	8478111 W	/y Wirantaja (Chief Eng)	VT,DP	_					use BTD			_	_	0-300Rp/m3			if TDS less than 2500 ppm
0 3.00 1.00 0.00 <th></th> <td>16 The Westin Resort Nusa Dua *)</td> <td></td> <td>334 Kawasan BTDC Lot2 Nusa Dua</td> <td>77190610</td> <td></td> <td>VT,DP</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>risidered</td> <td>2500Rp/m3</td> <td></td> <td>-</td> <td>will use 300 m3/day</td>		16 The Westin Resort Nusa Dua *)		334 Kawasan BTDC Lot2 Nusa Dua	77190610		VT,DP										risidered	2500Rp/m3		-	will use 300 m3/day
MID $3.4 m$ $0.001.3$ $1.3 m$ $w w w w w w w w w w w w w w w w w w w $		1 Bali Reef Resort	Villa	28 Jalan Pratama Tanjung Benoa PoBox5000	776291		SK,SM,DP				p well	- NA/PDAM is not us				8.4	mation to		_	×	will not connect to BTDC WWTP (Expensive and fur)
$3.Mu$ $1.0.14$ $\alpha und yerd$ $\alpha ledy uellNAu e DTCu t a traindu p traindu c d c conclustNC$		2 Conrad Bali Resort	4 stars		778788		SK,NT,SM,DP				p well	- NA	equipped with V use BTD			-		e as BTDC-IW		-	rainwater is collected to use (consumption is NA)
NUM 12014 12014 12001 1000 10001000001 100010000001 $1000000000000000000000000000000000000$	Benoa Area	3 Melia Benoa Bali	5 stars		771714 E		VT,DP	-		_			use B TD6				onsidered	3500Rp/m3	_		will use 100 m3/day
θ 3.64 Mat <th< th=""><th></th><td>4 Novotel Rsesort Bali Benoa</td><td>5 stars</td><td></td><td>772239</td><td></td><td>SK,SM,TY,YK,DP</td><td></td><td></td><td></td><td>p wdl</td><td>- NA</td><td>equipped with W Capacity, Cos</td><td></td><td></td><td></td><td>A</td><td>NA</td><td></td><td></td><td>will not connect to BTDC WWTP (self WWTP has no problem)</td></th<>		4 Novotel Rsesort Bali Benoa	5 stars		772239		SK,SM,TY,YK,DP				p wdl	- NA	equipped with W Capacity, Cos				A	NA			will not connect to BTDC WWTP (self WWTP has no problem)
0 100 01011 01011 01011 <th< th=""><th></th><td>5 The Royal Santrian</td><td>Villa</td><td>22 Jl. Pratama Tanjung Benoa 80362</td><td>778181 ((</td><td></td><td>SK, SM, DP</td><td></td><td></td><td></td><td></td><td></td><td>SepticTank + Und Penetratio</td><td></td><td></td><td></td><td>mation to</td><td></td><td></td><td></td><td>will not connect to BTDC WWTP (self WWTP is chapter)</td></th<>		5 The Royal Santrian	Villa	22 Jl. Pratama Tanjung Benoa 80362	778181 ((SK, SM, DP						SepticTank + Und Penetratio				mation to				will not connect to BTDC WWTP (self WWTP is chapter)
24Ma H0.51.43 0.3.40 redevoted 2003 month CM Red meatures 24Ma H0.51.63 redevoted 2003 month 2003 month CK	Timbaran	1 Bali Intercontinental	5Bs tars	425 Jl. Uhwatu 45 Jimbaran	701888	sec)	SK,NT,DP	-			p well	- NA	equipped with V (600m34)/Coe			e		,000Rp/m3			low price, continous supply and required for use
29Ma Id0.5(x)ds lexady uply 917 7.33 NA capped with STP net installed uply cash considered 200-5000pt/sta3 NA OF need investioned Na		2 Four Seasons Resort Jimbaran		147 JL Bukit Permai Jimbaran Badung	701010 ¹⁶		de de						onth			0		0-4000Rp/m3			
2-Mat 113-1123 DrDMAwate 666 main pice Main main pice main pice main pice Main GR		1 Bali Bintang	5 stars	401 JJ Karrāka Plaza PO Box 1068 Kuta	753288 A		VT,DP						equped with					0-300Rp/m3			will use 100 m3/day
2-Mail B29-Mail Orditability 470 7.135 NA equipativity STP not invalid mage cut be considered 500-6000-103 OK OK Need increasioned Need increasined increasioned Need increasioned <			4 stars	_	752403 E		VT,DP						equped with				_	0-4000Rp/m3		_	will use 250 m3(day
1-Apr 10.3511.05 actual price 300 actual price NA equipol win STP nori invalided no pian can be considered 900.08 pm3 NA 0K nord investment 29-Mar 14.00-15.10 actual price 30 actual price NA equipol win STP nori invalided no pian can be considered 300.08 pm3 NA 0K nord investment	Kuta			318 JI Kartika Piaza PO Box 1012	751067 N		VT,DP		-				equiped with			_		00-6000/m3			will use 100-150 m3/day
29-Mar 14.00-151.0 actual páce 50 actual páce NA cquiped vide STP not installed no plan can be constant 30008pm3 OK OK need investment n		4 Hard Rock Hotel Bali	4 stars		761869 A	bdullah(Ass Chief Eng)	VT,DP						equiped with			_	risidered	5000Rp/m3			will use 300 m3(day
		5 Kuta Paradiso Hotel	5 stars	243 JI Kartika Plaza PO Box 1133 Kuta	761414 E	nang Suryana(Chief ng)	VT.DP						equiped with				onsiderd	3000Rp/m3			will use 250 m3/day

	L		L		Č	Contact s(0361_)	JICA Team						Condition					Demand Survey	LVCV		
AutomaticationMarcia (a) (a) (a) (a) (a) (a) (a) (a) (a) (a			Area	Address		Main Person	Attendant **)	Interview Date(2011)/Time		-			Internal WWTP Operating Cost (Rp./Month)	Indoor Dual Piping System		Possibility of the reclaimed water use	Willingness to pa		er Use ce Level Gardening	Indoor Dual Piping Instalition Work	Other Information
House from the	Generat	ting Indonesia Power n	Pesangga ran	ı JI. By Pass I Gusti Ngurah Rai No535	720421 PU (M.	IGAN SUBAWA RTA ANAGER TEKNIK)	SK, SM, KF, DP	2/21 15:30-16:5		Ave132	228	NA	NA	not equipped			kes than 228Rp/m			an invest upto 250,000KRp.	Treased water will be supplied from WWTP in the future. There fore gards ning water will be enough.
And for during the during th	3			JI. Hang Tuah 58 Sanur	287733 GA			2/18 16:00-18:2		NA	٧٧	VN	equipped with WWTP Capacity, Cost: NA			may be used only in emergency	1,000Rp./m3	NA		vill not be installed even if the cost s subsidized	Our group, Inna Grand Bali Beach Hotel owns WWTP.
ApproxRank NumericandsTataBadde Utari Ngards Rat GalarsScale Utari Ngards Rat GalarsScale Utari Ngards Rat GalarsScale Utari Ngards Rat GalarsNo.Scale Ratio Ratio RatioNo.Scale Ratio Ratio Ratio Ratio RatioNo.Scale Ratio Ratio Ratio RatioNo.Scale Ratio	5		Nusa Du.	a Kawasan Wisata Nusa Dua 80363		9	SK,SM,YK,DP	16:00-		(2010)Ave233		Max1,100	use BTDC	not equipped		possible	less than BTDC-IW (5,200Rp/m3)		OK	will not be installed	The pond which stores the rain water, well water, BTDC-IW and PDAM-IW is used for gardening.
Swpting Lan Line				Bandar Udara Ngurah Rai Gedung Wisti Sabha Lt.3 Tuban Kuta		mung Banendro (Manager Jeneral Engineering and ipment)	HU,SK,SM,YK,DF	2/25 14:20-15:0		(2010)Ave2,247		VN	equipped with WW TP Capacity, Cost: NA			will not be used (deep capacity and expansio planned)	well has enough t of WWTP will be	NA		vill be installed at expansion part	Current well capacity is 4,200m34l, while actual consumption is 2,247m3Al.
Here behaviored function Result function R		ng Mal Bali Galkria	Kuta	JL By Pass I Gat. Ngurah Rai Simpang Dewa Ruci Kuta			SK,SM,DP	15:50-		not in operation		NA	equipped with WW TP Capacity, Cost: NA			Depends on the cost for dual piping installtion work and tariff	1,000-2,000Rp./m3	NA	OK	may be installed if the cost is subsidized	Current consumption for toilet is around 30m3/day, for gardening is around 30m3/day.
Hubber (Ind) Micklewing Bioard (Ind) M		Benoa Harbour Authority	Benoa Harbour		720560	iharto (Technical nager)	SK,NT,SM,DP	14:00-	0 See attachment.	Current volume (of gardening wate.	rr in dry season is a.	round 20m ³ /d, future vol.	ume is around 75m	m.'	possible	3,000R.p./m3	٧N		ceeds confirmation to Surabaya teadquarter due to high installation cost	There is a harbour expansion plan, but reclaim water use potential is low.
Test Set Ref Let Tab Ray Tatu Ray							SK,SM,DP		0 See attachment.	Current volume c	of PDAM water is	s around 66m3/d. 9.	D% of that is used for fis!	h processing.		See attachment: Diffic processing considering	ult to use for fish becteria				Water quality for fish processing follows ISO and Japanese Minister of Health, Labour and Welfare standards
DMXS DK7 Pollung Bulkge Pollung Heading 211 Kgya Sampuid Autogram Bading Filal Metterionation Bading Filal Metterionation Bading Bita Metterionation Bading Filal Metterionation Bading Bita Metherionation Bading Filal Metherionation Bading Bita Metherionation Bading Bita Metherionationationationationationationationat		PT.SARI SEGER LAUT INDONESIA (Fish Processing Company)	~~		770233 Hac		SK,SM,DP	3/10 10:45-11:1	5 See attachment	Current volume (of PDAM water is	s around 39m3/d. 91	0% of that is used for fis!	h processing.		See attachment: Diffic processing considering	ult to use for fish becteria				Reclaimed water may be used for fish washing before processing
PDM1 Bolung Ib., Red, Ib., Red, Ib., No.J. Denjest 42.184.8 (XXAACTURS-TCURR-TIX) 12.22 14.00.15.20 See antelment DM04 PUDCP, purt Naa. Dia IbAoc3.Neas.Dua60363 73.010 A.A. LBan, Devi, Sa 12.2 14.00.15.20 See antelment PM04 PUDCP, purt Naa. Dia IbAoc3.Neas.Dua60363 73.010 A.A. LBan, Devi, Sa 10.5.5.5.0.01.100 See antelment PUDCP, purt I I I IbAn IbAn IbAn See antelment PUDCP, purt I I IbAn IbAn IbAn See antelment PUDCP, purt I I IbAn IbAn IbAn See antelment PUDCP, purt I I IbAn IbAn IbAn ScAN, X, D1/S 32 05/00.11.00 See antelment		DINAS DKP Badung	Badung	-	5004263 (Ht Bax		SK,SM,DP	10:0-11		135m3/d is used	for roadside plant	t by tank trucks.				See attachment: 54-60 price is cheaper than F well tax	n3/d may be used if DAM water and dee				
Mult BTDC*) part Nas Dia (Nas Dia (Nas Dia (Nas Dia) 710/10 (A AL Bar) Preuß Nas Association (Nas Second (Nas Dia) 710/10 (A AL Bar) Preuß 720 (Nas Second (Nas Se	-	PDAM Badung	Badung		421845 KO	MARUDIN ST(DIRTEK)	HU,SK,SM,KF,TY,DF	14:00-	0 See attachment							See attachment					
1 1 1 1 Pub Trians Trans. Publics 8K.SAVYK.DP.5S 3:2 09:00-11:30 See attachment 1 1 1 1 (Businiss) Operator of SK.NT_SALDP 3:8 15:00-14:30 See attachment			Nusa Du.	1 PoBox3 Nusa Dua80363	771010 A.		HU,SKSMJKF,TV,DF	2/22 09:15	0 See attachment							See attachment					
It Me. Norman Weaksra SK.NT.SM.DP 38 15:3D-14:30 See attachment 1 1 1 10 10 28:000000000 38 15:3D-14:30 See attachment		BTDC [*]) part2	4	ţ	1 (Bu		SK,SM,YK,DP,SS	3/2	0 See attachment							See attachment					
		BTDC*) part3	+	Ļ	Mr † (Su BTT		SK,NT,SM,DP	15:30-	0 See attachment							See attachment					

**) HU : Hauroshi UCHIDA SK : Shrinchio KAWAMUKA NT : Naco TAKATOL SM : Shaco MORL KF : Kyoshi FUKUL TY : Takaya YAZAWA YK : Yoshio KANTO DF : K GDharma Para SS : Sunjoy SADIA

APPENDIX 2

WATER QUALITY SURVEY

APPENDIX 2 WATER QUALITY SURVEY

2.a Terms of Reference

Water quality survey was carried out to prepare the material to understand the characteristics of the effluent of Denpasar WWTP which is the raw water, and to determine the treatment process which is required for the reclaimed water treatment facility. The contents of the survey are shown below.

	Outline of the Water Quality Survey
Item	Contents
1. Sampling Location	Influent and Effluent of Denpasar WWTP
2. Sample Number	1 sample x 4 events x 2 locations = 8
3. Parameters	Influent: 7 parameters $\begin{pmatrix} pH, Water Temp, COD, BOD_5, SS, Total Nitrogen (T-N), \\ Total Phosphorus (T-P) \end{pmatrix}$ Effluent: 16 parameters $\begin{pmatrix} pH, Water Temp, COD, BOD_5, SS, UV_{254}, Turbidity, Color, CI', \\ CO_3^{2^-}, KMO_4, Total Nitrogen (T-N), NH_4^+-N, NO_2-N, NO_3-N, \\ Total Phosphorus (T-P) \end{pmatrix}$

Appendix 2 - 1

Terms of Reference

Appendix A

TERM OF REFERENCE

WATER QUALITY SURVEY

1. PURPOSE

The work called for water quality survey (hereinafter referred to as the Work) will be conducted as a part of on the Preparatory Survey on Application of Wastewater Rechaining in Southern Bali Water Supply System in the Republic of Indonesia. The Work results will be used by the JICA Survey Team (hereinafter referred to as the Client) to understand the present water quality of Influent and effluent at the Susvung Wastewater Treatment Plant for preparation a preliminary design of reclamation plant.

2. GENERAL REQUIREMENTS

Water samples shall be taken at sites as specified, water quality analysis on the parameters specified for each sample shall be conducted at the contractor's laboratory and submit Reports on the result of the analysis.

- The followings are general requirements in undertaking the Work.
- (1) Analysis methods shall be according to "Standard Method for the Examination of Water and Wastewater, 19th or 20th Edition, APHA, AWWA, WEF." Analysis method other than this may be allowed as the Survey Team judged adequate and accentable.
- (2) Water quality analysis shall be carried out with the precision as specified in the above methods.
- (3) The Contractor shall assign a specialist familiar with water quality survey and the sampling and analysis shall be conducted under supervision of the specialist.
 (4) The Contractor shall assign sufficient number of personnel in order to earry out sampling
- (4) Its Contractor shall assign sufficient number of personnel in order to carry out sampling smoothly.
 (5) All necessary work and equipment for sampling including car arrangements, staff
- assignment, sampling bottles shall be provided by the Contractor.
- (6) All necessary work and equipment for water quality analysis and reporting of its result shall be provided by the Contractor.

Table 2 Water Quality Parameters and Sumple Number

- 3. SCOPE OF WORK
- 3.1 Sampling

Two (2) samples shall be taken at two different locations in the Suwung WWTP, total 8 water samples shall be taken at four different events. The sampling shall be conducted once a week around at 10 A.M. The sampling details and locations are shown in Table 1 and Figure 1, respectively.

Table 1 Sampl	ing Locations and Sample N	umbers
Sampling Location	Sampling	Sample Number
1. Influent	one sample x 4 events	4
2. Effluent	one sample x 4 events	4
3. Total	two samples x 4 events	8

The exact sampling locations shall be as designated by the Client. Samples shall be preserved around 4 Colsius after taken.

When the samples are taken, some photos shall be taken, and the site conditions, weather and other field observations shall be recorded by the Contractor.

3.2 Measurements at the sites

When samples are taken, the following parameters shall be measured and recorded at the site immediately samples are taken:

- Weather, date and time, and ambient temperature
- Water temperature and pH of each sample

3.3 Water Quality Analysis

Samples shall be analyzed on parameters instructed by the following table except water temperature and pH as specified above.

		Sample	Number pe	er event		Total Sample
No.	Parameter	Influent	F.Muent	Sub- total	event	Number for Analysis
1	pH	1	1	2	4	8
2	Water Temp, 'C	1	1	2	4	8
з	COD, mg/L	1	1	2	4	8
4	BOD ₅ , mg/L	1	1	2	4	8
5	Suspended Solid, mg/L	1	1	2	4	8
6	UV234	0	1	1	4	4
7	Turbidity, NTU	0	1	1	4	+
8	Color,	0	1	L	4	4
9	Cl [*] , mg/L	0	1	L	4	4
10	CO32, mg/L	0	1	1	4	4
11	KMO4, mg/L	U	1	1	4	+
12	Total Nitrogen (T-N). mg/L	1	1	2	4	8
13	NIL ⁻ -N, mg/L	0	1	1	4	+
14	NO2-N, mg/L	0	1	I	4	+
15	NO3-N, mg/L	0	1	L	4	4
16	Total Phosphorus (T-P), mg/L	1	1	2	4	8

4. SUBMITTAL

Upon the completion of water quality analysis, analysis results shall be submitted to the Client within two weeks after the sampling date.

A report shall be prepared and submitted in English (A4 size) to the Client within three weeks after the final sampling date, which shall contain the followings:

A description of the work carried out, including sampling date and time, and records of observations and findings during sampling events, including the weather of previous day.

- Analytical methods, and equipment used if any special equipment Results of analysis
- results of analysi

The report shall be comprised with one (1) set of hard copy and one set of electronic files with compact disks (CD) saving the contents of the report. The application software shall be mutually agreed.

Figure 1 Sampling Locations at the Suwung WWTP

2.c Survey Result

mbil mbil	: Hasil Pem Domestik berasal dari : Infiluent	ab. Kesehatan	YTH	KEPADA HARUTOSHI UCI DI DENPASAR		Periha Conto Diamb Diamb	i Hasil Pen Domestik a berasal dari : Inffluent	ab. Kesehatan	YTH	HARUTOSHI UC DI DENPASAR	
0	UNSUR-UNSUR	METODE	SATUAN	MAKS.YG DIPERBOLEH KAN	HASIL PEMERIKSAAN	NO	UNSUR-UNSUR	METÓDE	SATUAN	MAKS.YG DIPERBOLEH KAN	HASIL PEMERIKSAA
	Suhu Zat padat tersuspensi (TSS) KIMIA	Pemuaian Pengendapan	o _C mg/l	38 100	28 192	1	Suhu Zat padat tersuspensi (TSS) KIMIA	Pemuaian Pengendapan	°C mg/l	38 100	28 192
	pH BOD	Elektrometri Elektrometri	- mg/l	6 - 9 50	7,0 15,8	3 4	pH BOD	Elektrometri Elektrometri	- mg/l	6 - 9 50	7,0 15,8
	COD Total N Total P	Titrimetri Spektrofotometri Spektrofotometri	mg/l mg/l mg/l		50,0 11,259 0,4	5 6 7	COD Total N Total P	Titrimetri Spektrofotometri Spektrofotometri	mg/l mg/l mg/l	100	50,0 11,259 0,4
Ger	John Cho, Kes. Prov. Bali John Cho, Kes. Prov. Bali UPLAUER UPL	1.Repro.	Pemeriksa Au Dra Rahm	19 Mei 2011 awati B.Apt.M.Si 199403 2 008		ے فتر G	etahu? A // product zerano product zerano p	A.Repro.	Pemeriksa Dra Rahm	19 Mei 2011 , <u>awati B, Apt. M. Si</u> 199403 2 008	
mor	UF JALAN NUSA T r Agenda : 440.52 / : Hasil Per	PT BALAI LABOH ENGGARA SANGL 551 / KES / LAB.K neriksaan Air Limbah	KESEHATA RATORIUM AH DENPAS ES	N I KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC	0361) 222218	Nome	UH JALAN NUSA T r Agenda : 440.52 / l : Hasil Per Domestik	PT BALAI LABO ENGGARA SANGL 551 / KES / LAB.K neriksaan Air Limbal	KESEHATA RATORIUM AH DENPAS ES 1 YTH	N I KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC	0361) 222218
rihal ntoh ambi ambi	UF JALAN NUSA T Agenda : 440.52 / I : Hasil Per Domestik h berasal dari : Air Limb	DINAS PT BALAI LABOF ENGGARA SANGL 551 / KES / LAB.K meriksaan Air Limbah sah Infiluent IPAL Su ab. Kesehatan	KESEHATA RATORIUM AH DENPAS. ES 1 YTH	N I KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR	0361) 222218	Periha Conto Diami Diami	UH JALAN NUSA T r Agenda : 440.52 / l : Hasil Per Dornestil h berasal dari : Air Limb	DINAS T BALAI LABO ENGGARA SANGL 551 / KES / LAB.K neriksaan Air Limbal ah Effluent IPAL Sur ab. Kesehatan	KESEHATA RATORIUM AH DENPAS ES 1 YTH	N I KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR	0361) 222218 2HIDA
rihal ntoh ambi ambi	UF JALAN NUSA T r Agenda : 440.52 / l : Hasil Per Domestik h berasal dari : Air Limb il Oleh : Petugas 1 il diditerina Tgl : 18 Mei 2	DINAS PT BALAI LABOF ENGGARA SANGL 551 / KES / LAB.K meriksaan Air Limbah sah Infiluent IPAL Su ab. Kesehatan	KESEHATA RATORIUM AH DENPAS. ES 1 YTH wung SATUAN	N I KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC	0361) 222218	Periha Conto Diami Diami	UE JALAN NUSA T r Agenda : 440.52 / i Hasil Per Dornesti h berasal dari : Air Limb ii/diterima Tgl : 18 Mei 2e r Laboratorium : 925 UNSUR-UNSUR PISIKA	DINAS TF BALAI LABO: ENGGARA SANGL 551 / KES / LAB.K neriksaan Air Limbal ci Effluent IPAL Sur ab. Kesehatan 011	KESEHATA RATORIUM AH DENPAS, ES 1 YTH vung SATUAN	N I KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC	0361) 222218
rihal ntoh ambi ambi	UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR	DINAS T BALAI LABOI ENGGARA SANGL 551 / KES / LAB.K neriksaan Air Limbah c aha Inffluent IPAL Su .ab. Kesehatan 011	KESEHATA RATORIUM AH DENPAS. ES 1 YTH wung	N 4 KESEHATAN 4R TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH	HASIL	Periha Conto Diami Diami Nome	UF JALAN NUSA T r Agenda : 440.52 / l Hasil Per Dornesil h brasal dari : Air Limb il Olch : Pertugas I il/diterima Tgl : 18 Mei 2e Laboratorium : 935 UNSUR-UNSUR FISIKA Suhu Zat padat tersuspensi (TSS)	DINAS T BALAI LABO T BACAI LABO 551 / KES / LAB.K meriksaan Air Limbal c ah Effluent IPAL Suv. ab, Kesehatan 011	KESEHATA RATORIUM AH DENPAS, ES 1 YTH Wung	N I KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH	0361) 222218 XHIDA HASIL
rihal ntoh ambi ambi mor	UNSUR-UNSUR VINSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-VINSUR VI	DINAS T BALAI LABOR ENGGARA SANGL S51 / KES / LAB.K neriksan Air Linbah G funfluent IPAL Su ab. Kesehatan 011 METODE Pengendapan Elektrometri Elektrometri	KESEHATA RATORIUM AH DENPAS SATUAN SATUAN	N KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH KAN 38 100 6 - 9 50	HASIL PEMERIKSAAN 29 140 7,0 55,8	Periha Conta Diami Diami Nome 1 2 3 4	UK JALAN NUSA T r Agenda : 440.52 / Hasil Per bornsetik h berasal dari : Aira Limb bii Olch : Petugas I ildidierima Tgi : 18 Mei 20 r Laboratorium : 935 UNSUR-UNSUR FISIKA Suhu Zat padat tersuspensi (TSS) KIMA PH Ammonia Bebas (NHy-N)	DINAS T BALAI LABO ENGGARA SANGL 551 / KES / LAB.K enerissan Air Limbal c. uh Effuent IPAL Sur ab. Keselsatan 011 METODE Pergendapan Elektrometri Nessler	KESEHATA RATORIUM AI DENPAS SATUAN SATUAN C C mg/l mg/l	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH KAN 38 100 6-9 1	HIDA HASIL PEMERIKSAA 31 11 7,0 6,8
rihal ntoh ambi mor NO	USURAL AND	DINAS T BALAI LABO: ENGGARA SANGL 551 / KES / LAB K meriksaan Air Limbah c ab Kesehatan 011 METODE Penguaian Pengendapan Elektrometri	KESEHATA RATORIUM AH DENPAS ES A YTH Wung SATUAN C C mg/l mg/l mg/l mg/l	N I KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR DI DENPASAR DI DENPASAR DI PERBOLEH KAN 38 100 6 - 9	HIDA HASIL PEMERIKSAAN 29 140 7,0	Periha Conto Diami Diami Nome 1 1 2 3 4 5 6 7	UNSUR-UNSUR VINCENTIAL STATES UNSUR-UNSUR UNSUR-UNSUR VINCENTIAL STATES UNSUR-UNSUR VINCENTIAL STATES UNSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-UNSUR VINSUR-VINSUR VINSU	DINAS T BALAI LABO ENGGARA SANGL ENGGARA SANGL S51 / KES / LAB,K neriksaan Air Limbal c ab Effnent IPAL Syn ab, Keselsatan 011 METODE Pemuaian Pengendapan Elektrometri	KESEHATA RATORIUM AH DENPAS, ES I YTH wung SATUAN OC mg/ -	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH KAN 38 100 6 - 9	HIDA HASIL PEMERIKSAA 31 11 7,0
rihal ntoh ambi ambi mor VO	UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR DH BOD COD Total P Vobernur Bali No.8 tahun 2007	DINAS T BALAI LABOR T BALAI LABOR ENGGARA SANGL S51 / KES / LAB K meriksam Air Limbah G haffuent IPAL Su ab. Kesehatan 011 METODE Pengendapan Elektrometri Titrimetri Spektröfotometri	KESEHATA AATORIUM AH DENPAS SATURN SATUAN SATUAN SATUAN - - - - - - - - - - - - - - - - - - -	N KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH KAN 100 6 - 9 50 100 -	HASIL PEMERIKSAAN 29 140 7,0 55,8 120,0 12,288	Periha Conta Diami Diami Nome 1 1 2 3 4 5 6	UNSUR-UNSUR Zaloata transponsi (ND ₂)-N Nitri (NO ₂ -N) Nitri (NO ₂ -N	DINAS T BALAI LABO ENGGARA SANGL ENGGARA SANGL S51 / LAB.K neriksana Air Limbal cui Effhent IPAL Su- ab. Keselsatan 01 METODE Permusian Pengendapan Ellekrometri Nessler Brusin Sulfanila Ellekrometri Tettvinetri Spektröfotometri	KESSENATA ARTORIUM- AH DENPAS. ES YTH Wung SATUAN SATUAN " " " " " " " " " " " " " " " " " " "	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS, YG DIPERBOLEH KAN 38 100 6 - 9 1 20 1	HIDA HASIL PEMERIKSAA
rihal ntoh ambi mor VO er.G fengg	UNSUR-UNSUR Edit No.5 Aburnary I ALAN NUSA T Agenda : 440.52 / Hasil Per Domestil i Hasil Per Domestil i Alditerima Tgl : 18 Mci 2t Laboratorium : 935 UNSUR-UNSUR <u>PISIKA</u> Suba UNSUR-UNSUR <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> <u>Suba</u> <u>COD</u> <u>Total P</u> <u>UNUErrur Bali No.8 tahun 2007</u> <u>PISIA</u> <u>Data Kase.Prov.Bali</u>	DINAS T BALAI LABOR ENGGARA SANGL S51 / KES / LAB K meriksam Air Limbah G funffuent IPAL Su ab. Kesehatan 011 METODE Pengendapan Elektrometri Titrimetri Spektröfotometri	KESEHATA AATORIUM AH DENPAS SATURN SATUAN SATUAN SATUAN - - - - - - - - - - - - - - - - - - -	N KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR MAKS, YG DIPERBOLEH KAN 38 100 - - - , 24 Mei 2011	HASIL PEMERIKSAAN 29 140 7,0 55,8 120,0 12,288	Perih Conta Diami Diami Diami Nome 1 1 2 3 4 4 5 6 6 7 7 8 9 10 11 12	USUR-UNSUR I bornsail dari : 440.52 / I carbon i : 440.52 / I carbon i : 440.52 / I carbon i : 441 / bornestis horasai dari : Air Limb il Olch : Petugas I holtierina Tgl : 18 Mei 2r Laboratorium : 925 UNSUR-UNSUR <u>FISIKA</u> Suhu <u>Zat padat tersuspensi (TSS)</u> RIMIA pH <u>Ammonia Bebas (NHy-N)</u> Nitrit (Noy-N) Nitrit (Ony-N) Nitrit (Ony-N) Nitrit (Ony-N) Nitrit (Ony-N) Nitrit (Ony-N) Nitrit (Ony-N) Nitrit (Noy-N) Maria GOD	DINAS T BALAI LABO ENGGARA SANGL ENGGARA SANGL ENGGARA SANGL S51 / KES / LAB, K neriksaan Air Limbal c ab Effnent IPAL Sup Ab Keselsatan 011 METODE Persuaian Persgendapan Elektrometri Nessler Brusin Sulfmilat Elektrometri Tetrimetri Spektrofoometri Titrimetri	KESEBHATA RATORIUM- AH DENPAS: ES YTH wung SATUAN °C mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH KAN 38 100 6 - 9 1 20 100 - - - - -	HIDA HASIL PEMERIKSAA 31 11 7,0 6,8 1,426 0,040 23,9 23,9 23,9 319,77 36,6,2
rihal ntoh ambi mor VO er.G fengg	UNSUR-UNSUR Zubotactionary Total N Total N Total N Total N Total N Total N Total N Total N TALAN NUSAT UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR UNSUR-UNSUR TISSA Subu Zat padat tersuspensi (TSS) KIMA PH BOD COD Total N Total P	DINAS T BALAI LABOR ENGGARA SANGL S51 / KES / LAB K meriksam Air Limbah G funffuent IPAL Su ab. Kesehatan 011 METODE Pengendapan Elektrometri Titrimetri Spektröfotometri	KESEHATA ATORIUMAH DENPAS ES A YTH wung SATUAN SATUAN - mg/l mg/l mg/l mg/l Denpasar	N KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR MAKS, YG DIPERBOLEH KAN 38 100 - - - , 24 Mei 2011	HASIL PEMERIKSAAN 29 140 7,0 55,8 120,0 12,288	Periha Conta Diami Diami Diami Nome 1 1 2 3 4 5 6 7 7 8 9 9 10 11 11 12 2 7 7 8 9 9 10 11 11 12 2 4 3 4 4 5 6 7 7 7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	USUALAN NUSA T r Agenda : 440.52 / Hasil Person State Domestik h berasal dari : Air Limb ki Oleh : Petagas I ki diterima Tgl : 18 Mei 20 r Laboratorium : 935 UNSUR-UNSUR FISIKA Suhu Zat padat tersuspensi (TSS) KIMA PH Armnonin Bebas (NHy-N) Niteri (IOn NO2)-N HOD Turbidity Warna CatCO3 KMnO4 Total P Khiorida	DINAS T BALAI LABO ENGGARA SANGL ENGGARA SANGL ENGGARA SANGL S51 / KES / LAB.K encitssan Air Limbal cut Effnent IPAL Sur ab. Kesehatan 011 METODE Permuaian Pengendapan Ektoronetri Sulfminiat Ektoronetri Spektrofoometri Titrimetri T	KESSENATA RATORIUMAH DENPAS. ES YTH Wung SATUAN SATUAN " " " " " " " " " " " " " " " " " " "	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR DI DENPASAR MAKS.YG DIPERBOLEH KAN 38 100 100 6 - 9 1 1 20 20 10 10 - -	HIDA HASIL PEMERIKSAA 31 11 7,0 6,8 1,426 0,040 24,6 80,0 23,9 319,77 36,02 3,0,3 31,77 36,02 3,9,33 0,4 5,831
rihal ambi ambi mor VO er.G	UNSUR-UNSUR Edit No.5 Aburnary I ALAN NUSA T Agenda : 440.52 / Hasil Per Domestil i Hasil Per Domestil i Alditerima Tgl : 18 Mci 2t Laboratorium : 935 UNSUR-UNSUR <u>PISIKA</u> Suba UNSUR-UNSUR <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> Suba <u>UNSUR-UNSUR</u> <u>PISIKA</u> <u>Suba</u> <u>COD</u> <u>Total P</u> <u>UNUErrur Bali No.8 tahun 2007</u> <u>PISIA</u> <u>Data Kase.Prov.Bali</u>	DINAS T BALAI LABOR ENGGARA SANGL S51 / KES / LAB K nerikaan Air Linnbah G haffuent IPAL Su ab. Kesehatan 011 METODE Pemuaian Pengendapan Elektrometri Elektrometri Spektrofotometri Spektrofotometri	KESEHATA ARTORIUMAH DENPAS. ES A YTH Wung SATUAN C C mg/l mg/l mg/l mg/l mg/l mg/l Denpasar Pemeriks Dra Rahn	N KESEHATAN AR TELP/FAX ((KEPADA HARUTOSHI UC DI DENPASAR MAKS, YG DIPERBOLEH KAN 38 100 - - - , 24 Mei 2011	HASIL PEMERIKSAAN 29 140 7,0 55,8 120,0 12,288	Perfik Conta Diami Diami Diami Nome 1 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 Perc0	USUR-UNSUR FAgenda : 440.52 / JALAN NUSA T Property of the second sec	DINAS T BALAI LABO ENGGARA SANGL ENGGARA SANGL ENGGARA SANGL S51 / KES / LABX ab Effhent IPAL Sup Ab Keebatan Oll METODE Permuaian Pengendapan Elektrometri Nessler Busain Salfanilat Elektrometri Tetrimetri Spektrofotometri Titrimetri Spektrofotometri	KESEBHATA KATORIUMAH DENPAS, ES YTH Vung SATUAN SATUAN ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS YG DIPENBOLEH AN 38 100 6 - 9 1 20 100 6 - 9 1 20 100 - - - - - -	HIDA HASIL PEMERIK SAA 31 11 7,0 6,8 1,426 0,040 23,9 53,0 319,77 316,02 5,933 0,4
rihal ambi ambi mor VO er.G	UNSUR-UNSUR Tagenda : 440.52 / Haal An NUSA T Haal Park Haal Park Haal Park Haal Park UNSUR-UNSUR UNSUR U	DINAS T BALAI LABOR ENGGARA SANGL S51 / KES / LAB K nerikaan Air Linnbah G haffuent IPAL Su ab. Kesehatan 011 METODE Pemuaian Pengendapan Elektrometri Elektrometri Spektrofotometri Spektrofotometri	KESEHATA ARTORIUMAH DENPAS. ES A YTH Wung SATUAN C C mg/l mg/l mg/l mg/l mg/l mg/l Denpasar Pemeriks Dra Rahn	IN I KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC HARUTOSHI UC HAR	HASIL PEMERIKSAAN 29 140 7,0 55,8 120,0 12,288	Perika Conta Diami Diami Diami Nome 1 1 2 3 4 4 5 6 7 7 8 9 9 9 10 11 11 12 12 13 14 14 15 16 Per.C Meng Kauga	UNSUR-UNSUR I borns i	DINAS T BALAI LABO ENGGARA SANGL ENGGARA SANGL ENGGARA SANGL S51 / KES / LAB.K encitssan Air Limbal cut Effnent IPAL Sur ab. Kesehatan 011 METODE Permuaian Pengendapan Ektoronetri Sulfminiat Ektoronetri Spektrofoometri Titrimetri T	KESEBHATA KATORIUMAH DENPAS, ES YTH Vung SATUAN SATUAN ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	N KESEHATAN AR TELP/FAX (I KEPADA HARUTOSHI UC DI DENPASAR MAKS.YG DIPERBOLEH KAN 	HIDA HASIL PEMERIKSAA 31 11 7,0 6,8 1,426 0,040 24,6 80,0 23,9 319,77 36,02 319,77 36,02 3,0,3 31,77 36,02 3,0,3 3,0,4 3,5,81,1

PEMERINTAH PROVINSIBALI DINAS KESEHATAN UPT BALAI LABORATORIUM KESEHATAN JALAN NUSA TENGGARA SANGLAH DENPASAR TELP/FAX (0361) 222218 Ô Ŷ PEMERINTAH PROVINSIBALI DINAS KESEHATAN UPT BALAI LABORATORUM KESEHATAN JALAN NUSA TENGGARA SANGLAH DENPASAR TELP/FAX (0361) 222218 440.52 / 578 / KES / LAB.KES Hasil Pemeriksaan Air Limbah Domestik Air Limbah Effluent IPAL Suwung Petugas Lab. Kesebatan 26 Mei 2011 970 KEPADA Nomor Agenda Perihal HARUTOSHI UCHIDA DI DENPASAR YTH KEPADA DI DENPASAR or Agenda 440.52 / 578 / KES / LAB.KES YTH Perihai Hasu Pemeriksaan Air Limbah Domestik Air Limbah Effluent IPAL Suwung Petugas Lab. Kesehatan 26 Mei 2011 970 Hasil Pemeriksaan Air Limbah Contoh berasal dari Diambil Oleh Diambil/diterima Tgl Nomor Laboratorium Contoh berasal dari Diambil Oleh Diambil/diterima Tgl Nomor Laboratorium MAKS.YG DIPERBOLEH KAN HASIL PEMERIKSAAN MAKS.YG DIPERBOLEH KAN HASIL PEMERIKSAAN SATUAN NO UNSUR-UNSUR METODE NO UNSUR-UNSUR METODE SATUAN
 Image: Construction of the image in the image.
 Image in the image ino Zat padat tersuspensi (TSS) KIMIA pH Arr-FISIKA 0 29 17 Pemuaian 100 0 Pemuaian 29 17 Pengendapan mg/l 100 mg/l Pengendapan 7,0 10,3 0,18 0,058 26,8 87,48 15,4 97,0 6 - 9 Elektrometri 7,0 10,3 0,18 0,058 26,8 87,48 15,4 97,0 336,36 10,112 10,538 Elektrometri 6 - 9 Nessler Brusin mg/ Ammonia Bebas (NH₃-N) Nitrat (NO₃-N) Nitrit (ion NO2)-N BOD 20 mg/l Nessler mg/ Sulfanilat Brusin Sulfanila mg/ mg/ mg/l 50 100 Elektrometri Tetrimetri Spektrofotometri mg/ Elektrometri Tetrimetri Spektrofotometri Spektrofotometri 50 10(mg/l mg/ COD Turbidity Warna CaCO3 KMnO4 mg/l mg/l mg/ mg/ Spektrofotometri 336.36 10 mg/l mg/l Titrimetri Titrimetri mg/l mg/l Spektrofotometri Titrimetri Spektrofotometri Spektrofotometri Titrimetri Spektrofotometri
 11
 CaCO3

 12
 KMnO4

 13
 Total N

 14
 Total P

 15
 Khlorida

 16
 UV pada 254 nm

 Per.Gubernur Bali No.8 tahun 2007
 10,112 10,538 -Spektrofotometri Spektrofotometri mg/l mg/l mg/ Total N Total P mg/ 0,5 50,625 0,2056 0,5 50,625 0,2056 mg/l mg/l Titrimetr mg/l Khlorida UV pada 254 nm Gubernur Bali No.8 tahun 2007 Spektrofotometr 15 16 Mercepherau Land Mengetahui Ka UPF talai Jab Kes Prov.Bali Denpasar, 31 Mei 2011 Pemeriksa, Denpasar, 31 Mei 2011 Pemeriksa, Ri X X W dr. Gede Bagus Darnayase, M.M., M.Repro, NIP. 19610726-98803 1 004 - 4 Dra Rahmawati.B.Apt.M.Si dr. Gede Bagus Darmayasa, M.M., M.Repro. NIP. 19610726 198803 1 004 - 4 Dra Rahmawati.B, Apt.M.Si PEMERINTAH PROVINSI BALI DINAS KESEHATAN UPT BALAI LABORATORUUM KESEHATAN JALAN NUSA TENGGARA SANGLAH DENPASAR TELP/FAX (0361) 222218 Ô PEMERINTAH PROVINSI BALI DINAS KESEHATAN UPT BALAI LABORATORIUM KESEHATAN JALAN NUSA TENGGARA SANGLAH DENPASAR TELP/ FAX (0361) 222218 440.52 / 570 / KES / LAB.KES Nomor Agenda KEPADA Nomor Agenda 440.52 / 570 / KES / LAB KES KEPADA YTH HARUTOSHI UCHIDA YTH HARUTOSHI UCHIDA DI DENPASAR Perihal Hasil Pemeriksaan Air Limbah Perihal Hasil Pemeriksaan Air Limbah Hasil Pemeriksaan Air Limban Domestik Air Limbah Effluent IPAL Suwung Petugas Lab. Kesehatan 1 Juni 2011 990 Domestik DI DENPASAR Contoh berasal dari Diambil Oleh Air Limbah Inffluent IPAL Suwung Contoh berasal dari Petugas Lab, Kesehatan 1 Juni 2011 990 Diambil/diterima Tgl Nomor Laboratorium Diambil Oleh Diambil/diterima Tgl Nomor Laboratori MAKS.YG DIPERBOLEH HASIL PEMERIKSAAN MAKS.YG DIPERBOLEH HASIL PEMERIKSAAN UNSUR-UNSUR METODE SATUAN NO UNSUR-UNSUR SATUAN NO METODE KAN FISIKA KAN 0 3**8** 100 FISIKA Pemuaian Suhu 28 140 Suhu Zat padat tersuspensi (TSS) KIMIA 2 Pemuaian 0 Zat padat tersuspensi (TSS) KIMIA mg/l 29 124 Pengendapan 1 2 38 100 Pengendapan mg/l 3 4 5 6 7 pH Ammonia Bebas (NH₃-N) Nitrit (NO₃-N) Nitrit (ion NO2)-N BOD COD Elektrometri 6 - 9 7,6 8,7 3,102 0,420 16,8 50,0 18,7 79,0
 KIMIA

 3
 pH

 4
 BOD

 5
 COD

 6
 Total N

 7
 Total P

 Per.Gubernur Bali No.8 tahun 2007
 Elektrometri Elektrometri Titrimetri Spektrofotometri Spektrofotometri 6 - 9 50 100 Nessler Brusin Sulfanilat mg/l 7,0 20 mg/ mg/l 100,0 mg/ mg/l mg/l mg/l Elektrometri Tetrimetri 50 100 7 8 9 10 11 12 13 14 15 16 Page mg/l COD Turbidity Wama CaCO3 KMnO4 Total N Total P Khlorida mg/l 0,6 Spektrofotometri mg/ Spektrofotometri Spektrofotometri Titrimetri Spektrofotometri Spektrofotometri Titrimetri Spektrofotometri mg/l 79,0 301,66 21,49 12,172 0,8 54,98 0,153 Mengetahui Ka UPT Balai Lab.Kes.Prov.Bali Denpasar, 7 Juni 2011 Pemeriksa, mg/ mg/l mg/l Murunp mg/l mg/l UV pada 254 nm jubernur Bali No.8 tahun 2007 Dra Rahmawati.B,Apt.M.Si 19640410 199403 2 008 Denpasar, 7 Juni 2011 Pemeriksa, Mengetahui Ka UPT Balai Lab Kes Prov.Bali Ka ahum dr. Gede Bagus Daimayasa, M.M., M.Repro. NIP. 19610726 198803 1 004 -2 W Dra Rahmawati.B.Apt.M.Si 19640410 199403 2 008

APPENDIX 3

TOPOGRAPHIC SURVEY

APPENDIX 3 TOPOGRAPHIC SURVEY

3.a Terms of Reference

Transmission pipe route was selected and the line survey with the following specifications was carried out.

Total Length: Scale of Plan: Scale of Longitudinal Section: Scale of Cross Section: about 16km with the width of about 25m 1/500 H=1/500, V=1/100 1/100

Terms of Reference

SECTION III

SPECIFICATIONS

3.1 PURPOSE

The work called for under this Contract (hereinafter referred to as the Work) will be conducted as a part of the JICA Preparatory Survey on Application of Wastewater Reclaiming in Southern Bali Water Supply System in the Republic of Indonesia. The survey results will be used by the JICA Survey in (hereinafter referred to as "the Engineer", and will serve as the basis for the preparation of preliminary designs of major water transmission pipeline.

3.2 GENERAL REQUIREMENTS

The Contractor shall comply with the following requirements in undertaking the Work.

(1) All measurements and results of the survey shall be in SI units

(2) Locations of bench marks in the vicinity of the sites for the Work shall be confirmed by the Contractor and shall be approved by the Engineer before the commencement of the survey works in field.

(3) The Contractor shall provide temporary bench mark at the convenient location of project site.

(4) Prior to the commencement of the Work, the Contractor shall submit an Initiation Report prepared in English describing:

- List of survey and investigation equipment to be used by the Contractor
 Methods of survey and investigation to be used by the Contractor
- Work Schedule
- Staff Assignment Schedule

(5) The Contractor shall provide, and therefore shall include the associated costs in his proposal, all survey equipment, personnel, transportation and others required to complete the Work.

(6) The Contractor shall not commence the Work in field without receiving a written Notice to Proceed from the Engineer.

(7) Drawings shall be prepared using AUTOCAD 2009 or later release. Drawings and reports to be

The Contractor shall provide a temporary bench mark at the conventional locations under the direction of the Engineer. The temporal bench mark shall be fixed into the ground with durable materials as approved to avoid any movement and loss. The Line Survey shall be carried out by the following manner:

(1) Survey Instrument

- Measurement of Angle: Total Station - Measurement of Distance: Steel tape or esrone tape
- Measurement of Level: Level with 1mm reading

The survey instruments other than the above may be allowed as the Engineer judged them adequate and acceptable.

(2) Interval of station marker: every 100 m plus every turning points and other necessary points as directed.

(3) Bench Mark shall be followed from National 1st Grade Bench Mark.

- (4) Accuracy of Survey
- Accuracy of each survey shall be as follows: - Angle Survey: measurement: Two times
- Deviation: 207
- Distance Survey: 1/2,000
- Leveling Survey: within value of 2 cm \sqrt{S} (S: one-way distance in kilometer)

3.3.2 Reporting

The Contractor shall prepare and submit the drawings with the following scales upon the completion of field survey.

- Plan: 17500 - Longitudinal Section: Horizontal; 17.500 Vertical; $1 \neq 100$ 17100

As mentioned, the drawings of the plans shall present range of road or street, houses,

submitted by the Contractor shall, unless otherwise specifically directed by the Engineer, be sized as follows :

- All drawings; One (1) set of A I size and one (1) set of A3 size, including one set of electric files with compact disk
- All reports: Two (2) sets of A4

(8) The progress of the Work shall be described in the form of a weekly report and submitted to the designated address of the lingineer by a facsimile at the end of each week throughout the tenure of this Contract.

(9) Accuracy of the survey shall, unless otherwise specifically directed by the Engineer, be as described everywhere in these specifications.

3.3 SCOPE OF WORKS

Location of the Work shall be done for the route of a treated water transmission pipeline. The route is along the main road from the Sumung WWTP, located at Jl. Bypass Ngurah Rai No.90, Suwung Denpasar, to the Reservoir UPA Nusa Dua, located at Jl. Siligita, Nusa Dua. Total length of the route is about 16 km. Approximate survey route for the treated water transmission pipeline is shown in the location map of Figure 1. The line survey also includes some spot surveys to measure the locations and the levels of three points of borehole sites at the Suwung WWTP and four corners of reservoir structure at the Reservoir UPA, as directed by the Engineer. The Work comprises the following schedule:

Schedule 3.3.1: Line Survey Schedule 3.3.2: Reporting

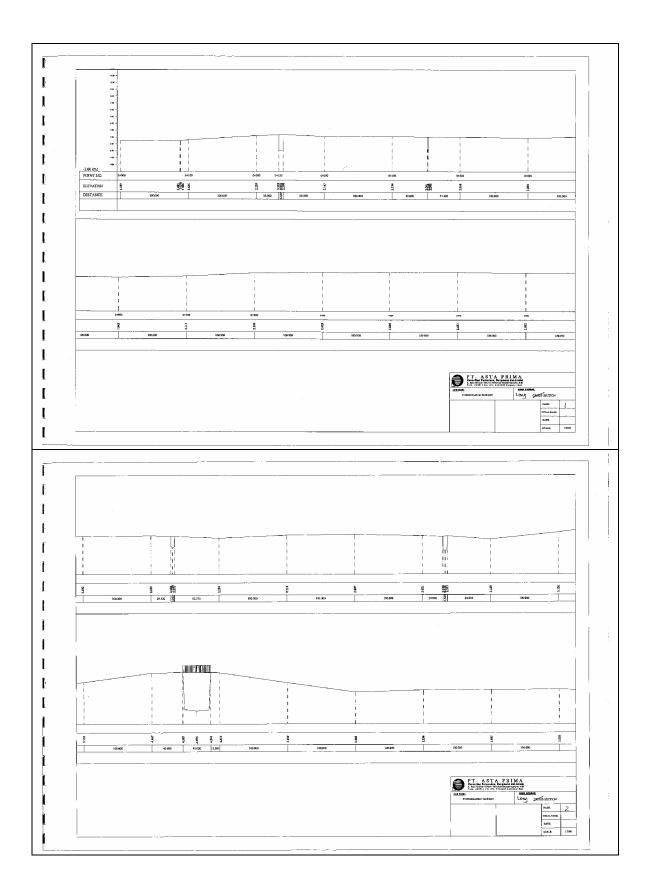
3.3.1 Line Survey

The Line Survey is composed of centerline survey and profile survey along the pipeline alignment as directed by the Engineer. The centerline survey is to measure distance at every station markers and angle at each turning point along the pipeline alignment. Width and depth of culvert and rivers/streams if any along the route shall be measured. Along the route of line survey, features of land use such as houses, buildings, sidewalks, electric poles, signboards, traffic lights, ditches, cultivated land etc., shall be investigated and marked with their limit. The range of cross section survey shall be not less than 20 meter from the centerline at its both sides. The profile survey is to measure ground level at every station markers and points directed by the Engineer.

rivers/streams/watercourses, factories, concrete shelters, buildings, and any features of land use and along the routes of treated water transmission pipeline.

