Orientation of the Training Programme

13th May 2011

Climate Change Division, Ministry of Environment JICA Expert Team

Review of the 1st CDM Training Programme Period: 24.6.2010 ~ 8.2010 (13 sessions) Train practitioners of emission reduction project in Sri Lankan Goal: organization to maximize project/environmental value. • Lectures on: Stepwise Consideration of CDM Functional background of CDM Documentation: PDD Carbon Credit Market • CDM Typology CDM development in Sri Lanka Institutional Background of CDM Policy and CDM (Energy, Forest) Post Kyoto **Objective of 1st Training** > To acquire the basic knowledge of CDM > To apprehend the discussion and important issues related to CDM To network with other practitioners for promoting CDM **Objective of 2nd Training** > To understand basic rules and emission reduction calculation formula for each project type > To acquire the skills of calculating emission reduction through hands-on exercises

Goal:	Build Ha	nds-on Knowledge about Various CDM Categories							
Date	Time	LectureTitle	Lecturer						
13 May	09:00~10:00	Renewable Energy Project (Non-Biomass & Biomass)	Kawamura						
	10:00~10:15	Break	_						
	10:15~11:15	Renewable Energy Project (Exercise)	Kawamura						
	11:15~12:15	Waste Management / Handling Project	Sugimoto						
20 May	09:00~10:00	Fuel Switch Project	Negishi						
	10:00~10:15	Break	_						
	10:15~11:15	Energy – saving / Demand Side Management project	Chikamatsu						
	11:15~12:15	Afforestation / Reforestation	Chikamatsu						
27 May	09:00~09:50	Achievement Test	-						
	09:50~10:10	Tea Break	_						
	10:10~10:55	Trend of Carbon Markets	Negishi						
	10:55~11:40	Policy Measures for Climate Change Mitigation in Other Countries	Sugimoto						
	11:40~12:00	Closing session	-						

The Goal of the Series of the CDM Training Programme by JICA Expert Team

• The Seminar is followed by a supplement seminar by Mr. Satoshi lemoto for updated report about Post-Kyoto Discussions in international arena.

Date	Lecture Title
To be announced	Current discussions over post-Kyoto Mechanism and Bilateral Credit Mechanism (Tentative)
 The overall sen about emissior 	ninar program is designed to build hands-on knowledge n reduction projects.
 Lectures are me applicable for t 	ostly based on current Kyoto Mechanisms but are he Post-Kyoto mechanism.

Renewable Energy CDM Projects (Non-biomass & Biomass)

13th May 2011 JICA Expert Team Ai Kawamura

Contents

Session 1:

- 1. How emission reduction is achieved by RE Project
- 2. Energy Source of Renewable Energy
- **3.** Applicable Approved Methodology for RE projects
- 4. CDM Project Prototypes
- 5. Basic Formula for Emission Reduction Calculation of RE project
- 6. Calculation of Grid Emission Factor Session 2:
- 1. Calculation Exercise: Hydro power
- 2. Calculation Exercise: Biomass

3. Applicable Approved Methodology for RE projects (1)

• Full scale and Combined methodology

Category	Number	Title
Electricity	AM0019	Renewable energy project activities replacing part of the electricity production of one single fossil-fuel-fired power plant that stands alone or supplies electricity to a grid, excluding biomass projects
Electricity	AM0042	Grid-connected electricity generation using biomass from newly developed dedicated plantations
Electricity	ACM0002	Consolidated baseline methodology for grid-connected electricity generation from renewable sources
Electricity/ Thermal	ACM0006	<u>Consolidated methodology for electricity and heat</u> generation from biomass residues
Liquid fuel	ACM0017	Production of biodiesel for use as fuel
Electricity	ACM0018	<u>Consolidated methodology for electricity generation from</u> <u>biomass residues in power-only plants</u>
		7

3. Applicable Approved Methodology for RE projects (2)

• Small Scale Methodology

Category	No	Title
Electricity	I-A	Electricity generation by the user
	I-B	Mechanical energy for the user with or without electrical energy
Electricity	I-D	Grid connected renewable electricity generation
Electricity	I-F	Renewable electricity generation for captive use and mini-grid
Thermal/ Cogeneration	I-C	Thermal energy production with or without electricity
Thermal	I-E	Switch from non-renewable biomass for thermal applications by the user
Thermal	1-1	Biogas/biomass thermal applications for households/small users
Liquid fuel	I-G	Plant oil production and use for energy generation in stationary applications
Liquid fuel	I-H	Biodiesel production and use for energy generation in stationary applications
Liquid fuel	III-T	Plant oil production and use for transport applications

