Energy Conservation (Industry) Sector Appendix-7 Energy Efficiency Improvement Appendix-8 Electricity and Heat Supply Appendix-9 Fuel Switching

### Input Sheet: New facilities

#### Project Name Sample1 [Energy efficiency of the industrial facilities\_New facilities]

#### 1. The electricity and fuel consumption in the absence of the project

Input the estimated data of the necessary electricity and fuel consumption required to generate the production capacity (output etc.) of new facilities based on the actual data of the similar facilities into the following cells.

| Item                                   | Entry field | Unit  |                   |
|----------------------------------------|-------------|-------|-------------------|
| Electricity consumption in the project | 464         | MWh∕y |                   |
|                                        | Crude Oil   | 50    | kL/y              |
| Fuel consumption in the                | Coal        |       | t∕y               |
| absence of the project                 | Gas         |       | m <sup>3</sup> /y |
|                                        | Others      |       |                   |

#### 2. The electricity and fuel consumption after the project start

Input the planned data for the calculation before the project start and input the monitoring data for the calculation after the project start into the following cells.

| Item                                     |        | Entry field | Unit              |
|------------------------------------------|--------|-------------|-------------------|
| Electricity consumption after start      | 350    | MWh∕y       |                   |
| Crude                                    |        | 35          | kL/y              |
| Fuel consumption after the project start | Coal   |             | t∕y               |
|                                          | Gas    |             | m <sup>3</sup> /y |
|                                          | Others |             |                   |

#### 3. CO2 emission factor of the electric power (t-CO2/MWh)

Emission factor of the general power facilities shall be used as CO2 emission factor of electric power which connects to the grid. Data availability is validated in the following order in regards of the selection of general i) Data obtained from the interview with power management entity ii) National default

|         | Item                                          | Entry field | Unit                       |
|---------|-----------------------------------------------|-------------|----------------------------|
| -       | n factor of electric power<br>cts to the grid | 0.895       | t-CO <sub>2</sub> /MWh     |
| Source: | Data obtained from xx                         | company of  | xx country through intervi |

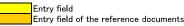
#### 4. Net calorific value according to fuel type and CO2 emission factor

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

i) The unique data of the project obtained from the interview with power management entity

ii) National default iii) IPCC Guideline default data

| Item      | Net calori | Net calorific value |      | Net calorific value CO <sub>2</sub> emission |  | ssion factor |
|-----------|------------|---------------------|------|----------------------------------------------|--|--------------|
| Crude Oil | 36.3       | GJ/kL               | 73.3 | t-CO <sub>2</sub> /TJ                        |  |              |
| Coal      | 26.7       | GJ/t                | 98.3 | t-CO <sub>2</sub> /TJ                        |  |              |
| Gas       | 0.0384     | GJ/m <sup>3</sup>   | 56.1 | t-CO <sub>2</sub> /TJ                        |  |              |
| Others    |            |                     |      | t-CO <sub>2</sub> /TJ                        |  |              |


Data obtained from xx through interview

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy,table2.2

#### 5. The production capacity before the project start

Input the production capacity before and after the project start into the following. (If the facility is newly constructed, input the same data for before and after the project start.)

|                                                  | Entry field | Unit |  |  |
|--------------------------------------------------|-------------|------|--|--|
| The production capacity before the project start | 12,000      | t    |  |  |
| The production capacity after the project start  | 14,000      | t    |  |  |
| Source: Data obtained from xx through interview  |             |      |  |  |



Appendix-7-1

## **Result Sheet: New facilities**

Sample1[Energy efficiency of the industrial facilities\_New facilities]

## GHG emission reduction with the project $(t-CO_2/y) = BE_y - PE_y$ $(t-CO_2/y)$

**1. Baseline emission**  $BE_y = (BEelec_y + BE_{iy}) \times (P_{out} / B_{out})$ 

| 8E <sub>y</sub>    | Baseline emission:<br>GHG emission without replacement, upgrading and<br>improvement of the facilities | 640   | t–CO <sub>2</sub> /y |
|--------------------|--------------------------------------------------------------------------------------------------------|-------|----------------------|
| BE <sub>el,y</sub> | GHG emission from electric power generation before the project start                                   | 415   | t-CO <sub>2</sub> /y |
| Be <sub>i,y</sub>  | GHG emission from fuel power generation before the project start                                       | 133   | t-CO <sub>2</sub> /y |
| P <sub>out</sub>   | The production capacity before the project start                                                       | 12000 | t                    |
| B <sub>out</sub>   | The production capacity after the project start                                                        | 14000 | t                    |

### **2.** Project emission $PE_y = PE_{el,y} + PE_{i,y}$

| PE <sub>y</sub>                 | Project emission:<br>GHG emission after the project start            | 406 | t-CO <sub>2</sub> /y |
|---------------------------------|----------------------------------------------------------------------|-----|----------------------|
| PE <sub>el,y</sub>              | GHG emission from electric power consumption after the project start | 313 | t-CO <sub>2</sub> /y |
| <i>PE</i> <sub><i>i,y</i></sub> | GHG emission from fuel power consumption after the project start     | 93  | t-CO <sub>2</sub> /y |

| ER <sub>y</sub> | GHG emission reduction with the project                                                                | 234 | t-CO <sub>2</sub> /y |
|-----------------|--------------------------------------------------------------------------------------------------------|-----|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without replacement, upgrading and<br>improvement of the facilities | 640 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project start                                              | 406 | t-CO <sub>2</sub> /y |

#### Input Sheet: New facilities

Project Name Sample1 [Use of thermoelectric energy of the waste energy in industry]

1. Quantity of electric power and heat from recovery and utilization of the waste energy Input the estimated data of the necessary electricity and fuel consumption required to generate the power production capacity (output etc.) of new facilities based on the actual data of the similar facilities into the following cells.

| Item                                                                                          | Entry field | Unit  |
|-----------------------------------------------------------------------------------------------|-------------|-------|
| Quantity of electric power<br>generation from recovery and<br>utilization of the waste energy | 69,000      | MWh∕y |
| Quantity of heat from recovery and utilization of the waste energy                            | 100         | TJ∕y  |

#### 2. CO2 emission factor of the electric power $(t-CO_2/MWh)$

Emission factor of the general power facilities shall be used as CO2 emission factor of electric power which connects the grid. Data availability is validated in the following order in regards of the selection of general i) Interview with power management entity ii) National default

Emission obtained from the interview with power management entity shall be used for the private generating far

| Item                                                                          | Entry field | Unit                   |  |  |
|-------------------------------------------------------------------------------|-------------|------------------------|--|--|
| CO <sub>2</sub> emission factor of the electric power which connects the grid | 0.968       | t <del>−</del> CO₂∕MWh |  |  |
| power from private generating                                                 |             | t−CO <sub>2</sub> ∕MWh |  |  |
| CO <sub>2</sub> emission factor of the electric power used for calculation    | 0.968       | t–CO <sub>2</sub> /MWh |  |  |
| Source: Data obtained from xx through interview                               |             |                        |  |  |

#### 3. CO<sub>2</sub> emission factor of heat generation (t-CO<sub>2</sub>/TJ)

| Item                                                      | Entry field | Unit                  |                       |  |  |
|-----------------------------------------------------------|-------------|-----------------------|-----------------------|--|--|
| CO <sub>2</sub> emission factor per unit of energy of the | Fuel type   | 73.3                  | t-CO <sub>2</sub> /TJ |  |  |
| boiler fuel consumption in the absence of                 | Crude Oil   |                       |                       |  |  |
| project                                                   |             |                       |                       |  |  |
| Boiler efficiency                                         |             | 50                    | %                     |  |  |
| Rate of heat generation from boiler out of the h          |             | 1                     |                       |  |  |
| generation recovered and utilized from the was            | te energy   |                       | -                     |  |  |
| in the absence of project                                 |             |                       |                       |  |  |
| CO <sub>2</sub> emission factor per heat generated        | 146.6       | t-CO <sub>2</sub> /TJ |                       |  |  |
| Source: 2006 IPCC Guidelines for Nation                   | nal Greenho | ouse Gas Inve         | entories Volume 2 En  |  |  |

4. Amount of electricity and fuel consumption after the project start Input the estimated data of the necessary electricity and fuel consumption required to generate the power production capacity (output etc.) of new facilities based on the actual data of the similar facilities into the following cells.

| Item                                                 | Entry field | Unit  |      |
|------------------------------------------------------|-------------|-------|------|
| Amount of electricity con<br>after the project start | 364         | MWh∕y |      |
| Amount of fuel                                       | Crude Oil   | 80    | kL/y |
|                                                      | Coal        |       | t∕y  |
|                                                      | Gas         |       | m³/y |
|                                                      | Others      |       |      |

5. Net calorific value according to fuel type and CO2 emission factor Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

i) The unique data of the project obtained from the interview with power management entity
 ii) National default
 iii) IPCC Guideline default data

| Item               | Net calor  | ific value   | CO <sub>2</sub> emis       | sion factor           |                                     |
|--------------------|------------|--------------|----------------------------|-----------------------|-------------------------------------|
| Crude Oil          | 36.3       | GJ/kL        | 73.3                       | t–CO <sub>2</sub> /TJ |                                     |
| Coal               | 26.7       | GJ/t         | 98.3                       | t-CO <sub>2</sub> /TJ |                                     |
| Gas                | 0.0384     | GJ∕m³        | 56.1                       | t-CO <sub>2</sub> /TJ |                                     |
| Others             |            |              |                            | t−CO₂/TJ              |                                     |
| Source: Data obtai | ned from x | x through i  | nterview                   |                       |                                     |
| 2006 IPCC          | Guideline  | s for Nation | na <mark>l Greenh</mark> o | ouse Gas Inve         | entories Volume 2 Energy table1.2,t |

| Entry field                                |
|--------------------------------------------|
| Entry field of the reference documents     |
| Automatic calculation                      |
| Default value (revise by manual entry acco |

e (revise by manual entry according to the project situation)

## **Result Sheet: New facilities**

Sample1 [Use of thermoelectric energy of the waste energy in industry]

GHG emission reduction with the project  $(t-CO_2/y) = BE_y - PE_y$   $(t-CO_2/y)$ 

## **1. Baseline emission** $BE_y = BE_{el,y} + BE_{ther,y}$

| BE <sub>y</sub>      | Baseline emission:<br>GHG emission without recovery and utilization of the waste<br>energy                          | 81,473 | t–CO <sub>2</sub> /y |
|----------------------|---------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>el,y</sub>   | GHG emission generated by electric supply with recovery and utilization of the waste energy after the project start | 66,813 | t–CO <sub>2</sub> /y |
| BE <sub>ther,y</sub> | GHG emission generated by heat supply with recovery and utilization of the waste energy after the project start     | 14,660 | t–CO <sub>2</sub> /y |

### **2.** Project emission $PE_y = PE_{el,y} + PE_{i,y}$

| PE <sub>y</sub>                        | Project emission:<br>GHG emission after the project start      | 565 | t-CO <sub>2</sub> /y |
|----------------------------------------|----------------------------------------------------------------|-----|----------------------|
| PE <sub>el,y</sub>                     | GHG emission with electric consumption after the project start | 352 | t-CO <sub>2</sub> /y |
| <i>PE</i> <sub><i>i</i>,<i>y</i></sub> | GHG emission with fuel consumption after the project start     | 213 | t-CO <sub>2</sub> /y |

| ER <sub>y</sub> | GHG emission reduction with the project                                                    | 80,907 | t-CO <sub>2</sub> /y |
|-----------------|--------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without recovery and utilization of the waste<br>energy | 81,473 | t−CO <sub>2</sub> ∕y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project start                                  | 565    | t−CO <sub>2</sub> ∕y |

## Input Sheet: New facilities, Existing facilities

#### Project name Sample1 [Fuel switching in the industrial facilities\_new facilities]

#### 1. The production capacity before the project

Input the planned data for the calculation of the production capacity before the project start and the monitoring date for the calculation of the production capacity after the project start. (If the facility is newly constructed, input the same data for before and after the project start.)

| Item                                                    | Entry field | Unit |
|---------------------------------------------------------|-------------|------|
| Production capacity and others before the project start | 850         | t    |
| Production capacity and others after the project start  | 1,035       | t    |

#### 2. Fuel consumption before and after the project start

Input the planned data for the calculation of the fuel consumption before the project start and input the monitoring data for the calculation of the fuel consumption after the project start into the following cells.

| Item                                        | Entry field    | Unit      |                   |
|---------------------------------------------|----------------|-----------|-------------------|
| Fuel consumption before<br>project activity | Crude Oil      | 27,668    | kL∕ y             |
|                                             | Coal           |           | t∕y               |
|                                             | Gas            |           | m <sup>3</sup> /y |
|                                             | Others (Kerose | 2,934     | kL∕ y             |
|                                             | Crude Oil      |           | kL∕ y             |
| Fuel consumption after                      | Coal           |           | t∕y               |
| project activity                            | Gas            | 2,954,979 | m <sup>3</sup> /y |
|                                             | Others         |           |                   |

#### 3. Net calorific value according to fuel type and CO2 emission factor

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

- i) The unique data of the project obtained from the interview with power management entity
- ii) National default
- iii) IPCC Guideline default data

| Item              | Net calorific value |                   | CO <sub>2</sub> emission factor |                       |
|-------------------|---------------------|-------------------|---------------------------------|-----------------------|
| Crude Oil         | <u>36.</u> 3        | GJ/kL             | 73.3                            | t-CO <sub>2</sub> /TJ |
| Coal              | 26.7                | GJ/t              | 98.3                            | t-CO <sub>2</sub> /TJ |
| Gas               | 0.0384              | GJ/m <sup>3</sup> | 56.1                            | t-CO <sub>2</sub> /TJ |
| Others (Kerosene) | 35.3                | GJ/kL             | 71.9                            | t-CO <sub>2</sub> /TJ |

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2 Data obtained from xx gas company through interview



Entry field

Entry field of the reference documents Automatic input, automatic calculation

## Result Sheet: New facilities, Existing facilities

Sample1【Fuel switching in the industrial facilities\_new facilities】

### GHG emission reduction with the project $(t-CO_2/y) = BE_y - PE_y$ $(t-CO_2/y)$

### **1. Baseline emission** $BE_y = PG_{PJ,y} \times ((BC_{i,y} \times NCV_i \times COEF_i) \nearrow PG_{BL,y})$

| BE <sub>y</sub>    | Baseline emission:<br>GHG emission without switching fuel     | 98,703 | t−CO₂∕y                     |
|--------------------|---------------------------------------------------------------|--------|-----------------------------|
| PG <sub>BL,y</sub> | The power production capacity before the project start        | 850    | t                           |
| PG <sub>PJ,y</sub> | The power production capacity after the project start         | 1,035  | t                           |
| BC <sub>iy</sub>   | Fuel consumption of fuel i before the project start           | -      | kL,m3,t etc.⁄y              |
|                    | Crude Oil                                                     | 27,668 | kL/y                        |
|                    | Coal                                                          | 0      | t/y                         |
|                    | Gas                                                           | 0      | m3∕y                        |
|                    | Others (Kerosene)                                             | 2,934  | kL/y                        |
| NCV <sub>i</sub>   | Net calorific value of fuel i                                 | -      | GJ/kL,m <sup>3</sup> ,t etc |
|                    | Crude Oil                                                     | 36.3   | GJ/kL                       |
|                    | Coal                                                          | 26.7   | GJ/t                        |
|                    | Gas                                                           | 0.0384 | GJ/m3                       |
|                    | Others (Kerosene)                                             | 35.3   | GJ/kL                       |
| COEF <sub>i</sub>  | CO <sub>2</sub> emission factor per calorific value of fuel i | -      | t-CO <sub>2</sub> /TJ       |
|                    | Crude Oil                                                     | 73.3   | t−CO₂/TJ                    |
|                    | Coal                                                          | 98.3   | t–CO <sub>2</sub> /TJ       |
|                    | Gas                                                           | 56.1   | t–CO <sub>2</sub> /TJ       |
|                    | Others (Kerosene)                                             | 71.9   | t−CO₂∕TJ                    |

| PE <sub>y</sub>                 | Project emission:<br>GHG emission after fuel switching        | 6,366     | t-CO <sub>2</sub> /y        |
|---------------------------------|---------------------------------------------------------------|-----------|-----------------------------|
| <i>PC</i> <sub><i>i,y</i></sub> | Fuel consumption of fuel i after the project start            | -         | kL,m3,tetc./y               |
|                                 | Crude Oil                                                     | 0         | kL/y                        |
|                                 | Coal                                                          | 0         | t/y                         |
|                                 | Gas                                                           | 2,954,979 | m3∕y                        |
|                                 | Others                                                        | 0         | 0                           |
| NCV <sub>i</sub>                | Net calorific value of fuel i                                 | -         | GJ/kL,m <sup>3</sup> ,t etc |
|                                 | Crude Oil                                                     | 36.3      | GJ/kL                       |
|                                 | Coal                                                          | 26.7      | GJ/t                        |
|                                 | Gas                                                           | 0.0384    | GJ/m3                       |
|                                 | Others (Kerosene)                                             | 35.3      | GJ/kL                       |
| COEF ;                          | CO <sub>2</sub> emission factor per calorific value of fuel i | -         | t-CO <sub>2</sub> /TJ       |
|                                 | Crude Oil                                                     | 73.3      | t−CO₂∕TJ                    |
|                                 | Coal                                                          | 98.3      | t−CO₂∕TJ                    |
|                                 | Gas                                                           | 56.1      | t−CO₂∕TJ                    |
|                                 | Others (Kerosene)                                             | 71.9      | t−CO <sub>2</sub> ∕TJ       |

## 2.Project emission PE<sub>y</sub> = PC<sub>iy</sub> × NCV<sub>i</sub> × COEF<sub>i</sub>

| ER <sub>y</sub> | GHG emission reduction with the project                   | 92,338 | t-CO <sub>2</sub> /y |
|-----------------|-----------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without fuel switching | 98,703 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after fuel switching    | 6,366  | t-CO <sub>2</sub> /y |

### Energy Sector

Appendix-10 Energy Plant Construction with Fuel Switching Appendix-11 Thermal Power with Electricity and Heat Supply Appendix-12 Thermal Power with Fuel Switching Appendix-13 Thermal Power with Higher Efficiency Appendix-14 Power Transmission with Improved Efficiency Appendix-15 Power Distribution with Improved Efficiency Appendix-16 Rural Electrification

## Input Sheet: New facilities, Existing facilities

#### Project Name Sample1 [Introduction of the district heating and cooling system\_new facilities]

#### 1. The amount of heat supply before and after the project

Input the planned data for the calculation of the amount of heat supply before the project start and the measured date for the calculation of the amount of heat supply after the project start. (If the facility is newly

| Item                                            | Entry field | Unit |
|-------------------------------------------------|-------------|------|
| Amount of heat supply before the project starts | 398         | ТJ   |
| Amount of heat supply after the project starts  | 1,072       | TJ   |

#### 2. Fuel consumption before and after the project start

Input the planned data for the calculation of the fuel consumption before the project start and input the measured data for the calculation of the fuel consumption after the project start into the following cells.

| Item                                        |           | Entry field | Unit              |
|---------------------------------------------|-----------|-------------|-------------------|
|                                             | Crude Oil | 12          | kL/y              |
| Fuel consumption before<br>project activity | Coal      |             | t∕y               |
|                                             | Gas       |             | m <sup>3</sup> /y |
|                                             | Others    |             |                   |
|                                             | Crude Oil |             | kL/y              |
| Fuel consumption after                      | Coal      |             | t∕y               |
| project activity                            | Gas       | 3,068       | m³⁄y              |
|                                             | Others    |             |                   |

#### 3. Net calorific value according to fuel type and CO2 emission factor

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

- i) The unique data of the project obtained from the interview with power management entity
- ii) National default
- iii) IPCC Guideline default data

| Item                    | Net calorific value |                   | CO <sub>2</sub> emission factor |                       |                                   |
|-------------------------|---------------------|-------------------|---------------------------------|-----------------------|-----------------------------------|
| Crude Oil               | 36.3                | GJ/kL             | 73.3                            | t-CO <sub>2</sub> /TJ |                                   |
| Coal                    | 26.7                | GJ/t              | 98.3                            | t-CO <sub>2</sub> /TJ |                                   |
| Gas                     | 0.0384              | GJ/m <sup>3</sup> | <u>56.</u> 1                    | t-CO <sub>2</sub> /TJ |                                   |
| Others                  |                     |                   |                                 | t-CO <sub>2</sub> /TJ |                                   |
| Source: 2006 IPCC Guide | lines for Na        | ational Gree      | enhouse Ga                      | s Inventories         | Volume 2 Energy table1.2,table2.2 |



Entry field of the reference documents

## Calculation result sheet: New facilities

Sample1【Introduction of the district heating and cooling system\_new facilities】

### GHG emission reduction with the project $(t-CO_2/y)$ $ER_y = BE_y - PE_y$ $(t-CO_2/y)$

### **1. Baseline emission** $BE_y = PG_{PJ,y} \times ((BC_{i,y} \times NCV_i \times COEF_i) \swarrow PG_{BL,y})$

| BE <sub>y</sub>          | Baseline emission:<br>GHG emission without the district heating and cooling<br>system | 86     | t−CO₂∕y                     |
|--------------------------|---------------------------------------------------------------------------------------|--------|-----------------------------|
| PG <sub>BL,y</sub>       | Amount of heat supply before the project starts                                       | 398    | TJ                          |
| PG <sub>PJ,y</sub>       | Amount of heat supply after the project starts                                        | 1,072  | TJ                          |
| <i>BC <sub>i,y</sub></i> | Fuel consumption of fuel i before project activity                                    | -      | kL,m3,t etc./y              |
|                          | Crude Oil                                                                             | 12     | kL/y                        |
|                          | Coal                                                                                  | 0      | t/y                         |
|                          | Gas                                                                                   | 0      | m3∕y                        |
|                          | Others                                                                                | 0      | 0                           |
| NCV <sub>i</sub>         | Net calorific value of fuel i                                                         | -      | GJ/kL,m <sup>3</sup> ,t etc |
|                          | Crude Oil                                                                             | 36.3   | GJ/kL                       |
|                          | Coal                                                                                  | 26.7   | GJ/t                        |
|                          | Gas                                                                                   | 0.0384 | GJ/m3                       |
|                          | Others                                                                                | 0.0    | 0                           |
| COEF <sub>i</sub>        | $\rm CO_2$ emission factor per calorific value of fuel i                              | -      | t–CO <sub>2</sub> /TJ       |
|                          | Crude Oil                                                                             | 73.3   | t–CO <sub>2</sub> /TJ       |
|                          | Coal                                                                                  | 98.3   | t–CO <sub>2</sub> /TJ       |
|                          | Gas                                                                                   | 56.1   | t–CO <sub>2</sub> /TJ       |
|                          | Others                                                                                | 0      | t–CO <sub>2</sub> /TJ       |

| PE <sub>y</sub>          | Project emission:<br>GHG emission after introduction of the district heating and<br>cooling system | 7      | t−CO₂∕y                      |
|--------------------------|----------------------------------------------------------------------------------------------------|--------|------------------------------|
| <i>РС <sub>і,у</sub></i> | Fuel consumption of fuel i after the project start                                                 | -      | kL,m3,t etc <mark>./y</mark> |
|                          | Petroleum                                                                                          | 0      | kL/y                         |
|                          | Coal                                                                                               | 0      | t/y                          |
|                          | Gas                                                                                                | 3,068  | m3/y                         |
|                          | Others                                                                                             | 0      | 0                            |
| NCV <sub>i</sub>         | Net calorific value of fuel i                                                                      | _      | GJ/kL,m <sup>3</sup> ,t etc  |
|                          | Petroleum                                                                                          | 36.3   | GJ/kL                        |
|                          | Coal                                                                                               | 26.7   | GJ/t                         |
|                          | Gas                                                                                                | 0.0384 | GJ/m3                        |
|                          | Others                                                                                             | 0.0    | 0                            |
| COEF ;                   | CO <sub>2</sub> emission factor per calorific value of fuel i                                      | -      | t-CO <sub>2</sub> /TJ        |
|                          | Petroleum                                                                                          | 73.3   | t-CO <sub>2</sub> /TJ        |
|                          | Coal                                                                                               | 98.3   | t–CO <sub>2</sub> /TJ        |
|                          | Gas                                                                                                | 56.1   | t-CO <sub>2</sub> /TJ        |
|                          | Others                                                                                             | 0      | t-CO <sub>2</sub> /TJ        |

## **2.** Project emission $PE_y = PC_{i,y} \times NCV_i \times COEF_i$

| ER <sub>y</sub> | GHG emission reduction with the project                                                            | 79 | t−CO₂∕y |
|-----------------|----------------------------------------------------------------------------------------------------|----|---------|
| BE <sub>y</sub> | Project emission:<br>GHG emission without introduction of the district heating and cooling system  | 86 | t−CO₂∕y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after introduction of the district heating and<br>cooling system | 7  | t−CO₂∕y |

### Input Sheet: New facilities

Project Name Sample1 [Use of thermoelectric energy of the waste energy in thermal power facilities]

#### 1. Quantity of electric power and heat from recovery and utilization of the waste energy

Input the planned data of the necessary electricity and fuel consumption required to generate the power production

| Item                                                                                          | Entry field | Unit  |
|-----------------------------------------------------------------------------------------------|-------------|-------|
| Quantity of electric power generation<br>from recovery and utilization of the<br>waste energy | 12,100      | MWh/y |
| Quantity of heat from recovery and utilization of the waste energy                            | 326         | TJ/y  |

#### 2. CO2 emission factor of the electric power $(t-CO_2/MWh)$

Emission factor of the target power facilities shall be used. Data availability is validated in the following order and input into the following cells.

ii) National default

ii) Emission factor of the target power facilities obtained from the interview with power management entity

| Item                                                  | Entry field | Unit                   |  |  |
|-------------------------------------------------------|-------------|------------------------|--|--|
| CO2 emission factor of the target<br>power facilities | 0.969       | t-CO <sub>2</sub> /MWh |  |  |
| Source: Data obtained from xx through interview       |             |                        |  |  |

#### 3. $CO_2$ emission factor of heat generation (t-CO<sub>2</sub>/TJ)

| Item                                                                                                           |             | Entry field   | Unit                  |
|----------------------------------------------------------------------------------------------------------------|-------------|---------------|-----------------------|
| CO <sub>2</sub> emission factor per unit of energy of the Fuel type                                            |             | 73 <u>.</u> 3 | t-CO <sub>2</sub> /TJ |
| boiler fuel consumption in the absence of project                                                              | Crude Oil   |               |                       |
| Boiler efficiency                                                                                              |             | 50            | %                     |
| Rate of heat generation from boiler out of the heat generation recovered and utilized from the waste energy in |             | 1             | _                     |
| CO <sub>2</sub> emission factor per heat generated                                                             |             | 146.6         | t-CO <sub>2</sub> /TJ |
| Source: 2006 IPCC Guidelines for National Greenh                                                               | iouse Gas I | ventories Vo  | lume 2 Energy         |

#### 4. mount of electricity and fuel consumption after the project start

Input the estimated data of the necessary electricity and fuel consumption required to generate the power production capacity (output etc.) of new facilities based on the actual data of the similar facilities into the following cells.

| Item                                           | Entry field | Unit  |                   |
|------------------------------------------------|-------------|-------|-------------------|
| Amount of electricity consum the project start | 654         | MWh/y |                   |
|                                                | Crude Oil   | 244   | kL∕y              |
| Amount of fuel consumption                     | Coal        |       | t∕y               |
| after the project start                        | Gas         |       | m <sup>3</sup> /y |
|                                                | Others      |       |                   |

#### 5. Net calorific value according to fuel type and CO2 emission factor

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

i) The unique data of the project obtained from the interview with power management entity

ii) National default

iii) IPCC Guideline default data

| Item                                            | Net calorific value |                   | CO <sub>2</sub> emission factor |                       |  |
|-------------------------------------------------|---------------------|-------------------|---------------------------------|-----------------------|--|
| Crude Oil                                       | 36 <b>.</b> 3       | GJ/kL             | 73.3 t-CO <sub>2</sub> /T.      |                       |  |
| Coal                                            | 26.7                | GJ/t              | 98.3                            | t-CO <sub>2</sub> /TJ |  |
| Gas                                             | 0.0384              | GJ/m <sup>3</sup> | 56.1                            | t–CO <sub>2</sub> /TJ |  |
| Others                                          |                     |                   |                                 | t–CO <sub>2</sub> /TJ |  |
| Source: Data obtained from xx through interview |                     |                   |                                 |                       |  |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2



Entry field of the reference documents

Automatic calculation

## **Result Sheet: New facilities**

Sample1【Use of thermoelectric energy of the waste energy in thermal power facili<mark>ties】</mark>

GHG emission reduction with the project  $(t-CO_2/y)$   $ER_y = BE_y - PE_y$   $(t-CO_2/y)$ 

**1. Baseline emission**  $BE_y = BE_{ely} + BE_{ther,y}$ 

| BE <sub>y</sub>      | Baseline emission:<br>GHG emission without recovery and utilization of the waste<br>energy                          | 59,517 | t−CO <sub>2</sub> ∕y |
|----------------------|---------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>el,y</sub>   | GHG emission generated by electric supply with recovery and utilization of the waste energy after the project start | 11,725 | t−CO <sub>2</sub> ∕y |
| BE <sub>ther,y</sub> | GHG emission generated by heat supply with recovery and utilization of the waste energy after the project start     | 47,792 | t−CO <sub>2</sub> ∕y |

### **2.** Project emission $PE_y = PE_{ely} + PE_{i,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission after the project start      | 1,283 | t–CO <sub>2</sub> /y |
|--------------------|----------------------------------------------------------------|-------|----------------------|
| PE <sub>el,y</sub> | GHG emission with electric consumption after the project start | 634   | t-CO <sub>2</sub> /y |
| PE <sub>iy</sub>   | GHG emission with fuel consumption after the project start     | 649   | t-CO <sub>2</sub> /y |

| ER <sub>y</sub> | GHG emission reduction with the project                                                    | 58,234 | t-CO <sub>2</sub> /y |
|-----------------|--------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without recovery and utilization of the waste<br>energy | 59,517 | t−CO <sub>2</sub> ∕y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project start                                  | 1,283  | t-CO <sub>2</sub> /y |

### Input Sheet: New plants, Existing facilities

Project Name Sample1 [Fuel switching in the fossil fuel fired power facilities\_New facilities]

#### 1. Generating capacity before and after the project

Input the planned data for the electric generating capacity before the project start and input the planned data for the electric generating capacity after the project start into the following cells. (If the facility is newly constructed, input

| Item                                            | Entry field | Unit  |
|-------------------------------------------------|-------------|-------|
| Electric generating capacity before the project | 4,695,800   | MWh∕y |
| Electric generating capacity after the project  | 4,928,000   | MWh∕y |

#### 2. Fuel consumption before and after the project start

Input the monitoring data for the fuel consumption before the project start and input the planned data for the fuel consumption after the project start into the following cells.

| Item                            |           | Entry field   | Unit  |
|---------------------------------|-----------|---------------|-------|
|                                 | Crude Oi  | 1,330,569     | kL∕ y |
| Fuel consumption before project | Coal      |               | t∕y   |
| activity                        | Gas       |               | m³/y  |
|                                 | Others    |               |       |
|                                 | Crude Oil |               | kL∕ y |
| Fuel consumption after project  | Coal      |               | t∕y   |
| activity                        | Gas       | 1,415,982,226 | m³/y  |
|                                 | Others    |               |       |

#### 3. Net calorific value according to fuel type and CO2 emission factor

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

- i) The unique data of the project obtained from the interview with power management entity
- ii) National default
- iii) IPCC Guideline default data

| Item                                                                        |  | Net c  | alorific value    | CO <sub>2</sub> emis | sion factor           |
|-----------------------------------------------------------------------------|--|--------|-------------------|----------------------|-----------------------|
| Crude Oil                                                                   |  | 36.3   | GJ/kL             | 73.3                 | t-CO <sub>2</sub> /TJ |
| Coal                                                                        |  | 26.7   | GJ/t              | 98.3                 | t-CO <sub>2</sub> /TJ |
| Gas                                                                         |  | 0.0384 | GJ∕m <sup>³</sup> | 56.1                 | t-CO <sub>2</sub> /TJ |
| Others                                                                      |  |        |                   |                      | t-CO <sub>2</sub> /TJ |
| Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume |  |        |                   |                      |                       |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

#### Entry field

Entry field of the reference documents

# Result Sheet: New facilities, Existing facilities

Sample1【Fuel switching in the fossil fuel fired power facilities\_New facilities】

## GHG emission reduction with the project $(t-CO_2/y)$ $ER_y = BE_y - PE_y$ $(t-CO_2/y)$

## 1. Baseline emission $BE_{y} = PG_{PJ,y} \times ((BC_{iy} \times NCV_{i} \times COEF_{i}) \nearrow PG_{BL,y})$

| BE <sub>y</sub>    | Baseline emission:                                     |           |                              |
|--------------------|--------------------------------------------------------|-----------|------------------------------|
|                    | GHG emission without fuel switching                    | 3,715,188 | t−CO <sub>2</sub> ∕y         |
| PG <sub>BL,y</sub> | The power production capacity before the project start | 4,695,800 | MWh/y                        |
| PG <sub>PJ,y</sub> | The power production capacity after the project start  | 4,928,000 | MWh/y                        |
| BC <sub>i,y</sub>  | Fuel consumption of fuel i before the project start    | -         | kL,m <sup>3</sup> ,t etc./y  |
|                    | Cruide Oil                                             | 1,330,569 | kL/y                         |
|                    | Coal                                                   | 0         | t/y                          |
|                    | Gas                                                    | 0         | m3∕y                         |
|                    | Others                                                 | 0         | 0                            |
| NCV <sub>i</sub>   | Net calorific value of fuel i                          | -         | GJ/kL,m <sup>3</sup> ,t etc. |
|                    | Cruide Oil                                             | 36.3      | GJ/kL                        |
|                    | Coal                                                   | 26.7      | GJ/t                         |
|                    | Gas                                                    | 0.0384    | GJ/m3                        |
|                    | Others                                                 | 0.0       | 0                            |
| COEF <sub>i</sub>  | CO2 emission factor per calorific value of fuel i      | -         | t−CO₂∕TJ                     |
|                    | Cruide Oil                                             | 73.3      | t−CO₂∕TJ                     |
|                    | Coal                                                   | 98.3      | t−CO₂∕TJ                     |
|                    | Gas                                                    | 56.1      | t−CO₂∕TJ                     |
|                    | Others                                                 | 0         | t–CO <sub>2</sub> /TJ        |

| PE <sub>y</sub>                        | Project emission:<br>GHG emission after fuel switching | 3,050,366     | t–CO <sub>2</sub> /y         |
|----------------------------------------|--------------------------------------------------------|---------------|------------------------------|
| <i>PC</i> <sub><i>i</i>,<i>y</i></sub> | Fuel consumption of fuel i after the project start     | -             | kL,m3,t etc./y               |
|                                        | Cruide Oil                                             | 0             | kL/y                         |
|                                        | Coal                                                   | 0             | t/y                          |
|                                        | Gas                                                    | 1,415,982,226 | m3∕y                         |
|                                        | Others                                                 | 0             | 0                            |
| NCV <sub>i</sub>                       | Net calorific value of fuel i                          | -             | GJ/kL,m <sup>3</sup> ,t etc. |
|                                        | Cruide Oil                                             | 36.3          | GJ/kL                        |
|                                        | Coal                                                   | 26.7          | GJ/t                         |
|                                        | Gas                                                    | 0.0384        | GJ/m3                        |
|                                        | Others                                                 | 0.0           | 0                            |
| COEF;                                  | CO2 emission factor per calorific value of fuel i      | -             | t–CO <sub>2</sub> /TJ        |
|                                        | Cruide Oil                                             | 73.3          | t–CO <sub>2</sub> /TJ        |
|                                        | Coal                                                   | 98.3          | t–CO <sub>2</sub> /TJ        |
|                                        | Gas                                                    | 56.1          | t–CO <sub>2</sub> /TJ        |
|                                        | Others                                                 | 0             | t–CO <sub>2</sub> /TJ        |

## **2.Project emission** $PE_y = PC_{iy} \times NCV_i \times COEF_i$

3. GHG emission reduction with the project  $ER_y = BE_y - PE_y$  (t-CO<sub>2</sub>/y)

\_

| ER <sub>y</sub> | GHG emission reduction with the project                   | 664,822   | t–CO <sub>2</sub> /y |
|-----------------|-----------------------------------------------------------|-----------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without fuel switching | 3,715,188 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after fuel switching    | 3,050,366 | t–CO <sub>2</sub> /y |

### Input Sheet: Existing facilities

Project Name Sample1 [Efficiency improvement of the thermal power facilities\_Existing facilities]

#### 1. Quantity of power supply (of the target facilities after the project starts) (MWh/y)

Input the planned data for the calculation before the project start and the measured date for the calculation after the project start.

| Item                                                                                       | Entry field | Unit  |
|--------------------------------------------------------------------------------------------|-------------|-------|
| Quantity of power supply of the<br>fossil fuel fired facilities after the<br>project start | 1,270,000   | MWh∕y |

#### 2. Efficiency of power generation

Input the monitoring data for the efficiency of aging facilities in general without the project, at the country or neighboring countries.

