




## Exchange Rate:

USD 1.00 = PKR80.00

(2010 Prices)

#### PREFACE

In response to a request from the Government of the Punjab in the Islamic Republic of Pakistan, the Government of Japan decided to conduct "The Project for Lahore Urban Transport Master Plan in the Islamic Republic of Pakistan" and entrusted to the study to Japan International Cooperation Agency (JICA).

JICA selected and dispatched a study team headed by Mr. Takashi Shoyama of ALMEC Co., LTD. and consists of ALMEC Co., LTD. and Oriental Consultants Co., LTD. between April, 2010 and March, 2012.

The study team held discussions with the officials concerned of the Government of the Punjab, conducted field surveys in the study area, prepared a Lahore Urban Transport Master Plan (LUTMP) and its Action Plan, conducted a capacity development through On-the-Job-Training (OJT), and prepared this final report.

The project was composed of two phases; i) Phase I to conduct a Home Interview Survey (Person Trip Survey) and other transport/traffic surveys and develop a transport demand analysis model, and ii) Phase II to prepare a master plan and its action plan. This report is presents the study findings of both Phases.

I hope that this report will contribute to the promotion of this project and to the enhancement of friendly relationship between our two countries.

Finally, I wish to express my sincere appreciation to the officials concerned of the Government of the Punjab for their close cooperation extended to the study team.

March, 2012

KONISHI Atsufumi,

Director, Economic Infrastructure Department Japan International Cooperation Agency

## TABLE OF CONTENTS

#### VOLUME 2---

## SURVEYS, ANALYSIS, DEMAND FORECAST AND CAPACITY DEVELOPMENT

#### 1. TRANSPORT/ TRAFFIC SURVEYS

| 1.1 | Introduction | ۵1-1                                                    |
|-----|--------------|---------------------------------------------------------|
| 1.2 | Outline of S | Surveys1-2                                              |
|     | 1.2.1        | Household Interview Survey1-3                           |
|     | 1.2.2        | Cordon Survey1-7                                        |
|     | 1.2.3        | Screenline Survey1-9                                    |
|     | 1.2.4        | Traffic Count Surveys at Key Roads near Major           |
|     |              | Intersections1-12                                       |
|     | 1.2.5        | Public Transport (PT) User Interview Survey1-12         |
|     | 1.2.6        | Travel Speed Survey1-15                                 |
|     | 1.2.7        | Bus Occupancy Survey1-17                                |
|     | 1.2.8        | Parking Survey1-17                                      |
|     | 1.2.9        | Road Inventory and Junction Characteristics Surveys1-18 |
|     | 1.2.10       | Willingness to Pay Survey1-22                           |
|     | 1.2.11       | Road Junction and Traffic Signal Survey1-22             |
| 1.3 | HIS Survey   | Implementation1-26                                      |
|     | 1.3.1        | HIS Questionnaire Design1-27                            |
|     | 1.3.2        | Sampling1-28                                            |
|     | 1.3.3        | Preparation of HIS Field Survey1-28                     |
|     | 1.3.4        | Conduct of Field Survey1-32                             |
|     | 1.3.5        | Data Processing1-33                                     |

#### 2. TRANSPORT DEMAND FORECAST

| 2.1 | Preparatio                                                           | on of Present (2010) O/D Trip Matrices                                                                                                                                             | 2-1  |
|-----|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2.2 | Study Area                                                           | a Zone System                                                                                                                                                                      | 2-2  |
|     | 2.2.1<br>2.2.2<br>2.2.3                                              | Internal Zones<br>Special Generator Zones<br>External Zones                                                                                                                        | 2-4  |
| 2.3 | Transport                                                            | Demand Models                                                                                                                                                                      | 2-4  |
|     | 2.3.1<br>2.3.2<br>2.3.3<br>2.3.4<br>2.3.5<br>2.3.6<br>2.3.7<br>2.3.8 | Introduction<br>Trip Production/ Generations Modules<br>Trip Attractions<br>Trip Distribution Modules<br>Modal Split Models<br>Walk Trips<br>External Trips<br>Goods Vehicle Trips |      |
| 2.4 | Study Area                                                           | a Transport Network                                                                                                                                                                | 2-19 |
|     | 2.4.1<br>2.4.2                                                       | Overall Traffic Assignment<br>Demand/ Supply Analysis                                                                                                                              |      |

#### 3. URBAN DEVELOPMENT CONTEXT

| 3.1 | Road                                               |                                                                                                                                                                                                                       | 3-1                          |
|-----|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
|     | 3.1.1<br>3.1.2<br>3.1.3                            | Present Condition of Road Sub-Sector<br>Problems and Issues<br>Planning Direction                                                                                                                                     | 3-11                         |
| 3.2 | Railway                                            |                                                                                                                                                                                                                       |                              |
|     | 3.2.1<br>3.2.2<br>3.2.3                            | Present Condition of Railway Subsector<br>LRMTS Project<br>Planning Direction                                                                                                                                         | 3-18                         |
| 3.3 | Road-base                                          | ed Public Transport                                                                                                                                                                                                   | 3-27                         |
|     | 3.3.1<br>3.3.2<br>3.3.3<br>3.3.4<br>3.3.5<br>3.3.6 | Present Conditions of Road-based Public Transport<br>Current Problems and Issues<br>Current Plans and Practices<br>Main Planning Issue<br>Development Strategy<br>BRT System as Public Transport Development Strategy | 3-30<br>3-32<br>3-40<br>3-42 |
| 3.4 | Traffic Mar                                        | nagement                                                                                                                                                                                                              | 3-59                         |
|     | 3.4.1<br>3.4.2<br>3.4.3                            | Present Condition and Problems<br>Other Current Projects<br>Planning Direction                                                                                                                                        | 3-79                         |

#### 4. ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

| 4.1 | Present Co  | ondition in the Study Area                                   | 4-1  |
|-----|-------------|--------------------------------------------------------------|------|
|     | 4.1.1       | Social Environment                                           | 4-2  |
|     | 4.1.2       | Present Condition in the Study Area - Natural<br>Environment | 4-24 |
|     | 4.1.3       | Environmental Pollution                                      |      |
| 4.2 | Summary of  | of Current Policy, Legal and Institutional Framework         | 4-52 |
|     | 4.2.1       | Policy Framework                                             | 4-52 |
|     | 4.2.2       | Legal Framework                                              |      |
|     | 4.2.3       | Environmental Standards                                      |      |
|     | 4.2.4       | EIA Regulations                                              | 4-58 |
|     | 4.2.5       | Land Acquisition and Resettlement Issues                     |      |
|     | 4.2.6       | Donor's Environmental Impact Assessment Procedures           |      |
|     |             | and Guidelines                                               | 4-68 |
|     | 4.2.7       | Difference in EIA Policy of Pakistan and Donors              | 4-71 |
|     | 4.2.8       | Institutional Framework                                      | 4-73 |
|     | 4.2.9       | Federal Agencies                                             | 4-74 |
|     | 4.2.10      | Provincial Agencies                                          | 4-74 |
| 4.3 | Preparation | n of SEA Procedures                                          | 4-77 |
|     | 4.3.1       | Strategic Environmental Assessment and Planning              |      |
|     |             | Process                                                      |      |
|     | 4.3.2       | SEA in Master Plan Study                                     | 4-79 |
|     |             |                                                              |      |

## 5. CONDUCT OF CAPACITY DEVELOPMENT FOR TPU

| 5.1 | Overall Progress | 5- | 1 |
|-----|------------------|----|---|
|-----|------------------|----|---|

|     | 5.1.1       | Program of Capacity Development                                          | 5-1  |
|-----|-------------|--------------------------------------------------------------------------|------|
| 5.2 | Contents of | f Lectures                                                               | 5-7  |
|     | 5.2.1       | Lesson 1 (18 April 2011) by Tetsuo Wakui                                 | 5-7  |
|     | 5.2.2       | Lesson 2 (22 April 2011) by Tetso Wakui/ Tetsuo Horie                    |      |
|     | 5.2.3       | Lesson 3 (26 April 2011) by Tetso Wakui/ Tetsuo Horie                    | 5-8  |
|     | 5.2.4       | Lesson 4 (29 April 2011) by Tetso Wakui/ Tetsuo Horie                    |      |
|     | 5.2.5       | Lesson 5 (3 May 2011) by Tetso Wakui                                     |      |
|     | 5.2.6       | Lesson 6 (6 May 2011) by Prof Kamil Khan Mumtaz                          |      |
|     | 5.2.7       | Lesson 7 (10 May 2011) by Tetso Wakui                                    |      |
|     | 5.2.8       | Lesson 8 (13 May 2011) by Tetsuo Wakui                                   |      |
|     | 5.2.9       | Lesson 9 (17 May 2011) by Tetsuo Horie                                   | 5-10 |
|     | 5.2.10      | Lesson 10 (27 May 2011) by Tetsuo Horie                                  | 5-11 |
|     | 5.2.11      | Lesson 11 (31 May 2011) by Tetsuo Horie                                  | 5-11 |
|     | 5.2.12      | Lesson 12 (3 June 2011) by Tetsuo Horie                                  |      |
|     | 5.2.13      | Lesson 13 (7 June 2011) by David O'Brien                                 | 5-11 |
|     | 5.2.14      | Lesson 14 to 17 (28 June to 8 July of 2011) by Joel Cruz                 |      |
|     |             | and Sara Ambreen                                                         | 5-12 |
|     | 5.2.15      | Lesson 18 (11 July 2011) by Tetsuo Wakui                                 | 5-12 |
|     | 5.2.16      | Lesson 19 (15 July 2011) by Tetsuo Wakui                                 | 5-12 |
|     | 5.2.17      | Lesson 20 (19 July 2011) by Tetsuo Wakui                                 |      |
|     | 5.2.18      | Lesson 21 (2 August 2011) by Tetsuo Wakui                                | 5-13 |
|     | 5.2.19      | Lesson 22 (4 August 2011) by Tetsuo Wakui                                | 5-13 |
|     | 5.2.20      | Lesson 23 (5 August 2011) by Tetsuo Wakui                                |      |
|     | 5.2.21      | Lesson 24 (6 September 2011) by Tetsuo Wakui                             |      |
|     | 5.2.22      | Lesson 25 (9 September 2011) by Frits Olyslager                          | 5-14 |
|     | 5.2.23      | Lesson 26 (13 September 2011) by Tetsuo Wakui and                        | - 44 |
|     | E 2 24      | Yoshiaki Nishikatsu<br>Lesson 27 (16 September 2011) by Tetsuo Wakui and | 5-14 |
|     | 5.2.24      | Tetsuo Horie                                                             | 511  |
|     | 5.2.25      | Lesson 28 (30 September 2011) by Tetsuo Wakui and                        |      |
|     | 5.2.25      | Tetsuo Horie                                                             | 5-11 |
|     | 5.2.26      | Lesson 29 (1 October 2011) by Tetsuo Wakui and Tetsuo                    |      |
|     | 5.2.20      | Horie                                                                    | 5-15 |
|     | 5.2.27      | Lesson 30 (3 October 2011) by Mazhar Iqbal                               |      |
|     | 5.2.28      | Lesson 31 (4 October 2011) by Michimasa Takagi                           |      |
|     | 5.2.29      | Lesson 32 and 33 (6 and 7 October 2011) by Tetsuo                        |      |
|     | 0.2.20      |                                                                          | 5-15 |
|     | 5.2.30      | Lesson 34 (4 November 2011) by Tetsuo Wakui                              |      |
|     | 5.2.31      | Lesson 35 (21 November 2011) by Tetsuo Wakui                             |      |
|     | 5.2.32      | Lesson 36 (22 November 2011) by Tetsuo Wakui                             |      |
|     | 5.2.33      | Lesson 37 (23 November 2011) by Tetsuo Wakui                             |      |
|     | 5.2.34      | Lesson 38 (24 November 2011) by Tetsuo Wakui                             |      |
|     | 5.2.35      | Lesson 39 (25 November 2011) by Tetsuo Wakui                             |      |
|     | 5.2.36      | Lesson 40 (28 November 2011) by Tetsuo Wakui                             |      |
| 5.3 | Understand  | ling of Lectures                                                         | 5-18 |
|     | 5.3.1       | Test at End of Course 2                                                  | 5-18 |
|     | 5.3.2       | Test at End of Course 3                                                  |      |
|     | 5.3.3       | Final Test                                                               |      |
|     |             |                                                                          |      |

#### 6. LUTMP DATABASE

| 6.1 | Transport I | Database6-1     |
|-----|-------------|-----------------|
|     | 6.1.1       | Introduction6-1 |

|     |           | Data Classification<br>Data Types                                                                    |     |
|-----|-----------|------------------------------------------------------------------------------------------------------|-----|
| 6.2 | GIS Datab | ase                                                                                                  | 6-5 |
|     | 6.2.2     | Overview and Purpose of GIS Database Development<br>LUTMP GIS Database Development<br>Current Status | 6-5 |

| Annex-1 TRAFFIC ZONE SYSTE |
|----------------------------|
|----------------------------|

## LIST OF TABLES

| Table 1.2.1                | List of Surveys with Their Objective, Methodology and Scope                     | 1-1 |
|----------------------------|---------------------------------------------------------------------------------|-----|
| Table 1.2.2                | Vehicle Classification for the Study                                            |     |
| Table 1.2.3                | Transport/ Traffic Surveys Schedule                                             |     |
| Table 1.2.4                | Household Interview Survey - Estimated Number of Samples                        |     |
| Table 1.2.5                | Cordon Survey Locations.                                                        |     |
| Table 1.2.6                | Rail Screenline Survey Locations                                                |     |
| Table 1.2.7                | Canal Screenline Survey Locations                                               |     |
| Table 1.2.8                | Traffic Counts Survey Locations                                                 |     |
| Table 1.2.9                | Public Transport User Interview Survey Locations.                               |     |
| Table 1.2.10               | Travel Speed Survey Routes                                                      |     |
| Table 1.2.11               | Bus Occupancy Survey Routes Ten                                                 |     |
| Table 1.2.12               |                                                                                 |     |
|                            | Road Inventory Survey Summary                                                   |     |
| Table 1.2.14               |                                                                                 |     |
| Table 1.2.14               | Details of Road Junctions Survey                                                |     |
| Table 1.2.13               | Household Interview Survey - Contents                                           |     |
| Table 1.3.1                | The Study Area - Internal Zones                                                 |     |
| Table 2.2.1                | Person Trip Rate by Household Vehicle Ownership Group and by Trip Purpose, 2010 |     |
| Table 2.3.1<br>Table 2.3.2 | Calibrated Trip Production/ Generation Models                                   |     |
| Table 2.3.2<br>Table 2.3.3 | 2010 Observed and Modelled Trips by Household Group and by Trip Purpose         |     |
| Table 2.3.3                |                                                                                 |     |
|                            | Trip Attraction Model Calibration                                               |     |
| Table 2.3.5                | Gravity Model Calibrated Parameters by Household Group and by Trip Purpose      |     |
| Table 2.3.6                | Forecast Average Trip Length by Trip Purpose                                    |     |
| Table 2.3.7                | Non-Vehicle/ Bicycle Owning Household Modal Split Model Calibration Results     |     |
| Table 2.3.8                | Motorcycle Owning Household Modal Split Model Calibration Results               |     |
| Table 2.3.9                | Car Owning Household Modal Split Model Calibration Results                      |     |
| Table 2.3.10               | Modelled Number of Trips by Mode ('000) and Mode Share, 2010                    |     |
| Table 2.3.11               | Modelled Number of Trips by Mode ('000) and Mode Share, 2020                    |     |
| Table 2.3.12               | ······································                                          |     |
|                            | 2010 Observed Walk Trips                                                        |     |
|                            | 2010 Inter-Zonal Observed Walk Trips and Forecasts for 2020, 2030               |     |
|                            | 2010 Observed and 2020 and 2030 Forecast External Person Trips                  |     |
|                            | 2010 Observed and 2020 and 2030 Forecast Goods Vehicle Trips                    |     |
| Table 2.4.1                | Applied Observed and Forecast Goods Vehicle Trips                               |     |
| Table 3.1.1                | Number of Registered Motor Vehicles ('000) in June 2008                         |     |
| Table 3.1.2                | Road Accidents and Casualties, Lahore                                           |     |
| Table 3.1.3                | Road Length and Right of Way                                                    |     |
| Table 3.3.1                | Inter-city Bus Terminals in Lahore                                              |     |
| Table 3.3.2                | Estimated Daily Trips in Lahore (TEPA)                                          |     |
| Table 3.3.3                | Estimated Daily Motorized Trips in Lahore (LRMTS)                               |     |
| Table 3.3.4                | Bus and Wagon Fares, June 2010                                                  |     |
| Table 3.3.5                | Outline of Bus Operation                                                        |     |
| Table 3.3.6                | Expected Beneficiaries and Required Bus Fleet                                   |     |
| Table 3.3.7                | Anticipated Cost of the Overall Project                                         |     |
| Table 3.3.8                | Anticipated Cost of Pilot Projects                                              |     |
| Table 3.3.9                | Characteristics of Selected Asian BRT Systems                                   |     |
| Table 3.4.1                | List of Junctions Planned for Improvement by TEPA                               |     |
| Table 3.4.2                | Average Travel Speed of Circular Road by Section, 2008                          |     |
| Table 4.1.1                | Demographic Comparison - Study Area Context                                     |     |
| Table 4.1.2                | Population by Religion in Punjab Province (1998)                                |     |
| Table 4.1.3                | Land Use in Lahore Area (2001-2002)                                             |     |
| Table 4.1.4                | Household Income Distribution in Lahore (2000-01)                               |     |
| Table 4.1.5                | Distribution of Household Income in Lahore                                      | 4-9 |

| Table 4.1.6                | Human Development Index of Lahore District and Other Cities of Punjab          | 4-10 |
|----------------------------|--------------------------------------------------------------------------------|------|
| Table 4.1.0<br>Table 4.1.7 | Registered Factories in Lahore District (1999)                                 |      |
| Table 4.1.7                | Number of Employees in Industry (1999)                                         |      |
| Table 4.1.9                | Major Occupation Groups in Punjab Province and Lahore District                 |      |
|                            | Labour Force Distribution in Punjab Province and Lahore District               |      |
|                            | Priority Diseases in Lahore District (Jan-March, 2001)                         |      |
|                            | Number of Hospitals in Lahore                                                  |      |
|                            | Climate Data in Lahore Average of 1961-90                                      |      |
|                            | Climate Data in Lahore Average of 2006-10                                      |      |
|                            | Inventory of Trees in Lahore District                                          |      |
|                            | Common Trees in the City Area                                                  |      |
|                            | List of Bird Species in Lahore                                                 |      |
|                            | Endangered and Prohibited Species in Lahore                                    |      |
|                            | Results of Air Quality Monitoring in Lahore Area (2004)                        |      |
|                            | Data of Ambient Air Quality Daily Mean Values in 2007                          |      |
|                            | Result of Air Quality Monitoring at Town Hall in 2010                          |      |
|                            | Air Pollutant Concentration at 23 Road Crossings in Lahore                     |      |
|                            | Water Quality of Ravi River at Baloki Head Works                               |      |
|                            | Results of Canal Water Quality in Lahore                                       |      |
|                            | Data of Groundwater Quality in Lahore                                          |      |
|                            | Estimated Solid Waste Generation in CDGL - 2010                                |      |
|                            | Road Traffic Noise Level at Busy Traffic Locations in Lahore                   |      |
|                            | Ambient Noise Level Monitoring at Sensitive Receptors                          |      |
| Table 4.2.1                | National Policies in Pakistan                                                  |      |
| Table 4.2.2                | Major Laws and Legislations Relevant to Environment in Pakistan                | 4-53 |
| Table 4.2.3                | List of Projects Requiring an IEE                                              |      |
| Table 4.2.4                | List of Projects Requiring an EIA                                              |      |
| Table 4.2.5                | Major Guidelines Relevant to EIA Procedures                                    | 4-62 |
| Table 4.2.6                | Checklist of Items and Matters to Be Considered in Initial Site Assessment for |      |
|                            | Road Development Project                                                       | 4-62 |
| Table 4.2.7                | General Process and Time Frame for Land Acquisition in Pakistan                | 4-67 |
| Table 4.2.8                | Entitlement Matrix Proposed by Resettlement Ordinance, 2003 (Draft)            | 4-71 |
| Table 4.2.9                | Comparison of Land Acquisition Policies between Pakistan and International     |      |
|                            | Donors including WB, ADB and JICA                                              | 4-72 |
| Table 4.2.10               |                                                                                |      |
| Table 4.3.1                | Development Plan and Strategic Environmental Assessment                        | 4-78 |
| Table 5.1.1                | Participants of the Capacity Development Programme                             |      |
| Table 5.1.2                | Survey Results of Knowledge on Transport Planning                              |      |
| Table 5.1.3                | Overall Schedule of LUTMP Training Course                                      |      |
| Table 5.1.4                | Schedule of Lectures                                                           |      |
| Table 5.3.1                | Results of Test at the End of Course 1 and 2                                   |      |
| Table 5.3.2                | Results of Test at the End of Course 3                                         |      |
| Table 5.3.3                | Results of the Final Test                                                      |      |
| Table 6.1.1                | Transport Database Classification                                              |      |
| Table 6.1.2                | Primary and Secondary Transport Database - LUTMP Phase-I                       |      |
| Table 6.1.3                | Tertiary Transport Database - LUTMP Phase-II                                   |      |
| Table 6.2.1                | LUTMP GIS Database                                                             | 6-9  |

