
(2) Distribution Map of Limestone Deposits

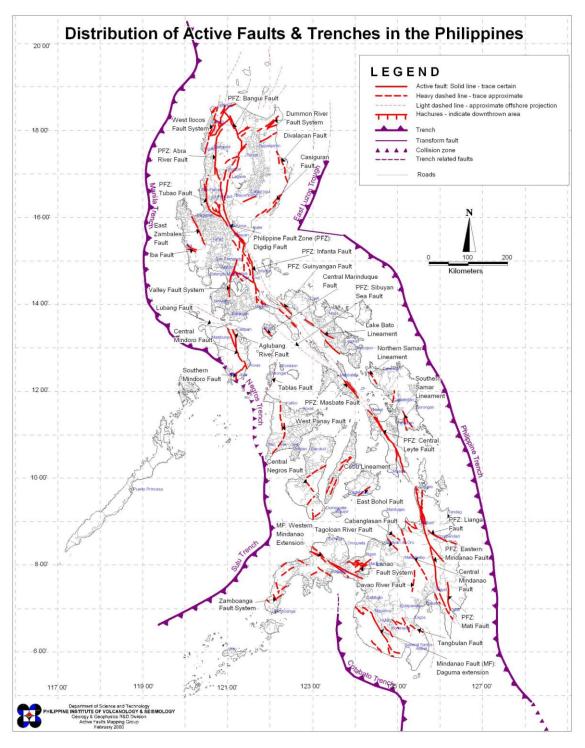
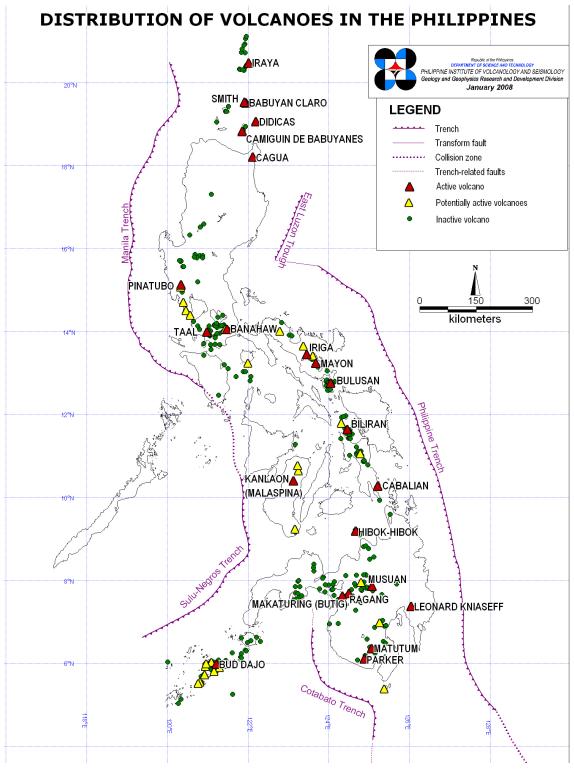

A distribution map of limestone deposits is shown below.

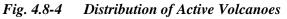
Fig. 4.8-2 Distribution Map of Limestone Deposits

Source: MGB

(3) Distribution of Active Faults

The active faults map used in this study is shown below.

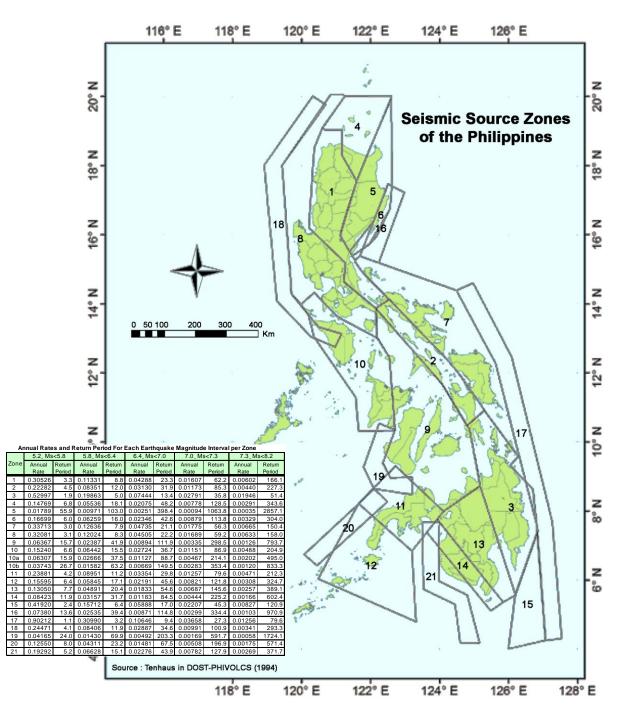


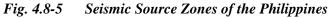


Source: PHIVOLCS (Philippine Institute of Volcanology and Seismology)

(4) Distribution of Volcanoes

The volcano map and list of active volcanoes used in this study are shown below.





Source: PHIVOLCS

(5) Seismic Source Zones

A map of seismic source zones of the Philippines is shown below.

Source: "Mainstreaming Disaster Risk Reduction in Subnational Development and Land Use/Physical Planning in the Philippines", National Economic and Development Authority, United Nations Development Programme, European Commission Humanitarian Aid, 2008

(6) Seismic History

The seismic history (Magnitude ≥ 4.0) of the Philippines over the last 50 years (1960-2010) is shown below.

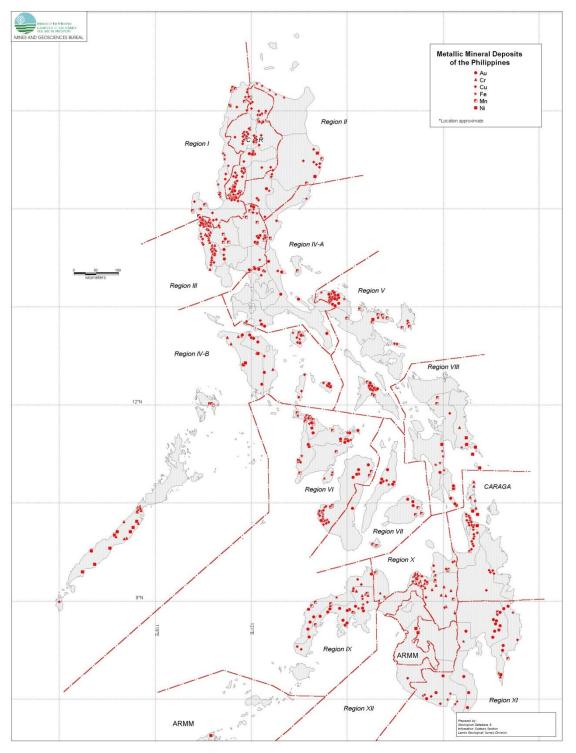
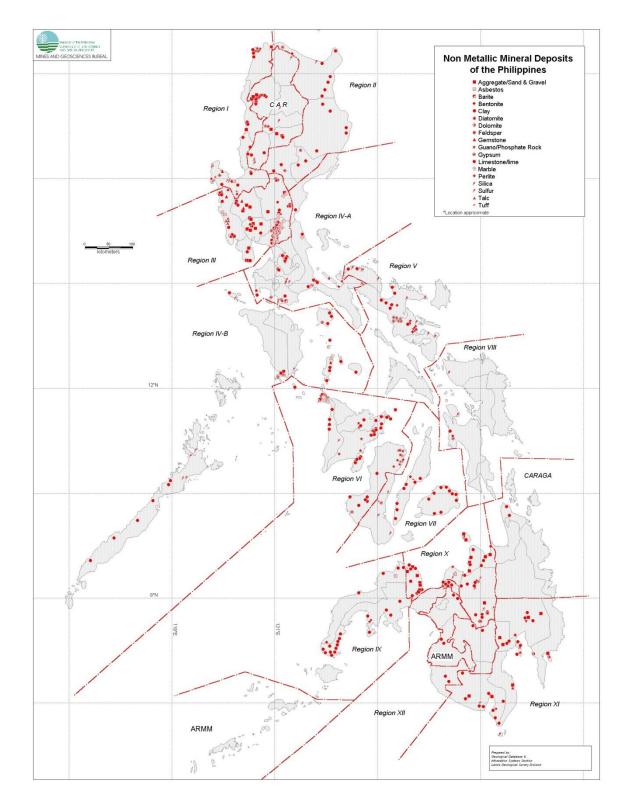


