
Appendix

	December to the			E4.000 4	4	_		E PROJEC	T FOR DEV		COUNTERWEASURES AGAINST LANDSLIDE SIN THE AS	AY RIVER OX	RIGE	1.00				
	Borehole na			BH00-1		f Ethiopia, JIC	alon		Duel		Around 1km from GohaTsion, Abay Gorge area, National road 3			Leti				
6.0	Organiza k	an .		Geologic	alişürveyo	r Enricher, SIC	A SALIDY I MAE	n			January 4to 6/2012 Habtamu E. and Samuel M	Dellina	un con trans	Long		and Eshebu		
50	veyer					D. cot	to door b		Core app	Latinat		Liming	operators Objects	000000 0.00				
—	Bevetion (m) Vestio		Disselan	Downward	_	h(m) Sent		30.0		Dilling rig, Engine, Pump Remetos			CS2000, DBJ		_	пр	
<u> </u>	ngle	vers	-	Director	Lic erresing	Gar	awnt -			_	POSITINI POS		- "	stallation of Inc	anomier ce	ang	_	
Scale (m)	Bavelion (m)	Thickness (m)	Depth (m)	Column	Geology/Soil	Cdour	Palatve densky	Hardness	Väsheing	Texture	Gedogical logs	(u) pvel	Core recorvery (%)	Maximum length (cm)	Rock Quality Designation	1/dS N	in-alte test	peq Auguster)
1.0		0.4	0.4		Top soil	i ght brown	Less	loose		fine grained	core comprises do min antly Light brown, fine grained, moderately plastic, less dense & consistent clay soil with subordinate baseltic gravels.		50					
2.0 3.0 4.0 5.0 8.0 7.0 8.0 9.0 11.0 12.0 13.0 14.0 15.0 16.0					Bamit.	Light: gray + yellowish gray	High to very high	Shrong to Very abon g	Frush to moderately weathers d	Aphantiso	Core is composed of atrong to very strong fresh(light gray in color) to mode rately seathered(yellowish gray in color) fragmented to massive, horizontally to sub vertically jointed with light brown joint surface long baselic core a and gravels. The gravels are fragmented and angular to sub rounded in shape. The fragmented cores are moderately to slightly seathered whereas the massive long cores are fresh and display sub rounded and greenish alteration spots.	10.2	30	31	16.6			
18.0		16.85	17.25					impty core! I	Perhapa dua t	o lange em	opty space beet wen boulders.			No	core! No deax	-balout		
20.0		1.1	20		Bamit	gray to greenish gray	low	weak	highly weath ered	poorty	Gray to green sih gray, le se den se, weak, highly weather ed basabio materials.		47	3	0			
21.0		1	21		Basak	light gray	medum	mod erate	slightly weath ered		slightly weathered, light ish gray, fragmented, angular to subangular basal tio gravels.		40	4	0			
23.0 24.0 25.0 28.0 27.0		6	27		moder alsely weathered basels	Black	low to medium	weak to moderate	moderatiely seath and	fine grained	core consist of Black like charcost, very fine grained and smooth, horizontally and sub horizontally jointed with smooth and lastureous joint surface, horizontally cracked on the surface, moderately weather ed, short to medium length basaltic core material. 225-2265 Both vertically and horizontally all charakted which may core rise also surface/zone, the core is 7 cm long and has 5 cm width/dismater.		62	25	21.8			
28.0 29.0		3	30		Bamit	biack+Light gray	medium to high	Moderate to strong	moderately to alightly weath ered	fine grained	Moderate to strong, black and light gray, calcite veined, moderately (black like charcoss in color) to alightly weathere dilight gray in color) horizontally to sub-vertically jointed. The moderately weathered cores are massive, amooth with minor surface cracks and have amooth joint surface and the slightly weathered cores are also massive but alightly rough and have rough joint surface with calcite veins. The calcite veins are straight to curved in shape.		98	60	86			

	Digrehol e na n	ne .		BH00-16			ation				1km from GohaTaion, Abay Goge area, Nation alroad 3			Let	tude		41 5995	
-	Organization				Survey of E	Ni opia, JICA			Dura		20th December 2011 to January 3/2012				gitude		1107950	
Su	rveyer								Core ap	pratser	Habtamu E. and Samuel M.	Dilling o	peraters		Gebre	tK and Balv	tu Mi.	
	Elevation (n)		2,366		Dept	h (m)		26.0		Drillingrig, Engine, Pump		Chiratera	en C52000	CHUTZ 610	F62, Valid	ble pump	
A	ngle	Ver	tost	Direction		Grav	d lent				Remarks		Install at or	of Automat	i c water leve	i meter (24)	m depth)	
Scale (m)	Elevation (m)	Thickmass (m)	Dupth (m)	Cdumn	Gadogy/Soil	AD PO	Polative density	Hardness	Weathering	Techure	Geological logs	Groundwater level (m)	Care reconvery (%)	Maximum langth (cm)	Rock Quality Designation	SPT Section N	in-site to st	Laboratory test
1.0	2365 2364.6	1 0.4	1 1.4	M	Top sol Basek	dark brown gray	less dense high	loose	aw .	fine grained	dark brown, loose, moderately plastic, less dense and less consistent residual clayey soil with subordinate angular baseltic gravels.		50	ż				
2.0	2364.15	0.45	1.85	28888888	sol	dark brown	medium	compacted	$\overline{}$	fine grained	Sub angular, fragmented, slightly weathered basetic gravels.		50	4	Ó			
3.0				\ /						fine grained	brown, stiff and compacted, moderately plastic, moderately dense and consistent clayey soil.		90	30				
4.0 5.0 8.0 7.0 8.0	2357.5	6.65	8.5	X	Bamit	dark gray + brown	High to very high	Strong to very strong	Sightly weathered to fresh	Aphenitio	Strong to very strong, fresh to slightly westhered, dark gray (fresh) and Brownish alightly westhered in color, measive but with vesselides, such horizontally to disgonally jointed with brownish joint surface gravel to long cores of Baselt.		헕	34	26.31			
9.0	2357	0.5	9					lo corea!! Pe	rhaps due to er	apty space b	n boulders.		No	coreal! Per	hapa due to	empty spac	e b/n boul d	era
10.0 11.0 12.0 13.0	2351.6	5.4	14.4	X	Baselt	Gray + yellowish gray	low to very high	week to very strong	Highly wealthered to fresh	Aphenitio	Gore comprises mixture of massive but with minor vessicles perhaps due to seathering of constituent minerals, sub- horizont ally to vertically jointed, aphantic, long cores having blue all teration spots, and sub-angular to sub-rounded, all glidly exathered, fragmented gravely to pubbly baselt plus highly exathered, yell owish gray allt to cally sized baseltic material. [30]	11.5	55	15	5.5			
16.0	2350	1.6	16				,	io coreal! Pe	rhaps due to er	apty space b	'n boulders.		No	cored! Per	hape due to	empty spec	eb/n bould	era
17.0 18.0 19.0	2346.7	3.3	19.3	X	Basak	Gray	Medium to dense	Moderate to atrong	alightly weathered	Aphenitio	Gray, fragmented, angular to sub-rounded, alightly weathered basaltic gravels and pubbles with two long cones. The two long cones have vessicles which perhaps resulted from weathering of constituent ninensis.		50	25	12			
20.0	2346 2345	0.7	20 21	M	Easak	Greenish gray	low to medium	weak	Highly weathered	course grained	and compacted, highly weathered baseltic material. The material is probably the product of weathering of olivine rich baselt.		50	15	40			
99.0	****	47	** *	\sim						apa due to er	opty space b/n boul ders.				No or	reaf		
			21.7 22.4	\Longrightarrow	DAIAK	light gray	medum	Moderate to strong	alightly weathered		fragmented, sub angular to sub rounded basaltic gravels.		40	6	Ó			
23.0	2343	0.6	23	\leq	and the same	Greenish gray	low	weak	highly weathered	grained	Greenish gray, cracked on the surface, weak somehow stiff and compacted, highly seathered, basaltic material.		50	à	ó			
24.0					Bamit	light gray	medium	moderate	alightly weathered	Aphenitic	Fragmented, sub angular to sub rounded ,slightly weathered basaltic gravels.		35	à	o			
25.0	2340.65 2340	2.35 0.65	25.35 26	\Diamond	Bamit	Dark	low to medium	moderate	highly weathered moderately		core is highly weathered, weak to moderate strength, dark like charcoal, wery fine grained, horizontally jointed with minor surface cracks and seather in product of besult. core is composed of long columns that are measive but with		96	57	24.25			
				\triangleleft	Bamit	gray to dark gray	Medium to dense	Moderate to strong	weathered(der k in color) to freshigray)	Aphenitic	minor vessicles, sub horizont slly joint ad with greenish gray & dark alteration surface, display rounded to sub angular greenish alteration spots.		99	23	90.7			

								ROJECT FO	R DEVELOP		ERM EASURES A GAINST LANDSLIDESIN THE ABAY RIVER	ROUGE						
_	orehole nar			BH27-13		Locati					27km from GohaTsion, Abay Gorge are a, National road 3				lude			
	Organ izatio	п		Geologic	al Survey of E	Ethiopia, JICA S	Study Team	h		ation	December 24-28, 2011			Long	jitude			
	veyer					B11	4-4			ppraiser .	Habtamu E. and Samuel M.	Drilling op				tK and Bah		
<u> </u>	Elevation (m	_				Depth			258		Drilling (g. Engine, Pump			n CS2000,				
Ar	igle	Was	teal	Direction	Downward	Grade	ant				Remerks		In	stallation of	Bonehole B	Extensionet	W.	
Scale (m)	Bevation (m)	Thickness (m)	Depth (m)	Column	Gedogy/Soll	Colour	Palative density	Hardness	Wastharing	Texture	Geological loga	Groundwater Level (m)	Care reconvery (%)	Medmum langth (cm)	Rock Quality Designation	SPT N value	In-alls tool	Laboratory test
1.0		2.3	2.3			dark brown	love	loose	moderately weathered	moderately sorted	Dark, no derately plantic, loose clay soil and moderately weathered, angular to subangular dark gray gravelly baselt		50	2	o			
3.0 4.0		2.4	4.7			light brown	low	loose	moderately to highly weathered	moderately sorted	core comprises mixture of brownish, loose, highly to completely seathered daysey to sandy soil, and dark gray, angular to subangular gravely to pebbly baselt.		60	5	0			
0.0		1.3	6		deposit	dark to dark gray	high	atrong	slightly weath ered	Aphenitio	slightly weathered, dark gray to dark, strong, fragmented, an gular to subrounded basatic gravels and pubbles.		70	4	0			
7.0 8.0		0.8	6.8		n(Collavial	dark	very high	very strong	fresh	Aphenitic	very strong, massive, fresh, subhorizontally joint ed with alightly weathered light or range joint surface color, long basel tic cores with minor, slightly weathered, dark, angular to subrounded baselic grave is		92	35	60,75			
9.0 10.0 11.0 12.0 13.0		7.2	14		odbotum	dark to yellowish gray	Relative density	moderately atrong	fresh to slightly weathered	Aphanitis	core is composed of fresh to slightly weathered, dark to yell owish gray, subangular to subrounded, gravel to pebble sized baselic cores.	12.2	65	13	1.75			
15.0		2	16		Muditione	Yellowish to greensih gray	medium	weak to moderate	slightly to moderately weathered	fine grained	weak to moderately strong with minor surface cracks, very thinly laminated or foliated, moderately fisalle, yellowish to greenish gray, horizontally jointed Mudstone.		97	20	16.5			
17.0		1.5	17.5		San datone	Light gray to Red	low to medium	weak to moderate	moderate ly weath ered	sand size	light gray to red, low to medium strength, moderately weathered, dominantly fragmented with some horizontally jointed short cores of sendatore.		95	14	9.3			
18.0 19.0 20.0 21.0 22.0 23.0		5.3	22.8		Mudistone	Yellowish to greensin gray	low to medium	weak to moderate	slightly to highly weath ered	fine grains d	yellowish to greenish gray, low to medium strength, slightly to moderately weathered, horizontally to sub horizontally jointed, irregularly cracked on the surface, fissile to moderately fissile Mudatone.		97	36	46.6			
24.0		1.4	24.2		Siltatone	Greenish gray to reddish	low to medium	weak to moderate	alightly weathered	fine grained	greenish gray to reddish, low to moderate strength, slightly weathered and horizon tally jointed siltsons.		99	25	66.4			
25.0		1.4	25.6		Muditions	Ye llowish to greensih gray	low to medium	weak to moderate	alightly to moderate by weath ered	fine grained	yellowish to greenish gray, weak to moderate strength, alightly to moderately weathered, horizontally jointed with greenish gray joint surface, irregulary de veloped surface cracks and moderately fissile mudatons.		98	15	51.25			

Drilling log

Bo	rehole na	me		Е	327-24	Location					Kurar village			Lafi	tude		407816E	
)rganizatio	m		Gede	ogical Survey of E	thiopia, JICA Study	Team		Dura	ation	19.DEC.2011 - 22.DEC.2011	1		Long	itude	,	1117050N	
St	rveyer								Core ap	opraise		Orilling	operate			Getne	tK	
Е	levation (r	n)		,	1,709	Depth (m)			25.0		Drilling rig, Engine, Pump							
	Angle	Vert	fical	Direction	n	Gradient					Remarks		Inst	allation	of bore	ehole exte	nsometer	,
=									_			_						
Scale (m)	Elevation (m)	Thickness (m)	(m)	Column	Geobgy Sol	Colour	Relative density	Hardness	Weathering	Texture	Geological logs	Groundwater level (m)	Core recoivery (%	Maximum length (cm)	Rock Quality Designation	SPT N value	In-site test	Laboratory test
0.0		_		X		D. I.					Low drough, dark, forcement points) on bloom and alleyed yeard.							
1.0	1708.8 1708.1		1.0	:33333133	Clay and Boulders Baselt	Dark Dark-gray	Med. High	Med. Hard	Slightly	Rough Smooth			90	10	Н		\vdash	
	1707.4	0.8	2.4	1000000100	Clay and Bouldres	Dark-gray	Med.	Med.	High	Rough	Low develop has by gray and or, if we conserve gradient proble to us of generals extend with the early said light or these the requests risks also contex		90				$\overline{}$	
2.0			2.0	******	Beer de	N-A	10.3	HE-A	ME-A-A	B A				0.6	24		\vdash	
3.0	1706.8 1705.3	1.5	4.5	1000000000	Basalt boulderand Clay	Dark-gray brown to dark gray	High Med.	High Med.	Slightly High	Rough Rough	Fligh six or pit, its a grained, it wigr up other joint at Albert with That seem in global, would have six regulational gracest problement to end breaker six a bound and the a grained only soull.		90	25	34		\vdash	
-	1700.0		6.7	1000000000	Basat	Dark Gray		High.	Slightly		Figh six or gib, if we grained / make and jointed, Filled with 2 source of above traveled and residual join and specialists to make		98.0	20.0	30.0			
5	1703.1	2.2				,					ventical join had apadosti sh made							
	1702.2	0.9	7.6		Basalt boulder and Clay	Brown to Darkgray	Med.	Med.	High	Rough	(ore developed, and, provided public size bands builder solved with the grain of t		10					
6.0			9.5	=	Basalt boulder	Dark gray	Med.	Med.	Slightly	Smooth	Low strongs, Enganesial bands bandson, slightly weatheast at deepth of 2 day oper bands or six such space such showers.		95.0					
7	1700.3	1.9																
8.0	1699.6	0.7	10.2		Buralt	Dark gray	High	High.	Slightly	Rough	Fligh sirm gib, if on gusierel, deals gang soles; limb massions based it enblor		98	30	78			
9.0	1698.8	0.8	11.0		Buralt	Light gray	High	Med.	Slightly				98					
10.0	1695.4	3.4	14.4		Basat	Dark gray	High	High	Fresh	Smooth	Fruit send and Bagement of , both gr-cy, it rob, b and b milde				П			
11													98		5.7			
13																		
14	1694.3	1.1	15.5		Bassit	Light dark	High	High	Slightly	Smooth			98					
45.0	1694.0				Bereit	Light dark	Low	Low	High Olishda	Rough	Core sirrough, highly recollered b made, show get in seel, generals and seel min. Core sirrough properly size, and cores has bless minut, embrary river showed, sud-		98		$\vdash \vdash$		$oxed{oxed}$	
15.0		4.6	20A		neat	Dark gray	Low	low	Sagney	amoon.	Earn strongth grand y stee, and some has bless mirred, pulsar river channel, solv- angular in as unded.							
16.0																		
17.0	1689.4											18,15	98	5				
18.0												\ /						
19.0							L	L				\ /	L		L I		I	
	1689.1			11/11	Silt stone	Light to yellowish gray	Low	Low	High	Rough	Core dereigh, it give pre-in-color, course gradered/highly result bread makerial	\ /	98					
20.0			21.0	11110	Silt stone			Low			Hollow space no sample	V						
21.0	1688.18		21.6 22.7	100000000000000000000000000000000000000	Mud stone	Greenish to Yellowish gray Brown	Mod	Low	High Slightly	Rough Smooth	Loro strongth, Elec in concer guite of , puscish in 3d fermith gars, and and with whill ish 3d Loro strongth, raddish for even, mentions in concer guitered, filled alone	X	90	5				
22.0	1686.7	0.4	23.1		Silty stone	Whiteh	Low	Low	-	Rough	here stierregi b, relationb, an extinent geratered, with stierreen salvated	/\	98	10	66			
23.0	1686.35	0.33	23.4	Ш	Marly clay and calcite	Greenish yellow	Low	Low	ŀ	Rough	Low drough, ground in yellow other, our magnitud makerial	11	98	10	66			
		0.33	23.7		Marl	×	_	Low	-	Rough	Low drough, Engeneering was the yellow, the grained Gureri stee material	/ I	98					
24	1685.20	1.15	24.9		Mari clay and Calcite	>1	Low	Low	-	Rough	Len drough, neighid solo, fine sone gri mi , mitrid		95	15	21.7			