## LIST OF FIGURES

| Figure 1.2.1                 | Household Interview Survey - Study Area and Zone System                      |               |
|------------------------------|------------------------------------------------------------------------------|---------------|
| Figure 1.2.2                 | Cordon Survey Sites                                                          | 1-8           |
| Figure 1.2.3                 | Canal and Railway Screenline Survey Locations                                | 1-11          |
| Figure 1.2.4                 | Traffic Count Survey Locations                                               | 1-13          |
| Figure 1.2.5                 | Public Transport User Interview Survey Locations                             | 1-14          |
| Figure 1.2.6                 | Travel Speed Survey Routes                                                   | 1-16          |
| Figure 1.2.7                 | Bus Occupancy Survey - Ten Bus Routes                                        | 1-19          |
| Figure 1.2.8                 | Parking Survey - Road Sections and Sites                                     | 1-20          |
| Figure 1.2.9                 | Road Network Inventory Survey - Coverage Area                                | 1-21          |
| Figure 1.2.10                | Locations of Willingness to Pay Survey Site                                  | 1-23          |
| Figure 1.2.11                | Locations of Junctions Surveyed for Road Junctions and Traffic Signal Survey | 1-24          |
| Figure 1.3.1                 | Household Interview Survey – Quality Control Procedure                       | 1-26          |
| Figure 1.3.2                 | Organizational Setup of One Survey Group                                     | 1-30          |
| Figure 2.1.1                 | Procedure of Creating Present OD Matrices                                    |               |
| Figure 2.2.1                 | The Study Area Internal Zone System                                          |               |
| Figure 2.3.1                 | Person Trip Rates by Household Vehicle Ownership Group and by Trip Purpose,  |               |
| 3                            | 2010                                                                         | 2-5           |
| Figure 2.3.2                 | Forecast Changes in Household Vehicle Ownership                              |               |
| Figure 2.3.3                 | Trip Distribution, All Purpose, 2010                                         |               |
| Figure 2.3.4                 | Trip Distribution, All Purpose, 2020                                         |               |
| Figure 2.3.5                 | Trip Distribution, All Purpose, 2030                                         |               |
| Figure 2.3.6                 | Structure of Hierarchical Logit Model (Motorcycle Owning Households)         |               |
| Figure 2.3.7                 | Structure of Hierarchical Logit Model (Car Owning Households)                |               |
| Figure 2.4.1                 | 2010 Modelled Traffic Assignment - Private and Public Person Trips           |               |
| Figure 2.4.2                 | 2020 Modelled Traffic Assignment - Private and Public Person Trips           |               |
| Figure 2.4.3                 | 2030 Modelled Traffic Assignment - Private and Public Person Trips           |               |
| Figure 3.1.1                 | Trend in Registered Motorized Vehicles in Lahore District                    |               |
| Figure 3.1.2                 | A Motorcycle Rickshaw - Qingqi                                               |               |
| Figure 3.1.3                 | Donkey Cart                                                                  |               |
| Figure 3.1.4                 | Lohari Gate Junction - Poor Junction Design                                  |               |
| Figure 3.1.5                 | Corporation Chowk at Exit of Saggian Bridge toward Lower Mall Road - Poor    |               |
| rigaro o. no                 | Junction Design                                                              | 3-3           |
| Figure 3.1.6                 | Location Map of Congested Intersections                                      |               |
| Figure 3.1.7                 | The Study Area Road Network                                                  |               |
| Figure 3.1.8                 | LUTMP Road Network by Number of Lanes                                        |               |
| Figure 3.1.9                 | Motorway Typical Cross Section                                               |               |
| 0                            | G.T. Road Typical Cross Section                                              |               |
| -                            | Saggian Bypass Typical Cross Section                                         |               |
| -                            | Canal Bank Road Typical Cross Section                                        |               |
| -                            | Ferozepur Road Typical Cross Section                                         |               |
| •                            | Proposed Structure of Transport Network                                      |               |
| Figure 3.2.1                 |                                                                              |               |
| Figure 3.2.1                 | Proposed LRMTS Network                                                       |               |
| Figure 3.2.2<br>Figure 3.2.3 | Yellow Braille Block, Nakamurabashi Station, Japan                           |               |
| 0                            | Playing Cricket at Lahore Cantonment Station                                 |               |
| Figure 3.2.4<br>Figure 3.2.5 | Classification of Urban Railway System                                       |               |
| Figure 3.2.5<br>Figure 3.3.1 | Daewoo City Bus                                                              |               |
| -                            | Location of Multimodal Intercity Bus Terminal                                |               |
| Figure 3.3.2                 | Proposed Area of Shahdara Multimodal Bus Terminal                            |               |
| Figure 3.3.3                 |                                                                              |               |
| Figure 3.3.4                 | Integrating Public Transport and Redesigning Inner City Road Use - Europe    |               |
| Figure 3.3.5                 | Restoring City Centres to Create People Friendly City Environment - Europe   |               |
| Figure 3.3.6                 | Multiple Benefits of Increasing Bus Speeds                                   |               |
| Figure 3.3.7                 | Supporting Pillars for BRT System                                            | <b>≺_/</b> !× |

| 0                         | Components of BRT                                                             |      |
|---------------------------|-------------------------------------------------------------------------------|------|
| •                         | Actual Peak Ridership of Various BRT System                                   |      |
| -                         | Total BRT Infrastructure Cost (per km)                                        |      |
|                           | Example of BRT (TransMillenio, Bogota, Colombia)                              |      |
|                           | Plan View of BRT Station                                                      |      |
|                           | Inner City Narrow Corridor                                                    |      |
|                           | Median Station with 2 Traffic Lanes                                           |      |
| -                         | 55m Right of Way at Station Location with Cycle Paths                         |      |
|                           | Bus and System Control                                                        |      |
|                           | Integrated Ticketing and Seamless Transfers                                   |      |
| Figure 3.4.1              | Traffic Gridlocked at Qurtaba Chowk, Ferozepur Road                           | 3-60 |
| Figure 3.4.2              | Public Opinion of Traffic Congestion Reasons; Bad Traffic Situation (27%) and | 0.00 |
| <b>E</b> ise <b>0 1 0</b> | Lack of Enforcement (12%)                                                     |      |
| Figure 3.4.3              | Public Opinion of Driving Behaviour of Motorcyclists                          |      |
| Figure 3.4.4              | Non-Standard Number Plates                                                    |      |
| Figure 3.4.5              | Total Number of Traffic Accidents 2009 to 2011                                |      |
| Figure 3.4.6              | Factors Contributing to Traffic Safety                                        |      |
| Figure 3.4.7              | Traffic Safety Situation Compared to 5 Years Ago                              |      |
| Figure 3.4.8              | Traffic Chaos and Traffic Mix near Data Darbar                                |      |
| Figure 3.4.9              | 6                                                                             |      |
|                           | Traffic Safety in Different Private Vehicles                                  |      |
|                           | No Properly Designed Drainage System Results in Submerging of Roads           |      |
|                           | Low Height Underpass with 3.6m Vertical Clearance                             |      |
|                           | Jail Road Underpass - Scratches on Underpass Ceiling                          |      |
| -                         | Traffic Safety Level in the Study Area                                        |      |
| -                         | Public Opinion on Removal of Qingqi                                           |      |
|                           | Distance between Junctions Less than 100m                                     |      |
|                           | Kalma Chowk Flyover and Turning Traffic Below                                 |      |
| -                         | Poor Junction Layout at Qurtaba Chowk with Conflicts                          |      |
| -                         | Ferozepur Road - Long and Constant Queue from Ichra Chowk to Shama Chowk      |      |
| -                         | Traffic Signal Covered by Shop Shed                                           |      |
| -                         | Working Condition of Traffic Signals in Lahore                                | 3-74 |
| Figure 3.4.22             | Parking at Panorama Shopping Centre Covering almost Whole Service Road        |      |
|                           | along Mall Road                                                               |      |
| -                         | Parking on Opposite Side of Panorama Shopping Center Blocking Service Road    |      |
| -                         | Distribution of On-Street Parking, 2010                                       |      |
| -                         | CDGL Parking Stands and Spaces in Lahore                                      | 3-78 |
| Figure 3.4.26             | Congestion on Ferozepur Road Ichra Section due to Illegal Parking on Service  |      |
|                           | Road and Main Carriageway                                                     |      |
|                           | Locations of Proposed Parking Plazas                                          |      |
| -                         | Location of Junctions Planned for Improvement by TEPA                         |      |
|                           | Location Map of Sheikhupura Truck Terminal                                    |      |
|                           | Location of Listed Road Sections                                              |      |
| Figure 3.4.31             | Disorderly Traffic Mix in Lahore                                              |      |
| Figure 4.1.1              | The Study Area                                                                |      |
| Figure 4.1.2              | Land Use Map of the Study Area                                                |      |
| Figure 4.1.3              | Punjab Estimated Poverty Incidence 2004-05                                    |      |
| Figure 4.1.4              | Labour Force Participation by Occupation in Lahore District                   |      |
| Figure 4.1.5              | Distribution of Labour Force by Industry                                      |      |
| Figure 4.1.6              | Distribution of Household by Sources of Drinking Water in Lahore              |      |
| Figure 4.1.7              | Distribution of Educational Facilities in the Study Area                      |      |
| Figure 4.1.8              | Health Infrastructure in Lahore                                               |      |
| Figure 4.1.9              | Distribution of Medical Facilities in the Study Areas                         |      |
| -                         | Cultural and Heritage Sites in the Study Areas                                |      |
|                           | Monthly Mean Maximum and Minimum Temperature in Lahore                        |      |
| Figure 4.1.12             | Mean Monthly Rainfall (mm)                                                    | 4-27 |

| Figure 4.1.13 | Relative Humidity at 8:00 a.m. and at 5:00 p.m. (2006-2010)                               | 4-27 |
|---------------|-------------------------------------------------------------------------------------------|------|
| Figure 4.1.14 | The Study Area Land Elevation                                                             | 4-28 |
| Figure 4.1.15 | Soil Map of Punjab Province                                                               | 4-29 |
| Figure 4.1.16 | Ravi River and Its Tributaries, Canals and Drains                                         | 4-31 |
| Figure 4.1.17 | Locations Prone to Inundation in Lahore (WASA, 2011)                                      | 4-33 |
| Figure 4.1.18 | Ambient NO <sub>2</sub> Level at Town Hall Monitoring Station in Lahore (2010)            | 4-41 |
| Figure 4.1.19 | Ambient SO <sub>2</sub> Level at Town Hall Monitoring Station in Lahore (2010)            | 4-41 |
| Figure 4.1.20 | Ambient PM <sub>2.5</sub> Level at Town Hall and at Gulberg Monitoring Stations in Lahore |      |
|               | (2010)                                                                                    | 4-41 |
| Figure 4.1.21 | Administrative Zone Map for the Collection of Solid Waste                                 | 4-48 |
| Figure 4.2.1  | Procedure of Environment Approval in Pakistan                                             | 4-65 |
| Figure 4.2.2  | Relation of Relevant Organizations in Environmental Management                            | 4-73 |
| Figure 4.2.3  | Institutional Relationship of Organizations Relevant Environmental Protection in          |      |
|               | Pakistan                                                                                  | 4-76 |
| Figure 4.3.1  | Procedure of SEA in Master Plan                                                           | 4-80 |
| Figure 5.1.1  | Questionnaire to the Lecture Attendants                                                   | 5-4  |
| Figure 5.2.1  | View of LUTMP Lecture (26 <sup>th</sup> April)                                            | 5-8  |
| Figure 5.2.2  | Topics of Special Lecture by Prof. Kamil Khan Mumtaz                                      | 5-9  |
| Figure 5.2.3  | View of LUTMP Lecture and Second Test (5 <sup>th</sup> Aug)                               | 5-13 |
| Figure 5.3.1  | Test after Course 1 and 2                                                                 | 5-18 |
| Figure 5.3.2  | Test at the End of Course 3                                                               | 5-21 |
| Figure 5.3.3  | The Final Test                                                                            | 5-24 |
| Figure 6.2.1  | Pan-sharpened ALOS Imagery                                                                | 6-6  |
| Figure 6.2.2  | Land Use Map of the Study Area, 2011                                                      | 6-8  |

### **ABBREVIATIONS & ACRONYMS**

| AASHTO   | American Association of State Highway and Transportation Officials  |
|----------|---------------------------------------------------------------------|
| AD       | Assistant Director                                                  |
| ADB      | Asian Development Bank                                              |
| ADP      | Annual Development Program                                          |
| ALOS     | Advanced Land Observation Satellite                                 |
| BOT      | Build Operate Transfer                                              |
| C&W      | Communication and Works Department                                  |
| CantB    | Cantonment Board                                                    |
| CBD      | Central Business District                                           |
| CDG      |                                                                     |
| CDGK     | City District Government                                            |
|          | City District Government, Kasur                                     |
| CDGL     | City District Government, Lahore                                    |
| CDGS     | City District Government, Sheikhupura                               |
| CNG      | Compressed Natural Gas                                              |
| DCO      | District Coordination Officer                                       |
| DHA      | Defence Housing Authority                                           |
| DIG      | Deputy Inspector General                                            |
| DPL      | Development Policy Loan                                             |
| DRTA     | District Regional Transport Authority                               |
| DSMD     | District Support and Monitoring Department                          |
| E&T      | Excise and Taxation Department                                      |
| EDO      | Executive District Officers                                         |
| EPA      | Environment Protection Agency                                       |
| EPD      | Environmental Protection Department                                 |
| ETC      | Electronic Toll Collection                                          |
| F&P      | Finance and Planning                                                |
| FDI      | Foreign Direct Investment                                           |
| FMR      | Farm to Market Roads                                                |
| GDP      | Gross Domestic Product                                              |
| GIS      | Geographic Information System                                       |
| GoPb     | Government of the Punjab                                            |
| H&PP     | Housing and Physical Planning Provincial Department                 |
| H&UPDD   | Housing and Urban Physical Development Department                   |
| HIS      | Household Interview Surveys                                         |
| HOV      | High Occupancy Vehicle                                              |
| HP&EP    | Housing Physical & Environmental Planning                           |
| HRT      | Heavy Rapid Transit                                                 |
| HUD&PHED | Housing, Urban Development and Public Health Engineering Department |
| ICT      | Information and Communication Technology                            |
| IFC      | International Finance Corporation                                   |
| IMF      | International Monetary Fund                                         |
| ITS      | Intelligent Transport System                                        |
|          |                                                                     |
| LCCHS    | Lahore Cantonment Cooperative Housing Society                       |
|          | Lahore Development Authority                                        |
| LDRTA    | Lahore District Regional Transport Authority                        |
| LIT      | Lahore Improvement Trust                                            |
| LRMTS    | Lahore Rapid Mass Transit System                                    |
| LRR      | Lahore Ring Road                                                    |
| LRRP     | Lahore Ring Road Project                                            |
| LRT      | Light Rail Transit                                                  |
| LSE      | Lahore School of Economics                                          |
| LTC      | Lahore Transport Company                                            |
| LTD      | Lahore Transport Database                                           |
| LUTMP    | Lahore Urban Transport Master Plan                                  |
| MCC      | Manual Classified Count                                             |
| MD       | Managing Director                                                   |
| MRT      | Mass Rapid Transit                                                  |
| MS       | Municipal Services                                                  |
|          |                                                                     |

| MTDF   | Medium Term Development Framework                             |
|--------|---------------------------------------------------------------|
| MVO    | Motor Vehicles Ordinance                                      |
| MVR    | Motor Vehicle Rules                                           |
| NEC    | National Economic Council                                     |
| NESPAK | National Engineering Services Pakistan                        |
| NFC    | National Finance Commission                                   |
| -      |                                                               |
| NHA    | National Highway Authority                                    |
| NHMP   | National Highway and Motorway Police                          |
| NHSO   | National Highway Safety Ordinance                             |
| NMT    | Non-Motorized Transport                                       |
| NTCIP  | National Trade Corridor Improvement Program                   |
| NTRC   | National Transport Research Centre                            |
| NWFP   | North West Frontier Province                                  |
| O&M    | Operation and Management                                      |
| OBU    | On Board Unit                                                 |
| OD     | Origin-Destination                                            |
| OJP    | On-the-Job Participation                                      |
|        |                                                               |
| OJT    | On-the-Job Training                                           |
| P&D    | Planning and Development Department                           |
| PHA    | Parks and Horticultural Authority                             |
| PHATA  | Punjab Housing and Town Planning Agency                       |
| PHED   | Public Health Engineering Department                          |
| PMDGP  | Punjab Millennium Development Goal Program                    |
| PMU    | Project Management Unit                                       |
| PNR    | Pakistan National Railway                                     |
| PPHPD  | Passenger Per Hour Per Direction                              |
| PPO    | Punjab Police Office                                          |
| PPP    | Public Private Partnership                                    |
| PPTA   |                                                               |
|        | Punjab Provincial Transport Authority                         |
| PRTC   | Punjab Road Transport Corporation                             |
| PSP    | Private Sector Participation                                  |
| PTA    | Provincial Transport Authority                                |
| PTPS   | Pakistan Transport Plan Study                                 |
| PTUIS  | Public Transport User Interview Survey                        |
| PUTC   | Punjab Urban Transport Corporation                            |
| R&B    | Rehabilitation and Building                                   |
| RCC    | Roller Compacted Concrete                                     |
| RIS    | Road Interview Survey                                         |
| RMTS   | Rail-based Mass Transit System                                |
| RTAs   | Regional Transport Authorities                                |
| STREAM | Sustainable Transport in East Asian Mega-cities               |
| TD     | Transport Department                                          |
|        |                                                               |
| TDM    | Traffic Demand Management                                     |
| TEPA   | Traffic Engineering and Transport Planning Agency (Under LDA) |
| TEVTA  | Technical Education and Vocational Training Authority         |
| TEVTC  | Technical Education and Vocational Training Council           |
| TMA    | Town Municipal Administrations                                |
| TPU    | Transport Planning Unit                                       |
| TSDI   | Transport Sector Development Initiative                       |
| UA     | Union Administration                                          |
| UCs    | Union Councils                                                |
| UN     | United Nations                                                |
| UNESCO | United Nations Educational Scientific Cultural Organisation   |
| UU     | Urban Unit                                                    |
| W&S    | Works and Services                                            |
| WASA   | Water and Sanitation Agency (Under LDA)                       |
|        |                                                               |
| WB     | World Bank                                                    |

Volume-II – Chapter-1

# **TRANSPORT/ TRAFFIC SURVEYS**

**FINAL REPORT** 

## 1 TRANSPORT/ TRAFFIC SURVEYS

#### 1.1 Introduction

Transport/ traffic surveys are an integral component of a comprehensive transport planning study. These helps to understand the current socio-economic conditions, travel patterns, travel characteristics, existing transport system demand and supply linkages both for private and public transport modes in the Study Area. The baseline data, apart from helping in understanding the existing transport situation along with its problems and constraints; is used in the development, calibration, and validation of the travel demand forecast models. Eleven different surveys were conducted as a part of the Study.

In addition, significant data from secondary sources pertaining to demographic, socioeconomic characteristics, and public transport system was collected to supplement the survey data. The final transport database is analysed at various stages by different transport planning experts with respect to requirement to understand the prevailing problems, issues in the sector of their interest.

#### 1.2 Outline of Surveys

Eleven different types of transport/ traffic surveys were conducted for the Study. Brief detail of each survey conducted is given in Table 1.2.1. Each survey was designed with specific objectives as an integral part of transport/ traffic database.