Input the planned data for the calculation of the efficiency of the target facilities before the project start and the monitoring date for the calculation of the efficiency of the target facilities after the project start.

| Item           |                                                              |      |
|----------------|--------------------------------------------------------------|------|
| Before project | Efficiency of aging facilities in general, at the country or | 0.32 |
| After project  | Efficiency of power generation from the target facilities    | 0.45 |
| Source:        | Data obtained from xx through interview                      |      |

#### 4. $CO_2$ emission factor according to fuel type (t- $CO_2/TJ$ )

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

- i) The unique data of the project obtained from the interview with power management entity
- ii) National default
- iii) IPCC Guideline default data

#### [The fuel used in the target facilities]

Input item Entry field Unit Crude Oil 73.3 t-CO<sub>2</sub>/TJ

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy

En En

Entry field Entry field of the reference documents

## Result Sheet: Existing facilities

Sample1 [Efficiency improvement of the thermal power facilities\_Existing facilities]

GHG emission reduction with the project  $(t-CO_2/y)$   $ER_y = BE_y - PE_y$   $(t-CO_2/y)$ 

**1.** Baseline emission  $BE_y = EG_{PJ,y} \times EF_{BL,y}$ 

| BE <sub>y</sub>    | Baseline emission:<br>GHG emission from low efficiency power generators  | 1,047,274 | t–CO <sub>2</sub> /y   |
|--------------------|--------------------------------------------------------------------------|-----------|------------------------|
| EG <sub>PJ,y</sub> | Annual energy production after the project starts<br>(transmission edge) | 1,270,000 | MWh                    |
| EF <sub>BL,y</sub> | CO2 emission factor of the electricity                                   | 0.825     | t-CO <sub>2</sub> /MWh |

### **2.** Project emission $PE_y = EG_{PJ,y} \times EF_{PJ,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission after the project                      | 744,728   | t−CO <sub>2</sub> ∕y   |
|--------------------|--------------------------------------------------------------------------|-----------|------------------------|
| EG <sub>PJ,y</sub> | Annual energy production after the project starts<br>(transmission edge) | 1,270,000 | MWh                    |
| EF <sub>PJ,y</sub> | CO2 emission factor of the electricity                                   | 0.586     | t-CO <sub>2</sub> /MWh |

| ER <sub>y</sub> | GHG emission reduction with the project                                 | 302,546   | t–CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------|-----------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from low efficiency power generators | 1,047,274 | t–CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project                     | 744,728   | t–CO <sub>2</sub> /y |

### Input Sheet: Existing facilities

### Project Name Sample1 [Efficiency improvement of the thermal power facilities\_Existing facilities]

#### 1. Quantity of power supply (of the target facilities after the project starts) (MWh/y)

Input the planned data for the calculation before the project start and the measured date for the calculation after the project start.

| Item                                                                                       | Entry field | Unit  |
|--------------------------------------------------------------------------------------------|-------------|-------|
| Quantity of power supply of the<br>fossil fuel fired facilities after the<br>project start | 1,270,000   | MWh∕y |

### 2. Efficiency of power generation

Input the monitoring data for the efficiency of the target facilities in absence of the project. Input the planned data for the calculation of the efficiency of the target facilities before the project start and the monitoring date for the calculation of the efficiency of the target facilities after the project start.

|                | Item                                                                   | Entry field |
|----------------|------------------------------------------------------------------------|-------------|
| Before project | Monitoring data before start of the project from the target facilities | 0.32        |
| After project  | Efficiency of power generation from the target facilities              | 0.45        |
| Source:        | Data obtained from xx through interview                                |             |

#### 4. $CO_2$ emission factor according to fuel type (t- $CO_2/TJ$ )

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

i) The unique data of the project obtained from the interview with power management entity

ii) National default

iii) IPCC Guideline default data

#### [The fuel used in the target facilities]

Input item Entry field Unit Crude Oil 73.3 t-CO<sub>2</sub>/TJ

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy

#### Entry field

Entry field of the reference documents

# Result Sheet: Existing facilities

Sample1【Efficiency improvement of the thermal power facilities\_Existing facilities】

GHG emission reduction with the project  $(t-CO_2/y)$   $ER_y = BE_y - PE_y$   $(t-CO_2/y)$ 

**1. Baseline emission**  $BE_y = EG_{PJ,y} \times EF_{BL,y}$ 

| BE,                | Baseline emission:<br>GHG emission from low efficiency power generators  | 1,047,274 | t-CO <sub>2</sub> /y   |
|--------------------|--------------------------------------------------------------------------|-----------|------------------------|
| EG <sub>PJ,y</sub> | Annual energy production after the project starts<br>(transmission edge) | 1,270,000 | MWh                    |
| EF <sub>BL,y</sub> | CO2 emission factor of the electricity                                   | 0.825     | t-CO <sub>2</sub> /MWh |

### 2. Project emission $PE_y = EG_{PJ,y} \times EF_{PJ,y}$

| PE,                | Project emission:<br>GHG emission after the project                      | 744,728   | t-CO <sub>2</sub> /y   |
|--------------------|--------------------------------------------------------------------------|-----------|------------------------|
| EG <sub>PJ,y</sub> | Annual energy production after the project starts<br>(transmission edge) | 1,270,000 | MWh                    |
| EF <sub>PJ,y</sub> | CO2 emission factor of the electricity                                   | 0.586     | t-CO <sub>2</sub> /MWh |

| ER <sub>y</sub> | GHG emission reduction with the project                                 | 302,546   | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------|-----------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from low efficiency power generators | 1,047,274 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project                     | 744,728   | t-CO <sub>2</sub> /y |

### Input Sheet: New facilities, Existing facilities

Project Name Sample1 [Streamlining of the facilities in the transmission grid\_new facilities]

#### 1. Transmission power loss (MWh/y)

Acquire the data for power loss by the following measures and input data.

[New facilities]

Input the estimated data for the power loss before the project.

Input the estimated data before the project start when you calculates the power loss after project and input the [Existing facilities]

Input the monitoring data for the power loss before the project.

Input the estimated data before the project start when you calculates the power loss after project and input the monitoring data for power loss after the project.

| Item                                           |                    | Entry field | Unit  |
|------------------------------------------------|--------------------|-------------|-------|
| Fower loss                                     | Before the project | 2,494       | MWh/y |
| in the<br>facilities in<br>the<br>transmission | After the project  | 890         | MWh/y |

#### 2. Co2 emission factor of electric power $(t-CO_2/MWh)$

Emission factor of the electric power shall be used as CO2 emission factor from electricity in suppressor grid. Data availability is validated in the following order in regards of the selection of suppressor grid and its emission i) Data obtained from the interview with power management entity

ii) National default

| Item                                            | Entry field | Unit                   |  |
|-------------------------------------------------|-------------|------------------------|--|
| CO2 emission factor of the electric powe        | 0.52        | t-CO <sub>2</sub> /MWh |  |
| Source: Data obtained from xx through interview |             |                        |  |



Entry field Entry field of the reference documents

# Result Sheet: New facilities, Existing facilities

Sample1[Streamlining of the facilities in the transmission grid\_new facilities]

GHG emission reduction with the project  $(t-CO_2/y)$   $ER_y = BE_y - PE_y$   $(t-CO_2/y)$ 

**1. Baseline emission**  $BE_y = BL_y \times EF_{BL,y}$ 

| BE <sub>y</sub>    | Baseline emission:<br>GHG emissions without streamlining facilities in the transmission<br>grid | 1,297 | t−CO₂∕y                 |
|--------------------|-------------------------------------------------------------------------------------------------|-------|-------------------------|
| BL <sub>y</sub>    | Transmission power loss before the project starts                                               | 2,494 | MWh/y                   |
| EF <sub>BL,y</sub> | CO2 emission factor from electricity in suppressor grid                                         | 0.520 | t−CO <sub>2</sub> ∕ MWh |

### **2.** Project emission $PE_y = PL_y \times EF_{BL,y}$

| PE <sub>y</sub>        | Project emission:<br>GHG emission after the project     | 463   | t-CO <sub>2</sub> /y   |
|------------------------|---------------------------------------------------------|-------|------------------------|
| <i>PL</i> <sub>y</sub> | Transmission power loss after the project starts        | 890   | MWh∕y                  |
| EF <sub>BL,y</sub>     | CO2 emission factor from electricity in suppressor grid | 0.520 | t-CO <sub>2</sub> /MWh |

| ER <sub>y</sub> | GHG emission reduction with the project                                                         | 834   | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------------------------|-------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emissions without streamlining facilities in the transmission<br>grid | 1,297 | t−CO <sub>2</sub> ∕y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project                                             | 463   | t-CO <sub>2</sub> /y |

### Input Sheet: New facilities, Existing facilities

Project Name Sample1 [Streamlining of \_existing distribution equipment]

### 1. Distribution power loss (MWh/y)

Acquire the data for power loss by the following measures and input data.

#### [New facilities]

Input the estimated data for the power loss before the project.

Input the estimated data before the project start when you calculates the power loss after project and input the monitoring data for power loss after the project.

#### [Existing facilities]

Input the monitoring data for the power loss before the project.

Input the estimated data before the project start when you calculates the power loss after project and input the monitoring data for power loss after the project.

|               | Item               | Entry field | Unit  |
|---------------|--------------------|-------------|-------|
| in the        | Before the project | 1,295       | MWh/y |
| facilities in | After the project  | 465         | MWh/y |

### 2. $CO_2$ emission factor of electric power (t- $CO_2$ /MWh)

Emission factor of the electric power shall be used as CO2 emission factor from electricity in suppressor grid. Data availability is validated in the following order in regards of the selection of suppressor grid and its emission factor.

i) Data obtained from the interview with power management entity

ii) National default

| Item                                            | Entry field | Unit                   |
|-------------------------------------------------|-------------|------------------------|
| $CO_2$ emission factor of the electric powe     | 0.63        | t-CO <sub>2</sub> /MWh |
| Source: Data obtained from xx through interview |             |                        |



Entry field

Entry field of the reference documents

## Result Sheet: New facilities, Existing facilities

Sample1[Streamlining of \_existing distribution equipment]

### GHG emission reduction with the project $(t-CO_2/y)$ $ER_y = BE_y - PE_y$ $(t-CO_2/y)$

**1.** Baseline emission  $BE_y = BL_y \times EF_{BL,y}$ 

| BE <sub>y</sub>    | Baseline emission:<br>GHG emissions without streamlining facilities in the<br>distribution grid | 816   | t–CO <sub>2</sub> /y   |
|--------------------|-------------------------------------------------------------------------------------------------|-------|------------------------|
| BL <sub>y</sub>    | Distribution power loss before the project starts                                               | 1,295 | MWh/y                  |
| EF <sub>BL,y</sub> | CO2 emission factor from electricity in suppressor grid                                         | 0.630 | t-CO <sub>2</sub> /MWh |

### **2.** Project emission $PE_y = PL_y \times EF_{BL,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission after the project     | 293   | t–CO <sub>2</sub> /y   |
|--------------------|---------------------------------------------------------|-------|------------------------|
| $PL_y$             | Distribution power loss after the project starts        | 465   | MWh/y                  |
| EF <sub>BL,y</sub> | CO2 emission factor from electricity in suppressor grid | 0.630 | t-CO <sub>2</sub> /MWh |

| ER <sub>y</sub> | GHG emission reduction with the project                                                         | 523 | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------------------------|-----|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emissions without streamlining facilities in the<br>distribution grid | 816 | t–CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project                                             | 293 | t–CO <sub>2</sub> /y |

## Input Sheet: Mini-Grid/ Stand-Alone

#### Project Name Sample1 [Renewable power: Mini-Grid]

#### 1. Fuel consumption before project activity

For fuel consumption before project activity, enter the planned values before project activity, or the actual values after project activity in the corresponding cells.

| Item                                     | Entry      | Unit  |      |
|------------------------------------------|------------|-------|------|
| Fuel consumption before project activity | Diesel oil | 6,734 | kL/y |
|                                          | Kerosene   | 246   | kL/y |
|                                          | Others     |       |      |

#### 2. CO2 emission factor and net calorific value per fuel type

Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to enter data in the cells below.

i) Project-specific data obtained through interview to the electric power management entity concerned ii) Published values in the target country

iii) Default values adopted in IPCC guideline

| Item                                                     | Net calorific value |       | CO <sub>2</sub> emission factor |                       |
|----------------------------------------------------------|---------------------|-------|---------------------------------|-----------------------|
| Diesel oil                                               | 36.1                | GJ/kL | 74.1                            | t-CO <sub>2</sub> /TJ |
| Kerosene                                                 | 35.3                | GJ/kL | 71.9                            | t-CO <sub>2</sub> /TJ |
| Others                                                   |                     |       | t-CO <sub>2</sub> /TJ           |                       |
| Sources 2006 IBCC Cuidelines for National Creenhouse Cos |                     |       |                                 |                       |

ce: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,tab



Entry of data sources, etc.

## Result Sheet: Mini-grid/ Stand-alone

Sample1 【Renewable power: Mini-Grid】

### GHG emission reduction after project activity $(t-CO_2/y)ER_y = BE_y - PE_y$ $(t-CO_2/y)$

1. Baseline emission  $BEy = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} +$ 

| BE <sub>y</sub>         | Baseline emission:<br>GHG emission without installation of a photovoltaic power<br>plant                      | 18,638 | t-CO₂/y               |
|-------------------------|---------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| EC <sub>diesel,y</sub>  | Light gas oil consumption when electric consumption from TV and others is covered by diesel power generation. | 6,734  | kL/y                  |
|                         | Kerosene consumption when electric consumption for lighting is covered by kerosene lamps.                     | 246    | kL/y                  |
| NCV <sub>diesel,y</sub> | Net calorific value for Diesel oil                                                                            | 36     | GJ/kL                 |
| <b>y</b>                | Net calorific value for kerosene                                                                              | 35     | GJ/kL                 |
| CEF <sub>diesel,y</sub> | CO2 emission factor per net calorific value for diesel oil                                                    | 74     | t-CO <sub>2</sub> /TJ |
| CEF kerosene,y          | CO2 emission factor per net calorific factor for kerosene                                                     | 72     | t-CO <sub>2</sub> /TJ |

### **2.** Project emission $PE_y = 0$

| PE <sub>y</sub> | Project emission:                                          | 0 | t-CO <sub>2</sub> /y |
|-----------------|------------------------------------------------------------|---|----------------------|
|                 | GHG emission associated with photovoltaic power generation |   |                      |

### 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                            | 18,638 | t-CO <sub>2</sub> /y |
|-----------------|------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without installation of a photovoltaic power<br>plant | 18,638 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission associated with photovoltaic power generation          | 0      | t-CO <sub>2</sub> /y |

Renewable Energy

Appendix-17 Hydro Power Appendix-18 Wind Power Appendix-19 Photovoltaic power / Solar heat Appendix-20 Geothermal Power Appendix-21 Biomass

### Input Sheet: Grid

#### Project name Sample 1[Construction of hydropower plant: Grid connected]

1. Quantity of electricity (generated in the target power plant after project implementation)(MWh/y) Enter the planned value before project activity and actual value after project activity.

| Parameter                                                                             | Entry   | Unit  |
|---------------------------------------------------------------------------------------|---------|-------|
| Quantity of electricity generated in the<br>target power plant after project activity | 121,956 | MWh/y |

#### 2. Energy mix in the target country

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

i) Project-specific values obtained through interview to electric power management entity concerned.

ii) Published values in the target country

iii) IEA balance table

| III) IEA balance table |                          | *Entry to either         |                   |                          |         |
|------------------------|--------------------------|--------------------------|-------------------|--------------------------|---------|
|                        |                          |                          |                   |                          |         |
|                        | Quantity of              | Fuel consu               | mption            | Fuel consu               | Imption |
| Fuel type              | generated<br>electricity | (kL, m <sup>3</sup> , t) |                   | (converted to crude oil) |         |
|                        | (GWh/y)                  | consumed volum           | Unit              | onsumed volum            | Unit    |
| Crude oil              | 31,222                   | 9,568,000                | kL/y              |                          | ktoe    |
| Gas                    | 62,475                   | 17,321,000               | m <sup>3</sup> /y |                          | ktoe    |
| Coal                   | 479,955                  | 155,516,000              | t/y               |                          | ktoe    |
| Others                 |                          |                          |                   |                          | ktoe    |
| Source: Interview to > | (X                       |                          |                   |                          |         |

#### 3. CO2 emission factor per fuel type (t-CO<sub>2</sub>/TJ)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to use.

- i) Project-specific data obtained through interview to the electric power management entity concerned
   ii) Published values in the target country
- iii) Default values adopted in IPCC guideline

| Fuel type              | Net calorific value |                   | CO <sub>2</sub> emission fact |                       |
|------------------------|---------------------|-------------------|-------------------------------|-----------------------|
| Crude oil              | 36.3                | GJ/kL             | 73.3                          | t-CO <sub>2</sub> /TJ |
| Gas                    | 0.0384              | GJ/m <sup>3</sup> | 56.1                          | t-CO <sub>2</sub> /TJ |
| Coal                   | 26.7                | GJ/t              | 98.3                          | t-CO <sub>2</sub> /TJ |
| Others                 |                     |                   |                               | t-CO <sub>2</sub> /TJ |
| Source: Interview to ) | X                   |                   |                               |                       |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2

#### 4. Emission factor for GHG emissions from reservoir

For hydropower plants with reservoirs, GHG emission factor should be set also for reservoirs

| Item                 | GHG emission factor         |         |
|----------------------|-----------------------------|---------|
| GHG from reservoir   | 0.09 t-CO <sub>2</sub> /MWh |         |
| Source: Values speci | fied in 23rd CDM committee  | meeting |

Entry Entry of source, etc.

### 1. Baseline emission (t-CO<sub>2</sub>/y)

| Project<br>outcome | 121,956 | MWh/y     |
|--------------------|---------|-----------|
| Conversion         | 3600    | kJ/kWh    |
| factor             | 41.868  | TJ/ktoe   |
|                    | 10.000  | Tcal/ktoe |
|                    | 860     | kcal/kWh  |

Legend

| Ley | ena |                                                                                                                     |
|-----|-----|---------------------------------------------------------------------------------------------------------------------|
|     |     | Auto filled from Input Sheet<br>Default values (calculated automatically for manually entered data)<br>Manual entry |
|     |     | Calculated value                                                                                                    |
|     |     |                                                                                                                     |

92,195

92,195

|           | Quantity of | generated | Fuel                 | Net calorific           | Quantity of | Fuel consumption (converted | Heat efficiency | Caloric CO <sub>2</sub> |
|-----------|-------------|-----------|----------------------|-------------------------|-------------|-----------------------------|-----------------|-------------------------|
|           | elect       | ricity    | consumption          | value                   | energy      | to crude oil)               | Heat efficiency | emission factor         |
|           | GWh/y       | Ratio     | kL,m <sup>3</sup> ,t | GJ/kL,m <sup>3</sup> ,t | TJ          | ktoe/y                      | %               | t-CO <sub>2</sub> /TJ   |
| Petroleum | 31222       | 5.4%      | 9,568,000            | 36.3                    | 347,296     | 8295                        | 32.4%           | 73.3                    |
| Gas       | 62475       | 10.9%     | 17,321,000           | 0.0                     | 665         | 16                          | 33814.6%        | 56.1                    |
| Coal      | 479955      | 83.7%     | 155,516,000          | 26.7                    | 4,152,277   | 99175                       | 41.6%           | 98.3                    |
| Others    | 0           | 0.0%      | 0                    | 0.0                     | 0           | 0                           | 0.0%            | 0.0                     |
| Total     | 573652      |           |                      |                         |             |                             |                 |                         |

|           | Fuel price | Suppression<br>priority | Quantity of generated<br>electricity | Quantity unable<br>to suppress | Suppressible<br>quantity |
|-----------|------------|-------------------------|--------------------------------------|--------------------------------|--------------------------|
|           |            |                         | MWh/y                                | MWh/y                          | MWh/y                    |
| Petroleum |            | 1                       | 31,222,000                           | 28,683                         | 31,193,317               |
| Gas       |            | 2                       | 62,475,000                           | 28,683                         | 62,446,317               |
| Coal      |            | 3                       | 479,955,000                          | 28,683                         | 479,926,317              |
| Others    |            | 4                       | 0                                    | 0                              | 0                        |

|                   |             | Suppressible | Heat ellicienci |          | Caloric CO <sub>2</sub> | Fuel suppressed    | CO2 emission         |
|-------------------|-------------|--------------|-----------------|----------|-------------------------|--------------------|----------------------|
|                   | to suppress | quantity     | quantity        |          | emission factor         | quantity           | reduced quantity     |
|                   | MWh/y       | MWh/y        | MWh/y           | %        | t-CO <sub>2</sub> /TJ   | ktoe/y             | t-CO <sub>2</sub> /y |
| listorical (Petro | 0           |              | 0               |          | 73.3                    | 0.0                | 0                    |
| listorical (Gas   | 0           |              | 0               |          | 56.1                    | 0.0                | 0                    |
| listorical (Coal  | 0           |              | 0               |          | 98.3                    | 0.0                | 0                    |
| Petroleum         | 28,683      | 31,193,317   | 121,956         | 32.4%    | 73.3                    | 32.4               | 99,437               |
| Gas               | 28,683      | 62,446,317   | 0               | 33814.6% | 56.1                    | 0.0                | 0                    |
| Coal              | 28,683      | ##########   | 0               | 41.6%    | 98.3                    | 0.0                | 0                    |
| Others            | 0           | 0            | 0               | 0.0%     | 0.0                     | 0.0                | 0                    |
| Total             |             |              | 121,956         |          |                         | 32.4               | 99,437               |
|                   |             |              |                 |          |                         | (reference value)  | Average thermal      |
|                   |             |              |                 |          |                         | (ieieieiice value) | Average grid         |

2. Project emission (t-CO<sub>2</sub>/y)

[Emissions from reservoir]

| l ta ma | mission factouantity of electricantity of emission |         |                   |  |  |
|---------|----------------------------------------------------|---------|-------------------|--|--|
| Item    | t-CO <sub>2</sub> /MWh                             | MWh     | t-CO <sub>2</sub> |  |  |
| GHG     | 0.09                                               | 121,956 | 10,976            |  |  |

### 3. GHG emission reduction after project activity (t-CO<sub>2</sub>/y)

|                                        | GHG emission         |
|----------------------------------------|----------------------|
|                                        | t-CO <sub>2</sub> /y |
| Baseline emission                      | 99,437               |
| Project emission                       | 10,976               |
| GHG emission reduction after project a | 88,460               |

## **Result Sheet:Grid**

Sample 1 【Construction of hydropower plant: Grid connected】

GHG emission reduction after project activity (t-CO<sub>2</sub>/y)  $ER_y = BE_y - PE_y$  (t-CO<sub>2</sub>/y)

**1. Baseline emission**  $BE_y = \Sigma FC_i \times \text{conversion factor (41.868 : TJ/ktoe)} \times COEF_i$ 

| BE <sub>y</sub>   | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by hydropower generation | 99,437 | t-CO₂/y               |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| FC <sub>i</sub>   | Reduction of fuel type i consumption in scope of reduction                                                                      | -      | ktoe/y                |
|                   | Crude oil                                                                                                                       | 32     | ktoe/y                |
|                   | Gas                                                                                                                             | 0      | ktoe/y                |
|                   | Coal                                                                                                                            | 0      | ktoe/y                |
|                   | Others                                                                                                                          | 0      | ktoe/y                |
| COEF <sub>i</sub> | $CO_2$ emission factor per net calorific value of fuel type i                                                                   | -      | t-CO <sub>2</sub> /TJ |
|                   | Crude oil                                                                                                                       | 73.3   | t-CO <sub>2</sub> /TJ |
|                   | Gas                                                                                                                             | 56.1   | t-CO <sub>2</sub> /TJ |
|                   | Coal                                                                                                                            | 98.3   | t-CO <sub>2</sub> /TJ |
|                   | Others                                                                                                                          | 0      | t-CO <sub>2</sub> /TJ |

### **2.** Project emission $PE_y = 0$

|                   | Project emission:<br>GHG emission after project activity | 10,976 | t-CO <sub>2</sub> /y |
|-------------------|----------------------------------------------------------|--------|----------------------|
| PE <sub>res</sub> | Emission from reservoirs                                 | 10,976 | t-CO₂/y              |

### 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub>        | GHG emission reduction after project activity                                                                                             | 88,460 | t-CO <sub>2</sub> /y |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub>        | Baseline emission:<br>GHG emission reduction associated with fuel consumption<br>which is assumed to be replaced by hydropower generation | 99,437 | t-CO₂/y              |
| <b>РЕ</b> <sub>у</sub> | Project emission:<br>GHG emission after project activity                                                                                  | 10,976 | t-CO <sub>2</sub> /y |

## Input Sheet: Mini-Grid/ Stand-Alone

### Project Name Virtual 1 [Hydropower: Mini-Grid]

#### 1. Fuel consumption before project activity

For fuel consumption before project activity, enter the planned values before project activity, or the actual values after project activity in the corresponding cells.

| Item                    | Entry      | Unit  |      |
|-------------------------|------------|-------|------|
| Fuel consumption before | Diesel oil | 6,734 | kL/y |
| project activity        | Kerosene   | 246   | kL/y |
| project activity        | Others     |       |      |

#### 2. CO2 emission factor and net calorific value per fuel type

Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to enter data in the cells below.

- i) Project-specific data obtained through interview to the electric power management entity concerned ii) Published values in the target country
- iii) Default values adopted in IPCC guideline

| Item       |                                                                                   | Net calorific value |       | CO <sub>2</sub> emission factor |                       |  |  |
|------------|-----------------------------------------------------------------------------------|---------------------|-------|---------------------------------|-----------------------|--|--|
| Diesel oil |                                                                                   | 36.1                | GJ/kL | 74.1                            | t-CO <sub>2</sub> /TJ |  |  |
| Kerosene   |                                                                                   | 35.3                | GJ/kL | 71.9                            | t-CO <sub>2</sub> /TJ |  |  |
| Others     |                                                                                   |                     |       |                                 | t-CO <sub>2</sub> /TJ |  |  |
| Source:    | 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy tabl |                     |       |                                 |                       |  |  |



Entry of data sources, etc.

## Result Sheet: Mini-grid/ Stand-alone

Virtual 1【Hydropower: Mini-Grid】

### GHG emission reduction after project activity (t-CO<sub>2</sub>/y) $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

1. Baseline emission  $BEy = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} + EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$ 

| BE <sub>y</sub>          | Baseline emission:<br>GHG emission without installation of a hydropower plant                                 | 18,638 | t-CO <sub>2</sub> /y  |
|--------------------------|---------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| EC <sub>diesel,y</sub>   | Light gas oil consumption when electric consumption from TV and others is covered by diesel power generation. | 6,734  | kL/y                  |
| EC <sub>kerosene,y</sub> | Kerosene consumption when electric consumption for lighting is covered by kerosene lamps.                     | 246    | kL/y                  |
| NCV <sub>diesel,y</sub>  | Net calorific value for Diesel oil                                                                            | 36     | GJ/kL                 |
| у                        | Net calorific value for kerosene                                                                              | 35     | GJ/kL                 |
| CEF <sub>diesel,y</sub>  | CO2 emission factor per net calorific value for diesel oil                                                    | 74     | t-CO <sub>2</sub> /TJ |
| CEF kerosene,y           | CO2 emission factor per net calorific factor for kerosene                                                     | 72     | t-CO <sub>2</sub> /TJ |

### **2.** Project emission $PE_y = 0$

| PE <sub>y</sub> | Project emission:                                  | 0 | t-CO₂/v              |
|-----------------|----------------------------------------------------|---|----------------------|
|                 | GHG emission associated with hydropower generation | 0 | 1-00 <sub>2</sub> /y |

### 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                 | 18,638 | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without installation of a hydropower plant | 18,638 | t-CO <sub>2</sub> /y |
| PEy             | Project emission:<br>GHG emission associated with hydropower generation       | 0      | t-CO <sub>2</sub> /y |

### Input Sheet: Grid

### Project Name Sample1 [Construction of wind power plant]

1. Quantity of electricity (quantity of electricity generated in the target power plant after project activity)(MWh/y) Enter the planned value before project activity and the actual value after project activity in the cell below.

| Parameter                                 | Entry   | Unit           |
|-------------------------------------------|---------|----------------|
| Quantity of electricity generated in the  | 121,956 |                |
| target power plant after project activity | 121,930 | 1VI V V I // Y |

#### 2. Energy mix of the target grid

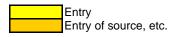
Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to data in the cells below.

i) Project-specific values obtained through interview to the electric power management entity concerned ii) Published values in the target country

iii) IEA Balance table

| *Entry | to either | colum | n is mano | latory. |
|--------|-----------|-------|-----------|---------|
|        |           |       |           |         |

|                                             |         | V                                            |                   | <b>V</b>                                     |      |
|---------------------------------------------|---------|----------------------------------------------|-------------------|----------------------------------------------|------|
| Fuel type Quantity of generated electricity |         | Fuel consumption<br>(kL, m <sup>3</sup> , t) |                   | Fuel consumption<br>(converted to crude oil) |      |
|                                             | (GWh/y) | consumed volum                               | Unit              | onsumed volum                                | Unit |
| Crude Oil                                   | 31,222  | 9,568,000                                    | kL/y              |                                              | ktoe |
| Gas                                         | 62,475  | 17,321,000                                   | m <sup>3</sup> /y |                                              | ktoe |
| Coal                                        | 479,955 | 155,516,000                                  | t/y               |                                              | ktoe |
| Others                                      |         |                                              |                   |                                              | ktoe |
| Source: Interview to 2                      | XX      |                                              |                   |                                              |      |


#### 3. CO2 emission factor per fuel type (t-CO<sub>2</sub>/TJ)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to use.