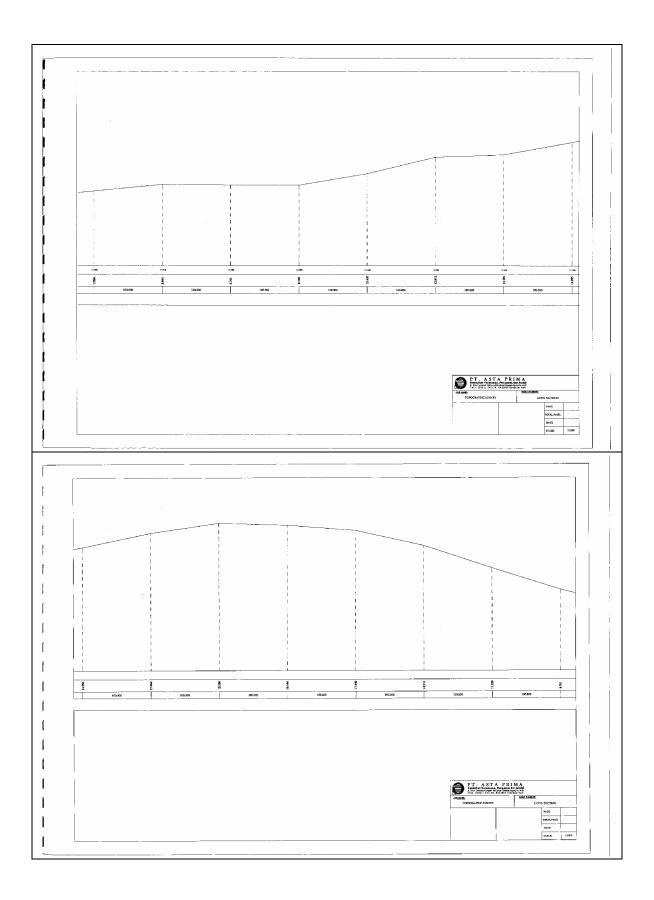
The drawings shall be printed out and digital files of drawings with format of AUTOCAD 2009 or later release shall be submitted. Font size of information and notes in the drawings shall be readable when the drawings are printed out in A3 size.

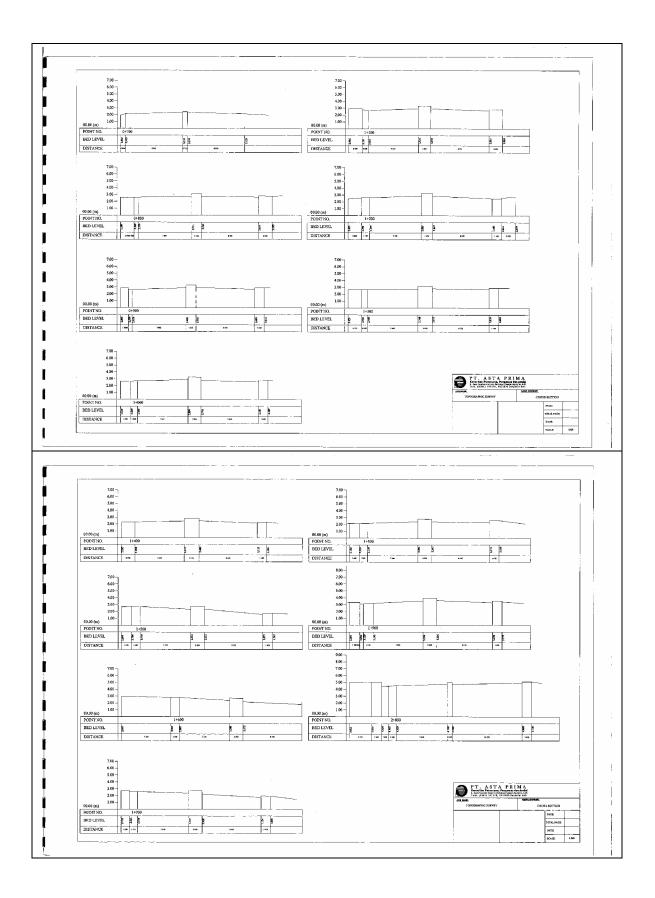
In addition to the above drawings, the Contractor shall submit daily work records describing time, limate and incidents/trouble with the land owner or people living in the vicinity if any, all survey data including field notes, photographs of site survey, other obtained during field surveys.

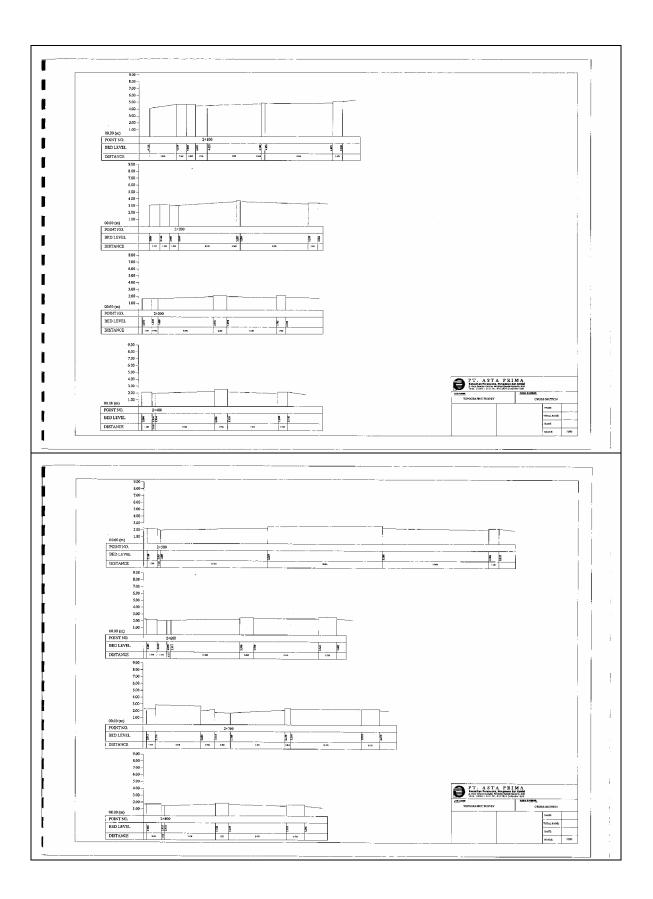


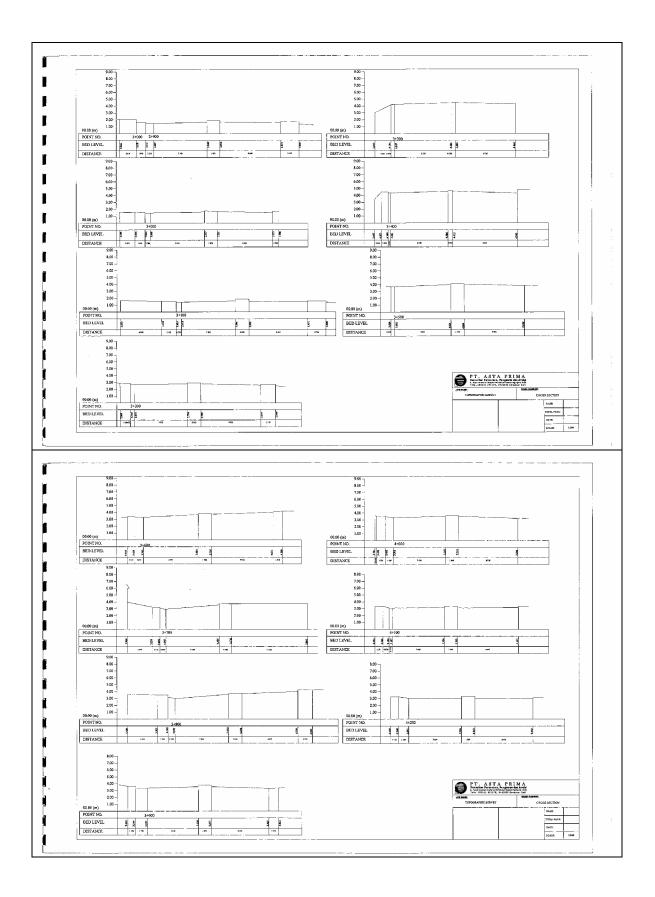
3.b Survey Photo

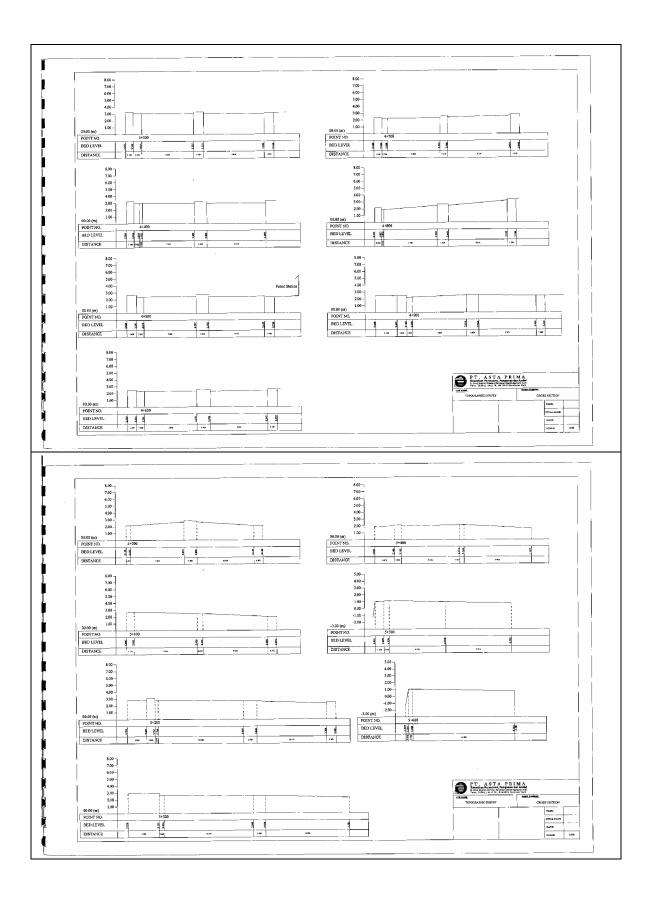
3.c Survey Result

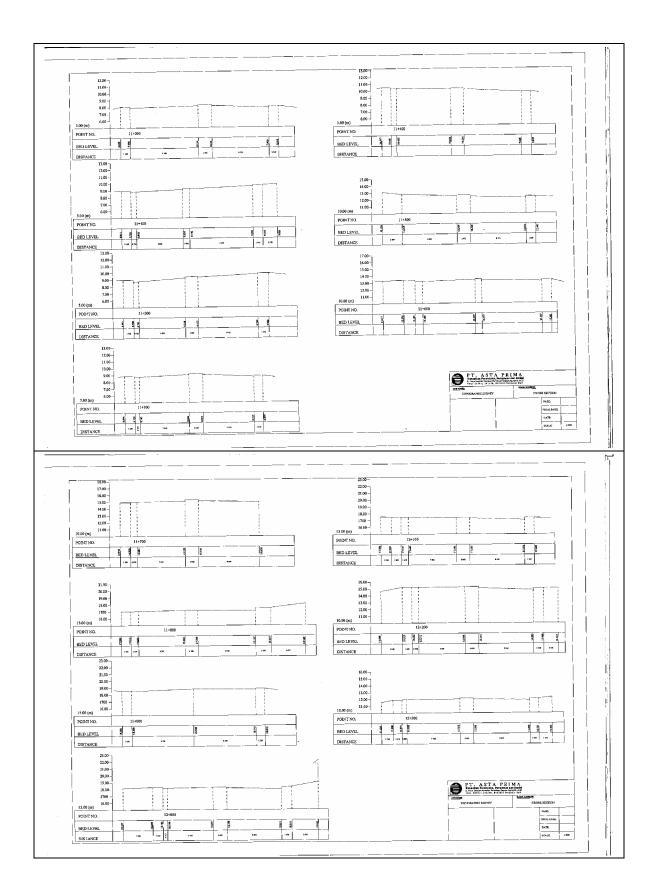












APPENDIX 4

GEOTECHNICAL SURVEY

APPENDIX 4 GEOTECHNICAL SURVEY

4.a Terms of Reference

Geotechnical survey for the construction site of the reclaimed water treatment plant (located at the Denpasar WWTP expansion site) was carried out with the following specifications.

Specifications of Ge	eotechnical Survey
Item	Specification
Number of boring	3
Maximum depth	40m
Total depth	120m

Test item and sampling number is shown below

Item	Specification
1. Standard penetration test	Every 1.0m interval
2. Sampling	Every 10 meters interval and the bottom
3. Laboratory Test	1) Specific gravity
	2) Water content
	3) Particle size distribution
	4) Unconfined compressive strength

Test Item and Sampling Number

Terms of Reference

SECTION III

SPECIFICATIONS

3.1 PURPOSE

The work called for Geotechnical Investigation under this Contract (hereinafter referred to as the Work) will be conducted as a part of the JICA Preparatory Survey on Application of Wastewater Reclaiming in Southern Bali Water Supply System in the Republic of Indonesia. The survey results will be used by the JICA Study Team thereinafter referred to as "the Engineer", and will serve as the basis for the preparation of preliminary designs of a reclamation plant.

3.2 GENERAL REQUIREMENTS

The Contractor shall comply with the following requirements in undertaking the Work.

(1) All measurements and results of the survey shall be in SI units

(2) Locations of the sites for the Work shall be confirmed by the Contractor and shall be approved by the Engineer before the commencement of the survey works in field.

(3) Prior to the commencement of the Work, the Contractor shall submit an Initiation Report prepared in English describing:

- List of equipment to be used by the Contractor List of equipment to be used by the Contractor
 Methods with Standards to be used by the Contractor
- Staff Assignment Schedule

(4) The Contractor shall provide, and therefore shall include the associated costs in his proposal, all equipments, personnel, transportation and others required to complete the Work.

(5) The Contractor shall not commence the Work in field without receiving a written Notice to Proceed from the Engineer

(6) Drawings and reports to be submitted by the Contractor shall, unless otherwise specifically directed by the Engineer, be as follows, including one set of files of compact disk: - All drawings: One (1) sets of A 1 size and Two (2) sets of A3 size

- All reports; Two (2) sets of A4

- 14 -

3.3.2 Standard Penetration Test and In-situ Permeability Test

(1) Standard Penetration Test (SPT)

Standard penetration tests (SPT) shall be carried out every 1.0 m interval in accordance with ASTM D 1586-99 or equivalent standards. The sample from the split barrel sampler shall be retained as a small disturbed sample Where a sample is not retained in the split barrel or when the cutting shoe is replaced by a solid cone, a disturbed sample shall be taken from the test zone. The water level and the depth of easing in the hole at the time of the test shall be recorded.

(2) In-situ Permeability Test

In-situ permeability test shall be conducted at each borehole in accordance with the ASTM D5126 or other equivalent standards.

3.3.3 Sampling and Laboratory Test

(1) Sampling

1) Disturbed Samples

One small disturbed sample shall be taken between each two successive SPTs. It shall weigh not less than 0.25 kg and shall be placed immediately in an airtight container, which it should fill. Samples shall be protected to ensure that their temperature does not fall below 5 °C. They shall also be protected from direct heat and sunlight.

Samples shall be examined and described by a geotechnical specialist in accordance with the American Standards, the Clause 6.4.3 of American Society for Testing and Materials (hereinaller referred to as ASTM) D420, clause 41 of British Standard (hereinafter referred to as BS) 5930 or equivalent standards.

2) Undisturbed Samples

At each borehole, undisturbed samples shall be taken as shown in Table 1, using open tube sampling equipment as described in the clause 2.2 of ASTM D1586, clause 19.4.4 of BS 5930 or equivalent standards. For predominantly cohesive soils, one undisturbed samples, by thin-walled tube sampling methods, shall be taken for laboratory tests in accordance with ASTM D1587 or equivalent standards

Followings are major important points when the samples are taken:

- 16 -

(7) The progress of the Work shall be described in the form of a weekly report and submitted to the designated address of the Engineer by a facsimile at the end of each week throughout the tenure of this Contract

(8) Accuracy of the survey and investigation shall be as directed by the Engineer

3.3 SCOPE OF WORKS

The Work comprises the following schedules Schedule 3.3.1 : Boring Schedule 3.3.2 : Standard Penetration Test and In-site Permeability Test Schedule 3.3.3 : Sampling and Laboratory Test

3.3.1 Bering

Three (3) nos. of boring in total will be conducted at the Suwung WWTP, as shown in Figure 1. And the actual location of boreholes shall be directed and confirmed by the Engineer, based on information of preliminary surveys of sites by the Contractor.

The maximum depth is approximately 40 meters at the proposed STP site and the total depth to dig is 120 m. When a bearing stratum is reached at less than specified depth, boring shall be stopped at 5 meters below the top of the stratum.

Method of horing shall be proposed by the Contractor for approval by the Engineer. The diameter of a borehole shall be sufficient to ensure that the boring can be completed to the scheduled depth and that samples of the specified diameter can be obtained.

Generally, water shall not be used to assist the advance of the borchole except in the case of dry coarse soils. Where the borehole penetrates below the water table and disturbance of the soil is likely, a positive hydrostatic pressure shall be maintained in the borehole.

The Contractor shall backfill borcholes in such a manner that no subsequent depression is formed at the ground surface due to settlement of the backfill. In some circumstances special infilling may be required by the Engineer. Unless otherwise instructed the special infilling shall be coment/bentonite (1:4) grout. Where artesian or other water conditions make normal backfilling impracticable, the Contractor shall consult with the Engineer a procedure for sealing the borehole.

- 15 -

Before an undisturbed sample is taken, the bottom of the hole shall be carefully cleared of loose materials and where a casing is being used the sample shall be taken below the bottom of the casing. Following a break in the work exceeding one hoar, the borehole shall be advanced by 250 mm before undisturbed sampling is resumed.

	Table 1 Undist	turbed Sampling Even	ts required for each borehole
Location	Boring Point	Number of samples	Sampling in the borehole
	No.1	4 (max.)	every 10 meters interval and the bottom
Sumung	No.2	4 (max.)	every 10 meters interval and the bottom
WWIP	No.3	4 (max.)	every 10 meters interval and the bottom
	Sub-total	12 (max.)	

Where an attempt to take an undisturbed sample is unsuccessful the hole shall be cleaned out for the full depth to which the sampling tube has penetrated and the recovered soil saved as a disturbed sample. A fresh attempt shall then be made from the level of the base of the unsuccessful attempt. Should this second attempt also prove unsuccessful the Contractor shall agree with the Engin alternative means of sampling.

The samples shall be scaled as soon as possible on the same day to preserve their natural moisture content and in such a manner as to prevent the scalant from entering any voids in the sample.

The depths below ground level at which samples are taken shall be recorded. The level of the top of the sample and the length of sample obtained shall be recorded.

(2) Laboratory Test

Undisturbed samples shall be taken to a soils laboratory approved by the Engineer and shall be subjected to the following tests. Unit shall be based on SI unit.

- Specific gravity, ASTM D854-58 or BS test 6
- Water (moisture) content, ASTM D2216-71 or BS test 1(A)
 Density, ASTM D2937-71 or BS test 15(E) or 15(F)
- · Particle size distribution, ASTM D421-58 and ASTM D422-63 or BS test 7 Unconfined compressive strength, ASTM D2166-66 or BS test 20

performed in accordance with the procedures given in the following references. British Standard, Head K. H. Manual of soil laboratory testing (vols. I-III), Pentech, London relevant publications by the Transport and Road Research Laboratory (TRRL), and the International Journal of Rock Mechanics and Mining Sciences (IJRM).

Calibration of load-displacement or other measuring and testing equipment shall be carried out in accordance with the manufacturer's instructions. Evidence of recent calibrations shall be submitted to the Engineer.

3.4 Reporting

The report shall be prepared in English. The report shall be submitted in two (2) sections, the first being the factual report, and the second the interpretative report. Both sections of the report shall begin with a cover page showing the name of the Contract and the names of the Employer and Contractor. A draft copy of the factual report and the interpretative report shall be submitted to the Engineer for approval before submission of the final report.

The factual report shall contain the following information, where applicable

- · a description of the work carried out
- exploratory hole logslaboratory test results
- · plan with locations of exploratory holes
- site location plan

The plans shall be presented to a scale directed by the Engineer and shall include a north point.

The exploratory hole logs shall be presented to a vertical scale in the form as appropriate. The logs shall contain the following informs

- Contract title and site location
- Contractor's and operator's name
- Borchole number and location
- Dates and time
- Ground level related to the agreed datum Contractor shall prepare a schedule of tests for approval by the En Diameters and depths of borchole and easings referred to the agreed datum
 Elevation of each stratum referred to the agreed datum All preparation, testing and reporting shall be where applicable in accordance with the relevant The depth at which any water was added can Standards, the ASTM. Where tests are not covered by the American Standards they shall be - 18 -- 19 -• Records of groundwater A summary of groundwater observations Description of each stratum in accordance with ASTM D420
 Symbolic legend of strata in accordance with ASTM D420 · Depth of samples taken for laboratory tests The interpretative report shall contain the following information a written appraisal of the ground and water conditions . geotechnical analyses and recommendations, in particular, with respect to the depth and the type of the foundations for RC water retaining structures which weigh 10 to 15 ton'm³. The Contractor shall supply the calculations and analyses on which his recommendations are based. - 20 -

4.b Survey Photo

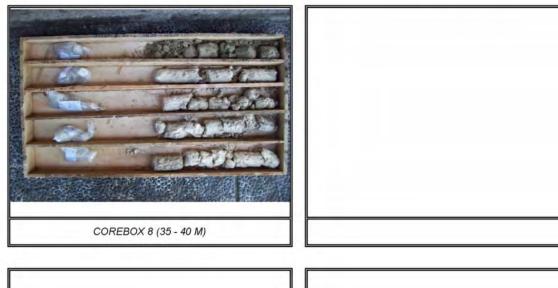

PHOTO DOCUMENTATION (BH 1)

PHOTO DOCUMENTATION (BH 1)

PHOTO DOCUMENTATION (BH 2)

PHOTO DOCUMENTATION (BH 3)

: SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM PROJECT LOCATION : BALI CLIENT : NIHON SUIDO CONSULTANT

COREBOX 2 (5 - 10 M)

PHOTO DOCUMENTATION (BH 3)

PHOTO DOCUMENTATION (BH 4)

PROJECT : SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM LOCATION : BALI CLIENT : NIHON SUIDO CONSULTANT

4.c Survey Result

SITE PLAN

BOREHOLE LOGS

(Continued Next Page)

			BORING NUMBER BH-02				Par	с чиван	١	Δ		
			PAGE 1 OF 2					¥ ¥ ¥	10	ï		
(=			Tigenco Graha Persada ahlawan Revolusi 100BJakarta Timur 14340			V X	* *	x x X X X X	15	Ν		
			phone: (62) 21 86600710			¥ ¥	¥	D 8H 2	(nangrow		
PROJ	ECT _	Waste	water Reclaiming in Southern Bali Water Supply System			* *	r v	2.5m	15			
			SUWUNG			8	MANER	LOVE -				
			UIDO CONSULTANTS									
			7/25/11 COMPLETED 7/28/11	X,Y,Z <u>302</u>								
DRILL					-		<u> </u>	RAGE: 1.				
			D Continuous Coring NQ Size - 76mm	DATE 25/07/2011	STA 2.00	RT EN 0 m 2.00			5TART 1.30 m	END 1.70 m		
STAT		n <u>Har</u>	ris CHECKED BY Andrianto	27/07/2011	1.20) m 1.70) m 2	8/07/2011	1.20 m	1.70 m		
	_	1										
Щ	SCALE				Ŵ	Ш				□ FINES COI 20 40		 30
DEPTH SCALE (m)	IS NO	GRAPHIC LOG	LITHOLOGY DESCRIPTION		LAYER THICKNESS (M)	SAMPLE TYPE NUMBER	SAMPLE DEPTH (M)	BLOW COUNTS (N VALUE)		PL M		10
HT H	ATIO (r	GRA			ICKN	NUN	SAN	U VAL	2	20 40		30
Ö	ELEVATION (m)		0.0		Η	S₽				• SPTN		
			silty CLAY with SAND, dark grey to brown, very soft	high					1	0 20	30 4	-0
	4		plasticity						1			
			¥				1	-	1			
2						SPT	1.45	-	<u> </u>			
	2					2	2	-	1		1	
							3	-	•			
4							3.45]	11			
	0						4	=	*			
					10.5		4.45	4				
6					10.5	SPT.	5 5.45	-	.			
0						SPT	6	-	•			
	-2						6.45	1				
						X 2 SPT	7	1	•			
8						7 TSPT	7.45	-	_			
	-4						8.45	-	T 1			
						X 3	<u>8.5</u> 9	1	.			
10			10.0			SPT 9	9.45		·	8		
	-6		10.5grades, with coral deposits			SPT 10	10	3-4-4/20 (8)	ļ			
	-		11.0 coarse SAND with coral deposits silty CLAY with coral deposits, dark gray, very stiff, r	nedium	0.5	SPT		5-7-9/20				
12			plasticiy			− <u><u></u> 11</u>	<u>11</u> 11. 4 5	(16)	,	19		
14			12.5		2		12	5-7-12/20	ļ	L.		
	-8		13.0 ^g rades, with limestone, brownish white				12.45	-	1			1
	L -	[⇔1 ≠ ☆	CORALS, white, hard		1	SPT 13	13.05			20		
14		¢ ;	14.0 silty CLAY with corals, white, very stiff, low plasticity	,		SPT	14	9-10-10/20			<u>/</u>	
	-10		15.0		1	14	14 14.45	1 (20)		1.	22.	
	1		15.5LIMESTONE, light grey to white, very stiff, non plast		0.5	SPT	15	9-10-12/20		•		
16			16.0silty CLAY with fine sand, light grey mottled light bro stiff, high plasticity	wn, very			15.45		1		26	
	-12		grades, with limestone, light grey to white		0.5	SPT 16	16 16. 4 5	9-12-14/20			27	
					2.5	SPT		11-12-15/20	,]		
18			18.0			17	17 17.45	(27)	, 			
10			LIMESTONE, light grey to white, very stiff to hard, n	nedium			18	11-15-15/20		:		
	-14		plastic				18.45		1			:
						SPT 19	19 19.45	9-11-14/20 (25)		<u> </u>		
20	{					SPT		9-12-14/20			26	
							20	3 12 14/20	1		.	

(Continued Next Page)

		BORING NUMBER BH-02				Per	ЧМВАН	Δ
Ī	JI. Pa	PAGE 2 OF 2 igenco Graha Persada hlawan Revolusi 100BJakarta Timur 14340 hone: (62) 21 86600710	1		秋 大 大 大 大 大 大 大	¥ ¥	х ч ч ч ч ч вн2	I N (mangrow
		ater Reclaiming in Southern Bali Water Supply System			¥¥	Y.	2574	
		UWUNG JIDO CONSULTANTS				TANER	~	
DEPTH SCALE (m) ELEVATION SCALE	GRAPHIC LOG	LITHOLOGY DESCRIPTION		LAYER THICKNESS (M)	SAMPLE TYPE NUMBER	SAMPLE DEPTH (M)	BLOW COUNTS (N VALUE)	□ FINES CONTENT (%) □ 20 40 60 80 PL MC LL 20 40 60 80 ● SPTN VALUE ●
ш		LIMESTONE, light grey to white, very stiff to hard, me	dium		20	20.45	(26)	10 20 30 40
		plastic (continued)			SPT 21	21	10-14-14/20 (28)	/25
				7.45	SPT	21.45 22	10-12-13/20	25 •
				ĺ		22.45	(25)	
					SPT 23	23 23.45	10-10-13/20 (23)	•
					SPT	24	12-14-14/20	•
						24.45	(28) 12-14-16/20	
		Bottom of borehole at 25.45 meters.			25	25 25.45	(30)	
GEOTECH BH PLOTS NISSUICON-DENPASAR GFU TIGENCO-RAILWAY.GDT 9/12/11								
GEOTEC								

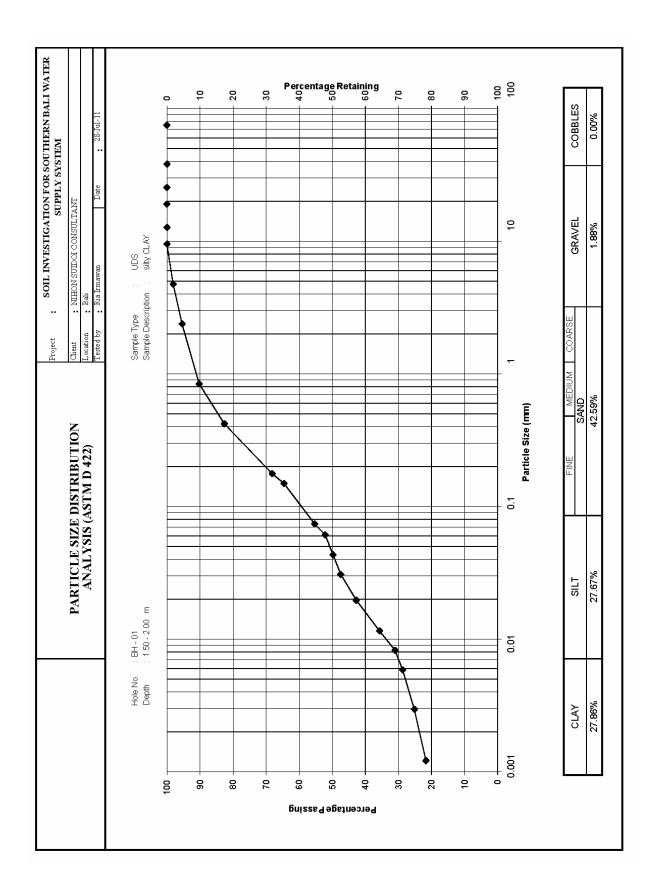
			BORING NUMBER BH-03								*		
LOCA	TION	JI. F Tele Waste	PAGE 1 OF 2 Tigenco Graha Persada 'ahlawan Revolusi 100BJakarta Timur 14340 phone: (62) 21 86600710 water Reclaiming in Southern Bali Water Supply System SUWUNG SUIDO CONSULTANTS		1		ł	rolan	8H3	Kel C			
				X,Y,Z 302	762.2	08	903	5677.5	517 . 5.086	m			
	ER \			GROUND W									
DRILL	ING M	etho	D _Continuous Coring NQ Size - 76mm	DATE	STA	RT	EN			START	END	,	
LOGO STAT		' <u>Ha</u> r	ris CHECKED BY Andrianto	30/07/2011 01/08/2011			2.80			1.20 m 1.30 m	1.90 r 2.30 r	_	
ш	ALE				(j	_и	J				□ FINES	CONTEN	IT (%) 🗆
DEPTH SCALE (m)	EVATION SCAL (m)	GRAPHIC LOG	LITHOLOGY DESCRIPTION		LAYER THICKNESS (M)		NUMBER	SAMPLE DEPTH (M)	BLOW COUNTS (N VALUE)		PL PL 20 40 • SP1	MC	
	ELE		0.0		F	0	,			1	0 20		
	4		silty CLAY with limestone, dark brown, mottled white plasticity 1.0	, medium	1		SPT		2-2-3/20		5		
			coarse to fine SAND, black, loose ▼			A	1	1	(5)	1.7.2			
2			- <u>*</u> -		2	X	SPT	2	1-1-1/20	•			
	2		3.0				2 UD	2.45	(2)	12.	⊢		
			3.5 silty CLAY with little fine sand, dark grey, very soft to plasticity	soft, high	0.5	X	1 SPT	3.45	1-1-1/20	•·····			
4			CORALS, fine sand, white, dark grey dots, soft		2.5	X	3 SPT 4	3.43 4 4.45	1-1-2/20				
	0	* * * *			2.5	X	SPT	5	1-1-2/20 (3)	•			
6			6.0 silty CLAY with corals, grey, very soft, high plasticity			X	SPT	5.45 6	1/45	↓ <u>1</u> 			
	-2					ι Σ	6 SPT	6.45 7	(1) 1/45	{ 1 ● ·····		·····	
8					3		7 SPT	, 7.45	(1) 1/45	<u> </u> 1			·····
			90			à		8.45	(1)	T. 1.	- -		
	-4		9.5 fine SAND with corals, very loose		0.5	X	2	<u>8.5</u> 9	1/45	.	• -		
10	L _	¢;	10.0 ^{CORALS,} white, light grey spots				SPT 9	9.45	(1)	13			
		\$ \$	grades, with shell, very loose			A	SPT 10	10 10.45	1-1-2/20 (3)				
1	6	* * * *				X	SPT	11 11. 4 5	1-1-2/20 (3)				
12					6	X	SPT	12 12.45	1-1-2/20 (3)				
	8					X	SPT 13	13.45	1-2-2/20 (4)	•			
2 14		* * * *				X	SPT 14	14	1-2-2/20 (4)	. •			
	-10	÷ ج_ج	15.5			X	SPT	14.45 15	2-2-2/20	′		·····	
16			16.0silty CLAY with coarse SAND, brownish grey mottled medium plasticity	l grey,	0.5		15 SPT	15.45	(4) 8-11-13/20	,		24	
	- 12		coarse SAND, brownish white, medium dense		1.5		16	16 16.45	(24)				28
ssul			17.5		0.5	X	SPT 17	17 17. 4 5	10-13-15/20 (28)	,		t i	30
≃ <u>ັ18</u> ທ		‡ 1	_{18.0} CORALS, dark grey to white _{18.5} coarse SAND, brownish white, medium dense		0.5 0.5		SPT		10-14-16/20)			
12 12 12 12 14 14 16 16 18 18 18 20 20	-14		18.500 so of the province which make including allow 19.0 silty CLAY with fine SAND mix with corals, white, ligh dots, high plasticity	ht grey	0.5		18 SPT	18 18. 4 5	(30)		6		
B 20			coarse SAND with corals, brownish grey, loose, low	plasticity	1.5		19	19 19.45	(6)		7		
Ч.			20.5			X	SPT	20	3-3-4/20	ļ	:i	È	

(Continued Next Page)

BORING NUMBER B	H-04								
PAGE 1	1 OF 2								
JI. Pahlawan Revolusi 100BJakarta Timur 14340 Telephone: (62) 21 86600710	R	OADV		AN					
PROJECT	System				• 8	H-4			
		~	\sim	~ <	4	M	_		_
CLIENT NIHON SUIDO CONSULTANTS	<i>ک</i>		J(_	י ג	<u> </u>			1	1
DATE STARTED <u>8/4/11</u> COMPLETED <u>8/5/11</u> DRILLER Waluyo	X,Y,Z _30: GROUND \								
DRILLING METHOD Continuous Coring NQ Size - 76mm	DATE	STA	RT EN	۱Ď	DATE	START	END]	
LOGGED BY Harris CHECKED BY Andrianto	04/08/201	1 1.70) m 1.7	0 m 0	5/08/2011	1.50 m	2.70 m		
STATION									
CALE		(W)	PE ~		۵Ŵ	20	FINES CO	NTENT (%)) 🗆 80
	I	AYER	NBEF	SAMPLE DEPTH (M)	BLOW COUNTS (N VALUE)				L 1
		LAYER THICKNESS (M)	SAMPLE TYPE NUMBER	N III	"°2	20		60 VALUE ●	80
sity CLAX dark brown high plasticity						10	20	30	40
4 1.0		1				2			
silty CLAY with fine sand, dark grey, very sol to high plasticity	ft to soft, medium			1	1-1-1/20 (2)		·····		· · · · · · · ·
			SPT 2	2	1-1-1/20	•			
				2.45	1/45		•		
4		5	SPT 3	3.45	(1)	-1-1-1			
0			SPT 4	4.45	1/45 (1)	1	• •		
				4.5	1/45	•	•••••••		
6.0			SPT 5 SPT	5.45	(1) 1-1-2/20				
fine SAND, black, very loose				6 6.45	(3)				
		2		7	1/45				
8 8.0 silty CLAY, dark grey, very soft to soft, high p	plasticity	<u> </u>	SPT	7.45	1/45				
				8.45	(1)	2		•	
			SPT	9 9.45	1-1-1/20 (2)	2			
-6			SPT 10	10	1-1-1/20 (2)	T			
			T SPT	10.45	1-1-1/20		·····		
12 -		8	UD	11.45	(2)	2			
			▲ <u>4</u> SPT 12	<u>12</u> 12.45	1-1-1/20 (2)	2			
			SPT 13	13	1-1-1/20	•			
14				13.45 14	1-1-1/20	2			
			14	14.45	(2)	2.			
			SPT 15	15 15.45	1-1-1/20 (2)				
16 -12 -12 -12 -12 -12 -12 -12 -12 -16.0 -16.0 -16.0 -16.0 -17.0 -18.0 -19.0 -	y soft to soft, high	-	SPT	16	1-1-1/20	•			
plasticity		2	<u>16</u> ▼ SPT	16.45	(2)	2			
18				17 17.45	(2)	2			
-14 18.5fine SAND, dark grey, very loose	ah plaatisitu	0.5	SPT 18	18 18.45	1-1-1/20 (2)		·····		
silty CLAY with fine sand, dark grey, soft, hig 19.5	yn piasucity	1	SPT	18.45	1-1-2/20	· ·			
20 LIMESTONE, light grey to white, dotted white plasticity	e, low medium			19.45	(3)		\searrow	31	
12 -8 14 -10 16 -10 18 -12 18 -14 18 -14 18 -14 19.5 LIMESTONE, light grey to white, dotted white plasticity			SPT	20	10-14-17/2	20			

			BORING NUMBER BH-04								_	
E		T. T	PAGE 2 OF 2 igenco Graha Persada hlawan Revolusi 100BJakarta Timur 14340									
	ノ [÷]	elep	hone: (62) 21 86600710	RC	DADV	VAY PL	AN	BI	-4			
			ater Reclaiming in Southern Bali Water Supply System					1 4				
	TION <u>IP/</u> T NIHO		UWUNG JIDO CONSULTANTS	5	~	~	25			~		
	<u> </u>	1100					-		_			
Щ	CALE				(M)	Ц	_	-		□ FINES CO 20 40		а П
H SCA (m)	VATION SC (m) GRAPHIC	g	LITHOLOGY DESCRIPTION		YER	ABER	SAMPLE DEPTH (M)	BLOW COUNTS (N VALUE)		PL M	C LL	
DEPTH SCALE (m)	EVATION SCALE (m) GRAPHIC				LAYER THICKNESS (M)	SAMPLE TYPE NUMBER	SAN DEP	(N COR		20 40		10
					Ē			(11)		10 20	30 4	0
		П	LIMESTONE, light grey to white, dotted white, low med plasticity (continued)	lium		20 SPT	20.45 21	(<u>31)</u> 9-12-12/2	 		24	
22							21.45	(24)	_	fi		
	-18				5.95	SPT 22	22 22.45	7-7-10/20	<u>}</u>	∮ ∫15		
		Т				SPT 23	23	7-7-8/20 (15)		•		
24							23.45	7-7-7/20		14		
	-20					24	24 24.45	(14)	-			
			Bottom of borehole at 25.45 meters.			SPT 25	25 25.45	8-9-9/20 (18)	<u> </u>	•••••••••••••••••••••••••••••••••••••••		
GEOTECH BH PLOTS NISSUICON-DENPASAR GPU TIGEN CO-RAILWAY GDT 9/12/11												
GEOTECH												

LAB TEST RESULTS


- Specific Gravity Test
- Moisture Content Test
- Density Test
- Sieve Analysis
- Hydrometer Analysis
- Unconfined Compression Test
- Atterberg Limits

	Project	SOIL	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM	ATION FO	DR SOUTH	IERN BAL	I WATER	S VIPPLY S	YSTEM
	Client Tested Rv	NIHON SUIDC Renny	NIHON SUIDOI CONSULTANT Benny			Date Checked Rv		28-Jul-2011 M Idhal ST	
	(T parts t	6 mm 2 mm			1	(T name		To moher	
		INDEX	INDEX PROPERTIES	IES					
Location : Bali									
Bore Hole No		BH	BH - 01	BH - 01	01	BH - 01	01	BH - 02	12
Depth	meter		1.50 - 2.00	15.50 - 16.00	16.00	19.50 - 20.00	20.00	4.50 - 5.00	00.
Sample Type		5	nds	SON	s	NDS	6	SON	
SPECIFIC GRAVITY TEST (ASTM D - 854	54)								
Pycnometer No.		T15	É	T6	T16	T8	T29	T28	T13
Wt. Of dry Soil (A)				14.18	14.22	14.00	14.21	16.02	15.45
Temperature (T)		^U C 27.00		27.00	27.00	27.00	27.00	27.00	27.00
Wt. Pycnometer + Water + Soil (B)		g 169.55	158.46	163.98	156.79	163.57	169.52	172.62	161.23
Wt Pycnometer + Water at T ⁰ C (C)		g 158.47	147.52	155.24	147.95	154.90	160.65	162.69	151.65
A+(C-B)		g 6.83	6.73	5.44	5.38	5.33	5.34	6.09	5.87
Specific Gravity (Gs)		2.618	2.621	2.602	2.639	2.622	2.657	2.626	2.628
SPECIFIC GRAVITY Average (Gs)		2.6	2.619	2.620	20	2.639		2.627	~
MOISTURE CONTENT TEST (BS 1377: 1975	: 1975)								
No. Container		R.1	D.60	R.12	D.55	F.36	D.3	E.33	E.6
Wt. Container + Wet Soil		g 163.80	30.05	144.56	46.52	141.09	46.81	34.40	33.47
Wt. Container + Dry Soil		g 116.34		87.44	27.51	84.12	27.51	20.87	20.42
Wt. Container				19.71	4.88	17.43	4.85	5.16	5.27
Wt. Water				57.12	19.01	56.97	19.30	13.53	13.05
Wt. Dry Soil		g 98.76		67.73	22.63	66.69	22.66	15.71	15.15
Moisture Content (w)		48.	48.72	84.33	84.00	85.43	85.17	86.12	86.14
MOISTURE CONTENT Average (w)		% 48	48.39	84.17	17	85.30		86.13	
DENSITY TEST (BS 1377 : 1975)				·			·		
No. Ring		A		A		A		A	
Wt. Ring + Wet Soil				71.75		70.55		71.27	
Wt. Ring		g 43.38		43.38		43.38		43.38	
Vol. Wet Soil (= Vol. Ring)	0	cm ³ 19.24		19.24		19.24		19.24	
BULK DENSITY (ym)	"Mg/m	m ³ 1.693		1.475		1.412		1.450	
DRY DENSITY (yd)	m/gM	m ³ 1.141		0.801		0.762		0.779	
VOID RATIO (e)		1.296		2.273		2.463		2.373	
POROSITY (n)		0.564		0.694		0.711		0.704	
DECREE OF SATURATION (Sr)		% 97.792		97.038		91.396		95.347	

	Project	SOIL	INVESTIG	ATION FC	R SOUTE	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM	I WATEF	SUPPLY :	SYSTEM
	Client Tottod D	NIHON SUIDOI	NIHON SUIDOI CONSULTANT			Date		28-Jul-2011 M Tebel eT	
	T esten Dy	filled				merken by		Ter Tringer, p. 1	
		INDEX	INDEX PROPERTIES	IES					
Location : Bali									
Bore Hole No		BH - 02	02	BH - 02	02	BH - 03	03	BH - 03	03
Depth	meter	er 6.50 - 7.00	7.00	8.50 - 9.00	00.6	2.50 - 3.00	3.00	8.50 - 9.00	9.00
Sample Type		NDS	S	NDS		NDS		SON	6
SPECIFIC GRAVITY TEST (ASTM D - 854	54)	-	-	-	-	-		-	
Pycnometer No.		F	T18	T15	T11	T11	T27	T21	T26
Wt. Of dry Soil (A)	q	g 16.35	15.54	14.91	14.64	16.34	16.00	16.71	16.23
Temperature (T)	2		27.00	27.00	27.00	27.00	27.00	27.00	27.00
Wt. Pycnometer + Water + Soil (B)		g 165.90	161.12	167.68	161.13	162.28	155.87	155.96	162.10
Wt Pycnometer + Water at T ⁰ C (C)		g 155.82	151.51	158.47	152.07	152.18	145.94	145.54	151.99
A+(C-B)		g 6.27	5.93	5.70	5.58	6.24	6.07	6.29	6.12
Specific Gravity (Gs)		2.603	2.616	2.611	2.619	2.614	2.631	2.652	2.647
SPECIFIC GRAVITY Average (Gs)		2.610	0	2.615	5	2.623	3	2.650	0
MOISTURE CONTENT TEST (BS 1377 : 1975	1975)								
No. Container		E.31	E.23	E.15	E.21	E.15	E.21	E.31	E.23
Wt. Container + Wet Soil		g 31.56	31.24	30.39	30.40	30.01	30.03	30.49	30.40
Wt. Container + Dry Soil		.,	20.86	20.03	19.79	21.66	21.37	21.81	21.82
Wt. Container			5.49	5.41	5.32	5.32	5.41	5.01	5.49
Wt. Water			10.38	10.36	10.61	8.35	8.66	8.68	8.58
Wt. Dry Soil		g 15.89	15.37	14.62	14.47	16.34	15.96	16.80	16.33
Moisture Content (w)		% 66.90	67.53	70.86	73.32	51.10	54.26	51.67	52.54
MOISTURE CONTENT Average (w)		% 67.22	12	72.09	6	52.68	8	52.10	0
DENSIT TEST (BS 13// : 19/2)		<		<		<		•	
		2 CF CF		C 7 72		75 44		C 02	
				4.12				00.01	
wt. King				43.38		43.38		43.38	
Vol. Wet Soil (= Vol. Ring)	C			19.24		19.24		19.24	
BULK DENSITY (ym)	°m/gM	1 [°] 1.524		1.598		1.649		1.869	
DRY DENSITY (yd)	Mg/m ²	1 ³ 0.911		0.928		1.080		1.228	
VOID RATIO (e)		1.864		1.817		1.428		1.157	
POROSITY (n)		0.651		0.645		0.588		0.536	
DEGREE OF SATURATION (Sr)		% 94.128		100.000		96.746		100.000	

	Project	I IIOS	INVESTIG	ATION FC	JR SOUTH	SOIL INVESTIGATION FOR SOUTHERN BALI WATER SUPPLY SYSTEM	I WATEF	SUPPLY &	SYSTEM
		NIHON SUIDOI CONSULTANT	CONSULTANT		А	Date		28-Jul-2011	
	Tested By	Benny			<u> </u>	Checked By		M. Iqbal, ST	
		INDEX	INDEX PROPERTIES	TES					
Location : Bali									
Bore Hole No		BH - 04	04	BH - 04	04	BH - 04	4	BH - 04	04
Depth	meter	6	3.00	4.50 - 5.00	5.00	8.50 - 9.00	00.	11.50 - 12.00	12.00
Sample Type		SON	S	SON	6	NDS		NDS	6
SPECIFIC GRAVITY TEST (ASTM D - 854	1)	-	-	-	-	-		-	
Pycnometer No.		T14	T15	T23	T31	T22	T20	T29	T16
Wt. Of ury 30ll (A) Temperature (T)	<u>ה</u>		13.24 27.00	00.51	00.70	00 20	00 20	10.7c	00.01
Wt. Pvcnometer + Water + Soil (B)			165.84	166.19	162.71	166.30	169.03	170.74	157.78
Wt Pvcnometer + Water at T ⁰ C (C)			154.00	154.12	146.96	155.93	159.00	160.65	147.86
A+(C-B)	0		7.40	7.43	9.58	6.34	6.20	6.25	6.08
Specific Gravity (Gs)	þ		2.596	2.620	2.640	2.631	2.613	2.610	2.627
SPECIFIC GRAVITY Average (Gs)		2.593	3	2.630	0	2.622		2.619	6
MOISTURE CONTENT TEST (BS 1377 : 1975	1975)								
No. Container		E.20	E.15	E.25	E.19	F.11	F.10	E.34	E.8
Wt. Container + Wet Soil	g	33.01	33.21	35.57	34.58	31.59	32.41	30.25	30.37
Wt. Container + Dry Soil	ס	.,	24.55	24.90	24.48	21.91	22.81	18.27	18.57
Wt. Container	9		5.32	5.44	5.16	5.08	5.21	5.30	5.30
Wt. Water	D		8.66	10.67	10.10	9.68	9.60	11.98	11.80
Wt. Dry Soil	0		19.23	19.46	19.32	16.83	17.60	12.97	13.27
Moisture Content (w)	%	47.44	45.03	54.83	52.28	57.52	54.55	92.37	88.92
MOISTURE CONTENT Average (w)	%	46.23	3	53.55	2	56.03	_	90.64	4
DENSITY TEST (BS 1377 : 1975)			-	-	-			-	
No. Ring		A		A		A		A	
Wt. Ring + Wet Soil	g	76.17		73.62		73.23		71.23	
Wt. Ring	9	43.38		43.38		43.38		43.38	
Vol. Wet Soil (= Vol. Ring)	cm ³	19.24		19.24		19.24		19.24	
BULK DENSITY (ym)	Mg/m ³	1.704		1.572		1.551		1.448	
DRY DENSITY (yd)	, mg/m	1.165		1.024		0.994		0.759	
VOID RATIO (e)		1.225		1.569		1.637		2.449	
POROSITY (n)		0.551		0.611		0.621		0.710	
DEGREE OF SATURATION (Sr)	%	97.878		89.747		89.743		96.929	

		Project		A PLOTIGA	SUPPLY S		RN BALI WAT
		Client	NIHON SU	IDOI CONSUL		IJIEN	
		Location	Bali		IANI	Date	28-Jul-11
		Tested By	Ria Irmawa	n			M.Iqbal, ST
		,					
		PARTIC	CLE SIZE [DISTRIBUTIO	ON ANALYSIS	3	
	: BH - 01 : 1.50 - 2.00 r	n	Sample Typ Sample Des	e : cription :	UDS silty CLAY		
SIEVE ANA	LYSIS (ASTM	D 422)					
Initial weight	of dry soil :	43.36	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%	4	
3"	101.600	0.000	0.00	0.00	100.00	-	
2"	75.000	0.000	0.00	0.00	100.00	-	
<u>1 1/2"</u> 1"	38.100 25.400	0.000	0.00	0.00	100.00	-	
3/4"	19.050	0.000	0.00	0.00	100.00	1	
1/2"	19.050	0.000	0.00	0.00	100.00	1	
3/8"	9.525	0.000	0.00	0.00	100.00	1	
4	4.760	0.810	1.87	1.87	98.13	1	
8	2.380	1.170	2.70	4.57	95.43	1	
20	0.840	2.250	5.19	9.76	90.24		
40	0.420	3.300	7.61	17.37	82.63		
80	0.177	6.260	14.44	31.80	68.20	4	
100	0.149	1.570	3.62	35.42	64.58	4	
200	0.074	4.000	9.23	44.65	55.35	-	
Pan		19.36	44.65	89.30			
		60.00	,	Tube Ne			. 4
Weight of so Specific Gra	oil : vity (Gs) :	60.00 2.595	g	Tube No. Hydrometer N	0.		: 1 : A1
Meniscus Co		-2.00		Temperature C			: 1.01
Viscosity of		0.8711		Dispersant Co			: 4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	К
	min		ļ	mm		mm	%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	24.0	22.0	138.77	22.2	0.0608	52.13
	1	23.0	21.0	140.33	21.2	0.0432	49.78
	1 2	22.0	20.0 18.0	141.89 145.01	20.2 18.2	0.0307	47.44 42.75
	2	1 20 0	1 10.0		18.2	0.0197	35.71
	5	20.0		1 <u>4</u> u ƙu	10.4		
	5 15	17.0	15.0	149.69 152.81		0.0082	31.02
	5	17.0 15.0	15.0 13.0	152.81	13.2	0.0082	31.02 28.67
	5 15 30 60	17.0	15.0			0.0082 0.0059 0.0029	31.02 28.67 25.16
	5 15 30	17.0 15.0 14.0	15.0 13.0 12.0	152.81 154.37	13.2 12.2	0.0059	28.67