Borehole nam	10	E	328-10	Location					Latitude	0407677 E
Organization	1	Geo	ological Survey of	Ethiopia, JICA Study Tea	am	Duration	15NOV.2011 - 21. N	OV2011	Longitude	1117640 N
Surveyer						Core appraiser		Drilling operators		Getnet.K
Bevation (m	Bevation (m)		1,785	Depth (m)		40.0	Drilling rig, Engine, Pump			
Arrole Vertical Directi			imetion	Gradient			Pamadra.	le	stalistics of herabola	av terre consider

Soule (m)	Elevation (m)	Thickmess (m)	Depth (m)		umaso O	Geology/Soll	Colour	Politike density	Hardness	Whathering	Techno	Geological logs	Groundwallerlevel (m)	Core recorvery (%)	Maximum length (cm)	Rock Quality Designation	SP T N value	in-site test	Laboratory test
0.0	1785.0	1.0	1.0	Λ	V	Soil	Light yellow	Low	Weak	Residual soil	Rough	Graded sub rounded, weak, homogeni	ious yellowls	100					
1.0 2.0 3.0 4.0	1781.5	3.5	4.5			Sali	Darkbrown	Firm	Sam	residual soll	Fine massive poorly graded	Siff, homogenious,dark brown fine grained residuqat clay soil	4	100					
5.0				38.3	333								5						-
6.0 7.0	1780.5	1.0	5.5		***	Gravel pebble	Gray white	Low	Hard	Low	Moderately rounded poor graded	Herd, light and derk greyp obble size section calcareous and basaltic mixture		100	6	0			
9.0	1777.8	2.9	8.4				Derkgrey	Veryhigh	Weryhard	Low	Fine	Very strong, dank grey, fine grained aphnitic baset, oblique joint crintation, rough joint surface straight jointshealed by calcile		100	40	58			
11.0	1776.2	1.4	9.8		***	Boulders	Light yellowish gray	Low	Hard	ghtely weathe	ad poorgrad	Hard, light yellow gray, bouldersized,	11	90	5	a			
12.0	1775.3	0.9	10.7	Ш	Ш		Light gray	Light??	Hard	Fresh	Fine	Very strong Jight yellow/fine,limestone,	11 /	100	12	40			-
13.0		-		₩	₩	\vdash	-4					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11/						
							l	l					Ш						
14.0 15.0 17.0 18.0 19.0 20.0 21.0	1765.3	10.0	20.7				Light gray	Low	Hard	Slightly to moderately weathered	Fine to coars e	Hard Jight gray, fine to xoarse lime stone, there are some boulders but most of them are fine grain materials there is a cavity in between (10-15)m depth		95.0	18.0	30.0			
23.0 24.0 25.0 28.0	1781.0	43	25.0			ne and Bas	kgnay to Light	Mo dene t	Hard	Slightly to Moderately weathered	Fine grained	Hard, light gray and dark gray, fine, Smeatoen, and baselt mixture boulders		100	18	2			
27.0 28.0 29.0	1757.9	3.1	28.1			Besint	Darkgray	Dens e	Hard	Fresh	Fine	Hard, darkgray fine basalt boulders		100.0	0.8	۵٥			
30.0 31.0 32.0	1754.4	3.5	31.8			Calcarious	Yellowish bro	Dens e	Moder et	Sightely	Fine	Medium strong yellowish brown fine grained calcareous rock, subhorizontal jointes, irregolar with rough surface, no infill, slightely was thered		100.0	28.0	7.0			

Borehole nan	10		B28-22	Location					Latitude	407886.24E
Organization	n	9	eological Survey	of Ethiopia, JICA Study T	nam	Duration	22.NOV.2011 - 25.NOV.2011	l	Longitude	1117583.28N
Surveyer						Core appraiser		Drilling operators	0	letnet K
Elevation (m	1)		1,755	Depth (m)		30.0	Drilling rig, Engine, Pump			
Angle	Ver	tical	Direction	Gradient	$\overline{}$		Remarks	Installation o	f groundwater le	wel meter

18 E	(m) (m) 1755.0	Thickness (m)	Organ (m)		Column		Gardogy/Soil	Colour	Polithe density	Hardness	Washering	Techno	Geological logs	Groundwater level (m)	Core recovery (%)	Maximum length (cm)	Rock Quality Designation	SPT N value	In-site to st	Laboratory best
1.0	1763.2	18	2.3				Soil	Dark gray	High	-	-	Rough	Le syd ach yr vy haw word is en gan is anion, me yfs high by phonles, elliff, alley on t with yr wendwrite		80%					
a.c	1752.0	12	3.5	8	88	₩	Boulder	Dark gray	High	High	Fresh	Rough	Consider a public is a selfic high act ranges , design are under , stagethy remails a self		90					
- 10	1751 A	8.0	4.1	-			Soil	Dark gray	High	High	Fresh	Rough	Flerjánás, sky olik párok ázága y udor		95				—	\sqcup
4.0	1751.2 1750.9	0.2 0.8	43		₩	₩	Limestone	'ellowlah gri Whitiah yello	Denser Denser	Medium Med	High High		Mighly Frieder wil Streeder versional wills alony until growth most publishe, whillials galay on he for On word of Streeder was related with word, he had by wrontles and, on mine ye wound while, he had not be		98		-		⊢	\vdash
5.0	1750.7	0.2	5.0	-	dd	œ,		ellowish gni	Low	Med	High	Rough	The course of principle block, greening publishing in a love should		98				\vdash	\vdash
	1750.3	8.0	5.6	i i i	Ш	ΪĬ	Limestone	ellowish gra	Med	Med	High	Rough	Construct that published go you after all breaking plays to a lighter to seed and for		98				${}$	\Box
6.0	1749.4	0.9	6.5	П		Ш	Limestone	Whitish yello	Med	Med	High	Rough	La mais wagile, comming grains of principal will be not go weeks whilehold publicar, high point bland		100					
7.0	1748.9	0.5	7.0	Н	₩	₩	Limestone	Darkgray	Med	Med	High	Rough	Le mais weight, Nighthyrough word, journel, gairreil, jou blisht, who, win how the states water gradered, it		100				\vdash	\vdash
- '	1748.7	0.2	7.2		ш	₩		Whitish yello	Med	Med	High	Rough	Public of Breater aprilled pulsarustage others coming paints!		100		-		\vdash	\vdash
0.8	1748.5	0.2	7.4		ш	111		Whitish yello	Med	Med	High	Rough	Short have June short By related willow only wroter, parts to a pit think yellow		100					\Box
	1747.9	0.6	0.8	Ш	П	ш	lim estone	vhitish yellor	low	low	high	rough	is waters algorith is wise from advances entire province, but weight for makers		100				-	\Box
9.0				m	Ш	111													$\overline{}$	\Box
10.0	1745.9	2.0	10				Limestone	Whitish yello	Low	Low	High	Rough	Fagra shellon dang dibing only, as mage sit of 2 on		100	5				
11.0	1744.3	1.8	11.8				Limestone	Whitish gray	Med	Med	Med	Rough	Fingers what then about publishes and gainest also, all the bits are unbuilts a to enaction graph of alon, you disor to be lighty resulting and here also might be unbush		100	5				
13.0	1743.5	8.0	12.4		Ш	Ш	Limestone	'allowigh gra	Low	Low	High	Rough	La real regils, highly even flow d, flow country gains d, gains als retard with rea d in or read alors s, he is ble and stiff		100					
14.0	1741.9	1.6	14.0				Limestone	Light gray	Low	Low	High	Rough	Digity l'inche od creati and live also, her als with light gain; to obtich he so obdes, the e- med is or grain, heration git	14.2	100	7				
15.0	1741.4	0.5	14.5	П	Ш	ii	Lim estone	'ellowish gri	Low	Low	High	Rough	Committee of public or last olds read, highly result motives at walls graduable gasy with	1	100	15				
16.0	1740.5	0.9	15.4	E		▤	Clay	Dark	Med	Low	High	Rough	Ellenik silvan rjalili, Franklik, je sisti, higisty plane St., Senore seliven g min, silvy on F	1	100	20			Г	
	1740.3	0.2	15.6	111	111	!!!	Limestone	ellowish gra	Low	low	High	Rough	Paging resent most be understooming the page of their pages of the pag	١.	100	10				\Box
17.0	1739.5	0.8	16.4				oulder and S	Dark-gray	High	Med	High	Rough	La reak weglit , loodde sit retired with g street; or set highly stim three d	1	100	20			Г	
18.0	1739.D	0.5	16.9	h	П	П	Lim estone	Whitish gray	High	Med	Med	Rough	d'arbon ab wegli , live l'a comine gation d'arbitich bronne, reabbel bronche en rea diore deg ac	\ /	100	20			\vdash	$\vdash \vdash$
19.0 20.0 21.0	1736.0	3.0						Whitish gray		Low	High		Le orderinghe, pourly six East, highly an other of his chosel and Fingers shot, while house natur I yellowsh highly his makess	\setminus	100	10				
	1735.6	0.4	20.3	ш	ш	ш	Limestone	Light gray	Low	Low	High	Rough	Highly remarks used l'augment extent with gazently our d, her stem gift, high I gazy on her	M	90				\vdash	\vdash
22.0	1735.3	0.4		111	Ħ	Ш	Limestone	Whitish brow	Low	Low	High		Finder withing the six afforms and hing resuled, for strong the high to some time communities or	M	100				\vdash	\vdash
23.0 24.0	1733.1	22	22.8				Lime stone	Light brown	High	High	High	Rough	high alon ghi, light house, I is near an graine, lithet with 2 th eir mich and livy an worth used a rel fire y are even below d used I be remains using a storie on delach to use, in till red said allow used a b y	X	100	20	50			
25.0				Ш	Hi	Ш	No.	18-14-1-1	F			p		- //	4.50		<u> </u>		\vdash	╨
26.0	1730.9 1730.7	0.2	23.0				Limestone Limestone		Low	Low	High		Philips could could und Philipson chall format cours to beind, rea delp, loss also agills	11	100				\vdash	┯┩
20.0	1730.7	0.4	23.2						High	High	Low	_		11			\vdash		\vdash	┯
27.0		0.40		₩		₩	Limestone	Light gray	Low	Low	High	Rough	highly reads and large set or had all game by a subject the upper judy under	11	90		\vdash	 	\vdash	$\vdash \vdash \vdash$
27.0	1729.9	0.40	24.0	۳	Ш		lim estone	sallowish grid	Low	Low	High	Rough	La senti meglit publicetà il gità p _e giornelly es sal, high by esi aller sel essite del	11	95		\vdash		\vdash	$\vdash \vdash \vdash$
28.0	1728.2	1.7	25.7	ΙΞ				reenish yelk	Low	Low	High		way abel caber, and, binger and exised have no II of ends dad, you wish pullion caber, contain pull life yabers I existed, here alone yill an abulad	$I \setminus$	95	30			L	
29.0	1727.9	0.3	26.0	130	QΩ	***	Boulder	k yellowish g	Low	Low	High	Rough	has bless, it water out on all highly results used , how along 10, don't pullborish group, your by ats 1 o	1 1	95		\vdash		\vdash	┯
30.0	1726.9	1.0	27.0	69		6.6	Basalt	Dark gray	High	High	Slightly	Rough	Physical results, don't pare, those about hand, we thank you had, aligned, over these of	1	95	10 ?	32		L	
I	1726.2	0.7	27.7	18	88		sulders and M	Light brown	High	High	Modret	Rough	Markon alreagh, limedon s,lim to comine gains 4, light brown, mobally results not a un	1 1	95	10	34.3			
31.0	1725.5	0.8	28.5	8	88	**	Boulders and Mud	Yellowish gray	Med	Low	High	Rough	La real regils , yes usink pullers he d mk yr np, han il mi reined with yelsen is fram as oil, reak It spirms i	'	98	5			Ĺ	
33.0	1724.7	1.5	30.0				mud stone	Yellowish gray??	Low	Low	High	Smooth	Le mais vergits game einits puriteur ins die die grop, besolden de eriemel willt: geleende Frade en sal, en sit De agreement.		100					

-	karehale nan	ne	_	BH28-33		f Study : Ti		CT FOR D			EASURES AGAINST LANDS LIDESIN THE ARA'	RIVER	ORGE	1 44	tude		408.016	
	Organizatio					thiopia, JICA		m	Dun	ation	December 9-13,2011				itude		1117498	
	veyer Elevation (m	0		1,722		Depth	ómó		Core as	ppraiser	Habtamu E. and Debebe K. Drilling rig. Engine, Pump	Drilling o	peraters Chiratenae	n C 820/00	Gethel DEUTZ 61	K. and Eat 3F62, Var		
	gle		tical	Direction		Grad			33.0		Remarks	- I	natal ation o					
Scale (m)	Elevation (m)	Thickness (m)	Depth (m)	Cdumn	Geology/ 3ol	Color	Relative density	Hardness	Weathering	Texture	Geological logs	Graundwate r level (m)	Core recorvery (%)	Maximum length (cm)	Rock Quality Designation	SPT N value	In-site test	Laboratory test
1.0	1720	2	2			brown+ dark brown	low	very weak	moderately weathered	moderately graded	core is composed of mixture of proportional baselt gravels and day. The gravels are moderately weathered, dark brown, and angular. The day is brown in color, weak and moderately plastic.		50	2				
3.0 4.0	1717.0	2.4	4.4		Colluvial deposi	light yellow	low	weak	moderately to highly weathered	poorly graded	moderately weathered to highly weathered, weak, sub angular limestone gravels.		51	3	0			
5.0	1717	0.8	5		8	dank	medium	hard	säghtly we athe red	poorly graded	core comprises angular to sub angular, slightly weathered, fine grained baseltic gravels.		40	8	0			
7.0	1715	2	7			light yellow	low	weak	moderstely to highly weathered	poorly graded	subangular to angular, light yellow, weak, moderately to highly weathered limestone gravels. 5.65-5.75 massive, fresh, fine grained 12 cm long		50	9	0			
9.0	1712.6	2.4	9.4		Basalt	dark	medium	moderate	slightly weathered to fresh	\	bas attic core. 6.4-6.5 moderately was the red, fine grained, sub- angular, averagely 3cm sized bas attic grave is moderately strong, sub-vertically joints d, dark, fine							
10.0	171 1.75	0.85			imestone Baselt	yellow dark	low medium	weak	highly we athered		moderately strong, sub-vertically jointed, dark, the grained, slightly weathered to fresh, sub-angular to sub-rounded baseltic gravels. Core is mixed with clay soil b/n 825m=8.4m.		58	5	0			
12.0	1710.9	0.85	11,1		Basat	brown	medium	moderate	algithy made and to		imestone gravels.		50	8	0			
13.0	47000								- ***	fine grained	core is composed of slightly weathered to fresh, sub angular to sub rounded, moderately strong		40	8	0			
14.0	1708.85 1707.9 1707.7	2.05 0.95 0.2	14.1	ппп	sand Basak Imestone	light brown dark	medium	modera te	to highly we athered	poorly graded	basaltic gravels. core is composed of weak, light brown when dry and dark brown when wet, uniform, Loose, non		70	8	0			
15.0	1707	0.7		88888	basak +	gellow dark+	low	week	SW to fresh	fine grained	plastic, less dense, sandy material. sub angular to sub rounded, dark to light brown bas altic grave is.		55	3	0			
17.0						brown	low to medium	week to	HW	fine grained	Highly weathered, weak, yellow and sub rounded limestone gravels.		50	2.5	0			
18.0	1704	3	18		limestone	yellowish to light	medium	moderate moderate	sightly weathered sightly to	moderately graded	Core consists of proportional mixture of fine grained, sub angular, dark, slightly weathered, basistic gravels and weak, brown, moderately		60	3	0			
20.0	1701.4	1,15 0.7 0.75	19.85		ba sak	dark brown dark	medium	low to moderate	moderately weathered slightly	fine grained	plastic clayey soil. <u>This zone may comprise the slip</u> zone. core comprises light to yellow, slightly to moderately weathered, horizontally to sub vertically jointed with yellow joint surface, sub angular to sub	15.5	85	4	0			
22.0		1.4	22		limestone Basak	Lightish	medium	modera te	weathered	fine grained	rounded limestone gravels. core is composed of low to moderate strength, very thirdy laminated, dark brown, fine grained, massive, horizontally jointed with with reddish joint surface		70	11	28			
24.0	1898.85	1.35	23.35	200000	as d	dank + light ned	medium	strong	Slightly weathered	poorly	siltatone. 18.7–18.8; vessicular, light brown, relaievly strong subrounded limestone gravels. moderately strong, sub rounded to sub angular;		40					
26.0					mudatone	light. brown		modera ta	SW to fresh	graded fine	dark, slightly weathered basaktic gravels. strong, massive, horizontally jointed with rough and slight reddish joint surface, slightly weathered to		46 80	23	88		\vdash	
27.0	1894.7	2.7	27.3			light green	wary low		SW to fresh	grained	fresh limestone cores. moderately strong, fine grained, fresh (dark) SW) ight		- 50					
28.0	1893.2	1.5	28.8		mudatone		low to medium	very week		fine grained poorly	red) sub-vertically jointed baseltic gravels. Very weak, loose, light brown to brown, medium		60	6	0			
30.0	1892	1.2	30		muda tam	Reddish brown	low to	moderate	SW to fresh	soreted	grained, and non plastic sandy material or sand. Low to moderate strength, very thinly laminated,		62		0	_	$\vdash \vdash$	\vdash
				/	mudatana	Greenish gray	low to medium	low to moderate low to	SW to fresh	fine grained	reddish brown, fine grained, horizontally jointed with brown and smooth joint surface, horizontally jointed and surface cracked, slightly weathered to fresh mudatone cores		90	25	32			
						Reddish brown	low to medium	moderate	Slightly weathered	fine grained	Low to moderate strength, very thinly laminated, reddish brown, fine grained, horizontally jointed with brown and smooth joint surface, horizontally jointed and surface cracked, slightly weathered to							
								low to moderate	Slightly	very fine grained	finesh mudetone comes low to moderate strength, very thinly laminated, grayish grey, horizontally and sub-vertically jointed and cracked, a shibit fissity, amooth and brown		90	30	40.3			
									weathered	fine grained	stain on joint surface, muditions cores. Low to moderate strength, very thinly laminated, slightly fissile, horizontally and sub-vertically jointed and cracked, light brown joint surface.		95	20	54			
										/	surface mudatone cores. 20.85 – 30; Moderately strong, yellowish grey, medium to coarse grained silt / sandstone.		92	30	25			