4. CDM Project Prototypes (1)

• Usage of energy

Electricity	Grid-connection, On site (by the user)
Thermal	Onsite (by the user)
Liquid fuel	(mainly for vehicle)

• Energy sources and types of energy use

Biomass	~	\checkmark	✓ (plant oil)
Hydro/Wind	\checkmark		
Solar	\checkmark	✓	

5. Basic Formula	a for Emis	sion Rec	luct	ion	Calculat	ion of RE	project (2)	
Amount	Energy to be replaced:			nit	Remarks			
of energy	Electricity			′h∕y	Hourly output (MW)× hours(h/y)			
[A]	Fuel to produce electricity		t/y, kL/y		e.g., Hourly consumption (t)× annual operating hours(h/y)			
Emission factor of energy to be replaced [B]For Grid Electricity Grid Emission Factor: 0.65~0.73 tCO2/MWh (No national official figure, PP has to calculate by themselves)								
	For On-Site	Electricity						
	FuelType	Net Calorif Value (TJ/ [a]	fic 't)	CO2 Factor	Emission (tCO2/TJ) [b]	Oxidation factor [c]	CO2 emission factor(tCO2/t) [a]*[b]*[c]	
	Furnace Oil		0.041		77.4	1.0	3.173	
	Gas/Diesel Oil	0	.0433		74.1	1.0	3.209	
	Naphtha	0	.0456		73.3	1.0	3.342	
	Residual Oil		0.041		77.4	1.0	3.173	
SourceEnergy Data 2007, SEA2006 IPCC Guidelines for National GHG Inventories, vol.2								
		Ţ		x ^t	CO2	= tC	02	
	Unit check	t_Fuel	 I		Ţ	t_F	 Fuel 13,	

(6. Calculation of Grid Emission Factor (3) Essential Terminologies								
	Terminology	Explan	ation						
	Operating Margin (OM)	Emission factor that refers to the group of electricity generation would be affected by	f existing power plants <mark>whose current</mark> by the proposed CDM project activity.						
	Built Margin (BM)	Emission factor of the group of prospective and future operation would be affected by	ve power plants <mark>whose construction</mark> y the proposed CDM project activity.						
Combined Margin Weighted average of OM & BM of the electricity system. (CM)									
	Low-cost/must-run resources	Power plants with low marginal generation dispatched independently of the daily or s	on costs or power plants that are seasonal load of the grid.						
	OM	Electricity supplied by CDM project	BM						
M	W Other so (diesel, natural	Electricity included in OM calculation (Electricity to be replaced by CDM project)	The set of power capacity additions in the electricity system that comprise 20% of the system generation (MWh) and that have been built most recently						
	Low cost/must (renewable, nuc	run - From OM calculation lear) (Electricity not affected	The set of 5 power units that have been built most recently						
$\left(- \right)$	6 12 1	8 24 hour by CDM project)	18						

6. Calculation of Grid Emission Factor (7)	
Example: 2007 Sri Lanka National Grid Emission Factor (I)	

Conditions apply for Simple OM

- Low-cost/must-run resources needs to be less than 50% of total grid generation.
- low-cost/must run resources is calculated as the average of the five most recent years.

(GWh/y)

Year		Thermal Generation				Total	% of low- cost /				
	CEB Hydro	CEB Wind	SPP Hydro	Total	CEB	IPP	SPP	Hired	Total	Generation	must run
2003	3,190	3.39	121.0	3,314	2,248	1,746	1.2	394	4,389	7,704	43.0%
2004	2,755	2.70	207.0	2,965	2,507	2,087	1.5	509	5,105	8,069	36.7%
2005	3,223	2.44	280.0	3,505	2,162	3,177	2.3	-	5,341	8,847	39.6%
2006	4,290	2.31	346.4	4,638	1,669	3,136	1.7	-	4,807	9,445	49.1%
2007	3,603	2.27	345.0	3,950	2,336	3,559	1.1	-	5,896	9,846	40.1%
Total	17,060	13.11	1299.4	18,373	10,921	13,705	7.8	903	25,537	43,910	41.8%