Fig. 4.8-6 Seismic History (Magnitude \geq 4, 1960-2010)

Source: USGS (United States Geological Survey)


(7) Distribution of Mineral Deposits

As for mineral deposits, the distributions of metallic mineral and non-metallic mineral deposits are shown below.

Source: MGB

Source: MGB

4.9 ENVIRONMENTAL IMPACT ASSESSMENT

4.9.1 Policy

In this study, components of environmental impact are scoped to collect necessary GIS data with reference to the IEE (Initial Environmental Examination) checklist. In hydropower development, natural and social environmental components to be scoped are as follows¹.

- 1) Land cover and vegetation distribution
- 2) Distribution of endangered plants and animals
- 3) Biological diversities
- 4) Other nature or landscape conservation area
- 5) Community distribution and habitat of indigenous people
- 6) Natural disaster area suffering from volcanic activities, geological hazard, etc.
- 7) Historical constructions or cultural heritages

Areas with the above features of 1) to 4) have been comprehensively evaluated and integrated under the NIPAS (National Integrated Protected Areas System Act of 1992), and the National Integrated Protected Areas are designated as nature conservation areas.

Item 5) is administered by the NCIP (National Comission on Indigenous People). As for item 6), disaster areas suffering from active volcanos have a negative impact on hydropower development sites. Geological hazards such as landslides are evaluated after the scoping of each project site because of small and limited impact.

Therefore, as components of environmental impacts for screening hydropower development as shown in Fig.4.9-1, GIS data includes nature conservation areas, communities and habitats of indigenous people, and active volcanoes. GIS data of these components has been collected and prepared at the sites, and saved in the GIS after analysis.

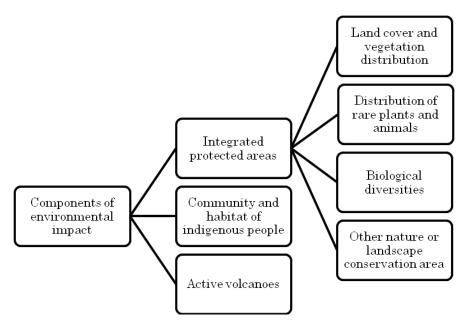


Fig. 4.9-1 Components of Environmental Impact for Screening Hydropower Development

¹ Table 2a. List of Environmentally Critical Areas, ANNEX 2-1a, DAO 2003-30

4.9.2 Nature Conservation Areas

The NIPAS was enacted to establish and manage the National Integrated Protected Areas System, in which specific protected areas are designated.

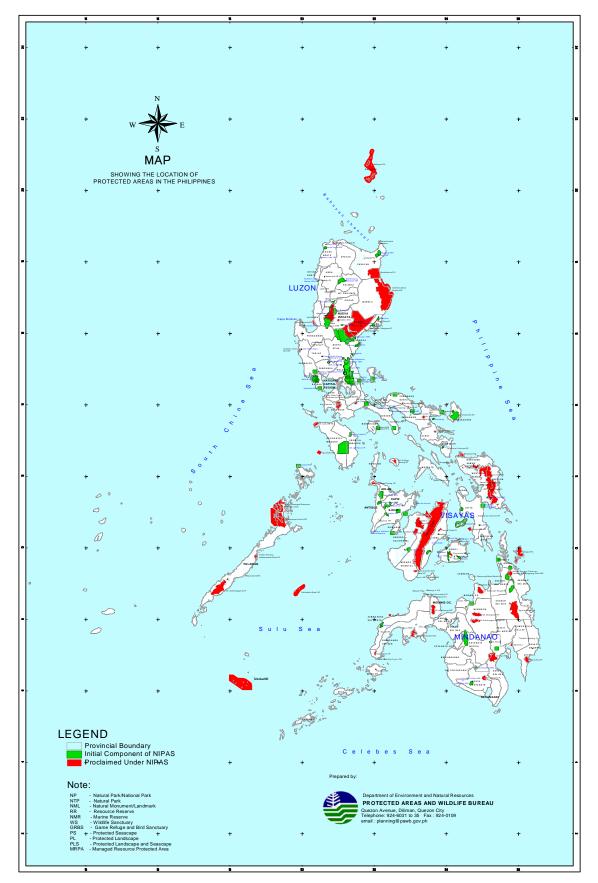
"Section 2 Declaration of Policy" states as follows.

Cognizant of the profound impact of man's activities on all components of the natural environment particularly the effect of increasing population, resource exploitation and industrial advancement and recognizing the critical importance of protecting and maintaining the natural biological and physical diversities of the environment notably in areas with biologically unique features to sustain human life and development, as well as plant and animal life, it is hereby declared the policy of the State to secure for the Filipino people of present and future generations the perpetual existence of all native plants and animals through the establishment of a comprehensive system of integrated protected areas within the classification of national park as provided for in the Constitution.

It is hereby recognized that these areas, although distinct in features, possess common ecological values that may be incorporated into a holistic plan representative of our natural heritage; that effective administration of these areas is possible only through cooperation among the national government, local government and concerned private organizations; that the use and enjoyment of these protected areas must be consistent with the principles of biological diversity and sustainable development.

To this end, there is hereby established a NIPAS, which shall encompass outstanding remarkable areas and biologically important public lands that are habitats of rare and endangered species of plants and animals, bio-geographic zones and related ecosystems, whether terrestrial, wetland or marine, all of which shall be designated as protected areas.