Name of Study: THE PROJECT FOR DEVELOPING COUNTERMEASURES AGAINST LANDSLIDES IN THE ABAY RIVER GORGE
Location Around florn from Goha Taion, Abay Gorge area, National road 3 BH28-42 Barehale name Laftude 408018 Geological Survey of Ethiopia, JICA Study Team Duration November 26/2011-December 1/2011 1117668 Organization Langitude Core appraise Habtamu E. and Debebe K penaters Getnet K. and Eshetu Al. Chiratensen C\$2000, DEUTZ 613F62, Variable pump 30.0 Dritting rig, Engine, Pump Elevation (m) Depth (m) Direction Downward Proundwat er level (m) Core Recorvery (%) (%) (%) (em) Hock (om) Hock Ouality Designatio Geology Sail Column Odour S Gall Peg (E) ĕ Ē Ē œ. Ged ogical logs Black Disturbed, locs e, moderately plastic, less dense fine 1.0 174025 redium moderate medium 95 eci l Black medium grained black cotton clayey soil. fine graine low to Core is composed of I Som long, fine grained, very stiff, light yellow ime stor low 1738.8 1.45 22 moderate denstely dense, plastic clayey core forming black: 100 sott on soil. 3.0 Fragmented /fractured/, anguer to subangular gravely limestone containing metrix of sendy material. The size medium moderate 4.0 yello the fragment ranges from 2-5cm. 90 Slightly core is composed of dominantly fragmented & fractured ee ath ere d 1735.95 285 5.05 5-Som long gravelly imestone. Traces of fossils were 1649 imeston lightish strong 1735 0.95 Fresh fine grained core comprises two 40cm,#28cm long, horizontally ye llowish to jointed fine grained massive limestone cores. 98 40 71.57 low we ak MW 7.15 173385 1.15 7.0 core consists of matrix of clay, sand for avely limestory lightish material b/n 6.5-6.6m. 8.0 70 6.5 MW to HW low low lightish it is composed of diagonally & vertically join ted cores with rough jointing surface. Helf of the core is moderat strong line stone & the other helf is weathered, weak 1733 1.85 9.0 imestor 9.65 173235 085 SW to MW 10.0 light yellow 80 dense moderate fine to sand metrix & gravelly limestone, 8 0 moderate SW to MW 1731.4 0.95 10.8 10cm core consists of slightly weathered to moders taly weathered & horizontally jointed long Sätatione yellowish međum 1731 04 11 calluvium dark brown 1730 12 light yellow cores. Jointed surface is slightly rough & yellowish in 12.0 Relatively strong, horizontally jointed, moderately eathered to slightly weathered, silt stone with minor seasonered to sagety seasoned, at atoms with minor il meatons in the calation. The we sithered all toms is weak &yellowish in color. The fresh one is gray in color. core is composed of miniture of basels and situations gravels dominated by dark brown clayey so it. The clayey so is plastic & fine grained. The gravel part is composed of proportional basels. & all stone. The sit stone part (gravels) is pasticed and so it. The basel second second (gravels) is pasticed and so it. The basel second second (gravels) is pasticed and so it. The basel second second part of the second second second second second second part of the second second second second second second second part of the second se 13.0 25 47.4 14.0 imestone white to light WW to HW 15.0 medium gravels) is weathered and weak. The baselt gravels are 16.0 aphanatic in texture, dark in color & fresh. The silt and 80 M basalt gravels have 3-4 cm diameter (possible potential 17.0 1725 weak, dominantly yellowish, loose, fragmented, irregularly jointed, rough joint surface, moderately graded, sub 8.5 white to ligh 1724 18.0 W to HW yellow lark& green to high rounded to sub angular gravely limest one. 0.5 18.5 fine grained Moderately strong, dominantly light yellow, fractured, tohigh poorly sorted, horizontally &vertically jointed, sub angula Mudet 172285 0,65 19.15 dium grade d to angular, 5-6cm long gravels cores, 126-1650m week, MW to HW, yell owish, fine to medium gravels. 95 odera t messive, strong, rough Syellow jointed surface, fresh, fine grained, horizontally jointed, 38cm long core, and 21.0 dium Mudet all ghitty weathers d, angular to sub angular, 2cm long, medium gravelly limestone. composed of mixture of baselt gravels & pebbles, and 1719.7 315 22.3 22.0Brownish red dente 90 38 soft, green, loose, weak clayey meterial. The soft claye material is mixed with coarser sand & fine gravels. It is grade d 23.0 Mudit to gray to yellowish gr found b/n two 10cm &6cm long baselt cores. The 10cm long core is fresh, dark, fine grained, and Verystrong & 1717.8 24,4 60 10 ub bori mortally injected. The artist at in surface 25.0 Mudeton weathered, grayleh green, hari sontall y jointed, very fine grainer relatively emooth yellow, weak & weathered joint earfage. gray to bro 26.0 77 171415 245 2685 alightly fissile, very fine grained, relatively weaker, shor-27.0 W to SW columns, horizontally& sub-vertical jointed mudatone Muditor 171 3.66 049 27,34 /siltatone cores. 20 dominantly shorter columns of 4-5 cm long fissile, very thinly laminated, weak, moderately se athered, very fine grained, horizontally jointed with subordinate angular to 29.0 sub angular 2cm sized gravels of mudatone /siltatone 90 relation brown to gr high core is composed of gray to brown, long, massive, slightly eather ed, slightly fissile, and horizontally jointed relationly 98.5 34 73 brong een joint aurface.

SW to fresh

fine gained

gray calcite rich, strong, thinly laminated, horizontally

jointed, white to yellow arough joint surface mudstone

brown to grapish, calcite veined to measive, very fine grained, relatively strong, thinly laminated, horizontally jointed with amouth and gray to brown joint surface, allightly weathered to fresh mudations 93

10

20.4

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-11 Core Sample Photo-

Scale 1:200

<B05-12>



The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-12 Core Sample Photo-

Scale 1:200

<B05-13>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-13 Core Sample Photo-

Scale 1:200

(B05-21)

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

605-21 Core Sample Photo-

Scale 1:200

(B05-22)

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-22 Core Sample Photo-

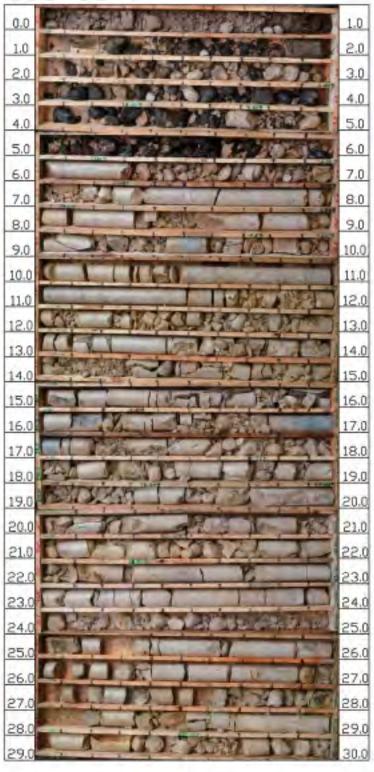
Scale 1:150

(B05-23)

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-23 Core Sample Photo-

Scale 1:200

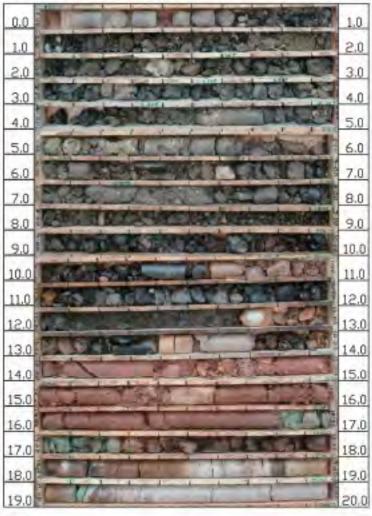


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-31 Core Sample Photo-

Scale 1:200

(B05-32)



The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B05-32 Core Sample Photo-

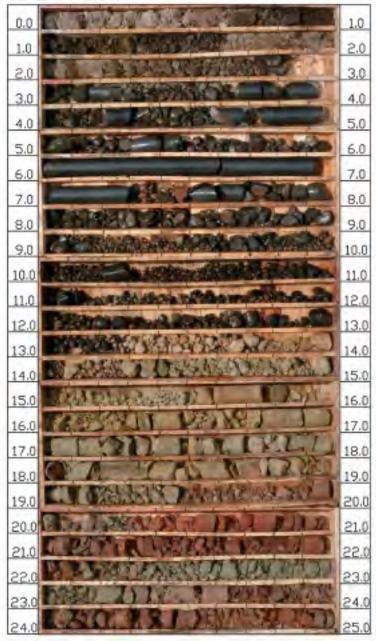
Scale 1:150


<B22-11>

The Project for Daveloping Countermeasures against Landslides in the Abay River Gorge

B22-11 Core Sample Photo:

Scale 1:150

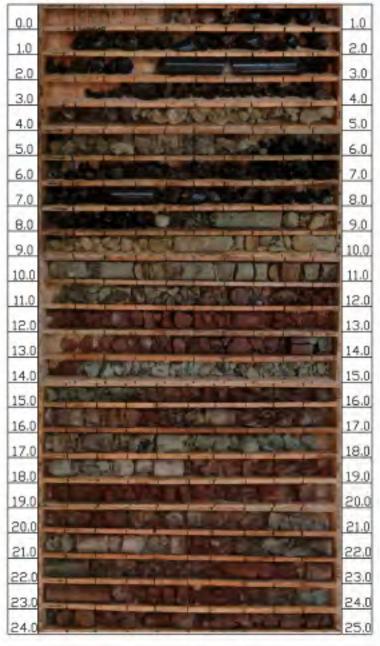


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-09 Core Sample Photo

Scale 1:200

<B27-10>

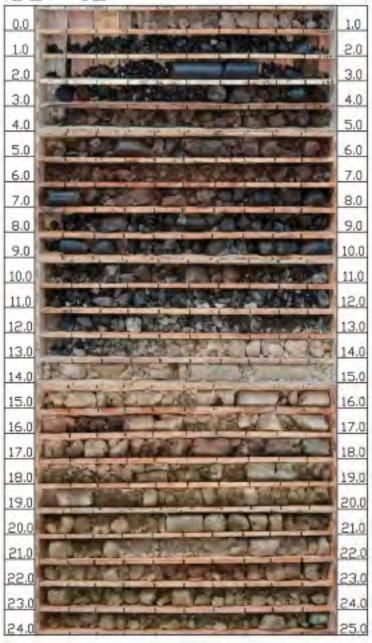


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-10 Core Sample Photo-

Scale 1:150

<B27-11>

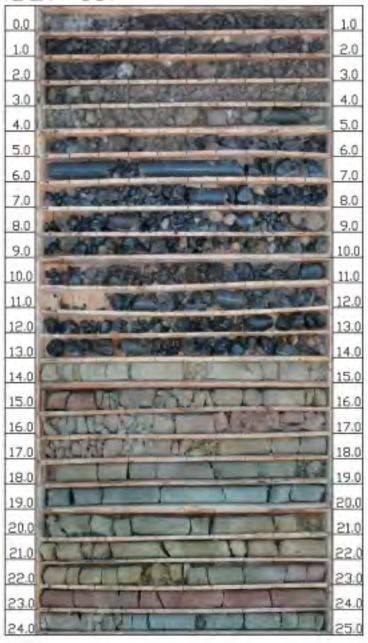


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-11 Gore Sample Photo-

Scale 1:150

<B27-12>

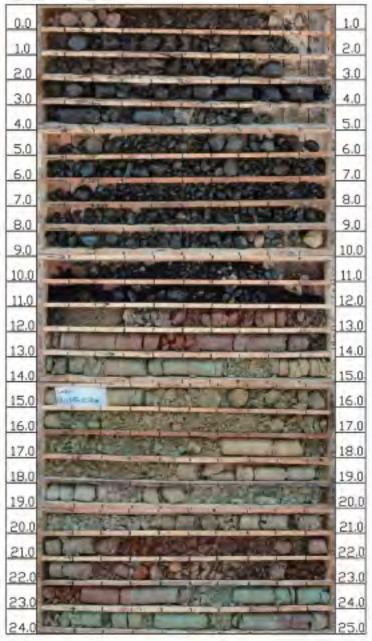


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-12 Core Sample Photo-

Scale 1:150

<B27-13>

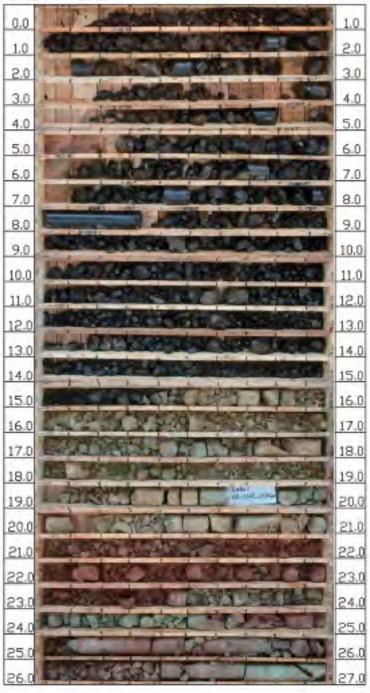


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-13 Core Sample Photo-

Scale 1:150

<B27-21>

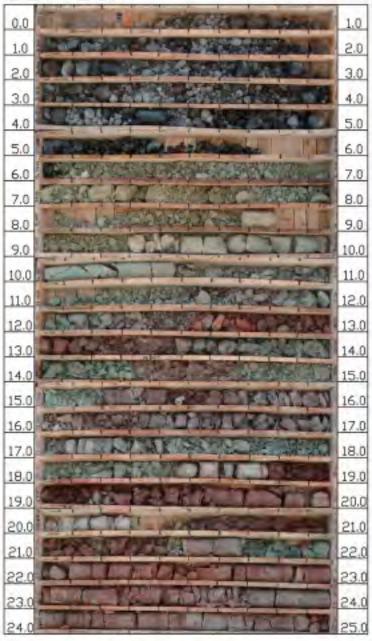


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-21 Core Sample Photo-

Scale 1:150

(B27-22)

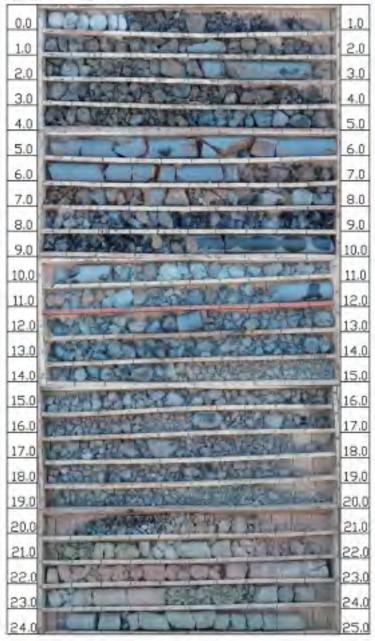


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-22 Core Sample Photo-

Scale 1:150

<B27-23>



The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-23 Core Sample Photo-

Scale 1:150

<B27-24>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B27-24 Core Sample Photo-

Scale 1:150

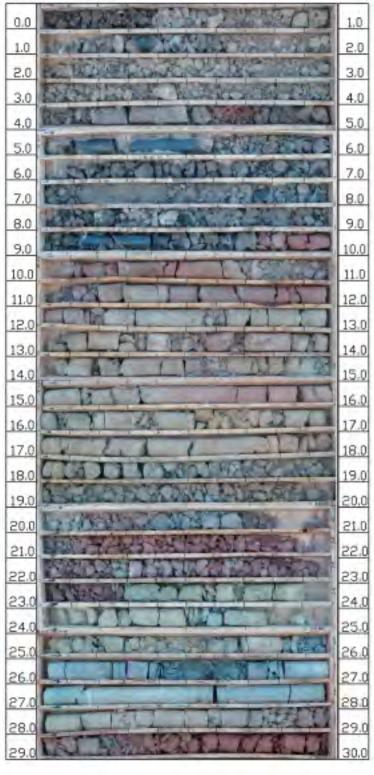
<B28-10>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-10 Core Sample Photo-

Scale 1:200

<B28-11> 0.0 3.0 4.0 5.0 5.0 6.0 6.0 7.0 7.0 8.0 8.0 9.0 10.0 10.0 11.0 11.0 12.0 12.0 13.0 14.0 15.0 15.0 16.0 16.0 17.0 18.0 18.0 19.0 19.0 20.0 21.0 20.0 21.0 0.55 0.55 24.0


