Fuel Switch & Energy Efficiency CDM Project Case Study

Prepared for 2nd Training Program Session May 20, 2011

JICA CDM Expert Team

Objective & Content

Content:

- Scale of Energy Saving & Fuel Change
- What is Fuel Change project?
- What is Energy Saving project?
- Case Study

Objective:

?&!

0. Before Step Into CDM

Be familiar with the unit of energy to have a scale. How much energy do they consume/generate??

	Fukushima 1	Hydro Power	Gas Engine	Household
Capacity	460,000 kW	25,000 kW	312 kW	0.48 kW
Runtime	6,000 hours	4,800 hours	4,000 hours	8,760 hours
Power	MWh	MWh	MWh	MWh
Heat (MJ)	x 10 ⁶ MJ	x10 ⁶ MJ	x10 ⁶ MJ	x 10 ⁶ MJ
Energy(TOE)	x 10 ³ TOE			

Calculate and fill the table. 1kWh =3.6 MJ

1 TOE =41.686 GJ 1kcal = 4,166J

x 10 ³ TOE		x 10 ³ TOE		
kilo	mega	giga	tera	peta
k	М	G	Т	Р
10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵

3

Fukushima 1 460,000kW x 6,000 hours

- = 276 x 10^7 kWh
- = 276 x 10^4 MWh
- $(1MWh = 1,000kWh = 10^{3}kWh)$
- = 2,760,000 MWh

276 x 10^7 kWh x 3.6 MJ/kWh

- = 993.6 x 10^7 MJ
- = 9,936 x 10^6 MJ

9,936 x 10^6 MJ ÷ 41.686GJ/TOE

- = (9,936,000 x 10^3 GJ) ÷ 41.686GJ/TOE
- = 238.353 x 10^3 TOE

Hydro Power Station 25,000kW x 4,800hours

- = 1,200 x 10^5 kWh
- = 120 x 10^3 MWh

1,200 x 10^5 kWh x 3.6MJ/kWh

- = 4,320 x 10^5 MJ
- = 432 x 10^6 MJ
 - 432 x 10^6MJ ÷ 41.686GJ/TOE
- = (432 x 10^3 GJ) ÷ 41.686GJ/TOE
- = 10.36 x 10^3 TOE

Gas Engine 312kW x 4,000hours

- = 1,248 x 10^3 kWh
- = 1,248 MWh
 - 1,248 x 10^3 kWh x 3.6 MJ/kWh
- = 4,492 x 10^3 MJ

4,492 x 10^3 MJ ÷ 41.686 GJ/TOE

- = (4.492 x 10^3 GJ) ÷ 41.686 GJ/TOE
- = 107.9 TOE
- = 0.108 x 10^3 TOE

Household

- 0.48 kW x 8,760 hours
- = 4,204.8 kWh
- = 4.20 MWh
 - 4.200kWh x 3.6 MJ/kWh
- = 15,120 MJ
- = 0.015 x 10^6 GJ
- = 15 x 10^3 GJ

15 x 10^3GJ ÷ 41.686 GJ/TOE

= 0.0032 x 10^3 TOE

1kcal =4,166J

0. Before Step Into CDM

1kcal = 4,166J

Be familiar with the unit of energy to have a scale. How much energy do they consume/generate??

5

	Fukushima 1	Ну	dro Po	wer	Gas	Engine	e	Househol	d
Capacity	460,000 kW		25,0	00 kW		312	kW	0.48	kW
Runtime	6,000 hours	4,800 hours		4,000 hours		urs	s 8,760 hours		
Power	2,760,000 MWh	120,000 MWh		1,248 MWh		Wh	4.20 N	∕IWh	
Heat (MJ)	9,936 x 10 ⁶ MJ	432 x10 ⁶ MJ		4	.5 x10 ⁶	MJ	0.015 x 10	⁶ MJ	
Energy(TOE)	2,383.5 x 10 ³ TOE		10.4 x 1	0 ³ TOE	0.108	x 10 ³ T	OE (0.0032 x 10 ³	TOE
Calculate	and fill the table. 1kWh =3.6 MJ 1 TOE =41.686 GJ		kilo k	mega M	giga G	tera T	peta P		6