		Project		U ESHOA	SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSULT		191100	
		Location	Bali			Date	28-Jul-11
		Tested By	Ria Irmawar	1		Checked By	M.Iqbal, ST
		-				-	iniqual, o i
		PARTIC	CLE SIZE [DISTRIBUTIO	ON ANALYSIS	\$	
lole No.	: BH - 01		Sample Typ	e :	UDS		
Depth	: 15.50 - 16.00	m	Sample Des	cription :	silty CLAY		
	LYSIS (ASTM [1 422)					
		<i>,</i> 422)					
nitial weigh	t of dry soil :	29.32	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent		
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%		
3"	101.600	0.000	0.00	0.00	100.00	4	
2" 1 1/2"	75.000 38.100	0.000	0.00	0.00	100.00 100.00	-	
1 172" 1"	25.400	0.000	0.00	0.00	100.00	-	
3/4"	19.050	0.000	0.00	0.00	100.00	-	
1/2"	12.700	0.000	0.00	0.00	100.00	-	
3/8"	9.525	0.000	0.00	0.00	100.00	1	
4	4.760	0.000	0.00	0.00	100.00	1	
8	2.380	0.000	0.00	0.00	100.00		
20	0.840	0.000	0.00	0.00	100.00		
40	0.420	0.380	1.30	1.30	98.70		
80	0.177	0.370	1.26	2.56	97.44	4	
100	0.149	0.080	0.27	2.83	97.17	4	
200	0.074	0.490	1.67	4.50	95.50	4	
Pan	1	1.32	4.50	9.00		J	
HYDROME	TER ANALYSIS	(BS 1377 : 19	75)				
Neight of so	: lic	60.00	g	Tube No.		:	: 1
	avity (Gs) :	2.595		Hydrometer N		:	A1
Maniaaua	orrection.c :	-2.00		Temperature C			1.01
	water :	0.8711		Dispersant Cor		-	4
viscosity of	Elene - d			Effective	Fully	Particle Diameter	Percentage Finer Than D
√iscosity of	Elapsed	Hydrometer	TRUE	danth	Corrected	Diameter	
	Time	reading	Reading	depth HR	Corrected Reading	п	I K
√iscosity of	Time t			HR	Corrected Reading	D mm	K %
√iscosity of	Time	reading R'h	Reading Rh	HR mm	Reading	mm	%
√iscosity of	Time t min	reading R'h 0.0	Reading	HR	Reading 0.0		
√iscosity of	Time t min 0	reading R'h	Reading Rh 0.0	HR mm 0.000	Reading	mm 0.0000	% 0.00
√iscosity of	Time t min 0 0.5	reading R'h 0.0 28.0	Reading Rh 0.0 26.0	HR mm 0.000 132.53	Reading 0.0 26.2	mm 0.0000 0.0594	% 0.00 90.96
√iscosity of	Time t min 0 0.5 1	reading R'h 0.0 28.0 27.5	Reading Rh 0.0 26.0 25.5	HR mm 0.000 132.53 133.31	Reading 0.0 26.2 25.7	mm 0.0000 0.0594 0.0422	% 0.00 90.96 89.22
√iscosity of	Time t min 0 0.5 1 2	reading R'h 0.0 28.0 27.5 26.0	Reading Rh 0.0 26.0 25.5 24.0	HR mm 0.000 132.53 133.31 135.65	Reading 0.0 26.2 25.7 24.2	mm 0.0000 0.0594 0.0422 0.0301	% 0.00 90.96 89.22 84.02
√iscosity of	Time t min 0 0.5 1 2 5 5 15 30	reading R'h 0.0 28.0 27.5 26.0 24.0 21.0 20.0	Reading Rh 0.0 26.0 25.5 24.0 22.0 19.0 18.0	HR mm 0.000 132.53 133.31 135.65 138.77 143.45 145.01	Reading 0.0 26.2 25.7 24.2 22.2 19.2 18.2	mm 0.0000 0.0594 0.0422 0.0301 0.0192 0.0113 0.0080	% 0.00 90.96 89.22 84.02 77.09 66.68 63.21
√iscosity of	Time t min 0 0.5 1 2 5 15 30 60	reading R'h 0.0 28.0 27.5 26.0 24.0 21.0 20.0 19.0	Reading Rh 26.0 25.5 24.0 22.0 19.0 18.0 17.0	HR mm 0.000 132.53 133.31 135.65 138.77 143.45 145.01 146.57	Reading 0.0 26.2 25.7 24.2 22.2 19.2 18.2 17.2	mm 0.0000 0.0594 0.0422 0.0301 0.0192 0.0113 0.0080 0.0057	% 0.00 90.96 89.22 84.02 77.09 66.68 63.21 59.75
√iscosity of	Time t min 0 0.5 1 2 5 5 15 30	reading R'h 0.0 28.0 27.5 26.0 24.0 21.0 20.0	Reading Rh 0.0 26.0 25.5 24.0 22.0 19.0 18.0	HR mm 0.000 132.53 133.31 135.65 138.77 143.45 145.01	Reading 0.0 26.2 25.7 24.2 22.2 19.2 18.2	mm 0.0000 0.0594 0.0422 0.0301 0.0192 0.0113 0.0080	% 0.00 90.96 89.22 84.02 77.09 66.68 63.21

		Project		NV LOHGA	SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSUL'		ISIENI	
		Location	Bali	Dereensel	171111	Date	28-Jul-11
		Tested By	Ria Irmawar	1			M.Iqbal, ST
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-			INI.Iqual, 01
		PARTIC	CLE SIZE [DISTRIBUTIO	ON ANALYSIS	5	
lole No.	: BH - 01		Sample Typ	e :	UDS		
Depth	: 19.50 - 20.00	m	Sample Des	cription :	silty CLAY		
SIEVE ANA	LYSIS (ASTM I	D 422)					
nitial weight	of dry soil :	33.95	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	1	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%	4	
3"	101.600	0.000	0.00	0.00	100.00	4	
2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	4	
3/4" 1/2"	19.050	0.000	0.00	0.00	100.00	4	
3/8"	12.700 9.525	0.000	0.00	0.00	100.00 100.00	4	
4	4.760	0.000	0.00	0.00	100.00	-	
8	2.380	0.000	1.24	1.24	98.76	4	
20	0.840	0.420	2.30	3.53	96.47	-	
40	0.420	0.350	1.03	4.57	95.43	4	
80	0.177	0.340	1.00	5.57	94.43	-	
100	0.149	0.060	0.18	5.74	94.26	1	
200	0.074	1.000	2.95	8.69	91.31	1	
Pan		2.95	8.69	17.38			
						-	
HYDROMET	TER ANALYSIS	6 (BS 1377 : 19	175)				
Neight of so	oil :	60.00	g	Tube No.		:	1
-	vity (Gs) :	2.595	-	Hydrometer N	o.		A1
Meniscus Co		-2.00		Temperature C			1.01
∕iscosity of	water :	0.8711		Dispersant Cor	rection, x	:	4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
	Time	reading	Reading	depth	Corrected	Diameter	Than D
Time	l t	R'h	Rh	HR	Reading	D	K
Time			1	mm		mm	%
Time	min					0.0000	0.00
Time	min 0	0.0	0.0	0.000	0.0		
Time	min 0 0.5	31.0	29.0	127.85	29.2	0.0584	87.54
Time	min 0 0.5 1	31.0 30.0	29.0 28.0	127.85 129.41	29.2 28.2	0.0584 0.0415	87.54 84.54
Time	min 0 0.5 1 2	31.0 30.0 29.0	29.0 28.0 27.0	127.85 129.41 130.97	29.2 28.2 27.2	0.0584 0.0415 0.0295	87.54 84.54 81.55
Time	min 0 0.5 1 2 5	31.0 30.0 29.0 27.0	29.0 28.0 27.0 25.0	127.85 129.41 130.97 134.09	29.2 28.2 27.2 25.2	0.0584 0.0415 0.0295 0.0189	87.54 84.54 81.55 75.56
Time	min 0 0.5 1 2 5 15	31.0 30.0 29.0 27.0 25.0	29.0 28.0 27.0 25.0 23.0	127.85 129.41 130.97 134.09 137.21	29.2 28.2 27.2 25.2 23.2	0.0584 0.0415 0.0295 0.0189 0.0110	87.54 84.54 81.55 75.56 69.57
Time	min 0 0.5 1 2 5 15 30	31.0 30.0 29.0 27.0 25.0 23.0	29.0 28.0 27.0 25.0 23.0 21.0	127.85 129.41 130.97 134.09 137.21 140.33	29.2 28.2 27.2 25.2 23.2 21.2	0.0584 0.0415 0.0295 0.0189 0.0110 0.0079	87.54 84.54 81.55 75.56 69.57 63.58
Time	min 0 0.5 1 2 5 15 30 60	31.0 30.0 29.0 27.0 25.0 23.0 21.0	29.0 28.0 27.0 25.0 23.0 21.0 19.0	127.85 129.41 130.97 134.09 137.21 140.33 143.45	29.2 28.2 27.2 25.2 23.2 21.2 19.2	0.0584 0.0415 0.0295 0.0189 0.0110 0.0079 0.0056	87.54 84.54 81.55 75.56 69.57 63.58 57.59
Time	min 0 0.5 1 2 5 15 30	31.0 30.0 29.0 27.0 25.0 23.0	29.0 28.0 27.0 25.0 23.0 21.0	127.85 129.41 130.97 134.09 137.21 140.33	29.2 28.2 27.2 25.2 23.2 21.2	0.0584 0.0415 0.0295 0.0189 0.0110 0.0079	87.54 84.54 81.55 75.56 69.57 63.58

		Project		NVESTIGA	SUPPLY S		N BALI WAT
		Client	NIHON SUI	DOI CONSULT		DISIEN	
		Location	Bali	DOICONSOLI		Date	D Aug 11
		Tested By	Ria Irmawar	1		Checked By	2-Aug-11
		Tested By	ixia iiiiawai	1		officered by	wi.iqbai, Si
		PARTI	CLE SIZE I	DISTRIBUTIC	ON ANALYSI	6	
	: BH - 02 : 4.50 - 5.00		Sample Typ Sample Des		UDS silty CLAY		
SIEVE ANA	LYSIS (ASTM	D 422)					
Initial weigh	t of dry soil :	34.51	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%	4	
3"	101.600	0.000	0.00	0.00	100.00	4	
2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	4	
3/4"	19.050	0.000	0.00	0.00	100.00	4	
1/2"	12.700	0.000	0.00	0.00	100.00	4	
3/8"	9.525	0.000	0.00	0.00	100.00	-	
4	4.760	0.000	0.00	0.00	100.00	-	
8	2.380	0.000	0.00	0.00	100.00	-	
20 40	0.840	0.020	0.06	0.06	99.94	-	
80	0.420	0.040	0.12	0.17 1.48	99.83 98.52	-	
100	0.149	0.430	1.30	2.75	97.25	-	
200	0.074	4.560	13.21	15.97	84.03	-	
Pan	0.074	5.51	15.97	31.93	04.00	-	
HYDROME'		S (BS 1377 : 19	175)			-	
Weight of s		60.00	g	Tube No.			1
0		2.623		Hydrometer No			A1
Specific Gra	amastian			Temperature C	orrection, mt		1.01 4
Meniscus C	orrection,c:	-2.00 0.8711		Dispersant Con	rection v	•	-
	water :	0.8711	TRUE	Dispersant Con			Percentage Einer
Meniscus C Viscosity of	water : Elapsed	0.8711 Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Meniscus C	water : Elapsed Time	0.8711 Hydrometer reading	Reading	Effective depth	Fully Corrected	Particle Diameter	Than D
Meniscus C Viscosity of	water : Elapsed Time t	0.8711 Hydrometer		Effective depth HR	Fully	Particle Diameter D	Than D K
Meniscus C Viscosity of	water : Elapsed Time t min	0.8711 Hydrometer reading R'h	Reading Rh	Effective depth HR mm	Fully Corrected Reading	Particle Diameter D mm	Than D K %
Meniscus C Viscosity of	water : Elapsed Time t min 0	0.8711 Hydrometer reading R'h 0.0	Reading Rh 0.0	Effective depth HR	Fully Corrected Reading 0.0	Particle Diameter D mm 0.0000	Than D K % 0.00
Meniscus C Viscosity of	water : Elapsed Time t min	0.8711 Hydrometer reading R'h 0.0 29.0	Reading Rh 0.0 27.0	Effective depth HR mm 0.000 130.97	Fully Corrected Reading 0.0 27.2	Particle Diameter D mm	Than D K % 0.00 79.69
Meniscus C Viscosity of	water : Elapsed Time t min 0 0.5	0.8711 Hydrometer reading R'h 0.0	Reading Rh 0.0	Effective depth HR mm 0.000	Fully Corrected Reading 0.0	Particle Diameter D mm 0.0000 0.0586	Than D K % 0.00
Meniscus C Viscosity of	water : Elapsed Time t min 0 0.5 1	0.8711 Hydrometer reading R'h 0.0 29.0 27.0	Reading Rh 0.0 27.0 25.0	Effective depth HR mm 0.000 130.97 134.09	Fully Corrected Reading 0.0 27.2 25.2	Particle Diameter D mm 0.0000 0.0586 0.0419	Than D K % 0.00 79.69 73.84
Meniscus C Viscosity of	water : Elapsed Time t min 0 0.5 1 2	0.8711 Hydrometer reading R'h 0.0 29.0 27.0 26.0	Reading Rh 0.0 27.0 25.0 24.0	Effective depth HR mm 0.000 130.97 134.09 135.65	Fully Corrected Reading 0.0 27.2 25.2 24.2	Particle Diameter D mm 0.0000 0.0586 0.0419 0.0298	Than D K % 0.00 79.69 73.84 70.91
Meniscus C Viscosity of	water : Elapsed Time t min 0 0.5 1 2 2 5	0.8711 Hydrometer reading R'h 0.0 29.0 27.0 26.0 25.0	Reading Rh 0.0 27.0 25.0 24.0 23.0	Effective depth HR mm 0.000 130.97 134.09 135.65 137.21	Fully Corrected Reading 0.0 27.2 25.2 24.2 23.2	Particle Diameter D mm 0.0000 0.0586 0.0419 0.0298 0.0190	Than D K % 0.00 79.69 73.84 70.91 67.98
Meniscus C Viscosity of	water : Elapsed Time t min 0 0.5 1 2 5 15	0.8711 Hydrometer reading R'h 0.0 29.0 27.0 26.0 25.0 22.0	Reading Rh 27.0 25.0 24.0 23.0 20.0	Effective depth HR mm 0.000 130.97 134.09 135.65 137.21 141.89	Fully Corrected Reading 0.0 27.2 25.2 24.2 23.2 20.2	Particle Diameter D mm 0.0000 0.0586 0.0419 0.0298 0.0190 0.0111	Than D K % 0.00 79.69 73.84 70.91 67.98 59.20
Meniscus C Viscosity of	water Elapsed Time t min 0 0.5 1 2 5 15 30	0.8711 Hydrometer reading R'h 0.0 29.0 27.0 26.0 25.0 25.0 22.0 20.0	Reading Rh 27.0 25.0 24.0 23.0 20.0 18.0	Effective depth HR mm 0.000 130.97 134.09 135.65 137.21 141.89 145.01	Fully Corrected Reading 0.0 27.2 25.2 24.2 23.2 20.2 18.2	Particle Diameter D mm 0.0000 0.0586 0.0419 0.0298 0.0190 0.0111 0.0080	Than D K % 0.00 79.69 73.84 70.91 67.98 59.20 53.35

		Project			SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSUL'			
		Location	Bali			Date	2-Aug-11
		Tested By	Ria Irmawar	1		Checked By	
						-	Initiqueit, et
		PARTI		DISTRIBUTIO	ON ANALYSIS	5	
	: BH - 02		Sample Typ		UDS		
Depth	: 6.50 - 7.00 r	n	Sample Des	cription :	clayey SAND		
SIEVE ANA	LYSIS (ASTM	D 422)					
Initial weight	of dry soil :	39.69	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%	4	
3"	101.600	0.000	0.00	0.00	100.00	4	
2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	-	
3/4" 1/2"	19.050 12.700	0.000	0.00	0.00	100.00 100.00	-	
3/8"	9.525	0.000	0.00	0.00	100.00	-	
4	4.760	0.000	0.00	0.00	100.00	-	
8	2.380	0.260	0.66	0.66	99.34	1	
20	0.840	1.290	3.25	3.91	96.09	1	
40	0.420	3.380	8.52	12.42	87.58	1	
80	0.177	8.480	21.37	33.79	66.21		
100	0.149	2.330	5.87	39.66	60.34	4	
200	0.074	5.950	14.99	54.65	45.35	4	
Pan		21.69	54.65	109.30			
HYDROMET		S (BS 1377 : 19	975)				
		· · · · · · · · · · · · · · · · · · ·	·)				
Weight of so	oil :	60.00	g	Tube No.		:	: 1
Specific Gra	vity (Gs) :	2.653		Hydrometer N	ο.	:	: A1
Meniscus Co		-2.00		Temperature C			: 1.01
Viscosity of	1	0.8711		Dispersant Co	1	-	: 4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
T .	Time	reading B'b	Reading	depth	Corrected	Diameter	Than D
Time	l t	R'h	Rh	HR mm	Reading	D mm	K %
Time	min			0.000	0.0	0.0000	0.00
Time	min 0	0.0	1 0 0	0.000	0.0	0.0617	41.01
Time	min 0 0.5	0.0	0.0	148.13	16.2		
Time	0	0.0 18.0 17.0	0.0 16.0 15.0	148.13 149.69	16.2 15.2		38.48
Time	0 0.5	18.0	16.0	148.13 149.69 151.25		0.0439	38.48 35.96
Time	0 0.5 1	18.0 17.0	16.0 15.0	149.69	15.2	0.0439	
Time	0 0.5 1 2	18.0 17.0 16.0	16.0 15.0 14.0	149.69 151.25	15.2 14.2	0.0439 0.0312	35.96
Time	0 0.5 1 2 5 15 30	18.0 17.0 16.0 14.0 13.0	16.0 15.0 14.0 12.0 12.0 11.0	149.69 151.25 154.37 154.37 155.93	15.2 14.2 12.2 12.2 11.2	0.0439 0.0312 0.0199 0.0115 0.0082	35.96 30.90 30.90 28.38
Time	0 0.5 1 2 5 15 30 60	18.0 17.0 16.0 14.0 13.0 12.0	16.0 15.0 14.0 12.0 12.0 11.0 10.0	149.69 151.25 154.37 154.37 155.93 157.49	15.2 14.2 12.2 12.2 11.2 10.2	0.0439 0.0312 0.0199 0.0115 0.0082 0.0058	35.96 30.90 30.90 28.38 25.85
Time	0 0.5 1 2 5 15 30	18.0 17.0 16.0 14.0 13.0	16.0 15.0 14.0 12.0 12.0 11.0	149.69 151.25 154.37 154.37 155.93	15.2 14.2 12.2 12.2 11.2	0.0439 0.0312 0.0199 0.0115 0.0082	35.96 30.90 30.90 28.38

		Project		WESIIGA	SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSUL'			
		Location	Bali			Date	2-Aug-11
		Tested By	Ria Irmawar	1		Checked By	M.Iqbal, ST
		-					iniqual, et
		PARTI		DISTRIBUTIO	ON ANALYSIS	5	
Hole No.	: BH - 02		Sample Typ	e :	UDS		
	: 8.50 - 9.00 r	n		cription :	silty CLAY		
SIEVE ANAI	YSIS (ASTMI	D 422)					
Initial weight	of dry soil :	33.98	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	٦	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%		
3"	101.600	0.000	0.00	0.00	100.00	4	
2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	4	
3/4"	19.050	0.000	0.00	0.00	100.00	-	
1/2"	12.700	0.000	0.00	0.00	100.00	-	
3/8"	9.525	0.000	0.00	0.00	100.00	_	
4	4.760	0.090	0.26	0.26	99.74	_	
8	2.380	0.470	1.38	1.65	98.35	-	
20 40	0.840	1.200	3.53	5.18	94.82 90.55	-	
80	0.420	1.450 2.310	4.27 6.80	9.45 16.24	83.76	-	
100	0.149	0.580	1.71	17.95	82.05	-	
200	0.074	2.880	8.48	26.43	73.57	-	
Pan	0.074	8.98	26.43	52.85	10.07		
						-	
	ER ANALYSI	S (BS 1377 : 19	975)				
Weight of so	il :	60.00	g	Tube No.		:	: 1
Specific Gra	vity (Gs) :	2.653		Hydrometer N	ο.	:	: A1
Meniscus Co		-2.00		Temperature C			: 1.01
Viscosity of v		0.8711		Dispersant Cor	rection, x		: 4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	K
	min			mm		mm	%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	1 05	25.0 24.0	23.0	137.21	23.2	0.0594	68.57
		. /4 !!	22.0	138.77 141.89	22.2		65.62
	1		20.0	14 89	20.2	0.0302	59.71 53.81
	1 2	22.0	20.0		10.0	1 11119.5	1 33 61
	1 2 5	22.0 20.0	18.0	145.01	18.2		
	1 2 5 15	22.0 20.0 18.0	18.0 16.0	145.01 148.13	16.2	0.0113	47.90
	1 2 5 15 30	22.0 20.0 18.0 17.0	18.0 16.0 15.0	145.01 148.13 149.69	16.2 15.2	0.0113 0.0080	47.90 44.95
	1 2 5 15 30 60	22.0 20.0 18.0 17.0 16.0	18.0 16.0 15.0 14.0	145.01 148.13 149.69 151.25	16.2 15.2 14.2	0.0113 0.0080 0.0057	47.90 44.95 42.00
	1 2 5 15 30	22.0 20.0 18.0 17.0	18.0 16.0 15.0	145.01 148.13 149.69	16.2 15.2	0.0113 0.0080	47.90 44.95

		Project			SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSUL'			
		Location	Bali			Date	3-Aug-11
		Tested By	Ria Irmawar	1		Checked By	
		PARTIC	CLE SIZE [DISTRIBUTIO	ON ANALYSIS	5	
Hole No. :	: BH - 03		Sample Typ	e :	UDS		
•	: 2.50 - 3.00 r		Sample Des	cription :	silty CLAY		
SIEVE ANAL	LYSIS (ASTM	D 422)					
Initial weight	of dry soil :	39.33	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
			~	Retained			
~	mm		%	%	%	4	
3"	101.600	0.000	0.00	0.00	100.00	4	
2" 1 1/2"	75.000 38.100	0.000	0.00	0.00	100.00 100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	-	
3/4"	19.050	0.000	0.00	0.00	100.00	-	
1/2"	12.700	0.000	0.00	0.00	100.00	1	
3/8"	9.525	0.000	0.00	0.00	100.00	1	
4	4.760	1.900	4.83	4.83	95.17	1	
8	2.380	1.120	2.85	7.68	92.32		
20	0.840	2.720	6.92	14.59	85.41		
40	0.420	3.450	8.77	23.37	76.63		
80	0.177	5.750	14.62	37.99	62.01	4	
100	0.149	1.350	3.43	41.42	58.58	-	
200 Pan	0.074	3.040 19.33	7.73 49.15	49.15 98.30	50.85	-	
			•		1	_	
	ER ANALTSR	S (BS 1377 : 19	975 <u>)</u>				
Weight of so		60.00	g	Tube No.	_		1
Specific Grav Meniscus Co	vity (Gs) :	2.653 -2.00		Hydrometer N Temperature C			A1 1.01
Viscosity of v	,	-2.00 0.8711		Dispersant Cor			: 4
seesency of a	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	К
	min			mm		mm	%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	20.0	18.0	145.01	18.2	0.0611	46.49
	1	19.0	17.0	146.57	17.2	0.0434	43.94
	2	18.0	16.0	148.13	16.2	0.0309	41.39
	5	16.0	14.0	151.25	14.2	0.0197	36.29
	15	15.0	13.0	152.81	13.2	0.0114	33.74
	1 00	14.0	12.0	154.37 155.93	12.2 11.2	0.0081	31.19
	30	12.0		100 83	II.Z	0.0058	28.63
	60	13.0	11.0		1	0 00 20	26.09
		13.0 12.0 10.0	11.0 10.0 8.0	157.49 160.61	10.2 8.2	0.0029	26.08 20.98

		Project			SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSUL'		1012.11	
		Location	Bali			Date	3-Aug-11
		Tested By	Ria Irmawar	1		Checked By	
		PARTI		DISTRIBUTIO		3	
						-	
lole No.	: BH - 03		Sample Typ	e :	UDS		
Depth	: 8.50 - 9.00 r	n	Sample Des	cription :	silty SAND		
SIEVE ANAI	LYSIS (ASTM	D 422)					
Initial weight	of dry soil :	40.14	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
			0/	Retained	0/		
3"	mm 101.600	0.000	% 0.00	% 0.00	% 100.00	4	
3" 2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	1	
1"	25.400	0.000	0.00	0.00	100.00	1	
3/4"	19.050	0.000	0.00	0.00	100.00	1	
1/2"	12.700	0.000	0.00	0.00	100.00]	
3/8"	9.525	0.000	0.00	0.00	100.00		
4	4.760	5.060	12.61	12.61	87.39		
8	2.380	4.130	10.29	22.89	77.11		
20	0.840	3.920	9.77	32.66	67.34	-	
40	0.420	3.140	7.82	40.48	59.52	4	
80	0.177	4.000	9.97	50.45	49.55	-	
100	0.149	1.810	4.51	54.96	45.04	-	
200 Pan	0.074	5.080 27.14	12.66 67.61	67.61 135.23	32.39	-	
1 un	1	21.14	01.01	100.20		4	
HYDROMET		S (BS 1377 : 19	975)				
Weight of so		60.00	g	Tube No.			1
Specific Gra Meniscus Co	vity (Gs) :	2.653 -2.00		Hydrometer N Temperature C			A1 1.01
Viscosity of		0.8711		Dispersant Cor			: 4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t	R'h	Rh	HR	Reading	D	K
	min			mm		mm	%
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	13.0	11.0	155.93	11.2	0.0633	28.06
	1	12.0	10.0	157.49	10.2	0.0450	25.56
	2	11.0	9.0	159.05	9.2	0.0320	23.06
		10.5	8.5	159.83	8.7	0.0203	21.81
	5		8.0	160.61	8.2 6.2	0.0117	20.56
	15	10.0	1	4 00 70	I 67	0.0084	15.56
	15 30	8.0	6.0	163.73			10.59
	15 30 60	8.0 6.0	6.0 4.0	166.85	4.2	0.0060	10.56
	15 30	8.0	6.0				10.56 3.07 -4.43

		Project			SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSULT		101201	
		Location	Bali			Date	11-Aug-11
		Tested By	Ria Irmawar	1		Checked By	M.Iqbal, ST
		PARTIC	CLE SIZE I	DISTRIBUTIO	ON ANALYSIS		•
Depth :	: BH - 04 : 2.50 - 3.00 _YSIS (ASTM	D 422)	Sample Typ Sample Des	e : cription :	UDS silty CLAY		
Initial weight		43.04	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%		
3"	101.600	0.000	0.00	0.00	100.00		
2"	75.000	0.000	0.00	0.00	100.00		
1 1/2"	38.100	0.000	0.00	0.00	100.00		
1"	25.400	0.000	0.00	0.00	100.00	4	
3/4"	19.050	0.000	0.00	0.00	100.00	4	
1/2"	12.700	0.000	0.00	0.00	100.00	4	
3/8"	9.525	0.000	0.00	0.00	100.00	-	
4	4.760	2.040	4.74	4.74	95.26	-	
8	2.380	0.560	1.30	6.04	93.96	-	
20 40	0.840	2.110 3.380	4.90 7.85	10.94 18.80	89.06 81.20	-	
80	0.420	5.600	13.01	31.81	68.19	-	
100	0.149	1.290	3.00	34.80	65.20	-	
200	0.074	3.560	8.27	43.08	56.92	-	
Pan	0.074	18.54	43.08	86.15	00.02	-	
Weight of so	il : vity (Gs) : prrection,c : vater :	-2.00 0.8711	g	Tube No. Hydrometer N Temperature C Dispersant Cor	orrection, mt rection, x	:	1 A1 1.01 4
	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time	reading	Reading	depth	Corrected	Diameter	Than D
	t min	R'h	Rh	HR mm	Reading	D mm	K %
	0	0.0	0.0	0.000	0.0	0.0000	0.00
	0.5	24.5	22.5	137.99	22.7	0.0596	52.97
	1	23.0	21.0	140.33	21.2	0.0425	49.47
	2	22.0	20.0	141.89	20.2	0.0302	47.14
	5	21.5	19.5	142.67	19.7	0.0192	45.98
	15	19.5	17.5	145.79	17.7	0.0112	41.32
		18.0	16.0	148.13	16.2 15.2	0.0080	37.82
	30		1 45 0		1 15 2	0.0057	35.49
	60	17.0	15.0	149.69			
			15.0 13.5 11.5	152.03 155.15	13.7 11.7	0.0029	31.99 27.33

		Project		U LOHOA	SUPPLY S		N BALI WAT
		Client	NIHON SUI	DOI CONSULT		101100	
		Location	Bali			Date	11-Aug-11
		Tested By	Ria Irmawar	1		Checked By	M.Iqbal, ST
							····· •
		PARTIC	CLE SIZE [DISTRIBUTIO	ON ANALYSIS	5	
lole No. :	BH - 04		Sample Typ	e :	UDS		
	4.50 - 5.00			cription :	clayey SAND		
	YSIS (ASTM	D 422)					
	.1313 (ASTIN	0 422)					
nitial weight	of dry soil :	41.60	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent		
No.	Opening	Retained	Retained	Percent	Finer		
			~	Retained	~		
0.	mm	0.000	%	%	%	4	
3" 2"	101.600 75.000	0.000	0.00	0.00	100.00 100.00	-	
	38.100	0.000	0.00	0.00	100.00	4	
11/2	25.400	0.000	0.00	0.00	100.00	1	
3/4"	19.050	0.000	0.00	0.00	100.00		
1/2"	12.700	0.000	0.00	0.00	100.00	1	
3/8"	9.525	0.000	0.00	0.00	100.00	1	
4	4.760	0.130	0.31	0.31	99.69		
8	2.380	0.120	0.29	0.60	99.40		
20	0.840	1.180	2.84	3.44	96.56	4	
40	0.420	3.780	9.09	12.52	87.48	4	
80	0.177	8.580	20.63	33.15	66.85	4	
100	0.149	3.320	7.98	41.13	58.87	-	
200 Pan	0.074	5.490 22.60	13.20 54.33	54.33 108.65	45.67	-	
T dif		22.00	04.00	100.00		1	
HYDROMET	ER ANALYSIS	6 (BS 1377 : 19	175)				
Neight of so		60.00	g	Tube No.			1
	vity (Gs) :			Hydrometer N			A1
Meniscus Co ∕iscosity of v		-2.00		Temperature C			1.01
viscosity of v	1	0.8711	TRUE	Dispersant Cor Effective	1	Particle	4
Time	Elapsed Time	Hydrometer reading	Reading	depth	Fully Corrected	Diameter	Percentage Finer Than D
	t	R'h	Rh	HR	Reading	Diameter	K
	min			mm		mm	%
		0.0	0.0	0.000	0.0	0.0000	0.00
	0			146.57	17.2	0.0614	41.54
	0 0.5	19.0	17.0			0.0435	40.33
	0.5 1	19.0 18.5	17.0	147.35	16.7		
	0.5 1 2			147.35 148.13	16.7 16.2	0.0309	39.13
	0.5 1 2 5	18.5 18.0 17.0	16.5	148.13 149.69	16.2 15.2	0.0196	36.72
	0.5 1 2 5 15	18.5 18.0 17.0 16.0	16.5 16.0 15.0 14.0	148.13 149.69 151.25	16.2 15.2 14.2	0.0196 0.0114	36.72 34.31
	0.5 1 2 5 15 30	18.5 18.0 17.0 16.0 14.5	16.5 16.0 15.0 14.0 12.5	148.13 149.69 151.25 153.59	16.2 15.2 14.2 12.7	0.0196 0.0114 0.0081	36.72 34.31 30.69
	0.5 1 2 5 15 30 60	18.5 18.0 17.0 16.0 14.5 14.0	16.5 16.0 15.0 14.0 12.5 12.0	148.13 149.69 151.25 153.59 154.37	16.2 15.2 14.2 12.7 12.2	0.0196 0.0114 0.0081 0.0058	36.72 34.31 30.69 29.48
	0.5 1 2 5 15 30	18.5 18.0 17.0 16.0 14.5	16.5 16.0 15.0 14.0 12.5	148.13 149.69 151.25 153.59	16.2 15.2 14.2 12.7	0.0196 0.0114 0.0081	36.72 34.31 30.69

		Project		W LOIIGA	SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSUL'			
		Location	Bali	201001.001		Date	11-Aug-11
		Tested By	Ria Irmawar	1			M.Iqbal, ST
						-	Mildoui, OT
		PARTIC	CLE SIZE [DISTRIBUTIO	ON ANALYSIS	5	
	BH - 04		Sample Typ		UDS		
Depth	8.50 - 9.00		Sample Des	cription :	clayey SAND		
SIEVE ANAI	YSIS (ASTM	D 422)					
nitial weight	of dry soil :	38.45	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	1	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%		
3"	101.600	0.000	0.00	0.00	100.00	4	
2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	4	
3/4"	19.050	0.000	0.00	0.00	100.00	4	
1/2" 3/8"	12.700 9.525	0.000	0.00	0.00	100.00	-	
4	4.760	0.000	1.74	1.74	98.26	-	
8	2.380	1.220	3.17	4.92	95.08	4	
20	0.840	2.240	5.83	10.74	89.26	1	
40	0.420	7.750	20.16	30.90	69.10	1	
80	0.177	5.750	14.95	45.85	54.15	1	
100	0.149	1.650	4.29	50.14	49.86]	
200	0.074	2.170	5.64	55.79	44.21		
Pan		21.45	55.79	111.57			
HYDROMET	ER ANALYSIS	S (BS 1377 : 19	175)				
Neight of so		60.00	g	Tube No.			1
	vity (Gs) :			Hydrometer N			A1
Meniscus Co Viscosity of v		-2.00 0.8711		Temperature C Dispersant Co			: 1.01 : 4
i isoosity of	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
	Time	reading	Reading	depth	Corrected	Diameter	Than D
Time	t	R'h	Rh	HR	Reading	D	K
Time	min			mm	j	mm	%
Time		0.0	0.0	0.000	0.0	0.0000	0.00
Time	0			149.69	15.2	0.0620	39.73
Time	0 0.5	17.0	15.0		1	0.0441	37.12
Time	0.5 1		15.0 14.0	151.25	14.2		
Time	0.5 1 2	17.0 16.0 16.0	14.0 14.0	151.25	14.2	0.0312	37.12
Time	0.5 1 2 5	17.0 16.0 16.0 15.0	14.0 14.0 13.0	151.25 152.81	14.2 13.2	0.0198	34.51
Time	0.5 1 2 5 15	17.0 16.0 16.0 15.0 14.0	14.0 14.0 13.0 12.0	151.25 152.81 154.37	14.2 13.2 12.2	0.0198 0.0115	34.51 31.90
Time	0.5 1 2 5 15 30	17.0 16.0 15.0 14.0 13.0	14.0 14.0 13.0 12.0 11.0	151.25 152.81 154.37 155.93	14.2 13.2 12.2 11.2	0.0198 0.0115 0.0082	34.51 31.90 29.29
Time	0.5 1 2 5 15 30 60	17.0 16.0 15.0 14.0 13.0 12.0	14.0 14.0 13.0 12.0 11.0 10.0	151.25 152.81 154.37 155.93 157.49	14.2 13.2 12.2 11.2 10.2	0.0198 0.0115 0.0082 0.0058	34.51 31.90 29.29 26.68
Time	0.5 1 2 5 15 30	17.0 16.0 15.0 14.0 13.0	14.0 14.0 13.0 12.0 11.0	151.25 152.81 154.37 155.93	14.2 13.2 12.2 11.2	0.0198 0.0115 0.0082	34.51 31.90 29.29

		Project		WESTIGA	SUPPLY S		RN BALI WAT
		Client	NIHON SUI	DOI CONSULT		TOTEM	
		Location	Bali			Date	11-Aug-11
		Tested By	Ria Irmawar	1		Checked By	M.Iqbal, ST
		-					Initializati, CT
		PARTIC		DISTRIBUTIO	ON ANALYSIS	6	
	: BH - 04		Sample Typ		UDS		
Depth	: 11.50 - 12.00		Sample Des	cription :	silty CLAY		
SIEVE ANAI	LYSIS (ASTM I	D 422)					
Initial weight	of dry soil :	34.52	g				
Sieve	Sieve	Wt. Soil	Percent	Cumulative	Percent	7	
No.	Opening	Retained	Retained	Percent	Finer		
				Retained			
	mm		%	%	%	4	
3"	101.600	0.000	0.00	0.00	100.00	4	
2"	75.000	0.000	0.00	0.00	100.00	4	
1 1/2"	38.100	0.000	0.00	0.00	100.00	4	
1"	25.400	0.000	0.00	0.00	100.00	-	
3/4" 1/2"	19.050 12.700	0.000	0.00	0.00	100.00 100.00	-	
3/8"	9.525	0.000	0.00	0.00	100.00	-	
4	4.760	0.000	0.00	0.00	100.00	-	
8	2.380	0.000	0.00	0.00	100.00	1	
20	0.840	0.020	0.06	0.06	99.94	1	
40	0.420	0.250	0.72	0.78	99.22	1	
80	0.177	0.580	1.68	2.46	97.54		
100	0.149	0.660	1.91	4.37	95.63		
200	0.074	5.010	14.51	18.89	81.11		
Pan		6.52	18.89	37.78			
HYDROMET	ER ANALYSIS	S (BS 1377 : 19	75)				
Weight of so	il :	60.00	g	Tube No.		:	: 1
	vity (Gs) :	2.653		Hydrometer N		:	: A1
Meniscus Co		-2.00		Temperature C			: 1.01
Viscosity of		0.8711		Dispersant Cor	1		: 4
Tires	Elapsed	Hydrometer	TRUE	Effective	Fully	Particle	Percentage Finer
Time	Time t	reading R'h	Reading Rh	depth HR	Corrected Reading	Diameter D	Than D K
	min			mm	Neauling	mm	к %
		0.0	0.0	0.000	0.0	0.0000	0.00
	I U		26.0	132.53	26.2	0.0584	76.21
	0	28.0			25.7	0.0414	74.76
		28.0 27.5	25.5	133.31	20.7		1
	0.5			133.31 134.09	25.2	0.0294	73.31
	0.5 1	27.5	25.5		1	0.0294 0.0187	73.31 70.40
	0.5 1 2	27.5 27.0	25.5 25.0	134.09	25.2		1
	0.5 1 2 5 15 30	27.5 27.0 26.0 24.0 22.0	25.5 25.0 24.0 22.0 20.0	134.09 135.65 138.77 141.89	25.2 24.2 22.2 20.2	0.0187 0.0109 0.0078	70.40 64.59 58.78
	0.5 1 2 5 15 30 60	27.5 27.0 26.0 24.0 22.0 20.5	25.5 25.0 24.0 22.0 20.0 18.5	134.09 135.65 138.77 141.89 144.23	25.2 24.2 22.2 20.2 18.7	0.0187 0.0109 0.0078 0.0056	70.40 64.59 58.78 54.42
	0.5 1 2 5 15 30	27.5 27.0 26.0 24.0 22.0	25.5 25.0 24.0 22.0 20.0	134.09 135.65 138.77 141.89	25.2 24.2 22.2 20.2	0.0187 0.0109 0.0078	70.40 64.59 58.78

				Project	SOILINVE	STIGATION FC SUPPL	OR SOUTH Y SYSTE	
				Job No.	_	Date		28-Jul-11
				Tested By	- Benv	Checked By		M.Igbal, ST
				reated by	bany	Tonecker by		μπ.ιγμαί, σΤ
		ι	JNCONFIN	NED COMI REMOLI	PRESSION	TEST		
Location :	Bali					Sample type	: UDS	
Boring no :	BH - 1					Soil description	:	
Depth :	1.50 - 2.00	כ				Sample no.	:	
Preparation								
Specimen de		Initial	After	test	Machine detai	ls		
Diameter	Dmm	38.00	Mass g -		Machine no		·	
Area	Ao mm2	1134.11	Drymass g		Rate of deform		mm/min	
Length	Lo mm	76.00	W %		PR Calibration	ו	N/div	0.080
Volume	cm3	86.19						
Mass	g	144.23						
Density	Mg/m3	1.673						
Compressio				REMOLTED		1		
Deform		Compression of	Strain	Force gaug		Corrected	Devi	ator stress
gauge re	ading	specimen (δ L)		reading	force	Area		
		(mm)	(%)	(div)	(N)	(mm²)	(k	(g/cm2)
0		0	0	0	0	1134.11		0.000
20		0.20	0.26	1.5	0.001	1137.11		0.011
40		0.40	0.53	3.0	0.002	1140.12		0.021
60		0.60	0.79	4.0	0.003	1143.14		0.028
80		0.80	1.05	5.5	0.004	1146.18		0.038
100)	1.00	1.32	7.0	0.006	1149.24		0.049
120)	1.20	1.58	8.0	0.006	1152.31		0.056
14()	1.40	1.84	9.0	0.007	1155.40		0.062
160)	1.60	2.11	10.0	0.008	1158.50		0.069
180)	1.80	2.37	11.5	0.009	1161.63		0.079
200)	2.00	2.63	12.5	0.010	1164.77		0.086
220)	2.20	2.89	13.0	0.010	1167.92		0.089
240	<u>) </u>	2.40	3.16	14.0	0.011	1171.10		0.096
260)	2.60	3.42	15.0	0.012	1174.29		0.102
280)	2.80	3.68	15.5	0.012	1177.50		0.105
300)	3.00	3.95	16.0	0.013	1180.72		0.108
320)	3.20	4.21	17.0	0.014	1183.97		0.115
340)	3.40	4.47	17.5	0.014	1187.23		0.118
360)	3.60	4.74	18.0	0.014	1190.51		0.121
380)	3.80	5.00	18.5	0.015	1193.81		0.124
400)	4.00	5.26	19.0	0.015	1197.12		0.127
420)	4.20	5.53	19.5	0.016	1200.46		0.130
44()	4.40	5.79	20.5	0.016	1203.81		0.136
460)	4.60	6.05	21.0	0.017	1207.18		0.139
480)	4.80	6.32	20.0	0.016	1210.57		0.132
500		5.00	6.58	19.5	0.016	1213.98		0.129
520		5.20	6.84	19.0	0.015	1217.41		0.125
540		5.40	7.11	18.0	0.014	1220.86		0.118
560)	5.60	7.37	17.0	0.014	1224.33		0.111
580		5.80	7.63	16.0		1227.82		0.104
50	,)	6.00	7.89	15.0	0.012	1231.32		0.097

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH1(1.5)

				Tested By B	lenv	Checked By		M.Iqbal, ST
					;	on our Dy		
	ι	JNCONF	=IN	ED COMP	RESSION 1	FEST		
				REMOLTE	D			
ocation : Bali						Sample type	: UDS	
Boring no :BH - 1						Soil description	:	
Depth : 15.50 - 16.	.00					Sample no.	:	
•								
Preparation Specimen details	Initial		fter	teet	Machine detail			
Diameter Dmm	38.00	A Mass		test	Machine detail	s	1	
Area Aomm2	1134.11	Mass Dry mass	g g		Rate of deform	ation		1.088
Length Lomm	76.00	W	y %		PR Calibration		N/div	0.080
/olume cm3	86.19		\dashv					0.000
vlass g	122.08		\uparrow					
Density Mg/m3	1.416		┓					
				ı				
Compression test Sin	gle stage							
				REMOLTED				
Deformation	Compression of	Strain		Force gauge	Axial	Corrected	Devi	ator stress
gauge reading	specimen (δ L)			reading	force	Area		
	(mm)	(%)	\downarrow	(div)	(N)	(mm²)	,	(g/cm2)
0	0	0	$ \rightarrow$	0	0	1134.11	0.000	
20	0.20	0.26	+	1.0	0.001	1137.11		0.007
40	0.40	0.53	+	2.0	0.002	1140.12		0.014
60	0.60	0.79	+	3.0	0.002	1143.14		0.021
80	0.80	1.05	+	4.0	0.003	1146.18		0.028
100	1.00	1.32	+	5.5	0.004	1149.24		0.038
120 140	<u>1.20</u> 1.40	1.58 1.84	+	6.5 8.0	0.005	1152.31 1155.40		0.045
140	1.40	2.11	+	9.0	0.006	1155.40		0.055
180	1.80	2.11	+	10.0	0.007	1161.63		0.062
200	2.00	2.63	+	11.0	0.009	1164.77		0.076
220	2.20	2.89	\neg	12.0	0.010	1167.92		0.082
240	2.40	3.16		12.5	0.010	1171.10		0.085
260	2.60	3.42		13.5	0.011	1174.29		0.092
280	2.80	3.68	Τ	14.0	0.011	1177.50		0.095
300	3.00	3.95		14.5	0.012	1180.72		0.098
320	3.20	4.21		15.0	0.012	1183.97		0.101
340	3.40	4.47	$ \rightarrow $	15.5	0.012	1187.23		0.104
360	3.60	4.74	$ \rightarrow$	16.0	0.013	1190.51		0.108
380	3.80	5.00	\dashv	16.5	0.013	1193.81		0.111
400	4.00	5.26	+	17.0	0.014	1197.12		0.114
420	4.20	5.53	+	17.5	0.014	1200.46		0.117
440	4.40	5.79	+	18.0	0.014	1203.81		0.120
460	4.60	6.05	+	18.0	0.014	1207.18		0.119
480	4.80	6.32	+	18.0	0.014	1210.57 1213.98		0.119
500 520	5.00 5.20	6.58 6.84	+	<u>18.5</u> 19.0	0.015	1213.98		0.122
520	5.20	7.11	+	19.0	0.015	1217.41		0.125
560	5.60	7.11		17.5	0.014	1220.86		0.118
580	5.80	7.63		16.0	0.013	1227.82		0.104
600 620	6.00 6.20	7.89 8.16	+	<u>15.0</u> 14.0	0.012	1231.32 1234.85		0.097 0.091
640	6.40	8.42	+	13.0	0.010	1234.85		0.084
'					•			

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH1(15.5)

				Project	SOIL INVES	TIGATION FO	R SOUTH Y SYSTEI		VATI
				Client		Date		28-Jul-11	
				Tested By E	Beny	Checked By		M.Iqbal, ST	_
Location	: Bali	ι	JNCONFI	NED COMP UNDISTUR	RESSION T		: UDS		
	: 19.50 - 20	1.00 m				Soil description Sample no.			
Preparatio Specimen		Initial	Afte	r test	Machine detail	s			
Diameter	Dmm	38.00	Mass g		Machine no				
Area Length	Ao mm2 Lo mm	1134.11 76.00	Drymass g W %		Rate of deform PR Calibration		mm/min N/div	1.088	
Volume	cm3	86.19			I TY Galibration		TAZATY	0.000	
Mass	g	129.66							
Density	Mg/m3	1.504							
Compress	ion test Sin	igle stage	ι	JNDISTURBED	-				
	mation	Compression of	Strain	Force gauge	Axial	Corrected	Devia	ator stress	
	reading 1mm	specimen (δ L) (mm)	(%)	reading (div)	force (N)	Area (mm ²)	76	g/cm2)	
		0	0.000	(uiv) O	0	1134.11		0.000	
	:0	0.20	0.26	2.0	0.002	1137.11		0.014	
	0	0.40	0.53	2.5	0.002	1140.12		D.018	
	10	0.60	0.79	3.0	0.002	1143.14		D.021	
	10	0.80	1.05	3.0	0.002	1146.18		D.021	
	<u>20</u>	1.00	1.32 1.58	3.5 4.0	0.003	1149.24 1152.31		D.024 D.028	
	40	1.40	1.58	4.0	0.003	1152.31		0.028 0.028	
	30	1.60	2.11	4.5	0.004	1158.50	0.031		
	30	1.80	2.37	5.0	0.004	1161.63		0.034	
	00	2.00	2.63	5.0	0.004	1164.77		0.034	
	20	2.20	2.89	5.5	0.004	1167.92		D.038	
	40	2.40	3.16	6.0	0.005	1171.10		D.041	
	30 30	2.60	3.42 3.95	6.5 7.0	0.005	1174.29 1180.72		D.044 D.047	
	20	3.20	4.21	7.5	0.006	1183.97		D.051	
	40	3.40	4.47	8.0	0.006	1187.23		0.054	
3	80	3.60	4.74	8.0	0.006	1190.51		D.054	
	30	3.80	5.00	8.5	0.007	1193.81		0.057	
	00	4.00	5.26	9.0	0.007	1197.12		D.060	
	20 40	4.20 4.40	5.53 5.79	9.5 10.0	0.008	1200.46 1203.81		D.063 D.066	
	50	4.60	6.05	10.0	0.008	1207.18		D.066	
4	30	4.80	6.32	10.0	0.008	1210.57		D.066	
	00	5.00	6.58	11.0	0.009	1213.98		D.072	
	20	5.20 5.40	6.84	11.5 12.0	0.009	1217.41		0.076	
	40 60	5.40	7.11	12.0	0.010	1220.86 1224.33		D.079 D.078	
	30	5.80	7.63	12.0	0.010	1227.82		D.078	
6	00	6.00	7.89	13.0	0.010	1231.32		D.084	
	20	6.20	8.16	13.0	0.010	1234.85		0.084	
	40 30	6.40 6.60	8.42 8.68	13.5 13.5	0.011	1238.40 1241.97		D.087 D.087	
	90 80	6.80	8.68	13.5	0.011	1241.97 1245.56		0.087 0.090	
	00	7.00	9.21	14.0	0.011	1249.17		D.090	
-	20	7.20	9.47	14.0	0.011	1252.80	1	D.089	
	40	7.40	9.74	15.0 15.0	0.012	1256.45		D.096	
	60 80	7.60 7.80	10.00 10.26	15.5	0.012	1260.13 1263.82		D.095 D.098	
	20	8.00	10.53	16.0	0.013	1267.54		D.101 D.101	
	20 40	8.20 8.40	10.79 11.05	16.0 16.5	0.013	1271.28 1275.04		D.101 D.104	
	30 30	8.60 8.80	11.32 11.58	16.5 16.5	0.013	1278.82 1282.63		0.103 0.103	
9	00	9.00	11.84	17.0	0.014	1286.46		D.106	
9:	20	9.20	12.11	17.0	0.014	1290.31		D.105	
	40	9.40	12.37	17.0	0.014	1294.19		0.105	
	80 80	9.60 9.80	12.63 12.89	17.0 17.5	0.014	1298.08 1302.01		D.105 D.108	
10	100	10.00	13.16	18.0	0.014	1305.95		D.110	
	20	10.20	13.42	18.0	0.014	1309.92		D.110	
	140 160	10.40 10.60	13.68 13.95	18.0 18.0	0.014	1313.91 1317.93		D.110 D.109	
	180	10.80	13.35	18.0	0.014	1317.33		D.109	
	00	11.00	14.47	18.0	0.014	1326.04		D.109	