The following section provides detail of surveys undertaken for the Study with their objectives, methodology, and survey locations. The complete details of each survey including the survey forms, survey locations, and survey manuals could be found in previous reports of this Study. Procedures and guidelines specifically designed for the implementation of the Household Interview Survey (HIS) with respect to local conditions are described in Section 1.3.

| No. | Survey                                    | Objective                                                                                                                                                                           | Methodology                                                                                                                                                                                   | Scope                                                                                              |
|-----|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 1   | Household<br>Interview<br>Survey<br>(HIS) | <ul> <li>Capture travel behaviour of<br/>residents in relation to their<br/>socio-economic<br/>characteristics.</li> </ul>                                                          | <ul><li> Household interview by interviewers.</li><li> Stratified random sampling.</li></ul>                                                                                                  | <ul> <li>Entire Study Area.</li> <li>Sampling rate of 1 %<br/>(18,000 households)</li> </ul>       |
| 2   | Cordon<br>Survey                          | Capture travel behaviour and<br>travel patterns to and from the<br>Study Area.                                                                                                      | <ul> <li>Traffic count by vehicle type<br/>and by direction (18/24hrs)</li> <li>Interview 10~20% sampled<br/>vehicles: O/D, trip purpose,<br/>type of load, vehicle<br/>occupants.</li> </ul> | • 13 locations at the outer boundary of the Study Area, railway station and airport                |
| 3   | Screenline<br>Survey                      | <ul> <li>Count traffic volume by vehicle<br/>type and record vehicle<br/>occupancy at screenlines to<br/>validate O/D matrices obtained<br/>from HIS and Cordon surveys.</li> </ul> | <ul> <li>Traffic count by vehicle type<br/>and by direction (18/ 24 hrs).</li> <li>Observation survey of<br/>vehicle occupancy by vehicle<br/>type.</li> </ul>                                | <ul> <li>64 locations crossing<br/>the Railway and<br/>Canal Bank Road<br/>Screenlines.</li> </ul> |

 Table 1.2.1 List of Surveys with Their Objective, Methodology and Scope

| No. | Survey                                                  | Objective                                                                                                                                                    | Methodology                                                                                                                                                              | Scope                                                                                                            |
|-----|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 4   | Traffic<br>Count<br>Survey                              | <ul> <li>Count traffic volume by vehicle<br/>type at key junctions, and<br/>roads, including turning<br/>volumes.</li> </ul>                                 | <ul> <li>Traffic count by vehicle type<br/>and by direction (18/ 24 hrs).</li> <li>At some locations occupancy<br/>counts.</li> </ul>                                    | • 14 locations, similar<br>to those of the 1991<br>JICA study, and two<br>sections of LRR.                       |
| 5   | Public<br>Transport<br>(PT) User<br>Interview<br>Survey | <ul> <li>Capture PT users'<br/>characteristics and perception<br/>to assess and plan improved<br/>public transport service.</li> </ul>                       | <ul> <li>Interview survey of users of<br/>large bus,<br/>AC-bus, wagon, auto<br/>rickshaw, and Qingqi.</li> </ul>                                                        | <ul> <li>1,000 samples at<br/>major bus terminals<br/>and bus stops.</li> </ul>                                  |
| 6   | Travel<br>Speed<br>Survey                               | <ul> <li>Identify the current average<br/>journey times.</li> </ul>                                                                                          | <ul> <li>Measurement of travel speed<br/>by moving observer method.</li> </ul>                                                                                           | <ul> <li>Surveys along 10<br/>major routes in the<br/>morning, evening<br/>and off-peak periods.</li> </ul>      |
| 7   | Bus<br>Occupancy<br>Survey                              | Determine the utilization of<br>public transport.                                                                                                            | <ul> <li>Record the number of<br/>passengers boarding and<br/>alighting.</li> </ul>                                                                                      | <ul> <li>10 bus routes in<br/>morning, evening<br/>and off-peak periods.</li> </ul>                              |
| 8   | Parking<br>Survey                                       | Capture characteristics of on-<br>street and off-street parking.                                                                                             | <ul> <li>Periodic observation and<br/>recording of parked vehicles<br/>by surveyors. Recording on<br/>entry and exit of off-street<br/>parking facilities.</li> </ul>    | <ul> <li>Seven 100 -m<br/>sections of urban<br/>streets and four<br/>shopping mall<br/>parking areas.</li> </ul> |
| 9   | Road<br>Inventory<br>Surveys                            | <ul> <li>To collect data on physical<br/>structure of road network,<br/>Junctions along the road.</li> </ul>                                                 | By site visit and<br>measurements                                                                                                                                        | <ul> <li>About 2,300 +km of<br/>road network<br/>surveyed.</li> </ul>                                            |
| 10  | Willingness<br>to Pay<br>Survey                         | <ul> <li>To collect information on user<br/>value of time by different<br/>transport modes: private car,<br/>bus, Rickshaw, and Qingqi<br/>users.</li> </ul> | • By interviewing different<br>transport mode users in<br>different parts of the Study<br>Area. All income class<br>people.                                              | <ul> <li>2,000 sample<br/>interviews of car,<br/>Rickshaw, Qiqnqi,<br/>wagon, and bus<br/>users.</li> </ul>      |
| 11  | Road<br>Junctions<br>and Traffic<br>Signal<br>Survey    | <ul> <li>To collect junction geometry<br/>and signal operation data.</li> </ul>                                                                              | <ul> <li>Junction field survey to<br/>record existing condition.</li> <li>Drawing AutoCAD plans and<br/>measure phasing time of<br/>each signalized junction.</li> </ul> | • Total 26 junctions out<br>of which five were<br>non-signalized, three<br>roundabouts, and 18<br>signalized.    |

For the Study vehicles were classified into thirteen categories for all type of surveys. Vehicles classification is given in Table 1.2.2.

| Table 1.2.2 Vehicle | Classification | for the Study |
|---------------------|----------------|---------------|
|---------------------|----------------|---------------|

| No. | Description                                                                       |
|-----|-----------------------------------------------------------------------------------|
| 1   | Bicycle                                                                           |
| 2   | Motorcycle                                                                        |
| 3   | Rickshaw, Qingqi (Motorcycle Rickshaw)                                            |
| 4   | Car, Taxi, 4 WD, Jeep, Land Cruisers, Hiace, Single/ Twin-cabin passenger pick-up |
| 5   | Wagon, Suzuki, Minibus (up to 16 seats)                                           |
| 6   | Mazda, Coaster (up to 30 seats)                                                   |
| 7   | Large bus (>30 seats)                                                             |
| 8   | Pick-up, Delivery truck, Utility vehicles, Ambulances                             |
| 9   | 2 Axle truck                                                                      |
| 10  | 3 -Axle truck, 3 +-Axle truck                                                     |
| 11  | Tractors (with or without trolley)                                                |
| 12  | Other mechanized vehicles (including construction vehicles)                       |
| 13  | Animal-driven carts                                                               |

Source: JICA Study Team

All type of transport/ traffic surveys were completed on schedule, the start and finish dates of surveys are given in Table 1.2.3.

| No. | Survey Type                              | Survey Start<br>Date | Survey End<br>Date |
|-----|------------------------------------------|----------------------|--------------------|
| 1   | Household Interview Survey               | 5-Oct-2010           | 15-Dec-2010        |
| 2   | Cordon Survey                            | 13-Dec-2010          | 4-Jan-2011         |
| 3   | Screenline Survey                        | 20-Sep-2011          | 4-Oct-2011         |
| 4   | Traffic Count Survey                     | 5-Oct-2010           | 11-Oct-2010        |
| 5   | Public Transport User Interview Survey   | 13-Dec-2010          | 13-Dec-2010        |
| 6   | Travel Speed Survey                      | 14-Oct-2010          | 25-Oct-2010        |
| 7   | Bus Occupancy Survey                     | 14-Oct-2010          | 22-Oct-2010        |
| 8   | Parking Survey                           | 26-Oct-2010          | 4-Dec-2010         |
| 9   | Road Inventory Survey                    | 15-July-2010         | 31-Aug-2010        |
| 10  | Willingness to Pay Survey                | 1-Jul-2011           | 31-Jul-2011        |
| 11  | Road Junctions and Traffic Signal Survey | 1-Aug-2011           | 31-Aug-2011        |

Table 1.2.3 Transport/ Traffic Surveys Schedule

#### 1.2.1 Household Interview Survey

The Household Interview Survey (HIS) is designed to capture the travel behaviour of the residents by survey zone with respect to their socio-economic information, their daily travel activity, opinions of transport users on existing transport issues and environment (traffic congestion and safety, public transport and transport measures), and for making assessment indicators for the future strategies. HIS was used to explain the following issues broadly:

- Socio-economic information of the randomly selected households by each zone;
- Total travel activity generated by the each household resident above 5 years of age by mode, and by time; and
- Resident's opinions on existing transport situation and environment.

HIS field survey was systematically planned, designed and executed with the help of local survey company under the daily guidance, supervision, and control of JICA Study Team. Sample size calculation for the HIS survey was estimated keeping in view the statistical reliability of the data, budget and time constraints. JICA Study Team has designed sample rate based on conditions explained next;

#### Statistical Reliability of Sample:

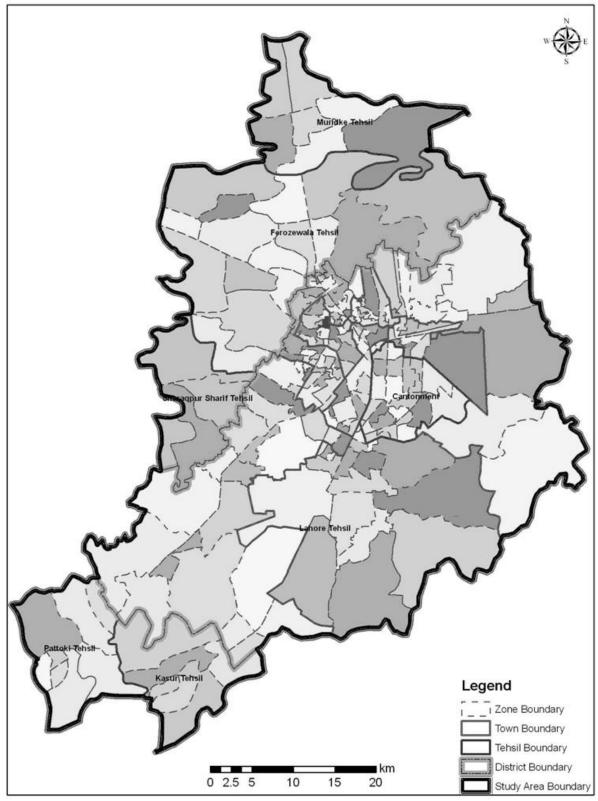
Assuming 80 % reliability and a 20 % relative error, a 1 % sampling rate would be sufficient for estimating the trip generation/ attraction for a 100-zone system and with two modes (public and private). In terms of O/D matrices, although 1 % would not be enough for a 100-zone system, its accuracy would be satisfactory for a 60-zone system, as it is highly unlikely that one would observe 100x100 zone to zone movements.

Note: The relationship between relative error, sampling rate, reliability coefficient, number of categories and population is expressed below (assuming r=0.01, k=1.28, C=7200 (that is 60 Zones x 60 Zones x 2 Modes (Private and Public)), and N=17,160,000 (two trips per day by 8,580,000 population above 5 year), and RE becomes 0.18).

$$RE = k\sqrt{\frac{1-r}{r} * \frac{C-1}{N}}$$

Where:

RE: relative error (0.18)


- r: sampling rate 1 %
- k: reliability coefficient (1.28 at 80 % reliability)
- C: number of categories (number of zones (60), and modes (2))
- N: population (number of total trips)

Different steps were involved in planning of HIS survey; which are described next.

#### 1) Study Area and Traffic Zone System

The Study Area, comprising 3,044 km<sup>2</sup>, covers the whole district of Lahore and parts of the Kasur and Sheikhupura districts as shown in Figure 1.2.1. Existing administrative division system of the Study Area has been used as base for developing the zone system. Local administrative division is selected because of several reasons: like availability of administrative boundaries, socio-economic information, and census data by union council.

This administrative division (Union Councils) were then further allocated sequential zone numbers and some of the union councils were further divided in to several zones as Railway or Canal Screenlines crossed through these union councils. It was necessary to split these zones to capture the cross screenline trips from HIS and Cordon surveys.





The Study Area zoning system consist of total of 228 internal zones, 30 external zones for covering trips made from outside the Study Area, and 68 special generator zones for modal interchange facilities like Airport, Railway Stations, Intra-city and Inter-city Bus Termini. A complete list of Zone System with area coverage is given in Annex-I to this volume.

#### 2) Number of Samples

HIS was conducted to record socio-economic characteristics and travel patterns of all household members of 5 years of age or above. Sampling rate was set at 1 % of the Study Area households. The detail of the number of samples by each Town/ Tehsils is given in Table 1.2.4.

| No.   | Town / Tehsil           | Total 2010 |            | HIS San<br>(Sampling F      |            |
|-------|-------------------------|------------|------------|-----------------------------|------------|
| NO.   | Town/Tensi              | Population | Households | Population<br>above 5 Years | Households |
| 1     | Ravi Town               | 1,007,335  | 183,200    | 8,870                       | 1,832      |
| 2     | Data Gunj Baksh Town    | 969,922    | 176,400    | 8,540                       | 1,763      |
| 3     | Samanabad Town          | 984,013    | 179,000    | 8,660                       | 1,791      |
| 4     | Shalimar Town           | 854,223    | 155,400    | 7,520                       | 1,553      |
| 5     | Gulberg Town            | 778,106    | 141,500    | 6,850                       | 1,413      |
| 6     | Aziz Bhatti Town        | 666,724    | 121,300    | 5,870                       | 1,212      |
| 7     | Wahga Town              | 655,928    | 119,300    | 5,780                       | 1,193      |
| 8     | Nishtar Town            | 945,064    | 171,900    | 8,320                       | 1,719      |
| 9     | lqbal Town              | 960,377    | 174,700    | 8,460                       | 1,746      |
| 10    | Cantonment              | 830,747    | 151,100    | 7,320                       | 1,512      |
| 11    | Ferozewala Tehsil       | 533,816    | 97,100     | 4,700                       | 972        |
| 12    | Muridke Tehsil          | 266,232    | 48,500     | 2,350                       | 484        |
| 13    | Sharaqpur Sharif Tehsil | 100,804    | 18,400     | 890                         | 183        |
| 14    | Kasur Tehsil            | 167,504    | 30,500     | 1,480                       | 305        |
| 15    | Pattoki Tehsil          | 207,246    | 37,700     | 1,830                       | 376        |
| 1-10  | Lahore                  | 8,652,439  | 1,573,200  | 76,150                      | 15,734     |
| 11-13 | Sheikhupura             | 900,852    | 163,800    | 7,930                       | 1,639      |
| 14-15 | Kasur                   | 374,750    | 68,200     | 3,300                       | 681        |
| 1-15  | The Study Area          | 9,928,041  | 1,805,100  | 87,370                      | 18,062     |

#### Table 1.2.4 Household Interview Survey – Estimated Number of Samples

Source: JICA Study Team

Note: Average household size at 5.5 persons/HH and percentage of population of above 5 years is estimated to be 88 %.

The method of sampling was geographically stratified random sampling, where samples within each area were randomly selected in the field.

#### 1.2.2 Cordon Survey

The Study Area is encircled by an imaginary line, and all roads entering or exiting to or from the Study Area are marked as cordon survey locations – location map is at Figure 1.2.2. The survey conducted: covered 100 % vehicle counts by vehicle type, and 10~20 % sample of roadside interviews of drivers of private vehicles, and passengers of public vehicles.

The cordon survey is used to estimate the volume of traffic that enters and leaves the Study Area within a typical day, and the volume that passes through, with neither origin nor destination in the Study Area.

Cordon survey is to collect following information:

- **1.** Trip information (origin and destination, purpose, mode, vehicle occupancy, freight type, access mode, 10~20 % sample)
- 2. Vehicular traffic count (100 % sample by 13 vehicle types)

The interviews were conducted by surveyors flagged down vehicles with the help of policemen. The survey was conducted at a total 15 locations, 13 major roads, Allama lqbal International Airport and Lahore Railway Station. Survey detail is given in Table 1.2.5.

|      |                                             |             | Survey Duration  |                 |
|------|---------------------------------------------|-------------|------------------|-----------------|
| Site | Survey Station (Boundary)                   | Survey Date | Traffic<br>Count | OD<br>Interview |
| 1    | G.T. Road near Muridke                      | 27-Dec-2010 | 24 hour          | 24 hours        |
| 2A   | Narowal - Muridike Road                     | 21-Dec-2010 | 18 hour          | 18 hours        |
| 2B   | Sheikhupura - Muridike Road                 | 21-Dec-2010 | 18 hour          | 18 hours        |
| 3    | Kala Khatie - Narang Mandi Road             | 22-Dec-2010 | 18 hour          | 18 hours        |
| 4    | G.T. Road near Wahga Border                 | 6-Jan-2011  | 18 hour          | 18 hours        |
| 5    | Lahore-Kasur Road near Mustafa Abad         | 28-Dec-2010 | 24 hour          | 24 hours        |
| 6    | Kasur – Raiwind Road near Raiwind           | 23-Dec-2010 | 18 hour          | 18 hours        |
| 8    | Pattoki-Raiwind Road near Changa Manga      | 23-Dec-2010 | 18 hour          | 18 hours        |
| 9    | Multan Road near Bhai Pheru                 | 3-Jan-2011  | 24 hour          | 24 hours        |
| 10   | Jaranwala-Lahore Road near Sharaqpur Sharif | 22-Dec-2010 | 18 hour          | 18 hours        |
| 11   | Lahore-Sheikhupura Road (near Sheikhupura)  | 1-Jan-2011  | 24 hour          | 24 hours        |
| 12   | Ravi Motorway (M-2) Toll Plaza              | 29-Dec-2010 | 24 hour          | 24 hours        |
| 13   | Kala Shah Kaku Toll Plaza (Lahore Bypass)   | 28-Dec-2010 | 24 hour          | 24 hours        |
| 14   | Lahore Railway Station                      | 4-Jan-2010  | -                | 24 hours        |
| 15   | Allama Iqbal International Airport          | 13-Dec-2010 | -                | 24 hours        |

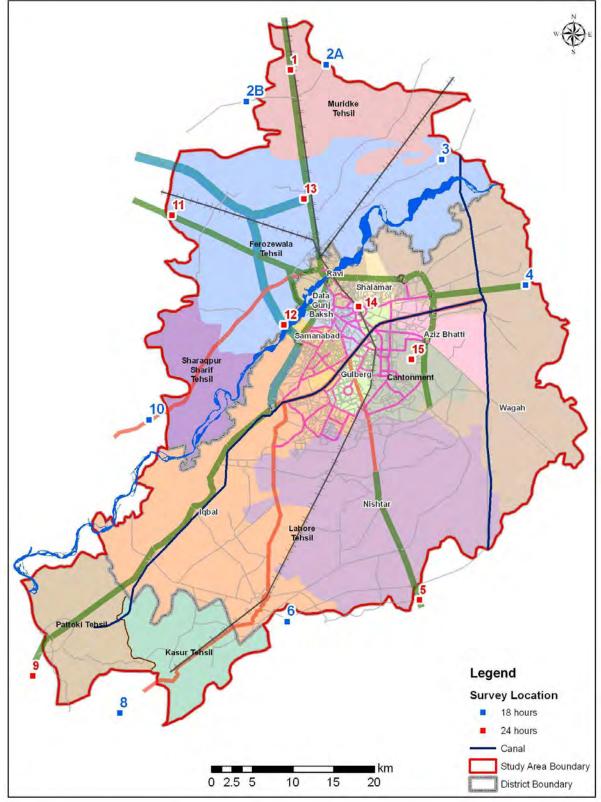



Figure 1.2.2 Cordon Survey Sites

#### 1.2.3 Screenline Survey

The Study Area is divided into four main parts by the BRB Canal and Pakistan Railway Line. Two screenlines were selected, and named as the "Rail Screenline" and the "Canal Screenline". 100 % Vehicular traffic was counted by 13 vehicle types in both directions. Vehicle occupancy survey counted the number of vehicle occupants (passenger and driver) for a target of 10 to 50 % sample of vehicles crossing the screenline.