Fuel Type	Net Calorific Value (TJ/t)	Effective CO2 emission factor (tCO2/TJ)	Oxidation factor	CO2 emission coefficient (tCO2/t)
	(a)	(b)	(c)	$(a)^{*}(b)^{*}(c)$
Furnace Oil [Fuel oil]	0.041	77.4	1.0	3.17
Gas/Diesel O [Auto oil]	0.0433	74.1	1.0	3.20
Naphtha	0.0456	73.3	1.0	3.342
Residual Oi	1 0.041	77.4	1.0	3.17
Sourece	Energy Data 2007, Ministry of Power and Energy	2006 IPCC Guideling Greenhouse Gas Inven Energy, Tab		

6. Calculation of Grid Emission Factor (8)

6. Calculation of Grid Emission Factor (9) Example: 2007 Sri Lanka National Grid Emission Factor (II)

Simple OM:

Generation-weighted average CO2 emissions per unit net electricity generation of all generating power plants serving the system, not including the low-cost/must-run resources.

Option B:

Based on total net electricity generation of all power plants serving the system and the fuel types and total fuel consumption of the project electricity system.

2005	kL=m3	1G =	$1G = 10,91M = 10,1K = 10^3$			
Fuel Type	Fuel Consumption (1,000kL/y) (a)	Specific Gravity of Fuel (t/m3) (b)	CO2 emission factor (tCO2/t_fuel) (c)	CO2 Emission (tCO2/y) (d)	Electricity Generation (GWh) (e)	Grid Emission Factor (kg_CO2/kWh) (f)
Furnace Oil	500	0.972	3.173	1,542,554	ļ	
Gas/Diesel Oil	306	0.846	3.209	830,733	5	
Naphtha	180	0.690	3.342	415,076	Ď	
Residual Oil	270	0.972	3.173	832,979	5 3 4 1	0.678
Total	-	-	-	3,621,343	5,541	0.078
Source	Energy Data 2007, Table "Fuel Consumption in Power Plants"	Energy Data 2007, Table "Conversion Factors and Coefficients"		(a)*(b)*(c)	Energy Data 2007, Table "Summary"	(d)/(e)