10⁶

10⁹

10¹²

10¹⁵

10³

0.Emission Factors of Major Energy Sources

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	tCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4		0.972t/kl	tCO ₂ /kl
Diesel Oil	0.0433	74.1		0.846t/kl	tCO ₂ /kl
Residual Oil	0.0410	77.4		0.972t/kl	tCO ₂ /kl
Coal	0.0293	101.0		1.300t/m ³	tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		2.108kgCO ₂ /Nm ³
Grid Electricity					0.686tCO ₂ /MWh

Data source

1. Energy Data 2007, Sustainable Energy Authority

2. IPCC Guideline for National Greenhouse Gas Inventories, 2006, Table 1-4

3. Natural Gas's gravity data was not available and utilized Japanese data for reference purposes. $_7$ Nm³ is a unit of gas under normal state.

S SmartEnergy

0.Emission Factors of Major Energy Sources

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	tCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4	3.173	0.972t/kl	3.264tCO ₂ /kl
Diesel Oil	0.0433	74.1	3.209	0.846t/kl	3.793tCO ₂ /kl
Residual Oil	0.0410	77.4	3.173	0.972t/kl	3.264tCO ₂ /kl
Coal	0.0293	101.0	2.816	1.300t/m ³	3.661tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		2.108kgCO ₂ /Nm ³
Grid Electricity					0.686tCO ₂ /MWh

Data source

1. Energy Data 2007, Sustainable Energy Authority

2. IPCC Guideline for National Greenhouse Gas Inventories, 2006, Table 1-4

3. Natural Gas's gravity data was not available and utilized Japanese data for reference purposes. $_{8}$ Nm³ is a unit of gas under normal state.

More Questions

Question A:

- A volume of steel drum is 200litres.
- Calculate CO₂ emissions by combusting a full of furnace oil in steel drum. Also calculate heat value, one can derive from this combustion. heat value of fuel shall be derived as a product of unit heat value and gravity of fuel.
- ② Calculate how many kg of coal do you need to burn, if you earn same amount of heat? Also calculate CO₂ emissions from this coal combustion.

Still More Questions

Question B:

A factory is introducing sawdust alternate for furnace oil.

A dimension of cargo box of 4 tone loading truck(photo) is shown in figure below. A density of saw dust is 1.51kg/m³ and unit heat value is 2000kcal/kg.

- (1) Calculate heat and CO_2 emissions by combusting full cargo load of saw dust.
- 2 Calculate how much furnace oil can replaced by amount of sawdust calculated in QB-1.

1. What is Fuel Switching?

Sc SmartEnergy

In Reality....

Number of CDM project registered and issued CER.

	On Track	Registered	Issued	CER %
Total	71	57		
Coal to NG	9	5	3	65%
Coal to Oil	0	0	0	
Lignite to NG	0	0	0	
New NG plant*	30	26	14	42%
New NG plant utilize LNG	1	8	3	74%
Oil to Electricity	2	0	0	
Oil to LPG	1	0	0	
Oil to NG	28	18	13	100%

*AM0029: Grid Connected electricity generation plants using natural gas is widely used in high performance combined cycle gas pwer generation projects in China and in India.

2. What is Energy Efficiency project?

Energy Efficiency Project

The category energy efficiency includes all measures aiming to enhance the energy efficiency of a certain system. Due to the project activity, a specific output or service requires less energy consumption. Waste energy recovery is also included in this category.

ergy

2. Energy Efficiency Statistics

- As of May 2011, there are 289 registered Energy Efficiency CDM projects.
- Of which 88 projects are demand side energy efficiency projects and the rest are supply side (including transmission) energy efficiency projects.

• Of all the registered energy efficiency CDM,108 projects have issued CER.

2. Key Insight of Energy Efficiency Project

In project, the output has to be maintained before and after the energy efficiency project

3. Case: Project in Laundromat Services

The company is locates in northern Japanese island. The facility receives linens and daily laundry through retail shops within 150km area's hotels, restaurants an households. The facility used heavy oil combustion boiler for 20 years. The regional natural gas catering company extends the pipeline to the neighborhood and connects to the company's facility.