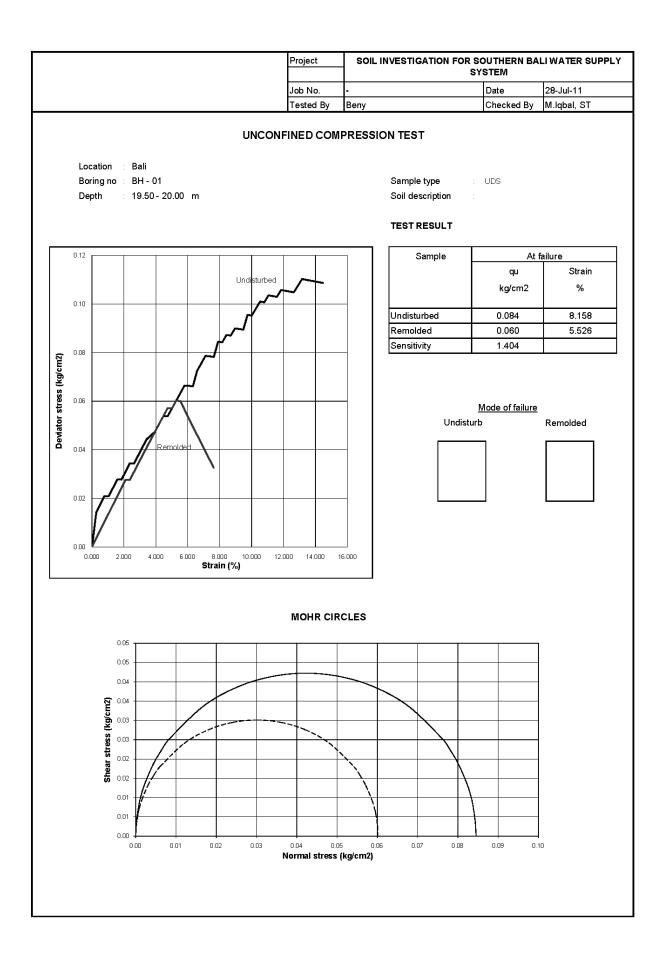
_AB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH1(19.5)

Project	SOIL IN	VESTIGATION FOR S	OUTHERN BALI WATER
		SUPPLY SY	/STEM
Client	0	Date	28-Jul-11
Tested By	Beny	Checked By	M.Iqbal, ST

UNCONFINED COMPRESSION TEST REMOLTED

Location : Bali Boring no : BH - 01 Depth : 19.50 - 20.00 m Sample type : UDS Soil description : Sample no. :

Preparation


Specimen de	etails	Initial	After test
Diameter	Dmm	38.00	Mass g
Area	Ao mm2	1134.11	Dry massi g
Length	Lo mm	76.00	₩ %
Volume	cm3	86.19	
Mass	g	147.09	
Density	Mg/m3	1.707	

Machine no		
Rate of deformation	mm/min	1.088
PR Calibration	N/div	0.080

Compression test Single stage

Image: Name Image: Name	ren (&L) rm) (%) 0 0, (%) 20 0.26 40 0.53 60 0.79 80 1.05 1.05 20 1.58 40 1.84 60 2.11 80 2.37 00 2.83 20 2.83 20 2.89 40 3.16 60 3.42 80 3.68 00 3.95 20 4.21	reading (div) 0 0.5 1.0 2.5 3.0 2.5 3.0 4.0 4.0 4.5 5.0 6.5 6.5 6.0 6.5 7.0 7.5	force (N) 0 0.000 0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005	Area (mm*) 1134.11 1137.11 1140.12 1143.14 1146.18 1148.24 1155.23 1155.40 1156.50 1161.63 1164.77 1167.92 1171.10 1174.29 1177.50	(kg/cm2) 0.000 0.004 0.007 0.010 0.014 0.021 0.024 0.028 0.028 0.031 0.034 0.038 0.041 0.044
20 0.1 40 0.2 60 0.1 80 0.4 100 1.1 120 1.2 140 1.4 180 1.4 180 1.4 200 2.1 220 2.2 240 2.2 260 2.4 300 3.4 320 3.3 340 3.4 360 3.1 380 3.1	20 0.26 40 0.53 60 0.79 80 1.05 00 1.32 20 1.58 40 1.84 60 2.11 80 2.63 20 2.63 20 2.89 40 3.16 60 3.42 80 3.68 00 3.95	0.5 1.0 2.0 2.5 3.0 3.5 4.0 4.0 4.5 6.0 6.5 6.0 6.5 7.0	0.000 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005	1137.11 1140.12 1143.14 1146.18 1149.24 1152.21 1155.40 1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.004 0.007 0.010 0.014 0.021 0.024 0.028 0.028 0.028 0.031 0.034 0.038 0.041
40 0.4 60 0.0 80 0.0 100 1.1 120 1.2 140 1.4 160 1.1 180 1.1 200 2.1 240 2.4 260 2.1 300 3.1 320 3.2 340 3.4 380 3.1	40 0.53 60 0.79 80 1.05 00 1.32 20 1.58 40 1.84 60 2.11 80 2.63 20 2.83 20 2.89 40 3.16 60 3.42 80 3.68 00 3.95	1.0 1.5 2.0 3.0 3.5 4.0 4.0 4.0 4.5 5.0 5.5 6.0 8.5 7.0	0.001 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005	1140.12 1143.14 1148.18 1149.24 1152.31 1155.40 1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.007 0.010 0.014 0.017 0.021 0.024 0.028 0.028 0.028 0.031 0.034 0.038 0.041
60 0.0 80 0.4 100 1.1 120 1.2 140 1.2 180 1.4 200 2.2 240 2.2 280 2.1 300 3.3 340 3.4 380 3.1	60 0.79 80 1.05 00 1.32 20 1.58 40 1.84 60 2.11 80 2.37 00 2.83 20 2.89 40 3.16 60 3.42 80 3.86 00 3.95	1.5 2.0 2.5 3.0 4.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0	0.001 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005	1143.14 1146.18 1149.24 1152.31 1155.40 1158.50 1161.63 1164.77 1164.77 1167.92 1171.10 1174.29	0.010 0.014 0.017 0.021 0.024 0.028 0.028 0.028 0.031 0.034 0.034 0.038 0.041
80 0.1 100 1.1 120 1.1 140 1.2 160 1.1 180 1.1 200 2.2 240 2.2 260 2.1 300 3.3 340 3.4 360 3.1 380 3.1	80 1.05 .00 1.32 20 1.58 40 1.84 60 2.11 80 2.37 .00 2.83 .20 2.89 .40 3.16 .60 3.42 .80 3.68 .00 3.95	2.0 2.5 3.0 4.0 4.0 4.5 5.0 6.5 6.0 6.5 7.0	0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005	1146.18 1149.24 1152.31 1155.40 1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.014 0.017 0.021 0.024 0.028 0.028 0.031 0.034 0.034 0.038 0.041
100 1.1. 120 1.2. 140 1.4. 180 1.4. 180 1.4. 200 2.4. 220 2.2. 240 2.4. 280 2.4. 300 3.4. 340 3.4. 360 3.4. 380 3.4.	00 1.32 20 1.58 40 1.84 60 2.11 80 2.37 00 2.63 20 2.89 40 3.16 60 3.42 80 3.68 00 3.95	2.5 3.0 4.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0	0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005	1149.24 1152.31 1155.40 1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.017 0.021 0.024 0.028 0.028 0.031 0.034 0.038 0.041
120 1.1 140 1.4 160 1.1 180 1.1 200 2.1 220 2.2 240 2.2 280 2.1 300 3.1 320 3.3 340 3.4 360 3.1 380 3.1	20 1.58 40 1.84 60 2.11 80 2.37 00 2.63 20 2.89 40 3.16 60 3.42 80 3.68 00 3.95	3.0 3.5 4.0 4.5 5.0 5.5 6.0 8.5 7.0	0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005	1152.31 1155.40 1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.021 0.024 0.028 0.028 0.031 0.034 0.038 0.038
140 1.4 180 1.4 180 1.4 180 1.4 200 2.4 240 2.4 260 2.4 300 3.4 340 3.4 360 3.4 380 3.4	40 1.84 60 2.11 .80 2.37 .00 2.63 20 2.89 .40 3.16 .60 3.42 .80 3.68 .00 3.95	3.5 4.0 4.0 4.5 5.0 5.5 6.0 8.5 7.0	0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.005 0.005	1155.40 1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.024 0.028 0.028 0.031 0.034 0.038 0.038
160 1.1 180 1.1 200 2.1 220 2.2 240 2.2 240 2.1 260 2.1 300 3.1 340 3.2 360 3.1 380 3.1	60 2.11 80 2.37 .00 2.63 20 2.89 .40 3.16 .60 3.42 .80 3.68 .00 3.95	4.0 4.0 4.5 5.0 5.5 6.0 6.5 7.0	0.003 0.003 0.004 0.004 0.004 0.005 0.005	1158.50 1161.63 1164.77 1167.92 1171.10 1174.29	0.028 0.028 0.031 0.034 0.038 0.038
180 1.1 200 2.1 220 2.2 240 2.4 260 2.1 300 3.1 320 3.3 340 3.4 360 3.1 380 3.1	80 2.37 .00 2.63 .20 2.89 .40 3.16 .60 3.42 .80 3.68 .00 3.95	4.0 4.5 5.0 5.5 6.0 6.5 7.0	0.003 0.004 0.004 0.004 0.005 0.005	1161.63 1164.77 1167.92 1171.10 1174.29	0.028 0.031 0.034 0.038 0.041
200 2.1 220 2.2 240 2.2 260 2.4 300 3.1 320 3.3 340 3.4 360 3.1 380 3.1	.00 2.63 .20 2.89 .40 3.16 .60 3.42 .80 3.68 .00 3.95	4.5 5.0 5.5 6.0 6.5 7.0	0.004 0.004 0.004 0.005 0.005	1164.77 1167.92 1171.10 1174.29	0.031 0.034 0.038 0.041
220 2: 240 2: 260 2: 300 3: 320 3: 340 3: 360 3:	20 2.89 .40 3.16 .60 3.42 .80 3.68 .00 3.95	5.0 5.5 6.0 6.5 7.0	0.004 0.004 0.005 0.005	1167.92 1171.10 1174.29	0.034 0.038 0.041
240 24 260 24 280 24 300 34 340 34 380 34	.40 3.16 .60 3.42 .80 3.68 .00 3.95	5.5 6.0 6.5 7.0	0.004 0.005 0.005	1171.10 1174.29	0.038
260 2.4 280 2.3 300 3.1 320 3.1 340 3.2 360 3.1 380 3.4	60 3.42 80 3.68 .00 3.95	6.0 6.5 7.0	0.005 0.005	1174.29	0.041
280 2.0 300 3.1 320 3.1 340 3.4 360 3.1 380 3.1	.80 3.68 .00 3.95	6.5 7.0	0.005		
300 3.0 320 3.1 340 3.4 360 3.0 380 3.0	.00 3.95	7.0		1177.50	0.044
320 3.1 340 3.4 360 3.6 380 3.6			0.006		
340 3.4 360 3.1 380 3.1	.20 4.21	7.5		1180.72	0.047
360 3.0 380 3.0		C.1	0.006	1183.97	0.051
380 3.6	.40 4.47	8.0	0.006	1187.23	0.054
	.60 4.74	8.5	0.007	1190.51	0.057
	.80 5.00	8.5	0.007	1193.81	0.057
400 4.0	.00 5.26	9.0	0.007	1197.12	0.060
420 4.1	.20 5.53	9.0	0.007	1200.46	0.060
440 4.4	.40 5.79	8.5	0.007	1203.81	0.056
460 4.6	.60 6.05	8.0	0.006	1207.18	0.053
480 4.8	.80 6.32	7.5	0.006	1210.57	0.050
500 5.0	.00 6.58	7.0	0.006	1213.98	0.046
520 5.1	.20 6.84	6.5	0.005	1217.41	0.043
	.40 7.11	6.0	0.005	1220.86	0.039
	.60 7.37 .80 7.63	5.5	0.004	1224.33 1227.82	0.036
580 5.8	.80 7.63	5.0	0.004	1227.02	0.033

_AB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH1(19.5)

						(SYSTEI	
			Ta ata d Di	D	Date Observed Du		2-Aug-11
			Tested By	вeny	Checked By		M.Iqbal, ST
	I	INCONFIN		PRESSION	TEST		
	•		REMOLT				
ocation :Bali					Sample type	: UDS	
Boring no : BH - 02					Soil description	:	
Depth : 4.50 - 5.00	D				Sample no.	:	
Preparation							
Specimen details	Initial	After	test	Machine detai	ls		
Diameter Dmm	38.00	Mass g		Machine no		, . I	4 000
Area Aomm 2	1134.11	Drymass g W %		Rate of deform		mm/min	1.088
ength Lomm	76.00 86.19	VV %		PR Calibration	1	N/di∨	0.080
/olume cm3 /lass g	115.82						
Density Mg/m3	1.344						
sensity ingrite	1.0-11						
Compression test Sin	igle stage						
•	5 5		REMOLTED				
Deformation	Compression of	Strain	Force gauge	e Axial	Corrected	Devia	ator stress
gauge reading	specimen (δ L)		reading	force	Area		
	(mm)	(%)	(div)	(N)	(mm ²)	(k	g/cm2)
0	0	0	0	0	1134.11		0.000
20	0.20	0.26	0.5	0.000	1137.11		0.004
40	0.40	0.53	1.0	0.001	1140.12		0.007
60	0.60	0.79	1.0	0.001	1143.14		0.007
80	0.80	1.05	1.0	0.001	1146.18		0.007
100	1.00	1.32	1.5	0.001	1149.24		0.010
120 140	1.20 1.40	1.58 1.84	2.0 2.0	0.002	1152.31 1155.40		0.014 0.014
140	1.40	2.11	2.0	0.002	1155.40		0.014 0.014
180	1.80	2.11	2.0	0.002	1161.63		0.014 0.017
200	2.00	2.63	2.5	0.002	1164.77		0.017
220	2.20	2.89	2.5	0.002	1167.92		0.017
240	2.40	3.16	2.5	0.002	1171.10		0.017
260	2.60	3.42	2.5	0.002	1174.29	(0.017
					+		
					+		
				+	+		
					+		
					+		
				1			

L 'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH2(4.5)

			Project	SOILINVES	TIGATION FO	R SOUTI	
			Job No.	_	Date	SISIE	2-Aug-11
			Tested By	- Benv	Checked By		M.Iqbal, ST
			rested by	berry	Torrecked by		IN.Iqbal, OT
	ι	JNCONFIN			EST		
Location : Bali					Sample type	: UDS	
Boring no : BH - 02					Soil description	: 0	
Depth : 6.50 - 7.0	Dm				Sample no.	:	
Preparation							
Specimen details	Initial	After	test	Machine details	S		
Diameter Dmm	38.00	Mass g		Machine no			
Area Aomm2	1134.11	Drymass g		Rate of deform	ation	mm/min	1.088
Length Lomm	76.00	W %		PR Calibration		N/div	0.080
Volume cm3	86.19						
Mass g	126.97						
Density Mg/m3	1.473						
Compression test Sir	ngle stage						
	0		REMOLTED			-	
Deformation	Compression of	Strain	Force gauge		Corrected	Devi	ator stress
gauge reading	specimen (δ L)	(84)	reading	force	Area (mm ²)		<i>.</i>
	(mm)	(%)	(div)	(N)	. ,		(g/cm2)
0	0	0	0	0	1134.11		0.000
20	0.20	0.26	0.5	0.000	1137.11		0.004
40	0.40	0.53	1.0	0.001	1140.12		0.007
60	0.60	0.79	1.5	0.001	1143.14		0.010
80	0.80	1.05	2.0	0.002	1146.18		0.014
100	1.00	1.32	2.0	0.002	1149.24		0.014
120	1.20	1.58	3.0	0.002	1152.31		0.021
140	1.40	1.84	3.5	0.003	1155.40		0.024
160	1.60	2.11	3.5	0.003	1158.50		0.024
180	1.80	2.37	4.0	0.003	1161.63		0.028
200	2.00	2.63	4.5	0.004	1164.77		0.031
220	2.20	2.89	5.0	0.004	1167.92		0.034
240	2.40	3.16	5.5	0.004	1171.10		0.038
260	2.60	3.42	5.5	0.004	1174.29		0.037
280	2.80	3.68	6.0	0.005	1177.50		0.041
300	3.00	3.95	6.0	0.005	1180.72 1183.97		0.041
320 340	3.20	4.21	6.0	0.005			0.041
	3.40	4.47	6.0	0.005	1187.23		0.040
360	3.60	4.74	6.0	0.005	1190.51		0.040
				-			
				1	1		

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH2(6.5)

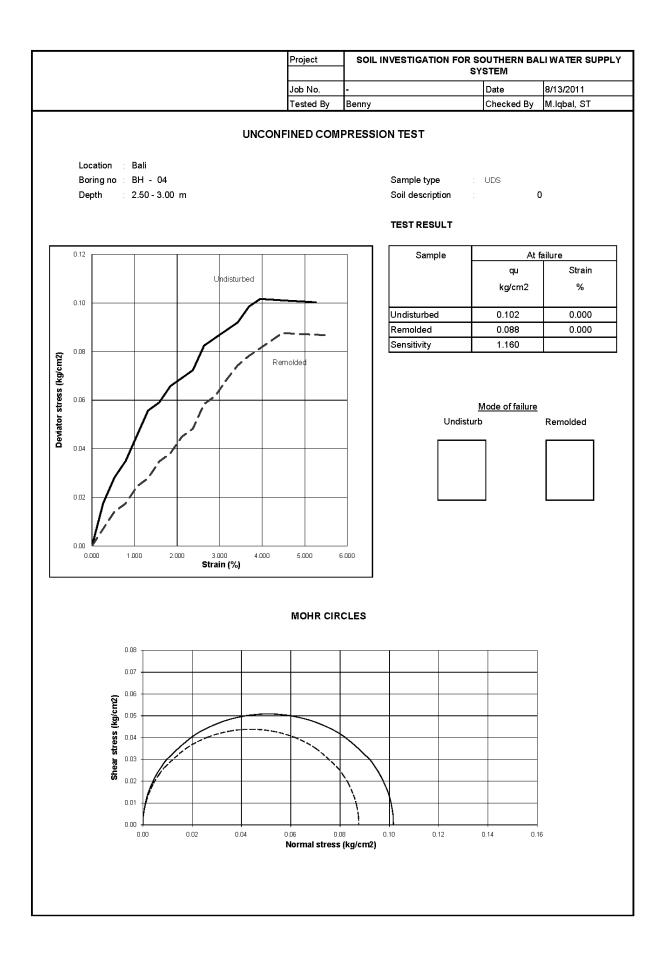
			Project	SOILINVES	TIGATION FC SUPPL	OR SOUTH Y SYSTE	
			Job No.	-	Date		2-Aug-11
			Tested By	Beny	Checked By		M.Iqbal, ST
	ι	JNCONFIN	IED COM	PRESSION T	EST		
			REMOL	TED			
Location : Bali						: UDS	
Boring no : BH - 02	_				Soil description		
Depth : 8.50 - 9.00) m				Sample no.	:	
Preparation							
Specimen details	Initial	After	test	Machine details	S		
Diameter Dmm	38.00	Mass g		Machine no			
Area Aomm2	1134.11	Drymass g		Rate of deform	ation	mm/min	1.088
Length Lomm	76.00	W %		PR Calibration		N/div	0.080
Volume cm3	86.19						
Mass g	132.19						
Density Mg/m3	1.534						
Compression test Sin		Strain		e Axial	Corrected	Davi	ator stress
gauge reading	Compression of specimen (δ L)	Strain	Force gaug reading	force	Area	Devis	ator stress
gaugereading	(mm)	(%)	(div)	(N)	(mm ²)	a.	g/cm2)
0	0	(%)	(uiv) 0				0.000
20	0.20	0.26	0.0	0.000	1134.11 1137.11		0.000
40	0.20	0.28	1.0	0.000	1140.12		0.000
60	0.40	0.33	1.5	0.001	1143.14		0.007
80	0.80	1.05	1.5	0.001	1146.18		0.010
100	1.00	1.32	1.5	0.001	1149.24		0.010
120	1.20	1.58	2.0	0.002	1152.31		0.014
140	1.40	1.84	2.5	0.002	1155.40		0.017
160	1.60	2.11	3.0	0.002	1158.50		0.021
180	1.80	2.37	3.0	0.002	1161.63		0.021
200	2.00	2.63	3.0	0.002	1164.77		0.021
220	2.20	2.89	3.5	0.003	1167.92		0.024
240	2.40	3.16	3.5	0.003	1171.10		0.024
260	2.60	3.42	3.5	0.003	1174.29		0.024
280	2.80	3.68	4.0	0.003	1177.50		0.027
280		3.95	4.0	0.003	1180.72		0.027
300	3.00				1 100 07		0.027
	3.00	4.21	4.0	0.003	1183.97		
300 320 340	3.20 3.40	4.47	4.0	0.003	1187.23		0.027
300 320 340 360	3.20 3.40 3.60	4.47 4.74	4.0 4.5	0.003	1187.23 1190.51		0.030
300 320 340 360 380	3.20 3.40 3.60 3.80	4.47 4.74 5.00	4.0 4.5 5.0	0.003 0.004 0.004	1187.23 1190.51 1193.81		0.030 0.034
300 320 340 360 380 400	3.20 3.40 3.60 3.80 4.00	4.47 4.74 5.00 5.26	4.0 4.5 5.0 5.0	0.003 0.004 0.004 0.004	1187.23 1190.51 1193.81 1197.12		0.030 0.034 0.033
300 320 340 360 380 400 420	3.20 3.40 3.60 3.80 4.00 4.20	4.47 4.74 5.00 5.26 5.53	4.0 4.5 5.0 5.0 5.0	0.003 0.004 0.004 0.004 0.004 0.004	1187.23 1190.51 1193.81 1197.12 1200.46		0.030 0.034 0.033 0.033
300 320 340 360 380 400 420 440	3.20 3.40 3.60 3.80 4.00 4.20 4.40	4.47 4.74 5.00 5.26 5.53 5.79	4.0 4.5 5.0 5.0 5.0 5.0	0.003 0.004 0.004 0.004 0.004 0.004 0.004	1187.23 1190.51 1193.81 1197.12 1200.46 1203.81		0.030 0.034 0.033 0.033 0.033
300 320 340 360 380 400 420	3.20 3.40 3.60 3.80 4.00 4.20	4.47 4.74 5.00 5.26 5.53	4.0 4.5 5.0 5.0 5.0	0.003 0.004 0.004 0.004 0.004 0.004 0.004	1187.23 1190.51 1193.81 1197.12 1200.46		0.030 0.034 0.033 0.033
300 320 340 360 380 400 420 440	3.20 3.40 3.60 3.80 4.00 4.20 4.40	4.47 4.74 5.00 5.26 5.53 5.79	4.0 4.5 5.0 5.0 5.0 5.0	0.003 0.004 0.004 0.004 0.004 0.004 0.004	1187.23 1190.51 1193.81 1197.12 1200.46 1203.81		0.030 0.034 0.033 0.033 0.033

Sketch of failure conditions

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH2(8.5)

			Project	SOIL INVES	STIGATION FC	Y SYSTE	
			Job Ma			1 3131E	
			Job No.	-	Date Observed Du		3-Aug-11
			Tested By	вепу	Checked By		M.Iqbal, ST
	ι	JNCONFIN	NED COM REMOL	PRESSION 1 TED	TEST		
Location :Bali					Sample type	: UDS	
Boring no :BH - 03					Soil description	: 0	
Depth : 2.50 - 3.00) m				Sample no.	:	
Preparation							
Specimen details	Initial		r test	Machine detail	s	-	
Diameter Dmm	38.00	Mass g		Machine no			1
Area Aomm 2	1134.11	Drymass g		Rate of deform		mm/min	
ength Lomm	76.00	W %		PR Calibration		N/div	0.080
/olume cm3	86.19						
Mass g	132.19						
Density Mg/m3	1.534			J			
Compression test Sin	gle stage Compression of	Strain	REMOLTED	je Axial	Corrected	Devi	ator stress
gauge reading	specimen (δ L)		reading	force	Area		
5 5 5	(mm)	(%)	(div)	(N)	(mm ²)	(k	(g/cm2)
0	0	0	0		1134.11		0.000
20	0.20	0.26	0.5	0.000	1137.11		0.004
40	0.40	0.53	1.0	0.001	1140.12		0.007
60	0.60	0.79	1.5	0.001	1143.14		0.010
80	0.80	1.05	2.0		1146.18		0.014
100	1.00	1.32	2.5	0.002	1149.24		0.017
120	1.20	1.58	3.0	0.002	1152.31		0.021
140	1.40	1.84	3.5	0.003	1155.40		0.024
160	1.60	2.11	3.5	0.003	1158.50		0.024
180	1.80	2.37	4.0	0.003	1161.63		0.028
200	2.00	2.63	5.0	0.004	1164.77		0.034
220	2.20	2.89	6.0	0.005	1167.92		0.041
240	2.40	3.16	6.0	0.005	1171.10		0.041
260	2.60	3.42	6.5		1174.29		0.044
280	2.80	3.68	7.0		1177.50		0.048
300	3.00	3.95	7.5		1180.72		0.051
320	3.20	4.21	8.0	1	1183.97		0.054
340	3.40	4.47	8.0		1187.23		0.054
360	3.60	4.74	8.5	i	1190.51		0.057
380	3.80	5.00	8.5		1193.81		0.057
400	4.00	5.26	9.0		1197.12		0.060
420	4.20	5.53	9.5		1200.46		0.063
440 460	4.40 4.60	5.79 6.05	9.5		1203.81		0.063
		6.05	10.0		1207.18		
480 500	4.80	6.32	10.0	1	1210.57		0.066
	5.00 5.20	6.58 6.84	10.5		1213.98		0.069
		6.84 7.11	11.0		1217.41		0.072
520	E 40	I (.11	11.0		1220.86 1224.33		0.072
520 540	5.40 5.60		11.0				
520 540 560 580	5.60 5.80	7.37 7.63	11.0 11.5	0.009	1227.82		0.075
520 540 560 580 600	5.60 5.80 6.00	7.37 7.63 7.89	11.5 11.5	0.009	1231.32		0.075
520 540 560 580	5.60 5.80	7.37 7.63	11.5	0.009 0.009 0.009			

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH3(2.5)


			Job No.	_	Date	Y SYSTEI	" 3-Aug-11
			Tested By		Checked By		M.Iqbal, ST
			, colou by	Cony			iniqual, OT
	ι	JNCONFIN	IED COM	PRESSION -	TEST		
			REMOLT	ΈD			
ocation : Bali					Sample type	: UDS	
Boring no :BH - 03					Soil description	: 0	
Depth : 8.50 - 9.00	0 m				Sample no.	:	
Preparation							
Specimen details	Initial	After	test	Machine detail	S	T	
Diameter Dmm Area Aomm2	38.00 1134.11	Mass g Drymass g		Machine no Rate of deform	ation	mm/min	1.088
ength Lomm	76.00	W %		PR Calibration		N/div	0.080
/olume cm3	86.19	70 70		T I Calibration	•	N/GIV	0.000
vlass g	132.19						
Density Mg/m3							
	•						
Compression test Sin	igle stage						
			REMOLTED				
Deformation	Compression of	Strain	Force gauge	e Axial	Corrected	Devia	ator stress
gauge reading	specimen (δ L)		reading	force	Area		
	(mm)	(%)	(div)	(N)	(mm ²)		g/cm2)
0	0	0	0	0	1134.11		0.000
20	0.20	0.26	0.0	0.000	1137.11		0.000
40	0.40	0.53	0.5	0.000	1140.12		0.004
60 80	0.60	0.79 1.05	0.5 0.5	0.000	1143.14 1146.18		0.003 0.003
100	1.00	1.05	1.0	0.000	1146.18		0.003
120	1.20	1.52	1.0	0.001	1149.24		0.007
140	1.40	1.58	2.0	0.001	1155.40		0.010 0.014
160	1.60	2.11	2.0	0.002	1158.50		0.014
180	1.80	2.37	2.0	0.002	1161.63		0.014
200	2.00	2.63	2.5	0.002	1164.77		0.017
220	2.20	2.89	2.5	0.002	1167.92	(0.017
240	2.40	3.16	2.5	0.002	1171.10		0.017
260	2.60	3.42	3.0	0.002	1174.29		0.020
280	2.80	3.68	3.0	0.002	1177.50		0.020
300	3.00	3.95	3.0	0.002	1180.72		0.020
320	3.20	4.21	3.0	0.002	1183.97		0.020
340	3.40	4.47	3.0	0.002	1187.23		0.020
					1		
					1		
	1			1	1	1	

LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH3(8.5)

					SUPPL	Y SYSTE	M
			Job No.	-	Date		13-Aug-11
			Tested By	Benny	Checked By		M.Iqbal, ST
	ι	JNCONFI		PRESSION 1 TED			
Location : Bali						: UDS	
Boring no : BH - 04					Soil description	: 0	
Depth : 2.50 - 3.00) m				Sample no.	:	
Preparation	l-iti-l		r test	Marshine datail			
Specimen details Diameter Dmm	Initial 38.00	Mass g	lesi	Machine detail Machine no	5	1	
Area Ao mm2	1134.11	Drymass g		Rate of deform	nation	mm/min	1.088
Length Lomm	76.00	W %		PR Calibration		N/div	0.080
Volume cm3	86.19			i ii ouibiuioii	·	117411	0.000
Mass g	140.62						
Density Mg/m3	1.631						
Deformation gauge reading	Compression of specimen (δ L)	Strain	REMOLTED Force gaug reading	e Axial force	Corrected Area	Devia	ator stress
gaagereading	(mm)	(%)	(div)	(N)	(mm ²)	(k	g/cm2)
0	0	0	(uiv) 0	0	1134.11	,	0.000
20	0.20	0.26	1.0	0.001	1137.11		0.007
40	0.40	0.53	2.0	0.002	1140.12		0.014
60	0.60	0.79	2.5	0.002	1143.14		0.017
80	0.80	1.05	3.5	0.003	1146.18		0.024
100	1.00	1.32	4.0	0.003	1149.24		0.028
120	1.20	1.58	5.0	0.004	1152.31		0.035
140	1.40	1.84	5.5	0.004	1155.40		0.038
160	1.60	2.11	6.5	0.005	1158.50		0.045
180	1.80	2.37	7.0	0.006	1161.63		0.048
200	2.00	2.63	8.5	0.007	1164.77		0.058
220	2.20	2.89	9.0	0.007	1167.92		0.062
240	2.40	3.16	10.0	0.008	1171.10		0.068
260 280	2.60 2.80	3.42 3.68	10.9 11.5	0.009	1174.29		0.074 0.078
300	3.00	3.95	11.5	0.003	1180.72		0.081
320	3.20	4.21	12.5		1183.97		0.084
340	3.40	4.47	13.0		1187.23		0.088
360	3.60	4.74	13.0		1190.51		0.087
380	3.80	5.00	13.0	0.010	1193.81		0.087
	4.00	5.26	13.0	0.010	1197.12		0.087
400	4.00				1000.40		0.087
	4.20	5.53	13.0	0.010	1200.46		
400		5.53	13.0	0.010	1200.46		
400		5.53	13.0	0.010			
400		5.53	13.0	0.010			
400		5.53	13.0	0.010			
400		5.53					

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(2.5)

Tested By Benny Checked By M.lqbal, UNCONFINED COMPRESSION TEST REMOLTED Location : Bali Boring no : BH - 04 Sample type : UDS Boring no : BH - 04 Soil description : 0 Depth : 4.50 - 5.00 m Sample no. : Preparation Machine details Diameter Dmm Area Ao mm2 Ao mm2 1134.11 Dry mass g Length Lo mm 76.00 W Volume cm3 g 1.631 Density Mg/m3 Mag 1.631				Job No.	_	Date	Y SYSTEM 13-Aug-11
UNCONFINED COMPRESSION TEST REMOLTED Continue of the second					Benny		M.lqbal, S
Location : Ball Sample type : UDS Joring no : BH - 04 Soil description : 0 Depth :: 4.50 - 5.00 m Sample no. :: Temparation Specimen details Initial After test Diameter Dmm 38.00 Mass g Vea Ao mm2 1134.11 Dry mass g Area Machine details Machine details Machine no Rate of deformation mm/mini 1.085 Ass g 140.62 Description N/dw 0.006 Deformation Compression fest Single stage Force gauge Axial Corrected Deviator stress gauge reading Specimen (3 L) Strain Force gauge Axial Corrected Deviator stress gauge reading Specimen (3 L) Strain Force gauge Axial Corrected Deviator stress gauge reading Specimen (3 L) Strain Force gauge Axial Corrected Deviator stress gauge reading Specimen (3 L) <th></th> <th>ι</th> <th>JNCONF</th> <th>INED COM</th> <th>PRESSION 1</th> <th></th> <th></th>		ι	JNCONF	INED COM	PRESSION 1		
Boring no: BH - 04 Soil description: 0 Depth:: : 4.50 - 5.00 m Sample no. S Preparation Specimen details Initial After test Machine details Initial Vea Aomm2 1134.11 Dry mass g No Mass g Vea Aomm2 1134.11 Dry mass g No No No No Aass g 140.62	ocation : Bali			REIVIOL	IED	Sample type	UDS
Depth : 4.50 - 5.00 m. Sample no. :: Preparation Specimen details Initial After test Machine details Machine no Machine no Length Lorm 76.00 W % Machine details Machine details Machine no N/dw 0.006 Length Lorm 76.00 W % Machine no N/dw 0.006 Volume cm3 86.19 Machine no N/dw 0.006 Mass g 140.62 Machine no N/dw 0.006 Density Mg/m3 1.631 Machine no N/dw 0.006 Compression of gauge reading Specimen (3 L) Mmm Force gauge Avail Corrected Deviator stress gauge reading Specimen (3 L) (%) (MW) (MUTT) 0.000 1133.11 0.000 10 0.40 0.53 0.5 0.000 1140.12 0.004 100 1.00 1.32 1.8 0.001 1146.18							
Descrimen details Initial After test Specimen details Initial After test Nea Ao mm2 1134.11 Dry mass g Avea Ao mm2 1134.11 Dry mass g /olume cm3 86.19	-	0 m					
Specimen details Initial After test Machine details Machine details Diameter Dmm 38.00 Mass g Machine details						·	
Diameter Dmm 38.00 Mass g Machine no Machine no Rate of deformation mm/min 1.086 Length Lo mm 76.00 W % PR Calibration mm/min 1.086 Length Lo mm 76.00 W % PR Calibration N/dv 0.080 Values g 140.62	reparation						
Area Ao Inst.11 Dry mass g Length Lo mm 76.00 W % Volume cm3 86.19	Specimen details	Initial	Aft	er test	Machine detail	s	1
Length Lo mm 76.00 W % PR Calibration N/div 0.080 /olume cm3 86.19			Mass		Machine no		
Volume cm3 86.19	Area Ao mm2						
Mass g 140.62	-		w '	%	PR Calibration	l	N/div 0.080
Density Mg/m3 1.631							
Deformation gauge reading Compression of specimen (3 L) (mm) Strain (%) Force gauge reading (div) Axial force Corrected Area (mm') Deviator stress (kg/cm2) 0 0 0 0 1133.11 0.000 20 0.20 0.26 0.0 0.000 1134.11 0.000 40 0.40 0.53 0.5 0.000 1140.12 0.004 60 0.60 0.79 1.0 0.001 1149.24 0.013 100 1.00 1.32 1.8 0.001 1149.24 0.013 120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.44 2.0 0.002 1152.40 0.017 180 1.80 2.37 2.8 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1164.77 0.021 240 2.40 3.16 3.0 0.002 1174.29 0.020 240 2.40 </td <td>Ť</td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td>	Ť			+			
Deformation gauge reading Compression of specimen (§ L) (mm) Strain (%) Force gauge reading (div) Axial force (N) Corrected Area (mm ⁴) Deviator stress (kg/cm2) 0 0 0 0 0 1134.11 0.000 20 0.20 0.26 0.0 0.000 1137.11 0.000 40 0.40 0.53 0.5 0.000 1140.12 0.004 60 0.60 0.79 1.0 0.001 1143.14 0.007 80 0.80 1.05 1.5 0.001 1149.24 0.013 120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.83 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020	Jensity Mg/m3	1.631			l		
(mm) (%) (div) (N) (mm) (kg/cm2) 0 0 0 0 0 1134.11 0.000 20 0.20 0.26 0.0 0.000 1137.11 0.000 40 0.40 0.53 0.5 0.000 1140.12 0.004 60 0.60 0.79 1.0 0.001 1143.14 0.007 80 0.80 1.05 1.5 0.001 1149.24 0.013 100 1.00 1.32 1.8 0.001 1149.24 0.014 140 1.44 2.0 0.002 1155.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1161.77 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020	•		Strain		je Axial	Corrected	Deviator stress
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	gauge reading	specimen (δ L)		reading	force		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(mm)	(%)	(div)	(N)	(mm ²)	(kg/cm2)
40 0.40 0.53 0.5 0.000 1140.12 0.004 60 0.60 0.79 1.0 0.001 1143.14 0.007 80 0.80 1.05 1.5 0.001 1143.14 0.007 100 1.00 1.32 1.8 0.001 1149.24 0.013 120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1158.50 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1167.92 0.021 220 2.20 2.89 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1193.81 0.037 440 4.40 5.79 5.5 0.004 120.46 0.037	0	0	0	0	0	1134.11	0.000
60 0.60 0.79 1.0 0.001 1143.14 0.007 80 0.80 1.05 1.5 0.001 1146.18 0.010 100 1.00 1.32 1.8 0.001 1149.24 0.013 120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1158.50 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.0	20	0.20	0.26	0.0	0.000	1137.11	0.000
80 0.80 1.05 1.5 0.001 1146.18 0.010 100 1.00 1.32 1.8 0.001 1149.24 0.013 120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1158.50 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1164.77 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1180.72 0.027 300 3.00 3.95 4.0 0.		0.40	0.53	0.5	0.000	1140.12	
100 1.00 1.32 1.8 0.001 1149.24 0.013 120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1158.50 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0				_			
120 1.20 1.58 2.0 0.002 1152.31 0.014 140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1158.50 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0							
140 1.40 1.84 2.0 0.002 1155.40 0.014 160 1.60 2.11 2.5 0.002 1158.50 0.017 180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 1203.81 0.037							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
180 1.80 2.37 2.8 0.002 1161.63 0.019 200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1197.23 0.034 360 3.60 4.74 5.0 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1193.81 0.037 420 4.20 5.53 5.5 0				-			
200 2.00 2.63 3.0 0.002 1164.77 0.021 220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1197.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0							
220 2.20 2.89 3.0 0.002 1167.92 0.021 240 2.40 3.16 3.0 0.002 1171.10 0.020 260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1187.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 1203.81 0.037							
260 2.60 3.42 3.0 0.002 1174.29 0.020 280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1187.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 120.46 0.037 440 4.40 5.79 5.5 0.004 120.81 0.037							
280 2.80 3.68 3.5 0.003 1177.50 0.024 300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1187.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 120.46 0.037 440 4.40 5.79 5.5 0.004 120.81 0.037				-			
300 3.00 3.95 4.0 0.003 1180.72 0.027 320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1187.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 1200.46 0.037 440 4.40 5.79 5.5 0.004 120.81 0.037	260	2.60	3.42	3.0	0.002	1174.29	0.020
320 3.20 4.21 4.5 0.004 1183.97 0.030 340 3.40 4.47 5.0 0.004 1187.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 120.46 0.037 440 4.40 5.79 5.5 0.004 120.81 0.037	280	2.80	3.68	3.5	0.003	1177.50	0.024
340 3.40 4.47 5.0 0.004 1187.23 0.034 360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 120.46 0.037 440 4.40 5.79 5.5 0.004 120.81 0.037	300	3.00	3.95	4.0	0.003	1180.72	0.027
360 3.60 4.74 5.0 0.004 1190.51 0.034 380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 120.46 0.037 440 4.40 5.79 5.5 0.004 120.81 0.037	320	3.20	4.21	4.5	0.004	1183.97	0.030
380 3.80 5.00 5.5 0.004 1193.81 0.037 400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 1200.46 0.037 440 4.40 5.79 5.5 0.004 1203.81 0.037							
400 4.00 5.26 5.5 0.004 1197.12 0.037 420 4.20 5.53 5.5 0.004 1200.46 0.037 440 4.40 5.79 5.5 0.004 1203.81 0.037							
420 4.20 5.53 5.5 0.004 1200.46 0.037 440 4.40 5.79 5.5 0.004 1203.81 0.037							
440 4.40 5.79 5.5 0.004 1203.81 0.037							
400 4.00 0.05 5.5 0.004 1.207.18 0.036 400 4.00 6.05 5.5 0.004 1.207.18 0.036 400 4.00 4.00 4.00 4.00 4.00 4.00 400 4.00 4.00 4.00 4.00 4.00 4.00 400 4.00 4.00 4.00 4.00 4.00 4.00 400 4.00 4.00 4.00 4.00 4.00 4.00 400 4.00 4.00 4.00 4.00 4.00 4.00 400 4.00 4.00 4.00 4.00 4.00 4.00 400 4.00					1		
Image: Constraint of the second se	400	4.60	CU.0	5.5	0.004	1207.18	0.036
Image: state				+		+	
				1			
						+	

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(4.5)

						Y SYSTE	
			000 110.	-	Date		13-Aug-11
			Tested By	Benny	Checked By		M.Iqbal, ST
				PRESSION .	TECT		
	, i				IESI		
ocation : Bali			REMOLI	ED	Sample type	: UDS	
Boring no : BH - 04					Soil description		
Depth : 8.50 - 9.00) m				•	:	
						•	
Preparation							
Specimen details	Initial	After	test	Machine detai	ls		
Diameter Dmm	38.00	Mass g		Machine no			
Area Aomm2	1134.11	Drymass g		Rate of deform	nation	mm/min	1.088
ength Lomm.	76.00	W %		PR Calibration	ı	N/div	0.080
/olume cm3	86.19						
Aass g	132.56						
Density Mg/m3	1.538						
Compression test Sin	igle stage						
Deformation	Compression of	Strain	REMOLTED	e Axial	Corrected	Davis	ator stress
gauge reading	specimen (δ L)	Strain	reading	e Axiai force	Area	Devia	2101 211622
3 3	(mm)	(%)	(div)	(N)	(mm ²)	(k	g/cm2)
0	0	0	0	0	1134.11		0.000
20	0.20	0.26	0.5	0.000	1137.11		0.004
40	0.40	0.53	1.0	0.001	1140.12		0.007
60	0.60	0.79	1.5	0.001	1143.14		0.010
80	0.80	1.05	1.5	0.001	1146.18		0.010
100	1.00	1.32	1.5	0.001	1149.24		0.010
120	1.20	1.58	2.0	0.002	1152.31		0.014
140	1.40	1.84	2.0	0.002	1155.40		0.014
160	1.60	2.11	2.0	0.002	1158.50		0.014
180	1.80	2.37	2.5	0.002	1161.63		0.017
200	2.00	2.63	2.5	0.002	1164.77		0.017
220	2.20	2.89	2.5	0.002	1167.92		0.017
240 260	2.40 2.60	3.16 3.42	2.5 2.5	0.002	1171.10 1174.29		D.017 D.017
200	2.00	J.42	2.5	0.002	11/4.23		5.017
						ļ	
		ļ					
				· ·			

L 'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(8.5)

			Project	SOLINVES		OR SOUTI Y SYSTE	
			Job Ma			ISTOLE	
			Job No.	- Damar:	Date Observed Dec		13-Aug-11
			Tested By	венну	Checked By		M.Iqbal, ST
	ι	JNCONFIN		PRESSION 1	EST		
Location : Bali						: UDS	
Boring no :BH - 04					Soil description	: 0	
Depth : 11.50 - 12	.00 m				Sample no.	:	
Preparation							
Specimen details	Initial		test	Machine details	5	-	
Diameter Dmm	38.00	Mass g		Machine no			1
Area Aomm 2	1134.11	Drymass g		Rate of deform		mm/min	
ength Lomm	76.00	W %		PR Calibration		N/div	0.080
/olume cm3	86.19						
Mass g Density Mg/m3	121.41 1.409						
Compression test Sin	gle stage		REMOLTED				
Deformation	Compression of	Strain	Force gaug	je Axial	Corrected	Devi	ator stress
gauge reading	, specimen (δ L)		reading	force	Area		
	(mm)	(%)	(div)	(N)	(mm ²)	(k	(g/cm2)
0	0	0	0	0	1134.11		0.000
20	0.20	0.26	0.5	0.000	1137.11		0.004
40	0.40	0.53	1.0	0.001	1140.12		0.007
60	0.60	0.79	1.5	0.001	1143.14		0.010
80	0.80	1.05	2.0	0.002	1146.18		0.014
100	1.00	1.32	2.0	0.002	1149.24		0.014
120	1.20	1.58	2.5	0.002	1152.31		0.017
140	1.40	1.84	3.0	0.002	1155.40		0.021
160	1.60	2.11	3.5	0.003	1158.50		0.024
180	1.80	2.37	4.0	0.003	1161.63		0.028
200	2.00	2.63	4.0	0.003	1164.77		0.027
220	2.20	2.89	5.0	0.004	1167.92		0.034
240	2.40	3.16	4.5		1171.10		0.031
260	2.60	3.42	4.5	0.004	1174.29		0.031
280	2.80	3.68	4.5	0.004	1177.50		0.031
300	3.00	3.95	5.0	0.004	1180.72		0.034
320 340	3.20	4.21 4.47	<u>5.0</u> 5.0		1183.97 1187.23		0.034 0.034
360	3.40	4.47	5.0		1187.23		0.034
380	3.80	5.00	6.0		1190.51		0.037
400	4.00	5.00	6.0		1193.81		0.040
400	4.20	5.53	6.0		1200.46		0.040
440	4.40	5.79	6.5		1203.81		0.043
460	4.60	6.05	7.0		1207.18		0.046
480	4.80	6.32	7.0		1210.57		0.046
500	5.00	6.58	7.0		1213.98		0.046
520	5.20	6.84	7.0		1217.41		0.046
540	5.40	7.11	7.0		1220.86		0.046
				1	1		

'LAB DATA/2003/PL 001/PAGAR DEWA/@BCL@FC08CE0F/BH4(11.5)

LOCATION
DEPTH TYPE CLASSI Determination of dy SOLL FICA density & moisture content
TION WI YII YI
(meter) Lacs (%) (gr/cm ³) (gr/cm ³) e
1.50 - 2.00 UDS MH 48.39 1.693 1.141 1.296
15.50 - 16.00 UDS CH 84.17 1.475 0.801 2.271
19.50 - 20.00 UDS CH 85.30 1.412 0.762 2.463 0.711
4.50 - 5.00 UDS CH 86.13 1.450 0.779 2.372 0.703
6.50 - 7.00 UDS SC 67.22 1.524 0.911 1.864 0.651
8.50 - 9.00 UDS CH 72.09 1.598 0.929 1.816 0.645
2.50 - 3.00 UDS SC 52.68 1.649 1.080 1.429 0.588
8.50 - 9.00 UDS SC 52.10 1.869 1.229 1.157 0.536
2.50 - 3.00 UDS CH 46.23 1.704 1.165 1.225 0.551
4.50 - 5.00 UDS SC 53.55 1.572 1.024 1.569 0.611
- 9.00 UDS SC 56.03 1.551 0.994
11.50 - 12.00 UDS CH 90.64 1.448 0.760 2.448

					Project	SOIL INVE		PLY SYSTEM	
					Client	NIHON SUIDOI	CONSULTANT	Date	16-Aug-11
					Tested By	Ria Irmawan		Checked By	
					RBERG STM D 43				
Locatio Hole No Depth	э.	: Bali : BH - 01 : 1.50 - 2.00 m				Sample No. Sample Typ Soil Descrip	e :	- UDS -	
LIQUID L	.IMIT							PLAST	IC LIMIT
No. of B				39	28	21	16		
Containe		Mi-t 0-1		C.25	C.34	C.15	C.26	A.27	A.28
	tainer + 1 tainer + 1		g	11.34	12.23	12.97	13.50	21.55	
Wt. Con Wt. Wat	tainer +	DIY SOIL	g g	9.00 2.34	9.49 2.74	10.02 2.95	10.30 3.20	19.21 2.34	19.87 2.37
Wt. Con			g	4.34	4.40	4.50	4.34	12.01	
	Soil (Ws)	g	4.66	5.09	5.52	5.96	7.20	
	ontent (v		%	50.21	53.83	53.44	53.69	32.50	33.05
	57			FL	OW CUR	VE			
	57			FL		VE			
ıt (%)	56			FL					
ntent (%)	56			FL					
r Content (%)	56	•	<u> </u>	FL					
ater Content (%)	56	•		FL					
Water Content (%)	56			FL		VE			
Water Content (%)	56	•							
Water Content (%)	56	•							
Water Content (%)	56 55 54 53 52 51 50 49	•							
Water Content (%)	56				OW CUR	·			
Water Content (%)	56 55 54 53 52 51 50 49 48 48 47			RE: %	25	Blows 52	2.75		
Water Content (%)	56 55 54 53 52 51 50 49 48 48 47		DEX		25 Number of	Blows ARY 52 32 19	2.75 2.78 0.97 ЛH		