24.0

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-11 Core Sample Photo-

Scale 1:150

<B28-12>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-12 Core Sample Photo-

Scale 1:150

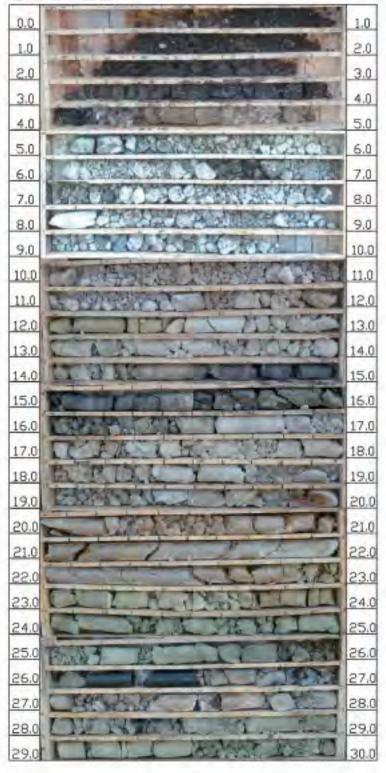
<B28-13>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-13 Core Sample Photo-

Scale 1:150

<B28-21>

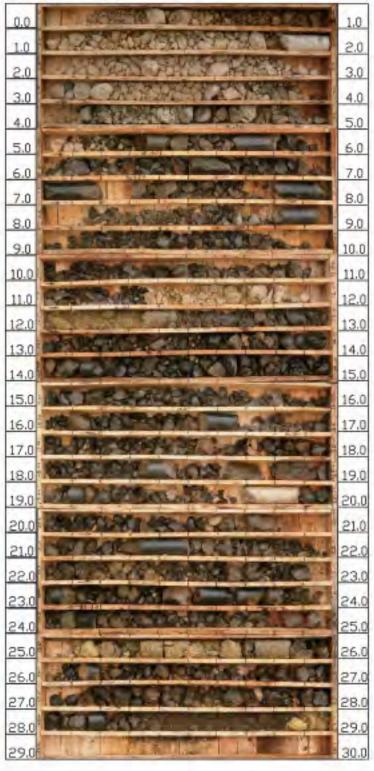


The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-21 Core Sample Photo-

Scale 1:150

<B28-22>



The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-22 Core Sample Photo-

Scale 1:150

<B28-23>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-23 Core Sample Photo-

Scale 1:150

<B28-31>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-31 Core Sample Photo-

Scale 1:150

(B28-32)

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-32 Core Sample Photo

Scale 1;200

Kokusal kogyo Co., Ltd Japan Conservation Engineers Co., Ltd <B28-33>

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

B28-33 Core Sample Photo-

Scale 1:150

Kokusal kogyo Co., Ltd Japan Conservation Engineers Co., Ltd

<B28-41> 0.0 2.0 1.0 2.0 3.0 3.0 4.0 5.0 5.0 6.0 8.0 9.0 11.0 14.0 16.0 18.0 17.0 18.0 19.0 20.0 22. 23.0 26.0 28.0 29.0 28.0 30/ 31.0 35.0 33.0 34.0 36.0 37.0 38.0 39.0 38.0 39.0 40.0 40.0 41.0 42.0 41.0 43.0 JE 440

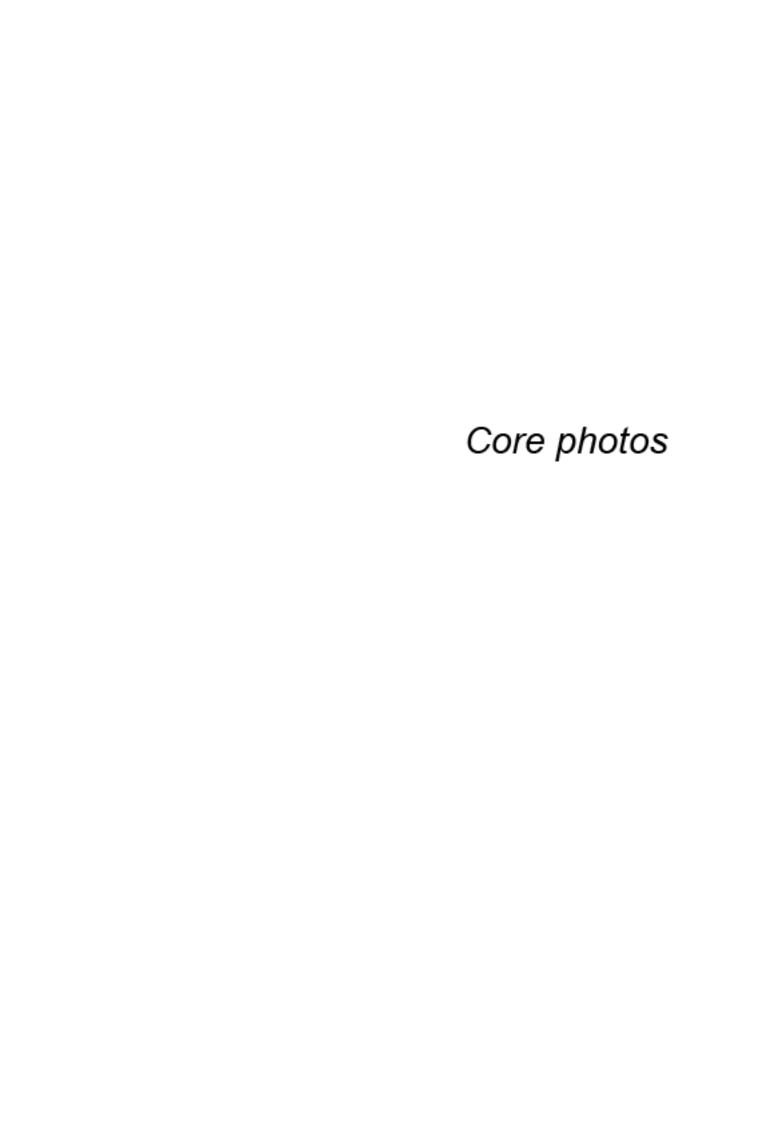
The Project for Developing Countermeasures against Landslides in the Abay River Gorge

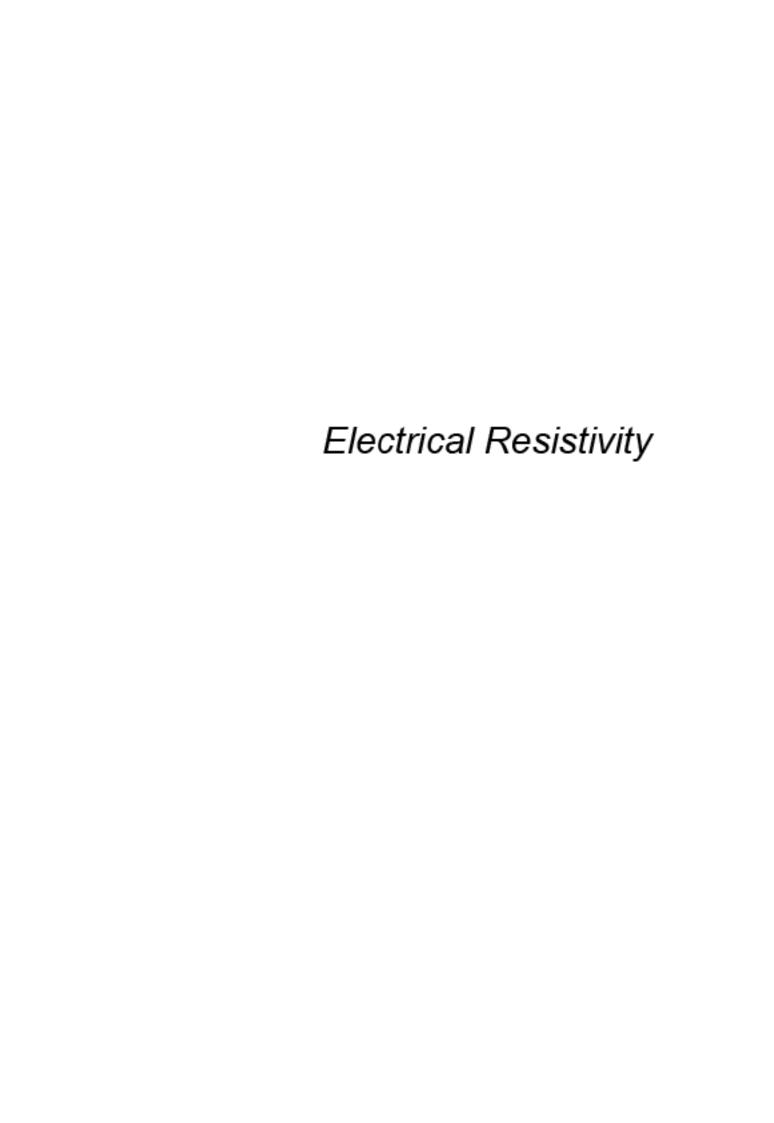
B28-41 Core Sample Photo-

Scale 1:200

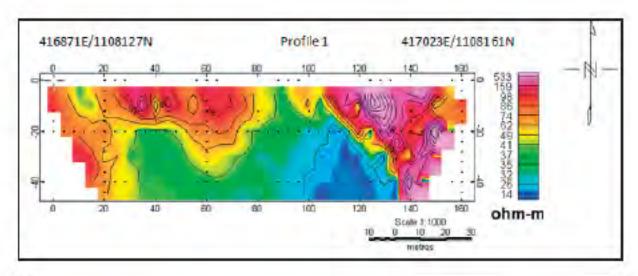
Kokusal kogyo Co. Ltd Japan Conservation Engineers Co. Ltd

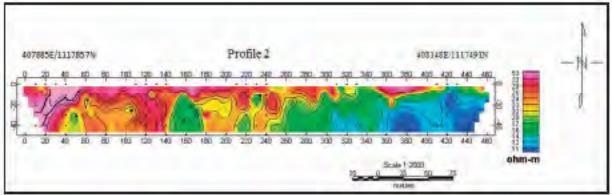
(B28-42)

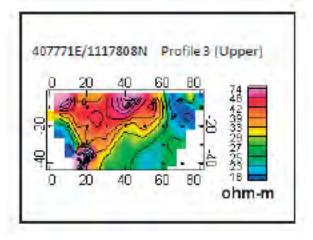


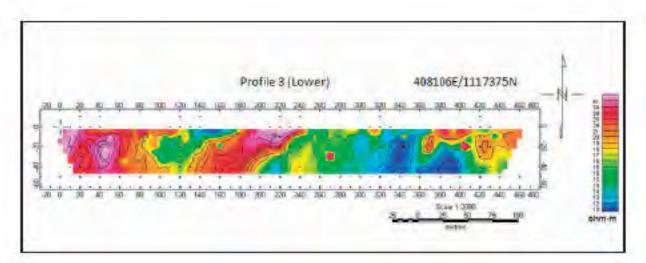

The Project for Developing Countermeasures against Landslides in the Abay River Gorge