"Section 3 Categories" states as follows.


The following categories of protected areas are hereby established:

- a. Strict nature reserve;
- b. Natural park;
- c. Natural monument;
- d. Wildlife sanctuary;
- e. Protected landscape and seascape;
- f. Resource reserve;
- g. Natural biotic area, and;
- *h.* Other categories established by law, conventions or international agreements which the Philippine Government is a signatory.

"Section 12 Environmental impact Assessment" states as follows.

Proposals for activities that are outside the scope of the management plan for protected areas shall be subject to an environmental impact assessment as required by law before they are adopted, and the results thereof shall be taken into consideration in the decision-making process. No actual implementation of such activities shall be allowed without the required Environmental Compliance Certificate (ECC) under the Philippine EIA (Environment Impact Assessment) system. In instances where such activities are allowed to be undertaken, the proponent shall plan and carry them out in such manner as will minimize any adverse effects and take preventive and remedial action when appropriate. The proponent shall be liable for any damage due to lack of caution or indiscretion.

Nature conservation areas, which were designated before/after the NIPAS in 1992, are shown in Fig. 4.9-2. The construction of a hydropower plant in these areas is not prohibited by law, but it requires parliamentary approval and needs time for that procedure. Actually, run-of-river type plants can be developed. In Panay of the NIPAS area, Villasiga Hydropower (8MW) is being constructed by a private developer, and Timbabban Hydropower (18MW) is being prepared for construction also by a private developer. In Palawan, Longogan Power Corporation has been permitted by the Palawanco Council for Sustainable Development (PSCD) to develop Longogan Hydropower (6.8MW) located in an environmental critical area. Hydropower sites located in nature conservation areas receive a lower valuation from the environmental point of view.

4.9.3 Communities and Habitats of Indigenous People²

There are 109 races identified as indigenous people in the Philippines. "Indigenous peoples" of the Philippines refer to a group of people or homogenous societies identified by self-ascription and ascription by others, who have continuously lived as an organized community on communally bounded and defined territory, and who have, under claims of ownership since time immemorial, occupied, possessed and utilized such territories, sharing common bonds of language, customs, traditions and other distinctive cultural traits, or who have, through resistance to political, Social and cultural inroads of colonization, non-indigenous religions and cultures, become historically differentiated from the majority of the Filipinos.

ICCs (Indigenous Cultural Communities)/IPs (Indigenous Peoples) likewise include peoples who are regarded as indigenous on account of their descent from populations that inhabited the country, at the time of conquest or colonization, or at the time of inroads of non-indigenous religions and cultures, or the establishment of present state boundaries, who retain some or all of their own social, economic, cultural and political institutions, but who may have been displaced from their traditional domains or who may have resettled outside their ancestral domains (Section 3 (h) R.A.8371).

Philippine Regional IP Population	Region	Population
	CAR	1,470,977
2,500,000	R-I	1,206,798
2,000,000	R-II	1,030,179
	R-III	236,487
1,500,000	R-IV	936,745
1,000,000	R-V	213,311
	R-VI & VII	203,912
500,000	R-IX	1,203,598
0 +	R-X	1,802,266
CAR R-I R-I R-IV R-IV R-VII R-VII R-VII R-VII R-VII R-XII R-XII R-XII R-XII R-XII R-XII R-XII ARMM	R-XI	2,289,268
AR B 1 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R-XII	1,856,300
R-VI	R-XIII (CARAGA)	1,004,750
CAR R-I R-I R-IV R-IV R-V R-V R-V R-X R-X R-XI R-XI R-XI R-XI R-XI R-XM MAMA	ARMM	730,054
Ъ.	TOTAL	14,184,645

Fig. 4.9-3 Philippine Regional IP (Indigenous Peoples) Population

The Philippine Regional IP Population as in Fig. 4.9-3, Ethnographic Map as in Fig.4.9-4, and Approved CADTs (Certification of Ancestral Domain Titles) / CALTs (Certification of Ancestral Land Titles) and Ancestral Domain/Ancestral Land Areas on Process as in Fig. 4.9-5 are shown below. Hydropower sites located in the habitats of indigenous people receive a lower evaluation from the environmental point of view.

² National Commission on Indigenous People, INFO KIT, provided in 2010 June.

Ethnographic Map of the Philippines

ETHNOGRAPHIC MAP

CORDILLERA & REGION I

Bontoc; Balangao, Isneg, Tinguian,, Kankanaey Kalanguya-Ikalahan, Karao, Iwak, Ibaloi, Ayangan, Ifugao, Tuwali, Kalinga, Bago, Applai Isnag

ISLAND GROUPS And Rest of Visayas

Agutaynon, Tagbanua, Cagayanen, Ke'ney (Tao't bato), Batak, Pala'wan Molbog, Iraya Mangyan, Alangan Mangyan, Buhid Mangyan, Tadyawan Mangyan, Bangon Mangyan, Gubatnon Mangyan, Ratagnon Mangyan, Ati, Cuyunon, Panay Bukidnon (Sulod/Tumandok), Bukidnon-Magahat Bukidnon-Korolanos, Ata Eskaya, Calamianen Tagbanua, Bantoanon 👌 Panay-Bukidnon-Sulod Iraynon-Bukidnon

NORTHERN & WESTERN MINDANAO (RIX & RX)

Subanen, Subanen/Kalibugan, Bagobo, Ubo-Manobo, Mamanwa, Higaonon, Talaindig, Matigsalog, Iranon, Sama/Badjao (Lua-an), Sama/Samal, Sama/Bangingi, Manobo, Bukidnon, Umayamnon, Tiguahanon, Matigsalog-Manobo

(OPPR-IRD)

LEGEND: CAR and REGION I REGION II REGONAL MINDANAO NINDANAO REGION II REGONAL REGONA

CENTRAL MINDANAO (RXII) Arumanen, Teduray, Manobo, Ubo Manobo, Manobo-Dulangan, Manobo-Blit, T'boli, B'laan, Lambangian, Tasaday, Kalagan, Tagacaolo, Arumanon-Manobo Ubo-Menuvu, B'laan-Tagakaulo

1

REGION II, CARABALLO MOUNTAINS

Agta, Kalanguya-Ikalahan, Bugkalot Isinai, Gaddang, Aggay, Dumagat, Ibanag, Itawis, Ivatan, Iwak, Yogad, Ibatan, Kar. Ilongot, Ayangan, Ichbayat-Ivatan, Kalanguya-Ayangar

REGION III & REST OF LUZON/SIERRA MADRE MOUNTAIN (RIII, RIV & RV)

Aeta, Negrito. Abellir Agta, Dumagat, Remontado, Bugkalo Cimaron, Kabihug, Tabangnon, Abiyan, Aeta, Isarog, Itom, Cimaron, Tadyawan, Agta-Tabangnon,