- i) Project-specific data obtained through interview to the electric power management entity concerned ii) Published values in the target country
- iii) Default values adopted in IPCC guideline

| Fuel type               | Net cale | orific value      | CO <sub>2</sub> emission factor |                       |  |  |
|-------------------------|----------|-------------------|---------------------------------|-----------------------|--|--|
| Crude Oil               | 36.3     | GJ/kL             | 73.3                            | t-CO <sub>2</sub> /TJ |  |  |
| Gas                     | 0.0384   | GJ/m <sup>3</sup> | 56.1                            | t-CO <sub>2</sub> /TJ |  |  |
| Coal                    | 26.7     | GJ/t              | 98.3                            | t-CO <sub>2</sub> /TJ |  |  |
| Others                  |          |                   |                                 | t-CO <sub>2</sub> /TJ |  |  |
| Source: Interview to XX |          |                   |                                 |                       |  |  |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2



### 1. Baseline emission (t-CO<sub>2</sub>/y)

|            |         |           | _ | Legend   |                                                                   |
|------------|---------|-----------|---|----------|-------------------------------------------------------------------|
| Project    | 121,956 | MWh/y     | Г |          |                                                                   |
| outcome    |         |           |   |          | Auto filled from Input Sheet                                      |
| Conversion | 3600    | kJ/kWh    |   |          | Default values (calculated automatically for manually entered dat |
| factor     | 41.868  | TJ/ktoe   |   |          | Manual entry                                                      |
|            | 10.000  | Tcal/ktoe |   |          | Calculated value                                                  |
|            | 860     | kcal/kWh  |   | <u>.</u> |                                                                   |
|            |         |           |   |          |                                                                   |

|           | Quantity of | generated | Fuel                 | Net calorific           | Quantity of | Fuel consumption         | Heat efficiency  | Caloric CO <sub>2</sub> |
|-----------|-------------|-----------|----------------------|-------------------------|-------------|--------------------------|------------------|-------------------------|
|           | elect       | ricity    | consumptio           | value                   | energy      | (converted to crude oil) | Tieat efficiency | emission                |
|           | GWh/y       | Ratio     | kL,m <sup>3</sup> ,t | GJ/kL,m <sup>3</sup> ,t | ТJ          | ktoe/y                   | %                | t-CO <sub>2</sub> /TJ   |
| Petroleum | 31222       | 5.4%      | 9,568,000            | 36.3                    | 347,296     | 8295                     | 32.4%            | 73.3                    |
| Gas       | 62475       | 10.9%     | 17,321,000           | 0.0                     | 665         | 16                       | 33814.6%         | 56.1                    |
| Coal      | 479955      | 83.7%     | 155,516,000          | 26.7                    | 4,152,277   | 99175                    | 41.6%            | 98.3                    |
| Others    | 0           | 0.0%      | 0                    | 0.0                     | 0           | 0                        | 0.0%             | 0.0                     |
| Total     | 573652      |           |                      |                         |             |                          |                  |                         |

|           | Fuel price | Suppression | Quantity of generated | Quantity unable | Suppressible |
|-----------|------------|-------------|-----------------------|-----------------|--------------|
|           | Fuel price | priority    | electricity           | to suppress     | quantity     |
|           |            |             | MWh/y                 | MWh/y           | MWh/y        |
| Petroleum |            | 1           | 31,222,000            | 28,683          | 31,193,317   |
| Gas       |            | 2           | 62,475,000            | 28,683          | 62,446,317   |
| Coal      |            | 3           | 479,955,000           | 28,683          | 479,926,317  |
| Others    |            | 4           | 0                     | 0               | 0            |

| listorical (Gas 0 0 0 56.1 0.0 0 istorical (Coal 0 0 0 0 98.3 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Quantity unable to suppress | Suppressible<br>quantity | Suppressed<br>quantity | leat efficienc | Caloric CO <sub>2</sub><br>emission factor | Fuel<br>suppressed | CO2 emission<br>reduced quantity |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|--------------------------|------------------------|----------------|--------------------------------------------|--------------------|----------------------------------|
| Iistorical (Gas         0         0         56.1         0.0         0           istorical (Coal         0         0         0         98.3         0.0         0           Petroleum         28,683         31,193,317         121,956         32.4%         73.3         32.4         99,437           Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0 |                   | MWh/y                       | MWh/y                    | MWh/y                  | %              | t-CO <sub>2</sub> /TJ                      | ktoe/y             | t-CO <sub>2</sub> /y             |
| istorical (Coal         0         98.3         0.0         0           Petroleum         28,683         31,193,317         121,956         32.4%         73.3         32.4         99,437           Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0.0         0                                                                                                    | listorical (Petro | 0                           |                          | 0                      |                | 73.3                                       | 0.0                | 0                                |
| Petroleum         28,683         31,193,317         121,956         32.4%         73.3         32.4         99,437           Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0                                                                                                                                                                             | Historical (Gas   | 0                           |                          | 0                      |                | 56.1                                       | 0.0                | 0                                |
| Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0                                                                                                                                                                                                                                                                                                          | Historical (Coal  | 0                           |                          | 0                      |                | 98.3                                       | 0.0                | 0                                |
| Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                        | Petroleum         | 28,683                      | 31,193,317               | 121,956                | 32.4%          | 73.3                                       | 32.4               | 99,437                           |
| Others 0 0 0 0.0% 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gas               | 28,683                      | 62,446,317               | 0                      | 33814.6%       | 56.1                                       | 0.0                | 0                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coal              | 28,683                      | 479,926,317              | 0                      | 41.6%          | 98.3                                       | 0.0                | 0                                |
| Total 121,956 32.4 99,437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Others            | 0                           | 0                        | 0                      | 0.0%           | 0.0                                        | 0.0                | 0                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total             |                             |                          | 121,956                |                |                                            | 32.4               | 99,437                           |

reference value Average therma 92,195 Average grid 92,195



### 2. Project emission (t-CO<sub>2</sub>/y)

### 3. GHG emission reduction after project activity (t-CO<sub>2</sub>/y)

|                                        | GHG emission         |
|----------------------------------------|----------------------|
|                                        | t-CO <sub>2</sub> /y |
| Baseline emission                      | 99,437               |
| Project emission                       | 27                   |
| GHG emission reduction after project a | 99,410               |

## **Result Sheet: Grid**

Sample1 【Construction of wind power plant】

## GHG emission reduction after project activity (t-CO<sub>2</sub>/y) $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

**1. Baseline emission**  $BE_y = \Sigma FC_i \times \text{conversion factor (41.868 : TJ/ktoe)} \times COEF_i$ 

| BE <sub>y</sub>   | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by wind power plant. | 99,437 | t-CO <sub>2</sub> /y  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| FC ;              | Fuel consumption reduction for fuel type i for<br>suppression                                                               | -      | ktoe/y                |
|                   | Crude Oil                                                                                                                   | 32     | ktoe/y                |
|                   | Gas                                                                                                                         | 0      | ktoe/y                |
|                   | Coal                                                                                                                        | 0      | ktoe/y                |
|                   | Others                                                                                                                      | 0      | ktoe/y                |
| COEF <sub>i</sub> | CO2 emission factor per net calorific value for fuel type i                                                                 | -      | t-CO <sub>2</sub> /TJ |
|                   | Crude Oil                                                                                                                   | 73.3   | t-CO <sub>2</sub> /TJ |
|                   | Gas                                                                                                                         | 56.1   | t-CO <sub>2</sub> /TJ |
|                   | Coal                                                                                                                        | 98.3   | t-CO <sub>2</sub> /TJ |
|                   | Others                                                                                                                      | 0      | t-CO <sub>2</sub> /TJ |

### **2.** Project emission $PE_y = 0$

| PE <sub>y</sub> | Project emission:                   | 27 | t-CO <sub>2</sub> /v |
|-----------------|-------------------------------------|----|----------------------|
|                 | GHG emission after project activity | 21 | ( 00 <sub>2'</sub> y |

### 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                                                    | 99,410 | t-CO <sub>2</sub> /y |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by wind power generation. | 99,437 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission after project activity                                                                         | 27     | t-CO <sub>2</sub> /y |

# Input Sheet: Mini-Grid/ Stand-Alone

# Project Name Sample1[Wind power: Mini-Grid]

## 1. Fuel consumption before project activity

For fuel consumption before project activity, enter the planned values before project activity, or the actual values after project activity in the corresponding cells.

| Item                                     | Entry      | Unit  |      |
|------------------------------------------|------------|-------|------|
| Fuel consumption before                  | Diesel oil | 6,734 | kL/y |
| Fuel consumption before project activity | Kerosene   | 246   | kL/y |
|                                          | Others     |       |      |

## 2. CO2 emission factor and net calorific value per fuel type

Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to enter data in the cells below.

- i) Project-specific data obtained through interview to the electric power management entity concerned ii) Published values in the target country
- iii) Default values adopted in IPCC guideline

| Item       |          | Net calo    | rific value | CO <sub>2</sub> emission factor |                       |  |
|------------|----------|-------------|-------------|---------------------------------|-----------------------|--|
| Diesel oil |          | 36.1        | GJ/kL       | 74.1                            | t-CO <sub>2</sub> /TJ |  |
| Kerosene   |          | 35.3        | GJ/kL       | 71.9                            | t-CO <sub>2</sub> /TJ |  |
| Others     |          |             |             |                                 | t-CO <sub>2</sub> /TJ |  |
| Source:    | 2006 IPC | C. Guidelin | es for Nat  | ional Gree                      | nhouse Gas            |  |

urce: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1



Entry Entry of data sources, etc.

# Result Sheet: Mini-grid/ Stand-alone

Sample1 [Wind power: Mini-Grid]

# GHG emission reduction after project activity (t-CO<sub>2</sub>/y) $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

1. Baseline emission  $BEy = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} + EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$ 

| BEy                       | Baseline emission:<br>GHG emission without installation of a Wind power plant                                 | 18,638 | t-CO <sub>2</sub> /y  |
|---------------------------|---------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| EC <sub>diesel,y</sub>    | Light gas oil consumption when electric consumption from TV and others is covered by diesel power generation. | 6,734  | kL/y                  |
| EC <sub>kerosene,y</sub>  | Kerosene consumption when electric consumption for lighting is covered by kerosene lamps.                     | 246    | kL/y                  |
| NCV <sub>diesel,y</sub>   | Net calorific value for Diesel oil                                                                            | 36     | GJ/kL                 |
|                           | Net calorific value for kerosene                                                                              | 35     | GJ/kL                 |
| CEF <sub>diesel,y</sub>   | CO2 emission factor per net calorific value for diesel oil                                                    | 74     | t-CO <sub>2</sub> /TJ |
| CEF <sub>kerosene,y</sub> | CO2 emission factor per net calorific factor for kerosene                                                     | 72     | t-CO <sub>2</sub> /TJ |

# **2.** Project emission $PE_y = 0$

| PEy | Project emission:                                  |                |
|-----|----------------------------------------------------|----------------|
|     | GHG emission associated with wind power generation | $0$ $1-CO_2/y$ |

# 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                 | 18,638 | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without installation of a wind power plant | 18,638 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission associated with wind power generation       | 0      | t-CO <sub>2</sub> /y |

# Input Sheet: Grid

# Project Name Sample1[Construction of photovoltaic power plant]

1. Quantity of electricity (quantity of electricity generated in the target power plant after project activity)(MWh/y) Enter the planned value before project activity and the actual value after project activity in the cell below.

| Parameter                                 | Entry   | Unit    |
|-------------------------------------------|---------|---------|
| Quantity of electricity generated in the  | 121.956 | MWh/v   |
| target power plant after project activity | ,       | ····· " |

### 2. Energy mix of the target grid

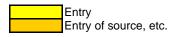
Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to data in the cells below.

i) Project-specific values obtained through interview to the electric power management entity concerned
 ii) Published values in the target country

iii) IEA Balance table

| ^Entry | to eitner | column | is mand | atory. |
|--------|-----------|--------|---------|--------|
|        |           |        |         |        |

|                        |                                         | V                                            |                   |                                              |      |
|------------------------|-----------------------------------------|----------------------------------------------|-------------------|----------------------------------------------|------|
| Fuel type              | Quantity of<br>generated<br>electricity | Fuel consumption<br>(kL, m <sup>3</sup> , t) |                   | Fuel consumption<br>(converted to crude oil) |      |
|                        | (GWh/y)                                 | consumed volum                               | Unit              | onsumed volum                                | Unit |
| Crude Oil              | 31,222                                  | 9,568,000                                    | kL/y              |                                              | ktoe |
| Gas                    | 62,475                                  | 17,321,000                                   | m <sup>3</sup> /y |                                              | ktoe |
| Coal                   | 479,955                                 | 155,516,000                                  | t/y               |                                              | ktoe |
| Others                 |                                         |                                              |                   |                                              | ktoe |
| Source: Interview to 2 | XX                                      |                                              |                   |                                              |      |


### 3. CO2 emission factor per fuel type (t-CO<sub>2</sub>/TJ)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to use.

- i) Project-specific data obtained through interview to the electric power management entity concerned ii) Published values in the target country
- iii) Default values adopted in IPCC guideline

| Fuel type              | Net cale | orific value      | CO <sub>2</sub> emission factor |                       |  |
|------------------------|----------|-------------------|---------------------------------|-----------------------|--|
| Crude Oil              | 36.3     | GJ/kL             | 73.3                            | t-CO <sub>2</sub> /TJ |  |
| Gas                    | 0.0384   | GJ/m <sup>3</sup> | 56.1                            | t-CO <sub>2</sub> /TJ |  |
| Coal                   | 26.7     | GJ/t              | 98.3                            | t-CO <sub>2</sub> /TJ |  |
| Others                 |          |                   |                                 | t-CO <sub>2</sub> /TJ |  |
| Source: Interview to 2 | XX       |                   |                                 |                       |  |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2



# 1. Baseline emission (t-CO<sub>2</sub>/y)

|            |         |           |   | Legend |                                                                   |
|------------|---------|-----------|---|--------|-------------------------------------------------------------------|
| Project    | 121,956 | MWh/y     |   |        |                                                                   |
| outcome    |         |           | - |        | Auto filled from Input Sheet                                      |
| Conversion | 3600    | kJ/kWh    |   |        | Default values (calculated automatically for manually entered dat |
| factor     | 41.868  | TJ/ktoe   |   |        | Manual entry                                                      |
|            | 10.000  | Tcal/ktoe |   |        | Calculated value                                                  |
|            | 860     | kcal/kWh  |   |        |                                                                   |
|            |         |           |   |        |                                                                   |

|           | Quantity of | generated | Fuel                 | Net calorific           | Quantity of | Fuel consumption         | Heat efficiency  | Caloric CO <sub>2</sub> |
|-----------|-------------|-----------|----------------------|-------------------------|-------------|--------------------------|------------------|-------------------------|
|           | elect       | ricity    | consumptio           | value                   | energy      | (converted to crude oil) | Tieat efficiency | emission                |
|           | GWh/y       | Ratio     | kL,m <sup>3</sup> ,t | GJ/kL,m <sup>3</sup> ,t | ТJ          | ktoe/y                   | %                | t-CO <sub>2</sub> /TJ   |
| Petroleum | 31222       | 5.4%      | 9,568,000            | 36.3                    | 347,296     | 8295                     | 32.4%            | 73.3                    |
| Gas       | 62475       | 10.9%     | 17,321,000           | 0.0                     | 665         | 16                       | 33814.6%         | 56.1                    |
| Coal      | 479955      | 83.7%     | 155,516,000          | 26.7                    | 4,152,277   | 99175                    | 41.6%            | 98.3                    |
| Others    | 0           | 0.0%      | 0                    | 0.0                     | 0           | 0                        | 0.0%             | 0.0                     |
| Total     | 573652      |           |                      |                         |             |                          |                  |                         |

|           | Fuel price | Suppression |             | Quantity unable | Suppressible |
|-----------|------------|-------------|-------------|-----------------|--------------|
|           | Fuel price | priority    | electricity | to suppress     | quantity     |
|           |            |             | MWh/y       | MWh/y           | MWh/y        |
| Petroleum |            | 1           | 31,222,000  | 28,683          | 31,193,317   |
| Gas       |            | 2           | 62,475,000  | 28,683          | 62,446,317   |
| Coal      |            | 3           | 479,955,000 | 28,683          | 479,926,317  |
| Others    |            | 4           | 0           | 0               | 0            |

| listorical (Petro | MWh/y  | MWh/y       | NANA/I. |          | emission factor       | suppressed | reduced quantity     |
|-------------------|--------|-------------|---------|----------|-----------------------|------------|----------------------|
| ,                 | 0      |             | MWh/y   | %        | t-CO <sub>2</sub> /TJ | ktoe/y     | t-CO <sub>2</sub> /y |
| listeries (Ose    | 0      |             | 0       |          | 73.3                  | 0.0        | 0                    |
| listorical (Gas   | 0      |             | 0       |          | 56.1                  | 0.0        | 0                    |
| listorical (Coal  | 0      |             | 0       |          | 98.3                  | 0.0        | 0                    |
| Petroleum         | 28,683 | 31,193,317  | 121,956 | 32.4%    | 73.3                  | 32.4       | 99,437               |
| Gas               | 28,683 | 62,446,317  | 0       | 33814.6% | 56.1                  | 0.0        | 0                    |
| Coal              | 28,683 | 479,926,317 | 0       | 41.6%    | 98.3                  | 0.0        | 0                    |
| Others            | 0      | 0           | 0       | 0.0%     | 0.0                   | 0.0        | 0                    |
| Total             |        |             | 121,956 |          |                       | 32.4       | 99,437               |

| reference value | Average therma | 92,195 |
|-----------------|----------------|--------|
| Telefence value | Average grid   | 92,195 |



# 2. Project emission (t-CO<sub>2</sub>/y)

# 3. GHG emission reduction after project activity (t-CO2/y)

|                                        | GHG emission<br>t-CO <sub>2</sub> /y |
|----------------------------------------|--------------------------------------|
| Baseline emission                      | 99,437                               |
| Project emission                       | 27                                   |
| GHG emission reduction after project a | 99,410                               |

# **Result Sheet: Grid**

Sample1 【Construction of photovoltaic power plant】

# GHG emission reduction after project activity $(t-CO_2/y)ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

**1. Baseline emission**  $BE_y = \Sigma FC_i \times \text{conversion factor (41.868 : TJ/ktoe)} \times \text{COEF}_i$ 

| BE <sub>y</sub>   | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by photovoltaic power plant. | 99,437 | t-CO <sub>2</sub> /y  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| FC <sub>i</sub>   | Fuel consumption reduction for fuel type i for<br>suppression                                                                       | -      | ktoe/y                |
|                   | Crude Oil                                                                                                                           | 32     | ktoe/y                |
|                   | Gas                                                                                                                                 | 0      | ktoe/y                |
|                   | Coal                                                                                                                                | 0      | ktoe/y                |
|                   | Others                                                                                                                              | 0      | ktoe/y                |
| COEF <sub>i</sub> | CO2 emission factor per net calorific value for fuel type i                                                                         | -      | t-CO <sub>2</sub> /TJ |
|                   | Crude Oil                                                                                                                           | 73.3   | t-CO <sub>2</sub> /TJ |
|                   | Gas                                                                                                                                 | 56.1   | t-CO <sub>2</sub> /TJ |
|                   | Coal                                                                                                                                | 98.3   | t-CO <sub>2</sub> /TJ |
|                   | Others                                                                                                                              | 0      | t-CO <sub>2</sub> /TJ |

# **2.** Project emission $PE_y = 0$

| PE <sub>y</sub> | Project emission:<br>GHG emission after project activity | 27 | t-CO <sub>2</sub> /y |
|-----------------|----------------------------------------------------------|----|----------------------|

# 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                      | 99,410 | t-CO₂/y              |
|-----------------|----------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | GHG emission associated with fuel consumption which is assumed to be replaced byphotovoltaic power | 99.437 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after project activity                                           | 27     | t-CO <sub>2</sub> /y |

# Input Sheet: Mini-Grid/ Stand-Alone

# Project Name Sample1[photovoltaic power: Mini-Grid]

## 1. Fuel consumption before project activity

For fuel consumption before project activity, enter the planned values before project activity, or the actua values after project activity in the corresponding cells.

| Item                                     | Entry      | Unit  |      |
|------------------------------------------|------------|-------|------|
| Fuel consumption before project activity | Diesel oil | 6,734 | kL/y |
|                                          | Kerosene   | 246   | kL/y |
| project activity                         | Others     |       |      |

## 2. CO2 emission factor and net calorific value per fuel type

Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to enter data in the cells below.

i) Project-specific data obtained through interview to the electric power management entity concerned ii) Published values in the target country

iii) Default values adopted in IPCC guideline

| Item             | Net calo   | rific value | CO <sub>2</sub> emission facto |                       |
|------------------|------------|-------------|--------------------------------|-----------------------|
| Diesel oil       | 36.1       | GJ/kL       | 74.1                           | t-CO <sub>2</sub> /TJ |
| Kerosene         | 35.3       | GJ/kL       | 71.9                           | t-CO <sub>2</sub> /TJ |
| Others           |            |             |                                | t-CO <sub>2</sub> /TJ |
| Source: 2006 IDC | C Cuidalia | on for Not  | anal Croo                      | nhouse Coo            |

e: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,tab



Entry of data sources, etc.

# Result Sheet: Mini-grid/ Stand-alone

Sample1 [photovoltaic power: Mini-Grid]

# GHG emission reduction after project activity (t-CO<sub>2</sub>/y) $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

# 1. Baseline emission $BEy = EC_{diesel,y} \times NCV_{diesel,y} \times CEF_{diesel,y} \neq EC_{kerosene,y} \times NCV_{kerosene,y} \times CEF_{kerosene,y}$

| BE <sub>y</sub>               | Baseline emission:<br>GHG emission without installation of a photovoltaic power plant                         | 18,638 | t-CO <sub>2</sub> /y  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| EC <sub>diesel,y</sub>        | Light gas oil consumption when electric consumption from TV and others is covered by diesel power generation. | 6,734  | kL/y                  |
| EC <sub>kerosene,y</sub>      | Kerosene consumption when electric consumption for lighting is<br>covered by kerosene lamps.                  | 246    | kL/y                  |
| NCV <sub>diesel,y</sub>       | Net calorific value for Diesel oil                                                                            | 36     | GJ/kL                 |
| NCV <sub>kerosene,</sub><br>y | Net calorific value for kerosene                                                                              | 35     | GJ/kL                 |
| CEF <sub>diesel,y</sub>       | CO2 emission factor per net calorific value for diesel oil                                                    | 74     | t-CO <sub>2</sub> /TJ |
| CEF <sub>kerosene,y</sub>     | CO2 emission factor per net calorific factor for kerosene                                                     | 72     | t-CO <sub>2</sub> /TJ |

# **2.** Project emission $PE_y = 0$

| GHG emission associated with photovoltaic power generation | PE <sub>y</sub> | Project emission:<br>GHG emission associated with photovoltaic power generation | 0 | t-CO <sub>2</sub> /y |
|------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---|----------------------|
|------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------|---|----------------------|

# 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                         | 18,638 | t-CO <sub>2</sub> /y |
|-----------------|---------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without installation of a photovoltaic power plant | 18,638 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission associated with photovoltaic power generation       | 0      | t-CO <sub>2</sub> /y |

# Input Sheet: Grid

# Project Name Virtual 1[Construction of photovoltaic power plant]

1. Quantity of electricity (quantity of electricity generated in the target power plant after project activity)(MWh/y) Enter the planned value before project activity and the actual value after project activity in the cell below.

| Parameter                                                                             | Entry   | Unit  |
|---------------------------------------------------------------------------------------|---------|-------|
| Quantity of electricity generated in the<br>target power plant after project activity | 121,956 | MWh/y |

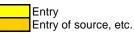
### 2. Energy mix of the target grid

Data/ information specific to the target country should be preferably used. Data availability should be validated in the following order to data in the cells below.

- i) Project-specific values obtained through interview to the electric power management entity concerned
- ii) Published values in the target country iii) IEA Balance table

| A Balance table |             | ^Entry to either co | rentry to either column is mand |              |  |
|-----------------|-------------|---------------------|---------------------------------|--------------|--|
|                 |             |                     |                                 |              |  |
|                 |             | <b>₩</b>            | N                               | /            |  |
|                 | Quantity of | Fuel consumption    | on I                            | Fuel consump |  |

| Fuel type              | Quantity of<br>generated<br>electricity | Fuel consu<br>(kL, m <sup>3</sup> |                   | Fuel consur<br>(converted to c |      |
|------------------------|-----------------------------------------|-----------------------------------|-------------------|--------------------------------|------|
|                        | (GWh/y)                                 | onsumed volum                     | Unit              | Consumed volume                | Unit |
| Crude Oil              | 31,222                                  | 9,568,000                         | kL/y              |                                | ktoe |
| Gas                    | 62,475                                  | 17,321,000                        | m <sup>3</sup> /y |                                | ktoe |
| Coal                   | 479,955                                 | 155,516,000                       | t/y               |                                | ktoe |
| Others                 |                                         |                                   |                   |                                | ktoe |
| Source: Interview to 2 | XX                                      |                                   |                   |                                |      |


## 3. CO2 emission factor per fuel type (t-CO<sub>2</sub>/TJ)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to use.

- i) Project-specific data obtained through interview to the electric power management entity concerned
- ii) Published values in the target country
- iii) Default values adopted in IPCC guideline

| Fuel type               | Net calorific value |                   | CO <sub>2</sub> emission factor |                       |  |  |
|-------------------------|---------------------|-------------------|---------------------------------|-----------------------|--|--|
| Crude Oil               | 36.3                | GJ/kL             | 73.3                            | t-CO <sub>2</sub> /TJ |  |  |
| Gas                     | 0.0384              | GJ/m <sup>3</sup> | 56.1                            | t-CO <sub>2</sub> /TJ |  |  |
| Coal                    | 26.7                | GJ/t              | 98.3                            | t-CO <sub>2</sub> /TJ |  |  |
| Others                  |                     |                   |                                 | t-CO <sub>2</sub> /TJ |  |  |
| Source: Interview to XX |                     |                   |                                 |                       |  |  |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2



# 1. Baseline emission (t-CO<sub>2</sub>/y)

|            |         |           |   | Legend |                                                                   |
|------------|---------|-----------|---|--------|-------------------------------------------------------------------|
| Project    | 121,956 | MWh/y     |   |        |                                                                   |
| outcome    |         | _         |   |        | Auto filled from Input Sheet                                      |
| Conversion | 3600    | kJ/kWh    |   |        | Default values (calculated automatically for manually entered dat |
| factor     | 41.868  | TJ/ktoe   |   |        | Manual entry                                                      |
|            | 10.000  | Tcal/ktoe |   |        | Calculated value                                                  |
|            | 860     | kcal/kWh  | 1 |        |                                                                   |
|            |         |           | - |        |                                                                   |

|           | Quantity of generated<br>electricity |       | Fuel                 | Net calorific           | Quantity of | Fuel consumption         | Heat efficiency | Caloric CO <sub>2</sub> |
|-----------|--------------------------------------|-------|----------------------|-------------------------|-------------|--------------------------|-----------------|-------------------------|
|           |                                      |       | consumptio           | value                   | energy      | (converted to crude oil) | Heat efficiency | emission                |
|           | GWh/y                                | Ratio | kL,m <sup>3</sup> ,t | GJ/kL,m <sup>3</sup> ,t | ТJ          | ktoe/y                   | %               | t-CO <sub>2</sub> /TJ   |
| Petroleum | 31222                                | 5.4%  | 9,568,000            | 36.3                    | 347,296     | 8295                     | 32.4%           | 73.3                    |
| Gas       | 62475                                | 10.9% | 17,321,000           | 0.0                     | 665         | 16                       | 33814.6%        | 56.1                    |
| Coal      | 479955                               | 83.7% | 155,516,000          | 26.7                    | 4,152,277   | 99175                    | 41.6%           | 98.3                    |
| Others    | 0                                    | 0.0%  | 0                    | 0.0                     | 0           | 0                        | 0.0%            | 0.0                     |
| Total     | 573652                               |       |                      |                         |             |                          |                 |                         |

|           | Fuel price | Suppression | Quantity of generated | Quantity unable | Suppressible |
|-----------|------------|-------------|-----------------------|-----------------|--------------|
|           | Fuel price | priority    | priority electricity  |                 | quantity     |
|           |            |             | MWh/y                 | MWh/y           | MWh/y        |
| Petroleum |            | 1           | 31,222,000            | 28,683          | 31,193,317   |
| Gas       |            | 2           | 62,475,000            | 28,683          | 62,446,317   |
| Coal      |            | 3           | 479,955,000           | 28,683          | 479,926,317  |
| Others    |            | 4           | 0                     | 0               | 0            |

| listorical (Gas 0 0 0 56.1 0.0 0 istorical (Coal 0 0 0 0 98.3 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Quantity unable to suppress | Suppressible<br>quantity | Suppressed<br>quantity | leat efficienc | Caloric CO <sub>2</sub><br>emission factor | Fuel<br>suppressed | CO2 emission<br>reduced quantity |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|--------------------------|------------------------|----------------|--------------------------------------------|--------------------|----------------------------------|
| Iistorical (Gas         0         0         56.1         0.0         0           istorical (Coal         0         0         0         98.3         0.0         0           Petroleum         28,683         31,193,317         121,956         32.4%         73.3         32.4         99,437           Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0 |                   | MWh/y                       | MWh/y                    | MWh/y                  | %              | t-CO <sub>2</sub> /TJ                      | ktoe/y             | t-CO <sub>2</sub> /y             |
| istorical (Coal         0         98.3         0.0         0           Petroleum         28,683         31,193,317         121,956         32.4%         73.3         32.4         99,437           Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0.0         0                                                                                                    | listorical (Petro | 0                           |                          | 0                      |                | 73.3                                       | 0.0                | 0                                |
| Petroleum         28,683         31,193,317         121,956         32.4%         73.3         32.4         99,437           Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0                                                                                                                                                                             | Historical (Gas   | 0                           |                          | 0                      |                | 56.1                                       | 0.0                | 0                                |
| Gas         28,683         62,446,317         0         33814.6%         56.1         0.0         0           Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0                                                                                                                                                                                                                                                                                                          | Historical (Coal  | 0                           |                          | 0                      |                | 98.3                                       | 0.0                | 0                                |
| Coal         28,683         479,926,317         0         41.6%         98.3         0.0         0           Others         0         0         0.0%         0.0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                        | Petroleum         | 28,683                      | 31,193,317               | 121,956                | 32.4%          | 73.3                                       | 32.4               | 99,437                           |
| Others 0 0 0 0.0% 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Gas               | 28,683                      | 62,446,317               | 0                      | 33814.6%       | 56.1                                       | 0.0                | 0                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coal              | 28,683                      | 479,926,317              | 0                      | 41.6%          | 98.3                                       | 0.0                | 0                                |
| Total 121,956 32.4 99,437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Others            | 0                           | 0                        | 0                      | 0.0%           | 0.0                                        | 0.0                | 0                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total             |                             |                          | 121,956                |                |                                            | 32.4               | 99,437                           |

| reference value | Average therma | 92,195 |
|-----------------|----------------|--------|
| reference value | Average grid   | 92,195 |



# 2. Project emission (t-CO<sub>2</sub>/y)

# 3. GHG emission reduction after project activity (t-CO2/y)

|                                        | GHG emission         |
|----------------------------------------|----------------------|
|                                        | t-CO <sub>2</sub> /y |
| Baseline emission                      | 99,437               |
| Project emission                       | 27                   |
| GHG emission reduction after project a | 99,410               |

# **Result Sheet: Grid**

Virtual 1 【Construction of photovoltaic power plant】

# GHG emission reduction after project activity (t-CO<sub>2</sub>/y) $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

**1. Baseline emission**  $BE_y = \Sigma FC_i \times \text{conversion factor (41.868 : TJ/ktoe)} \times COEF_i$ 

| BE <sub>y</sub>   | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by photovoltaic power plant. | 99,437 | t-CO <sub>2</sub> /y  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| FC <sub>i</sub>   | Fuel consumption reduction for fuel type i for<br>suppression                                                                       | -      | ktoe/y                |
|                   | Crude Oil                                                                                                                           | 32     | ktoe/y                |
|                   | Gas                                                                                                                                 | 0      | ktoe/y                |
|                   | Coal                                                                                                                                | 0      | ktoe/y                |
|                   | Others                                                                                                                              | 0      | ktoe/y                |
| COEF <sub>i</sub> | CO2 emission factor per net calorific value for fuel type i                                                                         | -      | t-CO <sub>2</sub> /TJ |
|                   | Crude Oil                                                                                                                           | 73.3   | t-CO <sub>2</sub> /TJ |
|                   | Gas                                                                                                                                 | 56.1   | t-CO <sub>2</sub> /TJ |
|                   | Coal                                                                                                                                | 98.3   | t-CO <sub>2</sub> /TJ |
|                   | Others                                                                                                                              | 0      | t-CO <sub>2</sub> /TJ |

**2.** Project emission  $PE_y = 0$ 

| РЕ <sub>у</sub> | Project emission:<br>GHG emission after project activity | 27 | t-CO <sub>2</sub> /y |
|-----------------|----------------------------------------------------------|----|----------------------|
|                 | GHG emission alter project activity                      |    |                      |

# 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                                                               | 99,410  | t-CO <sub>2</sub> /y |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by photovoltaic power<br>generation. | 99.2.37 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after project activity                                                                                    | 27      | t-CO <sub>2</sub> /y |

# Input Sheet: Mini-grid/ Stand-alone

# Project Name Virtual 2 [Solar Water Heater: Installation of Stand-alone Type]

### 1. Requirements for electric water heaters

For requirements for electric water heaters to be installed during the project, enter the planned values before project activity and the actual values after project activity in the cells below.

| Parameter                  | Value   | Unit |
|----------------------------|---------|------|
| Quantity of water supplied | 768,000 | kL/y |
| Heated water temperature   | 35      | °C   |
| Working ratio              | 80      | %    |
| Source: Interview to XX    |         |      |

# Data type

### 2. Efficiency of electric water heater to be installed in the project

Enter the planned value obtained from case studies for efficiency of electric water heater to be installed in the project.

| Parameter                      | Value | Unit |
|--------------------------------|-------|------|
| Efficiency of electric water h | 100   | %    |
| Source: Interview to 2         | κX    |      |

## 3. CO2 emission factor for electricity (t-CO<sub>2</sub>/MWh)

Employ the emission factor for a typical power plant in the target grid as the emission factor for grid-connected electricity. Data availability should be validated in the following order in selecting a typical power plant and

rgy

i) Interview to the electric power management entity concerned

ii) Published values in the target country

| Parameter                                       | Entry           | Unit                    |
|-------------------------------------------------|-----------------|-------------------------|
| CO <sub>2</sub> emission factor for electricity | 0.967           | t-CO <sub>2</sub> /MWh  |
| Source: 2006 IPCC Guidelines for Nat            | tional Greenhou | se Gas Inventories Volu |



Entry for sources, etc.