	GRAHA PERSADA		Project	SOIL INVE		FOR SOUTHI PLY SYSTEM	ERN BALI W.
			Client	NIHON SUIDOI	CONSULTANT		29-Jul-11
			Tested By	Ria Irmawan		Checked By	M.lqbal, ST
			RBERG ASTM D 43				
Locatio Hole No Depth	o. : BH - 01			Sample No Sample Typ	be :	- UDS	
Depth	. 15.50 - 16.00 1	n		Soil Descrip		-	
LIQUID L	_IMIT					PLAST	C LIMIT
No. of B	lows	41	29	21	15		
Containe		C.5	C.13	C.24	C.18	A.1	A.2
	tainer + Wet Soil	g 10.21		11.54	12.53	21.73	21.76
	tainer + Dry Soil	g 7.39		8.08	8.50	19.58	19.72
Wt. Wat		g 2.82		3.46	4.03	2.15	2.04
Wt. Con		g 4.35		4.35	4.36	12.49	12.89
	Soil (Ws) content (w)	g 3.04 % 92.76		3.73 92.76	4.14 97.34	7.09 30.32	6.83 29.87
		F	LOW CUR				
	106						
	106						
(%)	103						
tent (%)	103						
Content (%)	103		•				
ter Content (%)	103		•				
Water Content (%)	103 100 97 94	•	•				
Water Content (%)	103	•					
Water Content (%)	103 100 97 94	•					
Water Content (%)	103 100 97 94 91 88	•					
Water Content (%)	103 100 97 94 91	•	25				100
Water Content (%)	103 100 97 94 91 88 85	•		Blows			100
Water Content (%)	103 100 97 94 91 88 85	•	25	Blows			
Water Content (%)		R	25 Number of	ARY			100
Water Content (%)	103 100 97 94 91 91 88 85 10 LIQUID LIMIT	RI	25 Number of	ARY 94	1.46		
Water Content (%)	103 100 97 94 91 91 88 85 10 LIQUID LIMIT PLASTIC LIMIT	RF %	25 Number of	ARY 94 30).10		
Water Content (%)	103 100 97 94 91 91 88 85 10 LIQUID LIMIT	RI % % DEX %	25 Number of	ARY 94 30 64			

	GRAIIA	PERSADA		Project	SOIL INVE		FOR SOUTHI PLY SYSTEM	ERN BALI WA
					NIHON SUIDOI	CONSULTANT		29-Jul-11
					Ria Irmawan		Checked By	M.lqbal, ST
			ATTE	RBERG	LIMITS 18			
Locatio Hole No Depth		: Bali : BH - 01 : 19.50 - 20.00 m			Sample No Sample Typ Soil Descrip	be :	- UDS -	
LIQUID L	іміт						PLASTI	
No. of B			39	29	20	16]	
Containe			C.12	C.29	C.17	C.38	A.17	A.18
		Wet Soil g	11.09	11.24	11.87	12.00	22.54	22.95
		Dry Soil g	7.92	7.89	8.23	8.28	20.43	20.70
Wt. Wat		g	3.17	3.35	3.64	3.72	2.11	2.25
Wt. Con		g	4.45 3.47	4.33 3.56	4.34 3.89	4.38 3.90	12.81 7.62	12.87 7.83
Wt. Dry Water C			<u>3.47</u> 91.35	3.56 94.10	3.89 93.57	95.38	27.69	28.74
			FL	.OW CUR	VE			
	110 -		FL	.OW CUR	VE			
	110 107		FL		VE			
			FL					
	107		FL					
(%) :	107 - 104 - 101 -		FL					
itent (%)	107 - 104 - 101 - 98 -		FL					
Content (%)	107 + 104 + 101 + 98 + 95 +		FL					
ater Content (%)	107 - 104 - 101 - 98 -		FL		VE			
Water Content (%)	107 + 104 + 101 + 98 + 95 +		FL		VE			
Water Content (%)	107 - 104 - 101 - 98 - 95 - 92 -		FL					
Water Content (%)	107		FL					
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 - 83 -		FL					
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 -		FL					
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 - 83 - 80 -		FL	25				
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 - 83 - 80 -			25	Blows			100
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 - 83 - 80 -			25 Number of	Blows	3.52		
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 - 83 - 80 -	LIQUID LIMIT PLASTIC LIMIT	RE %	25 Number of	Blows	3.22		
Water Content (%)	107 - 104 - 98 - 95 - 92 - 89 - 86 - 83 - 80 -			25 Number of	Blows ARY 93 28 65			

GENCO	GKAHA			Project	SOIL INVE		FOR SOUTH	
				Client	NIHON SUIDO	CONSULTANT	Date	2-Aug-11
				Tested By	Ria Irmawan		Checked By	M.lqbal, ST
			ATTE	ASTM D 43				
Locatic Hole N Depth		: Bali : BH - 02 : 4.50 - 5.00 m			Sample No Sample Ty Soil Descrij	be :	- UDS -	
LIQUID	LIMIT						PLAST	
No. of B			41	30	21	14]	
Contain			C.21	C.22	C.14	C.15	A.7	A.8
		Wet Soil	g 11.2			13.65	20.80	20.66
		Dry Soil	g 8.4			9.54	19.25	19.10
Wt. Wa			g 2.8			4.11	1.55	1.56
Wt. Cor			g 4.3			4.47	13.03	12.81
	Soil (W		g 4.0 % 69.8			5.07 81.07	6.22 24.92	6.29 24.80
			-					
			F	LOW CUF	RVE			
	110 -		F		RVE			
			F		RVE			
	110		F		RVE			
			F		RVE			
(%)	100		F					
tent (%)	100							
Content (%)	100	•	F					
ater Content (%)	90		F					
Water Content (%)	100	•	F		RVE			
Water Content (%)	100	•	F					
Water Content (%)	100	•••••						
Water Content (%)	100		F					
Water Content (%)		 						
Water Content (%)	100	•	F					100
Water Content (%)		•		25 Number o	f Blows			
Water Content (%)				25 Number o	f Blows			
Water Content (%)				25 Number o	f Blows	4.12		
Water Content (%)		LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDE		25 Number o	f Blows	4.12		

					Project	SOIL INVE	STIGATION SUPI	FOR SOUTHI	ERIN BALI WA
					Client	NIHON SUIDOI	CONSULTANT	Date	2-Aug-11
					Tested By	Ria Irmawan			M.lqbal, ST
					RBERG				
Locatio Hole N Depth	NO.	: Bali : BH - 02 : 6.50 - 7.00 m				Sample No Sample Typ Soil Descrip	e :	- UDS -	
LIQUID	LIMIT							PLASTI	C LIMIT
No. of E				40	30	19	15		
Contain				C.4	C.22	C.3	C.6	A.25	A.26
		·Wet Soil ·Dry Soil	g g	11.80 8.88	12.01 8.93	12.43 9.14	13.02 9.54	21.97 19.03	20.56 18.00
Wt. Wa			g	2.92	3.08	9.14 3.29	3.48	2.94	2.56
Wt. Co			g	4.38	4.34	4.35	4.52	12.77	12.71
	y Soil (W	's)	g	4.50	4.59	4.79	5.02	6.26	5.29
Water	Content ((w)	%	64.89	67.10	68.68	69.32	46.96	48.39
				FL	.OW CUR	VE			
	76			FL	.OW CUR	VE			
	76			FL	.OW CUR	VE			
(%)				FL					
intent (%)	73 -	~		FL					
ater Content (%)	73	~		FL		VE			
Water Content (%)	73 70 67 64			FL		VE			
Water Content (%)	73			FL					
Water Content (%)	73 70 67 64	~		FL					100
Water Content (%)	73			FL	OW CUR				100
Water Content (%)	73				Number of	Blows			100
Water Content (%)	73					Blows	/.36		100
Water Content (%)	73			RE	Number of	Blows	<u>7.36</u> 7.68		
Water Content (%)	73		DEX	RE	Number of	Blows			

IGENCO					Project	SOIL INVE		PLY SYSTEM	ERIN BALI WA
					Client	NIHON SUIDOI	CONSULTANT	Date	2-Aug-11
						Ria Irmawan		Checked By	M.lqbal, ST
					RBERG STM D 431				
Locatic Hole N Depth		: ^{Bali} : BH - 02 : 8.50 - 9.00 m				Sample No Sample Typ Soil Descrip	be :	- UDS -	
LIQUID	LIMIT							PLASTI	C LIMIT
No. of B				40	29	20	15		• ====
Contain				C.36	C.40	C.42	C.39	A.31	A.32
		·Wet Soil	g	11.05	11.16	12.21	12.45	23.10	22.80
		· Dry Soil	g	8.22	8.21	8.80	8.95	20.88	20.66
Wt. Wa			g	2.83	2.95	3.41	3.50	2.22	2.14
Wt. Cor			g	4.43	4.31	4.39	4.34	13.42	13.38
Wt. Dry			g	3.79	3.90	4.41	4.61	7.46	7.28
Water C	Content ((W)	%	74.67	75.64	77.32	75.92	29.76	29.40
				FL	OW CUR	VE			
	83 —			FL	OW CUR	VE			
	83			FL		VE			
	80 -			FL		VE			
(%)				FL					
ent (%)	80 -			FL		VE			
ontent (%)	80 -			FL		VE			
tter Content (%)	80			FL					
Water Content (%)	80			FL		VE			
Water Content (%)	80			FL					
Water Content (%)	80			FL					
Water Content (%)	80				25				100
Water Content (%)	80								100
Water Content (%)	80				25 Number of	Blows			100
Water Content (%)	80			•	25	Blows	5.84		100
Water Content (%)	80			RE: %	25 Number of	Blows	5.84		100
Water Content (%)	80			•	25 Number of	Blows RPY 25	5.84		

	ORTHER	PERSADA			Project	SOIL INVE		I FOR SOUTHI PLY SYSTEM	ERN BALI WA
					Client	NIHON SUIDOI C	ONSULTANT	Date	4-Aug-11
						Ria Irmawan			M.lqbal, ST
				ATTER A	RBERG	LIMITS 18			
Locatic Hole N Depth		: Bali : BH - 03 : 2.50 - 3.00 m				Sample No Sample Typ Soil Descrip	be :	- UDS -	
LIQUID	LIMIT							PLASTI	C LIMIT
No. of B				40	29	21	15	1	
Contain				C39	C40	C36	C37	A.15	A.16
Wt.Cor	ntainer +	Wet Soil	g	11.35	12.19	13.53	14.21	22.08	22.69
		Dry Soil	g	8.84	9.26	10.07	10.43	19.74	20.23
Wt. Wa			g	2.51	2.93	3.46	3.78	2.34	2.46
Wt. Cor			g	4.34	4.31	4.43	4.40	12.72	12.79
	Soil (W		g	4.50	4.95	5.64	6.03	7.02	7.44
vvater C	Content (W)	%	55.78	59.19	61.35	62.69	33.33	33.06
				FL	OW CUR	VE			
	70			FL	.OW CUR	VE			
	68 -			FL	.ow cur	VE			
				FL					
()	68 -			FL					
it (%)	68 -	~		FL					
tent (%)	68	~		FL					
Content (%)	68	~		FL					
ater Content (%)	68	~		FL					
Water Content (%)	68	~		FL					
Water Content (%)	68	~		FL					
Water Content (%)	68 66 64 62 60 58 56	~		FL					
Water Content (%)	68 - 66 - 64 - 62 - 60 - 58 - 55 - 54 - 54 - 54 - 55 - 55 - 55	<u> </u>							
Water Content (%)	68 66 64 62 60 58 56 54 52	<u> </u>			OW CUR				
Water Content (%)	68 66 64 62 60 58 56 54 52 50								
Water Content (%)	68 66 64 62 60 58 56 54 52 50			•		Blows			
Water Content (%)	68 66 64 62 60 58 56 54 52 50			RE	25 Number of	Blows	0.65		
Water Content (%)	68 66 64 62 60 58 56 54 52 50	PLASTIC LIMIT		RE %	25 Number of	Blows	3.20		
Water Content (%)	68 66 64 62 60 58 56 54 52 50			RE	25 Number of	Blows ARY 56 33 26			

	GRAHA				Project	SOIL INVE		FOR SOUTH	
					Client	NIHON SUIDOI O	ONSULTANT	Date	4-Aug-11
						Ria Irmawan	ONCOLIMAN		M.lqbal, ST
					RBERG STM D 431				
Locatic Hole N Depth		: Bali : BH - 03 : 8.50 - 9.00 m				Sample No. Sample Typ Soil Descrip	e :	UDS -	
LIQUID	LIMIT							PLAST	IC LIMIT
No. of B	lows			39	31	19	15		
Contain				C3	C42	C4	C22	A.29	A.30
		Wet Soil	g	12.70	13.50	14.29	15.60	20.64	
		Dry Soil	g	10.25	10.78	11.28	12.16	19.00	
Wt. Wa			g	2.45	2.72	3.01	3.44	1.64	
Wt. Con		-)	g	4.35	4.39	4.38	4.34	12.53	
Wt. Dry Water C			g %	5.90 41.53	6.39 42.57	6.90 43.62	7.82 43.99	6.47 25.35	6.06 25.25
	60 —			FL	OW CUR	VE			
(%)	57 54 51			FL					
tent (%)	57			FL					
Content (%)	57			FL					
ater Content (%)	57			FL		VE			
Water Content (%)	57			FL		VE			
Water Content (%)	57 54 51 48 45 42			FL					
Water Content (%)	57 54 51 48 45 42 39 36			FL					
Water Content (%)	57 54 51 48 45 42 39 36 33			FL					
Water Content (%)	57 54 48 45 42 39 36 33 30								
Water Content (%)	57 54 51 48 45 42 39 36 33								
Water Content (%)	57 54 48 45 42 39 36 33 30			RE: %		Blows			
Water Content (%)	57 54 48 45 42 39 36 33 30	PLASTIC LIMIT		RE: %	25 Number of	Blows	.30		
Water Content (%)	57 54 48 45 42 39 36 33 30			RE: %	25 Number of	Blows			

		PERSADA			Project	SOIL INVE		I FOR SOUTH PLY SYSTEM	
					Client	NIHON SUIDOI C	ONSULTANT	Date	11-Aug-11
						Ria Irmawan		Checked By	M.lqbal, ST
				ATTEF	RBERG I	LIMITS 18			
ocatio		: Bali				Sample No		: -	
Hole N	О.	: BH - 04				Sample Typ	e	UDS	
Depth		: 2.50 - 3.00	m			Soil Descrip	otion	: -	
.IQUID I	LIMIT							PLAST	IC LIMIT
Vo. of B	lows			39	30	21	15]	
Contain				C.36	C.42	C.40	C.39	A.5	A.6
		Wet Soil	g	11.62	11.57	11.38	11.03	22.25	
		Dry Soil	g	8.92	8.82	8.67	8.38	21.26	
Nt. Wa			g	2.70		2.71	2.65	0.99	
Nt.Com	Soil (W	(s)	g g	4.43 4.49	4.39 4.43	4.31 4.36	4.34	12.68 8.58	
	Content (9 %	60.13	62.08	62.16	65.59	11.54	
				FL	.OW CUR	VE			
	74 —			FL	.OW CUR	VE			
				FL	.OW CUR	VE			
	71 -			FL		VE			
				FL		VE			
(%)	71 -			FL					
intent (%)	71 - 68 -			FL					
r Content (%)	71			FL		VE			
/ater Content (%)	71			FL		VE			
Water Content (%)	71			FL					
Water Content (%)	71 - 68 - 65 - 62 - 62 - 62 - 63 - 65 - 62 - 63 - 63 - 63 - 63 - 63 - 63 - 63		<u> </u>	FL					
Water Content (%)	71 68 65 62 59 56 57 58		<u> </u>	FL					
Water Content (%)	71 - 68 - 65 - 62 - 62 - 62 - 63 - 65 - 62 - 63 - 63 - 63 - 63 - 63 - 63 - 63				25				
Water Content (%)	71 - 68 - 65 - 62 - 9 - 65 - 62 - 9 - 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63		<u> </u>						
Water Content (%)	71 - 68 - 65 - 62 - 9 - 65 - 62 - 9 - 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63		•		25				100
Water Content (%)	71 - 68 - 65 - 62 - 9 - 65 - 62 - 9 - 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63				25	Blows			
Water Content (%)	71 - 68 - 65 - 62 - 9 - 65 - 62 - 9 - 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63				25 Number of	Blows	2.42		
Water Content (%)	71 - 68 - 65 - 62 - 9 - 65 - 62 - 9 - 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63	PLASTIC L	.IMIT	RE: %	25 Number of	Blows	.76		
Water Content (%)	71 - 68 - 65 - 62 - 9 - 65 - 62 - 9 - 65 - 63 - 63 - 63 - 63 - 63 - 63 - 63		IMIT Y INDEX		25 Number of	Blows ARY 62 11 50			

					Project	SOIL INVE		FOR SOUTH	
						NIHON SUIDOI O	ONSULTANT	Date	11-Aug-11
					Tested By	Ria Irmawan		Checked By	M.lqbal, ST
					RBERG STM D 431				
∟ocatic Hole N Depth		: Bali : BH - 04 : 4.50 - 5.00 m				Sample No. Sample Typ Soil Descrip	e :	- UDS -	
								PLAST	IC LIMIT
No. of B Contain				39 C.32	29	21 C.15	15 C.21	A.27	A 20
		Wet Soil	g	14.49	C.14 15.67	16.07	16.15	A.27 25.07	A.28 25.74
		Dry Soil	g	14.43	11.65	11.96	11.53	23.07	î
Nt. Wa		g =	g	3.48	4.02	4.11	4.62	3.05	
Nt. Con			g	4.39	4.32	4.47	4.37	12.01	
	Soil (W		g	6.62	7.33	7.49	7.16	10.01	
Nater C	Content ((w)	%	52.57	54.84	54.87	64.53	30.47	29.75
	80 —			FL		VE			
	80			FL		VE			
				FL		VE			
(%	75			FL					
rt (%)	75 — 70 — 65 —			FL					
ntent (%)	75	•		FL					
r Content (%)	75 — 70 — 65 —			FL					
Water Content (%)	75			FL		VE			
Water Content (%)	75	•		FL					
Water Content (%)	75 70 65 60 55 50 45			FL					
Water Content (%)	75 70 65 55 50 45 40			FL					
Water Content (%)	75 70 65 60 55 50 45 40 35								
Water Content (%)	75 70 65 55 50 45 40								
Water Content (%)	75 70 65 60 55 50 45 40 35	•				Blows			
Water Content (%)	75 70 65 60 55 50 45 40 35			RES %	25 Number of	Blows	.55		
Water Content (%)	75 70 65 60 55 50 45 40 35	PLASTIC LIMIT		RES %	25 Number of	Blows	.12		
Water Content (%)	75 70 65 60 55 50 45 40 35			RES %	25 Number of	Blows ARY 56 30 26			

GERCO	GRAHA				Project	SOIL INVE		FOR SOUTH PLY SYSTEM	
				ł	Client	NIHON SUIDOI C		Date	11-Aug-11
						Ria Irmawan			M.lqbal, ST
					RBERG STM D 431				
Locatic Hole N Depth	о.	: Bali : BH - 04 : 8.50 - 9.00 r	n			Sample No. Sample Typ Soil Descrip	e :	- UDS -	
						40		PLAST	IC LIMIT
No. of B Contain				39 C.37	29 C.25	19 C.34	14 C.15	A.3	A.4
		Wet Soil	g	11.86	12.34	12.75	13.37	A.3 21.33	A.4 21.37
		Dry Soil	g	9.25	9.54	9.78	10.11	19.12	
Wt. Wa			g	2.61	2.80	2.97	3.26	2.21	2.22
Wt. Con			g	4.40	4.34	4.40	4.50	12.39	
	Soil (W		g	4.85	5.20	5.38	5.61	6.73	6.54
Water C	Content (w)	%	53.81	53.85	55.20	58.11	32.84	33.94
	70			FL	OW CUR	VE			
				FL	OW CUR	VE			
	65			FL		VE			
ent (%)	65			FL					
er Content (%)	65	•		FL		VE			
Water Content (%)	65			FL		VE			
Water Content (%)	65 - 60 - 55 -	•		FL		VE			
Water Content (%)	65			FL		VE			
Water Content (%)	65	•		FL	OW CUR				100
Water Content (%)	65	•••••			Number of	Blows			100
Water Content (%)	65					Blows	.99		100
Water Content (%)	65	PLASTIC LIM	IIT	RE: %	Number of	Blows	8.40		
Water Content (%)	65		IIT INDEX	RES	Number of	Blows			

: Bali : BH - 04 : 11.50 - 12.00 m	41 C.26	Tested By RBERG I STM D 431		: e :		11-Aug-11 M.Iqbal, ST
: BH - 04 : 11.50 - 12.00 m	41 C.26	Tested By RBERG I STM D 431	Ria Irmawan L IMITS 8 Sample No. Sample Typ	: e :	Checked By	
: BH - 04 : 11.50 - 12.00 m	41 C.26	RBERG I	I 8 Sample No. Sample Typ	e :	- UDS	
: BH - 04 : 11.50 - 12.00 m	C.26		Sample Typ	e :	UDS	
o. er + Wet Soil g er + Dry Soil g	C.26	24				
o. er + Wet Soil g er + Dry Soil g	C.26	24				
). r + Wet Soilg r + Dry Soilg	C.26		20	15	PLASTIC	
er + Wet Soil g er + Dry Soil g		C.13	 C.5	C.24	A.19	A.20
r + Dry Soil g	12.09	13.82	14.99	15.27	20.85	20.10
		9.83	10.44	10.57	18.90	18.45
		3.99	4.55	4.70	1.95	1.65
r g		4.34	4.35	4.34	12.65	13.01
(Ws) g		5.49	6.09	6.23	6.25	5.44
nt (w) %	70.70	72.68	74.71	75.44	31.20	30.33
~						
	:		Blows			100
	RE:	SULT SUMMA		.38]	
PLASTIC LIMIT	%					
PLASTICITY INDEX	%					
CLASSIFICATION				Ж		
	PLASTICITY INDEX	10 RE LIQUID LIMIT % PLASTIC LIMIT % PLASTICITY INDEX %	LIQUID LIMIT % PLASTIC LIMIT % PLASTICITY INDEX %	10 25 Number of Blows RESULT SUMMARY LIQUID LIMIT % 73 PLASTIC LIMIT % 30 PLASTICITY INDEX % 42	Image: Second	Image: Constraint of the second se

BEARING CAPACITY

PILE INFORI		-		
Length :	1	5 m		
Pile type	Precast	Round	Area	0,0707 m2
Dimension	0,	30 m	Perimeter	0,942477796 m
SOIL INFOR		40,45 m	BOREHOLE	BH1
			DOILTIOLL	DITI
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c sand (SP/SW), silty sai		L) = 1

depth	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	1	1	0	0
2	1	1	2	1	1	2	1	0
3	1	1	2	2	1	3	1	0
4	1	1	2	3	1	4	1	1
5	1	1	2	3	1	4	1	1
6	1	1	2	4	1	5	2	1
7	1	1	2	5	1	6	2	1
8	1	1	2	6	1	7	2	1
9	1	1	1	6	3	9	3	1
10	2	2	1	6	4	10	3	1
11	2	2	1	6	4	11	4	1
12	2	2	1	7	4	11	4	2
13	2	2	1	7	4	11	4	2
14	2	2	1	7	4	12	4	2
15	2	2	1	7	4	12	4	2
16	2	2	2	9	2	11	4	2
17	2	2	2	10	2	13	4	2
18	2	2	2	12	2	14	5	3
19	2	2	2	13	2	16	5	3
20	2	2	2	15	2	17	6	3
21	2	2	2	16	3	19	6	4
22	3	2	2	18	3	21	7	4
23	4	3	2	21	9	29	10	5

PILE INFORI	MATION			
Length :	1	5 m		
Pile type	Precast	Round	Area	0,0707 m2
Dimension	0,3	30 m	Perimeter	0,942477796 m
SOIL INFOR	MATION			
DEPTH OF SOI	L DATA :	40,45 m	BOREHOLE	BH1
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c sand (SP/SW), silty sa		L) = 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	16	13	2	28	19	47	16	7
25	31	24	2	46	23	69	23	11
26	16	13	2	63	26	89	30	15
27	23	18	2	77	23	101	34	18
28	24	19	2	95	28	123	41	22
29	28	22	2	114	30	144	48	27
30	30	24	2	136	28	163	54	32
31	17	13	2	153	25	178	59	36
32	20	16	2	167	21	187	62	39
33	19	15	2	181	21	203	68	42
34	19	15	2	195	25	220	73	46
35	30	24	2	213	33	246	82	50
36	40	31	2	239	42	281	94	56
37	43	34	2	270	47	317	106	63
38	44	35	2	302	49	351	117	70
39	46	36	2	335	51	387	129	78
40	48	38	2	370	52	422	141	86

Length :	1	5 _m		
Pile type	Precast	Round	Area	0,1257 m2
Dimension	0,	40 m	Perimeter	1,256637061 m
SOIL INFORI		40,45 m	BOREHOLE	BH1
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c		

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	2	2	1	0
2	1	1	2	1	2	3	1	0
3	1	1	2	2	2	4	1	1
4	1	1	2	3	2	5	2	1
5	1	1	2	4	2	6	2	1
6	1	1	2	5	2	7	2	1
7	1	1	2	6	2	8	3	1
8	1	1	2	7	2	9	3	2
9	1	1	1	8	5	13	4	2
10	2	2	1	8	7	14	5	2
11	2	2	1	8	8	16	5	2
12	2	2	1	9	8	17	6	2
13	2	2	1	9	8	17	6	2
14	2	2	1	9	8	17	6	2
15	2	2	1	10	8	18	6	2
16	2	2	2	12	4	16	5	3
17	2	2	2	14	4	18	6	3
18	2	2	2	16	4	20	7	4
19	2	2	2	18	4	22	7	4
20	2	2	2	20	4	24	8	5
21	2	2	2	22	5	26	9	5
22	3	2	2	24	6	30	10	6
23	4	3	2	28	15	43	14	6

PILE INFORI	MATION			
Length :	1	5 _m		
Pile type	Precast	Round	Area	0,1257 m2
Dimension	0,4	10 m	Perimeter	1,256637061 m
SOIL INFORI	MATION			
DEPTH OF SOIL	L DATA :	40,45 m	BOREHOLE	BH1
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c sand (SP/SW), silty sa		_) = 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	16	13	2	38	34	71	24	9
25	31	24	2	61	41	102	34	14
26	16	13	2	84	46	130	43	20
27	23	18	2	103	41	145	48	24
28	24	19	2	126	49	176	59	29
29	28	22	2	152	54	206	69	35
30	30	24	2	181	49	230	77	42
31	17	13	2	204	44	248	83	48
32	20	16	2	222	37	259	86	52
33	19	15	2	241	38	280	93	56
34	19	15	2	260	45	305	102	61
35	30	24	2	284	59	343	114	66
36	40	31	2	319	74	393	131	74
37	43	34	2	360	84	443	148	84
38	44	35	2	403	88	490	163	94
39	46	36	2	447	91	538	179	104
40	48	38	2	494	93	586	195	115

PILE INFORI	VIATION			
Length :	1	I5 _m		
Pile type	Precast	Round	Area	0,1963 m2
Dimension	0,	50 m	Perimeter	1,571 m
SOIL INFOR	MATION			
DEPTH OF SOIL	DATA :	40,45 m	BOREHOLE	BH1
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c sand (SP/SW), silty sa	layey silt (MH) = 2 nd (SM), sandy silt (ML)	= 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	1	3	4	1	0
2	1	1	2	2	3	5	2	0
3	1	1	2	3	3	6	2	1
4	1	1	2	4	3	7	2	1
5	1	1	2	6	3	9	3	1
6	1	1	2	7	3	10	3	2
7	1	1	2	8	3	11	4	2
8	1	1	2	9	3	12	4	2
9	1	1	1	10	8	18	6	2
10	2	2	1	10	10	20	7	2
11	2	2	1	10	12	23	8	2
12	2	2	1	11	12	23	8	3
13	2	2	1	11	12	24	8	3
14	2	2	1	12	12	24	8	3
15	2	2	1	12	12	25	8	3
16	2	2	2	15	6	21	7	3
17	2	2	2	17	6	23	8	4
18	2	2	2	20	6	26	9	5
19	2	2	2	22	6	28	9	5
20	2	2	2	25	6	31	10	6
21	2	2	2	27	7	34	11	6
22	3	2	2	30	9	39	13	7
23	4	3	2	35	24	58	19	8

PILE INFORI	NATION					
Length :	1	15 _m				
Pile type	Precast	Round	Area	0,1963 m2		
Dimension	0,	50 m	Perimeter	1,571 m		
SOIL INFORI	MATION					
DEPTH OF SOIL	DATA :	40,45 m	BOREHOLE	BH1		
SPT INTERVAL		1 m				
note : soil type clay, silty clay (CH/CL), clayey silt (MH) = 2 sand (SP/SW), silty sand (SM), sandy silt (ML) = 1						

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	16	13	2	47	52	99	33	11
25	31	24	2	76	65	141	47	18
26	16	13	2	105	72	177	59	24
27	23	18	2	129	65	194	65	30
28	24	19	2	158	77	235	78	37
29	28	22	2	190	84	274	91	44
30	30	24	2	226	77	303	101	53
31	17	13	2	255	69	324	108	59
32	20	16	2	278	58	335	112	65
33	19	15	2	302	60	361	120	70
34	19	15	2	325	70	395	132	76
35	30	24	2	355	92	447	149	83
36	40	31	2	399	116	515	172	93
37	43	34	2	450	131	580	193	105
38	44	35	2	504	137	640	213	117
39	46	36	2	559	142	701	234	130
40	48	38	2	617	145	762	254	144

Length :	1	I5 _m		
Pile type	Precast	Round	Area	0,0707 m2
Dimension	0,	30 m	Perimeter	0,942477796 m
SOIL INFOR				
DEPTH OF SO		<u>25,45</u> m 1 m	BOREHOLE	BH2
DEPTH OF SO			BOREHOLE	BH2

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	1	1	0	0
2	1	1	2	1	1	2	1	0
3	1	1	2	2	1	3	1	0
4	1	1	2	3	1	4	1	1
5	1	1	2	3	1	4	1	1
6	1	1	2	4	1	5	2	1
7	1	1	2	5	1	6	2	1
8	1	1	2	6	1	7	2	1
9	1	1	2	6	4	10	3	1
10	8	6	2	10	9	19	6	2
11	16	13	2	19	16	34	11	4
12	19	15	2	31	31	63	21	7
13	50	39	1	37	66	102	34	9
14	20	16	1	42	68	110	37	10
15	22	17	2	57	26	83	28	13
16	28	22	2	76	29	104	35	18
17	27	21	2	96	31	128	43	22
18	30	24	2	117	30	148	49	27
19	25	20	2	138	30	168	56	32
20	26	20	2	157	29	186	62	37
21	28	22	2	177	29	206	69	41
22	25	20	2	196	28	224	75	46
23	23	18	2	214	28	242	81	50
24	28	22	2	233	30	263	88	54
25	30	24	2	254	32	287	96	59

Length :	1	l 5 _m		
Pile type	Precast	Round	Area	0,1257 m2
Dimension	0,	40 m	Perimeter	1,256637061 m
SOIL INFORM DEPTH OF SOI	L DATA :	25,45 m	BOREHOLE	BH2
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c	lavev silt (MH) = 2	
1101 0 .	Soli type	oray, sincy oray (OF I/OL), c	nd (SM), sandy silt (N	

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	0	2	2	1	0
2	1	1	2	1	2	3	1	0
3	1	1	2	2	2	4	1	1
4	1	1	2	3	2	5	2	1
5	1	1	2	4	2	6	2	1
6	1	1	2	5	2	7	2	1
7	1	1	2	6	2	8	3	1
8	1	1	2	7	2	9	3	2
9	1	1	2	8	7	15	5	2
10	8	6	2	13	16	29	10	3
11	16	13	2	25	28	53	18	6
12	19	15	2	42	56	98	33	10
13	50	39	1	49	117	166	55	11
14	20	16	1	56	121	177	59	13
15	22	17	2	76	46	122	41	18
16	28	22	2	101	51	152	51	24
17	27	21	2	128	56	184	61	30
18	30	24	2	156	54	210	70	36
19	25	20	2	184	53	237	79	43
20	26	20	2	209	52	261	87	49
21	28	22	2	235	52	287	96	55
22	25	20	2	262	50	312	104	61
23	23	18	2	285	50	335	112	67
24	28	22	2	310	53	364	121	72
25	30	24	2	339	57	396	132	79

_ength :	1	<u>5</u> m		
Pile type	Precast	Round	Area	0,1963 m2
Dimension	0,4	50 m	Perimeter	1,571 m
SOIL INFORM	IATION			
		25 4 5 m		
SOIL INFORI DEPTH OF SOIL SPT INTERVAL		<u>25,45</u> m 1 m	BOREHOLE	BH2
DEPTH OF SOIL				BH2

depth	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	1	1	2	1	3	4	1	0
2	1	1	2	2	3	5	2	0
3	1	1	2	3	3	6	2	1
4	1	1	2	4	3	7	2	1
5	1	1	2	6	3	9	3	1
6	1	1	2	7	3	10	3	2
7	1	1	2	8	3	11	4	2
8	1	1	2	9	3	12	4	2
9	1	1	2	10	10	21	7	2
10	8	6	2	16	26	42	14	4
11	16	13	2	31	44	75	25	7
12	19	15	2	52	87	140	47	12
13	50	39	1	61	183	244	81	14
14	20	16	1	70	189	259	86	16
15	22	17	2	96	72	168	56	22
16	28	22	2	126	79	206	69	29
17	27	21	2	160	87	248	83	37
18	30	24	2	195	84	280	93	46
19	25	20	2	229	83	313	104	54
20	26	20	2	261	81	342	114	61
21	28	22	2	294	81	375	125	69
22	25	20	2	327	78	405	135	76
23	23	18	2	357	78	435	145	83
24	28	22	2	388	83	471	157	91
25	30	24	2	424	89	513	171	99

Length :	1	5 m		
Pile type	Precast	Round	Area	0,0707 m2
Dimension	0,3	30 m	Perimeter	0,942477796 m
CON NEOD				
SOIL INFOR		30,45 m	BOREHOLE	BH3
	L DATA :	<u>30,45</u> m <u>1</u> m	BOREHOLE	BH3

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	5	4	2	2	4	6	2	0
2	2	2	1	2	7	9	3	1
3	2	2	1	3	5	8	3	1
4	3	2	1	3	6	9	3	1
5	3	2	1	3	5	9	3	1
6	1	1	2	5	2	7	2	1
7	1	1	2	6	1	7	2	1
8	1	1	2	6	1	8	3	2
9	1	1	1	7	4	10	3	2
10	3	2	1	7	5	12	4	2
11	3	2	1	7	7	14	5	2
12	3	2	1	8	7	15	5	2
13	4	3	1	8	8	16	5	2
14	4	3	1	9	9	18	6	2
15		3	1	9	24	33	11	2
16	24	19	1	12	41	53	18	3
17	28	22	1	15	61	76	25	4
18		24	1	20	47	67	22	5
19	6	5	1	22	32	54	18	5
20	7	6	1	23	13	36	12	5
21	4	3	1	24	12	36	12	6
22	5	4	2	27	6	33	11	6
23	6	5	2	32	12	44	15	7

_ength :	1	5 m		
Pile type	Precast	Round	Area	0,0707 m2
Dimension	0,;	30 m	Perimeter	0,942477796 m
SOIL INFOR DEPTH OF SO SPT INTERVAL	IL DATA :	<u>30,45</u> m <u>1</u> m	BOREHOLE	BH3
	soil type	clay, silty clay (CH/CL), cl	avav silt (MH) = 2	

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	22	17	2	42	19	61	20	10
25	24	19	2	59	28	87	29	14
26	29	23	2	79	32	110	37	18
27	33	26	2	102	36	138	46	24
28	36	28	2	127	41	169	56	30
29	43	34	2	156	47	203	68	36
30	47	37	2	190	50	240	80	44

PILE INFORM	ATION			
Length :	1	l 5 _m		
Pile type	Precast	Round	Area	0,1257 m2
Dimension	0,	40 m	Perimeter	1,256637061 m
SOIL INFORM	ATION			
DEPTH OF SOIL	DATA :	30,45 m	BOREHOLE	BH3
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c sand (SP/SW), silty sa		_) = 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	5	4	2	2	7	9	3	1
2	2	2	1	3	12	15	5	1
3	2	2	1	4	9	13	4	1
4	3	2	1	4	11	15	5	1
5	3	2	1	5	9	14	5	1
6	1	1	2	7	3	10	3	2
7	1	1	2	8	2	10	3	2
8	1	1	2	9	2	11	4	2
9	1	1	1	9	7	15	5	2
10	3	2	1	9	9	18	6	2
11	3	2	1	10	12	22	7	2
12	3	2	1	10	13	24	8	2
13	4	3	1	11	14	26	9	3
14	4	3	1	12	16	28	9	3
15		3	1	13	42	55	18	3
16	24	19	1	15	74	89	30	4
17	28	22	1	21	108	128	43	5
18		24	1	26	84	111	37	6
19	6	5	1	30	57	86	29	7
20	7	6	1	31	22	53	18	7
21	4	3	1	32	21	53	18	8
22	5	4	2	37	10	47	16	9
23	6	5	2	42	22	64	21	10

PILE INFORI	VIATION			
Length :	1	I5 _m		
Pile type	Precast	Round	Area	0,1257 m2
Dimension	0,4	40 m	Perimeter	1,256637061 m
SOIL INFORI	MATION			
DEPTH OF SOI	IL DATA :	30,45 m	BOREHOLE	BH3
SPT INTERVAL	-	1 m		
note :	soil type	clay, silty clay (CH/CL), cla		
		sand (SP/SW), silty san	d (SM), sandy silt (NIL	_) = 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	22	17	2	56	34	90	30	13
25	24	19	2	79	49	128	43	18
26	29	23	2	105	57	161	54	24
27	33	26	2	135	65	200	67	32
28	36	28	2	169	74	243	81	40
29	43	34	2	208	83	291	97	49
30	47	37	2	253	89	342	114	59

PILE INFORI	NATION			
Length :	1	15 _m		
Pile type	Precast	Round	Area	0,1963 m2
Dimension	0,	50 m	Perimeter	1,571 m
SOIL INFORI	MATION			
DEPTH OF SOI	L DATA :	30,45 m	BOREHOLE	BH3
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), cl sand (SP/SW), silty sar	layey silt (MH) = 2 nd (SM), sandy silt (ML) :	= 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	5	4	2	3	11	14	5	1
2	2	2	1	4	19	22	7	1
3	2	2	1	4	14	19	6	1
4	3	2	1	5	16	22	7	1
5	3	2	1	6	14	20	7	1
6	1	1	2	8	5	13	4	2
7	1	1	2	10	3	13	4	2
8	1	1	2	11	3	14	5	3
9	1	1	1	11	10	21	7	3
10	3	2	1	11	14	26	9	3
11	3	2	1	12	19	31	10	3
12	3	2	1	13	21	34	11	3
13	4	3	1	14	23	36	12	3
14	4	3	1	15	25	39	13	3
15	4	3	1	16	66	82	27	4
16	24	19	1	19	115	134	45	4
17	28	22	1	26	169	194	65	6
18	30	24	1	33	132	164	55	8
19	6	5	1	37	88	126	42	9
20	7	6	1	39	35	74	25	9
21	4	3	1	40	33	73	24	9
22	5	4	2	46	15	61	20	11
23	6	5	2	53	34	87	29	12

PILE INFORM	MATION			
Length :	1	5 m		
Pile type	Precast	Round	Area	0,1963 m2
Dimension	0,	50 m	Perimeter	1,571 m
SOIL INFORM	VIATION			
DEPTH OF SOII	L DATA :	30,45 m	BOREHOLE	BH3
SPT INTERVAL		1 _m		
note :	soil type	clay, silty clay (CH/CL), cl sand (SP/SW), silty san	layey silt (MH) = 2 nd (SM), sandy silt (ML)	= 1

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
24	22	17	2	70	53	123	41	16
25	24	19	2	98	77	175	58	23
26	29	23	2	131	88	219	73	31
27	33	26	2	169	101	270	90	39
28	36	28	2	212	115	327	109	49
29	43	34	2	261	130	390	130	61
30	47	37	2	316	139	455	152	74

Length :	1	I5 _m		
Pile type	Precast	Round	Area	0,0707 m2
Dimension	0,	30 m	Perimeter	0,942477796 m
SOIL INFOR				
SOIL INFORM DEPTH OF SOI SPT INTERVAL		<u>25,45</u> m 1 m	BOREHOLE	BH4
DEPTH OF SOI			BOREHOLE	BH4

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	2	2	2	1	2	3	1	0
2	2	2	2	2	2	4	1	1
3	1	1	2	3	1	5	2	1
4	1	1	2	4	1	5	2	1
5	1	1	2	5	2	7	2	1
6	3	2	2	6	2	8	3	1
7	1	1	2	8	2	10	3	2
8	1	1	2	9	1	10	3	2
9	2	2	2	10	2	11	4	2
10	2	2	2	11	2	13	4	3
11	2	2	2	13	2	15	5	3
12	2	2	2	14	2	16	5	3
13	2	2	2	16	2	18	6	4
14	2	2	2	17	2	19	6	4
15	2	2	2	19	2	21	7	4
16	2	2	2	20	2	22	7	5
17	2	2	2	21	2	24	8	5
18	2	2	2	23	3	26	9	5
19	3	2	2	25	13	38	13	6
20	31	24	2	37	21	59	20	9
21	24	19	2	58	27	84	28	13
22	17	13	2	73	21	94	31	17
23	15	12	2	85	17	102	34	20
24	14	11	2	96	17	113	38	22
25	18	14	2	107	18	125	42	25

Length :	1	I5 _m		
Pile type	Precast	Round	Area	0,1257 m2
Dimension	0,	40 m	Perimeter	1,256637061 m
SOIL INFOR	L DATA :	25,45 m	BOREHOLE	BH4
SPT INTERVAL		1 m		
note :	soil type	clay, silty clay (CH/CL), c	lavev silt (MH) = 2	

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	2	2	2	1	4	5	2	0
2	2	2	2	3	3	6	2	1
3	1	1	2	4	3	7	2	1
4	1	1	2	5	2	7	2	1
5	1	1	2	6	3	10	3	1
6	3	2	2	8	3	12	4	2
7	1	1	2	10	3	14	5	2
8	1	1	2	11	3	14	5	3
9	2	2	2	13	3	16	5	3
10	2	2	2	15	4	19	6	3
11	2	2	2	17	4	21	7	4
12	2	2	2	19	4	23	8	4
13	2	2	2	21	4	25	8	5
14	2	2	2	23	4	27	9	5
15	2	2	2	25	4	29	10	6
16	2	2	2	27	4	31	10	6
17	2	2	2	29	4	33	11	7
18	2	2	2	31	5	35	12	7
19	3	2	2	33	24	57	19	8
20	31	24	2	50	38	88	29	12
21	24	19	2	77	47	124	41	18
22	17	13	2	97	37	134	45	23
23	15	12	2	113	30	143	48	26
24	14	11	2	127	31	158	53	30
25	18	14	2	143	32	175	58	33

_ength :	1	5 _m		
Pile type	Precast	Round	Area	0,1963 m2
Dimension	0,	50 m	Perimeter	1,571 m
SOIL INFORI	MATION			
SOIL INFORI	MATION			
DEPTH OF SOI		25,45 m 1 m	BOREHOLE	BH4
		<u>25,45</u> m <u>1</u> m	BOREHOLE	BH4

depth m	NSPT	Corrected NSPT N70> N55	soil type	Pf ton	Pb ton	ultimate capacity Pf+Pb ton	allowable capacity Pa SF=3 ton	remarks Pullout Sf=3
0	0		2					0
1	2	2	2	1	6	7	2	0
2	2	2	2	4	5	9	3	1
3	1	1	2	6	4	10	3	1
4	1	1	2	7	3	10	3	2
5	1	1	2	8	5	13	4	2
6	3	2	2	10	5	16	5	2
7	1	1	2	13	5	18	6	3
8	1	1	2	14	4	18	6	3
9	2	2	2	16	5	21	7	4
10	2	2	2	19	6	25	8	4
11	2	2	2	21	6	27	9	5
12	2	2	2	23	6	30	10	5
13	2	2	2	26	6	32	11	6
14	2	2		28	6	35	12	7
15	2	2	2	31	6	37	12	7
16	2	2	2	33	6	39	13	8
17	2	2	2	36	6	42	14	8
18	2	2	2	38	7	45	15	9
19	3	2	2	41	37	78	26	10
20	31	24	2	62	60	122	41	15
21	24	19	2	96	74	170	57	22
22	17	13	2	122	58	179	60	28
23	15	12	2	141	47	189	63	33
24	14	11	2	159	48	208	69	37
25	18	14	2	179	49	228	76	42

SHALLOW BEARING

	GALOU	JLAII	UN	OF 3	SOIL B	EARING	5 CAPACI	CITY SHALLOW FOUNDATION				
Projec	et			Sout	hern Ba	li Water Su	pply System	Made B	у	Andrianto		
Client				١	VIHON SI	UIDO CONS	SULTANT	Undrain	ed shear stre	ngth and friction		
Boreh	ole Nun	nber				BH-1		angle is	obtained fror	n lab tests.		
Meth	od				Vleyerho	off (1963, S	PT 1974)	Unit we	ight value als	o taken from lab		
Width	n of Four	ndation	(B)	4	m			All value	es subject to e	engineer judgement		
Depth	SPT Value (Weighed)	Cu	φ	Soil Symbol	γ'	q ultimate (Meyerhoff 1963)	q allowable (Meyerhoff 1963) (SF=3)	qa Value (kPa) -SPT (Meyerhoff 1974)	SPT N Value (N55)	Allowable Bearing Capacity (kPa)		
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)	0 5 101520	0 100 200 300 400 500		
0	1	5	6		16	43	14	14.45	• 6 5 101520			
0.5	1	5	6		16	64	21	15.04	1 🖡 👘	Meyerhof		
1	1	5	6		16	87	29	15.64	1.			
1.5	1	5	6		16	112	37	16.23	14			
2	1	5	6		16	138	46	16.83	1			
2.5	1	5	6		6	103	34	17.42				
3	1	5	6		6	117	39	18.02				
3.5	1	5	6		6	132	44	18.62				
4	1	5	6		6	148	49	19.21		• •		
4.5	1	5	6	SOFT CLAY	6	164	55	19.21				
5	1	5	6		6	180	60	19.21	, , , , , , , , , , ,	· •		
5.5	1	5	6	SQ 1	6	197	66	19.21				
6	1	5	6		6	215	72	19.21		·⊭♦		
6.5	1	5	6		6	234	78	19.21		 		
7	1	5	6		6	253	84	19.21		┃ ァ╆╋╋╋╋╋╋╋╋		
7.5	1	5	6		6	273	91	19.21		⊭ ┥ │ │		
8	1	5	6		6	293	98	19.21	,	┃ ゥ ╠╴ ┥		
8.5	2	5	8		6	377	126	38.42		🛉 👌 👘 👘		
9	2	5	8		6	404	135	38.42	┛╷┝───┤	┃╷┼╪╾-╋─────┤		
9.5	2	8	8		6	522	174	38.42	↓ ↓			
10	2	8	20		6	1792	597	38.42	」Ц			

Proje	et			South	nern Bali	Water Sug	oply System	Made B	v	Andrianto
Client						IDO CONS				ngth and friction
	nole Nun	nber				BH-2			obtained fror	•
Meth				ΓN	Meyerhoff (1963, SPT 1974)					o taken from lab
Width	n of Four	ndation	(B)	4	m		,	4	•	engineer judgement
Depth	SPT Value (Weighed)	Cu	φ	Soil Symbol	γ'	q ultimate (Meyerhoff 1963)	q allowable (Meyerhoff 1963) (SF=3)	qa Value (kPa) -SPT (Meyerhoff 1974)	SPT N Value (N55)	Allowable Bearing Capacity (kPa)
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)		0 100 200 300 400 500
<u> </u>	1	5	6		16	43	14	14.45	0 5 101520	
0.5	1	5	6		16	64	21	15.04		Meyerhof
1	1	5	6		16	87	29	15.64		
1.5	1	5	6		16	112	37	16.23		
2	1	5	6		16	138	46	16.83		
2.5	1	5	6		6	103	34	17.42		
3	1	5	6		6	117	39	18.02		
3.5	1	5	6		6	132	44	18.62		
4	1	5	6		6	148	49	19.21		·
4.5	1	5	6	SOFT CLAY	6	164	55	19.21		
5	1	5	6	1°	6	180	60	19.21		3 ***
5.5	1	5	6	ŠĢF	6	197	66	19.21		│ ┝╞ ╇ │ │
6	1	5	6		6	215	72	19.21		•₩
6.5	1	5	6		6	234	78	19.21		⊭∔
7	1	5	6		6	253	84	19.21		,
7.5	1	5	6		6	273	91	19.21		⊯ ∔
8	1	5	6		6	293	98	19.21].	
8.5	1	5	8		6	377	126	19.21		📙 🧎 👘
9	1	5	8		6	404	135	19.21].[]	
9.5	3	8	8		6	522	174	57.64		
10	8	8	20		6	1792	597	153.70		

Project				South	Southern Bali Water Supply System Made By Andrianto					
Client				NIHON SUIDO CONSULTANT			Undrained shear strength and friction			
Borehole Number				BH-3			angle is obtained from lab tests.			
Method				Meyerhoff (1963, SPT 1974)			Unit weight value also taken from lab			
Width of Foundation (B)				4 m			All values subject to engineer judgement			
Depth	SPT Value (Weighed)	cu	ф	Soil Symbol	γ'	q ultimate (Meyerhoff 1963)	q allowable (Meyerhoff 1963) (SF=3)	qa Value (kPa) -SPT (Meyerhoff 1974)	SPT N Value (N55)	Allowable Bearing Capacity (kPa)
(m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)		0 100 200 300 400 500
0	5	5	6	/////	16	43	14	72.23		
0.5	5	5	6		16	64	21	75.21	↓	Meyerhof
1	5	5	6	(Ħ)	16	87	29	78.19	╏╷┼┶───┤╴│	
1.5	5	5	6		16	112	37	81.16	↓	
2	2	5	6		16	138	46	33.66		2
2.5	2	5	6		6	103	34	34.85	14	
3	2	5	6		6	117	39	36.04	1	•
3.5	2	5	6		6	132	44	37.23]	🛉 👘
4	3	5	6		6	148	49	57.64].[]	. ∲ ────────────────────────────────────
4.5	3	5	6	SILTY CLAY WITH CORAI	6	164	55	57.64] ↓	
5	3	5	6] 🖸	6	180	60	57.64].[+]	s
5.5	3	5	6	Ē	6	197	66	57.64]	
6	1	5	6	W	6	215	72	19.21].[]	.₩
6.5	1	5	6	А	6	234	78	19.21		⊨
7	1	5	6	ΥC	6	253	84	19.21		, <mark> ↓ ↓</mark> .
7.5	1	5	6	III	6	273	91	19.21		∣⊯∔ ∣
8	1	5	6] ~	6	293	98	19.21].	
8.5	1	5	8		6	377	126	19.21		📙 🔪 —
9	1	5	8		6	404	135	19.21		
9.5	2	8	8		6	522	174	38.42]	
10	3	8	20		6	1792	597	57.64		