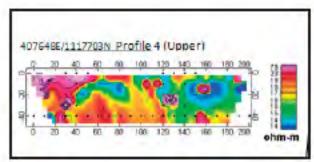
B28-42 Core Sample Photo-

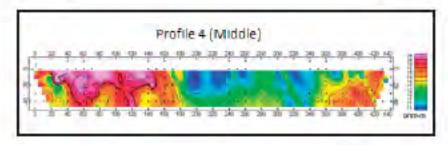

Scale 1:150

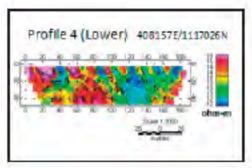

Kokusai kogyo Co. Ltd Japan Conservation Engineers Co. Ltd

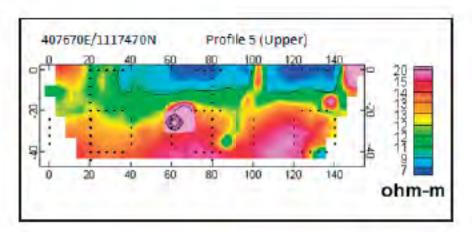


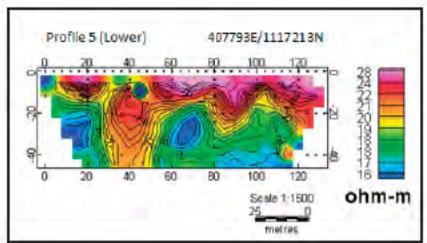


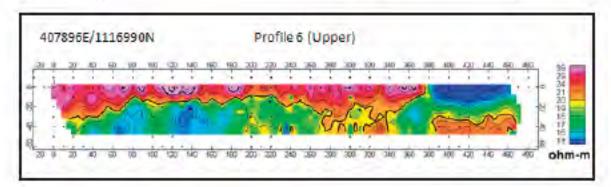

Appendix 3. The detail resistivity section of all profiles

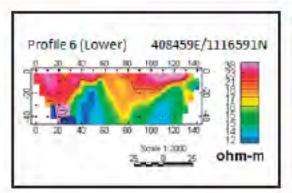


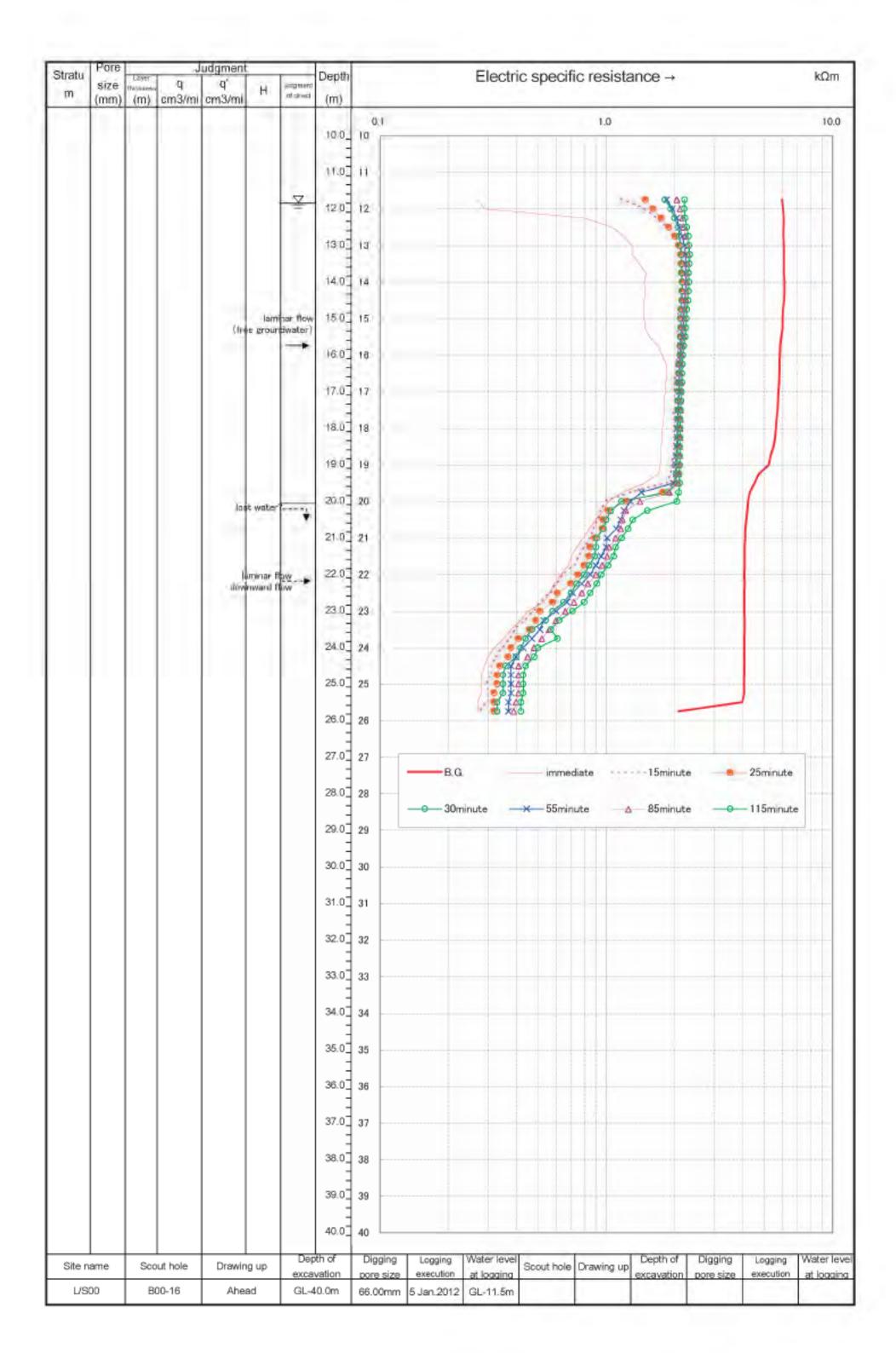










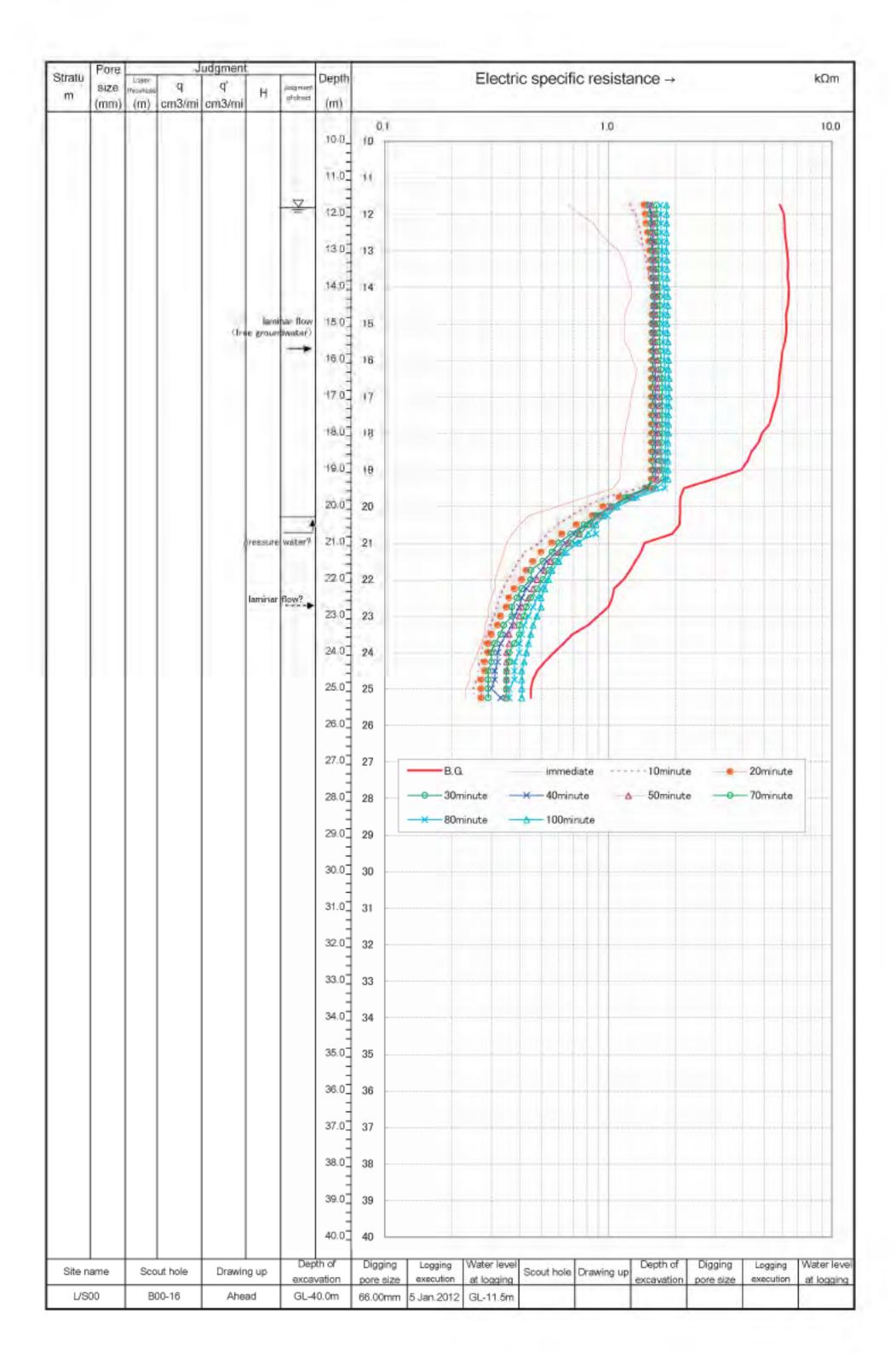

Datasheets and analysis results of groundwater resistivity logging

Site name 1/S00 B00-16 No.1

Sonde No measured	1	· ·						Vater level in	 02-118
range	+(1) 11							
Depth	Times	15h05m	15h20m	15h30m	15h40m	16h00m	16h30m	17h00m	
(m)	B.G	immediate	15minute	25minute	30minute	55minute	85minute	115minute	
11.75	5.980	0.270	1,170	1,490	1.820	1.850	2.050	2.220	
12/00	6.040	0.290	1.470	1.610	1.930	1.960	2.120	2.210	
12.25	6.080	0,800	1,860	1.750	2.000	2.050	2.170	2.230	
12.50	6.070	1,060	1.840	1,890	2.090	2.100	2.200	2.270	
12.75	8.060	1.200	2,000	2.010	2.100	2.170	2.240	2.310	
13.00	5.090	1,300	2.120	2,090	2.130	2.220	2.290	2.320	
13.25	6.090	1.300	2.170	2,130	2.150	2.240	2.300	2.340	
13,50	6.090	1,400	2,180	2.140	2.160	2.240	2.290	2.330	
13.75	6.090	1.500	2.170	2:150	2.150	2.240	2.270	2.310	
14,00	6.140	1,470	2.180	2.170	2.170	2.250	2.270	2.320	
14.25	5.130	1,480	2.170	2,160	2.160	2.240	2.260	2.310	
14.50	6.110	1.470	2 140	2,160	2.160	2.230	2.250	2.300	
14.75	5.040	1.460	2,090	2.140	2.140	2.200	2.220	2.270	
15.00	6.010	1.470	2.080	2.140	2.130	2.190	2.210	2.260	
15.25	6,010	1,480	2.080	2.140	2.140	2.190	2.200	2.250	
15.50	5.930	1.550	2.070	2.130	2.130	2.170	2.200	2.230	
15.75	5.870	1700	2.080	2.130	2.120	2.150	2.170	2.200	
16.00	5.850	1,780	2.070	2.120	2.120	2.130	2.150	2.180	
16.25	5.820	1.840	2.050	2.100	2.100	2.120	2.140	2.170	
16,50	5,820	1,840	2.030	2,090	2.100	2.110	2.130	2.160	
16.75	5.810	1.830	2.020	2.090	2.090	2.100	2.140	2.160	
17.00	5.770	1.820	2.010	2.090	2.090	2.100	2.140	2.150	
17.25	5.740	1.800	2.000	2.080	2.080	2.090	2.130	2.140	
17.50	5.710	1.800	2.000	2.080	2.080	2.080	2.130	2.130	
17.75	5.660	1.790	1.990	2.070	2.080	2.070	2.130	2.120	
18.00	5.620	1.770	1.990	2.070	2.080	2.060	2.120	2.120	
18.25	5.570	1.760	1.980	2.070	2.080	2.060	2.120	2.120	
18.50	5.490	1.750	1.980	2.070	2.070	2.050	2.110	2.110	
18.75	5.320	1.740	1.980	2.080	2.060	2.040	2.110	2.110	
19.00	5.230	1.730	1.970	2.080	2.050	2.030	2.100	2.110	
19.25	4.720	1.700	1.940	2.080	2.040	2.040	2.090	2.100	
19.50	4.520	1.470	1.870	2.010	2.040	1.980	2.080	2.110	
19.75	4.320	1.180	1.310	1.780	1.860	1.430	1.900	2.090	
20.00	4.230	1.020	1.010	1.230	1,170	1,280	1.410	2.050	
20.25	4.200	0.970	0.950	1.020	1.050	1.200	1.220	1.520	
20.50	4.160	0.900	0.930	0.970	1.000	1.160	1.180	1.310	
20.75	4.120	0.840	0.880	0.960	0.970	1.110	1.160	1.250	
21.00	4.110	0.790	0.860	0.890	0.910	1.010	1.100	1.170	
21.25	4.090	0.740	0.810	0.850	0.900	1.000	1.030	1.100	
21.50	4.090	0.700	0.760	0.840	0.890	0.950	1.010	1.080	
21.75	4.090	0.700	0.730	0.800	0.840	0.900	0.960	1.020	
22.00	4.080	0.630	0.650	0.750	0.800	0.850	0.900	0.950	
22.25	4.090	0.590	$\overline{}$	0.700	0.740	0.780	0.830	0.950	
			0.610			_		0.850	
22.50	4.080	0.560	0.570	0.610	0.700	0.710	0.780		
22.75	4.080	0.530	0.520	0.580	0.650	0.670	0.720	0.800	
23.00	4.080	0.450	0.480	0.510	0.580	0.600	0.660	0.710	

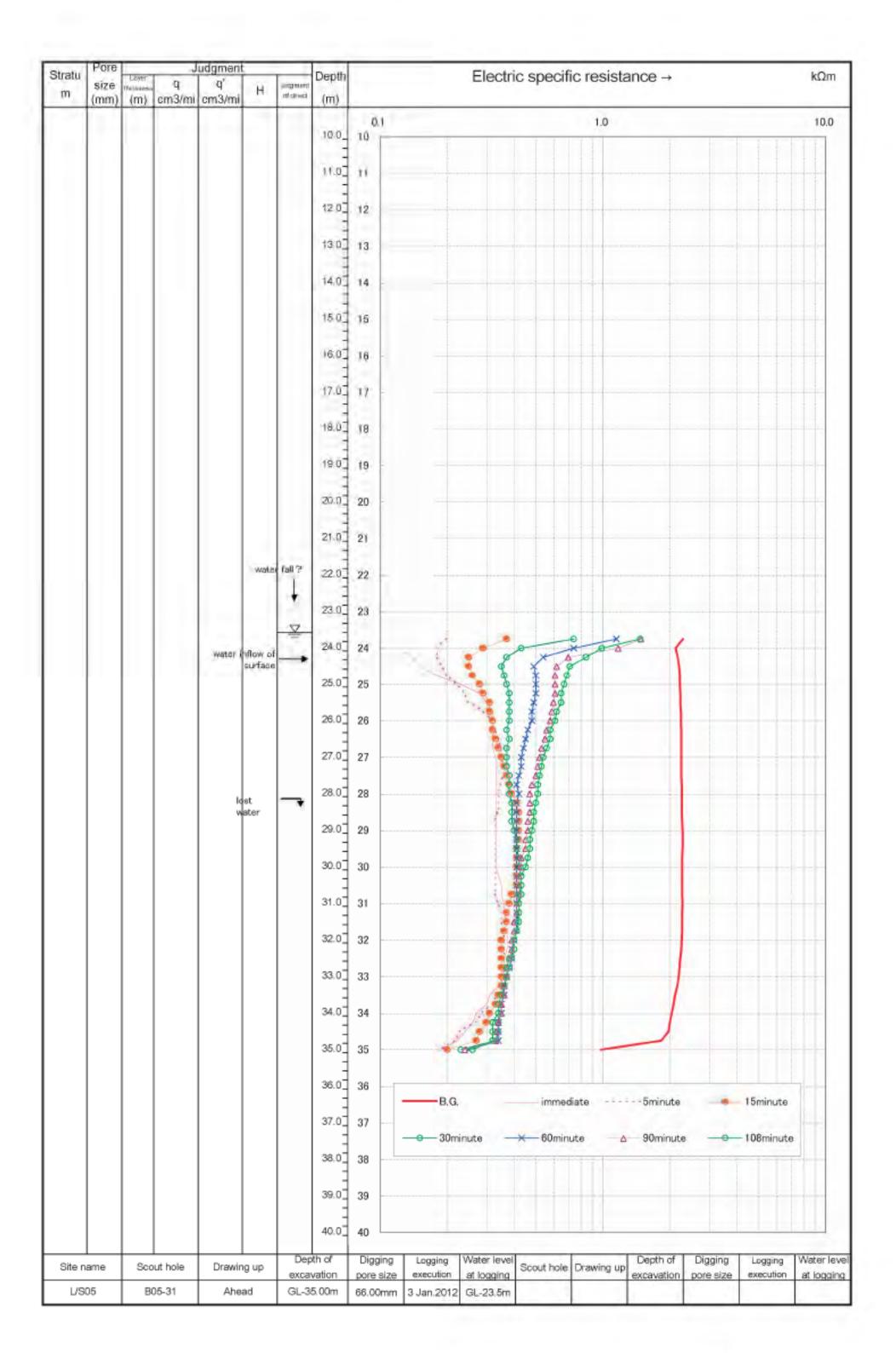
Sita name L/S00 B00-16 No.2

Sonde No measured	- 1							Vater level in	 05111
range	- '	ij W							
Depth	Time	15h/05m	15h20m	15h30m	15h40m	16h00m	16h30m	17h00m	
m)	B,G	immediate	15mirvato	25minute	30minute	55minute	85minute	115minute	
23.25	4,090	0.420	3.440	0.490	0.540	0.530	0.600	0.620	
23.50	4.090	0.380	0.400	0.460	0.470	0.510	0.560	0.570	
23.75	4.080	0,350	0.380	0.410	0.440	0.470	0.520	0.610	
24.00	4.080	6.320	0.350	0.380	0.420	0.430	0.480	0.500	
24.25	4.070	0.300	0.330	0.370	0.400	0.400	0.450	0.480	
24.50	4.070	0.290	0.310	0.340	0.360	0.380	0.410	0.440	
24.75	4.070	0.280	0.310	0.330	0.350	0.380	0.410	0.430	
25,00	4.060	0.280	0.300	0.330	0.350	0.380	0.410	0.430	
25.25	4.070	0.280	0.300	0.320	0.350	0.380	0.410	0.430	
25,50	3,990	0,270	0,300	0.320	0.330	0.370	0.400	0.420	
25.75	2.090	0.270	0.280	0.320	0.330	0.370	0.390	0.420	
					0				
			-	-					
				-					