# Result Sheet: Mini-grid/ Stand-alone

Virtual 2【Solar Water Heater: Installation of Stand-alone Type】

# GHG emission reduction after project activity (t-CO<sub>2</sub>/y) $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

# **1.** Baseline emission $BE_y = EC_{BL,y} \times EF_{BL,y}$

| BE <sub>y</sub>    | Baseline emission:<br>GHG emission accompanied with electricity consumption<br>which is assumed to be replaced by solar water heater. | 25,005  | t-CO <sub>2</sub> /y |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| EC <sub>BL,y</sub> | Electricity consumption to gain heated water quantity which solar water heater will supply.                                           | 25,005  | MWh/y                |
|                    | Heated water quantity to be supplied by solar water heater                                                                            | 768,000 | kL/y                 |
|                    | Water temperature rise                                                                                                                | 35      | °C                   |
|                    | Working ratio of solar water heater                                                                                                   | 80      | %                    |
|                    | Efficiency of electric water heater                                                                                                   | 100     | %                    |
| EF <sub>BL,y</sub> | Co2 emission factor for grid-connected electricity                                                                                    | 0.967   | t-CO₂/MWh            |

# **2.** Project emission $PE_y = 0$

| PEy | Project emission:                   | 27 | t-CO <sub>2</sub> /y |
|-----|-------------------------------------|----|----------------------|
|     | GHG emission after project activity | 21 | ( C C 2' y           |

# 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                                                         | 24,978 | t-CO <sub>2</sub> /y |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission accompanied with electricity consumption<br>which is assumed to be replaced by solar water heater. | 25,005 | t-CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after project activity                                                                              | 27     | t-CO <sub>2</sub> /y |

# Input Sheet 20. Geothermal Power Project Name Virtual 1 [Construction of geothermal power plant

# 1. Quantity of electricity (generated in the target power plant after project implementation)(MWh/y) Enter the planned value before project activity and actual value after project activity.

| Parameter                                                                          | Entry   | Unit  |
|------------------------------------------------------------------------------------|---------|-------|
| Quantity of electricity generated in the target power plant after project activity | 473,040 | MWh/y |

### 2. Energy mix in the target country

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

- i) Project-specific values obtained through interview to electric power management entity concerned.
- ii) Published values in the target country iii) IEA balance table

## \*Entry to either column is mandatory.

|                        |                                         | ↓                                 |      | $\checkmark$                |      |
|------------------------|-----------------------------------------|-----------------------------------|------|-----------------------------|------|
| Fuel type              | Quantity of<br>generated<br>electricity | Fuel consu<br>(kL, m <sup>3</sup> | •    | Fuel consu<br>(converted to |      |
|                        | (GWh/y)                                 | consumed volum                    | Unit | onsumed volum               | Unit |
| Petroleum              | 31,222                                  | 9,568,000                         | kL/y |                             | ktoe |
| Gas                    | 62,475                                  | 17,321,000                        | m³/y |                             | ktoe |
| Coal                   | 479,955                                 | 155,516,000                       | t/y  |                             | ktoe |
| Others                 |                                         |                                   |      |                             | ktoe |
| Source: Interview to ) | XX                                      |                                   |      |                             |      |

3. CO2 emission factor per fuel type (t-CO<sub>2</sub>/TJ)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to use.
i) Project-specific data obtained through interview to the electric power management entity concerned
ii) Published values in the target country

iii) Default values adopted in IPCC guideline

| Fuel type | Net calorific value |                   | CO <sub>2</sub> em | CO <sub>2</sub> emission factor |  |
|-----------|---------------------|-------------------|--------------------|---------------------------------|--|
| Petroleum | 36.3                | GJ/kL             | 73.3               | t-CO <sub>2</sub> /TJ           |  |
| Gas       | 0.0384              | GJ/m <sup>3</sup> | 56.1               | t-CO <sub>2</sub> /TJ           |  |
| Coal      | 26.7                | GJ/t              | 98.3               | t-CO <sub>2</sub> /TJ           |  |
| Others    |                     |                   |                    | t-CO <sub>2</sub> /TJ           |  |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

### 4. Fuel consumption in geothermal power plant

Acquire amounts of fuel consumption used in the geothermal power plant during the project and enter values in the cells below.

### [Fuel used in the target power plant]

|                        | Fuel co     | nsumption           |  |
|------------------------|-------------|---------------------|--|
| Fuel type              | (kL,        | m <sup>3</sup> , t) |  |
|                        | Consumption | Unit                |  |
| Petroleum              | 5           | kL/y                |  |
| Gas                    |             | m <sup>3</sup> /y   |  |
| Coal                   |             | t/y                 |  |
| Others                 |             |                     |  |
| Source: Interview to > | Χ           |                     |  |

### 5. GHG emission factor from vapor emission

For CO2/CH4 emission from vapor emitted during the project, enter the planned values before project activity and the actual values after project activity for the average mass of vapor in the cells below.

| Parameter                           | Value | Unit                 |
|-------------------------------------|-------|----------------------|
| Average CO2 mass in vapor generated | 0.005 | t-CO <sub>2</sub> /t |
| Average CH4 mass of vapor generated | 0.000 | t-CO <sub>2</sub> /t |
| Global warming factor of methane    | 21    | —                    |
| Vapor generated in the year y       | 1,000 | t/y                  |
| Source: Interview to XX             |       |                      |

Entry Entry of source, etc.

# 1. Baseline emission (t-CO<sub>2</sub>/y)

| Project<br>outcome | 473,040        | MWh/y              |
|--------------------|----------------|--------------------|
| Conversion         | 3600<br>41.868 | kJ/kWh<br>T l/ktoe |
| lactor             | 10.000         | Tcal/ktoe          |
|                    | 860            | kcal/kWh           |

## Legend

| Logona |                                                                     |
|--------|---------------------------------------------------------------------|
|        | Auto filled from Input Sheet                                        |
|        |                                                                     |
|        | Default values (calculated automatically for manually entered data) |
|        | Manual entry                                                        |
|        | Calculated value                                                    |
|        | -                                                                   |

|           | Quantity of<br>elect | generated ricity | Fuel<br>consumptio   | Net calorific<br>value  | Quantity of<br>energy | Fuel consumption<br>(converted to crude oil) | Heat efficiency | Caloric CO <sub>2</sub><br>emission | emission | factor for        |
|-----------|----------------------|------------------|----------------------|-------------------------|-----------------------|----------------------------------------------|-----------------|-------------------------------------|----------|-------------------|
|           | GWh/y                | Ratio            | kL,m <sup>3</sup> ,t | GJ/kL,m <sup>3</sup> ,t | ТJ                    | ktoe/y                                       | %               | t-CO <sub>2</sub> /TJ               | kg-CO    | <sub>2</sub> /kWh |
| Petroleum | 31222                | 5.4%             | 9,568,000            | 36.3                    | 347,296               | 8295                                         | 32.4%           | 73.3                                | 0.815    | Average thermal   |
| Gas       | 62475                | 10.9%            | 17,321,000           | 0.0                     | 665                   | 16                                           | 33814.6%        | 56.1                                | 0.001    | 0.756             |
| Coal      | 479955               | 83.7%            | 155,516,000          | 26.7                    | 4,152,277             | 99175                                        | 41.6%           | 98.3                                | 0.850    |                   |
| Others    | 0                    | 0.0%             | 0                    | 0.0                     | 0                     | 0                                            | 0.0%            | 0.0                                 |          |                   |
| Total     | 573652               |                  |                      |                         |                       |                                              |                 |                                     | Grid     | 0.756             |

|           | Fuel price | Suppression | Quantity of generated<br>electricity |             |             |
|-----------|------------|-------------|--------------------------------------|-------------|-------------|
|           | -          | priority    | electricity                          | to suppress | quantity    |
|           |            |             | MWh/y                                | MWh/y       | MWh/y       |
| Petroleum |            | 1           | 31,222,000                           | 28,683      | 31,193,317  |
| Gas       |            | 2           | 62,475,000                           | 28,683      | 62,446,317  |
| Coal      |            | 3           | 479,955,000                          | 28,683      | 479,926,317 |
| Others    |            | 4           | 0                                    | 0           | 0           |

|   |                   | Quantity unable | Suppressible | Suppressed | Heat efficienc | Caloric CO <sub>2</sub> | Fuel             | CO2 emission         |
|---|-------------------|-----------------|--------------|------------|----------------|-------------------------|------------------|----------------------|
|   |                   | to suppress     | guantity     | quantity   | leat enicienc  | emission factor         | suppressed       | reduced quantity     |
|   |                   | MWh/y           | MWh/y        | MWh/y      | %              | t-CO <sub>2</sub> /TJ   | ktoe/y           | t-CO <sub>2</sub> /y |
| 0 | listorical (Petro | 0               |              | 0          |                | 73.3                    | 0.0              | 0                    |
| 0 | Historical (Gas)  | 0               |              | 0          |                | 56.1                    | 0.0              | 0                    |
| 0 | Historical (Coal  | 0               |              | 0          |                | 98.3                    | 0.0              | 0                    |
| 1 | Petroleum         | 28,683          | 31,193,317   | 473,040    | 32.4%          | 73.3                    | 125.7            | 385,692              |
| 2 | Gas               | 28,683          | 62,446,317   | 0          | 33814.6%       | 56.1                    | 0.0              | 0                    |
| 3 | Coal              | 28,683          | 479,926,317  | 0          | 41.6%          | 98.3                    | 0.0              | 0                    |
| 4 | Others            | 0               | 0            | 0          | 0.0%           | 0.0                     | 0.0              | 0                    |
|   | Total             |                 |              | 473,040    |                |                         | 125.7            | 385,692              |
|   |                   |                 |              |            |                |                         | (reference value | Average therma       |
|   |                   |                 |              |            |                |                         |                  | Average grid         |

# 2. Project emission (t-CO<sub>2</sub>/y)

[Vapor emission]

| Parameter | Emission facto | apor emissio | Emission             |              |
|-----------|----------------|--------------|----------------------|--------------|
| Falametei | t-CO2/t        | t            | t-CO <sub>2</sub> /y |              |
| CO2       | 0.005          | 1,000        | 5                    |              |
| CH4       | 0              | 1,000        | 0                    |              |
| GHG       | —              | _            | 5                    | $\backslash$ |
|           |                |              |                      |              |

|           | uel consumptio       | Net calorific           | Caloric CO <sub>2</sub> | CO <sub>2</sub>      |  |
|-----------|----------------------|-------------------------|-------------------------|----------------------|--|
|           |                      | value                   | emission                | emission             |  |
|           | kL,m <sup>3</sup> ,t | GJ/kL,m <sup>3</sup> ,t | t-CO <sub>2</sub> /TJ   | t-CO <sub>2</sub> /y |  |
| Petroleum | 5                    | 36.3                    | 73.3                    | 13                   |  |
| Gas       | 0                    | 0.0                     | 56.1                    | 0                    |  |
| Coal      | 0                    | 26.7                    | 98.3                    | 0                    |  |
| Others    | 0                    | 0.0                     | 0.0                     | 0                    |  |
| Total     |                      |                         |                         | 13                   |  |

## 3. GHG emission reduction after project activity (t-CO<sub>2</sub>/y)

|                                     | GHG emission<br>t-CO <sub>2</sub> /y |
|-------------------------------------|--------------------------------------|
| Baseline emission                   | 385,692                              |
| Project emission                    | 18                                   |
| GHG emission after project activity | 385,674                              |

# **Result Sheet**

Virtual 1 【Construction of geothermal power plant

# GHG emission reduction after project activity $(t-CO_2/y)_{ER_y} = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| <b>1. Baseline emission</b> $BE_y = \Sigma FC_i \times \text{conversion factor (41.868 : TJ/ktoe)} \times C$ | COEF |
|--------------------------------------------------------------------------------------------------------------|------|
|--------------------------------------------------------------------------------------------------------------|------|

| BE <sub>y</sub>   | Baseline emission:<br>GHG emission from fuel consumption which is assumed<br>to be replaced by geothermal power generation | 385,692 | t-CO <sub>2</sub> /y  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|
| FC <sub>i</sub>   | Fuel reduction of fuel type i for suppression                                                                              | -       | ktoe/y                |
|                   | Petroleum                                                                                                                  | 126     | ktoe/y                |
|                   | Gas                                                                                                                        | 0       | ktoe/y                |
|                   | Coal                                                                                                                       | 0       | ktoe/y                |
|                   | Others                                                                                                                     | 0       | ktoe/y                |
| COEF <sub>i</sub> | CO2 emission factor per net calorific value for fuel type i                                                                | -       | t-CO <sub>2</sub> /TJ |
|                   | Petroleum                                                                                                                  | 73.3    | t-CO <sub>2</sub> /TJ |
|                   | Gas                                                                                                                        | 56.1    | t-CO <sub>2</sub> /TJ |
|                   | Coal                                                                                                                       | 98.3    | t-CO <sub>2</sub> /TJ |
|                   | Others                                                                                                                     | 0       | t-CO <sub>2</sub> /TJ |

# **2.** Project emission $PE_y = PES_y + PEFF_y$

| PE <sub>y</sub>   | Project emission:<br>GHG emission after project activity | 18 <mark>t-CO<sub>2</sub>/y</mark> |
|-------------------|----------------------------------------------------------|------------------------------------|
| PES <sub>y</sub>  | Emission from reservoir                                  | 5 <mark>t-CO<sub>2</sub>/y</mark>  |
| PEFF <sub>y</sub> | Emission associated with fuel consumption                | 13 <mark>t-CO<sub>2</sub>/y</mark> |

# 3. GHG emission reduction after project activity $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                                                         | 385,674 | t-CO <sub>2</sub> /y |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission associated with fuel consumption which is<br>assumed to be replaced by geothermal power generation | 385,692 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission after project activity                                                                              | 18      | t-CO <sub>2</sub> /y |



### Project Name Sample: Electric power generation through use of biomass residues

### 1. Quantity of Electlicity and heat generation of using of biomass residues

Input the planned data for the calculation of the fuel consumption before the project start and input the monitoring data for the calculation of the fuel consumption after the project start into the following cells.

| Parameter                                                                                            | Entry   | Unit  |
|------------------------------------------------------------------------------------------------------|---------|-------|
| Quantity of electric power generation<br>through use of biomass residues after<br>the project starts | 150,150 | MWh/y |
| Quantity of heat generation through use<br>of biomass residues after the project<br>starts           |         | TJ∕y  |

### 2. CO<sub>2</sub> Emission factor or electricity (t-CO<sub>2</sub>/MWh)

In the environment where the facilities are installed with private generating facilities, or where the facilities are newly constructed and private generating facilities are planned to be installed, select whichever higher by comparing with the  $CO_2$  emissions factor for the grid supplying electricity. The emissions factor of grid should be determined base on one or two typical plants among existing power plants in the target grid.

Data availability is validated in the following order in selecting the target power plant and obtaining the emissions factor specific to the target:

i) Interview to the electric power management entity concerned

i) Published values in the target country If private generating facilities are available, interview to the electric power management entity concerned

| Parameter                                                                              | Entry        | Unit                   |
|----------------------------------------------------------------------------------------|--------------|------------------------|
| CO <sub>2</sub> emission factor of the electric power which connects the grid          | 0.927        | t−CO₂∕MWh              |
| CO <sub>2</sub> emission factor of the electric power from private generating facility |              | t−CO <sub>2</sub> ∕MWh |
| CO <sub>2</sub> emission factor of the electric<br>power used for calculation          | 0.927        | t−CO₂/MWh              |
| Source: 2006 IPCC Guidelines for                                                       | National Gre | enhouse Gas Inventorie |

ource: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy

### 3. $CO_2$ emission factor of heat generation (t-CO<sub>2</sub>/TJ)

| Parameter                                                                                                    |                        | Entry | Unit                  |
|--------------------------------------------------------------------------------------------------------------|------------------------|-------|-----------------------|
| CO <sub>2</sub> emission factor per unit of energy of the boiler                                             | Fuel type              | 73.3  | t-CO <sub>2</sub> /TJ |
| fuel consumption in the absence of project                                                                   | <mark>crude oil</mark> |       |                       |
| Boiler efficiency                                                                                            |                        | 100   | %                     |
| Rate of heat generation from boiler out of the heat g<br>recovered and utilized from the waste energy in the |                        | 1     | _                     |
| $CO_2$ emission factor per heat generated                                                                    |                        | 73.3  | t-CO <sub>2</sub> /TJ |
| Source:                                                                                                      |                        |       |                       |

### 4. Amount of electricity and fuel consumption after the project start

Input the planned data for the calculation of the fuel consumption before the project start and input the monitoring data for the calculation of the fuel consumption after the project start into the following cells.

| Parameter                               |           | Entry | Unit  |
|-----------------------------------------|-----------|-------|-------|
| Amount of electricity consumption after |           | 750   | MWh/y |
|                                         | Crude Oil | 178   | kL/y  |
| Amount of fuel                          | Coal      |       | t/y   |
| consumption after the<br>project start  | Gas       |       | m³/y  |
|                                         | Others    |       |       |

# 5. Net calorific value according to fuel type and CO 2 emission factor

Data availability is validated in the following order because it should preferably be calculated using data and information unique to the project.

i) The unique data of the project obtained from the interview with power management entity

ii) National default iii) IPCC Guideline default data

| Parameter | Net calorific value |                          | Net calorific value CO <sub>2</sub> emission fac |                       | sion factor |
|-----------|---------------------|--------------------------|--------------------------------------------------|-----------------------|-------------|
| Crude Oil | 36.3                | 36.3 GJ/kL               |                                                  | t-CO <sub>2</sub> /TJ |             |
| Coal      | 26.7                | GJ/t                     | 98.3                                             | t-CO <sub>2</sub> /TJ |             |
| Gas       | 0.0384              | 0.0384 GJ/m <sup>3</sup> |                                                  | t-CO <sub>2</sub> /TJ |             |
| Others    |                     |                          | t-CO <sub>2</sub> /T                             |                       |             |
| Source:   |                     |                          |                                                  |                       |             |



# **Result Sheet**

Sample:Electric power generation through use of biomass residues

# GHG emission reduction with the project $(t-CO_2/y) = BE_y - PE_y$ $(t-CO_2/y)$

# **1. Baseline emission** $BE_y = BE_{el,y} + BE_{ther,y}$

| BE <sub>y</sub>    | Baseline emission:<br>GHG emission without using of biomass residues                                       | 145,053 | t-CO <sub>2</sub> /y |
|--------------------|------------------------------------------------------------------------------------------------------------|---------|----------------------|
| BE <sub>el,y</sub> | GHG emission generated by electric supply with utilization of the biomass residues after the project start | 139,189 | t-CO <sub>2</sub> /y |
| BE ther,y          | GHG emission generated by heat supply with utilization of the biomass residues after the project start     | 5,864   | t-CO <sub>2</sub> /y |

# **2.** Project emission $PE_y = PE_{el,y} + PE_{i,y}$

| PE <sub>y</sub>          | Project emission:<br>GHG emission after the project start      | 1,169 | t-CO <sub>2</sub> /y |
|--------------------------|----------------------------------------------------------------|-------|----------------------|
| PE <sub>el,y</sub>       | GHG emission with electric consumption after the project start | 695   | t-CO <sub>2</sub> /y |
| <i>PE <sub>i,y</sub></i> | GHG emission with fuel consumption after the project start     | 474   | t–CO <sub>2</sub> /y |

# 3. GHG emission reduction with the project $ER_y = BE_y - PE_y$ (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction with the project                                     | 143,884 | t-CO <sub>2</sub> /y |
|-----------------|-----------------------------------------------------------------------------|---------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission without utilization of biomass resideues | 145,053 | t–CO <sub>2</sub> /y |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project start                   | 1,169   | t–CO <sub>2</sub> /y |

Sewerage, Urban Sanitation

Appendix-22 Landfill Disposal of Waste Appendix-23 Intermediate Treatment of Waste Appendix-24 Wastewater Treatment Appendix-25 Sewerage

22. Landfill Disposal of Waste

Input sheet

| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |                              |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------|----------------------|
| Project name SAMPLE:Landfill Disposa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of Waste                                                                                          |                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                              |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                              | Default value in red |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                              | Default value in red |
| 1. Information for LFG recovery after the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   |                              |                      |
| (1) Quantity of LFG recovered and destroyed after the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | project sta                                                                                       | rts (m³/h) *                 |                      |
| Enter the monitoring data after project activity. Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Entry                                                                                             | Unit                         |                      |
| Quantity of LFG recovered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Linuy                                                                                             | m <sup>3</sup> /h            |                      |
| (2) Average methane fraction of the LFG after the pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ect starts                                                                                        |                              |                      |
| Enter the monitoring data after project activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                 | (,                           |                      |
| Enter the ACM0001 default value (0.5) when a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctual measu                                                                                       | rement is not                | available.           |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Entry                                                                                             | Unit                         |                      |
| Average methane fraction of the LFG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                               | %                            | 2                    |
| (3) Methane density at temperature or pressure at reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | very after                                                                                        | the project sta              | arts(t-CH₄/m³)       |
| Enter the monitoring data after project activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                   | 1                            |                      |
| Enter the ACM0001 default value (0.0007168)<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   |                              | it is not available. |
| Methane density at recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Entry                                                                                             | Unit<br>t-CH₄/m <sup>3</sup> |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                              |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nned data                                                                                         |                              | ered                 |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncert Enter 0.9 as default value.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nned data<br>tainties                                                                             | of LFG recov                 | ered                 |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainty Enter 0.9 as default value.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nned data                                                                                         |                              | ered                 |
| * Enter the data in the following (4) - (12) when the pla<br>after the project starts(1) is not determined.<br>(4) Model correction factor to account for model uncert<br>Enter 0.9 as default value.<br>Parameter<br>Model correction factor to account for model<br>uncertainties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nned data<br>tainties                                                                             | of LFG recov                 | ered                 |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>Parameter</li> <li>Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nned data<br>tainties<br>Entry<br>0.9                                                             | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertaint value.</li> <li>Parameter</li> <li>Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or starts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                 | nned data<br>tainties<br>Entry<br>0.9                                                             | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertaint value.</li> <li>Parameter</li> <li>Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) on Parameter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry                                    | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>Parameter</li> <li>Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) on Parameter</li> <li>Oxidization rate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        | nned data<br>tainties<br>Entry<br>0.9                                                             | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>Parameter</li> <li>Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) on Parameter</li> <li>Oxidization rate</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                        | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry                                    | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) on Parameter</li> <li>(6) Fraction of methane in LFG from landfill</li> </ul>                                                                                                                                                                                                                                                                                                                                                                           | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry                                    | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) on Parameter</li> <li>(6) Fraction of methane in LFG from landfill Enter 0.5 as default value.</li> </ul>                                                                                                                                                                                                                                                                                                                                               | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5             | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>Parameter</li> <li>(7) Fraction of degradable organic carbon (DOC) that c</li> </ul>                                                                                                                                                                                                                                                   | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5             | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> </ul>                                                                                                                                                                                                                                          | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5<br>an decom | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(5) Oxidization rate</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>Parameter</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> </ul>                                                                                                                                                                                         | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5             | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(5) Oxidization rate</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>Parameter</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> </ul>                                                                                                                                                                                         | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5<br>an decom | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(5) Oxidization rate</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>Parameter</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> </ul>                                                                                                                                                                                         | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5<br>an decom | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(5) Oxidization rate</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>Parameter</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> </ul> | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5<br>an decom | of LFG recov                 |                      |
| <ul> <li>* Enter the data in the following (4) - (12) when the pla after the project starts(1) is not determined.</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(4) Model correction factor to account for model uncertainties</li> <li>(5) Oxidization rate</li> <li>Enter the default value 0.1 (covered with soil) or Parameter</li> <li>(5) Oxidization rate</li> <li>(6) Fraction of methane in LFG from landfill</li> <li>Enter 0.5 as default value.</li> <li>Parameter</li> <li>(7) Fraction of degradable organic carbon (DOC) that c Enter 0.5 as default value.</li> </ul>                                                                                                                                                                                         | nned data<br>tainties<br>Entry<br>0.9<br>r 0 (not cov<br>Entry<br>0.0<br>Entry<br>0.5<br>an decom | of LFG recov                 |                      |

## (9) Total weight of waste in landfill (t)

Enter the planned data before project activity.

| Parameter                                                                                                      | Entry  | Unit |
|----------------------------------------------------------------------------------------------------------------|--------|------|
| Annual average weight of waste<br>(= total weight of waste landfilled/duration of<br>disposal in the landfill) | 50,000 | t/y  |
| Year starting disposal in the landfill (A)<br>(year of Christian Era)                                          | 1983   | У    |
| Completion year of disposal in the landfi<br>I (year of Christian Era)                                         | 2007   | У    |
| Year starting the project<br>(year of Christian Era)                                                           | 2009   | У    |
| Final year of estimation of GHG emission reductions (year of Christian Era) (B)                                | 2019   | У    |

### \*(A)-(B)<50 (10) Composition of solid waste (%)

Enter the planned data before project activity

| Parameter                                   | Entry | Unit |
|---------------------------------------------|-------|------|
| Wood                                        | 4.2   | %    |
| Paper                                       | 22.1  | %    |
| Organic, garbage, beverage (exclude sludge) | 51.1  | %    |
| Fabric                                      | 5.1   | %    |
| Yard waste, park waste                      | 0.0   | %    |
| Glass, plastic, metal, other inert waste    | 17.5  | %    |

### (11) Fraction of degradable organic carbon according to waste type (weight based)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

ii) National default

iii) IPCC Guideline default data

| Parameter                                   | Entry | Unit |
|---------------------------------------------|-------|------|
| Wood                                        | 43    | %    |
| Paper                                       | 40    | %    |
| Organic, garbage, beverage (exclude sludge) | 15    | %    |
| Fabric                                      | 24    | %    |
| Yard waste, park waste                      | 20    | %    |
| Glass, plastic, metal, other inert waste    | 0     | %    |

## (12) Decay rate of degradable organic carbon in waste type j

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

## ii) National default

iii) IPCC Guideline default data

| Entry | Unit                    |
|-------|-------------------------|
| 0.020 | -                       |
| 0.040 | -                       |
| 0.060 | -                       |
| 0.040 | -                       |
| 0.050 | -                       |
|       | 0.020<br>0.040<br>0.060 |

### 2. LFG production and thermal production

### (1) The amount of electricity and thermal energy using LFG after the project starts (MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts.

| Parameter                                     | Entry | Unit  |
|-----------------------------------------------|-------|-------|
| The amount of electricity generated using LFG | 1,000 | MWh/y |
| Quantity of thermal energy generated          | 100   | T.1/v |

### (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO<sub>2</sub> emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

|                | Parameter                                     | Entry | Unit                   |  |  |  |
|----------------|-----------------------------------------------|-------|------------------------|--|--|--|
| Emission facto | or of the typical power plant                 | 0.896 | t-CO <sub>2</sub> /MWh |  |  |  |
| Source:        | Source: Interview to XX company of XX country |       |                        |  |  |  |

### Source: Interview to XX company of XX country (3)CO<sub>2</sub> emission factor of heat generated (t-CO<sub>2</sub>/TJ)

|                                                                       |            |            |                       | -       |
|-----------------------------------------------------------------------|------------|------------|-----------------------|---------|
| Parameter                                                             |            |            | Unit                  |         |
| CO <sub>2</sub> emission factor per unit of energy of the boiler fuel | Fuel type  | 73.3       | t-CO <sub>2</sub> /TJ |         |
| consumption in the absence of project                                 | Petroleum  |            |                       |         |
| Boiler efficiency                                                     |            |            | %                     |         |
| Rate of heat generation from boiler out of the heat generation using  |            |            |                       |         |
| LFG in absence of project                                             |            |            |                       |         |
| CO <sub>2</sub> emission factor per heat generated                    |            |            | t-CO <sub>2</sub> /TJ |         |
| Source: 2006 IPCC Guidelines for National Gre                         | enhouse Ga | as Invento | ries Volume 2 Energ   | gy tabl |

### 3. Project Information

# (1) The electricity and fuel consumption after the project starts in the LFG recovery facilities (MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts.

| Parameter                                    | Entry     | Unit  |                   |
|----------------------------------------------|-----------|-------|-------------------|
| Electricity consumption after the            | 500       | MWh/y |                   |
|                                              | Petroleum | 500   | kL/y              |
| Fuel consumption after the<br>project starts | Coal      | 50    | t/y               |
|                                              | Gas       | 100   | m <sup>3</sup> /y |
|                                              | Others    |       |                   |