SOUTHERN & EASTER! MINDANAO

(RXI & RXIII) Mandaya, Mansaka, Mangguangan Dibabawo: Bagobo Clata, Tagakaolo Kalagan, Ubo Manobo, Agusan Manobo, Higaonon, B'laan, Mamanwa, Talaingod, Tagabawa/Bagobo, Matigsalug, Banwaon. Giangan/Clata Sama, Ata-Manobo, Bagobo-Tagabawa

Fig. 4.9-4 Ethnographic Map

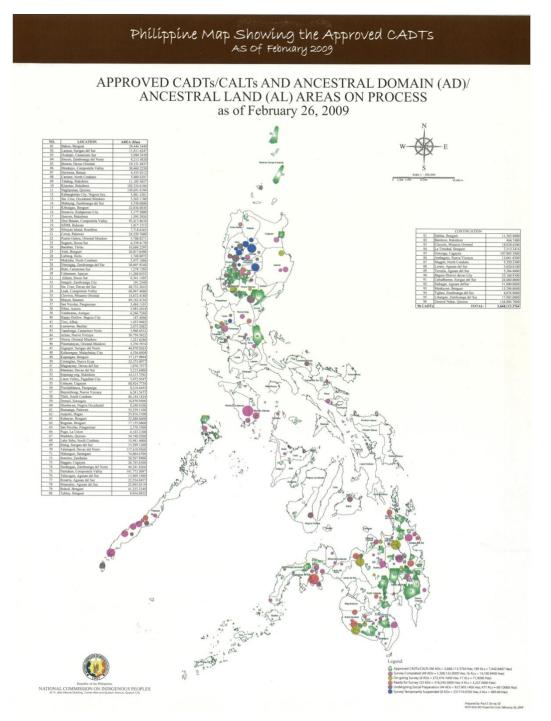


Fig. 4.9-5 CADTs/CALTs and Habitats of Indigenous People

4.9.4 Volcanic Activities

Volcano information in the Philippines is managed by PHIVOLCS. Volcanoes are classified into three categories, namely, active, dormant, and extinct according to the activity level. The classification is based on historical earthquake records in the past 500 years, activity records in the past 10,000 years, etc. It has been found that 23 volcanoes are active at the present, and 5 of them, including Mt. Pinatubo, are energetically active. A distribution map and basic information of active volcanoes are shown respectively in Fig. 4.9-6 and Table 4.9-1.

The hazard range of eruption is different among volcanoes. Mt. Pinatubo at present has the largest hazard range at 30 km in radius, while Mt. Canlaon has a range of 18 km in radius. In this study, hydropower sites located within a 30 km radius from the crater of a volcano are given a lower evaluation on the safe side from the environmental point of view.

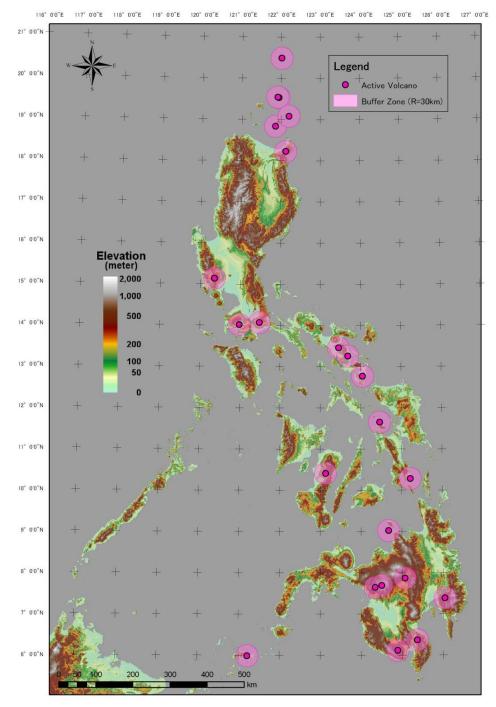


Fig. 4.9-6 Distribution Map of Active Volcanoes

No.	Name of Volcano	Lat (N)	Long (E)	Province	Region	Elevation (EL.m)	Number of Historical Eruptions	Latest Eruption / Activity
1	Babuyan Claro	19.525	121.95	Cagayan (Babuyan Islands)	2	843	4	1917
2	Banahaw Volcano Complex	14.067	121.483	Laguna, Quezon	4A	2169	3	1843
3	Biliran (Suiro)	11.65	124.467	Biliran	8	1340	1	Sept. 26, 1934
4	Bud Dajo	5.983	121.217	Sulu	ARRM	620	2	1897
5	Bulusan	12.77	124.05	Sorogon	5	1565	16	Mar.21, 2009 - Oct.4, 2007
6	Cabalian	10.281	125.214	Southern Leyte	8	945		135±30 years B.P. 14C age of charcoal found beneath pyroclasitic flow unit
7	Cagua	18.222	122.123	Cagayan	2	1160	2	1907
8	Camiguin de Babuyanes	18.833	121.86	Cagayan (Babuyan Islands)	2	712	1	1857
9	Didicas	19.077	122.202	Cagayan (Babuyan Islands)	2	228	6	Jan. 6-9, 1978
10	Hibok-Hibok	9.023	124.675	Camiguin	10	1332	5	Sept. 31, 1948 - Jul. 1953
11	Iraya	20.483	122.017	Batanes	2	1009	1	1454
12	Iriga	13.457	123.457	Camarines Sur	5	1143	2	Jan. 4, 1642
13	Kanloan	10.412	123.132	Negros Oriental	7	2435	26	Jun.3 - Jul. 25, 2006
14	Leonard Kniaseff	7.382	126.047	Compostela Valley	11	1080		1,800 years B.P. (Before Present)
15	Makaturing	7.642	124.342	Lanao del Sur	ARRM	1908	7	1882
16	Matutum	6.367	125.367	Cotabato	12	2286	1	Mar. 7, 1911
17	Mayon	13.257	123.685	Albay	5	2460	48	Nov. 11, 2009 - Jan. 6, 2010
18	Musuan	7.867	125.073	Bukidnon	10	646	2	1867
19	Parker	6.113	124.892	Cotabato	12	1784	1	Jan. 4, 1641
20	Pinatubo	15.133	120.35	Boundaries of Pampanga, Tarlac and Zambales	3	1445	2	Jul. 9 - Aug. 16, 1992
21	Ragang	7.692	124.505	Cotabato	12	2815	7	Jul. 1916
22	Smith	19.54	121.917	Cagayan (Babuyan Islands)	2	688	5	1924
23	Taal	14.017	120.985	Batanes	2	311	33	Oct. 3, 1977

 Table 4.9-1
 Basic Information of Active Volcanoes

Source: PHIVOLCS

4.10 BASIC DATA ON CONSTRUCTION COST

4.10.1 Unit Costs of Civil Works, Gates and Penstocks

In general, unit costs used for the preliminary study are estimated based on the unit costs of past similar hydroelectric power projects in the relevant country or neighboring countries. Unit costs of main civil works, gates, screens and penstocks of similar hydroelectric power projects in Southeast Asian countries are summarized in Tables 4.10-1 and 4.10-2.