The surveys were conducted at 64 locations at main railway crossings or bridges on the two screenlines; 20 sites were surveyed for a period of 24 hours, while 44 sites were surveyed for 18 hours (6:00-24:00). Location map of both screenlines is given in Figure 1.2.3, and survey details are given in Tables 1.2.6 and 1.2.7.

| No | Site<br>Code | Roads Crossing Railway Screenline         |    | Survey Date |
|----|--------------|-------------------------------------------|----|-------------|
| 1  | R-1          | Hardosohal Muslim Road                    | 18 |             |
| 2  | R-2          | Kala Khatai Narang Mandi Road             | 18 |             |
| 3  | R-3          | Shahdara Town Underpass                   | 18 | 1 Oct 2010  |
| 4  | R-4          | Jahangir Tomb Road                        | 18 | 4-Oct-2010  |
| 5  | R-5          | Lahore Ring Road                          | 24 |             |
| 6  | R-5A         | Lahore Ring Road Underpass Level-crossing | 18 |             |
| 7  | R-6          | Badami Bagh Flyover                       | 18 | 1-Oct-2010  |
| 8  | R-6A         | Badami Bagh Level-crossing                | 18 | 1-001-2010  |
| 9  | R-6B         | Mandi Wala Level-crossing                 | 18 | 4-Oct-2010  |
| 10 | R-7          | Misri Shah Underpass                      | 18 |             |
| 11 | R-8          | Ek Moria - Underpass                      | 18 | 1-Oct-2010  |
| 12 | R-9          | Do Moria Underpass                        | 18 |             |
| 13 | R-10         | Garhi Shahu Bridge                        | 24 |             |
| 14 | R-11         | Mughalpura Road (to Workshop)             | 18 |             |
| 15 | R-12         | Allama Iqbal Road Underpass               | 24 |             |
| 16 | R-13         | Dharumpura Underpass (to Mall Road)       | 24 |             |
| 17 | R-13A        | Dharumpura Underpass (to Mughalpura)      | 24 | 30-Sep-2010 |
| 18 | R-13C        | Dharumpura Level-crossing (to Mughalpura) | 24 |             |
| 19 | R-13B        | Dharumpura Underpass (to Mall Road)       | 24 |             |
| 20 | R-13D        | Level-crossing (to Mall Road)             | 24 |             |
| 21 | R14          | Mian Mir Bridge (to Mall Road)            | 18 | 29-Sep-2010 |
| 22 | R14A         | Mian Mir Underpass (Sikandar Road)        | 18 | 28-Sep-2010 |
| 23 | R15          | Abid Majeed Road (Sherpao Bridge)         | 18 |             |
| 24 | R16          | Allaudin Road                             | 18 |             |
| 25 | R17          | Jinnah Flyover                            | 18 | 29-Sep-2010 |
| 26 | R17A         | Jinnah Flyover (Level-crossing)           | 18 |             |
| 27 | R17B         | Jinnah Flyover (Underpass)                | 18 |             |
| 28 | R18          | Ferozepur Road (Flyover)                  | 24 |             |
| 29 | R18A         | Ferozepur Road (Level-crossing)           | 24 |             |
| 30 | R18B         | Between Ferozepur Road and Peco Road      | 24 | 28-Sep-2010 |
| 31 | R19          | Peco - Ferozepur Road Link                | 18 |             |
| 32 | R20          | Depot Road                                | 18 |             |

Table 1.2.6 Railway Screenline Survey Locations

| No | Site<br>Code | Roads Crossing Railway Screenline Duration (Hours) |    | Survey Date |
|----|--------------|----------------------------------------------------|----|-------------|
| 33 | R21          | Defense Road - College Road                        | 18 |             |
| 34 | R22          | Defense Road - Ferozepur Road Link                 | 18 | 27 Son 2010 |
| 35 | R23          | Raiwind Road - Lahore Road 18                      |    | 27-Sep-2010 |
| 36 | R23A         | Kasur Road - Manga Road                            | 18 |             |
| 37 | R-2A         | G.T. Road 24                                       |    | 4-Oct-2010  |

| No | Site<br>Code | Roads Crossing Canal Screenline Duration (Hours) |    | Survey Date |  |
|----|--------------|--------------------------------------------------|----|-------------|--|
| 1  | C1           | GT Road - Barki Road Link                        | 18 |             |  |
| 2  | C2           | Jallo Park Access Road                           | 18 |             |  |
| 3  | C3A          | Lahore Ring Road / Harbanspura flyover           | 18 | 20 Con 2010 |  |
| 4  | C3B          | Lahore Ring Road / Harbanspura on road           | 18 | 20-Sep-2010 |  |
| 5  |              |                                                  | 18 |             |  |
| 6  | C5           | Fatah Garh Bridge                                | 18 |             |  |
| 7  | C6           | Trasburaski Road (Nawan Bridge)                  | 18 |             |  |
| 8  | C7           | Lal Pul Bridge                                   | 18 |             |  |
| 9  | C8A          | Shalamar Link Road Flyover                       | 18 | 21-Sep-2010 |  |
| 10 | C8B          | Shalamar Link Road on Road                       | 18 |             |  |
| 11 | C9           | Chobacha Bridge                                  | 18 |             |  |
| 12 | C10          | Zarrar Shaheed Road (Dharumpura Bridge)          | 24 | 22 Can 2010 |  |
| 13 | C10A         | Sundardas Road (Dharumpura Bridge)               | 24 | 22-Sep-2010 |  |
| 14 | T3           | Mall Road                                        | 24 | 7-Oct-2010  |  |
| 15 | T2           | Jail Road                                        | 24 | 8-Oct-2010  |  |
| 16 | C11          | Zahoor Elahi Road (FC College Bridge)            | 18 | 21-Sep-2010 |  |
| 17 | T1           | Ferozepur Road                                   | 24 | 11-Oct-2010 |  |
| 18 | C12          | New Muslim Town                                  | 18 | 22-Sep-2010 |  |
| 19 | C13          | Campus Road                                      | 24 | 22-3ep-2010 |  |
| 20 | C14          | Jinnah Hospital Bridge                           | 18 | 23-Sep-2010 |  |
| 21 | C15          | Doctors Hospital Bridge                          | 18 | 23-3ep-2010 |  |
| 22 | C16          | Canal View Main Road Bridge                      | 18 | 24-Sep-2010 |  |
| 23 | C17          | Thokar Niaz Baig on Road                         | 24 | 22 San 2010 |  |
| 24 | C17A         | Thokar Niaz Baig Flyover                         | 24 | 23-Sep-2010 |  |
| 25 | C18          | Defense Road                                     | 18 |             |  |
| 26 | C19          | Sundar Road                                      | 18 | 24-Sep-2010 |  |
| 27 | C20          | Raiwind Road                                     | 18 |             |  |

| Table 1.2.7 Ca | nal Screenline | Survey Locations |
|----------------|----------------|------------------|
|----------------|----------------|------------------|

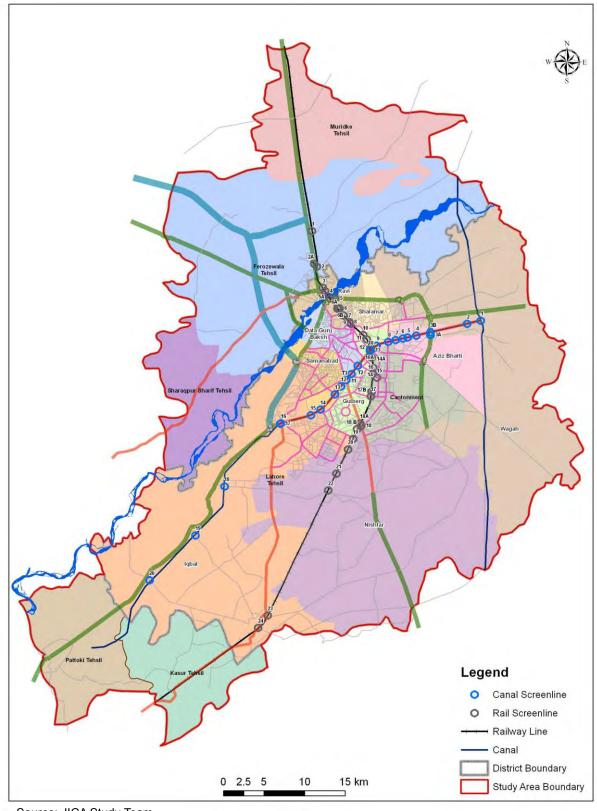


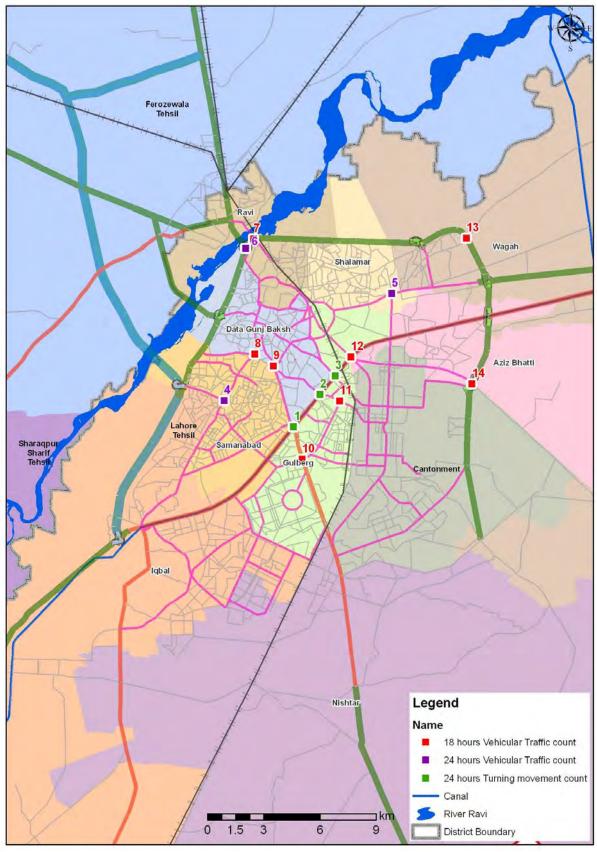

Figure 1.2.3 Canal and Railway Screenline Survey Locations

#### 1.2.4 Traffic Count Surveys at Key Roads near Major Intersections

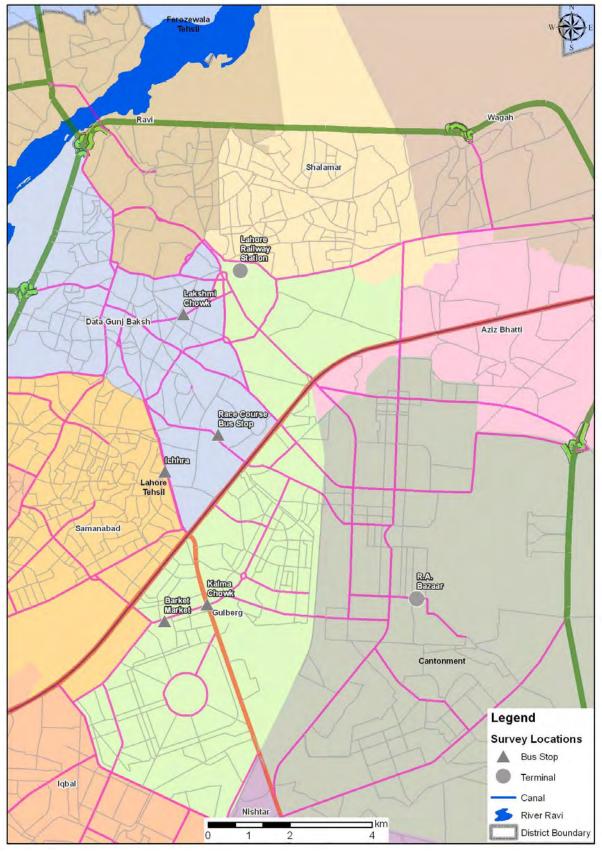
Traffic counts survey was conducted to collect traffic characteristics in relation to the 1991 JICA study traffic counts at the same <u>14</u> intersections in the Study Area. The additional locations selected are Old Ravi Bridge and Lahore Ring Road.

The survey counted the vehicle volume by 13 vehicle type, in two directions and by two time period: 6 sites were selected for 24 hour counts; whereas the 8 other sites were surveyed for 18 hour (6:00-24:00). Location map of survey sites is shown in Figure 1.2.4, and details are given in Table 1.2.8.

| No. | Duration             |                                               | Survey Date                                          |           |
|-----|----------------------|-----------------------------------------------|------------------------------------------------------|-----------|
| T1  | 24 hour              | Canal Bank Road / Ferozepur Road Intersection |                                                      | 11-Oct-10 |
| T2  | Turning<br>Movement  | Canal Bank Road /                             | Jail Road Intersection                               | 8-Oct-10  |
| Т3  | Count                | Canal Bank Road /                             | Mall Road Intersection                               | 7-Oct-10  |
| No. | Duration             | Road                                          | Road Section                                         |           |
| T4  | 24 hour              | Multan Road                                   | between Bund Road E and Sodiwal Road                 | 5-Oct-10  |
| T5  | Vehicular<br>Traffic | G.T, Road                                     | between Shalamar Link Road and Shalimar Garden       | 6-Oct-10  |
| Т6  | Count                | Ravi Bridge                                   | between with Bund Road E and G.T. Road               | 6-Oct-10  |
| T7  |                      | Old Ravi Bridge                               | between Lahore Ring Road and Jahangir Tomb Road      | 6-Oct-10  |
| Т8  |                      | Multan Road                                   | between Bahawalpur Road and Samnabad Main Boulevard. | 5-Oct-10  |
| Т9  | 18 hour              | Ferozepur Road                                | between Bahawalpur Road and Camp Jail                | 5-Oct-10  |
| T10 | Vehicular<br>Traffic | Ferozepur Road                                | between Gulberg main Blvd and Model Town             | 5-Oct-10  |
| T11 | Count (6:00          | Jail Road                                     | between Gulberg Main Blvd and Zafar Ali Road         | 5-Oct-10  |
| T12 | to 24:00)            | Allama Iqbal Road                             | between Canal bank Road and Mughalpura Road          | 1-Nov-10  |
| T13 |                      | Lahore Ring Road                              | between Ring road BRB Canal and Band Road S          | 6-Oct-10  |
| T14 | Lahore Ring Road     |                                               | between Amjad Chaudhry Road and Canal Bank Road      | 6-Oct-10  |


| Table 1.2 | 2.8 Traffic | : Count | Survey | Locations |
|-----------|-------------|---------|--------|-----------|
|           |             |         | Curvey | Looutions |

Source: JICA Study Team


#### 1.2.5 Public Transport (PT) User Interview Survey

PT user interview survey (passengers of: Bus, AC-bus, Wagon, Rickshaw, and Qingqi collected information on: Socio-economic characteristics of user, O/D, trip purpose, travel time and fare paid, and perceptions of existing and proposed public transport services. This is to ascertain the current urban transport situation in Lahore, and prepare database for future public transport facilities, Table 1.2.9 gives the detail of surveys.

One thousand (1,000) interview samples were randomly conducted at major intra-city terminals and bus stops for 12 hours, with a predetermined proportion of samples for each public transport mode. Socio-economic characteristics of user, public transport journey time, opinion of public transport services and perceptions of likely future facilities were recorded. Location map of survey sites is given in Figure 1.2.5.



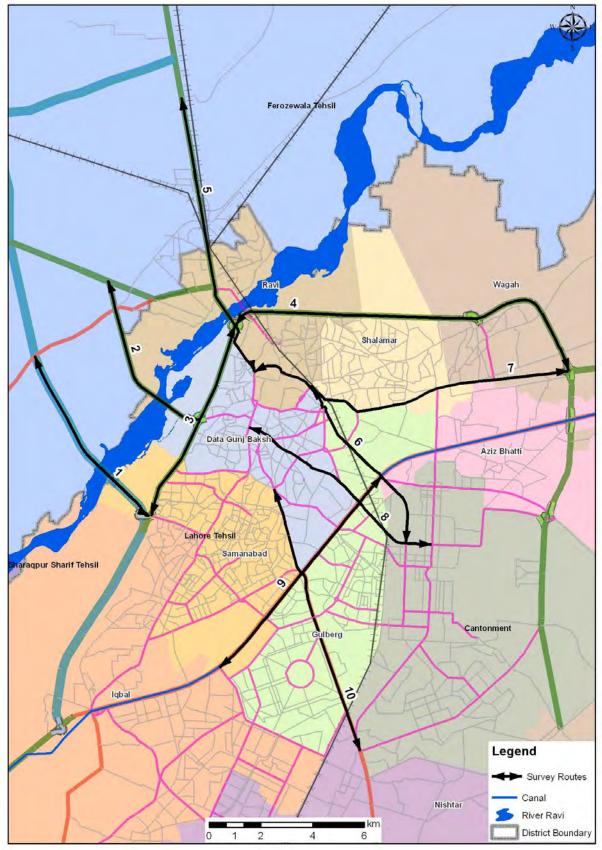






| No. | Description            | Survey Date |
|-----|------------------------|-------------|
| 1   | Lahore Railway Station |             |
| 2   | R.A. Bazaar            |             |
| 3   | Race Course Bus Stop   |             |
| 4   | Kalma Chowk            | 13-Dec-2010 |
| 5   | Barkat Market          |             |
| 6   | Icchra                 |             |
| 7   | Lakshmi Chowk          |             |

#### Table 1.2.9 Public Transport User Interview Survey Locations


Source: JICA Study Team

#### 1.2.6 Travel Speed Survey

Travel speed survey (Journey Time Survey) was conducted along 10 major road corridors in the city in order to ascertain travel speed and major congestion issues. Travel speed surveys were conducted during morning, evening, and off-peak periods in both directions. The survey followed the 'floating car method', which requires the survey vehicles to keep the same position in the traffic flow. Travel time, time of passing intersection and reasons for delays were recorded. Survey routes are illustrated in Figure 1.2.6, and routes descriptions are given in Table 1.2.10.

| No. | Journey Time Survey Route Description                                                                               |    | Survey<br>Date |
|-----|---------------------------------------------------------------------------------------------------------------------|----|----------------|
| 1   | Motorway M-2 (Babu Sabu interchange to Faizpur interchange)                                                         | 7  | 14-Oct-10      |
| 2   | Sagian Wala Bypass (intersection with Sheikhupura Road to intersection with Bund Road)                              | 7  | 14-Oct-10      |
| 3   | Bund Road and Lahore Ring Road (intersection with Bund Road to Ravi Bridge interchange)                             | 7  | 15-Oct-10      |
| 4   | Lahore Ring Road (Ravi Bridge interchange to intersection with G.T. Road)                                           | 14 | 15-Oct-10      |
| 5   | G.T. Road (Yadgar Chowk to intersection with Hardosohal Muslim Road)                                                | 11 | 18-Oct-10      |
| 6   | Circular Road, Allama Iqbal Road, Infantry Road, Shami Road<br>(Yadgar Chowk to intersection with Aziz Bhatti Road) | 8  | 19-Oct-10      |
| 7   | G.T. Road (intersection with circular Road to intersection with Lahore Ring Road)                                   | 8  | 20-Oct-10      |
| 8   | Mall Road, Aziz Bhatti Road (from Mahfooz Chowk to intersection Lower Mall Road)                                    | 8  | 21-Oct-10      |
| 9   | Canal Bank Road (intersection with Allama Iqbal Road – intersection with Maulana Shaukat Ali Road)                  | 10 | 22-Oct-10      |
| 10  | Ferozepur Road (Intersection with Defense Road to Qartba Chowk)                                                     | 10 | 25-Oct-10      |

#### Table 1.2.10 Travel Speed Survey Routes





## 1.2.7 Bus Occupancy Survey

Bus occupancy survey was conducted along ten (10) 'notified' bus routes during bus operating hours, in both directions of operation. Data was collected with surveyors riding a bus from origin to its destination, counting the number of boarding and alighting passengers, and start time at each bus stop. This provided the passengers boarding, alighting and loading profile by individual bus route, and by time of day. Location of bus survey routes are given in Figure 1.2.7, and detailed in Table 1.2.11.

| Route<br>No. | Bus Company         | From             | То                   | Survey Date |
|--------------|---------------------|------------------|----------------------|-------------|
| 4            | New Khan            | Lari Adda        | Lari Adda Jallo More |             |
| 5            | Daewoo              | Railway Station  | DHA Y-Block Market   | 20-Oct-2010 |
| 8            | New Khan            | Lari Adda        | Airport              | 21-Oct-2010 |
| 9            | Premier Bus Service | Railway Station  | Purana Khana         | 15-Oct-2010 |
| 12           | Premier Bus Service | Railway Station  | Youhanna Abad        | 19-Oct-2010 |
| 16           | Daewoo              | Railway Station  | Umer Chowk           | 20-Oct-2010 |
| 17           | New Khan            | Railway Station  | Jallo Pind           | 21-Oct-2010 |
| 19           | Premier Bus Service | Purana Ravi Pull | Chungi Amar Sidhu    | 18-Oct-2010 |
| 22           | New Khan            | Jallo More       | Thokar Niaz Baig     | 22-Oct-2010 |
| 33           | METRO               | Railway Station  | Green Town           | 22-Oct-2010 |

| Table 1.2.11 Bus Occupancy Survey Routes Te |
|---------------------------------------------|
|---------------------------------------------|

Source: JICA Study Team

#### 1.2.8 Parking Survey

Parking survey objective was to capture parking characteristics including: number of parked vehicles and duration by vehicle type in an area. This survey was conducted by periodic (1/2 hour beat) observation and by recording of number plate of parked vehicles along the road-side. At all closed sites number plates were recorded at entry and exit points. Seven 100-meter sections of roads and five off-street parking facilities (shopping malls) were surveyed in the LUTMP urban area. Locations of survey sites are given in Figure 1.2.8, and detailed in Table 1.2.12.

| NO. | Road Section                 | Survey Site Description                         | Survey<br>Date | Survey<br>Duration |
|-----|------------------------------|-------------------------------------------------|----------------|--------------------|
| 1   | Mall Road                    | In front of Croweater Gallery<br>and restaurant | 26-Oct-10      | 06:30-23:00        |
| 2   | Mall Road                    | In front of Dubai Islamic Bank                  | 27-Oct-10      | 06:30-23:00        |
| 3   | Mall Road                    | In front of Panorama<br>Shopping Centre         | 26-Oct-10      | 07:00-23:00        |
| 4   | Mall Road                    | In front of Bank Alfalah                        | 27-Oct-10      | 07:00-23:00        |
| 5E  | Khayaban-e-Aiwan-e-<br>Iqbal | In front of Lahore Stock<br>Exchange            | 28-Oct-10      | 07:00-23:00        |

| NO. | Road Section                 | Survey Site Description                          | Survey<br>Date | Survey<br>Duration |
|-----|------------------------------|--------------------------------------------------|----------------|--------------------|
| 5W  | Khayaban-e-Aiwan-e-<br>Iqbal | Opposite side of Lahore<br>Stock Exchange        | 28-Oct-10      | 07:00-23:00        |
| 6   | Kashmir Road                 | Opposite side of LDA Plaza<br>in front of Passco | 28-Oct-10      | 06:30-23:00        |
| 7   | Liberty Market               | At Entry and Exit Points of<br>Liberty Market    | 29-Oct-10      | 11:00-22:30        |
| 8   | Gulberg Main Boulevard       | In front of Hafeez Center                        | 29-Oct-10      | 07:00-2300         |
| 9A  | METRO – Model Town           | at Entry and Exit Points                         | 4-Nov-10       | 12:00-23:00        |
| 9B  | MACRO – Link Road            | at Entry and Exit Points                         | 4-Nov-10       | 13:30-23:30        |
| С   | MACRO – Ravi Road            | at Entry and Exit Points                         | 4-Nov-10       | 16:45-22:15        |

#### **1.2.9** Road Inventory and Junction Characteristics Surveys

The Study Area road network inventory survey covered primary, secondary, and tertiary roads, whereas small streets and roads inside the closed housing societies were not surveyed. For each key road section; road length, right of way width, carriageway width, footpath width, no of lanes, proportion of road section (link) used for parking, encroachment, bus stop, and predominant land use; were recorded.