2006 Fuel Type Fuel Consumption 1000kL/y Density of Fuel (m3) COEF (CO2/L fuel) Emission (CO2/y) Electricity Generation (GW) Grid Emission (kg_CO2/k) Furnace Oil 469 0.972 3.173 1.446.916 (c) (f) Gas/Diesel Oil 308 0.846 3.209 836.163 (f) (f) Total 91 0.690 3.342 209.844 (a) (f) (f) Source Energy Data 2007, Table "Fuel Consumption in power Plants" Energy Data 2007, Fable "Conversion Factors and Coefficients" Energy Data (a)*(b)*(c) Energy Data 2007 Energy Data (f) Energy Data 2007, Table Summary" Fuel Type Fuel Consumption (a) Density of Fuel Coefficients" COEF Emission (a)*(b)*(c) Energy Data 2007, Table Summary" 2007 Fuel Type Fuel Consumption 1000kL/y Density of Fuel Coefficients" COEF Emission (a)*(b)*(c) Energy Data 2007, Table (GWh) Grid Emission (kg_CO2/kW 6 0.466 0.846 3.209 1.265.103 (GWh) (kg_CO2/kW 103 0.972 3.173 <	6. Calculation of Grid Emission Factor (10) Example: 2007 Sri Lanka National Grid Emission Factor (III)								
$\frac{1000kL/y}{(a)} \frac{t/m3}{(b)} \frac{(cO2/t_{fuel})}{(cO2/t_{fuel})} \frac{(cO2/y)}{(cO2/y)} \frac{(GWh)}{(GWh)} \frac{(kg_{CO2/kW})}{(kg_{CO2/kW})} \frac{(kg_{CO2/kW})}{(kg_{CO$	2006	Fuel Type	Fuel Consumption	Density of Fuel	COEF	Emission	Electricity Generation	Grid Emission Factor	
		51	1000kL/y	t/m3	(tCO2/t_fuel)	(tCO2/y)	(GWh)	(kg_CO2/kWh)	
$\frac{\text{Furnace Oil}}{\text{Gas/Diesel Oil}} = \frac{469}{308} = \frac{0.972}{3.173} = \frac{1.446,916}{1.446,916} \\ \frac{\text{Gas/Diesel Oil}}{\text{Gas/Diesel Oil}} = \frac{308}{266} = \frac{0.690}{3.342} = \frac{3209,844}{209,844} \\ \frac{\text{Residual Oil}}{\text{Residual Oil}} = \frac{266}{0.972} = \frac{3.173}{3.173} = \frac{820,639}{820,639} \\ \hline \text{Total} = $			(a)	(b)	(c)	(d)	(e)	(f)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Furnace Oil	46	0.972	3.173	1,446,916			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C	Gas/Diesel Oil	30	0.846	3.209	836,163			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Naphtha	9	0.690	3.342	209,844			
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{100} \frac{1}{100$		Residual Oil	26	6 0.972	3.173	820,639			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Total			-	3,313,561	4,807	0.689	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Source	Energy Data 2007, Table "Fuel Consumption in Power Plants"	Energy Data 2007, Table "Conversion Factors and Coefficients"		(a)*(b)*(c)	Energy Data 2007, Table "Summary"	(d)/(e)	
IO00kL/y t/m3 (tCO2/t_fuel) (tCO2/y) (GWh) (kg_CO2/kV) (a) (b) (c) (d) (e) (f) Furnace Oil 513 0.972 3.173 1,582,660 Gas/Diesel Oil 466 0.846 3.209 1,265,103 Naphtha 138 0.690 3.342 317,303 Residual Oil 296 0.972 3.173 913,809 Total - - 4,078,875 5,896 Source Energy Data 2007, Energy Data 2007, Energy Data 2007, Table "Summary" Energy Data 2007, Table "Summary" 2007, Table Power Plants" Coefficients" 2007 Average	2007	Fuel Type	Fuel Consumption	Density of Fuel	COEF	Emission	Electricity Generation	Grid Emission Factor	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1000kL/y	t/m3	(tCO2/t_fuel)	(tCO2/y)	(GWh)	(kg_CO2/kWh)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		E 01	(a)	(b)	(c)	(d)	(e)	(f)	
Gas/Diesel Oil 466 0.846 3.209 1,265,103 Naphtha 138 0.690 3.342 317,303 Residual Oil 296 0.972 3.173 913,809 Total - - 4,078,875 5,896 Source Table "Fuel Table "Conversion Consumption in Factors and Power Plants" (a)*(b)*(c) Energy Data 2007, Table OM 2005 2006 2007 Average	E E	Furnace Oil	51.	0.972	3.1/3	1,582,660	-		
Naphtha 138 0.690 3.342 317,303 Residual Oil 296 0.972 3.173 913,809 Total - - 4,078,875 5,896 Source Table "Fuel Table "Conversion Consumption in Power Plants" Table "Conversion Coefficients" (a)*(b)*(c) Energy Data 2007, Table OM 2005 2006 2007 Average	C	Jas/Diesel Oil	460	0.846	3.209	1,265,103			
Residual Oil 296 0.972 3.173 913,809 Total - - 4,078,875 5,896 Source Table "Fuel Table "Conversion Consumption in Power Plants" Table "Conversion Coefficients" (a)*(b)*(c) Energy Data 2007, Table OM 2005 2006 2007 Average		Naphtha	13	8 0.690	3.342	317,303	-		
Iotal - - - 4,0/8,8/5 5,896 Source Energy Data 2007, Table "Fuel Table "Conversion Consumption in Power Plants" Factors and Coefficients" (a)*(b)*(c) Energy Data 2007, Table OM 2005 2006 2007 Average		Residual Oil	29	6 0.972	3.173	913,809	5.000	0.000	
Source Table "Fuel Consumption in Power Plants" Table "Conversion Consumption in Power Plants" Energy Data Coefficients" OM 2005 2006 2007	_	1 otal	Energy Data 2007	 Enorgy Data 2007	-	4,078,875	5,896	0.692	
OM 2005 2006 2007 Average		Source	Table "Fuel Consumption in Power Plants"	Table "Conversion Factors and Coefficients"		(a)*(b)*(c)	Energy Data 2007, Table "Summary"	(d)/(e)	
OM 2005 2006 2007 Average									
2000 2007 INCluge		20	005	2006	2007		Average		
(kg_CO2/kWh) (kg_CO2/kWh) (kg_CO2/kWh) (kg_CO2/kWh)	OM	(kg_CC	02/kWh)	(kg_CO2/kWh)	(kg	(kg_CO2/kWh)		(kg_CO2/kWh)	
0.678 0.689 0.692		0.686							