4.10.2 Unit Costs of Civil Works

(1) Unit Costs of Civil Works

The unit costs applied to this preliminary study are estimated based on the unit costs of past F/S, detailed designs, etc. in the Philippines and Southeast Asian countries.

Since 1:50,000 scale topographic maps are used for the preliminary study, preliminary quantities of structures are calculated by the formulae developed based on past similar construction records. The unit costs consist basically of major kinds of works such as excavations (open, tunnel), concrete and re-bar works. Preliminary construction costs are estimated by means of multiplying preliminary quantities by preliminary unit costs.

Kind of works	Condition	Unit	Unit cost(US\$)
Intake Dam (Weir) Work Unit Cost			
Excavation	soil : rock=1 : 2	m ³	8.0
Concrete		m ³	100.0
Re-bar works		ton	1,200.0
Intake Work Unit Cost	·		
Excavation	Open, soil : rock=1 : 2	m ³	8.0
Concrete		m ³	140.0
Re-bar works		ton	1,200.0
Settling Basin Work Unit Cost			
Excavation	Open, soil : rock=2 : 1	m ³	6.0
Concrete		m ³	140.0
Re-bar works		ton	1,200.0
Headrace, Tributary Waterway Work	Unit Cost		
Excavation	Open, soil : rock=2 : 1	m ³	6.0
Excavation	Tunnel	m ³	100.0
Concrete	Open	m ³	140.0
Concrete	Tunnel	m ³	140.0
Re-bar works		ton	1,200.0
Head Tank Work Unit Cost			
Excavation	soil : rock=2 : 1	m ³	6.0
Concrete		m ³	140.0
Re-bar works		ton	1,200.0
Surge Tank Work Unit Cost			
Excavation	rock	m ³	140.0
Concrete		m ³	140.0
Re-bar works		ton	1,200.0
Spillway Work Unit Cost			
Excavation	soil : rock=1 : 1	m ³	7.0

Kind of works	Condition	Unit	Unit cost(US\$)
Concrete		m ³	100.0
Re-bar works	Open	ton	1,200.0
Penstock Work Unit Cost	·		
Excavation	Open	m ³	7.0
Concrete	Open	m ³	100.0
Re-bar works	Open	ton	1,200.0
Excavation	Tunnel	m ³	100.0
Concrete	Tunnel	m ³	100.0
Powerhouse Building			
Building volume		m ³	90.0
Powerhouse Foundation Work Unit Co	ost		
Excavation (Open)	soil : rock=2 : 1	m ³	6.0
Excavation (Semi-underground)	soil : rock=1 : 2	m ³	8.0
Excavation (Underground)	rock	m ³	70.0
Concrete (Open)		m ³	140.0
Concrete (Semi-underground)		m ³	140.0
Concrete (Underground)		m ³	140.0
Re-bar works (Open)		ton	1,200.0
Re-bar works (Semi-underground)		ton	1,200.0
Re-bar works (Underground)		ton	1,200.0
Outlet Work Unit Cost			-,_ • • • •
Excavation	soil : rock=2 : 1	m ³	6.0
Concrete		m ³	140.0
Re-bar works		ton	1,200.0
Temporary Roads			-,_ • • • •
Road type			
New Road	length	m	75.0
Road to be improved	length	m	35.0
New Bridge	length	m	4,000.0
Road Construction Unit Cost per m			.,
Road type			
New Road	length	m	150.0
Road to be improved	length	m	70.0
New Bridge	length	m	10,000.0
Fill Dam Work Unit Cost	lengui		10,000.0
Excavation		m ³	8.0
Embankment		m ³	10.0
Flood Spillway Work Unit Cost			10.0
Excavation		m ³	8.0
Concrete		m ³	100.0
Re-bar works		ton	1,200.0
Gate		ton	7,000.0
Gravity Dam Work Unit Cost		ton	7,000.0
Excavation		m ³	6.0
Concrete		m ³	100.0
RCC Concrete		m ³	50.0
Gate		ton	7,000.0

The Study Project on Resource Inventory on Hydropower Potential in the Philippines

(2) Unit Costs of Metal Works

The unit costs of hydraulic equipment such as gates, screens, etc. and penstock steel pipes are estimated as below. The unit costs include costs of fabrication, transportation and installation.

Gate	: 7,000 US\$ / ton
Screen	: 7,000 US\$ / ton
Steel (Penstock)	: 4,000 US\$ / ton
Steel (Spillway)	: 3,000 US\$ / ton

4.10.3 Price of Water Turbines, Generators and Transmission Lines

(1) Price of Water Turbines and Generators

The equipment of a hydropower plant is specially designed and manufactured according to respective parameters such as head and water discharge determined by the site conditions and the equipment rating of each different power station. This design method is different from equipment for a thermal power plant or nuclear power plant. There is no standardized equipment for water turbines and generators, except for small equipment. That equipment is unique as it must be made to order, according to the conditions of each individual site. Therefore, the equipment price can be estimated by price approximation based on past price results in the preliminary study stage. Price approximation is studied and investigated as follows.

1) Price of water turbines

The approximations from past price records of water turbines are presented by various companies/institutes as follows.

- a) Calculation method Ex. 1 (According to the "Standard of Construction Cost Estimation for Hydro-power Plan" published by the Agency of Natural Resources and Energy and the New Energy Foundation, Japan)
 - i. Construction cost for Pelton type turbine $Ct = 58.4 \times (P/\sqrt{H})^{0.694}$ Thousand US\$
 - ii. Construction cost for Francis type turbine $Ct = 57.5 \times (P/\sqrt{H})^{0.589}$ Thousand US\$
 - iii. Construction cost for Francis type turbine $Ct = 70.6 \times (P/\sqrt{H})^{0.562}$ Thousand US\$
 - iv. Construction cost for Turgo impulse type turbine $Ct = 511.8 \times (P/\sqrt{H})^{0.14}$ Thousand US\$
 - v. Construction cost for propeller type turbine (Tubular, Kaplan and diagonal type)

 $Ct = 42.5 \times (P/\sqrt{H})^{0.66}$ Thousand US\$

vi. Construction cost for propeller type (inline type, submersible type) turbine (including generator)

 $Ct = 33.7 \times (P/\sqrt{H})^{0.588}$ Thousand USS

Where, P: Power plant's total turbine output in kW, H: Head in m

- **b) Calculation method Ex. 2** (According to the "Guide Book for Middle and Small Scale Hydro Power") (Calculation formula of blanketed turbines/generators and other auxiliaries)
 - i. Construction cost of electro-mechanical equipment for a power plant with a Pelton turbine

Ct = $243.6 \times (P/\sqrt{H})^{0.612}$ Thousand US\$

- ii. Construction cost of electro-mechanical equipment for a power plant with a double runner Francis, diagonal or tubular turbine $Ct = 80.9 \times (P/\sqrt{H})^{0.725}$ Thousand US\$
- iii. Construction cost of electro-mechanical equipment for a power plant with a Francis, Kaplan or crossflow turbine

Ct = 116.4 × $(P/\sqrt{H})^{0.648}$ Thousand US\$

Where, P: Power plant's total turbine output in kW, H: Head in m

c) **Calculation method Ex. 3** (According to the calculation formula by "A" electric power company, Japan and USBR)

The price of a Francis turbine is calculated by "A" company's method as follow.