The junction survey recorded data for each key junction at major and minor cross roads. The recorded data included number of lanes entering the junction, type of junction. Road network covered by inventory survey is shown in Figure 1.2.9, and a summary is given Table 1.2.13.

| Туре                     | Unit  | Total |
|--------------------------|-------|-------|
| Roads (sections)         | Count | 1021  |
| Junctions                | Count | 264   |
| Total Length             | Km    | 2,233 |
| Average Right of Way     | Meter | 18.85 |
| No. of Links             | Count | 2,412 |
| Bus Stops                | Count | 373   |
| One-way Links            | Count | 939   |
| Two-way Links            | Count | 1,473 |
| Single Carriageway Links | Count | 765   |
| Dual Carriageway Links   | Count | 1,647 |
| Source: IICA Study Team  |       | ,     |

Table 1.2.13 Road Inventory Survey Summary

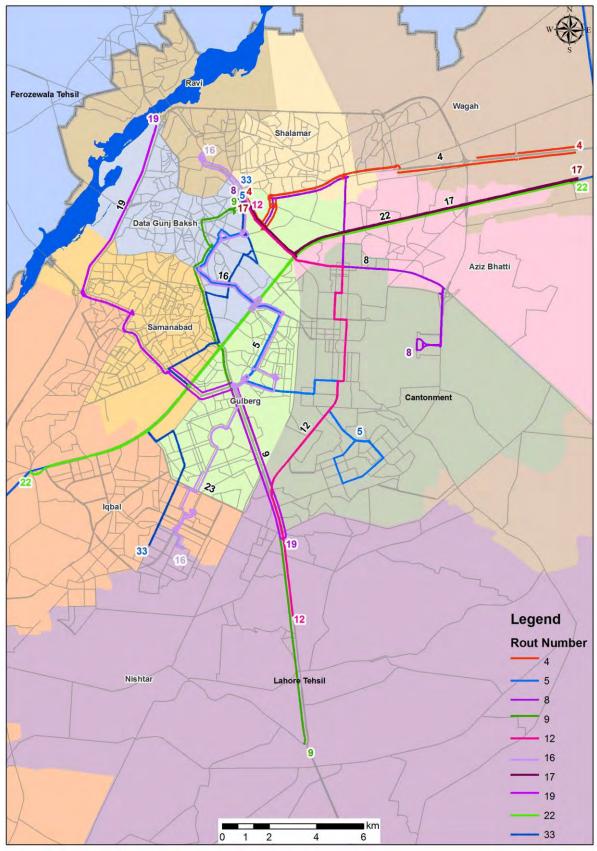
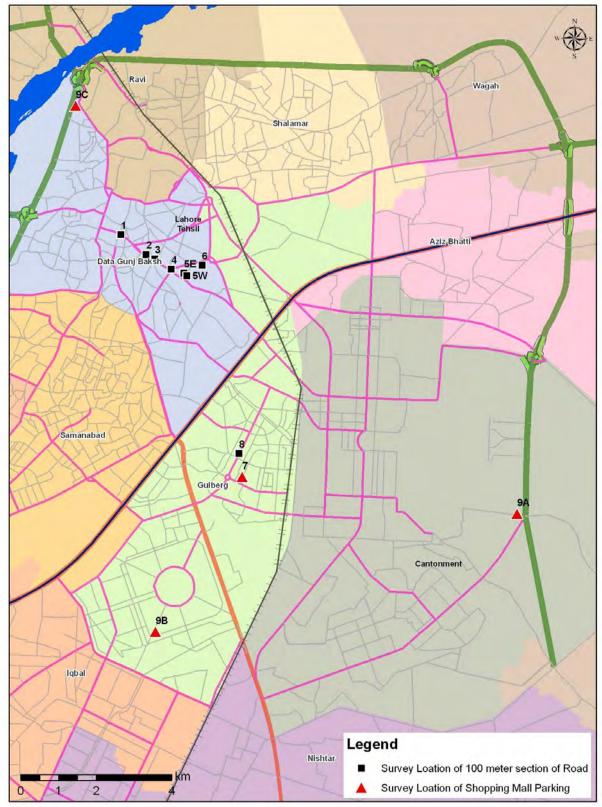
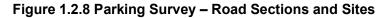





Figure 1.2.7 Bus Occupancy Survey – Ten Bus Routes





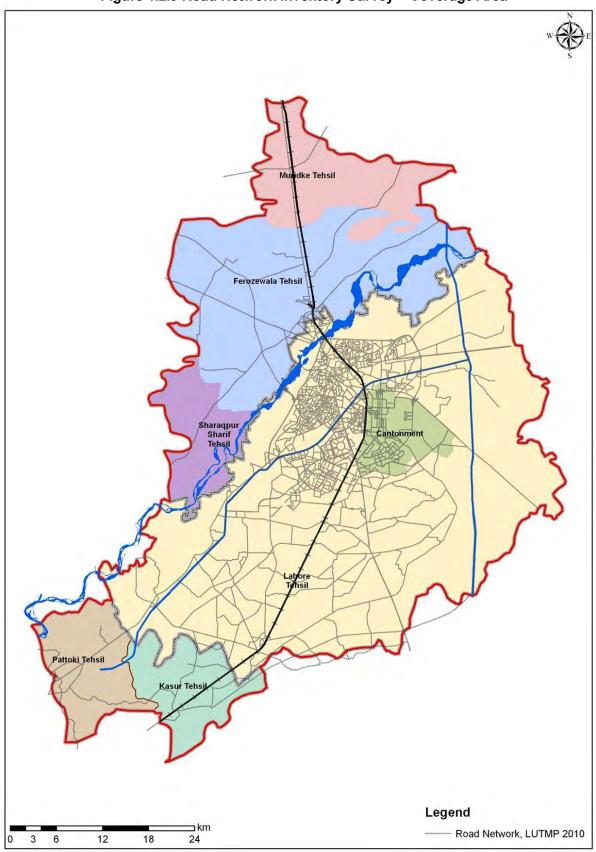



Figure 1.2.9 Road Network Inventory Survey – Coverage Area

#### 1.2.10 Willingness to Pay Survey

Willingness to pay survey aimed to collect information on travel behaviour and travel budget. The objective was to estimate value of time of different transport mode users, and their willingness to pay for transport services improvement. Interviews were conducted with different transport mode users include: Car (31 %), Rickshaw (31 %), Qingqi (6 %), Wagon (8 %), Bus (18 %), and AC Bus (6 %) of a total sample about 2,100 respondents. This survey was conducted at a number of locations in the Study Area like: fuel stations, educational institutions, shopping malls, intra-city bus terminal, to avoid sampling bias. Location map of interview sites is given in Figure 1.2.10, and details are described in Table 1.2.14.

| Transport Mode Used | Sample | Questionnaire Type | Percent Sample |
|---------------------|--------|--------------------|----------------|
| Car                 | 645    | 3                  | 31%            |
| Rickshaw            | 647    | 3                  | 31%            |
| Qingqi              | 125    | 3                  | 6%             |
| Wagon               | 175    | 3                  | 8%             |
| Bus                 | 385    | 3                  | 18%            |
| AC - Bus            | 115    | 3                  | 5%             |
| Total               | 2,092  | -                  | 100%           |

 Table 1.2.14 Willingness to Pay Survey Sample Details

Source: JICA Study Team

#### 1.2.11 Road Junction and Traffic Signal Survey

Road junction and traffic signal survey focused to collect data in the Central Business District (CBD) area of Lahore, south, and south east of the Walled City. The survey collected broad junction layout, junction geometric design, traffic circulation, and signal phasing information. In total 26 junctions were surveyed: out of which three (3) were Roundabouts, eighteen (18) were signalized, including six (6) three arms, and the rest were 4 to 6 arms; and five (5) junctions were uncontrolled. Location map of junctions is given in Figure 1.2.11 and details are summarized in Table 1.2.15.

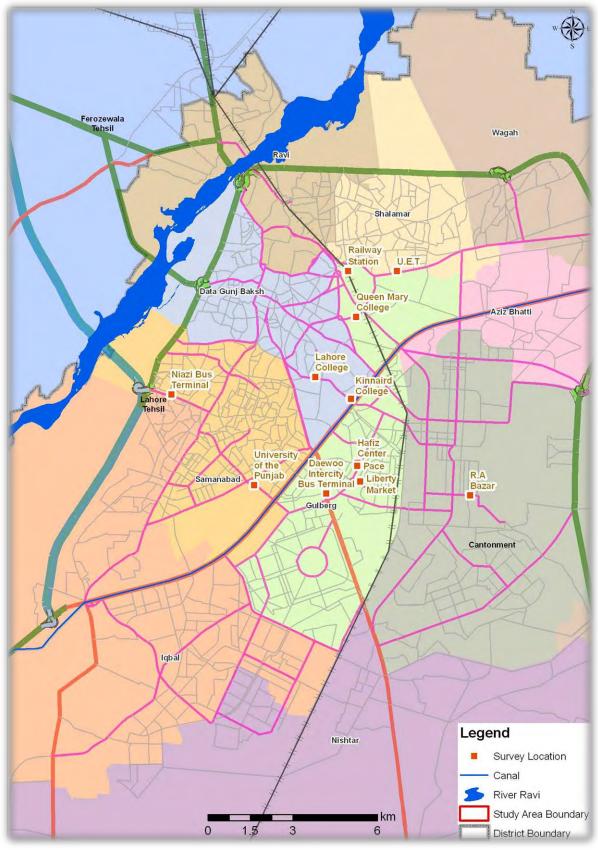
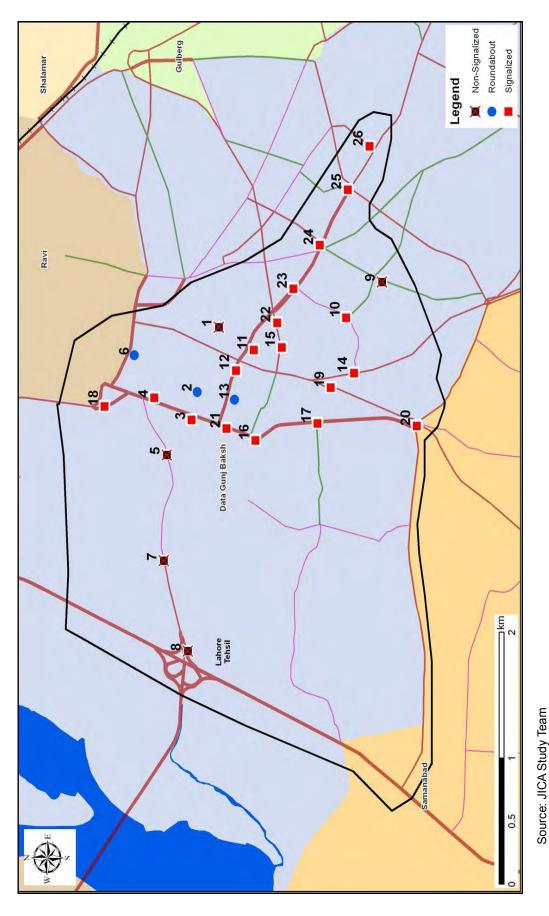




Figure 1.2.10 Locations of Willingness to Pay Survey Sites



1-24

| No. | Junction Name and Description              | Type of Junction |
|-----|--------------------------------------------|------------------|
| 1   | Neela Gumbad Chowk                         | Unsignalized     |
| 2   | Government College Chowk                   | Roundabout       |
| 3   | Outfall Road and Lower Mall                | Pre-Timed        |
| 4   | Rettigan Road and Lower Mall Road          | Pre-Timed        |
| 5   | Rettigan Road and Outfall Road             | Unsignalized     |
| 6   | Lohari Gate Chowk                          | Roundabout       |
| 7   | Rettigan Road and Abdul Qadir Jillani Road | Unsignalized     |
| 8   | Saggian Bypass and Outfall Road            | Unsignalized     |
| 9   | Mozang Road and Temple Road                | Unsignalized     |
| 10  | Mozang Road and Begum Road                 | Pre-Timed        |
| 11  | Mcload Road and Mall Road                  | Pre-Timed        |
| 12  | Anarkali Road and Mall Road                | Pre-Timed        |
| 13  | Town Hall Chowk                            | Roundabout       |
| 14  | Lytton Road and Begum Road                 | Pre-Timed        |
| 15  | Mclean Road and Bank Road Pre-Timed        |                  |
| 16  | Lower Mall Road and Mall Road              | Pre-Timed        |
| 17  | MAO College Chowk                          | Pre-Timed        |
| 18  | Bhatti Chowk                               | Pre-Timed        |
| 19  | Babri Chowk                                | Pre-Timed        |
| 20  | Chauburji                                  | Pre-Timed        |
| 21  | Post Master General Chowk                  | Pre-Timed        |
| 22  | YMCA Chowk – Mall Road                     | Pre-Timed        |
| 23  | Fane Road and Mall Road                    | Pre-Timed        |
| 24  | Regal Chowk                                | Pre-Timed        |
| 25  | Chairing Cross                             | Pre-Timed        |
| 26  | Awari Chowk                                | Pre-Timed        |

# Table 1.2.15 Details of Road Junctions Survey

#### 1.3 HIS Survey Implementation

Implementation of Household Interview Survey (HIS) includes the following steps;

- i. Questionnaire Design
- ii. Sampling
- iii. Preparation of Field Survey
- iv. Conduct of Field Survey
- v. Data Processing

However, for all other types of survey; steps include; define survey locations, design survey form, training of survey staff with respect to each survey type, field supervision for quality assurance, data coding, data encoding, and simultaneous range and logic checks to minimize error in data entry. HIS survey control procedure designed for successful implementation of filed survey is presented in Figure 1.3.1. Steps involved for the preparation, and conduct of HIS survey are described next.

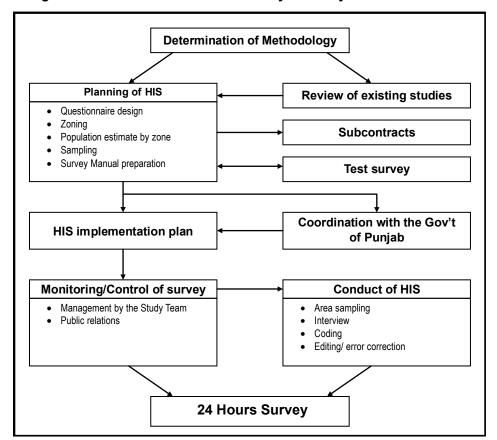



Figure 1.3.1 Household Interview Survey – Quality Control Procedure

Source: JICA Study Team

#### 1.3.1 HIS Questionnaire Design

Questionnaire design is a very complex process; which needs local cultural knowledge in order to define questions in a context; so that to enhance acceptance by general public and avoid any cultural or societal conflict. Some questions are highly unacceptable by certain societies around the world which could not be incorporated directly to every culture and may result in local public grievances, as an impediment in the implementation of HIS surveys.

Questionnaire was designed for its requirement to be used for the specific purpose of travel demand model development, calibration, and validation, and also for the alternative socio-economic development analysis. Basic contents covered information regarding the socio-economic condition of each household and its members, travel log of each household member 5 years or above, their trip details, and each household assessment of present traffic, transport situation and the environment in the Study Area.

Questions included were defined according to maximum interview time of 30 minutes per household with 3-5 members, social constraints and interview response time. A short (HIS) pilot survey was conducted in different parts of the Study Area to cover most classes of people to check responses. Later questionnaire was modified as necessary.

An Urdu (direct translation of English) version of questionnaire was also tested in the small pilot. It was found to be not acceptable in the field as people started reading the questionnaire, and argued unnecessarily. This was time consuming and a constraint to complete the survey within the scheduled time.

For simplicity and ease of handling; questionnaire was divided into five parts, and each part was printed on a different colour paper;

Part-0 – Survey Control Page – White Part-A – Household Information – Off White Part-B – Household Member Information – Blue Part-C – Daily Travel Log – Pink Part-D – People's opinion on Transport and Environment – Green

Detail contents of the Household Interview Survey are given in Table 1.3.1.

| lte                                                                    | em                                                                  | Content                                                                                                                                                                                                         |
|------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Socio-Economic<br>Information                                          | PART A: Household<br>Information                                    | <ul> <li>Accommodation Information</li> <li>Household Composition</li> <li>Household Income</li> <li>Vehicle Ownership</li> <li>Other Household Socio-economic Features</li> </ul>                              |
|                                                                        | PART B: Household<br>Member Information                             | <ul><li>Age, Sex, Education, Occupation, Income</li><li>Vehicle Availability</li></ul>                                                                                                                          |
| Trip Information                                                       | PART C:<br>Daily Travel Activity<br>Information                     | <ul> <li>Trip Purpose (including pick-up/ drop-off)</li> <li>Origin / Destination, Departure/ Arrival time/<br/>Transfer Point</li> <li>Travel Mode</li> <li>Travel Time, Cost, Fare, Tolls, Parking</li> </ul> |
| Assessment of Trip                                                     | PART C:<br>Assessment of Daily<br>Travel Activity<br>Information    | <ul> <li>Reason of mode choice (Time, Comfort,<br/>Convenience, Cost, Safety, Other choices etc.)</li> <li>Assessment of Trip (Time, Convenience, Safety,<br/>Other)</li> </ul>                                 |
| Assessment on<br>Present Traffic<br>Conditions and<br>Transport System | <b>PART D</b> : People's<br>Opinion of Transport<br>and Environment | <ul> <li>Traffic Congestion</li> <li>Traffic Safety (accident experience and opinions for traffic safety)</li> <li>Public Transport (Bus and other Modes)</li> <li>Transport Measures</li> </ul>                |

#### Table 1.3.1 Household Interview Survey – Contents

Source: JICA Study Team

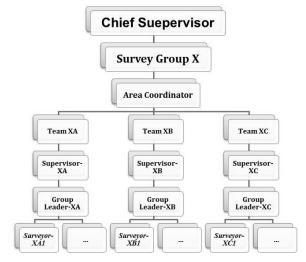
#### 1.3.2 Sampling

Sampling is concerned with selection of subset of individual households within a population. The main advantages of sampling are that; the cost is lower, data collection is faster, and since the data set is smaller, it is possible to ensure homogeneity and to improve the accuracy, and the quality of data. Sample calculation and its statistical reliability are discussed in detail in Section 1.2.1.