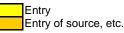
### (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining  $CO_2$  emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

|              | Parameter                      | Entry      | Unit                   |
|--------------|--------------------------------|------------|------------------------|
| Emission fac | tor of the typical power plant | 0.896      | t-CO <sub>2</sub> /MWh |
| Source:      | Interview to XX company of     | XX country | ,                      |


### (3) Net calorific value according to fuel type

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

- i) Project-specific values obtained through interview to electric power management entity concerned.
- ii) National default
- iii) IPCC Guideline default data

| Parameter            | Net calorific | Net calorific value CO <sub>2</sub> emissi |      | ion factor            |
|----------------------|---------------|--------------------------------------------|------|-----------------------|
| Petroleum            | 36.3          | GJ/kL                                      | 73.3 | t-CO <sub>2</sub> /TJ |
| Coal                 | 26.7          | GJ/t                                       | 98.3 | t-CO <sub>2</sub> /TJ |
| Gas                  | 0.0384        | GJ/m <sup>3</sup>                          | 56.1 | t-CO <sub>2</sub> /TJ |
| Others               |               |                                            |      | t-CO <sub>2</sub> /TJ |
| Source: Interview to | λXr           |                                            |      |                       |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2



# **Result Sheet**

# SAMPLE:Landfill Disposal of Waste

GHG emission reduction after the project starts(t- $CO_2/y$ ) ERy = BEy - PEy (t- $CO_2/y$ )

# 1. Baseline emission $BEy = (MD_{PJ,y} - MD_{reg,y}) \times GWP_{CH4} + BE_{EN,y}$

| BE <sub>y</sub>           | Baseline emission:<br>GHG emission from methane vented to atmosphere<br>without LFG recovery                                                                                 | 28,954 | t-CO <sub>2</sub> /y                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------|
| <b>MD</b> <sub>PJ,y</sub> | CH <sub>4</sub> quantity recovered from landfill after the project starts                                                                                                    | 987    | t-CH₄/y                              |
| MD <sub>reg,y</sub>       | CH <sub>4</sub> quantity decomposed and combusted by national regulation before the project starts<br>It shall be "0" where developing countries have a very few regulation. | 0      | t-CH₄/y                              |
| GWP <sub>CH4</sub>        | Methane global warming potential(=21)                                                                                                                                        | 21     | t-CO <sub>2</sub> /t-CH <sub>4</sub> |
| BE <sub>EN,y</sub>        | CO <sub>2</sub> emissions from generation of energy displaced by the project activity                                                                                        | 8,226  | t-CO <sub>2</sub> /y                 |

# **2.** Project emission $PE_y = PE_{EC,y} + PE_{FC,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission after the project starts         | 1,910 | t-CO <sub>2</sub> /y |
|--------------------|--------------------------------------------------------------------|-------|----------------------|
| РЕ <sub>ЕС,у</sub> | GHG emission from electricity consumption after the project starts | 448   | t-CO <sub>2</sub> /y |
| PE <sub>FC,y</sub> | GHG emission from fossil fuel consumption after the project starts | 1,462 | t-CO <sub>2</sub> /y |

# 3. GHG emission reduction after the project starts ERy = BEy - PEy (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after the project starts                                              | 27,045 | t-CO <sub>2</sub> /y |
|-----------------|----------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from methane vented to atmosphere<br>without LFG recovery | 28,954 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project starts                                   | 1,910  | t-CO <sub>2</sub> /y |

# Input Sheet : Before the Project starts

Project name

# SAMPLE : Intermediate treatment of the waste

|            |                                                                | Defaul                  | t value in red    |                  |                                         |  |  |
|------------|----------------------------------------------------------------|-------------------------|-------------------|------------------|-----------------------------------------|--|--|
| 1. Infor   | mation of the current Biogas                                   |                         |                   |                  |                                         |  |  |
|            | (1) Model correction factor to account for model uncertainties |                         |                   |                  |                                         |  |  |
| •••        | Enter 0.9 as default value.                                    |                         |                   |                  |                                         |  |  |
|            | Parameter                                                      |                         | Entry             | Unit             |                                         |  |  |
|            | Model correction factor to account for model                   |                         |                   |                  |                                         |  |  |
|            | uncertainties                                                  |                         | 0.9               | MWh/y            |                                         |  |  |
| (2)Ovida   | tion factor                                                    |                         |                   |                  |                                         |  |  |
|            | Enter the default value 0.1 (cov                               | vered with soil) or     | (not covered)     |                  |                                         |  |  |
|            | Parameter                                                      |                         | Entry             | Unit             |                                         |  |  |
|            | Oxidation factor                                               |                         |                   | MWh/y            |                                         |  |  |
| (3) Fracti | on of methane in Biogas from                                   | landfill                | 0.0               | y                |                                         |  |  |
|            | Enter 0.5 as default value.                                    |                         |                   |                  |                                         |  |  |
|            | Parameter                                                      |                         | Entry             | Unit             |                                         |  |  |
|            | Fraction of methane in Biogas                                  |                         | 0.5               | -                |                                         |  |  |
| (4) Fract  | ion of degradable organic cark                                 | oon (DOC) that c        | an decompose      |                  |                                         |  |  |
|            | Enter 0.5 as default value.                                    | (= = = =)               |                   |                  |                                         |  |  |
|            | Parameter                                                      |                         | Entry             | Unit             |                                         |  |  |
|            | Fraction of degradable organic                                 | carbon (DOC)            |                   |                  |                                         |  |  |
|            | that can decompose                                             |                         | 0.5               | -                |                                         |  |  |
|            | ane correction factor in Biogas                                |                         |                   |                  |                                         |  |  |
| (5) wetha  | Methane correction factor in Biogas                            |                         | no (Poferto Arr   | (ondiv)          |                                         |  |  |
|            | Parameter                                                      | raing to landlill ty    | Entry             | Unit             | l i i i i i i i i i i i i i i i i i i i |  |  |
|            | Methane correction factor in Bi                                | 0006                    |                   | Unit             |                                         |  |  |
| (6) 4 חחוו | al weight of waste prevented f                                 | oyas<br>rom disposal at | the SWDS after    | -<br>the project | t starts                                |  |  |
| (O)Annu    | Enter the planned data before                                  |                         |                   |                  |                                         |  |  |
|            | Parameter                                                      | the project starts      | Entry             | Unit             | alter the project starts.               |  |  |
|            | Total weight of waste                                          | 1st year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 2nd year                | 182,500           | U y              |                                         |  |  |
|            |                                                                | 3rd year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 4th year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 5th year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 6th year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 7th year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 8th year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 9th year                | 182,500           |                  |                                         |  |  |
|            |                                                                | 10th year               | 182,500           |                  |                                         |  |  |
| (7)Com     | osition of solid waste                                         | . o , our               | ,000              |                  |                                         |  |  |
|            | Enter the planned data before                                  | the project starts      | or input the mor  | nitorina data    | a after the project startss.            |  |  |
|            | Parameter                                                      |                         | Entry             | Unit             |                                         |  |  |
|            | Wood                                                           |                         | 3.8               |                  |                                         |  |  |
|            | Paper                                                          |                         | 5.9               |                  |                                         |  |  |
|            | Organic, garbage, beverage (e                                  | xclude sludge)          |                   | %                |                                         |  |  |
|            | Fabric                                                         | <b>y</b> ,              |                   | %                |                                         |  |  |
|            | Yard waste, park waste                                         |                         | 19.1              |                  |                                         |  |  |
|            | Glass, plastic, metal, other iner                              | t waste                 | 24.3              |                  |                                         |  |  |
| (8)Fract   | ion of degradable organic cark                                 |                         | waste type (we    | eight based      | d)                                      |  |  |
|            |                                                                |                         |                   |                  | or calculation. Data availability       |  |  |
|            | should be validated in the follo                               | wing order to ent       | er data in the ce | lls.             |                                         |  |  |
|            | ii) National default                                           |                         |                   |                  |                                         |  |  |
|            | iii) IPCC Guideline default data                               |                         |                   |                  |                                         |  |  |
|            | Parameter                                                      |                         | Entry             | Unit             |                                         |  |  |
|            | Wood                                                           |                         |                   | %                |                                         |  |  |
|            | Paper                                                          |                         |                   | %                |                                         |  |  |
|            | Organic, garbage, beverage (e                                  | xclude sludge)          | 15                | %                |                                         |  |  |
|            | Fabric                                                         |                         |                   | %                |                                         |  |  |
|            | Yard waste, park waste                                         |                         | 20                | %                |                                         |  |  |
|            | Glass, plastic, metal, other iner                              | rt waste                |                   | %                |                                         |  |  |
|            |                                                                |                         |                   |                  |                                         |  |  |

### (9) Decay rate of degradable organic carbon according to waste type

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

ii) National default

iii) IPCC Guideline default data

| Entry | Unit           |
|-------|----------------|
| 0.035 | -              |
| 0.070 | -              |
| 0.400 | -              |
| 0.070 | -              |
| 0.170 | -              |
|       | 0.035<br>0.070 |

## 2. Information of electricity and thermal energy generation by using biogas

# $\mathsf{BE}_{\mathsf{EN},y}\ :\ \mathsf{CO}_2$ emissions from generation of energy displaced by the project activity

# (1) Amount of electricity and quantity of thermal energy using Biogas after the project starts(MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts .

| Parameter                                   | Entry | Unit  |
|---------------------------------------------|-------|-------|
| Amount of electricity produced using Biogas | 1,000 | MWh/y |
| Amount of thermal energy produced           | 100   | TJ/y  |

# (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO2 emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

|                                            | Entry | Unit                   |
|--------------------------------------------|-------|------------------------|
| Emission factor of the typical power plant | 0.896 | t-CO <sub>2</sub> /MWh |

Interview to XX company of XX country Source:

# (3)CO<sub>2</sub> emission factor of heat generated (t-CO<sub>2</sub>/TJ)

| Parameter                                                                               |           | Entry | Unit                  |
|-----------------------------------------------------------------------------------------|-----------|-------|-----------------------|
| CO <sub>2</sub> emission factor per unit of energy of the boiler fuel                   | Fuel type | 73.3  | t-CO <sub>2</sub> /TJ |
| consumption in the absence of project                                                   | Petroleum |       |                       |
| Boiler efficiency                                                                       |           | 100   | %                     |
| Rate of heat generation from boiler out of the heat generation using                    |           |       | _                     |
| CO <sub>2</sub> emission factor per heat generated 73.3 t-CO <sub>2</sub> /TJ           |           |       |                       |
| Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy ta |           |       |                       |

### 3. Project information

# PE<sub>elec,y</sub>: GHG emission from electricity consumption after the project starts PE<sub>fuel,y</sub>: GHG emission from fossil fuel consumption after the project starts (1) The electricity and fuel consumption after the project starts in the Biogas recovery facilities (MWh/y) Enter the planned data before the project starts or input the monitoring data after the project starts .

| Parameter                     |           | Entry | Unit              |
|-------------------------------|-----------|-------|-------------------|
| Amount of electricity consump | 500       | MWh/y |                   |
|                               | Petroleum | 500   | kL/y              |
| Amount of fuel consumption    | Coal      | 50    | t/y               |
| after the project starts      | Gas       | 100   | m <sup>3</sup> /y |
|                               | Others    |       |                   |

### (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO<sub>2</sub> emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

|                                               | Parameter                            | Entry | Unit                   |
|-----------------------------------------------|--------------------------------------|-------|------------------------|
| Emissi                                        | on factor of the typical power plant | 0.896 | t-CO <sub>2</sub> /MWh |
| Source: Interview to XX company of XX country |                                      |       |                        |

## (3) Net calorific value according to fuel type

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

i) Project-specific values obtained through interview to electricity management entity concerned

ii) National default

iii) IPCC Guideline default data

| Parameter |              | Net calor | ific value | CO <sub>2</sub> emission fact |                       |
|-----------|--------------|-----------|------------|-------------------------------|-----------------------|
| Petroleum |              | 36.3      | GJ/kL      | 73.3                          | t-CO <sub>2</sub> /TJ |
| Coal      |              | 26.7      | GJ/t       | 98.3                          | t-CO <sub>2</sub> /TJ |
| Gas       |              | 0.0384    | GJ/m3      | 56.1                          | t-CO <sub>2</sub> /TJ |
| Others    |              |           |            |                               | t-CO <sub>2</sub> /TJ |
| Source:   | Interview to | XX        |            |                               |                       |

Interview to XX

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

0 t/y

## PEc,y : GHG emission during the composting process after the project starts

### (1) Quantity of organic waste composed (t/y)

|   | Enter the planned data before the project starts | or input the mon | itoring data | after the project starts . |
|---|--------------------------------------------------|------------------|--------------|----------------------------|
| ſ | Parameter                                        | Entry            | Unit         |                            |

Quantity of organic waste composed

## (2) Emission factor for N<sub>2</sub>O and CH<sub>4</sub> from the composting process (t-N<sub>2</sub>O/t-compost)

Enter the IPCC default value.

| Parameter                                                        | Entry  | Unit                       |
|------------------------------------------------------------------|--------|----------------------------|
| Emission factor for N <sub>2</sub> O from the composting process | 0.0003 | t-N <sub>2</sub> O/t-waste |
| Emission factor for $CH_4$ from the composting process           | 0.004  | t-CH <sub>4</sub> /t-waste |
|                                                                  |        |                            |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste table4.1 Source

### GHG emission from the anaerobic digestion process after the project starts PEa,y :

(1) Amount of organic waste fed into anaerobic digestion after the project starts (t/y)

Enter the planned data.

|                                                                                            | Parameter                                  | Entry | Unit |  |  |
|--------------------------------------------------------------------------------------------|--------------------------------------------|-------|------|--|--|
|                                                                                            | Amount of organic waste fed into anaerobic | 5,000 | t/y  |  |  |
| (2) Emission factor for $CH_4$ emissions from the anaerobic digestion (t- $CH_4$ /t-waste) |                                            |       |      |  |  |

- · · 14

| Enter the IPCC default value.                                           |       |                                          |
|-------------------------------------------------------------------------|-------|------------------------------------------|
| Parameter                                                               | Entry | Unit                                     |
| Emission factor for CH <sub>4</sub> emissions from the                  | 0.001 | t-CH <sub>4</sub> /m <sup>3</sup> -waste |
| Courses 0000 IDOO Ouidalia as fan National Orsankausa Osa Inventarias V |       |                                          |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste table4.1 Source

### PEg,y : GHG emission from the gasification process after the project starts (1) Amount of waste type i fed into the gasifier (t/y)

fter the project starts .

| Enter the planned data before the project starts | or input the monitoring data |          |
|--------------------------------------------------|------------------------------|----------|
| Type of waste i                                  | Weight                       | Unit:t/y |
| Wood                                             |                              |          |
| Paper                                            |                              |          |
| Organic, garbage, beverage (exclude sludge)      |                              |          |
| Fabric                                           |                              |          |
| Yard waste, park waste                           |                              |          |
| Glass plastic metal other inert waste            |                              |          |

# (2) Fraction of carbon content in waste type i (-)

Enter the planned data before the project starts or input the monitoring data after the project starts .

|--|

| Wood                                        |  |
|---------------------------------------------|--|
| Paper                                       |  |
| Organic, garbage, beverage (exclude sludge) |  |
| Fabric                                      |  |
| Yard waste, park waste                      |  |
| Glass, plastic, metal, other inert waste    |  |

| 3) Fraction of fossil carbon in total carbon of waste type (-))  Finer the planned data before the project starts or input the monitoring data after the project starts .  Type of waste i Fraction of fossil carbon Wood Graphic, garbage, beverage (exclude sludge) Fabric Graphic, metal, other inert waste Grass, plastic, metal, other inert waste Graphic, garbage, beverage (exclude sludge) Fabric Graphic, metal, other inert waste Graphic Graph                                                                                                                                                 | (3) Frac                                 | tion of fossil carbon in total carbon of waste ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pei(-))                                                                                                                                 |                                                                      |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Type of waste i       Fraction of fossil carbon       Unit:         Pager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0)1100                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fraction of fos                                                                                                                         | sil carbon                                                           | Unit: —                                                                                |
| Organic, gatzbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          | Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |                                                                      |                                                                                        |
| Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                      |                                                                                        |
| Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                      |                                                                                        |
| Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| Glass, plastic, metal, other inert waste         4) Combustion officiency         Type of waste (.)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard Waste, park waste         Glass, plastic, metal, other inert waste         Moount of waste type i fed into the RDF (ty)         Enter the planned data.         Parameter       Entry         Unit         N <sub>2</sub> O emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (ty)         Enter the planned data before the project starts or input the monitoring data after the project starts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| <ul> <li>4) Combustion efficiency for waste (-) <ul> <li>Enter the planned data before the project starts or input the monitoring data after the project starts .</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Eabric</li> <li>Fabric</li> <li>Space</li> <li>Glass, plastic, metal, other inert waste</li> <li>Enter the planned data.</li> <li>Parameter</li> <li>Entry</li> <li>Unit</li> <li>Mod</li> <li>Mod</li> <li>Mod</li> <li>Parameter</li> <li>Entry</li> <li>Unit</li> <li>Mod</li> <li>Mod</li> <li>Mod</li> <li>Parameter</li> <li>Entry</li> <li>Unit</li> <li>Mod</li> <li>Mod</li> <li>Mod</li> <li>Mod</li> <li>Parameter</li> <li>Entry</li> <li>Unit</li> <li>Mod</li> <li>Mo</li></ul></li></ul>                                                                                                                             |                                          | Glass plastic metal other inert waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                         |                                                                      |                                                                                        |
| Enter the planned data before the project starts or input the monitoring data after the project starts .       Unit:         Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <b>4</b> )Com                          | bustion efficiency for waste(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      | -                                                                                      |
| Type of waste i       Combustion efficiency       Unit :         Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4) 0011                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or input the mor                                                                                                                        | itoring data                                                         | a after the project starts                                                             |
| Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         | efficiency                                                           |                                                                                        |
| Paper       Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Combastion                                                                                                                              | emoleney                                                             |                                                                                        |
| Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         5) Amount of waste gasified (t/y)         Enter the planned data.         Parameter       Entry         Amount of waste         Manual of waste         Amount of waste         Image: the planned data.         Parameter       Entry         Unit         Amount of waste         Parameter         Entry       Unit         N2O emission factor       47 [+N2O/t         7) Emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         CH <sub>4</sub> emission factor       0.2 [+CH <sub>4</sub> /t         CH <sub>4</sub> emission factor       0.2 [+CH <sub>4</sub> /t         Unit       Unit         Wood       Weight         Wood       Homit in waste ymath         Paper       Image: Park waste         Glass, plastic, metal, other inert waste       Image: Park waste         Glass, plastic, metal, other inert waste       Image: Park waste         Yard waste, park waste       Image: Park waste         Glass, plastic, metal, other inert waste       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      | -                                                                                      |
| Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      | -                                                                                      |
| Yard waste, park waste         Glass, plastic, metal, other inert waste         5) Amount of waste gastified (Vy)         Enter the planned data.         Parameter       Entry         Juit         Amount of waste         Parameter       Entry         Uvi         6) Emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t)         Enter the planned data.         Parameter       Entry         Value       Unit         N <sub>2</sub> O emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         CH <sub>4</sub> emission factor       0.2         Parameter       Entry         Unit       CH <sub>4</sub> emission factor         CH <sub>4</sub> emission factor       0.2         Fry       GHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data         Type of waste i       Weight         Wood       Unit: t/y         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Fraction of carbon content in waste type i(-)         Enter the planned data before the project starts or input the mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      | _                                                                                      |
| Glass, plastic, metal, other inert waste         5) Amount of waste gasified (t/y)         Enter the planned data.         Parameter       Entry         Mount of waste       t/y         6) Emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t)         Enter the planned data.         Parameter       Entry         N <sub>2</sub> O emission factor       47         N <sub>2</sub> O emission factor       0.2         7) Emission factor for CH, emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         (CH <sub>4</sub> emission factor       0.2         1/4 emission factor       0.2      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      | _                                                                                      |
| 5) Amount of waste gasified (t/y) Enter the planned data. Parameter Entry Unit Amount of waste Parameter Entry Unit Amount of waste Parameter Entry Unit N <sub>2</sub> O emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t) Enter the planned data. Parameter Entry Unit N <sub>2</sub> O emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t) Enter the planned data. Parameter Entry Unit CH <sub>4</sub> emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t) Enter the planned data. Parameter Entry Unit CH <sub>4</sub> emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t) Enter the planned data. Parameter Entry Unit CH <sub>4</sub> emission factor for CH <sub>4</sub> emissions from the combustion pf RDF after the project starts 1) Amount of waste type i fed into the RDF (t/y) Enter the planned data before the project starts or input the monitoring data after the project starts . Wood Paper Organic, garbage, beverage (exclude sludge) Fabric Type of waste i Faction of fossil carbon in total carbon of waste type i(-)) Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Faction of fossil carbon in total carbon of waste type i(-) Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Faction of fossil carbon in total carbon of waste type i(-) Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Factor of fossil carbon in total carbon of waste type i(-) Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Factor of fossil carbon in total carbon of waste type i(-) Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Factor of fossil carbon in total carbon of waste type i(-) Enter the planned data before the project starts or input the monitoring data after the project starts . Unit: Wood Paper Organic, garbag |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      | _                                                                                      |
| Enter the planned data.         Amount of waste         Amount of waste         B) Emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t)         Enter the planned data.         Parameter       Entry         N <sub>2</sub> O emission factor       47 lt-N <sub>2</sub> O/t         7) Emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         Unit         CH <sub>4</sub> emission factor       0.2 lt-CH <sub>4</sub> /t         CH <sub>4</sub> emission factor       0.2 lt-CH <sub>4</sub> /t         Unit       CH <sub>4</sub> emission factor       0.2 lt-CH <sub>4</sub> /t         Wood       Unit: t/y       Unit: t/y         Wood       Haper       Unit: t/y         Organic, garbage, beverage (exclude sludge)       Ifer the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of carbon content in waste type i(-)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of carbon content in waste type i(-)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of carbon content in the planned (ata before the project starts or input the monitoring data after the project starts . <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| Parameter       Entry       Unit         Amount of waste       t/y         6) Emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t)         Enter the planned data.         Parameter       Entry         N <sub>2</sub> O emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         Unit         N <sub>2</sub> O emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         Unit         CH <sub>4</sub> emission factor       0.2 t+CH <sub>4</sub> /t         CH <sub>4</sub> emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Weight         Wood       Init: :t/y         Paper       Init: :t/y         Organic, garbage, beverage (exclude sludge)       Init: :t/y         Itabric       Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data after the project starts .       Unit: -         Wood       Fraction of carbon content in waste type i (-)         Paper <td< td=""><td>5)Amo</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5)Amo                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| Amount of waste       t/y         6) Emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t)         Enter the planned data.         Parameter       Entry         N <sub>2</sub> O emission factor       47         File       Kg-O(t)         Enter the planned data.         Parameter       Entry         Unit       Unit         CH <sub>4</sub> emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         CH <sub>4</sub> emission factor       0.2         ter, y       CHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Unit: t/y         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Wood         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Fraction of carbon content in waste type i(-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Wood       Fabric         Ype of waste i       Fraction of carbon content in waste type i(-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of wast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| 6) Emission factor for N <sub>2</sub> O emissions from combustion (kg-N <sub>2</sub> O/t) Enter the planned data. Parameter Paratemer Parameter Parameter Parameter Parameter Para                                                                                                                           |                                          | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Entry                                                                                                                                   | Unit                                                                 |                                                                                        |
| Enter the planned data.       Parameter       Entry       Unit         N2:0 emission factor       47 (t-N2O/t         7) Emission factor for CH, emissions from combustion (kg-CH4/t)         Enter the planned data.         Parameter       Entry       Unit         CH4, emission factor       0.2 (t-CH4/t)         Erry       CH6 emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Mood       Unit : t/y         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Yard waste, park waste         Glass, plastic, metal, other inert waste       Signable, beverage (exclude sludge)         Paper       Organic, garbage, beverage (exclude sludge)         Paper       Unit:         Wood       Unit:         Wood       Unit:         Wood       Unit:         Signable, park waste       Unit:         Glass, plastic, metal, other inert waste       Unit:         Organic, garbage, beverage (exclude sludge)       Fabric         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Type of waste i       Fraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         | t/y                                                                  |                                                                                        |
| Enter the planned data.       Parameter       Entry       Unit         N2:0 emission factor       47 l+N2O/t         7) Emission factor for CH, emissions from combustion (kg-CH4/t)         Enter the planned data.         Parameter       Entry       Unit         CH4 emission factor       0.2 l+CH4/t         Er,y       : GH6 emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Image: Type of waste i       Weight       Unit: t/y         Wood       Unit: t/y         Paper       Organic, garbage, beverage (exclude sludge)       Unit: t/y         Fabric       Image: the project starts or input the monitoring data after the project starts .         Wood       Fabric       Unit:         Wood       Enter the planned data before the project starts or input the monitoring data after the project starts .       Unit:         Wood       Fabric       Unit:         Wood       Fabric       Unit:         Wood       Fabric       Unit:         Yard waste, park waste       Image: Cher input waste       Image: Cher input waste         Glass, plastic, metal, other inert waste       Image: Cher input wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6)Emis                                   | sion factor for N <sub>2</sub> O emissions from combustio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n(kg-N <sub>2</sub> O/t)                                                                                                                |                                                                      | -                                                                                      |
| Parameter     Entry     Unit       N <sub>2</sub> O emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)     47 [t-N <sub>2</sub> O/t       Enter the planned data.     Parameter     Unit       Parameter     Entry     Unit       CH <sub>4</sub> emission factor     0.2 [t-CH <sub>4</sub> /t)       Erry     :     GHG emission from the combustion pf RDF after the project starts       1) Amount of waste type i fed into the RDF (t/y)     Enter the planned data before the project starts or input the monitoring data after the project starts .       Wood     Wood     Unit : t/y       Paper     Ciganic, garbage, beverage (exclude sludge)     Unit : t/y       Class, plastic, metal, other inert waste     Ciganic, garbage, beverage (exclude sludge)     Heraction of carbon content       Paper     Organic, garbage, beverage (exclude sludge)     Fraction of carbon content     Unit : -       Wood     Fabric     Unit : -     Unit : -       Wood     Fraction of carbon content     Unit : -       Wood     Fabric     Unit : -     Unit : -       Yard waste, park waste     Glass, plastic, metal, other inert wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| N <sub>2</sub> O emission factor       47         1:N <sub>2</sub> O/t         7) Emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry         CH <sub>4</sub> emission factor       0.2         ticCH <sub>4</sub> emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Weight         Wood       Paper         Organic, garbage, beverage (exclude sludge)       Fabric         Type of waste i       Fraction of carbon content in waste type i(-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of carbon content in waste type i(-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of carbon content in usate type i(-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of carbon content         Wood       Paper         Organic, garbage, beverage (exclude sludge)       Fabric         Yard waste, park waste <td< td=""><td></td><td></td><td>Entry</td><td>l</td><td>Jnit</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Entry                                                                                                                                   | l                                                                    | Jnit                                                                                   |
| 7) Emission factor for CH <sub>4</sub> emissions from combustion (kg-CH <sub>4</sub> /t)         Enter the planned data.         Parameter       Entry       Unit         CH <sub>4</sub> emission factor       0.2 t-CH <sub>4</sub> /t         Er,y       : GHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data         Image: Type of waste i       Weight         Wood       Paper         Organic, garbage, beverage (exclude sludge)       Image: Starts or input the monitoring data         Fabric       Yard waste, park waste         Glass, plastic, metal, other inert waste       Starts or input the monitoring data         Type of waste i       Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data         Paper       Organic, garbage, beverage (exclude sludge)         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Starts or input the monitoring data         Glass, plastic, metal, other inert waste       Image: Starts or input the monitoring data         Glass, plastic, metal, other inert waste       Image: Starts or input the monitoring data         Glass, plastic, metal, other inert waste       Image: Starts or input the monitoring data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                      |                                                                                        |
| Enter the planned data.       Entry       Unit         Parameter       Entry       Unit         CH <sub>4</sub> emission factor       0.2 t+CH <sub>4</sub> /t         Er,y       : GHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Image: Type of waste i       Weight         Wood       Image: Type of waste i         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Image: Type of waste i         Yard waste, park waste       Image: Type of waste i         Type of waste i       Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Wood       Image: Type of waste i         Type of waste i       Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data after the project starts .         Wood       Image: Type of waste i         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Image: Type of waste i         Glass, plastic, metal, other inert waste       Image: Type of waste i         Glass, plastic, metal, other inert waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | N <sub>2</sub> O emission factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                         | t-N <sub>a</sub> O/t                                                 |                                                                                        |
| Parameter       Entry       Unit         CH <sub>4</sub> emission factor       0.2 t-CH <sub>4</sub> /t         Er,y       :       GHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       after the planned data before the project starts or input the monitoring data         Type of waste i       Weight         Wood       Unit: t/y         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Glass, plastic, metal, other inert waste         2) Fraction of carbon content in waste type i (-)       Enter the planned data before the project starts or input the monitoring data         Type of waste i       Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data         Type of waste i       Fraction of carbon content         Wood       Unit: -         Wood       Unit: -         Wood       Unit: -         Wood       Unit: -         Wood       Inter the project starts or input the monitoring data         After the project starts       Unit: -         Wood       Inter the project starts or input the monitoring data         After the project starts or input the monitoring data       after the project starts .         Unit: -       Vard wast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47                                                                                                                                      | t-N <sub>2</sub> O/t                                                 |                                                                                        |
| CH4 emission factor       0.2       t-CH4/t         Er,y       :       GHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Image: Type of waste i       Weight         Wood       Wood         Paper       Unit : t/y         Organic, garbage, beverage (exclude sludge)       Image: the project starts or input the monitoring data after the project starts .         2) Fraction of carbon content in waste type i (-)       Enter the planned data before the project starts or input the monitoring data after the project starts .         Wood       Image: the planned data before the project starts or input the monitoring data after the project starts .         Unit : -       Wood         Paper       Image: the planned data before the project starts or input the monitoring data after the project starts .         Unit : -       Wood         Paper       Image: the planned data before the project starts or input the monitoring data after the project starts .         Wood       Image: the planned data before the project starts or input the monitoring data after the project starts .         Wood       Image: the planned data before the project starts or input the monitoring data after the project starts .         Wood       Image: the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (7) Emis                                 | ssion factor for $CH_4$ emissions from combustio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47                                                                                                                                      | t-N <sub>2</sub> O/t                                                 |                                                                                        |
| Er,y       : GHG emission from the combustion pf RDF after the project starts         1) Amount of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts or input the monitoring data<br>Type of waste i       after the project starts .         Unit : t/y         Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (7) Emis                                 | sion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47<br>n (kg-CH₄/t)                                                                                                                      | -                                                                    |                                                                                        |
| 1) Amount of waste type i fed into the RDF (t/y)       Enter the planned data before the project starts or input the monitoring data after the project starts .       after the project starts .         Wood       Weight       Unit : t/y         Wood       Paper       Unit : t/y         Organic, garbage, beverage (exclude sludge)       If the project starts .       Unit : t/y         Yard waste, park waste       If the planned data before the project starts or input the monitoring data after the project starts .       If the project starts .         2) Fraction of carbon content in waste type i(-)       Enter the planned data before the project starts or input the monitoring data after the project starts .       If the project starts .         Wood       Paper       Unit : -       Unit : -         Wood       Paper       Unit : -         Organic, garbage, beverage (exclude sludge)       If the project starts .       Unit : -         Yard waste, park waste       If the planned data before the project starts or input the monitoring data after the project starts .       If the project starts .         3) Fraction of fossil carbon in total carbon of waste type i(-))       Enter the planned data before the project starts or input the monitoring data after the project starts .       If the project starts .         Wood       Paper       If the project starts or input the monitoring data after the project starts .       Unit : -         Wood <t< td=""><td>(7)Emis</td><td>Enter the planned data.<br/>Parameter</td><td>47<br/>n (kg-CH₄/t)</td><td>-<br/>  (</td><td>Jnit</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (7)Emis                                  | Enter the planned data.<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47<br>n (kg-CH₄/t)                                                                                                                      | -<br>  (                                                             | Jnit                                                                                   |
| Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (7) Emis                                 | Enter the planned data.<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47<br>n (kg-CH₄/t)<br>Entry                                                                                                             | -<br>  (                                                             | Jnit                                                                                   |
| Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ²Er,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         2) Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data         Type of waste i         Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         S) Fraction of fossil carbon in total carbon of waste type i (-))         Enter the planned data before the project starts or input the monitoring data         Type of waste i       Fraction of fossil carbon         Wood       Inpaper         Organic, garbage, beverage (exclude sludge)       Inpaper         Organic, garbage, beverage (exclude sludge)       Inpaper         Organic, garbage, beverage (exclude sludge)       Inpaper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PEr,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °Er,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °Er,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Glass, plastic, metal, other inert waste         2) Fraction of carbon content in waste type i (-)         Enter the planned data before the project starts or input the monitoring data         Type of waste i         Fraction of carbon content         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         3) Fraction of fossil carbon in total carbon of waste type i(-))         Enter the planned data before the project starts or input the monitoring data         Type of waste i         Fraction of fossil carbon in total carbon of waste type i(-))         Enter the planned data before the project starts or input the monitoring data         Type of waste i         Fraction of fossil carbon         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Anter the project starts or input the monitoring data         Type of waste i         Fraction of fossil carbon         Mood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | °Er,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| 2) Fraction of carbon content in waste type i (-)       after the planned data before the project starts or input the monitoring data         Type of waste i       Fraction of carbon content         Wood       Image: Content in the planned data before the project starts or input the monitoring data         Paper       Image: Content in the planned data before the project starts or input the monitoring data         Organic, garbage, beverage (exclude sludge)       Image: Content in the planned data before the project starts or input the monitoring data         Glass, plastic, metal, other inert waste       Image: Content in total carbon of waste type i(-))         Enter the planned data before the project starts or input the monitoring data       after the project starts .         Type of waste i       Fraction of fossil carbon       Image: Content in total carbon of waste type i(-))         Enter the planned data before the project starts or input the monitoring data       after the project starts .         Wood       Image: Content in the planned data before the project starts or input the monitoring data       after the project starts .         Wood       Image: Content in the planned data before the project starts or input the monitoring data       after the project starts .         Wood       Image: Content in the planned data before the project starts or input the monitoring data       after the project starts .         Wood       Image: Content in the planned data before the project starts or input the monitoring data<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | °Er,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)<br/>Fabric</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Enter the planned data before the project starts or input the monitoring data after the project starts .       Image: Type of waste i Fraction of carbon content         Wood       Image: Type of waste i Fraction of carbon content       Unit:         Wood       Image: Type of waste i Fraction of carbon content       Unit:         Organic, garbage, beverage (exclude sludge)       Image: Type of waste i Fraction of fossil carbon in total carbon of waste type i (-))       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fraction of fossil carbon in total carbon of waste type i (-))         Enter the planned data before the project starts or input the monitoring data after the project starts .       Image: Type of waste i Fraction of fossil carbon         Wood       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fraction of fossil carbon         Wood       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fraction of fossil carbon         Mood       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fraction of fossil carbon         Mood       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fraction of fossil carbon         Fabric       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fraction of fossil carbon         Paper       Image: Type of waste i Fraction of fossil carbon       Image: Type of waste i Fractin the project starts i type of waste i Fraction the type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ²Er,y                                    | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)</li> <li>Enter the planned data before the project starts</li> <li>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Type of waste i       Fraction of carbon content       Unit:         Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <mark>PEr,y</mark><br>(1) Amo            | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor                                                  | t-CH₄/t<br><b>ct starts</b><br>itoring data                          | a after the project starts .                                                           |
| Wood       Paper         Organic, garbage, beverage (exclude sludge)       Paper         Organic, garbage, beverage (exclude sludge)       Paper         Yard waste, park waste       Paper         Glass, plastic, metal, other inert waste       Paper         3) Fraction of fossil carbon in total carbon of waste type i (-))       Enter the planned data before the project starts or input the monitoring data         Type of waste i       Fraction of fossil carbon         Wood       Unit :         Wood       Paper         Organic, garbage, beverage (exclude sludge)       Papirc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <mark>PEr,y</mark><br>(1) Amo            | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y                                             |
| Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mark>PEr,y</mark><br>(1) Amo            | <ul> <li>sion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         3) Fraction of fossil carbon in total carbon of waste type i (-))         Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of fossil carbon         Wood       Unit :         Wood       Paper         Organic, garbage, beverage (exclude sludge)       Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <mark>PEr,y</mark><br>1) Amo             | <ul> <li>sion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Fabric       Yard waste, park waste         Yard waste, park waste       Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste       Glass, plastic, metal, other inert waste         3) Fraction of fossil carbon in total carbon of waste type i (-))       Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of fossil carbon         Wood       Unit :         Wood       Paper         Organic, garbage, beverage (exclude sludge)       Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <mark>PEr,y</mark><br>1) Amo             | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Yard waste, park waste       Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste       Glass, plastic, metal, other inert waste         3) Fraction of fossil carbon in total carbon of waste type i (-))       Enter the planned data before the project starts or input the monitoring data after the project starts .         Type of waste i       Fraction of fossil carbon         Wood       Unit :         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <mark>PEr,y</mark><br>1) Amo             | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Glass, plastic, metal, other inert waste         3) Fraction of fossil carbon in total carbon of waste type i (-))         Enter the planned data before the project starts or input the monitoring data         Type of waste i         Fraction of fossil carbon         Unit :         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEr,y<br>1) Amo                          | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)</li> </ul>                                                                                                                                                                                                                                                                                                  | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Glass, plastic, metal, other inert waste         3) Fraction of fossil carbon in total carbon of waste type i (-))         Enter the planned data before the project starts or input the monitoring data         Type of waste i         Fraction of fossil carbon         Unit :         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEr,y<br>1) Amo                          | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)</li> </ul>                                                                                                                                                                                                                                                                                                  | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| 3) Fraction of fossil carbon in total carbon of waste type i (-)) Enter the planned data before the project starts or input the monitoring data Type of waste i Type of waste i Fraction of fossil carbon Unit : Unit : Unit : Organic, garbage, beverage (exclude sludge) Fabric Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PEr,y<br>1) Amo                          | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.<br/>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric</li> </ul>                                                                                                                                                                                                                                                                                                                                 | 47<br>n (kg-CH <sub>4</sub> /t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigl                                         | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Enter the planned data before the project starts or input the monitoring data       after the project starts .         Type of waste i       Fraction of fossil carbon         Wood       Unit :         Paper       Organic, garbage, beverage (exclude sludge)         Fabric       Image: Construction of the project starts is                                                                                                                                                                                                                                                                                                                                         | P <mark>Er,y</mark><br>1) Amo<br>2) Frac | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)<br/>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste tion of carbon content in waste type i (-)</li> <li>Enter the planned data before the project starts</li> <li>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste</li> </ul>                                                                                                                                                         | 47<br>n (kg-CH4/t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigh<br>Weigh<br>Grinput the mor<br>Fraction of cark      | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Type of waste i     Fraction of fossil carbon     Unit: —       Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PEr,y<br>(1) Amo<br>(2) Frac             | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter</li> <li>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)<br/>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste tion of carbon content in waste type i (-)</li> <li>Enter the planned data before the project starts</li> <li>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste</li> </ul>                                                                                                                                                         | 47<br>n (kg-CH4/t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigh<br>Weigh<br>Grinput the mor<br>Fraction of cark      | t-CH₄/t<br>ct starts                                                 | a after the project starts .<br>Unit : t/y<br>a after the project starts .             |
| Wood Paper Organic, garbage, beverage (exclude sludge) Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P <mark>Er,y</mark><br>1) Amo<br>2) Frac | ssion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.<br>Parameter<br>CH <sub>4</sub> emission factor<br><b>GHG emission from the combustion pf RDI</b><br>unt of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of fossil carbon in total carbon of waste ty                                                                                                                                                                                                                                               | 47<br>n (kg-CH4/t)<br>Entry<br>0.2<br>after the proje<br>or input the mor<br>Weigh<br>Weigh<br>Grinput the mor<br>Fraction of cark      | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>boon content | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |
| Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 'Er,y<br>1) Amo<br>2) Frac               | <ul> <li>ssion factor for CH<sub>4</sub> emissions from combustio<br/>Enter the planned data.</li> <li>Parameter<br/>CH<sub>4</sub> emission factor</li> <li>GHG emission from the combustion pf RDI<br/>unt of waste type i fed into the RDF (t/y)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of carbon content in waste type i (-)<br/>Enter the planned data before the project starts<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Type of waste i<br/>Wood<br/>Paper<br/>Organic, garbage, beverage (exclude sludge)<br/>Fabric<br/>Yard waste, park waste<br/>Glass, plastic, metal, other inert waste<br/>tion of fossil carbon in total carbon of waste ty<br/>Enter the planned data before the project starts</li> </ul>                                                                                                                                         | 47<br>n (kg-CH4/t)<br>Entry<br>after the proje<br>or input the mor<br>Weigh<br>or input the mor<br>Fraction of cark<br>Fraction of cark | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>itoring data | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |
| Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 'Er,y<br>1) Amo<br>2) Frac               | ssion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.<br>Parameter<br>CH <sub>4</sub> emission factor<br><b>GHG emission from the combustion pf RDI</b><br>unt of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of fossil carbon in total carbon of waste ty<br>Enter the planned data before the project starts<br>Type of waste i                                                                                                                                                                        | 47<br>n (kg-CH4/t)<br>Entry<br>after the proje<br>or input the mor<br>Weigh<br>or input the mor<br>Fraction of cark<br>Fraction of cark | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>itoring data | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |
| Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PEr,y<br>(1) Amo<br>(2) Frac             | ssion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.<br>Parameter<br>CH <sub>4</sub> emission factor<br><b>GHG emission from the combustion pf RDI</b><br>unt of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of fossil carbon in total carbon of waste ty<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood                                                                                                                                                                | 47<br>n (kg-CH4/t)<br>Entry<br>after the proje<br>or input the mor<br>Weigh<br>or input the mor<br>Fraction of cark<br>Fraction of cark | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>itoring data | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEr,y<br>(1) Amo<br>(2) Frac             | ssion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.<br>Parameter<br>CH <sub>4</sub> emission factor<br><b>GHG emission from the combustion pf RDI</b><br>unt of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of fossil carbon in total carbon of waste ty<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper                                                                                                                                                       | 47<br>n (kg-CH4/t)<br>Entry<br>after the proje<br>or input the mor<br>Weigh<br>or input the mor<br>Fraction of cark<br>Fraction of cark | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>itoring data | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |
| Yard waste park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEr,y<br>(1) Amo<br>(2) Frac             | ssion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.<br>Parameter<br>CH <sub>4</sub> emission factor<br><b>GHG emission from the combustion pf RDI</b><br>unt of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of fossil carbon in total carbon of waste ty<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                              | 47<br>n (kg-CH4/t)<br>Entry<br>after the proje<br>or input the mor<br>Weigh<br>or input the mor<br>Fraction of cark<br>Fraction of cark | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>itoring data | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PEr,y<br>(1)Amo<br>(2)Frac               | ssion factor for CH <sub>4</sub> emissions from combustio<br>Enter the planned data.<br>Parameter<br>CH <sub>4</sub> emission factor<br><b>GHG emission from the combustion pf RDI</b><br>unt of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of fossil carbon in total carbon of waste ty<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric | 47<br>n (kg-CH4/t)<br>Entry<br>after the proje<br>or input the mor<br>Weigh<br>or input the mor<br>Fraction of cark<br>Fraction of cark | t-CH₄/t<br>ct starts<br>itoring data<br>itoring data<br>itoring data | a after the project starts .<br>Unit : t/y<br>a after the project starts .<br>Unit : — |