Project			Southern Bali Water Supply System Made By Andrianto							
Client				NIHON SUIDO CONSULTANT			Undrained shear strength and friction			
Borehole Number			BH-4			angle is obtained from lab tests.				
Method				Meyerhoff (1963, SPT 1974)			-		o taken from lab	
Width of Foundation (B)			4 m			All values subject to engineer judgement				
Depth	SPT Value (Weighed)	Cu	φ	Soil Symbol	γ'	q ultimate (Meyerhoff 1963)	q allowable (Meyerhoff 1963) (SF=3)	qa Value (kPa) -SPT (Meyerhoff 1974)	SPT N Value (N55)	Allowable Bearing Capacity (kPa)
 (m)	(N55)	(kPa)			(kPa)	(kPa)	(kPa)	(kPa)		0 100 200 300 400 500
0	2	5	6	/////	16	43	14	28.89	0 5 101520	
0.5	2	5	6		16	64	21	30.08		Meyerhof
1	2	5	6	(Ħ)	16	87	29	31.27	┃.┃	SPT
1.5	2	5	6		16	112	37	32.47	14	
2	2	5	6		16	138	46	33.66		
2.5	2	5	6		6	103	34	34.85	1↓	
3	1	5	6		6	117	39	18.02		
3.5	1	5	6		6	132	44	18.62		
4	1	5	6		6	148	49	19.21		·
4.5	1	5	6	SILTY CLAY WITH CORA	6	164	55	19.21		
5	1	5	6	S	6	180	60	19.21		, , , , , , , , , , , , , , , , , , ,
5.5	1	5	6	E	6	197	66	19.21		│ ┝╡┥ │ │
6	3	5	6	N,	6	215	72	57.64	. 	· · · · · · · · · · · · · · · · · · ·
6.5	3	5	6	A	6	234	78	57.64		
7	1	5	6	ΥC	6	253	84	19.21	∦	
7.5	1	5	6		6	273	91	19.21		
8	1	5	6		6	293	98	19.21		┃ : •
8.5	1	5	8		6	377	126	19.21		∣⊯∖∖
9	2	5	8		6	404	135	38.42		
9.5	2	8	8		6	522	174	38.42		
10	2	8	20		6	1792	597	38.42]	

APPENDIX 5

CONCEPT DESIGN OF RECLAIMED WATER TREATMENT FACILITY

APPENDIX 5 CONCEPT DESIGN OF RECLAIMED WATER TREATMENT FACILITY

Case 1 Item Case 2 1.Design Parameter 1-1 Outline of Reclaimed Water System (1) Area of Plant (2) Grand Level of Plant (3) Type of Reclaimed Water System (4) Water Treatment Process 1-2 Design Flowrate Water Reuse Maximum Daily Flowrate $4500m^{3}/d$ 9000m³/d Reclaimed Water System Flowrate Raw Water Flowrate $5900 \text{m}^{3}/\text{d}$ $11800 \text{m}^{3}/\text{d}$ **Biological Filtration Flowrate** $11800m^{3}/d$ $5900m^{3}/d$ Ozone Cotactor Flowrate $4800m^{3}/d$ $9600 \text{m}^{3}/\text{d}$ Ceramic Membrane Filtration Flowrate $4800m^{3}/d$ $9600 \text{m}^{3}/\text{d}$ Reclaimed Water Flowrate $9600 \text{m}^{3}/\text{d}$ $4800 \text{m}^{3}/\text{d}$ 2 Series 1 Series 1-3 Number of Series 2.Raw Water 2-1 Raw Water Tank Raw Water Flowrate $= 5900 \text{m}^{3}/\text{d}$ $= 11800 \text{m}^{3}/\text{d}$ = 5.0 minutes Retention Time = 5.0 minutes Req. Volume $= 11800 \text{m}^3/\text{d} / 1440 \text{min/d}$ $= 5900 \text{m}^3/\text{d} / 1440 \text{min/d}$ x 5min $\Rightarrow 20.5 \text{m}^3$ x 5min \Rightarrow 41m³ Number of Series = 2 Series = 1 Series Number of Basin = 1 Basin = 1 Basin One Basin Volume $= 20.5 / 1 = 20.5 m^3$ $= 41 / 2 / 1 = 20.5 \text{m}^3$ Length = 3.3 m= 3.3 mWidth = 2.5 m= 2.5 m= 2.5 m= 2.5 mWater Depth $= 3.3 \times 2.5 \times 2.5$ Total Volume $= 3.3 \times 2.5 \times 2.5$ $= 20.625 \text{ m}^3/\text{Series}$ $= 20.625 \text{ m}^3/\text{Series}$ Total Number of Basins = 2 Basins = 2 Basins Raw Water Feed Pump Total Pump Capacity $= 5900 \text{m}^3/\text{d} / 1440 \text{min/d}$ $= 11800 \text{m}^3/\text{d} / 1440 \text{min/d}$ \Rightarrow 4.1m3/min \Rightarrow 8.2m3/min Number of Series = 1 Series = 2 Series Pump Capacity $= 4.1 / 12 = 4.1 \text{ m}^{3}/\text{min}$ $= 8.2 / 2 = 4.1 \text{m}^{3}/\text{min}$ Total Number of Pumps = 2 Pumps = 3 Pumps (Including Backup Pump) (Including Backup Pump)

5.a Calculation Sheets Water Reclaimed Water for BALI

Item	Case 1	Case 2
3.Biological Filtration 3-1 Biological Filtration Tank		
Design Flowrate Biological Filtration Flowrate	$= 5900 \text{m}^3/\text{d}$	$= 11800 \text{m}^3/\text{d}$
Biological Filtration Speed	= 40 m/d	= 40 m/d
Req. Area	$= 5900 \text{m}^{3}/\text{d} / 40 \text{m}/\text{d}$ $= 148 \text{m}^{2}$	$= 11800 \text{m}^{3}/\text{d} / 40 \text{m/d} = 295 \text{m}^{2}$
Number of Series	= 1 Series	= 2 Series
Number of Basin	= 4 Basins	= 4 Basins
One Reactor Req. Area	= 148 / 1 / 4 $=$ 37m ²	$= 295 / 2 / 4 = 36.9 \mathrm{m}^2$
Length	= 6.1 m	= 6.1 m
Width	= 6.1 m	= 6.1 m
Biological Filtration Area	$= 6.1 \times 6.1 = 37.21 \text{m}^2$	$= 6.1 \text{ x } 6.1 = 37.21 \text{m}^2$
Total Number of Basins	= 4 Basins	= 8 Basins
Biological Filtration Backwash Pump Biological Filtration Area	$= 37.21 \text{m}^2$	$= 37.21 \text{m}^2$
Backwash Speed	$= 0.45 \text{m}^3/\text{m}^2 \cdot \text{min}$	$= 0.45 \text{m}^3/\text{m}^2 \cdot \text{min}$
Pump Capacity	= 37.21 X 0.45 \Rightarrow 16.8m ³ /min	= 37.21 X 0.45 \Rightarrow 16.8m ³ /min
Number of Series	= 1 Series	= 2 Series
Req. Number of Pump / One Series	= 1 Pump	= 1 Pump
Total Number of Pumps	2 Pumps(Including Backup Pump)	= 3 Pumps (Including Backup Pump)

Item	Case 1	Case 2
3-2 Biological Filter Treated Water Tank Biological Filtration Flowrate	$= 5900 \text{m}^{3}/\text{d}$	$= 11800 \text{m}^{3}/\text{d}$
Ozone Cotactor Flowrate	$= 4800 \text{m}^{3}/\text{d}$	$= 9600 \text{m}^3/\text{d}$
Biological Filtration Backwash Water	$= 5900m^{3} - 4800m^{3}$ $= 1100m^{3}$	$= 11800m^3 - 9600m^3$ $= 2200m^3$
Number of Series	= 1 Series	= 2 Series
Number of Basin	= 4 Basins	= 4 Basins
One Cotactor Req. Backwash Water	= 1100 / 1 / 4 = 275m3	= 2200 / 2 / 4 = 275m3
Retention Time of Biological Filter Backwash	= 30.0 minutes	= 30.0 minutes
Outflow of Biological Filter Treated Water Tank	$= 3.4 \text{m}^3/\text{min}$	$= 3.4 \text{m}^{3}/\text{min}$
Inflow of Biological Filter Treated Water Tank	$= 4.1 \mathrm{m}^3/\mathrm{min}$	$= 4.1 \text{m}^{3}/\text{min}$
One Cotactor Req. Volume	$= 275 + 3.4 \times 30$ - 4.1 x 30 = 254m ³	$= 275 + 3.4 \times 30$ - 4.1 x 30 = 254m ³
Length	= 15.0 m	= 15.0 m
Width	= 6.3 m	= 6.3 m
Water Depth	= 3.3 m	= 3.3 m
Total Volume	= $15.0 \times 6.3 \times 3.3$ $\Rightarrow 311.8 \text{m}^3$	= $15.0 \times 6.3 \times 3.3$ $\Rightarrow 311.8 \text{m}^3$
Total Number of Basin	= 1 Basin	= 1 Basin
Biological Filter Treated Water Feed Pump Ozone Cotactor Flowrate	$= 4800 \text{m}^{3}/\text{d}$	$= 9600 \text{m}^{3}/\text{d}$
Total Pump Capacity	= $4800m^{3}/d$ / $1440min/d$ \Rightarrow $3.4m^{3}/min$	$= 9600 \text{m}^3/\text{d} / 1440 \text{min/d}$ $\Rightarrow 6.8 \text{m}^3/\text{min}$
Number of Series	= 1 Series	= 2 Series
Pump Capacity	$= 3.4 / 1 = 3.4 \mathrm{m^{3}/min}$	$= 6.8 / 2 = 3.4 \text{m}^3/\text{min}$
Total Number of Pumps	= 2pumps (Including Backup Pump)	= 3pumps(Including Backup Pump)

Item	Case 1	Case 2
4.Ozone Cotactor 4-1 Ozone Cotactor Tank		
Ozone Cotactor Flowrate	$= 4800 \text{m}^{3}/\text{d}$	$= 9600 \text{m}^{3}/\text{d}$
Retention Time	= 5.0 minutes	= 5.0 minutes
Req. Volume	= $4800m^{3}/d$ / $1440min/d$ x 5min $= 16.7m^{3}$	= 9600m ³ /d / 1440min/d x 5min ≒33.4m ³
Number of Series	= 1 Series	= 2 Series
Number of Basin (2 Basins in Series)	= 1 Basin	= 1 Basin
One Reactor Volume	= 16.7 / 1 / 1 = 16.7 m ³	$= 33.4 / 2 / 1 = 16.7 \mathrm{m}^3$
Length	= 2.9 m	= 2.9 m
Width	= 1.3 m	= 1.3 m
Water Depth	= 5.0 m	= 5.0 m
Total Volume	= 2.9 x 1.3 x 5.0 = 18.8m ³ /Basin	= 2.9 x 1.3 x 5.0 = 18.8m ³ /Basin
Total Number of Basins	= 1 Basin	= 2 Basins

Item	Case 1	Case 2
4-2 Coagulation / Flocculation Tank Coagulation Tank		
Ozone Cotactor Flowrate	$= 4800 \text{m}^{3}/\text{d}$	$= 9600 \text{m}^{3}/\text{d}$
Retention Time of Congulation Tank	= 1.0 minutes	= 1.0 minutes
Req. Volume of Congulation Tank	$= 4800 \text{m}^3/\text{d} / 1440 \text{min/d}$ x 1min $\Rightarrow 3.4 \text{m}^3$	= $9600m^{3}/d$ / 1440min/d x 1min = $6.8m^{3}$
Number of Series	= 1 Series	= 2 Series
Number of Basin	= 1 Basin	= 1 Basin
One Reactor Volume	$= 3.4 / 1 / 1 = 3.4 \mathrm{m}^3$	$= 6.8 / 2 / 1 = 3.4 \mathrm{m}^3$
Length	= 1.5 m	= 1.5 m
Width	= 2.0 m	= 2.0 m
Water Depth	= 1.7 m	= 1.7 m
Total Volume	$= 1.5 \text{ x } 2.0 \text{ x } 1.7 = 5.1 \text{m}^3$	$= 1.5 \text{ x } 2.0 \text{ x } 1.7 = 5.1 \text{m}^3$
Flocculation Tank Retention Time of Flocculation Tank	= 2.0 minutes	= 2.0 minutes
Req. Volume of Congulation Tank	$= 4800 \text{m}^3/\text{d} / 1440 \text{min/d}$ x 2min $\doteqdot 6.7 \text{m}^3$	= $9600m^{3}/d$ / 1440min/d x 2min = 13.4m ³
Number of Series	= 1 Series	= 2 Series
Number of Basin (2 Basins in Series)	= 1 Basin	= 1 Basin
One Reactor Volume	$= 6.7 / 1 / 1 = 6.7 \mathrm{m}^3$	$= 13.4 / 2 / 1 = 6.7 \mathrm{m}^3$
Length	= 2.0 m	= 2.0 m
Width	= 2.0 m	= 2.0 m
Water Depth	= 1.7 m	= 1.7 m
Total Volume	$= 2.0 \text{ x } 2.0 \text{ x } 1.7 = 6.8 \text{m}^3$	= $2.0 \text{ x} 2.0 \text{ x} 1.7 = 6.8 \text{m}^3$
Total Number of Basins (Coagulation / Flocculation Tank)	= 1 Basin	= 2 Basins
Coagulated / Flocculated Water Feed Pump Total Pump Capacity	= $4800 \text{m}^3/\text{d} \approx 6.8 \text{m}^3/\text{min}$	= $9600 \text{m}^3/\text{d} \doteq 6.8 \text{m}^3/\text{min}$
Number of Series	= 1 Series	= 2 Series
Pump Capacity	$= 3.4 / 1 = 3.4 \text{m}^3/\text{min}$	$= 6.8 / 2 = 3.4 \text{m}^3/\text{min}$
Pump Numbers	= 2pumps (Including Backup Pump)	= 3pumps (Including Backup Pump)

Item	Case 1	Case 2
5.Ceramic Membrane Filtration Unit Ceramic Membrane Filtration Flowrate	$= 4800 \text{m}^{3}/\text{d}$	$= 9600 \text{m}^3/\text{d}$
Design One Ceramic Membrane Filter Area	$= 25m^2$	$= 25m^2$
Design Velocity	$= 4.0 m^3 / m^2 / d$	$= 4.0 \text{m}^{3}/\text{m}^{2}/\text{d}$
Efficiency	= 0.9	= 0.9
Req. Number of Ceramic Membrane Filters	$= 4800 \text{m}^3/\text{d} / 25 \text{m}^2 / 4.0 \text{m}^3/\text{m}^2/\text{d} / 0.9 = 53.4$	= $9600 \text{m}^3/\text{d} / 25 \text{m}^2$ / $4.0 \text{m}^3/\text{m}^2/\text{d} / 0.9 = 106.7$
Design Module of Ceramic Membrane Filters	= 10 Filters	= 10 Filters
Design Series of Modules	= 6 Modules	= 6 Modules
Number of Series	= 1 Series	= 2 Series
Design Number of Ceramic Membrane Filters	= 10 x 6 x 1 = 60 Filters	$= 10 \times 6 \times 2 = 120$ Filters
6.Reclaimed Water Tank Reclaimed Water Flowrate	$= 4800 \text{m}^{3}/\text{d}$	$= 9600 \text{m}^{3}/\text{d}$
Retention Time of Congulation Tank	= 5.0 minutes	= 5.0 minutes
Req. Volume	$= 4800 \text{m}^3/\text{d} / 1440 \text{min/d}$ x 5min $\Rightarrow 16.7 \text{m}^3$	$= 9600 \text{m}^3/\text{d} / 1440 \text{min/d}$ x 5min $\Rightarrow 33.3 \text{m}^3$
Number of Basin	= 1 Basin	= 1 Basin
One Basin Volume	$= 16.7 / 1 = 16.7 \mathrm{m}^3$	$= 33.3 / 1 = 33.3 \mathrm{m}^3$
Length	= 8.1 m	= 8.1 m
Width	= 3.8 m	= 3.8 m
Water Depth	= 2.0 m	= 2.0 m
Total Volume	= $8.1 \times 3.8 \times 2.0$ = $61.5 \text{ m}^3/\text{System}$	= $8.1 \times 3.8 \times 2.0$ = $61.5 \text{ m}^3/\text{System}$
Total Number of Basin	= 1 Basin	= 1 Basin

5.b Design Drawing

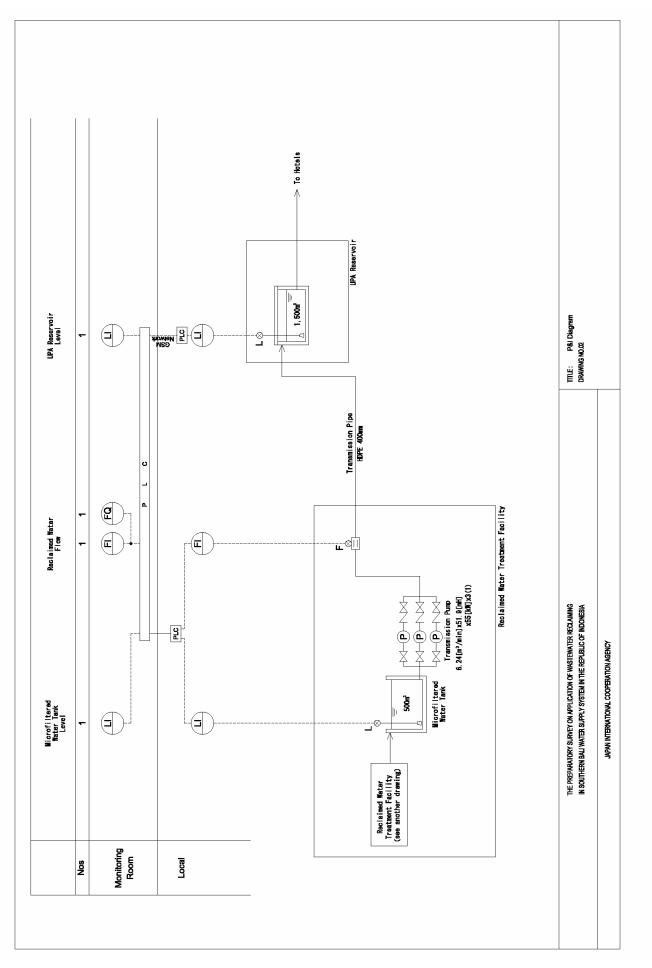
Appendix5 - 7

Appendix5 - 8

Appendix5 - 9

Appendix5 - 10

Appendix5 - 11



Appendix5 - 12

Appendix5 - 13

Appendix5 - 15

Appendix5 - 16

APPENDIX 6

CONCEPT DESIGN OF TRANSMISSION FACILITY

APPENDIX 6 CONCEPT DESIGN OF TRANSMISSION FACILITY

6.a Design Criteria

The following descriptions are shown for the case of Case2.

6.a.1 Transmission pump facility

Design Transmission Flow: Maximu	m daily flow shall be considered for the transmission pump.			
Design maximum daily flow	$9,000 \text{ m}^3/\text{day} (= 6.250 \text{ m}^3/\text{min} = 104.2 \text{ L/s})$			
Transmission pump specification:	Shall be determined considering the elevation difference between			
	Denpasar WWTP and UPA reservoir, head loss of transmission pipe,			
	head loss around the pipe, water hammer analysis and others.			
Power receiving facility:	Shall have the capacity enough for duty operation of the			
	transmission pumps.			
Generator equipment:	Shall have the capacity enough for emergency operation of the			
	transmission pumps.			
Electrical and instrumentation equipment, and monitoring equipment:				
	Shall consider automatic operation			

6.a.2 Transmission Pipe

Laying roulte: The laying route of transmission pipe is shown in Figure 6.a.1. The length is approximately 16km.

Design Transmission Flow: Maximum daily flow shall be considered for the transmission pipe. Design maximum daily flow $9,000 \text{ m}^3/\text{day} (= 6.250 \text{ m}^3/\text{min} = 104.2 \text{ L/s})$

HDPE, φ 400 (based on the result of water hammer analysis)

Pipe type, diameter: Construction method:

-General open cut method part:

-Other special construction method part:

Standard section shown in Figure 6.a.2 shall be applied. Construction method shown in Figure 6.a.3 shall be applied as a result of field survey.

Figure 6.a.2 Standard Section of Pipe Earthwork for the General Open Cut Method Part

Figure 6.a.3 Location of Transmission Pipe for Special Construction Method Part

6.b Equipment Design

6.b.1 Reclaimed Water Transmission Equipment

		1 1
(1) Design Criteria		
Design Flow		
Daily average transmis	ssion Flow:	6.250[m ³ /min]
Water Level		
Pump well LWL	1.6 [m]	
UPA reservoir HWL	29.335 [m	ı]
(2) Pump Specification		
Discharge:	3.125	$[m^3/min]$
Motor output:	75	[kW]
Quantity:	3(1)	[Nos]

(3) Water Hammer Analysis

The result of simplified calculation to judge whether a water hammer will occur has showed that there is no point where the minimum pressure gradient curve goes below the pipeline longitudinal section, and negative pressure is not generated. Therefore it is confirmed that a water column separation will not be caused.

6.b.2 Power Receiving Equipment and Substation

It is assumed that the maximum demand power of this facility amounts to approximately 780 kW. After power receiving at 20kV from the electric power company, 20kV is transformed into 400V by the transformer at site, and then 400V is supplied to each load. Power distribution diagram is shown in Figure 6.#.

In addition, indoor space with not less than $3m \ge 7m$ is required for the space of switchboard installation of the electric power company. Based on the electric power supply regulation, it is necessary to pay the electric power company for a connection fee.

6.b.3 Generator Equipment

This equipment is to supply the power for producing reclaimed water at the time of a power failure, and supply the treated water to UPA reservoir.

(1) Reason to install

This facility needs to produce and supply the reclaimed water always and stably, even at a time of power failure, based on the PPP contract. According to the hearing to the electric power company, the frequency of power failure of 20kV power line is about ten times a year, and

Figure 6.b.1 Power Distribution Diagram

its duration is about two hours at maximum. Therefore, installation of emergency power generating facility to secure the power supply at least two hours needs to be considered.

All the facilities related to this project have emergency generators as the measure against power failure. The details of the generators are summarized as follows. Power failures are occurring frequently and they are operating frequently.

- Suwung WWTP (The facility to provide the reclaimed WTP with raw water)

Engine Type:	Diesel
Quantity:	1 [set]
Capacity:	500 [kVA]
Fuel Type:	Diesel Oil
Capacity of Fuel Tank:	4 $[m^3]$

- Teluk Benoa Reservoir (The facility to transmit the clean water to UPA reservoir) Engine Type: Diesel

Quantity:	1 [set]
Capacity:	750 [kVA]
Fuel Type:	Diesel Oil
Capacity of Fuel Tank:	$1 [m^3]$

- UPA reservoir (The facility to supply the clean water to Nusa Dua area)

Engine Type:	Diesel
Quantity:	1 [set]
Capacity:	106 [kVA]
Fuel Type:	Diesel Oil
Capacity of Fuel Tank:	$1.3 [m^3]$

(2) Required load in case of emergency

Required load in case of emergency shall be the capacity enough to operate one train of reclaimed water treatment (4,500m³/d), because if all the trains are considered for emergency power, required capacity will become excessive and the amount of investment will increase. If one train operation is considered at power failure, the reclaimed water would be supplied to the customer for at least four hours without interruption under the condition that there is certain amount of reclaimed water in UPA reservoir. Moreover, the load necessary for maintenance such as building power, building lighting shall be minimized in consideration of demand factor.

(3) Engine Type

Diesel engine or gas turbine engine is used for generator, and diesel engine is selected in consideration of maintenance, since the diesel engine is used in the related facilities. Reclaimed water shall also be used as the cooling water for the generator.

(4) Specification

The outline of generator equipment to be installed in this facility is as follows. Capacity calculation is attached.

Engine Type:	Diesel	
Quantity:	1 [set]	
Capacity:	750 [kVA]	
Fuel Type:	Diesel Oil	
Capacity of Fuel Tank:	$2.5 [m^3]$	

6.b.4 Reclaimed water transmission pump instrumentation and control equipment

This equipment is to operate and control the transmission pump which transmits the reclaimed water to UPA reservoir. Normally, two transmission pumps shall be operated in duty. Operation of the pump shall be automatic according to water level of UPA reservoir. Level meters shall be installed at transmission pump well and UPA reservoir for automatic operation. Moreover, transmission flow meter shall be installed in order to understand the amount of reclaimed water supplied.

6.b.5 Supervision equipment

Supervisor equipment is the equipment to monitor and control the plant equipment dispersed broadly in a central monitoring room by the operator, and to perform the plant operation safely, efficiently, and stably. It is installed for the purpose of operation and maintenance cost reduction, laborsaving, labor environment improvement, and workability improvement. The basic function of supervisor equipment is as follows.

- Monitoring function (Status display, failure display, measured value display)
- Operation / setting function
- Recording function

Schematic diagram is shown in Figure 6.b.2.

Figure 6.b.2 Schematic Diagram of Supervision System

[Calculations of Equipment for Concept Design]

- 1. Calculation of Reclaimed Water Transmission Pump
- 2. Water Hammer Analysis
- 3. Calculation of Transformer
- 4. Calculation of Emergency Generator
- 5. Calculation of Fuel Tank

1. Calculation of Reclaimed Water Transmission Pump

i) Head Loss in Transmission Pipe a) Head loss around the pump $H_{\rm fl}$ Estimated as 10 [m]

b) Head loss in transmission pipe b-1) Hazen–Williams Equation HI = $10.666 \times C^{-1.85} \times D^{-4.87} \times Q^{1.85} \times L$ С Coefficient HDPE D Diameter of Pipe [m] Q Flow Rate $[m^3/s]$ $\begin{array}{c} L \\ = 10.666 \times 140^{-1.85} \times 0.4^{-4.87} \times 0.104^{1.85} \times 15,230 \end{array}$ = 22.90 [m]b-2) Head loss around the corner Estimated as 10% of head loss in transmission pipe = 2.29 [m]ii) Driving power of a pump $P = \frac{0.163 \times \gamma \times \dot{Q} \times H}{\gamma} \times (1+a)$ η Density of Liquid γ Amount of Discharge $[m^3/min]$ Q Η Total Head [m] Pump Efficiency η Allowance Rate а $\frac{0.163 \times 1 \times 6.24 \times (10 + 22.90 + 2.29 + 27.735)}{0.6} \times (1 + 0.1)$ = = 117 [kW] \rightarrow 75[kW]×3(1)

2. Water Hammer Analysis

1. Pump Details

	単位	記号	数値	備考
	Unit	Symbol	Value	Remarks
Motor Output	[kW]		75	
Frequency	[Hz]		50	
Static Head	[m]	На	27.735	
Loss of Head	[m]	Hf	35.19	
Total Head	[m]	Ht	63	Ha+Hf
Pump Shaft Power	[kW]	Pw	53.4	0.163γQH/ηp
Efficiency	[%]	ηp	60	
Discharge Flow	[m ³ /min]	Q_0	3.12	
Revolution Speed	$[\min^{-1}]$	Ν	1,000	6P
Fly-wheel Effect	[kg-m ²]	GD^2	16.50	
Number of Pump		n	2	

2. Pipeline Details

	単位	記号	数値	備考
	Unit	Symbol	Value	Remarks
Pipeline Length	[m]	L	15,230	
Diameter	[mm]	D	400	
Thickness	[mm]	t	23.7	
Material	HDPE			
k/E	-	k/E	2.07	
Pump Suction WL	[m]		1.6	
Pipeline Profile				Figure 4.b.2

3. Calculation

	単位 Unit	記号 Symbol	計算式 Formula			数值 Result
運転時トルク	[N•m]	М	Σ(9,550*Pw)	9,550*53.4*2		1019.9
Pump Torque			N	1,000		
慣性係数	_	k	38.2*ΣM			1.181
Inertial Coefficient		ĸ	$\Sigma (\text{GD}_{n}^{2} * \mathbf{N}_{n})$	- 16.5*2*1000	_	1.101
損失百分率 Pipeline loss of head [percentage]	[%]	R	Hf +100 Ht	$=\frac{35.19}{63}$ *100	=	55.9
圧力伝播速度 Pressure Propagation Velocity	[m/s]	a	$\frac{1425}{\sqrt{1+K/E \cdot D/t}}$	$=\frac{1425}{\sqrt{1+2.07\cdot400/23.7}}$	- =	237.7
管内流速 Average Flow Velocity	[m/s]	V	$\frac{Q_0}{60^*\pi/4^*D^2}$	$=\frac{3.12}{60^*\pi/4^*0.4^{-2}/2}$	- =	0.828
管路定数 Pipeline Constant	-	2ρ	a*V g*Ht	$= \frac{237.7*0.828}{9.8*63}$	=	0.32
サージ係数 Surge Coefficient	-	S	2*k*	$= 2*1.181*\frac{15,230}{237.7}$	- =	151.339

4. Pressure

Location	最低圧力比	最低圧力	
Location	Lowest Pressure Ratio [%]	Lowest Pressure Estimated	
At pump installation point	10.0	6.30	
At 1/2L point	35.0	22.05	
At 3/4L point	38.0	23.94	

5. Result

Water column separation is considered not to occur. However, detail calculation will be required in detail design.

Figure 6.b.3 Pipeline Profile

3. Calculation of Transformer

Load List

	kW	Nos	Total [kW]
From raw water pump to reclamation process equipment	706.94	1 lot	706.94
Reclaimed Water Transmission Pump	75	3(1)	150
Building Service	60	1 lot	60
Others	10	1 lot	10
3-phase Total [kW]			926.94
Building Service	50	1 lot	50
Laboratory	30	1 lot	30
Others	10	1 lot	10
1-phase Total [kW]			90

1) Formula

Required Capacity P[kVA] = Total Load [kW] × $\frac{\beta \times \alpha}{\eta \times \phi}$

		·I/·Ψ	
Here,	φ:	Total Power Factor	0.85
	η:	Total Efficiency	0.85
	β:	Demand Factor	0.8
	α:	Allowance Rate	1.1

2) Calculation

 $1016.94 \times \frac{0.8 \times 1.1}{0.85 \times 0.85} = 1,239 \text{ [kVA]}$

3) Result

1,250[kVA] shall be selected since the required capacity amounts to 1,239 [kVA].

4. Calculation of Emergency Generator

	kW	Nos	Total [kW]
From raw water pump to reclamation process equipment	455.755	1 lot	455.755
Reclaimed Water Transmission Pump	75	1	75
Building Service	18	1 lot	18
Others	10	1 lot	10
3-phase Total [kW]			558.755
Building Service	15	1 lot	15
Laboratory	9	1 lot	9
Others	3	1 lot	3
1-phase Total [kW]			27

Load List for Emergency Generator

(1) Formula

Capacity of generator shall exceed the largest among the required capacity calculated using the following formulas.

a. PG₁: Required capacity for steady operation of all the loads

$$PG_{1} = \frac{\Sigma P_{0}}{\eta_{L} \times \phi_{L}} \times \alpha \times Sf [kVA]$$
$$Sf = 1 + 0.6 \times \frac{\Delta P}{\Sigma P_{0}}$$

Here,

 ΣP_0 : Total Load for Emergency Generator [kW]

<u>Calculation of ΣP_0 </u>

- a) Equipment that the rating is displayed as output kW (such as general induction motor) Pi= Rated Output [kW]
- b) Equipment that the rating is displayed as output kVA (such as CVCF) Pi= Rated Output [kVA] × Power Factor (0.9)
- c) Rectification equipment
 - Pi= Rated DC Voltage $[V] \times DC$ side Rated Current [A]
- d) Fluorescent Light and Incandescence Light
 P_i= Rated Power Consumption or Lamp Power [kW]
 Referred to as Pi= Rated Output [kVA] x0.8 when [kVA] is used as the unit for
- fluorescent light output. : Total Load Efficiency 0.85
- $\begin{array}{ll} \eta_L: & \text{Total Load Efficiency} & 0.85 \\ \phi_L: & \text{Total Load Power Factor} & 0.8 \end{array}$
- a: Demand Factor 0.8
- ΔP : Total of unbalance part of single phase load

Starting kVA decided by	v starting method
Starting Mathod	B×C

Starting Method		β×C
Squirrel -Cage Type	DOL	7.2×1.0
	Star Delta	7.2×2/3
	Reactor Starting	50% 7.2×0.5 65% 7.2×0.65 80% 7.2×0.8
	Kondorfer Starting	50% 7.2×0.25 65% 7.2×0.42 80% 7.2×0.64
	VFD Starting	1.2
Wound-Rotor Type		1.2

(Note) In case of closed transition Star Delta starter, $\beta \times C$ shall be 7.2×1/3.

b. PG₂: Required capacity for allowable voltage drop

$$PG_2 = P_m \times \beta \times C \times Xd' \times \frac{1 - \Delta E}{\Delta E} \quad [kVA]$$

Here,

P _m :	The Maximum Motor Output	[kW]	
β:	Starting kVA of the maximum cap	acity motor per kW	[kVA]
C:	The coefficient decided by starting	ng method	
Xd':	Generator Constant	0.25	
ΔE :	Allowable Voltage Drop Rate	0.25	

c. PG₃: Required capacity for starting of the motor with maximum capacity at the end

$$PG_{3} = \frac{f_{v1}}{\gamma_{G}} \left\{ (\Sigma P_{0} - P_{m}) \times \frac{\alpha}{\eta_{L} \times \phi_{L}} + P_{m} \times \beta \times C \right\} [kVA]$$

Here,

Σ	P ₀ : Total Load for Emergency Generator (excludes standby load)	[kW]
η_1	: Total Load Efficiency	0.85
α	Demand Factor	0.8
P	n: The Maximum Motor Output	[kW]
ϕ_1	: Total Load Power Factor	0.8
β: C		[kVA]
γο	: Instant overload capacity of generator	1.5
f_v	: Loading Abatement Factor	1.0

(2) Calculation

a. PG₁: Required capacity for steady operation of all the loads

$$\Sigma P_0 = 558.755 + 0 \times 0.9 + 33.75 \times 0.8 = 585.8$$

Sf=1+0.6× $\frac{27}{585.8}$ =1.028
PG₁= $\frac{585.8}{0.85 \times 0.8}$ ×0.8×1.028 \rightleftharpoons 708.4

b. PG₂: Required capacity for allowable voltage drop

PG₂ = 75×7.2×0.8×0.25×
$$\frac{1-0.25}{0.25}$$

⇒ 324

c. PG₃: Required capacity for starting of the motor with maximum capacity at the end

$$PG_{3} = \frac{1.0}{1.5} \{ (585.8-75) \times \frac{0.8}{0.85 \times 0.8} + 75 \times 7.2 \times 0.8 \}$$

$$\Rightarrow 688.6$$

(3) Result

750[kVA] shall be selected since the required capacity is calculated as 708.4[kVA].

5. Calculation of Fuel Tank

1) Formula

Required capacity of fuel tank $Q[m^3] = \frac{P \times be \times H \times \alpha}{d}$

•		- u	
Here,	P:	Engine Output	[kW]
	be:	Fuel consumption rate	[kg/kW•h]
	H:	Operating time	[h]
	α:	Allowance Rate	1.1
	d:	Fuel Density	

2) Calculation

Engine Output P[kW] =
$$\frac{P_G \times \varphi_G}{\eta_G} = \frac{750 \times 0.8}{0.923} = 650.1$$

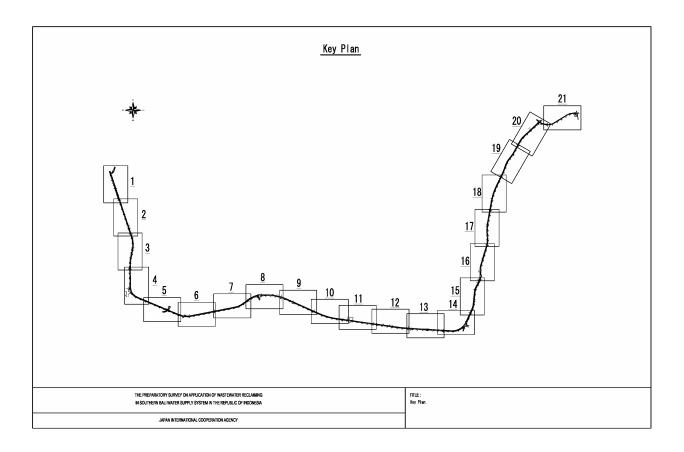
Here,	P _G :	Generator Output
	φ _G :	Generator Power Factor
	η_G :	Generator Efficiency

$$Q = \frac{P \times be \times H \times \alpha}{d} = \frac{650.1 \times 0.231 \times 12 \times 1.1}{830} = 2.38 [m^3]$$

3) Result

 $2.5[m^3]$ of fuel tank shall be selected as required capacity is $2.38[m^3]$.

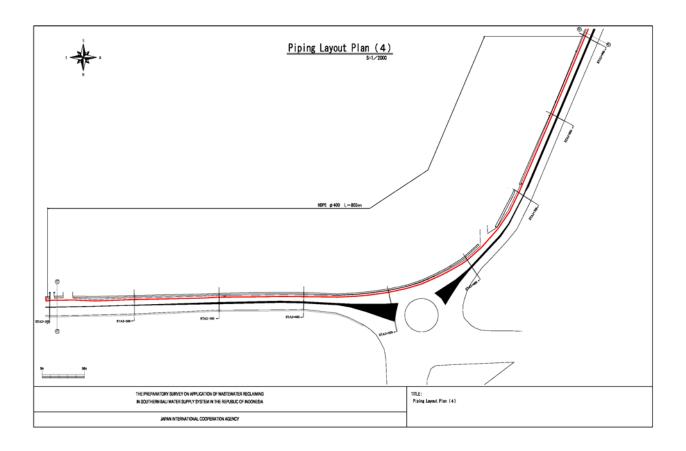
6.c Design Drawing

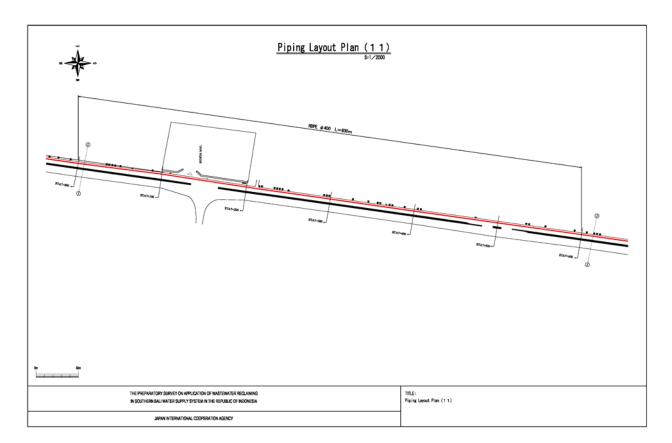

Transmission pipe plan, transmission pipe cross section, transmission pipe vertical section, water pipe bridge schematic drawing, and pipe-thrusting method outline drawing are shown in the attached drawings. Drawing list is shown in the following table.

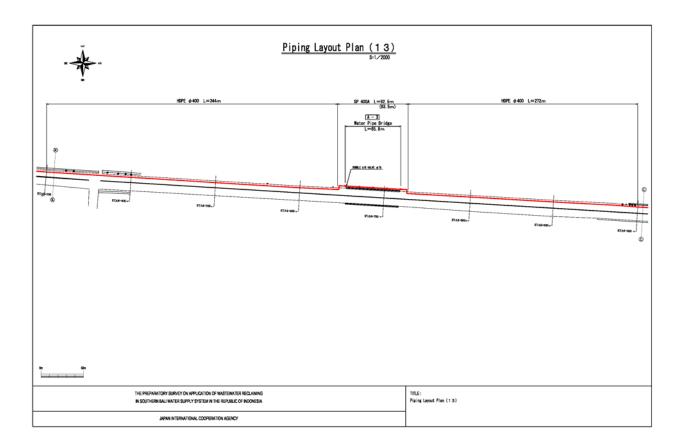
NO.	Title	Scale	Remarks
1-1	Key Plan	None	
2-1	Transmission Pipe Plan (1)	1/2000	
2-2	Transmission Pipe Plan (2)	1/2000	
2-3	Transmission Pipe Plan (3)	1/2000	
2-4	Transmission Pipe Plan (4)	1/2000	
2-5	Transmission Pipe Plan (5)	1/2000	
2-6	Transmission Pipe Plan (6)	1/2000	
2-7	Transmission Pipe Plan (7)	1/2000	
2-8	Transmission Pipe Plan (8)	1/2000	
2-9	Transmission Pipe Plan (9)	1/2000	
2-10	Transmission Pipe Plan (10)	1/2000	
2-11	Transmission Pipe Plan (11)	1/2000	
2-12	Transmission Pipe Plan (12)	1/2000	
2-13	Transmission Pipe Plan (13)	1/2000	
2-14	Transmission Pipe Plan (14)	1/2000	
2-15	Transmission Pipe Plan (15)	1/2000	
2-16	Transmission Pipe Plan (16)	1/2000	
2-17	Transmission Pipe Plan (17)	1/2000	
2-18	Transmission Pipe Plan (18)	1/2000	
2-19	Transmission Pipe Plan (19)	1/2000	
2-20	Transmission Pipe Plan (20)	1/2000	
2-21	Transmission Pipe Plan (21)	1/2000	

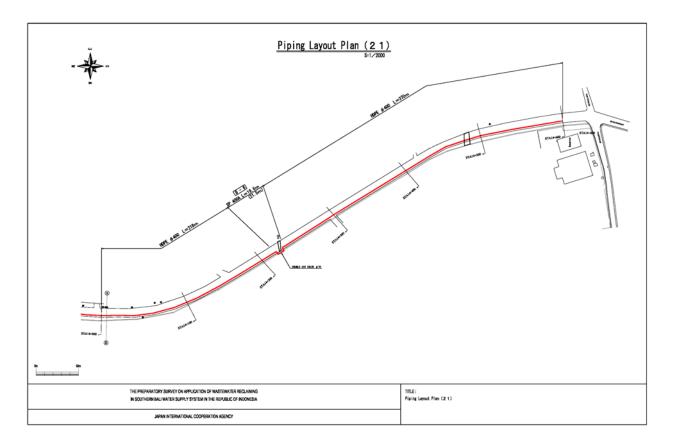
 Table 6.c.1
 Drawing List of Transmission Pipe Concept Design

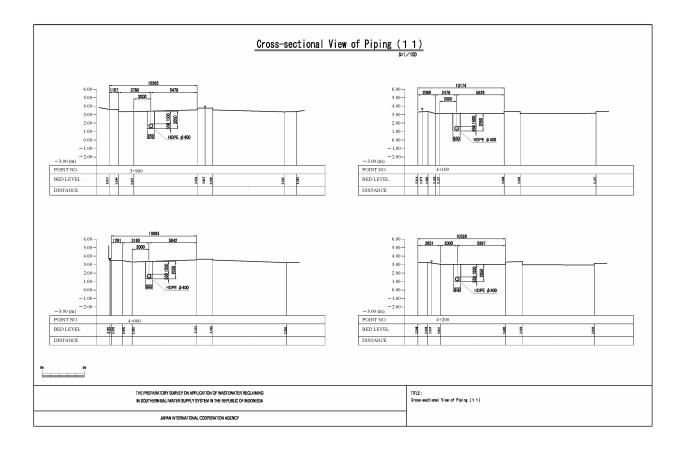
NO.	Title	Scale	Remarks
3-1	Transmission Pipe Cross Section (1)	1/100	
3-2	Transmission Pipe Cross Section (2)	1/100	
3-3	Transmission Pipe Cross Section (3)	1/100	
3-4	Transmission Pipe Cross Section (4)	1/100	
3-5	Transmission Pipe Cross Section (5)	1/100	
3-6	Transmission Pipe Cross Section (6)	1/100	
3-7	Transmission Pipe Cross Section (7)	1/100	
3-8	Transmission Pipe Cross Section (8)	1/100	
3-9	Transmission Pipe Cross Section (9)	1/100	
3-10	Transmission Pipe Cross Section (10)	1/100	
3-11	Transmission Pipe Cross Section (11)	1/100	
3-12	Transmission Pipe Cross Section (12)	1/100	
3-13	Transmission Pipe Cross Section (13)	1/100	
3-14	Transmission Pipe Cross Section (14)	1/100	
3-15	Transmission Pipe Cross Section (15)	1/100	
3-16	Transmission Pipe Cross Section (16)	1/100	
3-17	Transmission Pipe Cross Section (17)	1/100	
3-18	Transmission Pipe Cross Section (18)	1/100	
3-19	Transmission Pipe Cross Section (19)	1/100	
3-20	Transmission Pipe Cross Section (20)	1/100	
3-21	Transmission Pipe Cross Section (21)	1/100	
3-22	Transmission Pipe Cross Section (22)	1/100	
3-23	Transmission Pipe Cross Section (23)	1/100	
3-24	Transmission Pipe Cross Section (24)	1/100	
3-25	Transmission Pipe Cross Section (25)	1/100	
3-26	Transmission Pipe Cross Section (26)	1/100	
3-27	Transmission Pipe Cross Section (27)	1/100	
3-28	Transmission Pipe Cross Section (28)	1/100	
3-29	Transmission Pipe Cross Section (29)	1/100	
3-30	Transmission Pipe Cross Section (30)	1/100	
3-31	Transmission Pipe Cross Section (31)	1/100	
3-32	Transmission Pipe Cross Section (32)	1/100	
3-33	Transmission Pipe Cross Section (33)	1/100	
3-34	Transmission Pipe Cross Section (34)	1/100	
3-35	Transmission Pipe Cross Section (35)	1/100	
3-36	Transmission Pipe Cross Section (36)	1/100	
3-37	Transmission Pipe Cross Section (37)	1/100	

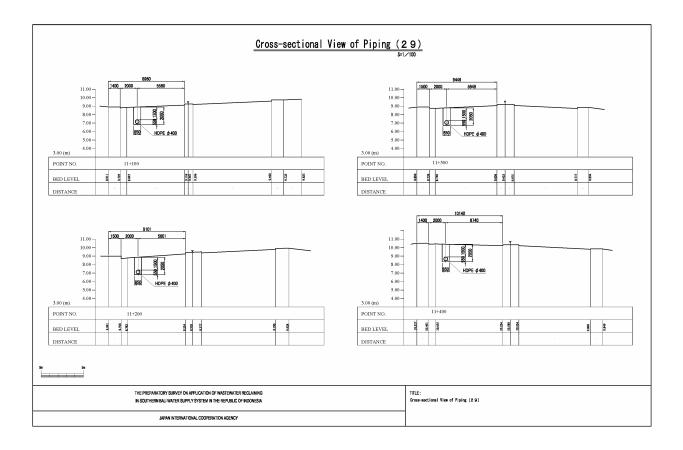

NO.	Title	Scale	Remarks
4-1	Transmission Pipe Vertical Section (1)	H=1/2000,V=1/200	
4-2	Transmission Pipe Vertical Section (2)	H=1/2000,V=1/200	
4-3	Transmission Pipe Vertical Section (3)	H=1/2000,V=1/200	
4-4	Transmission Pipe Vertical Section (4)	H=1/2000,V=1/200	
4-5	Transmission Pipe Vertical Section (5)	H=1/2000,V=1/200	
4-6	Transmission Pipe Vertical Section (6)	H=1/2000,V=1/200	
4-7	Transmission Pipe Vertical Section (7)	H=1/2000,V=1/200	
4-8	Transmission Pipe Vertical Section (8)	H=1/2000,V=1/200	
4-9	Transmission Pipe Vertical Section (9)	H=1/2000,V=1/200	
4-10	Transmission Pipe Vertical Section (10)	H=1/2000,V=1/200	
4-11	Transmission Pipe Vertical Section (11)	H=1/2000,V=1/200	
4-12	Transmission Pipe Vertical Section (12)	H=1/2000,V=1/200	
4-13	Transmission Pipe Vertical Section (13)	H=1/2000,V=1/200	
4-14	Transmission Pipe Vertical Section (14)	H=1/2000,V=1/200	
4-15	Transmission Pipe Vertical Section (15)	H=1/2000,V=1/200	
4-16	Transmission Pipe Vertical Section (16)	H=1/2000,V=1/200	
4-17	Transmission Pipe Vertical Section (17)	H=1/2000,V=1/200	
4-18	Transmission Pipe Vertical Section (18)	H=1/2000,V=1/200	
4-19	Transmission Pipe Vertical Section (19)	H=1/2000,V=1/200	
4-20	Transmission Pipe Vertical Section (20)	H=1/2000,V=1/200	
4-21	Transmission Pipe Vertical Section (21)	H=1/2000,V=1/200	
4-22	Transmission Pipe Vertical Section (22)	H=1/2000,V=1/200	
4-23	Transmission Pipe Vertical Section (23)	H=1/2000,V=1/200	
4-24	Transmission Pipe Vertical Section (24)	H=1/2000,V=1/200	
4-25	Transmission Pipe Vertical Section (25)	H=1/2000,V=1/200	
5-1	Water Pipe Bridge Layout Plan (1)	1/200	
5-2	Water Pipe Bridge Layout Plan (2)	1/200	

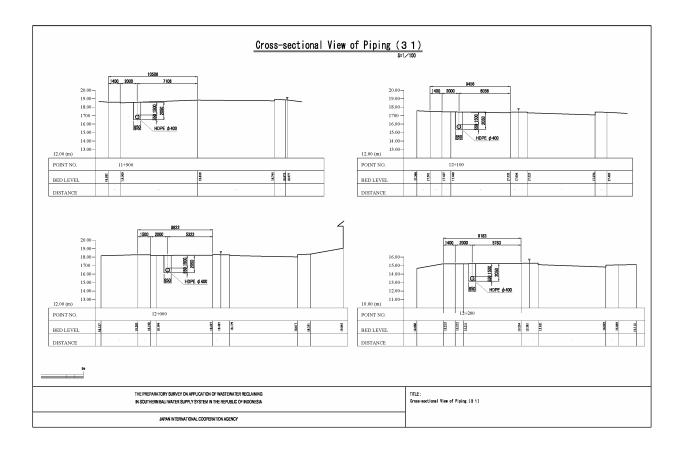


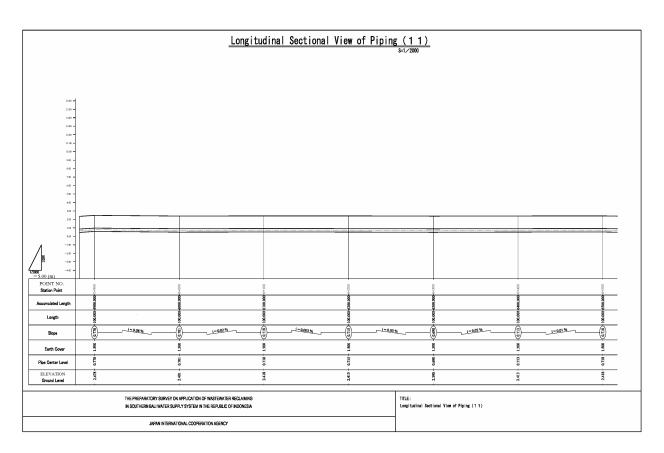


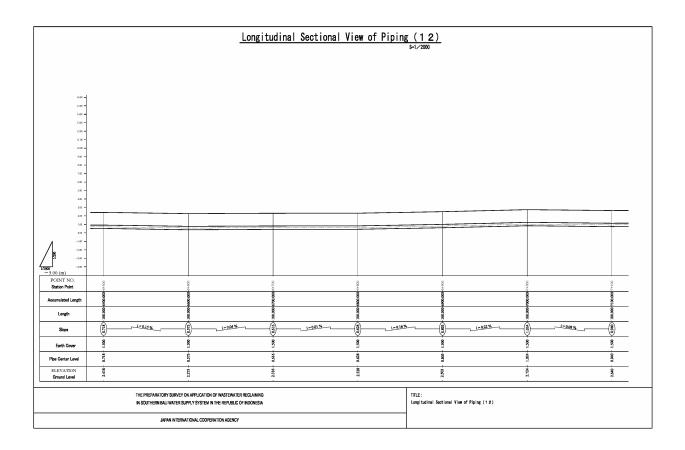


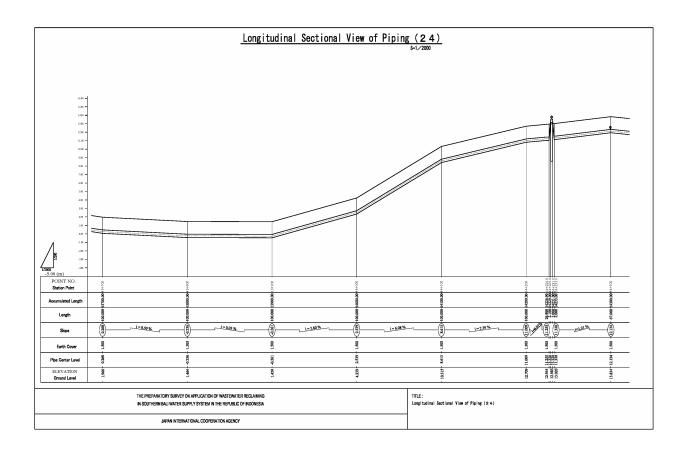


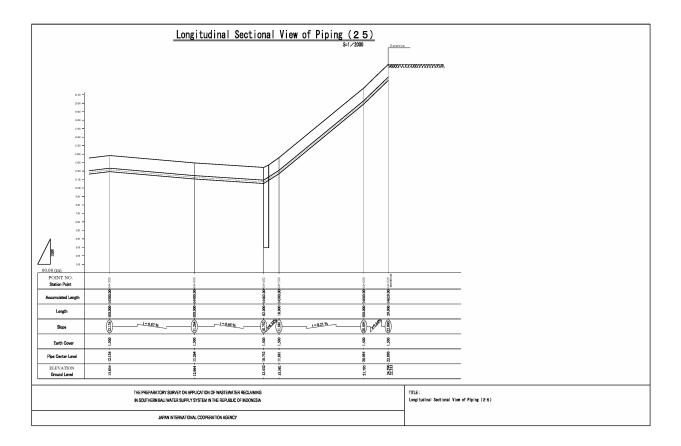












APPENDIX 7

INVESTIGATION DATA OF WATER DISTRIBUTION AND SUPPLY FACILITIES

APPENDIX 7 INVESTIGATION DATA OF WATER DISTRIBUTION AND SUPPLY FACILITIES

7.a Examination and Repair Strategy of Existing Distribution Pipe

The route of existing main distribution pipe is shown as Table 7.a.1. The material of existing distribution pipes is DCIP, the length of each pipe diameter is shown as follows.