#### 1.3.3 Preparation of Field Survey

#### 1) Organization Set-up

The survey was conducted under the supervision of JICA Study Team. Following organization setup was maintained during the Survey. Organization set up of one survey group is given in Figure 1.3.2:


- a) Chief Supervisor: chief supervisor was responsible for overall survey activities and reporting works. Therefore, he/ she was in direct contact with JICA Study Team during the course of the surveys;
- **b)** Area Coordinators: area coordinator to assist chief supervisor in the course of the field survey and be responsible for survey activities in specific area, training of

their allocated teams, monitoring and control of overall progress of his/ her survey group;

- c) Supervisors: supervisors to assist area coordinator during the course of survey and mainly responsible for field reconnaissance, deployment of allocated teams, field survey supervision, and quality assurance;
- d) Group Leaders: group leaders of specific teams to assist their supervisors in the course of field survey, and be mainly responsible for logistics, sample control of his/ her teams, to ensure timely completion of field survey, quality checking of survey forms, handing over completed survey forms with short report to supervisor, and safe return of survey teams;
- e) Surveyors: surveyors were responsible for field work;
- f) Coders: coders were employed for the data coding. HIS Surveyors were preferred for the basic coding of HIS Survey Forms after the completion of HIS field survey. Whereas, for Zone Coding; Shortlisted Supervisors and Surveyors having better understanding and familiarity of the Study Area were employed.
- **g)** Chief Encoder: chief encoder was deployed to assist Chief Supervisor in the course of the data processing, and to ensure the quality of encoded data through different range and logic checks during data entry;
- h) Encoders: encoders were employed for data entry in a database using specially designed software.

The survey company has arranged insurance to secure the safety of the survey team. During the survey, members of the JICA Study Team and the staffs of the Transport Planning Unit, Transport Department visited the sites to oversee and monitor the conduct of the surveys at locations and often at random.

Completed survey forms and coded results were sent weekly to the JICA Study Team for inspection and additional quality checks. An office for the survey staff and the JICA Study Team working together on daily basis was arranged for close cooperation.



## Figure 1.3.2 Organizational Setup of One Survey Group

Source: JICA Study Team

## 2) Preparation of HIS Survey Manuals

JICA Study Team prepared detail Household Interview Survey manual; which explained each individual question with its objective, and brief explanation through practical interview examples.

Coding manual was prepared separately to give instructions to coding staff; so as to bring the consistency in all survey form coding and to avoid any type of systematic or random errors.

# 3) Preliminary/ HIS Pilot Survey

In order to get conformity of survey form in local context, and training core team of survey expert, a pilot survey was conducted with selected number of HIS Surveyors. They were trained before sending them to the field. This team was then used to further train the additional survey staff through properly organized, training workshops, and on the job training in the field with experienced surveyors.

HIS survey form was finalized based on the pilot survey analysis and recommendations field staff experience. The pilot survey was conducted in five different parts of the Study Area, representing mostly different societies. Those survey zones were Deenanath (Kasur District), Sharaqpur (Sheikhupura District), DHA Phase-8, Sabzazar, and Maraka (Lahore District).

# 4) Training of Surveyors

A temporary Human Resource Management (HRM) section was established to look after the recruitment and training of the survey staff. Rate of absentees were reduced by employing well educated staff at good wage rate. At the start of each survey training session, briefing was given by the Study Team on the key objectives of the Study, relevance of data to the future of the city; and for the motivation of survey staff. Training was conducted using actual survey forms and manuals by dividing the Staff into groups with each supervisor training the allocated staff.

First day of survey for new staff, after short training from HRM section; they have been sent to the field with experienced staff to get familiarity with the task at hand, understand respondent behaviour and responses. Later on; to cover small absentees in the staff, HRM section was continuously recruiting and training new survey staff.

#### 5) Management of the Field Survey

The following system was established for the field survey management.

- a) Field reconnaissance and sampling system;
- **b)** Surveyor assignment system;
- c) Check system for surveyors' dishonest activities;
- d) Schedule of management system;
- e) Progress control of HIS;

#### 6) Coordination with GoPb

JICA Study Team requested various stakeholder public authorities/ agencies through Transport Department, GoPb for issue of Authority Letters, Public Notices, in their jurisdiction and Staff I.D. Cards to develop public confidence to avoid any misunderstanding between general public and survey staff.

Transport Department, and City District Government of Lahore, Sheikhupura and Kasur had issued authority letters and public notices; whereas for Lahore Cantonment area, Lahore Cantonment Board (LCB) issued Authority Letter for the conduct of HIS survey in the vicinity. However, Askari-X housing society refused to acknowledge LCB authority and demanded for GHQ permission for sample interview survey.

HIS survey teams have to carry the copies of all such Authority Letters and Public Notices with them as proof of the Study and their own I.D. Cards for identification.

#### 7) Publicity Campaign for Surveys

There were many robbery cases reported, where persons entered the households in Lahore impersonating the surveyor of Pakistan Government's Income Support Program for verification of Household's eligibility for Income Support; as this program was advertised in Print and Electronic media.

In this regard, Survey Company recommended to JICA Study Team for avoiding advertising LUTMP Survey to circumvent any conflict or confusion with general public which might adversely affect the Surveys.

#### 1.3.4 Conduct of HIS Field Surveys

## 1) Field Reconnaissance

Supervisors were specially trained in each group to do the field reconnaissance. They visited survey area one day in advance accompanied with detailed survey zones maps containing all landmarks, major/ minor roads, and to divide survey zone into equal parts for random household sampling.

Each team consisted of two persons preferably male/ female. But this paring depended upon the field reconnaissance of the area to be surveyed. In some areas like Walled City, outskirts or rural areas of Sheikhupura and Kasur, and Lahore only male pairs were sent to avoid discrimination and safety reasons.

## 2) Survey Teams Deployment

Supervisors discussed plans with their team group leaders for their survey teams to the field one day in advance of reconnaissance survey, and deployment of selected marked sub-areas.

#### 3) Field Supervision

Supervisor to deploy teams and also check in field or vehicle or walk to check the forms completed by Surveyors. In case of suspicion of incomplete information, they have to go to specific Household for verification or completion of survey forms.

#### 4) Field Accomplishment

At the end of field survey, each team group leader had to ensure the completion of the sample allocated to that team, ensure quality, and prepare short summary table of households samples completed. Supervisor to cross check the forms, transport to survey office and to submit to databank in-charge.

#### 5) Field Dispatching

Supervisor and surveyors were instructed together at the drop – location of field, and once the survey is complete, they should immediately returned to same location. Supervisors then dispatch the teams from the field after successful completion of sampled households by each team.

#### 6) Quality Check

Supervisors have to submit accomplished survey forms to Quality Assurance team for checking, in case of discrepancies and incomplete forms were rejected and referred to Tail Team for re-survey. Each surveyor was instructed to take mobile/ or home phone number of the interviewed household; because in case of any member missing information it could be later pursued by the Tail Team over the phone for recovery of data.

## 7) Tail Team

Tail Team to verify the missing information of the survey forms by dedicated Phone-Calls in the evening time; when most of the respondents were likely to be at home. In case of incompletion, tail team had to re-survey the rejected samples, to complete sample size for that zone.

## 1.3.5 Data Processing

Data from complete coded survey forms were entered in excel format by the following procedures:

## (i) Editing:

Accomplished survey forms were checked again and corrected by editors, where possible.

#### (ii) Coding:

Coding was divided into two categories, basic coding for all fields and special coding for O/D Zones;

#### a) Basic Coding

Basic coding was done for the HIS form except, addresses;

#### b) Zone Coding

Selecting a zone code for different addresses itself was a very laborious task and depended on the understanding and familiarity of a person with the Study Area. Selected HIS Surveyors and Supervisors were recruited for this assignment. They were given special training provided with mapping and GIS System to assist with zone coding.

#### (iii) Encoding:

#### a) Software Development

Data Entry software was specifically developed for encoding of HIS data due to large volume. This was to minimize data entry discrepancies, and perform range and logic checks simultaneously. All possible logic checks were applied at this stage of

data processing which limited the entry of incorrect information into the database.

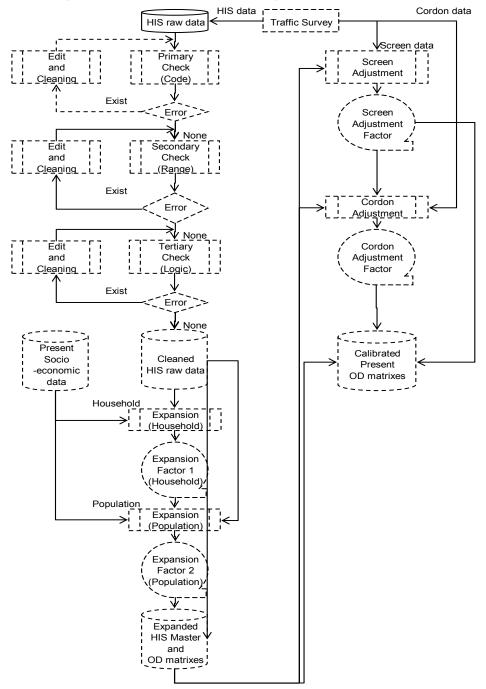
## (iv) Data Check:

## a) Printing and Manual Checking

Completed sample data of each survey zone was printed and 10 % was checked by different supervisors for verification against original survey forms.

## b) Complete Data Check and Data Merging

Each Data File was checked by a specially developed program to check the integrity of complete data set of a sample zone. Completely checked data files were then merged using a specially developed program to form the HIS database without introducing further errors. Volume-II – Chapter-2


# **TRANSPORT DEMAND FORECAST**

**FINAL REPORT** 

# 2. TRANSPORT DEMAND FORECAST

## 2.1 Preparation of Present (2010) O/D Trip Matrices

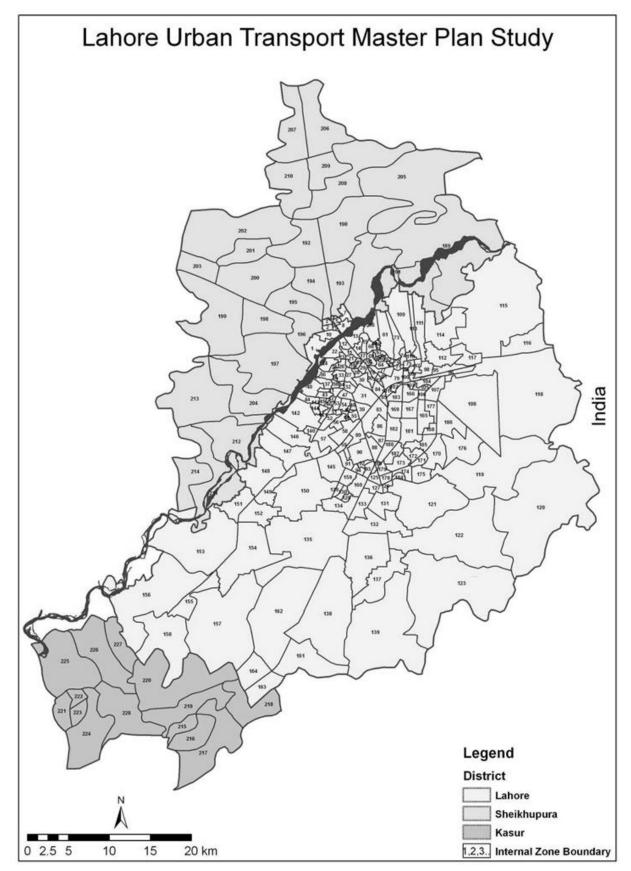
The master file of HIS and present O/D (Origin/ Destination) trip matrices are prepared, and validated based on a series of transport/traffic surveys. The process is complex and iterative. The complete process and the use of various transport and traffic surveys at various stages of the trip matrices development is given in Figure 2.1.1.





# 2.2 Study Area Zone System

The basis of any transport model development for travel demand analysis and forecast is the division of the Study Area in to homogenous sub-areas, collectively called a Zone System. The travel patterns are then represented as travel within or between zones. The size of zones usually determines the level of detail and accuracy of demand analysis/ forecasts. However, it is constrained by the level of accuracy of planning data and network detail available for each zone. Therefore a compromise is reached on how many traffic zones the Study Area could be divided into, to be able to achieve the demand forecast accuracy for the desired level of detail for the Study. The Study Area was divided into 228 internal zones, boundaries of which were mostly based on the Union Councils in each Town, Tehsil and District. In addition special areas such as bus and freight termini, railway stations and airport were given special zone numbers (229-290). The rest of the world outside the Study Area is given external zones, Special Generator Zones and External Zones.


#### 2.2.1 Internal Zones

Zones inside the Study Area are termed as Internal Zones. Lahore district has a total of 188 zones. Parts of Sheikhupura and Kasur Districts areas included in the Study have 26, and 14 zones respectively. Internal Zones are shown in Figure 2.2.1. Summary of internal zones is given in Table 2.2.1 and complete description of zone system is presented in **Annex-I**, **Volume-II**.

| No   | District          | Tehsil           | Town             | No of Zones |    |
|------|-------------------|------------------|------------------|-------------|----|
| 1    |                   |                  | Ravi             | 21          |    |
| 2    |                   |                  | Data Gunj Baksh  | 18          |    |
| 3    |                   |                  | Samanabad        | 20          |    |
| 4    |                   | Lahore City      | Shalamar         | 17          |    |
| 5    | Lahore            | (164)            | Gulberg          | 18          |    |
| 6    | (188)             | (,               | Aziz Bhatti      | 14          |    |
| 7    |                   |                  |                  | Wagah       | 12 |
| 8    |                   |                  | Nishtar          | 19          |    |
| 9    |                   |                  | Iqbal            | 25          |    |
| 10   |                   | Cantonment       | Cantonment       | 24          |    |
| 11   | Chailthumuna      | Ferozewala       | Ferozewala       | 16          |    |
| 12   | Sheikhupura       | Muridke          | Muridke          | 6           |    |
| 13   | (26)              | Sharaqpur Sharif | Sharaqpur Sharif | 4           |    |
| 14   | Kasur             | Kasur            | Kasur            | 6           |    |
| 15   | (14)              | Pattoki          | Pattoki          | 8           |    |
| 1-15 | The Study<br>Area | All              | All              | 228         |    |

Table 2.2.1 The Study Area - Internal Zones





## 2.2.2 Special Generator Zones

Zones which have facilities for mode change are termed as Special Generator Zones like bus termini, airport, railway stations, and truck terminals. The Study Area has 62 Special Generator zones, as summarized below by the type of activity:

- a) 1 Airport Domestic Pax
- b) 10 Intercity and Intra-city Bus Termini;
- c) 25 Railway Stations
- d) 10 Freight Terminals
- e) 16 Other current and proposed future facilities.

## 2.2.3 External Zones

Zones outside the Study Area are termed as External Zones. External zones are defined to capture people's travel to and from the Study Area. Areas adjacent to the Study Area are aggregated into expanding level of detail according to the distance from the Study Area, zone size of areas nearby are kept small, while areas father away are aggregated. There are 30 external zones, including one representing international travel by air. A complete list is given in Annex-I, Volume-II.

# 2.3 Transport Demand Models

#### 2.3.1 Introduction

LUTMP master plan study required a strategic travel demand model capable of forecasting implications of changes in future socio-economic framework, and to determine an optimal/ near optimal transport network which best serves the city's travel demand. A well used and internationally acceptable approach of using conventional 4-stage model was adopted. CUBE software package is a well known, state-of-the-art and internationally acceptable apply the demand forecast models. The remaining parts of this section document the components of the LUTMP travel demand model and broad forecast results.

# 2.3.2 Trip Production/ Generations Models

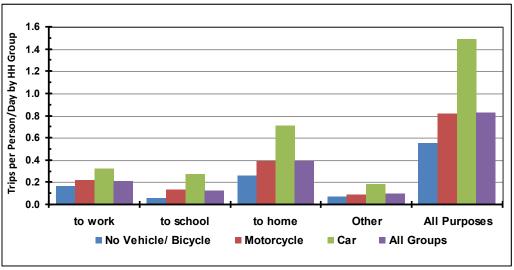
#### Household by Vehicle Ownership Category

This step of the four stage model aims to estimate the total travel demand (by all modes) by the Study Area zone, by household category and trip purpose. For this estimation trip rates are estimated from HIS for each category of household by trip purpose. For this purpose household were divided into three main categories: No-vehicle or Bicycle,

Motorcycle and car owning household. Household having multiple motorcycles are included in the motorcycle category, and those owing mixture of motorcycle(s) and car(s) are included in the car category. As there were insufficient number of households with just bicycles, and their income levels and other characteristics were analyzed, and found to be similar to the households owning no-vehicles these were therefore included in the No-vehicle owning category of household.

#### Trip Purpose Category

A number of trip purposes were observed and analysed and later aggregated to a level of detail which could be statistically significant to calibrate the models. For the final demand analysis only four trip purposes were adopted: to-work, to-school, to-home and all the remainder in 'Other' category


Trip production rates generally increase with vehicle ownership category, and differ by trip purpose. The estimated trip rates by household vehicle ownership category and trip purpose are give in Table 2.3.1 and compared in Figure 2.3.1.

# Table 2.3.1 Person Trip Rates by Household Vehicle Ownership Group and by Trip Purpose,2010

| Household                  |         | Trip Purpose |         |       |                 |  |
|----------------------------|---------|--------------|---------|-------|-----------------|--|
| Vehicle Ownership<br>Group | To-Work | To-School    | To-Home | Other | All<br>Purposes |  |
| No Vehicle/ Bicycle        | 0.163   | 0.058        | 0.259   | 0.071 | 0.552           |  |
| Motorcycle                 | 0.219   | 0.129        | 0.390   | 0.085 | 0.823           |  |
| Car                        | 0.323   | 0.273        | 0.714   | 0.182 | 1.492           |  |
| All Groups                 | 0.214   | 0.124        | 0.391   | 0.095 | 0.824           |  |

Source: JICA Study Team

# Figure 2.3.1 Person Trip Rates by Household Vehicle Ownership Group, and by Trip Purpose, 2010



Source: JICA Study Team

In future the car ownership is forecast to grow from 18 % in 2010 to 29 % and 43 % by 2020 and 2030, respectively. This is detailed in Socio-economic framework chapter. Share of motorcycle ownership is forecast to remain at almost similar levels as at present. Judging from the current correlation between household income and motorcycle ownership it can be seen that as the household incomes goes above certain threshold, then the households move from motorcycle ownership to car ownership. Therefore the forecast, that the proportion of motorcycle owning households in the Study Area would be similar to that in 2010. These trends are illustrated in Figure 2.3.2.



Figure 2.3.2 Forecast Changes in Household Vehicle Ownership

Note; The Values for 2020 and 2030 represent development Scenarios-2 and are similar to those for Scenarios 1 and 3, as at the Study Area level the population and income growth is same between all three scenarios. Source: JICA Study Team

The zonal trip productions/ generations are estimated using separate equations for each household group and trip purpose using statistically significant independent variables, and then are controlled to zonal level control using aggregate zonal equations. The individual and zonal control total equations are calibrated using 2010 trips and using only statistically significant independent variables. These trip production equations are given Table 2.3.2. There is one equation for each the 12 household vehicle ownership category and trip purpose.