 $Ct = 58.2 - 4.38 \ln(x) \text{ Thousand US}/\text{ton.....}$ (Where, $x = Pt \max/\sqrt{H}$)

Turbine weight is calculated by the formula in "Selecting Hydraulic Reaction Turbine" by USBR is as follows.

 $w = 15.175 (Dmax)^{2.33}$ (ton)@ Where, Dmax: Biggest dimension of the runner diameter (m)

The biggest runner diameter is calculated as follow by the formula of the USBR. $Dmax = (1.782 \times H^{1/2} \times Ns^{2/3}) / N \text{ (m)}.....3$

The price of Francis turbine can be obtained by substituting ③ for ② and substituting ② for ① in the following formula. $Ct = (58.2 - 4.38 \ln x) \times 15.175 \times [(1.782 \times H^{1/2} \times Ns^{2/3})/N]^{2.33}$ Thousand US\$

- Colordation and the different (According to the colordation mothed has "D" should
- d) Calculation method Ex. 4 (According to the calculation method by "B" electric power company, Japan)

The calculation formula by "B" electric power company is as follows.

- i. Construction cost for Pelton type turbine $Ct = 61.0 \times (P/\sqrt{H})^{0.6102}$ Thousand US\$
- ii. Construction cost for Francis type turbine $Ct = 31.6 \times (P/\sqrt{H})^{0.6195}$ Thousand US\$
- iii. Construction cost for Kaplan type turbine $Ct = 20.2 \times (P/\sqrt{H})^{0.7138}$ Thousand US\$

Where, P: Turbine unit output in kW, H: Head in m

Simplified expressions for calculating the construction cost for Pelton and Francis turbines are as follows according to the above study.

- i. Construction cost for Pelton type turbine $Ct = 60.9 \times (P/\sqrt{H})^{0.61}$ Thousand US\$
- ii. Construction cost for Francis type turbine $Ct = 40.0 \times (P/\sqrt{H})^{0.589}$ Thousand US\$

Where, P: Turbine unit output in kW, H: Head in m

- iii. Construction cost for Tubular, Kaplan and diagonal type turbine $Ct = 29.8 \times (P/\sqrt{H})^{0.66}$ Thousand US\$
- iv. Construction cost for inline propeller type and submersible type turbine $Ct = 23.6 \times (P/\sqrt{H})^{0.588}$ Thousand US\$
- v. Construction cost for crossflow turbine $Ct = 49.5 \times (P/\sqrt{H})^{0.562}$ Thousand US\$
- vi. Construction cost for Turgo impulse type turbine $Ct = 358.3 \times (P/\sqrt{H})^{0.14}$ Thousand US\$

Where, P: Power plant's total turbine output in kW, H: Head in m

2) Price of generators

The formulas for the preliminary cost estimate of generators are shown below.

a) Calculation method Ex. 1 (According to the "Standard of Construction Cost Estimation for Hydro-power Plan" published by the Agency of Natural Resources and Energy and the New Energy Foundation, Japan)

Construction cost for a generator according to this method is: $Cg = 21.7 \times (P/\sqrt{H})^{0.701}$ Thousand US\$

Where, P: Power plant's total turbine output in kW, H: Head in m

b) Calculation method Ex. 2 (According to the calculation method by "A" electric power company, Japan)

The construction cost for a generator according to the method of "A" electric power company is calculated as follow.

 $Cg = 36.2 - 3.13 \ln(X)$ (Thousand US\$/ton).... Where, X = kVA / N, kVA: Generator capacity (kVA), N: Rotation number of generator

Total weight of a generator is as follows.

- a. In case the turbine is a vertical Francis type (VF) $W_G = 16.02 \times (kVA/N)^{0.596}$ (ton)
- b. In case the turbine is a horizontal Francis type (HF) $W_G = 10.45 \times (kVA/N)^{0.537}$ (ton)

The above generator weights (W_G) include the generator itself, AVR/Exciter, air cooler, lubrication system and auxiliary piping. Then, the construction cost of the generator can be calculated by substituting the generator weight into the above formula.

c) Calculation method Ex. 3 (According to the calculation method of "B" electric power company, Japan)

The construction cost for a generator according to the method of "B" electric power company is calculated as follow.

In case the generator is a synchronous type, (synchronous type is adopted for all sites)

 $Cg = 390.6 \times (kVA/N)^{0.5881}$ Thousand US\$ Where, kVA: Capacity of a generator (kVA), N: Rotation number of generator

Formula a) is a function with a parameter of P/\sqrt{H} , and the estimated cost is a very rough value. By the general method, with a formula having a function with a parameter of kVA/N, such as b) and c), the estimated cost is more accurate than Formula a).

A simplified expression for calculating the construction costs for a generator is as follow, according to the above study.

 $Cg = 390.9 \times (kVA/N)^{0.588}$ Thousand US\$

If the above expression is adopted as the cost estimation formula, it becomes complicated to calculate, because the rotational speed must be calculated as a parameter.

Therefore, the rotational speed for only the calculation of the generator price, which is different from the actual speed, is temporarily determined, and then the generator price is calculated by using this value. This speed shall be 85% of one obtained from the limit of the specific speed.

Moreover, for expediency, it is assumed that 1.12 times the water turbine output is the generator capacity, though the capacity of a generator is actually calculated by multiplying the generator efficiency by the water turbine output and dividing by the generator power factor. $(0.95 / 0.85 \approx 1.12)$, when the generator efficiency is 95% and power factor is 0.85).

3) Price of other electro-mechanical items

The preliminary prices of other electro-mechanical items such as control equipment, overhead traveling cranes, switchgear and sometimes including inlet valves are considered as 30% of the total of the turbine and generator prices. Then, the total of all electro-mechanical items for the power plant is calculated roughly.

(2) Price of Transmission Lines

The unit costs of transmission lines in the Philippines are estimated by referring to unit costs per km by the NGCP as follows. The unit cost includes civil works such as the foundation of towers, assembling of towers, and installation of towers.