Glass, plastic, metal, other inert waste

### (4) Combustion efficiency for waste (-)

Enter the planned data before the project starts or input the monitoring data after the project starts .
Type of waste i
Combustion efficiency
Unit : -

|                                         | Type of waste i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Compusiion                                        | enciency                                                   |                             |                |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|-----------------------------|----------------|
|                                         | Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |                                                            |                             |                |
|                                         | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                                                            | 1                           |                |
|                                         | Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                            |                             |                |
|                                         | Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                            | 1                           |                |
|                                         | Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |                                                            |                             |                |
|                                         | Glass, plastic, metal, other inert waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |                                                            |                             |                |
| (5) Am                                  | ount of waste type i fed into the RDF (t/y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |                                                            | -                           |                |
|                                         | Enter the planned data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                            |                             |                |
|                                         | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entry                                             | Unit                                                       | ]                           |                |
|                                         | Amount of waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   | t/y                                                        |                             |                |
| (6)Emi                                  | ission factor for N <sub>2</sub> O emissions from combustion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on (kg-N <sub>2</sub> O/t)                        |                                                            | -                           |                |
|                                         | Enter the planned data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                            |                             |                |
|                                         | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Entry                                             | U                                                          | nit                         |                |
|                                         | N <sub>2</sub> O emission factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | t-N <sub>2</sub> O/t                                       |                             |                |
| (7)Emi                                  | ission factor for CH <sub>4</sub> emissions from combustic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n (ka-CH./t)                                      | -                                                          |                             |                |
| (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Enter the planned data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |                                                            |                             |                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Entry                                             | 1 1                                                        | nit                         |                |
|                                         | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |                                                            |                             |                |
|                                         | Parameter<br>CH, emission factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Linuy                                             |                                                            | int                         |                |
|                                         | Parameter<br>CH <sub>4</sub> emission factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Litty                                             | t-CH₄/t                                                    |                             |                |
|                                         | CH <sub>4</sub> emission factor<br>: GHG emissions from waste incineration af                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ter the project s                                 | t-CH₄/t                                                    |                             |                |
|                                         | CH <sub>4</sub> emission factor<br>: GHG emissions from waste incineration aff<br>ount of waste type i fed into the incineration (t/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ter the project s                                 | t-CH₄/t                                                    |                             | is state to    |
|                                         | <ul> <li>CH₄ emission factor</li> <li>GHG emissions from waste incineration afform out of waste type i fed into the incineration (t/g<br/>Enter the planned data before the project starts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | ject starts .  |
|                                         | <ul> <li>CH₄ emission factor</li> <li>GHG emissions from waste incineration afform out of waste type i fed into the incineration (t/y Enter the planned data before the project starts Type of waste i</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            | ter the project s                                 | t-CH₄/t<br>starts                                          |                             | oject starts . |
|                                         | CH₄ emission factor<br>: GHG emissions from waste incineration aff<br>ount of waste type i fed into the incineration (t/y<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood                                                                                                                                                                                                                                                                                                                                                                                                                                     | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | oject starts . |
|                                         | CH <sub>4</sub> emission factor<br>: GHG emissions from waste incineration aff<br>ount of waste type i fed into the incineration (t/y<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper                                                                                                                                                                                                                                                                                                                                                                                                                | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | oject starts . |
|                                         | CH <sub>4</sub> emission factor<br><b>GHG emissions from waste incineration aff</b><br><b>ount of waste type i fed into the incineration (t/y</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                     | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | oject starts . |
|                                         | CH <sub>4</sub> emission factor<br><b>GHG emissions from waste incineration aff</b><br><b>ount of waste type i fed into the incineration (t/y</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                                                                                                                                                                                                                                                                           | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | oject starts . |
| PEi,y<br>(1) Amo                        | <ul> <li>CH₄ emission factor</li> <li>GHG emissions from waste incineration aff<br/>ount of waste type i fed into the incineration (t/y<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> </ul>                                                                                                                                                                                                                                                                                | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | oject starts . |
| (1)Ăm                                   | <ul> <li>CH₄ emission factor</li> <li>GHG emissions from waste incineration aff<br/>ount of waste type i fed into the incineration (t/y<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste</li> </ul>                                                                                                                                                                                                                              | ter the project s<br>/)                           | t-CH₄/t<br>starts                                          | after the pro               | oject starts . |
| (1)Ăm                                   | CH <sub>4</sub> emission factor<br><b>GHG emissions from waste incineration aff</b><br><b>ount of waste type i fed into the incineration (t/y</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>ction of carbon content in waste type i (-)                                                                                                                                                                                                                      | ter the project s<br>)<br>or input the mo<br>Weic | t-CH <sub>4</sub> /t                                       | after the pro<br>Unit:t/y   |                |
| (1)Ăm                                   | CH <sub>4</sub> emission factor<br><b>GHG emissions from waste incineration aff</b><br><b>ount of waste type i fed into the incineration (t/y</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>ction of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts                                                                                                                                                           | er the project s                                  | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |
| (1)Ăm                                   | <ul> <li>CH₄ emission factor</li> <li>GHG emissions from waste incineration aff<br/>ount of waste type i fed into the incineration (t/y<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste</li> <li>ction of carbon content in waste type i (-)</li> <li>Enter the planned data before the project starts</li> </ul>                                                                                                               | ter the project s<br>)<br>or input the mo<br>Weic | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |
| (1)Ăm                                   | <ul> <li>CH₄ emission factor</li> <li>GHG emissions from waste incineration aff<br/>ount of waste type i fed into the incineration (t/y<br/>Enter the planned data before the project starts<br/>Type of waste i</li> <li>Wood</li> <li>Paper</li> <li>Organic, garbage, beverage (exclude sludge)</li> <li>Fabric</li> <li>Yard waste, park waste</li> <li>Glass, plastic, metal, other inert waste</li> <li>ction of carbon content in waste type i (-)</li> <li>Enter the planned data before the project starts</li> <li>Type of waste i</li> <li>Wood</li> </ul>                                                                        | er the project s                                  | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |
| (1)Ăm                                   | CH₄ emission factor         : GHG emissions from waste incineration aff         ount of waste type i fed into the incineration (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         ction of carbon content in waste type i (-)         Enter the planned data before the project starts         Type of waste i         Wood                                                                                        | er the project s                                  | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |
| (1)Ăm                                   | CH₄ emission factor         : GHG emissions from waste incineration aff         ount of waste type i fed into the incineration (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         ction of carbon content in waste type i (-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)                      | er the project s                                  | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |
| (1)Ăm                                   | CH₄ emission factor         :       GHG emissions from waste incineration aff         ount of waste type i fed into the incineration (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         ction of carbon content in waste type i (-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric | er the project s                                  | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |
| (1)Ăm                                   | CH₄ emission factor         : GHG emissions from waste incineration aff         ount of waste type i fed into the incineration (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         ction of carbon content in waste type i (-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)                      | er the project s                                  | t-CH₄/t<br>starts<br>nitoring data<br>ght<br>nitoring data | after the pro<br>Unit : t/y |                |

Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Fraction of fossil carbon Unit : --

| Wood                                        |  |
|---------------------------------------------|--|
| Paper                                       |  |
| Organic, garbage, beverage (exclude sludge) |  |
| Fabric                                      |  |
| Yard waste, park waste                      |  |
|                                             |  |

# Glass, plastic, metal, other inert waste (4) Combustion efficiency for waste (-)

Enter the planned data before the project starts or input the monitoring data after the project starts . t: -

| I ype of waste i                            | Compussion efficiency | Unit |
|---------------------------------------------|-----------------------|------|
| Wood                                        |                       |      |
| Paper                                       |                       |      |
| Organic, garbage, beverage (exclude sludge) |                       |      |
| Fabric                                      |                       |      |
| Yard waste, park waste                      |                       |      |
| Glass, plastic, metal, other inert waste    |                       |      |
|                                             |                       |      |

## (5) Amount of waste incinerated (t/y)

## Enter the planned data.

Parameter Entry Unit t/y

### Amount of waste (6) Emission factor for $N_2O$ emissions from combustion (kg- $N_2O/t$ )

Enter the planned data.

| Parameter                        | Entry | Unit                 |
|----------------------------------|-------|----------------------|
| N <sub>2</sub> O emission factor |       | t-N <sub>2</sub> O/t |

# (7) Emission factor for $CH_4$ emissions from combustion (kg- $CH_4/t$ )

| Enter the planned data.         |       |         |
|---------------------------------|-------|---------|
| Parameter                       | Entry | Unit    |
| CH <sub>4</sub> emission factor |       | t-CH₄/t |

| PEw,y<br>(1)Amo | ount of wastewater treated anaerobically or rele              | ased untreated            | from the p           | -             |                             |
|-----------------|---------------------------------------------------------------|---------------------------|----------------------|---------------|-----------------------------|
|                 | Enter the planned data before the project starts<br>Parameter | or input the mon<br>Entry | itoring data<br>Unit | after the p   | project starts .            |
|                 | Amount of wastewater after project                            | 70,000                    |                      |               |                             |
| (2)Che          | mical oxygen demand (COD) of wastewater aft                   |                           |                      | $D/m^3$ )     |                             |
| (2)0110         | Enter the planned data before the project starts              |                           |                      |               | proiect starts.             |
|                 | Parameter                                                     | Entry                     |                      | nit           |                             |
|                 | COD of wastewater                                             | 0.00003                   | t-COD/m <sup>3</sup> |               |                             |
| (3)Max          | imum methane producing capacity (t-CH <sub>4</sub> /t-CO      | D)                        | -                    |               | •                           |
|                 | Use 0.265 as IPCC default value.                              |                           |                      |               | _                           |
|                 | Parameter                                                     | Entry                     | _                    | nit           |                             |
|                 | Maximum CH <sub>4</sub> producing capacity                    | 0.265                     | t-CH₄/               | t-COD         |                             |
| (4)Metl         | nane correction factor (-)                                    |                           |                      |               | -                           |
|                 | Data/ information specific to the target country s            | hould be prefera          | bly used fo          | r calculation | n. Data availability should |
|                 | i) National default                                           |                           |                      |               |                             |
|                 | ii)IPCC Guideline default data                                |                           | 1                    | I             |                             |
|                 | Parameter                                                     | Entry                     | Unit                 |               |                             |
|                 | CH <sub>4</sub> correction factor                             | 0.8                       | -                    |               |                             |
|                 | Source: 2006 IPCC Guidelines for Na                           | tional Greenhou           | se Gas Inve          | entories Vo   | lume 5 Waste table6.3       |
|                 |                                                               |                           |                      |               |                             |
| A Othe          | r conditions                                                  |                           |                      |               |                             |

XX year after the project

<u>10</u>year y≦10

Entry Select from the list/input

# Calculation Sheet : Before the Project starts

SAMPLE : Intermediate treatment of the waste

GHG emission reduction after project activity(t-CO<sub>2</sub>/y) ERy = BEy - PEy (t-CO<sub>2</sub>/y)

# 1. Baseline emission $BE_y = MB_y - MD_{reg,y} + BE_{EN,y}$

| BE <sub>y</sub>        | Baseline emission:<br>GHG emission from CH <sub>4</sub> released into the atmosphere<br>before the project starts which the waste treatment is<br>installed                 | 85 448 | t-CO <sub>2</sub> /y |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| <b>MB</b> <sub>y</sub> | GHG emission from methane produced in landfill before the project starts                                                                                                    | 77,222 | t-CO <sub>2</sub> /y |
| MD <sub>reg,y</sub>    | GHG emission reduction of methane destroyed by<br>national regulation before the project star<br>This shall be "0" where developing countries have a very few<br>regulation | 0      | t-CO₂/y              |
| BE <sub>EN,y</sub>     | CO <sub>2</sub> emissions from generation of energy displaced by the project activity                                                                                       | 8,226  | t-CO <sub>2</sub> /y |

# **2.** Project emission $PE_y = PE_{EC,y} + PE_{FC,y} + PE_{e,y} + PE_{a,y} + PE_{g,y} + PE_{r,y} + PE_{i,y} + PE_{w,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission after the project star                                                                                                                                                                                                               | 2,024 | t-CO <sub>2</sub> /y |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| РЕ <sub>ЕС,у</sub> | GHG emission from electricity consumption after the<br>project starts                                                                                                                                                                                                  | 448   | t-CO <sub>2</sub> /y |
| РЕ <sub>FC,y</sub> | GHG emission from fossil fuel consumption after the<br>project starts                                                                                                                                                                                                  | 1,462 | t-CO <sub>2</sub> /y |
| PEc,y              | GHG emission during the composting process after the project star<br>If CH <sub>4</sub> produced in the composting process is recovered and destroyed by energy generation or flare after the project starts, this term shall be neglected.                            |       | t-CO₂/y              |
| PEa,y              | GHG emission from the anaerobic digestion process after<br>the project starts<br>If CH <sub>4</sub> produced in the anaerobic digestion process is<br>recovered and destroyed by energy generation or flare after the<br>project starts, this term shall be neglected. | 105   | t-CO₂/y              |
| PEg,y              | GHG emission from the gasification process after the<br>project starts                                                                                                                                                                                                 | 0     | t-CO <sub>2</sub> /y |
| PEr,y              | GHG emission from the combustion of RDF after the project starts                                                                                                                                                                                                       | 0     | t-CO <sub>2</sub> /y |
| PEi,y              | GHG emissions from waste incineration after the project starts                                                                                                                                                                                                         | 0     | t-CO <sub>2</sub> /y |
| PEw,y              | GHG emissions from wastewater treatment after the project starts                                                                                                                                                                                                       | 9     | t-CO <sub>2</sub> /y |

# 3. GHG emission reduction after project activity ERy = BEy - PEy (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                                                                               | 83,424 | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from CH <sub>4</sub> released into the atmosphere<br>before the project starts which the waste treatment is<br>installed | 85 448 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project starts                                                                                                  | 2,024  | t-CO <sub>2</sub> /y |

# Input Sheet : After the Project starts

Project name

SAMPLE : Intermediate treatment of waste

| 1 Information of the aurout Diana                                                                             |                      |                           |                  |                                    |
|---------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|------------------|------------------------------------|
| 1. Information of the current Biogas<br>(1) Model correction factor to account<br>Enter 0.9 as default value. | for model uncer      | tainties                  | Defau            | lt value in red                    |
| Parameter                                                                                                     |                      | Entry                     | Unit             | 1                                  |
| Model correction factor to acco                                                                               | ount for model       |                           |                  |                                    |
| uncertainties                                                                                                 |                      | 0.9                       | MWh/y            |                                    |
| (2)Oxidation factor                                                                                           |                      |                           |                  |                                    |
| Enter the default value 0.1 (co                                                                               | vered) or 0 (not c   |                           |                  | 1                                  |
| Parameter<br>Oxidation factor                                                                                 |                      | Entry                     | Unit<br>MWh/y    |                                    |
| (3) Fraction of methane in Biogas from                                                                        | landfill             | 0.0                       | IVI V M/ Y       | 1                                  |
| Enter 0.5 as default value.                                                                                   | inananini            |                           |                  |                                    |
| Parameter                                                                                                     |                      | Entry                     | Unit             |                                    |
| Fraction of methane in Biogas                                                                                 |                      | 0.5                       | -                |                                    |
| (4) Fraction of degradable organic car                                                                        | bon (DOC) that c     | an decompose              |                  | -                                  |
| Enter 0.5 as default value.                                                                                   |                      |                           |                  |                                    |
| Parameter                                                                                                     |                      | Entry                     | Unit             |                                    |
| Fraction of degradable organic                                                                                | c carbon (DOC)       | 0.5                       | _                |                                    |
| that can decompose                                                                                            |                      | 0.0                       |                  |                                    |
| (5) Methane correction factor in Bioga                                                                        |                      | ma (Defente A             | n e n div        |                                    |
| Methane correction factor accorection factor accorection                                                      | ording to Biogas t   | Vpe (Refer to Ap<br>Entry | pendix).<br>Unit | 1                                  |
| Methane correction factor in B                                                                                | ionas                | 0.8                       | -                | •                                  |
| (6) Annual weight of waste prevented                                                                          | from disposal at     |                           | the projec       | l<br>starts                        |
| Enter the planned data before                                                                                 |                      |                           |                  |                                    |
| Parameter                                                                                                     |                      | Entry                     | Unit             |                                    |
| Total weight of waste                                                                                         | 1st year             | 182,500                   | t/y              |                                    |
|                                                                                                               | 2nd year             |                           |                  |                                    |
|                                                                                                               | 3rd year             |                           |                  |                                    |
|                                                                                                               | 4th year<br>5th year |                           |                  |                                    |
|                                                                                                               | 6th year             | 182,500                   |                  |                                    |
|                                                                                                               | 7th year             | 182,500                   |                  |                                    |
|                                                                                                               | 8th year             | 182,500                   |                  |                                    |
|                                                                                                               | 9th year             | 182,500                   |                  |                                    |
|                                                                                                               | 10th year            | 182,500                   |                  |                                    |
| (7)Composition of solid waste                                                                                 |                      |                           | . teo da la Tarr |                                    |
| Enter the planned data before<br>Parameter                                                                    | e the project starts | Entry                     | Unit             | a anter the project startss .      |
| Wood                                                                                                          |                      |                           | %                |                                    |
| Paper                                                                                                         |                      |                           | %                |                                    |
| Organic, garbage, beverage (e                                                                                 | exclude sludge)      | 44                        | %                |                                    |
| Fabric                                                                                                        | ~ /                  |                           | %                |                                    |
| Yard waste, park waste                                                                                        |                      | 19                        |                  |                                    |
| Glass, plastic, metal, other ine                                                                              |                      | 24                        |                  |                                    |
| (8) Fraction of degradable organic car                                                                        |                      |                           |                  |                                    |
| should be validated in the follo                                                                              |                      |                           |                  | for calculation. Data availability |
| ii) National default                                                                                          |                      |                           | 115.             |                                    |
| iii) IPCC Guideline default data                                                                              | а                    |                           |                  |                                    |
| Parameter                                                                                                     | u                    | Entry                     | Unit             |                                    |
| Wood                                                                                                          |                      | 43                        | %                |                                    |
| Paper                                                                                                         |                      |                           | %                |                                    |
| Organic, garbage, beverage (e                                                                                 | exclude sludge)      | 15                        | %                |                                    |
| Fabric                                                                                                        |                      | 24                        | %                |                                    |
| Yard waste, park waste                                                                                        | rt wooto             | 20                        | %                |                                    |
| Glass, plastic, metal, other ine                                                                              | en waste             | 0                         | %                |                                    |

### (9) Decay rate of degradable organic carbon according to waste type

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

ii) National default

iii) IPCC Guideline default data

| Parameter                                   | Entry | Unit |
|---------------------------------------------|-------|------|
| Wood                                        | 0.035 | -    |
| Paper                                       | 0.070 | -    |
| Organic, garbage, beverage (exclude sludge) | 0.400 | -    |
| Fabric                                      | 0.070 | -    |
| Yard waste, park waste                      | 0.170 | -    |

# 2. Information of electricity and thermal energy generation by using biogas

BE<sub>ENv</sub> : CO2 emissions from generation of energy displaced by the project activity

### (1) Amount of electricity and quantity of thermal energy using Biogas after the project starts(MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts .

| Parameter                                   | Entry | Unit  |
|---------------------------------------------|-------|-------|
| Amount of electricity produced using Biogas | 1,000 | MWh/y |
| Amount of thermal energy produced           | 100   | TJ/y  |

## (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO2 emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

|                                            |       | 1.1.1.                 |
|--------------------------------------------|-------|------------------------|
| Parameter                                  | Entry | Unit                   |
| Emission factor of the typical power plant | 0.896 | t-CO <sub>2</sub> /MWh |
| Source: Interview to XX company of         |       |                        |

### (3)CO2 emission factor of heat generated (t-CO2/TJ)

|                 | Parameter                                         |              | Entry       | Unit                  |
|-----------------|---------------------------------------------------|--------------|-------------|-----------------------|
|                 | n factor per unit of energy of the boiler fuel    | Fuel type    | 73.3        | t-CO <sub>2</sub> /TJ |
| consumption i   | in the absence of project                         | Petroleum    |             |                       |
| Boiler efficien | су                                                |              | 100         | %                     |
| Rate of heat g  | generation from boiler out of the heat generation | using        | 1           | —                     |
| CO2 emission    | n factor per heat generated                       |              | 73.3        | t-CO <sub>2</sub> /TJ |
| Source:         | 2006 IPCC Guidelines for National Greenh          | ouse Gas Inv | entories Vo | lume 2 Energy         |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table2.2

### 3. Project information

PE<sub>elec.v</sub> : GHG emission from electricity consumption after the project starts

PE<sub>fuel,y</sub> : GHG emission from fossil fuel consumption after the project starts

(1) The electricity and fuel consumption after the project starts in the Biogas recovery facilities (MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts .

| Parameter                     |                 | Entry | Unit              |
|-------------------------------|-----------------|-------|-------------------|
| Amount of electricity consump | otion after the | 500   | MWh/y             |
|                               | Petroleum       | 500   | kL/y              |
| Amount of fuel consumption    | Coal            | 50    | t/y               |
| after the project starts      | Gas             | 100   | m <sup>3</sup> /y |
|                               | Others          |       |                   |

### (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO2 emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

| Parameter                                  | Entry      | Unit                   |
|--------------------------------------------|------------|------------------------|
| Emission factor of the typical power plant | 0.896      | t-CO <sub>2</sub> /MWh |
| Source: Interview to XX company of X       | XX country |                        |