 $\begin{array}{l} \phi \ 150 mm & : \ 1,630 m \\ \phi \ 200 mm & : \ 1,880 m \\ \phi \ 300 mm & : \ 800 m \\ \hline \phi \ 400 mm & : \ 2,170 m \\ \hline Total & : \ 6,480 m \end{array}$

The existing distribution pipe could not be confirmed by appearance inspection or etc because it is underground pipe. In detailed design stage, further investigations as follows are necessary for reconstruction.

- Water Leakage Investigation and Intratubular Washing of Existing Pipe
- Replacement of Water Shutoff Valve
- Reconstruction for water leakage part

The pipe reconstruction cost was calculated from reconstruction pipe length as 10% of total pipe length because confirmation of water leakage point of existing pipe is difficult.

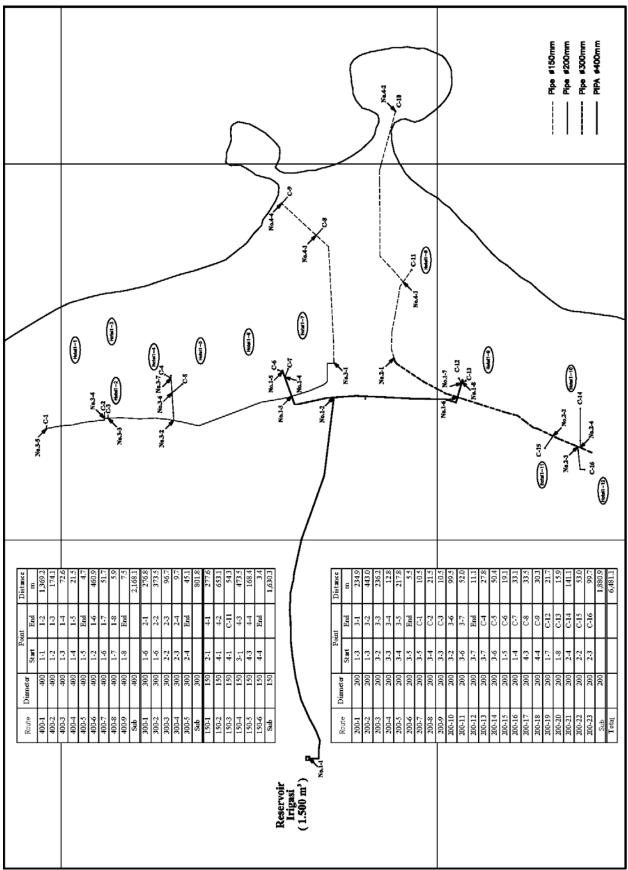


Figure 7.a.1 Route of Existing Distribution Pipe

7.b Study of Conversion for Water Service System in Hotels

In this section, the cost and renovation method of water service systems in hotels is studied in the case of reclaimed water use.

Building layout and structure of the hotel is different for every hotels, a case study is conducted because studies for all hotels of water supply target is difficult.

Hotel N was selected as a model of case study for the reason of below.

- Water service system is relatively complex system of plane and cross-section arrangement.
- Hotel N is the typical size hotel (Rooms 300-400) for water supply target hotels.
- Hotel N provided detailed floor plans, cross-section and plumbing.

Number of Rooms	Number of Hotel	Total Room Number
401~(750)	4	2,311
301~400	7	2,512
201~300	2	526
101~200	9	1,407
Under 100	19	832
Total	41	7588

Table 7.b.1 Distribution of Room Number in Hotels for Water Supply Target

The conditions of the cost study for renovation of water service pipes in Hotel N is as follows.

Number of Rooms	: about 400 rooms
Building Layout	: Main Building (3 floors), Northern Building (6 floors),
	Southern Building (5 floors), Coast Building (14 floors)
Number of Restaurant	: 6 praces
Total Volume of Water Consumption	: about 1,000 m ³ /day
- Water Volume for Toilet	: about 200 m ³ /day (20%) (Capacity of new pump for Case1)
- Water Volume for Drinking	: about 200 m ³ /day (20%) (Capacity of new pump for Case2)
- Water Volume for Non-drinking	: about 800 $m^3/day_{(40\%)}$
	(including 400 m ³ /day of reclaimed water volume for Case2)

Layout plan of Hotel N is shown as Figure 7.b.1, its profile is shown Figure 7.b.2.

Figure 7.b.1 Layout Plan of Hotel N (sources: G2011 Google-Map Data)

Figure 7.b.2 Profile of Hotel N (source: http://www.nikkobali.com/jp/)

2 case of renovation design as follows are studied

- Case 1: Typical Reclaimed Water Service System
- Case 2: New Clean Water Service System

(1) Case 1 Renovation Design

According to Case 1, the renovation design model is shown as Figure 7.b.3.

Figure 7.b.3 Model for Renovation of Water Service Pipes (Case 1)

Therefore the renovation work as following items is necessary.

- Installation work of reclaimed water service pipes
- (Water Meter Receiving Tank Water Pump Rooms)
- · Construction work of water receiving tank for reclaimed water
- · Installation work of water meter for reclaimed water
- · Installation work of water pump for reclaimed water

The image for route of new water service pipe is shown as Figure 7.b.4.

Figure 7.b.4 Image for Route of New Water Service Pipe (Case 1)

The existing water meter is located with green mark and the route of new water service is located with blue line on Figure 7.b.4.

The conversion cost based on above route is calculated as Table 7.b.2.

Item	Quantity	Unit	Unit Price (IDR)	Cost (IDR)
Installation work of reclaimed water service pipes	2,420	m	370,000	895,400,000
Construction work of water receiving tank for reclaimed water	1	Set	488,870,000	488,870,000
Installation work of water meter for reclaimed water	1	Set	8,000,000	8,000,000
Installation work of water meter for reclaimed water	1	Set	100,000,000	100,000,000
Total Cost				1,492,270,000

Table 7.b.2 Conversion Cost in Hotel for Typical Water Service System (Case1)

(2) Case 2 Renovation Design

According to Case 2, the renovation design model is shown as Figure 7.b.5.

Figure 7.b.5 Model for Renovation of Water Service Pipes (Case 2)

Therefore the renovation work as following items is necessary.

- Installation work of reclaimed water service pipes (For reclaimed water: Water Meter – Receiving Tank) (For PDAM water: Water Meter – Receiving Tank – Water Pump – Restaurants)
- Construction work of water receiving tank for reclaimed water
- · Installation work of water meter for reclaimed water
- Installation work of water pump for reclaimed water
- Installation work of water heater for reclaimed water

The image for route of new water service pipe is shown as Figure 7.b.6.

Figure 7.b.6 Image for Route of New Water Service Pipe (Case 2)

The existing water meter is located with green mark, restaurants are located with red marks and the route of new water service is located with blue line on Figure 7.b.6.

The conversion cost based on above route is calculated as Table 7.b.3.

Item	Quantity	Unit	Unit Price (IDR)	Cost (IDR)
Installation work of reclaimed water service pipes	920	m	363,000	333,960,000
Construction work of water receiving tank for reclaimed water	1	Set	488,870,000	488,870,000
Installation work of water meter for reclaimed water	1	Set	20,000,000	20,000,000
Installation work of water meter for reclaimed water	1	Set	100,000,000	100,000,000
Installation work of water heater for reclaimed water	6	Set	8,000,000	48,000,000
Total Cost				990,830,000

 Table 7.b.3
 Conversion Cost in Hotel for Typical Water Service System (Case2)

APPENDIX 8

DATA OF PROJECT COST ESTIMATE

APPENDIX 8 DATA OF PROJECT COST ESTIMATE

8.a Component of Project Cost

The four main cost components of the reclaimed water supply project cost are construction, engineering services, taxes, operation and maintenance (O&M). These are further categorized as shown in the following table.

Main Item	Detail Item		
[1] Construction	(A) Site Preparation		
	(B) Reclamation Plant Construction		
	(C) Transmission Pipe Installation		
	(D) Distribution Reservoir Reconstruction		
	(E) Distribution Pipe Rehabilitation and Installation		
	(F) Renovating the Service Pipe Facilities in Each Hotel		
[2] Engineering Services	(A) Detailed Design, Construction Supervision, Other Surveys, etc.		
	(B) Capacity Building		
	(C) Publication and Education-related		
[3] Tax Charges	(A) Value-added Tax (VAT)		
	(B) Import Tax		
	(C) Surface Water Use Tax		
[4] Operation and	(A) Personnel		
Maintenance (O&M)	(B) Electricity		
	(C) Chemical		
	(D) Fuel		
	(E) Water Quality Testing		
	(F) Repair and Replacement of parts and equipment		
	(G) Office expenditures		
	(H) Treated Water Use Rate		

Table 8.a.1 Components of the Project Cost

8.b Construction Cost

Construction costs are calculated for all the facilities required for the project, from the reclamation plant to the renovation of service pipe facilities in each hotel. As explained in Chapter 7, the responsibility for constructing and renovating these facilities is divided between SPC, PDAM Badung and the hotels; and the associated costs are calculated separately for these parties. Construction costs under SPC's responsibility consist of site preparation, reclamation plant construction and transmission pipeline construction. Construction costs under PDAM's responsibility consist of distribution reservoir reconstruction, rehabilitation of the existing distribution network and installation of new distribution pipes. The construction costs under the responsibility of each hotel consist of renovation of their service pipe facilities. The detail of each construction cost item is explained in the following.

 Table 8.b.1
 Responsible Organization of the Each Component

Items	SPC	PDAM	Hotels
(A) Site Preparation	0		
(B) Reclamation Plant Construction	0		
(C) Transmission Pipe Installation	0		
(D) Distribution Reservoir Reconstruction		0	
(E) Distribution Pipe Installation		0	
(F) Renovating the Service Pipe Facilities in Each Hotel			0

(1) Site Preparation

Site preparation consists of the following:

- · Improvement of the access road to the reclamation plant site
- · Cutting down of mangrove trees, digging up of soft soil and removal of concrete debris
- Land reclamation and leveling using purchased soil

The land for the reclaimed water supply plant will be provided by the Bali Provincial Government as a precondition of this PPP project (the Bali Provincial Government needs to apply to to the Ministry of Forestry for the license to use the land.

(2) Reclamation Plant Construction

This cost category covers the construction of the pump facility to convey the secondary effluent from Denpasar WWTP, biological filtration facility, ozonation facility, membrane filtration facility and transmission pump facility. The breakdown by facility type is shown as follows.

1) Main plant construction (civil engineering and architectural works)

- Raw water pumping station
- Biological filtration process building
- Ozonation process building
- Membrane filtration process building
- Site work
- Vehicle purchase
- Connection charge for electrical service
- 2) Mechanical and Electrical Facility
- Mechanical equipment (including installation)
- Electrical equipment (including installation)

(3) Transmission Pipe Installation

The transmission pipe from Denpasar WWTP to the existing UPA distribution reservoir would be constructed in four sections, using different pipe installation methods, according to the level of traffic congestion and the ease of pipe installation at the location. The total cost for the transmission pipe installation the sum of the pipe installation costs for each section. The length of each road section is shown below.

- Open cut method (daytime work : about 7.5 km)
- Open cut method (nighttime work : about 7 km from Badung River to Sama River)
- Water pipe bridge method (crossing of river and drainage canal)
- Pipe jacking method (around the airport about 400 m)

(4) Distribution Reservoir Reconstruction

The existing reservoir does not have a roof and has many cracks and evidence of water leakage. The cost

for reconstruction would cover the following:

- Crack repair
- Waterproofing
- Roof construction

(5) Distribution Pipe Installation

The distribution pipe installation cost would cover the following:

- Rehabilitation of the existing distribution pipes in Nusa Dua
- Installation of new distribution pipes in Benoa
- Installation of new distribution pipe in Sawangan

(6) Renovation of Service Pipe Facilities in the Hotels

The renovation cost is required to use reclaimed water in the hotels. The unit cost of renovation is calculated in Chapter 6.

<Summary of Case 1>

The renovation cost would establish a system to supply the reclaimed water to the toilet in each room or floor.

<Summary of Case 2>

The renovation cost would establish a system to supply the reclaimed water which is mixed with PDAM water and a separate system to supply drinking and cooking water to the restaurants inside the hotels.

(7) Total Construction Cost

The total construction costs calculated on the conditions by each facility and responsible agency explained above is shown in Table 8.b.2 (Case 1) or Table 8.b.3 (Case 2). The breakdown for each item of construction cost is shown as Table 8.b.4 (Case 1) and Table 8.b.5 (Case 2), the unit price is shown as Table 8.b.6.

Table 8.b.2 Construction Cost of Case 1 (1) Construction Cost by Each Facility

(1) Construction Cost by Each Facility Item		IDR (×1,000)		JPY (×1,000)
Itelli	LC	FC	Total	Total
[A Site Preparation]				
Site Preparation	5,968,887	0	5,968,887	54,257
B Reclamation Plant Facility				
Structure Construction				
Raw Water Pump Building	976,400	0	976,400	8,875
Biological Treatment Building	5,455,191	0	5,455,191	49,588
Ozonation Building	7,942,297	0	7,942,297	72,195
Membrane Filtration Building	12,454,956	0	12,454,956	113,216
Site Work	3,598,539	0	3,598,539	32,711
Vehicles	2,070,000	0	2,070,000	18,816
Connection Charge for Electricity	631,250	0	631,250	5,738
Sub Total (1)	33,128,632	0	33,128,632	301,139
Mechanical and Electrical Facility				
Mechanical Equipment	28,027,620	24,004,951	52,032,571	472,976
Electrical Equipment	35,613,810	0	35,613,810	323,730
Sub Total (2)	63,641,430	24,004,951	87,646,381	796,706
Total	96,770,062	24,004,951	120,775,013	1,097,845
[C Water Transmission Pipe]				
Water Transmission Pipe	44,144,600	0	44,144,600	401,274
[D Distribution Reservoir]				
Distribution Reservoir	3,449,933	0	3,449,933	31,360
[E Distribution Pipe]				
Distribution Pipe for Nusa Dua	3,342,380	0	3,342,380	30,382
Distribution Pipe for Benoa	10,285,000	0	10,285,000	93,491
Distribution Pipe for Sawangan	8,465,200	0	8,465,200	76,949
Total	22,092,580	0	22,092,580	200,822
[F Renovation of Service Pipe Facilities in the Hotel]				
Renovation Cost	29,230,000	0	29,230,000	265,701
Total	29,230,000	0	29,230,000	265,701

(2) Construction Cost by Responsible Agency

Item		IDR (×1,000)		JPY (×1,000)
Item	LC	FC	Total	Total
SPC Total Construction Cost	146,883,549	24,004,951	170,888,500	1,553,376
PDAM Total Construction Cost	25,542,513	0	25,542,513	232,181
Hotel Total Renovation Cost	29,230,000	0	29,230,000	265,701
Grand Total Construction Cost	201,656,062	24,004,951	225,661,013	2,051,259

Table 8.b.3 Construction Cost of Case 2 (1) Construction Cost by Each Facility

Item		IDR (×1,000)		JPY (×1,000)
Item	LC	FC	Total	Total
[A Site Preparation]				
Site Preparation	6,507,139	0	6,507,139	59,150
B Reclamation Plant Facility				
Structure Construction				
Raw Water Pump Building	1,224,468	0	1,224,468	11,130
Biological Treatment Building	9,387,773	0	9,387,773	85,335
Ozonation Building	8,823,814	0	8,823,814	80,208
Membrane Filtration Building	14,261,371	0	14,261,371	129,636
Site Work	4,357,294	0	4,357,294	39,608
Vehicles	2,070,000	0	2,070,000	18,816
Connection Charge for Electricity	631,250	0	631,250	5,738
Sub Total (1)	40,755,971	0	40,755,971	370,472
Mechanical and Electrical Facility				
Mechanical Equipment	33,402,949	34,308,417	67,711,366	615,496
Electrical Equipment	35,613,810	0	35,613,810	323,730
Sub Total (2)	69,016,759	34,308,417	103,325,176	939,226
Total	109,772,730	34,308,417	144,081,147	1,309,698
[C Water Transmission Pipe]				
Water Transmission Pipe	56,218,200	0	56,218,200	511,023
[D Distribution Reservoir]				
Distribution Reservoir	3,449,933	0	3,449,933	31,360
[E Distribution Pipe]				
Distribution Pipe for Nusa Dua	3,342,380	0	3,342,380	30,382
Distribution Pipe for Benoa	13,326,700	0	13,326,700	121,140
Distribution Pipe for Sawangan	10,757,200	0	10,757,200	97,783
Total	27,426,280	0	27,426,280	249,305
[F Renovation of Service Pipe Facilities in the Hotel				
Renovation Cost	19,750,000	0	19,750,000	179,528
Total	19,750,000	0	19,750,000	179,528

(2) Construction Cost by Responsible Agency

Itom		IDR (×1,000)		JPY (×1,000)
Item	LC	FC	Total	Total
SPC Total Construction Cost	172,498,069	34,308,417	206,806,486	1,879,871
PDAM Total Construction Cost	30,876,213	0	30,876,213	280,665
Hotel Total Renovation Cost	19,750,000	0	19,750,000	179,528
Grand Total Construction Cost	223,124,281	34,308,417	257,432,698	2,340,063

A1 Site Preparation for Treatment Plant	nt Plant								
Itomo	Curved from the	*!**11		Unit Cost (IDR)	t (IDR)	Total	Total Cost (1,000IDR)	JR)	Defenses
TICITIS	opecinication	OIIII	Qualitity	LC	FC	LC	FC	Total	Neleielice
Excavation (Root of Mangrove, Existing Structure		m ³	7,590	102,000	0	774,180	0	774,180	
Waste Disposal (Root of Mangrove, Existing Strue	0	m ³	7,590	56,600	0	429,594	0	429,594	
Landfill	(Compacted use buy soil)	m ³	19,800	144,800	0	2,867,040	0	2,867,040	
Existing Bridge Removal		m ²	30	1,980,000	0	59,400	0	59,400	
Administrative Road	Pavement Work	m ²	2,910	260,300	0	757,473	0	757,473	
Administrative Road	Sub-base (aggregate A)	m ³	009	330,000	0	198,000	0	198,000	
Administrative Road	Sub-base (aggregate B)	em ³	006	330,000	0	297,000	0	297,000	
New Bridge Construction	Width=5m, Length=3m	m ²	15	5,720,000	0	85,800	0	85,800	
New Bridge Construction	Width=5m, Length=14m	m ²	10D	5,720,000	0	400,400	0	400,400	
Gate and Guard Post		set	1	100,000,000	0	100,000	0	100,000	
Total						5,968,887	0	5,968,887	

for Treatment
÷
Site Preparation

Raw Water Pumn Tank

B1 Raw Water Pump Tank									
Termo	Cussification	110.14	Outsiter	Unit Cost (IDR)	t (IDR)	Tota	Total Cost (1,000IDR)	JR)	Defemance
TICHTIS	opecinication	UIII		ГC	FC	LC	FC	Total	Indialice
Excavation	Sand, Cray	m ³	756	46,000	0	34,776	0	34,776	
Back Filling	BH	m ³	580	43,300	0	25,114	0	25,114	
Surplus Soil Disposal		m ³	176	56,600	0	9,962	0	9,962	
Foundation Pile	L=20m	pcs	23	12,940,000	0	297,620	0	297,620	
Sand Layer		m ³	7	202,300	0	1,416	0	1,416	
Leveling Concrete		m ³	4	1,294,000	0	5,176	0	5,176	
Reinforced Concrete		m ³	136	2,534,000	0	344,624	0	344,624	
Reinforcement		t	13.6	16,120,000	0	219,232	0	219,232	
Roofing		m^2	37	1,040,000	0	38,480	0	38,480	
Total						976,400	0	976,400	

Table 8.b.4 Breakdown for Each Item of Case 1 Construction Cost

B2 Biological Treatment Building	50								
14	Current Second	77771	0.000	Unit Cost (IDR)	st (IDR)	Tot	Total Cost (1,000IDR)	JR)	Dafaaaaaa
IteIIIS	opecification	OIII		LC	FC	LC	FC	Total	Relefence
Excavation	Sand, Cray	m ³	185	46,000)	8,510	0	8,510	
Back Filling	BH	m ³	7	43,300	0	303	0	303	
Surplus Soil Disposal		m ³	178	56,600)	10,075	0	10,075	
Foundation Pile	L=20m	bcs	150	12,940,000)	1,941,000	0	1,941,000	
Sand Layer		m ³	89	202,300)	18,005	0	18,005	
Leveling Concrete		m ³	45	1,294,000)	58,230	0	58,230	
Reinforced Concrete		m ³	749	2,534,000	0	1,897,966	0	1,897,966	
Reinforcement		t	74.9	16,120,000	0	1,207,388	0	1,207,388	
Roofing		m ²	224	1,040,000)	232,960	0	232,960	
Waterproofing		m ²	1,252	64,500)	80,754	0	80,754	
Total						5,455,191	0	5,455,191	

B3 Ozonation Building									
[former	Cracification	1 Trait	Unsatity	Unit Cost (IDR)	t (IDR)	Tot	Total Cost (1,000IDR)	JR)	Deference
ICHIIS	opecification	OIII	Qualitity	LC	FC	ГС	FC	Total	Veletelle
Excavation	Sand, Cray	m ³	373	46,000)	17,158	0	17,158	
Back Filling	BH	m ³	10	43,300)	433	0	433	
Surplus Soil Disposal		m ³	363	56,600)	20,546	0	20,546	
Foundation Pile	L=20m	pcs	172	12,940,000)	2,225,680	0	2,225,680	
Sand Layer		m ³	182	202,300)	36,819	0	36,819	
Leveling Concrete		m ³	16	1,294,000)	117,754	0	117,754	
Reinforced Concrete		m ³	1,106	2,534,000)	2,802,604	0	2,802,604	
Reinforcement		t	110.6	16,120,000)	1,782,872	0	1,782,872	
Roofing		m^2	765	1,040,000)	795,600	0	795,600	
Waterproofing		m^2	447	64,500)	28,832	0	28,832	
Corrosion Protection Coating		m^2	114	1,000,000)	114,000	0	114,000	
Total						7,942,297	0	7,942,297	

B4 Membrane Filtration Building	50								
Iterator	Curvition	11.014	Outstate	Unit Cost (IDR)	tt (IDR)	Tot	Total Cost (1,000IDR)	JR)	Doference
ILEILIS	opecification	OIII	Qualitity	LC	FC	ГС	FC	Total	Neteletice
Excavation	Sand, Cray	em ³	1,924	46,000)	38,504	0	88,504	
Back Filling	BH	m ³	649	43,300)	0 28,102	0	28,102	
Surplus Soil Disposal		em ³	1,275	56,600)	72,165	0	72,165	
Foundation Pile	L=20m	bcs	245	12,940,000	•	3,170,300	0	3,170,300	
Sand Layer		em ³	210	202,300)	1 42,483	0	42,483	
Leveling Concrete		2 m	105	1,294,000)	135,870	0	135,870	
Reinforced Concrete		em ³	1,580	2,534,000)	3 4,003,720	0	4,003,720	
Reinforcement		t	158.0	16,120,000)	2,546,960	0	2,546,960	
Roofing		m ²	1,278	1,040,000)	0 1,329,120	0	1,329,120	
Waterproofing		m ²	585	64,500)	37,733	0	37,733	
Laboratory Equipment		set	1	1,000,000,000)	0 1,000,000	0	1,000,000	
Total						12,454,956	0	12,454,956	

Work	
Site	

B5 Site Work									
1	Constitution	11014	Outstater	Unit Cost (IDR)	tt (IDR)	Tot	Total Cost (1,000IDR)	JR)	Defense
TIGHTS	opecification	UIII	Qualitity	LC	FC	TC	FC	Total	Nelei elice
Fence		m	350	500,000	0	175,000	0	175,000	
Road	Pavement Work	m^2	2,900	260,300	0	754,870	0	754,870	
Road	Sub-base (aggregate A)	m ³	580	330,000	0	191,400	0	191,400	
Road	Sub-base (aggregate B)	m ³	870	330,000	0	287,100	0	287,100	
Lawn Grass		m^2	2,290	50,800	0	116,332	0	116,332	
Drainage		ш	332	1,431,000	0	475,092	0	475,092	
Electric Lamp		set	10	3,000,000	0	30,000	0	30,000	
Gate and Guard Post		set	1	100,000,000	0	100,000	0	100,000	
Pipe Laying Work	For Transmission pipe (300mm	ш	560	1,631,000	0	913,360	0	913,360	
Pipe Laying Work	For Raw water pipe (300mm)	ш	100	1,631,000	0	163,100	0	163,100	
Pipe Laying Work	For Discharge pipe (200mm)	m	335	1,171,000	0	392,285	0	392,285	
Total						3,598,539	0	3,598,539	

B6 Maintenance Equipment									
Ţ				Unit Co	Unit Cost (IDR)	Tota	Total Cost (1,000IDR)	JR)	j L
Items	opecification	CUNI	Quantity	LC	FC	LC	FC	Total	Kelerence
Patrol Car	Sedan Type	units	1	270,000,000		270,000	0	270,000	
Tanker Truck	4t	units	2	900,000,000		1,800,000	0	1,800,000	
Total						000 020 0	C	000.070.0	
1 Utal						2,010,000	>	2,010,000	
B7 Machinery Construction	-)	(1IDR =	0.00909	
Itomo	Canorification	I Init	Output	Unit Co	Unit Cost (IDR)	Tot	Total Cost (1,000IDR)	JR)	Reference
TICHTS	opecification	OIIII	Quality	LC	FC	LC	FC	Total	(JPY)
Machinery Equipment		units	1	6,077,331,000	17,569,307,000	6,077,331	17,569,307	23,646,638	159,705,000
Transmission Pump		units	2	225,000,000	0	450,000	0	450,000	
Crane		units	1	216,000,000	0	216,000	0	216,000	
Equipment and Pipe Instration		units	1	21,284,289,000	6,435,644,000	21,284,289	6,435,644	27,719,933	58,500,000
Total						28,027,620	24,004,951	52,032,571	
B8 Electricity Construction)	(1IDR =	0.00909 (
1		11-12		Unit Co	Unit Cost (IDR)	Tota	Total Cost (1,000IDR)	JR)	Reference
Items	Specification	Unit	Quantity	<u>ر</u>	C F	۲ ۲	Ç	E	

B8 Electricity Construction							(1IDR =	(60600.0	
Tterrer	Cassification	11	0.000444	Unit Cost (IDR)	t (IDR)	Tot	Total Cost (1,000IDR)	JR)	Reference
TICHTS	opecification	UIII	Quantury	TC	FC	ГС	FC	Total	(JPY)
Electricity Equipment for Main Facilities		units	1	10,290,267,000		0 10,290,267	0	10,290,267	
Monitoring Device		units	1	2,457,000,000		0 2,457,000	0	2,457,000	
Receiving Electricity Equipment	20kV	units	1	1,602,000,000		0 1,602,000	0	1,602,000	
Electric Generator		units	1	7,605,000,000		0 7,605,000	0	7,605,000	
Electricity Equipment for Transmission Pump		units	1	522,000,000		0 522,000	0	522,000	
Instrumentation Equipment for UPA Reservoir		units	1	900,000,000		000,00	0	90,000	
Monitoring Device for UPA Reservoir		units	1	000'000'66		000,99	0	99,000	
Equipment and Cable Installation for Main		units	1	7,730,541,000		0 7,730,541	0	7,730,541	
Equipment and Cable Installation for Others		units	1	5,218,002,000		0 5,218,002	0	5,218,002	
Total						35,613,810	0	35,613,810	

C1 Water Transmission Pipe Line	le								
Τέ	Canadition	11-14	0	Unit Cost (IDR)	t (IDR)	Tota	Total Cost (1,000IDR)	JR)	Dofenses
ICILIS	opectrication	OIIII	Qualitity	ГС	FC	TC	FC	Total	releielice
Open Cut Methods	ϕ 300 (Daytime work)	ш	7,500	2,125,000	0	15,937,500	0	15,937,500	
Open Cut Methods	ϕ 300 (Nighttime work)	m	7,000	2,762,500	0	19,337,500	0	19,337,500	
Pipe Bridge Methods	φ 300, L=120m	set	1	1,440,000,000	0	1,440,000	0	1,440,000	
Pipe Bridge Methods	φ 300, L=50m	set	1	884,000,000	0	884,000	0	884,000	
Pipe Bridge Methods	φ 300, L=70m	set	1	645,600,000	0	645,600	0	645,600	
Pipe Bridge Methods	φ 300, L=10m	set	5	180,000,000	0	900,009	0	900,000	
Pipe Jacking Methods	ϕ 300	m	400	12,500,000	0	5,000,000	0	5,000,000	
Total						44,144,600	0	44,144,600	

. à • iĥi Dist

D1 Distribution Reservoir									
Teasson	Cassification	11		Unit Cost (IDR)	st (IDR)	Tot	Total Cost (1,000IDR)	JR)	Doference
TICILIS	opecification	OIIII	Quantury	LC	FC	ГC	FC	Total	Releience
Mortar Removal		m^2	500	26,000		13,000	0	13,000	
Chemical Anchor		bcs	2,000	1,000,000		2,000,000	0	2,000,000	
Reinforced Concrete		m ³	100	2,534,000		253,400	0	253,400	
Reinforcement		t	10	16,120,000		161,200	0	161,200	
Waterproofing		m^2	006	64,500		58,050	0	58,050	
Roof		m^2	400	2,000,000		800,000	0	800,000	
Fixtures and Fittings		set	1	164,282,500		164,283	0	164,283 T	164,283 Total cost 5%
Total						3,449,933	0	3,449,933	

E1 Distribution Pipe Line for Nusa Dua	sa Dua								
Té ann a	Canadition	T Lait	O	Unit Cost (IDR)	t (IDR)	Tota	Total Cost (1,000IDR)	R)	Doference
SILLEN	эресписацон	UIII		ГС	FC	TC	FC	Total	Releicince
Water Leakage Investigation		set	1	250,000,000		250,000	0	250,000	
Pipe Replacement DCIP	$\phi 400$	ш	220	5,442,000		1,197,240	0	1,197,240	
Pipe Replacement DCIP	ϕ 300	m	80	3,652,000		292,160	0	292,160	
Pipe Replacement DCIP	$\phi 200$	ш	190	2,302,000		437,380	0	437,380	
Pipe Replacement DCIP	ϕ 150	m	160	1,905,000		304,800	0	304,800	
Water Stop Valve Replacement	$\phi 400$	set	2	72,000,000		144,000	0	144,000	
Water Stop Valve Replacement	$\phi \ 200$	set	16	36,800,000		588,800	0	588,800	
Water Stop Valve Replacement	ϕ 150	set	4	32,000,000		128,000	0	128,000	
Total						3,342,380	0	3,342,380	

: Line for Benoa
Distribution Pipe
E2

	C110a								
Iteration	Cassification	11	Otite.	Unit Cost (IDR)	tt (IDR)	Tot	Total Cost (1,000IDR)	R)	Deference
TICITS	opecification	OIIII	Quanuty	ГC	FC	ГС	FC	Total	Kelerence
Pipe Laying	$\phi 200$	ш	5,800	1,606,000		9,314,800	0	9,314,800	
Pipe Laying	$\phi \ 100$	ш	700	1,386,000		970,200	0	970,200	
Total						10,285,000	0	10,285,000	

E3	Distribution Pipe Line for Sawangan	vangan								
	Termo	Curveiffortion	11.0.14	Outstiter	Unit Cos	Unit Cost (IDR)	Tota	Total Cost (1,000IDR)	R)	Dafamana
	ICIIIS	opecification	UIII		LC	FC	LC	FC	Total	reletetice
Pipe Laying		$\phi 200$	ш	4,000	1,606,000		6,424,000	0	6,424,000	
Pipe Laying		$\phi 100$	m	1,200	1,386,000		1,663,200	0	1,663,200	
Booster Pump		0.8m3/min 18.5kW	set	2	77,000,000		154,000	0	154,000	
Electric Panel		Soft Starter	set	1	224,000,000		224,000	0	224,000	
Total							8,465,200	0	0 8,465,200	

Hotel Conversion

F1 Hotel Conversion									
Té	Canaditantion	11	Otite	Unit Cost (IDR)	tt (IDR)	Tota	Total Cost (1,000IDR)	JR)	Dafamaa
SILEIL	opecification	UIII		LC	FC	ГС	FC	Total	Relei elice
Hotel Converting Cost		Room	7,900	3,700,000		29,230,000	0	29,230,000	
Total						29,230,000	0	29,230,000	

A1 Site Preparation for Treatment Plant	nt Plant								
T +	Canadition	114:4	Outstate	Unit Cost (IDR)	t (IDR)	Tota	Total Cost (1,000IDR)	JR)	Doference
TICITIS	opecification	UIII	Qualitity	LC	FC	ГС	FC	Total	releicice
Excavation (Root of Mangrove, Existing Structure		m ³	8,610	102,000	0	878,220	0	878,220	
Waste Disposal (Root of Mangrove, Existing Strud		m ³	8,610	56,600	0	487,326	0	487,326	
Landfill	(Compacted use buy soil)	m ³	22,400	144,800	0	3,243,520	0	3,243,520	
Existing Bridge Removal		m^2	30	1,980,000	0	59,400	0	59,400	
Administrative Road	Pavement Work	m^2	2,910	260,300	0	757,473	0	757,473	
Administrative Road	Sub-base (aggregate A)	m ³	600	330,000	0	198,000	0	198,000	
Administrative Road	Sub-base (aggregate B)	m ³	906	330,000	0	297,000	0	297,000	
New Bridge Construction	Width=5m, Length=3m	m^2	15	5,720,000	0	85,800	0	85,800	
New Bridge Construction	Width=5m, Length=14m	m^2	70	5,720,000	0	400,400	0	400,400	
Gate and Guard Post		set	1	100,000,000	0	100,000	0	100,000	
Total						6,507,139	0	6,507,139	

B1 Raw Water Pump Tank									
Terrer	Canaditantian	1114	0.0000	Unit Co	Unit Cost (IDR)	Tot	Total Cost (1,000IDR)	JR)	Defermence
Inclus	opecification	UIII	Qualitity	ГС	FC	ГС	FC	Total	releicice
Excavation	Sand, Cray	m ³	837	46,000	0	38,502	0	38,502	
Back Filling	BH	m ³	616	43,300	0	26,673	0	26,673	
Surplus Soil Disposal		m ³	221	56,600	0	12,509	0	12,509	
Foundation Pile	L=20m	pcs	29	12,940,000	0	375,260	0	375,260	
Sand Layer		m ³	10	202,300	0	2,023	0	2,023	
Leveling Concrete		m ³	5	1,294,000	0	6,470	0	6,470	
Reinforced Concrete		m ³	172	2,534,000	0	435,848	0	435,848	
Reinforcement		t	17.2	16,120,000	0	277,264	0	277,264	
Roofing		m^2	48	1,040,000	0	49,920	0	49,920	

,224,468

.224,468

Total

 Table 8.b.5
 Breakdown for Each Item of Case 2 Construction Cost

B2 Biological Treatment Building	5								
Te	Canadian	11.44	0.000	Unit Cost (IDR)	st (IDR)	Tot	Total Cost (1,000IDR)	JR)	Deference
IteIIIS	opecification	OIII	Quantury	LC	FC	TC	FC	Total	Relefence
Excavation	Sand, Cray	m ³	303	46,000	0	13,938	0	13,938	
Back Filling	BH	m3	8	43,300	0	346	0	346	
Surplus Soil Disposal		em ³	295	56,600	0	16,697	0	16,697	
Foundation Pile	L=20m	bcs	266	12,940,000	0	3,442,040	0	3,442,040	
Sand Layer		em ³	147	202,300	0	29,738	0	29,738	
Leveling Concrete		em ³	74	1,294,000	0	92,756	0	95,756	
Reinforced Concrete		m ³	1,277	2,534,000	0	3,235,918	0	3,235,918	
Reinforcement		1	127.7	16,120,000	0	2,058,524	0	2,058,524	
Roofing		m ²	327	1,040,000	0	340,080	0	340,080	
Waterproofing		m ²	2,399	64,500	0	154,736	0	154,736	
Total						9,387,773	0	9,387,773	

B3 Ozonation Building

1,		11		Unit Cost (IDR)	tt (IDR)	Tota	Total Cost (1,000IDR)	DR)	D -f
Items	opecification	UNIT		LC	FC	LC	FC	Total	Kelerence
Excavation	Sand, Cray	m ³	373	46,000	0	17,158	0	17,158	
Back Filling	BH	m ³	10	43,300	0	433	0	433	
Surplus Soil Disposal		m ³	363	56,600	0	20,546	0	20,546	
Foundation Pile	L=20m	bcs	197	12,940,000	0	2,549,180	0	2,549,180	
Sand Layer		m ³	182	202,300	0	36,819	0	36,819	
Leveling Concrete		m ³	91	1,294,000	0	117,754	0	117,754	
Reinforced Concrete		m ³	1,234	2,534,000	0	3,126,956	0	3,126,956	
Reinforcement		t	123.4	16,120,000	0	1,989,208	0	1,989,208	
Roofing		m^2	683	1,040,000	0	710,320	0	710,320	
Waterproofing		m^2	658	64,500	0	42,441	0	42,441	
Corrosion Protection Coating		m^2	213	1,000,000	0	213,000	0	213,000	
Total						8,823,814	0	8,823,814	

B4 Membrane Filtration Building	50								
Terrer	Cassification	114.14	Ountiter	Unit Cost (IDR)	t (IDR)	Tot	Total Cost (1,000IDR)	JR)	Dafamana
Itellis	opecification	OIII	Quantury	LC	FC	ГC	FC	Total	releience
Excavation	Sand, Cray	m ³	2,422	46,000		0 111,412	0	111,412	
Back Filling	BH	m ³	706	43,300		0 30,570	0	30,570	
Surplus Soil Disposal		m ³	1,716	56,600		0 97,126	0	97,126	
Foundation Pile	L=20m	bcs	291	12,940,000		0 3,765,540	0	3,765,540	
Sand Layer		m ³	256	202,300		0 51,789	0	51,789	
Leveling Concrete		m ³	128	1,294,000		0 165,632	0	165,632	
Reinforced Concrete		m ³	1,848	2,534,000		0 4,682,832	0	4,682,832	
Reinforcement		1	184.8	16,120,000		0 2,978,976	0	2,978,976	
Roofing		m^2	1,278	1,040,000		0 1,329,120	0	1,329,120	
Waterproofing		m^2	750	64,500		0 48,375	0	48,375	
Laboratory Equipment		set	1	1,000,000,000		0 1,000,000	0	1,000,000	
Total						14,261,371	0	14,261,371	

¥	
ork	L
0	
Š.	
e	
Z	
•1	

ItemsSpecificationUnit QuantyUnit CostFencemVinit Quanty LC Fencemm400500,000Roadpavement Workm²3.2.00260,300RoadSub-base (aggregate A)m³6.40330,000RoadSub-base (aggregate B)m³960330,000Lawn GrassSub-base (aggregate B)m³0.40330,000Lawn GrassSub-base (aggregate B)m³0.40330,000DrainageProtectric Lampm³0.701,431,000Gate and Guard PostElectric Lampm3701,431,000Pipe Laying WorkFor Transmission pipe (400m)m992,230,000Pipe Laying WorkFor Discharge pipe (300m)m931,631,000	Unit Qua m m ² m ³ m ³	Unit Cost (ID LC 500,000 260,300 330,000 330,000 50,800	C LC LC 0 200(0 832,9 200,0 316,8 20,0 0 200,0 0 0 200,0 0 0 0	Total Cost (1,000IDR) FC 0 560 0 560 0 560 0 700 0 700 0 700 0 700 0	To	Reference
Tetus opectification Oth Quantity LG γ	CILII Cuta m m ³ m ³	LC 500,000 260,300 330,000 330,000 50,800			Total 200,000 832,960 211,200 316,800	INGIALATICA
(1, 0, 0) $(1, 0)$	m m ² m ³ m ³	333	0 200,0 0 832,9 0 211,2 0 316,8 0 127,0	0 0 0 00	200,000 832,960 211,200 316,800	
Pavement Work m^2 $3,200$ 2 T Sub-base (aggregate A) m^3 640 3 $Sub-base (aggregate B)$ m^3 960 3 $Grass$ Sub-base (aggregate B) m^3 960 3 $Grass$ m^2 $2,500$ m^2 $2,500$ age m^2 $2,500$ m^2 $3,70$ age m^2 $2,500$ m^2 $3,70$ age m^2 $2,500$ m^2 $3,70$ age m^2 m^2 $2,500$ $3,600$ ade m^2 m^2 m^2 $3,700$ ade m^2 m^2 m^2 $3,700$ ade m^2 m^2 m^2 m^2 ade	m ² m ³ m ³	ε ε 2	0 832,9 0 211,2 0 316,8 0 127,0	0 0 00000000000000000000000000000000000	832,960 211,200 316,800	
Mathematical mathmatematical mathematical mathematical mathemati	m ³ m ³ m ²	E, E, -	0 211,2 0 316,8 0 127,0	0 0000000000000000000000000000000000000	211,200 316,800	
Sub-base (aggregate B) m ³ 960 3 Grass m ² 2,500 1,4 age m 370 1,4 age est 100 3,0 ade duard Post est 10 3,0 and Guard Post for Transmission pipe (400mm) m 558 2,2 anying Work For Raw water pipe (400mm) m 558 2,2 anying Work For Discharge pipe (300mm) m 33,4 1,6	m ³ m ²	e, -	0 316,8 0 127,0	0 00	316,800	
m ² 2,500 m 370 m 370 m 370 m 1,4 m 364 m 100,0 st set For Transmission pipe (400mm) m For Raw water pipe (400mm) m For Discharge pipe (300mm) m		• •	0 127,0	00 00	100 000	
m 370 st set 10 st set 10 For Transmission pipe (400mm m 558 For Raw water pipe (400mm) m 39 For Discharge pipe (300mm) m 334					12/,000	
st set 10 st For Transmission pipe (400nm m 558 For Raw water pipe (400nm) m 99 For Discharge pipe (300nm) m 334			0 529,470	170 0	529,470	
st set 1 For Transmission pipe (400mm m 558 For Raw water pipe (400mm) m 99 For Discharge pipe (300mm) m 334			0 30,000	0 000	30,000	
For Transmission pipe (400mmm558For Raw water pipe (400mm)m99For Discharge pipe (300mm)m334	set	100,000,000	0 100,000	0 000	100,000	
For Raw water pipe (400mm)m99For Discharge pipe (300mm)m334	(400mm m		0 1,244,340	140 0	1,244,340	
For Discharge pipe (300mm) m 334	m		0 220,770	0 04	220,770	
	m		0 544,754	54 0	544,754	
Total			4,357,294	94 0	4,357,294	

		11.11		Unit Cost (IDR)	st (IDR)	Tot	Total Cost (1,000IDR)	JR)	J. C.
Items	Specification	Unit	Quantity	ГС	FC	ГС	FC	Total	Kelerence
Patrol Car	Sedan Type	units	1	270,000,000		270,000	0	270,000	
Tanker Truck	4t	units	2	900,000,000		1,800,000	0	1,800,000	
Total						2,070,000	0	2,070,000	
87 Machinery Construction							(1TDR -		
				I Init Co	IInit Cost (IDD)	То;	Total Cost (1 0001DD)		Dofenence
Items	Specification	Unit	Quantity		FC	TC T	FC	Total	(JPY)
Machinery Equipment		units	1	7,780,617,000	7,780,617,000 25,504,456,000	7,780,617	25,504,456	33,285,073	231,835,500
Transmission Pump		units	3	168,750,000	0	506,250	0	506,250	
Crane		units	1	162,000,000	0	162,000	0	162,000	
Equipment and Pipe Instration		units	1	24,954,081,750	8,803,961,000	24,954,082	8,803,961	33,758,043	80,028,000
Total						33,402,949	34,308,417	67,711,366	
B8 Electricity Construction	-						(1IDR =	60600.0	
Terrero	Canada 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	11	0.0004	Unit Co	Unit Cost (IDR)	Tot	Total Cost (1,000IDR)	JR)	Reference
			V JUBILLY						

B 8 Electricity Construction)	IIUK =	(60600.0	
[******	Constitution	11	Outstitu	Unit Cost (IDR)	t (IDR)	Total	Total Cost (1,000IDR)	R)	Reference
TICILIS	opecification	OIII	Quality	LC	FC	LC	FC	Total	(JPY)
Electricity Equipment for Main Facilities		units	1	12,129,507,000	0	12,129,507	0	12,129,507	
Monitoring Device		units	1	2,457,000,000	0	2,457,000	0	2,457,000	
Receiving Electricity Equipment	20kV	units	1	1,201,500,000	0	1,201,500	0	1,201,500	
Electric Generator		units	1	5,703,750,000	0	5,703,750	0	5,703,750	
Electricity Equipment for Transmission Pump		units	1	445,500,000	0	445,500	0	445,500	
Instrumentation Equipment for UPA Reservoir		units	1	67,500,000	0	67,500	0	67,500	
Monitoring Device for UPA Reservoir		units	1	74,250,000	0	74,250	0	74,250	
Equipment and Cable Installation for Main		units	1	9,039,303,000	0	9,039,303	0	9,039,303	
Equipment and Cable Installation for Others		units	1	4,495,500,000	0	4,495,500	0	4,495,500	
Total						35,613,810	0	35,613,810	
							•		

C1 Water Transmission Pipe Line	e								
Terms	Crossicon	1 Init	Outstate	Unit Cost (IDR)	t (IDR)	Tot	Total Cost (1,000IDR)	JR)	Dofononoo
TICHTIS	opectrication	UIII	Quantity	LC	FC	ГС	FC	Total	Releicice
Open Cut Methods	ϕ 400 (Daytime work)	m	7,500	2,782,000	0	20,865,000	0	20,865,000	
Open Cut Methods	ϕ 400 (Nighttime work)	ш	7,000	3,616,600	0	25,316,200	0	25,316,200	
Pipe Bridge Methods	φ 400, L=120m	set	1	1,800,000,000	0	1,800,000	0	1,800,000	
Pipe Bridge Methods	φ 400, L=50m	set	1	1,105,000,000	0	1,105,000	0	1,105,000	
Pipe Bridge Methods	φ 400, L=70m	set	1	807,000,000	0	807,000	0	807,000	
Pipe Bridge Methods	φ 400, L=10m	set	5	225,000,000	0	1,125,000	0	1,125,000	
Pipe Jacking Methods	$\phi 400$	m	400	13,000,000	0	5,200,000	0	5,200,000	
Total						56,218,200	0	56,218,200	