The project has four components including,

- a) Replacing fuel from heavy oil to natural gas.
- b) Replace lamps to high efficient LEDs.

Sc: SmartEnergy

3. Case: Project in Laundromat Services (Cont'd)

Feature of Energy Use

- ◆ Requires intensive energy for pressing (steam), laundry (hot water).
- ◆ Heat requirements varied with peripheral temperatures but stable for year-round.
- ◆ Outside temperature varies from 32°C in August to -20°C in February.
- ◆ Energy costs, electricity and fuel, occupies 50% of expenses.

21

Sc: SmartEnergy

4. Project A: Boiler Fuel Change

The factory runs $1 \times 2.0t$ boiler and $1 \times 0.5t$ boiler for back up to generate steam and hot water for laundry machine and dry clanging.

Normally, only 2.0t boiler operates.

Both boiler uses heavy oil/furnace oil catered by a tanker truck of oil company upon order.

The project changes fuel only for 2.0t boiler from heavy oil to natural gas.

Fuel consumption	1,752	kl/year
Run-time	12	Hours/day
	264	Day/year

Monitoring parameters

- Flow-meters at the heavy oil tank
- ◆Flow meters of the gas line
- Invoice from gas/oil company

Project Baseline Continuous use of carbon intensive

Sc: SmartEnergy

4. Project B: LED Lighting

Light Emittng Diode (LED) is a lighting devices to alternate traditional lamps.

LED gives more concentrated lighting than conventional lighting thus uses less electricity to give a same illuminance.

The price of LED light is still expensive compared to usual lightings, but it lasts longer and economy in longer term.

Project replace old halogen lamps in factory and warehouse space to LED.

Monitoring

- Electric Power of light bulb (W)
- Number of light bulbs
- Operating hours to turn on light bulbs (hours)
- Emission factor of the electricity consumed (tCO2e/MWh)

Project Baseline Continuous use of conventional lamps.

Elec. Power of Hg lamp	400	W
Number of Hg lamp	137	Units
Elec. Power of LED lamp	118	w
Number of LED	83	Units
Operating Hours	3,168	hours

Sc: SmartEnergy

4. Project C: Inverter & Load Variable

Boiler water pump continuously pumping water, regardless water amount in the boiler tank.

Inverter technology on/off the pump be referring water level of the tank. By reducing idle time of the pump, it reduces an electricity consumption.

Monitoring

- Power consumption of the system (kWh)
- Number of operational hours (hrs)
- Emission factor of the electricity (tCO₂e/kWh)

Rm T 30°C

27

Sc: SmartEnergy

4. What can be done in CDM & what not?

Rm T 2°C

	Project A: Boiler Fuel	Project B: LED application	Project C: Inverter	Project D: Blanket
AMS Methodology	III.B	II.E	II.C	
Baseline	Keep using furnace oil.	Keep using mercury lamp	Keep operating pump regardless load/demand	Expose valve where heat are easily leak.
Project	Replace furnace oil to natural gas.	Replace mercury lamp to LED lamp to reduce electricity consumption	Control and limit pump action depends on water level of boiler.	Cover valve to avoid heat expose to atmosphere
Monitoring	Gas consumption with gas flow meter with gas company's invoice.	Electricity Consumption with metering devices and electricity bill.	Metering devices	Continuous monitoring of temperature of fluid and exposed environment.
CDM?				

5. Calculations: Fuel Change

Fuel Consumption before the Project

Furnace Oil Consumption	1,752	kl/year	
HV of furnace oil		GJ/kl	
Heat obtained with furnace oil		GJ	
CO _{EF}		tCO ₂ /kl	
CO _{2 Emissions_before}		tCO ₂	

Fuel Consumption after the Project

HV of natural gas	MJ/Nm ³
Amount of Natural gas needed	Nm ³ /year
CO _{EF}	kgCO ₂ /Nm ³
CO _{2 Emissions_after}	tCO ₂ /year