### (3) Net caloric value according to fuel type

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

i) Project-specific values obtained through interview to electricity management entity concerned

ii) National default

iii) IPCC Guideline default data

| Parameter |              | Net calor | ific value | CO2 emiss | sion factor           |
|-----------|--------------|-----------|------------|-----------|-----------------------|
| Petroleum |              | 36.3      | GJ/kL      | 73.3      | t-CO <sub>2</sub> /TJ |
| Coal      |              | 26.7      | GJ/t       | 98.3      | t-CO <sub>2</sub> /TJ |
| Gas       |              | 0.0384    | GJ/m3      | 56.1      | t-CO <sub>2</sub> /TJ |
| Others    |              |           |            |           | t-CO <sub>2</sub> /TJ |
| Source:   | Interview to | o XX      |            |           |                       |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

./m<sup>:</sup>

# PEc,y : GHG emission during the composting process after the project starts

# (1) Quantity of organic waste composed (t/y)

Enter the planned data before the project starts or input the monitoring data after the project starts . Parameter Unit Entrv 0 t/y

Quantity of organic waste composed

# (2) Emission factor for N<sub>2</sub>O and CH<sub>4</sub> from the composting process (t-N<sub>2</sub>O/t-compost)

Enter the IPCC default value.

| Parameter                                                           | Entry  | Unit                       |
|---------------------------------------------------------------------|--------|----------------------------|
| Emission factor for $N_2O$ from the composting process              | 0.0003 | t-N <sub>2</sub> O/t-waste |
| Emission factor for $\ensuremath{CH}_4$ from the composting process | 0.004  | t-CH <sub>4</sub> /t-waste |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 5 Waste table4.1 Source

### PEa,y : GHG emission from the anaerobic digestion process after the project starts

(1) Total volume of stack gas from anaerobic digestion (m<sup>3</sup>/y)

| Enter the monitoring data                           |                 |                   |
|-----------------------------------------------------|-----------------|-------------------|
| Parameter                                           | Entry           | Unit              |
| Total volume of stack gas                           | 30,000          | m <sup>3</sup> /y |
| <br>word constant of CLL in the steals was from one | anabia dinastia | - (+ CII /m 3)    |

(2) Monitored content of CH<sub>4</sub> in the stack gas from anaerobic digestion (t-CH<sub>4</sub>/m<sup>2</sup>) Enter the monitoring data

| Enter the monitoring data            |       |      |
|--------------------------------------|-------|------|
| Parameter                            | Entry | Unit |
| Monitored content of CH <sub>4</sub> | 0.001 | t-CH |

## PEg,y : GHG emission from the gasification process after the project starts

# (1) Amount of waste type i fed into the gasifier (t/y)

Enter the planned data before the project starts or input the monitoring data after the project starts . Jnit:t/y

| Type of waste i                             | vveight |
|---------------------------------------------|---------|
| Wood                                        |         |
| Paper                                       |         |
| Organic, garbage, beverage (exclude sludge) |         |
| Fabric                                      |         |
| Yard waste, park waste                      |         |
| Glass, plastic, metal, other inert waste    |         |
| an of contain containt in words two i ()    |         |

### (2) Fraction of carbon content in waste type i (-)

Enter the planned data before the project starts or input the monitoring data after the project starts . Init : 🗕

| Type of waste i                             | Fraction of carbon waste | ι |
|---------------------------------------------|--------------------------|---|
| Wood                                        |                          |   |
| Paper                                       |                          |   |
| Organic, garbage, beverage (exclude sludge) |                          |   |
| Fabric                                      |                          |   |
| Yard waste, park waste                      |                          |   |
| Glass, plastic, metal, other inert waste    |                          |   |

|                                         | Enter the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or input the mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | itoring data                                                                                          |                                                                                    |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                         | Type of waste i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fraction of fos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sil carbon                                                                                            | Unit: —                                                                            |
|                                         | Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Glass, plastic, metal, other inert waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       | l                                                                                  |
| Com                                     | bustion efficiency for waste(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Enter the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or input the mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | itoring data                                                                                          |                                                                                    |
|                                         | Type of waste i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Combustion e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | efficiency                                                                                            | Unit: —                                                                            |
|                                         | Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Glass, plastic, metal, other inert waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>,</u>                                                                                              |                                                                                    |
| 5)Tota                                  | I volume of stack gas from gasification after t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Enter the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       | after the project starts .                                                         |
|                                         | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Unit                                                                                                  |                                                                                    |
|                                         | Volume of stack gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m <sup>3</sup> /y                                                                                     |                                                                                    |
| 6)Mon                                   | itored content of nitrous oxide in the stack gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | from gasification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | on (t-N <sub>2</sub> O/n                                                                              | n <sup>3</sup> )                                                                   |
|                                         | Enter the monitoring data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U                                                                                                     | nit                                                                                |
|                                         | Monitored content of N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $t-N_2O/m^3$                                                                                          |                                                                                    |
| 7) Mon                                  | itored content of methane in the stack gas from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
| /////                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in guointoution (t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.14/11. /                                                                                            |                                                                                    |
|                                         | Enter the monitoring data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                                                    |
|                                         | Enter the monitoring data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       | nit                                                                                |
|                                         | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                     | nit                                                                                |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Entry<br>0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                     | nit                                                                                |
| Er.v                                    | Parameter<br>Monitored content of CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t-CH₄/m <sup>3</sup>                                                                                  | nit                                                                                |
|                                         | Parameter<br>Monitored content of CH <sub>4</sub><br>: GHG emission from the combustion of RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t-CH₄/m <sup>3</sup>                                                                                  | nit                                                                                |
|                                         | Parameter<br>Monitored content of CH <sub>4</sub><br>: GHG emission from the combustion of RDI<br>punt of waste type i fed into the RDF (t/y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000001<br>F after the projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t-CH₄/m <sup>3</sup>                                                                                  |                                                                                    |
|                                         | Parameter<br>Monitored content of CH <sub>4</sub><br>: GHG emission from the combustion of RDI<br>but of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
| 1 - C - C - C - C - C - C - C - C - C - | Parameter<br>Monitored content of CH <sub>4</sub><br>: GHG emission from the combustion of RDI<br>but of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000001<br>F after the projec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     |                                                                                    |
| 1 - C - C - C - C - C - C - C - C - C - | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br>but of waste type i fed into the RDF (t/y)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
| 1 A A A A A A A A A A A A A A A A A A A | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
|                                         | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
| 1 - C - C - C - C - C - C - C - C - C - | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
| 1 - C - C - C - C - C - C - C - C - C - | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
| 1)Âmc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000001<br>F after the project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data                                                     | after the project starts .                                                         |
| 1)Âmc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>but of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1)Ămc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>but of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1)Ămc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts<br>Type of waste i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1)Ămc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1)Ămc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1)Ămc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1)Ămc                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| I)Ămo                                   | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br><b>tion of carbon content in waste type i (-)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 2)Frac                                  | Parameter<br>Monitored content of CH <sub>4</sub><br><b>: GHG emission from the combustion of RDI</b><br><b>bunt of waste type i fed into the RDF (t/y)</b><br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste<br>tion of carbon content in waste type i (-)<br>Enter the planned data before the project starts<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Type of waste i<br>Wood<br>Paper<br>Organic, garbage, beverage (exclude sludge)<br>Fabric<br>Yard waste, park waste<br>Glass, plastic, metal, other inert waste                                                                                                                                                                                                                                                                                                                                                                                       | 0.000001<br>F after the project<br>or input the mon<br>Weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t                                                | after the project starts .<br>Unit : t/y<br>after the project starts .             |
| 1) Âmc<br>2) Frac                       | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         punt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i (-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         tion of fossil carbon in total carbon of waste type                                                                                                                                    | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>or input the mon<br>Fraction of carb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>t<br>itoring data<br>on content                  | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 2)Frac                                  | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         punt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Top of fossil carbon in total carbon of waste ty         Enter the planned data before the project starts                                                           | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>weigh<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 2)Frac                                  | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         bunt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Type of torsil carbon in total carbon of waste type         Enter the planned data before the project starts         Type of waste i                                | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>or input the mon<br>Fraction of carb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 1) Âmc<br>2) Frac                       | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         bunt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Type of waste i         Wood                                                                                                                                        | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>weigh<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 1) Âmc                                  | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         punt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         Glass, plastic, metal, other inert waste         tion of fossil carbon in total carbon of waste ty         Enter the planned data before the project starts         Type of waste i         Wood                     | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>weigh<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 1) Âmc                                  | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         punt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of fossil carbon in total carbon of waste ty         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)                                                     | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>weigh<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 1) Âmc<br>2) Frac                       | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         punt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of fossil carbon in total carbon of waste ty         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>weigh<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |
| 2)Frac                                  | Parameter         Monitored content of CH4         :       GHG emission from the combustion of RDI         punt of waste type i fed into the RDF (t/y)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of carbon content in waste type i(-)         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)         Fabric         Yard waste, park waste         Glass, plastic, metal, other inert waste         tion of fossil carbon in total carbon of waste ty         Enter the planned data before the project starts         Type of waste i         Wood         Paper         Organic, garbage, beverage (exclude sludge)                                                     | 0.000001<br>F after the project<br>or input the mon<br>Weigh<br>weigh<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight<br>weight | t-CH₄/m <sup>3</sup><br>ct starts<br>itoring data<br>it<br>itoring data<br>on content<br>itoring data | after the project starts .<br>Unit : t/y<br>after the project starts .<br>Unit : — |

Glass, plastic, metal, other inert waste

### (4) Combustion efficiency for waste(-)

Enter the planned data before the project starts or input the monitoring data after the project starts .
Type of waste i
Combustion efficiency
Unit:-

| Type of waster                             | Compustion eniciency |
|--------------------------------------------|----------------------|
| Wood                                       |                      |
| Paper                                      |                      |
| Organic, garbage, beverage (exclude sludge |                      |
| Fabric                                     |                      |
| Yard waste, park waste                     |                      |
| Glass, plastic, metal, other inert waste   |                      |

# (5) Total volume of stack gas from RDF after the project starts (m<sup>3</sup>/y)

Enter the planned data before the project starts or input the monitoring data after the project starts .

|                                                                                                | Parameter           |  | Entry | Unit              |  |
|------------------------------------------------------------------------------------------------|---------------------|--|-------|-------------------|--|
|                                                                                                | Volume of stack gas |  |       | m <sup>3</sup> /y |  |
| (6) Monitored content of $N_2O$ in the stack gas from RDF (t-N <sub>2</sub> O/m <sup>3</sup> ) |                     |  |       |                   |  |

Enter the monitoring data

| Parameter                                                   | Entry | Unit                              |  |
|-------------------------------------------------------------|-------|-----------------------------------|--|
| Monitored content of N <sub>2</sub> O                       |       | t-N <sub>2</sub> O/m <sup>3</sup> |  |
| rad content of methods in the stock and from PDF (t CH /m3) |       |                                   |  |

# (7) Monitored content of methane in the stack gas from RDF (t-CH<sub>4</sub>/m<sup> $\circ$ </sup>)

Enter the monitoring data

| Parameter                            | Entry | Unit     |
|--------------------------------------|-------|----------|
| Monitored content of CH <sub>4</sub> |       | t-CH₄/m³ |

## PEi,y : GHG emissions from waste incineration after the project starts

### (1) Amount of waste type I fed into the incineration (t/y)

Enter the planned data before the project starts or input the monitoring data after the project starts . Type of waste i Weight Unit: t/y

| I ype of waste i                            | Weight |
|---------------------------------------------|--------|
| Wood                                        |        |
| Paper                                       |        |
| Organic, garbage, beverage (exclude sludge) |        |
| Fabric                                      |        |
| Yard waste, park waste                      |        |
| Glass, plastic, metal, other inert waste    |        |
|                                             |        |

### (2) Fraction of carbon content in waste type i (-)

Enter the planned data before the project starts or input the monitoring data after the project starts .

| Type of waste i                             | Fraction of carbon content | Unit: 🗕 |
|---------------------------------------------|----------------------------|---------|
| Wood                                        |                            |         |
| Paper                                       |                            |         |
| Organic, garbage, beverage (exclude sludge) |                            |         |
| Fabric                                      |                            |         |
| Yard waste, park waste                      |                            |         |
| Glass, plastic, metal, other inert waste    |                            |         |

## (3) Fraction of fossil carbon in total carbon of waste type i (-))

Enter the planned data before the project starts or input the monitoring data after the project starts .

Unit : -

| Type of waste i                             | Fraction of fossil carbon |
|---------------------------------------------|---------------------------|
| Wood                                        |                           |
| Paper                                       |                           |
| Organic, garbage, beverage (exclude sludge) |                           |
| Fabric                                      |                           |
| Yard waste, park waste                      |                           |
| Glass, plastic, metal, other inert waste    |                           |

### (4) Combustion efficiency for waste(-)

Enter the planned data before the project starts or input the monitoring data after the project starts.

| Type of waste i                             | Combustion efficiency | Unit: |
|---------------------------------------------|-----------------------|-------|
| Wood                                        |                       |       |
| Paper                                       |                       |       |
| Organic, garbage, beverage (exclude sludge) |                       |       |
| Fabric                                      |                       |       |
| Yard waste, park waste                      |                       |       |
| Glass, plastic, metal, other inert waste    |                       |       |
| ,                                           | <u>,</u>              |       |

## (5) Total volume of stack gas from incineration after the project starts (m<sup>3</sup>/y)

Enter the planned data before the project starts or input the monitoring data after the project starts .

# Parameter Entry Unit

Volume of stack gas m<sup>3</sup>/y

# (6) Monitored content of $N_2O$ in the stack gas from incineration (t- $N_2O/m^3$ )

Enter the monitoring data

| Parameter                             | Entry | Unit                              |
|---------------------------------------|-------|-----------------------------------|
| Monitored content of N <sub>2</sub> O |       | t-N <sub>2</sub> O/m <sup>3</sup> |

# (7) Monitored content of methane in the stack gas from incineration (t-CH4/m3)

| Enter the monitoring data            |       |                      |
|--------------------------------------|-------|----------------------|
| Parameter                            | Entry | Unit                 |
| Monitored content of CH <sub>4</sub> |       | t-CH₄/m <sup>3</sup> |

| Enter the planned data before the project starts or input the monitoring data after the project starts . Parameter Entry Unit |                                                      |                                       |                      |                               |                          |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------|----------------------|-------------------------------|--------------------------|
|                                                                                                                               | Parameter                                            | Entry                                 | _                    |                               |                          |
| (0) Cha                                                                                                                       | Amount of wastewater after project                   |                                       | 00 m <sup>3</sup> /y |                               |                          |
| (2)Cne                                                                                                                        | emical oxygen demand (COD) of waster                 |                                       |                      |                               | n rais at atorta         |
|                                                                                                                               | Enter the planned data before the proje<br>Parameter | Entrv                                 | nonitorin            | Unit                          |                          |
|                                                                                                                               | COD of wastewater                                    |                                       | 003 t-CC             |                               | -                        |
|                                                                                                                               |                                                      |                                       | 003 t-CC             | DD/m                          | J                        |
| (3) wax                                                                                                                       | kimum methane producing capacity (t-C                | <b>σΠ</b> 4/( <b>-COD</b> )           |                      |                               |                          |
|                                                                                                                               | Use 0.265 as IPCC default value.                     | <b>F</b> ata.                         |                      | 1 1 1 1 1 1                   | 7                        |
|                                                                                                                               | Parameter                                            | Entry                                 | 0.0.5                |                               | 4                        |
|                                                                                                                               | Maximum CH <sub>4</sub> producing capacity           | 0.                                    | <mark>265</mark>     | t-CH <sub>4</sub> /t-COD      | ]                        |
| (4)Met                                                                                                                        | hane correction factor (-)                           |                                       |                      |                               |                          |
|                                                                                                                               | Data/ information specific to the targe              | · · · · · · · · · · · · · · · · · · · |                      | used for calculat             | ion. Data availability   |
|                                                                                                                               | should be validated in the following or              | der to enter data in the              | e cells.             |                               |                          |
|                                                                                                                               | I) National default                                  |                                       |                      |                               |                          |
|                                                                                                                               | ii)IPCC Guideline default data                       |                                       | 1.1.2                |                               |                          |
|                                                                                                                               | Parameter                                            | Entry                                 | Unit                 |                               |                          |
|                                                                                                                               | CH <sub>4</sub> correction factor                    |                                       | <mark>0.8</mark> -   |                               |                          |
|                                                                                                                               | Source: 2006 IPCC Guide                              | lines for National G                  | reenhou              | <mark>ise Ga</mark> s Invento | ories Volume 5 Waste tab |

(1) Computation period of the emission reduction effect XX year after the project 10 year

y≦10

E

Entry Select from the list/input

# Calculation Sheet : After the Project starts

# SAMPLE : Intermediate treatment of waste

# GHG emission reduction after project activity(t- $CO_2/y$ ) ERy = BEy - PEy (t- $CO_2/y$ )

# 1. Baseline emission BEy = $MB_y$ - $MDreg_{,y}$ + $BE_{EN,y}$

| BE <sub>y</sub>           | Baseline emission: GHG emission from $CH_4$ released into the atmosphere before the project starts which the waste treatment is installed                             | 85 448 | t-CO <sub>2</sub> /y |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| <b>MD</b> <sub>PJ,y</sub> | GHG emission from methane produced in landfill before the project starts                                                                                              | 77,222 | t-CO <sub>2</sub> /y |
| MD <sub>reg,y</sub>       | GHG emission reduction of methane destroyed by national regulation before the project star<br>This shall be "0" where developing countries have a very few regulation | 0      | t-CO <sub>2</sub> /y |
| BE <sub>EN,y</sub>        | CO <sub>2</sub> emissions from generation of energy displaced by the project activity                                                                                 | 8,226  | t-CO <sub>2</sub> /y |

# 2. Project emission $PE_y = PE_{EC,y} + PE_{FC,y} + PE_{c,y} + PE_{a,y} + PE_{g,y} + PE_{i,y} + PE_{i,y} + PE_{w,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission after the project star                                                                                                                                                                                                      | 2,549 | t-CO <sub>2</sub> /y |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| РЕ <sub>ЕС,у</sub> | GHG emission from electricity consumption after the project starts                                                                                                                                                                                            | 448   | t-CO <sub>2</sub> /y |
| PE <sub>FC,y</sub> | GHG emission from fossil fuel consumption after the project starts                                                                                                                                                                                            | 1,462 | t-CO <sub>2</sub> /y |
| PEc,y              | GHG emission during the composting process after the project star<br>If $CH_4$ produced in the composting process is recovered and destroyed by energy generation or flare after the project starts, this term shall be neglected.                            |       | t-CO₂/y              |
| PEa,y              | GHG emission from the anaerobic digestion process<br>after the project starts<br>If $CH_4$ produced in the anaerobic digestion process is<br>recovered and destroyed by energy generation or flare after the<br>project starts, this term shall be neglected. | 630   | t-CO₂/y              |
| PEg,y              | GHG emission from the gasification process after the project starts                                                                                                                                                                                           | 0     | t-CO <sub>2</sub> /y |
| PEr,y              | GHG emission from the combustion of RDF after the project starts                                                                                                                                                                                              | 0     | t-CO <sub>2</sub> /y |
| PEi,y              | GHG emissions from waste incineration after the project starts                                                                                                                                                                                                | 0     | t-CO <sub>2</sub> /y |
| PEw,y              | GHG emissions from wastewater treatment after the project starts                                                                                                                                                                                              | 9     | t-CO₂/y              |

# 3. GHG emission reduction after project activity ERy = BEy - PEy (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emission reduction after project activity                                                                                                               | 82,899 | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from CH <sub>4</sub> released into the atmosphere<br>before the project starts which the waste treatment is<br>installed | 85 448 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission after the project starts                                                                                                  | 2,549  | t-CO <sub>2</sub> /y |

24. Wastewater Treatment

# **Input Sheet**

# Project name SAMPLE : Wastewater Treatment

Default value in red

### 1. Information before the project starts

BE<sub>EC.v</sub> : GHG emissions from electricity consumption on site before the project starts BE<sub>FC.v</sub> : GHG emissions from fuel consumption on site before the project starts (1) Amount of electricity consumption before the project starts (MWh/y)

Enter the monitoring data

| Parameter                                                   |           | Entry | Unit              |  |  |
|-------------------------------------------------------------|-----------|-------|-------------------|--|--|
| Amount of electricity consumption before the project starts |           | 500   | MWh/y             |  |  |
|                                                             | Petroleum | 500   | kL/y              |  |  |
| Amount of fuel consumption before the project starts        | Coal      | 50    | t/y               |  |  |
|                                                             | Gas       | 100   | m <sup>3</sup> /y |  |  |
|                                                             | Others    |       |                   |  |  |

## (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO<sub>2</sub> emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

| Parameter                                  | Entry                                                                                                            | Unit                   |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|
| Emission factor of the typical power plant | 0.896                                                                                                            | t-CO <sub>2</sub> /MWh |
|                                            | and the second |                        |

Interview to XX company of

# (3) Net calorific value according to fuel type (TJ/Gg)

Data/ information specific to the target country should be preferably used for calculation. Data availability i) Project-specific values obtained through interview to electric power management entity concerned ii) National default

iii) IPCC Guideline default data

| Parameter | Net calorific value |       | CO <sub>2</sub> emiss | sion factor           |
|-----------|---------------------|-------|-----------------------|-----------------------|
| Petroleum | 36.3                | GJ/kL | 73.3                  | t-CO <sub>2</sub> /TJ |
| Coal      | 26.7                | GJ/t  | 98.3                  | t-CO <sub>2</sub> /TJ |
| Gas       | 0.0384              | GJ/m3 | 56.1                  | t-CO <sub>2</sub> /TJ |
| Others    |                     |       |                       | t-CO <sub>2</sub> /TJ |

Source: Interview to XX

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

# BEww,ty : GHG emissions of the wastewater treatment system before the project starts

## (1) Volume of wastewater treated in wastewater treatment system before the project starts (m<sup>3</sup>)

Enter the monitoring data.

(4

| Enter the memoring data.     |         |                   |  |  |
|------------------------------|---------|-------------------|--|--|
| Parameter                    | Entry   | Unit              |  |  |
| Volume of wastewater treated | 200,000 | m <sup>3</sup> /y |  |  |

(2) Chemical oxygen demand removed by the wastewater treatment before the project starts (t-COD/m<sup>3</sup>) Enter the monitoring data.

| It shall be determined as the difference of the COD of wastewater before and after the processing. |          |        |                  |  |  |
|----------------------------------------------------------------------------------------------------|----------|--------|------------------|--|--|
| Parameter                                                                                          | Entry    | Unit   |                  |  |  |
| Chamical average demand removed                                                                    | 0.050000 | 100D/3 | 4 1/-3 4 000 000 |  |  |

### Chemical oxygen demand removed 0.050000 t-COD/m<sup>3</sup> 1 t/m<sup>3</sup>=1,000,000 mg/L (3) CH<sub>4</sub> correction factor for the wastewater treatment system before the project starts (-)

|          | Enter the IPCC guideline default value (Refer to Appendix).                        |       |      |    |  |  |
|----------|------------------------------------------------------------------------------------|-------|------|----|--|--|
|          | Parameter                                                                          | Entry | Unit |    |  |  |
|          | CH4 correction factor                                                              | 0.8   | -    |    |  |  |
| 4)CH₄ pr | DCH <sub>4</sub> producing capacity of the wastewater (kg-CH <sub>4</sub> /kg-COD) |       |      |    |  |  |
|          | Use 0.25 as IPCC default value.                                                    |       |      |    |  |  |
|          | Parameter                                                                          | Entry | Un   | it |  |  |
|          |                                                                                    |       |      | -  |  |  |

# $BE_{s,t,y}$ : GHG emissions from the baseline sludge treatment systems before the project starts (1) Amount of dry matter in the treated sludge before the project starts (t)

| Enter the monitoring data.                                                                                                                                                                                                                                                                      | ject starts (t) | ,                 |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------------------------------|
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| Amount of dry matter in the treated sludge                                                                                                                                                                                                                                                      | 954             | m <sup>3</sup> /y |                                         |
| Enter values when sludge treatment is not done before                                                                                                                                                                                                                                           | e the project s | starts (wher      | n no sludge generated).                 |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | U                 | nit                                     |
| Sludge generation ratio of the wastewater treatment                                                                                                                                                                                                                                             | 0               | t-sludge          |                                         |
| Sludge generation ratio of the wastewater treatment                                                                                                                                                                                                                                             | 0               | t-sludge          |                                         |
| (2) CH4 correction factor of the sludge treatment system bef                                                                                                                                                                                                                                    |                 | ct starts (-      | )                                       |
| Enter the IPCC guideline default value (Refer to Appen                                                                                                                                                                                                                                          |                 |                   | l i i i i i i i i i i i i i i i i i i i |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| CH <sub>4</sub> correction factor of the sluge treatment system                                                                                                                                                                                                                                 | 0.8             | -                 |                                         |
| <ul> <li>(3) Degradable organic content of the untreated sludge (dry line Data/ information specific to the target country should should be validated in the following order to enter data         <ol> <li>i) National default</li> <li>ii) IPCC Guideline default data</li> </ol> </li> </ul> | ld be preferat  | bly used for      | calculation. Data availability          |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| DOC in sludge                                                                                                                                                                                                                                                                                   | 0.5             | -                 |                                         |
| (4) Fraction of degradable organic carbon (DOC) dissimilated<br>Use 0.5 as IPCC default value.                                                                                                                                                                                                  | d to biogas     | (-)               |                                         |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| Fraction of DOC dissimilated                                                                                                                                                                                                                                                                    | 0.5             | -                 |                                         |
| (5) Fraction of $CH_4$ in biogas (-)                                                                                                                                                                                                                                                            |                 |                   |                                         |
| Use 0.5 as IPCC default value.                                                                                                                                                                                                                                                                  |                 | 11.2              | l i i i i i i i i i i i i i i i i i i i |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| Fraction of CH₄ in biogas                                                                                                                                                                                                                                                                       | 0.5             | -                 |                                         |
| <ul> <li>BE<sub>www,d,y</sub> : GHG emissions from degradable organic carbon into sea/river/lake before the project starts</li> <li>(1) Volume of treated or untreated wastewater discharged (m Enter the monitoring data.</li> </ul>                                                           |                 | stewater d        | lischarged                              |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| Volume of wastewater discharged                                                                                                                                                                                                                                                                 | 70,000          | m <sup>3</sup> /y |                                         |
| (2) Monitored COD in treated wastewater discharged into sea<br>before the project starts starts (t/m <sup>3</sup> )<br>Enter the monitoring data.                                                                                                                                               | a/river/lake    |                   |                                         |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| Monitored content of COD                                                                                                                                                                                                                                                                        | 0.000500        | t/m <sup>3</sup>  | 1 t/m <sup>3</sup> =1,000,000 mg/L      |
| (3) CH <sub>4</sub> producing capacity of the wastewater (kg-CH <sub>4</sub> /kg-CO<br>Use 0.25 as IPCC default value.                                                                                                                                                                          |                 |                   |                                         |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           |                   | nit                                     |
| CH4 producing capacity of the wastewater                                                                                                                                                                                                                                                        | 0.25            |                   | kg-COD                                  |
| (4) CH <sub>4</sub> correction factor based on discharge pathway before<br>Enter the IPCC guideline default value (Refer to Appen                                                                                                                                                               |                 | starts (-)        |                                         |
| Parameter                                                                                                                                                                                                                                                                                       | Entry           | Unit              |                                         |
| CH4 correction factor based on discharge pathway                                                                                                                                                                                                                                                | 0.1             | -                 |                                         |
|                                                                                                                                                                                                                                                                                                 |                 |                   |                                         |

# BE<sub>s,f,y</sub> : GHG emission from the final sludge decay before the project starts

(1) Amount of dry matter in the final sludge reclaimed before the project starts (t/y)

Enter the monitoring data.

DC

| Enter the memoring data. |        |      |  |  |
|--------------------------|--------|------|--|--|
| Parameter                | Entry  | Unit |  |  |
| Amount of sludge         | 10,000 | t/y  |  |  |

# (2) Degradable organic content of the untreated sludge (dry basis) (-)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

| <ol> <li>National c</li> </ol> | lefault                |
|--------------------------------|------------------------|
|                                | Statistical defendence |

| II) IPCC Guideline delault data |       |      |
|---------------------------------|-------|------|
| Parameter                       | Entry | Unit |
| OC in sludge                    | 0.5   | -    |

# (3) $CH_4$ correction factor of the disposal site that receives the sludge before the project starts (-)

|                                                                            | Enter the IPCC guideline default value (Refer to Appendix). |       |      |  |  |
|----------------------------------------------------------------------------|-------------------------------------------------------------|-------|------|--|--|
|                                                                            | Parameter                                                   | Entry | Unit |  |  |
|                                                                            | CH4 correction factor of the disposal site                  | 0.8   | -    |  |  |
| (4) Fraction of degradable organic carbon (DOC) dissimilated to biogas (-) |                                                             |       |      |  |  |
|                                                                            | Use 0.5 as IPCC default value.                              |       |      |  |  |
|                                                                            | Parameter                                                   | Entry | Unit |  |  |
| 1                                                                          | Fraction of DOC dissimilated                                | 0.5   | -    |  |  |
| (5) Fractio                                                                | (5) Fraction of CH₄ in biogas                               |       |      |  |  |
|                                                                            |                                                             |       |      |  |  |

| Use 0.5 as IPCC default value. |       |      |
|--------------------------------|-------|------|
| Parameter                      | Entry | Unit |
| Fraction of CH₄ in biogas      | 0.5   | -    |

### BE<sub>EN</sub>: CO<sub>2</sub> emissions from electric power or thermal energy displaced by the Biogas recovery

### (1) Amount of electric power and thermal energy in biogas after the project starts (MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts.