"iow Distribution Bas

D1 Distribution Reservoir									
T	Canaditantian	1 Lait	0.000	Unit Cost (IDR)	st (IDR)	Tot	Total Cost (1,000IDR)	JR)	Dafamanaa
Items	opecification	CIIII	Quantity	LC	FC	ГC	FC	Total	Kelerence
Mortar Removal		m ²	500	26,000		13,000	0	13,000	
Chemical Anchor		bcs	2,000	1,000,000		2,000,000	0	2,000,000	
Reinforced Concrete		m ³	100	2,534,000		253,400	0	253,400	
Reinforcement		t	10	16,120,000		161,200	0	161,200	
Waterproofing		m ²	006	64,500		58,050	0	58,050	
Roof		m ²	400	2,000,000		800,000	0	800,000	
Fixtures and Fittings		set	1	164,282,500		164,283	0	164,283 T	164,283 Total cost 5%
Total						3,449,933	0	3,449,933	

E1 Distribution Pipe Line for Nusa Dua	sa Dua								
Teasson	Canadification	11.014	Ound to.	Unit Cost (IDR)	t (IDR)	Tota	Total Cost (1,000IDR)	IR)	Dofenence
Itellis	opecification	OIIII	Quantity	LC	FC	ГC	FC	Total	Releice
Water Leakage Investigation		set	1	250,000,000		250,000	0	250,000	
Pipe Replacement DCIP	$\phi 400$	ш	220	5,442,000		1,197,240	0	1,197,240	
Pipe Replacement DCIP	ϕ 300	ш	80	3,652,000		292,160	0	292,160	
Pipe Replacement DCIP	ϕ 200	ш	190	2,302,000		437,380	0	437,380	
Pipe Replacement DCIP	φ150	ш	160	1,905,000		304,800	0	304,800	
Water Stop Valve Replacement	ϕ 400	set	2	72,000,000		144,000	0	144,000	
Water Stop Valve Replacement	$\phi 200$	set	16	36,800,000		588,800	0	588,800	
Water Stop Valve Replacement	ϕ 150	set	4	32,000,000		128,000	0	128,000	
Total						3,342,380	0	3,342,380	

Distribution Pipe Line for Benoa

E2	Distribution Pipe Line for Benoa	103								
	It county	Cancel francis	110014	Outstitue	Unit Cost (IDR)	tt (IDR)	Tot	Total Cost (1,000IDR)	JR)	Dofornan
	ILCIIIS	opectrication			LC	FC	LC	FC	Total	Velei elice
Pipe Laying	50	$\phi \ 300$	ш	5,800	2,125,000		12,325,000	0	12,325,000	
Pipe Laying	50	$\phi \ 150$	ш	700	700 1,431,000		1,001,700	0	1,001,700	
Total							13,326,700	0	13,326,700	

ingunung tot sure off i transmitter								
Canadi Frankina	11	Outset	Unit Cos	Unit Cost (IDR)	Tota	Total Cost (1,000IDR)	JR)	Doforman
			LC	FC	ГC	FC	Total	Neterence
Pipe Laying $\phi 300$	m	4,000	2,125,000		8,500,000	0	8,500,000	
Pipe Laying ϕ 150	m	1,200	1,431,000		1,717,200	0	1,717,200	
Booster Pump 1.5m3/min 18.5kW se	set	2	110,000,000		220,000	0	220,000	
Electric Panel Soft Starter se	set	1	320,000,000		320,000	0	320,000	
Total					10,757,200	0	10,757,200	

Distribution Pipe Line for Sawangan

Hotel Conversion F1

Termo	Cassification	*!**11	Outer	Unit Cost (IDR)	t (IDR)	Tot	Total Cost (1,000IDR)	IR)	Defearance
TICHTIS	opectrication	OIIII	Quality	ГС	FC	ГС	FC	Total	velet elle
Hotel Converting Cost		Room	7,900	2,500,000		19,750,000	0	19,750,000	
Total						19,750,000	0	19,750,000	

Items	Specification	Unit	Unit l		Remarks
Excavation	Root of Mangrove, Existing Structure	m ³	IDR 102,000	YEN	
Excavation	BH, Sand, Clay, Gravel	m ³	46,000		+
	BH, Sand, Clay, Glaver	m m ³	,		
Excavation	······································		102,000		
Backfilling by purchase Soil		m ³	145,000		
Backfilling	ВН	m ³	43,300		
Backfilling	Bulldozer	m ³	20,000		
Backfilling	(Compacted use buy soil)	m ³	144,800		
Surplus Soil Disposal		m ³	56,600		
Waste Disposal		m ³	56,600		
Sand Layer		m ³	202,300		
Leveling Concrete		m ³	1,294,000		
Reinforced Concrete	Including formwork	m ³	2,534,000		
Reinforcement Bar	With rebar fabrication and assembly	t	16,120,000		
Roof	With rebail rabileation and assembly Without slab and beam	m ²	1,040,000		
Roof	Without stab and beam	m ²	2,000,000		
	φ300				
Pile Pile	φ300, L=20m	m pcs	647,000 12,940,000		
Pavement work	block	m ²	260,300		
Cube Stone	DIOCK	m	148,300		
Sub-base (aggregate A)		m ³	330,000		
			330,000		+
Sub-base (aggregate B)	a-150mm without Provent	m ³	,		
PVC Pipe PVC Pipe	φ=150mm without Pavement φ=200mm without Pavement	m m	1,025,000		+
PVC Pipe	ϕ =300mm without Pavement	m	1,631,000		
HDPE Pipe	ϕ =400mm without Pavement	m	2,230,000		
PVC Pipe	ϕ =150mm with Pavement	m	1,431,000		
PVC Pipe	φ=200mm with Pavement	m	1,606,000		
PVC Pipe	φ=300mm with Pavement	m	2,125,000		
HDPE Pipe	φ=400mm with Pavement	m	2,782,000		
DCIP Pipe	φ=150mm with Pavement	m	1,905,000		
DCIP Pipe	φ=200mm with Pavement	m	2,302,000		
DCIP Pipe	φ =300mm with Pavement	m	3,652,000		
DCIP Pipe Water Stop Valve Replacement	φ=400mm with Pavement φ=400mm	m	5,442,000 72,000,000		
Water Stop Valve Replacement	φ=400mm	set	36,800,000		
Water Stop Valve Replacement	φ=150mm	set	32,000,000		
Pipe Bridge	$\phi = 400 \text{mm}, \text{ L} = 120 \text{m}$	set	1,800,000,000		
Pipe Bridge	$\phi = 400 \text{mm}, \text{L} = 70 \text{m}$	set	1,105,000,000		
Pipe Bridge	$\phi = 400 \text{mm}, \text{ L} = 50 \text{m}$	set	807,000,000		
Pipe Bridge	φ=400mm, L=10m	set	225,000,000		
Pipe Bridge	φ=300mm, L=120m	set	1,440,000,000		
Pipe Bridge	φ=300mm, L=70m	set	884,000,000		
Pipe Bridge	φ=300mm, L=50m	set	645,600,000		
Pipe Bridge	φ=300mm, L=10m	set	180,000,000		
Pipe Jacking Pipe Jacking	$\phi = 400 \text{mm}$ $\phi = 300 \text{mm}$	m m	13,000,000 12,500,000		+
Laboratory Equipment	φ σσοπιπ	set	1,000,000,000		
Mortar Removal		m ²	26.000		1
Chemical Anchor		set	100,000		
Waterproofing		m ²	64,500		1
Protecting Coating	for corrosion protection coating	m ²	1,000,000		
Electric Lamp	tor contosion protection coating	set	3,000,000		
Lawn Grass		m ²	50,800		1
Fence	H=1.2m	m	500,000		+
Gate and Guard Post	11-1.2111	set	100,000,000		
Bridge Removal		m ²	1,980,000		1
Bridge Construction		m ²	5,720,000		+
					+
Demolish Watar Landau Landian		m ³	100,000		-
Water Leakage Investigation	1.5m3/min 18.5l	set	250,000,000 110,000,000		
Booster Pump Electric Panel	1.5m3/min 18.5kw Soft Starter	set set	320,000,000		
Converting Cost	for Case1 (for Room Toilet)	room	3,700,000		
Converting Cost	for Case2 (for Restaurant)	room	2,500,000		

Table 8.b.6 Unit Price for Construction Cost

8.c Engineering Service

8.c.1 Cost of Detailed Design, Construction Supervision and Surveys

This cost is calculated as the sum of the following cost items.

- Detailed design
- Construction supervision
- Project management during construction
- EIA implementation
- Additional ground and geological surveys
- Inspection of the existing distribution reservoir and distribution pipes (originally used for irrigation)

The detailed design and construction supervision costs are calculated based on the estimated required man-months (MM) of foreign and local engineers as shown below, including office expenses, etc.

- Foreign Engineer : 86 MM
- Local Engineer : 275 MM

8.c.2 Capacity Building and Promotion

The capacity building and promotion activities are being conducted at the pilot reclamation plant in Denpasar WWTP. The cost of capacity building and promotion is excluded from the total project cost because it is a precondition of the project that the major part of the promotion should be finished before the confirmation of the reclaimed water demand at the target hotels.

	Description	Unit	Unit Price	Total Quantity	Total Amoun
Foreign Cos	st uneration for Professional A		yen		Japanese Yei
	Foreign Staff		yen		Japanese Tel
	1-1 Foreign Staff				
A- 1	Consulting Services - Team Leader	M/M	3,200,000	22 9	70,400,0
A- 2	Sub-Team Leader - Pipe Line Engineer	M/M	3,000,000	9	27,000,0
A- 3	Civil Engineer for Transmission Pipe	M/M	2,800,000	3	8,400,0
A- 4 A- 5 A- 6	Sub-Team Leader - Treatment Plant/Pump Station	M/M	3,000,000	9	27,000,0
A- 5	Civil / Structural Engineer	M/M	2,800,000	4	11,200,0
A- 6	Mechanical Engineer	M/M	2,800,000	12	33,600,0
A- 7 A- 8	Electrical Engineer	M/M	2,800,000	12	33,600,0
A- 7 A- 8 A- 9	Architect	M/M	2,800,000	3	8,400,0
<u>-</u> 9	Document Specialist	M/M	2,800,000	5	14,000,0
A- 10	Cost Estimator	M/M	2.800.000	3	8,400,0
A- 11	Environmental Specialist	M/M	2,800,000	4 86	11,200,0
2. Dire	ct Cost			80	
1	International Air Fare	nos	200,000	45	9,000,0
	Total				262,200,0
	Description	Unit	Unit Price	Total Quantity	Total Amou
Local Cost	upprotion for Drofossional D		IDD		IDD
	uneration for Professional B Deputy Team Leader	M/M	IDR 33,003,000	45	IDR 1,485,135,0
	Geotechnical Engineer	M/M	27,503,000	1	1,485,155,
	Geotecnnical Engineer Topographic Surveyor	M/M M/M	27,503,000	4 6	110,012, 165,018,
- 5 - 4	Pipe Line Engineer	M/M M/M	27,503,000	0 16	440,048,
- 4 - 5	Civil Engineer	M/M M/M	27,503,000	10	440,048,
	Structural Engineer	M/M	27,503,000	10	165,018,
	Mechanical Engineer	M/M	27,503,000 27,503,000	0 17	467,551,
	Electrical Engineer	M/M	27,503,000	17	467,551,
e_ Ω	Architect	M/M M/M	27,503,000 27,503,000	7	192,521,
- 10	Document Specialist	M/M M/M	27,503,000	, 6	165,018,
B- 10 B- 11	Environmental Expert	M/M M/M	27,503,000	7	192,521,
B- 12	Quantity Surveyor	M/M M/M	27,503,000	, 46	1,265,138,
	Chief Inspector	M/M	16,502,000	41	676,582,
	Inspector	M/M	11,001,000	41	451,041,0
	*		,,	275	- ,- ,
	uneration for Supporting Staffs 1-7 Project Office	1	r		
	Office Manager	M/M	10,000,000	45	450,000,
	Accountant	M/M M/M	10,000,000	45 45	450,000,
- <u>2</u> - 3			10,000,000	45 20	200,000,
- <u> </u>	CAD Support for Pipe Line CAD Support for Civil Works and Structural	M/M M/M	10,000,000	5	200,000, 50,000,
- 4 2- 5	CAD Support for M & E	M/M	10,000,000		200,000,
- 5	Translator / Interpreter	M/M	10,000,000	20 34	200,000, 340,000,
- 0 - 7	Secretary	M/M	5,000,000	54 45	225,000,
- 7	Security Guard	M/M	1,000,000	135	135,000,
	Office Boy	M/M	1,000,000	135 54	54,000,
	·	111/1/1	1,000,000	403	57,000,
3. Dire	ct Cost Accommodation for Professional A	Month	33,003,000	86	2,838,258,
	Accommodation for Professional B	Month	3,300,000	80 275	2,838,238, 907,500,
	Vehicle Rental	Month/Car	11,001,000	120	1,320,120,
	Office Rental		22,002,000	45	1,520,120, 990,090,
	International Communications	Month Month	2,200,000	45	99,000,
	Domestic Communications	Month	2.200.000	45 45	99,000,
	Office Maintenance	Month	5,501,000	45 45 1	247,545,
	Office Furniture and Equipment	Ls	220,022,000	.0	220.022
9	Report Preparation	nos	550,000	45	24,750,
10	Software (CAD etc)	Ls	110,011,000	1	110,011,
11	Topographic Survey	Ls	110,011,000	1	110,011,
12	Geological Investigation	Ls Ls Ls	165,017,000	1	165,017,
13	EIA	Ls	1,650,165,017	1	1,650,165,
	Total		, ,,-		17,568,691,
	Grand Total for Detail Design and Supervision			Yen	421,899,4

Table 8 c 1	Spreadsheet for Engineering Services Cost
1001 0 0.0.1	Spieausheet for Engineering Services Cost

8.d Tax Charges

The following taxes are estimated as part of the project cost.

(1) Value-added Tax (VAT)

VAT is estimated at 10% of the local currency portions of the project cost.

(2) Import Duty

The import tax depends on the items to be imported but the import tax is about 10% of the total price of the equipment to be imported, based on the experience with the construction of the pilot reclamation plant. According to the investigate and examine the results with the support of the tax consultant office in Indonesia, there is a possibility that the reclaimed water project will be exempted from import tax if import duty exemption as stipulated in the Ministry of Finance Regulation No. 101/PMK.04/2007 is applicable to this Project. Contents of the tax consultant office are shown below.

- 1) Minister of Finance defines in the provision, exempt from import duties pertaining to the import of raw materials and equipment to be used to prevent environmental pollution. Exemption shall be applied to the waste disposal or industry companies. These equipments can be used for other purposes or be transferred to others with the permission of the Directorate General of Customs, if the equipments were used as intended for two years from the import.
- 2) Definition of "waste" is the relevant provision has not been specified. In addition, the SPC to the management of the reclaimed water project is unclear whether the applicable to "waste disposal company" under such provision, but this project is considered to be business in line with the spirit of the law. Therefore the local tax office in Indonesia recommended that the SPC submits an application for the approval of the import tax exemption to the Ministry of Directorate General of Taxation with the following documents after the project approval.
 - Investment Coordinating Board approval
 - Tax ID card issued by the Revenue Department
 - Registered businesses VAT (PKP)
 - Details of materials and equipments (amount, type and specifications)
 - Letter of recommendation by the Ministry of the Environment and Environmental Committee (It describes that these equipments entail no adverse consequence to the environment during the waste treatment and these are recommended the materials and equipments for using to waste treatment.)

Application for approval of import tax exemption is after the establishment of SPC, but the project costs in this survey are exempt from import tax as a prerequisite for the calculations.

(3) Surface Water Use Tax

The surface water use tax will be imposed on the Indonesian law (28/2009), if the water is use as a water source of tap water. The operation and tax rate are defined by the local government regulations. The taxable water is only surface water and groundwater on these regulations, but there is no provision for the treated wastewater from secondary treatment.

	Water source	Laws and regulations	Tax rates
1	Surface water	Regulation of Bali (16/2009, Revision 1/2011)	10% of water price
2	Ground water	(In case of Badung Regency) Regulation of Badung Regency (1/2011)	20% of water price

 Table 8.d.1
 Laws, Regulation and Tax Rate for Water Source

The definition of surface water in Indonesian law (7/2004, GR42/2008) has been defined as "all the water on the ground", but the definition in Bali regulations (1/2011) has been defined as excluding the seawater on the land and sea. Therefore the use of seawater in the state of Bali is not subject to taxation.

According to the results of request to investigate and examine the law firm and tax consultant offices in Indonesia about whether the surface water should be regarded as treated wastewater, it is necessary to confirmation and agreement of the relevant agencies of Bali government but they think that there is unreasonable to tax the treated wastewater as surface water from the following two reasons.

- 1) The treated wastewater has been discharged to the sea so that this water isn't used in fact. The treated wastewater is the seawater rather than the surface water if it is dared to classify.
- 2) The treated wastewater does not have a valuation from the viewpoint of taxation.

Based on the above-mentioned expert opinion, the treated wastewater is considered as a tax-free advance in this survey.

8.e Operation and Maintenance Cost

The annual operation and maintenance costs include costs for personnel, electricity, chemicals, fuel, water quality tests, repairs and replacements, and office expenditures, as explained below. The details are presented in Table 8.e.3 to 8.e.10.

(1) Personnel

The cost of Case 1 covers to employ 22 staffs for the management, administration, finance and technical departments. The cost of Case 2 covers to employ 24 staffs. The details are presented in Section 9.4.

(2) Electricity

The electricity cost is calculated by multiplying the unit price from electricity by the expected annual average electrical consumption of SPC. The unit price for electricity is set according to the electricity price list (2010) of PT PLN (PERSERO: Indonesian Electric Power Public Corporation).

(3) Chemicals

The annual chemicals cost for the reclamation plant consists of the costs for the following chemicals.

- Flocculant
- pH Adjuster (Acid, Alkali)
- Hypochlorous Acid
- Thiosulfuric Acid

(4) Fuel

The annual fuel cost consists of the fuel costs for the following machinery and vehicles.

- Standby generator (for monthly test operation)
- Patrol car
- Tanker truck

(5) Water Quality Test Cost

This is the outsourcing costs for the monthly and semiannually water quality tests excluding the cost of routine water quality tests in the laboratory of the reclamation plant.

(6) Repairs and Replacements

This is estimated as follows:

- Annual repair cost for civil & architectural structures: 0.1% of their total construction cost.
- Annual repair cost for mechanical & electrical equipment: 1.5% of their total purchase/installation cost.
- Annual repair cost for vehicles and other machineries: 3.0% of their total purchase cost.

The replacement cost of the filtration membrane during the operation is also estimated and converted into an annual cost.

(7) Office expenditures

This cost category covers the rental cost of SPC's office in BLUPAL and the rental fee of copy machine and other office equipment.

(8) Treated Water Use Rate

Currently, the treated wastewater is expected to have worthless and no utility rate because it has been discharged directly into the sea.

(9) Indirect Cost

The indirect cost covers miscellaneous expenses, which is calculated as 10% of the total cost of (1) to (8).

(10) Tax

The tax covers value-added tax (VAT), which is calculated as 10% of the total cost of (1) to (9).

(11) Total Operation and Maintenance Costs

The total operation and maintenance costs during the first and the second stages are shown in Tables 8.e.1 and 8.e.2, respectively.

Items	Cost (IDR/year)	Tax (IDR/year)	Total (IDR/year)	
(A)Direct O&M Cost				
1. Personnel Cost	2,061,600,000	206,160,000	2,267,760,000	
2. Electricity Cost	1,746,794,076	174,679,408	1,921,473,483	
3. Chemicals and Materials	618,379,040	61,837,904	680,216,944	
4. Fuel Cost	187,401,600	18,740,160	206,141,760	
5. Water Quality Test	17,800,000	1,780,000	19,580,000	
6. Repair and Replace Cost	1,631,336,584	163,133,658	1,794,470,243	
7. Office Cost	600,000,000	60,000,000	660,000,000	
8. Treated Water Use Rate	0	0	0	
Sub Total A	6,863,311,300	686,331,130	7,549,642,430	
(B) Indirect O&M Cost (10% of Direct O&M Cost)				
Sub Total B	686,331,130	68,633,113	754,964,243	
Total Cost	7,549,642,430	754,964,243	8,304,606,673	

 Table 8.e.1
 Operation and Maintenance Cost for Case 1

 Table 8.e.2
 Operation and Maintenance Cost for Case 2

Items	Cost (IDR/year)	Tax (IDR/year)	Total (IDR/year)	
(A)Direct O&M Cost				
1. Personnel Cost	2,259,600,000	225,960,000	2,485,560,000	
2. Electricity Cost	3,471,874,301	347,187,430	3,819,061,732	
3. Chemicals and Materials	1,236,758,080	123,675,808	1,360,433,887	
4. Fuel Cost	187,401,600	18,740,160	206,141,760	
5. Water Quality Test	17,800,000	1,780,000	19,580,000	
6. Repair and Replace Cost	2,060,757,696	206,075,770	2,266,833,466	
7. Office Cost	600,000,000	60,000,000	660,000,000	
8. Treated Water Use Rate	0	0	0	
Sub Total A	9,834,191,677	983,419,168	10,817,610,845	
[B] Indirect O&M Cost (10% of Direct O&M Cost)				
Sub Total B	983,419,168	98,341,917	1,081,761,085	
Total Cost	10,817,610,845	1,081,761,085	11,899,371,930	

		Numbers Total	Unit Price (IDR/Staff/month)	Annual Total (IDR)
	Director	1	33,000,000	396,000,000
	Deputy Director	1	22,000,000	264,000,000
	Secretary	1	5,500,000	66,000,000
Management	Sub Total	3		726,000,000
	Manager	1	15,000,000	180,000,000
	Administration Secretary	1	5,500,000	66,000,000
	Administration Staff	2	5,500,000	132,000,000
	Security Staff	3	1,500,000	54,000,000
Admini &	Office Boy	1	1,000,000	12,000,000
Finance	Sub Total	8		444,000,000
	Manager	1	16,300,000	195,600,000
Treatment Plant	Engineer/Operator	9	5,500,000	594,000,000
and Pipe Facility	Chemist	1	8,500,000	102,000,000
Technical Staff	Sub Total	11		891,600,000
Total		22		2,061,600,000

Table 8.e.3 Personnel Cost (1) Case 1

(2) Case 2

		Numbers Total	Unit Price (IDR/Staff/month)	Annual Total (IDR)
	Director	1	33,000,000	396,000,000
	Deputy Director	1	22,000,000	264,000,000
	Secretary	1	5,500,000	66,000,000
Management	Sub Total	3		726,000,000
	Manager	1	15,000,000	180,000,000
	Administration Secretary	1	5,500,000	66,000,000
	Administration Staff	2	5,500,000	132,000,000
	Security Staff	3	1,500,000	54,000,000
Admini &	Office Boy	1	1,000,000	12,000,000
Finance	Sub Total	8		444,000,000
	Manager	1	16,300,000	195,600,000
Treatment Plant	Engineer/Operator	12	5,500,000	792,000,000
and Pipe Facility	Chemist	1	8,500,000	102,000,000
Technical Staff	Sub Total	14		1,089,600,000
Total		25		2,259,600,000

Table 8.e.4 Electricity Cost (Case 1)

			total	running	total	running		Daily	Annual	Annual
	power	unit	power	unit	power	hour	load	Electricity	Electricity	Electricity
	[kW]	[unit]	[kW]	[unit]	[kW]	[h/day]	(%)	use (kWh)	use (kWh)	cost (IDR.)
BAR SCREEN	0.1	1	0.1	1	0.1	24.0	80	1.92	701	525,60
RAW WATER PUMP	30	2	60	1	30	24.0	80	576	210,240	157,680,000
STRAINER	0.75	1	0.75	1	0.75	24.0	80	14.4	5,256	3,942,000
BIOLOGICAL FILTER PUMP	15	2	30	1	15	24.0	80	288	105,120	78,840,000
BLOWER	29.2	2	58.4	1	29.2	24.0	80	560.64	204,634	153,475,200
BACKWASH BLOWER	47.2	2	94.4	1	47.2	0.1	80	4.5312	1,654	1,240,410
BACKWASH PUMP	45	3	135	2	90	0.1	80	8.64	3,154	2,365,200
OZONE REACTOR PUMP	30	2	60	1	30	24.0	80	576	210,240	157,680,000
OZONE GENERATOR	38	1	38	1	38	24.0	68	620.16	226,358	169,768,800
O2 PSA	0.1	1	0.1	1	0.1	24.0	90	2.16	788	591,300
AIR COMPRESSOR	55	1	55	1	55	24.0	65	858	313,170	234,877,500
CHILLER UNIT	48	1	48	1	48	24.0	76	875.52	319,565	239,673,600
OZONE TREATMENT UNIT (FOR OZONE UNIT)	1.25	1	1.25	1	1.25	24.0	80	24	8,760	6,570,000
AGITATOR (PH ADJUST)	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
AGITATOR (RAPID)	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
AGITATOR (SLOW)	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
COAGULANT FEED PUMP	0.02	2	0.04	1	0.02	24.0	65	0.312	114	85,410
PH MODIFIER PUMP (ACID INJECTION)	0.03	2	0.06	1	0.03	24.0	65	0.468	171	128,115
MEMBRANE FILTER PUMP	30	2	60	1	30	24.0	80	576	210,240	157,680,000
OZONE TREATMENT UNIT	3	1	3	1	3	24.0	80	57.6	21,024	15,768,000
COAGULANT TANK BLOWER	2.2	1	2.2	1	2.2	24.0	80	42.24	15,418	11,563,200
AIR COMPRESSOR	15	2	30	1	15	0.9	80	11.28	4,117	3,087,900
WATER SUPPLY PUMP UNIT	3.7	1	3.7	1	3.7	16.0	80	47.36	17,286	12,964,800
HYPOCHLORITE FEED PUMP	0.03	2	0.06	1	0.03	0.2	65	0.002925	1	801
ACID FEED PUMP	0.2	2	0.4	1	0.2	0.5	80	0.08	29	21,900
CHEMICAL CLEANING PUMP	1.2	2	2.4	2	2.4	-	80	0	≒ 0	≒(
CHEMICAL PULLING PUMP	1.5	2	3	2	3	-	80	0	≒ 0	÷(
THIOSULFURIC ACID PUMP	0.02	2	1	1	0.02	2.3	80	0.0368	13	10,074
SODIUM HYDROXIDE PUMP	0.02	2	0.04	1	0.02	7.0	80	0.112	41	30,660
DRAINAGE PUMP	11	2	22	1	11	6.0	80	52.8	19,272	14,454,000
TRANSMISSION PUMP	55	2	110	1	55	24.0	80	1056	385,440	289,080,000
Total								6,381	2,329,059	1,746,794,07

*Connection fee to Electric Power Company (631,250,000 IDR) is added on fist year.

750 IDR/kWh = Unit rate of electricity

Total Electricity Cost = 1,746,794,076 (IDR/ year)

	Used Amount	Chemical	Cost/Kg	Annual cost
	(kg/day)	usage rate	(IDR)	(IDR)
Coagulant (PACL)	540.0	0.5	4,348	428,495,400
Acid (pH)	92.7	0.5	2,717	45,965,527
Acid (Backwash)	47.0	0.5	2,717	23,305,068
Sodium Hydroxide	115.0	0.5	3,261	68,440,238
Hypochlorite	12.0	0.5	7,609	16,663,710
Thiosulfuric Acid	2.6	0.5	16,304	7,736,248
Hypochlorite (for Disinfection)	20.0	0.5	7,609	27,772,850
Total				618,379,040

Table 8.e.6 Electricity Cost (Case 2)

			total	running	total	running		Daily	Annual	Annual
	power	unit	power		power	hour	load	Electricity	Electricity	Electricity
	[kW]	[unit]	[kW]	[unit]	[kW]	[h/day]	(%)	use (kWh)	use (kWh)	cost (IDR.)
BAR SCREEN	0.1	2	0.2	1	0.1	24.0	80	1.92	701	525,600
RAW WATER PUMP	30	3	90	2	60	24.0	80	1152	420,480	315,360,000
STRAINER	0.75	2	1.5	2	1.5	24.0	80	28.8	10,512	7,884,000
BIOLOGICAL FILTER PUMP	15	3	45	2	30	24.0	80	576	210,240	157,680,000
BLOWER	29.2	3	87.6	2	58.4	24.0	80	1121.28	409,267	306,950,400
BACKWASH BLOWER	47.2	2	94.4	1	47.2	0.1	80	4.5312	1,654	1,240,410
BACKWASH PUMP	45	3	135	2	90	0.1	80	8.64	3,154	2,365,200
OZONE REACTOR PUMP	30	3	90	2	60	24.0	80	1152	420,480	315,360,000
OZONE GENERATOR	38	2	76	2	76	24.0	68	1240.32	452,717	339,537,600
O2 PSA	0.1	2	0.2	2	0.2	24.0	90	4.32	1,577	1,182,600
AIR COMPRESSOR	55	2	110	2	110	24.0	65	1716	626,340	469,755,000
CHILLER UNIT	48	2	96	2	96	24.0	76	1751.04	639,130	479,347,200
OZONE TREATMENT UNIT (FOR OZONE UNIT)	1.25	2	2.5	2	2.5	24.0	80	48	17,520	13,140,000
AGITATOR (PH ADJUST)	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
AGITATOR (RAPID)	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
AGITATOR (SLOW)	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
COAGULANT FEED PUMP	0.02	3	0.06	2	0.04	24.0	65	0.624	228	170,820
PH MODIFIER PUMP (ACID INJECTION)	0.03	3	0.09	2	0.06	24.0	65	0.936	342	256,230
MEMBRANE FILTER PUMP	30	3	90	2	60	24.0	80	1152	420,480	315,360,000
OZONE TREATMENT UNIT	3	3	9	2	6	24.0	80	115.2	42,048	31,536,000
COAGULANT TANK BLOWER	2.2	2	4.4	2	4.4	24.0	80	84.48	30,835	23,126,400
AIR COMPRESSOR	15	2	30	1	15	0.9	80	11.28	4,117	3,087,900
WATER SUPPLY PUMP UNIT	3.7	2	7.4	2	7.4	16.0	80	94.72	34,573	25,929,600
HYPOCHLORITE FEED PUMP	0.03	3	0.09	2	0.06	0.2	65	0.00585	2	1,601
ACID FEED PUMP	0.2	3	0.6	2	0.4	0.5	80	0.16	58	43,800
CHEMICAL CLEANING PUMP	1.2	2	2.4	2	2.4	-	80	0	≒0	≒(
CHEMICAL PULLING PUMP	1.5	2	3	2	3	-	80	0	$\Rightarrow 0$	≒(
THIOSULFURIC ACID PUMP	0.02	2	1	1	0.02	2.3	80	0.0368	13	10,074
SODIUM HYDROXIDE PUMP	0.02	2	0.04	1	0.02	7.0	80	0.112	41	30,660
DRAINAGE PUMP	11	2	22	1	11	6.0	80	52.8	19,272	14,454,000
TRANSMISSION PUMP	55	3	165	2	110	24.0	80	2112	770,880	578,160,000
Total								12,683	4,629,166	3,471,874,30

750 IDR/kWh = Unit rate of electricity
--

Total Electricity Cost = 3,471,874,301 (IDR/ year)

	Used Amount	Chemical	Cost/Kg	Annual cost
	(kg/day)	usage rate	(IDR)	(IDR)
Coagulant (PACL)	540.0	1	4,348	856,990,800
Acid (pH)	92.7	1	2,717	91,931,054
Acid (Backwash)	47.0	1	2,717	46,610,135
Sodium Hydroxide	115.0	1	3,261	136,880,475
Hypochlorite	12.0	1	7,609	33,327,420
Thiosulfuric Acid	2.6	1	16,304	15,472,496
Hypochlorite (for Disinfection)	20.0	1	7,609	55,545,700
Total				1,236,758,080

Table 8 e 7	Chemicals Cost	(Case 2)
1able 0.e. <i>i</i>		

Table 8.e.8 Fuel Cost (Case 1 or Case 2)

Dies	el fuel Unit Price =	6,000 I	DR/liter			
No of days/	Fuel Consumption	Working Time	Unit cost/	Unit cost/	No of	Total cost
year	(liter/hours)	(hours/day)	(IDR/liter)	day*	sets	(IDR/year)
150	2.6	6	4,500	84,240	1	12,636,000
225	5.3	6	6,000	228,960	2	103,032,000
						23,133,600
						138,801,600
	No of days/ year 150	year (liter/hours) 150 2.6	No of days/ year Fuel Consumption (liter/hours) Working Time (hours/day) 150 2.6 6	No of days/ year Fuel Consumption (liter/hours) Working Time (hours/day) Unit cost/ (IDR/liter) 150 2.6 6 4,500	No of days/ year Fuel Consumption (liter/hours) Working Time (hours/day) Unit cost/ (IDR/liter) Unit cost/ day* 150 2.6 6 4,500 84,240	No of days/ year Fuel Consumption (liter/hours) Working Time (hours/day) Unit cost/ (IDR/liter) Unit cost/ day* No of sets 150 2.6 6 4,500 84,240 1

*Unit cost is including lubricant cost (20%)

For Standby Generator (for maintenance operation)

Tor Standay Constants (15) maintenance operation/							
	Capacity	Unit Consumption	Working Time	Unit cost/	Unit cost/	No of	Total cost
	(kVA)	(liter/kVA/hour)	(hours/month)	(IDR/liter)	day*	sets	(IDR/year)
Treatment Plant	750	0.25	6	6,000	8,100,000	6	48,600,000

Total cost (IDR/year) = 187,401,600

No. Item Unit		Cost	Measurement Item		
INO.	Item	Unit	Cost	(a) Monthly	(b)Semiannu 1
А.	Physical Parameter				
	1) Smell		3,500	3,500	3,50
	2) Floating Objects		5,000	5,000	5,00
	3) Clarity		5,000	5,000	5,00
	4) Color	TCU	20,000	20,000	20,00
	5) Oil	mg/l	5,000	5,000	5,00
	6) Turbidity	NTU	15,000	15,000	15,00
	7) TDS	mg/l	17,500		17,50
B.	Chemical Parameter				
	1) Al	mg/l	50,000		50,00
	2) Hardness	mg/l	15,000	15,000	15,00
	3) Oxygen absorbed (O2)	mg/l	15,000	15,000	15,00
	4) pH	C	5,000	5,000	5,00
	5) Residual Chlorine	mg/l	15,000	15,000	15,00
	6) Cu	mg/l	40,000	,	40,00
	7) Detergent (MBAS)	mg/l	50,000		50,00
	8) BOD	mg/l	30,000	30,000	30,00
	9) Dissolved Oxygen (O2)	mg/l	15,000	15,000	15,00
	10) As	mg/l	50,000		50,00
	11) F	mg/l	25,000		25,00
	12) Cr	mg/l	40,000		40,00
	13) Cd	mg/l	40,000		40,00
	14) Nitrite (NO2)	mg/l	25,000		25,00
	15) Nitrite (NO3)	mg/l	25,000		25,00
	16) CN	mg/l	25,000		25,00
	17) Se	mg/l	40,000		40,00
	18) Fe	mg/l	40,000		40,00
	19) Mn	mg/l	40,000		40,00
	20) Zn	mg/l	40,000		40,00
	21) SO4	mg/l	25,000		25,00
	22) Ammonia (NH3)	mg/l	25,000		25,00
C.	Microbiological Parameters				
	1) Total Coliform	CFU/100ml	42,000	42,000	42,00
	2) Number of Germs	Colonies/ml	42,000	42,000	42,00
Cost f	for 1 Set			232,500	830,00
	Cost (100%)		232,500	830,00	
Water	Sample per year			24	
Fotal				11,160,000	6,640,00
				(a)+(b)	17,800,00

 Table 8.e.9
 Water Quality Test Cost (Case 1 or Case 2)

Table 8.e.10 Repair and Replace Cost (1) Case 1 A. Site Preparation

	Capital Cost	Annual repair and maintenance cost	
	(1,000IDR)	% of Capital Cost	(IDR/year)
Structure	5,968,887	0.10%	5,968,887
Total	5,968,887		5,968,887

B. Reclaimed Water Treatment Facility

	Capital Cost	Annual repair and mainten	ance cost
	(1,000IDR)	% of Capital Cost	(IDR/year)
Structure	30,427,382	0.10%	30,427,382
Vehicles	2,070,000	3.00%	62,100,000
Equipment	87,646,381	1.50%	1,314,695,715
Membrane Replacement	174,000	100%	174,000,000
Total	120,143,763		1,581,223,097

C. Water Transmission Pipe

	Capital Cost	Annual repair and maintenance cost	
	(1,000IDR)	% of Capital Cost	(IDR/year)
Structure	44,144,600	0.10%	44,144,600
Total	44,144,600		44,144,600

Case1 Cost

1,631,336,584 IDR/year

(2) Case 2

A. Site Preparation

	Capital Cost	Annual repair and maintenance cost	
	(1,000IDR)	% of Capital Cost	(IDR/year)
Structure	6,507,139	0.10%	6,507,139
Total	6,507,139		6,507,139

B. Reclaimed Water Treatment Facility

	Capital Cost	Annual repair and maintena	ance cost
	(1,000IDR)	% of Capital Cost	(IDR/year)
Structure	38,054,721	0.10%	38,054,721
Vehicles	2,070,000	3.00%	62,100,000
Equipment	103,325,176	1.50%	1,549,877,636
Membrane Replacement (1)	174,000	100%	174,000,000
Membrane Replacement (2)	174,000	100%	174,000,000
Total	143,449,897		1,998,032,357

C. Water Transmission Pipe

	Capital Cost	Annual repair and maintenance cost	
	(1,000IDR)	% of Capital Cost	(IDR/year)
Structure	56,218,200	0.10%	56,218,200
Total	56,218,200		56,218,200

Case2 Cost = 2,060,757,696 IDR/year

APPENDIX 9

DETAILED PROJECT ACTIVITY PLAN

APPENDIX 9 DETAILED PROJECT ACTIVITY PLAN

This appendix is prepared as the Detailed Project Activity Plan requested in the Minutes of Meetings signed between the Indonesian government and JICA on December 1, 2010. This appendix can be referred as well as Appendix 11 (A Draft TOR for the EIA) in the preparation of the draft KA-ANDAL for this project. The following descriptions of the proposed project activities (i.e. Scope of Work) are prepared mainly in accordance to the Regulation of Ministry of Environment (No.8/2006) on Guideline of EIA Preparation.

9.a Background of the Project

Bali is one of the famous tourist spots in Asia. The regional economy in Bali relies on its tourism industry and agriculture of wet-rice cultivation. Denpasar City and Badung Regency located in Southern Bali are developing as a center of tourism and commerce and their population is increasing rapidly. The growth in economic and population is increasing water demand and causing water shortage. However, the development of water supply systems in Bali is left behind the growth in economic and population. Water shortage and river water pollution are disturbing the sustainable economic development in Bali.

Groundwater has been used for mitigating the water shortage. However, its overuse caused the salination and depletion of groundwater in the coastal areas of Southern Bali. These difficult situations in groundwater use have recently become obvious. On the other hand, Denpasar Sewerage Development Project is been implemented by Japanese ODA loan in Denpasar City and its surrounding areas having high population density. The collected wastewater is being treated at Suwung WWTP. The treated wastewater from the WWTP is an important water resource which can be recycled.

In order to reduce the water shortage in Southern Bali and mitigate the groundwater salination and depletion, effective uses of the treated wastewater from Suwung WWTP have been studied by Indonesian government agencies. However any reclaimed water project using the treated wastewater has not been realized due to financial difficulties. In these circumstances, a Japanese joint venture (consisting of Toyota Tsusho Corporation, Nihon Suido Consultants Co. Ltd, and METAWATER Co. Ltd) have proposed to JICA to study the possibility of formulating a reclaimed water supply project in Southern Bali as a Public-Private Partnership (referred as PPP) Project. In response, JICA commissioned this preparatory survey to the joint venture at the end of 2010 in order to formulate a feasible reclaimed water supply project in Southern Bali.

9.b Objectives and Benefits of the Project

The objectives of the reclaimed water supply project proposed in the preparatory survey are as follows:

- 1) To utilize the treated wastewater from Suwung WWTP for producing reclaimed water with suitable quality for showering, bathing and pool
- 2) To supply the reclaimed water to the hotels in Nusa Dua, Sawangan, Benoa where water shortage and overuse of groundwater are serious
- 3) To make the PDAM water more available to the domestic customers in the service areas of Estuary Water Purification Plant

The objects of this project are also explained in 7.1 of the main report. The main benefits of this project are as follows:

a) The reduction of the effluent from Suwung WWTP which have negative impacts on the environment around its discharge point.

- b) The mitigation of the serious water shortage in the service areas of Estuary Water Purification Plant, which will contribute to:
 - i. the improvement of the targeted hotels and the development of new hotels in the target areas of the project;
 - ii. the reduction of the excessive extraction of groundwater in the targeted hotels and the new hotels; and
 - iii. the increase of drinking/clean water available for the domestic users.
- c) The establishment of local experiences regarding wastewater reclamation, which will be important for the formulation of other reclaimed water supply projects in Indonesia in the future.

The results of the economic analysis on the project including the evaluation of these benefits are explained in Chapter 13 of the main report. These benefits are also explained as the positive impacts of the project in the environmental scooping (see 10.4.3 of the main report and 10.c of Appendix 10).

9.c Scope of the Project and Alternative Project Components

The proposed scope of the project is explained in 7.2 to 7.4 of the main report.

Although the route of the transmission pipeline along the existing main road (Ngurah Rai By-pass Road) was selected in this preparatory survey, the alternative analysis on the route of the transmission pipeline (see 10.b (3) of Appendix 10) should be reviewed in the EIA and the detailed design study in order to mitigate the traffic congestion to be caused by the pipe installation. Moreover, it is not yet confirmed that the proposed wastewater reclamation facilities can meet the existing Indonesian water quality standards for pool and public bath continuously. The size of the biological filter for the pretreatment may need to be larger than its proposed design if the existing water quality standards cannot be continuously met with the proposed design. In case that new Indonesian water quality standards for reclaimed water is established before the implementation of the detained design study and the EIA, the wastewater reclamation facilities should be re-designed based on the new water quality standards. The ratio of mixing the reclaimed water with the PDAM water at the target hotels may also be revised in the detailed design study based on the results of the reclaimed water demand confirmation to be conducted before the signing of the PPP contract.

9.d Maps and Social and Environmental Descriptions of the Project Sites

Figures 9.d.1 to 9.d.5 shows the overall layout of the facilities related to the project including the tentative route of the transmission pipeline, the site plan of the proposed water reclamation plant, and the routes of the existing trunk distribution pipes in Nusa Dua and new trunk distribution pipes to Benoa and Sawangan. Detail maps of the route for the transmission pipeline are shown in 6.c of Appendix 6.

The proposed site for the wastewater reclamation plant is located at the edge of Ngurah Rai Mangrove Forest Area which is owned by the Ministry of Environment as shown in Figure 9.d.2. The land use in this area is controlled by the ministry through a land use permission process. The Forestry Agency of Bali Provincial Government is in charge of the forestry management in this area.

Nusa Dua has many new large resort hotels. Benoa has some large resort hotels and many middle size hotels and small villas. New large resort hotels are currently under construction in Sawangan.

General natural conditions and socio-economic conditions of Bali Island are also described in 2.1 and 2.2 of the main report.

9.e Project Activities from Pre-Construction Stage to Post-Operation Stage

Section 9.7 of the main report shows the implementation schedule of the project.

The project activates in each stage of the project are explained in the following, which are in consistency with those listed in the comprehensive environmental scoping matrix (see Table 10.c.1 of Appendix 10).

(1) **Pre-Construction Stage**

In the pre-construction stage of the project, several types of permissions and agreements are required before starting the construction, which include the land use permit from the Ministry of Forestry, the PPP contract, the purchase agreement with PDAM Badung, the approvals on KA-ANDAL and the EIA documents, etc. The project also needs a further survey for confirming the targeted hotels' demand on the reclaimed water. The feasibility of the project has to be also examined by a PPP team from the Indonesian/Balinese side in the pre-construction stage.

1. Acquisition of Land Use Permit

DINAS PU/Bali Provincial Government needs to acquire the land use permit from the Ministry of Forestry (in coordination with the Forestry Agency of Bali Provincial Government) for using the land of the proposed water reclamation plant site.

2. Acquisition of Other Approvals and Agreements

The project needs a PPP contract with Bali Provincial Government and a purchase agreement with PDAM Badung. New reclaimed water standards (if necessary) and new tariffs for the reclaimed water supply may needs to be prepared before the signing of the PPP contract. The project also needs approval on the draft KA-ANDAL and the final EIA documents. The permissions to use the treated wastewater and to supply the reclaimed water should be included in these approvals and agreements.

3. Study and Field Survey

More studies and filed surveys are required for the EIA, the detailed design, the confirmation of reclaimed water demand in the target hotels, the confirmation of achievable water quality and the establishment of new reclaimed water quality standards (if necessary).

Appendix 9 - 4

Figure 9.d.2 Site Plan for the Proposed Water Reclamation Plant

Appendix 9 - 5

Appendix 9 - 6

Figure 9.d.5 New Distributing Pipes to Sawangan

4. Public Consultation and Socialization

Public consultation and socialization are required for 1) the transaction of this PPP project (See 14.3.2 of the main report), 2) the establishment of new water quality standards for reclaimed water (if necessary), 3) the establishment of new tariffs for the reclaimed water supply, 5) the approval on the EIA documents, and 6) the start of construction at each project site (as planned in the environmental management plan).

(2) Construction Stage

The construction stage includes personal mobilization, base camp operation, material/equipment mobilization, construction works, equipment demobilization and personal demobilization. The construction works can be divided to those for the new wastewater reclamation plant and the existing distribution reservoir and those for the installation of transmission, distribution and service pipes. The construction works for the new wastewater reclamation plant can be further divided into land clearing, excavation/embankment, building the structures/installation of equipment and landscaping.

1. Personal Mobilization

The SPC needs to establish a construction management team and need to make contracts with local sub-contractors.

2. Base Camp Operation

A based camp needs to be established by lending office and accommodations or constructing prefabrication buildings. Utilities and office appliances needs to be ready to use in the base camp.

3. Material/Equipment Mobilization

Materials and equipment required for the construction works need to be brought close to the construction sites.

4. Land Clearing

The mangrove trees at the proposed site for the wastewater reclamation plant needs to be removed.

5. Land Excavation/Embankment

The construction of the new wastewater reclamation plant requires the excavation of unstable surface soil after the removable of mangrove trees. Then, the site should be embanked up to the base ground level of the existing WWTP with stable soil for the construction. Soil excavation is also required to the construction of the new raw water pumping station for the wastewater reclamation within the existing WWTP.

6. Building of Structures/Installation of Equipment

The proposed wastewater purification plant consists of several buildings for raw water transmission, biological treatment, ozone treatment, membrane treatment, chlorination, treated water transmission, etc.

7. Landscaping

The main gate and the buildings of the wastewater purification plant should follow building code regulations of Bali.

8. Installation of Pipe Facilities

In order to supply the reclaimed water to the targeted areas, it is required to install 1) a transmission pipeline from the wastewater reclamation plant to the existing distributing reservoir in Nusa Dua, 2) two trunk distribution pipelines from the distribution reservoir to Benoa and Sawangan, and 3) service pipes from the existing distribution pipes in Nusa Dua and the new distribution pipes in Benoa and Sawangan to each hotel in the target areas. The rehabilitation of the existing distribution pipes in Nusa Dua and the installation of the new distribution pipes are part of the responsibility of PDAM Badung according to the plan proposed in the preparatory survey.

9. Equipment Demobilization

Equipment used in the construction is removed from the construction sites.

10. Personal Demobilization

The construction workers need to move out of the base camp.

(3) **Operation Stage**

The operation stage of this project includes the personal mobilization of SPC and PDAM Badung, the operation and maintenance of reclaimed water treatment facilities (including the operation of pumps and valves for raw water intake, transmission and distribution and the maintenance of the pipes), meter reading, billing & revenue collection and customer services. The main components of the operation stage are explained as follows:

1. Personal Mobilization

SPC needs to mobilize operational staff at the wastewater reclamation plant and PDAM Budung needs to assign O&M and administration tasks for the retail supply of the reclaimed water to their existing or new staff.

2. Water Treatment Operation

The proposed treatment process for the wastewater reclamation includes the use of biological filter, pre-zonation, coagulation/flocculation, ceramic membrane and chlorination. The residual ozone after the pre-zonation is removed at the wastewater reclamation plant.

3. Backwash Water Management

The biological filter and ceramic membrane needs to be backwashed regularly. It is planned to send back the used backwash water to the inlet of the WWTP. Therefore, no sludge will be generated from the used backwash water in the wastewater reclamation plant.

4. Rotating Machinery Operation

In addition to the pumps for raw water intake, the pumps for water transmission and water distribution, the blowers for the diffuser of biological filters and the feed pump for ceramic membrane need to be operated continuously. The operation of power generator is also required during power failures.

5. Reclaimed Water Supply and Use

The reclaimed water will be transmitted and sold by the SPC as bulk water to PDAM Badung at the existing reservoir in Nusa Dua that was used for irrigation water in the past. PDAM Badung will be in charge of the reclaimed water distribution to the hotels in the target areas and billing & collection. The hotels can deliver the reclaimed water with the existing pipes inside the hotels to each guest room after mixing it with PDAM's drinking/clean water.

6. Pipe Maintenance

All the pipes used for the reclaimed water supply requires maintenance to reduce leakage of the reclaimed water. The maintenance work is also required to avoid water quality degradation in the pipes.

7. Office Management

The office for management and administration staff and the workshop and resting place for technical staff need to be maintained.

8. Tariff Collection

Reclaimed water charges will be collected from the hotels using the reclaimed water, based on their consumptions of the reclaimed water measured with water meters. PDAM Badung will be in charge of the tariff collection.

(4) **Post-Operation Stage**

Since this project is planned as a BOT of 25 years. The facilities to be constructed for the project will be handed over to Bali Provincial Government 25 years after the signing of PPP contract. The machinery and electrical equipment to be installed will reach its lifetime expectancy at the time of handing over. In order to continue the reclaimed water service, the replacement of the machineries and electrical equipment are required. After the cease of the operation, land rehabilitation and personal demobilization are required as explained in the following.

1. Land Rehabilitation

After the cease of the operation, the land for the water reclamation plant needs to be rehabilitated before being returned to the Ministry of Forestry.

2. Personal Demobilization

The staff working exclusively for the project may need support to find new jobs.