29

Sc: SmartEnergy

5. Calculations: Fuel Change

Fuel Consumption before the Project

	Furnace Oil Consumption	1,752	kl/year
	HV of furnace oil	39.85	GJ/kl
Hea	t obtained with furnace oil	69,817.2	GJ
	CO _{EF}	3.264	tCO ₂ /kl
	CO _{2 Emissions_before}	5,718.53	tCO ₂
Fuel Consur	nption after the Project		
	HV of natural gas	46.1	MJ/Nm ³
Amou	int of Natural gas needed	1,514 x 10^3	Nm ³ /year
	CO _{EF}	2.108	kgCO ₂ /Nm ³
	CO _{2 Emissions_after}	3,194.51	tCO ₂ /year

5. Calculations: LED Application Electricity Consumption before the Project

Ui	nit Elec. Cons of Hg light	400	W/unit	
	Number of lights	137	Units	
	Daily Working hours	12	Hours/day	
	Annual Working days	264	Days/year	
	Electricity Consumption		kWh/year	
Electricity	Consumption after the Pr	oject		
	Unit Elec. Cons of LED 11		W/unit	
	Number of lights	83	Units	
	Annual Working hours	3168	Hours/year	
	Electricity Consumption		kWh/year	
	Electricity Saving		kWh/year	
	CO _{EF}	0.686	tCO ₂ /MWh	
	ER_ _{LED}		tCO ₂	

31

Sc: SmartEnergy

5. Calculations: LED Application Electricity Consumption before the Project

Unit Elec. Cons of Hg light	400	W/unit
Number of lights	137	Units
Daily Working hours	12	Hours/day
Annual Working days	264	Days/year
Electricity Consumption	173,606.4	kWh/year

Electricity Consumption after the Project

Unit Elec. Cons of LED	118	W/unit
Number of lights	83	Units
Annual Working hours	3168	Hours/year
Electricity Consumption	31,027.39	kWh/year
Electricity Saving	142,579.0	kWh/year
CO _{EF}	0.686	tCO ₂ /MWh
ER LED	97.81	tCO ₂

6. Grand-Sum of Project

Fuel Change		
CO _{2 Emissions_before}	5,718.53	tCO ₂ /year
CO _{2 Emissions_after}	3,194.00	tCO ₂ /year
ER_ _{Fuel Change}	2,524.53	tCO ₂ /year
LED Application		
ER_ _{LED}	97.81	tCO ₂ /year
Total		
	2,622.34	tCO ₂ /year

33

THE ONLY THING WE KNOW ABOUT THE FUTURE IS THAT IT WILL BE DIFFERENT. PETER DRUCKER ³⁴

Status and Outlook of Carbon Market

Prepared for Training Program for CCD, MOE Sri Lanka May 27, 2011

JICA Expert Team

1	Answers	for Fuel	Switch &	& Energy	Efficiency	CDM	Project	Case	Study,
---	---------	----------	----------	----------	------------	-----	---------	------	--------

 $\mathbf{2}$

JICA Training program lecture series

0.0032 x 10^3 TOE

60 =

3

32 =

10.36 x 10^3 TOE

0					
4	Page 3	3. Table of Energy Scale			
5	Fukushii	na 1	33		
6		460,000kW x 6,000 hours	34		
$\overline{7}$		460MW x 6,000 hours	35	Ga	as Engine
8	=	276 x 10^4 MWh	36		312kW x 4,000hours
9	(1MWh	$=1,000$ kWh $= 10^{3}$ kWh)	37	=	0.312 MW x 4,000hours
10	=	2,760,000 MWh	38	=	1,248 MWh
11			39		
12		276 x 10^7 kWh x 3.6 MJ/kWh	40		1,248MWh x 3.6 MJ/kWh
13	=	993.6 x 10^7 MJ	41		(1,248 x 10^3 kWh) x 3.6 MJ/kWh
14	=	9,936 x 10^6 MJ	42	=	4,492 x 10^3 MJ
15			43		
16		9,936 x 10^6 MJ ÷ 41.686GJ/TOE	44		4,492 x 10^3 MJ ÷ 41.686 GJ/TOE
17	=	(993,600 x 10^3 GJ) ÷ 41.686GJ/TOE	45	=	(4.492 x 10^3 GJ) ÷ 41.686 GJ/TOE
18	=	2,383.53 x 10^3 TOE	46	=	107.9 TOE
19			47	=	0.108 x 10^3 TOE
20	Hydro P	ower Station	48		
21		25,000kW x 4,800hours	49	He	ousehold
22	=	25MW x 4,800 hours	50		0.48 kW x 8,760 hours
23	=	120,000MWh	51	=	4,204.8 kWh
24			52	=	4.20 MWh
25		(120,000MWh) x 3.6 MJ/kWh	53		
26	=	(120 x 10^6 kWh) x 3.6MJ/kWh	54		4.200kWh x 3.6 MJ/kWh
27	=	432 x 10^6 MJ	55	=	15,120 MJ
28			56	=	0.015 x 10^6 GJ
29			57	=	15 x 10^3 GJ
30		432 x 10^6MJ ÷ 41.686GJ/TOE	58		
31	=	(432 x 10^3 GJ) ÷ 41.686GJ/TOE	59		15 x 10^3GJ ÷ 41.686 GJ/TOE