Examp	le: 200	7 Sri Lan	ka Na	tiona	al Gr	rid Er	nis	sion Fa	acto	r (III)	
BM	No.	Plant	Date commiss	of ioning	Fuel	І Туре	Cor (mi	Fuel sumption illion Ltr)	the the	unit in 2007 llion kWh)	
	1 ACE- Embilipiyiya		2004, Ma	ar 2005	Furna	ace Oil		160		663	
	2 Heladha	navi	Oct 2	003	Furna	ace Oil		158		748	
	3 AES-Ke	elanitissa	Mar 2	003	Aut	o Oil		209		789	
					To	tal of 1-3		528		2,200	
		Т	otal grid ge	eneration	ı (milli	on kWh)				9,814	> 20%
			Pr	oportior	ı withir	n the grid				22.4%	
		Fuel	Density of					Flectric	itu	Grid Emission	1
		Consumption	Fuel	CO	EF	Emissi	on	Generat	ion	Factor	
	Fuel Type	1000kL/y	t/m3	(tCO2/1	t fuel)	(tCO2/	(y)	(GWh	n)	(kg CO2/kWh)	
		(a)	(b)	、 ((;)	(d)		(e)		(f)	
	Fuel Oil	318	0.972		3.173	981	.681	(-)		(-)	
	Auto Oil	209	0.846		3.209	568	,482				
	Naptha	0	0.690		3.342		0				
	Heavy Oil	0	0.972		3.173		0				
	Total	_	-		-	1,550	,163		2,200	0.705	
	Source	SEA Data	Energy Data 2007			(a)*(b)*	(c)	CEB da	ata	(d)/(e)	
	Vear	OM	B	М	(M					
СМ	2005	0.6	578	171	, c	-1 v1					
	2005	0.6	589								
	2007	0.6	592								
	AVERAG	F 0.6	586	0 705		0.695					

Calculation Exercise

Non-biomass, Biomass

1. Calculation Exercise: Mini-hydro power(1)

- Company A has a CDM project plan with the following details:
 - New mini-hydro power plant project selling the power to CEB
 - Capacity: <u>1.2 MW</u>
 - Expected operation: (dry season) <u>0.8MW</u>, (wet season)<u>1.2MW</u>
 - <u>0.1MW</u> of generated electricity is required for operating the mini-hydro plant
 - Daily operating hours: 24 hours
 - Monthly operating days: <u>25 days</u>
 - Season: (dry season) <u>4 months</u>, (wet season) <u>8 months</u>
 - Grid emission factor: <u>0.70 kgCO2/kWh</u>

(Question)

How much emission reduction is expected by this project activity?

• How much fuel is rea	quired for operating the plant annually? quired for biomass transportation annually?
 Furnace oil required for Diesel required for tra 	or operation of the new plant: <u>6t/month</u> nsportation of biomass: <u>2t/month</u>
n-site fossil fuel consumptio	on
6 t/month × 12 months	= <u>72 t/year</u>
ossil fuel consumption for bi	iomass transport

Waste Management/Handling CDM Project

13 May 2011

Satoshi Sugimoto JICA Expert Team

1. Waste Management and GHGs Emission

Source Flaring (Burning) Solid Waste/ CH4 Capture Flaring (Burning) Wastewater Direct heat use Electricity generation CH4 Emission Avoidance/Reduction by Acrobic Treatment of Organic Matter Including composition

4. Key parameters in CH₄ emission from

CH₄ emission from waste

CH₄ is generated as a result of <u>degradation of organic materials</u> under <u>anaerobic conditions</u>.

- The time required for the waste to decay (half-life) is different among the types of waste.
- Part of CH₄ generated is oxidized in the cover of solid waste disposal (CH₄ oxidation by methanotrophic micro-organisms in cover soils).

Key Parameter in CH₄ emission

- Degradable organic materials (Degradable Organic Carbon: DOC) in waste.
- Degree of anaerobic condition in waste (Methane Correction Factor: MCF).
- The time required for the waste to decay (decay rate)

4. Key parameters in CH₄ emission from

(1) Content of DOC by types of waste

Type of Waste	DOC content (% on weight basis)			
	Wet waste	Dry waste		
Paper/cardboard	40	44		
Textiles	24	30		
Food waste	15	38		
Wood	43	50		
Garden and park waste	20	49		
Nappies	24	60		
Rubber and leather	39	47		
Inert waste (plastic, metal, glass)	-	-		

Content of organic waste is the key to amount of CH₄ emission.

4. Key parameters in CH₄ emission from

(2) Degree of anaerobic condition (Methane Correction Factor)

Type of Waste disposal (Landfill)	Methane Correction Factor (MCF)
Managed – anaerobic	1.0
Managed – semi-aerobic	0.5
Unmanaged – deep (>5 m waste) and/or high water table	0.8
Unmanaged – Shallow (<5 m waste)	0.4
Uncategorised waste disposal	0.6

The intensity of methane emission is considerably influenced by the anaerobic condition of waste varying with types of final disposal practices.
 The more anaerobic the condition of waste, the more CH₄ is generated.