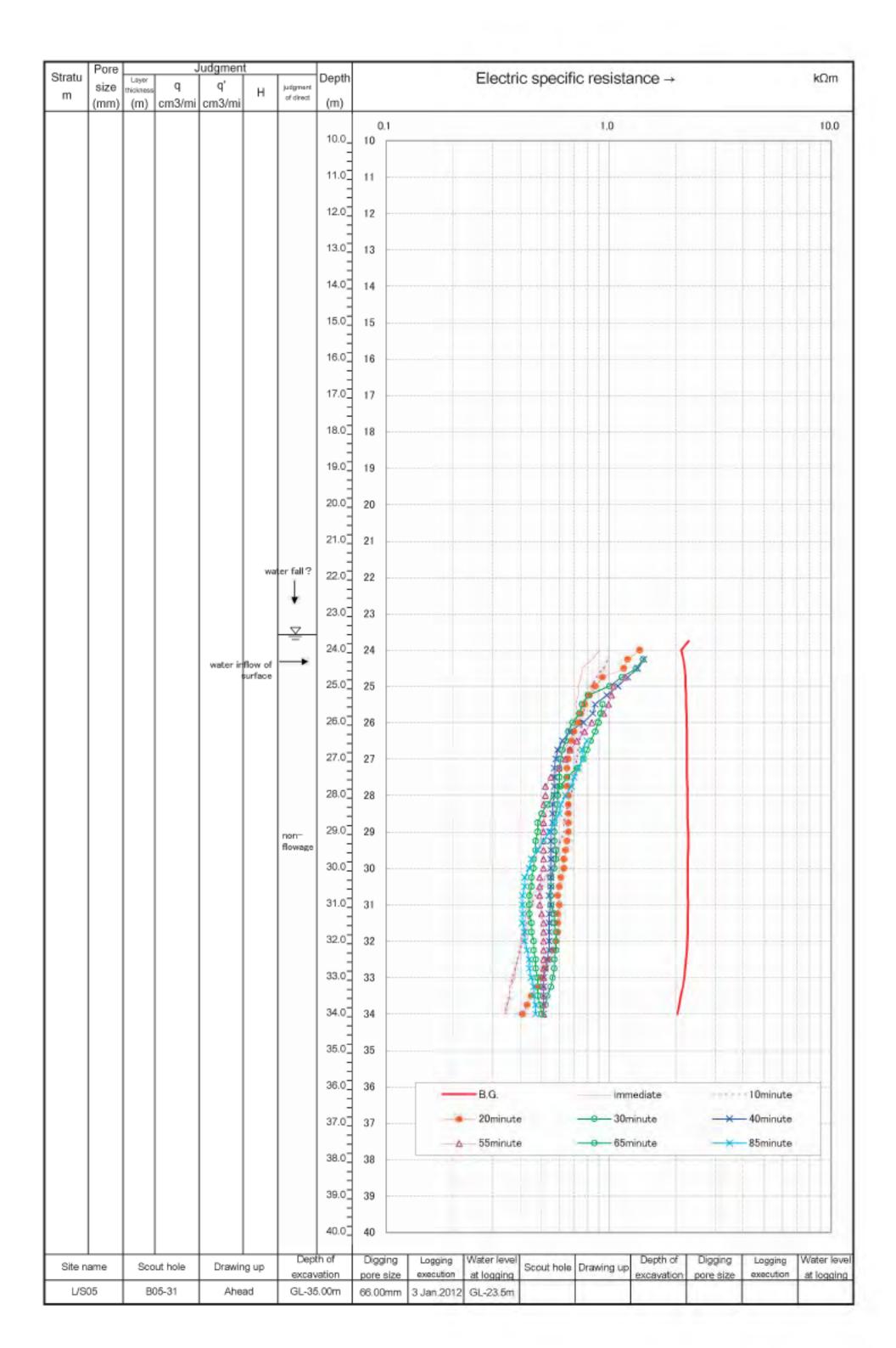


Site name L/S00 B00-16 No.1

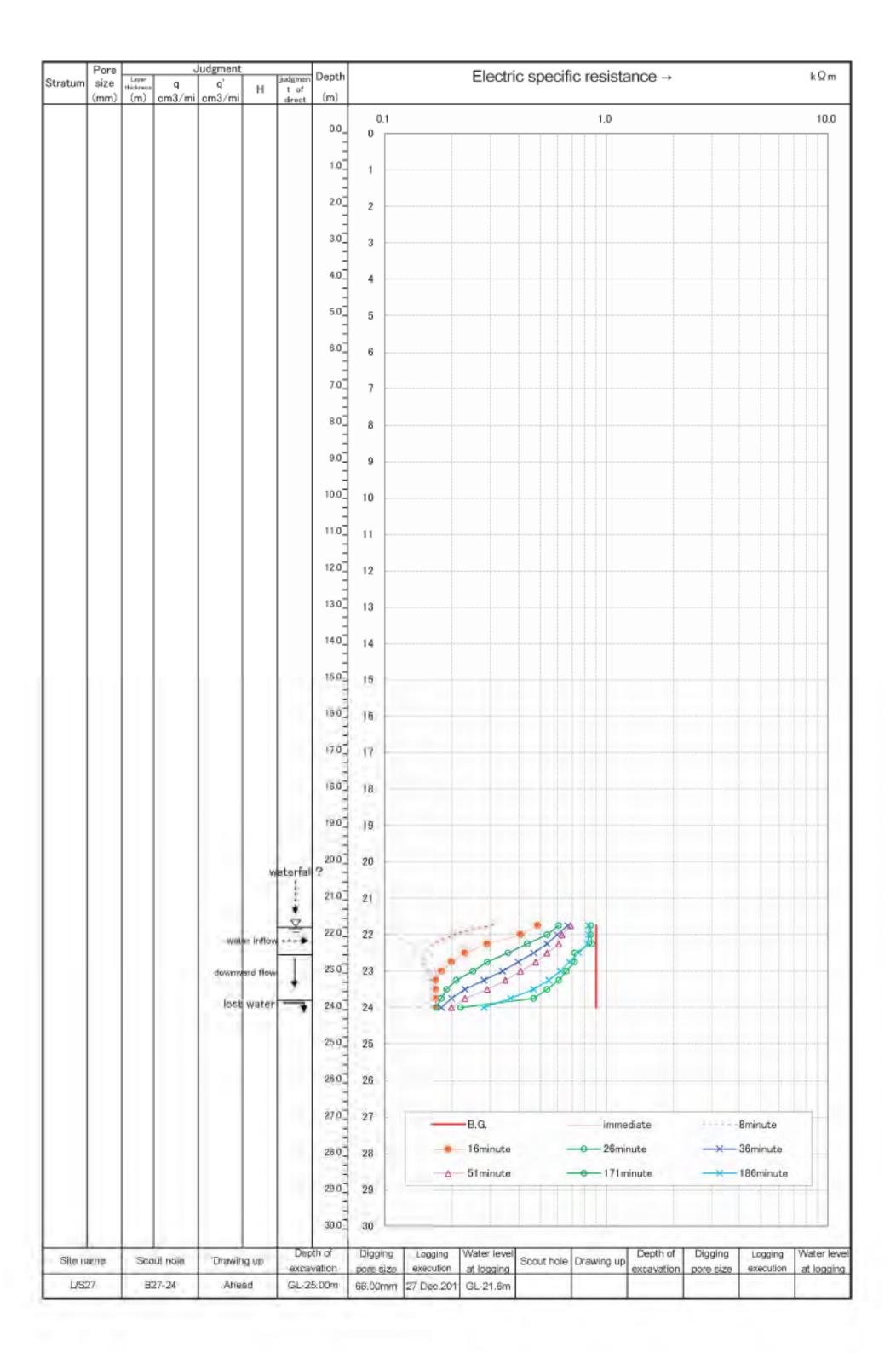
Sonde No	T						٧	Vater level in	n initial hole	GL-11.5m
measured range	+()) H								
Dirptin	Timo	15h/00m	15h10m	15h20m	15h30m	15h40m	15h50m	16h10m	16h20m	16h40n
(m)	B.G	Immediate	10minuta	20minute	30minute	40minute	50minute	70minute	80minute	100minut
11.75	5.860	0.660	1.250	1:450	1.520	1.530	1.560	1.640	1.710	1.820
12.00	6.100	0.750	1.320	1.470	1.540	1.560	1.600	1.650	1.720	1.820
12.25	6.140	0,880	1.380	1.480	1.550	1.570	1.600	1.650	1.720	1.820
12.50	8.160	0.910	1.400	1,500	1.540	1.580	1.600	1.660	1.730	1.820
12.75	8.230	1.000	1,420	1.520	1.560	1.580	1.610	1.670	1.730	1.820
13.00	5.300	1,110	1,450	1.530	1.570	1.590	1.620	1.670	1.740	1.820
13:25	6.350	1.160	1.480	1.550	1.570	1.590	1.620	1.670	1.740	1.830
13.50	6.350	1,200	1,500	1.550	1.580	1.590	1.620	1.680	1.740	1.830
13.75	6.340	1.220	1:530	1,580	1.580	1.590	1.630	1.680	1.740	1.830
14,00	6.430	1,270	1,560.	1,590	1.600	1.610	1.650	1.700	1.770	1.830
14.25	6,400	1.270	1.560	1.590	1.590	1.610	1.650	1.700	1.770	1.850
14.50	8.350	1.220	1.580	1.590	1.600	1.610	1.640	1.700	1.770	1.850
14.75	5.230	1.180	1,550	1.570	1.580	1.600	1.630	1.700	1.760	1.840
15.00	6.260	1.180	1.550	1.570	1.580	1.590	1.630	1.690	1.750	1.830
15.25	6,250	1,180	1.560	1.570	1.580	1.590	1.620	1.690	1.760	1.840
15.50	6.170	1.180	1.560	1.570	1.580	1.590	1.620	1.690	1.760	1.850
15.75	8.000	1.250	1.580	1.560	1.580	1.600	1.650	1.710	1.770	1.850
	5.940	1.280	-	1.560	1.580					1.880
16.00			1.590			1.610	1.660	1.720	1.780	
16.25	5.870	1,340	1.580	1.560	1.580	1.620	1.660	1.720	1.790	1.860
16,50	5,810	1,320	1,580	1.550	1.580	1.620	1.680	1.740	1.790	1.870
16.75	5.780	1.290	1.580	1.560	1.580	1.630	1.660	1.740	1.800	1.870
17.00	5.700	1.260	1.580	1.560	1.580	1.620	1.700	1.740	1.810	1.870
17.25	5.540	1.250	1.580	1.560	1.580	1.630	1.700	1.740	1.810	1.870
17.50	5.400	1.230	1.580	1.560	1.580	1.630	1.680	1.740	1.800	1.860
17.75	5.260	1.200	1.570	1.560	1.580	1.630	1.680	1.740	1.800	1.86
18.00	4.860	1.180	1.580	1.560	1.580	1.630	1.680	1.740	1.800	1.860
18.25	4.700	1.160	1.580	1.560	1.580	1.620	1.680	1.730	1.800	1.850
18.50	4.370	1.150	1.580	1.560	1.580	1.620	1.690	1.730	1.790	1.850
18.75	4.200	1.140	1.590	1.560	1.580	1.630	1.730	1.730	1.790	1.850
19.00	3.930	1.130	1.590	1.560	1.580	1.620	1.690	1.740	1.790	1.850
19.25	2.960	1.120	1.610	1.560	1.580	1.630	1.650	1.770	1.790	1.850
19.50	2.180	1.050	1.420	1.500	1.470	1.480	1.590	1.550	1.790	1.640
19.75	2.100	0.780	1.000	1.120	1.190	1.220	1.270	1.220	1.340	1.300
20.00	2.090	0.590	0.800	0.950	1.030	1.020	1.030	1.060	1.100	1.090
20.25	2.090	0.440	0.700	0.850	0.880	0.890	0.930	0.910	0.990	0.960
20.50	2.080	0.400	0.600	0.720	0.780	0.800	0.850	0.820	0.860	0.880
20.75	1.930	0.370	0.540	0.620	0.680	0.700	0.740	0.740	0.880	0.810
21.00	1.450	0.350	0.500	0.560	0.600	0.640	0.660	0.680	0.710	0.740
21.25	1.400	0.340	0.430	0.500	0.560	0.590	0.600	0.620	0.650	0.640
21.50	1.320	0.330	0.400	0.460	0.510	0.530	0.550	0.580	0.600	0.600
21.75	1.250	0.320	0.380	0.430	0.450	0.500	0.520	0.540	0.560	0.560
22.00	1.170	0.310	0.360	0.410	0.450	0.460	0.480	0.510	0.530	0.540
22.25	1.060	0.310	0.340	0.380	0.410	0.430	0.460	0.480	0.500	0.520
22.50	1.040	0.300	0.330	0.360	0.390	0.410	0.440	0.450	0.480	0.500
22.75	1.000	0.300	0.320	0.350	0.370	0.400	0.440	0.430	0.460	0.500
	0.900	0.290	0.320	0.330	0.370		0.410	0.430		0.480
23.00 memo.	0.800	0.290	0.310	0.330	0.370	0.380	0.400	0.420	0.440	0.40
richted.										


9ite name 1/900 B00-16 No.2

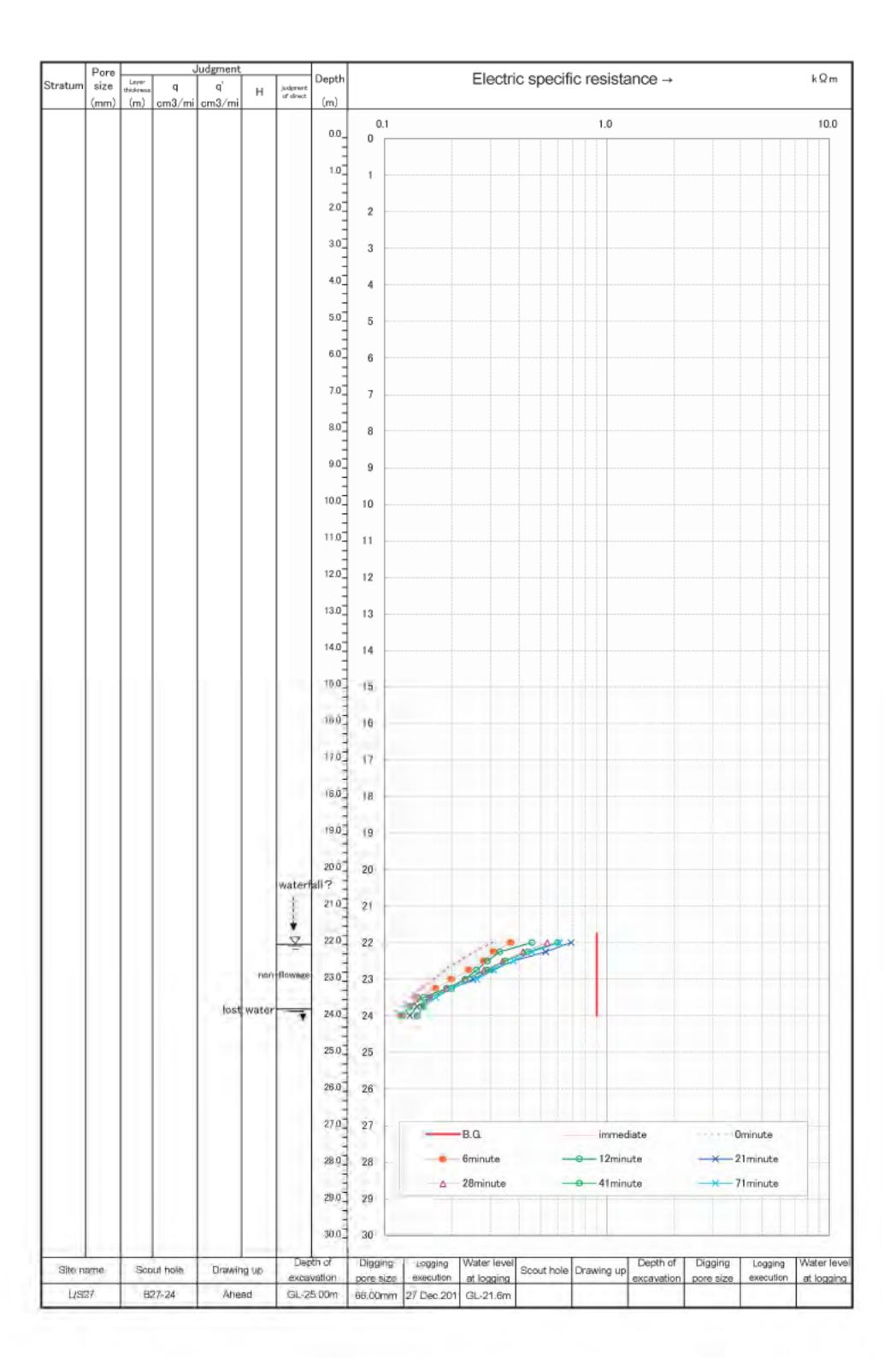
Sonde No measured	-	~							initial hole	
range	+ (11) 111								
Dispiti	Time	15h/00m	-15h10m	15h20m	15h30m	15h40m	15h50m	16h10m	16h20m	16h40
(m)	B.G	mmediate	10minuta	20minute	30minute	40minute	50minute	70minute	80minute	100minu
23.25	0,840	0.280	0.300	0.320	0.340	0.370	0.380	0.400	0.420	0.46
23.50	0.690	0.280	0.290	0.300	0.330	0.350	0.360	0.400	0.410	0.45
23.75	0.830	0,270	0.280	0.290	0.310	0.330	0.360	0.380	0.400	0.44
24.00	0.570	6.260	0.270	0.290	0.300	0.320	0.350	0.360	0.400	0.43
24.25	0.520	0.250	0.270	0.280	0.300	0.320	0.350	0.360	0.380	0.42
24.50	0.480	0.240	0.260	0.280	0.290	0.310	0.350	0.350	0.380	0.41
24.75	0.460	0.240	0.260	0.270	0.290	0.310	0.350	0.350	0.380	0.41
25,00	0.450	0.230	.0,250	0.270	0.290	0.300	0.350	0.350	0.360	0.41
25.25	0.450	0.230	0.250	0.270	0.290	0.330	0.350	0.350	0.360	0.41
25,50										
25.75										
		-		-						
				-	_					
_				-						
		\longrightarrow								
		 								