61

64

62 p.4 Emission Coefficient Table

63 Basic equation is as follows.

```
Heat Value x COEF = EF, EF x 1/Gravity = trade unit's EF
```

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	KgCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4	3.173	0.972t/kl	3.084tCO ₂ /kl
Diesel Oil	0.0433	74.1	3.209	0.846t/kl	2.714tCO ₂ /kl
Residual Oil	0.0410	77.4	3.173	0.972t/kl	3.084tCO ₂ /kl
Coal	0.0293	101.0	2.816	1.300t/m ³	3.661tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		$2.108 kg CO_2/Nm^3$
Grid Electricity					0.686tCO ₂ /MWh

65

p.5: Question A 66 (1)67 The emission factor of furnace oil is derived from the table in previous page. 68Furnace Oil's heat value is given as 0.0410TJ/MT and its density is given as 0.972MT/kilo-liter. 69 Normally furnace oil traded with a unit of kilo-liters. Hence 70710.0410TJ/MT x 0.972MT/kilo-liter 720.0410 x 10^6MJ/MT x 0.972 MT/kl = 39,852 MJ/kl 73= 74Therefore, heat derived from 200 liters furnace oil is 7576200 liters x 39,852 MJ/kl 770.2kl x 39,852 MJ/kl = 787.97 x 10^3 MJ = 7980 200 liters x 3.086tCO2/kl 0.2kl x 3.086tCO2/kl 81 0.6172tCO2 82 = 83 (2)84 7.97 x 10^3 MJ ÷ 0.0293TJ/MT 7.97GJ ÷ 29.3GJ/MT 85= 86 0.272MT = 87 = 272kg 88 p.6: Question B 89 90 2,800mm x 2,100mm x 4,850mm 912.8m x 2.1m x 4.85m = 92= 28.518m^3

93		
94		28.518m^3 x 1.51kg/m^3 x 2,000kcal/kg
95	=	86,124.36kcal
96	1kcal	=4,166J
97		86,124.36 kcal x 4,166 J
98	=	358,794,084J
99	=	358.8MJ
100		
101	Furna	ace Oil's HV is derived as 0.039852 TJ/kl, which is 39.85GJ/kl
102	There	efore,
103		358.8MJ ÷ 39.85GJ/kl
104		358.8MJ ÷ 39.85 MJ/l
105	=	9.0 liters
106		

107 p.26: Fuel Change

furnace Oil Consumption in volume	1,752	kl/year
Emission factor of furnace oil	3.086	tCO ₂ /kl
CO _{2 Emissions_before}	5,406	tCO ₂ /year
Conversion rate of weight/volume	0.972	t/kl
Heavy Oil Consumption in weight	1,703	t/year
Unit HV of furnace oil	41.0	GJ/t
Heat derived from furnace Oil	69,823	GJ/year

HV of natural gas	46.1	MJ/m ³
Amount of Natural gas needed	1,515 x10 ³	m ³ /year
Emission Factor of natural gas	2.108	kgCO ₂ /m ³
CO _{2 Emissions_after}	3,194	tCO ₂ /year