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Entry | Unit  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Amount of electric power in biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,000 | MWh/y |
| Quantity of thermal energy in biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100   | TJ/y  |
| the factor of the texterior language should be the state of the state |       |       |

## (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining  $CO_2$  emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

| Parameter                                  | Entry | Unit                   |
|--------------------------------------------|-------|------------------------|
| Emission factor of the typical power plant | 0.896 | t-CO <sub>2</sub> /MWh |

Source: Interview to XX company of XX country

# (3) Net calorific value according to fuel type (t-CO<sub>2</sub>/TJ)

|                          | Parameter                                         |                 | Entry | Unit                  |
|--------------------------|---------------------------------------------------|-----------------|-------|-----------------------|
| CO <sub>2</sub> emission | factor per unit of energy of the boiler fuel      | Fuel type       | 73.3  | t-CO <sub>2</sub> /TJ |
| consumption              | in the absence of project                         | Petroleum       |       |                       |
| Boiler efficien          | су                                                |                 | 100   | %                     |
| Rate of heat g           | generation from boiler out of the heat generatior | n using biomass | 1     | —                     |
| CO <sub>2</sub> emission | a factor per heat generated                       |                 | 73.3  | t-CO <sub>2</sub> /TJ |

2.2

## 2. Information after the project starts

### PE<sub>EC,y</sub> : GHG emission from electric consumption after the project starts

## PE<sub>FC,v</sub> : GHG emission from fossil fuel consumption after the project starts

## (1) The electricity and fuel consumption after the project starts in the biogas recovery facilities (MWh/y)

Enter the planned data before the project starts or input the monitoring data after the project starts.

| Parameter                         |           | Entry | Unit              |
|-----------------------------------|-----------|-------|-------------------|
| Amount of electricity consumption | 500       | MWh/y |                   |
|                                   | Petroleum | 500   | kL/y              |
| Amount of fuel consumption after  | Coal      | 50    | t/y               |
| the project starts                | Gas       | 100   | m <sup>3</sup> /y |
|                                   | Others    |       |                   |

### (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO<sub>2</sub> emissions factor specific to the target.

| Parameter                                  | Entry      | Unit                   |
|--------------------------------------------|------------|------------------------|
| Emission factor of the typical power plant | 0.896      | t-CO <sub>2</sub> /MWh |
| Source: Interview to XX company of         | XX country |                        |

### (3) Net calorific value according to fuel type (TJ/Gg)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

i) Project-specific values obtained through interview to electric power management entity concerned ii) National default

iii) IPCC Guideline default data

| Parameter               | Net calorific | value | CO <sub>2</sub> emission facto |                       |  |
|-------------------------|---------------|-------|--------------------------------|-----------------------|--|
| Petroleum               | 36.3          | GJ/kL | 73.3                           | t-CO <sub>2</sub> /TJ |  |
| Coal                    | 26.7          | GJ/t  | 98.3                           | t-CO <sub>2</sub> /TJ |  |
| Gas                     | 0.0384        | GJ/m3 | 56.1                           | t-CO <sub>2</sub> /TJ |  |
| Others                  |               |       |                                | t-CO <sub>2</sub> /TJ |  |
| Source: Interview to XX | X             |       |                                |                       |  |

Interview to XX

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

# PE<sub>ww,t,y</sub> : GHG emissions of the wastewater treatment system after the project starts

### (1) Volume of wastewater treated in wastewater treatment system after the project starts (m<sup>3</sup>)

| Enter the planned data before the project starts or in                    | out the monito | oring data af        | ter the proj    | ect starts.  |
|---------------------------------------------------------------------------|----------------|----------------------|-----------------|--------------|
| Parameter                                                                 | Entry          | Unit                 |                 |              |
| Volume of wastewater treated                                              | 70,000         | m <sup>3</sup> /y    |                 |              |
| (2) Chemical oxygen demand removed by the wastewater tre                  |                |                      |                 |              |
| Enter the planned data before the project starts or in                    |                |                      |                 |              |
| It shall be determined as the difference of the COD of                    | wastewater b   | pefore and a         | fter the pro    | cessing.     |
| Parameter                                                                 | Entry          | Unit                 |                 |              |
| Chemical oxygen demand removed                                            | 0.000450       | t-COD/m <sup>3</sup> | $1 t/m^3 = 1,0$ | )00,000 mg/L |
| (3) CH <sub>4</sub> correction factor for the wastewater treatment system | m after the p  | roject start         | s (-)           |              |
| Enter the IPCC guideline default value (Refer to Appe                     | ndix).         |                      |                 |              |
| Parameter                                                                 | Entry          | Unit                 |                 |              |
| CH <sub>4</sub> correction factor for the wastewater treatment            | 0.8            | -                    |                 |              |
| (4) $CH_4$ producing capacity of the wastewater (kg-CH <sub>4</sub> /kg-C | OD)            |                      |                 |              |
| Use 0.25 as IPCC default value.                                           |                |                      |                 | _            |
| Parameter                                                                 | Entry          | U                    | nit             |              |
| CH <sub>4</sub> producing capacity of the wastewater                      | 0.25           | kg-CH₄/              | kg-CÖD          |              |
|                                                                           |                |                      |                 |              |

| PE <sub>sty</sub> : GHG em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nissions from the sludge treatment systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (excluding)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | composting                                                                                                                                                                                | g)                                                                                                            |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| (1) Amount of dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | / matter in the sludge treated by the sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | treatment s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /stem after                                                                                                                                                                               | the project                                                                                                   | t starts (t)                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he planned data before the project starts or in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                      |                                                                                                               |                                                                      |
| Amount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t of dry matter in the treated sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m <sup>3</sup> /y                                                                                                                                                                         |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n factor of the sludge treatment system after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           | l                                                                                                             |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i Starts (-)                                                                                                                                                                              |                                                                                                               |                                                                      |
| Enter tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne IPCC guideline default value (Refer to Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                      |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rrection factor of the sludge treatment system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                         |                                                                                                               |                                                                      |
| (3) Degradable or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ganic content of the untreated sludge (dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | basis))(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | / information specific to the target country shou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ild be prefera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bly used for                                                                                                                                                                              | calculation.                                                                                                  | Data availability                                                    |
| should                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | be validated in the following order to enter data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a in the cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| i) Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tional default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| ii) IP(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CC Guideline default data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| , in the second s | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                      |                                                                                                               |                                                                      |
| DOC in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                         |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | gradable organic carbon (DOC) dissimilate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d to biogas (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -)                                                                                                                                                                                        |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 as IPCC default value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                         |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                      | l                                                                                                             |                                                                      |
| Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n of DOC dissimilated to biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                         |                                                                                                               |                                                                      |
| (5) Fraction of CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           | I                                                                                                             |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 as IPCC default value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| 030 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                      | 1                                                                                                             |                                                                      |
| Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n of $CH_4$ in biogas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Unit                                                                                                                                                                                      |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                         |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nissions of the sludge treatment system aft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | / matter in the treated sludge by compostin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| Entert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | he planned data before the project starts or inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           | ter the proje                                                                                                 | ect starts.                                                          |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Parameter<br>t of dry matter in the treated sludge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit                                                                                                                                                                                      |                                                                                                               |                                                                      |
| Amoun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t of dry matter in the treated sludde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t/y                                                                                                                                                                                       |                                                                                                               |                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | il an a N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a y                                                                                                                                                                                       |                                                                                                               |                                                                      |
| (2)CH <sub>4</sub> emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | factor by composting of sludge (t-CH4/t-slu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                               |                                                                      |
| (2)CH <sub>4</sub> emission<br>Emissio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 emission                                                                                                                                                                                |                                                                                                               |                                                                      |
| (2)CH <sub>4</sub> emission<br>Emissio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH4/t-slu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 emission                                                                                                                                                                                |                                                                                                               |                                                                      |
| (2)CH₄ emission<br>Emissic<br>connec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 emission                                                                                                                                                                                |                                                                                                               |                                                                      |
| (2)CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 emission                                                                                                                                                                                |                                                                                                               |                                                                      |
| (2)CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 emission                                                                                                                                                                                |                                                                                                               |                                                                      |
| (2) CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati<br>ii)IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 emission                                                                                                                                                                                |                                                                                                               |                                                                      |
| (2) CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati<br>ii)IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | used as CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sub>2</sub> emission f<br>der in rega                                                                                                                                                    |                                                                                                               |                                                                      |
| (2) CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e used as CO<br>e following or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 emission f<br>der in rega                                                                                                                                                               | ds of the se                                                                                                  |                                                                      |
| (2) CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | factor by composting of sludge (t-CH <sub>4</sub> /t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e used as CO<br>e following or<br>Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 emission f<br>der in rega                                                                                                                                                               | ds of the se                                                                                                  |                                                                      |
| (2) CH₄ emission<br>Emissic<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e used as CO<br>e following or<br>Entry<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₂ emission t<br>der in regat<br>U<br>t-CH₄/t                                                                                                                                              | rds of the se<br>nit<br>-sludge                                                                               | lection of general                                                   |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,dy</sub> : GHG en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e used as CO<br>e following or<br>Entry<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₂ emission t<br>der in regat<br>U<br>t-CH₄/t                                                                                                                                              | rds of the se<br>nit<br>-sludge                                                                               | lection of general                                                   |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,d.y</sub> : GHG en<br>after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Entry<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ₂ emission t<br>der in regat<br>U<br>t-CH₄/t                                                                                                                                              | rds of the se<br>nit<br>-sludge                                                                               | lection of general                                                   |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,d,y</sub> : GHG en<br>after<br>(1) Volume of trea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Entry<br>0.01<br>0 treated was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ₂ emission f<br>der in regai<br>t-CH₄/t<br>stewater di                                                                                                                                    | nit<br>-sludge<br>scharged ir                                                                                 | election of general                                                  |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,d,y</sub> : GHG en<br>after<br>(1) Volume of trea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Entry<br>0.01<br>0 treated was<br>n <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 emission f<br>der in regai<br>t-CH₄/t<br>stewater di                                                                                                                                    | nit<br>-sludge<br>scharged ir                                                                                 | election of general                                                  |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,d,y</sub> : GHG en<br>after<br>(1) Volume of trea<br>Enter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in th<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inp<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Entry<br>Entry<br>0.01<br>Treated was<br>n <sup>3</sup> )<br>Dut the monito<br>Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater di<br>pring data at<br>Unit                                                                                                           | nit<br>-sludge<br>scharged ir                                                                                 | election of general                                                  |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww.d.y</sub> : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inp<br>Parameter<br>e of wastewater discharged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Entry<br>0.01<br>0 treated was<br>n <sup>3</sup> )<br>0 ut the monito<br>Entry<br>70,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater di<br>bring data a<br>Unit<br>m <sup>3</sup> /y                                                                                       | nit<br>-sludge<br>scharged in                                                                                 | nto sea/river/lake                                                   |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww.d.y</sub> : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or in<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Entry<br>Entry<br>0.01<br>1 treated was<br>n <sup>3</sup> )<br>Dut the monitor<br>Entry<br>70,000<br>or lake after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater di<br>bring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec                                                                         | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r                                              | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )                |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww.d.y</sub> : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inj<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Entry<br>0.01<br>Entry<br>0.01<br>Entry<br>0.01<br>Entry<br>70,000<br>or lake after<br>put the monito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 emission f<br>der in regar<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>pring data a                                                        | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r                                              | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )                |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PEwww.dy : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inp<br>Parameter<br>of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inp<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inp<br>Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Entry<br>Entry<br>0.01<br>1 treated was<br>n <sup>3</sup> )<br>Dut the monitor<br>Entry<br>70,000<br>or lake after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater dia<br>oring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>oring data a<br>Unit                                                | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r<br>fter the proje                            | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PEwww.dy : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inj<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inj<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inj<br>Parameter<br>e of content of COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                | 2 emission f<br>der in regar<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>pring data a                                                        | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r<br>fter the proje                            | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )                |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PEwww.dy : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t<br>Monitor<br>(3) CH₄ producing                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inp<br>Parameter<br>e of wastewater discharged<br>bated wastewater discharged into sea, river<br>he planned data before the project starts or inp<br>Parameter<br>e of wastewater discharged<br>bated wastewater discharged into sea, river<br>he planned data before the project starts or inp<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Entry<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater dia<br>oring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>oring data a<br>Unit                                                | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r<br>fter the proje                            | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww.dy</sub> : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t<br>Monitor<br>(3) CH₄ producing                                                                                                                                                                                                                                                                                                                                                                                                                                                   | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inp<br>Parameter<br>e of wastewater discharged<br>bated wastewater discharged into sea, river<br>he planned data before the project starts or inp<br>Parameter<br>e of wastewater discharged<br>bated wastewater discharged into sea, river<br>he planned data before the project starts or inp<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Entry<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater dia<br>oring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>oring data a<br>Unit                                                | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r<br>fter the proje                            | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww.dy</sub> : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t<br>Monitor<br>(3) CH₄ producing                                                                                                                                                                                                                                                                                                                                                                                                                                                   | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or inj<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inj<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or inj<br>Parameter<br>e of content of COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.0000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000                                                                                                                                                                                                | 2 emission f<br>der in regar<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>pring data a<br>Unit<br>t/m <sup>3</sup>                            | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/r<br>fter the proje                            | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PEwww.dy : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t<br>(3) CH₄ producing<br>Use 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                              | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or in<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or in<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC<br>25 as IPCC default value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Entry<br>0.01<br>Entry<br>0.01<br>Entry<br>0.000<br>or lake after<br>Dut the monito<br>Entry<br>0.000050<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 emission f<br>der in regar<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>pring data a<br>Unit<br>t/m <sup>3</sup>                            | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/n<br>fter the proje<br>1 t/m <sup>3</sup> =1,0 | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH₄ emission<br>Emissio<br>connec<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PEww,dy : GHG en<br>after<br>(1) Volume of trea<br>Enter t<br>Volume<br>(2) COD of the trea<br>Enter t<br>(3) CH₄ producing<br>Use 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                               | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or in<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or in<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC<br>25 as IPCC default value.<br>Parameter<br>boducing capacity of the wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Entry<br>Entry<br>0.01<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0. | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m³/y<br>the projec<br>pring data a<br>Unit<br>t/m³                                                     | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/n<br>fter the proje<br>1 t/m <sup>3</sup> =1,0 | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH <sub>4</sub> emission<br>Emission<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emission<br>PE <sub>ww,dy</sub> : GHG em<br>after<br>(1) Volume of treat<br>Enter t<br>Volume<br>(2) COD of the treat<br>Enter t<br>(3) CH <sub>4</sub> producing<br>Use 0.2<br>(4) CH <sub>4</sub> correction                                                                                                                                                                                                                                                                                                                                                                                               | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or in<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or in<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC<br>25 as IPCC default value.<br>Parameter<br>boducing capacity of the wastewater<br>n factor based on discharge pathway after factor based on discharge pathway af | Entry<br>Entry<br>0.01<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.00<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.01<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.                                                                     | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m³/y<br>the projec<br>pring data a<br>Unit<br>t/m³                                                     | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/n<br>fter the proje<br>1 t/m <sup>3</sup> =1,0 | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH <sub>4</sub> emission<br>Emissio<br>connect<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,dy</sub> : GHG en<br>after<br>(1) Volume of treat<br>Enter t<br>Volume<br>(2) COD of the treat<br>Enter t<br>(3) CH <sub>4</sub> producing<br>Use 0.2<br>(4) CH <sub>4</sub> correction                                                                                                                                                                                                                                                                                                                                                                                      | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or in<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or in<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC<br>25 as IPCC default value.<br>Parameter<br>oducing capacity of the wastewater<br>n factor based on discharge pathway after the<br>parameter to Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Entry<br>Entry<br>0.01<br>Entry<br>0.01<br>1 treated was<br>n <sup>3</sup> )<br>put the monitor<br>Entry<br>0.000050<br>D<br>Entry<br>0.000050<br>D<br>Entry<br>0.25<br>he project st<br>ndix).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 emission f<br>der in regar<br>t-CH₄/t<br>stewater di<br>pring data a<br>Unit<br>m <sup>3</sup> /y<br>the projec<br>pring data a<br>Unit<br>t/m <sup>3</sup><br>Unit<br>t/m <sup>3</sup> | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/n<br>fter the proje<br>1 t/m <sup>3</sup> =1,0 | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |
| (2) CH <sub>4</sub> emission<br>Emissio<br>connect<br>facilities<br>i)Nati<br>ii)IPC<br>Use t<br>Emissio<br>PE <sub>ww,dy</sub> : GHG en<br>after<br>(1) Volume of treat<br>Enter t<br>Volume<br>(2) COD of the treat<br>Enter t<br>(3) CH <sub>4</sub> producing<br>Use 0.2<br>(4) CH <sub>4</sub> correction<br>Enter th                                                                                                                                                                                                                                                                                                                                                                          | factor by composting of sludge (t-CH₄/t-slu<br>on factor of the general power facilities shall be<br>ts to the grid. Data availability is validated in the<br>s and its emission factor.<br>ional default<br>CC Guideline default data (0.01)<br>the planned data after the project starts.<br>Parameter<br>on factor by composting<br>nissions from degradable organic carbon in<br>the project starts<br>ated or untreated wastewater discharged (r<br>he planned data before the project starts or in<br>Parameter<br>e of wastewater discharged<br>eated wastewater discharged into sea, river<br>he planned data before the project starts or in<br>Parameter<br>e of content of COD<br>g capacity of the wastewater (kg-CH₄/kg-CC<br>25 as IPCC default value.<br>Parameter<br>boducing capacity of the wastewater<br>n factor based on discharge pathway after factor based on discharge pathway af | Entry<br>Entry<br>0.01<br>Entry<br>0.01<br>Treated was<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.00<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.000<br>0.01<br>0.01<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.025<br>0.                                                                     | 2 emission f<br>der in regat<br>t-CH₄/t<br>stewater dia<br>pring data a<br>Unit<br>m³/y<br>the projec<br>pring data a<br>Unit<br>t/m³                                                     | nit<br>-sludge<br>scharged in<br>fter the proje<br>t starts (t/n<br>fter the proje<br>1 t/m <sup>3</sup> =1,0 | nto sea/river/lake<br>ect starts.<br>n <sup>3</sup> )<br>ect starts. |

# $\ensuremath{\mathsf{PE}_{\mathsf{s},\mathsf{f},\mathsf{y}}}$ : GHG emissions from anaerobic decay of the final sludge after the project starts

(1) Amount of dry matter in the final sludge reclaimed after the project starts (t/y)

| Enter the planned data before the project starts or inp | ut the monito | oring data af | ter the project starts. |
|---------------------------------------------------------|---------------|---------------|-------------------------|
| Parameter                                               | Entry         | Unit          |                         |
| Amount of dry matter in the final sludge                | 0             | t/v           |                         |

# (2) Degradable organic content of the untreated sludge (dry basis)) (-)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

| i) ivai | ionai | derault  |       |         |
|---------|-------|----------|-------|---------|
| ii) ID( | C C1  | uideline | dofau | lt data |

| Parameter     | Entry | Unit |
|---------------|-------|------|
| DOC is sludge | 0.5   | -    |

(3) CH<sub>4</sub> correction factor of the disposal site that receives the final sludge after the project starts (-) Enter the IPCC guideline default value (Refer to Appendix).

|                                           | Parameter                                                                  | Entry | Unit |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------|-------|------|--|--|--|
|                                           | $CH_4$ correction factor of the disposal site                              | 0.8   | -    |  |  |  |
| (4)Fractio                                | (4) Fraction of degradable organic carbon (DOC) dissimilated to biogas (-) |       |      |  |  |  |
|                                           | Use 0.5 as IPCC default value.                                             |       |      |  |  |  |
|                                           | Parameter                                                                  | Entry | Unit |  |  |  |
|                                           | Fraction of DOC dissimilated                                               | 0.5   | -    |  |  |  |
| (5) Fraction of CH <sub>4</sub> in biogas |                                                                            |       |      |  |  |  |
|                                           | Use 0.5 as IPCC default value.                                             |       |      |  |  |  |

| Parameter                             | Entry | Unit |
|---------------------------------------|-------|------|
| Fraction of CH <sub>4</sub> in biogas | 0.5   | -    |

# 3. Other conditions

(1) Model correction factor to account for model uncertainties (before the project starts) (-)

| Parameter                                                                                     | Entry                                                                                                                                            | Unit                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Model correction factor (default value)                                                       | 0.94                                                                                                                                             | -                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |  |  |
| (2) Model correction factor to account for model uncertainties (after the project starts) (-) |                                                                                                                                                  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                      |  |  |
| Use 1.06 as default value.                                                                    |                                                                                                                                                  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                      |  |  |
| Parameter                                                                                     | Entry                                                                                                                                            | Unit                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      |  |  |
| Model correction factor (default value)                                                       | 1.06                                                                                                                                             | -                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                               | Model correction factor (default value)<br>(2) Model correction factor to account for model uncertain<br>Use 1.06 as default value.<br>Parameter | Parameter       Entry         Model correction factor (default value)       0.94         (2) Model correction factor to account for model uncertainties (after to Use 1.06 as default value.       0.94         Parameter       Entry | Parameter       Entry       Unit         Model correction factor (default value)       0.94       -         (2) Model correction factor to account for model uncertainties (after the project Use 1.06 as default value.       0.94       -         Parameter       Entry       Unit |  |  |

Entry

Entry of source, etc.

# **Calculation Sheet**

# SAMPLE : Wastewater Treatment

GHG emission reduction after project activity (t-CO<sub>2</sub>/y) ERy = BEy - PEy (t-CO<sub>2</sub>/y)

# 1. Baseline emission $BEy = BE_{EC,y} + BE_{FC,y} + BE_{ww,t,y} + BE_{s,t,y} + BE_{ww,d,y} + BE_{s,f,y} + BE_{EN,y}$

| BE <sub>y</sub>            | Baseline emission :<br>GHG emission from methane released into the<br>atmosphere before the project starts                                                                                                                                               | 70,237 | t-CO <sub>2</sub> /y |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------|
| BE <sub>EC,y</sub>         | GHG emissions from electricity consumption on site<br>before the project                                                                                                                                                                                 | 448    | t-CO <sub>2</sub> /y |
| BE <sub>FC,y</sub>         | GHG emissions from fuel consumption on site before the project                                                                                                                                                                                           | 1,462  | t-CO <sub>2</sub> /y |
| BE www,t,y                 | GHG emissions of the wastewater treatment system<br>before the project                                                                                                                                                                                   | 39,480 | t-CO <sub>2</sub> /y |
| <b>BE</b> <sub>s,t,y</sub> | GHG emissions from the baseline sludge treatment                                                                                                                                                                                                         | 2,510  | t-CO <sub>2</sub> /y |
| BE <sub>ww,d,y</sub>       | GHG emissions on pathway of wastewater discharged<br>into sea/river/lake before the project                                                                                                                                                              | 17     | t-CO <sub>2</sub> /y |
| BE <sub>s,f,y</sub>        | GHG emissions from anaerobic decay of the final sludge<br>before the project<br>If the sludge is controlled combusted, disposed in a landfill with<br>biogas recovery, or used for soil application before the project,<br>this term shall be neglected. |        | t-CO <sub>2</sub> /y |
| BE <sub>EN,y</sub>         | Baseline emissions from generation of energy displaced<br>by the project activity                                                                                                                                                                        | 8,226  | t-CO <sub>2</sub> /y |

# **2.** Project emission $PE_y = PE_{EC,y} + PE_{FC,y} + PE_{ww,t,y} + PE_{s,t,y} + PE_{ww,d,y} + PE_{s,t,y}$

| PE <sub>y</sub>           | Project emission: GHG emission with wastewater or<br>sludge treatment systems is installed or revised after the<br>project starts                                                                                                                                                |       | t-CO <sub>2</sub> /y |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| PE <sub>EC,y</sub>        | GHG emission from electric consumption after the project starts                                                                                                                                                                                                                  | 448   | t-CO <sub>2</sub> /y |
| PE <sub>FC,y</sub>        | GHG emission from fossil fuel consumption after the project starts                                                                                                                                                                                                               | 1,462 | t-CO <sub>2</sub> /y |
| PE <sub>ww,t,y</sub>      | GHG emissions of the wastewater treatment system after<br>the project<br>If the CH <sub>4</sub> generated during the process is recovered and<br>destroyed, this term shall be neglected.                                                                                        | 140   | t-CO <sub>2</sub> /y |
| <i>PE<sub>s,t,y</sub></i> | GHG emissions from the sludge treatment systems<br>If the CH <sub>4</sub> generated during the process is recovered and<br>destroyed, this term shall be neglected.                                                                                                              | 0     | t-CO <sub>2</sub> /y |
| PE <sub>ww,d,y</sub>      | GHG emissions on pathway of wastewater discharged into sea/river/lake after the project                                                                                                                                                                                          | 2     | t-CO <sub>2</sub> /y |
| PE <sub>s,f,y</sub>       | GHG emissions from anaerobic decay of the final sludge<br>in wastewater treatment after the project .<br>If the sludge is controlled combusted, disposed in a landfill with<br>biogas recovery, or used for soil application after the project,<br>this term shall be neglected. | 0     | t-CO₂/y              |

# 3. GHG emission reduction after project activity ERy = BEy - PEy (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emissions reduction in year y achieved by the project                                                 | 68,185 <mark>t-CO<sub>2</sub>/y</mark> |
|-----------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from methane released into the<br>atmosphere before the project starts | 70,237 <mark>t-CO<sub>2</sub>/y</mark> |
| PEy             | Project emission: GHG emission with composting the sewage sludge decay in year y                          | 2,052 <mark>t-CO<sub>2</sub>/y</mark>  |

# Input Sheet

Project name SAMPLE : Sewerage

| . Information before the project                               | Default value         | e in red               |                 |                            |
|----------------------------------------------------------------|-----------------------|------------------------|-----------------|----------------------------|
| E <sub>CH4.S.v</sub> : GHG emissions from anaerobic decay of t | he final slud         | lao in waste           | water treat     | ment before the proje      |
| 1) Amount of dry matter in the final sludge gene               |                       |                        |                 |                            |
| Use 0.5 as IPCC guidline default value (d                      |                       |                        |                 | r treatment system (-      |
| Parameter                                                      | Entry                 | Unit                   | ige).           |                            |
| Amount of DOC in sludge                                        | 0.5                   | -                      |                 |                            |
| 2)CH₄ correction factor of the disposal site that              | receives the          | e sludae be            | fore the n      | oject (-)                  |
| Enter the IPCC guidline default value (Re                      |                       | -                      |                 |                            |
| Parameter                                                      | Entry                 | Unit                   |                 |                            |
| CH <sub>4</sub> correction factor of the disposal site         | 1.0                   | 01111                  |                 |                            |
| •                                                              |                       | -                      | $\sim$          |                            |
| 3) Fraction of degradable organic carbon (DOC)                 | aissimilatee          | d to blogas            | (-)             |                            |
| Use 0.5 as IPCC guideline default data.<br>Parameter           | Entry                 | Unit                   |                 |                            |
| Fraction of DOC dissimilated                                   | Entry<br>0.5          | -                      |                 |                            |
| 4) Fraction of CH <sub>4</sub> in biogas                       | 0.5                   |                        |                 |                            |
| Use 0.5 as IPCC guideline default data.                        |                       |                        |                 |                            |
| Parameter                                                      | Entry                 | Unit                   |                 |                            |
| Fraction of $CH_4$ in biogas                                   | 0.5                   | -                      |                 |                            |
| Traction of Ort <sub>4</sub> in biogas                         | 0.5                   | -                      |                 |                            |
| Parameter                                                      | Entry                 | Unit                   |                 |                            |
| Amount of electricity produced using                           |                       | MWh/y                  |                 |                            |
| Amount of thermal energy produced                              | 100                   | TJ/y                   |                 |                            |
| using biogas                                                   | 100                   | т Ј/ у                 |                 |                            |
| 2) Emission factor of the typical power plant (t-              | CO <sub>2</sub> /MWh) |                        |                 |                            |
| Data availability should be validated in the                   | e following or        | der in selec           | ting the typ    | pical power plant and o    |
| CO <sub>2</sub> emissions factor specific to the targe         | t.                    |                        |                 |                            |
| i) Interview to the electric power managen                     | nent entity co        | oncerned               |                 |                            |
| ii) Published values in the target country                     |                       |                        |                 |                            |
| ,                                                              |                       |                        |                 |                            |
| Parameter                                                      | Entry                 | U                      | nit             | ]                          |
| Emission factor of the typical power plant                     | 0.896                 | t-CO <sub>2</sub> /MWh | າ               |                            |
| Source: Interview to XX compa                                  | any of XX cou         | untry                  |                 |                            |
| 3)CO2 emission factor of heat generated (t-CO2                 |                       | -                      |                 |                            |
| -                                                              |                       |                        |                 |                            |
| Parameter                                                      |                       |                        | Entry           | Unit                       |
| CO <sub>2</sub> emission factor per unit of energy of          | the boiler            |                        | 73.3            | t-CO <sub>2</sub> /TJ      |
| fuel consumption in the absence of project                     |                       | Fuel type              |                 |                            |
| Boiler efficiency                                              | t                     | Puel type<br>Petroleum |                 |                            |
|                                                                | et                    |                        | 100             | %                          |
|                                                                |                       | Petroleum              | 100             | %                          |
| Rate of heat generation from boiler out of                     |                       | Petroleum              | <u>100</u><br>1 | %                          |
| , , , , , , , , , , , , , , , , , , ,                          |                       | Petroleum              | 1               | %<br>t-CO <sub>2</sub> /TJ |

 Source:
 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table2.2

## 2. Information after the project starts

- PE<sub>EC.v</sub> : GHG emission from electric consumption after the project starts
- PE<sub>FC,y</sub> : GHG emission from fossil fuel consumption after the project starts

(1) The electricity and fuel consumption after the project starts in the biogas recovery facilities (MWh/y) Enter the planned data before the project starts or input the monitoring data after the project starts.

| Parameter                                           | Entry     | Unit  |                   |
|-----------------------------------------------------|-----------|-------|-------------------|
| Amount of electricity consum                        | 500       | MWh/y |                   |
|                                                     | Petroleum | 500   | kL/y              |
| Amount of fuel consumption after the project starts | Coal      | 50    | t/y               |
|                                                     | Gas       | 100   | m <sup>3</sup> /y |
|                                                     | Others    |       |                   |

## (2) Emission factor of the typical power plant (t-CO<sub>2</sub>/MWh)

Data availability should be validated in the following order in selecting the typical power plant and obtaining CO<sub>2</sub> emissions factor specific to the target.

i) Interview to the electric power management entity concerned

ii) Published values in the target country

| Parameter                                                    | Entry | Unit                   |  |
|--------------------------------------------------------------|-------|------------------------|--|
| CO2 emission factor of electricity which<br>connects to grid | 0.896 | t-CO <sub>2</sub> /MWh |  |
| Source: Interview to XX company of XX country                |       |                        |  |

# (3) Net calorific value according to fuel type(TJ/Gg)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

i) Project-specific values obtained through interview to electricity management entity concerned ii) National default

iii) IPCC Guideline default data

| Parameter |              | Net calorific value |       | CO <sub>2</sub> emission factor |                       |
|-----------|--------------|---------------------|-------|---------------------------------|-----------------------|
| Petroleum |              | 36.3                | GJ/kL | 73.3                            | t-CO <sub>2</sub> /TJ |
| Coal      |              | 26.7                | GJ/t  | 98.3                            | t-CO <sub>2</sub> /TJ |
| Gas       |              | 0.0384              | GJ/m3 | 56.1                            | t-CO <sub>2</sub> /TJ |
| Others    |              |                     |       |                                 | t-CO <sub>2</sub> /TJ |
| Source:   | Interview to | o XX                |       |                                 |                       |

2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2 Energy table1.2,table2.2

# PE<sub>C.v</sub> : GHG emission during the composting process after the project starts

# (1) Amount of dry matter in the sludge composed (t/y)

Enter the planned data before the project starts or input the monitoring data after the project starts.

| Parameter                     | Entry  | Unit |  |  |
|-------------------------------|--------|------|--|--|
| Amount of dry matter composed | 30,000 | t/y  |  |  |
|                               |        |      |  |  |

# (2) Emission factor for CH<sub>4</sub> from the composting process(t-CH<sub>4</sub>/t-sludge)

Data/ information specific to the target country should be preferably used for calculation. Data availability should be validated in the following order to enter data in the cells.

i)National default

ii)IPCC Guideline default data(0.01)

| Enter the monitoring data after the project starts. |       |                |  |
|-----------------------------------------------------|-------|----------------|--|
| Parameter                                           | Entry | Unit           |  |
| Emission factor during composting process           | 0.01  | t-CH₄/t-sludge |  |

### 4. Other conditions

## (1) Fraction of methane destroyed by national regulation before the project starts (t-CH<sub>4</sub>/y)

| It shall be "0" where developing countries | have a very | few regulati | ion |
|--------------------------------------------|-------------|--------------|-----|
| Parameter                                  | Entry       | Unit         |     |
| Fraction of CH <sub>4</sub> destroyed      | 0.00        | -            |     |

### (2) Model correction factor to account for model uncertainties (before the project starts) (-)

Enter 0.94 as default value

| Parameter                               | Entry | Unit |
|-----------------------------------------|-------|------|
| Model correction factor (default value) | 0.94  | -    |

Entry

Entry of source, etc.

# **Calculation Sheet**

# SAMPLE : Sewerage

# GHG emission reduction after project activity(t-CO<sub>2</sub>/y)

 $ERY - DEY - FEY (I-CO_{a}/v)$ 

# 1. Baseline emission BEy = $BE_{CH4,S,y} \times (1-AF) + BE_{EN}$

| <b>ВЕ</b> <sub>у</sub>           | Baseline emission:<br>GHG emission from $CH_4$ released into the atmosphere<br>before the project starts which the sludge is composted                                         | 106,926 | t-CO <sub>2</sub> /y |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| <b>ВЕ <sub>СН4,S,</sub></b><br>у | GHG emissions from anaerobic decay of the final sludge<br>in sludge treatment before the project                                                                               | 98,700  | t-CO <sub>2</sub> /y |
| AF                               | GHG emission reduction of methane destroyed by<br>national regulation before the project starts<br>This shall be "0" where developing countries have a very<br>few regulation. | 0       | -                    |
| BE <sub>EN,y</sub>               | GHG emission from electricity and thermal energy genaration displaced by the project activity                                                                                  | 8,226   | t-CO <sub>2</sub> /y |

# **2.** Project emission $PE_y = PE_{EC,y} + PE_{FC,y} + PE_{C,y}$

| PE <sub>y</sub>    | Project emission:<br>GHG emission from $CH_4$ released into the atmosphere<br>after the project starts which the sludge is composted | 8,210 | t-CO <sub>2</sub> /y |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|
| PE <sub>EC,y</sub> | GHG emission from electric consumption after the project star                                                                        | 448   | t-CO <sub>2</sub> /y |
| PE <sub>FC,y</sub> | GHG emission from fossil fuel consumption after the project starts                                                                   | 1,462 | t-CO <sub>2</sub> /y |
| РЕ <sub>С,у</sub>  | GHG emission during the composting process after the project starts                                                                  | 6,300 | t-CO <sub>2</sub> /y |

# 3. GHG emission reduction after project activity ERy = BEy - PEy (t-CO<sub>2</sub>/y)

| ER <sub>y</sub> | GHG emissions reduction in year y achieved by the proje                                                                                         | 98,716  | t-CO <sub>2</sub> /y |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------|
| BE <sub>y</sub> | Baseline emission:<br>GHG emission from CH <sub>4</sub> released into the atmosphere<br>before the project starts which the sludge is composted | 106,926 | t-CO₂/y              |
| PE <sub>y</sub> | Project emission:<br>GHG emission from CH4 released into the atmosphere<br>after the project starts                                             | 8,210   | t-CO₂/y              |