The observed and modelled numbers of trips by each household vehicle ownership group and by trip purpose are compared in Table 2.3.3. The table reflects the errors in modelling, in most cases it is under 5%. In the forecast process the ratios of modelled to observed was carried forward as calibration factors in order to minimise error of over estimation of trips by each household group for each trip purpose. These trip control totals represent trips made by the Study Area residents within the Study Area. Trips made between the Study Area and the outside world is estimated separately and are not included here, and detailed elsewhere, under External Trip Models.

| Purpose   | Regression         | Ownership      | Variable                             | Coeffcient                          | t-value    | R <sup>2</sup>              |        |      |
|-----------|--------------------|----------------|--------------------------------------|-------------------------------------|------------|-----------------------------|--------|------|
|           |                    | CAR            | Night Time Car Owning Workers        | 1.1138                              | 28.7       | 0.78                        |        |      |
| Hom e to  | by Each<br>Group   | Motorcycle     | Night Time M/Cycle Owning Workers    | 0.8141                              | 38.6       | 0.87                        |        |      |
|           |                    | None/ Bicycle  | Night Time No-Veh Owning Workers     | 0.5823                              | 22.0       | 0.68                        |        |      |
| Work      |                    | CAR            | Night Time Car Owning Workers        | 1.0287                              | 7.5        |                             |        |      |
|           | Zonal<br>Aggregate | Motorcycle     | Night Time M/Cycle Owning Workers    | 0.9964                              | 9.0        | 0.84                        |        |      |
|           |                    | None/ Bicycle  | Night Time No-Veh Owning Workers     | 0.4253                              | 3.9        |                             |        |      |
|           |                    | CAR            | Night Time Car Owning Students       | 2.3450                              | 31.6       | 0.8                         |        |      |
|           | by Each<br>Group   | M/Cycle        | Night Time M/Cycle Owning Students   | 1.3843                              | 33.6       | 0.8                         |        |      |
| Hom e to  |                    | None/ Bicycle  | Night TimeNo-Veh Owning Students     | 0.6710                              | 13.7       | 0.4                         |        |      |
| School    |                    | CAR            | Night Time Car Owning Students       | 2.2686                              | 12.2       |                             |        |      |
|           | Zonal<br>Aggregate | Motorcycle     | Night Time M/Cycle Owning Students   | 1.2310                              | 6.2        | 0.84                        |        |      |
|           |                    | None/ Bicycle  | Night Time No-Veh Owning Students    | 1.0586                              | 4.4        |                             |        |      |
|           | by Each<br>Group   |                | Students Day Time - Total            | 0.6081                              | 10.7       |                             |        |      |
|           |                    | CAR            | Employment Day Time - Total          | 0.3372                              | 13.0       | 0.78                        |        |      |
|           |                    |                | Students Day Time - Total            | 0.4898                              | 11.4       |                             |        |      |
| Return to |                    |                | Group                                | Group                               | Motorcycle | Employment Day Time - Total | 0.5639 | 28.8 |
| Home      |                    | New of Bissels | Students Day Time - Total            | 0.0651                              | 1.9        |                             |        |      |
|           |                    | None/ Bicycle  | Employment Day Time - Total          | 0.3624                              | 23.2       | 0.8                         |        |      |
|           | Zonal              |                | Students Day Time - Total            | 1.1629                              | 11.9       |                             |        |      |
|           | Aggregate          | ALL            | Employment Day Time - Total          | 1.2635                              | 28.4       | 0.9                         |        |      |
|           |                    | CAR            | Night Time Car Owning Population     | 0.1629                              | 17.0       | 0.5                         |        |      |
|           | by each<br>Group   | Motorcycle     | Night Time M/Cycle Owning Population | 0.0818                              | 29.7       | 0.8                         |        |      |
| Other     |                    | None/ Bicycle  | Night Time No-Veh Owning Population  | 0.0616                              | 12.0       | 0.3                         |        |      |
| Other     |                    | CAR            | Night Time Car Owning Population     | 0.1946                              | 7.5        |                             |        |      |
|           | Zonal<br>Aggregate | Motorcycle     | Night Time M/Cycle Owning Population | 0.0784                              | 3.7        | 0.6                         |        |      |
|           |                    |                | None/ Bicycle                        | Night Time No-Veh Owning Population | 0.0621     | 3.1                         |        |      |

Table 2.3.2 Calibrated Trip Production/ Generation Models

| Purpose   | Ownership     | Observed  | Modelled  | M/O  |
|-----------|---------------|-----------|-----------|------|
|           | CAR           | 525,900   | 493,200   | 0.94 |
| Home to   | Motorcycle    | 951,600   | 979,800   | 1.03 |
| Work      | None/ Bicycle | 646,200   | 613,900   | 0.95 |
|           | Total         | 2,123,700 | 2,086,900 | 0.98 |
|           | CAR           | 444,600   | 407,700   | 0.92 |
| Home to   | M/Cycle       | 558,000   | 555,500   | 1.00 |
| School    | None/ Bicycle | 230,800   | 218,200   | 0.95 |
|           | Total         | 1,233,400 | 1,181,400 | 0.96 |
|           | CAR           | 1,162,800 | 1,432,400 | 1.23 |
| Return to | M/Cycle       | 1,694,800 | 1,944,600 | 1.15 |
| Home      | None/ Bicycle | 1,024,500 | 1,036,200 | 1.01 |
|           | Total         | 3,882,100 | 4,413,200 | 1.14 |
|           | CAR           | 296,400   | 285,800   | 0.96 |
| Other     | Motorcycle    | 368,100   | 366,800   | 1.00 |
| Other     | None/ Bicycle | 281,700   | 250,200   | 0.89 |
|           | Total         | 946,200   | 902,800   | 0.95 |
|           | CAR           | 2,429,700 | 2,619,100 | 1.08 |
| All       | Motorcycle    | 3,572,500 | 3,846,700 | 1.08 |
| Purposes  | None/ Bicycle | 2,183,200 | 2,118,500 | 0.97 |
|           | Total         | 8,185,400 | 8,584,300 | 1.05 |

#### Table 2.3.3 2010 Observed and Modelled Trips by Household Group and by Trip Purpose

Source: JICA Study Team

#### 2.3.3 Trip Attractions

Zonal trip attraction models are even more complex to calibrate. In case of Lahore no land use data in the form of employment by category (primary, secondary and tertiary or by Industrial classification), school places data or other similar variables, like industrial / shopping floor space is available. Therefore, day/ night population from HIS as a proxy for above variables was estimated to derive trip attraction rates. These rates were used to estimate to get trip attractions by zone and then these totals are controlled to Trip productions estimated above. The trip attraction models are summarised below in Table 2.3.4.

| Purpose   | Regression                         | Ownership     | Variable         | Coeffcient | t-value | R <sup>2</sup> |
|-----------|------------------------------------|---------------|------------------|------------|---------|----------------|
|           |                                    | CAR           | Employment Day   | 0.27390    | 24.7    | 0.73           |
| Home to   | for each<br>e to Group             | Motorcycle    | Employment Day   | 0.44561    | 41.7    | 0.88           |
| Work      |                                    | None/ Bicycle | Employment Day   | 0.24567    | 32.9    | 0.83           |
|           | Aggregate                          | All           | Employment Day   | 0.96519    | 45.1    | 0.90           |
|           |                                    | CAR           | Student Day      | 0.54393    | 28.6    | 0.78           |
| Home to   | for each<br>Group                  | Motorcycle    | Student Day      | 0.54555    | 40.7    | 0.88           |
| School    |                                    | None/ Bicycle | Student Day      | 0.18142    | 16.8    | 0.56           |
|           | Aggregate                          | ALL           | Student Day      | 1.27090    | 43.5    | 0.89           |
|           |                                    | CAR           | Population Night | 0.11035    | 13.4    | 0.44           |
| Return to | for each<br>Group                  | Motorcycle    | Population Night | 0.17237    | 30.0    | 0.80           |
| Home      |                                    | None/ Bicycle | Population Night | 0.09996    | 14.8    | 0.49           |
|           | Aggregate                          | ALL           | Population Night | 0.38269    | 30.6    | 0.80           |
|           |                                    | CAR           | Employment Day   | 0.12026    | 21.5    | 0.67           |
| 04        | for each<br>Other <sup>Group</sup> | Motorcycle    | Employment Day   | 0.13744    | 34.3    | 0.84           |
| Other     |                                    | None/ Bicycle | Employment Day   | 0.08711    | 11.7    | 0.38           |
|           | Aggregate                          | ALL           | Employment Day   | 0.34481    | 28.6    | 0.78           |

 Table 2.3.4 Trip Attraction Model Calibration

As the zonal trips are controlled to trip production, the lower accuracy of trip attraction models does not affect the over demand levels.

# 2.3.4 Trip Distribution Models

Twelve doubly constrained Gravity Models were calibrated, one for each of the three household vehicle ownership groups, and by for four trip purposes. The general form of the model may be described as:

Tij= ai \* bj \*  $\alpha$  \* EXP (- $\beta$  \*(*Cij*)); where:

Tij = trips between Zone i and Zone j;

*Cij*= Generalised cost of travel between Zone i and Zone j;

 $\alpha \& \beta$  is the calibrated parameter; Separate  $\beta$  values were calibrated for Inter-zonal trips i.e. Tij for i#j and for Intra-zonal trips i.e. for all i=j.

ai & bj are the balancing factors estimated through iterative process, with the following constraints:

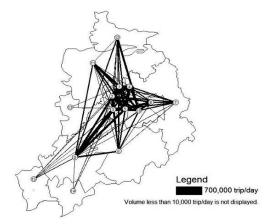
i)  $\Sigma Tij = Gi$  (sum overall j; and ii)  $\Sigma Tij = Aj$  (sum over all i); and Gi and Aj are production and attractions estimated at trip production and attraction stage of the models.

Table 2.3.5 details the model calibration parameters and simplified comparisons of observed and modeled values.

| Trip         |                      |     | zonal Trips<br>I=j | Inter-zonal<br>Trips (i#j) | Av. Trip Length (km) |          |
|--------------|----------------------|-----|--------------------|----------------------------|----------------------|----------|
| Purpose      | Group                | α   | β                  | β                          | Observed             | Modelled |
|              | No Vehicle + Bicycle | 5.6 | 0.026              | 0.015                      | 14.3                 | 14.3     |
| To Work      | Motorcycle           | 5.2 | 0.035              | 0.006                      | 10.5                 | 10.3     |
|              | Car                  | 7.8 | 0.0060             | 0.004                      | 14.4                 | 14.2     |
| Та           | No Vehicle + Bicycle | 3.3 | 0.052              | 0.003                      | 9.9                  | 9.9      |
| To<br>School | Motorcycle           | 4.2 | 0.058              | 0.003                      | 7.6                  | 7.5      |
|              | Car                  | 6.4 | 0.0192             | 0.012                      | 10.2                 | 10.2     |
|              | No Vehicle + Bicycle | 7.6 | 0.032              | 0.022                      | 14.1                 | 14.2     |
| To Home      | Motorcycle           | 5.8 | 0.040              | 0.007                      | 9.5                  | 9.2      |
|              | Car                  | 9.5 | 0.0080             | 0.007                      | 13.3                 | 13.0     |
|              | No Vehicle + Bicycle | 5.5 | 0.026              | 0.030                      | 17.4                 | 17.1     |
| Other        | Motorcycle           | 6.0 | 0.035              | 0.006                      | 10.3                 | 9.8      |
|              | Car                  | 9.0 | 0.0055             | 0.007                      | 15.4                 | 15.1     |

#### Table 2.3.5 Gravity Model Calibrated Parameters by Household Group and by Trip Purpose

Source: JICA Study Team


#### Table 2.3.6 Forecast Average Trip Length by Trip Purpose

| Trip      |      | Trip Length (km)(2010 Network) |                    |                    |                    |                    |                    |  |  |
|-----------|------|--------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|
| Purpose   | 2010 | 2020<br>Scenario 1             | 2030<br>Scenario 1 | 2020<br>Scenario 2 | 2030<br>Scenario 2 | 2020<br>Scenario 3 | 2030<br>Scenario 3 |  |  |
| To Work   | 11.8 | 12.8                           | 13.5               | 13.0               | 13.9               | 14.6               | 14.5               |  |  |
| To School | 8.4  | 9.1                            | 8.3                | 10.0               | 8.6                | 9.3                | 7.6                |  |  |
| To Home   | 10.6 | 11.4                           | 11.8               | 11.8               | 12.1               | 12.9               | 12.8               |  |  |
| Other     | 13.5 | 13.9                           | 13.8               | 13.9               | 14.2               | 15.0               | 15.7               |  |  |

Source: JICA Study Team

Figures 2.3.3, 2.3.4 and 2.3.5 show estimated trip distribution patterns for total trips for 2010, 2020 and 2030 for all three scenarios. Although the pattern of trip distribution seems similar among urban development scenarios, the details show considerable changes, e.g. by trip purpose and by traffic zone pair.

#### Figure 2.3.3 Trip Distribution, All Purpose, 2010



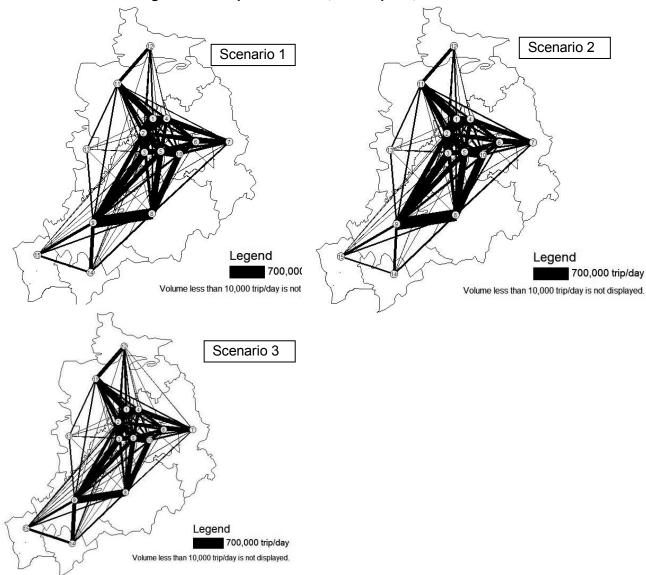
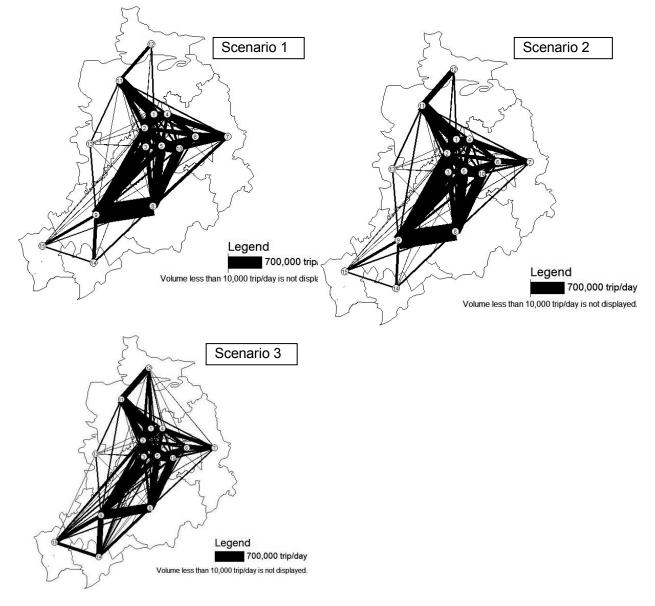




Figure 2.3.4 Trip Distribution, All Purpose, 2020



#### Figure 2.3.5 Trip Distribution, All Purpose, 2030

Source: JICA Study Team

# 2.3.5 Modal Split Models

Modal split models were developed and calibrated for each of the three household vehicle ownership groups, i.e. No vehicle/ bicycle, motorcycle and car ownership for all trip purposes combined and for Inter-zonal trips only. It should be noted that at this stage of the modelling all intra-zonal trips are removed and only Inter-zonal trips are subjected to mode-choice models. Walk trips have been extracted at the outset. These are dealt with in separate walk model and are no longer part of the general modal split models.

#### 1) Modal Split Models for Trips by Households with No Vehicle/ Bicycle

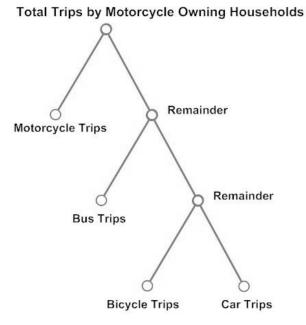
Regression models were developed for this group to extract trips by (travel mode) Bicycle, Motorcycle, and Car. These trips were then subtracted from the total trips, and remainder trips are deemed to use public transport (i.e. Bus or paratransit modes like Rickshaws/ Qingqi). Model developed, calibrated and used were based on distance travelled between zone i and j. (i.e. Dij)

- a) % Share of Bicycle Trips = 0.23 0.0559 Ln(Dij) (R<sup>2</sup>=0.70)
- b) % Share of Motorcycle Trips =  $0.127 0.0287 \text{ Ln}(\text{Dij}) (\text{R}^2=0.60)$
- c) % Share of Car Trips =  $0.144 0.0372 \ln(\text{Dij}) (\text{R}^2=0.40)$
- d) Bus Share is the remainder of the trips in the trip matrix after extraction of above three modes. Split between bus and paratransit is carried out in the trip assignment model.

All three models (a, b and c) may not appear statistically very strong, but in all cases the sign of the constants and coefficients are sensible, and do show that as the distance increases the % trips decreases by that mode. Table 2.3.7 below presents the calibration results and trips for 2020 and 2030 Scenario 2.

|                              | No-vehicle/ | No-vehicle/ Bicycle Owning Household Trips by Mode of Travel |         |                 |           |  |  |
|------------------------------|-------------|--------------------------------------------------------------|---------|-----------------|-----------|--|--|
| Тгір Туре                    | Bicycle     | Motorcycle                                                   | Car     | Bus and<br>Para | Total     |  |  |
| Observed (Inter+Intra) Zonal | 279,000     | 129,200                                                      | 49,200  | 1,725,800       | 2,183,200 |  |  |
| Observed Intra-zonal         | 114,000     | 32,500                                                       | 6,600   | 249,100         | 402,200   |  |  |
| Observed Inter-zonal         | 165,000     | 96,700                                                       | 42,600  | 1,476,700       | 1,781,000 |  |  |
| Observed % by Mode Share     | 9.3         | 5.4                                                          | 2.4     | 82.9            | 100.      |  |  |
| Modelled Inter-Zonal         | 177,100     | 107,800                                                      | 31,400  | 1,465,300       | 1,781,600 |  |  |
| Modelled % by Mode Share     | 9.9         | 6.0                                                          | 1.8     | 82.3            | 100.      |  |  |
| Trips (Modelled– Observed)   | +13,100     | +11,100                                                      | -11,200 | -7,400          | 0.        |  |  |
| % Difference                 | +7.9        | +11,.4                                                       | -26.3   | -0.5            | 0.        |  |  |

Table 2.3.7 Non-Vehicle/ Bicycle Owning Household Modal Split Model Calibration Results


Source: JICA Study Team

It can be seen that model performs well for the Bus/ Para share, which is by far the largest share. Hence the model was considered to be suitable for use in the forecast years. In case of modes other than bus are relatively very small, and as compared with the observed (rather 'lumpy') matrices, it would be very difficult to get better calibration results.

#### 2) Modal Split Models for Trips for Motorcycle Owning Households

In the case of Motorcycle owing households the situation is more complex, and the cost of travel by alternative mode affects the mode choice. Therefore, a hierarchical logit mode choice model was developed. Note that the mode choice at each stage is based on the relative generalised cost differences between the selected mode and the difference of the next mode of choice in the hierarchy. The general form of the logit model is schematically shown in Figure 2.3.7.

#### Figure 2.3.6 Structure of Hierarchical Logit Model (Motorcycle Owning Households)



Source: JICA Study Team

The calibrated parameters are tabulated below, and in all cases the 't' statistics for both parameters were statistically significant.

| Motorcy   | vcle Ownina | Household   | Hierarchical  | l oait Mode | Choice Models |
|-----------|-------------|-------------|---------------|-------------|---------------|
| 111010101 |             | 11000011010 | incia oniouri | Logic mouc  |               |

| Mode Choice Extracted | Remainder        | Constant | Coefficient |
|-----------------------|------------------|----------|-------------|
| Motorcycle Trips      | Bus+Bicycle+Car  | -0.4437  | 0.6546      |
| Bus Trips             | Bicycle+Car      | -1.3383  | 0.4985      |
| Bicycle Trips         | Car as remainder | -0.6639  | -0.8158     |

#### Table 2.3.8 Motorcycle Owning Household Modal Split Model Calibration Results

|                              | Motorcycle Owning Household Trips by Mode of Travel |            |        |                 |           |  |
|------------------------------|-----------------------------------------------------|------------|--------|-----------------|-----------|--|
| Trip Type                    | Bicycle                                             | Motorcycle | Car    | Bus and<br>Para | Total     |  |
| Observed (Inter+Intra) Zonal | 172,600                                             | 2,190,000  | 93,400 | 1,116,400       | 3,572,400 |  |
| Observed Intra-zonal         | 74,800                                              | 473,300    | 15,100 | 174,500         | 737,700   |  |
| Observed Inter-zonal         | 97,800                                              | 1,716,700  | 78,300 | 941,900         | 2,834,700 |  |
| Observed % by Mode Share     | 3.5                                                 | 60.5       | 2.7    | 33.3            | 100.      |  |
| Modelled Inter-Zonal         | 96,100                                              | 1,716,900  | 75,100 | 946,600         | 2,834,700 |  |
| Modelled % by Mode Share     | 3.4                                                 | 60.6       | 2.6    | 33.4            | 100.      |  |
| Trips (Modelled – Observed)  | -1,100                                              | +200       | -3,200 | +4,100          | 0.        |  |
| % Difference                 | -1.1%                                               | 0.0%       | -4.1%  | 4.4%            | 0.        |  |

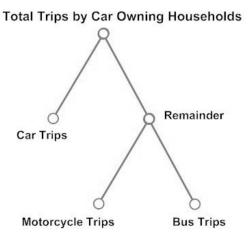

Source: JICA Study Team

Table 2.3.8 demonstrates that the synthesised models perform well and reproduces the observed models almost exactly. In cases, where there is larger % difference, the absolute number of trips is small.