108	Consump	ption of furnace oil before the project is 1,752kl/year.
109		
110	CO2 emi	ssion factor of furnace oil is 3.086tCO2/kl
111	Therefore	e, CO2 emission from furnace oil is derived as
112		1,752kl/year x 3.086tCO2/year
113	=	5,406.67 tCO2
114		
115	As the gr	avity of furnace oil is 0.972t/kl.
116	Thus the	amount of furnace oil consumed is
117		1,752kl/year x 0.972t/kl
118	=	1,703t/year
119		
120	Heat valu	the of furnace oil is 41.0GJ/t from the table $(0.0410TJ/t = 41.0GJ/t)$
121	The heat	derived from furnace oil combustion is
122		1,703 t/year x 41.0GJ/t
123	=	69,823GJ/year
124		

125	The natural gas's heat value is given as 0.0461 GJ/m ³ = 46.1 MJ/m ³
126	69,823GJ/year ÷ 46.1MJ/m^3
127	$=$ 1,515 x 10^3 m^3
128	
129	CO2 emission factor of natural gas given as 2.108kgCO2/m ³
130	1,515 x 10^3 m^3 x 2.108 kgCO2/m^3
131	= 3,194tCO2/year
132	
100	n 07 LED lump application

133 p.27 LED lump application

Unit Elec. Cons of Hg light	400	W/unit
Number of lights	137	Units
Daily Working hours	12	Hours/day
Annual Working days	264	Days/year
Electricity Consumption	173,606.4	kWh/year

W/unit	118	Unit Elec. Cons of LED
Units	83	Number of lights
Hours/year	3168	Annual Working hours
kWh/year	31,027.39	Electricity Consumption
kWh/year	142,579.0	Electricity Saving
tCO ₂ /MWh	0.686	CO _{EF}
tCO ₂	97.81	ER_LED

134	Electrici	ty consumption of halogen lamp is
135		400W/unit x 137 units x 12 hours/day x 264days/year
136	=	54.8kW x 3,168 hours/year
137	=	173,606.4kWh/year
138	By conv	erting to LED lamp
139		118W/unit x 83 units x 12 hours/day x 264days/year
140	=	9.794kW x 3,168 hours/year
141	=	31,027.39kWh/year
142		
143	The emi	ssion coefficient of electricity is derived as 0.686tCO2/MWh
144		(173,606.4kWh/year – 31,027.39kWh/year) x 0.686tCO2/MWh
145	=	142,579kWh/year x 0.686tCO2/MWh
146	=	142.58MWh/year x 0.686tCO2/MWh
147	=	97.81tCO2/year
148		
149	p.28 G	rand-Sum
150	Deduct (CO2 emissions of natural gas from furnace oil combustion as follows.
151		5,406.67tCO2/year - 3,193.62tCo2/year
152	=	2,213.05tCO2/year
153		
154	As a gra	nd-sum of project, it reduces
155		2,213.05tCO2/year + 97.81tCO2/year
156	=	2,310.86tCO2/year

Renewable Energy CDM Projects (Review Session)

8th July 2011 JICA Expert Team Ai Kawamura

Summary of the Lecture of Renewable Energy

2. Energy Source of Renewable Energy Non-biomass: Wind Hydro a with the state Solar Others (geothermal & wave etc) Biomass: Residue biomass (wood residue, rice husk, bagasse & garbage etc) Energy crops (gliricidia, jatropha etc) **GHG Emissions** Emission Reduction =CERs

without

project

with

project

- Projects using grid electricity in the project scenario (project emissions)
- Currently, all the registered Sri Lankan CDM projects requires grid emission factor data.
- Grid Emission Factor: 0.65~0.73 tCO2/MWh (National official figure is under preparation, Currently, PP has to calculate by themselves)

o. calculation	I OF GHU EITHSSION FACTOR (3) Essenual reminologies		
Terminology	Explanation			
Operating Margin (OM)	Emission factor that refers to the group of existing power plants whose current electricity generation would be affected by the proposed CDM project activity.			
Built Margin (BM)	Emission factor of the group of prospecti and future operation would be affected b	ve power plants whose construction y the proposed CDM project activity.		
Combined Margin (CM)	Weighted average of OM & BM of the ele	ectricity system.		
Low-cost/must-run resources	Power plants with low marginal generation dispatched independently of the daily or a	on costs or power plants that are seasonal load of the grid.		
OM Electricity sup CDM project	plied by	BM		
Other sou	Electricity included in OM calculation (Electricity to be replaced by CDM project)	The set of power capacity additions in the electricity system that comprise 20% of the system generation (MWh) and that have been built most recently		
(diesel, natural Low cost/must (renewable, nuc	gas, coal) Electricity excluded run From OM calculation (Electricity not affected	The set of 5 power units that have been built most recently		