Type of Transmission Line	Unit Cost (US\$/km)
69 kV	27,000.00
115 kV	35,000.00
230 kV	119,000.00

Philippines
the
in the
Projects
dropower .
f Hy
of.
Costs
Unit Construction
Table 4.10-1

SS US\$	6.0 12.0		1.1		80.0 1.2					20	46.0	57.		58.0 59.9	572.	6	572.2 572.2	44	58.4	626/	118.6	1.744	1,181.6	1.5	58.0	572.2	49.9	425.8 94.8	58.0 650.5	572.2	11	5.2	1,410.0	79.6	572.2 2,055.6	4	425.5	21.2 75.0	-0C	22	58.0 66.3	61.5	572.2	86.0	416.	225,479.0 56,641.6	4,519.	<u>250,000.0</u> 90,000.0		12,000.0	34,000.0 111,000.0 678,000.0	30.1	7,389.3	3,570.	185.2
2		8.0	4.0	112.7	80.0 1.2		4.9 9.4	9.8	1.0	100.0	46.0	1,354.4	6.0 16.0	122.0 107.0	2,070.0	2.5	1,160.0	203.7	89.6 89.6	698.1 17.0	298.4	447.1	2,002.6	9.1	112.7	1,160.0	132.7	425.8 94.8	90.0 698.1	3,000.0	8.0 16.0	2,070.0	1,410.0	112.7	1,160.0 8,888.9	44.3	153.1 425.8	21.2 83.9	7.00	16.0	112.7	61.9	1,160.0	180.0				250,000.0 90,000.0			34,000.0 111,000.0 678,000.0		10,129.6	6,595.2	3,570.0 1,319.4
S							1.58 9.41	1.94				1,354.40		121.99 106.95	1,354.40																																						7,389.30	6,595.19	
ЧЧ							70.00 417.00	86.00				60,000.00		5,404.00 4,738.00	60,000.00																																						327,346.00	292,167.00	
US\$	6.0 16.0		4.0	112.7	80.0 1.2								$\left \right $					H																						\parallel						25,479.0 78,918.0				2,254.8		30.1			
PhP	320.0 850.0		213.0	6.000.0	62.0																																									12,000,000.0 2 4,200,000.0 7				12,000.0		1,600.0			
US\$										100.0		1,160.0	6.0 16.0	100.0	2,070.0		112.7							6.0	112.7 bar works	1,160.0					8.0 16.0	2,070.0	1,410.0 80.0	112.7 -bar works	1,160.0 3,570.0				0	16.0	112.7	-bar works	1,160.0			78,918.0				18,790.0		30.1		3,570.0	3,570.0
PhP																									6 of Concrete & Re						oil ock			ó of Concrete & Re								ó of Concrete & Re				4,200,000.0				1,000,000.0			ntake	hice	
US\$							1.50 5.20		8	79.60		626.40	1.50 5.20	79.60	626.40			203.70	79.60	626.40				1.50	79.60	626.40					1.50 s	5.20		79.60 209	626.40 2055.60				5	5.20	79.60	30	626.40		416.70					81944.40			9	876.90	1319.40
PhP							80.0 279.0		55.0	4,300.0		33,823.0	80.0 279.0	4,300.0	33,823.0			11,000.0	4,300.0	33,823.0				80.0	4,300.0	33,823.0					80:0	279.0		4,300.0	33,823.0 111,000.0				008	279.0	4,300.0		33,823.0		22,500.0					4,425,000.0				47,350.0	71.247.0
US\$							2.52			50.22		572.22	2.52	58.04	572.22	2.52	58.04 572.22							2.52	58.04	572.22			58.04	572.22	2.52		58.04		572.22 8,888.89				3 67	70.2	58.04		572.22										10,129.63		185.19
PhP							136.00			2,712.00		30,900.00	136.00	3,134.00	30,900.00	136.00	3,134.00 30,900.00							136.00	3,134.00	30,900.00			3,134.00	30,900.00	136.00		3.134.00		30,900.00 480,000.00				136.00	DOOCT	3,134.00		30,900.00										547,000.00		10,000.00
US\$							1.34 9.06			58.40		698.00	1.34 9.06	58.40	698.00			118.80	58.40	698.00				9.06		698.00									2,220.00				1 24	50'6	58.40		698.00	86.00		59,600.00				12,000.00		50.00		2,720.00	1.156.00
PhP							67 453			2,920.00		34,900.00	67 453	2,920.00	34,900.00			5,940.00	2,920.00	34,900.00				453	2,920.00	34,900.00									111,000.00					453	2,920.00		34,900.00	4,300.00		7,980,000.00				600,000.00		2,500.00		136,000.00	57,800.00
US\$							4.9 7.3	9.8		73.7	46.0 59.9	608.9	4.9 7.3	73.7 59.9	608.9			72.5	/4.0 89.6	650.5	118.6	447.1	2,002.6				49.9	94.8	73.7 650.5		4.9 7.3								Q.	7.3	73.7		608.9			56,641.6	4,519.5								
PhP																		G 1-2-3	.1.4 ncl.contact grouting		=10-15cm	2 cm 4 2 cmm	11110-7-D (1110-7-					=2.5m, d=25mm																											
US\$	3.2	4.1	11.4															44.3	81.4	698.1 17.0	298.4 t	000	1,181.6				132.7	425.8	89.0 698.1							44.3	153.1 425.8	21.2 83.9	2.0C	2.c 11.6	61.9 66.3	61.9	698.1		1,074.0										
PhP		sarth/random fill	OCKIII																	on colidation	=15cm w/wiremsh =5 cm		111107-D (1114)7					i=5cm								horizontal	inclined i=5cm	l=2.5m, d=25mm backfill			in structure superstructure	substructure													
US\$	6.00 8.00	8.00	12:00														160.00							6.00	90.00		80.00		90:06	3,000.00	6.00		90:06		4,000.00			75.00		12.00				180.00			220,000.00	250,000.00 90,000.00		23,000.00	34,000.00 111,000.00 678,000.00				
PhP	Fill dam Concrete dam trench	earthfill dam																																													flat 2	d of							
	B B	m3		n B	m3 kg	kg	m3 m3	m3	m3 m3	m3 m3	m3 m3	ton	m3 m3	m3 m3	ton	m3 m3	ton	m3	a s	a ton	m3	ton	ton	m3 m3	m3	ton	m3 m3	pcs	m3 ton	ton	m3 m3	ton			ton	m3	m3 m3	pcs m3	Cre	m3	m 20		ton	m3	Cm .	kn k		km km		ku ku	ki ki	KVA	ton	ton m2	ton m2
condition	soul rock	arth	rockful normal commacted	Jass A	Fill	concrete crest	soil rock	arth	normal compacted	teinforcement	Lean Mass		soil rock	keinforcement 3000psi keinforcement 2400psi		rock soil	Reinforcement		lining					soil	einforcement		shaft		lining		soil rock		oundation	anchor block, saddle				backfill		rock	Reinforcement					e	isting Road			9 kV	15KV 30kV 00kV	11kV-36kV			
			Embankment r Backfill n Backfill o				Excavation Excavation			Backfill Concrete R								ace Tunnel Excavation		Fottii work Re-bar Geouting	Shotcrete	Mesh reinforcement	Steel Ribs			Re-bar tank	П	Shotcrete Rockbolts	\square	Steel liner					Re-bar Steel pipe	ock Tunnel Excavation	Excavation	Rockbolts Concrete b		Excavation r Excavation r Embankment		Formwork	Re-bar	house Building	ss road	concrete & drainage all weather w darinage	Improvement of Exi		mission line	with rightway perm	230kV 500kV	former 1	Trashrake Gates		Screen