		-								


Site name 1/S05 B05-31 No.1

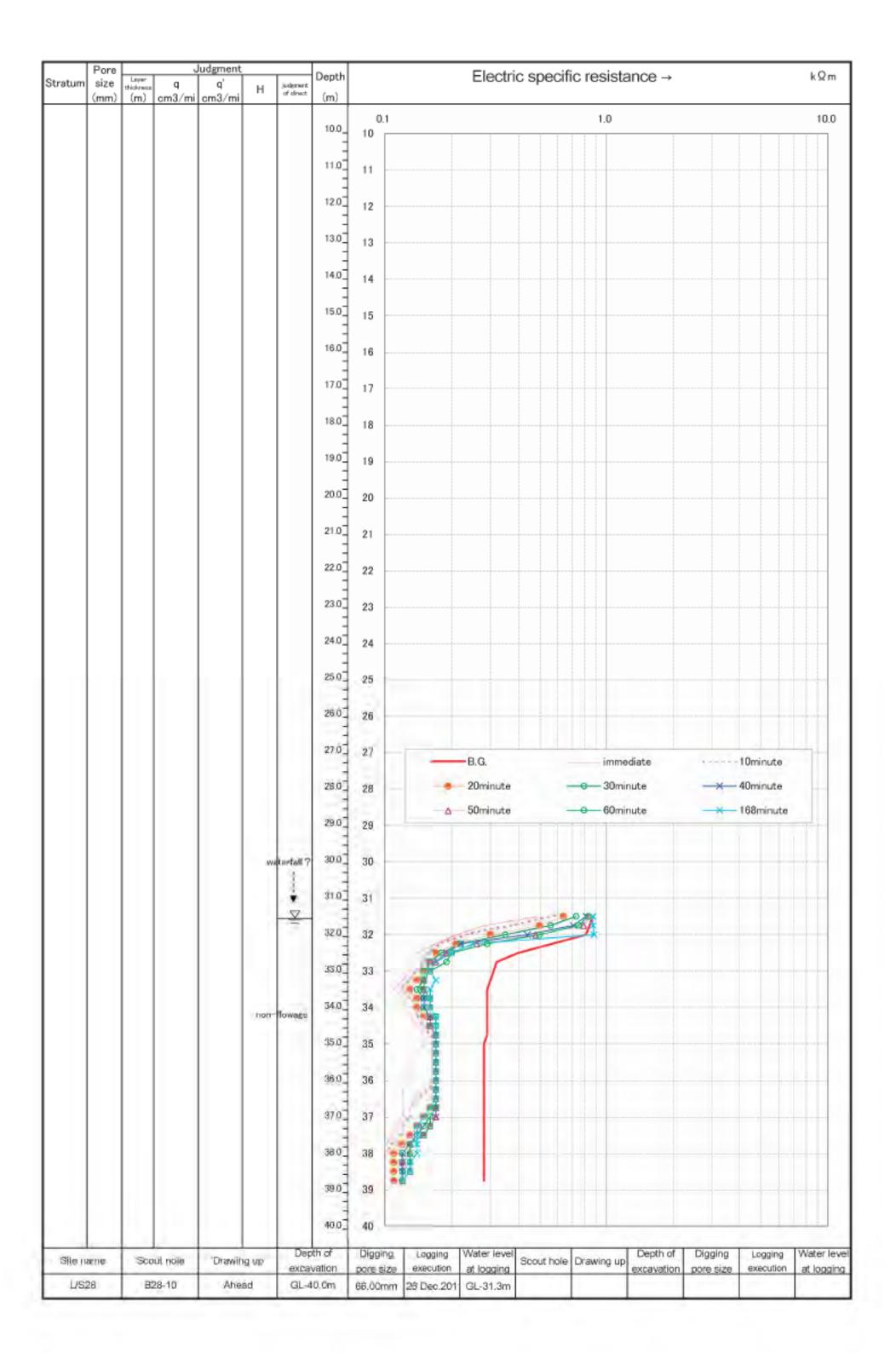
Sonde No measured	1	7							GL-23.5
range	+(10 11							
Depth	Times	13h42m	13h47m	13h57m	14h12m	14h42m	15h12m	15h30m	
(m)	B.G	immediate	Smirwita	15minute	30minute	60minute	90minute	108minute	
23.75	2,290	0.120	3.200	0.370	0.740	1.150	1.480	1.470	
24:00	2.120	0.120	0.180	0.290	0.430	0.740	1.170	0.990	
24.25	2,170	0,140	0.180	0.250	0.370	0.540	0.700	0.840	
24.50	2.200	6.150	0.490	0.250	0.350	0.490	0.620	0.710	
24.75	2,220	0.180	0,200	0,260	0.360	0.500	0.610	0.690	
25.00	2.220	0.230	0.220	0.280	0.370	0.500	0.610	0.670	
25.25	2.230	0.280	0.240	0.290	0.380	0.500	0.610	0.650	
25,50	2,230	0,300	0.250	0.310	0.380	0.490	0.600	0.650	
25.75	2.240	6.320	0.290	0.310	0.380	0.480	0.590	0.620	
26.00	2,240	0,320	0,320	0.320	0.380	0.480	0.580	0.610	
26.25	2.250	0.320	0.330	0.320	0.370	0.460	0.560	0.580	
26.50	2,250	0.320	0,340	0.330	0.380	0.450	0.550	0.580	
28,75	2.250	0,320	0.350	0.340	0.370	0.440	0.530	0.560	
27.00	2.250	0.330	0.350	0.350	0.370	0.430	0.520	0.540	
27.25	2,250	0,330	0.380	0.360	0.370	0.430	0.510	0.530	
27.50	2.250	0.330	0.360	0.370	0.380	0.420	0.500	0.520	
27.75	2.280	0.330	0.350	0.380	0.380	0.410	0.480	0.510	
28.00	2.280	0.330	0:340	0.390	0.380	0.420	0.470	0.510	
28.25	2.280	0.330	0.340	0.410	0.390	0.410	0.470	0.500	
28.50	2,280	0,330	0.340	D.420	0.390	0.410	0.470	0.490	
28.75	2.270	0.330	0.330	0.420	0.390	0.410	0.460	0.490	
29.00	2.280	0.330	0.330	0.420	0.400	0.410	0.460	0.480	
29.25	2.280	0.330	0.330	0.420	0.410	0.410	0.450	0.470	
29.50	2.280	0.330	0.330	0.410	0.410	0.410	0.450	0.470	
29.75	2.270	0.330	0.330	0.410	0.420	0.410	0.430	0.460	
30.00	2.270	0.330	0.330	0.410	0.420	0.410	0.430	0.450	
30.25	2.270	0.340	0.330	0.410	0.430	0.410	0.430	0.430	
30.50	2.270	-	0.330	0.410	0.430	0.410	0.420	0.430	
$\overline{}$		0.350		$\overline{}$					
30.75	2.270	0.350	0.330	0.390	0.430	0.410	0.420	0.420	
31.00	2.280	0.360	0.340	0.380	0.420	0.410	0.410	0.420	
31.25	2.270	0.360	0.350	0.370	0.420	0.410	0.410	0.420	
31.50	2.270	0.370	0.350	0.370	0.410	0.410	0.400	0.420	
31.75	2.270	0.370	0.360	0.360	0.410	0.410	0.400	0.410	
32.00	2.260	0.370	0.360	0.350	0.400	0.400	0.390	0.400	
32.25	2.250	0.370	0.360	0.350	0.400	0.390	0.390	0.400	
32.50	2.230	0.360	0.360	0.350	0.390	0.390	0.380	0.380	
32.75	2.210	0.360	0.360	0.350	0.380	0.380	0.370	0.370	
33.00	2.190	0.350	0.360	0.350	0.370	0.370	0.370	0.370	
33.25	2.160	0.340	0.350	0.350	0.360	0.360	0.360	0.360	
33.50	2.110	0.310	0.340	0.340	0.350	0.360	0.360	0.350	
33.75	2.080	0.300	0.320	0.330	0.340	0.350	0.350	0.340	
34.00	2.040	0.270	0.290	0.310	0.340	0.350	0.350	0.340	
34.25	2.000	0.260	0.270	0.300	0.340	0.340	0.340	0.320	
34.50	1.970	0.240	0.230	0.280	0.340	0.340	0.330	0.320	
34.75	1.830	0.220	0.220	0.270	0.330	0.340	0.330	0.320	
35.00	0.980	0.190	0.190	0.200	0.230	0.250	0.240	0.260	


Site name L/S05 805-31 No.1

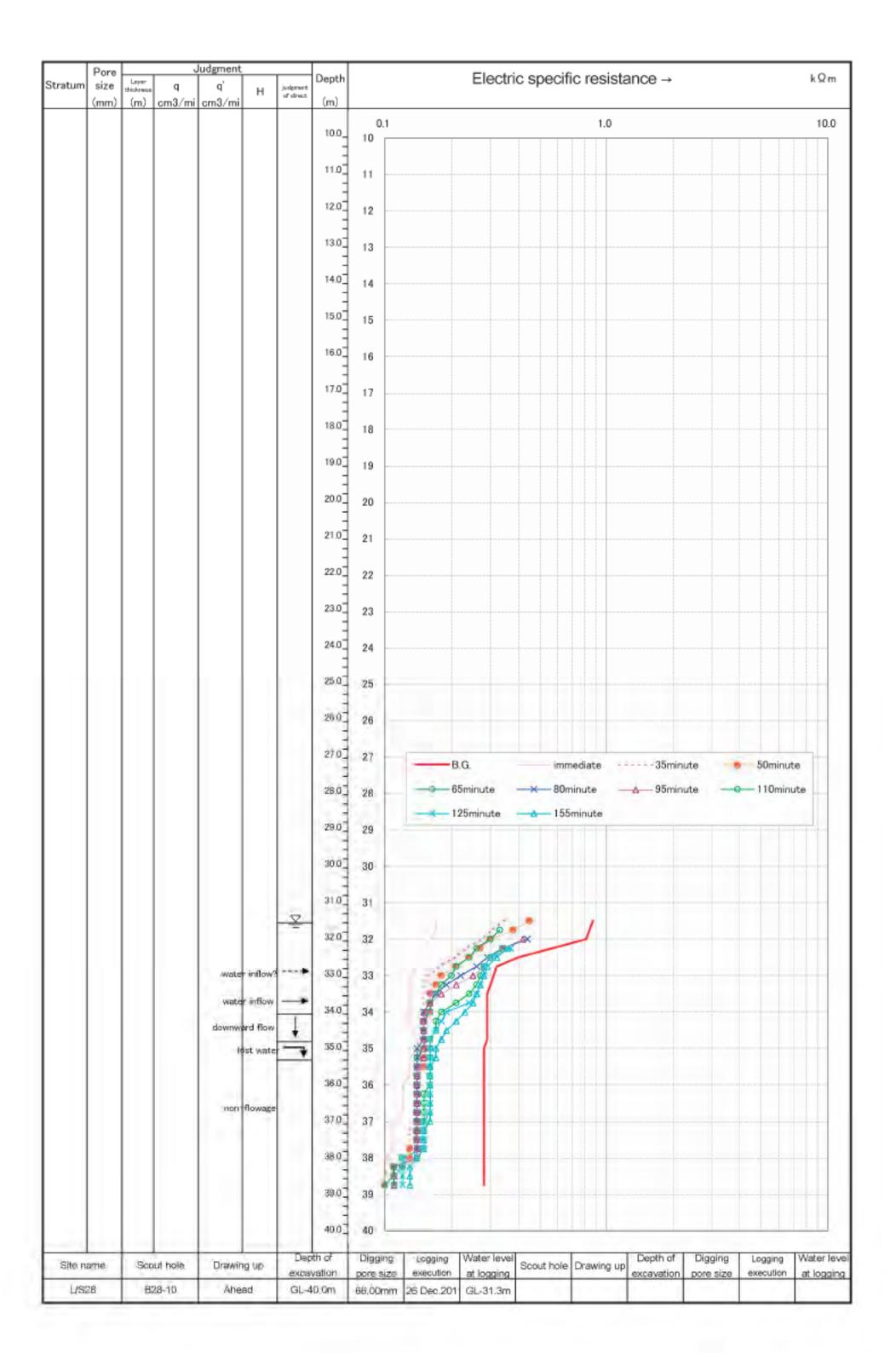
Sonde No measured	1	V							initial hole	JE 20
range	+(1) 11								
Depth	Times	15h35m	15h45m	15h55m	16h05m	16h15m	16h30m	16h40m	17h00m	
(m)	B.G.	mmediate	10minuta	20minute	30minute	40minute	55minute	65minute	85minute	
23.75	2.290	7 // 200	-	1.50						
24:00	2.120	0.910	1.000	1.380						
24.25	2,170	0,840	3 000	1.220	1.430	1.440				
24.50	2.200	9.760	0.950	1.170	1.330	1.350				
24,75	2,220	0.750	0.88.0	0.940	1.150	1.220	1.190			
25.00	2.220	0.730	0.840	0.870	1.010	1.100	1.050			
25:25	2.230	0.730	0.810	0.820	0.810	0.980	1.030			
25,50	2.230	0.710	0.790	0.780	0.760	0.870	1.000	0.940		
25.75	2.240	0.730	0.770	0.750	0.740	0.850	0.950	0.920		
26.00	2,240	0,710	0,760	0.730	0.690	0.770	0.840	0.900		
26.25	2.250	0.890	0.750	0.700	0.660	0.670	0.780	0.870		
26.50	2,250	0.670	0,740	0.680	0.640	0.620	0.720	0.830	0.800	
26,75	2.250	0,530	0.730	0.670	0.620	0.590	0.670	0.800	0.760	
27.00	2.250	0.510	0.720	0.660	0.610	0.580	0.640	0.770	0.770	
27.25	2,250	0,590	0.710	0.650	0.600	0.570	0.600	0.720	0.730	
27.50	2.250	0.570	0.780	0.650	0.600	0.570	0.550	0.650	0.700	
27.75	2.280	0.580	0.690	0.650	0.600	0.570	0.520	0.610	0.680	
28.00	2.280	0.550	0.690	0.680	0.590	0.570	0.520	0.570	0.640	
28.25	2.280	0.540	0.660	0.660	0.590	0.560	0.510	0.530	0.610	
28.50	2.280	0,520	0.540	0.660	0.580	0.560	0.510	0.500	0.600	
28.75	2.270	0.510	0.630	0.660	0.570	0.560	0.510	0.480	0.570	
29.00	2.280	0.500	0.630	0.660	0.570	0.550	0.510	0.480	0.540	
29.25	2.280	0.490	0.610	0.650	0.570	0.550	0.510	0.470	0.510	
29.50	2.280	0.480	0.590	0.640	0.580	0.550	0.510	0.470	0.480	
29.75	2.270	0.470	0.580	0.630	0.580	0.550	0.510	0.460	0.450	
30.00	2.270	0.460	0.560	0.630	0.570	0.550	0.510	0.460	0.440	
$\overline{}$		$\overline{}$						0.450		
30.25	2.270	0.450	0.520	0.610	0.550	0.550	0.490		0.420	
30.50	2.270	0.440	0.500	0.600	0.550	0.550	0.490	0.450	0.420	
30.75	2.270	0.430	0.470	0.590	0.550	0.540	0.490	0.440	0.410	
31.00	2.280	0.430	0.450	0.600	0.550	0.550	0.490	0.440	0.410	
31.25	2.270	0.420	0.440	0.590	0.570	0.540	0.500	0.440	0.410	
31.50	2.270	0.420	0.430	0.590	0.570	0.540	0.510	0.450	0.410	
31.75	2.270	0.410	0.420	0.590	0.580	0.540	0.510	0.450	0.420	
32.00	2.260	0.400	0.410	0.580	0.580	0.540	0.510	0.460	0.420	
32.25	2.250	0.400	0.400	0.560	0.580	0.540	0.510	0.460	0.430	
32.50	2.230	0.390	0.390	0.540	0.570	0.530	0.510	0.470	0.440	
32.75	2.210	0.380	0.380	0.520	0.570	0.520	0.510	0.470	0.440	
33.00	2.190	0.380	0.370	0.500	0.560	0.510	0.510	0.480	0.450	
33.25	2.160	0.360	0.360	0.480	0.550	0.510	0.510	0.480	0.460	
33.50	2.110	0.360	0.360	0.450	0.530	0.510	0.510	0.480	0.460	
33.75	2.080	0.350	0.350	0.430	0.520	0.510	0.510	0.490	0.470	
34.00	2.040	0.340	0.340	0.410	0.500	0.510	0.510	0.500	0.470	
34.25	2.000	0.330	0.330	0.390	0.480	0.510	0.510	0.500	0.470	
34.50	1.970	0.330	0.330	0.360	0.460	0.510	0.510	0.500	0.480	
34.75	1.830	0.320	0.330	0.350	0.450	0.500	0.510	0.510	0.510	
35.00	0.980	0.300	0.300	0.260	0.260	0.260	0.330	0.330	0.350	


Site name L/S27 B27-24 No.1

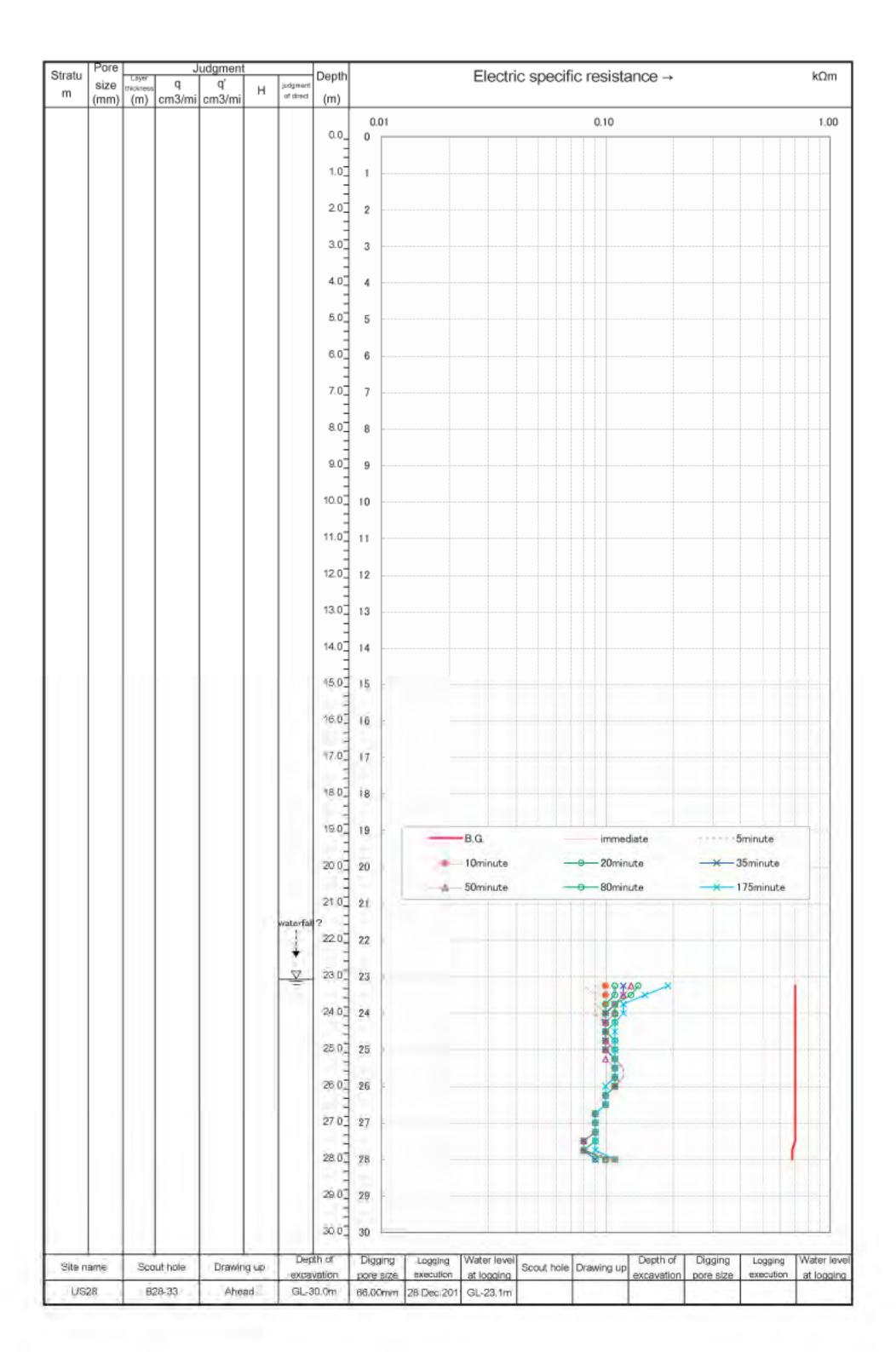
100 to 10							V	Vater level i	n initial hole	GL-21.6
measured	. (ii) 16								
range										
Dieptin	Time	12h09m	12h17m	12h25m	12h35m	12h45m	13h00m	15h00m	15h15m	
(m)	B.G	immediate	Brninvata	16minute	26minute	36minute	51minute	171minute	186minute	
21.75	0.900	0.110	0.310	D.490	0.610	0.670	0.690	0.850	0.830	
22.00	0.900	0.110	0.210	0.410	0.540	0.600	0.630	0.850	0.830	
22,25	0.900	0,130	0.170	0.290	0.440	0.540	0.610	0.860	0.820	
22.50	0.900	0.140	0.450	0.230	0.360	0.470	0.540	0.720	0.750	
22.75	0.900	0.160	0,150	0.200	0.290	0.400	0.480	0.720	0.680	
23.00	0.900	0.170	.0.160	D.180	0.250	0.340	0.410	0.660	0.620	
23.25	0.900	0.170	0.160	0.170	0.210	0.280	0.350	0.610	0.550	
23,50	0.900	0.170	0.170	0.170	0.190	0.230	0.290	0.540	0.470	
23.75	0.900	0.170	0:170	0.170	0.180	0.200	0.230	0.470	0.370	
24.00	0.900	0,140	0,470	0.170	0.170	0.180	0.200	0.220	0.280	
				-						
				_						
				-						
-			-							
$\overline{}$										
										