4. Key parameters in CH₄ emission from

(2) Degree of anaerobic condition (Methane Correction Factor)

Type of Waste disposal (Landfill)	Definition
Managed – anaerobic	The landfills which have controlled placement of waste (i.e. waste directed to specific deposition areas, a degree of control of scavenging and a degree of control of fires) and include at least one of the following: (i) cover material; (ii) mechanical compacting; or (iii) levelling of the waste.
Managed – semi-aerobic	The landfills which have controlled placement of waste and include all of the following structures for introducing air to waste layer: (i) permeable cover material; (ii) leachate drainage system; (iii) regulating pondage; and (iv) gas ventilation system.
Unmanaged – deep (>5 m waste) and/or high water table	All landfills not meeting the criteria of managed landfill s above and which have depths of greater than or equal to 5 meters and/or high water table at near ground level.
Unmanaged – Shallow (<5 m waste)	All landfills not meeting the criteria of managed landfills above and which have depths of less than 5 meters.

4. Key parameters in CH₄ emission from

(3) Time required for the waste to decay (Decay rate of waste)

Туре о	f Waste	Tropical Climate (MAT >20°C)			
		Dry (MAP<1,000mm)	Moist and Wet (MAP>=1,000mm)		
Slowly degrading waste	Paper/textiles waste	0.045	0.07		
	Wood/straw waste	0.025	0.035		
Moderately degrading waste putrescible/Garden and park waste		0.065	0.17		
Rapidly degrading waste Food waste/sewerage sludge		0.085	0.4		
Decay rate of wast	e is given as a constan	t by types of waste bas	sed on the time		

5. Estimation of CH₄ from Waste Disposal

Site

Equation

$BE_{CH4,SWDS,y} = \varphi \cdot (1-f) \cdot GWP_{CH4} \cdot (1-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_{f} \cdot MCF \cdot \sum_{x=1}^{y} \sum_{j} W_{j,x} \cdot DOC_{j} \cdot e^{-k_{j} \cdot (y-x)} \cdot (1-e^{-k_{j}}) $				
BE _{CH4, SWDS,y}	Methane emissions during the year y from waste disposal at the solid waste disposal site (SWDS) during the period from the start of waste disposal activity to the end of the year y (tCO ₂ e)			
φ	Model correction factor to account for model uncertainties (0.9)			
f	Fraction of methane captured at the SWDS and flared, combusted or used in another manner (in this case 0)			
GWP _{CH4}	Global Warming Potential (GWP) of methane, valid for commitment (21)			
OX	Oxidation factor (reflecting the amount of methane from SWDS that is oxidized in the soil or other material covering the waste (default value: 0.1)			
F	Fraction of methane in the SWDS gas (volume fraction) (default value:0.5)			
DOC _f	Fraction of degradable organic carbon (DOC) that can decompose (default value:0.5)			

5. Estimation of CH₄ from Waste Disposal

SILE			
Equation	<u>n</u>		
BE _{CH4,SWDS,y} =	$\varphi \cdot (1-f) \cdot GWP_{CH4} \cdot (1-OX) \cdot \frac{16}{12} \cdot F \cdot DOC_{f} \cdot MCF \cdot \sum_{x=1}^{y} \sum_{j} W_{j,x} \cdot DOC_{j} \cdot e^{-k_{j} \cdot (y-x)} \cdot (1-e^{-k_{j}})$		
MCF	Methane correction factor (determined by types of SWDS)		
W _{j,x}	Amount of organic waste type j disposed at the SWDS in the year x (tons)		
DOC _j	Fraction of degradable organic carbon (by weight) in the waste type j		
k _j	Decay rate for the waste type j		
j	Waste type category		
e	The base of natural logarithm (Napier's number: 2.718)		
X	Year during the crediting period: x runs from the first year of the first crediting period (x=1) to the year y for which avoided emissions are calculated (x=y)		
Y	Y Year for which methane emissions are calculated.		