## 3) Modal Split Models for Car Owning Household Trips

Car owing households generally tend to travel by car and make maximum use of their investment in vehicle. The usage of car is also higher as occupancy can be higher than motorcycle. Therefore the number of trips made by modes other than car, by car owning households tends to be small. Here it should be noted that if a household owns one or more cars, or one or more motorcycles as well, such household is treated as a car owning household. The trips made by motorcycle may be using the motorcycle the household owns. Therefore, same as for motorcycle owing households a hierarchical logit mode choice model was developed. However, in this case the choice of Bicycle was so small that it was considered as not a realist choice of mode by the Car Owning household, with the exception of few leisure trips on Sunday afternoon! Note that the mode choice at each stage is based on the relative generalised cost differences between the selected mode and the next choice of mode of the remaining modes in the hierarchy. The general form of the logit model is schematically shown in Figure 2.3.8.

## Figure 2.3.7 Structure of Hierarchical Logit Model (Car Owning Households)



Source: JICA Study Team

The calibrated parameters are tabulated below, and in all cases the 't' statistics for both parameters were statistically significant. Modal calibration results are summarized in Table 2.3.9.

| Mode Choice Extracted | Remainder        | Constant | Coefficient |
|-----------------------|------------------|----------|-------------|
| Car Trips             | Motorcycle + Bus | 0.0973   | -0.3157     |
| Motorcycle Trips      | Bus as remainder | -0.0200  | 1.0365      |

|                              | Car Owning Household Trips by Mode of Travel |            |           |                 |           |  |
|------------------------------|----------------------------------------------|------------|-----------|-----------------|-----------|--|
| Trip Туре                    | Bicycle                                      | Motorcycle | Car       | Bus and<br>Para | Total     |  |
| Observed (Inter+Intra) Zonal | 31,500                                       | 538,100    | 1,397,900 | 462,100         | 2,429,600 |  |
| Observed Intra-zonal         | 15,200                                       | 99,900     | 140,300   | 71,700          | 327,100   |  |
| Observed Inter-zonal         | 16,300                                       | 438,200    | 1,257,600 | 390,400         | 2,102,500 |  |
| Observed % by Mode Share     | 0.8                                          | 20.8       | 59.8      | 18.6            | 100.      |  |
| Modelled Inter-Zonal         | Add to bus                                   | 438,300    | 1,257,600 | 406,600         | 2,102,500 |  |
| Modelled % by Mode Share     | n/a                                          | 20.8       | 59.8      | 19.3            | 99.9.     |  |
| Trips (Modelled – Observed)  | n/a                                          | +100       | 0         | +16,200         | 0.        |  |
| % Difference                 | n/a                                          | 0.0%       | 0.0%      | 4.1%            | 0.        |  |

## Table 2.3.9 Car Owning Household Modal Split Model Calibration Results

Source: JICA Study Team

It can be seen that model fits well and reproduces the observed models almost exactly. In cases, where there is somewhat larger % difference, the absolute number of trips is small.

The result of model application is shown in Tables2.3.10, 2.3.11 and 2.3.12 for 2010, 2020 and 2030, respectively.

|                      | Inter-Zona                 | Inter-Zonal Trips by Household Vehicle Ownership Group |           |                |               |  |  |  |  |
|----------------------|----------------------------|--------------------------------------------------------|-----------|----------------|---------------|--|--|--|--|
| Mode of<br>Travel    | No<br>Vehicle /<br>Bicycle | M/cycle                                                | Car       | Total<br>Trips | Mode<br>Share |  |  |  |  |
| Bicycle              | 177,100                    | 96,100                                                 | 0         | 273,200        | 4.1%          |  |  |  |  |
| Motorcycle           | 107,800                    | 1,716,900                                              | 438,300   | 2,263,000      | 33.7%         |  |  |  |  |
| Car                  | 31,400                     | 75,100                                                 | 1,257,600 | 1,364,100      | 20.3%         |  |  |  |  |
| Bus and Para transit | 1,465,300                  | 946,000                                                | 406,600   | 2,817,900      | 41.9%         |  |  |  |  |
| Total                | 1781,600                   | 2,2834,700                                             | 2,102,500 | 6,718,200      | 100.%         |  |  |  |  |

Table 2.3.10 Modelled Number of Trips by Mode ('000) and Mode Share, 2010

Source: JICA Study Team

#### Table 2.3.11 Modelled Number of Trips by Mode ('000) and Mode Share, 2020

|                        | 2010           |               | Inter-zonal Trips by Development Scenario, 2020 |               |                |               |                |               |  |
|------------------------|----------------|---------------|-------------------------------------------------|---------------|----------------|---------------|----------------|---------------|--|
| Mode of                |                |               | Scenario-I                                      |               | Scenario-II    |               | Scenario-III   |               |  |
| Travel                 | Total<br>Trips | Mode<br>Share | Total<br>Trips                                  | Mode<br>Share | Total<br>Trips | Mode<br>Share | Total<br>Trips | Mode<br>Share |  |
| Bicycle                | 273,200        | 4.1 %         | 239,600                                         | 2.4 %         | 239,700        | 2.4 %         | 233,000        | 2.3 %         |  |
| Motorcycle             | 2,263,000      | 33.7 %        | 3,133,000                                       | 31.9 %        | 3,126,500      | 31.6 %        | 3,147,500      | 31.1 %        |  |
| Car                    | 1,364,100      | 20.3 %        | 3,032,700                                       | 30.9 %        | 3,074,400      | 31.1 %        | 3,259,200      | 32.2 %        |  |
| Bus and<br>Paratransit | 2,817,900      | 41.9 %        | 3,415,000                                       | 34.8 %        | 3,455,600      | 34.9 %        | 3,474,500      | 34.4 %        |  |
| Total                  | 6,718,200      | 100. %        | 9,820,300                                       | 100. %        | 9,896,200      | 100. %        | 10,114,20<br>0 | 100. %        |  |

| Mode of                 | 2010<br>Total Trips Mode<br>Share |        | Inter-Zonal Trips by Development Scenario, 2030 |               |             |               |              |               |  |  |
|-------------------------|-----------------------------------|--------|-------------------------------------------------|---------------|-------------|---------------|--------------|---------------|--|--|
|                         |                                   |        | Scenario-I                                      |               | Scenario-II |               | Scenario-III |               |  |  |
| Travel                  |                                   |        | Total Trips                                     | Mode<br>Share | Total Trips | Mode<br>Share | Total Trips  | Mode<br>Share |  |  |
| Bicycle                 | 273,200                           | 4.1 %  | 188,600                                         | 1.3 %         | 184,200     | 1.3 %         | 192,600      | 1.4 %         |  |  |
| Motorcycle              | 2,263,000                         | 33.7 % | 3,860,300                                       | 27.5 %        | 3,886,700   | 27.0 %        | 3,595,700    | 25.8 %        |  |  |
| Car                     | 1,364,100                         | 20.3 % | 6,162,700                                       | 43.9 %        | 6,478,800   | 45.0 %        | 6,583,600    | 47.2 %        |  |  |
| Bus and<br>Para transit | 2,817,900                         | 41.9 % | 3,833,300                                       | 27.3 %        | 3,847,500   | 26.7 %        | 3,580,800    | 25.7 %        |  |  |
| Total                   | 6,718,200                         | 100. % | 14,044,900                                      | 100. %        | 14,397,200  | 100. %        | 13,952,700   | 100. %        |  |  |

Table 2.3.12 Modelled Number of Trips by Mode ('000) and Mode Share, 2030

It can be seen that in do-nothing scenario the mode share of bicycle would decline by a percentage point on average under all scenarios to just over 1% by 2030. In other developed cities cycling is encouraged and mode share of cycle is on the increase particularly with increase in the provision of cycle lanes and priority to cyclists at crossroads.

As far motorized trips are concerned, in case of do nothing scenario, the trend shows a declining use of motorcycles and a considerable decline in the share of public transport in favour of car. During scenario development stage these facts will be addressed further.

#### 2.3.6 Walk Trips

The above modelling covered the Study Area mechanized/ motorized mode trips. Walk trips were also observed, recorded, and analyzed. It was noticed that in outer areas there are some exceptionally long walk trips. It was considered that it is impossible for anyone to walk such distances on regular basis. Hence all inter-zonal trips above 10km were deemed to be made by the same mode vehicle as owned by that household owns. In case No-vehicle owning households these trips (105,000) were included in the public transport (Bus/ paratransit) mode, 60,400 trips by motorcycle, and 7,200 trips by Car.

Based on the changes in socio-economic framework from 2010 to 2020 and 2030 the walk trips transferred to motorized mode were forecast. Table 2.3.13 below summarizes the walk trips for 2010 and 2020 and 2030 in Table 2.3.14.

| Description            | 2010           |                      |                      |                           |  |  |  |
|------------------------|----------------|----------------------|----------------------|---------------------------|--|--|--|
| HH Group               | Total<br>Trips | Intra-Zonal<br>Trips | Inter-zonal<br>Trips | Inter-zonal<br>Trips>10km |  |  |  |
| No vehicle/<br>Bicycle | 2,012,400      | 1,673,600            | 338,800              | 105,000                   |  |  |  |
| Motorcycle             | 1,528,100      | 1,250,900            | 277,200              | 60,400                    |  |  |  |
| Car                    | 286,200        | 240,400              | 45,800               | 7,200                     |  |  |  |
| Total                  | 3,826,700      | 3,164,900            | 661,800              | 172,600                   |  |  |  |

#### Table 2.3.13 2010 Observed Walk Trips

|                        | Observed Walk Trips and Forecast for 2020 and 2030 |                    |                    |                    |                    |                    |                    |  |  |
|------------------------|----------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|--|
| HH Group               | 2010                                               | 2020<br>Scenario 1 | 2030<br>Scenario 1 | 2020<br>Scenario 2 | 2030<br>Scenario 2 | 2020<br>Scenario 3 | 2030<br>Scenario 3 |  |  |
| No Vehicle/<br>Bicycle | 338,800                                            | 249,200            | 150,700            | 252,300            | 154,100            | 249,500            | 160,700            |  |  |
| Motorcycle             | 277,200                                            | 295,500            | 304,700            | 298,100            | 304,700            | 300,000            | 308,000            |  |  |
| Car                    | 45,800                                             | 100,500            | 170,800            | 102,000            | 170,800            | 100,000            | 163,000            |  |  |
| Total                  | 661,800                                            | 645,200            | 626,200            | 652,400            | 629,600            | 649,500            | 631,700            |  |  |

#### Table 2.3.14 2010 Inter-Zonal Observed Walk Trips and Forecasts for 2020, 2030

Source: JICA Study Team

## 2.3.7 External Trips

The above modelling covered internal the Study Area trips – i.e. those trips with both ends in the Study Area zones (1~228). Trips with one or both end outside the Study were modelled using the observed trips (from the LUTMP cordon surveys) as seed. The forecast methodology differed from internal trips. The methodology adopted for the external trip distribution was:

For Internal-to-external and external-to-internal trips 'Fratar' technique was used to get the relative growth in trips in the internal to the Study Area. For external-external (through) trips straight growth factoring based on growth in the Study Area GDP and trip type elasticity was used. The resultant forecast trip totals are shown in Table 2.3.15.

| Mode    | 2010    | 2020      | Growth<br>over 2010 | 2030      | Growth<br>over 2010 |
|---------|---------|-----------|---------------------|-----------|---------------------|
| M/Cycle | 37,100  | 45,100    | 21.6 %              | 45,300    | 22.1 %              |
| Car     | 216,900 | 367,500   | 69.4 %              | 575,600   | 165.4 %             |
| Bus     | 586,900 | 647,000   | 10.2 %              | 760,100   | 29.5 %              |
| Total   | 840,900 | 1,059,600 | 26.0 %              | 1,381,000 | 64.2 %              |

 Table 2.3.15 2010 Observed and 2020 and 2030 Forecast External Person Trips

Source: JICA Study Team

#### 2.3.8 Goods Vehicle Trips

All non-passenger carrying vehicles were separately classified. After initial analysis these were aggregated to three groups:

- i) Pick-up Trucks these are open back 2-axle vehicles or closed back delivery trucks, used mostly for small goods delivery and distribution, ambulances, etc
- ii) 2 Axle Trucks this is the most common type of trucks used in Pakistan.
- All other Vehicles (these include large trucks, construction vehicles, Tractors, tractor trolleys, other agriculture vehicles, animal drawn carts etc)

It is known to the Study Team that trucks are not allowed on most city roads during the day. However, delivery pick-up vans/ trucks are used mostly during along with animal drawn carts etc. These vehicles are included in the modeling process. Their forecast was dependent on changes in GDP. Demand elasticity was estimated and the forecast was made using the growth in GDP and the demand elasticity. The observed 2010 and forecast number of trips are summarized in Table 2.3.16 below.

| Vehicle Type   | 2010    | 2020    | Growth<br>over 2010 | 2030    | Growth<br>over 2010 |
|----------------|---------|---------|---------------------|---------|---------------------|
| Pickup         | 49,600  | 65,700  | 32.5 %              | 71,600  | 44.4 %              |
| Trucks         | 44,100  | 83,400  | 89.1 %              | 149,400 | 238.8 %             |
| Other          | 58,100  | 68,000  | 11.0 %              | 87,700  | 50.9 %              |
| Total Vehicles | 152,800 | 217,100 | 42.1 %              | 308,700 | 102.0 %             |

Table 2.3.16 2010 Observed and 2020 and 2030 Forecast Goods Vehicle Trips

Source: JICA Study Team

# 2.4 Study Area Transport Network

## 2.4.1 Overall Traffic Assignment

Travel demand matrices from modal split mode, walk model, and external models are aggregated to common unit called Passenger Car Unit (PCU) for highway assignment. Public Trips are directly assigned as person trips to Public Transport network, which in addition to the same highway network as for private mode includes bus/ wagon routes with headways, and the Pakistan Rail network. PT network is assigned first, the person trip volumes on bus routes are converted to Bus PCU's and the remainder paratransit mode passengers are converted to Rickshaw/ Qingqi (paratransit PCU's) modes. These Public mode PCU's are then added to Highway assignment process as pre-loads as the bus routes are fixed, and paratransit loads wherever these are take up road capacity not available to private mode users.

The vehicle occupancy and PCU conversation factors used to convert all trips to PCU's are given below in Table 2.4.1.Vehicle occupancy factors are average of several traffic surveys carried out in the Study Area, whereas the PCU factors are universal, and commonly used. The same factors were also applied for the forecast year assignment models.

| Vehicle                            | Occupancy | PCU Factor |
|------------------------------------|-----------|------------|
| Bicycle                            | 1.0       | 0.20       |
| Motorcycle                         | 1.65      | 0.30       |
| Rickshaw                           | 1.7       | 0.50       |
| Qingqi                             | 5.0       | 0.50       |
| Average for Rickshaw<br>and Qingqi | 3.28      | 0.50       |
| Car                                | 2.43      | 1.00       |
| Wagon                              | 10.5      | 1.50       |
| Coaster                            | 20.0      | 1.75       |
| Mini-Bus (Mazda)                   | 35.0      | 2.00       |
| Bus                                | 50.0      | 2.50       |
| Articulated Bus (Future)           | 90.0      | 3.50       |
| Average Bus                        | 15.58     | 2.00       |
| Pick-up                            | 1.0       | 1.25       |
| 2 Axle Truck                       | 1.0       | 2.0        |
| 3 Axle Truck                       | 1.0       | 2.5        |
| Tractor                            | 1.0       | 3.5        |
| Other Motorized                    | 1.0       | 3.0        |
| Animal Drawn                       | 1.0       | 4.5        |

#### Table 2.4.1 Applied Observed and Forecast Goods Vehicle Trips

Source: JICA Study Team

The results are shown in Figures 2.4.1, 2.4.2 and 2.4.3. In these figures the thickness of the line represents the person trips along that section of the road, and colour indicates the mode of travel (Blue: Private – Includes Cycle, motorcycle and car, where as Orange shows public transport i.e. Rickshaw, Qingqi, Wagon Bus and Pakistan Rail). The person trip volumes are well spread out in the Study Area. Busy corridors are obvious, such as Ferozepur road, Canal Bank road, Western section of LRR, GT road, Allama Iqbal road, around the wall city area and the Ravi Bridge. Only limited person travel is notice able on the northern and particularly on eastern section of the LRR.

However the pictures changes rather rapidly by 2020 and more dramatically by 2030. The person trips assignment for these forecast years 2020 and 2030 for all three scenarios are presented in Figures 2.4.2 and 2.4.3 respectively. This exercise implies the necessity to take strong countermeasures to enhance the transport network capacity and its systems in Lahore. Further discussion on demand supply analysis is given in Volume 1, Chapter 4.

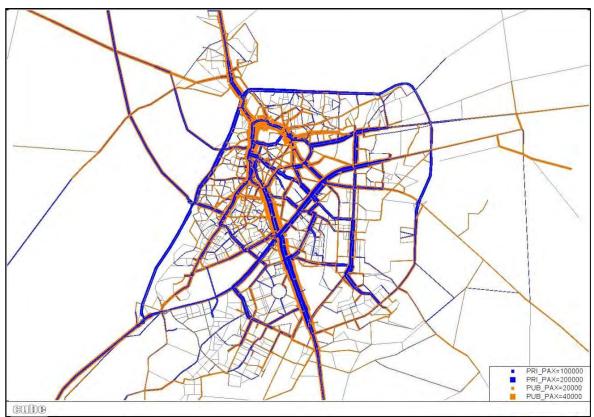
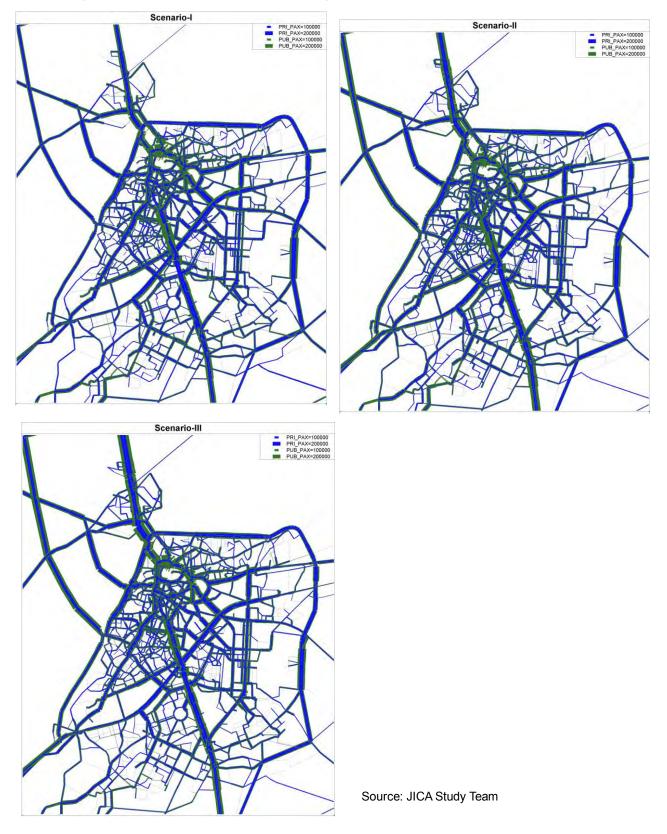




Figure 2.4.1 2010 Modelled Traffic Assignment – Private and Public Person Trips



#### Figure 2.4.2 2020 Modelled Traffic Assignment – Private and Public Person Trips

Scenario-II



# Figure 2.4.3 2030 Modelled Traffic Assignment – Private and Public Person Trips

# 2.4.2 Demand/ Supply Analysis

The forecast presented in this Chapter detailed the methodology adopted and affects of application of such models on the overall transport demand in 2020 and 2030 under the three development scenarios and same network condition. These forecasts did not take account of supply side development. This was intentional to understand the behaviour of the demand models.

Comparison of demand forecast in terms impact on highway and public transport supply have been discussed in Chapter-4 Volume-1 of this report.