The Study Project on Resource Inventory on Hydropower Potential in the Philippines

				р 1		D.			94	,		Ģ		4		31
	Countrry Submis sion year		9	Lao PDR 2007.1	<u> </u>	Lao PDR 2008.6		Lao PDR 2008.6	, Ţ	Lao PDR 2006.7	<u> </u>	Indonesia 2008		Lao PDR 2006.9	Lao PDR 2005.5	Lao PDR 200
Work item	des cription	unit	unit price US\$	US\$	US\$	US\$	US\$	US\$	US\$	US\$	US\$	US\$	US\$	US\$	US\$	ns
Civil Works Access road					3	npaved 2 lanes					1	lanes paved				
	new construction up-grade existing rough road	kn kn	178,361	150,000 -	300,000	148,500 74,250						266,000				
ary access roa	construction	km								57,353 - 1	102,000				1 la 2 la:	e e
		в	п 7,579	koad Pe	edestrain 1 6,000	l lane 11,138									Tempo Perma	drary 4000 hen i 0,000.00
Coffer dam	removat - excavation and disposation spoil impervious fill	m3												2.64	6.60	
		m3 m3												1.60 2.50		1.60 2.50
Open Excavation		m3		3.50 -	10.00	3.00		2.50		6.58 -	10.00	2.24 -	6.43	2.20	4.90	
		E E		6.50 -	10.00	- 00 L	800	(und	lerwater)	20.00		3.26 -	7.21	4.40		
		E E				11.00				10.00 - 6.50	15.00					12.00
Rock Sumort		m3 2				19.00										15.00
		в														
Embankment, Backn		m3			5.00									2.50		2.50
	compacted backfill Rock fill	m3 m3			3.50 4.00									7.00		7.00
		m3			20.00									15.00		15.00
			- U	rom excavation fr	om quarry*1 c	offer dam										
Fill-type Dam	Rockfill Filters, Transition	m3 m3	11.32	6.00 - 15.00	10.00	4.00 - 21.00 -	5.00 28.00	6.00 - 12.00 -	6.50 25.00					3.0 - 7.0		
	Clay core	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6.00		4.00 -	5.00	3.50				54 50	06 23	15.00		
RCC-type Dam Conventional -type Dam	Concrete	137 E				124.00		60.00				- 04.50	55.38			
	Curtain grout	m kø/m		26.25 25.00		38.00 -	41.00					54.25 - 25.00 -	52.45 23.26	63.00	131.90	70.00
<u> </u>		E E		26.25								30.53 -	44.90	42.50	105.50	60.00
	rainage	kg/m m		25.00								19.70 -	33.54			40.00
Dam Instrumentation Concrete Works		ΓS												350,000		300,000
Structural	Concrete (w/o re-har)	m3	ntake weir n 778 AD	hormal th 160.00	180.00	131.00 -	152 00	130.00 - 1	150.00	/H 200.20		78 97	87 86	100.00		140.00
			04-07-2	00.001	100.001	- 00.101	00.201		00.001	07:007		10.01	00:20	00.001		00.041
Foundation, Pier, Wall	Concrete (w/o re-bar)	ĩ		110.00 -	120.00	118.00	128.00	120.00				- 87.78	72.87	80.00		100.00
Plain		m3		80.00		owerhouse						56.43	61.59	70.00		70.00
Reinforced concrete	incl. concrete, formwork, re-bar k	m3 ce/m3				275.88 124.89				641.35 38.46		122.68 - 31.58 -	189.84			
Tinnel	Rebar	ton		1,200	1,200	1,023 -	1,106	950			nigh y ield	987.63 -		1,000 - 800	895.00	1,200.00
ion	/w	m3		D&B T1 80.00	вм 85.00	55.00 -	51.00			67.11 -	98.33	40.82 -	73.66			70.00
art -	Excavation (w/t rock support)	m3		cmw/t w. mesh 10	cm w/t w. mesh 1:	86.79 5cm w/t w.mesh			+	102.42						5cm 30
8	Shotcrete	m3		346.25	347.50	413.33				540.80		291.70 -	574.10		176.00	10cm350.00
		1		יב-13-6m ידים ב-10		W YC	00.90		D2	5mm,L=2m D2 01.00	25mm L=4m 17 €0	1	30 K		D25-3m 14.02	
	Steel rib	ton		1,850		- 00.02	00.02			·	0C"/T	2,252.93 -	3,218.32		CC.+I	1,800.00
Lining		m3				179.00					vert 164.22	93.93 -	146.78			140.00
	mwork)	m3 sg/m3		150.00 -	160.00					287.68 - 50.00 -	261.04 32.26	95.58 - 1.67 -	299.14 48.65			250.00
		kg/m3														1 200.00
Grout		E E										64.41 -	88.85			00.07 70.00
	(inc. uning, grouing) Curtain grout (incl. drilling, grouting)	n m ka/m										47.07 -	94.80			60.00
Pressure Shaft		p		E									00.00			
Excavation	Excavation	m3		120.00	1 op down 220.00				+		<u>x</u> .	urge tank H=/8m, 1 17.73	mc1=0			Kaise 120.00 Top 220.00
Rock support	Shotcrete	m3		8cm w/t w. mesh 12 346.25	2cm w/t w. me. 367.50	sh					- 1	.0cm w/t w. mesh 296.00				350.00
	Rockbolt	в	-	22.50 22.50							-	13.58 13.58				20.00
		- 1		000 021	1				+			surge tank				1,000.00
	-	a a j		160.00								150.98				150.00
Grout	(incl. concrete, re-bar, fornwork) n Consolidation grout (incl. drilling grouting)	Rg/m2										48.14				70.00
		kg/m														60.00
Others Maisonry		, ,														
Window on Public	au Per	Ш2														50.00
n yaro-mec numcan wi Gate	Irks	ton			-9	fraft tube gate I	Intake service 8,699	gate						7,000		7,000
Trashrack		ton					adial gate							13,000		7,000
Stoplog		ton		in 4,085 -	ncl. lifting be 7,778	eam	7,164							5,000		5,000
Valve		ton			1				+					10,000		10,000
	Simple I beam	ton														5,000
ler		ton	1,854	4,000 -	penstock 4,500							4,300	supply & ship	nent 3,500		3,500
Bifurcation		ton			+				+		1	925\$/mforf.	abrication & ins	stallation		3,800 5,200
Gantry Crane		LS														250,000
Transmission Line Works	rks															
Transmission Line	115kVDouble Circuit					00.000,66										

Table 4.10-2 Unit Construction Costs of Hydropower Projects in Southeast Asia