6	. Calculat	ion of Gr	id Emission	Factor (3)	Essentia	l Terminolog	lies
M	W	Other : (diesel, natu	sources ral gas, coal)	Emission i factor of e	is calculated each fuel use	based on the em d for power gene	ission eration
	L (r	.ow cost/must enewable, nuc	run lear)	Considere	ed as 0(zero) sulation	emission in	
	6	12	18 24	hour			
Em o	ission factor f each fuel	FuelType	Net Calorific Value (TJ/t) [a]	CO2 Emission Factor(tCO2/TJ) [b]	Oxidation factor [c]	CO2 emission factor(tCO2/t) [a]*[b]*[c]	
		Furnace Oil	0.041	77.4	1.0	3.173	
		Gas/Diesel Oil	0.0433	74.1	1.0	3.209	
		Naphtha	0.0456	73.3	1.0	3.342	
		Residual Oil	0.041	77.4	1.0	3.173	
		Source	Energy Data 2007, SEA	2006 IPCC Guideline GHG Inventories, vol	s for National .2		
Grie	d Electricity fa or CDM projec	ctor Ct Grid Er (Nation Current	nission Factor: 0 al official figure i tly, PP has to calc	.65~0.73 tCO2/J s under preparatio ulate by themselve	MWh Gon, es) con	rid emission factor existing electricit nsumers is not the	for y same

Calculation Exercise

Non-biomass, Biomass

1. Calculation Exercise: Biomass(1)

- Company B has a CDM project plan with the following details:
 - Biomass power generation project selling the electricity to CEB
 - The biomass to be used is saw dust and rice husk
 - Net electricity generation operation rate: <u>1.0 MW</u>
 - Daily operating hours: <u>20 hours</u>
 - Monthly operating days: <u>25 days</u>
 - Seasonal operation: operation is constant
 - Grid emission factor: <u>0.70 kgCO2/kWh</u>
 - Furnace oil required for operation of the new plant: <u>5ton/month</u>
 - Diesel required for transportation of biomass: <u>10 ton/month</u>
 - Emission factor of fossil fuel is shown as below:

Fuel Type	CO2 emission coefficient (tCO2/t)	
Furnace Oil	3.173	
Diesel Oil	3.209	

(Question) How much emission reduction is expected by this project activity?

• How r	LION EXERCISE: BIOMASS(0) nuch fuel is required for operating the plant annually?
Step4 To How I	
Furnace ofDiesel rec	il required for operation of the new plant: <u>5ton/month</u> juired for transportation of biomass: <u>10ton/month</u>
On-site fossil fu	el consumption
5 ton/month	× 12 months/year = <u>60 ton/year</u>
Fossil fuel consu	Imption for biomass transport
10 ton/month	n × 12 months/year = <u>120 ton/year</u>
Unit Check	ton Month ton
	$\frac{1}{Month} \times \frac{1}{Year} = \frac{1}{Year}$

2. Calculation Exercise: Mini-hydro power(4)
 How much electricity to be sold to the grid in dry season? How much electricity to be sold to the grid in wet season?
 Operating hours in each season: (Dry) <u>2,400 hours</u>, (Wet) <u>4,800hours</u> Expected operation: (dry season) <u>0.6MW</u>, (wet season) <u>1.1MW</u> Electricity requirement by the plant: <u>0.1MW</u>
Amount of electricity to be sold to the grid can be obtained by operation ratio (MW) times number of operating hours.
Dry season:
2,400 hours/y × (0.6 MW -0.1MW) = <u>1,200 MWh/y</u>
Wet season:
4,800 hours/y × (1.1 MW -0.1MW) = <u>4,800 MWh/y</u>