6. Exercise: Estimation CH₄ emission from SWDS

Question

Estimate the amount of CH_4 emission from SWDS in 1 (one) year under the following preconditions

(Preconditions)

Items	Preconditions			
The amount of waste disposed		100 tons/day		
Waste composition by types (% by	Paper/Cardboard	10%		
weight)	Textiles	0%		
	Food waste	30%		
	Wood	0%		
	Garden and park waste	20%		
	Inert waste	40%		
Type of Waste Disposal Landfill	Unmanaged -deep (>5m)	landfill		
		17		

6. Exercise: Estimation CH₄ emission from SWDS

Step 1: Total amount of waste disposed per year						
Amount of waste disposed (tons/day) Amount of waste disposed (tons/year)						
100		36,500				
Step 2: Amount of waste disposed by type of waste						
Amount of waste disposed (tons/year)	Waste comp	Amount of Waste by types (tons/year)				
36,500	Paper/cardboard		10	3,650		
	Textiles		0	0		
	Food Waste		30	10,950		
	Wood O		0			
	Garden/park waste		20	7,300		
	Inert waste		40	14,600		

6. Exercise: Estimation CH₄ emission from SWDS

Amount of Waste by types (tons/year)		Content of DOC (% on weight basis)	Decay rate in the first year	Total amount of DOCs in a year (tons/year)
Paper/cardboard	3,650	40	0.068	99.28
Textiles	0	24	0.068	0
Food waste	10,950	15	0.330	542.025
Wood	0	43	0.034	0
Garden/park waste	7,300	20	0.156	227.76
Inert waste	14,600	0	0	0
	869.065			

21

Afforestation Reforestation

20th May 2011 JICA Expert Team Shiro Chikamatsu

Objectives of the Seminar

- To understand the major issues regarding A/R carbon credit projects
- To understand the basic components of the A/R CDM methodology
- To know that there are new approaches to forestry carbon credit projects

Table of contents

1. Basics

- What are A/R projects?
- A/R Definitions
- Remote Sensing Technology
- Geographic Information System
- Stratification

2. A/R Issues

- CDM Statistics
- Issue1: Permanence
- Issue2: Monitoring

3. A/R Methodology

- Types of Methodologies
- Methodologies used for registered projects
- Basic concept
- Procedure

4. New Approach

- Credit pooling
- REDD
- REDD & A/R Comparison
- Countries which may benefit from REDD projects
- REDD, REDD+ and REDD++
- Potential projects in Sri Lanka³

4

1. Basics

1. Basics What are A/R projects?

- A/R→Afforestation Reforestation
- CO₂ is absorbed by the trees
- Trees fix the carbon during its growth, thus prevent emission of CO₂ to the atmosphere.

1. Basics A/R definitions

5

• Reforestation (CDM definition)

is the direct human-induced conversion of non-forested land to forested land through planting, seeding and/or the human-induced promotion of natural seed sources, on land that was forested but that has been converted to non-forested land. For the first commitment period, reforestation activities will be limited to reforestation occurring on those lands that did not contain forest on 31 December 1989.

Afforestation (CDM definition)

is the direct human-induced <u>conversion of land that has not been</u> forested for a period of at least 50 years to forested land through planting, seeding and/or the human-induced promotion of natural seed sources.

1. Basics **Remote Sensing Technology**

Remote Sensing involves acquisition of the land surface data using aerial sensor technologies, such as aerial surveillance and satellite imaging.

Terrain information

Forest Cover Information

1. Basics **Geographic Information System**

Geographic Information System (GIS) is an information technology system which manages data in reference to geographic location data.

1. Basics **Stratification**

- REDD project sites are divided into strata.
- Each strata is in homogenous condition
- Sampling needs to be conducted at each strata.

Source: JICA (2008) Guidebook for Small Scale AR CDM activities

Factors which affects

- - - Tree species
 - Timing of planting & harvesting 9

2. A/R Issues

2. A/R Issues CDM Statistics

- As of May 2011, there are 3034 registered projects.
- Of which <u>21 projects are registered A/R projects</u>.
- That is 0.7% of the total registered projects.

There are two major issues regarding A/R CDM...

2. A/R Issues Issue1: Non-Permanence

11

- Trees stocks carbon (thus it is a carbon sink).
- Once the tree is combusted or rotten, CO₂ and methane are released to the atmosphere.

Carbon credit generated from A/R CDM activities are different from the other CDM projects. **They are time limited credits.** I-CER: expires at the end of the crediting period (end of project) t-CER: expires during every commitment period (end of Kyoto Protocol)

2. A/R Issues Issue2: Monitoring

Monitoring of forestry activity involves covering vast area of land, from 1,000 ha to even 10,000ha.

It involves field survey (per strata) and that requires significant manpower. Therefore monitoring activity is often carried out every 5 years, in which case carbon credit could only be issued every 5 yeas.