Site name L/S27 No.1

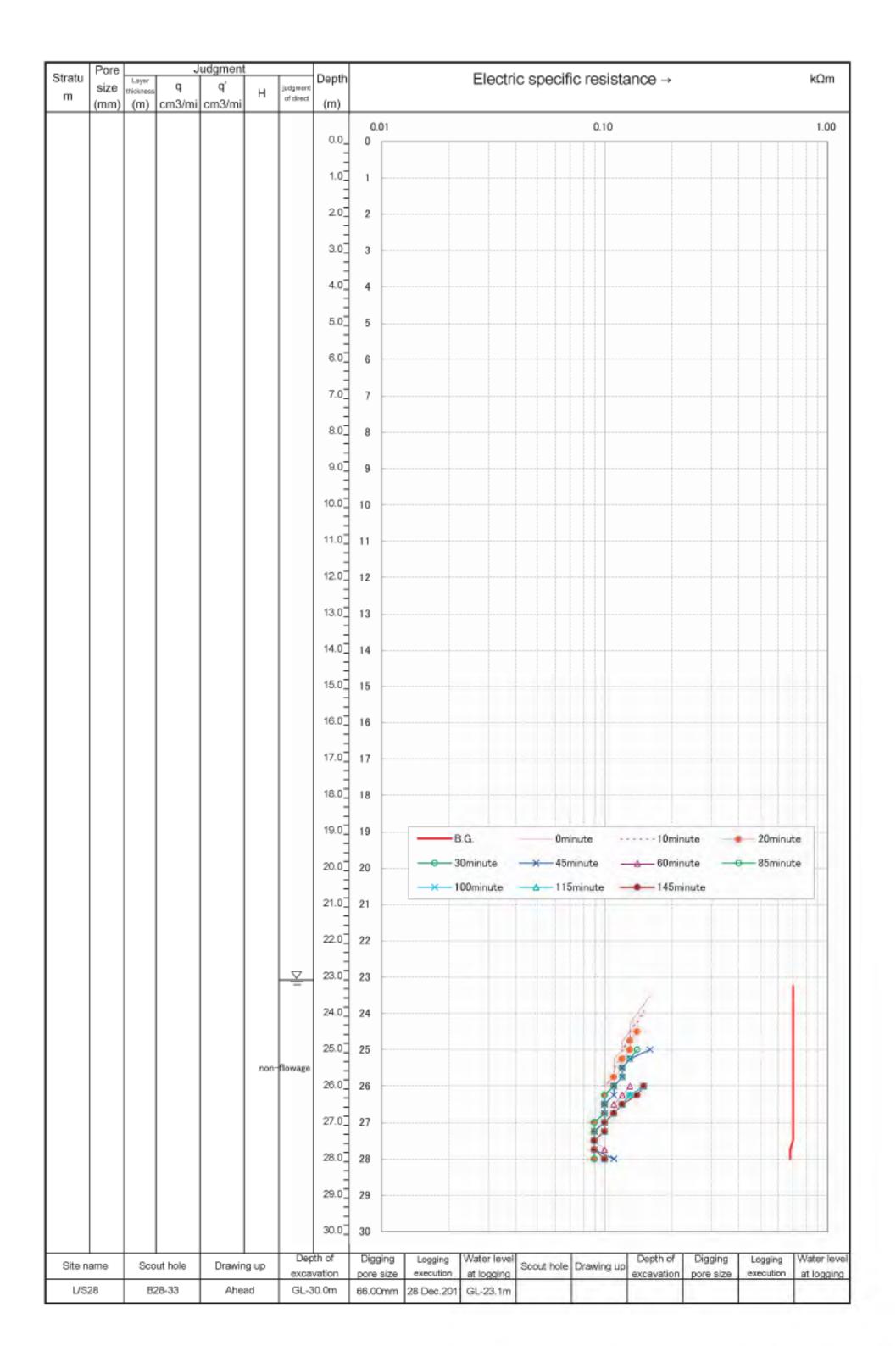
3L-21.	initial note	ater level in						_	-T-	Sonde No.
) #	+()	neasured ange
	16h55m	16h25m	16h12m	16h05m	15h56m	15h50m	15h44m	15h40m	Time	leptr-
	71minute	41minute	28minute	21minute	12minute	Sminute	Dmirvato	immediate	B.G	m)
									0.900	21.75
	0.610	0.600	0.540	0.690	0.460	0.370	0.310	0.100	0.900	22.00
	0.460	0.440	0.420	0.530	0.330	0.310	0,260	0,090	0.900	22,25
	0.380	0.350	0.340	0.380	0.290	0.260	0.220	6,080	0.900	22.50
	0.310	0.290	0.280	0.300	0.260	0,240	0,190	0.080	0.900	22.75
	0.260	0.230	0.230	0.250	0.230	0.200	.0,170	0.080	000,0	23.00
	0.200	0.200	0.190	0.200	0.190	0.170	0.150	080,0	0.900	23:25
	0.170	0.160	0.160	0.160	0.150	0:140	.0.130	0.080	0.900	23,50
	0.150	0.150	0.150	0.140	0.130	0.130	0.120	0.090	0.900	23.75
	0.140	0.140	0.140	0.130	0.120	0.120	0,110	0,090	0.900	24.00
							$\overline{}$	$\overline{}$		
							$\overline{}$	-+		
										$\overline{}$
							\rightarrow			\rightarrow
										nemo.


Site name 1/S28 B28-10 No.1

Sonde No.	T						٧	Vater level in	n initial hole	GL-31.
neasured ange	+ (i) iii								
inptri	Time	11h18m	-11h28m	11638m	11h48m	11h58m	12h08m	12h18m	14h06m	
m)	B.G.	immediate	10minute	20minute	30minute	40minute	50minute	60minute	168minute	
31.50	0,870	0.490	0.590	0.640	0.730	0.810	0.840	0.830	0.870	
31.75	0.840	0.280	0.390	0.500	0.560	0.710	0.790	0.750	0.870	
32.00	0.810	0,210	0,240	0.300	0.350	0.440	0.480	0.500	0.880	
32.25	0.570	0.170	0.180	0.210	0.220	0.220	0.260	0.290	0.250	
32.50	0.400	0.140	0.160	0.170	0.180	0.190	0.190	0.200	0.200	
32.75	0.320	0.130	0.450	0.160	0.160	0.170	0.170	0.190	0.170	
33.00	0.310	0.130	0.140	0.150	0.150	0.160	0.160	0.160	0.160	
33.25	0.300	0.120	.0.130	0.140	0.150	0.150	0.150	0.150	0.170	
33.50	0.290	0.110	0.120	0.130	0.140	0.150	0.150	0.150	0.160	
33.75	0,290	0,120	0,130	0.140	0.150	0.150	0.160	0.160	0.160	
34.00	0.290	0.120	.0.140	0.140	0.150	0.150	0.160	0.160	0.160	
34.25	0.290	0.130	0.140	0.150	0.160	0.160	0.160	0.170	0.170	
34.50	0.290	0,140	0.150	0.160	0.160	0.160	0.160	0.170	0.170	
34.75	0.290	0.150	0.160	0.170	0.170	0.170	0.170	0.170	0.170	
35.00	0.280	0,150	0.470	0.170	0.170	0.170	0.170	0.170	0.170	
35.25	0.280	0.140	0.170	0.170	0.170	0.170	0.170	0.170	0.170	
35.50	0.280	0.130	0.170	0.170	0.170	0.170	0.170	0.170	0.170	
35.75	0.280	0.130	0.170	D.170	0.170	0.170	0.170	0.170	0.170	
36.00	0.280	0.130	0.170	0.170	0.170	0.170	0.170	0.170	0.170	
36.25	0.280	0,120	0.160	0.170	0.170	0.170	0.170	0.170	0.170	
36.50	0.280	0.120	0.140	0.170	0.170	0.170	0.170	0.170	0.170	
36.75	0.280	0.120	0.130	0.160	0.170	0.170	0.170	0.170	0.160	
37.00	0.280	0.120	0.130	0.150	0.160	0.170	0.170	0.160	0.150	
37.25	0.280	0.110	0.120	0.140	0.150	0.160	0.160	0.160	0.140	
37.50	0.280	0.110	0.120	0.130	0.140	0.150	0.150	0.150	0.140	
37.75	0.280	0.100	0.110	0.120	0.130	0.130	0.130	0.130	0.140	
38.00	0.280	0.100	0.100	0.110	0.120	0.130	0.130	0.130	0.140	
38.25	0.280	0.100	0.100	0.110	0.120	0.120	0.120	0.130	0.130	
38.50	0.280	0.100	0.100	0.110	0.120	0.120	0.120	0.130	0.130	
38.75	0.280	0.100	0.100	0.110	0.120	0.120	0.120	0.130	0.130	
39.00	0.280	0.100	0.090	0.100	0.100	0.100	0.120	0.110	0.120	
39.25	0.440	0.090	0.090	0.090	0.090	0.090		0.100	0.110	
39.50	0.440	0.090	0.090	0.090	0.090	0.090	0.100	0.090	0.100	
38.50	0.490	0.090	0.080	0.080	0.090	0.090	0.090	0.080	0.100	
$\overline{}$										
$\overline{}$										


Site name L/S28 B28-10 No.1

						-	months of classes
					9 111	+(1	measured range
5m 16h00m 16h15m 16h30m	15h45m	15h30m	15b15m	15500m	14h25m	Time	Dieptin
rte 95minute 110minute 125minute	80minute	\$5minute	50minute	35minute	immediate	B.G.	(m)
			D:450	0.350	0.170	0.870	31.50
		0.330	0.380	0.310	0.170	0.840	31.75
40 0.420	0.440	0.300	0.300	0,280	0,160	0.810	32.00
0.340 0.340 0.370	0.340	0.260	0.270	0.240	0.150	0.570	32.25
0.300 0.300 0.300	0.290	0.240	0.240	0,210	0.140	0.400	32.50
0.280 0.280 0.280	0.260	0.210	0.210	0.180	0.140	0.320	32.75
20 0.250 0.270 0.280	0.220	0.200	0.180	0.160	0.130	0.310	33.00
0 0.210 0.260 0.270	0.190	0.180	0.170	0.150	0.130	0.300	33.25
70 0.180 0.240 0.260	0.170	0.170	0.160	0.150	0.130	0.290	33.50
0.160 0.210 0.240	0.160	0.160	0.160	0,450.	0,130	0,290	33.75
50 0.150 0.180 0.190	0.150	0.160	0.160	0.150	0.130	0.290	34.00
50 0.150 0.170 0.180	0.150	0.150	0.150	0,150	0.130	0.290	34.25
50 0.150 0.170 0.170	0.150	0.150	0.150	0.150	0,130	0.290	34.50
50 0.150 0.160 0.160	0.150	0.150	0.150	0.150	0.140	0.290	34.75
0.150 0.160 0.160	0.140	0.150	0.150	0,450	0,140	0.280	35,00
0.150 0.160 0.160	0.140	0.140	0.150	0.150	0.130	0.280	35.25
0.140 0.160 0.160	0.140	0.140	0.150	0,150	0.130	0.280	35.50
0.140 0.160 0.160	0.140	0.140	0.140	0.140	0.130	0.280	35.75
0 0.140 0.160 0.160	0.140	0.140	0.140	0.140	0.120	0.280	36.00
0 0.140 0.150 0.160	0.140	0.140	0.140	0.140	0,120	0,280	36,25
0.140 0.150 0.160	0.140	0.140	0.140	0.140	0.120	0.280	36.50
0.140 0.150 0.160	0.140	0.140	0.140	0.140	0.120	0.280	36.75
0.140 0.150 0.150	0.140	0.140	0.140	0.140	0.110	0.280	37.00
0.140 0.150 0.150	0.140	0.140	0.140	0.130	0.110	0.280	37.25
0 0.140 0.150 0.150	0.140	0.140	0.140	0.130	0.110	0.280	37.50
0 0.140 0.150 0.150	0.140	0.140	0.130	0.130	0.110	0.280	37.75
0.140 0.120 0.120	0.140	0.140	0.130	0.120	0.100	0.280	38.00
10 0.120 0.120 0.120	0.110	0.110	0.110	0.110	0.100	0.280	38.25
0.110 0.110 0.120	0.110	0.110	0.110	0.100	0.100	0.280	38.50
0.110 0.110 0.120	0.110	0.100	0.100	0.100	0.090	0.280	38.75
0.110 0.110 0.120	0.110	0.100	0.100	0.090	0.090	0.310	39.00
0.110 0.110 0.120	0.110	0.100	0.100	0.090	0.090	0.440	39.25
0.140 0.170 0.160	0.160	0.110	0.110	0.090	0.090	0.490	39.50
							=
+ + + + + + + + + + + + + + + + + + + +							


Site name 1/S28 B28-33 No.1

Sonde No. Water level in initial hole GL-23.1 m T measured + (30) 10 range 10h50m 11600m 11h25m 11h40m Depth Time 10h55m 11h10m 12h10m 13h55m (m) B.G immediate **Eminute** 10minute 20minute 35minute 50minute 80minute 175minute 0.700 0.080 0.090 23,25 0.100 0.110 0.1200.1300.1400.190 23.50 0.700 0.090 0.090 0.100 0.110 0.120 0.1200.130 0.150 23.75 0.700 0.090 0.090 0.110 0.100 0.100 0.110 0.110 0.1200.700 24.00 6.100 0.090 0.100 0.100 0.100 0.110 0.110 0.120 0.700 24.25 0.100 0.100 0.100 0.100 0.1000.1000.110 0.110 24.50 0.700 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.110 24.75 0.700 0:100 0.100 0.100 0.100 0.100 0.100 0.110 0.110 25.00 0.700 0.110 0.100 0.100 0.110 0.110 0.100 0.1000.110 25.25 0.700 0.110 0.110 0.110 0.110 0.110 0.100 0.110 0.110 25.50 0,120 0.700 0.120 0.110 0.110 0.110 0.1100.1100.110 0.120 25.75 0.700 0.1200.110 0.110 0.110 0.110 0.110 0.110 26.00 0.700 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.100 26.25 0.700 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 25.50 0.700 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0,090 0.7000.090 0.090 0.090 0.090 0.090 0.090 0.090 26.75 27.00 0.700 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 27.25 0.700 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 27.50 0.700 0.000 0.090 0.080 0.080 0.080 080.0 0.090 0.090 27.75 0.680 0.080 0.080 0.080 0.080 0.080 080.0 0.080 0.090 0.100 0,110 0.090 0.090 28,00 0.680 0.110 D.110 0.100 0.110 memo.

Site name LIS28 828-33 No.1

measured	1 (i	0.00									
range	_	-	coord	*Williams	THOSE	4.41-50	45105	455-00-	451-45	101-00-	401-00
Depth	Tane	14h05m	14n15m	14h25m	14h35m	14h50m	15h05m	15h30m	15h45m	16h00m	16h30n
(m)	B.G	Ominute	10minuse	20minute	30minute	45minute	60minute	85minute	100minute	115minute	145minut
23,25	D.780										
23.50	0.700	0.160	2.727								
23,75	0,700.	0.150	0.150								
24.00	0.700	0.140	0.150								
24,25	0,700	0.130	0.140	0.3							
24.50	0.700	0.130	0.130	0.140							
24.75	D.700	0.120	0.130	D. 130	7.110	0.400					
25,00	0,700	0.120	0.120	0.130	0,140	0.160					
25.25	0.700	0.110	0.120	0.120	0.130	0.130					
25,50	0.700	0.110	.0.110	0,120	0,120	0.120					
26.75	0.700	0.110	0.110	0.110	0.120	0.120					
28.00	0,700	0.100	0.100	0.110	0.110	0.110	0.130	0.150	0.150	0.150	0.15
26.25	0.700	0.100	0.100	0.100	0,100	0.110	0.120	0.130	0.130	0.130	0.14
25.50	0.700	0.400	0.100	0.100	0.100	0.100	0.110	0.120	0.120	0.120	0.12
26,75	0,700	0.400	0.100	0.100	0,100	0.100	0.110	0.110	0.110	0.110	0.11
27.00	0.700	0.100	0.090	0.090	0.090	0.100	0.100	0.100	0.100	0.100	0.10
27,25	0,700	0.090	0.090	0.090	0.090	0.090	0.100	0.100	0.100	0.100	0.10
27.50	0.700	0.090	0.090	0.050	0.090	0.090	0.090	0.090	0.090	0.090	0.09
27.75	D.680 D.680	0.090.0	0.090	0.090	0.000	0.090	0.100	0.090	0.090	0.090	0.09

Photos of groundwater resistivity logging in Abay Gorge

<Groundwater resistivity logging>

2011.12.27 B27_24 Groundwater resistivity logging

2011.12.27 B27_24 Groundwater resistivity logging

2011.12.27 B27_24 Groundwater resistivity logging

<Groundwater resistivity logging>

2011.12.28 B28_10 Groundwater resistivity logging

2011.12.28 B28_10 Groundwater resistivity logging

2011.12.28 B28_10 Groundwater resistivity logging

<Groundwater resistivity logging>

2012.1.5 B00_16 Groundwater resistivity logging

2012.1.5 B00_16 Groundwater resistivity logging

2012.1.5 B00_16 Groundwater resistivity logging