Example of Monitoring Parameters for Hydro Power Project:

- Supply of electricity to the grid
- Flow rate of the water
- CO2 emission factor of the grid
- Inhouse electricity consumption

Specific monitoring points

Example of Monitoring Parameters for AR CDM project:

- Fossil fuel use at the site (chainsaw/tractors)
- Burning of biomass
- Nitrogen Fertilization
- Tree diameter sampling

AR CDM needs to cover vast area

13

3. A/R Methodology

3. A/R Methodology Types of methodologies

There are currently 12 large scale and 6 small scale approved CDM methodologies. Small scale methodology is less than 60,000t

Large scale Methodologies

AR-AM0002	Restoration of degraded lands through
AR-AM0004	Reforestation or afforestation of land currently
AR-AM0005	Afforestation and reforestation project activities
AR-AM0006	Afforestation/Reforestation with Trees Supported
AR-AM0007	Afforestation and Reforestation of Land Currently
AR-AM0009	Afforestation or reforestation on degraded land
AR-AM0010	Afforestation and reforestation project activities implemented on unmanaged grassland in
AR-AM0011	Afforestation and reforestation of land subject to
AR-AM0012	Afforestation or reforestation of degraded or abandoned agricultural lands
AR-AM0013	Afforestation and reforestation of lands other than wetlands
AR-ACM000 AR-ACM000	 Afforestation and reforestation of degraded land Afforestation or reforestation of degraded land without displacement of are project activities
	without displacement of pre-project activities

Small scale Methodologies

 AR-AMS0001 Simplified baseline and monitoring methodologies for small-scale A/R CDM project activities implemented on grasslands or croplands with limited displacement of preproject activities under the CDM implemented on settlements
 AR-AMS0002 project activities under the CDM implemented on settlements
 AR-AMS0003 Simplified baseline and monitoring methodology for small scale CDM afforestation and reforestation project activities implemented on wetlands
 AR-AMS0004 Simplified baseline and monitoring methodology for small-scale agroforestry afforestation and reforestation project activities under the clean development mechanism
 AR-AMS0005 Simplified baseline and monitoring methodology for small-scale afforestation and reforestation project activities under the clean development mechanism implemented on lands having low inherent potential to support living biomass
 AR-AMS0006 Simplified baseline and monitoring methodology for small-scale silvopastoral afforestation and reforestation project activities under the clean development mechanism
 AR-AMS0007 Simplified baseline and monitoring methodology for small-scale silvopastoral afforestation and reforestation project activities under the clean development mechanism
 AR-AMS0007 Simplified baseline and monitoring methodology for small-scale A/R CDM project activities implemented on grasslands or

croplands

3. A/R Methodology Methodologies used for registered projects

15

AR-AMS0001 Simplified baseline and monitoring methodologies for small-scale A/R CDM project activities implemented on grasslands or croplands with limited displacement of pre-project activities

Source: JICA (2008) Guidebook for Small Scale AR CDM activities

3. A/R Methodology Procedure

Delineation of the project activity

Stratification of project boundary

Selection of carbon pools Determination of Baseline Scenario Identification of emission by source Addtionality

Provide calculation methods for exante estimation of baseline, actual removals, Emission, leakage

Determination of ex-ante estimation of net anthropogenic GHG removals

Confirmation of the project boundary

Confirmation of stratification

Sampling design for monitoring

Provide method for field measurement

Provide calculation methods for expost estimation of baseline, actual removals, Emission, leakage

Determination of ex-post estimation of net anthropogenic GHG removals

19

4. New Apporach

As long the carbon credit pool is managed correctly, the carbon credit from these projects, could be treated as "permanent".

20

4. New Approach REDD

REDD:

Reducing Emissions from Deforestation and forest Degradation

4. New Approach REDD & A/R Comparison

AR/CDM stocks carbon, where as REDD project avoids the GHG emission cased by the loss of forest cover.

4. New Approach Countries which may benefit from REDD projects

4. New Approach REDD, REDD+ and REDD++

Avoiding deforestation in one part of the land may cause increase in timber harvesting activities in another part of the land. By providing timber from a sustainably managed REDD+ site, it ensures sufficient quantity of timber will be supplied to the market.

REDD	DD	Deforestation
		Forest Degradation
REDD+	+	Reforestation
		Sustainable Forest Management
REDD++	Another+	Management of the buffer zones (social aspec)

REDD, REDD+ and REDD++ categorisation

Potential projects in Sri Lanka

- REDD+ and REDD++
- Sustainable forest management
- A/R projects may be beneficial, if it has significant social and/or environmental benefits such as watershed conservation and agroforestry.

25